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Chacun a le droit de vivre dans un environnement équilibré et respectueux de la santé." "Toute personne a le devoir de prendre part à la préservation et à l'amélioration de l'environnement." Charte de l'environnement, articles 1 et 2 "La fumée fait mal à mon ami." Marcel Proust, Le côté de Guermantes "Les événements n'appartiennent au hasard que tant qu'on ne connait pas les lois générales de leur catégorie." Guy-Ernest Debord, dans Le mal du Dehors, Rémy Slama "C'était l'austère simplicité de la fiction plutôt que la trame embrouillée de la réalité."

Raymond Chandler, Le grand sommeil "L'égarement de la vérité entre le beau et le réel" Mahmoud Darwich, Comme des fleurs d'amandiers ou plus loin "Où t'en vas-tu pensée où t'en vas-tu rebelle" Louis Aragon, Cantique à Elsa

Methods: We first implemented two "oriented Meet-in-the-Middle" (oMITM) approaches to characterize the link between the exposome and child health outcomes (Body Mass Index, BMI and lung function) in the Helix cohorts (1173 mother-child pairs); the approach relied on 3 steps: a) identification of CpGs loci (i.e. methylation sites) independently associated with exposures and the outcome using a priori information and/or univariate linear regressions; b) identification by linear regression of the exposures associated with at least one of these CpGs, thus constituting a reduced exposome; c) test of their association with the outcome. We then performed a Monte-Carlo simulation study to characterize the performance of the oMITM design under various causal assumptions. We simulated realistic exposome, intermediary layer and outcome relying on data from the Helix BMI study and assuming linear relationships between components of the three layers. The magnitude of links was allowed to vary, leading to 2281 scenarios under 5 different causal structures, including a structure corresponding to reverse causality. For each scenario, we generated 100 datasets and tested 6 methods: 3 ignoring the methylome data ("agnostic approaches": ExWAS; DSA; LASSO) and 3 using methylome data (two implementations of oMITM and a mediation analysis). Methods' performance was assessed by sensitivity and specificity. We further performed a two-layer simulation study to assess the instability of some agnostic methods, with a focus on LASSO.

Results:

The oMITM approaches performed on Helix data identified one exposure, copper postnatal blood level, associated with higher BMI and with lower lung function. An ExWAS relating exposome to BMI identified in the same data 18 additional (lipophilic) exposures, whose association with BMI could possibly be due to reverse causality. The simulation study showed that, compared to the other approaches, the oMITM design may allow to discard some false positive findings in at least one situation of reverse causality and to increase specificity when the intermediate layer mediates part of the effect of the exposome on the outcome, at a cost in terms of sensitivity loss. The oMITM -DSA implementation showed better performances (sensitivity, specificity) than the oMITM -ExWAS. The second simulation study showed that the stabilization step changes model performance thus illustrating its importance when using agnostic machine learning algorithms such as LASSO.

Discussion and perspectives: The use of complex statistical methods tailored for intermediate or high dimensional data, or the consideration of biological information, could help tackle the question of false positives in exposome studies. We developed a design, oMITM, which was less prone to reverse causation bias than agnostic approaches ignoring intermediate layers between the exposome and health, at a cost in terms of sensitivity.

Résumé

Contexte : L'exposome est défini comme l'ensemble des expositions environnementales reçues au cours de la vie (dont la vie prénatale). La puissance statistique limitée et le taux élevé de faux positifs des études actuelles sont deux défis majeurs pour la caractérisation de ses effets sur la santé. Les faux-positifs peuvent notamment être dus à de la causalité inverse. Pour faire face à ces défis, affiner les méthodes statistiques est utile, mais l'utilisation d'information biologique, par exemple provenant de couches intermédiaires telle la méthylation de l'ADN, peut aussi contribuer à réduire la dimension du problème, et les faux positifs liés à la causalité inverse.

Objectifs : Notre objectif principal est d'identifier des stratégies pour limiter les faux positifs dans les études sur l'exposome, en particulier en intégrant des informations a priori provenant du méthylome, et d'appliquer ces stratégies à l'étude de l'influence de l'environnement sur la santé de l'enfant. Nous avons également cherché à illustrer d'autres enjeux des études sur l'exposome liés à l'instabilité des modèles.

Méthodes : Nous avons d'abord mis en oeuvre deux approches "Meet-in-the-Middle orientées" (oMITM) pour caractériser le lien entre exposome et santé de l'enfant (indice de masse corporelle, IMC et fonction pulmonaire) dans les cohortes Helix (1173 mères-enfants) ; l'approche comprenait 3 étapes : a) identification de CpG indépendamment associés aux expositions et à la santé en utilisant des connaissances a priori et/ou des régressions linéaires univariées ; b) identification par régression linéaire des expositions associées à au moins un de ces CpG, constituant un exposome réduit ; c) test de leur association avec la santé. Nous avons ensuite réalisé une simulation de Monte-Carlo pour caractériser la pertinence du design oMITM sous différentes structures causales. Nous avons simulé un exposome, une couche intermédiaire et un évènement de santé à partir des données Helix en postulant des relations linéaires entre les couches. La magnitude des liens variait, générant 2281 scénarios sous 5 structures causales différentes, dont une de causalité inverse. Pour chaque scénario, 100 jeux de données étaient générés et 6 méthodes testées : 3 ignorant le méthylome ("approches agnostiques" : ExWAS ; DSA ; LASSO) et 3 l'utilisant (deux implémentations d'oMITM et une analyse de médiation). Les performances étaient évaluées par leur sensibilité et spécificité. Nous avons aussi effectué une étude de simulation pour évaluer l'instabilité de certaines méthodes agnostiques, en particulier le LASSO.

Résultats : Les approches oMITM sur les données Helix ont identifié une exposition, le niveau postnatal de cuivre dans le sang, associé à un IMC accru et à une fonction pulmonaire diminuée. Une ExWAS entre exposome et IMC dans HELIX a identifié 18 autres expositions (lipophiles), dont l'association avec l'IMC pourrait de ce fait être due à de la causalité inverse. L'étude de simulation a montré que, par rapport aux autres approches, le design oMITM peut éviter certains faux positifs dans au moins une situation de causalité inverse et augmenter la spécificité lorsque la couche intermédiaire médie une partie de l'effet de l'exposome sur la santé, ceci à un coût en terme de sensibilité. L'implémentation oMITM-DSA montrait de meilleures performances qu'oMITM-ExWAS. La deuxième simulation a montré que l'étape de stabilisation du modèle est cruciale lors de l'utilisation d'algorithmes d'apprentissage agnostique tels LASSO, car elle en modifie les performances.

Discussion et perspectives : L'utilisation de méthodes statistiques complexes adaptées à des données de dimensions intermédiaires ou élevées, ou la prise en compte de connaissances biologiques, pourraient aider à limiter les faux positifs dans les études sur l'exposome. Nous avons proposé un design, oMITM, qui est moins sujet au biais de causalité inverse que les approches agnostiques avec un coût en termes de sensibilité.

Mots-clefs

Exposome ; cohorte ; methylome ; a priori biologique ; faux-positifs ; causalité ; haute dimension ; Indice de Masse Corportelle ; stabilité. III.1: Preselected genes related to FEV1 according to [START_REF] Li | Genome-wide association study identifies TH1 pathway genes associated with lung function in asthmatic patients[END_REF] and corresponding number of enhancers CpGs available in Helix data. Table III.2: Agnostic ExWAS corrected for relevant potential confounders and corrected for multiple testing relating the exposome and child FEV1. Table IV.1: Details of the methods compared in the simulation study. Table IV.2: Performance for every method under each causal structure. Table IV The exposome concept acknowledges that individuals are simultaneously exposed to a multitude of different factors from conceptions onwards [START_REF] Wild | Complementing the Genome with an "Exposome": The Outstanding Challenge of Environmental Exposure Measurement in Molecular Epidemiology[END_REF] and can be defined as the totality of the individual environmental (i.e. non-genetic) factors. Since the 2000s, environmental epidemiology has progressively embraced it and evolved from studies considering the association of one exposure with one specific disease (e.g. [START_REF] Hill | Smoking and carcinoma of the lung preliminary report[END_REF]) to studies including various long term or short term measures of different exposures (see for example [START_REF] Agier | Early-life exposome and lung function in children in Europe: an analysis of data from the longitudinal, population-based HELIX cohort[END_REF][START_REF] Lenters | Prenatal phthalate, perfluoroalkyl acid, and organochlorine exposures and term birth weight in three birth cohorts: Multi-pollutant models based on elastic net regression[END_REF]).

The exposome was originally defined as consisting in three main categories [START_REF] Siroux | The exposome concept: a challenge and a potential driver for environmental health research[END_REF][START_REF] Wild | The exposome: From concept to utility[END_REF]: 1. A large set of external individual exposures, including air pollutants, meteorological factors, radiation, chemical exposures, as well as diet, physical activity and tobacco and other lifestyle factors; 2. A wider general exposome, including the urban-rural environmental, the education and the socio-economical and climate factors; 3. An internal exposome, consisting in endogenous processes internal to the body (such as metabolic factors, gut microflora, inflammation or oxidative stress). The inclusion of the internal exposome in exposome studies which has been sometimes advocated [START_REF] Rappaport | Biomarkers intersect with the exposome[END_REF][START_REF] Vermeulen | The exposome and health: Where chemistry meets biology[END_REF] can be discussed: indeed, if biomarkers of exposures (for example levels of a given phthalate in urine) can be useful to assess the individual exposures, components of the internal exposome can be considered to be biomarkers of effects, whose levels and variations result from a wide range of exogenous and genetic factors [START_REF] Chadeau-Hyam | Deciphering the complex: Methodological overview of statistical models to derive OMICS-based biomarkers[END_REF]. Last, the infectious factors, the "infectome", are also sometimes recognized as a part of the exposome [START_REF] Bogdanos | Infectomics and autoinfectomics: a tool to study infectious-induced autoimmunity[END_REF][START_REF] Damiani | Gut microbiota and nutrient interactions with skin in psoriasis: A comprehensive review of animal and human studies[END_REF].

CHAPTER I: Introduction Since 2010, numerous ambitious studies have been built in order to describe the exposome at the individual level and its links with the health (see for example the 12 exposome projects funded by the European Commission from 2012 to 2024, Table I.1).

Assessing the exposome

Assessing the exposome involves many challenges: the first one is to know what to measure.

Exposome studies most often assessed an a priori defined set of exposures (see for example the Helix project [START_REF] Vrijheid | The human early-life exposome (HELIX): project rationale and design[END_REF]). An alternative or a complement is to screen for exogenous chemicals using metabolomic biomarkers [START_REF] Vermeulen | The exposome and health: Where chemistry meets biology[END_REF] in an untargeted approach (see for example [START_REF] Bonvallot | Metabolomics Tools for Describing Complex Pesticide Exposure in Pregnant Women in Brittany (France)[END_REF]). In targeted studies, the individual exposome is sometimes assessed both by environmental models, for outdoors exposures such as air pollutants and meteorological data, which often have the advantages to document the source of exposures, and by biomarkers for individuals exposures to chemicals, such as phthalates or phenols (in urine) or metals (in blood or other matrices), which allowed a more personal assessment [START_REF] Maitre | Human Early Life Exposome (HELIX) study: a European population-based exposome cohort[END_REF][START_REF] Vineis | The exposome in practice: Design of the EXPOsOMICS project[END_REF].

The measurement error [START_REF] Armstrong | Effect of measurement error on epidemiological studies of environmental and occupational exposures[END_REF] traditionally encountered in environmental epidemiology is an important challenge for exposome assessment, as the exposome is dynamic throughout time and as some chemicals components of interest have high within-subjects variability (Agier et al., 2020b;[START_REF] Casas | Variability of urinary concentrations of non-persistent chemicals in pregnant women and school-aged children[END_REF][START_REF] Vernet | Within-day, between-day, and between-week variability of urinary concentrations of phenol biomarkers in pregnant women[END_REF]: this includes in particular short half-life compounds, such as phenols, phthalates and organophosphate pesticides (Casas et al., 2018). Some studies, like the French SEPAGES cohort [START_REF] Lyon-Caen | Deciphering the impact of early-life exposures to highly variable environmental factors on foetal and child health: Design of SEPAGES couple-child cohort[END_REF], aim at decreasing measurement error by increasing the number of measurement points in each subject, e.g. relying on the so-called within-subject biospecimens pooling approach [START_REF] Vernet | An Empirical Validation of the Within-subject Biospecimens Pooling Approach to Minimize Exposure Misclassification in Biomarkerbased Studies[END_REF]. Whereas the exposome encompasses all exposures from conceptions, it appears relevant for some exposome studies to reduce measurement time window to focus on early life, as the early-life environment may be critical for later health, as stated by the Developmental Origins of Health and Disease (DOHaD) paradigm [START_REF] Heindel | Developmental origins of health and disease: Integrating environmental influences[END_REF]; this is done by many exposome projects (see Table I.1).

Relevance of the exposome concept for public health

The relevance of the application of the exposome concept in environmental epidemiology first lies in such ambitious assessments: they allow to describe the correlations between exposures (see for example [START_REF] Tamayo-Uria | The early-life exposome: Description and patterns in six European countries[END_REF] and Figure I.1). Such a description is crucial for environmental justice [START_REF] Brulle | ENVIRONMENTAL JUSTICE: Human Health and Environmental Inequalities[END_REF], but also to better relate the environment to health and help assessing the environmental burden of disease: indeed, the exposome may explain an important part of chronic diseases [START_REF] Manrai | Informatics and Data Analytics to Support Exposome-Based Discovery for Public Health[END_REF][START_REF] Rappaport | Genetic factors are not the major causes of chronic diseases[END_REF] and deaths (Gakidou et al., 2017), which genetic factors are not sufficient to account for [START_REF] Rappaport | Genetic factors are not the major causes of chronic diseases[END_REF]. Simultaneously considering numerous exposures allows to limit selective reporting and publication bias in etiologic studies [START_REF] Slama | Some challenges of studies aiming to relate the Exposome to human health[END_REF], to reckon with multiple testing and to help discarding confounding by co-exposures. Moreover, an exposome approach may, at least in principle, enable to identify mixture effects [START_REF] Slama | Some challenges of studies aiming to relate the Exposome to human health[END_REF], i.e. combinations and interactions between multiple environmental exposures on their causal path to an health effect [START_REF] Patel | Analytic Complexity and Challenges in Identifying Mixtures of Exposures Associated with Phenotypes in the Exposome Era[END_REF]) (an operational definition of interactions corresponds to departure from additivity in a linear setting [START_REF] Rothman | &dq= +rothman+modern+epidemiology+greenland&ots=aROIbIUL8W&sig=etZ2wtoFYJAi2T nE5gYzeIj-uBY&redir_esc=y#v=onepage&q=rothman modern epidemiology greenland&f=false[END_REF]).

CHAPTER I: Introduction et al., 2019). Between-exposure correlations in a given exposure family can reach 0.8 [START_REF] Tamayo-Uria | The early-life exposome: Description and patterns in six European countries[END_REF].

Relating the exposome to health

The number of environmental factors assessed in such studies are typically in the order of a few hundred (216 in HELIX [START_REF] Tamayo-Uria | The early-life exposome: Description and patterns in six European countries[END_REF]); after the assessment of the exposome, the second main challenge of exposome studies, on which we will focus, is to manage to identify causal predictors of health outcomes among these exposures, and assessing their effect.

The first method used to do this was the ExWAS (for exposome-wide association studies), i.e.

univariate regressions (adjusted for confounders) relating independently each exposure to the health outcome of interest and possibly corrected for multiple testing [START_REF] Patel | An Environment-Wide Association Study (EWAS) on Type 2 Diabetes Mellitus[END_REF]. Patel first assessed the relationship between 266 exposures and type 2 diabetes [START_REF] Patel | An Environment-Wide Association Study (EWAS) on Type 2 Diabetes Mellitus[END_REF]. Since then,

ExWAS studies have been conducted to relate exposures to birth weight and foetal growth (Agier et al., 2020a;[START_REF] Govarts | Prenatal exposure to endocrine disrupting chemicals and risk of being born small for gestational age: Pooled analysis of seven European birth cohorts[END_REF][START_REF] Govarts | Combined effects of prenatal exposures to environmental chemicals on birth weight[END_REF][START_REF] Lenters | Prenatal phthalate, perfluoroalkyl acid, and organochlorine exposures and term birth weight in three birth cohorts: Multi-pollutant models based on elastic net regression[END_REF][START_REF] Nieuwenhuijsen | Influence of the Urban Exposome on Birth Weight[END_REF][START_REF] Woods | Gestational exposure to endocrine disrupting chemicals in relation to infant birth weight: A Bayesian analysis of the HOME Study[END_REF], fecundity [START_REF] Chung | Exposome-wide association study of semen quality: Systematic discovery of endocrine disrupting chemical biomarkers in fertility require large sample sizes[END_REF][START_REF] Lenters | Phthalates, perfluoroalkyl acids, metals and organochlorines and reproductive function: A multipollutant assessment in Greenlandic, Polish and Ukrainian men[END_REF][START_REF] Louis | Persistent Environmental Pollutants and Couple Fecundity: The LIFE Study[END_REF], respiratory function [START_REF] Agier | Early-life exposome and lung function in children in Europe: an analysis of data from the longitudinal, population-based HELIX cohort[END_REF], mortality [START_REF] Patel | Systematic evaluation of environmental and behavioural factors associated with all-cause mortality in the united states national health and nutrition examination survey[END_REF], child obesity [START_REF] Vrijheid | Early-Life Environmental Exposures and Childhood Obesity : An Exposome-Wide Approach[END_REF]) and blood pressure [START_REF] Warembourg | Early-Life Environmental Exposures and Blood Pressure in Children[END_REF]. Note that many exposome-type or so-called "mixtures" studies have also been conducted, considering a few dozen exposures, typically for a couple of exposures families [START_REF] Lenters | Prenatal phthalate, perfluoroalkyl acid, and organochlorine exposures and term birth weight in three birth cohorts: Multi-pollutant models based on elastic net regression[END_REF][START_REF] Philippat | Prenatal Exposure to Select Phthalates and Phenols and Associations with Fetal and Placental Weight among Male Births in the EDEN Cohort (France)[END_REF][START_REF] Woods | Gestational exposure to endocrine disrupting chemicals in relation to infant birth weight: A Bayesian analysis of the HOME Study[END_REF].

These ExWAS studies probably suffer from a lack of power: indeed, assessing numerous exposures implies costs which make these studies difficult to be performed on a number of individuals sufficient to have enough statistical power [START_REF] Patel | A data-driven search for semen-related phenotypes in conception delay[END_REF] and to avoid spurious correlation between exposures. This is expected to lead to false negative (low sensitivity) and false positive findings. Moreover, the use in ExWAS of the classical tool of the low-dimension epidemiology, i.e.

univariate linear regression, can dramatically increase the "statistical" false-positive rates. This is known as the 'multiple comparison issue': the higher the number of inferences made using an acceptance threshold for type I error (usually 5%), the more likely erroneous inferences are to occur [START_REF] Benjamini | Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing[END_REF]. Moreover, some exposures are intrinsically correlated, which makes true predictors of health outcomes difficult to differentiate from correlated exposures [START_REF] Slama | Some challenges of studies aiming to relate the Exposome to human health[END_REF], which are thus predictors but not causal predictors : a simulation study under a realistic exposome setting showed that ExWAS (understood as an exposome-wide study using multiple univariate linear regression) false discovery proportion (FDP) increases with correlation [START_REF] Agier | A Systematic Comparison of Linear Regression-Based Statistical Methods to Assess Exposome-Health Associations[END_REF]. HELIX -The Human Early Life Exposome [START_REF] Vrijheid | The human early-life exposome (HELIX): project rationale and design[END_REF] "To exploit novel tools and methods (remote sensing/GIS-based spatial methods, omics-based approaches, biomarkers of exposure, exposure devices and models [..]), to characterize early-life exposure to a wide range of environmental hazards, and integrate and link these with data on major child health outcomes". 9 groups of individuals exposures assessed by biomarkers; and 5 groups of outdoor exposures, assessed by models (216 exposures in total) 31 472 mother-child pairs from 6 cohorts [START_REF] Maitre | Human Early Life Exposome (HELIX) study: a European population-based exposome cohort[END_REF]. 2 windows of exposures : pregnancy and childhood. [START_REF] Vrijheid | The human early-life exposome (HELIX): project rationale and design[END_REF].

Yes, on a subcohort of 1301 individuals: methylome, transcriptome, proteome, metabolome [START_REF] Vrijheid | The human early-life exposome (HELIX): project rationale and design[END_REF] 

FP7

(2012-2017)

EXPOSOMICS

"To predict individual disease risk related to the environment, by characterizing the external and internal exposome for common exposures (air and drinking water contaminants) during critical periods of life, including in utero".

An external exposome focusing on air pollutants and water contaminants, and an "internal exposome", the metabolome. [START_REF] Vineis | The exposome in practice: Design of the EXPOsOMICS project[END_REF] Subpopulation of various cohorts, including both prenatal, child and later life cohorts.

Yes: metabolome ("internal exposome"), methylome, transcriptome [START_REF] Vineis | The exposome in practice: Design of the EXPOsOMICS project[END_REF] 

FP7

(2012-2017)

HEALS -Health and Environmentwide Associations based on Large population Surveys

"To [refine] an integrated methodology and

[apply] analytical and computational tools for elucidating human exposome through the integrated use of advanced statistical tools for environment-wide association studies in support of EU-wide environment and health assessments" Both internal (135 biomarkers) and external (64 exposures) exposome (Steckling et al., Considering the false positive rate issue in a structural causal framework

The problem of false positive findings, central in exposome studies, may gain to be considered within a structural causal framework. Indeed, a part of epidemiology is interested in finding the causal predictors of health, i.e. not factors which allow to predict an outcome, but factors which have a causal effect on the outcome. This distinction between risk prediction and causal inference, i.e. between risk predictors and causal factors (or "true predictors"), is crucial for later use of epidemiological findings in public health, as only causal predictors are relevant targets for clinical or public health interventions.

Identifying with accuracy true predictors of an event means avoiding false-positive as well as false-negative results, i.e. requires to be both specific and sensitive. When epidemiologists identify statistical associations between factors and an outcome in a sample to try to identify true predictors of this outcome in a population, they are likely to encounter two types of false-positive associations. The first type is the false positive due to sampling variability, the "random error". The second type occurs when a structural association which truly exists in the population is identifiable in the sample, but has no causal meaning. Indeed, as described by [START_REF] Hernán | A structural approach to selection bias[END_REF], an association between two variables can occur in five cases: a. One is cause of the other, i.e.: a1. The variable of interest (typically the outcome) is influenced by the a priori explanatory variable (typically an exposure): if detected, the association corresponds to a true positive.

a2. The variable of interest causes the a priori explanatory variable: possibly leading to a false-positive finding due to reverse causality. b. They share a common cause: this leads to a confounding bias, potentially creating false positive (or also false-negative) finding. c. They share a common consequence. If one controls for this consequence, a selection bias occurs, and can lead to false positive (or also false-negative) findings. d. By chance, due to sampling variability.

All situations a, b, and c correspond to structural associations but only case a1 corresponds to the identification of a causal predictor. Case e corresponds to a false positive "by-chance": in this case, the observed association, has not only no meaning of causal association, but does not correspond to a structural association. The association then depends on the size of the study sample: chance associations become smaller with increased sample size whereas structural associations remain unchanged [START_REF] Hernán | A structural approach to selection bias[END_REF]. In the classical framework of statistical tests, this type of false positive association by chance corresponds to the type I error, i.e. rejecting as false the null hypothesis of independence whereas it is true in the source population. To this classification made by Hernan inside the causal framework, we must add the measurement error [START_REF] Armstrong | Effect of measurement error on epidemiological studies of environmental and occupational exposures[END_REF].

Thus, identifying the true predictors of a health outcome without false positive means, for the epidemiologist, to identify structural associations without false-positives (i.e. avoiding case d) and being able to point among these associations the ones which correspond to a causal link (i.e.

distinguishing case a1 from the other cases a2, b and c).

Cases a2, b and c are biases and thus cannot be cured by increases in the sample size, but by options related to study design and statistical modeling (e.g., adjustment for confounding factors), supported by information on the causal structure or a priori information. Situation a2 of reverse causality is generally considered to be avoidable by external knowledge on the data generation process (e.g., the underlying biological mechanisms and the study design, including in particular the timing of assessment of E and Y).

Additionally, one should symmetrically avoid also false-negative findings, i.e. be able to identify a causal association when it exists. False negative associations can also occur by random fluctuations,

Statistical techniques to address false positive and false negative challenges in exposome studies

Multiple testing correction

To face the above-mentioned challenges of the exposome related to the simultaneous consideration of multiple and possibly correlated exposures, relying on statistical methods more suitable to intermediate and high dimensional data than the classical regression model typically used in "single exposure" analysis (the ExWAS) can be seen as a solution.

Statistical methods have been developed to tackle the problem of by-chance findings. These techniques include correction for multiple testing and dimension reduction, in particular variable selection [START_REF] Chadeau-Hyam | Deciphering the complex: Methodological overview of statistical models to derive OMICS-based biomarkers[END_REF].

Various multiple testing correction techniques have been developed to solve the multiple comparison problem, proposing to adapt the significance threshold of 5% most often used in univariate regression, making it stricter to compensate for the number of inferences being made.

Two strategies can be distinguished: False-Discoveries-Rate (FDR) controlling procedures and Family-Wise error Rate (FWER) controlling procedures. FDR-controlling procedures control the expected proportion of "discoveries" (rejected null hypotheses) that are false, whereas FWERcontrolling procedures control the probability of at least one Type I error, which is more conservative. They are widely used, and all the ExWAS studies that we cited in paragraph I. 1.4 applied one of these controlling procedures. Three of the most common strategies of implementation are [START_REF] Benjamini | Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing[END_REF] and Benjamini and Yekutieli [START_REF] Benjamini | The Control of the False Discovery Rate in Multiple Testing under Dependency[END_REF] for FDR-controlling techniques and Bonferroni [START_REF] Dunn | Multiple Comparisons among Means[END_REF] for FWER-controlling techniques. The simulation by [START_REF] Agier | A Systematic Comparison of Linear Regression-Based Statistical Methods to Assess Exposome-Health Associations[END_REF] in realistic exposome settings showed that the addition of a FDR controlling procedure to independent linear regression (which is the most common implementation of the ExWAS method) allowed to decrease the FDP from always more than 0.89 (without correction) to values between 0.67 and 0.93 (with correction). This decrease in FDP came together a strong decrease in sensitivity: indeed, the Benjamini-Yekutieli procedure used to adjust for multiple testing as well as the other procedures cited above assume that the tests are independent, which is in practical never the case in exposome studies, as exposures are often correlated. Correlation, additionally to create false-positive findings, also makes the number of effective tests performed lower than the number of associations tested, which decreases ExWAS power when a multiple comparisons correction technique is applied. Thus, adaptation of Bonferroni or Benjamini-Hochberg procedures taking into account a computed effective number of tests have been proposed (see for example [START_REF] Li | Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets[END_REF]) to target the decreased in power, but they also enhance the lack of specificity linked to correlation that we described in I. 1.4.

Curse of dimensionality and dimension reduction techniques

To address the issue of false-positive hits linked to correlation and confounding, multiple regression appears as a relevant option: however, the size of current exposome studies prevents its use, as it is expected to be biased in such dimension [START_REF] Sur | A modern maximum-likelihood theory for high-dimensional logistic regression[END_REF]. Here, an option is to use "dimension reduction techniques". In fact, some problems encountered when dealing with intermediate or high dimensional data such as the exposome, known as the "curse of dimensionality" (a term first used by [START_REF] Bellman | Adaptive Control Processes: A Guided Tour[END_REF] [START_REF] Bellman | Adaptive Control Processes: A Guided Tour[END_REF]), were the motivation of the development of dimension reduction techniques. Indeed, when the number of variables (and so the dimensionality of the features space) increases, the number of possible configurations increases too, making the configuration covered by an observation smaller compared to all possibilities. In other words, for a defined number of individuals, with more variables, the information may be richer, but it is also more diluted. In practice, this leads to several challenges when trying to extract information from the data: for example, the "vastness" of high-dimensional space often prevents algorithms based on similarity measures (k-neighbors, decision trees…) to work [START_REF] Houle | Can shared-neighbor distances defeat the curse of dimensionality?[END_REF] and the number of samples needed to estimate an arbitrary function with a given level of accuracy grows with the dimensionality. This explained why the classical maximum-likelihood estimator may be biased when the ratio of the number of independent variables to the number of individuals is typically of 0.2 or more [START_REF] Sur | A modern maximum-likelihood theory for high-dimensional logistic regression[END_REF], a ratio which is expected to be even lower if variables are correlated, which explains the difficulty to use multiple regression in current exposome studies. Overall when the number of observations is small compared to the number of features (intermediate or high dimension), dimension reduction may be needed to build good models, in particular for selection of causal predictors. Dimension reduction techniques belong to two major categories: selection techniques, which eliminate some variables while keeping the others, or extraction techniques, which create a set of new variables [START_REF] Guyon | An Introduction to Variable and Feature Selection[END_REF].

Methods such as sparse Partial Least Squared Regression (sPLS) [START_REF] Chun | Sparse partial least squares regression for simultaneous dimension reduction and variable selection[END_REF] or Regularized Generalized Canonical Correlation Analysis (RGCCA) [START_REF] Tenenhaus | Regularized Generalized Canonical Correlation Analysis: A Framework for Sequential Multiblock Component Methods[END_REF] are for example extraction techniques: they restrict to a small number of new covariates with low or null collinearity whose association with the outcome is assessed. Even if they allow to handle at least partially some of the challenges of false positive association in high dimension, their main drawback is their lack of interpretability [START_REF] Lazarevic | Statistical methodology in studies of prenatal exposure to mixtures of endocrine-disrupting chemicals: A review of existing approaches and new alternatives[END_REF].

Multivariate variable selection methods

Multivariate variable selection methods could be more suitable to the exposome problem, as they may be able to handle correlation and interactions while allowing easy interpretability. Some simulation studies [START_REF] Agier | A Systematic Comparison of Linear Regression-Based Statistical Methods to Assess Exposome-Health Associations[END_REF][START_REF] Barrera-Gómez | A systematic comparison of statistical methods to detect interactions in exposome-health associations[END_REF][START_REF] Lazarevic | Statistical methodology in studies of prenatal exposure to mixtures of endocrine-disrupting chemicals: A review of existing approaches and new alternatives[END_REF][START_REF] Lenters | Performance of variable selection methods for assessing the health effects of correlated exposures in case-control studies[END_REF] have shown that under specific assumptions, methods such as LASSO (Least Absolute Shrinkage and Selection Operator) [START_REF] Tibshirani | Regression Shrinkage and Selection via the Lasso[END_REF], ElasticNet [START_REF] Zou | Regularization and variable selection via the elastic net[END_REF], Deletion-Substitution-Addition algorithm (DSA) (Sinisi and van der Laan, 2004), Weighted Quantile Sum regressions (WQS) [START_REF] Carrico | Characterization of a Weighted Quantile Score Approach for Highly Correlated Data in Risk Analysis Scenarios[END_REF] These methods are becoming more common in exposome studies and to some extent tend to replace the ExWAS. Since 2015, (Agier et al., 2020a[START_REF] Agier | Early-life exposome and lung function in children in Europe: an analysis of data from the longitudinal, population-based HELIX cohort[END_REF][START_REF] Forns | Novel application of statistical methods for analysis of multiple toxicants identifies DDT as a risk factor for early child behavioral problems[END_REF][START_REF] Lenters | Prenatal phthalate, perfluoroalkyl acid, and organochlorine exposures and term birth weight in three birth cohorts: Multi-pollutant models based on elastic net regression[END_REF][START_REF] Philippat | Prenatal Exposure to Select Phthalates and Phenols and Associations with Fetal and Placental Weight among Male Births in the EDEN Cohort (France)[END_REF][START_REF] Vrijheid | Early-Life Environmental Exposures and Childhood Obesity : An Exposome-Wide Approach[END_REF] for example, used at least one of the methods cited above. However, these methods have some limits which should be acknowledged. First, none of them allows an accurate balance between sensitivity and specificity when detecting structural associations: the simulation by [START_REF] Agier | A Systematic Comparison of Linear Regression-Based Statistical Methods to Assess Exposome-Health Associations[END_REF] showed that, under specific hypotheses, regression-based selection methods have sensitivity that do not exceed 81% and false discovery proportion (FDP) rate which were at least at 34 %. Methods with the best sensitivity were also those with the highest FDP. More generally, in realistic settings, it appears very difficult to reach a FDP of about 5% without having a null sensitivity.

Moreover, stability is also a concern for most of these methods. In machine learning theory, stability is the notion that a small perturbation in the training dataset(s) will not change the learned model, and thus the prediction of the learning algorithm [START_REF] Poggio | General conditions for predictivity in learning theory[END_REF]. Stability is directly linked to the generalization property of the algorithm [START_REF] Poggio | General conditions for predictivity in learning theory[END_REF]: intuitively, predictions robust to small perturbations are more likely to be good on a similar dataset. Whereas machine learning often focuses on prediction accuracy, environment epidemiologists, as already stated, are more interested in feature selection, as they want to identify causal predictors of health. In our case, stability should therefore be discussed considering the stability of the subset of selected predictors, defined in the machine learning field by [START_REF] Nogueira | On the Stability of Feature Selection Algorithms[END_REF], rather than prediction stability. These may not be equivalent since it is possible that the predicted outcome (or risk) does not always change as the set of selected predictors changes. Instability lowers confidence in results and, as underlined previously [START_REF] Lee | Robustness of chemometrics-based feature selection methods in early cancer detection and biomarker discovery[END_REF][START_REF] Nogueira | On the Stability of Feature Selection Algorithms[END_REF], generalizability. This notion of stability is intrinsically linked to the problem of true predictors: a non-reproducible algorithm which will give non-identical results in term of selection in all different subsamples of a population has necessarily identified false positives, but a stable prediction can in some cases be achieved using different actors correlated with the true predictors, which is often the case in a high dimension setting.

In addition to showing the limits of such algorithms to avoid false positive associations, this also highlights a fundamental difference between prediction and feature selection: whereas accurate prediction can be achieved with appropriate data, sample size and learning algorithm, selection of causal predictors (or counterfactual prediction, i.e. prediction using causal predictor) requires additional information. [START_REF] Hernán | A Second Chance to Get Causal Inference Right: A Classification of Data Science Tasks[END_REF] underlined that only an expert using a priori knowledge can be able to differentiate a causal predictor from a variate perfectly correlated: "causal analyses typically require not only good data and algorithms, but also domain expert knowledge" [START_REF] Hernán | A Second Chance to Get Causal Inference Right: A Classification of Data Science Tasks[END_REF].

Methods developed in epidemiology to avoid bias and reverse causality all imply a priori knowledge: for example, structural causal modelling [START_REF] Pearl | Causal inference in statistics: An overview[END_REF] assumes that the epidemiologist knows the underlying causal structure; the assumption of lack of reverse causality in longitudinal studies comes from the additional information about the causal meaning of the time variable.

However, some methods try to infer causal structure from the data: for example, Bayesian structural learning, also known as causal probabilistic networks [START_REF] Uusitalo | Advantages and challenges of Bayesian networks in environmental modelling[END_REF], which uses Bayesian theory to find the causal structure which better fits the data. However, at least some prior knowledge is most often needed for Bayesian modelling, and as underlined by [START_REF] Uusitalo | Advantages and challenges of Bayesian networks in environmental modelling[END_REF], "theories about causal connections generally result in better models."

Adding biological information

Focusing a priori on a single exposure An additional way to cope with the challenges of exposome studies related to the high false positive and false negative rate could be the use of a priori information. One way to do so would be to focus a priori on an exposure or a set of exposure of interest for example using knowledge from the toxicological field. For many health outcomes relevant to humans, however, a good animal model is lacking (e.g. asthma, autism...). Such studies could be nested in an exposome project, but such an approach is limited by available toxicological knowledge and does not take advantage of biological information at the level of the exposome. One option would be to use a priori information about intermediate biological layer.

Information from intermediate biological layers

Several intermediary biological layers can be measured between the exposures and the health outcome considered: epigenome (DNA methylation), transcriptome (RNA), proteome and metabolome. They can show physiological responses to external exposures, thus constituting internal signatures of health outcomes. These 'omics data, as potential biomarkers of exposures early effect, or biomarkers of disease risk, are possibly a precious but complex additional information about the link between exposures and health [START_REF] Chadeau-Hyam | Deciphering the complex: Methodological overview of statistical models to derive OMICS-based biomarkers[END_REF][START_REF] Crews | Life imprints: living in a contaminated world[END_REF]. Assessing the association between these biomarkers and the variation in exposures levels/health outcome may give some insight about how the health effect of one or more given exposure is biologically mediated [START_REF] Ho | Environmental Epigenetics and Its Implication on Disease Risk and Health Outcomes[END_REF].

DNA methylation, which is the addition of a methyl group in cytosine-guanine context (CpG site) on a DNA chain, depends both on genetic and environmental influences [START_REF] Feil | Epigenetics and the environment: emerging patterns and implications[END_REF][START_REF] Marioni | Meta-analysis of epigenome-wide association studies of cognitive abilities[END_REF]. At a biological level, DNA methylation is essential to control DNA transcription and thus cell differentiation, phenotype and functioning [START_REF] Michalowsky | DNA methylation and differentiation[END_REF]. The influence of various early-life environmental factors on interindividual variation in methylation on specific loci (CpG sites) has been demonstrated [START_REF] Baccarelli | Rapid DNA Methylation Changes after Exposure to Traffic Particles[END_REF]Joubert et al., 2016). These epigenetic alterations can result in modified disease risk [START_REF] Ho | Environmental Epigenetics and Its Implication on Disease Risk and Health Outcomes[END_REF], even if there is so far little convincing estimates of the share of the effect of environmental factors on health mediated by epigenetic changes. [START_REF] Vrijheid | The exposome: A new paradigm to study the impact of environment on health[END_REF].

Different strategies were developed to integrate these methylation, and more generally omics, data in epidemiology and use them to better understand mechanisms of environmental effect on health [START_REF] Blum | Challenges Raised by Mediation Analysis in a High-Dimension Setting[END_REF][START_REF] Chadeau-Hyam | Deciphering the complex: Methodological overview of statistical models to derive OMICS-based biomarkers[END_REF]. Due to their high dimension (for one individual, current methylation measures based on commercial arrays assess between 450,000 and 850,000

CpG sites) and their correlation structure, discovering biomarkers of interest for specific exposures and/or diseases is challenging. Dimension reduction techniques and multivariate analyses have, again, been used (see for example [START_REF] Parkhomenko | Genome-wide sparse canonical correlation of gene expression with genotypes[END_REF]).

A Meet-in-the-Middle framework has been developed by Chadeau-Hyam and colleagues in the context of studies considering a single exposure and single outcome to point intermediate biomarkers. The approach is often followed by a mediation analysis for these biomarkers: overlap between omics associated with exposure and outcome are considered as putative mediators [START_REF] Chadeau-Hyam | Meeting-in-the-middle using metabolic profiling-a strategy for the identification of intermediate biomarkers in cohort studies[END_REF][START_REF] Vineis | Molecular epidemiology and biomarkers in etiologic cancer research: The new in light of the old[END_REF]. Nowadays, these complex layers are paradoxically fairly well-known from biological studies and annotated; large database are now available about the functionality of genes/proteins/metabolites and the biological pathways, i.e. the biological network, in which they are involved, such as KEGG (http://www.genome.ad.jp/kegg/) [START_REF] Tanabe | Using the KEGG database resource[END_REF] or Gene Ontology (http://www. geneontology.org/ [START_REF] Pavlidis | Using the Gene Ontology for Microarray Data Mining: A Comparison of Methods and Application to Age Effects in Human Prefrontal Cortex[END_REF].

Mediation analysis

The concept of biological mechanism can be framed in epidemiology with the notion of mediation [START_REF] Vanderweele | Conceptual issues concerning mediation, interventions and composition[END_REF].

Mediation analysis aims at identifying the mechanisms (or pathways) through which an exposure E can influence an outcome Y (Figure I.5), and quantifying the importance of these pathways.

More precisely, the theory of mediation [START_REF] Vanderweele | Controlled direct and mediated effects: definition, identification and bounds[END_REF] assumes that there is a causal link between E and Y and that a potential mediator M of this effect is identified. The effect of E on Y which is not mediated by M is called the direct effect whereas, if M is indeed a mediator, the proportion of the association between E and Y that occurs through M is called the indirect (or mediated) effect of E (see Figure I.5).

In the case where M and Y are quantitative variables and residuals are normally distributed, two linear models representing these effects can be written [START_REF] Baron | The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations[END_REF]:

𝔼(Y)=0 + 1E + 2M + 3C (Exposure-outcome model)
where 𝔼 is the mathematical expectation, E the exposure variable and C a vector including all potential confounders of the exposure-outcome, exposure-mediator and mediator-outcome associations.

𝔼(M)=b0 + b1E + b2C'

(Exposure-mediator model)

where C' is a vector including all potential confounders of the exposure mediator association.

The estimation of direct and indirect effect, requires, beside the postulate that the effect from E to Y is causal, major assumptions [START_REF] Vanderweele | Conceptual issues concerning mediation, interventions and composition[END_REF]:

 the lack of uncontrolled confounders for all three mediator-outcome / exposure-mediator / exposure-outcome associations,  the lack of mediator-outcome confounder affected by the exposure and of interaction between exposure and mediator.

CHAPTER I: Introduction

If these hypotheses are met, 1 is an estimate of the direct effect, and b1 x2 is an estimate of the indirect effect [START_REF] Baron | The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations[END_REF][START_REF] Mackinnon | A comparison of methods to test mediation and other intervening variable effects[END_REF][START_REF] Vanderweele | Conceptual issues concerning mediation, interventions and composition[END_REF].

A well-known test for mediation is the causal inference test, which successively tests the significance of the overall exposome-outcome association not adjusted for M, b1 and 2 [START_REF] Baron | The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations[END_REF][START_REF] Mackinnon | A comparison of methods to test mediation and other intervening variable effects[END_REF]. CpGs sites are good candidate mediators between exposures and health. For example, Fasanelli and colleagues, estimated by ExWAS that in adults smoking reversibly caused hypomethylation on two specific CpGs, and that the total effect of smoking on lung cancer risk is mediated by more than 35% by methylation variation at these specific marks [START_REF] Fasanelli | Hypomethylation of smoking-related genes is associated with future lung cancer in four prospective cohorts[END_REF].

However, considering the methylome layer instead of only some specific targeted CpGs complexifies a lot the mediation analysis. Among the challenges of the mediation analysis in high dimension [START_REF] Barfield | Testing for the indirect effect under the null for genome-wide mediation analyses[END_REF][START_REF] Blum | Challenges Raised by Mediation Analysis in a High-Dimension Setting[END_REF], the a priori causal knowledge on the relation between covariates, which is required for mediation analysis, is expected to be more difficult to decipher, in particular when the relations between potential mediators are complex, which is the case in the methylome layer [START_REF] Blum | Challenges Raised by Mediation Analysis in a High-Dimension Setting[END_REF].

Using intermediate biological layer to find true predictors of health within the exposome Omics layers could provide an additional information source to study associations between the exposome and health and to overcome some challenges of the exposome and not only as a way to understand some already known associations. This is one of the key assumptions underpinning this PhD project. In particular, information from epigenetic marks could be used to reduce the dimension of the exposome with the hope to overcome some of the limits of purely agnostic exposome approaches: performing informed dimension reduction using the methylome, for example considering only exposures having influence on biological mechanisms relevant for the outcome of interest, could be a way to increase the power of exposome studies or decrease the false discovery proportion as well as to avoid some false positives due to structural association without causal meaning.

At another level, the restriction to candidate genes in studies of the association between the methylome and an outcome (see for example [START_REF] Richmond | DNA Methylation and BMI: Investigating Identified Methylation Sites at HIF3A in a Causal Framework[END_REF]) can be seen as a similar strategy: using information from the genomic layer is expected to increase power as well as to test only the most a priori plausible CpGs.

Due to the complexity of the methylome layer and its high dimension, challenges encountered with the exposome can be even compounded when relying on methylome data to reduce the exposome dimension. Indeed, it could seem paradoxical to aim to use a high dimension layer (the methylome) in order to reduce the dimension of a low dimension layer (the exposome). However, it must be underlined that part of the difficulties rising for the exposome do not hold when the aim of the use of the methylome is not the identification of causal relevant CpGs but only to inform the relation between exposome and health. In particular, one can here adopt a risk prediction rather than a causal analysis logic, contrarily to what is sometimes aimed for in a Meetin-the-Middle approach.

Environmental effects on child weight

Such strategies can be used to better understand the causal relationship between early-life exposome and child health outcomes. During this PhD, we focused on child body mass index as our main outcome of interest, and also considered another measure of child growth, birth weight, as well as child lung function.

Environmental effects on child Body Mass Index

Childhood greater Body Mass Index (BMI), defined as the weight in kilogram divided by the squared height in centimeters, is associated with future risk of obesity as well as other risks of diseases, including type 2 diabetes, some cancers and cardiovascular diseases, lack of school achievement, and mental health problems [START_REF] Han | Childhood obesity[END_REF][START_REF] Park | The impact of childhood obesity on morbidity and mortality in adulthood: A systematic review[END_REF][START_REF] Quek | Exploring the association between childhood and adolescent obesity and depression: a meta-analysis[END_REF][START_REF] Singh | Tracking of childhood overweight into adulthood: A systematic review of the literature[END_REF].

Childhood obesity and overweight, which have increased rapidly in the three last decades [START_REF] Finucane | National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9•1 million participants[END_REF], are multifactorial conditions. Changes in the most important risk factors, genetic predisposition and energy imbalance [START_REF] Mcallister | Ten putative contributors to the obesity epidemic[END_REF], are not sufficient to fully explain the magnitude and speed of the recent increase [START_REF] Park | Epigenetics, obesity and early-life cadmium or lead exposure[END_REF]. Other environmental factors influencing child obesity and adiposity have been identified. They include prenatal exposures, such as maternal smoking (Von [START_REF] Kries | Maternal smoking during pregnancy and childhood obesity[END_REF] and traffic noise exposure during pregnancy [START_REF] Weyde | A longitudinal study of road traffic noise and body mass index trajectories from birth to 8 Years[END_REF] but also exposures occurring during early-life: exposures to some endocrine disruptors during first years of life [START_REF] Agay-Shay | Exposure to endocrine-disrupting chemicals during pregnancy and weight at 7 years of age: A multi-pollutant approach[END_REF][START_REF] Holtcamp | Obesogens: an environmental link to obesity[END_REF][START_REF] Thayer | Role of Environmental Chemicals in Diabetes and Obesity: A National Toxicology Program Workshop Review[END_REF], exposures to metals [START_REF] Shao | Association between level of urinary trace heavy metals and obesity among children aged 6-19 years: NHANES 1999-2011[END_REF] and life-style factors such as physical activity and thus built environment characteristics like green spaces which contributes to it [START_REF] Gascon | The Built Environment and Child Health: An Overview of Current Evidence[END_REF][START_REF] Lachowycz | Greenspace and obesity: A systematic review of the evidence[END_REF]. Overall, the environmental obesogenic hypothesis states that these early exposures play a role in future obesity development by altering metabolic programming [START_REF] Janesick | Endocrine disrupting chemicals and the developmental programming of adipogenesis and obesity[END_REF][START_REF] Park | Epigenetics, obesity and early-life cadmium or lead exposure[END_REF].

Environmental effects on birth weight

Birth weight is also a determinant of later health condition and is considered as a marker of the intrauterine environment [START_REF] Belbasis | Birth weight in relation to health and disease in later life: An umbrella review of systematic reviews and metaanalyses[END_REF]; low birth weight has been associated with various later comorbidities, including metabolic diseases, cardiovascular diseases and cardiovascular risk factors [START_REF] Belbasis | Birth weight in relation to health and disease in later life: An umbrella review of systematic reviews and metaanalyses[END_REF] and respiratory health [START_REF] Kindlund | Birth weight and risk of asthma in 3 -9-year-old twins: Exploring the fetal origins hypothesis[END_REF]. Some evidence exists about the impact of prenatal exposures on birth weight: besides maternal tobacco [START_REF] Windham | Prenatal active or passive tobacco smoke exposure and the risk of preterm delivery or low birth weight[END_REF] and alcohol consumption [START_REF] Little | Moderate alcohol use during pregnancy and decreased infant birth weight[END_REF][START_REF] Mills | Maternal Alcohol Consumption and Birth Weight: How Much Drinking During Pregnancy Is Safe?[END_REF][START_REF] Strandberg-Larsen | Association of light-to-moderate alcohol drinking in pregnancy with preterm birth and birth weight: elucidating bias by pooling data from nine European cohorts[END_REF], higher temperature during pregnancy [START_REF] Strand | The influence of season and ambient temperature on birth outcomes: A review of the epidemiological literature[END_REF] and maternal exposure to air pollutants [START_REF] Bell | Prenatal exposure to fine particulate matter and birth weight: Variations by particulate constituents and sources[END_REF][START_REF] Parker | Air pollution and birth weight among term infants in California[END_REF][START_REF] Pedersen | Ambient air pollution and low birthweight: A European cohort study (ESCAPE)[END_REF][START_REF] Stieb | Ambient air pollution, birth weight and preterm birth: A systematic review and meta-analysis[END_REF] have been associated

with lower birth weight. An effect of mother undernutrition has also been suggested [START_REF] Stein | The Relationship between Maternal and Offspring Birth Weights after Maternal Prenatal Famine Exposure: The Dutch Famine Birth Cohort Study[END_REF]. Exposures to some phthalates (MEHHP and MOiNP), a perfluoroalkyl acid (PFOA), and an organochlorine (p,p´-DDE) have also been related with decreased birth weight in an exposome study [START_REF] Lenters | Prenatal phthalate, perfluoroalkyl acid, and organochlorine exposures and term birth weight in three birth cohorts: Multi-pollutant models based on elastic net regression[END_REF]. Last, a study on Helix exposome data [START_REF] Vrijheid | The human early-life exposome (HELIX): project rationale and design[END_REF] relying on both DSA and ExWAS method pointed the prenatal exposure to green area (NDVI, Normalized Difference Vegetation Index) as significantly associated with an increased birth weight [START_REF] Nieuwenhuijsen | Influence of the Urban Exposome on Birth Weight[END_REF], an association which has already been suggested by [START_REF] Dadvand | Residential proximity to major roads and term low birth weight: The roles of air pollution, heat, noise, and road-adjacent trees[END_REF] .

PhD project's aim

Overall, we identified research needs both regarding the understanding of early environmental drivers of child growth and obesity and regarding efficient methods to identify them from the exposome and to improve exposome studies in general. In particular, even if some statistical methods have been pointed as being possibly more efficient than the classical ExWAS, methods currently used most often provide discouraging false-discovery rate when trying to detect the causal predictors of a health outcome [START_REF] Agier | A Systematic Comparison of Linear Regression-Based Statistical Methods to Assess Exposome-Health Associations[END_REF]. They are also expected to be prone to reverse causality, especially when exposures biomarkers are assessed in a cross-sectional design. Last, the possibilities offered by the intermediary biological layers and the a priori knowledge available about them are for the moment not exploited in exposome studies as resources allowing to help pointing new causal predictors of a health outcome.

In this research, we aim at building novel strategies to inform the association between the exposome and a health outcome, and to propose insights about how exposome studies could better tackle the challenges related to high false positive rates and low sensitivity of exposome studies.

We aim to do so by considering both "purely statistical" approaches and approaches incorporating (more) a priori biological information, considering specifically biological knowledge related to DNA methylation.

The objectives are both methodological, with the development of specific methods, and applied, aiming at informing the early environmental influences on child birthweight and later BMI.

In the second chapter of this report, we present an exposome study on the environmental determinants of BMI based on Helix data [START_REF] Vrijheid | The human early-life exposome (HELIX): project rationale and design[END_REF], which used methylome data using a modified "Meet-in-the-Middle" (oMITM) approach that we developed. In the third chapter, we present a short study where this method is repeated on Helix data considering another child outcome, the lung function. We also provided in an appendix the preliminary results of an ongoing study on Sepages cohort [START_REF] Lyon-Caen | Deciphering the impact of early-life exposures to highly variable environmental factors on foetal and child health: Design of SEPAGES couple-child cohort[END_REF], repeating an oMITM design with a different implementation to study the relationship between prenatal exposome and birthweight, taking advantage of methylome data. After these studies based on real data, we present in the two last results chapters two simulations studies (chapters IV and V) aiming at validating the original approach we proposed in chapter II under various causal structure and to identify the most relevant implementation(s). Chapter IV focuses on the performance of the oMITM design under various causal structures and aims at understanding how the use of methylome data can help limiting the false positive rate. Chapter V presents a simulation study emphasizing the problem of instability when using complex machine learning algorithms in epidemiology. In our last chapter, we discuss what insights our work can give about how environmental epidemiologists should deal with the dimension and the causality challenges of exposome studies.

A note on terminology: in the article detailed in chapter II [START_REF] Cadiou | Using methylome data to inform exposome-health association studies: An application to the identification of environmental drivers of child body mass index[END_REF], we proposed an innovative design adapted from an existing design usually called "Meet-in-the-Middle" in the literature [START_REF] Chadeau-Hyam | Meeting-in-the-middle using metabolic profiling-a strategy for the identification of intermediate biomarkers in cohort studies[END_REF]. In our published article reproduced in chapter II, we kept the term "Meet-in-the-Middle" (MITM) to call our adapted design. Later, we chose to rather use the term "oriented Meet-in-the-Middle" (oMITM) to underline the differences between our design and the classical Meet-in-the-Middle, a term which is used in all the other chapters of this thesis.

CHAPTER II:

Early-life Exposures and child Body Mass Index: a Meet-in-the-Middle approach using preselected methylation marks

The work presented in this chapter is a study on the relationship between the exposome and child Body Mass Index on the data of the Helix project. To inform this relationship, methylome data are used in an innovative oriented Meet-in-the-Middle design, implemented with ExWAS-type methods. It has been published in Environment International: Cadiou, S., Bustamante, M., Agier, L., Andrusaityte, S., Basagaña, X., Carracedo, A., Chatzi, L., Grazuleviciene, R., Gonzalez, J.R., Gutzkow, K.B., Maitre, L., Mason, D., Millot, F., Nieuwenhuijsen, M., Papadopoulou, E., Santorelli, G., Saulnier, P.-J., Vives, M., Wright, J., Vrijheid, M., Slama, R., 2020. "Using methylome data to inform exposome-health association studies: An application to the identification of environmental drivers of child body mass index." Environment International. 138, 105622, doi:10.1016/j.envint.2020.105622

Abstracts

English abstract

Background: The exposome is defined as encompassing all environmental exposures one undergoes from conception onwards. Challenges of the application of this concept to environmental-health association studies include a possibly high false-positive rate.

Objectives: We aimed to reduce the dimension of the exposome using information from DNA methylation as a way to more efficiently characterize the relation between exposome and child body mass index (BMI).

Methods: Among 1,173 mother-child pairs from HELIX cohort, 216 exposures ("whole exposome") were characterized. BMI and DNA methylation from immune cells of peripheral blood were assessed in children at age 6-10 years. A priori reduction of the methylome to preselect BMI-relevant CpGs was performed using biological pathways. We then implemented a tailored Meet-in-the-Middle approach to identify from these CpGs candidate mediators in the exposome-BMI association, using univariate linear regression models corrected for multiple testing: this allowed to point out exposures most likely to be associated with BMI ("reduced exposome").

Associations of this reduced exposome with BMI were finally tested. The approach was compared to an agnostic exposome-wide association study (ExWAS) ignoring the methylome.

Results: Among the 2284 preselected CpGs (0.6% of the assessed CpGs), 62 were associated with BMI. Four factors (3 postnatal and 1 prenatal) of the exposome were associated with at least one of these CpGs, among which postnatal blood level of copper and PFOS were directly associated with BMI, with respectively positive and negative estimated effects. The agnostic ExWAS identified 18 additional postnatal exposures, including many persistent pollutants, generally unexpectedly associated with decreased BMI.

Discussion: Our approach incorporating a priori information identified fewer significant associations than an agnostic approach. We hypothesize that this smaller number corresponds to a higher specificity (and possibly lower sensitivity), compared to the agnostic approach. Indeed, the latter cannot distinguish causal relations from reverse causation, e.g. for persistent compounds stored in fat, whose circulating level is influenced by BMI.

French abstract

Contexte : L'exposome est défini comme l'ensemble des expositions environnementales auxquelles on est exposé dès la conception. L'application de ce concept à l'étude des liens entre l'environnement et la santé pose des défis, notamment en raison d'un taux de faux positifs potentiellement élevé.

Objectifs : Nous avons cherché à réduire la dimension de l'exposome en utilisant les informations provenant de la méthylation de l'ADN, comme une façon de caractériser plus efficacement la relation entre l'exposome et l'indice de masse corporelle (IMC) de l'enfant.

Méthodes : Parmi 1 173 paires mère-enfant de la cohorte HELIX, 216 expositions ("exposome entier") ont été caractérisées. L'IMC et la méthylation de l'ADN des cellules immunitaires du sang périphérique ont été évalués chez les enfants à l'âge de 6 à 10 ans. Une réduction a priori du méthylome par préselection des CpG pertinents pour l'IMC à partir de banques de données de pathways a été effectuée. Nous avons ensuite mis en oeuvre une approche Meet-in-the-Middle adaptée pour identifier au sein de ces CpG de potentiels médiateurs de relations entre expositions et IMC, en utilisant des modèles de régression linéaire univariés corrigés pour les tests multiples : cela a permis d'identifier les expositions les plus susceptibles d'être liées à l'IMC ("exposome réduit").

L'association de cet exposome réduit avec l'IMC a finalement été testé. L'approche a été comparée à une étude d'association agnostique à l'échelle de l'exposome (ExWAS) ignorant le méthylome.

Résultats : Parmi les 2284 CpG présélectionnés (0,6 % des CpG évalués), 62 étaient associés à l'IMC. Quatre facteurs (3 postnataux et 1 prénatal) de l'exposome étaient associés à au moins un de ces CpG, parmi lesquels les taux sanguins postnataux de cuivre et de PFOS étaient directement associés à l'IMC, avec des effets estimés respectivement positif et négatif. L'ExWAS agnostique a identifié 18 expositions postnatales supplémentaires, dont de nombreux polluants persistants, généralement associés, de manière non attendue, à une diminution de l'IMC.

Discussion : Notre approche intégrant des informations a priori a identifié moins d'associations significatives qu'une approche agnostique. Nous émettons l'hypothèse que ce nombre plus faible correspond à une spécificité plus élevée (et peut-être à une sensibilité plus faible), par rapport à l'approche agnostique. En effet, cette dernière ne peut distinguer les relations causales de la causalité inverse, par exemple pour les composés persistants stockés dans les graisses, dont le niveau de circulation est influencé par l'IMC. This supplementary is provided in the appendix III due to its large size.

CHAPTER II: Early-life Exposures and child Body Mass Index: a Meet-in-the-Middle approach using preselected methylation marks 96 Supplementary Material II.11: Sensitivity analysis III, Meet-in-the-Middle without CpGs preselection: adjusted associations between the exposome and CpGs associated with zBMI in 1,173 children from the HELIX cohort (ExWAS model adjusted on zBMI, step c of the Meet-in-the-Middle approach applied on the whole methylome). Results are presented only for exposures associated with a (stringently corrected for multiple hypothesis testing) pvalue of less than 0.05 in exposure-CpGs ExWAS, with CpGs being previously selected in a CpGs-zBMI ExWAS. Vegetables intake -Pregnancy 1
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CHAPTER III:

Early-life Exposures and child lung function: a modified Meet-in-the-Middle approach using preselected methylation marks

The work presented in this small chapter is a study performed on Helix data similar to the one presented in Chapter II, but considering another child health outcome: the child lung function, measured with FEV1 (see below). We used the same oMITM design, but with one major modification: we followed through its logical next step the strategy initiated in our first study to preselect a part of the methylome according to possible pathways from the exposome to the outcome; for the first step of our oMITM design, a drastic preselection of the methylome was performed according to MWAS studies about lung function available in the literature, instead of a test of association between the methylome and the outcome.

This work was the topic of an oral communication presented at the annual congress of the International Society of Environmental Epidemiology in Utrecht in 2019:

Cadiou, S., Agier, L., Bustamante, M., Maitre, L., Basagana, X., Vrijheid, M., Siroux, V., Slama, R., "Using DNA methylation to characterize more efficiently associations between the exposome and child lung function", ISEE 2019 congress, Utrecht, Netherlands CHAPTER III: Early-life Exposures and child lung function: a modified Meet-in-the-Middle approach using preselected methylation marks 102

Abstracts

English abstract

Background: Early environmental exposures may influence lung function. Most pollutants have small effect sizes and some are correlated, potentially limiting the statistical power of agnostic exposome-wide association study (ExWAS). DNA methylation, which may act as a mediator for some exposures, could be used in exposome-health studies to increase power by reducing the exposome to exposures with biologically plausible mechanisms.

Aim: To assess the relations between the exposome and child lung function (FEV1, forced expiratory volume in one second) with a method consisting in reducing the exposome dimension using DNA methylation.

Methods: Among 919 mother-child pairs from Helix cohorts, exposures to 216 environmental factors were assessed during pregnancy or at age 6-10 years. Genome-wide DNA methylation levels in peripheral blood at 6-10 years were measured using HumanMethylation450 BeadChip, filtered and corrected for batch effects. An oriented Meet-in-the-Middle, consisting in a 3-step statistical approach, was applied: (i) selecting a priori relevant DNA CpG sites for FEV1 according to a review of the literature; (ii) selecting exposures significantly associated with at least one of these CpGs, using an ExWAS approach adjusted for FEV1 and confounders; (iii) identifying by linear regression the exposures from this reduced set associated with FEV1.

Results: 314 CpGs enhancers from 23 candidate genes were selected at step 1.

Step 2 identified a single exposure, postnatal blood copper level, which was associated with one CpG site located on ARMC2 gene. In step 3, copper was found significantly associated with lower FEV1. A classical ExWAS analysis on FEV1 corrected for multiple comparisons did not identify statistically significant association; copper was among the 6 exposures associated with FEV1 when no multiple testing correction was applied.

Conclusion:

Our 3-steps approach identified one exposure associated with lower FEV1, postnatal blood copper level, while an agnostic ExWAS reported no significant association. Further research is needed to quantify the efficiency of this approach. CHAPTER III: Early-life Exposures and child lung function: a modified Meet-in-the-Middle approach using preselected methylation marks 104

Background

Early environmental exposures may influence lung function [START_REF] Vernet | In utero exposure to select phenols and phthalates and respiratory health in five-year-old boys: A prospective study[END_REF][START_REF] Vrijheid | Environmental pollutants and child health-A review of recent concerns[END_REF]. Effects of smoking and air pollution exposures are well known: maternal prenatal as well as postnatal smoking is associated with child asthma [START_REF] Hofhuis | Adverse health effects of prenatal and postnatal tobacco smoke exposure on children[END_REF][START_REF] Wang | Detrimental effects of tobacco smoke exposure during development on postnatal lung function and asthma[END_REF], and prenatal exposure to air pollution is associated with both decreased lung function and asthma [START_REF] Latzin | Air pollution during pregnancy and lung function in newborns: A birth cohort study[END_REF]. There is also moderate evidence of the effect of persistent organic compounds on lung function [START_REF] Gascon | Prenatal exposure to DDE and PCB 153 and respiratory health in early childhood: A meta-analysis[END_REF][START_REF] Hansen | Maternal concentrations of persistent organochlorine pollutants and the risk of asthma in offspring: Results from a prospective cohort with 20 years of follow-up[END_REF], as well as emerging concerns for other man-made substances [START_REF] Qin | Association of perfluoroalkyl substances exposure with impaired lung function in children[END_REF][START_REF] Vernet | In utero exposure to select phenols and phthalates and respiratory health in five-year-old boys: A prospective study[END_REF]. However, exploring the effects of the exposome on lung function involves the challenges of limited power and specificity that we discussed earlier: most pollutants are expected to have small effect sizes and some are correlated.

A previous ExWAS study on HELIX data did not find any association between the exposome and child lung function [START_REF] Agier | Early-life exposome and lung function in children in Europe: an analysis of data from the longitudinal, population-based HELIX cohort[END_REF]. As differential DNA methylation in blood cells can be associated with decreased lung function, it seems relevant to use our oMITM design on Helix data of exposome, blood methylome and lung function, to study causal environmental predictors of child respiratory health. In this short report, we aimed to apply an oriented Meet-in-the-Middle approach to exposome and lung function, strongly relying on a priori knowledge about the link between methylome and lung function. predicted values were computed after filtering and according to reference equations from the Global Lung Initiative [START_REF] Agier | Early-life exposome and lung function in children in Europe: an analysis of data from the longitudinal, population-based HELIX cohort[END_REF][START_REF] Quanjer | Multi-ethnic reference values for spirometry for the 3-95-yr age range: The global lung function 2012 equations[END_REF]. Genome-wide DNA methylation CHAPTER III: Early-life Exposures and child lung function: a modified Meet-in-the-Middle approach using preselected methylation marks 105 levels in peripheral blood sampled at the time of the clinical examination were measured using HumanMethylation450 BeadChip, filtered and corrected for batch effects (see Chapter II). They were available for 919 children. Relevant potential confounders for the exposome-FEV1 association were a priori selected: child sex, child age, child height, parental country of birth, breast feeding duration, season of conception, presence of older siblings, parental education level, maternal age, maternal pre-pregnancy body-mass index (BMI), postnatal passive smoking status, prenatal maternal active and passive smoking status and ethnicity. An oriented MITM adapted from [START_REF] Cadiou | Using methylome data to inform exposome-health association studies: An application to the identification of environmental drivers of child body mass index[END_REF] was applied. It consists in a 3-step statistical approach: a) selecting a priori enhancers CpG sites on genes relevant for FEV1 according to the literature [START_REF] Li | Genome-wide association study identifies TH1 pathway genes associated with lung function in asthmatic patients[END_REF] (but without direct test of association between them and the outcome, differently from [START_REF] Cadiou | Using methylome data to inform exposome-health association studies: An application to the identification of environmental drivers of child body mass index[END_REF]) ; b) selecting exposures significantly associated with at least one of these CpGs, using an ExWAS approach adjusted for FEV1 and confounders; b) identifying by linear regression the exposures from this reduced set associated with FEV1. All the ExWAS-type analyses were corrected for multiple testing using Benjamini-Hochberg procedure [START_REF] Benjamini | Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing[END_REF]. An agnostic ExWAS as well as a simplified MITM without step a) were performed as sensitivity analyses.

Methods

Table III.1: Preselected genes related to FEV1 according to [START_REF] Li | Genome-wide association study identifies TH1 pathway genes associated with lung function in asthmatic patients[END_REF] and corresponding number of enhancers CpGs available in Helix data. variants have been identified as significantly associated with low FEVs (in non-asthmatic adults [START_REF] Yamada | Role of Lung Function Genes in the Development of Asthma[END_REF]); in 7-year-old children with asthma [START_REF] Kreiner-Møller | Prenatal and postnatal genetic influence on lung function development[END_REF]. Some CpGs on this gene have been identified as significantly associated with bronchopneumopathy in smoking adults [START_REF] Busch | Differential DNA methylation marks and gene comethylation of COPD in African-Americans with COPD exacerbations[END_REF]. In step c) copper was found significantly associated with lower FEV1

Genes

(coefficient of -5.72, p-value, 0.0412). No CpG were associated with the outcome in the sensitivity analysis considering the whole methylome (minimum corrected p-value: 0.342).

A classical ExWAS analysis on FEV1 corrected for multiple comparisons did not identify any statistically significant association. Copper was among the 6 exposures associated with FEV1 when no correction for multiple testing was applied (see Table III.2). 

Discussion

Our 3-step oMITM approach identified one exposure associated with lower FEV1, postnatal blood copper level, while an agnostic ExWAS reported no significant association. Copper exposure has not been found previously associated with respiratory outcomes in the literature besides Helix [START_REF] Agier | Early-life exposome and lung function in children in Europe: an analysis of data from the longitudinal, population-based HELIX cohort[END_REF] but is known for its role in inflammatory diseases, as we discussed in the previous chapter [START_REF] Cadiou | Using methylome data to inform exposome-health association studies: An application to the identification of environmental drivers of child body mass index[END_REF]. The fact that copper was a hit in both oMITM approaches on BMI and FEV1 on Helix data may mean that it is linked to a general inflammation process which can be observed at the methylome. With our 3-step approach, we preselected the pathways whereby the exposures could act on lung function: this was a way to add external knowledge without performing a priori selection on the exposome itself, which would not be relevant in a discovery study. Interestingly, in this case, assuming that copper is a true predictor of FEV1 (which as we discussed is plausible), the oMITM approach was more sensitive than the ExWAS agnostic approach: indeed, while no exposure was associated with FEV1 when corrected with multiple testing, one exposure was associated with one CpG relevant for FEV1, allowing to select a nonempty reduced exposome. This highlights the gain in power allowed by the dimension reduction of the exposome: the association with copper was not significant due to the correction for multiple comparisons in the ExWAS but was significant in the oMITM approach due to the decreased size of the reduced exposome. Thus, we can hypothesize that a relevant dimension reduction using the oMITM approach can increase sensitivity compared to its agnostic counterpart.

Note:

In an ongoing study based on Sepages cohort, we applied a modified oMITM implementation to relate the prenatal exposome to birth weight, taking advantage of the maternal methylome. The preliminary results are presented in Appendix II.

CHAPTER IV: Performance of approaches relying on intermediate high-dimension

data to decipher causal relationships between the exposome and health: a simulation study under various causal structures

In the two previous chapter and in Appendix II, we presented three studies on real data relating the exposome to child outcomes, relying on an innovative oMITM design. Considering the results and their comparison with the results of the agnostic counterparts of our oMITM, we made the hypotheses that: 1. our oMITM may be more specific, and possibly even more sensitive, than an agnostic design if the methylome lies on the pathway from some exposures to the outcome, at a cost in sensitivity in cases of exposures effects not involving the methylome; 2. that the adjustment on the outcome that we proposed in the second step of our MITM may help to get rid of some reverse causal associations.

We chose to perform a simulation study in a realistic setting similar to our first study (chapter II) and under various causal structures to compare the performance of our MITM design to other methods involving or not the use of the methylome, which is presented in this chapter.

Cadiou, S., Basagana, X., González, JR., Lepeule, J., Siroux, V., Vrijheid, M., Slama, R., "Performance of approaches relying on intermediate high-dimensional data to decipher causal relationships between the exposome and health: a simulation study under various causal structures", submitted

Abstracts

English abstract

Challenges in the assessment of the health effects of the exposome, defined as encompassing all environmental exposures from the prenatal period onwards, include a possibly high rate of false positive signals. It might be overcome using data dimension reduction techniques. Data on biological layers lying between the exposome and its possible health consequences, such as the methylome, may help reducing exposome dimension. We aimed to quantify the performances of approaches relying on the incorporation of an intermediary biological layer to relate the exposome and health, and compare them with agnostic approaches ignoring the intermediary layer. We performed a Monte-Carlo simulation, in which we generated realistic exposome and intermediary layer data by sampling with replacement real data from the Helix exposome project. We generated a Gaussian outcome assuming linear relationships between the three data layers, in 2381 scenarios under five different causal structures, including mediation and reverse causality. We tested 3 agnostic methods considering only the exposome and the health outcome: ExWAS (for Exposome-Wide Association study), DSA, LASSO; and 3 methods relying on an intermediary layer: two implementations of our new oriented Meet-in-the-Middle (oMITM) design, using

ExWAS and DSA, and a mediation analysis using ExWAS. Methods' performances were assessed through their sensitivity and FDP (False-Discovery Proportion). The oMITM-based methods generally had lower FDP than the other approaches, possibly at a cost in terms of sensitivity; FDP was in particular lower under a structure of reverse causality and in some mediation scenarios. The oMITM-DSA implementation showed better performances than oMITM-ExWAS, especially in terms of FDP. Among the agnostic approaches, DSA showed the highest performance. Integrating information from intermediary biological layers can help lowering FDP in studies of the exposome health effects; in particular, oriented-MITM seems less sensitive to reverse causality than agnostic exposome-health association studies. 

Introduction

The exposome concept acknowledges that individuals are exposed simultaneously to a multitude of environmental factors from conceptions onwards [START_REF] Wild | Complementing the Genome with an "Exposome": The Outstanding Challenge of Environmental Exposure Measurement in Molecular Epidemiology[END_REF]. The exposome, understood as the totality of the individual environmental (i.e. non-genetic exogenous) factors, may explain an important part of the variability in chronic diseases risk [START_REF] Manrai | Informatics and Data Analytics to Support Exposome-Based Discovery for Public Health[END_REF][START_REF] Sandin | The familial risk of autism[END_REF][START_REF] Visscher | Five years of GWAS discovery[END_REF]. During the last decade, environmental epidemiology started embracing the exposome concept (see e.g. [START_REF] Agier | Early-life exposome and lung function in children in Europe: an analysis of data from the longitudinal, population-based HELIX cohort[END_REF][START_REF] Lenters | Prenatal phthalate, perfluoroalkyl acid, and organochlorine exposures and term birth weight in three birth cohorts: Multi-pollutant models based on elastic net regression[END_REF][START_REF] Patel | An Environment-Wide Association Study (EWAS) on Type 2 Diabetes Mellitus[END_REF]). Such studies typically face an issue encountered in many fields [START_REF] Runge | Detecting and quantifying causal associations in large nonlinear time series datasets[END_REF], that of efficiently identifying the causal predictors of an outcome among a set of possibly correlated variables of intermediate to high dimension (currently, a few hundred to a few thousand variables). The correlation within the exposome [START_REF] Tamayo-Uria | The early-life exposome: Description and patterns in six European countries[END_REF] was shown to entail a possibly high rate of false positive findings, in particular when using ExWAS (exposome-wide association study), i.e. parallel univariate models with correction for multiple testing [START_REF] Agier | A Systematic Comparison of Linear Regression-Based Statistical Methods to Assess Exposome-Health Associations[END_REF]. Recent studies, typically conducted among a few hundred or thousand subjects, are also expected to have limited power [START_REF] Chung | Exposome-wide association study of semen quality: Systematic discovery of endocrine disrupting chemical biomarkers in fertility require large sample sizes[END_REF][START_REF] Siroux | The exposome concept: a challenge and a potential driver for environmental health research[END_REF][START_REF] Slama | Some challenges of studies aiming to relate the Exposome to human health[END_REF][START_REF] Vermeulen | The exposome and health: Where chemistry meets biology[END_REF]. In addition, they can suffer from reverse causality: if exposures are measured by biomarkers at the same time as the outcome, this opens the possibility of the health outcome influencing some components of the exposome. For example, the serum concentration of persistent compounds can be influenced by the amount of body fat, which is related to health outcomes such as obesity or cardiovascular disorders [START_REF] Cadiou | Using methylome data to inform exposome-health association studies: An application to the identification of environmental drivers of child body mass index[END_REF]. The potential for reverse causality is even stronger if biomarkers of effect (e.g. biomarkers of oxidative stress or inflammation) are considered to be part of the exposome, as sometimes advocated [START_REF] Rappaport | Biomarkers intersect with the exposome[END_REF][START_REF] Vermeulen | The exposome and health: Where chemistry meets biology[END_REF]. Indeed, these may also be consequences of the considered health outcome.

Benchmark studies and reviews tried to identify which statistical methods could help to face some of these issues [START_REF] Agier | A Systematic Comparison of Linear Regression-Based Statistical Methods to Assess Exposome-Health Associations[END_REF][START_REF] Barrera-Gómez | A systematic comparison of statistical methods to detect interactions in exposome-health associations[END_REF][START_REF] Lazarevic | Statistical methodology in studies of prenatal exposure to mixtures of endocrine-disrupting chemicals: A review of existing approaches and new alternatives[END_REF][START_REF] Lenters | Performance of variable selection methods for assessing the health effects of correlated exposures in case-control studies[END_REF]. Dimension reduction tools were a relevant option to consider [START_REF] Chadeau-Hyam | Deciphering the complex: Methodological overview of statistical models to derive OMICS-based biomarkers[END_REF].

Dimension reduction can be achieved by purely statistical approaches, or rely on external (e.g., biological) information. Past simulation studies focused on statistical dimension reduction techniques and generally assumed a simple causal structure and that the variability of the outcome explained by the exposome was higher than 5% [START_REF] Agier | A Systematic Comparison of Linear Regression-Based Statistical Methods to Assess Exposome-Health Associations[END_REF][START_REF] Barrera-Gómez | A systematic comparison of statistical methods to detect interactions in exposome-health associations[END_REF][START_REF] Lenters | Performance of variable selection methods for assessing the health effects of correlated exposures in case-control studies[END_REF]: within this framework, they showed that dimension reduction techniques such as regression-based variable selection methods simultaneously considering multiple variables were more efficient than the ExWAS to control the false positive rate [START_REF] Agier | A Systematic Comparison of Linear Regression-Based Statistical Methods to Assess Exposome-Health Associations[END_REF]. When it comes to non-purely statistical dimension reduction approaches, it may be relevant to try relying on biological parameters, including 'omic (methylome, transcriptome, metabolome…), inflammatory or immunologic markers, possibly acting as intermediary factors between the exposome and health.

This logic is embodied in the Meet-in-the-Middle (MITM) design [START_REF] Chadeau-Hyam | Meeting-in-the-middle using metabolic profiling-a strategy for the identification of intermediate biomarkers in cohort studies[END_REF][START_REF] Jeong | Perturbation of metabolic pathways mediates the association of air pollutants with asthma and cardiovascular diseases[END_REF], which detects "intermediary" biomarkers associated with both exposures and the health outcome. We recently applied a tailored MITM design [START_REF] Cadiou | Using methylome data to inform exposome-health association studies: An application to the identification of environmental drivers of child body mass index[END_REF], named hereafter "oriented Meet-in-the-Middle" (oMITM), with a dimension reduction aim, and using methylation data to reduce exposome dimension.

Here, we make the hypothesis that oMITM could 1) allow lowering the high FDP reported for agnostic ExWAS, and 2) could be less sensitive to reverse causality than agnostic dimension reduction methods. This might be obtained at a cost of a decreased sensitivity, in particular as the proportion of exposures whose health effect is not mediated by the considered layer increases [START_REF] Cadiou | Using methylome data to inform exposome-health association studies: An application to the identification of environmental drivers of child body mass index[END_REF]. Specifically, we aimed to test if methods relying on intermediary multidimensional biological data allow to more efficiently identify the causal predictors of a health outcome among a large number of environmental factors. We both considered methods making use of information on potential mediators of the health effects of exposures and agnostic methods ignoring the intermediate layer, and compared their sensitivity and false positive rate. Data were generated assuming five different possible causal models, including reverse causality, for realistically low values of the share of the outcome variability explained by the exposome. After comparing the CHAPTER IV: A simulation study of approaches relying on intermediate high-dimension data to decipher causal relationships between the exposome and health 116 methods using simulated data, in a second section, we use causal inference theory to discuss which designs may be most adapted under each possible causal structure.

Materials and methods

Overview of the simulation

We relied on a Monte-Carlo simulation to compare the efficiency of methods aiming at identifying which components of the exposome influenced a health outcome under various causal models and hypotheses (altogether defining a total of 2381 scenarios). Exposome, intermediary layer and outcome data were generated under these various scenarios. For each scenario, 100 datasets were simulated (see below). The 6 methods compared, as well as two control methods (see below), were applied to each dataset and their performances were assessed, and synthesized over all datasets related to a given scenario.

Causal structures considered

Five different causal structures were considered (see 

Generation of independent realistic exposome, methylome and outcome data, and addition of causal relations within them

To build datasets according to these causal structures, we first generated independent variables corresponding to a set of exposures (our exposome) and a biological layer (e.g., corresponding to metabolomic signals or methylation levels at various sites on the DNA) by independently sampling with replacement real data on the exposome and DNA methylome from 1173 individuals of HELIX project [START_REF] Cadiou | Using methylome data to inform exposome-health association studies: An application to the identification of environmental drivers of child body mass index[END_REF][START_REF] Maitre | Human Early Life Exposome (HELIX) study: a European population-based exposome cohort[END_REF][START_REF] Vrijheid | The human early-life exposome (HELIX): project rationale and design[END_REF]. For the exposome, 173 quantitative variables corresponding to the exposures were obtained from the real prenatal and postnatal child exposome data of Helix, selecting only the quantitative exposures and covariates.

Variables were then standardized and bounded (each standardized value greater than 3 in absolute value were replaced by a value lower than 3 in absolute value randomly drawn in the distribution). to the exposome and to the methylome for causal structure D. BMI was standardized according to WHO guidelines [START_REF] Cadiou | Using methylome data to inform exposome-health association studies: An application to the identification of environmental drivers of child body mass index[END_REF][START_REF] De Onis | Development of a WHO growth reference for school-aged children and adolescents[END_REF].

For each structure, different scenarios varying the intensity of the hypothesized associations and the number of predictors from the different layers were generated: in particular, for the structures displaying an effect of E on Y, the total variability of Y explained by E and M, fixed within a scenario, varied between 0.01 and 0.4 and the number of true predictors of Y within E varied between 1 and 25; the number of elements of M with an effect on Y varied between 10 and 100 in the causal structures assuming such an effect. The parameters of the different scenarios are detailed in Supplementary Table V.1. For each scenario considered, 100 datasets were simulated.

The simulation (detailed in Supplementary Material V.1) additionally made the following assumptions:

 All direct effects of a variable on another were assumed to be linear.

CHAPTER IV: A simulation study of approaches relying on intermediate high-dimension data to decipher causal relationships between the exposome and health 119  The magnitude (i.e., slope) of all effects from the predictor variables of a given layer (e.g. E) on the predicted variables of another layer were identical within a given scenario.

 A variable from M could not be affected by more than one exposure. In consequence, when multiple exposures were assumed to affect the intermediary layer, the number of variables affected was a multiple of the number of exposures. 

ExWAS with Benjamini-Hochberg correction

Independent linear regressions corrected for multiple testing using Benjamini-Hochberg correction. The output corresponds to exposures associated with the outcome. [START_REF] Benjamini | Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing[END_REF] ExWAS Lasso Penalized regression model relying on a generalized linear framework developed by Tibshirani [START_REF] Tibshirani | Regression Shrinkage and Selection via the Lasso[END_REF]. The LASSO penalty (L 1 ) added to the loss function promotes sparsity and performs variable selection through shrinkage: the lowest regression coefficients, corresponding to the least informative predictors, are attributed a zero value, according to a penalty parameter λ. As advised by Tibshirani [START_REF] Tibshirani | Regression Shrinkage and Selection via the Lasso[END_REF] and implemented in the glmnet package [START_REF] Friedman | Regularization Paths for Generalized Linear Models via Coordinate Descent[END_REF], λ is determined by minimizing the prediction root mean squared error (RMSE) using 10-fold cross-validation. λ sequences tested in the cross-validation process is a sequence of 100 values deterministically determined from the data [START_REF] Friedman | Regularization Paths for Generalized Linear Models via Coordinate Descent[END_REF].

Exposures with non-zero coefficients in the final model using optimal lambda are the output of this selection method. [START_REF] Tibshirani | Regression Shrinkage and Selection via the Lasso[END_REF]) [START_REF] Friedman | Regularization Paths for Generalized Linear Models via Coordinate Descent[END_REF].

LASSO

DSA (Deletion Substitution Addition) algorithm

DSA is an iterative linear regression model search algorithm (Sinisi and van der Laan 2004) following three constraints: maximum order of interaction amongst predictors, the maximum power for a given predictor, and the maximum model size. At each iteration, the following three steps are allowed: a) removing a term, b) replacing one term with another, and c) adding a term to the current model. The search for the best model starts with the intercept model and identifies an optimal model for each model size. The final model is selected by minimizing the value of the RMSE using 5-fold cross-validated data.

We allowed no polynomial or interaction terms, and made no restriction on the number of predictors. Exposures selected by DSA are the output of this selection method.

(Sinisi and van der Laan 2004) DSA

Methods incorporating information from an intermediary layer Oriented Meet in the Middle -ExWAS

Design of the Meet in the Middle approach from [START_REF] Cadiou | Using methylome data to inform exposome-health association studies: An application to the identification of environmental drivers of child body mass index[END_REF], using ExWAS-type corrected for multiple testing using Benjamini-Hochberg correction for all three steps. 3 steps: a. tests of association between the intermediary layer and the outcome with an ExWAS type approach corrected for multiple comparisons using Benjamini and Hochberg procedure; b. tests of association between each exposure and the intermediary variables found associated with the outcome in step, adjusted on the outcome, corrected for multiple testing using the Benjamini-Hochberg procedure. Correction for multiple testing takes into account all the tests performed at this step (i.e. number of exposures x number of intermediary variables found associated with the outcome in step a); c. Test of the associations between exposures found associated with at least one intermediary variable at step b and the outcome, using an ExWAS design corrected for multiple comparisons. Correction for multiple testing takes into account all the tests performed at this step (i.e. number of exposures found associated with at least one CpG at step b.). Exposures found associated with the outcome in step c. are the output of this selection method. [START_REF] Cadiou | Using methylome data to inform exposome-health association studies: An application to the identification of environmental drivers of child body mass index[END_REF]) [START_REF] Benjamini | Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing[END_REF] 

oMITM-ExWAS

Oriented Meet in the Middle -DSA Design of the oriented Meet in the Middle approach from (Cadiou et al., 2020), using ExWAS-type corrected for multiple testing using Benjamini-Hochberg correction for the two first steps and DSA for the last steps. 3 steps: a. tests of association between the intermediary layer and the outcome with an ExWAS type approach corrected for multiple comparisons using Benjamini and Hochberg procedure; b. tests of association between each exposure and the intermediary variables found associated with the outcome in step, adjusted on the outcome, corrected for multiple testing using the Benjamini-Hochberg procedure. 

Control methods

Steps 1 and 2 of the oriented Meet-in-the-Middle 2 first steps of the design of the oriented Meet in the Middle approach using ExWAS-type, corrected for multiple testing with Benjamini-Hochberg correction [START_REF] Cadiou | Using methylome data to inform exposome-health association studies: An application to the identification of environmental drivers of child body mass index[END_REF]. a. tests of association between the intermediary layer and the outcome with an ExWAS type approach corrected for multiple comparisons using Benjamini and Hochberg procedure; b. tests of association between each exposure and the intermediary variables found associated with the outcome in step a, adjusted on the outcome, corrected for multiple testing using Benjamini-Hochberg procedure. Correction for multiple testing takes into account all the tests performed at step b (i.e. number of exposures x number of intermediary variables found associated with the outcome in step a). Exposures found associated with at least one intermediary variable in step b. are the output of this selection method. [START_REF] Cadiou | Using methylome data to inform exposome-health association studies: An application to the identification of environmental drivers of child body mass index[END_REF] oMITMsteps 1 and 2

ExWAS on a random subsample

ExWAS with FDR correction on a set of nR random exposures, where nR is the number of exposures in the reduced exposome when applying oMITM -ExWAS on the same dataset. Exposures found associated with the outcome are the output of this selection method. [START_REF] Benjamini | Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing[END_REF] ExWAS on subsample

Methods to relate the exposome and health compared

For each generated dataset, we applied 8 different statistical methods, detailed in Table IV.1:

-three "agnostic" methods ignoring the intermediary layer: ExWAS with Benjamini-Hochberg correction [START_REF] Benjamini | Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing[END_REF], Lasso [START_REF] Friedman | Package ' glmnet[END_REF][START_REF] Tibshirani | Regression Shrinkage and Selection via the Lasso[END_REF], Deletion Substitution Addition (DSA) algorithm (Sinisi and van der Laan, 2004); -three methods using the intermediary layer to reduce the dimension of the exposome: two implementations of our oMITM-design [START_REF] Cadiou | Using methylome data to inform exposome-health association studies: An application to the identification of environmental drivers of child body mass index[END_REF] and a mediation analysis using parallel simple linear regressions [START_REF] Küpers | DNA methylation mediates the effect of maternal smoking during pregnancy on birthweight of the offspring[END_REF][START_REF] Mackinnon | A comparison of methods to test mediation and other intervening variable effects[END_REF];

-two "control" methods: "ExWAS steps 1 and 2" and "ExWAS on subsample", meant to inform the comparison between the results of the previous methods (see below and Table IV.1).

The oMITM design, detailed in Table IV [START_REF] Cadiou | Using methylome data to inform exposome-health association studies: An application to the identification of environmental drivers of child body mass index[END_REF] for details). Various statistical methods can be used at steps a, b, c). We tested two different implementations of the oMITM design: the first one (oMITM-ExWAS) used ExWAS-type methods at all steps, i.e. a series of parallel linear regression models (one per tested predictor) corrected for multiple testing using

Benjamini-Hochberg procedure [START_REF] Benjamini | Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing[END_REF]; the second oMITM implementation used an ExWAS-type approach at steps a) and b) and DSA algorithm at step c).

DSA (Sinisi and van der Laan, 2004) is is an iterative linear regression model search algorithm, which has been shown to provide the best performance (assessed as the compromise between sensitivity and FDP) in studies relating the exposome to health, compared to other common methods including ExWAS [START_REF] Agier | A Systematic Comparison of Linear Regression-Based Statistical Methods to Assess Exposome-Health Associations[END_REF]. It performs data-adaptive estimation through lossbased cross-validated estimator selection. DSA was not considered for step a) and b) as, as a wrapper method, it is not computationally feasible to use it on a set of covariates of dimension higher than a few hundred. The third "agnostic" method used, LASSO, is a regularized linear regression, adding a penalty term (L 1 ) to the loss function [START_REF] Tibshirani | Regression Shrinkage and Selection via the Lasso[END_REF]. For the mediation design, using the 3 causal steps defined by the seminal article of [START_REF] Baron | The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations[END_REF], we implemented ExWAS-type analysis at each step, in order to allow comparison with MITM-ExWAS.

Assessing scenarios' characteristics and methods' performances

To assess the characteristics of each scenario, variabilities of Y explained by the true predictors of E, by the true predictors of M and by both were measured and their mean and standard deviation were computed over the 100 runs. For causal structures A and C, the variability explained by E for each variable of M affected by E was also measured and averaged. Then mean and standard deviation of this averaged variability were computed over the 100 runs. For structures D and E, the variability explained by Y was measured for each variable of M or exposure predicted and means and standard deviations were computed across the exposome and the intermediary layer.
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To compare methods, for each scenario of causal structures A, B and C, false discovery proportion (FDP) and sensitivity to identify true predictors within the exposome were measured and mean and standard deviation were computed. FDP was defined as the proportion of exposures that were not causal predictors among the exposures selected. When no exposure was selected, FDP was set to 0. Sensitivity was defined as the proportion of exposures selected among the true causal predictors. For scenario from structures D and E, for which there were no true predictors of Y, the mean and standard deviations of the number of predictors found were computed over the 100 runs. The "sensitivity" to detect exposures affected by Y was also computed. In causal structures A, B and C, methods' performances were compared in term of FDP, sensitivity and accuracy (defined as the sum of sensitivity and 1 -FDP).

The script, developed in R, is provided in Supplementary Material V.2.

Comparisons between oMITM, mediation and direct association test using structural causal modelling theory in a three-variable scheme

We used the theory of structural causal modelling [START_REF] Pearl | Causal inference in statistics: An overview[END_REF][START_REF] Pearl | Causal diagrams for empirical research[END_REF] to identify in which causal situations a causal association could be expected to be identified using the-Middle design in the simpler situation of three unidimensional variables (i.e. one exposure, one CpG, one outcome, ignoring the higher dimension of E and M in our simulation). Twenty-five Directed Acyclic Graphs (DAG) were assessed, corresponding to the 27 theoretical possibilities combining 3 variables with 3 modalities (no causal link, causal link, reverse causal link) without the two diagrams corresponding to cyclic graphs (E->M->Y->E and Y->M->E->Y). For each causal structure, potential bias were identified for each association test through the existence of spurious association between two variables because of a backdoor path not controlled for or because of adjustment for a collider [START_REF] Pearl | Causal inference in statistics: An overview[END_REF][START_REF] Pearl | Causal diagrams for empirical research[END_REF]. This allowed to determine if oMITM would be able to show an association, assuming that statistical power was sufficient. We determined for each causal structure if the design was expected to provide a false-positive, false-negative, true-positive or true negative finding, according to the theoretical output (exposure selected or not) and the presence of a direct causal link from the exposure to the outcome in the causal structure considered. Similar analyses were done for the mediation design (see Table IV 

Results

Causal structures assuming an effect of the exposome on health

The characteristics of the scenarios under causal structures assuming an effect of the exposome on health (structures A, B and C) are summarized in Supplementary Table V.2. On average over these three structures, DSA and oMITM-DSA provided the highest accuracy; FDP was lower for oMITM-DSA and sensitivity higher for DSA (Table IV.2). When we considered the three causal structures separately, the method most accurate differed between causal structures.

When we assumed that the totality of the effect of E on Y was mediated by M (structure A), the variability of Y explained by E was necessarily lower than under the other causal structures with direct E-Y relation (Supplementary Table V.2). Overall, the method maximizing the accuracy was oMITM-DSA (Table IV.2). It was immediately followed by the oMITM-ExWAS and then the mediation analysis. Average sensitivity was higher than 0.095 for all the agnostic and non-agnostic methods and it increased with the variability of E explained by Y. The method displaying the lowest FDP was oMITM-DSA (average FDP across scenarios, 0.038), which also showed one of the lowest sensitivities on average (0.095); however, as soon as the variability explained by the exposome was above 0.1, its sensitivity was above 0.70 while its FDP remained below 0.20 (see

Figure V.2).
In a few scenarios (when the variability explained by the exposome was between 0.05 and 0.1, see Figure 2 and Supplementary Figure 1), oMITM-DSA even showed a better sensitivity than its agnostic counterpart, DSA, with a similar FDP. When the variability explained by the exposome was low (below 0.01), oMITM-DSA did not select any predictor, contrarily to DSA, which showed a non-null FDP in this range of variabilities. oMITM-ExWAS and mediation had an average FDP and an average sensitivity that were both of 0.1. Overall, the reduced exposome selected by the two oMITM designs (after steps 1 and 2 of oMITM) contained more true predictors than a random set of exposures of the same dimension; this can be seen by comparing the sensitivity of oMITM-ExWAS to the sensitivity of ExWAS on subsample (Figure IV.3A), which was lower in all scenarios. Interestingly, the FDP of oMITM-ExWAS and ExWAS on subsample were similar and lower than the FDP of ExWAS. This shows the influence of the dimension on the FDP for ExWAS-based methods and illustrates the benefit of the dimension reduction steps provided by oMITM.

Coming to the agnostic methods, DSA and ExWAS displayed similar global performances (Table IV.2), but DSA showed better (lower) FDP in the few scenarios for which the variability explained by E was higher than 0. When we assumed that the exposome directly influenced health (without mediation by the intermediate layer, structure B), all methods relying on information from the intermediary layer unsurprisingly showed very low sensitivity (lower than 0.010); they also had very low FDP (lower than 0.013, Table IV.2), as they did not select any exposure in most scenarios (see Supplementary ). Among both types of methods, the one maximizing accuracy was DSA, which performed far better than the other methods (Table IV.2). oMITM-DSA ranked second in terms of accuracy: there were some scenarios (when both variabilities explained by E and M were higher than 0.1) in which oMITM methods selected some exposures that were true predictors (Figure IV.4B and Supplementary Figure V.2A). In these scenarios, oMITM-DSA showed good sensitivity (average, 50%) and very good FDP (lower than 15%). Indeed, counterintuitively, for these scenarios, the reduced exposome selected by oMITM design was non-empty and contained more true predictors than would be selected by chance (this can be seen in CHAPTER IV: A simulation study of approaches relying on intermediate high-dimension data to decipher causal relationships between the exposome and health 131 Table IV.2: Performance for every method under each causal structure. For structures A, B and C, FDP (average mean and standard error across scenarios), sensitivity (average mean and standard error across scenarios) and accuracy, defined as 1 -FDP + sensitivity (average mean across scenarios). For structure D, number of hits (average mean and standard error across scenarios) and sensitivity to find the exposures predicted by Y (average mean and standard error across scenarios). For structure E, number of hits (average mean and standard error across scenarios). For each performance indicator and for each structure, an * indicates the method with the best performance for a given causal structure. a : Proportion of exposures influenced by Y identified by the approach. IV.3). On the contrary, the mediation analysis showed a non-null number of hits as soon as the mean variability of E explained by Y was higher than 0.05 and the mean variability of M explained by Y was higher than 0.3.

The structure without any causal link (structure E) can be seen as the limit of all four precedent structures when the strength of all associations approaches zero. All methods using methylome information selected no exposure, while agnostic methods erroneously selected some exposures, with LASSO showing the highest error rate (Table IV 4. In Supplementary Table 5, the step-by-step results for oMITM are detailed.

A test of association between E and Y ignoring M was expected to properly identify all situations

in which E influenced Y (0 false negative, 9 true positive results, Table IV.4), but also identified associations corresponding to reverse causality (10 false positive results, Table IV 

Discussion

Our simulations highlighted that the oMITM design has high accuracy under various causal structures. In particular, it allows to avoid false-positive associations in some structures corresponding to reverse causality more efficiently than all other tested designs which detected the spurious association, in particular those not making use of the intermediary layer. Moreover, in the causal structures with a direct effect of the exposome on the outcome for which other methods sometimes suffer from a low specificity, it allows increasing specificity while conserving a good accuracy compared to other methods.

Strengths and limitations

We implemented a simulation considering five different causal structures to identify in which contexts specific methods making use of information from an intermediary biological layer could be more efficient than specific agnostic algorithms to identify components of the exposome influencing health. Former simulations about the performance of statistical methods to assess exposome-health associations generally considered simpler causal structures, without any intermediate layer nor reverse causality [START_REF] Agier | A Systematic Comparison of Linear Regression-Based Statistical Methods to Assess Exposome-Health Associations[END_REF][START_REF] Barrera-Gómez | A systematic comparison of statistical methods to detect interactions in exposome-health associations[END_REF][START_REF] Lenters | Performance of variable selection methods for assessing the health effects of correlated exposures in case-control studies[END_REF]. Other simulations considered multi-layered data, but often with an aim distinct from ours, such as the quantification of the share of the effect of an exposure on an outcome mediated by a high dimension intermediate layer [START_REF] Barfield | Testing for the indirect effect under the null for genome-wide mediation analyses[END_REF][START_REF] Tobi | Why mediation analysis trumps Mendelian randomization in population epigenomics studies of the Dutch Famine[END_REF].

We only studied experimentally 5 of the 25 possible causal structures theoretically possible, deferring the discussion about the remaining causal structures to the qualitative assessment of the simplified DAGs (which did not assume that either E or M had a dimension larger than one). We selected the 5 structures that we thoroughly tested so as to cover what we considered to be the most realistic situations in an exposome setting; the reader interested in another specific structure may modify our code to study it more deeply. We considered separately these causal structures, while in reality, with multidimensional exposures and intermediary layers, several causal structures are expected to co-exist: for example, an exposure may only act directly on Y while another exposure could act directly and via an indirect effect mediated by M. Models performances estimated for different causal structures should not be compared one with another as the weight of scenarios with high or low variability explained by predictors were not the same across different causal structures. Within-structure comparisons/reasonings are more relevant.

In some of the considered situations, the variability of Y explained by E was very low, which seemed realistic to us. This corresponds to a situation of "rare and weak" event [START_REF] Donoho | Higher criticism thresholding: Optimal feature selection when useful features are rare and weak[END_REF], which may be more plausible than higher values of explained outcome variability assumed in previous simulations [START_REF] Agier | A Systematic Comparison of Linear Regression-Based Statistical Methods to Assess Exposome-Health Associations[END_REF][START_REF] Barrera-Gómez | A systematic comparison of statistical methods to detect interactions in exposome-health associations[END_REF]. Thus, we chose to include these scenarios even if most methods showed very low power, as it may represent the performance encountered in real studies. This led to point to major difference in terms of specificity between methods. Situations in which E explained a large share of the variability of Y (above 20%) were hard to reach in the causal model corresponding to mediation (structure A), which should be seen as a realistic feature of our simulation rather than a limitation thereof. This was a consequence of our choice not to simulate scenarios with strong effects of E on M (maximum average share of variability in M explained by E, 20%).

We assumed that the dimension of our intermediary layer was 2284; this value corresponded to the dimension of a set of variables representing DNA methylation sites selected on the basis of their a priori relevance for the considered outcome [START_REF] Cadiou | Using methylome data to inform exposome-health association studies: An application to the identification of environmental drivers of child body mass index[END_REF]; this is also a realistic size for biological information of other nature, such as metabolomic or immunological markers. The dimension of the intermediary layer in which the information is diluted is expected to impact the efficiency of approaches relying on this layer.

Coming to our causal inference analysis, the main limitation is that we analyzed only lowdimensional DAGs (with three variables), whereas the analyzed designs are meant to be used in higher dimension.

Summary of methods' performances

Our oMITM is an innovative design, used here in two flavors (oMITM-ExWAS and oMITM-DSA). It shows similarities with a mediation design and especially with the Meet-in-the-Middle framework described in the literature [START_REF] Chadeau-Hyam | Meeting-in-the-middle using metabolic profiling-a strategy for the identification of intermediate biomarkers in cohort studies[END_REF][START_REF] Jeong | Perturbation of metabolic pathways mediates the association of air pollutants with asthma and cardiovascular diseases[END_REF][START_REF] Vineis | Advancing the application of omics-based biomarkers in environmental epidemiology[END_REF]. It is notably distinguished from the classical Meet-in-the-Middle by that: 1) it does not aim to discover intermediary biomarkers but to reduce exposome dimension in the context of an exposome-outcome association; this explains the order chosen for the different steps; 2) we added an adjustment on the outcome in the test of association between the exposure and the potential mediators. Overall, our oMITM design showed good performance compared to agnostic methods.

Due to our adjustment on the outcome (leading to what corresponds to a "selection bias", as defined by [START_REF] Hernán | A structural approach to selection bias[END_REF]), oMITM can identify some true predictors even in structures under which there is no indirect effect of E on Y through M (causal structure B). We explained why this can happen in the theoretical part of our work (see paragraph 3.3). In situations of reverse causation without link between E and M, the additional adjustment on Y of our oMITM design also allowed to avoid false positives due to reverse causality. In situations of mediation without any direct effect of the exposures, the reduced exposome was relevant; under this causal structure, oMITM allowed CHAPTER IV: A simulation study of approaches relying on intermediate high-dimension data to decipher causal relationships between the exposome and health 142 to decrease FDP in most scenarios, and in some scenarios to increase sensitivity. The replacement of ExWAS by DSA in the last step of the oMITM design increases performance, in particular in term of FDP when the effect of the exposures on the outcome was high. oMITM could be further enhanced by replacing the ExWAS-type methods used at step b) and c) by selection methods more adapted to the high dimension (see for example the reviews of [START_REF] Fan | A Selective Overview of Variable Selection in High Dimensional Feature Space[END_REF][START_REF] Lazarevic | Statistical methodology in studies of prenatal exposure to mixtures of endocrine-disrupting chemicals: A review of existing approaches and new alternatives[END_REF]).

We used an ExWAS-based implementation of mediation analysis [START_REF] Küpers | DNA methylation mediates the effect of maternal smoking during pregnancy on birthweight of the offspring[END_REF] to allow comparisons with the oMITM design (through the oMITM-ExWAS). However, alternative mediation implementation, more adapted to multidimensional mediators, have been proposed [START_REF] Barfield | Testing for the indirect effect under the null for genome-wide mediation analyses[END_REF][START_REF] Blum | Challenges Raised by Mediation Analysis in a High-Dimension Setting[END_REF][START_REF] Chén | High-dimensional multivariate mediation with application to neuroimaging data[END_REF].

Moving now to the agnostic methods, Deletion-Addition-Substitution algorithm was the best agnostic method in situations involving a causal effect of the exposome on the health outcome. As shown before by [START_REF] Agier | A Systematic Comparison of Linear Regression-Based Statistical Methods to Assess Exposome-Health Associations[END_REF], DSA provided a better compromise between sensitivity and specificity than ExWAS. However, it is prone to suffer from reverse causality, like all other agnostic methods. Our results on ExWAS are consistent with those from Agier et al. ( 2016) when R 2 was higher than 0.1. When R 2 was lower than 0.01, ExWAS often selected no exposures and thus exhibited a FDP of 0 whereas the two other agnostic methods (DSA and LASSO) showed nonnull FDP and null or very low sensitivity. LASSO was the worst performing agnostic method; in particular, it displayed a very high FDP. In a case of correlation between a true predictor and other variables, LASSO is known to select one variable among a set of correlated variables [START_REF] Leng | a Note on the Lasso and Related Procedures[END_REF]. The high rate of false positive findings that we observed may be explained by our choice of a penalty parameter (the parameter which minimizes the error of prediction during the crossvalidation process [START_REF] Tibshirani | Regression Shrinkage and Selection via the Lasso[END_REF]) optimized for prediction. Elastic-Net [START_REF] Friedman | Regularization Paths for Generalized Linear Models via Coordinate Descent[END_REF], which was designed to improve the performance of Lasso when predictors are correlated, could have been tested here. However, Agier et al. [START_REF] Agier | A Systematic Comparison of Linear Regression-Based Statistical Methods to Assess Exposome-Health Associations[END_REF] IV.4). Similarly, in structure B, we observed a non-null sensitivity of oMITM due to selection bias when the variabilities in Y explained by both E and M were above a certain level.

Moreover, the behavior of oMITM in a structure of reverse causality is also consistent with the results of a previous study using oMITM-ExWAS to relate the exposome and child BMI in Helix data using methylome [START_REF] Cadiou | Using methylome data to inform exposome-health association studies: An application to the identification of environmental drivers of child body mass index[END_REF]. Indeed, as detailed in [START_REF] Cadiou | Using methylome data to inform exposome-health association studies: An application to the identification of environmental drivers of child body mass index[END_REF], an agnostic

ExWAS applied on the same data resulted in 20 significant associations, with the majority likely to be due to reverse causality: most of these hits corresponded to lipophilic substances (such as polychlorobiphenyls (PCB)), measured in blood at the same time as the outcome. They were negatively associated with BMI, whereas toxicological studies based on a prospective design suggested obesogenic effect of such components (Heindel & vom Saal, 2009;[START_REF] Thayer | Role of Environmental Chemicals in Diabetes and Obesity: A National Toxicology Program Workshop Review[END_REF].

As they are stored in fat, a plausible explanation is that these associations are due to increased fat levels in obese subjects, entailing a higher amount of PCBs stored in fat and, conversely, a lowering of circulating PCB levels in blood [START_REF] Cadiou | Using methylome data to inform exposome-health association studies: An application to the identification of environmental drivers of child body mass index[END_REF]. The reduced exposome obtained with oMITM, which consisted of 4 exposures, did not contain any of these hits of the agnostic analysis suspected to be due to reverse causality, except PFOS level. Thus, we can hypothesize that for these exposures, this situation corresponded to one of the cases of reverse causality situations discussed above, in which the oMITM design is not expected to identify exposures influenced by the outcome. This is consistent with the simulation results and highlights that the benefit of oMITM may come from the dimension reduction performed in the two first steps. The fact that blood postnatal level of PFOS, another compound suspected of reverse causality, was selected by the oMITM-ExWAS approach may be a consequence of the fact that oMITM is not expected to avoid all situations of reverse causality (as shown by our causal discovery analysis (Supplementary Table IV.4)).

The need to rely on causal knowledge

We illustrated under which causal structures the results from previous exposome-health simulations [START_REF] Agier | A Systematic Comparison of Linear Regression-Based Statistical Methods to Assess Exposome-Health Associations[END_REF] are expected to be true and that methods always imply underlying causal assumptions which are difficult to verify in an exposome setting. We showed that the use of additional information through the use of methylome layer can help to deal with reverse causality and thus decrease the false positive findings. This illustrates the affirmation of Hernan (2019) that "causal analyses typically require not only good data and algorithms, but also domain expert knowledge." In our case, the use of an intermediate layer and our design, which itself relies on the assumption of three distinctive biological layers, added some a priori information. However, oMITM is still expected to lead to false positive findings in several causal structures corresponding to reverse causality. Further knowledge, for example on the causal link between the exposome and the intermediate layer, could help discarding these non-causal associations. Our work also illustrates that classical designs, such as mediation and classical Meet-in-the-Middle procedure, are not robust to violations of the strong assumptions they make about the underlying causal structure. Especially, a significant mediation or classical Meet-in-the-Middle result should not be interpreted as a causal clue supplementing the association between a factor or an outcome, unless strong knowledge about the intermediary variables a priori makes their mediating role very likely: as we demonstrated, in the causal structure D, which featured (reverse) causal links from the outcome to the potential mediators and to the exposure, both mediation test and basic association test can result in significant associations. Similarly (see theoretical results for structure D), a classic Meet-in-the-Middle framework without adjustment on the outcome at the second step would also lead to significant associations. Interestingly, in such a situation, even a longitudinal design may not be sufficient to get rid of reverse causality (see the DAG provided in Supplementary Figure 5 for an example). Thus, the statement about the Meet-in-the-Middle procedure that "If the same set of markers is robustly associated with both ends of the exposure-to-disease continuum, this is a validation of a causal hypothesis according to the pathway perturbation paradigm. » [START_REF] Vineis | Long-term effects of air pollution: an exposome meet-in-the-middle approach[END_REF]) must be interpreted cautiously:

associations rising from an epidemiological study should be supplemented by toxicological and biological knowledge. Overall, our work confirms that the uncertainty about the causal framework deserves to be taken in consideration when applying statistical methods to exposome and health data: first, it is of course crucial to understand the underlying causal assumptions behind the existing model, and to take them into account when interpreting epidemiologic results; secondly, multilayer approaches such as our oMITM design can be more robust than agnostic approaches when the causal model is uncertain.
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From a practical point of view, in an exposome health study where intermediary data are available, if strong prior knowledge about the outcome or the nature of the intermediary layer makes one specific causal structure very likely, one may choose the method(s) with a design adapted to this causal structure according to a comparative causal analysis such as the one we performed. The oMITM should in particular be preferred if there are reasons to expect associations due to reverse causality (e.g. in the case of a cross-sectional design). A multilayer design should be preferred to an agnostic one if both are adapted to the hypothesized underlying structure as the first one could help increase the specificity. Once the design is chosen, the statistical methods (e.g. DSA, ExWAS)

for the implementation of this design should be chosen according to the dimensions of the considered layer(s), relying on simulations studies. For example, in an exposome settings and with an intermediary layer of intermediate dimension, our own simulations showed that respectively DSA and ExWAS may be adapted for the implementation of the different steps of an oMITM design.

If little a priori knowledge is available about the underlying causal structure, one could use either an agnostic approach (if one tends to favor sensitivity over specificity, e.g. in a rather exploratory study) or oMITM, which proved to be robust, if one tends to favor specificity. Supplementary Material IV.1: Detailed simulation methods

In these paragraphs, a variable of the intermediary layer M is called a CpG.

2 similar implementations were used to simulate in one hand causal structures A, B and C, and in the other hand structures D and D.

1. Causal structures A, B and C:

Generation of links between E and M

An effect of the exposures on the methylome was generated according to

For each CpG i affected by E, 𝑚 = 𝑚 + ∑ 𝛽 𝐸 (1) where mbooti is the vector containing all values of methylation at the CpG i in the matrix M bootstrapped from the real data, mi is the vector containing all new simulated values for this CpG site after the addition of an effect of the exposome, and Ek is the vector containing all values for the predictor k of the exposome. Regressions coefficients were all set to zeros except for the exposures randomly exposures variables for which we created a causal link. The number of CpGs affected by E, the number of exposures affecting each CpG and the values of the non-zero regressions coefficients were fixed as described in the "definition of each scenario" section.

Generation of the health outcome

The health outcome Y was generated as a function of the exposome and the methylome according to:

𝑌 = ∑ 𝛽′ 𝑚 + ∑ 𝛽′′ 𝐸 + 𝜀, 𝜀 ~ 𝒩(0, 𝜎 ) (2)
where Y is the vector of the generated outcome, mj is the vector containing all values of the predictor j from the methylome, Ek is the vector containing all values for the predictor k of the exposome, and represents the residuals of the regression models, computed from a residual variance σ 2 . The number and the values of non-zero regression coefficients were defined as described in the "definition of each scenario" section below.

The value of σ 2 is computed to ensure that the total variability of Y explained by E and M is equal to the parameter R 2 which varies between scenarios.

Implementation of each causal structure:

In order to easily define different causal situations, we define in the methylome matrix M 4 matrices, with no intersection: M0, MM->Y,ME->M->Y,ME->M.

ME->M->Y contains all the methylome variable which are both affected by E and affecting Y, i.e. for a methylation variable j belonging to ME->M->Y, at least one βi=j,k is non-zero in the equation ( 1) and 𝛽'j is non-zero in equation ( 2).

MM->Y contains all the methylome variables which are not affected by E but affecting Y, i.e. for a methylation variable j belonging to MM->Y, all 𝛽 i=j,k are zero in the equation ( 1) and at least 𝛽'j is non-zero in equation ( 2).

ME->M contains all the methylome variables which are affected by E but not affecting Y, i.e. for a methylation variable j belonging to EE->M, at least one 𝛽 i=j,k is non-zero in the equation ( 1) and 𝛽'j is zero in equation ( 2).

M0 contains all the methylome variables which are neither affected by E nor affecting Y, i.e. for a methylation variable j belonging to M0, all 𝛽 i=j,k are zero in the equation ( 1) and 𝛽'j is zero in equation ( 2).

M can therefore be seen as the concatenation of ME->M->Y,MM->Y,ME->M and M0, which we will now called our M submatrices.

We also defined 3 submatrices in E with possible intersections: EE->M->Y, EE->M and EE->Y.

EE->M->Y contains all the exposome variables which affect at least one CpG site belonging to ME->M->Y, i.e. for an exposure variable k belonging to EE->M->Y, there is at least one methylation variable i for which 𝛽 k,i is non-zero in the equation ( 1) and 𝛽'j=i is non-zero in equation ( 2).

EE->M contains all the exposome variables which affect at least one CpG site belonging to ME->M, i.e. for an exposure variable k belonging to EE->M, there is at least one methylation variable i for which 𝛽k,i is non-zero in the equation ( 1) and 𝛽'j=i is zero in equation ( 2).

Therefore, EE->M U EE->M->Y contains all the exposome variables affecting at least one CpG Site.

EE->Y contains all the exposome variables which affect directly M i.e., for an exposure variable k belonging to EE->Y, 𝛽''k is non-zero in equation ( 2).

To model the influence of exposures via some pathways, we constrained the size of ME->M and ME->M->Y (i.e. the two sets of CpGs affected by E) to be a multiple of the size of respectively EE->M and EE->M->Y. Each exposure of EE->M has a non-zero effect only on nME->M/nEE->M CpGs (i.e. the number of CpGs belonging to ME->M divided by the number of exposures belonging to YEE->M).

Similarly, each exposure of EE->M has a non-zero effect only on nMEY/nEE->M->Y CpGs (i.e. the number of CpGs belonging to ME->M divided by the number of exposures belonging to YEE->M).

We call this further this constraint the "multiplicity constraint".

Moreover, to simplify the simulations, we set that in each M submatrices all the effects from the methylome are identical, i.e. for two methylome variables i and j belonging to the same submatrix, β'i=β'j in (2). We also set that the effect of one exposure of EE->M (respectively EE->M->Y) is identical for all the CpGs affected by a non-zero effect of EE->M (respectively EE->M->Y), i.e. ∀𝑘 𝑡𝑞 β , ≠ 0 and β , ≠ 0, βj,k=βi,k in (1).

Last, we can control the recovering between the different set of predictors from E, i.e. recovering between EE->M->Y, EE->M and EE->Y.

Therefore the 3 causal structure A, B, and C can be defined by: The values of parameters used can be found in table 1.



Causal structures D and E:

Reverse causality links:

A linear causal effect from Y was added to E and M:
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For each CpG i affected by Y, 𝑚 = 𝑚 + 𝛾 𝑌 (3) where m is the vector containing all values of methylation at the CpG i in the matrix M bootstrapped from the real data, mi is the vector containing all new simulated values for this CpG site after the addition of an effect of the outcome, and Y is the vector of the simulated outcome.

Regressions coefficients were all set to zeros except for the CpGs sites selected for which we created a causal link. The number of CpGs affected by Y, and the values of the non-zero regressions coefficients were fixed as described in the "definition of each scenario" section.

Similarly, for each exposure Ek affected by Y, 𝐸 = 𝐸 + 𝛾′ 𝑌 (4) where Ekboot is the vector containing all exposure k values in the matrix M bootstrapped from the real data, Ek is the vector containing all new simulated values for this exposure after the addition of an effect of the outcome, and Y is the vector of the simulated outcome. Regressions coefficients were all set to zeros except for the exposures randomly selected for which we created a causal link. The number of exposures affected by Y, and the values of the non-zero regressions coefficients were fixed as described in the "definition of each scenario" section.

Definition of each scenario

In order to easily define different causal situations, we define in the methylome matrix M 3 matrices, with no intersection: M0, MM->Y and MY->M.

MY->M is the matrix containing all CpGs affected by Y, i.e. γi is non-zero in (3).

Similarly, we defined in E a subset EY->E, which is a matrix containing all exposures affected by Y, i.e. 𝛾′ is non-zero in (4).

Thus, causal structures are defined:

 Causal structure D : EY->E= ∅, MY->M = ∅.  Causal structure E: EY->E≠ ∅, MY->M≠ ∅
The values of parameters used can be found in Supplementary Table IV.1.

CHAPTER V: Some insights regarding the instability of variable-selection algorithms used for causal inference purposes in epidemiology

In this last chapter, we focused on a practical question encountered when we tried to use some machine learning algorithms: the instability of some selected subset. In the simulation study presented in this chapter, we studied the performance and the stability of some algorithms commonly used to relate the exposome with an outcome and took the example of LASSO to show that applying a stabilization step can modify performance.

This work is currently under review in Epidemiology journal:

Cadiou S., Slama R., "Some insights regarding the instability of variable-selection algorithms used for causal inference purposes in epidemiology", under review

Abstracts

English abstract

Background: Machine-learning algorithms are increasingly used in epidemiology to identify true predictors of a health outcome when many potential predictors are measured. However, these algorithms can provide different outputs when repeatedly applied on the same dataset. Such instability can compromise research reproducibility. We aimed to illustrate that commonly-used algorithms are unstable and, with the example of LASSO, that the stabilization method choice is crucial.

Methods: In a simulation study, we tested the stability and performance of widely-used machinelearning algorithms (LASSO, Elastic-Net and DSA). We then assessed the effectiveness of six methods to stabilize LASSO, and their impact on performance. We assumed that a linear combination of factors drawn from a simulated set of 173 quantitative variables assessed in 1301 subjects influenced to varying extents a continuous health outcome. Model stability, sensitivity and False-Discovery-Proportion (FDP) were assessed.

Results: All tested algorithms were unstable. For LASSO, stabilization methods improved stability without ensuring perfect stability, a finding confirmed by an application to an exposome study.

Stabilization methods also affected performance. Specifically, stabilization based on hyperparameter optimization, frequently implemented in epidemiology, increased dramatically the FDP when predictors explained a low share of outcome variability. In contrast, stabilization based on stability selection procedure often decreased the FDP, while sometimes simultaneously lowering sensitivity.

Discussion: Epidemiologists wishing to rely on machine-learning methods for variable selection should care about instability. Stabilizing a model can impact its performance. For LASSO, addressing estimation stability rather than prediction stability should be preferred when one aims to identify true predictors. Discussion : Les épidémiologistes qui souhaitent s'appuyer sur des méthodes d'apprentissage automatique pour la sélection des variables doivent se préoccuper de la stabilité des modèles. La stabilisation d'un modèle peut avoir un impact sur ses performances. Pour LASSO, les méthodes traitant de la stabilité de l'estimation plutôt que de la stabilité de la prédiction doivent être préférées lorsque l'objectif est l'identification de prédicteurs causaux.

Introduction

Thanks to the development of high throughput sensitive biochemical assays and the wider availability of environmental models, exposome studies now allow considering several hundred or thousand exposures in a given study population. Such exposome studies raise many issues, in terms of exposure assessment, handling of measurement error and missing data and consideration of possible mixture effects (Agier et al., 2020b;[START_REF] Siroux | The exposome concept: a challenge and a potential driver for environmental health research[END_REF][START_REF] Slama | Some challenges of studies aiming to relate the Exposome to human health[END_REF][START_REF] Vermeulen | The exposome and health: Where chemistry meets biology[END_REF]. They also raise more statistical challenges, encountered in other areas relying on 'omics data, such as genomic, epigenomic or metabolomic studies. Specifically, as the ratio of the number of potential predictors of a health outcome to the number of observations increases, the efficiency of multiple regression models to identify true predictors decreases [START_REF] Courvoisier | Performance of logistic regression modeling: Beyond the number of events per variable, the role of data structure[END_REF][START_REF] Fan | Nonuniformity of p-values can occur early in diverging dimensions[END_REF]: for example, the classical maximum-likelihood estimator may be biased when the ratio of the number of variables to the number of individuals is typically of 0.2 or more [START_REF] Sur | A modern maximum-likelihood theory for high-dimensional logistic regression[END_REF]. More complex machine learning algorithms, such as LASSO (Least Absolute Shrinkage and Selection Operator), which performs variable selection through shrinkage, according to a penalty parameter λ [START_REF] Tibshirani | Regression Shrinkage and Selection via the Lasso[END_REF], ElasticNet, a penalized regression algorithm relying on both the LASSO and ridge penalties [START_REF] Zou | Regularization and variable selection via the elastic net[END_REF], or Deletion-Substitution Addition algorithm (DSA) (Sinisi and van der Laan, 2004) may be more adapted for variable selection in this setting of intermediate to high dimension, as underlined by recent simulations [START_REF] Agier | A Systematic Comparison of Linear Regression-Based Statistical Methods to Assess Exposome-Health Associations[END_REF][START_REF] Tibshirani | Regression Shrinkage and Selection via the Lasso[END_REF][START_REF] Zou | Regularization and variable selection via the elastic net[END_REF]. Although they can be used for purely predictive approaches (consisting in predicting the outcome probability or expected value without identifying its true predictors), they are increasingly used in epidemiology in multiexposures (or exposome) studies [START_REF] Agier | Early-life exposome and lung function in children in Europe: an analysis of data from the longitudinal, population-based HELIX cohort[END_REF][START_REF] Forns | Novel application of statistical methods for analysis of multiple toxicants identifies DDT as a risk factor for early child behavioral problems[END_REF][START_REF] Gängler | Exposure to disinfection byproducts and risk of type 2 diabetes: a nested case-control study in the HUNT and Lifelines cohorts[END_REF][START_REF] Huang | Prenatal exposure to perfluoroalkyl and polyfluoroalkyl substances and the risk of hypertensive disorders of pregnancy[END_REF][START_REF] Lenters | Prenatal phthalate, perfluoroalkyl acid, and organochlorine exposures and term birth weight in three birth cohorts: Multi-pollutant models based on elastic net regression[END_REF][START_REF] Mustieles | Human adipose tissue levels of persistent organic pollutants and metabolic syndrome components: Combining a cross-sectional with a 10-year longitudinal study using a multi-pollutant approach[END_REF][START_REF] Nieuwenhuijsen | Influence of the Urban Exposome on Birth Weight[END_REF][START_REF] Philippat | Prenatal Exposure to Select Phthalates and Phenols and Associations with Fetal and Placental Weight among Male Births in the EDEN Cohort (France)[END_REF][START_REF] Vrijheid | Early-Life Environmental Exposures and Childhood Obesity : An Exposome-Wide Approach[END_REF] and in studies relying on omics data [START_REF] Benton | Methylome-wide association study of whole blood DNA in the Norfolk Island isolate identifies robust loci associated with age[END_REF][START_REF] Cho | Joint Identification of Multiple Genetic Variants via Elastic-Net Variable Selection in a Genome-Wide Association Analysis[END_REF][START_REF] Zhou | Analysis of genotype by methylation interactions through sparsityinducing regularized regression 06 Biological Sciences 0604 Genetics[END_REF], in order to select predictors whose associations with an outcome are often interpreted as in favor of an underlying causal relationship.

A feature limiting the use of these methods relates to their possible lack of stability. In machine learning, stability is the property that a small perturbation in the input does not change the learned model, and thus the model prediction [START_REF] Bousquet | Stability and Generalization[END_REF][START_REF] Poggio | General conditions for predictivity in learning theory[END_REF]. Here, we will focus on the instability corresponding to a variation in the model output in the absence of modification in the observations. An example is when applying a model to a dataset would select covariates A, E and G as associated with the outcome and applying again the same model to exactly the same data would this time select covariates A and B. This type of instability relates to the fact that some machine-learning algorithms have a random component [START_REF] Elisseeff | Stability of Randomized Learning Algorithms[END_REF], for example if they use bootstrap or cross-validation. LASSO and ElasticNet are unstable when their hyperparameter(s) are determined by a cross-validation approach minimizing the prediction error [START_REF] Bach | Bolasso: model consistent Lasso estimation through the bootstrap[END_REF][START_REF] Lazarevic | Statistical methodology in studies of prenatal exposure to mixtures of endocrine-disrupting chemicals: A review of existing approaches and new alternatives[END_REF][START_REF] Lenters | Prenatal phthalate, perfluoroalkyl acid, and organochlorine exposures and term birth weight in three birth cohorts: Multi-pollutant models based on elastic net regression[END_REF][START_REF] Meinshausen | Stability selection[END_REF], as done in their default implementation [START_REF] Friedman | Package ' glmnet[END_REF] (see Table V.1). DSA has been reported to be unstable in real exposome studies [START_REF] Agier | Early-life exposome and lung function in children in Europe: an analysis of data from the longitudinal, population-based HELIX cohort[END_REF][START_REF] Nieuwenhuijsen | Influence of the Urban Exposome on Birth Weight[END_REF][START_REF] Warembourg | Early-Life Environmental Exposures and Blood Pressure in Children[END_REF], but its instability has only been mentioned in one simulation study (Agier et al., 2020b).

Instability limits results generalizability and research reproducibility [START_REF] Bousquet | Stability and Generalization[END_REF][START_REF] Lee | Robustness of chemometrics-based feature selection methods in early cancer detection and biomarker discovery[END_REF][START_REF] Nogueira | On the Stability of Feature Selection Algorithms[END_REF][START_REF] Poggio | General conditions for predictivity in learning theory[END_REF]. It might be perceived as a fatal drawback of machine-learning methods and hinder their diffusion among epidemiologists used to the stability of classical regression models and concerned with the possibility of researchers cherry-picking the most "convincing" results if models are unstable.

Instability has little been studied in epidemiology. [START_REF] Lazarevic | Statistical methodology in studies of prenatal exposure to mixtures of endocrine-disrupting chemicals: A review of existing approaches and new alternatives[END_REF] expressed concerns about the reproducibility of results due to the instability of ElasticNet [START_REF] Lazarevic | Statistical methodology in studies of prenatal exposure to mixtures of endocrine-disrupting chemicals: A review of existing approaches and new alternatives[END_REF]. In machine learning research, different strategies were developed to address instability. Some strategies address the estimation stability, which is the stability of the model estimates (selected variables and the associated parameters) [START_REF] Lim | Estimation Stability With Cross-Validation (ESCV)[END_REF], while other strategies address prediction stability, i.e. they focus on the stability of the predicted value of the dependent variable, for example the disease risk.

Both approaches can lead to different results, because the predicted disease risk or outcome expected value can remain quite stable in the presence of changes in the selected variables, e.g. by replacing a variable by another one strongly correlated to it or by adding a variable not associated with the outcome. Methods relying on prediction stability are often based on prediction error minimization by cross-validation. [START_REF] Lazarevic | Statistical methodology in studies of prenatal exposure to mixtures of endocrine-disrupting chemicals: A review of existing approaches and new alternatives[END_REF] advised to consider methods relying on estimation stability, a strategy supported by theoretical work in the statistical field [START_REF] Lim | Estimation Stability With Cross-Validation (ESCV)[END_REF]. However, to our knowledge, in the cases of Elastic-Net and LASSO, most multi-exposures studies aiming at selecting relevant explanatory variables (supposed to possibly causally influence the outcome) relied on hyperparameters optimization by repeated cross-validation to stabilize results, which corresponds to prediction stability approaches [START_REF] Forns | Novel application of statistical methods for analysis of multiple toxicants identifies DDT as a risk factor for early child behavioral problems[END_REF][START_REF] Gängler | Exposure to disinfection byproducts and risk of type 2 diabetes: a nested case-control study in the HUNT and Lifelines cohorts[END_REF][START_REF] Huang | Prenatal exposure to perfluoroalkyl and polyfluoroalkyl substances and the risk of hypertensive disorders of pregnancy[END_REF][START_REF] Lenters | Prenatal phthalate, perfluoroalkyl acid, and organochlorine exposures and term birth weight in three birth cohorts: Multi-pollutant models based on elastic net regression[END_REF][START_REF] Mustieles | Human adipose tissue levels of persistent organic pollutants and metabolic syndrome components: Combining a cross-sectional with a 10-year longitudinal study using a multi-pollutant approach[END_REF][START_REF] Philippat | Prenatal Exposure to Select Phthalates and Phenols and Associations with Fetal and Placental Weight among Male Births in the EDEN Cohort (France)[END_REF].

We aimed to highlight the existence of instability in algorithms commonly-used for variable selection (LASSO, DSA and Elastic-Net) and contrast it with the stability of the traditional linear model. We also aimed to compare several stabilization methods in the case of LASSO; we focused on LASSO as an algorithm with a wide array of proposed stabilization methods. With this example, we point that model stability cannot be considered independently of model performance dimensions such as sensitivity and false discovery proportion (FDP, the proportion of selected variables not genuinely related to the outcome) and thus that the implementation of a stabilization method is crucial and cannot be considered as a free add-on by epidemiologists who intend to use an originally instable algorithm.

Methods

Simulation study of LASSO, DSA and ExWAS under various correlation structures

We first performed a Monte-Carlo simulation to assess the stability and performance of LASSO, DSA, Elastic-NET and ExWAS. ExWAS (Exposome-Wide Associations Study) corresponds to parallel univariate regressions corrected for multiple testing [START_REF] Nieuwenhuijsen | Influence of the Urban Exposome on Birth Weight[END_REF]. The implementation of these variable selection algorithms is detailed in Table V.1.

We simulated an exposome of 173 Gaussian quantitative variables among 1301 subjects (as in the Helix exposome project) [START_REF] Haug | In-utero and childhood chemical exposome in six European mother-child cohorts[END_REF][START_REF] Tamayo-Uria | The early-life exposome: Description and patterns in six European countries[END_REF] from three different correlation matrices representing the correlation structure within the exposome: no correlation between the covariates; a realistic correlation structure, computed from Helix project data [START_REF] Tamayo-Uria | The early-life exposome: Description and patterns in six European countries[END_REF], with a median coefficient of correlation between any pair of exposures of 0.12; and an identical correlation of 0.5 between all covariates pairs. We generated an outcome according to a multivariate linear regression model, with the number of true predictors fixed to 10.

Scenarios considered three different values of R 2 , the variance explained by the true predictors of the exposome (0.001, 0.1, 0.4), as well as the three different correlation structures.

LASSO was implemented using default LASSO, in which the hyperparameter λ is chosen so as to minimize the root mean squared error (RMSE) of prediction derived from 10-fold cross-validation;

after this cross-validation step, the model's result are obtained by fitting a single LASSO model with this optimal value of the hyperparameter [START_REF] Tibshirani | Regression Shrinkage and Selection via the Lasso[END_REF]. Similarly, we used the default implementation of Elastic-Net, corresponding to an RMSE-based cross-validation to choose hyperparameters followed by a single model run using these hyperparameters (see Table V.1 for details) [START_REF] Friedman | Package ' glmnet[END_REF]. A stabilized version of Elastic-Net, using repeated cross-validation, was also implemented (see Supplementary Figure V.1). We quantified stability, sensitivity and FDP of each method (see below). [START_REF] Benjamini | Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing[END_REF] was used to correct multiple testing.

Variable selection is performed by selecting all the variable for which the association test -p-value was below the significance threshold of 5%, after correction for multiple testing, as usually done [START_REF] Agier | Early-life exposome and lung function in children in Europe: an analysis of data from the longitudinal, population-based HELIX cohort[END_REF][START_REF] Agier | A Systematic Comparison of Linear Regression-Based Statistical Methods to Assess Exposome-Health Associations[END_REF][START_REF] Vrijheid | Early-Life Environmental Exposures and Childhood Obesity : An Exposome-Wide Approach[END_REF]. (Agier et al., 2016;[START_REF] Nieuwenhuijsen | Influence of the Urban Exposome on Birth Weight[END_REF] 

ElasticNet

Penalized regression model using a weighted mixture of LASSO [START_REF] Tibshirani | Regression Shrinkage and Selection via the Lasso[END_REF] and ridge [START_REF] Hoerl | Ridge Regression: Applications to Nonorthogonal Problems[END_REF] penalties. The ridge penalty accommodates correlated variables and ensures numerical stability, but does not shrink coefficients exactly to zero, and thus cannot perform variable selection. Penalty is calibrated with a parameter λ, and an other tuning parameter α controlled the mixing proportion of the two penalties. As advised by [START_REF] Zou | Regularization and variable selection via the elastic net[END_REF][START_REF] Zou | Regularization and variable selection via the elastic net[END_REF] , the two hyperparameters are determined by two-dimensional cross-validation, implemented using the glmnet package. [START_REF] Friedman | Regularization Paths for Generalized Linear Models via Coordinate Descent[END_REF] Elastic_Net method [START_REF] Zou | Regularization and variable selection via the elastic net[END_REF] glmnet package [START_REF] Friedman | Regularization Paths for Generalized Linear Models via Coordinate Descent[END_REF] Two-dimensional crossvalidation implementation was similar to the one used in a simulation study (Agier et al., 2016).

DSA

DSA (Deletion Substitution Addition) algorithm is an iterative linear regression model search algorithm (Sinisi and Van Der Laan, 2004) following three constraints: maximum order of interaction amongst predictors, the maximum power for a given predictor, and the maximum model size. At each iteration, the following three steps are allowed: a) removing a term, b) replacing one term with another, and c) adding a term to the current model. The search for the best model starts with the intercept model and identifies an optimal model for each model size. The final model is selected by minimizing the value of the RMSE using 5-fold crossvalidated data. We allowed no polynomial or interaction terms, and made no restriction on the number of predictors.

(Sinisi and van der Laan, 2004)

Simulation study of stabilizations methods for LASSO in a realistic exposome setting

To compare some stabilizations methods for LASSO, we performed a second Monte-Carlo simulation: we expanded the number of simulation scenarios, considering between 1 and 25 true predictors and letting R 2 vary from 0.0001 to 0.8. In this second simulation, the exposome was realistically simulated by sampling with replacement quantitative variables of Helix exposome dataset [START_REF] Haug | In-utero and childhood chemical exposome in six European mother-child cohorts[END_REF][START_REF] Tamayo-Uria | The early-life exposome: Description and patterns in six European countries[END_REF], which had been beforehand normalized, standardized and bounded (i.e., a value greater than 3 in absolute value was replaced by a value lower than 3 in absolute value randomly drawn in the distribution). In addition to default LASSO [START_REF] Tibshirani | Regression Shrinkage and Selection via the Lasso[END_REF], we implemented six variants with different stabilization methods: LASSO-1 SE, which is similar to default LASSO, but uses the largest λ located within one RMSE of the λ value which minimizes the RMSE; this strategy is known to be more parsimonious, as increasing λ values more strongly penalize the model and tend to select fewer variables [START_REF] Krstajic | Cross-validation pitfalls when selecting and assessing regression and classification models[END_REF] ; two methods (CV1 and CV2) optimizing the hyperparameter λ by repeating the cross-validation procedure 100 times and averaging the results using two different procedures (Table V.2); two implementations of the stability selection proposed by Meinshausen and Bühlman (Meinshausen1 and Meinshausen2), which repeatedly ran the algorithm on subsamples of the observations while varying λ over large ranges and finally provided as outputs the covariates most frequently selected across all these runs [START_REF] Meinshausen | Stability selection[END_REF]. A conceptual difference is that, in contrast to CV1 and CV2, these two methods do not rely on cross-validation and do not fix an optimal hyperparameter but follow a logic of model averaging [START_REF] Claeskens | Model Selection and Model Averaging[END_REF]. We finally tested an approach (Mix) that we developed as a mixture of the principles of the two previous stabilization procedures (Table V.2): empirical selection probability was derived for each variable from repeated runs on random subsamples as in stability selection, but using the optimal λ parameter determined by cross-validation instead of varying λ on a large range of values. We quantified stability, sensitivity and FDP of each method (see below).

penalty parameter obtained by cross-validation. More precisely, LASSO with 10-fold cross-validation was run on 100 random subsamples each having half of the observations of the initial dataset. Empirical probabilities to be selected in the model optimizing RMSE in a subsample were then derived for each variable. Variables having an empirical probability of selection greater than T= 0.5 were retained in the final model. This original implementation is in principle similar to stability selection [START_REF] Meinshausen | Stability selection[END_REF], but considers always the same dataset with a different seed for cross-validation instead of subsamples.

The code is provided in Supplementary Material V.1.

Indicators of stability and performance

In both simulations, for each scenario, we generated 30 datasets [START_REF] Efron | An introduction to Bootstrap[END_REF] upon which each performance indicator was assessed. In order to assess stability, defined as the presence of variations in the model output in the absence of modification in the observations, each method was run 15 times on each of the 30 datasets generated for each scenario. The stability of the set of variables selected as predictors in each of the 15 runs of each dataset was quantified using averaged Sorensen index. Sorensen index is one of the most commonly-used measure of similarity [START_REF] Magurran | Measuring biological diversity[END_REF]. For two runs based on datasets with similar covariates, Sorensen index is defined as twice the number of selected covariates common to both runs divided by the sum of the number of covariates selected for each run [START_REF] Boulesteix | Stability and aggregation of ranked gene lists[END_REF]. The index was averaged over all pairs of runs done with a given dataset. Averaged Sorensen index has a value of 0 when there is no intersection between the sets of selected variables in all runs based on the same dataset (total instability) and of 1 when the selected variables are the same in all runs based on the same dataset, or when no covariate is selected in any of the runs [START_REF] Boulesteix | Stability and aggregation of ranked gene lists[END_REF]. As an alternative measure of stability, we also counted the number of variables selected in at least 20% and 60% of the runs on a same dataset.

We assessed two dimensions of model's performance: FDP (the proportion of false-positive among the predictors selected by the algorithms) and sensitivity (the proportion of true predictors selected by the algorithm among the true predictors). Averaged FDP and sensitivity were computed for each dataset by averaging respectively FDP and sensitivity across repeated runs, allowing to estimate FDP and sensitivity for each scenario.

All simulations were performed with R software using glmnet [START_REF] Friedman | Package ' glmnet[END_REF][START_REF] Friedman | Regularization Paths for Generalized Linear Models via Coordinate Descent[END_REF] and DSA (Sinisi and van der Laan, 2004) packages.

Application: using LASSO to relate the exposome to child body mass index

We illustrated instability in the context of an exposome study. Previous studies [START_REF] Cadiou | Using methylome data to inform exposome-health association studies: An application to the identification of environmental drivers of child body mass index[END_REF][START_REF] Vrijheid | Early-Life Environmental Exposures and Childhood Obesity : An Exposome-Wide Approach[END_REF] tried to identify components of the prenatal and postnatal exposomes associated with child body mass index (BMI, the mass in kilograms divided by the squared height in meters). Within Helix project, this has been done using ExWAS and DSA [START_REF] Cadiou | Using methylome data to inform exposome-health association studies: An application to the identification of environmental drivers of child body mass index[END_REF][START_REF] Vrijheid | The human early-life exposome (HELIX): project rationale and design[END_REF]. We repeated this analysis by using default LASSO and the different stabilized LASSO presented in Table V.2. BMI, the outcome considered, was measured between 6 and 10 year of life in 1301 children from the 6 European cohorts [START_REF] Chatzi | Cohort Profile: The Mother-Child Cohort in Crete, Greece (Rhea Study)[END_REF][START_REF] Grazuleviciene | Surrounding greenness, proximity to city parks and pregnancy outcomes in Kaunas cohort study[END_REF][START_REF] Guxens | Cohort Profile: The INMA-INfancia y Medio Ambiente-(Environment and Childhood) Project[END_REF][START_REF] Heude | Cohort Profile: The EDEN mother-child cohort on the prenatal and early postnatal determinants of child health and development[END_REF][START_REF] Magnus | Cohort Profile Update: The Norwegian Mother and Child Cohort Study (MoBa)[END_REF][START_REF] Wright | Cohort Profile: The Born in Bradford multi-ethnic family cohort study[END_REF] covariables. We applied default LASSO as well as all studied stabilized LASSO algorithms to relate the full (i.e. prenatal and postnatal) exposome to zBMI. We then applied the methods to relate only the prenatal exposome to zBMI, as we expected the magnitude of link between prenatal exposome and zBMI to be lower than that between the postnatal exposome and zBMI [START_REF] Vrijheid | Early-Life Environmental Exposures and Childhood Obesity : An Exposome-Wide Approach[END_REF].

In both cases, we computed averaged Sorensen index by repeating 15 times each method and counted the average number of variables selected. As default LASSO and stabilized LASSO are variable selection algorithms that do not estimate the model's coefficients, we ran in a second step a multivariate linear model including for each run all selected exposures as well as the relevant covariates to assess the direction of associations.

Results

Stability and performances of the models' default implementations

The . For all three algorithms, instability was stronger when the variability explained was 0.001 than when it was 0.1 or 0.4. Elastic-Net was slightly less stable than default LASSO, in particular when the correlation was high. DSA was more stable than default LASSO when the variability of the outcome explained by the true predictors (R 2 ) was below 0.1, but less stable than default LASSO when R 2 was above 0.1. The correlation among potential predictors influenced stability (Figure V.1): for LASSO and Elastic-Net, a higher correlation was associated with higher stability in most cases. For DSA, Sorensen stability index was highest in the absence of correlation among covariates.

Coming to sensitivity and FDP (Supplementary Figure V.1A and B), DSA was the method with the lowest FDP, with FDP levels always lower than 70%; FDP was lower than 35% when correlation was not high (i.e., not 0.5); DSA did not select any predictor when R 2 was 0.001 but, when R 2 was higher, DSA had a non-null sensitivity (higher than 15%). Elastic-Net and LASSO showed considerably higher FDP than DSA (FDP higher than 40% in all scenarios for LASSO and higher than 68% for Elastic-Net). Elastic-Net showed higher FDP and sensitivity than LASSO, as theoretically expected [START_REF] Zou | Regularization and variable selection via the elastic net[END_REF]. Elastic-Net had a FDP of more than 90% when R 2 was 0.001. ExWAS showed high sensitivity (higher than 60% when R 2 was higher than 0.001) but was the algorithm with the highest FDP when the correlation was non-zero, reaching a FDP of 95% when the correlation was high (Supplementary Figure V.1A). For LASSO-1SE and Mix, stability index followed a U-shaped curve: when R 2 was very small, both methods tended not to select any variable, leading to very good stability, after which, as methods began to select some predictors, stability decreased when R 2 increased; stability increased again for higher R 2 . FDP: False Detection Proportion. See Table V.2 for explanations regarding the compared methods.

Regarding Elastic-Net, the comparison between the performance of default Elastic-Net and of an Elastic-Net with repeated cross-validation showed that this stabilization method effectively allowed to stabilize the model with a pattern similar to that observed for LASSO-CV1: repeating the crossvalidation-process allowed to increase stability (Supplementary Figure V.1).

Relation between stabilization and model performance

Stabilization generally influenced LASSO model's performance. For R 2 lower than 0.1, stability obtained from repeated cross-validation came at a cost of a strongly increased FDP (mean FDP, 0.83 and 0.85 for CV1 and CV2, respectively, versus 0.58 for default LASSO; Supplementary Table V.1). When R 2 was greater than 0.1, CV1 and CV2 provided a clear stability gain with very small impacts on sensitivity and FDP compared to default LASSO (Figure V.2A and B). However, in this R 2 range, all three methods had a very high FDP (mean of 0.70-0.71).

Regarding stabilization methods based on stability selection principle, Meinshausen1 and Meinshausen2 showed excellent performances when R 2 was greater than 0.1 (FDP of 0.04 and 0.01, respectively, sensitivity of 0.78 and 0.53, respectively) but mixed performances when R 2 was lower.

Specifically, Meinshausen2 showed lower FDP than Meinshausen1 and default LASSO, at a cost of a lower sensitivity (Figure V.2A and B). The Mix method showed the best performances when R 2 was lower than 0.1 (average FDP, 0.17; average sensitivity, 0.23; average Sorensen index, 0.93, see Supplementary Table V.1), followed by LASSO-1SE, which had slightly lower sensitivity and FDP than the Mix method. The very good stability and FDP of LASSO-1SE when R 2 was below 0.01 were linked to a lack of sensitivity; when sensitivity was non-null and R 2 was lower than 0.1, LASSO-1SE showed limited stability.

An interesting pattern of the two stability selection methods Meinshausen1 and Meinshausen2 was that when the method was stable (Sorensen index above 0.95), performance was excellent both in terms of sensitivity and FDP (Figure V.3). For the Mix method and LASSO-1SE, a high stability always corresponded to a low FDP and either to a null (no exposures selected) or a very high sensitivity. Such a relationship between stability and FDP was not observed for default LASSO and for methods based on RMSE minimization by repeated cross-validation, for which high levels of the stability index were observed for low values of sensitivity and high FDP values.

Regarding Elastic-Net, stabilization by repeated cross-validation (a logic similar to LASSO-CV1)

showed again similarities with what was observed for LASSO: it modified the average number of predictors selected compared to the default Elastic-Net when R 2 was low (Supplementary Figure

V.1D). When R 2 was lower than 0.1, FDP, which was already extremely high (higher than 90%) for default Elastic-Net, was also slightly increased (reaching 98% when correlation was high, Supplementary Figure V.1A) after stabilization by repeated cross-validation. et al., 2016). The link between zBMI and the four other variables selected by Meinshausen2

(postnatal blood levels of DDE, PBDE, HCB and PCB170, all negatively associated with zBMI, see Supplementary Table V.2) may also correspond to true structural associations. As discussed previously, they may be caused by reverse causality: these lipophilic compounds are stored in fat and therefore a low blood circulating level can be caused by a high BMI causing higher fat storage, even if these compounds are generally expected to have harmful effects [START_REF] Cadiou | Using methylome data to inform exposome-health association studies: An application to the identification of environmental drivers of child body mass index[END_REF] 

Discussion

Our simulation study brings practical insights on issues related to the stability of some algorithms sometimes referred to as belonging to the field of machine learning used in epidemiology. First, we confirmed that the default implementation of LASSO, ElasticNet and DSA were not stable [START_REF] Agier | Early-life exposome and lung function in children in Europe: an analysis of data from the longitudinal, population-based HELIX cohort[END_REF][START_REF] Meinshausen | Stability selection[END_REF][START_REF] Nieuwenhuijsen | Influence of the Urban Exposome on Birth Weight[END_REF][START_REF] Warembourg | Early-Life Environmental Exposures and Blood Pressure in Children[END_REF]. On the contrary, EXWAS, which relies on parallel simple (i.e., considering each covariate one at a time) regression models estimated by the least squares approach, was as expected stable, but had a large proportion of false positive signals as soon as there was some correlation between the potential predictors, as previously reported [START_REF] Agier | A Systematic Comparison of Linear Regression-Based Statistical Methods to Assess Exposome-Health Associations[END_REF]. With the data structures that we explored, LASSO and DSA, in spite of their instability, showed relatively low FDP, which makes them attractive for epidemiologists aiming to identify true predictors of an outcome. In contrast, Elastic-Net had a higher FDP, especially when the influence of the explanatory variable on the outcome was low, making this algorithm not adapted to this true predictors selection problem -in many situations, FDP was above 50%, meaning that less than half of the selected variables were true predictors. Second, although all stabilization methods did improve LASSO stability, none of them, including stabilizing hyperparameter based on repeated cross-validation as usually done [START_REF] Huang | Prenatal exposure to perfluoroalkyl and polyfluoroalkyl substances and the risk of hypertensive disorders of pregnancy[END_REF][START_REF] Lenters | Prenatal phthalate, perfluoroalkyl acid, and organochlorine exposures and term birth weight in three birth cohorts: Multi-pollutant models based on elastic net regression[END_REF][START_REF] Philippat | Prenatal Exposure to Select Phthalates and Phenols and Associations with Fetal and Placental Weight among Male Births in the EDEN Cohort (France)[END_REF], allowed ensuring perfect stability of the set of selected variables. This conclusion was illustrated with our application based on real Helix data, in which some stabilization methods even showed less stable results than for the default LASSO. Third, stabilizing LASSO affected its specificity and sensitivity, showing that the choice of a stabilization method bears strong consequences on performance. To our knowledge, this important feature has not been clearly described in the literature. Thus, this example of LASSO suggests that selecting an algorithm on the basis of its expected performance should be done considering simultaneously its stabilization method, as different stabilization methods can be expected to differently alter performances.

Strengths and limitations

Some limitations need to be acknowledged. We considered a narrow definition of stability, which is more generally understood as the robustness to small perturbations in the observations or other input parameters [START_REF] Bousquet | Stability and Generalization[END_REF][START_REF] Poggio | General conditions for predictivity in learning theory[END_REF]). Here we only considered instability due to the random process in algorithms, thus without changes in the dataset. We considered this to be the form of instability most worrying and least familiar to the epidemiologists, who are used to seeing results change when data change, even slightly, but not when re-running a model on the same data. We focused on sensitivity and FDP as indicators of models' performances;

bias in the effect estimates is another relevant indicator, but we considered the issue of bias in a parameter affecting an outcome to be secondary in the context of many models showing high FDP or low sensitivity, that is, being unable to identify the true predictors. Although we considered a large number of scenarios with ample variations in model predictive ability and number of true predictors, we focused on a continuous outcome (whereas methods that we considered could also be used for example with binary outcomes) [START_REF] Lenters | Performance of variable selection methods for assessing the health effects of correlated exposures in case-control studies[END_REF] and did not consider possible non-linear relations or interactions between exposures. We chose an "intermediate" dimension corresponding to current exposome studies, which were our motivating example. Last, we did not test all possible stabilization methods suggested for LASSO: other existing approaches, possibly relevant for epidemiologists, also rely on cross-validation but consider other metrics in addition to error prediction in the cross-validation process, in a logic similar to LASSO-1SE [START_REF] Lim | Estimation Stability With Cross-Validation (ESCV)[END_REF][START_REF] Roberts | Stabilizing the lasso against cross-validation variability[END_REF], or adapt the LASSO algorithm itself by adding another penalty term [START_REF] Ternès | Empirical extensions of the lasso penalty to reduce the false discovery rate in high-dimensional Cox regression models[END_REF][START_REF] Zou | The adaptive lasso and its oracle properties[END_REF]. The methods we chose are the most commonly-used for variable selection in epidemiology and give an insight on the two main categories of stabilization methods: methods based on the optimization and the stabilization of the hyperparameter and methods relying on a logic of model averaging. For DSA, there is to our knowledge no stabilization method validated in the literature, which would be an interesting development given the relatively good performances of the non-stabilized version of model.

Stability selection, a relevant approach when selecting true predictors is the aim Regarding the modification of the performance coming with the stabilization process, our results offer new insights as to which stabilization methods are the most adapted. Stability selection methods, which pick up the variables most often selected over a large number of model runs with different values of the hyperparameter, can be seen as a model averaging approach, while default LASSO relies on repeated cross-validation to define the hyperparameter optimal for prediction, followed by a single model run with the selected "optimal" hyperparameter value. Stability selection methods often provided increased performance compared to the default LASSO (and to the two LASSO stabilized with repeated cross-validations), with a considerably lowered FDP; this result was consistent with a study on survival models [START_REF] Khan | Stability Selection for Lasso, Ridge and Elastic Net Implemented with AFT Models[END_REF]. In particular, when the variability explained by the true predictor was higher than 0.2, the Mix method was able to show similar sensitivity than default LASSO with a considerably lower FDP (and yet a non-null sensitivity);

Meinshausen2 stabilization method provided extremely low FDP (lower than 5%, compared to about 70% for default LASSO), with a sensitivity above 50%. When R 2 was low, both methods also provided strong improvement for FDP almost without loss in sensitivity. Overall, on a realistic range of low R 2 values, the Mix method that we developed offered the best compromise between sensitivity and FDP. Similarly, LASSO-1SE allowed to improve performance compared to default LASSO. In our real data example, stability-selection based stabilization methods also seemed to perform better than default LASSO. Thus, some stabilized versions of LASSO also have an added value in terms of improvement (decrease) of the false detection rate. This pattern can be understood by recalling that machine learning typically focuses on prediction accuracy, the ability to correctly predict (disease) risk given a subject's characteristics, which is what cross-validationbased approaches rely on. In contrast, epidemiologists wishing to identify causal predictors of health are rather interested in feature selection [START_REF] Hernán | A Second Chance to Get Causal Inference Right: A Classification of Data Science Tasks[END_REF], the ability to select causal predictors of the outcome. However, prediction performance and selection performance are not equivalent, in particular in a high-dimension setting [START_REF] Hernán | A Second Chance to Get Causal Inference Right: A Classification of Data Science Tasks[END_REF][START_REF] Leng | a Note on the Lasso and Related Procedures[END_REF]. In high dimension, a stable and accurate prediction (e.g., of disease risk) can be obtained by different sets of predictors that may contain false positives (for example, variables correlated with a true predictor, which are to some extent "exchangeable" from a prediction perspective). A model switching between these different predictors in successive runs or adding unnecessary variables with little influence on the predicted risk may have a good predictive power while being unstable and of limited value when it comes to identifying true (causal) predictors of the outcome. Thus, models aiming at optimizing predictive ability, like default LASSO, are not always the most effective in terms of feature selection: [START_REF] Hernán | A Second Chance to Get Causal Inference Right: A Classification of Data Science Tasks[END_REF][START_REF] Zou | The adaptive lasso and its oracle properties[END_REF] for default LASSO, hyperparameter optimization of RMSE with cross-validation (which focuses on the accuracy of risk prediction), even if it allows high predictive performance, leads to selecting models including the true model rather than selecting the true model itself [START_REF] Leng | a Note on the Lasso and Related Procedures[END_REF][START_REF] Zou | The adaptive lasso and its oracle properties[END_REF]. These models also have tendency to select predictors even when there is no signal in the data [START_REF] Belloni | Inference for high-dimensional sparse econometric models[END_REF], i.e. in our case when no covariate is associated with the outcome. In our realistic exposome settings, we additionally showed that stabilization by repeating the cross-validation process (LASSO-CV1 and LASSO CV2) suffered from strongly inflated FDP even compared to default LASSO. This is of practical importance as, in environmental epidemiology, so far, most publications using LASSO or Elastic-Net relied on repeated cross-validation for stabilization.

Overall, the stabilization methods which take into account other criteria than the prediction accuracy are likely to be appropriate to the "true predictor selection" problem faced by epidemiologists. Moreover, a relationship between FDP and stability was observed for these methods: for stability selection methods (including the Mix method) as well as for LASSO-1SE, when stability was good, FDP was low. This relation between FDP and stability (Figure V.3B) makes it tempting to consider stability as an indicator of a low FDP; if general, this feature is interesting since, while FDP cannot be estimated on one's real data, stability can. For example, it allowed us to choose when to trust the results provided by Meinshausen2 method in our application to real data.

Importance of the calibration of model averaging approaches

These remarks are in favor of the use of stability selection-type methods, which follow a logic of model averaging, rather than methods stabilizing the hyperparameters, when the aim is variable selection. The rationale behind Meinshausen stability selection, i.e. picking the predictors most often selected among various runs in a logic of model averaging, involves the choice of a threshold (the proportion of runs containing a variable for this variable to be selected by the final model). In practice, the performance of Meinshausen LASSO strongly depended on the implementation chosen: in particular, Meinshausen1 showed extremely high FDP when the variability explained by the true predictors was low, while the more stringent threshold chosen for Meinshausen2 provided better performance. The strong impact of the choice of the threshold advocates in favor of performing simulations taking into account the stabilization step to fine-tune it. More generally, when running several times an algorithm in order to select the variables selected in a proportion T of the runs, the choice of the threshold T may have major consequences on results (see

Supplementary Figure V.3).

Practical consequences and conclusion

The practical consequences of this work can be summarized in five points: 1) Many commonlyused algorithms used for high-or intermediary-dimension data are unstable, a finding previously reported that we illustrated in a realistic exposome setting. 2) As we illustrated with LASSO, not all stabilization methods provide effective stabilization; epidemiologists should therefore assess the results' stability after having used a stabilization method, e.g. by simply re-running the model 10 times. 3) Adding a stabilization step to an existing variable-selection algorithm is likely to change its performance, and not all stabilization methods allow to simultaneously increase stability and model performance. A practical consequence is that if one had chosen a method based on its expected performance according to a simulation study conducted ignoring stability, this expected performance is likely to change if a stabilization step is added. 4) In particular, for LASSO, stabilization methods based on the averaging of optimal hyperparameters obtained by cross-validation (CV1 and CV2) dramatically increased the false-discovery rate when the variability of the outcome explained by the predictors was low, which may correspond to many epidemiological studies. With these common stabilization methods, scientists are left with the poor alternative between a stable result likely to include many false positives, and results with a lower false positive rate but selecting different variables in successive runs. 5) When searching for true predictors of an outcome, implementation of stability selection [START_REF] Meinshausen | Stability selection[END_REF] or of similar methods that do not use the prediction accuracy as the only criterion may be more appropriate than hyperparameters optimization.

In conclusion, stabilization methods are worth applying and may make some complex machine learning algorithms more attractive to epidemiologists, but should be seen as something that inherently modifies the model considered and, in particular, its performance, rather than a small add-on that comes for free. 

CHAPTER VII: Discussion

In this PhD report we tried to provide news insights on the way to relevantly reduce the dimension of the exposome in the context of exposome-health studies; we focused on a strategy consisting in using information from intermediate layers between exposome and health to help performing this dimension reduction. We applied this strategy to the study of the effects of the early-life exposome on child health (growth and lung function).

In this discussion, after briefly summarizing our main results, we will question such a strategy and our choices regarding its implementation. We will first discuss the central question of dimension reduction, in exposome studies and within our particular context involving the use of a highdimensional intermediate layer: how to relevantly choose among the possible approaches to reduce the dimension of a layer, according to the study objective? Then we will discuss the possible designs combining multiple layers in the context of studies aiming at selecting causal predictors of a health outcome. Last, we will replace our work within the larger challenges encountered today in environmental epidemiology and exposome research.

Overview of results

We performed three different studies on real data, using different implementation of our oMITM design (chapters II, III and Appendix II). All three studies share the main characteristics of our oMITM: they used an intermediary layer (the methylome), whose dimension was reduced borrowing information from to the outcome of interest; then this reduced methylome was related to the exposome conditionally to the outcome, in order to build a reduced exposome. In a last step, a selection of exposures related to the outcome was performed within this reduced exposome. The methods chosen for the implementation of oMITM differed between the three studies. In our two studies on Helix data (chapters II and III), a priori information on the methylome was used by selecting CpG related to the outcome according to external databases. The two studies identified copper as related with the outcomes (respectively BMI and FEV1 at 6-10 years), a finding which may be relevant giving the role of copper in the regulation of inflammation and which is extensively discussed in chapters II and III. Compared to their agnostic counterparts ignoring the methylome, the oMITM design implementations possibly allowed to discard associations likely to be due to reverse causality, such as lipophilic compounds assessed at the same time at the outcome (chapter II) and to increase sensitivity by identifying copper, which an agnostic approach failed to do (chapter III). In the study on SEPAGES cohort (Appendix II), no a priori information about the methylome was used: as the relevance of pathways databases may be discussed [START_REF] Mubeen | The Impact of Pathway Database Choice on Statistical Enrichment Analysis and Predictive Modeling[END_REF], we chose a supervised dimension reduction without a priori, the PLS method, in order to try to relevantly summarize the needed information from the methylome layer. The whole oMITM did not identify any significant association between the (smaller) exposome and birth weight in this study of 438 mother-child pairs.

In chapters IV and V, we performed simulations to strengthen our choice of design and implementations. In a first simulation, we tested the relevance of our oMITM design compared to other designs, either "agnostic" or using an intermediary layer. We showed that our oMITM design allowed improved specificity compared to its agnostic counterpart (at a cost in sensitivity, when the methylome is not involved on the path from exposures to the outcome) and is less prone to suffer from reverse causality bias (chapter IV). In our second simulation (chapter V), we studied the stability algorithms commonly-used to select exposures related to health, and showed with the example of LASSO that methods taking into account the stability of selection seems to be more adapted in the context of a study aiming at minimizing the false discoveries than methods aiming at optimizing prediction, which are currently the most used.

Dimension reduction approaches in the context of exposome studies

A motivation of this PhD work was related to the challenges of limited specificity and power of exposome studies previously identified by our team [START_REF] Agier | A Systematic Comparison of Linear Regression-Based Statistical Methods to Assess Exposome-Health Associations[END_REF][START_REF] Slama | Some challenges of studies aiming to relate the Exposome to human health[END_REF].

As we detailed in the introduction, relevant dimension reduction of the exposome may be a way to address them (see I.2.1). Dimension reductions techniques can also be necessary to visualize high dimensional data and thus better understand the model; or for computational reasons, to reduce algorithmic costs [START_REF] Van Der Maaten | Dimensionality Reduction: A Comparative Review[END_REF]. All these objectives are encountered in environmental epidemiology at different levels according to the aim of the study and the layers considered. Different methods can be used depending on the objectives: in particular, we illustrated that the dimension reduction can be done using a priori knowledge on the structuration of the data or without it (for example with agnostic variable selection algorithms, as described in chapter V).

When it is data-driven, it can be supervised (using another layer, which is a more subtle way to incorporate a priori information) or unsupervised [START_REF] Guyon | An Introduction to Variable and Feature Selection[END_REF].

With our oMITM design, we chose to rely on the information coming from an intermediate layer of high dimension to perform this dimension reduction, and thus we also had to perform dimension reduction on this intermediary layer. What are the possible dimension reduction techniques that can be applied to these layers and in which situations are they relevant?

Which dimension reduction approaches when selection of variable(s) of interest is the aim?

In exposome studies, as selection of variable is a key aim, extraction techniques are a priori not relevant. However, not all selection methods are adapted to our problem. Indeed, epidemiologists aim at selecting variables with causal biological meaning, with an ultimate public health aim to be able to operate on these variables to modify the outcome. Thus, a supervised selection method must be applied. But beforehand, another dimension reduction method can be applied to the exposome to "simplify the problem": this is what we did with the primary implementation of our oriented Meet-in-the-Middle (chapters II and IV) design which allowed to build a reduced exposome, on which a basic selection method, ExWAS, was then applied. What are the other dimension reductions techniques that we could have considered? A summary is provided in Table VII. 1, but it is important to notice that in an exposome study, using directly a priori knowledge to focus on one (or a few more) a priori chosen exposure(s) is an option which does not take directly into account the potential of the exposome in the sense that the interest of the exposome approach lies in the ability to consider 1) potential predictors simultaneously; 2) potential predictors whose effect on health is currently not well known. Thus, focusing on specific compounds whose harmfulness is known would not be a strategy in an exploratory exposome study, whereas on the contrary it would be relevant in specific confirmatory studies or studies aiming at precisely quantifying known effects. However, some a priori knowledge on the exposome can be used for example to discard exposures with no possibility of effects (for example irrelevant exposure windows).

Various data-driven selection techniques are available. They can be divided in three categories. The first one are filtering methods: they select features on the basis of their scores in various statistical tests (for example, their correlation with the outcome variable), usually as a pre-processing step before applying a learning algorithm. Multiple linear regression (MLR) as well as ExWAS-type methods can be considered as data-driven filtering methods, and we used them to perform a selection on the exposome by relating it with the outcome of interest on our three real-data studies (chapters II, III and Appendix II). Indeed, in the context of exposome studies, such methods can be used as the main analysis if they have sufficient specificity, and rather as a pre-processing step if there are sensitive but with low specificity. Thus, for example, ExWAS without correction for multiple comparison could be used as a pre-processing filtering method, whereas ExWAS with correction can be used for the main analysis (as soon as the correlation is not too high, which would have a strong negative impact on the specificity, as we showed in chapter V). With our MITM design, we used also such methods as a pre-processing step involving an intermediate layer: indeed, at the second step of our original MITM design (chapter II, IV and Appendix II) or in our lung function study at the first step (chapter III), we ran univariate tests involving another layer allowing to rank and to select some variables to build our reduced exposome, on which a more stringent selection method was then applied.

A second category of selection techniques are the wrapper methods, which consist of iterative searches of a subset of variables: at each iteration, some variables are added or remove to try to strengthen the inference [START_REF] Guyon | An Introduction to Variable and Feature Selection[END_REF]. These methods are usually very computationally demanding, but may be adapted to the intermediate dimension of the exposome.

DSA is an example of such a method: it has been used in exposome studies [START_REF] Agier | Early-life exposome and lung function in children in Europe: an analysis of data from the longitudinal, population-based HELIX cohort[END_REF][START_REF] Nieuwenhuijsen | Influence of the Urban Exposome on Birth Weight[END_REF] in spite of its lack of stability, which we studied in chapter V.

Last, the embedded methods are methods which have inbuilt feature-selection methods, like for example Elastic-Net and LASSO, which we have studied in chapter V.

The three categories could be used to tackle exposome studies challenges. However, embedded methods may be not specific enough, as most of them were designed in the machine learning field to optimize the predictive ability of models, which may imply the selection of too many variables, as we showed with LASSO and discussed in chapter V. Indeed, as demonstrated by [START_REF] Guyon | An Introduction to Variable and Feature Selection[END_REF] , for learning tasks, "noise and reduction and consequently better class separation may be obtained by adding variables that are presumably redundant." This may explain why, in our simulation study of the stabilization methods of LASSO (chapter V), the stabilization method aiming at optimizing the prediction showed lower performance in term of specificity than stability selection [START_REF] Meinshausen | Stability selection[END_REF], a method focusing on selection of variables of interest in a logic of model averaging. Overall, the wrapper methods may be the most adapted for the main analysis in exposome studies, whereas filtering methods should be potentially used as a preprocessing step.

Which dimension reduction approaches when information concentration is the aim?

When the aim is not selection of relevant variables but concentration of a diluted information, other methods can be envisaged (see Table VII.1). In a strategy aiming at using a layer to inform the structure of another layer, extraction methods may be well suited, in particular when the layer is of high dimension, which was the case of the methylome. More generally, all methods reducing dimension can be used as soon as they are not too specific, i.e. if they do not restrict too much the quantity of information. In other words, in this case, the compromise between sensitivity and specificity (here in the sense of detection of available information) is in favor of sensitivity, as it is a pre-processing step, whereas in the case of selection that we discussed in the previous paragraph, specificity may be favored. As soon as the dimension is reduced enough to make the information usable, the presence of redundant variables is not a problem. This was one the motivations of the use of ExWAS-type method (MWAS) to reduce the dimension of the methylome (chapters II and IV). Lack of biological interpretability is not a problem either: for example, in our MITM design, selecting a CpG correlated with a causal CpG on the pathway from exposures to health is not an issue as soon as it still enables to select the relevant exposures. This also explains why extraction methods may be adapted in this context. Thus, in the Sepages study (Appendix II), we chose to modify our MITM design by using PLS in the first step, which enabled to perform a huge supervised dimension reduction by building one summary new variable. In the same logic, interestingly, in chapter II, when we performed a sensitivity analysis of our MITM analysis by using 6 variables describing cell-types instead of our methylome of 2284 CpG as our intermediary variables, we found the same results: the cell types can be considered as a smaller number of variables carrying the same information for our problem than our high-dimensional methylome, which made us hypothesize that the information that we obtained from the methylome was majorly due to an inflammation process also observable from the cell-types counts. This also illustrated that this step of information concentration can be performed using a priori external knowledge.

This was also what we did when we chose to focus on enhancers CpGs belonging to relevant biological pathways (chapters II and III). Following the same logic of extraction dimension reduction and reliance on external knowledge, we could also have considered a strategy aiming at summarizing the methylation information pathway by pathway.

Overall, multiple methods exist to deal with high dimensional layer when interpretability is not necessary. They could be used to optimize prediction but also to concentrate information in order to perform supervised dimension reduction on another layer. 

Multilayer designs to identify causal predictors

In the previous paragraphs, we discussed which methods could be adapted to perform dimension reduction on the layers that we considered in this PhD project. Assuming the question of the dimension reduction solved, the design of the statistical analysis would still be a major question: how to combine the information from the two layers? As we showed in our simulation study under various causal structures (chapter IV), the choice of the design is essential if the aim is to select causal predictors.

Infer causality in exposome studies

In epidemiology, the first condition to select causal variables is to choose a relevant design of data collection (for example a longitudinal design). Then, knowledge-based adjustment on relevant confounders is necessary. However, it is still impossible to distinguish between correlated variables on which no previous information is available or be sure to discard reverse causality (as we show in chapter IV (see Supplementary Figure IV.5), even with a longitudinal design, reverse causality can still lead to spurious association). Some selection methods among those we discussed in paragraph VI.2.2. have been built reckoning the causal inference theory and consider estimators derived from counterfactuals inference in order to perform selection of causal predictors: for example, in DSA, a derivative-based importance measure aiming at measuring the 'causal' effect of a variable can be implemented (Sinisi and van der Laan, 2004). The 'targeted learning' proposed by [START_REF] Van Der Laan | Super Learner[END_REF][START_REF] Van Der Laan | Entering the Era of Data Science: Targeted Learning and the Integration of Statistics and Computational Data Analysis[END_REF]) also considers inference theory to choose the parameters to estimate. These methods, which can be considered "data-driven causal modelling", like the Bayesian networks that we discussed in the introduction (paragraph I.2.3), may be adapted to our problem, as selection methods aiming at inference rather than prediction should be preferred in the context of discovery exposome studies.

Multiple layers design as a clue to overcome the challenges of data-driven causal modelling However, the possibility of inferring causality solely from data has been contested in the literature on causal discovery, in the line of the idea of 'no causes in, no causes out' first introduced by Cartwright: it states that "old causal knowledge must be supplied for new causal knowledge to be had" when trying to decipher causality of an observed phenomenon [START_REF] Cartwright | Nature's Capacities and Their Measurement[END_REF].

Big data (defined as available datasets characterized by their high volume, high velocity of acquisition and high variety [START_REF] Canali | Big Data, epistemology and causality: Knowledge in and knowledge out in EXPOsOMICS[END_REF]) had once been considered a solution [START_REF] Canali | Big Data, epistemology and causality: Knowledge in and knowledge out in EXPOsOMICS[END_REF]: the abundance of meaningful correlations was supposed to allow to get rid of the need of prior causal theory or knowledge [START_REF] Mayer-Schönberger | Big Data: A Revolution that Will Transform How We Live, Work and Think[END_REF]. But these claims have later been contradicted [START_REF] Leonelli | What difference does quantity make? On the epistemology of Big Data in biology[END_REF][START_REF] Titiunik | Can big data solve the fundamental problem of causal inference?[END_REF] and the indispensable use of hypotheses in research based on Big Data highlighted [START_REF] Ratti | Big data biology: Between eliminative inferences and exploratory experiments[END_REF]. Hernan underlined that a real causal assignation always involves expert knowledge: this is what makes the difference between prediction and counterfactual prediction [START_REF] Hernán | A Second Chance to Get Causal Inference Right: A Classification of Data Science Tasks[END_REF], i.e. causal selection. This can be linked to the fact that theoretical conditions needed to make causal inference possible using only data (e.g. when using Bayesian networks) seem impossible to reach in reality: for example, it is only under the faithfulness condition (i.e. that all probabilistic dependencies and independencies characterizing the variables studied should be considered) that a learned Bayesian network can be used for inference [START_REF] Ghiara | Inferring causation from big data in the social sciences[END_REF]. More generally, all the causal theory used in DAG and underlying the causal learning methods involves the absence of external confounders. In practice, this seems unreachable in observational studies, unless the 'whole system' is considered, which would make the complexity infinite. In particular, we can hypothesize that in most biological systems studied, the faithfulness condition involves to consider a number of features which makes the curse of dimensionality a problem. Thus, as we discussed before, dimension reduction techniques would be needed; but they would be incompatible with the concept of purely data-driven causal modeling: indeed, selection of variables involves a priori knowledge (even supervised selection techniques involve previous knowledge as a link with an outcome is postulated) and variables extraction prevents the causal interpretation, as it provides new variables without biological meaning. Thus, even when using big data, data-driven causal modelling cannot be enough to infer causality, expert knowledge is additionally needed and we suggest here that this could be explained using the faithfulness condition.

More precisely, the Russo-Williamson thesis suggests that to infer causality, a mechanism must be supplied in addition to an observed association (i.e. a probabilistic dependency) [START_REF] Russo | Interpreting Causality in the Health Sciences[END_REF]. Such a mechanism generally means an external explanation of how, and corresponds to the expert knowledge advocated by Hernan ( 2019). However, we must recall here that all human knowledge derives solely from experience [START_REF] Hume | An Abstract of a Book lately Published: Entitled A Treatise of Human Nature[END_REF]: in particular, what is considered as external expert knowledge used for causality always derives from previous observation(s). For example, it is interesting to note that information from biological databases (e.g. pathways or genetic database) is discussed by Canali as a supplementary knowledge enabling to infer causality in exposome studies [START_REF] Canali | Big Data, epistemology and causality: Knowledge in and knowledge out in EXPOsOMICS[END_REF], whereas Leonelli discussed it as part of datadriven sciences [START_REF] Leonelli | What difference does quantity make? On the epistemology of Big Data in biology[END_REF]. Thus, the notion of « mechanism » proposed by Russo & Williamson must rather be interpreted as probabilistic dependencies observed at a different scale: for example, toxicological observations at the level of the cell to support an adverse observed effect at the population level. Thus, working with multiple biological layers as we did in this PhD work may be a step on the path to causality: this is what Canali suggested when he considered the Meetin-the-Middle design proposed by Chadeau-Hyam and Vineiss (similar to our oMITM but without our additional adjustment on the outcome) as a way to investigate disease causation by searching for intermediate biomarkers [START_REF] Canali | Big Data, epistemology and causality: Knowledge in and knowledge out in EXPOsOMICS[END_REF][START_REF] Chadeau-Hyam | Meeting-in-the-middle using metabolic profiling-a strategy for the identification of intermediate biomarkers in cohort studies[END_REF]. Considering the structuration of our data in different layers from different scales is a way to add expert knowledge.

However, we showed both with theoretical and simulated works (chapter IV) that the Meet-in-the-Middle design advocated by [START_REF] Chadeau-Hyam | Meeting-in-the-middle using metabolic profiling-a strategy for the identification of intermediate biomarkers in cohort studies[END_REF] is not sufficient to affirm causality. In particular, it is prone to reverse causality, similarly to the mediation design. On the contrary, our oMITM design seems to be more robust to the variety of underlying causal structures, in the sense that we developed in chapter IV. But, even considering an implementation with perfect power, it is still not sufficient to get rid of all situations of reverse causality and it is not able to detect all true causal associations. Combining results of different designs (for example running a mediation test and a oMITM test and compare results according as in Table IV. 4 and Supplementary Table IV.4) could increase the probability of deciphering the true causal structures, but overall, causality could not be affirmed but only discussed with more or less likeliness. Overall, data-driven causal modelling is not enough and adding knowledge is always delicate, but working with structured layers and adequate robust designs may help.

Perspectives and conclusion

Thus, our results show that to perform a causal discovery exposome study, one may rely on intermediate layer and choose adapted dimension reduction method(s), design(s) and implementation(s), according to the structure of data and the aim of study: in particular choosing whether high sensitivity or specificity should be favored is needed. In this chapter, we discussed the dimension reduction methods (VI.2.) as well as the most adequate analytical designs (VI.3); the possible implementations of our proposed designs were extensively discussed in chapters IV and V. One question remaining is the choice of the intermediate layer. We chose to focus on the methylome layer, but other 'omics' (or non 'omics') layers could have been considered and may be helpful to inform the exposome health relations. For example, transcriptome may also contain biomarkers of exposures and diseases, making mediation or oMITM analyses relevant (Winckelmans et al., 2017a(Winckelmans et al., , 2017b)). Microbiome, whose causal relationship with health outcome is complex, would also be a potentially relevant intermediate layer [START_REF] Sohn | Compositional mediation analysis for microbiome studies[END_REF], as well as inflammatory or immunological markers.

Overall, this PhD work can give us insights of a possible future for exposome studies. Our work supports the assessment of omics intermediate layers, as done by most of recent exposome studies (see Table I.1): indeed, we demonstrated that these layers are not only useful to better understand mechanisms of effect of exposures on health as often suggested, but also offer possibilities to improve the detection of causal predictors of health among the exposome compared to "agnostic exposome studies". However, our work also illustrated the curse of dimensionality, which constitutes a threat for exposome studies, as we underlined the systematic gain in term of specificity obtained by dimension reduction for intermediate or high dimension data (see in particular in Chapter IV the evolution of FDP according to the size of the reduced exposome, Figure IV.3).

Thus, the development of omics assessment in exposome studies should go together the enhancement of dimension reduction tools. This is becoming crucial as novel analytical techniques make it easier to measure omics by millions in one sample at low-cost. As we discussed previously (see VI.I.1.), when the aim is to use intermediate layer to inform the exposome-health relation, many statistical methods can be used, including the powerful extraction methods. But, we also showed (see Chapter II and III) the relevance of dimension reduction relying on a priori knowledge, especially from the toxicological field: if for the moment, information from toxicological databases are not always reliable [START_REF] Mubeen | The Impact of Pathway Database Choice on Statistical Enrichment Analysis and Predictive Modeling[END_REF], consolidated and usable pathways database would be promising tools for the exposome research. A novel application, in the line of our work, could be to use such tools to build summary variables by pathways and use them to relevantly reduce the exposome dimension.

On the contrary, less dimension reduction strategies are relevant for the exposome than for the intermediary layer, as we discussed above (see VI.1.2), whereas current sample size of exposome projects limit the specificity and power of exposome studies to detect causal predictors of health (see chapters IV and V and Appendix II). As we showed, informed dimension reduction and relevant statistical variable selection methods can help lower FDP and even in some cases increase sensitivity, if an adequate analytical design is chosen. However, both of these strategies would still be limited by a too high dimension: an increase in the components of the exposome assessed should come together with an increase in sample size to make strategies that we pointed applicable and to provide sufficient power. Indeed, as we developed in appendix II, the oMITM cannot for example be more sensitive than the corresponding agnostic approach without correction for multiple testing. This is of particular importance as the assessment of exposures by biomarkers also makes a wider assessment of exposome easier. Such an increase in the factors assessed would of course be valuable to better describe the personal environment, but it could lead to assessing of thousands to billions of factors in a few individuals, which will result in datasets unexploitable for causal inference of environmental effects on health.

To conclude, we provided new insights on how the use of intermediate layers may help to inform exposome health study and in particular to help to tackle the challenge of reverse causality and low specificity, with the aim of detecting the causal predictors of a health outcome. To replace our problematic among the challenges of the environmental epidemiology field, if omics are assessed conjointly with a minimized measurement error on the exposome, the use of methods such as those we proposed to identify with increased specificity causal predictors of health may help to focus on relevant compounds and to build adequate analytical designs to estimate measures of association and then perform health impact assessment, with an ultimate aim to help public policies.

Introduction

Low birth weight is known to be a predictor of later adverse health conditions [START_REF] Belbasis | Birth weight in relation to health and disease in later life: An umbrella review of systematic reviews and metaanalyses[END_REF]. Environmental and behavioral determinants of decreased birth weight have thus been explored for many decades in epidemiology, leading to effective public health interventions, such as limiting the alcohol consumptions and tobacco exposure during pregnancy [START_REF] Burling | Smoking during pregnancy: Reduction via objective assessment and directive advice[END_REF][START_REF] Chersich | Universal prevention is associated with lower prevalence of fetal alcohol spectrum disorders in Northern cape, South africa: A multicentre before-after study[END_REF][START_REF] Tong | Trends in smoking before, during, and after pregnancy -Pregnancy risk assessment monitoring system, United States, 40 Sites, 2000-2010[END_REF]. With the advent of the exposome paradigm [START_REF] Wild | Complementing the Genome with an "Exposome": The Outstanding Challenge of Environmental Exposure Measurement in Molecular Epidemiology[END_REF], various other prenatal exposures are now studied simultaneously within ambitious exposome projects (Agier et al., 2020a). In the French Sepages cohort [START_REF] Lyon-Caen | Deciphering the impact of early-life exposures to highly variable environmental factors on foetal and child health: Design of SEPAGES couple-child cohort[END_REF], several phenolic compounds and phthalates exposures have been characterized during pregnancy, with an expected low measurement error due to reliance on the within-subject biospecimens pooling approach [START_REF] Vernet | An Empirical Validation of the Within-subject Biospecimens Pooling Approach to Minimize Exposure Misclassification in Biomarkerbased Studies[END_REF][START_REF] Vernet | Within-day, between-day, and between-week variability of urinary concentrations of phenol biomarkers in pregnant women[END_REF]. In this study, we aimed to perform an exposome wide analysis of the environmental drivers of the child birth weight in the Sepages cohort, relying on methylome data and on the oMITM design that we previously developed [START_REF] Cadiou | Using methylome data to inform exposome-health association studies: An application to the identification of environmental drivers of child body mass index[END_REF], see Chapter II), in an attempt to limit false positive signals. We adapted the implementation of oMITM chosen in [START_REF] Cadiou | Using methylome data to inform exposome-health association studies: An application to the identification of environmental drivers of child body mass index[END_REF] to the dimension of our different layers: due to the limited size of our exposome (see below), we chose to conduct multiple regression analysis instead of ExWAS for the tests of association relating directly the exposome to the health outcome. We also chose to perform a data-driven dimension reduction for the methylome, as the reliance on external heterogenous database to preselect a part of the methylome could be questioned, as detailed in [START_REF] Cadiou | Using methylome data to inform exposome-health association studies: An application to the identification of environmental drivers of child body mass index[END_REF] and [START_REF] Mubeen | The Impact of Pathway Database Choice on Statistical Enrichment Analysis and Predictive Modeling[END_REF].

Methods

Study population and outcome

We relied on the SEPAGES parents-child cohort, in which the prenatal exposome, the mother DNA methylome (from peripheral blood during pregnancy) and birthweight were assessed in 438 mother-single child pair recruited around the Grenoble (France) metropolitan area before 19 weeks of pregnancy between July 2014 and July 2017, in ultrasound medical center or after having spontaneously contacted the study team [START_REF] Lyon-Caen | Deciphering the impact of early-life exposures to highly variable environmental factors on foetal and child health: Design of SEPAGES couple-child cohort[END_REF]. Weight was measured at birth and various relevant covariates were assessed during pregnancy and at birth: maternal weight before pregnancy, maternal height, season of conception, maternal highest diploma, maternal smoking before pregnancy, maternal smoking during pregnancy, maternal parity and gestational duration.

Exposome assessment

As detailed elsewhere [START_REF] Lyon-Caen | Deciphering the impact of early-life exposures to highly variable environmental factors on foetal and child health: Design of SEPAGES couple-child cohort[END_REF], an extended personal exposure assessment was conducted during pregnancy in the 484 women of the Sepages study. In this study, we considered 34 variables, available in 338 women, for the exposome. These environmental factors are detailed in Table 0.1 and belong to 3 major groups: air pollutants, phenols and phthalates biomarkers and behavioral factors. Air pollutants (2 variables) were measured by personal dosimeter carried during the pregnancy by the mother during one follow up week taking place before the blood sampling used for methylome assessment (see below). Phenols and phthalates (26 variables) were assessed in pooled urine samples from three micturitions per day collecting during each follow-up week;

values below quantification limit were imputed using the fill-in method as detailed in [START_REF] Rolland | Exposure to phenols during pregnancy and the first year of life in a new type of couple-child cohort relying on repeated urine biospecimens[END_REF]. Last, 5 parameters corresponding to behavior were built from the questionnaires. All exposures were corrected for relevant protocol covariables to remove batch effects. 

DNA methylation

Peripheral blood was collected during the study visit taking place at the clinic around 19 gestational weeks, using EDTA tubes. DNA extraction was performed at Quiagen, Heseilberg, Germany).

DNA was extracted from buffy coat; DNA methylation was assessed with the Infinium Human Methylation 850K beadchip. A first filtering of probes was performed using ChAMP protocol [START_REF] Tian | ChAMP: Updated methylation analysis pipeline for Illumina BeadChips[END_REF] to eliminate probes with detection p-values lower than 0.01, probes with a singlenucleotide polymorphism (SNP), probes with beadcount lower than 3 in at least 5% of the samples and unspecific probes, leading to 792,152 remaining CpG probes in 487 samples. Data were normalized using Beta-Mixture Quantile and imputed using ChAMP [START_REF] Tian | ChAMP: Updated methylation analysis pipeline for Illumina BeadChips[END_REF]. A final filtering was performed to eliminate probes on sexual chromosomes and duplicate samples. Only the samples corresponding to individuals for which at least one exposure variable from each of the three groups of exposures assessed was available were considered. Finally, the remaining 774,172

CpGs were expressed as Beta-values for 438 subjects. Relevant "protocol" covariates (e.g. batch and plate) were identified and added to all models including methylome data to avoid batch effects.

Correlation within the methylome was estimated by averaging the Pearson's correlation within 1000 sets of 100 randomly selected CpGs to avoid computing all pairwise correlations between the 774,172 CpGs.

Statistical analyses

We followed the oriented Meet-in-the-Middle (oMITM) design proposed by [START_REF] Cadiou | Using methylome data to inform exposome-health association studies: An application to the identification of environmental drivers of child body mass index[END_REF] using the methylome layer to reduce the dimension of the exposome. It follows three steps: a)

supervised dimension reduction of the methylome using the outcome of interest; b) tests of association between the relevant dimension of the methylome defined at step a) and each component of the exposome conditionally on the outcome; c) test of association between each component of the exposome found associated with the reduced methylome at step b) (i.e. the reduced exposome) and the outcome. For step a), we removed the linear effect of relevant covariates from the birthweight and used Partial-Least Square regression [START_REF] Höskuldsson | PLS regression methods[END_REF] to relate the whole methylome to the residual: this dimension reduction technique builds summary variables as linear combinations of the original set of variables, which are defined iteratively such that they explain as much of the remaining covariance between the predictors and the outcome as possible. The number of relevant components was determined by cross-validation using plsgenenomics package [START_REF] Boulesteix | Package ' plsgenomics[END_REF], which was also used for the PLS analyses itself. For step b), we used an ExWAS-type approach, i.e. multiple univariate regressions corrected for multiple comparisons using the Benjamini-Hochberg procedure [START_REF] Benjamini | Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing[END_REF], adjusted on the relevant covariates (see IV. 

Sensitivity analyses

We performed 3 sensitivity analyses:

 Sensitivity analysis I: an 'agnostic' multiple linear regression ignoring the methylome: the whole exposome was related to the birth weight using a single multiple regression model as in step c).

 Sensitivity analysis II: an oMITM approach using ExWAS-type analysis at each step a), b) and c).

 Sensitivity analysis III: an oMITM approach repeating the oMITM implemented in Cadiou et al., 2020, using ExWAS type at each step and an a priori reduced methylome of only 2004 CpGs, representing the intersection of the CpGs available in our study and the 2284 CpGs selected in a priori reduced methylome relevant for the child BMI in [START_REF] Cadiou | Using methylome data to inform exposome-health association studies: An application to the identification of environmental drivers of child body mass index[END_REF].

Results

Study population

Among the 438 children for which both prenatal exposures and maternal methylome data were available, mean birth weight was 3285 g (CI: 460) with 4 missing data. Detailed information about the covariates and exposures levels in the study population are presented in 

Sensitivity analyses: ExWAS-type analyses on the methylome

No significant associations between the methylome and the birth weight were found when correcting for multiple comparisons (Sensitivity analysis II, lowest corrected p-value: 0.38).

Without correction (lowest p-value: 1.11x10 -6 ), 54090 associations were significant; the top 10 CpGs belonged to the following genes: TSSC4, GABRB3, ATP1A3, GIMD1, CCDC25, ZNF775, COPE, DUSP16, AGBL3 and EPN2 (Sensitivity analysis II). Similarly, none of the 2004 CpGs of the restricted methylome was associated with the birth weight neither with correction for multiple testing (Sensitivity analysis III, lowest corrected p-value: 0.33) or without (lowest p-value:

3.23x10 -4 ).

Whole oMITM approach

None of the component of the exposome was associated with the PLS component with (lowest pvalue: 0.715) adjustment for multiple testing (see Table 0.3). The reduced exposome thus did not contain any exposures and the whole oMITM approach did not point any association. Without the correction for multiple tests, the association between the PLS component with the stress level selfassessed by the mother was significant (p-value: 0.048).

Agnostic multiple regression

An agnostic multivariate analysis showed no significant associations between the exposome and birthweight (sensitivity analysis I, Table 0.4) with correction for multiple testing (lowest adjusted p-value: 0.67) or without (lowest p-value: 0.062). 

Discussion

Neither the novel implementation of our oMITM using PLS nor the implementation repeating the oMITM applied in [START_REF] Cadiou | Using methylome data to inform exposome-health association studies: An application to the identification of environmental drivers of child body mass index[END_REF] did point any exposure of our small exposome as related to child birthweight. The first step of oMITM, the supervised dimension reduction of the methylome, gave plausible results: indeed, the genes on which the CpGs having the highest weight in the PLS component built to predict birth weight were located seem relevant for birth weight according to the literature. JARID2 and TBC1D24 methylation level have been linked to birth weight in a meta-analysis of genome-wide methylation association studies (Küpers et al., 2019);

JARID2 is a gene expected to have an important role in fetal growth and cell differentiation [START_REF] Cervantes | Late-stage differentiation of embryonic pancreatic β-cells requires Jarid2[END_REF][START_REF] Landeira | Jarid2 coordinates Nanog expression and PCP/Wnt signaling required for efficient ESC differentiation and early embryo development[END_REF]. PTPRS methylation levels was found associated with child obesity [START_REF] Samblas | PTPRS and PER3 methylation levels are associated with childhood obesity: results from a genome-wide methylation analysis[END_REF] and is part of inflammation regulation pathways [START_REF] Bunin | Protein Tyrosine Phosphatase PTPRS Is an Inhibitory Receptor on Human and Murine Plasmacytoid Dendritic Cells[END_REF]. Embryos with reduced expression of ITPK1 are more likely to show growth retardation and adverse birth outcome such as neural tube defects [START_REF] Chamberlain | Integration of inositol phosphate signaling pathways via human ITPK1[END_REF][START_REF] Greene | Inositol, neural tube closure and the prevention of neural tube defects[END_REF].

PDE4DIP is involved in hippocampal differential gene expression, which has been associated with low birth weight [START_REF] Buschdorf | Low birth weight associates with hippocampal gene expression[END_REF]. Last, MORF4L1 has a role in embryonic development via chromatin remodeling and transcriptional regulation [START_REF] Sang | MORF4L1 suppresses cell proliferation, migration and invasion by increasing p21 and E-cadherin expression in nasopharyngeal carcinoma[END_REF]. On the contrary, the two sensitivity analyses involving methylome-wide type association tests with birth weight did not point any specific CpG (sensitivity analysis II and III). Thus, PLS regression may be a relevant alternative way to perform dimension reduction when the sample size makes the classical methylome-wide analysis difficult to use due to a low power. Another possibility could have been to perform an a priori selection of CpG specific to the birth weight instead of using the selection made for child body mass index in [START_REF] Cadiou | Using methylome data to inform exposome-health association studies: An application to the identification of environmental drivers of child body mass index[END_REF]).

When correcting for multiple comparisons, no significant association was found between this PLS component and any pregnancy exposure. Without this correction, the average level of stress selfassessed by the mother (qualitative variable with 4 modalities) was the only exposure associated with the PLS component. Overall, as the reduced exposome was empty, the oMITM approach did not point any association.

Regarding the agnostic analysis by multiple regression, no significant associations were found, either with or without correction for multiple testing. In particular, the self-assessed level of stress, which was the only exposure associated with the PLS component without correction for multiple testing, was not associated with birth weight (unadjusted p-value: 0.32); among the three modalities of the variable (which quantified the frequency of the feeling of stress) compared to the reference level (the mother "sometimes felt stressed"), the most significant association with birth weight was for the feeling of "almost always being stressed" (p-value: 0.06): the effect estimate was negative, corresponding to a lower birth weight with higher level of self-assessed stress. The two other modalities showed higher p-value (higher than 0.9). In past studies, high level of anxiety during pregnancy was found associated with lower birth weight (Dunkel Schetter and Tanner, 2012) with possible involvement of epigenetic mechanisms [START_REF] Desocio | Epigenetics, maternal prenatal psychosocial stress, and infant mental health[END_REF]. This may be indicative of a lack of a sensitivity both in the oMITM and in the agnostic approaches, supported by the fact that only a very small number of women (7 among 434) declared a high level of stress. Similarly, in the agnostic approach, we did not find any association of low birth weight with alcohol consumption during pregnancy or air pollutants, which have been pointed by previous studies [START_REF] Little | Moderate alcohol use during pregnancy and decreased infant birth weight[END_REF][START_REF] Mills | Maternal Alcohol Consumption and Birth Weight: How Much Drinking During Pregnancy Is Safe?[END_REF][START_REF] Stieb | Ambient air pollution, birth weight and preterm birth: A systematic review and meta-analysis[END_REF][START_REF] Strandberg-Larsen | Association of light-to-moderate alcohol drinking in pregnancy with preterm birth and birth weight: elucidating bias by pooling data from nine European cohorts[END_REF]. Overall, these results put a new perspective on our work on the oMITM design developed in [START_REF] Cadiou | Using methylome data to inform exposome-health association studies: An application to the identification of environmental drivers of child body mass index[END_REF] (see Chapter II).

The oMITM design was designed as a way to face the challenge of false-positive discoveries in exposome study: it indeed allows to gain in specificity (see Chapter II and IV) and even in sensitivity (see Chapter III and IV) when the intermediate layer carries some information. However, the informed dimension reduction of the exposome that we proposed cannot go without a sample size sufficient for assessing exposures effects without correction for multiple testing: in particular, if no exposure is associated with the outcome without correction for multiple testing, the oMITM won't be able to point any exposures. Indeed, if the reduced exposome is empty, the oMITM cannot point any exposure, and if the reduced exposome contains one exposure or more, a test corrected for multiple testing of its association with the outcome would necessary provide associations pvalues equal or higher than the p-values of the agnostic analysis uncorrected for multiple testing.

This is true when ExWAS or multiple regression corrected for multiple comparisons are used to relate the exposome to the health outcome. But this may also be true if more complex linear algorithms such as DSA or LASSO would be used, as they are expected to give the same results as a multiple regression when the dimension is low, which may be the case for the reduced exposome.

This underlined that the improvement of exposome studies may not only require the improvement of methods, in the direction that we followed for this PhD, but also a sustained effort to build larger exposome cohorts.

Supplementary Material II.10: Sensitivity analysis III -adjusted associations between the whole methylome and zBMI in 1,173 children from the HELIX cohort (ExWAS model, step b of the Meet-in-the-Middle approach applied to the whole methylome). Results are presented only for CpGs with a (FDR -corrected for multiple hypothesis testing) p-value below 0.05 in ExWAS. This script will be available on github (https://github.com/SoCadiou) once the corresponding draft will be published.
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 R script for causal structures A, B and C ##this code allows to perform a simulation to assess performance in terms of ## sensitivity and specificity of prespecified statistical methods ##used to find the true predictors of an health among the exposome under diverse ##causal structures involving a causal link from the exposome to an outcome. ##Some of them use an intermediary layer, some not. It contains 5 ##parts: ##1. defining the functions allowing to generate a realistic dataset of exposome ##intermediate layer and outcome. The three layers(E, M and Y) can be linearly ##related to simulate various causal structures. #It needs real datasets (exposome/intermediate layer) as inputs, as well ##as parameters allowing to define the association within the three layers (number of #predictors, variability explained, correlation..) ##2. defining the methods assessed ##3. defining some functions used to assess methods performance ##4. defining the simulation function, which, for a given scenario, generates ##the datasets, applies the methods and assess their performance. This function ##allows to parallelize the simulation. ##5. runnning the simulation itself with parallelization, repeating X times the ##function defined in 4. for each scenario and saving the results.

######################################################## #######################
##load packages library(mvtnorm) library(boot) library(parallel) library(reshape) library(glmnet) library(DSA) ##liste des CPG selectionnés tmp_coeffs <-coef(cvfit, s ="lambda.min") cg_select<-data.frame(name = tmp_coeffs@Dimnames[ [1]

##################################### ##1. define the generating functions #################################### simulator <- function ( 
][tmp_coeffs@i + 1], coefficient = tmp_coeffs@x) cg_select<-cg_select$name[cg_select$name!="(Intercept)"] a<-list() if (length(cg_select)!=0){
a<-list("selected"=cg_select,"prediction"=Y_predit) }else{ a<-list("selected"=character(),"prediction"="no_prediction") } return(a) } ##DSA DSAreg <-function(Exp,resp, family = gaussian,maxsize = 15, maxsumofpow = 2, maxorderint = 2){ Exp <-data.frame(cbind(data.frame(Exp), resp=resp)) res <-DSA(resp ~ 1, data = Exp, family = family, maxsize = maxsize, maxsumofpow = maxsumofpow, maxorderint = maxorderint ,nsplits=1,usersplits = NULL) form <-gsub("I[(]","",colnames(coefficients(res))) form <-gsub("[*]",":",gsub("[)]","",gsub("[:^:]1","",form))) if(length(grep(":",form))>0){ nam <-strsplit(form[grep("[:]",form)],":") for(j in 1:length Exp,name=apply(Exp[,nam[[j]]],1,prod)) }} form2 <-"resp~1" if(length(form)>1)for(i in 2:length(form)) form2 <-paste(form2,"+",form[i]) res2 <-lm(form2, data=data.frame(Exp)) ##decomment next line and change "prediction" to pred in the return line ##if outcome predicted by DSA is needed (not used presently) #pred <-predict(res2,Exp) coef <-summary(res2)$coefficients coef <-as.character(rownames(coef)[rownames(coef)!="Intercept"]) 

(nam)){ nam[[j]] <-gsub("[[:space:]]","",nam[[j]]) name <-nam[[j]][1] for(k in 2:length(nam[[j]])) name <-paste(name,":",nam[[j]][k],sep="") Exp <-cbind(
return(list(selected=coef[coef!="(Intercept)"], pred="prediction")) } ######################################################## ########## ####3. defining some functions used to assess methods performance ######################################################## ######### sensitivity<-function(truepred,
######################### #oMITM if (length(predBMI_M$ewas_BH$selected) != 0) {
select_M <as.data.frame(simu$M_train[, colnames(simu$M_train) %in% predBMI_M$ewas_BH$selected, drop = FALSE]) print(ncol(select_M)) rownames(select_M) <-rownames(simu$M_train) colnames(select_M) <-predBMI_M$ewas_BH$selected list <-list() list_exp <-list() list_nom <-list() list_ewas_signif <-list() ##step b using the exwas performed on M as step a for (i in (1:ncol(simu$E_train))) { predE_select_M <ewas( as.data.frame(select_M), (simu$E_train[, i, drop = FALSE]), colnames(simu$E_train[, i, drop = FALSE]), corr = "None", data_covar_in = as.data.frame(simu$Y_train), covar = colnames(as.data.frame(simu$Y_train) [1]) 

) list <-c(list, list(predE_select_M)) print("DSA done") ########################################## ##
(A) } ################################# ##5. Running simulations #################################
##loading real datasets dataExp_true <-readRDS("20190205 Exposome simu borne.rds") M1_true <-readRDS("20191129 Methylome simu.Rds") M1_true <-scale(M1_true) ##initialization list_simulated_data <-list() list_list_predBMI_E <-list() list_list_predBMI_M <-list() list_list_nl_exp_select <-list() ##setting simulations parameters n_iter <-100 ##number of iterations for one scenarios ##parameters for generating datasets ##all combinations will be tested (each combination allows to build a scenario) ##(adapt the code of the loop if multiple values instead of single values for ##some parameters) c_n_my <-c [START_REF]na.rm = TRUE), mean(unlist( lapply(list_performance[END_REF]18,25,100) c_n_R2_fixed <-c(0.01, 0.05, 0.1, 0.4) BetamEY = 0.01 c_BetaEy <-c(0.0001, 0.001, 0.01, 0.1, 0.5) c_n_Ey <-c (1,3,[START_REF]na.rm = TRUE), mean(unlist( lapply(list_performance[END_REF]25) c_BetaEmEY <-c(0.0001, 0.001, 0.01, 0.1, 0.5) n_mE <-0 n_mEY <-0 ##initialization of table of results comp_method <-"BetamEY", "n_Ey_U_n_EmEY", "n_EmEY", "BetaEmEY" ) ) clusterEvalQ(cl, list(library("boot"), library("reshape"), library("glmnet"), library("DSA"))) results_1_jeu <-clusterApply(cl, 1:n_iter, f0) stopCluster(cl) simulated_data <-lapply(results_1_jeu, function(x)

x$simu) [START_REF]na.rm = TRUE), mean(unlist( lapply(list_performance[END_REF]]$mean_M_E)) )) ) param_simu [7, ] <-c("Number_iterations", "Fixed", n_iter) param_simu [8, ] <c( "Mean_number_exp_selected_to_be_randomly_tested", "Measured", mean(unlist(list_nl_exp_select)) ) ##summarizing each method performance by a line in comp_method datadrame within ##this scenario for (k1 in (1:length(list_predBMI_M[[1]]))) { comp_method[n_row + k1, ] <c( names(list_predBMI_M[ [1]][k1]), "BMI -M", param_simu [1,3], param_simu [2,3], R2_fixed, param_simu [4,3], param_simu [START_REF] True | mean(unlist( lapply[END_REF]3], param_simu [6,3] ), "BMI -E", param_simu [1,3], param_simu [2,3], R2_fixed, param_simu [4,3], param_simu [START_REF] True | mean(unlist( lapply[END_REF]3], param_simu [6,3], n_iter, param_simu [START_REF] True | mean(unlist( lapply[END_REF]3] ##sampling with replacemnt the real data for exposome data.X <-as.data.frame(dataExp_true) names_row <-rownames(data.X) data.X <data.X[sample(1:nrow(data.X), 2 * nrow(data.X), replace = TRUE),] rownames(data.X) <-c(names_row, sprintf('boot%s', names_row)) dataExp <-data.X remove(data.X) ##sampling with replacement the real intermediate data data.X <-as.data.frame(M1_true) names_row <-rownames(data.X) data.X <data.X[sample(1:nrow(data.X), 2 * nrow(data.X), replace = TRUE),] rownames(data.X) <-c(names_row, sprintf('boot%s', names_row)) M1 <-data.X ##sampling with replacement the real outcome data data.X <-as.data.frame(Y_true) names_row <-rownames(data.X) data.X <data.X[sample(1:nrow(data.X), 2 * nrow(data.X), replace = TRUE), , drop = FALSE] if (nrow(X) != nrow(Y)) { stop("error not the same number of rows") } if (isTRUE(all.equal(rownames(X), rownames(Y))) == FALSE) { stop("error individuals are not ordered similarly in X and Y") } if (all(truepred %in% colnames(X))) { data <-X[, colnames(X) %in% truepred, drop = FALSE] data <-cbind(Y, data) colnames(data) [1] <-"y" mod <-lm(y ~ ., as.data.frame(data)) toselect.x <-summary(mod)$coeff[-1, 4] r <list(summary(mod)$r.squared, summary(mod)$adj.r.squared, names(toselect.x)[toselect.x == TRUE]) names(r) <-c("r.squared", "adj.r.squared", "pred") return(r) } else{ stop("error: X does not countain all true predictors") ##liste des CPG selectionnés tmp_coeffs <-coef(cvfit, s = "lambda.min") cg_select <data.frame(name = tmp_coeffs@Dimnames[ [1]][tmp_coeffs@i + 1], coefficient = tmp_coeffs@x) cg_select <-cg_select$name[cg_select$name != "(Intercept)"] a <-list() if (length(cg_select) != 0) { print(ncol(select_M)) rownames(select_M) <-rownames(simu$M_train) colnames(select_M) <-predBMI_M$ewas_BH$selected list <-list() list_exp <-list() list_nom <-list() list_ewas_signif <-list() ##step b using the exwas performed on M as step a for (i in "simulator", "simResponseSimple", "estimatedR2", "getresiduals_2df", "ewas", "lasso", "lasso_stab", "DSAreg", "sensitivity", "fdp", "specificity", "f0", "dataExp_true", "M1_true", "Y_true", "BetayE", "n_yE", "n_yM", "BetayM", "n_mY", "R2_mY", "BetamY" ) ) clusterEvalQ(cl, list(library("boot"), library("reshape"), library("glmnet"), library("DSA"))) results_1_jeu <-clusterApply(cl, 1:n_iter, f0) stopCluster(cl) simulated_data <lapply(results_1_jeu, function(x) x$simu) ##structure of results priorized by methods and not anymore ##priorized by datasets list_predBMI_E <lapply(results_1_jeu, function(x) x$predBMI_E) list_predBMI_M <lapply(results_1_jeu, function(x) x$predBMI_M) list_nl_exp_select <lapply(results_1_jeu, function(x) x$nl_exp_select) remove(results_1_jeu) ###compilation of results for this scenario ##table describing the empirical characteristics of ##the simulated datasets param_simu <data.frame( Parameters = vector(), Fixed_or_measured = vector(), Value = numeric(0) ) param_simu [1, ] <c( as.character("Nb_true predictors of BMI in M"), as.character("Fixed"), mean(unlist( lapply(simulated_data, function(X) length(X$cpg_predictors$betas)) )) ) param_simu[2, ] <c("Nb_predicted_by_BMI_in_M", "Fixed", mean(unlist( lapply(simulated_data, function(X) length(X$cpg_predicted$betas)) ))) param_simu [3, ] <c("Nb_predicted_by_BMI_in_E", "Fixed", mean(unlist( lapply(simulated_data, function(X) length(X$exp_predicted$betas)) ))) param_simu[4, ] <c("Total_variability_of_BMI_explained_by_M", "Fixed", R2_mY) param_simu[5, ] <c("Total_variability_of_BMI_explained_by_M", "Measured", mean(unlist( lapply(simulated_data, function(X) (X$R2_mY_measured)) ))) param_simu[6, ] <c("Mean_variability_of_M_explained_by_Y", "Measured", mean(unlist( lapply(simulated_data, function(X) (X$R2_yM_mean))

))) param_simu [7, ] <c("Mean_variability_of_E_explained_by_Y", "Measured", mean(unlist( lapply(simulated_data, function(X) (X$R2_yE_mean)) ))) param_simu [8, ] <c("Mean_SD_variability_of_M_explained_by_Y", "Measured", mean(unlist( lapply(simulated_data, function(X) (X$R2_yM_SD)) ))) param_simu[9, ] <c("Mean_SD_variability_of_E_explained_by_Y", "Measured", mean(unlist( lapply(simulated_data, function(X) (X$R2_yE_SD)) ))) param_simu [10, ] <-c("Number_iterations", "Fixed", n_iter) param_simu [11, ] <c( "Mean_number_exp_selected_to_be_randomly_tested", "Measured", mean(unlist(list_nl_exp_select)) ) ##summarizing each method performance by a line in comp_method datadrame ##within this scenario for (k1 in (1:length(list_predBMI_M[[1]]))) { comp_method[n_row + k1, ] <c( names(list_predBMI_M[ [1]][k1]), "BMI -M", param_simu [1,3], param_simu [2,3], param_simu [3,3], param_simu [4,3], param_simu [START_REF] True | mean(unlist( lapply[END_REF]3], param_simu [6,3], param_simu [7,3], param_simu [START_REF] True | mean(unlist( lapply[END_REF]3], param_simu [START_REF]na.rm = TRUE), mean(unlist( lapply(list_performance[END_REF]3] x == TRUE]) names(r) <-c("r.squared", "adj.r.squared", "pred") return(r) } else{ stop("error: X does not countain all true predictors")

######################################################## ### ######### 1. Generating datasets -functions ############## ######################################################## ### ##
} } ######################################################## ########################
##an other function simulator_2layers can be used if one want to control the ##correlation of the overall dataset in this case, the simulated exposome matrix ##is no longer obtained by bootstrapping the real exposome but from a ##correlation matrix the correlation matrix must be provided by the user or ##specified as nulll uncomment the section below and adapt the input of ##functions f0 (section 4.) and clusterApply (section 5.) to use it -data_Xs[rownames(data_Y), ] } data_Y <-data.matrix(data_Y) data_Xs <-data.matrix(data_Xs) ##applying lasso (as implemented in glmnet package, a path of penalization ##parameter lambda according to the MSE computed is computed by 10-fold ##cross-validation) cvfit <-cv.glmnet(data_Xs, data_Y, family = "gaussian", alpha = 1) ##Compute predicted Y "Y_predit" Y_predit <predict(cvfit, newx = data_Xs, s = "lambda.1se") ##selecting the model within 1MSE of the model using ##the penalization parameter minimizing MSE Y_predit <-Y_predit[rownames(Y_predit), ] ##dataframe of predictors selected tmp_coeffs <coef(cvfit, s = "lambda.min") ##selecting the model with the penalization parameter minimizing MSE cg_select <data.frame(name = tmp_coeffs@Dimnames[ [1]][tmp_coeffs@i + 1], coefficient = tmp_coeffs@x) library("boot"), library("reshape"), library("glmnet"), library("DSA"), library("mvtnorm"), library("gWQS"), library("OmicsMarkeR"), library("Rcpp") ) ) ##applying f0 in parallel results_1_jeu <-clusterApply(cl, 1:n_iter, f0) stopCluster(cl) ##getting results for this scenario simulated_data <-lapply(results_1_jeu, function(x)

} ######################################################## ### ########### 2.
x$simu) ##formatting results for this scenario list_list_predBMI_E <lapply(results_1_jeu, function(x) x$list_predBMI_E) list_performance <-lapply(results_1_jeu, function(x) x$performance) remove( results_1_jeu 
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Figure I. 1 :

 1 Figure I.1: Median absolute correlation within exposure groups (diagonal) and between exposure groups (off-diagonal) for the prenatal exposome assessed in the Helix Project (Figure from Tamayoet al., 2019). Between-exposure correlations in a given exposure family can reach 0.8[START_REF] Tamayo-Uria | The early-life exposome: Description and patterns in six European countries[END_REF].

  may allow to identify the true predictors of an health outcome among a set of exposures with good sensitivity and improved specificity (lower FDP) compared to ExWAS (see Figure I.2).

Figure I. 2 :

 2 Figure I.2: Sensitivity and FDP of 6 different statistical methods assessed from a Monte-Carlo simulation assuming a causal relationship between predictors drawn from a realistic exposome and a health outcome. Each predictor explained 3% of the variance of the outcome. DSA, Deletion/substitution/addition; ENET, elastic net; EWAS, environment-wide association study; EWAS-MLR, EWAS-multiple linear regression; GUESS, Graphical Unit Evolutionary Stochastic Search; sPLS, sparse partial least-squares (Agier et al., 2016).

Figure I. 3 :

 3 Figure I.3 : Schematic representation of links between exposome, intermediate biological layers

Figure I. 4 :

 4 Figure I.4: Implementation of Meet-in-the-Middle. Adapted from (Chadeau-Hyam et al., 2011).

Figure I. 5 :

 5 Figure I.5: Causal graph of mediation.

  Early-life Exposures and child Body Mass Index: a Meet-in-the-Middle approach using preselected methylation

  CHAPTER III: Early-life Exposures and child lung function: a modified Meet-in-the-Middle approach using preselected methylation marks 103 French abstract Contexte : Les expositions environnementales précoces peuvent influencer la fonction pulmonaire. La plupart des polluants ont des effets de faible ampleur et certains sont corrélés, ce qui peut limiter la puissance statistique des études d'association à l'échelle de l'exposome (ExWAS). La méthylation de l'ADN, qui peut agir comme médiateur pour certaines expositions, pourrait être utilisée dans les études exposome-santé pour augmenter la puissance en restreignant l'exposome à un ensemble d'expositions avec des mécanismes d'effets biologiquement plausibles. Objectif : tester une méthode consistant à réduire la dimension de l'exposome en utilisant la méthylation de l'ADN dans le cadre d'une étude d'association exposome-VEMS (Volume Expiratoire Maximal par seconde). Méthodes : L'exposition à 216 facteurs environnementaux a été évaluée pour 919 paires mèreenfant des cohortes du projet Helix, pendant la grossesse ou à l'âge de 6-10 ans. Les niveaux de méthylation de l'ADN à l'échelle du génome dans le sang périphérique à 6-10 ans ont été mesurés à l'aide de la puce HumanMethylation450 BeadChip, filtrés et corrigés des effets batch. Une approche statistique « Meet-in-the-Middle orientée », consistant en 3 étapes, a été appliquée : (i) sélectionner a priori les sites CpG pertinents pour le VEMS à partir d'une revue de la littérature existante ; (ii) sélectionner les expositions significativement associées à au moins un de ces CpG, en utilisant une approche ExWAS ajustée sur le VEMS et les facteurs de confusion pertinents; (iii) identifier par régression linéaire les expositions associées au VEMS au sein de cet exposome réduit. Résultats : 314 CpGs enhancers provenant de 23 gènes candidats ont été sélectionnés à l'étape 1. L'étape 2 a identifié une seule exposition, le taux de cuivre dans le sang postnatal, qui a été associée à un site CpG situé sur le gène ARMC2. À l'étape 3, on a constaté que le cuivre était associé de manière significative à un VEMS plus faible. Une analyse classique ExWAS sur le VEMS corrigé pour les comparaisons multiples n'a pas identifié d'association statistiquement significative ; le cuivre figurait parmi les 6 expositions associées au VEMS lorsqu'aucune correction pour les comparaisons multiples n'était appliquée. Conclusion : Notre approche en 3 étapes a identifié une exposition associée à un VEMS plus faible, le niveau de cuivre dans le sang postnatal, alors qu'une analyse ExWAS agnostique n'a révélé aucune association significative. Des travaux supplémentaires sont nécessaires pour quantifier l'efficacité de l'approche oMITM.

  Among 1031 mother-child pairs from Helix cohorts, exposures to 216 environmental factors were assessed during pregnancy or at age 6-10 years, as previously done and detailed in Cadiou et al. (2020) (see Chapter II). The forced expiratory volume in one second, expressed in % (FEV1) was measured with standardized spirometry tests during a clinical examination at age 6-10 years. FEV1

  from 23 candidate genes were selected at step a) (see TableIII.1). Step b) identified a single exposure, postnatal blood copper level, which was associated with one CpG site (cpg04642300, coefficient -0.301 (CI: -0.414; -0.187), adjusted p-value: 0.016) located on gene ARMC2 (Figure III.1). ARMC2 (Armadillo Repeat Containing 2) is a protein encoding gene. Some

Figure III. 1 :

 1 Figure III.1:Manhattan plot of the step b) of the MITM approach: adjusted-values of adjusted association tests between preselected CpG and exposome. Each color represents a different exposure. The vertical black line is the significant threshold at 0.05.

  dans l'évaluation des effets sur la santé de l'exposome, défini comme l'ensemble des expositions environnementales subies à partir de la période prénatale, incluent un taux éventuellement élevé de faux positifs. Ce défi pourrait être surmonté en utilisant des techniques de réduction de la dimension. Les données sur les couches biologiques situées entre l'exposome et ses éventuelles conséquences sur la santé, telles que le méthylome, peuvent aider à réaliser une telle réduction de la dimension de l'exposome. Nous avons cherché à quantifier les performances des approches reposant sur l'incorporation d'une couche biologique intermédiaire pour mettre en relation l'exposome et la santé, et à les comparer avec des approches agnostiques ignorant la couche intermédiaire. Nous avons réalisé une simulation de Monte-Carlo, dans laquelle nous avons généré des données réalistes d'exposome et de couche intermédiaire en échantillonnant des données réelles du projet HELIX. Nous avons généré un outcome gaussien en postulant des relations linéaires entre les trois couches de données, dans 2381 scénarios sous cinq structures causales différentes, y compris la médiation et la causalité inverse. Nous avons testé 3 méthodes agnostiques ne considérant que l'exposome et l'outcome de santé : ExWAS (étude d'association à l'échelle de l'exposome), DSA, LASSO ; et 3 méthodes reposant sur des données intermédiaires : deux implémentations de notre nouveau design « Meet-in-the-Middle orienté » (oMITM), utilisant ExWAS et DSA, et une analyse de médiation utilisant ExWAS. Nous avons évalué la sensibilité des méthodes et le taux de faux positifs (FDP). Les méthodes oMITM avaient généralement un FDP plus faible que les autres approches ; c'était notamment le cas dans une structure de causalité inverse et dans certains scénarios de médiation (parfois à un coût en termes de sensibilité). L'implémentation oMITM-DSA a montré de meilleures performances qu'oMITM-ExWAS. Parmi les approches agnostiques, DSA a montré les meilleures performances. L'utilisation d'informations provenant de couches biologiques intermédiaires peut contribuer à réduire le FDP dans les études des effets de l'exposome sur la santé ; en particulier, oMITM semble moins sensible à la causalité inverse que les études agnostiques d'association exposome-santé.

  Figure IV.1): in structures A, B, C the exposome (E) affects the outcome (Y) directly or indirectly. In A, there is no direct effect from Eto Y, all the effect being mediated by the intermediary layer (i.e. "indirect effect" in the mediation analysis terminology[START_REF] Vanderweele | Conceptual issues concerning mediation, interventions and composition[END_REF]). B assumed a causal link from M to Y and a direct effect from E to Y, without mediation through M. C assumed both a direct and an indirect effect of E on Y. Structure D is a situation with reverse causal links from Y to M and from Y to E. Structure E assumed total independence between the three layers.

Figure IV. 1 :

 1 Figure IV.1: Causal structures considered in the simulation study of the efficiency of studies relating a layer of predictors E (e.g., the exposome) to a layer of possibly intermediary parameters (e.g. biological parameters such as DNA methylation) M and a health outcome or parameter Y.

For

  the intermediary layer, 2284 quantitative variables corresponding to the CpGs were obtained CHAPTER IV: A simulation study of approaches relying on intermediate high-dimension data to decipher causal relationships between the exposome and health 118 from the real methylome data of Helix and the a priori selection of CpGs performed in Cadiou et al. (2020) by selecting only enhancers CpGs belonging to selected pathways. These variables were standardized. From this sampled dataset, in which the exposure and the methylome were, by construction, independent, we used linear models to possibly add an hypothesized effect of some exposures on the methylome, and to generate a health outcome possibly related to E and/or M according to the above-mentioned causal structures (Figure IV.1): in causal structures A, B and C, assuming a causal effect of the exposome or the methylome on the outcome, the outcome (Y) was drawn from a normal distribution to which potential effects of E and M were added. The variance of this distribution was set to ensure that the total variability explained by E and M was that defined by the desired scenario. To simulate a reverse causal link (structure D, Figure IV.1) and a situation without causal link between the three layers (structure E), we generated the outcome by bootstrapping the real child BMI data of HELIX cohorts; a linear effect of the outcome was added

  .1 and implemented by Cadiou et al. (2020), consists in three series of association tests: a) between the intermediary layer M and the outcome Y, allowing to identify components of M associated with Y; b) between the components of the intermediary layer selected at step a) and the exposures E, with an adjustment on the outcome; c) between the CHAPTER IV: A simulation study of approaches relying on intermediate high-dimension data to decipher causal relationships between the exposome and health 122 exposures selected at step b) and the outcome (see

  .1), for a design similar to the oMITM but without adjustment on the outcome in the second step b) (which corresponds to the MITM design most commonly implemented in the literature (Chadeau-Hyam et al., 2011)), and for the basic association test between E and Y ignoring M.

  1 (Figure IV.2A and B). LASSO displayed the highest FDP (average, 0.41) and had a high FDP even when the variability explained by the predictors was low (Figure IV.2B), as, contrarily to the other methods, it most often selected a non-null number of variables in these situations (Supplementary Figure V.1C).

Figure IV. 2 :

 2 Figure IV.2: A. 1-FDP and B. Sensitivity under causal structure A (see Figure IV.1) for all compared methods; performances were averaged across scenarios according to categories of variabilities of Y explained by E (x-axis) and by M (color) and categories of mean variability of a covariate from M affected by E by E. Values were smoothed to give the trend according to averaged categories of variabilities of Y explained by E and by M. (in color)

Figure

  Figure V.2C). Coming to the agnostic methods, their sensitivity increased with the variability of Y

  FigureIV.3B by comparing the sensitivity of oMITM-ExWAS to the sensitivity of ExWAS on subsample, which was always lower). On the contrary, mediation provided a null sensitivity, always failing to detect true predictors(Figure IV.4B). This relatively good behavior of oMITM under causal structure B can be explained by the selection bias[START_REF] Hernán | A structural approach to selection bias[END_REF] induced in step b) of the oMITM design when adjusting on Y: a spurious link between E and Y is created, leading to add some causal predictors of Y in the reduced exposome.For structure C, the situation with both direct and indirect effects of the exposome on health, performances ranged between those observed in scenarios A and B; oMITM-DSA and DSA were, again, the methods with the highest accuracy(Figure IV.5).

Figure IV. 4 :

 4 Figure IV.4: A. 1-FDP; B. sensitivity under causal structure B (see Figure IV.1). Performances were averaged across scenarios according to categories of variabilities of Y explained by E (x-axis) and by M (color). Values were smoothed to give the trend according to averaged categories of variabilities of Y explained by E and by M.

Figure IV. 5 :

 5 Figure IV.5: A. 1-FDP; B. Sensitivity under causal structure C. Performances were averaged across scenarios according to categories of variabilities of Y explained by E (x-axis) and by M (color) and of mean variability of an element of M affected by E by E. Values were smoothed to give the trend according to performance averaged categories of variabilities of Y explained by E and by M.

  Figure IV.6: A. Proportion of exposures influenced by Y wrongly identified, and B. number of hits under causal structure D. Values were averaged across scenarios according to categories of variabilities of one exposure explained by Y (x-axis) and one element of M explained by Y (color).

Figure IV. 7 :

 7 Figure IV.7: Average number of covariates selected per method under causal structure E.

  already showed that DSA provided better performance than Elastic-Net in the context of a realistic exposome. Consistency between our structural causal modelling analysis and experimental simulation-based Although simplified in its design, our analysis based on DAGs yield results consistent with the more elaborate simulation study, which considered an exposome of dimension 173 and an intermediate layer of dimension 2284. In particular, in the causal structure of reverse causality (Y influencing E and M) without link between E and M (structure D), the oMITM method provided no hit (Figure IV.6), as predicted by the analyses of DAGs (Supplementary Table

  Situation A: MM->Y=ME->M=EE->Y=EE->M=∅ and ME->M->Y≠ ∅ and EE->M->Y ≠ ∅.  Situation B: MM->Y≠ ∅, EE->Y≠ ∅ and ME->M=EE->M=EE->M->Y= ME->M->Y=∅.  Situation C: MM->Y=ME->M=∅ and ME->M->Y≠ ∅, EE->Y≠ ∅ and EE->M->Y ≠ ∅, and EE->Y U EE->M->Y = EE->Y=EE->M->Y

  Les algorithmes d'apprentissage automatique sont de plus en plus utilisés en épidémiologie pour identifier les prédicteurs causaux d'un outcome de santé lorsque de nombreux prédicteurs potentiels sont disponibles. Toutefois, ces algorithmes peuvent fournir des résultats différents lorsqu'ils sont appliqués de manière répétée sur le jeu de données. Une telle instabilité compromet la reproductibilité de la recherche. Nous avons voulu illustrer que les algorithmes couramment utilisés sont instables et, avec l'exemple de LASSO, que le choix d'une méthode de stabilisation est crucial. Méthodes : Nous avons réalisé une étude de simulation pour tester la stabilité et les performances d'algorithmes de sélection de variables largement utilisés (LASSO, Elastic-Net et DSA). Nous avons évalué l'efficacité de six méthodes de stabilisation et leur impact sur les performances de LASSO. Nous avons supposé qu'une combinaison linéaire de facteurs tirés d'un exposome simulé de 173 variables quantitatives évaluées chez 1301 sujets influençait à des degrés divers un outcome de santé continu. La stabilité, la sensibilité et la proportion de faux positifs (FDP) du modèle ont été évaluées.Résultats : Tous les algorithmes testés étaient effectivement instables. Pour LASSO, les méthodes de stabilisation ont amélioré la stabilité sans assurer une stabilité parfaite, un résultat confimé par une application à une étude exposome réelle. Elles ont également affecté les performances. En particulier, la stabilisation basée sur l'optimisation des hyperparamètres, fréquemment mise en oeuvre en épidémiologie, a augmenté de façon spectaculaire le FDP lorsque la variabilité de l'outcome expliquée par les prédicteurs était faible. En revanche, la stabilisation basée sur la procédure de 'stability selection' a souvent réduit le FDP, tout en diminuant parfois simultanément la sensibilité.

  Figure V.1): default LASSO had an average Sorensen index between 0.77 and 0.95 when the

Figure V. 1 :

 1 Figure V.1: Stability index (mean Sorensen index) of ExWAS, default LASSO, Elastic-Net and DSA for 3 different structures of pairwise correlations between the predictors. Simulations assumed the existence of 10 true predictors in a set of 173 tested predictors. Stability is reported as a function of R 2 , the share of the outcome variability explained by the true predictors.

Figure V. 2 :

 2 Figure V.2: Performance and stability of various stabilization methods of LASSO. Values are averages of various scenarios with 1 to 25 true predictors of the health outcome. Performance is reported as a function of the total variability explained by the predictors (log scale). A. False discovery proportion. B. Sensitivity. C. Sorensen stability index. D. Number of hits (covariates selected by the model).

Figure V. 3 :

 3 Figure V.3: Variation of performance according to stability. A. False discovery proportion as a function of model stability. B. Sensitivity as a function of model stability (mean Sorensen index). Performance values were smoothed using LOESS method. Values are averages over 15 model runs.

  2.1.) and on birth weight. For step c), we used a multiple regression model adjusted on the same covariates and including simultaneously the whole reduced exposome. Considering the choice of adjustment covariates, season of measure was added to the set of covariates specified in IV.2.1. in the models including air pollutants variables. Missing values for exposures were single-imputed using MICE package(Buuren and Groothuis-Oudshoorn, 

3. 2 .

 2 First step of the oMITM approach: relationship between methylome and birthweight PLS analysis -step a) of the oMITM approach One PLS component was enough to relate methylome to birth weight, as determined by cross validation. The Pearson correlation of this component with birth weight was 0.29. The distribution of the weights of the CpG in this component are presented in Figure 1. The 10 top CpGs belonged to the following genes: PTPRS; ITPK1; JARID2; PDE4DIP-NBPF20-NBPF9; TBC1D24 and MORF4L1.

Figure 1 :

 1 Figure 1: Distribution of the weight of CpGs in the selected PLS component. Colors indicate the corresponding gene for the top 500 CpGs and the top 10 are annotated.

  E_true, ##real exposome M_true, ## real intermediate layer, eg methylome R2_tot = 0.5, ##total varibility of the outcome explained by #the predictors of E and M propmE = 0, ##proportion of variables of M affected by E ##without affecting Y propmEY = 0.1, ##proportion of variables of M acting as mediators ##between E and Y propmY = 0, ##proportion of variables of M not affected by E ##but affecting Y. BetamEY = 0.1, ##coefficient of the effect of M on Y for variables ##of M acting as mediators between E and Y. It can be an unique value ##or a vector of length n_mEY BetamY = 0.1, ##coefficient of the effect of M on Y for variables ##of M acting as mediators between E and Y. It can be an unique value ##or a vector of length n_mY n_mE = NULL, ##alternative way to specify the three previous set ##of predictors: #directly giving the number of predictors n_mEY = NULL, n_mY = NULL, n_EmE = 0, ##number of exposures affecting variables of M without ##acting through M on the outcome n_EmEY = 3,##number of exposures having an effect on Y through M n_Ey = 0, ##number of exposures acting directly on M ##the 4 next variables specify the intersection between the different ## sets of predictors in E n_EmE_U_n_EmEY = 0, n_Ey_U_n_EmE = 0,

  .rm = TRUE), sd(unlist( lapply(list_predBMI_M, function(X) (X[[k1]][[5]])) ), na.rm = TRUE), sd(unlist(

  for causal structure D and E ##this code allows to perform a simulation to assess performance in terms of ## sensitivity and specificity of prespecified statistical methods ##used to find the true predictors of an health among the exposome. The causal ##structures considered involve a reverse causative likn from the outcome on ##the exposome Some of them use an intermediary layer, some not. ##it contains 5 ##parts: ##1. defining the functions allowing to generate a realistic dataset of exposome ##intermediate layer and outcome. The three layers(E, M and Y) can be linearly ##related to simulate various causal structures.#It needs real datasets (exposome/intermediate layer/outcome) as inputs, as well ##as parameters allowing to define the association within the three layers (number of #predictors, #variability explained, correlation..) ##2. defining the methods assessed ##3. defining some functions used to assess methods performance ##4. defining the simulation function, which, for a given scenario, generates ##the datasets, applies the methods and assess their performance. This function ##allows to parallelize the simulation. ##5. runnning the simulation itself with parallelization, repeating X times the ##function defined in 4. for each scenario and saving the results.######################################################## ####################################################### ##1. define the generating functions ###################################ofvariables of M affected by Y Beta_yM = 0.001, ##corresponding effect coefficient n_yE = 5, ##number of variables of E affected by Y Beta_yE = 0.01, ##corresponding effect coefficient test_and_training = TRUE)#generating only a training set or ##alternatively also a test set of same size) {

  ######################################## ##2. defining the methods to test ########################################### ###agnostic methods ##function to compute residuals of a linear model if covariates are specified getresiduals_2df <-function(data_Y_in, data_covar_in, name_Y, covar) { data_covar <-data_covar_in[, colnames(data_covar_in) %in% covar, drop = FALSE] data_Y <-data_Y_in[rownames(data_Y_in) %in% rownames(data_covar), colnames(data_Y_in) == name_Y, drop = FALSE] data_covar <-data_covar[rownames(data_covar) %in% rownames(data_Y), , drop = FALSE] data_covar <-data_covar[rownames(data_Y), , drop = FALSE] data_output <-data_Y data <-cbind(data_Y, data_covar) mod <-lm(data = data) data_output[, 1] <-as.data.frame(residuals(mod)) return(data_output) } ###ExWAS data_covar_in = NULL, covar = character(0)) { if (length(covar) > 0) { data_covar <-data_covar_in[rownames(data_covar_in) %in% rownames(data_Y_in) & rownames(data_covar_in) %in% rownames(data_Xs_in), colnames(data_covar_in) %in% covar, drop = FALSE] data_Y <-data_Y_in[rownames(data_Y_in) %in% rownames(data_covar) & rownames(data_Y_in) %in% rownames(data_Xs_in), colnames(data_Y_in) == name_Y, drop = FALSE] data_Xs <-data_Xs_in[rownames(data_Xs_in) %in% rownames(data_covar) & rownames(data_Xs_in) %in% rownames(data_Y_in), , drop = FALSE] data_covar <-data_covar[rownames(data_Y),] data_Xs <-data_Xs[rownames(data_Y),] data_Y <-getresiduals_2df(data_Y, data_covar, name_Y, covar) } else{ data_Y <-data_Y_in[rownames(data_Y_in) %in% rownames(data_Xs_in), colnames(data_Y_in) == name_Y, drop = FALSE] data_Xs <-data_Xs_in[rownames(data_Xs_in) %in% rownames(data_Y_in), , drop = FALSE] data_Xs <-data_Xs[rownames(data_Y),] } data_Y <-data.matrix(data_Y) data_Xs <-data.matrix(data_Xs) model.enet <-cv.glmnet(data_Xs, data_Y, family = "gaussian", alpha = 1) cvfit <-model.enet ##Calcul Y_predit Y_predit <-predict(cvfit, newx = data_Xs, s = "lambda.min") Y_predit <-Y_predit[rownames(Y_predit), ]

  (1:ncol(simu$E_train))) { predE_select_M <ewas( as.data.frame(select_M), (simu$E_train[, i, drop = FALSE]), colnames(simu$E_train[, i, drop = FALSE]), corr = "None", data_covar_in = as.data.frame(simu$Y_train), covar = colnames(as.data.frame(simu$Y_train)[1]) ) list <-c(list, list(predE_select_M)) list_nom<-c(list_nom, list(colnames(simu$E_train)[i])) list_exp <-c(list_exp, list(colnames(simu$E_train)[i])) temp_ewas <cbind(predE_select_M$pval, rep(colnames(simu$E_train)[i], nrow(predE_select_M$pval))) list_ewas_signif <-c(list_ewas_signif,list(temp_ewas)) remove(temp_ewas) remove(predE_select_M) } df_all_ewas <-do.call("rbind", list_ewas_signif) if (!is.null(df_all_ewas)) { df_all_ewas$pVal_adj <-p.adjust(df_all_ewas$pVal, "BH") colnames(df_all_ewas)[8] <-"exposures" names(list) <-as.vector(unlist(list_nom)) } exp <-df_all_ewas$exposures[df_all_ewas$pVal_adj <= 0.05] ##step c n_exp_select <length(unique(exp)) ##nb of exposures in reduced exposome if (length(exp) != 0) { select_E <-simu$E_train[, colnames(simu$E_train) %in% exp, drop = FALSE] ##ExWAS implementation for step c predBMI_E_MITM <ewas( as.data.frame(select_E), as.data.frame(simu$Y_train), colnames(as.data.frame(simu$Y_train)), corr = "BH" ##loading real datasets dataExp_true <-readRDS("20190205 Exposome simu borne.rds") M1_true <-readRDS("20191129 Methylome simu.Rds") Y_true <-readRDS("20190612_ZBMI_scaled_a_utiliser_pour_simu.rds"simulations parameters n_iter <-100 ##number of iterations for one scenarios ##parameters for generating datasets ##all combinations will be tested (each combination allows to build a scenario) ##(adapt the code of the loop if multiple values instead of single values for ##some parameters) c_n_yM <

  300m) -Pregnancy (-), DMP -Pregnancy (-)Meinshausen1 12Facility density (300m) -Pregnancy (-), OH-MiNP -Pregnancy (-)Meinshausen1 13Facility density (300m) -Pregnancy (-), OH-MiNP -Pregnancy (-)Meinshausen1 14DMP -Pregnancy (-), OH-MiNP -Pregnancy (-)

#

  ####################################################### ##########################this code allows to perform a simulation to assess performance in terms of ##stability, sensitivity and specificity of prespecified statistical methods ##used to find the true predictors of an health among the exposome it contains 5 ##parts: ##1. defining the functions allowing to generate a realistic dataset of exposome #and an outcome linearly related to some variables of this exposome.#It needs a real exposome dataset as input, as well as parameters allowing to #define the #association between the exposome and the outcome (number of #predictors, #variability explained, correlation..) ##2. defining the methods assessed ##3. defining some functions used to assess methods performance ##4. defining the simulation function, which, for a given scenario, generates ##the datasets, applies the methods and assess their performance. This function ##allows to parallelize the simulation. ##5. runnning the simulation itself with parallelization, repeating X times the ##function defined in 4. for each scenario and saving the results.######################################################## ######################

  Methods to be tested -functions ########### ######################################################## ### ####a function used to compute residuals from a linear model if covariates are ####part of the inputs of any the function of the methods tested#### getresiduals_2df <function(data_Y_in, data_covar_in, name_Y, covar) { data_covar <-data_covar_in[, colnames(data_covar_in) %in% covar, drop = FALSE] data_Y <-data_Y_in[rownames(data_Y_in) %in% rownames(data_covar), colnames(data_Y_in) == name_Y, drop = FALSE] data_covar <-data_covar[rownames(data_covar) %in% rownames(data_Y), , drop = FALSE] data_covar <-data_covar[rownames(data_Y), , drop = FALSE] data_output <-data_Y data <-cbind(data_Y, data_covar) mod <-lm(data = data) data_output[, 1] <-as.data.frame(residuals(mod)) return(data_output) } ####ExWAS####

  param_simu[4, ] <-c("Number_iterations", "Fixed", n_iter) param_simu[5, ] <-), na.rm = TRUE).rm = TRUE), sd(unlist( lapply(list_performance, function(X) (X[[i1]][[11]])) ), na.rm = TRUE)end_time <-Sys.time() end_time -start_time ##saving results externaly saveRDS(comp_stability_method,

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  .3: Number of hits (average mean and standard error across scenarios), sensitivity to find the exposures predicted by Y (average mean and standard error across scenarios) under causal structures D and E. Table IV.4: Number of true causal links detected, false causal links detected, true causal links non-detected, false causal links non-detected by different designs among the 25 causal structures considering all possible links between 3 unidimensional layers. Table V.1: Implementation details for ExWAS, Elastic-Net and DSA. Table V.2: Details of the implemented LASSO methods. Table V.3: Results of the application of default LASSO and various LASSO stabilization methods to relate an exposome of 173 prenatal and postnatal quantitative exposures to zBMI in 1301 mother-child pairs of the Helix cohorts. Table VI.1: Possible strategies of dimension reduction for the exposome and methylome layers .......... Table Appendix II.1: Exposome components assessed in Sepages cohort during pregnancy, with mean and standard deviation for quantitative variables and frequency for qualitative variables, and amount of missing data. Table Appendix II.2: Characteristics of the 438 mother-child pairs included in the exposome analysis based on Sepages study. Table Appendix II.3: Step b) of the oMITM approach: estimates, confidence intervals, uncorrected and corrected for multiple comparisons p-values of the tests of association between exposome and PLS component adjusted on relevant covariates and birth weight (434 mother-child pairs from the Sepages cohort). Table Appendix II.

Table I .

 I 1: Exposome project funded by the European Commission. All cited text comes from the website of Community Research and Development Information Service (CORDIS) resources.

	European	Exposome	Aim	Which exposome	Population	Assessing
	Funding	Project				biomarkers
	Programm				
	FP7	(2012-				
	2017)					

  Characteristics of the CpG selected by a methylome wide analysis on the whole methylome (row percentages). Sensitivity analysis III -adjusted association between the whole methylome and zBMI in 1,173 children from the HELIX cohort (ExWAS model, step b of the Meet-in-the-Middle approach applied to the whole methylome). Results are presented only for CpGs with a (FDR -corrected for multiple hypothesis testing) p-value below 0.05 in ExWAS.

	CHAPTER II: Early-life Exposures and child Body Mass Index: a Meet-in-the-Middle approach using preselected methylation marks CHAPTER II: Early-life Exposures and child Body Mass Index: a Meet-in-the-Middle approach using preselected methylation marks CHAPTER II: Early-life Exposures and child Body Mass Index: a Meet-in-the-Middle approach using preselected methylation marks CHAPTER II: Early-life Exposures and child Body Mass Index: a Meet-in-the-Middle approach using preselected methylation marks CHAPTER II: Early-life Exposures and child Body Mass Index: a Meet-in-the-Middle approach using preselected methylation marks CHAPTER II: Early-life Exposures and child Body Mass Index: a Meet-in-the-Middle approach using preselected methylation marks CHAPTER II: Early-life Exposures and child Body Mass Index: a Meet-in-the-Middle approach CHAPTER II: Early-life Exposures and child Body Mass Index: a Meet-in-the-Middle approach using preselected methylation marks
					using preselected methylation marks
	12.2 ± 0.1 0.1 ± 0 0.4 ± 0 77.2 ± 1.3 0.3 ± 0 0.7 ± 0 0.7 ± 0 2.5 ± 0 390.3 ± 4.6 409.8 ± 4.3 5.3 ± 0 5.4 ± 0 3.4 ± 0 0.1 ± 0 0.1 ± 0 0.4 ± 0 0.4 ± 0 69.4 ± 1.3 69.8 ± 1.1 0.3 ± 0 3.4 ± 0 3.3 ± 0 2.7 ± 0 0.4 ± 0 1.2 ± 0 4.3 ± 0 3 ± 0 3.6 ± 0 10.3 ± 0 2.8 ± 0.1 40.3 ± 0.7 239.6 ± 3.8 76 ± 0.3 76 ± 0.3 995.1 ± 0.4 994.7 ± 0.4 11.4 ± 0.1 10.8 ± 0.2 0.4 ± 0 0.4 ± 0 0.4 ± 0 54.1 ± 0.2 4.3 ± 0 0.6 ± 0.1 -2.5 ± 0 71.9 ± 1.9 12.5 ± 0.2 -3 .5 ± 0 71.7 ± 2 16.2 ± 0.3 1.6 ± 0.1 1.5 ± 0 3 ± 0 OCs : Organochlorine compounds Brominated ; PFAS: Perfluorinated alkylated substances; PBDEs: Brominated compounds Ops: Organophosphate By environmental models or questionnaires Facility richness (300m) Pregnancy Built Environment -By environmental models or questionnaires Land use (300m) Pregnancy Built Environment -By environmental models or questionnaires Population density Pregnancy Built Environment people / km 2 By environmental models or questionnaires Walkability Pregnancy Built Environment -By environmental models or questionnaires Accessibility (bus lines 300m) Postnatal Built Environment m / km 2 -Dic By environmental models or questionnaires Accessibility (bus lines 300m -school) Postnatal Built Environment m / km 2 -Dic By environmental models or questionnaires Accessibility (bus stops 300m -school) Postnatal Built Environment m / km 2 -Log By environmental models or questionnaires Built density (300m) Postnatal Built Environment m 2 built / km 2 -Square root By environmental models or questionnaires Built density (300m -school) Postnatal Built Environment m 2 built / km 2 -Square root By environmental models or questionnaires Connectivity density (300 m) Postnatal Built Environment number of intersectio ns / km 2 -Log By environmental models or questionnaires Connectivity density (300m -school) Postnatal Built Environment number of intersectio ns / km 2 -Log By environmental models or questionnaires Facility density (300m -school) Postnatal Built Environment n / km 2 -Log By environmental models or questionnaires Facility richness Postnatal Built Environment --None By environmental models or questionnaires Facility richness (300m -school) Postnatal Built Environment --None By environmental models or questionnaires Land use (300m) Postnatal Built Environment --None By environmental models or questionnaires Land use (300m -school) Postnatal Built Environment --None By environmental models or questionnaires Population density Postnatal Built Environment people / km 2 -Square root By environmental models or questionnaires Population density (school) Postnatal Built Environment people / km 2 -Square root By environmental models or questionnaires Walkability index Postnatal Built Environment --None By environmental models or questionnaires Facility density (300m) Pregnancy Built Environment n / km 2 -Log By environmental models or questionnaires Facility density (300m) Postnatal Built Environment n / km 2 -Log By environmental models or questionnaires Accessibility (bus stops 300m) Postnatal Built Environment m / km 2 -Log By environmental models or questionnaires Indoor PMabsorbance Postnatal Indoor air 10 -5 m -1 -Log By environmental models or questionnaires Indoor benzene Postnatal Indoor air μg/m 3 -Log By environmental models or questionnaires Indoor NO2 Postnatal Indoor air μg/m 3 -Log By environmental models or questionnaires Indoor PM2.5 Postnatal Indoor air μg/m 3 -Log By environmental models or questionnaires Indoor BTEX Postnatal Indoor air μg/m 3 -Log By environmental models or questionnaires Alcohol intake Pregnancy Lifestyle 0 811 ( 0.69 ) By environmental models or questionnaires Alcohol intake Pregnancy Lifestyle 1 362 ( 0.31 ) By environmental models or questionnaires Cereals intake Pregnancy Lifestyle 1 459 ( 0.39 ) By environmental models or questionnaires Cereals intake Pregnancy Lifestyle 2 393 ( 0.34 ) By environmental models or questionnaires Cereals intake Pregnancy Lifestyle 3 321 ( 0.27 ) By environmental models or questionnaires Dairy intake Pregnancy Lifestyle 1 399 ( 0.34 ) By environmental models or questionnaires Dairy intake Pregnancy Lifestyle 2 404 ( 0.34 ) By environmental models or questionnaires Dairy intake Pregnancy Lifestyle 3 370 ( 0.32 ) By environmental models or questionnaires Fast-food intake Pregnancy Lifestyle 1 257 ( 0.22 ) By environmental models or questionnaires Fast-food intake Pregnancy Lifestyle 2 127 ( 0.11 ) By environmental models or questionnaires Fast-food intake Pregnancy Lifestyle 3 789 ( 0.67 ) By environmental models or questionnaires Fish and seafood intake Pregnancy Lifestyle 1 482 ( 0.41 ) By environmental models or questionnaires Fish and seafood intake Pregnancy Lifestyle 2 358 ( 0.31 ) By environmental models or questionnaires Fish and seafood intake Pregnancy Lifestyle 3 333 ( 0.28 ) By environmental models or questionnaires Folic acid supplementation Pregnancy Lifestyle 0 524 ( 0.45 ) By environmental models or questionnaires Folic acid supplementation Pregnancy Lifestyle 1 649 ( 0.55 ) By environmental models or questionnaires Fruits intake Pregnancy Lifestyle 1 447 ( 0.38 ) By environmental models or questionnaires Fruits intake Pregnancy Lifestyle 2 357 ( 0.3 ) By environmental models or questionnaires Fruits intake Pregnancy Lifestyle 3 369 ( 0.31 ) By environmental models or questionnaires Legumes intake Pregnancy Lifestyle 1 277 ( 0.24 ) By environmental models or questionnaires Legumes intake Pregnancy Lifestyle 2 509 ( 0.43 ) By environmental models or questionnaires Legumes intake Pregnancy Lifestyle 3 387 ( 0.33 ) By environmental models or questionnaires Meat intake Pregnancy Lifestyle 1 381 ( 0.32 ) By environmental models or questionnaires Meat intake Pregnancy Lifestyle 2 384 ( 0.33 ) By environmental models or questionnaires Meat intake Pregnancy Lifestyle 3 408 ( 0.35 ) By environmental models or questionnaires Moderate physical activity (t3) Pregnancy Lifestyle None or sometimes 565 ( 0.48 ) By environmental models or questionnaires Moderate physical activity (t3) Pregnancy Lifestyle Often 283 ( 0.24 ) By environmental models or questionnaires Moderate physical activity (t3) Pregnancy Lifestyle Very Often 325 ( 0.28 ) By environmental models or questionnaires Vigorous physical activity (t3) Pregnancy Lifestyle Low 514 ( 0.44 ) By environmental models or questionnaires Vigorous physical activity (t3) Pregnancy Lifestyle Medium-High 659 ( 0.56 ) By environmental models or questionnaires Vegetables intake Pregnancy Lifestyle 1 375 ( 0.32 ) By environmental models or questionnaires Vegetables intake Pregnancy Lifestyle 2 411 ( 0.35 ) By environmental models or questionnaires Vegetables intake Pregnancy Lifestyle 3 387 ( 0.33 ) By environmental models or questionnaires Bakery products intake Postnatal Lifestyle 1 409 ( 0.35 ) By environmental models or questionnaires Bakery products intake Postnatal Lifestyle 2 451 ( 0.38 ) By environmental models or questionnaires Bakery products intake Postnatal Lifestyle 3 313 ( 0.27 ) By environmental models or questionnaires Soda intake Postnatal Lifestyle 1 460 ( 0.39 ) By environmental models or questionnaires Soda intake Postnatal Lifestyle 2 418 ( 0.36 ) By environmental models or questionnaires Soda intake Postnatal Lifestyle 3 295 ( 0.25 ) By environmental models or questionnaires Breakfast cereals intake Postnatal Lifestyle 1 408 ( 0.35 ) By environmental models or questionnaires Breakfast cereals intake Postnatal Lifestyle 2 384 ( 0.33 ) By environmental models or questionnaires Breakfast cereals intake Postnatal Lifestyle 3 381 ( 0.32 ) By environmental models or questionnaires Caffeinated drinks Postnatal Lifestyle 1 746 ( 0.64 ) By environmental models or questionnaires Caffeinated drinks Postnatal Lifestyle 2 163 ( 0.14 ) By environmental models or questionnaires Caffeinated drinks Postnatal Lifestyle 3 264 ( 0.23 ) By environmental models or questionnaires Dairy products intake Postnatal Lifestyle 1 396 ( 0.34 ) By environmental models or questionnaires Dairy products intake Postnatal Lifestyle 2 402 ( 0.34 ) By environmental models or questionnaires Dairy products intake Postnatal Lifestyle 3 375 ( 0.32 ) By environmental models or questionnaires Sleep duration Postnatal Lifestyle By environmental models or questionnaires Fast-food intake Postnatal Lifestyle 1 651 ( 0.55 ) By environmental models or questionnaires Fast-food intake Postnatal Lifestyle 2 382 ( 0.33 ) By environmental models or questionnaires Fast-food intake Postnatal Lifestyle 3 140 ( 0.12 ) By environmental models or questionnaires KIDMED score Postnatal Lifestyle By environmental models or questionnaires Moderate and vigorous PA Postnatal Lifestyle By environmental models or questionnaires Organic food intake Postnatal Lifestyle 1 409 ( 0.35 ) By environmental models or questionnaires Organic food intake Postnatal Lifestyle 2 468 ( 0.4 ) By environmental models or questionnaires Organic food intake Postnatal Lifestyle 3 296 ( 0.25 ) By environmental models or questionnaires Cat at home Postnatal Lifestyle 0 967 ( 0.82 ) By environmental models or questionnaires Cat at home Postnatal Lifestyle 1 206 ( 0.18 ) By environmental models or questionnaires Dog at home Postnatal Lifestyle 0 1006 ( 0.86 ) By environmental models or questionnaires Dog at home Postnatal Lifestyle 1 167 ( 0.14 ) By environmental models or questionnaires Other pets at home Postnatal Lifestyle No 728 ( 0.62 ) By environmental models or questionnaires Other pets at home Postnatal Lifestyle Yes 445 ( 0.38 ) By environmental models or questionnaires Processed meat intake Postnatal Lifestyle 1 427 ( 0.36 ) By environmental models or questionnaires Processed meat intake Postnatal Lifestyle 2 484 ( 0.41 ) By environmental models or questionnaires Processed meat intake Postnatal Lifestyle 3 262 ( 0.22 ) By environmental models or questionnaires Readymade food intake Postnatal Lifestyle 1 581 ( 0.5 ) By environmental models or questionnaires Readymade food intake Postnatal Lifestyle 2 293 ( 0.25 ) By environmental models or questionnaires Readymade food intake Postnatal Lifestyle 3 299 ( 0.25 ) By environmental models or questionnaires Sedentary behaviour Postnatal Lifestyle By environmental models or questionnaires Bread intake Postnatal Lifestyle 1 531 ( 0.45 ) By environmental models or questionnaires Bread intake Postnatal Lifestyle 2 360 ( 0.31 ) By environmental models or questionnaires Bread intake Postnatal Lifestyle 3 282 ( 0.24 ) By environmental models or questionnaires Cereals intake Postnatal Lifestyle 1 395 ( 0.34 ) By environmental models or questionnaires Cereals intake Postnatal Lifestyle 2 394 ( 0.34 ) By environmental models or questionnaires Cereals intake Postnatal Lifestyle 3 384 ( 0.33 ) By environmental models or questionnaires Fish and seafood intake Postnatal Lifestyle 1 468 ( 0.4 ) By environmental models or questionnaires Fish and seafood intake Postnatal Lifestyle 2 356 ( 0.3 ) By environmental models or questionnaires Fish and seafood intake Postnatal Lifestyle 3 349 ( 0.3 ) By environmental models or questionnaires Fruits intake Postnatal Lifestyle 1 386 ( 0.33 ) By environmental models or questionnaires Fruits intake Postnatal Lifestyle 2 396 ( 0.34 ) By environmental models or questionnaires Fruits intake Postnatal Lifestyle 3 391 ( 0.33 ) By environmental models or questionnaires Total fat intake Postnatal Lifestyle 1 467 ( 0.4 ) By environmental models or questionnaires Total fat intake Postnatal Lifestyle 2 323 ( 0.28 ) By environmental models or questionnaires Total fat intake Postnatal Lifestyle 3 383 ( 0.33 ) By environmental models or questionnaires Meat intake Postnatal Lifestyle 1 444 ( 0.38 ) By environmental models or questionnaires Meat intake Postnatal Lifestyle 2 329 ( 0.28 ) By environmental models or questionnaires Meat intake Postnatal Lifestyle 3 400 ( 0.34 ) By environmental models or questionnaires Potatoes intake Postnatal Lifestyle 1 417 ( 0.36 ) By environmental models or questionnaires Potatoes intake Postnatal Lifestyle 2 506 ( 0.43 ) By environmental models or questionnaires Potatoes intake Postnatal Lifestyle 3 250 ( 0.21 ) By environmental models or questionnaires Sweets intake Postnatal Lifestyle 1 382 ( 0.33 ) By environmental models or questionnaires Sweets intake Postnatal Lifestyle 2 394 ( 0.34 ) By environmental models or questionnaires Sweets intake Postnatal Lifestyle 3 397 ( 0.34 ) By environmental models or questionnaires Vegetables intake Postnatal Lifestyle 1 594 ( 0.51 ) By environmental models or questionnaires Vegetables intake Postnatal Lifestyle 2 224 ( 0.19 ) By environmental models or questionnaires Vegetables intake Postnatal Lifestyle 3 355 ( 0.3 ) By environmental models or questionnaires Yogurt intake Postnatal Lifestyle 1 525 ( 0.45 ) By environmental models or questionnaires Yogurt intake Postnatal Lifestyle 2 264 ( 0.23 ) By environmental models or questionnaires Yogurt intake Postnatal Lifestyle 3 384 ( 0.33 ) By environmental models or questionnaires Humidity (preg) Pregnancy Meteorological % -None By environmental models or questionnaires Humidity (t1) Pregnancy Meteorological % -None By environmental models or questionnaires Pressure (preg) Pregnancy Meteorological Bar -None By environmental models or questionnaires Pressure (t1) Pregnancy Meteorological Bar -None By environmental models or questionnaires Temperature (preg) Pregnancy Meteorological °C -None By environmental models or questionnaires Temperature (t1) Pregnancy Meteorological °C -None By environmental models or questionnaires Blue spaces (300 m) Pregnancy Natural Spaces m -Log 0 1085 ( 0.92 ) By environmental models or questionnaires Blue spaces (300 m) Pregnancy Natural Spaces m -Log 1 88 ( 0.08 ) By environmental models or questionnaires Green spaces (300 m) Pregnancy Natural Spaces m -Log 0 292 ( 0.25 ) By environmental models or questionnaires Green spaces (300 m) Pregnancy Natural Spaces m -Log 1 881 ( 0.75 ) By environmental models or questionnaires NDVI (100 m) Pregnancy Natural Spaces NDVI -None By environmental models or questionnaires Blue spaces (300 m) Postnatal Natural Spaces m -Log 0 1077 ( 0.92 ) By environmental models or questionnaires Blue spaces (300 m) Postnatal Natural Spaces m -Log 1 96 ( 0.08 ) By environmental models or questionnaires Blue spaces (300m -school) Postnatal Natural Spaces m -Log 0 1092 ( 0.93 ) By environmental models or questionnaires Blue spaces (300m -school) Postnatal Natural Spaces m -Log 1 81 ( 0.07 ) By environmental models or questionnaires Green spaces (300 m) Postnatal Natural Spaces m -Log 0 245 ( 0.21 ) By environmental models or questionnaires Green spaces (300 m) Postnatal Natural Spaces m -Log 1 928 ( 0.79 ) By environmental models or questionnaires Green spaces (300m -school) Postnatal Natural Spaces m -Log 0 263 ( 0.22 ) By environmental models or questionnaires Green spaces (300m -school) Postnatal Natural Spaces m -Log 1 910 ( 0.78 ) By environmental models or questionnaires NDVI (100 m) Postnatal Natural Spaces NDVI -None By environmental models or questionnaires NDVI (100 m -school) Postnatal Natural Spaces NDVI -None By environmental models or questionnaires Traffic noise (24h) Pregnancy Noise 1 551 ( 0.47 ) By environmental models or questionnaires Traffic noise (24h) Pregnancy Noise 2 207 ( 0.18 ) By environmental models or questionnaires Traffic noise (24h) Pregnancy Noise 3 259 ( 0.22 ) By environmental models or questionnaires Traffic noise (24h) Pregnancy Noise 4 156 ( 0.13 ) By environmental models or questionnaires Traffic noise (night) Pregnancy Noise 1 911 ( 0.78 ) By environmental models or questionnaires Traffic noise (night) Pregnancy Noise 2 152 ( 0.13 ) By environmental models or questionnaires Traffic noise (night) Pregnancy Noise 3 72 ( 0.06 ) By environmental models or questionnaires Traffic noise (night) Pregnancy Noise 4 24 ( 0.02 ) By environmental models or questionnaires Traffic noise (night) Pregnancy Noise 5 14 ( 0.01 ) By environmental models or questionnaires Traffic noise (24h) Postnatal Noise 1 616 ( 0.53 ) By environmental models or questionnaires Traffic noise (24h) Postnatal Noise 2 190 ( 0.16 ) By environmental models or questionnaires Traffic noise (24h) Postnatal Noise 3 250 ( 0.21 ) By environmental models or questionnaires Traffic noise (24h) Postnatal Noise 4 117 ( 0.1 ) By environmental models or questionnaires Traffic noise (24h -school) Postnatal Noise dB -None By environmental models or questionnaires Traffic noise (night) Postnatal Noise 1 934 ( 0.8 ) By environmental models or questionnaires Traffic noise (night) Postnatal Noise 2 94 ( 0.08 ) By environmental models or questionnaires Traffic noise (night) Postnatal Noise 3 86 ( 0.07 ) By environmental models or questionnaires Traffic noise (night) Postnatal Noise 4 59 ( 0.05 ) By environmental models or questionnaires Family affluence score Postnatal Socio-eco capital Low 134 ( 0.11 ) By environmental models or questionnaires Family affluence score Postnatal Socio-eco capital Middle 469 ( 0.4 ) By environmental models or questionnaires Family affluence score Postnatal Socio-eco capital High 570 ( 0.49 ) By environmental models or questionnaires Contact with family and friends Postnatal Socio-eco capital Less than once a week 50 ( 0.04 ) By environmental models or questionnaires Contact with family and friends Postnatal Socio-eco capital Once a week 338 ( 0.29 ) By environmental models or questionnaires Contact with family and friends Postnatal Socio-eco capital (almost) Daily 785 ( 0.67 ) By environmental models or questionnaires House crowding Postnatal Socio-eco capital -N o n e By environmental models or questionnaires Social participation Postnatal Socio-eco capital None 667 ( 0.57 ) By environmental models or questionnaires Social participation Postnatal Socio-eco capital 1 organisation 332 ( 0.28 ) By environmental models or questionnaires Social participation Postnatal Socio-eco capital 2 or more organisations 174 ( 0.15 ) By environmental models or questionnaires Cigarette Pregnancy Tobacco Smoke -N o n e By environmental models or questionnaires Active smoking (preg) Pregnancy Tobacco Smoke no 998 ( 0.85 ) By environmental models or questionnaires Active smoking (preg) Pregnancy Tobacco Smoke yes 175 ( 0.15 ) By environmental models or questionnaires ETS Postnatal Tobacco Smoke no exposure 745 ( 0.64 ) By environmental models or questionnaires ETS Postnatal Tobacco Smoke exposure 428 ( 0.36 ) By environmental models or questionnaires Parental smoking Postnatal Tobacco Smoke neither 722 ( 0.62 ) By environmental models or questionnaires Parental smoking Postnatal Tobacco Smoke one 325 ( 0.28 ) By environmental models or questionnaires Parental smoking Postnatal Tobacco Smoke both 126 ( 0.11 ) By environmental models or questionnaires Maternal smoking (active and ETS) Pregnancy Tobacco Smoke no exposure 624 ( 0.53 ) By environmental models or questionnaires Maternal smoking (active and ETS) Pregnancy Tobacco Smoke only passive exposure 374 ( 0.32 ) By environmental models or questionnaires Maternal smoking (active and ETS) Pregnancy Tobacco Smoke smoker 175 ( 0.15 ) By environmental models or questionnaires Inverse distance to nearest road Pregnancy Traffic m -1 -None By environmental models or questionnaires Road traffic load (100 m) Pregnancy Traffic Vehm./da y.m -cube root By environmental models or questionnaires Traffic density on nearest road Pregnancy Traffic veh/day.m -cube root By environmental models or questionnaires Inverse distance to nearest road Postnatal Traffic m -1 -None By environmental models or questionnaires Road traffic load (100 m) Postnatal Traffic veh/day.m -cube root By environmental models or questionnaires Inverse distance to nearest road (school) Pregnancy Traffic m -1 -None By environmental models or questionnaires Traffic load of major roads (100 m) Pregnancy Traffic 0 915 ( 0.78 ) By environmental models or questionnaires Traffic load of major roads (100 m) Pregnancy Traffic 1 258 ( 0.22 ) By environmental models or questionnaires Traffic load of major roads (100 m -school) Pregnancy Traffic 0 884 ( 0.75 ) By environmental models or questionnaires Traffic load of major roads (100 m -school) Pregnancy Traffic 1 289 ( 0.25 ) By environmental models or questionnaires Water Brominated THMs Pregnancy Water disinfection by-products ng/L -None By environmental models or questionnaires Water Chloroform Pregnancy Water disinfection by-products ng/L -None By environmental models or questionnaires Water THMs Pregnancy Water disinfection by-products ng/L -None By environmental models or questionnaires pesticide metabolites Supplementary Material II.2: Pathways identified as relevant for zBMI relying on KEGG database, and corresponding numbers of genes and enhancer CpGs Pathway Number of genes Number of enhancer CpGs Fat digestion and absorption 41 84 Fatty acid elongation 30 93 Fatty acid degradation 44 79 Biosynthesis of unsaturated fatty acids 23 66 Vitamin digestion and absorption 24 80 Bile secretion 71 304 PPAR signalling pathway 74 202 Insulin resistance 107 478 Regulation of lipolysis in adipocytes 54 299 Adipocytokine signalling pathway 69 194 Type II diabetes mellitus 46 269 Ribosome biogenesis in eukaryotes 105 52 Thyroid hormone signalling pathway 116 524 Fanconi anemia pathway 54 51 GnRH signalling pathway 93 518 Prolactin signalling pathway 70 271 Supplementary Material II.4: Population characteristics by cohort Cohorts (number of Characteristic Mean (SD) n (%) Mean (SD) n (%) Mean (SD) n (%) Mean (SD) n (%) Mean (SD) n (%) Mean (SD) n (%) Child BMI 16.0 (2.0) 17.9 (2.7) 18.1 (3.1) 16.4 (2.3) 16.3 (1.9) 16.8 (2.6) Child sex Female 91 (45) 63 (43) 98 (46) 91 (46) 98 (46) 88 (44) Male 112 (55) 83 (57) 117 (54) 107 (54) 114 (54) 111 (56) Child age (year) 6.6 (0.2) 10.7 (0.5) 8.82 (0.6) 6.5 (0.5) 8.5 (0.5) 6.5 (0.3) Maternal education low 95 (47) 10 (7) 50 (23) 12 (6) 0 (0) 9 (5) middle 36 (18) 53 (36) 91 (42) 69 (35) 43 (20) 110 (55) high 72 (35) 83 (57) 74 (34) 117 (59) 169 (80) 80 (40) Maternal pre-pregnancy BMI (kg/m 2 ) 28.2 (5.3) 23.3 (4.2) 24 (4.7) 27.6 (5) 22.7 (3.3) 24.1 (4.3) Parity before index pregnancy 0 86 (42) 70 (48) 116 (54) 85 (43) 97 (46) 76 (38) 1 57 (28) 51 (35) 90 (42) 57 (29) 88 (42) 87 (44) (13) (21) (25) (6) (5) (21) Postnatal tobacco smoke exposure not exposed 145 (71) 108 (74) 146 (68) 115 (58) 171 (81) 60 (30) exposed 58 (29) 38 (26) 69 (32) 83 (42) 41 (19) 139 (70) Maternal age (years) 28.7 (5.8) 30.8 (4.9) 31.9 (4) 29.1 (4.9) 32.7 (3.7) 30.9 (4.8) Birthweight < 2500g 13 (6) 5 (3) 5 (2) 5 (3) 6 (3) 6 (3) 2500 to 3500g 114 (56) 92 (63) 141 (66) 75 (38) 97 (46) 143 (72) 3500 to 4000g 56 (28) 36 (25) 62 (29) 84 (42) 76 (36) 43 (22) ≥ 4000g 20 (10) 13 (9) 7 (3) 34 (17) 33 (16) 7 (4) Breastfeeding duration < 10.8 weeks 68 (33) 81 (55) 60 (28) 32 (16) 32 (15) 88 (44) 10.8 to 34.9 weeks 87 (43) 52 (36) 98 (46) 61 (31) 42 (20) 79 (40) > 34.9 weeks 48 (24) 13 (9) 57 (27) 105 (53) 138 (65) 32 (16) Parents born in the CpG site Gene Effect estimate 95% CI Uncorrected p-Value FDR-corrected p-Value cg23098018 PIK3CD 3.64 2.12 5.16 2.80x10 -6 3.20x10 -3 cg01943221 PIK3CD 4.16 2.47 5.85 1.51x10 -6 3.20x10 -3 cg06695691 SPATA5 -3.99 -5.70 -2.27 5.65x10 -6 4.30x10 -3 cg03781224 MGLL -5.79 -8.38 -3.20 1.29x10 -5 5.96x10 -3 cg25905215 NFKB1 5.23 2.88 7.57 1.31x10 -5 5.96x10 -3 cg09706586 PIK3CD 3.37 1.81 4.93 2.46x10 -5 8.19x10 -3 cg11947782 PIK3CD 3.05 1.63 4.48 2.80x10 -5 8.19x10 -3 cg18288462 ELOVL3 -3.70 -5.43 -1.96 3.14x10 -5 8.19x10 -3 cg12228229 DLG4 -9.94 -14.63 -5.24 3.58x10 -5 8.19x10 -3 cg27110374 GRB2 2.68 1.41 3.94 3.48x10 -5 8.19x10 -3 cg15526535 TNFRSF1B 2.31 1.18 3.44 6.48x10 -5 0.01 cg09900893 RPS6KA1 -4.54 -6.78 -2.31 7.10x10 -5 0.01 cg05805445 SPATA5 2.64 1.29 4.00 1.31x10 -4 0.02 cg09035699 ACSL6 2.55 1.23 3.86 1.56x10 -4 0.02 cg14841483 ACSL6 2.80 1.37 4.24 1.35x10 -4 0.02 cg14003265 TRAF2 2.74 1.33 4.15 1.51x10 -4 0.02 cg02423534 ADCY6 -2.69 -4.08 -1.31 1.37x10 -4 0.02 cg00810292 TBC1D4 1.66 0.81 2.50 1.28x10 -4 0.02 cg12085119 IRS2 3.31 1.63 4.99 1.12x10 -4 0.02 cg16702014 ABCC1 -2.13 -3.23 -1.04 1.38x10 -4 0.02 cg01312837 CREBBP -4.14 -6.27 -2.01 1.44x10 -4 0.02 cg22435313 PRKCA 2.00 0.97 3.04 1.52x10 -4 0.02 cg22284398 PRKCE -2.98 -4.53 -1.43 1.73x10 -4 0.02 cg02105211 ITPR1 -1.57 -2.39 -0.75 1.74x10 -4 0.02 cg02099877 NCEH1 -3.07 -4.68 -1.46 1.89x10 -4 0.02 cg11010552 ACSL6 -2.44 -3.72 -1.15 2.08x10 -4 0.02 cg19791262 HK3 -3.22 -4.94 -1.49 2.68x10 -4 0.02 cg18681426 ELOVL5 -4.29 -6.61 -1.98 2.78x10 -4 0.02 cg13941235 RXRA -2.13 -3.27 -0.98 2.72x10 -4 0.02 cg04056757 GRB2 3.12 1.45 4.78 2.53x10 -4 0.02 cg07298473 NR1H3 -2.34 -3.61 -1.06 3.28x10 -4 0.02 cg09877009 PRKCQ -3.72 -5.76 -1.69 3.44x10 -4 0.02 cg13832670 CREB3L2 -1.98 -3.08 -0.88 4.18x10 -4 0.03 cg23875758 SREBF1 -5.80 -9.02 -2.59 4.14x10 -4 0.03 cg00793946 PRKCE -9.05 -14.07 -4.02 4.35x10 -4 0.03 cg04730825 ABCC1 -2.47 -3.85 -1.10 4.41x10 -4 0.03 cg07217499 CACNA1C -3.87 -6.07 -1.67 5.87x10 -4 0.03 cg19542445 CACNA1C -2.98 -4.68 -1.28 5.96x10 -4 0.03 cg07382687 CREB3L2 -2.32 -3.65 -0.99 6.30x10 -4 0.03 cg12978800 PRKAG2 -2.49 -3.93 -1.06 6.75x10 -4 0.03 cg13487983 RXRA -4.39 -6.91 -1.86 6.75x10 -4 0.03 cg16401207 PRKG1 -3.91 -6.15 -1.66 6.67x10 -4 0.03 cg25338454 ITPR2 -1.43 -2.26 -0.61 6.45x10 -4 0.03 cg27340723 ADCY9 -1.91 -3.02 -0.81 7.21x10 -4 0.04 cg09265397 NOTCH3 -2.55 -4.02 -1.07 7.54x10 -4 0.04 cg23257225 ADORA1 -3.82 -6.04 -1.60 7.72x10 -4 0.04 cg19782686 SPATA5 -1.43 -2.26 -0.59 8.33x10 -4 0.04 cg18912768 ABCB11 -2.14 -3.41 -0.87 9.64x10 -4 0.04 cg18390025 ELOVL3 -1.57 -2.50 -0.64 9.75x10 -4 0.04 cg00536939 NR1H3 -1.62 -2.59 -0.66 9.59x10 -4 0.04 cg16942632 CAMKK2 -1.19 -1.89 -0.49 8.96x10 -4 0.04 cg19982668 MAP3K3 -2.32 -3.70 -0.95 9.56x10 -4 0.04 cg24961795 PLCG1 1.67 0.68 2.66 9.29x10 -4 0.04 cg13092108 RPS6KA1 -2.97 -4.74 -1.20 1.03x10 -3 0.04 cg09473249 ABCC1 -6.15 -9.84 -2.46 1.11x10 -3 0.04 cg12005026 PTEN -2.37 -3.80 -0.94 1.22x10 -3 0.05 cg04885396 ABCC1 -1.71 -2.76 -0.67 1.28x10 -3 0.05 cg23369234 CACNA1C -5.80 -9.34 -2.26 1.35x10 -3 0.05 CpG sites Gene Exposure Effect estimate CI 95% Uncorrected p-Value FDR corrected cg09035699 ACSL6 Copper -Postnatal 0.01 8.77x10 -3 0.02 4.23x10 -11 5.66x10 -7 cg12085119 IRS2 Copper -Postnatal 9.30x10 -3 6.42x10 -3 0.01 3.40x10 -10 cg22435313 PRKCA Copper -Postnatal 0.01 0.01 0.02 4.19x10 -10 cg07217499 CACNA1C Copper -Postnatal -6.85x10 -3 -9.05x10 -3 -4.65x10 -3 1.39x10 -9 cg09365147 REV3L Copper -Postnatal -0.02 -0.03 -0.02 1.19x10 -8 cg04056757 GRB2 Copper -Postnatal 8.37x10 -3 5.46x10 -3 0.01 2.14x10 -8 cg05004855 CAMK2A Copper -Postnatal -6.79x10 -3 -9.19x10 -3 -4.39x10 -3 3.58x10 -8 cg24961795 PLCG1 Copper -Postnatal 0.01 9.02x10 -3 0.02 3.42x10 -8 cg05805445 SPATA5 Copper -Postnatal 0.01 6.50x10 -3 0.01 4.23x10 -8 cg18537222 PPARG Copper -Postnatal -0.02 -0.03 -0.01 5.71x10 -8 6.96x10 -5 cg07298473 NR1H3 Copper -Postnatal -0.01 -0.01 -6.81x10 -3 5.70x10 -8 6.96x10 -5 cg23098018 PIK3CD Copper -Postnatal 8.54x10 -3 5.36x10 -3 0.01 1.59x10 -7 cg18681426 ELOVL5 Copper -Postnatal -5.66x10 -3 -7.76x10 -3 -3.56x10 -3 1.53x10 -7 cg19782686 SPATA5 Copper -Postnatal -0.02 -0.02 -9.68x10 -3 2.05x10 -7 cg12005026 PTEN Copper -Postnatal -8.98x10 -3 -0.01 -5.59x10 -3 2.51x10 -7 2.24x10 -4 cg02105211 ITPR1 Copper -Postnatal -0.02 -0.02 -9.68x10 -3 2.79x10 -7 cg11010552 ACSL6 Copper -Postnatal -9.91x10 -3 -0.01 -6.13x10 -3 3.17x10 -7 cg27110374 GRB2 Copper -Postnatal 1.00x10 -2 6.16x10 -3 0.01 3.60x10 -7 2.68x10 -4 cg04730825 ABCC1 Copper -Postnatal -9.05x10 -3 -0.01 -5.51x10 -3 5.99x10 -7 4.22x10 -4 cg18390025 ELOVL3 Copper -Postnatal -0.01 -0.02 -8.08x10 -3 6.80x10 -7 4.55x10 -4 cg00536939 NR1H3 Copper -Postnatal -0.01 -0.02 -7.71x10 -3 8.67x10 -7 cg01943221 PIK3CD Copper -Postnatal 7.16x10 -3 4.30x10 -3 0.01 1.00x10 -6 cg15526535 TNFRSF1B BPA -Postnatal -8.70x10 -3 -0.01 -5.23x10 -3 1.01x10 -6 cg05379597 CAMK2G Copper -Postnatal -9.99x10 -3 -0.01 -6.01x10 -3 9.92x10 -7 cg14003265 TRAF2 BPA -Postnatal -6.92x10 -3 -9.70x10 -3 -4.14x10 -3 1.16x10 -6 cg12085119 IRS2 BPA -Postnatal -4.94x10 -3 -7.29x10 -3 -2.59x10 -3 3.92x10 -5 9.89x10 -3 6.22x10 -4 cg03781224 MGLL Copper -Postnatal -3.93x10 -3 -5.81x10 -3 -2.06x10 -3 4.04x10 -5 9.89x10 -3 5.64x10 -4 cg23369234 CACNA1C Copper -Postnatal -2.94x10 -3 -4.33x10 -3 -1.56x10 -3 3.14x10 -5 8.08x10 -3 cg19982668 MAP3K3 PFOS -Postnatal 7.59x10 -3 3.50x10 -3 0.01 2.89x10 -4 0.05 5.64x10 -4 cg24961795 PLCG1 BPA -Postnatal -8.54x10 -3 -0.01 -4.54x10 -3 3.04x10 -5 8.01x10 -3 cg03781224 MGLL PFOS -Postnatal 4.00x10 -3 1.84x10 -3 6.16x10 -3 2.93x10 -4 0.05 5.64x10 -4 cg04056757 GRB2 BPA -Postnatal -5.05x10 -3 -7.41x10 -3 -2.68x10 -3 3.05x10 -5 8.01x10 -3 cg24961795 PLCG1 PFOS -Postnatal -0.01 -0.02 -4.99x10 -3 2.46x10 -4 0.04 5.53x10 -4 cg07298473 NR1H3 BPA -Postnatal 6.77x10 -3 3.67x10 -3 9.87x10 -3 1.94x10 -5 5.65x10 -3 cg13092108 RPS6KA1 Copper -Postnatal -6.00x10 -3 -8.76x10 -3 -3.24x10 -3 2.19x10 -5 6.12x10 -3 cg09035699 ACSL6 BPA -Postnatal -6.50x10 -3 -9.49x10 -3 -3.51x10 -3 2.19x10 -5 6.12x10 -3 cg00810292 TBC1D4 Copper -Postnatal 0.01 6.54x10 -3 0.02 3.01x10 -5 8.01x10 -3 cg27340723 ADCY9 BPA -Postnatal 6.80x10 -3 3.22x10 -3 0.01 2.01x10 -4 cg25905215 NFKB1 Copper -Postnatal 3.94x10 -3 1.86x10 -3 6.01x10 -3 2.08x10 -4 cg23098018 PIK3CD Pregnancy 0.03 0.01 0.04 2.16x10 -4 0.04 Humidity (preg) -being an enhancer 0.04 Neither belonging to a pathway nor 384,234 1760 (0.46%) 0.04 2.49x10 -4 cg13832670 CREB3L2 Copper -Postnatal -9.75x10 -3 -0.01 -5.30x10 -3 1.83x10 -5 5.43x10 -3 cg19542445 CACNA1C Copper -Postnatal -5.49x10 -3 -8.37x10 -3 -2.60x10 -3 2.01x10 -4 0.04 Belonging to a pathway AND enhancer 2,284 28 (1.22%) 2.34x10 -4 cg16702014 ABCC1 Copper -Postnatal -9.82x10 -3 -0.01 -5.37x10 -3 1.63x10 -5 5.07x10 -3 cg19982668 MAP3K3 BPA -Postnatal 6.30x10 -3 3.43x10 -3 9.17x10 -3 1.78x10 -5 5.42x10 -3 cg13832670 CREB3L2 BPA -Postnatal 6.90x10 -3 3.30x10 -3 0.01 1.77x10 -4 cg19782686 SPATA5 PFOS -Postnatal 0.01 6.16x10 -3 0.02 1.81x10 -4 0.03 All 386,518 1788 (0.46%) 0.03 1.96x10 -4 cg18390025 ELOVL3 BPA -Postnatal 9.34x10 -3 5.11x10 -3 0.01 1.63x10 -5 5.07x10 -3 cg01312837 CREBBP PFOS -Postnatal 5.11x10 -3 2.47x10 -3 7.75x10 -3 1.53x10 -4 0.03 Benjamini Hochberg correction 1.64x10 -4 cg18912768 ABCB11 Copper -Postnatal -8.58x10 -3 -0.01 -4.72x10 -3 1.38x10 -5 4.50x10 -3 cg22284398 PRKCE PFOS -Postnatal 7.05x10 -3 3.43x10 -3 0.01 1.43x10 -4 0.03 MWAS on the whole methylome -1.64x10 -4 cg22284398 PRKCE BPA -Postnatal 5.79x10 -3 3.26x10 -3 8.33x10 -3 8.19x10 -6 2.89x10 -3 cg02099877 NCEH1 Copper -Postnatal -6.81x10 -3 -9.84x10 -3 -3.78x10 -3 1.14x10 -5 3.93x10 -3 cg15526535 TNFRSF1B Copper -Postnatal 9.64x10 -3 5.33x10 -3 0.01 1.23x10 -5 4.12x10 -3 cg19791262 HK3 Copper -Postnatal -5.59x10 -3 -8.42x10 -3 -2.76x10 -3 1.14x10 -4 cg19791262 HK3 PFOS -Postnatal 6.35x10 -3 3.09x10 -3 9.61x10 -3 1.38x10 -4 0.03 cg23875758 SREBF1 Copper -Postnatal -2.98x10 -3 -4.50x10 -3 -1.45x10 -3 1.37x10 -4 0.03 Number of CpGs Number (%) of CpGs selected by Supplementary Material II.9: CpGs 0.02 6.29x10 -5 cg27340723 ADCY9 Copper -Postnatal -0.01 -0.01 -5.78x10 -3 6.42x10 -6 2.33x10 -3 cg05379597 CAMK2G BPA -Postnatal 6.41x10 -3 3.18x10 -3 9.64x10 -3 1.05x10 -4 0.02 5.99x10 -5 cg16401207 PRKG1 Copper -Postnatal -5.13x10 -3 -7.30x10 -3 -2.96x10 -3 3.92x10 -6 1.46x10 -3 cg07382687 CREB3L2 Copper -Postnatal -7.35x10 -3 -0.01 -3.67x10 -3 9.41x10 -5 0.02 5.99x10 -5 cg02423534 ADCY6 Copper -Postnatal -8.34x10 -3 -0.01 -4.82x10 -3 3.79x10 -6 1.45x10 -3 cg06695691 SPATA5 Copper -Postnatal -5.67x10 -3 -8.50x10 -3 -2.84x10 -3 8.89x10 -5 0.02 breastfeeding duration. 4.77x10 -5 cg09706586 PIK3CD Copper -Postnatal 7.41x10 -3 4.30x10 -3 0.01 3.30x10 -6 1.30x10 -3 cg05004855 CAMK2A PFOS -Postnatal 5.59x10 -3 2.81x10 -3 8.37x10 -3 8.41x10 -5 0.02 conception, ethnicity, child age and child sex and additionally only for the postnatal model for birth weight, passive smoking during childhood, 3.19x10 -5 cg11947782 PIK3CD Copper -Postnatal 8.19x10 -3 4.78x10 -3 0.01 2.68x10 -6 1.09x10 -3 cg13092108 RPS6KA1 PFOS -Postnatal 6.43x10 -3 3.24x10 -3 9.61x10 -3 7.88x10 -5 0.02 exposome variables) and maternal BMI, maternal education, maternal smoking during pregnancy, parental country, cohort, parity, trimester of 4.64x10 -6 cg01312837 CREBBP Copper -Postnatal -5.52x10 -3 -7.80x10 -3 -3.23x10 -3 2.45x10 -6 1.03x10 -3 cg14841483 ACSL6 BPA -Postnatal -5.61x10 -3 -8.36x10 -3 -2.86x10 -3 6.52x10 -5 0.01 * Adjusted change in mean zBMI for each increase by 1 in transformed exposure level. Models were adjusted for all (respectively prenatal and postnatal 1.87x10 -6 cg19982668 MAP3K3 Copper -Postnatal -8.60x10 -3 -0.01 -5.06x10 -3 2.17x10 -6 9.36x10 -4 cg04730825 ABCC1 PFOS -Postnatal 8.37x10 -3 4.28x10 -3 0.01 6.34x10 -5 0.01 Organochlorines HCB -Postnatal ng/g lipids Log2 -0.44 -0.57 -0.31 5.65x10 -11 1.44x10 -8 1.87x10 -6 cg04885396 ABCC1 Copper -Postnatal -0.01 -0.02 -6.79x10 -3 1.72x10 -6 8.18x10 -4 cg16942632 CAMKK2 Copper -Postnatal -0.02 -0.02 -0.01 1.92x10 -6 8.56x10 -4 cg18537222 PPARG BPA -Postnatal 0.01 6.61x10 -3 0.02 4.66x10 -5 cg22435313 PRKCA PFOS -Postnatal -0.01 -0.02 -5.86x10 -3 4.79x10 -5 0.01 Metals Copper -Postnatal μg/L Log2 0.18 0.10 0.27 2.48x10 -5 3.16x10 -3 0.01 p -Value cg22284398 PRKCE Copper -Postnatal -7.72x10 -3 -0.01 -4.59x10 -3 1.53x10 -6 7.61x10 -4 cg25338454 ITPR2 Copper -Postnatal -0.01 -0.02 -8.58x10 -3 1.77x10 -6 8.18x10 -4 cg07382687 CREB3L2 PFOS -Postnatal 8.85x10 -3 4.62x10 -3 0.01 4.38x10 -5 cg09900893 RPS6KA1 Copper -Postnatal -4.54x10 -3 -6.72x10 -3 -2.36x10 -3 0.01 variable mation estimate* p -value p -value 4.74x10 -5 Exposure group Exposure Unit Transfor-Effect 95%CI Uncorrected FDR-corrected 0.01 individuals) BIB EDEN INMA KANC MOBA RHEA only passive exposure 39 (19) 16 (11) 84 (39) 84 (42) 12 (6) 139 (70) smoker 27 31 53 12 10 42 Pakistani 79 (39) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) Other 17 (8) 0 (0) 0 (0) 0 (0) 1 (0) 0 (0) Supplementary Material II.6: Adjusted associations between the reduced methylome (2284 CpGs) and zBMI in 1,173 children from the HELIX cohort (ExWAS model, step b) of the Meet-in-the-Middle approach). Results are presented only for CpGs with a (FDR-corrected for multiple hypothesis testing) p-value below 0.05 in ExWAS. CpG site Gene Effect estimate 95% CI Uncorrected p-Value FDR-corrected p-Value cg05004855 CAMK2A -3.84 -5.86 -1.82 2.03x10 -4 0.02 cg09365147 REV3L -1.18 -1.80 -0.56 2.09x10 -4 0.02 CpG site Gene Effect estimate 95% CI Uncorrected p-Value FDR-corrected p-Value cg18537222 PPARG -1.08 -1.73 -0.43 1.08x10 -3 0.04 cg05379597 CAMK2G -2.04 -3.26 -0.81 1.12x10 -3 0.04 Supplementary Material II.7: Adjusted associations between exposures and CpGs associated with childhood zBMI in 1,173 children from HELIX cohort (ExWAS model, step c) of the Meet-in-the-Middle approach). Results are presented only for CpGs with a (FDR-corrected for multiple hypothesis testing) p-value below 0.05 in ExWAS. CpG sites Gene Exposure Effect estimate CI 95% Uncorrected p-Value FDR corrected p -Value cg14841483 ACSL6 Copper -Postnatal 8.41x10 -3 5.02x10 -3 0.01 1.28x10 -6 6.60x10 -4 CpG sites Gene Exposure Effect estimate CI 95% Uncorrected p-Value cg09265397 NOTCH3 Copper -Postnatal -6.95x10 -3 -0.01 -3.64x10 -3 4.06x10 -5 9.89x10 -3 (FDR-corrected for multiple hypothesis testing) p-value lower than 0.05. p -Value cohort (2 multivariate agnostic approaches, one prenatal, one postnatal, ignoring the methylome). Results are presented only for exposures with a FDR corrected Supplementary Material II.8: Sensitivity Analysis I: adjusted associations between the whole exposome and zBMI in 1,173 children from the HELIX Supplementary Material II.10:
	2 or more country of inclusion	60 (30)	25 (17)	9 (4)	56 (28)	75 77 78 79 80 81 95	27 (13)	36 (18)
	conception Trimester of None	(40) 81	0 (0)	1 (0)	8 (4)		(20) 42	2 (1)
	January-March Only one	73 (36) (15) 31	51 (35) (7) 10	46 (21) (5) 10	63 (32) 0 (0)		75 (35) (0) 1	(30) 60 6 (3)
	April-June Both	20 (10) 91 (45)	30 (21) 136 (93)	48 (22) 204 (95)	28 (14) 190 (96)		43 (20) 169 (80)	191 65 (33) (96)
	July-Ethnicity	34	24	60	64		35	43
	September African	(17) 7	(16) 0 (0)	(28) 0 (0)	(32) 0 (0)		(17) 0	(22) 0 (0)
	October-	76 (3)	41	61	43		59 (0)	31
	December Asian	(37) 13	(28) 0 (0)	(28) 0 (0)	(22) 0 (0)		(28) 6	(16) 0 (0)
	Maternal	73 (6)					(3)	
	smoking European status during pregnancy ancestry	(36) 87 (43)	146 (100)	215 (100)	198 (100)		203 (96)	199 (100)
	no exposure American Native	137 (67) (0) 0	99 (68) 0 (0)	78 (36) 0 (0)	102 (52) 0 (0)		190 (90) (1) 2	(9) 18 0 (0)
				82				

  Adjusted change in mean zBMI for each increase by 1 in cell-type level. Models were adjusted for maternal BMI, maternal education, maternal smoking during pregnancy, parental country, cohort, parity, trimester of conception, ethnicity, child age and child sex and additionally only for postnatal exposures birth weight, passive smoking during childhood, breastfeeding duration. Adjusted change in transformed exposure for each increase by 1 in cell-type level. Models were adjusted for maternal BMI, maternal education, maternal smoking during pregnancy, parental country, cohort, parity, trimester of conception, ethnicity, child age and child sex and additionally only for postnatal exposures birth weight, passive smoking during childhood, breastfeeding duration.

	NK-cells B-cells CD4+ T-cells CD8+ T-cells Granulocytes Monocytes * B. Cell types CD4+ T-cells Granulocytes CD8+ T-cells Granulocytes CD4+ T-cells Exposure group Metals Phenols * C. Meteorological	Effect estimate* 0.87 -0.33 -2.22 -1.91 0.87 3.11 Exposure variable Copper -Postnatal Copper -Postnatal Copper -Postnatal BPA -Postnatal Humidity -Pregnancy Exposure variable Unit Transformation Effect estimate* 95%CI Unadjusted p-Value -0.82 2.56 -2.19 1.53 -3.31 -1.13 7.00x10 -5 0.31 0.72 -3.35 -0.47 9.20x10 -3 0.23 1.51 7.86x10 -3 0.70 5.53 0.01 Effect estimate* 95%CI Unadjusted p-Value -0.01 -0.02 -8.76x10 -3 6.56x10 -9 0.02 0.01 0.03 8.50x10 -8 -7.68x10 -3 -0.01 -4.27x10 -3 1.09x10 -5 -0.01 -0.02 -6.96x10 -3 3.36x10 -5 -0.04 -0.06 -0.02 2.36x10 -4 95%CI Unadjusted p-FDR adjusted p -Value 4.20x10 -4 0.38 0.72 0.02 0.02 0.02 FDR adjusted p -Value 5.67x10 -6 3.67x10 -5 3.13x10 -3 7.26x10 -3 0.04 Value FDR adjusted p -Value Copper -Postnatal μg/L Log2 0.22 0.14 0.30 3.57x10 -7 1.07x10 -6 BPA -Postnatal μg/g Log2 -0.07 -0.14 2.83x10 -4 0.05 0.08 Humidity -Pregnancy % None 0.05 -0.34 0.44 0.81 0.81

* Adjusted change in mean zBMI for each increase by 1 in transformed exposure level. Models were adjusted for maternal BMI, maternal education, maternal smoking during pregnancy, parental country, cohort, parity, trimester of conception, ethnicity, child age and child sex and additionally only for postnatal exposures birth weight, passive smoking during childhood, breastfeeding duration.

Table III

 III 

	Exposures	Effect	95%Confidence	Uncorrected	FDR
		estimate	Interval		p-Value	corrected
						p -Value
	Alcohol intake -	1.96	0.44	3.48	0.0118	1
	Pregnancy					
	ETPA -Postnatal	-0.62	-1.11	-0.14	0.0122	1
	PFOA -Pregnancy	-1.39	-2.68	-0.11	0.0336	1
	House crowding -	-0.78	-1.51	-0.06	0.0342	1
	Postnatal					
	Copper -Postnatal	-5.72	-11.22	-0.23	0.0412	1
	Vegetables intake -	0.81	0.01	1.61	0.0475	1
	Postnatal					

.2: Agnostic ExWAS corrected for relevant potential confounders and corrected for multiple testing relating the exposome and child FEV1.

Table IV .

 IV 1: Details of the methods compared in the simulation study.

	Name	Description	References	Name
				used in
				figure
	Agnostic methods			

Table IV .

 IV 3: Number of hits (average mean and standard error across scenarios), sensitivity to find the exposures predicted by Y (average mean and standard error across scenarios) under causal structures D and E. For each performance indicator and for each causal structure, an * indicates the method minimizing the indicator.

	Structure	Causal structure D	Causal structure E
	Methods	Number of hits	Sensitivity to	Number of hits	Sensitivity to
		(SD)	predicted	(SD)	predicted
			exposures (SD)		exposures (SD)
	Agnostic methods				
	ExWAS	6.622 (1.242)	0.554 (0.052)	0.32 (0.909)	-
	DSA	5.935 (2.625)	0.182 (0.022)	0.13 (0.661)	-
	LASSO	41.4 (17.483)	0.463 (0.124)	2.56 (5.472)	-
	Methods incorporating information from the intermediary layer		
	oMITM-ExWAS	0.014 (0.128)	0.001 (0.008)	0 (0)*	-
	oMITM-DSA	0.003 (0.022)	2x10 -4 (0.002)	0 (0)*	-
	Mediation	1.214 (0.4)	0.13 (0.034)	0 (0)*	-
	Control methods				
	ExWAS on subsample	0.002 (0.015)*	8x10 -5 (0.001)*	0 (0)*	-
	oMITM steps 1 and 2	0.026 (0.219)	0.001 (0.013)	0 (0)*	-
	Both oMITM methods selected no exposure most of the time (Figure IV.6 and Table IV.2Table

  .4). Among the methods using the intermediary variable M, oMITM and MITM without adjustment on Y both IV: A simulation study of approaches relying on intermediate high-dimension data to decipher causal relationships between the exposome and health 139 TableIV.4: Number of true causal links detected, false causal links detected, true causal links non-detected, false causal links non-detected by different designs among the 25 causal structures considering all possible links between 3 unidimensional layers. The analysis has been made using causal inference theory and the results for each of all 25 causal structures are detailed in Supplementary TableV.4 The columns giving true results (i.e. true positive or true negative) are displayed in bold. *: a design similar to our oMITM design but without adjusting on Y at step b). This design corresponds to Meet-inthe-Middle commonly implemented in the literature.

		True causal link	No causal link		Total	
						True results	False	All
	Methods	Association detected (true positive)	No association detected (false negative)	Association detected (false positive)	No association detected (true negative)	(true negative and true positive)	results (false negative and false	
							negative)	
	Test of association	9 (36%)	0 (0%)	10 (40%)	6 (24%)	15 (60%)	10 (40%)	25 (100%)
	oMITM	7 (28%)	2 (8%)	6 (24%)	10 (40%)	17 (68%)	8 (32%)	25 (100%)
	Mediation	5 (20%)	4 (16%)	8 (32%)	8 (32%)	13 (52%)	12 (48%)	25 (100%)
	MITM							
	without adjusting on	7 (28%)	2 (8%)	8 (32%)	8 (32%)	13 (52%)	12 (48%)	25 (100%)
	Y*							

displayed 2 false negatives (structures J and K, Supplementary Table

V

.4). The mediation test showed 2 additional false negatives (Table

IV

.4): in particular, contrarily to oMITM, it was not able to detect the structure A in which E affects Y indirectly through M (structure A, Supplementary Table

V

.4, Figure IV.1)

. Coming to false positives, oMITM was the design minimizing the false positive findings (6 versus at least 8 for any other design). MITM method led to false positives in two situations of reverse causality to which oMITM was not sensitive (structures D and Q, Supplementary Table

4

). The mediation method displayed similarly to MITM 8 false positives.

Overall, oMITM was the design giving true results (true positive or true negative) in the highest number of causal structures (17, versus 15 for tests of association ignoring M and for MITM not adjusted for Y, and 13 for mediation, Table

IV

.4)

. CHAPTER

  CHAPTER IV: A simulation study of approaches relying on intermediate high-dimension data to decipher causal relationships between the exposome and health 149 Supplementary Table IV.2: Characteristics of scenarios for structure A, B and C. For each structure, various scenarios were simulated using the range of parameters detailed in Supplementary Table 1. Variabilities of Y explained by respectively E and M and mean variability of one intermediary variable affected by E explained by E were measured for each scenario, and descriptive statistics for these measures were computed across structure. CHAPTER IV: A simulation study of approaches relying on intermediate high-dimension data to decipher causal relationships between the exposome and health 150 Supplementary Table IV.3: Characteristics of the scenarios simulated for structure D Various scenarios were simulated under structure D using the range of parameters detailed in Supplementary Table 1. Average variability of an intermediary variable affected by Y explained by Y and Average variability of an exposure affected by Y explained by Y were measured for each scenario, and descriptive statistics for these measures were computed across structure. CHAPTER IV: A simulation study of approaches relying on intermediate high-dimension data to decipher causal relationships between the exposome and health 151 Supplementary Table IV.4: DAG analysis for different designs when considering all possible links between 3 unidimensional layers (e.g. an exposure, a CpG site, and BMI) according to causal inference theory. A simulation study of approaches relying on intermediate high-dimension data to decipher causal relationships between the exposome and health 154 Supplementary Table IV.5: Details of causal inference analysis for the oMITM design applied to 3 variables (e.g. an exposure, a CpG site, and BMI) according to causal inference theory in all possible causal structures.

	Structure A C Mean variability of one intermediary variable affected by E explained by E G C No n bias) F Parameters Meaning of parameters Range of parameters Theoretical number of scenarios Effective number of scenarios tested* n_EE->M->Y Numbers of exposures having an effect on at least one intermediary variable which has an effect on Y 1, 3, 10, 25 384 384 n_EE->Y Number of exposures having a direct effect on Y 0 n_EE->M Numbers of exposures having an effect on at least one intermediary variable having no effect on Y 0 n_M-E>M Number of intermediary variables affected by an exposure having no effect on Y 0 n_ME->M->Y Number of intermediary variables affected by an exposure and having an effect on Y 10, 18, 25 ,100 n_MM->Y Number of intermediary variables non-affected by an exposure having an effect on Y 0 R2 Total variability of Y explained by E and M 0.01, 0.05, 0.1, 0.4 β an exposure on an β' an intermediary variable on Y 0.01 β'' Number of intermediary an exposure on Y 0 effect on Y Coefficient of the effect of n_ME->M->Y Number of intermediary exposure and having an 10, 18, 25, 100 variables affected by an 152 Coefficient of the effect of Y intermediary variable 0.0001, 0.001, 0.01, 0.1, 0.5 n_M-E>M exposure having no effect on 0 variables affected by an Coefficient of the effect of n_ME->M->Y Number of intermediary variables affected by an exposure and having an effect on Y 0 n_MM->Y Number of intermediary variables non-affected by an exposure having an effect on Y 10, 18, 25, 100 R 2 Total variability of Y explained by E and M 0.01, 0.05, 0.1, 0.4 β Coefficient of the effect of an exposure on an intermediary variable 0.0001, 0.001, 0.01, 0.1, 0.5 β' Coefficient of the effect of an intermediary variable on Y 0.01 β'' exposure on Y 0 n_EE->M->Y Numbers of exposures having an effect on at least one intermediary variable which has an effect on Y 1, 3, 10, 25 1600 900 n_EE->Y Number of exposures having a direct effect on Y 1, 3, 10, 25 n_EE->Y U n_EE->M->Y Number of exposures having both a direct effect on Y and an effect on at least one intermediary variable which has an effect on Y n_EE->Y n_EE->M Numbers of exposures having an effect on at least one intermediary variable having no effect on Y 0 Number of intermediary 3.87 x10 -4 5.07 x10 -4 0.009 0.041 0.013 0.189 0.000 0.000 0.000 0.000 0.000 0.000 3.869 x10 -4 Yes Yes Yes Yes No Yes Yes Yes No Yes Yes No Yes No (selection bias) Yes Yes Yes (uncorrected for confounder) Yes No for confounder) No Yes (uncorrected Yes F B Yes C by M Coefficient of the effect of an D n_MM->Y Number of intermediary variables having an effect on Y 0 576 576 n_EY->E Number of exposures affected by Y 1, 3, 10, 25 β' Coefficient of the effect of an intermediary variable on the outcome 0 γ Coefficient of a non-zero effect of the outcome on an intermediary variable 0.0001, 0.001, 0.01, 0.1, 0.5,2 γ' Coefficient of the effect of the outcome on an exposure 0.0001, 0.001, 0.01, 0.1, 0.5, 2 E None N.A. N.A. 1 1 Causal structure Causal structure A Causal structure B Descriptive statistics* Min. 25 th centile Median Mean 75 th centile Max. Min. 25 th centile Median Mean 75 th centile Max. Min. Total variability of Y explained by E 3.46 x10 -4 6.49 x10 -4 0.004 0.016 0.010 0.289 4.34 x10 -4 0.004 0.015 0.073 0.069 0.409 7.570 x10 -4 0.004 5.073 x10 -4 (selection 0.009 0.041 0.013 Yes Yes Yes No bias) Yes Yes Yes Yes Causal structure C 25 th centile Median Mean 75 th centile 0.013 0.062 0.059 Total variability of Y explained 0.014 0.054 0.098 0.157 0.206 0.428 0.004 0.011 0.043 0.087 0.100 0.428 0.005 0.020 0.057 0.112 0.111 Yes No No No n bias) Yes Yes Min. 25 th centile Median Mean 75 th .centile Max. Average variability of an intermediary variable affected by Y explained by Y* 4.18Ex10 -4 4.48 x10 -4 0.006 0.170 0.204 0.804 Average variability of an exposure affected No Yes Yes Yes No No A B by Y explained by Y* 3.72 x10 -4 4.94 x10 -4 0.019 0.295 0.628 0.988 DAG Causal link from E to Y Mediation from E to Y Association between E and Y Detected by oMITM Detected by MITM (without correcting on Y) Detected by mediation analysis A Yes No Yes Yes Yes Yes H Yes No Yes Yes Yes Yes I G Yes No Yes (uncorrected for confounder) No Yes Yes CHAPTER IV: DAG Causal link from E to Y Mediation from E to Y Bias in oMITM step 1 Bias in oMITM step 2 Selected as to be tested power) power) perfect perfect (assuming (assuming in oMITM Detected in oMITM H Yes Yes No No (selection bias)	0.189 Yes Yes Yes Yes Max. 0.406 Yes 0.427 Yes E and Y) Wanted to detect (i.e. direct or indirect causal link between E and Y) Yes Yes Yes between link causal indirect Wanted to detect (i.e. direct or
	B	n_EE->M->Y n_MM->Y n_EE->Y R2 n_EE->M n_MY->M β n_M-E>M β' β''	Numbers of exposures having variables non-affected by an exposure having an effect on an effect on at least one Y intermediary variable which has an effect on Y Total variability of Y explained by E and M Number of exposures having a direct effect on Y Number of intermediary variables affected by Y Numbers of exposures having an effect on at least one intermediary variable having Coefficient of the effect of an exposure on an intermediary variable no effect on Y Coefficient of the effect of Number of intermediary an intermediary variable on variables affected by an Y exposure having no effect on Y Coefficient of the effect of an exposure on Y	0 0 0.01, 0.05, 0.1, 0.4 1, 3, 10, 25 10, 18, 25, 100 0 0.0001, 0.001, 0.01, 0.1, 0.5 0.01 0 0.0001, 0.001, 0.01, 0.1, 0.5	320	180

**

Table V .

 V 1: Implementation details for ExWAS, Elastic-Net and DSA.

	Method	Description of the method	References
	name		
	ExWAS	Univariate regressions corrected for multiple testing,	
		known as ExWAS (Exposome-Wide Association	
		Study). Benjamini-Hochberg procedure	

  air exposures, lifestyle factors, meteorological data, natural spaces quantification, noise, traffic, socio-economic capital and concentrations of disinfection by-products in drinking water. Among them, we retained the 173 variables corresponding to quantitative exposures. Details of exposome and covariates assessment[START_REF] Tamayo | The early-life exposome: description and patterns in six European countries[END_REF], as well as relevant adjustment factors selection[START_REF] Cadiou | Using methylome data to inform exposome-health association studies: An application to the identification of environmental drivers of child body mass index[END_REF] have been published elsewhere. In statistical analysis, an age-and-

involved in the Helix project. 216 prenatal (measured during mother pregnancy) and postnatal exposures (measured at the time of the child clinical examination) were considered, measured by biomarkers in urine or blood or by environmental models. Exposures belonged to 15 families: metals, organochlorines, organophosphate pesticides, polybrominated diphenyl ethers (PBDE), perfluorinated alkylated substances (PFAS), phenolic compounds, phthalates, built environment exposures, indoor sex-standardized z-score (de Onis et al., 2007), named hereafter zBMI, was used to take into account the age-related shift in BMI in childhood. Adjustment factors were taken into account by preliminarily computing residuals of zBMI in a multivariate model considering all relevant

  , which would be identified in prospective studies possibly relying on other biological matrices to assess PCBs. Additional results for the analysis on the pregnancy exposome are detailed in Supplementary Material V.1, Supplementary Table V.3 and Supplementary Figure V.4. Table V.3: Results of the application of default LASSO and various LASSO stabilization methods to relate an exposome of 173 prenatal and postnatal quantitative exposures to zBMI in 1301 mother-child pairs of the Helix cohorts.

	Stabilization method	Sorense n index	Number of selected exposures*	Computation time (in seconds)*	Number of exposures selected at least once
	None (default				
	LASSO)	0.957	58.3	1.16	68
	LASSO_1SE	0.752	12.3	1.32	20
	CV1	0.998	58.1	194.34	59
	CV2	1.000	58.0	114.64	58
	Meinshausen1	1.000	5.0	14.32	5
	Meinshausen2	0.492	1.0	14.58	2
	Mix	0.910	21.5	172.21	28
	* computed after repetition of each method 15 times.	

  Some insights regarding the instability of variable-selection algorithms used for causal inference purposes in epidemiology 200 Supplementary Table V.1: Distribution of stability index, sensitivity and False Discovery Proportion (FDP), across all scenarios and categorized according to the total variability explained by the true predictors (>1 and ≤1) for different stabilization methods of LASSO.

				All scenarios					Scenarios with R 2 ≤0.1					Scenarios with R 2 >0.1		
			FDP		Sensitivity	Stability index		FDP		Sensitivity	Stability index		FDP			Sensitivity			Stability index
		Mean SD Min Max Mean SD Min Max Mean SD Min Max	Mean SD Min Max Mean SD Min Max Mean SD Min Max	Mean	SD	Min	Max	Mean	SD	Min	Max	Mean	SD	Min	Max
	Default LASSO	0.64	0.11 0.38 0.76	0.63	0.42 0.00 1.00	0.85	0.09 0.71 0.98	0.58	0.12 0.38 0.76	0.34	0.38 0.00 1.00	0.80	0.07 0.71 0.94	0.70	0.06	0.61	0.76	0.97	0.06	0.77	1.00	0.92	0.05	0.84	0.98
	LASSO -1 SE	0.14	0.18 0.00 0.43	0.51	0.46 0.00 1.00	0.95	0.09 0.69 1.00	0.05	0.11 0.00 0.42	0.15	0.30 0.00 1.00	0.93	0.12 0.69 1.00	0.25	0.18	0.00	0.43	0.94	0.12	0.53	1.00	0.97	0.02	0.91	1.00
	CV1	0.78	0.11 0.61 1.00	0.63	0.42 0.00 1.00	0.97	0.03 0.91 1.00	0.83	0.11 0.62 1.00	0.35	0.38 0.00 1.00	0.96	0.03 0.91 0.99	0.71	0.06	0.61	0.77	0.97	0.06	0.77	1.00	0.99	0.01	0.98	1.00
	CV2	0.78	0.12 0.61 1.00	0.63	0.42 0.00 1.00	0.99	0.01 0.96 1.00	0.85	0.12 0.62 1.00	0.35	0.38 0.00 1.00	0.98	0.01 0.96 1.00	0.71	0.06	0.61	0.77	0.97	0.06	0.77	1.00	0.99	0.00	0.98	1.00
	Mix	0.27	0.17 0.01 0.49	0.55	0.45 0.00 1.00	0.93	0.04 0.80 1.00	0.17	0.16 0.01 0.43	0.23	0.36 0.00 1.00	0.93	0.05 0.80 1.00	0.40	0.08	0.28	0.49	0.95	0.11	0.59	1.00	0.93	0.01	0.91	0.94
	Meinshausen1	0.39	0.40 0.00 1.00	0.50	0.41 0.00 1.00	0.91	0.08 0.80 1.00	0.69	0.32 0.02 1.00	0.26	0.33 0.00 1.00	0.85	0.05 0.80 0.99	0.04	0.04	0.00	0.14	0.78	0.28	0.21	1.00	0.98	0.03	0.90	1.00
	Meinshausen2	0.05	0.05 0.00 0.18	0.31	0.39 0.00 1.00	0.88	0.08 0.68 1.00	0.08	0.06 0.00 0.18	0.13	0.29 0.00 0.99	0.87	0.06 0.68 1.00	0.01	0.02	0.00	0.05	0.53	0.40	0.02	1.00	0.90	0.09	0.72	1.00
	Stabilization method Sorensen index	Number of selected exposures*	Computation time (in seconds)*		Number of exposures selected at least one time
	None (default LASSO)			1.000			0.00				0.17											0
	LASSO_1SE				1.000			0.00				0.17											0
	CV1					1.000			1.00			13.92											1
	CV2					1.000			1.00			15.40											1
	Meinshausen1			0.467			1.67				0.98											4
	Meinshausen2			1.000			0.00				0.96											0
	Mix					1.000			0.00			11.86											0

B.

CHAPTER V: Supplementary Table V.2: Results of the application of default LASSO and LASSO stabilization methods to relate an exposome of 74 prenatal quantitative exposures to zBMI in 1301 mother-child pairs of the Helix cohorts.

Table VII .

 VII 1: Possible strategies of dimension reduction for the exposome and methylome layers

		Exposome layer	Methylome (or another
			intermediate layer)
	Dimension	Intermediate (~10 2 )	High (~10 6 )
	Average correlation	Intermediate (~0.1)	Intermediate (>0.1)
	Objective within our	Understand its causal link with	Provide information to help
	strategy	an outcome	dimension reduction of the
			exposome
	Why reducing dimension?	To select relevant variables of	To make information usable
		interest	
	Direct use of a priori	No direct a priori selection in a	Yes, if domain knowledge is
	knowledge in dimension	discovery exposome approach	available
	reduction?	(but useful to discard totally	
		irrelevant variables, e.g.	
		variables in an irrelevant	
		exposure window, before the	
		analysis)	
	Use of selection methods	Yes	Yes
	for dimension reduction?		
	Filtering methods With a priori knowledge on the	With a priori on the layer: yes, for
		layer: no	example preselection of relevant
		Without a priori: yes, for	features according to domain
		example ExWAS (chap. II and	knowledge (chap. II, chap. III)
		III), MLR (appendix II)	Without a priori: yes, for example
			MWAS (chap II, chap IV)
	Wrapper methods Yes, for example DSA (chap. IV	No, they are often computationally
		and V)	not feasible in high dimension
	Embedded methods Yes, for example LASSO or	Yes, for example high dimensional
		Elastic-Net (chap. V)	LASSO or random forest
	Use of extraction methods	No, selection is the aim	Yes
	for dimension reduction		
	Unsupervised /	Without a priori: yes, for example
			ACP
			With a priori: yes, for example
			summary variables by biological
			pathway
	Supervised /	Yes, for example PLS (appendix II)
	Favouring sensitivity or	Specificity (with non-null	Sensitivity (as well information is
	specificity?	sensitivity)	usable)

Table 0 .

 0 1: Exposome components assessed in Sepages cohort during pregnancy, with mean and standard deviation for quantitative variables and frequency for qualitative variables, and amount of missing data. (438 mothers recruited between 2014 and 2017).

	Exposure group Exposure

BPA: bisphenol A; BPF: bisphenol F; BPS: bisphenol S; BUPA: butyl paraben; cxMiNP: Mono-4-methyl-7-carboxyoctyl-phthalate; ETPA: ethyl paraben; LOD: Limit of Detection; LOQ: Limit of Quantification ; MBzP: mono benzyl phthalate; MECPP: mono-2-ethyl 5-carboxypentyl phthalate ; MEHHP: mono-2-ethyl-5-hydroxyhexyl phthalate; MEHP: Mono(2-éthylhexyl) phthalate; MEOHP: mono-2-ethyl-5-oxohexyl phthalate; MEP: monoethyl phthalate; MEPA: methyl paraben; MiBP: mono-iso-butyl phthalate; MMCHP:

Table 0

 0 

	.1 and Table

Table 0 .

 0 2: Characteristics of the 438 mother-child pairs included in the exposome analysis based on Sepages study.

					Missing
	Characteristic	Modality	Mean +-SD n (%)	(%)	Unit
	Preterm birth	No		418 (95)	3 (0.685)
		Yes		17 (4)	3 (0.685)
	Season of conception	Jan-Feb-Mar		112 (26)	
		Apr-May-Jun		93 (21)	
		Jul-Aug-Sept		105 (24)	
		Oct-Nov-Dec		128 (29)	
	Maternal age		32.6 (3.8)			year
	Child sex	Male		229 (52)	4 (0.913)
		Female		205 (47)	4 (0.913)
	Birth weight	3285 (460)		4 (0.913)	g
	Gestational duration		39.7 (1.5)		3 (0.685)	week
	Maternal height		165.3 (6)		4 (0.913)	cm
	Maternal weight before pregnancy	61.2 (11)			kg
	Maternal highest diploma	Before high school	25 (6)	2 (0.457)
		High school before bachelor	49 (11)	2 (0.457)
		Between bachelor and master 115 (26)	2 (0.457)
		Master or higher		247 (56)	2 (0.457)
						cigarettes/
	Maternal smoking before pregnancy	0.5 (2.3)		43 (9.817)	day
	Maternal smoking during any				
	trimester of pregnancy	No		371 (85)	38 (8.676)
		Yes		29 (7)	38 (8.676)
		No child			
	Parity	before		197 (45)	
		1 child		196 (45)	
		2 children or more	45 (10)	
	Measurement season for air	Jan-Feb-Mar		121 (28)	9 (2.055)
	pollutants				
		Apr-May-Jun		122 (28)	9 (2.055)
		Jul-Aug-Sept		101 (23)	9 (2.055)
		Oct-Nov-Dec		85 (19)	9 (2.055)

Table 0 .

 0 3: Step b) of the oMITM approach: estimates, confidence intervals, uncorrected and corrected for multiple comparisons p-values of the tests of association between exposome and PLS component adjusted on relevant covariates and birth weight (434 mother-child pairs from the Sepages cohort). *: for qualitative exposures, p-values by level and the reference level are indicated.

	Exposure	Modality	Estimate	CI2.5	CI97.5	Global unadjusted p-value	Unadjusted p-value by level*	p-value corrected for multiple testing
	Self-assessed stress level Nervous most of	2.484	-2.844	7.811	0.048	0.360	0.715
		the time						
		Often nervous	1.821	-0.032	3.673		0.054	
		Never nervous	2.316	0.324	4.308		0.023	
		Sometimes					Reference level	
		nervous						
	MnBP -Trimester 2		0.053	-0.014	0.121	0.119		0.715
	cxMiNP -Trimester 2		0.069	-0.020	0.159	0.129		0.715
	ohMINCH -Trimester 2		0.298	-0.141	0.737	0.182		0.715
	MEOHP -Trimester 2		0.446	-0.221	1.113	0.190		0.715
	MEPA -Trimester 2		0.001	-6.913x10 -4	0.003	0.192		0.715
	Slimming diet during	Yes	2.773	-1.422	6.968	0.195	0.195	0.715
	pregnancy							
	Slimming diet during	No					Reference level	
	pregnancy							
	oxoMiNP -Trimester 2		-0.090	-0.228	0.048	0.202		0.715
	oxoMINCH -Trimester		-0.445	-1.159	0.270	0.222		0.715
	2							
	MMCHP -Trimester 2		-0.220	-0.574	0.135	0.224		0.715
	MEP -Trimester 2		0.006	-0.005	0.017	0.279		0.812
	ohMPHP -Trimester 2		-0.168	-0.528	0.193	0.362		0.846
	TRCB total -Trimester 2 Between LOD and	6.583	-3.398	16.565	0.407	0.195	0.846
		LOQ						
		>LOQ	2.443	-11.080	15.966		0.723	
	TRCB total -Trimester 2	<LOD					Reference level	
	MBzP -Trimester 2		-0.034	-0.120	0.052	0.431		0.846
	PRPA total -Trimester 2		-0.004	-0.016	0.007	0.447		0.846

Table 0 .

 0 4: Agnostic multiple regression relating the exposome to the birth weight: estimates, confidence intervals, uncorrected and corrected for multiple comparisons p-values of the tests of association between exposome and birthweight adjusted on relevant covariates (434 mother-child pairs from the Sepages cohort).

	Exposure	Modality	Estimate	CI2.5	CI97.5	Unadjusted p-	Unadjusted p-	p-value corrected
						value	value by level	for multiple
								testing
	MEHP -Trimester 2		22.981	-1.162	47.124	0.062		0.672
	MEHHP -Trimester 2		-20.868	-44.191	2.454	0.079		0.672
	cxMiNP -Trimester 2		3.595	-1.258	8.448	0.146		0.672
	BPS total -Trimester 2	Between LOD and	-40.122	-216.375 136.131	0.158	0.655	0.672
		LOQ						
		>LOQ	83.226	-7.062 173.514	0.158	0.071	0.672
		<LOD				0.158		0.672
	MEPA -Trimester 2		0.078	-0.035	0.191	0.174		0.672
	Any slimming diet before	Yes	62.935	-31.065 156.935	0.189	0.189	0.672
	pregnancy							
	Any slimming diet before	No				0.189		0.672
	pregnancy							
	MECPP -Trimester 2		-9.893	-25.341	5.555	0.209		0.672
	BPF total -Trimester 2	>LOQ	-182.968	-474.919 108.983	0.219	0.219	0.672
		<LOD				0.219		0.672
	MiBP -Trimester 2		1.828	-1.148	4.803	0.228		0.672
	MMCHP -Trimester 2		11.790	-7.935	31.515	0.241		0.672
	OXBE total -Trimester 2		-0.321	-0.878	0.235	0.257		0.672
	Number of alcohol drinks	Less than one glass	-10.993	-118.175	96.190	0.266	0.840	0.672
	per month during pregnancy	per month						
		More than one glass	168.556	-38.200 375.312	0.266	0.110	0.672
		per month						
		No alcohol				0.266		0.672
	BUPA total -Trimester 2	Between LOD and	69.449	-41.058 179.956	0.273	0.217	0.672
		LOQ						
		>LOQ	-55.957	-178.807	66.894	0.273	0.371	0.672
		<LOD				0.273		0.672
	Self-assessed stress level Nervous most of the	-279.230	-573.150	14.689	0.317	0.063	0.723
		time						

  Supplementary Material V.1: Commented ScriptThis script will be available on github (https://github.com/SoCadiou) once the corresponding draft will be published.

	Mix	11	
	Mix	12	
	Mix	13	
	Mix	14	
	Mix	15	
	LASSO 1SE	1	
	LASSO 1SE	2	
	LASSO 1SE	3	
	LASSO 1SE	4	
	LASSO 1SE	5	
	LASSO 1SE	6	
	LASSO 1SE	7	
	LASSO 1SE	8	
	LASSO 1SE	9	
	LASSO 1SE	10	
	LASSO 1SE	11	
	LASSO 1SE	12	
	LASSO 1SE	13	
	Meinshausen1 LASSO 1SE	15 14	OH-MiNP -Pregnancy (-)
	Meinshausen2 LASSO 1SE	1 15	
	Meinshausen2	2	
	Meinshausen2	3	
	Meinshausen2	4	
	Meinshausen2	5	
	Meinshausen2	6	
	Meinshausen2	7	
	Meinshausen2	8	
	Meinshausen2	9	
	Meinshausen2	10	
	Meinshausen2	11	
	Meinshausen2	12	
	Meinshausen2	13	
	Meinshausen2	14	
	Meinshausen2	15	
	Mix	1	
	Mix	2	
	Mix	3	
	Mix	4	
	Mix	5	
	Mix	6	
	Mix	7	
	Mix	8	
	Mix	9	
	Mix	10	

  Define functions used to generate datasets function which generates a ##dataset of exposures with same number of variables and individuals and similar ##correlation structure than a real exposome matrix provided and an outcome a new exposome dataset by bootstraping data.X <-as.data.frame(E_true) mod <-lm(y ~ ., as.data.frame(data)) toselect.x <-summary(mod)$coeff[-1, 4] r <-list(summary(mod)$r.squared, summary(mod)$adj.r.squared, names(toselect.x)[toselect.

	##linearly generated
	simulator_2layers <-function(E_true,
	#real exposome data
	R2_tot = 0.1 ,
	#total variability explained all predictors
	n_Ey = 5,
	#number of predictors
	BetaEy = 0.01,
	#Beta coefficient for each predictors. Can be a
	#vector of values or a unique value
	test_and_training = TRUE,
	#generate a dataset of the same size of E_true (if
	#FALSE) or double the number of individuals (if
	#TRUE)
	pos_and_neg = FALSE,
	#if FALSE, all effects are positive; if TRUE, half
	#are negative
	corr = F,
	#if TRUE, the correlation between the predictors
	#is controled
	range_corr = c(0, 1)) {
	#if corr = TRUE, range of correlation for true
	#predictors
	##creating

  of multiple testing correction to be applied ("BH" or "Bon" or ##"BY" or "None") ntest = NULL) { ##ifntest is a numeric, correction of multiple testing will be a Bonferroni ##correction considering ntest as the number of tests performed require(parallel) if (length(covar) > 0) { ##if necessary, computing residuals of the linear model explaining the ##variable of interest by the covariates data_covar<-data_covar_in[rownames(data_covar_in) %in% rownames(data_Y_in) & rownames(data_covar_in) %in% rownames(data_Xs_in), colnames(data_covar_in) %in% covar, drop = FALSE]

	ewas <-##returning selected exposures and pvalues
	function(data_Xs_in, names(a) <-c("selected", "indices_selected", "pval") if (length(covar) > 0) {
	##dataset of explanatory variables ("exposures") return(a) ##if necessary, computing residuals of the linear model explaining the
	}	data_Y_in, ##variable of interest by the covariates
		##dataset of univariate variable of interest ("outcome") data_covar <-
		name_Y, data_covar_in[rownames(data_covar_in) %in% rownames(data_Y_in) &
	##variable of interest name ####lasso -basic implementation#### this includes a basic 10-fold cross rownames(data_covar_in) %in% rownames(data_Xs_in),
	data_covar_in = NULL, ##validation process as implemented in the CVglmnet package colnames(data_covar_in) %in%
	##if neccessary, dataset of covariates ("confounders") lasso <-covar, drop = FALSE]
	covar = character(0), function(data_Xs_in, data_Y <-
		##if necessary, vector of covariates name ##dataset of explanatory variables ("exposures") data_Y_in[rownames(data_Y_in) %in% rownames(data_covar) &
		corr = "BY", data_Y_in, rownames(data_Y_in) %in% rownames(data_Xs_in),
	##dataset of univariate variable of interest ("outcome") name_Y, ##variable of interest name data_covar_in = NULL, ##if neccessary, dataset of covariates ("confounders") covar = character(0)) { ##if necessary, vector of covariates name if (length(covar) > 0) { ##if necessary, computing residuals of the linear model explaining the ##variable of interest by the covariates data_covar <-colnames(data_Y_in) == name_Y, drop = FALSE] data_Xs <-data_Xs_in[rownames(data_Xs_in) %in% rownames(data_covar) & rownames(data_Xs_in) %in% rownames(data_Y_in), , drop = FALSE] data_covar <-data_covar[rownames(data_Y), ] data_Xs <-data_Xs[rownames(data_Y), ] data_Y <-getresiduals_2df(data_Y, data_covar, name_Y, covar) } else{ data_Y <-data_Y_in[rownames(data_Y_in) %in% rownames(data_Xs_in), ##name data_Y <-data_covar_in[rownames(data_covar_in) %in% rownames(data_Y_in) & colnames(data_Y_in) == name_Y, drop = FALSE]
		data_Y_in[rownames(data_Y_in) %in% rownames(data_covar) & rownames(data_covar_in) %in% rownames(data_Xs_in), data_Xs <-
		rownames(data_Y_in) %in% rownames(data_Xs_in), colnames(data_covar_in) %in% data_Xs_in[rownames(data_Xs_in) %in% rownames(data_Y_in), , drop = FALSE]
		colnames(data_Y_in) == name_Y, drop = covar, drop = FALSE] data_Xs <
		FALSE] data_Y <-
		data_Xs <-data_Y_in[rownames(data_Y_in) %in% rownames(data_covar) &
		data_Xs_in[rownames(data_Xs_in) %in% rownames(data_covar) & rownames(data_Y_in) %in% rownames(data_Xs_in),
			rownames(data_Xs_in) %in% rownames(data_Y), , drop = FALSE] colnames(data_Y_in) == name_Y, drop =
		data_covar <-data_covar[rownames(data_Y), , drop = FALSE] FALSE]
		data_Xs <-data_Xs[rownames(data_Y), , drop = FALSE] data_Xs <-
		data_Y <-getresiduals_2df(data_Y, data_covar, name_Y, covar) data_Xs_in[rownames(data_Xs_in) %in% rownames(data_covar) &
	} else{	rownames(data_Xs_in) %in% rownames(data_Y_in),
		data_Y <-, drop = FALSE]
		data_Y_in[rownames(data_Y_in) %in% rownames(data_Xs_in), data_covar <-data_covar[rownames(data_Y), ]
		colnames(data_Y_in) == data_Xs <-data_Xs[rownames(data_Y), ]
		name_Y, drop = FALSE] data_Y <-getresiduals_2df(data_Y, data_covar, name_Y, covar)
	data_Xs <-} else{
		data_Xs_in[rownames(data_Xs_in) %in% rownames(data_Y_in), data_Y <-
		, drop = FALSE] data_Y_in[rownames(data_Y_in) %in% rownames(data_Xs_in),
		data_Xs <-as.data.frame(data_Xs[rownames(data_Y), ]) colnames(data_Y_in) == name_Y, drop = FALSE]
		colnames(data_Xs) <-colnames(data_Xs_in) data_Xs <-
	}	data_Xs_in[rownames(data_Xs_in) %in% rownames(data_Y_in), , drop = FALSE]
	##checking consistency of the datasets data_Xs <-data_Xs[rownames(data_Y), ]
	if (is.null(data_Y) == TRUE | }
	is.null(data_Xs) == TRUE | data_Y <-data.matrix(data_Y)
	!(name_Y %in% colnames(data_Y))) { data_Xs <-data.matrix(data_Xs)
	stop("Données incohérentes entre elles") ##applying lasso (as implemented in glmnet package, a path of penalization

which, in the framework of statistical tests, correspond to type II error, which is linked to the power of the method of identification.
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LASSO method

Description of the method and of the stabilization process

Default LASSO

A penalized regression model relying on a generalized linear framework [START_REF] Tibshirani | Regression Shrinkage and Selection via the Lasso[END_REF]. The LASSO penalty promotes sparsity and performs variable selection through shrinkage: the lowest regression coefficients, corresponding to the least informative predictors, are attributed a zero value, according to a penalty parameter λ. As advised by Zou et al. (Tibshirani, 1996) and implemented in glmnet package [START_REF] Friedman | Package ' glmnet[END_REF], λ was determined by minimizing the prediction root mean squared error (RMSE) using 10-fold cross-validation (i.e., the data were partitioned into 10 subsets; for each subset, models were trained on the other 9 partitions and fitted on the left-out subset, over which the RMSE was estimated). λ sequences tested in the cross-validation process were sequences of 100 values deterministically determined from the data [START_REF] Friedman | Package ' glmnet[END_REF][START_REF] Friedman | Regularization Paths for Generalized Linear Models via Coordinate Descent[END_REF].

LASSO method [START_REF] Tibshirani | Regression Shrinkage and Selection via the Lasso[END_REF] glmnet package [START_REF] Friedman | Package ' glmnet[END_REF] 

LASSO_1SE

Similar to default LASSO, with the difference that the penalty parameter λ chosen after 10-fold cross-validation was the largest among the λ values giving an error within 1 standard error of the minimum RMSE, [START_REF] Friedman | Package ' glmnet[END_REF] instead of the value minimizing the RMSE. LASSO method [START_REF] Tibshirani | Regression Shrinkage and Selection via the Lasso[END_REF] glmnet package [START_REF] Friedman | Package ' glmnet[END_REF] 

CV1

LASSO with 10-fold cross-validation was repeated 100 times on the same dataset. Penalty parameter minimizing the RMSE averaged across the 100 runs was used to fit the final LASSO model. The principle is similar to the one of bootstrap averaging ("bagging") [START_REF] Breiman | Bagging predictors[END_REF], but considers always the same dataset with a different seed for cross-validation instead of bootstrapped samples. A similar stabilization method was used with ElasticNet (Huang et al., 2019;[START_REF] Lenters | Prenatal phthalate, perfluoroalkyl acid, and organochlorine exposures and term birth weight in three birth cohorts: Multi-pollutant models based on elastic net regression[END_REF][START_REF] Philippat | Prenatal Exposure to Select Phthalates and Phenols and Associations with Fetal and Placental Weight among Male Births in the EDEN Cohort (France)[END_REF]. LASSO method [START_REF] Tibshirani | Regression Shrinkage and Selection via the Lasso[END_REF] glmnet package [START_REF] Friedman | Package ' glmnet[END_REF] 

CV2

LASSO with 10-fold cross-validation was repeated 100 times on the same dataset. RMSE curves as a function of λ were averaged over the 100 runs. The averaged curve allowed to determine the optimal λ optimizing the RMSE, which was used to fit the final LASSO model. The principle is similar to bootstrap averaging ("bagging") [START_REF] Breiman | Bagging predictors[END_REF], but considers always the same dataset with a different seed for cross-validation, instead of bootstrapped samples. LASSO method [START_REF] Tibshirani | Regression Shrinkage and Selection via the Lasso[END_REF] glmnet package [START_REF] Friedman | Package ' glmnet[END_REF] Meinshausen1 Implementation of the stability selection on LASSO (Meinshausen and Bühlmann, 2010): LASSO was run on 100 subsamples of half the size of the initial dataset on a range of 100 different values of the penalty parameter. A probability to be selected was derived empirically for each variable. Variables having an empirical probability greater than a selection threshold T (T=0.85) were retained in the final model. For all subsamples, the range of λ values used was the one deterministically computed by glmnet package on the complete dataset. LASSO method [START_REF] Tibshirani | Regression Shrinkage and Selection via the Lasso[END_REF] glmnet package [START_REF] Friedman | Package ' glmnet[END_REF] Stability selection [START_REF] Meinshausen | Stability selection[END_REF] Meinshausen2 Alternative implementation of the stability selection (Meinshausen and Bühlmann, 2010). Similar to Meinshausen1 above, with two differences: T=0.95 and the range of λ used was different for each subsample and deterministically computed by glmnet package on each subsample.

LASSO method [START_REF] Tibshirani | Regression Shrinkage and Selection via the Lasso[END_REF] glmnet package [START_REF] Friedman | Package ' glmnet[END_REF] Stability selection [START_REF] Meinshausen | Stability selection[END_REF] 

Mix

Implementation of the stability selection [START_REF] Meinshausen | Stability selection[END_REF] on the cross-validated LASSO. In [START_REF] Meinshausen | Stability selection[END_REF], empirical probabilities of selection for each covariate were derived from results of the algorithm run on a range of penalty parameters on different subsamples. Here, we derived empirical probabilities from runs on a range of subsamples but only from the model fitted with the optimal LASSO method [START_REF] Tibshirani | Regression Shrinkage and Selection via the Lasso[END_REF] glmnet package [START_REF] Friedman | Package ' glmnet[END_REF] Stability selection [START_REF] Meinshausen | Stability selection[END_REF] Application: using LASSO to relate exposome to child body mass index in Helix data When relying on Helix real data, default LASSO identified in average 58.3 exposures (out of 173 candidate covariates) as related to zBMI and was unstable (Table V.3, Supplementary Table V.3 andSupplementary Figure V.4). CV1 and CV2 displayed very similar results, with a slightly lower number of variables selected than by default LASSO and a higher stability (CV2 even ensuring perfect stability). This similar behavior between default LASSO, CV1 and CV2, as well as the relative stability of default LASSO make it plausible, from the simulation results (Figure V.1 and Supplementary Figure V.1), that the share of outcome variability explained by the true predictors be larger than 0.08. In this situation, one would expect (Figure V.1 and Supplementary Figure V.1) a sensitivity between 0.7 and 1 for the three methods, but also a large FDP (higher than 0.75), which may explain the high number of selected variables. The three methods based on stability selection selected much fewer variables: the Mix method selected on average 21.5 variables. The lower number of variables selected by the Mix method is consistent which what is expected from our simulation (Figure V.1): for this range of scenarios (R 2 above 0.08) the Mix method has a sensitivity similar to default LASSO but a lower FDP. Meinshausen2 selected on average less than 1 predictor and was far less stable. Last, Meinshausen1 was perfectly stable and selected on average 5 predictors. For the expected range of scenarios, Meinshausen2 is expected to show an almost null FDP (a situation generally observed in our simulation in all scenarios in which Meinshausen2 was almost perfectly stable, Figure V.2) and a non-null sensitivity. We could thus hypothesize that all the 5 exposures selected by Meinshausen2 are truly associated with zBMI. This hypothesis is coherent with toxicological and epidemiological literature, as discussed in previous studies on the same data [START_REF] Cadiou | Using methylome data to inform exposome-health association studies: An application to the identification of environmental drivers of child body mass index[END_REF][START_REF] Vrijheid | Early-Life Environmental Exposures and Childhood Obesity : An Exposome-Wide Approach[END_REF]. Indeed, the highlighted positive association of blood post-natal copper level with higher BMI (see Supplementary Table V.2) is a plausible association, as copper toxicity and ability to induce oxidative stress is well-known in human [START_REF] Brewer | Copper toxicity in the general population[END_REF][START_REF] Uriu-Adams | Copper, oxidative stress, and human health[END_REF] and from animal models [START_REF] Galhardi | Toxicity of copper intake: Lipid profile, oxidative stress and susceptibility to renal dysfunction[END_REF] A.

CHAPTER V: Some insights regarding the instability of variable-selection algorithms used for causal inference purposes in epidemiology 201 Supplementary Table V.3: List of variables selected by default LASSO and all tested stabilized LASSO for each of the 10 runs applied to relate an exposome of 173 prenatal and postnatal quantitative exposures (A) or only the smaller exposome of 74 prenatal quantitative variables (B), to zBMI in 1301 mother-child pairs of the Helix cohorts. For each run, the direction of association with zBMI in a multivariate model including all exposures selected in the run and adjusted for relevant covariates is also given.

Due to its size, this supplementary is provided as a separated file in Appendix III.

Supplementary Material V.1: Commented simulation script Due to its size, this supplementary is provided as a separated file in Appendix III. This script will also be available on github (https://github.com/SoCadiou) once the corresponding draft will be published.

Supplementary Material V.2: Application: using LASSO to relate pregnancy exposome to child body mass index in Helix data

In the analysis relating only the prenatal exposures to zBMI, default LASSO did not select any exposure and was stable (Supplementary Table V.2). CV1 and CV2 displayed different results: they both selected one exposure (not the same for the two methods) and were stable (Supplementary Table V. 3 and Supplementary Figure V.4). This difference of behavior between default LASSO and the cross-validation based methods made it plausible that the true predictors from the prenatal exposome explained less than 8% of zBMI (see Figure V.1), which is consistent with the fact that the pregnancy maternal exposome may show links of lower magnitude with child zBMI than the exposome assessed during the year before the child examination. For this range of scenarios, CV1 and CV2 are expected to show a very high FDP and should not be trusted, despite their stability. This is also the case for Meinshausen2, which selected on average more than one exposure, and which is also expected to show high FDP (high FDP is more largely expected for Meinshausen2, as soon as it is unstable, according to Figure V. We present here preliminary results from a study performed on the French SEPAGES mother-child cohort, relating a 'small' prenatal exposome to the birth weight of the child, relying on additional information from the mother blood methylome during pregnancy. We used a third variation of our oMITM design: as a first step, we chose to perform a supervised data-driven dimension reduction of the methylome using Partial Least Square (PLS) rather than an a priori preselection of relevant CpGs based on external databases as done in chapter II. Moreover, to test the association between the (reduced) exposome and the outcome, we used a multiple regression rather than ExWAS, as this may be more efficient in the context of the small exposome considered here. (list_temp, list(colnames(dataExp)[list_temp[ [START_REF] True | mean(unlist( lapply[END_REF]]])) names(list_temp) <c( "indice_cpg", "cpg", "nb_exp_predictors", "Beta_exp_predictors", "ind_exp_predictors", 

"error: Betas for M explaining Y not explained by E are not consistent with the number of predictors" ) } Betapred_yM_M <-BetamY } ##if there is not effect of mY, generating an empty yM if (n_mY == 0) { yM = list(as.matrix(rep(0, nrow(M1)), ncol = 1), NULL, NULL) names(yM) <-c("resp", "beta") } else{ ##if there is an effect, generating yM: part of the outcome which is a ##linear combination of variables of M not affected by E

"error: Betas for M explaining Y explained by E are not consistent with the number of predictors" ) } Betapred_yM_M <-BetamY } #if there is an effect, generating yME: part of the outcome which is a ##linear combination of variables of M affected by E

} else{ yME = list(as.matrix(rep(0, nrow(M1)), ncol = 1), NULL, NULL) names(yME) <-c("resp", "beta") } ##direct effect of E on Y ##random sampling of exposures with respect to the specification of #intersections between the different groups of exposures having different 

# computing the response mean <-CovMat %*% matrix(beta, ncol = 1) rownames(mean)<-rownames(met) names(beta) <-colnames(CovMat) return (list( resp = mean, beta = beta, predictors = colnames(met)[wh] )) } ##fonction to estimate R2 from a dataframe of potential predictors, a vector of ##predictors names and the outcome estimatedR2 <-function(X, truepred, Y) { if ("y" %in% truepred) { stop("error: one of the true predictors is named y"

stop("error individuals are not ordered similarly in X and Y") } if (all(truepred %in% colnames(X))) { data <-X[, colnames(X) %in% truepred, drop = FALSE] data <-cbind(Y, data) colnames(data) [1] <-"y" mod <-lm(y ~ ., as.data.frame(data)) toselect.x <-summary(mod)$coeff[-1, 4] r <list(summary(mod)$r.squared, summary(mod)$adj.r.squared, names(toselect.x)[toselect.x == TRUE]) names(r) <-c("r.squared", "adj.r.squared", "pred") return(r) } else{ stop("error: X does not countain all true predictors")

first generates datasets, then applies methods and then assessed ##their performance f0<-function(x){ ##important: the parallelization is done on the seed set.seed(x) 

##ExWAS implementation for step c predBMI_E_MITM <ewas( as.data.frame(select_E), as.data.frame(simu$Y_train), colnames(as.data.frame(simu$Y_train)), corr = "BH" ) ##DSA implementation for step c predBMI_E_MITMdsa <-DSAreg( Exp = as.data.frame(select_E), resp = simu$Y_train, maxsize = floor(ncol(simu$E_train) / 10), maxsumofpow = 1, maxorderint = 1 ) predReducedExp <-list(selected = unique(exp), pred = "NULL") } else{ predReducedExp <-list(vector(), vector()) names(predReducedExp) <-c("selected", "pred") } if (exists("predBMI_E_MITM")) { } else{ predBMI_E_MITM <-list(vector(), vector()) names(predBMI_E_MITM) <-c("selected", "pval") } if (exists("predBMI_E_MITMdsa")) { } else{ predBMI_E_MITMdsa <-list(vector(), vector()) names(predBMI_E_MITM) <-c("selected", "pred") } } else{ predBMI_E_MITM <-list(vector(), vector()) names(predBMI_E_MITM) <-c("selected", "pval") n_exp_select = 0 predReducedExp <-list(vector(), vector()) names(predReducedExp) <-c("selected", "pred") predBMI_E_MITMdsa <-list(vector(), vector()) names(predBMI_E_MITMdsa) <-c("selected", "pred" ) } ##storing results in a list predBMI_E <c( predBMI_E, MITM = list(predBMI_E_MITM), MITMdsa = list(predBMI_E_MITMdsa), ReducedExp = list(predReducedExp) ) print("oMITM done") ###Control method : random sampling on a random set of exposures of same ##dimension as the reduced exposome of oMITM if (n_exp_select > 0) { tirage <ewas( as.data.frame(simu$E_train)[, sample(colnames(as.data.frame(simu$E_train)), n_exp_select), drop = FALSE], as.data.frame(simu$Y_train), colnames(as.data.frame(simu$Y_train)), corr = "BH" ) } else{ tirage <-list(selected = character(0), null = "null") } ##storing results in the same list predBMI_E <-c(predBMI_E, random_sampling = list(tirage)) print(n_exp_select)

ewas_med$pVal_adj_1 <-p.adjust(ewas_med$pVal, "BH") colnames(ewas_med) [START_REF] True | mean(unlist( lapply[END_REF] <-"cpg" colnames(ewas_med) [1] <-"exp" } #step b list_temp_ewas_med_2 <-list() for (i in 1:ncol(select_E)) { M_affecting_Y_all <ewas( as.data.frame(simu$M_train), as.data.frame(simu$Y_train), colnames(as.data.frame(simu$Y_train)), corr = "None", data_covar_in

predMediation <-list(selected = vector(), pred = vector()) } } else{ predMediation <-list(selected = vector(), pred = vector()) } predBMI_E <-c(predBMI_E, mediation = list(predMediation))

applying agnostic methods ## lasso predlasso <lasso( data_Xs_in = as.data.frame(simu$E_train), data_Y_in = as.data.frame(simu$Y_train), colnames(as.data.frame(simu$Y_train)) ) predBMI_E <-c(predBMI_E, lasso_CV = list(predlasso)) print("lasso_ done") ##DSA predDSA <-DSAreg( Exp = simu$E_train, resp = simu$Y_train, maxsize = floor(ncol(simu$E_train) / 10), maxsumofpow = 1, maxorderint = 1 ) predBMI_E <-c(predBMI_E, DSA = list(predDSA)) data.frame( Methods = vector(), Association_tested = vector(), Nb_true_predictors_of_BMI_in_M = numeric(0), Nb_true_predictors_of_BMI_in_E = numeric(0), Total_variability_of_BMI_explained_by_EandM = numeric(0), Total_variability_of_BMI_explained_by_E = numeric(0), Total_variability_of_BMI_explained_by_M = numeric(0), Mean_variability_of_M_explained_by_E_for_Mey = numeric(0),

##parallelization of f0 cl <-makeCluster(getOption("cl.cores", round(detectCores()))) clusterExport( cl, list( "simulator", "simResponseSimple", "estimatedR2", "getresiduals_2df", "ewas", "lasso", "lasso_stab", "DSAreg", "sensitivity", "fdp", "specificity", "f0", "dataExp_true", "M1_true", "R2_fixed", "n_Ey", "n_mEY", "BetaEy", 

warning("R2 was not specified, automatic value")

"error: Betas for Y explaining M are not consistent with the number of predicted cpgs" if (corr == "BH") { wh <-which(p.adjust(pVal, "BH") <= 0.05) p.values.adj$pVal_adj <-p.adjust(pVal, "BH") } if (corr == "BY") { wh <-which(p.adjust(pVal, "BY") <= 0.05) p.values.adj$pVal_adj <-p.adjust(pVal, "BY") } if (!corr %in% c("Bon", "BH", "BY", "", "None")) stop("Please specify a known correction method for multiple testing") wh <-p.values$var[wh] a <-list(wh, p.values.adj) names(a) <-c("selected", "pval") return(a) } ###LASSO lasso <function(data_Xs_in, data_Y_in, name_Y, a <-list("selected" = cg_select, "prediction" = Y_predit) } else{ a <-list("selected" = character(), "prediction" = "no_prediction") } return(a) } ##DSA DSAreg <function(Exp, resp, family = gaussian, maxsize = 15, maxsumofpow = 2, maxorderint = 2) { Exp <-data.frame(cbind(data.frame(Exp), resp = resp)) res <-DSA( resp ~ 1, data = Exp, family = family, maxsize = maxsize, maxsumofpow = maxsumofpow, maxorderint = maxorderint , nsplits = 1, usersplits = NULL ) form <-gsub("I[(]", "", colnames(coefficients(res))) form <-gsub("[*]", ":", gsub("[)]", "", gsub("[:^:]1", "", form))) if (length(grep(":", form)) > 0) { nam <-strsplit(form[grep("[:]", form)], ":") for (j in 1:length

for(i in 2:length(form)) form2 <-paste(form2, "+", form[i]) res2 <-lm(form2, data = data.frame(Exp)) ##decomment next line and change "prediction" to pred in the return line ##if outcome predicted by DSA is needed (not used presently) #pred <-predict(res2,Exp) coef <-summary(res2)$coefficients coef <-as.character(rownames(coef)[rownames(coef) != "Intercept"]) 

) ##DSA implementation for step c predBMI_E_MITMdsa <-DSAreg( Exp = as.data.frame(select_E), resp = simu$Y_train, maxsize = floor(ncol(simu$E_train) / 10), maxsumofpow = 1, maxorderint = 1 ) predReducedExp <-list(selected = unique(exp), pred = "NULL") } else{ predReducedExp <-list(vector(), vector()) names(predReducedExp) <-c("selected", "pred") } if (exists("predBMI_E_MITM")) { } else{ predBMI_E_MITM <-list(vector(), vector()) names(predBMI_E_MITM) <-c("selected", "pval") } if (exists("predBMI_E_MITMdsa")) { } else{ predBMI_E_MITMdsa <-list(vector(), vector()) names(predBMI_E_MITM) <-c("selected", "pred") } } else{ predBMI_E_MITM <-list(vector(), vector()) names(predBMI_E_MITM) <-c("selected", "pval") n_exp_select = 0 predReducedExp <-list(vector(), vector()) names(predReducedExp) <-c("selected", "pred") predBMI_E_MITMdsa <-list(vector(), vector()) names(predBMI_E_MITMdsa) <-c("selected", "pred") } ##storing results in a list predBMI_E <c( predBMI_E, MITM = list(predBMI_E_MITM), MITMdsa = list(predBMI_E_MITMdsa), ReducedExp = list(predReducedExp) ) print("oMITM") ###Control method : random sampling on a random set of exposures of same ##dimension as the reduced exposome of oMITM if (n_exp_select > 0) { tirage <ewas( as.data.frame(simu$E_train)[, sample(colnames(as.data.frame(simu$E_train)), n_exp_select), drop = FALSE], as.data.frame(simu$Y_train), colnames(as.data.frame(simu$Y_train)), corr = "BH" ) } else{ tirage <-list(selected = character(0), null = "null") } ##storing results in the same list predBMI_E <-c(predBMI_E, random_sampling = list(tirage)) print(n_exp_select) 

ewas_med_2$pVal_adj_2 <-p.adjust(ewas_med_2$pVal, "BH") colnames(ewas_med_2) [START_REF] True | mean(unlist( lapply[END_REF] <-"exp" colnames(ewas_med_2) [1] <-"cpg" } ewas_med_tot <merge( ewas_med, ewas_med_2, by.x = c("exp", "cpg"), by.y = c("exp", "cpg")

predMediation <-list(selected = vector(), pred = vector()) } } else{ predMediation <-list(selected = vector(), pred = vector()) } predBMI_E <-c(predBMI_E, mediation = list(predMediation))

applying agnostic methods ## lasso predlasso <lasso( data_Xs_in = as.data.frame(simu$E_train), data_Y_in = as.data.frame(simu$Y_train), colnames(as.data.frame(simu$Y_train)) ) predBMI_E <-c(predBMI_E, lasso_CV = list(predlasso)) print("lasso done") ##DSA predDSA <-DSAreg( Exp = simu$E_train, resp = as.data.frame(simu$Y_train), maxsize = floor(ncol(simu$E_train) / 10), maxsumofpow = 1, maxorderint = 1 ) predBMI_E <-c(predBMI_E, DSA = list(predDSA)) print("DSA done") 

), "BMI -E", param_simu [1,3], param_simu [2,3], param_simu [3,3], param_simu [4,3], param_simu [START_REF] True | mean(unlist( lapply[END_REF]3], param_simu [6,3], param_simu [7,3], param_simu [START_REF] True | mean(unlist( lapply[END_REF]3], param_simu [START_REF]na.rm = TRUE), mean(unlist( lapply(list_performance[END_REF]3], n_iter, param_simu [START_REF]na.rm = TRUE), mean(unlist( lapply(list_performance[END_REF]3] (comp_method, "comp_method_rev_caus_sans_mY.Rds") Supplementary Table V.3: List of variables selected by default LASSO and all tested stabilized LASSO for each of the 10 runs applied to relate an exposome of 173 prenatal and postnatal quantitative exposures (A) or only the smaller exposome of 74 prenatal quantitative variables (B), to zBMI in 1301 mother-child pairs of the Helix cohorts. For each run, the direction of association with zBMI in a multivariate model including all exposures selected in the run and adjusted for relevant covariates is also given.

A.

Method

Run Exposures selected and corresponding direction of association Default LASSO ##drawing predictors while conserving those specified if some were ##specified as input wh <-sample((1:ncol(met)[-cpg]), temp) wh <-c(cpg, wh) } } else{ wh <-cpg } } else{ if (length(cpg) != 0) { stop("set corr to true is only possible when names of predictors are not provided") } ##if a specified correlation between predictors is set by the users, ##selecting the predictors to be in this specified range wh <-submatFindSimpl(Mat <-as.matrix(met), range = range_corr, Nvar = Nmet) wh <-which(colnames(met) %in% wh) } ##defining a matrix of predictors CovMat <-as.matrix(met[, wh]) colnames(CovMat) <-colnames(met)[wh] # computing the response mean <-CovMat %*% matrix(beta, ncol = 1) rownames(mean) <-rownames(met) names(beta) <-colnames(CovMat) return (list( resp = mean, ##response vector beta = beta, ##Betas coefficient vector predictors = colnames(CovMat) ##vector of predictors )) } ####function to choose a set of predictors among a set of variables with a ####constraint on the correlation range between predictors#### submatFindSimpl <-function(Mat, range = c(0, 1), Nvar) { # verifying formats and values of inputs if (Nvar > ncol(Mat)) stop("No matrix of the correct size meeting the range criterion") if (Nvar < 2) stop("Nvar must be at least 2") # computing the correlation matrix Mat <-abs(cor(Mat)) diag(Mat) <-NA # removing rows with no correlation value in the given range wh <-which(apply(Mat, 1, min, na.rm = T) > range [2] | apply(Mat, 1, max, na.rm = T) < range [1]) if (length(wh) > 0) Mat <-Mat[-wh, -wh] # iteratively selecting and testing samples for the correct correlation Res <-NA samp1 <-sample (1:ncol(Mat) var] 

stop("Not enough variable with the given correlation range") return(colnames(Mat) [Res]) } ####function which estimates R2 from a dataset of potential predictors, the list ####of true predictors and a vector of outcome#### estimatedR2 <-function(X, truepred, Y) { if ("y" %in% truepred) { stop("error: one of the true predictors is named y"

stop("error: not the same number of rows") } if (isTRUE(all.equal(rownames(X), rownames(Y))) == FALSE) { stop("error: individuals are not ordered similarly in X and Y") } if (all(truepred %in% colnames(X))) { data <-X[, colnames(X) %in% truepred, drop = FALSE] data <-cbind(Y, data) colnames(data) [1] <-"y" ##applying correction for multiple testing if (corr == "None") { wh <-which(pVal <= 0.05) p.values.adj$pVal_adj <-pVal } if (corr == "Bon") { wh <-which(pVal <= 0.05 / nrow(p.values)) p.values.adj$pVal_adj <-pVal * nrow(p.values) } if (corr == "BH") { wh <-which(p.adjust(pVal, "BH") <= 0.05) p.values.adj$pVal_adj <-p.adjust(pVal, "BH") } if (corr == "BY") { wh <-which(p.adjust(pVal, "BY") <= 0.05) p.values.adj$pVal_adj <-p.adjust(pVal, "BY") } if (!corr %in% c("Bon", "BH", "BY", "", "None")) stop("Please specify a known correction method for multiple testing") if (!is.null(ntest)) { p.values.adj$pVal_adj <-pVal * ntest } wh_num <-wh wh <-p.values$var[wh] a <-list(wh, wh_num, p.values.adj) ##parameter lambda according to the MSE computed is computed by 10-fold ##cross-validation) cvfit <-cv.glmnet(data_Xs, data_Y, family = "gaussian", alpha = 1) ##Compute predicted Y "Y_predit" Y_predit <predict(cvfit, newx = data_Xs, s = "lambda.min") ##selecting the model with the penalization parameter minimizing MSE Y_predit <-Y_predit[rownames(Y_predit), ] ##dataframe of predictors selected tmp_coeffs <coef(cvfit, s = "lambda.min") ##selecting the model with the penalization parameter minimizing MSE cg_select <data.frame(name = tmp_coeffs@Dimnames[ [1]]

"prediction" = Y_predit, "null" = "nul") } else{ a <list( "selected" = character(), "prediction" = "pas_de_prediction", "null" = "nul" ) } return(a) } ####lasso -basic implementation but using lambda.1se instead of lambda.min #### this includes a basic 10-fold cross ##validation process as implemented in the CVglmnet package lasso_1SE <function(data_Xs_in, ##dataset of explanatory variables ("exposures") data_Y_in, ##dataset of univariate variable of interest ("outcome") name_Y, ##variable of interest name data_covar_in = NULL, ##if neccessary, dataset of covariates ("confounders") covar = character(0)) { ##if necessary, vector of covariates name cg_select <-cg_select$name[cg_select$name != "(Intercept)"] a <-list() if (length(cg_select) != 0) { a <-list("selected" = cg_select, "prediction" = Y_predit, "null" = "nul") } else{ a <list( "selected" = character(), "prediction" = "pas_de_prediction", "null" = "nul" ) } return(a) } ####lasso_stab : implementation of Meinshausen 2010 #### repeating lasso on ##subsamples and performing the selection according to empirical probability of ##selection computed over the repeated runs using a threshold specified by user lasso_stab_Meinshausen <function(data_Xs_in, ##dataset of explanatory variables ("exposures") data_Y_in, ##dataset of univariate variable of interest ("outcome") name_Y, ##variable of interest name data_covar_in = NULL, ##if neccessary, dataset of covariates ("confounders") covar = character(0), ##if necessary, vector of covariates name prop = 0.85) { #minimal threshold for an empirical probability to make the corresponding stop("Données incohérentes entre elles _ nom Y") } data_Y <-data.matrix(data_Y) data_Xs <-data.matrix(data_Xs) list_iter <-list() length_lambdas <-numeric() n_iter_stab <-100 ##setting the number of repetitions from which the empirical probabilities ##will be computed for (k2 in (1:n_iter_stab)) { #randomly selecting a subsample containing 50% of individuals selec <sample(rownames(data_Xs), round(1 * nrow(data_Xs) / 2)) # i_df <-data.matrix(data_Xs[rownames(data_Xs) %in% selec, ]) block_pheno <-data_Y[rownames(data_Y) %in% rownames(i_df), , drop = FALSE] block_pheno <-block_pheno[rownames(i_df), , drop = FALSE] ##applying lasso to the subsample model.lasso <glmnet( x = i_df, y = data.matrix(block_pheno), family = "gaussian", alpha = 1 ) #saving the selection for each lambda in a dataframe selection_pour_une_iter <-as.data.frame(cbind(rownames(model.lasso$beta), as.numeric(tabulate( model.lasso$beta@i + 1 )))) colnames(selection_pour_une_iter) <c("variables", paste("iter", k2)) ##adding this dataframe to the list of dataframes computed for all ##precedent subsamples list_iter <-c(list_iter, list(selection_pour_une_iter)) ##saving the length of penalization path list_iter <-list() ###defining a vector of penalized parameters lambda on a subsample selec <-sample(rownames(data_Xs), round(1 * nrow(data_Xs) / 2)) i_df <-data.matrix(data_Xs[rownames(data_Xs) %in% selec, ]) block_pheno <-data_Y[rownames(data_Y) %in% rownames(i_df), , drop = FALSE] block_pheno <-block_pheno[rownames(i_df), , drop = FALSE] temp <glmnet( x = i_df, y = block_pheno, family = "gaussian", alpha = 1 ) ##lasso is applied; the path of lambdas will be used for all other ##subsamples lambdas <-temp$lambda ###repeating lasso fo all subsamples n_iter_stab <-100 ##setting the number of repetitions from which the empirical probabilities ##will be computed for (k2 in (1:n_iter_stab)) { selec <sample(rownames(data_Xs), round(1 * nrow(data_Xs) / 2)) #randomly selecting a subsample containing 50% of individuals i_df <-data.matrix(data_Xs[rownames(data_Xs) %in% selec, ]) block_pheno <-data_Y[rownames(data_Y) %in% rownames(i_df), , drop = FALSE] block_pheno <-block_pheno[rownames(i_df), , drop = FALSE] ##applying lasso to the subsample model.lasso <glmnet( x = i_df, y = data.matrix(block_pheno), family = "gaussian", alpha = 1, lambda = as.numeric(lambdas) ) #saving the selection for each lambda in a dataframe selection_pour_une_iter <as.data.frame(cbind(rownames(model.lasso$beta), as.numeric(tabulate( model.lasso$beta@i + 1 )))) colnames(selection_pour_une_iter) <-c("variables", paste("iter ", k2)) ##adding this dataframe to the list of dataframes computed for all ##precedent subsamples list_iter <-c(list_iter, list( selection_pour_une_iter ##applying lasso with this lambda as forced penalization parameter model.enet <-glmnet( data_Xs, data_Y, family = "gaussian", alpha = 1, lambda = lambda.min ) ##selecting variables tmp_coeffs <-coef(model.enet) cg_select <data.frame(name = tmp_coeffs@Dimnames[ [1]][tmp_coeffs@i + 1], coefficient = tmp_coeffs@x) cg_select <-cg_select$name[cg_select$name != "(Intercept)"] ##returning selected variables a <-list() if (length(cg_select) != 0) { a <list("selected" = cg_select, "prediction" = "prediction", "null" = "nul") } else{ a <list( "selected" = character(), "prediction" = "pas_de_prediction", "null" = "nul" ) } return(a) } ####LASSO_CV1#### ### loop applying 100 times lasso with the 10-fold validations procedures on the ### whole dataset the average of the penalization parameters minimizing the MSE ### for each run gives the penalization parameter which will be used in the ##averaging the optimal parameters across repetitions lambda_min <-mean(lambdas) ##applying lasso with this lambda as forced penalization parameter model.enet <-glmnet( data_Xs, data_Y, family = "gaussian", alpha = 1, lambda = lambda_min ) ##selecting variables tmp_coeffs <-coef(model.enet) cg_select <data.frame(name = tmp_coeffs@Dimnames[ [1]][tmp_coeffs@i + 1], coefficient = tmp_coeffs@x) cg_select <-cg_select$name[cg_select$name != "(Intercept)"] ##returning selected variables a <-list() if (length(cg_select) != 0) { a <list("selected" = cg_select, "prediction" = "prediction", "null" = "nul") } else{ a <list( "selected" = character(), "prediction" = "pas_de_prediction", "null" = "nul" ##applying cross_validated lasso to the subsample model.lasso <cv.glmnet( x = i_df, y = data.matrix(block_pheno), family = "gaussian", alpha = 1 ) ##selecting the model minimizing the MSE tmp_coeffs <-coef(model.lasso, s = "lambda.min") cg_select <data.frame(name = tmp_coeffs@Dimnames[ [1]][tmp_coeffs@i + 1], coefficient = tmp_coeffs@x) cg_select <-cg_select$name[cg_select$name != "(Intercept)"] #saving the variables selected for this iteration vector_selected <-c(vector_selected, as.character(cg_select)) } ##computing frequencies of selection tab <-as.data.frame(table(vector_selected)) colnames(tab) <-c("exp", "proba") ##computing empirical probabilities tab$proba <-tab$proba / n_iter_stab ###selecting variables from the empirical probabilities and the threshold cg_select_tot <-tab$exp[tab$proba >= prop] ##returning the selection a <-list() if (length(cg_select_tot) != 0) { a <list("selected" = cg_select_tot, "freq" = tab, "iteration" = n_iter_stab) } else{ a <-list( "selected" = character(0), "freq" = tab, "iteration" )) }) posOfOptimum <-which.min(optimumPerAlpha["cvm",]) overall.alpha.min <-optimumPerAlpha["alph",posOfOptimum] #list_optimumPerAlpha<-cbind(list_optimumPerAlpha,list(optimumPerAlpha)) optimumAlpha<-c(optimumAlpha,overall.alpha.min) } ##the final alpha value is computed alpha_final<-mean(optimumAlpha) ##comment : it is not possible to obtain simultaneously the average values of ##lambda and alpha, as lambda must be computed according to alpha ##the cross-validation process is repeated 100 times for lambda all_lambda_min<-numeric( 0 

##returning selection a<-list() if (length(cg_select)!=0){ a<list("selected"=cg_select,"alpha_final"=overall.alpha.min,"lambda_final"=overall.lambda.min) }else{ a<list("selected"=character(0),"alpha_final"=overall.alpha.min,"lambda_final"=overall.lambda.min) } return(a) } ####DSA#### ##DSA is an iterative linear regression model search algorithm (Sinisi and van ##der Laan 2004) following three constraints: maximum order of interaction ##amongst predictors, the maximum power for a given predictor, and the maximum ##model size. DSAreg <function(Exp, ####dataset of explanatory variables ("exposures") resp, ##dataset of univariate variable of interest ("outcome") family = gaussian, ##family of the outcome maxsize = 15, ##maximum size of the model maxsumofpow = 2, ##maximum power for a given predictor maxorderint = 2) { ##maximum order of interaction Exp <data.frame(cbind(resp = resp, data.frame(Exp))) ##merging exp and resp in a unique dataframe colnames(Exp) [1] <-"resp" ##applying DSA function with 5 fold split and 1 cross-validation process res <-DSA( resp ~ 1, data = Exp, family = family, maxsize = maxsize, maxsumofpow = maxsumofpow, maxorderint = maxorderint , nsplits = 1, usersplits = NULL ) ##extracting the selected variables in case there are power or interaction form <-gsub("I[(]", "", colnames(coefficients(res))) form <gsub("[*]", ":", gsub("[)]", "", gsub("[:^:]1", "", form))) if (length(grep(":", form)) > 0) { nam <-strsplit(form[grep("[:]", form)], ":") for (j in 1:length

for (i in 2:length(form)) form2 <-paste(form2, "+", form[i]) ##putting the selected variablesin a linear model res2 <-lm(form2, data = data.frame(Exp)) #pred <-predict(res2,Exp) ##obtaining beta coefficients coef <-summary(res2)$coefficients coef <as.character(rownames(coef)[rownames(coef) != "Intercept"]) ##returning selecting return(list( selected = coef[coef != "(Intercept)"], pred = "prediction", null = "null" )) } ##multivariate regression multi <-function(Exp, resp) { ##Exp is the dataset of potential predictors ("the exposome") ##resp is the variable to explain ("the outcome") var <-colnames(Exp) Exp <-data.frame(cbind(resp = resp, data.frame(Exp))) colnames(Exp) [1] <-"resp" formula <as.formula(paste("resp ~", paste(var, collapse = " + "))) model <-lm(formula = formula, data = Exp) selection <-as.data.frame(summary(model)$coeff [-1, 4]) colnames(selection) <-"pVal" selection$pVal_adj <-p.adjust(selection$pVal, "BH") selected <as.character(unique(rownames(selection)[selection$pVal_adj <= 0.05])) return(list( selected = selected, pred = "prediction", null = "null" )) end_time_meth <-Sys.time() pred_iter$ewas_BH[ [2]] <as.numeric(difftime(end_time_meth, start_time_meth, units = c("secs"))) print("ewas") ###LASSO start_time_meth <-Sys.time() predlasso <lasso( data_Xs_in = as.data.frame(simu$E_train), data_Y_in = as.data.frame(simu$Y_train), colnames(as.data.frame(simu$Y_train)) ) end_time_meth <-Sys.time() predlasso[ [2]] <as.numeric(difftime(end_time_meth, start_time_meth, units = c("secs"))) print("lasso") ###LASSO Meinshausen 1 start_time_meth <-Sys.time() predlasso_stab_Meinshausen <-lasso_stab_Meinshausen( data_Xs_in = as.data.frame(simu$E_train), data_Y_in = as.data.frame(simu$Y_train), colnames(as.data.frame(simu$Y_train)), prop = 0.85 ) end_time_meth <-Sys.time() ###LASSO Mix predlasso_stab_Meinshausen[ [2]] <as.numeric(difftime(end_time_meth, start_time_meth, units = c("secs"))) print("lasso_stab") start_time_meth <-Sys.time() predlasso_moy_Meinshausen <-lasso_moy_Meinshausen( data_Xs_in = as.data.frame(simu$E_train), data_Y_in = as.data.frame(simu$Y_train), colnames(as.data.frame(simu$Y_train)), prop = 0.5 ) end_time_meth <-Sys.time() predlasso_moy_Meinshausen[ [2]] <as.numeric(difftime(end_time_meth, start_time_meth, units = c("secs"))) start_time_meth <-Sys.time() ###LASSO Meinshausen 2 predlasso_stab_Meinshausen2 <-lasso_stab_Meinshausen2( data_Xs_in = as.data.frame(simu$E_train), data_Y_in = as.data.frame(simu$Y_train), colnames(as.data.frame(simu$Y_train)), prop = 0.95 ) end_time_meth <-Sys.time() predlasso_stab_Meinshausen2[ [2]] <as.numeric(difftime(end_time_meth, start_time_meth, units = c("secs"))) start_time_meth <-Sys.time() ###LASSO CV2 predlasso_moy_MSE <-lasso_moy_MSE( data_Xs_in = as.data.frame(simu$E_train), data_Y_in = as.data.frame(simu$Y_train), colnames(as.data.frame(simu$Y_train)) ) end_time_meth <-Sys.time() predlasso_moy_MSE[ [2]] <as.numeric(difftime(end_time_meth, start_time_meth, units = c("secs")))

###LASSO CV1 start_time_meth <-Sys.time() predlasso_moy_lambda <-lasso_moy_lambda( data_Xs_in = as.data.frame(simu$E_train), data_Y_in = as.data.frame(simu$Y_train), colnames(as.data.frame(simu$Y_train)) ) end_time_meth <-Sys.time() predlasso_moy_lambda[ [2]] <as.numeric(difftime(end_time_meth, start_time_meth, units = c("secs")))

##ElasticNet start_time_meth <-Sys.time() predEnet <-Enet( data_Xs_in = as.data.frame(simu$E_train), data_Y_in = as.data.frame(simu$Y_train), colnames(as.data.frame(simu$Y_train)) ) end_time_meth <-Sys.time() predEnet[ [2]] <as.numeric(difftime(end_time_meth, start_time_meth, units = c("secs"))) print("enet") start_time_meth <-Sys.time() predDSA <-DSAreg( Exp = simu$E_train, resp = simu$Y_train, maxsize = floor(ncol(simu$E_train) / 10), maxsumofpow = 1, maxorderint = 1 ) end_time_meth <-Sys.time() predDSA[ [2]] <as.numeric(difftime(end_time_meth, start_time_meth, units = c("secs"))) print("DSA effectué") ##combining results of the different methods for this iteration pred_iter <c( pred_iter, lasso = list(predlasso), lasso_stab_Meinshausen = list(predlasso_stab_Meinshausen), lasso_stab_Meinshausen2 = list(predlasso_stab_Meinshausen2), lasso_moy_Meinshausen = list(predlasso_moy_Meinshausen), lasso_moy_MSE = list(predlasso_moy_MSE), lasso_moy_lambda = list(predlasso_moy_lambda), Enet = list(predEnet, DSA = list(predDSA)) )

#pred_iter<-c(pred_iter,lasso=list(predlasso), #lasso_stab=list(predlasso_stab), #lasso_stab_plus_spec=list(predlasso_stab_ps), #Enet=list(predEnet),DSA=list(predDSA)) #pred_iter<-c(pred_iter,lasso=list(predlasso)) #assessing performance of #each method truepred <-simu$yE$predictors for (k1 in as.data.frame(table(table(as.character( unlist(predBMI_E[[k4]][ [1]]) )))) tab_freq$Var1 <as.numeric(as.character(tab_freq$Var1)) / n_iter_stab colnames(tab_freq) <-c("freq", "nb_exp") tab_freq <-tab_freq[order(tab_freq$freq), ] ###Computing average Sorensen index as a measure of stability c_sor <-numeric( 0 list( mean_nb_selec = mean(unlist( lapply(predBMI_E[[k4]][ [1]], function(X) length(X)) )), mean_sens = mean (unlist(predBMI_E[[k4]][ [4]]), na.rm = TRUE), mean_spec = mean (unlist(predBMI_E[[k4]][ [START_REF] True | mean(unlist( lapply[END_REF]]), na.rm = TRUE), mean_fdp = mean (unlist(predBMI_E[[k4]][ [6]]), na.rm = TRUE), mean_R2_test = mean (unlist(predBMI_E[[k4]][ [7]]), na.rm = TRUE), nb_sup_20percent = sum(tab_freq$nb_exp[(which(tab_freq$freq >= 0.2))]), nb_sup_60percent = sum(tab_freq$nb_exp[(which(tab_freq$freq >= 0.6))]), sorensen = sor_moy, sd_nb_selec = sd (unlist( lapply(predBMI_E[[k4]][ [1]], function(X) length(X)) ), na.rm = TRUE), sd_sens = sd (unlist(predBMI_E[[k4]][ [4]]), na.rm = TRUE), sd_spec = sd (unlist(predBMI_E[[k4]][ [START_REF] True | mean(unlist( lapply[END_REF]]), na.rm = TRUE), sd_fdp = sd (unlist(predBMI_E[[k4]][ [6]]), na.rm = TRUE), sd_R2_test = sd (unlist(predBMI_E[[k4]][ [7]]), na.rm = TRUE), run_time <mean(unlist(predBMI_E[[k4]][ [2]]), na.rm = TRUE) ) } remove(sor_moy) remove(tab_freq) names(performance) = names(predBMI_E) ##returning an object containing the simulated datasets with their ##characteristics, the results of each method and the performance measurements A <list(simu = simu, performance = performance, list_predBMI_E = list_predBMI_E) remove(simu) remove(performance) remove(list_predBMI_E) gc() return(A) Mean_sd_R2_test = numeric(0), SD_mean_number_predictors_found = numeric(0), SD_mean_sensitivity = numeric(0), SD_mean_specificity = numeric(0), SD_mean_fdp = numeric(0), SD_mean_R2_test = numeric(0), SD_nb_sup_20percent = numeric(0), SD_nb_sup_60percent = numeric(0), SD_sd_number_predictors_found = numeric(0), SD_sd_sensitivity = numeric(0), SD_sd_specificity = numeric(0), SD_sd_fdp = numeric(0), SD_sd_R2_test = numeric(0), SD_Sorensen = numeric(0), which_scenario = numeric(0), Correlation = vector(), Negative_coefficient = vector(), Run_time = numeric(0) ) } else{ n_row = nrow(comp_stability_method) list_list_predBMI_E <-list() list_performance <-list() print("cluster") ##parallelization start_time <-Sys.time() cl <-makeCluster(getOption("cl.cores", round(detectCores()))) clusterExport( cl, list( "dataExp_true", "simulator_2layers", "simResponseSimple", "estimatedR2", "getresiduals_2df", "ewas", "lasso", "lasso_stab_Meinshausen2", "lasso_moy_lambda", "lasso_moy_MSE", "lasso_moy_Meinshausen", "lasso_stab_Meinshausen", "Enet", "wqs", "sensitivity", "fdp", "specificity", "f0", "R2_fixed", "n_Ey", "n_iter_stab", "submatFindSimpl", "DSAreg", "corr", "corr_range", "pos_and_neg", "n_method" ) ) clusterEvalQ ( cl, list( "comp_stability_method_n30_15