
HAL Id: tel-03438755
https://theses.hal.science/tel-03438755

Submitted on 21 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Autonomous robust control techniques for dynamic
target tracking

Guillermo Julio Cesar Betancourt Vera

To cite this version:
Guillermo Julio Cesar Betancourt Vera. Autonomous robust control techniques for dynamic tar-
get tracking. Robotics [cs.RO]. Université de Technologie de Compiègne, 2021. English. �NNT :
2021COMP2619�. �tel-03438755�

https://theses.hal.science/tel-03438755
https://hal.archives-ouvertes.fr

 Par Guillermo Julio Cesar BETANCOURT VERA

Thèse présentée
pour l’obtention du grade
de Docteur de l’UTC

Autonomous robust control techniques
for dynamic target tracking

Soutenue le 28 juin 2021
Spécialité : Automatique et Robotique : Unité de recherche
Heudyasic (UMR-7253)
 D2619

Referees: Sihem Tebbani Professor at L2S

Nicolas Marchand DR CNRS at GIPSA-Lab

Examiners: Reine Talj HDR CNRS at HDS

Didier Theilliol Professor at CRAN

Franck Ruffier DR CNRS at ISM

Lounis Adouane Professor at HDS

Supervisors: Pedro Castillo HDR CNRS at HDS

Rogelio Lozano DR CNRS at HDS

Compiègne, France 2021

UNIVERSITÉ DE TECHNOLOGIE DE COMPIÈGNE

HEUDIASYC, UMR 7253

AUTONOMOUS ROBUST
CONTROL TECHNIQUES FOR
DYNAMIC TARGET TRACKING

Thesis presented by

Guillermo Julio Cesar Betancourt Vera

to obtain the degree of Doctor

28/06/2021

Spécialité : Automatique et Robotique

Committee members:

“Once you have tasted flight, you will forever walk the earth

with your eyes turned skyward, for there you have been,

and there you will always long to return.”

— Leonardo da Vinci

To my lovely family. . .

Acknowledgements
I would like to deeply thank Pedro Castillo and Rogelio Lozano for giving me the opportunity

to pursue my PhD under their supervision on an interesting interdisciplinary topic that

included robots, dynamics, control, etc. This thesis would not have been possible without

their continuous support, patience, advise, and availability. I can hardly express my gratitude

in words to Pedro and Rogelio for letting me work in such an amazing lab that has been unique

in many aspects. The availability of several advanced robots and equipments in our lab gave

me an exceptional opportunity to work with many state-of-art platforms and to evaluate

different aspects of my work in real world experiments. Thanks to them for all the time their

spent to read and correct my articles and thesis and all their fruitful guidelines, without which

this thesis would never have reached its current state.

I want to express also my gratitude to the institutions that supported this work from the

beginning. To the Mexican Consejo Nacional de Ciencia y Tecnlogía (CONACYT) for the

scholarship program that supported me during my PhD studies in France. A big thank you to

the Heudiasyc (Heuristic et DIAgnostique des SYstèmes Complexes) laboratory and the Ècole

Doctorale Sciences pour l’Ingenieur at the Université Technologie de Compiègne (UTC) that

made this work possible with their PhD programs.

I would like to thank my examiners Professor Sihem Tebbani and the DR CNRS Nicolas

Marchand that have honored me by accepting to read my thesis. Your insightful comments

were undoubtedly a great asset for this thesis. My thanks are also for the HDR CNRS Reine

Talj, Professors Didier Theilliol and Lounis Adouane as well the HDR CNRS Franck Ruffier for

accepting to be part of my jury and giving very helpful commentaries of my thesis.

I have enjoyed each moment of my PhD life thanks to the amazing atmosphere at our lab.

Every working day was full of interesting scientific and non-scientific discussions with such an

awesome multifaceted group of people. I would like to immensely thank Guillaume Sanahuja,

Gildas Bayard, Thierry Monglon, Alexis Offermann, Cristino de Souza, Hernan Abaunza and

Belem Rojas with whom I had the opportunity to discuss, life, music, tv, science, games,

religion, and many other interesting topics. A big thanks specially to Guillaume and Gildas

for FL-AIR, an invaluable framework that helped me a lot to apply my methods on real and

simulated robots. Their passion for robots and technology, their sense of humor and this

endless knowledge on C++ have been an inspiration and a pleasure for me.

Thanks to Professor Pedro Gil and Vicente Balaguer for your support, knowledge and the great

scientific discussions we had during our meetings. I hope to continue collaborating with you.

i

Acknowledgements

I would like to thank Sabine Vidal, Brigitte Azzimonti and Nathalie Alexandre from the ad-

ministrative service of the laboratory and Sylvie Carlier from the administrative service of the

Ècole Doctorale Sciences pour l’Ingenieur at the Université Technologie de Compiègne (UTC),

for taking care of the administrative aspects of my PhD.

I would like to thank a number of valuable friends outside my doctoral study, who has made

living in France a very enjoyable and pleasant experience for me. My especial thanks to Nicolas

Abdelnour, Louise le Masne, Maxime Juston, Garance Verrier, Aurélien Quelin, Laure Tangre,

Hénoïk Willot, Santiago Venegas and Emeric Ostermeyer with whom I shared many great

memories. Life in Compiègne could not be better thanks to your companionship, availability

and sens of humor. I would also like to thank my roommates and friends Alexis Pagnoux,

Alexis Nauton, Mokossia N’guessan, Quentin Duchemin, Maxime Beaugendre, Lola Lejeune,

Matěj Křístek, Pierre Kidzié and Anna Tailliez for all the unforgettable moments that we spent

together at home. A huge thanks for the amazing conversations that I had with each one of

you, for teaching me the french culture, for being so patience when I was learning french and

for the unforgettable and uncountable hours of music and sport sessions. All my gratitude to

all of you. I could say that I found my second family with all of you.

My especial thanks to Ricardo Sanz for always proposing me such amazing hikes. I passed

a wonderful time walking and discussing about everything with you. You made mountains

became really important to me and that gave me peace and energy. My thanks to Oscar

Beltran, my cheerful and supportive friend with whom I shared many ups and downs of PhD

life. Thanks a lot for always believing on me and for being such a good friend when I needed it.

Thanks to Jesus Solis, for the unmemorable discussions about science, technology and life.

Even with a huge distance and seven hours of time difference, you made possible to helped

me with my Linux issues. You are truly good friends that I can see as my brothers.

Last, but far from least, I would have never reached the place where I am now without the

endless support, love and encouragement of my parents, Abraham and Alma. I am immensely

thankful for their confidence in me, which has allowed me to discover many aspects of life

independently. I would also like to deeply thank to my brothers Jesús, Abraham and Juan for

all their back up and the nice moments we have spent together.

Compiègne, June 28, 2021 J. B.

ii

Abstract
This thesis will approach the problem of tracking moving targets by means of an aerial drone.

More precisely, a quadrotor configuration was taken into consideration for the development

of aerial navigation algorithms, since this kind of platform is mechanically simple, versatile

for performing aggressive maneuvers, and easily available for experimentation.

The goal of this thesis is to develop control and navigation algorithms capable of robustly

tracking dynamic targets. The contributions herein reported aim at presenting a unified and

accessible analysis of control strategies for solving the stabilization and tracking problems. In

addition, this thesis introduces autonomous and semi-autonomous navigation algorithms for

tracking static and dynamic targets. Finally, for giving robustness with respect to a class of per-

turbations, a robust control architecture based on disturbance observer has been developed.

Control approaches for aerial vehicles: The first part of this work consisted on developing

quadrotor controllers with the aim of robustly tracking trajectories and performing precise

navigation tasks. It is well-known that, stabilizing and tracking control problems of a quadrotor

vehicle has been studied through the last decades. Nevertheless,choosing the best control

technique to solve these problems is still not an easy task. Therefore, the following control

strategies were introduced:

– Nonlinear and linear backstepping.

– Simple nonlinear bounded control.

– Virtual control based on hyperbolic functions.

– Quaternion-based backstepping control.

– Finite time convergence based on sliding mode control.

Autonomous navigation algorithms: The next part of this thesis was focused on developing

semi-autonomous and autonomous algorithms that allows to detect and track a mobile target,

as well to generate desired trajectories such that, the controllers previously developed can

track.

A path planning algorithm for quadcopters based on model predictive control was developed

for the autonomous trajectory generation. The algorithm was solved in real time as a result of

an online optimization of a cost function. Then, the optimal trajectories were tracked using a

simple nonlinear bounded control.

iii

Abstract

Then, concerning the detection and tracking of a ground mobile target, an autonomous visual

servoing navigation algorithm was proposed. The algorithm considers that the ground vehicle

mimics a car driver such that its movements can be described as a vector field. In addition the

ground robot is detected using properties from the well-known optical flow algorithm. Thus,

the quadrotor tracks the ground vehicle using the quaternion-based backstepping control.

Lastly, a semi-autonomous virtual control architecture for controlling robots remotely was

developed in cooperation with the team of virtual reality at the Heudiasyc Lab. The architecture

is composed by a world-in-miniature located in a virtual environment and, a real aerial robot

located in a fly arena. The real aerial robot tracks the desired positions and velocities, coming

from the virtual environment, using a quaternion-based backstepping control.

Robust control scheme: The last part of this thesis was dedicated to the conception of a

robust control architecture capable to counter-acted model uncertainties and a external

perturbations such as wind gust and loss of effectiveness in rotors. This architecture can be

seen as follows:

A robust control architecture based on disturbance estimator was introduced to give robust-

ness to the closed-loop system with respect to nonlinear uncertainties and small external

disturbances. The architecture performed experimental tests enhancing a simple feedback

controller.

Then, improving the previously discussed architecture, a novel robust fault tolerant control

scheme was obtained. The scheme has in addition a rotors fault observer to detect and

estimate the loss of effectiveness in actuators. The robust controller can estimate and counter-

acted rotors faults in non hover and hover positions.

Ultimately, a bounded robust control architecture was developed from the disturbance ob-

server and optimal control properties. Besides estimating and compensating unknown dy-

namics, this scheme improves its robustness by solving the physical constraints of the motors.

The architecture was experimentally proved with several wind gust and loss of effectiveness in

two rotors.

iv

Résumé
Cette thèse étudie la problématique du suivi de cibles mobiles à l’aide d’un drone aérien. Plus

précisément, une configuration quadrotor a été utilisée pour le développement d’algorithmes

de navigation aérienne. En effet, ce type de plateforme est simple mécaniquement, polyvalent

pour effectuer des manœuvres aggressives, et facilement disponible pour l’expérimentation.

L’objectif de cette thèse est de développer des algorithmes de contrôle et de navigation ca-

pables de suivre de manière robuste une cible dynamique. Les contributions rapportées

ici présent une analyse unifiée et accessible des stratégies de contrôle pour résoudre les

problèmes de stabilisation et de suivi. Cette thèse introduit également des algorithmes de

navigation autonome et semi-autonome pour le suivi d’une cible statique et dynamique. Enfin,

pour donner de la robustesse vis-à-vis d’une classe de perturbations, une architecture de

contrôle robuste basée sur l’observateur de perturbations a été développée.

Techniques de contrôle des véhicules aériens : La première partie de ce travail a consisté

à développer des contrôleurs de quadrotor dans le but de suivre de manière robuste des

trajectoires et de réaliser des tâches de navigation précises. En effet, les problèmes de contrôle

de stabilisation et de suivi d’un véhicule quadrotor ont été étudiés au cours des dernières

décennies. Néanmoins, choisir la meilleure technique de contrôle pour résoudre ces pro-

blèmes n’est pas une tâche facile. Par conséquent, les stratégies de contrôle suivantes ont été

introduites :

– Backstepping linéaires et non linéaires.

– Contrôle borné non linéaire.

– Contrôle virtuel basé sur des fonctions hyperboliques .

– Contrôle backstepping basé sur des quaternions.

– Convergence en temps fini basé sur le contrôle du mode glissant.

Algorithmes de navigation autonomes : La partie suivante de cette thèse s’est concentrée sur

le développement d’algorithmes semi-autonome et autonome qui permettent de détecter et de

suivre une cible mobile, ainsi que de générer des trajectoires désirées afin que les contrôleurs

précédemment développés puissent suivre.

v

Résumé

Un algorithme de planification de trajectoire pour quadrotors basé sur un modèle de contrôle

prédictif a été développé pour la génération autonome de trajectoires. L’algorithme a été

résolu en temps réel grâce à une optimisation en ligne d’une fonction de coût. Ensuite, les

trajectoires optimales ont été suivies à l’aide d’un simple contrôle borné non linéaire.

Ensuite, concernant la détection et le suivi d’une cible mobile au sol, une algorithme de

navigation d’asservissement visuelle autonome a été proposé. L’algorithme considère que

le véhicule terrestre imite un conducteur de voiture afin que ses mouvements soient décrits

comme un champ vectoriel. De plus, le robot au sol est détecté en utilisant les propriétés de

l’algorithme de flux optique bien connu. Ainsi, le quadrotor suit le véhicule au sol en utilisant

la commande backstepping basée sur des quaternions.

Enfin, une architecture de contrôle virtuel semi-autonome permettant de contrôler des robots

à distance a été développée en coopération avec l’équipe de réalité virtuelle du laboratoire

Heudiasyc. L’architecture est composée d’un monde en miniature situé dans un environne-

ment virtuel et d’un robot aérien réel situé dans une arène de vol. Le vrai robot aérien suit les

positions et les vitesses désirent, provenant de l’environnement virtuel, à l’aide d’un contrôle

backstepping basé sur le quaternion.

Schéma de contrôle robuste : La dernière partie de cette thèse était consacrée à la conception

d’une architecture de contrôle robuste capable de contrer les incertitudes du modèle et les

perturbations externes telles que les rafales de vent et la perte d’efficacité des rotors. Cette

architecture peut être vue comme suit :

Une architecture de contrôle robuste basée sur un estimateur de perturbations a été introduite

pour donner de la robustesse au système en boucle fermée vis-à-vis des incertitudes non

linéaires et des petites perturbations externes. L’architecture a effectué des tests expérimentaux

améliorant un contrôleur de rétroaction simple.

Ensuite, en améliorant l’architecture discutée précédemment, un nouveau schéma de contrôle

robuste et tolérant aux pannes a été obtenu. Le schéma dispose en outre d’un observateur de

défauts de rotors pour détecter et estimer la perte d’efficacité des actionneurs. Le contrôleur

robuste peut estimer et contrecarrer les défauts des rotors en position non stationnaire et en

position stationnaire.

Enfin, une architecture de contrôle robuste bornée a été développée à partir de l’observa-

teur de perturbations et des propriétés de contrôle optimales. En plus de l’estimation et la

compensation de dynamiques inconnues, ce schéma améliore sa robustesse en résolvant

les contraintes physiques des moteurs. L’architecture a été prouvée expérimentalement avec

plusieurs rafales de vent et une perte d’efficacité dans deux rotors.

vi

Contents
Acknowledgements i

Abstract iii

List of Figures xi

List of Tables xvii

Glossary xix

Glossary xix

I Chapter 1 1

1 Introduction 3

Introduction 3

1.1 Problem statement . 4

1.2 Thesis objective . 5

1.3 State of the art . 6

1.4 Thesis outline . 15

II Chapter 2 17

2 Modeling quadcopter vehicle approaches 19

2.1 Force and moment in a rotor . 20

2.2 Classical modeling approaches . 21

2.2.1 Euler-Lagrange approach . 21

2.2.2 Newton-Euler approach . 25

2.3 Quadrotor quaternion model based on Euler-Lagrange 25

2.3.1 Quadrotor quaternion dynamical model 27

2.3.2 Decoupling the vehicle dynamics . 31

2.4 Modeling approaches conclusions . 33

vii

Contents

III Chapter 3 35

3 Control approaches for aerial vehicles 37

3.1 Comparison of stabilization and tracking control algorithms 38

3.1.1 Nonlinear Backstepping algorithm . 39

3.1.2 Control algorithm based on nested saturation 41

3.1.3 Linear backstepping . 43

3.1.4 Fully actuated approach . 45

3.1.5 Numerical and experimental results . 51

3.1.6 Discussion . 59

3.2 Quaternion-based backstepping control . 60

3.2.1 Experimental test . 64

3.3 Finite-time convergence using Sliding Mode Control 67

3.3.1 xc (t) and yc (t) components . 67

3.3.2 Sliding mode control design . 69

3.3.3 Numerical and experimental results . 72

3.4 Conclusions . 77

IV Chapter 4 79

4 Autonomous navigation algorithms 81

4.1 Path planning algorithm using MPC . 82

4.1.1 Experimental results . 86

4.2 Vision algorithm for target localization: a case study for

autonomous vehicles surveillance . 88

4.2.1 Experimental tests . 95

4.3 Semi-autonomous navigation using an immersive virtual reality environment . 101

4.3.1 Virtual control scheme . 101

4.3.2 DrEAM’s experimental fatigue tests results 107

4.3.3 DrEAM real-time validation with robots 109

4.4 Quadcopter autonomous navigation conclusions 116

V Chapter 5 119

5 Robust control scheme based on disturbance estimator 121

5.1 Preliminaries . 122

5.1.1 Proposed solution . 123

5.2 Robust control scheme for disturbance rejection 123

5.2.1 Experimental results for disturbance rejections 126

5.3 Enhancing robust control architecture for LoE in rotors 133

5.3.1 Numerical and practical validation . 136

5.3.2 Discussion . 149

viii

Contents

5.4 Enhancing robust control architecture for handling rotor’s constraints 152

5.4.1 Experimental results of bounded control 154

5.5 Robust control architecture conclusions . 160

VI Chapter 6 161

6 Conclusions 163

Conclusions 163

A Publications 165

Bibliography 167

ix

List of Figures
1.1 Example of a target tracking problem: a pursuer drone follows an intruder

quadrotor while flying in a restricted area. 5

2.1 Propeller forces and torques acting on a quadrotor. 20

2.2 Coordinate systems acting in the aerial vehicle where fi denotes the force applied

of each motor, ~Fth symbolizes the total thrust force and θ, φ, ψ are the Euler

angles on each axis. 21

2.3 Quadcopter free body diagram . 27

2.4 Illustration of the Cross product of two vectors 32

3.1 Longitudinal position performance when comparing the four control algorithms. 52

3.2 θ angle response when applying four controllers into the PVTOL dynamics. θd

denotes the desired angle computed in (3.43). 52

3.3 Vertical position behavior when comparing the four control algorithms. 53

3.4 Vehicle’s performance evolution in the x−z plane when applying the four control

algorithms into the PVTOL dynamics. From figure xri for i : 1,2,3 describes the

desired way-point. 53

3.5 u1 behavior when applying the controllers (3.11), (3.26), (3.36) and (3.48). . . . 54

3.6 Torque control u2 response when applying the four control algorithms. 54

3.7 Quadcopter configuration evolving its longitudinal plane. 55

3.8 Longitudinal behavior when applying experimentally the four control algorithms

into the aerial vehicle. 56

3.9 θ angle response when the four control algorithms where applied in real time.

θd describes the desired angle. 56

3.10 Vertical position comparing the four control algorithms. 57

3.11 Vehicle’s performance evolution in the x − z plane when the four control algo-

rithms are applied in real time. 57

3.12 Thrust control u1 response for the four control algorithms applied to the aerial

vehicle. 58

3.13 Torque control response, u2, obtained during the flight tests. 58

3.14 Performance of the quadcpter during the flight test 64

3.15 Quadcotper position tracking . 65

xi

List of Figures

3.16 Quadcopter attitude quaternion performance when tracking the desired pose

trajectory . 65

3.17 Performance of the control input forces . 66

3.18 Performance of the rotational controller . 66

3.19 Quadcopter attitude axis-angle representation . 67

3.20 Finite time convergence of the quadcopter to the flying target at t̄ = 5s 73

3.21 Performance of the x, y , z axes of the quadrotor when converging in finite time. 73

3.22 Tracking performance of the attitude system of the quadrotor. 74

3.23 Control inputs of the quadrotor. 74

3.24 Performance of the x and y axes of the quadcopter. Left column of the picture

represents the experiment when t̄ = 5s and the right column for t̄ = 3s. 75

3.25 3D performance of the quadcopter. Left image corresponds when t̄ = 5s and

right one when t̄ = 3s. 76

3.26 Attitude behavior of the quadcopter when tracking a desired trajectory with

t̄ = 5s and t̄ = 3s as desired finite-time convergence. 76

3.27 Performance of the control inputs when considering t̄ = 5s and t̄ = 3s as desired

finite-time convergence . 77

4.1 Control-scheme diagram. ~Pr defines the control trajectory obtained from the

algorithm MPC, ~Pd denotes the desired final values. The Re-Planner based on

MPC generates the optimal feasible trajectory, and~η, ~ξ state for the vehicle’s

states. ~un represent the saturation nominal controller, ~uζ expresses a compen-

sate parameter from a disturbance observer and ζpossible external perturbations. 82

4.2 Evolution of the path tracking in x, y , z−axis with wind and manual disturbances. 87

4.3 Flight test when the quadcopter follows the helical trajectory in ascending phase

in presence of wind and manual disturbances. 87

4.4 Flight test when the quadcopter follows the helical trajectory in descending

phase in presence of wind and manual disturbances. 88

4.5 Proof of concept of the problem: The driver commands the vehicle in urban

set, picking up the next contour A, then B, then C to plan smoothly ahead, as

if navigating in smooth vector fields; then, facilitating tracking with airborne

monocular camera, since height can be regulated efficiently, and assuming target

remains in the FoV. 89

4.6 Experimental test-bed showing the AR Drone 2.0 as the quadrotor, and the Jump-

ing Sumo as the mobile robot (with a chess board on top for image processing). 90

4.7 Frames when searching for the target . 91

4.8 Image position of the mobile robot frame and the camera frame. 92

4.9 Kinematic of a differential robot as an abstract representation of an AGV. 92

4.10 Three steps Velocity Fields design method based on differential geometry prop-

erties of the desired trajectory:(a) parametric curve of motion objective, (b) main

directional components of the field, (c) calculation of the velocity vectors. . . . 93

xii

List of Figures

4.11 Positions x and y of the centroid using the optical flow data and the kalman filter.

The z position is measured using the Optitrack camera system. 96

4.12 Velocities of the target in the image plane. 97

4.13 Control inputs for the quadcopter vehicle. 97

4.14 Desired velocity field components of the ground robot. 98

4.15 Position of the centroid ~pt and its estimated velocity. 98

4.16 Cartesian position trajectories and errors of the mobile robots. 99

4.17 Performance of both robots in the x y plane. These signals are provided by the

Optitrack system. 99

4.18 Control inputs of the flying and ground vehicles. 100

4.19 Left: stress when piloting a drone. Right: frustration after crashing the vehicle [1]. 101

4.20 Virtual control scheme . 102

4.21 Real world environments. 103

4.22 DREAM’s virtual environment and flight arena . 105

4.23 Different states of the virtual drone; (a) - cannot be taken , (b) - can be taken and

(c) - has been taken. 106

4.24 Navigation task: start point (S), checkpoint (C) and the final point (A) keeping

the heading of the vehicle pointing to the target. 108

4.25 Graphics results from the NASA-TLX questionnaire. From graphs 0 means low

and 6 high demand or impact on the presented criteria. 108

4.26 Scenario of the first experiment. 110

4.27 3D performance of the virtual drone and the real vehicle when scenario 1 is

validated in real time. 111

4.28 Yaw angle behavior of the drones (real and virtual). 111

4.29 x-position performance of the virtual drone and the real vehicle obtained from

the first scenario. Observer the good behavior of the real drone when imitates

the virtual drone trajectory. 112

4.30 Performance of the robots (virtual and drone) in the y axis. 112

4.31 z-state behavior of the first scenario. Observe that the robots (virtual and real)

change their altitude for crossing the windows. 113

4.32 Performance of the velocities of vehicle during the first scenario. Note that it is

increased mainly in the x and y axes. 113

4.33 Scenario of the second experiment. 114

4.34 3D behavior of the virtual and the real aerial vehicles when performing the

second scenario. 114

4.35 Performance of the aerial robots in the x axis. Observe the good performance

when the real robot imitates the virtual robot. 115

4.36 y- state behavior of the aerial robots (virtual and real) when the user turns the

pillars three times. 115

4.37 z performance of the vehicles obtained during the second scenario. Observe

that the last two laps the user change also the altitude during the trajectory. . . 116

4.38 Behavior of the heading of the virtual and real drone respectively. 116

xiii

List of Figures

5.1 Block diagram of the control structure. ~un and ~uζ correspond to the the nominal

control action and the control rejection part, respectively,~ξd is the desired refer-

ence. ~uR represents the proposed controller ζ represents external disturbances.

. 125

5.2 Wind-gust scenario. 127

5.3 Vehicle’s performance in 3D against wind disturbance. 127

5.4 Performance of the vehicle in x−axis, y−axis and z−axis. 128

5.5 Estimation of the wind disturbance. 128

5.6 Lateral weight disturbance applied to an aerial system. 129

5.7 Vehicle’s performance in 3D against the weight disturbance. 129

5.8 Performance of the quadrotor against the later weight disturbance. 130

5.9 Estimation of the weight disturbance. 130

5.10 Partial rotor failure in a quadcopter. 131

5.11 Vehicle’s performance in 3D against a rotor failure. 131

5.12 Performance of the quadrotor against a rotor’s fault. 132

5.13 Estimation of the rotor failure . 132

5.14 Control actions of the motors. 133

5.15 Block diagram of the enhanced control architecture. 135

5.16 Quadrotor position performance when using a feedback controller and the

proposed architecture. 137

5.17 Scenario 1.- Performance of the quadrotor subject to a LoE of 30% in M1. 138

5.18 Scenario 1.- Performance of the rotor fault estimator M̂ζi , i = 1, · · · ,4. 138

5.19 Scenario 1.- Control action’s behavior of each of the rotors when using ~un and

~uR controllers. 139

5.20 Position performance of the vehicle subject to a critical failure in M1. 139

5.21 Scenario 2.- Performance of the rotor fault estimator M̂ζi , i = 1, · · · ,4. 140

5.22 Scenario 2.- Rotors control action’s performances when a critical fault in motor

M1 is applied. 140

5.23 Performance of the rotor faults estimator M̂ζi and the disturbance estimations

(5.11) of the attitude system of the quadrotor . 141

5.24 Scenario 1.- Control rotors performance when using the linear controller (top

graph) and the proposed scheme. 142

5.25 Scenario 1.- Performance of the quadrotor position subject to a sequence of

rotors failures. 142

5.26 Scenario 2.- Position performance of the vehicle when using the linear controller

and the proposed architecture, and a rotor fault is induced in a non hover position. 143

5.27 Scenario 2.- Performance of the quadrotor position subject to a rotor fault while

moving to a desired position~ξd (t f). 143

5.28 Scenario 2.- Rotors faults estimations M̂ζi , i = 1, · · · ,4. 144

5.29 Scenario 2.- Rotors control action’s performances, when a LoE of 30% in M1 is

applied during a non hover position. 144

xiv

List of Figures

5.30 Scenario 3.- Performance of the vehicle when applying a motor fault of 50% and,

two different controllers are used. 145

5.31 Scenario 3.- Performance of the quadcopter position subject to a critical rotor

fault of 50% in M1. 146

5.32 Scenario 3.- Rotors faults estimations M̂ζi , i = 1, · · · ,4. 146

5.33 Scenario 3.- Rotors control action’s performances, when a critical fault of 50% in

M1 is applied. 147

5.34 Scenario 4.- Position performance of the vehicle when using the linear controller

and the proposed architecture, and a critical rotor fault is induced. 148

5.35 Scenario 4.- Rotors faults estimations M̂ζi , i : 1, · · · ,4. 148

5.36 Scenario 4.- Rotors control action’s performances, when a critical fault of 60% in

M1 is applied. 149

5.37 Control inputs ~un and ~uR of the first scenario. 151

5.38 Control inputs ~un and ~uR of the second scenario. 151

5.39 Control inputs ~un and ~uR of the third scenario. 152

5.40 Block diagram of the control structure. ~un and ~uζ correspond to the the nominal

control action and the control rejection part, respectively, ξd is the desired

reference. ~ξ,~η mean the position and attitude states. ~uR and ~u∗
R represent the

proposed controller and the set of its optimal and bounded values, respectively.

The quadratic problem block deals with the motors constraints and ζi represents

external disturbances. 154

5.41 Set-up of the wind-gust scenario. 155

5.42 Scenario 1.- System performance during flight tests. 155

5.43 Scenario 1.- Performance of the quadrotor position subject to wind-gust. 156

5.44 Scenario 1.- Attitude Performance of the quadrotor system subject to wind-gust. 156

5.45 Scenario 1.- Attitude disturbance estimations. 157

5.46 Scenario 1.- Performance of the motor control actions. 157

5.47 Scenario 2.- 3D state performances in flight tests. 158

5.48 Scenario 2.- Performance of the attitude disturbance estimation. 159

5.49 Scenario 2.- Behavior of motor control actions. 159

xv

List of Tables
3.1 Parameters values used in the control laws in (3.11), (3.22), (3.36) and (3.48) used

in simulation and experimental validation. 51

3.2 Performance indices of the z−axis . 59

3.3 Performance indices of the x−axis . 59

3.4 Qualitative comparison of the control algorithms. The best result is denoted

with 1 and the worst with 4. 60

3.5 Control gains parameters used in experimental tests 64

3.6 Control parameters used in experimental and numerical tests for t̄ = 5s 72

4.1 Experimental parameters . 86

4.2 Experimental parameters for the control law (4.29) and the ground vehicle con-

trol (4.32). 96

4.3 Data results of MLE, MCT and MYE indexes . 109

4.4 Results from the one sample t-Test. 109

5.1 Gain parameters used in the experimental tests 126

5.2 Performance indices of the three scenarios. 149

5.3 Total Variation (TV) of the control inputs. 150

xvii

Glossary

ADRC Active Disturbance Rejection Control

AGV Autonomous Ground Vehicle

CAVE Cave Automated Virtual Environment

CoG Center of Gravity

CoM Center of Mass

DOBC Disturbance Observer Based Control

DoF Degrees of Freedom

DrEAM Drone Exocentric Advanced Metaphor

Fl-AIR Framework libre AIR

FoV Field of View

FTC Fault Tolerant Control

GESO Generalized Extended State Observer

HSC Hyperbolic Saturation Controller

LB Linear Backstepping

LoE Loss of Efficiency

MAS Multi-rotor Aerial Systems

MPC Model Predictive Control

NLB Nonlinear Backstepping

NS Nested Saturation

PI Proportional Integrator

PID Proportional Integral Derivative

PIO Proportional-Integral Observer

PVTOL Planar Vertical Take-off and Landing

qLPV quasi-Linear Parameter Varying

SMC Sliding Mode Control

UAV Unmanned Aerial Vehicle

UAVs Unmanned Aerial Systems

UDE Uncertainty and Disturbance Observer

VTOL Vertical Take-Off and Landing

WIM World In Miniature

xix

Part IChapter 1

1

1 Introduction

In the past decade Unmanned Aerial Vehicles (UAVs) have enjoyed considerable success in

many applications such as search and rescue, monitoring, research, exploration, or mapping.

Robotics research has advanced significantly the past years and it can now offer many elab-

orate solutions in artificial vision, path planning, decision-making, obstacle avoidance and

environment modeling − all these works aiming at endowing mobile machines with auton-

omy [2]. The research and development in the field of Unmanned Aerial Systems (UAVs) is

experiencing an increasing quantity of investment all around the world. Small UAVs are often

used as experimental platforms to research on state estimation, control, robotic collaboration,

etc; since their dynamic maneuvering and natural instability pose important challenges that

are not present with other robotic platforms. In addition, the maneuverability of UAVs is

combined with a low payload capability, which in turn requires the development of algorithms

with constrained computation requirements. This fact has resulted in many research focused

on testing and demonstrating the possibilities of several sensors on these platforms.

Nowadays, UAVs can take off, fly and land almost without any human intervention. The work

developed in this thesis is focused on quadrotors or quadcopters vehicles. These robots are

composed basically by four motors, an Inertial Measurement Unit (IMU) for obtaining the

orientation of the vehicle, a position sensor such as a GPS and a Central Processing Unit

(CPU) where the control algorithm is executed [3]. Furthermore, a quadcopter is capable of

handling complex tasks in cramped and crowded environments, as well as it has a simple

control mechanism compared to the other types of UAVs [4]. Due to the cost reduction, in the

last years, potential applications of quadcotpers have emerged for civil and military uses, such

as airborne surveillance [5], automated search and rescue [6], military information gathering,

military offensive actions, electrical transmission line inspection [7] and automated forest fire

surveillance [8], to cite a few. A common point to most of these applications is that they are

defined with respect to a reference frame, where a target needs to be tracked.

For instance, in the airborne surveillance or in the automated search and rescue applications, a

target must be defined to be tracked and this one can be static, slowly moving, or maneuvering

at high speeds.

3

Introduction

As a consequence of the aforementioned, there has been increasing interest in the quadrotor

applications such as target-tracking, object detection and landing to drone station [9, 10, 11].

Especially, target-tracking is an essential task for quadrotors, as it has been proven to be an

effective tool in search and rescue surveillance [12], following and providing aerial based video

of sports events [13]. Also, it has become a relevant field for the correct development of many

multidisciplinary applications, such as traffic supervision, autonomous robot navigation,

mapping, and aerial photography.

1.1 Problem statement

The target tracking problem has an ever-growing number of civilian applications, ranging

from traditional applications such as air traffic control and building surveillance to emerging

applications such as supply chain management and wildlife tracking. For such tasks, and

due the simplicity and versatility of multirotors, in recent years, a large part of the scientific

community have focused their attention in these kind of vehicles in front of other types of

UAVs [14]. Target tracking for UAV generally falls into two categories; cooperative tracking

and non-cooperative tracking, respectively. In the cooperative tracking system, real time

between the UAV and the target is required, such as a convoy [15]. Compared with cooperative

tracking, non-cooperative tracking has less limitations. Instead of real-time interaction, in the

non-cooperative tracking system, the UAV is equipped with a camera so that the information

of the target can be obtained using vision-based method. For a successful tracking system, the

target needs to be kept within the camera view and distinguished from the environment in

real time by the onboard computer. Then the visual information derived from the processing

of images is used to control the motion of UAV to track the target and keep it at the center of

the image frame.

Autonomously tracking moving target using multirotors, as illustrated in Figure 1.1, is not an

easy task and many challenges have to emerge in different stages. However, when using a

quadrotor vehicle, this problem can be divided into three process; 1) taking off, 2) detection of

the moving target, and 3) tracking the moving target. Since the quadrotors are dynamically

unstable, under-actuated, and nonlinear systems, it is very challenging to design a controller

for a quadrotors to track a moving target especially under the varying speed of the moving

target and under the environment effects. In the process of tracking a moving target using a

quadrotor, there are still several challenges: (1) the completion with high precision and relia-

bility of the target tracking problem using a quadrotor, (2) the non-linearity and uncertainties

in the quadrotor system and (3) the external perturbations that can occur when tracking a

moving target.

4

1.2. Thesis objective

Figure 1.1 – Example of a target tracking problem: a pursuer drone follows an intruder quadro-
tor while flying in a restricted area.

The necessity of implementing novel and reliable autonomous navigation control methods

for tracking moving targets, exploring the capabilities of robust control techniques and their

applicability, defines the research framework from which this thesis has been developed. This

thesis has a strong experimental and theoretical basis and the main research problems tackled

during its realization have been: 1) a mathematical model of the aerial vehicle needs to be built

such that it accurately describes the real vehicle but at the same time provides mathematical

simplicity in order to aim at 2) the development of control algorithms that will deal with

the stabilization and tracking problem, 3) Then, navigation methods must be designed to

follow dynamic targets even in the presence of external disturbance, and consequently, 4) a

robust control technique must to be exposed in order to overcome these external/internal

perturbations.

1.2 Thesis objective

For tracking target tasks, there is a need for the aerial vehicle to anticipate the movements

of the mobile target in order to be ‘a step ahead’. This brings the interest to the level of the

decision process: a target that is evasive is going to actively attempt to hide behind obstacles

and use this advantage to continue evading. In order to anticipate to the movements of this

target, the aerial vehicle must be able to predict such situations and to react or plan before

they even happen in order to maintain the continuity of the target tracking.

One of the main difficulties when designing a control system for solving the target tracking

problem is, undoubtedly, the good choice of the controller in the presence of disturbances.

It should be remarked that disturbances are not necessarily external to the system itself, but

they can be originated when sensing and/or actuating. Therefore, even if small, they can arise

at any time.

5

Introduction

This thesis will approach the problem of tracking moving targets by means of an aerial drone,

in our case a quadrotor vehicle. The goal of this thesis is to develop control and navigation

algorithms capable to robustly tracking dynamic targets. As a result, the following control

techniques must be addressed: autonomous navigation algorithms for the detection and

trajectory tracking of the moving target, control laws for stabilizing the quadrotor and tracking

desired trajectories with finite time convergence and, an enhancing control algorithm for

dealing with unknown model dynamics and external perturbations while satisfying motor’s

constraints.

The objectives of this thesis can be summarized as follows:

• Develop a control based navigation method that allows the quadrotor vehicle to detect

and track a moving target.

• Develop a path planning algorithm based on model predictive control, capable of

generating optimal trajectories based on target’s position.

• Develop control algorithms for stabilizing a quadrotor while tracking desired trajectories

with finite time convergence.

• Develop a robust control architecture capable of dealing with external disturbances and

undesired dynamics such as rotors fault.

1.3 State of the art

Quadrotor control techniques

In control systems for multirotor aerial vehicles there are two different types of control, de-

pending on the loop to which the controller is applied; the position controller and the attitude

controller. In fact, there is no direct actuation control per se. Attitude control is the con-

cept of pointing a craft in the desired direction. More specifically, it involves controlling the

orientation of the robot on its three Euler angles (θ,φ,ψ) and controlling the robot’s thrust

in the z-axis of the robot frame of reference. This is performed due to the underactuation

characteristics of the robot. Then, the outputs of this control are sent to a mixing-of-motors

algorithm to generate the reference signals for the actuators of the MAVs. In these cases, the

attitude control algorithm must take into account the number of motors and their respective

control signal. In contrast, position control is the controller that gives the Euler angles as

references to the attitude controller in order for the MAV to move in a desired trajectory [16].

For the last 10 years, attitude and position were popularly controlled by monitoring the altitude

(z-axis) using feedback linearization followed by a linear/nonlinear controller to achieve the

desired altitude. The values of the control torque can be found by replacing the controlled

altitude in the attitude expression. This method for designing the control torque will be

denoted classical approach in this work.

6

1.3. State of the art

In addition, adaptive control has been studied to solve the problems of stabilization and

tracking of the dynamics. In [17] a novel trajectory tracking scheme by combining two inner

feedback linearization loops to stabilize the nominal quadrotor was presented. Moreover, a

robust adaptive tracking control scheme based on a self-tuning regulator has been presented

in [18]. This tracking method is implemented in the inner loop and a classical proportional

integrator (PI) controller was employed in the outer loop such that the robustness of the whole

system is guaranteed. Similarly, in [19] the altitude and attitude control laws for the quadrotor

based on the passivity method were introduced; the simulation results demonstrate high

efficiency and robustness with respect to the plant parametric uncertainty.

Furthermore, a time-varying backstepping technique is presented in [20], where a 3D control

tracking law is studied and applied experimentally on a quadrotor. This control law is imple-

mented by assuming that only the position and orientation parameters of the vehicles are

known; whereas the linear and angular velocities are estimated using Luenberger observers.

Later on, this work was improved in [21] by considering a non-linear time-varying version

of the backstepping technique. This work takes all the non-linearities of the dynamics into

account; resulting in a higher stability validated theoretically with numerical simulations.

Moreover, dynamic inversion is a new control technique developed in [22, 23] for the stabiliza-

tion and dynamics tracking of a quadrotor vehicle. The tracking controller is composed of two

loops; the dynamic inversion is implemented in the inner loop, where an internal dynamics

stabilization is applied to the outer loop. The control objectives are enclosed in the form of

constraint differential equation, and the resultant control law is obtained by inverting the

constraint dynamics using Moore-Penrose Generalized Inverse (MPGI). Computer simulations

were performed to exhibit the performance of the offered control technique in nominal and

perturbed conditions. In addition to the dynamic inversion controllers, an integral backstep-

ping controller with sliding mode control approach for a quadrotor was proposed in [24]. In

this approach the control of the UAV is performed in the altitude and position control. The

altitude control produces translational force, which is used to calculate virtual controls for the

x and y movements and desired angles for pitch and roll. The proposed controller was tested

in a Qball-X4 prototype. In the same sense, a hierarchical control was addressed in [25] based

on sliding-mode and adaptive control techniques to deal with slow and fast time-varying wind

conditions respectively. Simulations results show the validity of the proposed control strategy

while tracking a time-parametrized straight-line and sinusoidal trajectory.

Recently, a new fashion to design the torque control of the vehicle is considering the vehicle

model fully actuated by means of a virtual input. In this thesis, we will call the aforementioned

as virtual approach. In this context, there are some works exploiting the differential flatness

of the quadrotor model and then, with a trajectory generation algorithm, compute high-

performance flight trajectories that are capable of moving a quadrotor from a large class

of initial states to a given target point that will be reached at rest [26, 27, 28]. For example,

in [29] a control scheme based on a virtual control input using a backstepping approach

with Nussbaum function, a priori-bounded control torque for the rotational subsystem was

designed to track the desired orientations generated by the translational subsystem.

7

Introduction

In the same sense, a robust cost controller derived by Lyapunov stability theorem was ad-

dressed in [30]. The designed robust controller guarantees that the closed-loop system con-

verge asymptotically stable and its robustness with respect to parameter uncertainties. Besides,

in [31] the tracking control problem was solved using a two step approach. First, a transla-

tional control scheme that tracks the desired position trajectory is constructed assuming the

translational dynamics to be fully actuated. The magnitude of the translational control input is

used as the magnitude of the control thrust. Second, the unit vector representing the direction

of the translational control input used as the desired thrust direction.

The application of quaternions for controlling aircraft systems was introduced in [32], where

the authors used quaternion products to rotate control vectors between different reference

frames. It was remarked that quaternions are not affected by some undesired effects that are

inherent to Euler angles such as Gimball locks, singularities, and discontinuities, the authors

also emphasized that quaternion operations require less computational resources than com-

puting rotation matrices from other approaches. Later on, quaternion-based techniques were

also applied to quadrotor vehicles such as [33], where the authors proposed a quaternion

high-order sliding mode algorithm to control attitude trajectory on spacecraft, while [34] also

introduced a quaternion sliding mode control for spacecraft, but with adaptive properties

that consider actuator saturation scenarios. A comparison of several quaternion-based con-

trol algorithms for quadrotors was introduced by [35], where proportional-derivative (PD),

linear quadratic regulartor LQR, and backstepping position and attitude controllers were

compared with simulations. More recent contributions have explored other properties of

quaternion-based dynamic systems. For example, [36] and [37] proposed fractional sliding-

mode controllers using quaternions to stabilize the quadrotor attitude dynamics, while also

considering finitetime convergence of the system dynamics based on a fractional-order system.

In [38], researchers estimated quadrotor position and attitude information during aggressive

trajectories by only employing cameras and inertial sensors, quaternion operations were used

in the proposed algorithm.

Furthermore, a trajectory tracking control law with finite-time convergence on the nonlin-

ear manifold SE(3) is more desirable since most of the existing finite-time control law only

stabilizes attitude. The closed-loop systems under finite-time control usually demonstrates

faster convergence rate, higher tracking precision, better disturbance rejection properties and

robustness against uncertainties [39, 40, 41]. A continuous finite-time controller based on

homogeneity was developed for robot manipulators in [42]. Following the same ideas, in [43] a

finite-time attitude stabilizing result based on homogeneous method was presented. Latter on,

this work was improved in [44] but in this case, the attitude was represented using Modified

Rodriguez Parameters. A finite-time stabilization law with almost global convergence was

developed for a rigid body using rotation matrices for representing attitude in [45, 46] but the

method was not extended for the position dynamics.

8

1.3. State of the art

Autonomous navigation algorithms

Planning algorithms

Trajectory planning problems for quadrotors were not widely studied using these approaches.

This problem is mostly characterized as an optimization problem subject to constraints as

velocity, bounded input, etc [47], [48]. Nevertheless, the path planning for autonomous navi-

gation have been studied in many fields, including robotics, aerial vehicles, aquatics vehicles

and space aircraft [49], [50], [51]. Yang et al. [52] treated the problem of time-optimal control

of a quadcopter by using a nonlinear programming method coupled with a genetic algorithm.

They succeeded to generate in simulation minimum time point-to-point trajectories under

various technological constraints. Cowling et al. [52] presented an optimal trajectory planner

with a linear control scheme to follow a reference trajectory. Authors exploited the differential

flatness of the quadcopter to address the optimization problem within the output space.

In addition, in [53] the authors proposed a model predictive control based on trajectory track-

ing system for small unmanned helicopters. It is based on a linear model predictive controller

and the simulations results show a good robustness for parameter uncertainty. In [54] au-

thors addressed the stabilization with motion planning problem of a standard quadcopter.

They showed that the system presents a flat output and exploited this fact in the treatment

of the motion generation problem. Recently in [55] the authors introduce an architecture

approach based on MPC for path planning in aerial vehicles. The approach considers the

tactical formulation and reformulation of optimization parameters and constraints based on

self-assessment and feasibility information from the MPC framework. The applicability of

chosen approach has been demonstrated in simulative set-up for several planning scenarios.

A linear and nonlinear model predictive control scheme were presented in [56] to control a

quadcopter platform with the goal to track various reference trajectories. The closed loop

stability analysis of the linear and nonlinear control schemes were presented to show the

similarities, as well as to highlight the differences. In [57] the authors develop a framework

for real time, full-state feedback, unconstrained, nonlinear model predictive control that

combines trajectory optimization and tracking control in a single, unified approach. The

performance of the approach was validated on two different hardware platforms, an AscTec

Firefly hexacopter and the ball balancing robot Rewero. More recent works as [26] present a

trajectory generation algorithm that allows the fast computation of high-performance flight

trajectories to move the quadcopter from a large class of initial states to a given target location.

The algorithm was computed in a ground station and not on-board. In [58] the authors have

been developed by solving an optimal control the minimum-energy paths trajectories. Only

simulations were developed to validate the strategy established.

9

Introduction

Aerial visual servoing

Regulation of visual relative position and yaw with a quadrotor, assuming 2D ground target,

has been studied for landing [59], and saturated visual servoing [60], using spherical projection

[61], also assuming that the target remains in the FoV, though [62] addressed how to handle

constraints to enforce that, improving the control loop with a backstepping scheme in [63].

Moreover, simplified control design can be obtained with the virtual camera approach, [64],

or exploiting the conventional perspective projection, [65], which represents image plane

velocity at predefined height. In contrast, most approaches use the well-known eye-in-hand

Image-Based Visual Servoing of [66], to derive an orthodox visual servoing of a ground target

by quadrotors, [67]. However, neither approaches consider any physical constraint of the

mobile robot and the quadrotor capabilities or limitations. Due to the complexity of airborne

visual tracking, multiple processing units are considered to switch and balance computational

load, [68]. Optical flow is a cautious alternative to provide damping at image plane, [69], given

that it is not a derivative, similar to [68].

Advanced control schemes have been proposed, such as fractional control with conventional

vision, [70], however the power of such scheme is not exploited due to its assumptions, which

are based on conventional ideal conditions. The difficulty to implement the scheme arises

since it considers attitude acceleration measurements, thus chattering is introduced in the

second derivative of position control, unlike [71] where complex disturbance are compensated

with continuous fractional control. Path tracking is also considered in [72] by formulating a

constraint quadratic program problem given the field of view and maximum acceleration,

however the numerical solution may not guarantee smooth enough trajectories, which may

demand a high battery consumption attempting to reduce L2 norm.

Furthermore, a fuzzy engine is proposed to smooth out and produce allowable quadrotor

trajectories from monocular camera, [73], however neglecting the physics of quadrotor and

mobile robot, similar to [74], where a hybrid scheme is proposed with a mobile manipulator,

with dual-task planning. More general sensory data are considered for drones to propose

obstacle evasion and target, nevertheless assuming in addition perfect knowledge of obstacles

and target for intersection planning in looking-ahead trajectories, [75], even in civil cluttered

flying conditions, [76], all based on potential fields and civil aviation rulings, [77]. For missile

drones, the look-ahead scheme is more critical, [78], similar to heavy oil tankers, [79], to avoid

obstacles and converge to the target. In addition, it is customary to assume monocular camera

based on the virtual camera approach that aligns the image plane collinear to the ground

plane of the vehicle.

10

1.3. State of the art

Semi-autonomous navigation

In extreme or unsafe environments (space exploration, tele-surgery, mine excavation, high

pressure, high temperature, biological contamination and so on), traditional methods in-

evitably expose operators to danger on-site. Teleoperation systems are a promising solution

when it is physically dangerous or impossible for an operator to be in a piece of a equipment

or its neighborhood. Despite the concept of teleoperation was proposed decades ago [80],

it has not been widely implemented in real applications. One of the major impediments is

associated with the user’s limited situational awareness [81]. It is defined as “the perception of

the elements in the environment within a volume of time and space, the comprehension of

their meaning, and the projection of their status in the near future” [82].

New remote interaction solutions such as voice or video conferencing have reached a high

level of sophistication and widespread use as an aid for the solution of the teleoperation

problem. While the feeling of being present in a remote environment is clearly available with

these systems, a complete immersion cannot be realized without the possibility of physical

interaction with the remote environment. Haptic solutions, as an extension of visual and

auditory modalities, refer to both kinesthetic and tactile information and include position,

velocity, force, torque, vibration, etc. Using a teleoperation system with haptic feedback,

the users can thus truly immerse themselves into a distant environment, i.e., modify it, and

execute tasks without physically being present but with the feeling of being there. Several

possible teleoperation schemes using haptic feedback to steer single or multiple robots have

been proposed in the last decade [83, 84, 85, 86, 87, 88].

Within the robotics field, there has been great enthusiasm on multi-rotor vehicles due their

characteristics: hovering capability, maneuverability and small size. Most of the applica-

tions designed for these vehicles concern, inspection and surveillance of places where can

result inaccessible by humans. The possibility of letting aerial robots interacting with the

environment, opens an additional wide set of potential applications for aerial robots like, i.e.,

maintenance, construction, cooperative grasping and transportation. Most of them require

the physical interaction of the robots with the surrounding objects and uncertain and un-

known environments that could make the fully-autonomous control of the vehicle practically

unreliable. Thus, the teleoperation intervention becomes advisable to handle this kind of

issues. In [89, 90, 91, 92] a bilateral teleoperation for Vertical Take off Landing (VTOL) vehicles,

based on impedance controllers with haptic feedback and considering time-varying delays

were carried out. Main results consist in providing the stability of the teleoperation loop with

respect to bounded external forces (i.e. operator and environment forces). Simulation and

experimental results were showed to verify the effectiveness and performance of the proposed

schemes.

One important feature in a teleoperation system is the visual feedback of the remote environ-

ment. It comes often from one or more monocular cameras mounted on the robot, which lead

to several problems as the limited field of view (FoV), lack of visualization and poor visibility.

11

Introduction

New different aerial drones teleoperation, considering in a different manner the visual feed-

back, have been developed based on graphic interfaces [93, 94, 95, 96, 97, 98]. For instance,

several simulations and experimental tests for the inspection of buildings using interfaces

based on the head and gestures positions, and a wearable exoskeleton interface were pre-

sented in [93, 99]. The main strength of the proposed interaction methods is the ability to

perform multi-modal interactions. In [100] an experimental study of gaze-based control

modes for unmanned aerial vehicles with ten participants performing a simple flying task was

performed. Several experimental tests were carried out. Furthermore, an approach based on

Non-Invasive BCI device with expressive manner on face in remote presence using quadcopter

control with the Emotive EPOC headset was implemented in [101]. Electroencephalogram

signals were used in experimental tests to tele-operate the vehicle. A disadvantage for all of

these interfaces is that the recognition algorithms must be precise and that the user needs to

be close to the drone’s camera in order to recognize the gestures or visual markers. In other

words, it is required to have the vehicle in the line of sight (LoS).

Recent advances in the field of Virtual Reality (VR) have allowed to use this technology im-

proving the teleoperation systems [102, 103]. For example, in [104] an immersive Augmented

Reality (AR) environment for conduction remote maintenance via a robot has been proposed.

The AR environment has been designed to enhance the operator’s situational awareness of

the robot as well as the maintenance tasks so as to reduce the cognitive load on the operator.

However, neither simulation nor experimental tests were presented. In [105] a ground control

station for drones based in an immersive virtual environment was developed. The environ-

ment simultaneously informs the operator about the position and condition of the vehicles.

Hence, only simulation results were developed. Furthermore in [106] an interface based in a

mixed reality environment and natural language for controlling UAVs was developed. Real

experimental tests were carried out using a set of known virtual landmarks. Finally in [107] a

wearable interface for drone teleoperation is presented. This interface was constituted from a

data glove to allow the user to control the drone trajectory by hand motion and a haptic system

used to augment their awareness of the environment surrounding the robot. Nevertheless,

simulations and experimental tests were performed in line of sight.

Disturbance rejection robustness

With the increasing requirement of autonomous flight under different conditions, controlling a

quadcopter stills an important challenge, for example, the position and attitude controls of the

quadcopter are extremely sensitive to external disturbances, such as wind gusts. And therefore,

the design of robust regulators become more and more attractive to outdoor missions and

practical applications. In particular, robustness issues may be critical for quadcopter control

since they can be subjected to undesired nonlinear dynamics and external disturbances. In

order to weaken the effect of wind gusts, some authors have proposed complex control tech-

niques to achieve stability. To deal with this problem, in [108, 109, 110] adaptive controllers

with different structures were proposed and verified by simulations and experiments on test

bench.

12

1.3. State of the art

Disturbance Observer Based Control (DOBC) has been demonstrated to deal with distur-

bances without adding a significant computational requirement. These techniques are based

on observing the inputs and the outputs of the plant and, based on the theoretical response

that should be obtained, attributing everything inexplicable to a disturbance [111]. Such

behavior can range from external disturbance to modeling errors and nonlinearities. Never-

theless, the provenance of the disturbance is not relevant for these methodologies. Among the

most used DOBC techniques are the following: Disturbance Observer (DOBC) [112], which

uses the theoretical transfer function to observe the theoretical input and the difference is

the disturbance; Active Disturbance Rejection Control (ADRC) [113], which approximates the

plant to a integrator chain and all the other behavior is disturbance; Generalized Extended

State Observer (GESO) [114], which uses an observer with the model and assumes that the dis-

turbance is constant, and the Uncertainty and Disturbance Observer (UDE) [115], which uses

the model and the known plant state in order to obtain an approximation of the disturbance.

In addition to this, some works have been proposed to deal with variable delays [116] or

even Networked control systems [117] in order to add uncertainties that could arise into

the system and as well as improving the robustness in minimum phase systems [118, 119].

Likewise, these techniques have been successfully validated in multitude of real problems

such as robotic manipulators [120], positioning of UAVs [121] or the magnetic levitator [122].

Among the presented techniques is worth to mentioning the UDE. In the state of art of this

technique, there are many examples that have been validated experimentally when dealing

with the quadrotor system. For instance, in [123], a comparison between the UDE and the

classic PID to highlight the advantages and disadvantages of each one of the controllers is

presented. Furthermore, a quadrotor slung load control, where the UDE compensates the

variable mass, was proposed in [124]. And finally, in [125], the authors present a study of the

UDE for controlling a quadrotor using the quaternion formalism.

Dealing with rotors failures

Fault Tolerant Control (FTC) techniques [126] are used to deal with failures that could arise

from the system, preventing the performance degradation and making the control system

safe and reliable. These techniques can be classified into passive and active [127]. In the first

case, the controller works itself to minimize the effect of the failures but, it is not capable to

overcome them. Nevertheless, in the second case, when the fault occurs, a self-reconfigurable

controller is applied in order to maintain the desired performance of the system. These kinds

of techniques generally use the following methodology [128]: the identification of the plant in

regular operation, control tuning for the regular operation, detection and identification of the

possible fault and, the control law reconfiguration.

For instance in [129], the authors proposed an active FTC based on a Gain-scheduled PID

combined with an observer capable to detect and identify faults on a quadrotor.

13

Introduction

A passive FTC was proposed in [130, 131] using a Sliding Mode Control (SMC) combined

with a heuristic controller that was optimized for different possible faults scenarios and in

[132] an extra sensor observer for thrust fault was presented. Recently, works on active FTC

for quadcopter vehicles subjected to actuator partial faults can be found in [133, 134, 127].

In [133], [134] the faults were injected when the vehicle is flying at hover position. To the

best of our knowledge, only a few experimental validation for a quadcopter flying in a non-

hover position have been validated, see [127] and [135]. In [127], the authors developed a

Fault Detection (FD) and accommodation algorithm using nonlinear adaptive estimation

techniques. In addition, three observers were considered for the FD: a nonlinear adaptive

observer and a linear Proportional-Integral Observer (PIO) applied to a Planar VTOL and a

quasi-Linear Parameter Varying (qLPV) for a quadcopter.

Dealing with rotor’s constraints

Despite several works found in the literature proposing robustness into the system, few of

them bounds the control inputs for limiting the energy applied into the system. This is,

because in some cases bounding, the control input the robustness is only guaranteed in a

small range of external disturbances.

Bounding the control input is a challenge when implementing theoretical control results in

real systems because, if the control signal exceeds the control inputs limits, it may lead to

undesirable behavior of the system and damage its performance. The anti-windup technique

is frequently used in wide range of applications to solve this problem. For example, the

analysis of the aircraft control system with input saturation conducted in [136] has shown

existence of hidden oscillations, which were compensated by an anti-windup scheme. In [137]

the anti-windup approach was proposed and then applied for the aircraft control problem

in [138, 139]. This anti-windup algorithm was based on the property of convergence for

marginally stable linear plants with saturated inputs. Furthermore, in [140] an iterative thrust-

mixing scheme based on the LQR approach, to compute the desired single rotor thrusts and a

prioritizing motor-saturation, was validated in real-time tests. In [141], a cascade integration

of Incremental Nonlinear Dynamic Inversion (INDI) for the attitude and position control

of micro aerial vehicles is addressed. Wind tunnel experiments show that the vehicle can

enter and leave the 10 m/s wind tunnel flow with only 21 cm maximum position deviation on

average. In most of all these works, the desired collective thrust and body torques need to be

converted into four single rotor thrusts, which can then be applied by knowing the mapping

from motors commands to rotor thrusts, denoted as thrust mapping.

14

1.4. Thesis outline

1.4 Thesis outline

This thesis is structured into four Chapters. Chapter II provides an introduction to the classi-

cal modeling quadrotor approaches. Fundamental concepts regarding the Euler-Lagrange,

Newton-Euler and quaternion formalism are revisited.

A unified and accessible analysis, placing popular control algorithms into a proper context are

addressed in Chapter III. The chapter is divided as follows: a comparison between popular and

virtual control algorithms and a meticulous analysis is introduced in this chapter. Furthermore,

a quaternion-based backstepping control is developed in the chapter. Finally, the finite-time

convergence using sliding mode control is revisited. Experimental and numerical simulations

results are provided to verify the performance of each control technique.

Part IV establishes some autonomous and semi-autonomous navigation algorithms that are

combined with the controllers developed in Chapter III. This chapter is divided as follows: a

path planning algorithm using model predictive control for the trajectory generation, a visual

servoing control for the tracking and target detection and finally, a virtual control architecture

for controlling robots remotely using a immersed virtual environment. Experimental results

are provided in order show the good performance of the proposed algorithms as well their

limitations.

Finally, Chapter V takes a slightly different perspective, as it provides a comprehensive and

unified guide to understand disturbance rejection based observers from the theoretical and

experimental point of view. This chapter is divided into three sections: the introduction

of a robust control scheme for counteracting undesired dynamics, the enhanced robust

architecture for counteracting loss of effectiveness in rotors, and a robust bounded control

to handle motors constraints while counteracting external perturbations. Several numerical

and experimental results are exposed to demonstrate the good performance of the developed

architectures.

15

Part IIChapter 2

17

2 Modeling quadcopter vehicle ap-
proaches

Before stepping into the quadrotor control and navigation design, the mathematical model of

the vehicle must be studied. The aim of this chapter is to present popular modeling approaches

that exploit the whole properties of the vehicle. Considering all the parameters that fulfill

the complete dynamic model of an aerial robot, e.g., the aeroelastic flutter effect, internal

dynamics of the rotors, etc, are particularly important for control purposes. However, it comes

when a whole set of changing variables that sometimes becomes unmanageable. Therefore, it

is interesting to consider also simplified models constituted by a minimum number of states

and inputs, but retaining the main features that must be considered when designing control

laws for a real aircraft.

Most of the work developed for representing the dynamics of aerial vehicles are based on the

Euler angles convention. This method is intuitive and easy to implement when simplifications

are considered, e.g. non acrobatic maneuvers (slow movements, small angles). However,

when more difficult tasks or applications are involved, the mathematical representation of

the robot using this approach encounters some problems such as, complicated non-linear

mathematical expressions, singularities, and gimbal lock.

Other option for representing the rotation of rigid bodies is the quaternion algebra. This kind

of formalism has considerable advantages in comparison with the Euler angles method. For

instance: lack of discontinuities and gimbal lock, and provision of mathematical simplicity.

Moreover, quaternion multiplication makes less computational overhead in comparison to

Euler angles because of its vector representation. In addition, quaternions need less memory

space in comparison to Euler angles.

The models for the aerial vehicle developed in this thesis assume the following:

• The structure is supposed rigid.

• The structure is supposed symmetrical.

• The CoG and the body fixed frame origin are assumed to coincide.

• The propellers are supposed rigid.

• Thrust and drag are proportional to the square of propeller’s speed.

19

Chapter 2. Modeling quadcopter vehicle approaches

This chapter is organized as follows: Section 2.1 introduces the elemental forces of a quadrotor

aircraft. In Section 2.2 some of the classical modeling approaches based on Euler angles are

presented. An explanation of the quaternion-based modeling methodology is detailed in

Section 2.3 and finally, some conclusions are discussed in Section 2.4.

2.1 Force and moment in a rotor

According to blade element theory, which is used to model airfoil and rotor performances, the

forces and moment developed on a uniform wing are determined by the lift and drag forces

and a pitching torque [142]. For a given rotor i with angular velocity ωi , the linear velocity at

each point along the propeller is proportional to the radial distance from the rotor shaft. Thus

the following equations can be stated [143]:

fi =CTρAp r 2ω2
i

τi =CQρAp r 3ω2
i

(2.1)

where fi represents the total thrust produced by rotor i = 1, · · · ,4, acting perpendicularly to

the rotor plane neglecting blade flapping effect, τi describes the rotor torque, r denotes the

rotor radius, ρ symbolizes the air density and Ap =πr 2. CT and CQ are non-dimensionalised

thrust and rotor torque coefficients, which can be computed using blade element theory [144],

see Figure 2.1.

Figure 2.1 – Propeller forces and torques acting on a quadrotor.

It is a common practice to consider the aerodynamic parameters from (2.1) as constants,

kT ≈CTρAp r 2, kQ ≈CQρAp r 3. Taking into account a quadrotor symmetrical configuration,

the total torque and thrust force produced on the vehicle by the propellers are computed as

~Fth =

 0

0∑4
i=1 kTω

2
i

 , ~τ=

τθτφ
τψ

=

l kT
(
ω2

1 −ω2
1 −ω2

3 +ω2
4

)
l kT

(
ω2

1 +ω2
1 −ω2

3 −ω2
4

)∑4
i=1 kQω

2
i (−1)2

 , (2.2)

where τx , τy and τz denote the total torque components produced on each axis of the body

reference frame, and ~Fth represents the total thrust force vector, acting in the vertical axis of

the quadrotor.

20

2.2. Classical modeling approaches

2.2 Classical modeling approaches

In this section the three most popular techniques for modeling aerial vehicles will be intro-

duced: the Euler-Lagrange, the Newton-Euler and the Euler-Lagrange based on quaternion

formalism.

2.2.1 Euler-Lagrange approach

The model is obtained by representing the aircraft as a rigid body evolving in a 3−D space

due to the main thrust and three torques: pitch, roll and yaw as depicted in Figure 2.2.

Let the generalized coordinates of the aerial vehicle be expressed by

~p = (x, y, z,ψ,θ,φ) ∈R6 (2.3)

where~ξ= (x, y, z) ∈R3 denotes the position of the center of mass of the quadcopter relative to

a fixed inertial frame I , and~η= (ψ,θ,φ) ∈R3 are the Euler angles, ψ is the yaw angle around

the z−axis, θ is the pitch angle around the modified y−axis, and φ is the roll angle around the

modified x−axis, which represent the orientation of the quadcopter.

Figure 2.2 – Coordinate systems acting in the aerial vehicle where fi denotes the force applied
of each motor, ~Fth symbolizes the total thrust force and θ, φ, ψ are the Euler angles on each
axis.

Defining the Lagrangian

L(~p, ~̇p) = Ttr ans +Tr ot −U , (2.4)

where Ttr ans = m
2
~̇ξT~ξ is the translational kinetic energy, Tr ot = 1

2
~ΩT I~Ωmeans the rotational

kinetic energy, U = m~g~ξ represent the potential energy of the rotorcraft,~Ω signifies the angular

velocity, I the inertia matrix, and ~g = [0 0 − g] depicts the acceleration vector due the gravity.

21

Chapter 2. Modeling quadcopter vehicle approaches

The angular velocity vector~Ω resolved in the body frame is related to the generalized velocities

~̇η by means of the kinematic relationship [145]

~̇η=W −1
v
~Ω, (2.5)

where

Wv =

 −sinθ 0 1

cosθ sinψ cosψ 0

cosθcosψ −sinψ 0

 , ~Ω=

 φ̇− ψ̇sinθ

θ̇cosφ+ ψ̇cosθ sinφ

ψ̇cosθcosφ− θ̇ sinφ

 (2.6)

Therefore Tr ot = 1
2~̇η

T
J~̇η with J= J(~η) =W T

v IWv and

I =

Ixx 0 0

0 Iy y 0

0 0 Iz z


Note, the matrix J = J(~η) acts as the inertia matrix for the full rotational kinetic energy of

the quadcopter expressed in terms of the generalized coordinates~η. Then, the dynamics

equations describing the behavior of the full aerial vehicle are obtained from Euler-Lagrange

equations with external generalized forces

d

d t

∂L

∂~̇p
− ∂L

∂~p
=

[
~Fξ
~τ

]
, (2.7)

where ~Fξ = R~Fth ∈R3 is the translational force applied to the quadcopter due to main thrust

directed out of the top of the vehicle with ~Fth = [0 0 u1]T with u1 = ∥∥~Fth
∥∥. R denotes the

rotational matrix R(ψ,θ,φ) ∈ SO(3) representing the orientation of the quadcopter relative to

a fixed inertial frame:

R =

CθCψ CψSθSφ−CφSψ SφSψ+CφCψSθ
CθSψ CφCψ+SψSθSφ CφSψSθ−SφCψ

−Sθ CθSφ CθCφ

 (2.8)

where Cθ and Sθ stand for cosθ and sinθ, respectively. Developing (2.7), the Euler-Lagrange

equation for the translation and attitude motion can be written as

m~̈ξ= ~Fξ−m~g (2.9)

J~̈η=~τ−C(~η,~̇η)~̇η (2.10)

where C(~η,~̇η) = J̇− 1
2
∂
∂~η

(~̇η
T
J) refers to the Coriolis term, which contains the gyroscopic and cen-

trifugal terms associated with the~η dependence of J. Expanding (2.10) is not an easy task and

in several works, the full inertia matrix J is considered as diagonal and the Coriolis matrix is ne-

glected.

22

2.2. Classical modeling approaches

Let us consider the case where the J is considered diagonal and C(~η,~̇η) is neglected. Thus, to

simplify, it is possible to define

~̃τ=

τ̃θτ̃φ
τ̃ψ

= J−1(~τ−C(~η,~̇η)). (2.11)

Finally, we obtain from (2.9) and (2.10) considering (2.11)

mẍ =−u1 sinθ, θ̈ = τ̃θ
mÿ = u1 cosθ sinφ, φ̈= τ̃φ
mz̈ = u1 cosθcosφ−mg , ψ̈= τ̃ψ

(2.12)

where x and y are coordinates in the horizontal plane, z is the vertical position, and τ̃ψ,τ̃θ,

and τ̃φ are the yawing moment, pitching moment, and rolling moment, respectively.

For the case when the Coriolis and the inertial matrix for the~η dynamics in (2.7) are considered,

therefore, rewriting the attitude dynamics yields

d

d t

[
~ΩT I

∂~Ω

∂~̇η

]
− ~ΩT I

∂~Ω

∂~η
=~τ,

then ∂~Ω
∂~η

=Wη, ~ΩT I ∂
~Ω

∂~̇η
= [b1 b2 b3] with

b1 =−Ixx (φ̇Sθ− ψ̇S2
θ)+ Iy y (θ̇CθSφCφ+ ψ̇C 2

θS2
θ)+ Izz (ψ̇C 2

θC 2
φ− θ̇CθSφCφ),

b2 = Iy y (θ̇C 2
φ+ ψ̇CθSφCφ)− Izz (ψ̇CθSφCφ− θ̇S2

φ),

b3 = Ixx (φ̇− ψ̇Sθ).

differentiating ~ΩT I ∂
~Ω

∂~̇η
,

ḃ1 =−Ixx
(
φ̈Sθ+ φ̇θ̇Cθ− ψ̈S2

θ−2ψ̇θ̇SθCθ

)+ Iy y

(
θ̈CθSφCφ− θ̇2SθSφCφ− θ̇φ̇CθS2

φ

+ θ̇φ̇CθC 2
φ+ ψ̈C 2

θS2
φ−2ψ̇θ̇SθCθS2

φ+2ψ̇φ̇C 2
θSφCφ

)
+ Izz

(
ψ̈C 2

θC 2
φ−2ψ̇θ̇SθCθC 2

φ

−2ψ̇φ̇C 2
θSφCφ− θ̈CθSφCφ+ θ̇2SθSφCφ+ θ̇φ̇CθS2

φ− θ̇φ̇CθC 2
φ

)
,

ḃ2 = Iy y

(
θ̈C 2

φ−2θ̇φ̇SφCφ+ ψ̈CθSφCφ− ψ̇θ̇SθSφCφ+ ψ̇φ̇CθC 2
φ− ψ̇φ̇CθS2

φ

)
− Izz

(
ψ̈CθSφCφ− ψ̇θ̇SθSφCφ− ψ̇φ̇CθS2

φ+ ψ̇φ̇CθC 2
φ− θ̈S2

φ−2θ̇φ̇SφCφ

)
,

ḃ3 = Ixx
(
φ̈− ψ̈Sθ− ψ̇θ̇Cθ

)
.

Similarly,

∂~Ω

∂~η
=

0 −ψ̇Cθ 0

0 −ψ̇SθSφ −θ̇Sφ+ ψ̇CθCφ

0 −ψ̇SθCφ −ψ̇CθSφ− θ̇Cφ



23

Chapter 2. Modeling quadcopter vehicle approaches

then ~ΩT I ∂
~Ω
∂~η

= [h1 h2 h3], where

h1 = 0,

h2 =−Ixx
(
ψ̇φ̇Cθ− ψ̇2SθCθ

)− Iy y

(
ψ̇θ̇SθSφCφ+ ψ̇2SθCθS2

φ

)
− Izz

(
ψ̇2SθCθC 2

φ− ψ̇θ̇SθSφCφ

)
,

h3 = Iy y (−θ̇2SφCφ− ψ̇θ̇CθS2
φ+ ψ̇θ̇CθC 2

φ+ ψ̇2C 2
θSφCφ)Izz (−ψ̇2C 2

θSφCφ+ ψ̇θ̇CθS2
φ− ψ̇θ̇CθC 2

φ+ θ̇2SφCφ),

such that τθτφ
τψ

=

ḃ1 −h1

ḃ2 −h2

ḃ3 −h3

 .

Then, regrouping all the terms developed above and using (2.10), thus, J is expressed as

J(~η) =

Ixx S2
θ
+ Iy yC 2

θ
S2
φ+ IzzC 2

θ
C 2
φ CθCφSφ(Iy y − Izz) −Ixx Sθ

CθCφSφ(Iy y − Izz) Iy yC 2
φ+ Izz S2

φ 0

−Ixx Sθ 0 Ixx ,

 (2.13)

and

C(~η,~̇η) =

c11 c12 c13

c21 c22 c23

c31 c32 c33

 (2.14)

where

c11 = Ixx θ̇SθCθ+ Iy y (−θ̇SθCθS2
φ+ φ̇C 2

θSφCφ)− Izz (θ̇SθCθC 2
φ+ φ̇C 2

θSφCφ),

c12 = Ixxψ̇SθCθ− Iy y (θ̇SθSφCφ+ φ̇CθS2
φ− φ̇CθC 2

φ+ ψ̇SθCθS2
φ)

+ Izz (φ̇CθS2
φ− φ̇CθC 2

φ− ψ̇SθCθC 2
φ+ θ̇SθSφCφ)

c13 =−Ixx θ̇Cθ+ Iy y ψ̇C 2
θSφCφ− Izzψ̇C 2

θSφCφ,

c21 =−Ixxψ̇SθCθ+ Iy y ψ̇SθCθS2
φ+ Izzψ̇SθCθC 2

φ,

c22 =−Iy y φ̇SφCφ+ Izzφ̇SφCφ,

c23 = Ixxψ̇Cθ+ Iy y (−θ̇SφCφ+ ψ̇CθC 2
φ− ψ̇CθS2

φ)+ Izz (ψ̇CθS2
φ− ψ̇CθC 2

φ+ θ̇SφCφ),

c31 =−Iy y ψ̇C 2
θSφCφ+ Izzψ̇C 2

θSφCφ,

c32 =−Ixxψ̇Cθ+ Iy y (θ̇SφCφ+ ψ̇CθS2
φ− ψ̇CθC 2

φ)− Izz (ψ̇CθS2
φ− ψ̇CθC 2

φ+ θ̇SφCφ),

c33 = 0.

(2.15)

Although (2.9) and (2.10) were developed taking into account a multicopter with four rotors,

these equations are also valid for other aerial configurations as long as the forces and torques

are rewritten.

24

2.3. Quadrotor quaternion model based on Euler-Lagrange

2.2.2 Newton-Euler approach

The general motion of a rigid body in space is a combination of translational and rotational

motions. Consider a rigid body moving in inertial space, undergoing both rotations and

translations, see Figure 2.2. Following same ideas as in section 2.2.1, let us define now an earth

fixed frame I and a body frame B. The center of mass and the body frame are assumed to

coincide. Using Euler angles parametrization, the airframe orientation in space is given by a

rotation matrix R from B to I . Using the Newton-Euler formalism [146, 147, 148, 149], the

dynamics of a rigid body under external forces applied to the center of mass and expressed on

earth fixed frame is

~̇ξ(t) =~v(t), m~̇v(t) = R(t)~Fth(t)−m~g ,

Ṙ(t) = R(t)~̂Ω(t), I ~̇Ω=−~Ω(t)× I~Ω(t)+~τ(t)
(2.16)

where ~̂Ω(t) introduces the skew-symmetric matrix of ~Ω(t), and I represents the constant

inertia matrix.

Considering the total forces and torques from (2.2), and introducing them into (2.16), it follows

that,

mẍ =−sinθu1,

mÿ = cosθ sinφu1

mz̈ = cosθcosφu1 −mg

(2.17)

 θ̈φ̈
ψ̈

= J−1


τθτφ
τψ

−

c11 c12 c13

c21 c22 c23

c31 c32 c33


 θ̇φ̇
ψ̇


 . (2.18)

Equations (2.17) and (2.18) describes the translational and rotational dynamics, respectively.

Remark that making the same assumptions as before, an inertial diagonal matrix and that the

Coriolis matrix is neglected, it is possible to obtain the same equations as in (2.12).

2.3 Quadrotor quaternion model based on Euler-Lagrange

For consistency reasons, and for building the mathematical background for following the

proposed modeling, it is essential to understand quaternions and their associated algebra

[150]. Quaternions were proposed by Hamilton in the nineteen century as a three-dimensional

version of complex numbers (one real and one imaginary part). However, they can be also

written as a vector with 4 scalar components, q0, q1, q2, q3, where q1, q2, q3 correspond to

the distance along the quaternion bases vector of i , j , k and q0 is considered the scalar part

of the quaternion.

They are also known as a 4−dimensional hyper-complex number, since they can be repre-

sented as one real plus three imaginary numbers, q , q0 + q1i + q2 j + q3k, where i , j ,k ∈ I,
such that i 2 = j 2 = k2 = i j k =−1 and q0, · · · , q3 ∈R.

25

Chapter 2. Modeling quadcopter vehicle approaches

Another common representation of a quaternion is using one scalar number and a vector as

q , q0 +~q , with ~q = [q1 q2 q3]T . In literature, one of the well-known expression to denote

a quaternion relays on the representation given by the French bankern Olinde Rodriguez.

He expanded the Euler’s Formula to include 3−dimentional rotations using quaternions.

This expression is known nowadays as the Euler-Rodrigues formula which is the exponential

mapping of the axis-angle representation ~n, ς of a rotation defined as

q = exp
1
2ς~n = cos(ς/2)+~n sin(ς/2) (2.19)

notice that
∥∥q

∥∥ = 1, thus q can be called a unit quaternion. Operations with quaternions

are not solved with standard mathematical tools, therefore, the basisc quaternion operations

must be defined.

Quaternion algebra

Product

Consider two quaternion p and q that are inH. The quaternion product can be expressed as

p ⊗q = (p0 +p1i +p2 j +p3k)(q0 +q1i +q2 j +q3k)

= (p0q0 −~p −~q , q0~p +~p ×~q).
(2.20)

Remark that p ⊗q 6= q ⊗p .

Conjugate

The conjugate of a unit quaternion expresses an inverse rotation over the same axis, and is

defined as
q∗ := q0 −~q (2.21)

Norm

The norm of a quaternion is defined as∥∥q
∥∥2 = N 2(q) = q2

0 +q2
1 +q2

2 +q2
3

= q ⊗q∗ (2.22)

Inverse

For any non-null quaternion there exists an inverse quaternion such that

q−1 := q∗∥∥q
∥∥ (2.23)

Vector rotation

Considering ~p ∈R3 as a 3D vector in a first reference frame (e.g. the earth coordinates), and

~p ′ as the same vector but now with respect to a new reference frame (e.g. a vehicle’s moving

coordinates), then ~p can be transformed into ~p ′ using a double quaternion product as

~p ′ = q−1 ⊗~p ⊗q = q∗⊗~p ⊗q (2.24)

26

2.3. Quadrotor quaternion model based on Euler-Lagrange

Derivative

The derivative of any unit quaternion can be defined as follows

q(t) = q0(t)+~q(t) = cos

(
θ

2

)
+~u sin

(
θ

2

)
q(∆t) = q0(∆t)+~q(∆t) = cos

(
∆t

2

)
+~u sin

(
∆t

2

) (2.25)

where q(∆t) is a quaternion that represents an infinitesimal change in the angle while keeping

the same unit vector ~u. Thus the derivative of a unit quaternion can be expressed as

d

d t
q(t) = lim

∆t→0

q(1+ (~u2)∆θ)

∆t

= lim
∆t→0

1

2

q(t)~u∆θ

∆t

= 1

2
q(t)⊗~ω(t).

(2.26)

where ~ω(t) = θ̇~u corresponds to the angular velocity vector associated with the quaternion

q(∆t).

2.3.1 Quadrotor quaternion dynamical model

Let us consider that the center of mass of the quadcopter is aligned with the origin of the body.

The vector~ξ goes from the origin of the inertial frame to the body frame and it is described

as~ξ= [x y z]T , ~̇ξ= [ẋ ẏ ż]T , where ~̇ξ defines the translational velocity seen from the inertial

frame. Inspired on the Lagrangian methodology, the translational kinetic energy is defined as

Ekt = 1
2 m~̇ξ

T
~̇ξ and the potential energy Up = mg ez where the mass of the vehicle is described

by m, ez is a unitary vector with the form ez = [0 0 1]T and g is the term associated with the

gravitational acceleration.

Figure 2.3 – Quadcopter free body diagram

27

Chapter 2. Modeling quadcopter vehicle approaches

Thus, using (2.7) the Euler-Lagrange equation for the translational system is expressed as

d

d t

(
∂LT

∂~̇ξ

)
− ∂LT

∂~ξ
= ~Fth (2.27)

where LT = Ekt −Up is the Lagrangian of the system,~ξ ∈R3 are the generalized coordinates

and ~Fth are the external forces acting on the quadcopter, respectively. Then, developing (2.27)

it follows that mẍ

mÿ

mz̈

−

 0

0

−mg

= ~Fth (2.28)

The external forces acting on the quadrotor are the lift forces, which are produced by the rota-

tion of the motors and propellers and its expression is defined as before stated, ~Fth = [0 0 u1]T .

Remark that if the quadrotor changes its orientation (e.g., tracking a desired reference), the

weight vector, [0 0 −mg]T is always pointing downward, this means that the vector needs

to be expressed in the inertial frame. However, the lift force changes its orientation as the

vehicle does it. This implies that the lift force needs to be defined in the body frame. Then,

considering the aforementioned, the external forces can be expressed as a function of the

attitude of the vehicle as
~Fξ = q∗⊗~Fth ⊗q (2.29)

where q = [q0 q1 q2 q3]T is the quaternion which defines the attitude performance of the

quadrotor. Using the quaternion algebra [150], the translation dynamic model (2.28) can be

rewritten as mẍ

mÿ

mz̈

=

 (−q0q2 +q1q3)u1

(q0q1 +q2q3)u1

(q2
0 −q2

1 −q2
2 +q2

3)u1 −mg

 . (2.30)

For the rotational part, the Lagrangian can be written considering the kinetic rotational energy

as

Lr ot = 1

2
~ΩT I~Ω (2.31)

where ~Ω is the angular velocity referred in the body frame. Remembering that the quaternion

used in this analysis has the constraint c = q T ⊗q −1 = 0, then, the Euler-Lagrange equation

for the attitude system is represented by

d

d t

(
∂Lr ot

∂~̇Ω

)
− ∂Lr ot

∂~Ω
=~τ+λ ∂c

∂~Ω
(2.32)

with λ representing the Lagrange multiplier. Using the property (2.26), the Lagrangian de-

scribed by the equation (2.31) can be rewritten as follows

Lr ot = 2(G(q)⊗ q̇)T ⊗ I ⊗ (G(q)⊗ q̇)

= 2q̇ T ⊗ (GT (q)⊗ I ⊗G(q))⊗ q̇
(2.33)

28

2.3. Quadrotor quaternion model based on Euler-Lagrange

or

Lr ot = 2(−G(q)⊗ q̇)T ⊗ I ⊗ (−G(q)⊗ q̇)

=−2q T ⊗ (GT (q̇)⊗ I ⊗G(q̇))⊗q
(2.34)

where

G(q) =

−q1 q0 q3 −q2

−q2 −q3 q0 q1

−q3 q2 −q1 q0


which are two equivalent equations that will help us to get the Euler-Lagrange equation. Thus,

the expression ∂Lr ot

∂~Ω
in (2.32) can be rewritten using (2.34) as

∂Lr ot

∂q
=−4(GT (q̇)⊗ I ⊗G(q̇))⊗q

=−2GT (q̇)⊗ I ⊗ (2G(q̇)⊗q)

=−2GT (q̇)⊗ I~Ω,

(2.35)

then, developing ∂Lr ot

∂~̇Ω
in (2.32) using (2.33)

∂Lr ot

∂q̇
= 4(GT (q)⊗ I ⊗G(q))⊗ q̇

= 2GT (q)⊗ I ⊗2G(q)⊗ q̇

= 2GT (q)⊗ I~Ω.

(2.36)

Finally, the temporal derivative of (2.36) is expressed as

d

d t

∂Lr ot

∂q̇
= 2GT (q̇)⊗ I~Ω+2GT (q)⊗ I ~̇Ω. (2.37)

For getting into the final dynamic model of the quadrotor, the analysis of the generalized

torques must be carried out. Considering the D’Alambert’s principle but on its rotational form:

the virtual work of a rigid body around an angle γ of an axis$ and a torque ~T can be described

as follows
δW = ($ ·~T)δγ (2.38)

Notice that if ‖$‖ = 1, thus, it can be referred as a quaternion and the infinitesimal rotation

can be represented as
q +δq = q ⊗qδ (2.39)

subject to |q | = 1, |qδ| and |δq | << 1. Multiplying the conjugate q∗ in both sides of (2.39), then

q∗⊗q +q∗⊗δq = q∗⊗q ⊗qδ

[1 0]+q∗⊗δq = qδ.
(2.40)

Using the definition of the temporal derivative of a quaternion as stated in (2.25) and if

infinitesimal change are considered, δq can be expressed as

29

Chapter 2. Modeling quadcopter vehicle approaches

δq =
[

cos

(
δγ

2

)
$sin

(
δγ

2

)]T

(2.41)

and the following approximation is valid

qδ =
[

1 $
δγ

2

]
. (2.42)

Then using (2.42) in (2.40)
[1 0]+q∗⊗δq =

[
1 $

δγ

2

]
(2.43)

which implies that q∗⊗δq is associated with the complex component of qδ and therefore the

following expression is considered valid

ō
δγ

2
= q∗⊗δq . (2.44)

The virtual work can be rewritten using (2.44) in (2.39)

δW = 2(q∗⊗δq)⊗~τ (2.45)

According to the quaternion algebra [150], the expression (2.45) can be rewritten as

δW = 2~τ>(G(q)⊗δq) (2.46)

Thus, the virtual work is described as follows

δW = (2GT (q)⊗~τ)⊗δq (2.47)

Therefore, the generalized torques are

~T = 2G(q)⊗~τ (2.48)

Using (2.35), (2.36) and (2.48) in (2.32) and multiplying by G(q)

4G(q̇)⊗GT (q̇)⊗ I~Ω+2G(q)⊗GT (q)⊗ I~Ω= 2G(q)⊗GT (q)⊗~τ+λ⊗G(q)⊗q (2.49)

Knowing that G(q̇)⊗GT (q̇) = 1, G(q)⊗GT (q) = 1 and that G(q)⊗q = 0, then

2I ~̇Ω+2I~Ω= 2~τ (2.50)

Observe that the expression (2.50) has the form of the Newton’s equation that describes the

dynamics of a rigid body subject an external torques.

Thus, the rotational dynamic model of the quadrotor can be rewritten as

q̇ =−1

2
q ⊗~Ω

I ~̇Ω=−~Ω× I~Ω+~τ
(2.51)

30

2.3. Quadrotor quaternion model based on Euler-Lagrange

Therefore, the whole quadcopter dynamic model can be described using (2.30) and (2.51) as
~̇ξ

~̈ξ

q̇
~̇Ω

=


~̇ξ

q ⊗ ~Fth
m ⊗q∗+~g
−1

2 q ⊗~Ω
I−1

(−~Ω× I~Ω+~τ)

 (2.52)

2.3.2 Decoupling the vehicle dynamics

As can be verified in (2.52), the dynamics of the quadcopter are completely coupled by means

of the orientation of ~Fth depending on the vehicle’s attitude q . Nevertheless, using an ap-

propriate approach and some properties of unit quaternions, the quadcopter can be easily

controlled despite its underactuated nature.

Let us assume that (2.51) is stabilized using a control action~τ, then the quaternion attitude

will converge to q0 = 1+ [0 0 0]T while the axis-angle orientation δ and its angular velocity ~Ω

will converge to zero. Given a desired attitude trajectory defined by a desired quaternion qd

and its angular velocity ~Ωd , (2.51) can be defined in terms of the quaternion error qe , q∗
d ⊗q

as [
q̇e

~̇Ωe

]
=

[
1
2 qe ⊗~Ωe

I−1
(−~Ωe × I~Ωe +~τ

)] , (2.53)

if~τ is correctly designed in terms of the attitude error, then, qe → q0 implying that q → qd .

From (2.30) and considering the desired force (2.29), ~Fξ = q ⊗~Fth ⊗q∗ can be easily designed

such that ~ξ and ~̇ξ converge to zero. If a position error is defined as ~ξe =~ξ−~ξd , where ~ξd

represents a desired position for the vehicle, then the translational dynamics error can be

written as [
~̇ξe

~̈ξe

]
=

[
~̇ξe

~Fξ
m −~g

]
(2.54)

Consequently, if an adequate controller is designed for ~Fξ, the error position will converge to

zero, meaning that the quadcopter can be stabilized at any desired position.

From (2.54), it yields that the translational model can be seen as a virtual fully actuated system

where ~Fξ can be designed to point at any direction. Let us define a desired force vector ~U ∈R3

with respect to the frame I , which stabilizes the system (2.54). Given the direction and

magnitude of such force vector, the attitude can be controlled using~τ such that the direction

of ~Fξ is aligned with ~U , orientating the quadcopter thrust in the required direction to control

the translational dynamics. Therefore, the desired quaternion qd is derived from the shortest

rotation between these both vectors.

31

Chapter 2. Modeling quadcopter vehicle approaches

Recalling the Euler-Rodrigues formula from (2.19), qd is defined as

qd = exp
1
2ς~n = cos(ς/2)+~n sin(ς/2), (2.55)

where ~n and ς denote the axis and the angle of shortest rotation between ~Fth and ~U , respec-

tively. Defining~υ and~µ as normalized vectors of ~Fth and ~U where, notice that~υ= [0 0 1]T is

constant. The cross and the scalar products between these two vectors are defined as, see

Figure 2.4

~µ×~υ = S(~µ)~υ=~µ~υsin(ς)~n, (2.56)

~µ ·~υ = ~µ~υcos(ς). (2.57)

Figure 2.4 – Illustration of the Cross product of two vectors

Remark from (2.55), the Euler-Rodrigues formula uses the half angle, thus the well-known

trigonometry half angles formulas are required

cos
(ς

2

)
=±

√
1+cos(ς)

2
sin

(ς
2

)
=±

√
1−cos(ς)

2
(2.58)

Thus, the desired attitude that aligns the thrust vector to the control direction can obtained

from (2.55) using (2.56), (2.57) and (2.58) as

qt =±


√

1+~µ~υ
2√

1−~µ~υ
2 S(~µ)~υ

 (2.59)

where

S(~µ) =

 0 −µ3 µ2

µ3 0 −µ1

−µ2 µ1 0


32

2.4. Modeling approaches conclusions

Notice that since~υ is always aligned with the vertical axis of the body frame B and the direction

of (2.59) is defined by a cross product, then qt rotates the vehicle in the x y plane. An additional

rotation around the z−axis can be added by introducing

qd , qt ⊗qz , (2.60)

where qz represent the desired rotation over the z−axis.

2.4 Modeling approaches conclusions

The aim of this chapter was to give an introduction to the main mathematical concepts for

getting into the dynamic modeling of a quadrotor vehicle, using one of the three existing

approaches in literature: Newton-Euler, Euler-Lagrange and quaternion formalism. Even

this kind of UAVs are inherently underactuated, an approach using the quaternion formalism

was introduced such that its dynamic equations can be analyzed and treated as a virtual fully

actuated system.

Most robotics research works, particularly in UAVs, have been relied on Euler angles con-

vention. However, the presence of important non-linearities, undesired effects, e.g. gimball-

lock, and an inherent complexity when multiple rotations and transltations are present, may

hamper the development in the performance of the control algorithms and its applications.

Nevertheless, although the quaternion formalism can seem to be less intuitive and difficult to

conceptualize, their application can really simplify dynamic models, and help in the design of

better controllers.

33

Part IIIChapter 3

35

3 Control approaches for aerial vehicles

Controlling a quadcotper vehicle has been extensively studied in the past decade with the

recent increase on the power computation for embedded systems. These systems are now

able to perform the computations needed for a variety of control techniques, with lower cost

of sensors and actuators. These types of control algorithms are applied to the position and

the attitude ofUAVs. This chapter is devoted to present a brief overview evaluation of popular

control algorithms for Multi-rotor Aerial Systems (MAS).

The main objective of this chapter is to provide a unified and accessible analysis, placing the

classical and quaternion models of the quadcopter as well the study of its control methods into

a proper context. In addition to provide the basis for beginner users working in aerial vehicles,

this chapter contributes in presenting a comprehensive analysis of the implementation for

the nonlinear and linear backstepping, nested saturation, virtual fully actuated controllers as

well the sliding mode control and the quaternion-based nonlinear backtepping approaches.

These techniques are selected and compared to evaluate the performance of the aircraft by

simulations and experimental studies.

The content of this chapter is organized as follows: In section 3.1, a brief overview for con-

trolling the attitude and translation system of the quadrotor is presented. Four control laws

are developed with their respective analysis of stability. Then, a quaternion-based backstep-

ping control is addressed in section 3.2 to demonstrate the advantages of using this kind of

controller on aerial vehicles. Finally in section 3.3, the finite-time convergence is discussed.

37

Chapter 3. Control approaches for aerial vehicles

3.1 Comparison of stabilization and tracking control algorithms

In this section, we present a comparison between the well-known control algorithms relying

on the Euler Angles, to solve the stabilization and tracking control problems. The aim of this

section is to introduce the main control algorithms used in the literature for controlling a

quadrotor vehicle and show their properties and capabilities.

Typically in the literature, when controlling a quadrotor vehicle, it is assumed the z−axis

can be controlled by some linear or nonlinear controller using specifically FT h . Usually, this

controller is based on a feedback linearization technique as presented in [151, 152, 153]. This

classical procedure is often used because the idea is to guarantee the vehicle keeps at hover,

and later control their displacement in the plane x or y making an under-actuated subsystem.

Control of altitude and yaw angle

Following aforementioned ideas, the controller for the z−axis is often proposed as

u1 = m

cosθcosφ
(g + r1) (3.1)

where r1 is always designed to achieve z → zd , for instance r1 =−k1(z−zd)−k2 ż, where k1, k2

represent positive constants and zd denotes the desired altitude. Then rewriting (2.12) using

(3.1) and assuming cosθcosφ 6= 0, that is, θ,φ ∈ (−π/2,π/2), it yields

mẍ =−(r1 +mg)
tanθ

cosφ
(3.2)

mÿ = (r1 +mg) tanφ (3.3)

z̈ =−k2 ż −k1(z − zd) (3.4)

Note from (3.4), ∃ a time T large enough such that for t > T , the altitude error (z − zd) → 0

such that z ≈ zd can be considered the equilibrium state of (3.4). Thus we can rewrite (3.2)

and (3.3) as follows

ẍ ≈−g
tanθ

cosφ

ÿ ≈ g tanφ

(3.5)

For simplifying the analysis, let us consider J = I3×3. Thus, system (2.12) can be expressed

using (3.1) and (3.5) as

ẍ ≈−g
tanθ

cosφ
θ̈ ≈ τ̃θ

ÿ ≈ g tanφ φ̈≈ τ̃φ
ψ̈≈ τ̃ψ

(3.6)

38

3.1. Comparison of stabilization and tracking control algorithms

where τ̃ψ = −aψ1ψ̇− aψ2 (ψ−ψd) is the proposed control torque to stabilize the yaw angle

and τ̃φ, τ̃θ will be defined later. The control gains aψ1 , aψ2 are positive constants chosen to

ensure stable, well-damped response of the quadrotor. From (3.6) it follows that if ψd and zd

are constants, then ψ and z converge. Therefore, ψ̇ and ψ̈→ 0, which implies that ψ→ψd .

3.1.1 Nonlinear Backstepping algorithm

Backstepping is suitable for strict-feedback systems that are also known as lower triangular

and it does not require that the resulting input-output dynamics be linear. The main idea is to

use some of the state variables as “virtual controls" or “pseudo controls", and depending on

the dynamics of each state, design intermediate control laws. The Backstepping design is a

recursive procedure where a Lyapunov function is derived for the entire system (3.6).

Control of lateral position and roll angle

Define the error e1 as e1 = y1 − yd
1 , where yd

1 is the reference. Let us propose the following

positive function V1 = ky1
2 e2

1, with ky1 > 0 denoting a constant, then taking the derivative with

respect to time and proposing y v
2 = yd

2 −e1 as a virtual control input, it follows that

V̇1 = ky1 e1(y2 − y v
2 −e1) =−ky1 e2

1 +ky1 e1(y2 − y v
2)

where ẏd
1 = yd

2 . Define the error e2 = y2 − y v
2 thus, the previous yields V̇1 =−ky1 e2

1 +ky1 e1e2.

Propose the second positive function V2 = ky2
2 e2

2 with ky2 > 0 constant. Taking its derivative

with respect to time and proposing δv
1 =−ẏ v

2 + ky1
ky2

e1 +e2 representing a second virtual control

input, implies that

V̇2 =−ky2 e2
2 −ky1 e1e2 +ky2 e2(δv

1 − g tanφ1)

Defining the error e3 = δv
1 − g tanφ1, V̇2 yields

V̇2 =−ky2 e2
2 −ky1 e1e2 +ky2 e2e3

Propose the third positive function V3 = ky3
2 e2

3, with ky3 > 0 constant. Differentiating V3 and

defining δv
2 = δ̇v

1 +
ky2
ky3

e2 +e3, it follows that

V̇3 = ky3 e2
3 −ky2 e3e2 +ky3 e3(δv

2 − g (1+ tan2φ1)φ2)

Defining the error e4 = δv
2 − g (1+ tan2φ1)φ2, then the above yields

V̇3 =−ky3 e2
3 −ky2 e3e2 +ky3 e3e4

39

Chapter 3. Control approaches for aerial vehicles

Proposing V4 = ky4
2 e2

4 as positive function, with ky4 > 0 defining a constant, and computing its

derivative, it appears that

V̇4 = ky4 e4(δ̇v
2 − g (1+ tan2φ1)(τ̃φ+2φ2

2 tanφ1))

Proposing a control law given by

τ̃φ = 1

g (1+ tan2φ1)
(δ̇v

2 +
ky3

ky4

e3 +e4)−2φ2
2 tanφ1 (3.7)

implies that V̇4 =−ky4 e2
4 −ky3 e4e3.

Finally, define the following candidate Lyapunov function with the form VT =V1 +V2 +V3 +V4.

Therefore

V̇T =−ky1 e2
1 −ky2 e2

2 −ky3 e2
3 −ky4 e2

4 ≤ 0.

Expressing (3.7) with respect to the state variables, it follows that

τ̃φ = 1

g (1+ tan2φ1)

(...
y d

2 −4ÿd
2 − k̄y1 ẏd

2 + k̄y2 (y2 − yd
2)+ k̄y3 (y1 − yd

1)− k̄y4 g tanφ1

−4g (1+ tan2φ1)φ2 −2φ2
2φ1

) (3.8)

where

k̄y1 = k̄y4 = kφ+6, k̄y2 = 2kφ+4

k̄y3 = kφ+
ky3 ky1

ky4 ky2

+1, kφ = ky1

ky2

+ ky2

ky3

+ ky3

ky4

(3.9)

Control of forward position and pitch angle

From (3.6) and (3.8), we obtain φ→ 0, then from (3.5) and (3.6) we get

ẍ ≈−g tanθ

θ̈ = τ̃θ
(3.10)

Using a procedure similar to the one proposed for the roll control, we obtain

τ̃θ =
1

g (1+ tan2θ1)

(...
x d

2 −4ẍd
2 − k̄x1 ẋd

2 + k̄x2 (x2 −xd
2)+ k̄x3 (x1 −xd

1)− k̄x4 g tanθ1

−4g (1+ tan2θ1)θ2 −2θ2
2θ1

) (3.11)

40

3.1. Comparison of stabilization and tracking control algorithms

where

k̄x1 = k̄x4 = kθ+6, k̄x2 = 2kθ+4

k̄x3 = kθ+
kx3 kx1

kx4 kx2

+1, kθ =
kx1

kx2

+ kx2

kx3

+ kx3

kx4

(3.12)

3.1.2 Control algorithm based on nested saturation

The goal for controllers based on saturation functions is to impose a bound in the control input.

The control algorithm is conceived from a linear systems (chain of integrators) nevertheless,

it was also demonstrated that it can be applied for nonlinear systems. Their procedure, in

contrast to the backstepping approach, starts in the last state (where the control input is

located) until the first one. The stability analysis is assured using a series of positive functions.

The first methodology was proposed in [154] designing the controller with nested saturation

functions for linear systems and applied to nonlinear systems. Nevertheless after analysis, it

can be observed that the controller structure using saturation functions imposes bounds on

each state of the system, such that, some inequalities can be applied, for example tanθ ≈ θ
and cosφ≈ 1, see [155, 147]. From this assumption, the longitudinal and lateral parts of (3.6)

can be rewritten as follows
ẋ1 = x2 ẏ1 = y2

ẋ2 ≈−gθ1 ẏ2 ≈ gφ1

θ̇1 = θ2 φ̇1 =φ2

θ̇2 ≈ τ̃θ φ̇2 ≈ τ̃φ

(3.13)

Roll control (φ, y)

A controller stabilizing the lateral system of (3.13) can be denoted by

τ̃φ =−σa(φ2 +σb(·)) (3.14)

where σi defines a generalized saturation function such that |σi (·)| ≤ i for positive constant

i : a,b,c,d . The argument in σb(·) will be defined later to assure convergence of the states. Let

us define a positive function V1 = 1
2φ

2
2, then its derivative is defined by

V̇1 =φ2φ̇2 =φ2τ̃φ =−φ2σa(φ2 +σb(·)) (3.15)

if
∣∣φ2

∣∣≥ b ⇒ V̇1 ≤ 0. Then, ∃ t1 such that for t ≥ t1
∣∣φ2(t)

∣∣≤ b, implying that
∣∣φ2 +σb(·)∣∣≤ 2b.

Choosing a ≥ 2b, then (3.14) can be rewritten ∀ t > t1 as

τ̃φ =−φ2 −σb(·). (3.16)

41

Chapter 3. Control approaches for aerial vehicles

Define ν1 = φ1 +φ2, then, ν̇1 = −σb(·). Propose a positive function V2 = 1
2ν

2
1 and imposing

σb(·) =σb(ν1 +σc (·)) then, its derivative is determined by

V̇2 = ν1ν̇1 =−ν1σb(ν1 +σc (·)) (3.17)

if |ν1| ≥ c ⇒ V̇2 ≤ 0. Then, ∃ t2 ≥ t1 such that for t ≥ t2 |ν1(t)| ≤ c and |ν1 +σc (·)| ≤ 2c . Choosing

b ≥ 2c, then (3.16) can be rewritten ∀ t > t2 as

τ̃φ =−φ2 −ν1 −σc (·). (3.18)

Define ν2 = ν1 +φ1 − y2/g =φ2 +2φ1 − y2/g , thus ν̇2 =−σc (·). Propose the positive function

V3 = 1
2ν

2
2 with σc (·) =σc (ν2 +σd (·)), then its derivative is described by

V̇3 = ν2ν̇2 =−ν2σc (ν2 +σd (·)) (3.19)

if |ν2| ≥ d ⇒ V̇3 ≤ 0. Then, ∃ t3 ≥ t2 such that ∀t ≥ t3 |ν2(t)| ≤ d and |ν2 +σd (·)| ≤ 2d . Choosing

c ≥ 2d , then (3.18) can be rewritten ∀ t > t3 as

τ̃φ =−φ2 −ν1 −ν2 −σd (·). (3.20)

Define ν3 =φ2 +3φ1 +3 y2

g + y1

g then ν̇3 =−σd (·). Propose V4 = 1
2ν

2
3 and σd (·) =σd (ν3), taking

the derivative of V4, it follows that

V̇4 = ν3ν̇3 =−ν3σd (ν3) ≤ 0 (3.21)

The previous implies that ν3 → 0, then from (3.19) it follows that ν2 → 0. From (3.17) implies

that ν1 → 0, similarly from (3.15), φ2 → 0. From definition of ν1 it follows that φ1 → 0. From

definition of ν2 this implies that y2 → 0. And finally, from definition of ν3 it can be deduced

that y1 → 0.

Rewriting τ̃φ, it yields

τ̃φ =−σa

(
φ2 +σb

(
φ1 +φ2 +σc

(
φ2 +2φ1 + y2σd

(
φ2 +3φ1 +3

y2

g
+ y1

g

))))
(3.22)

Pitch control (θ, x)

As before, we assume that the control strategy will insure a very small bound on | θ | such that

tan(θ) ≈ θ. Therefore, using a procedure similar to the one proposed for the roll control, it is

possible to express the pitch control as follows

τ̃θ =−σe

(
θ2 +σ f

(
θ1 +θ2 +σg

(
θ2 +2θ1 +x2 +σh

(
θ2 +3θ1 −3

x2

g
− x1

g

))))
(3.23)

42

3.1. Comparison of stabilization and tracking control algorithms

3.1.3 Linear backstepping

This controller is conceived using the same procedure proposed in the nonlinear backstepping

methodology, but instead of using the nonlinear system, a linear system is required. This

methodology is useful for beginners with the goal to better understand its procedure. The

obtained control law is quite different to the one obtained with the nonlinear system. For

our study, it is assumed that the vehicle is moving with small angles, therefore the nonlinear

system (3.10) can be represented as (3.6).

Forward position control

Rewriting first equation in (3.6)

ẋ1 = x2 (3.24)

propose V1 = 1
2 x2

1 , then V̇1 = x1x2. if x2 →−k1x1 with k1 is a positive constant, then V̇1 =−k1x2
1 .

Define the following error with the form

ζ2 = x2 −xv
2 (3.25)

with xv
2 =−k1x1 =α1 defining the first virtual input. Rewriting (3.24) and the second equation

of (3.6) with (3.25) and using x1 = ζ1

ζ̇1 = ζ2 +α1

ζ̇2 =−gθ1 − α̇1
(3.26)

Define a positive definite function V2 =V1 + ζ2
2

2
, then

V̇2 = V̇1 +ζ2ζ̇2 = V̇1 +ζ2(−gθ1 − α̇1) (3.27)

if (−gθ1 − α̇1) →−k2ζ2 with k2 is a positive constant, then, V̇2 = V̇1 −k2ζ
2
2. Define the error

ζ3 =−gθ1 −α2 (3.28)

with α2 = k2ζ2 − α̇1 denoting the second virtual input. Rewriting (3.26) with the previous

equation, it follows that

ζ̇1 = ζ2 +α1

ζ̇2 =−gθ1 − α̇1

ζ̇3 =−gθ2 − α̇2

(3.29)

Define the positive definite function V3 =V2 + ζ2
3

2 , then

V̇3 = V̇2 +ζ3ζ̇3 = V̇2 +ζ3(−gθ2 − α̇2) (3.30)

43

Chapter 3. Control approaches for aerial vehicles

if (−gθ2 − α̇2) →−k3ζ3, with k3 is a positive constant, then V̇3 = V̇2 −k3ζ
2
3. Define the error

ζ4 =−gθ2 −α3 (3.31)

where α3 = (gθ2)v = k3ζ3− α̇2 is the third virtual input. Rewriting (3.29) with ζ̇4, it follows that

ζ̇1 = ζ2 +α1

ζ̇2 =−gθ1 − α̇1

ζ̇3 =−gθ2 − α̇2

ζ̇4 =−g u2 − α̇3

(3.32)

Propose the candidate Lyapunov function V4 =V3 + ζ2
4

2 , then

V̇4 = V̇3 +ζ4ζ̇4 = V̇3 +ζ4(−g u2 − α̇3) (3.33)

Propose the control input

τ̃θ =
1

g
(k4ζ4 − α̇3) (3.34)

with k4 > 0 is a constant. Then

V̇4 = V̇3 −k4ζ
2
4 =−k1ζ

2
1 −k2ζ

2
2 −k3ζ

2
3 −k4ζ

2
4 < 0 (3.35)

The above implies system (3.32) goes to zero implying that (3.6) is globally asymptotically

stable. Rewriting (3.34) with respect to the state variables, it follows that

τ̃θ =− k̄1

g
x1 − k̄2

g
x2 + k̄3θ1 + k̄4θ2 (3.36)

where

k̄1 = k1k2k3k4

k̄2 = k1k2(k3 +k4)+k3k4(k1 +k2)

k̄3 = k1(k2 +k3 +k4)+k2(k3 +k4)+k3k4

k̄4 = k1 +k2 +k3 +k4

(3.37)

Lateral position control

For controlling the lateral position of the system (3.6), and using a similar procedure as the

one developed for the pitch control, the backstepping roll control input can be obtained as

τ̃φ = k̄φ1

g
y1 +

k̄φ2

g
y2 + k̄φ3φ1 + k̄φ4φ2 (3.38)

44

3.1. Comparison of stabilization and tracking control algorithms

3.1.4 Fully actuated approach

In this approach, the goal is to transform the underactuated system into a virtual fully actuated

system. This can be done by imposing a desired attitude Rd that will be related with the

virtual control input ~U . This allows us to use control inputs τφ, τθ to only control the attitude

system, i.e., R → Rd . Motivated by the works developed by [156, 157], simple smooth bounded

controllers that can easily be implemented in VTOL aircraft with parallel motors for tracking

set-points and time-varying trajectories are proposed.

The methodology is explained as follows; propose a vector control input, ~U , containing the

virtual control laws to stabilize the translational states in the VTOL vehicle. These virtual

control inputs will be related to the desired orientation matrix, Rd , of the vehicle and with its

main control input, ~Fth = [0 0 u1]T , as follows

~U = u1Rd~ez (3.39)

In our case of study, the virtual control laws will be designed for the vertical, horizontal and

longitudinal axis of the quadrotor, with the form ~U = [Ux ,Uy ,Uz]T ,~ez = [0 0 1]T and similarly

Rd ∈R3×3, is defined as

Rd =

Sθd Cψd Cψd Sθd Sφd −Cφd Sψd Sθd Cφd Cψd +Sφd Sψd

Cθd Sψd Cφd Cψd +Sθd Sφd Sψd Sθd Cφd Sψd −Sφd Cψd

−Sθd Cθd Sφd Cθd Cφd

 .

with θd , ψd φd representing the desired attitude. Next step is to rewrite the original transla-

tional dynamic system, in our case it is represented by equations (2.12). Thus the new system

is described as

m~̈ξ= ~FthR −mg~ez (3.40)

where~ξ= [x y z]T , R ∈R3×3 has the same form of Rd except that replacing the desired angles

with φ θ ψ. Notice from (3.39) that, u1 is the main control input. Therefore, using (3.39) into

first equation of (3.40)

m~̈ξ= u1R~ez −mg~ez +u1Rd~ez −u1Rd~ez

= u1(R −Rd)~ez −mg~ez +u1Rd~ez

Define ~ω= u1(R −Rd)~ez , thus

m~̈ξ=~ω−mg~ez + ~U . (3.41)

The desired orientation can be found using (3.39) and considering ψd
.= 0, then

θd = arctan

(
Ux

Uz

)
(3.42)

φd = arctan

 Uy√
U 2

x +U 2
z

 (3.43)

45

Chapter 3. Control approaches for aerial vehicles

Notice from (3.39) that
∥∥~U∥∥= ‖u1Rd~ez‖ gives an orthogonal vector as resultant of the right

side of the equation, therefore

u1 =
√

U 2
x +U 2

y +U 2
z . (3.44)

Define the control objective

lim
t−→∞

∥∥∥~ξ(t)−~ξd (t)
∥∥∥= 0. (3.45)

where ~ξd = [xd yd zd]T are the longitudinal and lateral references. Denoting the tracking error

as ~p = [~p1 ~p2]T such that

~p1 =~ξ− ~ξd ~p2 = ~̇ξ−~̇ξd (3.46)

Differentiating (3.46) and by means of (3.41)

~̇p1 = ~p2

~̇p2 =
~ω

m
− g~ez +

~U

m
−~̈ξd .

(3.47)

where ~̈ξd means the desired acceleration.

Control based on hyperbolic functions

Let us propose ~U in (3.47) as

~U = m(−σ1(K1~p1 +K2~p2)−σ2(K2~p2)+ g~ez +~̈ξd) (3.48)

where K1,K2 ∈R3×3 are diagonal positive matrices constant, σi means a saturation function

with the form σ(ς) = σ̄ tanh(ς) and σ̄ means a bounded constant. Hence, the bounded control
~U in (3.48) makes system (3.47) globally asymptotically stable.

Proof: First, to prove the asymptotic convergence of solution ~p(t) to the origin, observe from

(3.39) and (3.41) that ‖ω̄‖ ≤ 2F̄th . This implies that the closed-loop system using (3.47) and

(3.48) satisfies the Lipschitz condition1, and hence has a unique solution over [0,T] with T ≥ 0.

Moreover, if T is bounded, then ~p(t) is bounded ∀ t ∈ [0,T]. This proof is inspired in [159].

Furthermore, if lim
t−→∞‖~ω(t)‖ = 0 then lim

t−→∞
∥∥~p(t)

∥∥= 0 ∀ ~p(0), that is, for every ε1, for every ~p(0),

there exists ε2, Tε1 , Tε2 > 0 and Tε1 ≥ Tε2 such that

‖~ω(t)‖ < ε2, ∀t ≥ Tε2 ⇒
∥∥~p(t)

∥∥< ε1, ∀t ≥ Tε1 . (3.49)

Inspired by the work developed by [157], let us propose the following candidate Lyapunov

function

V1(~p) =
2∑

i=1

∫ (k1i p1i+k2i p2i)

0
σ1i (ςi)dςi + 1

2
~pT

2 K1~p2 (3.50)

1See [158], Theorem 3.1 and page 446

46

3.1. Comparison of stabilization and tracking control algorithms

where k1i , p1i , k2i , p2i , σ1i and ςi for i = 1,2 are the elements of, K1, K2, ~p1, ~p2, σ1 and ς

respectively. The time derivative of V1(~p) along (3.47) and (3.48) is

V̇1 = ~̇p1
T

K1σ1(K1~p1 +K2~p2)+ ~̇pT
2 K2σ1(K1~p1 +K2~p2)+~pT

2 K1~̇p2

= −σ1(K1~p1 +K2~p2)K2σ1(K1~p1 +K2~p2)−σ2(K2~p2)K2σ1(K1~p1 +K2~p2)

+~ω
T

m
K2σ1(K1~p1 +K2~p2)−σ2(K2~p2)K1~p2 +

~ωT

m
K1~p2.

≤ −λmi n(K2)
∥∥σ1(K1~p1 +K2~p2)

∥∥2 +λmax (K2)
∥∥σ1(K1~p1 +K2~p2)

∥∥∥∥σ2(K2~p2)
∥∥

−λmi n(K1)~pT
2 σ2(K2~p2)+ ~ω

T

m
(K1~p2 +K2σ1(K1~p1 +K2~p2)). (3.51)

Using Young’s inequality 1, the second term of (3.51), satisfies

λmax (K2)
∥∥σ1(K1~p1 +K2~p2)

∥∥∥∥σ2(K2~p2)
∥∥≤λmax (K2)

2

∥∥σ1(K1~p1 +K2~p2)
∥∥2

+ λmax (K2)

2

∥∥σ2(K2~p2)
∥∥2

(3.52)

Furthermore, there exists ν> 0 such that
∥∥σ2(K2~p2)

∥∥ ≤ νλmax (K2)
∥∥~p2

∥∥, for all ~p2, then the

third term of (3.52) satisfies∥∥σ2(K2~p2)
∥∥2 ≤ νλmax (K2)~pT

2 σ2(K2~p2) (3.53)

Substituting (3.53) into (3.52), yields

∥∥σ1(K1~p1 +k2~p2)
∥∥∥∥σ2(K2~p2)

∥∥≤
∥∥σ1(K1~p1 +K2~p2)

∥∥
2

2

+ νλmax

2
~pT

2 σ2(K2~p2) (3.54)

From (3.54), the derivative V̇1 in (3.51) satisfies

V̇1 ≤−W1(~p,~ω) (3.55)

where

W1(~p,~ω) = c1
∥∥σ1(K1~p1 +K2~p2)

∥∥2 + c2~p
T
2 σ2(K2~p2)− ‖~ω‖

m
(λmax (K1)

∥∥~p2
∥∥+ c3) (3.56)

with c1 = 2λmi n (K2)−λmax (K2)
2 , c2 = 2λmi n (K1)−νλ2

max (K2)
2 , c3 =λmax (K2)σ̄1 with σ̄1 ≥ ‖σ1(·)‖. In order

to ensure c1, c2, c3 > 0, the matrices K1, K2 are chosen as follows:

2λmi n(K2) >λmax (K2); 2λmi n(K1) > νλmax (K2)2 (3.57)

(3.55) is used to get (3.49). Let the ball Bε1 = {~p ∈R3 | ∥∥~p∥∥≤ ε1}, and show that ~p(t) approaches

Bε1 after the time Tε1 . Let α1 = min‖~p‖=ε1
V1(~p), then α1 > 0. Take β1 ∈ (0,α1) and define the

set Ωβ1 = {~p ∈B | V1(~p) ≤ β1}, then Ωβ1 is in the interior of Bε1 . As V1(~p) is continuous and

V1(0) = 0, there exists γ1 such that 0 < γ1 < ε1 and β2 = max‖~p‖=γ1
V1(~p) <β1.

47

Chapter 3. Control approaches for aerial vehicles

Let the ball βγ1 = {~p ∈Ωβ1 |
∥∥~p∥∥≤ γ1}, and take α2 = min‖~p‖=γ1

V1(~p), then we have 0 <α2 <
β2 <β1 <α1. Consequently, let the ballβγ2 = {~p ∈Bγ1 |

∥∥~p∥∥≤ γ2} whereγ2 satisfies 0 < γ2 < γ1

and 0 < min‖~p‖=γ2
V1(~p) ≤ max‖~p‖=γ2

V1(~p) <α2, then from the above construction we have

Bγ2 ⊂Bγ1 ⊂Ωβ1 ⊂Bε1 (3.58)

and the Lyapunov function V1(~p) satisfies

max‖~p‖=γ2

V1(~p) < min‖~p‖=γ1

V1(~p)

< max‖~p‖=γ1

V1(~p) <β1 <α1.
(3.59)

In view of (3.58) it is sufficient to show that ~p(t) approaches Bγ2 after the finite time Tε1 . Then,

the proof is completed. �

As the quadrotor is composed of mechanical and electrical parts, constraints are needed in

order to respect the limits of its actuators and mechanical movements. Using (3.44) and (3.48)

it yields

u2
1 =U 2

x +U 2
y +U 2

z

u2
1 ≤ (σ11 +σ21)2m2 + (σ12 +σ22)2m2 + (σ13 +σ23 + g)2m2.

(3.60)

In order to ensure u1 ≤ ū1, where ū1 is a thrust bounded constant defined by the properties of

the actuators, and from (3.60), then the following condition is necessary

g − σ̄13 − σ̄23 > 0, (3.61)

(σ̄11 + σ̄21)2 + (σ̄12 + σ̄22)2 + (σ̄13 + σ̄23 + g)2 ≤ ū2
1

m2 . (3.62)

Equation (3.43) can be rewritten as

θd = tan

(−σ̄11 − σ̄21

−σ̄13 − σ̄23 + g

)−1

≤ θ̄d . (3.63)

Rewriting (3.61) as

−σ̄13 − σ̄23 <−g

2

|σ̄13 + σ̄23| < g

2
,

(3.64)

and equation (3.62) by

|σ̄11 + σ̄21|2 +|σ̄12 + σ̄22|2 +|σ̄13 + σ̄23 + g |2 ≤ |ū2
1|

|m2| , (3.65)

such that equation (3.63) is rewritten as

tan

(|σ̄11 + σ̄21|
|σ̄13 + σ̄23 + g |

)−1

≤ θ̄d . (3.66)

48

3.1. Comparison of stabilization and tracking control algorithms

Developing the third term of (3.65)

|σ̄11 + σ̄21|2 +|σ̄12 + σ̄22|2 +|σ̄13 + σ̄23|2 +2|σ̄13 + σ̄23||g |+ |g |2 ≤ ū2
1

m2 . (3.67)

Assumption 1. As the virtual control Uz has to compensate the weight of the vehicle (mg) to

track a desired altitude (z −→ zd .), then, it is possible to say that Uz >Ux and Uz >Uy .

Based on the Assumption 1 and considering that the vehicle is moving in the x−axis, thus,

using (3.64) into (3.67) we obtain

|σ̄11 + σ̄21|2 +|g

2
|2 +2|g

2
||g |+ |g |2 ≤ |ū2

1|
|m2|

|σ̄11 + σ̄21|2 + g 2

4
+2g 2 ≤ ū2

1

m2

|σ̄11 + σ̄21|2 + 9

4
g 2 ≤ ū2

1

m2

|σ̄11 + σ̄21| ≤
√

ū2
1

m2 − 9

4
g 2.

(3.68)

Rewriting equation (3.63) with (3.68)√
ū2

1
m2 − 9

4 g 2

|σ̄13 + σ̄23|+ g
≤ tan(θ̄d) (3.69)

From the last equation

|σ̄13 + σ̄23| ≥


√

ū2
1

m2 − 9
4 g 2

tan(θ̄d)

− g . (3.70)

Now, for φd , it is possible to rewrite equation (3.43) using the inequalities (3.68) and (3.70)

|σ̄12 + σ̄22|√√√√(√
ū2

1
m2 − 9

4 g 2

)2

+
(√

ū2
1

m2 − 9
4 g 2 − g

)2
≤ tan φ̄d

|σ̄12 + σ̄22|√
tan2 θ̄d

(
ū2

1
m2 − 9

4 g 2

)
+

(
ū2

1
m2 − 9

4 g 2−g 2

)
tan2 θ̄d

≤ tan φ̄d

(3.71)

Then,

|σ̄12 + σ̄22| ≤ tan φ̄d


√√√√√ tan2 θ̄d

(
ū2

1
m2 − 9

4 g 2
)
+

(
ū2

1
m2 − 9

4 g 2 − g 2
)

tan2 θ̄d

 (3.72)

49

Chapter 3. Control approaches for aerial vehicles

Following the inequalities given by (3.68), (3.70) and (3.72) it is possible to achieve the con-

straints u1 ≤ ū1, θ ≤ θ̄d and φ≤ φ̄d .

To guarantee the orientation angle θ,φ tracks its desired value θd ,φd in the sense that

limt→∞
∥∥ ~η(t)− ~ηd (t)

∥∥= 0, where~η= [θ φ]T and ~ηd = [θd φd]T , such that

lim
t−→∞‖~ω(t)‖ = 0. (3.73)

Then, it is possible to rewrite attitude subsystem describing the pitch movement in equation

(2.11) as in the following form

~̇η1 =~η2

J~̇η2 =~τ
(3.74)

where~τ= [τ̃θ τ̃φ]T , and J ∈R2x2 is a diagonal constant inertial matrix. Let us propose a control

input of the form

τ̄=−K1η1 −K2η2 (3.75)

where~η1 = (~η−~ηd) and~η2 = (~̇η−~̇ηd), K1 and K2 are positive diagonal matrices that must be

well chosen to ensure (3.73) and~̇ηd = [θ̇d φ̇d]T rate is defined as

θ̇d = U̇xUz −UxU̇z

U 2
z +U 2

x

φ̇d = U̇yU 2
x +U̇yU 2

z −UyU̇xUx −UyU̇zUz√
U 2

x +U 2
z

(
U 2

y +U 2
x +U 2

z
)

(3.76)

with

~̇U =− 1

m
((1−σ1 tanh(K1~p1 +K2~p2)2)K1~p2 +K2((1−σ1 tanh(K1~p1 +K2~p2)2)

+ (1−σ2 tanh(K2~p2)2))~̇p2).

Take K 2
2 > 4K1. Then, the roots of the characteristic equation of the subsystem (3.74), (3.75)

denoted by α, β are real with

β=
−K2

2
−

√
K 2

2

4
−K1

<α=
−K2

2
+

√
K 2

2

4
−K1

< 0. (3.77)

Let γ> 0 be an arbitrary constant. Now, if γK2 replaces K2 and γ2K1 replaces K1, then β in

(3.77) is placed by γβ and α by γα. Hence, it can easily be shown that for the given~τ> 0 and

any fixed rη > 0 one can select a pair K1, K2 such that
∥∥η0

∥∥≤ rη implies |ηi (t)| ≤ϑi rη exp(αt)

where 0 ≤ϑi , i = 1,2 depend on ηi 0, and in particular

|K1η1(t)+K2η2(t)| ≤ (K1ϑ1 +K2ϑ2)rη <~τ. (3.78)

50

3.1. Comparison of stabilization and tracking control algorithms

3.1.5 Numerical and experimental results

This section presents numerical and experimental results to validate the control strategies

developed in (3.11), (3.22), (3.36), (3.48). The robot used to validate this overview of control

laws is quadcopter system emulating a PVTOL vehicle for simplifying further analysis.

The scenario consists in moving the longitudinal axis of the vehicle as following: the vehicle

starts at x(0) = −2m and z(0) = 1m, then, three set-points defined by xr1 = 2, xr2 = 4 and

xr3 = 5 in meters are imposed as desired values. For better illustrating the graphs obtained in

simulation and experimental results, we denote as LB , N LB , N S, the Linear/NonLinear Back-

stepping and the Nested Saturation controllers, respectively, called also classical approaches.

The HSC means the Hyperbolic Saturation Controller based on the fully actuated approach,

named also virtual method. Parameters for numerical and practical validation are shown in

Table 3.1.

Table 3.1 – Parameters values used in the control laws in (3.11), (3.22), (3.36) and (3.48) used
in simulation and experimental validation.

Controller Control parameters Sim. Values Exp. Values

LB

k1 1 1.31

k2 1.2 1

k3 0.8 0.8

k4 0.1 0.1

NLB

k̄1 0.04 0.04

k̄2 0.035 0.0025

k̄3 0.4 0.4

k̄4 0.1 0.1

NS

σa 0.15 0.15

σb 0.22 0.22

σc 0.1 0.1

σd 0.3 0.3

HSC

σ11 0.5 0.5

σ12 0.1 0.2

σ21 0.5 0.5

σ22 0.35 0.4

k11 5 1

k22 0.9 1.3

k11 3 0.3

k22 0.55 0.6

Numerical results

The performance of the PVTOL vehicle when using controllers (3.11), (3.22), (3.36) and (3.48)

tracking the set-points previously defined is shown in Figures 3.1 and 3.3. Note from Figure 3.1

that, the convergence using controllers without bounded functions are faster than the others

that use saturation functions.

51

Chapter 3. Control approaches for aerial vehicles

This performance is ‘normal’ because the saturation functions are chosen so small to guarantee

a convergence from any initial condition. To increase the speed of convergence of these

controllers, the bound of the saturation functions must be increased.

0 5 10 15 20 25 30 35 40 45

-4

-2

0

2

4

6

8

Figure 3.1 – Longitudinal position performance when comparing the four control algorithms.

Besides, as depicted in Figure 3.2, the θ angle responses for controllers NS and HSC are

bounded, even if initial conditions are far from the desired position. In addition, for the

controllers LB and NLB the angular position is bigger than for the NS and HSC controllers

and its magnitude is related to the error position. Notice that only for the HSC algorithm the

angular position tracks the imposed reference.

0 5 10 15 20 25 30 35 40 45

-50

0

50

0 5 10 15 20 25 30 35 40 45

-50

0

50

0 5 10 15 20 25 30 35 40 45

-20

0

20

0 5 10 15 20 25 30 35 40 45

-20

0

20

Figure 3.2 – θ angle response when applying four controllers into the PVTOL dynamics. θd

denotes the desired angle computed in (3.43).

52

3.1. Comparison of stabilization and tracking control algorithms

Figure 3.3 is the most important graph to analyze the performance of the four controllers. In

this figure, z performance is depicted showing the advantage of using a virtual controller from

the classical one. Observe here that the controllers using classical procedure their altitude

performance is degraded when tracking the references. In practical validation, this is observed

as a drop in the altitude performance (z decreases). This drop is related to how far the desired

value is.

0 5 10 15 20 25 30 35 40 45

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

Figure 3.3 – Vertical position behavior when comparing the four control algorithms.

Similarly, the performance of the vehicle comparing the four control algorithms in the x − z

plane is displayed in Figure 3.4. In one hand, it can be verified that when using control algo-

rithms based on classical method, the behaviour of the vehicle in the z−axis is compromized.

On the other hand, controllers based on the virtual approach compensate this error by means

of the correction term F2 in the total thrust.

-4 -2 0 2 4 6 8
0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

x(0)

x
r 1

x
r 3

x
r 2

Figure 3.4 – Vehicle’s performance evolution in the x − z plane when applying the four control
algorithms into the PVTOL dynamics. From figure xri for i : 1,2,3 describes the desired
way-point.

53

Chapter 3. Control approaches for aerial vehicles

In Figures 3.5 and 3.6 the control input responses for the four controllers are depicted. Notice

from Figure 3.5 that u1 response is different for the HSC controller with respect to the others

that decreases when the desired point is modified. Notice that for the HSC controller u1

increases to compensate the lateral displacement. Nevertheless, in Figure 3.6 the u2 perfor-

mance is quite different. Notice here that u2 for the HSC controller is smaller with respect to

the others one.

0 5 10 15 20 25 30 35 40 45

-0.8

-0.6

-0.4

-0.2

0 5 10 15 20 25 30 35 40 45

-0.5

-0.45

-0.4

-0.35

0 5 10 15 20 25 30 35 40 45

-0.44

-0.42

-0.4

-0.38

0 5 10 15 20 25 30 35 40 45

-0.42

-0.41

-0.4

-0.39

Figure 3.5 – u1 behavior when applying the controllers (3.11), (3.26), (3.36) and (3.48).

0 5 10 15 20 25 30 35 40 45

-1

-0.5

0

0.5

1

0 5 10 15 20 25 30 35 40 45

-0.4

-0.2

0

0.2

0.4

0 5 10 15 20 25 30 35 40 45

-0.2

-0.1

0

0.1

0.2

0 5 10 15 20 25 30 35 40 45

-0.04

-0.02

0

0.02

0.04

Figure 3.6 – Torque control u2 response when applying the four control algorithms.

54

3.1. Comparison of stabilization and tracking control algorithms

Experimental results

The control algorithms (3.11), (3.26), (3.36) and (3.48) were validated in real time in a quad-

copter vehicle evolving as a PVTOL vehicle. For this, front motors (fL2 , fR2) and rear motors

(fL1 , fR1) in the aerial vehicle are considered producing only a force in the front and rear side

of the vehicle, as depicted in Figure 3.7. A video with the experimental results can be seen at:

https://youtu.be/Fi4uUbQRrgw

Notice from this figure that f1 = fL1 + fR1 and f2 = fL2 + fR2 . Vertical displacement on the z axis

is produced when increasing or decreasing, by the same magnitude the speed in the motors,

while pitch moment is produced with the difference between f1 and f2. This quadcopter

vehicle evolving as a PVTOL is an AR Drone 2. Its firmware was modified to work under the

software Fl-AIR - Framework libre AIR which is open source and runs a Linux-based operating

system, capable of implementing a wide range of control schemes, see [160]. An OptiTrack

motion capture system was used to estimate the vehicle’s position, while its internal Inertial

Measurement Unit (IMU) measures its orientation and angular rates.

Figure 3.7 – Quadcopter configuration evolving its longitudinal plane.

Conditions for flight tests are the same as used in the simulation section, i.e. the initial

conditions are x(0) = −2m and z(0) = 1m while xr1 = 2, xr2 = 4 and xr3 = 5 in meters are

the references. In Figures 3.8- 3.11 the state responses when applying the controllers are

illustrated. Notice from Figure 3.8, as in the simulation case, the convergence of controllers

based on saturation functions are quite slower due to the bound of these functions that helps

to maintain a relative small error with respect to the others controllers. Nevertheless, the LB

controller has a faster convergence but in this case, implying more energy and therefore a

bigger attitude response as we will see in the next figures.

The angular performance of the quadcotper system when using the four control algorithms

is depicted in Figure 3.9. Remark that for the virtual control algorithm a desired angle is

imposed and tracked satisfactorily. Similarly in this figure observe that θ-response is bigger

for those controllers that are mainly designed without saturation functions. From this figure it

is possible to make a relation between the fast convergence of controllers and their attitude

response. This means that, faster the convergence is achieved, then, bigger the attitude

response.

55

https://youtu.be/Fi4uUbQRrgw

Chapter 3. Control approaches for aerial vehicles

0 10 20 30 40 50 60

-3

-2

-1

0

1

2

3

4

5

6

Figure 3.8 – Longitudinal behavior when applying experimentally the four control algorithms
into the aerial vehicle.

Figure 3.9 – θ angle response when the four control algorithms where applied in real time. θd

describes the desired angle.

Observe in Figure 3.10, that the magnitude of the error in the z−axis is directly related to the

x−axis error. This means that if the desired x-position is far, then, the error in the vertical axis

increases. And as a consequence, the magnitude of the θ angle is affected as can be verified in

Figure 3.9. Therefore, as observed from this same figure, it is possible to use small values for

the saturation functions or furthermore reduce the control gains of the LB and NLB controllers,

however it will compromise the performance of the system reducing the convergence of the

states to the desired positions.

56

3.1. Comparison of stabilization and tracking control algorithms

Moreover, a big angle response should increase the vertical error in the vehicle when using

control algorithms based on the classical approach as can be seen in Figure 3.11. Besides,

when using controllers based on the virtual approach or controllers using bounded functions,

this error is minimized as shown in Fig. 3.11. Notice the performance of the LB and NLB

controllers. Due the longitudinal error increases, the altitude response is affected in order to

fulfill the control objective. It is well known that this altitude error can be fixed re-tuning the

control gains for every new desired position, however that was out of the scope of this thesis.

0 10 20 30 40 50 60

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Figure 3.10 – Vertical position comparing the four control algorithms.

-3 -2 -1 0 1 2 3 4 5 6
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

x(0)
x

r 1

x
r 2

x
r 3

Figure 3.11 – Vehicle’s performance evolution in the x − z plane when the four control algo-
rithms are applied in real time.

57

Chapter 3. Control approaches for aerial vehicles

In Figures 3.12 and 3.13 the control input responses are illustrated. Notice that they have

obtained similar performance as in the case of simulations results. In the next section, we

introduce a discussion in terms of the control inputs using the indices performance and

qualitative variables to expose our conclusions for the four control algorithms.

Figure 3.12 – Thrust control u1 response for the four control algorithms applied to the aerial
vehicle.

Figure 3.13 – Torque control response, u2, obtained during the flight tests.

58

3.1. Comparison of stabilization and tracking control algorithms

3.1.6 Discussion

We have carried out an analysis of the performance of the four control algorithms. For this

purpose, the performance indices and a qualitative comparison of the controller are obtained.

The performance indices are the Integral Square Error (ISE), the Integral Absolute Error (IAE),

the Integral time Squared Error (ITSE) and the Integral time Absolute Error (ITAE). A summary

of this analysis is presented in Tables 3.2 - 3.4.

From the steady state regime experimental results, in Table 3.2 it can be observed that the

Nested Saturation and Hyperbolic Saturation controllers achieve the best performance in

terms of the vertical error. The HSC presents less error than NS. However, the HSC algorithm

includes a bigger computational effort with respect to the other algorithms due the derivatives

of the desired angle θd . It can be analyzed from the design of the HSC controller that imposes

desired angles, therefore, this increases the time of convergence to the desired translational

values. Nevertheless, it could be an advantage because when imposing desired angles, we can

ensure converge even if the desired position are far away. Observe also from tables that the

Nested Saturation controller is quite small with respect to the other approaches due mainly

to the values of the bound of the saturation functions. The linear backstepping controller

presents a small error in the longitudinal axis and faster convergence time as can be observed

in tables. Nonetheless, according to Table 3.2 this control algorithm has a bigger vertical error

and by consequence control effort u2 required is also bigger.

Table 3.2 – Performance indices of the z−axis

Controllers/Indices IAE ISE ITAE ITSE
LB 2.97 0.48 99.48 17.98

NLB 2.40 0.30 82.38 12.33
NS 1.16 0.03 35.63 1.02

HSC 1.09 0.04 30.04 1.35

Table 3.3 – Performance indices of the x−axis

Controllers/Indices IAE ISE ITAE ITSE
LB 60.21 221.56 1453 7132

NLB 64.53 241.37 1937 7780
NS 77.96 290.13 2324 10188

HSC 83.51 308.68 266.76 14752

Regarding the design, tuning and the implementation effort, the linear backstepping and

nested saturation algorithms are easier to tune because their structure can be seen as Pro-

portional Derivative controllers. In contrast, the NLB and the HSC are tedious to implement

since both present several complex derivatives and they have more parameters to tune. In

this context, Table 3.4 presents a behavior comparison between the four algorithms including

numerical and practical validation and other qualitative indicators.

59

Chapter 3. Control approaches for aerial vehicles

Table 3.4 – Qualitative comparison of the control algorithms. The best result is denoted with 1
and the worst with 4.

LB NLB NS HSC
Converge to

the reference
1 4 3 2

Computational effort 1 3 2 3
Control effort 4 3 1 1

Design & tuning effort 1 4 2 3
Real implementation 1 4 2 3

Concerning the methods to design these control laws, one of the advantages of the virtual

method is the possibility to design any control law (adaptive control, sliding mode control,

etc) in F1 and F2 that could significantly improve the performance of the system. Here,

the challenge will be to design control laws capable to provide desired angles respecting

the mechanical constraints of the vehicle for avoiding singularities in the control input u2.

The disadvantage, as previously mentioned, is the complexity of the implementation of the

algorithms due of the first and second derivative of F1 and F2. In contrast, the classical method

gives the advantage of an easy fashion to get the analysis and design of the control algorithms

based on the assumption that the vertical axis is controlled. However, the control effort of the

inputs u1 and u2 could be larger if the desired positions are far from the initial conditions.

3.2 Quaternion-based backstepping control

In this section, a backstepping quaternion control is designed based on the proposed dynamic

model (2.52) developed in Section 2.3. According to this section and in particular, subsection

2.3.2, it is possible to decouple the whole dynamic model of the vehicle in terms of a desired

attitude qd , which is described by a desired thrust vector force ~U ∈I . Let us consider the ro-

tational dynamic model of the quadcopter represented by (2.51) as the associated quaternion

for the tracking attitude error defined by (2.53). Therefore, the thrust vector force ~U must be

established in terms of the translational system (2.54).

Backstepping position controller

Following the procedure of the bacsktepping control technique, as in the case of using Euler-

angles, let us define the tracking error define the error ex1 as ex1 = x1 − xd
1 , where xd

1 is the

reference. Let us propose the following positive function V1 = αx1
2 e2

x1
, with αx1 > 0 denoting

a constant, then taking the derivative with respect to time and proposing xv
2 = xd

2 − ex1 as a

virtual control input, it follows that

V̇1 =αx1 ex1 (x2 −xv
2 −ex1) =−αx1 e2

x1
+αx1 ex1 (x2 −xv

2)

where ẋd
1 = xd

2 . Define the error ex2 = x2−xv
2 thus, the previous yields V̇1 =−αx1 e2

x1
+αx1 ex1 ex2 .

Propose the second positive function V2 = αx2
2 e2

x2
with αx2 > 0 constant.

60

3.2. Quaternion-based backstepping control

Differentiating with respect to time

V̇2 =αx2 ex2 (Ux − ẋv
2)

Proposing Ux = −ex2 + ẋv
2 − α1

α2
ex1 = −ex2 + ẋd

2 − x2 + xd
2 − αx1

αx2
ex1 , the, defining the Lyapunov

function VT =V1 +V2 and differentiating with respect to time, it follows that

V̇T = V̇1 + V̇2 =−αx1 e2
x1
+αx1 ex1 ex2 −αx2 e2

x2
−α1ex1 ex2

V̇T =−αx1 e2
x1
−αx2 e2

x2
< 0

(3.79)

The procedure to get the virtual control inputs Uy and Uz is exactly the same as for Ux . Thus

without lost of generality, it is possible to define the control vector of the form

~U =

Ux

Uy

Uz

=


−ex2 + ẋd

2 −x2 +xd
2 − αx1

αx2
ex1

−ey2 + ẏd
2 − y2 + yd

2 − αy1
αy2

ey1

−ez2 + żd
2 − z2 + zd

2 − αz1
αz2

ez1 + g

 (3.80)

where αi j are positive constants. Therefore, the thrust can be defined as

u1 =
√

U 2
x +U 2

y +U 2
z

m
. (3.81)

Then, from (2.56) and (2.57) let us define the unit vector associated with ~U as

~µ=
~U∥∥~U∥∥ = 1√

U 2
x +U 2

y +U 2
z

Ux

Uy

Uz

 . (3.82)

The desired quaternion qd can be computed using (2.59) and (2.60) as follows

qd =
[

qd0

~qd

]
=


qd0

qd1

qd2

qd3

 , qd0 =
√

1+~υ~µ
2

, ~qd =
√

1+~υT ~µ

2
S(~µ)~υ (3.83)

where~υ= [0 0 1]T and S(~µ) is defined as

S(~µ) =

 0 −µ3 µ2

µ3 0 −µ1

−µ2 µ1 0

 .

Consequently, choosing proper control gains αi j in (3.80) such that (3.81) aligns ~Fξ with ~U ,

then, the position error will converge to zero and therefore, the translational quadrotor system

(2.54) can be stabilized in any desired position.

61

Chapter 3. Control approaches for aerial vehicles

Once the desired quaternion is defined, the control of the attitude system and its stability

analysis must be addressed. For that, let us propose the following change of coordinates

~Z1 =
[

1−|qe0|
~qe

]
(3.84)

where ~qe = [qe1 qe2 qe3]T and qe = q∗
d ⊗q . Then computing its derivative with respect to time[

−sgn qe0
(
qd0q̇0 + q̇d0q0 + ~̇qT

d q̄ +~qT
d
~̇q

)
−~̇qd q0 −~qd q̇0 + q̇d0I3~q +qd0I3~̇q −S(~̇qd)~q −S(~qd)~̇q

]
(3.85)

Considering the case of regulation problem, it follows that q̇d0, ˙̇qd → 0, then

~̇Z1

[
−sgn qe0

(
qd0q̇0 +~qT

d
~̇q

)
qd0~̇q −~qd q̇0 −S(~qd)~̇q

]
(3.86)

From (2.51), it follows that (3.86) can be rewritten as

~̇Z1 = 1

2

[
−sg n(qe0)

(
qd0~q

T +~qT
d (q0I3 +S(~q))

)
qd0(q0I3 +S(~q))− q̄d q̄T −S(q̄d)(q0I3 +S(q̄))

]
(3.87)

Remark that the first element of (3.87) can be expressed as ~̇Z1(1) = sgn(qe0)~qT
e and the second

element can be rewritten using the property S(a)S(b) = baT −aT bI as

~̇Z1(2) = 1

2

(
qd0~qd I3 +qd0S(~q)+~qT~qd −S(~qd)q0I3 −S(~qd)S(~q)

)
~Ω (3.88)

Defining

S(~qe) = qd0S(~q)+~qT qd0 −S(~qd)q0I3 −~q~qT
d (3.89)

then, ~̇Z1 is expressed as

~̇Z1 = 1

2
M(qe)~Ω (3.90)

where

M(qe) =
[

sgn(qe 0)~qT
e

qe0I3 +S(~qe)

]
.

Let us propose a positive function of the form V1 = 1
2
~Z T

1
~Z1 and differentiating with respect to

time is given by

V̇1 = 1

2
~Z T

1 M(qe)~Ω (3.91)

The main idea behind the backstepping technique is to propose a virtual control input such

that V̇1 ≤ 0, thus, let us introduce

~Ωv =−K1M T (qe) ~Z1 (3.92)

then, the derivative of V1 can be expressed as

V̇1 =−1

2
~Z T

1 M(qe)K1M(T qe) ~Z1 ≤ 0 (3.93)

62

3.2. Quaternion-based backstepping control

Proposing the second error as ~Z2 =~Ω−~Ωv and differentiating with respect to time,

~̇Z2 = ~̇Ω− ~̇Ωv

~̇Z2 = I−1(−~ΩI S(~Ω)+~τ− I ~̇Ωv)
(3.94)

The system in terms of the errors ~Z1 and ~Z2 and its derivatives can be expressed as

~̇Z1 = 1

2
M(qe)(~Ωv + ~Z2)

~̇Z2 = I−1(−~ΩI S(~Ω)+~τ− I ~̇Ωv)
(3.95)

Proposing a Lyapunov function of the form VT = 1
2
~Z T

1
~Z1 + 1

2
~Z T

2
~Z2 and its derivative with

respect to time given by

V̇T = ~Z T
1
~̇Z1 + ~Z T

2
~̇Z2

= 1

2
~Z T

1 (M(qe)~Ωv +M(qe) ~Z2)+ ~Z T
2 (I−1(−~ΩI S(~Ω)+~τ− I ~̇Ωv))

(3.96)

Choosing~τ as

~τ=~ΩI S(~Ω)+ I ~̇Ωv −K2 ~Z2 − 1

2
M(qe)T ~Z1 (3.97)

then, it can be see that using (3.97) system (3.95) is stabilized and therefore, the full dynamic

quadcopter model described by (2.52) is asymptotically stable

V̇T =−1

2
~Z T

1 M(qe)K1M T (qe) ~Z1 − ~Z T
2 K2 ~Z2 ≤ 0. (3.98)

The final control input equation using the quaternion backstepping control can be expressed

in terms of states as follows

~τ=

 0 −Ωx 0

Ωz 0 −Ωx

−Ωy Ωx 0


Ixx 0 0

0 Iy y 0

0 0 Izz


Ωx

Ωy

Ωz

−

K2x 0 0

0 K2y 0

0 0 K2z



Ωx

Ωy

Ωz

−


K1x 0 0

0 L1y 0

0 0 K1z

× 1

2

sgn(qe0)qe1 q0 −q3 q2

sgn(qe0)qe2 q3 q0 −q1

sgn(qe0)qe3 −q2 q1 q0




1−|qe0|
q1

q2

q3





− 1

2

sgn(qe0)qe1 q0 −q3 q2

sgn(qe0)qe2 q3 q0 −q1

sgn(qe0)qe3 −q2 q1 q0




1−|qe0|
q1

q2

q3

 .

(3.99)

with K1i and K2i where i ∈ [x, y, z] are positive constants,Ωi represents the angular velocity

and I stands for the inertia tensor.

63

Chapter 3. Control approaches for aerial vehicles

3.2.1 Experimental test

In this section, the validation of the control algorithm (3.99) based on the quadcopter quater-

nion model (2.52) is addressed. For this experimental test, an AR Drone 2 was employed

using the Fl-AIR framework open source code. The scenario consists in the following: the

vehicle is located in a random hover position~ξ(0) = [0, 0, 1.2m]T and thus, a circular desired

trajectory~ξd = [a cos(t), a sin(t), 1.2m]T must be tracked. The desired quaternion around

the z−axis is defined by qz = [cos(ψd /2), 0, 0,sin(ψd /2)]T where ψd = arctan
(
ξdy

ξdx

)
, and the

desired quaternion is given by qd = qt ⊗ qz . The control parameters used in this test are

depicted in Table 3.5.

The performance of the vehicle when tracking a circular desired trajectory is presented in

Figures 3.14 to 3.18. Notice from Figures 3.14 and 3.15 the well behavior of the proposed

control algorithm. It can be observed that the x and y axes are well tracked with a small ε error

in the z−axis. The vehicle’s front is pointing towards the sense of the trajectory according to

the desired ψd angle.

Figure 3.14 – Performance of the quadcpter during the flight test

Table 3.5 – Control gains parameters used in experimental tests

Parameter x y z

α1 0.1 0.1 0.1
α2 0.8 0.8 0.8
K2 0.2 0.2 0.2
L1 30 30 10

64

3.2. Quaternion-based backstepping control

Figure 3.15 – Quadcotper position tracking

The desired attitude trajectory, computed by (2.60) and (3.83), is illustrated in Figure 3.16. No-

tice the well performance of q0 and q3 which are related with the desired ψd angle. Moreover,

it is important to remark that, although the rotation of the vehicle completes more than one

complete tour around the z−axis, the attitude is continuous. This lack of discontinuity points

is one of the main advantages of using quaternion approaches.

Figure 3.16 – Quadcopter attitude quaternion performance when tracking the desired pose
trajectory

65

Chapter 3. Control approaches for aerial vehicles

Figures 3.17 and 3.18 present the performance of the designed controllers (3.80), (3.81) and

(3.99) when tracking a circular desired trajectory. Let us recall that this controller compute the

torques and forces required to stabilize the vehicle in the desired references.

0 5 10 15 20 25 30

-0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 3.17 – Performance of the control input forces

0 5 10 15 20 25 30

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Figure 3.18 – Performance of the rotational controller

To better illustrate the vehicle’s rotational behavior, the equivalent Euler angles are illustrated

on Figure 3.19 and were computed using the following equation

φ= arctan

(
2(q0q1 +q2q3)

1−2(q2
1 +q2

2)

)
,

θ = arcsin
(
2(q0q2 −q1q3)

)
,

ψ= arctan

(
2(q0q3 +q1q2)

1−2(q2
2 +q2

3)

)
.

(3.100)

66

3.3. Finite-time convergence using Sliding Mode Control

Note this conversion uncovers the discontinuities that are present when completing full rota-

tions (±180◦), also note that the yaw angle error displays sudden jumps when such rotations

are reached, this may cause undesired behaviors in experiments if left unfixed.

Figure 3.19 – Quadcopter attitude axis-angle representation

3.3 Finite-time convergence using Sliding Mode Control

The next method developed in this thesis concerns the convergence in finite time of an aerial

drone to a mobile target using the properties of the sliding mode control. In order to that,

the target must to remain in the field of view (FoV) of the quadrotor vehicle. Therefore, the

goal is to compute desired trajectory with finite time convergence t̄ , such that, the control

objective~r (t̄) =~ξT −~rs can be guaranteed in finite-time convergence. Note~ξT = [xT yT zT]>

represents the position of the target and~rs =~ξ−~ξd means the error between the quadrotor

and, a desired reference to keep a distance with the mobile target. This distance is defined by

the constant~ξd = [xd , yd , zd]>. The goal of this section is to design a desired trajectory such

that the quadcopter can follow and achieve the position~r (t̄) in finite time t̄ . This trajectory

will be composed of three components xc (t), yc (t) and zc (t), and represented by the position

vector~ξc (t) = [
xc (t) , yc (t) , zc (t)

]> where each component xc (t) → xT , yc (t) → yT in finite

time t̄ , and with a constant altitude zc (t) = zc (0) for all t ≥ 0.

3.3.1 xc (t) and yc (t) components

For designing the first component xc (t) such that xc (t) → xT in finite time t̄ let us define

the position error as %xc (t) = xc (t)− xT . Notice that if %xc (t) = 0 for all t ≥ t̄ then, this will

imply that xc (t) = xT ∀t ≥ t̄ . Computing the derivative of %xc with respect to time, it follows

that %̇xc (t) = ẋc (t), %̈xC (t) = ẍc (t) where its initial conditions are given by %xc (0) = xc (0)− x̄1,

%̇xc (0) = ẋc (0) = 0, %̈xc (0) = ẍc (0) = 0.

67

Chapter 3. Control approaches for aerial vehicles

The objective is that %xc (t) = %̇xc (t) = %̈xc (t) = 0 in a finite time t̄ , thus, the following variables
and its derivatives can be stated:

∑
xc

(t) = %xc (t)−µx (t),
∑̇

xc
(t) = %̇xc (t)− µ̇x (t) and

∑̈
xc

(t) =
%̈xc (t)− µ̈x (t) with

µx (t) = (
t − t̄

)3 (
c0 + c1t + c2t 2)

µ̇x (t) = (
t − t̄

)3
(c1 +2c2t)+3

(
t − t̄

)2 (
c0 + c1t + c2t 2)

µ̈x (t) = 2c2
(
t − t̄

)3 +6
(
t − t̄

)2
(c1 +2c2t)+6

(
t − t̄

)(
c0 + c1t + c2t 2)

and for derivatives i : 0,1,2

i
µx (t) =

{
i
µx (t) for 0 ≤ t < t̄

0 for t ≥ t̄
(3.101)

Then
i∑

xc
(t) =


i
%xc

(t)− i
µx (t) for 0 ≤ t < t̄

i
%xc

(t) for t ≥ t̄
(3.102)

Observe that
∑

xc
(0) = 0 implies that %xc (0) = µx (0), c0 = (x̄1 − xc (0))/t̄ 3.

∑̇
xc

(0) = 0 means

that %̇xc (0) = µ̇x (0), hence c1 = 3c0/t̄ and
∑̈

xc
(0) = 0 means that %̈xc (0) = µ̈x (0), then c2 =

(3c1 t̄ −3c0)/t̄ 2.

Taking the third derivative of
∑

xc
, it follows that

...∑
xc

(t) = ...
ρ xc (t)− ...

µx (t) = ...
x c (t)− ...

µx (t). If

...
x c (t) =−αx sign

(∑̈
xc
+2

(∣∣∣∑̇xc

∣∣∣3 +
∣∣∣∑xc

∣∣∣2
)1/6

× sign

(∑̇
xc
+

∣∣∣∑xc

∣∣∣2/3
sign

(∑
xc

)))
(3.103)

with a sufficiently large αx . The finite-time stability is ensured from Theorem 6.2 in [161].

The above implies that %xc (t) =µx (t), %̇xc (t) = µ̇x (t) and %̈xc (t) = µ̈x (t) ∀ t ≥ tr . Nevertheless,

if tr ≤ t̄ when t → t̄ and from (3.101) it follows that %xc (t) = µx (t) = 0, %̇xc (t) = µ̇x (t) = 0, and

%̈xc (t) = µ̈x (t) = 0, ∀ t ≥ t̄ . This means that xc (t) = xT for all t ≥ t̄ therefore the finite-time

convergence to xT is achieved.

Propose xc = x1c , ẋ1c = x2c , ẋ2c = x3c then it follows that

ẋ1c = x2c

ẋ2c = x3c

ẋ3c = −αx sign

(∑̈
xc
+2

(∣∣∣∑̇xc

∣∣∣3 +
∣∣∣∑xc

∣∣∣2
)1/6

× sign

(∑̇
xc
+

∣∣∣∑xc

∣∣∣2/3
sign

(∑
xc

)))
(3.104)

with

αx =
{

0, for t = 0

αx > 0, for t > 0
(3.105)

αx is defined in this form to achieve ẋ3c (0) = 0.

68

3.3. Finite-time convergence using Sliding Mode Control

Following the previous procedure the yc (t) component is obtained as

ẏ1c = y2c

ẏ2c = y3c

ẏ3c = −αy sign

(∑̈
yc
+2

(∣∣∣∑̇yc

∣∣∣3 +
∣∣∣∑yc

∣∣∣2
)1/6

× sign

(∑̇
yc
+

∣∣∣∑yc

∣∣∣2/3
sign

(∑
yc

)))
(3.106)

with

αy =
{

0, for t = 0

αy > 0, for t > 0
(3.107)

αy is defined in this form to achieve ẏ3c (0) = 0.

3.3.2 Sliding mode control design

The goal in this subsection is to design a controller, based on the sliding mode properties, capa-

ble to make the quadcopter tracks the proposed trajectory~ξc (t) with asymptotic convergence.

Thus, the first step is to define the tracking errors as follows

ėx1 = ex2 ; ėx2 =−sin(θ1)
1

m
u1 −δx

ėy1 = ey2 ; ėy2 = cos(θ1)sin
(
φ1

) 1

m
u1 −δy

ėz1 = ez2 ; ėz2 = cos(θ1)cos
(
φ1

) 1

m
u1 −δz

(3.108)

where ex1 = x1 −x1c ; ey1 = y1 − y1c ; ez1 = z1 − zc (0); ėx1 = ex2 = x2 −x2c ; ėy1 = ey2 = y2 − y2c and

ėz1 = ez2 = z2. Also, δx = x3c , δy = y3c and δz = g .

Proposing u1 as

u1 = m

cos(θ1c)cos
(
φ1c

) [δz + r3] (3.109)

where φ1c and θ1c are the desired angles and r3 will be defined later to assure convergence.

Introducing u1 into ėz2 it follows that

ėz2 = cos(θ1)cos
(
φ1

) 1

��m

{
��m

cos(θ1c)cos
(
φ1c

) [δz + r3]

}
−δz

If φ1 →φ1c , θ1 → θ1c , ψ1 →ψ1c , this will imply that

ėz1 = ez2 ; ėz2 = r3

Defining r3 =−Kpz ez1 −Kdz ez2 with Kpz > 0 and Kdz > 0, then ez1 ,ez2 → 0.

Then, the new goal is to find φ1c and θ1c . Introducing u1 into ėy2 in (3.108), and considering

that τφ, τθ, τψ are designed such that φ1 →φ1c , θ1 → θ1c , ψ1 →ψ1c , then

ėy2 = tan
(
φ1c

)
[δz + r3]−δy (3.110)

69

Chapter 3. Control approaches for aerial vehicles

and φ1c can be computed as

φ1c = tan−1
(
δy + r2

δz + r3

)
(3.111)

Therefore, the next subsystem is obtained

ėy1 = ey2 ; ėy2 = r2

Proposing r2 =−Kpy ey1 −Kdy ey2 with Kpy > 0 and Kdy > 0 this implies that ey1 ,ey2 → 0.

Introducing u1 into ėx2 in (3.108) and considering that τφ, τθ, τψ are designed such that

φ1 →φ1c , θ1 → θ1c , ψ1 →ψ1c , then

ėx2 =− tan(θ1c)

{
1

cos
(
φ1c

) [δz + r3]

}
−δx

and θ1c can be proposed as

θ1c = tan−1
{

(−1)cos
(
φ1c

)(δx + r1

δz + r3

)}
(3.112)

Hence, the following subsystem is obtained

ėx1 = ex2 ; ėx2 = r1

and proposing r1 =−Kpx ex1 −Kdx ex2 with Kpx > 0 and Kdx > 0, we will able to accomplish the

asymptotic convergence of ex1 and ex2 around (0,0).

To simplify notation, define Tx = δx + r1, Ty = δy + r2 and Tz = δz + r3. Therefore the desired
angular velocities φ̇1c =φ2c and θ̇1c = θ2c are

φ2c =
cos2

(
φ1c

)
Tz

[
Ṫy − Ṫz tan

(
φ1c

)]
θ2c = cos2 (θ1c)

Tz

[
Tx sin

(
φ1c

)
φ2c − Ṫz tan(θ1c)− Ṫx cos

(
φ1c

)] (3.113)

The initial desired angular positions and velocities are given by φ1c (0) = 0, θ1c (0) = 0 and

φ2c (0) = 0, θ2c (0) = 0.

From (2.18), (3.111) and (3.112) it is possible to represent the attitude of a quadcopter in errors

terms as follows
ėφ1 = eφ2 ėφ2 = f̄1 +b1τφ+ζ1

ėθ1 = eθ2 ėθ2 = f̄2 +b2τθ+ζ2

ėψ1 = eψ2 ėψ2 = f̄3 +b3τψ+ζ3

(3.114)

where eφ1 = φ1 −φ1c , eθ1 = θ1 −θ1c , eψ1 =ψ1 −ψ1c , ėφ1 = eφ2 = φ2 − φ̇1c , ėθ1 = eθ2 = θ2 − θ̇1c ,

ėψ1 = eψ2 − ψ̇1c . Moreover f̄1 = (eθ2 + θ̇1c)(eψ2γ1 −β1)− φ̈1c , f̄2 = (eφ2 + φ̇1c)(eψ2γ2 −β2)− θ̈1c ,

f̄3 = (eθ2 + θ̇1c)(eφ2 + φ̇1c)γ3 −���>
0

ψ̈1c . ζi ≤ Li for i ∈ [1, 2, 3] are bounded perturbations. The

desired angle yaw ψ1c is considered constant, then ψ̇1c = ψ̈1c = 0.

70

3.3. Finite-time convergence using Sliding Mode Control

Once the rotational errors are given in terms of the desired angles φc , θc , then the goal is to

design τφ,τθ,τψ such that eφ1 = φ1 −φ1c → 0, eθ1 = θ1 −θ1c → 0 and eψ1 = ψ1 −ψ1c → 0 in

finite time t∗, where t∗ < t̄ . In this way eφ1 , eθ1 and eψ1 converge to zero faster, to guarantee

that the quadcopter position goes to the desired trajectory in finite time t̄ . In addition, it is also

necessary that eφ1 ≈ 0, eθ1 ≈ 0 and eψ1 ≈ 0 ∀ 0 ≤ t < t∗, the previous will imply that φ1 ≈φ1c ,

θ1 ≈ θ1c , ψ1 ≈ψ1c for 0 ≤ t < t∗.

To guarantee the above stated, a new tracking trajectory and its derivatives are defined as

iχ(t) =
{

iµ(t) for 0 < t < t∗

0 for t = 0 and t ≥ t∗
(3.115)

with i : 0,1,2 and µ (t), µ̇ (t) and µ̈ (t) into (3.115) are given by

µ(t) = c

(
exp

(
−sin3

(
πt

t∗

))
−1

)
(3.116)

µ̇(t) = −3πc

2t∗
sin

(
πt

t∗

)
sin

(
2πt

t∗

)
exp

(
−sin3

(
πt

t∗

))
(3.117)

µ̈ (t) = 9π2c

4t∗2 sin2
(
πt

t∗

)
sin2

(
2πt

t∗

)
exp

(
−sin3

(
πt

t∗

))
−3π2c

2t∗2

{
cos

(
πt

t∗

)
sin

(
2πt

t∗

)
+2cos

(
2πt

t∗

)
sin

(
πt

t∗

)}
exp

(
−sin3

(
πt

t∗

))
(3.118)

Notice from previous equations that µ(0) =µ (t∗) = 0, µ̇(0) = µ̇ (t∗) = 0 and µ̈(0) = µ̈ (t∗) = 0.

Propose the following sliding surfaces

S j = e j −χ (t) ; j :φ1,θ1,ψ1 (3.119)

Thus, using (3.119) for j :φ1 and (3.114), it follows that Ṡφ1 = eφ2 − χ̇ (t) and S̈φ1 = f̄1 +b1τφ+
ζ1 − χ̈(t). Notice that if Sφ1 (0) = 0 it yields, Ṡφ1 (0) = 0. Proposing τφ as

τφ = b−1
1

(
αφsign

(
Ṡφ1 +

∣∣Sφ1

∣∣1/2 sign
(
Sφ1

))+ χ̈ (t)− f̄1

)
, (3.120)

Using a same procedure that those propose for τθ, it follows that derivating (3.119) for j : θ1, it

yields Ṡθ1 = eθ2 − χ̇(t) and S̈θ1 = f̄2 +b2τθ+ζ2 − χ̈(t). Thus, τθ can be proposed as

τθ = b−1
2

(
−αθsign

(
Ṡθ1 +

∣∣Sθ1

∣∣1/2 sign
(
Sθ1

))+ χ̈ (t)− f̄2

)
, (3.121)

Finally, for designing τψ we derivate (3.119) for j : ψ1 and then Ṡψ1 = eψ2 − χ̇(t) and S̈ψ1 =
f̄3 +b3τψ+ζ3 − χ̈(t). Propose

τψ = b−1
3

(
−αψsign

(
Ṡψ1 +

∣∣Sψ1

∣∣1/2 sign
(
Sψ1

))+ χ̈ (t)− f̄3

)
. (3.122)

71

Chapter 3. Control approaches for aerial vehicles

Notice in (3.120), (3.121) and (3.122), αk ≥ Li with k ∈ [φ, θ, ψ], i ∈ [1, 2, 3] in order to

compensate the bounded perturbations. Therefore it follows that Sφ1 = Ṡφ1 = 0, Sθ1 = Ṡθ1 = 0

and Sψ1 = Ṡψ1 = 0 in a finite time t?. The finite-time stability of the system is guaranteed from

control theory in [161] for the “nested” 2-sliding control.

3.3.3 Numerical and experimental results

This section presents the numerical and experimental results in order to validate the control

strategies developed in (3.120), (3.121) and (3.122). As in the case of the last results, the vehicle

used to implement the control algorithms was an Ar.Drone Parrot 2.0 under the software Fl-

AIR which is open source and runs a Linux-based operating system, capable of implementing

a wide range of control schemes, see [160]. For obtaining the vehicle’s position, an OptiTrack

motion capture system was used while its internal Inertial Measurement Unit (IMU) measures

its orientation and angular rates.

For validating the proposed control law, let us take the following scenario: consider a flying tar-

get and quadcotper vehicle evolving in R2 at random position. The goal is that the quadcopter

converge near to the flying target,~ξd , in finite time. For simulation tests, a desired finite time

convergence of t̄ = 5s is proposed as an example for verifying the effectiveness of the control

algorithm. Moreover, for the experimental validation, t̄ = 5s and t̄ = 3s are proposed as desired

finite times convergence. Therefore, the vehicle must to track the desired nonlinear dynamics

trajectories xc (t) and yc (t) described by (3.103) and (3.106). Parameters for numerical and

practical validation are shown in Table 3.6.

The vehicle should arrives to the desired position with a fixed altitude z(0) = 1m in a finite

time t̄ that denotes the arriving time. Therefore, the following assumptions are established:

1. The quadcotper is located in a random hover position.

2. The flying target is static but its position and velocity are known.

3. The vehicle movements are delimited to the horizontal plane x, y .

Table 3.6 – Control parameters used in experimental and numerical tests for t̄ = 5s

Parameter θ φ ψ x, y z

kp 50 100 100 0.8 1.7
kd 2.5 4 4 0.2 0.7
α 3 3 3 c = 0.0002 m = 0.432 kg

72

3.3. Finite-time convergence using Sliding Mode Control

Numerical results

Take the initial conditions of the flying target as xT (0) = 1m, yT (0) = 1m, zT (0) = 1m and

for the quadcotper at x(0) = −3m, y(0) = −3m, z(0) = 1m. Figures 3.20 − 3.23 present the

performance of the quadrotor when converging in finite time to a desired position~ξd . Notice

from Figure 3.20 and 3.21 the well performance of the control algorithm in the z−axis. From

these figures, its is possible to observe that the desired trajectories~ξc arrives at the desired

finite time t̄ = 5s, however as the dynamic of the trajectories were tuned faster than the

quadcotper position dynamics, an error in the x and y coordinates appears until it converge

to zero (t ≥ t̄).

-5

0

0.95

5

1

-4 -3 -2 -1 0 1

1.05

2 3 4

1.1

 (0)

Figure 3.20 – Finite time convergence of the quadcopter to the flying target at t̄ = 5s

0 1 2 3 4 5 6 7 8

-4

-2

0

2

4

0 1 2 3 4 5 6 7 8

-4

-2

0

2

4

0 1 2 3 4 5 6 7 8

1

1.01

1.02

Figure 3.21 – Performance of the x, y , z axes of the quadrotor when converging in finite time.

73

Chapter 3. Control approaches for aerial vehicles

The performance of desired attitude and the orientation of the vehicle are illustrated in Figure

3.22. Notice that from this figure the desired attitude performance has slight oscillations. This

is mainly due to the fact that the finite time convergence trajectory is composed by the sg n

function. Therefore, the desired angles (3.111) and (3.112) are affected as can be verified in

the figure. The performance of the control inputs are depicted in Figure 3.23. These signals

present the well-known effect “chattering” because the composition of their equations. It is

worth mentioning that, this kind of strategies has a large demand of energy, but at the same

time gives robustness.

0 1 2 3 4 5 6 7 8

-20

-10

0

10

0 1 2 3 4 5 6 7 8

-10

0

10

20

Figure 3.22 – Tracking performance of the attitude system of the quadrotor.

0 1 2 3 4 5 6 7 8

-0.45

-0.4

-0.35

0 1 2 3 4 5 6 7 8

-0.5

0

0.5

0 1 2 3 4 5 6 7 8

-0.5

0

0.5

Figure 3.23 – Control inputs of the quadrotor.

74

3.3. Finite-time convergence using Sliding Mode Control

Experimental results

The initial conditions for the practical validation were set as follows: the flying target is located

hovering in~ξT = [3, 2,1.2]T m while the quadcopter starts from~ξ= [−2, −2 1.2]T m and the

desired safe distance ~ξd = [1, 0]T m. For this experiment, some control parameters were

modified such that kpθ = kpφ = 140, kdθ = kdφ = 4, kpx = kpy = 0.9 and kdx = kdy = 0.35.

In Figures 3.24 − 3.27, the performance of the vehicle and its control inputs when performing

the finite time convergence for t̄ = 5s and t̄ = 3s are depicted. Observe from Figures 3.24

and 3.25 when the quadcotper is performing for t̄ = 5s the desired trajectories ~ξc and the

vehicle’s position converge with a good performance, with not overshoot and small altitude

error. However, for t̄ = 3s a slight overshoot appeared in the desired trajectories due the α

parameter of (3.103) and (3.106). Nevertheless, this effect does not affect the performance of

the control algorithm, as can be confirmed in Figure 3.24 (right column images). In addition,

notice from Figure 3.25 the altitude and position errors were increased.

Figure 3.24 – Performance of the x and y axes of the quadcopter. Left column of the picture
represents the experiment when t̄ = 5s and the right column for t̄ = 3s.

75

Chapter 3. Control approaches for aerial vehicles

Figure 3.25 – 3D performance of the quadcopter. Left image corresponds when t̄ = 5s and
right one when t̄ = 3s.

Figure 3.25 shows the performance of the rotational dynamics of the quadcopter when tracking

a desired trajectory. Notice that the left column images are the experimental test when t̄ = 5s

and the right ones considering t̄ = 3s. Observe that the dynamics is faster when t̄ = 3s. This

due to the control parameters (for the rotational part) were re-tuned in order to converge at

the desired finite-time.

0 1 2 3 4 5 6 7 8

-10

-5

0

5

10

0 1 2 3 4 5 6 7 8

-5

0

5

10

0 1 2 3 4 5

-20

-10

0

10

20

0 1 2 3 4 5

-20

-10

0

10

20

Figure 3.26 – Attitude behavior of the quadcopter when tracking a desired trajectory with
t̄ = 5s and t̄ = 3s as desired finite-time convergence.

76

3.4. Conclusions

Figure 3.27 depicts the behavior of the control inputs. Notice that the “chattering” effect does

not appears. For these experimental tests, we approximate the sgn function as an hyperbolic

tanh function in order to avoid “chattering” effect. Therefore, the performance is softer with

respect to that one of the simulation results.

0 1 2 3 4 5 6 7 8

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 3.27 – Performance of the control inputs when considering t̄ = 5s and t̄ = 3s as desired
finite-time convergence

3.4 Conclusions

In this chapter, some control techniques based on Euler angles and quaternion formalism

were addressed: a brief overview evaluation of popular control algorithms (linear and non-

linear backstepping, nonlinear saturation control and the virtual fully actuated technique), a

quaternion-based nonlinear backstepping controller and a Sliding Mode Control for finite-

time convergence.

The goal of this chapter was to provide a unified and accessible analysis, placing popular con-

trol algorithms, quaternion-based controllers and with finite time convergence, into a proper

context. Simulation and experimental results reveals that using the virtual fully actuated tech-

nique, over classical approaches, results in a smoother convergence to the desired reference

and a smaller control effort demand. Nevertheless, when agile/aggressive movements or

finite time convergence are required, quaternion-based algorithms and sliding mode-based

controllers can quickly satisfy these demands, in comparison with classic controllers. After

analysis, we consider that the choice between the controllers will depend on the problem

requirements and the computational capacity of the embedded system.

77

Part IVChapter 4

79

4 Autonomous navigation algorithms

Most of the works currently found in literature about micro aerial vehicles, especially quadro-

tors, have received plenty of attention of the scientific community. Studies focus on control

[162, 163, 164], state estimation [165], and planning [166, 28], have been conducted respec-

tively, and many significant progresses have been achieved. Because of the strong needs in real

applications, autonomous flight of quadrotors, which requires to address the perception, plan-

ning and control problem simultaneously, has been investigated and still continuously studied

to improve its performance. Due to the noteworthy properties, particularly the structural

simplicity, rapid maneuverability, the stable hovering capability, and low cost, a quadrotor is

an ideal platform for navigating in confined and hazardous environments such as exploration

[167], inspection [168], and search and rescue [169].

Going beyond these motivations and taking advantage of controllers detailed in the previous

sections, this chapter presents three different alternatives for the autonomous control of

quadrotor vehicles: a robust trajectory generation and tracking algorithm, a scheme for the

aerial surveillance of Autonomous Ground Vehicles (AGVs) using a quadcotper vehicle and, a

virtual control architecture for controlling robots remotely using a virtual reality environment.

This chapter is organized as follows: first, a path planning algorithm based on model predictive

control with a bounded strategy is addressed in section 4.1. Experimental tests are carried-

out in order to validate the proposed scheme. In section 4.2, a vision algorithm for target

localization is presented. The goal in this section is to present the surveillance application

between a quadrotor and a ground vehicle. Experimental tests are carried out to demonstrate

the good performance of the control algorithm. Finally, a semi-autonomous navigation

architecture using an immersive virtual environment is presented in section 4.3. Here, the

propose is to reduce the stress in novice pilots when controlling a quadrotor vehicle. Two

different scenario for the experimental tests are presented to confirm the good performance

of the proposed architecture.

81

Chapter 4. Autonomous navigation algorithms

4.1 Path planning algorithm using MPC
In this section the path planning algorithm based on model predictive control (MPC) for the

quadcopter system is discussed. For path generation and tracking, it is assumed that system

(2.11) describing the dynamics of the quadcopter is at hover position with a desired altitude,

using a controller with the form (3.26). Thus, let us define the mission set as follows: the aerial

vehicle starts from an initial position, ~P (0), to a final one, ~P (t f), where t f denotes the final

time. Solving the optimal trajectory planning problem (OTPP) involves the determination

of the trajectory ~Pd = [~ξd ,~̇ξd]> and the corresponding control trajectory vector ∆~Pr which

represents the input to the controlled prediction model. This vector will be the reference

trajectory for the controller developed in Chapter 3 in terms of position and velocity.

The general control diagram used in this work is depicted in Figure 4.1. Here the reference

trajectory will be generated by the Re-Planner algorithm based on MPC, the control algorithm

block includes the control laws with the form (3.26) satisfying the path tracking objective, and

the disturbance observer block (described in Chapter 5) providing robustness to the system.

Re-Planner

 MPC
Control

algorithm

Disturbance

 observer

Figure 4.1 – Control-scheme diagram. ~Pr defines the control trajectory obtained from the
algorithm MPC, ~Pd denotes the desired final values. The Re-Planner based on MPC generates
the optimal feasible trajectory, and~η,~ξ state for the vehicle’s states. ~un represent the saturation
nominal controller, ~uζ expresses a compensate parameter from a disturbance observer and ζ
possible external perturbations.

Our idea is to propose simple schemes which allows to compute the algorithms in the embed-

ded system of the vehicle, the MPC approach used in this paper is based on the predictive

control for linear systems without constraints. It can be notice from section 3.1.2 and using

(3.22) that the controller can impose, using bi , a linear behavior in the system (2.12). Thus,

without lost of generality and for simplify further analysis, system (2.12) can be analyzed as a

linear system and it can be represented as a discrete time state space of the form

~x(k +1) = A(K , g)~x(k)+B(K , I)∆~Pr (k)

~y(k) =C~x(k)
(4.1)

where~x ∈R12×1 is the state vector,∆~Pr ∈R6×1 represents the control trajectory vector,~y ∈R12×1

signifies the vector of measured outputs. A(K , g) ∈ R12×12,B(K , I) ∈ R12×6 are matrices with

elements that depend on the gains defined in (3.22) and g , I were declared in (2.16).

82

4.1. Path planning algorithm using MPC

Trajectory generation

The model predictive control approach solves a finite-time unconstrained optimal control

problem in a receding horizon manner. Therefore, let Hp be the prediction horizon, Hu the

control horizon and Hw the window horizon such that the path planning problem can be

formulated as a linear optimization problem with a quadratic cost function with the form:

J (~x ,∆~Pr) =
Hp∑
i=1

‖P (k + i)−Pd (k + i)‖2
Q(i) +

Hu−1∑
i=0

‖∆Pr (k + i)‖2
R(i) . (4.2)

~P (k) =


P (k +H w |k)

...

P (k +H p|k)

 , ~Pd (k) =


Pd (k +H w |k)

...

Pd (k +H p|k)

 , ∆~P (k) =


∆Pr (k|k)

...

∆Pr (k +Hu −1|k)

 ,

and the weighting matrices Q and R are given by

Q =


Q(H w) 0 · · · 0

0 Q(H w +1) · · · 0
...

...
. . .

...

0 0 · · · Q(H p)

 , R =


R(H w) 0 · · · 0

0 R(H w +1) · · · 0
...

...
. . .

...

0 0 · · · R(Hu −1)

 .

The tracking error ~δk = ~P −~Pd , is the difference between the state vector and a time varying

reference and is penalized along with the control trajectory effort. The weighting matrices Q,

R, penalizing the tracking error, are chosen to reflect the desired balance of their respective

terms. The time reference is generated at each step by drawing a line in an Euclidean space

from P0 to the final target. That line is discretized into N −1 points where those points are

used in sequence as ∆~Pr .

The state’s prediction can be formulated as follows [170]

~P (k) =Ψ~x(k)+Υ∆~Pr (k −1)+Θ∆~Pr (k) (4.3)

for suitable matricesΨ, Υ andΘ. Define

~ε= ~Pd (k)−Ψ~x(k)−Υ∆~Pr (k −1) (4.4)

This can be thought of as a tracking error, in the sens that it is the difference between the

future target trajectory and the free response of the system. If ε= 0, then it would indeed be

correct to set ∆~Pr (k) = 0. Rewriting (4.2) using (4.3) and (4.4)

J (~x,∆~Pr) = ∥∥Θ∆~Pr (k)−~ε(k)
∥∥2

Q +∥∥∆~Pr (k)
∥∥2

R (4.5)

= [Θ∆~Pr (k)
T −~ε(k)]Q[Θ∆~Pr (k)−~ε(k)]+∆~Pr (k)

T
R∆~Pr (k) (4.6)

=~ε(k)T Q~ε(k)−2∆~Pr (k)
T
ΘT Q~ε(k)+∆~Pr (k)

T
[ΘT QΘ+R]∆~Pr (k). (4.7)

83

Chapter 4. Autonomous navigation algorithms

Remark that (4.7) has the form

J (~x,∆~Pr) = cte −∆~Pr (k)
T ~G +∆~Pr (k)

T
H∆~Pr (k). (4.8)

where
~G = 2ΘT Q~ε(k), H =ΘT QΘ+R.

and we can see that, neither ~G nor H depend on ∆U (k). To find the optimal ∆~P (k) we can

now find the gradient of J (k) and set it equal to zero. From (4.8) we find

∇∆~Pr (k) J =−~G +2H∆~Pr (k). (4.9)

then the optimal set of future input moves is

∆~Pr (k)opt = 1

2
H−1~G . (4.10)

Equation (4.10) guarantees a stationary point, but is not enough to guarantee a minimum.

In order to guarantee the minimum, the derivative of the gradient ∇∆~Pr (k)J with respect to

∆~Pr (k) must be obtained, i.e., the Hessian of J (~x,∆~Pr):

∂2 J

∂∆~Pr (k)2
= 2H = 2(Θ>QΘ+R) (4.11)

Assuming that Q(i) ≥ 0, this ensures thatΘ>QΘ≥ 0. Thus, if R > 0 then the Hessian is certainly

positive-definite, which is enough to guarantee that we have a minimum.

Formulation as a Least-Squares problem

The optimal solution, as expressed in (4.10), should never be obtained by computing the

inverse of H . The matrixΘ is often ill-conditioned, which can result in H being ill-conditioned.

The best way of computing the solution is by solving it as a least-square problem. It is also a

way which gives some additional insight.

Since Q ≥ 0 and R > 0, we can find matrices SQ and SR which are their square-roots:

ST
Q SQ =Q, ST

R SR = R

Now consider the vector [
SQ (Θ∆~Pr (k)−~ε(k))

SR∆~Pr (k)

]
(4.12)

We shall show that the squared length of this vector, or equivalently, the sum of squares of its

elements, is the same as the cost function J(~x,∆~Pr), so that ∆~Pr (k)opt is the value of ∆~Pr (k)

which minimizes this length.

84

4.1. Path planning algorithm using MPC

Therefore, it yields∥∥∥∥∥
[

SQ
(
Θ∆~Pr (k)−~ε(k)

)
SR∆~Pr (k)

]∥∥∥∥∥
2

=
∥∥∥∥∥
[

SQ (~P (k)−~Pd (k))

SR∆~Pr (k)

]∥∥∥∥∥
2

(4.13)

= [~P −~Pd (k)
T

]ST
Q SQ [~P (k)−~Pd (k)]+∆~Pr (k)

T
ST

R SR∆~Pr (k) (4.14)

= ∥∥~P (k)−~Pd (k)
∥∥2

Q +∥∥∆~Pr (k)
∥∥2

R (4.15)

= J (~x,∆~Pr) (4.16)

Therefore ∆~Pr (k)opt is the least-squares solution of the equation[
SQ (Θ∆~Pr (k)− ~ε(k))

SR∆~Pr (k)

]
= 0 (4.17)

or, equivalently, of: [
SQΘ

SR

]
∆~Pr (k) =

[
SQ~ε(k)

0

]
(4.18)

We can see equation (4.18) has the form AΘ = b and can be solved in a least-square sense

using the QR algorithm. Although formally this solution is the same as θopt = (AT A)−1 AT b,

which gives the equation (4.10).

Furthermore, in accordance with the receding horizon strategy, we only use the part of the

solution corresponding to the first step. Thus, from (4.10) it is possible to observe that the only

part of this solution which changes from step to step is the tracking error ε(k). Consequently,

the predictive controller for the unconstrained problem and with full state measurement is

defined by

Pr = [Il ,0l , · · · ,0l] H−1Θ>Q (4.19)

We point out that the correct way of computing (4.19) is

Pr = [Il ,0l , · · · ,0l]

[
SQΘ

SR

]
\

[
SQ~ε(k)

0

]
(4.20)

This essentially works for the following reason: if we had~ε(k) = [1,0, · · · ,0]> then it would

effectively have only the first column of SQ on the right side of (4.10). ~ε(k) = [0,1,0, · · · ,0]

would effectively give the second column, etc. Since~ε enters the solution linearly, it is only

necessary to solve (4.10) with these columns on the right hand side. This is very efficient,

since most of the work involved is computing the QR decomposition of the left hand side. In

this work, the householder QR decomposition algorithm is used to solve the unconstrained

problem (4.20).

The steps to solve the cost function (4.2) are presented in algorithm 1. In this thesis, the explicit

solution for generating the optimal trajectory using the x, y, z position as the control trajectory

input is addressed.

85

Chapter 4. Autonomous navigation algorithms

Algorithm 1 General statement of the MPC algorithm

initialize MPC-LS with nominal a control trajectory ∆~Pr
~P (0) ← starting position
~Pd (t f) ← desired position
Generate the linear controlled model (4.1)
While (~P < ~Pd)

-Create the augmented MPC model of (4.1)
-Minimize the cost function (4.2) by solving the LS
sense using the ‘QR’ algorithm
-Apply the control trajectories
-Update ~P
-Update ∆~Pr

end

4.1.1 Experimental results

In this section, a helical trajectory with wind and manual disturbances was selected to vali-

date the performance of the presented path planning algorithm. The experimental test was

developed using the quadtotor vehicle AR Drone 2 using the open source software Fl-AIR and

an OptiTrack motion capture system.

The set up of the experiment is as follows: the quadrotor takes off and follows a hold position
~ξ0 = (1.5,0,0.5) m. Then the desired final trajectory is generated by means of the algorithm1.

It is mandatory when the vehicle is navigating through the reference trajectory, to compute

the optimal trajectory at each step by means of the MPC. Moreover, a first fan was turned on

once the reference trajectory started. After that, manual disturbances were applied at different

times during the mission. The parameters used for this test can be found in Table 4.1. A video

of the experimental results can be watched at: https://youtu.be/3G7UVYWsyBs.

Table 4.1 – Experimental parameters

τi :φ,θ MPC
kpi :x,y = 0.23 xi = 0 x f = 0
kdi :x,y = 0.13 yi =−3 y f =−2
σi :x,y = 0.1 Q = 0.1 R = 0.0002
σi :ẋ,ẏ = 0.2 Hp = 10 Hu = 3
kpi :φ,θ = 0.5
kdi :φ,θ = 0.1
σi :φ,θ = 0.1
σi :φ̇,θ̇ = 0.3

86

https://youtu.be/3G7UVYWsyBs

4.1. Path planning algorithm using MPC

Figure 4.2 – Evolution of the path tracking in x, y , z−axis with wind and manual disturbances.

Figures 4.2 − 4.4 depict the trajectory generation and the quadrotor performance when

following the desired trajectory subject to wind and manual disturbances. The wind effect is

applied at t = 19s, t = 48s andt = 57s but not necessarily constant due the vehicle is following

a 3D reference trajectory. This can be observed properly in Figure 4.2. Remark that at t = 23s

and t = 34s approximately, a manual disturbance was applied while the vehicle is ascending.

This performance can be seen in Figure 4.3. In this graph, it is roughly depicted when the

wind (two times) and manual (two times) perturbation were applied. These effects were

compensated in a robust manner by the compensation of the disturbance observer developed

in section 5.

0

0.5

-22

1

1.5

2

-11

2.5

3

00

1-1

2-2

Figure 4.3 – Flight test when the quadcopter follows the helical trajectory in ascending phase
in presence of wind and manual disturbances.

87

Chapter 4. Autonomous navigation algorithms

Figures 4.4 illustrates the descending behavior of the vehicle. This performance can be sees

in the z−axis around t = 36s. Although the gravity force actuates in the drone, and manual

perturbation is applied, the MPC solves the shortest path forcing the control law to avoid

oscillations in the altitude position when the vehicle is descending.

0

-2

0.5

1

-1

1.5

2

0 -2

2.5

-1

1 0

1
2

2

Figure 4.4 – Flight test when the quadcopter follows the helical trajectory in descending phase
in presence of wind and manual disturbances.

4.2 Vision algorithm for target localization: a case study for

autonomous vehicles surveillance

Aerial visual tracking is a major hurdle to tackle for feasible prototyping of an autonomous

ground vehicle (AGV). These vehicles are subject to non-holonomic constraints since rear

wheels are fixed preventing to produce lateral velocity in any direction. However, when we

drive such a car, we pick visual landmarks ahead (for instance, as showed in Fig. 4.5, a corner

at the end of the block) in the visual field to plan how to command the steering wheel to

intersect ahead such landmark. The result is smooth car trajectories pointing ahead with small

admissible turning ratio of the steering wheel angle. These trajectories can be modeled as

vector fields pointing to a landmark (known as the contour), for instance, when we need to

turn in the next corner of the block, we solve what the steering wheel angle is, based on the

corner ahead of us, as if we were drawing smooth vector fields.

Then, if we neglect that, such driving motion corresponds to an autonomous car that mimics

human driving, drawing smooth vector fields. The problem of aerial surveillance becomes the

aerial tracking of the car center of mass (x, y) and yaw ψ angle that matches the heading direc-

tion of the car, at a given altitude z. However, such aerial tracking of (x, y, z,ψ) requires solving

the vector field and underactuated visual tracking. Therefore, we aim exploiting structural

properties of the car, such as non holonomy, and the vector field control to mimic driving, and

consider underactuation of the quadrotor, to establish a tractable problem statement.

88

4.2. Vision algorithm for target localization: a case study for
autonomous vehicles surveillance

Figure 4.5 – Proof of concept of the problem: The driver commands the vehicle in urban set,
picking up the next contour A, then B, then C to plan smoothly ahead, as if navigating in
smooth vector fields; then, facilitating tracking with airborne monocular camera, since height
can be regulated efficiently, and assuming target remains in the FoV.

To this end, we assume that the car evolves in the (x, y) plane subject to non-holonomic

constraints while tracking smooth vector fields designed using contour ahead of the road

in ψ direction, thus such vector fields provide the desired admissible trajectories to the car,

and an underactuated quadrotor equipped with airborne monocular camera is considered

to track the car at a given desired altitude zd , see Figure 4.6. Thus, let us consider that the

visual tracking of the mobile robot smoothly draws a vector field converging to a contour. This

contour relies in the field of view of the airborne camera mounted on an underactuated drone.

Then, the following assumptions are required:

1. The AGV mimics motion of a car driven by a human, implying that its CoM draws a

smooth vector field toward the contour ahead;

2. The AGV’s path curvature is finite, implying bounded yaw angle that complies with the

non-holonomic constraint and a bounded steer wheel angle.

3. Quadcopter has underactuation in (x, y) coordinates, however the controlled Degrees

of Freedom (DoF) are yaw ψ angle, altitude z, as well as (x, y) motions, where the latter

are controlled indirectly using roll and pitch angles.

4. Monocular camera is along the optical axis collinear to z in body coordinates, where the

mobile robot lies in its FoV. Since the quadcotper altitude can be controlled quickly and

independently, 2D visual servoing suffices to capture AGV’s CoM.

5. For experiments, we consider the 6 DoF of Parrot AR.Drone with monocular camera and

airborne processing only, [171], to track in the image plane a differential driven mobile

robot.

89

Chapter 4. Autonomous navigation algorithms

6. Moreover, the hardware, software and firmware of airborne sensors have limitations,

including monocular camera, noisy, delayed and quantized measurements yielding

approximation of the required virtual camera transformations; then, we assume that

the fast quadcopter actuation and smoothness of trajectories produce small angles in

roll and pitch, then the diffeomorphism of the virtual camera projection is almost an

identity. This assumption is substantiated since the proposed quadrotor controls ensure

asymptotic convergence to the vicinity of stability along very smooth trajectories.

Figure 4.6 – Experimental test-bed showing the AR Drone 2.0 as the quadrotor, and the Jumping
Sumo as the mobile robot (with a chess board on top for image processing).

The trajectories of the non-holonomic differential wheeled mobile robot, under Velocity Field

Control in inertial frame, are captured by the monocular camera as an image-based field in

aerial body frame. Such image is processed on board, without relying data to ground station, to

produce the desired image-based trajectories for the controller of the underactuated quadrotor

dynamics. The mobile robot differential kinematics is processed under kinematic controller in

a ground station, then velocity control command are sent wireless. Trajectories are processed

with a pinhole camera to produce an image-vector field. Then, considering the full non-linear

dynamics, the quaternion-based backstepping control (3.97) is implemented to closed-loop,

under underactuation for well-posed underactuated coordinates.

Vision algorithm

A chess-pattern target was placed onto the mobile robot to process its orthogonal axis in

its frame by high density of corner, assuming a background floor without cluttered lines or

corners. The camera together with the processing unit of the AR Drone 2.0 quadrotor detects

corners with the following:

1. Finds the 64 most confident corners of chess board with a pinhole camera image using

the Shi-Tomasi algorithm [172].

90

4.2. Vision algorithm for target localization: a case study for
autonomous vehicles surveillance

2. Determine correlation between images using the Lukas Kanade algorithm, [173].

3. Determine centroid based on matched chess corners, as follows

pt =
N∑

i=0
p fi /N (4.21)

where pt is the estimated centroid of the target, p fi is the position of each matching

corner feature, and N is the total number of matching corners.

4. Update matching corners, then determine the centroid (4.21).

5. Target is detected if area, centered in the centroid with radius of 20 pixels, has at least 15

corners.

Notice from Figure 4.7a, there is no target detected, even if a centroid is calculated with only

one corner, N f = 1. Nevertheless in Figure 4.7b, algorithm determines that the target has been

detected for N f = 22 corners.

(a) Target is not the FoV. (b) Target is in the FoV.

Figure 4.7 – Frames when searching for the target

The estimation of the optical flow is performed on a dedicated DSP to reduce the computa-

tional cost to the main control board, whose processing time takes between 15 and 20 ms.

After computation, a Kalman filter was implemented for improving the robustness of process-

ing. To determine the direction of centroid, see Fig. 4.8, let the vector be

~pt =
[

uc

vc

]
(4.22)

which can be used, together with its image approximation of velocity, [u̇c , v̇c]T , for control

purposes, by considering that image axes are parallel to x and y axes of body fixed frame.

91

Chapter 4. Autonomous navigation algorithms

Figure 4.8 – Image position of the mobile robot frame and the camera frame.

The autonomous vehicle as a mobile differential robot

Consider a 2D terrestrial differential wheeled robot steered by the difference of angular wheel

velocity connected along a perpendicular axis to longitudinal motion, see Figure 4.9. The state

equation is as follows
~̇Xs = A~ω, (4.23)

where ~Xs = [xs , ys ,θs]T ∈R3 is the robot pose, for (xs , ys) representing position its CoM, and

θs its orientation, both with respect to the inertial reference frame, and ~ω = [ω1, ω2]T , the

angular speed of the robot’s wheels.

Figure 4.9 – Kinematic of a differential robot as an abstract representation of an AGV.

The flow matrix is given by

A =


r1
2 cosθs

r2
2 cosθs

r1
2 sinθs

r2
2 sinθs

− r1
L

r2
L

 , (4.24)

which maps generalized angular velocities ~ω to operational velocity ~̇Xs , with r1 = r2 the radius

of the left and right wheels, respectively, and L the length to the center of each wheel.

92

4.2. Vision algorithm for target localization: a case study for
autonomous vehicles surveillance

Vector fields as desired smooth trajectories

Velocity Fields stand for Cartesian vector distributions, or fields, and describe kinematic

motion of a moving particle, i.e. the instantaneous changes in direction toward the objective,

or contour. It is useful in our case, if we consider that AGV driver commands the vehicle

to go to a target, or contour, and such driver steers the vehicle within prescribe standards,

thus producing a smooth maneuverings, that can be modeled as a vector field that converge

to the contour. Then, we assume that the driver mental map commands toward the final

destination by picking locally targets as soon as they appear in our FoV. Once the driver picks

a target ahead, for instance to turn in the next corner, we somehow compute how to turn the

AGV avoiding obstacles to pass through until converge tangentially to the contour. Once we

determine this objective is achieved, we pick next target (contour) in the next block. Thus, this

abstraction stands for how we plan next trajectory based on local contour in our FoV. Similar

to this phenomena, we assume that the AGV produces such vector field, then the surveillance

problem is to produce a visual servoing to maintain the AGV within its FoV.

To this end, consider a parametric curve, G(s), where s stands for arc length, or contour ahead

in the FoV. The problem is to determine theR2 directional components (~Nn(s),~T (s)) of the field

as a radial attraction to the curve s, or contour, where ~Nn(s) and ~T (s) stand for the Normal

and Tangential components, respectively, of the field in R2, whose resultant points at the

target correspond to G(s) = 0. There are several methods in the literature to produce such

(~Nn(s),~T (s)) that smoothly converge to G(s) = 0, the arc to turn in the corner asymptotically

with uniform speed, as we usually compute when we drive our cars through urban settings.

The method developed considers to pick the objective path, or contour, as a parametric curve

to compute from position data of such contour, the velocity vector that intersects ahead such

contour G(s) = 0, see Figure 4.10.

Figure 4.10 – Three steps Velocity Fields design method based on differential geometry proper-
ties of the desired trajectory:(a) parametric curve of motion objective, (b) main directional
components of the field, (c) calculation of the velocity vectors.

Thus, consider ~v :R2 →R2 the velocity vector that depends on the position of a given point

~r , with ~Nn(s) =−~Rn(s) (where ~Rn(s) is a radial unit vector) and ~T (s), components gradually

transitioning from a given position CoM to an attractive curve G(s) = 0 standing for the turning

in the corner. Such transition uses a variable coefficients as a function of the distance to the

curve. Then, consider

~v(r) =µclose (dr)~T (s)+µ f ar (dr)(−~Rn(s)) (4.25)

93

Chapter 4. Autonomous navigation algorithms

where µclose (dr) and µ f ar (dr) are the variable coefficients depending on the distance dr to the

curve G(s) = 0. To keep a uniform speed motion along the attractive trajectories, ||~v(r)|| = 1,

consider that the coefficient of the weighted sum are defined using sinusoidal functions,

µclose (dr) = cos(c1dr);µ f ar (dr) = sin(c1dr) (4.26)

where c1 is a normalizing constant such that c1dr ∈ [0, π2]. Recalling the arc length s along G(s)

is determined by~r at its closest point, ~v becomes

~v(r) = cos(c1dr)~T (r)+ sin(c1dr)(−~Rn(r)) (4.27)

thus ~v(r) is a gradual uniform speed transition from the attractive to the guiding direction

as the position gets closer to the curve, and represents the reference of the desired velocities,[
ẋd ẏd

]T
, for the differential robot.

Without loss of generality, aiming at illustrating our proposal, let the desired trajectory of the

mobile robot, be a 2D circumference. This simplifies the velocity field design because the

radial and the tangential vectors to the curve can be calculated with respect to the center of

the circumference, rc = (xc , yc) and its radius, ρ, then

~T (x, y) =− sgn(
√

(xs −xc)2 + (ys − yc)2 −ρ) · (ys − yc ,−(xs −xc))√
(xs −xc)2 + (yG − yc)2

,

~Rn(x, y) =− sgn(
√

(xs −xc)2 + (ys − yc)2 −ρ) · (xs −xc , ys − yc)√
(xs −xc)2 + (yG − yc)2

,

such that the velocity field becomes

~v(r) = cos(c1dr)~T (r)+ sin(c1dr)(−~R(r)) (4.28)

with c1 = π
2r .

Integration of the overall scheme

The image-based control law is based on the position control (3.80)

~U =


−(u̇c +uc)− u̇c − α1x

α2x
uc

−(v̇c + vc)− v̇c − α1y

α2y
vc

−ez2 − z2 − α1z
α2z

ez1 + g

 (4.29)

where
[

uc vc

]T
, and

[
u̇c v̇c

]T
, are respectively image coordinates of the target’s centroid,

and their rate of change. α1i , α2i are positive constants and ez2 and ez1 are the position and

velocity errors of the altitude system, defined in section 3.2 and it is controlled independently,

thus it can be considered that visual projection occurs in 2D, at a given altitude z = zd .

94

4.2. Vision algorithm for target localization: a case study for
autonomous vehicles surveillance

Then, the well-posed desired quaternion, qd , is computed from (3.97) using the normalized

vector of (4.29) and AGV’s yaw angle, which represents such mapping.

To design the kinematic control of the AGV, forward kinematics yields the following map

~Ξ=
[

xs + l cosθs

ys + l sinθs

]
=⇒ ~̇Ξ=

[
ẋs − l θ̇s sinθs

ẏs + l θ̇s cosθs

]
(4.30)

By using the non-holonomic constraint, the change of coordinates ẋs = ũ1 cosθs , ẏs = ũ1 sinθs ,

θ̇s = ũ2, allows the differential kinematic map to be written as follows,

~̇Ξ =
[

cosθs −l sinθs

sinθs l cosθs

][
ũ1

ũ2

]
= B~uGV (4.31)

Since B is a positive definite matrix, consider the kinematic control as follows

~uGV = γB−1

[
ẋd

ẏd

]
(4.32)

where γ > 0 is used to scale the desired velocity
[

ẋd ẏd

]T
of the field. Then, substituting

(4.32) into (4.31) yields ~̇Ξ(t) = γ
[

ẋd ẏd

]T
, which ensures that (4.32) computes the desired

angular wheel velocity based on the given velocity field components. Notice that γ becomes

an extra degree of freedom needed in practice to adjust engineering units and for calibration

purposes, otherwise it can be set γ= 1.

4.2.1 Experimental tests

To demonstrate the effectiveness of the proposed method two experimental tests are discussed

in this section. The ground vehicle used is a Jumping Sumo, and the quadrotor is the AR Drone

2.0 with monocular camera pointing downwards, both from the Parrot company. A custom-

made programming platform is configured to command both robots based on personal

computers, giving rise to a platform called Fl-AIR, which decodes communication protocols of

peripheral devices by using a custom made software, including the closed-loop control [160].

The AR Drone 2.0 uses a board with an ARM Cortex A8 1GHz processor with 1GB of RAM,

running the controller programmed in C++, for a IMU update at 5 ms, to handle all system

processes, including control outputs, interruptions, data fusion and communication to ground

station. The mobile sumo robot’s Wi-Fi node enables control command in velocity mode

using a Broadcom BCM43526 transceiver, but for higher range, a pair of Skyworks SKY85803

Wi-Fi front-ends is used. It has an MPU-6050 invenSense 6-Axis gyroscope and accelerometer.

95

Chapter 4. Autonomous navigation algorithms

Two small DC gear motors drive this mobile robot up to 4.3 MPH. A MoCap system, from

Optitrack, composed of 24 cameras, is used at a rate of 100H z to provide inertial measurement

of sumo robot only. The parameters of the mobile robot tuning of feedback gains are shown in

Table 4.2.

Table 4.2 – Experimental parameters for the control law (4.29) and the ground vehicle control
(4.32).

α1 = 0.8 L = 0.092 m g = 9.81 γ1 = 0.8
α2 = 0.1 l = 0.08 m zd = 1.5m γ2 = 0.3

m = 0.420 r1 = r2 = 0.055 m m = 0.18 K g −

Scenario 1: target detection test

In this test, arbitrary initial conditions in the longitudinal and lateral positions were considered

for both robots and a desired altitude of zd = 1.5m for the quadcopter. The goal of this test is to

demonstrate the well-performance of the vision algorithm when the ground vehicle is turning

in the z−axis and the algorithm uses the estimated velocities instead that ones coming from

the classical optical flow. Hereafter, variables with subscript “ f ” and superscript “∧” represent

the measures of the traditional optical flow data and the estimation of the states based on the

Kalman filter, respectively.

Figures 4.11 − 4.13 show the performance of the quadcotper and the vision algorithm when

tracking the ground vehicle. Remark from Figure 4.11 the x and y centroid positions are

obtained in the image plane. In addition, it can be observed that these positions are slightly

noisy when using only the traditional Lukas Kanade optical flow.

0 5 10 15 20 25 30 35 40 45 50 55

-50

0

50

0 5 10 15 20 25 30 35 40 45 50 55

-100

0

100

0 5 10 15 20 25 30 35 40 45 50 55

1.2

1.4

1.6

1.8

Figure 4.11 – Positions x and y of the centroid using the optical flow data and the kalman filter.
The z position is measured using the Optitrack camera system.

96

4.2. Vision algorithm for target localization: a case study for
autonomous vehicles surveillance

Observe that, when using the Kalman filter the velocity measure is less noisy. This can be

confirmed in Figure 4.12. Observe in this figure that, the velocities computed from the optical

flow data are notably noisy due the fact the ground vehicle is turning on its own axis (z−axis).

However, computing the velocity using the Kalman filter gives smoothness in the measure

allowing the vehicle keeping the desired hover position, even if the ground robot is turning.

This can be verified in Figure 4.13 where the control laws are showed. From this figure, it is

possible to see that the vehicle keeps the desired hover position during the test with a slightly

movement in the roll control as a result that the ground vehicle moved while rotating.

0 5 10 15 20 25 30 35 40 45 50 55

-500

0

500

0 5 10 15 20 25 30 35 40 45 50 55

-1000

-500

0

500

1000

Figure 4.12 – Velocities of the target in the image plane.

0 10 20 30 40 50

-0.1

0

0.1

0 10 20 30 40 50

-0.1

0

0.1

0 10 20 30 40 50

0.2

0.4

0.6

Figure 4.13 – Control inputs for the quadcopter vehicle.

97

Chapter 4. Autonomous navigation algorithms

Scenario 2: tracking an autonomous ground vehicle

The goal of this test is to prove the effectiveness of the proposed control algorithm when

the ground robot is moving. For that, in this scenario initial conditions of ~ξu(0) =~ξs(0) =
[−0.2,−1]T m were considered for both robots, and a desired altitude of zd = 1.5m for the

quadrotor. Then, three circumferences are defined as the smooth contour of radius rc1 = 1m,

rc2 = 1.5m and rc3 = 2m, starting from an arbitrary initial condition in the plane. While the

sumo starts its motion, the drone vision algorithm detects the target (the centroid of the visual

landmarks placed over the mobile robot). Then, the velocity field algorithm computes online

the kinematic controller to provide its smooth velocity field components depending of the

instantaneous position with respect to the contour, see Fig. 4.14. Figure 4.15 illustrates the per-

formance of the vision algorithm when following the smooth velocities imposed by the ground

vehicle. Remark from these figures when the radius of circumference was changed. The video

of the experimental test can be seen in https://www.youtube.com/watch?v=zB6dsH3zVg0 .

0 10 20 30 40 50 60 70

-0.5

0

0.5

0 10 20 30 40 50 60 70

-0.5

0

0.5

Figure 4.14 – Desired velocity field components of the ground robot.

0 10 30 50 70

-200

-100

0

100

200

0 10 30 50 70

-200

-100

0

100

0 10 30 50 70

-400

-200

0

200

400

0 10 30 50 70

-400

-200

0

200

400

Figure 4.15 – Position of the centroid ~pt and its estimated velocity.

98

https://www.youtube.com/watch?v=zB6dsH3zVg0

4.2. Vision algorithm for target localization: a case study for
autonomous vehicles surveillance

Figures 4.16 and 4.17 show the resultant path of the quadcotper immersed into a visual

velocity field that converges to the ideal 2D mobile robot’s velocity field. The positions of

the quadcopter and the ground autonomous vehicle are represented by xu , yu and xs , ys ,

respectively. These figures also show the relative position of quadcotper and the mobile

robot. Remark from these figures that the error in both axes is relatively small allowing the

quadcotper keeps the ground robot on the FoV. It is worth to mention that in order to get the

well performance of the vision algorithm showed in Figure 4.15, the desired altitude was set

constant at zd = 1.2m. Furthermore, the shortest distance where the quadcopter can continue

detecting the AGV was z = 0.8m. Nevertheless at this distance the ground vehicle can come out

quickly from the FoV. Contrary, the highest altitude was z = 1.5m. This helps to maintain the

AGV in the FoV. However, more features are needed for computing the centroid and therefore

more computational burden is required. In addition, remember the optical flow camera of the

Ar.Drone 2.0 and its embedded system have computational limits.

0 10 20 30 40 50 60 70

-2

0

2

0 10 20 30 40 50 60 70

-2

0

2

0 10 20 30 40 50 60 70

-0.4

-0.2

0

0.2

Figure 4.16 – Cartesian position trajectories and errors of the mobile robots.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 4.17 – Performance of both robots in the x y plane. These signals are provided by the
Optitrack system.

99

Chapter 4. Autonomous navigation algorithms

The mobile ground robot control signals and that of the quadcopter are shown in Figure

4.18. Notice the virtual control input of the ground robot vehicle are depicted in Figure 4.18a,

according to the change of coordinates developed in (4.31). Figure 4.18b illustrates the virtual

control input ~U that makes q → qd and Figure 4.18c presents the control torques that take

qe → 0.

0 10 20 30 40 50 60 70

10

15

20

0 10 20 30 40 50 60 70

-20

-10

0

10

20

(a) Virtual control signals ~uGV of the ground vehicle.

0 10 20 30 40 50 60 70

-0.05

0

0.05

0 10 20 30 40 50 60 70

-0.1

0

0.1

0 10 20 30 40 50 60 70

0.35

0.4

0.45

(b) Virtual control signals Ux , Uy and Uz

of the quadcotper.

0 10 20 30 40 50 60 70

-0.2

0

0.2

0 10 20 30 40 50 60 70

-0.2

0

0.2

0 10 20 30 40 50 60 70

-0.2

0

0.2

(c) Control torques~τ= [τφ,τθ,τψ]T

of the quadcotper.

Figure 4.18 – Control inputs of the flying and ground vehicles.

Assuming the AGV mimics the driving style of a human driver, who tracks in practice trajecto-

ries modeled by vector fields to obtain a smooth drive ride, the quadcotper tracks the CoM and

heading angle of the AGV, thus fulfilling the mission of camera surveillance. Clearly, we are

assuming the CoM of mobile robot remains in the FoV of the airborne camera, then desired

contour, resultant velocity field and quadcotper tuning require to comply with it. Therefore,

the smoothness of the fields facilitates to match with this assumption. Furthermore, despite

that theoretically it is proved that the quadrotor tracks asymptotically the vector field of the

AGV in the image plane, care must be exercised when solving the underactuation algorithm

since this scheme may introduce large acceleration.

100

4.3. Semi-autonomous navigation using an immersive virtual reality environment

4.3 Semi-autonomous navigation using an immersive virtual real-

ity environment

Piloting a drone can sometimes be a difficult task because its unstable and fast dynamics

allow it to get out of balance quickly with any external disturbance. Unlike a car that moves

in a plane, aerial robots move in a 3-dimensional space. Besides, controlling a drone is

not an intuitive task for novice pilots when they lose their spatial orientation. The clearest

example is when the heading of the drone is directed towards the pilot while the joystick

command is in the opposite direction. This task of flying the quadrotor in direct view demands

several cognitive overload in general for beginners, and in most cases the quadrotor ends up

crashing during early flight experiments. Even if technological advances have improved them

significantly by implementing inner controls for flying easily these types of vehicles, when

the vehicle leaves the operator’s line-of-sight, this mental overload increases until the pilot

loses the control of the robot, see Fig 4.19. The goal of this work presented in this section is to

Figure 4.19 – Left: stress when piloting a drone. Right: frustration after crashing the vehicle [1].

reduce the cognitive overload when a beginner pilot drives a quadcopter vehicle by means of a

virtual control scheme. The proposed architecture is located in two arenas; one for the robot’s

testing room, where the real robots are evolving and the second one named CAVE - Cave

Automated Virtual Environment, where the virtual environment is placed. In this area, a World

In Miniature (WIM) is modeled representing the real environment where the robot is acting. A

new interaction metaphor DrEAM (Drone Exocentric Advanced Metaphor) is conceived for

the virtual control scheme which represents in the virtual environment (VE) the real drone.

Therefore, the goal of the architecture is to reduce the stress and help the user when piloting

remotely a real robot from a virtual environment, in our case an aerial vehicle. This aim is

conceived by an adaptive visual/sound feedback in the virtual environment, that can be used

for improving the task.

4.3.1 Virtual control scheme

The proposed virtual control scheme can be seen as a structure composed by two blocks as

depicted in Figure 4.20; the first one corresponds to the virtual environment that emulates the

real scenario. The real world where the aerial robots are evolving and the CAVE platform com-

municate together via User Datagram Protocol (UDP) with their respective routers connected

in the same network.

101

Chapter 4. Autonomous navigation algorithms

Both platforms have their own VRPN (Virtual-Reality Peripheral Network) server for recovering

the attitude and position of the real and virtual robot respectively. Each block is represented by

their corresponding frames that in most cases are different. The following subsections explain

these blocks and its components.

Leader

Object

Phantom

 Object

Manager

UDP

DrEAM
Flight arena

Fl-Air
Framework Libre AIR

Figure 4.20 – Virtual control scheme

Real world environment

The real world environment (RWE) is where the robot is evolving. It can be seen as the scenario

of the mission, for example; building inspection or rescue missions. This scenario will be

represented as a WIM where the virtual drone will be piloted. On this document, the robot

used for experimental purposes is the quadcopter vehicle and the RWE is the flight arena.

Flight arena

The flight arena is composed by an OptiTrack motion capture system (24 cameras, 1mm of

precision) used to estimate the vehicle’s position at 100Hz, and a monitoring room, separated

from the test area for security reasons, where the ground station is placed. The size of the

flight arena is determined by 10m ×12m ×6m, see Figure 4.21a.

Quadcopter vehicle

The quadcopter prototype used in the flight tests, is a Parrot AR Drone 2. Its firmware was

modified to work under our software Fl-AIR which is open source and runs a Linux-based

operating system, capable of implementing a wide range of control schemes, see [160]. The

prototype has an internal Inertial Measurement Unit (IMU) for measuring its orientation

and angular rates. All the control algorithms are computed into the embedded system of

the aerial vehicle, and each sampling period, the drone communicates with a ground station

containing Fl-AIR framework, where their states are graphically shown for analysis purposes.

This ground station communicates with the OptiTrack’s software for collecting the position

of the drone in order to send it via wifi as well among other values (desired references, gains,

setup configuration, etc) as depicted in Figure 4.21b.

102

4.3. Semi-autonomous navigation using an immersive virtual reality environment

(a) Flight arena and monitoring room.

Fl-Air
Framework Libre AIR

(b) Fl-AIR - Framework libre AIR.

Figure 4.21 – Real world environments.

Quadrotor dynamic model and quaternion control scheme

In this section, the dynamic model of the quadcopter corresponds with that one previously

seen in Chapter 2 section 2.3 based on the quaternion formalism. Therefore, without lost

of generality, the mathematical representation of the vehicle can be described as a virtual

complete actuated system by imposing a desired orientation with a unit quaternion, qd , that

will be related with the desired main thrust imposed by a controller, ~U . Therefore, if q → qd

implies that ~Fξ→ ~U .

Let the desired quaternion be with the form

qd = qt ⊗qz , (4.33)

with

qt = e

ln
(
~U ⊗F∗

th

)
2 ; qz = e

ψd

2 ; ∀ψd ∈R (4.34)

where ψd denotes the desired heading. Notice that (4.33) is the desired attitude imposed by

means of the virtual environment.

Let us define the quaternion error as qe = q∗
d ⊗q, therefore, differentiating it with respect to

time, it follows that the dynamic error between the real arena and the virtual environment can

be defined as
q̇e = = d

d t

(
q∗

d ⊗q
)

1

2
qe ⊗~Ωe = 1

2
q∗

d ⊗~ΩI ⊗q − 1

2
q∗

d ⊗~ΩI
d ⊗q

~Ωe = q∗⊗ (
~ΩI −~ΩI

d

)⊗q =~Ω−~Ωd

(4.35)

where ~Ωe represents the angular rate error in the body frame, ~ΩI and ~ΩI
d are the angular

velocity and the desired angular velocity in the inertial frame and ~Ωd denotes the desired

angular velocity in the body frame. For validating the virtual control scheme in real-time

experiments, the attitude control algorithm proposed in (3.97) was implemented in order to

achieve the control objective q → qd .

103

Chapter 4. Autonomous navigation algorithms

Note from (4.34) that the only desired value imposed in the controller is ψd , this value will be

related with the yaw angle from the virtual drone and must be mapped from the virtual envi-

ronment before being used in the controller by the real robot. Observe that when introducing

(3.97) into the rotational dynamics in (2.51) implies that these dynamics are stabilized. This

means that qe → 0 and then ~Fth → ~U .

Therefore, let us propose ~U ∈R3 in the following form

~U = mḡ −Kpt (~ξ−qr←v ⊗~ξv ⊗q∗
r←v)−Kvt (~̇ξ−qr←v ⊗~̇ξv ⊗q∗

r←v), (4.36)

where Kpt = diag{[kpx ,kpy ,kpz]} > 0 and Kvt = diag{[kvx ,kvy ,kvz]} > 0 are control gains. ~ξv

describes the position of the virtual drone expressed in the virtual frame, the term qr←v ⊗
~ξv ⊗q∗

r←v represents the mapping of the data from the virtual environment to the inertial

frame where the real drone is evolving. Notice from (3.97) and (4.36) that when qe → 0, implies

q → qd , and this means that u1 → ~U and therefore,~ξ→~ξv .

DrEAM in CAVE

CAVE - Cave Automated Virtual Environment

A CAVE-like platform was used for validating DrEAM. This virtual room has a dimension of

7×3.4 m2 and is composed of four 3D projectors Christie Mirage 1920×1200, a workstation HP

Z840 with two graphic cards Nvidia M5000, RF Active 3D Glasses, an OptiTrack motion capture

system with 10 cameras, and a PS Move motion joystick. A Unity-plugin called TransOne,

encapsulates data from VRPN into Unity Objects to simplify the data protocol between the

motion capture system and Unity, and with the framework called Translife which creates the

virtual environment.

DrEAM-Drone Exocentric Advanced Metaphor

The DrEAM is a new interaction metaphor conceived from the characteristics of the real robot

and the scenario to create virtual robots and a WIM in the virtual environment where they can

evolve. The goals of using DrEAM are, on one hand, to train inexperienced users providing

the control of the movements of the robot that he will do during the real mission. On the

other hand, to control remotely the real drone in the real scenario from a virtual environment,

reducing the cognitive overload in neophytes or novice pilots. With DrEAM, user is a spectator

of the virtual environment and can see a 3D reproduction of the world, for moving, resizing

and rotating the environment using basic commands.

DrEAM naturally offers multiple points of view and multiple scales where the user can oper-

ate, all without requiring explicit modes or commands.User observation indicates that the

operator quickly adapts to the Worlds in Miniature, and that physical props are helpful when

manipulating the WIM and other objects in the environment, see Figure 4.22.

104

4.3. Semi-autonomous navigation using an immersive virtual reality environment

Figure 4.22 – DREAM’s virtual environment and flight arena

In our case, the flight area was modeled statically using blender homemade model and unity

basic shapes. Virtual robots are simple rigid bodies not affected by the law of physics that can

be selected by the user using the spherical ray-casting function provided by Translife. This

infers that their position will be the PS-Move’s position in the 3D-scene. The virtual frame of

the 3D scene has the same origin as the inertial frame in the flight area, nevertheless, they

were conceived with different rotations. Once the real scenario is represented in WIM with a

direct relationship between life-size objects, a virtual drone (VD) is placed at the same position

where the real drone is. This VD is an object of the virtual world that the user can take or leave

it by pressing/releasing a specific button on the PS-Move. While the user takes the VD, he can

rotate and translate it with simple natural gestures (moving his hand), therefore the user has

the impression that the drone is really in his hand.

In addition, user can resize and reorient the environment without changing the scene (object

positions) in any way since the program only change user position (in case of translation and

rotation) and the field of view (in case of resizing). As explained before, in DrEAM, the VD is

manipulated by the user by only pressing the "Take" button on the index of the wand. The

first step for manipulating the drone is that, the PS Move must to be placed in the hitbox of

the VD (which has the same size as the real robot). With this measure, a precise control of the

VD is guaranteed. In the second step, the user can describe a trajectory with the wand, while

the VD is already in his hand. Besides, the color of the VD changes to help the user known its

state; a).- red when it is not possible to be taken, b).- yellow when it is ready to be taken and

c).- black when has been taken already, as is depicted in Figure 4.23. In DrEAM, two different

feedbacks to help the user are conceived. The first one is a visual feedback of the position

and orientation of the real drone. For this, a ‘phantom’ drone is designed and placed with

the information of the real drone coming from the flight arena. The second one is a speed

indicator of the real drone emulated by a sound feedback in the CAVE.

Virtual representation

When the virtual drone (VD) is manipulated via the PS Move, it describes a trajectory that is a

function of its position and velocity, i.e. ~xv (t) = f (~ξv (t),~̇ξv (t),qv (t),~Ωv (t)) where the subindex

v refers the virtual drone. All the data are in the virtual frame V . These data information~xv is

periodically sent to the RWE, as desired references for the autonomous navigation of the real

drone, using the Windows asynchronous socket API in DrEAM’s platform and the Linux socket

API employing a string-based protocol in the ground station.

105

Chapter 4. Autonomous navigation algorithms

(a)

(b) (c)

Figure 4.23 – Different states of the virtual drone; (a) - cannot be taken , (b) - can be taken and
(c) - has been taken.

The VD is referred in the frame V and the real drone in several cases in the inertial frame

(or body frame) in the real world. Both frames are different and a mapping between them

(Rotation matrix) is necessary in order to use the data of each one in their respective frame.

For example, for a given point (~ξv ,qv) of the virtual drone in the virtual frame, with ~ξv =[
xv , yv , zv

]T and qv = [
q0v , q1v , q2v , q3v

]T , its representation in the inertial frame (real scenario)

is for the translation
[
z, x, y

]T and for the orientation
[
cos(q2v /2),0,0,cos(q2v /2)

]T .

Observe that the pitch and roll information is not yet used in the virtual drone. Therefore, for

a good correlation between frames the following mapping is defined

qr←v = 1

2
+ 1

2
i+ 1

2
j+ 1

2
k. (4.37)

Hence, the position of the virtual drone can be correctly represented in the inertial frame as a

desired value by
~ξd = qr←v ⊗~ξv ⊗q∗

r←v . (4.38)

Similarly, for the visual feedback in the virtual environment, the attitude and position of the

real drone are expressed as

~ξp = qv←r ⊗~ξ⊗q∗
v←r

qp = qv←r ⊗q⊗q∗
v←r .

(4.39)

where ξp and qp define the position and attitude of the phantom drone in the virtual environ-

ment.

106

4.3. Semi-autonomous navigation using an immersive virtual reality environment

The phantom drone position and orientation are updated in DrEAM every frame (100H z rate)

using the last information received from the real drone and mapping it, to the virtual frame

using the above equations.

The virtual environment can be fitted to any space, this signifies that, it can represent a

complex or simple structure, such as a building, a cube or even a sphere. Using this property, it

is then possible to impose bounds in the area where the real drone is evolving and at the same

time, keep safe the prototype. For our room test, the virtual drone will be bounded inside of a

virtual cubic scene with the following properties

xb1 (t) ≤ xv (t) ≤ xb2 (t)

yb1 (t) ≤ yv (t) ≤ yb2 (t)

zb1 (t) ≤ zv (t) ≤ zb2 (t)

(4.40)

where ξv = [xv , yv , zv]T denotes the position of the virtual drone and xbi , ybi , zbi with i : 1,2

are the bounds that can be functions of time or constants delimiting the testing room.

4.3.2 DrEAM’s experimental fatigue tests results

In order to test the advantages of DrEAM when controlling a real drone over a control in direct

view, an experimental study was lead with eight volunteers evaluating their performance

among six criteria: Mental demand, Physical Demand, Temporal Demand (this depicts the

stress involved by the control task), performance (this pictures the sensation of success), Effort,

Frustration (this shows the sensation of UAV’s obedience). The test consists to fly manually

the vehicle with a conventional joystick and with the DrEAM architecture, when performing a

specific task. The participants had four minutes to learn how to use the platforms and the task

must be finished in three minutes.

The scenario of the task is settled as follows: the volunteers take the control of the drone when

it is hovering around the start point (S) with a fixed altitude zt . The goal is to move the vehicle

from the point (S) to the point (C) and then to the point (A) keeping, all the time, the heading

of the vehicle pointing to a desired target as illustrate in Figure 4.24.

During the test each participant must follow the following rules

• The altitude of the drone should be kept constant, i.e. z(t) ≈ zt = 1m.

• The real drone must not be put in danger in any case.

• The task must be accomplished with accuracy as much as possible .

• The task must be achieved as faster as possible.

• The roll and pitch angles of both experiments were previously stabilized with an inner

controller.

107

Chapter 4. Autonomous navigation algorithms

SA

Target
Window delimitations

C

Figure 4.24 – Navigation task: start point (S), checkpoint (C) and the final point (A) keeping
the heading of the vehicle pointing to the target.

After each flight test, a NASA-TLX form was filled by each participant. Figure 4.25 depicts the

results of this questionnaire. Most of the volunteers were men and without any experience

flying a quadrotor vehicle. Note from Figure 4.25 for every index when controlling the aerial

robot with a conventional joystick, for beginner pilots can result complicated to have success

even for a simple task as proposed in the test.

Mental Demand Phsycal Demand Temporal Demand

0

1

2

3

4

5

6 Joystick

DrEAM

Performance Effort Frustration

0

1

2

3

4

5

6

Joystick

DrEAM

Figure 4.25 – Graphics results from the NASA-TLX questionnaire. From graphs 0 means low
and 6 high demand or impact on the presented criteria.

108

4.3. Semi-autonomous navigation using an immersive virtual reality environment

Flight data information as timestamp, attitude, position and velocities are used to compute the

mean lateral error (MLE) with respect to the desired path, the mean completion time (MCT)

of all laps (a lap is every time user finish the task from the initial point to the final one) and

the mean yaw error (MYE) with respect to the target. In Table 4.3 the results of these indexes

are presented. During the tests, 162 laps were successfully performed by the users: 81 with a

joystick (direct view) and 81 using DrEAM. Latency between CAVE and the flight arena was

around 0.06s and no jitter has been registered, which could have disturbed the flight tests.

DrEAM was sending data at 100H z as well the aerial drone.

Table 4.3 – Data results of MLE, MCT and MYE indexes

Index Joystick DrEAM
MLE 0.389 m 0.104 m
MCT 6.810 s 5.130 s
MYE 0.252 rad 0.140 rad

To corroborate the outcomes obtained with the NASA-TLX questionnaire, one sample t-Test

was carried out considering a maximum percentage of confidence (5%,α = 0.05) in the six

performance criteria. Results of this test are shown in Table 4.4, where H0 means DrEAM has

no impact on the performance criteria. Notice from this table that the p−value on almost

all the performance criteria, excepts for the ’temporal demand’ and ’frustration’, is less than

5% (p < 0.05). Therefore, it is possible to state that DrEAM has not impact on these criteria.

Nevertheless, for the case of the ’temporal demand’ and ’frustration’, with a p−value bigger

than 0.05, it is not possible, at the moment, to state that there is not demand of this criteria.

Table 4.4 – Results from the one sample t-Test.

Hypothesis p-value H0

Mental Demand 0.013 Rejected
Physical Demand 0.007 Rejected
Temporal Demand 0.269 Not Rejected
Performance 0.003 Rejected
Effort 0.022 Rejected
Frustration 0.140 Not Rejected

The fatigue conclusion in these tests was that DrEAM increases the control ergonomy for

inexperienced users when controlling the aerial robot, without loss of precision, in comparison

with controlling the robot in direct view, in particular concerning complex movements with

more than two DoF.

4.3.3 DrEAM real-time validation with robots

DrEAM performance was validated in real-time experiments when controlling remotely a real

quadrotor vehicle. The practical goal of these experiments is to corroborate and compare the

performance of the real robot versus the virtual robot in two scenarios. In the first scenario,

the inspection in reduced spaces is emulated.

109

Chapter 4. Autonomous navigation algorithms

For this, the goal is to navigate with the real robot inside a building crossing small surfaces as

windows. In the second scenario a cellar inspection is emulated, therefore, the objective is to

send the aerial vehicle inside of the cellar and navigate there to survey the zone. The cellar

is composed by pillars that the aerial vehicle needs to avoid. A video with the experimental

results can be seen at: https://youtu.be/jMYWIoCsj7I.

The tests are carried-out with the following procedure

1. The take off and landing of the real robot are not still considered controlled with DrEAM.

They are done in a safety mode by a user in the flight arena.

2. The initial position of the real drone for the tests is~ξ(t0) = [0,0,0.5]T m. At this position,

DrEAM can take the control of the vehicle.

3. At any moment, the user in the virtual world can always put the vehicle at hover position,

to change/rotate/expand the view of the WIM.

4. For simplifying the test, when the user takes the virtual drone and moves it, the real

drone will be aligned to the direction of the trajectory. Nevertheless, the user can rotate

it, in any desired yaw angle.

5. No sensors for detecting obstacles are embedded into the drone. Therefore, large errors

in the virtual commands should produce the crash of the robot with the obstacles.

Scenario 1: crossing reduced spaces for rescuing

As previously explained, in this scenario, the vehicle must cross through some reduced spaces

that can produces several stress when the user drives the aerial drone in direct view. For this

scenario, two physical windows are located in the flight arena in different altitudes, positions

and headings. These windows are also created in the WIM with the same characteristics. The

first one is located at ~ξw1 = [2,2,1.4]T m and the second one at ~ξw2 = [−0.5,−1.7,1.7]T m in

the flight area. The test consists that the user must move the virtual vehicle in any desired

path while crossing the windows and repeating the experiment three times with different

translational velocities. The real robot must imitate the same performance of the virtual drone

in real time as can be seen in Figure 4.26.

Figure 4.26 – Scenario of the first experiment.

110

https://youtu.be/jMYWIoCsj7I

4.3. Semi-autonomous navigation using an immersive virtual reality environment

From Figures 4.27 - 4.32, the states performance of the robots (real and virtual) when this

scenario is validated are depicted. In Figure 4.27, the translation motion in 3D is illustrated.

Moreover, observe from Figure 4.28 that the user changes the heading of the virtual robot

in order to cross the windows. This information is also presented in each axes in Figures

4.29 – 4.31. In this experiment, from 0 < t1 ≤ 5s the real vehicle takes off autonomously to be

placed at 1.4m in z-axis. Once the vehicle switch to DrEAM’s mode, it is posed in an altitude of

0.5m. At time t = 10s the user in DrEAM takes the virtual drone and manipulates it making a

trajectory and repeating it three times at different velocities. The three laps are done at times:

10 < t1 ≤ 40s, 40 < t2 ≤ 60s and 60 < t3 ≤ 80s, respectively.

Figure 4.27 – 3D performance of the virtual drone and the real vehicle when scenario 1 is
validated in real time.

0 10 20 30 40 50 60 70 80

-200

-150

-100

-50

0

50

100

150

200

Figure 4.28 – Yaw angle behavior of the drones (real and virtual).

111

Chapter 4. Autonomous navigation algorithms

The first one was performed with a slower velocity because the user did not have much

confidence and he was tense. The second lap, the user increases the velocity of the trajectory

(up to 1m/s) and in the last one, the user tries to do the displacement as fast as possible. The

variations in the velocity can be checked in Figure 4.32. In figures, the subscripts dr and dv

represent the state of the real drone and the virtual drone respectively.

0 10 20 30 40 50 60 70 80

-3

-2

-1

0

1

2

3

Figure 4.29 – x-position performance of the virtual drone and the real vehicle obtained from
the first scenario. Observer the good behavior of the real drone when imitates the virtual drone
trajectory.

0 10 20 30 40 50 60 70 80

-3

-2

-1

0

1

2

3

Figure 4.30 – Performance of the robots (virtual and drone) in the y axis.

112

4.3. Semi-autonomous navigation using an immersive virtual reality environment

0 10 20 30 40 50 60 70 80

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 4.31 – z-state behavior of the first scenario. Observe that the robots (virtual and real)
change their altitude for crossing the windows.

0 10 20 30 40 50 60 70 80

-1

0

1

2

0 10 20 30 40 50 60 70 80

-1

0

1

2

0 10 20 30 40 50 60 70 80

-1

0

1

2

Figure 4.32 – Performance of the velocities of vehicle during the first scenario. Note that it is
increased mainly in the x and y axes.

113

Chapter 4. Autonomous navigation algorithms

Scenario 2: Building inspection

In this scenario, two tripod are required in the flight arena emulating pillars in the cellar. In

DrEAM, two cylinders were drawn to simulate the corresponding ‘pillars’ as can be seen in

Figure 4.33. The practical goal is to illustrate the maneuverability of DrEAM when the user

manipulates the virtual drone between the emulated pillars and changing its heading. The

experiment is repeated several times with different maneuvers trying to approach the drone

as near as possible to the ‘pillars’.

Figure 4.33 – Scenario of the second experiment.

The performance of the states when the real drone follows the position references of the virtual

vehicle are shown in Figures 4.34 - 4.38. A 3D representation of the trajectories is presented in

Figure 4.34. As in the first scenario, the initial step was to take off the real vehicle autonomously

in safety mode. In this mode the real drone is placed at an altitude of 1.4m and a few seconds

later its altitude is reduced at 0.5m in hover position, ready to follows the virtual commands.

This is done in the interval time 0 < t0 ≤ 20s.

Figure 4.34 – 3D behavior of the virtual and the real aerial vehicles when performing the
second scenario.

114

4.3. Semi-autonomous navigation using an immersive virtual reality environment

0 20 40 60 80 100

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Figure 4.35 – Performance of the aerial robots in the x axis. Observe the good performance
when the real robot imitates the virtual robot.

0 20 40 60 80 100

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 4.36 – y- state behavior of the aerial robots (virtual and real) when the user turns the
pillars three times.

As depicted in Figure 4.34 the goal of the experiment was that the user manipulates the

virtual drone between the pillars. Three laps were carried out by the user at different times;

20 < t1 ≤ 55s for the first one, 55 < t2 ≤ 80s for the second lap and 80 < t3 ≤ 100s for the last

one. This task was made in an area of −2 ≤ x ≤ 2, −1.5 ≤ y ≤ 1.5 and 0.5 ≤ z ≤ 1.4 all in meters.

Moreover, the mission demands to change the heading of the aerial robots several times as is

illustrated in Figure 4.38. From these figures, observe the good performance of the real robot

when it is controlled with the DrEAM architecture. Remark that the task has been developed

with good precision, that it should not be possible when the vehicle is controlled in direct

view.

115

Chapter 4. Autonomous navigation algorithms

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 4.37 – z performance of the vehicles obtained during the second scenario. Observe that
the last two laps the user change also the altitude during the trajectory.

0 20 40 60 80 100

-200

-150

-100

-50

0

50

100

150

200

Figure 4.38 – Behavior of the heading of the virtual and real drone respectively.

4.4 Quadcopter autonomous navigation conclusions

The aim of this chapter was to propose and introduce autonomous and semi-autonomous

navigation control techniques. They exploit properties from classical and quaternion based

algorithms providing advantageous features for navigating aerial vehicles. These navigation

techniques have been implemented for tracking optimal trajectories, ground autonomous

vehicles and virtual trajectories imposed by means of an immersive virtual reality environment.

The first navigation technique concerns the trajectory generation and tracking problems.

It is based on a simple nonlinear controller, the MPC algorithm for path generation and a

disturbance observer for giving robustness to the system.

116

4.4. Quadcopter autonomous navigation conclusions

This technique was validated in a real-time flight test for a trajectory generation in a 3D−space

while dealing with external perturbations. On one hand, the optimal problem was solved

considering Hp = 10 without constraints for reducing computational issues. Nevertheless,

augmenting Hp for giving robustness to the prediction of the trajectory will exceed the capacity

of memory of the embedded system. This is mainly due to the fact the Hp is related with

the prediction model. On the other hand, the experimental results demonstrate that the

architecture reduces considerably the error in the path tracking problem even when external

perturbations were presented.

Furthermore, a novel scheme for the aerial surveillance of AGVs using quadcopters was

proposed. The scheme uses a simple vision algorithm for the target detection and, a vector

field approach for describing the movements of a driver. Experimental results illustrate the

feasibility and good performance of the proposed scheme. However, from this experimental

validation, we can sate the following: the maximum number of features for the vision algorithm

correspond to Np = 64 and the movements described by the ground vehicle need to be smooth.

In other words, the ground robot must to remain in the FoVs of the airborne camera. Higher

number of features can cause mismatching when looking for the centroid. Moreover, fast

accelerations of the ground robot produce that it goes out of the FoV.

Finally, a new semi-autonomous virtual control architecture for controlling robots remotely

was developed in this chapter. The architecture is composed by a new metaphor interaction

called DrEAM that uses a world-in-miniature located in a virtual environment and, a real

aerial robot located in the flight arena. Two experimental tests were addressed to highlight

the easy implementation and feasibility of the proposed architecture. The testing rooms were

connected using the UDP protocol with a insignificant delay in the exchange of packages such

that, it was neglected. In addition, it was demonstrated in real-time experiments the easy

maneuverability and controllability of the real drone when the user is controlling it by means

of DrEAM. Therefore, a reduction of the cognitive overload was observed when piloting with

DrEAM than when controlling the real drone in direct view.

117

Part VChapter 5

119

5 Robust control scheme based on dis-
turbance estimator

Aerial Vehicles have gained an enormous interest for their civil potential applications. Among

different UAVs, quadrotors are remarkably popular and have been used extensively in research

over the past decade [174, 175]. A high-performance attitude control is a prerequisite for

developing any other high-level control tasks [176]. For autonomous navigation, aerial vehicles

need robust control systems to compensate the adverse effects produced by parametric and

non-parametric uncertainties, unmeasured dynamics and atmospheric disturbances, such as

wind and turbulence [177]. Although many solutions have been proposed in the literature,

very few of them have been validated in real flight tests and the most popular techniques are

still based on classical control strategies. This is mainly due to the constraints imposed by

the limited computational resources of the embedded systems, which are typically micro-

controllers. Also, and perhaps more importantly, because of the unstable nature of quadrotors,

controllers must run typically at very high frequencies [10].

Robust control for quadrotors is still an active field of research, see [178, 179, 180], because

the aerodynamic effects are extremely hard to be accurately modeled [181] and, specially

in outdoor applications, a UAV is constantly perturbed by wind gusts [182]. Disturbance

observers have drawn the attention of many researchers as a tool for facing these problems

[183, 184].

Inspired by the works [140, 141, 185], the goal of this chapter is to present a novel robust

control architecture for solving the practical stability for aerial autonomous vehicles subject

to uncertainties in the model, external perturbations and rotor’s failures, while meeting the

rotor’s physical constraints. This chapter is organized as follows: first, some preliminaries as

well the problem formulation and the proposed solution are stated in section 5.1. Furthermore,

a robust control architecture based on disturbance estimator is introduced in section 5.2. An

experimental study on disturbance rejection is carried out to prove the performance of the

proposed architecture. Then, an enhanced robust tolerant control architecture is addressed

in section 5.3. Here, simulations and experimental tests with multiple rotors failures are

conducted. Finally, a bounded robust control scheme is conceived and proved experimentally

in section 5.4. Some conclusion of the developed strategies are discussed in section 5.5.

121

Chapter 5. Robust control scheme based on disturbance estimator

5.1 Preliminaries

Recall from (2.16), that the nonlinear dynamic model of the quadcopter using the Newton-

Euler formalism can be expressed as

~̇ξ(t) =~v(t), m~̇v(t) = R(t)~Fth(t)−m~g ,

Ṙ(t) = R(t)~̂Ω(t), J~̇Ω=−~Ω(t)× J~Ω(t)+~τ(t)
(5.1)

In this work it is assumed that the thrust, fi ≈ k f w2
Mi

, and torque, τMi ≈ kτw2
Mi

, of each

propeller are directly controlled by the angular rate of the motor, wMi , with k f and kτ are

aerodynamic thrust and torque factors, respectively. Therefore, from (5.1), ~Fth and~τ can be

written as ~Fth = [0,0,
∑4

i=1 fi]T and~τ= [l (f1 + f4)− l (f2 + f3), l (f1 + f2)− l (f3 + f4),
∑4

i=1τMi]T ,

with l representing the distance from the center of mass to the point where the force is applied.

Notice from the above, and according to (2.7), the main thrust can be defined as u1 =∑4
i=1 fi ,

which acts along the direction of z−axis in the inertial frame. In addition, notice that the torque

generated by each propeller can be represented by using its thrust and a scale aerodynamic

factor denoted by ct f . Thus, the following relation can be established

~uR =


u1(t)

u2(t)

u3(t)

u4(t)

=


1 1 1 1

l −l −l l

l l −l −l

−ct f ct f −ct f ct f




f1(t)

f2(t)

f3(t)

f4(t)

 (5.2)

Now, let’s consider that system (5.1) can be stabilized using a feedback controller with the

form

~uR =−KL~x (5.3)

where~x = [~ξ, ~η]T denotes the system states, KL > 0 is a constant matrix gain and~̇η represents

the attitude vector of the vehicle, with ~Ω = Wη~̇η and Wη defines the standard kinematics

relation between ~Ω and ~η, see [147]. The linear system of (5.1) for designing ~uR is given

by ~̇x(t) = A~x(t)+B~uR (t), where A and B are the state matrix and control vector and ~uR =
[u1, u2, u3, u4]T .

Experimental tests using the (5.3) controller has shown a correct performance, nevertheless,

when the vehicle is exposed to external disturbances (as wind gust), the system becomes

unstable and some crashes occurs. These non desired effects can be also produced by actu-

ators fault (damage in the propeller or the motor itself) producing a loss in the efficiency of

the vehicle. Moreover, voltage variations in battery could be seen also as a motors Loss of

Efficiency (LoE), which is reasonable due the fact, the motor thrusts are related with the battery

voltage. In addition, when the aerial robot is exposed to these undesired situations, the con-

troller, in the embedded system, computes a large amount of energy for counteracting them.

122

5.2. Robust control scheme for disturbance rejection

If this energy is sent and without measuring it, and during large periods of time, the actuators

in the aerial vehicle can be overheated and damaged, leading a poor performance or undesir-

able crashes when performing a desired mission. This situation happens because they have

physical constraints that are not often considered when computing the control law, e.g. maxi-

mum of revolution per minute (RPM) in a motor. Therefore, the design of robust controllers to

counter-actuate aggressive external disturbances or non-desired dynamics without saturate

the actuators remains a challenge for the automatic control community.

5.1.1 Proposed solution

Exploring the properties of disturbance observers, we introduce a robust control strategy for

solving the disturbance rejection problem. The underlying idea behind this work is that the

unknown lumped signal d(t), along the solutions of (5.1) can accurately be estimated and

counteracted. However, as aforementioned in the presence of LoE in rotors or their physical

constraints, DOBC strategies have limitations and needs to be improved. Therefore, our robust

control architecture is composed of the following stages,

1. Enhancing (5.3) by means of a disturbance estimator such that ~uR becomes robust in

presence of model uncertainties and a class of external disturbances.

2. Improving the previous robust control strategy such as a rotors fault estimator M̂ζ can

be derived by means of ~uR , giving robustness to the architecture even in LoE in rotors.

3. Solving the physical constraints of the motors such that, the bounded control input

σ≤~u∗
R ≤ σ̄ of the robust control scheme, guarantees~η→~ηr and~ξ→~ξr with~ηr and~ξr

standing for the attitude and position references, respectively.

5.2 Robust control scheme for disturbance rejection

Let consider that system (5.1) can be also expressed as a perturbed nonlinear system with the

form

~̇x(t) = (A+∆A)~x(t)+ (B +∆B)~uR (t)+ f (~x, t ,~uR (t))+d(t) (5.4)

~y(t) = ~x(t)

where~x(t) = [~ξ,~η]T ∈Rn and ~uR (t) ∈Rm are the state and control vectors respectively, f (~x, t) :

Rn ×R×R+ → Rn defines an unknown non-linear function, and d(t) : R+ → Rn denotes the

vector of unknown disturbances. The state and control matrices are split so that A and B

are known and ∆A and ∆B are parametric uncertainties. Moreover, it is assumed that the

nonlinear function ∂[f (~x)+B~uR]
∂~uR

6= 0, for all (~x,~uR) ∈Rn ×Rm .

123

Chapter 5. Robust control scheme based on disturbance estimator

The following assumptions are stated

Assumption 2. The pair (A,B) is controllable.

Assumption 3. The uncertainty f (~x) belongs to the column space of B, i.e. there exists a vector
~d f (~x) ∈Rm such that f (~x) = B ~d f (x).

Assumption 4. There is a region D =~x ∈Rn : |~x| ≤ rx where: i.) ~d f (~x) is locally bounded, ii.)
~d f (0) = 0 and iii.) its derivative is locally bounded by |∇~d f (~x)| ≤ cx .

Assumption 5. The input disturbance d(t) is uniformly bounded and its derivative is bounded

by
∥∥ḋ

∥∥≤ cd , ∀t ≥ 0.

For developing the robust control scheme, let us propose the following ideal reference model

~̇xq (t) = Aq~xq (t)+Bq~uq (t) (5.5)

where Aq ∈Rn×n , is Hurwitz, Bq ∈Rn×m ,~xq ∈Rn and ~uq ∈Rm .

The goal for robust control strategies, is that ~x →~xq , therefore, the following error can be

proposed

~e = (~ξ−~ξq ,~η−~ηq)> =~x −~xq (5.6)

Differentiating (5.6) and using (5.4), (5.5) and adding and subtracting Aq~x, it holds that

~̇e = Aq~e −Γ (5.7)

with

Γ = (A+∆A)~x + (B +∆B)~uR + f (~x,~uR , t)+d(t)− Aq~x −Bq~uq

Observe that if Γ→ 0 then (5.7) will be asymptotically stable. Hence, ~uR can be proposed as

~uR =
~un︷ ︸︸ ︷

B+ [
(Aq − A)~x +Bq~uq

]+B+ [−∆A~x −∆B~uR − f −d
]︸ ︷︷ ︸

~uζ

(5.8)

where B+ = (B T B)−1B T corresponds to the pseudo-inverse of B . Then, the challenge will be

to compute ~un and ~uζ.

Notice from (5.8) that, on one hand ~un concerns about the reference tracking performance

for system (5.5). Thus, proposing ~uq = −K~x makes (Aq − A)~x + Bq~uq stable, with K > 0.

Therefore, this implies that ~un =−B+K~x =−K̄~x with K̄ > 0. On the other hand, notice that,

~uζ will be the control part for compensating the inner uncertainties, unknown dynamics or

external perturbations. In addition, observe that ~uζ is a function of unknown variables, i.e.,

~uζ = f (∆A~x,∆B ,~uR , f (~x,~uR , t),d(t)), and therefore it is difficult to estimate this parameter in

this form. However, using (5.4), it can be rewritten as

~uζ = B+[−∆A~x −∆B~uR − f (~x,~uR , t)−d(t)]. (5.9)

124

5.2. Robust control scheme for disturbance rejection

Observe that all the proposed methodology for estimating the uncertainties and external

perturbations are based on computing ~uζ in (5.9). Nevertheless, this parameter is function of

unknown variables as stated in (5.9), i.e., ~uζ = f (∆A~x,∆B ,~uR , f (~x,~uR , t),d(t)). However, using

(5.4), (5.9) can be rewritten as
~uζ = B+[A~x +B~uR −~̇x] (5.10)

Intuitively, it indicates that the unknown dynamics and disturbances can be estimated from

the known dynamics of the systems and control signal. Implementing (5.10), in this form in a

microcontroller, is not commonly used, hence for solving it, the signal (5.10) can be accurately

represented in the frequency domain as follows [186]

~uζ(s) =G f (s)B+[A~x(s)+B~uR (s)− s~x(s)] (5.11)

if G f (s) is a strictly proper stable low-pass filter with unity gain and zero phase shift over the

spectrum of ~uζ and gain elsewhere. Computing the Laplace transform of (5.8) and using (5.11),

the disturbance rejection observer control law ~uR (s), can be obtained as

~uR (s) = [I −G f B+B]−1B+ [
Aq~x +Bq~uq − A~x(1−G f)− sG f~x

]
(5.12)

Observe that (5.12) is in general only an approximation cause the pseudo-inverse, however,

it is generally satisfied for some cases [187]. The asymptotic stability of the closed-loop

system is established in [188], when the filter G f (s) is chosen appropriately as a strictly-

proper stable filter with unity gain and zero phase shift over the spectrum of the uncertain

term f (~x,~uR , t)+d(t) and zero gain elsewhere. The developed robust control architecture is

depicted in Figure 5.1.

To summarize the tuning procedure, three essential parameters are considered: the control

gains of the feedback controller ~un , the filter time constant T and the desired reference

model (5.5). On one hand, the value of the law-pass filter corresponds to the dynamic of

the perturbation to be estimated. A high value of T causes to filter excessively and, a small

one makes that any noise be a perturbation giving large peaks of the control action which

means that the system could become unstable. On the other hand, the b value of the reference

model represents a double integrator of each axes of the quadrotor and it was obtained

experimentally using a Pseudo Random Binary Sequence (PRBS) and the Recursive Least

Squares (RLS) algorithm, for identification purposes.

-

Disturbance
 Observer

 Control
Strategy

Figure 5.1 – Block diagram of the control structure. ~un and ~uζ correspond to the the nominal
control action and the control rejection part, respectively, ~ξd is the desired reference. ~uR

represents the proposed controller ζ represents external disturbances.

125

Chapter 5. Robust control scheme based on disturbance estimator

5.2.1 Experimental results for disturbance rejections

The quadrotor prototype used in the flight tests, is a Parrot AR Drone 2 running the open

source software Fl-AIR [160]. An OptiTrack motion capture system was used to estimate the

vehicle’s position and analyzed in a ground station with others control variables coming from

the IMU sensor.

Three scenarios are proposed for validating the robust control scheme (5.8) using (5.11). The

practical goal is to expose the aerial vehicle to common disturbances as: wind, variable mass

and degradation in the performance of the rotors. The tests are carried-out with the following

procedure:

• The state feedback controller is implemented and tuned into the aerial vehicle and used

in all experiments.

• The goal is to keep the vehicle at hover at the desired position is (xr , yr , zr) = (0,0, zr)m.

• Disturbances are applied when the vehicle is at hover for degrading its performance.

The experimental tests are developed using parameters on Table 5.1. Here, K (1), K (2), express

the gains of the feedback controller for each subsystem. For the design of disturbance esti-

mator, each axis of (5.1) is considered decoupled and modeled by a double integrator of the

form G(s) = b/s2 such that b is is obtained experimentally and T represents the bandwidth of

the low-pass filter G f = 1/(Ts +1) defined in (5.11). A video of the experimental results can be

seen at: https://youtu.be/lhcRiGlPq54.

Table 5.1 – Gain parameters used in the experimental tests

Controller φ/θ ψ x, y z

K (1) 0.8 0.6 0.17 0.3
K (2) 0.1 0.2 0.13 0.1

b 140 44 10 5
T 0.1 0.5 0.5 0.3

Wind-gust disturbance

In this experiment, the practical goal consists of keeping the quadcotper at hover position

with an altitude zd = 1m while the vehicle is being affected by wind disturbance. For that,

three fans (1m from the desired position, see Fig. 5.2) were put to encircle the aerial robot for

emulating wind disturbance. Thus, the scenario is as follows: the quadrotor starts at hover

position x(0) = y(0) = 0m with the observer block activated while is being perturbed by the

fans. The observer block is deactivated and re-activated to compare the performances.

126

https://youtu.be/lhcRiGlPq54

5.2. Robust control scheme for disturbance rejection

Figure 5.2 – Wind-gust scenario.

From Figures 5.3-5.5 observe the good quadcopter performance when applying the proposed

controller. In Figure 5.3 the 3D state performance is depicted. Observe that when the robust

control scheme is activated, the vehicle remains in a small neighborhood around the desired

set-point, that is not the case when using only the state feedback controller.

0.8

0.85

0.9

0.95

1

1.05

0 0.3
0.2

-0.5 0.1
0-1

Figure 5.3 – Vehicle’s performance in 3D against wind disturbance.

Note in Figure 5.4 that from time t = 0s to t < 45s, the proposed controller is applied and the

vehicle stay close into a neighborhood near to the origin. From t ≥ 45s and t ≤ 75s, only the

state feedback control is used and the quadrotor behavior is degraded due the control action

is not enough to compensate the wind-gust disturbances. To recover the good performance of

the system, the observer block is activated again at time t > 75s.

127

Chapter 5. Robust control scheme based on disturbance estimator

Figure 5.4 – Performance of the vehicle in x−axis, y−axis and z−axis.

In Figure 5.5 the disturbance estimation is depicted related to the system performance. Notice

that when the observer is activated the disturbance is compensated and then the system

behavior is barely affected. Nevertheless that, from t ≥ 45s and t ≤ 75s the observer is not

activated and the real values of the disturbances appear as it can be seen in this figure. It is

worth mentioning that, the observer is used in open-loop in order to continue estimating the

disturbances.

0 20 40 60 80 100

-0.1

0

0.1

0 20 40 60 80 100

-0.2

-0.1

0

0 20 40 60 80 100

-0.2

0

0.2

Figure 5.5 – Estimation of the wind disturbance.

128

5.2. Robust control scheme for disturbance rejection

Variable mass

This scenario was proposed for applications with variable mass. For example, when the drone

is tuned for certain gains and takes a mass for transporting to a desired position and needs

to leave it, usually, their performance is degraded. In this experiment, a mass of 100g is

applied on the rear right rotor when the quadrotor is at hover, emulating a box that needs to

be transported, see Figure 5.6. The desired altitude is zd (t) = 1.5m.

Figure 5.6 – Lateral weight disturbance applied to an aerial system.

In Figure 5.7, the 3D performance of the vehicle is depicted. On one hand, note here that

when the mass is added, the state feedback controller is not enough to compensate it and

the system performance is severely degraded (blue line). On the other hand, when the aerial

drone is flying with the proposed control scheme and the mass is added, its performance is

barely degraded (red line).

0

-0.5

0.8

0.9

1

1.1

1.2

1

1.3

1.4

0.5

1.5

-10
-0.5

Figure 5.7 – Vehicle’s performance in 3D against the weight disturbance.

Figure 5.8 depicts the behavior of the vehicle in the three axes when adding a mass in motor

M2. Observe in this figure the poor performance when the mass is added to the vehicle flying

only with the linear controller, which is not the case, when the proposed scheme is used during

the flight and the mass is added. Notice that for this last case, the disturbance in the system is

unperceived, see graphs at time 2s< t < 4.5s.

129

Chapter 5. Robust control scheme based on disturbance estimator

0 2 4 6 8 10 12 14 16

-1

0

1

0 2 4 6 8 10 12 14 16

-2

0

2

0 2 4 6 8 10 12 14 16

0

1

2

Figure 5.8 – Performance of the quadrotor against the later weight disturbance.

In Figure 5.9 the disturbance estimation is presented. Notice here from t ≥ 2s when the

observer is activated the disturbance is compensated and then the system behavior is barely

affected. However at the same time but with the observer deactivated, the real values of the

disturbances appear and the system performance is harshly degraded. Notice that d̂z have

similar behaviors. This is due the mass was not dropped immediately, for safety reasons, in

the test when the observer was not activated. This fact can be appreciated in the video.

0 2 4 6 8 10 12 14 16

-0.2

0

0.2

0 2 4 6 8 10 12 14 16

-0.5

0

0.5

0 2 4 6 8 10 12 14 16

-0.5

0

0.5

Figure 5.9 – Estimation of the weight disturbance.

130

5.2. Robust control scheme for disturbance rejection

Motor failure

The goal of this experiment, is to analyze the aerial vehicle performance when a motor failure

appears. Several researchers, for this kind of problems, propose solutions based on FTC

algorithms such that, an identification, isolation and compensation of the failure need to be

done. In our case, we propose to solve this problem only using the proposed robust control

scheme. Therefore, a virtual motor failure is considered when reducing its efficiency of the

frontal left motor (M1 in Fig 5.10) in 40%. The desired altitude for this test is zd = 1.5m and the

fault is applied at time t = 4.5s. Observe in Figures 5.11 to 5.13 the vehicle performance when

a motor failure is applied.

f3f1
 f4

f2

mg

zB

yB

z
yI

OI

OB

 M4

 M
 M3

 M2

40%
motor failure

Figure 5.10 – Partial rotor failure in a quadcopter.

0

0.2

0.4

0.6

0.8

1

2

1.2

1.4

1.6

1.8

40 2-2 0
-4-2

Figure 5.11 – Vehicle’s performance in 3D against a rotor failure.

131

Chapter 5. Robust control scheme based on disturbance estimator

In Figure 5.12, the states behavior in the three axes are illustrated. Observe in this figure that

the closed-loop system is harshly affected when the linear controller is used. However, note

that when applying the robust control strategy, the drone performance remains stable. In

Figure 5.13 the disturbance estimation is presented. Notice in this figure in red line, when the

proposed controller is applied, it could be appreciated that no disturbances are presented

because the proposed scheme estimates them considering a desired system performance and

then, compensate this external/internal disturbances. However, a small degradation can be

appreciated in the altitude.

0 2 4 6 8 10 12 14 16 18
0

2

4

0 2 4 6 8 10 12 14 16 18
-4

-2

0

0 2 4 6 8 10 12 14 16 18
0

0.5

1

1.5

Figure 5.12 – Performance of the quadrotor against a rotor’s fault.

0 2 4 6 8 10 12 14 16 18
-1

-0.5

0

0 2 4 6 8 10 12 14 16 18
-1

-0.5

0

0 2 4 6 8 10 12 14 16 18

0

0.2

0.4

Figure 5.13 – Estimation of the rotor failure

132

5.3. Enhancing robust control architecture for LoE in rotors

Moreover, when using a simple feedback controller without the observer, the system is sternly

affected and the vehicle altitude is reduced to 0.2m even if the controller tries to recover

the performance applying more energy to the affected motor, see Figure 5.14. It is worth to

mention that in Fl-AIR framework, the operating range of motors is from 0 to 1. Letting the

control algorithm operates out of these limits can lead to a crash of the vehicle or damage in

the actuators. In addition, 40% was the maximum value of the virtual rotor failure that has

been successfully applied to the proposed robust controller. This leads to the possibility to

improve the performance of the robust control architecture for dealing with these issues.

0 2 4 6 8 10 12 14 16 18

0

0.5

1

1.5

0 2 4 6 8 10 12 14 16 18

0

0.2

0.4

0.6

0.8

1

1.2

Figure 5.14 – Control actions of the motors.

5.3 Enhancing robust control architecture for LoE in rotors

In this section, the challenge will be to design a rotor fault observer for improving the per-

formance of the closed-loop system when using the robust controller addressed in section

5.2. Note from (5.8), in order to compensate external disturbances affecting the vehicle, the

estimation of ~uζ through (5.11) is only necessary, nevertheless, for rotors fault estimation, this

variable needs to be reformulated. In addition, from (5.2) observe that ui is a function of the

motors force fi . We assume, in this work, that the thrust of each propeller is directly controlled

and attached in the z axis of the vehicle, i.e., the blade flapping effect is not considered.

Notice that (5.8) has the same structure that (5.2), therefore, ~un and ~uζ are also vectors of four

components and functions of the forces fi . As stated before, the force i produced by i−th

motor can be computed using its angular rate wMi , such that, fi ≈ k f w2
Mi

. Therefore, it is also

possible to have a relation between the i−th motor and the combination of the control inputs

ui , i : 1...4.

133

Chapter 5. Robust control scheme based on disturbance estimator

This relation is often obtained when the control laws ui need to be transformed into the real

control inputs, i.e., the actuators (motors). For the quadrotor vehicle with parallel motors, we

have

M = H~uR (5.13)

with

M =


M1(t)

M2(t)

M3(t)

M4(t)

 ; ~uR =


u1(t)

u2(t)

u3(t)

u4(t)

=


un1 +uζ1

un2 +uζ2

un3 +uζ3

un4 +uζ4

 ;

and H denotes the allocation control matrix with the form

H =


1 1 1 −1

1 −1 1 1

1 −1 −1 −1

1 1 −1 1


Hence, M can be also separated as M = Mn +Mζ; the first one corresponding for the values

computed with the control law and the second one for the disturbances rejection. Therefore,

Mζ is the vector parameter that should compensate the undesired performances in the vehicle.

Analyzing only the disturbance part, it follows that Mζ = H~uζ. Rewriting it, in the scalar form,

it follows that
Mζ1 = uζ1 +uζ2 +uζ3 −uζ4

Mζ2 = uζ1 −uζ2 +uζ3 +uζ4

Mζ3 = uζ1 −uζ2 −uζ3 −uζ4

Mζ4 = uζ1 +uζ2 −uζ3 +uζ4

(5.14)

From (5.14), observe that ~uζ1 is common for the four rotors and it can be considered as the

altitude disturbance in the vehicle and affects the efficiency of all rotors power at the same

time. Therefore, its contribution for detecting if one motor is losing efficiency is less important.

Nevertheless, notice also from (5.14) that the combination of the terms ~uζ j for j : 2,3,4; has a

severe impact in each rotor. Hence from the previous analysis, it is possible to propose the

following rotors fault estimator

M̂ζ1 = uζ2 +uζ3 −uζ4

M̂ζ2 =−uζ2 +uζ3 +uζ4

M̂ζ3 =−uζ2 −uζ3 −uζ4

M̂ζ4 = uζ2 −uζ3 +uζ4

M̂th = uζ1 .

(5.15)

with M̂ζi is the disturbance parameter estimation for motor i .

134

5.3. Enhancing robust control architecture for LoE in rotors

The analysis of equation (5.15) can be done in two scenarios:

1. without rotors fault (conventional flights), here the values of M̂ζi for i : 1 : 4; are relatively

small but they should not be necessarily null, M̂th is increased and the external and

unknown disturbances can be estimated using only (5.11).

2. with rotors fault, in this scenario the values of M̂ζi for i : 1 : 4; increase, degrading

severally the performance of the vehicle and it can be seen as LoE in motors.

From the vehicle configuration and physical characteristics, observe that if one parameter

of M̂ζi reaches a critical value εm , the control law will not be capable of keeping the vehicle

stable at hover position, and thus, an inevitable crash will arise. This critical value is chosen

such that a minimal main thrust (u1) is required to overcome the weight of the vehicle (mg),

i.e.,

εm = minu1 = mg +δ.

with δ is a small positive constant. Therefore, two flight modes are proposed for scenario (2)

SM : M̂i d ≤ εm ,

EM : M̂i d > εm ,

where SM and EM stand for the safe and emergency modes, respectively.

The enhanced control architecture is depicted in Figure 5.15. d̂ξ and d̂η correspond to the

internal/external disturbances on the position and attitude subsystems and~ξd is the desired

position. ~uR represents the vector control input containing the main thrust and the control

torques respectively. ζi means the external disturbances and εm symbolizes the desired

threshold.

Figure 5.15 – Block diagram of the enhanced control architecture.

135

Chapter 5. Robust control scheme based on disturbance estimator

5.3.1 Numerical and practical validation

The robust control scheme developed in (5.8) and (5.15) were validated in numerical simu-

lations and real-time experiments. The experimental and numerical tests were performed

using Fl-AIR and the quadrotor Ar. Drone 2.0. The control parameters for simulations and

experiments are the same as presented in Table 5.1. A video of the experimental results can be

seen in https://youtu.be/OHoGpP7s12w.

The proposed architecture is validated using the following priorities

• Assuring the attitude stabilization at hover of the aerial vehicle, i.e., ~η→~ηd , where

~η= [θ φ ψ]T ,~ηd defines the desired attitude and ψ, θ and φ are the yaw, pitch and roll

angles, respectively.

• Once the attitude performance is recovered, then ~ξ→~ξd , where ~ξ(t) = [x, y, z]T , ~ξd

denotes the desired position.

For simulations and experimental flight tests and for solving the practical stability of the

vehicle, two flying modes are considered in rotors failures. The first one is called safe mode -

SM or non critical case. Here, the proposed robust architecture can attenuate internal/external

disturbances such as: wind, uncertainties into the model, etc, in such a way that, the practical

stability of the quadrotor can be guaranteed. The non critical case is considered when rotors

faults are less than a desired threshold εm .

The second one, the emergency mode - EM - or critical case, uses the proposed robust scheme

to detect important loss of effectiveness in the rotors and assure a safe landing. The critical

case is activated when rotors failures are greater than εm . In this critical case, one degree of

freedom is lost into the system and the control architecture is reconfigured for maintaining

the aerial drone in flight or ensuring a safe landing. The control reconfiguration is given in

following procedure :

1. The controllability of the yaw angle (ψ) is lost when the rotor failure exceeds the thresh-

old.

2. The vehicle turns along its z axis and the yaw angle rate (ψ̇) is controlled at high velocities

for recovering its practical stability.

3. The practical stability is recovered trying to reach the desired altitude, zd . If zd is not

reached quickly the safe landing is activated.

4. The drone lands in a safe mode.

For simulations and flight tests, the following assumptions are taken into account:

Assumption 6. Physical constraints of the rotors, as damage in the propeller, are also considered

as Loss of Effectiveness.

Assumption 7. Motors are constrained with a maximum value of revolutions per minute (RPM)

for physical safety reasons.

136

https://youtu.be/OHoGpP7s12w

5.3. Enhancing robust control architecture for LoE in rotors

Assumption 8. For the practical validation and keeping the integrity of the prototypes, it is

assumed that only individual partial faults in the actuators are presented in the system, i.e., not

simultaneous rotors fault are considered in this work.

Numerical results

Two rotors fault scenarios are introduced for numerical validation. The first one consists in

apply a LoE in motor M1 into the aerial robot while it is performing a non hover position. For

the second one, a critical rotor failure in M1 is injected when the vehicle is at hover position

and the emergency landing is required.

Rotor fault in a non hover position

The goal of this scenario is to show the performance of the quadrotor, when a rotor fault of

30% in motor M1 is applied while performing a non hover position. The initial and desired

conditions, for this scenario, are the following: ~ξ(t0 = 0) = [−2, 0, 0]T m and~ξd = [3, 0, 2]T m,

respectively, moreover εm = 0.4.

In Figure 5.16 the performance of the vehicle in 3D space when performing the desired task

is addressed. Notice that when using the proposed architecture and the fault is injected, the

whole system overcomes it and converges to the desired final point (solid line). In other case,

when using only ~un , the performance of the vehicle is degraded (dotted line). In other case,

the performance of the vehicle is degraded, as can be verified in Figure 5.17. Notice from this

figure, when the fault is injected at t = 6.5s, the y and z axes are slightly more compromised.

Nevertheless, when using the proposed approach, at t = 7s the quadrotor is recovered and

thus, it can converge to the desired trajectory.

Figure 5.16 – Quadrotor position performance when using a feedback controller and the
proposed architecture.

137

Chapter 5. Robust control scheme based on disturbance estimator

0 2 4 6 8 10 12 14 16 18
-2

0

2

4

0 2 4 6 8 10 12 14 16 18

-1

-0.5

0

0 2 4 6 8 10 12 14 16 18

1.6

1.8

2

Figure 5.17 – Scenario 1.- Performance of the quadrotor subject to a LoE of 30% in M1.

In Figure 5.18 the performance of the proposed rotors faults estimator is shown. It can be

observed that the fault occurs at t = 6.5s. Moreover, the performance of the rotor inputs is

displayed in 5.19. Notice the slightly difference when the scheme is activated or deactivated.

In order to compensate the LoE in motor M1 when using the scheme’s feedback, motor M3

reduces its velocity to maintain the drone flying in the desired path.

0 2 4 6 8 10 12 14 16 18

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Figure 5.18 – Scenario 1.- Performance of the rotor fault estimator M̂ζi , i = 1, · · · ,4.

138

5.3. Enhancing robust control architecture for LoE in rotors

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

6 6.5 7 7.5

0.4

0.6

0.8

6 6.5 7 7.5
0.4

0.6

0.8

30% Fault M
1

30% Fault M
1

Figure 5.19 – Scenario 1.- Control action’s behavior of each of the rotors when using ~un and ~uR

controllers.

A critical rotor fault (emergency mode)

In this scenario the aerial vehicle is at hover at the position~ξ(t0 = 0) = [0, 0, 2]T m. A critical

rotor failure in motor M1, emulated by the loss of 60% of its effectiveness, is introduced in

this scenario at t = 4.5s. Here, the fault exceeds the threshold chosen εm = 0.4, and then, the

control algorithm switches into emergency mode. In the reconfiguration control, the yaw

angle is lost and the desired yaw velocity is chosen as ψ̇d = 10rad/s.

Figures 5.20 shows the performance of the quadrotor subject to a critical rotor failure. From

this figure, notice that when the fault is injected instantaneously the vehicle crashes when

using only the state feedback controller ~un =−K~x. However, when using proposed control

scheme ~uR the quadrotor recovers quickly its altitude (at t = 6s) for then, landing in a safe way.

Figure 5.20 – Position performance of the vehicle subject to a critical failure in M1.

139

Chapter 5. Robust control scheme based on disturbance estimator

In Figure 5.21 the performance of the fault estimator is presented. Notice that the fault is

injected at t = 4.5s and some small oscillations appear are as result of the vehicle is turning on

its own axis. Nevertheless, the estimation has almost reached the exact value of the injected

fault. This can be confirmed in Figure 5.22. Observe in here, the motors M2, M3 and M4 as

a result that the control scheme lost the controllability of the yaw angle. Remark that the

magnitude of the motor M1 is reduced to a maximum of 40% of its effectiveness. Hence, rotors

M2, M3 and M4 change its velocity, even reaching and passing the limits of saturation, in order

to recover the quadrotor subject to the rotor fault.

0 2 4 6 8 10

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 5.21 – Scenario 2.- Performance of the rotor fault estimator M̂ζi , i = 1, · · · ,4.

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

Safe Landing
60% Fault M

1

60% Fault M
1

Vehicle crash

Figure 5.22 – Scenario 2.- Rotors control action’s performances when a critical fault in motor
M1 is applied.

140

5.3. Enhancing robust control architecture for LoE in rotors

Experimental results

In this section, four different motor fault scenarios are introduced to validate in real-time tests

the proposed robust control scheme considering εm = 0.4. Thus, they are defined as follows:

1. A motor fault is applied in different times in each motor (academic example).

2. A motor fault is injected in M1 while the drone is flying to reach a desired position.

3. A critical fault (50% LoE) is induced in a motor when the vehicle is at hover position.

4. A critical fault (60% LoE) is applied in a motor and the emergency landing is applied.

Scenario 1: The academic example

In this scenario, non critical rotors faults are injected into the system, i.e., each 10s a virtual

fault of 30% LoE is applied on each rotor. The goal of this scenario is to show the good accuracy

of the proposed approach to estimate and compensate the virtual fault. The initial conditions

of the system are: x(0) = y(0) = 0 and z = 2 in meters and the goal is to keep the robot at hover

position.

Observe in Figure 5.23 at 3s≤ t ≤ 8s the virtual fault in the rotor M1 was injected. Similarly,

for the motor M2 the fault was induced at 13s≤ t ≤ 18s, then at 23s≤ t ≤ 28s for the rotor M3

and finally at 33s≤ t ≤ 42s in rotor M4. Notice that the proposed architecture is capable to

continue estimating almost the total value of the injected fault, as we proposed in (5.15), even

if the control law is not using the feedback of the proposed scheme.

0 10 20 30 40 50

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0 5 10 15 20 25 30 35 40 45 50

-0.1

-0.05

0

0.05

0.1

0 5 10 15 20 25 30 35 40 45 50

-0.1

0

0.1

0 5 10 15 20 25 30 35 40 45 50
-0.2

0

0.2

Figure 5.23 – Performance of the rotor faults estimator M̂ζi and the disturbance estimations
(5.11) of the attitude system of the quadrotor .

141

Chapter 5. Robust control scheme based on disturbance estimator

Furthermore, in Figure 5.24, when the fault is induced, each motor suffers a degradation on its

performance. Here, it is worth to mention that the operating range of the rotors in Fl-AIR’s

framework is between 0 to 1. Thus, when the rotor fault is injected, its effectiveness is changes

to 0 - 0.7, in this particular scenario. Notice in this figure, that when the fault is injected and

the scheme is active, the rotor reacts faster to compensate this fault and the vehicle converges

to the desired reference. This can be checked in Figure 5.25 in each axis, where the z and x axes

are slightly more penalized when the rotor fault is injected. Notice that according to number

of the rotors, this will affect the performance of the vehicle, moving forward or backward

respectively (positive or negative sign in the graph).

Figure 5.24 – Scenario 1.- Control rotors performance when using the linear controller (top
graph) and the proposed scheme.

0 5 10 15 20 25 30 35 40 45 50

-1

0

1

0 5 10 15 20 25 30 35 40 45 50
-0.5

0

0.5

1

0 5 10 15 20 25 30 35 40 45 50

1.2

1.4

1.6

Figure 5.25 – Scenario 1.- Performance of the quadrotor position subject to a sequence of
rotors failures.

142

5.3. Enhancing robust control architecture for LoE in rotors

Scenario 2: Rotor fault in a non hover position

Most of the aerial robot applications imply long displacements and when a rotor fault occurs

the drone crashes. The goal of the second scenario is to show the performance of the quadrotor

when moving from a point A to a point B and then, a degradation of 30% of the effectiveness

in motor M1 on time t = 6s is virtually induced. For this end, the initial and desired conditions

are as follows ξ(t0 = 0) = [−2, 0, 2]T m and ξd = [3, 0, 2]T m, respectively.

In Figure 5.26 the behaviors of the vehicle in 3D space when performing the desired task, using

two controllers, are introduced. Observe that when the fault is injected and the proposed

architecture is applied, the quadrotor overcomes it and converges to the desired final point.

Otherwise, the performance of the vehicle is degraded, as can be verified in Figure 5.27.

Figure 5.26 – Scenario 2.- Position performance of the vehicle when using the linear controller
and the proposed architecture, and a rotor fault is induced in a non hover position.

0 2 4 6 8 10 12 14 16

-2

0

2

4

0 2 4 6 8 10 12 14 16

-0.4

-0.2

0

0.2

0 2 4 6 8 10 12 14 16
1.6

1.8

2

2.2

Figure 5.27 – Scenario 2.- Performance of the quadrotor position subject to a rotor fault while
moving to a desired position~ξd (t f).

143

Chapter 5. Robust control scheme based on disturbance estimator

In Figure 5.28 the estimation of the motors fault is presented. Notice that the observer keeps

estimating the fault even if it was compensated. Similarly in Figure 5.29 the motor control

input performances are depicted. A slightly difference between these graphs can be seen.

In order to compensate the magnitude of the rotor fault, when using the proposed scheme,

motor M2 immediately switch to zero its velocity to maintain the drone flying in the desired

trajectory.

0 2 4 6 8 10 12 14 16
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

30% fault M
1

Figure 5.28 – Scenario 2.- Rotors faults estimations M̂ζi , i = 1, · · · ,4.

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

1.2

8 10 12 14
0.55

0.6

8 10 12 14

0.6

0.7

0.8

30% fault M
1

30% fault M
1

Figure 5.29 – Scenario 2.- Rotors control action’s performances, when a LoE of 30% in M1 is
applied during a non hover position.

144

5.3. Enhancing robust control architecture for LoE in rotors

Scenario 3: A critical rotor failure: searching for a safe zone for landing

When a quadrotor is performing a task and a critical rotor fault occurs is not always possible

to land safely. The goal of this test is to present the performance of the vehicle when a critical

fault appears while it is flying in zones where, a safety landing immediately is not possible.

Thus, searching for a safe zone must be done. For that, suppose the quadrotor is located at
~ξ(t0 = 0) = [0,0,2]T m, and a virtual fault of 50% of LoE in the motor M1 is introduced. Then,

according to the control reconfiguration procedure, the control law switches to the emergency

mode. Here, the position yaw control is lost and only the yaw rate can be controlled. Once the

drone attitude is recovered, it reaches quickly its desired altitude zd and then a safe set-point;
~ξd = [2,0,2]T m, is sent to the quadrotor simulating a coordinate where the vehicle can be

landed in safety mode.

In Figure 5.30 the 3D performance of the vehicle when a critical fault injected in motor M1

is depicted. Notice here that, on the one hand, when the fault is injected, the state feedback

controller is not enough to compensate it and the system performance is harshly degraded,

making the drone crashes (dotted line). On the other hand, when the aerial drone is flying with

the proposed control scheme, its performance is barely degraded such that, safe displacements

and safe landings are possibles.

Figure 5.30 – Scenario 3.- Performance of the vehicle when applying a motor fault of 50% and,
two different controllers are used.

Figure 5.31 presents the behavior of the vehicle in the three axes when the fault in motor M1 is

injected. Observe that, when the virtual rotor fault is injected, the performance of the vehicle

when using the state feedback controller is degraded. However, in the same figure in the z−
axis at 4s≤ t ≤ 6s, note that when using the proposed scheme the performance of the drone is

barely degraded.

145

Chapter 5. Robust control scheme based on disturbance estimator

The variations in the x and y axis are due the quadrotor is turning on its own axis and simul-

taneously, controlling the error position. The safe reference is sent at t = 12s and once the

vehicle arrives, the safe landing can be achieved. The performance of the proposed rotor

fault estimator is shown in Figure 5.32. From this figure we can corroborate that the fault was

injected at t = 4.5s and the well performance of the rotor fault observer when estimating the

failure.

0 2 4 6 8 10 12 14 16 18 20

0

1

2

0 2 4 6 8 10 12 14 16 18 20

-0.5

0

0.5

0 2 4 6 8 10 12 14 16 18 20
0

1

2

Safe Landing
Vehicle Crash

50% Fault M
1

50% Fault M
1

Safe displacement

Figure 5.31 – Scenario 3.- Performance of the quadcopter position subject to a critical rotor
fault of 50% in M1.

0 5 10 15 20

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 5.32 – Scenario 3.- Rotors faults estimations M̂ζi , i = 1, · · · ,4.

146

5.3. Enhancing robust control architecture for LoE in rotors

In Figure 5.33 the performances of the motors Mi subject to a rotor fault of 50% of LoE in

M1 are depicted. Notice that, once the fault is injected, the effectiveness range in motor M1

is reduced 50%, in addition, remark that the motor M4 turns off for some milliseconds (for

compensating M1) and, motors M2 and M3 increases its velocity to make possible the yaw

velocity control.

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1
Moving into a safe zone Safe Landing

Vehicle Crash
50% Fault M

1

50% Fault M
1

Figure 5.33 – Scenario 3.- Rotors control action’s performances, when a critical fault of 50% in
M1 is applied.

Scenario 4: A critical rotor fault with emergency landing

An emergency landing is a prioritized flight mode made by an aircraft in response to an

imminent or ongoing threat, e.g. rotors failures, in order to keep the safety operation of the

vehicle. This scenario shows the performance of the drone when a LoE of 60% is induced in

a motor. Thus, the scenario is set as follows: the drone is flying at hover ξ= [0,0,2]T m, this

position is taken as its initial position ξt0=0, at time t = 3.9s the virtual failure in M1 is applied

and the vehicle performance degraded.

Notice from Figure 5.34 that when using only the linear controller the robot performance

is instantly degraded and it crashes (dotted line). Nevertheless, when using the proposed

architecture, the rotor fault observer estimates the motor fault that is compared with the

threshold. As the threshold is overpassed, the control scheme switches into the emergency

mode. This allows to recover the quadrotor attitude performance and the desired altitude.

Nevertheless the aerial robot begins to lose altitude and then the condition for an emergency

landing is activated. And thus at the end, the quadrotor lands safely (solid line).

147

Chapter 5. Robust control scheme based on disturbance estimator

Figure 5.34 – Scenario 4.- Position performance of the vehicle when using the linear controller
and the proposed architecture, and a critical rotor fault is induced.

In Figure 5.35 the estimations of M̂ζi are depicted. Notice here that their values oscillate

after time t = 4.2s and they are produced when the aerial robot is turning in its vertical axis.

Moreover, in Figure 5.36 the motors performances are illustrated. Notice that M1 has 40% of

tis effectiveness when the failure is applied, and then M4 stops working for short intermittent

milliseconds for compensating effectiveness in M1. Observe also that M2 and M3 increase

their effectiveness to recover the main thrust and recover the desired altitude, nevertheless it

produces that the vehicle turns in its vertical axis.

0 1 2 3 4 5 6 7 8 9

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 5.35 – Scenario 4.- Rotors faults estimations M̂ζi , i : 1, · · · ,4.

148

5.3. Enhancing robust control architecture for LoE in rotors

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

Safe Landing

Crash

60% Fault M
1

60% Fault M
1

Figure 5.36 – Scenario 4.- Rotors control action’s performances, when a critical fault of 60% in
M1 is applied.

5.3.2 Discussion

In this section, we have carried out a performance analysis, with the three experimental

scenarios, of the advantages of the proposed architecture with respect to use only the linear

controller. For this purpose, the performance indices and a qualitative comparison of the

controllers are obtained. The performance indices are the Integral Absolute Error (IAE), and

the Root Mean Square Error (RMSE). A summary of the analysis of the three experimental tests

is presented in Table 5.2. It is worth to mention that, all the experiments were developed using

the same control gains, i.e., re-tuning these variables was not needed. Concerning the steady

state regime, from table results, it can be observed that the proposed robust control scheme

achieves the best performance in all the axes. Nevertheless, it is true that is possible to have a

better performance for the linear controller but in this case, re-tuning the control variables

most be done for each experiment.

Table 5.2 – Performance indices of the three scenarios.

Scenario 1 Scenario 2 Scenario 3
IAE RMSE IAE RMSE IAE RMSE

z
uq 3.34 0.19 i n f i n f i n f i n f
ū 0.39 0.04 1.52 0.41 1.8 0.35

x
uq 13.02 1.18 i n f i n f i n f i n f
ū 5.29 1.02 5.55 0.46 2.17 0.24

y
uq 6.01 0.38 i n f i n f i n f i n f
ū 0.35 0.04 1.49 0.22 0.98 0.09

149

Chapter 5. Robust control scheme based on disturbance estimator

Regarding the design, tuning and the implementation effort, the linear controller is easier

to tune because its structure can be seen as a simple controller. However, the proposed

scheme is composed mainly of an observer, a simple reference model of the vehicle and a

band-pass filter. All these parameters need to be obtained experimentally in order to have

a good approximation of the system. Nevertheless, once the observer is well-tuned for the

prototype, it can be used with almost all kind of controllers. The advantage of using the

proposed scheme is that it contains an immediate and smooth control action when undesired

dynamics appears, especially rotors fault. This can be verified in Table 5.2, column two and

three, where it can be observed that, using only a linear controller, when a critical rotor fault is

injected, it wont be enough to overcome it.

For that, the good performance of the system is guaranteed when critical fault occurs and the

proposed control scheme is being used. Nevertheless, as all kind of control schemes, there

are some limitations that are related with the physical characteristics of the prototype. For

example, we have observed from real-time flight tests that when injecting critical faults more

than 70%, the observer sends the respective compensation which exceeds the capacity of

effectiveness of all the motors, such that the quadrotor becomes unstable. This is mainly due

the fact, the observer does not take into account the limit of operating range of the rotors. In

addition, we have analyzed the Total Variation (T V) of the control input (T V =∑i=∞
i=1 |ui+1−ui |)

as a measure of the control effort. This index can easily show the aggressively of the controller

and can be seen as a measurement of the used energy by the control action. In Table 5.3,

scenario 1, the T V of the first experiment is presented.

Table 5.3 – Total Variation (TV) of the control inputs.

Scenario 1

u2 u3 u4 u1 M1 M2 M3 M4

uq 26.80 39.43 95.11 4.72 64.68 116.12 54.06 89.43
ū 46.62 65.33 112.80 6.52 76.10 150.75 58.20 117.04

Scenario 2

u2 u3 u4 u1 M1 M2 M3 M4

uq
i n f

(17.35)
i n f

(29.13)
i n f

(32.59)
i n f

(4.70)
i n f

(26.36)
i n f

(29.28)
i n f

(34.76)
i n f

(29.47)

ū
30.03

(21.54)
68.45

(32.14)
89.03

(40.61)
10.33
(6.07)

58.05
(31.39)

76.19
(37.62)

69.95
(36.02)

114.97
(40.80)

Scenario 3

u2 u3 u4 u1 M1 M2 M3 M4

uq
i n f

(10.42)
i n f

(11.78)
i n f

(17.54)
i n f

(1.12)
i n f

(9.67)
i n f

(20.91)
i n f

(16.73)
i n f

(15.56)

ū
26.31

(12.31)
32.52

(14.90)
38.88

(18.68)
4.45

(1.98)
24.22

(12.75)
53.78

(27.51)
34.06

(20.09)
37.66

(18.64)

150

5.3. Enhancing robust control architecture for LoE in rotors

Remark from Figure 5.37, a similar performance of both controllers is encountered. Neverthe-

less, the ~un controller has a lower T V because the designed controller is not aggressive as the

~uR , but with the lack of the disturbance rejection property, since the ~un cannot deal with the

set-point tracking problem in the presence of faults.

0 2 4 6 8 10 12 14 16

0

0.5

1

0 2 4 6 8 10 12 14 16
-0.5

0

0.5

1

Figure 5.37 – Control inputs ~un and ~uR of the first scenario.

Moreover, based on the performance of the control laws depicted in Figure 5.38, the T V of the

second experiment is presented in Table 5.3, scenario 2. In contrast to the previous cases, the

~un controller presents an infinity T V when the fault was injected since the system becomes

unstable. This is mainly due to the fact that, the control algorithm is not robust enough to

reject this kind of disturbances. However, the~uR control can overcome the fault, even continue

flying safely, thus, the safe landing can be carried-out.

0 1 2 3 4 5 6 7 8
-2

-1

0

1

0 2 4 6 8 10 12 14 16 18 20
-1

-0.5

0

0.5

1

Figure 5.38 – Control inputs ~un and ~uR of the second scenario.

151

Chapter 5. Robust control scheme based on disturbance estimator

Finally, in Table 5.3, scenario 3, the T V of the last experiment is provided. In this experiment,

an aggressive fault was introduced, as can be observed in Figure 5.39. Therefore, the ~un

controller is not able to continue flying and thus, it becomes unstable such that, the T V

becomes infinity. Nevertheless, the ~uR controller is able to overcome this problem since is

prepared to deal with this kind of high disturbances. We show in parenthesis, the T V of these

last two experiments, before the faults were injected.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.5

0

0.5

0 1 2 3 4 5 6 7 8 9 10

-2

-1

0

1

Figure 5.39 – Control inputs ~un and ~uR of the third scenario.

5.4 Enhancing robust control architecture for handling rotor’s con-

straints

Notice that equation (5.13) represents the real robust control input applied to the actuator

Mi for controlling the aerial vehicle. Moreover and as stated before, rotors have physical

constraints that can be seen as the limit of operating speed range σ̄i andσi which describes the

upper and lower bound of the i − th motor, respectively. This brings out a non trivial problem

with respect to, when is needed to saturate a controller or when is not. To make this clear let

us introduce two cases; assuming the upper and lower bound of motors are σ̄i = 1, σi = 0

respectively, and considering the control action as ~uR = [0.80 0.05 0.05 0.05]T , this produce the

control actions of motors M = [0.95 0.75 0.75 0.85]T . Nevertheless, if~uR = [0.80 0.15 0.05 0.05]T ,

gives M = [1.05 0.65 0.85 0.95]T .

Therefore notice that even if the values of ~uRi are almost the same for both cases, it is not

obvious if actuators could be or not saturated, since that to saturate the actuators, it will

depend of the set of control inputs and not only in one in particular. A popular solution

is to bound each control input, ~uRi , however, this is not at all an efficiently solution since,

bounding the control input does not means that one of the actuators has not been saturated.

For avoiding that, it is necessary to compute a set of the optimal bounded control inputs, ~u∗
R ,

from ~uR .

152

5.4. Enhancing robust control architecture for handling rotor’s constraints

Hence, ~u∗
R can be obtained as

~u∗
R =~δT

M~uR . (5.16)

where ~δT
M = [δ1 δ2 δ3 δ4] with δi defining a factor for fulfilling the rotors constraints. The

bounds for the motors control inputs can be find solving the following quadratic problem

min
~δM

1

2
~δT

MQ~δM +~cT ~δM (5.17)

st . AM
~δM ≤~b (5.18)

where Q,~c, AM ,~b are matrices and vectors that will be defined later.

For computing matrices and vectors in (5.17) and (5.18), the following cost-to-go function can

be defined

fo =
4∑

i=1
Qi (~uRi −~u∗

Ri
)2, (5.19)

where Qi is a weight value penalizing the control input ~uRi . Developing the above equation, it

follows that

fo =
4∑

i=1
Qi (~u2

Ri
−2δi~u

2
Ri
+δ2

i ~u
2
Ri

). (5.20)

From (5.20), note that the term ~u2
Ri

does not affect to find the minimum of the quadratic

problem, thus, it can be neglected. Rewriting the above equation in matrix form, it yields

f o = 1

2
~δT

MQ~δM +~cT~δM

with

Q =


Q1u2

R1
0 0 0

0 Q2u2
R2

0 0

0 0 Q3u2
R3

0

0 0 0 Q4u2
R4

 , ~c =


−Q1u2

R1

−Q2u2
R2

−Q3u2
R3

−Q4u2
R4

 .

Let now introduce the constraints in the motors control input with the form σi ≤ Mi ≤ σ̄i ,

where σ̄i and σi are the upper and lower bounds of the motors, respectively. Moreover, define

u∗
R0 as the equilibrium point of the aerial robot at hover position, in other words, the u1 needed

to compensate the weight of the vehicle.

For finding the condition (5.18), consider the case of the motor M1 ≤ |σ̄1|. Thus, taking into

account the weight compensation u∗
R0 and using (5.13) with the optimal value of ~uR as in

(5.16), it follows that

|
4∑

i=1
±δi~uRi | ≤ |σ̄1|−u∗

R0. (5.21)

153

Chapter 5. Robust control scheme based on disturbance estimator

Then, following the same procedure for the rest of motors and rewriting them in a matrix form,

it follows that (5.18) can be founded with

AM =



+uR1 +uR2 +uR3 −uR4

+uR1 −uR2 +uR3 +uR4

+uR1 −uR2 −uR3 −uR4

+uR1 +uR2 −uR3 +uR4

−uR1 −uR2 −uR3 +uR4

−uR1 +uR2 −uR3 −uR4

−uR1 +uR2 +uR3 +uR4

−uR1 −uR2 +uR3 −uR4


,~b =



σ̄1 −u∗
R0

σ̄2 −u∗
R0

σ̄3 −u∗
R0

σ̄4 −u∗
R0

−σ1 +u∗
R0

−σ2 +u∗
R0

−σ3 +u∗
R0

−σ4 +u∗
R0


. (5.22)

Thus using (5.16) with constraints (5.17) and (5.18), it is possible to find the set of optimal

bounded values of ~uR . The proposed enhanced bounded robust control architecture is de-

picted in Figure 5.40

-

Disturbance
 Observer

 Control
Strategy

Figure 5.40 – Block diagram of the control structure. ~un and ~uζ correspond to the the nominal
control action and the control rejection part, respectively, ξd is the desired reference. ~ξ,~η
mean the position and attitude states. ~uR and ~u∗

R represent the proposed controller and the
set of its optimal and bounded values, respectively. The quadratic problem block deals with
the motors constraints and ζi represents external disturbances.

5.4.1 Experimental results of bounded control

The practical goal of these experiments is to validate the proposed control architecture. For

better illustrate the good performance of the optimal bounded robust controller (5.16), it is

compared, in two scenarios, with respect to its nominal form (5.8). It is worth to mention that

both algorithms have a low computational cost, which permits to be implemented in low cost

CPU. The experimental tests are performed in a quadrotor vehicle AR Drone 2 using the open

source Fl-AIR. The optimal control problem described by (5.17), (5.18) was solved using the

Goldfarb-Idnani algorithm [189] and implented based on the open source code uQuadProg

[190]. The control parameters for the experimental validation are the same as presented in

Table 5.1.

154

5.4. Enhancing robust control architecture for handling rotor’s constraints

First scenario: aggressive wind-gust

Most of the aerial robot applications are developed in outdoors environments where robust-

ness with respect to wind is a primary task. The goal of the first scenario is to show the

performance of the quadcopter while it is at hover, subject to aggressive constant and inter-

mittent wind-gust. For this end, a leaf blower Bosch AVS1 was used to emulate external wind

gust with an airflow speed of 60km/h and placed at 1.5m from the quadrotor, see Figure 5.41.

The hover position is at: x(0) = 0, y(0) = 0, z(0) = 1, all in meters. A video of the experimental

results can be seen in https://youtu.be/6Fhjyb1JVXY.

Figure 5.41 – Set-up of the wind-gust scenario.

In Figure 5.42 the performance of the vehicle in 3D space subject to high wind-gust is intro-

duced. Notice the better performance of the proposed bounded control architecture ~u∗
R with

respect to ~uR . The position behavior of the drone is depicted in Figure 5.43. In the experiment

the wind-gust was directed to the y−axis the firsts 20s. Note that both approaches suffer a

degradation in their performance, nevertheless it is clear that when using ~u∗
R , this degradation

(especially in z) is smoother, see Figure 5.44.

Figure 5.42 – Scenario 1.- System performance during flight tests.

155

https://youtu.be/6Fhjyb1JVXY

Chapter 5. Robust control scheme based on disturbance estimator

Figure 5.43 – Scenario 1.- Performance of the quadrotor position subject to wind-gust.

0 10 20 30 40 50 60 70

-50

0

50

0 10 20 30 40 50 60 70
-40

-20

0

20

0 10 20 30 40 50 60 70

-20

0

20

40

Figure 5.44 – Scenario 1.- Attitude Performance of the quadrotor system subject to wind-gust.

156

5.4. Enhancing robust control architecture for handling rotor’s constraints

Figures 5.45, 5.46 depict the performance of the disturbance estimator and the motors control

input. Notice that these both figures are extremely related. This due to the fact that the

disturbance estimator sends the compensation (see Figure 5.45) without knowing the motor’s

constraints (for ~uR). This makes the control motors inputs exceed their limits (see Figure

5.46 in 18s≤ t ≤ 22s, then in 28s≤ t ≤ 32s and 48s≤ t ≤ 52s). However, when the vehicle is

controlled by ~u∗
R , the aforementioned problem does not appear.

0 10 20 30 40 50 60 70
-0.5

0

0.5

1

0 10 20 30 40 50 60 70
-1

-0.5

0

0.5

0 10 20 30 40 50 60 70
-1

-0.5

0

0.5

Figure 5.45 – Scenario 1.- Attitude disturbance estimations.

Figure 5.46 – Scenario 1.- Performance of the motor control actions.

157

Chapter 5. Robust control scheme based on disturbance estimator

Second scenario: loss of effectiveness in rotors when performing a trajectory

Conducting electrical inspections with drones has been an application developed through the

last years. In this kind of tasks, the vehicle needs to be robust with respect to many factors,

as wind-gust, possible loss of effectiveness in rotors (repetitive tasks), among others. The

goal of the second scenario is to show the performance of the quadrotor when two LoE in

motors M1 and M2 occur while performing a desired trajectory emulating conduct electrical

inspection. In this experiment, the efficiency in M1 is reduced 40% at time t ∼ 28s and, later,

at time t ∼ 44s, the efficiency in M2 is reduced 20%.

An helical trajectory with the form xr (t) = t , yr (t) = a sin(t) and zr (t) = a cos(t) was chosen as

desired trajectory, where a indicating the radius of the circumference. The initial conditions

are defined as ξr (0) = [−1, 1, 2]T in meters. A video of this experiment can be seen at https:

//youtu.be/CTBkhfcTYXc.

Figures 5.47- 5.49 show the performance of the quadcopter, while tracking a desired trajectory

subject to LoE in two rotors. The behavior of the vehicle in 3D space is presented in Figure 5.47.

Notice from this figure that when the first LoE (40%) in rotor M0 was injected, the practical

stability, when using ~uR , is compromised perturbing the drone. Moreover, this controller was

not capable of assuring the stability of the system and therefore, it was not possible to apply

the second LoE in rotor M1 because the aerial robot crashed. Nevertheless, when using ~u∗, the

quadrotor can continue tracking the desired reference and even tough, compensate a second

LoE (20%) in rotor M1 at time t ∼ 44s.

Figure 5.47 – Scenario 2.- 3D state performances in flight tests.

158

https://youtu.be/CTBkhfcTYXc
https://youtu.be/CTBkhfcTYXc

5.4. Enhancing robust control architecture for handling rotor’s constraints

Figures 5.48, 5.49 introduce the behavior of the disturbance estimation and the motor control

inputs. Observe from these figures that when using ~u∗
R , the vehicle suffers a small degradation

on their performance without exceeding the physical constraints of the motors and even

tough, it can overcome the second LoE around t ∼ 44s allowing to continue tracking the

desired reference and landing safely.

0 10 20 30 40 50 60
0

2

4

0 10 20 30 40 50 60
0

2

4

0 10 20 30 40 50 60
-4

-2

0

40% LoE

M
1

20% LoE

M
2

Vehicle crashes after

40% LoE in M
1

Figure 5.48 – Scenario 2.- Performance of the attitude disturbance estimation.

Figure 5.49 – Scenario 2.- Behavior of motor control actions.

159

Chapter 5. Robust control scheme based on disturbance estimator

5.5 Robust control architecture conclusions

The goal of this chapter was to introduce a robust control architecture based on disturbance

estimator. The scheme is composed of a linear/nonlinear controller and an observer to give

robustness to the closed-loop system with respect to nonlinear uncertainties and external

disturbances. Three experiments were performed to validate the proposed architecture: facing

small airflow speed, adding charge in the quadcopter and LoE in a rotor. The experimental

results have shown the good performance of the architecture facing the aforementioned

scenarios. Nevertheless, if wind gust or reduced LoE in rotors are applied, this can lead to the

damage of actuators or make the aerial drone to become unstable.

A novel robust fault tolerant control scheme was obtained enhancing the control strategy

previously discussed. The difference from the first scheme is that, this novel architecture

contains a rotors fault observer to detect and estimate the loss of effectiveness in actuators.

Simulations and experimental tests were carried-out for validating the performance of the

proposed scheme: a rotor failure in a non hover position, a critical rotor fault with safe

displacement and emergency landing and, a critical rotor fault with forced landing. The

maximum value of LoE in rotors that the architecture counteracted was 30% and 60% for non

hover and hover positions, respectively. This is occurs for three reasons. The compensating

parameter ~uζ is not aware of the limits of the rotors and therefore it sends a large value to

counteract the fault. The other one is related with the physical constraints of the actuators

and their operating velocity range. The last one and perhaps more importantly, because

the architecture is not based on classical fault tolerant controls which are integrated with a

reconfiguration control block. Nevertheless, the analysis of the experimental and simulations

results have shown the high performance capacity on rotor faults rejection and smooth

convergence with low computational cost.

Finally, a bounded robust control architecture was developed from the disturbance observer

and optimal control properties. Besides estimating and compensating unknown dynamics,

this scheme improves its robustness by solving the physical constraints of the motors. The

resultant controller avoids damaging the actuators of the system such that, its stability is

guaranteed for a class of perturbations. The proposed architecture was validated in practice

in two different scenarios: applying several wind-gust while the vehicle was hovering and,

LoE in two motors while performing a desired trajectory. From these experiments, a high

performance and smoother convergence can be obtained when using~u∗
R . The aforementioned

is the result of scaling the values of the compensating parameter, as well that of the control

input into the motors constraints value. In other words, solving these constraints as a quadratic

problem. In addition, regardless the computational limitations of the embedded system, the

proposed architecture has low computational cost even when solving the quadratic problem.

160

Part VIChapter 6

161

6 Conclusions

In this thesis the problem of robustly tracking moving targets has been investigated. The

contributions herein reported have been focused on the three objectives: i.) Introducing a

unified and accessible analysis of control strategies aimed at solving the stabilization and

tracking problems, ii.) exhibiting novel autonomous and semi-autonomous navigation al-

gorithms capable of following individual targets and iii) improving disturbance rejection

performance with several types of perturbations as well overcoming the implementation

issues of conventional strategies.

The first goal has been achieved introducing popular controllers: nonlinear and linear back-

stepping and bounded state; virtual controllers based on hyperbolic functions, nonlinear

backstepping based on the quaternion formalism and the finite-time convergence based on

the well-known SMC. The second goal has been pursued by exploring navigation algorithms

based on Model Predictive Control, vector field in cooperation with a vision algorithm based

on the well-known optical flow and Kalman filter techniques and, a novel interaction Drone

Exocentric Advanced Metaphor (DrEAM) relying on virtual reality properties. Finally, the last

goal has been reached by exploiting the so-called uncertainty disturbance estimator, which

has gained popularity over the past years. This strategy has been enhanced to deal with loss of

effectiveness in rotors as properly handling rotor’s constraints.

The performance of the studied control methodologies for solving the stabilization and track-

ing problem has been proved in Chapter 3. These results guarantee from a mathematical

standpoint that the increment in complexity of the controller is paid back in terms of per-

formance. In practice, not only the achievable performance has to be taken into account,

but also the simplicity when tuning the controller. From these results, we conclude that

linear backstepping controller is the simplest one to analyze and implement. This is as a

consequence of assuming that the dynamic model is linear and therefore, the tuning process

and implementation can be seen as a classic PD.

163

Conclusions

In Chapter 4 the performance of the explored navigation algorithms is addressed. The first

result relies on the optimal trajectory generation based on the target’s position.The optimal

problem was solved without constraints and considering lower values of Hp for avoiding

computational issues. An interesting improvement would be to consider in a new prototype

for implementing the algorithm alongside the input and output constraints. In addition,

using polynomial trajectories and the target model should improve the performance for

reaching a target. The second one shows the resultant path of a quadrotor immersed into a

visual velocity field that converges to the ideal 2D mobile robot’s velocity field. For avoiding

mismatching when looking for the centroid of the target, the algorithm is restricted to a

maximum number of features. Moreover, the ground robot must to remain in the FoV of

the airborne camera, with smooth displacements. A reasonable continuation of this work

is considering the frontal camera of the quadrotor for tracking flying objects. Furthermore,

considering the use of a predictive model of the target for anticipating its movements should

improve the performance of the control algorithm. The last navigation algorithm result is

referred to the easy maneuverability and controllability of a real drone, when a user was

controlling it by means of a virtual environment. In addition, a reduction of the cognitive

overload was observed when using the virtual proposed architecture. The extension of the

architecture for other types of robots and the analysis of time delays in the communication

could be a feasible line of research in the future of telerobotics field.

The performance improvement of a robust control architecture equipped with a disturbance

observer and a nonlinear/linear controller has been introduced in Chapter 5. This is a remark-

able result of this thesis in which, asymptotic trajectory tracking and rejection of disturbances

with unknown dynamics was achieved, while guaranteeing a prescribed level of attenuation of

unmodeled disturbances. The proposed architecture has been rigorously tested with different

kind of perturbations which are related with many aerial applications. Besides to be robust

towards unmodeled disturbances, this scheme is capable to handle rotors faults without a re-

configuration block as traditional FTC does it. Furthermore, high performance and smoother

convergence can be obtained when using a bounded control ~u∗
R subject to several wind gust.

Additionally, the tuning of the primary controller can be performed using conventional design

techniques, while the observer is adjusted to reach a trade-off between disturbance rejec-

tion performance and robustness. This is a highly celebrated feature for control engineers

because, in practice, not only the achievable performance has to be taken into account, but

also the simplicity when tuning the controller. A reasonable continuation of this work is to

analyze the system performance when considering outdoors experiments using a GPS as well

exploring the introduction of time delays. Some primary ideas have been proposed combining

disturbance observers with sequential predictor controllers but further development has to

be performed.

164

A Publications

International journals

1. J. Betancourt-Vera, P. Castillo and R. Lozano, Stabilization and tracking control algo-

rithms for VTOL aircraft: Theoretical and practical overview, Journal of Intelligent and

Robotic Systems, 100, 1249–1263 (2020).

2. J. Betancourt-Vera, B. Wojtkowski, P. Castillo, and I. Thouvenin, Exocentric control

scheme for robot applications: An immersive virtual reality approach, IEEE Transactions

on Visualization and Computer Graphics, *submitted in 2020.

3. V. Balaguer, J. Betancourt-Vera, P. Castillo, P. García and R. Lozano, Robust fault tolerant

architecture based on the Uncertainty and Disturbance Estimator: a case study in a

quadrotor system, IEEE Transactions on Aerospace and Electronic Systems, *submitted

in 2021

International conferences

1. J. Betancourt-Vera, V. Balaguer, P. Castillo, P. García and R. Lozano, Robust linear control

scheme for nonlinear aerial systems: an experimental study on disturbance rejection,

IEEE ITSC, September 20 - 23, 2020, Rhodes, Greece.

2. A. Sánchez-Orta, P. Castillo , F. Oliva-Palomo, J. Betancourt-Vera, V. Parra-Vega, L.

Gallegos-Bermudez, and F. J. Ruiz-Sanchez, Aerial Following of a Non-holonomic Mobile

Robot subject to Velocity Fields: A Case Study for Autonomous Vehicles Surveillance,

ICUAS, September 1-4, 2020, Athens, Greece.

3. J. Betancourt-Vera, P. Castillo, R. Lozano, B. Vidolov, Robust control scheme for trajec-

tory generation and tracking for quadcopters vehicles: Experimental results, ICUAS,

June 12 - 15, 2018, Dallas, TX, USA.

4. J. Betancourt-Vera, V. Balaguer, P. Castillo, P. García and R. Lozano, Bounded robust

165

Appendix A. Publications

control scheme for quadcopter vehicles, IEEE CDC 2021, 13-15 Dec 2021, Austin Texas,

*submitted in 2021

Scientific activities

1. C. de Souza Jr, J. Betancourt-Vera, P. Castillo, R. Lozano, Trajectory and Estimation

for low cost drones in outdoor environment, Journeée Reégionale des Doctorants en

Automatique, July 3, 2018, Amiens, France. Poster.

2. Journée Nationales sur ROS, Toulouse, 2018

3. Fête de la science, UTC, Compiègne, 2017, 2018.

Preparing for submission

1. J. Betancourt-Vera, P. Castillo, V. Balaguer, P. García and R. Lozano, Bounded control

algorithms for quadcopter vehicles: Theoretical and practical overview in disturbance

rejection.

2. J. Betancourt-Vera, P. Castillo, E. Ibarra Jimenez, R. Lozano, Autonomous catching ball

using a quadcopter vehicle: an integral sliding mode approach

166

Bibliography

[1] Dreamstime. url: https://www.dreamstime.com. Accessed 20-04-2020.

[2] Edwin Vattapparamban, Ismail Guvenc, Ali I. Yurekli, Kemal Akkaya, and Selcuk Ulua-

gac. Drones for smart cities: Issues in cybersecurity, privacy, and public safety. 2016

International Wireless Communications and Mobile Computing Conference, IWCMC

2016, pages 216–221, 2016.

[3] Andrew Zulu and Samuel John. A review of control algorithms for autonomous quadro-

tors. arXiv preprint arXiv:1602.02622, 2016.

[4] Jesse Stafford. How a quadcopter works| clay allen. University of Alaska, Fairbanks.

Retrieved, 20, 2015.

[5] Hamid Menouar, Ismail Guvenc, Kemal Akkaya, A Selcuk Uluagac, Abdullah Kadri,

and Adem Tuncer. Uav-enabled intelligent transportation systems for the smart city:

Applications and challenges. IEEE Communications Magazine, 55(3):22–28, 2017.

[6] Chad Kerr, Raed Jaradat, and Niamat Ullah Ibne Hossain. Battlefield mapping by an un-

manned aerial vehicle swarm: Applied systems engineering processes and architectural

considerations from system of systems. IEEE Access, 8:20892–20903, 2020.

[7] R. T. Ogan, D. Lott, and W. Paden. Electrical transmission line inspection using un-

manned aircraft. In 2019 SoutheastCon, pages 1–7, 2019.

[8] S. Sudhakar, V. Vijayakumar, C. Sathiya Kumar, V. Priya, Logesh Ravi, and V. Subra-

maniyaswamy. Unmanned aerial vehicle (uav) based forest fire detection and moni-

toring for reducing false alarms in forest-fires. Computer Communications, 149:1–16,

2020.

[9] Malavika Bhaskaranand and Jerry D. Gibson. Low-complexity video encoding for uav

reconnaissance and surveillance. In 2011 - MILCOM 2011 Military Communications

Conference, pages 1633–1638, 2011.

[10] Teodor Tomic, Korbinian Schmid, Philipp Lutz, Andreas Domel, Michael Kassecker,

Elmar Mair, Iris Lynne Grixa, Felix Ruess, Michael Suppa, and Darius Burschka. Toward

167

Bibliography

a fully autonomous uav: Research platform for indoor and outdoor urban search and

rescue. IEEE Robotics Automation Magazine, 19(3):46–56, 2012.

[11] Jianxing Liu, Chengwei Wu, Zhenhuan Wang, and Ligang Wu. Reliable filter design

for sensor networks using type-2 fuzzy framework. IEEE Transactions on Industrial

Informatics, 13(4):1742–1752, 2017.

[12] Patrick Doherty and Piotr Rudol. A uav search and rescue scenario with human body

detection and geolocalization. In Mehmet A. Orgun and John Thornton, editors, AI

2007: Advances in Artificial Intelligence, pages 1–13, Berlin, Heidelberg, 2007. Springer

Berlin Heidelberg.

[13] Hyon Lim and Sudipta N. Sinha. Monocular localization of a moving person onboard

a quadrotor mav. In 2015 IEEE International Conference on Robotics and Automation

(ICRA), pages 2182–2189, 2015.

[14] Roohul Amin, Li Aijun, and Shahaboddin Shamshirband. A review of quadrotor

UAV: control methodologies and performance evaluation. International Journal of

Automation and Control, 10(2):87–103, 2016.

[15] Weihua Zhao and Tiauw Hiong Go. Quadcopter formation flight control combining MPC

and robust feedback linearization. Journal of the Franklin Institute, 351(3):1335–1355,

2014.

[16] Giuseppe Loianno, Chris Brunner, Gary McGrath, and Vijay Kumar. Estimation, Control,

and Planning for Aggressive Flight With a Small Quadrotor With a Single Camera and

IMU. IEEE Robotics and Automation Letters, 2(2):404–411, 2017.

[17] Hossein Beikzadeh and Guangjun Liu. Trajectory tracking of quadrotor flying manipu-

lators using l1 adaptive control. Journal of the Franklin Institute, 355(14):6239 – 6261,

2018.

[18] W. Lei, C. Li, and M. Z. Q. Chen. Robust adaptive tracking control for quadrotors by com-

bining pi and self-tuning regulator. IEEE Transactions on Control Systems Technology,

27(6):2663–2671, Nov 2019.

[19] Stanislav Tomashevich and Andrey Belyavskyi. Passification based simple adaptive

control of quadrotor. IFAC-PapersOnLine, 49(13):281 – 286, 2016. 12th IFAC Workshop

on Adaptation and Learning in Control and Signal Processing ALCOSP 2016.

[20] J. Santiaguillo-Salinas, M.A. Rosaldo-Serrano, and E. Aranda-Bricaire. Observer-based

time-varying backstepping control for parrot’s ar.drone 2.0. IFAC-PapersOnLine,

50(1):10305 – 10310, 2017. 20th IFAC World Congress.

[21] M.A. Rosaldo-Serrano and E. Aranda-Bricaire. Trajectory tracking for a commercial

quadrotor via time-varying backstepping. IFAC-PapersOnLine, 51(13):532 – 536, 2018.

2nd IFAC Conference on Modelling, Identification and Control of Nonlinear Systems

MICNON 2018.

168

Bibliography

[22] U. Ansari and A. H. Bajodah. Tracking control of quadrotor using generalized dy-

namic inversion with constant-proportional rate reaching law. In 2019 1st International

Conference on Unmanned Vehicle Systems-Oman (UVS), pages 1–7, Feb 2019.

[23] A. Das, K. Subbarao, and F. Lewis. Dynamic inversion with zero-dynamics stabilisation

for quadrotor control. IET Control Theory Applications, 3(3):303–314, March 2009.

[24] M. Elena Antonio-Toledo, Edgar N. Sanchez, Alma Y. Alanis, J.A. Flórez, and Marco A.

Perez-Cisneros. Real-time integral backstepping with sliding mode control for a quadro-

tor uav. IFAC-PapersOnLine, 51(13):549 – 554, 2018. 2nd IFAC Conference on Modelling,

Identification and Control of Nonlinear Systems MICNON 2018.

[25] J. Escareño, S. Salazar, H. Romero, and R. Lozano. Trajectory control of a quadrotor

subject to 2d wind disturbances. Journal of Intelligent & Robotic Systems, 70(1):51–63,

Apr 2013.

[26] Markus Hehn and Raffaello D Andrea. Real-Time Trajectory Generation for Interception

Maneuvers with Quadrocopters. IEEE Transactions on Robotics, pages 1–16, 2015.

[27] Matthias Faessler, Antonio Franchi, and Davide Scaramuzza. Differential Flatness

of Quadrotor Dynamics Subject to Rotor Drag for Accurate Tracking of High-Speed

Trajectories. 2017.

[28] Daniel Mellinger and Vijay Kumar. Minimum Snap Trajectory Generation and Control

for Quadrotors. International Conference on Robotics and Automation, pages 2520–

2525, 2011.

[29] Rui Wang and Jinkun Liu. Trajectory tracking control of a 6-dof quadrotor uav with

input saturation via backstepping. Journal of the Franklin Institute, 355(7):3288 – 3309,

2018.

[30] Zhuofan Xu, Ruixuan Wei, Qirui Zhang, Kai Zhou, and Renke He. Obstacle avoidance

algorithm for UAVs in unknown environment based on distributional perception and

decision making. CGNCC 2016 - 2016 IEEE Chinese Guidance, Navigation and Control

Conference, pages 1072–1075, 2017.

[31] Rakesh R. Warier, Amit K. Sanyal, Mani H. Dhullipalla, and Sasi Prabhakaran

Viswanathan. Trajectory tracking control for underactuated thrust-propelled aerial

vehicles. IFAC-PapersOnLine, 51(13):555 – 560, 2018. 2nd IFAC Conference on Mod-

elling, Identification and Control of Nonlinear Systems MICNON 2018.

[32] B. P. ICKES. A new method for performing digital control system attitude computations

using quaternions. AIAA Journal, 8(1):13–17, 1970.

[33] Chutiphon Pukdeboon, Alan S. I. Zinober, and May-Win L. Thein. Quasi-continuous

higher order sliding-mode controllers for spacecraft-attitude-tracking maneuvers. IEEE

Transactions on Industrial Electronics, 57(4):1436–1444, 2010.

169

Bibliography

[34] Zheng Zhu, Yuanqing Xia, and Mengyin Fu. Adaptive sliding mode control for attitude

stabilization with actuator saturation. IEEE Transactions on Industrial Electronics,

58(10):4898–4907, 2011.

[35] A. Chovancová, T. Fico, P. Hubinský, and F. Duchon. Comparison of various quaternion-

based control methods applied to quadrotor with disturbance observer and position

estimator. Robotics and Autonomous Systems, 79:87–98, 2016.

[36] C. Izaguirre-Espinosa, A.J. Muñoz-Vázquez, A. Sánchez-Orta, V. Parra-Vega, and

G. Sanahuja. Fractional attitude-reactive control for robust quadrotor position sta-

bilization without resolving underactuation. Control Engineering Practice, 53:47–56,

2016.

[37] Carlos Izaguirre-Espinosa, Aldo Jonathan Muñoz-Vázquez, Anand Sánchez-Orta, Vi-

cente Parra-Vega, and Pedro Castillo. Attitude control of quadrotors based on fractional

sliding modes: theory and experiments. IET Control Theory & Applications, 10(7):825–

832, 2016.

[38] Yonggen Ling, Tianbo Liu, and Shaojie Shen. Aggressive quadrotor flight using

dense visual-inertial fusion. In 2016 IEEE International Conference on Robotics and

Automation (ICRA), pages 1499–1506, 2016.

[39] S.P. Bhat and D.S. Bernstein. Finite-time stability of homogeneous systems. In

Proceedings of the 1997 American Control Conference (Cat. No.97CH36041), volume 4,

pages 2513–2514 vol.4, 1997.

[40] Sanjay P. Bhat and Dennis S. Bernstein. Finite-time stability of continuous autonomous

systems. SIAM Journal on Control and Optimization, 38(3):751–766, 2000.

[41] S. Bhat and D. Bernstein. Geometric homogeneity with applications to finite-time

stability. Mathematics of Control, Signals and Systems, 17:101–127, 2005.

[42] Yiguang Hong, Yangsheng Xu, and Jie Huang. Finite-time control for robot manipulators.

Systems & Control Letters, 46(4):243–253, 2002.

[43] Haibo Du and Shihua Li. Finite-time attitude stabilization for a rigid spacecraft using

homogeneous method. IFAC Proceedings Volumes, 44(1):2620–2625, 2011. 18th IFAC

World Congress.

[44] Haibo Du, Shihua Li, and Chunjiang Qian. Finite-time attitude tracking control of space-

craft with application to attitude synchronization. IEEE Transactions on Automatic

Control, 56(11):2711–2717, 2011.

[45] Amit K. Sanyal, Jan Bohn, and Anthony M. Bloch. Almost global finite time stabilization

of rigid body attitude dynamics. In 52nd IEEE Conference on Decision and Control,

pages 3261–3266, 2013.

170

Bibliography

[46] Jan Bohn and Amit K. Sanyal. Almost global finite-time stabilization of rigid body atti-

tude dynamics using rotation matrices. International Journal of Robust and Nonlinear

Control, 26(9):2008–2022, 2016.

[47] Arthur E. Bryson, Yu-Chi Ho, and George M. Siouris. Applied optimal control: Optimiza-

tion, estimation, and control. IEEE Transactions on Systems, Man, and Cybernetics,

9(6):366–367, 1979.

[48] Emanuel Todorov. Optimal Control Theory. Environment and Planning C Government

and Policy, 4(2):1–28, 2006.

[49] P. R. Chandler and M. Pachter. Research issues in autonomous control of tactical UAVs.

Proceedings of the American Control Conference, 1(June):394–398, 1998.

[50] E. Frazzoli, M.a. A Dahleh, and E. Feron. Robust hybrid control for autonomous vehicle

motion planning. Proceedings of the 39th IEEE Conference on Decision and Control,

2000, 1(iii):821–826 vol.1, 2000.

[51] Steven M. LaValle. Planning Algorithms. Cambridge University Press, 2006.

[52] Li-chun Lai, Chi-ching Yang, and Chia-ju Wu. Time-Optimal Control of a Hovering

Quad-Rotor Helicopter. Journal of Intelligent and Robotic Systems, pages 115–135,

2006.

[53] C. L. Castillo, W. Moreno, and K. P. Valavanis. Unmanned helicopter waypoint trajectory

tracking using model predictive control. In 2007 Mediterranean Conference on Control

Automation, pages 1–8, 2007.

[54] L Beji, A Abichou, and N Azouz. Modeling, Motion planning and Control of the drone

with revolving Aerofoils: an Outline of the XSF Project. Robot Motion and Control, (335,

pp.):165–177, 2006.

[55] Marcus Nolte, Marcel Rose, Torben Stolte, and Markus Maurer. Model predictive control

based trajectory generation for autonomous vehicles — an architectural approach. In

2017 IEEE Intelligent Vehicles Symposium (IV), pages 798–805, 2017.

[56] Pengkai Ru and Kamesh Subbarao. Nonlinear Model Predictive Control for Unmanned

Aerial Vehicles. MDPI aerospace, pages 1–26, 2017.

[57] Michael Neunert, Cédric de Crousaz, Fadri Furrer, Mina Kamel, Farbod Farshidian,

Roland Siegwart, and Jonas Buchli. Fast nonlinear model predictive control for uni-

fied trajectory optimization and tracking. In 2016 IEEE International Conference on

Robotics and Automation (ICRA), pages 1398–1404, 2016.

[58] Fabio Morbidi, Roel Cano, and David Lara. Minimum-Energy Path Generation for

a Quadrotor UAV. International Conference on Robotics and Automation, (May):2–8,

2016.

171

Bibliography

[59] Pedro Serra, Rita Cunha, Tarek Hamel, David Cabecinhas, and Carlos Silvestre. Landing

of a quadrotor on a moving target using dynamic image-based visual servo control.

IEEE Transactions on Robotics, 32(6):1524–1535, 2016.

[60] Hamed Jabbari Asl and Jungwon Yoon. Bounded-input control of the quadrotor un-

manned aerial vehicle: A vision-based approach. Asian Journal of Control, 19(3):840–

855, 2017.

[61] Rafik Mebarki and Bruno Siciliano. Velocity-free image-based control of unmanned

aerial vehicles. In 2013 IEEE/ASME International Conference on Advanced Intelligent

Mechatronics, pages 1522–1527, 2013.

[62] Dongliang Zheng, Hesheng Wang, Weidong Chen, and Yong Wang. Planning and track-

ing in image space for image-based visual servoing of a quadrotor. IEEE Transactions

on Industrial Electronics, 65(4):3376–3385, 2018.

[63] Dongliang Zheng, Hesheng Wang, Jingchuan Wang, Siheng Chen, Weidong Chen, and

Xinwu Liang. Image-based visual servoing of a quadrotor using virtual camera approach.

IEEE/ASME Transactions on Mechatronics, 22(2):972–982, 2017.

[64] Geoff Fink, Hui Xie, Alan F. Lynch, and Martin Jagersand. Nonlinear dynamic image-

based visual servoing of a quadrotor. Journal of Unmanned Vehicle Systems, 3(1):1–21,

2015.

[65] H. Jabbari, G. Oriolo, and H. Bolandi. An adaptive scheme for image-based visual

servoing of an underactuated uav. Int. J. Robotics Autom., 29, 2014.

[66] Francois Chaumette and Seth Hutchinson. Visual servo control. i. basic approaches.

IEEE Robotics Automation Magazine, 13(4):82–90, 2006.

[67] Javier Gomez-Avila, Carlos Lopez-Franco, Alma Y. Alanis, Nancy Arana-Daniel, and

Michel Lopez-Franco. Ground vehicle tracking with a quadrotor using image based

visual servoing. IFAC-PapersOnLine, 51(13):344–349, 2018. 2nd IFAC Conference on

Modelling, Identification and Control of Nonlinear Systems MICNON 2018.

[68] Erdinc Altug, James P. Ostrowski, and Camillo J. Taylor. Control of a quadrotor helicopter

using dual camera visual feedback. The International Journal of Robotics Research,

24(5):329–341, 2005.

[69] Bruno Herisse, Tarek Hamel, Robert Mahony, and Francois-Xavier Russotto. A nonlinear

terrain-following controller for a vtol unmanned aerial vehicle using translational optical

flow. In 2009 IEEE International Conference on Robotics and Automation, pages 3251–

3257, 2009.

[70] Heera Lal Maurya, Archit Krishna Kamath, Nishchal K. Verma, and Laxmidhar Behera.

Vision-based fractional order sliding mode control for autonomous vehicle tracking

by a quadrotor uav. In 2019 28th IEEE International Conference on Robot and Human

Interactive Communication (RO-MAN), pages 1–6, 2019.

172

Bibliography

[71] Fátima Oliva-Palomo, Aldo Jonathan Muñoz-Vázquez, Anand Sánchez-Orta, Vicente

Parra-Vega, Carlos Izaguirre-Espinosa, and Pedro Castillo. A fractional nonlinear pi-

structure control for robust attitude tracking of quadrotors. IEEE Transactions on

Aerospace and Electronic Systems, 55(6):2911–2920, 2019.

[72] Justin Thomas, Jake Welde, Giuseppe Loianno, Kostas Daniilidis, and Vijay Kumar.

Autonomous flight for detection, localization, and tracking of moving targets with a

small quadrotor. IEEE Robotics and Automation Letters, 2(3):1762–1769, 2017.

[73] C. Huang and Tzu-Shun Hung. Visual servoing of micro aerial vehicle landing on ground

platform. 2014 IEEE International Conference on Systems, Man, and Cybernetics

(SMC), pages 2071–2076, 2014.

[74] Vincenzo Lippiello, Rafik Mebarki, and Fabio Ruggiero. Visual coordinated landing of a

uav on a mobile robot manipulator. In 2013 IEEE International Symposium on Safety,

Security, and Rescue Robotics (SSRR), pages 1–7, 2013.

[75] Shakeeb Ahmad and R. Fierro. Real-time quadrotor navigation through planning

in depth space in unstructured environments*. 2019 International Conference on

Unmanned Aircraft Systems (ICUAS), pages 1467–1476, 2019.

[76] Minjie Wan, Guohua Gu, Weixian Qian, Kan Ren, Xavier Maldague, and Qian Chen.

Unmanned aerial vehicle video-based target tracking algorithm using sparse represen-

tation. IEEE Internet of Things Journal, 6(6):9689–9706, 2019.

[77] Hamid Alturbeh and James F. Whidborne. Visual flight rules-based collision avoidance

systems for uav flying in civil aerospace. Robotics, 9(1), 2020.

[78] Dongxu Li and J.B. Cruz. Better cooperative control with limited look-ahead. In 2006

American Control Conference, pages 6 pp.–, 2006.

[79] A. Siddiqui, M. Verma, and David M. Tulett. A periodic planning model for maritime

transportation of crude oil. EURO Journal on Transportation and Logistics, 2:307–335,

2013.

[80] Edwyn Gray. Nineteenth-century torpedoes and their inventors. Annapolis, Md.: Naval

Institute Press ; London : Greenhill, 2004.

[81] Robin R. Murphy and Jennifer L. Burke. Up from the rubble: Lessons learned about hri

from search and rescue. Proceedings of the Human Factors and Ergonomics Society

Annual Meeting, 49(3):437–441, 2005.

[82] Mica R. Endsley. Design and evaluation for situation awareness enhancement.

Proceedings of the Human Factors Society Annual Meeting, 32(2):97–101, 1988.

[83] G. Gioioso, M. Mohammadi, A. Franchi, and D. Prattichizzo. A force-based bilateral

teleoperation framework for aerial robots in contact with the environment. In 2015

173

Bibliography

IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, pages

318–324, 2015.

[84] Jiayu Li, Bo You, Liang Ding, Jiazhong Xu, Weihua Li, Hannan Chen, and Haibo Gao. A

novel bilateral haptic teleoperation approach for hexapod robot walking and manipu-

lating with legs. Robotics and Autonomous Systems, 108:1 – 12, 2018.

[85] C. A. López Martínez, I. Polat, R. v. d. Molengraft, and M. Steinbuch. Robust high

performance bilateral teleoperation under bounded time-varying dynamics. IEEE

Transactions on Control Systems Technology, 23(1):206–218, 2015.

[86] D.D. Santiago, E. Slawinski, and V. Mut. Human-inspired stable bilateral teleoperation

of mobile manipulators. ISA Transactions, 95:392 – 404, 2019.

[87] Y. Ye, Y. Pan, and T. Hilliard. Bilateral teleoperation with time-varying delay: A commu-

nication channel passification approach. IEEE/ASME Transactions on Mechatronics,

18(4):1431–1434, 2013.

[88] Seung-Ju Lee and Hyo-Sung Ahn. Controller designs for bilateral teleoperation with

input saturation. Control Engineering Practice, 33:35 – 47, 2014.

[89] R. Mahony, F. Schill, P. Corke, and Y. S. Oh. A new framework for force feedback teleoper-

ation of robotic vehicles based on optical flow. In 2009 IEEE International Conference

on Robotics and Automation, Kobe, Japan, pages 1079–1085, 2009.

[90] Hala Rifaï, Minh-Duc Hua, Tarek Hamel, and Pascal Morin. Haptic-based bilateral

teleoperation of underactuated unmanned aerial vehicles. Proceedings of the 18th

World Congress, Milano, Italy, 44(1):13782 – 13788, 2011.

[91] Xiaolei Hou, Hua Lan, Xiaojun Xing, Yaohong Qu, Dongli Yuan, Jianguo Yan, and Panfeng

Huang. Environmental force reflection in an admittance configured haptic interface

for teleoperation of vtol aerial robots. 20th IFAC World Congress, Toulouse, France,

50(1):10262 – 10267, 2017.

[92] E. Slawiñski, D. Santiago, and V. Mut. Control for delayed bilateral teleoperation of a

quadrotor. ISA Transactions, 71:415 – 425, 2017.

[93] R. A. S. Fernández, J. L. Sanchez-Lopez, C. Sampedro, H. Bavle, M. Molina, and P. Campoy.

Natural user interfaces for human-drone multi-modal interaction. In 2016 International

Conference on Unmanned Aircraft Systems (ICUAS), Arlington, VA, USA, pages 1013–

1022, 2016.

[94] J. Regenbrecht, A. Tavakkoli, and D. Loffredo. A robust and intuitive 3d interface for

teleoperation of autonomous robotic agents through immersive virtual reality environ-

ments. In 2017 IEEE Symposium on 3D User Interfaces (3DUI), Los Angeles, CA, USA,

pages 199–200, 2017.

174

Bibliography

[95] T. Abut and S. Soygüder. Haptic industrial robot control and bilateral teleoperation by

using a virtual visual interface. In 2018 26th Signal Processing and Communications

Applications Conference (SIU), Izmir, Turkey, pages 1–4, 2018.

[96] A. Naceri, D. Mazzanti, J. Bimbo, D. Prattichizzo, D. G. Caldwell, L. S. Mattos, and

N. Deshpande. Towards a virtual reality interface for remote robotic teleoperation.

In 2019 19th International Conference on Advanced Robotics (ICAR), Belo Horizonte,

Brazil, Brazil, pages 284–289, 2019.

[97] S. N. F. Nahri, S. Du, and B. Van Wyk. Haptic system interface design and modelling

for bilateral teleoperation systems. In 2020 International SAUPEC/RobMech/PRASA

Conference, Cape Town, South Africa, South Africa, pages 1–6, 2020.

[98] João Marcelo Teixeira, Ronaldo Ferreira, Matheus Santos, and Veronica Teichrieb. Tele-

operation using google glass and ar, drone for structural inspection. In XVI Symposium

on Virtual and Augmented Reality, pages 28–36. IEEE, 2014.

[99] A. Suarez, P. Sanchez-Cuevas, M. Fernandez, M. Perez, G. Heredia, and A. Ollero.

Lightweight and compliant long reach aerial manipulator for inspection operations.

In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

Madrid, Spain, pages 6746–6752, 2018.

[100] John Paulin Hansen, Alexandre Alapetite, I Scott MacKenzie, and Emilie Møllenbach.

The use of gaze to control drones. In ETRA ’14: Proceedings of the Symposium on Eye

Tracking Research and Applications, Safety Harbor, Florida, pages 27–34. ACM, 2014.

[101] Jzau-Sheng Lin and Zi-Yang Jiang. Implementing remote presence using quadcopter

control by a non-invasive bci device. Computer Science and Information Technology,

3(4):122–126, 2015.

[102] N. Liu, T. Lu, Y. Cai, J. Lu, H. Gao, B. Li, and S. Wang. Design of virtual reality teleoperation

system for robot complex manipulation. In 2019 Chinese Automation Congress (CAC),

Hangzhou, China, China, pages 1789–1793, 2019.

[103] S. Kim, Y. Kim, J. Ha, and S. Jo. Mapping system with virtual reality for mobile robot tele-

operation. In 2018 18th International Conference on Control, Automation and Systems

(ICCAS), Daegwallyeong, South Korea, pages 1541–1541, 2018.

[104] A.W.W. Yew, S.K. Ong, and A.Y.C. Nee. Immersive augmented reality environment for

the teleoperation of maintenance robots. Procedia CIRP, 61:305 – 310, 2017. The 24th

CIRP Conference on Life Cycle Engineering.

[105] Bryan Walter, Jared Knutzon, Adrian Sannier, and James Oliver. Virtual uav ground

control station. In AIAA 3rd" Unmanned Unlimited" Technical Conference, Workshop

and Exhibit, Chicago, Illinois, page 6320, 2004.

175

Bibliography

[106] Baichuan Huang, Deniz Bayazit, Daniel Ullman, Nakul Gopalan, and Stefanie Tellex.

Flight, camera, action! using natural language and mixed reality to control a drone.

In Proc. IEEE International Conference on Robotics and Automation (ICRA), Montreal,

Canada, 2019.

[107] Matteo Macchini, Thomas Havy, Antoine Weber, Fabrizio Schiano, and Dario Flore-

ano. Hand-worn haptic interface for drone teleoperation. In Proc. IEEE International

Conference on Robotics and Automation (ICRA), Paris, France, 2020.

[108] Siyang Yang, Jiang Han, Lian Xia, and Ye-Hwa Chen. Adaptive robust servo constraint

tracking control for an underactuated quadrotor uav with mismatched uncertainties.

ISA Transactions, 106:12–30, 2020.

[109] Xiao-Zheng Jin, Tao He, Xiao-Ming Wu, Hai Wang, and Jing Chi. Robust adaptive neural

network-based compensation control of a class of quadrotor aircrafts. Journal of the

Franklin Institute, 357(17):12241–12263, 2020.

[110] Moussa Labbadi and Mohamed Cherkaoui. Robust adaptive nonsingular fast terminal

sliding-mode tracking control for an uncertain quadrotor uav subjected to disturbances.

ISA Transactions, 99:290 – 304, 2020.

[111] Lei Guo and Songyin Cao. Anti-disturbance control theory for systems with multiple

disturbances: A survey. ISA transactions, 53(4):846–849, 2014.

[112] Shihong Ding, Wen-Hua Chen, Keqi Mei, and David J Murray-Smith. Disturbance

observer design for nonlinear systems represented by input–output models. IEEE

Transactions on Industrial Electronics, 67(2):1222–1232, 2019.

[113] Jingqing Han. From PID to active disturbance rejection control. IEEE transactions on

Industrial Electronics, 56(3):900–906, 2009.

[114] Shihua Li, Jun Yang, Wen-Hua Chen, and Xisong Chen. Generalized extended state

observer based control for systems with mismatched uncertainties. IEEE Transactions

on Industrial Electronics, 59(12):4792–4802, 2011.

[115] Vicente Balaguer, Ricardo Sanz, Pedro Garcia, and Pedro Albertos. Two-degree-of-

freedom PID tuning based on an uncertainty and disturbance estimator. In 2018 7th

International Conference on Systems and Control (ICSC), pages 424–429. IEEE, 2018.

[116] Antonio González, Angel Cuenca, Vicente Balaguer, and Pedro García. Event-triggered

predictor-based control with gain-scheduling and extended state observer for net-

worked control systems. Information Sciences, 491:90–108, 2019.

[117] Antonio Gonzalez, Vicente Balaguer, Pedro Garcia, and Angel Cuenca. Gain-scheduled

predictive extended state observer for time-varying delays systems with mismatched

disturbances. ISA transactions, 84:206–213, 2019.

176

Bibliography

[118] B. Kurkçu, C. Kasnakoglu, and M. Ö. Efe. Disturbance/uncertainty estimator

based robust control of nonminimum phase systems. IEEE/ASME Transactions on

Mechatronics, 23(4):1941–1951, 2018.

[119] Jiuqiang Deng, Xi Zhou, and Yao Mao. On vibration rejection of nonminimum-

phase long-distance laser pointing system with compensatory disturbance observer.

Mechatronics, 74:102490, 2021.

[120] Alireza Mohammadi, Mahdi Tavakoli, Horacio J Marquez, and Farzad Hashemzadeh.

Nonlinear disturbance observer design for robotic manipulators. Control Engineering

Practice, 21(3):253–267, 2013.

[121] Jialu Du, Xin Hu, Miroslav Krstić, and Yuqing Sun. Robust dynamic positioning of ships

with disturbances under input saturation. Automatica, 73:207–214, 2016.

[122] Divyesh Ginoya, Chandrashekhar M Gutte, PD Shendge, and SB Phadke. State-

and-disturbance-observer-based sliding mode control of magnetic levitation systems.

Transactions of the Institute of Measurement and Control, 38(6):751–763, 2016.

[123] Qi Lu, Beibei Ren, Siva Parameswaran, and Qing-Chang Zhong. Uncertainty and dis-

turbance estimator-based robust trajectory tracking control for a quadrotor in a global

positioning system-denied environment. Journal of Dynamic Systems, Measurement,

and Control, 140(3), 2018.

[124] Longhao Qian and Hugh HT Liu. Path-following control of a quadrotor uav with a

cable-suspended payload under wind disturbances. IEEE Transactions on Industrial

Electronics, 67(3):2021–2029, 2019.

[125] Qi Lu, Beibei Ren, and Siva Parameswaran. Uncertainty and disturbance estimator-

based global trajectory tracking control for a quadrotor. IEEE/ASME Transactions on

Mechatronics, 2020.

[126] Shen Yin, Bing Xiao, Steven X Ding, and Donghua Zhou. A review on recent development

of spacecraft attitude fault tolerant control system. IEEE Transactions on Industrial

Electronics, 63(5):3311–3320, 2016.

[127] G. Ortiz-Torres, P. Castillo, F. D. J. Sorcia-Vázquez, J. Y. Rumbo-Morales, J. A. Brizuela-

Mendoza, J. De La Cruz-Soto, and M. Martínez-García. Fault estimation and fault

tolerant control strategies applied to vtol aerial vehicles with soft and aggressive actuator

faults. IEEE Access, 8:10649–10661, 2020.

[128] Youmin Zhang and Jin Jiang. Bibliographical review on reconfigurable fault-tolerant

control systems. Annual reviews in control, 32(2):229–252, 2008.

[129] Iman Sadeghzadeh, Ankit Mehta, Abbas Chamseddine, and Youmin Zhang. Active fault

tolerant control of a quadrotor uav based on gainscheduled pid control. In 2012 25th

IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), pages

1–4. IEEE, 2012.

177

Bibliography

[130] Abdel-Razzak Merheb, Hassan Noura, and François Bateman. Passive fault tolerant

control of quadrotor uav using regular and cascaded sliding mode control. In 2013

Conference on Control and Fault-Tolerant Systems (SysTol), pages 330–335. IEEE, 2013.

[131] Luis Gracia, J Ernesto Solanes, Pau Muñoz-Benavent, Jaime Valls Miro, Carlos Perez-

Vidal, and Josep Tornero. Adaptive sliding mode control for robotic surface treatment

using force feedback. Mechatronics, 52:102–118, 2018.

[132] Pin Lyu, Jizhou Lai, Jianye Liu, Hugh HT Liu, and Qingrui Zhang. A thrust model aided

fault diagnosis method for the altitude estimation of a quadrotor. IEEE Transactions on

Aerospace and Electronic Systems, 54(2):1008–1019, 2017.

[133] Abdel-Razzak Merheb and Hassan Noura. Active fault-tolerant control of quadrotor uavs

based on passive controller bank. In Rany Rizk and Mariette Awad, editors, Mechanism,

Machine, Robotics and Mechatronics Sciences, pages 231–241. Springer International

Publishing, 2019.

[134] Xiaohong Nian, Weiqiang Chen, Xiaoyan Chu, and Zhiwei Xu. Robust adaptive fault

estimation and fault tolerant control for quadrotor attitude systems. International

Journal of Control, 93(3):725–737, 2020.

[135] R. C. Avram, X. Zhang, and J. Muse. Quadrotor actuator fault diagnosis and accom-

modation using nonlinear adaptive estimators. IEEE Transactions on Control Systems

Technology, 25(6):2219–2226, 2017.

[136] B.R. Andrievsky, N.V. Kuznetsov, G.A. Leonov, and A.Yu. Pogromsky. Hidden oscilla-

tions in aircraft flight control system with input saturation. IFAC Proceedings Volumes,

46(12):75 – 79, 2013. 5th IFAC Workshop on Periodic Control Systems.

[137] R. van den Berg, A. Pogromsky, and K. Rooda. Convergent systems design: Anti-windup

for marginally stable plants. In Proceedings of the 45th IEEE Conference on Decision

and Control, pages 5441–5446, 2006.

[138] B. R. Andrievsky, N. V. Kuznetsov, G. A. Leonov, and A. Y. Pogromsky. Convergence based

anti-windup design method and its application to flight control. In 2012 IV International

Congress on Ultra Modern Telecommunications and Control Systems, pages 212–218,

2012.

[139] Gennady Leonov, Boris Andrievsky, Nikolay Kuznetsov, and A. Pogromskii. Aircraft

control with anti-windup compensation. Differential Equations, 48:1700–1720, 2012.

[140] Matthias Faessler, Davide Falanga, and Davide Scaramuzza. Thrust Mixing, Saturation,

and Body-Rate Control for Accurate Aggressive Quadrotor Flight. IEEE Robotics and

Automation Letters, 2(2):476–482, 2017.

[141] E.J.J. Smeur, G.C.H.E. de Croon, and Q. Chu. Cascaded incremental nonlinear dynamic

inversion for mav disturbance rejection. Control Engineering Practice, 73:79–90, 2018.

178

Bibliography

[142] Paul Pounds, Robert Mahony, and Joel Gresham. Towards dynamicallyfavourable quad-

rotor aerial robots. In In Proc. of Australasian Conference on Robotics and Automation,

2004.

[143] Raymond W. Prouty. Helicopter performance, stability and control. Krieger Publishing

Company, 1995.

[144] P. Pounds, R. Mahony, and P. Corke. Modelling and control of a large quadrotor robot.

Control Engineering Practice, 18(7):691–699, 2010. Special Issue on Aerial Robotics.

[145] Herbert Goldstein. Classical Mechanics. Addison-Wesley, 1980.

[146] P. Castillo, R. Lozano, and A. Dzul. Stabilization of a mini rotorcraft with four rotors.

IEEE Control Systems Magazine, 25(6):45–55, 2005.

[147] Pedro Castillo Garcia, R. Lozano, and Alejandro Dzul. Modelling and Control of

Mini-Flying Machines. 01 2005.

[148] Richard M. Howard. Dynamics of flight: Stability and control; third edition. Journal of

Guidance, Control, and Dynamics, 20(4):839–840, 1997.

[149] R. Lozano. Unmanned Aerial Vehicles Embedded Control. John Wiley-ISTE Ltd, 2010.

[150] H. Abaunza, P. Castillo, and R. Lozano. Quaternion Modeling and Control Approaches,

pages 1–29. Springer International Publishing, 2018.

[151] D. C. Gandolfo, L. R. Salinas, A. Brandão, and J. M. Toibero. Stable path-following

control for a quadrotor helicopter considering energy consumption. IEEE Transactions

on Control Systems Technology, 25(4):1423–1430, July 2017.

[152] J.F. Guerrero-Castellanos, N. Marchand, A. Hably, S. Lesecq, and J. Delamare. Bounded

attitude control of rigid bodies: Real-time experimentation to a quadrotor mini-

helicopter. Control Engineering Practice, 19(8):790 – 797, 2011.

[153] Alejandro J Malo Tamayo, Cesar A. Villaseñor Ríos, Juan Manuel Ibarra Zannatha, and

Santos M. Orozco Soto. Quadrotor input-output linearization and cascade control.

IFAC-PapersOnLine", 51(13):437 – 442, 2018. 2nd IFAC Conference on Modelling, Iden-

tification and Control of Nonlinear Systems MICNON 2018.

[154] Andrew R. Teel. Global stabilization and restricted tracking for multiple integrators with

bounded controls. Systems & Control Letters, 18(3):165 – 171, 1992.

[155] Guillaume Sanahuja, Pedro Christian Ayala Castillo, and Anand Sanchez. Stabilization

of n integrators in cascade with bounded input with experimental application to a vtol

laboratory system. International Journal of Robust and Nonlinear Control, 2009.

[156] A. Ailon. Simple tracking controllers for autonomous vtol aircraft with bounded inputs.

IEEE Transactions on Automatic Control, 55(3):737–743, March 2010.

179

Bibliography

[157] Trong-Toan Tran, Ge Shuzhi Sam, and He Wei. Adaptive control of a quadrotor aerial ve-

hicle with input constraints and uncertain parameters. International Journal of Control,

2018.

[158] H K Khalil. Nonlinear systems (3rd ed.). Upper Saddle River, NJ: Prentice Hall, 2002.

[159] Antonios Zagaris, Hans G. Kaper, and Tasso J. Kaper. Fast and Slow Dynamics for

the Computational Singular Perturbation Method. arXiv Mathematics e-prints, page

math/0401206, Jan 2004.

[160] Heudiasyc Lab. FL-AIR framework. accessed: Feb. 27, 2020. [online]., 2012,

https://devel.hds.utc.fr/software/flair.

[161] Shtessel Yuri, Leonid Fridman Christopher, Edwards, and Levant Arie. Sliding Mode

Control and Observation. Birkhäuser Basel, 2014.

[162] Taeyoung Lee, M. Leoky, and N.H. McClamroch. Geometric tracking control of a quadro-

tor UAV on SE(3). 49th IEEE Conference on Decision and Control (CDC), 2010., pages

5420–5425, 2010.

[163] Zhong Liu, Yuqing He, Liying Yang, and Jianda Han. Control techniques of tilt ro-

tor unmanned aerial vehicle systems: A review. Chinese Journal of Aeronautics,

30(December):135–148, 2016.

[164] Moses Bangura and Robert Mahony. Real-time model predictive control for quadrotors.

IFAC Proceedings Volumes, 47(3):11773–11780, 2014. 19th IFAC World Congress.

[165] C. Forster, M. Pizzoli, and D. Scaramuzza. Svo: Fast semi-direct monocular visual

odometry. In 2014 IEEE International Conference on Robotics and Automation (ICRA),

pages 15–22, 2014.

[166] Charles Richter, Adam Bry, and Nicholas Roy. Polynomial Trajectory Planning for

Aggressive Quadrotor Flight in Dense Indoor Environments, pages 649–666. 04 2016.

[167] Andreas Bircher, Mina Samir Kamel, Kostas Alexis, Helen Oleynikova, and Roland

Siegwart. Receding horizon path planning for 3d exploration and surface inspection.

Autonomous Robots, 42, 02 2018.

[168] Matthias Faessler, Flavio Fontana, Christian Forster, Elias Mueggler, Matia Pizzoli, and

Davide Scaramuzza. Autonomous, vision-based flight and live dense 3d mapping with

a quadrotor micro aerial vehicle. Journal of Field Robotics, 33(4):431–450, 2016.

[169] Nathan Michael, Shaojie Shen, Kartik Mohta, Yash Mulgaonkar, Vijay Kumar, Keiji

Nagatani, Yoshito Okada, Seiga Kiribayashi, Kazuki Otake, Kazuya Yoshida, Kazunori

Ohno, Eijiro Takeuchi, and Satoshi Tadokoro. Collaborative mapping of an earthquake-

damaged building via ground and aerial robots. Journal of Field Robotics, 29(5):832–841,

2012.

180

Bibliography

[170] JM M Maciejowski. Predictive control: with constraints. Pearson Education Limited,

Harlow, UK, page 331, 2002.

[171] A. Chakrabarty, R. Morris, X. Bouyssounouse, and R. Hunt. Autonomous indoor object

tracking with the parrot ar.drone. In 2016 International Conference on Unmanned

Aircraft Systems (ICUAS), pages 25–30, 2016.

[172] Jianbo Shi and Tomasi. Good features to track. In 1994 Proceedings of IEEE Conference

on Computer Vision and Pattern Recognition, pages 593–600, 1994.

[173] Jean yves Bouguet. Pyramidal implementation of the lucas kanade feature tracker. Intel

Corporation, Microprocessor Research Labs, 2000.

[174] Pedro Castillo, Alejandro Dzul, and Rogelio Lozano. Real-time stabilization and track-

ing of a four-rotor mini rotorcraft. IEEE Transactions on Control Systems Technology,

12(4):510–516, 2004.

[175] Robert Mahony, Vijay Kumar, and Peter Corke. Multirotor aerial vehicles: Modeling,

estimation, and control of quadrotor. IEEE Robotics Automation Magazine, 19(3):20–32,

2012.

[176] Samir Bouabdallah and Roland Siegwart. Full control of a quadrotor. In 2007 IEEE/RSJ

International Conference on Intelligent Robots and Systems, pages 153–158, 2007.

[177] L. Luque-Vega, B. Castillo-Toledo, and Alexander G. Loukianov. Robust block second

order sliding mode control for a quadrotor. Journal of the Franklin Institute, 349(2):719

– 739, 2012.

[178] Bo Zheng and Yisheng Zhong. Robust attitude regulation of a 3-dof helicopter bench-

mark: Theory and experiments. IEEE Transactions on Industrial Electronics, 58(2):660–

670, 2011.

[179] Shafiqul Islam, Peter X. Liu, and Abdulmotaleb El Saddik. Robust control of four-rotor

unmanned aerial vehicle with disturbance uncertainty. IEEE Transactions on Industrial

Electronics, 62(3):1563–1571, 2015.

[180] Bo Zhao, Bin Xian, Yao Zhang, and Xu Zhang. Nonlinear robust adaptive tracking control

of a quadrotor uav via immersion and invariance methodology. IEEE Transactions on

Industrial Electronics, 62(5):2891–2902, 2015.

[181] Gabriel Hoffmann, Haomiao Huang, Steven Waslander, and Claire Tomlin. Quadro-

tor helicopter flight dynamics and control: Theory and experiment. AIAA Guidance,

Navigation and Control Conference and Exhibit, page p.82, 2007.

[182] Steven Waslander and Carlos Wang. Wind disturbance estimation and rejection for

quadrotor position control. AIAA Infotech@Aerospace Conference, 2009.

181

Bibliography

[183] Xiwang Dong, Bocheng Yu, Zongying Shi, and Yisheng Zhong. Time-Varying Formation

Control for Unmanned Aerial Vehicles: Theories and Applications. IEEE Transactions

on Control Systems Technology, pages 1–1, 2014.

[184] Kooksun Lee, J. Back, and I. Choy. Nonlinear disturbance observer based robust attitude

tracking controller for quadrotor uavs. International Journal of Control, Automation

and Systems, 12:1266–1275, 2014.

[185] Ricardo Sanz, Pedro Garcia, Qing-Chang Zhong, and Pedro Albertos. Robust control

of quadrotors based on an uncertainty and disturbance estimator. Journal of Dynamic

Systems, Measurement, and Control, 138(7):71006, 2016.

[186] Qing-Chang Zhong and David Rees. Control of uncertain LTI systems based on an

uncertainty and disturbance estimator. Journal of Dynamic Systems, Measurement,

and Control(Transactions of the ASME), 126(4):905–910, 2004.

[187] Kamal Youcef-Toumi and Osamu Ito. A time delay controller for systems with unknown

dynamics. Journal of dynamic systems, measurement, and control, 112(1):133–142,

1990.

[188] Beibei Ren, Q.C. Zhong, and Jinhao C. Robust control for a class of nonaffine nonlinear

systems based on the uncertainty and disturbance estimator. IEEE Transactions on

Industrial Electronics, 62(9):5881–5888, 2015.

[189] D. Goldfarb and A. Idnani. A numerically stable dual method for solving strictly convex

quadratic programs. Mathematical Programming, 27:1–33, 1983.

[190] Luca Di Gaspero and Angelo Furfaro. uQuadProg ppen source library. accessed: January.

13, 2021. [online]., 2006, https://github.com/fx74/uQuadProg.

182

	PDT BETANCOURT VERA Guillermo Julio Cesar
	Soutenue le 28 juin 2021

	THESE STAR BETANCOURT VERA
	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	Glossary
	Glossary
	I Chapter 1
	Introduction
	Introduction
	Problem statement
	Thesis objective
	State of the art
	Thesis outline

	II Chapter 2
	Modeling quadcopter vehicle approaches
	Force and moment in a rotor
	Classical modeling approaches
	Euler-Lagrange approach
	Newton-Euler approach

	Quadrotor quaternion model based on Euler-Lagrange
	Quadrotor quaternion dynamical model
	Decoupling the vehicle dynamics

	Modeling approaches conclusions

	III Chapter 3
	Control approaches for aerial vehicles
	Comparison of stabilization and tracking control algorithms
	Nonlinear Backstepping algorithm
	Control algorithm based on nested saturation
	Linear backstepping
	Fully actuated approach
	Numerical and experimental results
	Discussion

	Quaternion-based backstepping control
	Experimental test

	Finite-time convergence using Sliding Mode Control
	xc(t) and yc(t) components
	Sliding mode control design
	Numerical and experimental results

	Conclusions

	IV Chapter 4
	Autonomous navigation algorithms
	Path planning algorithm using MPC
	Experimental results

	Vision algorithm for target localization: a case study for autonomous vehicles surveillance
	Experimental tests

	Semi-autonomous navigation using an immersive virtual reality environment
	Virtual control scheme
	DrEAM's experimental fatigue tests results
	DrEAM real-time validation with robots

	Quadcopter autonomous navigation conclusions

	V Chapter 5
	Robust control scheme based on disturbance estimator
	Preliminaries
	Proposed solution

	Robust control scheme for disturbance rejection
	Experimental results for disturbance rejections

	Enhancing robust control architecture for LoE in rotors
	Numerical and practical validation
	Discussion

	Enhancing robust control architecture for handling rotor's constraints
	Experimental results of bounded control

	Robust control architecture conclusions

	VI Chapter 6
	Conclusions
	Conclusions

	Publications
	Bibliography

