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Titre : Exploration intrinsèquement motivée orientée vers des buts dans le
développement de l’enfant et en intelligence artificielle : apprentissage et
développement de la parole et de l’utilisation des outils.

Résumé : Les bébés et enfants humains sont curieux, ils explorent activement
leur monde. Un de leurs premiers défis est l’apprentissage des relations de causalité
entre leurs actions, telles que les mouvements de leurs bras ou leur voix, et les
changements dans l’environnement. Les motivations intrinsèques pourraient être
un des mécanismes clés de cet apprentissage, mais elles ont été peu étudiées en
psychologie du développement. Par ailleurs, les robots qui apprennent aujourd’hui
des compétences avancées le font d’une manière très différente de celle des enfants
humains. Cette thèse présente deux objectifs complémentaires : d’une part la
compréhension du rôle des motivations intrinsèques dans le développement de la
parole et de l’utilisation d’outils chez l’enfant à travers la modélisation robotique,
et d’autre part l’amélioration des capacités des robots à apprendre ces compétences
par l’implémentation de mécanismes inspirés par l’apprentissage des enfants. La
première partie de ce travail concerne la compréhension et modélisation des motivations
intrinsèques chez l’humain. Nous réanalysons une expérience d’évaluation des capacités
d’utilisation d’outils par les enfants, et montrons que les motivations intrinsèques
semblent jouer un rôle important dans les comportements observés et même interférer
avec les mesures de succès dans la tâche. Avec un modèle robotique, nous montrons
qu’une motivation intrinsèque basée sur le progrès pour atteindre ses propres buts,
couplée à une représentation modulaire de ces buts peut auto-organiser des phases de
comportements dans le développement des précurseurs de l’utilisation d’outils qui
ont des propriétés similaires avec ce développement chez les enfants. Nous présentons
le premier modèle robotique de l’apprentissage de la parole et de l’utilisation d’outils
à partir de zéro, qui permet de prédire que l’exploration d’objets physiques dans
un scénario d’interaction sociale accélère l’apprentissage de la vocalisation de sons
pour nommer ces objets en conséquence d’une exploration des objets orientée vers
des buts. Dans la seconde partie de cette thèse, nous développons, formalisons et
évaluons ces algorithmes avec pour but d’obtenir un apprentissage robotique efficace.
Nous formalisons une approche algorithmique appelée Intrinsically Motivated Goal
Exploration Processes (IMGEP), qui permet la découverte et l’acquisition d’un vaste
répertoire de compétences grâce aux motivations intrinsèques. Nous démontrons dans
différents environnements robotiques dont un comprenant un robot humanöıde que
l’apprentissage de divers espaces de buts avec des motivations intrinsèques est plus
efficace pour l’apprentissage de compétences complexes que de seulement s’intéresser
à l’apprentissage de ces compétences.

Mots-clés : Motivations intrinsèques ; Exploration orientée vers des buts ;
Développement de l’enfant ; Intelligence artificielle ; Robotique développementale ;
Parole ; Utilisation d’outils.



Title: Intrinsically motivated goal exploration in child development and artificial
intelligence: learning and development of speech and tool use.

Summary: Babies and children are curious, active explorers of their world. One of
their first challenges is to learn the relations between their actions, such as the use of
tools or speech, and the changes in their environment. Intrinsic motivations could be
a key mechanism of this learning, but they have been little studied in developmental
psychology. Also, robots that learn advanced skills today learn in a way very different
from human children. The objective of this thesis is twofold: understanding the role
of intrinsic motivations in human development of speech and tool use through robotic
modeling, and improving the abilities of artificial agents inspired by the mechanisms of
human exploration and learning. A first part of this work concerns the understanding
and modeling of intrinsic motivations. We reanalyze a typical tool-use experiment and
show that intrinsically motivated exploration seems to play an important role in the
observed behaviors and to interfere with the measured success rates. With a robotic
model, we show that an intrinsic motivation based on the progress to reach goals with
a modular representation can self-organize phases of behaviors in the development
of tool-use precursors that share properties with child development. We present the
first robotic model learning both speech and tool use from scratch, which predicts
that the grounded exploration of objects in a social interaction scenario accelerates
infant vocal learning of sounds to name these objects as a result of a goal-directed
exploration of objects. In the second part of this thesis, we extend, formalize and
evaluate the algorithms designed to model child development, with the aim to build
an efficient learning robot. We formalize an approach called Intrinsically Motivated
Goal Exploration Processes (IMGEP) that enables the discovery and acquisition
of large repertoires of skills through intrinsic motivations. We show within several
experimental setups including a real humanoid robot that learning diverse spaces of
goals with intrinsic motivations is more efficient for learning complex skills than only
trying to learn these skills.

Keywords: Intrinsic motivations; Goal exploration; Child development; Artificial
intelligence; Developmental robotics; Speech; Tool use.
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Et l’échec apparent d’une entreprise peut générer plus de
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Résumé

Les bébés et enfants humains sont curieux, ils explorent activement leur monde.
Ils jouent avec les objets et les personnes présentes dans leur environnement, sans
qu’on le leur demande, et potentiellement jusqu’à ce qu’on les arrête ou qu’ils
s’endorment. Cette motivation intrinsèque pour explorer et apprendre de nouvelles
compétences et connaissances est présente dans toutes leurs situations d’apprentissage
et pourrait être un des mécanismes importants du développement. Cependant, les
mécanismes de la curiosité et des motivations intrinsèques ont été peu étudiées en
psychologie du développement, et les motivations intrinsèques sont souvent négligées
dans l’interprétation des résultats des expériences. Les mécanismes particuliers des
motivations intrinsèques sont méconnus, comme la façon de sélectionner des buts et
stratégies ou comment le guidage social interagit avec cette sélection autonome.

Par ailleurs, la plupart des agents artificiels et robots apprennent d’une manière
très différente de celle des enfants humains. Certains nécessitent une énorme base
de donnée d’apprentissage et cherchent des schémas statistiques d’une façon passive,
d’autres ont besoin d’un apport de connaissances d’un expert humain pour lancer et
guider l’apprentissage, et beaucoup requièrent des millions d’itérations d’apprentissage
là où l’enfant n’a besoin que de quelques jours ou semaines. Modéliser les motivations
intrinsèques des enfants en les implémentant chez des robots pourrait nous permettre
de mieux comprendre leurs mécanismes. D’autre part, concevoir des robots qui
apprennent et se développent comme des humains, à travers l’exploration autonome et
l’apprentissage de compétences variées pourrait améliorer les capacités de ces robots,
comme la vitesse, la robustesse et l’adaptabilité de leur apprentissage, en particulier
quand le guidage humain n’est pas disponible.

Un des défis rencontrés par les bébés dès leurs premiers mois est l’apprentissage
des relations de causalité entre leurs actions et les changements dans l’environnement.
Cet apprentissage prend place d’une manière active, quand le bébé expérimente des
actions, qui semblent maladroites, et observe leurs résultats à la manière d’un petit
scientifique. Cela peut être des mouvements des muscles de tous ses membres, ou
bien des articulations de son pharynx et larynx, ce qui produit des sons, et leurs
résultats peuvent être variés et dans toute modalité sensorielle. L’apprentissage
des relations entre ses actions et leurs réactions sur les objets et personnes de son
environnement implique une expérimentation active et une découverte des causalités
entre ces objets et perceptions sensorielles. L’émergence de l’utilisation des outils et
du langage au cours des premières années de vie est en grande partie un mystère, et
les possibles liens entre ces deux compétences ne sont pas élucidés. Le concept de
motivations intrinsèques a peu été considéré pour rendre compte du développement



x Résumé

de ces compétences, bien que les celles-ci semblent y jouer un rôle important. Le
développement de l’utilisation d’outils et de la parole chez les enfants ainsi que leur
modélisation chez les robots semblent donc être un terrain d’étude intéressant pour
mieux comprendre les motivations intrinsèques.

Cette thèse présente deux objectifs complémentaires : d’une part la compréhension
du rôle des motivations intrinsèques dans le développement de la parole et de
l’utilisation d’outils chez l’enfant à travers la modélisation robotique, et d’autre
part l’amélioration des capacités des robots à apprendre à parler et à utiliser des
outils grâce à une inspiration par les mécanismes d’exploration et d’apprentissage
humains.

La première partie de ce travail concerne donc la compréhension et modélisation
des motivations intrinsèques chez l’humain. Les expériences de psychologie du
développement s’attachent pour beaucoup à évaluer des compétences particulières
chez les enfants de tout âge, par la mise en place d’une tâche expérimentale que
l’enfant est encouragé à résoudre. Cependant, les enfants peuvent aussi suivre leurs
propres motivations pour explorer l’appareil expérimental ou d’autres éléments de
l’environnement. Nous suggérons que considérer les possibles motivations intrinsèques
des enfants dans ces expériences peut aider à la compréhension de leur rôle dans
l’apprentissage des compétences associées ainsi que dans le développement à long
terme de l’enfant de manière générale. Pour illustrer cette idée, nous réanalysons
et réinterprétons une expérience d’évaluation des capacités d’utilisation d’outils
par les enfants autour de deux ans, dont la mise en place est typique de ce genre
d’expériences. Nous montrons que les motivations des enfants dans cette tâche sont
très diverses et ne cöıncident souvent pas avec l’objectif attendu et souligné par
l’expérimentateur. Les motivations intrinsèques semblent jouer un rôle important
dans les comportements observés et même interférer avec les mesures de succès dans la
tâche. Cependant, notre analyse a ses propres limites et il serait intéressant d’étudier
les comportements intrinsèquement motivés dans une expérience dédiée, avec des
buts possibles ainsi que des stratégies pour les résoudre aussi variés que possible, avec
un nombre d’expériences plus élevé, ainsi que des moyens d’analyse automatiques des
comportements à observer.

Dans le but de modéliser certains aspects du développement de l’utilisation
d’outils dans les premières années, nous implémentons ensuite un agent artificiel
intrinsèquement motivé, qui génère de lui-même ses propres buts et les sélectionne
grâce à des récompenses intrinsèques, le tout dans un environnement simulé en 2D
où un bras robotique peut interagir avec différents objets. Avec ce modèle, nous
étudions comment des implémentations particulières des motivations intrinsèques
pour générer des buts intéressants ainsi qu’une représentation particulière de ces buts
peuvent jouer un rôle dans une progression de l’utilisation d’outils. Nous montrons
qu’une motivation intrinsèque basée sur le progrès pour atteindre ses propres buts,
couplée à une représentation modulaire de ces buts peut auto-organiser des phases de
comportements dans le développement des précurseurs de l’utilisation d’outils qui
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ont des propriétés en commun avec ce développement observé chez les enfants. Cette
implémentation des motivations intrinsèques est compatible avec les observations
dans les expériences typiques d’évaluation des compétences avec les outils chez les
jeunes enfants, et pourtant les motivations intrinsèques sont souvent négligées dans
l’interprétation de ces expériences.

Certaines études ont proposé que le développement de l’utilisation d’outils et celui
de la parole ont certains points communs dans les premières années chez les enfants
et pourraient avoir des liens dans leurs aspects cognitifs. Pour étudier les mécanismes
sous-jacents, nous présentons le premier modèle robotique de l’apprentissage de la
parole et de l’utilisation d’outils à partir de zéro. Ce modèle ne présuppose pas de
capacités pour le séquençage d’actions complexes ou la planification combinatoire,
qui sont pourtant souvent considerés comme nécessaires au développement de ces
compétences. Même sans ces capacités, notre modèle robotique peut découvrir
progressivement comment attraper des objets avec la main, utiliser des objets comme
des outils pour atteindre encore d’autres objets, produire des sons avec sa voix, et faire
de ces sons un outil social pour utiliser le parent pour atteindre des objets autrement
inatteignables. La découverte que certains sons peuvent être utilisés comme un outil
social peut guider l’apprentissage vocal davantage. Ce modèle prédit que l’exploration
des objets physiques dans un scénario d’interaction sociale accélère l’apprentissage de
la vocalisation des noms de ces objets en conséquence d’une exploration des objets
orientée vers des buts. Cependant, ce modèle présuppose l’existence de mécanismes
perceptuels déjà développés, bien que dans le développement initial de ces capacités,
la perception s’améliore continûment. Cette modélisation bénéficierait par ailleurs
d’une comparaison plus directe et précise avec des observations expérimentales pour
pouvoir affiner ses mécanismes.

Dans la seconde partie de cette thèse, nous développement, formalisons et évaluons
les algorithmes définis pour la modélisation du développement de l’enfant, avec pour
but d’obtenir un apprentissage robotique efficace, qui requiert peu de connaissances
expertes de la part de l’utilisateur, et qui peut s’adapter à de nouvelles situations
d’apprentissage dans une perspective d’apprentissage ouvert. Nous considérons en
particulier les architectures d’apprentissage orienté vers des buts qui ont précédemment
été développées pour l’exploration et l’apprentissage de solutions à des champs de
problèmes sensorimoteurs. Ces architectures n’ont cependant pas été utilisées jusqu’à
présent pour l’apprentissage dans des espaces d’effets continus de grande dimension.
Nous montrons les limites des architectures existantes pour l’exploration de tels
espaces et introduisons une nouvelle architecture appelée Model Babbling (MB). MB
exploite efficacement une représentation modulaire de l’espace d’effets, et une version
active de MB (AMB) améliore cet apprentissage davantage. Ces architectures sont
comparées dans un environnement expérimental simulé avec un bras robotique qui
peut découvrir et apprendre comment contrôler des objets en utilisant divers outils,
ce qui représente des espaces moteurs et sensoriels continus structurés et de grande
dimension.
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Nous formalisons ensuite une approche algorithmique appelée Intrinsically Moti-
vated Goal Exploration Processes (IMGEP), qui permet la découverte et l’acquisition
d’un vaste répertoire de compétences à travers l’auto-génération, auto-sélection, auto-
ordonnancement et auto-expérimentation des buts d’apprentissage. L’architecture
algorithmique IMGEP repose sur les principes suivants : 1) auto-génération de buts
comme fonctions de coût et sélection de buts basée sur des récompenses intrinsèques ;
2) exploration avec une recherche incrémentale de stratégies paramétrées par les buts
et exploitation des données récoltées ; 3) réutilisation systématique de l’information
obtenue pendant l’exploration de certains buts pour améliorer l’approche d’autres
buts. Nous présentons en particulier une forme efficace de IMGEP qui utilise une
représentation modulaire des espaces de buts ainsi que des récompenses intrinsèques
basées sur le progrès en apprentissage. IMGEP est une architecture compacte et
générale pour l’exploration de problèmes sans fonction objectif ou de problèmes où
une telle fonction est difficile à définir et optimiser, alors que l’exploration motivée
intrinsèquement permet une découverte efficace d’une diversité de solutions.

Nous évaluons l’architecture IMGEP dans plusieurs environnements de grande
dimension avec utilisation d’outils. L’architecture IMGEP génère automatiquement
un curriculum d’apprentissage efficace en données, ce que nous démontrons dans
plusieurs environnements expérimentaux dont un avec un robot humanöıde qui
explore de multiples espaces de buts avec des centaines de dimensions continues. Bien
qu’aucun objectif en particulier ne soit fourni à ce système, le curriculum construit de
façon autonome permet la découverte de compétences qui servent de tremplin pour
l’apprentissage de compétences plus avancées, comme l’utilisation d’outils imbriquée.
Nous démontrons que l’apprentissage de divers espaces de buts avec des motivations
intrinsèques est plus efficace pour l’apprentissage de compétences complexes que
de seulement s’intéresser à l’apprentissage de ces compétences. Certains aspects de
cette architecture méritent d’être étudiés davantage, par exemple par une utilisation
de modèles inverses plus sophistiqués, ou une comparaison avec les approches par
recherche de nouveauté.

En résumé, nous avons mis en lumière l’impact des motivations intrinsèques
dans certaines expériences de psychologie du développement et l’importance de bien
les prendre en compte dans l’interprétation de ces expériences et dans les modèles
du développement de l’enfant. Nous avons conçu un premier modèle robotique du
développement intrinsèquement motivé de l’utilisation d’outils et avons montré que
l’exploration orientée vers des buts avec des récompenses intrinsèques peut entrâıner
des trajectoires développementales qui ont des similarités avec le développement de
l’enfant. Nous avons implémenté un premier modèle du développement de la parole
à partir de zéro, dans un scénario de jeu naturel avec un parent, résultant en un
apprentissage de la production de vocalisations qui ont un sens dans l’environnement
et qui sont utilisées comme un outil social pour faire réagir et aider un parent.
Nous avons aussi fourni un cadre algorithmique pour l’implémentation de processus
intrinsèquement motivés d’exploration orientée vers des buts, qui est à la fois compact
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et général. Ce formalisme a été implémenté et étudié de façon extensive dans différents
environnements robotiques incluant un robot humanöıde. Nos agents robotiques ont
développé un curriculum d’apprentissage de façon autonome grâce aux motivations
intrinsèques dans l’exploration de l’utilisation d’outils tels que des joysticks qui
contrôlent d’autres objets. Cependant, différents aspects du développement de
l’enfant ne sont pas capturés par nos modèles. Cela inclut par exemple les contraintes
maturationnelles sur le corps et la cognition, ou la complexité du guidage et de la
contingence des parents. Nous pensons que ce travail représente un premier pas
intéressant dans les directions de la compréhension des motivations intrinsèques chez
les enfants et de leur implémentation pour améliorer l’apprentissage robotique de
compétences avancées.

La modélisation de certains aspects du développement de l’enfant à travers la
robotique permet de tester des hypothèses sur leurs mécanismes en expérimentant
les comportements d’agents artificiels dotés de ces mécanismes. Cette modélisation
peut permettre aux psychologues du développement d’affiner leurs hypothèses et de
développer des tâches expérimentales plus adaptées, ce qui par la suite peut amener
de nouvelles données qui peuvent servir à affiner les modèles robotiques. Poursuivre
cette approche pourrait aider à répondre à ces questions toujours ouvertes : Comment
les bébés et enfants sélectionnent leurs buts et stratégies ? Comment ce choix peut
dépendre de leur expérience ? Comment des facteurs extérieurs comme le guidage
social peuvent interagir avec ces motivations intrinsèques ?





Summary

Babies and children are curious, active explorers of their world. They play with
the different objects and peers in their environment, without being asked to and
perhaps until they fall asleep if we don’t stop them. This intrinsic motivation to
explore and learn new skills and facts seem present across all their learning situations
and could be one of the important mechanisms of development. However, the
underlying mechanisms of curiosity and intrinsic motivations have been little studied
in developmental psychology, and intrinsic motivations are often neglected in the
interpretation of child experiments. The mechanisms of intrinsic motivations such
as how infants select their goals and strategies and how this interacts with external
guidance are open questions.

Most artificial agents and robots have been learning in a way very different from
humans. Some require that a human engineer specifies the objective of each particular
task, others need extensive expert knowledge to guide learning, and many need
millions of training samples. On one hand, modeling intrinsic motivations of children
by implementing them in robotic agents could help us understand their mechanisms.
On the other hand, designing artificial agents that learn and develop like humans,
through the autonomous exploration and learning of diverse skills could improve
the speed, robustness and adaptability of their learning in particular when human
guidance is unavailable.

One of the challenges babies start to face early on is the learning of the relations
between their actions and the changes in their environment. This learning takes place
in an active manner, with the baby experimenting actions and observing the results
as a little scientist. Those actions can be movement of parts of its body such as its
limbs or its vocal tract, and the results can be changes in the sensory perception
in any modality. Learning the relations between arm movements and the objects in
the environment or between its vocal tract and the produced sounds and reactions
of the peers involve experimenting and understanding the causality between all the
different objects and sensory perceptions. The emergence of tool use and language in
the first years of life is in great part a mystery, and little is known on the possible
links between both skills. The concept of intrinsic motivations has not usually been
considered in the development of those skills, although intrinsic motivations seem to
be playing a key role. The development of tool use and of speech in infants and in
robots is thus an interesting object of study for a better understanding of intrinsic
motivations.

The objective of this thesis is twofold: understanding the role of intrinsic motiva-
tions in human development of speech and tool use through robotic modeling, and
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improving the speech and tool-use learning abilities of artificial agents inspired by
the mechanisms of human exploration and learning.

A first part of this work concerns the understanding and modeling of intrinsic
motivations. Many experiments in developmental psychology evaluate particular
skills of children by setting up a task that the child is encouraged to solve. However,
children may sometimes be following their own motivation to explore the experimental
setup or other things in the environment. We suggest that considering the intrinsic
motivations of children in those experiments could help us understand their role
in the learning of related skills and on long-term development. To illustrate this
idea, we reanalyze and reinterpret a typical tool-use experiment aiming to evaluate
particular skills in infants. We show that their motivations are diverse and do not
always coincide with the target goal expected and made salient by the experimenter.
Intrinsically motivated exploration seems to play an important role in the observed
behaviors and to interfere with the measured success rates. However, our analysis has
its own limits and it would be interesting to study intrinsically motivated behaviors in
a dedicated setup triggering more diverse goals and strategies, with more experimental
trials and with some automated data recording.

In order to model the development of tool use in the first years of life, we then
define an intrinsically motivated artificial agent that generates its own goals and selects
them based on intrinsic rewards, with a 2D simulated arm interacting with objects.
With this model, we study how the particular implementations of intrinsic motivations
to self-generate interesting goals together with the particular representation of goals
can play a role in the tool-use progression. We show that an intrinsic motivation based
on the learning progress to reach goals with a modular representation can self-organize
phases of behaviors in the development of tool-use precursors that share properties
with child development. This intrinsic motivation is compatible with observations
in typical tool-use experiments with young children, but on the other hand intrinsic
motivations are usually neglected in the interpretation of those experiments.

Several studies hypothesize a strong interdependence between speech and tool-use
development in the first two years of life. To help us understand the underlying
mechanisms, we present the first robotic model learning both speech and tool use
from scratch. This model does not assume capabilities for complex action sequencing
and combinatorial planning which are often considered necessary for tool use. Yet,
we show that the learner progressively discovers how to grab objects with the hand,
to use objects as tools to reach further objects, to produce vocal sounds, and to
leverage these vocal sounds to use a caregiver as a social tool to retrieve objects.
The discovery that certain sounds can be used as a social tool further guides vocal
learning. This model predicts that the grounded exploration of objects in a social
interaction scenario accelerates infant vocal learning of sounds to name these objects
as a result of a goal-directed exploration of objects. However, those tool-use and
speech learning models assume an already developed perception, while in the early
development of those abilities the perception is continuously improving. Also, those
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models would benefit from more direct and accurate comparisons with experimental
data to refine their mechanisms.

In the second part of this thesis, we extend, formalize and evaluate the algorithms
designed to model child development, with the aim to obtain an efficient learning
agent that requires little expert knowledge and can adapt to new learning situations
in an open-ended learning. We consider in particular goal babbling architectures
that were designed to explore and learn solutions to fields of sensorimotor problems.
However, so far these architectures have not been used in high-dimensional spaces
of effects. We show the limits of existing goal babbling architectures for efficient
exploration in such spaces, and introduce a novel exploration architecture called
Model Babbling (MB). MB efficiently exploits a modular representation of the space
of effects, and an active version of Model Babbling (AMB) further improves learning.
These architectures are compared in a simulated experimental setup with an arm that
can discover and learn how to move objects using several tools, embedding structured
high-dimensional continuous motor and sensory spaces.

We then formalize an algorithmic approach called Intrinsically Motivated Goal
Exploration Processes (IMGEP) that enables the discovery and acquisition of large
repertoires of skills through self-generation, self-selection, self-ordering and self-
experimentation of learning goals. The IMGEP algorithmic architecture relies on
several principles: 1) generation of goals as fitness functions and selection of goals
based on intrinsic rewards; 2) exploration with incremental goal-parameterized policy
search and exploitation of the gathered data; 3) systematic reuse of information
acquired when targeting a goal for improving towards other goals. We present a
particularly efficient form of IMGEP that uses a modular representation of goal spaces
as well as intrinsic rewards based on learning progress. IMGEP is a compact and
general framework for the exploration of problems with no objective function or where
an objective function is hard to define and optimize, while intrinsically motivated
exploration allows an efficient discovery of a diversity of solutions.

We evaluate the IMGEP architecture in several high-dimensional tool-use environ-
ments. The IMGEP architecture automatically generates a sample-efficient learning
curriculum within several experimental setups including one with a humanoid robot
that can explore multiple spaces of goals with several hundred continuous dimensions.
While no particular target goal is provided to the system, this curriculum allows
the discovery of skills that act as stepping stones for learning more complex skills,
e.g. nested tool use. We show that learning diverse spaces of goals with intrinsic
motivations is more efficient for learning complex skills than only trying to learn
these skills. Many aspects of this learning architecture are left for investigation in
future work, such as the use of more accurate inverse models or a comparison with
Novelty Search approaches.

To sum up, in this thesis we brought to light the impact of intrinsic motivations in
child experiments and the importance of considering them in the interpretation of those
experiments and in models of child development. We designed the first robotic models
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of the intrinsically motivated development of tool use and showed that an exploration
driven by goals and intrinsic rewards can result in developmental trajectories that
have similarities with the development of infants. We implemented a first model of
the development of speech from scratch in a naturalistic play scenario with a caregiver,
resulting in the learning of the production of sounds that have a meaning in the
environment and are used as a social tool to make the caregiver help. We also provided
a formal algorithmic framework for the implementation of intrinsically motivated
goal exploration processes that is compact and general. This framework has then
been extensively studied and evaluated in several settings including a real robotic
environment. Through intrinsic motivations, the robot autonomously developed a
learning curriculum to explore a tool-use setup where joysticks can be used to act on
other objects. However, many aspects of child development are not captured yet in
our models. They include the maturational constraints on the body and cognition,
or the complexity of the guidance and contingency of caregivers. Still, we believe
this work provides interesting steps in the directions of the understanding of intrinsic
motivations in children and of their implementation to improve robotic learning of
advanced skills.

Modeling particular aspects of child development allows to test hypotheses about
their mechanisms by experimenting the behavior of artificial agents endowed with
those mechanisms. In turn, this modeling may help developmental psychologists to
refine their hypotheses and their experimental setups, which then can bring new data
to help us refine the robotic models. Following this approach could help us answer
the remaining questions: how do babies select their goals and strategies? How does
this choice depend on their previous experience? How do extrinsic factors such as
caregiver’s guidance interplay with intrinsic motivations?
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Chapter 1

Introduction

Babies and children are curious, active explorers of their world. They play with the
different objects and peers in their environment without being asked to and perhaps
until they fall asleep if we don’t stop them. This intrinsic motivation to explore
and learn new skills and facts seem present across all their learning situations and
could be one of the important mechanisms of development. However, the underlying
mechanisms of intrinsic motivations have been little studied in psychology, and
intrinsic motivations are often neglected in the interpretation of child experiments.
The mechanisms of intrinsic motivations such as how infants select their goals and
strategies and how this interacts with external guidance are open questions.

On the other hand, artificial agents and robots learn in a way very different
from humans. Some require that a human engineer specifies the objective of each
particular task, others need extensive expert knowledge to guide learning, and many
need millions of training samples.

Modeling the intrinsic motivations of children by implementing them in robotic
agents could benefit both the understanding of their mechanisms in children, and the
design of artificial agents where the autonomous exploration of diverse skills could
improve the speed, robustness and adaptability of their learning in particular when
human guidance is unavailable. Those are the topics of this thesis.

1.1 Intrinsic Motivations in Children

Piaget studied the intelligence of children and documented its adaptation through
the first years of life (Piaget, 1952), from the experimentation of simple actions in
the environment to the invention of new means to achieve a goal. He considered that
children possess inherent functions for cognitive adaptation, such as assimilation,
whereby a new phenomenon is integrated in the learned schemas, and accommodation,
modifying internal schemas to encompass the new situations. In Piaget’s view, those
functions operate from the inside and do not necessarily need to be triggered by a
caregiver or other external events. This idea is for instance illustrated in the fifth
stage of Piaget’s classification of child development, which concerns the search and
discovery of novel means through active experimentation. In one of the observations he
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reported, his daughter Jacqueline experiments a new mean to retrieve an out-of-reach
object, from 9-month to 12-month old, in 1926:

“Observation 149.-As early as 0;9 (3), Jacqueline discovers by chance the
possibility of bringing a toy to herself by pulling the coverlet on which it is
placed. She is seated on this coverlet and holds out her hand to grasp her
celluloid duck. After several failures she grasps the coverlet abruptly, which
shakes the duck; seeing that she immediately grasps the coverlet again and pulls
it until she can attain the objective directly. [...]
Until 0;11 Jacqueline has not again revealed analogous behavior. At 0;11 (7), on
the other hand, she is lying on her stomach on another coverlet and again tries
to grasp her duck. In the course of the movements she makes to catch the object
she accidentally moves the coverlet which shakes the duck. She immediately
understands the connection and pulls the coverlet until she is able to grasp the
duck.
During the weeks that follow Jacqueline frequently utilizes the schema thus
acquired but too rapidly to enable me to analyze her behavior. At 1;0 (19) on
the other hand, I seat her on a shawl and place a series of objects a meter
away from her. Each time she tries to reach them directly and each time she
subsequently grasps the shawl in order to draw the toy toward herself. The
behavior pattern has consequently become systematic”

In Piaget’s observation, the baby is seen as an experimenter actively trying new
actions and remembering little by little the ones that work best to reach particular
goals. Piaget did not show the baby how to retrieve the toy or even attract the
attention of the baby towards a possible solution. Neither did he train her by giving
a reward when an attempt was successful. In other words, his child was intrinsically
motivated, or curious to explore the objects in her environment, independently of any
external incentive.

The concept of intrinsic motivations, also called curiosity-driven learning, caught
some attention in psychology and has been studied both in animals and humans
(Berlyne, 1960; Hunt, 1965; Kagan, 1972; Loewenstein, 1994; White, 1959). This line
of research offered an alternative framework to Skinner’s behavioral theory (Skinner,
1953) for interpreting behavioral observations. Skinner indeed emphasized the role
of extrinsic reinforcements and operant conditioning in learning. Psychologists first
started to explore the definitions and properties or dimensionality of curiosity (see
Loewenstein (1994) for a review). Berlyne categorized curiosity along two dimensions,
distinguishing perceptual curiosity, a drive for novel stimuli, from epistemic curiosity,
a desire for knowledge, and specific curiosity, a desire for a obtaining a particular
target, from diversive curiosity, the general seeking of novelty (Berlyne, 1960). Those
two dimensions of curiosity resulted in four different categories, e.g. the curiosity of a
scientist searching for the solution of a well-defined problem is specific and epistemic,
while Jacqueline’s may be specific and perceptual. Later, Ryan and Deci (2000)
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formally defined intrinsic motivations as “the doing of an activity for its inherent
satisfactions rather than for some separable consequence”.

Several mechanisms have been proposed to model intrinsic motivation triggered by
a particular situation, activity or target, suggesting that the motivation is maximal
when an intermediate level of incongruity, violation of expectations, or knowledge gap
arise in that situation (see more details in the Background chapter). However, few
studies have investigated those mechanisms in infants. Kidd et al. (2012) evaluated
how the focus of attention in the environment of 8-month olds can be modulated
by the statistical complexity of stimuli. They show that infants have a Goldilocks
preference: a preference for sequences neither too simple nor too complex. This result
could be compatible with many different underlying mechanisms, and concerns only
one particular situation where the baby passively observes stimuli on a screen. Several
experiments have shown that being curious about a piece of information improves the
memory of this information once obtained (Gruber et al., 2014; Jepma et al., 2012;
Kang et al., 2009). Begus et al. (2014) assess in babies how learning depends on their
active role in the interaction with a caregiver. They present two novel objects to
16-month olds, then wait for the baby to point at one of the two objects. They show
that learning is facilitated when the caregiver responds to pointing.

The active exploration of curious babies seems to be a fundamental mechanism of
learning, however their exact mechanisms and the role of intrinsic motivations on the
long-term development of children remain open questions. One particularity of the
active exploration of infants that is observed as early as in newborns is that many of
their actions seem goal-directed and not just reflexes or random actions (Von Hofsten,
2004). If infants are directing their actions towards goals, how do they select their
current one? When do they switch goals? How do they choose their strategies or
invent new ones? How does their previous experience with the learning situations
affects their choice of goal and strategy? How do intrinsic motivations interplay with
the external guidance of a parent?

1.2 Artificial Intelligence and Robotics
The chess-playing computer Deep Blue defeated the world champion Garry Kasparov
in 1997, marking one of the well-known early successes of Artificial Intelligence. The
AI of this computer involved a symbolic processing of the chess situations embedding
rules and parameters defined by expert chess players together with computational
power to simulate many moves in advance. However this algorithm was tuned to the
task of playing chess such that to be able to play another type of game, the whole
process of defining the rules and fine tuning the parameters would need to be done
again by human experts and programmers.

If we imagine designing intelligent programs and robots that would potentially
live in the home of users, then the programmers could not predict all the situations
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that those systems will encounter and could not program all the associated skills.
Oliver Selfridge pointed out that instead of expert systems filled with rules and
parameters, “The essence of AI is learning and adapting” (Selfridge, 1993). By giving
a machine the ability to learn the appropriate actions in new situations, that machine
would get much closer to human intelligence. Many works in Machine Learning have
focused on the design of neural network architectures and their learning algorithms.
Recently, Deep Learning has offered impressive improvements in the performance of
neural networks. In the domain of vision, the deep convolutional neural network of
Krizhevsky et al. (2012) greatly improved the performances of image classification.
Deep Reinforcement Learning algorithms enabled super-human performances in many
Atari games (Mnih et al., 2013). The combination of deep neural networks trained
with expert knowledge and reinforcement learning allowed to defeat professional
players in the game of Go (Silver et al., 2016).

However, in all those examples, the artificial agents and robots learn in a way very
different from humans. They require that a human engineer specifies the objective of
each particular task to learn, or need extensive expert knowledge to bootstrap and
guide learning (Silver et al., 2016). Also, many need millions of training samples if
not more, or a huge database to learn patterns in a passive way (Krizhevsky et al.,
2012).

Another approach to the building of machines surpassing human intelligence is
to build child machines and to focus on the implementation of learning mechanisms
inspired by the ones of human babies and children. One of the first occurrence of
this idea is offered by Alan Turing after the description of its famous test of machine
intelligence (Turing, 1950):

In the process of trying to imitate an adult human mind we are bound to think
a good deal about the process which has brought it to the state that it is in. We
may notice three components.

(a) The initial state of the mind, say at birth,
(b) The education to which it has been subjected,
(c) Other experience, not to be described as education, to which it has been
subjected.

Instead of trying to produce a programme to simulate the adult mind, why not
rather try to produce one which simulates the child’s? If this were then subjected
to an appropriate course of education one would obtain the adult brain.

Implementing learning mechanisms in robots inspired by the ones of children is
now part of the field of Developmental Robotics (Cangelosi et al., 2015; Lungarella
et al., 2003). Many facets of development have been studied in robots with an
inspiration from child research, such as sensorimotor coordination (Berthouze et al.,
1996; Pfeifer and Scheier, 1997), self-exploration (Berthouze et al., 1998; Lungarella
and Berthouze, 2003), social interaction (Breazeal and Scassellati, 1998; Dautenhahn
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and Billard, 1999; Kozima and Yano, 2001; Kuniyoshi et al., 2003; Nagai et al., 2002).
However, “simulating the child’s mind” to “obtain the adult brain” turned out to
be presenting many challenges (Cangelosi et al., 2010), one of which being that the
learning mechanisms of children are not completely elucidated.

1.3 Speech and Tool-Use Development

One of the challenges babies start to face early on is the learning of the relations
between their actions and the changes in their environment. In their first years of
life, they are able to develop complex skills by interacting with their environment
and their peers. Speech and tool use are two hallmarks of intelligence, but their
emergence is in great part a mystery, and little is known on the possible links between
both skills.

A consistent observation in the development of the interaction with objects and
the use of tools has been that babies actively explore, or play, and learn through
this process. They can discover the use of tools accidentally, transfer their skills
from one situation to another, or make use of demonstrations from social peers.
When many objects can be explored in many different ways, goal-directed behaviors
have been assumed to play a role in the selection of interesting actions by babies,
once their cognitive abilities would allow them to retain a goal in memory (Guerin
et al., 2013). Willatts (1990) argues that goal-directed behaviors in the play with
external objects appear as early as 3 months where babies seem to be able to hold a
complex goal in memory. However the mechanisms of the self-generation of goals have
been little studied so far, particularly in the context of tool use. In many tool-use
problem-solving studies, the fact that a baby would pursue a particular goal, such as
retrieving an out-of-reach toy, and keep that goal throughout the study trial has been
assumed and used to infer the tool-use capabilities. For instance, a very salient toy is
placed out of reach and a non-salient tool is within reach in Rat-Fischer et al. (2012).
However, babies could prefer other goals that look interesting to them because of
their particular learning history, preferences for colors and shapes, for strategies, etc.

In parallel during their first year of life, babies also progressively learn to manage
their vocal tract to go from producing squeals, growls or quasi-vowels to producing
the vowels and speech-like syllables of their native language (Oller, 2000). Everyday,
they produce spontaneously many sounds and vocalizations, even if we don’t trigger
them. Around the age of 6-7 months, canonical babbling starts to appear in their
vocalizations. Canonical babbling is the production and repetition of syllables with
one consonant and one vowel that are the building blocks of words in languages. It
precedes the production of the first spoken words, and is considered critical for the
learning of speech. Babies progressively learn to produce the sounds of the particular
language of their environment through mechanisms such as the imitation of ambient
sounds or the interaction with social peers. However, the role of intrinsic motivations
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in spontaneous vocal exploration, and the interaction between this autonomous
exploration and social interaction have been little studied (Moulin-Frier et al., 2013).

Tool use and speech seem to require similar information processing capabilities
allowing the production and perception of sequential combinations of increasing
complexity, from reaching to spoon self-feeding and from phonemes to stories. Several
parallels have be drawn between these two abilities in their ontogenetic development
(Greenfield, 1991; Meltzoff, 1988), and they could use similar neural substrates
(Higuchi et al., 2009). Tool use and speech could also have a related evolutionary
origin, with several proposed scenarios (Greenfield, 1991; Morgan et al., 2015).

Speech and tool use are thus two fundamental skills that start to develop in the
first years of life, through a combination of several learning mechanism. Intrinsically
motivated exploration seem to be one of their key learning mechanisms, but have
received little attention so far.

1.4 Objectives and Approach
The question of the role and functioning of intrinsic motivation is a fundamental
one for the understanding of long-term child development. Intrinsic motivations are
driving exploration and learning but their particular mechanisms are not understood.
How do children generate and select goals, and strategies to reach their goals? Do the
mechanisms of curiosity evolve across development? Do they depend on the learning
situations, on the action or sensory modalities? Two particular domains, speech and
tool-use development, largely involve intrinsic motivations, but their particular role
in the development of those skills need investigation. Furthermore, most artificial
agents and robots learn with given objectives, require extensive expert knowledge,
or millions of iterations, such that their learning seems far from human’s. Would
intrinsic motivations improve their learning in some respects?

On one hand, modeling intrinsic motivations of children by implementing them in
robotic agents could help us understand their mechanisms, enabling the embodied
experimentation and evaluation of different hypotheses for those mechanisms. On the
other hand, designing artificial agents that learn and develop like humans, through
the autonomous exploration and learning of diverse skills could improve the speed,
robustness and adaptability of their learning in particular when human guidance is
unavailable. Recent work in the field of developmental robotics started to implement
the concepts of intrinsic motivations (Oudeyer et al., 2007) and of the robotic
exploration with self-generated goals (Baranes and Oudeyer, 2010a; Rolf et al., 2010)
with an inspiration from the intrinsic motivations in child development. One family
of models has considered a curiosity-driven learning mechanism where the learner
actively engages in sensorimotor activities that provide high learning progress, avoiding
situations that are too easy or too difficult and progressively focusing on activities of
increasing complexity (Gottlieb et al., 2013). Such computational models have shown
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that developmental trajectories could emerge from the curiosity-driven learning of
sensorimotor mappings, in several different settings. In the Playground Experiment
(Oudeyer et al., 2007), a quadruped robot motivated to maximize its learning progress
discovered the use of its motor primitives to interact with the items of an infant play
mat and a robot peer, and followed a self-organized learning curriculum. In a model of
active vocal development (Moulin-Frier et al., 2013), an agent learned how to produce
sounds with its vocal tract by self-exploration combined with imitation of adult speech
sounds. This model reproduces major phases of infant vocal development until 6
months. In both studies, developmental trajectories are emerging from learning, with
both regularities in developmental steps and diversity in the development of several
independent learners. However, in previous work implementing intrinsic motivations
and goal-directed exploration in robots, a single space of goal is explored, either
discrete or low-dimensional. In order to model the development of tool use and speech
in realistic scenarios, more sophisticated representations of goals and exploration
algorithms are required.

The objective of this thesis is twofold: understanding the role of intrinsic mo-
tivations in human development of speech and tool use through robotic modeling
and experimentation, and improving speech and tool-use learning abilities of robots
inspired by the mechanisms of human exploration and learning.

Modeling particular aspects of child development through robotic models allows
to test hypotheses about their mechanisms by experimenting the behavior of artificial
agents endowed with those mechanisms. In turn, this modeling may help developmen-
tal psychologists to refine their hypotheses and their experimental setups, which then
can bring new data to help us refine the robotic models. Following this approach could
help us answer questions such as: how do babies select their goals and strategies?
How does this choice depend on their previous experience? How do extrinsic factors
such as caregiver’s guidance interplay with intrinsic motivations?

In this thesis, we study in more details the impact of intrinsic motivations in
tool-use experiments in developmental psychology. We extend previous models of
intrinsically motivated goal exploration (Baranes and Oudeyer, 2010a; Moulin-Frier
et al., 2013) to allow the learning of complex skills such as tool use and speech in high-
dimensional settings that model more closely the natural environments of children.
We design naturalistic environments where the fact that some objects can be used as
tools is not assumed and has to be discovered, and we study a modular representation
with many spaces of high-dimensional continuous goals that are related to the objects
of the environment. The learning of speech is grounded in an environment where
the produced sounds have a meaning related the objects, in a language spoken by
peers. We compare several variants of implementations of intrinsic motivations to
understand their impact on learning and development of robots and to see which
implementations are compatible with the observed behaviors of children. We then
study the efficiency of learning through intrinsically motivated goal exploration in
diverse tool-use robotic environments including physical robots.
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1.5 Contributions and Outline

A first part of this work concerns the understanding and modeling of intrinsic
motivations. Many experiments in developmental psychology evaluate particular
skills of children by setting up a task that the child is encouraged to solve. However,
children may sometimes be following their own motivation to explore the experimental
setup or other things in the environment. We suggest that considering the intrinsic
motivations of children in those experiments could help understanding their role
in the learning of related skills and on long-term child development. To illustrate
this idea, in chapter 3 we reanalyze and reinterpret a typical tool-use experiment
aiming to evaluate particular skills in infants. We show that their motivations are
diverse and do not always coincide with the target goal expected and made salient
by the experimenter. Intrinsically motivated exploration seems to play an important
role in the observed behaviors and to interfere with the measured success rates.
However, intrinsic motivations are usually neglected in the interpretation of this kind
of experiments.

In order to model the development of tool use in the first years of life, we then define
in chapter 4 an intrinsically motivated artificial agent that generates its own goals
and selects them based on intrinsic rewards, with a 2D simulated arm interacting
with objects. With this model, we study how the particular implementations of
intrinsic motivations to self-generate interesting goals together with the particular
representation of goals can play a role in the tool-use progression. We show that an
intrinsic motivation based on the learning progress to reach goals with a modular
representation can self-organize phases of behaviors in the development of tool-use
precursors that share properties with child development.

Several studies hypothesize a strong interdependence between speech and tool
use development in the first two years of life. To help us understand the underlying
mechanisms, we present in chapter 5 the first robotic model learning both speech
and tool use from scratch. This model does not assume capabilities for complex
action sequencing and combinatorial planning which are often considered necessary
for tool use. Yet, the learner progressively discovers how to grab objects with the
hand, to use objects as tools to reach further objects, to produce vocal sounds, and
to leverage these vocal sounds to use a caregiver as a social tool to retrieve objects.
The discovery that certain sounds can be used as a social tool further guides vocal
learning. This model predicts that the grounded exploration of objects in a social
interaction scenario should accelerate infant vocal learning of accurate sounds for
these objects’ names as a result of a goal-directed exploration of objects.

In the second part of this thesis, we extend, formalize and evaluate the algorithms
designed to model child development, with the aim to obtain an efficient learning
agent that require little expert knowledge and can adapt to new learning situations
in an open-ended learning. We consider in particular goal babbling architectures
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Figure 1.1: The sequential tool-use task we analyzed. A salient toy is placed inside a
transparent tube open on both ends. Wooden blocks are placed around the tube, at
least two of which must be inserted on one side of the tube to push the toy out.

that were designed to explore and learn solutions to fields of sensorimotor problems.
However, so far these architectures have not been used in high-dimensional spaces of
effects. In chapter 6, we show the limits of existing goal babbling architectures for
efficient exploration in such spaces, and introduce a novel exploration architecture
called Model Babbling (MB). MB exploits efficiently a modular representation of the
space of effects, and an active version of Model Babbling (MACOB) further improves
learning. These architectures are compared in a simulated experimental setup with an
arm that can discover and learn how to move objects using several tools, embedding
structured high-dimensional continuous motor and sensory spaces.

We then formalize in chapter 7 an algorithmic approach called Intrinsically Moti-
vated Goal Exploration Processes (IMGEP) that enables the discovery and acquisition
of large repertoires of skills through self-generation, self-selection, self-ordering and
self-experimentation of learning goals. The IMGEP algorithmic architecture relies
on several principles: 1) self-generation of goals as fitness functions and selection of
goals based on intrinsic rewards; 2) exploration with incremental goal-parameterized
policy search and exploitation of the gathered data; 3) systematic reuse of information
acquired when targeting a goal for improving towards other goals. We present a
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Figure 1.2: The robotic tool-use environment built in our experiments. A Poppy
Torso robot (the learner) is mounted in front of two joysticks that can be used as
tools to act on other objects: a Poppy Ergo robotic toy and a ball that can produce
lights and sounds. Six copies of the same setup are running in parallel to gather more
data.

particularly efficient form of IMGEP that uses a modular representation of goal spaces
and a population-based policy. IMGEP is a compact and general framework for the
exploration of problems with no objective function or where an objective function is
hard to define and optimize, while the intrinsically motivated exploration allows an
efficient discovery of a diversity of solutions.

In chapter 8, we evaluate the modular population-based IMGEP architecture in
several high-dimensional tool-use environments. The IMGEP architecture automat-
ically generates a sample-efficient learning curriculum within several experimental
setups including a real humanoid robot that can explore multiple spaces of goals with
several hundred continuous dimensions. While no particular target goal is provided to
the system, this curriculum allows the discovery of skills that act as stepping stones
for learning more complex skills, e.g. nested tool use. We show that learning diverse
spaces of goals with intrinsic motivations is more efficient for learning complex skills
than only trying to directly learn these complex skills.
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To sum up, in this thesis we bring to light the impact of intrinsic motivations in
child experiments and the importance of considering them in the interpretation of those
experiments and in models of child development. We design the first robotic models
of the intrinsically motivated development of tool-use and show that an exploration
driven by goals and intrinsic rewards can result in developmental trajectories that
have similarities with the development of infants. We implement a first model of the
development of speech from scratch in a naturalistic play scenario with a caregiver,
resulting in the learning of the production of sounds that have a meaning in the
environment and are used as a social tool to make the caregiver help in different
ways. We also provide a formal algorithmic framework for the implementation of
intrinsically motivated goal exploration processes that is compact and general. This
framework is then extensively studied and evaluated in several settings including a
real robotic environment. Through intrinsic motivations, the robot autonomously
develop a learning curriculum to explore a tool-use setup where joysticks can be used
to act on other objects. We discuss the perspective of integrating and combining
our modular goal exploration implementation with Deep Reinforcement Learning
algorithms. However, many aspects of child development are not captured yet in
our models. They include the maturational constraints on the body and cognition,
or the complexity of the guidance and contingency of caregivers. Still, we believe
this work provides interesting steps in the directions of the understanding of intrinsic
motivations in children and of their implementation to improve robotic learning of
advanced skills.





Chapter 2

Background

2.1 Intrinsic Motivations and Curiosity

2.1.1 Mechanisms of Intrinsic Motivations
Intrinsic motivations are a drive to explore, play, act, ask, combine, or build with
no apparent reward, which in the process make learning happen. Once intrinsic
motivations were observed, psychologists wondered what could be the mechanisms
pushing humans and animals to be curious, and if they could uncover some of their
properties through experimentations. One fundamental question is what triggers
curiosity from an operational point of view: why some people prefer to explore a
particular activity, say playing darts, to exploring an atlas ? Why one person likes
this activity at some point and not anymore later on? In which situation does a child
prefer drawing versus playing video games and how does this preference depend on
the particular social context and environment?

Many theories have been proposed to account for the mechanisms underlying
intrinsic motivations. Piaget saw in children a need to make sense of the world.
Curiosity in children would result from a discrepancy between their expectations and
the reality, so that they prefer situations allowing them to assimilate new information
into their learned schemas and accommodate their schemas to account for new
experiments (Piaget, 1952). Following Piaget, the motivation of children would be
more intense for an optimal level of discrepancy, whereas a too low discrepancy
would make assimilation too easy, and a too high level of discrepancy would make
them unable to relate the new situation to the known schemas (McCall and McGhee,
1977). Hebb conceptualized a preference for an optimal level of incongruity (Hebb,
1955), where a mismatch between expectations and perceptions is “pleasurable”,
however a too incongruous situation is unpleasant. Hunt also postulated a search
for intermediate levels of incongruity (Hunt, 1965), and Kagan extended his theory
to include other motivations coming from a cognitive dissonance (Kagan, 1972):
incompatibilities between ideas or between ideas and behaviors. In those views, the
relation between the motivation and the incongruity, violation of expectations or
dissonance has an inverted U shape, with an intermediate level giving rise to an
optimal level of motivation, and low or high levels resulting in a lower motivation.
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Loewenstein proposes a more general knowledge gap theory (Loewenstein, 1994),
where curiosity is triggered by the identification of gaps of information in knowledge.
Those gaps can be discovered through the occurrence of violated expectations, and
feeling competent at a task can come from to the filling of those gaps.

There have been many experiments studying different aspects of curiosity in
humans, starting with questionnaires measuring the curiosity of participants in diverse
situations. Several measures of curiosity have been developed with questionnaires
such as the Ontario Test of Intrinsic Motivation (Day et al., 1971), the Melbourne
Curiosity Inventory (Naylor, 1981) or others (Kashdan et al., 2018; Langevin, 1971;
Penney and McCann, 1964). One topic of interest has been the question of whether
curiosity is correlated with measures of intelligence and creativity. The results were
not always conclusive as some studies found a small correlation and others did not
(Langevin, 1971; Penney and McCann, 1964; Voss and Keller, 1983), see (Loewenstein,
1994) for a review. However, those results may have reached the limits of self-reported
questionnaires, which through a list of indirect questions try to evaluate the curiosity
of one person. First, the subjects may have wrong estimations of their own curiosity
and related behaviors. They can also have different interpretation or scale for the
meaning of curious in sentences like “Being curious about my classwork is important
to me” in the Experimental Curiosity Measure of (Langevin, 1971). Furthermore,
they may well understand that their curiosity is being assessed which can bias their
answers. Those limits make the interpretation of the results of questionnaires even
more problematic with children.

In order to study intrinsic motivations in babies and children, a more recent
approach has been to observe their focus of attention and their exploratory actions in
situations where multiple stimuli are available to them, depending on several factors
hypothesized to be linked to curiosity, such as the novelty of stimuli, the affordances
of available objects, the consistency of events, etc.

For instance, when children are shown evidence that supports an hypothesis which
is considered as improbable by the infant, their curiosity can be triggered. Indeed,
Bonawitz et al. (2012) show that 4 to 7 years-old children play more with an object
when it is not behaving (falling) as expected, and are more likely to find a third object
(a magnet) and to invoke it to explain the unexpected behavior. Those observations
are thus compatible with hypotheses for curiosity mechanisms such as incongruity,
violations of expectations or knowledge gap. In another experiment, they show that
4 to 5 years-old children explore more a box with levers that make puppets pop
out of the box when they had confounded evidence about which levers action which
puppet than when they had unconfounded evidence (Schulz and Bonawitz, 2007).
Manipulating the degree to which candidate causes could be isolated and the potential
for information gain of exploration, they show that children first understand how
distinguishable the evidence is, and also are able to design interventions that generate
distinctive patterns of evidence and maximize information gain (Cook et al., 2011).

By measuring the looking patterns of 8-month-old infants, Kidd and collaborators
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(Kidd et al., 2012) evaluated how their focus of attention in the environment is
modulated by the statistical complexity of stimuli. They presented 3 objects popping
out of their respective boxes, in a sequence of varying complexity. The complexity of a
sequence was measured by its information content: the negative log probability of an
object popping out of a given box. Infant’s attention to an object is measured by the
time after which they look away from the object, given by eye-tracking tools. They
show that infants have a Goldilocks preference: a preference for sequences neither too
simple nor too complex. This Goldilock effect is compatible with the hypothesized
inverted U shape between the motivation and the intensity of the incongruity, violation
of expectations or cognitive dissonance (Loewenstein, 1994).

Those behavioral experiments give insights into particular aspects of curiosity in
particular experimental contexts. They help delineate the contexts and situations
where a particular curiosity mechanism could be at play in the observed behaviors.
However, they form a relatively small body of results on the psychological underpin-
nings of curiosity in infants. Indeed, it is hard to isolate the curiosity component
from other mechanisms in place such as memory, learning, or social incentives. Also,
particular results are compatible with several general hypotheses which may not be
detailed enough to be discriminated.

Much more recently, the mechanisms of curiosity and information seeking started
to be studied from the neuroscientific point of view. Several neuroimaging techniques
have been used to study the role of particular brain regions and particular neural
cells in information seeking tasks. For instance, Kang et al. (2009) asked adults to
report their curiosity level towards the answer of given questions and recorded the
associated brain activations through functional magnetic resonance imaging (fMRI).
They observed a correlation between the curiosity of subjects and the neural activation
in both the lateral prefrontal cortex and the caudate. Based on previous findings
on the role of those regions, the authors suggest that curiosity is an anticipation of
rewarding information. In the context of perceptual curiosity, showing a blurred image
triggers curiosity about the content of the original image. In a fMRI setup, Jepma
et al. (2012) shows that triggering perceptual curiosity activated regions sensitive to
conflict and arousal, while the relief of perceptual curiosity activated regions related
to reward processing. The authors interpretation is that curiosity is an aversive state
whose termination is rewarding.

In order to uncover the particular neural circuitry involved in curiosity and
information seeking, a promising approach is the recording of the activation of single
neural cells in monkeys during the execution of a visual task. Indeed, in foveate
animals, eye movements can tell where they focus their attention or at least where
they search for visual information. Studying single cells activations in visual areas
of the monkey brain while recording eye saccades in an information seeking visual
task can help to understand the precise functions of those individual cells (Gottlieb
et al., 2013). In such a setup, Gottlieb and Balan (2010) shows that some neurons
in the lateral intraparietal area (LIP) in monkeys encode the expected reward of
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a saccadic eye movement, while other encode the expected information gain of the
saccade. Those cells could be part of the neuronal circuitry involved in selecting eye
movement actions that best fill information gaps triggered in the task.

2.1.2 Goal-Directed Behaviors
When a 6-month-old baby tries to reach for an out-of-reach toy, fails, cries, and finally
get it through the help of its mother, one may assume that the baby was somehow
having a goal in mind: getting the toy for mouthing or throwing it, and in the end
succeeded to achieve this goal through trying several strategies. Goal-directed actions
and behaviors seem to be constantly encountered in children free play (Von Hofsten,
2004). Actions have been defined by Dickinson and Balleine (1994) as goal-directed
when the “performance is mediated by knowledge of the contingency between the
action and the goal or outcome, whether this knowledge is conceived as an expectation
or belief or an associative connection”. Goals have been widely discussed from a
theoretical standpoint, elaborating on the possible structure of goals and the processes
involved in goal representation and generation (Austin and Vancouver, 1996). One
recurring proposition is that goals follow a hierarchical organization, with higher-
level goals extended over a longer period of time than lower-level subgoals necessary
to achieve the higher-level goals. However, little is known on the mechanisms of
goal-directed behaviors in children and particularly on the neural substrates of the
representation and sampling of goals in the brain. Here, we review neuroscientific
evidence of the neural correlates of some aspects of goal-directed behaviors.

An interesting property of the neural correlates of goals in the brain is the
involvement of the mirror neuron system (MNS) in their encoding (Fogassi et al.,
2005). A mirror neuron is a neuron that activates both if a particular action is
observed and if that action is executed. Recently, some mirror neurons have been
shown, in monkeys, to be specific of the goal of the observed or produced action,
instead of the action itself (Fogassi et al., 2005). In humans also, parts of the mirror
neuron system, the inferior fronto parietal cortex, has been argued to represent the
outcome of actions (Hamilton and Grafton, 2007). Human understanding of actions
has been described as a hierarchical information processing system, with a cascade of
specialized processes from occipital (sensory) to parietal (MNS) and frontal regions
(Hamilton and Grafton, 2007; Thill et al., 2011), where the self and other actions in
the world are represented both in terms of their consequences and of the intentions
underlying them.

Farther in the information processing hierarchy, the medial prefrontal cortex also
contributes to the representation of goals and subgoals, according to fMRI experiments
on human adults (Fernandes et al., 2018). Participants had to move a truck displayed
on a screen through the use of a joystick. By manipulating the distance of the goal
and subgoals of the task, the authors show that the medial prefrontal cortex signals
prediction errors related to subgoals independently of goals in some context, and
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Figure 2.1: Map of the adult human cortex as categorized by Brodmann. Adapted
from Wikimedia Commons.

signals prediction errors related to goals in other situations. They argue that the
medial prefrontal cortex selectively attends to information at different levels of the
goal and prediction errors hierarchies depending on the task context.

Those psychological and neuroscientific experiments aim to shed light on the real-
time functioning of curiosity mechanisms in humans and animals. Another question
of interest is the extent to which curiosity and information-seeking behaviors benefit
learning.

2.1.3 Intrinsic Motivations and Learning
Several experiments have shown that being curious about a piece of information
improves the memory of this information once obtained. In Kang et al. (2009), a high
self-reported curiosity towards the answer of given questions led to a better recall of
those answers. In particular, an unexpected answer (incorrectly guessed) when the
curiosity was high resulted in an increased activation of memory areas and a better
recall a few weeks later.

Those findings were replicated by Gruber et al. (2014) which also exhibit an
improved memory for information subjects are curious about, with an involvement
of the midbrain, the hippocampus and their interaction. They also show that high
curiosity states improve incidental memory, the memory of independent objects shown
before the relief of curiosity. They interpret their results as supporting a positive
influence of being in a curious state on memory of new information. Furthermore, they
hypothesize that intrinsic and extrinsic motivations and their influence on memory
formation could share common neural mechanisms. In the context of perceptual
curiosity, a high curiosity state triggered by a blurred image is also shown to increase
incidental memory, through hippocampal activations (Jepma et al., 2012).
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In the previous experiments, adults in fMRI scanners are passively learning what
is shown to them. However, intrinsic motivations or curiosity are fully realized when
many alternative behaviors are available to choose from. A study by Begus et al. (2014)
aims to assess how learning of babies depends on their active role in the interaction
with a caregiver. They present two novel objects to 16-month olds, then wait for the
baby to point at one of the two objects, and in the first condition (congruent) they
show what this object’s function is, and in the other condition (incongruent) they
show what the other object’s function is. After a break, babies were given each object
individually and were prompted to perform the action demonstrated before by the
experimenter. The results show that babies replicated correctly significantly more the
function of the object if they had pointed towards it (40.6% vs 12.5%). A follow-up
experiment shows that when no choice was given to babies, their average correctly
replicated actions is 12.2%. Together these experiments show that babies learning is
facilitated when pointing is responded to. The active role of curious babies is thus a
fundamental mechanism of the learning process.

2.1.4 Intrinsic Motivations and Development: An Evolution-
ary Perspective

From babies to adults, we have seen that exploring and being curious about a fact
or a situation can benefit learning and memory thereof. However, little is known
about the long-term consequences on ontogenetic development of being intrinsically
motivated to explore and to learn. Do stronger intrinsic motivations and curiosity in
childhood increase the cognitive abilities later on in development? Or do they make
children waste time and energy in what turns out to be useless information-seeking
behaviors on the long run? How does the interplay between intrinsic motivations and
social guidance influence children developmental trajectories?

Almost no research studied these questions, one exception being a longitudinal
study of baby gaze and pointing behaviors. Brooks and Meltzoff (2008) recorded
in lab sessions the amount of following of parent’s gaze, the amount of spontaneous
non-elicited pointing and the vocabulary growth of babies from 10-month old to 2-
years old. They find a positive relationship between the amount of gaze following and
pointing at 10 month and the vocabulary growth during the second year. This result
provides evidence, in a social interaction context, to the hypothesis that intrinsically
motivated exploration has a positive influence on the long-term development of babies.

It has been hypothesized that intrinsic motivations may be serving as a filter
on what to explore and learn in a complex environment with much more things to
learn than possible in a lifetime (Gottlieb et al., 2013). Indeed, babies must cope
with the vast complexity of the physical world they are born in, through the altricial
and evolving body they are born with. This world contains caregivers and other
peers making unknown sounds of an unknown language, together with many objects
and tools of infinite functions. Actively exploring and learning as most skills and
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knowledge as possible given time and environmental constraints during childhood
might overall be a good strategy for development, furthermore when the skills needed
to survive to and live in adulthood are initially unknown: some of the learned skills
and knowledge may turn out later to be useful.

With an evolutionary perspective, several fundamental questions remain: what is
the evolutionary origin of intrinsic motivations? How do intrinsic motivations increase
the fitness of a species? Did intrinsic motivations influence the evolution of other
cognitive abilities in humans?

Indeed, as curiosity and intrinsic motivations seem to benefit the long-term
development of babies and children, we may hypothesize that they increase the
evolutionary fitness of the human species. One particularity of the human species
and to a lesser extent of other great apes, is the long period of protected development
from childhood to adulthood (Power, 1999). The human species may have evolved
in the direction of being less capable as a newborn, but more capable to learn
during development, assisted by an increase in brain size and with a crucial role
played by intrinsic motivations. In a computational model of learning, Singh et al.
(2010) studied the role of intrinsic motivations within an evolutionary settings and
show results that support this hypothesis. They formulated an evolutionary context
where the environment changes over time, such that reinforcement learning agents
maximizing an optimal reward function for a particular environment may not learn
efficiently in other environments. They showed that a reward function reinforcing
behaviors that are “ubiquitously useful across many different environments” can lead
to a better evolutionary fitness than a function rewarding only behaviors targeted
at survival and reproduction. The authors also argue that the difference between
intrinsic and extrinsic rewards could be one of degree, where extrinsic motivations
could be rewarding events related to the immediate survival and transmission of genes
whereas intrinsic motivations could increase the evolutionary fitness on the very long
term (Barto, 2013).

Furthermore, intrinsic motivations could have influenced the development and
evolution of other cognitive abilities. In Oudeyer and Smith (2016), the authors
explain that previous computational and robotic models of vocalization learning have
shown that conventional patterns of vocalizations at the group level could emerge from
the interaction of intrinsically motivated individuals. They argue that the evolution
of language prerequisites and potentially the evolution of other cognitive abilities
could have been facilitated by intrinsic motivations.

Passingham and Wise (2012) studied the evolution of the prefrontal cortex from
early primates to anthropoids, and reconstructed the probable ecological niches of
the human lineage. Through a comparative ecological approach together with the
interpretation of recent neural data, in particular the interconnections of the different
brain regions, they propose that “the granular PF cortex generates goals that are
appropriate to the current context and current needs, and it can do so based on a
single event”. They argue that from its connections, the granular prefrontal cortex can
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represent three hierarchies: the context, goal, and outcome hierarchies. For instance,
goals can be represented in a range of hierarchical levels, with goals such as the
specification of an object or location used as a target of action, the specification of the
abstract structure of a series of actions, or the specification of a rule or strategy that
generates objects or locations to choose or to avoid. The prefrontal cortex has the
ability to choose actions based on outcomes (medial PFC), choose objects based on
outcomes (orbital PFC), search for goals (caudal PFC), generate goals based on recent
events (dorsal PFC) and generate goals based on visual and auditory contexts (ventral
PFC), such that as a whole, the PFC can generate goals from current contexts and
events (see Fig. 2.1 for a map of the prefrontal cortex). In the successive ecological
niches of primates, the PFC could have been used to link the foraging actions with
the resources outcome that follow, link foraging goals (objects, places) with resource
outcomes, select foraging targets, keep goals in memory, allow a fast learning to
reduce wasteful and risky choices, and do mental trial and error. In the hominid
lineage in particular, it could have supported teaching and learning by instruction
with less errors, the imagination of more complex goals, the monitoring of others
intentions, and improved reasoning abilities (Passingham and Wise, 2012).

Those results and hypothesis pave the way for more research to understand the
precise mechanisms and functions of intrinsic motivations and their influence on
human ontogenetic and phylogenetic development.

2.2 Tool-Use Development in Infants

2.2.1 Tool-Use Definitions
Many definitions of tool-use behaviors have been offered from behavior researchers.
Most of them agree on the general idea of a tool being an object used to interact
with another object. However, they all differ when delineating the limits of tool-use
behaviors on several dimensions such as the origin the tool, the relation between the
tool and the environment, the relation between the tool and the object acted upon,
the efficiency of the behavior.

The early definition of Van Lawick-Goodall (1971) states that “a tool-using
performance in an animal or bird is specified as the use of an external object as
a functional extension of mouth or beak, hand or claw, in the attainment of an
immediate goal. This goal may be related to the obtaining of food, care of the body,
or repulsion of a predator, intruder, etc. If the object is used successfully, then the
animal achieves a goal which, in a number of instances, would not have been possible
without the aid of the tool.” This definition is one of the first to explicitly include
the potential behaviors of some non-human animals.

Alcock explicitly only includes the use of inanimate objects as tools (Alcock,
1972): “Tool-using involves the manipulation of an inanimate object, not internally



2.2. Tool-Use Development in Infants 21

manufactured, with the effect of improving the animal’s efficiency in altering the form
or position of some separate object.” Those two definitions also emphasize that a tool
must improve the efficiency of some behaviors compared to behaviors without that
tool.

A definition commonly referred to is the one of Beck (1980): “the external
employment of an unattached environmental object to alter more efficiently the form,
position, or condition of another object, another organism, or the user itself when the
user holds or carries the tool during or just prior to use and is responsible for the
proper and effective orientation of the tool.”

In this thesis, following Goodall and Alcock’s definitions and contrary to Beck’s,
we will also consider as tools the manipulation of objects attached to the environment,
such as a joystick that controls another object (see chapter 8). Beck also included
“social tool use” in tool-use behaviors, contrary to Alcock’s, as the manipulation of
another individual as a tool (Bentley-Condit et al., 2010). In chapter 5, we discuss
the emergence of social tool use in our experiments with a simulated agent producing
vocalizations to make a caregiver move a toy.

When multiple tools interact, Wimpenny et al. (2009) suggest to use the term
“meta-tool use”. In this category, we can find for instance the use of a tool to retrieve
another tool, which is called a sequential tool use, and the use of a tool to build
another tool, called a constructive tool use.

2.2.2 Tool-Use Development
Tool-use behaviors in babies come after a long period of development of behaviors of
increasing complexity with the hands and with objects, from the very first behaviors
such as rooting for the breast, to the manipulation of sticks and spoons. The precursors
of tool-use behaviors can be grouped into three categories (Guerin et al., 2013).

The first category concerns behaviors without objects. They include for instance
many rhythmical stereotypical behaviors such as those observed by Thelen (1979)
in a longitudinal study in the first year of life: arm waving, flexion and extension of
fingers, rotation and flexion of the hand, clapping hands together, etc.

The second category includes behaviors with a single object. Reaching for and
grasping an object are well studied behaviors with a single object. Many types of
grasping behaviors are developed little by little in the first year, from the simplest
palmar grasp to the more complex pincer grasps (grasping the object between two
fingers) (Guerin et al., 2013). Grasping can be followed by the visual inspection of
the object, or mouthing, throwing the object away, etc.

The third category deals with object-object behaviors, where several objects
interact. It includes pushing or banging an object on a surface (table of floor), pulling
a towel supporting another object at about 8 months (Willatts, 1999), fitting shapes
into slots, acquired around 12 months (Örnkloo and von Hofsten, 2007), exploring the
relations among objects, which is preferred at 131

2 months versus exploring objects
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Figure 2.2: Onset of various behaviors precursors of tool use. Figure reprinted from
Guerin et al. (2013) with permission from Frank Guerin, c© 2013 IEEE.

individually (Zelazo and Kearsley, 1980). Using a rake or a stick to retrieve an
out-of-reach object is a prototypical tool-use behavior, acquired around the second
year of life, depending on the complexity of the task: it has been observed at 15-18
months for a medium-sized stick (Brown, 1990), or at about 3 years if a complex
sequence of movements is required with a long stick (Uzgiris and Hunt, 1975).

It is important to note that those three categories do not occur as a sequence with
sharp boundaries, but rather as a smooth evolution of the proportion of behaviors
observed in the first 2 years of life. Fig. 2.2, reused with permission from Guerin
et al. (2013), shows the onset of many behaviors of those three categories.

Also, there are dependencies between behaviors as the learning of one behavior
can facilitate the discovery of other behaviors. For instance, the behavior of shaking
an object in a hand can lead to the discovery of the behavior of banging an object on
a surface which makes noise (Guerin et al., 2013). Babies seem to learn that some
objects make sounds when banged on a hard surfaces whereas not on soft surfaces
at about 10 months (Bourgeois et al., 2005). Fig. 2.2 shows the transfer of learning
between some behaviors, through arrows from a behavior to another.

One of the earliest tool-use behaviors is spoon self-feeding. Spoon self-feeding
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is composed of several actions: grasping the spoon, moving the spoon to the dish,
loading the spoon with food, transporting the spoon loaded with food to the mouth
without spillage, and emptying the food into the mouth (Connolly and Dalgleish,
1989). In a longitudinal study in the second year of life, Connolly and Dalgleish
(1989) document the different types of spoon grasps and patterns of actions with the
spoon and food during self-feeding. They show how this behavior improves over the
months, becoming more consistent, smoother, more direct and faster, with the use of
the preferred hand, of fewer grasp patterns, and with a better visual monitoring.

Many non-human animals are also able to create and use tools, as a weapon or to
help feeding (Alcock, 1972). For instance, chimpanzees and New Caledonian crows
can fashion a stick-like tool with the right properties from their environments in order
to “fish” termites or ants (Seed and Byrne, 2010). Those behaviors can have a genetic
influence, but they can also be culturally transmitted (Kenward et al., 2006). The
use of a tool to act on another tool has also been observed in non-human primates
(Mulcahy et al., 2005) and in New Caledonian crows (Wimpenny et al., 2009).

2.2.3 Tool-Use Learning Mechanisms
An active exploration and play with many repeated cycles of perception and action
has been documented in the learning of reaching in the first year of life (Williams et al.,
2015), which is one of the precursors of tool use. In tool-use tasks, the observation of
play and learning has been the topic of several studies around the second year of life,
either in lab session or at home, inside one session or longitudinally across sessions.

Let’s first go back to the observation of Piaget’s daughter Jacqueline from age
9 to 12 months (see Introduction). Jacqueline is seated in front of an out-of-reach
toy which is placed on a coverlet. In order to retrieve the salient toy, the baby has
to pull the coverlet. This task can fall into the tool-use category if we consider that
the coverlet is a real tool, but does not fit all tool-use definitions as the coverlet is
already physically connected to the toy. One striking observation of Piaget is the
accidental character of the discovery at 9 months and the rediscovery at 11 months
old: “After several failures she grasps the coverlet abruptly, which shakes the duck”
and “In the course of the movements she makes to catch the object, she accidentally
moves the coverlet which shakes the duck”. It seems that in the first occurrence,
the baby was bored of trying to catch the toy and started exploring another object,
the coverlet, which accidentally made the toy move. In the second occurrence, the
baby was exploring the inefficient strategy to catch the toy, going directly with the
hand, which accidentally made the coverlet move, resulting in moving the toy. The
exploration of a non-tool-use strategy or of the tool object thus allowed to discover
information on how to use the tool to retrieve the toy. In both cases, the baby seemed
to understand the connection as she subsequently pulled the coverlet and grasped
the duck. However, learning and remembering the efficient tool-use strategy do not
necessarily happen directly from one success: after the first discovery at 9 months
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old, the behavior is not observed after another accidental discovery at 11 months old.
This behavior is rather learned from many repetitions along the weeks, such that the
behavior has become systematic at 12 months.

Later in development, the repetition behaviors seem to be more variable and to
allow the learning of new skills. Indeed, in the fifth stage of sensorimotor development
(around 12-18 months, Piaget (1952)), Piaget emphasizes the behavior of modifying
a previous experiments and observing the corresponding results: “When the child
repeats the movements which led him to the interesting result, he no longer repeats
them just as they are but gradates and varies them, in such a way as to discover
fluctuations in the result”. One instance of this is the discovery of the tool function of
the stick by his daughter Lucienne at 14 months in observation 157: “While playing
at hitting a pail with a stick she is holding (all this without preliminary goals) she
sees the pail move at each blow and then tries to displace the object. She strikes it
more or less obliquely to augment the movement and does this many times”.

Another important learning mechanism that seems to be highly used by children
notably in the context of tool use is analogy and transfer, however there is little data
on that topic (Brown, 1990; Guerin et al., 2014). Through analogy, a child is able
to transfer the skills learned in a particular situation (called source), to a different
yet analogous situation (called target). In the context of tool use, the difference
between the source and target situations can be the color and texture of the objects,
the shape of the tool, the relation between the tool and the object acted upon. If
the difference is small enough, a behavior working in the source situation will work
in the target situation, though some exploration and adaptation might be required.
Piaget reported several anecdotes of analogy, such as with Jacqueline in observation
160 (Piaget, 1952) who transfers the use of a stick as a tool to the use of a book and
a banana for the same purpose. Beck et al. (2014) studied the ability to transfer
tool-making knowledge in children aged 4-7 years. They show that children were
able to transfer tool making to new situations when the tool could be made with the
same materials and with similar shape. They argue that transfer abilities depend on
memory and analogical reasoning and thus improve with age. See Guerin et al. (2014)
for other examples and a discussion of analogy and transfer. In animals, analogy
and transfer are also thought to play a central role in tool-use tasks. Taylor et al.
(2007) argue that New Caledonian were able to solve meta-tool-use tasks in their
experiments through analogical reasoning.

Play, exploration and transfer are essential learning mechanisms for tool use
when no social guidance is provided. When a caregiver can guide the child, another
fundamental opportunity for learning is the observation of caregiver’s demonstration
and subsequent imitation attempts. Observational learning has been shown to
function as early as 12 months in a task where music was produced through the
bimanual manipulation of a rolling drum (Fagard and Lockman, 2010). Concerning
tool use, observational learning appears later in development (Fagard et al., 2016).
In a toy retrieving task, Chen et al. (2000) show that the successful use of a tool
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after a demonstration can be observed from 18 months, but many children do not
show observational learning before 35 months. In a similar tool-use settings with a
non-salient reachable rake tool placed near a very salient out-of-reach toy, Rat-Fischer
et al. (2012) show that infants start to benefit from demonstrations of how to retrieve
the toy with the rake only from 18 months. Related studies revealed that learning by
demonstration can be improved by showing the intention of the experimenter prior
to demonstration, through trying to grab the toy and saying “I can’t get it” (Esseily
et al., 2013), by implicitly repeating the demonstration, without any verbal comments
(Somogyi et al., 2015) and by making the baby laugh during the demonstration
(Esseily et al., 2016). In a study of tool making in 3-5 year-old children, Beck et al.
(2011) tested their ability to make a hook tool adapted to solving a particular toy
retrieving task, either on their own or after a demonstration. They show that the
manufacture of a hook tool was easy after demonstration while the innovation of a
novel tool without demonstration was difficult at this age.

The complexity of tool use, and therefore the age at which a particular tool-use
behavior can be observed, depends on the properties of the relations between the
tool, the object acted upon and the child sensorimotor capabilities. The concept
of affordances, described by Gibson (1979), represents the relations between an
object perceived in the environment and a subject, including the ways the object
can be moved or acted upon, from the point of view of the subject and given its
sensorimotor capabilities and constraints. Tool use has been described as a continuous
developmental achievement in children in which the learning of affordances plays a
central role (Lockman, 2000). Van Leeuwen et al. (1994) describe tools in terms of
higher order affordance structures, which complexity depends on the interrelations
between the three dual relations between the actor, the target and the tool. They show
that the difficulty of hook tool-use tasks with children between 9 months and 4 years
old is in accordance with the complexity of the higher order affordance structures.
The authors argue that children perceive more complex affordance structures with
development. In a subsequent study of hook tool use, Cox and Smitsman (2006) show
that tool-use actions depend on hand preference, such that right-handed children used
the hook tool as a hook to pull the toy when used with the right hand, and as a stick
to sweep the toy when used with the left hand. The tool-use strategy thus depends
on prior experience with using tools with both hands. Barrett et al. (2007) studied
tool-use performances depending on the familiarity of the tool in 12- to 18-month-old
infants. They show that using a familiar tool in a non-familiar way, such as grasping
a spoon from the bowl side in order to insert the handle in a hole, makes learning
harder than with a completely novel tool for a similar task. This result also suggest
that prior experience with the use of objects as tools influences the perception of the
object possibilities and thus shapes the object subsequent exploration.

Piaget’s theory of child development, comprising a sequence of detailed stages
all children must go through, has been later criticized in several aspects, one of
which is the monolithic description of thinking and sensorimotor strategies children
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seem to use at any point in development and the sudden change between stages
in Piaget’s view. In response to this criticism and supported by more recent data,
Siegler developed its overlapping waves theory (Siegler, 1996) which states that when
thinking about a problem or phenomenon, children don’t abruptly change their
approach from one strategy to another, but rather use multiple strategies at any
given point in development, which frequency of use vary gradually with cognitive
development together with the introduction of more advanced strategies. For instance,
in a study of tool-use development, Chen et al. (2000) experimented with 1.5- and
2.5-year-olds that had to retrieve an out-of-reach toy with one of the six available
tools. Children were exposed to several problems with different tool shapes and visual
features, but for each problem only one tool was effective to retrieve the toy. The
authors found that 74% of toddlers used at least three strategies, mainly to lean
forward and try to retrieve the toy with the hand, to grab one of the tool and try
to catch the toy with the tool, to ask the mother if she could retrieve the toy for
them or to walk around the table to look at the toy from different angles. They also
measured the variations of strategy frequencies and argued that their results were in
accordance with the overlapping waves theory.

Guerin et al. (2013) summarizes the sensorimotor development in the first two years
of life as the development of two tracks: the concrete track is the set of sensorimotor
behaviors, skills or schemas, and the abstract track deals with representations, built
from the sensorimotor experience gained in the concrete track, and influencing the
future sensorimotor exploration and learning. They list six learning mechanisms for
the well-studied concrete track: repetition, variation and selection, differentiation,
decomposition (in sequential chunks), composition (in sequence) and modularisation
(refinement of a schema to be used as a primitive action). The synchronization between
the two tracks is assumed to happen through a mechanism called “representational
redescription”, where abstract representations evolve through the acquisition of new
data that do not fit old representations.

Overall, one consistent observation in the development of tool use and its precursors
has been that babies actively explore, or play, and learn through this process. When
the space of playable objects and behaviors is too large for the allowed time in a
playing session, goal-directed behaviors have been assumed to play a role in the
selection of interesting behaviors by babies once their cognitive abilities would allow
them to retain a goal in memory (Guerin et al., 2013). However the goal-directed
functioning of behaviors has been little studied so far, particularly in the context of
tool use. Willatts (1990) argues that goal-directed behaviors in the play with external
objects appear as early as 3 months where babies seem to be able to hold a complex
goal in memory. The fact that a baby would want a particular goal, such as retrieving
an out-of-reach toy, and keep that goal throughout the study trial has been assumed
and used to infer the tool-use capabilities in many tool-use problem-solving studies.
For instance, a very salient toy is placed out of reach and a non-salient tool is within
reach in Rat-Fischer et al. (2012). However, babies could be choosing any other goal
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that looks interesting to them because of their particular learning history, preferences
for colors and shapes, current frequency use of strategies, etc.

This body of studies and theories on tool use suggests that many exploration
and learning mechanisms could play a role in tool-use development, motivated by a
combination of intrinsic and extrinsic motivations with social guidance, and could
influence the behavior of infants and toddlers at different points in development or
even interplaying in the same learning sessions.

2.3 Speech Development in Infants

2.3.1 Infant Vocalizations: from Squeals to Words
During their first year of life, infants progressively learn to manage their vocal tract
to go from producing squeals, growls or quasi-vowels to producing the vowels and
speech-like syllables of their native language (Oller, 2000). Fig. 2.3 illustrates the
developmental progression in the first year of life on the production and perception
tracks.

Figure 2.3: Timeline of the development of speech production and perception in the
first year of life. Figure reprinted from Kuhl et al. (2008) with permission from
Patricia K. Kuhl, Institute for Learning & Brain Sciences, University of Washington.

From birth to 2 months, babies start to produce quasi-vowels (Oller, 2000), sounds
with normal phonation (unlike crying, sneezing). From 2 months to 4 months, they
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Figure 2.4: Word understanding and production abilities, with variability across
infants. Figure reprinted from Fenson et al. (1994) c© JSTOR.

produce articulated sounds that have been named gooing, with the tongue that moves
during phonation which results in primitive consonant-like sounds (Zlatin, 1975).
Then, from 4 months to 6 months they learn to produce fully resonating vowels.
Canonical babbling is the production and repetition of syllables with one consonant
and one vowel that are the building blocks of words in languages. The onset of
canonical babbling is around 6-7 months. It has been shown to always appear before
the production of the first spoken words in a longitudinal study (Oller et al., 1998),
such that canonical babbling is considered to be critical for the learning of speech.
For instance, a late onset of canonical babbling predicts developmental disorders such
as autism (Lee et al., 2018). Later, by the end of the first year, speech production
starts to be specific to the language learned (Kuhl et al., 2007). The first words are
produced around 12 months. The first words accumulate slowly but the speed of
acquisition increase dramatically in the second year of life Fenson et al. (1994). Fig.
2.4 shows the number of words understood and produced depending on age, with the
variability among babies. Finally, by their third year, most children will be able to
produce fully grammatical sentences Fenson et al. (1994).

During this same period, babies learn to recognize the phonemes and syllables
of their language (Kuhl et al., 2007) and to understand the meaning of many words
Fenson et al. (1994). For instance, babies are able in their first months to discriminate
all phonetic units of all languages (Eimas et al., 1971), but this ability disappear with
development in the second half of the first year, which supports the idea of a critical
period for phonetic learning (Kuhl et al., 2007). Furthermore, the adaptation to the
ambient sounds is predictive of normal language development: at 7 months, a better
ability to discriminate the sounds of nonnative languages is correlated with reduced
later languages abilities while a better ability to discriminate the sounds of the native
language predicts better later language abilities (Kuhl et al., 2005).

Moreover, research on prelinguistic infants has documented that they do not learn
only by passively listening the sounds of their environment and experimenting alone,
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but rather by interacting with their caregiver and other adults and siblings. For
instance, Gros-Louis et al. (2006) showed that mothers respond contingently to 10
month-olds’ prelinguistic vocalizations 70% of the time, mainly with acknowledgment
to both vowel-like sounds and consonant-vowel clusters. Furthermore, these mothers
respond with more playful vocalizations to vowel-like sounds than CV clusters,
and with a more imitative behavior to CV clusters than vowel-like sounds. In
other words, caregiver’s behavior depends on infant’s vocalizations, and, in addition,
infant’s vocalizations properties evolve in response to caregiver’s stimulation across
months of development. These relations suggest an interaction loop between the
prelinguistic infant and his caregiver, that might help and shape vocal learning. We
describe in details such infant-caregiver interactions and their consequences on speech
development in the next section.

2.3.2 Infant-Caregiver Interactions in Speech Development
Human, together with songbird, is one of the few species that learn vocalizations
specific to their cultural environment (Kuhl and Meltzoff, 1996). Imitation is thought
to be an important pathway to social and vocal development (Meltzoff and Warhol,
1999), constrained by the dramatic changes in the anatomy and functioning of the
vocal tract in early life (Sasaki et al., 1977). Infants have been demonstrated to
imitate the vowels produced by an adult speaker already at the age of 3 to 4 month-old
(Kuhl, 1991). When infants are imitating their caregiver, the prelinguistic vowel
categories become more separated in the vowel space from 12 to 20 week-old infants
(Kuhl and Meltzoff, 1996). In response to this vocal babbling, mothers have been
shown to use sensitive speech and vocal imitation, particularly when vocalizations
are perceived as more speech-like (Albert et al., 2018).

In order to study the properties of the real-time interaction between the baby
and the mother, and in particular how the interaction starts and sustains and how
engaged and motivated the infant is in learning by this social interaction loop, Franklin
et al. (2014) used a Face-to-Face/Still-Face/Reunion paradigm with 6-month olds.
The mother and her child were in free interaction during the first phase to measure
baseline vocalizations number and types. Then the mother was asked to stay looking
at the child with no interaction during the second phase, and they were free again in
the third phase. They measure an increase from the Face-to-Face to the Still-Face
phase of all protophones vocalizations categories measured, full vowels, quasi-vowels,
squeals and growls, but not of cry or laugh. This study shows that by 6 months of
age infants have learned that they can re-engage their parent through speech-like
vocalizations, which is a step toward a pragmatic use of the perlocutionary effect of
their vocalizations, that will be an important component of their later communication
abilities.

Goldstein and Schwade (2008) studied the importance of the contingency of the
vocal responses of mothers to their 9.5-month-old infant. In a contingent group,
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mothers were ask to react to their child’s vocal babbling by speaking to, moving
closer to, touching and smiling at their child. In a yoked control group, mothers had
to respond to their child with the timing of the responses of the contingent group’s
mothers, so their responses were unrelated to their child’s babbling. If mothers
had to speak only with vowels, there was a significant increase of the percentage of
infants’ fully resonant vowels but not of their CV-structured syllables (consonent-
vowel) with respect to the yoked control condition. If mothers had to speak only
with CV structures, the increase was on the percentage of CV structures but not on
fully-resonant vowels. Furthermore, there was no mimicking of the surface phonetic
features like the particular vowel or particular CV structure, but rather a learning of
the phonological pattern: fully resonant vowels and CV structures. This study was
the first experiment manipulating in real-time mothers’ vocalizations. It provides
evidence that the infant is learning new vocal forms from the diversity of vocalizations
in its mother’s contingent speech while mimicking only would not allow it.

The difference between contingent and noncontingent feedback was also investi-
gated in the context of nonvocal feedback to infant’s babbling. Goldstein et al. (2003)
studied the difference of vocal behavior of 8-month-old infants who receive contingent
versus noncontingent nonvocal social feedback. The mothers were asked to smile,
move towards the infant, and touch him when he was babbling. In a yoked control
condition, mothers had to respond based on the contingent condition’s mothers: their
response were unrelated to their child’s babbling. Results show that infants in the
contingent interaction condition increased their proportion of vocalization with more
mature voicing, syllable structure, and with a faster CV transition with respect to
infants in the yoked condition, and that this change persisted in the free interaction
phase after the end of the manipulation. This study provides evidence that a non-
vocal social interaction mechanism can also shape babbling in real-time. It finds an
important role in nonvocal feedback, suggesting that such social reinforcement could
be one of the pathways of speech development. The authors highlight an ontogenetic
parallel with songbirds as for instance female cowbirds do not sing but still are able
to give feedback to their male chicks learning to sing.

In the previous experiments, the infant-caregiver interaction was measured during
a single or a block of experimental sessions. They explored direct interactions
between infants and caregivers’ behaviors on a short timescale. However, those social
interactions might have accumulating effects on the developmental timescale. In
order to understand infant’s long-term vocal development, the mother-infant free
social interaction was observed in a playroom each week from 8 to 14 months in a
longitudinal study (Gros-Louis et al., 2014). This study shows that overall the vowels
and CV productions, the eye contact during mother-directed vocalizations (MDV),
and the maternal responsiveness to object-directed child vocalizations increased with
age. Longitudinal correlations show that maternal responsiveness and imitation
of MDV in previous months predicts MDV in following months. Also, maternal
responsiveness to MDV correlates with the difference in developmentally advanced
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CV vocalizations from 8 to 14 months. These longitudinal correlations support the
idea of an accumulating effect of the properties of this social interaction loop on vocal
development.

Gestures and pointing behaviors have been argued to pave the way for language
learning as they provide a social platform for communicating and interacting with
another person while drawing attention to an object (Goldin-Meadow, 2007). The
pointing behavior thus represents another opportunity to learn words and their
meaning in a social interaction context (McGillion et al., 2017). The first pointing
gestures with the index finger extended appear around 3 months (Fogel and Hannan,
1985), however the full gesture with both the arm and the finger extended and a
communicative intent from the infant emerges between 9 and 15 months (Tomasello
et al., 2007). Children learn words from their pointing behaviors. For instance,
the lexical items that appear in the spoken vocabulary can be predicted in a large
proportion by the child’s earlier pointing gestures (Iverson and Goldin-Meadow, 2005).
Also, gestures at 14 months better predict later vocabulary size than mother speech
at 14 months (Rowe et al., 2008). Children can mix words and pointing to convey
more complex semantics, such as verb-object when saying “eat” and pointing at a
cookie (Goldin-Meadow, 2007), and mothers often “translate” those behaviors in
return with complete sentences (Goldin-Meadow et al., 2007). Children could be
selectively pointing to the objects they find interesting enough to communicate and
learn about (Tomasello et al., 2007), which could result from intrinsic motivations,
operationalized for instance by the knowledge gap hypothesis (see Sec. 2.1.1).

2.4 Links between Tool-Use and Speech
Development

Tool use and language seem to require similar information processing capabilities
allowing the production and perception of sequential combinations of increasing
complexity, from reaching to spoon self-feeding and from phonemes to stories.

Greenfield (1991) describes how both tool use and language show a hierarchical
organization, and draws a parallel between the early development of the tool-use
skills and the phonetic skills in the two first years of life that seem to show the same
increases in complexity around the same age. For instance, around 8 months, babies
duplicate CV clusters as in “dada” on the phonology side, and on the tool-use side are
able to move a spoon in and out of the mouth or the dish and repeat. Later, between
12 and 16 months, CV1CV2 clusters with one consonant and different vowels appear
as in “daddy” or “baby”, while behaviors with the spoon evolve such that babies
can touch the food with the spoon then touch the mouth with the spoon, which can
be argued to be of a similar structure than the CV1CV2 clusters. Actions, and in
particular goal-directed actions, have thus been described as following a grammar
(Pastra and Aloimonos, 2012) generating hierarchically organized action sequences.
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Other specific relations between language and tool-use development were investi-
gated by Meltzoff (1988). For instance, they studied the onset of means-end behaviors
and success/failure words. They show that the onset of those two cognitive skills
is close in time (13 days on average), while there is a large variability between chil-
dren as they can appear from 15 to 24 months. An insightful use of tools was a
better predictor of the use of success/failure words than of other abilities such as
object-permanence skills.

Another potential link between language and tool use is that communication can
be seen as a social tool. Although not manipulating a physical object to get food,
a baby saying “eat” and pointing to a cookie is producing physical sound waves
that have an effect on the caregiver. As with a stick or a spoon, the baby has to
learn in which contexts this social tool-use strategy works, e.g. if it has not already
eaten too many cookies, and how this vocal tool functions, e.g. that saying “eat X”
might have a different effect depending on X. This idea is consistent with the fact
that communicative gestures have also been described as social tools. For instance,
pointing has been argued by Tomasello et al. (2007) to be used to affect caregiver’s
mental states. Also, deaf children use language gestures as tools, for instance to get
others to do things for them (Goldin-Meadow, 2007), when hearing children would
have used sentences. Those previous studies support the idea that there could be
specific relations between the cognitive processes involved in tool use and language
development.

In addition to showing similarities in hierarchical organization and potentially
in the required cognitive information processes, language and tool use might share
some neural correlates. A first link between hand gestures and speech production
supports the idea of related neural substrates between speech and hand gestures.
Gentilucci et al. (2001) shows that when human subjects are asked to open grasp
an object and open the mouth, the lip aperture and aperture velocity are higher
when the grasped object is large than when it is small. They also show that if the
subjects have to pronounce a syllable, the production of the syllable is also influenced
by a parallel grasping movement. In the case where grasping movements are not
executed but observed, they have also been shown to influence speech production: lip
aperture and voice amplitude were higher when the observed grasped object were
large Gentilucci (2003). These behaviors are thought to involve the mirror neuron
system (Rizzolatti and Craighero, 2004) where neural cells have been shown to both
respond if an action is observed in others and respond when that action is executed
by the subject. In a work more specific to tool use, Higuchi et al. (2009) studied the
brain activations during language and tool tasks in human adults with functional
MRI. They found an overlap of activity in both tasks in the dorsal part of area BA44
in Broca’s area. This region has previously been reported to be used in complex
hierarchical sequential processing in language, such as embedded sentences, but not
for sentences without hierarchical structure (Sakai, 2005). Those results support the
idea that those complex hierarchical structures, present both in tool use and language,
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Figure 2.5: Left: Oldowan stone flake. Right: Acheulean biface. Picture by José-
Manuel Benito Álvarez (CC BY-SA 2.5).

are processed by the same neural circuits. Furthermore, the authors argue that the
ability for processing of hierarchically organized behaviors was present in our common
ancestors with primates for tool use and was later exapted to support language in
humans.

Those common neural correlates could have evolved in the hominid lineage, where
a selection pressure for complex tool use, language and social behaviors might have
together driven the increase in brain neural capabilities (Greenfield, 1991; Higuchi
et al., 2009; Morgan et al., 2015).

Greenfield (1991) outlines several possible evolutionary scenarios for tool use and
language in primates and humans. She proposes that the common ancestor of humans
and today’s primates had the neural circuitry in the left frontal lobe to support
both primitive object combinations and primitive language functions, and that they
evolved together in the human lineage. Better tool-use abilities would have increased
the adaptive value of proto-linguistic communications, and vice versa, both would
have evolved through mutually reinforced natural selection. The adaptiveness of
language and tool use would have driven the expansion of the prefrontal cortex in
another co-evolutionary loop.

Two and a half millions years ago, stone age’s hominins were producing sharp
flakes through striking a cobble core with a hammerstone (Morgan et al., 2015), and
those sharp flakes were then used as cutting tools, e.g. for butchering. This Oldowan
technology was geographically spread and continuously used with little changes
for 700,000 years, before the advent of the Acheulean technology including more
complex and diverse hand-axe tools (see examples in Fig. 2.5). The Oldowan stone
knapping skill is thought to be culturally transmitted as there seem to be regional
traditions. Experiments with the transmission of this skill in modern humans show
that imitation/emulation was a low-fidelity transmission mechanism while teaching
and language improved transmission (Morgan et al., 2015). The authors argue that
imitation could have been the mechanism of tool making cultural transmission in the
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Oldowan period, while teaching and proto-language could have been prerequisites
for the transmission of the Acheulean technology. If tool making and its efficient
transmission had an increased evolutionary fitness in the Oldowan culture of the
early hominin ecological niche, a teaching and proto-language ability allowing the
development of the Acheulean tool-making culture could be the result of a long
gene-culture co-evolution.

Iriki and Taoka (2012) propose that language and tool-use cognitive abilities
evolved from the computational processes involved in the control of reaching actions.
The authors describe the interdependencies between the ecological, neural and cogni-
tive niches for the human lineage, together called a triadic niche. Reaching actions, in
particular in the context of bipedalism, imposed a high demand on multi-sensory in-
tegration and complex coordinate transformation, that selected brains with improved
neural circuitry for processing them. In turn, those neural capabilities could have
been reused for other cognitive processes such as the processing of simple tool use
and proto-language, which improved the evolutionary fitness of hominins. The devel-
opment of tool use and language modified the ecological niche which then selected for
more efficient neural circuits. The co-evolution of the ecological, neural and cognitive
niches could have slowly enabled and improved higher cognitive functions like tool
use and language.

2.5 Intrinsic Rewards and Motivations in Artifi-
cial Agents

Psychological research on intrinsic motivations in humans has recently inspired many
computational implementations of intrinsic motivations or curiosity in artificial agents.
Artificial agents are algorithms that can choose actions to execute in an environment,
real or simulated, and somehow observe the properties of this environment. When
those agents are given capabilities to learn from their actions and observations, this
process is called “active learning”, as opposed to other forms of learning where acting
is not fundamental, such as when the observations are all already available in a
dataset. The motivations for studying artificial curiosity range from the desire to
model particular aspects of human or animal learning, in which case the goal is to
obtain an agent that behaves as closely as the target, to the desire to improve the
performance of some machines or robots to solve particular tasks where extrinsic
motivations and other forms of external guidance are not enough.

Oudeyer and Kaplan (2007) explored and classified previous implementations of
intrinsic motivations in artificial agents along several dimensions. One recurring aspect
of those implementations is the fact that the intrinsic motivation is operationalized as
a measured/computed signal that represents how much actions, behaviors or outcomes
are motivating or triggering the curiosity of the agent. Those signals, sometimes
called “intrinsic rewards”, are computed based on the result of previous actions in
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the environment, and are used by the agent in the selection of future actions. The
two main categories of this classification are knowledge-based and competence-based
intrinsic motivations.

2.5.1 Knowledge-Based Intrinsic Motivations
With knowledge-based intrinsic motivations, the agent monitors the new observations
in the environment and compares the new acquired knowledge with previous knowledge,
such as facts, situations, objects, places, etc. They include intrinsic attractions to
novelty, where the intrinsic reward would be the novelty of the observation, leading
the agent to search for situations with high novelty, such as in Huang and Weng
(2004). This idea has been used in Benureau and Oudeyer (2016) in order for a
robot to find the maximum diversity of behaviors. In the context of Reinforcement
Learning, Strehl and Littman (2008) added an exploration bonus to the Bellman
recursive equations such that states that have been less visited in the past should
be more visited in the future. However, such “count-based” methods are not useful
in large domains where states are rarely visited more than once. Bellemare et al.
(2016) used a generalization of counts based on the information gain of a model of
the density of visits, called a ‘pseudo-count”. They approximate the state action
value function with a Deep Q network with the exploration bonus, and show that it
improves dramatically the exploration of agents in the Montezuma Revenge Atari
game, one of the hardest Atari games where ε-greedy approaches fail.

Motivations for situations with cognitive dissonance or prediction errors are also
knowledge-based intrinsic motivations. In those implementations, the outcomes of
some actions are compared to the predicted outcome, such that the situations where
there is a high prediction error may be good opportunities for learning and are thus
sought. One example of this mechanism is found in Chentanez et al. (2005) where
they use the framework of “options” (Sutton et al., 1999) and define the intrinsic
rewards of salient events as the error in prediction of the events based on a learned
option model for the events. In continuous environments but with discrete actions,
Metzen and Kirchner (2013) also use the option framework to learn skill hierarchies
with an intrinsic motivation rewarding positively the novelty of the encountered states
and negatively the prediction error of the learned skill model.

Monitoring the average progress of prediction errors, a form of “learning progress”
also falls into this category. For instance, the agents in Oudeyer et al. (2007) use the
Intelligent Adaptive Curiosity (IAC) algorithm, preferring regions where prediction
errors are decreasing on average, indicating that learning is happening. Agents in
Schmidhuber (1991a) compare the prediction with the new prediction after updating
the predictor to measure learning progress. In Mugan and Kuipers (2009), agents first
learn a qualitative representation of environment states and actions before learning
Dynamic Bayesian Networks representing the temporal contingencies of those states
and actions. The authors use the IAC algorithm (Oudeyer et al., 2007) to choose
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actions estimated to yield a high prediction error progress.
Another form of knowledge-based intrinsic motivations rewards actions or behaviors

leading to a gain in information. Frank et al. (2014) implemented a particular
reinforcement learning agent in a humanoid robot, with a low-level control layer
and a high-level curiosity mechanism maximizing the information gain measured as
the KL divergence between the distributions of state-action policy before and after
the update from an experiment. In finite environments represented by a factored
Markov Decision Process, Vigorito and Barto (2010) used an intrinsic motivation
towards actions maximizing the learning of the structure of the environment, which
improved learning efficiency compared to the case without the intrinsic motivation.
In Houthooft et al. (2016), the Variational Information Maximizing Exploration
(VIME) exploration strategy is based on the maximization of the information gain of
the agent’s model of the environment. They report an improvement of exploration
performances in a variety of benchmark continuous tasks, such as MountainCar,
HalfCheetah or SwimmerGather.

2.5.2 Competence-Based Intrinsic Motivations and Goals
Agents with competence-based intrinsic motivations consider their skills to solve
tasks or goals. Goals have been introduced in machine learning in Kaelbling (1993),
where they represented states in a Markov decision process. Since then, goals have
represented several concepts related to artificial agents and their environment, such as
particular states to reach, outcomes to realize, behaviors to show, objects to affect, etc.
The notion of goal-directed behaviors has seen a surge of interest in the last decade
in developmental robotics and artificial intelligence research. Central questions in
this area have concerned the possibility for an artificial agent to discover, represent,
evaluate, select or generate goals with a potential for learning.

Within the Reinforcement Learning framework, several algorithms were designed
to find interesting goals and subgoals in a context where the reward function already
defines an overall task in the environment. In Stout and Barto (2010), the agent
chooses the skills to train, with an intrinsic motivation for the ones showing competence
progress, whereas skills already learned or too difficult are not chosen. In that study,
the skills are drawn from a predefined set, and involve actions and observations in a
discrete world. In Schaul et al. (2015), the value function is extended to include a
goal parameter in a universal value function approximator (UVFA). In Dosovitskiy
and Koltun (2016), goals are predefined combinations of future measurements (such
as ammo, health and frags in the Doom video game), and agents that learned with a
range of random goals generalize better than models learned with a fixed goal.

In Hierarchical Reinforcement Learning (HRL), the “option” framework (Sutton
et al., 1999) proposes to represent temporally-extended actions, called options, through
semi Markov decision processes with policies having a particular initiation state set
and termination condition which can depend on history. Those policies can then be
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Figure 2.6: Two mazes used for testing hierarchical reinforcement learning agents in
(Wiering and Schmidhuber, 1996), reprinted with permission from Marco Wiering.
Left: a simple maze, with ambiguous positions. Right: the key K must be found to
be able to cross the door leading to the goal G.

used as primitive actions in the traditional learning of a Markov decision process
representing the problem. Several propositions have been made to identify subgoals
to be used as options. McGovern and Barto (2001) defined subgoals as states where
the agent go back regularly in successful trajectories, leading to the identification
of “diverse density regions”. However, with this definition subgoals can’t appear in
non-successful trajectories. Many variants of this bottleneck idea have been used,
such as the notion of betweenness in a graph, identifying the states common to many
shortest paths between states (Şimşek and Barto, 2009), or the concept of relative
novelty, allowing to recognize states used to transition to novel regions (Şimşek and
Barto, 2004), or others (Goel and Huber, 2003; Kretchmar et al., 2003). With an
information-theoretic approach, Van Dijk and Polani (2011) proposes to measure
the amount of Shannon information that the agent needs to maintain about the
current goal at a given state to select the appropriate action, and to identify distinct
information transition states as subgoals. Other approaches use a clustering of states
into regions to then identify subgoals as transitions between regions (Bakker et al.,
2004; Entezari et al., 2010; Mannor et al., 2004; Menache et al., 2002; Şimşek et al.,
2005). Many of these studies report improvements of the learning efficiency compared
to agents without a goal hierarchy, however they mostly consider toy problems in
small and discrete gridworlds. For instance, Wiering and Schmidhuber (1996) use
the mazes as reprinted in Fig. 2.6. Their hierarchical extension of Q-learning with
subagents learning Markovian subtasks succeeds to reach the goals while Q-learning
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Figure 2.7: Left: Honda Asimo robot. Middle: iCub humanoid robot (attribution:
Jll at English Wikipedia). Right: Poppy Humanoid robot (attribution: poppy-
project.org).

fails. In Gregor et al. (2016), instead of looking for a small number of options that
can be reused as subgoals, the agents learn all possible “intrinsic options”, options
that affect the world in a meaningful way, through learning an embedding space for
options. In Kulkarni et al. (2016), a hierarchical DQN is used to learn a top-level
policy over intrinsic goals and a lower-level policy on atomic actions to reach goals.

In the field a developmental robotics, learning agents are usually embodied in a
robot with a continuous space of actions and a continuous space of observations, which
can both be of high dimension, and are given limited exploration time given robotics
constraints. For instance, a humanoid robot can contain 50 motors each of which
is typically controllable continuously between two angular bounds (see examples in
Fig. 2.7), with an action space containing as many degrees of freedom (DOF), and a
stream of observation coming from a camera with many pixels or from a pre-processed
vector with many features representing the state of the environment. Therefore, the
reinforcement learning algorithms previously discussed are not adapted to learn in
such a setting.

In developmental robotics settings, a typical task the agent is facing is to learn
the functioning of its body through experimentation. A first approach to discover the
relation between the motors and the body parts is to move all joints in a random
manner and observe the effects on the body. However, this approach is not efficient
to produce diverse behaviors with a high-dimensional body as in such cases there is a
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lot of redundancy in the motor actions to produce behaviors and the most interesting
behaviors are produced when motors are moved in a coordinated manner unlikely
to be found with random actions. Rolf et al. (2010) used a “goal babbling”, or
goal-directed approach, where the agent targets its exploration to different goals
and tries to reach them. They showed that goal babbling improved learning of the
control of a 2D simulated arm’s end-effector compared to motor exploration, and
that this approach scales to high-dimensional action spaces such as the arm of a
Honda robot (see Fig. 2.7). Several reasons explain the efficiency of goal babbling
compared to motor babbling, the exploration of motor actions. One is that the
redundancy of high-dimensional body parts such as arms with many joints implies
that many motor configurations result in the same end-effector position, such that
maximizing the diversity in the exploration of motor parameters do not necessarily
maximize the diversity of end-effector positions. Instead, focusing on goal positions
for the end-effector increases the diversity of reached positions. Another reason is
the fact that while exploring towards one particular goal, this goal being reached
or not, there are many chances that the exploration path leads to the discovery of
other skills, that can be reused when exploring other goals later on (Rolf et al., 2010).
This improvement has been replicated in many other robotic setups and learning
contexts, such as the goal-directed learning of hand-eye coordination in a Nao robot
(Schmerling et al., 2015), the learning of the movement of an arm to throw a ball in a
socially-guided context (Nguyen and Oudeyer, 2012), or the control of a quadruped
robot (Baranes and Oudeyer, 2013). By comparing the speed of learning of several
goal tasks in a 2D simulated robotic arm depending on the intrinsic motivation signal,
Santucci et al. (2013) shows that a knowledge-based intrinsic motivation signals such
as prediction error or prediction error improvement are inadequate for the learning of
multiple skills, namely reaching different objects with the arm’s end-effector. Instead,
competence-based intrinsic motivations taking into account the current competence
of the agent are able to learn in such settings.

In the process of learning to reach goals, agents are producing a diversity of
behaviors in the goal space. Therefore, goal-directed learning has similarities with
other learning approaches that push the agent to find novel or diverse points in a
particular space, such as in “novelty search” (Lehman and Stanley, 2011a; Pathak
et al., 2017) and “quality diversity” algorithms (Cully et al., 2015; Cully and Demiris,
2017). Churchill and Fernando (2014) define a cognitive architecture for the control
of a humanoid robot made of a graph of operation and goal nodes, that is evolved
through mutations and recombinations.

2.5.3 Intrinsic Motivations and Learning Curricula
Although little research has been carried out on the developmental consequences of
intrinsic motivations in babies, the parent’s point of view tells that babies seem to
be able to some extent to choose their sequence of learning activities, or learning
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curriculum. For instance, in their first year of life, babies train and learn to control their
head and trunk, to roll their body, to sit, to crawl, to stand up, with approximately
the same developmental sequence across babies, although with differences in timings
and sometimes in the order of stages, such as standing up before crawling. In this
stages and especially in the earliest ones, few guidance is provided, which boils down
to putting the baby in positions where it has the opportunity to safely discover and
experiment the next skills. In this same period, babies are undergoing tremendous
maturational changes in their body shape and dynamics and in their cognitive
abilities. Important preliminary results showing that neural networks may learn
more efficiently if starting with smaller data and memory constraints (Elman, 1993),
together with the hypothesis that intrinsic motivations might have some responsibility
in the development of many skills in the first years, have driven some focus on the
relation between computational implementations of intrinsic motivations and the
autonomous emergence of a learning curriculum.

In the Playground experiment (Oudeyer et al., 2007), a quadruped robot is placed
in an infant play mat, with a contingent robot peer next to it (see Fig. 2.8). The agent
has to learn how to use its motor primitives to interact with its environment (with
the IAC architecture). The authors observe the self-organization of developmental
trajectories: the robot explores objects and actions with increasing complexity. For
instance the quadruped robot shows non-affordant bashing and biting behaviors
(trying to bite objects that can not be) before the affordant bashing and biting
behaviors, and biting before bashing as the dimensionality of the bashing behavior
is higher in this setup. They argue that these developmental trajectories have a
similar structure across different runs but also some individual differences, which is
consistent with what can be observed in the learning curriculum of human children
across development.

Lopes and Oudeyer (2012) described a learning framework where a student can
train on multiple topics, each of which has a learning curve describing the score of
the agent depending on its training experience. The goal of the student is, given a
constraint on training time, to optimize its allocation of time on the different topics
in order to maximize its average score the day of the exam. They show that a greedy
maximization of learning progress with a multi-arm bandit is an optimal learning
algorithm in settings where topics have a particular learning curve (submodular: a
training experience improves the score more if it happens earlier). This approach is
called the strategic student approach, and it is general in the sense that it makes
no assumptions on the nature of the student and the topics. They argue that this
framework can represent the task faced by a learning agent in a lifelong learning
settings where many skills need to be learned and reused in development.

In goal babbling, learning agents use a representation of goals, either given or
learned. The problem of learning to reach all represented goals can be formulated as
how to choose interesting goals: how to define an intrinsic reward for goals and how
to select them based on this measure. In Baranes and Oudeyer (2010a, 2013), goals



2.5. Intrinsic Rewards and Motivations in Artificial Agents 41

Figure 2.8: Self-organization of developmental trajectories. Left: a quadruped robot
in the Playground experiment (Oudeyer et al., 2007). Right: an agent learns to
vocalize with a simulated vocal tract (Moulin-Frier et al., 2013).

are represented and selected through the Self-Adaptive Goal Generation - Robust
Intelligent Adaptive Curiosity (SAGG-RIAC) algorithm. This algorithm monitors the
learning progress made to reach goals in different regions of a continuous goal space,
and hierarchically divides this space to separate the regions with a different learning
progress. The competence of the agent to reach a goal is defined as the negative
distance between the goal and the reached point, while the learning progress in a
region is computed as the absolute value of the derivative over time of the competence
to reach points in that region. Those regions and their associated learning progress
then serve as a basis for the selection of new goals, by first choosing a region with a
high learning progress, then choosing a random goal in that region. They evaluate
this intrinsically motivated agent in several environments including a simulated
arm, a quadruped robot and a fishing rod experiment. The authors show that the
active selection of goals based on learning progress in the SAGG-RIAC algorithmic
architecture improves learning efficiency in the simulated arm and the quadruped
setups, compared to a variant with a completely random choice of goals, called
SAGG-RANDOM.

When a learning robot is subject to maturational constraints on its morphology
and abilities, intrinsic motivations have been shown to interact smoothly with those
maturational constraints (Baranes and Oudeyer, 2010b). With a simulated robotic arm
constrained by a maturational clock, the McSAGG architecture focuses progressively
on goal areas that are newly accessible due to the advancement of the maturational
clock. This idea has also been combined with the SAGG-RIAC algorithm, leading
to the McSAGG-RIAC architecture (Baranes and Oudeyer, 2011) and evaluated on
a 12 DOF simulated quadruped robot. They show that the coupling of intrinsic
motivations and maturational constraints through bidirectional interactions allows the
progressive and efficient developmental learning of inverse models in high-dimensional
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robots.
Nguyen and Oudeyer (2012) combine autonomous exploration with interactive

learning, where the agent can mimic and emulate demonstrations of a peer. In their
architecture, called Socially Guided Intrinsic Motivation with Active Choice of Teacher
and Strategy (SGIM-ACTS), the learner actively and hierarchically chooses what to
learn, how to learn, and from which teacher in case of learning by demonstration.
They demonstrate the benefits of such a combination of intrinsic motivations with
social guidance in a robotic setup with a simulated robot that has to throw a ball,
compared to self-exploration only (SAGG-RIAC), mimicry only, emulation only and
other variants.

In Moulin-Frier et al. (2013), the SGIM-ACTS architecture allows a simulated
agent to understand how to use a vocal synthesizer with the help of humans’ phonetic
items. Between self-exploration and the imitation of human sounds, the learner
chooses the strategy that shows the best competence progress. When self-exploring,
the agent is generating phonetic goals to reach with the simulated vocal tract, in parts
of the sensory space where competence progress is high, based on a Gaussian mixture
model of the joint sensory, competence, and time space. The authors show that
developmental trajectories of increasing complexity are emerging, with regularities
and diversity. In a first stage, for about 30k vocalizations, the agents produce mainly
unarticulated vocalizations or no phonation. In a second stage, until approximately
150k vocalizations, they produce mainly sounds that start with one vowel, and in
a third stage, they produce mainly articulated sounds: VV, CV, VC (see Fig. 2.8).
The diversity comes from different mechanisms: random generation in the algorithms,
variability in the environment, and the multiples attractors of the learning dynamical
system.

In Fabisch and Metzen (2014), the agents learn in a setting with a discrete goal
space (called contexts) with a Multi-Armed Bandit algorithm (D-UCB) to choose on
which goal they should train. The authors also show that learning is more efficient
with intrinsic rewards based on the learning progress than a random choice of goal,
in a task where a simulated robotic arm has to throw a ball at different goal places.
Other work related to “policy search” study the learning of parameterized skills, with
a model (Kupcsik et al., 2017), or through bootstrapping techniques (Queißer et al.,
2016).

In the framework of options, Kompella et al. (2017) use an intrinsic motivation for
learning progress, with a sensory input directly from pixels of a camera. The agent
learns a compact set of low-dimensional representations of the pixel stream through
incremental slow feature analysis. Skills include learned actions and a learned slow
feature representation. The authors experiment reaching and grasping skills with the
high-dimensional humanoid iCub robot. They show that skill acquisition is continual:
the knowledge acquired in training one skill (e.g. the topple skill) is reused to learn
other skills (grasping skill). However in these experiments, the agent do not learn arm
movements: a task-relevant map is already given to the agent containing 6 actions
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(move hand in several directions, open and close hand). This is done to avoid the
complexity of learning to use the 41 DOFs of the iCub upper body.

Bengio et al. (2009) coined the term “curriculum learning” to denote the process
of learning following a particular curriculum, with the idea that it could guide the
optimization process, “either to converge faster, or more importantly, to guide the
learner towards better local minima”. In their experiments, they demonstrate an
improvement in learning when the network is trained first with the easy samples and
later with the more complex samples, where the easy samples are ones with less noise
in a regression task, or shapes with a simpler geometry in a visual categorization task.
The learning curriculum is thus designed by an expert human who knows which are
the easiest learning situations.

A hand-designed curriculum has also been used in Zaremba and Sutskever (2014)
where recurrent neural networks with Long Short-Term Memory units learn to
evaluate short computer programs such as the addition of two integers. On this
task, a curriculum learning based on a mix of problems of random complexity and
of increasing complexity (controlling the length of integers and the number of time
they can be combined in operations), is shown to improve learning compared to only
samples of increasing complexity or of random complexity.

Graves et al. (2017) combined curriculum learning with knowledge-based intrinsic
motivations in neural networks. They used an intrinsic reward signal based on the
gain in prediction on one hand, and the gain in complexity of the neural network
model in other experiments. The learning agent is able to choose the complexity of
the training samples, such as the length of n-grams in a linguistic task, or the lengths
of sequences and the number of copies in a repeat-copy task. The authors report
improvements in learning with the use of intrinsic motivations compared to a uniform
selection of tasks, but also note that this uniform sampling is a strong baseline in
those experiments. They describe interesting emerging developmental trajectories
such as targeting small n-grams first and gradually increasing their size, and focusing
on short sequences with high repeats then long sequences with low repeats in the
repeat-copy task. In Srivastava et al. (2013), the PowerPlay algorithm self-generates
novel but solvable abstract tasks, such as pattern-recognition tasks. The agent solves
tasks of increasing complexity while compressing the knowledge and reusing the skills
learned in previous tasks.

The concept of learning “auxiliary tasks” is related to curriculum learning in the
sense that tasks that are not directly related to the learning of a final task are trained
throughout the curriculum. Several auxiliary tasks have been implemented and shown
to improve learning in particular in the context of sparse rewards, e.g. the control
of pixel changes or the control of intermediate features of a neural network used for
policy or value prediction (Jaderberg et al., 2016).
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2.6 Tool-Use and Speech Learning in Artificial
Agents

In a seminal review of state-of-the-art developmental robotics achievements and
challenges around action and language learning, Cangelosi et al. (2010) suggested that
the study of embodied cognitive agents, in particular humanoid robots, can help us
understand the processes of sensorimotor, language, and social development in humans,
and subsequently improve the learning and communication capabilities of cognitive
robots. Key challenges included the learning and representation of compositional
actions and lexicons, the learning in social interaction, and the codevelopment of
action and grounded language in an integrated framework. In the following sections we
review previous computational and robotic models of tool use and language learning,
with a particular focus on the early processes of their development: learning the first
movements and vocalizations, understanding that an object can be used as a tool,
and that speech sounds can have effects and meanings.

2.6.1 Robotic Learning of Tool Use
The learning of affordances of objects can be seen as a necessary phase of tool-use
development, the second stage in the three-stage description of tool-use development
by Guerin et al. (2013): behaviors without objects, behaviors with a single object, and
behaviors with object-object interactions. In this object learning phase, Ugur et al.
(2015) set up several stages for a robotic learner: the experimentation of predefined
behavior primitives and the corresponding discovery of tactile feedback, the learning
of the detection and prediction of object affordances, and the imitation learning
from human movements. The robotic agent is a 16 DOF arm with tactile feedback
(signaling contact with objects at fingers or hand), given high-level visual perception
mechanisms (providing the size, position and shape of objects), and high-level actions
primitives (push, no-touch, release, grasp) parameterized by 3 positions: initial,
target and final, and the timing of opening and closing of the hand. In this setup, a
closing reflex is implemented for the hand when an object is detected through tactile
feedback. The authors report an improvement of the prediction of push or grasp
affordances through experimentation, and a successful imitation of simple human
movements (pushing an object in a direction). They also document the evolution
of human demonstrations as a response to the robot not learning a more difficult
task (moving an object from position A to B while avoiding an obstacle), going from
smooth demonstrations to trajectories with pauses to decompose the steps. It should
be noted that in this predefined learning curriculum, the phases and their transitions
are specified by hand and do not adapt to the learning outcomes.

In a following work, Ugur and Piater (2016) study the intrinsically motivated
learning of object affordances from a dataset of affordances. They define several
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actions: stack, top-poke, side-poke, front-poke, and effects: pushed, turned, resist,
nothing, stacked, inserted, etc. They fill by hand an affordance table with 83 objects
and more than 7000 object-action-effect relations. The learning agent actively chooses
the actions and objects to observe from this database based on intrinsic motivations:
the learning progress for actions, and the novelty for objects. The authors argue that
developmental trajectories autonomously emerge from this learning framework, with
actions that concern only one object being learned before actions that involve two
objects (such as stacking). For instance, the affordance predictors for stacking take
into account lower-level affordance predictors for actions involving one object.

A first work involving actual tools is the one of Stoytchev (2005). In this study,
a robotic arm is able to grasp one of several tools (sticks, L- or T-shape hooks, see
Fig. 2.9) in order to move an object towards goal positions. The learning agent
is given predefined motor primitives (extend arm, contract arm, slide left or right,
position wrist, grasp), and can experiment them, through random exploration, on
each tool while observing the results of its actions on the position of the target object.
The exploration experiments are used to fill an affordance table, relating the actions,
tools and results, that can be reused to solve other tasks in new situations. This
“hook” task is very similar to many tool-use tasks that have been given to children
in developmental psychology experiments aiming to assess their tool-use learning
abilities depending on age and experience, such as Chen et al. (2000), and is also
found in other robotic setups.

In Tikhanoff et al. (2013), the iCub robot is endowed with motor capabilities
for reaching, grasping and pushing objects, together with perception algorithms for
recognizing, from pixel images, the distances of objects, sizes of tools, and other
geometric reasoning. The robot then learns to roll and pull objects with a tool and
learns the affordances depending on the tool and the objects acted upon (see Fig.
2.9). In Gonçalves et al. (2014), four actions (left, right, pull closer, push away) are
available to the robot, and Bayesian networks learn the effect of those actions on
objects. The affordance model is learned in simulation and only tested on real robot.
The agent relates the visual features of both objects and can transfer to new tool
shapes, so that the authors argue that a tool concept develops from this exploration
with objects. In Mar et al. (2018), the iCub robot is given a tool in the hand (hoe,
hook, rake, stick or shovel), and learns the effects of predefined actions depending on
the tool shape and pose, and is able to transfer those effects to new shapes and poses.

However, in all those studies, the tool is already attached to the hand by the
experimenter or the robot is given grasping motor primitives, and the robot is also
given predefined primitives to move the hand and the tool. Therefore, the robot do
not have to learn first its arm kinematics, but more importantly that some objects
are useful when used as a tool while others are not, and how to actually use an object
as a tool (e.g. grasp it by the handle).

Braud et al. (2017) propose a modular architecture for learning tool use where
first basic skills are learned, such as controlling one particular sensor, and then
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Figure 2.9: Tool-use learning in robotics setups. Top left: iCub robot (Gonçalves
et al., 2014). Bottom left: CRS+ A251 manipulator (Stoytchev, 2005). Right: iCub
robot (Tikhanoff et al., 2013). c© IEEE.

combinations of those skills are used in sequence. In their experimental evaluations,
the robot is a 4 DOF Katana arm, and 2 tools are available in the environment, which
when grasped extend the arm either vertically or horizontally. The goals for the use
of tools is to reach a 3D target with the tool, so the tool is not used to act on a real
physical object but rather seen as just an extension of the arm with a new section.

Some research has also focused on interactive situations where the robot can learn
tool use by demonstration from a human peer. In Li and Fritz (2015), the Baxter
robot learns the use of electric tools such as a tacker and an drill, from kinesthetic
demonstration: the teacher moves the hands of the robot to use the tool. Kinesthetic
demonstrations are useful in a perspective where humans want to efficiently teach
the robot new behaviors, however in a human modeling perspective, learning by
kinesthetic demonstrations in humans is not the most common tool-use learning
mechanism, and involves challenges that robots may not face, such as remembering
the demonstrated trajectories or understanding which motor command has to be
executed to reach a particular demonstrated position. In Brown and Sammut (2012)
a simulated wheeled robot learns by demonstration and experimentation the use of
T- or L-shaped tools that can be grasped to retrieve an object in a tube. Primitive
actions are available: goto position, pickup and drop object, together with reasoning
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abilities (inductive logic programming), which results in a fast learning of the use
of the tool, with few experiments (between 10 and 15). In an extension of this
work (Wicaksono and Sammut, 2015), the learning agent can create novel tools from
satisfying constraints and running the Prolog solver as a generator of candidate
solutions. The authors choose the best tool to 3D print based on their common sense
among the generated candidates, and give it to the robot for use. In this experiment,
the spatial properties of the tools are provided to the agent so that it does not have
to learn them by demonstration.

2.6.2 Speech Learning by Computational Agents
Computational models of vocal development make use of a simulated vocal synthesizer
that the learning agent must control in order to produce vocalizations, and rely on
feedback from humans whose sounds can be used as targets of imitation (see Räsänen
(2012) for an early review).

The DIVA model (Guenther, 2016; Guenther et al., 2006; Guenther and Vladusich,
2012) is a neural network simulating cortical interactions producing articulatory
movements and receiving auditory feedback. This model provides an account of
different speech phenomena, such as co-articulations. The DIVA synthesizer, which
we use independently of the DIVA model in this thesis, works by specifying 10 motor
parameters representing the midsagittal MRI vocal profile, the glottal tension, glottal
pressure and voicing, resulting in an auditory representation encoding the formant
positions (F0 to F3).

The Elija model (Howard and Messum, 2011, 2014; Messum and Howard, 2015)
uses an articulatory synthesizer to produce sounds, and is rewarded for the exploration
of its vocal outputs. In Howard and Messum (2014), the model also interacts with
a caregiver that imitates its sounds like a mother would do: either mimicking the
infant’s sounds or providing an intermediate sound between the infant’s one and the
adult one. The computational model manages to learn object names by trying to
reproduce caregiver’s utterances.

In a neural network model of motor prespeech production with self-organizing
maps (Warlaumont et al., 2013), a reinforcement based on the similarity of the
model’s output sounds with a given set of vowels biases the post-learning model’s
babbling sounds towards that reinforced set of vowels. In Warlaumont (2013), the
reinforcement is based on the salience of the produced vocalizations, following the
hypothesis that the caregiver’s feedback depends on the salience of sounds.

In Moulin-Frier et al. (2013), the intrinsically motivated agent chooses the strategy
that shows the best competence progress: either autonomously training to reach
phonetic goals, or trying to imitate human sounds. They show that the intrinsic
motivation for learning progress self-organizes coherent infant-like developmental
sequences, from unarticulated sounds to consonant-vowel clusters produced through
the DIVA synthesizer.



48 Chapter 2. Background

The agent of Philippsen et al. (2014) uses a recurrent neural network to learn the
forward and inverse model of the VocalTractLab speech synthesizer. Their learning
algorithm allows an efficient use of human supervision in the form of few examples of
consonant-vowel sequences to be imitated. In Philippsen et al. (2015), they study
different sensory spaces to be used as a goal space for a goal babbling agent. Instead of
the traditional use of formants as sound features, they propose to use high-dimensional
acoustic features based on a cochlea model, an to reduce the dimension of this space
to be used as a low-dimensional goal space. A Gaussian mixture model is then used to
estimate a target distribution of goals in this space, based on ambient speech sounds.

Najnin and Banerjee (2017) developed a predictive coding framework for the
development of speech production and perception. Their model learns initially by
self-exploration of the DIVA synthesizer and later by imitation of an ambient language,
with a manual switching between the two. Random goal generation leads to the self-
organization of developmental stages: from no phonation until about 10k vocalizations,
to unarticulated speech until about 80k vocalizations, to articulated speech. They
show that the progression through developmental stages is faster when using MFCCs
as acoustic features versus formants.

Those models of language acquisition study several developmental pathways to the
learning of forward and inverse models of a simulated vocal tract, from autonomous
exploration to human sounds imitation. However, agents are not situated into a
physical environment where vocalizations have a meaning related to objects.

2.6.3 Robotic Learning of Speech and Action
Several works study joint action and language learning, but give an advanced knowl-
edge of the linguistic interaction protocol to the learning agent who has to associate
predefined actions or objects to predefined labels and learn the semantic composition-
ality (Billard, 1999; Cangelosi et al., 2010; Roy, 2002).

In Sugita and Tani (2005), a wheeled robot with an arm learns to associate lexical
symbols to behavioral categories through supervised learning (point, push, or hit the
red, blue, green, left, center, or right object). They show that the agent is able to
learn the behavioral meaning of simple combinations of words.

Dominey et al. (2009) designed a robot-human interaction scenario where the HRP-
2 humanoid robot is able to understand the meaning of new linguistic instructions
(such as ”Give me X”) by grounding them with preexisting motor skills. In this
scenario, another set of predefined linguistic instructions are available to help the
interaction, such as ”Ok”, ”Wait”, ”Learn-macro X”.

In Massera et al. (2010), a simulated robotic arm controlled by a neural network
manipulates objects on a table. The neural network takes a linguistic instruction as
input in the form of three values that represent the type of behavior that the robot
should exhibit. They show that with linguistic inputs that guide the robot in real
time towards a lifting behavior as a sequence of reaching, grasping and lifting, then
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the robot learn this behavior faster than without those inputs.
In Tikhanoff et al. (2010), a simulated iCub is given a speech understanding

module, a vision module, and a dataset of speech instructions, visual objects and
corresponding expected actions. The robot learns from this dataset the actions to
perform depending on the instruction and the available object in the scene.

To our knowledge, there is no robotic model able to learn to produce words
that have a meaning in a physical environment starting from scratch through the
exploration of a vocal synthesizer and possibly in interaction with a human or another
robot that already knows the meaning of words.
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Chapter 3

Intrinsic Motivations:
Impact in Child Experiments and
Role in Child Development

“Oh, no!”
— a 21-month old who solved the task

Summary
Children are so curious to explore their environment that it can be hard to focus
their attention on one given activity. Many experiments in developmental psychology
evaluate particular skills of children by setting up a task that the child is encouraged
to solve. However, children may sometimes be following their own motivation to
explore the experimental setup or other things in the environment. We suggest
that considering the intrinsic motivations of children in those experiments could
help us understand their role in the learning of related skills and on long-term child
development. To illustrate this idea, we reanalyze and reinterpret a typical experiment
aiming to evaluate particular skills in infants. In this experiment run by Lauriane
Rat-Fischer et al, 21-month olds have to retrieve a toy stuck inside a tube, by inserting
several blocks in sequence into the tube. In order to understand the mechanisms of the
motivations of babies, we study in detail their behaviors, goals and strategies in this
experiment. We show that their motivations are diverse and do not always coincide
with the target goal expected and made salient by the experimenter. Intrinsically
motivated exploration seems to play an important role in the observed behaviors
and to interfere with the measured success rates. This new interpretation provides a
motivation for studying curiosity and intrinsic motivations in robotic models.

Our study is done in collaboration with Lauriane Rat-Fischer. The author
contributions were the following: LRF et al designed and run the tool-use experiment,
LRF, SF and PYO had the idea of further analysis of this experiment, LRF, SF and
PYO designed the ethogram, LRF and SF coded the videos, LRF, SF and PYO
analyzed the results, LRF and SF wrote Section 3.1, SF wrote the other sections.
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Tool use is a remarkable achievement of several species, among which several birds,
primates and dolphins. They use tools to help with feeding, hunting, or building,
and some of those behaviors can be culturally transmitted. In the human lineage,
the oldest trace of the creation of tools dates from the stone age about 3 million
years ago, when hominins were producing sharp stone flakes through striking a cobble
core with a hammerstone (Morgan et al., 2015). In modern humans, the earliest tool
used in infancy may be one of the sticks, spoons or rakes. Connolly and Dalgleish
(1989) document the progression of different types of spoon grasps and patterns
of actions with the spoon and the food during self-feeding. They show how this
behavior improves over the months, becoming more consistent, smoother, more direct
and faster, with the use of the preferred hand, of fewer grasp patterns, and with a
better visual monitoring. However, little is known on the learning and developmental
mechanisms leading to the successful use of such tools around the second year of life
(Guerin et al., 2013).

Most research on the development of tool use in infancy has focused on under-
standing the particular tool-use capabilities that have been or can be acquired by
infants at a given age. For instance, Uzgiris and Hunt (1975) show that a horizontal
string task where a string must be pulled to retrieve a toy is succeeded at 12 months,
while a vertical string task is at 13 months. They also show that using a medium-sized
stick to retrieve a toy is displayed around 15-18 months. Bates et al. (1980) study
the tool-use abilities of 10 month olds using strings, sticks and hooks depending on
perceptual properties of the task, such as the difference in color or texture between
the tool and the toy, showing for instance that the task was more difficult if they had
the same color and texture. Brown (1990) document the transfer abilities of 17 to 36
month olds in retrieval tasks with stick-like tools. In Rat-Fischer et al. (2012), the
authors test the task of retrieving an out-of-reach toy with a rake-like tool with 14,
16, 18, 20 and 22-month-old infants, depending on physical properties of the task
such as the spacial gap between the tool and the toy. They show that the youngest
infants can spontaneously solve the task when the toy is inside or touches the tool,
and 18 months can succeed at the task with a spatial gap. Also, starting from 18
months, infants can benefit from demonstrations of the task.

In these different studies, the task is set up as a problem to be solved, most
often with one toy that should be retrieved, which can be done only through the
use of a tool. In the second year of life, babies are not necessarily attracted by the
“toy” more than the “tool” object that should be used as a tool to act on the toy,
or than any other object in the testing room. Therefore, the toy is usually made
attractive in many different ways: attractive in color and shape, attractive because
the experimenter talks about the toy and points towards it, and/or attractive thanks
to a training phase where similar toys are presented. Experimenters also remove any
other unnecessary or distractor object from the room, both for a better control of
the experiment and to focus the attention of the baby. The task starts when the
objects are in place, and stops when the baby retrieves the toy, which is considered
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as a success, or after some time when it is then considered as a failure. With such
a setup, the task and its interpretation assume the baby is doing its best effort to
retrieve the toy.

However, even with those precautions, the baby can still be distracted by the
experimenter, the caregiver, any object left in the room, any object left to help with
the experiment such as a camera, or any part of the setup that is not directly linked
to the tool-use strategy or the toy. Also, when babies fail to retrieve the target
object, they may switch their attention towards other objects. In many studies, a
non-negligible proportion of baby experiments are removed from further analysis
as babies were not motivated by the task, cried for not getting the toy, were fussy,
were playing with something unrelated to the task, etc. Furthermore, when the baby
is in appearance trying to solve the task, he might in fact be playing with one of
its components, and not particularly willing to retrieve the toy. Indeed, babies are
intrinsically motivated to explore their environment (see Background), spontaneously
performing their own goal-directed actions (Von Hofsten, 2004).

We hypothesize that this success/failure/dropout framework for studying the
development of sensorimotor skills hides or obscures the natural diversity of learning
mechanisms in children, in particular intrinsically motivated exploration which is
usually neglected in the design of those experimental protocols and may interfere in
the interpretations of their results.

In this chapter, we provide a case-study to help evaluating this hypothesis. We
reanalyze in more details a particular tool-use experiment that was performed by
Lauriane Rat-Fischer, Megan Hamer (Dept Zoology, Univ. Oxford), Kim Plunkett
(Dept Experimental Psychology, Univ. Oxford) and Alex Kacelnik (Dept Zoology,
Univ. Oxford) (see Section 3.1). The original goal of this experiment was to test
whether different types of pre-experience with objects influence 21-month-old infants
performance at a sequential tool task. To this end, they designed a tool-use task
where an attractive toy is placed inside a transparent tube, and the only way to
retrieve the toy is to insert in sequence several wooden blocks in one side of the
tube. There were initially 37 babies, first trained with one of four possible conditions:
training with one long tool, training to get a reachable toy with the hand, training
with a setup composed of sequential parts or no training, and then tested in three
consecutive trials. Infants were quite successful at this task, with 24 infants that
succeeded to reach the toy at least in one trial out of 32 analyzed. However, there
was no significant difference in the success rate as a function of training conditions.
This sequential tool-use task is expected to be more difficult than single tool-use
tasks such as the one of Rat-Fischer et al. (2012) where about two third of 22 month
olds solve a simpler rake task. Indeed, inserting several blocks in sequence in a same
side of the tube should require more advanced planning skills than using a single tool
to retrieve a toy. Still, the success rate was high and similar to the rake task, which
seems counter-intuitive.

In order to understand infants’ learning mechanisms in this task and in particular
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the potential role of intrinsic motivations, we investigate in more details their behaviors
and the relation between their behaviors and the progression of the task resolution.
We first gather a body of anecdotal observations (Section 3.2), which describes several
cases of behaviors that seem not to be driven by the goal of retrieving the toy to solve
the task, but rather seem to be the result of an intrinsically motivated exploration
with a diversity of potential alternative goals. Then, we analyze a corpus of videos
from this experiment and annotate many behaviors in real-time, such as the actions
and gaze of babies, events related to task, or behaviors of the experimenter and
caregiver (Section 3.3). We focus on the whole testing period, even after the end of
successful trials defined by the moment when the toy goes out of the tube.

The analysis of those annotations unveils a diversity of motivations and allows to
characterize their associated behaviors to some extent (Section 3.3.2). The consider-
ation of the intrinsically motivated spontaneous exploration of the environment by
babies brings a possible explanation to the counter-intuitively high success rate in
this sequential tool-use tasks (Section 3.4). Even if the environment is constrained
by the attractiveness of the toy together with the experimenter further attracting
the attention of the baby towards the toy, babies spend time exploring their own
goals. One such alternative goal is to insert all objects into the tube, which often
has the unpredicted consequence of pushing the toy out of the tube, by “chance”, or
from a more operational point of view, by “intrinsically motivated exploration”. In
those cases, the trial is labeled as a success, which could be the explanation of a high
success rate, resulting from the interference of the own motivation of babies with the
task goal as set by the experimenter.

3.1 A Sequential Tool-Use Experiment with
21-Month Olds

3.1.1 Ethics
This study has been ethically reviewed and received ethics clearance from the Univer-
sity of Oxford Central University Research Ethics Committee (Ref. MSD-IDREC-C2-
2014-017).

3.1.2 Participants
A total of 37 healthy full-term infants aged 21 months participated in the study. Five
infants were excluded from the final analyses due to fussiness (crying, n=2), lack of
motivation to participate (n=1) or because they held something that was not part of
the experimental set up in one of their hand during the testing phase (biscuit or toy,
n=2). Those behaviors seem unrelated to the ability to solve the task. The remaining
32 infants (11 girls, 21 boys) were aged 619 to 656 days, with a mean age of 631 days.
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Figure 3.1: Sequential tool-use task. A salient toy is placed inside a transparent tube
open on both ends. Six wooden blocks are placed around the tube, at least two of
which must be inserted on one side of the tube to push the toy out of the tube.

Infants were pseudo-randomly assigned to one of four pre-training groups: a Body
training (n=9, 3 girls), an External training (n=8, 3 girls), a Functional training (n=7,
2 girls), and a “no training” group (n=8, 4 girls). Sex was counterbalanced as much
as possible because some studies have found sex differences in tool-use performance
(e.g. Chen et al. (2000)). Infants were recruited from a database of local families who
had expressed interest in taking part in studies of infant development. Prior parental
consent was granted before the infants took part in the study. All infants/parents
whose face appears on the figures in this paper have further agreed to sign an optional
image release agreement form.

3.1.3 Procedure
Upon arrival, infants were first given a short warm-up phase within the lab reception,
during which the experimenter offered various toys and played with the infant to give
them an opportunity to familiarize with both the experimenter and the environment.
In parallel, the caregivers were given all information and consent forms, and were
explained the overall procedure. The infant and caregiver were then transferred to a
quiet testing room. To reduce potential stress from being tested by an unfamiliar
experimenter in a novel environment, caregivers were present during the whole
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Training 
Type

Body External Functional No Training

Description

Infants are trained to
solve the problem with

part of their body
(direct feedback)

Infants are trained to solve
the problem with a pre-
inserted object (indirect

feedback)

Infants are trained with
the function of the tool

out of the context of
solving a problem Infants receive no

training and are
directly presented
with the tool task
straight after they

have been given the
laterality test 
(no feedback)

Training
Task

Use of the hand to push 
the toy out of the tube

Push a pre-inserted object 
that will itself push the toy
out of the tube

Use of a set of objects 
to be moved together
(one train carriage is 
used to push another)

Figure 3.2: Training Conditions. One of 4 types of pre-experience are given before
the sequential tool task.

experiment, but were asked to interfere the least possible, except for occasionally
verbally encouraging their infant to interact with the objects and/or retrieve the toy
from the apparatus, but without showing or telling them how to solve the task. The
infant sat in the lap of their caregiver in front of a table, and an experimenter sat
opposite, facing the infant. All training conditions and the test were prepared behind
an opaque screen, to prevent infants from observing the experimenter. Additionally,
the screen was positioned between the experimenter and the apparatus during each
test trial, to prevent the experimenter from looking at the toy (but not at the infant)
to avoid providing infants with directional cues.

3.1.4 Task
The task consisted in a transparent horizontal tube (26cm long perspex with a
diameter of 6cm, the top is 20cm high) opened on both ends, and containing a small
and colorful toy at the center. The tube was fixed on a wooden base (40cm in length,
20cm in width and 1cm in height). In the test phase, 6 small wooden blocks were
scattered around the tube, and the toy could be pushed out of the tube by inserting
at least two blocks from the same end of the tube (Figure 3.1).

3.1.5 Training Conditions
The training phase consisted of one out of four different training: Body, External,
Functional or No training (see Fig. 3.2). In the Body training, there were no wooden
blocks, the toy was placed at one end of the tube and infants were shown how to
push the toy inside the tube with their own fingers. To facilitate the successful push
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of the toy outside of the tube, a small wedge was fixed under one side of the wooden
base to raise it slightly aiding the infant in pushing the car toward the other end.
The aim of the training was to give infants a direct feedback on how to act on the
toy to push it out of the tube. In the External training, a 20-cm-long wooden block
was pre-inserted into the Tube, one end sticking out for about 3 to 5cm. Infants were
shown how to push the toy with the pre-inserted block by pushing directly on the
block. The aim of the training was to give infants an indirect feedback of how to
act on the toy to push it out of the tube. In the Functional training, the apparatus
was replaced by 3 disconnected wooden train carriages, and infants were shown how
to push the carriages by moving only one of the carriages. The aim of this training
was to familiarize infants with the sequentiality of moving two objects with a third
one, thus familiarizing them with the sequential tool functionality. Finally, in the
No training condition, infants were not familiarized with either the apparatus or the
tool’s functionality. To control for social and manipulative exposure, infants in this
condition were presented with a short additional test for laterality (Fagard and Marks,
2000).

During the training phase the experimenter demonstrated to the infant how to
successfully reach the toy. To reach the success criteria, infants had to succeed
the training condition at least 3 times in a row without demonstration. All infants
successfully reached the success criteria within 3 trials/demonstration events, and
were then presented with 3 test trials. In the rare cases (n=6) where infants did not
reach the toy at least once during the first two trials, they were not given a third
trial, to prevent frustration.

3.1.6 Performance Analysis

There were 64 successful trials out of 93 trials in total. If we consider each of the
three trials separately, there were 22 successes out of 32 first trials, 20 successes out
of 32 second trials, and 20 successes out of 27 third trials.

Number of infants who succeeded at least once. We found no difference
between training groups in the number of infants who successfully reached the toy at
least once (χ2p3, 32q “ 1.76, p “ .62; Body 6/9, External 7/8, Function 6/7, None
7/8).

Mean Number of trials to reach 1st success. Most infants were able to reach
the toy in their first trial (n=21/32), and for the 21 successful infants, there was no
significant difference between training groups in the number of trials needed to reach
the toy (Kruskal Wallis, χ2p3, 32q “ 1, p “ .8; mean Body = 1.17, External = 1.14,
Functional = 1, None = 1.14).
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Figure 3.3: Mean percentage of successful test trials as a function of training condition.

Mean Proportion of successful trials. Despite an apparent tendency to be less
often successful after the Body training and more often successful after Functional
training, we failed to find a significant difference between training groups in the mean
percentage of successful test trials (Kruskal-Wallis, χ2p3, 32q “ 2.36, p “ .5, Figure
3.3).

Time to first success. The hypothesis is that in the Body and None training
conditions, infants need more time to reach their first success than in the External and
Functional training conditions, because they are not familiarized with the behavior
of pushing an object that itself pushes another one. Despite a tendency suggesting
that infants not exposed to any kind of training need more time to reach their first
success, there was no significant difference between training groups (Kruskal-Wallis,
χ2p3, 32q “ 6.25, p “ .10, mean Body = 56s, External = 60s, Functional = 46s, None
= 104s, Figure 3.4).

Time to succeed at each trial. A GLMM analysis on the time needed to succeed
as a function of trial number (1, 2 or 3) and training condition (body, external,
functional or none) revealed a significant interaction between the two factors: infants
who were not exposed to any kind of training needed more time on their first trial to
reach success than infants exposed to the external and functional training (znone-
external = 65.92, p ă 0.05; znone-functional = 61.99, p ă 0.05, Figure 3.5), but not
the body training (znone-body = 54.78, p “ 0.12). There was a significant difference
between trial 1 and the two subsequent trials for the condition without training only
(ztrial1-trial2 = 73.81, p ă 0.01; ztrial1-trial3 = 62.57, p ă 0.01). This result suggest
that any kind of training (involving or not the apparatus) may facilitate infants’ first
success, whereas infants not exposed to any form of training may need more time to
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Figure 3.4: Time (in seconds) to reach the toy for the first time during the test trials
as a function of training condition.

Figure 3.5: Time (in seconds) to reach the toy as a function of training condition and
trial number.

explore the apparatus before being able to reach the toy successfully.

3.2 Anecdotal Observations of Intrinsically Moti-
vated Behaviors

In this section, we gather a small body of anecdotal children observations from this
tool-use experiment, reporting behaviors that seem not to be driven by the only
goal of retrieving the toy to solve the task, but rather seem to be the result of an
intrinsically motivated exploration with a diversity of potential alternative goals and
strategies.
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The first observation (C2-1) describes a discovery of the use of the block as a tool
to move the toy inside the tube.

(a) (b) (c)

(d) (e) (f)

Figure 3.6: Baby H2 saying “Oh, no!” after the toy falls out of the tube.

Observation C2-1. Baby C2 was trained with the long version of the tool (External
training condition). In trial 1, she inserts one short tool, but like in training, she
does not drop the tool, but get it out instead. Once, she points at the cardboard
box containing the long version of the tool, among other toys, while vocalizing and
looking at the experimenter, as if she was asking for the longer version of the tool
since the current tool was too short to push the toy out. She also often looks at the
experimenter and holds a tool out to the experimenter in trial 1 and 2. In trial 2, a
small smile can be observed when the toy is pushed a little bit after dropping a block
in the tube and pushing it further inside with the hand. A moment later, she inserts
and pushes a second block inside the tube which largely moves the toy, at which point
a big smile is observed. The insertion of a third and fourth block makes the toy fall
out of the tube. In trial 3, the baby directly inserts three tools and quickly succeeds
to retrieve the toy. At the starts of trial 4, one can see baby C2 nodding when the
experimenter pushes the apparatus towards her.

As shown by her failed previous attempts and by the smile appearing after the
movement, the baby seems to be surprised by the first movement of the toy pushed
by the tool, which happen when exploring the interaction of the wooden blocks and
the apparatus.
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(a) (b)

Figure 3.7: Baby N1 (a) looking at the car and saying “Yay!”, (b) just after, he
pushes the apparatus towards the experimenter.

The two following observations (H2-1 and N1-1) show clear examples of a dis-
crepancy between the goal of the task, and the goal of the baby, betrayed by the
vocalizations of the baby.

Observation H2-1. Baby H2, in her first trial, inserts one block into the tube on
the right side, while saying “There!”. Then, she inserts a second block, which pushes
the first one and the car, while saying “Choo-Choo” multiple times, and displays
the same behavior with a third block (Figure 3.6a). The insertion of a fourth block
makes the toy fall out (Fig. 3.6b). The experimenter and caregiver immediately say
“Yay” (Fig. 3.6c), and the experimenter applauds. The experimenter then says “Well
done!” while the baby briefly looks at the toy and grabs another block near the toy
(Fig. 3.6d). The baby then says “Oh, no!” (Fig. 3.6e, less than 3s after the fall) while
the caregiver is still saying “Yay” and started applauding. After, the baby continues
inserting blocks as before (Fig. 3.6f), with no further interest in the toy.

Observation N1-1. Baby N1 succeeds the first trial, seemingly by chance while
trying to insert all blocks into the tube, and fails the second trial, as inserting two
blocks on each side did not move the toy out. In the third trial, the baby also inserts
two blocks on each side, pushes on both sides and says “Yay!” while looking at the
toy (Figure 3.7a). Just after, he pushes the apparatus towards the experimenter, as
if the task was finished (Figure 3.7b).

In tho three following observations, babies seem to be pursuing their own alternative
goals, such as inserting blocks into the tube or drawing with a block.
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(a) (b)

(c) (d)

Figure 3.8: Baby A3 replacing the toy in the tube.

Observation A3-1. In trial 1, baby A3 pushes the toy out of the tube by inserting
a third block. He does not immediately see that the toy is out, but the caregiver
and the experimenter says “Yay!”, the baby then looks at the toy out of the tube,
the caregiver applauds, the baby takes the toy with its hand. The baby immediately
inserts the toy back into the tube from where it got out.

Observation A3-2. In trial 3, after inserting a second block into the tube (Figure
3.8a), the toy falls out of the tube while the baby looks at and grabs a third toy. This
fall produces noise from the toy and “Yay!” from the caregiver and experimenter. The
baby then looks at the toy (Figure 3.8b) and grabs it, while the caregiver applauds
and the experimenter says “Well done!”. The caregiver then takes the car toy from
the hands of the baby and demonstrate one of its functions: rolling like a car, while
saying “Look! Broom broom!” (Figure 3.8c). The baby then takes the car from the
hands of its caregiver and immediately puts it back into the tube (Figure 3.8d), fails,
and tries again.
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(a) (b)

Figure 3.9: Baby A2 “drawing” with the wooden block on the apparatus.

(a) (b)

Figure 3.10: Baby H3 (a) looking at the car and saying “Car, hello!”, and (b) trying
to rotate the tube.

Observation A2-1. Baby A2 is more interested by “drawing” with a wooden block
on the apparatus, while saying “Chalk!” many times, although this do not actually
draw, and despite the experimenter trying to attract his attention towards the toy.
He displays this behavior in the most part of the three successive trials, and inserts
a wooden block in the tube only once in the first trial, before putting it out and
continuing to “draw”, thus resulting in three failed trials. Figure 3.9 shows two
examples of this behavior, in the first trial (a) and in the second trial (b).

Lastly, we report observations of a baby that wants to retrieve the toy but that
spontaneously tries new strategies, other than the only functioning strategy using
blocks as tools.
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Observation H3-1. After successfully pushing the toy out of the tube in the first
two trials, baby H3 starts the third trial by inserting a block in the tube, and tries to
get the toy with the hand on the other side, without success. H3 then leans forward
to look directly at the car from the left hole of the tube, and says: “Car, hello!”.

Observation H3-2. Shortly after Observation H3-1, baby H3 straightens above the
tube and tries to rotate the tube with both arms and all of his strength, alternating
the rotation in one direction and the other, supposedly so that the car falls by gravity.
However, the tube cannot rotate enough for this strategy to work and the toy only
moves a little bit (Figure 3.10b).

3.3 Fine-grained Analysis of Behaviors and
Events

In order to understand the exploratory behaviors of infants and their motivations in
the tool-use task, we designed a set of events and behaviors that we annotated with
a fine-grained time scale from videos of the tool-use experiment. A complete list of
annotated behaviors and their description can be found in Table A.1 of Appendix A.

3.3.1 Methods
The general approach we used to define those behaviors was to take into account all
the possible exploratory behaviors of infants. Therefore we did not limit the analysis
to their manual interaction with the tool-use apparatus, but we also annotated their
actions not directly related to the realization of the task but that could be related to
their understanding of the task or to their state of motivation towards solving the
task or towards other objects. This includes the direction of their gaze, their possible
vocalizations and other expressions or social behaviors.

Infants’ motivations and behaviors may also be influenced by other events in
the tool-use setup and more generally in the environment. We thus paid particular
attention to the vocal and manual inputs from the experimenter, that meant to
attract the attention of the infant towards the toy or towards the goal of retrieving
the toy, as well as to the encouragements from the caregiver. We also took into
account the changes in position of the toy inside the tube as we assumed it could
have an influence beyond the fact that the toy is inside or outside the tube.

The microgenetic approach for the study of behavioral changes recommends to
observe behaviors on a trial-by-trial basis over a large period of time (Chen et al.,
2000). Although we study behaviors and motivations in only one tool-use session
here, we measure those behaviors with an even higher density, with a precision of less
than the second for the fastest actions such as gaze direction.
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In the context of the study of babies’ intrinsic motivations in tool-use tasks, we
consider that the time boundaries of trials as defined by the experimenter are not
appropriate boundaries for the observation of intrinsically motivated exploration. We
thus continue to observe and annotate behaviors in between trials, from the point
where the experimenter decided that a trial is a failure or from the point where the
baby succeeded to get the toy out of the tube, to the point where the apparatus is
removed from its reach. In the case where the baby succeeded to put the toy out, we
think that the actions of the baby in this period in between trials convey important
information about the motivation to get or play with the toy.

The previously described behaviors had four possible subjects: the experimenter,
caregiver, environment and baby. For the experimenter, we coded its actions with the
apparatus, its social feedback to attract the attention of the baby, and the starting
and ending of trials and phases. For the caregiver, we annotated social feedback
such as attracting the attention of the baby towards the task, spoiling the solution
of the tool-use problem in few cases, expressing encouragements or surprise. The
environment category deals with the changes of position of the toy that is placed by
the experimenter in the middle of the tube at the beginning of each trial, describing
the position of the toy with a 7-point scale going from one end to the other end of
the tube in addition to the state where the toy is out of the tube.

Additionally, we coded the goals and strategies to reach those goals that the baby
could be having at any point in the tool-use experiment. Since these annotations are
subject to the interpretations of the observer/coder, they are subjective, as opposed
to the previously described behaviors. We did not specify particular properties for a
behavioral sequence to be compatible with a given goal and associated strategy, the
annotations were rather made from observer’s intuition and should be interpreted
accordingly. The annotated goals were the following: to retrieve the toy, to retrieve a
tool, to insert all wooden blocks in the tube, to use a wooden block as a tool, to place
the toy back in the tube after succeeding the task, to draw on the apparatus, and to
make noise. The strategies were to use directly the hand or to use a tool to try to
retrieve the toy, to seek for the help of the caregiver or experimenter, to exchange the
currently held tool with another one or to switch the hand holding the tool. Those
goals and strategies are labeled with the “Observer” subject, which also include the
success or failure of the trial and an interpretation of the success, from success by
chance to fully intentional success.

The set of behaviors and events has been incrementally defined and refined through
partial coding of data, and we recoded the experiments with all babies with this final
set as detailed in Table A.1. The videos were annotated with the BORIS software
(Behavioral Observation Research Interactive Software) (Friard and Gamba, 2016).
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Figure 3.11: Ethogram of experiment with Baby C1.
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3.3.2 Results

The annotations of behaviors and events result in one “ethogram” per baby. Figure
3.11 shows one example of an ethogram of the test phase of the experiment with one
baby. See Appendix A for ethograms of several other babies. In those figures, we
plot on the Y axis the different behaviors and their properties (also called behavior
“modifiers”), while the X axis is the time from the start of the video. We analyze the
whole test phase, containing 3 to 4 trials plus the periods between trials and just after
the end of the last trial until the apparatus is removed. Two infants were excluded
from the gaze analysis (but were included in all other analysis) because the point of
view of the camera did not allow to reliably annotate gaze direction.

In the following, we study several aspects of experiment’s progress that we
hypothesize to be related to the intrinsic motivations of babies to explore the apparatus.
We first look at the variability of babies’ behaviors as an indicator of their active
learning in this task. We also focus in particular on the moments when the toy falls
out of the tube as we assume that if the babies really want to get the toy, then they
will grab and play with it once it becomes within reach. As the behaviors with the
toy at that moment may be linked to the goal they had during the trial, we then
study their fine-grained actions and looks, in general and depending on the behaviors
with the toy once it is within reach. Finally, the experimenter talking and pointing
can interfere with the intrinsic motivations in the choice of goals and strategies, so
we study the reaction of babies to the experimenter attracting their attention.

Behavioral Variability

We annotated different behaviors concerning the babies’ hands, the tools and the
apparatus. Most babies displayed several behaviors in the same trial. Here we provide
a measure of the behavioral variability of a baby as the mean over trials of the number
of different behaviors that were displayed in a same trial. We include the following
list of babies’ behaviors in this measure: Apparatus, Combine, PlayTool, HoldTool,
PushToolInside, Perspective, SwapTool-A, SwitchHand, DiscardTool. In order to
discriminate all coded behaviors, each different set of modifiers (specifying variations
of behaviors) for those behaviors counts as a different behaviors. For instance, using
the left hand to insert a block on the left side of the tube, using the left hand to
insert on the right side, using the right hand to insert on the right side, are counted
as a different behaviors in this measure.

The mean behavioral variability over 32 babies is 5.1 different behaviors per trial
(min: 2.0, max: 9.5, std: 1.5). The variability is similar in successful and failed trials:
with a mean of 5.2 different behaviors per successful trial (26 babies with at least one
successful trial), and 5.5 different behaviors per failed trial (18 babies with at least
one failed trial). The variability is also similar in trials happening after or before a
successful trial: with a mean of 4.9 different behaviors per trial after a successful trial,
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and a mean of 5.6 behaviors per trial otherwise. Figure 3.12 shows an histogram of
the number of different behaviors per trial.
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Figure 3.12: Histogram of the behavioral variability in trials.

When the Toy Goes Out

In some of the following analysis, we focus on the moments when the toy got out of
the tube in successful trials. Here we define a categorization of those trials depending
on the behavior of the baby with and without the toy once the toy is out. There
were 64 such trials in total out of 93 trials for the 32 babies. We grouped those trials
into several categories based on the behavior of the baby once the toy is out. In the
PlaceToyBack category, the baby put the toy back into the tube within 15 seconds
after the toy got out (6 trials, 5 babies). In the ManipulateToy category, the baby
touched the toy within 5 seconds and did not put it back into the tube (33 trials, 16
babies). In the CombineTool category, the baby combined a tool with the apparatus
within 5 seconds and did not put the toy back into the tube or manipulate the toy
(16 trials, 10 babies). If the behavior did not fall into one of the previous categories,
it is labeled as Other (9 trials, 6 babies).

Hand/Tool Actions

Infants spent 21% of the experiment time exploring the apparatus with the hand, and
13% of the time combining a tool with the apparatus or other tools. There was no
significant difference in the proportion of time spent exploring the apparatus with the
hand in the 3 trials (Kruskal-Wallis, χ2 “ 1.64, p “ .44, mean Trial 1: 29%, mean
Trial 2: 28%, mean Trial 3: 21%), nor combining a tool with the apparatus or other
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tools in the 3 trials (Kruskal-Wallis, χ2 “ 2.26, p “ .32, mean Trial 1: 22%, mean
Trial 2: 17%, mean Trial 3: 20%).

We can look in particular at the moments when the toy moves inside the tube
during trials (changes in ToyState) and compare a 5-second period after versus before
the toy moves. Infants spend less time combining a tool with the apparatus or other
tools after the toy moves than before: (Mann-Whitney, U “ 159, p ă .0001, mean
after: 18%, mean before: 32%). There was a slight but non-significant increase in the
time spent exploring the apparatus with the hand after the toy moved (Mann-Whitney,
U “ 290, p “ .19, mean after: 22%, mean before: 18%).

However, babies spend more time exploring the apparatus with the hand after the
toy moves in the trials of category ManipulateToy, than in the CombineTool trials
(Kruskal-Wallis, χ2 “ 4.8, p “ .028, mean ManipulateToy: 26.5%, mean CombineTool:
3.6%). Also, they spend less time combining the tool with the apparatus or another
tool after the toy moves in the ManipulateToy trials than in the CombineTool trials
(Kruskal-Wallis, χ2 “ 4.7, p “ .031, mean ManipulateToy: 17.7%, mean CombineTool:
31.8%).

Finally, there was no significant difference in the time spent manipulating the
apparatus with the hand depending on the goal or strategy assigned by the observer
(including only the ones that use wooden blocks: InsertAll, ToolUse-Goal and ToolUse-
Strategy) (Kruskal-Wallis, χ2 “ 2.21, p “ .33, mean InsertAll: 7%, mean ToolUse-
Goal: 4%, mean ToolUse-Strategy: 16%), nor in the time spent combining the
tool with the apparatus or another tool (Kruskal-Wallis, χ2 “ 0.8, p “ .668, mean
InsertAll: 33%, mean ToolUse-Goal: 45%, mean ToolUse-Strategy: 34%).

Gaze

In general, the mean percentage of time looking at the toy in the experiment is
28.2%, and the mean percentage of time looking at a tool is 17.3%. This pattern
does not significantly depend on the success status of trials: the mean percentage
of time looking at the toy is 29.9% in successful trials and 32.3% in failed trials
(Mann-Whitney, U “ 191, p “ .266), while the percentage of time looking at the tool
is respectively 25.5% and 22.9% (Mann-Whitney, U “ 183, p “ .204).

When the toy falls out of the tube, babies’ looking pattern changes. They look
more at the toy in the 3 seconds after the toy goes out of the tube (67.1%) than in
the 3 seconds before (26.7%) (Mann-Whitney, U “ 65, p ă .001). Also, babies look
less at the tool in the 3 seconds after (13.2%) than before (23.6%) (Mann-Whitney,
U “ 207, p “ .048).

We can consider their looking pattern after the toy moves depending on their
behavior after the toy goes out of the tube in successful trials, whether they manipulate
the toy or combine a tool with the apparatus or another tool. They look more at the
toy after it moves in category ManipulateToy (49.2%, 15 babies) than in category
CombineTool (17.2%, 7 babies) (Kruskal-Wallis, χ2 “ 6.806, p “ .009). Also, they
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look less at the tool after the toy moves in category ManipulateToy (15.8%) than in
category CombineTool (29.9%) (Kruskal-Wallis, χ2 “ 3.123, p “ .077).

We found no significant difference in the percentage of time looking at the toy
depending on the observed goal and strategies that use tools (ToolUse-Strategy
27.5% for 21 babies, ToolUse-Goal 15.3% for 6 babies, and InsertAll 20.6% for
19 babies) (Kruskal-Wallis, χ2 “ 3.456, p “ .177). There may be a difference in
the percentage of time looking at the tool depending on the observed goal and
strategies that use tools (ToolUse-Strategy 32.1%, ToolUse-Goal 51.6%, InsertAll
32.9%) (Kruskal-Wallis, χ2 “ 5.610, p “ .060). A post-hoc pairwise test indicates a
significant difference between ToolUse-Strategy (32.1%) and ToolUse-Goal (51.6%)
(Kruskal-Wallis, χ2 “ 4.049, p “ .044).

We also provide a measure of the frequency of switches between looks at the
toy and looks at the tool. The overall switch frequency is 0.118 switch per second.
The switch frequency depends on the success status of trials, with more frequent
switches in success trials (0.157 switch per second) than in failed trials (0.120 switch
per second) (Mann-Whitney, U “ 146, p “ .038).

Attracting Infant’s Attention

In this experiment, the caregiver is asked to encourage the baby but not to help
with solving the task. The experimenter also encourages the baby, and furthermore
regularly attracts her attention towards the task, either by talking, by pointing
towards the toy, or both. Here, we measure the quantity of those behaviors and their
influence on the actions of the baby.

During trials, the experimenter talks without pointing on average 10.8% of the
time, points without talking 0.07% of the time, talks and points at the same time in
3.3% of the time, and encourages the baby 0.18% of the trial time. The caregiver
talks 2.6% of the time, and encourages the baby 0.88% of the time.

The experimenter attracts the attention of the baby towards the toy by talking
more in failure trials (12.6%) than in success trials (8.3%) (Mann-Whitney, U “ 148,
p “ .020).

When the experimenter talks, this does not change the average time spent by
babies looking at the toy or the tool in the 3 seconds after talking versus in the 3
seconds before talking (toy: 34.4% vs 34.1%, tool: 18.9% vs 17.1%). However, when
the experimenter talks and points at the same time, the time looking at the toy
increases from 11.1% to 43.2% (Mann-Whitney, U “ 89, p ă .001), and the time
looking at the tool decreases from 37.5% down to 16.0% (Mann-Whitney, U “ 159,
p ă .001). If we consider the behavior of the experimenter depending on the previous
looking behaviors of the babies, we found that the experimenter talks and points (at
the same time) more in the 3 seconds after the babies look at the tool than in the 3
seconds after the babies look at the toy (Mann-Whitney, U “ 219, p ă .001): the
experimenter is talking and pointing 4.26% of the time versus 1.05%.
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The actions towards the apparatus or the tools may also be influenced by the
talking and pointing behaviors of the experimenter. The percentage of time exploring
the apparatus with the hand does not significantly change after the experimenter
talks compared to just before (31.8% vs 35.2%) (Mann-Whitney, U “ 459, p “ .240),
but the time spent combining a tool with the apparatus or other tools increases
(13.5% vs 6.3%) (Mann-Whitney, U “ 288, p “ .001). However, the time exploring
the apparatus with the hand does increase after the experimenter talks and points
towards the toy at the same time (22.6% after vs 7.2% before) (Mann-Whitney,
U “ 253, p “ .009) and the time spent combining a tool with the apparatus or other
tools also increases (14.3% vs 8.4%) (Mann-Whitney, U “ 272, p “ .020).

3.4 Discussion

In this tool-use experiment, most infants succeeded in the first trial (21 out of 32),
and 24 infants succeeded in at least in one trial. There was no significant difference in
the success rate as a function of training conditions, or as a function of trial number.
This sequential tool-use task was expected to be more difficult than single tool-use
tasks such as the one of Rat-Fischer et al. (2012). In that experiment, the authors
tested the task of retrieving an out-of-reach toy with a rake-like tool with 14, 16,
18, 20 and 22-month-old infants. They studied infants’ tool-use abilities depending
on the physical properties of the task, such as the spatial gap between the tool and
the toy. With a small spatial gap, about 80% of 22-month olds solved the rake task,
while with a large spatial gap, about one third succeeded.

The sequential tool-use task described in Section 3.1 requires the successive and
consistent use of at least 2 tools to push the toy out of the tube. We therefore
expected the sequential task to be more difficult than the rake tool task even with
a large spatial gap, as it should require more advanced planning skills than using a
single tool. Still, the success rate in the sequential task at 21 months was higher than
the success rate in the rake task with a large spatial gap at 22 months, which seems
counter-intuitive.

To understand the motivations of infants and their exploration and learning
mechanisms in the sequential tool task, we investigated in detail their behaviors,
goals and strategies. Overall, the most striking observation was the richness of the
displayed behaviors and of the apparent goals and strategies of babies, despite the
fact that only one type of behaviors allowed to solve the task (inserting at least 2
blocks on the left or right side).

Many anecdotal observations report the possibility of the babies pursuing alterna-
tive goals: other than the goal of retrieving the toy. Observations H2-1 and N1-1 are
archetypal instances of such alternative goals, with a baby that is unhappy with the
outcome of its actions while it actually is the one expected by the experimenter, and
another baby that expresses satisfaction for its own behavior while it is completely
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different from the target goal. In Observation H2-1, the baby seems to be considering
the toy and several blocks inserted in the tube as a train, so that when the “head”
of the train, which is the toy, falls out of the tube, she says “Oh, no!” while the
experimenter and caregiver say “Yay!”, and continues inserting blocks into the tube.
In Observation N1-1, the baby inserts two blocks on each side of the tube, compressing
the elephant toy, says “Yay!”, and then pushes the whole apparatus towards the
experimenter as if the game was over. His goal may have been to insert many blocks
into the tube, or to crush the toy, however it does not seem to be the toy retrieval.
Other potential goals have been reported, such as drawing on the apparatus with a
block (A2-1), or placing the toy back into the tube once it is out instead of playing
with it (A3-1 and A3-2). Also, when it seems that the current goal of the baby is to
get the toy out of the tube, many strategies have been observed, other than inserting
blocks to push the toy out. In Observation H3-1, the baby may be trying to talk the
car out (“Car, hello!”), while in Observation H3-2, he tries to rotate the tube, which
could have pushed the toy out through gravity, but did not, as this is not allowed by
the apparatus. Other babies have been observed trying to trigger the caregiver’s or
experimenter’s help, by saying “Please!”, “Help!”, or “Out!”, and another baby did
obtain the toy directly from the experimenter after crying in several trials, but we
don’t know if it was on purpose.

In light of these observations, we designed a set of events and behaviors that we
annotated with a fine-grained time scale in the videos of the tool-use experiment.
It includes the gaze and actions of the babies, the reactions of the caregiver and
experimenter, the position of the toy inside the tube, and a subjective evaluation of
the goals and strategies displayed by the baby.

We first measured the behavioral variability of infants as the number of different
behaviors displayed per trial, resulting in an average of 5.1 different behaviors per
trial. Most infants were actively exploring the setup, even if they already discovered
the tool-use strategy to retrieve the toy.

If a baby wants to get and play with the toy, we expect him to actually play with
the toy when it falls out of the tube. Therefore, we focused in particular on the period
between the moment when the toy goes out, which marks the end of the trial from
the point of view of the experimenter, and the moment when the apparatus and the
toy are actually moved away from the baby. We observed several typical behaviors
in this period just after the toy was pushed out: playing with the toy, placing the
toy back in the tube, and combining a tool with the apparatus. In about half of the
successful trials (33 out of 64), babies touch or play with the toy, while in the other
half, they do not. In that case, they either place the toy back into the tube (6 trials),
or combine a tool with the apparatus (16 trials), or otherwise (9 trials uncategorized).
The motivations of infants in this task thus seem more diverse than initially expected.

We further analyzed the behaviors of babies during trials as a function of the
category of their behavior after the toy got out of tube. We showed that the behaviors
with the hand and the tools during the trials are consistent with the behavior after
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the toy is out: babies that manipulate the toy after the toy is out use more the hand,
less the tool, look more at the toy and less at the tool when the toy moves inside the
tube, compared to babies that combine a tool with the apparatus after the toy is
out. Those behaviors during the trial could thus be a correlate of the current goal of
the babies, whether it is to retrieve and play with the toy or to just insert objects
into the tube. One significant correlation between those behaviors and our subjective
annotations of babies’ goals and strategies is that babies are looking more at the tool
when they were assigned a tool-use goal (52% of that time looking at the tool) than
when assigned a tool-use strategy for the toy retrieval goal (32%).

The alternative goal of inserting objects into the tube seemed to be quite common
among infants, as reported by our anecdotal observations and analysis of behaviors.
For instance, Observation H2-1 reports the apparent goal of inserting blocks into
the tube, with the baby saying “Oh, no!” when the toy falls out of the tube. Also,
in the 10 trials where there was only one goal or strategy annotated, this was the
InsertAll goal, with 9 of those 10 trials being successful. Observation C2-1 also shows
that exploratory behaviors such as inserting objects can lead to the discovery of a
strategy to solve the problem imposed by the task, and to the learning and reuse
of this strategy in subsequent trials. In the first trial, baby C2 inserts one tool into
the tube but fails to move the toy, while in the second trial, she discovers that she
can move the toy by pushing a block into the tube, smiles and repeats this action by
inserting three other blocks which makes the toy fall out of the tube. In the following
trials, she directly uses the same strategy and quickly solves the problem. An intrinsic
motivation pushing the baby to explore the apparatus could thus be the reason for
the high success rate observed in this sequential tool-use experiment compared to
other single tool experiments.

Overall, we observed a diverse set of alternative goals and strategies, some leading
to the discovery of the appropriate strategy for solving the task. We reported that
babies play with the toy in only half of the successful trials, while some of their
behaviors during trials correlate with their actions after the toy is out. Those results
confirm that the motivations of babies during and at the end of trials are diverse and
do not necessarily coincide with the toy retrieval goal expected by the experimenter,
despite the fact that the experimenter is attracting the attention of the baby towards
that target goal. This diversity of behaviors, goals and strategies, given that only
one goal is made salient, suggests that intrinsically motivated exploration plays a
key operational role in driving goal selection, strategic planning and learning in such
tool-use experiments. Our analysis of the original tool-use study shows that it is
interesting to investigate how the use of tools can be discovered: in most cases it
seems to be a collateral effect of an exploration with diverse goals more than the
result of planning and reasoning about the particular goal of retrieving the toy.

In the tool-use study we analyzed, the experimenter attracted the attention of
the baby towards the toy, by talking, pointing, or talking and pointing at the same
time, for instance saying “Can you get the toy out? How can you get it out?”. The
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time spent attracting the attention of the baby was about 14% of trials’ time, which
is quite a lot. When the experimenter talked, we did not see babies changing their
gaze patterns, however when the experimenter pointed towards the toy, babies looked
much more at the toy and much less at the tool following this pointing. Also, talking
made babies increase the time spent combining a tool with the apparatus, and talking
and pointing at the same time made babies spend more time exploring the apparatus
with the hand and combining a tool with the apparatus compared with before the
talking. Talking and pointing had thus some effect in attracting the attention of the
baby towards the toy, and was often used as a reaction to the baby getting bored
by the task. Congratulating the baby when the toy goes out may also play a role in
focusing the baby on this goal in the following trials. However, heavily attracting
the attention towards the toy may inhibit the spontaneous exploration of tools and
other elements of the setup and more generally of the environment. Given the limited
attentional and processing abilities of 21-month olds, it could also interfere with the
autonomous selection and remembering of goals, and learning of the solutions to
diverse goals. The question of the interplay between intrinsic goals and strategies
and extrinsic feedback and guidance deserves future work.

However, as pointed by Von Hofsten (2004), the role of motivations is often ne-
glected in research on sensorimotor development. Many experiments studying infants’
particular tool-use skills and strategies depending on their age do not acknowledge
the potential role of intrinsic motivations in the selection of goals and strategies to
explore. For instance, Koslowski and Bruner (1972) study a task where a lever has
to be rotated to retrieve a toy. The toy is attached to the side of the lever that is
not reachable at the beginning of the experiment, but can be made reachable by
rotating the lever’s side that is reachable at the beginning. One difficulty of the
task is that the accessible lever side has to be pushed away so that the toy comes
closer. They tested children from 12 to 24 months old, and observed several behaviors:
direct, where children try to get the toy directly with the hand, oscillation of the
lever, partial rotation, play with the rotation ignoring the toy even if it got within
reach, and rotate the lever and grasp the toy. From 12 to 24 months, they observe
an increase of the use of the partial rotation for 14-16 months, and an increase of
the behaviors of play with the lever and of rotating and retrieving the toy for 16-24
months. This lever task has similarities with our tube task in its structure. Indeed,
when the child does not directly solve the task, the exploration of one accessible part
of the apparatus (the accessible side of the lever) can make the toy come closer, at
which point the infant can directly grasp the toy. This behavior is categorized by the
authors in one particular strategy called “operational preoccupation” (p795):

Step IV: operational preoccupation.-The operationally preoccupied child repeat-
edly rotates the bar away from his midline, but his preoccupation with rotation
is such that he ignores the goal, not looking at the toy either during or after his
rotations.
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His repeated rotations often bring the goal to within reaching distance, but he
does not take advantage of the closeness, seeming to ignore the goal object.
(One child brought the goal object so close that it actually hit his opposite arm.
Only then did he look at it, but he still did not take it.)

Occasionally, when the child is just about to repeat an operation, his attention
may be directed to the area of the goal, as by a noise from the direction of the
goal. When this happens, he is ”freed” from preoccupation with operation of the
lever, spots the goal, stops his repetitions, and, if the goal is close enough, tries
to reach it directly.

The reported behaviors are similar to infants in the tube task inserting all objects
into the tube, which as a side effect can bring the toy within reach, in which case
some of them grasp and play with the toy, while other ignore it (Observation C2-1)
or place the toy back into the tube continuing their action (A3-1, A3-2 and others).
We can see here that the authors consider only one “goal”, the one decided by the
experimenter: getting the toy, or the toy itself, while other behaviors that ignore that
goal are “preoccupations”. However, those behaviors could well be the result of an
intrinsic motivation to explore the environment, with the babies’ goals and strategies
sometimes aligned with the one of the experimenter, sometimes not. The children
may “disregard the goal while getting enmeshed in the means” as the authors put
it, because of attentional and processing constraints, but they may also continue
to explore those means because they find them more interesting. In both this lever
task and our tube task, the success rates could thus be driven be several factors:
the tool-use skills, the interest in getting the toy, the diversity of exploration, and
serendipity, among others.

We have shown that analyzing the behaviors of infants with a fine-grained time
scale and taking into account all their actions, their gaze, and the related events in
the environment can help us understand the interaction between intrinsic motivations
and the task progress in such tool-use experiments. Our analysis has similarities with
the microgenetic approach (Chen et al., 2000) developed to study changes in children
thinking and behaviors. This approach emphasizes the importance of 1) observations
spanning a time from before the period of rapid change to after the stable use of
new thinking, 2) high density observations during this period relative to the rate of
change, 3) trial-by-trial assessments of ongoing changes.

In Schauble (1996), the microgenetic method allowed to observe the structure
of change in ways of thinking in a task where fifth graders and adults had to come
up with experiments to understand the causal role of four variables. By repeating
the task over multiple trials and sessions, they could show that the majority of
belief updates were changed back and forth multiple times. In infants, Adolph et al.
(1997) assessed on a trial-by-trial basis the changes in locomotion skills on surfaces
of different slopes, from the point where babies started to crawl, to the point where
they were proficient walkers. They show that babies do not transfer the skills they
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learned to cope with slopes while their dominant locomotion strategy was crawling
to the later situation where walking is their dominant strategy, but rather relearn
strategies adapted to those slopes. More recently, DiMercurio et al. (2018) studied
babies’ spontaneous movements with the arm in the first 2 months of life, with dense
recordings of the touches to the body and the environment. They found that infants
self-generate many arm movements leading to hundreds of touches in a few minutes,
while half of their time is spent moving from one touch location to another. They
document the types of touches and the proportion of each type of touches, together
with the evolution of those behaviors across sessions. In those experiments, dense
observations allowed to give insights in the time course of behaviors, strategy use or
learning.

In a tool-use experiment with 1.5 and 2.5 year olds where infants had to retrieve
an out-of-reach toy with one of the six available tools (Chen et al., 2000), the time
scale of observations was the trial. In their control condition, the mother just asked
the child to get the toy. In the hint condition, the experimenter moreover suggested
to use the target tool. Finally, in the modeling condition, the experimenter actively
showed to the infant how to retrieve the toy with the target tool. The authors show
that in the control condition only few children succeeded to retrieve the toy with the
tool even after three problems. However, in the hint and modeling conditions, a large
proportion of 1.5-year olds and most of the 2.5-year olds succeeded to use the tool
strategy by the end of the experiment. With respect to the strategic variability, the
authors measured that 74% of toddlers used at least three strategies. The different
strategies observed were to lean forward and try to retrieve the toy with the hand, to
grab one of the tool and try to catch the toy with the tool, to ask to the mother if
she could retrieve the toy for them, or to walk around the table to look at the toy
from different angles. They document the changes in use of each strategy depending
on trial and age, and argue in favor of the overlapping waves theory stating that each
child uses a diverse set of strategies at any point in time and that their proportion
of use do not change abruptly (Siegler, 1996). In our study, we showed that the
observation of infant’s behavior with a higher density than the trial can give insights
on infant motivations and behaviors in particular in tool-use experiments.

The extensive annotations of behaviors and events in the tool-use experiment
allowed to picture interesting correlations and interactions between the baby and
its environment. However, the choice of particular correlations to test was made
through a post-hoc exploratory analysis of the data, so that those results would
benefit confirmation in a similar tool-use experiment. Also, those statistical tests,
and in particular the comparisons between different training conditions, may have
suffered from the relatively small number of analyzed samples (32 babies).

We also annotated the apparent goals and associated strategies of babies, from
a more subjective point of view than actions and gaze. If a particular behavior is
correlated with a particular goal, it may be because the babies display more that
behavior as they pursue this goal, but it could also be that the observer thinks
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the baby is following that goal because that goal is thought to correspond to this
behavior. Moreover, it was often hard to distinguish between several possible goals
and strategies, such as between the goal of retrieving the toy with the tool-use
strategy and the goal of inserting all objects. In those cases we annotated all the goals
compatible with the behaviors, which may be a reason why it was hard to observe
differences when comparing behaviors depending on goal.

The tube task only had one particular salient goal, and one type of strategy to
reach that goal. In order to study intrinsically motivated exploration, one could
design an apparatus with more degrees of freedom related to tool use: with several
salient goals, with different solutions to each tool-use problem, and potentially with
different possible difficulties in a same setup. In Hoicka et al. (2013), the authors
define a test for evaluating creativity in young children (called “divergent thinking”),
with an interesting apparatus used to trigger spontaneous exploration. Children are
free to explore a box with many different parts, together with independent toys. The
test measures the number of different interactions between the toys and the setup
parts, and is shown to correlate with other usual tests of creativity, and to work with
infants as young as 19 months. For testing spontaneous exploration related to tool
use, we can imagine a box with several toys somehow locked inside the box, and many
different ways to unlock those toys. For instance, the Multi Access Box Paradigm of
Auersperg et al. (2011) allows multiple tool-use solutions to the problem of retrieving
food in bird studies. Also, to facilitate coding, such a tool box could integrate digital
sensors recording the movements of the toys and parts of the box.

To conclude, we have shown that the goals and strategies of babies were diverse
in this tool-use task, and were mostly unexpected by the time of the design of the
apparatus. The spontaneous exploration of many goals and strategies can lead to
the discovery and learning of particular strategies to solve particular goals, so that
intrinsic motivations seem to play a key role in the exploration of such tool-use setups
and therefore can interfere with the measures of success and learning. However, most
questions have just been raised and left mostly unanswered: how do babies select
their goal and their strategy at any point in time? How does this choice depend on
their previous experience with the setup and the progress to achieve goals? How do
extrinsic factors such as an experimenter or caregiver attracting attention interplay
with intrinsic motivations?

Computational and robotic modeling, by providing a platform to run and evaluate
the behaviors of artificial agents endowed with particular forms of motivations could
help study some of those questions. If we want to model the behavior of babies
in tool-use experiments, we cannot ignore that they pursue their own goals and
strategies, while being constrained by limited attentional and processing abilities and
by external guidance. By testing different algorithmic implementations of intrinsic
motivations, we could observe the behaviors induced by each algorithm, study in
detail the interaction of the curiosity component with the environment variables, and
refine our hypotheses about the mechanisms of curiosity in children. In Chapter 4,
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in an attempt to answer some of the previous questions we design several robotic
models of curiosity-driven exploration and evaluate them in simple tool-use setups.
In Chapter 5, we tackle the problem of speech development together with tool-use
development in a same unified framework.



Chapter 4

Modeling Intrinsic Motivations in
the Development of Tool Use

Summary
Tool use is a fundamental ability displayed by animals and humans who start to
manage sticks, rakes and spoons in their first two years. The understanding of
the learning and development of tool use is a central question in cognition research.
Babies are incredible curious explorers of their environment, from exploring their body
to playing with objects and combining them. Previous work showed that intrinsic
motivations could allow the emergence of naturalistic developmental trajectories in
robotic models of simple aspects of sensorimotor development. The mechanisms of
intrinsic motivations in the exploration of tool-use precursors and their potential
role in the development of tool-use skills are open for debate. In this chapter, we
study how the particular implementations of intrinsic motivations to self-generate
interesting goals together with the particular representation of goals can play a role
in the tool-use progression in a robotic model. In a first experiment (Forestier and
Oudeyer, 2016a), we study the evolution of behaviors of robotic agents depending on
the intrinsic motivation and the representation of the environment. We show that
an intrinsic motivation based on the learning progress to reach goals with a modular
representation can self-organize phases of behaviors in the development of tool-use
precursors that share properties with child development. In a second experiment
(Forestier and Oudeyer, 2016c), we focus in particular on the choice of tool-use strategy
with a model of the child experiment of Chen et al. (2000). We show that particular
implementations of intrinsic motivations are compatible with their observations, but
are usually not considered in the interpretation of those experiments.
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The understanding of tool-use development in young children is one of the key
questions for the more general understanding of the ontogeny of human cognition.
Indeed, a series of abilities are progressively developed from the simplest reaching
movements of the arms through more dexterous manipulation of a spoon, towards
advanced control of multiple interacting objects. The latter shows an understanding
of shapes, forces and other physical properties that can be hierarchically recruited for
mental transformations and planning operations which are pillars of human cognition.
Child development has first been described as staircase-like successive stages in which
children go through (Piaget, 1952). More recently, other views were developed to
describe the structure and variability of children’s observed developmental paths.
In particular, the development of tool-use precursors can be described as three
consecutive and overlapping stages of behaviors where sequential learning and goal-
directed behaviors play an increasing role (Guerin et al., 2013): body babbling,
behaviors with a single object, and behaviors with several interacting objects. For
example, a study of free play (Zelazo and Kearsley, 1980) shows that at 91

2 months
play is mostly composed of tactile examination, waving or mouthing of a single object
but simple relational acts of banging two objects together are already present. Later
at 131

2 months, the study reveals that most children instead prefer to explore the
relationships among objects, but still show behaviors of the previous phase. Siegler
describes the behavioral structure in a child’s set of current methods to solve a
problem in the overlapping waves framework (Siegler, 1996), which allows to represent
the variability in the choice of strategies and the evolution of strategy preferences.

Intrinsic motivations, sometimes called “curiosity”, have recently been suggested
to play an important role in driving exploration and learning in infants (Gottlieb
et al., 2013; Kidd and Hayden, 2015). Intrinsic motivations have been defined as
mechanisms that push infants to explore activities for their own sake, driven by the
search of novelty, surprise, dissonances or optimal challenge (see Background chapter).
However, intrinsic motivations are most often not considered in the interpretation
of results from psychological experiments. In the previous chapter, we analyzed a
tool-use experiment with 21-month olds originally aiming at assessing a particular
sequential tool-use skill, where a toy was placed in the middle of a transparent tube
and the infant had to retrieve the toy by inserting several blocks into the tube. We
found that infants could spontaneously generate their own goals and pursue them
despite the fact that the particular goal of retrieving the toy was made salient in the
experimental setup and that the attention of the infants was driven towards that goal.
The intrinsic motivation to explore and learn during this task may have interfered
with the success scores for solving the task as the exploration of alternative goals
(such as inserting all blocks into the tube) could lead to the accidental discovery of a
strategy to solve the task. We argued that intrinsic motivations could play a key role
in infants’ exploration and learning even during “test” tasks where the goal of the
subject in the task seems obvious to the experimenter, and should be considered in
the interpretation of such experiments.
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In order to understand the mechanisms of tool-use development in infants and in
particular how they discover, explore and learn through a combination of intrinsic
motivations and extrinsic factors, we now follow the approach of computational and
robotic modeling. By implementing intrinsic motivations in artificial agents and
evaluating their behaviors in tool-use environments, robotic models allow to test
alternative hypotheses about the precise mechanisms of exploration and learning in
tool use.

In the last decade, various families of computational models of intrinsic motivation
were developed, often based on the formal frameworks of active learning and rein-
forcement learning (Baldassarre and Mirolli, 2013). One family of models, that has
targeted to study the developmental dimensions of intrinsic motivation, has considered
a curiosity-driven learning mechanism where the learner actively engages in sensori-
motor activities that provide high learning progress, avoiding situations that are too
easy or too difficult and progressively focusing on activities of increasing complexity
(Gottlieb et al., 2013). Such computational models have shown that developmental
trajectories could emerge from the curiosity-driven learning of sensorimotor mappings,
in very different settings. In the Playground Experiment (Oudeyer et al., 2007), a
quadruped robot motivated to maximize its learning progress acquired how to use
its motor primitives to interact with the items of an infant play mat and a robot
peer, following a self-organized learning curriculum. In Baranes and Oudeyer (2013),
such mechanisms were shown to allow for an efficient learning of large repertoires of
skills involving high-dimensional continuous actions, as intrinsic motivation guided
the system to explore sensorimotor problems of increasing complexity. In a model of
active vocal development (Moulin-Frier et al., 2013), an agent had to learn how to
produce sounds with its vocal tract by self-exploration combined with imitation of
adult speech sounds. This model reproduces major phases of infant vocal development
until 6 months. In both studies, developmental trajectories are emerging from learning,
with both regularities in developmental steps and diversity.

Existing models have considered the exploration and learning of sensorimotor
correspondences mapping a motor space to a single task/sensory space. However, in
the perspective of an open-ended development of reusable skills, and specifically in the
development of tool use, multiple interdependent and organized task spaces should
be available to the agent. For instance, using a tool to act upon an object could
make use of previously explored interaction with the tool. An intrinsic motivation
towards learning progress maximization could particularly be useful in the context
of tool use where progress on some high-level task can not happen before progress
on lower-level tasks have been made, by focusing training on currently learnable
self-generated tasks.

In this chapter, we extend those curiosity-driven exploration models to be able to
leverage the sensorimotor structure of tool-use robotic environments. We hypothesize
that several mechanisms play a role in the progression between phases of tool-use
behaviors, in particular 1) the intrinsic motivation to explore through a self-regulation
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of the growth of complexity of self-selected skills or tasks; 2) the structure of the
representation used to encode sensorimotor experience.

In a first experiment, we study the evolution of behaviors across the learning of
tool-use precursors, depending on properties of the intrinsic motivation component
and of the learning representation (Section 4.1). In a second experiment, we model
one of Siegler’s tool-use experiment with babies to focus on the evolution of the use
of set of strategies to solve a tool-use problem (Section 4.2).

4.1 Developmental Trajectories in Tool Use
In this section, we study the role of intrinsic motivations and of environment repre-
sentations in the curiosity-driven exploration of a tool-use environment. We try to
understand how particular implementations of intrinsic motivations and environment
representations can modulate the exploratory behaviors and the learning of tool-use
skills and how the behaviors of the artificial agent can fit the ones of infants in
tool-use development. To this end, we design a tool-use robotic environment where
a 2D articulated arm with three joints plus a gripper can grab one of two available
tools to move an out-of-reach toy. In such environments, several skills need to be
learned related to tools and toys, such as controlling the hand and gripper of the
robot, reaching for the tools, and controlling the toy with the tools. We define a set
of modular sensory spaces that structures the observations from the environment to
reflect the interaction of the different items of the tool-use environment.

We introduce the HACOB exploration architecture (Hierarchical Active Curiosity-
driven mOdel Babbling) that leverages this sensorimotor modularity to efficiently
learn the tool-use skills with an autonomous developmental trajectory. We compare
several implementations of intrinsic motivations with a different choice of sensorimotor
model to explore: random, or based on the learning progress. We also assess different
representations of the environment, hierarchical or flat.

In the different learning conditions, we simulate many independent agents to study
the typical evolution of behaviors during exploration. We show that overlapping
phases of behaviors are autonomously emerging for agents using an intrinsic motivation
based on learning progress and a modular representation with a hierarchy of models.

4.1.1 Methods

Environment

We simulate1 a 2D robotic arm that can grasp tools that can be used to move an
object into different boxes in the environment. In each trial, the agent executes a

1Source code and notebooks available as a GitHub repository at https://github.com/
sebastien-forestier/CogSci2016

https://github.com/sebastien-forestier/CogSci2016
https://github.com/sebastien-forestier/CogSci2016
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motor trajectory and gets the associated sensory feedback. Finally the arm, tools
and objects are reset to their initial state. The next sections precisely describe the
items of the environment and their interactions. See Fig.4.1 for an example state of
the environment.
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Figure 4.1: Example state of the environment.

Figure 4.2: Example arm trajectory: position of the arm at time steps 17, 33 and 50,
with several intermediate positions, along the 50 steps movement.

Robotic Arm The 2D robotic arm has 3 joints plus a gripper located at the
end-effector. Each joint can rotate from ´π rad to π rad around its resting position,
mapped to a standard interval of r´1, 1s. The length of the 3 segments of the arm
are 0.5, 0.3 and 0.2 so the length of the arm is 1 unit. The resting position of the arm
is vertical with joints at 0 rad and its base is fixed at position r0, 0s. The gripper g
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Figure 4.3: Trajectory of each of the four virtual motors, generated by a DMP.

has 2 possible positions: open (g ě 0) and closed (g ă 0) and its resting position is
open (with g “ 0). The robotic arm has 4 degrees of freedom represented by a vector
in r´1, 1s4. A trajectory of the arm will be represented as a sequence of such vectors.

Motor Control We use Dynamical Movement Primitives (Ijspeert et al., 2013) to
control the arm’s movement as this framework permits the production of a diversity
of arm’s trajectories with few parameters. Each of the 4 arm’s degrees-of-freedom
(DOF) is controlled by a DMP starting at the rest position of the joint. Each DMP
is parameterized by one weight on each of 2 basis functions and one weight specifying
the end position of the movement. The weights are bounded in the interval r´1, 1s
and allow each joint to fairly cover the interval r´1, 1s during the movement. Each
DMP outputs a series of 50 positions that represents a sampling of the trajectory of
one joint during the movement. The arm’s movement is thus parameterized with 12
weights, represented by the motor space M “ r´1, 1s12.

Objects and Tools Two sticks can be grasped by the handle side in order to catch
an out-of-reach object. A small stick of length 0.3 is located at position p0.75, 0.25q
and a long stick of length 0.6 is located at position p´0.75, 0.25q as in Fig. 4.1. An
object (yellow ball), initially at position p0, 1.2q, can be caught by the magnetic side
of one of the two sticks, moved and possibly placed into one of ten fixed squared boxes.
If the gripper is closed near the handle of a stick (closer than 0.2), it is considered
grasped and follows the gripper’s position and the angle of the arm’s last segment
until the gripper opens. Similarly, if the magnetic side of a stick reaches the ball
(within 0.1), the ball will then follow the magnet. The ten boxes (identified from 1 to
10) are static and have size 0.2. Boxes 1 to 5 can only be reached with the long stick,
and the other five boxes can be reached with both sticks.

Sensory Feedback At the end of the movement, the robot gets sensory feedback
from the different items of the environment (S, 25D). First, the trajectory of the
gripper is represented as the x and y positions and the aperture (1 or ´1) of the
gripper at 3 time points: steps 17, 33, 50 during the movement of 50 steps (SHand,
9D). Similarly, the trajectories of the end points of the sticks are 3-point sequences of
x and y positions (SStick1 and SStick2 , 6D each). It also gets the position of the single
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object at the end of the movement (SObject,2D). The agent receives the identifier
(from 1 to 10) of the reached box if one of them has been reached by the ball, 0
otherwise. It also receives the distance between the ball at the end of the movement
and the closest box (SBoxes, 2D).

Learning Architectures

The problem settings for the learning agent is to explore its sensorimotor space and
collect data so as to discover how to produce a diversity of effects, and to learn
repertoires of skills allowing to reproduce these effects in the form of inverse models.
Consequently, the system is not given a priori a single target task to be solved: it
rather autonomously selects the sensorimotor problems it will focus on through an
intrinsically motivated selection of sensorimotor models.

Flat Architectures We define a flat architecture as directly mapping the motor
spaceM (12D) and the sensory space S (25D). To do so, the agent needs a sensorimotor
model that learns the mapping and provides inverse inference of a probable m to reach
a given s. The sensorimotor model stores new information of the form (m, s) with
m PM being the experimented motor parameters and s P S the associated sensory
feedback. It computes the inverse inference with the nearest neighbor algorithm: it
gets the motor part of the nearest neighbor in S of the given s, and adds exploration
noise (Gaussian with σ “ 0.01) to explore new motor parameters.

The agent also needs an interest model that chooses goals in the sensory space.
The control condition is a random motor babbling condition (F-RmB) that always
randomly chooses new motor parameters m. In the other conditions, the agent
performs Goal Babbling, a method by which it self-generates goals in the sensory
space and tries to reach them. To generate those goals, different strategies have been
studied (Baranes and Oudeyer, 2013). It was shown that estimating the learning
progress in different regions of the sensory space and generating the goals where the
progress is high leads to a fast learning. However, this cannot be applied in a 25D
sensory space as a learning progress signal cannot be estimated in this volume. Thus,
in the flat random goal babbling condition (F-RGB), we use a random generation of
goals in the sensory space, which was nevertheless proven to be highly efficient in
complex sensorimotor spaces (Rolf et al., 2010).

Hierarchical Architectures The 25D sensory space can be structured to reflect
the interaction of the different items of the environment. Indeed, the arm motor
position influences the gripper, which influences one of the tools (but not both at the
same time), which influences the position of the object and the filling of the boxes.
We thus study here learning architectures that could make use of this sensorimotor
structure, and we call them hierarchical. Those architecture learn 6 models at the
same time (see Figures 4.4 and 4.5: gray squares are models). Each of those models



88 Chapter 4. Modeling Intrinsic Motivations in the Development . . .

Arm

12D

SHand ˆ SStick1 ˆ SStick2 ˆ SObject ˆ SBoxes

25D

Figure 4.4: Flat

Arm

12D
1

Model1

Hand

9D

2
Stick1

6D

5
Stick2

6D 6

3
Object

2D

4 Boxes

2D

Figure 4.5: Hierarchical

functions in the same way as the random goal babbling flat architecture (F-RGB).
Each model has a motor space (e.g. motor space of model 2 is SHand), a sensory
space (respectively SStick1 , see arrows in Fig. 4.5), and can choose goals randomly in
this sensory space. At each iteration, the architecture first has to choose the model
in which to pick a goal, a procedure that we call Model Babbling. Once a model is
chosen, it finds a goal in its sensory space, and infer motor parameters (that can be
in the sensory space of a lower-level model) to reach that goal. Then, it passes those
parameters as a goal to a lower-level model, which similarly infers motor parameters
and passes those ones until the actual Arm motor space gets parameters to execute
in the environment (with the same exploration noise as in Flat architectures). Model
4 has also to choose which lower-level model to use in order to reach an object end
position so in SObject, as two models (3 and 6) have SObject as sensory space. Model 4
chooses the tool that enabled reaching so as close as possible in the past, e.g. if model
3 has in its history a reached sensory point s closer to so than any reached point with
model 6, then model 3 is chosen. Finally, when motor parameters m are executed in
the environment and feedback s is received, the mappings of all models are updated.
However, only the tool-particular models are updated when a tool is currently held.

Random vs Active Model Babbling In a first condition, the agent randomly
chooses the model that will find a goal, which is called Random Model Babbling (H-
RMB). The problem of Model Babbling is an instance of strategic learning (Nguyen
and Oudeyer, 2012), where different outcomes and strategies to learn them are
available and the agent learns which strategies are useful for which outcomes. In that
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paper, they show that an active choice of the outcomes and strategies based on the
learning progress on each of them increase learning efficiency compared to random
choice. To develop active learning strategies, we first define a measure of learning
progress for each of the 6 models. When a model has been chosen to babble, it draws
a random goal sg, and finds motor parameters m to reach it using the lower-level
models. The actual outcome s in the sensory space of the model, associated to
m might be very different from sg as this goal might be unreachable, or because
lower-level models are not mature enough for that goal. We define the competence
associated to a goal sg as the negative distance between the goal and the reached
point, divided by the maximal distance in this space, to scale this measure across
different spaces:

Cpsgq “ ´
||sg ´ s||

maxs1,s2 ||s1 ´ s2||
(4.1)

and the interest Ipsgq associated to this goal as

Ipsgq “ |Cpsgq ´meankNNCpsgq| (4.2)

where meankNNCpsq is the mean competence of the (k “ 20) nearest previous goals
(k-Nearest Neighbors algorithm). The interest of a model is initialized at 0 and
updated to follow the interest of the goals (with rate n “ 200):

Imodel “
n´ 1
n

Imodel `
1
n
Ipsgq (4.3)

In condition H-P-AMB, the choice of model is probabilistic and has ε “ 10% chance to
be random, and (1´ εq to be proportional to their interest. In condition H-GR-AMB,
the choice of model is greedy (model with maximum interest) but also with ε “ 10%
of random choice. Finally, condition H-P-AMB-CTC (Curiosity-driven Tool Choice)
is the same as H-P-AMB but the choice of the tool to use (model 3 or 6) is made with
probabilities proportional to the interest of the two models, instead of being based
on the more competent tool for the given object goal position. We call HACOB this
Hierarchical Active Curiosity-driven mOdel Babbling algorithmic architecture with
the algorithms H-P-AMB and H-P-AMB-CTC being two variants of the architecture.

4.1.2 Results
We perform 100 independent simulations of 100000 iterations per condition, starting
with 100 iterations of motor babbling. Fig. 4.6 shows details about one trial of the
condition H-P-AMB. We can see the interest of each model during one simulation,
and the corresponding explored object space. The interests of models 2 and 5 increase
once the arm succeeded to grab the corresponding stick. Following that, the interests
of models 3 and 6 increase once the object has been reached.
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Figure 4.6: Condition H-P-AMB. Left: Interest of each model. Right: Exploration
of the object space: each dot is the position reached with the object at the end of a
movement.

Behavioral Evolution and Exploration Efficiency

We provide a measure of three types of behaviors with objects during exploration.
In the first category (hand) the arm did not grab any stick and thus did not move
the out-of-reach object. In the second category (stick), the arm did grab one of the
two sticks but did not touch the object with it. The third category (object) contains
the movements where both a stick was grabbed and the object was moved by the
stick. Fig. 4.7 shows a typical evolution of the proportion of the three categories of
behaviors. We performed a more detailed analysis (see Table 4.1) by counting the
trials where the evolution of the behaviors were similar to the ones found in infant
development of the interaction with object (Guerin et al., 2013). A structure was
considered similar to infant behavioral structures if it validated each of the following
criteria: behaviors of categories stick and object increase from 0 to more than 10%
(potentially after an initial phase with a steady low value), are followed by a curve
with small slope and no abrupt changes, and behaviors of category object start to
raise at least 1000 iterations after stick started to raise (see Fig. 4.7(c) for a valid
instance). Also, the median number of abrupt changes across trials are reported in
Table 4.1 (as the sum of steady changes of more than 10% in the three behaviors), with
a significant difference between condition H-GR-AMB and others (Mann-Whitney U
tests, p ă 10´4).

For each condition we also measured the total exploration of the sensory spaces
during training. The exploration of the hand, sticks and object spaces is defined
as the number of reached cells in a 100 ˆ 100 discretization of the (X,Y) space of
their position at the end of the movement. Boxes’ exploration is the number of
boxes reached with the object during training. Fig. 4.8 shows the exploration of the
different sensory spaces for each condition. We provide Mann-Whitney U test results



4.1. Developmental Trajectories in Tool Use 91

0 100000 Iterations
0

20

40

60

80

100 % Behaviours

(a) No developmental structure
0 100000 Iterations

0

20

40

60

80

100 % Behaviours

(b) Developmental stages, abrupt changes

0 100000 Iterations
0

20

40

60

80

100

object

stick

hand

% Behaviours

(c) Overlapping phases structure

Figure 4.7: Typical behavioral evolution in the conditions (a) F-RGB, (b) H-GR-AMB,
(c) H-P-AMB.

of comparisons of total exploration for some pairs of conditions. One star means
p ă 0.05, two: p ă 10´2, three: p ă 10´3, four: p ă 10´4.

Evolution of Strategy Preferences

Finally, we compare the structure of tool choice made to reach object goal positions
in two conditions for which only this choice differs. Fig. 4.9 shows the choice of tool
to reach a given object goal position in the conditions H-P-AMB and H-P-AMB-CTC.
When model 4 is babbling, it infers the best object position so to reach a random goal
sb P SBoxes. We plot all the choices that model 4 made during exploration, at position
so on a 2D space, with color blue if Stick1 was chosen and red if Stick2 was chosen.
In condition H-P-AMB, we can see strong boundaries between tool choice regions.
By contrast, in condition H-P-AMB-CTC, both tools are chosen in all regions.
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Figure 4.8: Exploration of sensory spaces. Box plots show medians and quartiles of
the 100 trials.

Table 4.1: Behavioral results

Condition Number of Trials
validating criteria

Median number of
Abrupt changes

F-RmB 0 0
F-RGB 0 1
H-RMB 60 2

H-P-AMB 70 2
H-GR-AMB 7 6

H-P-AMB-CTC 79 1

4.1.3 Discussion

Behavioral Evolution

The results show different structures of behavior evolution in the different conditions.
Flat architectures cannot efficiently learn in this environment with a high-dimensional
sensory space. Therefore, they do not show structure in the behavioral evolution but
rather steady proportions of the three behaviors. By contrast, hierarchical condition
H-GR-AMB shows successive behavioral steps with abrupt changes, which reflects
the greedy choice of model to babble. When one model becomes more interesting
than another, it is chosen for a large number of iterations until another model exceeds
its interest. Random model babbling shows overlapping phases structures more
compatible with infants’ studies in the evolution of the three behaviors, but less than
active model babbling (60% instead of 70% or 79%). This is because random model
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Figure 4.9: Chosen tool depending on object goal position. Blue: long stick choice.
Red: small stick. Left: H-P-AMB, strong boundaries between tool choice regions.
Right: H-P-AMB-CTC, parallel exploration of both tools in all regions.

babbling does not adapt its choice of models to their interests along development.
Indeed, it often explores model 1 even if it is sufficiently explored to make progress on
higher-level models, and so explores less the object position space than active model
babbling (H-P-AMB). Also, all models are still useful to explore after the number
of iterations simulated here so the first behavioral phases (hand and stick) do not
lessen towards the end of the simulations in condition H-P-AMB.

Different Tools to Reach a Toy

The comparison of conditions H-P-AMB and H-P-AMB-CTC shows that when the
agent chooses the tool to reach a given object goal position based on the interest of
the corresponding models, both tools are trained to reach all goals instead of training
only the best performing tool. Indeed, with the active curiosity-driven choice of tool,
the small stick has produced more diverse effects on the object than in the optimal
tool’s condition (Fig. 4.8c), even if those effects could also have been generated with
the long tool. The behaviors emerging from this curiosity-driven tool choice are in
accordance with Siegler’s overlapping waves theory. Indeed, Siegler describes the
use of strategies in infants and explains that non-optimal strategies continue to be
explored as they might turn out to be good ones in the end, for this problem or for
related problems.

To our knowledge, HACOB is a first model of the curiosity-driven development
of tool use, and first to show the autonomous emergence of overlapping phases in
the development of simple tool use in a simulated robotic setup. This model also
accounts for the intrinsically-motivated parallel exploration of different tools to reach
one goal, in line with Siegler’s overlapping waves theory. Other models predefine
successive phases in object affordances learning (Ugur et al., 2015), do not study the
role of intrinsic motivation in tool affordances learning (Stoytchev, 2005), or have
only considered the autonomous development of single object manipulation (Gottlieb
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et al., 2013).
In artificial agents, the intrinsic motivation properties and implementation seem

to influence the exploration of non-optimal strategies. In the next section, we focus in
more details on this question through experiments in an environment where several
different strategies (reaching with the hand or with a tool) can be used to solve the
same set of problems (reaching a toy).

4.2 Overlapping Waves of Strategy Preferences

Siegler’s overlapping waves theory (Siegler, 1996) describes and models the way
infants represent and select a set of currently available methods to solve a problem.
According to this theory, infants maintain their set of methods (also called strategies)
with associated frequencies depending on the past history of the use of those methods.
The frequencies evolve over time while new strategies are discovered which explain
the observed changes in behavior. For instance, when learning the mathematical
addition, infants use different methods from one trial to another, and may continue
to use non-optimal methods for a long period of time even if they already know more
efficient methods. Siegler suggested that such continued exploration of alternative
and sub-optimal methods to solve a family of problem may be useful to acquire skills
that will later facilitate the resolution of new problems. This cognitive variability
could be an essential mechanism to acquire greater knowledge, which might be more
important for learning in childhood than just having high quality performances on
specific tasks.

Siegler and colleagues developed several computational models of strategy selection
and evolution to account for how children learn how to add integer numbers: ASCM
(Adaptive Strategy Choice Model, Siegler (1996)), and SCADS (Strategy Choices and
Strategy Discoveries, Shrager and Siegler (1998)). Those models are argued to closely
parallel the development of addition strategies with the use of several strategies, with
errors in the execution of those strategies. In SCADS, furthermore, a mechanism
allows the discovery of new strategies and the authors show that the same strategies
are discovered and in the same sequences as with children. In the two models, the
strategies are selected with frequencies that are directly proportional to (called a
“matching law” on) their success rate in the corresponding previous problems. This
model also included a novelty bias to explore new strategies more than their success
rate would allow: the value for exploring new strategies was initialized optimistically
(then decreasing in time if success rate did not rise). The focus of this model has
been the mode of strategy selection (matching law), with a measure of the value of
strategies based on their performance to solve a given task. However, these models
have not considered other forms of motivations, such as curiosity-driven exploration,
which as we suggested (see previous chapter) could play an important role in learning.

In the context of tool-use development, Chen et al. (2000) conducted an experiment
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with 1.5- and 2.5-year-olds that had to retrieve an out-of-reach toy with one of the
six available tools. Children were exposed to a sequence of three similar problems
with different tool shapes and visual features, but for each problem only one tool
was effective to retrieve the toy. They designed three conditions. In the control
condition, the mother just asked the child to get the toy. In the hint condition, the
experimenter moreover suggested to use the target tool. Finally, in the modeling
condition, the experimenter actively showed to the infant how to retrieve the toy
with the target tool. First, they show that in the control condition only few children
succeeded to retrieve the toy with the tool even after three problems (less than 10%
of the 1.5-year-olds and less than 20% of the 2.5-year-olds). However, in the hint
condition and modeling conditions, a large proportion of 1.5-year-olds and most of
the 2.5-year-olds succeeded to use the tool strategy by the end of the experiment.
With respect to the strategic variability, the authors measured that 74% of toddlers
used at least three strategies. The different strategies observed were to lean forward
and try to retrieve the toy with the hand (forward strategy), to grab one of the tool
and try to catch the toy with the tool (tool strategy), to ask to the mother if she
could retrieve the toy for them (but she was told not to) or to walk around the table
to look at the toy from different angles (indirect strategy), and finally some of the
children did not engage in any of those strategies (no strategy).

Chen et al. (2000) reported the dynamics of strategy choice as an average over
children. They showed that the tool strategy frequency was on average increasing
with the successive trials and the forward strategy was decreasing in the hint and
modeling conditions, whereas in the control condition the tool strategy remained
stable. This pattern was interpreted by the authors as a clear overlapping waves
pattern besides the fact that it was a pattern of the average over children. The
overlapping waves theory suggests that this pattern of strategy change should be
visible on a per child basis, meaning that each child should always use a set of
strategies and smoothly change their frequency use. However, the observed average
pattern does not imply that each child (or most of them) display an overlapping
waves pattern. It could be that in Chen and Siegler’s experiment, each child begins
with the forward strategy, and at some point in the experiment (different for each
child), switch to the tool strategy and never uses again the forward one. In that case,
an average of the strategy use would also show a smooth increase in the tool strategy
and decrease in the forward strategy use. Nevertheless, the authors also reported
a measure that could disentangle the different hypothesis (Chen et al., 2000, p42).
They measured the average proportion of trials where children used other strategies
than the tool strategy after the first trial where they used the tool strategy. The
toddlers in the control condition did use the other approaches than the tool strategy
on more than half the trials after the first time they used the tool strategy (84%
of the trials for 1.5-year-olds, 48% for 2.5-year-olds). In contrast, in the hint and
modeling conditions, the young infants used other approaches in around 20% of the
trials, and older infants in only 4%. This result showed that strategic variability did
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continue after children began to use the tool strategy in the control condition but not
in the hint and modeling conditions. Therefore, we do not agree with the conclusions
of the authors saying that a clear overlapping waves pattern was visible regarding the
change in forward versus tool strategy use. According to this analysis, overlapping
behaviors were observed in this experiment only in the control condition where the
mother just asked the infant to retrieve the toy, and the experimenter did not add
further incentive.

In this section, we consider the problem of the modeling of overlapping waves of
behaviors in the context of tool use. We will target to model alternative mechanisms
that could be at play in Chen and Siegler’s experiment. The same model will be
used for both free play exploration/learning of tool use (modeling learning of tool
use taking place “at home” during the months preceding the lab sessions) and for
exposure to evaluation in lab sessions with an incentive to solve a task. Indeed, a
source of difficulty to interpret the results of behavioral experiments in babies is that
it is difficult to control for what happened before the lab sessions. In particular,
we can’t know exactly how much prior experience the toddlers had playing with
objects and tools at home, what kind of tools were available, and how the caregivers
were interacting with the child or answering its requests to get toys. Furthermore,
understanding how the object saliency and the cues of the caretaker are interpreted
by the children is an open question. The interpretation of these experiments has
implicitly assumed that the experimental setup was designed so that the children
would “want” to catch the toy (this also applies to similar experiments such as Fagard
et al. (2016)). However, as we will suggest through the model below, alternative
hypotheses can be considered (and be non-exclusive). In particular, we will suggest
that a salient object may trigger curiosity-driven exploration, where the child explores
to gain information about which strategy allows to get it (rather than trying to
maximize its probability to actually catch it).

We build upon our previous model of the curiosity-driven development of tool
use in a simulated 2D environment with objects and tools (see previous section, and
Forestier and Oudeyer (2016a)). The agents in this experiment are learning several
sensorimotor models structured in a hierarchy that represents the environmental
structure. The use of an intrinsic motivation for the exploration of sensorimotor
mappings yielding a high learning progress allowed the emergence of a smooth
progression between overlapping phases of behavior similar to the one found in infants
(Guerin et al., 2013). The intrinsic motivation self-organized a first phase where the
agents were mainly exploring movements of the arm without touching objects, then
the exploration of the interaction with a single object, and finally a smooth shift
towards behaviors experimenting the interaction of multiple objects.

Here, we use a similar model and study different mechanisms for adaptively
selecting alternative strategies to reach a toy, which were not studied in our previous
work focused on evaluating the impact of hierarchical representations of sensorimotor
spaces (Forestier and Oudeyer, 2016a). We hypothesize that not only do the type of
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decision mechanism to select an action (matching law, greedy) influence the resulting
behavior and match observations in infants as explained in Siegler’s models, but also
the measure on which the decision is based, whether it is a competence measure, as in
ASCM and SCADS, or an information-gain based measure such as learning progress.

To test this hypothesis, we designed an experimental setup with two phases. In
the first one, the agents are autonomously exploring their environment through three
sensory spaces (representing the hand, stick and toy), and can learn how to move
their hand, how to grab an available stick, and how to reach a toy with either the
hand or the stick. In a second phase, the agents use the same strategy selection
procedure as in the first phase, but are now only exploring towards retrieving the toy,
which mimics the incentive given by the mother to retrieve the toy in Siegler’s lab
experiment (Chen et al., 2000). In Siegler’s experiment, several tools where available
but only one allowed to grab the toy, and the tool strategy was defined as trying to
use any of the tool to reach for the toy. We simplify this setup and we place only one
tool in the environment so that the tool strategy only contains one type of actions
and is easier to interpret. We measure the success rates to grab the toy and we study
the evolution of the use of tool and hand strategies in this second phase depending
on the mechanism of strategy selection, for individual agents.

Siegler (Siegler, 1996) suggests that the cognitive variability observed in infants
could be essential to learning in childhood, and model it as matching law on the
competence of the strategies. Our results suggests that an alternative mechanism, not
proposed in Siegler’s model, could be at play in their tool-use experiment: the strategy
selection could be based on a measure of learning progress instead of performance.

4.2.1 Methods

Environment

We simulate2 a 2D robotic arm that can grasp a block or grasp a stick and use it
to move the block. In each trial, the agent executes a motor trajectory and gets
the associated sensory feedback. At the end of each trial, the arm and the stick
are reset to their initial state, and the block is reset to a random location every 20
iterations. The next sections precisely describe the items of the environment and
their interactions. See Fig.4.10 for an example state of the environment.

Robotic Arm The 2D robotic arm has 3 joints. Each joint can rotate from ´π to
π pradq around its resting position, which is seen by the agent as a standard interval
r´1, 1s. The length of the 3 segments of the arm are 0.5, 0.3 and 0.2 so the length of
the arm is 1 unit. The resting position of the arm is vertical with all joints at 0 rad

2Source code and notebooks available as a GitHub repository at https://github.com/
sebastien-forestier/ICDL2016

https://github.com/sebastien-forestier/ICDL2016
https://github.com/sebastien-forestier/ICDL2016
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Figure 4.10: A state of the environment. The initial position of the arm is vertical so
in this position the first and third joints are rotated to the right and the second joint
to the left. The magnetic stick is at its initial position and is reset at each iteration.
The block can be caught either by the magnetic side of the stick or directly by the
hand as it is reachable here. The block is only reset every 20 iterations to a random
position reachable by the hand.

and its base is fixed at position p0, 0q. A trajectory of the arm will be represented as
a sequence of vectors in r´1, 1s3.

Motor Control We use Dynamical Movement Primitives (Ijspeert et al., 2013)
to control the arm’s movement. Each of the 3 arm’s degrees-of-freedom (DOF)
is controlled by a DMP starting at the rest position of the joint. Each DMP is
parameterized by one weight on each of 2 basis functions and one weight specifying
the end position of the movement. The weights are bounded in the interval r´1, 1s
and allow each joint to fairly cover the interval r´1, 1s during the movement. Each
DMP outputs a series of 50 positions that represents a sampling of the trajectory of
one joint during the movement. The arm’s movement is thus parameterized with 9
weights, represented by the motor space M “ r´1, 1s9.

Objects A stick and a toy (block) are available in the environment. The stick can
be grasped by the handle side and can be used as a tool to catch the block. The
stick has length 0.3 and is initially located at position p´0.75, 0.25q as in Fig. 4.10.
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If the hand reaches the block (within 0.2), we consider that the block is grasped until
the end of this movement. Similarly, if the hand reaches the handle side of the stick
(within 0.1), the stick is considered grasped and follows the hand’s position with the
direction of the arm’s last segment until the end of this movement. If the magnetic
side of the stick reaches the block (within 0.1), then the block follows the stick’s
magnet.

Sensory Feedback At the beginning of each trial, the agent gets the context of the
environment: the position of the block (Context, 2D). At the end of the movement,
it gets sensory feedback from the following items in the environment. First, the
trajectory of the hand is represented as its x and y positions at 3 time points: steps
17, 33, 50 during the movement of 50 steps (SHand, 6D). Similarly, the trajectory of
the magnet of the stick is a 3-point sequence of x and y positions (SStick, 6D). It also
gets the initial and final position of the block, and the minimal distance during the
movement between the hand and the block, if the stick was not grasped, or between
the magnet and the block, if the stick was grasped (SBlock, 5D). The total sensory
space S has 17 dimensions.

Learning Agent

The problem settings for the learning agent is to explore its sensorimotor space and
collect data so as to generate a diversity of effects in the three available sensory spaces,
and to learn inverse models to be able to reproduce those effects. In this section we
describe the hierarchical learning architecture.

Global Architecture of Sensorimotor Models The agent learns 4 sensorimotor
models at the same time (see Fig. 4.11). Model 1 learns a mapping from the motor
space M to SHand, model 2 from SHand to SStick, model 3 from SHand to SBlock and
model 4 from SStick to SBlock. The block is the only item that can have a different
initial position at the beginning of each iteration. We thus call contextual models
the two models that have to take into account this context (models 3 and 4), and
non-contextual models the two others (models 1 and 2). Those two types of models
provide the inverse inference of a probable motor command m (in their motor space)
to reach a given sensory goal s (in their sensory space), but their implementation is
slightly different (see next sections).

In order to get interesting data to build its sensorimotor model, the agent performs
Goal Babbling. It first chooses one of the three sensory spaces, and then self-generates
a goal in the sensory space and tries to reach it. To generate those goals, different
strategies have been studied (Baranes and Oudeyer, 2013). Here we use a random
generation of goals for the exploration of spaces SHand and SStick (Random Goal
Babbling), which was proven to be highly efficient in complex sensorimotor spaces
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Figure 4.11: Architecture of models. The green circle is the motor space and the blue
ones are sensory spaces. The gray squares are the 4 models.

(Rolf et al., 2010). For SBlock, we just define the goal as moving the block to the
origin position p0, 0q.

If the goal is in SBlock, the agent also has to decide which method to use in order
to try to retrieve the block: either the forward method, with model 3, or the tool
method with model 4. In the other cases, if the goal is chosen in SHand or SStick, then
model 2 or respectively 3 is used. Once the babbling model is chosen, it performs
inverse inference and uses lower-level models to decide which motor command m will
be experimented in the environment.

Finally, when motor parameters m have been tested in the environment and
feedback s received, the mappings of models 1 and 2 are updated, and if the agent
grasped the tool, then model 4 is updated, otherwise model 3 is updated. Also, a
measure of success to reach the goal and of learning progress are computed and will
be used to help choosing the space to explore. We use the Explauto autonomous
exploration library (Moulin-Frier et al., 2014) to define those sensorimotor models
and the learning progress measure.

Non-Contextual Models Each non-contextual model has a motor space (e.g.
motor space of model 2 is SHand) and a sensory space (respectively SStick). They
learn a mapping and provide the inverse inference of a probable motor command
m (in its motor space) to reach a given sensory goal s (in its sensory space). They
store new information of the form (m, s) with m PM being the experimented motor
parameters and s P Si the associated sensory feedback in their sensory space. They
compute the inverse inference with the nearest neighbor algorithm: they look at the
nearest neighbor in the database of a given s in the sensory space, and return its
associated motor parameters. Model 1 also adds exploration noise (Gaussian with
σ “ 0.01) to explore new motor parameters.

Contextual Models The inverse inference is computed differently for contextual
models (models 3 and 4). Whatever the position of the block (context), the agent
tries to grasp it (with the hand for model 3 and with the tool for model 4) and to
put it at the origin location p0, 0q. To do so, if the context is new (not within 0.05
of any previously seen context), then the agent chooses the motor command that
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in the past led to the grasping of the block in the closest context. If the context is
not new, then the model chooses the sensory point in the database with the smallest
cost among the points that had a similar context (context within 0.05 of the current
one), and a Gaussian noise (σ “ 0.01) is added to the motor position. The cost of a
sensory point sblock with context c is

costpc, sblockq “ DSb
ptraj, cq `DSb

porigin, pfinalq (4.4)

where DSblock
ptraj, cq was the minimal distance between the hand (for model 3) or

tool (model 4) and the toy during the trajectory. Also, origin is the position p0, 0q
and pfinal is the final position of the toy. Finally, DSi

is a normalized distance in a
sensory space Si,

DSi
ps, s1q “

||s´ s1||

maxs1,s2 ||s1 ´ s2||
(4.5)

Active Space Babbling At each iteration, the architecture first has to choose
the sensory space Si to explore. This choice is probabilistic and proportional to the
interest of each space (but with ε “ 5% of random choice). We call this procedure
Active Space Babbling.

When space SHand is chosen to be explored, a random goal sg (hand trajectory)
is sampled and then sensorimotor model 1 is used to infer a motor command m to
realize this hand trajectory. When space SStick is chosen, a random goal sg (stick
trajectory) is sampled and model 2 is used to infer a hand trajectory to make this
stick trajectory (and model 1 used to realize the hand trajectory). When space SBlock
is explored, then model 3 or 4 (hand or tool strategy) has to be chosen (see next
section) to reach for the toy and the goal sg is to catch the toy and put it at position
p0, 0q.

We now define the learning progress and interest of a sensorimotor model mod
that tries to reach the goal sg (e.g. model 1 if SHand was chosen, or model 4 if
SBlock and the stick were chosen). Once the motor command m is executed, the
agent observes the current sensory feedback s in the chosen sensory space Si. This
outcome s might be very different from sg as this goal can be unreachable, or because
lower-level models are not mature enough for that goal. We define the progress P psgq
associated to the goal sg P Si:

P psgq “ DSi
psg, s

1
q ´DSi

psg, sq (4.6)

where sg and s are the current goal and reached sensory points, and s1g and s1 are the
previous goal of the model mod that is the closest to sg, and its associated reached
sensory point. The progress of model mod is initialized at 0 and updated to follow
the progress of its goals (with rate n “ 1000):

Pmodptq “
n´ 1
n

Pmodpt´ 1q ` 1
n
P psgq (4.7)
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where t is the current iteration. The interest of model mod is its absolute progress,
meaning that a negative progress is also interesting:

Imodptq “ |Pmodptq| (4.8)

Now we define the interest of space SHand and SStick as the interest of models 1
and 2 respectively. The interest of space SBlock is the sum of the interest of models 3
and 4.

Choice of Method to Reach the Block When the agent has chosen to explore
SBlock, and given a block position (context), it has to choose one of its two available
methods to reach the block: the hand method (model 3) or the tool method (model
4). We define 4 conditions with different choices, based on two measures; competence
and interest. The competence measure estimates for each method if the agent will be
able to grasp the block. It is computed as follows: if the block was never grasped
with the method, then it is ´1, otherwise it is the distance of the closest context
where the block was grasped. The interest measure estimates the learning progress of
each method to reach the current block position. If the context is strictly new, then
the interest is the inverse distance of the closest context where the block was grasped
(or 1 if there was no such context). If the context is not new, which means that the
block was not grasped in the previous attempts, then the interest is computed as
a derivative of the costs of the previous attempts for this context. If there were n
previous attempts ai, then the interest is

ˇ

ˇ meann
2`1..n rcostpaiqs ´mean1..n

2
rcostpaiqs

ˇ

ˇ (4.9)

where the cost of an attempt is the one of Equation 4.4. Finally, for each of those
two measures, we define two types of choice for both measures. The ε-greedy choice
is a random choice with probability ε “ 5%, and the choice of the highest with
probability (1 ´ ε). In the matching law choice, the probability of choosing each
method is proportional to the measure, but also with ε “ 5% probability of a random
choice. This results in 4 possible conditions:

• GC: greedy on competence

• MC: matching law on competence

• GI: greedy on interest

• MI: matching law on interest
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Figure 4.12: Evolution of the interest of spaces for one agent of condition MI during
10000 iterations of phase 1.

Experiments

The experimental procedure is composed of two phases. In phase 1, the agents are
autonomously learning for 1000, 2000, 5000 or 10000 iterations where we reset the
toy to a random position (but reachable directly with the hand) each 20 iterations.
In phase 2, the agents are successively exposed to 3 new problems (or contexts) while
they keep updating their sensorimotor models, for 200 iterations allowed per new
problem. In those 3 problems, the toy is set at a location reachable with the tool
but not reachable with the hand (problem A: p´0.1, 1.2q, B:p0, 1.25q, C:p0.1, 1.2q).
Those locations are distinct enough so that given the solution to one of them, solving
another one requires some exploration, but close enough so that the previous one
helps. Finally, we simulate 100 independent trials for each condition.

4.2.2 Results
Figure 4.12 shows an example of the evolution of the interests to explore the sensory
spaces during phase 1 for an agent of condition MI. After some iterations, the interest
of SBlock becomes greater than the interest of SHand and SStick and thus is more often
chosen to be explored.

Figure 4.13 shows in each condition and for each of the 3 problems of phase
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2, the proportion of the 100 agents that succeeded to reach the toy, depending
on experience (the number of iterations performed in phase 1, i.e. the number of
sensorimotor experiments/movements already achieved by each agent). We see that
in all conditions and for all problems, the success rate increases with experience. For
instance, for problem A in condition MI, the success rate goes from 25% when agents
have experimented 1000 iterations to 50% when they have experimented 10000. Also,
for all conditions and experiences, the success rate increases from problem A to B
and from problem B to C. For example, the success rate is 21% for problem A of
condition MC at experience 1000 and it goes to 27% for problem B and 33% for
problem C. Finally, the success rates of all problems in condition GC are smaller by
5 to 20% than the success rates of the three other conditions, and the success rates of
condition MI are slightly higher than those of condition MC.

Figures 4.14 and 4.15 show 2D maps of the preference between the hand and tool
strategies to reach the block depending on its 2D position (on a 100ˆ 100 grid), for
one agent of experience 10000 iterations of each condition that succeeded to catch the
block on the three problems. Also, the maps are computed at different times of phase
2 for each condition: at the beginning of phase 2 before problem A, after problem A,
after problem B and after problem C. The preference is computed as the probability
of choosing the hand strategy, and is reported on a two color scale. A completely blue
region means that if the block is located in that region, then the corresponding agent
would certainly (with probability 1) choose the hand strategy. This is almost the case
in conditions GC and GI where the choice is ε-greedy with ε “ 5%. Similarly, in green
regions of those conditions, the choice is almost always for the tool strategy. However,
a whiter region (in conditions MC and MI) means that the choice is more balanced,
and in completely white regions the choice is equiprobable. It should be noted that
the arm is located at position p0, 0q, has length 1, and can catch the block within
0.2 so it could theoretically reach the block within a circle of radius 1.2. However, in
the 3 problems of phase 2, the block is unreachable directly with the hand. In those
problems, the block is located at positions p´0.1, 1.2q, p0, 1.25q and p0.1, 1.2q (black
dots).

In all conditions (from top to bottom) we can see modifications of the preference
around those points across exposure to problems (from left to right), from a hand
(blue) to a tool (green) preference. For instance, in condition GC (first row), before
phase 2 (first column), this agent already preferred the tool. This is indeed possible
because even if during phase 1 we reset the position of the block every 20 iterations
to a random position reachable by the hand, this agent could have the time to move
the block out-of-reach for the hand and then learn that it could catch it with the
tool at that position. This is also part of the reason why success rate increases with
experience in all conditions for problem A. Then, after the success to retrieve the toy
in problem A (second column), the preference around problem A has changed in a
small region around A, but towards the completely different choice: almost always
choosing the tool strategy instead of always choosing the hand strategy. The results
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Figure 4.13: Proportion of 100 agents that succeeded to reach the toy in each of
the 3 problems of phase 2, depending on condition and experience (the number
of iterations experimented). Success rate increases with experience and with the
problems encountered, and are better in conditions MC, GI and MI than GC.
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Figure 4.14: Strategy preference maps depending on condition and time point.
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Figure 4.15: Strategy preference maps depending on condition and time point.
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for the agent in condition GI are similar. However, the results for the agents of
conditions MC and MI are different. In condition MC, the agent has no preference
in problem A before phase 2, which means that for the first trial to retrieve the toy
in problem A, it will choose the strategy randomly, and then the preference might
change as the competence value depends on how far from the toy the strategy allowed
to reach for. After problem A (second column), the preference changed in a large
region around problem A, but this time the change is more gradual, with a high
probability to choose the tool strategy only very close to A. The results for the agent
in condition MI is similar, but here the preference before phase 2 was for the hand
strategy (slightly: 60%, but for other agents it could have been for the tool strategy).

4.2.3 Discussion
We designed an experimental setup where an agent controlling a 2D robotic arm could
learn two strategies to grab a toy depending on its position: grabbing the toy directly
with the hand or first grab a tool to reach for the toy. Our setup is designed after
the child experiment of Chen et al. (2000), and in particular their control condition
where infants are encouraged to retrieve the out-of-reach toy. The agents have unified
learning mechanisms for both free play exploration/learning of tool use from scratch
modeling free play at home (phase 1) and for exposure to evaluation in lab sessions
with an incentive to solve the task (phase 2). We defined two dimensions of strategy
choice: the type of decision, with a matching law or a greedy choice, and the measure
on which to make this choice: the performance of the strategies to retrieve the toy
in its current position, or the progress made with each strategy to get the toy. The
decision based on the performance measure means that the learner is interested in
getting the toy, and the decision based on the learning progress means that the toy
raises the curiosity of the learner about its affordances or relation with the hand and
the stick.

The success rates in our setup are compatible with the ones of 1.5- and 2.5-
year-olds in the experiment of Chen et al. (2000), where the success rates increase
with experience and also across the successive problems. In their experiment, the
toddlers in the control condition did use the other approaches than the tool strategy
on more than half the trials after the first time they used the tool strategy in the
lab experiment (84% of the trials for 1.5-year-olds, 48% for 2.5-year-olds). However,
in the hint and modeling conditions, where the experimenter additionally suggested
to use one of the available tools, or actively showed to the infant how to retrieve
the toy with the tool, younger infants used other approaches in around 20% of the
trials, and older ones in only 4%. Our setup is most similar to the control condition
of Chen et al. (2000) as we did not model the hints and demonstrations given by the
experimenter in the hint and modeling conditions. We observed that only our two
conditions using a matching law, MC and MI display a concurrent use of the tool and
hand strategies, with smooth evolution following new sensorimotor experience. The
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behavior of agents in conditions MC and MI are thus compatible with the overlapping
pattern observed with children in the control condition of Chen et al. (2000) where
the mother just asked the child to get the toy.

Our results suggests that a strategy selection mechanism based on a measure of
learning progress could be at play in the tool-use experiment of Chen et al. (2000).
Also, condition MI could be more beneficial for learning in our setup than condition
MC as success rates are slightly better in condition MI. An intrinsic motivation based
on a matching law on performance could waste too many experimental trials on
high-performing but not improving strategies, even with a novelty bias (that would
expire irrespective of progress). On the contrary, a matching law on the monitored
learning progress of each strategy could focus the training on low-performing but
improving strategies and avoid wasting trials training high-performing but non-
improving strategies. Also, a currently bad strategy could turn out later to be
interesting for other related tasks and thus benefit from training while this is not
considered in our model. On the other hand, an emphasis on learning progress might
too often lead to the choice of an improving strategy that could turn to be sub-optimal
or useless.

In our setup, at each iteration in phase 1 the agents have the choice to explore one
of the three available sensory spaces. In phase 2, to model the incentive to get the toy
given by the mother in the control condition of Chen et al. (2000), the agents were
given the goal to retrieve the toy, and could choose either the hand or tool strategy to
reach this goal. We thus assumed here that the goal of our agents in this test phase
is the one decided by the experimenter, in order to focus on the strategy selection
mechanism. However, as we discussed in chapter 3, it seems that in such tool-use
experiments children are choosing their own goals that may often be different from
the goal expected and made salient by the experimenter. We leave for future work
the study of other possibilities to model the interaction between the encouragements
to retrieve the toy (the extrinsic goal) and self-generated goals such as exploring the
hand, the tool and the toy in many ways. To this end, it would be interesting to
reproduce more closely the setup of Chen et al. (2000) as they placed several tools
with different properties on the playground (sticks, rattles, hooks, etc), yielding on
one hand different possible interactions with the toy and thus different potential
learning progresses to control the toy with the tool, and on the other hand offering
many potential alternative goals.

4.3 General Discussion

In the previous chapter, we found that in typical tool-use tasks infants could be
choosing their own alternative goals and strategies different from the ones expected
by the experimenter, which could interfere with the task results. Intrinsic motivations
could have an important role in the development of tool use, however the details of
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its mechanisms and its interaction with other forms of motivations remain unknown.
In the present chapter, we used a computational modeling approach to investigate
the mechanisms of tool-use development in infants. Indeed, the implementation of
intrinsic motivations in artificial agents embodied in a robotic environment allows to
evaluate the behaviors emerging from the interaction of the agent and its environment,
and to study different hypotheses on the mechanisms of the learning of tool-use skills.

We extended previous models of intrinsically motivated learning to tool-use
environments where the agents have to learn sensorimotor skills from scratch and
discover that some objects can be used as tools to act on other objects. We first
demonstrated that a modular environment representation corresponding to the tool-
use objects is a determining factor for the emergence of structured behavioral phases
in our simple tool-use setup. In our model, the active exploration of the environment
with intrinsic motivations reinforced this emergence and is essential to efficiently learn
in this tool-use environment. In a second experiment, we studied the evolution of
strategy preferences in curiosity-driven artificial agents in a tool-use setup similar
to one of the experiment of Chen et al. (2000). We showed that a choice of strategy
based on learning progress could lead to the overlapping waves pattern observed by
Chen et al. (2000), while it is not considered in Siegler’s models of overlapping waves.

However, this modeling work has several shortcomings and limitations. First,
young infants need to adapt to the maturation of their vision and to a developing
body, while in those experiments we assume that the agent already has a good visual
perception in that we provide it the position and trajectory of all objects in the
scene. In a follow-up work, we study the possibility of learning a representation of
the scene directly from pixels (see Appendix B). However, from a cognitive point of
view regarding human tool-use learning, it is reasonable to suppose that the brain
has sufficient knowledge about the concept of objects and their properties at the
time of understanding object interactions and tool use, and it makes sense to build
upon those representations in order to model tool-use learning (Lake et al., 2016).
The modular representation we give to the learning agent thus seems natural as each
sensory sub-space corresponds to the behavior of one object in the scene. Here, we
further provide the structure of the sensorimotor hierarchy to the agent as a prior. The
question of the autonomous learning of such a sensorimotor hierarchy is an important
one but is left for future work. In chapter 8, we show that representing the objects in
the tool-use environment as a hierarchy of means-end mappings is not a requirement
for the emergence of tool-use behaviors, but exploring a modular set of mappings from
primitive motor actions to each object is sufficient for developing tool-use behaviors.
Similarly, in chapter 5, our agents learn to produce several words through vocal
babbling and imitation, with no predefined hierarchy of sensorimotor mappings. A
hierarchical representation together with planning and action sequencing abilities
might still be necessary for the refinement of those skills, however the development
of simple tool-use skills seems to be possible with this intrinsically motivated goal
exploration.
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In our work, the simulated robotic body is assumed constant over development.
Previous work has shown that intrinsic motivations could be combined with matura-
tional constraints to control the growth of complexity in motor development and thus
scaffold learning (Baranes and Oudeyer, 2010b). A similar myelination process could
be integrated in our framework with an initial limitation of the accuracy of motor
control and of the capacity to discriminate objects, and a release of degrees of freedom
following a proximo-distal direction. Another limitation of our setup is the fact that
the robot and its interaction with tools and toys are all simulated. The dynamics
of a real robotic arm and of its interaction with objects is certainly more complex
than our simulation, with inaccuracies in the angular position of real motors, play
in the mechanical parts, sensitivity to gravity and unpredictable collisions between
objects, so that producing several times the same motor command do not yield the
same results. In chapter 8, we show that an intrinsic motivations pushing the robot
to explore objects for which it is making the most learning progress offers similar
benefits in a real complex tool-use robotic setup compared to simulations.

Social guidance enables many pathways for learning in infancy, such as providing
reinforcement or input for imitation and mimicry, or attracting the attention towards
useful targets (see Background). Those mechanisms are of central importance for the
sensorimotor development and in particular for tool use, but we do not address the
question of its modeling in this work nor of the interplay between social guidance
and self-exploration. For instance, the exploratory behaviors of babies are perturbed
when social guidance is given. In the hint and modeling conditions of Chen et al.
(2000), the experimenter respectively suggests to use the target tool or actively shows
how to retrieve the toy with the tool. The strategic variability is much lower in
those conditions, e.g. the 2.5-year-olds used other strategies than the tool one in
only 4% of the trials after the first time they use it. We interpret this decrease in
variability as the result of the incentive given by the experimenter, supposed to focus
attention towards the target tool and to trigger the tool strategy. In our model, the
hint condition could be integrated as a social bias to select the tool strategy. Also,
the demonstration provided by the experimenter in the modeling condition could be
added to the sensorimotor models as examples to reach the toy given the trajectory
of the tool and the hand, the agent only having to find motor parameters to realize
the hand trajectory (to solve the correspondence problem).

In the two experiments presented in this chapter, we implemented and compared
several intrinsic motivations algorithms, with variants on the measure on which the
preference is based or on the type of decision. In babies, several strategy selection
mechanisms (e.g. based on competence or competence progress, with a greedy or
exploratory selection) could be available across all situations, and they could switch
between them or combine them depending on the estimated interest of exploration,
the desire to actually get the toy, or social cues as the mother or experimenter
incentive in Chen et al. (2000). A more sophisticated model can thus be envisioned,
but to evaluate the matching between more complex models and actual infant data,
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we would need a more in-depth confrontation of the models and the available data.
Indeed, in our studies, in the end we only loosely reproduced some aspects of infant
studies by accounting for abstract structures in child development such as the high-
level structure of the evolution of behaviors across sensorimotor development and
in tool-use sessions. In order to discriminate more complete models, we would in
any manner need more accurate and high-density data in sensorimotor interactions.
For instance, the success rates in trials as reported by Chen et al. (2000) would
not be enough to discriminate the real-time mechanisms of several possible models.
Recent infant studies have made efforts in this direction. In DiMercurio et al. (2018),
fine-grained measurements of the movements of each limb of babies are recorded in
short sessions across their first 2 months. In Bambach et al. (2018), head-mounted
eye trackers allow to record the scene as viewed through the eyes of a baby in real
time. The high-density data gathered with those kinds of setups could fuel future
modeling efforts.

Although mechanisms such as sequential learning, causal inference or action
observation are known to be important in child development, we suggest that intrinsic
motivations should be considered as one of them, but has comparatively little been
studied so far. The understanding and modeling of intrinsically-motivated exploration
in child experiments and of its impact in child development still offer many challenges:
How to model intrinsically-motivated exploration behaviors ? Are children using
several motivational mechanisms at the same time and depending on the learning
context ? What features of the environment could be part of a context that influence
exploration and learning ? How does each type of social interaction impact intrinsic
motivations processes ? How do the intrinsic motivations interplay with extrinsic
motivations and basic drives in children and how could their interaction be modeled
in robots ? Do the properties of intrinsic motivations change with development along
a maturational clock ?

In the next chapter, we study the joint development of speech and tool use by
intrinsically motivated agents embodied in a naturalistic simulated learning scenario,
where the learning of speech production is grounded in the physical environment.



Chapter 5

A Unified Model of Speech and
Tool-Use Early Development

Summary
Several studies hypothesize a strong interdependence between speech and tool-use de-
velopment in the first two years of life. To help understand the underlying mechanisms,
we present the first robotic model learning both speech and tool use from scratch.
It focuses on the role of one important form of body babbling where exploration is
directed towards self-generated goals in free play, combined with imitation learning of
a contingent caregiver. This model does not assume capabilities for complex action
sequencing and combinatorial planning which are often considered necessary for tool
use. Yet, we show that the mechanisms in this model allow a learner to progressively
discover how to grab objects with the hand, how to use objects as tools to reach further
objects, how to produce vocal sounds, and how to leverage these vocal sounds to use
a caregiver as a social tool to retrieve objects. Also, the discovery that certain sounds
can be used as a social tool further guides vocal learning. This model predicts that
the grounded exploration of objects in a social interaction scenario should accelerate
infant vocal learning of sounds to name these objects as a result of a goal-directed
exploration of objects (Forestier and Oudeyer, 2017).
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Several studies hypothesize that there might be a strong interdependence between
speech and tool-use development in the first two years of life (Gibson et al., 1994;
Greenfield, 1991). Tool use and language seems to require similar information process-
ing capabilities allowing the production and perception of sequential combinations of
increasing complexity, from reaching to spoon self-feeding and from words to stories.
In addition to displaying similar compositional properties, speech and tool use might
share some neural correlates involving Broca’s area (Higuchi et al., 2009). Those
common neural correlates could have an evolutionary origin in the hominid lineage,
where a selection pressure for complex tool use, language and social behaviors might
have together driven the increase in brain planning capabilities (Morgan et al., 2015),
see Background. In particular, the development of tool-use precursors follows several
overlapping phases of behaviors: 1) body babbling, where babies learn to control
their body parts, 2) interacting with a single object, and 3) exploring object-object
interactions (Guerin et al., 2013). From pointing movements to the control of a rake,
new representations and physical understanding are developed to allow the planning
of tool-use actions composed of combinations of more simple actions, e.g. grasping
the rake. During the same period, infants progressively learn how to efficiently use
their vocal tract, comprising many complex actuators from the larynx to the lips. At
birth, they produce immature protophones like squeals, growls or quasi-vowels, and
by the end of their first year they are able to produce the speech-like syllables of their
native language (Oller, 2000). Those syllables then form words which become the
basis of syntactic combinations essential to language expressiveness. Infants do not
only explore tool use and vocalizations by themselves, driven by intrinsic motivations
(Moulin-Frier et al., 2013), but also spend a great part of their time interacting with
their parents and other social peers, where imitation is thought to be one of the
important developmental pathways (Meltzoff and Warhol, 1999). For instance, infants
imitate the vowels produced by an adult speaker by 6 month of age (Kuhl, 2004),
and 1.5-year olds imitate demonstrations of a rake-like tool function to retrieve an
out-of-reach toy (Chen et al., 2000).

In order to investigate hypotheses about the joint ontogenetic development of
speech and tool use, we seek to build an embodied model of tool use and speech
learning. Existing robotic models of tool use showed first insights into how relations
between tools and other objects could be learned from grounded experimentation. In
Stoytchev (2005), a robotic arm focused on learning rake-like tool affordances from
the exploration of already implemented stereotyped arm behaviors. In Tikhanoff et al.
(2013), the iCub robot was given its arm’s forward model and inverse optimization
methods which led to stereotyped grasping. In the previous chapter, we designed a
series of robotic models considering the learning of tool use from scratch, without
any kind of pre-programmed reaching skills, through the intrinsically-motivated
exploration of a tool-use environment by embodied agents (Forestier and Oudeyer,
2016a,c). We studied the developmental progression between phases of behaviors
with objects and tools and the evolution of their strategies to reach goals, depending
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on the implementation of goal-directed exploration and on the type of representation
of the environment. We have shown that those models could reproduce aspects of the
observation of infant development, in terms of developmental trajectories and strategy
choice dynamics. In chapters 6, 7 and 8, we present, formalize and evaluate a related
intrinsically motivated algorithmic architecture called Model Babbling (Forestier and
Oudeyer, 2016b), with the difference that the sensorimotor representation has no
pre-defined hierarchical structure, only a modular representation based on the objects
of the environment. We show that the intrinsic motivations operating on this modular
representation allows the development of tool-use skills, in simulated and in real
robotic environments.

Recent computational models of vocal development make use of a simulated vocal
synthesizer that the learning agent must control in order to produce vocalizations,
with human sounds as targets to be imitated (Philippsen et al., 2014; Warlaumont
et al., 2013). The DIVA model (Guenther, 2006) is a neural network simulating
the cortical interactions producing syllables, that provides an account of different
production phenomena, such as co-articulations. In a neural network model of
motor prespeech production with self-organizing maps (Warlaumont et al., 2013), a
reinforcement based on the similarity of the model’s output sounds with a given set
of vowels biases the post-learning model’s babbling sounds towards that reinforced
set of vowels. The Elija model (Howard and Messum, 2011) uses an articulatory
synthesizer to produce sounds, and gets a reward for the exploration of its vocal
outputs. The model also interacts with a caregiver that imitates its sounds like a
mother would do: either mimicking the infant’s sounds or providing an intermediate
sound between the infant’s one and the adult one. The agent manages to learn object
names by trying to reproduce caregiver’s utterances. The agent of Philippsen et al.
(2014) uses a recurrent neural network to learn the forward and inverse model of the
VocalTractLab speech synthesizer. Their learning algorithm allows an efficient use of
human supervision in the form of few examples of consonant-vowel sequences to be
imitated. In Moulin-Frier et al. (2013), the agent chooses the strategy that shows the
best competence progress: either autonomously training to reach phonetic goals, or
trying to imitate human sounds. They show that the intrinsic motivation for learning
progress self-organizes coherent infant-like developmental sequences. Those models of
language acquisition study several developmental pathways to the learning of forward
and inverse models of a simulated vocal tract, from autonomous exploration to human
sounds imitation. However, agents are not situated into a physical environment where
vocalizations have a meaning related to physical objects that can be interacted with.

Several works study joint action and language learning, but give an advanced
knowledge of the linguistic interaction protocol to the learning agent who has to
associate predefined actions or objects to predefined labels and learn the semantic
compositionality (Billard, 1999; Cangelosi et al., 2010; Roy, 2002). In Sugita and Tani
(2005), a wheeled robot with an arm learns to associate lexical symbols to behavioral
categories through supervised learning (point, push, or hit the red, blue, green, left,
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center, or right object). Dominey et al. (2009) designed a robot-human interaction
scenario where the HRP-2 humanoid robot is able to understand the meaning of new
linguistic instructions (such as ”Give me X”) by grounding them with preexisting
motor skills. In Massera et al. (2010), a simulated robotic arm controlled by a neural
network manipulates objects on a table, with linguistic instructions as input in the
form of three values that represent the type of behavior that the robot should exhibit.
In Tikhanoff et al. (2010), a simulated iCub is given a speech understanding module, a
vision module, and a dataset of speech instructions, visual objects and corresponding
expected actions, and has to learn the actions to perform depending on the instruction
and the object in the scene. To our knowledge, there is no robotic model able to
learn to produce words that have a meaning in a physical environment starting from
scratch through the exploration of a vocal synthesizer and possibly in interaction
with a peer.

In this chapter we describe a first model that jointly considers the early devel-
opment of both tool use and speech. Such a model could allow the investigation of
hypotheses about the mechanisms underlying the observed links between tool use and
speech development. We build upon the Model Babbling architecture (Forestier and
Oudeyer, 2016b) that leverages several fundamental ideas. First, goal babbling is a
powerful form of exploration to produce a diversity of effects by self-generating goals
in a task space (Baranes and Oudeyer, 2013). Second, the possible movements of
each object define task spaces in which to choose goals, and the different task spaces
form an object-based representation that facilitates prediction and generalization, as
explained by Chang et al. (2016). A novel insight of this series of architectures was
that early development of tool use could take place without requiring combinatorial
sequencing and action planning mechanisms: modular goal babbling in itself allowed
the emergence of nested tool-use behaviors. Here we extend this architecture so that
the agent can imitate caregiver’s sounds in addition to autonomously exploring. We
hypothesize that these same algorithmic ingredients allow a unified development of
speech and tool use from scratch. To study the joint development of speech and tool
use, we situate our learning agent in a simulated environment where a vocal tract
and a robotic arm are to be explored with the help of a caregiver in a naturalistic
learning scenario. The environment is composed of three toys, one stick that can be
used as a tool to move toys, and a caregiver moving around. The caregiver helps in
two ways. If the agent touches a toy, the caregiver produces this toy’s name, but
otherwise produces a distractor word as if it was talking to another adult. If the
agent produces a sound close to a toy’s name, the caregiver moves this toy within
agent reach.

Our results show that Model Babbling allows agents to learn how to 1) use the
robotic arm to grab a toy or a stick, 2) use the stick as a tool to get a toy, 3) learn to
produce toy names with the vocal tract, 4) use these vocal skills to get the caregiver to
bring a specific toy within reach, and 5) choose the most relevant of those strategies to
retrieve a toy that can be out-of-reach. In this experiment, the grounded exploration
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of toys accelerates the learning of the production of accurate sounds for toy names
once the caregiver is able to recognize them and react by bringing them within reach,
compared to distractor sounds without any meaning in the environment. This is a
first model allowing the study of the early development of tool use and speech in a
unified framework.

5.1 Methods: a Grounded Play Scenario
with a Caregiver

5.1.1 Learning Environment

The learning environment1 is composed of a simulated 2D robotic arm and a simulated
vocal tract that the agent controls to interact with a caregiver and toys. In each
trial, the agent observes the current environmental state and then executes a motor
trajectory, either corresponding to moving the motors of the arm or of the vocal tract,
and gets the associated sensory feedback composed of the trajectory of each object
and the sound produced by the agent or the caregiver (see Fig.5.1).

Simulated Robotic Arm

The simulated 2D robotic arm has 3 joints, with its base fixed at position r0, 0s. Each
joint rotates from ´π rad to π rad and the 3 segments of the arm have length 0.25,
0.15 and 0.1, so the arm has length 0.5. The framework of Dynamical Movement
Primitives (Ijspeert et al., 2013) is used to generate smooth joint trajectories from
motor parameters. Each of the 3 joints is controlled by a DMP starting at the rest
position of the joint (position 0) and parameterized by 7 weights: one weight on
each of 6 basis functions and one weight representing the end position of the joint
trajectory. To sum up, the agent provides a set of 21 trajectory parameters which are
translated through DMPs to a set of smooth 50-steps trajectories for the arm’s joints
which gives a smooth 2D trajectory to the robotic hand.

Tool and Toys

In the environment of the robotic arm, 3 toys can be grasped with the hand or with
the help of a stick. The stick has length 0.25 and is considered grasped as soon as
the hand reaches the handle side (orange) within a distance of 0.1. At the end of the
movement the stick is dropped and stays at its current position while the arm is reset
to its rest position for the next iteration. The toys are reset to a random location

1Source code and notebooks available as a GitHub repository at https://github.com/
sebastien-forestier/CogSci2017

https://github.com/sebastien-forestier/CogSci2017
https://github.com/sebastien-forestier/CogSci2017
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Figure 5.1: Agent’s 3 DOF arm, controlled with 21 parameters, grabs toys with its
hand, or uses the stick to reach toys. Caregiver brings a toy within reach if the agent
says its name. When agent touches a toy, caregiver says toy’s name.

every 20 iterations, at a distance between 0 and 1 from the center so possibly at an
unreachable position.

Simulated Vocal tract

A vocal tract is simulated through the DIVA model (Guenther, 2006) and allows the
production of different sounds that we can classify into vowels. In the DIVA model, a
set of parameters defines a vocal tract contour where each represents one component of
a Principal Component Analysis of midsagittal MRI vocal tract profiles (see Fig.5.1b),
from the jaw and tongue to the lips position. Here we use only the first 7 articulatory
parameters, controlling most of the vocal tract shape’s variability. From a vocal tract
contour defined by a set of parameters, the DIVA software computes the corresponding
sound and outputs its first 2 formants, which are often considered to give enough
information to distinguish common English vowels. The DMP framework generates
smooth trajectories of vocal parameters, as described above for arm parameters, to
allow the simulated vocal tract to produce simple words composed of several vowels.
Each of the 7 articulators is controlled by a DMP parameterized by 4 weights: the
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Figure 5.2: Agent’s vocal environment representing sounds as trajectories in the
two first formants space. Agent’s simulated vocal tract produces sounds given 28
parameters. When agent touches a toy, caregiver says toy’s name. Some sounds
corresponding to random parameters are plotted in red, and some sounds produced
when imitating caregiver’s /uye/ word in blue (best imitation in bold, error 0.3).

starting and end position of the parameter trajectory, and weights on 2 basis functions.
Given a set of 28 trajectory parameters provided by a learning agent, the DMPs
output a set of smooth 50-steps trajectories for the 7 articulators that we use in the
DIVA model, which through the DIVA software generates a smooth trajectory of the
first two formants (called F1 and F2).

Sounds: from Vowels to Words

The simulated vocal tract controlled through DMPs has the potential to produce
words composed of a sequence of 3 vowels in the set {/o/, /u/, /i/, /e/, /y/}. See Fig.
5.1 (b), ”Motor babbling” condition, for an example of 200 trajectories corresponding
to random sets of 28 parameters. We define a set of 6 words that the caregiver
produces perfectly: {/yeo/, /euy/, /iuo/, /uye/, /eou/, /oey/}. A sound trajectory
produced by the vocal tract is recognized if its distance to the perfect word is lower
than 0.4.
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Caregiver’s guidance

A simulated caregiver is given two roles to help the learning agent. First, at the
beginning of the experiment, the caregiver chooses randomly a label for each toy
from the set of 6 words. When the agent touches a particular toy with its hand,
the caregiver then produces the sound trajectory corresponding to the label of this
toy. If the agent does not touch any toy with the arm, the caregiver produces one of
the distractor sounds, as if she was talking to another adult. Second, if the agent
produces a sound trajectory recognized by the caregiver as the label of a toy, the
caregiver moves the corresponding toy in between herself and the agent so that it
becomes reachable by the agent with the hand. The caregiver is reset to a random
position at each iteration.

Sensory Feedback

Before choosing a motor command, the agent receives the state of the environment
(or context) as the 2D position of the caregiver, the stick and the 3 toys (so 10D).
At the end of the movement, the agent receives a sensory feedback s in the sensory
space S (60D), from the different objects in the environment. First, the trajectory of
the hand is represented as its x and y positions at 5 time points: steps 1, 13, 25, 38,
50 of the 50-steps trajectory (SHand, 10D). Similarly, the trajectories of the stick and
the 3 toys during the movement are represented in 10 dimensional sensory spaces
(SStick, SToy1 , SToy2 , SToy3 , 10D each). Sound, either produced by the agent or by the
caregiver, is represented by the position of the first two formants at 5 time points
(SSound, 10D).

5.1.2 Unified Modular Learning Architecture

The goal of a learning agent is to use its robotic arm and vocal tract to discover
a diversity of sensory effects, and collect data to learn repertoires of skills in the
form of inverse models allowing to reproduce these effects. Consequently, the agent
is not given a priori a single target task to be solved, but a modular object-based
representation of task spaces. The agent learns a set of sensorimotor models mapping
a motor space to one particular sensory space (see Fig. 5.3). For instance, model
1 learns to move the hand from arm parameters, model 2 learns to move the stick,
model 3, 4, and 5 learn to move one of the toys, and model 6 how to produce sounds
with the arm, which will be possible by touching one of the toys with the hand so
that the caregiver produces the corresponding label. Controlling vocal tract, model 7,
8 and 9 learn to move one of the toys by involving caregiver’s help, and model 10
learns to produce diverse sounds autonomously.
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Figure 5.3: Learning Architecture. Agent controls 2 motor spaces and receives sensory
feedback about 6 objects. Each arrow represents one of the 10 sensorimotor models
learned.

Exploration through Model Babbling

In order to actively explore and learn the 10 sensorimotor models from experimentation
with the environment, learning agents use the Model Babbling architecture developed
in Forestier and Oudeyer (2016b) that we extend to handle the 2 motor spaces: the
robotic arm and the vocal tract. First, the agent performs some random exploration
of motor spaces, 500 with the robotic arm and 500 with the vocal tract, to get an
initial sampling of those spaces. Then, at each iteration, the learning agent first
chooses to train one of the 10 models, chosen randomly (e.g. from the robotic arm to
the hand sensory space). A particular goal is then randomly chosen in the sensory
space corresponding to the chosen model (e.g. a particular 2D trajectory of the hand).
The agent then uses the corresponding inverse model to infer a motor command in
the corresponding motor space (e.g. arm parameters) to reach the goal. Exploration
happens in goal choice and in the new motor parameters that inverse models infer
with generalization mechanisms and adding exploration noise.

Imitation of Sounds

When the agent is choosing to train to produce sounds with its vocal tract (model 10),
instead of always choosing random goals, it does this for half of the iterations (chosen
randomly), and the other iterations are focused on trying to imitate the caregiver, by
randomly choosing one of the sounds previously produced by the caregiver as a goal.



122 Chapter 5. A Unified Model of Speech and Tool-Use Early . . .

Forward and Inverse Models

Each sensorimotor model provides a forward model and an inverse model, with the
same implementation as in Forestier and Oudeyer (2016b). The forward model
predicts which sensory trajectory would be observed given the current context and a
motor command to execute. The inverse model infers a motor command that could
reach a desired goal given the current context. When a motor command m is executed
(either 21 parameters for the robotic arm or 28 for the vocal tract) in a context c and
a sensory feedback s is received in S, all the sensorimotor models that share the same
motor space are updated. New information comes as a tuple (m, ci, si) with si being
a subset of s variables corresponding to the respective sensory space, and ci being
the subset of c relevant for this sensorimotor model. The relevant context for models
1 and 10 is empty, which means that hand trajectories and vocal sounds produced
by the agent do not depend on the current position of other objects. The context
for model 2 is the position of the stick, and for models 3, 4, and 5, the position of
the stick and of the corresponding toy. For model 6, all toys are relevant, and for
models 7, 8 and 9, the caregiver and the toy is useful. Given a database of (m, ci, si)
experiments, an inverse model infers a probable motor command m to reach a goal
sg in a context ci by looking for the nearest neighbor sNN in Si of sg and retrieving
the associated motor parameters mNN that were used to reach sNN . It then outputs
mNN plus Gaussian noise (σ “ 0.05) to explore new parameters.

5.2 Results: Learning Tools and Words
We ran 500 independent trials of 80000 iterations (or robot experiment) each. We
measured how agents learned to move objects by giving them new goals in new
contexts, and we analyzed the accuracy of the learned vocalizations.

5.2.1 Competence to Reach Toys
After 80000 iterations of training, we measured the performance of each agent to
retrieve a toy depending on its current position with its preferred method: with the
hand, with the stick used as a tool or involving caregiver’s help. Fig. 5.4 shows the
mean competence of all agents to retrieve toys depending on the current position of
the toys. The competence error to retrieve a toy is measured by the distance between
a goal trajectory given to the agent, where the toy is moved towards the center, and
the actual trajectory that the agent succeeds to give to the toy. The agent chooses
the strategy expected by its inverse models to best reach the goal trajectory for the
toy given the current context (position of the stick, toys and caregiver) and its past
experience of 80000 iterations.

In most toy locations, the normalized competence of learning agents is significantly
better (46% on average) than the normalized competence of a random agent (0%).
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Our learning architecture thus allows to successfully reach new goals in multiple
sensory spaces with multiple available strategies. Local variations reflects differences
in strategy preferences and performances. For instance, where the hand cannot
reach for the toy anymore, the agent still thinks this is a good strategy as it worked
in a similar context (before the limit), but the hand strategy leads there to a bad
performance. More training would refine the inverse models and the choice of strategy.

−1.0 −0.5 0.0 0.5 1.0
X

−1.0

−0.5

0.0

0.5

1.0

Y

0%

20%

40%

60%

80%

100%
Stick limit

Hand limit

Figure 5.4: Competence after 80000 iterations. 0% means that competence to retrieve
a toy there is as bad as with random agents, 100% says that agents perfectly retrieve
a toy there.

5.2.2 Three Strategies to Reach Toys
Fig. 5.5 shows the preference for the hand, tool and vocal strategies to retrieve a toy
depending on the distance of the toy. In the center region, where agents can retrieve
toys with all three strategies, agents choose most often the hand strategy (around
65% of the trials) and less the other two (around 15% to 20% each). In the second
region, unreachable with the hand, this strategy is still used around 50% of the trials,
and the two other between 20% and 30%. In the last region where the only useful
strategy is to say the name of the toy so that the caregiver brings it closer, the vocal
strategy is used more often: at distance 1 from center, it is used in 49% of trials,
hand strategy in 38%, and tool strategy in 13%.
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Figure 5.5: Strategy preferences depending on the distance of the toy. The two
vertical bars shows the hand and stick limits.

5.2.3 Vocal Learning with Caregiver’s Feedback

The agents learn to produce vocalizations both with goal babbling and imitation
of the caregivers’ sounds. For each agent, three of caregiver’s sounds (randomly
selected) are toy names and the three others are distractors: sounds that have no
special meaning for the agent. We measure errors to reproduce caregiver’s sounds as
the distance between the sound trajectory produced by the caregiver and the best
imitation of the agent. We group the results into two categories: errors of sounds
that serve as toy names and as distractors. From the 500 runs we could retrieve error
data for 1482 toy names and 1482 distractors. Fig. 5.6 shows the distribution of
errors after 80000 iterations. First, 88% of sounds have an error lower than 0.4, and
thus are successful imitations. Second, the median error for toy names is 0.23 and for
distractors is 0.30. Imitations of toy names are more accurate than of distractors: a
Mann-Whitney U test gives p ă 10´72. Errors distribution above 0.4 is similar for
the two categories, but few toy name sounds have an error just below 0.4 compared
to distractors: their distribution is shifted towards smaller errors.
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Figure 5.6: Distribution of accuracy of imitations of caregivers’ sounds after 80000
iterations. Below 0.4 vocal error, sounds are recognized as imitations by the caregiver.
Imitations of toy names are more accurate than imitations of distractors.

5.3 Discussion

The results of this study show that agents learned to 1) use the robotic arm to grab
a toy or a stick, 2) use the stick as a tool to get a toy, 3) produce toy names with
the vocal tract, 4) use these vocal skills to get the caregiver to bring a specific toy
within reach, and 5) choose the most relevant of those strategies to retrieve a toy, for
instance preferring to use caregiver’s help when the toy is out-of-reach. Interestingly,
learning the production of accurate sounds for toy names was faster than for distractor
sounds. Indeed, once the agent succeeded to produce a toy’s name close enough so
that the caregiver could recognize it and react by pushing the toy towards the agent,
the agent started to learn how to use the vocalizations to retrieve that toy through
the caregiver, which improved vocalizations for that name. In our model, grounding
the vocal interaction between the learner and the caregiver in a play scenario thus
accelerated the learning of toys’ names production.

From those results we suggest the following hypothesis: infant’s play with objects
in a grounded interaction scenario with a caregiver can accelerate the learning of the
vocal production of these objects’ name as a result of a goal-directed exploration of the
objects. This hypothesis is consistent with experimental data from infant development
research. Clerkin et al. (2017) showed that the objects that are frequent in the visual
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2 month-old infants are also the objects for which infants acquire
the name early. They explain that the particular distribution of object frequency in
visual field can help linking the heard label to the good object in a scenario where the
caregiver says the name of an object. This data is also consistent with our hypothesis:
the most frequent objects in the visual field are the ones that the infant will most
often choose goals for, and will trigger caregiver’s help when needed by trying to
vocalize those toys’ names. Infants could thus receive more vocal feedback for those
words and learn to produce them earlier. This view also fits with recent data about
the body-object interaction measure. In Thill and Twomey (2016), the authors used
a measure of the extent to which adults could easily interact with a named item and
show that it better predicts the age of acquisition of the name of an item than its
concreteness or imageability. In other words, the easier the interaction with an object
is to the adult, the sooner its name will be acquired by the infant. The caregiver
provides vocal input to the learner, but also provides nonvocal feedback that can
help with vocal learning. Indeed, Goldstein et al. (2003) provided evidence that a
nonvocal feedback mechanism such as reacting to infant’s vocalizations by smiling
or touching the infant can shape vocal babbling in real time. Also, a longitudinal
study of infant-caregiver interaction Gros-Louis et al. (2014) shows that in a free play
scenario, maternal responsiveness to object-directed child vocalizations increases with
age from 8 to 14 month-old. In our experiments, the caregiver responds to words
that seem close to a toy name by giving the corresponding toy to the agent, and this
behavior increases with age as the accuracy of agent’s vocalizations increases. Such a
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mechanism could also be an important pathways to infant vocal development.
In Forestier and Oudeyer (2016a,c), we studied a tool-use learning agent with a

hierarchical sensorimotor architecture, and showed that this architecture improved
learning compared to learning one single sensorimotor model combining all sensory
spaces. An intrinsic motivation to explore sensorimotor models with high learning
progress further increased learning, resulting in developmental trajectories dynamics
similar to infant development. In our present study, we implemented a modular
architecture of sensorimotor models explored through a goal-babbling procedure.
Agents were not given any initial teleological understanding of speech or tool use, nor
any hierarchically-organized action sequencing mechanisms. Still, the unified Model
Babbling architecture allowed the emergence of behaviors displaying a nested tool-use
structure. Those behaviors include reusing movements of the hand to move the stick
and movements of the stick to move a toy, or reusing sound trajectories produced
with the simulated vocal tract to trigger the help from the caregiver such that she
brings the toy within reach. This result suggests that observing infants using tools
or asking for help with toys should not necessarily be interpreted as a correlate of
capabilities for complex sequencing and planning of actions.

It should be noted that for the agents in our model, involving the caregiver to
move toys through vocalizations is a strategy with no special status with respect to
the other strategies. This social interaction emerges from the same drive to refine
sensorimotor models through goal babbling as in the learning of stick movements to
move the toy. The production of sounds that can be understood by the caregiver as
toy names to make it react and help can thus be interpreted as an emergent form of
social tool use. Words have been considered as social tools in a perspective proposed
by (Borghi et al., 2013) combining the embodied-grounded view of cognition where the
cognitive processes are seen as constrained by the body, and the extended mind view,
allowing the mind to encompass the brain, the body and external devices. The active
use of physical tools have been shown to change the representation of space (Iriki
et al., 1996; Osiurak et al., 2012). In Borghi et al. (2013), they review experimental
evidence showing that the reaching space of a subject can be extended after the use
of words, in a setup where an object could be reached with several strategies: with
the hand, with a tool, or through the use of a word which triggers an action from
another person.

Our model of speech and tool-use development has several limitations. The
manual and vocal input from our simulated caregiver is limited compared to a real
infant-caregiver interaction scenario. For instance, the vocal input is one of the
three toy’s name or three distractor words, and each given word is produced without
variability, while infant-directed speech shows a high variability in pitch and formants
(Fernald et al., 1989; Kuhl et al., 1997). Infants can learn new vocal forms from the
diversity of vocalizations in their mother’s contingent speech, while mimicking only do
not allow it Goldstein and Schwade (2008). We were also limited to the production of
vowels as we could not produce consonants with the DIVA vocal synthesizer and our



128 Chapter 5. A Unified Model of Speech and Tool-Use Early . . .

representation of the vocal sounds with formants do not discriminate consonants. A
more accurate model of a vocal tract could be used together with a higher-dimensional
representation of vocal sounds such as MFCCs could be used to produce consonants
and CV or VCV clusters as has been done in Philippsen (2018). Also, we did not
integrate demonstrations of the use and function of tools by a caregiver which is one
of the important pathway to learn tool use (Chen et al., 2000).

In our model, the learner imitates the caregiver by randomly choosing any of the
previous words produced by the caregiver, including toy names and distractor words.
However, the memory and attention of infants are limited, so infants may imitate
only the most frequent words or the words produced with infant-directed speech.
Also, if the caregiver is not perfectly contingent and reacts to the infant’s utterance
or action only after a delay or after saying other words to other peers or sometimes
do not even react, it might be hard for the infant to link its actions to the answers
of the caregiver and understand the contingencies. In our model, those effects could
be studied by implementing a limited memory and an attentional mechanism in the
agent’s cognitive processes. With those mechanisms, the interactive learning scenario
could reinforce even more the learning of the toys’ names as the learner, by playing
with a toy would trigger caregiver’s vocal utterances, which could then be imitated
more often than other words as the play interaction with the object and the caregiver
settles.

In the Model Babbling architecture implemented in this chapter, we used a simple
form of intrinsic motivations where the learning agent explores all sensory spaces,
irrespective of its learning progress in each space which is sometimes called Random
Model Babbling, and similarly all goals in a particular sensory space, which is called
Random Goal Babbling. More sophisticated forms of intrinsic motivations could
be implemented as in the MACOB algorithm defined in the next chapter (Forestier
and Oudeyer, 2016b), by monitoring the progress made to learn each goal and/or
each space of goal. This monitoring of learning progress could help focus exploration
towards the regions or objects (physical or sounds) on which the agent is making the
most progress, and on the long term organize a developmental trajectory tailored to
its learning experience.

Finally, we transposed this experiment in a real robotic setup as the topic of
internship of Rémy Portelas. Here, the vocal tract is still simulated with the DIVA
synthesizer, but the learning agent is embodied in a Poppy Torso robot. It is mounted
in front of a playground containing one toy, and the Baxter robot (the caregiver)
reacts to the Torso robot’s actions and sounds in the same way as in the simulated
experiment (see Figure 5.8). The caregiver produces the name of the toy when the
learner touches the toy, and replaces the toy within reach of the learner when he
produces a sound close enough to the toy’s name. Preliminary results shows that
the physical Torso robot can learn how to produce the name of the toy through
autonomous exploration of the physical scene and vocal sounds together with the
imitation of its real caregiver.
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Figure 5.8: The Poppy Torso robot (left) learns to move its arm, control the toy, and
vocalize, in interaction with the Baxter robot (right), its caregiver. The simulated
experiment was transposed to this real robotic setup during the internship of Rémy
Portelas.

To conclude, our unified robotic model of speech and tool use gives a basis for
future research in modeling the manual and vocal interactions between an infant
and its caregiver in a grounded naturalistic scenario. From this study, we derived
experimental predictions that could drive new experiments with infants and allow us
to test and refine the model.





Part II

Intrinsically Motivated
Artificial Intelligence





Chapter 6

Modular Active Curiosity-Driven
Discovery of Tool Use

Summary
In this chapter, we study algorithms used by a learner to explore high-dimensional
structured sensorimotor spaces such as in tool-use environments. In particular, we
consider goal babbling architectures that were designed to explore and learn solutions
to fields of sensorimotor problems, i.e. to acquire inverse models mapping a space of
parameterized sensorimotor effects to a corresponding space of parameterized motor
primitives. However, so far these architectures have not been used in high-dimensional
spaces of effects. Here, we show the limits of existing goal babbling architectures for
efficient exploration in such spaces, and introduce a novel exploration architecture
called Model Babbling (MB). MB exploits efficiently a modular representation of the
space of parameterized effects, and an active version of Model Babbling (MACOB)
further improves learning. These architectures are compared in a simulated exper-
imental setup with an arm that can discover and learn how to move objects using
several tools, embedding structured high-dimensional continuous motor and sensory
spaces (Forestier and Oudeyer, 2016b).
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A major challenge in robotics is to learn sensorimotor models in high-dimensional
continuous motor and perceptual spaces. Of particular interest is the acquisition
of inverse models which map a space of sensorimotor problems to a space of motor
programs that solve them. For example, this could be a robot learning which
movements of the arm and hand can push or throw an object in each of several
target locations, or which arm movements allow to produce which displacements of
several objects potentially interacting with each other, e.g. in the case of tool use.
Specifically, acquiring such repertoires of skills through incremental exploration of the
environment has been argued to be a key target for life-long developmental learning
(Baldassarre and Mirolli, 2013; Cangelosi et al., 2015; Ugur et al., 2015).

To approach this challenge, various works have considered the parameterization
of these motor and problem spaces. For example, motor programs can be encoded
through Dynamical Movement Primitives parameterized by a vector of real numbers
(Stulp et al., 2013). Similarly, it is possible to embed targeted sensorimotor problems
(also called space of effects or task space) in a dual parameterized space such as the
coordinates of the target object location (Baranes and Oudeyer, 2013; Da Silva et al.,
2012; Ude et al., 2010), potentially combined with parameters characterizing the
position of obstacles (Stulp et al., 2013).

This dual parameterization is useful for several reasons. First, given a database
of experiences associating parameters of motor programs to a set of sensorimotor
problems they solve (e.g. the effects they produce), it is possible to use optimization
and regression techniques to infer the parameters of motor programs that solve
new sensorimotor problems which parameters were not encountered during training
(Baranes and Oudeyer, 2013; Da Silva et al., 2012; Kupcsik et al., 2013; Stulp et al.,
2013; Ude et al., 2010). Second, it allows efficient data collection leveraging the
interactions among sensorimotor problems as achieved in goal babbling exploration
(Baranes and Oudeyer, 2013; Fabisch and Metzen, 2014; Rolf et al., 2010) and
other related approaches (Kupcsik et al., 2013): when the learner is searching for
parameters optimizing one sensorimotor problem (typically using policy search or
related stochastic optimization methods (Stulp and Sigaud, 2013)), it will often
discover parameters that are improving other sensorimotor problems - and update
their current best solutions accordingly (Baranes and Oudeyer, 2013).

Next to approaches that have considered finite sets of parameterized problems
(Stulp et al., 2014, 2013), other approaches (Baranes and Oudeyer, 2013; Fabisch and
Metzen, 2014; Kupcsik et al., 2013; Moulin-Frier et al., 2013; Rolf et al., 2010) have
considered the challenge of autonomous exploration and learning of continuous fields
of parameterized problems (e.g. discovering and learning all the feasible displacements
of objects and their motor solutions). Among them, the technique of goal babbling
(Baranes and Oudeyer, 2013; Fabisch and Metzen, 2014; Rolf et al., 2010), which
can be made active (Baranes and Oudeyer, 2013; Fabisch and Metzen, 2014), was
shown to be highly efficient for complex tasks such as learning to throw an object
in all direction with a flexible fishing rod (Nguyen and Oudeyer, 2014), learning
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omnidirectional legged locomotion on slipping surfaces (Baranes and Oudeyer, 2013)
or learning to control a robotic pneumatic elephant trunk (Rolf et al., 2010).

However, to our knowledge, results of goal babbling approaches as well as results
of other approaches to learning inverse models were so far achieved in relatively
low-dimensional spaces of parameterized problems. Furthermore, they were also
experimented in sensorimotor spaces with little structure, and in particular have not
yet been applied to sensorimotor problems involving tool use.

In this chapter, the primary question we address is: Can goal babbling approaches
efficiently drive exploration in high-dimensional structured sensorimotor spaces, such
as in tool-use discovery? As we will show, applying them as they exist does not
allow an efficient exploration of the sensorimotor space. Rather, we will present a
novel algorithmic architecture for exploration, called Model Babbling, that drives
sensorimotor data collection by considering a modular representation of the senso-
rimotor space: instead of considering a flat architecture mapping a motor space to
a single high-dimensional space of effects, it considers a set of submodels mapping
the motor space to various subspaces of the space of effects. When selected, each of
these submodels is explored using the goal babbling approach, and the architecture
leverages the fact that exploring one submodel produces data that can improve other
submodels.

A secondary issue we study is whether active learning methods can improve
the efficiency of this Model Babbling approach. In particular, we present an active
Model Babbling architecture, called Modular Active Curiosity-driven mOdel Babbling
(MACOB), where a measure of empirical learning progress is used by a multi-
armed bandit algorithm to select which model to explore (Baldassarre and Mirolli,
2013; Baranes and Oudeyer, 2013; Fabisch and Metzen, 2014). This curiosity-driven
exploration algorithm can be related to work using intrinsic motivations in the
Reinforcement Learning literature (Baldassarre and Mirolli, 2013; Chentanez et al.,
2005; Schmidhuber, 2010).

The study we present is instantiated in a simulated experimental setup1 with an
arm that can discover and learn how to move objects using two tools with different
properties. Compared to other work that have studied autonomous tool-use learning
(Antunes et al., 2015; Guerin et al., 2013; Stoytchev, 2005; Tikhanoff et al., 2013),
this study is original in that it combines 1) considering the problem of how to
design efficient exploration algorithms rather than how to design efficient exploitation
algorithms that can build compact models from the data collected through exploration;
2) considering a problem of tool-use discovery where tools are objects with initially
no special status with respect to other objects, i.e. the robot does not know they are
“tools”.

1Open-source code, notebooks and videos are available on GitHub at https://github.com/
sebastien-forestier/IROS2016

https://github.com/sebastien-forestier/IROS2016
https://github.com/sebastien-forestier/IROS2016
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6.1 Exploration Architectures

The problem settings for the learning agent is to explore its sensorimotor space and
collect data so as to generate a diversity of effects and that this collected database
of learning exemplars can be used to build inverse models to be able to reproduce
those effects. An agent is described as two independent components: an exploration
algorithm and an exploitation algorithm (see Fig. 6.1). The exploration algorithm
decides at each iteration which motor command m to explore, and gathers a sensory
feedback s to update a database of sensorimotor experiences. We suppose that the
motor space M and the sensory space S are continuous and high-dimensional, and
that a factorization of S as a product of sensory subspaces that represents the items
of the environment can be given to the agent. As detailed below, the exploration
algorithm can make use of the current database of sensorimotor experiences to define
a coarse but fast surrogate inverse model to orient the exploration process. On the
other hand, the exploitation algorithm uses the database built during exploration
to generate a potentially more precise inverse model, i.e. to find motor commands
to reach sensory goals given by the experimenter based on the explored data. The
inverse model of the exploitation algorithm can be built during exploration as an
incremental and asynchronous process, or built at the end of exploration as a batch
process. Next we describe the exploration architectures, the experimental setup and
exploitation architectures.
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Figure 6.1: Agent’s two components: the exploration and exploitation algorithms.

6.1.1 Random Motor Babbling

We first define a control architecture where the agent always chooses random motor
commands to try in the environment (RmB, see Algo. 1).
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Algorithm 1 Random Motor Babbling (RmB)
Require: Motor space M , Sensory space S

1: database Ð VoidDatabasepdimpMq, dimpSqq
2: loop
3: m Ð RandomMotor(M)
4: s Ð Environment(m)
5: Add(database, (m, s))
6: return database

6.1.2 Random Goal Babbling

In the following exploration architectures the agent performs Goal Babbling. With
this method, it self-generates goals in the sensory space and tries to reach them
but adds some exploration noise to its motor commands to discover new effects. To
generate those goals, different strategies have been studied (Baranes and Oudeyer,
2013). It was shown that estimating the learning progress in different regions of
the sensory space and generating the goals where the progress is high leads to fast
learning. However, this cannot be applied in a high-dimensional sensory space as a
learning progress signal could not be efficiently estimated.

Consequently, we use random goal babbling: goals are randomly generated in
the sensory space. This method was nevertheless proven to be highly efficient in
complex sensorimotor spaces (Rolf et al., 2010). To perform goal babbling, the agent
uses a sensorimotor model that learns a mapping between M and S and provide the
inverse inference of a probable motor command m to reach a given sensory goal sg
(see Algo. 2 and 3). The sensorimotor model stores sensorimotor information of the
form (m` η, s) with m` η being the inferred motor parameters to reach the sensory
goal, plus Gaussian exploration noise (of standard deviation σ “ 0.01), and s P S
the associated sensory feedback in a sensorimotor database. Section 6.1.5 explains in
more detail the two different algorithms that will be used to implement inverse models.
We use the Explauto autonomous exploration library (Moulin-Frier et al., 2014) to
implement the sensorimotor models and goal babbling. In our implementation, the
agent first begins by exploring random motor commands to bootstrap the sensorimotor
model until at least 2 distinct sensory points have been reached, and then it starts
goal babbling.
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Algorithm 2 Random Goal Babbling Step
Require: Sensorimotor model sm model

1: sg Ð RandomGoal(S)
2: m Ð Inverse(sm model, sg)
3: η Ð Gaussian(µ “ 0, σ “ 0.01)
4: s Ð Environment(m` η)
5: return (m` η, s)

Algorithm 3 Random Goal Babbling Experiment (Baranes and Oudeyer, 2013)
Require: Motor space M , Sensory space S

1: database Ð VoidDatabasepdimpMq, dimpSqq
2: sm model Ð InitializeSensorimotorModel(M, S)
3: loop
4: (m, s) Ð RandomGoalBabblingStep(sm model)
5: Update(sm model, (m, s))
6: Add(database, (m, s))
7: return database

6.1.3 Model Babbling
We call flat exploration architecture the random goal babbling strategy applied to
explore directly a mapping between the motor space M and the sensory space S.
However, the high-dimensional sensory space (e.g. 93D, see experimental setup after)
can be separated into several subspaces to reflect the perception of the different items
of the environment (e.g. p “ 15 subspaces). We thus define a modular architecture
that explores p sensorimotor models at the same time (one model for each sensory
subspace). Each of those modules functions in the same way as a random goal
babbling flat architecture, with M as motor space but a specific sensory subspace.
However, at each iteration the modular architecture first has to choose the module
that will perform goal babbling - pick a random goal in the corresponding sensory
subspace. We call this procedure Model Babbling. In a first condition, the babbling
module is randomly chosen, which we call Random Model Babbling (See Algo. 4).
Once a model is chosen, the agent generates a random goal in the sensory subspace
corresponding to that model, infers motor parameters to reach that goal, and adds
exploration noise as in the flat architectures. Finally, when motor parameters m



6.1. Exploration Architectures 139

have been executed and feedback s received from the environment, the sensorimotor
mappings of all modules are updated with their respective part of s.

Algorithm 4 Modular - Random Model Babbling
Require: Motor space M
Require: Sensory spaces Si for i P t1..pu

1: database Ð VoidDatabasepdimpMq, dimpSqq
2: for i P t1..pu do
3: sm model i Ð SMModel(M, Si)
4: loop
5: mod i Ð RandomModule(t1..pu)
6: (m, s) Ð RandomGoalBabblingStep(sm model i)
7: for j P t1..pu do
8: Update(sm model j, (m, Projection(s, Sj)))
9: Add(database, (m, s))

10: return database

6.1.4 Active Model Babbling (MACOB)

In strategic learning, different parameterized problems and strategies to solve them
are available and the agent learns which strategies are useful for which problems.
It was shown in Nguyen and Oudeyer (2012) that an active choice of the outcomes
and strategies based on the learning progress on each of them increases learning
efficiency compared to a random choice. Also, in Baranes and Oudeyer (2013), the
authors develop the SAGG-RIAC architecture of algorithms where the sensory space
is automatically split into regions where the learning progress is monitored, and goals
are generated in regions where the progress is high. Here, instead of differentiating the
learning progress in different regions of a single space, we differentiate it in different
sensory spaces.

To implement an active choice of model to explore (Active Model Babbling, see
Algo. 5), we first define a measure of interest based on the learning progress of each
of the p modules (see Algo. 6). When a module has been chosen to babble, it draws
a random goal sg and finds motor parameters m to reach this goal. The actually
reached outcome s in its sensory subspace might be very different from sg. To measure
the progress made to reach sg, we compare the reached point s with the point s1
that was reached for the most similar previous goal s1g. We define a distance DSi

between two points s and s1 in a sensory subspace Si as the L2 distance divided by
the maximal distance in this sensory subspace, in order to scale this measure across
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Algorithm 5 Modular - Active Model Babbling (MACOB)
Require: Motor space M
Require: Sensory spaces Si for i P t1..pu

1: database Ð VoidDatabasepdimpMq, dimpSqq
2: for i P t1..pu do
3: sm model i Ð SMModel(M, Si)
4: i model i Ð InterestModel(Si)
5: Imodi

Ð 0
6: loop
7: iÐ ChooseModule(Imodi

for i P t1..pu)
8: (m, s) Ð RandomGoalBabblingStep(sm model i)
9: Imodi

Ð UpdateInterestModel(i model i, sg,
10: Projection(s, Si))
11: for j P t1..pu do
12: Update(sm model j, (m, Projection(s, Sj)))
13: Add(database, (m, s))
14: return database

subspaces:

DSi
ps, s1q “

||s´ s1||

maxs1,s2 ||s1 ´ s2||
(6.1)

We define the interest Ipsgq associated to the goal sg P Si:

Ipsgq “ |DSi
psg, s

1
q ´DSi

psg, sq| (6.2)

where sg and s are the current goal and reached sensory points, and s1g and s1 are
the previous goal of that module that is the closest to sg, and its associated reached
sensory point. The interest of a module is initialized at 0 and updated to follow the
progress of its goals (with rate n “ 1000):

Imodptq “
n´ 1
n

Imodpt´ 1q ` 1
n
Ipsgq (6.3)

where t is the current iteration: t P r1..100000s.
Finally, we implement a multi-armed bandit algorithm to choose the babbling

module at each iteration (Baranes and Oudeyer, 2013; Fabisch and Metzen, 2014).
The choice of module is probabilistic and proportional to their interest, with ε “ 10%
of random choice to set up an exploration/exploitation tradeoff.
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Algorithm 6 Update Interest Model
Require: Interest model i model
Require: Sensory goal sg, outcome s

1: (s1g, s1) Ð NearestNeighbor(goal database, sg)
2: Ipsgq “ |DSi

psg, s
1q ´DSi

psg, sq|
3: Imodi

Ð n´1
n
Imodi

` 1
n
Ipsgq

4: Add(goal database, (sg, s))
5: return Imodi

6.1.5 Sensorimotor models
Here we describe two algorithms to provide fast, incremental and online forward and
inverse model based on a sensorimotor database of motor commands and associated
sensory feedback. The first algorithm is the Nearest Neighbor (NN) algorithm, which
finds the nearest neighbor of a given point in a database based on a kd-tree search.
The forward model is implemented by the following: given a motor command m, the
NN algorithm finds the nearest motor command m1 in the motor part of the database,
and returns the sensory point associated to m1. Also, the inverse of a sensory goal sg
is computed as the motor part m1 of the nearest neighbor s1 of sg in the sensory part
of the sensorimotor database (see Algo. 7).

Algorithm 7 NN Sensorimotor Model
1: function Initialize(M , S)
2: sm database Ð VoidDatabasepdimpMq, dimpSqq
3: function Update((m, s))
4: Add(sm database, (m, s))
5: function Forward(m)
6: (m1, s1) Ð NearestNeighbor(sm database, m)
7: return s1

8: function Inverse(sg)
9: (m1, s1) Ð NearestNeighbor(sm database, sg)

10: return m1

The second algorithm allows to interpolate and extrapolate the forward model
around explored points with the Locally Weighted Linear Regression (LWLR, Cleve-
land and Devlin (1988)). Given a motor command m, LWLR computes a linear
regression of the forward model based on the k “ 10 nearest neighbors of m in the
motor part of the database, weighted locally. The weights of the k nearest neighbors
of m depends on the distance to m with a Gaussian decreasing function of standard
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deviation σ “ 0.1, and LWLR then computes the prediction sp of m with this local
regression (see Algo. 8). On the other hand, the inverse m˚ of a sensory goal sg is
found by the minimization of the predicted distance between the reached and goal
sensory points as the error function epmq “ ||Forwardpmq´sg||2 with an optimization
algorithm (we use the L-BFGS-B algorithm, Byrd et al. (1995)). We limit the number
of forward model evaluations (which uses LWLR) to 200.

Algorithm 8 LWLR-BFGS Sensorimotor Model
1: function Initialize(M , S)
2: sm database Ð VoidDatabasepdimpMq, dimpSqq
3: function Update((m, s))
4: Add(sm database, (m, s))
5: function Forward(m)
6: knns Ð KNearestNeighbors(sm database, m)
7: weights Ð GaussianWeights(Distance(knns, m))
8: R Ð LWLRegression(knns, weights)
9: sp Ð R(m)

10: return sp

11: function Inverse(sg)
12: error(m) “ ||Forward(m) ´sg||2
13: m˚ Ð L-BFGS-B-Minimize(error)
14: return m˚

6.1.6 Summary of Exploration Architectures
• RmB: Random motor Babbling control (Algo. 1),

• F-NN-RGB: Flat, Nearest Neighbor forward and inverse models, Random Goal
Babbling (Algo. 2, 3, 7),

• F-LWLR-RGB: Flat, Locally Weighted Linear Regression forward model and
optimization-based inverse model, Random Goal Babbling (Algo. 2, 3, 8),

• M-NN-RMB: Modular, Nearest Neighbor forward and inverse models, Random
Model Babbling (Algo. 2, 3, 4, 7),

• M-NN-AMB: Modular, Nearest Neighbor forward and inverse models, Learning
Progress based Active Model Babbling (Algo. 2, 3, 5, 6, 7),

• M-LWLR-RMB: Modular, Locally Weighted Linear Regression forward model,
optimization-based inverse model, Random Model Babbling (Algo. 2, 3, 4, 8),
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• M-LWLR-AMB: Modular, Locally Weighted Linear Regression forward model,
optimization-based inverse model, Active Model Babbling (Algo. 2, 3, 5, 6, 8).

6.2 Tool-Use Simulated Environment
We designed a robotic setup where a 2D simulated arm can grasp two sticks that can
be used to move some of the out-of-reach objects (see Fig.6.2). The different items in
the scene and their interactions are described in the next sections. See Fig.6.2 for a
possible state of the environment.

Planar arm

Stick

Magnet

Joints

Handle

HookLoop
Static objects

Magnetic objects HookLoop objects

Gripper

cat

dog

1.5 1.0 0.5 0.0 0.5 1.0 1.5 X

0.0

0.5

1.0

1.5

Y

Figure 6.2: A possible state of the environment.

6.2.1 Robotic Arm
The 2D robotic arm has 3 joints plus a gripper located at the end of the arm. Each
joint can rotate from ´π rad to π rad around its resting position, mapped to a
standard interval of r´1, 1s. The length of the 3 segments of the arm are 0.5, 0.3 and
0.2 so the length of the arm is 1 unit. The resting position of the arm is vertical with
joints at 0 rad and its base is fixed at position p0, 0q. The gripper g has 2 possible
positions: open (g ě 0) and closed (g ă 0) and its resting position is open (with
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g “ 0). The robotic arm has 4 degrees of freedom represented by a vector in r´1, 1s4.
A trajectory of the arm is represented as a sequence vectors.

6.2.2 Motor Control
We use Dynamical Movement Primitives (Ijspeert et al., 2013) to control the arm’s
movement as this framework allows the production of a diversity of arm’s trajectories
with few parameters. Each of the 4 arm’s degrees-of-freedom (DOF) is controlled by
a DMP starting at the resting position of the joint. Each DMP is parameterized by
one weight on each of 2 basis functions and one weight specifying the end position of
the movement. The weights are bounded in the interval r´1, 1s and allow each joint
to fairly cover the interval r´1, 1s during the movement. Each DMP outputs a series
of 50 positions that represents a sampling of the trajectory of one joint during the
movement. The arm’s movement is thus parameterized with 12 weights, represented
by the motor space M “ r´1, 1s12.

6.2.3 Objects and Tools
Two sticks can be grasped by the handle side (orange side) in order to catch an out-
of-reach object. The sticks have length 0.5 and are located at positions p´0.75, 0.25q
and p0.75, 0.25q as in Fig. 6.2. One stick has a magnet on the end and can catch
magnetic objects (represented in blue), and the other stick has a hook-and-loop tape
to catch another type of objects (objects represented in green). If the gripper is closed
near the handle of one stick (closer than 0.25), this stick is considered grasped and
follows the gripper’s position and the orientation of the arm’s last segment until the
gripper opens. In some conditions, we add environmental noise as a Gaussian noise
of standard deviation 0.1 added to the (normally equal to 0) angle between the stick
and the arm’s last segment, different at each of the 50 movement’s steps. If the other
side of one stick reaches (within 0.25) a matching object (magnetic or hook-and-loop),
the object will then follow the end of the stick. Three magnetic objects are located
at positions p´0.3, 1.1q, p´1.2, 1.5q and p´1., 1.5q, so that only one is reachable with
the magnetic stick. Three hook-and-loop objects are located at positions p0.3, 1.1q,
p1., 1.5q and p1.2, 1.5q, so that only one is reachable with the hook-and-loop stick.
Also, two animals walk randomly following a Gaussian noise of standard deviation
0.01 on X and Y dimensions added at each of the 50 steps of a trial. Finally, four
static black squares have also no interaction with other objects. The arm, tools and
other objects are reset to their initial state at the end of each iteration.

6.2.4 Sensory Feedback
At the end of the movement, the robot gets sensory feedback representing the
trajectory of the different items of the environment during the arm’s movement. This
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feedback is composed by the position of each item at 3 time points: at steps 17,
33, and 50 during the movement of 50 steps. First, the trajectory of the gripper
is represented as a sequence of X and Y positions and aperture (1 or ´1) of the
gripper (SHand, 9D). Similarly, the trajectories of the end points of the sticks are
sequences of X and Y positions (SStick1 and SStick2 , 6D each). Also, the trajectory of
each object is a sequence of X and Y positions: SObject with Object P t Magnetic1,
Magnetic2, Magnetic3, HookLoop1, HookLoop2, HookLoop3, Cat, Dog, Static1,
Static2, Static3, Static4u. Those spaces are all in 6 dimensions (r´1.5, 1.5s6). The
total sensory space S has 93 dimensions and corresponds to 15 items.

6.3 Exploitation Architectures

An exploitation architecture generates an inverse model of the environment based
on a database of previously explored motor commands and their associated sensory
feedback. In this paper, we are both interested in the quality of the exploration
databases and in comparing the inverse models built by different combinations of
exploration database and exploitation architectures. We evaluate the accuracy of
the resulting inverse models to reach points in two spaces of interest, SMagnetic1 and
SHookLoop1 . Indeed, those spaces represent the only objects that can be moved by
one of the sticks as they are not static and not out-of-reach. One set of goals is
randomly drawn in the 2D subspace corresponding to the final position of each of the
two interesting objects (1000 goals in each).

We define two exploitation architectures generating inverse models: one based
on the Nearest Neighbor algorithm (NN, Algo. 7), and one based on the Locally
Weighted Linear Regression forward model and an optimization-based inverse model
(LWLR, Algo. 8). Given a goal sg (e.g. sg “ p0.5, 0.5q, the final position of the
reachable magnetic object), the NN algorithm looks into the explored database,
finds the nearest sensory reached point s along the dimensions of the target effect
space, and returns its associated motor command m. On the other hand, the LWLR
algorithm builds a forward model based on a locally weighted linear regression, and
an optimization algorithm (L-BFGS-B) finds the motor command m that minimizes
the distance between the prediction of the sensory feedback and the sensory goal.

6.4 Results

We run 100 trials of 100000 iterations with environmental noise and 100 trials without
noise, for each of the 7 exploration architectures (thus 14 conditions). We first
measure the total exploration of 6D spaces of interest SMagnetic1 and SHookLoop1 after
100000 iterations, and provide results depending on the exploration architecture and
environmental noise on the orientations of the sticks. Then, for each of the 1400
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(a) RmB (b) F-NN-RGB (c) M-NN-RMB (d) M-NN-AMB

Figure 6.3: Position of the two reachable and movable objects at the end of each
of the 100000 iterations, for one trial of some exploration architecture. Blue points:
position of reachable magnetic object. Green points: reachable hook-and-loop object.

exploration databases, we test the inverse models generated by the two exploitation
architectures in the 2D subspaces of the final position of the two objects of interests,
with the same 1000 random goals for each space. We chose those 2D spaces as
they represent an interesting effect space from the point of view of the experimenter
(as in Fig. 6.3), but the actually learned skills are higher-dimensional (9D for the
hand, 6D for each tool and object). We provide a measure of competence of each
combination of exploration and exploitation architectures as the median reaching error
(the median distance between the goals and actually reached sensory points), both
when environmental noise was present and when the environment was deterministic.

6.4.1 Exploration

Examples of Object Exploration

Figure 6.3 shows qualitatively the exploration of the two reachable and movable
objects (corresponding to sensory spaces SMagnetic1 and SHookLoop1) for one trial of
some exploration architectures, without environmental noise. The blue points are
the 2D end positions of the reachable magnetic object, and green points are the
end positions of the reachable hook-and-loop object, for the 100000 iterations of
an exploration trial. First, the random motor babbling architecture managed to
grab the sticks to move one of the object only for a small proportion of the 100000
iterations. Also, only the modular architectures could explore a large proportion of
the 2D spaces.

Evolution of Interests in Active Model Babbling

Figure 6.4 shows one example of the evolution of the interest of some of the 15
modules of exploration architecture M-NN-AMB. The first module to make progress
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Figure 6.4: Interest of modules along the 100000 iterations, with exploration architec-
ture M-NN-AMB. We show the interest of modules exploring the spaces of the hand,
magnetic stick, reachable magnetic object and the cat.

is the module learning to move the hand, and its exploration finds the magnetic stick
and thus allows the module corresponding to this stick to make more progress (after
10000 iteration), which exploration finally allows the discovery that this stick can
be used to move one of the magnetic objects and make progress on that task (after
20000 iteration). Notably, modules corresponding to unreachable or static objects
have an interest strictly equal to 0.

Exploration Measure

The total exploration is measured in SMagnetic1 and SHookLoop1 as the number of cells
reached in a discretized grid of 106 cells (10 cells on each of the 6 dimensions). For
each exploration architecture, we provide in Table 6.1 the median, extrema and
quartiles of the number of reached cells (median on 2 spaces times 100 trials). In
the following, we give results of non-parametric statistical Mann-Whitney U tests for
pairs of conditions.

First of all, the comparison of any of the flat exploration architectures (using
NN or LWLR, with or without environmental noise) with any of the modular explo-
ration architectures shows that flat architectures have explored less than modular
architectures (p ă 0.05). The effect is small for example if we compare condition
F-LWLR-RGB with environmental noise (median 387 reached cells) with condition
M-NN-RMB without noise (median 415). However, the difference is large between
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Table 6.1: Exploration of spaces of interest

Exploration
architectures

Env.
Noise Min Q1 Median Q3 Max

RmB No 57 67 73 78 93
Yes 62 75 80 85 100

F-NN-RGB No 1 1 14 89 380
Yes 1 1 16 116 746

F-LWLR-RGB No 98 203 245 294 442
Yes 182 319 387 486 818

M-NN-RMB No 285 374 415 456 682
Yes 356 455 508 563 763

M-NN-AMB No 88 452 536 668 1380
Yes 156 431 517 721 1453

M-LWLR-RMB No 368 512 555 607 801
Yes 449 574 623 691 906

M-LWLR-AMB No 456 743 870 1046 1440
Yes 522 811 987 1153 1752

this flat architecture and the best exploring modular architecture, M-LWLR-AMB
with environmental noise (median 987).

Secondly, the comparison of the conditions where only the model babbling choice
differs shows that without environmental noise, active model babbling increases
exploration with respect to random model babbling. Indeed, architecture M-NN-
RMB has explored less (median 415) than architecture M-NN-AMB (median 536, p
ă 10´23), and architecture M-LWLR-RMB also has explored less (median 555) than
architecture M-LWLR-AMB (median 870, p ă 10´55). If we consider environmental
noise, the random model babbling architecture using LWLR (median 623) has explored
less than the active one (median 987, p ă 10´39).

6.4.2 Exploitation

The quality of the different inverse models is assessed at the end of the 100000 explo-
ration iterations, by giving random goals in SMagnetic1 and SHookLoop1 and measuring
the distance between goals and reached sensory points (without environmental noise).
We draw 1000 random sensory goals in each of two spaces of interest, SMagnetic1

and SHookLoop1 , and use those same goals for the evaluation of each combination of
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Table 6.2: Competence error in spaces of interest

Exploration
architecture

Env.
Noise NN LWLR

RmB No 0.185 0.711
Yes 0.307 0.871

F-NN-RGB No 0.745 1.018
Yes 1.174 1.253

F-LWLR-RGB No 0.123 0.171
Yes 0.376 0.422

M-NN-RMB No 0.046 0.050
Yes 0.248 0.261

M-NN-AMB No 0.035 0.037
Yes 0.285 0.300

M-LWLR-RMB No 0.038 0.039
Yes 0.216 0.227

M-LWLR-AMB No 0.026 0.026
Yes 0.215 0.226

exploration and exploitation architectures. Table 6.2 provides the median distance
between goals and reached sensory points for each condition (for 2000 points times 100
trials). In the following, we give results of non-parametric statistical Mann-Whitney
U tests for pairs of conditions.

Firstly, both if we consider conditions with environmental noise or not, all
databases generated by flat exploration architectures and tested by any of the two
exploitation architectures show a larger competence error than any of the databases
explored with modular architectures and tested with both exploitation architecture
(p ă 10´100). For instance, without environmental noise, the best performing flat
condition is F-LWLR-RGB exploited with the NN algorithm, with a median compe-
tence error of 0.123, whereas the worst performing modular condition is M-NN-RMB,
exploited with the LWLR algorithm, with an error of 0.050.

Secondly, considering only exploration conditions without environmental noise,
all databases generated with RMB architectures and tested with any of the two
exploitation architectures show a larger competence error than any of the databases
generated with AMB and tested with both exploitation architectures (p ă 0.05). For
instance, the median competence error using RMB and the NN algorithm both in
exploration and exploitation is 0.046 whereas with AMB it is 0.035. Using LWLR,
those errors are 0.039 and 0.026.
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6.4.3 Controlling for Random Motor Babbling

In the previous experiments, Flat architectures did only 1 random motor babbling
iteration at the beginning of the trial whereas Modular architecture did a small
percentage all over the trial duration. Indeed, in our implementation, when targeting a
particular sensory space, random motor babbling is used until at least one new sensory
effect is achieved in that space, and many modules of the modular representation
correspond to a static object, while the Flat representation includes the moving cat
and dog. Few initial random experiments could have limited the performances of
Flat architectures. If we add 10k iterations of Random Motor Babbling before each
experiments to better control for the number of motor babbling experiments, Flat
Architectures explore more but still significantly less than Modular Architectures (See
Table 6.3). Also, the differences between RMB and AMB are a bit larger with those
additional initial random experiments, which might be because it helps to bootstrap
learning and to estimate learning progress.

Table 6.3: Exploration, 10k Motor Babbling Bootstrap

Exploration
architectures

Env.
Noise Min Q1 Median Q3 Max

RmB No 61 67 72 74 84
F-NN No 139 164 192 237 439

M-NN-RMB No 334 368 404 471 569
M-NN-AMB No 350 585 643 749 1032

F-LWLR No 188 265 314 370 450
M-LWLR-RMB No 452 508 527 565 718
M-LWLR-AMB No 662 786 906 962 1296

6.4.4 Running Longer Experiments

In the previous experiments, using LWLR as the exploitation algorithm did not
improve the competence errors. Here we run the same experiments for 300k iterations
instead of 100k. Table 6.4 shows the exploration results and Table 6.5 the competence
results.

We can see in the competence table that using LWLR in the exploitation algorithm
becomes useful after 225k iterations compared to NN. The LWLR local regression
indeed gets better with a more dense distribution of points.
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Table 6.4: Exploration after 300k iterations

Exploration
architectures

Env.
Noise Min Q1 Median Q3 Max

RmB No 138 160 166 175 184
M-NN-
RMB No 799 1015 1107 1221 1384

M-NN-
AMB No 1136 1276 1497 1670 2308

F-LWLR No 357 431 495 578 761
M-LWLR-

RMB No 1076 1192 1295 1454 1683

M-LWLR-
AMB No 1567 1897 2175 2491 2915

Table 6.5: Competence error in spaces of interest, along 300k iterations

Exploration
architecture Exploit. 75k 150k 225k 300k

RmB NN 0.2117 0.1542 0.1267 0.1104
LWLR 0.8413 0.5322 0.3779 0.3132

F-LWLR NN 0.1313 0.0851 0.0627 0.0492
LWLR 0.1858 0.1129 0.0786 0.0615

M-NN-RMB NN 0.0622 0.0319 0.0231 0.0189
LWLR 0.0705 0.0321 0.0218 0.0176

M-NN-AMB NN 0.0519 0.0213 0.0149 0.0121
LWLR 0.0615 0.0217 0.0141 0.0113

M-LWLR-RMB NN 0.0457 0.0283 0.0220 0.0186
LWLR 0.0468 0.0274 0.0209 0.0174

M-LWLR-AMB NN 0.0318 0.0189 0.0147 0.0123
LWLR 0.0320 0.0180 0.0137 0.0114

6.4.5 Tuning Exploration Noise
In the previous experiments, the exploration noise was set to σ “ 0.01, which is small
compared to the parameter values (one percent of those). In order to understand
if different algorithms work best for different exploration noise amplitudes, here we
also test σ “ 0.03, 0.1, and 0.3. Table 6.6 shows the exploration after 100k iteration
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depending on exploration noise amplitude. For a noise of 0.1, the exploration of
F-NN and F-LWLR are similar. For a noise of 0.03, the exploration of M-NN-AMB
and M-LWLR-AMB are similar. Those results show that NN gets as good as LWLR
for exploration if we increase the noise amplitude, so in our previous results, the
advantage of LWLR exploration might have been due to the inaccuracy of LWLR
when few data is available, that acted as an additional exploration noise. Also, the
best results for Flat architectures were with a 0.1 noise, and for Modular architectures
with σ “ 0.03. With σ “ 0.3, the exploration noise is too large leading to bad
exploration results, only slightly better than Random Motor Babbling.

Table 6.6: Exploration, different noise amplitude

Exploration
architectures σ Min Q1 Median Q3 Max

F-NN 0.03 1 178 245 385 769
M-NN-RMB 0.03 484 503 550 596 861
M-NN-AMB 0.03 580 812 950 1144 1349

F-LWLR 0.03 269 323 409 512 702
M-LWLR-RMB 0.03 466 568 613 633 737
M-LWLR-AMB 0.03 609 774 920 975 1379

F-NN 0.1 196 340 418 473 600
M-NN-RMB 0.1 273 328 349 369 412
M-NN-AMB 0.1 268 351 374 405 488

F-LWLR 0.1 260 375 418 455 513
M-LWLR-RMB 0.1 274 335 352 363 393
M-LWLR-AMB 0.1 285 331 350 365 427

F-NN 0.3 155 216 245 263 278
M-NN-RMB 0.3 109 133 140 146 168
M-NN-AMB 0.3 106 116 125 139 156

M-LWLR-RMB 0.3 101 107 113 126 136
M-LWLR-AMB 0.3 100 112 115 121 132

6.4.6 Influence of Modules on Each Other
While targeting a goal in one particular sensory space, such as the space of the hand,
new effects can be found in other sensory spaces, such as the one of a tool. Here we
study this kind of influence between the exploration in some spaces and the discoveries
in others.
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When exploring a goal in a particular space, using the Nearest Neighbor sensori-
motor model (NN), the closest previously reached point to the goal is used to find a
good motor command. We can analyze the origin of that previous point, whether it
was discovered when targeting another goal in the same sensory space, in another
space, or while doing random motor babbling. Table 6.7 shows for each random
goal babbling module modj (each column), the number of iterations where modj is
currently babbling and the nearest neighbor of the goal is a point that was previously
reached while exploring modi (raws) or by random motor babbling.

Table 6.7: Useful sources of novelty for each module, tolerance 0.25, M-NN-RMB

Useful
source mod1 mod2 mod4

RmB 3799 323 109
mod1 2502 103 104
mod2 110 4778 1395
mod4 39 1316 4994

An interesting case is when mod2 babbles (tool sensory space), it seems that
mod4 (toy sensory space) helps more than mod1 (hand sensory space), whereas we
would predict that exploring the hand helps more. This may due to the fact that the
tolerance to grab the object (in SMagnetic1) was set quite high (0.25), thus exploring
diverse goals in SMagnetic1 actually help explore a significant part of Sstick1 (with a
reduced bottleneck effect).

Table 6.8: Useful sources of novelty for each module, tolerance 0.03, M-NN-RMB

Useful
source mod1 mod2 mod4

RmB 3069 50 88
mod1 35610 515 42
mod2 462 18075 283
mod4 7 157 25

We then reduced that tolerance parameter to 0.03, yielding a smaller tolerance
both to grab a tool and to grab a toy with the tool. Table 6.8 shows the influence of
modules in that settings. The exploration of Sstick1 is now helped by the random goal
babbling of mod1 (515) more than the one of mod4 (157), which is more consistent
with our expectations in this tool-use setup. However, with this hardened setup,
finding novelty in SMagnetic1 might take more time.
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6.5 Discussion

In this chapter, two new algorithmic architectures were introduced for the incremental
exploration of sensorimotor spaces exploiting a modular representation of these spaces.
Random Model Babbling selects randomly which model to explore (which is itself
explored through goal babbling) and Active Model Babbling uses a multi-armed
bandit algorithm to maximize empirical learning progress. In a simulation involving
structured continuous high-dimensional motor (12D) and sensory (93D) spaces, we
showed that these modular architectures were vastly more efficient than goal babbling
methods used with flat representations, for all combinations of inverse models in the
exploration and exploitation architectures. In particular, by focusing exploration on
relevant parts of the space, modular architectures allowed the learner to discover
efficiently how to move various objects using various tools, while flat architectures
were not able to discover large parts of the space of effects. We also showed that
active model babbling was significantly more efficient than random model babbling,
yet the difference was smaller than between modular and flat architectures.

The Model Babbling architecture used in our tool-use setup assumes that a
representation of each object is initially given to the learning agent. Given the poten-
tial importance of modular representations to address the challenge of incremental
learning of skills in high-dimensional spaces, and within a life-long developmental
perspective, this work points to the need for algorithmic mechanisms that can generate
automatically such representations. In a follow-up work, we study the possibility of
learning a representation of the scene directly from pixels (see Appendix B). However,
“tool” objects are not given a special status: they are represented in the same way as
any other object. Yet, the active model babbling architecture converged to explore
preferentially these objects and discovered their actual use as tools.

In chapter 4, the learning agents used a hierarchical organization of modules
which was imposed and not built autonomously. A remaining question is how to
transform the modular architecture into a hierarchical one where causal dependencies
between objects could be represented and leveraged, with the discovery of explicit
object categories such as “tools”. A possible approach could be to differentiate “tools”
using a relative measure of learning progress, following the approach presented in
(Oudeyer et al., 2007, sec. VIII. B. 2) to differentiate the self/body, physical objects
and “others”. The statistics of the discoveries made on objects while exploring other
objects (see Section 6.4.6) could also help distinguish the relations of causality between
objects and uncover the tool-use structure of the environment.

Building a hierarchical representation of related objects in a tool-use environment
could benefit exploration. In chapter 4, each inverse model was implemented with a
simple nearest neighbor look-up, with an additional Gaussian noise in the lower-level
motor space used for exploration of new movements. However, in our tool-use setups,
when targeting a new goal for a toy, randomly perturbing a movement known to
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grab the tool and reach the toy has many chances to not even grab the tool, such
that the tool acts as a bottleneck in exploration. The hierarchy could be used here
to implement a structured noise adapted to the sensorimotor hierarchy. Indeed, the
Gaussian exploration noise could be applied in the higher-level inverse model, for
instance by adding noise to the tool movement and passing down the resulting tool
movement to the motor space through the hierarchy of inverse models. The resulting
distribution of explored motor commands would be the inverse of the Gaussian
distribution through the hierarchy of inverse models, and thus structured by the tool
hierarchy, with more chances for new motor commands to grab the tool and yield
interesting novel results.

When exploring new goals for a toy that necessitate the use of a tool, modifying
only one part of the movement, such as the part after the moment when the tool is
grasped, could also improve the efficiency of exploration. In chapter 8, we study this
kind of exploration mutations, called Stepping-Stone Preserving Mutations. Another
limitation of our experiments here is that we reset all objects to their initial position
at each iteration. In a setup where we reset the object to a random position (chapter 4,
Forestier and Oudeyer (2016c)), we showed that agents could transfer the knowledge
from reaching the object in one position with the tool to reaching the object in a
new position, and bootstrap the exploration of that new situation. In chapter 8, the
Minecraft Mountain Cart environment involves closed-loop action policies that depend
on a high-dimensional real-time context including the current position of the agent
and the objects in the map. To handle that case, we implement movement policies
with a neural network that takes as input at each time step the current context of the
environment and outputs the action to follow. We also study active model babbling
algorithms in a real robotic environment, and analyze in more details a simulated
tool-use experiment to understand the influence on learning of the representation of
goals, the mutation operator, or the distractor objects.

In our Active Model Babbling implementation, the choice of object to explore
(goal space) is based on the learning progress to control the objects, and the particular
goal for that object is chosen randomly. A more sophisticated choice of goal based on
learning progress could be implemented as in single-space goal babbling approaches,
e.g. the SAGG-RIAC algorithm of Baranes and Oudeyer (2010a). In the next
chapter, we conceptualize intrinsically motivated goal exploration algorithms in a
general formal framework (IMGEP), in which Model Babbling is a particular modular
architecture.





Chapter 7

Intrinsically Motivated Goal Explo-
ration Processes

Summary
Intrinsically motivated spontaneous exploration is a key enabler of autonomous lifelong
learning in human children. It enables the discovery and acquisition of large repertoires
of skills through self-generation, self-selection, self-ordering and self-experimentation of
learning goals. We present an algorithmic approach called Intrinsically Motivated Goal
Exploration Processes (IMGEP) to enable similar properties of autonomous learning
in machines. The IMGEP algorithmic architecture relies on several principles: 1) self-
generation of goals as fitness functions and selection of goals based on intrinsic rewards;
2) exploration with incremental goal-parameterized policy search and exploitation
of the gathered data; 3) systematic reuse of information acquired when targeting a
goal for improving towards other goals. We present a particularly efficient form of
IMGEP that uses a modular representation of goal spaces as well as intrinsic rewards
based on learning progress. IMGEP is a compact and general framework for the
exploration of problems with no objective function or where an objective function is
hard to define and optimize, while the intrinsically motivated exploration allows an
efficient discovery of a diversity of solutions (Forestier et al., 2017).
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An extraordinary property of natural intelligence in humans is their capacity
for lifelong autonomous learning. Processes of autonomous learning in infants have
several properties that are fundamentally different from many current machine learning
systems. Among them is the capability to spontaneously explore their environments,
driven by an intrinsic motivation to discover and learn new tasks and problems that
they imagine and select by themselves (Berlyne, 1966; Gopnik et al., 1999). Crucially,
there is no engineer externally imposing one target goal that they should explore,
hand providing a curriculum for learning, nor providing a ready-to-use database
of training examples. Rather, children self-select their objectives within a large,
potentially open-ended, space of goals they can imagine, and they collect training
data by physically practicing these goals. In particular, they explore goals in an
organized manner, attributing to them values of interestingness that evolve with time,
and allowing them to self-define a learning curriculum that is called a developmental
trajectory in developmental sciences (Thelen and Smith, 1996). This self-generated
learning curriculum prevents infants from spending too much time on goals that are
either too easy or too difficult, and allows them to focus on goals of the right level of
complexity at the right time. Within this process, the new learned goals/problems are
often stepping stones for discovering how to solve other goals of increasing complexity.
Thus, while they are not explicitly guided by a final target goal, these mechanisms
allow infants to discover highly complex skills. For instance, biped locomotion or tool
use would be extremely difficult to learn by focusing only on these goals from the
start as the rewards for these goals are typically rare or deceptive.

An essential component of such organized spontaneous exploration is the intrinsic
motivation system, also called curiosity-driven exploration system (Gottlieb et al.,
2013). In the last decade, a series of computational and robotic models of intrinsically
motivated exploration and learning in infants have been developed (Baldassarre and
Mirolli, 2013; Oudeyer and Kaplan, 2007), opening new theoretical perspectives in
neuroscience and psychology (Gottlieb et al., 2013). Two key ideas have allowed to
simulate and predict important properties of infant spontaneous exploration, ranging
from vocal development (Forestier and Oudeyer, 2017; Moulin-Frier et al., 2013),
to object affordance and tool learning (Forestier and Oudeyer, 2016a,c). The first
key idea is that infants might select experiments that maximize an intrinsic reward
based on empirical learning progress (Oudeyer et al., 2007). This mechanism would
generate automatically developmental trajectories (e.g. learning curricula) where
progressively more complex tasks are practiced, learned and used as stepping stones
for more complex skills. The second key idea is that beyond selecting actions or
states based on the predictive learning progress they provide, a more powerful way
to organize intrinsically motivated exploration is to select goals, i.e. self-generated
fitness functions, based on a measure of control progress (Baranes and Oudeyer,
2013). Here, the intrinsic reward is the empirical improvement towards solving these
goals (Forestier and Oudeyer, 2016a; Oudeyer and Kaplan, 2007), happening through
lower-level policy search mechanisms that generate physical actions. The efficiency
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of such goal exploration processes leverages the fact that the data collected when
targeting a goal can be informative to find better solutions to other goals (for example,
a learner trying to achieve the goal of pushing an object on the right but actually
pushing it on the left fails to progress on this goal, but learns as a side effect how to
push it on the left).

Beyond neuroscience and psychology, we believe these models open new perspec-
tives in artificial intelligence. In particular, algorithmic architectures for intrinsically
motivated goal exploration were shown to allow the efficient acquisition of reper-
toires of high-dimensional motor skills with automated curriculum learning in several
robotics experiments (Baranes and Oudeyer, 2013; Forestier and Oudeyer, 2016a).
This includes for example learning omnidirectional locomotion or learning multiple
ways to manipulate a complex flexible object (Baranes and Oudeyer, 2013). In
the previous chapter, we presented and evaluated a modular version of intrinsically
motivated goal exploration called Model Babbling.

A first contribution of this chapter is to present a formalization of Intrinsically
Motivated Goal Exploration Processes (IMGEP), that is both more compact and more
general than these previous models. A second contribution is the design of a modular
population-based implementation of these processes, with an object-based modular
goal representation and a goal-parameterized policy constructed from a parameterized
set of low-level action policies. In this thesis, we study implementations of IMGEP
with a population-based policy (POP-IMGEP), but the use of goal-conditioned
monolithic policy (GCP-IMGEP) is another possibility, which has recently been
extended to a modular goal space (Colas et al., 2018a). We also discuss the relations
between the IMGEP architecture and other related exploration frameworks.

7.1 Intrinsically Motivated Goal Exploration
Processes

We define a framework for the intrinsically motivated exploration of multiple goals,
where the data collected when exploring a goal gives some information to help reach
other goals. This framework considers that when the agent performed an experiment,
it can compute the fitness of that experiment for achieving any goal, not only the one
it was trying to reach. Importantly, it does not assume that all goals are achievable,
nor that they are of a particular form, enabling to express complex objectives that do
not simply depend on the observation of the end policy state but might depend on
several aspects of entire behavioral trajectories (see Box on features, goals and goal
spaces). Also, the agent autonomously builds its goals but does not know initially
which goals are achievable or not, which are easy and which are difficult, nor if certain
goals need to be explored so that other goals become achievable.
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7.1.1 Notations and Assumptions
Let’s consider an agent that executes continuous actions a P A in continuous states
s P S of an environment E. We consider policies producing time-bounded rollouts
through the dynamics δEpst`1 | st0:t,at0:tq of the environment, and we denote the
corresponding behavioral trajectories τ “ tst0 , at0 , ¨ ¨ ¨ , stend

, atend
u P T.

We assume that the agent is able to construct a goal space G parameterized by g,
representing fitness functions fg giving the fitness fgpτq of an experimentation τ to
reach a goal g (see Box on features, goals and goal spaces). Also, we assume that
given a trajectory τ , the agent can compute fgpτq for any g P G.

Given these spaces S, A, G, the agent explores the environment by sampling goals
in G and searching for good solutions to those goals, and learns a goal-parameterized
policy Πpat`1 | g, st0:t`1,at0:tq to reach any goal from any state.

We can then evaluate the agent’s exploration and learning efficiency either by
observing its behavior and estimating the diversity of its skills and the reached
stepping-stones, or by “opening” agent’s internal models and policies to analyze their
properties.

7.1.2 Algorithmic Architecture
We present Intrinsically Motivated Goal Exploration Processes (IMGEP) as an
algorithmic architecture that can be instantiated into many particular algorithms
sharing several general principles (see pseudo-code in Architecture 9):

• The agent autonomously builds and samples goals as fitness functions, possibly
using intrinsic rewards,

• Two processes are running in parallel: 1) an exploration loop samples goals
and searches for good solutions to those goals with the exploration policy; 2)
an exploitation loop uses the data collected during exploration to improve the
goal-parameterized policy and the goal space,

• The data acquired when exploring solutions for a particular goal is reused to
extract potential solutions to other goals.

7.1.3 Goal Exploration
In the exploration loop, the agent samples a goal g, executes its exploration policy
Πε, and observes the resulting trajectory τ . This new experiment τ can be used to:

• compute the fitness associated to goal g,

• compute an intrinsic reward evaluating the interest of the choice of g,
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In the general case, the agent has algorithmic tools to construct a goal g as any
function fg computable from a state-action trajectory τ , that returns the fitness
of τ for achieving the goal.

Given a trajectory τ “ tst0 , at0 , ¨ ¨ ¨ , stend
, atend

u, the agent computes a set of
features ϕ1pτq, ..., ϕnpτq. Those features are scalars that encode any static or
dynamic property of the environment or the agent itself. Those can be the
position of a particular object in the environment at the end of the trajectory τ ,
or the full trajectory of that object, the position of the robot itself, the energy
used by the robot for executing a movement, etc. Combinations of these features
(e.g. linear) can be added as new features. The features may be given to the agent,
or learned, for instance with a variational auto-encoder (see Laversanne-Finot
et al. (2018); Péré et al. (2018)).

A goal is constructed by defining a fitness function from those features and
with the following tools:
• fgpτq “ ϕipτq: the goal g is to maximize feature i, e.g. maximize agent’s

speed.

• fgpτq “ ´||ϕi´jpτq ´ p||: the goal g is to reach the vector p with features i
to j, using a measure ||.||, e.g. move the ball to particular 3D position.

• fgpτq “ ϕipτq if ϕjpτq ď c else b: the goal g is to maximize feature
i while keeping feature j lower than a constant c, e.g. maximize agent’s
speed while keeping the energy consumption below 10W.

• fgpτq “ fg1pτq if fg2pτq ă fg3pτq else fg4pτq: goals can be combined
to form more complex constrained optimization problems, e.g. move the
ball to follow a target while not getting too close to the walls and holes and
minimizing the energy spent.

A goal space is a set of goals parameterized by a vector. For instance, the
values p, c, and b in the above definition of goals can be used as parameters to
form goal spaces. In the experiments of this paper, we define goal spaces with
a parameter p representing the goal position of an object in the environment.
Each object k defines a goal space Gk containing goals gp of the form fgppτq “
´||ϕIk

pτq ´ p|| where p is the goal position of the object and Ik are the indices
of features representing the X, Y and Z position of the object k at the end of a
trajectory.

Features, Goals and Goal Spaces
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Architecture 9 Intrinsically Motivated Goal Exploration Process (IMGEP)
Require: Action space A, State space S

1: Initialize knowledge E “ H
2: Initialize goal space G and goal policy Γ
3: Initialize policies Π and Πε

4: Launch asynchronously the two following loops:
5: loop Ź Exploration loop
6: Choose goal g in G with Γ
7: Execute a roll-out of Πε, observe trajectory τ

Ź From now on fg1pτq can be computed to estimate the fitness of the current
experiment τ for achieving any goal g1 P G

8: Compute the fitness f “ fgpτq associated to goal g
9: Compute intrinsic reward ri “ IRpE , g, fq associated to g

10: Update exploration policy Πε with (E , g, τ, f) Ź e.g. fast incremental algo.
11: Update goal policy Γ with (E , g, τ, f, ri)
12: Update knowledge E with (g, τ, f, ri)
13: loop Ź Exploitation loop
14: Update policy Π with E Ź e.g. batch training of deep NN, SVMs, GMMs
15: Update goal space G with E
16: return Π

• update the goal policy (sampling strategy) using this intrinsic reward,

• update the exploration policy Πε with a fast incremental learning algorithm,

• update the learning database E .

Then, asynchronously, this learning database E can be used to learn a target policy
Π with a slower or more computationally demanding algorithm, but on the other end
resulting in a more accurate policy. The goal space may also be updated based on
this data.

7.1.4 Intrinsic Rewards
In goal exploration, a goal g P G is chosen at each iteration. G may be infinite,
continuous and of high-dimensionality, making the choice of goal important and
non-obvious. Indeed, even if the fitness function fg1pτq may give information about
the fitness of a trajectory τ to achieve many goals g1 P G, the policy leading to τ
has been chosen with the goal g to solve in mind, thus it may not give as much
information about other goals than the execution of another policy chosen when
targeting other goals.
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Intrinsic rewards provide a mean for the agent to self-estimate the expected
interest of exploring particular goals for learning how to achieve all goals in G. An
intrinsic reward signal ri is associated to a chosen goal g, and based on a heuristic
(denoted IR) such as outcome novelty, progress in reducing outcome prediction error,
or progress in competence to solve problems (Oudeyer and Kaplan, 2007).

In the experiments of this thesis, we use intrinsic rewards based on measuring
the competence progress towards the self-generated goals, which has been shown to
be particularly efficient for learning repertoires of high-dimensional robotics skills
(Baranes and Oudeyer, 2013). Figure 7.1 shows a schematic representation of possible
learning curves and the exploration preference of an agent with intrinsic rewards
based on learning progress.
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Figure 7.1: Schematic representation of possible learning curves for different goals
and the associated exploration preference for an agent with intrinsic rewards based
on learning progress. Left: schematic learning curves associated to 5 imaginary goals:
the y axis represents the competence of the agent to achieve the goal (1 is perfect,
0 is chance level), and the x axis is training time on a goal. The blue, orange and
green curves represent achievable goals, for which agent’s competence increases with
training, at different rates, and saturates after a long training time. The purple
curve represents a goal on which the agent always has the same competence, with no
progress. The red curve is the learning curve on an unreachable goal, e.g. moving
an uncontrollable object. Right: exploration preference of an agent with a learning
progress heuristic (competence derivative) to explore the 5 goals defined by the
learning curves. At the beginning of exploration, the agent makes the most progress
on goal blue so it prefers to train on this one, and then its preference will shift towards
goals orange and green. The agent is making no progress on goal purple so will not
choose to explore it, and goal red has a noisy but low estimated learning progress.
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7.2 Modular Population-Based IMGEP

We define here a particular architecture corresponding to the case where the goal
space G is modular and the goal-parameterized policy Π is population-based. Also,
we consider that the starting state st0 of a trajectory is characterized by a parameter
vector c called context and that the trajectory τ is characterized by a descriptor oτ
called outcome, which can be computed by the agent from τ at any time. In the
following sections we detail the algorithmic ingredients used in modular population-
based IMGEP. Figure 7.2 summarizes the different components of the architecture,
and the pseudo-code is provided in Architecture 10.
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Figure 7.2: Summary of our modular population-based IMGEP implementation. At
each iteration, the agent observes the current context c and chooses a goal space to
explore based on intrinsic rewards (the learning progress to move each object) with
Γ. Then a particular goal g for the chosen object is sampled with γk, for instance
to push the left joystick to the right. The agent chooses the best policy parameters
θ to reach this goal, with the exploration meta-policy Πε, and potentially using an
internal model of the world. The agent executes policy πθ, observes the trajectory τ
and compute the outcome oτ encoding the movement of each object. Finally, each
component is updated with the result of this experiment.
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Architecture 10 Modular Population-Based IMGEP
Require: Action space A, State space S, Context space C, Outcome space O

1: Initialize knowledge E “ H
2: Initialize goal space G, goal policies γk and goal space policy Γ
3: Initialize meta-policies Π and Πε

4: Launch asynchronously the two following loops:
5: loop Ź Exploration loop
6: Observe context c
7: Choose goal space Gk with Γ
8: Choose goal g in Gk with γk
9: Choose policy parameters θ to explore g in context c with Πε

10: Execute a roll-out of πθ, observe trajectory τ
11: Compute outcome oτ from trajectory τ

Ź From now on, fg1pτq can be computed to estimate the fitness of the experi-
ment τ for achieving any goal g1 P G

12: Compute the fitness f “ fgpτq associated to goal g
13: Compute intrinsic reward ri “ IRpE , c, g, θ, oτ , fq associated to g in context c
14: Update exploration meta-policy Πε with (E , c, θ, τ, oτ ) Ź e.g. fast incr. algo.
15: Update goal policy γk with (E , c, g, oτ , f, ri)
16: Update goal space policy Γ with (E , c, k, g, oτ , f, ri)
17: Update knowledge E with (c, g, θ, τ, oτ , f, ri)
18: loop Ź Exploitation loop
19: Update meta-policy Π with E Ź e.g. batch training of DNN, SVM, GMM
20: return Π

7.2.1 Goal Construction with Object Modularity

In the IMGEP architecture, the agent builds and samples goals autonomously. Here,
we consider the particular case where the agent builds several goal spaces that
correspond to moving each object in the environment.

We define the outcome oτ P O of an experiment τ as the features of the movement
of all objects, so that O “

ś

k

Ok where okτ P Ok are the features of object k. Those
features come from a perceptual system that may be given or learned. From feature
space Ok, the agent can autonomously generate a corresponding goal space Gk that
contains goals g as fitness functions of the form fgpτq “ ´||g ´ o

k
τ ||k. The norm ||.||k

is a distance in the space Ok, which can be normalized to be able to compare the
fitness of goals across goal spaces. The goal space is thus modular, composed of
several object-related subspaces: G “

Ť

k

Gk.

With this setting, goal sampling is hierarchical in the sense that the agent first
chooses a goal space Gk to explore with a goal space policy Γ and then a particular goal
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g P Gk with the corresponding goal policy γk. Those two levels of choice can make use
of self-computed intrinsic rewards ri (see Sec. 7.1.4). This modular implementation
of IMGEP was called Model Babbling in the previous chapter (Forestier and Oudeyer,
2016b).

Given an outcome oτ , the fitness fgpτq can thus be computed by the agent for all
goals g P G and at any time after the experiment τ . For instance, if while exploring
the goal of moving object A to the left, object B moved to the right, that outcome
can be taken into account later when the goal is to move object B.

7.2.2 Population-Based Meta-Policies Π and Πε

In this version of the IMGEP framework, the goal-parameterized policy Π is
population-based: it is built from of a set of low-level policies πθ parameterized
by θ P Θ, and a meta-policy Πpθ | g, cq which, given a goal and context, chooses
the best policy πθ to achieve the goal g. The policies πθpat`1 | st0:t`1,at0:tq can be
implemented by stochastic black-box generators or small neural networks (see next
chapter).

During the goal exploration loop, the main objective consists in collecting data
that covers well the space of goals: finding θ parameters that yield good solutions to
as many goals as possible. The exploration meta-policy Πεpθ | g, cq is learned and
used to output a distribution of policies πθ that are interesting to execute to gather
information for solving in context c the self-generated goal g and goals similar to g.
To achieve the objective of collecting interesting data, the exploration meta-policy Πε

must have fast and incremental updates. As the aim is to maximize the coverage of
the space of goals, being very precise when targeting goals is less crucial than the
capacity to update the meta-policy quickly and incrementally. In our experiments, the
exploration meta-policy Πεpθ | g, cq is implemented as a fast memory-based nearest
neighbor search with a kd-tree.

On the contrary, the purpose of the target meta-policy Π is to be used in
exploitation mode: later on, it can be asked to solve as precisely as possible some
goals g with maximum fitness. As the training of this meta-policy can be done
asynchronously from data collected by the goal exploration loop, this allows the use
of slower training algorithms, possibly batch, that might generalize better, e.g. using
Gaussian mixture models, support vector regression or (deep) neural networks. These
differences justify the fact that IMGEP uses in general two different representations
and learning algorithms for Πε and Π. This two-level learning scheme has similar-
ities with the Complementary Learning Systems Theory used to account for the
organization of learning in mammalian brains (Kumaran et al., 2016).
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7.3 Relations to Related Work

Early models of intrinsically motivated reinforcement learning (also called curiosity-
driven learning) have been used to drive efficient exploration in the context of target
tasks with rare or deceptive rewards (Barto, 2013; Schmidhuber, 1991b) or in the
context of computational modeling of open-ended unsupervised autonomous learning
in humans (Kaplan and Oudeyer, 2004; Oudeyer et al., 2007). Reviews of the historical
development of these methods and their links with cognitive sciences and neuroscience
can be found in Baldassarre and Mirolli (2013); Gottlieb et al. (2013); Oudeyer et al.
(2016).

Several lines of results have shown that intrinsically motivated exploration and
learning mechanisms are particularly useful in the context of learning to solve rein-
forcement learning problems with sparse or deceptive rewards. For example, several
state-of-the-art performances of Deep Reinforcement Learning algorithms, such as
letting a machine learn how to solve complex video games, have been achieved by
complementing the extrinsic rewards (number of points won) with an intrinsic reward
pushing the learner to explore for improving its predictions of the world dynamics
(Bellemare et al., 2016; Houthooft et al., 2016). An even more radical approach for
solving problems with rare or deceptive extrinsic rewards has been to completely
ignore extrinsic rewards, and let the machine explore the environment for the sole
purpose of learning to predict the consequences of its actions (Oudeyer et al., 2007;
Schmidhuber, 1991b), to achieve self-generated goals (Baranes and Oudeyer, 2013;
Oudeyer and Kaplan, 2007), or to generate novel outcomes (Lehman and Stanley,
2011a). This was shown for example to allow agents to learn to play some video
games without ever observing the extrinsic reward (Pathak et al., 2017).

Some approaches to intrinsically motivated exploration have used intrinsic rewards
to value visited actions and states through measuring their novelty or the improvement
of predictions that they provide, e.g. Dayan and Sejnowski (1996); Oudeyer et al.
(2007); Schmidhuber (1991b); Sutton (1990) or more recently Bellemare et al. (2016);
Houthooft et al. (2016); Pathak et al. (2017). However, organizing intrinsically
motivated exploration at the higher level of goals, by sampling goals according to
measures such as competence progress (Oudeyer and Kaplan, 2007), has been proposed
and shown to be more efficient in contexts with high-dimensional continuous action
spaces and strong time constraints for interaction with the environment (Baranes and
Oudeyer, 2013).

Several proposed methods are related to IMGEP, including Gregor et al. (2016),
Dosovitskiy and Koltun (2016) and Kulkarni et al. (2016), however they have consid-
ered notions of goals restricted to the reaching of states or direct sensory measurements,
did not consider goal-parameterized rewards that can be computed for any goal, used
different intrinsic rewards, and did not evaluate these algorithms in robotic setups.
The notion of auxiliary tasks is also related to IMGEP in the sense that it allows a
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learner to acquire tasks with rare rewards by adding several other objectives which
increase the density of information obtained from the environment (Jaderberg et al.,
2016; Riedmiller et al., 2018). Another line of related work (Srivastava et al., 2013)
proposed a theoretical framework for automatic generation of problem sequences for
machine learners, however it has focused on theoretical considerations and experiments
on abstract problems.

Several strands of research in robotics have presented algorithms that instantiate
such intrinsically motivated goal exploration processes (Baranes and Oudeyer, 2010a;
Rolf et al., 2010), using different terminologies such as contextual policy search
(Kupcsik et al., 2017; Queißer et al., 2016), or formulated within an evolutionary
computation perspective such as Novelty Search (Lehman and Stanley, 2011a) or
Quality Diversity (Cully et al., 2015; Cully and Demiris, 2017) (see next sections). In
the previous chapter, we implemented a modular population-based version of IMGEP
that we called Model Babbling (Forestier and Oudeyer, 2016b). We evaluated several
variants of Model Babbling: we called Random Model Babbling a variant where the
goal space is chosen randomly and goals are chosen randomly in the goal space and
Active Model Babbling one where the goal space is chosen based on the learning
progress to control each object. Both implementations are instances of IMGEP as
the goal spaces are generated autonomously from the sensory spaces and no “expert
knowledge” has been given to the algorithm.

In machine learning, the concept of curriculum learning (Bengio et al., 2009) has
most often been used in the context of training neural networks to solve prediction
problems. Many approaches have used hand-designed learning curriculum (Sutskever
and Zaremba, 2014), but recently it was shown how learning progress could be used
to automate intrinsically motivated curriculum learning in LSTMs (Graves et al.,
2017). However, these approaches have not considered a curriculum learning of sets of
reinforcement learning problems, which is central in the IMGEP framework formulated
with goals as fitness functions, and assumed the pre-existence of a database with
learning exemplars to sample from. In recent related work, Matiisen et al. (2017)
studied how intrinsic rewards based on learning progress could also be used to
automatically generate a learning curriculum with discrete sets of reinforcement
learning problems, but did not consider high-dimensional modular problem spaces.
The concept of “curriculum learning” has also been called “developmental trajectories”
in prior work on computational modeling of intrinsically motivated exploration
(Oudeyer et al., 2007), and in particular on the topic of intrinsically motivated goal
exploration (Baranes and Oudeyer, 2013; Forestier and Oudeyer, 2017).

The concepts of goals and of learning across goals have been introduced in machine
learning in Kaelbling (1993) with a finite set of goals. Continuous goals were used
in Universal Value Function Approximators (Schaul et al., 2015), where a vector
describing the goal is provided as input together with the state to the neural network
of the policy and of the value function. However, in these works the goals are not
modular, and are considered extrinsic to the agent, with extrinsic rewards that can



7.3. Relations to Related Work 169

contain expert knowledge about the tasks being learned. The learning problem is
not formulated as an autonomous learning problem where the agent has to explore
the most diverse set of states and skills on its own. Another work integrates intrinsic
rewards with an extension of Universal Value Function Approximators (Colas et al.,
2018a). This is a particular implementation of the IMGEP architecture, that we call
GCP-IMGEP, using a unique monolithic (multi-task multi-goal) policy network, that
learns from on a replay buffer filled with rollouts on task and goals of high learning
progress. Also, using a population-based intrinsically motivated agent within the
IMGEP architecture can help bootstrap a deep RL agent (Colas et al., 2018b). Filling
the replay buffer of a deep RL agent with exploratory trajectories collected by an
IMGEP algorithm kick-starts the RL agent by enhancing its exploratory abilities.
It combines the efficient exploration of population-based IMGEP agents with the
efficient fine tuning of policies offered by deep RL agents with a function approximator
based on gradient descent.

7.3.1 IMGEP and Novelty Search
In Novelty Search evolutionary algorithms, no objective is given to the optimization
process, which is driven by the novelty or diversity of the discovered individuals
(Lehman and Stanley, 2011a). In this implementation, an archive of novel individuals
is built and used to compute the novelty of the individuals of the current generation
of the evolutionary algorithm. If the novelty of a new individual is above a threshold,
it is added to the archive. Different measures of novelty can be used, a simple one
being the average distance of the individual to its closest neighbors in the archive, the
distance being measured in a behavioral space defined by the user. Then, to generate
the population of the next generation, the individuals with a high measured novelty
are reused, mutated or built upon.

Although designed in an evolutionary framework, the Novelty Search (NS) al-
gorithm can be framed as a population-based IMGEP implementation, assuming
that the behavioral space and its distance measure can be self-generated by the
algorithm. Indeed, we can define an IMGEP goal space based on the NS behavioral
space, with each behavior in that space generating the corresponding goal of reach-
ing that behavior, with a fitness function defined as the negative distance between
the target behavior and the reached behavior. In IMGEP, if the goal g (defining
the target behavior) is chosen randomly, the algorithm can then reuse the previous
reached behaviors that give the highest fitness to reach the current goal g, which are
the closest reached points in the behavioral space. The key similarity between our
population-based implementations of IMGEP and Novelty Search is that the previous
behavior the closest to the current random target behavior is a behavior with high
novelty on average. Indeed, a random point in a space is more often closer to a point
at the frontier of the explored regions of that space which is thus a high-novelty
point. Randomly exploring behaviors or mutating high-novelty behaviors are therefore
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efficient for the same reasons.
Abandoning the external objectives and focusing on the novelty of the behaviors

in Lehman and Stanley (2011a) can be seen in the lens of the IMGEP framework as
embracing all self-generated objectives.

7.3.2 IMGEP and Quality Diversity
The Novelty Search approach stems from the fact that in many complex optimization
problems, using a fitness function to define a particular objective and relying only
on the optimization of this function do not allow the discovery of the objective as
unknown complex successive stepping-stones need to be reached before the final
objective can be approached. Relying on novelty allows to reach stepping-stones and
build upon them to explore new behaviors even if the objective does not get closer.
However, when the behavioral space is high-dimensional, pursuing the final objective
is still useful to drive exploration together with the search for novelty (Cuccu and
Gomez, 2011). The Quality Diversity approach combines the search for Diversity
from Novelty Search approaches and the use of an external objective function to
ensure the Quality of the explored individuals (Cully and Demiris, 2017; Lehman and
Stanley, 2011b; Mouret and Clune, 2015).

In the MAP-Elites algorithm (Mouret and Clune, 2015), the behavioral space is
discretized into a grid of possible behaviors, and a fitness function is provided to
assess the quality of individuals according to a global objective. Each new individual
is assigned to a behavioral cell in this grid and is given a quality value with the quality
function. The population of the next generation of the evolutionary algorithm is
mutated, in its simplest version, from a random sample of the set of the best quality
individual of all cells. In more sophisticated versions, the parents used for evolving
the next generation are selected based on their quality, the novelty of the cells, or a
tradeoff between quality and novelty.

In the applications of this algorithm, the fitness function is an extrinsic objective.
For instance, in Cully et al. (2015) robot controllers are evolved to find efficient robot
walking behaviors. The fitness function given to the algorithm is the speed of the
robot, while the descriptors of a behavior can be the orientation, displacement, energy
used, deviation from a straight line, joint angles, etc. The algorithm thus tries to find
efficient walking behaviors for each behavioral set of constraints.

The concept of Quality Diversity algorithms is thus different from the concept of
intrinsically motivated exploration, however Quality Diversity algorithms could be
used with a fitness function that is intrinsically generated by the algorithm. In any
case, the functioning of the algorithm given this fitness function can also be seen as
a population-based implementation of the IMGEP framework. Indeed, each cell of
the behavioral grid can generate one different IMGEP goal with a particular fitness
function returning the quality of the individual if its behavior falls into that cell and
zero otherwise. In MAP-Elites (Mouret and Clune, 2015), the next generation of
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individuals is mutated from a random sample of elites (the best quality individual
of each non-void cell). In an IMGEP settings with those goals, the MAP-Elites
sampling is equivalent to selecting a random goal from the set of goals that had a
non-zero fitness in the past. When such a goal is selected, the new IMGEP exploration
experiment then reuse, in its simplest version, the sample with the best fitness for
that goal, which corresponds to the elite.

In the Novelty Search, Quality Diversity and IMGEP implementations, the key
mechanisms that makes exploration efficient are 1) a diversity of solutions continue
to be explored even if they seem non-optimal, and 2) when exploring solutions to a
given region/cell/goal, the algorithm can find solutions to other regions/cells/goals,
which are recorded and can be leveraged later.

7.3.3 IMGEP and Reinforcement Learning
In our setting, the fitness functions fg have two particularities in comparison with the
concept of “reward function” as often used in the RL literature. The first particularity
is that these fitness functions are computed based on the trajectory τ resulting from
the execution of policy Π, and thus consider the whole interaction of the agent and
its environment during the execution of the policy, for instance taking into account
the energy used by the agent or the trajectory of an object. Therefore they are not
necessarily Markovian if one considers them from the perspective of the level of state
transitions st.

The second particularity is that since the computation of the fitness fgpτq is
internal to the agent, it can be computed any time after the experiment and for
any goal g P G, not only the particular goal that the agent was trying to achieve.
Consequently, if the agent stores the observation τ resulting from the exploration
of a goal p1, then when later on it self-generates goals g2, g3, ..., gi it can compute,
without further actions in the environment, the associated fitness fgi

pτq and use
this information to improve over these goals gi. This property is essential as it
enables direct reuse of data collected when trying to achieve a goal for later exploring
other goals. It is leveraged for curriculum learning in Intrinsically Motivated Goal
Exploration Processes.

7.4 Discussion
In this chapter, we defined a formal framework for an exploration architecture
called Intrinsically Motivated Goal Exploration Processes (IMGEP). This framework
enables a unified description of various related algorithms that share several principles:
exploration is driven by self-generated goals, exploring towards a goal gives information
that can be reused to improve solutions for other goals, and intrinsic rewards can help
the construction and selection of goals. We provided a particular implementation
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of IMGEP that formalizes the Model Babbling algorithm described in the previous
chapter (Forestier and Oudeyer, 2016b), with spatial modularity: the agent generates
one goal space for each object in the environment, and population-based policies: the
agent explores a parameterized set of low-level policies.

The IMGEP framework is both compact and general. The goals are defined
through fitness functions and therefore can represent any kind of objective that can
be computed from the information stored and available to the agent. The policies
can be implemented by any algorithm that can learn a function that takes a goal as
input and outputs actions to explore this goal, such as a monolithic neural network
(Colas et al., 2018a) or a population-based policy (Forestier and Oudeyer, 2016b).

The architecture can also represent algorithms of the Novelty Search evolutionary
framework, which do not rely on optimizing an external objective but rather evolve a
set of solutions as diverse as possible. The Quality Diversity optimization framework
can also be framed as an IMGEP if we assume that the fitness function giving the
quality of individuals can be generated autonomously by the learner. Otherwise,
Quality Diversity implementations such as the use of the MAP-Elites algorithm to
learn the locomotion of a robot (Cully et al., 2015) can be seen as a Goal Exploration
Process (GEP) where goals built with expert knowledge are provided to the algorithm.

All those frameworks leverage the common principle that in order to avoid local
optima and find advanced behaviors or phenotypes, enough time should be allocated to
the continued exploration of non-optimal solutions, as interesting unexpected stepping-
stones could be discovered in the process and built upon afterwards, assuming a
description space expressive enough to capture them.

The IMGEP framework can be applied to diverse exploration/optimization prob-
lems, and is most useful when the stepping-stones or the targets are unknown to the
expert user or too complex such that they can’t easily be represented and optimized
as a fitness function. In that case the use of intrinsic motivations for the exploration
of goals can help discover a diverse set of solutions. The use of intrinsic rewards such
as based on the monitoring of the learning progress in achieving goals can further
improve the efficiency of exploration by focusing on the most interesting problems
and avoiding the ones that bring no more information.

A central application of this framework is the modeling of intrinsic motivations
in human learning. For instance, babies show goal-directed behaviors with objects
as early as 3-month old (Willatts, 1990). In chapter 3, we studied the behaviors
and motivations of 21-month-old babies in a tool-use experiment, and showed that
they are intrinsically motivated to explore diverse goals which often do not coincide
with the target goal expected and made salient by the experimenter. In chapter
4, we investigated how the particular implementations of intrinsic motivations to
self-generate goals and the representation of goals can play a role in the development of
tool-use skills in a robotic model. Of course, infants learn also a lot from their parents
in different ways. In chapter 5, we studied how a combination of intrinsically motivated
exploration of a robotic vocal tract and of the imitation of the sounds produced by a
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caregiver, that served as goals for imitation, could enable the development of speech
grounded in a naturalistic play scenario with a caregiver. It would be interesting
to study other ways to combine intrinsic motivations with external guidance in the
context of goal exploration, as caregivers could also guide learning towards useful
stepping-stones through direct input and feedback.

IMGEP has also been applied to the exploration of very different setups in other
scientific domains. In Grizou et al. (2019), an IMGEP implementation allowed to
discover a variety of droplet behaviors in a chemical system of self-propelling oil
droplets in water, where the exploration parameters were the concentrations of the
different components of the oil droplet among others. In yet another domain, Reinke
et al. (2019) showed that the IMGEP framework with a goal representation learned
online could find self-organized patterns in the complex morphogenetic system Lenia,
a continuous game-of-life cellular automaton.

In the next chapter, we evaluate several IMGEP implementations in different
setups such as a real tool-use robotic setup and a Minecraft tool-use environment.
We show that with IMGEP, an intrinsically-motivated humanoid robot discovers a
complex continuous high-dimensional environment and succeeds to explore and learn
from scratch that some objects can be used as tools to act on other objects.





Chapter 8

Experimental Study of IMGEP

Summary
In this chapter, we evaluate the IMGEP architecture in several high-dimensional
tool-use environments. The IMGEP architecture automatically generates a learning
curriculum within several experimental setups including a real humanoid robot that
can explore multiple spaces of goals with several hundred continuous dimensions.
While no particular target goal is provided to the system, this curriculum allows
the discovery of skills that act as stepping stone for learning more complex skills,
e.g. nested tool use. We show that learning diverse spaces of goals with intrinsic
motivations is more efficient for learning complex skills than only trying to learn
these skills (Forestier et al., 2017).
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In the previous chapter, we presented the Intrinsically Motivated Goal Exploration
Processes (IMGEP) architecture for the autonomous exploration of an environment
driven by self-generated goals and intrinsic rewards. In chapter 6, we obtained results
in simulation showing that a modular representation of goals improves the efficiency
of exploration, and that the use of intrinsic rewards based on the learning progress in
each goal space further improves exploration.

Here, we evaluate the IMGEP architecture in different tool-use environments with
more complex and realistic settings: a real humanoid robotic setup and a Minecraft
environment. These tool-use environments are interesting benchmarks for studying
the emergence of a learning curriculum as the agents can discover and explore objects
that can be used as tools to move other objects in complex high-dimensional settings.

We study the behaviors of agents in the different environments depending on the
learning architecture and the environment properties. We investigate in particular
the benefits of a modular representation of the sensory feedback with goals based
on objects, and how the exploration mutations can take into account the movement
of the target object. We also compare the exploration performances with control
conditions where the goals or the curriculum are hand-designed by an external user.

8.1 Tool-Use Environments

We design three tool-use environments. The first one is similar to the 2D simulated
environment of chapter 6: a robotic arm with 3 joints and a gripper that can grab
sticks and move toys. It is a simple environment with no physics and only 2D geometric
shapes so very fast to execute. The second environment is a Minecraft scene where
an agent is able to move, grab and use tools such as a pickaxe to break blocks. The
third one is a real robotic setup with a Torso robot moving its arm that can reach
joysticks controlling a toy robot. This setup has complex high-dimensional motor
and sensory spaces with noise both in the robot physical arm and in the interaction
between objects such as its hand and the joysticks. It is a high-dimensional and noisy
environment with a similar stepping-stone structure as the robotic environments but
with a completely different sensorimotor setup. The code of the different environments
and experiments is available on GitHub1.

8.1.1 2D Simulated Tool-Use Environment
In the 2D Simulated Environment (see Fig. 8.1), the learning agent controls a robotic
arm with a gripper, that can grab one of two sticks, one with a magnet at the end
and one with Velcro, that can themselves be used to move several magnets or Velcro
toys. Some other objects cannot be moved, they are called static distractors, and

1Code of the IMGEP experiments: https://github.com/sebastien-forestier/IMGEP

https://github.com/sebastien-forestier/IMGEP
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Figure 8.1: 2D Simulated Tool-Use Environment. A simulated robotic arm with a
gripper can grab sticks and move toys. The gripper has to close near the handle of
a stick to grab it. One magnetic toy and one Velcro toy are reachable with their
corresponding stick. Other toys cannot be moved (static or too far away). The cat
and the dog are distractors: they move randomly, independently of the arm.

finally a simulated cat and dog are randomly moving in the scene, they are random
distractors.

The 2D robotic arm has 3 joints that can rotate from ´π rad to π rad. The
length of the 3 segments of the arm are 0.5, 0.3 and 0.2 so the length of the arm
is 1 unit. The starting position of the arm is vertical with joints at position 0 rad
and its base is fixed at position p0, 0q. The gripper gr has 2 possible positions: open
(gr ě 0) and closed (gr ă 0). The robotic arm has 4 degrees of freedom represented
by a vector in r´1, 1s4.

Two sticks of length 0.5 can be grasped by the handle side (orange side) in order
to catch an out-of-reach object. The magnetic stick can catch magnetic objects (in
blue), and the other stick has a Velcro tape to catch Velcro objects (in green). If
the gripper closes near the handle of one stick, this stick is considered grasped and
follows the gripper’s position and the orientation of the arm’s last segment until the
gripper opens. If the other side of a stick reaches a matching object (magnetic or
Velcro), the object then follows the stick. There are three magnetic objects and three
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Figure 8.2: Minecraft Mountain Cart Environment created with Rémy Portelas. If
the agent manages to avoid falling into water holes it may retrieve and use a pickaxe
to break diamond blocks and access the cart. A shovel is also located in the arena
and serves as a controllable distractor.

Velcro objects, but only one of each type is reachable with its stick. A simulated cat
and dog are following a random walk, they have no interaction with the arm nor with
other object. Finally, four static black squares have also no interaction with other
objects. The arm, tools and other objects are reset to their initial state at the end of
each iteration of 50 steps.

The agent receives a sensory feedback representing the result of its actions. This
feedback (or outcome) is either composed of the position of each object at 5 time
points during the 50 steps trajectory, or just the end state of each object, depending
on the experiments. First, the hand is represented by its X and Y position and
the aperture of the gripper (1 or ´1). The sticks are represented by the X and Y
position of their tip. Similarly, each other object is represented by their X and Y
positions. Each of the 15 objects defines a sensory space Si. The total sensory space
S has either 155 dimensions if trajectories are represented, or 31 dimensions if only
the end state of each object is represented.
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8.1.2 Minecraft Mountain Cart
The Minecraft Mountain Cart (MMC) extends the famous Mountain Car control
benchmark in a 3D environment with a multi-goal setting (see Fig. 8.2). This
environment has been created with Rémy Portelas who I co-supervised, during his
internship and beginning of PhD.

In this episodic task, the agent starts on the left of the rectangular arena and is
given ten seconds (40 steps) to act on the environment using 2 continuous commands:
move and strafe, both using values in r´1; 1s. move(1) moves the agent forward at full
speed, move(-0.1) moves the agent slowly backward, etc. Similarly strafe(1) moves
the agent left at full speed and strafe(-0.1) moves it slowly to the right. Additionally,
a third binary action allows the agent to use the currently handled tool.

The first challenge of this environment is to learn how to navigate within the
arena’s boundaries without falling in water holes (from which the agent cannot get
out). Proper navigation might lead the agent to discover one of the two tools of the
environment: a shovel and a pickaxe. The former is of no use but the latter enables to
break diamond blocks located further ahead in the arena. A last possible interaction
is for the agent to get close enough to the cart to move it along its railroad. If given
enough speed, the cart is able to climb the left or right slope. The height and width
of these slopes were made in such a way that an agent simply hitting the cart at full
speed will not provide enough inertia for the cart to climb the slope. The agent must
at least partially support the cart along the track to propel it fast enough to fully
climb the slope.

The outcome of an episode is a vector composed of the end position of the agent
(2D), shovel (2D), pickaxe (2D), cart (1D) and 3 distractors (2D each) positions along
with a binary vector (5D) encoding the 5 diamond blocks’ states.

This environment is interesting to study modular IMGEP approaches since it is
composed of a set of linked tasks of increasing complexity. Exploring how to navigate
will help to discover the tools and, eventually, will allow to break blocks and move
the cart.

8.1.3 Robotic Tool-Use Environment
In order to benchmark different learning algorithms in a realistic robotic environment
with high-dimensional action and outcome spaces, we designed a real robotic setup
composed of a humanoid arm in front of joysticks that can be used as tools to act
on other objects (see Fig. 8.3). We recorded a video of an early version of the
experimental setup2.

A Poppy Torso robot (the learning agent) is mounted in front of two joysticks and
explores with its left arm. A Poppy Ergo robot (seen as a robotic toy) is controlled
by the right joystick and can push a ball that controls some lights and sounds. Poppy

2Early version of the experimental setup: https://youtu.be/NOLAwD4ZTW0

https://youtu.be/NOLAwD4ZTW0
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Figure 8.3: Robotic Tool-Use Environment. A Poppy Torso robot (the learning agent)
is mounted in front of two joysticks that can be used as tools to act on other objects:
a Poppy Ergo robotic toy and a ball that can produce light and sound.

is a robust and accessible open-source 3D printed robotic platform (Lapeyre et al.,
2014).

The left arm has 4 joints, with a hook at the tip of the arm. A trajectory of the
arm is here generated by radial basis functions with 5 parameters on each of the 4
degrees of freedom (20 parameters in total).

Two analogical joysticks (Ultrastick 360) can be reached by the left arm and
moved in any direction. The right joystick controls the Poppy Ergo robotic toy, and
the left joystick do not control any object. The Poppy Ergo robot has 6 motors, and
moves with hardwired synergies that allow control of rotational speed and radial
extension. A tennis ball is freely moving in the blue arena which is slightly sloped so
that the ball comes close to the center at the end of a movement. The speed of the
ball controls (above a threshold) the intensity of the light of a LED circle around the
arena. Finally, when the ball touches the border of the arena, a sound is produced
and varied in pitch depending on ball position.

Several other objects are included in the environment, with which the agent cannot
interact. Two simulated 2D objects are moving randomly, independently of the agent
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Figure 8.4: Six copies of the setup are running in parallel to gather more data. Some
Ergo robots are placed between robots: they act as distractors that move randomly,
independently of the agents.

(imagine a cat and a dog playing together), with a random walk. Six objects are static:
the right hand (3D) of the robot that is disabled in this experiment, the camera
recording the ball trajectory (3D), the blue circular arena (2D), an out-of-reach yellow
toy (2D), the red button also out-of-reach (2D) and the lamp (2D). All distractor
objects are reset after each roll-out.

The context c of this environment represents the current configuration of objects
in the scene. In practice, since only the Ergo and ball are not reset after each roll-out,
this amounts to measuring the rotation angle of the Ergo and of the ball around the
center of the arena.

The agent receives a sensory feedback representing the result of its actions. We
assume that there is a perceptual system providing the trajectories of all objects in
the scene. First, the 3D trajectory of the hand is computed through a forward model
of the arm as its x, y and z position. The 2D states of each joystick and of the Ergo
are read by sensors, and the position of the ball retrieved through the camera. The
states of the 1D intensity of the light and the 1D pitch of the sound are computed
from the ball position and speed. Each of the 15 objects defines a sensory space Si
representing its trajectory. The total sensory space S has 310 dimensions.
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8.2 Implementation of the IMGEP architecture
In the following subsections, we detail our implementation of the algorithmic parts of
the modular population-based IMGEP architecture (see architecture in chapter 7).

8.2.1 Motor Policy πθ

In the 2D Simulated environment and the Robotic environment, we implement the
motor policies with Radial Basis Functions (RBF). We define 5 Gaussian basis
functions with the same shape (σ “ 5 for a 50 steps trajectory in the 2D environment
and σ “ 3 for 30 steps in the Robotic environment) and with equally spaced centers
(see Fig. 8.5). The movement of each joint is the result of a weighted sum of the
product of 5 parameters and the 5 basis. The total vector θ has 20 parameters, in
both the 2D Simulated and the Robotic environment. In the 2D environment, the
fourth joint is a gripper that is considered open if its angle is positive and closed
otherwise.
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Figure 8.5: Implementation of motor policies πθ through Radial Basis Functions. (a)
5 Gaussian bases with different centers but same shape. (b) the movement of each
joint is the result of a weighted sum of the product of 5 parameters and the 5 basis.
The total vector θ has 20 parameters, in both the 2D Simulated and the Robotic
environment. In the 2D environment, the fourth joint is a gripper that is considered
open if its angle is positive and closed otherwise.

In the Minecraft Mountain Cart environment, trajectories are sampled in a closed-
loop fashion using neural networks. The observation vector has the same structure
as the outcome vector: it provides the current positions of all objects normalized in
r´1; 1s (18D). Each neural network is composed of one hidden layer of 64 relu units
and a 3D output with tanh activation functions. The 1411 policy parameters are
initialized using the initialization scheme of He et al. (2015).
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8.2.2 Temporal Modularity: Stepping-Stone Preserving Mu-
tations

When targeting a new goal g, the exploration meta-policy infers the best policy πθ
to reach the goal g and performs a mutation of θ in order to explore new policies.
The mutation operator could just add a random noise on the parameters θ, however,
those parameters do not all have the same influence on the execution of the policy.
In our implementations, the parameters are sequenced in time, with some parameters
influencing the beginning of the policy roll-out and some the end of the trajectory.
However, in the context of tool use, the reaching or grasping of a tool is necessary for
executing a subsequent action on an object. A random mutation of policy parameters
irrespective of the moment when the tool is grasped or the object is reached with the
tool results in an action sequence where the agent do not reach or grasp the tool and
thus cannot explore the corresponding object.

We design a Stepping-Stone Preserving Mutation operator (SSPMutation) that
analyzes the movement features of the target object while the best motor policy
πθ was previously run, to find the moment when the object started to move. The
operator does not change the variables of θ concerning the movement before the
object moved and modifies the variables of θ concerning the movement after the object
moved. When the goal of the agent is to move the tool and it already succeeded
to move the tool in the past with policy πθ, then the application of this mutation
operator changes the behavior of the agent only when the tool starts to move, which
ensures grasping the tool. Similarly, when the goal of the agent is to move a toy
controlled by a tool, the mutation changes the behavior only when the toy starts
to move, which makes the agent grasp the tool and reach the toy before exploring
new actions, so that the agent does not miss the tool nor the toy. The idea of this
stepping-stone preserving operator is similar to the Go-Explore approach (Ecoffet
et al., 2019).

The Stepping-Stone Preserving Mutation operator adds a Gaussian noise around
those values of θ in the 2D simulated environment (σ “ 0.05) and in Minecraft
Mountain Cart (σ “ 0.3), or adds the Gaussian noise around the previous motor
positions (in the robotic environment with joysticks). In the experimental section we
compare it to the FullMutation operator that adds a Gaussian noise to θ irrespective
of the moment when the target object moved.

8.2.3 Goal Space Policy Γ
The agent estimates its learning progress globally in each goal space (or for each model
learned). At each iteration, the context c is observed, a goal space k is chosen by Γ
and a random goal g is sampled by γk in Gk (corresponding to a fitness function fg).
Then, in 80% of the iterations, the agent uses Πεpθ | g, cq to generate with exploration
a policy θ and does not update its progress estimation. In the other 20%, it uses
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Π, without exploration, to generate θ and updates its learning progress estimation
in Gk, with the estimated progress in reaching g. To estimate the learning progress
ri made to reach the current goal g, the agent compares the outcome oτ with the
outcome o1τ obtained for the previous context and goal (g1, c1) most similar (Euclidean
distance) to (g, c): ri “ fgpτq´fgpτ

1q. Finally, Γ implements a non-stationary bandit
algorithm to sample goal spaces. The bandit keeps track of a running average rki of
the intrinsic rewards ri associated to the current goal space Pk. With probability
20%, it samples a random space Pk, and with probability 80%, the probability to
sample Pk is proportional to rki in the 2D Simulated and Minecraft environments, or
expp

rk
i

ř

kpr
k
i q
q if rki ą 0 and 0 otherwise, in the Robotic environment.

8.2.4 Control Conditions
We design several control conditions to understand the influence of each component
of the IMGEP architecture. In the Random Model Babbling (RMB) condition, the
choice of goal space (or model to train) is random: Γpk | cq, and γkpg | cq for each k
are always uniform distributions. Agents in the Single Goal Space (SGS) condition
always choose the same goal space, of high interest to the engineer: the magnet toy
in the 2D Simulated environment, and the ball in the robotic environment. The
Fixed Curriculum (FC) condition defines Γ as a curriculum sequence engineered by
hand: the agents explore objects in a sequence from the easiest to discover to the
most complex object while ignoring distractors. The conditions SGS and FC are thus
extrinsically motivated controls. We define the Flat Random Goal Babbling (FRGB)
condition with a single outcome/goal space containing all the variables of all objects,
to compare modular and non-modular representations of the environment. The
agents in this condition choose random goals in this space, and use the FullMutation
operator. Finally, agents in the Random condition always choose random motor
policies θ.

8.3 Results
In this section we show the results of several experiments with the three environments
and the different learning conditions. We first study in details the Active Model
Babbling (AMB) learning algorithm, a modular implementation of the IMGEP
architecture. Then, in order to understand the contribution of the different components
of this learning algorithm, we compare it to several controls (or ablations): without a
modular representation of goals, without the goal sampling based on learning progress,
or without the stepping-stone preserving mutation operator. In those experiments,
goals are sampled in spaces representing the sensory feedback from the environment.
We thus compare several possible encodings of the feedback: with the trajectory of
each object or with only the end point of the trajectories. We included distractors
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Rdm SGS Flat RMB AMB FC
2D Simu

Env
M. Tool 0,0,0 0,0,0 8.0,11,13 33,36,39 57,61,65 61,67,70
M. Toy 0,0,0 0,0,0 0,0,0 0,0,5.0 0,3.0,16 0,3.0,19

Minecraft
Mountain

Cart

XY 28,29,30 29,29,30 34,36,40 48,50,54 55,58,61 59,63,67
Shovel 5,5,6 5,6,7 8,11,13 25,27,30 32,34,37 34,37,42

Pickaxe 6,6,7 6,7,8 11,15,19 33,35,39 41,45,48 43,51,61
Blocks 3,3,3 3,3,3 3,11,19 69,77,84 73,84,93 100,100,100
Cart 0,0,0 0,0,0 0,0,1 5,162,409 56,360,886 386,787,1207

Robotic
Env

Hand 24,24,25 18,19,20 20,21,22 22,24,25 22,23,24 21,22,23
L. Joy. 4.2,4.7,5.9 1.9,3.3,4.6 0.1,0.1,0.3 15,18,19 20,22,26 23,26,29
R. Joy. 0.6,0.9,1.0 0.3,0.4,0.5 0,0,0 10,11,13 16,18,22 15,17,18
Ergo 0.2,0.3,0.4 0.1,0.1,0.2 0,0,0 1.2,1.5,1.7 1.5,1.7,1.8 1.7,1.7,1.9
Ball 0,0,0.1 0,0,0 0,0,0 0.8,1.0,1.0 0.9,1.1,1.2 0.9,0.9,1.0

Light 0.1,0.1,0.1 0.1,0.2,0.2 0.1,0.1,0.1 0.8,1.8,3.0 2.0,3.6,4.9 1.8,2.2,3.7
Sound 0.1,0.1,0.1 0.1,0.1,0.1 0.1,0.1,0.1 0.8,1.1,2.6 1.7,2.8,3.6 1.2,1.6,2.3

Table 8.1: Summary of the exploration result at the end of the runs, in all conditions in all
spaces of all environments. We give the 25, 50 and 75 percentiles of the exploration result
of all seeds. The exploration measures the percentage of reached cells in a discretization of
each goal space. The best condition in each space is highlighted in bold, based on Welch’s
t-tests (with threshold p ă 0.05): if several conditions are not significantly different, they
are all highlighted. In the 2D Simulated environment, there are 100 seeds for each condition,
and the exploration measures the number of cells reached in a discretization of the 2D
space of the end position of each object with 100 bins on each dimension. In the Minecraft
environment, there are 20 runs with different seeds for condition Random, SGS, FRGB, FC
and 42 for AMB and RMB. The exploration metric for the agent, pickaxe and shovel spaces
is the number of reached cells in a discretization of the 2D space in 450 bins (15 on the
x axis, 30 on the y axis). The same measure is used for the block space, which is already
discrete and has 32 possible combinations. For the cart space we measure exploration as
the number of different outcomes reached. In the Robotic environment, there are 6 runs
with different seeds for condition SGS, 8 for FRGB, 16 for RMB, 23 for AMB, 12 for FC
and 6 for Random, and the exploration also measures the number of cells reached in a
discretization of the space of the end position of each object with 1000 bins in 1D, 100 bins
on each dimension in 2D, and 20 bins on each dimension in 3D.
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(a) 2D Simulated Environment (b) Minecraft Mountain Cart (c) Robotic Environment

Figure 8.6: Examples of exploration map of one IMGEP agent in each environment.
(a) in the 2D Simulated Environment, we plot the position of the reachable magnet
toy at the end of each iteration with a blue point, and the Velcro toy in green. (b)
in Minecraft Mountain Cart we plot the end position of the agent, the agent with
pickaxe, the agent with shovel, and the cart. (c) in the Robotic environment, the
position of the ball is plotted when it moved in the arena.

that cannot be controlled by the learning agent in the three tool-use environments.
We also test the learning conditions with and without distractors to evaluate their
robustness to distractors. A summary of the exploration efficiency of all agents in all
environments is provided in Table 8.1 together with additional details.

8.3.1 Intrinsically Motivated Goal Exploration
Here we study in detail the Active Model Babbling (AMB) learning algorithm. AMB
agents encode the sensory feedback about objects with a modular representation: each
object is associated with one independent learning module. At each iteration, they
first select an object to explore, then a particular goal to reach for this object. They
execute a motor policy to reach this goal, and observe the outcome. The selection of
the object to explore is based on a self-estimation of the learning progress made to
move each object according to chosen goals. The AMB algorithm is thus a modular
implementation of the IMGEP architecture.

Exploration Maps

We first plot examples of exploration results as cumulative exploration maps, one per
environment. Those maps show all the positions where one AMB agent succeeded to
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move objects.
Fig. 8.6(a) shows the position of the reachable toys of the 2D simulated en-

vironment at the end of each iteration in one trial of intrinsically motivated goal
exploration. The reachable area for those two toys is the inside the circle of radius 1.5
and center 0. We can see that in 100k iterations, the agent succeeded to transport the
toys in many places in this area. The experiments with other seeds are very similar.
Fig. 8.6(b) shows an exploration map of a typical run in Minecraft Mountain Cart
after 40k iterations. As you can see the agent successfully managed to (1) navigate
within the arena boundaries, (2) move the pickaxe and shovel, (3) use the pickaxe to
break blocks and (4) move the cart located behind these blocks. An example in the
robotic environment is shown in Fig. 8.6(c) where we plot the position of the ball
when it moved in the first 10k iterations of the exploration of one agent.

Overall, they show that IMGEP agents discovered how to use the different tools in
each environment within the time limit: the sticks to grab the toys in the 2D simulated
environment, the pickaxe to mine blocks to reach the cart in Minecraft Mountain
Cart, the joysticks to move the toy and push the ball in the robotic experiment.

Discoveries

In order to understand the tool-use structure of the exploration problem in each
environment, we can look in more details how agents succeeded to move objects while
exploring other objects. Indeed, to the agents starting to explore, tools are objects
like any other object (e.g. the hand, the stick and the ball have the same status).
However, if a tool needs to be used to move another object, then this tool will be
discovered before that object, so the exploration of this tool is a stepping-stone giving
more chances to discover novelty with that object than the exploration of any other
object. To quantify these dependencies between objects in our tool-use environments,
we show the proportion of movements where an object of interest has been moved
depending on the currently explored object.

Concerning the 2D simulated environment, Fig. 8.7 shows the proportion of the
iterations with a goal in a given space that allowed to move (a) the magnet tool, (b)
the magnet toy, in 10 runs with different seeds. First, random movements of the arm
have almost zero chances to reach the magnet tool or toy. Exploring movements of
the hand however have about 1.5% chances to move the magnet tool, but still almost
zero chances to reach the toy. Exploring the magnet tool makes this tool move in
about 93% of the iterations, and makes the toy move in about 0.1% of movements.
Finally, exploring the toy makes the tool and the toy move with a high probability as
soon as the toy was discovered. Those results illustrate the stepping-stone structure
of this environment, where each object must be well explored in order to discover the
next step in complexity (Hand Ñ Tool Ñ Toy).

In Minecraft Mountain Cart (see Fig. 8.7(c,d,e)), random exploration with neural
networks in this environment is extremely challenging. An agent following random
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Figure 8.7: Stepping-stone structure of the three environments. In the 2D Simulated
environment, we show the proportion of iterations that allowed to (a) move the magnet
tool, (b) move the magnet toy, depending on the currently explored goal space (or random
movements), for 10 IMGEP agents. The fastest way to discover the tool is to explore
the hand and to discover the toy is to explore the tool. In the Minecraft Mountain Cart
environment, we show the proportion of iterations that allowed to (c) move the pickaxe,
(d) mine diamond blocks, and (e) move the cart, depending on the currently explored goal
space (or random movements), for 10 agents with different seeds. Exploring the agent space
helps discover the pickaxe, exploring the pickaxe helps discover the blocks, and exploring
the blocks helps discover the cart. In the Robotic environment, we show the proportion of
iterations that allowed to (f) reach the left joystick, (g) reach the right joystick, and (h) move
the Ergo robot, depending on the currently explored goal space (or random movements),
averaged for 11 IMGEP agents with different seeds. Exploring random movements or the
Hand space helps discover the left joystick, exploring the left joystick helps discover the
right one, which helps discover the Ergo toy.
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policies has 0.04% chances to discover the pickaxe, 0.00025% chances to break a single
block and it never managed to move the cart (over 800k episodes). IMGEP agents
reach better performances by leveraging the sequential nature of the environment:
when exploring the agent space there is around 10% chances to discover the pickaxe,
and exploring the pickaxe space has around 1% chances to break blocks. Finally,
exploring the block space has about 8% chances to lead an agent to discover the cart.

In the Robotic environment, a similar stepping-stone exploration structure is
displayed (see Fig. 8.7(f,g,h)): in order to discover the left joystick, the robots needs
to do random movements with its arm, which have about 2.9% chances to makes the
left joystick move, or explore its hand (0.2% chance). To discover the right joystick,
the agent has to explore the left joystick, which gives a probability of 3.3% to reach
the right one. To discover the Ergo (the white robotic toy in the center of the blue
arena), the exploration of the right joystick gives 23% chances to move it, whereas
the exploration of the Hand, the left joystick or random movements has a very low
probability to make it move.

Learned Skills

In Minecraft Mountain Cart we performed post-training tests of competence in
addition of exploration measures. Using modular approaches allows to easily test
competence on specific objects of the environment. Fig. 8.8(b) shows an example in
the cart space for an AMB agent. This agent successfully learned to move the cart
close to the 5 queried locations.

For each of the RMB, AMB and FC runs we performed a statistical analysis of
competence in the cart and pickaxe spaces using 1000 and 800 uniformly generated
goals, respectively. We were also able to test SGS trials for cart competence as this
condition has the cart as goal space. A goal is considered reached if the Euclidean
distance between the outcome and the goal is lower than 0.05 in the normalized space
(in range r´1, 1s) for each object. Since the pickaxe goal space is loosely defined as
a rectangular area around the environment’s arena, many goals are not reachable.
Results are shown in Table 8.2. SGS agents never managed to move the cart for any
of the given goals. AMB appears to be significantly better than RMB on the pickaxe
space (p ă 0.01 on Welch’s t-tests). However it is not in the cart space (p “ 0.09),
which might be due to the stochasticity of the environment. FC is not significantly
better than AMB on the cart and pickaxe spaces.

Intrinsic Rewards based on Learning Progress

The IMGEP agents self-evaluate their learning progress to control each object. When
they choose a goal for an object, they monitor what is the actual movement given
to the object and compare it to the goal. If the distance between the goals and the
actual reached movements decrease over time on average, this tells the agents it is
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(a) Agent moving the cart

Railtrack
Goal
Outcome

(b) 5 cart goals

Figure 8.8: Example of learned skills in the Minecraft Mountain Cart. (a) One AMB
agent’s trajectory for a single cart goal. (b) Five final cart positions reached by
an AMB agent when tasked to reach five different targets. This agent successfully
learned to push the cart along the track.

making progress to control this object. This signal is used as an intrinsic reward
signal that the agent will seek to maximize by choosing to explore objects that yield
a high learning progress. We can analyze this signal to understand at which point
the agent perceived progress to control each object and how its exploration behavior
changed over time.

Fig. 8.9 (top) shows the intrinsic rewards of two agents (different seeds) to explore
each object in the 2D simulated environment, computed by the agents as the average
of intrinsic rewards based on learning progress to move each object. We can see that
the intrinsic reward of the hand increases first as it is the easiest object to move.
Then, when the sticks are discovered, the agents start to make progress to move them
in many directions. Similarly, while exploring the sticks, they discover the reachable
toys, so they start making progress in moving those toys. However, the static objects
can’t be moved so their learning progress is strictly zero, and the objects moving
randomly independently of the agent (cat and dog) have a very low progress.

Fig. 8.9 (middle) shows the intrinsic reward of two agents in the Minecraft Mountain
Cart environment. Both agents first explore the simpler agent space and then quickly
improves on the shovel and pickaxe spaces. Exploring the pickaxe space leads to
discover how to progress in the block space. Finally, after some progress in the block



8.3. Results 191

Pickaxe goals Cart goals
FC 39,49,55 12,17,25
AMB 41,45,49 8,11,18
RMB 37,40,43 6,9,15
SGS N/A 0,0,0

Table 8.2: Competence results in Minecraft Mountain Cart. We give the 25, 50 and
75 percentiles of the competence result of all seeds.

space, the cart is discovered after 14k episodes for the first agent (left figure) and
26k episodes for the other (right figure). The 3 distracting flowers have an interest
strictly equal to zero in both runs.

Fig. 8.9 (bottom) shows the intrinsic reward of two agents in the Robotic environ-
ment. The first interesting object is the robot’s hand, followed by the left joystick
and then the right joystick. The left joystick is the easiest to reach and move so it
gets interesting before the right one in most runs, but then they have similar learning
progress curves. However, the right joystick can be used as a tool to control other
objects, so that one will be touched more often. Then, the agent can discover the
Ergo and Ball while exploring the joysticks. Finally, some agents also discover that
the ball can be used to make light or sound. Here also, the progress of static objects
is zero and the one of random objects is low.

Overall, the evolution of those interests show that evaluating the learning progress
to move objects allows agents to self-organize a learning curriculum focusing on the
objects currently yielding the most progress and to discover stepping stones one after
the other.

8.3.2 Influence of Goal Modularity
In this section, we study several algorithms with a different goal space structure in
order to evaluate the influence of the modularity of the goal space. We compare
the Active Model Babbling condition to other conditions. In the Flat Random Goal
Babbling (FRGB) condition, the goal space is not modular and contains all variables
of all objects. With this non-modular sensory representation, agents choose goals
in the whole sensory space, which corresponds to all objects: a goal could mean for
instance push toy1 to the left and toy2 to the right at the same time, which might
be unfeasible. This exploration dynamics results in exploring the most diverse global
sensory states, which is akin to novelty search algorithms (Lehman and Stanley,
2011a). We also test the Random control where agents always choose random actions.

In the 2D simulated environment, we run 100 trials of each condition with different
random seeds. We measure the exploration of one stick and its corresponding toy
as the cumulative number of reached cells in a discretization of the 2D space of the
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Figure 8.9: Examples of intrinsic rewards in the three environments. In the 2D Simulated
environment (top), agents are first interested in exploring their hand as this is the only
object they manage to move, until they discover one of the sticks. Then they make progress
to move the stick, so the intrinsic reward for moving the stick increases and they focus on
it, and then on the other objects they discover: the other stick and the two toys. They
make no progress to move the distractors so those intrinsic reward are always zero. In the
Robotic environment (middle), agents first succeed to move their hand, so they focus on
this object at the beginning, until they discover the joysticks. The exploration of the right
joystick makes them discover the Ergo toy, which can push the Ball. Some agents also
discover how to produce light and sound with the Ball. Agents have a low intrinsic reward
for exploring random distractors. In Minecraft Mountain Cart (bottom), agents first focus
on exploring the space of their position until they discover the shovel or the pickaxe and
start making progress to move them. When they discover how to mine blocks with the
pickaxe and to push the cart, they make progress in those goal spaces, get intrinsic rewards
and thus focus more on these.
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Figure 8.10: Influence of Goal Modularity on exploration in the 2D simulated environ-
ment. The agents using a modular representation (Active Model Babbling) explore
much better the tool and toy spaces than agents with a flat representation (Flat
Random Goal Babbling). Control agents always choosing completely random actions
do not manage to touch a toy with the stick.

position of each objects at the end of movements. Fig. 8.10 shows the evolution
of the exploration of the stick and the toy in the 100 trials of each condition. We
plot in bold the median over the 100 trials in each condition. We can see that the
modularity of the goal space helps exploration: the median exploration after 100k
iterations is about 60% of the magnet tool space for condition AMB vs about 10% for
condition FRGB. The agents in condition AMB succeeded to reach the magnet toy,
with a substantial variance between the 100 trials. Some AMB agents explored very
well the magnet toy (up to 60%) and some did not (very low exploration). Finally,
completely random agents did not even manage to explore the magnet tool.

Fig. 8.12 shows exploration results in the Minecraft Mountain Cart environment
for 20 trials of all conditions except for AMB and RMB which were run 42 times.
When looking at the median exploration in the pickaxe space, FRGB does not manage
to reach more than 15% exploration when AMB and RMB reached 45% and 35%,
respectively. Modular approaches significantly outperform FRGB across all goal
spaces (Welch’s t-tests at 40k iterations, p ă 0.001). Random agents did not manage
to explore the block and cart spaces.

In the robotic environment (see Fig. 8.13), agents with the flat (intricate) rep-
resentation of the sensory feedback (FRGB) do not explore objects other than the
hand.

The modular representation of the sensory space thus greatly improves exploration
efficiency compared to a flat intricate representation of the whole sensory feedback,
as it allows to consider the different objects independently to monitor their behavior
and select disentangled goals.
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Figure 8.11: Influence of curriculum learning on exploration in the 2D Simulated
environment. Agents self-organizing their curriculum (Active Model Babbling) based
on their learning progress explore better than agents choosing to explore random
objects (Random Model Babbling) or agents choosing always to explore the magnet
toy (Single Goal Space). Agents with a hard-coded curriculum learning sequence
from the simpler objects to the most complex have similar exploration results than
autonomous AMB agents after 100k iterations.

8.3.3 Curriculum Learning

A modular sensory representation based on objects allows AMB agents to self-monitor
their learning progress to control each object, and to accordingly explore objects
with high learning progress. Here, we compare several variants of agents with a
modular sensory representation based on objects, but with a different choice of object
to explore. To evaluate the efficiency of the sampling based on learning progress,
we define condition Random Model Babbling (RMB), where agents always choose
objects to explore at random. The sampling based on learning progress of AMB
agents makes agents explore any object that shows learning progress, and ignore
objects that do not move, are fully predictable, or move independently of the agent.
However if we are only interested in a particular complex skill that we want the agent
to learn, such as moving the ball in the robotic environment, then it is not obvious if
supervising learning by specifying a curriculum targeted at this skill can accelerate
the learning of this skill. We thus define two control conditions with a hand-designed
curriculum. In condition Single Goal Space (SGS), agents always choose goals for the
same complex target object: the magnet toy in the 2D simulated environment, the
cart in Minecraft Mountain Cart, or the ball in the robotic environment. In condition
Fixed Curriculum (FC), a particular sequence of exploration is specified, from the
easier stepping-stones to the more complex ones. In the 2D simulated environment,
the agent samples goals for 20k iterations on each object in this order: hand, magnet
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Figure 8.12: Exploration results in Minecraft Mountain Cart. Modular approaches
(AMB and RMB) performs significantly better than the flat (F-RGB) approach.
Agents actively generating their curriculum (AMB) perform better overall than agents
choosing goal spaces randomly (RMB). Focusing on the cart space (SGS) is equivalent
to performing random policies (Random). For the agent, pickaxe and shovel spaces,
exploration is measured as the cumulative number of reached cells in a discretization
of the 2D space. For the block and cart spaces we measure the number of unique
outcomes reached.

tool, magnet toy, Velcro tool, Velcro toy. In the robotic environment, we define the
sequence as the following: hand, left joystick, right joystick, ergo, ball, light and
sound.

Fig. 8.11 shows the exploration evolution in the 2D simulated environment. First,
we can see that the sampling based on learning progress (AMB) helps exploration
of the tool and the toy compared to the random choice of object to explore (RMB):
62% vs 37% for the tool and 3.3% vs 0.5% for the toy. Agents in the SGS condition
did not manage to explore the tool and the toy. Agents with a predefined curriculum
succeeded to explore the tool and the toy very well, the tool between 20k and 40k
iterations and the toy between 40k and 60k iterations, with a median slightly better
than in AMB.

Fig. 8.12 shows the evolution of exploration in Minecraft Mountain Cart. Agents
focusing their goal sampling on the cart space (SGS) have low performances across all
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Figure 8.13: Exploration results in the Robotic environment. Agents self-organizing
their curriculum (Active Model Babbling) based on their learning progress explore
better than agents choosing random objects (Random Model Babbling) in the joysticks,
ball, light and sound spaces, and better than agents with a hard-coded curriculum
sequence (FC) in the right joystick and sound spaces. Agents always choosing to
explore the ball (Single Goal Space) and agents without a modular representation of
goals (FRGB) have low exploration results in all spaces.
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goal spaces, especially for the cart and block spaces which are never discovered. Agents
using learning progress sampling (AMB) explored significantly more than random
sampling agents (RMB) across all goal spaces (Welch’s t-tests at 40k iterations,
p ă 0.04). Agents following a hard-coded curriculum (FC) reached higher median
performances than AMB agents on every goal spaces.

Fig. 8.13 shows exploration results in the robotic environment. Agents self-
organizing their curriculum (Active Model Babbling) based on their learning progress
explore better than agents choosing random objects (Random Model Babbling) in the
joysticks, ball, light and sound spaces (Welch’s t-tests at 100k iterations, p ă 0.05),
and better than agents with a hard-coded curriculum sequence (FC) in the right
joystick and sound spaces. Agents always choosing to explore the ball (SGS) and
agents without a modular representation of goals (FRGB) have low exploration results
in all spaces.

Overall, the goal sampling based on learning progress (AMB) improves exploration
of most objects of each environment compared to a random choice of object (RMB),
as those agents focus on objects that are learnable, ignore the distractor objects and
reduce the relative interest of objects already explored for some time. Specifying the
curriculum by hand results in a very bad exploration if the agent always directly
focuses on an object hard to discover, however if we carefully design the learning
sequence given our knowledge of the task, then the final exploration results are similar
to autonomous AMB agents.

8.3.4 Influence of the Modularity of Exploration Mutations
The efficiency of the Stepping-Stone Preserving Mutation operator (SSPMutation,
see Sec. 8.2.2) relies on its ability to preserve the part of the movement that reaches
a stepping-stone in the environment, and explore only after the target object started
to move in the previous movement being mutated. For instance, the movement would
grab the tool without modification, and explore once the controlled toy started to
move. To illustrate this mechanism, let us look at actual mutations depending on
the mutation operator. Fig. 8.14 shows one movement that reached the magnet tool
together with one mutation of this movement, for each mutation operator. The red
trajectories are the traces of the gripper (with a circle when open and a point when
closed), and the blue trajectories are the traces of the magnet stick. We also plot
the initial position of the arm and the magnet stick. We see that in the case of the
SSPMutation operator, the two red trajectories start to diverge only when the stick
is grasped such that the mutated movement also grasps the stick, whereas with the
FullMutation, the mutation starts right from the beginning of the movement, which
in this case makes the mutated movement miss the stick.

We measure how many times the agents succeed to move a tool when they are
exploring it, or to move a toy when they are exploring the toy, depending on the
mutation operator. Fig. 8.15 shows the proportion of the iterations that allowed to
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Figure 8.14: Example of a mutation of a movement reaching the tool, for each
mutation operator. With the SSPMutation operator, the two gripper trajectories
start to diverge only when the stick is grasped such that the mutated movement also
grasps the stick, whereas with the FullMutation, the mutation starts right from the
beginning of the movement, which in this case makes the mutated movement miss
the stick.

(a) move the magnet tool when this tool is the goal object, (b) move the magnet
toy when this toy is the target object, with 50 different runs in the 2D simulated
environment (individual runs and median). We can see that with the FullMutation
operator, at the end of the runs agents succeed to move the tool in 7% of iterations
targeted at exploring this tool, versus 95% for the SSPMutation operator, and to
move the toy in 0.9% of iterations targeted at exploring this toy versus 53%.

The ability of SSPMutation to explore while still moving the target object with
a high probability directly improves exploration. Fig. 8.16 shows the exploration
results of AMB agents with the SSPMutation or FullMutation operators in the 2D
simulated environment in 100 runs with different seeds. The exploration results of the
FullMutation operator are much lower for the magnet tool (median 13% vs 62%)
and magnet toy (median 0% vs 3%, max 0.5% vs 60%).

8.3.5 Encoding of Goals

After executing a movement, the agent receives a sensory feedback containing infor-
mation about the movement of objects in the environment. The agent then uses the
sensory space as an encoding for sampling new goals to reach. In the 2D simulated
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Figure 8.15: Comparison of the SSPMutation and FullMutation mutation operators.
We show the proportion of iterations that allowed to (a) move the magnet tool while
exploring this tool, and (b) move the magnet toy while exploring this toy, with 50
different seeds and median. With the FullMutation operator, at the end of the runs
agents succeed to move the tool in 7% of iterations versus 95% for the SSPMutation
operator, and to move the toy in 0.9% of iterations versus 53%.
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Figure 8.16: Exploration efficiency depending on the mutation operator.
FullMutation results in a much lower exploration for the magnet tool and toy
compared to the stepping-stone preserving operator.
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environment, we defined the sensory feedback as the position of each object at the
end of the movement. In the robotic environment, as the joysticks may move during
the movement but come back by themselves at their rest position, we used a sensory
feedback containing information about the whole trajectory of objects as the sequence
of their position at 5 time steps during the movement. In this section, we study
the influence of the goal encoding on exploration efficiency in the 2D simulated
environment.

Fig. 8.17 shows the exploration evolution of AMB agents depending on the
encoding of goals: with object trajectories or end points, in the 2D simulated
environment. The exploration is a measure of the proportion of cells reached in a
discretization of the space of the last position of each object. The encoding with
the end position of each object resulted in a slightly better exploration than with
trajectories for the magnet tool, and a similar median for the magnet toy but with
more variance: with standard deviation of 17% vs 8.6% at 100k iterations for the
magnet toy. The trajectory encoding represents the whole trajectory of each object
instead of the final point only. This is not strictly needed to represent if a tool or a
toy has moved in this environment so the end point encoding may be more efficient
once the objects are discovered, however the trajectory encoding helps to explore
trajectories with more diversity, for the hand or other objects, and thus to discover
hard objects in the first hand. With the trajectory encoding, the exploration of
objects difficult to move the first time is thus slower once discovered, but they are
more often discovered.

Fig. 8.18 shows examples of interest curves with the goal encoding using trajec-
tories of objects. As the goal spaces are of much larger dimensionality using the
object trajectories than with the end position, it takes a longer time to cover the
whole sensory space with reached trajectories such that the self-computed interest to
explore the hand is higher than with end positions (comparing with Fig. 8.9(top))
and the interest in all spaces takes more time to decrease.

The trajectory encoding is more interesting in environments where the full trajec-
tory of a tool is of importance to control an object, such as in our robotic environment
where joysticks come back at their rest position by themselves such that their end
position is not informative to predict the end position of the controlled object. We
thus use this trajectory encoding in the robotic environment, but we use the end
point encoding in the Minecraft Mountain Cart environment.

8.3.6 Static and Random Distractors
In the three tool-use environments, we included distractor objects to harden explo-
ration as those objects can’t be controlled by the agent but are however part of their
sensory feedback: some of them are static, and some of them move independently of
the agent. The Active Model Babbling agents monitor their learning progress to move
objects, such that their estimation of their progress to move static object is zero, and



8.3. Results 201

20000 40000 60000 80000 100000
Iterations

0

10

20

30

40

50

60

70

Ex
pl

or
at

io
n 

%

(a) Magnet Tool

20000 40000 60000 80000 100000
Iterations

0

10

20

30

40

50

60

Ex
pl

or
at

io
n 

%

End Point
Trajectories

(b) Magnet Toy

Figure 8.17: Exploration in 2D simulated environment depending on the goal encoding.
The encoding with the end position of objects resulted in a slightly better exploration
than with trajectories for the magnet tool, and a similar median for the magnet toy
but with more variance: standard deviation of 17% vs 8.6% at 100k iterations for the
magnet toy.
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Figure 8.18: Examples of intrinsic rewards in the 2D simulated environment, with an
encoding of goals as object trajectories. The sensory spaces are higher-dimensional
and take more iterations to be well covered such that the learning progress decreases.



202 Chapter 8. Experimental Study of IMGEP

20000 40000 60000 80000 100000
Iterations

0

10

20

30

40

50

60

70

Ex
pl

or
at

io
n 

%

(a) Magnet Tool

20000 40000 60000 80000 100000
Iterations

0

5

10

15

20

Ex
pl

or
at

io
n 

%

RMB, No Distractors
AMB, No Distractors
RMB, Distractors
AMB, Distractors

(b) Magnet Toy

Figure 8.19: Exploration efficiency of Active Model Babbling and Random Model
Babbling depending on the presence of distractors in the 2D Simulated environment.
The median of 100 runs is plotted together with a shaded area representing the 25-75
percentiles. The efficiency of RMB agents decreases when we add distractors, whereas
AMB agents, through their self-estimation of their learning progress to move each
object, focus on learnable objects despite having distractors in the environment.

to move other uncontrollable objects is low compared to controllable objects. Here
we evaluate the exploration efficiency of AMB and RMB agents in the 2D simulated
environment in the presence and absence of distractors to evaluate their robustness
to distractors.

Fig 8.19 shows the exploration results depending on the learning condition (RMB vs
AMB) and environment condition: with 2 random distractors and 8 static distractors
(Distractors) vs without distractors (No Distractors), in the magnet tool and toy
spaces (median and 25/75 percentiles of 100 seeds). The RMB agents show a similar
exploration without distractors compared to AMB agents. However, we can see that
the RMB agents do not cope with distractors while AMB agents do not show a
significant decrease in exploration when distractors are added. The learning progress
monitoring is thus an efficient mean to discriminate learnable objects from other
objects and thus to focus exploration by choosing most goals for learnable objects.

8.4 Discussion

In this chapter, we evaluated different implementations of Intrinsically Motivated
Goal Exploration Processes in three tool-use environments: a 2D simulation, a robotic
setup and a Minecraft environment. We designed the first real robotic experiment
where an intrinsically-motivated humanoid robot discovers a complex continuous high-
dimensional environment and succeeds to explore and learn from scratch that some
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objects can be used as tools to act on other objects. We also created the Minecraft
Mountain Cart environment, where the first intrinsically motivated Minecraft agent
learned to use a pickaxe to mine blocks. The IMGEP architecture automatically
generated a learning curriculum in the three experimental setups, including a real
humanoid robot that can explore multiple spaces of goals with several hundred
continuous dimensions. While no particular target goal is provided to the system,
this curriculum allows the discovery of skills that act as stepping stones for learning
more complex skills, e.g. nested tool use.

Our results show that the algorithms that make use of the modularity of the
sensory space based on the objects in the environment explore much better than the
agents that use a global representation of all objects (Flat). Furthermore, when the
agent monitors its learning progress with intrinsic rewards (AMB), it autonomously
develops a learning sequence, or curriculum, from the easiest to the most complex
tasks. With those intrinsic rewards (AMB), agents explore more efficiently than
without (RMB) when the environment contains objects with different interests for
learning, such as some controllable objects and some distractors. Also, the comparison
between agents only exploring one problem space set by the user (SGS) versus all
spaces (AMB) shows that if an engineer were to specify the target problems to solve
(e.g. move the ball), then it would be more efficient to also explore all other possible
intrinsic goals to develop new skills (control the joysticks) that can serve as stepping
stones to solve the target problems. Agents with intrinsic rewards were developing
an autonomous learning curriculum, with a focus on the simplest objects at the
beginning, shifting towards the more complex when the progress is high enough, while
ignoring the non-controllable objects. In the 2D simulation and the real robotic setup,
this algorithm (AMB) was as good as the condition where an expert curriculum was
hard-coded (FC) from the simplest to the most complex objects and ignoring the
non-controllable ones. It was almost as good as FC in the Minecraft environment.

In chapter 6, the exploratory mutations were performed by the policy Πε by adding
a Gaussian noise on the parameters θ of a low-level motor policy, which had the
effect of modifying the full motor trajectory. However, when exploring movements
that use a tool to control a toy, modifying the part of the movement where the tool
is grasped results in many chances to miss the tool. In this chapter, we studied
the Stepping-Stone Preserving Mutation operator, that mutates the movement only
from the moment when the target object starts to move. This led to much better
exploration performances in the 2D simulation so we used this mechanism in the
robotic environment and in Minecraft Mountain Cart. The results in this chapter
thus complement and extend the previous experiments presented in chapter 6, with
more diverse tool-use setups including a real robotic setup, more efficient exploratory
mutations. However, we did not study here alternative inverse models, we used
the simple Nearest Neighbor lookup, but we could implement more sophisticated
regressions such as LWLR as we showed they could be more efficient once enough
data is gathered. In order to investigate the diversity of the exploration databases,
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we used them to reach extrinsic goals in the Minecraft environment. We left this
study in the other environments for future work.

Like in chapter 6, our Active Model Babbling implementation chooses the object
to explore based on the learning progress to control the objects, and the particular
goal for that object is chosen randomly. A more sophisticated choice of goal based on
learning progress could be implemented as in the SAGG-RIAC algorithm of Baranes
and Oudeyer (2010a). We could also evaluate intrinsic rewards based on a combination
of novelty and learning progress instead of learning progress alone, as when a novel
object is moved, it can take some time before any progress is made while taking into
account its novelty could help bootstrap its learning. It would also be interesting to
compare the IMGEP approach to Novelty Search and Quality Diversity approaches
in those environments, to understand the particular functioning and benefits of each
in driving exploration of tool-use stepping stones.

A current limitation of our setup is that we suppose agents already have a
perceptual system allowing them to see and track objects, as well as spaces of
representations to encode their transformations. In a recent work we study in
simulation the learning of a representation of objects from pixels and its use as a goal
space for an intrinsically motivated agent (see Appendix B).

Compared to other approaches, our IMGEP implementation is sample-efficient,
with a number of iterations of 20k in the real robotic setup, 40k in the Minecraft
environment, and 100k in the 2D simulated one. Approaches such as Quality Diversity
have been run for 40M iterations for the learning of a hexapod’s locomotion (Cully
et al., 2015), and deep Reinforcement Learning agents have required 2M steps in the
Atari game Montezuma’s Revenge (Kulkarni et al., 2016), or 50M in a Doom-like
first-person shooter (Dosovitskiy and Koltun, 2016). The IMGEP implementation
in its simplest form with a Nearest Neighbor look-up for inverse models is also
computationally efficient, as we have run the 20k iterations of the real robotic
experiment on a raspberry Pi 3.







Chapter 9

Perspectives

9.1 Impact of Intrinsic Motivations on the Inter-
pretation of Child Experiments

In order to evaluate the development of particular sensorimotor skills in infancy, many
experimental designs in psychology and neuroscience place objects in the environment
and assume this will trigger the corresponding behaviors from the infant. The setup is
made attractive to the infant such that he stays concentrated on the task, and other
potentially distracting objects are removed from the scene. Behaviors of interest are
assessed or neural processes are recorded, which help to understand the mechanisms
at play in this task and their changes across development. For instance, in studies
evaluating the development of tool-use skills, a colorful toy is placed together with
tools in front of the infant, and his attempts and successes to retrieve the toy through
the use of tools are measured (see e.g. Chen et al. (2000)). The interpretation of
such observations implicitly assumes that the infant wants to achieve the goal of the
task and behaves accordingly, displaying his best strategies if the skills are already
acquired or doing his best to approach the goal otherwise. The own motivation of
infants is therefore mostly neglected in those experiments and their interpretation.

However, infants are curious creatures, intrinsically motivated to explore and
learn what they find interesting. They might already have acquired a particular
sensorimotor skill and yet not behave to solve the corresponding task. They could
display the expected behavior in training trials but not in testing trials or vice versa
if it suits them. If they don’t know how to solve the task in a particular context but
are able to discover it, they may explore and solve the task, but they could as well
explore other parts of the setup or the environment. In the case where the infant is
obviously not interested in the task, the trial may be excluded from the analysis by
the experimenter for “fussiness” or “lack of motivation”. Otherwise, the trials are
included in the analysis, while the infant may be exploring the experimental setup
with goals in mind that are different from the target expected goal, or with the same
goal but without the desire to solve it as fast or as best as possible. Depending on
the motivation of infants, the particular tasks, measures, and interpretation drawn
from the results, the accuracy of the study could suffer in both cases.
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The “fussiness” category can hide different behaviors, such as a non-cooperative
child, a child not interested in participating, or not interested in the experimental
setup but interested in other things in the room. For instance, in visual paradigms
with 12 month olds and younger, the rate of missing data for “fussiness” has been
13.7% in studies between 1985 and 2005 (Slaughter and Suddendorf, 2007), out of
22.2% of missing data. As argued by Nicholson et al. (2017), an accurate description
of the reasons for exclusion of some data must be provided together with an argument
for whether this data is missing completely at random (MCAR), missing at random
(MAR) or missing not at random (MNAR). The data is MCAR if the missingness is
unrelated to the observed and unobserved explanatory variables. If some known or
observed variables can be controlled in the analysis resulting in the missingness being
unrelated to the explanatory variables, the data is said to be MAR. If the relation
between the causes of missing data and the explanatory variables is unknown, the
data is MNAR. In principle, a missingness that depends on the explanatory variables
can bias the results of the analysis. This happen for instance if the attrition rate in a
longitudinal study depends on the variables, e.g. when the recovery rate during a
treatment for a disease is regularly evaluated on the same subjects but some subjects
quit the study because they recover before the end of the study. Mechanisms to
handle the missing data in each case are reviewed in Nicholson et al. (2017), but a
prerequisite is a proper reporting of the protocol for exclusion of data and arguments
on its correlation with the measures. However, in developmental studies, the definition
of “fussiness” or a protocol for exclusion is almost never provided (Slaughter and
Suddendorf, 2007), such that the missingness of the data is implicitly assumed not to
bias the results. As argued in chapter 3, infants can have their own goals, different
from the task goal set by the experimenter. The “fussiness” category could therefore
include trials where infants seem not interested in the task but are actually interested
in other aspects of the setup or the environment, which could be because they already
master the task or are too bad, or for other unknown reasons. The missingness of the
data can be correlated with typical measures of success in the task, as infants with
different intrinsic motivations in their objects or intensity, would explore differently
the experimental setup and would have a different propensity to be rated as “fussy”.
To be able to assess the impact of intrinsic motivations on the missing data and a
potential bias in the results of experiments in psychology and neuroscience, a first
step would be to explicitly provide the protocol for excluding data and considering
the possibility of a relation between data missingness and the variables of interest.

When the data is included in the analysis, the intrinsic motivations of infants to
explore the experimental setup can also impact the interpretation of the experimental
results. In chapter 3, we reanalyzed an experiment run by Lauriane Rat-Fischer et al,
where 21-month olds have to retrieve a toy stuck inside a tube, by inserting several
blocks in sequence into the tube. In order to understand the mechanisms of the
motivations of babies, we studied in detail their behaviors, goals and strategies in
this experiment. We showed that their motivations are diverse and do not always



9.2. Experimental Paradigms for Studying Intrinsic Motivations 209

coincide with the target goal expected and made salient by the experimenter. For
instance, many infants seemed to pursue the goal of inserting all blocks into the tube
independently of the goal of retrieving the toy, which had the unexpected effect of
pushing the toy out of the tube and solving the task.

We also gave in chapter 3 another example of study where intrinsic motivation could
interfere with the success results (Koslowski and Bruner, 1972). In this experimental
setup, the toy is attached to the side of a lever that is not reachable at the beginning
of the experiment, but can be made reachable by rotating the lever. They tested
children from 12 to 24-month old, and observed several behaviors: children trying to
get the toy directly with the hand, oscillating or partially rotating the lever, playing
with the rotation while ignoring the toy even if it got within reach, or rotating the
lever and grasping the toy. This lever task has similarities with our tube task in its
structure. Indeed, when the child does not directly solve the task, the exploration of
one accessible part of the apparatus (the accessible side of the lever) can make the
toy come closer, at which point the infant can directly grasp the toy. The reported
behaviors are similar to infants in the tube task inserting all objects into the tube,
which as a side effect can bring the toy within reach, in which case some of them
grasp and play with the toy, while others ignore it or place the toy back into the tube
continuing their action. The authors consider only one “goal”, the one decided by
the experimenter: getting the toy, or the toy itself, while other behaviors that ignore
that goal are “preoccupations”.

In both this lever task and our tube task, the measured success rates can be
driven be several factors including the tool-use skills, the interest in getting the toy,
the diversity of exploration. Intrinsically motivated exploration plays an important
role in the observed behaviors and can interfere with the success rates and their
interpretation. Considering the intrinsic motivations of infants and their potential
alternative goals and strategies at the time of the design of the experimental setup
could help to define measures of success adapted to the research question and therefore
facilitate the interpretation of the results.

9.2 Experimental Paradigms for Studying Intrin-
sic Motivations in Children

Understanding the details of the mechanisms of intrinsic motivations and their relation
to extrinsic motivations is an interdisciplinary challenge. Gathering behavioral and
neuronal data across the development of diverse skills is a key to make progress on
this question. In particular, the mechanisms of the choice of goals and strategies by
children are largely unknown.

In chapter 3, we showed that infants explore a diversity of goals and strategies which
often exceeds the imagination of the experimenter and the limits of experimental
design. To be able to catch and study the intrinsic motivations of infants, the
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experimental setup should cover a large proportion of the curiosity space of infants
so that they express their curiosity inside the setup and its scope of measures. The
setup should therefore provide, when doable, a diversity in objects, such as colors
and shapes, in the types of contingencies, in the sensory modalities (visual, auditory,
tactile), in the levels of difficulties.

For the study of tool use, the apparatus could provide a number of degrees of
freedom related to the use of tools: several salient toys, different tool-use solutions to
potential goals, and different possible difficulties in the same setup. For instance, the
apparatus could include a box with several toys somehow locked inside, with several
different ways to unlock and retrieve those toys, e.g. similar to the Multi Access
Box Paradigm of Auersperg et al. (2011) allowing multiple tool-use solutions to the
problem of retrieving food in bird studies.

Intrinsic motivations can also push infants to interact with their caregiver, for
instance to ask for help or to get feedback. In chapter 5, we modeled a natural
interactive play scenario with a caregiver to study the development of vocalizations.
In many experiments evaluating particular sensorimotor skills, despite the caregiver
being asked not to interact with the infant to avoid perturbing or helping the infant,
there is still a significant number of maternal interference leading to missing data (e.g.
0.8% in visual paradigms, Slaughter and Suddendorf (2007)). This is not necessarily at
the caregiver’s initiative but can be the infant looking for interaction. Interacting with
the caregiver could be considered as an exploration strategy that may provide help or
feedback on the current behaviors of the infant. The study of intrinsic motivations
could take into account the caregiver or an experimenter interacting with the infant as
part of the design, allowing the investigation of associated goals and strategies. This
could be helpful not only to understand the development of the linguistic function or
of social interaction but also the development of any other sensorimotor skill such as
tool use.

Investigating intrinsic motivations needs observing in details the behavior of the
infant and all the changes in the environment. Indeed, we have shown in chapter
3 that analyzing the behaviors of infants with a fine-grained time scale and taking
into account all their actions, their gaze, and the related events in the environment
is useful to understand the interaction between intrinsic motivations and the task
progress in a tool-use experiment. Also, to facilitate encoding the behavior of the
infant and the changes in the environment, digital recording techniques could be used
such as head-mounted gaze tracking (Cognolato et al., 2018), pose estimation (Cao
et al., 2018), and other sensors recording the movements of the different objects in
the scene.
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9.3 Tool Use and Language: an Evolutionary De-
velopmental Perspective

Tool use and language seem to require similar information processing capabilities
allowing the production and perception of sequential combinations of increasing
complexity, from reaching to spoon self-feeding and from vocalizing phonemes to
stories. Greenfield (1991) describes how both tool use and language display a
hierarchical organization, and draws a parallel between the early development of the
tool-use skills and the phonetic skills in the first two years of life that shows the same
increases in complexity around the same age. In particular, Meltzoff (1988) relates
the development of means-end behaviors and success/failure words and show that
their onset is close in time (13 days on average). An insightful use of tools was a
better predictor of the use of success/failure words than to predict other abilities
such as object-permanence skills. Language and communicative gestures have also
been seen as social tools (Borghi et al., 2013; Cohen and Billard, 2018). Experimental
evidence shows that the reaching space of a subject can be extended after the use of
words, in a setup where an object could be reached with several strategies including
the use of a word which triggers an action from another person (Borghi et al., 2013).
Deaf children use language gestures as tools, for instance to get others to do things
for them (Goldin-Meadow, 2007), when hearing children would have used sentences.

Tool use and language might also share neural correlates. A first link between
hand gestures and speech production supports the idea of related neural substrates
between speech and hand gestures. Gentilucci et al. (2001) shows that when human
subjects are asked to grasp an object and open the mouth, the lip aperture and
aperture velocity are higher when the grasped object is large than when it is small. If
the subjects have to pronounce a syllable, this is also influenced by a parallel grasping
movement. In the case where grasping movements are not executed but observed,
they have also been shown to influence speech production Gentilucci (2003). These
behaviors are thought to involve the mirror neuron system (Rizzolatti and Craighero,
2004) where neural cells have been shown to both respond if an action is observed
in others and respond when that action is executed by the subject. Higuchi et al.
(2009) studied brain activations during language and tool tasks in human adults with
functional MRI. They found an overlap of activity in both tasks in the dorsal part of
area BA44 in Broca’s area. This region has previously been reported to be used in
complex hierarchical sequential processing in language, such as embedded sentences,
but not for sentences without hierarchical structure (Sakai, 2005). According to those
results, complex hierarchical structures present both in tool use and language, could
be processed in part by the same neural circuits.

How the human species evolved those complex tool-use and language abilities
is one of the great mysteries of science. Many evolutionary scenarios have been
speculated based on multidisciplinary evidence from archaeology, paleoanthropology,
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neuroscience, genetics, ethology, cognitive sciences and computer modeling. The
scenarios describe possible paths of evolution of the genes, brains, behaviors and
ecology of the hominid lineage. One hypothesis found in many scenarios is that a
selection pressure for complex tool use, language and social behaviors have together
driven the increase in neural capabilities (Greenfield, 1991; Higuchi et al., 2009;
Morgan et al., 2015).

Two and a half millions years ago, stone age’s hominins were producing sharp
flakes through striking a cobble core with a hammerstone (Morgan et al., 2015), and
those sharp flakes were then used as cutting tools, e.g. for butchering. This Oldowan
technology was geographically spread and continuously used with little changes for
700,000 years, before the advent of the Acheulean technology including more complex
and diverse hand-axe tools. Morgan et al. (2015) argues from experiments with
modern humans that in the Oldowan period, tool making and use could have been
transmitted through imitation, while teaching and a proto-language could have been
prerequisites for the transmission of the Acheulean technology. Bickerton (1990)
assigns the Oldowan technology to homo habilis, while the homo ergaster started the
Acheulean manufacture in Africa before its spread in Asia and Europe with homo
erectus and its descendants. He also hypothesizes that a proto-language was used by
homo erectus and improved with its evolution, before the advent of language with
homo sapiens. A proto-language would use a symbolic lexicon but almost no syntax,
with sentences composed of a juxtaposition of subjects, nouns and verbs with no
particular order, allowing the transmission of simple factual information.

Higuchi et al. (2009) argue that the ability for processing hierarchically organized
behaviors was present for tool use in our common ancestors with primates and was
later exapted to support language in humans. Greenfield (1991) proposes that the
common ancestor of humans and today’s primates had the neural circuitry in the left
frontal lobe to support both primitive object combinations and primitive language
functions, and that they evolved together in the human lineage. Better tool-use
abilities would have increased the adaptive value of proto-linguistic communications,
and vice versa, both would have evolved through mutually reinforced natural selection.
The adaptiveness of language and tool use would have driven the expansion of the
prefrontal cortex in a co-evolutionary loop.

Iriki and Taoka (2012) propose that language and tool-use cognitive abilities
evolved from the computational processes involved in the control of reaching actions.
The authors describe the interdependencies between the ecological, neural and cogni-
tive niches for the human lineage, together called a triadic niche. Reaching actions, in
particular in the context of bipedalism, imposed a high demand on multi-sensory in-
tegration and complex coordinate transformation, that selected brains with improved
neural circuitry for processing them. In turn, those neural capabilities could have
been reused for other cognitive processes such as the processing of simple tool use
and proto-language, which improved the evolutionary fitness of hominins. The devel-
opment of tool use and language modified the ecological niche which then selected for
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more efficient neural circuits. The co-evolution of the ecological, neural and cognitive
niches could have slowly enabled and improved higher cognitive functions like tool
use and language.

However, in all those evolutionary scenarios, the specification of several key
processes is missing: the bootstrapping of evolutionary directions, the transitions
between phases of evolution, and the evolutionary pressure inside evolutionary phases.
In a simple example of natural selection, when particular swimming patterns or
skin features can improve the speed of a fish and as a result its ability to feed and
reproduce, the adaptive value of speed imposes an evolutionary pressure that may
lead to the emergence of those features on the long term through the selection of
random gene mutations. On the other hand, if complex interactions exist between
genes, culture, neural and cognitive processes and their ontogenetic development,
then the emergence of the adaptive behaviors is not an obvious long-term consequence
of the evolutionary pressure. If reaching, gestures or bipedalism select hominids with
better neural processes that could be reused for simple tool-use and proto-language,
why would a first hominid spontaneously use tools or a proto-language in a culture
where those are missing? In a hominid culture with Oldowan tool use, why would
brains endowed by chance with better learning processes required for Acheulean tool
use would actually improve tool use if nobody is here to demonstrate or teach those
improvements, even if those would be selected by the evolutionary pressure? If by
chance a particular culture and ecology provides a rich environment for a given period,
with a diversity of stone users and uses allowing the discovery and learning of improved
tool use, but no particular genetic mutations happen in that period, wouldn’t the
environment go back to average before selecting improved neural processes?

If the current genome allows the development of complex tool-use and language
but the current cultural environment is not adequate, those skills may not develop
optimally. In the extreme case where a modern human is deprived from linguistic
stimulation for many years, as with the child Genie (Fromkin et al., 1974), the
development of language skills can be severely impaired. Genie was deprived from
any linguistic input by its parents until the age of 13 when she was discovered and
subsequently raised in a foster family. She was then able to acquire a large vocabulary
and to string words in simple syntactic constructions but she never fully acquired
english grammar (Curtiss, 1977). On the other hand, even if a brain allows the neural
and cognitive processes for a particular skill, such a potential skill may not be in use
and culturally transmitted, and thus may not drive evolutionary selection. Indeed,
experiments with captive chimpanzees showed that they can learn a proto-language
when taught by humans (Gardner and Gardner, 1969). Washoe produced 350 signed
words of the American Sign Language, was able to string them together to form
sentences and to teach some signs to her adopted son Loulis. Chimpanzees thus have
the cognitive skills for learning and teaching a proto-language to some extent, and
are otherwise great tool makers (Van Lawick-Goodall, 1971). However their lineage
did not evolve towards the cultural transmission in the wild of a tool technology and
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of proto-language.
Intrinsic motivations could have played a crucial role in the evolution of skills such

as tool use and language by pushing organisms to explore, discover and learn the skills
that their current body, neural circuitry, cognitive processes, and cultural environment
allow. One particularity of the human species and to a lesser extent of other great
apes, is the long period of protected development from childhood to adulthood (Power,
1999). The human species may have evolved in the direction of being less capable as
a newborn but more capable to learn during development, assisted by an evolution of
brain capabilities and an increased role of intrinsic motivations.

Passingham and Wise (2012) studied the evolution of the prefrontal cortex from
early primates to anthropoids, and reconstructed the probable ecological niches of
the human lineage. Based on its connections with other areas, they argue that the
granular prefrontal cortex can represent three hierarchies: the context, goal, and
outcome hierarchies. For instance, goals can be represented in a range of hierarchical
levels, with goals such as the specification of an object or location used as a target
of action, the specification of the abstract structure of a series of actions, or the
specification of a rule or strategy that generates objects or locations to choose or to
avoid. The prefrontal cortex has the ability to choose actions based on outcomes
(medial PFC), choose objects based on outcomes (orbital PFC), search for goals
(caudal PFC), generate goals based on recent events (dorsal PFC) and generate goals
based on visual and auditory contexts (ventral PFC), such that as a whole, the
PFC can generate goals from current contexts and previous events. In the successive
ecological niches of primates, the PFC could have been used to link the foraging
actions with the resource outcomes that follow, link foraging goals (objects, places)
with resource outcomes, select foraging targets, keep goals in memory, allow a fast
learning to reduce wasteful and risky choices, and do mental trial-and-error. In
the hominid lineage in particular, it could have supported teaching and learning by
instruction with less errors, the imagination of more complex goals, the monitoring of
others intentions, and improved reasoning abilities.

In chapter 4, we studied how the particular implementations of intrinsic motivations
to self-generate interesting goals together with the particular representation of goals
can play a role in the tool-use progression of a robotic model. We showed that an
intrinsic motivation based on the learning progress to reach goals with a modular
representation can self-organize phases of behaviors in the autonomous discovery
and development of tool use without pre-existing neural circuits for the processing
of means-end actions. In Oudeyer and Smith (2016), the authors explain that
previous computational and robotic models of vocalization learning have shown that
conventional patterns of vocalizations at the group level could emerge from the
interaction of intrinsically motivated individuals. In chapter 5, we presented a robotic
model learning both speech and tool use, where the exploration is directed towards
self-generated goals in free play, combined with imitation learning of a contingent
caregiver. This model does not assume capabilities for complex action sequencing
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and combinatorial planning which are often considered necessary for tool use. Yet,
we showed that the autonomous exploration of goals allows a learner to progressively
discover how to grab objects with the hand, how to use objects as tools to reach
further objects, how to autonomously discover new vocal sounds, and how to reproduce
the sounds known to other peers and learn their meaning in the environment. A
proto-language could thus be culturally transmitted and improved without assuming
a pre-existing knowledge of the linguistic function of vocalizations or neural circuitry
for the processing of a grammar.

Those models support the idea that intrinsic motivations could have accelerated
the evolution of the triadic niche of Iriki and Taoka (2012) in the hominin lineage with
a co-evolution of genes and associated neural processes, of cognitive processes, and of
cultural environment. Indeed, if individuals with more sophisticated neural capabilities
appear from time to time, then the population of hominids intrinsically motivated
to explore and learn have more chances to make use of the available capabilities
and discover new cognitive skills. With intrinsically motivated exploration, neural
processes evolved for reaching or bipedalism could be efficiently exapted for tool use
or a proto-language, or capabilities evolved for tool use exapted for language and
vice versa. Also, intrinsic motivations can accelerate the evolution of tool use and
language thanks to a persistent exploration of tool-use and language skills across
generations making use of any available improvement in brain capabilities and in the
richness in the cultural environment. Intrinsic motivations could thus help bootstrap
evolutionary directions and sustain the impact of the evolutionary pressure.

The evo-devo scientific perspective highlights the complexity of the interaction
between the genes and the ontogenetic development of the individual in its environment
(Carroll, 2005; Oller et al., 2016). Many genes influence particular neural or cognitive
traits by regulating the expression of other genes throughout ontogenetic development.
An increasing involvement of intrinsic motivations in the hominid lineage could have
been the result of an evolutionary pressure for exploration and learning mechanisms
that maximize the use of neural processes throughout ontegenetic development and
increase the efficiency of the evolution of brain and cognitive capabilities.

In the case of Genie, intrinsic motivations seem to have quickly reappeared after
her introduction to a stimulating and protected environment, and to have facilitated
her development of sensorimotor, social and linguistic skills (Fromkin et al., 1974):

Approximately four weeks after her admission to the hospital a consultant
described a contrast between her admission status and what he later observed.
He wrote that on admission Genie “was pale, thin, ghost-like, apathetic, mute
and socially unresponsive. But now she had become alert, bright-eyed, engaged
readily in simple social play with balloons, flashlight, and toys, with familiar and
unfamiliar adults. She exhibits a lively curiosity, good eye-hand coordination,
adequate hearing and vision, and emotional responsivity. She reveals much
stimulus hunger.”
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9.4 IMGEP: Follow-ups and Relatives

In chapter 7, we introduced a framework for curiosity-driven exploration through
the autonomous generation of goals, called Intrinsically Motivated Goal Exploration
Processes (IMGEP). We evaluated particular implementations of this framework in
chapter 8, in several experimental setups including a real robotic arm discovering the
use of joysticks as tools to move other objects. Exploring diverse spaces of goals with
intrinsic motivations was more efficient for learning complex tool-use skills than only
trying to directly learn these skills.

A limitation of our setup was that we supposed agents already have a perceptual
system allowing them to see and track objects as well as spaces of representations to
encode their movements. For instance, the agent in our robotic setup was provided
with the trajectory of each object in the environment. In a recent work we studied in
simulation the learning of a representation of one object from pixels and its use as a
goal space for an intrinsically motivated agent (Péré et al. (2018), see Appendix B).
The agent first learned a representation of the moving object with auto-encoders, and
then used this space as a goal space for exploration. Exploration with this learned
goal space was as efficient as with a hand-defined goal space adapted to the task (the
coordinates of the object). In a more complex environment with several objects, we
have shown in chapter 6 that the agent can benefit from a disentangled representation
where the variables corresponding to each object can be treated separately in a
modular manner. It has been recently shown in Laversanne-Finot et al. (2018) that
the agent can learn a disentangled representation and use a learning progress measure
to discover the variables corresponding to the different objects. In Reinke et al.
(2019), instead of first learning a representation and then using it as a goal space,
the representation was learned online, in a settings very different of the learning
of inverse models in robotics. With this approach, agents could find self-organized
patterns in the complex morphogenetic system Lenia, a continuous game-of-life cellular
automaton.

In the IMGEP framework, a policy is learned based on the collected data, which
given a context and a goal, decides the actions to follow in order to achieve the
goal. In population-based IMGEP, based on the context and goal, a high-level policy
decides the parameters of a low-level policy to be executed. In our implementation in
chapter 8, the low-level policies were defined with open-loop parameterized primitives,
and the high-level policy was implemented with a simple nearest neighbor look-up.
In chapter 6, we also evaluated a locally-weighted linear regression for the high-level
policy, showing slight improvements if enough data was gathered. A limitation of our
implementations is that the simple high-level policies, nearest neighbor or regression,
are not very accurate, and our open-loop motor primitives do not adapt online to
unexpected changes in the environment. Although our results show that this strategy
is very sample-efficient for the exploration and discovery of interesting effects in robotic
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environments, it does not benefit from the recent advances in Deep Reinforcement
Learning useful when a large number of training episodes are available. A recent work
has shown that a population-based intrinsically motivated agent within the IMGEP
architecture can help bootstrap a deep RL agent (Colas et al., 2018b). Filling a
replay buffer with exploratory trajectories collected by an IMGEP algorithm could
kick-start the learning of the Deep RL agent by enhancing its exploratory abilities.
This approach combines the efficient exploration of population-based IMGEP agents
with the efficient fine tuning of policies offered by deep RL agents with a function
approximator based on gradient descent.

In our population-based implementations, the high-level policy chooses parameters
of low-level parameterized policies, depending on the current goal and context. In
Reinforcement Learning, one approach has been to use a population-based policy,
such as in Horde (Sutton et al., 2011), where a set of policies is learned each for a
different goal. In order to generalize the policy over goals, another approach has been
to extend the value function to be parameterized by the goal, such that the policy is
learned in a monolithic form, called Universal Value Function Approximators (Schaul
et al., 2015). In UVFA, continuous goals are represented through a vector provided
as input together with the state to the neural network of the policy and the one
of the value function. In Andrychowicz et al. (2017), the agent transfers learning
between goals through the use of an experience replay buffer filled with trajectories
with different goals than the goal used at exploration time. In Dosovitskiy and Koltun
(2016), goals are predefined combinations of measurements (such as ammo, health and
frags in the Doom video game). In these lines of work, goals are not modular, and
are considered extrinsic to the agent, with extrinsic rewards that can contain expert
knowledge about the tasks being learned. Intrinsic rewards have been used in a recent
work with an extension of Universal Value Function Approximators with a modular
goal representation (Colas et al., 2018a). CURIOUS is a particular implementation
of the IMGEP architecture using a unique monolithic (multi-task multi-goal) policy
network, that learns from a replay buffer filled with rollouts on task and goals of high
learning progress. We did not compare our population-based implementation with
the CURIOUS algorithm as it was developed after.

In the context of sparse rewards, the concept of learning “auxiliary tasks” is also
related to intrinsically motivated goal exploration in the sense that tasks that are not
directly related to the learning of a final one are trained and help learning. Several
auxiliary tasks have been implemented and shown to be useful for learning, such
as the control of pixel changes, or the control of intermediate features of a neural
network used for policy or value prediction (Jaderberg et al., 2016; Riedmiller et al.,
2018).
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9.5 IMGEP: Next Steps and Challenges

The IMGEP framework allows the expression of a diversity of learning algorithms
that have in common a strong reliance on the exploration of non-optimal behaviors
to discover interesting unexpected stepping-stones that can be built upon. This
include learning in the presence of sparse rewards, multi-task learning, open-ended
or developmental learning. There are a number of challenges for future research on
these topics.

A first challenge is to design algorithms that can learn in realistic human-like
environments with rich, unpredictable, noisy, continuous, and high-dimensional
sensorimotor contingencies. Most learning algorithms have been evaluated in toy
environments, with discrete low-dimensional state and action spaces, a limited number
of contingencies to explore, a protected resettable environment, and most of the time
in simulation. Although the evaluation in such environments is a really useful step
in the investigation and understanding of the mechanisms of learning, the agents
must also be studied in the wild. One aspect of learning which then becomes critical
is its scalability in terms of sample-efficiency. Children necessitate relatively few
interaction time to learn skills such as tool-use or language in their whole complexity,
compared to the millions of iterations or huge databases required by artificial agents
to learn a fraction of those skills. The IMGEP implementation of chapter 8 requires
a few hours of interaction to learn simple tool-use skills such as controlling a joystick
to move a toy in the real robotic setup given an already functioning perceptual
system. Some approaches can require millions of iterations in other setups, e.g.
40M iterations for the learning of a hexapod’s locomotion with Quality Diversity
(Cully et al., 2015), 2M steps for Deep Reinforcement Learning in the Atari game
Montezuma’s Revenge (Kulkarni et al., 2016), or 50M in a Doom-like first-person
shooter (Dosovitskiy and Koltun, 2016). To model or get inspiration from the
development of infants, one can implement maturational constraints on the body or
the processing capabilities (Baranes and Oudeyer, 2011), and investigate assumptions
of robotic priors (Jonschkowski and Brock, 2015).

A second challenge is the learning of a representation and generation of goals that
can support the efficient exploration of a changing environment whose statistics is
shaped by the increasingly complex learned skills. Indeed, in complex environments
where advanced skills can be built up incrementally through the recursive combina-
tion of stepping-stone skills, the statistics of the gathered sensorimotor data evolves
across learning and development, and the explored goals should adapt accordingly.
Human children undergo tremendous representational changes in their development
of a multitude of skills (Karmiloff-Smith, 1992), where processes of representational
redescription are assumed to regularly take place, e.g. in the development of tool
use (Guerin et al., 2013). An implementation of online representation learning in the
IMGEP framework is given in Reinke et al. (2019), where the representation is period-
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ically updated, in an exploration-exploitation alternation cycle. However, designing
representational learning architectures that can support an increase in skill complexity
and combinations while not forgetting the previously acquired representations and
skills (Kirkpatrick et al., 2017) is an important venue for future work.

A third challenge is the integration of intrinsic motivations and social guidance
in a sustained positive interaction loop that scaffolds learning. Social guidance can
take multiple forms, such as reinforcement, demonstrations, input for imitation, goals
to reach, instructions or explanations, and be available from several humans and
artificial peers. The combination of intrinsic motivations and reinforcement have been
studied in the RL framework. In Riedmiller et al. (2018), an intrinsic motivation for
the exploration of auxiliary tasks is combined with a reinforcement at the level of
the loss function, such that the agent learns a policy optimizing both at the same
time. The combination of intrinsic motivations with demonstrations and imitation
of a social peer have for instance been implemented in SGIM-ACTS (Nguyen and
Oudeyer, 2012), where the agent can explore autonomously and mimic or emulate
demonstrations of several peers. It chooses hierarchically what to learn, how to learn,
and from which teacher to get demonstrations based on learning progress heuristics.
However, the agent is somehow given prior knowledge about the interactive scenario,
as it knows there are movements to be imitated, and teachers that provide information.
In chapter 5, we designed an interactive scenario where a caregiver reacts to the
learner’s actions in two ways: if the robots touches a toy, the caregiver says the name
of the toy, and if the robot produces a sound close enough to the name of a toy, the
caregiver pushes that toy within reach of the agent. The learner is exploring with two
different mechanisms, on one hand with intrinsic motivations to reach many goals
consisting in moving objects and producing sounds, and on the other hand imitating
the vocal input from the caregiver. It is not given the knowledge that there is a peer
or that the sounds produced by the caregiver have a meaning in the environment. The
design of a learning algorithm that can start with intrinsic motivations and imitation
and little by little learn to benefit from more complex interactive scenarios where a
social peer would give targets, instructions or explanations without hard-coding the
learning possibilities is an open question.





Appendix A

Tool-Use Experiment: Ethograms

We provide here a table of all coded behaviors, and several additionnal ethograms.
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Subject Behavior Modifiers Description

Experimenter

Task

Phase

Trial Trial number (from 1 to max 3), or in between trial

ManipApparatus

AttractAttention

Encourage

Spoiler

Surprise Experimenter shows to the baby that she is surprised

Caregiver

AttractAttention

Encourage

Surprise Caregiver shows to the baby that she is surprised

Baby

Apparatus Manipulate/explore the apparatus with hands/mouth

Combine Combines the tool with something

DiscardTool Discard/get rid off the tool

Fussiness Loose patience (can be accompanied with vocalization)

HoldTool Holds the tool (while doing other things or not)

Perspective

PlayTool Play with tool (manipulate/explore the tool)

PushToolInside Push a tool inside the tube

SwapTool-A

Vocalizations

Trail | Tube Trail task or Tube task ( reminder: only one task is coded in 
one observation, i.e. 2 observations per infant

Training | Test Training phase (when available, in each task 1/4 of infants 
had no training) or Testing phase 

Trial1 | Trial2 | Trial3 | Trial4 | 
InBetweenTrial

Hold | Move/Turn | 
PlaceToolBack

Experimenter holds or moves/turns the apparatus to 
prevent infant from turning or lifting the apparatus too 
much, or to cheat by accessing the reward directly with its 
hand after lifting/turning apparatus. Experimenter places 
the tool back next to or on top of the apparatus after it was 
discarded or it failed away

Talking | Pointing | 
Talking&Pointing

Experimenter attracts the attention of the subject towards 
the toy or solving the task, e.g. "where is the car?", "can 
you get the car out?", "what can you do?", "HOW can you 
get the car out", "can you try something else?"

The attention of the subject is on toy and/or tool, the 
experimenter encourage the infant, praise him for what he 
is currently doing or what he just did

Experimenter shows or tell the baby how to solve the 
problem, e.g. "Push!"

Talking | Pointing | 
Talking&Pointing

Caregiver attracts the attention of the subject towards the 
toy or solving the task, e.g. "where is the car?", "can you 
get the car out?", "what can you do?", "HOW can you get 
the car out", "can you try something else?"

The attention of the subject is on toy and/or tool, the 
caregiver encourage the infant, praise him for what he is 
currently doing or what he just did

Hand | Mouth

IpsilateralHand 
| ContralateralHand ; Insert 
| Dip | Probe | Hit | Scratch 
| Touch | Stack | Push/Pull 
| PutUnder ; Right Side | Left 
Side | Both Sides ; Apparatus 
| Toy | Environment 
| OtherPerson | OwnBody 
| OtherTool

GiveTo | Throw | PutOnSide 
| Drops

MoveAroundApp | TurnApp 
| WalkOverApp | LiftApp

Changing the perspective according to apparatus, e.g. 
moving around the apparatus or turning the apparatus

SeveralIndependently 
| SeveralTogether | OneTool

Takes another tool straight after discarding another (usually 
happens after a first unsuccessful trial with a tool, the infant 
then switches to another to another tool - even though the 
other tool is of the same shape)

Autocongratulation 
| VocalizeToAdult 
| FrustrationVocalization 
| Satisfactory vocalization 
| ExplicitAskForHelp | Surprise 
| Other

Autocongrats that can be accompanied by applause, 
vocalize in order to get help from adult, frustration 
vocalization, other vocalization

Table A.1: Annotated behaviors.
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WalkAway

LookApparatus

LookHand Look at hand while doing nothing else

LookSocial Look at the experimenter or the caregiver

LookTool

LookToy Look at a toy, also count when toy inside apparatus

DiscardToy In between trials: baby discards the toy

ManipToy PutInMouth | PlayHands In between trials: baby manipulates the toy

PlaceToyBack

ToolToyCombination

Environment ToyState

Observer 

ToolUse-Goal Infant's goal may be to use the wooden block as a tool

InsertAll

MakeNoise

Retrieve

Draw-Goal Infant seems to try to draw with a stick

G-PlaceToyBack Place the toy back inside the tube

Direct Point | Reach

Social

SwapTool

ToolUse-Strategy

SwitchHand Infant switch hand as part of a strategy (using a tool or not)

SocialTool

Result

ScoreTrial

Walk away from the apparatus or push (tries to push) the 
apparatus away

If not interacting with tool or toy (but can interact with 
apparatus), or we don't know exactly what he looks at but 
in the direction of apparatus

Look at a tool, also count when baby manipulating a tool 
within apparatus

GiveTo | Throw | PutOnSide 
| Drops ; Experimenter | 
Caregiver | Sibling/Other

In between trials: baby places the object back in the 
apparatus, as if he wanted to start the game again (but it 
could be for another reason, we don't need to specify))

Hit | Scratch | Touch | Push/pull 
| Stack | Other

In between trials: baby uses the toy and the tool in 
combination after retrieval

Map: 7 subdivisions in the tube: 1 and 7 are reachable with 
hand; 0 is out of the tube

Infant's goal may be to insert all shapes in holes (infant's 
goal is to insert anything in the apparatus, usually the 
objects around that are meant to be the tools; he may then 
connect the tool and the toy by chance, and switch to the 
goal "retrieveToy")

Infant's goal may be to make noise with the apparatus 
/tools / toys

Toy | Tool | PossiblyTool&Toy Infant's goal may be to retrieve the toy or the tool outside 
the apparatus

Infant's strategy may be to use its hand to try to 
reach/retrieve the toy (point, reach)

Infant's strategy may be to look/ask someone in the room. 
Infant tries to engage another agent in the process of 
getting the toy: vocalizes/asks while trying to reach for tool, 
looks at agent, looks & vocalizes/asks, takes agent's hand

Infant's strategy may be to try another tool after having 
tried a first tool, usually unsuccessfully

Infant's strategy may be to use a tool, for different goals: 
e.g. to reach/retrieve toy, or to make noise

Infant takes caregiver's hand and direct it toward the 
apparatus/toy

Failure | SuccessByChance 
| SuccessIntentional 
| SuccessAfterDemo

According to the observer, outcome of the trial: Failure, (to 
get toy out), SuccessAfterDemo (only during training, if 
any), SuccessByChance (also includes non intentional 
success), SuccessIntentional (if not sure whether 
intentional or by chance, then be conservative and code 
"by chance")

1-Fail | 2-CombineChance | 3-
TrialError | 4-
ImmediateSuccess

1= fail with no insertion, 2=insertion, either fail, or succeeds 
but not intentional, 3=succeeds by trial and error, 
4=immediate success)

Table A.1 (Continued): Annotated behaviors.
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Figure A.1: Ethogram of experiment with baby A1.
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Figure A.2: Ethogram of experiment with baby C2.
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Figure A.3: Ethogram of experiment with baby H1.
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Figure A.4: Ethogram of experiment with baby L3.
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Figure A.5: Ethogram of experiment with baby O1.
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Unsupervised Learning of Goal Spaces for
Intrinsically Motivated Goal Exploration

Alexandre Péré Sébastien Forestier Olivier Sigaud
Pierre-Yves Oudeyer

Abstract

Intrinsically motivated goal exploration algorithms enable machines to dis-
cover repertoires of policies that produce a diversity of effects in complex envi-
ronments. These exploration algorithms have been shown to allow real world
robots to acquire skills such as tool use in high-dimensional continuous state
and action spaces. However, they have so far assumed that self-generated goals
are sampled in a specifically engineered feature space, limiting their autonomy.
In this work, we propose to use deep representation learning algorithms to
learn an adequate goal space. This is a developmental 2-stage approach: first,
in a perceptual learning stage, deep learning algorithms use passive raw sensor
observations of world changes to learn a corresponding latent space; then goal
exploration happens in a second stage by sampling goals in this latent space.
We present experiments where a simulated robot arm interacts with an object,
and we show that exploration algorithms using such learned representations
can match the performance obtained using engineered representations.
Keywords: exploration; autonomous goal setting; diversity; unsu-
pervised learning; deep neural network

1 Introduction
Spontaneous exploration plays a key role in the development of knowledge and skills
in human children. For example, young children spend a large amount of time ex-
ploring what they can do with their body and external objects, independently of
external objectives such as finding food or following instructions from adults. Such
intrinsically motivated exploration (Berlyne, 1966; Gopnik et al., 1999; Oudeyer &
Smith, 2016) leads them to make ratcheting discoveries, such as learning to locomote
or climb in various styles and on various surfaces, or learning to stack and use ob-
jects as tools. Equipping machines with similar intrinsically motivated exploration
capabilities should also be an essential dimension for lifelong open-ended learning
and artificial intelligence.
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In the last two decades, several families of computational models have both con-
tributed to a better understanding of such exploration processes in infants, and how
to apply them efficiently for autonomous lifelong machine learning (Oudeyer et al.,
2016). One general approach taken by several research groups (Baldassarre et al.,
2013; Oudeyer et al., 2007; Barto, 2013; Friston et al., 2017) has been to model the
child as intrinsically motivated to make sense of the world, exploring like a scientist
that imagines, selects and runs experiments to gain knowledge and control over the
world. These models have focused in particular on three kinds of mechanisms argued
to be essential and complementary to enable machines and animals to efficiently ex-
plore and discover skill repertoires in the real world (Oudeyer et al., 2013; Cangelosi
et al., 2015): embodiment 1, intrinsic motivation2 and social guidance3. This ar-
ticle focuses on challenges related to learning goal representations for intrinsically
motivated exploration, but also leverages models of embodiment, through the use of
parameterized Dynamic Movement Primitives controllers (Ijspeert et al., 2013) and
social guidance, through the use of observations of another agent.

Given an embodiment, intrinsically motivated exploration4 consists in automati-
cally and spontaneously conducting experiments with the body to discover both the
world dynamics and how it can be controlled through actions. Computational models
have framed intrinsic motivation as a family of mechanisms that self-organize agents
exploration curriculum, in particular through generating and selecting experiments
that maximize measures such as novelty (Andreae & Andreae, 1978; Sutton, 1990),
predictive information gain (Little & Sommer, 2013), learning progress (Schmidhu-
ber, 1991; Kaplan & Oudeyer, 2003), compression progress (Schmidhuber, 2013),
competence progress (Baranes & Oudeyer, 2013), predictive information (Martius
et al., 2013) or empowerment (Salge et al., 2014). When used in the Reinforce-
ment Learning (RL) framework (e.g. (Sutton, 1990; Schmidhuber, 1991; Kaplan &
Oudeyer, 2003; Barto, 2013)), these measures have been called intrinsic rewards, and
they are often applied to reward the "interestingness" of actions or states that are
explored. They have been consistently shown to enable artificial agents or robots to
make discoveries and solve problems that would have been difficult to learn using
a classical optimization or RL approach based only on the target reward (which is
often rare or deceptive) (Chentanez et al., 2005; Baranes & Oudeyer, 2013; Stanley &
Lehman, 2015). Recently, they have been similarly used to guide exploration in dif-
ficult deep RL problems with sparse rewards, e.g. (Bellemare et al., 2016; Houthooft
et al., 2016; Tang et al., 2017; Pathak et al., 2017).

However, many of these computational approaches have considered intrinsically
motivated exploration at the level of micro-actions and states (e.g. considering low-
level actions and pixel level perception). Yet, children’s intrinsically motivated ex-

1Body synergies provide structure on action and perception
2Self-organizes a curriculum of exploration and learning at multiple levels of abstraction
3Leverages what others already know
4Also called curiosity-driven exploration
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ploration leverages abstractions of the environments, such as objects and qualitative
properties of the way they may move or sound, and explore by setting self-generated
goals (Von Hofsten, 2004), ranging from objects to be reached, toy towers to be built,
or paper planes to be flown. A computational framework proposed to address this
higher-level form of exploration has been Intrinsically Motivated Goal Exploration
Processes (IMGEPs) (Baranes & Oudeyer, 2009; Forestier et al., 2017), which is
closely related to the idea of goal babbling (Rolf et al., 2010). Within this approach,
agents are equipped with a mechanism enabling them to sample a goal in a space of
parameterized goals5, before they try to reach it by executing an experiment. Each
time they sample a goal, they dedicate a certain budget of experiments time to im-
prove the solution to reach this goal, using lower-level optimization or RL methods
for example. Most importantly, in the same time, they take advantage of information
gathered during this exploration to discover other outcomes and improve solutions
to other goals6.

This property of cross-goal learning often enables efficient exploration even if
goals are sampled randomly (Baranes & Oudeyer, 2013) in goal spaces containing
many unachievable goals. Indeed, generating random goals (including unachievable
ones) will very often produce goals that are outside the convex hull of already discov-
ered outcomes, which in turn leads to exploration of variants of known corresponding
policies, pushing the convex hull further. Thus, this fosters exploration of policies
that have a high probability to produce novel outcomes without the need to explicitly
measure novelty. This explains why forms of random goal exploration are a form of
intrinsically motivated exploration. However, more powerful goal sampling strate-
gies exist. A particular one consists in using meta-learning algorithms to monitor the
evolution of competences over the space of goals and to select the next goal to try,
according to the expected competence progress resulting from practicing it (Baranes
& Oudeyer, 2013). This enables to automate curriculum sequences of goals of pro-
gressively increasing complexity, which has been shown to allow high-dimensional
real world robots to acquire efficiently repertoires of locomotion skills or soft ob-
ject manipulation (Baranes & Oudeyer, 2013), or advanced forms of nested tool use
(Forestier et al., 2017). Similar ideas have been recently applied in the context of
multi-goal deep RL, where architectures closely related to intrinsically motivated goal
exploration are used by procedurally generating goals and sampling them randomly
(Cabi et al., 2017; Najnin & Banerjee, 2017) or adaptively (Florensa et al., 2017).

Yet, a current limit of existing algorithms within the family of Intrinsically Mo-
tivated Goal Exploration Processes is that they have assumed that the designer7
provides a representation allowing the autonomous agent to generate goals, together

5Here a goal is not necessarily an end state to be reached, but can characterize certain parame-
terized properties of changes of the world, such as following a parameterized trajectory.

6E.g. while learning how to move an object to the right, they may discover how to move it to
the left.

7Here we consider the human designer that crafts the autonomous agent system.

232 Appendix B. Learning a Representation for Goal Babbling



with formal tools used to measure the achievement of these goals (e.g. cost functions).
For example, the designer could provide a representation that enables the agent to
imagine goals as potential continuous target trajectories of objects (Forestier et al.,
2017), or reach an end-state starting from various initial states defined in Euclidean
space (Florensa et al., 2017), or realize one of several discrete relative configura-
tions of objects (Cabi et al., 2017), which are high-level abstractions from the pixels.
While this has allowed to show the power of intrinsically motivated goal exploration
architectures, designing IMGEPs that sample goals from a learned goal represen-
tation remains an open question. There are several difficulties. One concerns the
question of how an agent can learn in an unsupervised manner a representation for
hypothetical goals that are relevant to their world before knowing whether and how
it is possible to achieve them with the agent’s own action system. Another challenge
is how to sample "interesting" goals using a learned goal representation, in order to
remain in regions of the learned goal parameters that are not too exotic from the
underlying physical possibilities of the world. Finally, a third challenge consists in
understanding which properties of unsupervised representation learning methods en-
able an efficient use within an IMGEP architecture so as to lead to efficient discovery
of controllable effects in the environment.

In this paper, we present one possible approach named IMGEP-UGL where as-
pects of these difficulties are addressed within a 2-stage developmental approach,
combining deep representation learning and goal exploration processes:

Unsupervised Goal space Learning stage (UGL) In the first phase, we as-
sume the learner can passively observe a distribution of world changes (e.g. different
ways in which objects can move), perceived through raw sensors (e.g. camera pix-
els or other forms of low-level sensors in other modalities). Then, an unsupervised
representation learning algorithm is used to learn a lower-dimensional latent space
representation (also called embedding) of these world configurations. After train-
ing, a Kernel Density Estimator (KDE) is used to estimate the distribution of these
observations in the latent space.

Intrinsically Motivated Goal Exploration Process stage (IMGEP) In the
second phase, the embedding representation and the corresponding density estima-
tion learned during the first stage are reused in a standard IMGEP. Here, goals are
iteratively sampled in the embedding as target outcomes. Each time a goal is sam-
pled, the current knowledge (forward model and meta-policy, see below) enables to
guess the parameters of a corresponding policy, used to initialize a time-bounded
optimization process to improve the cost of this policy for this goal. Crucially, each
time a policy is executed, the observed outcome is not only used to improve knowl-
edge for the currently selected goal, but for all goals in the embedding. This process
enables the learner to incrementally discover new policy parameters and their associ-
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ated outcomes, and aims at learning a repertoire of policies that produce a maximally
diverse set of outcomes.

A potential limit of this approach, as it is implemented and studied in this article,
is that representations learned in the first stage are frozen and do not evolve in the
second stage. However, we consider here this decomposition for two reasons. First,
it corresponds to a well-known developmental progression in infant development: in
their first few weeks, motor exploration in infants is very limited (due to multiple fac-
tors), while they spend a considerable amount of time observing what is happening
in the outside world with their eyes (e.g. observing images of social peers producing
varieties of effects on objects). During this phase, a lot of perceptual learning hap-
pens, and this is reused later on for motor learning (infant perceptual development
often happens ahead of motor development in several important ways). Here, passive
perceptual learning from a database of visual effects observed in the world in the first
phase can be seen as a model of this stage where infants learn by passively observing
what is happening around them8. A second reason for this decomposition is method-
ological: given the complexity of the underlying algorithmic components, analyzing
the dynamics of the architecture is facilitated when one decomposes learning in these
two phases (representation learning, then exploration).

Main contribution of this article. Prior to this work, and to our knowledge,
all existing goal exploration process architectures used a goal space representation
that was hand designed by the engineer, limiting the autonomy of the system. Here,
the main contribution is to show that representation learning algorithms can dis-
cover goal spaces that lead to exploration dynamics close to the one obtained using
an engineered goal representation space. The proposed algorithmic architecture is
tested in two environments where a simulated robot learns to discover how to move
and rotate an object with its arm to various places (the object scene being per-
ceived as a raw pixel map). The objective measure we consider, called KL-coverage,
characterizes the diversity of discovered outcomes during exploration by comparing
their distribution with the uniform distribution over the space of outcomes that are
physically possible (which is unknown to the learner). We even show that the use
of particular representation learning algorithms such as VAEs in the IMGEP-UGL
architecture can produce exploration dynamics that match the one using engineered
representations.

Secondary contributions of this article:
• We show that the IMGEP-UGL architecture can be successfully implemented

(in terms of exploration efficiency) using various unsupervised learning algo-
8Here, we do not assume that the learner actually knows that these observed world changes are

caused by another agent, and we do not assume it can perceive or infer the action program of the
other agent. Other works have considered how stronger forms of social guidance, such as imitation
learning (Schaal et al., 2003), could accelerate intrinsically motivated goal exploration (Nguyen &
Oudeyer, 2014), but they did not consider the challenge of learning goal representations.
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rithms for the goal space learning component: AutoEncoders (AEs) (Bourlard
& Kamp, 1988), Variational AE (VAE) (Rezende et al., 2014; Kingma & Ba,
2015), VAE with Normalizing Flow (Rezende & Mohamed, 2015), Isomap
(Tenenbaum et al., 2000), PCA (Pearson, 1901), and we quantitatively com-
pare their performances in terms of exploration dynamics of the associated
IMGEP-UGL architecture.
• We show that specifying more embedding dimensions than needed to capture

the phenomenon manifold does not deteriorate the performance of these unsu-
pervised learning algorithms.
• We show examples of unsupervised learning algorithms (Radial Flow VAEs)

which produce less efficient exploration dynamics than other algorithms in our
experiments, and suggest hypotheses to explain this difference.

2 Goals Representation learning for Exploration Al-
gorithms

In this section, we first present an outline of intrinsically motivated goal exploration
algorithmic architectures (IMGEPs) as originally developed and used in the field of
developmental robotics, and where goal spaces are typically hand crafted. Then, we
present a new version of this architecture (IMGEP-UGL) that includes a first phase
of passive perceptual learning where goal spaces are learned using a combination of
representation learning and density estimation. Finally, we outline a list of repre-
sentation learning algorithms that can be used in this first phase, as done in the
experimental section.

2.1 Intrinsically Motivated Goal Exploration Algorithms

Intrinsically Motivated Goal Exploration Processes (IMGEPs), are powerful algo-
rithmic architectures which were initially introduced in Baranes & Oudeyer (2009)
and formalized in Forestier et al. (2017). They can be used as heuristics to drive
the exploration of high-dimensional continuous action spaces so as to learn forward
and inverse control models in difficult robotic problems. To clearly understand the
essence of IMGEPs, we must envision the robotic agent as an experimenter seeking in-
formation about an unknown physical phenomenon through sequential experiments.
In this perspective, the main elements of an exploration process are:
• A context c, element of a Context Space C. This context represents the initial

experimental factors that are not under the robotic agent control. In most
cases, the context is considered fully observable (e.g. state of the world as
measured by sensors).
• A parameterization θ, element of a Parameterization Space Θ. This param-

eterization represents the experimental factors that can be controlled by the
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robotic agent (e.g. parameters of a policy).
• An outcome o, element of an Outcome Space O. The outcome contains infor-

mation qualifying properties of the phenomenon during the execution of the
experiment (e.g. measures characterizing the trajectory of raw sensor observa-
tions during the experiment).
• A phenomenon dynamics D : C,Θ 7→ O, which in most interesting cases is

unknown.
If we take the example of the Arm-Ball problem9 in which a multi-joint robotic

arm can interact with a ball, the context could be the initial state of the robot and
the ball, the parameterization could be the parameters of a policy that generate a
sequence of motor torque commands for N time steps, and the outcome could be
the position of the ball at the last time step. Developmental roboticists are inter-
ested in developing autonomous agents that learn two models, the forward model
D̃ : C × Θ 7→ O which approximates the phenomenon dynamics, and the inverse
model Ĩ : C ×O 7→ Θ which allows to produce desired outcomes under given context
by properly setting the parameterization. Using the aforementioned elements, one
could imagine a simple strategy that would allow the agent to gather tuples {c, θ, o}
to train those models, by uniformly sampling a random parameterization θ ∼ U(θ)
and executing the experiment. We refer to this strategy as Random Parameterization
Exploration. The problem for most interesting applications in robotics, is that only
a small subspace of Θ is likely to produce interesting outcomes. Indeed, considering
again the Arm-Ball problem with time-bounded action sequences as parameteriza-
tions, very few of those will lead the arm to touch the object and move it. In this
case, a random sampling in Θ would be a terrible strategy to yield interesting samples
allowing to learn useful forward and inverse models for moving the ball.

To overcome this difficulty, one must come up with a better approach to sample
parameterizations that lead to informative samples. Intrinsically Motivated Goal
Exploration Strategies propose a way to address this issue by giving the agent a set
of tools to handle this situation:
• A Goal Space T whose elements τ represent parameterized goals that can be

targeted by the autonomous agent. In the context of this article, and of the
IMGEP-UGL architecture, we consider the simple but important case where the
Goal Space is equated with the Outcome space. Thus, goals are simply vectors
in the outcome space that describe target properties of the phenomenon that
the learner tries to achieve through actions.
• A Goal Policy γ(τ), which is a probability distribution over the Goal Space

used for sampling goals (see Algorithmic Architecture 2). It can be stationary,
but in most cases, it will be updated over time following an intrinsic motivation
strategy. Note that in some cases, this Goal Policy can be conditioned on the
context γ(τ |c).

9See Section 3 for details.
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• A set of Goal-parameterized Cost Functions Cτ : O 7→ R defined over all O,
which maps every outcome with a real number representing the goodness-of-fit
of the outcome o regarding the goal τ . As these cost functions are defined over
O, this enables to compute the cost of a policy for a given goal even if the goal
is imagined after the policy roll-out. Thus, as IMGEPs typically memorize the
population of all executed policies and their outcomes, this enables reuse of
experimentations across multiple goals.
• A Meta-Policy Π : T , C 7→ Θ which is a mechanism to approximately solve the

minimization problem Π(τ, c) = arg minθ Cτ (D̃(θ, c)), where D̃ is a running
forward model (approximating D), trained on-line during exploration.

In some applications, a de-facto ensemble of such tools can be used. For example,
in the case where O is an Euclidean space, we can allow the agent to set goals in
the Outcome Space T = O, in which case for every goal τ we can consider a Goal-
parameterized cost function Cτ (o) = ‖τ − o‖ where ‖.‖ is a similarity metric. In the
case of the Arm-Ball problem, the final position of the ball can be used as Outcome
Space, hence the Euclidean distance between the goal position and the final ball
position at the end of the episode can be used as Goal-parameterized cost function
(but one could equally choose the full trajectories of the ball as outcomes and goals,
and an associated similarity metric).

Algorithmic architecture 2 describes the main steps of Intrinsically Motivated
Goal Exploration Processes using these tools10:

Bootstrapping phase: Sampling a few policy parameters (Random Parametriza-
tion Exploration, RPE), observing the starting context and the resulting out-
come, to initialize a memory of experiments (H = {(ci, θi, oi)}) and a regressor
D̃running approximating the phenomenon dynamics.

Goal exploration phase: Stochastically mixing random policy exploration with
goal exploration. In goal exploration, one first observes the context c and
then samples a goal τ using goal policy γ (this goal policy can be a random
stationary distribution, as in experiments below, or a contextual multi-armed
bandit maximizing information gain or competence progress, see (Baranes &
Oudeyer, 2013)). Then, a meta-policy algorithm Π is used to search the pa-
rameterization θ minimizing the Goal-parameterized cost function Cτ , i.e. it
computes θ = arg minθ Cτ (D̃running(θ, c)). This process is typically initialized
by searching the parameter θinit in H such that the corresponding cinit is in
the neighborhood of c and Cτ (oinit) is minimized. Then, this initial guess is
improved using an optimization algorithm (e.g. L-BFGS) over the regressor
D̃running. The resulting policy θ is executed, and the outcome o is observed.
The observation (c, θ, o) is then used to update H and D̃running.

10IMGEPs characterize an architecture and not an algorithm as several of the steps of this
architecture can be implemented in multiple ways, for e.g. depending on which regression or meta-
policy algorithms are implemented
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This procedure has been experimentally shown to enable sample efficient explo-
ration in high-dimensional continuous action robotic setups, enabling in turn to learn
repertoires of skills in complex physical setups with object manipulations using tools
(Forestier & Oudeyer, 2016; Forestier et al., 2017) or soft deformable objects (Nguyen
& Oudeyer, 2014).

Nevertheless, two issues arise when it comes to using these algorithms in real-life
setups, and within a fully autonomous learning approach. First, there are many real
world cases where providing an Outcome Space (in which to make observations and
sample goals, so this is also the Goal Space) to the agent is difficult, since the designer
may not himself understand well the space that the robot is learning about. The
approach taken until now (Forestier et al., 2017), was to create an external program
which extracted information out of images, such as tracking all objects positions.
This information was presented to the agent as a point in [0, 1]n, which was hence
considered as an Outcome Space. In such complex environments, the designer may
not know what is actually feasible or not for the robot, and the Outcome space
may contain many unfeasible goals. This is the reason why advanced mechanisms
for sampling goals and discovering which ones are actually feasible have been de-
signed (Baranes & Oudeyer, 2013; Forestier et al., 2017). Second, a system where
the engineer designs the representation of an Outcome Space space is limited in its
autonomy. A question arising from this is: can we design a mechanism that allows
the agent to construct an Outcome Space that leads to efficient exploration by the
mean of examples? Representation Learning methods, in particular Deep Learning
algorithms, constitute a natural approach to this problem as it has shown outstand-
ing performances in learning representations for images. In the next two sections,
we present an update of the IMGEP architecture that includes a goal space repre-
sentation learning stage, as well as various Deep Representation Learning algorithms
tested: Autoencoders along with their more recent Variational counter-parts.

2.2 Unsupervised Goal Representation Learning for IMGEP

In order to enable goal space representation learning within the IMGEP framework,
we propose to add a first stage of unsupervised perceptual learning (called UGL)
before the goal exploration stage, leading to the new IMGEP-UGL architecture de-
scribed in Algorithmic Architecture 1. In the passive perceptual learning stage (UGL,
lines 2-8), the learner passively observes the unknown phenomenon by collecting sam-
ples xi of raw sensor values as the world changes. The architecture is neutral with
regards to how these world changes are produced, but as argued in the introduc-
tion, one can see them as coming from actions of other agents in the environment.
Then, this database of xi observations is used to train an unsupervised learning
algorithm (e.g. VAE, Isomap) to learn an embedding function R̃ which maps the
high-dimensional raw sensor observations onto a lower-dimensional representation o.
Also, a kernel density estimator KDE estimates the distribution pkde(o) of observed

238 Appendix B. Learning a Representation for Goal Babbling



world changes projected in the embedding. Then, in the goal exploration stage (lines
9-26), this lower-dimensional representation o is used as the outcome and goal space,
and the distribution pkde(o) is used as a stochastic goal policy, within a standard
IMGEP process (see above).

2.3 Representation Learning Algorithms and Density Estima-
tion for the UGL stage

As IMGEP-UGL is an algorithmic architecture, it can be implemented with several
algorithmic variants depending on which unsupervised learning algorithm is used
in the UGL phase. We experimented over different deep and classical Representa-
tion Learning algorithms for the UGL phase. We rapidly outline these algorithms
here. For a more in-depth introduction to those models, the reader can refer to Ap-
pendix B which contains details on the derivations of the different Cost Functions
and Architectures of the Deep Neural Networks based models.

Auto-Encoders (AEs) are a particular type of Feed-Forward Neural Networks
that were introduced in the early hours of neural networks (Bourlard & Kamp, 1988).
They are trained to output a reconstruction x̃ of the input vector x of dimension D,
through a representation layer of size d < D. They can be trained in an unsupervised
manner using a large dataset of unlabeled samples D = {x(i)}i∈{0...N}. Their main
interest lies in their ability to model the statistical regularities existing in the data.
Indeed, during training, the network learns the regularities allowing to encode most
of the information existing in the input in a more compact representation. Put
differently, AEs can be seen as learning a non-linear compression for data coming from
an unknown distribution. Those models can be trained using different algorithms, the
most simple being Stochastic Gradient Descent (SGD), to minimize a loss function
J (D) that penalizes differences between x̃ and x for all samples in D.

Variational Auto-Encoders (VAEs) are a recent alternative to classic AEs
(Rezende et al., 2014; Kingma & Ba, 2015), that can be seen as an extension to
a stochastic encoding. The argument underlying this model is slightly more involved
than the simple approach taken for AEs, and relies on a statistical standpoint pre-
sented in Appendix B. In practice, this model simplifies to an architecture very
similar to an AE, differing only in the fact that the encoder fθ outputs the param-
eters µ and σ of a multivariate Gaussian distribution N (µ, diag(σ2)) with diagonal
covariance matrix, from which the representation z is sampled. Moreover, an extra
term is added to the Cost Function, to condition the distribution of z in the repre-
sentation space. Under the restriction that a factorial Gaussian is used, the neural
network can be made fully differentiable thanks to a reparameterization trick, making
it possible to use SGD for training.
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Algorithmic Architecture 1: Intrinsically Motivated Goal Exploration Pro-
cess with Unsupervised Goal Representation Learning (IMGEP-UGL)
Input:
Regressor D̃running, Goal Policy γ, Parameterized cost function Cτ ,
Meta-Policy algorithm Π, Unsupervised representation learning algorithm A
(e.g. AE, VAE, Isomap), Kernel Density Estimator algorithm KDE,
History H, Random exploration ratio Γe

1 begin
2 Passive perceptual learning stage (UGL):
3 for A fixed number of Observation iterations nr do
4 Observe the phenomenon with raw sensors to gather a sample xi
5 Add this sample to a sample database D = {xi}i∈[0,nr]

6 Learn an embedding function R̃ : x→ o using algorithm A on data D
7 Set O = T = R̃(x)

8 Estimate the outcome distribution pkde(o) from {R̃(xi)}i∈[0,10000] using
algorithm KDE

9 Set the Goal Policy γ = pkde to be the estimated outcome distribution
10 Goal exploration stage (IMGEP):
11 for A fixed number of Bootstrapping iterations do
12 Observe context c
13 Sample θ ∼ U(θ)
14 Perform experiment and retrieve outcome from raw sensor signal

o = R̃(x)
15 Update Regressor D̃running with tuple {c, θ, o}
16 H = H ∪ {c, θ, o}
17 for A fixed number of Exploration iterations do
18 if u ∼ U(0, 1) < Γe then
19 Sample a random parameterization θi ∼ p(θ)

20 else
21 Observe context c
22 Sample a goal τ ∼ γ

23 Compute θ = arg minθ Cτ (D̃running(θ, c)) using Π, D̃running and H
24 Perform experiment and retrieve outcome from raw sensor signal

o = R̃(x)
25 Update Regressor D̃running with a tuple {c, θ, o}
26 Update Goal Policy γ, according to Intrinsic Motivation strategy
27 H = H ∪ {c, θ, o}

28 return The forward model D̃running, the history H and the embedding R̃
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In practice VAEs tend to yield smooth representations of the data, and are faster
to converge than AEs from our experiments. Despite these interesting properties,
the derivation of the actual cost function relies mostly on the assumption that the
factors can be described by a factorial Gaussian distribution. This hypothesis can
be largely erroneous, for example if one of the factors is periodic, multi-modal, or
discrete. In practice our experiments showed that even if training could converge for
non-Gaussian factors, it tends to be slower and to yield poorly conditioned represen-
tations.

Normalizing Flow proposes a way to overcome this restriction on distribution, by
allowing more expressive ones (Rezende & Mohamed, 2015). It uses the classic rule
of change of variables for random variables, which states that considering a random
variable z0 ∼ q(z0), and an invertible transformation t : Rd 7→ Rd, if z = t(z0)
then q(z) = q(z0)| det ∂t/∂z0|−1. Using this, we can chain multiple transformations
t1, t2, . . . , tK to produce a new random variable zK = tK ◦ · · · ◦ t2 ◦ t1(z0). One
particularly interesting transformation is the Radial Flow, which allows to radially
contract and expand a distribution as can be seen in Figure 5 in Appendix. This
transformation seems to give the required flexibility to encode periodic factors.

Isomap is a classical approach of Multi-Dimensional Scaling (Kruskal, 1964) a
procedure allowing to embed a set of N -dimensional points in a n dimensional space,
with N > n, minimizing the Kruskal Stress, which measures the distortion induced
by the embedding in the pairwise Euclidean distances. This algorithm results in an
embedding whose pairwise distances are roughly the same as in the initial space.
Isomap (Tenenbaum et al., 2000) goes further by assuming that the data lies in the
vicinity of a lower dimensional manifold. Hence, it replaces the pairwise Euclidean
distances in the input space by an approximate pairwise geodesic distance, computed
by the Dijkstra’s Shortest Path algorithm on a κ nearest-neighbors graph.

Principal Component Analysis is an ubiquitous procedure (Pearson, 1901)
which, for a set of data points, allows to find the orthogonal transformation that
yields linearly uncorrelated data. This transformation is found by taking the prin-
cipal axis of the covariance matrix of the data, leading to a representation whose
variance is in decreasing order along dimensions. This procedure can be used to
reduce dimensionality, by taking only the first n dimensions of the transformed data.

Estimation of sampling distribution: Since the Outcome Space O was learned
by the agent, it had no prior knowledge of p(o) for o ∈ O. We used a Gaussian
Kernel Density Estimation (KDE) (Parzen, 1962; Rosenblatt, 1956) to estimate this
distribution from the projection of the images observed by the agent, into the learned
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goal space representation. Kernel Density Estimation allows to estimate the contin-
uous density function (cdf) f(o) out of a discrete set of samples {oi}i∈{1,...,n} drown
from distribution p(o). The estimated cdf is computed using the following equation:

f̂H(o) =
1

n

n∑

i=1

KH(o− oi), (1)

with K(·) a kernel function and H a bandwidth d × d matrix (d the dimension of
O). In our case, we used a Gaussian Kernel:

KH(o) = (2π)−
d
2 |H|− 1

2 e−
1
2
oTH−1o, (2)

with the bandwidth matrix H equaling the covariance matrix of the set of points,
rescaled by factor n−

1
d+4 , with n the number of samples, as proposed in Scott (1992).

3 Experiments
We conducted experiments to address the following questions in the context of two
simulated environments:
• Is it possible for an IMGEP-UGL implementation to produce a Goal Space

representation yielding an exploration dynamics as efficient as the dynamics
produced by an IMGEP implementation using engineered goal space repre-
sentations? Here, the dynamics of exploration is measured through the KL
Coverage defined thereafter.
• What is the impact of the target embedding dimensionality provided to these

algorithms?
• Are there differences in exploration dynamics when one uses different unsu-

pervised learning algorithms (Isomap-KDE, PCA-KDE, AE-KDE, VAE-KDE,
VAE-GP, RFVAE-GP, RFVAE-KDE) as various UGL component of IMGEP-
UGL?

We now present in depth the experimental campaign we performed11.

Environments: We experimented on two different Simulated Environments
derived from the Arm-Ball benchmark represented in Figure 1, namely the Arm-
Ball and the Arm-Arrow environments, in which a 7-joint arm, controlled by a 21
continuous dimension Dynamic Movement Primitives (DMP) (Ijspeert et al., 2013)
controller, evolves in an environment containing an object it can handle and move
around in the scene. In the case of IMGEP-UGL learners, the scene is perceived as a
70x70 pixel image. For the UGL phase, we used the following mechanism to generate

11The code to reproduce the experiments is available at
https://github.com/flowersteam/Unsupervised_Goal_Space_Learning
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Figure 1: Left: The Arm-Ball environment with a 7 DOF arm, controlled by a
21D continuous actions DMP controller, that can stick and move the ball if the
arm tip touches it (on the left). Right: rendered 70x70 images used as raw signals
representing the end position of the objects for Arm-Ball (on the center) and Arm-
Arrow (on the right) environments. The arm is not visible to learners.

the distribution of samples xi: the object was moved randomly uniformly over [−1, 1]2

for ArmBall, and over [−1, 1]2× [0, 2π] for ArmArrow, and the corresponding images
were generated and provided as an observable sample to IMGEP-UGL learners. Note
that the physically reachable space (i.e. the largest space the arm can move the
object to) is the disk centered on 0 and of radius 1: this means that the distribution
of object movements observed by the learner is slightly larger than the actual space
of moves that learners can produce themselves (and learners have no knowledge of
which subspace corresponds to physically feasible outcomes). The environments are
presented in depth in Appendix C.

Algorithmic Instantiation of the IMGEP-UGL Architecture: We experi-
mented over the following Representation Learning Algorithms for the UGL compo-
nent: Auto-Encoders with KDE (RGE-AE), Variational Auto-Encoders with KDE
(RGE-VAE), Variational Auto-Encoders using the associated Gaussian prior for sam-
pling goal instead of KDE (RGE-VAE-GP), Radial Flow Variational Auto-Encoders
with KDE (RGE-RFVAE), Radial Flow Variational Auto-Encoders using the asso-
ciated Gaussian prior for sampling goal (RGE-RFVAE-GP), Isomap (RGE-Isomap)
(Tenenbaum et al., 2000) and Principal Component Analysis (RGE-Isomap).

Regarding the classical IMGEP components, we considered the following ele-
ments:
• Context Space C = ∅: In the implemented environments, the initial positions

of the arm and the object were reset at each episode12. Consequently, the
context was not observed nor accounted for by the agent.

12This makes the experiment faster but does not affect the conclusion of the results.
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• Parameterization Space Θ = [0, 1]21: During the experiments, we used
DMP controllers as parameterized policies to generate time-bounded motor
actions sequences. Since the DMP controller was parameterized by 3 basis
functions for each joint of the arm (7), the parameterization of the controller
was represented by a point in [0, 1]3×7.
• Outcome Space O ⊂ Rl: The Outcome Space is the subspace of Rl spanned

by the embedding representations of the ensemble of images observed in the first
phase of learning. For the RGE-EFR algorithm, l = 2 in ArmBall and l = 3
in ArmArrow. For IMGEP-UGL algorithms, as the representation learning al-
gorithms used in the UGL stage require a parameter specifying the maximum
dimensionality of the target embedding, we considered two cases in experi-
ments: 1) l = 10, which is 5 times larger than the true manifold dimension for
ArmBall, and 3.3 times larger for ArmArrow (the algorithm is not supposed
to know this, so testing the performance with larger embedding dimension is
key); 2) l = 2 for ArmBall, and l = 3 for ArmArrow, which is the same
dimensionality as the true dimensions of these manifolds.
• Goal Space T = O : The Goal Space was taken to equate the Outcome

Space.
• Goal-Parameterized Cost function Cτ (·) = ‖τ − · ‖2 : Sampling goals in

the Outcome Space allows us to use the Euclidean distance as Goal parame-
terized cost function.

Considering those elements, we used the instantiation of the IMGEP architec-
ture represented in Appendix D in Algorithm 3. We implemented a goal sampling
strategy known as Random Goal Exploration (RGE), which consists, given a station-
ary distribution over the Outcome Space p(o), in sampling a random goal o ∼ p(o)
each time (note that this stationary distribution p(o) is learnt in the UGL stage for
IMGEP-UGL implementations). We used a simple k-neighbors regressor to imple-
ment the running forward model D̃, and the Meta-Policy mechanism consisted in
returning the nearest achieved outcome in the outcome space, and taking the same
parameterization perturbed by an exploration noise (which has proved to be a very
strong baseline in IMGEP architectures in previous works (Baranes & Oudeyer, 2013;
Forestier & Oudeyer, 2016)).

Exploration Performance Measure: In this article, the central property we are
interested in is the dynamics and quality of exploration of the outcome space, char-
acterizing the evolution of the distribution of discovered outcomes, i.e. the diversity
of effects that the learner discovers how to produce. In order to characterize this
exploration dynamics quantitatively, we monitored a measure which we refer to as
Kullback-Leibler Coverage (KLC). At a given point in time during exploration, this
measure computes the KL-divergence between the distribution of the outcomes pro-
duced so far, with a uniform distribution of outcomes in the space of physically pos-
sible outcomes (which is known by the experimenter, but unknown by the learner).
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To compute it, we use a normalized histogram of the explored outcomes, with 30
bins per dimension, which we refer to as E, and we compute its Kullback Leibler
Divergence with the normalized histogram of attainable points which we refer to as
A:

KLC = DKL[E‖A] =
30∑

i=1

E(i) log
E(i)

A(i)
.

We emphasize that, when computed against a uniform distribution, the KLC
measure is a proxy for the (opposite) Entropy of the E distribution. Nevertheless,
we prefer to keep it under the divergence form, as the A distribution allows to
define what the experimenter considers to be a good exploration distribution. In the
case of this study, we consider a uniform distribution of explored locations over the
attainable domain, to be the best exploration distribution achievable.

Baseline algorithms: We are using two natural baseline algorithms for evaluating
the exploration dynamics of our IMGEP-UGL algorithmic implementations :
• Random Goal Exploration with Engineered Features Representa-

tions (RGE-EFR): This is an IMGEP implementation using a goal/outcome
space with handcrafted features that directly encode the underlying structure
of environments: for Arm-Ball, this is the 2D position of the ball in [0, 1]2,
and for Arm-Arrow this is the 2D position and the 1D orientation of the arrow
in [0, 1]3. This algorithm is also given the prior knowledge of p(o) = U(O).
All other aspects of the IMGEP (regressor, meta-policy, other parameters) are
identical to IMGEP-UGL implementations. This algorithm is known to pro-
vide highly efficient exploration dynamics in these environments (Forestier &
Oudeyer, 2016).
• Random Parameterization Exploration (RPE): The Random Parame-

terization Exploration approach does not use an Outcome Space, nor a Goal
Policy, and only samples a random parameterization θ ∼ U(Θ) at each episode.
We expected this algorithm to lower bound the performances of our novel ar-
chitecture.

4 Results
We first study the exploration dynamics of all IMGEP-UGL algorithms, comparing
them to the baselines and among themselves. Then, we study specifically the impact
of the target embedding dimension (latent space) for the UGL implementations, by
observing what exploration dynamics is produced in two cases:
• Using a target dimension larger than the true dimension (l = 10)
• Providing the true embedding dimension to the UGL implementations (l = 2, 3)

Finally, we specifically study RGE-VAE, using the intrinsic Gaussian prior of these
algorithms to replace the KDE estimator of p(O) in the UGL part.
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Figure 2: KL Coverage through epochs for different algorithms on ArmBall and
ArmArrow environments. The exploration performance was assessed for both an
over-complete representation (10 latent dimensions), and a complete representation
(2 and 3 latent dimensions). The shaded area represent a 90% confidence interval
estimated from 5 run of the different algorithms.

Exploration Performances: In Figure 2, we can see the evolution of the KLC
through exploration epochs (one exploration epoch is defined as one experimentation
/ roll-out of a parameter θ). We can see that for both environments, and all values
of latent spaces, all IMGEP-UGL algorithms, except RGE-RFVAE, achieve similar
or better performance (both in terms of asymptotic KLC and speed to reach it) than
the RGE-EFR algorithm using engineered Goal Space features, and much better
performance than the RPE algorithm.

Figure 3 (see also Figure 8 and 9 in Appendix) show details of the evolution of
discovered outcomes in ArmBall (final ball positions after the end of a policy roll-
out) and corresponding KLC measures for individual runs with various algorithms.
It also shows the evolution of the number of times learners managed to move the
ball, which is considered in the KLC measure but not easily visible in the displayed

246 Appendix B. Learning a Representation for Goal Babbling



(a) Rpe

(b) Rge-Efr

(c) Rge-Rfvae - 10 Latents

(d) Rge-Vae - 10 Latents

Figure 3: Examples of achieved outcomes related with the evolution of KL-Coverage
in the ArmBall environments. The number of times the ball was effectively handled
is also represented.
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set of outcomes in Figure 3. For instance, we observe that both RPE (Figure 3(a))
and RGE-RFVAE (Figure 3(c)) algorithms perform poorly: they discover very few
policies moving the ball at all (pink curves), and these discovered ball moves cover
only a small part of the physically possible outcome space. On the contrary, both
RGE-EFR (handcrafted features) and RGE-VAE (learned goal space representation
with VAE) perform very well, and the KLC of RGE-VAE is even better than the KLC
of RGE-EFR, due to the fact that RGE-VAE has discovered more policies (around
2400) that move the ball than RGE-EFR (around 1600, pink curve).

Impact of target latent space size in IMGEP-UGL algorithms On the Arm-
Ball problem, we observe that if one provides the true target embedding dimension
(l = 2) to IMGEP-UGL implementations, RGE-Isomap is slightly improving (getting
quasi-identical to RGE-EFR), RGE-AE does not change (remains quasi-identical to
RGE-EFR), but the performance of RGE-PCA and RGE-VAE is degraded. For
ArmArrow, the effect is similar: IMGEP-UGL algorithms with a larger target em-
bedding dimension (l = 10) than the true dimensionality all perform better than
RGE-EFR (except RGE-RFVAE which is worse in all cases), while when l = 2 only
RGE-VAE is significantly better than RGE-EFR. In Appendix F, more examples
of exploration curves with attached exploration scatters are shown. For most ex-
ample runs, increasing the target embedding dimension enables learners to discover
more policies moving the ball and, in these cases, the discovered outcomes are more
concentrated towards the external boundary of the discus of physically possible out-
comes. This behavior, where increasing the target embedding dimension improves
the KLC while biasing the discovered outcome towards the boundary the feasible
goals, can be understood as a consequence of the following well-known general prop-
erty of IMGEPs: if goals are sampled outside the convex hull of outcomes already
discovered, this has the side-effect of biasing exploration towards policies that will
produce outcomes beyond this convex hull (until the boundary of feasible outcomes
is reached). Here, as observations in the UGL phase were generated by uniformly
moving the objects on the square [−1, 1]2, while the feasible outcome space was the
smaller discus of radius 1, goal sampling happened in a distribution of outcomes
larger than the feasible outcome space. As one increases the embedding space di-
mensionality, the ratio between the volume of the corresponding hyper-cube and
hyper-discus increases, in turn increasing the probability to sample goals outside the
feasible space, which has the side effect of fostering the discovery of novel outcomes
and biasing exploration towards the boundaries.

Impact of Sampling Kernel Density Estimation Another factor impacting
the exploration assessed during our experiments was the importance of the distribu-
tion used as stationary Goal Policy. If, in most cases, the representation algorithm
gives no particular prior knowledge of p(o), in the case of Variational Auto-Encoders,
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Figure 4: Evolution of the Exploration Ratio for RGE-VAE using KDE or Isotropic
Gaussian prior. The curves show the mean and standard deviation over 5 indepen-
dent runs of each condition.

it is assumed in the derivation that p(o) = N (0, I). Hence, the isotropic Gaussian
distribution is a better candidate stationary Goal Policy than Kernel Density Esti-
mation. Figure 4 shows a comparison between exploration performances achieved
with RGE-VAE using a KDE distribution or an isotropic Gaussian as Goal Policy.
The performance is not significantly different from the isotropic Gaussian case. Our
experiments showed that convergence on the KL term of the loss can be more or less
quick depending on the initialization. Since we used a number of iterations as stop-
ping criterion for training (based on early experiments), we found that sometimes,
at stop, the divergence was still pretty high despite achieving a low reconstruction
error. In those cases the representation was not be perfectly matching an isotropic
Gaussian, which could lead to a goal sampling bias when using the isotropic Gaussian
Goal Policy.
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5 Conclusion
In this paper, we proposed a new Intrinsically Motivated Goal Exploration architec-
ture with Unsupervised Learning of Goal spaces (IMGEP-UGL). Here, the Outcome
Space (also used as Goal Space) representation is learned using passive observations
of world changes through low-level raw sensors (e.g. movements of objects caused by
another agent and perceived at the pixel level). Within the perspective of research
on Intrinsically Motivated Goal Exploration started a decade ago (Oudeyer & Ka-
plan, 2007; Baranes & Oudeyer, 2013), and considering the fundamental problem of
how AI agents can autonomously explore environments and skills by setting their
own goals, this new architecture constitutes a milestone as it is to our knowledge the
first goal exploration architecture where the goal space representation is learned, as
opposed to hand-crafted.

Furthermore, we have shown in two simulated environments (involving a high-
dimensional continuous action arm) that this new architecture can be successfully
implemented using multiple kinds of unsupervised learning algorithms, including re-
cent advanced deep neural network algorithms like Variational Auto-Encoders. This
flexibility opens the possibility to benefit from future advances in unsupervised rep-
resentation learning research. Yet, our experiments have shown that all algorithms
we tried (except RGE-RFVAE) can compete with an IMGEP implementation us-
ing engineered feature representations. We also showed, in the context of our test
environments, that providing to IMGEP-UGL algorithms a target embedding di-
mension larger than the true dimensionality of the phenomenon can be beneficial
through leveraging exploration dynamics properties of IMGEPs. Though we must
investigate more systematically the extent of this effect, this is encouraging from an
autonomous learning perspective, as one should not assume that the learner initially
knows the target dimensionality.

Limits and future work. The experiments presented here were limited to a
fairly restricted set of environments. Experimenting over a larger set of environments
would improve our understanding of IMGEP-UGL algorithms in general. In particu-
lar, a potential challenge is to consider environments where multiple objects/entities
can be independently controlled, or where some objects/entities are not controllable
(e.g. animate entities). In these cases, previous work on IMGEPs has shown that
random Goal Policies should be either replaced by modular Goal Policies (consid-
ering a modular goal space representation, see Forestier et al. (2017)), or by active
Goal Policies which adaptively focus the sampling of goals in subregions of the Goal
Space where the competence progress is maximal (Baranes & Oudeyer, 2013). For
learning modular representations of Goal Spaces, an interesting avenue of investiga-
tions could be the use of the Independently Controllable Factors approach proposed
in (Thomas et al., 2017).

Finally, in this paper, we only studied a learning scenario where representation
learning happens first in a passive perceptual learning stage, and is then fixed during
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a second stage of autonomous goal exploration. While this was here motivated both
by analogies to infant development and to facilitate evaluation, the ability to incre-
mentally and jointly learn an outcome space representation and explore the world is
a stimulating topic for future work.

Acknowledgement
This work was supported by Inria and by the European Commission, within the
DREAM project, and has received funding from the European Unions Horizon 2020
research and innovation program under grant agreement N o 640891.

251





Bibliography

Adolph, K. E., Bertenthal, B. I., Boker, S. M., Goldfield, E. C., and Gibson, E. J.
(1997). Learning in the development of infant locomotion. Monographs of the
society for research in child development, pages i–162.

Albert, R. R., Schwade, J. A., and Goldstein, M. H. (2018). The social functions of
babbling: acoustic and contextual characteristics that facilitate maternal respon-
siveness. Developmental science, 21(5):e12641.

Alcock, J. (1972). The evolution of the use of tools by feeding animals. Evolution,
pages 464–473.

Andreae, P. M. and Andreae, J. H. (1978). A teachable machine in the real world.
International Journal of Man-Machine Studies, 10(3):301–312.

Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P., McGrew,
B., Tobin, J., Abbeel, O. P., and Zaremba, W. (2017). Hindsight experience replay.
In Advances in Neural Information Processing Systems, pages 5048–5058.

Antunes, A., Saponaro, G., Dehban, A., Jamone, L., Ventura, R., Bernardino, A., and
Santos-Victor, J. (2015). Robotic tool use and problem solving based on probabilistic
planning and learned affordances. In IROS 2015 Workshop on Learning Object
Affordances: a fundamental step to allow prediction, planning and tool use?

Auersperg, A. M., Von Bayern, A. M., Gajdon, G. K., Huber, L., and Kacelnik, A.
(2011). Flexibility in problem solving and tool use of kea and new caledonian crows
in a multi access box paradigm. PLoS One, 6(6):e20231.

Austin, J. T. and Vancouver, J. B. (1996). Goal constructs in psychology: Structure,
process, and content. Psychological bulletin, 120(3):338.

Bakker, B., Schmidhuber, J., et al. (2004). Hierarchical reinforcement learning based
on subgoal discovery and subpolicy specialization. In Proc. of the 8-th Conf. on
Intelligent Autonomous Systems, pages 438–445.

Baldassarre, G. and Mirolli, M. (2013). Intrinsically Motivated Learning in Natural
and Artificial Systems. Springer.

Bambach, S., Crandall, D., Smith, L., and Yu, C. (2018). Toddler-inspired visual
object learning. In Advances in Neural Information Processing Systems, pages
1201–1210.



254 Bibliography

Baranes, A. and Oudeyer, P.-Y. (2009). R-iac: Robust intrinsically motivated explo-
ration and active learning. IEEE Transactions on Autonomous Mental Development,
1(3):155–169.

Baranes, A. and Oudeyer, P.-Y. (2010a). Intrinsically motivated goal exploration for
active motor learning in robots: A case study. In 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 1766–1773. IEEE.

Baranes, A. and Oudeyer, P.-Y. (2010b). Maturationally-constrained competence-
based intrinsically motivated learning. In Development and Learning (ICDL), 2010
IEEE 9th International Conference on. IEEE.

Baranes, A. and Oudeyer, P.-Y. (2011). The interaction of maturational constraints
and intrinsic motivations in active motor development. In 2011 IEEE International
Conference on Development and Learning (ICDL), volume 2, pages 1–8. IEEE.

Baranes, A. and Oudeyer, P.-Y. (2013). Active learning of inverse models with
intrinsically motivated goal exploration in robots. Robotics and Autonomous
Systems, 61(1).

Barrett, T. M., Davis, E. F., and Needham, A. (2007). Learning about tools in
infancy. Developmental psychology, 43(2):352.

Barto, A. G. (2013). Intrinsic motivation and reinforcement learning. In Intrinsically
motivated learning in natural and artificial systems, pages 17–47. Springer.

Bates, E., Carlson-Luden, V., and Bretherton, I. (1980). Perceptual aspects of tool
using in infancy. Infant Behavior and Development, 3:127–140.

Beck, B. B. (1980). Animal tool behavior. Garland STPM Pub.

Beck, S. R., Apperly, I. A., Chappell, J., Guthrie, C., and Cutting, N. (2011). Making
tools isn’t child’s play. Cognition, 119(2):301–306.

Beck, S. R., Cutting, N., Apperly, I. A., Demery, Z., Iliffe, L., Rishi, S., and Chappell,
J. (2014). Is tool-making knowledge robust over time and across problems? Frontiers
in psychology, 5:1395.

Begus, K., Gliga, T., and Southgate, V. (2014). Infants learn what they want to
learn: responding to infant pointing leads to superior learning. PloS one, 9(10).

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., and Munos, R.
(2016). Unifying count-based exploration and intrinsic motivation. In Advances in
Neural Information Processing Systems, pages 1471–1479.



Bibliography 255

Bengio, Y., Louradour, J., Collobert, R., and Weston, J. (2009). Curriculum learning.
In Proceedings of the 26th annual international conference on machine learning,
pages 41–48. ACM.

Bentley-Condit, V. et al. (2010). Animal tool use: current definitions and an updated
comprehensive catalog. Behaviour, 147(2):185–32A.

Benureau, F. C. and Oudeyer, P.-Y. (2016). Behavioral diversity generation in
autonomous exploration through reuse of past experience. Frontiers in Robotics
and AI, 3:8.

Berlyne, D. E. (1960). Conflict, arousal, and curiosity.

Berlyne, D. E. (1966). Curiosity and exploration. Science, 153(3731):25–33.

Berthouze, L., Bakker, P., and Kuniyoshi, Y. (1996). Learning of oculo-motor
control: a prelude to robotic imitation. In Proceedings of IEEE/RSJ International
Conference on Intelligent Robots and Systems. IROS’96, volume 1, pages 376–381.
IEEE.

Berthouze, L., Shigematsu, Y., and Kuniyoshi, Y. (1998). Dynamic categorization
of explorative behaviors for emergence of stable sensorimotor configurations. In
Proceedings of the International Conference on Simulation of Adaptive Behavior
(SAB1998), pages 67–72.

Bickerton, D. (1990). Language and species. University of Chicago Press.

Billard, A. (1999). Imitation skills as a means to enhance learning of a synthetic
proto-language in an autonomous robot. In Proceedings of the AISB Symposium
on Imitation in Animals and Artifacts, number CONF.

Bonawitz, E. B., van Schijndel, T. J., Friel, D., and Schulz, L. (2012). Children
balance theories and evidence in exploration, explanation, and learning. Cognitive
psychology, 64(4):215–234.

Borghi, A. M., Scorolli, C., Caligiore, D., Baldassarre, G., and Tummolini, L. (2013).
The embodied mind extended: using words as social tools. Frontiers in psychology,
4:214.

Bottou, L. (1998). Online learning and stochastic approximations. On-line learning
in neural networks, 17(9):142.

Bourgeois, K. S., Khawar, A. W., Neal, S. A., and Lockman, J. J. (2005). Infant
manual exploration of objects, surfaces, and their interrelations. Infancy, 8(3):233–
252.



256 Bibliography

Bourlard, H. and Kamp, Y. (1988). Auto-association by multilayer perceptrons and
singular value decomposition. Biological cybernetics, 59(4-5):291–294.

Braud, R., Pitti, A., and Gaussier, P. (2017). A modular dynamic sensorimotor model
for affordances learning, sequences planning, and tool-use. IEEE Transactions on
Cognitive and Developmental Systems, 10(1):72–87.

Breazeal, C. and Scassellati, B. (1998). Infant-like social interactions between a robot
and a human caretaker. Adaptive Behavior, 8(1).

Brooks, R. and Meltzoff, A. N. (2008). Infant gaze following and pointing predict
accelerated vocabulary growth through two years of age: A longitudinal, growth
curve modeling study. Journal of child language, 35(1):207–220.

Brown, A. L. (1990). Domain-specific principles affect learning and transfer in children.
Cognitive science, 14(1):107–133.

Brown, S. and Sammut, C. (2012). Tool use and learning in robots. Encyclopedia of
the Sciences of Learning, pages 3327–3330.

Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C. (1995). A limited memory algorithm
for bound constrained optimization. SIAM Journal on Scientific Computing,
16(5):1190–1208.

Cabi, S., Colmenarejo, S. G., Hoffman, M. W., Denil, M., Wang, Z., and De Freitas,
N. (2017). The intentional unintentional agent: Learning to solve many continuous
control tasks simultaneously. arXiv preprint arXiv:1707.03300.

Cangelosi, A., Metta, G., Sagerer, G., Nolfi, S., Nehaniv, C., Fischer, K., Tani,
J., Belpaeme, T., Sandini, G., Nori, F., et al. (2010). Integration of action and
language knowledge: A roadmap for developmental robotics. Autonomous Mental
Development, IEEE Transactions on, 2(3).

Cangelosi, A., Schlesinger, M., and Smith, L. B. (2015). Developmental robotics:
From babies to robots. MIT Press.

Cao, Z., Hidalgo, G., Simon, T., Wei, S.-E., and Sheikh, Y. (2018). Openpose:
realtime multi-person 2d pose estimation using part affinity fields. arXiv preprint
arXiv:1812.08008.

Carroll, S. B. (2005). Endless forms most beautiful: The new science of evo devo and
the making of the animal kingdom.

Chang, M. B., Ullman, T., Torralba, A., and Tenenbaum, J. B. (2016). A com-
positional object-based approach to learning physical dynamics. arXiv preprint
arXiv:1612.00341.



Bibliography 257

Chen, Z., Siegler, R. S., and Daehler, M. W. (2000). Across the great divide:
Bridging the gap between understanding of toddlers’ and older children’s thinking.
Monographs of the Society for Research in Child Development, pages i–105.

Chentanez, N., Barto, A. G., and Singh, S. P. (2005). Intrinsically motivated
reinforcement learning. In Advances in neural information processing systems,
pages 1281–1288.

Churchill, A. W. and Fernando, C. (2014). An evolutionary cognitive architecture
made of a bag of networks. Evolutionary Intelligence, 7(3):169–182.

Clerkin, E. M., Hart, E., Rehg, J. M., Yu, C., and Smith, L. B. (2017). Real-world
visual statistics and infants’ first-learned object names. Phil. Trans. R. Soc. B,
372(1711).

Cleveland, W. S. and Devlin, S. J. (1988). Locally weighted regression: an approach to
regression analysis by local fitting. Journal of the American statistical association,
83(403):596–610.

Cognolato, M., Atzori, M., and Müller, H. (2018). Head-mounted eye gaze tracking de-
vices: An overview of modern devices and recent advances. Journal of rehabilitation
and assistive technologies engineering, 5:2055668318773991.

Cohen, L. and Billard, A. (2018). Social babbling: The emergence of symbolic gestures
and words. Neural Networks, 106:194–204.

Colas, C., Sigaud, O., and Oudeyer, P.-Y. (2018a). Curious: Intrinsically motivated
multi-task, multi-goal reinforcement learning. arXiv preprint arXiv:1810.06284.

Colas, C., Sigaud, O., and Oudeyer, P.-Y. (2018b). GEP-PG: Decoupling exploration
and exploitation in deep reinforcement learning algorithms. In Dy, J. and Krause,
A., editors, Proceedings of the 35th International Conference on Machine Learn-
ing, volume 80 of Proceedings of Machine Learning Research, pages 1039–1048,
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