
HAL Id: tel-03441023
https://theses.hal.science/tel-03441023v2

Submitted on 22 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Principles of program verification for arbitrary monadic
effects

Kenji Maillard

To cite this version:
Kenji Maillard. Principles of program verification for arbitrary monadic effects. Programming Lan-
guages [cs.PL]. Université Paris sciences et lettres, 2019. English. �NNT : 2019PSLEE081�. �tel-
03441023v2�

https://theses.hal.science/tel-03441023v2
https://hal.archives-ouvertes.fr

Préparée à l’École Normale Supérieure de Paris

Principes de la Vérification de Programmes
à Effets Monadiques Arbitraires

Soutenue par
Kenji MAILLARD
Le 25 Novembre 2019

Ecole doctorale n° 386
Sciences Mathématiques
de Paris Centre

Spécialité
Informatique

Composition du jury :

Hugo HERBELIN
Directeur de recherche, Inria Paris Président

Shin-Ya KATSUMATA
Associate Professor, NII Tokyo Rapporteur

Bas SPITTERS
Associate Professor, Aarhus University Rapporteur

Robert ATKEY
Chancellor’s Fellow and Lecturer,
University of Strathclyde Examinateur

Gilles BARTHE
Directeur de recherche, MPI Bochum Examinateur

Pierre-Évariste DAGAND
Chargé de recherche, LIP6 Examinateur

Christine PAULIN-MOHRING
Professeur des universités, LRI Examinatrice

Nicolas TABAREAU
Directeur de recherche, Inria Rennes Examinateur

Cătălin HRIŢCU
Chargé de recherche, Inria Paris Directeur de thèse

Á Jacques

i

Remerciements

Je remercie tous les membres du jury de s’être déplacés pour assister à cette soutenance. Merci
en particulier à Shin-Ya et Bas pour leur relecture attentive de ce manuscript et leurs multiples
questions pertinentes.

Je tiens d’abord à remercier les multiples personnes qui m’ont introduit à la recherche, acadé-
mique ou pas, notamment Masahito Hasegawa, Paul-André Melliès, Rosen Diankov et Nikhil
Swamy qui m’ont encadré au cours de long stages à Kyoto, Paris, Tokyo et Seattle. Les points de
vue variés sur la recherche qu’ils ont partagés m’ont fortement inspiré tout au long de ma thèse.

L’équipe Prosecco m’a accueilli malgré un parcours et un bagage scienti�que un peu étranger
à leur cœur de métier. Si j’ai pu me sentir perdu, plongé dans des domaines pour moi très exo-
tiques, je remercie tous les membres de l’équipe pour le lieu stimulant qu’ils ont fait vivre : Nadim
pour ses protocoles agrémentés de chatons kawaii, Marc pour ses questions sur G(rothendieck)tk,
Natalia, Ben et Marina pour les multiples occasions de débugger un contexte SMT défaillant,
Tomer pour son ambition de réécrire F* en λ-prolog, Victor pour son stoïcisme devant des tâches
qui en auraient rebuté plus d’un, Danel pour ses explications des catégories de compréhension
avec ou sans modalités, Mathieu pour son soutient discret et e�cace, Karthik et Bruno pour
avoir monté Prosecco. Au fur et à mesure, Théo, Rob, Carmine, Jérémy, Blipp, Éric, Exe, Antoine
et autres trublions sont venus mettre leur grain de sel, faisant parfois évoluer l’équipe au point
que les termes d’(∞, 1)-catégories, d’univalence, de paramétricité et de recollement d’Artin sont
devenus fréquents dans un certain groupe de lecture. Je n’oublie pas Jonathan et Guido, mem-
bres intermittents, passant régulièrement comme des spoutniks et dont les apports scienti�ques
comme gastronomiques ont considérablement enrichi mon expérience de doctorant.

Cette thèse n’a aussi été possible qu’avec le soutient continu des doctorants (sur plusieurs
générations) et chercheurs de l’ex-pôle PPS que j’ai continué à hanter pendant longtemps, au
point de se demander dans quel laboratoire j’e�ectuais ma thèse. Je me dois donc de remercier
Daniel et ses éponges, Rémi et ses émois, les catégories terroristes Pierre, Chaït, Axel, Leonard,
ainsi que Théo, Léo, Zeïnab, Nicolas, Victor, Tomaso, Simona qui ont organisé gâteaux, bières et
autres séances de cinéma clandestines.

Merci à Gabriel pour m’avoir régulièrement poussé à me mettre au boulot et notamment
lancé un grand mouvement d’étude sur le µµ̃ (à poil ras) et la polarisation. Ce fut l’occasion
de faire connaissance avec les membres de l’équipe Galinette dont l’expérience en µµ̃ et en Coq
m’a souvent été d’une grande aide. Merci donc à Guillaume, Xavier, Étienne, Théo, Simon et à
l’ensemble de cette formidable équipe.

L’environnement scienti�que riche de Paris m’a certainement fourni l’occasion de cultiver
ma compréhension de domaines connexes, que ce soit des catégories de modèle ou du ROP1,
cependant je me dois de remercier les organisateurs d’évènements extra-muros, en particulier
des rencontres ChoCoLa à Lyon, des réunions GeoCal-LAC puis plus tard de celles de SCalP et
LHC pour permettre un brassage plus large des idées et des personnalités. À l’international*e+,
les rencontres EUTYPES m’ont beaucoup apporté, et m’ont permis entre autres d’alourdir mon
bilan carbone.

1Return Oriented Programming

iii

iv

Je ne sais comment remercier Cătălin pour avoir accepté d’encadrer ma thèse dans un con-
texte ubuesque2 sur un sujet aussi prometteur qu’ardu. Il n’y pas de doute que son suivi, ses
conseils, sa motivation et son travail acharné ont permis au volume sous vos yeux de voir le jour.

Les nombreuses années passées à Paris ont été rythmées par l’intervention de nombreux
joyeux lurons : merci Abel, Julie, Basile, Ambre, Annali, Guillaume, Ulysse, Anaël, Najib, Atha-
narik pour les expériences de cuisine un peu folle, les après-midi jeux et d’avoir été là.

Un remerciement très particulier à Marina et Jun qui ont subi à longueur d’années des expéri-
mentations culinaires plus ou moins douteuses en fonction de mes sautes d’humeur fréquentes;
à Anya qui m’a fait découvrir tant de choses que j’ignorais.

2Je prétendais étudier la cohomologie des faisceaux et ai soudainement décidé de partir programmer des robots
déplaceur de boulons au Japon, comme quoi la cuisine mène à pleins de choses. . .

v

Abstract

Computational monads are a convenient algebraic gadget to uniformly represent side-
e�ects in programming languages, such as mutable state, divergence, exceptions, or non-
determinism. Various frameworks for verifying that programs and meet their speci�cation
have been proposed, but are all are speci�c to a particular combination of side-e�ects. For
instance, one can use Hoare logic to verify the functional correctness of programs with
mutable state with respect to pre/post-conditions speci�cations.

This thesis devises a principled semantic framework for verifying programs with arbi-
trary monadic e�ects in a generic way with respect to such expressive speci�cations. The
starting point are Dijkstra monads, which are monad-like structures that classify e�ectful
computations satisfying a speci�cation drawn from a monad. Dijkstra monads have already
proven valuable in practice for verifying e�ectful code, and in particular, they allow the F?
program veri�er to compute veri�cation conditions.

We provide the �rst semantic investigation of the algebraic structure underlying Dijk-
stra monads and unveil a close relationship between Dijkstra monads and e�ect observa-
tions, i.e., mappings between a computational and a speci�cation monad that respect their
monadic structure. E�ect observations are �exible enough to provide various interpretations
of e�ects, for instance total vs partial correctness, or angelic vs demonic nondeterminism.
Our semantic investigation relies on a general theory of speci�cation monads and e�ect ob-
servations, using an enriched notion of relative monads and relative monad morphisms. We
moreover show that a large variety of speci�cation monads can be obtained by applying
monad transformers to various base speci�cation monads, including predicate transform-
ers and Hoare-style pre- and postconditions. For de�ning correct monad transformers, we
design a language inspired by the categorical analysis of the relationship between monad
transformers and algebras for a monad.

We also adapt our framework to relational veri�cation, i.e., proving relational proper-
ties between multiple runs of one or more programs, such as noninterference or program
equivalence. For this we extend speci�cation monads and e�ect observations to the rela-
tional setting and use them to derive the semantics and core rules of a relational program
logic generically for any monadic e�ect. Finally, we identify and overcome conceptual chal-
lenges that prevented previous relational program logics from properly dealing with e�ects
such as exceptions, and are the �rst to provide a proper semantic foundation and a relational
program logic for exceptions.

Contents

Contents vi

List of Figures vii

1 Introduction 1

1.1 Reasoning About Monadic Programs . 2
1.2 Understanding Dijkstra monads . 4
1.3 Relational reasoning for arbitrary e�ects . 5
1.4 Contributions . 6
1.5 Foundations, Conventions & Notations . 7
1.6 Outline . 8

2 Enter the monad 11

2.1 Monads for the working programmer . 12
2.2 Taming the monad zoo: a �rst glance at monad transformers 15
2.3 Speci�cations from monads . 17
2.4 E�ect observations . 20
2.5 Conclusion & Related work . 25

3 Abstracted away 29

3.1 Elements of the formal theory of monads . 29
3.2 Relative monads . 33
3.3 Framed bicategories . 34
3.4 Framed functor, framed representability . 38
3.5 Relative monad in a framed bicategory . 41
3.6 Conclusion & Related work . 49

4 Mass producing monad transformers 51

4.1 What is a monad transformer ? . 51
4.2 Towards a language for de�ning monad transformers 52
4.3 A DSL for speci�cation monad transformers . 53
4.4 Embedding SM in Coq . 64
4.5 Towards a categorical approach to relative monad transformers 67
4.6 Conclusion & Related work . 72

5 Dijkstra monads 75

5.1 De�nition & examples . 75
5.2 Equivalence with e�ect observations . 82
5.3 Dijkstra monads as relative monads, connection to graded monads 86
5.4 Conclusion & Related work . 89

6 Relational reasoning 91

vi

6.1 The logic of relational rules . 91
6.2 Simpli�ed Framework . 95
6.3 Generic Framework . 101
6.4 Product programs . 109
6.5 Related work . 111
6.6 Conclusion . 113

Bibliography 115

List of Figures

1.1 Chapter dependencies . 8

2.1 Basic speci�cation monads . 20

4.1 Syntax of SM . 53
4.2 Typing rules for SM . 54
4.3 Equational theory of SM . 55
4.4 Elaboration of types from SM to L . 56
4.5 Denotation of SM terms . 56
4.6 Typing rules for SM with linearity condition . 61
4.7 PHOAS de�nition of the term syntax of SM . 65
4.8 Binary parametricity predicate . 66
4.9 Term syntax of SM using De Bruijn indices . 66
4.10 Implementation of the state monad internally to SM 66
4.11 Reduction of abstract machine con�gurations . 68
4.12 Stacks and Abstract machine reduction for SM . 68

6.1 Pure relational rules . 99
6.2 Generic monadic rules in the simple framework . 99
6.3 Syntax of RDTT and translation to base type theory 103
6.4 Translation of the eliminator for sums in RDTT . 103
6.5 Generic monadic rules in the full relational setting 108
6.6 Rules for exceptions . 110

vii

Chapter 1

Introduction

«En un mot, la cuisine, sans cesser d’être un art,
deviendra scienti�que et devra soumettre ses
formules, empiriques trop souvent encore, à une
méthode et à une précision qui ne laisseront rien au
hasard.»

Auguste Esco�er, Le Guide culinaire, 1907

This manuscript is not dedicated to the art of cuisine, but to the science of computers and
more precisely to programs, which are the recipes used by computers. From this point of view,
a computer can be seen as a cook faithfully executing each step of a recipe in order to obtain
a result. Since we are a picky customer, we do not accept just any kind of result though, and
require the best quality, provided by formally veri�ed programs.

The �rst task of program veri�cation is to describe the expected behaviour of a program, via
a formal description called a speci�cation. The crux of program veri�cation is to prove that the
behavior of the program indeed satis�es the speci�cation. For a simple example, consider the
following program computing the Fibonacci sequence:
let rec �b (n : Z) : Z= if n ≤ 1 then n else �b (n − 1) + �b (n − 2)

What can we say about this program? From a mathematical point of view, we can solve the
recursive equation un+2 = un+1 + un with initial conditions u0 = 0, u1 = 1, obtaining the
closed form un = 1√

5
(ϕn − ϕ′n) where ϕ = 1+

√
5

2 and ϕ′ = − 1
ϕ . We could then specify

that for any n ≥ 0, �b n computes un, and to obtain a complete speci�cation of �b, we should
also explain what happens for negative integers n < 0, namely that it returns n. However,
formally proving such a precise speci�cation can be di�cult. In this particular case, it entails
replaying the standard mathematical proof providing the closed form un, an accessible but time
consuming task. In certain scenarios, it might be enough for our purpose to prove a weaker, less
precise speci�cation, but much easier to show, for instance that �b n ≥ 0. In general, there are
many di�erent speci�cations that we can assign to a program for the purpose of veri�cation.

Now, suppose that some careless programmer were to write the following variation to com-
pute the Fibonacci sequence:
let rec �b’ (n : Z) : Z= if n = 0 || n = 1 then n else �b’ (n − 1) + �b’ (n − 2)

This implementation does not change much from the previous, the condition n ≤ 1 was just
replaced by n = 0 || n = 1 and, for n ≥ 0 it actually computes the same values. However, if you
were to feed a negative integer, say−38, to �b’, the following in�nite reduction sequence unrolls

�b’ −38 �b’ −39 + �b’ −40
 (�b’ −40 + �b’ −41) + (�b’ −41 + �b’ −42)
 . . .

1

2 CHAPTER 1. INTRODUCTION

and will continue executing for quite some time, since it will never hit the base case n == 0 || n == 1.
We call such a program that sometimes never returns a value a divergent or partial program, by
opposition to a total program that always answers after computing for a �nite – but arbitrary
– number of steps. While this simple example is quite contrived, considering partial programs
is a necessity if we want to implement expressive programs such as an evaluator for a Turing-
complete programming language. And from a program veri�cation perspective, it means that
we need to be able to specify such partial programs and consequently speci�cations should have
the ability to specify not only the value a program may return but also how partial it is.

This is the point where computations take their independence from the idealistic world of
pure, total, mathematical functions. Concretely, side-e�ects can be used to distinguish the evalu-
ation strategy employed to evaluate a program, so the latter can no longer be naively modelled
as function returning a result. Nonetheless, to achieve anything, a useful program must at some
point trigger e�ects to interact with the external world. Examples of such interactions are query-
ing a user for input, storing persistent data to the �le system, or exploring an unbounded search
space, possibly nondeterministically. Since e�ects are ubiquitous in our daily programming ac-
tivity, we would like to understand them deeply. We seek a solid and general theory explaining
what e�ects are, how we can use them to write useful programs, and most importantly, how we
can reason about the properties of such programs. As such, our work builds upon the general
model of side-e�ects as computational monads (Moggi, 1989), which can naturally capture e�ects
such as stateful computations, exceptions, non-termination, nondeterminism, or probabilities.

The aim of this thesis is to deepen our conceptual understanding of these monadic e�ects and
to work out the general principles of program veri�cation for programs with arbitrary monadic
side-e�ects. To this end, we study a few areas of program veri�cation and systematically asso-
ciate to a program logic (i.e., a deductive system for proving assertions about programs) an alge-
braic semantic counterpart. These algebraic objects consist of various generalizations of monads
and morphisms preserving the monadic structure. In the following sections we introduce these
objects and how they help program veri�cation: speci�cation monads to describe the behaviour
of programs, e�ect observation to connect computations with speci�cations, and Dijkstra monads
to bind the three together, as well as their relational variants. A running idea throughout is that
that the common algebraic laws underlying the semantics of various program logics for speci�c
e�ects provides insight into the nature of e�ects themselves.

1.1 Reasoning About Monadic Programs

Many approaches have been proposed for formally verifying e�ectful programs. In an imper-
ative setting, Hoare (1969) introduced a program logic to reason about properties of programs.
The judgments of this logic are Hoare triples of the form { pre } c { post }. Intuitively, if the
precondition pre is satis�ed, then running the program c leaves us in a situation where post
is satis�ed, provided that c terminates. For imperative programs—i.e., statements changing the
program’s state—pre and post are predicates over the initial and the �nal state. These Hoare
triples are derived using inference rules such as

Hoare-Skip { q } skip { q } Hoare-Seq
{ pre } c1 { q } { q } c2 { post }

{ pre } c1; c2 { post } (1.1)

Hoare’s approach can be directly adapted to the monadic setting by replacing imperative pro-
grams c with monadic computations m : MA. This approach was �rst proposed in Hoare Type
Theory (Nanevski et al., 2008a,b), where a Hoare monad of the form HST pre A post augments
the state monad over A with a precondition pre : S → P and postcondition post : A× S → P.
So while preconditions are, like in Hoare logic, predicates over initial states, postconditions are
now predicates over both �nal states and results. Using this Hoare monad, we can re�ect the

1.1. REASONING ABOUT MONADIC PROGRAMS 3

inference rules of Hoare logic inside the typing judgements
HTT-Skip

Γ ` skip : HST (λs. post ((), s)) 1 post

HTT-Seq
Γ ` c1 : HST pre 1 q Γ ` c2 : HST (λs. q ((), s)) A post

Γ ` c1; c2 : HST pre A post

where we write skip for the monadic program returning () and c1; c2 for the sequential com-
position of monadic programs dropping the (irrelevant) result of c1. While this approach was
successfully extended to a few other e�ects (Delbianco and Nanevski, 2013; Nanevski et al., 2008a,
2013), until our work, there was no general story on how to de�ne a Hoare monad or even just
the shape of pre- and postconditions for an arbitrary e�ect.

A popular alternative to proving properties of imperative programs is Dijkstra’s (1975) weak-
est precondition calculus. The main insight of this calculus is that from the syntax of a program
c we can directly compute a weakest precondition wp(c, post) such that the formula pre ⇒
wp(c, post) is valid if and only if the triple { pre } c { post } is derivable, which allows to partly
automate the veri�cation process by reducing it to a logical validity problem. Swamy et al.
(2013) observed that it is possible to adopt Dijkstra’s technique to ML programs with state and
exceptions elaborated to monadic style. They propose a notion of Dijkstra monad of the form
DST A wp, classifying stateful programs with exceptions returning values in A and where wp is
a predicate transformer that speci�es the behavior of the monadic computation. These predicate
transformers are represented as functions that, given a postcondition on the �nal state, and ei-
ther the result value of typeA or an exception of typeE, calculate a corresponding precondition
on the initial state. The type of such predicate transformers can be written as follows (where P
is the type of propositions):

WML A = ((A+ E)× S → P)︸ ︷︷ ︸
postconditions

→ (S → P)︸ ︷︷ ︸
preconditions

.

In subsequent work, Swamy et al. (2016) extended this to programs that combine multiple sub-
e�ects. They compute more e�cient weakest preconditions with respect to the actual e�ects of
the code, instead of verifying everything usingWML above. For example, pure computations are
given speci�cations of type:

WPureA = ContPA = (A→ P) → P,

while stateful (but exception-free) computations are veri�ed using speci�cations of type:

W StA = (A× S → P) → (S → P).

An important observation underlying this technique is that predicate transformers have a nat-
ural monadic structure ensuring that analogs of the inference rules 1.1 hold for each of these
settings. For instance, it is not hard to see that the predicate transformer type WPure is simply
the continuation monad with answer type P, that WSt is the state monad transformer applied to
WPure, and that WML is the state and exceptions monad transformers applied to WPure. While
this observation was historically made for WPure and WSt, where the monad structure is more
obvious, we realized in retrospective that the pre-/post-conditions used in Hoare logic also have
such a monadic structure inducing exactly the rules (1.1):

PPStA = (S → P)× (A× S → P)

Generalizing over these examples, we introduce the notion of speci�cation monad, capturing
abstractly this class of monads expressing speci�cations. These monadic structures are a key
ingredient of both Hoare monads and Dijkstra monads, providing a uni�ed view of the speci�-
cations indexing these objects. Moreover, we investigate generic constructions of such speci�-
cation monads, in particular based on monad transformers, which reveals a rich theory that can
account for speci�cations for a variety of side-e�ects.

4 CHAPTER 1. INTRODUCTION

1.2 Understanding Dijkstra monads

Generalizing over the previous discussion, a Dijkstra monad D A w is a monad-like structure
that classi�es e�ectful computations returning values in A and speci�ed by w : WA, where W
is what we call a speci�cation monad.1 The pragmatic observation that Dijkstra monads and the
associated veri�cation methodology is e�ective for various e�ects (Swamy et al., 2016) led us to a
quest to generalize Dijkstra monads to arbitrary monadic e�ects. The main questions to answer
are: Given a monadic e�ect, how do we �nd a suitable speci�cation monad for it? Is there a single
speci�cation monad that we can associate to each e�ect? If not, what are the various alternatives,
and what are the constraints on this association for obtaining a proper Dijkstra monad?

Our Dijkstra Monads for Free (DM4Free) approach (Ahman et al., 2017) provides partial an-
swers to these questions: from a computational monad de�ned as a term in a metalanguage
called DM, a (single) canonical speci�cation monad is automatically derived through a syntactic
translation. Unfortunately, while this approach works for stateful and exceptional computations,
it cannot handle several other e�ects, such as input-output (IO), due to various syntactic restric-
tions in DM.

To better understand and overcome such limitations, we observe that a computational monad
in DM is essentially a monad transformer applied to the identity monad; and that the spec-
i�cation monad is obtained by applying this monad transformer to the continuation monad
ContPA = (A→ P)→ P. Returning to the example of state, the speci�cation monad W StA
can be obtained from the state monad transformer StTM A = S → M(A × S). This reinter-
pretation of theDM4Free approach sheds light on its limitations: For a start, the class of supported
computational monads is restricted to those that can be decomposed as a monad transformer ap-
plied to the identity monad. However, this rules out various e�ects such as nondeterminism or
IO, for which no practical monad transformer is known (Adámek et al., 2012; Bowler et al., 2013;
Hyland et al., 2007).

Further, obtaining both the computational and speci�cation monads from the same monad
transformer introduces a very tight coupling. In particular, in DM4Free one cannot associate dif-
ferent speci�cation monads with a particular e�ect. For instance, the exception monad ExcA =
A+E is associated by DM4Free with the speci�cation monad WExcA = ((A+ E)→ P)→ P,
by applying the exception monad transformer ExcTM A = M(A+E) to ContP. This speci�-
cation monad requires the postcondition to account for both the success and failure cases. While
this is often desirable, at times it may be more convenient to use the simpler speci�cation monad
ContP directly, allowing exceptions to be thrown freely, without having to explicitly allow this
in speci�cations. Likewise, for IO, one may wish to have rich speci�cations that depend on the
history of interactions with the external world, or simpler context-free speci�cations that are as
local as possible. In general, one should have the freedom to choose a speci�cation monad that
is expressive enough for the veri�cation task at hand, but also simple enough so that veri�cation
is manageable in practice.

Moreover, even for a �xed computational monad and a �xed speci�cation monad there can
be more than one way to associate the two in a Dijkstra monad. For instance, to specify ex-
ceptional computations using ContP, we could allow all exceptions to be thrown freely—as ex-
plained above, which corresponds to a partial correctness interpretation—but a di�erent choice
is to prevent any exceptions from being raised at all—which corresponds to a total correctness
interpretation. Similarly, for specifying nondeterministic computations, two interpretations are
possible for ContP: a demonic one, in which the postcondition should hold for all possible result
values (Dijkstra, 1975), and an angelic one, in which the postcondition should hold for at least
one possible result (Floyd, 1967).

1Prior work has used the term “Dijkstra monad” both for the indexed structure D and for the index W (Ahman
et al., 2017; Jacobs, 2014, 2015; Swamy et al., 2013, 2016). In order to prevent confusion, we use the term “Dijkstra
monad” exclusively for the indexed structure D and the term “speci�cation monad” for the index W .

1.3. RELATIONAL REASONING FOR ARBITRARY EFFECTS 5

The key idea at this point is to decouple the computational monad and the speci�cation monad:
instead of insisting on deriving both from the same monad transformer as in DM4Free, we con-
sider them independently and only require that they are related by an e�ect observation (Kat-
sumata, 2014), i.e., a mapping between two monads that respects their monadic structure.

M
θ−−−−−−−−→ W

computational e�ect observation speci�cation
monad monad

For instance, an e�ect observation from nondeterministic computations could map a �nite set
of possible outcomes to a predicate transformer in (A→ P)→ P. Given a �nite set R of results
in A and a postcondition post : A → P, there are only two reasonable ways to obtain a single
proposition: either take the conjunction of post v for every v inR (demonic nondeterminism), or
the disjunction (angelic nondeterminism). For the case of IO, in our framework we can consider
at least two e�ect observations relating the IO monad to two di�erent speci�cation monads,
WFr and WHist, where E is the alphabet of IO events:

WFrX = (X × E∗ → P)→ P ←− IO −→ WHistX = (X × E∗ → P)→ (E∗ → P)

While both speci�cation monads take postconditions of the same type (predicates on the �nal
value and the produced IO events), the produced precondition of WHistX has an additional
argument E∗, which denotes the history of interactions (i.e., IO events) with the external world.

How do these e�ect observations compare to Dijkstra monads? It turns out that they are
two sides of the same coin: from an e�ect observation one can reconstruct a Dijkstra monad and
conversely. In particular, thanks to the many degrees of freedom allowed by e�ect observations,
we construct various novel Dijkstra monads in a uniform way.

1.3 Relational reasoning for arbitrary e�ects

Generalizing unary properties, which describe single program runs, relational properties describe
relations between multiple runs of one or more programs (Abate et al., 2019; Clarkson and Schnei-
der, 2010). Formally verifying relational properties has a broad range of practical applications.
For instance, one might be interested in proving that the observable behaviors of two programs
are related, showing for instance that the programs are equivalent (Blanchet et al., 2008; Chadha
et al., 2016; Ştefan Ciobâcă et al., 2016; Godlin and Strichman, 2010; Hur et al., 2012, 2014; Kundu
et al., 2009; Timany et al., 2018; Wang et al., 2018; Yang, 2007), or that one re�nes the other
(Timany and Birkedal, 2019). In other cases, one might be interested in relating two runs of a sin-
gle program, but, as soon as the control �ow can di�er between the two runs, the compositional
veri�cation problem becomes the same as relating two di�erent programs. This is for instance
the case for noninterference, which requires that a program’s public outputs are independent of its
private inputs (Antonopoulos et al., 2017; Banerjee et al., 2016; Barthe et al., 2019; Clarkson and
Schneider, 2010; Nanevski et al., 2013; Sabelfeld and Myers, 2003; Sousa and Dillig, 2016). The list
of practical applications of relational veri�cation is, however, much longer, including showing
the correctness of program transformations (Benton, 2004), cost analysis (Çiçek et al., 2017; Qu
et al., 2019; Radicek et al., 2018), program approximation (Carbin et al., 2012; He et al., 2018), se-
mantic di�ng (Girka et al., 2015, 2017; Lahiri et al., 2012; Wang et al., 2018), cryptographic proofs
(Barthe et al., 2009, 2013a, 2014; Petcher and Morrisett, 2015; Unruh, 2019), di�erential privacy
(Barthe et al., 2013b, 2015; Gavazzo, 2018; Zhang and Kifer, 2017), and even machine learning
(Sato et al., 2019).

As such, many di�erent relational veri�cation tools have been proposed, making di�erent
trade-o�s, for instance between automation and expressiveness (see section 6.5 for further dis-
cussion). In this manuscript, we focus on relational program logics, which are a popular formal

6 CHAPTER 1. INTRODUCTION

foundation for various relational veri�cation tools. Relational program logics are proof systems
whose rules can be used to prove that a pair of programs meets a rich relational speci�cation.
As such they are very expressive, and can in particular handle situations in which verifying the
desired relational properties requires showing the full functional correctness of certain pieces
of code. Yet they can often greatly simplify reasoning by leveraging the syntactic similarities
between the programs we relate. Since Benton’s (2004) seminal Relational Hoare Logic, many
relational program logics have been proposed (Aguirre et al., 2017; Banerjee et al., 2016; Barthe
et al., 2013b, 2014, 2015, 2016; Carbin et al., 2012; Nanevski et al., 2013; Petcher and Morrisett,
2015; Qu et al., 2019; Radicek et al., 2018; Sato et al., 2019; Sousa and Dillig, 2016; Unruh, 2019;
Yang, 2007; Zhang and Kifer, 2017). However, each of these logics is speci�c to a particular com-
bination of side-e�ects that is completely �xed by the programming language and veri�cation
framework; the most popular side-e�ects these logics bake in are mutable state, general recur-
sion, cost, and probabilities.

Leveraging the ideas developed in the unary (i.e., non-relational) setting outlined in sec-
tion 1.2, we distill the generic relational reasoning principles that work for many, if not all,
monadic side-e�ects and that underlie relational program logics. An important insight is that the
notion of speci�cation monad can be extended to encompass relational speci�cations capturing
a shared behaviour or a comparison of the behaviours of two programs, while keeping a compo-
sitional monad-like structure. For instance, considering two stateful programs c1 : StS1 A1 and
c2 : StS2 A2, we can specify their behaviour by a pair of a precondition pre : S1×S2 → P relat-
ing the initial states of the two programs and a postcondition post : (A1×S1)× (A2×S2)→ P
relating their results and �nal states. The speci�cation monad structure on PPSt carries over to
the type constructor

PPSt
rel (A1, A2) = (S1 × S2 → P)× ((A1 × S1)× (A2 × S2)→ P)

providing return and bind operations that make PPSt
rel a relational speci�cation monad. These

relational speci�cations account for pairs of programs returning values in potentially distinct
types. Likewise, our framework can relate programs using di�erent computational monadic
e�ects M1,M2. Relational e�ect observations bridge the gap between these two computational
monads and a relational speci�cation monad Wrel:

M1,M2
θrel−−−−−−−−−−−−−−−−−→ Wrel

left and right relational relational
computational monads e�ect observation speci�cation monad

The diagram above provides a generic reconstruction of the semantics of relational program
logics for arbitrary monadic e�ects. The game is then to reconstruct as canonically as possible
the inference rules of relational program logics. In particular we observe that a clean separation
can be achieved between logical rules independent of the computational e�ects, generic monadic
rules ensuring compositionality of reasoning induced by the algebraic properties of relational
e�ect observations, and e�ect speci�c rules that capture the speci�c details of the computational
e�ects at hand. We show that logical and generic rules can be derived generically, independently
of the e�ect, and we also provide a recipe for deriving the e�ect speci�c rules in our framework.

1.4 Contributions

B We provide a general theory of speci�cation monads and e�ect observations that is use-
ful for program veri�cation. For speci�cations we identify various elementary speci�-
cation monads such as Dijkstra-style predicate transformers as well as Hoare-style pre-
/postconditions, and extend the expressivity of these speci�cation monads by applying

1.5. FOUNDATIONS, CONVENTIONS & NOTATIONS 7

monad transformers. For e�ect observations we use relative monad morphisms to pro-
vide a �exible interpretation of e�ects, allowing for instance the choice between total and
partial correctness, or between angelic and demonic nondeterminism.

B We develop a metalanguage for de�ning (speci�cation) monad transformers whose design
was inspired by the categorical analysis of the relationship between monad transformers
and algebras for a monad. We implement the metalanguage in Coq, ultimately providing an
e�ective method to derive correct-by-construction monad transformers out of a standard
monad de�nition in the metalanguage.

B We provide the �rst formal de�nition of Dijkstra monads and unveil their close relationship
to e�ect observations, yielding an e�ective method to build a variety of Dijkstra monads,
and a practical methodology to verify e�ectful code for arbitrary monadic e�ects.

B We extend the notions of speci�cation monads and e�ect observations to the relational set-
ting, by introducing a general semantic framework for deriving relational program logics
for arbitrary monadic e�ects.

B We identify and overcome conceptual challenges that prevented previous relational pro-
gram logics from properly dealing with exceptions. For this, we propose a novel way of
combining unary and relational speci�cations resulting in the �rst relational program logic
for exceptions.

B We work out a theory of relative monads and use it to provide a uni�ed conceptual foun-
dation for speci�cation monads and e�ect observations both in the unary and relational
setting, as well as a presentation of Dijkstra monads as the lifting of relative monads.

This thesis is based on two recent papers: one that appeared at ICFP 2019 (Maillard et al.,
2019a) and one currently under submission (Maillard et al., 2019b). This is the culmination of
a line of collaborative research in which I was involved during my PhD, which also resulted in
other publications (Ahman et al., 2017, 2018; Bhargavan et al., 2017; Grimm et al., 2018).

1.5 Foundations, Conventions & Notations

We work as much as possible in a constructive metatheory that is loosely modelled on Coq, i.e.,
Martin-Löf Type Theory with dependent product (x:A)→B, dependent sums (x:A) ×B, a predica-
tive hierarchy of universes Typei and an impredicative universe of proposition P. Throughout
the manuscript we assume extensionality for dependent products and sums, and propositions:

f = g : (x : A)→ B ⇐⇒ ∀(a : A), f a = g a : B[a/x]

u = v : (x : A)×B ⇐⇒ π1 u = π1 v : A ∧ π2 u = π2 v : B[π1 u/x]

p = q : P ⇐⇒ p ⇐⇒ q

We use the notation 1 to describe a terminal object, either a singleton or the category with
one object and one identity arrow depending on the context. The unique morphism to 1 will be
written !X where X is the domain of the morphism. When writing programs, we use either ∗ or
() to denote the unique inhabitant of 1.

We naively assume from times to times that equality on arbitrary types is proof-irrelevant,
that is we assume Uniqueness of Identity Type (UIP), but we expect that most of the development
could be achieved in a metatheory where UIP does not hold by restricting some of our construc-
tions – e.g., indexed algebraic structures with equations such as Dijkstra monads – to types for
which it hold, i.e., hsets in the terminology of Homotopy Type Theory (Univalent Foundations
Program, 2013). The exception is chapter 3 which uses quite a few classical results from the cat-
egory theory literature whose constructive nature we ignore. Nevertheless, our implementation

8 CHAPTER 1. INTRODUCTION

in Coq derived from the ideas of that chapter comfort us in the opinion that there should be little
obstruction, but a long and hard work to fully formalize it in a constructive metatheory.

Most of the programs illustrating this manuscript are written in a syntax freely inspired
from F?, with the exception of a few code listings in chapter 4 describing the Coq implemen-
tation and consequently written directly in Coq. A substantial amount of the formalization
done during the thesis preparation can be found at https://gitlab.inria.fr/kmaillar/
dijkstra-monads-for-all. Sections and proofs that have been formalized end with a .

1.6 Outline

We close this introduction with a plan of the coming chapters and their logical dependencies
presented in Figure 1.1.

Chapter 2 �rst introduces computational monads from a programmer perspective, illustrat-
ing various e�ects that can be expressed as monads. This is followed by a few examples of monad
transformers, which are the traditional way to build the zoo of monads modularly. The main con-
tributions of this chapter are the introduction of speci�cation monads and the investigation of
e�ect observations, essential bridges between computational monads and speci�cation monads.

Chapter 3 dives into the categorical world. It starts by recalling the formal theory of monads
in a 2-category, introducing the main theoretical concepts enabling an abstract study of monads.
The goal of this chapter is then to extend this formal theory to relative monads, a generalization
that we achieve thanks to the notion of framed bicategory. A particular instantiation of relative
monads in a framed bicategory provides an abstract de�nition of speci�cation monads amenable
to uniform generalizations to other settings such as relational veri�cation.

Chapter 4 introduces a methodology for building correct monad transformers. While the
theoretical foundations of this methodology is categorical, a more practical approach based on
a syntactic meta-language for de�ning monad transformers is also introduced. We present the
design choices guiding the implementation of this meta-language in the Coq proof assistant,
ultimately providing an e�ective tool for generating veri�ed monad transformers in Coq.

Chapter 1:
Introduction

Chapter 2:
Enter the Monad

Chapter 3:
Abstracted Away

Chapter 4:
Mass producing

monad transformers

Chapter 5:
Dijsktra monads

Chapter 6:
Relational reasoning

dependency optional (categorical)
dependency

Figure 1.1: Chapter dependencies

https://gitlab.inria.fr/kmaillar/dijkstra-monads-for-all
https://gitlab.inria.fr/kmaillar/dijkstra-monads-for-all

1.6. OUTLINE 9

Chapter 5 studies Dijkstra monads, a pragmatic approach to program veri�cation, based on
computation types indexed by speci�cations, which is used heavily in the F? programming lan-
guage. After de�ning Dijkstra monads, we provide some examples of their wide applicability.
The main result of this chapter is the correspondence between Dijkstra monads and e�ect ob-
servations. A connection with graded monads (Fujii et al., 2016) is sketched using the unifying
notion of relative monad.

Chapter 6 enters the realm of relational reasoning. We extend the notions of speci�cation
monad and e�ect observation to that setting, providing a general semantic foundation upon
which we can de�ne relational program logics for a variety of monadic e�ects. The case of
exceptions is especially challenging and we explain how our framework can relate programs
with exceptions by intertwining unary and relational reasoning.

Chapter 2

Enter the monad

«[. . .]
un soleil d’Austerlitz
un siphon d’eau de Seltz
un vin blanc citron
un Petit Poucet un grand pardon un calvaire de

pierre une échelle de corde
deux sœurs latines trois dimensions douze apôtres

mille et une nuits trente-deux positions six
parties du monde cinq points cardinaux dix
ans de bons et loyaux services sept péchés
capitaux deux doigts de la main dix gouttes
avant chaque repas trente jours de prison
dont quinze de cellule cinq minutes
d’entracte

et...

plusieurs ratons laveurs.»

Jacques Prévert, Inventaire, Paroles, 1946

This chapter provides a scenery of the basic notions that will be manipulated in the rest of
the manuscript. The �rst two sections recall the well-known notions of computational monads
and monad transformers. We explain how the former encapsulates side-e�ects in a uniform al-
gebraic structure and how the latter provides a way to extend monads, achieving some amount
of modularity.

We then introduce the novel notion of speci�cation monad, a class of monads capturing spec-
i�cations for e�ectful computations, casting speci�cations on the same footing as computations.
Finally, our �rst tool for veri�cation of programs with arbitrary monadic e�ects consist of a
bridge between computations and speci�cations that we call an e�ect observation since it encodes
a choice observation of a computational e�ect in a speci�cation monad. Articulating computa-
tional monads and speci�cation monads with e�ect observations turns out to provide a modular
method to de�ne veri�cation system.

We provide examples for each introduced notion, and we will return to these examples
throughout the thesis. Most of them have been de�ned inside Coq as part of an e�ort to provide
a mechanized formalization of the content of this manuscript.

11

12 CHAPTER 2. ENTER THE MONAD

2.1 Monads for the working programmer

Side e�ects are an important part of programming. They arise in a multitude of shapes, be
it imperative algorithms, nondeterministic operations, potentially diverging computations, or
interactions with the external world. These various e�ects can be uniformly captured by the
algebraic structure known as a computational monad (Benton et al., 2000; Moggi, 1989).

De�nition 2.1.1 (). A monad is a type constructor M : Type → Type, equipped with two
operations

ret : A→ MA and bind : MA→ (A→ MB)→ MB

de�ned for any types A,B, moreover satisfying the following equations

bindM (retM a) f = f a bindMm retM = m

bindMm (λx. bindM (f x) g) = bindM (bindMm f) g

for any a : A, f : A→ MB,m : MA, g : B → MC .

Intuitively, a computational monad provides a uniform interface MA for computations re-
turning values of type A, for instance state passing functions with result type A for stateful
computations. retM coerces a value v : A to a trivial computation, for instance seeing v as
a stateful computation leaving the state untouched. bindM m f sequentially composes the
monadic computations m : MA with f : A→ MB, for instance threading through the state.

The generic monad interface (M, retM, bindM) is, however, not enough to write programs
that exploit the underlying e�ect. To this end, each computational monad also comes with oper-
ations for causing and manipulating e�ects. Algebraic operations form an important class of such
operations introduced in (Plotkin and Power, 2002). An operation op : A× (MX)B → MX is
said to be algebraic when the following equation holds

bind (op (a, f)) g = op (a, λb. bind (f b) g)

Any such algebraic operation corresponds bijectively to a generic e�ect genop : A → MB, and
we will usually employ this latter presentation, often closer to the programming practice. Slightly
abusing the terminology and following Piróg et al. (2018), we will also call “operation” more
general functions manipulating the e�ects provided by a monad, for instance handlers (Plotkin
and Pretnar, 2009). In the next subsections, we recall a few examples of computational monads
and their operations to illustrate the range of computational e�ects that monad can account for.

2.1.1 Identity

The simplest monad is the identity monad IdA = A with retId a = a and bindIdmf = f m
satisfying trivially the monad laws. It does not support any operations but it will be useful when
discussing monad transformers in section 2.2.

2.1.2 Partiality

A simple model for partial computations is given by adding a new element that expresses diver-
gence, i.e. DivA = A+ {⊥}. Returning a value v is the obvious injection, while sequencing m
with f is given by applying f to m if m is a terminating value, or ⊥ if m was already diverging.
A partial computation can diverge with the operation Ω : Div 0, implemented as Ω = inr⊥.

In a classical metatheory, DivA is the free ω-cpo on A, so by standard domain theoretic
results (Amadio and Curien (1998)), there is a �xpoint operator on DivA1. However in a con-
structive metatheory, e.g., Coq, this simple model is too limited to implement a useful �xpoint

1at least for ω-continuous functions, as provided by Kleene �xpoint

2.1. MONADS FOR THE WORKING PROGRAMMER 13

operation. Various more sophisticated approach can provide solutions to that problem. Del-
bianco and Nanevski’s (2013) use complete lattices such as P and Knaster-Tarski �xpoints.

Altenkirch et al. (2017) directly de�ne the free ω-cpo on a type using quotient-inductive-
inductive types to describe the standard construction of completing a type with a bottom element,
limits of ω-chains and quotienting by the equivalence relation induced by the natural preorder
on these.

A di�erent approach, more in phase with the topics of this manuscript is to describe the syn-
tax of programs with recursion. (McBride, 2015) describes a free monad (see subsection 2.1.7)
with one operation call playing the role of a recursive call. Given a complete recursive de�ni-
tion, one can then handle these call operations in any monad supporting partiality. We illustrate
how to de�ne the skeleton of a function computing the Fibonacci sequence and how such a
handling looks like if we were to have a primitive �xpoint operation below

type GenRec A B X = | Ret : X→GenRec A B X | Call : a:A→ (B a→GenRec A B X)→GenRec A B X

let �b (n:N) : GenRec N (λ _. N) N=
if n ≤ 1 then 1 else Call (n−1) (λ r1. Call (n−2) (λ r2. Ret (r1 + r2)))

let rec �xGenRec0 (f : (a:A)→GenRec A B (B a)) (m : GenRec A B X) : X =
match m with
| Ret x→ x
| Call a k→�xGenRec0 f (k (�xGenRec0 f (f a)))

let �xGenRec (f : (a:A)→GenRec A B (B a)) (a:A) : B a = �xGenRec0 f (f a)

In a language without arbitrary �xpoints, for instance in Coq, we will instead use �xpoints pro-
vided by a suitable monad as above.

2.1.3 Exceptions

A computation that can potentially throw exceptions of typeE can be represented by the monad
ExcA = A+E. Returning a value v is the obvious left injection, while sequencing m with f is
given by applying f to v if m = Inl v, or Inr e if m = Inr e, i.e., when m raised an exception.

let retExc (v:A) : Exc A = Inl v

let bindExc (m : Exc A) (f : A→Exc B) : Exc B =
match m with
| Inl v→ f v
| Inr e→ Inr e

The operation throw : E → Exc 0 is de�ned by right injection of E into Exc 0 = 0 + E. Such
an exception can be caught by the handler catch

let catch (m : Exc A) (exc : E→Exc A) : Exc A =
match m with
| Inl v→ Inl v
| Inr e→ exc e

When we take E = 1, exceptions coincide with the simple model of partiality, the monad
DivA = A+ 1.

2.1.4 State

A stateful computation can be modeled as a state-passing function, i.e., StA = S → A×S, where
S is the type of the state. Returning a value v is the function λs. (v, s) that produces the value
v and the unmodi�ed state, whereas binding m to f is obtained by threading through the state,

14 CHAPTER 2. ENTER THE MONAD

i.e. λs. let (v,s’) = m s in f v s’. The state monad comes with operations get : StS = λs. (s, s) to
retrieve the state, and put : S → St 1 = λs.λs′. (∗, s) to overwrite it.

This basic account of stateful computations can be re�ned by employing a structured state,
for instance a store S = Loc → Val where Loc is a set of locations and Val is the type of
(ground) value that can be written to the store. In that case, we can also re�ne the operations
get and put, parametrizing them by accessed location in the store:
let getL(l : Loc) : St Val= λs. (s l,s)
let putL(l : Loc) (v : Val) : St 1 = λs. ((), λl’. if l’ = l then v else s l’)

We will see in section 5.1, this idea is the basis of stateful veri�cation in F?, however with a much
more complex memory model.

2.1.5 Nondeterminism

A nondeterministic computation can be represented by a �nite set of possible outcomes, i.e.
NDetA = Pfin(A). Returning a value v is provided by the singleton { v }, whereas sequenc-
ing m with f amounts to forming the union

⋃
v∈m f v. This monad comes with an operation

pick : NDet B = {true, false}, which nondeterministically chooses a boolean value, and an
operation fail : NDet 0 = ∅, which unconditionally fails.

2.1.6 Interactive input-output (IO)

An interactive computation with input type I and output type O can be represented by the
inductively de�ned monad
type IO A = | Ret : A→ IO A | Input : (I→ IO A)→ IO A | Output : O→ IO A→ IO A

which describes three possible kinds of computations: either return a value (Ret), expect to re-
ceive an input and then continue (Input), or output and continue (Output). The monadic function
retIO constructs a unique leaf tree using Ret and bindIO does tree grafting. The operations
perform input and output, and they are directly captured using the corresponding constructors.

let read : IO I = Input (λi . retIO i) let write (o : O) : IO 1 = Output o (retIO ())

2.1.7 Free monads & monads presented by an equational theory

The monads for identity, exception, general recursion GenRec and interactive input-output are
examples of free monads, that is monads inductively generated by a set of algebraic operations.
Given any signature (S, P) consisting of a set S of operations and a function P : S → Type
assigning to each operation its arity, we can construct the following monad consisting of terms
on the signature (S, P):
type Free S P X = | Ret : X→ Free S P X | Op : (s:S)→ (P s→ Free S P X)→ Free S P X

let retFree (x:X) : Free S P X = Ret x

let rec bindFree (m:Free S P X) (f: X→ Free S P Y) : Free S P Y =
match m with
| Ret x→ f x
| Op s k→Op s (λ r. bindFree (k r) f)

with an associated generic e�ect let op (s:S) : Free S P (P s) = Op s (λr. Ret r).
More generally, we could consider an equational theory (S, P,E), that is a signature (S, P)

equipped with a set of equations E between terms on the signature (S, P) – formally a set E of
pairs of terms. The monad associated to such a theory is the quotient of terms modulo the equiv-
alence relation induced by the congruence closure ofE. All the previous examples of monads are
such presented monads. However, in absence of arbitrary e�ective quotients which may require

2.2. TAMING THE MONAD ZOO: A FIRST GLANCE AT MONAD TRANSFORMERS 15

instances of axiom of choice (Blass, 1983) or quotient inductive types (QITs) (Altenkirch and Ka-
posi, 2016), we will refrain from using these in a constructive setting and prefer the previous
per-e�ect presentation of the monads.

2.1.8 Probabilities

A probabilistic computation is a sub-probability distribution on possible outcomes, i.e., for a
countable type A, ProbA represents functions f : A → [0; 1] such that

∑
a∈A f a ≤ 1. Re-

stricting our attention to countable discrete probabilities, there is a monad structure on Prob
known as the Giry monad (Giry, 1982). Returning a value v is the Dirac distribution at v, that
is the distribution assigning weight 1 to v and 0 to any other value. Binding a distribution
m : ProbA to a function f : A → ProbB amounts to computing the distribution on B given
by λy. Σx∈supp(m)f x y. We can consider various basic distributions on countable spaces as op-
erations, for instance flip : [0; 1] → Prob B provides a Bernoulli distribution on booleans
(with parameter given by the argument) and unif : n : N → Prob (finn) provides a uniform
distribution on the �nite type finn with n elements.

2.1.9 Continuations

Continuation passing style programming is captured by the continuation monad
let Cont R A = (A→ R)→ R

let retCont (a:A) : Cont R A = λk. k v

let bindCont (m:Cont R A) (f : A→Cont R B) : Cont R B = λk. m (λ a. f a k)

Returning a value v : A is just evaluating the continuation to this value, while sequencing two
continuation-passing computations m : ContRA and f : A→ ContRB is a matter of building
a suitable continuation for m with f . The continuation monad hosts an operation call_cc:
let call_cc (f : (A→Cont R R)→Cont R R) : Cont R A =
λk. f (λ a. retCont (k a)) (λ r. r)

The continuation monad is a canonical example of a monad without rank, meaning that it
is not presentable by a (small) theory. Intuitively, this is due to the fact that we would need
operations of arbitrary arity to present the continuation monad.

2.2 Taming the monad zoo: a �rst glance at monad transformers

The previous section presented a variety of computational monads covering most of the e�ect
spectrum. However programs usually use more than a single e�ect at a time. An important
question thus is how to combine these e�ects and the corresponding monads.

This question is actually harder than one could expect at �rst. Indeed, given two monads
M1,M2 there might be one way to compose them, or multiple ways to do so, or even none.
The various ways to compose M1 and M2 are encoded by distributive laws (Beck, 1969). Finding
distributive laws for every pair of monads one wants to compose in a program is not only tedious
but hardly practical. Two approaches try to bypass this problem and recover some amount of
modularity.

One canonical way to compose monads can be obtained by restricting our attention to mon-
ads arising from algebraic e�ects, that is e�ects described only in terms of algebraic operations
and equations between these operations (Hyland et al., 2006).

Otherwise, instead of insisting on composing two monads, we can consider monad trans-
formers extending a base monad with new operations. Concretely, monad transformer T maps
a monad M to a monad TM and provides for any type A a coercion liftT : MA → T MA

16 CHAPTER 2. ENTER THE MONAD

materializing how TM extends M. Since we need to consider monads not arising from algebraic
e�ects, in this manuscript we take in this second approach. The de�nition and construction of
monad transformers is studied in depth in chapter 4. In this section, we informally present ex-
amples of such transformers. As a particular case, applying a monad transformer T with the
identity monad Id provides a plain monad, often corresponding to one described in the previous
section.

2.2.1 State

The state transformer StT on a �xed type of states S extends a monad M using state passing
StT MA = S → M(A× S) to provide operations get : 1→ StT MS and put : S → StT M1.
The lifting operation is de�ned by
let liftStT (m : M A) : StT M A = λs. bindM m (λ a. retM (a,s))

2.2.2 Exceptions

The exception transformer ExcT adds a set of exceptions E to the possible results of a monad
M, that is ExcT MA = M(A + E), providing an operation throw : E → ExcTM 0. Lifting a
computation from M to ExcT M is de�ned as
let liftExcT (m:M A) : ExcT M A = bindM m (λ a. retM (Inl a))

2.2.3 Reader, writer and other update transformers

If we want to extend a computation with a read-only environment S, the reader transformer
RdT MA = S → MA �ts our needs. Dually, if we only want to log informations, it’s the
writer monad WrT MA = M(A × listO) that we should use. As explained by Ahman and
Uustalu (2013) for the case of plain monads, the two transformers are instances of a family of
monad transformers called update transformers parametrized by a pair of a type S of states and
a monoid (O, ∗, e) of updates acting on the states B : O × S → S:

UpdT MA = S → M(A×O)

The monad structure on UpdT M and the lift from M are given by
let retUpdT (a:A) : UpdT M A = λs. retM (a, e)

let bindUpdT (m:UpdT M A) (f:A→UpdT M B) : UpdT M B =
λs0. bindM (m s0) (λ (a, o1).

bindM (f a (o1 B s0)) (λ (b, o2).
retM (b, o2 ∗ o1)))

let liftUpdT (m:M A) : UpdT M A =
λs. bindM m (λ a. retM (a, e))

The reader transformer arises as the update monad associated to the pair (S, 1), where the
trivial monoid 1 acts on S by identity. The writer transformer arises as the pair (1, listO)
where the free monoid listO acts trivially on the unit state.

2.2.4 Monotonic state and dependent update transformers

Moving to a dependently typed example, the monotonic state transformer MonStT is a re�ne-
ment of the state transformer where the state updates are restricted along a �xed preorder on
states 4⊂ S × S:

MonStT MA = (s0 : S)→M(A× { s1 : S | s0 4 s1 })

2.3. SPECIFICATIONS FROM MONADS 17

As advocated by Ahman et al. (2018), only extending the computational monad with monotonic
manipulations of stateful could enable monotonic reasoning, a cheap but e�cient method to
prove various stateful properties.

The monotonic state transformer can be seen as an instance of a dependent update trans-
former, a generalization of update transformers where the parametrizing monoid O is replaced
by a dependent family P : S → Type indexed by the states and an adequate notion of action,
forming together a directed container (S,P) (Ahman and Uustalu, 2013). For a state s : S, the
type P s describes the possible way to act in state s. The data of a directed container (S,P) ac-
tually correspond to a category where S is the object set and P s are the morphism with domain
s. The dependent update monad transformer maps a monad M to a monad on the carrier

DUpdT MA = (s : S)→ M(A× P s).

The case of monotonic state transformer is recovered by a directed container structure on the
pair (S, λs0. { s1 : S | s0 4 s1 }).

2.3 Speci�cations from monads

As explained in section 1.1, the realization that predicate transformers form monads (Ahman
et al., 2017; Jacobs, 2014, 2015; Swamy et al., 2013, 2016) is the starting point to provide a uniform
notion of speci�cations. This is true not only for weakest precondition transformers, but also
for strongest postconditions, and pairs of pre- and postconditions as explained in details in the
following subsections. We call collectively this class of monads speci�cation monads. Intuitively,
elements of a speci�cation monad can be used to specify properties of some computation, e.g.,
WPure can specify pure or nondeterministic computations, and WSt can specify stateful compu-
tations.

What is a speci�cation monad ? A conceptual de�nition will be given in Def. 3.5.2, but for
the time being we will be using the following elementary de�nition.

De�nition 2.3.1. A speci�cation monad is a monad W such that

B WA is equipped with a preorder ≤WA for each type A, and

B bindW is monotonic in both arguments:

∀(w1 ≤WA w′1). ∀(w2w
′
2 : A→WB).

(∀x : A.w2 x ≤WB w′2 x) ⇒ bindW w1 w2 ≤WB bindW w′1 w
′
2

This order allows speci�cations to be compared as being either more or less precise. For
example, for the speci�cation monads WPure and WSt, the ordering is given by

w1 ≤ w2 : WPureA ⇔ ∀(p : A→ P). w2 p⇒ w1 p

w1 ≤ w2 : WStA ⇔ ∀(p : A× S → P)(s : S). w2 p s⇒ w1 p s

For WPure and WSt to form ordered monads, it turns out that we need to restrict our attention
to monotonic predicate transformers, i.e., those mapping (pointwise) stronger postconditions to
stronger preconditions. This technical condition, quite natural from the point of view of veri�-
cation, will be assumed implicitly for all the predicate transformers. We consider several basic
speci�cation monads, whose relationship is summarized by Figure 2.1.

18 CHAPTER 2. ENTER THE MONAD

2.3.1 Predicate monad

Arguably the simplest way to specify a computation is to provide a postcondition on its out-
comes. This can be done by considering the speci�cation monad PredA = A → P (the co-
variant powerset monad) with order p1 ≤Pred p2 ⇐⇒ ∀(a : A). p1 a ⇒ p2 a. To specify
the behavior of returning values, we can always map a value v : A to the singleton predi-
cate retPred v = λy. (y = v) : PredA. And given a predicate p : PredA and a function
f : A → PredB, the predicate on B de�ned by bindPred p f = λb. ∃a. p a ∧ f a b speci�es
the behavior of sequencing two computations, where the �rst computation produces a value a
satisfying p and, under this assumption, the second computation produces a value satisfying f a.
While a speci�cation p : PredA provides information on the outcome of the computation, it
cannot require preconditions, so computations need to be de�ned independently of any logical
context. To give total correctness speci�cations to computations with non-trivial preconditions,
for instance specifying that the division function div x y requires y to be non-zero, we need more
expressive speci�cation monads.

2.3.2 Pre-/postcondition monad

One more expressive speci�cation monad is the monad of pre- and postconditions

PrePostA = P× (A→ P),

bundling a precondition together with a postcondition. Here the behavior of returning a value v :
A is speci�ed by requiring a trivial precondition and ensuring as above a singleton postcondition:
retPrePost v = (>, λa. a = v) : PrePostA. And, given p = (pre, post) : PrePostA and a
function f = λa. (pre′ a, post′ a) : A → PrePostB, the sequential composition of two
computations is naturally speci�ed by de�ning

bindPrePost p f =
((
pre ∧ ∀a. post a =⇒ pre′ a

)
, λb. ∃a. post a ∧ post′ a b

)
: PrePostB

The resulting precondition ensures that the precondition of the �rst computation holds and,
assuming the postcondition of the �rst computation, the precondition of the second computation
also holds. The resulting postcondition is then simply the conjunction of the postconditions
of the two computations. The order on PrePost naturally combines the pointwise forward
implication order on postconditions with the backward implication order on preconditions.

We formally show that this speci�cation monad is more expressive than the predicate monad
above: Any predicate p : PredA can be coerced to (>, p) : PrePostA, and in the other direc-
tion, any pair (pre, post) : PrePostA can be approximated by the predicate post, giving rise to a
Galois connection, as illustrated in Figure 2.1. While the monadPrePost is intuitive for humans,
generating e�cient veri�cation conditions is generally easier with predicate transformers (Leino,
2005).

2.3.3 Forward predicate transformer monad

The predicate monad Pred can be extended in an alternative way. Instead of �xing a precon-
dition as in PrePost, a speci�cation can be a function from preconditions to postconditions,
for instance producing the strongest postcondition of computation for any precondition pre:P
given as argument. Intuitively, such a forward predicate transformer on A should have type
P → (A → P). However, to obtain a monad (i.e., satisfying the expected laws), we have to
consider the smaller type

SPostA = (pre:P)
mon−−−→ (A→ P/pre)

of predicate transformers that are monotonic with respect to pre , where P/pre is the subtype of
propositions implying pre . Returning a value v : A is speci�ed by the predicate transformer

2.3. SPECIFICATIONS FROM MONADS 19

retSPost v = λpre a. pre ∧ a = v, and the sequential composition of two computations is spec-
i�ed as the predicate transformer bindSPostmf = λpre b. ∃a. f a (m pre a) b, form : SPostA
and f : A→ SPostB.

Any speci�cation post : PredA gives raise to a forward predicate transformer

spostOfPred post = λ(pre : P) (a : A). pre ∧ post a : SPostA

and conversely a forward predicate transformer sp : SPostA induces a canonical postcondition

predOfSpost sp = sp> : PredA

If forward predicate transformer in SPost could seem more expressive than Pred, it turns out
that the two functions spostOfPred and predOfSpost are inverse of each others.

2.3.4 Backward predicate transformer monad

As explained in section 1.1, backward predicate transformers can be described using the con-
tinuation monad with propositions P as the answer type, namely, ContPA = (A→ P)→ P.
Elements w : ContPA are predicate transformers mapping a postcondition post : A → P to a
precondition w post : P, for instance the weakest precondition of the computation. Pointwise
implication is a natural order on ContPA:

w1 ≤ w2 : ContPA ⇔ ∀(p : A→ P). w2 p⇒ w1 p

However, ContP is not an ordered monad with respect to this order because its bind is not
monotonic. In order to obtain an ordered monad, we restrict our attention to the submonad
WPure of ContP containing the monotonic predicate transformers, that is those w : ContPA
such that

∀(p1 p2 : A→ P). (∀(a : A). p1 a⇒ p2 a) ⇒ w p1 ⇒ w p2,

which is natural in veri�cation: we want stronger postconditions to map to stronger precondi-
tions.

This speci�cation monad is more expressive than the pre-/postcondition one above. For-
mally, a pair (pre, post) : PrePostA can be mapped to the monotonic predicate transformer

λ(p : A→ P). pre ∧ (∀(a : A). post a⇒ p a) : WPureA,

and vice versa, a predicate transformer w : WPureA can be approximated by the pair

(w (λa. >) , λa. (∀p. w p⇒ p a)) : PrePostA

These two mappings de�ne a Galois connection, as illustrated in Figure 2.1. Further, this Galois
connection exhibits PrePostA as the submonad of WPureA of conjunctive predicate transform-
ers, i.e., predicate transformers w commuting with non-empty conjunctions/intersections.

2.3.5 A speci�cation monad of relations between pre- and postconditions

Finally, both WPure and SPost can be embedded into an even more expressive speci�cation
monad RelPrePost consisting of relations between preconditions and postconditions satisfying
a few conditions, the full details of which can be found in our Coq formalization.

20 CHAPTER 2. ENTER THE MONAD

SPost Pred PrePost WPure RelPrePost∼=

Each pair of parallel arrows forms a Galois connection.

Figure 2.1: Relationships between basic speci�cation monads

2.3.6 Speci�cation monads from transformers

Once we have a few basic speci�cation monads as the one described above, a powerful way to
construct speci�cation monads is to apply monad transformers to existing speci�cation monads.
For instance, applying ExcT MA = M (A+ E) to WPure we get

WExcA = ExcT WPureA = ((A+E)→ P)→ P ∼= (A→ P)→ (E → P)→ P

WExc is a natural speci�cation monad for programs that can throw exceptions, transporting a
normal postcondition in A → P and an exceptional postcondition in E → P to a precondition
in P.

Besides accounting for exceptional termination, varying the monad transformer extend spec-
i�cations to have access to ghost state or to provide information about footprints. An important
point is that monad transformer provides an important modularity property: when specifying
code, we can use as little facilities as needed and consequently produce less clutter in veri�ca-
tion conditions. Further speci�cation monads using this idea will be introduced along with the
examples in section 2.4.

Since speci�cation monads also carry a preorder, we need the monad transformers to pre-
serve this ordered structure. We will see in chapter 4 that it is the case of all examples of monad
transformers of section 2.2.

2.3.7 Quantitative variations

Nothing prevents à priori to de�ne speci�cations monads based on preorders di�erent from
propositions. For instance, the example of the backward predicate transformer monad for in-
stance would have the structure of a speci�cation monad independently of the choice of the
ordered return type (R,4) replacing P.

TakingR to be the extended reals [0;∞], we recover a monad to specify pre-expectations of
probabilistic programs (Audebaud and Paulin-Mohring, 2006; Kaminski et al., 2016).

Another possibility is to takeR to be a set of available resources, for instance natural number
to count the number of steps a program could take. This can be re�ned to positive rational or
real numbers, obtaining a speci�cation monad for cost analysis.

We did not pursue much further the analysis of such quantitative variants of speci�cation
monads, but expect that a sensible amount of the work developed here could extend to the quan-
titative setting.

2.4 E�ect observations

Now that we have a presentation of speci�cations as elements of a monad, we need to relate com-
putational monads to such speci�cations. Since an object relating computations to speci�cations
provides a particular insight on the e�ects exhibited by the computation, they have been called
e�ect observations (Katsumata, 2014). As explained in section 1.2, a computational monad can
have e�ect observations into multiple speci�cation monads, or multiple e�ect observations into
a single speci�cation monad. Using the exceptions computational monad Exc as running exam-
ple, we argue that monad morphisms provide a natural notion of e�ect observation in a unary
monadic setting, and we provide instances of e�ect observations supporting this claim. Then, we

2.4. EFFECT OBSERVATIONS 21

revisit the computational monads from section 2.1, and present various natural e�ect observa-
tions for them since there is generally a large variety of options regarding both the speci�cation
monads and the e�ect observations when specifying and verifying monadic programs.

2.4.1 E�ect observations are monad morphisms

As explained in section 2.1, computations throwing exceptions can be modeled by monadic
expressions m : ExcA = A + E. A natural way to specify m is to consider the speci�ca-
tion monad WExcA = ((A + E) → P) → P and to map m to the predicate transformer
θExc(m) = λp. pm : WExcA, applying the postcondition p to the computation m.

The mapping θExc : Exc → WExc relating the computational monad Exc and the speci�-
cation monad WExc is parametric in the return type A, and it veri�es two important properties
with respect to the monadic structures of Exc and WExc. First, a returned value is speci�ed by
itself:

θExc(retExc v) = θExc(inl v) = λp. p (inl v) = retWExc
v

and second, θ preserves the sequencing of computations:

θExc(bindExc (inl v) f) = θExc(fv) = bindWExc
(retWExc

v) (θExc◦f)

= bindWExc
θExc(inl v) (θExc◦f)

θExc(bindExc (inr e) f) = θExc(inr e) = bindWExc
θExc(inr e) (θExc ◦ f)

These properties together prove that θExc is a monad morphism. More importantly, they allow us
to compute speci�cations from computations compositionally, e.g., the speci�cation of bind can
be computed from the speci�cations of its arguments. This leads us to the following de�nition:

De�nition 2.4.1 (E�ect observation). An e�ect observation θ is a monad morphism from a
computational monad M to a speci�cation monad W. More explicitly, it is a family of maps
θA : MA −→WA, natural in A and such that for any v : A, m : MA and f : A → MB
the following equations hold:

θA(retM v) = retW v θB(bindMmf) = bindW (θAm) (θB ◦ f)

2.4.2 Speci�cation monads are not canonical

When writing programs using the exception monad, we may want to write pure sub-programs
that actually do not raise exceptions. In order to make sure that these sub-programs are pure,
we could use the previous speci�cation monad and restrict ourselves to postconditions that map
exceptions to false (⊥): hence raising an exception would have an unsatis�able precondition.
However, as outlined in section 1.2, a simpler solution is possible. Taking as speci�cation monad
WPure, we can de�ne the following e�ect observation θ⊥ : Exc→WPure by

θ⊥(inl v) = λp. p v θ⊥(inr e) = λp. ⊥

This e�ect observation gives a total correctness interpretation to exceptions, which prevents them
from being raised at all. As such, we have e�ect observations from Exc to both WExc and WPure.

2.4.3 E�ect observations are not canonical

Looking closely at the e�ect observation θ⊥, it is clear that we made a rather arbitrary choice
when mapping every exception inr e to ⊥. Mapping inr e to true (>) instead also gives us an
e�ect observation, θ> : Exc →WPure. This e�ect observation assigns a trivial precondition to
the throw operation, providing a partial correctness interpretation: given a program m : ExcA
and a postcondition p : A→ P, if θ>(m)(p) is satis�able andm evaluates to inl v then p v holds;

22 CHAPTER 2. ENTER THE MONAD

but m may also raise any exception instead. Thus, θ⊥, θ> : Exc→WPure are two natural e�ect
observations into the same speci�cation monad. Even more generally, we can vary the choice for
each exception; in fact, e�ect observations θ : Exc→WPure are in one-to-one correspondence
with maps E → P (see subsection 2.4.8 for a general account of this correspondence).

2.4.4 E�ect observations from monad transformers

Even though there is, in general, no canonical e�ect observation for a computational monad, we
can build an e�ect observation in the particular case of a monad of the shape T (Id), i.e., a monad
obtained by the application of a monad transformer to the identity monad. In that setting, �xing
any we can build a canonical speci�cation monad, namely T (WPure), and a canonical e�ect ob-
servation into it. The e�ect observation is obtained simply by lifting the retWPure

: Id→WPure

function through the T transformer. For instance, for the exception monad Exc = ExcT(Id)
and the speci�cation monad WExc = ExcT (WPure), the e�ect observation θExc arises as sim-
ply θExc = ExcT(retWPure

) = λmp. pm. More generally, for any monad transformer T (e.g.
StT,ExcT, StT ◦ ExcT,ExcT ◦ StT) and any speci�cation monad W (so not just WPure, but
also e.g., any basic speci�cation monad from section 2.3) we have a monad morphism

θT : T (Id)
T (retW)−−−−−−−−−→ T (W)

providing e�ect observations for stateful computations with exceptions, or for computations
with rollback state. However, not all computational monads arise as a monad transformer applied
to the identity monad. The following examples illustrate the possibilities in such cases.

2.4.5 E�ect observations for free monads

In order to give an e�ect observation θFree from a free monad induced by a signature (S, P)
(subsection 2.1.7) to a speci�cation monad W, it is enough to provide for each operations s : S
a speci�cation wop(s) : W (P s).

let rec θ Free (wop : (s:S)→W (P s)) (m: Free P S A) : W A =
match m with
| Ret a→ retW a
| Op s k→ bindW (wop s) (λ ps. θ Free (k ps))

Conversely, any e�ect observation θFree induces a speci�cation for each operations

wop = θFree ◦ genop : (s: S)→W (P s).

This correspondence is bijective and characteristic of free monads.

2.4.6 Observing nondeterminism

The computational monad NDet admits e�ect observations to the speci�cation monad WPure.
Given a nondeterministic computation m : NDetA represented as a �nite set of possible out-
comes, and a postcondition post : A→ P, we obtain a set P of propositions by applying post to
each element of m. There are then two natural ways to interpret P as a single proposition:

B we can take the conjunction
∧
p∈P p, which corresponds to the weakest precondition such

that any outcome of m satis�es post (demonic nondeterminism); or

B we can take the disjunction
∨
p∈P p, which corresponds to the weakest precondition such

that at least one outcome of m satis�es post (angelic nondeterminism).

2.4. EFFECT OBSERVATIONS 23

To see that both these choices lead to monad morphisms θ∀, θ∃ : NDet → WPure, it is enough
to check that taking the conjunction when P = { p } is a singleton is equivalent to p, and
that a conjunction of conjunctions

∧
a∈A

∧
p∈Pa p is equivalent to a conjunction on the union of

the ranges
∧
p∈⋃a∈A Pa p—and similarly for disjunctions. Both conditions are straightforward to

check.

2.4.7 Observing Interactive Input-Output

Let us now consider programs in the IO monad (section 2.1). We want to de�ne an e�ect obser-
vation θ : IO → W, for some speci�cation monad W to be determined. A �rst thing to note is
that since no equations constrain the read and write operations, IO is a free monad, we can
specify their interpretations θ(read) : W I and ∀(o : O). θ(write o) : W 1 separately from each
other.

Simple e�ect observations for IO can already be provided using the speci�cation monad
WPure. The interpretation of the write operation in this simple case needs to provide a result
in P from an output element o : O and a postcondition p : 1→ P. Besides returning a constant
proposition (like for θ⊥, θ> in subsection 2.4.2), a reasonable interpretation is to forget the write
operation and return p ∗ (where ∗ is the unit value). For the de�nition of θ(read) : (I → P)→ P,
we are given a postcondition post : I → P on the possible inputs and we need to build a
proposition. Two canonical solutions are to use either the universal quanti�cation ∀(i : I). post i,
requiring that the postcondition is valid for the continuation of the program for any possible
input; or the existential quanti�cation ∃(i : I). post i, meaning that there exists some input such
that the program’s continuation satis�es the postcondition, analogously to the two modalities of
evaluation logic (Moggi, 1995; Pitts, 1991).

To get more interesting e�ect observations accounting for inputs and outputs we can, for
instance, extend WPure with ghost state (Owicki and Gries, 1976) capturing the list of executed
IO events.2 We can do this by applying the state monad transformer with state type list E to
WPure, obtaining the speci�cation monad WHistSTA = (A × list E → P) → list E → P, for
which we can provide interpretations of read and write that also keep track of the history of
events via ghost state:

θHistST(write o) = λ(p : 1× list E→P) (log : list E). p (∗, (Out o) :: log) : WHistST(1)

θHistST(read) = λ(p : I × list E→P) (log : list E). ∀i. p (i, (In i) :: log) : WHistST(I)

This speci�cation monad is however somewhat inconvenient in that postconditions are writ-
ten over the global history of events, instead of over the events of the expression in ques-
tion. Further, one can write speci�cations that “shrink” the global history of events, such as
λp log. p 〈∗, []〉, which no expression satis�es. For these reasons, we introduce an updatemonad (Ah-
man and Uustalu, 2013) variant of WHistST, written WHist, which provides a more concise way
to describe the events. In particular, in WHist the postcondition speci�es only the events pro-
duced by the expression, while the precondition is still free to specify any previously-produced
events, allowing us to de�ne:

θHist(write o) = λ(p : 1× list E→P) (log : list E). p 〈∗, [Out o]〉 : WHist(1)

θHist(read) = λ(p : I × list E→P) (log : list E). ∀i. p 〈i, [In i]〉 : WHist(I)

While WHist = WHistST, the two monads di�er in their ret and bind functions. For instance,

bindWHistST
w f = λp log. w

(
λ
(
x, log′

)
. f x p log′

)
log

bindWHist
w f = λp log. w

(
λ
(
x, log′

)
. f x

(
λ(y, log′′). p (y, log′ ++log′′)

)
(log ++log′)

)
log

2Importantly, the ghost state only appears in speci�cations and not in user programs; these still use only (state-
less) IO.

24 CHAPTER 2. ENTER THE MONAD

where the former overwrites the history, while the latter merely augments it with new events.
While WHist provides a good way to reason about IO, some IO programs do not depend on

past interactions. For these, we can provide an even more parsimonious speci�cation monad by
applying the writer transformer to WPure. The resulting speci�cation monad WFr then allows
us to de�ne

θFr(write o) = λ(p : 1× list E→P). p (∗, [Out o]) : WFr(1)

θFr(read) = λ(p : I × list E→P). ∀i. p (i, [In i]) : WFr(I)

This is in fact a special case of WHist where the history is taken to be 1 (Ahman and Uustalu,
2013).

In fact, there is even more variety possible here, e.g., it is straightforward to write speci�-
cations that speak only of output events and not input events, and vice versa. It is also easy
to extend this style of reasoning to combinations of IO and other e�ects. For instance, we
can simultaneously reason about state changes and IO events by considering computations in
IOStA = S → IO(A×S), resulting from applying the state monad transformer to IO, together
with the speci�cation monad WIOStA = (A × S × list E → P) → S → list E → P. As such,
we recover the style proposed by Malecha et al. (2011), though they also cover separation logic.

Being able to choose between speci�cation monads and e�ect observations allows one to
keep the complexity of the speci�cations low when the properties are simple, yet increase it if
required.

2.4.8 E�ect Observations from Monad Algebras

While monad transformers T enable us to derive complex speci�cation monads, they can only
help us to automatically derive e�ect observations of the form θT : T (Id) −→ T (W), which
only slightly generalize the DM4Free construction. In all other cases, we had to de�ne e�ect ob-
servations by hand. However, when the speci�cation monad has a speci�c shape, such as WPure,
there is in fact a simpler way to de�ne e�ect observations. For instance, e�ect observations
θ⊥, θ> : Exc → WPure were used to specify the total and partial correctness of programs with
exceptions, by making a global choice of allowing or disallowing exceptions. Here we observe
that such hand-rolled e�ect observations can in fact be automatically derived from M -algebras.

As shown by Hyland et al. (2007), there is a one-to-one correspondence between monad
morphisms M → ContR and M-algebras MR → R. We can extend this to the ordered setting:
for instance, e�ect observations θ : M → WPure correspond one-to-one to M-algebras α :
M P→ P that are monotonic with respect to the free lifting on M P of the implication order on
P. Intuitively, α describes a global choice of how to assign a speci�cation to computations in M
in a way that is compatible with retM and bindM, e.g., such as disallowing all (or perhaps just
some) exceptions.

Based on this correspondence, the e�ect observations θ⊥ and θ> arise from the Exc-algebras
α⊥ = λ_. ⊥ and α> = λ_. >. Similarly, the e�ect observations for nondeterminism arise from
the NDet-algebras α∀ and α∃, taking respectively the conjunction and disjunction of a set of
propositions in NDet(P), as follows: θ∀(m) = λp. α∀ (NDet(p)m) and θ∃(m) = λp. α∃ (NDet(p)m).
Conversely, we can recover the NDet-algebraα∀ asλm. θ∀P(m) idP, respectivelyα∃ asλm. θ∃P(m) idP.

Importantly, this correspondence is not limited to WPure, but applies to continuation monads
with any answer type. For instance, taking the answer type to be S → P, we can recover the ef-
fect observation θSt : St→WSt, where WStA ∼= MonContS→PA = (A→ (S → P))→ (S →
P), from the St-algebra αSt = λ(f : S → (S → P)×S) (s : S). (π1 (f s)) (π2 (f s)) : St(S →
P)→ S → P.

2.5. CONCLUSION & RELATED WORK 25

2.5 Conclusion & Related work

Following a well established tradition in functional programming languages (Benton et al., 2000;
Moggi, 1989; Wadler, 1990), we presented a variety of monads encapsulating computational ef-
fects such as state, nondeterminism and interactive input output, and explained how an impor-
tant subset of these arise from monad transformers.

The notion of speci�cation monad is inspired by a line of categorical work on weakest pre-
condition. Jacobs (2014, 2015, 2017) studies adjunctions between state transformers and predicate
transformers, obtaining a class of speci�cation monads from the state monad transformer and
an abstract notion of logical structures. He gives abstract conditions for the existence of such
speci�cation monads. Hasuo (2015) builds on the state-predicate adjunction of Jacobs to pro-
vide algebra-based e�ect observations (in the style of subsection 2.4.8) for various computation
and speci�cation monads. Working inside type theory, our work focus on concrete recipes for
building speci�cation monads useful for practical veri�cation.

E�ect observations as monad morphisms were introduced by Katsumata (2014) in his study
of graded monads to give semantics to type-and-e�ect systems. For each of these computational
monads, we proposed e�ect observations to multiple speci�cation monads providing multiple
options in order to verify programs using these e�ects. The actual choice of the e�ect observation
to use depends on various trade-o�s between expressivity of the speci�cation, di�culty of the
properties to verify (e.g., partial or total termination), modularity with respect to context. We
argue that the possibility to adapt to various context and at minor implementation cost thanks to
the decorrelation between the computational monad, the speci�cation and the e�ect observation
is a key asset of this framework, that should be developed further in a practical implementation.

We now review further related work that was not presented yet.

Alternative representation of e�ects Levy (2004) re�nes the approach to e�ects advocated
by Moggi (1989) replacing a computational monad M with an adjunction F a U . This allow a
�ner treatment of the order of evaluation, admitting a treatment of side-e�ects in both call-by-
value and call-by-name settings together with a well-behaved equational theory. To our knowl-
edge, program logics for CBPV are yet to be de�ned and studied.

Local state & monads on resource indexed families An important variation on stateful
computations not presented in this chapter is the possibility of allocating and deallocating chunks
of memory. The local state monad introduced in (Plotkin and Power, 2002) provides such ca-
pabilities at the cost of more complex state-indexed types. Instead of considering monads on
plain types, we could also consider monads on families of types indexed by some notion of re-
source3. This leads to monads tracking not only stateful computations but also allocations and
deallocations (Maillard and Melliès, 2015; Melliès, 2014; Power, 2006; Staton, 2010), manipulating
addresses in a heap (Kammar et al., 2017) or even a set of qbits (Staton, 2015).

Combining theories Instead of accumulating monad transformers on top of a basic monad,
an important body of work focus on the direct combination of e�ects, in particular for those
presented by an equational theory (Hyland et al., 2006). The combination of these algebraic
e�ects with continuations is studied in (Hyland et al., 2007), and provides in particular a negative
results about the combination of interactive input-output and continuations (in the category of
sets) that apply as well to Coq.

Predicate transformer semantics Katsumata (2013) gives a semantic account of Lindley and
Stark (2005)’s >>-lifting, a generic way of lifting relations on values to relations on monadic

3It would corresponds to changing the underlying category to be some category of presheaves, which might be
achievable inside type theory using the work of (Boulier et al., 2017; Jaber et al., 2012, 2016)

26 CHAPTER 2. ENTER THE MONAD

computations, parameterized by a basic notion of relatedness at a �xed type. Monad morphisms
MA→ ((A→ P)→ P), i.e. e�ect observations from M to the backward predicate transformer
speci�cation monad WPure, are also unary relational liftings (A → P) → (MA → P), and
could be generated by >>-lifting. Further, binary relational liftings could be used to generate
monadic relations that yield Dijkstra monads by the construction in chapter 5. In both cases,
what is speci�able about the underlying computation would be controlled by the chosen basic
notion of relatedness.

In another recent concurrent work, Swierstra and Baanen (2019) study the predicate trans-
former semantics of monadic programs with exceptions, state, non-determinism, and general
recursion. Their predicate transformer semantics appears closely related to our e�ect observa-
tions, and their compositionality lemmas are similar to our monad morphism laws. We believe
that some of their examples of performing veri�cation directly using the e�ect observation, could
be easily ported to our framework. Their goal, however, is to start from a speci�cation and incre-
mentally write a program that satis�es it, in the style of the re�nement calculus (Morgan, 1994).
It could be an interesting future work direction to build a uni�ed framework for both veri�cation
and re�nement, putting together the ideas of both works.

First-order approach to veri�cation with generic side-e�ects Rauch et al. (2016) provide
a generic veri�cation framework for �rst-order monadic programs. Their work is quite di�erent
from ours, even beyond the restriction to �rst-order programs, since their speci�cations are
“innocent” e�ectful programs, which can observe the computational context (e.g., state), but not
change it. This introduces a tight coupling between computations and speci�cations, while we
provide much greater �exibility through e�ect observations.

The FreeSpec framework (Letan et al., 2018) uses algebraic e�ects and handlers to de�ne
in Coq a set of components interacting through interfaces. The speci�cation are given pairs of
pre-/postconditions and attached to each components.

Logical approach to e�ects Generic reasoning about computational monads dates back to
Moggi’s (1989) seminal work, who proposes an embedding of his computational metalanguage
into higher-order logic. Pitts & Moggi’s evaluation logic (Moggi, 1995; Pitts, 1991) later intro-
duces modalities to reason about the result(s) of computations, but not about the computational
context. Plotkin and Pretnar (2008) propose a generic logic for algebraic e�ects that encompasses
Moggi’s computational λ-calculus, evaluation logic, and Hennesy-Milner logic, but does not ex-
tend to Hoare-style reasoning for state. Simpson and Voorneveld (2018) and Matache and Staton
(2019) explore logics for algebraic e�ects by specifying the e�ectful behaviour of algebraic oper-
ations using a collection of e�ect-speci�c modalities instead of equations. Their modalities are
closely related to how we derive e�ect observations θ : M → WPure and thus program speci�-
cations from M -algebras on P in subsection 2.4.8, as intuitively the conditions they impose on
their modalities ensure that these can be collectively treated as an M -algebra on P. In recent
work concurrent to ours, Voorneveld (2019) studies a logic based on quantitative modalities by
considering truth objects richer than P, including S → P for stateful and [0, 1] for probabilistic
computation.

The notion of speci�cation monad we use is quite simple, counting the bare minimum to start
talking about speci�cation. However it is lacking for actually de�ning a logic. This choice was
voluntary in order not to restrict the applicability of the framework, in particular for quantitative
reasoning as would be needed when reasoning about costs or probabilities. In practice, most of
the examples we presented support a rich logic and we would like to re�ect this in the de�nition
of more restricted classes of speci�cation monads from which we could de�ne a logic.

Reasoning directly about e�ectful semantics Relating monadic expressions is natural and
very wide-spread in proof assistants like Coq, Isabelle (Lochbihler, 2018), or F?(Grimm et al.,

2.5. CONCLUSION & RELATED WORK 27

2018), with various degrees of automation. Boulier et al. (2017); Casinghino et al. (2014); Pédrot
and Tabareau (2018) extend dependent type theory with a few selected primitive e�ects: partial-
ity, exceptions, reader. The resulting theory allows to some extent to reason directly on e�ectful
programs, without resorting to a monadic encoding.

Chapter 3

Abstracted away

『そしてそこには出口がない。出口を見つけられる
可能性すらない。君は時の迷宮の中に迷いこんでし
まっている。なによりもいちばん大きな問題は、そ
こから出ていきたいという気持ちを君がまったく抱
けないでいることだ。そうだね？』

村上春樹,海辺のカフカ, 2006

Computational monads are the key algebraic structure to obtain compositionality of sequen-
tial programs even in an e�ectful setting. A conceptual understanding of the tools enabling
veri�cation of such program should make use of this monadic structure, as for instance speci-
�cation monads. However, plain monads do not fully account for these objects that we use to
study monadic program veri�cation. Beside being monads, speci�cation monads comes with a
preorder structure and various axioms ensuring the well-behavedness of these preorders with
respect to the monadic operations. We would like to obtain these conditions as an instance of a
more general notion of monad. We hope by pursuing this goal that a general approach will lead
to simpler proofs, not cluttered by the details of the objects we are manipulating.

In this chapter, we introduce a few abstract categorical constructions generalizing that of
plain monads and used extensively in the following chapters. Our starting point is the formal
theory of monads, following Street (1972), that provides a general formulation of monads and
associated concepts in an arbitrary 2-category. In particular the theory applies to enriched set-
tings and, keeping in mind speci�cation monads, we are foremost interested in the Pos-enriched
case.

The monad-like structure arising in the context of monadic program veri�cation however
are often not endofunctors: we present the theory of relative monads (Altenkirch et al., 2015)
that was developed for that purpose. Motivated by enriched variants of relative monads, for
instance on preorders, we sketch the foundations of a formal theory of relative monads. Framed
bicategories (Shulman, 2008) is a natural setting to pursue such a generalization. We present
framed bicategories, introduce relative monads in those, and de�ne notions of algebras. We close
the chapter by showing that to some extent the formal theory of relative monads we present here
naturally extends that of monads.

3.1 Elements of the formal theory of monads

The notion of monad admits a general de�nition in an arbitrary 2-category or even a bicategory
due to Bénabou (1967). We begin this chapter recalling brie�y the notion of 2-/bi-category, before
presenting a few elements of the formal theory of monads as developed in (Kelly and Street, 1974;
Lack and Street, 2002; Street, 1972). A far more complete reference on the topics touched here
is (Lack, 2009).

29

30 CHAPTER 3. ABSTRACTED AWAY

3.1.1 A brief introduction to 2-categories

De�nition 3.1.1. A bicategory B consists of

B a set of 0-cells |B|,

B for each pair of 0-cells x, y ∈ |B|, a category B(x, y) whose objects are called 1-cells and
morphisms are called 2-cells,

B with identity 1-cell idx for each 0-cell x,

B and a bifunctorial composition ◦x,y,z : B(y, z)×B(x, y)→ B(x, z) for 0-cells x, y, z ∈ |B|,

B such that the following unitality and associativity square commute up to natural isomor-
phisms λ, ρ, α called respectively left unitor, right unitor and associator

B(x, y)× B(y, y) B(x, y) B(y, y)× B(x, y)

B(x, y)

◦ ◦

idy×B(x,y)B(x,y)×idx

ρ λ

B(y, z)× B(x, y)× B(w, x) B(x, z)× B(w, x)

B(y, z)× B(w, y) B(w, z)

◦×B(w,x)

B(y,z)×◦ ◦

◦

⇓ α

B and such that the following two coherence diagrams commute where we abbreviated B(x, y)
by Bx,y and noted · for functor composition as well as action of functors on natural transfor-
mations.

◦ · (◦ × Bx,y) · (By,z × idy × Bx,y) ◦ · (By,z × ◦) · (By,z × idy × Bx,y)

◦x,y,z

α·(By,z×idy×Bx,y)

◦·(ρ×Bx,y) ◦·(By,z×λ)

◦ · (◦ × Bv,w) · (◦ × Bx,w × Bv,w)

◦ · (◦ × Bv,w) · (By,z × ◦ × Bv,w) ◦ · (◦ × ◦)

◦ · (By,z × ◦) · (By,z × ◦ × Bv,w) ◦ · (By,z × ◦) · (By,z × Bx,y × ◦)

◦·(α×Bv,w) α·(◦×Bx,w×Bv,w)

α·(By,z×◦×Bv,w) α·(By,z×Bx,y×◦)

◦·(By,z×α)

The �rst coherence diagram means that simplifying identities on the left or on the right using
the adequate unitor gives the same result and the second coherence diagram enforces associa-
tivity of the associator.

A bicategory B where the associator and unitors are identities is called a strict 2-category. A
folklore result from Curien et al. (2014); Power (1989) shows that any bicategory can be stricti�ed
to a strict 2-category in the sense that a bicategory B can be embedded in a strict 2-category
such that the embedding is an equivalence of bicategories. Another way to state this coherence
theorem is that all diagrams built out of associators and unitors commute, and so we will omit
them in all diagrams since they can be inserted in an essentially unique way.

3.1. ELEMENTS OF THE FORMAL THEORY OF MONADS 31

Examples of 2-categories

B Cat is the 2-category of small categories, functors and natural transformations.

B For an enriching category V , VCat is the 2-category of V-enriched categories, V-enriched
functors and V-enriched natural transformations.

B There is another natural 2-category whose 0-cells are small categories, the bicategory
Distr whose 1-cells are distributors between categories and 2-cells are natural transfor-
mations between distributors. The relationship between Cat and Distr can be seen as a
categori�cation of the relationship between the (1-)categories Set of set and functions and
Rel of sets and relations.

An adequate notion of morphism between 2-categories is that of 2-functor1.

De�nition 3.1.2. A 2-functor F from a 2-category B to a 2-category K consists of:

B a function |F | : |B| → |K| mapping 0-cells of B to 0-cells of K

B a functor Fx,y : B(x, y)→ K(F x, F y) for each pair of 0-cells x, y ∈ |B|

B with invertible 2-cells ix : idF x
∼−→ F idx for each 0-cell x ∈ |B| and mf,g : F g ◦ F f ∼−→

F (g ◦ f) for each pair of composable 1-cells f, g in B, natural in f, g

B satisfying three coherence diagrams similar to those for a monoidal functor ensuring that
unitors and associators are respected.

Working with 2-categories: string diagrams Since working inside a 2-category involves
manipulating objects at three distinct levels, the usual diagrammatic notations can quickly be-
come hard to read and obscure the actual proof. String diagrams, formally introduced in Joyal
and Street (1991), provide a graphical calculus that can greatly simplify de�nitions and proofs
inside a 2-category. The key idea is that proofs in a 2-category primarily manipulate 2-cells so
they should be the most visible. This is achieved by taking the Poincaré dual of the standard di-
agrams: 0-cells become surfaces and 2-cells become points, whereas 1-cells are still represented
as lines.

0-cell x x x

1-cell f ∈ B(x, y) x y
f

x

y
ff

2-cell α ∈ Bx,y(f, g) x y

g

f

⇓ α g α f
x

y

We leave out the name of 0-cells in further diagrams since these can be inferred from the 1-cells.
Vertical juxtaposition of string diagrams correspond to composition of 1-cells – and its functorial
action on 2-cells – whereas horizontal juxtaposition is composition of 2-cells. Note that we take
here the slightly non-standard convention of reading string diagrams from top to bottom and
from right to left in order to have compatible notations with the graphical calculus for framed
bicategories in section 3.3.

1We only use in this manuscript the notion of strong 2-functor and not the more general notion of lax 2-functor
de�ned in (Bénabou, 1967)

32 CHAPTER 3. ABSTRACTED AWAY

3.1.2 Monads in a 2-category

De�nition 3.1.3. A monad in a 2-category B consists of

B a 1-cell t : X → X on a 0-cell X of B

B with 2-cells η : idX → t and µ : t ◦ t→ t called respectively unit and multiplication

ηt
t

µt
t

B such that the following diagrams commute

η
µt

t
= t t =

η
µt

t

µt
t

t
µ

t
µt

t

t

µ
t

=

A monad in a bicategory B is noted (X, t) leaving the unit and multiplication implicit. There
is a natural notion of morphism between monads in a bicategory B.

De�nition 3.1.4. A monad morphism between monads (X, t) and (Y, s) is consists of

B A 1-cell f : X → Y

B and a 2-cell θ : s ◦ f → f ◦ t

s
θ

t f

f

B such that the following identities hold

ηs
θ

t f

f

t f

f

ηt

=

s
µs

θ

s

t f

f
µtt

θ

θf

f

s

s

=

De�nition 3.1.5. A monad morphism transformation between monad morphisms (f, θ) and
(g, φ) from (X, t) to (Y, s) consists of a 2-cell ν : f → g such that

s
θ

t f

νg s
φ

t fν

g
=

We can put these de�nitions together to form a 2-categoryMnd(B) whose 0-cells are mon-
ads in B, 1-cells are monad morphisms and 2-cells are monad morphism transformations. We
de�ne a (2-)functor U from Mnd(B) to B forgetting everything related to monads. In more
details, U sends a monad (X, t) to X , a monad morphism (f, θ) to f and a monad morphism
transformation to its underlying 2-cell.

3.2. RELATIVE MONADS 33

Object of algebras

De�nition 3.1.6. An algebra for a monad (T, η, µ) on a category C is given by

B An object c ∈ C called the carrier of the algebra

B and a morphism α ∈ C(T c, c) called the structure map of the algebra

B such that the two following identities hold

α ◦ ηc = idc α ◦ µc = α ◦ T α

A T -algebra morphism from (c, α) to (c′, α′) consists of a morphism f ∈ C(c, c′) such that f ◦α =
α′◦T f . T -algebras and T -algebra morphisms form a category called the Eilenberg-Moore category
of T and note CT .

The formal theory of monads also extends the notion of algebra to an arbitrary 2-category.
A monad (X, t) in a 2-category B induces by post-composition a monad B(A, t) on the category
B(A,X) for any 0-cell A ∈ B. The mapping sending a 0-cell A ∈ B to the Eilenberg-Moore
category B(A,X)B(A,t) extends to a 2-functor Algt : Bop(1) → Cat. An Eilenberg-Moore object
for t is, when it exists, a 0-cellXt ∈ B representing the functorAlgt, that is such thatAlgt(A) ∼=
B(A,Xt) naturally in A ∈ Bop(1).

When Eilenberg-Moore objects exist for two monads (X, t) and (Y, s), monad morphisms
(f, θ) : (X, t) → (Y, s) are in bijection with pairs of 1-cells (f, f̃) where f : X → Y and
f̃ : Xt → Y s.

3.2 Relative monads

The classical theory of monads is not enough to capture all the structure we need to model formal
veri�cation of programs. In particular speci�cation monads (section 2.3) already go beyond the
classical theory since they need to be equipped with orders. We could hope that it would be
enough to move from a Set-enriched setting to a Pos-enriched setting, in the sense of enriched
category theory (Kelly, 1982), however there is no reason a priori for a speci�cation monad on
Set to lift to Pos . Thus the formal monad theory in PosCat falls short of describing our peculiar
use-case.

In order to provide a formal categorical account for speci�cation monads, and for other
monad-like objects developed for relational reasoning (chapter 6), we commit ourselves to a gen-
eralization of monads known as relative monads. A relative monad relax the notion of monad by
endowing a monad-like structure to functors that need not to be endofunctors (Altenkirch et al.,
2015). For this notion to make sense, we need to specify relative monads with respect to a base
functor J : I → C, and the classical notion of monad is recovered when taking J = Id. The
price to pay for this generalization is a more technical theory, in particular to connect relative
monads to a notion of monoid in an abstract enough setting.

De�nition 3.2.1 (Relative monad in Cat). Let J : I → C be a functor between categories I, C. A
J -relative monad is given by

B a function on objects M : |I| → |C|,

B a family of morphisms retx ∈ C(J x,Mx) for any x ∈ I ,

B a family of functions bindx,y : C(J x,M y)→ C(Mx,M y)

34 CHAPTER 3. ABSTRACTED AWAY

such that the following equations hold

bindx,x(retx) = idx bindx,y(f) ◦ retx = f

bindx,z(bindy,z(g) ◦ f) = bindy,z(g) ◦ bindx,y(f)

The de�nition of a relative monad generalizes directly the presentation familiar to program-
mers of a plain monad on a category C as a Kleisli triple (T, η, (−)†) where we write (−)† for
the Kleisli extension operation C(X,TY)→ C(TX, TY).

As hinted before, our examples of speci�cation monads can be understood as relative monads
from Set to Pos , relative to the functor Disc sending a set to itself seen as a discrete poset.
However, since bind is required to be monotonic in both arguments, we will also need to consider
a Pos-enriched setting. Note that the bind operation is de�ned as a function between hom-sets
and need not to be representable as a “multiplication” natural transformation: there is in general
no way to compose M twice. This means that in order to enrich this de�nition in a category
V , for instance V = Pos , we need to consider not only V-categories, V-functors and V-natural
transformations, but also the structure of V-hom objects, namely V-profunctors. The further
generalization to framed bicategories(Shulman, 2008) in the next sections will provide a synthetic
and convenient context to consider these objects together.

Relative monads as presented in (Altenkirch et al., 2015) also come with their notions of
morphism and algebras that we recall here. Until the end of this section, we �x categories I, C,
a base functor J : I → C and J -relative monads M,M′.

De�nition 3.2.2. A J -relative monad morphism from M to M′ is a natural transformation θ :
M→ M′ such that

θx ◦ retM
x = retM′

x θy ◦ (bindM
x,y f) = bindM′

x,y (θy ◦ f) ◦ θx

for any objects x, y ∈ I and f ∈ C(J x,M y).

De�nition 3.2.3. An Eilenberg-Moore algebra, or simply M-algebra, is an object a ∈ C together
with a natural transformation

αx : C(J x, a)
.−→ C(Mx, a)

satisfying the two identities

αx(f) ◦ retx = f αy(bind f ◦ g) = αx(f) ◦ g

for any x, y ∈ I, f : J x→ a, g : J y → Mx.

M-algebras together with the appropriate notion of morphism form a category EM(M). The
Kleisli category Kl(M) is the category with object set |I| and with morphisms Kl(M)(x, y) =
C(J x,M y). Any morphism of relative monad θ : M→ M′ induces two factorizations

Kl(θ) : Kl(M)→ Kl(M′) and EM(θ) : EM(M′)→ EM(M).

3.3 Framed bicategories

We would like to extend the notion of relative monads to categories other than Cat, in particular
to the ordered setting, however 2-categories does not seem to be the right setting for a formal
theory of relative monads. Indeed, an object of an arbitrary 2-category does not necessarily have
the hom-structure that we would need in order to de�ne a bind operation. The notion of framed
bicategory introduced by Shulman (2008) provides this data. In this section, we brie�y present
this notion and recall the instances that we will use further.

3.3. FRAMED BICATEGORIES 35

De�nition 3.3.1. A framed bicategory F is a double category with a distinguished class of 2-cells
verifying a universal property, that is

B a set of objects or 0-cells |F|;

B for each pair of objects X,Y ∈ |F|, a set of vertical arrows or vertical 1-cells Fv(X,Y),
and a set of pro-arrows or horizontal 1-cells Fh(X,Y). We write f : X → Y for a vertical
arrow f ∈ Fv(X,Y) and h : X −7−→ Y for a proarrowM ∈ Fh(X,Y).

B for each frame as on the left, a set of 2-cells fFg(M,N), where α ∈ fFg(M,N) is noted as
on the right

X Y

X ′ Y ′

f

pM

g

p
N

X Y

X ′ Y ′

f

pM

g

p
N

⇓ α

B vertical and horizontal units and compositions ◦ and � noted as follows,

X Y

X Y

pM

p
M

X X

Y Y

f

pX

f

p
Y

X1 Y1

X2 Y2

X3 Y3

f

pM1

f ′

g

p
M2

g′

p
M3

⇓ α

⇓ β

=

X1 Y1

X3 Y3

gf

pM1

g′f ′

p
M3

⇓ βα
X Y Z

X ′ Y ′ Z ′

u

pM1

v

pM2

w

p
N1

p
N2

⇓ α ⇓ β =
X Z

X ′ Z ′

u

pM1�M2

w

p
N1�N2

⇓ α� β

Vertical composition is associative and unital, whereas the horizontal composition is usually
associative and unital only up to coherent natural isomorphisms, the associator and unitors2.
We do not explicitly write those, appealing to the fact that they can be stricti�ed in the same
fashion as for (weak) 2-categories. The two compositions are related by a distributivity law
that in �ne ensures that all diagrams have a unique well-de�ned reading.

B for any vertical cells f, g and horizontal cellM as on the left, a cartesian �ller for the niche
formed by f,M, g, that is a 2-cell χ ∈ fFg(f∗Mg∗,M). Being cartesian means here that
χ satis�es the following universal property: any other �ller α ∈ fhFgk(N,M) of the niche,
factors through χ, yielding a 2-cell f∗αg∗ ∈ hFk(N, f∗Mg∗) unique up to unique globular
isomorphism (that is a 2-cell whose vertical borders are identities).

X1 Y1

X2 Y2

f g

p
M

X1 Y1

X2 Y2

f

pf∗Mg∗

g

p
M

⇓ χ

X1 Y1

X3 Y3

fh

pN

gk

p
M

⇓ α =

X1 Y1

X2 Y2

X3 Y3

h

pN

k

f

pf∗Mg∗

g

p
M

⇓ χ

⇓ f∗αg∗

2We are actually describing a pseudo double category.

36 CHAPTER 3. ABSTRACTED AWAY

The framed category Distr The canonical example of a framed bicategory is given by Distr
whose

B objects are (small) categories C,D ∈ Distr,

B vertical arrows J ∈ Distrv(C,D) are functors J : C → D,

B horizontal arrowsH ∈ Distrh(C,D) are distributors H : C −7−→ D (a.k.a. profunctors) (Ben-
abou, 2000), that is bifunctorsH : Dop × C → Set , and

B 2-cells α ∈ JDistrK(G,H) are natural transformations αc,d : G(d, c)
.−→ H(Kd,J c)

C D

C′ D′

J

G

K

H

⇓ α

Vertical identities and composition are identity functors and functor composition as in Cat.
Horizontal identities C(−,−) : C −7−→ C are hom-sets bifunctors and horizontal composition
H� G : C −7−→ E for distributorsH : C −7−→ D, G : D −7−→ E is given by the coend formula

H� G(e, c) =

∫ d∈D
G(e, d)×H(d, c)

If F,G : C → D are functors, we note that vertical 2-cells α ∈ FDistrG(C(−,−),D(−,−))
are in natural bijection with natural transformations G .−→ F , witnessed by the following calcu-
lation

[Cop × C,Set](C(−,−),D(G−, F−)) ∼=
∫

(c,c′)∈Cop×C
Set(C(c, c′),D(Gc, F c′))

∼=
∫

c′∈C

∫

c∈Cop
Set(C(c, c′),D(Gc, F c′))

∼=
∫

c′∈C
[Cop,Set](C(−, c′),D(G−, F c′))

∼=
∫

c′∈C
D(Gc′, F c′)

∼= [C,D](G,F)

where the second isomorphism holds by Fubini, the fourth by Yoneda lemma and the others by
formulation of the set of natural transformations as a end.

Because of this correspondence, we will more generally note α : g
.−→ f for a 2-cell α ∈

fFg(C,D) in an arbitrary framed bicategoryF with identities as horizontal domains and codomains.

The framed category V-Distr If V is a complete and cocomplete symmetric monoidal closed
category, we can generalize the de�nition of Distr to the V-enriched setting (Kelly, 1982), ob-
taining a framed bicategory V-Distr consisting of V-categories, V-functors, V-distributors and
V-natural transformations between distributors. We will frequently use this example with V a
cartesian closed-category.

Underlying 2-categories A framed bicategoryF naturally induces two di�erent 2-categories:

B the 2-category Fv consisting of 0-cells, vertical arrows and vertical 2-cells, that is 2-cells
such that the horizontal domains and codomains are identities:

X X

Y Y

f

pX

g

p
Y

⇓ α

3.3. FRAMED BICATEGORIES 37

B the 2-category Fh consisting of 0-cells, horizontal arrows and globular 2-cells, that is 2-
cells such that the vertical arrows are identities:

X Y

X Y

pM

p
N

⇓ α

Depending on the context, we will sometimes consider the underlying 1-category of the (strict)
2-category Fv keeping the same notation.

String diagrams notations To ease calculations in framed bicategories, we will use a variant
of the string diagram notation developed in (Myers, 2016). As it is usually the case with string
diagrams, we represent a cell on the left by its Poincaré dual on the right.

X1 Y1

X2 Y2

f

pM

g

p
N

⇓ α

N

M

f gα

A 0-cell is corresponds to an area, a vertical arrow to an horizontal simple line, an horizontal
arrow to a double line and a 2-cell to a point, represented by a labelled node. We read these
diagrams from top to bottom and right to left. This convention is taken to be coherent with the
direction of natural transformations in Distr: a natural transformation α : K .−→ J between
functors K,J : C → D, that is α ∈ JDistrK(C,D), will be drawn as as follows.

C D

D D
J

pC

K

pD

⇓ α J Kα

String diagrams also account for cartesian �llers by bending the strings. Given a niche as on
the left, a cartesian �ller for this niche is depicted on the right.

f ? g

M

f g

M

f∗Mg∗

f∗αg∗ kh

N

M

α kh

N

f g
=

Applying the property to the adequate niche, we have for any vertical arrow f : X → Y ,
horizontal arrows f∗Y : X −7−→ Y and Y f∗ : Y −7−→ X called respectively the companion and
conjoint of f . The relationship between f , f∗Y and Y f∗ is described by the following string
diagrams:

38 CHAPTER 3. ABSTRACTED AWAY

f∗Y

f
f∗Y

f

f

Y f∗
f

Y f∗

f

f

= f f

f

f

= f f

f∗Y

f∗Y

=

f∗Y

f∗Y Y f∗

Y f∗

=

Y f∗

Y f∗

Since vertical arrows can be be bent both to a companion and conjoint, we mark the direction
of the arrow to keep track of which we are talking about: a single vertical line is a companion
when it is directed from top to bottom, and a conjoint when directed from bottom to top. We will
sometimes abbreviate both f∗Y and Y f∗ by just f∗ on diagrams to simplify notations, leaving
to the reader the task to infer whether we are talking about the conjoint or companion of f from
the non-ambiguous direction of arrows.

3.4 Framed functor, framed representability

In order to de�ne objects by universal properties in a framed bicategory, we develop the basic
notions of framed representability. We start by recalling the notions of (strong) framed functor
and framed natural transformation de�ned in (Shulman, 2008).

De�nition 3.4.1. Let F ,G be framed bicategories. A (strong) framed functor K : F → G is a
vertically strict, horizontally strong double functor between the underlying double categories of F
and G. In components, it consists of:

B a function K : |F| → |G| from 0-cells in F to 0-cells in |G|,

B a functorial action on vertical 1-cells Kv : Fv(X,Y)→ Gv(KX,K Y),

B a pseudo-functorial action on horizontal 1-cells Kh : Fh(X,Y) → Gh(KX,K Y) with
globular 2-cells KhM � KhN ∼= Kh (M �N) and KhX ∼= KX satisfying the coherence
axioms for a strong 2-functor,

B a functorial assignment of 2-cells

X1 Y1

X2 Y2

f

pM

g

p
N

⇓ α 7−→
KX1 K Y1

KX2 K Y2

Kvf

pKhM

Kvg

pKhN

⇓ Kα

Fixing a framed bicategory F , any object C ∈ |F| de�nes a “framed presheaf”よC , that
is a framed functor from Fop, the framed category obtained from F by formally reversing the
direction of vertical 1-cells and 2-cells, to the framed bicategory Distr of categories, functors,
distributors and natural transformations. The framed functorよC maps:

B a 0-cell X ∈ |F| to the categoryよC(X) = Fv(X,C) of vertical morphisms from X to C
and vertical 2-cells;

3.4. FRAMED FUNCTOR, FRAMED REPRESENTABILITY 39

B a vertical 1-cell f ∈ Fop
v (X,Y) = Fv(Y,X) to the functor Fv(X,C) → Fv(Y,C) ob-

tained by precomposition by f ;

B an horizontal 1-cellM ∈ Fh(X,Y) to the distributor whose component athX ∈ Fv(X,C), hY ∈
Fv(Y,C) consists of the set of 2-cellsよC(M)hX ,hY = { α | α ∈ hXFhY (M,C) } as rep-
resented below on the left, and the functorial action is given by composition of vertical
2-cells αX : gX

.−→ hX , αY : hY
.−→ gY on the sides as described on the right

X Y

C C

hX

pM

hY

p
C

⇓ α
X X Y Y

C C C C

gX

pX
hX

pM
hY

pY

gY

p
C

p
C

p
C

⇓ αX ⇓ α ⇓ αY

B a 2-cell γ ∈ fFop
g(M,N) = fFop

g(N,M) to the natural transformation between distrib-
utorsよC(γ) :よC(M)

.−→よC(N) given at component hX ∈ Fv(X,C), hY ∈ Fv(Y,C)
by the function

よC(γ)hX ,hY =
X Y

C C

hX

pM

hY

p
C

⇓ α 7−→

X ′ Y ′

X Y

C C

f

pN

g

hX

pM

hY

p
C

⇓ α

⇓ γ

Given a vertical 1-cell f : C → C ′ in F , we can de�ne functorsよf (X) :よC(X)→よC′(X) for
any object X ∈ |F| by postcomposition with f . We can extend this family of functors to de�ne
a framed natural transformationよf :よC

.−→よC′

De�nition 3.4.2. A framed natural transformation ν : K .−→ L between framed functors K,L :
F → G consists of a family νX : KX → LX of vertical 1-cells of G indexed by 0-cells X ∈ |F|
natural with respect to vertical 1-cells in F and a compatible family νM ∈ νXGνY (KhM,LhM)
indexed by horizontal 1-cellsM ∈ Fh(X,Y) natural with respect to 2-cells in F satisfying addi-
tionally the two equations

KX KZ

LX LZ
νX

pKhM

νY

pLhM

⇓ νM�N =
KX K Y KZ

LX LY LZ
νX

pKhM

νY

pKhN

νY

pLhM
pLhN

⇓ νM ⇓ νM

KX KX

LX LX
νX

pKX

νX

pLX

⇓ νX =
KX KX

LX LX
νX

pKX

νX

pLX

where we silently use the isomorphisms witnessing pseudo-functoriality for horizontal composition
and identities.

It is shown in (Shulman, 2008) (proposition 6.17) that framed bicategories, framed functors
and framed natural transformations form a strict 2-category. We use part of that fact to state the
following lemma:

Lemma 3.4.1. For any framed bicategory F , the assignment C 7→よC extends to a functorよ :
Fv → [Fop,Distr] where Fv is the 1-category de�ned by vertical arrows in F and [Fop,Distr] is
the category of framed functors from Fop to Distr and framed natural transformations.

40 CHAPTER 3. ABSTRACTED AWAY

Proof. We already proved thatよC : Fop → Distr is a framed functor. Given a 1-cell f : C → C ′,
the framed natural transformationよf :よC

.−→よC′ is given on a 0-cell X by the functor de�ned
by postcomposition by f , and on a horizontal 1-cell M by the natural transformation between
distributorsよC(M)

.−→よC′(M) induced by postcomposition with the identity 2-cell on f .

Lemma 3.4.2 (framed (weak) Yoneda lemma). Let F be a framed category, C an object of F and
H : Fop → Distr a framed functor. There is a natural bijection

[Fop,Distr](よC ,H) ∼= |H(C)|

Proof. The bijection ϕ : [Fop,Distr](よC ,H)
∼−→ |H(C)| is de�ned by ϕ(ν) = νC(idC). For an

object h ∈ H(C), its inverse ϕ−1(h) is the framed natural transformation given at components
X ∈ |F| and M : X −7−→ Y by

ϕ−1(h)X = f ∈よC(X) = Fv(X,C) 7→ H(f)(h) ∈ H(X)

ϕ−1(h)M = α ∈よC(M) 7→ H(α)(idh) ∈ H(M)

where idh ∈ IdH(C)(h, h) ∼= H(IdC)(h, h) is the element of the distributorH(IdC) representing
the identity on h. To prove that they are inverse to each other, we �rst compute ϕ ◦ ϕ−1(h) =
ϕ−1
C (idC) = H(idC)(h) = h. For the other equality, we observe that, by naturality, any natural

transformation ν ∈ [Fop,Distr](よC ,H) veri�es the identities

νX(f) = νX ◦よC(f)(idC) = H(f) ◦ νC(idC)

νM (α) = νM ◦よC(α)(IdC) = H(α) ◦ νIdC (idIdC)

where X ∈ F , f ∈よC(X) = Fv(X,C),M : X −7−→ Y, α ∈よC(M) =
⋃
f,g fFg(M,C) In

particular, we have

ϕ−1(ϕ(ν))X(f) = H(f)(ϕ(ν)) = H(f) ◦ νC(idC) = νX(f)

ϕ−1(ϕ(ν))M (α) = H(α)(idϕ(ν)) = H(α) ◦ νIdC (idIdC) = νM (α)

that is ϕ−1 ◦ ϕ(ν) = ν.

Corollary 3.4.1. The functorよ : Fv → [Fop,Distr] is full and faithful.

Proof. For any objects C,D ∈ |Fv|,

[Fop,Distr](よC ,よD) ∼= |よD(C)| = Fv(C,D)

We say that a framed functorH : Fop → Distr is represented by an object C ∈ |F| if there
is a framed natural isomorphism H ∼=よC , and H is representable if there exists an object C
representing it.

Dually, any object C ∈ |F| de�nes a framed functor cよC : F → Distr whose action on
0-cell is given by cよC(X) = Fv(C,X). Dualizing all the previous discussion, cよde�nes a full
and faithful functor Fv → [F ,Distr]op. A framed functor G : F → Distr is said to be co-
representable if it is isomorphic to cよC for some C ∈ |F|.

3.5. RELATIVE MONAD IN A FRAMED BICATEGORY 41

3.5 Relative monad in a framed bicategory

Having in hand the powerful notion of framed bicategory, we now set out to de�ne what is a
relative monad inside a framed bicategory. The idea is that thanks to the horizontal morphisms
playing the role of a hom-structure on the objects of a framed bicategory F , we can almost
reenact the de�nition in Cat in F , replacing the base functor by a vertical arrow.

De�nition 3.5.1 (Relative monad). Let F be a framed bicategory, j : I → C be a vertical 1-cell
of F . A j-relative monad is a triple (m, ret, bind) composed of

B a vertical 1-cellm : I → C ,

B a 2-cell ret : j
.−→ m, or diagrammatically

I I

C C

m j⇓ ret ret jm

B a 2-cells bind : C(j,m)
.−→ C(m,m), where we note C(h, k) = k∗Ch∗,

I I

I I

pC(j,m)

p
C(m,m)

⇓ bind

m∗C Cj∗

m∗C Cm∗

bind

inducing a mapping (−)† from 2-cells to 2-cells mbFja(M,C)→ mbFma(M,C) for vertical
arrows a : A→ C, b : B → C and horizontal arrowM : B −7−→ A

α†
a

mm

b

R

α
a

jm

b

R

m m

bind

=

B such that the following equations hold

ret† = idm α† ◦ ret = α (β† ◦ α)† = β† ◦ α†

for any objects X,Y, Z ∈ F , vertical 1-cells f : X → i, g : Y → i, h : Z → i and 2-cells
α : j ◦ f .−→ m ◦ g, β : j ◦ g .−→ m ◦ h. In string diagrams notations, the relative monad
equations give respectively

m m

bind

ret

= m m

m∗C Cj∗

m∗C

bind

ret j
m∗C

j

m∗C Cj∗

=

m∗C Cj∗

m∗C

bind

m∗C Cj∗

Cm∗

bind

m∗C Cj∗

bind

Cj∗

m∗C Cm∗

bind

m∗C

=

42 CHAPTER 3. ABSTRACTED AWAY

Inside Distr A relative monad in Distr is the same thing as a a relative monad over a functor
(Def. 3.2.1) between small categories. Given such a j-relative monadm in Distr, j being a vertical
arrow therein, it is quite immediate thatm has the structure of a relative monad over the functor
j and satis�es the required equations.

Conversely, in order to show that a relative monad (M, ret, bind) over a functorJ : I → C
is a relative monad in Distr, it is enough to show that M extends to a functor I → C and that ret
and bind are natural in the appropriate sense. The relevant proof can be found in (Altenkirch
et al., 2015).

Speci�cation monads as relative monads in Pos-Distr Speci�cation monads are our orig-
inal motivation for moving to relative monads in the enriched setting of Pos-Distr. Indeed, the
two ingredients needed to de�ne speci�cation monads are:

1. a carrier for speci�cation monads mapping sets to preorders, and

2. preordered hom-sets, and natural transformations between preorder enriched posets that
are monotonic so that the bind operation is monotonic in both arguments.

The main protagonists for a formal de�nition of speci�cation monads are the Pos-categories
Set and Pos 3 where the former is seen as an enriched category through the monoidal4 functor
Disc : Set → Pos sending a set to itself equipped with the discrete preorder, and the latter by
cartesian closedness. We note Disc : Set → Pos the lifting of Disc to Pos-functor.

De�nition 3.5.2. A speci�cation monad is a Disc-relative monad in Pos-Distr.

This can be seen as a more abstract presentation of preorder-enriched monads (Katsumata
and Sato, 2013; Rauch et al., 2016).

Eilenberg-Moore Algebras We �x a base vertical arrow j : I → C and a j-relative monad
m in F . We want to extend the notion of algebra for a relative monad. Of course, in a general
framed bicategory we may not have a “unit object,” as we do in Cat, so we need to de�ne algebras
with respect to an arbitrary vertical arrow instead of an “object of C” , in a similar way as using
generalized elements in ordinary category theory.

De�nition 3.5.3. An m-algebra is an object A ∈ F , a vertical arrow a : A → C together with a
natural transformation α : C(j, a)

.−→ C(m, a) satisfying the two identities

αx(f) ◦ retx = f αy(αx(f) ◦ g) = αx(f) ◦ bind g

for any x, y ∈ I, f : J x→ a, g : J y → Mx.

α

a∗C Cj∗

a∗C Cm∗

α

a∗C Cj∗

a∗C ret j j

a∗C Cj∗

a∗C

=

a∗C Cj∗

a∗C

α

m∗C Cj∗

Cm∗

bind

a∗C Cj∗

α

Cj∗

a∗C Cm∗

α

m∗C

=

De�nition 3.5.4. An m-algebra morphism between m-algebras (A, a, α) and (B, b, β) is a pair
of a vertical arrow f : A→ B and a 2-cell ϕ : a

.−→ bf satisfying the equation
3In order to see these as objects of Pos-Distr, we need to distinguish two levels of smallness, as provided by

di�erent universes. Since our constructions are independent of the universe level – they are universe polymorphic –
we keep the same notations for all levels.

4for the cartesian product monoidal structure on Set and Pos .

3.5. RELATIVE MONAD IN A FRAMED BICATEGORY 43

ϕ

α

β

a∗C Cj∗

ϕ

f

b
Cm∗

Cj∗a∗C

b

f

Cm∗

=

There is a framed functor Algm : Fop
v → Distr sending an object A to the category of

m-algebras and m-algebra morphisms between them. The action of Algm on a vertical 1-cell
f : A → B gives a functor Algm(f) : Algm(B) → Algm(A) sending an m-algebra (B, b :
B → C, β) from B to an m-algebra (A, bf : A → C, βf) where βf is de�ned as follow using
that (bf)∗C ∼= f∗b∗C :

β

b∗C Cj∗

b∗C Cm∗

f∗C

On a horizontal 1-cell M : A −7−→ B, Algm(M) is the distributor whose component at (a :
A→ C,α), (b : B → C, β) is given by the set of 2-cells ν ∈ aFb(M,C) such that

ν

β
α

ν

M

a m a

M

=

b∗ j∗ b∗ j∗

m

Finally, the action of Algm on a 2-cell is given by vertical precomposition.

De�nition 3.5.5. An Eilenberg-Moore object for a j-relative monad m in F is a representing
object for the framed functor Algm (in the sense of section 3.4). When it exists, it is noted EMm.

The relative monad m always has a canonical m-algebra structure given by bind, so it in-
duces a factorization in [Fop,Distr]

Algm

よI よC

u

よm

m̃

where u forgets them-algebra structure and only keep the underlying arrows inF . Whenm has
an Eilenberg-Moore object, this factorization happens directly inside Fv by the framed Yoneda
lemma Lem. 3.4.2.

In the case of the framed bicategory V-Distr for V a suitable category for enrichment, these
Eilenberg-Moore objects exists up to size conditions. Let J : I → C be a V-functor between
V-categories I, C and M : I → C be a J -relative monad (in V-Distr). The V-category CM

has as underlying set of objects pairs (c, α) composed of an object c ∈ |C| and a V-natural
transformation α : C(J−, c) .−→ C(M−, c) between V-presheaves. The object of morphism
between (c1, α1) and (c2, α2) is obtained as the equalizer

CM((c1, α1), (c2, α2)) C(c1, c2)
∏

x∈|I|[C(J x, c1), C(Mx, c2)]

44 CHAPTER 3. ABSTRACTED AWAY

where the arrows on the right are obtained by currying the two maps

C(J x, c2)

C(c1, c2)⊗ C(J x, c1) C(Mx, c2)

C(c1, c2)⊗ C(Mx, c1)

α2

×
α1

◦

◦

Theorem 3.5.1. CM is the Eilenberg-Moore object of M in V-Distr.

Proof. We need to show that the described V-category CM is a representing object for the functor
AlgM, that is to exhibit a framed natural isomorphism ϕ :よCM ∼= AlgM.

On object X ∈ V-Distrv, we de�ne ϕX by projecting out the components (uc, α(c)) out of
an algebra c ∈ CM. For f ∈よCM(X) = V-Distrv(X, CM), we de�ne a J -relative M-algebra
structure on uf : X → C by α(f)a,b : C(J a, uf b) → C(M a, uf b)) whose naturality in b is
provided by functoriality of f . A vertical 2-cell θ : f

.−→ g is mapped to ϕX(θ) = uθ : uf → ug.
It is a J -relative M-algebra homomorphism since each components of θ are.

Conversely, we de�neϕ−1(f, α) = f̃ ∈よCM(X) for (f, α) ∈ AlgM(X) by setting f̃ x = f x
on objects x ∈ X and obtaining the action of f̃ on X(x1, x2) ∈ V from the universal property
of the V-hom of CM using the fact that α is an M-algebra structure on f :

X(x1, x2)

CM((f x1, αx1), (f x2, αx2)) C(f x1, f x2)
∏

x∈|I|[C(J x, f x1), C(Mx, f x2)]

f
f̃

For a vertical 2-cell θ : (f, α)
.−→ (g, β), we de�ne the vertical 2-cell ϕ−1

X (θ) = θ̃ : f̃
.−→ g̃ by

another application of the universal property (where θ̃x is the special case of the diagram below
precomposed with idx)

X(x1, x2)

CM((f x1, αx1
), (g x2, βx2

)) C(f x1, g x2)
∏
x∈|I|[C(J x, f x1), C(Mx, g x2)]

θx2
◦f=g◦θx1

θ̃x1
◦f=g◦θ̃x2

ϕ−1
X is indeed an inverse to ϕX by unicity of the universal property. Since the action ofよCM

andAlgM on vertical arrows is given by precomposition and the de�nition of ϕX and its inverse
only act on the codomain, there are natural with respect to vertical arrows. The de�nition of ϕ
on horizontal arrows M : X −7−→ Y then proceeds similarly to the case of vertical 2-cells.

Kleisli algebras We introduce the dual notion to Eilenberg-Moore algebras for a relative
monad, corresponding to a right module on a monad. Since they are not modules, and by lack
of a suitable terminology, we call them here Kleisli algebras.

De�nition 3.5.6. A Kleisli algebra is a a vertical arrow f : I → X to some objectX ∈ F together
with a 2-cell α ∈ IFI(C(j,m), X(f, f)) satisfying the two following equations

f f

α

ret

= f f

m∗C Cj∗

f∗C

α

m∗C Cj∗

Cf∗

α

m∗C Cj∗

bind

Cj∗

f∗C Cf∗

α

m∗C

=

3.5. RELATIVE MONAD IN A FRAMED BICATEGORY 45

De�nition 3.5.7. A morphism of Kleisli algebras from (X, f, α) to (Y, g, β) is a pair of a vertical
arrow h : X → Y and a 2-cell ν : hf

.−→ g such that the following equation hold

α

h

f
νg

m∗C Cj∗

= β

m∗C Cj∗

h
ν

f
g

In a similar fashion to Eilenberg-Moore algebras, a j-relative monad m : I → C in F give
raise to a framed functor Klm : F → Distr with the following components:

B An objectX ∈ F is mapped to the categoryKlm(X) ofm-Kleisli algebras with codomain
X and m-Kleisli morphisms whose �rst component is the identity;

B A vertical arrow f : X → Y de�nes a functor Klm(X)→ Klm(Y) by postcomposition;

B An horizontal arrow M : X −7−→ Y de�nes a profunctor Klm(M) : Klm(X) −7−→ Klm(Y)
whose component at (f, α) ∈ Klm(X) and (g, β) ∈ Klm(Y) is the set of 2-cells χ ∈
fFg(I,M) such that

α

m∗C Cj∗

χ

M

gf χ

M

gf

β

m∗C Cj∗

=

B 2-cells ϕ ∈ hFh′(M,N) induce a natural transformations between profunctors by vertical
postcomposition.

The framed natural transformation cよm : cよC
.−→ cよI induced by the j-relative monad m

always factors through Klm

Klm

cよI
cよC

λ

cよm

ρ

where λ and ρ are framed natural transformation de�ned at a 0-cell X ∈ F as follows

B λ forgets the Kleisli algebra structure and maps a pair (f : I → X,α) ∈ Klm(X) to
f ∈ cよI(X) = Fv(I,X);

B ρ sends a vertical arrow f ∈ cよC(X) = Fv(C,X) to the Kleisli algebra (fm,α) where α
is induced by the bind operation from m

α

m∗ j∗

m∗f∗ f∗m∗

bindm

m∗ j∗

m∗ m∗f∗ f∗

=

46 CHAPTER 3. ABSTRACTED AWAY

We say that a j-relative monad m in F has a Kleisli object if the framed functor Klm is co-
represented by a 0-cell Cm ∈ F . In that situation, the factorization cよm = λ ◦ ρ through Klm
above induces vertical arrows l : I → Cm and r : Cm → C such that m = rl.

In the particular case of F = V-Distr for an enriching category V , any J -relative monad
M ∈ V-Distr(I, C) has a Kleisli object CM. The explicit construction of CM is quite standard:
take |I| as the set of objects |CM| and for x, y ∈ |I| de�ne CM(x, y) = C(J x,M y) with identity
given by retM

x ∈ C(J x,Mx) and composition induced by bindM, namely

C(J y,M z)× C(J x,M y)
bindM×id−−−−−−→ C(M y,M z)× C(J x,M y)

◦−→ C(J x,M z).

Lemma 3.5.1. CM is the Kleisli object of M in V-Distr.

3.5.1 Morphisms of relative monads

Morphisms between two monads relative to the same base functor has been de�ned in (Al-
tenkirch et al., 2015). Here we generalize the de�nition of morphisms to relative monads in a
framed bicategory F over possibly di�erent base arrows.

Let F be a framed bicategory and j1 : I1 → C1, j2 : I2 → C2 two vertical morphisms in F .
A morphism from j1 → j2 is a pair of vertical cells udom : I1 → I2 and ucod : C1 → C2 and an
invertible 2-cell ϕ : ucod ◦ j1 ⇒ j2 ◦ udom.

ϕ
j2

udom j1
ucod

ϕ−1

j2

udomj1
ucod

Equivalently, reinterpreting j1 and j2 as 2-functors from the arrow category 2 to the 2-
category Fv, (udom, ucod, ϕ) is the data of a pseudo-natural transformation.

I1 C1

I2 C2

j1

udom ucod

j2

∼= ϕ

De�nition 3.5.8 (Morphism of relative monad). Letu = (udom, ucod, ϕ) : j1 → j2. A morphism
of relative monads θ : m1 →u m2 from a j1-relative monadm1 to a j2-relative monadm2 over u
is a 2-cell θ : ucod ◦m1

.−→ m2 ◦ udom

θ
m2

udom m1

ucod

such that

θ
m2

ucod

udom

ret1 j1 ϕ
m2

ucod

udom

j1

ret2
=

m1
θm2

udom
ucod

=

m2

m1

ucod
θ

ϕ−1udombind1

m∗
1 j∗1

bind2

θ

m∗
1 j∗1

ucod

m2

udom

It is not totally clear that we obtained the right de�nition and the following lemma shows
that at the very least a property that we would expect in the classical monadic case still hold,
namely that relative monad morphisms factor through the Kleisli algebras objects when those
exists.5

5However, in sharp contrast with the non-relative case, it is not enough to reverse the direction of θ to obtain a
notion of monad morphism factoring through the Eilenberg-Moore objects. It seems di�cult to de�ne such a notion
over an arbitrary morphism u of base functors.

3.5. RELATIVE MONAD IN A FRAMED BICATEGORY 47

Conjecture 3.5.1. Assume the Kleisli objects Cm1 and Cm2 exists, inducing factorizations m1 =
r1l1 andm2 = r2l2. Then relative monad morphisms θ : m1 →u m2 factorize as pairs of a vertical
arrows v : Cm1 → Cm2 and a vertical 2-cell θ̃ : ucodr1

.−→ r2ν �tting in the following diagram

I1 C1
m1

C1

I2 C2
m2

C2

udom

l1

v

r1

ucod

l2 r2

⇓ θ̃	

Proof idea. Let θ : m1 →u m2 be a relative monad morphism, we de�ne v by co-representability,
so we construct a framed natural transformation

ν : cよC2
m2

∼= Klm2 −→ cよC1
m1

∼= Klm1 .

Given an object X , a Kleisli algebra (a : I2 → X,α) ∈ Klm2(X) is sent to the Kleisli algebra
νX(a, α) ∈ Klm1(X) composed of a udom : I1 → X together with the algebra structure

α

a
udom

j∗1m∗
1

a
udom

ϕ−1θ
j2m2

ucod

νX acts on Kleisli algebra morphisms by precomposition with udom. Given a proarrowM : X −7−→
Y , νM sends natural transformations in Klm2(M)((a, α), (b, β)) to natural transformations in
Klm1(M)(νX(a, α), νY (b, β)) also by precomposition with udom.

In order to �nish the proof we would need to exhibit θ̃ but this would require us an notion
of framed modi�cation between framed natural transformation cよθ̃ : cよr1 ◦ cよucod → ν ◦ cよr2and
an adequate representation theorem, which would go far beyond the purpose of this chapter.
We leave this proof un�nished but note that we have a canonical candidate for this would-be
cよθ̃ evaluated at a component X ∈ |F| and f ∈ cよC2(X) = Fv(C2, X), namely the Kleisli
algebra morphism (f ucodm1, bindm1) → νX(fm2, bindm2) = (fm2udom, . . .) induced by
θ : ucodm1

.−→ m2udom.

3.5.2 The 2-category of relative monads

Given a framed bicategory F , we obtain a 2-categoryRelMon(F) of relative monads in F :

B A 0-cellm = (I, C, j,m) ofRelMon(F) consists of a pair of objects I, C ∈ |F|, a vertical
morphism j : I → C and a j-relative monad m.

B A 1-cell θ = (udom, ucod, ϕ, θ) : m1 → m2 consists of 1-cells udom : i1 → i2, ucod :
c1 → c2, an invertible 2-cells ϕ ∈ udomFucod(j1, j2) and a morphism of relative monad θ
from m1 to m2 over ϕ.

B Finally a 2-cell ζ : θ → θ′, where θ = (udom, ucod, ϕ, θ), θ′ = (vdom, vcod, ψ, θ
′), is given

by a pair (ζcod, ζdom) of 2-cells in F

ζdom udomvdom ζcod ucodvcod

such that

48 CHAPTER 3. ABSTRACTED AWAY

ϕ
j1
ucodj2

vdom
ψ

j1
ucodj2

vdom

ζcod

ζdom =

θ
m1

ucodm2

vdom
θ′

m1

ucodm2

vdom

ζcod

ζdom =

A vertical arrow j ∈ Fv(I, C) can be alternatively seen as a (2-)functor from the category
2 = • → • to the 2-category Fv. This observation leads to a 2-functor U : RelMon(F) →
[2,Fv]ps from RelMon(F) to the functor 2-category [2,Fv]ps of 2-functors from 2 to Fv,
pseudo-natural transformations and modi�cations. U is de�ned by projecting out the relevant
data. It has a left 2-adjoint, sending a vertical cell j ∈ Fv(I, C) to the j-relative monad j with
return and bind being identities.

We will often restrict our attention to subcategories ofRelMon(F) over a particular vertical
arrow j ∈ Fv(I, C). We note RelMon(F)j the full 2-subcategory of RelMon(F) on 0-cells
mapped to j by U and 1-cells mapped to the identity of j.

Correspondence tomonads As a consistency check, we prove that relative monads inF over
identities are the same as monads in the 2-category Fv. To do so, we �rst restrict RelMon(F)
to the 2-category RelMon(F)id of those relative monads over an identity. RelMon(F)id can
be built as the strict 2-pullback

RelMon(F)id RelMon(F)

Fv [2,Fv]ps

y
U

δ

where δ : Fv → [2,Fv]ps is the 2-functor sending a 0-cell C to the functor corresponding to the
identity idC : C → C , a 1-cell f : C → D to the pseudo-natural transformation (f, f, idf) and
a 2-cell ν : f → g to the modi�cation (ν, ν).

Theorem 3.5.2. The 2-categoriesMnd(Fop(2)
v) andRelMon(F)id are isomorphic.

Note that the direction of the 2-cells in Fv has to be reversed when building the category of
monads. This is because the notion of relative monad morphism we introduced corresponds to
morphisms between Kleisli objects and not between Eilenberg-Moore objects.

Proof. The proof is a generalization of the usual correspondence between monads and Kleisli
triples, amounting to unfold the de�nitions and checking that everything still makes sense. We
proceed by dimension of the cells.

For 0-cells. From a relative monadm over the vertical identity of an object C in F , we de�ne
the following two cells in Fv

m η m ret=
m

m
m =

m

m

m

µ bind

The monadic laws follow from the equations of relative monads

m

η
m =

ret

µ = m m

mm

bind

3.6. CONCLUSION & RELATED WORK 49

η

m
m =

ret

µ = mm

m

m

bind

m

m =µ

m

m
µ

=

m

m µ

m

m
µ

m

bind

bind

m

bind bind

m

m

m

=

m

m

m

The converse, sending a monad m to a relative monad over the identity is similar, de�ning bind
as

bind =

m∗m∗

m∗

µ

m∗ m∗

m∗

For 1-cells. Given a relative monad morphism θ = (udom, ucod, θ) : m1 → m2 between
relative monads m1 and m2 respectively over the identity of C1, C2 ∈ |F|, we have �rst a 1-cell
u = udom = ucod : C1 → C2. Then the 2-cell θ : um1 → m2u satisfy the simpli�ed equations

retm1

retm2

=θ

η1
=

m2 η2
=

u

u
θ

m2 u

u

u

u

m2 m2 u

u

µ1

m1

m1

m1

m1

bindm1

m2

m1

m1bindm2

=

= =

θ
m2

u

u

θ
m2

u

u

θ

u

θu

µ2m2
θ

θu

u

m1

m1

corresponding exactly to a 1-cell inMnd(Fop(2)
v).

For 2-cells. In the same fashion, a 2-cell ζ = (ζdom, ζcod) : θ → θ′ between relative monad
morphisms θ = (u, θ) and θ′ = (v, θ′) have to verify that ζ = ζdom = ζcod by the �rst equation,
so that the second equation becomes ζm2 ◦ θ = θ′ ◦m1ζ , which is exactly the condition for a
monad transformation

3.6 Conclusion & Related work

We brie�y recalled the basic de�nitions of the theory of 2-categories (Bénabou, 1967) to access
elements of the formal theory of monads (Kelly and Street, 1974; Lack and Street, 2002; Street,
1972), in particular the synthetic de�nition of a monad in a 2-category, the construction of the
category of monads and the general de�nition of Eilenberg-Moore object (as well as Kleisli ob-
jects) as representing objects. We use a similar methodology for relative monads Altenkirch
et al. (2015) in the context of framed bicategories (Shulman, 2008), de�ning in full generality a 2-
category of relative monads and adequate notions of Eilenberg-Moore and Kleisli objects. Since
this encompass enriched relative monads, the theory applies directly to speci�cation monads.
We then further prove that our extension is compatible with the formal theory of monads when
restricting our attention to monads relative to identities.

50 CHAPTER 3. ABSTRACTED AWAY

We prove only modests results on relative monads in a framed bicategory, but these already
demonstrate that it is possible to carry out a formal theory of relative monads at a high-level of
generality and with simple proofs thanks to string diagrams. As future work, we consider extend-
ing and formalizing these results inside type theory, e.g., Coq, not only for formally (re-)proving
these results, but also to use them directly to derive actual instances such as speci�cation mon-
ads.

We now review further related work.

Other generalizations of relativemonads (Fiore et al., 2018) introduce the notion of relative
pseudo-monad to study the construction of category of presheaves and deal with size issues,
generalizing relative monads to a bicategorical setting.

A close line of work is the study of skew-monoids: (Altenkirch et al., 2015) shows that assum-
ing some property on a functorJ : I → C, we can give to the functor category a skew-monoidal
structure ⊗J such that J -relative monads coincide with skew-monoids, the adequate notion of
monoids for ⊗J . The study of skew monoidal categories and related structure is a rather recent
but dynamic research �eld (Andrianopoulos, 2017; Bourke and Lack, 2018a,b; Lack and Street,
2015; Szlachányi, 2012; Uustalu et al., 2018). In particular, skew monoids often yields construction
closer in spirit to the traditional theory of monads, however important examples we consider in
chapter 6 do not �t immediately in that framework, whereas they do yield relative monads.

Alternative to framed bicategories We chose to work in this chapter with framed bicate-
gories, but other choices are available such as proarrow equipments (Wood, 1982, 1985), Yoneda
structures (Street and Walters, 1978) or yosegi boxes (Di Liberti and Loregian, 2019). This latter
work shows that under a few hypothesis these di�erent structures yield equivalent formal cat-
egory theory. It would be interesting to understand how much of the formal theory of relative
monads we sketch here could be achieved in the other settings.

Chapter 4

Mass producing monad transformers

“As a coq developer, we have no idea what we are doing[. . .]”

PMP, CoqPL’19

We use monad transformers (Liang et al., 1995) to construct all kind of complex monadic
objects on top of simple basic blocks: sophisticated computational monads of course, but also
expressive speci�cation monads, as well as e�ect observations section 2.4. However, de�ning a
monad transformer and proving that it satis�es all the expected laws requires signi�cant e�ort.
This is in sharp contrast with the impression that quite a few examples of monad transformers
are, at least intuitively, mild generalization of naturally occurring monads, and consequently
should be almost as easy to de�ne. In this chapter, we present a methodology to reduce the de�-
nition of a monad transformer to that of a monad in an adequate metalanguage. We �rst review
more precisely the notion of monad transformer, exploring its generalization to relative monads
and then set out to de�ne a domain speci�c language that we call the Speci�cation Metalanguage
(SM) adapted to the task of de�ning monad transformers. The goal of SM is to de�ne monad
transformers preserving speci�cation monads, and we detail a few interesting point of its imple-
mentation in the Coq proof assistant. We close the chapter with a more categorical viewpoint
on SM, potentially leading to future extensions.

4.1 What is a monad transformer ?

Informally, a monad transformer takes a monad as input and outputs another monad, often ex-
tended with further capabilities as demonstrated by the examples in section 2.2. To be useful in
practice, it must come with a way to lift computations from the original monad into the trans-
formed monad. We expect a monad transformer to also apply to monad morphisms so that em-
bedding between monads (so-called sube�ecting in F?) give rise to a monad morphism between
the transformed monads. The lift has to be consistent with respect to this action on monad
morphisms, resulting in the following de�nition.

De�nition 4.1.1. A monad transformer T on a category C (Liang et al., 1995) consists of

B a function T mapping monadsm : C → C on C to monads Tm : C → C ,

B equipped with a monad morphism liftm : m→ T m for each monadm on C,

B assigning functorially to eachmonadmorphism θ : m1→m2 amonadmorphism T θ : T m1→T m2,

T idm = idTm, T (θ · θ′) = T θ · T θ′,

51

52 CHAPTER 4. MASS PRODUCING MONAD TRANSFORMERS

B and such that the monad morphism liftm is natural inm, that is for any monad morphism
θ : m1 → m2,

T θ ◦ liftm1
= liftm2

◦ θ

Following Lüth and Ghani (2002), we can concisely rephrase this de�nition by saying that

a monad transformer on C is a pointed endofunctor onMnd(C)

Here,Mnd(C) is the sub-1-category ofMnd(Cat) (see section 3.1) whose objects are sent to C
by the forgetful functor U : Mnd(Cat) → Cat and morphisms are sent to the identity functor
on C . By the results of subsection 3.5.2, we can equivalently seeMnd(C) as the (1-)category
RelMon(Distr)IdC of relative monads over the identity functor of C. This observation invite us
to the following generalization of monad transformers for relative monads.

De�nition 4.1.2. LetF be a framed category, j ∈ Fv(I, C) a vertical arrow and noteRelMon(F)j
the 1-category of j-relative monads. A j-relative monad transformer T is a pointed endofunctor
onRelMon(F)j , that is

B a functor T : RelMon(F)j → RelMon(F)j

B equipped with a natural transformation lift : IdRelMon(F)j → T

To see what it means for speci�cation monads, we unfold this de�nition in the case of framed
bicategory of Pos-enriched categories and distributors Pos-Distr, taking as base functor Disc :
Set → Pos (see Def. 3.5.2 for details). Then what we could call a speci�cation monad transformer
T consists of

B a function T mapping speci�cation monads W : Set → Pos to speci�cation monads T W :
Set → Pos ,

B equipped with a monotonic monad morphism liftW : W → T W for each speci�cation
monads W,

B acting functorially on speci�cation monad morphisms, such liftW is natural in W.

We will see shortly that all the examples of monad transformers in section 2.2 actually lift to
such speci�cation monad transformers.

4.2 Towards a language for de�ning monad transformers

If we want to build a monad transformer, we could consider at a �rst approximation that it con-
sists of a function taking a monad as a parameter and returning a monad. Thinking syntactically
for a short while, we can describe such functions from the data of a monad in a context con-
taining variables standing for a monad M and its operations. Leveraging this simple idea, we
want to design a language SM equipped with a type former MX for a type X standing for an
abstract monad variable, such that a monad T in SM naturally elaborates to a monad transformer
by substituting an actual monad to the monad variable M:

T MA = T[M/M]A (4.1)

This language SM should build upon a base language L describing the base category C over
which the elaborated monad transformers T are de�ned.

What is missing in this picture for T to de�ne an actual monad transformer ? First, we need
T to be functorial in M. Second, we need a lifting coercion from the M to T M. A simplistic
solution for the �rst problem is to require all type constructors of SM to be covariant in their type
arguments so that we can elaborate a functorial action for T by design. For the second problem,

4.3. A DSL FOR SPECIFICATION MONAD TRANSFORMERS 53

C ::= MA | C1 × C2 | (x : A) C | C1 _ C2 A ∈ TypeL

t ::= ret | bind | (t1, t2) | πi t | x | λ�x. t | t1 t2 | λx. t | t u u ∈ TermL

Figure 4.1: Syntax of SM

we use the observation from the following lemma that a monad morphism lift : M→ T M can
be equivalently provided by an M-algebra structure on T M compatible with the bind operation
on T M.

Lemma 4.2.1. Let M1,M2 be monads (on a category C). There is a bijective correspondence be-
tween:

1. monad morphisms θ : M1
.−→ M2,

2. liftings L : C → CM1 of M2 along U : CM1 → C the forgetful functor from the category of
M1-algebra

CM1

C C

UL

M2

such that the multiplication of M2 lifts to an M1-algebra morphism,

3. for each A ∈ C, assignments of M1-algebra structure αA : M1M2A → M2A such that for
any f : A→ M2B, bindM2 f : M2A→ M2B is an M1-algebra morphism.

Proof. 2 and 3 can be readily seen to be in bijective correspondence by the usual correspon-
dence between multiplication-based presentation and bind-based presentation of monads (see
the proof of Thm. 3.5.2). The correspondence between 1 and 3 follows from instantiating Lem. 4.5.2
to the special case of relative monads over the identity functor of C in Distr.

Since we want such a lifting for every monad M, naturally in M, we should generalize the
previous lemma to collection of monads, however that generalization turns out to be rather tech-
nical and we defer it to section 4.5 where we develop this categorical approach in more details.
The important point to keep in mind is that a type in SM should in particular be elaborated to
a family consisting of M-algebra for each monad M in the base language L (or correspondingly
on the base category C). This dependency on the argument monad can be naturally expressed
by a dependent product and provides an important motivation for developing our language SM
on top of a dependently typed language.

4.3 A DSL for speci�cation monad transformers

In this section, we introduce the Speci�cation Metalanguage, SM, and a translation from SM to
correct-by-construction monad transformers in a base dependent type theory L (where L is a
parameter of SM). More precisely, the translation takes as input a monad in SM subject to two
extra conditions, covariance and linearity corresponding to the two points raised in previous
subsection, and produces a speci�cation monad transformer in L.

54 CHAPTER 4. MASS PRODUCING MONAD TRANSFORMERS

∆ `L
∆; · `SM

∆; Γ `SM C

∆; Γ, x : C `SM

∆ `L A ∆; Γ `SM
∆; Γ `SM MA

∆; Γ `SM C1 ∆; Γ `SM C2

∆; Γ `SM C1 × C2

∆, x : A; Γ `SM C

∆; Γ `SM (x : A) C

∆; Γ `SM C1 ∆; Γ `SM C2

∆; Γ `SM C1 _ C2

∆; Γ `SM A : Type ∈ ∆

∆; Γ `SM ret : A MA

∆; Γ `SM A,B : Type ∈ ∆

∆; Γ `SM bind : MA _ (A MB) _ MB

∆; Γ `SM x : C ∈ Γ

∆; Γ ` x : C

∆, x : A; Γ `SM t : C

∆; Γ `SM λx. t : (x : A) C

∆; Γ `L u : A ∆; Γ `SM t : (x : A) C

∆ `SM t u : C[u/x]

∆; Γ, x : C1 `SM t : C2

∆; Γ `SM λ�x. t : C1 _ C2

∆; Γ `SM t2 : C1 ∆; Γ `SM t1 : C1 _ C2

∆; Γ `SM t1 t2 : C2

∆; Γ `SM ti : Ci

∆; Γ `SM (t1, t2) : C1 × C2

∆; Γ `SM t : C1 × C2

∆; Γ `SM πi t : Ci

Figure 4.2: Typing rules for SM

4.3.1 Presentation of the language SM

The design of SM, whose syntax is presented in Figure 4.1, has been informed by the goal of de�n-
ing monad transformers. First, since we want a mapping from monads to monads, we introduce
the type constructor M standing for an arbitrary base monad, as well as terms ret and bind.
Second, in order to describe monads internally to SM, we add function types (x : A) → C[x]
and C1 → C2. We allow dependent function types only when the domain is in L, leading to two
di�erent type formers. We write dependent abstractions as λx. t, whereas we write the non-
dependent abstraction where the domain is a type in SM as λ�x. t. In Figure 4.2 we present the
typing rules of SM which are mostly standard. We assume that L has three judgements ∆ `L,
∆ `L A and ∆ `L u : A de�ning respectively well-formed contexts in L (that we will always
note ∆), well-formed types in a context (noted A,B) and well-typed terms. We also assume
that L has at least one universe Type that we use for dependent products. We then de�ne the
judgements ∆; Γ `SM for well-formed contexts of SM, ∆; Γ `SM C for well-formed types and
∆; Γ `SM t : C for well-formed terms. We implicitly assume a conversion rule with respect to
convertibility in L1. The main rules of the equational theory of SM are given in Figure 4.3. SM
is expressive to de�ne many di�erent monads in a natural way using structure of the underlying
dependent type theory L2, for example

1. reader Rd(X : Type) = I MX ;
1Because of our implementation choices, no conversion rule appear explicitly in our implementation in Coq,

see section 4.4
2We assume for these examples that L has (dependent) sums and products

4.3. A DSL FOR SPECIFICATION MONAD TRANSFORMERS 55

∆ `L a : A ∆; Γ `SM f : A MB

∆; Γ `SM bind (ret a) f ≡ f a : MB

∆; Γ `SM m : MA

∆; Γ `SM bindm ret ≡ m : MA

∆; Γ `SM m : MA1 ∆; Γ `SM f : A1 MA2 ∆; Γ `SM g : A2 MA3

∆; Γ `SM bindm (λx. bind (f x) g) ≡ bind (bindm f) g : MA3

∆; Γ `SM t1 : C1 ∆; Γ `SM t2 : C2

∆; Γ `SM πi (t1, t2) ≡ ti : MCi

∆; Γ `SM t : C1 × C2

∆; Γ `SM (π1 t, π2 t) ≡ t : C1 × C2

∆, x : A; Γ `SM t : C ∆ `L u : A

∆; Γ `SM (λx. t)u ≡ t{u/x} : C

∆; Γ `SM t : (x : A) C

∆; Γ `SM λx. t x ≡ t : (x : A) C

∆; Γ, x : C1 `SM t1 : C2 ∆; Γ `SM t2 : C1

∆; Γ `SM (λ�x. t1) t2 ≡ t1{t2/x} : C2

∆; Γ `SM t : C1 _ C2

∆; Γ `SM λ�x. t x ≡ t : C1 _ C2

∆; Γ `SM t1 ≡ t2 : (x : A) C ∆ `L u1 ≡ u2 : A

∆; Γ `SM t1 ≡ t2 : C[u1/x]

+ re�exivity, symmetry, transitivity and congruence for all other term constructors

Figure 4.3: Equational theory of SM

2. writer Wr(X : Type) = M(X ×O);

3. exceptions Exc(X : Type) = M(X + E);

4. state St(X : Type) = S M(X × S);

5. monotonic state MonSt(X) = (s0 : S) M(X × (s1 : S) × s0 4 s1), where 4 is some
preorder on states S ; and

6. continuations ContAns(X) = (X MAns) _ MAns.

The covariance condition states that the symbol M standing for an arbitrary base monad appears
only in the codomain of arrows. The more involved linearity condition concerns the bind of
these monads. With the exception of continuations (see subsection 4.3.5), all these SM mon-
ads satisfy these extra conditions and thus lead to proper monad transformers, in particular all
examples from section 2.2 can be obtained from a de�nition in SM.

4.3.2 Elaborating speci�cation monads and lift

To de�ne a monad transformer, we use monads internal to SM, given by

B a type constructor X : Type; · `SM C[X];

B terms

A : Type; · `SM retC : A→ C[A]

A,B : Type; · `SM bindC : (A→ C[B])→ C[A]→ C[B];

B such that the monadic laws (see Def. 2.1.1) are derivable in the equational theory of SM.

56 CHAPTER 4. MASS PRODUCING MONAD TRANSFORMERS

JMAKM = MA
JC1 × C2KM = JC1KM × JC2KM

J(x : A)→ CKM = (x : A) JCKM

JC1 _ C2KM = (f : JC1KM → JC2KM)× (∀(m1 ≤C1 m′1). f m1 ≤C2 f m′1)

m ≤MA m′ = m ≤M
A m′

(m1, m2) ≤C1×C2 (m′1, m
′
2) = m1 ≤C1 m′1 ∧m2 ≤C2 m′2

f ≤(x:A) C[x] f ′ = ∀(x : A). f x ≤C[x] f ′ x
f ≤C1_C2 f ′ = ∀(m1 : JC1KM). f m1 ≤C2 f ′m1

Figure 4.4: Elaboration of types from SM to L

JretKδ;γM = retM JbindKδ;γM = bindM

J(t1, t2)Kδ;γM =
(
Jt1Kδ;γM , Jt2Kδ;γM

)
Jπi tKδ;γM = πi JtKδ;γM

JxKδ;γM = γ(x) Jλ�xC1 . tKM = λxJC1KM . JtKδ;γ[x:=x]
M

Jt1 t2Kδ;γM = Jt1Kδ;γM Jt2Kδ;γM JλxA. tKδ;γM = λxA[δ]. JtKδ[x:=x];γ
M

Jt uKδ;γM = JtKδ;γM u[δ]

Figure 4.5: Denotation of SM terms

Now, given a monad C internal to SM, we want to de�ne the corresponding monad trans-
former T C evaluated at a monad M in the base language L, essentially as the substitution of M
for M (Equation 4.1). In order to make this statement precise, we de�ne in Figure 4.4 a denotation
J−KM of SM types as types in L equipped with an order parametrized by a speci�cation monad
M. In the base caseC = MA, the order is given by the speci�cation monad M, whereas the order
is given pointwise in all the other cases. The only surprise happens in the case C = C1 _ C2

where we restrict the denotation to functions monotonic with respect to the orders on C1 and
C2. This restriction is needed to ensure the monotonicity of the denotation of terms (Thm. 4.3.1).

The denotation of terms – or rather of typing derivations for terms – is presented in Fig-
ure 4.5. Given a derivation ∆; Γ `SM t : C and substitutions δ : ∆, γ : JΓ[δ/∆]KM, we write
JtKδ;γM : JCKM for the denotation of the term t in L.

Provided that L has extensional dependent products and pairs, meaning that surjective pair-
ing and functional extensionality are valid in L, this denotation preserves the equational theory
of SM and produces monotonic terms in the following sense:

Theorem 4.3.1 (Monotonicity of denotation). Let M be an ordered monad, ∆; Γ `SM t : C a term
in SM, `L δ : ∆ a substitution for the L context ∆, (`L γi : JΓKM)i=1,2 substitutions for the SM
context Γ such that ∀(x : C0) ∈ Γ. γ1(x) ≤C0 γ2(x). Then JtKδ;γ1M ≤C JtKδ;γ2M .

The proof of preservation of the equational theory is a long but rather straightforward in-
duction on the derivation of an equality between SM terms. We only reproduce here the proof
of monotonicity.

Proof. By induction on the typing derivation of t:

Case t = retA : A MA, by re�exivity

JretAKδ;γ1M = retM
A ≤A MA retM

A = JretAKδ;γ2M

4.3. A DSL FOR SPECIFICATION MONAD TRANSFORMERS 57

Case t = bindA,B : (A MB) _ (MA _ MB), by re�exivity, that holds because bindM is
monotonic

JbindA,BKδ;γ1M = bindM
A,B ≤(A MB)_(MA_MB) bindM

A,B = JbindA,BKδ;γ2M

Case t = (t1, t2) : A×B, by induction hypothesis

Jt1KM
δ;γ1 ≤A Jt1KM

δ;γ2 Jt2KM
δ;γ1 ≤B Jt2KM

δ;γ2

so

J(t1, t2)KM
δ;γ1 =

(
Jt1KM

δ;γ1 , Jt2KM
δ;γ1
)
≤A×B

(
Jt1KM

δ;γ2 , Jt2KM
δ;γ2
)

= J(t1, t2)KM
δ;γ2

Case t = πi t
′ : Ai, by induction hypothesis and extensionality

(
π1 Jt′Kδ;γ1M , π2 Jt′Kδ;γ1M

)
= Jt′Kδ;γ1M ≤A1×A2 Jt′Kδ;γ2M =

(
π1 Jt′Kδ;γ2M , π2 Jt′Kδ;γ2M

)

so
πi Jt′Kδ;γ1M ≤Ai πi Jt′Kδ;γ2M

Case t = λx. t : (x : A) C, by induction hypothesis for any v : A,

Jt′Kδ[x:=v];γ1
M ≤C[v/x] Jt′Kδ[x:=v];γ2

M

we conclude by reduction since

Jλx. t′Kδ;γ1M v = (λy. Jt′Kδ[x:=y];γ1
M) v = Jt′Kδ[x:=v];γ1

M

Case t = t′ v : C{v/x} , by induction hypothesis

∀v0 : A. Jt′Kδ;γ1M v0 ≤C[v0/x] Jt′Kδ;γ2M v0

so
Jt′ vKδ;γ1M = Jt′Kδ;γ1M v ≤C[v/x] Jt′Kδ;γ2M v = Jt′ vKδ;γ2M

Case t = λ�x. t′ : C1 _ C2, for any m1 ≤C1 m2, γ1[x := m1] ≤Γ,x:C1 γ1[x := m2] and by
induction

Jt′Kδ;γ1[x:=m1]
M ≤C2 Jt′Kδ;γ2[x:=m2]

M

and we conclude since for i = 1, 2

(Jλ�x. t′Kδ;γi[x:=y]
M)mi = (λy. Jt′Kδ;γi[x:=y]

M)mi = Jt′Kδ;γi[x:=mi]
M

Case t = t1 t2 : C2, by induction hypothesis applied to t2 : C1,

Jt2Kδ;γ1M ≤C1 Jt2Kδ;γ2M

so by induction hypothesis applied to t1 : C1 _ C2

Jt1Kδ;γ1M Jt2Kδ;γ1M ≤C2 Jt1Kδ;γ2M Jt2Kδ;γ2M

58 CHAPTER 4. MASS PRODUCING MONAD TRANSFORMERS

From these results, we deduce that a monadC internal to SM induces the following mapping
from speci�cation monads to speci�cation monads:

T C : (M, ret, bind) 7−→ (JCKM, JretCKM, JbindCKM)

For instance, taking C = St, the de�nition evaluates to T StM = X 7→ S → M(X × S).
To build the lift for T C , we adapt Lem. 4.2.1 to the current setting. The denotation JCKM

of an SM type C in L is by design canonically endowed with an M-algebra structure αCM :
MJCKM → JCKM. This M-algebra structure is de�ned by induction on the structure of the SM
type C , using the free algebra when C = MA and the algebra de�ned pointwise in all the other
cases. Inspecting the proof of the lemma (or rather of Lem. 4.5.2), we obtain that this M-algebra
structure induces a lifting function from the monad M to the monad JCKM as follows:

liftCM,X : M(X)
M(retJCKM)−−−−−−−→ MJCKM(X)

αCM,X−−−→ JCKM(X) = T CM(X)

For instance, for the state transformer, the lift functions is given by

liftSt
M,X (m : MX) = λ(s : S). M(λ(x : X). (x, s))m : S → M(X × S).

The result that SM type formers are automatically equipped with an algebra structure explains
why SM features products, but not sums since the latter cannot be equipped with an algebra
structure in general.

4.3.3 Elaborating the action on monad morphism

To de�ne a monad transformer, we still need to build a functorial action mapping monad mor-
phism θ : M1 → M2 between monads M1,M2 in L to a monad morphism JCKM1 → JCKM2 .
However, the denotation of the arrow C1 _ C2 does not allow for such a functorial action since
C1 necessarily contains a subterm M in a contravariant position. In order to get an action on
monad morphisms, we �rst build a (logical) relation between the denotations. Given M1,M2

monads in L and a family of relations RA ⊂ M1A × M2A indexed by types A, we build a
relation {|C|}RM1,M2

⊂ JCKM1 × JCKM2 as follows

m1 {|MA|}m2 = m1 RA m2

(m1,m
′
1) {|C1 × C2|} (m2,m

′
2) = m1 {|C1|}m2 ∧m′1 {|C2|}m′2

f1 {|(x : A)→ C|} f2 = ∀(x : A). f1 x {|C x|} f2 x

f1 {|C1 → C2|} f2 = ∀m1m2.m1 {|C1|}m2 ⇒ f1 m1 {|C2|} f2 m2

Now, when a type C in SM comes with the data of an internal monad, the relational denota-
tion {|C|}−M,W maps not only families of relations to families of relations, but also preserves the
following structure that we call a monadic relation:

De�nition 4.3.1 (Monadic relation). A monadic relation3 R : M1 ↔ M2 between monads M1

and M2, consists of:

B a family of relationsRA : M1A×M2A→ P indexed by types A,

B such that returned values are related (retM1 v)RA (retM2 v) for any value v : A,

3To our knowledge there is no general de�nition of this notion; the idea underlying the de�nition of a relation
compatible with an algebraic structure is however a recurrent one and particularly well-explained in (Hermida et al.,
2014)

4.3. A DSL FOR SPECIFICATION MONAD TRANSFORMERS 59

B and such that sequencing of related computations is related

m1RAm2 ∀(x : A). (f1 x)RB (f2 x)

(bindM1 m1 f1)RB (bindM2 m2 f2)

for anym1 : M1A,m2 : M2A, f1 : A→ M1B, f2 : A→ M2B.

If moreover M1,M2 are speci�cation monads, we say that R is monotonic when it is compatible
with the orders

∀A (m1 ≤M1
A m′1) (m2 ≤M2

A m′2). m1RAm2 ⇒ m′1RAm′2.

that is eachRA is and ideal of M1A×M2A.

The simplest example of monadic relation is the graph of a monad morphism θ : M → W.
In the frequent case where M is a computational monad and W is a speci�cation monad, we can
consider M as equipped with a discrete order and θ induces a monotonic relationRθ de�ned as
mRθ w ⇐⇒ θm ≤W w. Given a monadic relation, we extend the relational translation to
terms and obtain the so-called fundamental lemma of logical relations.

Theorem 4.3.2 (Fundamental lemma of logical relations). For anymonadsM1,M2 inL, monadic
relation R : M1 ↔ M2, term Γ `SM t : C and substitutions γ1 : JΓKM1 and γ2 : JΓKM2 , if for all
(x : C ′) ∈ Γ, γ1(x) {|C ′|}RM1,M2

γ2(x) then JtKγ1M1
{|C|}RM1,M2

JtKγ2M2
.

Moreover this relational interpretation preserves the order induced by the input speci�cation
monad.

Theorem 4.3.3 (Monotonicity of relational interpretation). Let ∆ `SM C type, M1,M2 two spec-
i�cation monads and (RA)A a family of monotonic relations RA : M1A × M2A → P, then
{|C|}RM1,M2

is monotonic.

Proof. by induction on the derivation of C :

Case C = MA, {|MA|}RM1,M2
= RA is monotonic by assumption

Case C = C1 × C2, suppose (m1,m2) {|C1×C2|}RM1,M2
(n1, n2), (m1,m2) ≤C1×C2 (m′1,m

′
2),

(n1, n2) ≤C1×C2 (n′1, n
′
2) then by induction hypothesism′1{|C1|}RM1,M2

n′1 andm′2{|C2|}RM1,M2
n′2

so (m′1,m
′
2){|C1 × C2|}RM1,M2

(n′1, n
′
2)

Case C = (x : A)→ C ′, suppose f {|(x : A)→ C ′|}RM1,M2
g, f ≤(x:A)→C′

f ′ and g ≤(x:A)→C′

g′ then for any v : A, (f v) {|C ′{v/x}|}RM1,M2
(g v), f v ≤C′{v/x} f ′ v, g v ≤C′{v/x} g′ v so

by inductive hypothesis (f ′ v) {|C ′{v/x}|}RM1,M2
(g′ v), hence f ′ {|(x : A)→ C ′|}RM1,M2

g′

Case C = C1 → C2, suppose f {|C1 → C2|}RM1,M2
g, f ≤C1→C2 f ′ and g ≤C1→C2 g′, for any

m {|C1|}RM1,M2
n, (f m) {|C2|}RM1,M2

(g n), m ≤C1 m and n ≤C2 n so f m ≤C2 f ′m and
g n ≤C2 g′ n, hence by induction hypothesis (f ′m) {|C2|}RM1,M2

(g′ n)

As a corollary, an internal monad C in SM induces a mapping from (monotonic) monadic
relations to (monotonic) monadic relations, the relational interpretation of retC and bindC

providing witnesses to the preservation of the monadic structure. In particular, any monad mor-
phism θ : M1 → M2 de�nes a monadic relation {|C|}RθM1,M2

: JCKM1 ↔ JCKM2 . It turns out
that if C is moreover covariant, meaning that it does not contain any occurrence of an arrow
C1 → C2 where C1 is a type in SM, then the relational denotation {|C|}RθM1,M2

with respect to
any monad morphism θ : M1 → M2 is actually the graph of a monad morphism.

60 CHAPTER 4. MASS PRODUCING MONAD TRANSFORMERS

The last missing bit in order to obtain a speci�cation monad transformer out of C is to prove
that the elaborated liftCM : M → JCKM is natural, that is, that the following diagram should
commute:

MA MJCKMA JCKMA

MB MJCKMB JCKMA

M(retCA)

M f

αC
M,A

MJCKM f JCKM f

M(retCB) αC
M,B

	 ?

for any A,B and f : A→ B. Observe that the left square commutes automatically by the natu-
rality ofM(retC). However, for the right square to commute JCKM f = bindJCKM(retJCKM ◦f)
needs to be an M-algebra homomorphism, which is exactly the condition required by Lem. 4.2.1.
The next section explains how to capture this semantic condition syntactically using a linear
type system. We call that syntactic condition on the monad (C, retC , bindC) internal to SM the
linearity of bindC .

To summarize the results of our approach language-base approach to monad transformers,
we have:

Theorem 4.3.4 (Construction of monad transformer from SM). Given a monadC internal to SM
such that bindC satis�es the linearity criterion, we obtain:

B ifC is covariant, then T C equippedwith liftCM:M→T CM is a (ordered)monad transformer;

B if C is not covariant, T C de�nes a pointed endofunctor on the category of (ordered) monads
and monadic relations.

4.3.4 Linear type system for SM

In this section, we elaborate a simplistic syntactic criterion on a monadC internal to SM ensuring
the semantic condition that bindC maps functions to M-algebra homomorphisms. To do so, we
recast the homomorphism condition as a linearity condition in a modi�ed type system for SM
equipped with a stoup: a distinguished variable in the context such that the term typed in the
judgement is linear with respect to that variable (Egger et al., 2014; Munch-Maccagnoni, 2013).
We note such distinguished contexts Γ | Ξ where Γ is a normal SM context and Ξ is the stoup.
The stoup can be either empty or containing one variable of a type C from SM. Linear types are
a re�nements of types from SM given by the following grammar

L := C | C1 (C2 | L1 × L2 | (x : A)→ L | L1 → L2

whereA ∈ TypeL,C,C1, C2 ∈ TypeSM. In particular the linear function spaceC1 (C2 should
be understood as a subtype of C1 → C2 whose denotation ought to be a set of homomorphisms
with respect to the algebra structures on the denotations of its domain and codomain, thus cannot
be nested. A linear judgement is of the form ∆; Γ | Ξ `lin t : L with the invariant that if Ξ is
non-empty then Ξ = x : C1 and L = C2 for SM types `SM C1 and `SM C2.

The following theorem explains the aim of the linear type system:

Theorem 4.3.5 (linear terms are homomorphisms). Let M be a monad, Γ | − `lin t : C1 (C2

a term in SM and γ : JΓKM, then the following diagram commutes

MJC1KM JC1KM

MJC2KM JC2KM

α
C1
M

MJtKγM JtKγM

α
C2
M

4.3. A DSL FOR SPECIFICATION MONAD TRANSFORMERS 61

A | − `lin ret : A→ MA A,B | − `lin bind : MA((A→ MB)→ MB

Γ | x : C ` x : C

(x : C) ∈ Γ

Γ | − ` x : C

Γ | Ξ `lin ti : Ci

Γ | Ξ `lin (t1, t2) : C1 × C2

Γ | Ξ `lin t : C1 × C2

Γ | Ξ `lin πi t : Ci

Γ, x : A | Ξ `lin t : C

Γ | Ξ `SM λ. xt : (x : A)→ C

Γ | Ξ `L u : A Γ | Ξ `lin t : (x : A)→ C

Γ `lin t u : C[u/x]

Γ | x : C1 `lin t : C2

Γ | − `lin λ
�x. t : C1 (C2

Γ, x : C1 | Ξ `lin t : C2

Γ | Ξ `lin λ
�x. t : C1 → C2

Γ | − `lin t : C1 (C2

Γ | − `lin t : C1 → C2

Γ | Ξ `lin t2 : C1 Γ | − `SM t1 : C1 (C2

Γ | Ξ `lin t1 t2 : C2

Γ | − `lin t2 : C1 Γ | Ξ `SM t1 : C1 → C2

Γ | Ξ `lin t1 t2 : C2

Figure 4.6: Typing rules for SM with linearity condition

Indeed, for an internal monad X `SM C in SM, the linearity condition on bindC requires a
derivation of

A,B | − `lin bindC : C{A/X}((A→ C{B/X})→ C{B/X}

from which we can derive that

A,B, f : A→ B | − `lin λ
�x. bindC x (λy. retC (f y)) : C{A/X}(C{B/X}

that in turn proves that the right square in the diagram below commutes thanks to Thm. 4.3.5:

MA MJCKMA JCKMA

MB MJCKMB JCKMA

M(retCA)

M f

αC
M,A

MJCKM f JCKM f

M(retCB) αC
M,B

Thus, under the assumption that bindC has a linear typing derivation (a syntactic object), we
prove that its denotation is homomorphic with respect to the relevant M -algebra structure.

In order to prove the Thm. 4.3.5, we need to :

B provide an interpretation of the linear types;

B show that linear derivations yield a denotation in this interpretation;

B prove using a logical relation that the linear interpretation of a term is related to the mono-
tonic interpretation.

62 CHAPTER 4. MASS PRODUCING MONAD TRANSFORMERS

The interpretation of linear types is quite straightforward, mainly enforcing that the linear func-
tion space to be interpreted by homomorphisms:

(|C|)M = JCKM (|C1 (C2|)M = { f : JC1KM → JC2KM | f ◦ αC1
M = αC2

M ◦M f }

(|L1 × L2|)M = (|L1|)M × (|L2|)M (|(x : A)→ L|)M = (x : A)→ (|L|)M

(|L1 → L2|)M = (|L1|)M → (|L2|)M

Theorem 4.3.6 (Denotation of linear typings). Let M be a monad, ∆; Γ | Ξ `lin t : L a linear
typing derivation of a term in SM, `L δ : ∆ a substitution for the L context ∆, `L γ : (|Γ|)M

a substitution for the SM context Γ, and `L ξ : (|Ξ|)M. Then there is a well de�ned denotation
(|t|)δ;γ;ξ

M : (|L|)M and if Ξ = (x : C1) then L = C2 and λx. (|t|)δ;γ;x
M : JC1KM → JC2KM is an

M -algebra homomorphism.

Proof. By induction on the linear typing derivation (each case corresponding to one derivation
rule in Figure 4.6):

Case t = ret, (|ret|)δ;γ;−
M = retM : A→ MA = (|A→ MA|)M

Case t = bind, (|bind|)δ;γ;−
M = bindM : MA→ (A→ MB)→ MB with

MA→ (A→ MB)→ MB = (|MA|)M → (|(A→ MB)→ MB|)M

and bindM a homomorphism between the respective M -algebra structures

Case t = x is linear, (|x|)δ;γ;ξ
M = ξ and the identity is an M -algebra map

Case t = x is not linear, (|x|)δ;γ;−
M = γ(x)

Case t = (t1, t2), (| (t1, t2) |)δ;γ;ξ
M =

(
(|t1|)δ;γ;ξ

M , (|t2|)δ;γ;ξ
M

)
and λξ.

(
(|t1|)δ;γ;ξ

M , (|t2|)δ;γ;ξ
M

)
is an

M -algebra map if and only if both λξ. (|t1|)δ;γ;ξ
M and λξ. (|t2|)δ;γ;ξ

M are M -algebra maps

Case t = πit
′
, (|πit′|)δ;γ;ξ

M = πi(|t′|)δ;γ;ξ
M andλξ. πi(|t′|)δ;γ;ξ

M is anM -algebra map wheneverλξ. (|t′|)δ;γ;ξ
M

is an M -algebra map

Case t = λx. t′, (|λx. t′|)δ;γ;ξ
M = λx. (|t′|)δ[x:=x];γ;ξ

M and λξ. λx. (|t′|)δ[x:=x];γ;ξ
M is an M -algebra

map if and only if for any `L x : A, λξ. (|t′|)δ[x:=x];γ;ξ
M is an M -algebra map

Case t = t′ v, (|t′ v|)δ;γ;ξ
M = (|t′|)δ;γ;ξ

M v{δ} and λξ. (|t′|)δ;γ;ξ
M v{δ} is an M -algebra map whenever

λξ. (|t′|)δ;γ;ξ
M is an M -algebra map

Case t = λ�x. t′ : C1 (C2, (|λ�x. t′|)δ;γ;−
M = λx. (|t′|)δ;γ;x

M : (|C1|)M → (|C2|)M and it is and
M -algebra map by induction hypothesis

Case t = λ�x. t′ : L1 → L2, (|λ�x. t′|)δ;γ;ξ
M = λx. (|t′|)δ;γ[x:=x];ξ

M and λξ. λx. (|t′|)δ;γ[x:=x];ξ
M is an

M -algebra map if and only if for any `SM x : (|L1|)M, λξ. (|t′|)δ;γ[x:=x];ξ
M is an M -algebra

Case t : C1 → C2 is obtained from t : C1 (C2, the denotation of the term is the same, we
just forget that it is an homomorphism

Case t = t1 t2, when t1 : C1 (C2, (|t1 t2|)δ;γ;ξ
M = (|t1|)δ;γ;−

M (|t2|)δ;γ;ξ
M andλξ. (|t1|)δ;γ;−

M (|t2|)δ;γ;ξ
M

is anM -algebra map whenever λξ. (|t2|)δ;γ;ξ
M is anM -algebra map since (|t1|)δ;γ;−

M is anM -
algebra map

4.3. A DSL FOR SPECIFICATION MONAD TRANSFORMERS 63

Case t = t1 t2, otherwise, (|t1 t2|)δ;γ;ξ
M = (|t1|)δ;γ;ξ

M (|t2|)δ;γ;−
M and λξ. (|t1|)δ;γ;ξ

M (|t2|)δ;γ;−
M is anM -

algebra map whenever λξ. (|t1|)δ;γ;ξ
M is an M -algebra map

Given a linear type L, we can forget all the linear annotations, obtaining a type `SM |L| in
SM. In the same fashion, given a derivation ∆; Γ | Ξ `lin t : L, we can obtain a derivation
∆; |Γ,Ξ| `SM t : |L|. In order to relate (|t|)M and JtKM, we introduce the following relation
〈|L|〉M ⊆ (|L|)M × J|L|KM :

m 〈|C|〉Mm′ ⇐⇒ m = m′ f 〈|C1 (C2|〉M f ′ ⇐⇒ f = f ′

(x1, x2) 〈|L1 × L2|〉M
(
x′1, x

′
2

)
⇐⇒ x1 〈|L1|〉M x′1 ∧ x2 〈|L2|〉M x′2

f 〈|(x : A)→ L|〉M f ′ ⇐⇒ ∀(x : A). f x 〈|L|〉M f ′ x

f 〈|L1 → L2|〉M f ′ ⇐⇒ (∀xx′. x 〈|L1|〉M x′ → f x 〈|L|〉M f ′ x′)

We extend component-wise this relation to context, and a straightforward but tedious induction
shows that for any linear derivation ∆; Γ | Ξ `lin t : L and context `L δ : ∆, `L γ : (|Γ | Ξ|)M,
γ′ : J|Γ,Ξ|KM, if γ 〈|Γ | Ξ|〉M γ′ then (|t|)δ;γM 〈|L|〉M JtKδ;γ′M where the right hand side denotation is
obtained from the SM derivation ∆; |Γ,Ξ| `SM t : |L|. In the particular case where Ξ is empty
and all types in Γ are free from linear annotations, we obtain Thm. 4.3.5.

4.3.5 The Continuation Monad Pseudo-Transformer

Crucially, the internal continuation monad ContAns does not verify the conditions to de�ne a
monad transformer since it is not covariant in M. We study this (counter-)example in detail since
it extends the de�nition of Jaskelio� and Moggi (2010) to monadic relations and clari�es the prior
work of Ahman et al. (2017), where a Dijkstra monad was obtained in a similar way.

While SM gives us both the computational continuation monad JContAnsKId = ContAns

and the corresponding speci�cation monad JContAnsKContP = ContContP(Ans), we only get a
monadic relation between the two and not a monad morphism. We write this monadic relation
as follows:

JContAnsKId ←−{|ContAns|}retId,ContP
−→ JContAnsKContP

One probably wonders what are the elements related by this relation? Unfolding the de�nition,
we get that a computation m : JContAnsKId(X) and a speci�cation w : JContAnsKContP(X) are
related if

m {|ContAns|}retId,ContP
w

⇔ ∀(k : X → Ans) (wk : X → ContP(Ans)). (∀(x : X). ret (k x) = wk x)⇒ ret (mk) = wwk

⇔ ∀(k : X → Ans). ret (mk) = w (λx. ret (k x))

⇔ ∀(k : X → Ans) (p : Ans→ P). w (λx q. q (k x)) p = p (mk)

For illustration, if we take Ans = 1, the last condition reduces to ∀(p : P). w (λx q. q) p = p, in
particular any sequencex0, . . . , xn induces an elementw = λk p. k x0(. . . k xn p) : JContAnsKContP(X)
that can be seen as a speci�cation revealing some intensional information about the computa-
tionm at hand, namely, that the continuation k was called with the arguments x0, . . . , xn in this
particular order. Computationally however, in the case of Ans = 1, m is extensionally equal to
λk. ∗ : Cont1.

64 CHAPTER 4. MASS PRODUCING MONAD TRANSFORMERS

4.4 Embedding SM in Coq

We have formalized the SM language presented in the previous section in Coq, taking Gallina as
the base language L and providing an implementation of the denotation of SM terms and log-
ical relation-based elaboration to speci�cation monad transformers. The original goals of this
implementation was to provide modular construction of monad transformers helping us in the
de�nition of speci�cation monads, ultimately leading to constructions of Dijkstra monads as
explained in section 5.1. For this purpose, the equality proofs witnessing the monadic laws of
speci�cation monads have to be as simple as possible, even holding de�nitionally when achiev-
able. As a consequence, our implementation of SM should:

1. generate monad transformers whose monadic operations are elaborated terms that com-
pute inside Coq; and

2. whenever an elaborated monad transformer is applied to a speci�cation monad whose
monadic laws hold de�nitionally, the resulting speci�cation monad also has de�nitional
monadic laws.

With these goals in mind, we start by explaining our design choices for implementing SM, in
particular the representation of binders. An unexpected di�culty arise when trying naively to
prove equalities between SM terms, and we explain how we bypass this problem by implementing
an abstract machine.

The implementation (https://gitlab.inria.fr/kmaillar/dijkstra-monads-for-all)
uses the Equations library (Sozeau and Mangin, 2019)4 and covers all the previously discussed
aspects of SM but the linear type system.

4.4.1 Implementation of the language SM

Two main possibilities arise when implementing a domain speci�c language (DSL) such as SM:
either de�ne a deep embedding, that is an object of the host language describing the syntax, or
shallowly embed it in the host language itself, reusing all available features.

On the one hand, a full deep embedding of SM would require to implement a dependently
typed language inside Coq and to provide all the features of Gallina that we assume in instances
of monad transformers, for instance sum types. This option was dismissed as seemingly to costly.

On the other hand, an embedding using higher-order abstract syntax (Pfenning and Elliott,
1988) would take care of all the conversions in L, but require some care for the λ�x. t binders
since they are not straightforwardly elaborated to Gallina’s functions.

We implemented the latter, with intrinsically typed syntax, meaning that the type describing
the term syntax of SM is actually a type-family indexed by the type of SM types (named ctype
in the implementation).

Anunconvincing attempt: Parametric Higher-Order Abstract Syntax Our �rst tentative
for the term syntax of SM uses PHOAS (Chlipala, 2008) to encode the λ�x. t binders and is pre-
sented in Figure 4.7. The idea is to de�ne the term syntax with respect to an arbitrary type of vari-
ables VarType , and to quantify universally over this type. A term t : forall ‘{VarType}, cterm c
can then be elaborated to a variety of other formats by instantiating with the right type of vari-
ables carrying some polymorphic substitution as explained in (Atkey et al., 2009). For instance,
taking the type of variables to be the type-family cterm itself, we easily recover syntactic sub-
stitution of terms. The denotation JtKM of an SM term with respect to a monad M can also be
obtained in this fashion.

4An early attempt also used the library of Timany and Jacobs (2016) for categorical de�nitions, but it turned out
to be impractical for our use-case.

https://gitlab.inria.fr/kmaillar/dijkstra-monads-for-all

4.4. EMBEDDING SM IN COQ 65

Class VarType := var : ctype→ Type.

Section CTerm.
Context ‘{VarType}.
Inductive cterm : ctype→ Type :=
| MRet : forall A, cterm (A CM A)
| MBind : forall A B, cterm ((A CM B) _ (CM A _ CM B))

| Pair : forall {c1 c2}, cterm (c1 _ c2 _ c1 × c2)
| Proj1 : forall {c1 c2}, cterm(c1 × c2 _ c1)
| Proj2 : forall {c1 c2}, cterm(c1 × c2 _ c2)

| Abs : forall A (c:forall x:A, ctype), (forall x:A, cterm (c x)) → cterm (CArr c)
| App : forall {A} { c:forall x:A, ctype} (v : A), cterm (CArr c) → cterm (c v)

| CVar : forall {c:ctype}, var c → cterm c
| CAbs : forall (c1:ctype) (c2: ctype), (var c1→ cterm c2)→ cterm (c1 _ c2)
| CApp : forall {c1:ctype} { c2: ctype}, cterm (c1 _ c2)→ cterm c1→ cterm c2.

End CTerm.

Figure 4.7: PHOAS de�nition of the term syntax of SM

We could wonder whether the type forall ‘{VarType}, cterm c actually captures faithfully
the syntax of SM. After all, nothing prevent us from implementing a function in that type that
�rst inspects the given instance of VarType before choosing which term to return. The solution
to this problem is to restrict our attention to parametric terms of that type. Indeed Atkey (2009)
shows that the only parametric inhabitant of this type are actual pieces of syntax. This result
is however external to the type theory and, in order to actually prove lemmas on the elabora-
tion, we need to accompany every term t : forall ‘{VarType}, cterm c with a proof of (unary)
parametricity. Furthermore, to build a relation between two elaborations of a term, for instance
between the denotations JtKM and JtKM′ , we need a witness of (binary) relational parametric-
ity whose type is shown in Figure 4.8. This starts to be a bit tedious but the problem only gets
worse: since we want to prove property on our (proof-relevant) relation, we need a proof that the
witness of parametricity itself is parametric. The fact that writing by hand parametricity types
and witnesses is hardly achievable was an expected problem and Chlipala (2008) uses an axiom
providing uniformly proofs of parametricity. Beside the fact that it would make Coq inconsis-
tent, we did not use this approach because we want to de�ne objects that compute out out of
the parametricity witness, a property broken by such an axiom. We also tried using the param-
coq plugin5, an external tool to derive automatically the types and witnesses of parametricity.
However the generated code turned out to be di�cult to use in practice: for our application
we only need parametricity in the parameter VarType whereas paramcoq provides parametric-
ity of all parameters which results in a much more complex object. To carry out practically an
approach using PHOAS, it would be convenient to work inside a type theory with internalized
parametricity such as those described in Bernardy and Moulin (2013); Bernardy et al. (2015).

Amixed approach: De Bruijnmeets HOAS In our second attempt, we implement SM terms
using at the same time higher-order abstract syntax (HOAS) for the λx. t binders and De Bruijn
indices for the λ�x. t ones. This mixed approach frees us from handling explicitly dependent
products (x : A) C , relying instead on Gallina, while it provides the �exibility we need on
the non-dependent product C1 _ C2.

5https://github.com/coq-community/paramcoq

https://github.com/coq-community/paramcoq

66 CHAPTER 4. MASS PRODUCING MONAD TRANSFORMERS

Section CTermRel.
Context (var1 var2 : VarType) (varR : forall c, var1 c→ var2 c→ Type).

Inductive cterm_rel : forall {c}, @cterm var1 c→ @cterm var2 c→ Type :=
| MRetRel : forall A, cterm_rel (MRet A) (MRet A)
| MBindRel : forall A B, cterm_rel (MBind A B) (MBind A B)
| AbsRel : forall {A c ct1 ct2} (cr : forall x:A, @cterm_rel (c x) (ct1 x) (ct2 x)),

cterm_rel (Abs A c ct1) (Abs A c ct2)
| AppRel : forall {A c} { ct1 ct2 : cterm (CArr c)} (v:A),

cterm_rel ct1 ct2→ cterm_rel (ct1 @◦ v) (ct2 @◦ v)
| CVarRel : forall {c v1 v2}, varR c v1 v2→ cterm_rel (CVar v1) (CVar v2)
| CAbsRel : forall {c1 c2} { f1 : var1 c1→ cterm c2} {f2 : var2 c1→ cterm c2},

(forall x1 x2, varR c1 x1 x2→ cterm_rel (f1 x1) (f2 x2)) →
cterm_rel (CAbs c1 c2 f1) (CAbs c1 c2 f2)

| CAppRel : forall {c1 c2} { ct11 ct12 : cterm (c1 _ c2)} {ct21 ct22},
cterm_rel ct11 ct12→ cterm_rel ct21 ct22→
cterm_rel (ct11 @· ct21) (ct12 @· ct22).

End CTermRel.

Figure 4.8: Binary parametricity predicate

Inductive icterm : ctx→ ctype→ Type :=
(* ... Omitted constructors ... *)
| IAbs : forall {Γ A c}, (forall x:A, icterm Γ (c x))→ icterm Γ (CArr c)
| IApp : forall {Γ c} (H:isArr c) (v:arrDom H), icterm Γ c→ icterm Γ (arrCod H v)
| ICVar : forall {Γ} (n:nat) (H:in_ctx n Γ), icterm Γ (lookup H)
| ICAbs : forall {Γ c1 c2}, icterm (c1:: Γ) c2→ icterm Γ (c1 _ c2)
| ICApp : forall {Γ c} (H:isArrC c), icterm Γ c→ icterm Γ (arrCDom H)→
icterm Γ (arrCCod H).

Figure 4.9: Term syntax of SM using De Bruijn indices

Definition st_car (S A:Type) := S CM (A × S).
Definition st_ret (S A:Type) : icterm nil (A st_car A) :=
IAbs (fun (a:A) ⇒ IAbs (fun (s:S) ⇒ IMRet (A × S) ·〈a, s〉)).

Definition st_bind (S A B:Type) : icterm nil (st_car A _ (A st_car B) _ st_car B) :=
ICAbs (ICAbs (IAbs (fun s0⇒ IMBind (IAbs (fun r⇒ (vz · (nfst r)) ·

(nsnd r))) ((↑vz) ·[st_car A] s0)))).

Figure 4.10: Implementation of the state monad internally to SM

We build the functional version of the logical relation for a covariant type C , but omit the
linear type system6. Instead, the Coq version of Thm. 4.3.4 assumes a semantic hypothesis re-
quiring that the denotation of bind is homomorphic (where ctype_alg M c : MJcKM → JcKM is the
algebra structure on the elaboration):

Definition homomorphism c1 c2 (f : Jc1KM → Jc2KM) :=
let α1 := ctype_alg M c1 in
let α2 := ctype_alg M c2 in
forall m, f (α1 m) = α2 (f <$> m).

6Since we are working with intrinsically typed term, providing the linear type system would amount to imple-
ment yet another time a type of terms corresponding to linear type derivations.

4.5. TOWARDS A CATEGORICAL APPROACH TO RELATIVE MONAD TRANSFORMERS 67

Assuming this condition hold on the (partial) elaboration of an internal monad c, we can then
derive the full monad transformer (including all the laws). In practice, this condition hold de�-
nitionally on our examples, for instance for the state monad presented in Figure 4.10, so there is
no proof overhead.

The implementation of the embedding together with the necessary lemmas about the metathe-
ory of SM (substitution, weakening lemma. . .), the elaborations and the logical relation, as well
as a few examples of monad internal to SM amount to 4kloc, evenly separated between speci�-
cations and proofs.

4.4.2 Proving equalities between SM terms

As explained in section 4.3, the construction of monad transformer takes as input monad internal
to SM. For most of the examples at the beginning of that section, the de�nition of the underlying
type constructor and monadic operations is tedious but not di�cult to encode in the deep em-
bedded syntax. However, it turned out that providing the required equality proof witnessing the
monadic laws explicitly as equational derivation is hardly manageable even for a simple example
such as state (Figure 4.10). Acknowledging the di�culty, we explain here how we sidestepped
this task by de�ning an abstract machine re�ning the equational theory of SM. The key idea is
�rst to provide an evaluator for SM putting SM terms into canonical forms; and then proving
the correctness of the evaluator with respect to the equational theory, generating a witness that
a term is equal to its normal form as a byproduct.

A con�guration of the abstract machine is a triple (t, π, σ) consisting of a term t, a stack π and
an environment σ (a substitution) for SM terms. We use the notation 〈t || π〉σ for con�gurations.
The implementation of stacks in Coq as well as the type of the functions reducing con�gurations
of the abstract machine and rebuilding terms out of con�gurations are presented in Figure 4.12.
In order to describe the abstract machine we use the following notations: the empty stack is ?,
a rei�ed continuation is noted Cont(t), projections are noted πi, consing a Coq value v on top
of a stack π is v · π and an SM term t is t � π. The transitions of the abstract machine per-se
are noted B. When the abstract machine reaches a con�guration 〈t || π〉σ where t is a returned
value or a variable bound to a neutral term in the environment, it switches to the rebuilding
procedure noted B. The rebuilding phase apply to con�gurations t • π, dismantling the stack
π – essentially corresponding to an inside-out one-hole term context Cπ[−] – to reconstruct a
term t′ ≡ Cπ[t]. Since abstract machine con�gurations ultimately produce a term, we make a
small abuse of notations in the rule reducing @·, placing directly the result of evaluating the
con�guration 〈t2 || ∗〉id on the top stack.

As shown in the declared type of reduce, the implementation in Coq uses step-indexing
(the argument (fuel:nat)) to enforce termination. We introduced this abstract machine for a
pragmatic purpose, and in that respect this trick achieve the goal successfully at a low imple-
mentation cost. Nonetheless, termination of the abstract machine should be provable without,
since the part of SM the abstract machine is reducing is essentially simply typed.

4.5 Towards a categorical approach to relative monad

transformers

Beside the implemented version of SM, we wish to have a more conceptual understanding of the
limitations and potential extensions of the SM language. In particular, the Coq development of
SM is specialized to produce speci�cation monad transformers, however most of the proofs seem
to be of general nature, enabling an extension to other kind of relative monad transformers. In
this section, extend Lem. 4.2.1 in two di�erent directions. First, we extend it to account for a
collection of monads, or rather to natural transformations θ : F

.−→ G between functors F,G :
K →Mnd(C) from a categoryK to to monads on a category C, objects that we call (K-)indexed

68 CHAPTER 4. MASS PRODUCING MONAD TRANSFORMERS

〈ret v || π〉σ B ret v[σ] • π t • ∗ I t
〈bind t1 t2 || π〉 B

〈
t1
∣∣∣∣Cont(λx. 〈t2 x || π〉)

〉
t • Cont(f) I f † t

〈(t1, t2) || πi · π〉 B 〈ti || π〉 t • πi · π I πi t • π
〈πi t || π〉 B 〈t || πi · π〉 t • v · π I t@◦ v • π
〈λx. t || v · π〉 B 〈t[x/v] || π〉 t • t1 � π I t@· v • π
〈t@◦ v || π〉 B 〈t || v · π〉
〈x || π〉σ B σ(x) • π when σ(x) is neutral
〈x || π〉σ B 〈σ(x) || π〉id otherwise
〈λ�x. t || t1 � π〉σ B 〈t || π〉σ[x:=t1]

〈t1 @· t2 || π〉σ B
〈
t1
∣∣∣∣ 〈t2 || ?〉id � π

〉
σ

Figure 4.11: Reduction of abstract machine con�gurations

Inductive stack {Γ c} : ctype→ Type :=
| StckNil : stack c
| StckCont : forall A, (A → icterm Γ c)→ stack (CM A)
| StckProj1 : forall c’ (H:isProd c’), stack (prodProj1 H)→ stack c’
| StckProj2 : forall c’ (H:isProd c’), stack (prodProj2 H)→ stack c’
| StckArg : forall c’ (H:isArr c’) (v:arrDom H), stack (arrCod H v) → stack c’
| StckCArg : forall c’ (H:isArrC c’), icterm Γ (arrCDom H)→ stack (arrCCod H)→ stack c’.

Definition reduce (Γ0 : ctx) (fuel:nat) :
forall c0 Γ c (t:icterm Γ c) (π:@stack Γ0 c0 c) (σ : isubstitution Γ0 Γ), icterm Γ0 c0.

Definition rebuild Γ {c0 c} (π : @stack Γ c0 c): forall (t:icterm Γ c), icterm Γ c0.

Figure 4.12: Stacks and Abstract machine reduction for SM

monads in (Maillard and Melliès, 2015). Second, we explain how to generalize this lemma to the
case of relative monads in a framed bicategory, closing the loop with the setting of chapter 3.

As a motivation, observe that a simple special case of natural transformations between in-
dexed monads recover the notion of monad transformers. Given categories K, C and functors
F,G : K →Mnd(C), a natural transformation θ : F

.−→ G is a collection of monad morphisms
θk : F k

.−→ Gk for k ∈ K . TakingK to be the categoryMnd(C) of monads on C andF to be the
identity functor IdMnd(C), the data of a pair (G, θ) correspond exactly to a monad transformer
on C.

In order to state the generalization of Lem. 4.2.1 for indexed monads, we introduce the fol-
lowing notations. Given categories K, C, we note C : K → Cat the constant functor with value
C. If G : K → Mnd(C) is a K-indexed monad, we de�ne a transformation tG : C → C, with
component at k ∈ K set to tGk = Gk : C → C. tG is not natural but lax-natural, which means
that for f ∈ K(k, k′), the following naturality square is �lled by a (not necessarily invertible)
2-cell tGf = Gf

C C

C C

tGk =Gk

Cf Cf

tG
k′=Gk′

⇓ tGf

Moreover, there are modi�cations ηG : idC → tG and µG : tG ◦ tG → tG induced by the

4.5. TOWARDS A CATEGORICAL APPROACH TO RELATIVE MONAD TRANSFORMERS 69

pointwise monad structure of tGk and the fact that tGf are monad morphisms. In details, for each
k ∈ K we have natural transformations ηGk : IdC → Gk, µGk : (Gk)2 → Gk, respectively the
unit and multiplication of the monad Gk, satisfying for any f ∈ K(k, k′) the identities

C C

C C
tGk

⇓ tGf

⇓ ηGk
=

C C

C C
tGk

⇓ ηGk

C C

C C

tGk ◦tGk

tGk

⇓ tGf

⇓ µG
k

=

C C

C C

tGk ◦tGk

tGk

⇓ µG
k

⇓ tGf ◦ tGf

For F : K → Mnd(C), we note CF = Alg ◦ F op : Kop → Cat the functor assigning
to k ∈ K the category of Eilenberg-Moore algebras CF k. There is a natural transformation
u : CF .−→ C given at each component k by the relevant forgetful functor sending an algebra
in CF k to its carrier in C k = C. Since u is natural, it acts by post-composition on lax-natural
transformations and modi�cations, inducing in particular a functor (of 1-categories)

u∗ : [Kop, Cat]lax(C, CF) −→ [Kop, Cat]lax(C, C).

Lemma 4.5.1. Let C,K be categories, and F,G : K → Mnd(C) be functors to monads on C.
There is a bijective correspondence between

1. natural transformations θ : F
.−→ G,

2. lax-natural liftings t̃G : C → CF of tG through u such that the modi�cation µG also lifts to
µ̃G : t̃G ◦ tG → t̃G.

Proof. (1 ⇒ 2) The component at k ∈ K of the natural transformation θ : F
.−→ G provides a

monad morphism θk : F k → Gk. By Lem. 4.2.1 point 2, we obtain for each k ∈ K a lifting
t̃Gk : C k → CF k of tGk = Gk : C k → C k through uk : CF k → C such that µGk lifts as µ̃Gk . Now,
given f ∈ K(k, k′), we need to show that tGf = Gf lifts as a natural transformation t̃Gf �lling
the naturality diagram below on the left, that is Gf should be an Fk-algebra morphism. This is
indeed the case since the diagram on the right commutes by naturality of θk and µG. Moreover,
µ̃G is a modi�cation since Gf is a monad morphism.

C CFk

C CFk′

t̃Gk =Gk

t̃G
k′=Gk′

⇓ t̃Gf CFf

FkGk(c) FkGk′(c)

Fk′Gk′(c)

GkGk(c) Gk′Gk′(c)

Gk(c) Gk′(c)

θk,Gk(c)

FkGf(c)

FfGk′(c)

θk′,Gk′(c)

µG
k µG

k′

Gf(c)

(2 ⇒ 1) Conversely, another application of Lem. 4.2.1 provides the de�nition of θk at each
k ∈ K . Explicitly, θk is obtained by extending ηGk to an F k homomorphism thanks to the
F k-algebras structure on Gk (see the proof of Lem. 4.5.2 below). We still need to show that θ
is natural in k. Since t̃G is a lifting of t̃, for any f ∈ K(k, k′), the underlying natural transfor-
mation of t̃Gf is necessarily Gf , and unfolding the lax-naturality condition, Gf is an Fk-algebra
homomorphism, justifying the following computation (where we write αk for the Fk-algebra
structure on Gk):

70 CHAPTER 4. MASS PRODUCING MONAD TRANSFORMERS

Gf θk Gf αk

αk′

Ff

Gf

Gk =Fk

ηGk

ηGk

αk′

Ff

ηGk′
Ffθk′ Fk= Gk=

=

Gk

Fk

Gk

Fk

Gk

Fk

How does Lem. 4.5.1 help us understanding SM ? We can interpret covariant type construc-
tors in SM as lax natural transformations from Cn to C where n is the number of type arguments.
For instance, the unary type constructor M should be interpreted by tIdMnd(C) . The choice of type
formers accepted in SM should then be induced by the lifting condition along u. Finally, the con-
dition that the multiplication should lift as well can be seen as a counterpart of the linearity
condition.

We now explain how to extend Lem. 4.2.1 to the relative monad setting. We will not attempt
to generalize Lem. 4.2.1 to the relative setting. Even though we expect some generalization to the
relative setting to hold, introducing the structures corresponding to lax-natural transformations
and modi�cations in the relative monad setting would bring us too far.

Lemma 4.5.2. Let F be a framed bicategory, j : I → C a vertical arrow in F andm1 a j-relative
monad. For any j-relative monadm2, there is a bijective correspondence between:

B relative monad morphismsm1 → m2 over the identity of j, and

B m1-algebra structures on m2 such that bindm2 lifts to an m1-algebra morphism, that is
bindm2 ∈ Algm1

(m∗2Cj
∗).

Proof. Given a relative monad morphism θ : m1 → m2 over the identity of j, we equip m2 with
an m1-algebra structure αθ de�ned as

αθ bindm2

θ

=

m∗
2 m∗

1

m∗
2 j∗

m∗
2 m∗

1

m∗
2 j∗

The 2-cell αθ is indeed an m1-algebra structure as shown by the two following computations
using the fact that θ preserves ret and bind.

αθ bindm2

retm1 θ

=

m∗
2

m∗
2 j∗

m∗
2

m∗
2 j∗

j retm1 j

= bindm2

m∗
2

m∗
2 j∗

retm2 j

=

m∗
2

m∗
2 j∗

j

4.5. TOWARDS A CATEGORICAL APPROACH TO RELATIVE MONAD TRANSFORMERS 71

αθ

m∗
2

m∗
2 j∗

bindm1

m∗
1

m∗
2 j∗

= bindm2

θ

m∗
2

m∗
2 j∗

bindm1

m∗
1

m∗
2 j∗

= bindm2

m∗
2

m∗
2 j∗

bindm2

m∗
1

j∗

θ

m∗
2

θ

bindm2

bindm2

m∗
2 j∗ m∗

2

θ

m∗
1

j∗

θ

m∗
2

=
αθ

m∗
2 j∗ m∗

2

αθ

m∗
2 m∗

1

j∗

=

Moreover bindm2 is a monad morphism in the following sense

αθ

m∗
2 m∗

1

j∗

bindm2

m∗
2m∗

2 j∗

bindm2

θ

m∗
2 m∗

1

j∗

bindm2

m∗
2m∗

2 j∗

θ

m∗
1

j∗

bindm2

m∗
2m∗

2 j∗

bindm2

m∗
2 m∗

1

j∗

bindm2

m∗
2m∗

2 j∗

αθ

m∗
2

=

= =

In the other direction, if α is an m1-algebra structure on m2, we de�ne the natural transfor-
mation θα as

θα α=

retm2

m2 m1

m1m2

j

θα is actually a monad morphism using the algebra laws and, for the last step of the second
computation, the fact that bindm2 is an algebra morphism

θα jm2 retm1 = α

retm2

m2

j

jretm1

=

retm2

m2 j

= jm2 retm1

72 CHAPTER 4. MASS PRODUCING MONAD TRANSFORMERS

θαm2

bind
m1

j∗m∗
1

= α

retm2

m2

bind
m1

j∗m∗
1

= α

m2

α

retm2 j∗m∗
1

α

retm2 j∗m∗
1

α

m2

bind

retm2

=

α

retm2 j∗m∗
1

bind
m2

α

retm2

=

j∗m∗
1

bind

m2

θα

θα m1

=

m1

m1

m1

Finally, the two constructions are inverse of each other:

bindm2

m∗
2

m∗
2 j∗

α

retm2

m1

α

retm2

m1

bindm2

m∗
2 j∗

m∗
2

α

m1m∗
2

m∗
2 j∗

= =αθα

m1m∗
2

m∗
2 j∗

=

θαθ
m1m2 bindm2

θ m1

retm2

m2

θ m1m2==

4.6 Conclusion & Related work

In this chapter we presented the notion of monad transformers, introduced for by (Liang et al.,
1995), and extended it to relative monads. In order to derive correct monad transformers and
speci�cation monad transformers, we introduced a metalanguage SM. The types of this meta-
language capture algebras with respect to an abstract monad M, a notion reminiscent of modular
handlers introduced in (Schrijvers et al., 2019) to compare monad transformers with the extensi-
ble algebraic e�ects with handlers of (Kiselyov et al., 2013). The elaboration of monads internal
to SM to monad transformers employ proof-relevant logical relations to provide the action on
monad morphisms, a technique inspired by the work of Kaposi et al. (2019) on models of de-
pendent signatures. An implementation of this metalanguage in Coq brings the convenience of
de�ning monad transformers from a small standard monad speci�cation to a practical level. We

4.6. CONCLUSION & RELATED WORK 73

sketched some ideas on how the theory behind SM could be extended to relative monad trans-
formers beyond the case of speci�cation monad transformers. Designing and implementing such
an extension is left as an interesting but challenging future work.

At a theoretical level, the work of Jaskelio� and Moggi (2010) where a thorough study on
monoid transformers is carried on is closely related to ours. Monoid transformers on an arbitrary
monoidal category are by essence more general than monad transformers, and by consequence
harder to describe syntactically in general. They tackle this problem by classifying monadic op-
erations in various classes of expressiveness and provide more or less structure on the monoid
transformers dependending on the well-behavedness of these operations. For instance, they de-
rive a monad transformer for continuations without a functorial action on monad morphism,
whereas we extend it to monadic relations. A tempting future work would consist in extend-
ing their work on monoid transformers to consider relations between monoids preserving the
monoid structure.

Chapter 5

Dijkstra monads

“One Ring to rule them all, One Ring to �nd them,
One Ring to bring them all and in the darkness bind them[. . .]”

J.R.R. Tolkien, The Lord of the Rings, The Fellowship of the Ring

Having examples, theoretical concepts and practical ways to build computational monads,
speci�cation monads and e�ect observations, we now turn to the question of verifying code
in practice. E�ect observations by themselves provide a rudimentary way to prove properties
of programs: given a program c : MA and an e�ect observation θ : M → W, we can prove
properties on c by exploiting its assigned speci�cation θ(c) : WA. However, directly applying
θ amounts to run the program with respect to the semantics given by θ. This may lead to a
complex, hardly modular speci�cation.

This chapter is dedicated to the study of a methodology for verifying unary programs called
Dijkstra monads. Dijkstra monads provide a practical and automatable veri�cation technique
in dependent type theories like F? (Swamy et al., 2016), where they are a primitive notion, and
Coq, where they can be embedded via dependent types. A Dijkstra monad DAw re�ne a com-
putational monad with a speci�cation index picked out of a speci�cation monad. We open this
chapter by de�ning more formally these objects and then show with examples how a Dijkstra
monad can be obtained from a computational monad, a speci�cation monad, and an e�ect ob-
servation relating them, providing a methodology for actual veri�cation. The second section
then proves that e�ect observations and Dijkstra monad are categorically equivalent, providing
a principled approach to the construction of Dijkstra monads in the examples. We close the
chapter on a brief comparison with graded monads, another indexed monad structure used to
capture for instance resource bounds on computations (Katsumata, 2014).

5.1 De�nition & examples

De�nition 5.1.1 (). A Dijkstra monad over a speci�cation monad W is given by

B a type D A w for each type A and speci�cation w : WA,

B return and bind functions where the index is provided respectively by the return and bind of
W

retD : (x : A)→ D A (retW x)
bindD : D A w1 → ((x : A)→ D B w2(x))→ D B (bindW w1 w2)

75

76 CHAPTER 5. DIJKSTRA MONADS

B such that the following monadic equations about retD and bindD hold

bindDm retD = m

bindD (retD x) f = f x

bindD (bindDmf) g = bindDm (λx. bindD (f x) g)

where m : DAwm, x : A, f : (x : A) → DB (wf x), g : (y : B) → DC (wg y) for
A,B,C any types and wm : WA,wf : (x : A)→WB,wg : (y : B)→WC .

B Together with a weakening structure re�ecting the order on the speci�cation monad W

weaken : w1 ≤A w2 ×DAw1 −→ DAw2

B such that the following axioms hold (where we con�ate the propositions w1≤w2 and their
proofs)

weaken〈w≤w,m〉 = m,

weaken〈w1≤w2≤w3,m〉 = weaken〈w2≤w3, weaken〈w1≤w2,m〉〉,
bindD (weaken〈wm≤w′m,m〉) (λa. weaken〈wf a≤w′f a, f a〉) =

weaken〈bindW wmwf≤bindW w′mw
′
f , bind

Dmf〉.

Intuitively, the type DAw correspond to “computations speci�ed by w” and the weakening
structure allow to coerce a computation from a stronger to a weaker speci�cation as needed.

Note that the Dijkstra monad equations are well-typed only if W satisfy the monadic laws.
In HoTT terminology (Univalent Foundations Program, 2013), these equations are actually paths
over the corresponding equations for W. This has no incidence in an extensional type theory
such as F?, but it means for our Coq development that we need to pay attention to the equality
proofs for our speci�cation monads. It explains why we are so often relying on the backward
predicate transformer speci�cation monad (see subsection 2.3.4) since it has the good taste to
satisfy its monad laws de�nitionally.

In order to use seamlessly multiple Dijkstra monads, that is multiple e�ects, in a single pro-
gram, we need a way to coerce computations – and speci�cations – from one e�ect to another. F?
uses the concept of sube�ecting to achieve this. In the implementation, the sube�ecting relation
is an order on Dijkstra monads generated by a choice of at most one Dijkstra monad morphism
between two di�erent Dijkstra monads. Such a Dijkstra monad morphism must hence coerce
both computations and speci�cations.

De�nition 5.1.2. A morphism of Dijkstra monads fromD1A (w1 : W1A) toD2A (w2 : W2A)
consists of:

B a speci�cation monad morphism ΘW : W1 →W2 and

B a family of maps
ΘDA,w1

: D1Aw1 −→ D2A (ΘWw1)

indexed by types A and speci�cations w1 : W1A,

B satisfying the following identities

ΘD(retD1 a) = retD2 a, ΘD(bindD1 mf) = bindD2 (ΘDm) (ΘD ◦ f),

ΘD(weaken (w ≤ w′,m)) = weaken (ΘWw ≤ ΘWw′,ΘDm).

for any types A,B, and terms a : A, w,w′ : WA, m : DAw, wf : A → WB, f : (a :
A)→ DB (wf a).

Considering Dijkstra monads and Dijsktra monad morphisms together, we obtain a category
that we will note DMon.

5.1. DEFINITION & EXAMPLES 77

5.1.1 Using Dijkstra monads for verifying programs

We explain the general methodology for proving code using Dijkstra monads. Consider the
following piece of F? code de�ning a function mapping a natural number k : N to the k-th element
of Fibonacci sequence.
let rec �b (n:N) : Pure N(requires >) (ensures (λ r. r ≥ n ∧ r ≥ 1)) =
if n ≤ 1 then 1 else �b (n−1) + �b (n − 2)

This code does not need any e�ect1 and uses implicitly the Dijkstra monad Pure of pure functions
provably terminating on the domain given by speci�cations drawn from WPure. Translating
the let ... in constructs to their explicit monadic variant and inserting return operation where
needed, the de�nition of �b becomes:
let rec �b (n:N) : Pure N(requires >) (ensures (λ r. r ≥ n ∧ r ≥ 1)) =
if n ≤ 1 then
retPure 1

else
bindPure (�b (n−1)) (λ r1.
bindPure (�b (n−2)) (λ r2.
retPure (r1 + r2)))

By type inference, the type of the body of �b is Pure N wbody where
wbody n = if n ≤ 1 then retWPure 1

else bindW
Pure (wfib (n−1)) (λ r1. bindWPure (wfib (n−2)) (λ r2. retWPure (r1 + r2))))

wfib n = λpost. >∧ ∀r. r ≥ n ∧ r ≥ 1 =⇒ post r

the second speci�cation being derived2 from the declared require and ensure clause of the func-
tion �b above. For the function �b to be well-typed, the following veri�cation condition (VC) must
hold:

∀n,wbody n ≤WPure
wfib n.

Formally, it corresponds to wrapping the body of �b with a weaken operation and providing
the proof of the VC as argument. This last step is performed as part of sube�ecting in F?’s type
inference/type checking mechanism. When using Dijkstra monads in Coq – or more generally in
any dependent type theory where Dijkstra monads are not a primitive notion –, these weakening
must be written explicitly.

How is this methodology any better than just applying an e�ect observation to the code ?
Observe that the speci�cation wbody obtained by type inference is close to what we could obtain
when applying an e�ect observation θ to the body, the di�erence being that at the leaves of the
speci�cation, we have occurrences of wfib instead of θ applied to some recursive occurrences of
�b. In this small example it might seem to be a benign di�erence, but it means that we have some
control over the speci�cations that are used and can abstract away irrelevant implementation
details. This is an important, albeit rather simple, form of modularity.

Of course, this methodology comes with an important drawback: when de�ning a function,
we need to come up with the right speci�cation that strikes a good balance between being simple
and complete enough.

5.1.2 Implementing Dijkstra monads in type theory

The concrete de�nition for the type of a Dijkstra monad can vary according to the underlying
type theory. For instance, in our Coq development, we de�ne it (roughly) as a dependent pair
of a computation c : St A and a proof that c is correctly speci�ed by w. In F?, it is instead a
primitive notion.

1Beside the �xpoint that can be shown to be total; we return to this point when reconstructing Pure.
2The transformation from pairs of pre/postconditions to backward predicate transformer is actually part of the

adjunction described in section 2.3

78 CHAPTER 5. DIJKSTRA MONADS

5.1.3 The Dijkstra monad St of stateful computations

Let us start with stateful computations as an illustrative example, taking the computational
monad St, the speci�cation monad WSt, and the following e�ect observation:

θSt : St −→ WSt

θSt(m) = λpost s0. post (ms0)

We begin by de�ning the Dijkstra monad type constructor, ST : (A : Type)→WSt A→ Type.
The type ST A w contains all those computations c : St A that are correctly speci�ed by w. We
say that c is correctly speci�ed bywwhen θSt(c) ≤ w, that is, whenw is weaker than (or equal to)
the speci�cation given from the e�ect observation. Unfolding the de�nitions of ≤ and θSt, this
intuitively says that for any initial state s0 and postcondition post : A×S → P, the precondition
w post s0 computed by w is enough to ensure that c returns a value v : A and a �nal state s1

satisfying post (v, s1); in other words, w post s0 implies the weakest precondition of c.
The Dijkstra monad ST is equipped with monad-like functions retST and bindST whose

de�nitions come from the computational monad St, while their speci�cations come from the
speci�cation monad WSt. The general shape for the ret and bind of the obtained Dijkstra
monad is:3

retST = retSt : (v : A)→ ST A (retWSt
v)

bindST = bindSt : (c : ST A wc)→ (f : (x : A)→ ST B (wf x))→ ST B (bindWSt
wcwf)

which, after unfolding the state-speci�c de�nitions becomes:

retST = retSt : (v : A)→ ST A (λpost s0. post (v, s0))

bindST = bindSt : (c : ST A wc)→ (f : (x : A)→ ST B (wf x))
→ ST B (λp s0. wc (λ (x, s1) . wf x p s1) s0)

The operations of the computational monad are also re�ected into the Dijkstra monad, with
their speci�cations are computed by θSt. Given opSt : (x1 : A1) → · · · → (xn : An) → St B,
we can de�ne

opST = opSt : (x1 : A1)→ · · · → (xn : An)→ ST B (θSt(opSt x1 . . . xn))

Concretely, for state, we get the following two operations for the Dijkstra monad ST:

get : ST S (λp s0. p (s0, s0)), put : (s : S)→ ST 1 (λp s0. p (∗, s)).

Given this re�ned version of the state monad, computing speci�cations of (non-recursive)
programs becomes simply a matter of doing type inference to compositionally lift the program
to a speci�cation and then unfolding the speci�cation by (type-level) computation. For instance,
given modify (f : S → S) = bindST get (λx. put(fx)), both F? and Coq can infer the type

ST 1 (bindW
St

(λp s0. p (s0, s0)) (λs p s0. p (∗, fs))) = ST 1 (λp s0. p (∗, f s0))

which precisely describes the behavior of modify, both in terms of the returned value and of
its e�ect on the state. Program veri�cation then amounts to proving that, given a programmer-
provided type-annotation ST 1 w for modifyf , the speci�cation w is weaker than the inferred
speci�cation.

3If the representation of the Dijkstra monad is dependent pairs, then the code here does not type-check as-is
and requires some tweaking. For this section we will assume Dijkstra monads are de�ned as re�nements of the
computational monad, without any explicit proof terms to carry around. In our Coq implementation we use Program
and existensial variables (evars) to hide such details.

5.1. DEFINITION & EXAMPLES 79

Aparté: State in real life The basic idea of a Dijkstra monad for state can be extended to apply
to more realistic situations using a curated memory model closer to an actual implementation.
We brie�y explain the model used in F? targetting generation of e�cient low-level C code to give
an idea of how to step up from a toy model to an actual tool for program veri�cation. A more
complete account of this exposition can be found in (Protzenko et al., 2017).

We already explain in chapter 2 how the state S can be instantiated by a store S = Loc →
Val to accommodate for multiple memory cells. Pushing this idea further, we can structure the
state as a tree of regions, each region holding its own set of memory cells. This model called
hyper-heap in F? provides a primitive variant of separation and framing, an important tool to
prove that a program does not interfere with regions it does not touch. Specializing some of
the regions to re�ect the di�erences between the heap and the stack in the C memory model,
we obtain the hyper-stack model. In more details, the stack is a list-shaped sub-tree of regions,
each of these region corresponding to a stack frame, maintaining liveness condition satisfying
the stack discipline, e.g., memory cells on the stack cannot outlive their stack frame. The heap
on the other hand has a much more liberal discipline.

The hyper-stack model per-se does not use anything F?-speci�c. However to reason e�-
ciently about stateful arguments, monotonicity arguments are heavily used in F? (Ahman et al.,
2018), for instance to discharge the hypothesis that a garbage collected reference that is reach-
able in a program is always alive, that is both allocated and not freed. If it seems achievable to
provide a Dijkstra monad for monotonic state4, it does not seem possible to obtain the crucial
operations witness and recall. In the setting of Coq, the Iris framework (Jung et al., 2018) may
be an interesting way to obtain similar reasoning methods.

5.1.4 The demonic Dijkstra monad NDz

The previous construction is independent from how the computational monad, the speci�cation
monad, and the e�ect observation were obtained. The exact same approach can be followed for
the NDet monad coupled with any of its e�ect observations. We use the demonic one here, for
which the pick and fail actions for the Dijkstra monad have types:

pickNDz : NDz B (λp. p true ∧ p false) failNDz : NDz 0 (λp. >)

With this, we can de�ne and verify F? (or Coq) functions like the following:
let rec pickl (l:list α) : NDD α (λ p→∀x. elem x l =⇒ p x) =
match l with
| []→ fail ()
| x::xs→ if pick () then x else pickl xs

let guard (b:B) : NDD unit (λ p→ b =⇒ p ()) = if b then () else fail ()

The pickl function nondeterministically chooses an element from a list, guaranteeing in its spec-
i�cation that the chosen value belongs to it. The guard function checks that a given boolean
condition holds, failing otherwise. The speci�cation of guard b ensures that b is true in the contin-
uation. Using these two functions, we can write and verify concise nondeterministic programs,
such as the one below that computes Pythagorean triples. The speci�cation simply says that ev-
ery result (if any!) is a Pythagorean triple, while in the implementation we have some concrete
bounds for the search:
let pyths () : NDD (int & int & int) (λ p→∀x y z. x∗x + y∗y = z∗z =⇒ p (x,y,z)) =
let l = [1; 2; 3; 4; 5; 6; 7; 8; 9; 10] in
let (x,y,z) = (pickl l, pickl l, pickl l) in
guard (x∗x + y∗y = z∗z);
(x,y,z)

4Using the monotonic state transformer from section 4.3.

80 CHAPTER 5. DIJKSTRA MONADS

5.1.5 Interacting with the outer world: the IO Dijkstra monad family

We illustrate Dijkstra monads for multiple e�ect observations from IO. First, we consider the
context-free interpretation θFr : IO→WFr, for which IO operations have the interface:

readIOFr

: IOFree I (λp. ∀(i : I). p 〈i, [In i]〉)
writeIOFr

: (o : O)→ IOFree 1 (λp. p 〈∗, [Out o]〉)

We can de�ne and specify a program that duplicates its input (assuming an implicit coercion
I <: O):
let duplicate () : IOFree unit (λ p→∀x. p ((), [In x; Out x; Out x])) = let x=read () in write x; write x

However, with this speci�cation monad, we cannot reason about the history of previous IO
events. To overcome this issue, we can switch the speci�cation monad to WHist and obtain

readIOHist

: IOHist I (λph. ∀i. p 〈i, [In i]〉)
writeIOHist

: (o : O)→ IOHist 1 (λph. p 〈∗, [Out o]〉)

The computational part of this Dijkstra monad fully coincides with that of IOFr, but the speci�-
cations are much richer. For instance, we can de�ne the following computation:

mustHaveOccurred = λ_. retIOHist ∗ : (o : O)→ IOHist 1 (λph. Out o ∈ h ∧ p 〈∗, []〉)

which has no computational e�ect, yet requires that a given value o was already been outputted
before it is called. This is weakening the speci�cation of retIOHist ∗ (namely, retWHist ∗ =
λph. p 〈∗, []〉) to have a stronger precondition. By having this amount of access to the history,
one can verify that certain invariants are respected. For instance, the following program will
verify successfully:
let print_increasing (i:int) : IOHist unit (λ p h→∀h’. p ((), h’)) =

write i; (∗ pure computation ∗) mustHaveOccurred i; (∗ another pure computation ∗) write (i+1)

The program has a “trivial” speci�cation: it does not guarantee anything about the trace of
events, nor does it put restrictions on the previous log. However, internally, the call to mustHaveOccurred
has a precondition that i was already output, which can be proven from the postcondition of
write i. If this write is removed, the program will (rightfully) fail to verify.

Finally, when considering the speci�cation monad WIOSt, we have both state and IO opera-
tions:

readIOSt : IOSt I (λp s h. ∀i. p 〈i, s, [In i]〉)
getIOSt : IOStS (λp s h. p 〈s, s, []〉)

writeIOSt : (o : O)→ IOSt 1 (λp s h. p 〈∗, s, [Out o]〉)
putIOSt : (s : S)→ IOSt 1 (λp _h. p 〈∗, s, []〉)

where (readIOSt, writeIOSt) keep state unchanged, and (getIOSt, putIOSt) do not perform any
IO. With this, we can write and verify programs that combine state and IO in non-trivial ways,
e.g.,
let do_io_then_rollback_state () : IOST unit (λ s h p→∀i . p (() , s , [In i; Out (s+i+1)])) =
let x = get () in let y = read () in put (x+y);
(∗ pure computation ∗)
let z = get () in write (z+1); put x

The program mutates the state in order to compute output from input, possibly interleaved with
pure computations, but eventually rolls it back to its initial value, as mandated by its speci�cation.

5.1. DEFINITION & EXAMPLES 81

5.1.6 Provably terminating recursion in Pure

The Pure e�ect is the most basic e�ect, containing only pure, provably total computations. We
implement a model of Pure in Coq over the speci�cation monad WPureA = ContPA (or rather
its monotonic re�nement). The underlying representation of a pure computation is given by

PureAw = (p : A→ P)→ w p→ (a : A)× p a

That is, given a postcondition p : A → P, a pure computation c : PureAw is a total function
taking as input a proof that the precondition w p holds and returning values a : A such that p a
holds.

We use this simple Dijkstra monad to explain how to combine the ideas from (McBride, 2015)
with e�ect observations to yield a presentation of provably terminating recursive functions close
to what can be found in F?. We start by brie�y explaining how termination proof work in F?. In
order to de�ne a Pure recursive function f taking arguments of type Arg and returning a result
of type R according to the speci�cation w : WPureR, an F? user have to specify a measure l
which is an arbitrary total expression depending on the arguments of the function, here args.
let rec f (args:Arg) : Pure R w (decreases l) =
(∗ body of f containing recursive calls ∗)
... f args’ ...

This measure acts on the speci�cation of f inside its body, inducing the following signature (note
that args correspond to the top-level argument and is bound inside the body):
val f : (args’ : Arg)→ Pure R (λ p. l [args’/args] ≺ l ∧ w [args’/args] p)

Here ≺ is a well-founded relation between arbitrary F? terms generated by the subterm order
on inductive types5. The overall result is that every recursive are guarded in the sense that the
function f can only be called on arguments for which the measure provably decreases.

In order to emulate this mechanism in Coq for a recursive function with �xed domain Arg,
codomain R and speci�cation w : WPureR, we construct a Dijkstra monad from e�ect observa-
tions on top of the monad GenRec for general recursion presented in subsection 2.1.2. We assume
that Arg comes equipped with a well-founded relation ≺ . The speci�cation monad we use is
simply WPure, however instead of �xing a single e�ect observation, we de�ne a family of ef-
fect observations θargs parametrized by the top-level parameter (args:Arg). Recall that the monad
GenRec Arg R is free on a single operation call : (args′ : Arg) R and that an e�ect observa-
tion from a free monad is fully de�ned by speci�cations for each operations subsection 2.4.5, in
the present case a single functionwcall : (args′ : Arg) −→WPureR. Putting these observation
together we de�ne the family of e�ect observations θargs : GenRecArg RX → WPureX as
induced by wcall args

let wcall (args: Arg) : (args’ : Arg)→WPure R = λ(p : R→P). args’ ≺ args ∧ w[args’/args] p

This induces a family of Dijkstra monads GenRECargsX (w : WPure) parametrized by args :
Arg. Now, to close the loop, we can de�ne a handling construct fix from this newly de�ned
Dijkstra monad to Pure:
val fix : ((args : Arg)→GenRECargs R w)→ (args:Arg)→ Pure R w

The role of fix is to gather the proofs of well-foundedness carried by each recursive call inside
its �rst argument thanks to the speci�cation wcall and to transform it into a witness that the
putative �xpoint is globally well-de�ned.

We presented a program transformation translating F? source syntax to describe provably
terminating recursive functions into a form admissible in Coq.

5The actual relation in F? also bake in the decreasing order on natural numbers and a construction for lexico-
graphic order.

82 CHAPTER 5. DIJKSTRA MONADS

5.1.7 E�ect polymorphic functions

Even though the operations ret and bind provided by a (strong) monad can seem somewhat
restrictive at �rst, they still allow us to write functions that are generic in the underlying com-
putational monad. One example is the following mapW function on lists, generic in the monad
W (similar to the mapM function in Haskell):
let rec mapW (l : list α) (f : α→W β) : W (list β) =
match l with []→ ret [] | x :: xs→ bind (f x) (λ y→ bind (mapW xs f) (λ ys→ ret (y :: ys)))

When working with Dijkstra monads, we can use the mapW function as a generic speci�cation
for the same computation when expressed using an arbitrary Dijkstra monad D indexed by W:6

let rec mapD (l : list α) (w : α→W β) (f : (a:α)→D β(w a)) : D (list β) (mapW l w) =
match l with []→ ret [] | x :: xs→ let y = f x in let ys = mapD xs w f in y :: ys

where mapD takes the list l, the speci�cation for what is to happen to each element of the list, w,
and an implementation of that speci�cation, f. It builds an e�ectful computation that produces
a list, speci�ed by the extension of the element-wise speci�cation w to the whole list by mapW.

Analogously, we can implement a generic iterator combinator provided we have an invariant
w : W unit for the loop body : N→D unit w such that the invariant satis�es bind w (λ()→w) ≤ w:
let rec forin (range : list N) (body : N→D unit w) : D unit w =
match range with
| []→ ()
| i :: range→ body i ; forin range body

Here we use not only the monadic operations but also the possibility to weaken the speci�ca-
tion bind w (λ()→w) computed from the second branch of the match to the speci�cation w by
assumption.

In most the examples in this section, we used Dijkstra monads obtained via the same general
recipe (see next section for details) from the same kinds of ingredients: a computational monad,
a speci�cation monad, and an e�ect observation from the former to the latter. This enables a
uniform treatment of e�ects for veri�cation, and opens the door for verifying rich properties of
e�ectful programs.

5.2 Equivalence with e�ect observations

As illustrated with examples in the previous section, Dijkstra monads can be obtained from e�ect
observations θ : M→W between computational and speci�cation monads. As we shall see this
construction is generic and leads to a categorical equivalence between Dijkstra monads and e�ect
observations. In order to compare this notion of Dijkstra monads to e�ect observations, we also
introduce a category of monadic relationsMonRel and show that there is an adjunction

∫ a pre : MonRel −→ DMon. (5.1)

Intuitively, an adjunction establishes a correspondence between objects of two categories, here
MonRel andDMon. An adjunction always provides an equivalence of categories if we restrict
our attention to objects that are in one-to-one correspondence, those for which the unit (resp. the
counit) of the adjunction is an isomorphism. When we restrict the adjunction above, we obtain
an equivalence between Dijkstra monads and e�ect observations. For the sake of explanation,
we proceed in two steps: �rst, we consider Dijkstra monads and e�ect observations over speci-
�cation monads with a discrete order (i.e., ordinary monads), describing the above adjunction in
this situation; later, we extend this construction to general preorders, thus obtaining the actual
adjunction we are interested in.

6These e�ect polymorphism last examples are written in F? syntax, but only implemented in Coq, since Dijkstra
monads are not �rst class in F?.

5.2. EQUIVALENCE WITH EFFECT OBSERVATIONS 83

The discrete setting In this paragraph we take all speci�cation monads W to be slightly
degenerated, namely discrete. Given a monadic relation R : M ↔ W (Def. 4.3.1) between a
computational monad M and a speci�cation monad W, we construct a Dijkstra monad preR on
W as follows:

(preR) A (w : WA) = (m : MA)×mRAw (5.2)

That is (preR)Aw consists of those elementsm of MA that are related byR to the speci�cation
w. WhenR is the graph of a monad morphism θ (or equivalently,R is functional), pre(R : M↔
W) maps an elementw : WA to its preimage θ−1(w) = {m : MA | θ(m) = w}. The return and
bind operations of preR are given by the return and bind operations of M, using the compatibility
of R with respect to the monad operations of M and W. The weakening operation is just the
identity since the order on W is assumed to be trivial.

Conversely, any Dijkstra monad D over a speci�cation monad W with discrete order yields
a monad structure on

∫ DA = (w : WA)×DAw (5.3)

and the projection of the �rst component is a monad morphism π1 : ∫ D →W.
In order to explain the relation between these two operations pre and ∫ −, we introduce the

categoryMonRel of monadic relations.

De�nition 5.2.1. The categoryMonRel of monadic relations consists of:

B An object ofMonRel is a pair of monads M,W together with a monadic relationR : M↔
W between them.

B A morphism betweenR1 : M1 ↔W1 andR2 : M2 ↔W2 is a pair (ΘM,ΘW) of a monad
morphism ΘM : M1 −→ M2 and a speci�cation monad morphism ΘW : W1 −→W2 such
that

M1A M2A

W1A W2A

R1
A

ΘM
A

R2
A

ΘW
A

⇒

ΘRA : ∀(m : MA) (w : WA).mR1
Aw =⇒ ΘM(m)R2

A ΘW(w). (5.4)

The construction pre extends to a functor on MonRel: it sends a morphism (ΘW,ΘM) :
R1 → R2 between monadic relations to a Dijkstra monad morphism (ΘW,ΘD) : preR1 →
preR2, where ΘDA,w is de�ned as the restriction of ΘM

A to the appropriate domain

ΘA,w :

{
(m : M1A)×mR1

Aw −→ (m : M2A)×mR2
A (ΘWw)

(m, pf) 7−→ (ΘMm,ΘR pf)

Conversely, ∫ packs up a Dijkstra monad morphism (ΘW,ΘD) : (W1,D1) → (W2,D2) as
monadic relation morphism (ΘW,ΘM), where

ΘM
A :

{
(w : W1A)×D1Aw −→ (w : W2A)×D2Aw

(w,m) 7−→ (ΘW
A w,ΘDA,wm)

Since ΘM maps the inverse image of w – pairs whose �rst component is w – to the inverse
image of ΘW(w) – pairs whose �rst component is ΘW(w)–, condition (5.4) holds. Moreover,
this gives rise to a natural bijection

MonRel(∫ D,R) ∼= DMon(D, preR)

84 CHAPTER 5. DIJKSTRA MONADS

that establishes the adjunction (5.1). We can restrict (5.1) to an equivalence by considering only
those objects for which the unit (resp. counit) of the adjunction is an isomorphism. Every Dijkstra
monad D is isomorphic to its image pre (∫ D), whereas a monadic relation R is isomorphic to
∫(preR) if and only if it is functional, i.e., a monad morphism. This way we obtain an equivalence
of categories between DMon and the category of e�ect observations on monads with discrete
preorder.

The ordered setting We now consider the general case of speci�cation monads equipped
with an arbitrary order, that is monadic relations R : M ↔ W where M is a (plain,discrete)
monad and W a speci�cation monad. The de�nition of pre (5.2) still makes sense but for the
weakening operation: the Dijkstra monad preR has a weakening operation exactly when R is
monotonic Def. 4.3.1 with respect to the order. Hence, we restrict our attention to the category
MonRel≤ of monotonic monadic relations. Doing so, we obtain a functor pre :MonRel≤ −→
DMon from the category of monotonic monadic relations to the category of Dijkstra monads.

The special case of a monad morphism θ : M → W �ts well in this picture as long as we
consider the associated monotonic monadic relationRθ de�ned by m Rθ w ⇐⇒ θm ≤W w.
The corresponding weakening structure on preRθ is given by

weaken〈w1 ≤ w2, 〈m, θ(m) ≤ w1〉〉 = 〈m, θ(m) ≤ w1 ≤ w2〉.

Building and explicitly describing a left adjoint ∫ to pre turns out to be slightly more di�cult.
To explain where the problem lies, consider the case of a monad morphism θ : M→W for which
we expect ∫(pre θ) to be isomorphic to θ. However, using straightforwardly the previous de�ni-
tion of ∫ , ∫(pre θ) is just (ΣM,W, π1) where ΣMA = (w : WA)× (m : MA)× θA(m) ≤A w,
which is far from being isomorphic to M . The problem is that we get one copy of m for each
admissible speci�cation w : WA. These copies, however, are non-essential since the weaken-
ing structure of pre θ identi�es them. As such, a reasonable de�nition of ∫ n the ordered setting
need to further quotient them 7. Consequently, we de�ne ∫ D as the monotonic monadic relation
∫ D = (∫D,W,R∫D) with

∫DA = ((w : WA)×DAw) / ∼ [w, c] R∫D w′ ⇐⇒ w ≤ w′

where∼ is the equivalence relation induced by (w, c)∼(w′, weaken(w≤w′, c)) and [w, c] is the
equivalence class of the pair (w, c) in ∫D. The monad structure on A 7→ (w : WA)×DAw is
induces a monad structure on the quotient ∫D because bindW is monotonic in both arguments
and bindD is compatible with the weakening structure in both arguments as well. This de�nition
reduces to Equation 5.3 when the order on W is discrete.

Theorem 5.2.1. The categories of Dijkstra monads and monadic relations are connected by an
adjunction

∫ a pre : MonRel≤ −→ DMon.

Moreover, restricting our attention to speci�cation monads W such that any two elements in WA
has an upper bound for ≤W, the adjunction induces an equivalence in the following cases:

B the counit εR : ∫ (preR) → R is invertible if R = Rθ for θ : M → W a (lax) monad
morphism8.

B the unit ηD : D → pre (∫ D) is invertible whenever weakenD(w ≤W w′) : DAw →
DAw′ is one-to-one for any A and w ≤ w′ : WA.

7We conjecture that an alternative and more symmetric solution would be to equip our Dijkstra monads with an
additional order, but this does not correspond to the examples we obtain in practice.

8By a lax monad morphism θ : M → W, we mean a lax natural transformation θ – that is such that the
naturality square commutes up to the order on W– preserving the monadic operations in the weaker sense that
θ(retM) ≤ retW and θ(bindMmf) ≤ bindW (θm) (θ ◦ f).

5.2. EQUIVALENCE WITH EFFECT OBSERVATIONS 85

Proof. The de�nition of ∫ given on Dijkstra monads extends Dijkstra monad morphisms: (ΘW,ΘD) :
(W1,D1) → (W2,D2) pairs up to provide a monad morphism 〈ΘW

A ,Θ
D
A〉 : ((w : W1A) ×

D1Aw) → ((w : W2A) × D2Aw), and since θW is monotonic with respect to the orders on
W1,W2, this natural transformation descend to the quotient by ∼ as Θ∫D : ∫D1 → ∫D2 and
we de�ne ∫ (ΘW,ΘD) = (ΘW,Θ∫D), the condition (5.4) being immediate. We check that this
assignment is functorial, giving rise to a functor ∫ : DMon→MonRel≤.

We now turn to the construction of natural transformations

ϕ : MonRel(∫D1,R2)
∼−−−−→ DMon(D1, preR2)

MonRel(∫D1,R2)
∼←−−−− DMon(D1, preR2) : ψ

for (W1,D1) a Dijkstra monad and (M2,W2,R2) a monadic relation.
For (ΘM,ΘW) ∈MonRel(∫D1,R2), that is ΘM : ∫D1 → M2 and ΘW : W1 →W2, we set

ϕ(ΘM,ΘW) = (ΘW,ΘD) where ΘD is the Dijkstra monad morphism de�ned by

ΘDA,w : D1Aw −→ (m : M2A)×mR2 (ΘW w)

c 7−→ (ΘM[w, c], _)

In this de�nition and the proof of the Dijkstra monad morphism laws below, we leave implicit
the witness that the relationR2 hold obtained from the condition (5.4).

ΘD
A,retW1 a

(retD1 a) = ΘM[retW1a, retD1a] = ΘM(ret∫D1a) = retM2 a

ΘD
A,bindW1 wm wf

(bindD1 mf) = ΘM[bindW1 wmwf , bindD1 mf]

= ΘM(bind∫D1 [wm,m] (λx. [wf x, f x]))

= bind∫D1 ΘM[wm,m] (λx. ΘM[wf x, f x])

= bind∫D1 ΘDA,wm(m) (λx. ΘDA,wf x(f x))

ΘDA,w′(weaken (w ≤ w′,m)) = ΘM[w′, weaken (w ≤ w′,m)]

= weaken (ΘWw ≤ ΘWw′,ΘM[w,m])

= weaken (ΘWw ≤ ΘWw′,ΘDA,wm).

In the other direction, a Dijkstra monad morphism (ΘW,ΘD) ∈ DMon(D1, preR2) is sent
to the morphism of monadic relations ψ(ΘW,ΘD) = (ΘM,ΘW) where ΘM is the monad mor-
phism mapping an equivalence class [w, c] ∈ ∫D1A to ΘM[w, c] = π1(ΘDA,w c) which is well
de�ned because ΘW is monotonic and ΘD is compatible with weaken. The condition (5.4) is
provided by the second component of ΘD .

Checking that ϕ and ψ are inverse to each other is straightforward (in an intensional set-
ting, such as Coq, extensionality of functions and products are needed, and we also assumed
uniqueness of propositions).

From this concrete description of the adjunction ∫ a pre, we obtain the explicit formula
for the unit η and counit ε. Considering respectively a Dijkstra monad (W,D) and a monadic
relation (M,W,R), we have ηD = (IdW, η

D
D) and εR = (εM

R , IdW) where

ηDD : DAw −→ pre (∫D) Aw εM
R : ∫(preR)A −→ MA

c 7−→ ([w, c], _) [w, (m, _)] 7−→ m

In the case of εR, if R = Rθ is the monadic relation associated to a possibly lax monad
morphism, then we have a section (εM

R)−1 mapping m : MA to [θ(m), (m, _)]. Taking c =
[w, (m, _)] ∈ ∫(preR)A, we can �nd w′ ∈WA such that w ≤W w′ and w ≤W θm so we have
c = [w, (m, _)] = [θm, (m, _)] = (εM

R)−1m and (εM
R)−1 is onto, so εR is invertible.

86 CHAPTER 5. DIJKSTRA MONADS

For the unit, ηDD is clearly onto. It is also one-to-one when weaken is: if ([w, c], _) = ηDD(c) =
ηDD(c′) = ([w, c′], _) for c, c′ ∈ DAw and w ∈ WA, then a straightforward induction on the
length of the witness that (w, c) ∼ (w, c′) using the fact that WA has upper bounds of pairs of
elements prove that there exists a w′ ≥ w such that weaken(w ≤ w′, c) = weaken(w ≤ w′, c′),
so c = c′ by injectivity of weaken.

To summarize, we can construct Dijkstra monads with weakening out of e�ect observations
and the other way around. Moreover, when starting from an e�ect observation θ : M → W,
then ∫(pre θ) is equivalent to θ. This result shows that we do not lose anything when moving
from e�ect observations to Dijkstra monads, and that we can, in practice, use either the e�ect
observation or the Dijkstra monad presentation, picking the one that is most appropriate for the
task at hand.

5.3 Dijkstra monads as relative monads, connection to graded

monads

In the same way speci�cation monads can be understood as a particular kind of order-enriched
relative monads (see Def. 3.5.2), we explain in this section how Dijkstra monads themselves can
be framed as (order enriched) relative monads. This point of view on Dijkstra monads provide an
interesting bridge to the notion of graded monad (Fujii et al., 2016), another algebraic structure
re�ning monads with an index, capturing for instance resource usage (cost analysis). The latter
can be used to model type-and-e�ects system (Katsumata, 2014).

In order to introduce the relative monad presentation of Dijkstra monads, we �rst reformu-
late Def. 5.1.1 in terms of indexed families. A family indexed by a setA is a functionB → A, the
componentBa at index a ∈ A being the �ber of this function at a. index a ∈ A being the �ber of
this function at a. A Dijkstra monadD over a speci�cation monad W induces an indexed family
∂A : DA→WA where DA = (w : WA)×DAw and ∂A is the �rst projection. Then the for
any type A, the return operations of W and D make the diagram on the left commute, whereas
bindW and bindD induce the function on the right:

A DA

A WA

retD

id ∂A

retW

A DB

A WB

f

id ∂B

wf

7−→
DA DB

WA WB

bindD f

id ∂B

bindW wf

Taking into account the order on W and the weaken operation, the Dijkstra monad D can be
equivalently described by giving the following data:

B for each type A, an indexed family ∂A : DA → WA between orders such that ∂A is
monotonic and its �bers discrete,

B for each type A, a map of indexed families (retW, retD) : idA → ∂A,

B for each pair of type A,B and map of families f = (wf , f) : idA → ∂B , a monotonic
extension (bindW wf , bindD f) : ∂A → ∂B also monotonic in f (for the pointwise order
on idA → ∂B),

B satisfying laws analogous to the monadic laws

This reformulation exhibits a Dijkstra monads D over the monad W as a relative monad
where the domain category consists of sets – the type A of returned values – and the codomain
consists of families indexed over a preorder, namely WA. To be more precise, let DiscPosFib be
the full subcategory of Pos→ whose objects are triples (E,B, f : E → B) consisting of ordered

5.3. DIJKSTRA MONADS AS RELATIVE MONADS, CONNECTION TO GRADED MONADS 87

sets E,B and a discrete �bration f between them, that is a monotone map f such that for any
b1 ≤ b2 and e1 ∈ f−1(b1) there is a unique e2 ≥ e1 with f(e2) = b2 – in particular the �bers
f−1(b) are discrete for all b ∈ B. Explicitly, the morphisms of DiscPosFib between (E,B, f)
and (E′, B′, f ′) is a pair of monotone functions (hdom : E → E′, hcod : B → B′) such that the
following square commutes:

E E′

B B′

hdom

f f ′

hcod

The Dijkstra monad D then induces a functor FD with a monad structure relative to the base
functor J id, all these objects being enriched over Pos (in the terminology of chapter 3, we are
working inside the framed bicategory Pos-Distr).

J id :

{
Set −→ DiscPosFib
A 7−→ (idA : A→ A)

FD :

{
Set −→ DiscPosFib
A 7−→ (π1 : (w : WA)×DAw →WA)

Moreover this presentation of D as relative monad can be closely related to the relative
monad structure on W (since it is a speci�cation monad). Consider the projection functor
cod : DiscPosFib → Pos sending a family (E,B, f) to a its indexing base B. Together with
the identity functor on Set , it �ts into a morphism of base functor (IdSet , cod) : J id → Disc
(illustrated on the left) and the identity natural transformation is a relative monad morphism
from FD to W over (IdSet , cod).

Set DiscPosFib

Set Pos

J id

Id cod

Disc

Set DiscPosFib

Set Pos

FD

Id cod

W

(5.5)

Taking inspiration from (Katsumata, 2005, 2013) where the case of monads is studied, we say
that FD is a lifting of the relative monad W along (IdSet , cod) : J id → Disc to mean that FD
is a J id-relative monad such that the identity is a relative monad morphism over (IdSet , cod) to
W.

Lemma 5.3.1. A Dijkstra monadD over a speci�cation monad W is equivalent to a relative lifting
of W along (IdSet , cod) : J id → Disc.

Proof. The previous discussion shows that a Dijkstra monadD indeed de�nes a suitable relative
monad FD .

Conversely, given a lifting F of W along (IdSet , cod), we reconstruct a Dijkstra monad DF
over W by the formula DF A (w : WA) = f−1(w) where F(A) = (E,B, f : E → B) and
B = WA by the lifting condition. The return and bind operations on DF are provided by the
relative monad structure on F , using the lifting condition to show that they have the correct
type, while the weaken operation is derived from the fact that f above is a �bration.

5.3.1 Graded monads

In this section, we present graded monads that were studied in (Fujii et al., 2016). Dijkstra monads
and graded monads share a reasonable amount of similarities:

B both structure are indexed by an object equipped with a monoid structure, speci�cation
monads for the former, monoidal categories for the latter;

B e�ect observations were originally introduced in (Katsumata, 2013) in order to build graded
monad, and section 5.2 shows that they can be used as well for Dijkstra monads.

88 CHAPTER 5. DIJKSTRA MONADS

In order to compare the two structures, we restrict ourselves to the simple case of a monad
on sets graded by a monoid.

De�nition 5.3.1. A graded monad on Set graded by a monoid (M, ∗, e) is a lax-monoidal functor
G :M→ [Set ,Set], that is:

B For eachm :M and set A, a set G Am

B For eachm :M, sets A,B and function f : A→ B a functorial action G Am→ G Bm

B For each set A, a unit A→ G Ae natural in A

B For eachm1,m2 :M and setA, a multiplication G (G Am1)m2 → G A (m1 ∗m2) natural
in A

B satisfying laws analogous to the monoid laws

We wish to understand better the connection between the two indexed algebraic structure
and to that end, we reformulate graded monads in terms of indexed families. As usual, the func-
torial action and multiplication can alternatively be reformulated in terms of Kleisli extension:
for each m :M, set A,B and function A→ G Bm, an extension G Am′ → G B (m ∗m′). We
obtain the following presentation of a graded monad G graded by a monoidM.

B For each set A, an indexed family τA : G A→M
B For each set A, a map of indexed families (e, retG) : !A → τA

A G A

1 M
!A

retG

τA

e

B For each setsA,B and map of families (m, f) : !A → τB , an extension (m ∗−, bindG f) :
τA → τB

A G B

1 M
!A

f

τB

m

7−→
G A G B

M M
τA

bindG f

τB

m∗−

This reformulation makes it clear that we can see a monad G graded by a monoidM as a
functor FG : Set → Set→ equipped with a monad structure relative to the functor J !:

J ! :

{
Set −→ Set→

A 7−→ (!A : A→ 1)
FG :

{
Set −→ Set→

A 7−→ (π1 : (m :M)× G Am→M)

Moreover, this J !-relative monad structure on FG lifts the monoid structure on M (that can
alternatively seen as a monad relative to 1 : 1 → Set) through the morphism of base functors
(!Set , cod) : J ! → 1, where we write !Set : Set → 1 for the unique functor to the terminal
category and 1 : 1→ Set for the functor picking a terminal object in Set .

Set Set→

1 Set

J !

!Set cod

1

Set Set→

1 Set

FG

!Set cod

M

(5.6)

This analysis of graded monads shows that they admit a similar formal presentation in terms
of lifting of relative monad structure as Dijkstra monads do (see diagrams 5.5 and 5.6). Since
both kinds of algebraic structure are useful for veri�cation purposes, and they do not seem to
reduce to each other, it would be interesting as future work to investigate further the common
structure provided by relative monad liftings.

5.4. CONCLUSION & RELATED WORK 89

5.4 Conclusion & Related work

The work presented in this section directly builds on prior work on Dijkstra monads in F? (Swamy
et al., 2013, 2016), in particular the DM4Free approach (Ahman et al., 2017). Our investigation of
Dijkstra monad was primarily motivated by syntactic conditions required in the DM4Free ap-
proach that were at the time quite obscure, and prevented us from obtaining Dijkstra monads
for some e�ects, e.g., IO. The construction of section 5.2 together with those of chapter 4 shed
some light on these awkward restrictions: the Dijkstra monads derivable with DM4Free are those
obtained from e�ect observations with shape

T (retWPure
) : T (Id) −→ T (WPure)

where T is a monad transformer and retWPure
: Id

.−→ WPure the canonical monad morphism
from the identity monad.

Katsumata (2014) uses graded monads to give semantics to type-and-e�ect systems, intro-
duces e�ect observations as monad morphisms, and constructs graded monads out of e�ect
observations by restricting the speci�cation monads to their value at 1. We extend his con-
struction to Dijkstra monads, showing that they are equivalent to e�ect observations, and unify
Katsumata’s two notions of algebraic operation. We sketched a common framework for graded
monads and Dijkstra monad but further investigation of such indexed structure obtained by lift-
ing a relative monad remains to be done. In particular, generic lifting methods for monads such
as the monadic>>-lifting (Katsumata, 2013) or the codensity lifting (Katsumata et al., 2018) may
also extend to the case of relative monads.

Dijkstra monads & monotonicity A long line of work in F? uses monotonicity to alleviate
the proof e�ort in protocols and state intensive programs. The soundness of these reasoning
principles rely on some abstraction properties: intuitively state can only be used linearly, so
restricting the state updates to be monotonic with respect to a choosen order implies that any
monotonic predicate witnessed at some program point will necessarily hold at any later point,
independently of the actual state. Ahman et al. (2018) explain how it combines swiftly with the
abstract approach to computations provided by Dijkstra monads. A general account of these
monotonicity arguments for arbitrary e�ects, for instance for IO, is left for future work.

Dijkstra monads as displayed algebras Kaposi and Kovács (2019) propose a framework to
de�ne expressive signatures and to associate to each signature Σ a category with families con-
sisting of Σ-algebras, Σ-algebra homomorphisms and displayed Σ-algebras. These signature can
be used to capture the notion of Dijkstra monad (but for the order) in a concise way: Dijkstra
monads arise as display algebras of a signature Σmon. Concretely, Kovács proposed (in private
communication) the following signature Σmon to capture Dijkstra monads:

M : Set ⇒̂U,
ret : (A : Set) ⇒̂A ⇒̂El(MA),
(−)† : (AB : Set) ⇒̂ (ΠAMB)⇒ MA⇒ El(MA),
bind-ret : (A : Set) ⇒̂ (m : MA)⇒ Id (MA) (ret† m) m,
ret-bind : (A B : Set)(x : A) ⇒̂ (f : ΠAMB)⇒ Id (MB) (f † (ret x)) (f x),
bind-assoc : (A B C : Set) ⇒̂ (m : MA)(f : ΠAMB)(g : ΠBMC)

⇒ Id (MC) (g† (f † m)) ((λx. g†(fx))† m)

Here Π is the constructor for in�nitary (A-indexed for any Set A) products. Taking models of
this signature in the CwF of sets and families gives monads on Set, and unary logical predicate
gives the notion of Dijkstra monad without weakening. In this simpli�ed setting, the equivalence
between Dijkstra monads and monad morphisms is then a consequence of the CwF structure. An
extension of this framework to the ordered setting might provide a simpler and abstract variant
of the proof in section 5.2.

Chapter 6

Relational reasoning

«- Ça n’est pas une question scienti�que...
- Moi, je vais te questionner Einstein, et si tu ne peux
répondre, tout s’éteindra !!
[. . .] Quel est mon nom ?
Et comme il ne pouvait répondre, tout bascula dans le néant.»

F’murr, Le Génie des alpages n◦5, les intondables

This chapter is dedicated to relational reasoning, i.e., proving relational properties between
multiple runs of one or more programs, such as noninterference or program equivalence(see sec-
tion 1.3). Our goal is to distill the generic relational reasoning principles that work for arbitrary
monadic e�ects so that we can reconstruct relational program logics in a generic fashion. Reusing
our knowledge from the unary setting, we devise relational variants of speci�cation monads and
e�ect observations providing the semantics of relational judgements.

6.1 The logic of relational rules

In this section, we make the simple but useful observation that rules of relational programs logics
can be organised in 3 categories depending on their relationship to e�ects and then provide a
high-level idea of how it leads to our generic relational framework. Exceptional control �ows are
surprisingly challenging in the relational setting, and we need the full power of our framework
to account for them (see section 6.3). However a much simpler system already account for many
e�ects and we use it to provide a smoother approach in section 6.2.

6.1.1 Syntactic rules

To factor out the fully generic parts, the rules of the relational program logics derived in our
framework are divided into three categories, following the syntactic shape of the monadic pro-
grams on which their operate:

R1 rules for pure language constructs, derived from the ambient dependent type theory (these
rules target the elimination constructs for positive types, like if-then-else for booleans,
recursors for inductive types, etc.);

R2 rules for the generic monadic constructs return and bind; and

R3 rules for e�ect-speci�c operations (e.g., get and put for the state monad, or throw and catch
for the exception monad).

91

92 CHAPTER 6. RELATIONAL REASONING

This organization allows us to clearly separate not only the generic parts (R1&R2) from the
e�ect-speci�c ones (R3), but also the e�ect-irrelevant parts (R1) from the e�ect-relevant ones
(R2&R3).

In its simplest form (section 6.2), the judgment of the relational program logics of our frame-
work has the shape: ` c1 ∼ c2 { w }, where c1 : M1 A1 is a computation in monad M1 producing
results of type A1, where c2 : M2 A2 is a computation in monad M2 producing results of type
A2, and where w is a relational speci�cation of computations c1 and c2 drawn from the type
Wrel(A1, A2). Here M1 and M2 are two arbitrary and potentially distinct computation monads
(e.g., the state monad St A = S → A× S and the exception monad Exc A = A+ E), while w
could, for instance, be a pair of a relational precondition and a relational postcondition, or a rela-
tional predicate transformer—below we will use relational weakest preconditions. For instance,
for relating two stateful monads on states S1 and S2, we often use relational speci�cations drawn
from

WSt
rel (A1, A2) = ((A1 × S1)× (A2 × S2)→ P)→ S1 × S2 → P

which are predicate transformers mapping postconditions relating two pairs of a result value and
a �nal state to a precondition relating two initial states (here P stands for the type of propositions
of our ambient dependent type theory). As an example of the judgment above, consider the
programs c1 = bindSt (get ()) (λx . put (x + k)), which increments the content of a memory cell,
and c2 = retSt (), which does nothing. These two programs are related by the speci�cation
w = λϕ (s1, s2). ϕ (((), s1 +k), ((), s2)) : WSt

rel (1, 1) saying that for the postcondition ϕ to hold
for the �nal states of c1 and c2, it is enough for it to hold for s1 +k and s2, where s1 are s2 are the
computation’s initial states. Note that since c1, c2, and w are terms of our ambient type theory,
free variables (like k) are handled directly by the type theory which save the simple judgment
from an explicit context.

For pure language constructs R1, we try to use the reasoning principles of our ambient de-
pendent type theory as directly as possible. For instance, our framework (again in its simplest
incarnation from section 6.2) provides the following rule for the if-then-else construct:

if b then ` c1 ∼ c2

{
w>

}
else ` c1 ∼ c2

{
w⊥

}

` c1 ∼ c2

{
if b then w> else w⊥

}

In order to prove that c1 and c2 satisfy the relational speci�cation ifbthenw>elsew⊥, it is enough
to prove that c1 and c2 satisfy both branches of the conditional in a context extended with the
value of b. Interestingly, this rule does not make any assumption on the shape of c1 and c2.
Relational program logics often classify each rule depending on whether it considers a syntactic
construct that appears on both sides (synchronous), or only on one side (asynchronous). In the
rule above, taking c1 to be of the shape if b then c>1 else c⊥1 and c2 to be independent of b, we can
simplify the premise according to the possible values of b to derive an asynchronous variant of
the rule:

` c>1 ∼ c2

{
w>

}
` c⊥1 ∼ c2

{
w⊥

}

` if b then c>1 else c⊥1 ∼ c2

{
if b then w> else w⊥

} (6.1)

By requiring that both commands are conditionals, we can also derive the synchronous rule:

` c>1 ∼ c>2
{
w>

}
` c⊥1 ∼ c⊥2

{
w⊥

}

` if b1 then c>1 else c⊥1 ∼ if b2 then c>2 else c⊥2 { w• }
(6.2)

where the relational speci�cationw• = λϕ s12. (b⇔b1)∧(b⇔b2)∧ifbthenw> ϕs12elsew⊥ ϕs12

ensures that the booleans b1 and b2 controlling the choice of the branch in each computation
share the same value b.

6.1. THE LOGIC OF RELATIONAL RULES 93

For the monadic constructs R2, the challenge is in lifting the binds and returns of the two
computation monads M1 and M2 to the speci�cation level. For instance, in a synchronous rule
one would relate bindM1 m1 f1 to bindM2 m2 f2 by �rst relating computationsm1 andm2, say
via relational speci�cationwm, and then one would relate the two functions f1 and f2 pointwise
via a function wf mapping arguments in A1 ×A2 to relational speci�cations:

` m1 ∼ m2 { wm } ∀a1, a2 ` f1 a1 ∼ f2 a2

{
wf (a1, a2)

}

` bindM1 m1 f1 ∼ bindM2 m2 f2

{
bindWrel wmwf

} (6.3)

In the conclusion of this rule, we need a way to compose w : Wrel(A1, A2) and wf : A1×A2 →
Wrel(B1, B2) to obtain a relational speci�cation for the two binds. We do this via a bind-like
construct:

bindWrel : Wrel(A1, A2)→ (A1 ×A2 →Wrel(B1, B2))→Wrel(B1, B2) (6.4)

For the concrete case of WSt
rel , this bind-like construct takes the form

bindWSt
rel wmwf = λϕ (s1, s2). wm (λ ((a1, s

′
1), (a2, s

′
2)). wf (a1, a2) (s′1, s

′
2) ϕ) (s1, s2).

This construct is written in continuation passing style: the speci�cation of the continuation
wf maps a postcondition ϕ : (B1×S1)×(B2×S2) → P, to an intermediate postcondition
(A1×S1)×(A2×S2)→ P, then wm turns it into a precondition for the whole computation.

Asynchronous rules for bind can be derived from the rule above, by takingm1 to be retM1()
or f1 to be retM1 above and using the monadic laws of M1 (and symmetrically for M2):

` retM1 () ∼ m2 { wm } ∀a2 ` c1 ∼ f2 a2

{
wf a2

}

` c1 ∼ bindM2 m2 f2

{
bindWrel wm (λ((), a2). wf a2)

} (6.5)

` c1 ∼ m2 { wm } ∀a1, a2 ` retM1 a1 ∼ f2 a2

{
wf (a1, a2)

}

` c1 ∼ bindM2 m2 f2

{
bindWrel wmwf

} (6.6)

Finally, for the e�ect-speci�c operations R3, we provide a recipe for writing rules guided by our
framework. For state, we introduce the following asynchronous rules for any a1, a2 and s:

` get () ∼ ret a2

{
wgetl

}
` ret a1 ∼ get ()

{
wgetr

} (6.7)

` put s ∼ ret a2

{
wputl

}
` ret a1 ∼ put s

{
wputr

} (6.8)

where wgetl = λϕ (s1, s2). ϕ ((s1, s1), (a2, s2)), wgetr = λϕ (s1, s2). ϕ ((a1, s1), (s2, s2)),
wputl = λϕ (s1, s2). ϕ (((), s), (a2, s2)) and wputr = λϕ (s1, s2). ϕ ((a1, s1), ((), s)). Each of
these rules describes at the speci�cation level the action of a basic stateful operation (get, put)
from either the left or the right computations, namely returning the current state for get or
updating it for put. From these rules, we can derive two synchronous rules:

` get () ∼ get ()
{
wget

}
` put s ∼ put s′

{
wput

}

where wget = λϕ s1 s2. ϕ ((s1, s1), (s2, s2)) and wput = λϕ s1 s2. ϕ (((), s), ((), s′)). These
rules can be derived from the rule for bindWrel , since by the monadic equations we can replace
for instance ` get () ∼ get ()

{
wget

}
by the following derivation

` ret () ∼ get ()
{
wgetl

}
∀u : 1, s2 : S2 ` getu ∼ ret s2

{
wgetr

}

` bindStS1 (ret ()) get ∼ bindStS2 (get ()) retStS2

{
bindWSt

relwgetl (λ(u, s2). wgetr)
}

where the last speci�cation reduces to wget using the de�nition of bindWSt
rel .

94 CHAPTER 6. RELATIONAL REASONING

6.1.2 Simple semantics

To de�ne a semantics for the` judgment above, we make the important observation that Wrel(A1, A2)
is a relative monad (see chapter 3) over the product (A1, A2) 7→ A1 × A2, as illustrated by the
type of bindWrel above (6.4), where the continuation speci�cation is passed a pair of results from
the �rst speci�cation. Similarly, we generalize monad morphisms to relative monads and ob-
serve that a relative monad morphism θrel : M1 A1 ×M2 A2 → Wrel(A1, A2) can immediately
give us a semantics for the judgment above:

�θrel c1 ∼ c2 { w } = θrel(c1, c2) ≤ w,

by asking that the speci�cation obtained by θrel is more precise than the user-provided speci�-
cation w. In the case of state, θSt

rel (c1, c2) = λϕ (s1, s2). ϕ (c1 s1, c2 s2) simply runs the two
computations and passes the results to the postcondition. If we unfold this, and the de�nition of

w′ ≤WSt
rel w = ∀ϕs1 s2. w ϕ (s1, s2)⇒ w′ ϕ (s1, s2), (6.9)

we obtain the standard semantics of a relational program logic for stateful computations (but
without other side-e�ects):

�θStrel
c1 ∼ c2 { w } = ∀ϕs1 s2. w ϕ (s1, s2)⇒ ϕ (c1 s1, c2 s2)

Another important point is that the relational e�ect observation can help us in deriving
simple e�ect-speci�c rules, such as the ones for get (6.7) and put (6.8) above. For deriving such
rules, one �rst has to choose c1 and c2 (and we hope that the product programs of section 6.4
can provide guidance on this in the future) and then one can simply compute the speci�cation
using θ. For instance, wgetl = λϕ (s1, s2). ϕ ((s1, s1), (a2, s2)) in the �rst get rule (6.7) really is
just θ(get (), ret a2). This idea is further discussed in subsection 6.2.5.

6.1.3 Exceptions, and why the simple semantics is not enough

While the simple construction we described so far works well for state, it does not work for
exceptions. For relating computations that can raise exceptions, we often need to use expressive
speci�cations that can tell whether an exception was raised or not in each of the computations.
For instance, such relational speci�cations could be drawn from:

WExc
rel (A1, A2) = ((A1 + E1)× (A2 + E2)→ P)→ P.

A predicate transformer w : WExc
rel (A1, A2) maps an exception-aware postcondition ϕ : (A1 +

E1)×(A2 +E2)→ P to a precondition, which is just a proposition in P. However, more work is
needed to obtain a compositional proof system. Indeed, suppose we have derivations for ` m1 ∼
m2 { wm } and ∀a1, a2,` f1 a1 ∼ f2 a2

{
wf (a1, a2)

}
with speci�cationswm, wf drawn from

WExc
rel . In order to build a composite proof relating c1 = bindExcm1 f1 and c2 = bindExcm2 f2

we need to be able to composewm andwf in some way. Ifwm ensures thatm1 andm2 terminate
both normally returning values, or throw an exception at the same time, we can compose with
wf or pass the exception to the �nal postcondition. Otherwise, a computation, say m1, returns
a value and the other, m2, raises an exception. In this situation, the speci�cation relating c1 and
c2 needs a speci�cation for the continuation f1 of m1, but this cannot be extracted out of wf
alone. In terms of the constructs of WExc

rel , this failure is an obstruction to complete the following
tentative de�nition of bindWExc

rel :
let bindW

Exc
rel wm (wf : A1 ×A2→ (((B1 + E1) × (B2 + E2))→P)→P) (ϕ : (B1 + E1) × (B2 + E2)→P) =

wm (λx : (A1 + E1) × (A2 + E2).
match x with
| Inl a1, Inl a2→wf a1 a2 ϕ
| Inr e1, Inr e2→ϕ (Inr e1, Inr e2)
| _→ ???)

6.2. SIMPLIFIED FRAMEWORK 95

Our solution is to pass in two independent unary (i.e., non-relational) speci�cations for the con-
tinuations f1 and f2 as additional arguments for bind:

let bindW
Exc
rel wm (wf1 : A1→ ((B1 + E1)→P)→P) (wf2 : A2→ ((B2 + E2)→P)→P) wf ϕ =

wm (λx : (A1 + E1) × (A2 + E2).
match x with
...
| Inl a1, Inr e2→wf1 a1 (λbe . ϕ be (Inr e2))
| Inr e1, Inl a2→wf2 a2 (λbe . ϕ (Inr e1) be))

The �rst new case corresponds to when m2 terminated with an exception whereas m1 returned
a value normally. In this situation, we use the unary speci�cation wf2 to further evaluate the
�rst computation, independently of the second one, which already terminated. It turns out that
this bindWExc

rel operation can still be used to de�ne a relative monad, but in a more complex
relational setting that we introduce in section 6.3. As a consequence of moving to this more
complex setting our relational judgment needs to also keep track of unary speci�cations, and its
semantics also becomes more complex. We tame this complexity by working this out internally
to a relational dependent type theory (Tonelli, 2013). In practice we can still implement this
relational dependent type theory inside our ambient type theory, in our case Coq, and continue
using the same tools for veri�cation.

6.2 Simpli�ed Framework

In this section we introduce a simple framework for relational reasoning about monadic pro-
grams based on (1) relational speci�cation monads, capturing relations between monadic pro-
grams, and (2) relational e�ect observations, lifting a pair of computations to their speci�cation.
By instantiating this framework with speci�c e�ects, we show how the speci�c rules of previous
relational program logics can be recovered in a principled way.

6.2.1 Speci�cations as (relative) monads

We extend the important idea from section 2.3 of giving the same algebraic footing to both com-
putations and speci�cations.

Moving to the relational setting, a relational speci�cation for a pair of stateful computations
c1 : StS1 A1 and c2 : StS2 A2 consist of a predicate transformer w mapping postconditions
relating 2 pairs of a result value and a �nal state to a precondition relating 2 initial states, i.e.,

WSt
rel (A1, A2) = ((A1 × S1)× (A2 × S2)→ P)→ S1 × S2 → P. (6.10)

WSt
rel does not posse the monad structure present on its unary variant. To begin with it is not even

an endofunctor: it takes two types as input and produces one. However, the monadic operations
of the unary variant do extend to the relational setting

let retW
St
rel (a1,a2):A1 ×A2 : WSt

rel (A1,A2) = λϕ (s1, s2). ϕ ((a1,s1), (a2,s2))

let bindW
St
rel (wm : WSt

rel (A1,A2)) (wf:A1 ×A2→WSt
rel (B1,B2)) : WSt

rel (B1,B2) =
λϕ (s1,s2). wm (λ ((a1,s1’),(a2,s2’)). wf (a1, a2) ϕ (s1’,s2’))

These operations satisfy equations analogs to the monadic ones and are part of a relative monad
structure in the sense of Altenkirch et al. (2015) (see also chapter 3). The relational speci�cations
for state WSt

rel are also naturally ordered by ≤WSt
rel (see (6.9)) and this ordering is compatible with

the relative monad structure, as long as we restrict our attention to monotonic predicate trans-
formers, a condition that we will assume from now on for all monads on predicate transformer.
We call such monad-like structure equipped with a compatible ordering a simple relational spec-
i�cation monad.

96 CHAPTER 6. RELATIONAL REASONING

De�nition 6.2.1. A simple relational speci�cation monad consist of

B for each pair of types (A1, A2), a type Wrel(A1, A2) equipped with a preorder ≤Wrel

B an operation retWrel : A1 ×A2 →Wrel(A1, A2)

B an operation bindWrel : Wrel(A1, A2) → (A1 × A2 → Wrel(B1, B2)) → Wrel(B1, B2)
monotonic in both arguments

B satisfying the 3 following equations

bindWrel (retWrel (a1, a2)) wf = wf (a1, a2) bindWrel wm retWrel = wm

bindWrel (bindWrel wmwf) wg = bindWrelwm(λx. bindWrel (wf x) wg)

for any a1 : A1, a2 : A2, w
f : A1 × A2→Wrel(B1, B2), wm : Wrel(A1, A2), wg : B1 ×

B2→Wrel(C1, C2).

A simple way to produce various examples of simple relational speci�cation monads besides
WSt

rel is to start from a (non-relational) speci�cation monad W, and to compose it with the func-
tion (A1, A2) 7→ A1 × A2. A result of Altenkirch et al. (2015) (prop. 2.3.(1)) then ensures that
Wrel(A1, A2) = W(A1 × A2) is a simple relational speci�cation monad. In the following para-
graphs, we illustrate this construction with a few concrete instances showing the �exibility of
this notion. Depending on the property we want to verify, we can pick simpler or more sophisti-
cated relational speci�cation monads among these. For instance, relational speci�cation monads
based on pre-/postconditions make the connection to relational program logics in the literature
more evident.

Backward predicate transformer A stateless version of WSt
rel is the predicate transformer

WPure
rel (A1, A2) = (A1 ×A2 → P)→ P

equipped with monadic operations and order derived from the monotonic continuation monad.
We call this simple relational speci�cation monad Pure because it naturally applies to the rela-
tional veri�cation of pure code, however it can also be useful to verify e�ectful code as we will
see for nondeterministic computations in subsection 6.2.5.

Pre-/postconditions Speci�cations written in terms of pre-/postconditions are simpler to un-
derstand than their predicate transformer equivalents. We show that relational speci�cations
written as pre-/postcondition also from a relational speci�cation monads. The type constructor

PPPure
rel (A1, A2) = P× (A1 ×A2 → P)

models a pair consisting of a precondition in P and a postcondition, that is a relation on �nal
values of two computations. There is a natural ordering between such pairs, namely

(pre1, post1) ≤PPSt
rel (pre2, post2) ⇐⇒ pre2 ⇒ pre1 ∧

∀(a1 : A1)(a2 : A2).post1(a1, a2)⇒post2(a1, a2).

The monadic structure is given by
let retPPPure

rel (a1, a2) = (>, λ(a1’, a2’). a1 = a1’ ∧ a2 = a2’)

let bindPPPure
rel (pre, post) f =

let pre’ = pre ∧ ∀a1, a2 . post (a1, a2) =⇒ π1 (f (a1, a2)) in
let post’ (b1, b2) = ∃a1, a2 . post (a1, a2) ∧ π2 (f (a1, a2)) (b1, b2) in
(pre’, post’)

The return operation results in a trivial precondition and a postcondition holding exactly for the
given arguments, whereas bindPPPure

rel strengthens the precondition of its �rst argument so that
the postcondition of the �rst computation entails the precondition of the continuation.

6.2. SIMPLIFIED FRAMEWORK 97

Stateful pre-/postconditions Continuing on pre-/postconditions, we consider a stateful vari-
ant of PPPure

rel :

PPSt
rel (A1, A2) = (S1 × S2 → P)× ((S1 ×A1 × S1)× (S2 ×A2 × S2)→ P)

These are pairs, where the �rst component consists of a precondition on a pair of initial states,
one for each sides, while the second component is a postcondition formed by a relation on triples
of an initial state, a �nal value and a �nal state.

The simple relational monadic speci�cation structure is similar to the one of PPPure
rel , thread-

ing in the state where necessary, and specifying that the initial state does not change for return:

let retPPSt
rel (a1,a2) = (λ (s1, s2) . >, λ((si1, a1’, sf1),(si1, a2’, sf2)) . a1 = a1’ ∧ a2 = a2’ ∧ si1 = sf1 ∧ si2 = sf2)

There is a natural embedding of stateful pre-/postconditions (pre, post) : PPSt
rel (A1, A2) into

stateful backward predicate transformers WSt
rel (A1, A2) given by

λϕ (si1, s
i
2). pre(si1, s

i
2) ∧

∀a1, a2, s
f
1 , s

f
2 .post ((si1, a1, s

f
1), (si2, a2, s

f
2))⇒

ϕ ((a1, s
f
1), (a2, s

f
2)) : WSt

rel (A1, A2).

Errorful backward predicate transformer If exceptions turn out to be complex in general,
a coarse approach is still possible using the simple relational monad

WErr
rel (A1, A2) = ((A1 ×A2 + 1)→ P)→ P. (6.11)

This construction represents a predicate transformer that works on either successful computa-
tions, or on an indication that at least one of the computations threw an exception, but losing
the information of which of the two sides raised the exception. We can actually show that, under
mild assumptions, any simple relational speci�cation monad accounting for exceptions cannot
distinguish the three situations where the left, the right, or both programs are raising exceptions.
Intuitively, this is due to the fact that the two programs are supposed to run independently but
the simple relational speci�cation monad impose some amount of synchronization. We return to
WExc

rel and solve this problem in section 6.3, while previous relational program logics have gen-
erally been stuck with weak speci�cation monads in the style of WErr

rel (A1, A2) above (Barthe
et al., 2016).

6.2.2 Relational semantics from e�ect observations

The relational judgment ` c1 ∼ c2 { w } should assert that monadic computations c1 : M1A1

and c2 : M2A2 satisfy a relational speci�cation w : Wrel(A1, A2) drawn from a simple rela-
tional speci�cation monad. What does satisfaction mean in our monadic framework? Certainly
it requires a speci�c connection between the computational monads M1, M2 and the simple rela-
tional speci�cation monad Wrel. Following the idea of the unary e�ect observations (section 2.4),
we introduce relational e�ect observations, families of functions respecting the monadic struc-
ture, de�ned here from �rst principles, but that can be easily seen to be an instance of a relative
monad morphism (section 3.2).

De�nition 6.2.2. A simple relational e�ect observation θrel from computational monads M1,M2

to a simple relational speci�cation monad Wrel is given by

B for each pair of types A1, A2 a function θrel : M1A1 ×M2A2 →Wrel(A1, A2)

B such that

θrel (retM1 a1, retM2 a2) = retWrel (a1, a2)

θrel (bindM1 m1 f1, bindM2 m2 f2) = bindWrel (θrel (m1,m2)) (θrel ◦ (f1, f2))

98 CHAPTER 6. RELATIONAL REASONING

As explained in the introduction, for stateful computations a simple relational e�ect obser-
vation targeting WSt

rel runs the two computations and passes the results to the postcondition:

θSt
rel (c1, c2) = λϕ (s1, s2). ϕ(c1 s1, c2 s2). (6.12)

A more interesting situation happens when interpreting nondeterministic computations (c1, c2) :
NDetA1×NDetA2 into the relational speci�cation monad WPure

rel (A1, A2). Two natural simple
relational e�ect observations are given by

θ∀rel(c1, c2) = λϕ. ∀a1 ∈ c1, a2 ∈ c2. ϕ(a1, a2), (6.13)
θ∃rel(c1, c2) = λϕ. ∃a1 ∈ c1, a2 ∈ c2. ϕ(a1, a2). (6.14)

The �rst one θ∀rel prescribes that all possible results from the left and right computations have to
satisfy the relational speci�cation, corresponding to a demonic interpretation of nondetermin-
ism, whereas the angelic θ∃rel requires at least one �nal value on each sides to satisfy the relation.

These examples are instances of the following theorem, which allows to lift unary e�ect
observations to simple relational e�ect observations. To state it, we �rst recall that two compu-
tations c1 : MA1 and c2 : MA2 commute (Bowler et al., 2013; Führmann, 2002) when

bindM c1

(
λa1. bindM c2

(
λa2. retM(a1, a2)

))
= bindM c2

(
λa2. bindM c1

(
λa1. retM(a1, a2)

))
.

The intuition is that executing c1 and then c2 is the same as executing c2 and then c1.

Theorem 6.2.1. Let θ1 : M1 → W and θ2 : M2 → W be unary e�ect observations, where
M1 and M2 are computational monads and W is a (unary) speci�cation monad. We denote with
Wrel(A1, A2) = W (A1×A2) the simple relational speci�cationmonad derived fromW (see subsec-
tion 6.2.1). If for all c1 : M1A1 and c2 : M2A2, we have that θ1(c1) and θ2(c2) commute, then the
following function θrel : M1A1 ×M2A2 →Wrel(A1, A2) is a simple relational e�ect observation

θrel(c1, c2) = bindW θ1(c1)
(
λa1. bindW θ2(c2)

(
λa2. retW(a1, a2)

))
.

In general, given a simple relational e�ect observation θrel : M1,M2 → Wrel, we de�ne the
semantic relational judgment by

�θrel c1 ∼ c2 { w } = θrel (c1, c2) ≤Wrel w, (6.15)

where we make use of the preorder given by Wrel. The following 3 subsections explain how
to derive rules for a relational logic parameterized by the computational monads M1,M2, the
simple relational speci�cation monad Wrel, and the simple relational e�ect observation θrel.

6.2.3 Pure relational rules

We start with rules coming from the ambient dependent type theory. Even though the semantics
of the relational judgment depends on the choice of an e�ect observation, the soundness of basic
pure rules introduced in Figure 6.1 is independent from both the computational monads and
e�ects observation. Indeed, the proof of soundness of these follows from applying the adequate
dependent eliminator coming from the type theory.

These rules can then be tailored as explained in the introduction to derive asynchronous (6.1)
or synchronous (6.2) rules more suited for applications. For some of the derived rules, there is,
however, an additional requirement on the simple relational speci�cation monad, so that we can
strengthen preconditions.

Most of the examples of speci�cation monads we work with actually provide enough struc-
ture to strengthen preconditions. An adequate extension of speci�cation monads to provide such
strengthening operations and solve this shortcoming also relevant in the unary setting is left as
future work.

6.2. SIMPLIFIED FRAMEWORK 99

B-Elim
if b then ` c1 ∼ c2

{
w>

}
else ` c1 ∼ c2

{
w⊥

}

` c1 ∼ c2

{
if b then w> else w⊥

}
0-Elim1 w ≤ ⊥̇

` c1 ∼ c2 { w }

N-Elim

n : N w = elimN w0 wsuc ` c1[0/n] ∼ c2[0/n] { w0 }
∀n : N, ` c1 ∼ c2 { wn } ⇒ ` c1[Sn/n] ∼ c2[Sn/n] { wsuc (wn) }

` c1 ∼ c2 { w n }

Figure 6.1: Pure relational rules

Ret
a1 : A1 a2 : A2

` retM1 a1 ∼ retM2 a2

{
retW (a1, a2)

} Weaken
` c1 ∼ c2 { w } w ≤ w′

` c1 ∼ c2

{
w′
}

Bind
` m1 ∼ m2 { wm } ∀a1, a2 ` f1 a1 ∼ f2 a2

{
wf (a1, a2)

}

` bindM1 m1 f1 ∼ bindM2 m2 f2

{
bindWrel wmwf

}

Figure 6.2: Generic monadic rules in the simple framework

6.2.4 Generic monadic rules

Given any computational monads M1,M2 and a simple relational speci�cation monad Wrel, we
introduce three rules governing the monadic part of a relational program logic (Figure 6.2). Each
of these rules straightforwardly corresponds to a speci�c aspect of the simple relational speci�-
cation monad and are all synchronous. As explained in the introduction (6.5), it is then possible
to derive asynchronous variants using the monadic laws of the computational monads.

Theorem 6.2.2 (Soundness of generic monadic rules). The relational rules in Figure 6.2 are sound
with respect to any relational e�ect observation θrel, that is ` c1 ∼ c2 { w } ⇒ ∀θrel, �θrel c1 ∼
c2 { w }.

Proof. For rules Ret and Bind, we need to prove that θrel(retM1 a1, retM2a2) ≤ retW(a1, a2)
and θrel (bindM1 m1 f1, bindM2 m2 f2) ≤ bindW (θrel (m1,m2)) (θrel◦(f1, f2)), which both hold
by the relational e�ect observation laws and re�exivity. For Weaken, we need to show that
θrel(c1, c2) ≤ w′ under the assumptions that θrel(c1, c2) ≤ w and w ≤ w′ so we conclude by
transitivity.

We note that the soundness proof would still be valid if we were to weaken the relational
e�ect observation laws to inequalities. A few examples for such lax relational e�ect observation
appears naturally, for instance in order to deal with variants of relational partial correctness,
but we will not consider these in this paper. We further discuss this in the future work section
(section 6.5).

6.2.5 E�ect-speci�c rules

The generic monadic rules together with the rules coming from the ambient type theory allow to
derive relational judgments for the main structure of the programs. However, these rules are not

2Assuming that Wrel contains a top element ⊥̇ that entails falsity of the precondition; this is the case for all our
examples.

100 CHAPTER 6. RELATIONAL REASONING

enough to handle full programs written in the computational monads M1 and M2, as we need
rules to reason about the speci�c e�ectful operations that these monads provide. The soundness
of e�ect speci�c relational rules is established with respect to a particular choice of relational
e�ect observation θrel : M1,M2 →Wrel. Consequently, we make essential use of θrel to introduce
e�ect speci�c rules. The recipe was already illustrated for state in the introduction: �rst pick a
pair of e�ectful algebraic operations (or ret for the asynchronous rules), unfold their de�nition,
and then compute a sound-by-design relational speci�cation for this pair by simply applying θrel.
By following this recipe, we are decoupling the problem of choosing the computations on which
these rules operate (e.g., synchronous vs. asynchronous rules to which we return in section 6.4)
from the problem of choosing sensible speci�cations, which is captured in the choice of θrel.

Non-deterministic computations The two relational e�ect observations θ∀rel and θ∃rel provide
di�erent relational rules for the operation pick. As an example of how the recipe works, suppose
that we want to come up with an asymmetric rule for non-deterministic computations that works
on the left program, and which is sound with respect to θ∀rel. This means that the conclusion will
be of the form ` pick ∼ ret a2 { w } for some w : PPPure

rel . To obtain w, we apply the e�ect
observation to the computations involved in the rule

w = θ∀rel (pick, ret a2) = λϕ. ∀b ∈ {true, false}, a ∈ {a2}.ϕ(b, a),

obtaining thus a rule which is trivially sound:
DemonicLeft ` pick ∼ ret a2 { λϕ. ϕ(true, a2) ∧ ϕ(false, a2) } .

Following the same approach, we can come up with an asymmetric rule on the right as well as
a symmetric one. For concreteness, we show the symmetric rule for the e�ect observation θ∃rel:

Angelic
` pick ∼ pick

{
λϕ.

ϕ(true, true) ∨ ϕ(true, false) ∨
ϕ(false, true) ∨ ϕ(false, false)

}

.

Exceptions using WErr
rel

Taking M1 and M2 to be exception monads on exception setsE1 and
E2, and the relational speci�cation monad WErr

rel (Equation 6.11 on page 97), we have an e�ect
observation interpreting any thrown exception as a unique erroneous termination situation, that
is
let θ Err ((c1, c2) : Exc A1 ×Exc A2) : WrelErr (A1,A2) =
λϕ. match c1, c2 with | Inl a1, Inl a2→ϕ (Inl (a1, a2)) | _, _→ϕ (Inr ())

Under this interpretation we can show the soundness of the following rules:

ThrowL ` throw e1 ∼ ret a2 { λϕ. ϕ(inr ()) }

ThrowR ` ret a1 ∼ throw e2 { λϕ. ϕ(inr ()) }

Catch

` c1 ∼ c2 { w } ∀e1 e2 ` cz1 e1 ∼ cz2 e2

{
wz

}

∀e1 a2 ` cz1 e1 ∼ ret a2

{
wz

}
∀a1 e2 ` ret a1 ∼ cz2 e2

{
wz

}

` catch c1 c
z
1 ∼ catch c2 c

z
2 { λϕ.w(λa0. match a0with Inl a→ϕa | Inr ()→wz ϕ) }

The rules ThrowL and ThrowR can be derived using the recipe above, but the exceptions have
to be con�ated to the same exceptional result inr (), a situation that is forced by the choice of
relational e�ect observation and a weak speci�cation monad. As a consequence, the Catch rule
has to consider three exceptional cases. The speci�cation for Catch does not follow mechani-
cally from θErr

rel using our recipe since it is a handler and not an algebraic operation.

6.3. GENERIC FRAMEWORK 101

6.3 Generic Framework

While the simple framework works well for a variety of e�ects, it falls short of providing a
convincing treatment of e�ects with control such as exceptions or non-termination. This limi-
tation is due to the fact that simple relational speci�cation monads merge tightly together the
speci�cation of two independent computations. We now explain how to overcome these limi-
tations starting with the example of exceptions, and how it leads to working inside a relational
dependent type theory. Informed by the generic constructions on relative monads underlying
the simple setting, we derive notions of relational speci�cation monad and relational e�ect ob-
servation in this enriched setting. These relational speci�cation monads require an important
amount of operations so we introduce relational speci�cation monad transformers for state and
exceptions, simplifying the task of building complex relational speci�cation monad from simpler
ones.

6.3.1 Exceptional control �ow in relational reasoning

We explained in subsection 6.2.5 how to prove relational properties of programs raising excep-
tions, as long as we give up on the knowledge of which program raised an exception at the level
of relational speci�cations. This restriction prevents us from even stating natural speci�cations
such as simulations “if the left program raises, so does the right one”.

In order to go beyond this unsatisfying state of a�airs, we consider a type of relational spec-
i�cations allowing to write speci�cations consisting of predicate transformers mapping a post-
condition on pairs of either a value or an exceptional �nal state to a proposition:

WExc
rel (A1, A2) = ((A1 + E1)× (A2 + E2)→ P)→ P.

For instance, the speci�cation above can be stated as λϕ. ∀ae1ae2.(Inr?ae1 ⇒ Inr?ae2) ⇒
ϕ(ae1, ae2) : WExc

rel (A1, A2), where Inr? ae = match ae with Inr _→>| _→⊥.
As explained in section 6.1, this type does not admit a monadic operation bindwmwf using

only a continuation of type wf : A1×A2 →WExc
rel (B1, B2) due to the fact that wm could result

in an intermediate pair consisting of a normal value on one side and an exception on the other
side. Our solution is to provide to bindWExc

rel the missing information it needs in such cases.
To that purpose, we use the unary speci�cation monads WExc

1 A1 = (A1 + E1→P)→P and
WExc

2 A2 = (A2 +E2→P)→P to provide independent speci�cations of each program. With the
addition of these, we can write a function that relies on the unary speci�cations when the results
of the �rst computations di�er (one raise an exception and the other returns).

val bindW
Exc
rel : WExc

rel (A1,A2)→ (A1→WExc
1 B1)→ (A2→WExc

2 B2)→
(A1 ×A2→WExc

rel (B1,B2))→WExc
rel (B1,B2)

let bindW
Exc
rel wm (f1 : A1→ ((B1 + E1)→P)→P) (f2 : A2→ ((B2 + E2)→P)→P) f =

λ(ϕ : (B1 + E1)→P).
wm (λ ae : (A1 + E1) × (A2 + E2).

match ae with
| Inl a1, Inl a2→ f a1 a2 ϕ | Inl a1, Inr e2 → f1 a1 (λ be→ϕ be (Inr e2))
| Inr e1, Inr e2→ϕ (Inr e1, Inr e2) | Inr e1, Inl a2→ f2 a2 (λ be→ϕ (Inr e1) be))

6.3.2 A problem of context

In order to keep track of these unary speci�cations drawn from WExc
1 and WExc

2 in the relational
proofs, we extend the relational judgment to

` c1 {w1} ∼ c2 {w2} | wrel.

Here, w1 : WExc
1 A1 is a unary speci�cation for c1 : Exc1A1, symmetrically w2 : WExc

2 A2 is a
unary speci�cation for c2 : Exc2A2, and wrel : WExc

rel (A1, A2) speci�es the relation between the

102 CHAPTER 6. RELATIONAL REASONING

programs c1 and c2. Using this richer judgment, we would like a rule for sequencing computa-
tions as follows, where a bold variable w stands for the triple (w1, w2, wrel):

` m1 {wm1 } ∼ m2 {wm2 } | wmrel ∀a1, a2 ` f1 a1 {wf1 a1} ∼ f2 a2 {wm2 a2} | wfrel a1 a2

` bindExc1 m1 f1 {bindWExc
1 wm1 wf1} ∼ bindExc2 m2 f2 {bindWExc

2 wm2 wf2} | bindWExc
rel wm wf

What would the semantics of such a relational judgment be? A reasonable answer at �rst
sight is to state formally the previous intuition in terms of unary and relational e�ect observa-
tions:

� c1 {w1} ∼ c2 {w2} | wrel = θExc
1 c1 ≤ w1 ∧ θExc

2 c2 ≤ w2 ∧ θExc
rel (c1, c2) ≤ wrel

However this naive attempt does not validate the rule for sequential composition above. The
problem lies in the management of context. To prove the soundness of this rule, we have
in particular to show that θExc

1 (bindExc1 m1 f1) ≤ bindWExc
1 wm1 wf1 under the hypothesis

θExc
1 m1 ≤ wm1 ∧ . . . and ∀a1, a2, θ

WExc
1 (f1 a1) ≤ wf1 a1 ∧ . . ., in particular the second hy-

pothesis requires an element a2 : A2 that prevents2 us from concluding by monotonicity of
bindWExc

1 .
This problematic hypothesis only depends on the part of the context relevant for the left

program and not on the full context, so we introduce structured contexts Γ = (Γ1,Γ2) in our
judgments, where Γ1 and Γ2 are simple contexts. The judgment Γ ` c1 {w1} ∼ c2 {w2} | wrel
now presupposes that Γi ` ci : MiAi, Γi ` wi : Wi (i = 1, 2) and that Γ1,Γ2 ` wrel :
Wrel(A1, A2). The semantics of this judgment is given by

Γ � c1 {w1} ∼ c2 {w2} | wrel =

∀γ1 : Γ1, θ1(c1 γ1) ≤ w1 γ1,
∀γ2 : Γ2, θ2(c2 γ2) ≤ w2 γ2,

∀(γ1, γ2) : Γ1 × Γ2, θrel(c1 γ1, c2 γ2) ≤ wrel(γ1, γ2)

(6.16)

A conceptual understanding of this interpretation that will be useful in the following is to con-
sider Γ as a (trivial) relation Γr = (Γ1,Γ2, λ(γ1 : Γ1)(γ2 : Γ2). 1) instead of a pair and de�ne
the family of relations Θr(γ) = (Θ1(γ1),Θ2(γ2),Θrelγ) dependent over Γr:

Θ1(γ1 : Γ1) = θ1(c1 γ1) ≤ w1 γ1, Θ2(γ2 : Γ2) = θ2(c2 γ2) ≤ w2 γ2,

Θrel(γ : Γ)(w1 : Θ1 γ1, w2 : Θ2 γ2) = θrel(c1 γ1, c2 γ2) ≤ wrelγ.

Then the relational judgment Γ � c1 {w1} ∼ c2 {w2} | wrel can be interpreted as a dependent
function (γ : Γr)→ Θr γ in an appropriate relational dependent type theory.

6.3.3 A relational dependent type theory

Adding unary speci�cations in the relational judgment enables a full treatment of exceptions,
however the pure rules of section subsection 6.2.3 do not deal with a structured context Γr =
(Γ1,Γ2,Γrel). In order to recover rules dealing with such a context, we apply the same recipe
internally to a relational dependent type theory as described by Tonelli (2013). In practice, this
type theory is described as a syntactic model in the sense of Boulier et al. (2017), that is a transla-
tion from a source type theory to a target type theory that we take to be our ambient type theory,
where a type in the source theory is translated to a pair of types and a relation between them.
We call the resulting source type theory RDTT and describe part of its construction in Figure 6.3,

2Instead of insisting that ` c1 {w1} ∼ c2 {w2} | wrel proves the correctness of c1 and c2 with respect to w1

and w2 we could try to presuppose it, however this idea does not fare well since it would require a property akin
of cancellability with respect to bind θExc

1 (bindExc1 m1 f1) ≤ bindW
Exc
1 wm1 wf1 ⇒ θExc

1 m1 ≤ wm1 that has no
reason to hold in our examples.

6.3. GENERIC FRAMEWORK 103

Ar, Br,Γr ::= 0r | 1r | Br | Nr | Ar +Br | (a : Ar)×Br a | (a : Ar)→ Br a

J−K maps a relational type Ar to its underlying representation JArK = (A0, A1, Ar)

J0rK = (0,0,=) J1rK = (1,1,=) JBrK = (B,B,=) JNrK = (N,N,=)

JAr +BrK =

ab1 : A1 +B1

ab2 : A2 +B2

case (ab1, ab2)

(inl a1, inl a2).Arel a1 a2

(inr b1, inr b2).Brel b1 b2
(_ , _). 0

J(a : Ar)×Br aK =

(a1, b1) : (a1 : A1)×B1 a1,
(a2, b2) : (a2 : A2)×B2 a2,
(ar : Ar a1 a2)×Br a1 a2 ar b1 b2

J(a : Ar)→ Br aK =

f1 : (a1 : A1)→ B1 a1,
f2 : (a2 : A2)→ B2 a2,
(a1 : A1)(a2 : A2)(ar : Ar a1 a2)→ Br a1 a2 ar (f1 a1) (f2 a2)

Figure 6.3: Syntax of RDTT and translation to base type theory

Jelim_sumK : (P1 : A1 +B1 → Type)→ (P2 : A2 +B2 → Type)→
(Prel : ∀(ab1 : A1 +B1)(ab2 : A2 +B2), (Ar +Br)rel ab1 ab2 → Type)→
(∀(a1 : A1), P1 (inl a1))→ (∀(a2 : A2), P2 (inl a2))→
(∀a1 a2 (arel : Ar a1 a2), Prel (inl a1) (inl a2) arel)

(∀(b1 : B1), P1 (inr b1))→ (∀(b2 : B2), P2 (inr b2))→
(∀b1 b2 (brel : Br b1 b2), Prel (inr b1) (inr b2) brel)→
∀ab1 ab2 (abrel : (Ar +Br)rel ab1 ab2), Prel ab1 ab2 abrel

Figure 6.4: Translation of the eliminator for sums in RDTT

providing the de�nition of types and omitting the terms and typing judgements. A systematic
construction of RDTT at the semantic level is obtained by considering families of types and
functions indexed by the span (1← rel→ 2), a special case of Kapulkin and Lumsdaine (2018);
Shulman (2014).

Moving from our ambient type theory to RDTT informs us on how to de�ne rules coming
from the type theory. For instance, generalizing the rule for if-then-else, we can use the motive
P (ab : Ar +Br) = Θr(ab) : Typer on the dependent eliminator for sum type

elim_sum : (P : (Ar+Br)→Typer)→ (a : Ar→P a)→ (b : Br→P b)→ (x : Ar+Br)→P x

to obtain a rule for case splitting. This eliminator translates to a large term described in Figure 6.4
that induces the following relational rule usingwl = (wl1, w

l
2, w

l
rel),wr = (wr1, w

r
2, w

r
rel) and the

relational speci�cations of the conclusion – where we abbreviate pattern matching with a case

104 CHAPTER 6. RELATIONAL REASONING

construction – as arguments to the eliminator

Γ,a : Ar ` c1[inl a1/ab1] {wl1} ∼ c2[inl a2/ab2] {wl2} | wlrel[arel/abrel]
Γ, b : Br ` c1[inr b1/ab1] {wr1} ∼ c2[inr b2/ab2] {wr2} | wrrel[brel/abrel]

Γr,ab : Ar +Br `
c1 {case ab1 [inl a1.w

l
1 | inr b1.wr1]}

∼
c2 {case ab2 [inl a2.w

l
2 | inr b2.wr2]}

∣∣∣∣∣ case ab1, ab2

[
inl a1, inl a2.w

l
rel

inr b1, inr b2.wrrel

]

As in the simple setting, we can then re�ne this rule to obtain synchronous or asynchronous
rules specifying a prescribed shape for the programs c1, c2.

6.3.4 Relational speci�cation monads

Motivated by the case of exceptions, we now de�ne the general notion of a relational speci�ca-
tion monad. This de�nition is obtained by instantiating the de�nitions of an (enriched) relative
monad from chapter 3 to our relational dependent type theory, ensuring that we obtain a the-
ory uniform with the simple setting, and crucially that we can use the same methodology to
introduce relational rules.

What we ought to call a relational speci�cation monad should assign to any pair of types
(A1, A2), a triple of ordered types (W1A1,W2A2,Wrel(A1, A2)) corresponding respectively to
the type of unary speci�cations for the left and right programs, together with the type of rela-
tional speci�cations.

This description would invite us to consider relational speci�cation monad as Pos-enriched
functors Set2 → Pos3 with a relative monad structure with respect to the base functor

J :

{
Set2 −→ Pos3

(A1, A2) 7−→ (DiscA1,DiscA2,DiscA1 ×DiscA2)

There is however a small discrepancy: if W is such aJ -relative monad, its value at a pair of types
(A1, A2) is a triple (W1(A1, A2),W2(A1, A2),Wrel(A1, A2)) where the �rst and second compo-
nent can respectively depend on A2 and A1, a feature that we do not expect from a relational
speci�cation monad.

A �rst way to solve this discrepancy would be by enforcing that the �rst and second projec-
tions come from unary speci�cation monads. If W1,W2 are two (unary) speci�cation monads,
we can pair these together to de�ne a monad relative to Disc×Disc : Set2 → Pos2

W1 ×W2 : Set2 −→ Pos2

Since we have a commuting triangle of (Pos-enriched) functors

Set2 Pos3

Pos2
Disc×Disc

J

π12

we could de�ne a relational speci�cation monad W to be J -relative monad lifting W1 ×W2

along the functor π12 : Pos3 −→ Pos2.
We choose to use a second, slightly more convoluted solution, that has the bene�t of making

clearer the connection with the relational dependent type theory of the previous section. More-
over, it provides a de�nition that does not involve any lifting condition, presumably simpler to
implement inside an intensional type theory such as Coq.

Recall the following categorical presentation of relations. If C is a category, the category
Span(C) consists of spans in C, that is diagramsC1←Crel→C2 in C, and morphisms of spans, that

6.3. GENERIC FRAMEWORK 105

is morphisms (f1, f2, frel) : (C1←Crel→C2) → (D1←Drel→D2) in C such that the following
diagram commute

C1 Crel C2

D1 Drel D2

f1 frel f2

We are concerned with the case C = Pos . Since Span(Pos) is cartesian closed, with internal
hom betweenA = A1←Arel→A2 andB = B1←Brel→B2 given by the span

A⇒ B = Pos(A1, B1)← (A⇒ B)rel → Pos(A2, B2)

(A⇒ B)rel = (f1 : Pos(A1, B1))× (f2 : Pos(A2, B2))× (frel : Pos(Arel, Brel))

×{∀(arel : Arel), p1(frel arel) = f1 (p1 arel) ∧ p2(frel arel) = f2 (p2 arel)}

we can enrich it over itself, yielding the enrich category Span(Pos). Similarly to the discussion
above, we de�ne an enriched base functor J× whose de�nition on a pair of types (A1, A2) is
given by the span

J×(A1, A2) = DiscA1
π1←− DiscA1 ×DiscA2

π2−→ DiscA2.

Now, a J×-relative monad W is almost what we need to interpret relational speci�cations: it
consists of a mapping from pairs of types (A1, A2) to a spans

W1(A1, A2)←Wrel(A1, A2)→W2(A1, A2),

together with return and bind operations satisfying monotonicity conditions. We tame the po-
tential dependency of W1 in A2 (respectively W2 in A1) thanks to the following theorem.

Theorem 6.3.1. The mapping (̃·) from J×-relative monad to J×-relative monad sending

W(A1, A2) = W1(A1, A2)←Wrel(A1, A2)→W2(A1, A2)

to
W̃(A1, A2) = W1(A1,1)←Wrel(A1, A2)→W2(1, A2)

extends to an idempotent monad on the category of J×-relative monads.

In particular any J×-relative monad can be canonically completed so that W1 and W2 re-
spectively depend only on A1 or A2 when applied to the pair (A1, A2).

Proof. Let W be J×-relative monad and W1
p1←− Wrel

p2−→ W2 its components. The main idea
of the proof is that W1(A1, A2) cannot depend essentially on A2 because of the constraints of
the J×-relative monad structure. This is made more formal by the following observation: let
A1, X2, Y2 be sets, then the map

ϕ1
A1,X2,Y2 = bindW

1 A1,X2,A1,Y2 (retW
1 A1,Y2) ∈ Pos(W1(A1, X2),W1(A1, Y2)),

where we wrote explicitly as subscript the sets at which we instantiate the monadic operations
of W, is an isomorphism. Its inverse is ϕ1

A1,Y2,X2
as shown by the following elementary compu-

tation

ϕ1
A1,X2,Y2 ◦ ϕ1

A1,Y2,X2
= bindW

1 A1,X2,A1,Y2 (retW
1 A1,Y2) ◦ bindW

1 A1,Y2,A1,X2 (retW
1 A1,X2)

= bindW
1 A1,Y2,A1,Y2

(
bindW

1 A1,X2,A1,Y2 (retW
1 A1,Y2) ◦ (retW

1 A1,X2)
)

= bindW
1 A1,Y2,A1,Y2 (retW

1 A1,Y2)

= idW1(A1,Y2).

106 CHAPTER 6. RELATIONAL REASONING

We note ϕ2
A2,X1,Y1

∈ Pos(W2(X1, A2),W2(Y1, A2)) the corresponding isomorphism for W2.
With this observation in hand, we de�ne a J×-relative monad structure on

W̃(A1, A2) = W1(A1, 1)
p̃1←−Wrel(A1, A2)

p̃2−→W2(1, A2)

where p̃1 = ϕ1
A1,A2,1 ◦ p1 and p̃2 = ϕ2

A2,A1,1 ◦ p2. The return operation of W̃ is simply the
adequate restriction of W where the triangles on both sides commute by naturality of retW

A1 A1 ×A2 A2

W1(A1,1) W1(A1, A2) Wrel(A1, A2) W2(A1, A2) W2(1, A2)

retW̃1

retW1

π1 π2

retW̃rel retW2
retW̃2

W1(A1,!) p1 p2 W2(!,A2)

The de�nition of bind is slightly more involved. We need to de�ne a morphism of span bindW̃ =

(bindW̃
1 , bind

W̃
2 , bind

W̃
rel) for sets A1, A2, B1, B2

bindW̃ : Span(Pos)(J×(A1, A2), W̃(B1, B2))→ Span(Pos)(W̃(A1, A2), W̃(B1, B2)).

The components bindW̃
1 and bindW̃

2 are provided respectively by the adequate instantiations of

bindW
1 : Pos(A1,W1(B1, 1))→ Pos(W1(A1, 1),W1(B1,1)) and

bindW
2 : Pos(A2,W2(1, B2))→ Pos(W2(1, A2),W2(1, B2))

In order to de�ne the component bindW̃
rel onf = (f1, f2, frel) ∈ Span(Pos)(J×(A1, A2), W̃(B1, B2)),

that is morphisms

f1 ∈ Pos(A1,W1(B1, 1)), frel ∈ Pos(A1 ×A2,Wrel(B1, B2)), f2 ∈ Pos(A2,W2(1, B2)),

we complete where needed with ϕ(·) and de�ne bindW̃
rel f = bindW

rel (ϕ1
A1,1,B2

◦ f1, ϕ
2
A2,1,B1

◦
f2, frel). The following diagram shows that this indeed de�ne a morphism of spans as required
(we only show it for the �rst projection, the second projection being symmetric).

A1 A1 ×A2

W1(A1,1)

W1(A1, 1) W1(A1, A2) Wrel(A1, A2)

bindW1 f1

bindW1 f1

bindW1 (ϕ1
A1,1,A2

◦f1)
bindW̃rel f

ϕ1
A1,1,A2

ϕ1
A1,A2,1

p1

The monadic laws for W̃ are straightforward consequences of the same laws for W. The functo-
rial action of (̃·) just restricts a J×-relative monad morphism to the adequate components. The
return operation of (̃·) as a monad is the span morphism

(ϕ1
A1,A2,1, ϕ

2
A2,A1,1, idWrel(A1,A2)) : W(A1, A2) −→ W̃(A1, A2)

while multiplication is the identity, obviously making the monad idempotent.

This discussion lead us to the following elementary de�nition of a relational speci�cation
monad.

6.3. GENERIC FRAMEWORK 107

De�nition 6.3.1. A relational speci�cation monad consist of

B for each pair of types (A1, A2), types W1A1,W2A2 and a relation Wrel(A1, A2) : W1A1 →
W2A2 → Type between them, each equipped with a preorder ≤W;

B operations

retW1 : A1 →W1A1 retW2 : A2 →W2A2

retWrel : (a1, a2) : A1×A2 →Wrel(A1, A2) (retW1 a1) (retW2 a2)

B operations

bindW1 : W1A1 → (A1 →W1B1)→W1B1

bindW2 : W2A2 → (A2 →W2B2)→W2B2

bindWrel : wm1 : W1A1 → wm2 : W2A2 → wmrel : Wrel(A1, A2)wm1 wm2 →
wf1 : (A1 →W1B1)→ wf2 : (A2 →W2B1)→
wfrel : (((a1, a2) : A1 ×A2)→Wrel(B1, B2) (wf1 a1) (wf2 a2))→
Wrel(B1, B2) (bindW1wm1 wf1) (bindW2wm2 wf2)

monotonic in all arguments

B satisfying equations analogous to the monadic laws

B as well as monotonic operations τ1 : w1 : W1A1 → Wrel(A1, 1)w1 (retW2 ()) and τ2 :
w2 : W2A2 →Wrel(1, A2) (retW1 ())w2 satisfying certain compatibility with the monadic
operations detailed in the discussion below.

If the presence of the operations τ1 and τ2 can seem surprising, they ensure that we can
construct exception transformers (see subsection 6.3.6). In order to explain what these operations
are, �rst note that from a J×-relative monad W = (W1←Wrel→W2), we can derive four unary
speci�cation monads – two for each legs of the span – by combining restrictions of the domain
and projections:

W1
1A = W1(A, 1) WΣ

1 A = (w : W1(A,1))×Wrel(A,1) w (retW2 ())

W1
2A = W2(1, A) WΣ

2 A = (w : W2(1, A))×Wrel(1, A) (retW1 ()) w

There are obvious projections π1 : WΣ
1 →W1

1 and π2 : WΣ
2 →W1

2 that preserves the monadic
structure. We require τ1 (resp. τ2) to be induced by a section of π1, in particular it needs to be a
monad morphism.

In most of our examples the relation part of the monad is actually constant, simplifying
further the type of operations to:

retWrel : A1 ×A2 →Wrel(A1, A2)

bindWrel : W1A1 →W2A2 →Wrel(A1, A2)→
(A1 →W1B1)→ (A2 →W2B1)→ (A1 ×A2 →Wrel(B1, B2))→Wrel(B1, B2)

This happens for our leading example of exceptions, but also for any relational speci�cation
monad constructed out of a simple relational speci�cation monad. Indeed, we can associate to
any simple relational speci�cation monad Wrel the relational speci�cation monad W(A1, A2) =
(Wrel(A1, 1),Wrel(1, A2), λw1w2. Wrel(A1, A2)). The monadic operations just discard the su-
per�uous arguments and τ1, τ2 are just identities.

108 CHAPTER 6. RELATIONAL REASONING

Weaken
Γr ` c1 {w1} ∼ c2 {w2} | wrel w1 ≤W1 w′1 w2 ≤W2 w′2 wrel ≤Wrel w′rel

Γr ` c1 {w′1} ∼ c2 {w′2} | w′rel

Ret
Γ1 ` a1 : A1 Γ2 ` a2 : A2

Γr ` retM1a1 {retW1a1} ∼ retM2a2 {retW2a2} | retWrel(a1, a2)

Bind

Γr ` m1 {wm1 } ∼ m2 {wm2 } | wm
Γr,a : Ar ` f1 a1 {wf1 a1} ∼ f2 a2 {wm2 a2} | wf a

Γr `
bindM1 m1 f1 {bindW1 wm1 wf1}∼
bindM2 m2 f2 {bindW2 wm2 wf2}

∣∣∣∣∣ bind
Wrel wm wf

Figure 6.5: Generic monadic rules in the full relational setting

6.3.5 Relational e�ect observations

The adequate notion of morphism between relational speci�cation monad is given by relative
monad morphisms over (IdSet2 ,J×) : IdSet2 → J× (see subsection 3.5.1), that we unravel here
for concreteness.

De�nition 6.3.2. A relational e�ect observation consists of a triple θ = (θ1, θ2, θrel) : M1⊗M2→W
where θ1 : M1 →W1, θ2 : M2 →W2 are (plain) monad morphisms, and

θrel : ((m1,m2) : M1A1 ×M2A2)→Wrel(A1, A2) (θ1m1) (θ2m2)

verify the two equations with respect to the monadic operations

θrel(retM1 a1, retM2 a2) = retWrel (a1, a2) : Wrel(A1, A2) (θ1 (retM1 a1)) (θ2 (retM2 a2))

θrel(bindM1m1 f1, bindM2m2 f2) = bindWrel (θ1m1) (θ2m2) (θrelmrel) θ1◦f1 θ2◦f2 θrel◦(f1 × f2)

Given a relational e�ect observation θ : M1⊗M2 →W, we can de�ne in full generality the
semantics of the relational judgment by the Equation 6.16. We introduce the generic monadic
rules in Figure 6.5, and similarly to the simple setting obtain the following soundness theorem.

Theorem 6.3.2 (Soundness of monadic rules). The relational rules in Figure 6.5 are sound with
respect to any relational e�ect observation θ, that is

Γr ` c1 {w1} ∼ c2 {w2} | wrel ⇒ ∀θ,Γr �θ c1 {w1} ∼ c2 {w2} | wrel

6.3.6 Relational speci�cation monad transformers

Having a category of relational speci�cation monads, we de�ne a relational speci�cation monad
transformer to be a pointed endofunctor on this category (Lüth and Ghani, 2002). We show that
the usual state and exception transformer lifts to this setting, yielding in each case both a left-
variant and a right-variant applying either to the left type A1 or right one A2 of a relational
speci�cation monad W(A1, A2). Since the two variants are symmetric, we only detail the left
ones.

6.4. PRODUCT PROGRAMS 109

Adding state The usual state monad transformer maps a monad M to the monad StT(M)A =
S → M (A × S). The left relational state monad transformer StTrel maps a relational spec-
i�cation monad W (A1, A2) = (W1A1,W2A2, λw1w2. Wrel(A1, A2)w1w2) to the relational
speci�cation monad with carrier

StTrel(W)(A1, A2) = (StT(W1)A1, W2A2, λw1w2. (s1 : S1)→Wrel(A1×S1, A2) (w1 s1)w2)

The monadic operations on StTrel(W)1 are given by the usual state transformer. The added
data resides in the ret and bind operations responsible for the relational part:

let retStT(W)
rel (a1,a2) : (s1: S1)→Wrel (A1× S1,A2) (retStT (W)1 (a1,s1)) (retW2 a2) = λs1. retWrel ((a1,s1), a2)

let bindStT(W)
rel (m1 : StT(W)1 A1) (m2 : W2 A2) (mrel : StT(W)rel (A1,A2) m1 m2)

(f1 : A1→StT(W)1 B1) (f2 : A2→W2 B2)
(frel : (a1,a2):A1×A2→StT(W)rel (B1, B2) (f1 a1) (f2 a2))
: StT(W)rel (B1,B2) (bindStT(W)1 m1 f1) (bindW2 m2 f2) =

λs1. bindWrel (m1 s1) m2 (mrel s1) (λ (a1,s1’). f1 a1 s1’) f2 (λ ((a1,s1’), a2). frel (a1,a2) s1’)

The operation τ1 : w1 : StT(W1)A1 → (s1 : S1) → Wrel(A1 × S1, A2) (w1 s1) (retW2 ()) is
given by

let τStT(W)rel
1 (w1 : StT(W)1 A1)= λs1. τW1 (w1 s1)

Adding exceptions In a similar �avor, the exception monad transformer ExcT mapping a
monad M to ExcT(M)A = M(A+E1) gives rise to its relational speci�cation monad counter-
part ExcTrel(W)(A1, A2) = (ExcT(W1)A1,W2A2,Wrel(A1 + E1, A2)). The bind operation is
more involved here, and makes full use of the presence of the unary speci�cations.
let retExcT(W)rel (a1,a2) : Wrel (A1 + E1, A2) (retExcT(W)1 a1) (retW2 a2) = retWrel (Inl a1, a2)

let bindExcT(W)rel (m1 : ExcT(W)1 A1) (m2 : W2 A2) (mrel : ExcT(W)rel (A1,A2) m1 m2)
(f1 : A1→ExcT(W)1 B1) (f2 : A2→W2 B2)
(frel : (a1,a2):A1×A2→ExcT(W)rel (B1, B2) (f1 a1) (f2 a2))
: ExcT(W)rel (B1,B2) (bindExcT(W)1 m1 f1) (bindW2 m2 f2) =

bindWrel m1 m2 mrel (λ ae1. match ae1 with | Inl a1→ f1 a1 | Inr e1→ retW1 (Inr e1)) f2
(λ ae1 a2 . match ae1 with

| Inl a1→ frel a1 a2
| Inr e1→ bindWrel (τ 2 (f2 a2)) (λ ((), b2) . retWrel (Inr e1, b2)))

Note the crucial use of the τ2 : w2 : W2A2 →Wrel(1, A2) (retW1 ())w2 in the last error branch.
Putting these monad transformer to practice, we can �nally de�ne the full relational speci�-

cation monad for exceptions validating the rules in Figure 6.6 by �rst lifting the simple relational
WPure

rel and applying the exception transformers on both left and right sides. Further, applications
would involve speci�cations relating state and exceptions with rollback state.

6.4 Product programs

The product programs methodology is an approach to prove relational properties that can serve
as an alternative to relational program logics (Barthe et al., 2011, 2016). In this section we show
how to understand this methodology from the point of view of our framework.

Product programs reduce the problem of verifying relational properties on two programs
c1 and c2 to the problem of verifying properties on a single product program c capturing at the
same time the behaviors of c1 and c2. To prove a relational property w on programs c1 and c2,
the methodology tells us to proceed as follows. First, we construct a product program c of c1 and
c2. Then, by standard methods, we prove that the program c satis�es the property w seen as a

110 CHAPTER 6. RELATIONAL REASONING

Γr ` throw e1 {λϕ1. ϕ1 (inr e1)} ∼ retExc a2 {retWExc
2 a2} | λϕ. ϕ (inr e1, inl a2)

Γr ` retExc a1 {retWExc
1 a1} ∼ throw e2 {λϕ2. ϕ2 (inr e2)} | λϕ. ϕ (inl a1, inr e2)

Γr ` c1 {w1} ∼ c2 {w2} | wrel Γr ` cerr1 {werr1 } ∼ cerr2 {werr2 } | werrrel

Γr ` catch c1 c
err
1 {wcatchw1w

err
1 } ∼ catch c2 c

err
2 {wcatchw2w

err
2 } | wcatch

rel wrelw
err

let wcatch (w : WExcA) (werr : E→WExcA) : W A =
λϕ. w (λ ae. match ae with | Inl a→ retW

Exc

a ϕ | Inr e→werr e ϕ)

let wcatch
rel (w:WExc

rel (A1,A2)) (werr1 : E1→WExc
1A1) (werr2 : E2→WExc

2A2)
(werrrel : E1 × E2→WExc

rel (A1,A2)) : WExc
rel (A1,A2) =

λϕ. w (λ (ae1, ae2). match ae1, ae2 with
| Inl a1, Inl a2→ retW

Exc
rel (a1,a2) ϕ

| Inr e1, Inl a2→werr1 e1 (λ ae1→ϕ (ae1, Inl a2))
| Inl a1, Inr e2→werr2 e2 (λ ae2→ϕ (Inl a1, ae2))
| Inr e1, Inr e2→werrrel (e1,e2) ϕ)

Figure 6.6: Rules for exceptions

non-relational property. Finally, from a general argument of soundness, we can conclude that ϕ
must hold on c1 and c2. In what follows, we show how these three steps would be understood
in our framework if we wanted to prove �θ c1 ∼ c2 { w }.

First of all, we need a notion of product program. In the setting of monadic programs, we
capture a product program of c1 : M1A1 and c2 : M2A2 as a program c : P(A1, A2), where P is
a relative monad over (A1, A2) 7→ A1 ×A2 (see section 3.2). We can think of c : P(A1, A2) as a
single computation that is computing both a value of typeA1 and a value of typeA2 at the same
time. We expect P to support the e�ects from both M1 and M2, mixing them in a controlled
way. As a concrete example, we can de�ne products of stateful programs – M1A1 = StS1A1

and M2A2 = StS2A2 – inhabiting the relative monad PSt(A1, A2) = StS1×S2(A1 × A2). To
complete the de�nition of product programs, we also need to explain when a concrete product
program c : P(A1, A2) is capturing the behavior of c1 : M1A1 and c2 : M2A2. We propose
to capture this in a relation c1×c2 c that exhibits the connection between between pairs of
computations and their potential product programs. This relation should be closed under the
monadic construction of the e�ects, that is

a1 : A1 a2 : A2

retM1 a1×retM2 a2 retP (a1, a2)

m1×m2 mrel ∀a1 a2, f1 a1×f2 a2 frel (a1, a2)

bindM1 m1 f1×bindM2 m2 f2 bindP mrel frel

but also spells out how particular e�ects that P supports correspond to the e�ects from M1 and
M2.

Second, to fully reproduce the product program methodology, we need to explain how speci-
�cations relate to product programs. We can use simple relational speci�cation monads (subsec-
tion 6.2.1) for specifying the properties on products programs. The lifting of unary speci�cation
monads described there extends to unary e�ect observations, providing an important source of
examples of e�ect observations for product programs. For example, going back to the example
of state, we can specify product programs in P(A1, A2) = StS1×S2(A1 × A2) with speci�-
cations provided by the simple relational speci�cation monad WSt

rel , and the e�ect observation
ζ : P→WSt

rel obtained by lifting the unary e�ect observation θSt : St→WSt from section 2.4,

6.5. RELATED WORK 111

resulting in

ζ (f : S1 × S2 → (A1 ×A2)× (S1 × S2)) = λϕ (s1, s2) . ϕ σ(f (s1, s2))

where σ : (A1×A2)×(S1×S2)→(A1×S1)×(A2×S2) simply swaps the arguments. Then, the
concrete proof verifying the property w in this step consists of proving ζ(c) ≤ w as usual.

Finally, the third step simply relies on (proving and then) applying a soundness theorem for
product programs as stated below.

Theorem 6.4.1 (Soundess of product programs). If c1×c2 c and ζ(c) ≤ w, then �θrel c1 ∼
c2 { w }.

For state, this theorem is proved by analyzing the relation c1×c2 c and showing in each
case that our choice of θrel and ζ agree.

The interpretation of product programs as computations in a relative monad accommodate
well the product program methodology. In particular we expect that algebraic presentations of
these relative monads used for product programs could shed light on the choice of primitive rules
in relational program logics, in a Curry-Howard fashion. We leave this as a stimulating future
work.

6.5 Related work

Many di�erent relational veri�cation tools have been proposed, making di�erent trade-o�s, es-
pecially between automation and expressiveness. This section surveys this prior work, starting
with the techniques that are closest related to ours.

Relational program logics Relational program logics are very expressive and provide a for-
mal foundation for various tools, which have found practical applications in many domains. Ben-
ton (2004) introduced Relational Hoare Logic (RHL) as a way to prove the correctness of various
static analysis and optimizing transformations for imperative programs. Yang (2007) extended
this to the relational veri�cation of pointer-manipulating programs. Barthe et al.’s (2009) intro-
duced pRHL as an extension of RHL to discrete probabilities and showed that pRHL can provide
a solid foundation for cryptographic proofs, which inspired further research in this area (Barthe
et al., 2014; Basin et al., 2017; Petcher and Morrisett, 2015; Unruh, 2019) and lead to the creation
of semi-automated tools such as EasyCrypt (Barthe et al., 2013a). Barthe et al. (2013b) also ap-
plied variants of pRHL to di�erential privacy, which led to the discovery of a strong connection
(Barthe et al., 2017) between coupling proofs in probability theory and relational program logic
proofs, which are in turn connected to product programs even without probabilities (Barthe et al.,
2016).

Carbin et al. (2012) introduced a program logic for proving acceptability properties of approx-
imate program transformations. Nanevski et al. (2013) proposed Relational Hoare Type Theory
(RHTT), a veri�cation system for proving rich information �ow and access control policies about
pointer-manipulating programs in dependent type theory. Banerjee et al. (2016) addressed sim-
ilar problems using a relational program logic with framing and hypotheses. Sousa and Dillig
(2016) devised Cartesian Hoare Logic for verifying k-safety hyperproperties and implement it
in the Descartes tool. Finally, Aguirre et al. (2017) introduced Relational Higher-Order Logic
(RHOL) as a way of proving relational properties of pure programs in a simply typed λ-calculus
with inductive types and recursive de�nitions. RHOL was later separately extended to two dif-
ferent monadic e�ects: cost (Radicek et al., 2018) and continuous probabilities with conditioning
(Sato et al., 2019).

Each of these logics is speci�c to a particular combination of side-e�ects that is �xed by the
programming language and veri�cation framework. We instead introduce a general framework
for de�ning program logics for arbitrary monadic e�ects.

112 CHAPTER 6. RELATIONAL REASONING

Relators Gavazzo (2018) recently proposed a type system for di�erential privacy that is param-
eterized by a signature of algebraic e�ects. The type system is given a relational interpretation
in terms of relators, which lift relations on values to relations on monadic computations:

Γ : (A1 ×A2 → P)→MA1 ×MA2 → P.

Lochbihler (2018) also used relators in a recent library for e�ect polymorphic de�nitions
and proofs in Isabelle/HOL, based on value-monomorphic monads. There seems to be a strong
connection between such relators and the e�ect observations going into one of the simplest
relational speci�cation monads we consider: (A1 × A2 → P) → P. Such an e�ect observation
has type

MA1 ×MA2 → (A1 ×A2 → P)→ P,

which is isomorphic to the type of the relator Γ above (this is obvious to see by just swapping the
two arguments). While further investigating this connection is very interesting, since relators
are inherently lax this requires �rst working out the theory of lax e�ect observations, for which
the relative monad morphism laws hold with ≤ instead of = (see the end of subsection 6.2.2).
While we expect such an extension to our framework to be possible and generally useful, the
technical development is involved even for the simple setting of section 6.2, so we leave it for
future work.

Relational models of type theory The relational dependent type theory RDTT we employ
in section 6.3 and the translation from the ambient type theory to RDTT is inspired by the para-
metricity translations for dependent type theory of Bernardy and Lasson (2011). Relations on
types can also be internalized inside dependent type theory, making them �rst class citizens,
as in the work of Nuyts and Devriese (2018) where it is used to characterize various properties
such as continuity or parametricity. The work of Cavallo and Harper (2019) on cubical models of
type theory introduce an interesting property on these internalizations called relativity, playing
a similar role as univalence for equivalences.

Type systems and static analysis tools Various type systems and static analysis tools have
been proposed for statically checking relational properties in a sound, automatic, but over-
approximate way. The type systems for information �ow control generally trade o� precision for
good automation (Sabelfeld and Myers, 2003). Various specialized type systems and static analy-
sis tools have also been proposed for checking di�erential privacy (Barthe et al., 2015; Gaboardi
et al., 2013; Gavazzo, 2018; Winograd-Cort et al., 2017; Zhang and Kifer, 2017; Zhang et al., 2019)
or doing relational cost analysis (Çiçek et al., 2017; Qu et al., 2019).

Product program constructions Product program constructions and self-composition are
techniques aimed at reducing the veri�cation of k-safety hyperproperties (Clarkson and Schnei-
der, 2010) to the veri�cation of traditional (unary) safety proprieties of a product program that
emulates the behavior of multiple input programs. Multiple such constructions have been pro-
posed (Barthe et al., 2016) targeted for instance at secure IFC (Barthe et al., 2011; Naumann, 2006;
Terauchi and Aiken, 2005; Yasuoka and Terauchi, 2014), program equivalence for compiler vali-
dation (Zaks and Pnueli, 2008), equivalence checking and computing semantic di�erences (Lahiri
et al., 2012), program approximation (He et al., 2018). Sousa and Dillig’s (2016)Descartes tool for
k-safety properties also creates k copies of the program, but uses lockstep reasoning to improve
performance by more tightly coupling the key invariants across the program copies. Antonopou-
los et al. (2017) develop a tool that obtains better scalability by using a new decomposition of
programs instead of using self-composition for k-safety problems. Eilers et al. (2018) propose
a modular product program construction that permits hyperproperties in procedure speci�ca-
tions. Recently, Farzan and Vandikas (2019) propose an automated veri�cation technique for

6.6. CONCLUSION 113

hypersafety properties by constructing a proof for a small representative set of runs of the prod-
uct program.

Logical relations and bisimulations Many semantic techniques have been proposed for rea-
soning about relational properties such as observational equivalence, including techniques based
on binary logical relations (Ahmed et al., 2009; Benton et al., 2009, 2013, 2014; Dreyer et al., 2010,
2011, 2012; Mitchell, 1986), bisimulations (Dal Lago et al., 2017; Koutavas and Wand, 2006; San-
giorgi et al., 2011; Sumii, 2009), and combinations thereof (Hur et al., 2012, 2014). While these
powerful techniques are often not directly automated, they can still be used for veri�cation
(Timany and Birkedal, 2019) and for providing semantic correctness proofs for relational pro-
gram logics (Dreyer et al., 2010, 2011) and other veri�cation tools (Benton et al., 2016; Gavazzo,
2018).

Other program equivalence techniques Beyond the ones already mentioned above, many
other techniques targeted at program equivalence have been proposed; we brie�y review several
recent works: Benton et al. (2009) do manual proofs of correctness of compiler optimizations
using partial equivalence relations. Kundu et al. (2009) do automatic translation validation of
compiler optimizations by checking equivalence of partially speci�ed programs that can repre-
sent multiple concrete programs. Godlin and Strichman (2010) propose proof rules for proving
the equivalence of recursive procedures. Lucanu and Rusu (2015) and Ştefan Ciobâcă et al. (2016)
generalize this to a set of co-inductive equivalence proof rules that are language-independent.
Wang et al. (2018) verify equivalence between a pair of programs that operate over databases
with di�erent schemas using bisimulation invariants over relational algebras with updates. Fi-
nally, automatically checking the equivalence of processes in a process calculus is an important
building block for security protocol analysis (Blanchet et al., 2008; Chadha et al., 2016).

6.6 Conclusion

We introduced in this chapter semantics tools to analyse relational program logics for arbitrary
monadic e�ects by extending the notions of speci�cation monads and e�ect observations to this
relational setting. We can then reconstruct relational program logics for speci�c e�ects in a
principled way using the general building blocks provided in subsection 6.2.4 and combining
them with e�ect speci�c rules along the lines of subsection 6.2.5. An interesting research direc-
tion, opened by the correspondence with product programs, would be to develop techniques to
select which proof rules should be considered as primitive, using proof-theoretical tools like fo-
cusing (Zeilberger, 2009), but also investigating at the categorical level notions of presentations
of relative monads, in connection with the theory of monads with arities (Berger et al., 2012).
Finally, it also remains to be seen whether our notion of relational e�ect observations can be
generalized to turn the laws from equalities to inequalities. The proof of Thm. 6.2.2 from subsec-
tion 6.2.4 would be easy to extend, and this extension would allow for more examples, including
the ones previously done using relators such as simulations for nondeterminism (Dal Lago et al.,
2017), and would also make certain examples such as relational partial correctness easier. Yet a
technical development following the ideas of chapter 3 seems more involved, even for the simple
setting of section 6.2.

Bibliography

C. Abate, R. Blanco, D. Garg, C. Hriţcu, M. Patrignani, and J. Thibault. Journey beyond full
abstraction: Exploring robust property preservation for secure compilation. CSF , 2019. To
Appear. 5

J. Adámek, S. Milius, N. Bowler, and P. B. Levy. Coproducts of monads on set. LICS. 2012. 4

A. Aguirre, G. Barthe, M. Gaboardi, D. Garg, and P.-Y. Strub. A relational logic for higher-order
programs. ICFP , 2017. 6, 111

D. Ahman and T. Uustalu. Update monads: Cointerpreting directed containers. In 19th Inter-
national Conference on Types for Proofs and Programs, TYPES 2013, April 22-26, 2013, Toulouse,
France, 2013. 16, 17, 23, 24

D. Ahman, C. Hriţcu, K. Maillard, G. Martínez, G. Plotkin, J. Protzenko, A. Rastogi, and N. Swamy.
Dijkstra monads for free. POPL. 2017. 4, 7, 17, 63, 89

D. Ahman, C. Fournet, C. Hriţcu, K. Maillard, A. Rastogi, and N. Swamy. Recalling a witness:
Foundations and applications of monotonic state. PACMPL, 2(POPL):65:1–65:30, 2018. 7, 17,
79, 89

A. Ahmed, D. Dreyer, and A. Rossberg. State-dependent representation independence. POPL.
2009. 113

T. Altenkirch and A. Kaposi. Type theory in type theory using quotient inductive types. In Pro-
ceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, 2016. 15

T. Altenkirch, J. Chapman, and T. Uustalu. Monads need not be endofunctors. LMCS, 11(1), 2015.
29, 33, 34, 42, 46, 49, 50, 95, 96

T. Altenkirch, N. A. Danielsson, and N. Kraus. Partiality, revisited - the partiality monad as a
quotient inductive-inductive type. FOSSACS, 2017. 13

R. M. Amadio and P. Curien. Domains and lambda-calculi, volume 46 of Cambridge tracts in
theoretical computer science. Cambridge University Press, 1998. 12

J. Andrianopoulos. Remarks on units of skew monoidal categories. Applied Categorical Structures,
25(5):863–873, 2017. 50

T. Antonopoulos, P. Gazzillo, M. Hicks, E. Koskinen, T. Terauchi, and S. Wei. Decomposition
instead of self-composition for proving the absence of timing channels. PLDI . 2017. 5, 112

R. Atkey. Syntax for free: Representing syntax with binding using parametricity. In Typed
Lambda Calculi and Applications, 9th International Conference, TLCA 2009, Brasilia, Brazil, July
1-3, 2009. Proceedings, 2009. 65

115

https://arxiv.org/abs/1807.04603
https://arxiv.org/abs/1807.04603
http://dx.doi.org/10.1109/LICS.2012.16
https://arxiv.org/abs/1703.05042
https://arxiv.org/abs/1703.05042
http://dx.doi.org/10.4230/LIPIcs.TYPES.2013.1
http://dx.doi.org/10.1145/3009837.3009878
https://arxiv.org/abs/1707.02466
https://arxiv.org/abs/1707.02466
http://dx.doi.org/10.1145/1480881.1480925
http://dx.doi.org/10.1145/2837614.2837638
http://dx.doi.org/10.2168/LMCS-11(1:3)2015
http://dx.doi.org/10.1007/978-3-662-54458-7_31
http://dx.doi.org/10.1007/978-3-662-54458-7_31
http://dx.doi.org/10.1007/s10485-016-9468-5
http://dx.doi.org/10.1145/3062341.3062378
http://dx.doi.org/10.1145/3062341.3062378
http://dx.doi.org/10.1007/978-3-642-02273-9_5

116 BIBLIOGRAPHY

R. Atkey, S. Lindley, and J. Yallop. Unembedding domain-speci�c languages. In Proceedings of the
2nd ACM SIGPLAN Symposium on Haskell, Haskell 2009, Edinburgh, Scotland, UK, 3 September
2009, 2009. 64

P. Audebaud and C. Paulin-Mohring. Proofs of randomized algorithms in coq. In T. Uustalu,
editor, Mathematics of Program Construction. 2006. 20

A. Banerjee, D. A. Naumann, and M. Nikouei. Relational logic with framing and hypotheses.
FSTTCS. 2016. 5, 6, 111

G. Barthe, B. Grégoire, and S. Zanella-Béguelin. Formal certi�cation of code-based cryptographic
proofs. POPL, 2009. 5, 111

G. Barthe, P. R. D’Argenio, and T. Rezk. Secure information �ow by self-composition. MSCS, 21
(6):1207–1252, 2011. 109, 112

G. Barthe, F. Dupressoir, B. Grégoire, C. Kunz, B. Schmidt, and P. Strub. EasyCrypt: A tutorial.
In A. Aldini, J. Lopez, and F. Martinelli, editors, Foundations of Security Analysis and Design
VII - FOSAD 2012/2013 Tutorial Lectures. 2013a. 5, 111

G. Barthe, B. Köpf, F. Olmedo, and S. Zanella-Béguelin. Probabilistic relational reasoning for
di�erential privacy. TOPLAS, 35(3):9:1–9:49, 2013b. 5, 6, 111

G. Barthe, C. Fournet, B. Grégoire, P. Strub, N. Swamy, and S. Zanella-Béguelin. Probabilistic
relational veri�cation for cryptographic implementations. POPL. 2014. 5, 6, 111

G. Barthe, M. Gaboardi, E. J. G. Arias, J. Hsu, A. Roth, and P. Strub. Higher-order approximate
relational re�nement types for mechanism design and di�erential privacy. POPL. 2015. 5, 6,
112

G. Barthe, J. M. Crespo, and C. Kunz. Product programs and relational program logics. JLAMP ,
85(5):847–859, 2016. 6, 97, 109, 111, 112

G. Barthe, B. Grégoire, J. Hsu, and P. Strub. Coupling proofs are probabilistic product programs.
POPL. 2017. 111

G. Barthe, R. Eilers, P. Georgiou, B. Gleiss, L. Kovács, and M. Ma�ei. Verifying relational prop-
erties using trace logic. Draft, 2019. 5

D. A. Basin, A. Lochbihler, and S. R. Se�dgar. CryptHOL: Game-based proofs in higher-order
logic. IACR Cryptology ePrint Archive, 2017:753, 2017. 111

J. Beck. Distributive laws. In Seminar on Triples and Categorical Homology Theory. 1969. 15

J. Bénabou. Introduction to bicategories. In Reports of the Midwest Category Seminar. 1967. 29,
31, 49

J. Benabou. Distributors at work, 2000. 36

N. Benton. Simple relational correctness proofs for static analyses and program transformations.
POPL. 2004. 5, 6, 111

N. Benton, J. Hughes, and E. Moggi. Monads and e�ects. APPSEM . 2000. 12, 25

N. Benton, A. Kennedy, L. Beringer, and M. Hofmann. Relational semantics for e�ect-based
program transformations: higher-order store. POPL. 2009. 113

N. Benton, M. Hofmann, and V. Nigam. Proof-relevant logical relations for name generation.
TLCA. 2013. 113

http://dx.doi.org/10.1145/1596638.1596644
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2016.11
http://dx.doi.org/10.1145/1480881.1480894
http://dx.doi.org/10.1145/1480881.1480894
http://dx.doi.org/10.1017/S0960129511000193
http://dx.doi.org/10.1007/978-3-319-10082-1_6
http://dx.doi.org/10.1145/2492061
http://dx.doi.org/10.1145/2492061
http://dx.doi.org/10.1145/2535838.2535847
http://dx.doi.org/10.1145/2535838.2535847
http://dx.doi.org/10.1145/2676726.2677000
http://dx.doi.org/10.1145/2676726.2677000
http://dx.doi.org/10.1016/j.jlamp.2016.05.004
http://dl.acm.org/citation.cfm?id=3009896
https://arxiv.org/pdf/1906.09899.pdf
https://arxiv.org/pdf/1906.09899.pdf
http://eprint.iacr.org/2017/753
http://eprint.iacr.org/2017/753
http://www.tac.mta.ca/tac/reprints/articles/18/tr18abs.html
http://www.mathematik.tu-darmstadt.de/~streicher/FIBR/DiWo.pdf
http://dx.doi.org/10.1145/964001.964003
http://dx.doi.org/10.1007/3-540-45699-6_2
http://dx.doi.org/10.1145/1599410.1599447
http://dx.doi.org/10.1145/1599410.1599447
http://dx.doi.org/10.1007/978-3-642-38946-7_6

BIBLIOGRAPHY 117

N. Benton, M. Hofmann, and V. Nigam. Abstract e�ects and proof-relevant logical relations.
POPL. 2014. 113

N. Benton, A. Kennedy, M. Hofmann, and V. Nigam. Counting successes: E�ects and transforma-
tions for non-deterministic programs. In S. Lindley, C. McBride, P. W. Trinder, and D. Sannella,
editors, A List of Successes That Can Change the World - Essays Dedicated to Philip Wadler on
the Occasion of His 60th Birthday. 2016. 113

C. Berger, P.-A. Melliès, and M. Weber. Monads with arities and their associated theories. Journal
of Pure and Applied Algebra, 216(8-9):2029–2048, 2012. New introduction; Section 1 shortened
and redispatched with Section 2; Subsections on symmetric operads (3.14) and symmetric sim-
plicial sets (4.17) added; Bibliography completed. 113

J. Bernardy and M. Lasson. Realizability and parametricity in pure type systems. FOSSACS, 2011.
112

J. Bernardy and G. Moulin. Type-theory in color. In ACM SIGPLAN International Conference on
Functional Programming, ICFP’13, Boston, MA, USA - September 25 - 27, 2013, 2013. 65

J. Bernardy, T. Coquand, and G. Moulin. A presheaf model of parametric type theory. Electr.
Notes Theor. Comput. Sci., 319:67–82, 2015. 65

K. Bhargavan, B. Bond, A. Delignat-Lavaud, C. Fournet, C. Hawblitzel, C. Hriţcu, S. Ishtiaq,
M. Kohlweiss, R. Leino, J. Lorch, K. Maillard, J. Pang, B. Parno, J. Protzenko, T. Ramananan-
dro, A. Rane, A. Rastogi, N. Swamy, L. Thompson, P. Wang, S. Zanella-Béguelin, and J.-K.
Zinzindohoué. Everest: Towards a veri�ed, drop-in replacement of HTTPS. SNAPL, 2017. 7

B. Blanchet, M. Abadi, and C. Fournet. Automated veri�cation of selected equivalences for se-
curity protocols. J. Log. Algebr. Program., 75(1):3–51, 2008. 5, 113

A. Blass. Words, free algebras, and coequalizers. Fundamenta Mathematicae, 117(2):117–160,
1983. 15

S. Boulier, P. Pédrot, and N. Tabareau. The next 700 syntactical models of type theory. CPP , 2017.
25, 27, 102

J. Bourke and S. Lack. Free skew monoidal categories. Journal of Pure and Applied Algebra
222(10):3255-3281, 2018a. 50

J. Bourke and S. Lack. Skew monoidal categories and skew multicategories. Journal of Algebra,
506:237–266, 2018b. 50

N. Bowler, S. Goncharov, P. B. Levy, and L. Schröder. Exploring the boundaries of monad ten-
sorability on set. Logical Methods in Computer Science, 9(3), 2013. 4, 98

M. Carbin, D. Kim, S. Misailovic, and M. C. Rinard. Proving acceptability properties of relaxed
nondeterministic approximate programs. PLDI . 2012. 5, 6, 111

C. Casinghino, V. Sjöberg, and S. Weirich. Combining proofs and programs in a dependently
typed language. In The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’14, San Diego, CA, USA, January 20-21, 2014, 2014. 27

E. Cavallo and R. Harper. Parametric cubical type theory. To appear at ICFP, 2019. 112

R. Chadha, V. Cheval, Ştefan Ciobâcă, and S. Kremer. Automated veri�cation of equivalence
properties of cryptographic protocols. ACM Trans. Comput. Log., 17(4):23:1–23:32, 2016. 5, 113

http://dx.doi.org/10.1145/2535838.2535869
http://dx.doi.org/10.1007/978-3-319-30936-1_3
http://dx.doi.org/10.1007/978-3-319-30936-1_3
https://hal.archives-ouvertes.fr/hal-01296565
http://dx.doi.org/10.1007/978-3-642-19805-2_8
http://dx.doi.org/10.1145/2500365.2500577
http://dx.doi.org/10.1016/j.entcs.2015.12.006
http://drops.dagstuhl.de/opus/volltexte/2017/7119/pdf/LIPIcs-SNAPL-2017-1.pdf
http://dx.doi.org/10.1016/j.jlap.2007.06.002
http://dx.doi.org/10.1016/j.jlap.2007.06.002
http://eudml.org/doc/211359
http://dx.doi.org/10.1145/3018610.3018620
http://dx.doi.org/10.1016/j.jpaa.2017.12.006
http://dx.doi.org/10.1016/j.jalgebra.2018.02.039
http://dx.doi.org/10.2168/LMCS-9(3:22)2013
http://dx.doi.org/10.2168/LMCS-9(3:22)2013
http://dx.doi.org/10.1145/2254064.2254086
http://dx.doi.org/10.1145/2254064.2254086
http://dx.doi.org/10.1145/2535838.2535883
http://dx.doi.org/10.1145/2535838.2535883
https://arxiv.org/abs/1901.00489
http://dl.acm.org/citation.cfm?id=2926715
http://dl.acm.org/citation.cfm?id=2926715

118 BIBLIOGRAPHY

A. Chlipala. Parametric higher-order abstract syntax for mechanized semantics. ICFP . 2008. 64,
65

E. Çiçek, G. Barthe, M. Gaboardi, D. Garg, and J. Ho�mann. Relational cost analysis. POPL, 2017.
5, 112

M. R. Clarkson and F. B. Schneider. Hyperproperties. J. Comput. Secur., 18(6):1157–1210, 2010. 5,
112

Ştefan Ciobâcă, D. Lucanu, V. Rusu, and G. Rosu. A language-independent proof system for full
program equivalence. Formal Asp. Comput., 28(3):469–497, 2016. 5, 113

P. Curien, R. Garner, and M. Hofmann. Revisiting the categorical interpretation of dependent
type theory. Theor. Comput. Sci., 546:99–119, 2014. 30

U. Dal Lago, F. Gavazzo, and P. B. Levy. E�ectful applicative bisimilarity: Monads, relators, and
Howe’s method. LICS. 2017. 113

G. A. Delbianco and A. Nanevski. Hoare-style reasoning with (algebraic) continuations. ICFP .
2013. 3, 13

I. Di Liberti and F. Loregian. On the unicity of formal category theories, 2019. 50

E. W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of programs. CACM ,
18(8):453–457, 1975. 3, 4

D. Dreyer, G. Neis, A. Rossberg, and L. Birkedal. A relational modal logic for higher-order stateful
ADTs. POPL. 2010. 113

D. Dreyer, A. Ahmed, and L. Birkedal. Logical step-indexed logical relations. Logical Methods in
Computer Science, 7(2), 2011. 113

D. Dreyer, G. Neis, and L. Birkedal. The impact of higher-order state and control e�ects on local
relational reasoning. J. Funct. Program., 22(4-5):477–528, 2012. 113

J. Egger, R. E. Møgelberg, and A. Simpson. The enriched e�ect calculus: syntax and semantics.
LogCom, 24(3):615–654, 2014. 60

M. Eilers, P. Müller, and S. Hitz. Modular product programs. In A. Ahmed, editor, Programming
Languages and Systems - 27th European Symposium on Programming, ESOP 2018, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki,
Greece, April 14-20, 2018, Proceedings. 2018. 112

A. Farzan and A. Vandikas. Automated hypersafety veri�cation. In I. Dillig and S. Tasiran,
editors, Computer Aided Veri�cation - 31st International Conference, CAV 2019, New York City,
NY, USA, July 15-18, 2019, Proceedings, Part I. 2019. 112

M. Fiore, N. Gambino, M. Hyland, and G. Winskel. Relative pseudomonads, kleisli bicategories,
and substitution monoidal structures. Selecta Mathematica, 24(3):2791–2830, 2018. 50

R. W. Floyd. Nondeterministic algorithms. J. ACM, 14(4):636–644, 1967. 4

C. Führmann. Varieties of e�ects. FOSSACS, 2002. 98

S. Fujii, S. Katsumata, and P. Melliès. Towards a formal theory of graded monads. In Foundations
of Software Science and Computation Structures - 19th International Conference, FOSSACS 2016,
Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2016,
Eindhoven, The Netherlands, April 2-8, 2016, Proceedings, 2016. 9, 86, 87

http://dx.doi.org/10.1145/1411204.1411226
http://dl.acm.org/citation.cfm?id=3009858
https://www.cs.cornell.edu/fbs/publications/Hyperproperties.pdf
http://dx.doi.org/10.1007/s00165-016-0361-7
http://dx.doi.org/10.1007/s00165-016-0361-7
http://dx.doi.org/10.1016/j.tcs.2014.03.003
http://dx.doi.org/10.1016/j.tcs.2014.03.003
http://dx.doi.org/10.1109/LICS.2017.8005117
http://dx.doi.org/10.1109/LICS.2017.8005117
http://dx.doi.org/10.1145/2500365.2500593
https://arxiv.org/abs/1901.01594
http://dx.doi.org/10.1145/360933.360975
http://dx.doi.org/10.1145/1706299.1706323
http://dx.doi.org/10.1145/1706299.1706323
http://dx.doi.org/10.2168/LMCS-7(2:16)2011
http://dx.doi.org/10.1017/S095679681200024X
http://dx.doi.org/10.1017/S095679681200024X
http://dx.doi.org/10.1093/logcom/exs025
http://dx.doi.org/10.1007/978-3-319-89884-1_18
http://dx.doi.org/10.1007/978-3-030-25540-4_11
http://dx.doi.org/10.1007/s00029-017-0361-3
http://dx.doi.org/10.1007/s00029-017-0361-3
http://dx.doi.org/10.1145/321420.321422
http://dx.doi.org/10.1007/3-540-45931-6_11
http://dx.doi.org/10.1007/978-3-662-49630-5_30

BIBLIOGRAPHY 119

M. Gaboardi, A. Haeberlen, J. Hsu, A. Narayan, and B. C. Pierce. Linear dependent types for
di�erential privacy. POPL. 2013. 112

F. Gavazzo. Quantitative behavioural reasoning for higher-order e�ectful programs: Applicative
distances. LICS. 2018. 5, 112, 113

T. Girka, D. Mentré, and Y. Régis-Gianas. A mechanically checked generation of correlating
programs directed by structured syntactic di�erences. InAutomated Technology for Veri�cation
and Analysis - 13th International Symposium, ATVA 2015, Shanghai, China, October 12-15, 2015,
Proceedings, 2015. 5

T. Girka, D. Mentré, and Y. Régis-Gianas. Veri�able semantic di�erence languages. In Proceedings
of the 19th International Symposium on Principles and Practice of Declarative Programming,
Namur, Belgium, October 09 - 11, 2017, 2017. 5

M. Giry. A categorical approach to probability theory. Categorical Aspects of Topology and Anal-
ysis. 1982. 15

B. Godlin and O. Strichman. Inference rules for proving the equivalence of recursive procedures.
In Z. Manna and D. A. Peled, editors, Time for Veri�cation, Essays in Memory of Amir Pnueli.
2010. 5, 113

N. Grimm, K. Maillard, C. Fournet, C. Hriţcu, M. Ma�ei, J. Protzenko, T. Ramananandro, A. Ras-
togi, N. Swamy, and S. Zanella-Béguelin. A monadic framework for relational veri�cation:
Applied to information security, program equivalence, and optimizations. CPP , 2018. 7, 26

I. Hasuo. Generic weakest precondition semantics from monads enriched with order. Theor.
Comput. Sci., 604:2–29, 2015. 25

S. He, S. K. Lahiri, and Z. Rakamaric. Verifying relative safety, accuracy, and termination for
program approximations. J. Autom. Reasoning, 60(1):23–42, 2018. 5, 112

C. Hermida, U. S. Reddy, and E. P. Robinson. Logical relations and parametricity - A reynolds
programme for category theory and programming languages. Electr. Notes Theor. Comput. Sci.,
303:149–180, 2014. 58

C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12(10):576–580,
1969. 2

C. Hur, D. Dreyer, G. Neis, and V. Vafeiadis. The marriage of bisimulations and kripke logical
relations. POPL. 2012. 5, 113

C. Hur, G. Neis, D. Dreyer, and V. Vafeiadis. A logical step forward in parametric bisimulations.
Technical Report MPI-SWS-2014-003, 2014. 5, 113

M. Hyland, G. D. Plotkin, and J. Power. Combining e�ects: Sum and tensor. Theor. Comput. Sci.,
357(1-3):70–99, 2006. 15, 25

M. Hyland, P. B. Levy, G. D. Plotkin, and J. Power. Combining algebraic e�ects with continua-
tions. Theor. Comput. Sci., 375(1-3):20–40, 2007. 4, 24, 25

G. Jaber, N. Tabareau, and M. Sozeau. Extending type theory with forcing. In Proceedings of the
27th Annual IEEE Symposium on Logic in Computer Science, LICS 2012, Dubrovnik, Croatia, June
25-28, 2012, 2012. 25

G. Jaber, G. Lewertowski, P. Pédrot, M. Sozeau, and N. Tabareau. The de�nitional side of the
forcing. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS ’16, New York, NY, USA, July 5-8, 2016, 2016. 25

http://dx.doi.org/10.1145/2429069.2429113
http://dx.doi.org/10.1145/2429069.2429113
http://dx.doi.org/10.1145/3209108.3209149
http://dx.doi.org/10.1145/3209108.3209149
http://dx.doi.org/10.1007/978-3-319-24953-7_6
http://dx.doi.org/10.1007/978-3-319-24953-7_6
http://dx.doi.org/10.1145/3131851.3131870
https://www.chrisstucchio.com/blog_media/2016/probability_the_monad/categorical_probability_giry.pdf
http://dx.doi.org/10.1007/978-3-642-13754-9_8
https://arxiv.org/abs/1703.00055
https://arxiv.org/abs/1703.00055
http://dx.doi.org/10.1016/j.tcs.2015.03.047
http://dx.doi.org/10.1007/s10817-017-9421-9
http://dx.doi.org/10.1007/s10817-017-9421-9
http://dx.doi.org/10.1016/j.entcs.2014.02.008
http://dx.doi.org/10.1016/j.entcs.2014.02.008
http://dx.doi.org/10.1145/363235.363259
http://dx.doi.org/10.1145/2103656.2103666
http://dx.doi.org/10.1145/2103656.2103666
https://www.mpi-sws.org/tr/2014-003.pdf
http://dx.doi.org/10.1016/j.tcs.2006.03.013
http://dx.doi.org/10.1016/j.tcs.2006.12.026
http://dx.doi.org/10.1016/j.tcs.2006.12.026
http://dx.doi.org/10.1109/LICS.2012.49
http://dx.doi.org/10.1145/2933575.2935320
http://dx.doi.org/10.1145/2933575.2935320

120 BIBLIOGRAPHY

B. Jacobs. Dijkstra monads in monadic computation. CMCS, 2014. 4, 17, 25

B. Jacobs. Dijkstra and Hoare monads in monadic computation. Theor. Comput. Sci., 604:30–45,
2015. 4, 17, 25

B. Jacobs. A recipe for state-and-e�ect triangles. Logical Methods in Computer Science, 13(2),
2017. 25

M. Jaskelio� and E. Moggi. Monad transformers as monoid transformers. Theor. Comput. Sci.,
411(51-52):4441–4466, 2010. 63, 73

A. Joyal and R. Street. The geometry of tensor calculus, i. Advances in Mathematics, 88(1):55 –
112, 1991. 31

R. Jung, R. Krebbers, J. Jourdan, A. Bizjak, L. Birkedal, and D. Dreyer. Iris from the ground up: A
modular foundation for higher-order concurrent separation logic. J. Funct. Program., 28:e20,
2018. 79

B. L. Kaminski, J. Katoen, C. Matheja, and F. Olmedo. Weakest precondition reasoning for ex-
pected run-times of probabilistic programs. In Programming Languages and Systems - 25th
European Symposium on Programming, ESOP 2016, Held as Part of the European Joint Confer-
ences on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8,
2016, Proceedings, 2016. 20

O. Kammar, P. B. Levy, S. K. Moss, and S. Staton. A monad for full ground reference cells. In 32nd
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June
20-23, 2017, 2017. 25

A. Kaposi and A. Kovács. Signatures and induction principles for higher inductive-inductive
types. arXiv:1902.00297, 2019. 89

A. Kaposi, A. Kovács, and T. Altenkirch. Constructing quotient inductive-inductive types.
PACMPL, 3(POPL):2:1–2:24, 2019. 72

C. Kapulkin and P. L. Lumsdaine. Homotopical inverse diagrams in categories with attributes,
2018. 103

S. Katsumata. A semantic formulation of tt-lifting and logical predicates for computational met-
alanguage. In Computer Science Logic, 19th International Workshop, CSL 2005, 14th Annual
Conference of the EACSL, Oxford, UK, August 22-25, 2005, Proceedings, 2005. 87

S. Katsumata. Relating computational e�ects by>>-lifting. Inf. Comput., 222:228–246, 2013. 25,
87, 89

S. Katsumata. Parametric e�ect monads and semantics of e�ect systems. POPL. 2014. 5, 20, 25,
75, 86, 89

S. Katsumata and T. Sato. Preorders on monads and coalgebraic simulations. FOSSACS, 2013. 42

S. Katsumata, T. Sato, and T. Uustalu. Codensity lifting of monads and its dual. Logical Methods
in Computer Science, 14(4), 2018. 89

G. Kelly. Basic Concepts of Enriched Category Theory. Lecture note series / London mathematical
society. Cambridge University Press, 1982. 33, 36

G. M. Kelly and R. Street. Review of the elements of 2-categories. In G. M. Kelly, editor, Category
Seminar. 1974. 29, 49

http://www.cs.ru.nl/B.Jacobs/PAPERS/Dijkstra-monad.pdf
http://dx.doi.org/10.1016/j.tcs.2015.03.020
http://dx.doi.org/10.23638/LMCS-13(2:6)2017
http://dx.doi.org/10.1016/j.tcs.2010.09.011
http://dx.doi.org/http://dx.doi.org/10.1016/0001-8708(91)90003-P
http://dx.doi.org/10.1017/S0956796818000151
http://dx.doi.org/10.1017/S0956796818000151
http://dx.doi.org/10.1007/978-3-662-49498-1_15
http://dx.doi.org/10.1007/978-3-662-49498-1_15
http://dx.doi.org/10.1109/LICS.2017.8005109
https://arxiv.org/abs/1902.00297
https://arxiv.org/abs/1902.00297
https://dl.acm.org/citation.cfm?id=3290315
http://arxiv.org/abs/arXiv:1808.01816
http://dx.doi.org/10.1007/11538363_8
http://dx.doi.org/10.1007/11538363_8
http://dx.doi.org/10.1016/j.ic.2012.10.014
http://dx.doi.org/10.1145/2535838.2535846
http://dx.doi.org/10.1007/978-3-642-37075-5_10
http://dx.doi.org/10.23638/LMCS-14(4:6)2018

BIBLIOGRAPHY 121

O. Kiselyov, A. Sabry, and C. Swords. Extensible e�ects: an alternative to monad transformers.
In Proceedings of the 2013 ACM SIGPLAN Symposium on Haskell, Boston, MA, USA, September
23-24, 2013, 2013. 72

V. Koutavas and M. Wand. Small bisimulations for reasoning about higher-order imperative
programs. POPL. 2006. 113

S. Kundu, Z. Tatlock, and S. Lerner. Proving optimizations correct using parameterized program
equivalence. PLDI . 2009. 5, 113

S. Lack. A 2-categories companion. Institute for Mathematics and its Applications, 2009. 29

S. Lack and R. Street. The formal theory of monads ii. Journal of Pure and Applied Algebra, 175
(1):243 – 265, 2002. Special Volume celebrating the 70th birthday of Professor Max Kelly. 29,
49

S. Lack and R. Street. Skew-monoidal re�ection and lifting theorems. Theory and Applications of
Categories, 30:985–1000, 2015. 50

S. K. Lahiri, C. Hawblitzel, M. Kawaguchi, and H. Rebêlo. SYMDIFF: A language-agnostic seman-
tic di� tool for imperative programs. CAV . 2012. 5, 112

K. R. M. Leino. E�cient weakest preconditions. Inf. Process. Lett., 93(6):281–288, 2005. 18

T. Letan, Y. Régis-Gianas, P. Chi�ier, and G. Hiet. Modular veri�cation of programs with e�ects
and e�ect handlers in coq. FM . 2018. 26

P. B. Levy. Call-By-Push-Value: A Functional/Imperative Synthesis, volume 2 of Semantics Struc-
tures in Computation. Springer, 2004. 25

S. Liang, P. Hudak, and M. P. Jones. Monad transformers and modular interpreters. POPL. 1995.
51, 72

S. Lindley and I. Stark. Reducibility and >>-lifting for computation types. TLCA. 2005. 25

A. Lochbihler. E�ect polymorphism in higher-order logic (proof pearl). JAR, 2018. 26, 112

D. Lucanu and V. Rusu. Program equivalence by circular reasoning. Formal Asp. Comput., 27(4):
701–726, 2015. 113

C. Lüth and N. Ghani. Composing monads using coproducts. ICFP . 2002. 52, 108

K. Maillard and P. Melliès. A �brational account of local states. In 30th Annual ACM/IEEE Sym-
posium on Logic in Computer Science, LICS 2015, Kyoto, Japan, July 6-10, 2015, 2015. 25, 68

K. Maillard, D. Ahman, R. Atkey, G. Martínez, C. Hriţcu, E. Rivas, and E. Tanter. Dijkstra monads
for all. To appear at ICFP, 2019a. 7

K. Maillard, C. Hriţcu, E. Rivas, and A. V. Muylder. The next 700 relational program logics.
arXiv:1907.05244, 2019b. 7

G. Malecha, G. Morrisett, and R. Wisnesky. Trace-based veri�cation of imperative programs with
I/O. J. Symb. Comput., 46(2):95–118, 2011. 24

C. Matache and S. Staton. A sound and complete logic for algebraic e�ects. FoSSaCS. 2019. 26

C. McBride. Turing-completeness totally free. MPC. 2015. 13, 81

http://dx.doi.org/10.1145/2503778.2503791
http://dx.doi.org/10.1145/1111037.1111050
http://dx.doi.org/10.1145/1111037.1111050
http://dx.doi.org/10.1145/1542476.1542513
http://dx.doi.org/10.1145/1542476.1542513
http://dx.doi.org/https://doi.org/10.1016/S0022-4049(02)00137-8
http://dx.doi.org/10.1007/978-3-642-31424-7_54
http://dx.doi.org/10.1007/978-3-642-31424-7_54
http://dx.doi.org/10.1016/j.ipl.2004.10.015
http://dx.doi.org/10.1007/978-3-319-95582-7_20
http://dx.doi.org/10.1007/978-3-319-95582-7_20
http://dx.doi.org/10.1145/199448.199528
http://dx.doi.org/10.1007/11417170_20
http://www.andreas-lochbihler.de/pub/lochbihler2018monad.pdf
http://dx.doi.org/10.1007/s00165-014-0319-6
http://dx.doi.org/10.1145/581478.581492
http://dx.doi.org/10.1109/LICS.2015.45
https://arxiv.org/abs/1903.01237
https://arxiv.org/abs/1903.01237
https://arxiv.org/abs/1907.05244
http://dx.doi.org/10.1016/j.jsc.2010.08.004
http://dx.doi.org/10.1016/j.jsc.2010.08.004
http://dx.doi.org/10.1007/978-3-030-17127-8_22
http://dx.doi.org/10.1007/978-3-319-19797-5_13

122 BIBLIOGRAPHY

P. Melliès. Local states in string diagrams. In Rewriting and Typed Lambda Calculi - Joint In-
ternational Conference, RTA-TLCA 2014, Held as Part of the Vienna Summer of Logic, VSL 2014,
Vienna, Austria, July 14-17, 2014. Proceedings, 2014. 25

J. C. Mitchell. Representation independence and data abstraction. In POPL. 1986. 113

E. Moggi. Computational lambda-calculus and monads. LICS. 1989. 2, 12, 25, 26

E. Moggi. A semantics for evaluation logic. Fundam. Inform., 22(1/2):117–152, 1995. 23, 26

C. Morgan. Programming from Speci�cations (2nd Ed.). Prentice Hall, Hertfordshire, UK, 1994.
26

G. Munch-Maccagnoni. Syntax and Models of a non-Associative Composition of Programs and
Proofs. (Syntaxe et modèles d’une composition non-associative des programmes et des preuves).
PhD thesis, Paris Diderot University, France, 2013. 60

D. Myers, Jaz. String diagrams for double catgeories and equipments, 2016. 37

A. Nanevski, G. Morrisett, A. Shinnar, P. Govereau, and L. Birkedal. Ynot: dependent types for
imperative programs. ICFP . 2008a. 2, 3

A. Nanevski, J. G. Morrisett, and L. Birkedal. Hoare type theory, polymorphism and separation.
JFP , 18(5-6):865–911, 2008b. 2

A. Nanevski, A. Banerjee, and D. Garg. Dependent type theory for veri�cation of information
�ow and access control policies. ACM TOPLAS, 35(2):6, 2013. 3, 5, 6, 111

D. A. Naumann. From coupling relations to mated invariants for checking information �ow.
ESORICS. 2006. 112

A. Nuyts and D. Devriese. Degrees of relatedness: A uni�ed framework for parametricity, irrel-
evance, ad hoc polymorphism, intersections, unions and algebra in dependent type theory. In
Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018,
Oxford, UK, July 09-12, 2018, 2018. 112

S. S. Owicki and D. Gries. Verifying properties of parallel programs: An axiomatic approach.
CACM , 19(5):279–285, 1976. 23

P. Pédrot and N. Tabareau. Failure is not an option - an exceptional type theory. ESOP , 2018. 27

A. Petcher and G. Morrisett. The foundational cryptography framework. POST . 2015. 5, 6, 111

F. Pfenning and C. Elliott. Higher-order abstract syntax. In Proceedings of the ACM SIGPLAN’88
Conference on Programming Language Design and Implementation (PLDI), Atlanta, Georgia,
USA, June 22-24, 1988, 1988. 64

M. Piróg, T. Schrijvers, N. Wu, and M. Jaskelio�. Syntax and semantics for operations with
scopes. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2018, Oxford, UK, July 09-12, 2018, 2018. 12

A. M. Pitts. Evaluation logic. In IV Higher Order Workshop, Ban� 1990. Springer, 1991. 23, 26

G. D. Plotkin and J. Power. Notions of computation determine monads. FOSSACS, 2002. 12, 25

G. D. Plotkin and M. Pretnar. A logic for algebraic e�ects. In LICS. 2008. 26

G. D. Plotkin and M. Pretnar. Handlers of algebraic e�ects. ESOP . 2009. 12

http://dx.doi.org/10.1007/978-3-319-08918-8_23
http://dx.doi.org/http://doi.acm.org/10.1145/512644.512669
http://dx.doi.org/10.1109/LICS.1989.39155
http://dx.doi.org/10.3233/FI-1995-22126
https://tel.archives-ouvertes.fr/tel-00918642
https://tel.archives-ouvertes.fr/tel-00918642
https://arxiv.org/abs/1612.02762
http://dx.doi.org/10.1145/1411204.1411237
http://dx.doi.org/10.1145/1411204.1411237
http://ynot.cs.harvard.edu/papers/jfpsep07.pdf
http://dx.doi.org/10.1145/2491522.2491523
http://dx.doi.org/10.1145/2491522.2491523
http://dx.doi.org/10.1007/11863908_18
http://dx.doi.org/10.1145/3209108.3209119
http://dx.doi.org/10.1145/3209108.3209119
http://dx.doi.org/10.1145/360051.360224
http://dx.doi.org/10.1007/978-3-319-89884-1_9
http://dx.doi.org/10.1007/978-3-662-46666-7_4
http://dx.doi.org/10.1145/53990.54010
http://dx.doi.org/10.1145/3209108.3209166
http://dx.doi.org/10.1145/3209108.3209166
https://www.cl.cam.ac.uk/~amp12/papers/evall/evall.pdf
http://dx.doi.org/10.1007/3-540-45931-6_24
http://homepages.inf.ed.ac.uk/gdp/publications/Logic_Algebraic_Effects.pdf
http://dx.doi.org/10.1007/978-3-642-00590-9_7

BIBLIOGRAPHY 123

A. Power. A general coherence result. Journal of Pure and Applied Algebra, 57(2):165 – 173, 1989.
30

J. Power. Semantics for local computational e�ects. Electr. Notes Theor. Comput. Sci., 158:355–371,
2006. 25

J. Protzenko, J.-K. Zinzindohoué, A. Rastogi, T. Ramananandro, P. Wang, S. Zanella-Béguelin,
A. Delignat-Lavaud, C. Hriţcu, K. Bhargavan, C. Fournet, and N. Swamy. Veri�ed low-level
programming embedded in F*. PACMPL, 1(ICFP):17:1–17:29, 2017. 79

W. Qu, M. Gaboardi, and D. Garg. Relational cost analysis for functional-imperative programs.
To appear at ICFP, 2019. 5, 6, 112

I. Radicek, G. Barthe, M. Gaboardi, D. Garg, and F. Zuleger. Monadic re�nements for relational
cost analysis. PACMPL, 2(POPL):36:1–36:32, 2018. 5, 6, 111

C. Rauch, S. Goncharov, and L. Schröder. Generic Hoare logic for order-enriched e�ects with
exceptions. WADT , 2016. 26, 42

A. Sabelfeld and A. C. Myers. Language-based information-�ow security. IEEE Journal on Selected
Areas in Communications, 21(1):5–19, 2003. 5, 112

D. Sangiorgi, N. Kobayashi, and E. Sumii. Environmental bisimulations for higher-order lan-
guages. ACM Trans. Program. Lang. Syst., 33(1):5:1–5:69, 2011. 113

T. Sato, A. Aguirre, G. Barthe, M. Gaboardi, D. Garg, and J. Hsu. Formal veri�cation of higher-
order probabilistic programs: reasoning about approximation, convergence, bayesian infer-
ence, and optimization. PACMPL, 3(POPL):38:1–38:30, 2019. 5, 6, 111

T. Schrijvers, M. Piróg, N. Wu, and M. Jaskelio�. Monad transformers and modular algebraic
e�ects: what binds them together. In Proceedings of the 12th ACM SIGPLAN International
Symposium on Haskell, Haskell@ICFP 2019, Berlin, Germany, August 18-23, 2019, 2019. 72

M. Shulman. Framed bicategories and monoidal �brations. Theory and applications of categories,
20(18):650–738, 2008. 29, 34, 38, 39, 49

M. Shulman. Univalence for inverse diagrams and homotopy canonicity. Mathematical Structures
in Computer Science, 25:1203–1277, 2014. 103

A. Simpson and N. F. W. Voorneveld. Behavioural equivalence via modalities for algebraic e�ects.
ESOP . 2018. 26

M. Sousa and I. Dillig. Cartesian Hoare logic for verifying k-safety properties. PLDI . 2016. 5, 6,
111, 112

M. Sozeau and C. Mangin. Equations reloaded: High-level dependently-typed functional pro-
gramming and proving in coq. Proc. ACM Program. Lang., 3(ICFP):86:1–86:29, 2019. 64

S. Staton. Completeness for algebraic theories of local state. In Foundations of Software Science
and Computational Structures, 13th International Conference, FOSSACS 2010, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus,
March 20-28, 2010. Proceedings, 2010. 25

S. Staton. Algebraic e�ects, linearity, and quantum programming languages. In Proceedings of
the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2015, Mumbai, India, January 15-17, 2015, 2015. 25

R. Street. The formal theory of monads. Journal of Pure and Applied Algebra, 2, 1972. 29, 49

http://dx.doi.org/https://doi.org/10.1016/0022-4049(89)90113-8
http://dx.doi.org/10.1016/j.entcs.2006.04.018
http://dx.doi.org/10.1145/3110261
http://dx.doi.org/10.1145/3110261
http://arxiv.org/abs/1812.04090
http://dx.doi.org/10.1145/3158124
http://dx.doi.org/10.1145/3158124
http://dx.doi.org/10.1007/978-3-319-72044-9_14
http://dx.doi.org/10.1007/978-3-319-72044-9_14
http://dx.doi.org/10.1109/JSAC.2002.806121
http://dx.doi.org/10.1145/1889997.1890002
http://dx.doi.org/10.1145/1889997.1890002
http://dx.doi.org/10.1145/3290351
http://dx.doi.org/10.1145/3290351
http://dx.doi.org/10.1145/3290351
http://dx.doi.org/10.1145/3331545.3342595
http://dx.doi.org/10.1145/3331545.3342595
http://dx.doi.org/10.1017/S0960129514000565
http://dx.doi.org/10.1007/978-3-319-89884-1_11
http://dx.doi.org/10.1145/2908080.2908092
http://dx.doi.org/10.1145/3341690
http://dx.doi.org/10.1145/3341690
http://dx.doi.org/10.1007/978-3-642-12032-9_5
http://dx.doi.org/10.1145/2676726.2676999
http://dx.doi.org/10.1016/0022-4049(72)90019-9

124 BIBLIOGRAPHY

R. Street and R. Walters. Yoneda structures on 2-categories. Journal of Algebra, 50(2):350 – 379,
1978. 50

E. Sumii. A complete characterization of observational equivalence in polymorphic lambda-
calculus with general references. CSL. 2009. 113

N. Swamy, J. Weinberger, C. Schlesinger, J. Chen, and B. Livshits. Verifying higher-order pro-
grams with the Dijkstra monad. PLDI , 2013. 3, 4, 17, 89

N. Swamy, C. Hriţcu, C. Keller, A. Rastogi, A. Delignat-Lavaud, S. Forest, K. Bhargavan, C. Four-
net, P.-Y. Strub, M. Kohlweiss, J.-K. Zinzindohoué, and S. Zanella-Béguelin. Dependent types
and multi-monadic e�ects in F*. POPL. 2016. 3, 4, 17, 75, 89

W. Swierstra and T. Baanen. A predicate transformer semantics for e�ects, 2019. 26

K. Szlachányi. Skew-monoidal categories and bialgebroids. Advances in Mathematics, 231(3):
1694 – 1730, 2012. 50

T. Terauchi and A. Aiken. Secure information �ow as a safety problem. SAS. 2005. 112

A. Timany and L. Birkedal. Mechanized relational veri�cation of concurrent programs with
continuations. To appear at ICFP, 2019. 5, 113

A. Timany and B. Jacobs. Category theory in Coq 8.5. FSCD, 2016. 64

A. Timany, L. Stefanesco, M. Krogh-Jespersen, and L. Birkedal. A logical relation for monadic
encapsulation of state: proving contextual equivalences in the presence of runST. PACMPL, 2
(POPL):64:1–64:28, 2018. 5

S. Tonelli. Investigations into a model of type theory based on the concept of basic pair. Master’s
thesis, Stockholm University, 2013. supervisors Erik Palmgren and Giovanni Sambin. 95, 102

T. Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathe-
matics. https://homotopytypetheory.org/book, Institute for Advanced Study, 2013. 7,
76

D. Unruh. Quantum relational Hoare logic. PACMPL, 3(POPL):33:1–33:31, 2019. 5, 6, 111

T. Uustalu, N. Veltri, and N. Zeilberger. The sequent calculus of skew monoidal categories. Elec-
tronic Notes in Theoretical Computer Science, 341:345 – 370, 2018. Proceedings of the Thirty-
Fourth Conference on the Mathematical Foundations of Programming Semantics (MFPS
XXXIV). 50

N. Voorneveld. Quantitative logics for equivalence of e�ectful programs. MFPS. 2019. To appear.
26

P. Wadler. Comprehending monads. In Proceedings of the 1990 ACM Conference on LISP and
Functional Programming. 1990. 25

Y. Wang, I. Dillig, S. K. Lahiri, and W. R. Cook. Verifying equivalence of database-driven appli-
cations. PACMPL, 2(POPL):56:1–56:29, 2018. 5, 113

D. Winograd-Cort, A. Haeberlen, A. Roth, and B. C. Pierce. A framework for adaptive di�erential
privacy. PACMPL, 1(ICFP):10:1–10:29, 2017. 112

R. J. Wood. Abstract pro arrows i. Cahiers de Topologie et Géométrie Di�érentielle Catégoriques,
23(3):279–290, 1982. 50

http://dx.doi.org/https://doi.org/10.1016/0021-8693(78)90160-6
http://dx.doi.org/10.1007/978-3-642-04027-6_33
http://dx.doi.org/10.1007/978-3-642-04027-6_33
https://www.microsoft.com/en-us/research/publication/verifying-higher-order-programs-with-the-dijkstra-monad/
https://www.microsoft.com/en-us/research/publication/verifying-higher-order-programs-with-the-dijkstra-monad/
https://www.fstar-lang.org/papers/mumon/
https://www.fstar-lang.org/papers/mumon/
http://www.staff.science.uu.nl/~swier004/publications/2019-icfp-submission-a.pdf
http://dx.doi.org/https://doi.org/10.1016/j.aim.2012.06.027
http://dx.doi.org/10.1007/11547662_24
https://iris-project.org/pdfs/2019-icfp-logrelcc-final.pdf
https://iris-project.org/pdfs/2019-icfp-logrelcc-final.pdf
http://dx.doi.org/10.4230/LIPIcs.FSCD.2016.30
http://dx.doi.org/10.1145/3158152
http://dx.doi.org/10.1145/3158152
http://kurser.math.su.se/pluginfile.php/16103/mod_folder/content/0/2013/2013_08_report.pdf
https://homotopytypetheory.org/book
http://dx.doi.org/10.1145/3290346
http://dx.doi.org/https://doi.org/10.1016/j.entcs.2018.11.017
https://arxiv.org/abs/1904.11771
http://dx.doi.org/10.1145/91556.91592
http://dx.doi.org/10.1145/3158144
http://dx.doi.org/10.1145/3158144
http://dx.doi.org/10.1145/3110254
http://dx.doi.org/10.1145/3110254
http://www.numdam.org/item/CTGDC_1982__23_3_279_0

BIBLIOGRAPHY 125

R. J. Wood. Proarrows ii. Cahiers de Topologie et Géométrie Di�érentielle Catégoriques, 26(2):
135–168, 1985. 50

H. Yang. Relational separation logic. Theor. Comput. Sci., 375(1-3):308–334, 2007. 5, 6, 111

H. Yasuoka and T. Terauchi. Quantitative information �ow as safety and liveness hyperproper-
ties. Theor. Comput. Sci., 538:167–182, 2014. 112

A. Zaks and A. Pnueli. CoVaC: Compiler validation by program analysis of the cross-product.
FM . 2008. 112

N. Zeilberger. The Logical Basis of Evaluation Order and Pattern-Matching. PhD thesis, Carnegie
Mellon University, 2009. 113

D. Zhang and D. Kifer. LightDP: towards automating di�erential privacy proofs. POPL. 2017. 5,
6, 112

H. Zhang, E. Roth, A. Haeberlen, B. C. Pierce, and A. Roth. Fuzzi: A three-level logic for di�er-
ential privacy. CoRR, abs/1905.12594, 2019. 112

http://www.numdam.org/item/CTGDC_1985__26_2_135_0
http://dx.doi.org/10.1016/j.tcs.2006.12.036
http://dx.doi.org/10.1016/j.tcs.2013.07.031
http://dx.doi.org/10.1016/j.tcs.2013.07.031
http://dx.doi.org/10.1007/978-3-540-68237-0_5
http://noamz.org/thesis.pdf
http://www.cse.psu.edu/~dbz5017/pub/popl17.pdf
http://arxiv.org/abs/1905.12594
http://arxiv.org/abs/1905.12594

ABSTRACT

Computational monads are a convenient algebraic gadget to uniformly represent side-effects in
programming languages, such as mutable state, divergence, exceptions, or non-determinism. Various
frameworks for specifying programs and proving that they meet their specification have been proposed that
are specific to a particular combination of side-effects. For instance, one can use Hoare logic to verify the
functional correctness of programs with mutable state with respect to pre/post-conditions specifications,
which are predicates on states. The goal of this thesis is to devise a principled semantic framework for
verifying programs with arbitrary monadic effects in a generic way with respect to such rich specifications.
One additional challenge is supporting various interpretations of effects, for instance total vs partial
correctness, or angelic vs demonic nondeterminism. Finally, the framework should also accommodate
relational verification, for properties such as program equivalence.

MOTS CLÉS

Preuve de programmes, Sémantique Catégorique, Langages de programmation

RÉSUMÉ

Les effets de bord présent dans les languages de programmation tel que l'état mutable, la divergence ou le
non déterminisme sont capturés de manière élégante par des monades. Plusieurs systèmes ont été
proposés pour spécifier et prouver que des programmes manipulant une certaine combinaison d'effets
respectent leur spécification. Par exemple, la logique de Hoare permet de vérifier la correction de
programmes manipulant la mémoire en stipulant des prédicats sur les états initiaux et finaux. Le but de
cette thèse est de définir un cadre sémantique générique pour vérifier que des programmes avec des effets
monadique arbitraire respectent de telles spécifications. Les interprétations diverses des effets tel que la
correction totale ou partielle, ou encore le non-déterminisme angélique ou démonique, introduisent un défi
supplémentaire. Ce cadre sémantique devra aussi considérer la vérification de propriétés relationnelles,
par exemple la simulation ou l'équivalence de programmes.

KEYWORDS

Proof of programs, Categorical semantics, Programming languages

