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Abstract

Computational monads are a convenient algebraic gadget to uniformly represent side-
effects in programming languages, such as mutable state, divergence, exceptions, or non-
determinism. Various frameworks for verifying that programs and meet their specification
have been proposed, but are all are specific to a particular combination of side-effects. For
instance, one can use Hoare logic to verify the functional correctness of programs with
mutable state with respect to pre/post-conditions specifications.

This thesis devises a principled semantic framework for verifying programs with arbi-
trary monadic effects in a generic way with respect to such expressive specifications. The
starting point are Dijkstra monads, which are monad-like structures that classify effectful
computations satisfying a specification drawn from a monad. Dijkstra monads have already
proven valuable in practice for verifying effectful code, and in particular, they allow the F*
program verifier to compute verification conditions.

We provide the first semantic investigation of the algebraic structure underlying Dijk-
stra monads and unveil a close relationship between Dijkstra monads and effect observa-
tions, i.e., mappings between a computational and a specification monad that respect their
monadic structure. Effect observations are flexible enough to provide various interpretations
of effects, for instance total vs partial correctness, or angelic vs demonic nondeterminism.
Our semantic investigation relies on a general theory of specification monads and effect ob-
servations, using an enriched notion of relative monads and relative monad morphisms. We
moreover show that a large variety of specification monads can be obtained by applying
monad transformers to various base specification monads, including predicate transform-
ers and Hoare-style pre- and postconditions. For defining correct monad transformers, we
design a language inspired by the categorical analysis of the relationship between monad
transformers and algebras for a monad.

We also adapt our framework to relational verification, i.e., proving relational proper-
ties between multiple runs of one or more programs, such as noninterference or program
equivalence. For this we extend specification monads and effect observations to the rela-
tional setting and use them to derive the semantics and core rules of a relational program
logic generically for any monadic effect. Finally, we identify and overcome conceptual chal-
lenges that prevented previous relational program logics from properly dealing with effects
such as exceptions, and are the first to provide a proper semantic foundation and a relational
program logic for exceptions.
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Chapter 1

Introduction

«En un mot, la cuisine, sans cesser d’étre un art,
deviendra scientifique et devra soumettre ses
formules, empiriques trop souvent encore, a une
méthode et & une précision qui ne laisseront rien au
hasard.»

Auguste Escoffier, Le Guide culinaire, 1907

This manuscript is not dedicated to the art of cuisine, but to the science of computers and
more precisely to programs, which are the recipes used by computers. From this point of view,
a computer can be seen as a cook faithfully executing each step of a recipe in order to obtain
a result. Since we are a picky customer, we do not accept just any kind of result though, and
require the best quality, provided by formally verified programs.

The first task of program verification is to describe the expected behaviour of a program, via
a formal description called a specification. The crux of program verification is to prove that the
behavior of the program indeed satisfies the specification. For a simple example, consider the
following program computing the Fibonacci sequence:

letrec fib(n:Z):Z=1if n<1thennelse fib(n— 1)+ fib(n — 2)

What can we say about this program? From a mathematical point of view, we can solve the
recursive equation up42 = Upy+1 + Uy, With initial conditions ug = 0,u; = 1, obtaining the
closed form u,, = %(g@ 1+—2\/5

that for any n > 0, fib n computes u,, and to obtain a complete specification of fib, we should
also explain what happens for negative integers n < 0, namely that it returns n. However,
formally proving such a precise specification can be difficult. In this particular case, it entails
replaying the standard mathematical proof providing the closed form u,,, an accessible but time
consuming task. In certain scenarios, it might be enough for our purpose to prove a weaker, less
precise specification, but much easier to show, for instance that fib n > 0. In general, there are

n

— ¢'™) where ¢ = and ¢/ = f%. We could then specify

many different specifications that we can assign to a program for the purpose of verification.
Now, suppose that some careless programmer were to write the following variation to com-
pute the Fibonacci sequence:

letrec fib (n:Z):Z=if n=0|n=1thennelsefib’(n— 1)+ fib’ (n — 2)
This implementation does not change much from the previous, the condition n <1 was just

replaced by n=0| n=1 and, for n > 0 it actually computes the same values. However, if you
were to feed a negative integer, say —38, to fit’, the following infinite reduction sequence unrolls

fib —38 ~~ fib' —39 + fib' —40
~s (fib —40 + fib' —41) + (fib —41 + fib’ —42)
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and will continue executing for quite some time, since it will never hit the base case n==0|| n== 1.
We call such a program that sometimes never returns a value a divergent or partial program, by
opposition to a total program that always answers after computing for a finite — but arbitrary
- number of steps. While this simple example is quite contrived, considering partial programs
is a necessity if we want to implement expressive programs such as an evaluator for a Turing-
complete programming language. And from a program verification perspective, it means that
we need to be able to specify such partial programs and consequently specifications should have
the ability to specify not only the value a program may return but also how partial it is.

This is the point where computations take their independence from the idealistic world of
pure, total, mathematical functions. Concretely, side-effects can be used to distinguish the evalu-
ation strategy employed to evaluate a program, so the latter can no longer be naively modelled
as function returning a result. Nonetheless, to achieve anything, a useful program must at some
point trigger effects to interact with the external world. Examples of such interactions are query-
ing a user for input, storing persistent data to the file system, or exploring an unbounded search
space, possibly nondeterministically. Since effects are ubiquitous in our daily programming ac-
tivity, we would like to understand them deeply. We seek a solid and general theory explaining
what effects are, how we can use them to write useful programs, and most importantly, how we
can reason about the properties of such programs. As such, our work builds upon the general
model of side-effects as computational monads (Moggi, 1989), which can naturally capture effects
such as stateful computations, exceptions, non-termination, nondeterminism, or probabilities.

The aim of this thesis is to deepen our conceptual understanding of these monadic effects and
to work out the general principles of program verification for programs with arbitrary monadic
side-effects. To this end, we study a few areas of program verification and systematically asso-
ciate to a program logic (i.e., a deductive system for proving assertions about programs) an alge-
braic semantic counterpart. These algebraic objects consist of various generalizations of monads
and morphisms preserving the monadic structure. In the following sections we introduce these
objects and how they help program verification: specification monads to describe the behaviour
of programs, effect observation to connect computations with specifications, and Dijkstra monads
to bind the three together, as well as their relational variants. A running idea throughout is that
that the common algebraic laws underlying the semantics of various program logics for specific
effects provides insight into the nature of effects themselves.

1.1 Reasoning About Monadic Programs

Many approaches have been proposed for formally verifying effectful programs. In an imper-
ative setting, Hoare (1969) introduced a program logic to reason about properties of programs.
The judgments of this logic are Hoare triples of the form { pre } ¢ { post }. Intuitively, if the
precondition pre is satisfied, then running the program c leaves us in a situation where post
is satisfied, provided that c terminates. For imperative programs—i.e., statements changing the
program’s state—pre and post are predicates over the initial and the final state. These Hoare
triples are derived using inference rules such as

T e OARE-SE {pre} ci{q} {q} ca {post}
HOARE-SKIP {q}skip{q} H SEQ {pre} c1;c2 { post } (1.1)

Hoare’s approach can be directly adapted to the monadic setting by replacing imperative pro-
grams ¢ with monadic computations m : M A. This approach was first proposed in Hoare Type
Theory (Nanevski et al., 2008a,b), where a Hoare monad of the form HST pre A post augments
the state monad over A with a precondition pre : S — P and postcondition post : A x S — P.
So while preconditions are, like in Hoare logic, predicates over initial states, postconditions are
now predicates over both final states and results. Using this Hoare monad, we can reflect the
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inference rules of Hoare logic inside the typing judgements

HTT-Skip

I' F skip : HST (As. post ((),s)) 1 post

ke :HSTprelyg ' co : HST (As. ¢ ((), s)) A post
I'F ¢q;¢0 : HST pre A post

HTT-SEQ

where we write skip for the monadic program returning () and c;; ¢2 for the sequential com-
position of monadic programs dropping the (irrelevant) result of ¢;. While this approach was
successfully extended to a few other effects (Delbianco and Nanevski, 2013; Nanevski et al., 2008a,
2013), until our work, there was no general story on how to define a Hoare monad or even just
the shape of pre- and postconditions for an arbitrary effect.

A popular alternative to proving properties of imperative programs is Dijkstra’s (1975) weak-
est precondition calculus. The main insight of this calculus is that from the syntax of a program
¢ we can directly compute a weakest precondition wp(c, post) such that the formula pre =
wp(c, post) is valid if and only if the triple { pre } ¢ { post } is derivable, which allows to partly
automate the verification process by reducing it to a logical validity problem. Swamy et al.
(2013) observed that it is possible to adopt Dijkstra’s technique to ML programs with state and
exceptions elaborated to monadic style. They propose a notion of Dijkstra monad of the form
DST A wp, classifying stateful programs with exceptions returning values in A and where wp is
a predicate transformer that specifies the behavior of the monadic computation. These predicate
transformers are represented as functions that, given a postcondition on the final state, and ei-
ther the result value of type A or an exception of type F, calculate a corresponding precondition
on the initial state. The type of such predicate transformers can be written as follows (where P
is the type of propositions):

WM-A = (A+E)xS—P) —» (S—P)
~~ SN——
postconditions preconditions

In subsequent work, Swamy et al. (2016) extended this to programs that combine multiple sub-
effects. They compute more efficient weakest preconditions with respect to the actual effects of
the code, instead of verifying everything using WML above. For example, pure computations are
given specifications of type:

wPeA = ContpA = (A—=P) = P,
while stateful (but exception-free) computations are verified using specifications of type:
WS4 = (AxS—=P) = (S—=P).

An important observation underlying this technique is that predicate transformers have a nat-
ural monadic structure ensuring that analogs of the inference rules 1.1 hold for each of these
settings. For instance, it is not hard to see that the predicate transformer type WY is simply
the continuation monad with answer type P, that W' is the state monad transformer applied to
WPure and that WML is the state and exceptions monad transformers applied to W, While
this observation was historically made for WPure and WSt where the monad structure is more
obvious, we realized in retrospective that the pre-/post-conditions used in Hoare logic also have
such a monadic structure inducing exactly the rules (1.1):

PP*4 = (S—=P)x(AxS—P)

Generalizing over these examples, we introduce the notion of specification monad, capturing
abstractly this class of monads expressing specifications. These monadic structures are a key
ingredient of both Hoare monads and Dijkstra monads, providing a unified view of the specifi-
cations indexing these objects. Moreover, we investigate generic constructions of such specifi-
cation monads, in particular based on monad transformers, which reveals a rich theory that can
account for specifications for a variety of side-effects.
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1.2 Understanding Dijkstra monads

Generalizing over the previous discussion, a Dijkstra monad D A w is a monad-like structure
that classifies effectful computations returning values in A and specified by w : WA, where W
is what we call a specification monad.! The pragmatic observation that Dijkstra monads and the
associated verification methodology is effective for various effects (Swamy et al., 2016) led us to a
quest to generalize Dijkstra monads to arbitrary monadic effects. The main questions to answer
are: Given a monadic effect, how do we find a suitable specification monad for it? Is there a single
specification monad that we can associate to each effect? If not, what are the various alternatives,
and what are the constraints on this association for obtaining a proper Dijkstra monad?

Our Dijkstra Monads for Free (DM4Free) approach (Ahman et al., 2017) provides partial an-
swers to these questions: from a computational monad defined as a term in a metalanguage
called DM, a (single) canonical specification monad is automatically derived through a syntactic
translation. Unfortunately, while this approach works for stateful and exceptional computations,
it cannot handle several other effects, such as input-output (IO), due to various syntactic restric-
tions in DM.

To better understand and overcome such limitations, we observe that a computational monad
in DM is essentially a monad transformer applied to the identity monad; and that the spec-
ification monad is obtained by applying this monad transformer to the continuation monad
ContpA = (A — P) — P. Returning to the example of state, the specification monad W5t A
can be obtained from the state monad transformer StT M A = S — M (A x S). This reinter-
pretation of the DM4Free approach sheds light on its limitations: For a start, the class of supported
computational monads is restricted to those that can be decomposed as a monad transformer ap-
plied to the identity monad. However, this rules out various effects such as nondeterminism or
IO, for which no practical monad transformer is known (Adamek et al., 2012; Bowler et al., 2013;
Hyland et al., 2007).

Further, obtaining both the computational and specification monads from the same monad
transformer introduces a very tight coupling. In particular, in DM4Free one cannot associate dif-
ferent specification monads with a particular effect. For instance, the exception monad Exc A =
A+ FE is associated by DM4Free with the specification monad WA = ((A + E) — P) — P,
by applying the exception monad transformer ExcT M A = M (A + E) to Contp. This specifi-
cation monad requires the postcondition to account for both the success and failure cases. While
this is often desirable, at times it may be more convenient to use the simpler specification monad
Contp directly, allowing exceptions to be thrown freely, without having to explicitly allow this
in specifications. Likewise, for IO, one may wish to have rich specifications that depend on the
history of interactions with the external world, or simpler context-free specifications that are as
local as possible. In general, one should have the freedom to choose a specification monad that
is expressive enough for the verification task at hand, but also simple enough so that verification
is manageable in practice.

Moreover, even for a fixed computational monad and a fixed specification monad there can
be more than one way to associate the two in a Dijkstra monad. For instance, to specify ex-
ceptional computations using Contp, we could allow all exceptions to be thrown freely—as ex-
plained above, which corresponds to a partial correctness interpretation—but a different choice
is to prevent any exceptions from being raised at all—which corresponds to a total correctness
interpretation. Similarly, for specifying nondeterministic computations, two interpretations are
possible for Contp: a demonic one, in which the postcondition should hold for all possible result
values (Dijkstra, 1975), and an angelic one, in which the postcondition should hold for at least
one possible result (Floyd, 1967).

!Prior work has used the term “Dijkstra monad” both for the indexed structure D and for the index W (Ahman
et al., 2017; Jacobs, 2014, 2015; Swamy et al., 2013, 2016). In order to prevent confusion, we use the term “Dijkstra
monad” exclusively for the indexed structure D and the term “specification monad” for the index W.
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The key idea at this point is to decouple the computational monad and the specification monad:
instead of insisting on deriving both from the same monad transformer as in DM4Free, we con-
sider them independently and only require that they are related by an effect observation (Kat-
sumata, 2014), i.e., a mapping between two monads that respects their monadic structure.

%
M —_— W
computational effect observation specification
monad monad

For instance, an effect observation from nondeterministic computations could map a finite set
of possible outcomes to a predicate transformer in (A — P) — P. Given a finite set R of results
in A and a postcondition post : A — P, there are only two reasonable ways to obtain a single
proposition: either take the conjunction of post v for every v in R (demonic nondeterminism), or
the disjunction (angelic nondeterminism). For the case of IO, in our framework we can consider
at least two effect observations relating the IO monad to two different specification monads,

W and WHiSt where £ is the alphabet of 10 events:
WX = (X xE 3P) P «+— 10 — WX = (X x& —=P)—= (£ = P)

While both specification monads take postconditions of the same type (predicates on the final
value and the produced IO events), the produced precondition of WS X has an additional
argument £, which denotes the history of interactions (i.e., IO events) with the external world.

How do these effect observations compare to Dijkstra monads? It turns out that they are
two sides of the same coin: from an effect observation one can reconstruct a Dijkstra monad and
conversely. In particular, thanks to the many degrees of freedom allowed by effect observations,
we construct various novel Dijkstra monads in a uniform way.

1.3 Relational reasoning for arbitrary effects

Generalizing unary properties, which describe single program runs, relational properties describe
relations between multiple runs of one or more programs (Abate et al., 2019; Clarkson and Schnei-
der, 2010). Formally verifying relational properties has a broad range of practical applications.
For instance, one might be interested in proving that the observable behaviors of two programs
are related, showing for instance that the programs are equivalent (Blanchet et al., 2008; Chadha
et al., 2016; Stefan Ciobaci et al., 2016; Godlin and Strichman, 2010; Hur et al., 2012, 2014; Kundu
et al., 2009; Timany et al., 2018; Wang et al., 2018; Yang, 2007), or that one refines the other
(Timany and Birkedal, 2019). In other cases, one might be interested in relating two runs of a sin-
gle program, but, as soon as the control flow can differ between the two runs, the compositional
verification problem becomes the same as relating two different programs. This is for instance
the case for noninterference, which requires that a program’s public outputs are independent of its
private inputs (Antonopoulos et al., 2017; Banerjee et al., 2016; Barthe et al., 2019; Clarkson and
Schneider, 2010; Nanevski et al., 2013; Sabelfeld and Myers, 2003; Sousa and Dillig, 2016). The list
of practical applications of relational verification is, however, much longer, including showing
the correctness of program transformations (Benton, 2004), cost analysis (Cicek et al., 2017; Qu
et al., 2019; Radicek et al., 2018), program approximation (Carbin et al., 2012; He et al., 2018), se-
mantic diffing (Girka et al., 2015, 2017; Lahiri et al., 2012; Wang et al., 2018), cryptographic proofs
(Barthe et al., 2009, 2013a, 2014; Petcher and Morrisett, 2015; Unruh, 2019), differential privacy
(Barthe et al., 2013b, 2015; Gavazzo, 2018; Zhang and Kifer, 2017), and even machine learning
(Sato et al., 2019).

As such, many different relational verification tools have been proposed, making different
trade-offs, for instance between automation and expressiveness (see section 6.5 for further dis-
cussion). In this manuscript, we focus on relational program logics, which are a popular formal
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foundation for various relational verification tools. Relational program logics are proof systems
whose rules can be used to prove that a pair of programs meets a rich relational specification.
As such they are very expressive, and can in particular handle situations in which verifying the
desired relational properties requires showing the full functional correctness of certain pieces
of code. Yet they can often greatly simplify reasoning by leveraging the syntactic similarities
between the programs we relate. Since Benton’s (2004) seminal Relational Hoare Logic, many
relational program logics have been proposed (Aguirre et al., 2017; Banerjee et al., 2016; Barthe
et al., 2013b, 2014, 2015, 2016; Carbin et al., 2012; Nanevski et al., 2013; Petcher and Morrisett,
2015; Qu et al., 2019; Radicek et al., 2018; Sato et al., 2019; Sousa and Dillig, 2016; Unruh, 2019;
Yang, 2007; Zhang and Kifer, 2017). However, each of these logics is specific to a particular com-
bination of side-effects that is completely fixed by the programming language and verification
framework; the most popular side-effects these logics bake in are mutable state, general recur-
sion, cost, and probabilities.

Leveraging the ideas developed in the unary (i.e., non-relational) setting outlined in sec-
tion 1.2, we distill the generic relational reasoning principles that work for many, if not all,
monadic side-effects and that underlie relational program logics. An important insight is that the
notion of specification monad can be extended to encompass relational specifications capturing
a shared behaviour or a comparison of the behaviours of two programs, while keeping a compo-
sitional monad-like structure. For instance, considering two stateful programs ¢; : Stg, A; and
2 @ Stg, Ag, we can specify their behaviour by a pair of a precondition pre : S x So — P relat-
ing the initial states of the two programs and a postcondition post : (A1 x S1) x (A2 x S3) — P
relating their results and final states. The specification monad structure on PPS! carries over to
the type constructor

PPrSJI; (Al,AQ) = (Sl X SQ — P) X ((Al X Sl) X (AQ X Sg) — P)

providing return and bind operations that make PPIS;l a relational specification monad. These
relational specifications account for pairs of programs returning values in potentially distinct
types. Likewise, our framework can relate programs using different computational monadic
effects M1, My. Relational effect observations bridge the gap between these two computational

monads and a relational specification monad W,:

erel

Ml, M2 Wrel
left and right relational relational
computational monads effect observation specification monad

The diagram above provides a generic reconstruction of the semantics of relational program
logics for arbitrary monadic effects. The game is then to reconstruct as canonically as possible
the inference rules of relational program logics. In particular we observe that a clean separation
can be achieved between logical rules independent of the computational effects, generic monadic
rules ensuring compositionality of reasoning induced by the algebraic properties of relational
effect observations, and effect specific rules that capture the specific details of the computational
effects at hand. We show that logical and generic rules can be derived generically, independently
of the effect, and we also provide a recipe for deriving the effect specific rules in our framework.

1.4 Contributions

> We provide a general theory of specification monads and effect observations that is use-
ful for program verification. For specifications we identify various elementary specifi-
cation monads such as Dijkstra-style predicate transformers as well as Hoare-style pre-
/postconditions, and extend the expressivity of these specification monads by applying
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monad transformers. For effect observations we use relative monad morphisms to pro-
vide a flexible interpretation of effects, allowing for instance the choice between total and
partial correctness, or between angelic and demonic nondeterminism.

> We develop a metalanguage for defining (specification) monad transformers whose design
was inspired by the categorical analysis of the relationship between monad transformers
and algebras for a monad. We implement the metalanguage in Coq, ultimately providing an
effective method to derive correct-by-construction monad transformers out of a standard
monad definition in the metalanguage.

> We provide the first formal definition of Dijkstra monads and unveil their close relationship
to effect observations, yielding an effective method to build a variety of Dijkstra monads,
and a practical methodology to verify effectful code for arbitrary monadic effects.

D> We extend the notions of specification monads and effect observations to the relational set-
ting, by introducing a general semantic framework for deriving relational program logics
for arbitrary monadic effects.

> We identify and overcome conceptual challenges that prevented previous relational pro-
gram logics from properly dealing with exceptions. For this, we propose a novel way of
combining unary and relational specifications resulting in the first relational program logic
for exceptions.

> We work out a theory of relative monads and use it to provide a unified conceptual foun-
dation for specification monads and effect observations both in the unary and relational
setting, as well as a presentation of Dijkstra monads as the lifting of relative monads.

This thesis is based on two recent papers: one that appeared at ICFP 2019 (Maillard et al,,
2019a) and one currently under submission (Maillard et al., 2019b). This is the culmination of
a line of collaborative research in which I was involved during my PhD, which also resulted in
other publications (Ahman et al., 2017, 2018; Bhargavan et al., 2017; Grimm et al., 2018).

1.5 Foundations, Conventions & Notations

We work as much as possible in a constructive metatheory that is loosely modelled on Cogq, i.e.,
Martin-Lo6f Type Theory with dependent product (x:A) — B, dependent sums (x:A) x B, a predica-
tive hierarchy of universes Type; and an impredicative universe of proposition P. Throughout
the manuscript we assume extensionality for dependent products and sums, and propositions:

f=g:(z:A)—>B = V(a:A),fa=ga: Bla/x]
u=v:(r:A)xB — mu=mv:AANTau="mov: B[m u/x]
p=gq:P = p < ¢

We use the notation 1 to describe a terminal object, either a singleton or the category with
one object and one identity arrow depending on the context. The unique morphism to 1 will be
written ! x where X is the domain of the morphism. When writing programs, we use either * or
() to denote the unique inhabitant of 1.

We naively assume from times to times that equality on arbitrary types is proof-irrelevant,
that is we assume Uniqueness of Identity Type (UIP), but we expect that most of the development
could be achieved in a metatheory where UIP does not hold by restricting some of our construc-
tions — e.g., indexed algebraic structures with equations such as Dijkstra monads - to types for
which it hold, i.e., hsets in the terminology of Homotopy Type Theory (Univalent Foundations
Program, 2013). The exception is chapter 3 which uses quite a few classical results from the cat-
egory theory literature whose constructive nature we ignore. Nevertheless, our implementation
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in Coq derived from the ideas of that chapter comfort us in the opinion that there should be little
obstruction, but a long and hard work to fully formalize it in a constructive metatheory.

Most of the programs illustrating this manuscript are written in a syntax freely inspired
from F*, with the exception of a few code listings in chapter 4 describing the Coq implemen-
tation and consequently written directly in Coq. A substantial amount of the formalization
done during the thesis preparation can be found at https://gitlab.inria.fr/kmaillar/
dijkstra-monads-for-all. Sections and proofs that have been formalized end with a a7 .

1.6 Outline

We close this introduction with a plan of the coming chapters and their logical dependencies
presented in Figure 1.1.

Chapter 2 first introduces computational monads from a programmer perspective, illustrat-
ing various effects that can be expressed as monads. This is followed by a few examples of monad
transformers, which are the traditional way to build the zoo of monads modularly. The main con-
tributions of this chapter are the introduction of specification monads and the investigation of
effect observations, essential bridges between computational monads and specification monads.

Chapter 3 dives into the categorical world. It starts by recalling the formal theory of monads
in a 2-category, introducing the main theoretical concepts enabling an abstract study of monads.
The goal of this chapter is then to extend this formal theory to relative monads, a generalization
that we achieve thanks to the notion of framed bicategory. A particular instantiation of relative
monads in a framed bicategory provides an abstract definition of specification monads amenable
to uniform generalizations to other settings such as relational verification.

Chapter 4 introduces a methodology for building correct monad transformers. While the
theoretical foundations of this methodology is categorical, a more practical approach based on
a syntactic meta-language for defining monad transformers is also introduced. We present the
design choices guiding the implementation of this meta-language in the Coq proof assistant,
ultimately providing an effective tool for generating verified monad transformers in Coq.

Chapter 1:
Introduction
Chapter 2:
Enter the Monad

Chapter 3:
Abstracted Away
Chapter 4:
Mass producing
s
(o

monad transformer
Chapter 5: Chapter 6:
ijsktra monads Relational reasoning

——~—dependency optional (categorical)
dependency

Figure 1.1: Chapter dependencies
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Chapter 5 studies Dijkstra monads, a pragmatic approach to program verification, based on
computation types indexed by specifications, which is used heavily in the F* programming lan-
guage. After defining Dijkstra monads, we provide some examples of their wide applicability.
The main result of this chapter is the correspondence between Dijkstra monads and effect ob-
servations. A connection with graded monads (Fujii et al., 2016) is sketched using the unifying
notion of relative monad.

Chapter 6 enters the realm of relational reasoning. We extend the notions of specification
monad and effect observation to that setting, providing a general semantic foundation upon
which we can define relational program logics for a variety of monadic effects. The case of
exceptions is especially challenging and we explain how our framework can relate programs
with exceptions by intertwining unary and relational reasoning.






Chapter 2

Enter the monad

«[...]

un soleil d’Austerlitz

un siphon d’eau de Seltz

un vin blanc citron

un Petit Poucet un grand pardon un calvaire de
pierre une échelle de corde

deux sceurs latines trois dimensions douze apotres
mille et une nuits trente-deux positions six
parties du monde cinq points cardinaux dix
ans de bons et loyaux services sept péchés
capitaux deux doigts de la main dix gouttes
avant chaque repas trente jours de prison
dont quinze de cellule cinq minutes
d’entracte

et...

plusieurs ratons laveurs.»

Jacques Prévert, Inventaire, Paroles, 1946

This chapter provides a scenery of the basic notions that will be manipulated in the rest of
the manuscript. The first two sections recall the well-known notions of computational monads
and monad transformers. We explain how the former encapsulates side-effects in a uniform al-
gebraic structure and how the latter provides a way to extend monads, achieving some amount
of modularity.

We then introduce the novel notion of specification monad, a class of monads capturing spec-
ifications for effectful computations, casting specifications on the same footing as computations.
Finally, our first tool for verification of programs with arbitrary monadic effects consist of a
bridge between computations and specifications that we call an effect observation since it encodes
a choice observation of a computational effect in a specification monad. Articulating computa-
tional monads and specification monads with effect observations turns out to provide a modular
method to define verification system.

We provide examples for each introduced notion, and we will return to these examples
throughout the thesis. Most of them have been defined inside Coq as part of an effort to provide
a mechanized formalization of the content of this manuscript.

11
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2.1 Monads for the working programmer

Side effects are an important part of programming. They arise in a multitude of shapes, be
it imperative algorithms, nondeterministic operations, potentially diverging computations, or
interactions with the external world. These various effects can be uniformly captured by the
algebraic structure known as a computational monad (Benton et al., 2000; Moggi, 1989).

Definition 2.1.1 (&'). A monad is a type constructor M : Type — Type, equipped with two
operations

ret: A—-MA and bind: MA— (A—-MB)—MB
defined for any types A, B, moreover satisfying the following equations

vind" (retMa) f = fa bind"lm ret™ =m

bind'm (\z. bind™ (fz) g) = bind™ (bind™m f) g
foranya: A, f:A—-MB,m:MA,g: B— MC.

Intuitively, a computational monad provides a uniform interface M A for computations re-
turning values of type A, for instance state passing functions with result type A for stateful
computations. retM coerces a value v : A to a trivial computation, for instance seeing v as
a stateful computation leaving the state untouched. bind™ m f sequentially composes the
monadic computations m : MA with f : A — MB, for instance threading through the state.

The generic monad interface (M, ret™, bind™) is, however, not enough to write programs
that exploit the underlying effect. To this end, each computational monad also comes with oper-
ations for causing and manipulating effects. Algebraic operations form an important class of such
operations introduced in (Plotkin and Power, 2002). An operation op : A x (M X)Z — M X is
said to be algebraic when the following equation holds

bind (op (a, f)) g = op (a, Ab. bind (fb) g)

Any such algebraic operation corresponds bijectively to a generic effect gen,, : A — M B, and
we will usually employ this latter presentation, often closer to the programming practice. Slightly
abusing the terminology and following Pirdg et al. (2018), we will also call “operation” more
general functions manipulating the effects provided by a monad, for instance handlers (Plotkin
and Pretnar, 2009). In the next subsections, we recall a few examples of computational monads
and their operations to illustrate the range of computational effects that monad can account for.

2.1.1 Identity a¢

The simplest monad is the identity monad Id A = A with ret'da = @ and bind"dm f = fm
satisfying trivially the monad laws. It does not support any operations but it will be useful when
discussing monad transformers in section 2.2.

2.1.2 Partiality e

A simple model for partial computations is given by adding a new element that expresses diver-
gence, i.e. Div A = A + {_L}. Returning a value v is the obvious injection, while sequencing m
with f is given by applying f to m if m is a terminating value, or L if m was already diverging.
A partial computation can diverge with the operation €2 : Div O, implemented as {2 = inr 1.
In a classical metatheory, Div A is the free w-cpo on A, so by standard domain theoretic
results (Amadio and Curien (1998)), there is a fixpoint operator on Div A!. However in a con-
structive metatheory, e.g., Coq, this simple model is too limited to implement a useful fixpoint

'at least for w-continuous functions, as provided by Kleene fixpoint



2.1. MONADS FOR THE WORKING PROGRAMMER 13

operation. Various more sophisticated approach can provide solutions to that problem. Del-
bianco and Nanevski’s (2013) use complete lattices such as P and Knaster-Tarski fixpoints.

Altenkirch et al. (2017) directly define the free w-cpo on a type using quotient-inductive-
inductive types to describe the standard construction of completing a type with a bottom element,
limits of w-chains and quotienting by the equivalence relation induced by the natural preorder
on these.

A different approach, more in phase with the topics of this manuscript is to describe the syn-
tax of programs with recursion. (McBride, 2015) describes a free monad (see subsection 2.1.7)
with one operation call playing the role of a recursive call. Given a complete recursive defini-
tion, one can then handle these call operations in any monad supporting partiality. We illustrate
how to define the skeleton of a function computing the Fibonacci sequence and how such a
handling looks like if we were to have a primitive fixpoint operation below

type GenRec A B X =|Ret: X — GenRec A BX|Call: A — (B a — GenRec A BX) — GenRec ABX

let fib (m:N) : GenRec N (A _. N) N=
if n < 1then 1 else Call (n—1) (A r;. Call (n—2) (X r2. Ret (r; + r2)))

let rec fixGenRecy (f: (a:A) — GenRec A B(B a)) (m: GenRec ABX): X =
match mwith
| Ret x — x
| Call a k — fixGenRecy f (k (fixGenRecy f (f a)))

let fixGenRec (f: (a:A) — GenRec A B (B a)) (a:A) : B a = fixGenRecy f (f a)

In a language without arbitrary fixpoints, for instance in Coq, we will instead use fixpoints pro-
vided by a suitable monad as above.

2.1.3 Exceptions &

A computation that can potentially throw exceptions of type E can be represented by the monad
Exc A = A + FE. Returning a value v is the obvious left injection, while sequencing m with f is
given by applying f to v if m =1Inl v, or Inr e if m = Inr ¢, i.e., when m raised an exception.

let ret® € (1:A): Exc A=1Inlv

let bind™*° (m: Exc A) (f: A — Exc B) : Exc B=
match mwith
|Inl v— fv
| Inr e —1Inr e

The operation throw : £ — ExcO0 is defined by right injection of F into Exc0 = 0 + F. Such
an exception can be caught by the handler catch

let catch(m:Exc A) (exc: E—Exc A) : Exc A =
match mwith
|Inl v—1Inl v
|Inr e — exce

When we take ' = 1, exceptions coincide with the simple model of partiality, the monad

DivA=A+1.

2.1.4 State @

A stateful computation can be modeled as a state-passing function, i.e., St A = S — AX.S, where
S is the type of the state. Returning a value v is the function As. (v, s) that produces the value
v and the unmodified state, whereas binding m to f is obtained by threading through the state,
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ie As. let (vs)=msin fvs. The state monad comes with operations get : St S = As. (s, s) to
retrieve the state, and put : S — St 1 = As.\s'. (x, s) to overwrite it.

This basic account of stateful computations can be refined by employing a structured state,
for instance a store S = Loc — Val where Loc is a set of locations and Val is the type of
(ground) value that can be written to the store. In that case, we can also refine the operations
get and put, parametrizing them by accessed location in the store:

let get”(l: Loc): St Val= As. (s Ls)
let put®(l: Loc) (v: Val): St 1= As. (), \l. if ' = [then velse s )

We will see in section 5.1, this idea is the basis of stateful verification in F*, however with a much
more complex memory model.

2.1.5 Nondeterminism

A nondeterministic computation can be represented by a finite set of possible outcomes, i.e.
NDet A = P¥in(A). Returning a value v is provided by the singleton { v }, whereas sequenc-
ing m with f amounts to forming the union |J,,, fv. This monad comes with an operation
pick : NDet B = {true, false}, which nondeterministically chooses a boolean value, and an
operation fail : NDet O = (), which unconditionally fails.

2.1.6 Interactive input-output (I0) «

An interactive computation with input type I and output type O can be represented by the
inductively defined monad

type IO A=|Ret: A—10 A|Input: (I =10 A) =10 A|Output: 0 -I0 A —-I0 A

which describes three possible kinds of computations: either return a value (Ret), expect to re-
ceive an input and then continue (Input), or output and continue (Output). The monadic function
ret!© constructs a unique leaf tree using Ret and bind'© does tree grafting. The operations
perform input and output, and they are directly captured using the corresponding constructors.

let read: 10 I = Input (\i.ret!C i) let write(o: 0):10 1= Output o (ret!© ()

2.1.7 Free monads & monads presented by an equational theory =

The monads for identity, exception, general recursion GenRec and interactive input-output are
examples of free monads, that is monads inductively generated by a set of algebraic operations.
Given any signature (S, P) consisting of a set S of operations and a function P : S — Type
assigning to each operation its arity, we can construct the following monad consisting of terms
on the signature (S, P):

type Free SPX =|Ret: X — Free SPX|Op : (s:S) = (Ps— Free SPX) — Free SP X
let retFree (x:X) : Free SP X = Ret x

let rec bindFree (m:Free SPX) (f X — Free SPY): Free SPY =
match mwith
| Ret x — fx
| Op s k — Op s (A r. bindFree (k1) f)

with an associated generic effect let op (s:S) : Free SP(Ps) = Op s (Ar. Ret r).

More generally, we could consider an equational theory (S, P, E), that is a signature (.S, P)
equipped with a set of equations F between terms on the signature (S, P) — formally a set E of
pairs of terms. The monad associated to such a theory is the quotient of terms modulo the equiv-
alence relation induced by the congruence closure of E. All the previous examples of monads are
such presented monads. However, in absence of arbitrary effective quotients which may require
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instances of axiom of choice (Blass, 1983) or quotient inductive types (QITs) (Altenkirch and Ka-
posi, 2016), we will refrain from using these in a constructive setting and prefer the previous
per-effect presentation of the monads.

2.1.8 Probabilities

A probabilistic computation is a sub-probability distribution on possible outcomes, i.e., for a
countable type A, Prob A represents functions f : A — [0;1] such that > _, fa < 1. Re-
stricting our attention to countable discrete probabilities, there is a monad structure on Prob
known as the Giry monad (Giry, 1982). Returning a value v is the Dirac distribution at v, that
is the distribution assigning weight 1 to v and 0 to any other value. Binding a distribution
m : Prob A to a function f : A — Prob B amounts to computing the distribution on B given
by Ay. Xpcsupp(m) S T y. We can consider various basic distributions on countable spaces as op-
erations, for instance flip : [0;1] — ProbB provides a Bernoulli distribution on booleans
(with parameter given by the argument) and unif : n : N — Prob (finn) provides a uniform
distribution on the finite type finn with n elements.

2.1.9 Continuations «

Continuation passing style programming is captured by the continuation monad

let ContRA=(A—R)—R
let retCont (a:A): Cont RA=Ak. kv

let bindCont (m:Cont R A) (f: A— Cont RB): Cont RB=Ak. m (A a. fa k)

Returning a value v : A is just evaluating the continuation to this value, while sequencing two
continuation-passing computations m : Contr A and f : A — Contgr B is a matter of building
a suitable continuation for m with f. The continuation monad hosts an operation call_cc:

let call cc(f: (A— Cont RR) — ContRR): ContR A =
Ak. f(\ a. retCont (k a)) (A r. 1)

The continuation monad is a canonical example of a monad without rank, meaning that it
is not presentable by a (small) theory. Intuitively, this is due to the fact that we would need
operations of arbitrary arity to present the continuation monad.

2.2 Taming the monad zoo: a first glance at monad transformers

The previous section presented a variety of computational monads covering most of the effect
spectrum. However programs usually use more than a single effect at a time. An important
question thus is how to combine these effects and the corresponding monads.

This question is actually harder than one could expect at first. Indeed, given two monads
M;i, My there might be one way to compose them, or multiple ways to do so, or even none.
The various ways to compose M; and M are encoded by distributive laws (Beck, 1969). Finding
distributive laws for every pair of monads one wants to compose in a program is not only tedious
but hardly practical. Two approaches try to bypass this problem and recover some amount of
modularity.

One canonical way to compose monads can be obtained by restricting our attention to mon-
ads arising from algebraic effects, that is effects described only in terms of algebraic operations
and equations between these operations (Hyland et al., 2006).

Otherwise, instead of insisting on composing two monads, we can consider monad trans-
formers extending a base monad with new operations. Concretely, monad transformer 7 maps
a monad M to a monad 7M and provides for any type A a coercion 1ift7 : MA — TMA
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materializing how 7 M extends M. Since we need to consider monads not arising from algebraic
effects, in this manuscript we take in this second approach. The definition and construction of
monad transformers is studied in depth in chapter 4. In this section, we informally present ex-
amples of such transformers. As a particular case, applying a monad transformer 7 with the
identity monad Id provides a plain monad, often corresponding to one described in the previous
section.

2.2.1 State @

The state transformer StT on a fixed type of states S extends a monad M using state passing
StTM A =S — M(A x S) to provide operations get : 1 — StT M S and put : S — StT M1.
The lifting operation is defined by

let LiftStT (m: M A): StT M A = As. bind™ m (\ a. retM (a,s))

2.2.2 Exceptions &

The exception transformer ExcT adds a set of exceptions E' to the possible results of a monad
M, that is ExcT M A = M(A + E), providing an operation throw : E — ExcT M 0. Lifting a
computation from M to ExcT M is defined as

let liftExcT (m:M A) : ExcT M A = bind™ m (\ a. ret™M (Inl a))

2.2.3 Reader, writer and other update transformers &

If we want to extend a computation with a read-only environment S, the reader transformer
RATMA = S — M A fits our needs. Dually, if we only want to log informations, it’s the
writer monad Wr'TM A = M(A x list O) that we should use. As explained by Ahman and
Uustalu (2013) for the case of plain monads, the two transformers are instances of a family of
monad transformers called update transformers parametrized by a pair of a type S of states and
amonoid (O, %, e) of updates acting on the states > : O x § — S:

UpdTM A = S — M(A x O)

The monad structure on UpdT M and the lift from M are given by
let retUpdT (a:A) : UpdTM A = )s. retM (a, e)

let bindUpdT (m:UpdT M A) (fA — UpdTM B) : UpdT M B =
Aso. bind™ (m sp) (A (a, 01).
bind™ (fa (01 &> sg)) (A (b, 02).
retM (b, 0y * 01)))

let liftUpdT (m:M A) : UpdTM A =
As. bind™ m (A a. retM (g, €)

The reader transformer arises as the update monad associated to the pair (S, 1), where the
trivial monoid 1 acts on S by identity. The writer transformer arises as the pair (1,1ist O)
where the free monoid 1ist O acts trivially on the unit state.

2.2.4 Monotonic state and dependent update transformers =

Moving to a dependently typed example, the monotonic state transformer MonStT is a refine-
ment of the state transformer where the state updates are restricted along a fixed preorder on
states <C S x S:

MonStTMA = (sg:S) > M(Ax{s1:S5|so<s1})
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As advocated by Ahman et al. (2018), only extending the computational monad with monotonic
manipulations of stateful could enable monotonic reasoning, a cheap but efficient method to
prove various stateful properties.

The monotonic state transformer can be seen as an instance of a dependent update trans-
former, a generalization of update transformers where the parametrizing monoid O is replaced
by a dependent family P : S — Type indexed by the states and an adequate notion of action,
forming together a directed container (S, P) (Ahman and Uustalu, 2013). For a state s : S, the
type P s describes the possible way to act in state s. The data of a directed container (S, P) ac-
tually correspond to a category where S is the object set and P s are the morphism with domain
s. The dependent update monad transformer maps a monad M to a monad on the carrier

DUpdTMA = (s:5) = M(A x Ps).

The case of monotonic state transformer is recovered by a directed container structure on the
pair (S, Asg. { s1: 5| s0 < s1}).

2.3 Specifications from monads

As explained in section 1.1, the realization that predicate transformers form monads (Ahman
et al., 2017; Jacobs, 2014, 2015; Swamy et al., 2013, 2016) is the starting point to provide a uniform
notion of specifications. This is true not only for weakest precondition transformers, but also
for strongest postconditions, and pairs of pre- and postconditions as explained in details in the
following subsections. We call collectively this class of monads specification monads. Intuitively,
elements of a specification monad can be used to specify properties of some computation, e.g.,
WPwe can specify pure or nondeterministic computations, and W5t can specify stateful compu-
tations.

What is a specification monad ? A conceptual definition will be given in Def. 3.5.2, but for
the time being we will be using the following elementary definition.

Definition 2.3.1. A specification monad is a monad W such that
> WA is equipped with a preorder <W4 for each type A, and
> bind" is monotonic in both arguments:

V(w; <WVA w)). Y(wywh : A— WB).

(Vo : Awsx <VBawhz) = bindV w we <V bind™ wi wh

This order allows specifications to be compared as being either more or less precise. For
example, for the specification monads WFY™¢ and W5, the ordering is given by

wy < wy s WHUre 4 & Vip: A—P).wyp=wip
wy < wy 1 WA & Vip: Ax S —=P)(s:5). waps=wips

For WPue and WSt to form ordered monads, it turns out that we need to restrict our attention
to monotonic predicate transformers, i.e., those mapping (pointwise) stronger postconditions to
stronger preconditions. This technical condition, quite natural from the point of view of verifi-
cation, will be assumed implicitly for all the predicate transformers. We consider several basic
specification monads, whose relationship is summarized by Figure 2.1.
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2.3.1 Predicate monad «

Arguably the simplest way to specify a computation is to provide a postcondition on its out-
comes. This can be done by considering the specification monad Pred A = A — P (the co-
variant powerset monad) with order p; <¥™ p, <= V(a : A).p1a = pya. To specify
the behavior of returning values, we can always map a value v : A to the singleton predi-
cate ret”™ v = \y. (y = v) : Pred A. And given a predicate p : Pred A and a function
f : A — Pred B, the predicate on B defined by bind”™dp f = A\b. Ja.pa A fab specifies
the behavior of sequencing two computations, where the first computation produces a value a
satisfying p and, under this assumption, the second computation produces a value satisfying f a.
While a specification p : Pred A provides information on the outcome of the computation, it
cannot require preconditions, so computations need to be defined independently of any logical
context. To give total correctness specifications to computations with non-trivial preconditions,
for instance specifying that the division function div x y requires y to be non-zero, we need more
expressive specification monads.

2.3.2 Pre-/postcondition monad =

One more expressive specification monad is the monad of pre- and postconditions
PrePost A=P x (A — P),

bundling a precondition together with a postcondition. Here the behavior of returning a value v :
A is specified by requiring a trivial precondition and ensuring as above a singleton postcondition:
retPrePost y = (T, Aa. a = v) : PrePost A. And, given p = (pre, post) : PrePost A and a
function f = Xa. (pre’ a, post’ a) : A — PrePost B, the sequential composition of two
computations is naturally specified by defining

bind”rePostp f = ( (pre AVa.posta = pre a) ., Ab. Ja. post a A post’ ab) : PrePost B

The resulting precondition ensures that the precondition of the first computation holds and,
assuming the postcondition of the first computation, the precondition of the second computation
also holds. The resulting postcondition is then simply the conjunction of the postconditions
of the two computations. The order on PrePost naturally combines the pointwise forward
implication order on postconditions with the backward implication order on preconditions.

We formally show that this specification monad is more expressive than the predicate monad
above: Any predicate p : Pred A can be coerced to (T, p) : PrePost A, and in the other direc-
tion, any pair (pre, post) : PrePost A can be approximated by the predicate post, giving rise to a
Galois connection, as illustrated in Figure 2.1. While the monad PrePost is intuitive for humans,
generating efficient verification conditions is generally easier with predicate transformers (Leino,
2005).

2.3.3 Forward predicate transformer monad =

The predicate monad Pred can be extended in an alternative way. Instead of fixing a precon-
dition as in PrePost, a specification can be a function from preconditions to postconditions,
for instance producing the strongest postcondition of computation for any precondition pre:P
given as argument. Intuitively, such a forward predicate transformer on A should have type
P — (A — P). However, to obtain a monad (i.e., satisfying the expected laws), we have to
consider the smaller type

SPost A = (pre:P) 2% (A — P/pre)

of predicate transformers that are monotonic with respect to pre, where P .. is the subtype of
propositions implying pre. Returning a value v : A is specified by the predicate transformer
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retSPot y = \pre a. pre A a = v, and the sequential composition of two computations is spec-
ified as the predicate transformer bindS”°* m f = Apreb. Ja. f a (m pre a) b, for m : SPost A
and f : A — SPost B.

Any specification post : Pred A gives raise to a forward predicate transformer
spostOfPred post = \(pre : P) (a : A). pre Aposta : SPostA
and conversely a forward predicate transformer sp : SPost A induces a canonical postcondition
predOfSpost sp=sp T : Pred A

If forward predicate transformer in SPost could seem more expressive than Pred, it turns out
that the two functions spost0fPred and pred0fSpost are inverse of each others.

2.3.4 Backward predicate transformer monad =

As explained in section 1.1, backward predicate transformers can be described using the con-
tinuation monad with propositions P as the answer type, namely, Contp A = (A — P) — P.
Elements w : Contp A are predicate transformers mapping a postcondition post : A — P toa
precondition w post : P, for instance the weakest precondition of the computation. Pointwise
implication is a natural order on Contp A:

wy; <wy:ContpA & V(p:A—P)lwep=wip

However, Contp is not an ordered monad with respect to this order because its bind is not
monotonic. In order to obtain an ordered monad, we restrict our attention to the submonad
WPure of Contp containing the monotonic predicate transformers, that is those w : Contp A
such that

Vipipe : A—=P). (VMa:A).pra=pra) = wp = wpe,

which is natural in verification: we want stronger postconditions to map to stronger precondi-
tions.

This specification monad is more expressive than the pre-/postcondition one above. For-
mally, a pair (pre, post) : PrePost A can be mapped to the monotonic predicate transformer

Ap:A—=P).preA(Ma:A).posta=pa) : WFUA,

and vice versa, a predicate transformer w : WP A can be approximated by the pair
(wa.T) , Xa.(Vp.wp=pa) ) : PrePostA

These two mappings define a Galois connection, as illustrated in Figure 2.1. Further, this Galois

connection exhibits PrePost A as the submonad of WX A of conjunctive predicate transform-
ers, i.e., predicate transformers w commuting with non-empty conjunctions/intersections.

2.3.5 A specification monad of relations between pre- and postconditions a

Finally, both WP and SPost can be embedded into an even more expressive specification
monad RelPrePost consisting of relations between preconditions and postconditions satisfying
a few conditions, the full details of which can be found in our Coq formalization.
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SPost =~ Pred =—— PrePost 7 WFWe —— RelPrePost

Each pair of parallel arrows forms a Galois connection.

Figure 2.1: Relationships between basic specification monads

2.3.6 Specification monads from transformers «

Once we have a few basic specification monads as the one described above, a powerful way to
construct specification monads is to apply monad transformers to existing specification monads.
For instance, applying ExcT M A = M (A + E) to WP we get

WEA = ExcTWP'"A = ((A+E)—=P)—»P = (A—=P)—(E—P)—=P

WEXC is a natural specification monad for programs that can throw exceptions, transporting a
normal postcondition in A — P and an exceptional postcondition in £ — P to a precondition
in P.

Besides accounting for exceptional termination, varying the monad transformer extend spec-
ifications to have access to ghost state or to provide information about footprints. An important
point is that monad transformer provides an important modularity property: when specifying
code, we can use as little facilities as needed and consequently produce less clutter in verifica-
tion conditions. Further specification monads using this idea will be introduced along with the
examples in section 2.4.

Since specification monads also carry a preorder, we need the monad transformers to pre-
serve this ordered structure. We will see in chapter 4 that it is the case of all examples of monad
transformers of section 2.2.

2.3.7 Quantitative variations

Nothing prevents a priori to define specifications monads based on preorders different from
propositions. For instance, the example of the backward predicate transformer monad for in-
stance would have the structure of a specification monad independently of the choice of the
ordered return type (R, <) replacing P.

Taking R to be the extended reals [0; oo], we recover a monad to specify pre-expectations of
probabilistic programs (Audebaud and Paulin-Mohring, 2006; Kaminski et al., 2016).

Another possibility is to take R to be a set of available resources, for instance natural number
to count the number of steps a program could take. This can be refined to positive rational or
real numbers, obtaining a specification monad for cost analysis.

We did not pursue much further the analysis of such quantitative variants of specification
monads, but expect that a sensible amount of the work developed here could extend to the quan-
titative setting.

2.4 Effect observations

Now that we have a presentation of specifications as elements of a monad, we need to relate com-
putational monads to such specifications. Since an object relating computations to specifications
provides a particular insight on the effects exhibited by the computation, they have been called
effect observations (Katsumata, 2014). As explained in section 1.2, a computational monad can
have effect observations into multiple specification monads, or multiple effect observations into
a single specification monad. Using the exceptions computational monad Exc as running exam-
ple, we argue that monad morphisms provide a natural notion of effect observation in a unary
monadic setting, and we provide instances of effect observations supporting this claim. Then, we
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revisit the computational monads from section 2.1, and present various natural effect observa-
tions for them since there is generally a large variety of options regarding both the specification
monads and the effect observations when specifying and verifying monadic programs.

2.4.1 Effect observations are monad morphisms

As explained in section 2.1, computations throwing exceptions can be modeled by monadic
expressions m : ExcA = A + E. A natural way to specify m is to consider the specifica-
tion monad W*€A = ((A + E) — P) — P and to map m to the predicate transformer
05x¢(m) = Ap. pm : WE*¢ A, applying the postcondition p to the computation m.

The mapping 0¥*¢ : Exc — WYX¢ relating the computational monad Exc and the specifi-
cation monad W€ is parametric in the return type A, and it verifies two important properties
with respect to the monadic structures of Exc and W, First, a returned value is specified by
itself:

07 (ret¢ ) = ¥*¢(in1v) = \p. p (inlw) = retWV" y

and second, 0 preserves the sequencing of computations:

0™ (bind™ (inlv) f) = 67%(fv) = bind"V " (ret WV v) (70 f)
= bindV" 0F%¢(inl v) (7o)
0¥ (bind™ (inre) f) = 0¥(inre) = bind™ O¥*(inre) (A5 o f)

These properties together prove that %% is a monad morphism. More importantly, they allow us
to compute specifications from computations compositionally, e.g., the specification of bind can

be computed from the specifications of its arguments. This leads us to the following definition:

Definition 2.4.1 (Effect observation). An effect observation 6 is a monad morphism from a
computational monad M to a specification monad W. More explicitly, it is a family of maps
0r:MA— W A, natural in A and such that for anyv : A,m : MAand f : A - MB

the following equations hold:

O1(retMv) = retV o 0p(bind"'m f) = bind™ (4 m) (fp o f)

2.4.2 Specification monads are not canonical

When writing programs using the exception monad, we may want to write pure sub-programs
that actually do not raise exceptions. In order to make sure that these sub-programs are pure,
we could use the previous specification monad and restrict ourselves to postconditions that map
exceptions to false (L): hence raising an exception would have an unsatisfiable precondition.
However, as outlined in section 1.2, a simpler solution is possible. Taking as specification monad
WPUe we can define the following effect observation 6+ : Exc — WFWe by

0+ (inlv) = Ap. pu 6+ (inre) = Ap. L

This effect observation gives a total correctness interpretation to exceptions, which prevents them
from being raised at all. As such, we have effect observations from Exc to both WExe and Whure,

2.4.3 Effect observations are not canonical

Looking closely at the effect observation -, it is clear that we made a rather arbitrary choice
when mapping every exception inre to L. Mapping inr e to true (T) instead also gives us an
effect observation, 8 : Exc — WFe, This effect observation assigns a trivial precondition to
the throw operation, providing a partial correctness interpretation: given a program m : Exc A
and a postcondition p : A — P,if0T (m)(p) is satisfiable and m evaluates to inl v then p v holds;
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but /m may also raise any exception instead. Thus, 6,0 : Exc — WP are two natural effect
observations into the same specification monad. Even more generally, we can vary the choice for
each exception; in fact, effect observations 6 : Exc — WP are in one-to-one correspondence
with maps ' — P (see subsection 2.4.8 for a general account of this correspondence).

2.4.4 Effect observations from monad transformers =

Even though there is, in general, no canonical effect observation for a computational monad, we
can build an effect observation in the particular case of a monad of the shape 7 (Id), i.e., a monad
obtained by the application of a monad transformer to the identity monad. In that setting, fixing
any we can build a canonical specification monad, namely 7 (WF"¢), and a canonical effect ob-
servation into it. The effect observation is obtained simply by lifting the retWV ™" . 1d — WPure
function through the 7 transformer. For instance, for the exception monad Exc = ExcT(Id)
and the specification monad W¥*¢ = ExcT (WF"¢), the effect observation #¥*¢ arises as sim-
ply 65%¢ = ExcT(retWV ") = Amp. pm. More generally, for any monad transformer T (e.g.
StT, ExcT, StT o ExcT, ExcT o StT) and any specification monad W (so not just W™, but
also e.g., any basic specification monad from section 2.3) we have a monad morphism

rew
o7 . T(d) =)

T(W)

providing effect observations for stateful computations with exceptions, or for computations
with rollback state. However, not all computational monads arise as a monad transformer applied
to the identity monad. The following examples illustrate the possibilities in such cases.

2.4.5 Effect observations for free monads &

In order to give an effect observation #77°¢ from a free monad induced by a signature (S, P)
(subsection 2.1.7) to a specification monad W, it is enough to provide for each operations s : S
a specification wop(s) : W (P s).
let rec 017 (wop : (5:S) — W (Ps)) (m: Free PSA): W A =

match mwith

| Ret a — retW a

| Op s k — bindW (wop, s) (A ps. 677 (k ps))

Conversely, any effect observation #77¢ induces a specification for each operations

eFree

Wop = ogen,, : (s:8) =W (Ps).

This correspondence is bijective and characteristic of free monads.

2.4.6 Observing nondeterminism &

The computational monad NDet admits effect observations to the specification monad W¥ure,
Given a nondeterministic computation m : NDet A represented as a finite set of possible out-
comes, and a postcondition post : A — P, we obtain a set P of propositions by applying post to
each element of m. There are then two natural ways to interpret P as a single proposition:

D> we can take the conjunction /\pE p P, which corresponds to the weakest precondition such
that any outcome of m satisfies post (demonic nondeterminism); or

D> we can take the disjunction Vpe p P, which corresponds to the weakest precondition such
that at least one outcome of m satisfies post (angelic nondeterminism).
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To see that both these choices lead to monad morphisms 67,67 : NDet — WP it is enough
to check that taking the conjunction when P = { p } is a singleton is equivalent to p, and
that a conjunction of conjunctions A, 4 /\p€ p, P is equivalent to a conjunction on the union of
the ranges /\PEUaeA p, p—and similarly for disjunctions. Both conditions are straightforward to
check.

2.4.7 Observing Interactive Input-Output

Let us now consider programs in the IO monad (section 2.1). We want to define an effect obser-
vation 0 : IO — W, for some specification monad W to be determined. A first thing to note is
that since no equations constrain the read and write operations, IO is a free monad, we can
specify their interpretations f(read) : W I and V(o : O).0(write o) : W 1 separately from each
other.

Simple effect observations for IO can already be provided using the specification monad
WPwe The interpretation of the write operation in this simple case needs to provide a result
in P from an output element o : O and a postcondition p : 1 — P. Besides returning a constant
proposition (like for 8-, 6 T in subsection 2.4.2), a reasonable interpretation is to forget the write
operation and return p * (where x is the unit value). For the definition of §(read) : (I — P) — P,
we are given a postcondition post : I — P on the possible inputs and we need to build a
proposition. Two canonical solutions are to use either the universal quantification V(i : I). post 1,
requiring that the postcondition is valid for the continuation of the program for any possible
input; or the existential quantification 3(7 : I). post i, meaning that there exists some input such
that the program’s continuation satisfies the postcondition, analogously to the two modalities of
evaluation logic (Moggi, 1995; Pitts, 1991).

To get more interesting effect observations accounting for inputs and outputs we can, for
instance, extend WP with ghost state (Owicki and Gries, 1976) capturing the list of executed
IO events.? We can do this by applying the state monad transformer with state type list £ to
WPwe obtaining the specification monad WHStST 4 = (A x list & — P) — list& — P, for
which we can provide interpretations of read and write that also keep track of the history of
events via ghost state:

ST (yriteo) = A(p:1 x list E=P) (log : list £). p (x, (Out o) :: log) - WHISSST (1)

oSt (read) = A(p: 1 x list E=P) (log : list £). Vi. p (4, (Ini) :: log) : WHIStST (1

This specification monad is however somewhat inconvenient in that postconditions are writ-
ten over the global history of events, instead of over the events of the expression in ques-
tion. Further, one can write specifications that “shrink” the global history of events, such as
Aplog. p (x, []), which no expression satisfies. For these reasons, we introduce an update monad (Ah-
man and Uustalu, 2013) variant of WHIStST written WHIS which provides a more concise way
to describe the events. In particular, in W't the postcondition specifies only the events pro-
duced by the expression, while the precondition is still free to specify any previously-produced
events, allowing us to define:

Ot (yriteo) = A(p: 1 xlistE=P) (log : list E). p (x, [Out o]) - WHist(7)

o1 (read) = A(p: I x list E=P) (log : list E). Vi. p (i, [Ini]) : WHist(1)

While WHist — WHistST the two monads differ in their ret and bind functions. For instance,

pind™V' T f = JAplog.w ()\ (:E, log') . f:z:plog') log
bindV M wf = Aplog.w (A (=, log') . fz (Ay,log"). p(y,log’ ++log")) (log ++log)) log

“Importantly, the ghost state only appears in specifications and not in user programs; these still use only (state-
less) 10O.
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where the former overwrites the history, while the latter merely augments it with new events.

While WHt provides a good way to reason about IO, some IO programs do not depend on
past interactions. For these, we can provide an even more parsimonious specification monad by
applying the writer transformer to WY, The resulting specification monad W™ then allows
us to define

O (writeo) = A(p:1xlistE—=P). p(x, [Outo]) : WM(1)
0" (read) = A(p:I xlistE—=P).Vi.p(i,[Ini]) : W)

This is in fact a special case of Wis' where the history is taken to be 1 (Ahman and Uustalu,
2013).

In fact, there is even more variety possible here, e.g., it is straightforward to write specifi-
cations that speak only of output events and not input events, and vice versa. It is also easy
to extend this style of reasoning to combinations of IO and other effects. For instance, we
can simultaneously reason about state changes and IO events by considering computations in
I0St A = S — IO(A x S), resulting from applying the state monad transformer to 10, together
with the specification monad WIOSt A = (A x § x list§ — P) — S — list€ — P. As such,
we recover the style proposed by Malecha et al. (2011), though they also cover separation logic.

Being able to choose between specification monads and effect observations allows one to
keep the complexity of the specifications low when the properties are simple, yet increase it if
required.

2.4.8 Effect Observations from Monad Algebras =

While monad transformers 7 enable us to derive complex specification monads, they can only
help us to automatically derive effect observations of the form 67 : 7(Id) — T (W), which
only slightly generalize the DM4Free construction. In all other cases, we had to define effect ob-
servations by hand. However, when the specification monad has a specific shape, such as Wure,
there is in fact a simpler way to define effect observations. For instance, effect observations
6,07 : Exc — WP™e were used to specify the total and partial correctness of programs with
exceptions, by making a global choice of allowing or disallowing exceptions. Here we observe
that such hand-rolled effect observations can in fact be automatically derived from M -algebras.

As shown by Hyland et al. (2007), there is a one-to-one correspondence between monad
morphisms M — Contpr and M-algebras M R — R. We can extend this to the ordered setting:
for instance, effect observations # : M — WP correspond one-to-one to M-algebras o :
MP — P that are monotonic with respect to the free lifting on M P of the implication order on
P. Intuitively, o describes a global choice of how to assign a specification to computations in M
in a way that is compatible with ret™ and bind", e.g., such as disallowing all (or perhaps just
some) exceptions.

Based on this correspondence, the effect observations §-- and # " arise from the Exc-algebras
at=X.landa’ =) _.T. Similarly, the effect observations for nondeterminism arise from
the NDet-algebras a” and a7, taking respectively the conjunction and disjunction of a set of
propositions in NDet(P), as follows: §7(m) = Ap. a” (NDet(p) m) and 67 (m) = Ap. &> (NDet(p) m).
Conversely, we can recover the NDet-algebra a” as Am. 65 (m) idp, respectively o as Am. 3 (m) idp.
Importantly, this correspondence is not limited to WU, but applies to continuation monads
with any answer type. For instance, taking the answer type to be S — P, we can recover the ef-
fect observation 5t : St — WS, where W5t A = MonContg_,pA = (A — (S — P)) — (S —
P), from the St-algebra o>* = A\(f : S — (S — P)x S) (s: 9). (71 (f5)) (w2 (f 5)) : St(S —
P)—S—P.
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2.5 Conclusion & Related work

Following a well established tradition in functional programming languages (Benton et al., 2000;
Moggi, 1989; Wadler, 1990), we presented a variety of monads encapsulating computational ef-
fects such as state, nondeterminism and interactive input output, and explained how an impor-
tant subset of these arise from monad transformers.

The notion of specification monad is inspired by a line of categorical work on weakest pre-
condition. Jacobs (2014, 2015, 2017) studies adjunctions between state transformers and predicate
transformers, obtaining a class of specification monads from the state monad transformer and
an abstract notion of logical structures. He gives abstract conditions for the existence of such
specification monads. Hasuo (2015) builds on the state-predicate adjunction of Jacobs to pro-
vide algebra-based effect observations (in the style of subsection 2.4.8) for various computation
and specification monads. Working inside type theory, our work focus on concrete recipes for
building specification monads useful for practical verification.

Effect observations as monad morphisms were introduced by Katsumata (2014) in his study
of graded monads to give semantics to type-and-effect systems. For each of these computational
monads, we proposed effect observations to multiple specification monads providing multiple
options in order to verify programs using these effects. The actual choice of the effect observation
to use depends on various trade-offs between expressivity of the specification, difficulty of the
properties to verify (e.g., partial or total termination), modularity with respect to context. We
argue that the possibility to adapt to various context and at minor implementation cost thanks to
the decorrelation between the computational monad, the specification and the effect observation
is a key asset of this framework, that should be developed further in a practical implementation.

We now review further related work that was not presented yet.

Alternative representation of effects Levy (2004) refines the approach to effects advocated
by Moggi (1989) replacing a computational monad M with an adjunction ¥’ 4 U. This allow a
finer treatment of the order of evaluation, admitting a treatment of side-effects in both call-by-
value and call-by-name settings together with a well-behaved equational theory. To our knowl-
edge, program logics for CBPV are yet to be defined and studied.

Local state & monads on resource indexed families An important variation on stateful
computations not presented in this chapter is the possibility of allocating and deallocating chunks
of memory. The local state monad introduced in (Plotkin and Power, 2002) provides such ca-
pabilities at the cost of more complex state-indexed types. Instead of considering monads on
plain types, we could also consider monads on families of types indexed by some notion of re-
source’. This leads to monads tracking not only stateful computations but also allocations and
deallocations (Maillard and Melliés, 2015; Melliés, 2014; Power, 2006; Staton, 2010), manipulating
addresses in a heap (Kammar et al., 2017) or even a set of gbits (Staton, 2015).

Combining theories Instead of accumulating monad transformers on top of a basic monad,
an important body of work focus on the direct combination of effects, in particular for those
presented by an equational theory (Hyland et al., 2006). The combination of these algebraic
effects with continuations is studied in (Hyland et al., 2007), and provides in particular a negative
results about the combination of interactive input-output and continuations (in the category of
sets) that apply as well to Coq.

Predicate transformer semantics Katsumata (2013) gives a semantic account of Lindley and
Stark (2005)’s T T-lifting, a generic way of lifting relations on values to relations on monadic

*It would corresponds to changing the underlying category to be some category of presheaves, which might be
achievable inside type theory using the work of (Boulier et al., 2017; Jaber et al., 2012, 2016)
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computations, parameterized by a basic notion of relatedness at a fixed type. Monad morphisms
MA — ((A — P) — P), ie. effect observations from M to the backward predicate transformer
specification monad WY, are also unary relational liftings (A — P) — (M A — P), and
could be generated by T T-lifting. Further, binary relational liftings could be used to generate
monadic relations that yield Dijkstra monads by the construction in chapter 5. In both cases,
what is specifiable about the underlying computation would be controlled by the chosen basic
notion of relatedness.

In another recent concurrent work, Swierstra and Baanen (2019) study the predicate trans-
former semantics of monadic programs with exceptions, state, non-determinism, and general
recursion. Their predicate transformer semantics appears closely related to our effect observa-
tions, and their compositionality lemmas are similar to our monad morphism laws. We believe
that some of their examples of performing verification directly using the effect observation, could
be easily ported to our framework. Their goal, however, is to start from a specification and incre-
mentally write a program that satisfies it, in the style of the refinement calculus (Morgan, 1994).
It could be an interesting future work direction to build a unified framework for both verification
and refinement, putting together the ideas of both works.

First-order approach to verification with generic side-effects Rauch et al. (2016) provide
a generic verification framework for first-order monadic programs. Their work is quite different
from ours, even beyond the restriction to first-order programs, since their specifications are
“innocent” effectful programs, which can observe the computational context (e.g., state), but not
change it. This introduces a tight coupling between computations and specifications, while we
provide much greater flexibility through effect observations.

The FreeSpec framework (Letan et al., 2018) uses algebraic effects and handlers to define
in Coq a set of components interacting through interfaces. The specification are given pairs of
pre-/postconditions and attached to each components.

Logical approach to effects Generic reasoning about computational monads dates back to
Moggi’s (1989) seminal work, who proposes an embedding of his computational metalanguage
into higher-order logic. Pitts & Moggi’s evaluation logic (Moggi, 1995; Pitts, 1991) later intro-
duces modalities to reason about the result(s) of computations, but not about the computational
context. Plotkin and Pretnar (2008) propose a generic logic for algebraic effects that encompasses
Moggi’s computational A-calculus, evaluation logic, and Hennesy-Milner logic, but does not ex-
tend to Hoare-style reasoning for state. Simpson and Voorneveld (2018) and Matache and Staton
(2019) explore logics for algebraic effects by specifying the effectful behaviour of algebraic oper-
ations using a collection of effect-specific modalities instead of equations. Their modalities are
closely related to how we derive effect observations 6 : M — WY and thus program specifi-
cations from M -algebras on P in subsection 2.4.8, as intuitively the conditions they impose on
their modalities ensure that these can be collectively treated as an M-algebra on P. In recent
work concurrent to ours, Voorneveld (2019) studies a logic based on quantitative modalities by
considering truth objects richer than P, including S — P for stateful and [0, 1] for probabilistic
computation.

The notion of specification monad we use is quite simple, counting the bare minimum to start
talking about specification. However it is lacking for actually defining a logic. This choice was
voluntary in order not to restrict the applicability of the framework, in particular for quantitative
reasoning as would be needed when reasoning about costs or probabilities. In practice, most of
the examples we presented support a rich logic and we would like to reflect this in the definition
of more restricted classes of specification monads from which we could define a logic.

Reasoning directly about effectful semantics Relating monadic expressions is natural and
very wide-spread in proof assistants like Coq, Isabelle (Lochbihler, 2018), or F*(Grimm et al.,
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2018), with various degrees of automation. Boulier et al. (2017); Casinghino et al. (2014); Pédrot
and Tabareau (2018) extend dependent type theory with a few selected primitive effects: partial-
ity, exceptions, reader. The resulting theory allows to some extent to reason directly on effectful
programs, without resorting to a monadic encoding,.
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Computational monads are the key algebraic structure to obtain compositionality of sequen-
tial programs even in an effectful setting. A conceptual understanding of the tools enabling
verification of such program should make use of this monadic structure, as for instance speci-
fication monads. However, plain monads do not fully account for these objects that we use to
study monadic program verification. Beside being monads, specification monads comes with a
preorder structure and various axioms ensuring the well-behavedness of these preorders with
respect to the monadic operations. We would like to obtain these conditions as an instance of a
more general notion of monad. We hope by pursuing this goal that a general approach will lead
to simpler proofs, not cluttered by the details of the objects we are manipulating.

In this chapter, we introduce a few abstract categorical constructions generalizing that of
plain monads and used extensively in the following chapters. Our starting point is the formal
theory of monads, following Street (1972), that provides a general formulation of monads and
associated concepts in an arbitrary 2-category. In particular the theory applies to enriched set-
tings and, keeping in mind specification monads, we are foremost interested in the Pos-enriched
case.

The monad-like structure arising in the context of monadic program verification however
are often not endofunctors: we present the theory of relative monads (Altenkirch et al., 2015)
that was developed for that purpose. Motivated by enriched variants of relative monads, for
instance on preorders, we sketch the foundations of a formal theory of relative monads. Framed
bicategories (Shulman, 2008) is a natural setting to pursue such a generalization. We present
framed bicategories, introduce relative monads in those, and define notions of algebras. We close
the chapter by showing that to some extent the formal theory of relative monads we present here
naturally extends that of monads.

3.1 Elements of the formal theory of monads

The notion of monad admits a general definition in an arbitrary 2-category or even a bicategory
due to Bénabou (1967). We begin this chapter recalling briefly the notion of 2-/bi-category, before
presenting a few elements of the formal theory of monads as developed in (Kelly and Street, 1974;
Lack and Street, 2002; Street, 1972). A far more complete reference on the topics touched here
is (Lack, 2009).

29
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3.1.1 A brief introduction to 2-categories

Definition 3.1.1. A bicategory B consists of

> a set of 0-cells

> for each pair of O-cells z,y € |B|, a category B(z,y) whose objects are called 1-cells and
morphisms are called 2-cells,

D> with identity 1-cell id, for each O-cell z,

> and a bifunctorial composition oy, » : B(y, z) x B(x,y) = B(x, z) for 0-cells x, y,

D> such that the following unitality and associativity square commute up to natural isomor-
phisms A, p, « called respectively left unitor, right unitor and associator

B(x,y) x B(y,y) —— B(x,y) «+—— B(y,y) x B(z,y)

B(m,yjh H %XB(.’E,Z})

B(y,z) x B(z,y) x B(w,x)OM)B(x,Z) x B(w, x)

B(y,z)xol U’ o lo

B(y, z) x B(w,y) ———— B(w, 2)

> and such that the following two coherence diagrams commute where we abbreviated B(z, y)
by B, and noted - for functor composition as well as action of functors on natural transfor-
mations.

o-(By, . Xidy X Bz y)

o-(0x Byy)- (By,. xidy x By ) (By,z x 0) - (By,» xidy X By )

m} %,\

o- (O X Bv,w) . (O X B.t,w X Bv,w)

o-(aXBuy,w) a-(0XBa X Boy,w)
o (O X Bv,w) : (By,z X 0o X Bv,w) o~ (O X O)
a:(By,zxoxBy w) o (By, 2 X By, x0)

0 (By,z x0) - (Byzx0xByuw) o Byaxan (By,z x 0) - (By,2 X By x )
The first coherence diagram means that simplifying identities on the left or on the right using
the adequate unitor gives the same result and the second coherence diagram enforces associa-
tivity of the associator.

A bicategory B where the associator and unitors are identities is called a strict 2-category. A
folklore result from Curien et al. (2014); Power (1989) shows that any bicategory can be strictified
to a strict 2-category in the sense that a bicategory B can be embedded in a strict 2-category
such that the embedding is an equivalence of bicategories. Another way to state this coherence
theorem is that all diagrams built out of associators and unitors commute, and so we will omit
them in all diagrams since they can be inserted in an essentially unique way.
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Examples of 2-categories
> Cat is the 2-category of small categories, functors and natural transformations.

> For an enriching category V, VCat is the 2-category of V-enriched categories, V-enriched
functors and V-enriched natural transformations.

> There is another natural 2-category whose 0-cells are small categories, the bicategory
Distr whose 1-cells are distributors between categories and 2-cells are natural transfor-
mations between distributors. The relationship between Cat and Distr can be seen as a
categorification of the relationship between the (1-)categories Set of set and functions and
Rel of sets and relations.

An adequate notion of morphism between 2-categories is that of 2-functor?.
Definition 3.1.2. A 2-functor F' from a 2-category BB to a 2-category K consists of:

> a function |F| : |B| — || mapping 0-cells of B to 0-cells of K

> a functor Fy : B(x,y) = K(F z, F'y) for each pair of 0-cells x,y € |B|

> with invertible 2-cells i : idp, — Fid, for each O-cell x € |B| and mysg: FgoF f =
F (g o f) for each pair of composable 1-cells f, g in B, natural in f, g

D> satisfying three coherence diagrams similar to those for a monoidal functor ensuring that
unitors and associators are respected.

Working with 2-categories: string diagrams Since working inside a 2-category involves
manipulating objects at three distinct levels, the usual diagrammatic notations can quickly be-
come hard to read and obscure the actual proof. String diagrams, formally introduced in Joyal
and Street (1991), provide a graphical calculus that can greatly simplify definitions and proofs
inside a 2-category. The key idea is that proofs in a 2-category primarily manipulate 2-cells so
they should be the most visible. This is achieved by taking the Poincaré dual of the standard di-
agrams: 0-cells become surfaces and 2-cells become points, whereas 1-cells are still represented
as lines.

0-cell © T T
; x
l-cell f € B(z,y) o——y f !
Y
/J‘C\ L
2-cella € By y(f,g) = Ya y 9 [e) f
N A Yy

We leave out the name of O-cells in further diagrams since these can be inferred from the 1-cells.
Vertical juxtaposition of string diagrams correspond to composition of 1-cells — and its functorial
action on 2-cells — whereas horizontal juxtaposition is composition of 2-cells. Note that we take
here the slightly non-standard convention of reading string diagrams from top to bottom and
from right to left in order to have compatible notations with the graphical calculus for framed
bicategories in section 3.3.

"We only use in this manuscript the notion of strong 2-functor and not the more general notion of lax 2-functor
defined in (Bénabou, 1967)
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3.1.2 Monads in a 2-category
Definition 3.1.3. A monad in a 2-category B consists of

> al-cellt : X — X ona0O-cell X of B

> with 2-cellsn : idx — t and p : t ot — t called respectively unit and multiplication

 —@

D> such that the following diagrams commute

t
t— @
t
t
t = ¢ t =t
t

t t

t t

t t

A monad in a bicategory B is noted (X, ¢) leaving the unit and multiplication implicit. There
is a natural notion of morphism between monads in a bicategory .

Definition 3.1.4. A monad morphism between monads (X, t) and (Y, s) is consists of
> Al-cellf: X - Y

> anda2-cell:sof — fot
t f
=

D> such that the following identities hold

t f f

f 0 Sths
@ f 0 s

S

Definition 3.1.5. A monad morphism transformation between monad morphisms (f,0) and
(g,9) from (X,t) to (Y, s) consists of a 2-cellv : f — g such that

o f

) iy 8
We can put these definitions together to form a 2-category Mnd () whose 0-cells are mon-
ads in B, 1-cells are monad morphisms and 2-cells are monad morphism transformations. We
define a (2-)functor U from Mnd(B) to B forgetting everything related to monads. In more

details, U sends a monad (X, t) to X, a monad morphism (f,#) to f and a monad morphism
transformation to its underlying 2-cell.



3.2. RELATIVE MONADS 33

Object of algebras

Definition 3.1.6. An algebra for a monad (T, n, ) on a category C is given by
D> An object ¢ € C called the carrier of the algebra
> and a morphism a € C(T ¢, c) called the structure map of the algebra

D> such that the two following identities hold

aon. =id. aop.=aoTl «a

A T-algebra morphism from (¢, @) to (¢, ') consists of a morphism f € C(c, ) such that foa =
o/ oT f.T-algebras and T-algebra morphisms form a category called the Eilenberg-Moore category
of T and note CT.

The formal theory of monads also extends the notion of algebra to an arbitrary 2-category.
A monad (X, ) in a 2-category B induces by post-composition a monad B(A, t) on the category
B(A, X) for any O-cell A € B. The mapping sending a O-cell A € B to the Eilenberg-Moore
category B(A, X)BA extends to a 2-functor Alg, : B°P() — Cat. An Eilenberg-Moore object
for ¢ is, when it exists, a 0-cell X' € B representing the functor Alg,, that is such that Alg,(A) =
B(A, X*) naturally in A € BP(1),

When Eilenberg-Moore objects exist for two monads (X, ¢) and (Y, s), monad morphisms
(f,0) : (X,t) — (Y,s) are in bijection with pairs of 1-cells (f, f) where f : X — Y and
f:Xt>Ys.

3.2 Relative monads

The classical theory of monads is not enough to capture all the structure we need to model formal
verification of programs. In particular specification monads (section 2.3) already go beyond the
classical theory since they need to be equipped with orders. We could hope that it would be
enough to move from a Set-enriched setting to a Pos-enriched setting, in the sense of enriched
category theory (Kelly, 1982), however there is no reason a priori for a specification monad on
Set to lift to Pos. Thus the formal monad theory in PosCat falls short of describing our peculiar
use-case.

In order to provide a formal categorical account for specification monads, and for other
monad-like objects developed for relational reasoning (chapter 6), we commit ourselves to a gen-
eralization of monads known as relative monads. A relative monad relax the notion of monad by
endowing a monad-like structure to functors that need not to be endofunctors (Altenkirch et al.,
2015). For this notion to make sense, we need to specify relative monads with respect to a base
functor J : Z — C, and the classical notion of monad is recovered when taking J = Id. The
price to pay for this generalization is a more technical theory, in particular to connect relative
monads to a notion of monoid in an abstract enough setting.

Definition 3.2.1 (Relative monad in Cat). Let J : Z — C be a functor between categories Z,C. A
J -relative monad is given by

D> a function on objects M : |Z| — |C|,
> a family of morphisms ret, € C(J x,Mx) foranyx € T,

> a family of functions bind,, : C(J ,My) = C(Mxz,My)
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such that the following equations hold

bind, .(ret,) = id, bindg,(f) o ret, = f

bind, ,(bind, .(g) o ) = bind, .(g) o bind, ,(f)

The definition of a relative monad generalizes directly the presentation familiar to program-
mers of a plain monad on a category C as a Kleisli triple (7', 7, (—)") where we write (—)T for
the Kleisli extension operation C(X,7TY) — C(T'X,TY).

As hinted before, our examples of specification monads can be understood as relative monads
from Set to Pos, relative to the functor Disc sending a set to itself seen as a discrete poset.
However, since bind is required to be monotonic in both arguments, we will also need to consider
a Pos-enriched setting. Note that the bind operation is defined as a function between hom-sets
and need not to be representable as a “multiplication” natural transformation: there is in general
no way to compose M twice. This means that in order to enrich this definition in a category
V, for instance V = Pos, we need to consider not only V-categories, V-functors and V-natural
transformations, but also the structure of V-hom objects, namely V-profunctors. The further
generalization to framed bicategories(Shulman, 2008) in the next sections will provide a synthetic
and convenient context to consider these objects together.

Relative monads as presented in (Altenkirch et al., 2015) also come with their notions of
morphism and algebras that we recall here. Until the end of this section, we fix categories Z, C,
a base functor 7 : Z — C and J -relative monads M, M'.

Definition 3.2.2. A J-relative monad morphism from M to M’ is a natural transformation 0 :
M — M’ such that

0, 0 ret) = ret) 6, o (b'zlndlxy f) = b’indg/f; (By 0 f)ob,

for any objects x,y € I and f € C(J x,My).

Definition 3.2.3. An Eilenberg-Moore algebra, or simply M-algebra, is an object a € C together
with a natural transformation

az :C(J z,a) > C(Mz,a)
satisfying the two identities

ag(f)orety = f ay(bindfog) =ax(f)oyg
foranyz,yelZ, f : Jx—a,9: Ty — Muz.

M-algebras together with the appropriate notion of morphism form a category EM(M). The
Kleisli category K1(M) is the category with object set |Z| and with morphisms K1(M)(z,y) =
C(J x,My). Any morphism of relative monad 6 : M — M’ induces two factorizations

K1(6) = KL(M) — K1) and EM(B) : EMOL) = EM(M).

3.3 Framed bicategories

We would like to extend the notion of relative monads to categories other than Cat, in particular
to the ordered setting, however 2-categories does not seem to be the right setting for a formal
theory of relative monads. Indeed, an object of an arbitrary 2-category does not necessarily have
the hom-structure that we would need in order to define a bind operation. The notion of framed
bicategory introduced by Shulman (2008) provides this data. In this section, we briefly present
this notion and recall the instances that we will use further.
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Definition 3.3.1. A framed bicategory F is a double category with a distinguished class of 2-cells
verifying a universal property, that is

D> a set of objects or O-cells

, a set of vertical arrows or vertical 1-cells F,(X,Y),
and a set of pro-arrows or horizontal 1-cells Fy,(X,Y"). We write f : X — Y for a vertical
arrow f € Fy(X,Y) and h : X - Y fora proarrow M € F(X,Y).

> for each frame as on the left, a set of 2-cells ; F4(M, N), where o € §F4(M, N) is noted as
on the right

X M.y X M.y
Ll | e |
X/TYI X/TY/

D> vertical and horizontal units and compositions o and © noted as follows,

X ——Y X —S— X
| A
XTY Y —— Y
M My
Xlgf—>Y1 Xlﬂ—>Y1
fl | « Jf/ x - Moy M,z MM
Xg—f—>Y2 = gf| I Ba |df J{ U« J{ B J{ - J{ Jaop J{
/ U ! / !
| vs b X ¥V i 2 X e 2
X3 —— Y3 X3 —— Y3
MS M3

Vertical composition is associative and unital, whereas the horizontal composition is usually
associative and unital only up to coherent natural isomorphisms, the associator and unitors®.
We do not explicitly write those, appealing to the fact that they can be strictified in the same
fashion as for (weak) 2-categories. The two compositions are related by a distributivity law
that in fine ensures that all diagrams have a unique well-defined reading.

> for any vertical cells f, g and horizontal cell M as on the left, a cartesian filler for the niche
formed by f, M, g, that is a 2-cell x € ;F,(f*Mg*, M). Being cartesian means here that
X satisfies the following universal property: any other filler o« € 4, Fgi,(N, M) of the niche,
factors through x, yielding a 2-cell f*ag* € ,Fi(N, f*Mg*) unique up to unique globular
isomorphism (that is a 2-cell whose vertical borders are identities).

X, - n X, —¥ v
X, Y x, 49y, liifag l
fl Jg ~ fl I x Jg o Ja ek T X —|—>Y
Xy — Yo Xy — Yo fl Uy lg
X3 —— Vs Xg —— V3

*We are actually describing a pseudo double category.
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The framed category Distr The canonical example of a framed bicategory is given by Distr
whose

D> objects are (small) categories C, D € Distr,
> vertical arrows J € Distry(C, D) are functors J : C — D,

> horizontal arrows H € Distry, (C, D) are distributors H : C -+ D (a.k.a. profunctors) (Ben-
abou, 2000), that is bifunctors H : D°P x C — Set, and

> 2-cells a € sDistrx (G, H) are natural transformations a4 : G(d, c) = H(Kd, Jc)

c—9.p

7 ya lf

/ /
C — D
Vertical identities and composition are identity functors and functor composition as in Cat.
Horizontal identities C(—,—) : C -+ C are hom-sets bifunctors and horizontal composition
H®G:C —+ & fordistributors H : C + D, G : D —+ £ is given by the coend formula

deD
H@Q(e,c)—/ G(e,d) x H(d,c)

If F,G : C — D are functors, we note that vertical 2-cells a € pDistrg(C(—, —),D(—, —))
are in natural bijection with natural transformations G — F', witnessed by the following calcu-
lation

[CP xC, Set](C(—,—),D(G—, F—)) = / Set(C(c,d),D(Ge, F )

(e,c)eCoPXC

%/ / Set(C(e,d),D(Ge, F )
c'eC JceCopr
’é/IEC[COF’,Set](C(—,c’),D(G—,FC/))

= D(G,F{)
ceC
=[C, DG, F)

where the second isomorphism holds by Fubini, the fourth by Yoneda lemma and the others by
formulation of the set of natural transformations as a end.

Because of this correspondence, we will more generally note o : ¢ — f for a 2-cell o €
#F¢(C, D) in an arbitrary framed bicategory F with identities as horizontal domains and codomains.

The framed category V-Distr IfV is a complete and cocomplete symmetric monoidal closed
category, we can generalize the definition of Distr to the V-enriched setting (Kelly, 1982), ob-
taining a framed bicategory V-Distr consisting of V-categories, V-functors, V-distributors and
V-natural transformations between distributors. We will frequently use this example with V a
cartesian closed-category.

Underlying 2-categories A framed bicategory F naturally induces two different 2-categories:

> the 2-category F, consisting of 0-cells, vertical arrows and vertical 2-cells, that is 2-cells
such that the horizontal domains and codomains are identities:

X X5 x

fl la lg

Y—}n,—>Y
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> the 2-category Jy, consisting of O-cells, horizontal arrows and globular 2-cells, that is 2-
cells such that the vertical arrows are identities:

Depending on the context, we will sometimes consider the underlying 1-category of the (strict)
2-category JF keeping the same notation.

String diagrams notations To ease calculations in framed bicategories, we will use a variant
of the string diagram notation developed in (Myers, 2016). As it is usually the case with string
diagrams, we represent a cell on the left by its Poincaré dual on the right.

X, My
fl I « lg fﬂ—(#)—eg
XQTYQ N

A 0-cell is corresponds to an area, a vertical arrow to an horizontal simple line, an horizontal
arrow to a double line and a 2-cell to a point, represented by a labelled node. We read these
diagrams from top to bottom and right to left. This convention is taken to be coherent with the
direction of natural transformations in Distr: a natural transformation o : X = J between
functors IC, J : C — D, thatis a € 7Distri(C, D), will be drawn as as follows.

c—%-+D
Jl o lzc J —~—(a)—~—K
DTD

String diagrams also account for cartesian fillers by bending the strings. Given a niche as on
the left, a cartesian filler for this niche is depicted on the right.

M M
N N
T

I 9
f*Mg* M

Applying the property to the adequate niche, we have for any vertical arrow f : X — Y,
horizontal arrows f*Y : X ++ Y and Y f* : Y + X called respectively the companion and
conjoint of f. The relationship between f, f*Y and Y f* is described by the following string
diagrams:
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[y Y f*
f f
i . —, ]
f f
j = f—f 1 = f—f
f f

Since vertical arrows can be be bent both to a companion and conjoint, we mark the direction
of the arrow to keep track of which we are talking about: a single vertical line is a companion
when it is directed from top to bottom, and a conjoint when directed from bottom to top. We will
sometimes abbreviate both f*Y and Y f* by just f* on diagrams to simplify notations, leaving
to the reader the task to infer whether we are talking about the conjoint or companion of f from
the non-ambiguous direction of arrows.

3.4 Framed functor, framed representability

In order to define objects by universal properties in a framed bicategory, we develop the basic
notions of framed representability. We start by recalling the notions of (strong) framed functor
and framed natural transformation defined in (Shulman, 2008).

Definition 3.4.1. Let F,G be framed bicategories. A (strong) framed functor KC : F — G is a
vertically strict, horizontally strong double functor between the underlying double categories of F
and G. In components, it consists of:

> a function K : |F| — |G| from 0-cells in F to 0-cells in |G

>

> a functorial action on vertical 1-cells C, : F(X,Y) — G, (K X,KY),

D> a pseudo-functorial action on horizontal 1-cells Ky, : Fn(X,Y) — Gh(KX,KY) with
globular 2-cells Ky, M © Ky N = Ky, (M © N) and Ky, X = K X satisfying the coherence
axioms for a strong 2-functor,

D> a functorial assignment of 2-cells

X 2y Kx, =Mk
fl I a lg — val I Ka lleg
XQT}/Q ,CXQWIC}/Q

Fixing a framed bicategory F, any object C' € |F| defines a “framed presheaf” J¢, that
is a framed functor from F°P, the framed category obtained from F by formally reversing the
direction of vertical 1-cells and 2-cells, to the framed bicategory Distr of categories, functors,
distributors and natural transformations. The framed functor ¢ maps:

> a 0-cell X € |F| to the category & (X) = Fy (X, C) of vertical morphisms from X to C
and vertical 2-cells;
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> a vertical 1-cell f € FP(X,Y) = F, (Y, X) to the functor F,(X,C) — F,(Y,C) ob-
tained by precomposition by f;

>> anhorizontal 1-cell M € Fy,(X,Y) to the distributor whose componentathx € F,(X,C), hy €
Fy (Y, C) consists of the set of 2-cells &o(M)p ny ={ | € p  Fp, (M,C) } as rep-
resented below on the left, and the functorial action is given by composition of vertical
2-cells ax : gx — hx,ay : hy = gy on the sides as described on the right

x Moy X 4 x Yy oy
x| ba | x| bax™| ba ["MPay |
C——C C—4>C—5>C—>C

> a2-celly € f.7:°p (M,N) = ¢ F°P4(N, M) to the natural transformation between distrib-
utors Ko () : Koe(M) = Ko(N )glven at component hx € F,(X,C), hy € F,(Y,C)
by the function

X ——Y

x Aoy fl ! lg

Fe(Vhxhy = hxl (e lhy — X My
¢ ——C hxl Ja lhy

Given a vertical 1-cell f : C'— C” in F, we can define functors &¢(X) : &c(X) — Ko (X) for
any object X € |F| by postcomposition with f. We can extend this family of functors to define
a framed natural transformation Xy : ko — Koo

Definition 3.4.2. A framed natural transformation v : K — L between framed functors IC, L :
F — G consists of a familyvx : KX — L X of vertical 1-cells of G indexed by 0-cells X € |F|
natural with respect to vertical 1-cells in F and a compatible family vys € . Gu, (Kn M, Ly, M)
indexed by horizontal 1-cells M € F,(X,Y') natural with respect to 2-cells in F satisfying addi-
tionally the two equations

KX KnM KZ Kx &M ey MY k7
”Xl Vvumen l”‘/ = ”Xl J vy fYUVM l”y
£LX T L£Z LX o LY —r> L7
KX KX kx KX KX kx
Tl = AT
LX —i LX LX i LX

where we silently use the isomorphisms witnessing pseudo-functoriality for horizontal composition
and identities.

It is shown in (Shulman, 2008) (proposition 6.17) that framed bicategories, framed functors
and framed natural transformations form a strict 2-category. We use part of that fact to state the
following lemma:

Lemma 3.4.1. For any framed bicategory F, the assignment C' +— X extends to a functor X :
Fy — [F°P, Distr| where F, is the 1-category defined by vertical arrows in F and [F°P, Distr| is
the category of framed functors from F°P to Distr and framed natural transformations.
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Proof. We already proved that J¢ : F°P — Distr is a framed functor. Givena 1-cell f : C' — ',
the framed natural transformation &y : ko — K¢ is given on a 0-cell X by the functor defined
by postcomposition by f, and on a horizontal 1-cell M by the natural transformation between
distributors X (M) = Xev (M) induced by postcomposition with the identity 2-cell on f. [

Lemma 3.4.2 (framed (weak) Yoneda lemma). Let F be a framed category, C' an object of F and
‘H : F°P — Distr a framed functor. There is a natural bijection

[F°P, Distr](kc, H) = [H(CO)|

Proof. The bijection ¢ : [F°P, Distr](&kc, H) — |H(C)| is defined by () = vc(ide). For an
object h € H(C), its inverse ¢! (h) is the framed natural transformation given at components
X el|Fland M : X + Y by

¢ (h)x = f € o(X) = Fo(X,0) = H(f)(h) € H(X)
o 1 (R = a € Xo(M) — H(a)(idy) € H(M)

where idy, € Idy)(h, h) = H(Idc)(h, h) is the element of the distributor # (Id¢) representing
the identity on h. To prove that they are inverse to each other, we first compute p o ¢~ !(h) =
goal (id¢) = H(ide)(h) = h. For the other equality, we observe that, by naturality, any natural
transformation v € [F°P, Distr|(&¢, H) verifies the identities

vx(f) = vx oke(f)(ide) = H(f) o ve(ide)
vim(a) = v o ko) (Ide) = H(a) o vig, (idig.)

where X € F,f € Je(X) = F(X,0),M : X = Y,a € kec(M) = Uy, 1Fo(M,C) In

particular, we have

e HeW)x (f) = H(N) () = H(f) ovelide) = vx(f)
o (W) m(a) = H(a)(idyw)) = H(a) o vig, (idia,) = var(a)
that is =1 0 (1) = v.
O
Corollary 3.4.1. The functor & : F, — [F°P, Distr| is full and faithful.
Proof. For any objects C, D € |Fy|,
[F°P, Distr]|(&c, &p) = |&p(C)| = F(C, D)
O

We say that a framed functor H : F°P — Distr is represented by an object C' € | F]| if there
is a framed natural isomorphism H = X¢, and H is representable if there exists an object C'
representing it.

Dually, any object C' € |F| defines a framed functor ¢ : F — Distr whose action on
0-cell is given by o (X) = Fy(C, X). Dualizing all the previous discussion, & defines a full
and faithful functor 7, — [F,Distr]°P. A framed functor G : F — Distr is said to be co-
representable if it is isomorphic to ¢ for some C' € |F]|.
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3.5 Relative monad in a framed bicategory

Having in hand the powerful notion of framed bicategory, we now set out to define what is a
relative monad inside a framed bicategory. The idea is that thanks to the horizontal morphisms
playing the role of a hom-structure on the objects of a framed bicategory F, we can almost
reenact the definition in Cat in F, replacing the base functor by a vertical arrow.

Definition 3.5.1 (Relative monad). Let F be a framed bicategory, j : I — C' be a vertical 1-cell
of F. A j-relative monad is a triple (m, ret, bind) composed of

> a vertical 1-cellm : I — C,

> a?2-cell ret : 5 — m, or diagrammatically

[ ——1
mll}'r‘etlj m ret J
C=——=10C

> a2-cellsbind: C(j,m) = C(m,m), where we note C(h, k) = k*Ch*,

, m*C Cj*
Jaioy; t L
Hu bde

T
IC(m,m)I m*C Cm*

inducing a mapping (—)T from 2-cells to 2-cells mbFja(M,C) = mpFma(M, C) for vertical
arrowsa : A — C,b: B — C and horizontal arrow M : B - A

R
R

b a

b a m_§)

m m D 9
m m

D> such that the following equations hold
ret! =id,, ol oret =a (Broa)t =gl oal

for any objects X, Y, Z € F, vertical 1-cells f : X — i,g:Y — i,h: Z — i and 2-cells
a:jof >mog,B:jog - moh. Instring diagrams notations, the relative monad
equations give respectively

ret m*C Cj* m*C Cj*

() f
— -

m m v @D

mrc 17 m*C ¢y m*C* Cj* m*CC,]*

* + (bind)

(vind) (bind) =

N A ( bind )
T

m*C Cm* m*C Cm*
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Inside Distr A relative monad in Distr is the same thing as a a relative monad over a functor
(Def. 3.2.1) between small categories. Given such a j-relative monad m in Distr, j being a vertical
arrow therein, it is quite immediate that m has the structure of a relative monad over the functor
J and satisfies the required equations.

Conversely, in order to show that a relative monad (M, ret, bind) over a functor 7 : [ — C
is a relative monad in Distr, it is enough to show that M extends to a functor I — C' and that ret
and bind are natural in the appropriate sense. The relevant proof can be found in (Altenkirch
et al., 2015).

Specification monads as relative monads in Pos-Distr Specification monads are our orig-
inal motivation for moving to relative monads in the enriched setting of Pos-Distr. Indeed, the
two ingredients needed to define specification monads are:

1. a carrier for specification monads mapping sets to preorders, and

2. preordered hom-sets, and natural transformations between preorder enriched posets that
are monotonic so that the bind operation is monotonic in both arguments.

The main protagonists for a formal definition of specification monads are the Pos-categories
Set and Pos * where the former is seen as an enriched category through the monoidal* functor
Disc : Set — Pos sending a set to itself equipped with the discrete preorder, and the latter by
cartesian closedness. We note Disc : Set — Pos the lifting of Disc to Pos-functor.

Definition 3.5.2. A specification monad is a Disc-relative monad in Pos-Distr.

This can be seen as a more abstract presentation of preorder-enriched monads (Katsumata
and Sato, 2013; Rauch et al., 2016).

Eilenberg-Moore Algebras We fix a base vertical arrow j : I — C and a j-relative monad
m in F. We want to extend the notion of algebra for a relative monad. Of course, in a general
framed bicategory we may not have a “unit object,” as we do in Cat, so we need to define algebras
with respect to an arbitrary vertical arrow instead of an “object of C”, in a similar way as using
generalized elements in ordinary category theory.

Definition 3.5.3. An m-algebra is an object A € F, a vertical arrowa : A — C together with a
natural transformation o : C(j,a) = C(m, a) satisfying the two identities

ag(f)oret, =f ay(az(f) 0 g) = ax(f) o bindg
foranyx,yeZ f:TJx—a,9: Ty — Mz

o orweor w14 L] e

(o) - @ @) = {
a*C' 'Cm* a*C (xet)j a*C J + N X

a*C Cm* a*C Cm*

Definition 3.5.4. An m-algebra morphism between m-algebras (A, a, o) and (B, b, 3) is a pair
of a vertical arrow f : A — B and a2-cell p : a = bf satisfying the equation

*In order to see these as objects of Pos-Distr, we need to distinguish two levels of smallness, as provided by
different universes. Since our constructions are independent of the universe level - they are universe polymorphic -
we keep the same notations for all levels.

*for the cartesian product monoidal structure on Set and Pos.
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a*C Cj*

a*C Cj*
f
L@ -
@ Tom )
b b Cm*

There is a framed functor Alg,, : Fy° — Distr sending an object A to the category of
m-algebras and m-algebra morphisms between them. The action of Alg,, on a vertical 1-cell
f + A — B gives a functor Alg,,(f) : Alg,,(B) — Alg,,(A) sending an m-algebra (B, b :
B — C, ) from B to an m-algebra (A,bf : A — C, ) where (¢ is defined as follow using
that (bf)*C = f*b*C:

yC O
f*0+ é
bv*C' Cm*

On a horizontal 1-cell M : A - B, Alg,,(M) is the distributor whose component at (a :
A— C,a),(b: B— C,p) is given by the set of 2-cells v € ,F,(M, C) such that

M b+ j* M v+ j*

Finally, the action of \Alg,,, on a 2-cell is given by vertical precomposition.

Definition 3.5.5. An Eilenberg-Moore object for a j-relative monad m in F is a representing
object for the framed functor Alg,, (in the sense of section 3.4). When it exists, it is noted EM.,.

The relative monad m always has a canonical m-algebra structure given by bind, so it in-
duces a factorization in [F°P, Distr]

i Alg,.
o N
¥ — N Yo

where u forgets the m-algebra structure and only keep the underlying arrows in . When m has
an Eilenberg-Moore object, this factorization happens directly inside F, by the framed Yoneda
lemma Lem. 3.4.2.

In the case of the framed bicategory V-Distr for V a suitable category for enrichment, these
Eilenberg-Moore objects exists up to size conditions. Let J : Z — C be a V-functor between
V-categories Z,C and M : 7 — C be a J-relative monad (in V-Distr). The V-category CM
has as underlying set of objects pairs (¢, a) composed of an object ¢ € |C| and a V-natural
transformation o : C(J—,c) — C(M—,c) between V-presheaves. The object of morphism
between (c1, ) and (c2, o) is obtained as the equalizer

CM((Claal)a(szaz)) ***** » C(ct,c2) HmEm[C(jx,cl),C(Mm,CQ)]
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where the arrows on the right are obtained by currying the two maps

o C(TJz,c a2
e ( 2) —

Cler,c2) @ C(T xyc1) X CMz,cs)
Oél\ C

(c1,c2) ®C(Mz, 1)

Theorem 3.5.1. CM is the Eilenberg-Moore object of M in V-Distr.

Proof. We need to show that the described V-category CM is a representing object for the functor
Algyy, that is to exhibit a framed natural isomorphism ¢ : Xom = Algy.

On object X € V-Distry, we define px by projecting out the components (uc, a(c)) out of
an algebra ¢ € CM. For f € Jem(X) = V-Distry(X,CM), we define a J-relative M-algebra
structure on uf : X — C by a(f)ap : C(J a,ufb) — C(Ma,uf b)) whose naturality in b is
provided by functoriality of f. A vertical 2-cell 6 : f = ¢ is mapped to px (0) = ub : uf — ug.
It is a J-relative M-algebra homomorphism since each components of  are.

Conversely, we define o~ (f, ) = f € Xem(X) for (f, o) € Algyi(X) by setting fz = f
on objects z € X and obtaining the action of fonX (x1,x2) € V from the universal property
of the V-hom of CM using the fact that « is an M-algebra structure on f:

X(x1,2)

T !
L7 J —
CM((le,Oéxl), (f$2a04x2)) — C(fxlafIQ) Hg;e\ﬂ [C(jl?,fd?l),C(Ml‘,fl‘g)]
T~

For a vertical 2-cell  : (f,a) = (g, 3), we define the vertical 2-cell ¢ (0) = 0:f = gby
another application of the universal property (where 6,, is the special case of the diagram below
precomposed with id,)

X(z1,22)

ézlof:go?i%//,,/”’ lmeof—goeml
& —
CM((fxlaawl)a (gx276ivz)) B C(f$17g$2) Hme|I\[C(\7x;fxl)aC(Mmagx2)]
T~

@}1 is indeed an inverse to ¢ x by unicity of the universal property. Since the action of JKom
and Algy; on vertical arrows is given by precomposition and the definition of ¢ x and its inverse
only act on the codomain, there are natural with respect to vertical arrows. The definition of ¢
on horizontal arrows M : X - Y then proceeds similarly to the case of vertical 2-cells. O

Kleisli algebras We introduce the dual notion to Eilenberg-Moore algebras for a relative
monad, corresponding to a right module on a monad. Since they are not modules, and by lack
of a suitable terminology, we call them here Kleisli algebras.

Definition 3.5.6. AKleisli algebra is a a vertical arrow f : I — X to some object X € F together
with a 2-cell o« € [ F1(C(j,m), X(f, f)) satisfying the two following equations

Ci* m*C ¢ CJ m*C
Cy*
ret
St i H .J
mEm) - -

+
f f j % D
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Definition 3.5.7. A morphism of Kleisli algebras from (X, f