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Je tiens aussi à remercier mes parents qui m’ont permis de faire mes études et ma famille m’a soutenue pendant
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faire le déplacement.
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General Introduction

The sustainable exploration and exploitation of the natural resources of the Earth are fundamental for the socio-
economic development in geothermic exploitation, CO2 storage and oil exploration. Hence, obtaining accurate images
of water, mineral and energy sources deep below the surface is a key step for their management and exploitation.
The exploration using wave propagation or seismic imaging has been investigated for many years and allows obtaining
detailed maps of the Earth’s interior using the information carried by the deformations and electromagnetic fields
measured at the surface. Classically, for computational reasons, waves propagating in the subsurface are modeled as
solutions to the elastic or acoustic equations. However, to improve the accuracy of the simulation, it is now necessary
to consider more complex models such as conducting poroelastic media. The goal of this thesis is to develop a new
software package based upon advanced numerical methods for simulating waves in porous conducting media. This
implies to consider the coupling of the poroelastic wave equations with the Maxwell equations. At the beginning of
the thesis, these two problems were not considered by the Hou10ni code developed in the team. Before realizing the
coupling of the two physical models, it was therefore necessary to develop a code for each of them.

The shape and form of porous media can vary depending on the size of the pore and the structure of the solid skele-
ton. Porous media are found in nature (sandstone, volcanic rocks, ...) or can be manufactured (concrete, polyurethane
foam, ...) as depicted in [29]. Instead of modeling such media as strongly heterogeneous, homogenization is used to
describe the material on a macroscopic scale. Biot’s theory [15, 18] describes the solid skeleton according to linear
elasticity and adds to this the Navier-Stokes equation for a viscous fluid and Darcy’s law governing the motion of
the fluid [52]. For simplified linear elasticity, there are one equation of motion and one constitutive law, with the
unknowns being the displacement field in solid and the solid stress. In poroelasticity, the added unknowns are the
fluid displacement relative to the solid and the fluid pressure. There are two equations of motion, coupled with two
constitutive laws. By plane wave analysis, one obtains three types of waves: S waves, fast P waves and slow P waves
(Biot’s waves). While the first two types are similar to those existing in elastic solids, the existence of a third type of
wave with drastically smaller speed adds to the complications already encountered in elasticity.

The propagation of waves into conducting poroelastic media is a physical phenomenon involving mechanical waves
interacting with electromagnetic waves. Electrokinetic effects arise from the relative displacement of the fluid in
naturally charged porous media with a certain degree of fluid saturation. We focus on two kinds of electrokinetic
effects: the seismoelectric effects and the electroseismic effects [105]. In naturally charged, fluid-saturated, porous
media, a propagating seismic wave causes pore-fluid flow through deformation of the rock and generates an electrical
current. This electrical current induces an electromagnetic field, referred to as a coseismic field, that propagates
within the seismic waves. When this coseismic field impiges an heterogeneity (e.g. , a contrast in mechanical or
electrical properties), an electric dipole is created, triggering an independent EM field [113, 78]. Conversely, an electric
field acting on the layer causes the ions to move, which leads to a relative displacement of the fluid and solid frame,
and hence a seismic wave propagates in the medium. By their nature, electrokinetic effects are highly sensitive to fluid
properties, such as resistivity and dynamic fluid viscosity. The coupling between seismic and electromagnetic fields
is natural, the coupling coefficient between seismic and electromagnetic energy is sensitive to permeability, porosity,
salinity, and other crucial geothermal reservoir properties. In conducting poroelastic materials, four types of plane
waves are sustained, the three types of waves similar to those in poroelastic media: S waves, fast P waves and slow
P waves (Biot’s waves), and electromagnetic (EM) waves [110]. The difference of speed between the EM wave and
the seismic waves (fast and slow P, S) is even greater than the difference between the seismic waves which are indeed
propagating much more slowly than electromagnetic waves. This is thus a multi-scale problem of propagation of waves
with very different wavelengths, which is very challenging for the numerical representation. The wave propagation
in conducting poroelastic media has been modeled by Pride [106, 110] and is expressed as the coupling of Biot’s and
Maxwell’s equations. In this model, the coupling between seismic and electromagnetic fields is non-linearly dependent
of the frequency.

This thesis is part of the multidisciplinary Chickpea project, supported by E2S-UPPA, a window of the I-Site label
of excellence, of which the University of Pau and Pays de l’Adour is a laureate. The long-term objective of this project

15



16 GENERAL INTRODUCTION

is to demonstrate that Seismo-Electric Effects (SEE) should be taken into account for improving the definition of
subsurface imaging. The fundamental goal of this PhD project is to provide a piece of software for simulating in 2D
and 3D the electrokinetic equations using a numerical method allowing for hp-adaptivity to address the multi-scale
feature of the problem. A bonus objective is the comparison of numerical data with experimental data. Another
long-term objective of the project is to apply the numerical method to field experiments, and to use the numerical
solver in an inverse problem using Full Waveform Inversion. The inversion is complex and requires a significant effort
of development. To our knowledge, the most advanced works on this subject are the thesis of Xue [134], where the
author proposes a method to inverse the source in Biot’s equations, and the following paper [22] in which the authors
study the stability of the inverse problem.

Regarding the numerical approximation of this wave propagation phenomenon, standard finite element methods
coupled with time schemes have indeed difficulties to deliver accurate solutions because there is a need of adapting the
time step discretization and the mesh size to the wave velocities. The numerical schemes must be able to reproduce in
the same simulation waves with very different wavelengths. The size of the cells depends on the propagation velocity
and the coverage of waves propagating at very different speeds would inevitably lead to huge computational costs if
standard numerical methods are used. For time schemes, the mesh size is set in relation with the smallest wavelength,
here the slow longitudinal wave. In addition, the time step depends on the ratio between the mesh size and the largest
wavelengths, which is in fact the ratio of the smallest wavelength and the largest wavelength. Here, this ratio is of
order 10−6. Most works in time domain thus need to consider approximate equations, using for example quasi-static
electromagnetic equations. To prevent the problem of time step, we work in the frequency domain. This also allows
for the consideration of a wide variety of parameters which are non-linearly frequency dependent, and to take full
account of Pride’s equations and the electrokinetic effects. However, the large size of the system of equations increases
the computation resources needed, in particular in frequency domain, which raises some linear algebra difficulties that
will be described in this manuscript.

For computational methods, we use Discontinuous Galerkin (DG) methods. DG methods have proven their effi-
ciency to solve wave problems in complex media [40, 50]. Besides being easy to implement in a massively parallel
environment, they are h-p adaptive, which allows to reduce the computational costs while keeping a high level of
accuracy. This is of great interest, particularly since the problem to be solved is multi-scale, combining electromag-
netic and seismic wavelengths in the same simulation. Another interesting property is that DG methods are finite
element methods usable in tetrahedral meshes, which is also usefull for the case of geophysical media, for example for
appropriately capturing (sharp) topography and arbitrarily shaped fine layers, as they occur in realistic geothermal
media. The method has been hybridized to Hybridizable Discontinuous Galerkin (HDG) methods in order to reduce
the computational costs, costs that can be very high with classical DG discretizations [33, 21].

As previously indicated, the goal of the thesis is the development of numerical methods that are adapted to
conducting poroelastic media. The first step has been the implementation of the solution of wave problems in porous
media using Biot’s harmonic equations. Then, we have developed a method to solve the full electrokinetic equations.
This work of development has been carried out in the environment of the software Hou10ni, which already allows for
the solution of elastic and acoustic wave problems in heterogeneous media, using Hybridizable Discontinuous Galerkin
methods.

The accuracy of the numerical method has then been achieved thanks to the construction of analytical solutions
that were not available neither in poroelastic or in conducting poroelastic media. These analytical solutions have been
used as reference solutions to perform accuracy assessment.

Moreover, there is a challenging question about the boundary condition to be used for limiting the computational
domain. This is in particular the case for the truncation of the computational domain when we consider infinite
geophysical domain. In the thesis, we have proposed a low-order radiation boundary condition (RBC) both for
poroelasticity and electrokinetic. The development of the RBC has been made using the form of the analytic solutions
that we have developed.

Contributions
The contributions of this thesis are the following. First, we have constructed and analyzed analytical solutions in
poroelastic and conducting poroelastic media in two dimensions. Those solutions are essential for the validation of the
numerical method that we have developed. The results obtained for the poroelasticity are presented in Chapter 2. This
is also published in a research report [7]. For the electrokinetic equations, we present the analytical solutions in Chapter
6. Secondly, we have developed a HDG method in two and three dimensions for the poroelastic and electrokinetic wave
propagation, which is presented in Chapters 3 and 7 respectively for poroelasticity and electrokinetics. This method
has been implemented in the software Hou10ni. We have published the HDG method for poroelasticity in IJNME [11],
and an article on the method for electrokinetic effects is in preparation. The results have also been presented at the
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AGU conference in 2018. Thirdly, we have built first-order Radiation Boundary Condition for poroelasticity (Chapter
4) and electrokinetics (Chapter 8) in two dimensions. We have studied the performance of this condition by comparing
the corresponding numerical solution with an exact solution. In addition, we have implemented the condition in
the HDG method, along with Perfectly Matched Layer, and we have compared RBC and PML performances. For
poroelasticity, we have presented the results in a research report [10]. We have also implemented the HDG method
for Maxwell’s equations, see Appendix G. Eventually, we have also used the Inverse Fourier Transform to convert the
results in frequency domain into seismograms and electrograms in time domain, see Chapter 9.

Outline
We now present an overview of the content of each chapter of this manuscript. This outline is meant to give a brief
insight of the content of the dissertation. This thesis is composed of two parts. The first part focuses on the propagation
of poroelastic waves, while the second deals with the electrokinetic waves propagation. The part on the poroelasticity is
divided into four chapters. In the last five chapters we consider the electrokinetic coupling. We have also implemented
a HDG formulation for time-harmonic Maxwell’s equations. This achievement follows former works [85, 102] and since
it does not contain any new contribution, we have decided to set it as an appendix of the dissertation (Appendix G).

In Chapter 1, we present the parameters and the equations of poroelasticity, which describe the wave
propagation in a poroelastic medium. The equations of poroelasticity are given by the linear theory of deformation
of a porous medium, called the theory of consolidation, first presented by Biot for the isotropic case in [16, 17].
In our work, we consider principally the harmonic domain. After introducing the physical parameters governing
the poroelastic equations along with their meaning, we present the expression of the equations of poroelasticity, and
propose a nondimensionalization of those equations. Then, we present the explicit expression of the plane waves
sustained in an isotropic poroelastic medium. This chapter sets a framework for the rest of the developments
given in the following chapters.

In Chapter 2, we focus on two-dimensional isotropic poroelastic equations. In this configuration, we develop
analytical solutions that will be used in order to evaluate the accuracy of the discretization of poroelastic equations
by Hybridizable Discontinuous Galerkin method. We first consider the homogeneous poroelastic equations on bounded
domains, but also the scattering of plane wave by impenetrable and penetrable infinite cylindrical obstacles (thus with
circular 2D cross-section), and a fluid-solid interaction problem in circular geometry. Finally, we present a test
using point sources. In addition to the computation of analytic solutions for each considered problem, we go further
and propose a definition of outgoing solutions, and investigate numerically the well-posedness for interaction
problems with and without viscosity among others. The definition of outgoing solution is not covered in literature
for poroelasticity. While this notion is well-established for elasticity with the Kudrapdze radiation condition [82], the
mathematical analysis focus on bounded domain for poroelasticity, see [22]. Similarly, while the well-posedness of the
interaction problem for acoustic fluid-elastic solid is covered in e.g. [51, 12, 77], this is not yet investigated for isotropic
poroelasticity.

In Chapter 3, we focus on the numerical simulation of the poroelastic equations using an Hybridizable
Discontinuous Galerkin method. This chapter is published in a reduced form in [11]. The HDG solution method-
ology relies on the possibility of relating local unknowns at the element level to a so-called hybrid variable defined only
on the skeleton of the mesh (i.e., the set of edges in 2D and set of faces in 3D) by the mean of transmission conditions.
In this way, the HDG solution is obtained by solving a smaller global system for the hybrid variables and the solution
is reconstructed thanks to the solution of local systems in parallel. In two recent works, Fu [57] and Hungria [76]
have implemented the HDG solution of poroelastic wave equations. Fu [57] considered the quasi-static Biot equa-
tions using a displacement-pressure formulation. Hungria [76] dealt with both the time-dependent and time-harmonic
Biot equations using a displacement-stress-pressure formulation. Herein, we consider a formulation of Biot equations
governing the frame velocity, the relative fluid velocity, the pressure field, and the solid stress tensor, written in the
frequency domain. Our approach is closer to that of Hungria since we consider time-harmonic equations whereas Fu
solved quasi-static equations. It is however worth noting that we do not solve the same formulation as Hungria. As
an advantage, the first order formulation gives us access to velocities and stress tensor, which are the actual data
displayed by experimental acquisition. This is very important if we want to use the code in an inversion loop for
characterizing the propagation in the medium. Following Biot’s model, we develop and implement an HDG method
to simulate harmonic wave propagation in anisotropic poroelastic media in two and three dimensions. We provide a
detailed description of the numerical algorithm and the different steps required for its development.
Our HDG method is validated by comparing with reference solutions constructed in Chapter 2. In our numerical
investigation, we show that the method depends on four stabilization parameters that are necessary for the method to
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keep an optimal order of convergence (p+ 1). We also study numerically the condition number of the global
and local problems, and show that they remain in a good range that maintains stability for the geophysical material
in consideration.

In Chapter 4, we extend the HDG formulation of time harmonic Biot’s equations developed in Chapter 3 to infinite
domains, that is to say, we introduce truncation methods in the HDG formulation. We construct a Radiation
Boundary Condition (RBC) which is obtained from the characterization of outgoing solutions of the
2D isotropic poroelastic equations. This relation reads as:τ n+

(
X1(u · n) + X2(w · n)

)
n+ X3(u · t) t = 0 ,

p + X4(u · n) + X5(w · n) = 0 ,

with u the solid velocity, w the relative fluid velocity, τ the stress tensor and p the fluid pressure. The obtained
condition is comparable to Lysmer–Kuhlemeyer (LK) absorbing boundary condition for elasticity that has been inves-
tigated in [93]. It is worth noting that the derived RBC can be naturally coupled with HDG, since it resembles the
transmission condition of numerical traces.

The performance of this RBC is evaluated in two groups of numerical investigations. In the first one, in
the setting of planewave scattering by circular obstacles, we compare how well the reference solution associated to the
RBC approximates the restriction of the true outgoing solution on the truncated domain. We have an overall conclusion
that our RBC has comparable robustness to LK for elasticity and Sommerfeld condition for acoustic equation, in the
sense that the error is less than 10 % for most cases. In the second investigation, the radiation condition is implemented
in a hybridizable dicontinuous Galerkin (HDG) formulation. We also apply perfectly matched layers (PML)
on the HDG discretization of the poroelastic equations. We then compare the performance of our
RBC with the PML technique on different configurations (Section 4.6.2). PML can be an alternative to the
radiation condition, but its performance depends on parameters that are specific to each experiment. If the size of the
PML is not large enough, the performance is deteriorated. To obtain better results than RBC, the PML can be taken
larger but this raises the degrees of freedom and incurs substantial increase of the computational time, while the gain
in accuracy is not considerable.

After introducing the poroelasticity in the first part, the second part starts with Chapter 5 in which we present the
principles of the electrokinetics, following Pride’s theory, [105, 110]. The geophysical poroelastic materials are neutral
media, however, the surface of the solid is usually negatively charged, and the fluid is an electrolyte, with ions in motion
in the fluid, attracted by the opposite sign on the solid surface [111, 108, 113]. When a seismic wave propagates, the
motion of the fluid in the porous media induces an electric current that creates electromagnetic signal. This is called
the seismoelectric phenomenom [129, 79, 78]. The electromagnetic waves generated with a seismic source are composed
by a co-seismic electric or magnetic field that propagates at the same speed as the produced seismic waves, and an
electromagnetic converted wave generated at an interface between two media with different properties, that propagates
at the electromagnetic wave speed. The converted waves are very interesting because they are heavily sensitive to
the medium properties, and have potential applications in the detection of interfaces. We introduce the physical
parameters used to describe a conducting poroelastic material, then we present the expression of Pride’s
equations in harmonic domain both in first and second-order formulation. We determine the expression of
the four kinds of plane waves sustained in a conducting poroelastic material.

In Chapter 6, we develop analytical solutions of Pride’s equations in two dimensions for different con-
figurations; a homogeneous bounded domain, the scattering of a plane wave by impenetrable or penetrable obstacles,
and the response to a point-source. Following what was formerly done for poroelasticity in Chapter 2, we express the
fields in terms of potentials and we investigate numerically the well-posedness of the problems by studying the
invertiblity of the analytical system. The results of this chapter will play a crucial role in the two following chapters
where we validate a HDG formulation for solving Pride’s equations in harmonic regime and we construct a low-order
radiation boundary conditions for performing regional computations in bounded domains.

The aim of Chapter 7 is to develop a HDG method to solve Pride’s equations in harmonic domain. We
base the proposed method on what has been developed for poroelasticity in Chapter 3 and for Maxwell’s equations in
Appendix G. We first present the formulation of the HDG method. Then, we detail the associated discretiza-
tion in two dimensions, and we provide validations of the numerical simulations. We also investigate
numerically the well-posedness of the problem, and the formulation of the HDG method, especially the values
of the stabilization parameters used to express the numerical traces. Next, we describe the discretization of the
proposed method in three dimensions, and we perform numerical tests for the verification of the method.
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In Chapter 8, we address the same problem as in Chapter 4 for Pride’s equations. We derive a low order RBC
for Pride’s equations. For this, we first obtain an outgoing radiation condition at infinity by using the expression of
the unknowns in potentials and the expansions of outgoing solutions given in Chapter 6. Then, when written in circular
geometry, this exact condition is approximated to obtain the RBC, assuming the radius of the circular boundary is
large enough. The resulting condition reads as:

τ n+
(
X1(u · n) + X2(w · n)

)
n+ X3(n× u) t + X4(n×E) t = 0 ,

p + X5(u · n) + X6(w · n) = 0 ,

H + X7(n× u) + X8 (n×E) = 0 ,

with the solid velocity u, the relative fluid velocity w, the solid stress tensor τ , the fluid pressure p the electric field
E, and the magnetic field H. The relation is comparable to the relation obtained for poroelasticity in Chapter 4. We
investigate the performance of the condition, by comparison of the associated solution with the outgoing solution
that we obtained in Chapter 6. We implement the radiation condition in the HDG method presented in Chapter 7.
In addition, we consider Perfectly Matched Layer (PML) to prevent the reflections on the artificial boundaries of the
domain. We also apply PML to the HDG discretization. Finally, we perform numerical tests to evaluate
and compare the accuracy of the HDG method using the RBC and PML, see Section 8.6. We study in
particular if the PML can absorb all kinds of waves. In the considered configurations, we observe that the PML
does not behave correctly for the electromagnetic wave. Indeed, Gao highlights in [61] the difficulty for the PML to
absorb both the seismic and electromagnetic waves. This comes from the fact that the wavelengths of the seismic and
electromagnetic waves have very different sizes.

The goal of Chapter 9 is to perform numerical experiments as a first step in the comparison between synthetic
data and real data obtained in the laboratory. In particular, we want to verify if the developed code can simulate the
converted waves created at interfaces. We study two conversions, the first one is the converted seismic wave obtained
at an interface with an electromagnetic source. The second is the converted electromagnetic wave that appears
at the interface when a coseismic wave is reflected. For that, the first step is to obtain the results in time domain.
We hence run the code for several frequencies, then we use a Fourier transform to go to time domain, and we detail
the method to obtain the results in time domain. We have succeeded in numerically reproducing the converted waves
associated with an electroseismic case and a seismoelectric case.
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Chapter 1

Introduction to poroelasticity

In this chapter, we present the parameters and the equations of poroelasticity, which describe the wave propagation
in a poroelastic medium. A porous medium is a material composed of a solid frame, and pores filled with a fluid.
The equations of poroelasticity are given by the linear theory of deformation of a porous medium, called the theory
of consolidation, first presented by Biot for the isotropic case in [16] [17]. The Biot’s model can be used when the
following hypotheses are satisfied :

• The size of the pores is small in comparison with the wavelength.

• The displacements in the solid and fluid phases are small.

• The fluid phase is continuous.

• The solid frame is elastic.

• The thermo-mechanical effects are neglected.

In the following, we first introduce in Section 1.1 the physical parameters needed to study poroelastic equations and
their meaning. In Section 1.2, we introduce the poroelastic equations in time and in frequency domain, and propose a
nondimensionalization of those equations in Section 1.3. We present in Section 1.4 the boundary conditions used for
harmonic poroelasticity. Then, Section 1.5 gives the explicit expression of the plane waves sustained in an isotropic
poroelastic medium. We finally give properties of the slownesses in poroelastic media in Section 1.6.

1.1 Physical Parameters
We define the porosity of a material as the ratio of the fluid volume in the material and its total volume

φ = Vf
VT

. (1.1)

The geometry of pores is described in terms of tortuosity t. The tortuosity is a measure of the deviation of flow paths
in the pores. The fluid is defined by the incompressibility modulus kf , the fluid density ρf , the viscosity η and the
permeability κ0. The average density of a poroelastic medium is defined as

ρa := (1− φ) ρs + φ ρf . (1.2)

We now have to introduce different notations, depending on whether the material is isotropic or not. An isotropic
material has material parameters and properties that are the same in all directions. Conversely, the properties of an
anisotropic material are directionally dependent.

Anisotropic material For an anisotropic poroelastic domain, the frame is described by the stiffness tensor Cfr with
components Cijkl for i, j, k, l = 1, 2, 3, α the effective-stress matrix, and M the fluid-solid coupling modulus, with all
three given in Pa.

We can use Voigt notation, (cf [26], p13), to express the components Cijkl using two indices I and J , for I, J =
1, ..., 6. The pairs of indices (i, j) or (k, l) are replaced by one capital index. The lowercase indices are connected to
the capital ones by the following relations:

(1, 1)→ 1 , (2, 2)→ 2 , (3, 3)→ 3 , (2, 3) = (3, 2)→ 4 , (1, 3) = (3, 1)→ 5 , (1, 2) = (2, 1)→ 6 .

23
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In two dimensions the size of the stiffness tensor Cfr is reduced, the lowercase indices i, j, k, l are taken between 1 and
2, and the capital indices I, J , are taken as I, J = 1, 2, 3. The connection between the indices is the following:

(1, 1)→ 1 , (2, 2)→ 2 , (1, 2) = (2, 1)→ 3 .

In the general case, α is given as:

αI = 1− CI1 + CI2 + CI3
3ks

, I = 1, 2, 3 , α4 = −C14 + C24 + C34

3ks
,

α5 = −C15 + C25 + C35

3ks
, α6 = −C16 + C26 + C36

3ks
,

where we have used Voigt notation; and the fluid-solid coupling modulus M is expressed as (see [26] [eqs. 7.137-7.140]):

M = ks

1− k?
ks
− φ(1− ks

kf
)
, where k? = 1

9 [C11 + C22 + C33 + 2 (C12 + C13 + C23)] .

Isotropic material In the case of isotropic poroelastic medium, the solid frame is defined by the incompressibility
modulus ks, the solid density ρs, the uncompressibility drained modulus kfr, the shear modulus µfr and the consolidation
parameter cs. The solid skeleton has compressibility and shearing rigidity, and the fluid can be compressible. To
describe a porous medium, we use a homogenization on the fluid and solid phases, to obtain an equivalent medium.
For • = f, fr and s, corresponding respectively to the fluid, the frame, and the solid, the relation between the bulk
modulus k• and the Lamé parameters λ•, µ• is

λ• = k• − 2
3µ• .

In this case, the stiffness tensor Cfr is expressed in three dimensions as:

Cfr =



kfr + 4
3µfr kfr − 2

3µfr kfr − 2
3µfr 0 0 0

kfr − 2
3µfr kfr + 4

3µfr kfr − 2
3µfr 0 0 0

kfr − 2
3µfr kfr − 2

3 kfr + 4
3µfrµfr 0 0 0

0 0 0 µfr 0 0
0 0 0 0 µfr 0
0 0 0 0 0 µfr


,

which is simplified in two dimensions as follows:

Cfr =


kfr + 4

3µfr kfr − 2
3µfr 0

kfr − 2
3µfr kfr + 4

3µfr 0
0 0 µfr

 .

We can consider two different conditions for the medium, drained or undrained. For the current discussion, we
follow [26] and [30]. In undrained conditions, the fluid cannot flow out, or the fluid is viscous. In this case, there
is a difference of pressure during the experiment, but no relative variation of fluid content ( ζ = 0). The moduli
associated to this state are called the undrained ones, denoted by µundrained, λundrained and kundrained. They are also
called Gassmann modulo,

µG = µundrained , λG = λundrained , and kG = kundrained .

A material has a drained response when the solid surface is exposed to the atmosphere, in this case, the fluid in the
pores can flow out, but there is no variation of pressure inside the pores (∆p = 0). The moduli associated to this state
are denoted by µfr, λfr and kfr, also called the bulk modulus of the dry matrix or dry frame. The relations between
the drained and undrained states are given by

µG = µfr , and λG = λfr + α2M . (1.3)

In the above expression, the effective-stress coefficient α is defined as

α = 1− kfr

ks
,
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and the fluid-solid coupling modulus M as

1
M

= α

ks
+ φ

(
1
kf
− 1

ks

)
.

With the physical assumption that
ks > kfr , ks > kf ,

we have
α > 0 , M > 0 . (1.4)

Using expressions (1.3), we obtain the relation between kG and kfr, cf. [27, eq.(4)]:

kG = λG + 2
3µG = λG + 2

3µfr
1.3= λG − λfr + kfr = kfr + α2M .

We list the physical parameters of the specific isotropic porous media considered in this document in Table 1.1. The
media are filled with brine, which is inviscid in the case of shale and sandstone materials.

Physical parameters Sandstone Sand 1 Shale Sand 2
Porosity φ 0.2 0.3 0.16 0.3
Fluid Density ρf (kg.L−1) 1.04 1 1.04 1
Solid Density ρs (kg.L−1) 2.5 2.6 2.21 2.7
Viscosity η (mPa.s) 0 1 0 1
Permeability κ0 (µm2) 60 10 10 10
Tortuosity t 2 3 2 3
Solid Bulk Modulus ks (GPa) 40 35 7.6 36
Fluid Bulk Modulus kf (GPa) 2.5 2.2 2.5 2.2
Frame Bulk Modulus kfr (GPa) 20 0.4 6.6 7
Frame Shear Modulus µfr (GPa) 12 0.5 3.96 5

Table 1.1: Summary of the physical parameters of media in consideration in the numerical experiments. The parameters
for sand 1 are obtained from [64, Table 1], those for sandstone and shale from [39, Table 5], for sand 2 from [128, Table
1]. For the tests in sections 2.2 and after, we will use these materials. However, we will vary some of the parameters
to highlight their effect on the solution.

We have introduced in the above our notations for physical parameters. For the sake of understanding, we compare
in Table (1.5) our notations used with the ones used by Pride in formula [107, (9.15),(9.19)].

Pride’s notations Our notation

Undrained bulk modulus KU kfr + α2M = λfr + 2
3µfr + α2M = H − 4

3µfr

Undrained shear modulus G µfr

Biot incompressibilities C αM

constants [107, (9.18)] H = KU + 4
3G λfr + 2

3µfr + α2M + 4
3µfr = λfr + 2µfr + α2M

(1.5)

1.2 Equations
Now that we have introduced the physical parameters involved in the problem in consideration, we are going to present
the equations of poroelasticity. In poroelastic equations, in addition to the nine unknowns already existing in elastic
equation (with six for the stress tensor and three for the displacement of the particle), there are new quantities due to
the presence of pore structure and fluid. These are the pore pressure p, and the three components of the displacement
of fluid relative to the solid displacement w, cf. [26]. In this document we will mainly work in frequency domain, with
the pulsation ω, and with the following unknowns:

u frame displacement in frequency-domain formulation,

w relative fluid displacement in frequency-domain formulation,
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p fluid pressure,

τ stress tensor.

For the purpose of introducing the equations of motion in time, we introduce briefly the time-dependent quantities,

u frame displacement in time-domain formulation,

w relative fluid displacement in time-domain formulation.

1.2.1 Equations of motion
We describe the equations of motion both in time and frequency domain, using the definition of two conventions for
the time derivative in frequency domain. We next study the approximation models for vanishing viscosity.
Remark 1.1 (Convention of ∂t). As we work in frequency domain, it is necessary to introduce a convention of the time
derivative for the transformation in time domain.

• Convention 1 This convention follows that of Pride and uses ∂t → −iω. This is also employed in Dupuy
[50]. Here, the time-harmonic part is represented by e−iωt, which is equivalent to using the Fourier transform
convention

F1g :=
∫
eiωtg(t) dt ⇒ F1ġ = −iωF1g . (1.6)

A plane wave is given by a multiple of

e−iωt eik·x d , with d the polarization.

• Convention 2 : In this convention, one takes ∂t → iω. The time-harmonic part is thus represented by eiωt, and
is equivalent to using the Fourier transform convention,

F2g :=
∫
e−iωtg(t) dt ⇒ F2ġ = iωF2g .

A plane wave is given by a multiple of
eiωt eik·x d.

This form of plane wave was used in [52, Eq. 5.2.18]. 4

We unify both conventions by writing

∂t → s iω with s =
{
−1 , convention 1

1 , convention 2
.

1.2.1.1 Equations of motion in time domain

The first equation of motion comes from balancing forces acting on each sample of the material [107],

∇ · τ + fu = ρa ü + ρf ẅ , (1.7)

while the second one is a generalized Darcy’s law that takes into account the dependence of the drag force (due to the
viscosity of the fluid) on the frequency,

−∇p + fw = ρf ü + V(t) ? ẇ. (1.8)

In the above equation, fw and fu are external volume forces, and drag operator V is defined such that,

V(t) ? g := F−1
1

(
η

k(ω) F1g

)
.

In the definition of V, F1 is the Fourier transform defined in (1.6) in convention 1 in t (see remark 1.1), and k(ω) is
Pride’s dynamic permeability, cf. [106, Eq. 236],

1
k(ω) = 1

k0

(√
1− i 4

m

ω

ωt
− i ω

ωt

)
.
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Here, the (dimensionless) number m and the transition frequency ωt are defined as

m := φ

tk0
λ2

fr , ωt := φ

tk0

η

ρf
.

The frequency ωt separates the low-frequency viscous-flow behavior from the high-frequency inertial flow. The constant
m is usually determined by experimental means with:

4 ≤ m ≤ 8 .

We have also denoted by
√
•, the square root branch that uses the principal value, i.e.for z ∈ C \ {0},

√
z =

√
|z| ei Arg(z)/2 , Arg z ∈ (−π, π] .

Thus Re√ > 0, while Im√ can be positive or negative.

1.2.1.2 Equations of motion in the frequency domain

As mentioned above, we work in the frequency domain, i.e. with responses due to time-harmonic disturbances. The
drag force described by the operator V has a simpler expression in this case. In particular, since

(F2V)(w) = (F1V)(−w) = η

k(−ω) = η

k0

(√
1 + i 4

m

ω

ωt
+ i ω

ωt

)
,

the contribution of the drag force is now written as,

F1

(
V(t) ? ẇ

)
= (F1V)(ω) (F1ẇ)(ω) = η

k(ω)
(
− iω

) (
F1w

)
,

F2

(
V(t) ? ẇ

)
= (F2V)(w) (F2ẇ)(ω) = η

k(−ω)
(
iω
) (
F2w

)
.

The first equation of motion (1.7) is formally transformed to

∇ · τ + fu = −ω2ρau − ω2 ρfw ,

while the second one (1.8) becomes

−∇p + fw = −ω2ρfu− ω2
(

i η

ω k(ω)

)
w .

Here, fu and fw are time-harmonic external volume forces. As in [110, Eq. 77], we introduce the dynamic density as

ρdyn(ω) := i η

(−sω) k(−sω) = i η

(−sω) k0

√1 + i 4
m

(−sω)
ωt

+ i(−sω)
ωt

 . (1.9)

The equations of motion in the frequency domain are

∇ · τ + fu = −ω2ρau − ω2 ρfw ,

−∇p + fw = −ω2ρfu − ω2 ρdyn(ω) w .
(1.10)

1.2.1.3 Formal zero-viscosity limiting for a fixed positive frequency

Below, we write out the form of equation (1.10) when η → 0 at a fixed frequency ω and with the other parameters
fixed. Note that ωt → 0 when η → 0, and ωt is in the denominator of the definition of ρdyn. However, this has a finite

limit as η → 0. To see this, it suffices to consider the calculation in Convention 1. Using the definition ωt := φ

tk0

η

ρf
,

we write
η

k(ω) = 1
k0

(√
η2 − i 4

m
ω η

η

ωt
− i η

ωt
ω

)
= 1

k0

(√
η2 − 4i

m
ωη

tk0ρf
φ
− iω tk0ρf

φ

)
.
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For a fixed ω > 0, we compute the limit of η
k(ω) as η → 0 (under the assumption that the quantities φ, t, k0,Γ,m are

independent of η), and replace the expression of the dynamic density in (1.9). We obtain similar results for Convention
2. We note by ρVV

dyn the vanishing viscosity limit of ρdyn, i.e.

ρVV
dyn := lim

η→0,
fixed ω>0

ρdyn(ω) = ρf
φ

t . (1.11)

We will use this expression in the numerical tests. For material with zero viscosity, we apply the following limiting
form of (1.10),

Vanishing
Viscosity

∇ · τ + fu = −ω2 ρa u − ω2 ρf w ,

−∇p + fw = −ω2ρf u− ω2 ρVV
dyn w .

1.2.2 Constitutive laws
The first constitutive law is generalized from that of linear elasticity, where it has been taking into consideration the
additional influence of fluid pressure,

τ = Cfr : εfr − αp , (1.12)

where the operation : denotes the tensor scalar product, i.e. for tensors a and b, a : b =
∑
i,j

aij bij . Here, Cfr is the

elastic stiffness tensor of the drained frame, and εfr is the strain tensor of the solid frame,

ε = εfr := ∇u + (∇u)T

2 .

Under the assumption of isotropy of the material making up the solid frame, the fluid and the frame, (1.12) reduces to

τ = λfr∇ · u + 2µfrε − αp

= 2 µfr︸︷︷︸
G

ε +

− 2
3µfr + kfr +Mα2︸ ︷︷ ︸

kG in [106]

 ∇ · u I + αM∇ · w I

= 2µfrε + (λfr + Mα2)∇ · u I + αM∇ · w I .

(1.13)

The second constitutive law is
p = −M (∇ · w + fp) − M α∇ · u . (1.14)

Note that fp is a time-harmonic external source term. For more meaning on the geophysical meaning of the above
equations, we refer to the introduction of [107].
Remark 1.2. Here, the constitutive laws are expressed using the unknowns in the frequency domain. For those in time
domain, we only have to replace the unknowns by the corresponding ones in the time domain, including the source in
(1.14).

1.2.3 First order formulation
In the first order formulation of the equations of motion, we work with the unknowns

u , w , τ , p , (1.15)

where
u = s iω u , w = s iωw , ε = ∇u + (∇u)T

2 .

Here, u and w are interpreted as the time-harmonic solid velocity and the relative fluid velocity. They solve the system

∇ · τ + fu = s iω ρa u + s iω ρf w ,

−∇p + fw = s iω ρfu + s iω ρdynw ,

s iω τ = Cfr : ε − s iωα p ,

s iω (p + Mfp) = −M ∇ ·w − M α : ε .

(1.16)
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We obtain this formulation using
s iω u = u , and s iωw = w ,

and we next replace the above relations in equations (1.10):

∇ · τ + fu = (s iω)2u − (s iω)2 w =⇒ ∇ · τ + fu = s iω ρa u + s iω ρfw .

−∇p + fw = (s iω)2 ρf u + (s iω)2ρdyn w =⇒ −∇p + pw = s iω ρf u + s iω ρdyn w .

τ = Cfr : ∇u + (∇u)T

2 − αp =⇒ s iω τ = Cfr : ε − s iωα p .

p = −m∇ · w −Mfp − Mα : ∇u + (∇u)T

2 =⇒ s iω p = −M ∇ ·w − s iωM fp − M α : ε.

1.2.4 Second-order formulation
Here, we want to determine the second-order formulation of equation (1.16) in the case of an isotropic medium. We
recall the curl operator,

curlV =

 ∂yVz − ∂zVy
∂zVx − ∂xVz
∂xVy − ∂yVx

 . (1.17)

and the following properties of the operators:

∇ · ∇ f = ∆ f , ∇ · (fI) = ∇f , ∇ · ∇TV = ∇∇ · V ,

and
∆V = − curl curlV + ∇∇ · V .

Proposition 1.3 (u− w formulation).

• If (u,w, τ ,p) is solution of the poroelastic system made up of (1.10), (1.13) and (1.14) in a homogeneous
medium, then (u,w) solves the following system

−ω2ρau − ρfω
2w − H∇∇ · u + µfr curl curl u − αM ∇∇ · w = fu ,

−ω2ρfu − ω2 ρdyn(ω) w−M ∇∇ · w − Mα∇∇ · u = fw + ∇M fp .
(1.18)

• Conversely, if (u,w) solves (1.18), with τ and p given in terms of u and w by constitutive laws (1.13) and (1.14),
then (u,w, τ ,p) solves the poroelastic system (1.10).

Proof. We need to express ∇·τ and ∇p in terms of the divergences and curls of u and w. For ∇p, we have from (1.14)

−∇p = M ∇∇ · w + M ∇fp + M α∇∇ · u ,

and for ∇ · τ , using (1.13), we have

τ = 2µfr ε + (λfr + Mα2)∇ · u I + αM ∇ · w I ;

⇒ ∇ · τ = µfr∇ · (∇+∇T )u + (λfr +Mα2)∇∇ · u + αM ∇∇ · w

= µfr ∆u + (µfr + λfr +Mα2)∇∇ · u + αM ∇∇ · w

= −µfr curl curl u + (2µfr + λfr + Mα2)︸ ︷︷ ︸
:=H

∇∇ · u + αM ∇∇ · w .

Here, we have used the Biot coefficient H defined in (1.5),

H := 2µfr + λfr + M α2 .
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We next substitute these expressions into the equations of motion that have similar expression in both conventions.
The first equation

∇ · τ + fu = −ω2 ρa u − ω2 ρf w ,

gives
−µfr curl curl u + H∇∇ · u + αM∇∇ · w + fu = −ω2 ρa u − ω2 ρf w .

The second one
−∇p + fw = −ω2ρfu − ω2ρdyn(ω) w ,

gives
M∇∇ · w + M∇fp + Mα∇∇ · u + fw = −ω2 ρa u − ω2 ρf w .

The second direction of the equivalence is obtained by rearrangement of the equations.

Remark 1.4 (Two-dimensional case). In two dimensions, we consider a translation invariance in z direction, see for
example [125]. We then introduce the vectorial and scalar rotationals, curl and curl. We give the following definitions
of the curl for scalar f and vector V:

curl f =
(
∂yf
−∂xf

)
, curl V = ∂xVy − ∂yVx . (1.19)

In this case, the laplacian of V is
∆ V = − curl curlV + ∇∇ · V .

The second order formulation of the poroelastic equations is

−ω2ρau − ρfω
2w − H∇∇ · u + µfr curl curl u − αM ∇∇ · w = fu ,

−ω2ρfu − ω2 ρdyn(ω) w−M ∇∇ · w − Mα∇∇ · u = fw + ∇M fp .
The proof is similar to the proof in the three-dimensional case.

1.3 Non-dimensionalization of the equations
For numerical implementation, the parameters may have different orders of magnitude. To manipulate numbers with
a similar order of amplitude, we write the system (1.16) without source in terms of dimensionless equations. We write
X = X0X for all the terms of the equations with X0 a characteristic unit of measure and X denoting non-dimensional
quantities. We assume that the components of C are written as C0C, and that the bulk moduli k• are written as
k• = C0k• for • = s, f, fr . Hence, M = C0M and α0 = 1. The porosity φ = Vf

VT
is considered as a unitless ratio.

We assume that ρa, ρdyn, ρf and ρs have the same characteristic unit ρ0. The characteristic frequency has the same
characteristic unit as ω. The characteristic unity for the lengths is x0. The system (1.16) with physical parameters
becomes: 

iω0 ω ρ0 ρa u0 u + iω0 ω ρ0 ρf w0 w = τ0
x0
∇ · τ ,

iω0ω ρ0ρfu0 u + iω0ω ρ0 ρdyn w0 w = −p0

x0
∇p ,

iω0 ω τ0 τ + iω0 ωα0αp0 pI = C0u0

x0
C ε(u) ,

iω0 ω p0 p = − C0w0

x0
M∇ ·w− C0α0u0

x0
M α : ε(u) ,

ρ0 ρdyn = η0

κ00ω0

η

k
.
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The equations are written with dimensionless quantities, and all the constants must be equal. Setting the factors in
the coefficients that contain characteristic units, we obtain the following relations:

ω0 ρ0 u0 = ω0 ρ0 w0 = τ0
x0

,

ω0 ρ0 u0 = ω0 ρ0 w0 = −p0

x0
,

ω0 τ0 = ω0 α0 p0 = C0u0

x0
,

ω0 p0 = C0w0

x0

C0α0u0

x0
,

ρ0 = η0

κ00ω0
.

Simplifying, we have:

u0 = w0 , τ0 = p0 = ω0 ρ0 u0 x0, C0u0 = ω0 τ0 x0 , η0 = ρ0 ω0 k00 .

In many geophysical materials, the magnitude of the bulk modulus and the stiffness tensor is in GPa or MPa, and the
magnitude of the densities is in 103kg.m−3. We hence choose:

C0 = 109Pa , ρ0 = 103kg ·m−3 ,

and it follows that

τ0 = p0 = 106Pa , ω0 = 103 rad.s−1 , x0 = 1 m , u0= w0 = 1 m.s−1 , η0= 10−3 Pa.s , κ00= 10−9m2 .

We note that in other applications using different materials, the magnitude of the physical parameters can differ,
and the results presented above may no longer be relevant. In the rest of the text, the overbars denoting the non-
dimensionalized quantities are dropped.

1.4 Boundary and interface conditions
We describe the conditions on the boundaries for three different configurations, first a bounded domain, then two
interaction problems which include a fluid-solid and a porous-porous interaction.

Bounded domain On the external boundary Γ with outwardly direct unit normal vector n, we consider four types
of boundary conditions with vector f inc and scalar ginc denoting the exterior boundary forces,

Type 1
{
τ n = f inc ,

w · n = ginc ,
(1.20a) Type 2

{
τ n = f inc ,

p = ginc ,
(1.20b)

Type 3
{

u = f inc,
p = ginc ,

(1.20c) Type 4
{

u = f inc ,
w · n = ginc .

(1.20d)

It is worth noting that the conditions (1.20b) include the free boundary conditions which are given by

τ n = 0 , p = 0 , Free surface boundary condition

Interaction problems In interaction problems, we will consider the reflection of a solid obstacle immersed in an
infinite solid or fluid medium. Denote outer (infinite) medium by Ω(I) and the solid obstacle by Ω(II). Transmission
conditions are imposed on the interface Γ between these two domains, i.e., on the boundary of the obstacle.
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Porous-porous interaction problem When the outer medium is a poroelastic solid, the transmission conditions
are (cf. Section 2.4): 

u(I) − u(II) = 0 ,
p(I) − p(II) = 0 ,
(w(I) −w(II)) · n = 0 ,
(τ (I) − τ (II)) · n = 0 .

Fluid-porous interaction problem When the outer medium is a fluid, fluid-poroelastic transmission conditions
depend on the value of hydraulic permeability κΓ (see Section 2.5). We denote respectively by pflu and uflu the total
pressure and velocity in the fluid. For a finite positive value of κΓ, we impose:

(uflu − u) · n = w · n ,

pflu − p = 1
κΓ

w · n ,

τ n = − pflu n ,

(1.21)

where κΓ denotes the hydraulic permeability on the interface. In the fluid,

uflu = − 1
ρflu s iω∇ pflu .

We distinct extreme cases for κΓ: When κΓ → ∞, the pores are opened, and the second condition becomes
pflu − p = 0. (1.21) becomes 

(uflu − u) · n = w · n ,
pflu − p = 0 ,
τ n = − pflu n .

These equations are the ones used in [45]. On the other hand, when κΓ = 0, this case is referred to as sealed pores,
and the second interface condition is modified as w · n = 0. (1.21) becomes

(uflu − u) · n = w · n ,
w · n = 0,
τ n = − pflu n .

or equivalently


(uflu − u) · n = 0,
w · n = 0,
τ n = −pflu n .

Note that the subscript ‘flu’ indicates the unkwnowns in a fluid, while the subscript f denotes the unknowns and
the parameters in the fluid contained in the pores of the poroelastic medium. The first and third equations in the
equivalent form represent the perfect transmission in fluid-elastic scattering.1

Domain truncation In the above, we have presented boundary conditions for bounded domains. In Chapter 4, we
will focus on the development of boundary conditions used for truncating the computational domain.

1.5 Plane wave Analysis
We consider an isotropic poroelastic domain, and we are going to determine which forms of plane wave are admissible
solutions of (1.18) without source. The analysis also gives the possible speeds of propagation sustained in a poroelastic
medium. Here, we can observe a fast compressional wave and a shear wave as in elastic medium, but also a second
slow compressional wave, associated physically to out-of-phase liquid and solid compressional particle motions. With
the vectors k and d, a vectorial time-harmonic plane wave has the form

e±iωt e±k·X d .
1 In [6] the transmission condition between fluid and solid are τ n = pflu n , ω

2 ρflu u · n = ∇pflu · n . Here, the condition is in terms
of solid displacement u. Since we work with the velocity formulation, using the following identities,

ω2 = −(s iω)2 , u = s iω u , ∇pflu = −ρflu s iω uflu .

we can write the second condition as:

−(s iω) ρfluu · n = −ρflu s iω uflu · n ⇒ u · n = uflu · n .
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We will focus on the plane wave that attenuates along its propagation direction in a medium with viscosity. In
particular, we consider slowness vector s = s(ω) satisfying

(−s) Re s > 0 , Im s > 0 ,

(this is later defined in (1.43)), and we define the wave vector k as

k = ω s(ω) k̂ ,with |k̂| = 1 ,

The vector k̂ denotes the direction of propagation. We consider the plane wave with polarization d̂ with |d̂| = 1,

ei sωt ei k·X d .

We rewrite the plane wave as

eω i s
(
t − |Re s(ω)| k̂·X

)
e−ω Im s(ω) k̂·X .

From this, we define respectively the phase velocity and the attenuation

v(ω) := 1
|Re s(ω)| , a(ω) := ω Im s(ω) .

We also work with the complex velocity,
c(ω) := 1

s(ω) . (1.22)

1.5.1 Admissible plane waves and slowness calculation
Lemma 1.5. We need the following identities.

∇∇ · eik·X d = − (d · k) k ei k·X ,

curl curl eik·Xd = eik·X
(
k× d

)
× k = eik·X

(
|k|2d − (k · d) k

)
.

Proof.

∇ ·
(
eik·Xd

)
= eik·X d · ∇(ik ·X) = eik·X d · (i k) ,

∇eik·X = eik·X ∇(ik ·X) = eik·X(ik) ,

⇒ ∇
(
∇ · eik·X d

)
= − (d · k) k ei k·X .

We next consider the curl operator. In 3D, we obtain the expression by using:

curl
(
eik·X d

)
= − i ei k·X (d× k) ,

⇒ curl curl eik·Xd = curl
(
− i eik·X d× k

)
= − eik·X

(
d× k

)
× k

= eik·X
(
k× d

)
× k = eik·X

(
|k|2d − (k · d) k

)
.

In two dimensions, for V = (Vx, Vy), we have the following product rules,

curl(f V ) = ∂x(f Vy) − ∂y(f Vx) = (∂xf)Vy − (∂yf)Vx + f (∂xVy − ∂yVx)

= −(curl f) · V + f curlV ,
(1.23)

and for scalars f and g

curl(f g) =
(
∂y(f g)
−∂x(f g)

)
= g

(
∂yf
−∂xf

)
+ f

(
∂yg
−∂xg

)
= f curl g + g curl f .
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By using equation (1.23), we obtain:

curl
(
eik·X d

)
= − (curl eik·X) · d = − i ei k·X (d× k) ,

curl eik·X = i eik·X curl(k ·X) = i eik·X

(
ky

− kx

)
,

⇒ curl curl
(
eik·Xd

)
= curl

(
− i eik·X d× k

)
= ei k·X

(
|k|2d − (k · d) k

)
.

Proposition 1.6 (Plane wave solutions to (1.18)). The three slownesses sustained in a poroelastic medium are

S-wave-slowness s2
S(ω) := detA(ω)

µfr ρdyn(ω) , (1.24a)

‘fast’ P-wave-slowness 2 s2
P(ω) := trC(ω)

detB −

√(
trC(ω)
detB

)2
− 4detA(ω)

detB , (1.24b)

‘slow’ P-wave-slowness 2 s2
B(ω) := trC(ω)

detB +

√(
trC(ω)
detB

)2
− 4detA(ω)

detB , (1.24c)

where we have defined

A(ω) :=
(
ρa ρf
ρf ρdyn

)
, B :=

(
H αM
αM M

)
, Bcof =

(
M −αM
−αM H

)
, C(ω) := BcofA(ω) , (1.25)

and
trC(ω) = ρdyn(ω)H − 2αM ρf + ρaM ,

detB = M H − (αM)2 = M (λfr + 2µfr) ,

detA(ω) = ρa ρdyn(ω) − ρ2
f .

(1.26)

For • ∈ {S , P , B}, if (u•,w•) is of the form

u• = ei k• ·X d̂ , w• = W• ei k•·X d̂

solving (1.18), then the slowness s•, the polarization d̂ and the direction of propagation k̂ have to satisfy the
following constraints.

1. The transverse plane wave (i.e., one with polarization direction orthogonal to the propagation direction) is
given by the pair (uS,wS) 

kS = ω sS(ω) k̂ ;

sS(ω) given by (1.24a) ,

k̂ ⊥ d̂ , |k̂| = |d̂| = 1 ,

WS = − ρf
ρdyn(ω) cf. (1.30) .

2. There are two types of longitudinal waves (i.e.those with polarization direction parallel to the propagation
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direction) given by the pair (u•,w•) with • ∈ {P ,B},

k• = ω s•(ω) d̂ , |d̂| = 1,

s•(ω) given by (1.24b) or (1.24c) ,

W• = − H s2
•(ω)− ρa

αM s2
•(ω) − ρf

cf. (1.33) .

. (1.27)

Proof. Step 1 We write the plane wave solutions as follows:

u = u0 e
i k ·X d̂ , w = w0 e

i k·X d̂ ,

and we replace the expressions of ∇∇ · u and curl curl u into (1.18). We then obtain

−ω2 ρa u0 d̂ − ρf ω
2 w0 d̂ + H u0 (d̂ · k) k + µfr u0 (k× d̂) × k + αM w0 (d̂ · k) k = 0 ,

−ω2 ρf u0 d̂ − ω2 ρdyn w0 d̂ + M w0 (d̂ · k) k + Mαu0 (d̂ · k) k = 0 .
(1.28)

Rearranging the terms in (1.28) by using coefficients of u0 and w0, we have:(
H u0 + αM w0

)
(d̂ · k) k − ω2

(
ρa u0 + ρf w0

)
d̂ + µfr u0 (k× d̂) × k = 0 ,

−ω2
(
ρfu0 + ρdynw0

)
d̂ + M

(
w0 + αu0

)
(d̂ · k) k = 0 .

(1.29)

Step 2 - Transverse plane waves A S plane wave has the property

k · d̂ = 0 .

This means:
(k× d̂) × k = |k|2 d̂ .

Using the above identity and dividing both equalities in (1.29) by |k|, we obtain

−c2
(
ρa u0 + ρf w0

)
d̂ + µfr u0 d̂ = 0 ,

−c2(ρf u0 + ρdyn w0) d̂ = 0 .

Recall the inverse of the slowness c := ω

|k| , defined in (1.22). The above system in matrix form is

(
c2ρa − µfr c2ρf

c2ρf c2ρdyn

)(
u0
w0

)
= 0 .

This means, assuming u0 and w0 do not vanish, that the above matrix is not invertible and has zero determinant

c2ρdyn (c2ρa − µfr)− c4ρ2
f = 0 ⇔ c2

[
c2 (ρdyn ρa − ρ2

f

)
− µfrρdyn

]
= 0 .

We define the nonzero root to be

cS(ω) =
(

µfr ρdyn(ω)
ρdyn(ω) ρa − ρ2

f

)1/2

.

The associated shear-wave slowness is then

sS(ω) =
(
ρdyn(ω) ρa − ρ2

f

µfr ρdyn(ω)

)1/2

.

A corresponding eigenvector is
US = 1 , WS = − ρf

ρdyn(ω) . (1.30)

Step 3 - Longitudinal plane waves
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• A P plane wave has the property

k × d̂ = 0 .

Since k is parallel to d̂, we can write

d̂ = ak , d̂ · k = a|k|2 , a ∈ R ,

then equation (1.29) becomes (
Hu0 + αMw0

)
(d̂ · k)k− ω2

(
ρa u0 + ρf w0

)
d̂ = 0 ,

−ω2(ρf u0 + ρdyn w0) d̂ +M
(
w0 + αu0

)
(d̂ · k)k = 0 .

⇒
(
H u0 + αM w0

)
a |k|2k− ω2

(
ρa u0 + ρf w0

)
ak = 0 ,

−ω2(ρf u0 + ρdyn w0) ak +M
(
w0 + αu0

)
a |k|2k = 0 .

(1.31)

Dividing (1.31) by a and |k|2, gives (
H u0 + αM w0

)
− c2

(
ρa u0 + ρf w0

)
= 0 ,

−c2(ρf u0 + ρdyn w0) +M
(
w0 + αu0

)
= 0 .

(1.32)

Written in matrix form, we obtain (
H − c2ρa αM − c2ρf
−c2ρf + αM −c2ρdyn +M

)(
u0
w0

)
= 0 ,

or
B

(
u0
w0

)
− c2A

(
u0
w0

)
= 0 ⇒ C

(
u0
w0

)
− (detA)c2

(
u0
w0

)
= 0 ,

where we have defined

B :=
(
H αM
αM M

)
, A :=

(
ρa ρf
ρf ρdyn

)
, Acof =

(
ρdyn −ρf
−ρf ρa

)
,

C := AcofB =
(
ρdyn −ρf
−ρf ρa

)(
H αM
αM M

)
=
(
ρdynH − αMρf ρdynαM − ρfM
−ρfH + ρaαM −ρfαM + ρaM

)
.

This means (detA) c2 is an eigenvalue of C. Note that both A and B are symmetric, thus diagonalizable.

We next consider the eigenvalues c̃ of C, which satisfy the quadratic relation

c̃2 − c̃ trC + detC = 0 ,

and are thus given by
2c̃ := trC ∓

√
(trC)2 − 4 detC .

Here, in presence of viscosity, the argument in the above square root is complex. Without viscosity, we verify in Table
1.2 that the square root is defined for the materials in consideration. This means

2c2 = 1
detA

(
trC ∓

√
(trC)2 − 4 detC

)
.

Since
detC = (detAcof) detB = (detA) (detB) ,

we have

2 c2 = trC
detA ∓

√(
trC

detA

)2
− 4detB

detA .

Longitudinal slowness

• Consider the longitudinal slownesses. Then (detB)s is an eigenvalue of C̃ := BcofA. We note that
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C̃ :=
(

M −αM
−αM H

)(
ρa ρf
ρf ρdyn

)
, ⇒ tr C̃ = Mρa − 2αMρf +Hρdyn = trC ,

det C̃ = (detB)(detA) .

As a result,

‘fast’ P-wave-slowness , 2 s2
P := trC

detB −

√(
trC

detB

)2
− 4 detA

detB ,

‘slow’ P-wave-slowness , 2 s2
B := trC

detB +

√(
trC

detB

)2
− 4 detA

detB .

Here, in presence of viscosity, the argument in the square roots is complex. Without viscosity, we verify in Table 1.2
that the square roots are defined for the materials in consideration. The components of corresponding eigenvectors
are read from (1.32):

U• = 1 , W• = − H s2
• − ρa

s2
• αM − ρf

, s• ∈ {sP , sB} . (1.33)

Equivalence with Pride notations [107] We compare with the notations used in formula [107, (9.15),(9.19)] for
the matrices B and C.

Pride’s notations Our notation
Undrained bulk modulus KU kfr + α2M = λfr + 2

3µfr + α2M = H − 4
3µfr

Undrained shear modulus G µfr

Biot C αM
incompressibilites M M

constants[107, (9.18)] H = KU + 4
3G λfr + 2

3µfr + α2M + 4
3µfr = λfr + 2µfr + α2M = H

HM − C2 detB = MH − (αM)2 = M(λfr + 2µfr)
ρaH + ρ̃M − 2ρfC trC = ρdynH − 2αMρf + ρaM

[107, (9.20)] γ = ρaM + ρdynH − 2ρfC
HM − C2

trC
detB

1.5.2 First order formulation of the corresponding plane wave solution
Using the slowness expresssions from (1.24), the plane wave writes:

1. For the transverse wave (polarization direction perpendicular to the propagation direction):

uS = ei kS ·x (s iω) d̂ , wS = WS e
i kS·x (s iω) d̂ ,

τ S = iω sS(ω) ei kS·x µfr

(
k̂⊗ d̂ + d̂⊗ k̂

)
,

pS = 0 .

with polarization given by 

kS = ω sS(ω) k̂ ,

sS(ω) given by (1.24a) ,

k̂ ⊥ d̂ , |k̂| = |d̂| = 1 ,

WS = ρf
ρdyn(ω) cf. (1.30) .
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2. For the two types of longitudinal waves P and B (polarization direction parallel to the propagation direction), which
are distinguished by subscript • ∈ {P ,B}:

u• = ei k• ·x (s iω) d̂ , w• = W• ei k•·x (s iω) d̂ ,

τ • = iω s•(ω) eik•·x

2µfr d̂⊗ d̂ +
(
− 2

3µfr + kfr︸ ︷︷ ︸
λfr

+M α2 + W• αM
)
I

 ,

p• = iω s•(ω) (−MW• − M α) eik•·x .

with polarization given by 

k• = ω s•(ω) d̂ , |d̂| = 1,

s•(ω) given by (1.24b) or (1.24c) ,

W• = − H s2
•(ω)− ρa

αM s2
•(ω) − ρf

cf. (1.33) .

.

Proof. The expression of the second order plane wave is of the form:

u• = ei k• ·x d , w• = W• ei k•·x d , • ∈ {S , P , B} .

The velocities are the time-derivative of the displacement. As a result, we obtain:

u• = ei k• ·x (s iω) d , w• = W• ei k•·x (s iω) d , • ∈ {S , P , B} .

The expression of the pressure p is given by (1.14). By using the relation ∇· (eik·xd) = i eik·xd ·k and replacing the
value of the plane wave, we obtain for p:

p• = −M ∇ · w − M α∇ · u
= i d · k (−MW• − M α) e ik·x .

The stress tensor τ is expressed in (1.13). We replace the value of ∇ · u, ∇ ·w and εfr = i eik·x 1
2 (d⊗ k + k⊗ d) , to

obtain:
τ • = 2µfrε +

(
λfr +Mα2

)
∇ · u I + αM∇ · w I

= i eik·x
(
µfr (k⊗ d + d⊗ k) +

(
λfr +Mα2 + W• αM

)
d · k I

)
.

To finish the proof, we only need to symplify the expression of τ and p by using k · d = 0 for transverse wave
and k × d = 0 for longitudinal waves.

1.5.3 Expansion of the incident plane wave in Bessel functions in two dimensions
The incident plane wave is expanded to form a right-hand side vector.

For a longitudinal wave Recall the admissible longitudinal plane waves allowed in an isotropic poroelastic medium
from (1.35), • ∈ {P ,B}.

upw
• = ei k• ·x (s iω) d̂ = s

s•
∇(ei k• ·x) ,

wpw
• = W• ei k•·x (s iω) d̂ ,

τ pw
• = iω s•(ω) eik•·x

2µfr d̂⊗ d̂ +
(
− 2

3µfr + kfr︸ ︷︷ ︸
λfr

+M α2 + W• αM
)
I

 ,

ppw
• = iω s•(ω) (−MW• − M α) eik•·x ,

(1.36)
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with the polarization given by 

k• = ω s•(ω) d̂ , d̂ = (cosαinc, sinαinc),

s•(ω) given by (1.24b) or (1.24c) ,

W• = − H s2
•(ω)− ρa

αM s2
•(ω) − ρf

cf. (1.33) .

.

We have the Jacobi-Anger expansion, see for e.g [91, eqn (2.17)],

ei t cosϕ =
∞∑

k=−∞
ikJk(t) eikϕ. (1.37)

The multipole expansion relative to the origin 0R2 is given by

eiω sx ·(cosαinc,sinαinc) = eiω s |x| cos(θ−αinc) =
∞∑

k=−∞
ik Jk(κ |x|) ei k(θ−αinc) . (1.38)

Thus,

eiω s• x·d̂ =
∞∑

k=−∞
ik Jk(ω s• |x|) ei k(θ−αinc) .

We now work in polar coordinates. We have

upw
• = s

s•
∇(ei k• ·x) ,

⇒ upw
• = s

s•
∇

( ∞∑
k=−∞

ik Jk(ω s• r) ei k(θ−αinc)

)
.

Next, we use ∇ in polar coordinates ∇ = ∂rer + 1
r
∂θeθ .

upw
• = s

s•

∞∑
k=−∞

ik ω s• J′k(ω s• r) ei k(θ−αinc) er + s

s• r

∞∑
k=−∞

ik+1 k Jk(ω s• r) ei k(θ−αinc) eθ .

We obtain the same thing for w,

wpw
• = W• ei k•·x (s iω) d̂ = W•

s•
∇(ei sk• ·x) ,

⇒ wpw
• = s

W•
s•
∇

( ∞∑
k=−∞

ik Jk(ω s• r) ei k(θ−αinc)

)
.

In polar coordinates:

wpw
• = s

W•
s•

∞∑
k=−∞

ik ω s• J′k(ω s• r) ei k(θ−αinc) er + s
W•
s• r

∞∑
k=−∞

ik+1 k Jk(ω s• r) ei k(θ−αinc) eθ .

For the stress tensor, (1.36) gives:

τ pw
• = 2µfr

iω s•
∇2eik•·x +

(
− 2

3µfr + kfr︸ ︷︷ ︸
λfr

+M α2 + W• αM
)

iω s• eik•·x I .
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As we will be interested by τ n = τrr er + τrθ eθ in circular coordinates, we will only detail the expressions of the
components τrr and τrθ:

τpw
•,rr = 2µfr

iω s•
∂rre

ik•·x +
(
− 2

3µfr + kfr︸ ︷︷ ︸
λfr

+M α2 + W• αM
)

iω s• eik•·x

= 2µfr

iω s•

∞∑
k=−∞

ikω2 s2
• J′′k(ω s• r) ei k(θ−αinc)

+
(
− 2

3µfr + kfr︸ ︷︷ ︸
λfr

+M α2 + W• αM
)

iω s•
∞∑

k=−∞
ik Jk(ω s• r) ei k(θ−αinc)

= 2µfr

∞∑
k=−∞

ik−1 Jk+1(ω s• r) ei k(θ−αinc) − 2µfr

ω s•

∞∑
k=−∞

ik−1 Jk(ω s• r) ei k(θ−αinc)

− 2µfr

∞∑
k=−∞

ik−1ω s• Jk(ω s• r) ei k(θ−αinc) + 2µfr

ω s•

∞∑
k=−∞

ik−1k2 Jk(ω s• r) ei k(θ−αinc)

+
(
− 2

3µfr + kfr︸ ︷︷ ︸
λfr

+M α2 + W• αM
)

iω s•
∞∑

k=−∞
ik Jk(ω s• r) ei k(θ−αinc) ,

τpw
•,rθ = 2µfr

iω s•

(
∂θr
r
eik•·x − ∂θ

r2 e
ik•·x

)
= 2µfr

iω s•

(
1
r

∞∑
k=−∞

ω s• ik+1 k J′k(ω s• r) ei k(θ−αinc) − 1
r2

∞∑
k=−∞

ik+1 k Jk(ω s• r) ei k(θ−αinc)

)

=
∞∑

k=−∞

2µfr ik k
r

J′k(ω s• r) ei k(θ−αinc) −
∞∑

k=−∞

2µfrik k
ω s• r2 Jk(ω s• r) ei k(θ−αinc) .

For the pressure, we obtain directly

ppw
• = iω s• (−MW• − M α)

∞∑
k=−∞

ik Jk(ω s• r) ei k(θ−αinc) .

For a transverse wave The admissible transverse plane wave allowed in an isotropic poroelastic medium from
(1.35) is expressed as:

upw
S = ei kS ·x (s iω) d̂ = − s

sS
curl

(
ei s kS ·x

)
,

wpw
S = WS e

i kS·x (s iω) d̂ = − s
WS

sS
curl

(
ei kS ·x

)
,

τ pw
S = iω sS e

i kS·x µfr

(
k̂⊗ d̂ + d̂⊗ k̂

)
,

ppw
S = 0 ,

(1.39)

with the polarization given by 

kS = ω sS(ω) k̂ ,

k̂ = (cosαinc, sinαinc) d̂ = (− sinαinc, cosαinc),

sS(ω) given by (1.24a) ,

WS = ρf
ρdyn(ω) cf. (1.30) .

Recall that the multipole expansion relative to the origin 0R2 is given by

eiκx ·(cosαinc,sinαinc) =
∞∑

k=−∞
ik Jk(κ r) ei k(θ−αinc) .
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We have
upw

S = − s

sS
curl(ei kS ·x) ,

⇒ upw
S = − s

sS
curl

( ∞∑
k=−∞

ik Jk(ω sS r) ei k(θ−αinc)

)
.

Then, we use curl in polar coordinates: curl = 1
r
∂θer − ∂reθ

upw
S = − s

sS r

∞∑
k=−∞

ik+1 k Jk(ω sS r) ei k(θ−αinc) er

+ s

sS

∞∑
k=−∞

ik ω sS J′k(ω sS r) ei k(θ−αinc) eθ .

Equivalently for w,

wpw
S = WS e

i kS·x (s iω) d̂ = − s
WS

sS
curl

(
ei kS ·x

)
,

⇒ wpw
S = − s

WS

sS
curl

( ∞∑
k=−∞

ik Jk(ω sS r) ei k(θ−αinc)

)
.

wpw
S,r = − s

WS

sS r

∞∑
k=−∞

ik+1k Jk(ω sS r) ei k(θ−αinc) .

For τ , we have from equation (1.39)

τ pw
S = iω sS e

i kS·x µfr

(
k̂⊗ d̂ + d̂⊗ k̂

)
= iω sS e

i kS·x µfr

(
−2 cosαinc sinαinc cosα2

inc − sinα2
inc

cosα2
inc − sinα2

inc 2 cosαinc sinαinc

)
.

We will consider τ n = τrr er + τrθ eθ in polar coordinates, hence, we focus on the components τrr and τrθ:

τpw
S,rr = − 2 µfr

iωsS

∂rθ(ei kS·x)
r

=
∞∑

k=−∞
−2 µfr

iωsSr

(
ω sS ik+1 k J′k(ω sS r) ei k(θ−αinc)

)
=

∞∑
k=−∞

−2 µfr

r
ik k J′k(ω sS r) ei k(θ−αinc) ,

τpw
S,rθ = − µfr

iωsS

(
∂θθ(e i kS·x)

r2 + ∂r(e i kS·x)
r

− ∂rr(e i kS·x)
)

=
∞∑

k=−∞

µfr

iωsS

(
ik k2

r2 Jk(ω sS r) ei k(θ−αinc) − ω sS ik

r

(
J′k(ω sS r) ei k(θ−αinc)

)
+ω2 s2

S ik J′′k(ω sS r) ei k(θ−αinc)
)

=
∞∑

k=−∞

µfr ik−1 k2

ωsS r2 Jk(ω sS r) ei k(θ−αinc) −
∞∑

k=−∞

µfr ik−1

r
J′k(ω sS r) ei k(θ−αinc)

+
∞∑

k=−∞
µfr ik−1 Jk+1(ω sS r) ei k(θ−αinc) −

∞∑
k=−∞

µfr k

ω sS
ik−1 Jk(ω sS r) ei k(θ−αinc)

−
∞∑

k=−∞
µfr ω sS ik−1 Jk(ω sS r) ei k(θ−αinc) +

∞∑
k=−∞

µfr k
2

ω2 s2
S

ik−1 Jk(ω sS r) ei k(θ−αinc) .
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Physical parameters Sandstone Sand 1 Shale Sand 2
Porosity φ (%) 0.2 0.3 0.16 0.3
Fluid Density ρf (103kg.m−3) 1.04 1 1.04 1
Solid Density ρs (103kg.m−3) 2.5 2.6 2.21 2.7
Viscosity η (10−3Pa.s) 0 1 0 1
Permeability κ0 (10−9m2) 0.06 0.01 0.01 0.01
Tortuosity t 2 3 2 3
Solid Bulk Modulus ks (109Pa) 40 35 7.6 36
Fluid Bulk Modulus kf (109Pa) 2.5 2.2 2.5 2.2
Frame Bulk Modulus kfr (109Pa) 20 0.4 6.6 7
Frame Shear Modulus µfr (109Pa) 12 0.5 3.96 5
Velocity (m.s−1)
vP 4247 (1860, 4) 2481 (2866, 0.1)
vB 1021 (82,70) 1127 (190,163)
vS 2388 (486,1) 1429 (1512, 1)
Transition frequency — 1kHz — 1kHz
ρdyn 10.4 (12.5, -80) 13 (12.5, -80)
ρa + ρdyn 12.6 (14.6, -80) 15 (14.7, -80)
detA = ρa ρdyn − ρ2

f 21.88 (25.5 -169) 25.2 (26.4, -174)
H + M 50.28 13.74 28.8 24.6
detB = HM − α2M2 411.43 6.83 197.14 90.8
trC = ρdynH − 2αMρf + ρaM 417.46 (92.54, -583) 187.2 (228.6, -1432)

4 detA
detB 0.212 (14.92, -99) 0.51 (1.16, -7.7)(
trC

detB

)2
1.03 (-7104, -2311) 0.9 (-242, -7.9)(

trC
detB

)2
− 4 detA

detB 0.817 (-7119, -2212) 0.39 (-243,-72)√(
trC

detB

)2
− 4 detA

detB 0.904 (12.96 , -85) 0.624 (2.27, -15.8)

trC
detB 1.015 (13.54, -85) 0.95 (2.51, -15.8)

s2
P 5.54D-2 (0.29, -1.2D-3) 0.16 (0.12, -8D-5)

sP (10−3s.m−1) 0.235 (0.54, -1.1D-3) 0.4 (0.35, -1D-4)

s2
B 0.96 (13.24, -85) 0.787 (2.39, -15.8)

sB (10−3s.m−1) 0.979 (7, -6) 0.89 (3, -2.6)

s2
S 0.175 (4.24, -2.5D-2) 0.49 (0.44, -2.4D-3)

sS (10−3s.m−1) 0.419 (2.06, -6D-3) 0.7 (0.66, -1.8D-3)

Table 1.2: Summary of the physical parameters of media in consideration in this document. The parameters for sand
1 are obtained from [64, Table 1], those for sandstone and shale from [39, Table 5], for sand 2 from [128, Table 1].
Materials velocities and dynamic parameters are calculated for a frequency f = 200 Hz, and s = −1. The definition
of slowness follows eq. (1.43).

1.6 Properties of slowness
In this section, we describe the properties of the slowness in a poroelastic medium. These properties are dependent on
the convention we use for time-derivative in the frequency domain. Moreover, the value of the viscosity in the domain
has an influence on these properties. We distinct two cases for the viscosity: one with vanishing viscosity, using the
assumptions of Section 1.2.1.3, and one with a positive viscosity. First, we study the properties of s2

•, then we propose
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a definition of the slownesses.

1.6.1 Properties of slowness square
In Section 1.5.1, we presented the expressions of the slownesses for the three waves, which depend on matrices A, B,
C, that we have defined in (1.25). The values of those matrices hence give properties of the slowness. In the case with
no viscosity, the matrices are real. Here we present the properties of the slowness square from (1.24).

Zero viscosity From the discussion in Section 1.2.1.3, the dynamic density ρdyn(ω) at vanishing viscosity takes the
form, cf. (1.11),

lim
η→0,

fixed ω>0

ρdyn = ρVV
dyn = ρf

φ
t .

By its definition (1.1), the porosity φ satisfies
0 ≤ φ ≤ 1 . (1.40)

We can also assume that, considering a porous medium,

t ≥ 1 .

We also assume that t and φ are not 1 at the same time, i.e.

(1− t)2 + (1− φ)2 > 0 . (1.41)

At zero viscosity, we use ρVV
dyn introduced in (1.11) in the definition of matrices A and C in (1.25) and (1.26). These

matrices appear in the definition of the slowness square (1.24). In this case, all the quantities are real.

Proposition 1.7. Under hypothesis (1.40)– (1.41), we have

1. The matrix
A0 :=

(
ρa ρf
ρf ρVV

dyn

)
,

is symmetric and positive definite.

2. The matrix
C0 := BcofA0 ,

is diagonalizable with two positive eigenvalues.

Proof. Let us first recall that, from (1.25),

Bcof =
(

M −αM
−αM H

)
.

Statement 1 The proof follows [52, Rmk 5.2.1]. We substitute in A0 the definition of ρa given in (1.2) and that of
vanishing viscosity density ρVV in (1.11),

detA0 = ρa ρ
VV
dyn − ρ2

f

= ((1− φ) ρs + φ ρf ) ρf
φ

t − ρ2
f

=
(
t − 1

)
ρ2
f + (1− φ)

φ
t ρs ρf .

Under hypothesis (1.40)– (1.41), we have

detA0 > 0 , and trA0 > 0 ,

since A0 is symmetric, and thus diagonalizable. With its determinant and trace positive, its two eigenvalues are
positive.

Statement 2 The matrix B is always real, symmetric. Due to (1.4)

M > 0 , H = λfr + 2µfr + α2M > 0 ,
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we have

detB = M(λfr + 2µfr) > 0 , trB = M + H > 0 .

Since B is symmetric, this means that B is diagonalizable with its eigenvalues positive (and thus positive definite).
We can define its square root denoted by B̃,

B̃2 = B .

Since B = QDQT with an orthogonal matrix Q i.e. Q−1 = QT , then B̃ = Q
√
DQT and B̃T = B̃. We can then note

that B̃ is also symmetric and positive definite and so is its inverse (B̃)−1. We next show that B−1A0 is similar to the
symmetric matrix B̃−1A0B̃

−1. We first have

B̃
(
B−1A0

)
B̃−1 = B̃−1A0 B̃

−1 .

The latter matrix satisfies, (
B̃−1A0 B̃

−1)T =
(
B̃−1)T AT0 (B̃−1)T ,

and is thus symmetric since A0 is symmetric and B̃−1 is symmetric. This means that B̃−1A0B̃
−1 is diagonalizable.

Furthermore, its eigenvalues are positive. This is seen by showing that B̃−1A0B̃
−1 is positive definite,〈

B̃−1A0 B̃
−1x , x

〉
=
〈
A0 B̃

−1 x , (B̃−1)T x
〉

= 〈A0 B̃
−1 x , (B̃−1)x〉 > 0 .

The last inequality is due to the definite positivity of A0 discussed in statement 1. By similarity, these properties are
transferred to matrix B−1A0, and thus C0.

Remark 1.8. When η = 0, all of the concerned quantities are real. A and B are symmetric, hence diagonalizable.
The materials in Table 1.2 with zero viscosity (Sandstone and Shale) satisfy the condition guaranteeing the positive
definiteness of matrices A and B. For A, this means

ρa + ρVV
dyn > 0 , ρaρ

VV
dyn − ρ2

f > 0 .

For B, this means
H +M > 0 , HM > α2M2 .

4

1.6.2 Definition of slowness
For zero-viscosity, the slowness is real, while in the presence of viscosity we have studied the values of slownesses for
the materials listed in table 1.2. For frequencies in the range [1Hz , 1MHz] and viscosity in [0, 10−2] Pa.s, we have
verified that the slowness square defined in (1.24) always observes the following:

Re s2
• > 0 , −s Im s2

• > 0 , for • = P,S,B , (1.42)

Definition 1.9. Under the assumption that the slowness square defined in (1.24) satisfies (1.42), we define the
slowness to be

s• := −s
√

s2
• . (1.43)

Here, the square root uses the principle argument range i.e.the interval (−π, π].

Under assumption (1.42), the slowness satisfies

Im s• ≥ 0 , −s Re s• ≥ 0 . (1.44)

In addition, in presence of viscosity, the amplitude of the plane wave decreases.

Conclusion
In this chapter, we have first introduced the physical parameters used to describe a poroelastic medium. Then,
focusing on the harmonic domain, we have presented the expression of the equations of poroelasticity both in first
and second-order formulation. In addition to the equations, we need to express boundary conditions. Here, we have
proposed boundary conditions for bounded domain and transmission problems. We have then determined the form of
the plane waves sustained in poroelastic materials. We distinguish three plane waves; a fast longitudinal plane wave,
called P-wave, a slow longitudinal plane wave, the B-wave, and a transverse plane wave, the S-wave. Associated with
the plane wave, we have defined three slownesses. This chapter sets a framework for the rest of the developments given
in the following chapters.



Chapter 2

Construction and analysis of analytical
solutions in two-dimensions in isotropic
media

In this chapter, we focus on the two-dimensional isotropic poroelastic equations presented in Chapter 1. In this con-
figuration, we develop analytical solutions that will be used in order to evaluate the accuracy of the discretization of
poroelastic equations by Hybridizable Discontinuous Galerkin method, see Chapter 3. We will consider the homoge-
neous poroelastic equations on bounded domains, but also the scattering of plane wave by impenetrable and penetrable
infinite cylindrical obstacles (thus with circular 2D cross-section), and a fluid-solid interaction problem in circular geom-
etry. This is opposed to horizontally stratified fluid-solid or solid-solid interaction problem, cf. e.g. [127, 90, 43, 45, 46].
Finally, we will present a test using point sources.

To obtain analytic solutions, we employ the potential method used by [92] in elasticity, which exploits the very
specific form of the poroelastic equations and provides a lighter exposition than the usual approach with Helmholtz
decomposition. In addition to the computation of analytic solution for each considered problem, we go further and pro-
pose a definition of outgoing solutions cf. Definition 2.3, and investigate numerically the well-posedness for interaction
problems among others.

Current works in literature dealing with analytic solutions to the poroelastic equations construct fundamental
solutions either for infinite domain, cf. e.g. [24], [25], or horizontally stratified domain [45, 46]. For these reasons, they
do not directly provide analytic solutions for plane wave scattering in spherical and cylindrical geometries, as were
done for the elastic equation, cf. e.g. [99]. While the form of generic solutions to the homogeneous equation for infinite
domain can be extracted from calculations of the fundamental solution in [24], [25] or in [45, 46], this approach can
quickly become complicated, due to the multitude of poroelastic physical parameters whose notations and conventions
vary with each work. Additionally, for scattering problems with plane waves, with zero right-hand-side terms, the form
of the solution should be much simpler, and an adapted computation for this problem is not quite in the same vein
as one employed to compute the fundamental solutions. Lastly, we work with dynamic viscosity [111] which depends
on frequency, while [45, 46] work with a low-frequency approximation of the isotropic poroelastic equations and with
vanishing viscosity. Our geophysical parameters are based on those in [63, 64, 39, 128].

In the scattering problems, we need to define outgoing solutions. This is not covered in the literature for poroe-
lasticity. Indeed, while the notion of outgoing solution is well-established for elasticity with the Kudrapdze radiation
condition [82], the mathematical analysis focus on bounded domains for poroelasticity, see [22].

Similarly, while the well-posedness of the interaction problem for acoustic fluid-elastic solid is covered in e.g. [51, 12,
77], this is not yet investigated for isotropic poroelasticity. In particular, the phenomenon of Jones’ modes is observed
for fluid-elastic scattering. This is characterized by a non-zero solution for a problem without sources. In practice, the
scattering problems are written using a transmission matrix, see [51]. To find Jones’ modes, we study the invertibility
of the transmission matrix, i.e., if, for a fixed frequency, the determinant of the transmission matrix is equal to zero,
this frequency is then a Jones’ mode. Here, we want to determine the equivalent Jones’ modes in fluid-porous and in
porous-porous scattering. By extension, we will refer to them as Jones’ modes. From our numerical investigations, we
do not detect the equivalent of Jones’ modes porous-porous interaction problems, see also [22]. For fluid-poroelasticity
interaction problems with cylindrical obstacles in the absence of viscosity, we detect the equivalent of Jones’ modes,
however the modes cease to exist with viscosity. As mentioned above, we work with a frequency-dependent viscosity,
and carry out various tests to study the effect of frequency, material parameters and viscosity on the well-posedness
of the problem. This study paves the way for theoretical future investigations of questions, such as the well-posedness

45
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of the outgoing solutions and theoretical confirmation of Jones’ modes for fluid-poroelasticity.
The chapter is organized as follows. In Section 2.1, we use potential theory to reduce the poroelastic system to

a set of Helmholtz equations, and the original poroelastic unknowns are expressed in terms of the potentials which
solve the Helmholtz equations. Since these are constant coefficients of the Helmholtz equations, the potential, and
thus the poroelastic unknowns, can be expressed in terms of Bessel functions. We apply these results to obtain
analytical solutions for the following four settings: bounded domain in Section 2.2, impenetrable obstacles in Section
2.3, penetrable obstacles in Section 2.4, and fluid-solid interaction in Section 2.5. For each case, we study numerically
the existence of Jones’ modes. We first present detailed expressions of the solutions, which are obtained by solving
a linear system, and we then numerically study the invertibility of the coefficient/ transmission matrices (of the
aforementioned linear system). Finally, we develop the analytical solution for a point source for poroelasticity in
Section 2.6.

2.1 Potential method for isotropic poroelastic equations
In this section, we use the form of the poroelastic equations to find a decomposition of the displacements u and w
as functions of scalar unknowns called potentials. Classically, to obtain analytic solutions, fundamental solutions or
Green kernels for isotropic elastic or poroelastic equations, one uses the Helmholtz decomposition, the unknowns in
this approach are called the Helmholtz potentials. Here, we use a slightly different method without imposing the
Helmholtz decomposition on the original unknowns.

2.1.1 Derivation
Notations We recall the following definitions from (1.25).

A(ω) :=
(
ρa ρf
ρf ρdyn(ω)

)
, B :=

(
H αM
αM M

)
, Bcof =

(
M −αM
−αM H

)
, C := BcofA .

Recall that s2
P and s2

B defined in (1.24) are the eigenvalues of B−1A, cf. (1.25), with corresponding eigenvectors,
cf. (1.33)  1

− H s2
P − ρa

s2
P αM − ρf

 ,

 1

− H s2
B − ρa

s2
B αM − ρf

 .

Here, the change of basis matrix P is,

P (ω) :=
(

1 1
WP WB

)
=
( 1 1

− H s2
P−ρa

s2
P αM − ρf

− H s2
B−ρa

s2
B αM − ρf

)
, (2.1)

with W• defined in (1.27). Using P , we write

B−1A(ω) = P (ω)
(

s2
P(ω) 0

0 s2
B(ω)

)
P−1(ω) . (2.2)

We also recall the following identities in 2D for a function f and a vector v:

∇ · curl = 0 , curl∇ = 0 ,

curl curl f = −∆f , curl curl v = ∇∇ · v − ∆v .

Proposition 2.1. Consider (u,w) a pair of solutions to the poroelastic equations (1.18),

−ω2ρau − ρfω
2w−H∇∇ · u + µfr curl curl u− αM∇∇ · w = f , (2.3a)

−ω2ρfu − ω2 ρdyn(ω) w−M ∇∇ · w − αM∇∇ · u = f̃ . (2.3b)
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Then they have to be of the form,

ω2u = −s−2
P ∇χP − s−2

B ∇χB + s−2
S curlχS − π1

(
A−1

(f
f̃

))
,

ω2w = −WP

s2
P
∇χP −

WB

s2
B
∇χB −

ρf µfr

detA curlχS − π2

(
A−1

(f
f̃

))
.

(2.4)

Here for i = 1, 2, πi is the projection onto the i-th component of a vector, and the potential χ• with • = P,S,B
satisfy the Helmholtz equation

(
−∆ − ω2 s2

P
)
χP = π1

(
P−1B−1

(
∇ · f
∇ · f̃

))
,

(
−∆ − ω2 s2

B
)
χB = π2

(
P−1B−1

(
∇ · f
∇ · f̃

))
.

and (
−∆ − ω2 s2

S
)
χS = s2

S π1

(
A−1

(
curlf
curlf̃

))
. (2.6)

Proof. As unknowns, we will work with,

ϕ := ∇ · u , ϕ̃ := ∇ · w ,

ψ := curl u , ψ̃ := curl w .

Step 1 We first obtain a system of equations in terms of ϕ, ϕ̃, ψ and ψ̃. The first two equations are obtained by
taking ∇· of the equations (2.3). Using ∇ · curl = 0, and ∇ · ∇ = ∆, ∇· of equation (2.3a) gives

∇ ·
(
− ω2ρau − ρfω

2w−H∇∇ · u + µfr curl curl u− αM∇∇ · w
)

= ∇ · f ,

⇒ −ω2ρaϕ − ρfω
2ϕ̃−H∆ϕ− αM∆ϕ̃ = ∇ · f ,

and the divergence ∇· of equation (2.3b) leads to

∇ ·
(
− ω2ρfu − ω2 ρdyn(ω) w−M ∇∇ · w − αM∇∇ · u

)
= ∇ · f̃ ,

⇒ −ω2ρfϕ − ω2 ρdyn(ω) ϕ̃−M ∆ϕ̃ − αM∆ϕ = ∇ · f̃ .

The third and fourth equations are obtained by taking the curl of equations (2.3). Using curl curl = −∆ and curl∇ = 0,
(2.3a) gives

curl
(
− ω2ρau − ρfω

2w − H∇∇ · u + µfr curl curl u − αM ∇∇ · w
)

= curl f ,

⇒ −ω2 ρa ψ − ρf ω
2 ψ̃ − µfr ∆ψ = curl f ,

while the second equation (2.3b) gives

curl
(
− ω2ρfu − ω2 ρdyn(ω) w−M ∇∇ · w − αM∇∇ · u

)
= curl f̃ ,

⇒ −ω2 ρf ψ − ω2 ρdyn(ω) ψ̃ = curl f̃ .

We rewrite these four equations in matrix form to obtain,

−ω2A(ω)
(
ϕ
ϕ̃

)
− B∆

(
ϕ
ϕ̃

)
=
(
∇ · f
∇ · f̃

)
, (2.7a)

and − ω2A(ω)
(
ψ

ψ̃

)
−
(
µfr 0
0 0

)
∆
(
ψ

ψ̃

)
=
(

curl f
curl f̃

)
. (2.7b)
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Step 2a Multiply by A−1 on both sides, we first rewrite (2.7b) as

−ω2
(
ψ

ψ̃

)
− A−1

(
µfr 0
0 0

)
∆
(
ψ

ψ̃

)
= A−1

(
curl f
curl f̃

)
. (2.8)

Using the identity

A−1
(
µfr 0
0 0

)
= 1

detA

(
ρdyn −ρf
−ρf ρa

)(
µfr 0
0 0

)
= 1

detA

(
ρdyn µfr 0
−ρf µfr 0

)
, (2.9)

the first component of (2.8) gives,

−ω2 detA
ρdyn µfr

ψ −∆ψ = detA
ρdyn µfr

π1

(
A−1

(
curlf
curlf̃

))
.

Here πi for i = 1, 2 is the projection onto the i-th component of a vector. Rewriting this in terms of the shear slowness
sS (1.24a), we obtain that the potential ψ solves the Helmholtz equation (2.6). We define

χS = ψ .

Step 2b Apply B−1 to both sides of (2.7a), we obtain

−ω2B−1A(ω)
(
ϕ
ϕ̃

)
− ∆

(
ϕ
ϕ̃

)
= B−1

(
∇ · f
∇ · f̃

)
.

Next, using the diagonalizing form (2.2) of B−1A, the above equation is rewritten as,

−ω2 P

(
s2
P 0
0 s2

B

)
P−1

(
ϕ
ϕ̃

)
− ∆

(
ϕ
ϕ̃

)
= B−1

(
∇ · f
∇ · f̃

)
,

⇒ −ω2

(
s2
P 0
0 s2

B

)
P−1

(
ϕ
ϕ̃

)
− ∆P−1

(
ϕ
ϕ̃

)
= P−1B−1

(
∇ · f
∇ · f̃

)
.

Define (
χP
χB

)
:= P−1

(
ϕ
ϕ̃

)
.

Then, the potentials χP and χB satisfy the Helmholtz equations (2.5).

Step 3 We now rewrite u and w in terms of the potential χ• which are solutions of the Helmholtz equation (2.5)
and (2.6). In particular, from (2.3), we obtain

−ω2
(

u
w

)
− A−1B

(
∇ϕ
∇ϕ̃

)
+ A−1

(
µfr 0
0 0

)(
curlψ

0

)
= A−1

(f
f̃

)
.

Using the diagonalizing form (2.2) and (2.9), this is further written as,

−ω2
(

u
w

)
− P

(
s−2
P 0
0 s−2

B

)
P−1

(
∇ϕ
∇ϕ̃

)
+ 1

detA

(
ρdyn µfr 0
−ρf µfr 0

)(
curlψ

0

)
= A−1

(f
f̃

)
.

Component wise, the above system gives

ω2u = −P11

s2
P
∇χP −

P12

s2
B
∇χB + 1

s2
S

curlχS − π1

(
A−1

(f
f̃

))
,

ω2w = −P21

s2
P
∇χP −

P22

s2
B
∇χB −

ρf µfr

detA curlχS − π2

(
A−1

(f
f̃

))
.

This simplifies to give the final form (2.4) of the displacements.
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Potential form for unknowns (1.15) in first order formulation (1.16) We recall that the velocities u and w
are the time derivatives of the displacements u and w. They are expressed as u = s iω u, and w = s iωw. Since
−ω2 = (siω)2, we have

s iω u = s−2
P ∇χP + s−2

B ∇χB − s−2
S curlχS + F ,

s iωw = WP

s2
P
∇χP + WB

s2
B
∇χB + ρf µfr

detA curlχS + F̃ .
(2.10)

To obtain the fluid pressure, we use (note that ∇ · u = ϕ and ∇ · w = ϕ̃),

p = −M ϕ̃ − M αϕ − M fp
= −M

(
WP χP + WB χB

)
− M α

(
χP + χB

)
− M fp

= −M
(
WP + α)χP − M

(
WB + α)χB − M fp .

Thus
p = −M

(
WP + α)χP − M

(
WB + α)χB − M fp . (2.11)

To find τ we use

τ = µfr
(
∇u + (∇u)T

)
+
(
− 2

3µfr + kfr + α2M
)
∇ · u I + αM ∇ · w I

⇒ ω2 τ = µfr
(
∇ω2 u + (∇ω2 u)T

)
+
(
− 2

3µfr + kfr + α2M
)
ω2∇ · u I + αM ω2∇ · w I.

After simplification, we obtain

ω2 τ = µfr

(
− 2

s2
P
∇2χP −

2
s2
B
∇2χB + ∇curlχS + (∇curlχS)T

s2
S

− (∇F + (∇F )T )
)

+ ω2 (− 2
3µfr + kfr + α2M

)
(χP + χB) I

+ ω2 αM (WP χP + WB χB) I .

(2.12)

2.1.2 Expansion of generic solutions to homogeneous equations in terms of Bessel func-
tions

Here, we obtain the form of a general solution in terms of Bessel functions to the homogeneous poroelastic equations
in three types of domains: on a disc, in an annulus and outside a disc. When there is no source, i.e., all sources are
zero in (2.6) and (2.5), then the potentials χ• satisfy the homogeneous Helmholtz equation:(

−∆ − ω2 s2
S
)
χS = 0 ,(

−∆ − ω2 s2
P
)
χP = 0 ,(

−∆ − ω2 s2
B
)
χB = 0 .

(2.13)

On each considered domain, χ• can be given as an expansion in terms of Bessel functions in polar coordinates.

(a) On a disc Ba centered at the origin and of radius a, a generic solution to the Helmholtz equation is given by:

χ•(r, θ) =
∑
k∈Z

a•,k Jk(ω s• r) ei k θ , • ∈ {S,P,B .} (2.14)

(b) An outgoing solution on R2 \ Ba is given by

χ•(r, θ) =
∑
k∈Z

a•,k H(1)
k (ω s• r) ei k θ , • ∈ {S,P,B .} (2.15)

See Remark 2.2 regarding the ‘outgoing’-ness of this solution.

(c) On an annulus between inner radius a and outer radius b, a generic solution is given by:

χ•(r, θ) =
∑
k∈Z

a•,k H(1)
k (ω s• r) ei k θ +

∑
k∈Z

ã•,k H(2)
k (ω s• r) ei k θ , • ∈ {S,P,B .} (2.16)
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To obtain the expansion of u, w, τ and p, depending on the domain, it remains to substitute the expression for χ•
(2.14), (2.15) or (2.16) into (2.10) - (2.12). We write the expansion for the case (a) (on a disc) and case (b) (outgoing).
Denote by Zk a Bessel function1.

For case (a), Zk = Jk, and for case (b), Zk = H(1)
k . Calculations details are given in appendix A.1.

s iω u =
∑
k∈Z

ak s−1
P ω Z′k(ω sP r)eikθer +

∑
k∈Z

ak s−2
P

ik
r

Zk(ω sP r)eikθeθ

+
∑
k∈Z

bk s−1
B ω Z′k(ω sB r)eikθer +

∑
k∈Z

bk s−2
B

ik
r

Zk(ω sB r)eikθeθ

−
∑
k∈Z

ck s−2
S

ik
r

Zk(ω sS r)eikθer +
∑
k∈Z

ck s−1
S ω Z′k(ω sS r)eikθeθ ,

(2.17)

s iωw =
∑
k∈Z

ak
WP

sP
ω Z′k(ω sP r)eikθer +

∑
k∈Z

ak
WP

s2
P

ik
r

Zk(ω sP r)eikθeθ

+
∑
k∈Z

bk
WB

sB
, ω Z′k(ω sB r)eikθer +

∑
k∈Z

bk
WB

s2
B

ik
r

Zk(ω sB r)eikθeθ

+
∑
k∈Z

ck
ρf µfr

detA
ik
r

Zk(ω sS r)eikθer −
∑
k∈Z

ck
ρf µfr

detA ω Z′k(ω sS r)eikθeθ ,

(2.18)

In the polar basis,
τ = τ rr er ⊗ er + τ rθ er ⊗ eθ + τ θr eθ ⊗ er + τ θθ eθ ⊗ eθ.

We recall that τ is symmetric, τ rθ = τ θr . We will use mainly τ n = τ rr er + τ rθ eθ , hence we only list those
components:

ω2τ rr = −
∑
k∈Z

2µfr ω

sP r
ak Zk+1(ω sP r) ei k θ +

∑
k∈Z

2µfr k

s2
P r

2 ak Zk(ω sP r) ei k θ

+
∑
k∈Z

2µfr ak ω
2 Zk(ω sP r) ei k θ −

∑
k∈Z

2µfr k
2

s2
P r

2 ak Zk(ω sP r) ei k θ

−
∑
k∈Z

2µfr ω

sB r
bk Zk+1(ω sB r) ei k θ +

∑
k∈Z

2µfr k

s2
B r

2 bk Zk(ω sB r) ei k θ

+
∑
k∈Z

2µfr bk ω
2 Zk(ω sB r) ei k θ −

∑
k∈Z

2µfr k
2

s2
B r

2 bk Zk(ω sB r) ei k θ

+
∑
k∈Z

2µfr

sS r
ck ω sS ik Z

′

k(ω r) ei k θ

+
∑
k∈Z

ω2 (− 2
3µfr + kfr + α2M + αMWP

)
ak Zk(ω sP r) ei k θ

+
∑
k∈Z

ω2 (− 2
3µfr + kfr + α2M + αMWB

)
bk Zk(ω sB r) ei k θ ,

(2.19)

1We recall the definitions of Bessel and Hankel functions.
Bessel functions are solutions of: z2 d

2w

dz2 + z
dw

dz
+ (z2 − ν2)w = 0.

First-order Bessel function: Jν = ( 1
2 z)

ν

∞∑
k=0

(−1)k
( 1

4 z
2)k

k!Γ(ν + k + 1)
with ν the mode and Γ(z) =

∞∫
0

e−ttz−1dt .

Second-order Bessel function:
Yν =

Jν(z)cos(νπ)− J−ν(z)
sin(νπ)

Two kinds of Hankel functions are expressed: H(1)
ν (z) = Jν(z) + iYν(z) , and H

(2)
ν (z) = Jν(z)− iYν(z) .
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and
ω2 τ rθ = −

∑
k∈Z

2µfrω i k
r sP

ak Z′k(ω sP r) ei k θ +
∑
k∈Z

2 iµfr k

r2 s2
P

ak Zk(ω sP r) ei k θ

−
∑
k∈Z

2µfrω i k
r sB

bk Z′k(ω sB r) ei k θ +
∑
k∈Z

2 iµfr k

r2 s2
B

bk Zk(ω sB r) ei k θ

−
∑
k∈Z

µfr k
2

r2 s2
S
ck Zk(ω sS r) ei k θ +

∑
k∈Z

µfr ω

r sS
ck Z′k(ω sS r) ei k θ

−
∑
k∈Z

µfr
ω

sS r
ck Zk+1(ω sS r) ei k θ +

∑
k∈Z

µfr
k

s2
S r

2 ck Zk(ω sS r) ei k θ

+
∑
k∈Z

µfr ω
2 ck Zk(ω sS r) ei k θ −

∑
k∈Z

µfr
k2

s2
S r

2 ck Zk(ω sS r) ei k θ.

(2.20)

Finally,
p = −

∑
k∈Z

akM
(
WP + α) Zk(ω sP r) −

∑
k∈Z

bkM
(
WB + α) Zk(ω sP r) . (2.21)

2.1.3 Notion of outgoing solution
As a corollary of the form of solution given in (2.10) in terms of the potentials which are solutions of the Helmholtz
equation, we can formulate a definition of outgoing solution for poroelasticity. This generalizes the Kupradze radiation
condition for isotropic elasticity cf. [82], see also e.g. [93, Eqn 4] in 2D. We recall the form of the solutions given in
(2.10), we can write (

u
w

)
= P

1
siω

∇χPs2
P

∇χB
s2

B

+ 1
siω curlχS

(− 1
s2

S

ρfµfr
detA

)
,

where P is the matrix defined in (2.1) and the potentials χ•, • = P,B,S satisfy the Helmholtz equations(
−∆ − ω2 s2

S
)
χS = 0 ,(

−∆ − ω2 s2
P
)
χP = 0 ,(

−∆ − ω2 s2
B
)
χB = 0 .

The notions of outgoing solution u and w are based on that imposed on χ•, i.e.the Sommerfeld radiation condition
for the Helmholtz equation. Using the slowness defined in Definition 1.9, we define the wavenumber

k• = ω s• .

Under the assumption (1.42), from the property of slowness in (1.44), the wavenumber thus has the property

Im k• ≥ 0 , −s Re k• ≥ 0 .

Remark 2.2. These properties guarantee that when we use H(1)
k to describe the potentials in (2.15), the resulting

solution given by H(1)
0 , is outgoing in the case without viscosity. In the presence of viscosity, Im k• ≥ 0, thus

e−(Im k•) r is exponentially decreasing as r →∞. This hence represents a L2(R2) solution. Here we follow the outgoing
convention discussed in Appendix G in [13]. In particular,

H(1)
k ( k• r) ∼ eik• r = ei (Re k•) r e−(Im k•) r .

4
For • = P,B,S, χ• is called k•-outgoing if it satisfies the Sommerfeld radiation condition at wave number k•

uniformly,

lim
r→∞

√
r

(
∂ϕ•
∂r
− i k• ϕ•

)
= 0 . (2.22)

Using the identity, ∇ · curl = 0 and curl∇ = 0 in equation (2.22), we propose the following definition for the
outgoing solution for isotropic poroelastic equations. Note that the strain τ and the pressure p are uniquely determined
by the displacements / velocity. It suffices to impose outgoing criteria for u and w (if using the first order formulation)
or u and w (if using the original equation).



52CHAPTER 2. CONSTRUCTION AND ANALYSIS OF ANALYTICAL SOLUTIONS IN 2D ISOTROPIC MEDIA

Definition 2.3 (Outgoing solutions). The fields u and w are called outgoing solutions of the poroelastic equations
(1.16) if they satisfy the following radiation conditions.

1. Their rotationals curl u and curl w satisfy the outgoing Sommerfeld radiation condition with wavenumber
kS , i.e. for χ = curl u or curl w, χ satisfies

lim
r→∞

√
r

(
∂χ

∂r
− i ks χ

)
= 0 ,

uniformly in all directions.

2. With matrix P defined in (2.1), and for χP , χB defined as
(
χP
χB

)
= P−1

(
∇ · u
∇ ·w

)
, then χP and χB satisfy

the outgoing Sommerfeld radiation condition with wavenumber kP and kB respectively:

lim
r→∞

√
r

(
∂χP
∂r
− i kP χP

)
= 0 , and lim

r→∞

√
r

(
∂χB
∂r
− i kB χB

)
= 0 ,

uniformly in all directions.

Remark 2.4. A similar definition can be proposed to define an outgoing solution if we work with the displacement
(u,w), instead of the velocities u and w. 4

2.2 Generic solution to homogeneous equation on bounded domain
We consider the homogeneous poroelastic equations (1.16) on disc B(0,a). The solutions (u,w, τ ,p) are given by
equations (2.10), (2.11) and (2.12), while the potentials are given by (2.13). Hence, in a bounded domain, the
potentials satisfy equation (2.14):

χP(r, θ) =
∑
k∈Z

ak Jk(ω sP r) ei k θ ,

χB(r, θ) =
∑
k∈Z

bk Jk(ω sB r) ei k θ ,

χS(r, θ) =
∑
k∈Z

ck Jk(ω sS r) ei k θ .

The series coefficients ak, bk, ck are then determined by the boundary conditions imposed on ∂B(0,a), which are one of
the four types listed in Section 1.4. The boundary conditions of type 2 and 4 are linear combinations of the boundary
conditions of type 1 and 3, hence, we only detail the solutions for type 1 and 3 (equations (1.20a) and (1.20c)).

2.2.1 Boundary conditions of type 1
We consider the poroelastic equations (1.16) on the disc B(0,a), with boundary conditions:

w · n = g , on ∂B(0,a) ,

τ n = h , on ∂B(0,a) .

In polar coordinates, n = er. Hence, w · n = wr, τ n = τrr er + τrθ eθ. The boundary conditions are written as:

s iωwr = s iω g , ω2 τrr = ω2 hr , ω2 τrθ = ω2 hθ , ∂B(0,a) . (2.23)

Next, we expand the coefficient of each component in Fourier series. For the right hand-side,

g =
∑
k∈Z

gk e
i k θ , hr =

∑
k∈Z

hr,k e
i k θ , hθ =

∑
k∈Z

hθ,k e
i k θ .

For the unknowns:

wr =
∑
k∈Z

wr,k ei k θ , τrr =
∑
k∈Z

τrr,k e
i k θ , τrθ =

∑
k∈Z

τrθ,k e
i k θ .
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Using (2.18), (2.19) and (2.20), we have:

s iωwr,k = ak
WP

sP
ω J′k(ω sP r)eikθ + bk

WB

sB
ω J′k(ω sB r)eikθ + ck

ρf µfr

detA
ik
r

Jk(ω sS r)eikθ ,

ω2τrr,k =− 2µfr ω

sP r
ak Jk+1(ω sP r) ei k θ + 2µfr k

s2
P r

2 ak Jk(ω sP r) ei k θ + 2µfr ak ω
2 Jk(ω sP r) ei k θ

− 2µfr k
2

s2
P r

2 ak Jk(ω sP r) ei k θ − 2µfr ω

sB r
bk Jk+1(ω sB r) ei k θ + 2µfr k

s2
B r

2 bk Jk(ω sB r) ei k θ

+ 2µfr bk ω
2 Jk(ω sB r) ei k θ − 2µfr k

2

s2
B r

2 bk Jk(ω sB r) ei k θ + 2µfr

s2
S r

ck ω sS ik J
′

k(ω sS r) ei k θ

+ ω2 (− 2
3µfr + kfr + Mα2 + αMWP

)
ak Jk(ω sP r) ei k θ

+ ω2 (− 2
3µfr + kfr + Mα2 + αMWB

)
bk Jk(ω sB r) ei k θ ,

ω2 τrθ,k = − 2µfrω i k
r sP

ak J′k(ω sP r) ei k θ + 2 iµfr k

r2 s2
P

ak Jk(ω sP r) ei k θ − 2µfrω i k
r sB

bk J′k(ω sB r)ei k θ

+ 2 iµfr k

r2 s2
B

bk Jk(ω sB r) ei k θ − µfr k
2

r2 s2
S
ck Jk(ω sS r) ei k θ + µfr ω

r sS
ck J′k(ω sS r) ei k θ

− µfr
ω

sS r
ck Jk+1(ω sS r) ei k θ + µfr

k

s2
S r

2 ck Jk(ω sS r) ei k θ

+ ω2 ck Jk(ω sS r) ei k θ − µfr
k2

s2
S r

2 ck Jk(ω sS r) ei k θ.

(2.24)

Imposing (2.23), we obtain a linear system satisfied by ak, bk, ck in each mode k.

Aw,τ
k

akbk
ck

 =


s iω gk

ω2 hr,k

ω2 hθ,k

 ,

where the coefficient matrix is defined as:

Aw,τ
k =


A11 A12 A13

A21 A22 A23

A31 A32 A33

 (2.25)

with

A11 = WP

sP
ω J′k(ω sPa) , A12 = WB

sB
ω J′k(ω sSa) , A13 = ρf µfr

detA
ik
a

Jk(ω sSa) ,

A21 = − 2µfr ω

sP a
Jk+1(ω sP a) + 2µfr k

s2
P a2 Jk(ω sP a) + 2µfr ω

2 Jk(ω sP a)

− 2µfr k
2

s2
P a2 Jk(ω sP a) + ω2 (− 2

3µfr + kfr + Mα2 + αMWP
)

Jk(ω sPa) ,

A22 = − 2µfr ω

sB a
Jk+1(ω sB a) + 2µfr k

s2
B a2 Jk(ω sB a) + 2µfr ω

2 Jk(ω sB a) ei k θ

− 2µfr k
2

s2
B a2 Jk(ω sB a) ei k θ + ω2 (− 2

3µfr + kfr + Mα2 + αMWB
)

Jk(ω sBa) ,
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and

A23 = 2µfr

sSa
ω ik J

′

k(ω sSa) , A31 = −2ω µfrik
asP

J′k(ω sPa) + 2µfrik
a2s2

P
Jk(ω sPa) ,

A32 = −2ω µfrik
asB

J′k(ω sBa) + 2µfrik
a2s2

B
Jk(ω sBa) ,

A33 = − k2µfr

a2s2
S

Jk(ω sS a) + ω µfr

asS
J′k(ω sS a) − ω

sS a
Jk+1(ω sS a) + k

s2
S a

2 Jk(ω sS a)

+ ω2 Jk(ω sS a) − k2

s2
S a

2 Jk(ω sS a) .

We define the eigenvalues as follows:

Definition 2.5. The pulsation ω is a type 1 boundary conditions eigenvalue if the system of poroelastic equations
(1.16) associated with the boundary conditions

w · n = 0 , on ∂B(0,a) ,

τ n = 0 , on ∂B(0,a) ,

admits a solution (w, τ ) such that w 6= 0, τ 6= 0. This also means that detAw,τ
k (ω) = 0, where Aw,τ

k is the
coefficient matrix defined in equation (2.25).

2.2.2 Boundary conditions of type 3
We consider the poroelastic equations on the disc B(0,a), with boundary conditions:

u = h , p = g , ∂B(0,a) .

We work in polar coordinates, h = hrer + hθ eθ and u = urer + uθ eθ. The boundary conditions are written as:

s iω ur = s iω hr , s iω uθ = s iω hθ , p = g , ∂B(0,a) . (2.26)

Next, we expand the coefficient of each component in Fourier series. For the right hand-side,

hr =
∑
k∈Z

hr,k e
i k θ , hθ =

∑
k∈Z

hθ,k e
i k θ , g =

∑
k∈Z

gk e
i k θ .

For the unknowns:

ur =
∑
k∈Z

ur,k ei k θ , uθ =
∑
k∈Z

uθ,k ei k θ , p =
∑
k∈Z

pk ei k θ .

Using (2.17) and (2.21), we have:

s iω ur,k =
∑
k∈Z

ak s−1
P ω J′k(ω sP r)eikθ +

∑
k∈Z

bk s−1
B ω J′k(ω sB r)eikθ −

∑
k∈Z

ck s−2
S

ik
r

Jk(ω sS r)eikθ ,

s iω uθ,k =
∑
k∈Z

ak s−2
P

ik
r

Jk(ω sP r)eikθ +
∑
k∈Z

bk s−2
B

ik
r

Jk(ω sB r)eikθ +
∑
k∈Z

ck s−1
S ω J′k(ω sS r)eikθ ,

pk = −
∑
k∈Z

akM
(
WP + α) Jk(ω sP r) eikθ −

∑
k∈Z

bkM
(
WB + α) Jk(ω sB r) eikθ .

(2.27)

Imposing (2.26), we obtain a linear system satisfied by ak, bk, ck in each mode k:

Au,p
k

akbk
ck

 =

s iω hr,k
s iω hθ,k

gk

 , (2.28)
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where the coefficient matrix Au,p
k is defined as:

Au,p
k =


s−1
P ω J′k(ω sP a) s−1

B ω J′k(ω sS a) − s−2
S

ik
a

Jk(ω sS a)

s−2
P

ik
a

Jk(ω sP a) s−2
B

ik
a

Jk(ω sB a) s−1
S ω J′k(ω sS a)

−M
(
WP + α) Jk(ω sP a) −M

(
WB + α) Jk(ω sB a) 0

 . (2.29)

Definition 2.6. The pulsation ω is a type 3 boundary conditions eigenvalue if the system of poroelastic equations
(1.16) associated with the boundary conditions

u = 0 , on ∂B(0,a) ,

p = 0 , on ∂B(0,a) ,

admits a solution (u, p) such that u 6= 0, p 6= 0. This also means that detAu,p
k (ω) = 0, where Au,p

k is the
coefficient matrix defined in equation (2.28).

2.2.3 Numerical analysis of the coefficient matrix on bounded domain
The objective of the numerical experiments is to determine if we can find eigenvalues, i.e., values of frequency for
which the determinant of the coefficient matrices vanishes. Indeed, if the determinant vanishes, we cannot invert the
matrix,and the uniqueness of the problem is not guaranteed. We will investigate the invertibility of the coefficient
matrices for the first few modes k = 0, ..., 5, by looking at the absolute value of their determinant.

We test with sandstone, and vary the value of viscosity of this material, cf. Tab. 1.1. For all tests, the cross
section radius is a = 1m. Recall that we can use four types of boundary conditions (see equations (1.20a), (1.20b),
(1.20c) and (1.20d)). Here we only test the boundary conditions of type 1 and 3, which means that we only study the
determinant of Aw,τ

k (2.25) and Au,p
k (2.29), as functions of the frequency f . We consider a frequency range between

1Hz and 10MHz to compare with the results in [6] and [51]. Note that the interval (ωa ≤ 1500m.s−1) in our plot is
more relevant to geophysical experiments2. To determine the nature of the peaks, we refine around the peaks in a
procedure described in Algorithm 1. This will be used in all the remaining tests of the chapter.

Start Suppose xcenter is the local minimum on the interval [a, b], with h the current stepsize of the sequence.
Say xcenter = N h, and a = xcenter −mh, b = xcenter + m′ h, with m, m′ ≥ 5, hence we have at least 5 points
before and after xcenter in the sequence. The interval in consideration always has to satisfy criteria (?), which
requires that the function decreases for x ≤ xcenter and increases for x ≥ xcenter.

Update A new interval [a, b] is chosen, centered around the previous miminum, and thus satisfies the criteria
(?). We plot the value of the function on this new interval, with the new step on the frequency equal to h

10 . In
this way, we are on a smaller interval with a finer grid.

Iteration A new center xcenter is now the new local minimum of the function on this interval. We go back to
the start.

Stop criteria The loop is stopped if the size of h is lower than the machine precision or if the minimum value
on the interval at the current iteration does not differ from that of the previous one by the threshold ε.

Algorithm 1: Algorithm for detecting the modes of inversibility. There are two behaviours when we
refine around a peak: in the case where it is a true zero, the value of the function shown on log scale will decrease
until the machine precision on the h interval. If it is not a true zero, the values of the absolute determinant will
stabilize to a fixed lower bound. In fact, the threshold ε is implemented qualitatively, i.e., by the observation of
the curve. In particular, in the first iterations, we observe a curved down bump, but after a few iterations, we only
obtain a horizontal line, which means that the value on the zoomed interval stopped descending.

The results are reported in the following figures:

• Sandstone with no viscosity Figures 2.1 and 2.2.
2In [50], and [71], frequencies up to 600Hz are used, on a domain of interest of 102m.
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• Sandstone with viscosity Figures 2.3 and 2.4.

• Sand 1 with no viscosity, varying the value of µfr in Figure 2.5.

Observations From these experiments, we obtain the following observations.

• In the geophysical range (ωa ≤ 1500 rad.m.s−1), generalized eigenvalues are present for non-viscous problems.

• On the initial interval we study, ω a in the range [0, 104] rad.m.s−1, the curves for material of sandstone with viscosity
ressemble those with no viscosity. The curves represent isolated peaks, however, the case with viscosity presents less
peaks for the same range of frequencies. After the zoom procedure, their behaviours are different. We applied the
zoom procedure to each of the peaks in the graph of absolute determinant of Aw,τ

0 and Au,p
0 . We note that there

are differences between those with and without viscosity. There exist generalized eigenvalues for the case without
viscosity, manifested by the sharp peaks for both boundary conditions in Figures 2.1 and 2.2.
Before zooming, the value in the neighbourhood of a peak in consideration is around 10−2. However, after several
zooms, the value in this refined neighbourhood drastically drops to 10−10 for Aw,τ

0 and 10−16 for Au,p
0 . We only

show a few examples of this refinement. With finer refinement, the value of the refined neighbourhood will drop to
the machine precision. On the contrary, with viscosity, we do not have this behaviour. Although there are apparent
peaks before zoom in Figures 2.3 and 2.4, when zoomed around the sharpest peak, the value of the determinant on
the refined neighbourhoods stays bounded below, and the sharp peaks become smooth concave up curves. Hence,
there are no generalized eigenvalue in this case.

• For sandstone, we have similar pattern of peaks for both boundary conditions, however, the generalized eigenvalues
are not the same because the problem on the boundary is different.

• Note that the curves present small peaks, compared to the absence of generalized eigenvalues in the outgoing case
(see Section 2.3 Figure 2.8), in which the curves are completely free of peaks .

• The frame shear modulus µfr has an influence on the peaks. We observe in Figure 2.5 that when the value of the
shear frame modulus increases, the number of the peaks, hence of eigenvalues decreases.
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Figure 2.1: Determinant of the coefficient matrix (log scale) in a bounded domain for k in 0 : 2 for sandstone with no
viscosity. The matrices corresponding with types of boundary conditions 1 and 3 are considered: Aw,τ

k (2.25) in blue
and Au,p

k (2.29) in red .
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Figure 2.2: Determinant of the coefficient matrix (log scale) in a bounded domain for k in 3 : 5 for sandstone with no
viscosity. The matrices corresponding with types of boundary conditions 1 and 3 are considered: Aw,τ

k (2.25)in blue
and Au,p

k (2.29) in red .
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Figure 2.3: Determinant of the coefficient matrix (log scale) in a bounded domain for k in 0 : 2 for a sandstone medium
with viscosity η 6= 0. The matrices corresponding with types of boundary conditions 1 and 3 are considered: Aw,τ

k

(2.25) in blue and Au,p
k (2.29) in red .
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Figure 2.4: Determinant of the coefficient matrix (log scale) in a bounded domain for k in 3 : 5 for a sandstone medium
with viscosity η 6= 0. The matrices corresponding with types of boundary conditions 1 and 3 are considered: Aw,τ

k

(2.25) in blue and Au,p
k (2.29) in red .
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Figure 2.5: Comparison of the determinant of the coefficient matrix (log scale) in a bounded domain for k = 0 for
different values of µfr for a medium composed of sand1 with no viscosity. The matrix corresponding with types of
boundary conditions 1 is considered: Aw,τ

k . represents the case µfr = 0.5 GPa, represents the case µfr = 1
GPa, µfr = 5 GPa and µfr = 50 GPa, .
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2.3 Scattering of a plane wave by an impenetrable medium
Consider the scattering of a time-harmonic plane wave by an impenetrable infinite cylinder (see Figure 2.6). The total
wave is a superposition of the incident plane wave and the reflected wave with each quantity satisfying poroelastic
equations (1.16) in R2 \ B(0,a), also listed below in (2.31) and (2.34), according to the type of boundary conditions.
The solutions (u,w, τ ,p) are given by equations (2.10), (2.11) and (2.12), while the potentials χP, χB, χS are given
by (2.13). The unknown is the reflected wave that is outgoing, this means that it satisfies the Sommerfeld radiation
condition (2.22), and is in addition uniquely determined by how the obstacle scatters the plane wave. Hence, the
potentials corresponding to the reflected wave are given in equation (2.15):

χP(r, θ) =
∑
k∈Z

ak H(1)
k (ω sP r) ei k θ ,

χB(r, θ) =
∑
k∈Z

bk H(1)
k (ω sB r) ei k θ ,

χS(r, θ) =
∑
k∈Z

ck H(1)
k (ω sS r) ei k θ .

(2.30)

The series coefficients ak, bk, ck are then determined by the boundary conditions imposed on the interface Γ. We will
consider the boundary conditions of type 1 in Section 2.3.1 and of type 3 in Section 2.3.2.

a

Ω

Γ

Upw U ref

Figure 2.6: Scattering of a plane wave by an impenetrable solid inclusion. The inclusion occupies the domain denoted
by Ω. The cross section of the inclusion is a disc of radius denoted by a. How the obstacle scatters the plane wave is
mathematically described by boundary conditions, for example (1.20a) or (1.20c).

2.3.1 Boundary conditions of type 1
For • = total, ref, pw, we denote by

U• =


u•
w•
τ •

p•


the total wave, the reflected wave and the incident plane wave correspondingly. The unknown reflected wave solves
the poroelastic problem: 

U ref solves the poroelastic equations (1.16) in R2 \ Ω ;

U ref is outgoing by definition (2.22);

Boundary conditions on the interface Γ
wpw · n + wref · n = 0 , on ∂B(0,a) ;
τ pw · n + τ ref · n = 0 , on ∂B(0,a) .

(2.31)
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In the current geometry, n = er. Hence,

w · n = wr , τ n = τrr er + τrθ eθ ,

wpw · n = wpw
r , τ pw · n = τ pw

rr er + τ pw
rθ eθ .

As we impose w ·n and τ n, we do not detail the expressions of wθ and τθθ. The boundary conditions are written as:

s iωwr = − s iωwpw
r , ω2 τrr = −ω2 τpw

rr , ω2 τrθ = −ω2 τpw
rθ , on ∂B(0,a) . (2.32)

Next we expand the coefficients of each component in Fourier series. For the right hand-side,

wpw
r =

∑
k∈Z

wpw
r,k e

i k θ , τpw
rr =

∑
k∈Z

τpw
rr,k e

i k θ , , τpw
rθ =

∑
k∈Z

τpw
rθ,k e

i k θ .

For the unknowns:

wr =
∑
k∈Z

wr,k ei k θ , τrr =
∑
k∈Z

τrr,k e
i k θ , τrθ =

∑
k∈Z

τrθ,k e
i k θ .

Using (2.18), (2.19) and (2.20), we have:

s iωwr,k = ak
WP

sP
ωH(1)′

k (ω sP r) eikθ + bk
WB

sB
ωH(1)′

k (ω sB r) eikθ + ck
ρf µfr

detA
ik
r

H(1)
k (ω sS r) eikθ ,

ω2τrr,k =− 2µfr ω

sP r
ak H(1)

k+1(ω sP r) ei k θ + 2µfr k

s2
P r

2 ak H(1)
k (ω sP r) ei k θ + 2µfr ak ω

2 H(1)
k (ω sP r) ei k θ

−2µfr k
2

s2
P r

2 ak H(1)
k (ω sP r) ei k θ − 2µfr ω

sB r
bk H(1)

k+1(ω sB r) ei k θ + 2µfr k

s2
B r

2 bk H(1)
k (ω sB r) ei k θ

+2µfr bk ω
2 H(1)

k (ω sB r) ei k θ − 2µfr k
2

s2
B r

2 bk H(1)
k (ω sB r) ei k θ + 2µfr

s2
Sr

ck ω sS ikH(1)′
k (ω sS r) ei k θ

+ω2 (− 2
3µfr + kfr + Mα2 + αMWP

)
ak H(1)

k (ω sP r) ei k θ

+ω2 (− 2
3µfr + kfr + Mα2 + αMWB

)
bk H(1)

k (ω sB r) ei k θ ,

ω2 τrθ,k =− 2µfrω ik
rsP

akH(1)′
k (ω sP r) ei k θ + 2iµfrk

r2 s2
P
akH(1)

k (ω sP r) ei k θ − 2µfrω i k
r sB

bkH(1)′
k (ω sB r) ei k θ

+2 iµfr k

r2s2
B

bk H(1)
k (ω sB r) ei k θ − µfr k

2

r2 s2
S
ck H(1)

k (ω sS r) ei k θ + µfr ω

r sS
ck H(1)′

k (ω sS r) ei k θ

−µfr
ω

sS r
ck H(1)

k+1(ω sS r) ei k θ + µfr
k

s2
S r

2 ck H(1)
k (ω sS r) ei k θ

+ω2 ck H(1)
k (ω sS r) ei k θ − µfr

k2

s2
S r

2 ck H(1)
k (ω sS r) ei k θ.

Imposing (2.32), we obtain a linear system satisfied by ak, bk, ck in each mode k.

Aw,τ
k

akbk
ck

 =


−s iωwpw

r

−ω2 τpw
rr

−ω2 τpw
rθ

 ,

where the coefficient matrix is defined as:

Aw,τ
k =


A11 A12 A13

A21 A22 A23

A31 A32 A33

 (2.33)
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with

A11 = WP

sP
ωH(1)′

k (ω sPa) , A12 = WB

sB
ωH(1)′

k (ω sSa) A13 = ρf µfr

detA
ik
a

H(1)
k (ω sSa) ,

A21 = − 2µfr ω

sP a
H(1)
k+1(ω sP a) ei k θ + 2µfr k

s2
P a2 H(1)

k (ω sP a) + 2µfr ω
2 H(1)

k (ω sP a)

− 2µfr k
2

s2
P a2 H(1)

k (ω sP a) + ω2 (− 2
3µfr + kfr + Mα2 + αMWP

)
H(1)
k (ω sPa) ,

A22 = − 2µfr ω

sB a
H(1)
k+1(ω sB a) + 2µfr k

s2
B a2 H(1)

k (ω sB a) + 2µfr ω
2 H(1)

k (ω sB a)

− 2µfr k
2

s2
B a2 H(1)

k (ω sB a) + ω2 (− 2
3µfr + kfr + Mα2 + αMWB

)
H(1)
k (ω sBa) ,

and

A23 = 2µfr

sSa
ω ikH(1)′

k (ω sSa) ,

A31 = −2ω µfrik
asP

H(1)′
k (ω sPa) + 2µfrik

a2s2
P

H(1)
k (ω sPa) ,

A32 = −2ω µfrik
asB

H(1)′
k (ω sBa) + 2µfrik

a2s2
B

H(1)
k (ω sBa) ,

A33 = − k2µfr

a2s2
S

H(1)
k (ω sS a) + ω µfr

asS
H(1)′
k (ω sS a) − ω

sS a
H(1)
k+1(sS a) + k

s2
S a

2 H(1)
k (ω sS a) ,

+ ω2 H(1)
k (ω sS a) ei k θ − k2

s2
S a

2 H(1)
k (ω sS a) .

2.3.2 Boundary conditions of type 3
In this case, the unknown reflected wave solves the following poroelastic problem:

U ref solves the poroelastic equations (1.16) in R2 \ Ω ;

U ref is outgoing by definition (2.22) ;

Boundary conditions on the interface Γ
vpw + vref = 0 on Γ ,
ppw + pref = 0 on Γ .

(2.34)

We work in polar coordinates, upw = upw
r er + upw

θ eθ and u = urer + uθ eθ. The boundary conditions are written as:

s iω ur = − s iω upw
r , s iω uθ = − s iω upw

θ , p = −ppw , ∂B(0,a) . (2.35)

We expand the coefficient of each component in Fourier series. For the right hand-side,

upw
r =

∑
k∈Z

upw
r,k e

i k θ , upw
θ =

∑
k∈Z

upw
θ,k e

i k θ , ppw =
∑
k∈Z

ppw
k ei k θ .

For the unknowns:

ur =
∑
k∈Z

ur,k ei k θ , uθ =
∑
k∈Z

uθ,k ei k θ , pk =
∑
k∈Z

pk ei k θ .
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Using (2.17) and (2.21), we have:

s iω ur,k = ak s−1
P ωH(1)′

k (ω sP r)eikθ + bk s−1
B ωH(1)′

k (ω sB r)eikθ − ck s−2
S

ik
r

H(1)
k (ω sS r)eikθ ,

s iω uθ,k = ak s−2
P

ik
r

H(1)
k (ω sP r)eikθ + bk s−2

B
ik
r

H(1)
k (ω sB r)eikθ + ck s−1

S ωH(1)′
k (ω sS r)eikθ ,

pk = − akM
(
WP + α) H(1)

k (ω sP r) ei k θ − bkM
(
WB + α) H(1)

k (ω sP r) ei k θ .

Imposing (2.35), we obtain the following linear system satisfied by ak, bk, ck in each mode k:

Au,p
k

akbk
ck

 =

−s iω upw
r,k

−s iω upw
θ,k

−ppw
k

 ,

where the coefficient matrix is defined as:

Au,p
k =


s−1
P ωH(1)′

k (ω sP a) s−1
B ωH(1)′

k (ω sB a) − s−2
S

ik
a

H(1)
k (ω sS a)

s−2
P

ik
a

H(1)
k (ω sP a) s−2

B
ik
a

H(1)
k (ω sB a) s−1

S ωH(1)′
k (ω sS a)

−M
(
WP + α) H(1)

k (ω sP a) −M
(
WB + α) H(1)

k (ω sP a) 0

 . (2.36)

2.3.3 Numerical tests
In the construction of the analytical solution, the domain is considered as infinite. However, for the representation of
the solution, we plot the solutions on an annulus of interior radius equal to 1m and exterior radius equal to 10m. We
show the imaginary part of the solid velocity ux in Figure 2.7. The result is similar to classical figures of scattering
problem by a circular obstacle, cf. [51]. Here, the scattering mainly creates P waves.

Figure 2.7: Scattering of a P plane wave on an impenetrable solid obstacle. Imaginary part of the solid velocity ux of
the reflected wave for boundary conditions of type 1 in a porous medium composed of inviscid sandstone with f = 500
Hz.

As for the previous section, we will investigate the invertibility of the coefficient matrices Aw,τ
k (2.33) and Au,p

k

(2.36) for the first modes k. The tests are divided in two parts. First, we consider a medium composed of sandstone
with no viscosity, next we run the tests on a medium of sandstone with viscosity cf. 1.1. For both tests, the cross
section radius is a = 1m. The results are reported in the following figures:

• Sandstone with no viscosity Figures 2.8 and 2.9.

• Sandstone with viscosity Figures 2.10 and 2.11.

Thanks to the well-posedness of the problem, we expect no generalized eigenvalues in this case, which is clear from the
curves of both boundary conditions (see Figures 2.8,2.9, 2.10, and 2.11). Note that the curves here are completely free
of peaks, compared to the absence of generalized eigenvalues in the case presented in Figure 2.3, in which the curves
present small peaks.
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Figure 2.8: Experiment of a porous infinite medium with an impenetrable solid obstacle. Determinant of the coefficient
matrix (log scale) for k in 0 : 2 sandstone with no viscosity. The matrices corresponding with types of boundary
conditions 1 and 3 are considered: Aw,τ

k (2.33) in blue and Au,p
k (2.36) in red .
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Figure 2.9: Experiment of a porous infinite medium with an impenetrable solid obstacle. Determinant of the coefficient
matrix (log scale) for k in 3 : 5 for sandstone with no viscosity. The matrices corresponding with types of boundary
conditions 1 and 3 are considered: Aw,τ

k (2.33) in blue and Au,p
k (2.36) in red .
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Figure 2.10: Experiment of a porous infinite medium with an impenetrable solid obstacle. Determinant of the coefficient
matrix (log scale) for k in 0 : 2 for a sandstone medium with viscosity η 6= 0. The matrices corresponding with types
of boundary conditions 1 and 3 are considered: Aw,τ

k (2.33) in blue and Au,p
k (2.36) in red .
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Figure 2.11: Experiment of a porous infinite medium with an impenetrable solid obstacle. Determinant of the coefficient
matrix (log scale) for k in 3 : 5 for a sandstone medium with viscosity η 6= 0. The matrices corresponding with types
of boundary conditions 1 and 3 are considered: Aw,τ

k (2.33) in blue and Au,p
k (2.36) in red .
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2.4 Scattering of a plane wave by a penetrable porous solid inclusion
immersed in a porous medium

Consider the scattering of a time-harmonic plane wave by a penetrable poroelastic infinite cylinder immersed in another
poroelastic infinite medium (see figure 2.12). The total wave outside of the cylinder is a superposition of the incident
plane wave, and the reflected wave with each quantity satisfying poroelastic equations (1.16) in R2 \ B(0,a), while the
transmitted wave is described by the displacement inside the cylinder. The unknown is now the reflected wave which
is outgoing, and the transmitted wave. They are uniquely determined by transmission conditions imposed on the
interface Γ. For • = pw, ref, trans, we denote:

U• =


u•
w•
τ •

p•

 .

The unknowns U ref and U trans solve the following problem:

U ref solves the poroelastic equations (1.16) in R2 \ Ω;

U trans solves the poroelastic equations (1.16) in Ω;

U ref is outgoing;

Transmission conditions on the interface Γ :
upw + uref = utrans ,

ppw + pref = ptrans ,

wpw · n+ wref · n = wtrans · n ,
τ pw · n+ τ ref · n = τ trans · n .

a

Ω

Γ

Upw

U trans

U ref

Figure 2.12: Scattering of a plane wave by a penetrable solid inclusion. The inclusion occupies the domain denoted
by Ω. The cross section of the inclusion is a disc of radius denoted by a.

2.4.1 Construction of the analytical solution
The medium outside is denoted by medium 1, while the medium inside of the cylinder is denoted by medium 2. The
slowness in the medium 1 is denoted by s•,(I) and in medium 2 by s•,(II).

The solutions (u,w, τ ,p) are given in the two media by equations (2.10), (2.11) and (2.12), while the potentials
are given by (2.13). Hence, in medium 1, the potentials corresponding to the outgoing reflected wave satisfy equation



2.4. SCATTERING OF A PLANE WAVE BY A PENETRABLE INCLUSION 71

(2.15):

χP,(I)(r, θ) =
∑
k∈Z

ak H(1)
k (ω sP,(I)r) ei k θ ,

χB,(I)(r, θ) =
∑
k∈Z

bk H(1)
k (ω sB,(I)r) ei k θ ,

χS,(I)(r, θ) =
∑
k∈Z

ck H(1)
k (ω sS,(I)r) ei k θ .

Similarly, the potentials corresponding to the transmitted wave (i.e. in medium 2) are given by (2.14):

χP(II)(r, θ) =
∑
k∈Z

dk Jk(ω sP,(II)r) ei k θ ,

χB(II)(r, θ) =
∑
k∈Z

ek Jk(ω sB,(II)r) ei k θ ,

χS(II)(r, θ) =
∑
k∈Z

fk Jk(ω sS,(II)r) ei k θ .

Next, we are going to determine the coefficients ak, bk, ck, dk, ek, fk by imposing the boundary conditions at the
interface between the two materials. Hence, they will satisfy the system given in equation (2.38). As previously, using
the considered geometry, we express the unknowns in the polar basis:

u• = u•rer + u•θeθ ,
w• · n = w•r ,
τ • · n = τ•rr er + τ•rθ eθ .

The boundary conditions are written as:
uref
r − utrans

r = −upw
r ,

uref
θ − utrans

θ = −upw
θ ,

pref − ptrans = −ppw ,

wref
r − wtrans

r = −wpw
r ,

τ ref
rr − τ trans

rr = −τpw
rr ,

τ ref
rθ − τ trans

rθ = −τpw
rθ .

(2.37)

Here, wθ and τθθ do not appear in the boundary conditions, hence, we do not detail their expressions. The expansion
of the coefficient of each component in Fourier series is:

u•r =
∑
k∈Z

u•r,k ei k θ , u•θ =
∑
k∈Z

u•θ,k ei k θ , p• =
∑
k∈Z

p•k ei k θ ,

w•r =
∑
k∈Z

w•r,k ei k θ , τ•rr =
∑
k∈Z

τ•rr,k e
i k θ , τ•rθ =

∑
k∈Z

τ•rθ,k e
i k θ .

Using equations (2.17),(2.21), (2.18), (2.19) and (2.20), we have for the reflected wave:

s iωuref
r,k = ak

ω

sP,(I)
H(1)′
k (ω sP,(I) r)eikθ + bk

ω

sB,(I)
H(1)′
k (ω sB,(I) r)eikθ − ck

ik
rs2

S,(I)
H(1)
k (ω sS,(I) r)eikθ ,

s iωuref
θ,k = ak

ik
r s2

P,(I)
H(1)
k (ω sP,(I)r)eikθ + bk

ik
r s2

B,(I)
H(1)
k (ω sB,(I)r)eikθ + ck

ω

sS,(I)
H(1)′
k (ω sS,(I)r)eikθ ,

pref
k = − akM(I)

(
WP,(I) + α(I)) H(1)

k (ω sP,(I) r) eikθ − bkM
(
WB,(I) + α(I)) H(1)

k (ω sB,(I) r) eikθ ,

s iωwref
r,k = ak

WP,(I) ω

sP,(I)
H(1)′
k (ω sP,(I)r)eikθ + bk

WB,(I) ω

sB,(I)
H(1)′
k (ω sB,(I)r)eikθ + ck

ρf,(I) µfr,(I) ik
detA(I)r

H(1)
k (ω sS,(I)r)eikθ,
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and

ω2τ ref
rr,k = −

2µfr,(I) ω

sP,(I)r
akH(1)

k+1(ω sP,(I)r)ei k θ +
2µfr,(I) k

s2
P,(I) r

2 akH(1)
k (ω sP,(I)r)ei k θ + 2µfr,(I)ω

2akH(1)
k (ω sP,(I)r)ei k θ

−
2µfr,(I) k

2

s2
P,(I) r

2 akH(1)
k (ω sP,(I) r) ei k θ −

2µfr,(I) ω

sB,(I)r
bk H(1)

k+1(ω sB,(I) r) ei k θ +
2µfr,(I) k

s2
B,(I) r

2 bk H(1)
k (ω sB,(I) r) ei k θ

+2µfr,(I) ω
2 bkH(1)

k (ω sB,(I) r) ei k θ −
2µfr,(I) k

2

s2
B,(I)r

2 bkH(1)
k (ω sB,(I) r) ei k θ +

2µfr,(I) ω i k
sS,(I)r

ckH(1)′
k (ω sS,(I)r) ei k θ

+ω2
(
− 2

3µfr,(I) + kfr,(I) + M(I)α
2
(I) + α(I)M(I)WP,(I)

)
ak H(1)

k (ω sP,(I) r) ei k θ

+ω2
(
− 2

3µfr,(I) + kfr,(I) + M(I)α
2
(I) + α(I)M(I)WP,(I)

)
bk H(1)

k (ω sB,(I) r) ei k θ ,

ω2 τ ref
rθ,k = −

2µfr,(I)ω i k
r sP,(I)

ak H(1)′
k (ω sP,(I) r) ei k θ +

2 iµfr,(I) k

r2 s2
P,(I)

ak H(1)
k (ω sP,(I) r) ei k θ

−
2µfr,(I)ω i k
r sB,(I)

bkH(1)′
k (ω sB,(I) r) ei k θ +

2 iµfr,(I) k

r2 s2
B,(I)

bkH(1)
k (ω sB,(I) r) ei k θ −

µfr,(I) k
2

r2 s2
S

ck H(1)
k (ω sS,(I) r) ei k θ

+
µfr,(I) ω

r sS,(I)
ck H(1)′

k (ω sS,(I) r) ei k θ − µfr,(I)
ω

sS,(I)r
ck H(1)

k+1(ω sS,(I) r) ei k θ

+
µfr,(I) k

s2
S,(I)r

2 ck H(1)
k (ω sS,(I) r) ei k θ + ω2 ckH(1)

k (ω sS,(I) r) ei k θ − µfr,(I)
k2

s2
S,(I)r

2 ck H(1)
k (ω sS,(I) r) ei k θ,

and for the transmitted wave:

s iω utrans
r,k = dk

ω

sP,(II)
J′k(ω sP,(II)r)eikθ + ek

ω

sB,(II)
J′k(ω sB,(II) r)eikθ − fk

ik
rs2

S,(II)
Jk(ω sS,(II)r)eikθ ,

s iω utrans
θ,k = dk

ik
r s2

P,(II)
Jk(ω sP,(II)r)eikθ + ek

ik
r s2

B,(II)
Jk(ω sB,(II)r)eikθ + fk

ω

sS,(II)
J′k(ω sS,(II)r)eikθ ,

pref
k = − dkM(II)

(
WP,(II) + α(II)) Jk(ω sP,(II) r) eikθ − ekM(II)

(
WB,(II) + α(II)) Jk(ω sB,(II) r) eikθ ,

s iωwtrans
r,k = dk

WP,(II) ω

sP,(II)
J′k(ω sP,(II)r)eikθ + ek

WB,(II) ω

sB,(II)
J′k(ω sB,(II)r)eikθ + fk

ρf,(II) µfr,(II)ik
detA(II)r

Jk(ω sS,(II)r)eikθ,



2.4. SCATTERING OF A PLANE WAVE BY A PENETRABLE INCLUSION 73

and

ω2τ trans
rr,k = −

2µfr,(II) ω

sP,(II)r
dkJk+1(ω sP,(II)r) ei k θ +

2µfr,(II) k

s2
P,(II)r

2 dkJk(ω sP,(II)r) ei k θ + 2µfr,(II)ω
2dkJk(ω sP,(II)r)ei k θ

−
2µfr,(II) k

2

s2
P,(I)r

2 dk Jk(ω sP,(II)r) ei k θ −
2µfr,(II) ω

sB,(II)r
ekJk+1(ω sB,(II)r) ei k θ +

2µfr,(II) k

s2
B,(II)r

2 ekJk(ω sB,(II)r) ei k θ

+ 2µfr,(II)ek ω
2Jk(ω sB,(II)r) ei k θ −

2µfr,(II) k
2

s2
B,(II)r

2 ekJk(ω sB,(II) r) ei k θ +
2µfr,(II)ω ik

sS,(II)r
fk J′k(ω sS,(II) r) ei k θ

+ ω2
(
− 2

3µfr,(II) + kfr,(II) + M(II)α
2
(II) + α(II)M(II)WP,(II)

)
dk Jk(ω sP,(II) r) ei k θ

+ ω2
(
− 2

3µfr,(II) + kfr,(II) + M(II)α
2
(II) + α(II)M(II)WB,(II)

)
ek Jk(ω sB,(II) r) ei k θ ,

ω2τ trans
rθ,k = −

2µfr,(II) ωi k
rsP,(II)

dkJ′k(ωsP,(II)r)eikθ +
2 i kµfr,(II)

r2s2
P,(II)

dkJk(ωsP,(II)r)eikθ −
2µfr,(II)ωik
rsB,(II)

ekJ′k(ω sB,(II)r)eikθ

+
2 iµfr,(II) k

r2 s2
B,(II)

ek Jk(ω sB,(II)r) ei k θ −
µfr,(II) k

2

r2 s2
S

fk Jk(ω sS,(II)r) ei k θ +
µfr,(II) ω

r sS,(I)
fk J′k(ω sS,(II)r) ei k θ

− µfr,(II)
ω

sS,(II)r
fk Jk+1(ω sS,(II)r) ei k θ + µfr,(II)

k

s2
S,(iI)r

2 fk Jk(ω sS,(II) r) ei k θ

+ ω2 fk Jk(ω sS,(II)r) ei k θ − µfr,(II)
k2

s2
S,(I)r

2 fk Jk(ω sS,(II)r) ei k θ.

Imposing (2.37), we obtain a linear system satisfied by ak, bk, ck, dk, ek, fk in each mode k:

Aporo-poro
k



ak

bk

ck

dk

ek

fk


=



−s iω upw
r

−s iω upw
θ

−ppw

−s iωwpw
r

−ω2 τpw
rr

−ω2 τpw
rθ


(2.38)

with

Aporo-poro
k =



A11 A12 A13 A14 A15 A16

A21 A22 A23 A24 A25 A26

A31 A32 A33 A34 A35 A36

A41 A42 A43 A44 A45 A46

A51 A52 A53 A54 A55 A56

A61 A62 A63 A64 A65 A66


(2.39)

A11 = ω

sP,(I)
H(1)′
k (ω sP,(I) a) , A12 = ω

sB,(I)
H(1)′
k (ω sB,(I) a) , A13 = − ik

as2
S,(I)

H(1)
k (ω sS,(I) a) ,

A21 = ik
a s2

P,(I)
H(1)
k (ω sP,(I) a) , A22 = ik

a s2
B,(I)

H(1)
k (ω sB,(I) a) , A23 = s−1

S,(I) ωH(1)′
k (ω sS,(I) a) ,

A31 = −M
(
WP,(I) + α(I)) H(1)

k (ω sP,(I) a) , A32 = −M
(
WB,(I) + α(I)) H(1)

k (ω sB,(I) a) , A33 = 0 ,
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A14 = − ω

sP,(II)
J′k(ω sP,(II) a) , A15 = − ω

sB,(II)
J
′

k(ω sB,(II) a) , A16 = ik
as2

S,(II)
Jk(ω sS,(II) a) ,

A24 = − ik
a s2

P,(II)
Jk(ω sP,(II) a) , A25 = − ik

a s2
B,(II)

Jk(ω sB,(II) a) , A26 = −s−1
S,(II) ω J

′

k(ω sS,(II) a) ,

A34 = M
(
WP,(II) + α(II)) Jk(ω sP,(II) a) , A35 = M

(
WB,(II) + α(II)) Jk(ω sB,(II) a) , A36 = 0 ,

A41 =
WP,(I)

sP,(I)
ωH(1)′

k (ω sP,(I)a) , A42 =
WB,(I)

sB,(I)
ωH(1)′

k (ω sB,(I)a) , A43 =
ρf,(I) µfr,(I)

detA(I)

ik
a

H(1)
k (ω sS,(I)a) ,

A51 = −
2µfr,(I) ω

sP,(I)a
H(1)
k+1(ω sP,(I) a) +

2µfr,(I) k

s2
P,(I)a

2 H(1)
k (ω sP,(I) a) + 2µfr,(I) ω

2 H(1)
k (ω sP,(I) a)

− 2µfr k
2

s2
P,(I)a

2 H(1)
k (ω sP,(I) a) + ω2

(
− 2

3µfr,(I) + kfr,(I) + M(I)α
2
(I) + α(I)M(I)WP,(I)

)
H(1)
k (ω sP,(I)a) ,

A52 = −
2µfr,(I) ω

sB,(I)a
H(1)
k+1(ω sB,(I) a) +

2µfr,(I) k

s2
B,(I)a

2 H(1)
k (ω sB,(I) a) + 2µfr,(I) ω

2 H(1)
k (ω sB,(I) a)

− 2µfr k
2

s2
B,(I)a

2 H(1)
k (ω sB,(I) a) + ω2

(
− 2

3µfr,(I) + kfr,(I) + M(I)α
2
(I) + α(I)M(I)WB,(I)

)
H(1)
k (ω sB,(I)a) ,

A53 =
2µfr,(I)

sS,(I)a
ω ikH(1)′

k (ω sSa) ,

A61 = −
2ω µfr,(I)ik
a sP,(I)

H(1)′
k (ω sP,(I)a) +

2µfr,(I)ik
a2s2

P,(I)
H(1)
k (ω sP,(I)a) ,

A62 = −
2ω µfr,(I)ik
a sB,(I)

H(1)′
k (ω sB,(I)a) +

2µfr,(I)ik
a2s2

B,(I)
H(1)
k (ω sB,(I)a) ,

A63 = −
k2µfr,(I)

a2 s2
S,(I)

H(1)
k (ω sS,(I) a) +

ω µfr,(I)

a sS,(I)
H(1)′
k (ω sS,(I) a) − ω

sS,(I)a
H(1)
k+1(ω sS,(I) a) + k

s2
S,(I)a

2 H(1)
k (ω sS a) ,

+ ω2 H(1)
k (ω sS,(I) a) ei k θ − k2

s2
S,(I)a

2 H(1)
k (ω sS,(I) a) ,

A44 = −
WP,(II)

sP,(II)
ω J
′

k(ω sP,(II)a) , A45 = −
WB,(II)

sB,(II)
ω J
′

k(ω sB,(II)a) , A46 = −
ρf,(II) µfr,(II)

detA(II)

ik
a

Jk(ω sS,(II)a) ,

A54 =
2µfr,(II) ω

sP,(II)a
Jk+1(ω sP,(II) a) −

2µfr,(II) k

s2
P,(I)a

2 Jk(ω sP,(I) a) − 2µfr,(II) ω
2 H(1)

k (ω sP,(II) a)

+
2µfr,(II) k

2

s2
Pa

2 Jk(ω sP,(II) a) − ω2
(
− 2

3µfr,(II) + kfr,(II) + M(II)α
2
(II) + α(II)M(II)WP,(II)

)
Jk(ω sP,(II)a) ,

A55 =
2µfr,(II) ω

sB,(II)a
Jk+1(ω sB,(II) a) ei k θ −

2µfr,(II) k

s2
B,(I)a

2 H(1)
k (ω sB,(II) a) ei k θ − 2µfr,(II) ω

2 Jk(ω sB,(II) a) ei k θ

+
2µfr,(II) k

2

s2
B,(II)a

2 Jk(ω sB,(II) a) ei k θ − ω2
(
− 2

3µfr,(II) + kfr,(II) + M(II)α
2
(II) + α(II)M(II)WB,(II)

)
Jk(ω sB,(II)a) ,

A56 = −
2µfr,(II)

sS,(II)a
ω ik J

′

k(ω sS,(II)a) ,
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A64 =
2ω µfr,(II)ik
asP,(II)

J
′

k(ω sP,(II)a)−
2µfr,(II)ik
a2s2

P,(II)
Jk(ω sP,(II)a) ,

A65 =
2ω µfr,(II)ik
asB,(II)

J
′

k(ω sB,(II)a)−
2µfr,(II)ik
a2s2

B,(II)
Jk(ω sB,(II)a) ,

A66 =
k2µfr,(II)

a2s2
S,(II)

Jk(ω sS,(II) a)−
ω µfr,(II)

asS,(II)
J
′

k(ω sS,(II) a) + ω

sSa
Jk+1(ω sS,(II) a) ei k θ − k

s2
S,(II)a

2 Jk(ω sS,(II) a) ,

− ω2 Jk(ω sS,(II) a) ei k θ + k2

s2
S,(II)a

2 Jk(ω sS,(II) a) .

We define the eigenvalues as follows:
Definition 2.7. ω is porous-porous transmission eigenvalue if detAporo-poro

k (ω) = 0, where Aporo-poro
k is the coefficient

matrix defined in equation (2.39).

2.4.2 Numerical tests
We consider an infinite porous medium denoted as the exterior medium Γ, in which Ω is a porous inclusion (interior
medium), see figure 2.12. In the construction of the analytical solution, we consider the exterior medium to be
infinite. For the representation of the solution, we only plot the value of the field inside a disc of radius equals to 10m.
Considering the total field, we show the imaginary part of the solid velocity ux in Figure 2.13. The inclusion is located
inside with the dashed circle. In the figure, we observe that the scattering generates mainly P-waves for the reflected
and transmitted waves.

Figure 2.13: Exact solution for the scattering of a P-plane wave by a penetrable solid inclusion, considering the total
wave field. We present the imaginary part of the solid velocity ux for sandstone/shale with no viscosity test with
ω = 500 rad.s−1.

To investigate the influence of the material parameters, we consider different cases detailed in the table 2.1. For
all of these tests, we study the determinant of the coefficient matrix (2.39) as a function of the pulsation. We first
study the influence of the viscosity by varying its value in the interior and exterior medium. Next, we vary the value
of the frame shear modulus to observe the differences on the shape of the curves. For all tests, the cross section radius
is a = 1m. We have the following observations:
• As in the case of a bounded domain, the shear frame modulus has an influence on the shape of the curve. When the

shear frame modulus of the interior material decreases, we can observe the apparition of smooth peaks. When it is
in the exterior material, the general value of the determinant decreases, cf. Figure 2.16. This shows that the interior
medium has more influence on the determinant of the matrix than the exterior one. This is similar to a result for
fluid-elastic scattering (see [51]), where non -zero solutions can appear without any source, as for a bounded domain.
On the contrary, the problem in the exterior medium is well-posed.

• For modes 3, 4 and 5, the red curve, which represents the setting in which the interior medium is viscous and the
exterior medium has no viscosity, is higher than the other curves for low frequencies, see 2.15. As the modes mainly
depend on the characteristics of the interior medium, the viscosity in this medium suppresses the eventual modes.
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Exterior medium Interior medium Figures
Sandstone (η = 0 Pa.s and µfr = 12GPa) Shale (η = 0 Pa.s and µfr = 3.96GPa) 2.14, 2.15, 2.16

Sandstone (η = 0 Pa.s and µfr = 12GPa) Shale (η = 10−3 Pa.s and µfr = 3.96GPa) 2.14, 2.15

Sandstone (η = 10−3Pa.s and µfr = 12GPa) Shale (η = 0 Pa.s and µfr = 3.96GPa) 2.14, 2.15

Sandstone (η = 10−3Pa.s and µfr = 12GPa) Shale (η = 10−3 Pa.s and µfr = 3.96GPa) 2.14, 2.15

Sandstone (η = 0 Pa.s and µfr = 12GPa) Modified Shale (η = 0 Pa.s and µfr = 1GPa) 2.16,

Modified Sandstone (η = 0 Pa.s and µfr = 3GPa) Shale (η = 0 Pa.s and µfr = 3.96GPa) 2.16

Modified Sandstone (η = 0 Pa.s and µfr = 3GPa) Modified Shale (η = 0 Pa.s and µfr = 1GPa) 2.16

Table 2.1: List of the tests of porous-porous interaction
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(c) Mode k = 2

Figure 2.14: Experiment of a porous-porous interaction: Determinant of the coefficient matrix Aporo-poro
k (2.39) (log

scale) for k in 0 : 2 for sandstone/shale with no viscosity in blue , for inviscid sandstone/ viscous shale in red
, for viscous sandstone/inviscid shale in black and for viscous sandstone/viscous shale in green .
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Figure 2.15: Experiment of a porous-porous interaction: Determinant of the coefficient matrix Aporo-poro
k (2.39) (log

scale) for k in 3 : 5 for sandstone/shale with no viscosity in blue , for inviscid sandstone/ viscous shale in red
, for viscous sandstone/inviscid shale in black and for viscous sandstone/viscous shale in green .
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Figure 2.16: Experiment of a porous-porous interaction: Comparison of the determinant of the coefficient matrix
Aporo-poro
k (2.39) (log scale) for k = 0 for sandstone/shale with no viscosity and regular shear frame modulus in blue

. The shear frame modulus of the interior material is divided by four in , the one for the exterior material is
divided by four in and both are divided by four in .

2.5 Scattering of a plane wave by a poroelastic domain in a fluid medium
We consider the scattering by a plane wave of a poroelastic obstacle in an infinite fluid medium. The total wave
outside of the cylinder is a superposition of the incident plane wave and the reflected wave, while the transmitted wave
is described by the displacement inside the cylinder. The movement in the fluid region is described by

pflu = ppw + pref , uflu = upw + uref .

where pflu satisfies the Helmholtz equation, (
−∆ − ω2 s2

flu
)

pflu = 0 , (2.40)

and the velocity in fluid is given by

uflu = − 1
ρflu s iω∇ pflu = s i

ρflu ω
∇ pflu . (2.41)

Here, the slowness of fluid is chosen in the same way as those in the poroelastic interior by Definition (1.43) , i.e.

sflu = −s
√

s2
flu .

In the interior, the transmitted movements are described by U trans = (utrans ,wtrans , τ trans ,ptrans) that solves the
poroelastic equations (1.16). The interior and exterior quantities are determined by transmission conditions imposed
on the interface Γ.

In short, the unknowns of the fluid-solid interaction problem are (pflu,uflu) and U trans, which solve:

(pflu,uflu) solves the acoustic equations (2.40) and (2.41) in R2 \ Ω;

U trans solves the poroelastic equations (1.16) in Ω;

(pflu,uflu) are outgoing in the sense of lim
r→∞

√
r

(
∂pflu

∂r
− iω sflu pflu

)
= 0 ;

Boundary conditions on the interface Γ : (1.21)
(uflu − u) · n = w · n ,

pflu − p = 1
κΓ

w · n ,

τ n = −pflu · n .

(2.42)
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where κΓ denotes the hydraulic permeability on the interface.
We will distinguish three different cases for κΓ, we first consider a finite value of κΓ in 2.5.1.1. Then when κΓ →∞,

the pores are open, and the second condition in Section (2.42) becomes pflu − p = 0. This case is detailed in Section
2.5.1.2. We finally study the case of sealed pores in Section 2.5.1.3. This means that κΓ = 0, and the second interface
condition is modified as w · n = 0.

a

Ω

Γ

Upw U ref

Figure 2.17: Scattering of a fluid plane wave by a poroelastic inclusion. The inclusion occupies the domain denoted
by Ω. The cross section of the inclusion is a disc of radius denoted by a.

2.5.1 Construction of the analytical solution
In the fluid, the pressure and the velocities are expressed as follows:

pflu = ppw + pref , uflu = upw + uref .

The pressure pflu satisfies the Helmholtz equation. In the fluid,

uflu = − 1
ρflu s iω∇ pflu = s i

ρflu ω
∇ pflu .

The incident plane wave is

ppw
flu =

∞∑
k=−∞

ik Jk(sω sflu r) ei k(θ−αinc) ,

⇒ upw
flu =

∞∑
k=−∞

s ik+1

ρflu ω
∇ Jk(sω sflu r) ei k(θ−αinc) .

The reflected wave is written as:

pref
flu =

∑
k∈Z

dk H(1)
k (ω sflu r) ei k θ ,

⇒ uref
flu =

∑
k∈Z

s i
ρflu ω

dk∇H(1)
k (ω sflu r) ei k θ .

In polar coordinates, using ∇ = ∂rer + 1
r
∂θeθ , the radial component is:

upw
flu,r =

∑
k∈Z

sflu

ρflu
ik+1 J ′k(sω sflu r) ei k(θ−αinc) ,

uref
flu,r =

∑
k∈Z

s sflu

ρflu
i dk H(1)′

k (ω sflu r) ei k θ .

In the poroelastic domain Ω, the potentials and the expressions of the unknowns are given in Section 2.2 equations
(2.24) and (2.27).



2.5. SCATTERING OF A PLANE WAVE BY A POROELASTIC DOMAIN IN A FLUID MEDIUM 81

2.5.1.1 Finite positive value of hydraulic permeability

On a disc, n = er. Imposing the transmission condition (1.21) means that for every mode k:
sflu

ρflu
ik+1 J ′k(ω sflu r) e−i kαinc + s sflu

ρflu
i dk H(1)′

k (ω sflu r)

+ ak s
i

sP
J′k(ω sP a) + bk s

i
sB

J′k(ω sB a) + ck
s k

a s2
S ω

Jk(ω sS a)

= − ak s
iWP

sP
J′k(ω sP a) − bk s

iWB

sB
J′k(ω sB a) + ck

ρf µfr

detA
s k

aω
Jk(ω sS a) ,

dk H(1)
k (ω sflu a) + ik Jk(ω sflu a) e−i kαinc

+ akM
(
WP + α) Jk(ω sP a) + bkM

(
WB + α) Jk(ω sP a)

= − ak s
iWP

sP κΓ
J′k(ω sP a) − bk s

iWB

sB κΓ
J′k(ω sB a) + ck

ρf µfr

detA
s k

aω κΓ
Jk(ω sS a) ,

−2µfr ω

sPa
ak Jk+1(ω sP a) + 2µfr k

s2
Pa

2 ak Jk(ω sP a) + 2µfr ak ω
2 Jk(ω sP a)

−2µfr k
2

s2
Pa

2 ak Jk(ω sP a) − 2µfr ω

sBa
bk Jk+1(ω sB a) + 2µfr k

s2
Ba

2 bk Jk(ω sB a)

+2µfr bk ω
2 Jk(ω sB a) − 2µfr k

2

s2
Ba

2 bk Jk(ω sB a) + 2µfr

sSa
ck ω ik J

′

k(ω sS a)

+ω2 (− 2
3µfr + kfr +Mα2 + αMWP

)
akJk(ω sP a) + ω2 (− 2

3µfr + kfr +Mα2 + αMWB
)
bkJk(ω sB a)

= −ω2 dk H(1)
k (ω sflu a) − ω2ik Jk(ω sflu a) e−i kαinc ,

−2µfrω i k
a sP

ak J′k(ω sP a) + 2 iµfr k

a2 s2
P

ak Jk(ω sP a) − 2µfrω i k
a sB

bk J′k(ω sB a)

+ 2 iµfr k

a2 s2
B

bk Jk(ω sB a) − µfr k
2

a2 s2
S
ck Jk(ω sS a) + µfr ω

a sS
ck J′k(ω sS a)

− µfr
ω

sSa
ck Jk+1(ω sS a) + µfr

k

s2
Sa

2 ck Jk(ω sS a)

+ ω2 µfr ck Jk(ω sS a) − µfr
k2

s2
Sa

2 ck Jk(ω sS a) = 0 .

We can build a linear system satisfied by ak, bk, ck, dk in each mode k.

Aflu-poro
k


ak

bk

ck

dk

 =


− sflu

ρflu
ik+1 J ′k(ω sflu a) e−i kαinc

−ik Jk(ω sflu a) e−i kαinc

−ω2 ik Jk(ω sflu a) e−i kαinc

0


with

Aflu-poro
k =


A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

 (2.43)
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A11 = s i
sP

J′k(ω sP a) + WP s i
sP

J′k(ω sP a) , A12 = s i
sB

J′k(ω sB a) + WB s i
sB

J′k(ω sB a) ,

A13 = s k

ω s2
S a

Jk(ω sS a) − ρf µfr s k

detAω a
Jk(ω sS a) , A14 = s sflu

ρflu
i H(1)′

k (ω sflu a) ,

A21 = M
(
WP + α) Jk(ω sP a) + WP s i

κΓ sP
J′k(ω sP a) , A22 = M

(
WB + α) Jk(ω sB a) + WB s i

κΓ sB
J′k(ω sB a) ,

A23 = − s k ρf µfr

κΓ ω detA a
Jk(ω sS a) , A24 = H(1)

k (ω sflu a) ,

A31 = − 2µfr ω

sPa
Jk+1(ω sP a) + 2µfr k

s2
Pa

2 Jk(ω sP a) + 2µfr ω
2 Jk(ω sP a) − 2µfr k

2

s2
Pa

2 Jk(ω sP a)

+ ω2 (− 2
3µfr + kfr + Mα2 + αMWP

)
Jk(ω sP a) ,

A32 = − 2µfr ω

sBa
Jk+1(ω sB a) + 2µfr k

s2
Ba

2 Jk(ω sB a) + 2µfr ω
2 Jk(ω sB a) − 2µfr k

2

s2
Ba

2 Jk(ω sB a)

+ ω2 (− 2
3µfr + kfr + Mα2 + αMWB

)
Jk(ω sB a) ,

A33 = 2µfr

sSa
ω ik J

′

k(ω sS a) , A34 = ω2 H(1)
k (ω sflu a) ,

and

A41 = −2µfrω i k
a sP

J′k(ω sP a) + 2 iµfr k

a2 s2
P

Jk(ω sP a) , A42 = −2µfrω i k
a sB

J′k(ω sB a) + 2 iµfr k

a2 s2
B

Jk(ω sB a) ,

A43 = −µfr k
2

a2 s2
S

Jk(ω sS a) + µfr ω

a sS
J′k(ω sS a) − µfr

ω

sSa
Jk+1(ω sS a) + µfr

k

s2
Sa

2 Jk(ω sS a)

+ ω2 µfr Jk(ω sS a) − µfr
k2

s2
Sa

2 Jk(ω sS a) ,

A44 = 0 .

2.5.1.2 Open pores

If the hydraulic permeability κΓ →∞, the second equation becomes:

dk H(1)
k (ω sflu a) + ik Jk(ω sflu a) e−i kαinc

−
(
− akM

(
WP + α) Jk(ω sP a)− bkM

(
WB + α) Jk(ω sP a)

)
= 0 .

Thus, the system is:

Aflu-poro
k


ak

bk

ck

dk

 =


− sflu

ρflu
ik+1 J ′k(ω sflu a) e−i kαinc

−ik Jk(ω sflu a) e−i kαinc

−ω2 ik Jk(ω sflu a) e−i kαinc

0

 (2.44)

The second row is modified as:
A21 = M

(
WP + α) Jk(ω sP a) , A22 = M

(
WB + α) Jk(ω sB a) , A23 = 0, , A24 = H(1)

k (ω sflu a) .

2.5.1.3 Sealed pores

If the hydraulic permeability κΓ = 0, the second equation is:

ak
WP

sP
ω J′k(ω sP a) + bk

WB

sB
ω J′k(ω sB a) + ck

ρf µfr

detA
ik
a

Jk(ω sS a) = 0 .
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In this case, the system is:

Aflu-poro
k


ak

bk

ck

dk

 =


− sflu

ρflu
ik+1 J ′k(ω sflu a) e−i kαinc

0

−ω2 ik Jk(ω sflu a) e−i kαinc

0

 (2.45)

The second row is modified as:

A21 = WP ω

sP
J′k(ω sP a) , A22 = WB ω

sB
J′k(ω sB a) , A23 = i k ρf µfr

detA a
Jk(ω sS a) , A24 = 0 .

We define the eigenvalues as follows:
Definition 2.8. ω is fluid-porous Jones’ mode corresponding to finite, open, sealed pores if detAflu-poro

k (ω) = 0, where
Aflu-poro
k is the coefficient matrix defined in equations (2.43), (2.44) and (2.45) correspondingly.

2.5.2 Numerical tests
In Figure 2.18, we represent the scattering of a fluid plane wave by a poroelastic inclusion. When we build the
analytical solution, the exterior fluid domain is considered to be infinite. However,for the representation the solution,
we only plot the field on a domain with exterior radius equal to r = 10m.

(a) κΓ =∞ (open pores) (b) κΓ = 0 (sealed pores)

(c) κΓ = 1

Figure 2.18: Scattering of a fluid plane wave by a poroelastic inclusion. Reflected solution of the imaginary part of
the pressure p for sandstone immersed in water with three values of the hydraulic permeability and no viscosity for
f = 500 Hz.
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We study the trace of the pressure in the fluid using receivers on the radius r = 8m for ω = 500 rad.s−1 and we
sum the modes using Nsum = 50. Next, we are carrying out six experiments with two types of material configurations:
sandstone with and without viscosity. For the three cases, we consider varying hydraulic permeabilities κΓ:

• Finite value of κΓ. Here we consider κΓ = 1.

• κΓ = 0, which corresponds to sealed pores.

• κΓ =∞, which corresponds to open pores.

For the first modes k, we will investigate the stability of the coefficient matrices. For all the tests, the cross section
radius of the obstacle is a = 1m. The fluid parameters are given below:

ρflu = 103 kg .m−3 , sflu = 1500m. s−1 .

The results are respectively reported as follows:

• The trace of the pressure on a circle of receivers, located on the radius r = 8m is presented in figure 2.19, for the
three values of hydraulic permeability.

• Water in the exterior medium and sandstone in the inclusion, for η = 0 in figures 2.21 and 2.22.

• Comparison of water in the exterior medium and sandstone in the inclusion, without viscosity and with viscosity
η 6= 0 in figure 2.24.

We have the following observations:

• In this case we observe the same behaviour for all the experiments with no viscosity. All the curves represent peaks,
as in Figures 2.21 and 2.22, but after zooming, some peaks have different behaviours. For most cases, the peaks are
bounded from below, hence they do not correspond to generalized eigenvalues. However, few of the peaks correspond
to true generalized eigenvalues. To illustrate this, we present in Figure 2.23 six zooms around the peaks for the
mode 0. The three figures on the left are the ones corresponding to bounded from below peaks. The three figures
on the right are the ones corresponding to true generalized eigenvalues.

• In the case with viscosity, the curves are smoother, we observe less peaks for the same range of frequency, and
they are all bounded below after the zoom procedure. Hence as expected, there are no generalized eigenvalues with
viscosity.

• For κΓ = 0 with viscosity, we tested every peak of Aflu-poro
0 , for both media, because it is the closest case to

elastic-fluid scattering. All the peaks are bounded below, this means that there is no Jones’ mode.

• The effect of the value of κΓ is limited. The cases κΓ = 1 and ∞ are similar, both for the value of the determinant
and the value of the trace of the pressure. This might show that when κΓ = 1, the pores are already significantly
opened. The results from Figure 2.20 confirm the fact that the value of the hydraulic permeability κΓ has a limited
impact on the pressure field, because the curves for different values of κΓ are similar.

• In Figure 2.19, we study the trace of the pressure in the fluid using receivers on the radius r = 8m for the three
values of the hydraulic permeability κΓ. The viscosity has not a significant impact on the pressure. Moreover, in
figure 2.19b, we have added a comparison with a fluid-elastic scattering, by taking the elastic parameters the closest
to the considered porous material. The comparison of the fluid-porous interaction with the fluid-elastic interaction
highlights the fact that the behaviours are different, even though we took corresponding parameters between elastic
and porous materials. This shows the interest of taking into account the porosity of the media.
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Figure 2.19: Experiment of fluid-solid interactions. Comparison of the trace of the pressure for a sandstone solid
immersed in water with and without viscosity and for several values of the hydraulic permeability. The test was
computed for f = 500Hz. The case with no viscosity is represented in blue , while the case with viscosity η = 10−3Pa.s
is represented in red . The case of an elastic solid is represented in green (only on (b)).
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Figure 2.20: Experiment of a fluid-porous interaction. Comparison of the trace of the pressure for a sandstone solid
immersed in water with viscosity η = 10−3Pa.s for different values of the hydraulic permeability. The case κΓ = 1 is
represented in blue , the case with sealed pores (κΓ = 0) is represented in red , and the case of open pores (κΓ =∞)
is represented in green .
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(c) Mode k = 2

Figure 2.21: Experiment of a fluid-porous interaction. Determinant of the coefficient matrix Awater-sandstone
k (2.43) (log

scale) for k in 0 : 2 for sandstone with no viscosity η = 0. κΓ = 1 is represented in blue , κΓ = 0 in red and
κΓ =∞ in green .
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Figure 2.22: Experiment of a fluid-porous interaction. Determinant of the coefficient matrix Awater-sandstone
k (2.43) (log

scale) for k in 3 : 5, for sandstone with no viscosity η = 0. κΓ = 1 is represented in blue , κΓ = 0 in red and
κΓ =∞ in green .
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Figure 2.23: Zoom of the curves of figure 2.21 at several centers denoted ω0a for mode 0. We present the determinant
of the coefficient matrix Awater-sandstone

k (2.43) (log scale) for sandstone with no viscosity η = 0. κΓ = 1 is represented
in blue , κΓ = 0 in red and κΓ =∞ in green .
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(b) Mode k = 0, κΓ = 0 (sealed pores)
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Figure 2.24: Experiment of a fluid-porous interaction. Comparison of the determinant of the coefficient matrix
Awater-sandstone
k (2.43) (log scale) for k = 0 for sandstone with and without viscosity for three values of hydraulic

permeability. The cases with no viscosity are represented in color and the viscous cases are in black.
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2.6 Analytical solution for fundamental solution for poroelasticity
Here, we study analytically the response of an isotropic poroelastic medium to a point source. We consider an
isotropic two-dimensional homogeneous poroelastic medium. In terms of potential, the poroelastic equations (1.16)
are equivalent to equation (2.4), that we recall below:

−ω2
(

u
w

)
− P

(
s−2
P 0
0 s−2

B

)(
∇χP
∇χB

)
+ 1

detA

(
ρdyn µfr 0
−ρf µfr 0

)(
curlχS

0

)
= A−1

(f
f̃

)
, (2.46)

with P given in equation (2.1). In addition, the potentials solve the Helmholtz equations:(
−∆ − ω2 s2

P
)
χP = π1

(
P−1B−1

(
∇ · f
∇ · f̃

))
,

(
−∆ − ω2 s2

B
)
χB = π2

(
P−1B−1

(
∇ · f
∇ · f̃

))
,

(
−∆ − ω2 s2

S
)
χS = s2

S π1

(
A−1

(
curlf
curlf̃

))
.

(2.47)

In the above equations, the matrices A and B are given in equations (1.25). Recall that we can write A and A−1 as

A = B P

(
s2
P 0
0 s2

B

)
P−1 ; A−1 = P

(
s−2
P 0
0 s−2

B

)
P−1B−1 . (2.48)

In order to build the analytical solution, we study in a first time a point source causing pressure waves, and secondly
a source that produces only transverse waves. A point-source is modeled as a Dirac distribution, denoted by δY with
Y the center of the source. We will consider the gradient and Laplacian of the Dirac in the sense of the distributions.
We will use the fact that the outgoing Green kernel of

(−∆− (ω s•)2)G(X) = δY is G+(X) = i
4H(1)

0 (ω s•|X−Y|) , (2.49)

with H(1)
0 the Hankel function of first-order. In the following, to simplify the notations, we note the Dirac distribution

as δ, and we consider Y = 0. Moreover, in a homogeneous infinite domain, the outgoing solution of

(−∆− (ω s•)2)F (X) = 0 is F+(X) = 0 inR2 . (2.50)

2.6.1 Source in pressure waves
To model a source producing only pressure waves, we use the fact that curl∇ = 0, which leads to a null value of the
transverse potential. We set f = ∇δ , f̃ = 0 , hence, the Helmholtz equations (2.47) become(

−∆ − ω2 s2
P
)
χP = [P−1B−1]11 ∆ δ ,(

−∆ − ω2 s2
B
)
χB = [P−1B−1]21 ∆δ ;(

−∆ − ω2 s2
S
)
χS = 0 .

Thus, using equations (2.49) and (2.50), the poroelastic potentials are

χP = [P−1B−1]11 ∆ i
4H(1)

0 (ω sPr) = [P−1B−1]11

(
−(ω sP)2 i

4H(1)
0 (ω sPr)− δ

)
,

χB = [P−1B−1]21 ∆ H(1)
0 (ω sBr) = [P−1B−1]21

(
−(ω sB)2 i

4H(1)
0 (ω sBr)− δ

)
,

χS = 0 .

The expression of the potential gradient is:

∇χP = [P−1B−1]11

(
−(ω sP)2 i

4∇H(1)
0 (ω sPr)−∇δ

)
∇χB = [P−1B−1]21

(
−(ω sB)2 i

4∇H(1)
0 (ω sBr)−∇δ

)
.

(2.53)
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Next, we take into account the fact that χS = 0 in (2.46) and use A−1 given by (2.48) to obtain:

− ω2
(

u
w

)
− P

(
s−2
P 0
0 s−2

B

)(
∇χP
∇χB

)
= P

(
s−2
P 0
0 s−2

B

)
P−1B−1

(
∇δ
0

)
,

⇒ − ω2
(

u
w

)
= P

(
s−2
P 0
0 s−2

B

)(
∇χP + [P−1B−1]11∇δ
∇χB + [P−1B−1]21∇δ

)
.

Using equation (2.53), the expression of the displacements u and w in the configuration under consideration is:

(
u
w

)
= i

4 P
(

[P−1B−1]11∇H(1)
0 (ω sPr)

[P−1B−1]21∇H(1)
0 (ω sBr)

)

= i
4

(
1 1
WP WB

)(
[P−1B−1]11∇H(1)

0 (ω sPr)
[P−1B−1]21∇H(1)

0 (ω sBr)

)
.

To obtain the final expression of the displacements, we differentiate the Hankel function in polar coordinates:

∇H(1)
0 (ω s•r) = ∂H(1)

0 (ω s•r)
∂r

er + 1
r

∂H(1)
0 (ω s•r)
∂θ

eθ = ω s•H(1)′
0 (ω s•r)er .

For the calculation of H(1)′
0 (ω s•r), we use the following connection formula for a Hankel function:

H′k(z) = −Hk+1(z) + k

z
Hk(z) . (2.55)

We have for mode 0:
H(1)′

0 (ω s•r) = −H(1)
1 (ω s•r) .

This gives the following expression of u and w:

u = −
( i

4 ω sP [P−1B−1]11H(1)
1 (ω sPr) + i

4 ω sB [P−1B−1]21H(1)
1 (ω sBr)

)
er ,

w = −
( iWP

4 ω sP [P−1B−1]11H(1)
1 (ω sPr) + iWB

4 ω sB [P−1B−1]21H(1)
1 (ω sBr)

)
er .

(2.56)

Proposition 2.9. The expressions of the first order variables (u, w, τ , p) for a point source in pressure waves are:

u =
(ω2

4 sP [P−1B−1]11H(1)
1 (ω sPr) + ω2

4 sB [P−1B−1]21H(1)
1 (ω sBr)

)
er ,

w =
(ω2WP

4 sP [P−1B−1]11H(1)
1 (ω sPr) + ω2WB

4 sP [P−1B−1]21H(1)
1 (ω sBr)

)
er .

The stress tensor is:
τ = τrrer ⊗ er + τθθeθ ⊗ eθ ,

with

τrr = − (2µfr + λfr + Mα2)
( i

4 (ω sP)2 [P−1B−1]11H(1)′
1 (ω sPr) + i

4 (ω sB)2 [P−1B−1]21H(1)′
1 (ω sBr)

)
− αM

( iWP

4 (ω sP)2 [P−1B−1]11H(1)′
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1 (ω sBr)

)
,

τθθ = − (λfr + Mα2)
( i

4 (ω sP)2 [P−1B−1]11H(1)′
1 (ω sPr) + i

4 (ω sB)2 [P−1B−1]21H(1)′
1 (ω sBr)

)
− αM

( iWP

4 (ω sP)2 [P−1B−1]11H(1)′
1 (ω sPr) + iWB

4 (ω sB)2 [P−1B−1]21H(1)′
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)
,
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and
p = M

( iWP

4 (ω sP)2 [P−1B−1]11H(1)′
1 (ω sPr) + iWB

4 (ω sB)2 [P−1B−1]21H(1)′
1 (ω sBr)

)
+ M α

( i
4 (ω sP)2 [P−1B−1]11H(1)′

1 (ω sPr) + i
4 (ω sB)2 [P−1B−1]21H(1)′

1 (ω sBr)
)
.

Proof. • The expression of the velocities u and w are obtained by deriving the displacements u and w given in
equation (2.56).

• To calculate the stress τ , we use the constitutive laws given in equation (1.10), and the expression of gradient
and divergence in polar coordinates:

∇ · u = ∂ur
∂r

+ 1
r

∂uθ
∂θ

= ∂ur
∂r

.

and

∇ u =

∂ur
∂r

1
r

∂ur
∂θ

∂uθ
∂r

1
r

∂uθ
∂θ

 =

∂ur
∂r

0
0 0

 ,

because uθ = 0 and u is independant of θ. This means that

τ = τrrer ⊗ er + τθθeθ ⊗ eθ

=
(

2µfr
∂ur
∂r

+ (λfr + Mα2)∂ur
∂r

+ αM
∂wr
∂r

)
er ⊗ er +

(
(λfr + Mα2)∂ur

∂r
+ αM

∂wr
∂r

)
eθ ⊗ eθ .

(2.58)
The radial derivative of H(1)

1 (ω s•r) is:

∂

∂r
H(1)

1 (ω s•r) = ω s•H(1)′
1 (ω s•r) = ω s•H(1)

0 (ω s•r) −
1
r

H(1)
1 (ω s•r) .

By injecting this in (2.58), we retrieve the expression of τ .

• For the pressure p, we use the last equation of (1.10) and use the expression of the displacements given in (2.56).

This solution will be used for a validation of the code. We give in Figure 2.25 the analytical solution obtained
for ux. The analytical solution has been constructed for an infinite medium. Hence, we do not take into account
reflections. However, for the representation of the solution, we restrict the solution to the square domain [−10m, 10m]×
[−10m, 10m]. On the figure, we observe mainly the wavefront corresponding to the P wave, because we are studying
the solid velocity.

Figure 2.25: Analytical solution for ux with the sources f = ∇δ , f̃ = 0 .
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2.6.2 Source in transverse wave
Now, we want to model a source producing only transverse wave. For this, we use the fact that curl∇· = 0 and
curl curl = −∆. We set f = curl δ , f̃ = 0 in equation (2.46). The Helmholtz equations (2.47) become(

−∆ − ω2 s2
P
)
χP = 0 ,(

−∆ − ω2 s2
B
)
χB = 0 ,(

−∆ − ω2 s2
S
)
χS = −s2

S [A−1]11 ∆δ .

By using the expression of the Green kernel given in equations (2.49) and (2.50), the potentials are

χP = 0 , χB = 0 ,

χS = −s2
S [A−1]11 ∆ i

4H(1)
0 (ω sSr) = s2

S [A−1]11

(
(ω sS)2 i

4H(1)
0 (ω sSr) + δ

)
.

Next, we replace the above equation in (2.46).

−ω2
(

u
w

)
+ µfr

detA

(
ρdyn 0
−ρf 0

)(
curlχS

0

)
= A−1

(
curl δ

0

)
,

⇒ −ω2
(

u
w

)
= − µfr

detA

(
ρdyn 0
−ρf 0

)(
curlχS

0

)
+ 1

detA

(
ρdyn −ρf
−ρf ρa

)(
curl δ

0

)
,

⇒ −ω2
(

u
w

)
= − µfr

detA

(
ρdyn 0
−ρf 0

)(
curlχS

0

)
+ 1

detA

(
ρdyn 0
−ρf 0

)(
curl δ

0

)
.

Note that
s2
S [A−1]11 = s2

S
ρdyn

detA = detA
µfr ρdyn

ρdyn

detA = 1
µfr

.

The curl of the potential χS is:

curlχS = s2
S [A−1]11

(
(ω sS)2 i

4curl H(1)
0 (ω sSr) + curl δ

)
,

which gives

−ω2
(

u
w

)
= − 1

detA

(
ρdyn 0
−ρf 0

)(
(ω sS)2 i

4curl H(1)
0 (ω sSr)

0

)
,

⇒
(

u
w

)
= s2

S
detA

i
4

(
ρdyn 0
−ρf 0

)(
curl H(1)

0 (ω sSr)
0

)
.

In polar coordinates, the curl of H(1)
0 (ω sSr) is

curl H(1)
0 (ω sSr) =


1
r

∂H(1)
0 (ω sSr)
∂θ

− ∂H(1)
0 (ω sSr)
∂r

 =
(

0

−ω sSH(1)′
0 (ω sSr)

)
=
(

0

ω sSH(1)
1 (ω sSr)

)
.

In the last equality, we have used the connection formula of Hankel functions, given in equation (2.55). This means
that the displacements u and w are given by

u = uθ eθ = ω s3
S ρdyn

detA
i
4 H(1)

1 (ω sSr) eθ ,

w = wθ eθ = − ω s3
S ρf

detA
i
4 H(1)

1 (ω sSr) eθ .
(2.64)



94CHAPTER 2. CONSTRUCTION AND ANALYSIS OF ANALYTICAL SOLUTIONS IN 2D ISOTROPIC MEDIA

Proposition 2.10. The expressions of the first order variables (u, w, τ , p) for a point source in transverse wave
are:

u = − s3
S ρdyn ω

2

4 detA H(1)
1 (ω sSr) eθ ,

w = s3
S ρf ω

2

4 detA H(1)
1 (ω sSr) eθ .

τ = τrθer ⊗ eθ + τrθeθ ⊗ er ,

with
τrθ = iµfr

s3
S ρdyn ω

4 detA

(
ω s•H(1)

0 (ω s•r) −
1
r

H(1)
1 (ω s•r)

)
,

and
p = 0 .

Proof. • The expression of the velocities u and w are obtained by deriving the displacements u and w given in
(2.64).

• For the stress τ , we use (1.10). In polar coordinates, we have

∇ · u = ∂ur
∂r

+ 1
r

∂uθ
∂θ

= 0 .

and

∇ u =

∂ur
∂r

1
r

∂ur
∂θ

∂uθ
∂r

1
r

∂uθ
∂θ
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 0 0
∂uθ
∂r

0

 .

This means that
τ = τrθer ⊗ eθ + τrθeθ ⊗ er ,

with
τrθ = µfr

∂uθ
∂r

.

The radial derivative of H(1)
1 (ω s•r) is:

∂
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H(1)

1 (ω s•r) = ω s•H(1)′
1 (ω s•r) = ω s•H(1)

0 (ω s•r) −
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Hence
τrθ = iµfr

s3
S ρdyn ω

4 detA

(
ω s•H(1)

0 (ω s•r) −
1
r

H(1)
1 (ω s•r)

)
.

• For the pressure, as the divergence of u and w is null, the pressure is equal to zero.

This solution will be used for a validation of the code. We give in Figure 2.26 the analytical solution obtained for
ux. As in the previous section, the analytical solution has been built considering an infinite medium. However, for
the representation of the solution, we restrict the solution to the square domain [−10m, 10m] × [−10m, 10m]. Here,
we observe only one circular wavefront, corresponding to the transverse wave. The wave propagation is in the vertical
direction, i.e., perpendicular to the observed field ux, because we consider a transverse wave, and it is in the opposed
direction to the one in Figure 2.25 where we considered longitudinal waves.
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Figure 2.26: Analytical solution for ux with sources f = curl δ , f̃ = 0 .

Conclusion
In this chapter, we have computed analytical solutions in two-dimensions for the following problems: bounded isotropic
poroelastic problem, scattering of plane wave in poroelastic medium by penetrable/impenetrable obstacles, fluid-solid
interaction problem and response to point-sources in infinite medium. As a first application of these formula, we gave
a description of a generic homogeneous solution for isotropic poroelastic equations, which includes outgoing solutions.
As a second application, we carried out numerical investigations on the well-posedness of the above problems. From our
investigations, the following came out. On bounded domains, the presence of eigenvalues does not come as a surprise
when there is no viscosity. However, what is interesting is that there are no eigenvalues with the current model of
viscosity. In fluid-elastic interaction problems, the presence of what is equivalent with Jones’ modes for poroelastic
interior is found without viscosity. However, for the same range of frequency, for a viscous medium, there are no longer
eigenvalues. These results are obtained for circular problems, they can be dependent on the considered geometry.

This study paves the way for future theoretical investigations of this question, such as the theoretical confirmation
of the absence of equivalent Jones’ modes. We used the analytical solutions described in this chapter to perform
analytical-numerical comparisons on an HDG method for poroelasticity, see Chapter 3. Moreover, we will make use of
the work on outgoing solution to construct low order radiation boundary conditions for isotropic poroelastic equations
in Chapter 4.
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Chapter 3

HDG method for anisotropic
poroelasticity

In the previous chapters, we have presented the phenomenon of poroelasticity and developed some analytical solutions
in porous media. In this chapter, we focus on the numerical simulation of the poroelastic equations.1 In terms
of numerical simulation, grid-based numerical methods have long demonstrated a high potential for solving wave
equations in complex media that may contain many heterogeneities of widely varying sizes. Works on porous media
have employed Finite Volume Method [84], Boundary Element Method [118], Finite Differences [131], continuous
Finite Element Method [121], and Spectral-element methods (SEM) [52, 98], a large majority of which being in the
time domain. In particular, SEM demonstrated a clear efficiency in the time-domain, when based on hexahedral
meshes. However, the representation of geological media is eased by using tetrahedral grids that are capable of more
easily reproducing the geometric and constitutive variations of the medium. This is a clear motivation to turn to finite
element methods authorizing tetrahedral meshes. Among them, Discontinuous Galerkin (DG) methods [49], initially
developed to solve fluid mechanics problems, have also been applied to wave propagation simulations in heterogeneous
media, both in time domain [39, 88, 122, 48, 133] and frequency domain [38, 50].

The DG methods have many advantages like good performance on unstructured and irregular meshes thanks to hp
adaptivity. More importantly, each DG element communicates only with its direct neighbours. On a given mesh, the
global matrix has thus a block structure, each block representing the interaction between two elements. This property
is also a good point in favor of using high-order approximations since increasing the order does not increase the number
of blocks of the matrix and does not modify the connectivity graph between these blocks. In addition, the DG block
structure makes the method easily parallelizable. However, using discontinuous basis functions results in a significant
increase in the number of degrees of freedom, so that the size of the overall discrete system is much larger than that
of the system associated with a continuous finite element method. This is a real disadvantage when working in the
frequency domain as one can easily reach the limits of direct solvers available in open-source that are essential to solve
the problem.2

Hence, given that there is an obvious need in reducing the size of the linear system to be solved, we propose to
consider a variant of DG methods which is qualified as hybridizable. They are DG methods amenable to hybridization
in the same sense as static condensation [32, 89, 65, 54]. Such methods require applying a local projection at the
element level in order to parameterize the solution in terms of numerical traces. Then, transmission conditions are
constructed to connect the original solution to numerical traces. The original solution is then reconstructed a posteriori
for negligible computational costs, cell by cell by solving local small-sized problems. Hybridizable DG (HDG) methods
have been introduced in two seminal papers [35, 124] and successfully developed for many problems, as for example
in [37, 101] for acoustics and elastodynamics, in [85, 53] for electromagnetism, in [20, 21, 65, 67] for time-harmonic
seismic waves. Note that here, we limit the citations only to wave problems. The HDG solution methodology relies
on the possibility of relating local unknowns at the element level to a so-called hybrid variable defined only on the
skeleton of the mesh (i.e., the set of edges in 2D and set of faces in 3D) by the mean of transmission conditions. In
this way, the HDG solution is obtained by solving a smaller global system for the hybrid variable and the solution is
reconstructed thanks to the solution of local systems in parallel.

As far as Biot consolidation model is concerned, the literature contains a lot of work on the finite element approxi-
mation of the Biot consolidation model (see e.g., [28, 96, 80, 114] and their references) but very few on the finite element

1This chapter is published in a reduced form in [11].
2We can mitigate the large size of the linear system by using an iterative solver. However, with an application in iterative inversion in

mind, we are more interested in a direct solver due to its multi right-hand-side features.
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solution of time-harmonic Biot equations. In two very recent works, Fu [57] and Hungria [76] have implemented the
HDG solution of poroelastic wave equations. Fu [57] considered the quasi-static Biot equations using a displacement-
pressure formulation. Hungria [76] dealt with both the time-dependent and time-harmonic Biot equations using a
displacement-stress-pressure formulation. Herein, we consider a formulation of Biot equations governing the frame
velocity, the relative fluid velocity, the pressure field, and the solid stress tensor, written in the frequency domain.
Our approach is closer to that of Hungria since we consider time-harmonic equations whereas Fu solved quasi-static
equations. It is however worth noting that we do not solve the same formulation as Hungria. As an advantage, the first
order formulation gives us access to velocities and stress tensor, which are the actual data displayed by experimental
acquisition. This is very important if we want to use the code in an inversion loop for characterizing the propagation
in the medium.

In this chapter, following Biot’s model [15], we present the development of an HDG method for the anisotropic
poroelastic wave equation set in the frequency domain. We consider time-harmonic waves having their time dependency
as eiωt. In this convention, we set ∂t → iω , i.e. s = 1 in (1.16). Let d be the dimension of D a physical domain in Rd

with boundary Γ. On the domain D, the unknowns (u , w , τ , p ) solve the following first-order system with external
forces fu and fw 

iωρau + iωρf w = ∇ · τ + fu ,

iωρfu + iωρdyn(ω) w = −∇p + fw ,

iωτ + iωαp = Cfr ε(u) ,

iω p = −M∇ ·w− Mα : ε(u) .

(3.1)

The first two equations are equations of motion, and the last two ones are constitutive laws. We have written the
velocity strain tensor ε = ∇u+(∇u)T

2 , and the operation : denotes the tensor scalar product, i.e., for tensors a and b,
a : b =

∑
i,j

aij bij .

On the external boundary Γ with outwardly direct unit normal vector n, we consider the boundary conditions with
vector f inc and scalar ginc denoting the exterior boundary forces,

Type 1
{
τ n = f inc ,

w · n = ginc ,
(3.2)

To alleviate the notation, we write equation (3.1) with the boundary conditions in (3.2) as

Lporo U =
(
fvol, gvol,0, 0

)T in D ,

T1 U =
(
f inc , ginc

)T on ∂D .

Here, we have introduced the notation of the poroelastic operator Lporo, and boundary operator T1. In this notation,
the unknown is U =

(
u,w, τ ,p

)T , and 0 in the volume right-hand-side is the zero (2nd-order) tensor. The right-
hand-side in the boundary conditions consists of the vector-valued function f inc and the scalar function ginc. Note
that we present in Appendix B.2 how to handle the presence of the different boundary types 1.20 in the HDG method.
In Chapter 4, we will also present the development of boundary conditions used to truncate infinite domains.

In this chapter, we present the HDG formulation in Section 3.1 and the associated discretization in two and three
dimensions in Sections 3.2 and 3.3 respectively. The description of the HDG solution methodology is accompanied by a
numerical analysis aiming at ensuring that the discrete problem is well-posed in Section 3.5. We carry out the analysis
of convergence and the conditioning of the system, see Section 3.5.2.3. We also provide some numerical experiments
to validate the method by comparing with analytical solutions developed in Chapter 2.

3.1 Formulation of HDG method
The poroelastic equations are complex and their numerical solution requires a lot of computational power, because
of the size of the system. We choose to use HDG method, to get high-order results with computational costs more
affordable than when using a standard DG method. As a DG method, the HDG method is usable on unstructured
meshes, with discontinuous basis functions. This is also a method on which we can use hp-adaptivity and that is
easily parallelizable because the calculations can be done elementwise. The main drawback of DG methods is the
large number of degrees of freedom compared to finite element methods, which increases the computational cost. In
HDG methods, the unknowns are expressed as functions of a hybrid unknown, only defined on the boundaries of the
elements [81]. The hybrid unknown is taken as a Lagrange multiplier that satisfies a global system defined from the
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surfacic degrees of freedom attached to the boundaries of the elements. This reduces the number of degrees of freedom
[20].

3.1.1 Notations
On a domain D of dimension d, we will work with the following function spaces,

L2(D), the space of square-integrable functions on the domain D ,

V p(D), the set of polynomials of degree at most p on D ,

V p(D) = (V p(D))d ,

Σp(D) = {τ ∈ (V p(D))d2
|τ symmetric } .

(3.4)

We next consider a triangulation Th of the domain D. K denotes an element of the mesh, which is a triangle in 2D
and a tetrahedron in 3D. We denote by F a face of the element K, and n stands for the unit normal vector to F .
Associated to triangulation Th, we define the following spaces:

V ph = {v ∈ L2(D) : v|K ∈ V p(K) , ∀K ∈ Th} ,

V p
h = {v ∈ (L2(D))d : v|K ∈ V p(K) , ∀K ∈ Th} ,

Σp
h = {τ ∈ L2(D)d2

: τ |K ∈ Σp(K) , ∀K ∈ Th} ,

Mh = {ξ ∈ L2(Fh) : ξ|F ∈ V p(F ) , ∀K ∈ Fh} ,

Mh = {η ∈ (L2(Fh))d : η|F ∈ (V p(F ))d , ∀K ∈ Fh} .

(3.5)

Remark 3.1. Note that we strongly impose the symmetry on the stress tensor τ , which prevents the potential loss of
half an order described in [34] and [58].

The jumps J·K are defined on an interior face F = ∂K ∩ ∂K ′ as

Jw · nK = wK · nK + wK′ · nK
′
, Jτ nK = τK nK + τK

′
nK

′
, (3.6)

and on a boundary face,
Jw · nK = wK · nK , Jτ nK = τK nK . (3.7)

3.1.2 Local problem
We consider an element K of Th, and an exact solution of (3.1) on K denoted by (u,w, τ ,p). Define the following test
functions: (ũ, w̃, τ̃ , p̃) ∈ (V p(K)× V p(K)×Σp(K)× V p(K)). The integration on an element of (3.1) gives:∫

K

iω ρa u · ũ +
∫
K

iω ρf w · ũ −
∫
K

(∇ · τ ) · ũ =
∫
K

fvol · ũ ,

∫
K

iω ρf u · w̃ +
∫
K

iω ρdyn w · w̃ +
∫
K

(∇ p) · w̃ =
∫
K

gvol · w̃ ,

∫
K

iω τ : τ̃ +
∫
K

iω pα : τ̃ −
∫
K

(Cfrε(u)) : τ̃ = 0 ,

∫
K

iω p p̃ +
∫
K

M ∇ ·w p̃ +
∫
K

M α : ε(u) p̃ = 0 .

By integrating by parts, we have:∫
K

iω ρa u · ũ +
∫
K

iω ρf w · ũ +
∫
K

τ : ∇ ũ −
∫
∂K

τ̂ n · ũ =
∫
K

fvol · ũ ,
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K

iω ρf u · w̃ +
∫
K

iω ρdyn w · w̃ −
∫
K

p∇ · w̃ +
∫
∂K

p̂n · w̃ =
∫
K

gvol · w̃ ,

∫
K

iω τ : τ̃ +
∫
K

iω pα : τ̃ +
∫
K

u · (∇ · (Cfrτ̃ )) −
∫
∂K

û · (Cfr τ̃ n) = 0 ,

∫
K

iω p p̃ −
∫
K

M w · ∇p̃ +
∫
∂K

M (ŵ · n) p̃ −
∫
K

M (αu) · ∇ p̃ +
∫
∂K

M (αû) · n p̃ = 0 .

In the above equation, û, ŵ, τ̂ , p̂ are the numerical traces on the faces of the element K of u, w, τ , p. In addition,∫
K

(Cfrε(uh)) : τ̃ =
∫
K

ε(uh) : Cfrτ̃ because Cfr is symmetric.

Introduction of the trace variables
The exact solution (u,w, τ ,p) on K is approximated by (uh, wh, τh, ph) ∈ (V p

h × V
p
h ×Σp

h × V
p
h ). Their traces

on ∂K are approximated by numerical traces (ûh, ŵh · n, τ̂hn, p̂h). The principle of HDG consists in choosing two
traces, one among the ”solid” group, τ̂hn and ûh, and one among the ”fluid” group ŵh ·n and p̂h, and replacing them
by auxiliary unknowns defined only on the edges of the element. This choice should ensure the well-posedness of the
local problem when the auxiliary unknowns are used as boundary conditions. We recall that for the acoustic equation,
the most common choice is p̂h [67], while for the elastic equation, ûh [21] is chosen. For the considered poroelastic
equations, there is no particular justification to prefer p̂h to ŵh · n in the fluid group since both traces are scalar, so
that the size of the resulting global system is the same for both choices, and such a choice has no particular impact
on the accuracy.

Following the common choice, we have chosen to define the two unknowns λ1 ∈ Mh, λ2 ∈ Mh to replace the
numerical traces ûh and p̂h:

λ1 = ûh, λ2 = p̂h, ∀F ∈ Fh .

The traces λ1 and λ2 are the principal unknowns of the problem that we solve. Then, we must define the numerical
traces of the ’secondary’ unknowns τ̂hn and ŵh · n. These numerical traces are defined as an approximation of the
continuous traces with an additional penalization term that guarantees the order of convergence of the method. In
acoustics, this penalization term is proportional to p̂h − λ [67] while in elasticity, it is proportional to ûh − λ [21].
Thus, the most natural choice for the considered poroelastic problem should be to penalize the trace of τ̂hn by a term
proportional to ûh − λ1 and the trace of ŵh by a term proportional to p̂h − λ2. However, since all the unknowns are
coupled, we propose instead to define (τ̂hn, ŵh · n) asτ̂hn = τhn− S1(uh − λ1)− (ph − λ2)S3n ,

ŵh · n = wh · n−
(
(ph − λ2)S2n

)
· n− S4

(
(uh − λ1)

)
· n ,

(3.10)

where S1, S2, S3, S4 are called the stabilization matrices, with S1 representing the stabilization on the solid frame,
S2 on the fluid, while S3 and S4 are associated with the coupling of these two materials that compose the porous
medium.
Remark 3.2. Note that the fact that we use four penalization matrices instead of two, as in the works [57] and [76],
does not impact the computational cost of the methods. Indeed, this will only change the value of the coefficients of
the global matrix, but not its profile. In Section 3.5.2.2, we will analyze the influence of these four parameters on
the accuracy of the scheme and we will show that they are all necessary to guarantee the order of convergence of our
formulation.

The numerical traces are replaced by their expressions (3.10) in (3.9) to give:∫
K

iω ρKa uh · ũ +
∫
K

iω ρKf wh · ũ +
∫
K

τh : ∇ ũ −
∫
∂K

(τh n) · ũ

+
∫
∂K

S1 (uh − λ1) · ũ +
∫
∂K

(ph − λ2) (S3 n) · ũ =
∫
K

fKvol · ũ ,

∫
K

iω ρKf uh · w̃ +
∫
K

iω ρKdyn wh · w̃ −
∫
K

ph∇ · w̃ +
∫
∂K

λ2 n · w̃ =
∫
K

gKvol · w̃ ,
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K

iω τh : τ̃ +
∫
K

iωαKph : τ̃ +
∫
K

uh · ∇ · (CK
fr τ̃ ) −

∫
∂K

λ1 ·CK
fr τ̃ n = 0 ,

∫
K

iω ph p̃ −
∫
K

M wh · ∇p̃ +
∫
∂K

MK (wh · n) p̃ −
∫
∂K

MK (ph − λ2) (S2 n) · n p̃

−
∫
∂K

MK S4 (uh − λ1) · n · p̃ −
∫
K

MK (αK uh) · ∇ p̃ +
∫
∂K

MK (αK λ1) · n p̃ = 0 .

By integrating by parts the first and last equation of the above system, we obtain the local problem:∫
K

iω ρKa uh · ũ +
∫
K

iω ρKf wh · ũ −
∫
K

(∇ · τh) · ũ +
∫
∂K

S1 (uh − λ1) · ũ+
∫
∂K

(ph − λ2) (S3 n) · ũ =
∫
K

fKvol · ũ ,

(3.12a)

∫
K

iω ρKf uh · w̃ +
∫
K

iω ρKdyn wh · w̃ −
∫
K

ph∇ · w̃ hathathat+
∫
∂K

λ2 n · w̃ =
∫
K

gKvol · w̃ , (3.12b)

∫
K

iω τh : τ̃ +
∫
K

iωαph : τ̃ +
∫
K

uh · ∇ · (CK
fr τ̃ −

∫
∂K

λ1 · (CK
fr τ̃n) = 0 , (3.12c)

∫
K

iω ph p̃ +
∫
K

MK ∇ · wh p̃ −
∫
∂K

MK (ph − λ2) (S2 n) · np̃ −
∫
∂K

MK S4(uh − λ1) · n p̃

−
∫
K

MK (α · uh) · ∇ p̃ +
∫
∂K

MK (αλ1) · n p̃ = 0 . (3.12d)

3.1.3 Transmission conditions
The HDG formulation is established by connecting the local problem with two transmission conditions at the interfaces
of the mesh. Let (η, ξ) ∈Mh × Mh be two test-functions defined on the faces of the element K. The transmission
conditions are: ∑

F∈Fh

∫
F

Jτ̂h nK · η =
∑

F∈Fext

∫
F

f inc · η ,
∑
F∈Fh

∫
F

Jŵh · nK ξ =
∑

F∈Fext

∫
F

ginc ξ , (3.13)

where the jumps have been defined in (3.6) and (3.7).

3.2 Discretization using HDG method in two dimensions
The following section details the two-dimensional discretization of the HDG method in the (x, y) plane. In general
formulation of HDG [68, 20, 21, 85], the stabilization matrices S are just required to be positive definite. However,
in practice, they are mostly set to be a scalar times the identity matrix. Hence, from now on, we assume that the
stabilization matrices in the HDG formulation, cf. (3.10), are diagonal, i.e., Si = γi I for i = 1, 4. In this way,
expression (3.10) simplifies toτ̂h n = τh n − γ1(uh − λ1) − γ3 (ph − λ2)n ,

ŵh · n = wh · n − γ2 (ph − λ2) − γ4 (uh − λ1) · n .
(3.14)

In the formulation, the components of the test functions are decomposed in the basis functions of Vp as ϕKi for ũ, w̃, τ̃ , p̃
and ψFj for η, ξ. The local solutions are expressed along x and y directions:

uh =
(

uKx
uKy

)
, wh =

(
wKx
wKy

)
, τh =

(
τKxx τKxy

τKxy τKyy

)
.
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They are decomposed as:

uKl =
dKi∑
j=1

uKl,jϕKj , wKl =
dKi∑
j=1

wKl,jϕKj , τKkl =
dKi∑
j=1

τKkl,jϕ
K
j , pKh =

dKi∑
j=1

pKϕKj , (3.15)

where dKi denotes the number of degrees of freedom of an element, and with l = x, y and k = x, y. The local Lagrange
unknowns are decomposed as follows:

λF1l =
dFi∑
j=1

λ1l
F
j
ψFj , λF2 =

dFi∑
j=1

λ2
F
j
ψFj , with l = x, y , (3.16)

where dFi denotes the number of degrees of freedom of an edge. In (3.15), each component is considered as a vector of
the form uKl = (uKl,1, . . . , uK,dK

i

)T for l = x, y. Similarly, every local component of the unknowns in (3.16) is written as:
λ1l

F = (λ1l
F
l,1, . . . , λ1l

F
l,dF
i

)T , with l = x, y. We define the two unknown vectors WK and ΛK respectively of size 8 dKi
and 9 dFi as:

WK = (uKx , uKy , wKx , wKy , τKxx, τKyy, τKxy, pK)T ,
and

ΛK = (λβ(K,1)
1x , λ

β(K,2)
1x , λ

β(K,3)
1x , λ

β(K,1)
1y λ

β(K,2)
1y , λ

β(K,3)
1y , λ

β(K,1)
2 , λ

β(K,2)
2 , λ

β(K,3)
2 )T ,

where β(K, f) is the global index of the f -th face of the element K.
We also define the following elementary matrices MK , DKv , EF , JFv of size dKi × dKi , FF , QFv of size dKi × dFi , and

GF , HFv of size dFi × dFi :

MK
ij =

∫
K

ϕKi ϕ
K
j dX , DKvij =

∫
K

ϕKj
∂ϕKi
∂v

dX , EFij =
∫
F

ϕKi ϕ
K
j dS , JFvij =

∫
F

ϕKi ϕ
K
j nv dS ,

FFij =
∫
F

ψFj ϕ
K
i dS , QFvij =

∫
F

ψFj ϕ
K
i nv dS , GFij =

∫
F

ψFj ψ
F
j dS , HFvij =

∫
F

ψFi ψ
F
j nv dS ,

(3.18)

with v = x, y. Moreover, we define four elementary source vectors of size dKi(
CK1x

)
i

=
∫
K

fKvol x ϕ
K
i ,

(
CK1y

)
i

=
∫
K

fKvol y ϕ
K
i ,

(
CK2x

)
i

=
∫
K

gKvol x ϕ
K
i ,

(
CK2y

)
i

=
∫
K

gKvol y ϕ
K
i .

Remark 3.3. In using straight-edge meshes, and Lagrangian polynomials for approximation spaces, the components of
the above local matrices are computed by the standard techniques in which they are rewritten in terms of integrals on
the reference element or reference edge, (triangle or the line interval [0, 1]) with the reference Lagrangian polynomials.

3.2.1 Local problem
Because of the size of the system of equations, we present separately the discretization of each equation of the local
problem (3.12). Using the above representation of the local unknowns, each equation is written in terms of the matrices
defined in (3.18), (for more details, see [8]).
(a) The equation of motion (3.12a)

Taking • = x, y, discretizing equation (3.12a) along the x and y component gives:∫
K

iω ρKa uK• ϕKi +
∫
K

iω ρKf wK• ϕKi −
∫
K

∂τKx•
∂x

ϕKi −
∫
K

∂τK•y
∂y

ϕKi +
∫
∂K

γ1 uK• ϕKi −
∫
∂K

γ1 λ1•ϕ
K
i

+
∫
∂K

γ3 pKh n• ϕKi −
∫
∂K

γ3 λ2 n• ϕ
K
i =

∫
K

fKvol • ϕ
K
i .

In terms of the local matrices defined in equation (3.18) and the unknown vectors in (3.17), the above equations
are

iω ρKa MKuK• + iω ρKf MKwK• − (DKx )T τKx• − (DKy )T τK•y +
3∑

f=1
γ1 Eβ(K,f) uK• −

3∑
f=1

γ1 Fβ(K,f) λ
β(K,f)
1•

+
3∑

f=1
γ3 Jβ(K,f)

• pK −
3∑

f=1
γ3 Qβ(K,f)

• λ
β(K,f)
2 = CK1• .
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(b) The second equation of motion (3.12b)
Similarly, equation (3.12b) is discretized along x and y direction∫

K

iω ρKf uK• ϕKi +
∫
K

iω ρ̃K wK• ϕKi −
∫
K

pKh
∂ϕKi
∂•

+
∫
∂K

λ2 n• ϕ
K
i =

∫
K

fw• ϕ
K
i ,

and gives in terms of the local matrices and the unknown vectors defined respectively in equations (3.18) and
(3.17):

iω ρKf MKuK• + iω ρKdyn MKwK• − DK• pK −
3∑

f=1
Qβ(K,f)
• λ

β(K,f)
2 = CK2• , with • = x, y .

(c) The first constitutive law (3.12c)
The constitutive law equation given in (3.12c) is discretized as well and the equations are expressed in terms of
local matrices and the unknown vectors defined in equations (3.17) and (3.18):

iωMK τKxx + iωαK11MKpK + CK11DKx uKx + CK13DKy uKx + CK13DKx uKy + CK12DKy uKy

−
3∑

f=1
λ
β(K,f)
1x (CK11Qβ(K,f)

x + CK13Qβ(K,f)
y )−

3∑
f=1

λ
β(K,f)
1y (CK13Qβ(K,f)

x + CK12Qβ(K,f)
y ) = 0 ,

iωMK τKyy + iω αK22 MK pK + CK12DKx uKx + CK23DKy uKx + CK23DKx uKy + CK22DKy uKy

−
3∑

f=1
λ
β(K,f)
1x (CK12Qβ(K,f)

x + C23Qβ(K,f)
y ) −

3∑
f=1

λ
β(K,f)
1y (C23Qβ(K,f)

x + C22Qβ(K,f)
y ) = 0 ,

and

iωMK τKxy + iω αK12 MK pK + CK13DKx uKx + CK33DKy uKx + CK33DKx uKy + CK23DKy uKy

−
3∑

f=1
λ
β(K,f)
1x (CK13Qβ(K,f)

x + CK33Qβ(K,f)
y ) −

3∑
f=1

λ
β(K,f)
1y (CK33Qβ(K,f)

x + CK23Qβ(K,f)
y ) = 0 .

(d) The second constitutive law (3.12d)
The discretization of equation (3.12d) reads:∫
K

iω pKh ϕKi +
∫
K

MK ∂wKx
∂x

ϕKi +
∫
K

MK
∂wKy
∂y

ϕKi −
∫
∂K

MK pKh γ2 ϕ
K
i +

∫
∂K

MK λ2 γ2 ϕ
K
i −

∫
∂K

MK γ4uKx nx ϕKi

−
∫
∂K

MK γ4uKy ny ϕKi +
∫
∂K

MK γ4 λ1x nx ϕ
K
i +

∫
∂K

MK γ4 λ1y nyϕ
K
i −

∫
K

MK (α11uKx + α12uKy )∂ϕ
K
i

∂x

−
∫
K

MK (α12uKx + α22uKy )∂ϕ
K
i

∂y
+
∫
K

MK (α11λ1x + α12λ1y)nx ϕKi +
∫
K

MK (α12λ1x + α22λ1y)ny ϕKi = 0 ,
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and writes in terms of the local matrices defined in equation (3.18) and the unknown vectors in (3.17):

iωMK pK +MK(DKx )T wKx +MK(DKy )T wKy −
3∑

f=1
MK γ2 Eβ(K,f)pK +

3∑
f=1

MK γ2 λ
β(K,f)
2 Fβ(K,f)

−
3∑

f=1
MK γ4(Jβ(K,f)

x uKx + Jβ(K,f)
y uKy ) +

3∑
f=1

MK γ4(Qβ(K,f)
x λ

β(K,f)
1x + Qβ(K,f)

y λ
β(K,f)
1y )

−MK αK11 DKx uKx −MK αK12DKy uKy +
3∑

f=1
MK(α11λ

β(K,f)
1x + αK12λ

β(K,f)
1y )Qβ(K,f)

x

−MK αK12 DKy uKx −MK αK22 DKx uKy +
3∑

f=1
MK(αK12λ

β(K,f)
1x + αK22 λ

β(K,f)
1y )Qβ(K,f)

y = 0 .

Local linear system
The local system obtained from the discretization of (3.12) can be written as:

AKWK + BKΛK = CKsource ,

where WK and ΛK have been defined in (3.17). In the above equation, AK is of dimension 8 dKi × 8dKi , BK of size
8 dKi × 9dFi , and CKsource is the matrix of the external forces of dimension 8 dKi .

WK is composed of 8 blocks corresponding to different types of unknowns, we hence decompose the elementary
matrix AK in 8 columns of size 8 dKi × dKi :

AK =
(
AK1 AK2 AK3 AK4 AK5 AK6 AK7 AK8

)
, that are detailed in Appendix B.1.1.

Similarly, based on the structure of the unknown ΛK in three times three sub-blocks corresponding to the three
Lagrange unknowns decomposed on the three faces of the triangle, we write BK in 9 columns of size 8 dKi × dFi :

BK =
(
Bλ1x,1 Bλ1x,2 Bλ1x,3 Bλ1y,1 Bλ1y,2 Bλ1y,3 Bλ2,1 Bλ2,2 Bλ2,3

)
, where BK is given in Appendix B.1.1.

Finally the local source vector is:(
CKsource

)T =
(
CK1x CK1y CK2x CK2y 0 0 0 0

)
.

3.2.2 Transmission conditions
We recall the transmission conditions given by equation (3.13):∑

F∈Fh

∫
F

Jτ̂h nK · η =
∑

F∈Fext

∫
F

f inc · η ,
∑
F∈Fh

∫
F

Jŵh · nK ξ =
∑

F∈Fext

∫
F

ginc ξ ,

which are equivalent to

∑
K∈Th

∫
∂K

(τ̂h n) ·η =
∑

F∈Fext

∫
F

f inc ·η , (3.21a)
∑
K∈Th

∫
∂K

ŵh · n ξ =
∑

F∈Fext

∫
F

ginc ξ . (3.21b)

The above equations are expressed using the definition of the numerical traces on a face in (3.10) and the definition
of the jump on an interior face in (3.6). Equation (3.21a) gives:

∑
K∈Th

∫
∂K

τKh n
K · η −

∑
K∈Th

∫
∂K

S1(uKh − λ1) · η −
∑
K∈Th

∫
∂K

(pKh − λ2)S3n
K · η =

∑
F∈Fext

∫
F

f inc · η , (3.22a)
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and (3.21b) is expressed as:∑
K∈Th

∫
∂K

wK
h ·nK ξ−

∑
K∈Th

∫
∂K

(pKh −λ2)(S2n
K) ·nK ξ−

∑
K∈Th

∫
∂K

S4(uKh −λ1) ·nK · ξ =
∑

F∈Fext

∫
F

ginc ξ . (3.22b)

These equations are discretized on (x, y) by decomposing the unknowns using (3.15) and (3.16) and replacing the
test functions by the basis functions. They are then expressed in terms of the elementary matrices defined in (3.18).

The first transmission equation (3.22a) The discretization of (3.22a) along x and y direction is, taking • = x, y:∑
K∈Th

∫
∂K

τKx• n
K
x ϕ

K
j ψ

β(K,f)
i dS +

∑
K∈Th

∫
∂K

τK•y n
K
y ϕ

K
j ψ

β(K,f)
i dS −

∑
K∈Th

∫
∂K

γ1 ϕ
K
j uK• ψ

β(K,f)
i dS

+
∑
K∈Th

∫
∂K

γ1 ψ
β(K,f)
j λK1• ψ

β(K,f)
i dS −

∑
K∈Th

∫
∂K

γ3n
K
• pKϕKj ψ

β(K,f)
i dS

+
∑
K∈Th

∫
∂K

γ3n
K
• λ

K
2 ψ

β(K,f)
j ψ

β(K,f)
i dS =

∑
F∈Fext

∫
F

finc,• ψ
β(K,f)
i dS .

This is expressed in terms of the local matrices defined in equation (3.18) and the unknown vectors in (3.17) as:∑
K∈Th

(
(Qβ(K,f)

x )T τKx• + (Qβ(K,f)
y )T τK•y − γ1 (Fβ(K,f))T uK• + γ1 Gβ(K,f) λ

β(K,f)
1•

− γ3 (Qβ(K,f)
• )T pK + γ3 Hβ(K,f)

• λ
β(K,f)
2

)
=

∑
F∈Fext

∫
F

finc,• ψ
β(K,f)
i dS .

(3.23)

The second transmission condition (3.22b) Similarly, the discretization of equation (3.22b) is∫
F

wKx ϕKj nKx ψ
β(K,f)
i +

∫
F

wKy ϕKj nKy ψ
β(K,f)
i −

∫
F

pK ϕKj γ2 ψ
β(K,f)
i +

∫
F

λK2 ψ
β(K,f)
j γ2 ψ

β(K,f)
i

−
∫
F

uKx ϕKj γ4 n
K
x ψ

β(K,f)
i −

∫
F

uKy ϕKj γ4 n
K
y ψ

β(K,f)
i +

∫
F

λK1x ψ
β(K,f)
j γ4 n

K
x ψ

β(K,f)
i

+
∫
F

λK1y ψ
β(K,f)
j γ4 n

K
y ψ

β(K,f)
i = 0 ,

and writes in terms of the local matrices and the unknown vectors defined respectively in equations (3.18) and (3.17):∑
K∈Th

(
(Qβ(K,f)

x )T wKx + (Qβ(K,f)
y )T wKy − (Fβ(K,f))T pK γ2 + Gβ(K,f)λK2 γ2 − (Qβ(K,f)

x )TuKx γ4

−(Qβ(K,f)
y )TuKy γ4 + Hβ(K,f)

x λK1x γ4 + Hβ(K,f)
y λK1y γ4

)
=

∑
F∈Fext

∫
F

ginc ψ
β(K,f)
i dS .

(3.24)

Global system
Let Nface be the number of edges of the mesh. We define the global vector

Λ = (λ1
1, λ

1
2, ...., λ

Nface
1 , λNface

2 ) .

Define also the local trace operator AHDG linking the local degrees of freedom on an element K to the global degrees
of freedom of the Lagrange multiplier Λ. This means, for an element K, that

AKHDG Λ = ΛK .

The transmission conditions (3.23) and (3.24) are summed on all the faces of each element to give:∑
K∈Th

(AKHDG)T
(
PKWK + TKAKHDGΛ

)
= Sinc ,

with PK and TK two matrices respectively of dimension 9 dFi × 8 dKi and 9 dFi × 9 dFi given in Appendix B.1.1.
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3.3 Discretization using HDG method in three dimensions
In this section, we detail the discretization of the HDG method in three dimensions. Similarly as for Section 3.2, we
assume that the stabilization matrices in the HDG formulation are diagonal, i.e. Si = γi I for i = 1, 4. Hence, the
expression of the numerical traces defined in equation (3.10) simplifies to:τ̂h n = τh n − γ1(uh − λ1) − (ph − λ2) γ3n ,

ŵh · n = wh · n − γ2 (ph − λ2) − γ4 (uh − λ1) · n .

In the formulation, the components of the test functions are decomposed in the basis functions of Vp as ϕKi for ũ, w̃, τ̃ , p̃
and ψFj for η, ξ. The local solutions are expressed along x,y and z directions:

uh =


uKx
uKy
uKz

 , wh =


wKx
wKy
wKz

 , τh =


τKxx τKxy τKxz

τKxy τKyy τKyz

τKxz τKyz τKzz

 ,

and they are decomposed as:

uKl =
dKi∑
j=1

uKl,jϕKj , wKl =
dKi∑
j=1

wKl,jϕKj , τKkl =
dKi∑
j=1

τKkl,jϕ
K
j , pKh =

dKi∑
j=1

pKϕKj , (3.25)

with dKi the number of degrees of freedom of an element, and l, k = x, y, z. Similarly, we decompose the local Lagrange
unknowns as:

λF1l =
dFi∑
j=1

λ1l
F
j
ψFj , λF2 =

dFi∑
j=1

λ2
F
j
ψFj , with l = x, y, z , (3.26)

where dFi denotes the number of degrees of freedom of an edge. In (3.25), each component is considered as a vector of
the form uKl = (uKl,1, . . . , uK,dK

i

)T with l = x, y, z, and every local component of the unknowns in (3.26) is written as:
λ1l

F = (λ1l
F
l,1, . . . , λ1l

F
l,dF
i

)T , for l = x, y, z. The unknown vectors WK and ΛK , respectively of size 13 dKi and 16 dFi ,
are defined as:

WK = (uKx , uKy , uKz , wKx , wKy , wKz , τKxx, τKyy, τKzz, τKyz, τKxz, τKxy, pK)T ,

and
ΛK =

(
λ
β(K,1)
1x , λ

β(K,2)
1x , λ

β(K,3)
1x , λ

β(K,4)
1x , λ

β(K,1)
1y λ

β(K,2)
1y , λ

β(K,3)
1y , λ

β(K,4)
1y ,

λ
β(K,1)
1z λ

β(K,2)
1z , λ

β(K,3)
1z , λ

β(K,4)
1z , λ

β(K,1)
2 , λ

β(K,2)
2 , λ

β(K,3)
2 , λ

β(K,4)
2

)T
,

with β(K, f) the global index of the f -th face of the element K.
We recall the following elementary matrices defined in equation (3.18) MK , DKv , EF , JFv of size dKi ×dKi , FF , QFv

of size dKi × dFi , and GF , HFv of size dFi × dFi , for v = x, y, z:

MK
ij =

∫
K

ϕKi ϕ
K
j dX , DKvij =

∫
K

ϕKj
∂ϕKi
∂v

dX , EFij =
∫
F

ϕKi ϕ
K
j dS , JFvij =

∫
F

ϕKi ϕ
K
j nv dS ,

FFij =
∫
F

ψFj ϕ
K
i dS , QFvij =

∫
F

ψFj ϕ
K
i nv dS , GFij =

∫
F

ψFj ψ
F
j dS , HFvij =

∫
F

ψFi ψ
F
j nv dS .

(3.28)

Moreover, the six elementary source vectors of size dKi are defined as:

(
CK1x

)
i

=
∫
K

fKvol x ϕ
K
i ,

(
CK1y

)
i

=
∫
K

fKvol y ϕ
K
i ,

(
CK1z
)
i

=
∫
K

fKvol z ϕ
K
i ,

(
CK2x

)
i

=
∫
K

gKvol x ϕ
K
i ,

(
CK2y

)
i

=
∫
K

gKvol y ϕ
K
i ,

(
CK2z
)
i

=
∫
K

gKvol z ϕ
K
i .
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3.3.1 Local problem
In the following, we present the discretization of each equation of the local problem (3.12). Using the above represen-
tation of the local unknowns, each equation is written in terms of the matrices defined in (3.28).

(a) The equation of motion (3.12a)
Taking • = x, y, z, the discretization of equation (3.12a) along the x, y and z component is:∫

K

iω ρKa uK• ϕKi +
∫
K

iω ρKf wK• ϕKi −
∫
K

∂τKx•
∂x

ϕKi −
∫
K

∂τK•y
∂y

ϕKi +
∫
∂K

γ1 uK• ϕKi −
∫
∂K

γ1 λ1•ϕ
K
i

+
∫
∂K

γ3 pKh n• ϕKi −
∫
∂K

γ3 λ2 n• ϕ
K
i =

∫
K

fKvol • ϕ
K
i .

In terms of the local matrices defined in equation (3.18) and the unknown vectors in (3.17), the above equations read

iω ρKa MKuK• + iω ρKf MKwK• − (DKx )T τKx• − (DKy )T τK•y +
3∑

f=1
γ1 Eβ(K,f) uK• −

3∑
f=1

γ1 Fβ(K,f) λ
β(K,f)
1•

+
3∑

f=1
γ3 Jβ(K,f)

• pK −
3∑

f=1
γ3 Qβ(K,f)

• λ
β(K,f)
2 = CK1• .

(b) The second equation of motion (3.12b)
Similarly, equation (3.12b) is discretized along x, y and z directions∫

K

iω ρKf uK• ϕKi +
∫
K

iω ρ̃K wK• ϕKi −
∫
K

pKh
∂ϕKi
∂•

+
∫
∂K

λ2 n• ϕ
K
i =

∫
K

fw• ϕ
K
i ,

and gives in terms of the local matrices and the unknown vectors defined respectively in (3.27) and(3.28):

iω ρKf MKuK• + iω ρKdyn MKwK• − DK• pK −
3∑

f=1
Qβ(K,f)
• λ

β(K,f)
2 = CK2• , with • = x, y .

(c) The first constitutive law (3.12c)
The constitutive law given in (3.12c) is discretized as well. Using the Voigt notation for τ and α, with • = 1, 6, we
have: ∫

K

iω τ• ϕKi +
∫
K

iω α•pKh ϕKi +
∫
K

(
C• 1

∂ϕKi
∂x

+ C• 6
∂ϕKi
∂y

+
∫
K

C• 5
∂ϕKi
∂z

)
uKx

+
∫
K

(
C• 6

∂ϕKi
∂x

+ C• 2
∂ϕKi
∂y

+ C• 4
∂ϕKi
∂z

)
uKy +

∫
K

(
C• 5

∂ϕKi
∂x

+ C• 4
∂ϕKi
∂y

+ C• 3
∂ϕKi
∂z

)
uKz

−
∫
∂K

(
C• 1 ϕ

K
i nx + C• 6 ϕ

K
i ny + C• 5 ϕ

K
i nz

)
λ1x −

∫
∂K

(
C• 6 ϕ

K
i nx + C• 2 ϕ

K
i ny + C• 4 ϕ

K
i nz

)
λ1y

−
∫
∂K

(C• 5 ϕ
K
i nx + C• 4 ϕ

K
i ny + C• 3 ϕ

K
i nz)λ1z = 0 .
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Then, the equations are expressed in terms of local matrices and the unknown vectors defined in (3.27) and (3.28):

iωMK τK• + iωαK• MKpK +
(
CK• 1 DKx + CK• 6DKy + CK• 5DKy

)
uKx +

(
CK• 6DKx + CK• 2DKy + CK• 4DKz

)
uKy

+
(
CK• 5DKx + CK• 4DKy + CK• 3DKz

)
uKz −

4∑
f=1

(
CK• 1Qβ(K,f)

x + CK• 6Qβ(K,f)
y + CK• 5Qβ(K,f)

z

)
λ
β(K,f)
1x

−
4∑

f=1

(
CK• 6Qβ(K,f)

x + CK• 2Qβ(K,f)
y + CK• 4Qβ(K,f)

z

)
λ
β(K,f)
1y

−
4∑

f=1

(
CK• 5Qβ(K,f)

x + CK• 4Qβ(K,f)
y + CK• 3Qβ(K,f)

z

)
λ
β(K,f)
1z = 0 .

(d) The second constitutive law (3.12d)
The discretization of equation (3.12d) gives∫

K

iωpKh ϕKi +
∫
K

M
∂wKx
∂x

ϕKi +
∫
K

M
∂wKy
∂y

ϕKi +
∫
K

M
∂wKz
∂z

ϕKi −
∫
∂K

MpKh γ2 ϕ
K
i +

∫
∂K

Mλ2γ2 ϕ
K
i

−
∫
∂K

Mγ4uKx nxϕKi −
∫
∂K

Mγ4uKy nyϕKi −
∫
∂K

Mγ4uKz nzϕKi +
∫
∂K

Mγ4λ1x nxϕ
K
i +

∫
∂K

Mγ4λ1y nyϕ
K
i

+
∫
∂K

Mγ4λ1z nzϕ
K
i −

∫
K

M(α11uKx + α12uKy + α13uKz )∂ϕ
K
i

∂x
−
∫
K

M(α12uKx + α22uKy + α23uKz )∂ϕ
K
i

∂y

−
∫
K

M(α13uKx + α23uKy + α33uKz )∂ϕ
K
i

∂z
+
∫
K

M(α11λ1x + α12λ1y + α13λ1z)nxϕKi

+
∫
K

M(α12λ1x + α22λ1y + α23λ1z)nyϕKi +
∫
K

M(α13λ1x + α23λ1y + α33λ1z)nzϕKi = 0 .

The above equation is expressed using the local matrices defined in equation (3.28) and the unknown vectors in (3.27)
as:

iωMK pK +MK(DKx )T wKx +MK(DKy )T wKy +MK(DKz )T wKz −
4∑

f=1
MKγ2 Eβ(K,f)pK +

4∑
f=1

MKγ2 λ
β(K,f)
2 Fβ(K,f)

−
4∑

f=1
MKγ4

(
Jβ(K,f)
x uKx + Jβ(K,f)

y uKy + Jβ(K,f)
z uKz

)
+

4∑
f=1

MKγ4

(
Qβ(K,f)
x λ

β(K,f)
1x + Qβ(K,f)

y λ
β(K,f)
1y + Qβ(K,f)

z λ
β(K,f)
1z

)

−MK DKx
(
αK11 uKx + αK12 uKy + αK13 uKz

)
+

4∑
f=1

MK
(
α11λ

β(K,f)
1x + αK12λ

β(K,f)
1y + αK13λ

β(K,f)
1z

)
Qβ(K,f)
x

−MK DKy
(
αK12 uKx + αK22 uKy + αK23 uKz

)
+

4∑
f=1

MK
(
αK12λ

β(K,f)
1x + αK22 λ

β(K,f)
1y + αK23 λ

β(K,f)
1z

)
Qβ(K,f)
y

−MK DKy
(
αK13 uKx + αK23 uKy + αK33 uKz

)
+

4∑
f=1

MK
(
αK13λ

β(K,f)
1x + αK23 λ

β(K,f)
1y + αK33 λ

β(K,f)
1z

)
Qβ(K,f)
z = 0 .

Local linear system
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The local system obtained from the discretization of (3.12) can be written as:

AKWK + BKΛK = CKsource ,

where WK and ΛK have been defined in (3.27). In the above equation, AK is of dimension 13 dKi × 13dKi , BK of size
13 dKi × 16dFi , and CKsource is the matrix of the external forces of dimension 13 dKi .

WK is composed of 13 blocks corresponding to different types of unknowns, we hence decompose the elementary
matrix AK in 8 columns of size 13 dKi × dKi , as detailed in Appendix B.1.2:

AK =
(
AK1 AK2 AK3 AK4 AK5 AK6 AK7 AK8 AK9 AK10 AK11 AK12 AK13

)
.

Similarly, based on the structure of the unknown ΛK in four times four sub-blocks corresponding to the four scalar
Lagrange unknowns decomposed on the four faces of the tetrahedron K, we write BK in 16 columns of size 13 dKi ×dFi .
BK is given in Appendix B.1.2:

BK =
(
Bλ1x,1 Bλ1x,2 Bλ1x,3 Bλ1x,4 Bλ1y,1 Bλ1y,2 Bλ1y,3 Bλ1y,4 ...

... Bλ1z,1 Bλ1z,2 Bλ1z,3 Bλ1z,4 Bλ2,1 Bλ2,2 Bλ2,3 Bλ2,4

)
.

Finally, the local source vector is expressed as:(
CKsource

)T =
(
CK1x CK1y CK1z CK2x CK2y CK2z 0 0 0 0 0 0 0

)
.

3.3.2 Transmission conditions
The transmission conditions, given by equation (3.22), are expressed using the definition of the numerical traces on a
face in equation (3.10). We recall that (3.22a) is:∑

K∈Th

∫
∂K

τKh n
K · η −

∑
K∈Th

∫
∂K

S1(uKh − λ1) · η −
∑
K∈Th

∫
∂K

(pKh − λ2)S3n
K · η =

∑
F∈Fext

∫
F

f inc · η ,

and (3.22b) is expressed as:∑
K∈Th

∫
∂K

wK
h · nK ξ −

∑
K∈Th

∫
∂K

(pKh − λ2)(S2n
K) · nK ξ −

∑
K∈Th

∫
∂K

S4(uKh − λ1) · nK ξ =
∑

F∈Fext

∫
F

ginc ξ .

These equations are discretized on (x, y, z) by decomposing the unknowns using (3.25) and (3.26) and replacing the
test functions by the basis functions. They are then expressed in terms of the elementary matrices defined in (3.28).

(a) The first transmission equation (3.22a)
The discretization of (3.22a) along x, y and z directions gives, taking • = x, y, z:∑

K∈Th

∫
∂K

τKx• n
K
x ϕ

K
j ψ

β(K,f)
i dS +

∑
K∈Th

∫
∂K

τKy• n
K
y ϕ

K
j ψ

β(K,f)
i dS +

∑
K∈Th

∫
∂K

τKz• n
K
z ϕ

K
j ψ

β(K,f)
i dS

−
∑
K∈Th

∫
∂K

γ1 ϕ
K
j uK• ψ

β(K,f)
i dS +

∑
K∈Th

∫
∂K

γ1 ψ
β(K,f)
j λK1• ψ

β(K,f)
i dS −

∑
K∈Th

∫
∂K

γ3n
K
• pKϕKj ψ

β(K,f)
i dS

+
∑
K∈Th

∫
∂K

γ3n
K
• λ

K
2 ψ

β(K,f)
j ψ

β(K,f)
i dS =

∑
F∈Fext

∫
F

finc,• ψ
β(K,f)
i dS .

The above equation is expressed in terms of the unknown vectors defined in (3.27) and the local matrices in (3.28) as:∑
K∈Th

(
(Qβ(K,f)

x )T τKx• + (Qβ(K,f)
y )T τK•y + (Qβ(K,f)

z )T τK•z − γ1 (Fβ(K,f))T uK• + γ1 Gβ(K,f) λ
β(K,f)
1•

− γ3 (Qβ(K,f)
• )T pK + γ3 Hβ(K,f)

• λ
β(K,f)
2

)
=

∑
F∈Fext

∫
F

finc,• ψ
β(K,f)
i dS .

(3.31)
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(b) The second transmission condition (3.22b)
The equation (3.22b) is also discretized as

∑
K∈Th

∫
∂K

(
wKx ϕKj nKx ψ

β(K,f)
i + wK

y ϕ
K
j n

K
y ψ

β(K,f)
i + wK

z ϕ
K
j n

K
z ψ

β(K,f)
i − pK ϕKj γ2ψ

β(K,f)
i + λK2 ψ

β(K,f)
j γ2 ψ

β(K,f)
i

− uKx ϕKj γ4 n
K
x ψ

β(K,f)
i − uKy ϕKj γ4 n

K
y ψ

β(K,f)
i − uKz ϕKj γ4 n

K
z ψ

β(K,f)
i + λK1x ψ

β(K,f)
j γ4 n

K
x ψ

β(K,f)
i

+ λK1y ψ
β(K,f)
j γ4 n

K
y ψ

β(K,f)
i + λK1z ψ

β(K,f)
j γ4 n

K
z ψ

β(K,f)
i

)
=

∑
F∈Fext

∫
F

ginc ψ
β(K,f)
i dS ,

and expressed in terms of the local matrices and the unknown vectors defined respectively in (3.28) and (3.27):∑
K∈Th

(
(Qβ(K,f)

x )T wKx + (Qβ(K,f)
y )T wKy + (Qβ(K,f)

z )T wKz − (Fβ(K,f))T pK γ2 + Gβ(K,f)λK2 γ2 − (Qβ(K,f)
x )TuKx γ4

−(Qβ(K,f)
y )TuKy γ4 − (Qβ(K,f)

z )TuKz γ4 + Hβ(K,f)
x λK1x γ4 + Hβ(K,f)

y λK1yγ4 + Hβ(K,f)
z λK1z γ4

)
=

∑
F∈Fext

∫
F

ginc ψ
β(K,f)
i dS .

(3.32)

System As for the two-dimensional problem, we define the global vector:

Λ = (λ1
1, λ

1
2, ...., λ

Nface
1 , λNface

2 ) ,

with Nface the number of faces of the mesh. We recall the definition of the local trace operator AHDG that links the
local degrees of freedom on an element K to the global degrees of freedom of the Lagrange multiplier Λ:

AKHDG Λ = ΛK .

The transmission conditions (3.31) and (3.32) are summed on all the faces of each element to obtain:∑
K∈Th

(AKHDG)T
(
PKWK + TKAKHDGΛ

)
= Sinc ,

with PK and TK two matrices respectively of dimension 13 dFi × 16 dKi and 16 dFi × 16 dFi . The matrices are given in
Appendix B.1.2.

3.4 Solution methodology
Now that we have presented the discretization of the method in two and three dimensions, we present the algorithm
used for the resolution of the poroelastic equations (3.1) with the HDG method. For an element K, we have built a
local system:

AWK + BΛK = CKsource (3.33)

coupled with the transmission conditions∑
K∈Th

(AKHDG)T
(
PKWK + TKAKHDGΛ

)
= Sinc . (3.34)

Equation (3.33) is written as:
AKWK = CKsource − BKAKHDGΛ .

Assuming that AK can be inverted for each element, we have:

WK = −(AK)−1BKAKHDGΛ + (AK)−1CKsource . (3.35)

The invertibility of AK is numerically investigated in Section 3.5.2.3.
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Then, WK is replaced in (3.34) by its expression in (3.35):∑
K∈Th

(AKHDG)T
(
PK(AK)−1CKsource − PK(AK)−1BKAKHDGΛ + TKAKHDGΛ

)
= Sinc ,

which means,∑
K∈Th

(AKHDG)T
(
−PK(AK)−1BK + TK

)
AKHDGΛ = −

∑
K∈Th

(AKHDG)T PK(AK)−1 CKsource + Sinc .

The global problem writes:
KΛ = S ,

with K =
∑
K∈Th

(AKHDG)T
(
−PK(AK)−1BK + TK

)
and S = −

∑
K∈Th

(AKHDG)T PK(AK)−1 CKsource + Sinc.

The resolution can be divided in four steps, detailed in Algorithm 2. First, we build the global matrix K and the
source matrix S. These calculations can be done element by element. Then the global system is resolved and the
solution is constructed. We use the MUMPS direct solver for the resolution of the linear system, and this is the only
step that is global. We define Nelem the number of elements in the mesh, and Nfe the number of faces per element.
Nfe is equal to 3 in two dimensions, and 4 in three dimensions.

Step 1: Construction of the stiffness matrix
for K = 1, Nelem do

Compute the elementary matrices MK and DKl , with l = x, y in 2D or l = x, y, z in 3D.
for f = 1, Nfe do

Compute the elementary matrices Eβ(K,f), Fβ(K,f), Gβ(K,f), Qβ(K,f)
l , Jβ(K,f)

l , Hβ(K,f)
l , with l = x, y in 2D

or l = x, y, z in 3D.
end for
Compute the elementary matrices AK ,(AK)−1, BK .
Compute PK , and TK with the corresponding boundary conditions.
Compute KK = PK(AK)−1BK + TK .
Use the AHDG operator to determine the global degrees of freedom of the element and fill the global matrix
K.

end for
Step 2: Construction of the source term
Localisation of the point source
for K = 1, Nelem do

Compute the local matrices CKsource and SKinc.
Compute SK = PK(AK)−1CKsource.
Use the AHDG operator to determine the global degrees of freedom of the element and fill the global matrix
S.

end for

Step 3: Resolution of the global system
Resolution of KΛ = S with MUMPS .

Step 4: Reconstruction of the solution
for K = 1, Nelem do

Compute the solutions WK using the AKHDG operator:

WK = −(AK)−1BKAKHDGΛ + (AK)−1CKsource.
end for

Algorithm 2: Resolution with HDG Method
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3.5 Numerical results
The goal of this section is to validate and analyze the performance of our numerical solver described in Section 3.5.2.
We will work with the geophysical media listed in Section 3.5.1. In Section 3.5.2, we first validate the code in two
dimensions by comparing the HDG numerical solutions with reference ones given in Chapter 2. We then carry out
numerical tests to study the effect of stabilization parameters on the numerical error, the order of convergence, and
the well-posedness of the problem. We also study the influence of the frequency on the well-posedness of the problem.

3.5.1 Parameterization of the computational domains and quantities of interest
For numerical experiments, we work with sandstone, sand and shale. While sand is filled with a viscous fluid, shale
and sandstone materials are filled with brine which is inviscid. We consider the case of isotropic and anisotropic sand
whereas sandstone and shale are isotropic. We only specify when it is an anisotropic material. We list in Table 3.1 the
physical parameters. Note that the other parameters, e.g. , ρa, α, M , H are obtained with those given in the table,
see Section 1.1.

Physical parameters Sandstone Shale Isotropic Sand Anisotropic Sand
Porosity φ 0.2 0.16 0.3 0.3
Fluid Density ρf (103kg.m−3) 1.04 1.04 1 1
Solid Density ρs (103kg.m−3) 2.5 2.21 2.6 2.6
Viscosity η (mPa.s) 0 0 1 1
Permeability κ0 (µm2) 60 10 60 60
Tortuosity t 2 2 3 2
Solid Bulk Modulus ks (GPa) 40 7.6 35 35
Fluid Bulk Modulus kf (GPa) 2.5 2.5 2.2 2.2
Frame Bulk Modulus kfr (GPa) 20 6.6 0.4 C11 = 1.067 GPa
Frame Shear Modulus µfr (GPa) 12 3.96 0.5 C22 = 2.5 GPa

vP for f = 500Hz (m.s−1) 4.24 103 2.48 103 (1.88 103, 10.4) C33 = 0.5 GPa
vS for f = 500Hz (m.s−1) 2.38 103 1.43 103 (4.93 102, 3.76) C12 = 0.067 GPa
vB for f = 500Hz (m.s−1) 1.02 103 1.13 103 (2.57 102, 57.9) C13 = C23 = 0 GPa

Table 3.1: Summary of the physical parameters that describe the different media used for the numerical tests. The
parameters for sand are obtained from [64, Table 1], those for sandstone and shale from [39, Table 5]. The values given
here are the adimensional input values in the program.

Besides the geophysical parameters listed above, we will use the following quantities to assess the accuracy and the
efficiency of the HDG numerical method:

• The relative numerical error eh(U) is computed from the knowledge of the numerical solution denoted by Unumeric
and the reference solution Ureference, following the formula:

eh(U) = ||Unumeric − Ureference||2
||Ureference||2

, with ||U||2 =
( ∑
K∈Th

∫
K

|U|2
) 1

2

.

• To study the stability of discretization, we consider the condition number κ, defined, for a matrix A as κ =
‖A−1‖ ‖A‖, with ‖A‖ a matrix norm of A. We employ MUMPS [3] or LAPACK [4] to compute κ with the L∞

norm, defined as ‖A‖∞ = maxi
(∑n

j=1 |aij |
)
, where aij is a coefficient of A.

3.5.2 Validation of the numerical code and performance analysis in two dimensions
Our numerical analysis in Section 3.5.2 is organized as follows.

1. In Section 3.5.2.1, to evaluate the accuracy of the HDG method, we consider a particular configuration on
which the solution is known analytically, and use this to construct a reference solution to be compared with the
numerical one.
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2. We analyze in Section 3.5.2.2 the impact of the various numerical parameters on the order of convergence of
the solution. We first show that the four penalization parameters are necessary in order to guarantee optimal
convergence (at the order p+ 1) of all the unknowns. In applying this result, we then set the four penalization
parameters to the same value denoted by γ, and show that the higher γ is, the more accurate the solution is.

3. Next, we analyze the well-posedness of the local and global problems for a given choice of penalization parameters
in Section 3.5.2.3. We show that a too high value of γ deteriorates the condition number of the global and the
local matrices. On the other hand, our numerical experiments show that the frequency does not influence the
condition number, provided the mesh is chosen fine enough to guarantee a reasonable accuracy.

The characteristics of the computer used for the numerical experiments are the following: 2 Dodeca-core Haswell
Intel R©Xeon R©E5-2680 v3, at frequency 2.5 GHz, with 128 Go of memory (5.3 Go/core), a OmniPath 100 Gb/s and a
Infinipath 40 Gb/s.

3.5.2.1 Validation of the code

a

b

Da

Γ

Upw

Utrans Uscatt

(a) Computational domain
for problem in Equation
(3.38)

(b) Mesh of computational
domain with straight-edge
triangles

Figure 3.1: Set up for numerical solution UNreference that approximates Uanalytic to machine precision on disc-shaped
computation domain Db. The latter is the total wave in the scattering problem of a plane wave Upw by a penetrable
disc-shaped obstacle represented by Da, given by equation (3.37) (with the penetrable condition given by Eq. (3.37a)
on r = a).

For the validation of the code, we use a reference solution that we construct as an accurate approximation of an
analytic solution. To have an analytic solution, we have to restrict ourselves to a particular configuration. We actually
consider the case of a porous disc-shaped solid inclusion of radius r = a, denoted by Da, embedded in an infinite
medium (R2 \ Da) made up of a different poroelastic material. We assume that there is a plane wave Upw which
propagates in the exterior domain and comes across the obstacle Da. The following plane wave solutions are, cf. 1,

Lporo Upw = 0 in R2 , with Upw =
(
uP,wP, τP,pP

)T
,

where

uP = ei kP ·x ( iω) d̂ , wP = WP e
i kP·x ( iω) d̂ ,

τP = iω sP(ω) eikP·x
(

2µfr d̂⊗ d̂ +
(
− 2

3µfr + kfr + M α2 + WP αM
)
I
)
,

pP = iω sP(ω) (−MWP − M α) eikP·x .

We refer to Section 1.5, equations (1.24a), (1.24b), (1.24c) for the slownesses expressions. We recall that in the above
equations, kP = ω sP(ω) d̂ is the wave number, d̂ is the polarization with |d̂| = 1. The slowness is given in equation
(1.24a) and the amplitude WP of wP is read from equation (1.33).
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Then, Uanalytic is the wavefield that arises from scattering of the incident plane wave. It satisfies the following
problem:

Lporo Uanalytic = 0 in R2 ; Uanalytic − Upw is outgoing ,
u(I) − u(II) = 0 , p(I) − p(II) = 0 , (w(I) −w(II)) · n = 0 , (τ (I) − τ (II))n = 0 , on ∂Da. (3.37a)

By ‘outgoing’, we mean in the sense of Definition 2.3. In the transmission condition (3.37a), the unit normal vector
is denoted by n, and is outwardly directed to the exterior of the inclusion Da. Each condition is expressed in terms
of the components of the restriction of the analytic solution, U(I) = Uanalytic|Da

, and U(II) = Uanalytic|R2\Da
to the

obstacle and the exterior domain respectively. The solution to (3.37) is then given by

Uanalytic = Upw + Uscatt , in R2 \ Da , Uanalytic = Utrans , in Da ,

with the scattered field Uscatt and transmitted field Utrans described explicitly in form of harmonic expansions, cf. Sec-
tion 2.4. These are infinite series whose coefficients are expressed in terms of the Hankel function of the first kind or
Bessel J functions. In practice, we only keep the first N terms of the infinite series, with N ≥ 2|k|a + 1 [120]. By this
way, we obtain a reference solution denoted by UNreference and defined by:

UNreference = Upw + UNscatt , in R2 \ Da , UNreference = UNtrans , in Da ,

and the exponent indicates that we keep the N first terms in each of the series of the analytic scattered and transmitted
fields. In our experiments, N = 50, which verifies the above condition, and hence gives a very good approximation
of the infinite series. For the HDG-reference comparison, we work with a bounded computational domain, see Figure
3.1(a). We assume that the obstacle is made up of sand, while the surrounding material is sandstone, cf. Table 3.1
for the values of their physical parameters. Here, we work with boundary condition of type 1 defined on a concentric
disc of radius b, denoted by Db, which contains the aforementioned sand obstacle, and use the restriction of UNreference
to Db as a reference solution. We introduce the following boundary value problem of type 1

Lporo U = 0 in Db , T1 U = T1 U
N
reference on r = b , (3.38)

set on a disc of radius b, denoted by Db, which is concentric with and contains the obstacle Da. Then the reference
solution UNreference is the unique solution to (3.38) except at eigenvalue frequencies. To construct the numerical solution,
we will apply HDG method to (3.38) and compare the obtained numerical solution Uhdg to UNreference|Db

. In this
approach, our HDG unknown in the exterior region is the ‘total’ wavefield (thus is compared with Upw + UNscatt), and
in the interior, it is the ‘transmitted’ one (thus compared with UNtrans). Note that for computing the HDG solution,
we use a mesh that is refined near the external boundary and the internal interface to minimize the geometrical errors
without using curved elements. In the case of a straight boundary, we have observed that we do not need to refine the
mesh.

(a) Numerical solution (b) Reference solution (c) Difference

Figure 3.2: Numerical and reference solutions for the scattering of a plane wave by a penetrable poroelastic inclusion
at frequency f = 500Hz. The result is the imaginary part of the horizontal solid velocity. The resolution of the global
system takes 6.52 seconds (CPU time), and it needs 677 MB of memory to solve the global system.

Figure 3.2 shows the reference and numerical solutions for the test-case using the mesh displayed in Figure 3.1(b)
and order 3 of discretization. The relative errors between reference and numerical solutions are given in Table 3.2.
The stabilization parameters (γ1, γ2, γ3, γ4) , cf. (3.14) are equal to 1. We can see that for each component, the error
is small.
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eh(ux) eh(uy) eh(wx) eh(wy) eh(τxx) eh(τyy) eh(τxy) eh(p)

0.53 0.70 0.53 0.70 0.41 0.44 1.2 1.1

Table 3.2: Relative errors (%) on the components of the unknowns of the HDG method for the experiment shown in
Figure 3.2 for an order of interpolation p = 3, an incident P wave, at frequency f = 500Hz with θ = 10◦ and boundary
conditions of type 1.

3.5.2.2 Impact of the stabilization parameters on the accuracy of the numerical solution

In the previous section, we have carried out numerical experiments with all the stabilization parameters (γ1, γ2, γ3,
γ4), cf. (3.14), equal to 1. In this section, we want to see the possible effects of various combinations of γi on the
order of convergence of the method, and then on the numerical error. For that purpose, we consider a homogeneous
disc-shaped domain of radius r = b, where b = 10m in the numerical tests, using boundary conditions of type 1,

Lporo U = 0 in Db , T1 U = T1 Upw on r = b. (3.39)

In this way, the reference (analytic) solution is given by Upw recalled in (3.36). This study will show that if all the
parameters are non zero, the relative error is always below 0.15% for p = 3.

Order of convergence
First, we want to display the order of convergence of the method in terms of the size of mesh. For that, we use four

meshes with straight edges generated by the software Triangle. The refinement of a given mesh consists in dividing
each of its cells into four cells. The characteristics of the meshes are summarized in Table 3.3. For the analysis, we
introduce the definition of the size of the mesh h, which corresponds to the longest edge of the elements in the mesh.
In Table 3.4, we plot the values of the order of convergence for all four unknowns with varying degrees of stabilization.

Mesh 1 Mesh 2 Mesh 3 Mesh 4
Size of the mesh h (m) 1.514 0.757 0.379 0.189
Number of elements 3270 13080 52320 209280

Table 3.3: Characteristics of the meshes involved in the convergence analysis. The size of the mesh is the longest edge
of the elements in the mesh.

We illustrate the convergence curves in the case with full and then zero stabilization, in Figure 3.3(a) and 3.3(b). In
these figures, we depict the relative error and thus the convergence order for the x-component ux as a function of the
size of the mesh. We have the following observations.

• In the case of full stabilization with all γi = 1, we observe that the convergence order for ux is equal to p + 1,
see also Remark 3.4. We also note that the same order of convergence is obtained for the other components
of the numerical solution. The same result is obtained with other (equally set) values of the parameters, for
instance when they are all equal to 0.1. This result corroborates the ones obtained in [76] with a different HDG
formulation.

• In the case of only partial stabilization (i.e., some or all of the γi are set to zero), one obtains a reduced order
of convergence, see Figure 3.3(b). It can occur that some components of the numerical solution keep an optimal
order of convergence, while it is decreased for others, cf. Table 3.4. The extreme case is when all γi = 0, the loss
of convergence is observed for all unknown variables, cf. Figure 3.3(b).

• Additionally, for some combinations of values of the stabilization parameters (not shown in Table 3.4, e.g., when
(γ1, γ2, γ3, γ4) = (1, 1, 0, 0)), the numerical solution is not accurate with numerical error attaining 200% and not
decreasing even with higher degree of approximation and/or mesh refinement. However, we have observed that
if the four stabilization parameters are different from zero, the numerical method is accurate with an optimal
convergence order.

Remark 3.4. In Cockburn et al [124], it is shown that in the case of linear elasticity, the order of convergence of the
displacement can be upgraded to p + 2 thanks to an element-per-element post-processing technique. We did not try
to apply this idea to the Biot’s system. An alternative to the post-processing is to increase the polynomial degree of
two unknowns and to use a projection in the variational formulation, see [76].
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(a) Stabilization parameters set to 1
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(b) Stabilization parameters set to 0

Figure 3.3: Convergence curves of HDG method (component ux) for several orders of interpolation. Results for order
1 are plotted in blue , for order 2 in purple , for order 3 in orange and for order 4 in green Figure
3.3(a) shows the results with the four stabilization parameters set to 1 and figure 3.3(b) with the four stabilization
parameters set to 0. As expected, when we use the four stabilization parameters, the convergence is of order p+1, while
we lose one order of convergence without the stabilization parameters, as for classical DG method without stabilization
parameters.

Stabilization parameters 1111 1110 1011 1010 0000 0101 0100 0001
(γ1, γ2, γ3, γ4)

u p+ 1 p+ 1 p+ 1 p+ 1 p p p p
w p+ 1 p p+ 1 p+ 1 p p+ 1 p p
τ p+ 1 p+ 1 p p+ 1 p p+ 1 p+ 1 p+ 1
p p+ 1 p+ 1 p p p p+ 1 p+ 1 p

Table 3.4: Summary of the convergence order of the HDG method depending on the value of the stabilization pa-
rameters, defined in (3.14). The four parameters are necessary to obtain the optimal order of convergence on all the
unknowns.

Numerical errors
For the rest of the numerical tests, we will set all γi = γ. We now study the influence of this value γ on the numerical

error. Figure 3.4 shows the relative error as a function of the stabilization parameters, in the case of a polynomial
approximation of order 3. The solid velocity u behaves in the same way as the elastic solid velocity observed in [20,
Fig 3.4.7 p.89]. We also note that the relative fluid velocity w and the pressure p seem to behave in a similar way,
however of a different pattern from u, and which is also different from that of τ . To arrive at a conclusion from these
different patterns, we consider the mean value of the relative errors, depicted in Figure 3.5 and defined as,

emean
h =

∑
u∈S
‖unumeric − ureference‖2∑
u∈S
‖ureference‖2

, S = {ux,uy,wx,wy, τxx, τyy, τxy,p} . (3.40)

We observe that the mean error is less than 0.1% when the stabilization parameter is equal to at least 103. We also
note that the same high level of accuracy is guaranteed when the four stabilization parameters are less than 10−3.

3.5.2.3 Analysis of the well-posedness

In this section, also working with problem (3.39), we continue the numerical study of well-posedness by analyzing the
influence of the value of stabilization parameter γ and the frequency on the condition number of the linear system.
The latter is an indication of the well-posedness of the problem.

Influence of the stabilization parameters
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Figure 3.4: Relative error in L2-norm of HDG method (%) depending on the stabilization parameters compared with
reference solution developed in Section 2.4. The stabilization parameters act differently on each unknown. When it is
high, it improves the accuracy on u, while when it is low, it improves the accuracy on τ . It is important to note that
the impact is never dramatic : the ratio between the maximal and the minimal error is less than 20.
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Figure 3.5: Mean relative error (%) of the HDG method, depending on the stabilization parameters in semi-log
scale. We defined this mean error (equation (3.40)) in order to identify more precisely the impact of the penalization
parameters. This curve indicates that this parameter should be the highest possible

We first consider this question on the local level for the local matrix AK and then for the global matrix K.

• For the reconstruction of WK , we have to invert the elementary matrix AK , see equation (3.35). Hence we study
the condition number of AK to evaluate if the calculation of (AK)−1 is problematic. If the condition number is
too high, the inversion will be less accurate. Since this inversion is performed on every element of the mesh, we
consider the maximum value of the condition number, CTh = max

K∈Th
‖(AK)−1‖‖AK‖. For three different media

and four different interpolation orders, we show the maximal condition number of AK for every element of the
mesh in infinity norm as a function of the values of the stabilization parameters in Figure 3.6. We observe that
for all interpolation orders, the condition number increases with the stabilization parameters. We also note that
the variations are similar for the different interpolation orders, also the condition number increases with the
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Figure 3.6: Maximal condition number (infinity norm) on all the elementary matrices AK as a function of the stabi-
lization parameters, for three materials and four interpolation orders at frequency f = 500Hz. The four stabilization
parameters are set at the same value. The characteristics of the media are presented in Table 3.1. The results for sand
are represented in blue , for shale in red and for sandstone in green . When the stabilization parameter
is above 1, the condition number starts to increase. This shows that we should not set it too high.
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Figure 3.7: Condition number (infinity-norm) of the global matrix K as a function of the stabilization parameters, for
three materials and four interpolation orders at frequency f = 500Hz. The four stabilization parameters are set at the
same value. The characteristics of the media are presented in Table 3.1. The results for sand are represented in blue

, for shale in red and for sandstone in green .
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interpolation order, however staying bounded below 1010.
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Figure 3.8: Condition number (infinity-norm) of the matrix AK for one element function of h

λB
, for shale and four

interpolation orders. The characteristics of the medium are presented in Table 3.1. The four stabilization parameters
are set to 1. Results for order 1 are plotted in blue , for order 2 in purple , for order 3 in orange and for
order 4 in green . The condition number is always below 108, so that the matrix is easily invertible with a direct
solver such as Lapack.

• We now move on to the global system KΛ = S. We address the question of well-posedness numerically by
computing the condition number of the global matrix K with the hope it is not too high, which ensures that the
matrix can be inverted. As formerly, we consider three different media, which are composed of sand, shale or
sandstone (see Table 3.1). The condition number of K is displayed in Figure 3.7 as a function of the stabilization
parameters. The condition number for the test with sand is lower than the one for shale and sandstone. Moreover,
the curves have similar trends for every interpolation order. In the interval in consideration for the stabilization
parameters, the condition number is stable. This means that the accuracy of the resolution of the global system
is not sensitive to the value of the stabilization parameters.

Influence of the frequency
We continue the numerical study of well-posedness by analyzing the influence of the frequency on the condition

number of the linear system. Note that the parameters change with frequency. As previously done, we first consider
the local system and then the global one.
Remark 3.5. The goal of this experiment is not to analyze precisely the variations of the condition number, but to
show that the condition number is lower than 108 for each triangle, for the three types of media and for the considered
range of frequency, in order to show that all local systems are invertible. Indeed, it is acknowledged that the inversion
can be made without difficulties if the condition number is lower than 1016.

• First, for a domain composed of shale, we consider an interior element of the mesh. We denote by h the diameter
of the element and by λB the wavelength corresponding to the slow wave, and we display the condition number
of the elementary matrix AK as a function of h

λB
, the number of wavelengths in the element. The results are

given in Figure 3.8. We observe that the condition number increases with the interpolation orders, but stays
however bounded below 106. Then, for the three different media described in Table 3.1, we show the maximal
condition number of the matrices AK on each element as a function of the frequency in Figure 3.9. For sand, the
curves are less smooth than for sandstone and shale. We observe here that the condition number can increase
without hampering the accuracy.

• Finally, the condition number of the global matrix K is presented in Figure 3.10 as a function of the frequency.
We observe that the condition number of the elementary matrix decreases with the frequency.

As a conclusion, the condition number does not increase with the accuracy (or the number of points per wavelength),
and we can obtain both a well conditioned system and an accurate solution.
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Figure 3.9: Maximal condition number (infinity norm) of the matrix AK as a function of the frequency, for three
materials and four interpolation orders. The characteristics of the media are presented in Table 3.1. The four
stabilization parameters are set to 1. The results for sand are represented in blue , for shale in red and for
sandstone in green .
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Figure 3.10: Condition number (infinity-norm) of the global matrix K as a function of the frequency, for three materials
and four interpolation orders. The characteristics of the media are presented in Table 3.1. All stabilization parameters
are set to 1. The results for sand are represented in blue , for shale in red and for sandstone in green .

3.5.3 Validation of the numerical code in three-dimensions
We now present the results obtained with the HDG method in three dimensions. We consider a poroelastic domain D
of size [0 : 10]× [0 : 10]× [0 : 2]cm composed of sandstone, see Table 3.1 for the physical parameters. We then consider
a triangulation Th of the domain D, composed of 1250 elements of degree of interpolation 3. We set f = 35kHz, in
this case the velocities of the waves are:

vp = 4247m.s−1 vb = 1021m.s−1 and vs = 2.388m.s−1 .

In this configuration, we study the propagation of a B plane wave, and we impose the exact solution (τ pw ·n, upw ·n)
corresponding to the plane wave on the boundaries of the domain. We compare the numerical solution to the exact
solution for plane wave propagation, developed in Section 1.5. We plot in Figure 3.11 the horizontal component of the
solid velocity u corresponding to the numerical and exact solutions. In addition, Table 3.5 gives the relative L2 error
on the poroelastic variables. The results of the HDG methos are good, and the error is small, less than 3% on every
components.

eh(ux) eh(uy) eh(uz) eh(wx) eh(wy) eh(wz)

2.07 1.93 1.69 0.601 0.607 0.511

eh(τxx) eh(τyy) eh(τzz) eh(τyz) eh(τxz) eh(τxy) eh(p)

0.249 0.277 0.370 0.424 0.383 0.516 0.165

Table 3.5: Relative errors (%) on the components of the unknowns of the HDG method for a B plane wave propagating
in sandstone, at frequency f = 35kHz with boundary conditions of type 1, using an order of discretization 3.

Next, we verify that the HDG method has an optimal order of convergence p+ 1 in three dimensions. We plot the
convergence curves for the solid velocity ux in 3.12 for the first interpolation orders as functions of h, the longest edge
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(a) Numerical solution: imaginary part of
ux

(b) Reference solution: imaginary part of ux

(c) Difference: imaginary part of ux

Figure 3.11: Numerical and reference solution for the three-dimensional propagation of a B plane wave in sandston.
The solid velocity ux is presented, for f = 35kHz and order of interpolation 3.

of the mesh. The curves show that the method keeps an order of convergence p+ 1 in three dimensions for ux. This
is also the case for the other components of the solid velocity u and the other unknowns.
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Figure 3.12: Convergence curves of HDG method (component ux) for several orders of interpolation. Results for order
1 are plotted in blue , for order 2 in purple , for order 3 in orange and for order 4 in green .
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Conclusion
In this chapter, we have developed and implemented a HDG method to simulate harmonic wave propagation in
anisotropic poroelastic media, governed by Biot’s model in two and three dimensions. We have provided a detailed
description of the numerical algorithm and the different steps required for its development. Our HDG method was
validated by comparing with reference solutions constructed in Chapter 2. In our numerical investigation on the
influence of stabilization parameters on the convergence of the method, we have shown that the four stabilization
parameters are necessary for the method to keep an optimal order of convergence (p+1). We also note that the
symmetry of the strain tensor was imposed strongly, which ensures that we do not lose half an order of convergence.
We have also studied numerically the condition number of the global and local problems, and show that they remain
in a good range that maintains stability for the geophysical material in consideration. This work lays the foundation
for future investigation such as improvement of convergence order to p+2 by using a post-processing method, and
construction of absorbing boundary conditions for simulation in infinite domains, see Chapter 4.



Chapter 4

Truncation methods for poroelastic
problems

In the previous chapter, we have developed a HDG formulation of time harmonic Biot’s equations. In geophysical
applications, the source terms that generate the wave propagation are only active in a limited area. This explains that
regional simulations are sufficient for reproducing correctly the physical phenomenon performed. The computational
domain is thus limited by an external boundary that surrounds the support of the source. Regarding the physical
problem, the external boundary is thus artificial and its existence must not interfere with the simulation by creating
spurious reflections. For that purpose, one approach consists in applying a boundary condition that models the perfect
transmission of a wave from the interior of the computational domain to its exterior. This is what we call a transparent
boundary condition (TBC). In practice, TBCs are not easy to implement because they involve pseudo-differential
operators, which explains that approximate TBCs are used in general, called Abosrbing Boundary Condition (ABC)
in the time domain and Radiation Boundary Condition (RBC) in the frequency domain. In this chapter, we construct
an approximate TBC which is obtained from the characterization of outgoing solutions of the 2D isotropic poroelastic
equations. The construction is based upon a TBC relating the solid and fluid stress tensors to the velocities of a
particular solution that turns out to be an outgoing solution. The TBC is written in a circular domain with radius
r and letting r go to infinity, we obtain a condition that approximates the exact condition to the order r−1. The
obtained condition is comparable to Lysmer–Kuhlemeyer (LK) absorbing boundary condition for elasticity that has
been investigated in [93]. It is worth noting that absorbing boundary conditions for poroelasticity have been given
by Degrande [41, 42] and Akiyoshi [1, 2] in the time domain. The methods employed in these reference are different
from ours resulting in a different form of ABC. This is in particular for the second reference, whose form of ABC is
not given in a compact form conducive for discretization with finite elements. Regarding Degrande’s [41, 42] result,
it is obtained in a stratified setting, in a form comparable to ours. We have noticed that in [41, 42], the condition is
symmetrized while ours is not. Since the condition is obtained as the principal part of an outgoing radiation condition,
we call it an outgoing Radiation Boundary Condition (RBC).

Another way to truncate the domain is to use Perfectly Matched Layer (PML). This has been done first for Maxwell’s
equations by Bérenger in [14]. An absorbing layer is added using attenuation functions that prevent reflections
generated by the external boundary. Due to the lack of work on RBC for poroelasticity, most works in the literature
e.g. , [50], [74] and [136], [134] use PMLs, which are readily available for most partial differential equations (PDEs).

In this chapter, we consider the two truncation methods that are integrated in our HDG method. It is worth
noting that the derived RBC can be naturally coupled with HDG, since it resembles the transmission condition of
numerical traces. The PML method can also be applied to the local problem of the HDG. This chapter is organized
as follows. In Section 4.1, we derive the TBC. Then, by considering the particular case of a circular boundary, we
propose a RBC in Section 4.2 as an approximation of the TBC. The performance of this condition is investigated in
Section 4.3, by comparison with the outgoing solution that we calculated in Chapter 2. In Section 4.4, the obtained
RBC is implemented with Hybridizable discontinuous Galerkin (HDG) method for poroelastic wave equations. Then,
in Section 4.5, we consider a second method to truncate the domain by using the Perfectly Matched Layer (PML) also
with HDG discretization. Section 4.6 compares the performance of our RBC with that of the PML. Finally, we extend
the truncation methods to three-dimensional domains in Section 4.7.

125
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4.1 Derivation of low-order outgoing radiation boundary conditions
In this section, we obtain an outgoing radiation condition at infinity. We consider the scattering of a plane wave by an
impenetrable circular obstacle, see Figure 4.1. In this setting, we express the poroelastic unknowns using the potentials
χ• and we find a condition between the unknowns at infinity. Then, by approximating this condition, we propose a
low-order RBC, that will be used to set artificial boundaries on Γabs. We consider an isotropic porous medium. The

a b

Ω

Γn

Γabs

Upw U ref

Figure 4.1: Scattering of a plane wave by an impenetrable solid immersed in a porous medium. The cross section of
the obstacle is a disc parameterized by r = a. The artificial boundary is set on Γabs = {r = b}.

vector field (u, w, τ , p) solve the system (cf. 1):

∇ · τ + fu = iω ρa u + iω ρf w ,

−∇p + fw = iω ρfu + iω ρdynw ,

iω τ = 2µfrε + (λfr + Mα2)∇ · u I + αM∇ ·w I ,

iω p = −M ∇ ·w − M α : ε .

(4.1)

We recall the expressions of the unknowns (u, w, τ , p) in two dimensions in terms of the potentials χ•, • = P,B, S,
as demonstrated in Chapter 2.

iω u = s−2
P ∇χP + s−2

B ∇χB − s−2
S curlχS ,

iωw = WP

s2
P
∇χP + WB

s2
B
∇χB + ρf µfr

detA curlχS ,

p = −M
(
WP + α)χP − M

(
WB + α)χB ,

ω2 τ = µfr

(
− 2

s2
P
∇2χP −

2
s2
B
∇2χB + ∇curlχS + (∇curlχS)T

s2
S

)
+ ω2 (− 2

3µfr + kfr + Mα2) (χP + χB) I + ω2 αM (WP χP + WB χB) I ,

(4.2)

with operator curl defined in (A.1), ∇2 in (A.3a), and I =
(

1 0
0 1

)
. The potentials χ• solve the Helmholtz equation,

(
−∆ − ω2 s2

•
)
χ• = 0 .

Radiating asymptotic of Hankel functions
Let H(1)

k (z) be the Hankel function such as H(1)
k (z) = Jk(z) + iYk(z), with Jk and Yk respectively the first- and

second-order Bessel functions. From equations (10.17.2) and (10.17.11) in [103], we have

H(1)′
k (z) ∼

z→∞
i
(

2
π z

) 1
2
ei (z− 1

2 k π−
1
4 π)

(
1 +

∞∑
m=1

(−1)m bm(k)
zm

)
.
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Equivalently from equations (10.17.2) and (10.17.5) in [103],

H(1)
k (z) ∼

z→∞

(
2
π z

) 1
2
ei (z− 1

2 k π−
1
4 π)

(
1 +

∞∑
m=1

im am(k)
zm

)
.

Hence,

H(1)′
k (z) − i H(1)

k (z) ∼
z→∞

(
2
π z

) 1
2
ei (z− 1

2 k π−
1
4 π)

( ∞∑
m=1

im cm(k)
zm

)
.

In the end we obtain the radiating asymptotic:

H(1)′
k (z) − i H(1)

k (z) = O(z− 3
2 ) , z →∞ . (4.3)

This will be the main ingredient in the derivation of the radiation boundary conditions.

4.1.1 Outgoing radiation condition at infinity
Considering an infinite domain, as given in Figure 4.1, we recall from (2.30) the potentials χ• that define a generic
outgoing solution in polar coordinates,

χP(r, θ) =
∑
k∈Z

ak H(1)
k (ω sP r) ei k θ ,

χB(r, θ) =
∑
k∈Z

bk H(1)
k (ω sB r) ei k θ ,

χS(r, θ) =
∑
k∈Z

ck H(1)
k (ω sS r) ei k θ .

To obtain the final expression of the poroelastic unknowns, we substitute this form of potentials in equation (4.2). As
we study a circular obstacle, we work in polar coordinates. We will use the expression for the action of curl ∇ and ∇2

in polar coordinates presented in Appendix A.1.1. Note that, in the construction of the outgoing solution (see Section
2.3), we only impose conditions on u, w · n, τ n or p, which are in polar coordinates ur, uθ, wr, τrr, τrθ, or p. We
obtain the following expressions for the expansion of the unknowns (u, w, τ , p):

iω ur =
∑
k∈Z

ak
ω

sP
H(1)′
k (ω sP r)eikθ +

∑
k∈Z

bk
ω

sB
H(1)′
k (ω sB r)eikθ −

∑
k∈Z

ck
ik

s2
S r

H(1)
k (ω sS r)eikθ ,

iω uθ =
∑
k∈Z

ak
ik

s2
P r

H(1)
k (ω sP r)eikθ +

∑
k∈Z

bk
ik

s2
B r

H(1)
k (ω sB r)eikθ +

∑
k∈Z

ck s−1
S ωH(1)′

k (ω sS r)eikθ ,

iωwr =
∑
k∈Z

ak
WP

sP
ωH(1)′

k (ω sP r)eikθ +
∑
k∈Z

bk
WB

sB
ωH(1)′

k (ω sB r)eikθ +
∑
k∈Z

ck
ρf µfr

detA
ik
r

H(1)
k (ω sS r)eikθ .
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As specified above, we will only be concerned with τ · er = τrrer + τrθeθ,

ω2τrr = −
∑
k∈Z

2µfr ω

sP r
ak H(1)

k+1(ω sP r) ei k θ +
∑
k∈Z

2µfr k

s2
P r

2 ak H(1)
k (ω sP r) ei k θ

+
∑
k∈Z

2µfr ak ω
2 H(1)

k (ω sP r) ei k θ −
∑
k∈Z

2µfr k
2

s2
P r

2 ak H(1)
k (ω sP r) ei k θ

−
∑
k∈Z

2µfr ω

sB r
bk H(1)

k+1(ω sB r) ei k θ +
∑
k∈Z

2µfr k

s2
B r

2 bk H(1)
k (ω sB r) ei k θ

+
∑
k∈Z

2µfr bk ω
2 H(1)

k (ω sB r) ei k θ −
∑
k∈Z

2µfr k
2

s2
B r

2 bk H(1)
k (ω sB r) ei k θ

+
∑
k∈Z

2µfr

sSr
ck ω ikH(1)′

k (ω sS r) ei k θ

+
∑
k∈Z

ω2 (− 2
3µfr + kfr + Mα2 + αMWP

)
ak H(1)

k (ω sP r) ei k θ

+
∑
k∈Z

ω2 (− 2
3µfr + kfr + Mα2 + αMWB

)
bk H(1)

k (ω sB r) ei k θ ,

ω2 τrθ = −
∑
k∈Z

2µfr ω i k
r sP

ak H(1)′
k (ω sP r) ei k θ +

∑
k∈Z

2 iµfr k

r2 s2
P

ak H(1)
k (ω sP r) ei k θ

−
∑
k∈Z

2µfrω i k
r sB

bk H(1)′
k (ω sB r) ei k θ +

∑
k∈Z

2 iµfr k

r2 s2
B

bk H(1)
k (ω sB r) ei k θ

−
∑
k∈Z

µfr k
2

r2 s2
S
ck H(1)

k (ω sS r) ei k θ +
∑
k∈Z

µfr ω

r sS
ck H(1)′

k (ω sS r) ei k θ

−
∑
k∈Z

µfr
ω

sS r
ck H(1)

k+1(ω sS r) ei k θ +
∑
k∈Z

µfr
k

s2
S r

2 ck H(1)
k (ω sS r) ei k θ

+
∑
k∈Z

µfr ω
2 ck H(1)

k (ω sS r) ei k θ −
∑
k∈Z

µfr
k2

s2
S r

2 ck H(1)
k (ω sS r) ei k θ ,

p = −
∑
k∈Z

akM
(
WP + α)H(1)

k (ω sP r) eikθ −
∑
k∈Z

bkM
(
WB + α)H(1)

k (ω sB r) eikθ .

We now want to express a relation at infinity between the unknowns u, w, τ , p. We use the fact that lim
r→∞

1
r = 0,

and we hence choose to approximate the components by truncating at the first order in 1
r :

ur = −
∑
k∈Z

ak
i

sP
H(1)′
k (ω sP r)eikθ −

∑
k∈Z

bk
i

sB
H(1)′
k (ω sB r)eikθ + O(r− 3

2 ) ,

wr = −
∑
k∈Z

ak
iWP

sP
H(1)′
k (ω sP r)eikθ −

∑
k∈Z

bk
iWB

sB
H(1)′
k (ω sB r)eikθ + O(r− 3

2 ) ,

uθ = −
∑
k∈Z

ck
i

sS
H(1)′
k (ω sS r) + O(r− 3

2 ) ,

(4.5)

and
τrr =

(
4
3µfr + kfr + α(Mα + MWP)

) ∑
k∈Z

ak H(1)
k (ω sP r) ei k θ

+
(

4
3µfr + kfr + α(Mα + MWB)

) ∑
k∈Z

bk H(1)
k (ω sB r) ei k θ + O(r− 3

2 ) ,

τrθ =
∑
k∈Z

µfr ck H(1)
k (ω sS r) ei k θ + O(r− 3

2 ) ,

p = −
∑
k∈Z

akM
(
WP + α)H(1)

k (ω sP r) eikθ −
∑
k∈Z

bkM
(
WB + α)H(1)

k (ω sB r) eikθ .

(4.6)
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Important identity:
Using the expressions of the radial velocities in (4.5), we can write the system:(

i ur

i wr

)
=


1
sP

1
sB

WP

sP

WB

sB



∑
k∈Z

ak H(1)′
k (ω sP r)eikθ

∑
k∈Z

bk H(1)′
k (ω sB r)eikθ

+ O(r− 3
2 ) . (4.7)

We can express the inverse of the above matrix: 1
sP

1
sB

WP
sP

WB
sB

−1

= 1
WB −WP

(
WB sP −sP

−WP sB sB

)
.

Hence, equation (4.7) becomes
∑
k∈Z

ak H(1)′
k (ω sP r)eikθ

∑
k∈Z

bk H(1)′
k (ω sB r)eikθ

 = 1
WB −WP

(
sPWB −sP

−WP sB sB

)(
i ur

i wr

)
+ O(r− 3

2 ) . (4.8)

In the following, we express the radial component of the solid stress, the tangential component of the solid stress
and the fluid pressure using the velocities u and w.

(a) Radial component of the solid stress
With the approximate values of τrr given in equation (4.6), we have:

τrr −
( 4

3µfr + kfr + α(Mα + MWP)
) ∑
k∈Z

ak H(1)
k (ω sP r) ei k θ

−
( 4

3µfr + kfr + α(Mα + MWB)
) ∑
k∈Z

bk H(1)
k (ω sB r) ei k θ = O(r− 3

2 ) .

Using (4.3), we replace H(1)
k (z) by

H(1)
k (z) = −i H(1)′

k (z) + O(z− 3
2 ) ,

to obtain

τrr +
( 4

3µfr + kfr + α(Mα + MWP)
) ∑
k∈Z

ak i H(1)′
k (ω sP r) ei k θ

+
( 4

3µfr + kfr + α(Mα + MWB)
) ∑
k∈Z

bk i H(1)′
k (ω sB r) ei k θ = O(r− 3

2 ) .

Finally, using (4.8), we obtain a relation between τrr, ur and wr:

τrr −
4
3µfr + kfr + α(Mα + MWP)

WB −WP
( sPWB ur − sPwr)

−
4
3µfr + kfr + α(Mα + MWB)

WB −WP
(−WP sB ur + sBwr) = O(r− 3

2 ) .

(4.9)

(b) Tangential component of the solid stress
The tangent solid velocity uθ and τrθ are expressed with equations (4.5) and (4.6). Replace H(1)

k , using the
identity (4.3), we obtain:

τrθ − sS µfr uθ = O(r− 3
2 ) . (4.10)

(c) Fluid pressure
From the expression of p in (4.6) and the radiating asymptotic (4.3), we have:

−p +M
(
WP + α)

∑
k∈Z

akiH(1)′
k (ω sP r) eikθ + M

(
WB + α)

∑
k∈Z

bkiH(1)′
k (ω sB r) eikθ = O(r− 3

2 ) .

Using equation (4.8), we obtain,

−p −
M
(
WP + α)
WB −WP

(sPWB ur − sPwr)−
M
(
WB + α)
WB −WP

(− sBWP ur + sBwr) = O(r− 3
2 ) . (4.11)
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Summary
We have obtained three relations (4.9), (4.10), (4.11) between the poroelastic unknowns at infinity. We denote:

X1 = −
4
3µfr + kfr + α(Mα + MWP)

WB −WP
sPWB +

4
3µfr + kfr + α(Mα + MWB)

WB −WP
WP sB ,

X2 =
4
3µfr + kfr + α(Mα + MWP)

WB −WP
sP −

4
3µfr + kfr + α(Mα + MWB)

WB −WP
sB ,

X3 = − sS µfr ,

X4 =
M
(
WP + α)
WB −WP

sPWB −
M
(
WB + α)
WB −WP

sBWP ,

X5 = −
M
(
WP + α)
WB −WP

sP +
M
(
WB + α)
WB −WP

sB .

Proposition 4.1. For (u, w, τ , p) solution of the poroelasticity equation (4.1), the outgoing radiation condition
at infinity is: 

τrr + X1ur + X2wr = O(r− 3
2 ) ,

τrθ + X3uθ = O(r− 3
2 ) , r →∞

p + X4ur + X5wr = O(r− 3
2 ) .

(4.12)

4.1.2 Derivation of the radiation boundary condition
Considering the domain described in Figure 4.1, we set artificial boundaries on Γabs. We work in polar coordinates.
In this setting, we have built in the previous section an outgoing radiation condition at infinity for the exact outgoing
solutions, given in (4.12). When r tends to infinity, the terms O(r− 3

2 ) can be neglected. We thus approximate equations
(4.12) as: 

τrr + X1ur + X2wr = 0 ,

τrθ + X3uθ = 0

p + X4ur + X5wr = 0 .

This is the RBC in polar coordinates. Recall that on a circle, we have:

ur = u · n , wr = w · n ,

uθ = u · t , τ n = τrrer + τrθeθ ,

with t =
(
−ny
nx

)
= eθ . By replacing the polar unknowns, we obtain the general RBC (4.13).

Conjecture 4.2. For i = 1, 5, let Xi be equal to:

X1 = −
4
3µfr + kfr + α(Mα + MWP)

WB −WP
sPWB +

4
3µfr + kfr + α(Mα + MWB)

WB −WP
WP sB ,

X2 =
4
3µfr + kfr + α(Mα + MWP)

WB −WP
sP −

4
3µfr + kfr + α(Mα + MWB)

WB −WP
sB ,

X3 = − sS µfr ,

X4 =
M
(
WP + α)
WB −WP

sPWB −
M
(
WB + α)
WB −WP

sBWP ,

X5 = −
M
(
WP + α)
WB −WP

sP +
M
(
WB + α)
WB −WP

sB ,
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we propose the following RBC:τ n+
(
X1(u · n) + X2(w · n)

)
n+ X3(u · t) t = 0 ,

p + X4(u · n) + X5(w · n) = 0 .
(4.13)

Remark 4.3. In [41], the development is done with the displacements instead of the velocities. We cannot compare
with our formulations, because they also use different values for WP, WB, WS. They obtain a general form for the
boundary condition, which reads: 

τrr + X̃1ur + X̃2wr = 0 ,

τrθ + X̃3uθ = 0 ,

p + X̃2ur + X̃5wr = 0 .

Remark 4.4. In the elastic case, the form of LK radiation boundary condition is (see [93, 20, 19]):

τ n+ Y1(u · n)n+ Y2(u · t) t = 0 .

In equation (4.13), without w and p, we retrieve the same form of the condition.

4.2 Reference solutions for the scattering of an impenetrable obstacle
by a plane wave in a bounded domain using RBC

We consider the scattering of a solid circular obstacle immersed in an infinite porous medium by a plane wave, see
Figure 4.1. We denote by Da the obstacle whose radius is a. Its boundary is denoted by Γn = ∂Da. For the RBC
solution, we put an artificial boundary at radius b, denoted by Γabs = ∂Db, with b > a, cf. Figure 4.1. We use
notation U to denote the ordered tuple (u, w, τ , p). We work in polar coordinates, with the variables r and θ.

Definition 4.5 (RBC solution). Considering a domain Ω with ∂Ω = Γabs ∪Γn, and Γabs ∩Γn = 0 . We define the
RBC solution of the poroelastic equations on Ωab as follows:

U solves the poroelastic equations (4.1) on Ω, the RBC equation (4.13) on Γabs, and one of the four boundary
conditions from equation (1.20) on Γn.

For i = 1, . . . , 4, we will discuss two solutions, an outgoing solution U∞−Ti, that is defined on the whole exterior
domain R2 \ Da and Urbc-Ti the RBC solution (see Definition 4.5) defined on the annulus Ωab := Db \ Da. The
superscript ‘Ti′ denotes the type of boundary condition, given in Section 1.4, equation (1.20), placed on the boundary
of the obstacle, to describe its interaction with the incident wave.

The RBC solution Urbc-Ti solves the following problem

the poroelastic equations (4.1) on Ωab,

boundary condition type i given by (1.20) on r = a ,

τrr + X1ur + X2wr = 0 ,

τrθ + X3uθ = 0 , on r = b .

p + X4ur + X5wr = 0 .

The outgoing solution U∞−Ti solves
the poroelastic equations (4.1) on R2 \Da,

boundary condition type i given by (1.20) on r = a ,

U∞−Ti is outgoing by Definition 2.3 .

We write the potentials corresponding to Urbc-Ti and U∞−Ti as

χrbc-Ti
• and χ∞−Ti

• , i = 1, 2, 3, 4 .
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The potentials χ∞−Ti
• corresponding to U∞−Ti are given by

χ∞−Ti
P (r, θ) =

∑
k∈Z

a∞k H(1)
k (ω sP r) ei k θ ,

χ∞−Ti
B (r, θ) =

∑
k∈Z

b∞k H(1)
k (ω sB r) ei k θ ,

χ∞−Ti
S (r, θ) =

∑
k∈Z

c∞k H(1)
k (ω sS r) ei k θ ,

(4.14)

where we have suppressed the dependence on the boundary condition for lighter exposition. The coefficients solve the
linear system,

A∞−Ti

a
∞
k

b∞k

c∞k

 = fTi . (4.15)

The components of A∞−Ti and the right-hand-side fTi are determined using boundary conditions on r = a, as done in
Section 2.3.

Let H(1)
k (z) be the Hankel function of the first kind such as H(1)

k (z) = Jk(z) + iYk(z), and H(1)
k (z) be the Hankel

function of the second kind H(2)
k (z) = Jk(z) − iYk(z) with Jk and Yk the first-order and second-order Bessel functions,

see e.g. [103]. The function H(2)
k corresponds to the incoming solution, hence the coefficients associated to H(2)

k are the
coefficients representing the incoming part of the solution. The more those coefficients are small, the more the solution
is accurate.

The potentials χrbc-Ti
• are given by

χrbc-Ti
P (r, θ) =

∑
k∈Z

ak H(1)
k (ω sP r) ei k θ +

∑
k∈Z

ãk H(2)
k (ω sP r) ei k θ ,

χrbc-Ti
B (r, θ) =

∑
k∈Z

bk H(1)
k (ω sB r) ei k θ +

∑
k∈Z

b̃k H(2)
k (ω sB r) ei k θ ,

χrbc-Ti
S (r, θ) =

∑
k∈Z

ck H(1)
k (ω sS r) ei k θ +

∑
k∈Z

c̃k H(2)
k (ω sS r) ei k θ .

(4.16)

The coefficients ak, bk, ck, ãk, b̃k, c̃k solve the linear system

Arbc-Ti



ak

bk

ck

ãk

b̃k

c̃k


=


fTi
0
0
0

 . (4.17)

Note that in the above notation for the coefficients, we have suppressed the dependence on the type of boundary
condition on Γn. The components of Arbc-Ti (of size 6 × 6) and the right-hand-side are determined using boundary
conditions on r = a and r = b as described in the following. In particular, the first three rows of the linear system are
determined by one of the boundary condition imposed on Γn (the boundary of the obstacle) while the last three rows
are determined by the RBC imposed on Γabs the artificial boundary.

Derivation of Arbc-T3: As an example, we list below the derivation associated to type 3 boundary condition
imposed on the obstacle. Since the derivation of the first three lines are similar to that for A∞−T3 (see Section 2.3),
we only list the derivation associated to the RBC, i.e., the last three lines. On r = b, we replace the unknowns using
equation (4.2) and we apply condition (4.13) to obtain:

iµfr

ω

(
− 2

s2
P
∂r2χP −

2
s2
B
∂r2χB + 2

s2
S

(
1
b
∂rθ −

1
b2 ∂θ

)
χS

)
+ iω

(
−2

3µfr + kfr + α2M

)
(χP + χB) + iωαMWP χP

+ iωαMWB χB + X1

(
1
s2
P
∂rχP + 1

s2
B
∂rχB −

1
s2
S b

∂θχS

)
+ X2

(
WP

s2
P
∂rχP + WB

s2
B
∂rχB + ρf µfr

detA b
∂θχS

)
= 0 ,
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µfr

(
− 2

s2
P

(
1
b
∂rθ −

1
b2 ∂θ

)
χP −

2
s2
B

(
1
b
∂rθ −

1
b2 ∂θ

)
χB + 1

s2
S

(
1
b2 ∂θθ + 1

b
∂r − ∂r2

)
χS

)

−X3 iω
(

s−2
P

1
b
∂θχP + s−2

B
1
b
∂θχB + s−2

S ∂rχS

)
= 0 ,

and

− iωM
((
WP + α)χP +

(
WB + α)χB

)
+ X4

(
1
s2
P
∂rχP + 1

s2
B
∂rχB −

1
s2
S b

∂θχS

)

+ X5

(
WP

s2
P
∂rχP + WB

s2
B
∂rχB + ρf µfr

detA b
∂θ χS

)
= 0 ,

Below, for clarity, we keep the derivatives of the first and second Hankel functions, they can however be replaced
with the identities given in Appendix A.1. The linear system is

Arbc-T3
k



ak

bk

ck

ãk

b̃k

c̃k


=



iω upw
r

iω upw
θ

ppw

0
0
0


,

with components Aij ,

A11 = s−1
P ωH(1)′

k (ω sP a) , A12 = s−1
B ωH(1)′

k (ω sB a) , A13 = − s−2
S

ik
a

H(1)
k (ω sS a) ,

A14 = s−1
P ωH(2)′

k (ω sP a) , A15 = s−1
B ωH(2)′

k (ω sB a) , A16 = − s−2
S

ik
a

H(2)
k (ω sS a) ,

A21 = s−2
P

ik
a

H(1)
k (ω sP a) , A22 = s−2

B
ik
a

H(1)
k (ω sB a) , A23 = s−1

S ωH(1)′
k (ω sS a) ,

A24 = s−2
P

ik
a

H(2)
k (ω sP b) , A25 = s−2

B
ik
a

H(2)
k (ω sB a) , A26 = s−1

S ωH(2)′
k (ω sS a) ,

A31 = −M
(
WP + α) H(1)

k (ω sP a) , A32 = −M
(
WB + α) H(1)

k (ω sP a) , A33 = 0 ,

A34 = −M
(
WP + α) H(2)

k (ω sP a) , A35 = −M
(
WB + α) H(2)

k (ω sP a) , A36 = 0 ,

A41 = − 2 iµfr ωH(1)′′
k (ω sP b) + iω

(
−2

3µfr + kfr +M α(α+WP)
)

H(1)
k (ω sP b)

+ X1 ω

sP
H(1)′
k (ω sP b) + X2 ωWP

sP
H(1)′
k (ω sP b) ,

A42 = − 2 iµfr ωH(1)′′
k (ω sB b) + iω

(
−2

3µfr + kfr +M α(α+WB)
)

H(1)
k (ω sB b)

+ X1 ω

sB
H(1)′
k (ω sB b) + X2 ωWB

sB
H(1)′
k (ω sB b) ,

A43 = − 2µfr k

sS b
H(1)′
k (ω sS b) + 2µfr k

ωs2
S b

2 H(1)
k (ω sS b) − X1 i k

s2
S b

H(1)
k (ω sS b) + X2 ρf µfr i k

detA b
H(1)
k (ω sS b) ,
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A44 = − 2 iµfr ωH(2)′′
k (ω sP b) + iω

(
−2

3µfr + kfr +M α(α+WP)
)

H(2)
k (ω sP b)

+ X1 ω

sP
H(2)′
k (ω sP b) + X2 ωWP

sP
H(2)′
k (ω sP b) ,

A45 = − 2 iµfr ωH(2)′′
k (ω sB b) + iω

(
−2

3µfr + kfr +M α(α+WB)
)

H(2)
k (ω sB b)

+ X1 ω

sB
H(2)′
k (ω sB b) + X2 ωWB

sB
H(2)′
k (ω sB b) ,

A46 = − 2µfr k

sS b
H(2)′
k (ω sS b) + 2µfr k

ωs2
S b

2 H(2)
k (ω sS b) − X1 i k

s2
S b

H(2)
k (ω sS b) + X2 ρf µfr i k

detA b
H(2)
k (ω sS b) ,

A51 = − 2µfr ω i k
sP b

H(1)′
k (ω sP b) + 2µfr i k

s2
P b2 H(1)

k (ω sP b) + X3 ω k

s2
Pb

H(1)
k (ω sP b) ,

A52 = − 2µfr ω i k
sB b

H(1)′
k (ω sB b) + 2µfr i k

s2
B b2 H(1)

k (ω sB b) + X3 ω k

s2
Bb

H(1)
k (ω sB b) ,

A53 = − k2 µfr

s2
S b

2 H(1)
k (ω sS b) + ω µfr

sS b
H(1)′
k (ω sS b) − ω2 µfr H(1)′′

k (ω sS b) − X3 ω
2 i

sS
H(1)′
k (ω sS b) ,

A54 = − 2µfr ω i k
sP b

H(2)′
k (ω sP b) + 2µfr i k

s2
P b2 H(2)

k (ω sP b) + X3 ω k

s2
Pb

H(2)
k (ω sP b) ,

A55 = − 2µfr ω i k
sB b

H(2)′
k (ω sB b) + 2µfr i k

s2
B b2 H(2)

k (ω sB b) + X3 ω k

s2
Bb

H(2)
k (ω sB b) ,

A56 = − k2 µfr

s2
S b

2 H(2)
k (ω sS b) + ω

sS b
H(2)′
k (ω sS b) − ω2 µfr H(2)′′

k (ω sS b) − X3 ω
2 i

sS
H(2)′
k (ω sS b) ,

and

A61 = − iωM (WP + α)H(1)
k (ω sP b) + X4 ω

sP
H(1)′
k (ω sP b) + X5 ωWP

sP
H(1)′
k (ω sP b) ,

A62 = − iωM (WB + α)H(1)
k (ω sB b) + X4 ω

sB
H(1)′
k (ω sB b) + X5 ωWB

sB
H(1)′
k (ω sB b) ,

A63 = − X4 i k
s2
S b

H(1)
k (ω sS b) + X5 ρf µfr i k

detA b
H(1)
k (ω sS b) ,

A64 = − iωM (WP + α)H(2)
k (ω sP b) + X4 ω

sP
H(2)′
k (ω sP b) + X5 ωWP

sP
H(2)′
k (ω sP b) ,

A65 = − iωM (WB + α)H(2)
k (ω sB b) + X4 ω

sB
H(2)′
k (ω sB b) + X5 ωWB

sB
H(2)′
k (ω sB b) ,

A66 = − X4 i k
s2
S b

H(2)
k (ω sS b) + X5 ρf µfr i k

detA b
H(2)
k (ω sS b) .

4.3 Performance assessment of the radiation boundary condition in the
setting of an obstacle scattering

In the previous section, we have built the reference outgoing solution U∞−Ti and the RBC solution Urbc-Ti for the
scattering of a plane wave by an impenetrable circular obstacle. From now on, we denote by U∞−Ti the restriction of
U∞−Ti on Ωab. In this section, we study the robustness of the RBC by comparing U∞−Ti with Urbc-Ti.

The domain is an annulus described in Figure 4.1 composed of sandstone (see Table 3.1). The boundary of the
obstacle {r = a} is denoted by Γn. We set an artificial boundary at radius b. We will consider the scattering of the
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three porous plane waves of type (P,B,S) by the obstacle, for boundary condition of type 1 (”Neumann-like”) and 3
(”Dirichlet-like”) on a. In all of our numerical experiments, the radius of the obstacle is kept equal to one meter, i.e.,
a = 1m, while the value of the viscosity in the material η, of the frequency f and of the exterior radius b will vary.

Recall that the solution Urbc-Ti is represented by the series of coefficients ak, bk, ck, ãk, b̃k, c̃k , and the solution
U∞−Ti by the coefficients a∞k , b∞k , c∞k (see equations (4.14)-(4.17)). In the numerical tests, the Hankel functions are
infinite series truncated to the first N terms of the series, with N ≥ 2ka + 1 (cf. [120]), where k = max(kP, kB, kS) .

The comparisons are carried out in terms of the following quantities:

• Comparison mode by mode of a∞k , b∞k , c∞k with ak, bk, ck. Module of ãk, b̃k, c̃k. As the function H(2)
k corresponds

to the incoming solution, hence the coefficients ãk, b̃k, c̃k represent the incoming part of the solution, that we
seek to be small to have an accurate solution.

• Errors on the coefficients:

e2
coeff =

k=N∑
k=−N

(
(a∞k − ak)2 + (b∞k − bk)2 + (c∞k − ck)2 + ãk

2 + b̃k
2 + c̃k

2
)

k=N∑
k=−N

(a∞2
k + b∞2

k + c∞2
k )

,

e2
ref =

k=N∑
k=−N

(
ãk

2 + b̃k
2 + c̃k

2
)
.

(4.20)

• Relative L2 error of ux:

eh(urbc -Ti
x ) = ||urbc -Ti

x − u∞−Ti
x ||2

||u∞−Ti
x ||2

. (4.21)

The L2 norm is theoretically equal to

||urbc -Ti
x − u∞−Ti

x ||2 =
(∫

Ωab

|urbc -Ti
x − u∞−Ti

x |2
) 1

2

,

In practice, we approximate the above equation by

||urbc -Ti
x − u∞−Ti

x ||2 =
( ∑
K∈Th

∫
K

|urbc -Ti
x − u∞−Ti

x |2
) 1

2

,

where we have defined a mesh Th of Ωab with Nelem elements K which are triangles. We define on each element
the 10 Lagrange degrees of freedom corresponding to an interpolation of degree 3 on a triangle, and compute
the norm using this interpolation. We focus on the component ux, but the other components have the same
behaviour.

We will study the effect of different factors on the performance of the RBC: the presence of viscosity, the size of
the exterior radius b. the frequency, the type of incident-wave (P,B,S), the type of boundary condition on the interior
radius a. We will focus on type 1 (”Neumann-like”) and type 3 (”Dirichlet-like”).

In the following, we first present in Section 4.3.1 the modulus of the coefficients for b = 10m and f = 1kHz, for
many configurations. Then in Section 4.3.2, we compare the RBC solution with the outgoing solution potential by
potential by using a decomposition of the potentials. In Section 4.3.3, we investigate the influence of the size of the
domain used for the RBC solution by varying the value of b. Afterwards, in order to highlight the influence of the
viscosity on the performance of the RBC, we compare the RBC solution with the outgoing solution for a material by
varying only its viscosity in Section 4.3.4. Finally, in Section 4.3.5 the performance of the RBC is studied for a range
of frequencies.

4.3.1 Comparison between the coefficients of outgoing solution and RBC solution
In the following, we display the values of the coefficients series a∞k , b∞k , c∞k and ak, bk ck, ãk, b̃k, c̃k for several
configurations:

• Scattering of a P, B, S incident plane wave for sandstone with viscosity η = 10−3 Pa.s−1 and boundary condition
of type 1 (”Neumann-like”) on r = a (cf. (1.20a)), respectively in figures 4.2, 4.3, 4.4 for exterior radius b = 10m.
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• Scattering of a P, B, S incident plane wave for sandstone with viscosity η = 10−3 Pa.s−1 and boundary condition
of type 3 (”Dirichlet-like”) on r = a (cf. (1.20c)), respectively in figures 4.5, 4.6, 4.7, for exterior radius b = 10m.

• Scattering of a P, B, S incident plane wave for sandstone with no viscosity η = 0 Pa.s−1 and boundary condition
of type 1 (”Neumann-like”) on r = a (cf. (1.20a)), respectively in figures 4.8, 4.9, 4.10 for exterior radius b = 10m.

• Scattering of a P, B, S incident plane wave for sandstone with no viscosity η = 0 Pa.s−1 and boundary condition
of type 3 (”Dirichlet-like”) on r = a (cf. (1.20c)), respectively in figures 4.11, 4.12, 4.13, for exterior radius
b = 10m.

Remark 4.6. Even though the value b = 10m might seem high compared to the size of a, we have for the experiments:
kP b = 14.76, kB b = 61.48, kS b = 26.25. This means that for the fastest wave, we have kP b

2π = 2.35 wavelengths
for 10m, which is low. The rule of thumb recommends indeed to set the boundary at least at two wavelengths of the
obstacle.

From Figs. 4.2 to 4.13, we observe the following. The coefficients ak, bk, ck, obtained by solving the system with
radiation boundaries seem to approximate well the coefficients obtained for the exact solution. For the three incident
waves, the coefficients ãk and b̃k are close to zero. The coefficients c̃k are greater than ãk and b̃k in all cases. when the
incident plane wave is a B-wave, the values of the coefficients bk, b∞k are larger than the other coefficients (Figs. 4.3
and 4.6 ), however, the reflected coefficient b̃k remains low. The value of c̃k is always at least 10% of the coefficients ak,
bk, ck, it can even be of the same order or higher than them (see Figs. 4.10 and 4.13). This means that the reflection
of the S-wave has more influence on the error of the radiation boundary condition. For most cases, the behaviour of
c̃k is related to the one of ck, e.g. Figs. 4.2-4.7, however, in case of an incident B-wave, it seems to be linked to bk
(Figure 4.12). Finally, as in Figures. 4.7, 4.9 and 4.13, the behaviour of c̃k seems to be a combination of the behaviour
of bk and ck. By only studying the coefficients, we cannot observe a significant difference of behaviour with or without
viscosity in the material. The errors on the radiation boundary condition is hence mainly due to the conversion of
S-wave to S-waves and of B-wave to S-waves.
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Figure 4.2: Obstacle scattering of an incident plane P-wave type 1 (”Neumann-like” (1.20a)) for the boundary condition
on r = a at a frequency f = 1kHz for a sandstone medium with viscosity η = 10−3 Pa.s−1. The domain is an annulus
with interior radius a = 1m and exterior radius b = 10m. The coefficients with ∞ superscript correspond to the exact
outgoing solution. a∞k , ak , and ãk are the coefficients corresponding to the potential of the P-wave, b∞k

, bk , and b̃k the coefficients corresponding to the potential of the B-wave, and c∞k , ck , and c̃k
the coefficients corresponding to the potential of the S-wave (see (4.16)).
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Figure 4.3: Obstacle scattering of an incident plane B-wave with the type 1 (”Neumann-like” (1.20a)) for the boundary
condition on r = a at a frequency f = 1kHz for a sandstone medium with viscosity η = 10−3 Pa.s−1. The domain is
an annulus with interior radius a = 1m and exterior radius b = 10m. The coefficients with ∞ superscript correspond
to the exact outgoing solution. a∞k , ak , and ãk are the coefficients corresponding to the potential of the
P-wave, b∞k , bk , and b̃k the coefficients corresponding to the potential of the B-wave, and c∞k , ck

, and c̃k the coefficients corresponding to the potential of the S-wave (see (4.16)).
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Figure 4.4: Obstacle scattering of an incident plane S-wave with the type 1 (”Neumann-like” (1.20a)) for the boundary
condition on r = a. at a frequency f = 1kHz for a sandstone medium with viscosity η = 10−3 Pa.s−1. The domain is
an annulus with interior radius a = 1m and exterior radius b = 10m. The coefficients with ∞ superscript correspond
to the exact outgoing solution. a∞k , ak , and ãk are the coefficients corresponding to the potential of the
P-wave, b∞k , bk , and b̃k the coefficients corresponding to the potential of the B-wave, and c∞k , ck

, and c̃k coefficients corresponding to the potential of the S-wave (see (4.16)).
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Figure 4.5: Obstacle scattering of an incident plane P-wave type 3 (”Dirichlet-like” (1.20c)) for the boundary condition
on r = a at a frequency f = 1kHz for a sandstone medium with viscosity η = 10−3 Pa.s−1. The domain is an annulus
with interior radius a = 1m and exterior radius b = 10m. The coefficients with ∞ superscript correspond to the exact
outgoing solution. a∞k , ak , and ãk are the coefficients corresponding to the potential of the P-wave, b∞k

, bk , and b̃k the coefficients corresponding to the potential of the B-wave, and c∞k , ck , and c̃k
the coefficients corresponding to the potential of the S-wave (see (4.16)).
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Figure 4.6: Obstacle scattering of an incident plane B-wave with the type 3 (”Dirichlet-like” (1.20c)) for the boundary
condition on r = a at a frequency f = 1kHz for a sandstone medium with viscosity η = 10−3 Pa.s−1. The domain is
an annulus with interior radius a = 1m and exterior radius b = 10m. The coefficients with ∞ superscript correspond
to the exact outgoing solution. a∞k , ak , and ãk are the coefficients corresponding to the potential of the
P-wave, b∞k , bk , and b̃k the coefficients corresponding to the potential of the B-wave, and c∞k , ck

, and c̃k the coefficients corresponding to the potential of the S-wave (see (4.16)).
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Figure 4.7: Obstacle scattering of an incident plane S-wave with the type 3 (”Dirichlet-like” (1.20c)) for the boundary
condition on r = a at a frequency f = 1kHz for a sandstone medium with viscosity η = 10−3 Pa.s−1. The domain is
an annulus with interior radius a = 1m and exterior radius b = 10m. The coefficients with ∞ superscript correspond
to the exact outgoing solution. a∞k , ak , and ãk are the coefficients corresponding to the potential of the
P-wave, b∞k , bk , and b̃k the coefficients corresponding to the potential of the B-wave, and c∞k , ck

, and c̃k the coefficients corresponding to the potential of the S-wave (see (4.16)).
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Figure 4.8: Obstacle scattering of an incident plane P-wave type 1 (”Neumann-like” (1.20a)) for the boundary condition
on r = a at a frequency f = 1kHz for a sandstone medium with no viscosity η = 0 Pa.s−1. The domain is an annulus
with interior radius a = 1m and exterior radius b = 10m. The coefficients with ∞ superscript correspond to the exact
outgoing solution. a∞k , ak , and ãk are the coefficients corresponding to the potential of the P-wave, b∞k

, bk , and b̃k the coefficients corresponding to the potential of the B-wave, and c∞k , ck , and c̃k
the coefficients corresponding to the potential of the S-wave (see (4.16)).
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Figure 4.9: Obstacle scattering of an incident plane B-wave with the type 1 (”Neumann-like” (1.20a)) for the boundary
condition on r = a at a frequency f = 1kHz for a sandstone medium with no viscosity η = 0 Pa.s−1. The domain is
an annulus with interior radius a = 1m and exterior radius b = 10m. The coefficients with ∞ superscript correspond
to the exact outgoing solution. a∞k , ak , and ãk are the coefficients corresponding to the potential of the
P-wave, b∞k , bk , and b̃k the coefficients corresponding to the potential of the B-wave, and c∞k , ck

, and c̃k the coefficients corresponding to the potential of the S-wave (see (4.16)).
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b̃k
c̃k

Figure 4.10: Obstacle scattering of an incident plane S-wave with the type 1 (”Neumann-like” (1.20a)) for the boundary
condition on r = a. at a frequency f = 1kHz for a sandstone medium with no viscosity η = 0 Pa.s−1. The domain is
an annulus with interior radius a = 1m and exterior radius b = 10m. The coefficients with ∞ superscript correspond
to the exact outgoing solution. a∞k , ak , and ãk are the coefficients corresponding to the potential of the
P-wave, b∞k , bk , and b̃k the coefficients corresponding to the potential of the B-wave, and c∞k , ck

, and c̃k the coefficients corresponding to the potential of the S-wave (see (4.16)).
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Figure 4.11: Obstacle scattering of an incident plane P-wave type 3 (”Dirichlet-like” (1.20c)) for the boundary condition
on r = a at a frequency f = 1kHz for a sandstone medium with no viscosity η = 0 Pa.s−1. The domain is an annulus
with interior radius a = 1m and exterior radius b = 10m. The coefficients with ∞ superscript correspond to the exact
outgoing solution. a∞k , ak , and ãk are the coefficients corresponding to the potential of the P-wave, b∞k

, bk , and b̃k the coefficients corresponding to the potential of the B-wave, and c∞k , ck , and c̃k
the coefficients corresponding to the potential of the S-wave (see (4.16)).
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Figure 4.12: Obstacle scattering of an incident plane B-wave with the type 3 (”Dirichlet-like” (1.20c)) for the boundary
condition on r = a at a frequency f = 1kHz for a sandstone medium with no viscosity η = 0 Pa.s−1. The domain is
an annulus with interior radius a = 1m and exterior radius b = 10m. The coefficients with ∞ superscript correspond
to the exact outgoing solution. a∞k , ak , and ãk are the coefficients corresponding to the potential of the
P-wave, b∞k , bk , and b̃k the coefficients corresponding to the potential of the B-wave, and c∞k , ck

, and c̃k the coefficients corresponding to the potential of the S-wave (see (4.16)).
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Figure 4.13: Obstacle scattering of an incident plane S-wave with the type 3 (”Dirichlet-like” (1.20c)) for the boundary
condition on r = a at a frequency f = 1kHz for a sandstone medium with no viscosity η = 0 Pa.s−1. The domain is
an annulus with interior radius a = 1m and exterior radius b = 10m. The coefficients with ∞ superscript correspond
to the exact outgoing solution. a∞k , ak , and ãk are the coefficients corresponding to the potential of the
P-wave, b∞k , bk , and b̃k the coefficients corresponding to the potential of the B-wave, and c∞k , ck

, and c̃k the coefficients corresponding to the potential of the S-wave (see equation (4.16)).
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4.3.2 Potential decomposition
To illustrate better the effect of the RBC on each of the type of waves, we will use the natural decomposition in
potentials given by (4.2). We recall that this equation gives a complete description of the components of the solution
U in terms of the potentials χP, χB, χS. In this section, we will focus on the velocity u for type of boundary 1
(”Neumann-like”) on r = a. The wave decomposition for u of Urbc-T1 is given by

urbc-T1 = uχ
rbc-T1
P + uχ

rbc-T1
B + uχ

rbc-T1
S ,

uχ
rbc-T1
P = − i

ωs2
P
∇χrbc-T1

P , uχ
rbc-T1
B = − i

ωs2
B
∇χrbc-T1

B , uχ
rbc-T1
S = i

ωs2
S

curlχrbc-T1
S .

Recall that these potentials are represented by the coefficients (ak, bk, ck, ãk, b̃k, c̃k), cf. (4.16)-(4.17). We will also
compare with the decomposition of u∞ coming from U∞−T1

u∞−T1 = uχ
∞−T1
P + uχ

∞−T1
B + uχ

∞−T1
S ,

uχ
∞−T1
P = − i

ωs2
P
∇χ∞−T1

P , uχ
∞−T1
B = − i

ωs2
B
∇χ∞−T1

B , uχ
∞−T1
S = i

ωs2
S

curlχ∞−T1
S .

Recall that these potentials are represented by the coefficients (a∞k , b∞k , c∞k ), cf. (4.14)-(4.15).
In Figure 4.14, we present the decomposition of the solid velocity in the three potentials.

(a) urbc-T1
x (b) uχ

rbc-T1
P
x

(c) uχ
rbc-T1
B
x (d) uχ

rbc-T1
S
x

Figure 4.14: RBC solution: Decomposition of u (m.s−1) in the case of the scattering of a P-wave by an impenetrable
obstacle with boundary condition of type 1 (”Neumann-like”) on r = a cf. (1.20a) at a frequency f = 1kHz for a
sandstone medium with viscosity η = 10−3 Pa.s−1. The radiation boundary condition is set at b = 10m.

In Figure 4.14, the weak reflections are barely visible. Comparing to the outgoing solution (Figure 4.15), we cannot
see significant differences. This is also confirmed by Table 4.1, where the global error is low and the error on the
potentials are included between 1 and 3%. We can also observe the effect of the viscosity on the B-wave, (Figures
4.14(c), 4.16(c)) where the wave is absorbed and the energy is mainly localized around the obstacle when there is
viscosity. As expected, this effect is not clearly seen for P and S-waves because there are less sensitive to viscosity.
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(a) u∞x (b) uχ
∞−T1
P

(c) uχ
∞−T1
B (d) uχ

∞−T1
S

Figure 4.15: Outgoing solution: Decomposition of u (m.s−1) in the case of the scattering of a P-wave by an impenetrable
obstacle with boundary condition of type 1 (”Neumann-like”) on r = a, cf. (1.20a) at a frequency f = 1kHz for a
sandstone medium with viscosity η = 10−3 Pa.s−1.

u uχP uχB uχS

Relative L2 error (%) 2.30 2.73 1.22 3.17

Table 4.1: L2 error (%) on ux between the RBC solution and the outgoing solution for the decomposition in potentials.
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Figure 4.16: RBC solution: Decomposition of u (m.s−1) in the case of the scattering of a P-wave by an impenetrable
obstacle with boundary condition of type 1 (”Neumann-like”) on r = a cf. (1.20a) at a frequency f = 1kHz for a
sandstone medium with no viscosity (η = 0 Pa.s−1). The radiation boundary condition is set at b = 10m.
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4.3.3 Effect of the size of the truncated domain
We have observed previously that the radiation boundary condition has good performance for b = 10m. In this section,
we want to investigate the errors of the condition when the size of the truncated domain varies. Figure 4.17 presents
the results of the RBC solution for several sizes of exterior radius. The L2 error and the errors on the coefficients (ecoeff,
eref) defined in equations (4.20) and (4.21), for incident waves P,B,S, are reported in Figs. 4.18 to 4.20. As expected,
we observe that when the size of the truncated domain decreases, the error grows. Note that all the unknowns (u,
w, τ , p) have the same behavior. The presence of viscosity seems to lower the errors. This will be confirmed by the
results of Section 4.3.4. In most cases in our tests, the L2 error is lower than 5% from b = 10m. We observe two cases
where the error remains high (Figure 4.18) for a B incident wave with no viscosity and for types of boundary condition
1 (”Neumann-like”) and 3 (”Dirichlet-like”). This confirms the results from Figs. 4.9 and 4.12 where the values of c̃k
is high compared to the other coefficients ãk and b̃k. This shows that the efficiency of the RBC depends also on the
kind of incident wave.

(a) RBC solution with b = 10m (b) RBC solution with b = 3m

Figure 4.17: RBC solution: imaginary part of ux (m.s−1) for the scattering of a P-wave by a porous obstacle composed
of sandstone with viscosity η = 10−3 Pa.s−1, f = 1kHz and boundary condition of type 1 (”Neumann-like”) on a, for
different values of b.
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(b) Viscosity η = 0 Pa.s−1, BC3
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(c) Viscosity η = 10−3 Pa.s−1, BC1
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(d) Viscosity η = 10−3 Pa.s−1, BC3

Figure 4.18: Relative L2 error (%) between the RBC solution and the outgoing solution as a function of the size of
the radius b for η = 0 Pa.s−1 and η = 10−3 Pa.s−1 for f = 1kHz for boundary condition of type 1 (”Neumann-like”)
and 3 (”Dirichlet-like”) on the interior radius. The solutions are represented in blue for the incident P-wave, in
red for the incident B-wave and in green for the incident S-wave.
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Figure 4.19: Error ecoeff function of the size of the radius b for η = 0 Pa.s−1 and η = 10−3 Pa.s−1 for f = 1kHz
for boundary condition of type 1 (”Neumann-like”) and 3 (”Dirichlet-like”) on the interior radius. The solutions are
represented in blue for the incident P-wave, in red for the incident B-wave and in green for the incident
S-wave.
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Figure 4.20: Error eref function of the size of the radius b for η = 0 Pa.s−1 and η = 10−3 Pa.s−1 for f = 1kHz
for boundary condition of type 1 (”Neumann-like”) and 3 (”Dirichlet-like”) on the interior radius. The solutions are
represented in blue for the incident P-wave, in red for the incident B-wave and in green for the incident
S-wave.
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For the tests in the following sections, we set b = 10m, in order to keep the same domain and observe the influence
of other parameters. We have observed in the previous figures that this value is sufficient to limit the reflections. Note
that this means that for the fastest wave, we have kP b

2π = 2.35 wavelengths for 10m for f = 1kHz.

4.3.4 Effect of the viscosity
For the domain described in figure 4.1, we consider a medium composed of sandstone (cf. Table 3.1) and vary the value
of the viscosity in the material. We compare the RBC solution with the outgoing solution for the scattering of the three
kinds of plane waves at f = 1kHz. The radiation solution is presented in Figure 4.21 for the scattering of a B wave
for two values of viscosity. We see that when there is viscosity in the material, the wave is absorbed, and the majority
of the energy is localized around the obstacle. As there is less signal near the artificial boundary, we can expect the
radiation condition to be more efficient. The presence of the viscosity impacts mainly on the B-wave, as we already
observed in Figure 4.14. In Figure 4.22, we show the L2 error between the RBC solution and the outgoing solution
for the scattering of the three plane waves (P,B,S) for a fixed frequency. We observe that the errors decrease when
the viscosity grows, as expected. This means that the exterior boundary can be taken closer if the viscosity increases.
Moreover, the error is slightly greater for boundary condition of type 3. As mentioned previously, the presence of
viscosity has a greater impact on the B-wave than on the other waves, however, as seen in Figure 4.22, the global error
decreases, this means that the viscosity causes also absorption on the P and S-waves.

(a) η = 0Pa.s (b) η = 1.10−3Pa.s

Figure 4.21: Imaginary part of the pressure p (MPa) of the reflected wave of the scattering by a B plane wave for
type of boundary condition 3 (”Dirichlet-like”) on the interior radius (cf. (1.20c)) with radiation boundary condition
on b = 10m for a porous medium composed of sandstone with two different values of viscosity and with f = 500 Hz.
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(c) S wave

Figure 4.22: Relative L2 error (%) between the RBC solution and the outgoing solution with f = 1kHz as a function
of the viscosity of the medium for the scattering of a plane wave for type of boundary condition 1 (”Neumann-like”
eq. (1.20a)) and 3 (”Dirichlet-like” eq. (1.20c)) on a, respectively represented in blue and in red . The results
are given for a = 1m and b = 10m.
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4.3.5 Effect of the frequency
In this section, we study the influence of the frequency on the performance of the RBC. The results for the scattering
of a P-wave are presented in Figure 4.23 for two different frequencies. When the frequency is low, we observe that the
RBC solution does not approach the outgoing solution, particularly around the obstacle where the energy explodes.
In Figure 4.24, we show the L2 error between the RBC solution and the outgoing solution for a range of frequency.
We display the results for two values of viscosity η = 0 Pa.s−1 and η = 10−3 Pa.s−1, and for the boundary condition of
type 1 (”Neumann-like”) and 3 (”Dirichlet-like”). When ω increases, the RBC performs better. In the case of incident
B-wave with no viscosity, we observe some oscillations on the errors that are no longer present when the material is
viscous. Moreover, for the boundary condition of type 3 (”Dirichlet-like”), the error is around 10%.

(a) RBC solution at f = 1kHz (b) Outgoing solution at f = 1kHz

(c) RBC solution at f = 0.1kHz (d) Outgoing solution at f = 0.1kHz

Figure 4.23: Scattering of a P plane wave: Imaginary part of the solid velocity ux (103 m.s−1) of RBC solution and
outgoing solution for a porous medium composed of inviscid sandstone for type of boundary condition 1 (”Neumann-
like”) on the interior radius (cf. (1.20a)), with f = 1kHz and f = 0.1 kHz.
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(a) Viscosity η = 0 Pa.s−1, BC1
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(b) Viscosity η = 10−3 Pa.s−1, BC1
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(c) Viscosity η = 0 Pa.s−1, BC3
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(d) Viscosity η = 10−3 Pa.s−1, BC3

Figure 4.24: Relative L2 error (%) between the RBC solution and the outgoing solution as a function of the pulsation
ω in sandstone for the scattering of a plane wave for boundary condition of type 1 (”Neumann-like” equation (1.20a)),
and type 3 (”Dirichlet-like” equation (1.20c)) on a. The results are given for a = 1m and b = 10m for η = 0 Pa.s−1 and
η = 10−3 Pa.s−1. The incident P-wave is represented in blue , the incident B-wave in red and the incident
S-wave in green .



4.4. HDG METHOD USING RADIATION BOUNDARY CONDITIONS 159

Observations of the tests In the following, we summarize the observations for the tests in Sections 4.3.3, 4.3.4,
4.3.5:

• The radiation condition is efficient if kb r is large enough for the scattering of the three types of plane waves (P,
B, S) and the different types of boundary condition on the scattered obstacle. The percentage of the L2 error is
of the same order as for first-order RBC in acoustic or elasticity.

• As expected, we have observed that the error decreases as the number of wavelengths contained in the computa-
tional domain increases, that is by using a greater frequency or by setting the artificial boundaries further from
the obstacle. This is also the case in acoustic or elasticity.

• The higher the viscosity is, the more the RBC is efficient. This result can lead to another idea to construct RBC:
raising artificially the viscosity of the media near the absorbing boundary in order to absorb the incident waves.
However, we do not develop this idea here.

4.4 HDG method using Radiation Boundary conditions
This section draws on the HDG discretization for poroelastic equations (4.1), on which we apply the low-order radiation
boundary condition derived in Section 4.1. We consider a porous domain Ω with the boundary Γ = Γn ∪ Γabs.
(u, w, τ , p) solves the poroelastic equations (4.1) on Ω. On Γl, we impose one of the four conditions from Section 1.4.
From Section 4.1, equation (4.13), on the radiation boundary Γabs, we impose:τ n+

(
X1(u · n) + X2(w · n)

)
n+ X3(u · t) t = 0 ,

p + X4(u · n) + X5(w · n) = 0 .
(4.22)

We consider the triangulation Th of the domain Ω of dimension 2. We recall the notations and the function spaces
defined in equations (3.4) and (3.5):

L2(Ω), the space of square-integrable functions on the domain Ω ,

V p(Ω), the set of polynomials of degree at most p on Ω ,

V p(Ω) = (V p(Ω))2 ,

Σp(Ω) = {τ ∈ (V p(Ω))22
|τ symmetric } .

Associated to triangulation Th, we define the following spaces:

V ph = {v ∈ L2(Ω) : v|K ∈ V p(K) , ∀K ∈ Th} ,

V p
h = {v ∈ (L2(Ω))2 : v|K ∈ V p(K) , ∀K ∈ Th} ,

Σp
h = {τ ∈ L2(Ω)22

: τ |K ∈ Σp(K) , ∀K ∈ Th} ,

Mh = {ξ ∈ L2(Fh) : ξ|F ∈ V p(F ), , ∀K ∈ Fh} ,

Mh = {η ∈ (L2(Fh))2 : η|F ∈ (V p(F ))2 , ∀K ∈ Fh} .

The local unknowns (uh, wh, τh, ph) ∈ (V p
h × V

p
h × Σp

h × V
p
h ) solve the poroelastic equations (4.1) on Th. We

introduce two unknowns λ1 ∈ Mh, λ2 ∈ Mh to replace the numerical traces ûh and p̂h. The other two traces
(τ̂h, ŵh) are expressed in terms of the Lagrange multipliers λ1, λ2. The Lagrange unknowns λ1 and λ2 are dependent
of h, however to simplify the expressions, we drop the dependency in h in the notation. The numerical traces of
(uh, wh, τh, ph) on an edge are defined as:

ûh = λ1 ,

τ̂h = τh − S1(uh − λ1)⊗ n− (ph − λ2)S3 ,

ŵh = wh − (ph − λ2)S2n− S4(uh − λ1) ,

p̂h = λ2 ,

(4.23)
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with S1, S3, S2, S4 the stabilization matrices, that we consider to be of the form Si = γi I.
The HDG discretization of the poroelastic equations (4.1), given in details in Section 3.2, is composed of two

systems of equations, the local problem on each element, and the transmission conditions connecting the elements
using the numerical fluxes. They were given as:

AKWK + BK ΛK = CKsource , Local problem,

and ∑
K∈Th

(AKHDG)T
(
PKWK + TKAKHDGΛ

)
= Sinc , Transmission conditions,

with
WK = (uKx , uKy , wKx , wKy , τKxx, τKyy, τKxy, pK)T ,

and
ΛK = (λβ(K,1)

1x , λ
β(K,2)
1x , λ

β(K,3)
1x , λ

β(K,1)
1y λ

β(K,2)
1y , λ

β(K,3)
1y , λ

β(K,1)
2 , λ

β(K,2)
2 , λ

β(K,3)
2 )T ,

with β(K, f) the global index of the f-th face of the element K. The local solutions and the local Lagrange unknowns
are decomposed as:

uKl =
dKi∑
j=1

uKl,j ϕKj , wKl =
dKi∑
j=1

wKl,j ϕKj , τKkl =
dKi∑
j=1

τKkl,j ϕ
K
j , pK =

dKi∑
j=1

pK ϕKj , with k = x, y and l = x, y , (4.26a)

and

λF1l =
dFi∑
j=1

λ1l
F
j
ψFj , λF2 =

dFi∑
j=1

λ2
F
j
ψFj with l = x, y . (4.26b)

Here, dKi denotes the number of degrees of freedom of an element, dFi the number of degrees of freedom of an edge,
and ϕKj , ψFj are basis functions of the element K and the edge F respectively. The expressions of AK , BK , CKsource,
PK , TK are given in Chapter 3 and Appendix B.1 for a bounded domain. The resolution was also given in algorithm
2 in Section 3.4. Here, for the elements on the boundaries of the mesh, the presence of radiation boundary conditions
affects the expression of the transmission conditions, while the local problem is not modified. Hence, we do not detail
the discretization of the local problem, and we focus on the expression of the transmission conditions on the radiation
boundary. On Γabs, the transmission conditions are replaced by radiation conditions obtained by integrating equation
(4.22). This gives: ∑

F∈Frbc

∫
F

(τ̂ n+ (X1(û · n) + X2(ŵ · n))n+ X3(û · t) t) · η = 0 , (4.27a)

∑
F∈Frbc

∫
F

(p̂ + X4(û · n) + X5(ŵ · n))ξ = 0 , (4.27b)

with (η, ξ) ∈Mh × Mh basis-functions on the faces. As we are in two dimensions, equation (4.27) is discretized. We
recall the following matrices defined in Chapter 3,

FFij =
∫
F

ϕKi ψ
F
j dS , QFkij =

∫
F

ϕKi ψ
F
j nk dS , GFij =

∫
F

ψFi ψ
F
j dS , HFkij =

∫
F

ψFi ψ
F
j nk dS ,

and we introduce the matrices

LFklij =
∫
F

ϕKi ψ
F
j nk nl dS , OFklij =

∫
F

ψFi ψ
F
j nk nl dS , with k = x, y , and l = x, y.

(4.28)

(a) Discretization of the first condition Starting from equation (4.27a):∫
F

(τ̂h n+ (X1(ûh · n) + X2(ŵh · n))n+ X3(ûh · t) t) · η = 0 ,

and replacing the numerical traces τ̂h, ŵh using equation (4.23), we obtain∫
F

(τh n) · η −
∫
F

S1(uh − λ1) · η −
∫
F

(ph − λ2)(S3 n) · η

+
∫
F

(
(X1(λ1 · n)n+ X2

(
(wh · n)− (ph − λ2)(S2 n) · n− S4(uh − λ1) · n

)
n+ X3(λ1 · t) t

)
· η = 0 .
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We replace the test-functions η, ξ by basis functions, and we decompose the unknowns as given in equations
(4.26a) and (4.26b). The discretization of the equation along x axis is written as follows:∫

F

τKxxnxϕ
K
j ψ

β(K,f)
i dS +

∫
F

τKxynyϕ
K
j ψ

β(K,f)
i dS −

∫
F

γ1ϕ
K
j uKx ψ

β(K,f)
i dS +

∫
F

γ1ψ
β(K,f)
j λ

β(K,f)
1x ψ

β(K,f)
i dS

−
∫
F

γ3nxpKϕKj ψ
β(K,f)
i dS +

∫
F

γ3nxλ
β(K,f)
2 ψ

β(K,f)
j ψ

β(K,f)
i dS +

∫
F

X1 λ
β(K,f)
1x n2

x ψ
β(K,f)
j ψ

β(K,f)
i dS

+
∫
F

X1 λ
β(K,f)
1y nxny ψ

β(K,f)
j ψ

β(K,f)
i dS +

∫
F

X2 wKx n2
xϕ

K
j ψ

β(K,f)
i dS +

∫
F

X2 wKy nxnyϕKj ψ
β(K,f)
i dS

−
∫
F

X2 γ2pK nxϕKj ψ
β(K,f)
i dS +

∫
F

X2 γ2λ
β(K,f)
2 nx ψ

β(K,f)
j ψ

β(K,f)
i dS −

∫
F

X2 γ4 uKx n2
x ϕ

K
j ψ

β(K,f)
i dS

−
∫
F

X2 γ4 uKy nxny ϕKj ψ
β(K,f)
i dS +

∫
F

X2 γ4 (λβ(K,f)
1x nx + λ

β(K,f)
1y ny)nx ψβ(K,f)

j ψ
β(K,f)
i dS

+
∫
F

X3 (λβ(K,f)
1x n2

y − λ
β(K,f)
1y nxny)ψβ(K,f)

j ψ
β(K,f)
i = 0 ,

and along y-axis∫
F

τKxynxϕ
K
j ψ

β(K,f)
i dS +

∫
F

τKyynyϕ
K
j ψ

β(K,f)
i dS −

∫
F

γ1ϕ
K
j uKy ψ

β(K,f)
i dS +

∫
F

γ1ϕ
K
j λ

β(K,f)
1y ψ

β(K,f)
i dS

−
∫
F

γ3nypKϕKj ψ
β(K,f)
i dS +

∫
F

γ3nyλ
β(K,f)
2 ψ

β(K,f)
j ψ

β(K,f)
i dS +

∫
F

X1 λ
β(K,f)
1x nxny ψ

β(K,f)
j ψ

β(K,f)
i dS

+
∫
F

X1 λ
β(K,f)
1y n2

y ψ
β(K,f)
j ψ

β(K,f)
i dS +

∫
F

X2 wKx nxnyϕKj ψ
β(K,f)
i dS +

∫
F

X2 wKy n2
yϕ

K
j ψ

β(K,f)
i dS

−
∫
F

X2 γ2pK nyϕKj ψ
β(K,f)
i dS +

∫
F

X2 γ2λ
β(K,f)
2 ny ψ

β(K,f)
j ψ

β(K,f)
i dS −

∫
F

X2 γ4 uKx nxny ϕKj ψ
β(K,f)
i dS

−
∫
F

X2 γ4 uKy n2
y ϕ

K
j ψ

β(K,f)
i dS +

∫
F

X2γ4(λβ(K,f)
1x nx + λ

β(K,f)
1y ny)nyψβ(K,f)

j ψ
β(K,f)
i dS

+
∫
F

X3(−λβ(K,f)
1x nxny + λ

β(K,f)
1y n2

x)ψβ(K,f)
j ψ

β(K,f)
i = 0.

The two above equations can be written using the expressions of the matrices given in (4.28):

(Qβ(K,f)
x )T τKxx + (Qβ(K,f)

y )T τKxy − γ1(Fβ(K,f))TuKx + γ1Gβ(K,f)λ
β(K,f)
1x − γ3(Qβ(K,f)

x )TpK + γ3Hβ(K,f)
x λ

β(K,f)
2

+ Oβ(K,f)
xx X1 λ

β(K,f)
1x + Oβ(K,f)

xy X1λ
β(K,f)
1y + (Lβ(K,f)

xx )TX2 wKx + (Lβ(K,f)
xy )TX2 wKy

− (Qβ(K,f)
x )TX2 γ2pK + Hβ(K,f)

x X2 γ2λ
β(K,f)
2 − (Lβ(K,f)

xx )TX2 γ4 uKx − (Lβ(K,f)
xy )TX2 γ

β(K,f)
4 uKy

+ Oβ(K,f)
xx X2 λ

β(K,f)
1x + Oβ(K,f)

xy X2λ
β(K,f)
1y + Oβ(K,f)

yy X3 λ
β(K,f)
1x −Oβ(K,f)

xy X3 λ
β(K,f)
1y = 0 ,

and

(Qβ(K,f)
x )T τKxy + (Qβ(K,f)

y )T τKyy − γ1(Fβ(K,f))TuKy + γ1Gβ(K,f)λ
β(K,f)
1y − γ3(Qβ(K,f)

y )TpK + γ3Hβ(K,f)
y λ

β(K,f)
2

+ Oβ(K,f)
xy X1 λ

β(K,f)
1x + Oβ(K,f)

yy X1λ
β(K,f)
1y + (Lβ(K,f)

xy )TX2 wKx + (Lβ(K,f)
yy )TX2 wKy

− (Qβ(K,f)
y )TX2 γ2pK + HKy X2 γ2λ

β(K,f)
2 − (Lβ(K,f)

xy )TX2 γ4 uKx − (Lβ(K,f)
yy )TX2 γ4uKy

+ Oβ(K,f)
xy X2 λ

β(K,f)
1x + Oβ(K,f)

yy X2λ
β(K,f)
1y −Oβ(K,f)

xy X3 λ
β(K,f)
1x + Oβ(K,f)

xx X3 λ
β(K,f)
1y = 0 .

(b) Discretization of the second condition
From equation (4.27b), we have: ∫

F

(p̂h + X4(ûh · n) + X5(ŵh · n)) ξ = 0 .
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Replacing the numerical traces using equation (4.23), we have:∫
F

(
λ2 + X4(λ1 · n) + X5

(
(wh · n)− (ph − λ2)(S2 · n) · n− S4(uh − λ1) · n

))
ξ = 0 .

The equation is discretized on (x, y) and the local solutions and Lagrange operators are expressed with (4.26a)
and (4.26b).∫

F

λ
β(K,f)
2 ψ

β(K,f)
j ψ

β(K,f)
i +

∫
F

X4(λβ(K,f)
1x nx + λ

β(K,f)
1y ny)ψβ(K,f)

j ψ
β(K,f)
i +

∫
F

X5(wKx nx + wK
y ny)ϕKj ψ

β(K,f)
i

−
∫
F

X5 γ2pK (n2
x + n2

y)ϕKj ψ
β(K,f)
i dS +

∫
F

X5 γ2λ
β(K,f)
2 (n2

x + n2
y)ψβ(K,f)

j ψ
β(K,f)
i dS

−
∫
F

X5 γ4 (uKx nx + uKy ny)ϕKj ψ
β(K,f)
i dS +

∫
F

X5 γ4 (λβ(K,f)
1x nx + λ

β(K,f)
1y ny)ψβ(K,f)

j ψ
β(K,f)
i dS = 0 .

Using the elementary matrices defined in (4.28), we obtain:

Gβ(K,f)λ
β(K,f)
2 + Hβ(K,f)

x X4λ
β(K,f)
1x + Hβ(K,f)

y X4λ
β(K,f)
1y + (Qβ(K,f)

x )TX5wKx

+ (Qβ(K,f)
y )TX5wKy − (Fβ(K,f))TX5 γ2pK + Gβ(K,f)X5 γ2λ

β(K,f)
2 − (Qβ(K,f)

x )TX5γ4 uKx

−(Qβ(K,f)
y )TX5γ4 uKy + Hβ(K,f)

x X5γ4 λ
β(K,f)
1x + Hβ(K,f)

y X5γ4 λ
β(K,f)
1y = 0 .

The corresponding elementary matrices PK and TK are given in Appendix C.1.1.

4.5 HDG method with PML
In this section, we apply a Perfectly Matched Layer (PML) to the discretization of poroelastic equations (1.16) using
the HDG method, taking s = 1. Note that the PML can be applied both for isotropic and anisotropic materials, thus
we present the anisotropic poroelastic equations. Generally the PML can be unstable in the anisotropic case, however,
in the DG methods, instabilities of the PML can also be observed in the isotropic case. The perfectly matched layer is
an artificial absorbing layer on the edges of the computational domain, see Figure 4.25. It prevents the reflections on
the artificial boundaries. In the formulation, we use two absorbing functions α and β that represent the attenuation
of the wave in the absorbing layer. The attenuation functions α and β are taken equal to zero outside of the absorbing
layers. Taking ∂Ω the interface between the geophysical domain and the PML, the value of the attenuation functions
in the PML increases with the distance to ∂Ω. In practice, we replace the derivatives

∂

∂x
→ i ω

i ω + α(x)
∂

∂x
, and ∂

∂y
→ i ω

i ω + β(y)
∂

∂y
.

We consider a two-dimensional porous domain Ω with the boundary Γ on the plane (x, y). The fields (u, w, τ , p)
solve the poroelastic equations (1.16) in Ω. We consider a triangulation Th of Ω, and Fh the set of all the faces.
K is a triangle element of Th and F is a face of K. We use the approximation spaces defined in Section 4.4. The
local unknowns (uh, wh, τh, ph) ∈ (V p

h × V
p
h × Σp

h × V
p
h ) solve the poroelastic equations (1.16) on Th. The HDG

discretization of the poroelastic equations (1.16) is modified. However, as the discretization of the equations does not
present additional difficulties to the one described in Chapter 3, we detail the rest of the HDG method with PML in
Appendix C.1.2. On the boundaries of the mesh, we can set either a condition of type 1 or 3, hence, the boundary
conditions are not modified and stay the same as the ones used in HDG method with no PML, see Chapter 3.
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Figure 4.25: Illustration of the PML.

4.6 Numerical tests using HDG discretization
This section aims at evaluating the performance of the HDG discretization of poroelastic equations with radiation
boundary conditions or PML, which are detailed in Sections 4.4 and 4.5. We first consider the influence of the geometry
of the domain on the result of the numerical solution with radiation boundary conditions in Section 4.6.1. Then, in
Section 4.6.2, we compare the two methods, radiation boundary conditions and PML, using reference solutions, for
several configurations. Finally, in Section 4.6.3, we illustrate the wave propagation in a stratified porous domain by
decomposing the waves. We also consider the configuration of an anisotropic material.

4.6.1 Influence of the geometry of the domain for the RBC
In this section, we test the accuracy of the HDG discretization with radiation boundary conditions. The boundary
conditions have been developed for a circular geometry, and we want to test if those radiation boundary conditions
remain efficient on a different geometry. We consider an infinite porous medium, in which there is a solid obstacle,
and we set artificial boundaries, in one case, circular boundaries, and in the second case square boundaries. We run a
test on an annulus described in figure 4.1, and for a square with a hole, see Figure 4.28. The solutions are displayed
in Figure 4.27.

a b

L

Ω

Γn

Γabs

Upw U ref

Figure 4.26: Computational domain used for the scattering of a plane wave by an impenetrable solid immersed in
a porous medium. The cross section of the inclusion is a disc of radius denoted by a. The artificial boundaries are
imposed either on the circle r = b or on the square of length L.

For the numerical tests, we use a = 1m and b = 10m, L = 20m (see Figure 4.26). For a porous medium composed
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(a) b = 10m (b) b = 10m

Figure 4.27: Imaginary part of the solid velocity ux (m.s−1) of the reflected wave for radiation boundary conditions
for a porous medium composed of inviscid sandstone with f = 1.5 kHz and boundary conditions 3 for two different
domains, with a = 1m and b = 10m, L = 20m.

of sandstone at f = 1kHz, we compare the L2 error of the solution for an order of discretization 3, for different values
of viscosity and for the boundary conditions of type 1 and 3 on Γn. We compare the L2 error between the reference
solution and the results with HDG for an annulus, and for a square with a hole, cf. Table 4.2.

BC1 Square Annulus
η = 0 Pa.s−1 7.70 3.03
η = 10−3 Pa.s−1 6.09 2.16

BC3 Square Annulus
η = 0 Pa.s−1 8.26 4.00
η = 10−3 Pa.s−1 6.53 2.75

Table 4.2: L2 relative error (%) on the solid velocity between the reference solution with radiation conditions and the
numerical solution with order of discretization 3 for η = 0 Pa.s−1 and η = 10−3 Pa.s−1. We display the solution for
the scattering of a P plane wave for boundary conditions of type 1 and 3, with a = 1m and b = 10m, L = 20m.

As expected, for a circular geometry, the discretization of radiation boundary conditions is efficient. For a square
geometry, the radiation boundaries remain efficient, however, the error is greater than for circular geometry, (see Tab.
4.2). We also observe in the table that the presence of viscosity improves the accuracy of the solution. The error is
between 5 and 10%, which is comparable to the results for the LK condition in elasticity ([93, Tabs. 7,8]).

4.6.2 Comparison of HDG methods using RBC or PML
In this section, we compare the two methods of boundary conditions that we have presented in Sections 4.4 and 4.5
: low order RBC and PML applied on the HDG discretization. In the code, we use for the absorption functions (see
Section 4.5): α(x) = β0 d(x) and β(y) = β0 d(y), with d the horizontal or vertical distance between the considered
point and the artificial boundary. First, we compare the results on a square domain with an impenetrable obstacle,
then we consider a domain composed of two porous layers.

4.6.2.1 Square with a hole

We consider an infinite porous medium, with a solid inclusion Γ, see Figure 4.28. Here, the artificial boundary is
a square. For the two different cases, PML or radiation boundary conditions, an incident wave is scattered by the
obstacle, and we study the reflected solution. In this case, we can compare the solution with the outgoing solution.
Figure 4.29 shows the solution with the two different radiation conditions. In Table 4.3, we present the L2 error between
the solution with radiation boundary conditions and the exact outgoing solution. We denote ”RBC” the solution with
radiation boundary conditions, ”PML” the solution with PML on the boundaries, and ”exact” the outgoing solution.
Note that the error is calculated only on the part of the domain where the original one is actually solved and which
coincides with the domain used for the case with radiation boundary conditions.
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Ω
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(a) Domain with RBC
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∂Ω

Ω2
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Γ
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l

(b) Domain with PML

Figure 4.28: Infinite porous domain with a solid obstacle used for the numerical tests, in which we build radiation
boundary conditions. In the tests, we take: a = 1m, L = 20m, β0 = 6.39, and l = 3m or l = 6m. We can use either
PML or RBC.

BC1 RBC PML l = 3m PML l = 6m
η = 0 Pa.s−1 7.70 10.8 3.65
η = 10−3 Pa.s−1 6.09 9.82 2.8

BC3 RBC PML l = 3m PML l = 6m
η = 0 Pa.s−1 8.26 9.52 3.81
η = 10−3 Pa.s−1 6.53 8.72 2.78

Table 4.3: L2 error (%) on ux between the reference solution with radiation conditions and the numerical solution for
η = 0 Pa.s−1 and η = 10−3 Pa.s−1. We display the error for the scattering of a P plane wave for boundary conditions
of type 1 and 3 on the interior radius.

RBC PML l = 3m PML l = 6m
Number of edges 10974 17448 25581
Number of dof 43896 69792 102324

Table 4.4: Number of degrees of freedom for the three cases shown in Figure 4.29, with interpolation order equals to
3.

We observe from Table 4.3 that the PML solution with l = 3m generates slightly greater errors than radiation
boundary conditions and needs more computational time. However, when the size of the layer increases, (l = 6m),
the error is lower than for the solution with RBC. It also leads to an important increase of the computational time
because we need to compute the solution on a larger domain (see Tab. 4.4).

4.6.2.2 Stratified domain

Secondly, we investigate the case of a two-layered stratified plane domain. We consider the configuration detailed in
Figure 4.30, with the material parameters given in Table 4.5. A point-source is located in the upper medium of the
domain. In Figure 4.30(a), we use radiation boundary conditions on the border of the mesh. In Figure 4.30(b), we
add PML on the borders of the domain. Table 4.5 gives the size of the linear system solved by the program. The size
of discretization is the same in both meshes. The solutions are presented in Figure 4.31.

Figures 4.31, 4.31(a) and 4.31(b) present similar results in the region outside of the PML. In figure 4.31(b) all the
waves are absorbed in the PML region. However, in Figure 4.31(c), with a different value of absorption parameter,
the waves are not absorbed in the PML, and we observe many reflections that worsen the accuracy of the solution.
Moreover, Figure 4.31(d) shows that for high values of the absorbing coefficients, the energy in the PML explodes.
Indeed, the size of the layer and the value of the coefficient of absorption can have an impact on the accuracy of the
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(a) RBC (b) PML l = 3m

(c) PML l = 6m

Figure 4.29: Imaginary part of the solid velocity ux (m.s−1) of the reflected wave for the scattering of a P-wave on an
obstacle with boundary conditions 3 at the interior radius, for a porous medium composed of inviscid sandstone with
f = 1.5 kHz for a domain with radiation boundary condition and a domain with PML.

RBC PML
Number of edges 9380 15949
Number of dof 37520 63796

Table 4.5: Number of degrees of freedom for the cases shown in Fig 4.31, with interpolation order equal to 3.

solution, and the values of these parameters depend on the configuration of the test.
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(a) Domain with RBC

Ω

Point-source
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l

(b) Domain with PML

Figure 4.30: Stratified porous domain used for the numerical tests, in which we build radiation boundary conditions.
Here, the upper medium is composed of shale while the lower medium is composed of sandstone. The parameters of
the media are detailed in Table 3.1. In the tests, we take: L = 20m, l = 3m.



168 CHAPTER 4. TRUNCATION METHODS FOR POROELASTIC PROBLEMS

(a) RBC (b) PML with β0 = 6.4

(c) PML with β0 = 0.1 (d) PML with β0 = 64

Figure 4.31: Imaginary part of the solid velocity ux (m.s−1) of the reflected wave for a porous medium composed of
inviscid sandstone with f = 1 kHz for a domain with radiation boundary conditions and for domain with PML with
different values of the absorbing coefficient.
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4.6.3 Three layered domain

RBC

20m

7m

7m

7m
Medium 1: Sand

Medium 2: Shale

Medium 3: Sand

Point-source
x0 = (10, 18)

(a) Domain (b) Mesh

Figure 4.32: Domain and mesh used for the three layers test. The parameters of the three media are detailed in Table
3.1.

In this section we apply the HDG method to a stratified geophysical medium composed of three horizontal layers
made up of different materials. The domain and the mesh used for this test are shown in Figure 4.32. On the boundary
of the domain, we impose the RBC that was constructed in Section 4.1. The velocities and wavelengths λ = v

f , of the
three types of waves in the sand and the shale are given in Table 4.6 for frequency f = 500Hz.

Physical parameters Sand Shale
vP (m.s−1) (1.88 103, 10.4) 2.48 103

vS (m.s−1) (4.93 102, 3.76) 1.43 103

vB (m.s−1) (2.57 102, 57.9) 1.13 103

λP (m) 3.76 4.96
λS (m) 0.987 2.86
λB (m) 0.562 2.03

Table 4.6: Velocities and wavelengths for f = 500Hz in the materials in consideration for the test described in 4.32.

Regarding the external source, we consider a point-source at position x0 ∈ R2, modeled by Dirac-type distributions
E ′ acting on smooth vector-valued test functions in E := (C∞)2. In (1.16), we first consider the problem with
fu = ∇ δ0(x − x0), which corresponds to a source in longitudinal waves (P,B). We then consider the problem with
fu = ∇ × δ(x − x0) to have a source in transverse wave S. The actions of these distributions are defined, for v =
(vx, vy)T ∈ E,

〈∇ δ(x− x0) , v〉E′,E = − (∇ · v) (x0) , 〈∇ × δ(x− x0) , v〉E′,E = − (∂xvy − ∂yvx) (x0) . (4.31)

The results due to the point sources in (4.31) using an interpolation order of 6 are given in Figure 4.33. For the
case of longitudinal waves, in Figure 4.33(a) and 4.33(b), we observe both B and P waves in the upper layer around
the source. On the solid velocity, we observe mainly the P wave in layers 2 and 3, with the B wave mostly absorbed.
However, we can observe the presence of the B wave on the relative fluid velocity in the middle layer. For the case
with a source in transverse wave in Figure 4.35(b), we mainly observe the S wave in the three layers. From these
initial observations, we use the following procedure to separate and highlight the three waves. In order to show the
transverse wave, we display in Figure 4.34(c) and 4.35(c) the curl of the solid velocity,

WS := curl u = ∂xuy − ∂yux . (4.32)

Regarding the longitudinal waves, in order to eliminate the B wave and keep the P wave, we compute the quantity

WP := ∇ ·w − βB∇ · u . (4.33)

This is shown in Figure 4.34(a) and 4.35(a). Similarly, to keep the B wave and eliminate the P one, in Figure 4.34(b)
and 4.35(b), we compute

WB := ∇ ·w − βP∇ · u . (4.34)
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(a) uy with fu = ∇ (δ0(x− x0)) (b) wy with fu = ∇ (δ0(x− x0)) (c) uy with fu = ∇× (δ0(x− x0))

Figure 4.33: Vertical component of solid velocity uy and relative fluid velocity wy on three layers domain for two types
of point source at frequency f = 500Hz. For Figures (a) and (b), in the lowest layer, we observe 2 wavelengths in a
vertical space of 7 meters, which means that the wavelength λ is approximately 3.5m and agrees with that of P wave,
cf. Table 4.6. In Figure (c), the lowest layer contains 7 wavelengths within a depth of 7m, which means that λ is
approximately 1m, and thus corresponds to that of S wave, cf. Table 4.6. The resolution of the global system takes
6.90 seconds (CPU time), and it needs 659 MB of memory to solve the global system.

As expected, Figure 4.34(a) illustrates the fact that the longitudinal source generates mostly P and B waves with a

(a) P wave WP defined in (4.33) (b) B wave WB defined in (4.34) (c) S wave WS defined in (4.32)

Figure 4.34: Illustration of the three waves for the source fu = ∇ δ0(x − x0) at frequency f = 500Hz. In Figure
4.34(b), B-wave WB is seen around the source and but is mostly absorbed in the first layer. We see its reflection on
the interfaces. The B-wave propagates in the second layer because there is no absorption, but is absorbed in the third
layer. For the S-wave, we observe an artifact at the position of the source which contains only the longitudinal waves.

small S waves artifact. The attenuation acts mostly on the B wave, which is damped before reaching the first interface.
On the contrary, the P wave is not damped and generates transmitted P, B and S waves in the second layer and
reflected waves in the first layer. The reflected P wave is barely visible, hidden by the incident P wave, while the
reflected B wave is almost immediately damped. Only the reflected S wave is visible. The three transmitted waves
propagate without attenuation in the second layer and generate transmitted waves in the third layer. Once again, the
transmitted B wave is damped while the S and B waves propagate to the boundary of the domain. Note the efficiency
of the radiation boundary conditions for this test case. In Figure 4.35(b), we see that, as expected, the source produces
almost only S waves which generate mostly transmitted P and B waves at the interface with the second layer and
reflected B waves at the top boundary. These latter decay rapidly, due to the attenuation.

Comparison with anisotropic material: Here, we still consider the stratified geophysical medium composed of
three horizontal layers of different materials. However, we modify the composition of the upper layer which is now
anisotropic sand, whose characteristic parameters are given in Table 3.1. On the boundary of the computational
domain, since the radiation condition in Section 4.1 was obtained under the assumption that the medium is isotropic,
we truncate the domain with a PML. The corresponding domain is shown in Figure 4.36(a). The results of this
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(a) P wave WP defined in (4.33) (b) B wave WB defined in (4.34) (c) S wave WS defined in (4.32)

Figure 4.35: Illustration of the three waves with WP, WB, and WS, defined in (4.33), (4.34), and (4.32) respectively, for
the source fu = ∇× (δ(x−x0)), which corresponds to a source in transverse wave. The solution is given for frequency
f = 500Hz. As the source is a S-wave, for Figures 4.35(a) and 4.35(b), it should not generate longitudinal waves in
the upper layer, however we observe a numerical artifact at the location of the source. However, at the interfaces, with
the reflections, P and B-waves appear and propagate in the material. The S-wave is reflected on the boundary of the
first layer which is converted into pressure waves. In the second layer, the B-wave propagates and is not absorbed.
The S wave propagates correctly around the source and in the three layers.

experiment are given in Figure 4.36(c) and can be compared with Figure 4.36(b) which corresponds to the case where
the upper layer is filled with isotropic sand.

PML

18ml l

6m

7m

6m

l

l

Medium 1: Iso/Aniso Sand

Medium 2: Shale

Medium 3: Isotropic Sand

Point-source
x0 = (10, 18)

(a) Computational domain
with l = 1m

(b) uy with isotropic sand (c) uy with anisotropic sand

Figure 4.36: Vertical component of solid velocity uy in a three layered domain with a point source fu = (δ0(x−x0)) ey
at frequency f = 500Hz, for two different kind of media in the top layer.

In figure 4.36(c), we observe that in the upper layer, the wavefront has an elliptical shape which is characteristic
of an anisotropic phenomenon, whereas the wavefront is indeed circular in figure 4.36(b). The shape of the wavefront,
more stretched in the vertical direction, indicates that the velocity of the wave is greater in this direction than in
the other. This observation is consistent with the fact that the number of wavelengths propagated in the horizontal
direction is greater in anisotropic sand than in isotropic sand. This experiment also shows that the simulation remains
stable with the introduction of anisotropy. Moreover, the PML does not seem to generate more reflections in the
anisotropic medium than in the isotropic medium. It can also be observed that the signal in the deepest layer of
Figure 4.36(c) is very close to that of Figure 4.36(b). The difference is more noticeable in the second layer but not
very important.
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4.7 Extension to three dimensions
We consider a three-dimensional domain D, with n the outgoing unit normal vector and t, a the unit tangential vectors
to the surface. We propose the extension in 3D of the RBC as:τ n+

(
X1(u · n) + X2(w · n)

)
n+ X3(u · t) t + X3(u · a) a = 0 ,

p + X4(u · n) + X5(w · n) = 0 .
(4.35)

We present in Appendices C.2.3 and C.3 the HDG method using respectively the RBC and the PML in three
dimensions. In the following, we illustrate the HDG method using the absorbing boundary condition and the PML in
three dimensions. We consider a domain D of size [0 : 10]× [0 : 2]× [0 : 10]m. This domain, described in Figure 4.37,
is composed of two horizontal layers of poroelastic materials. The top layer is composed of shale, and the bottom layer
of sandstone. The physical parameters of those materials are detailed in Table 3.1.

Ω

Point-source

RBC Medium 1

Medium 2

L1

L2

(a) Domain with RBC

Ω

Point-source

PML

Medium 1

Medium 2

L1

L2

l1

l2

(b) Domain with PML

Figure 4.37: Stratified domain used for the numerical tests, in which we set artificial boundaries. Here, the upper
medium is composed of shale while the lower medium is composed of sandstone. The parameters of the media are
detailed in Table 3.1. In the tests, we set: L1 = 10m, L2 = 2m, l1 = 2m, and l2 = 1m.

On the border of the computational domain, we set artificial boundaries. In a first time, we set absorbing boundary
conditions. In this case, the domain D is discretized in an ustructured mesh composed of 22274 tetrahedra. Secondly,
we add PML to the domain, and we use a mesh of 81250 tetrahedra for the computation. Note that this increase of
degrees of freedom causes an important increase of memory used for the computation and computational time. For
the external source, we consider a point-source at position x0 = (5, 1, 7.5)m, modeled by Dirac-type distributions.

The fields u, w, τ , p solve equations (4.1) in D, with fu =

 0
0

δ0(x− x0)

. The results for the two configurations are

given in Figure 4.38, with f = 2kHz, and an order of interpolation equal to 3. We observe that the results are similar
for the two truncation methods and that the reflections are well-absorbed at the artificial boundaries.
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(a) RBC (b) PML

Figure 4.38: Horizontal component of solid velocity ux on the layered domain for two types of artificial boundaries,
for order of interpolation 3 at frequency f = 2kHz.

Conclusion
In this chapter, we have built a low-order radiation condition for isotropic poroelastic wave equations in the frequency
domain. The performance of this RBC has been evaluated in two groups of numerical investigations. In the first one,
in the setting of planewave scattering by circular obstacles, we compare how well the reference solution associated
to the RBC approximates the restriction of the true outgoing solution on the truncated domain. We have an overall
conclusion that our RBC has comparable robustness to LK for elasticity and to the Sommerfeld condition for the
acoustic equation, in the sense that the error is less than 10 % for most cases. In the second investigation, the
radiation condition has been implemented in a hybridizable dicontinuous Galerkin (HDG) formulation. We have also
applied perfectly matched layers (PML) on the HDG discretization of the poroelastic equations. We then compare
the performance of our RBC with the PML technique on different configurations. PML can be an alternative to the
radiation condition, but its performance depends on parameters that are specific to each experiment. If the size of the
PML is not large enough, the performance is deteriorated. To obtain better results than RBC, the PML can be taken
larger but this raises the degrees of freedom and incurs substantial increase of the computational time, while the gain
in accuracy is not considerable.
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Appendix A

Appendices to Chapter 2

A.1 Detailed calculation for expansion in Bessel functions
A.1.1 Polar coordinates
A point in polar coordinates (r, θ) is defined with the distance of the point from the origin r and an angle θ. The
coordinates are linked to Cartesian coordinates by:

x = r cos θ , and y = r sin θ .

We define the unit vectors in the polar coordinate system,

er =
(

cos θ
sin θ

)
, and eθ =

(
− sin θ
cos θ

)
.

In this system we decompose a vector a ∈ C2 as

a = ar er + eθ eθ .

The tensor product of two vectors in polar coordinates is

a ⊗ b = arbr er ⊗ er + arbθ er ⊗ eθ + aθbr eθ ⊗ er + aθbθ eθ ⊗ eθ

We also list the action of differential operators in polar coordinates. For a scalar f , we recall the notation of curl first
in Cartesian coordinates,

curl f =
(
∂yf
−∂xf

)
(A.1)

In polar coordinates, the action of curl and gradient ∇ are,

curl f = 1
r
∂θf er − ∂rf eθ , and ∇f = ∂rf er + ∂θ

r
eθ . (A.2)

We will also need the following second-order operators,

∇2f : = ∇ (∇f) = ∂2
rf er ⊗ er +

(
∂2
rθf

r
− ∂θf

r2

)
er ⊗ eθ +

(
∂2
rθf

r
− ∂θf

r2

)
eθ ⊗ er +

(
∂2
θf

r
+ ∂rf

r

)
eθ ⊗ eθ ,

∇ (curlf) =
(
∂2
rθf

r
− ∂θf

r2

)
er ⊗ er +

(
∂2
θf

r2 + ∂rf

r

)
er ⊗ eθ − ∂2

rf eθ ⊗ er +
(
−∂

2
rθf

r
+ ∂θf

r2

)
eθ ⊗ eθ. (A.3a)

A.1.2 Calculations for a Bessel function
Denote by Zk a Bessel function. Using the expressions in equation (A.2) for u and w, we have:

∇
(
Zk(s̃ω s• r)eikθ) = s̃ω s•Z′k(s̃ω s• r)eikθer + ik

r
Zk(s̃ω s• r)eikθeθ ,

curl
(
Zk(s̃ω s• r)eikθ) = ik

r
Zk(s̃ω s• r)eikθ er − s̃ω s• Z′k(s̃ω s• r)eikθeθ.
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To express the components of τ , we will need the calculations of ∇2f and ∇(curlf), given in equation (A.3a). For
f = Zk(s̃ω s• r) ei k θ,

∂2
rf = (ω s•)2 Z′′k(s̃ω s•r) ei k θ , ∂rθf = s̃ω s• i k Z′k(s̃ω s•r) ei k θ , ∂2

θf = −k2 Zk(s̃ω s•r) ei k θ .

Next we replace Z′′, by using the ODE:

z2 d
2

dz2 Z + z
d

dz
Z + (z2 − k2)Z = 0 ⇒ d2

dz2 Zk = −1
z

Z′k − (1− k2

z2 )Zk .

Remark A.1. To completely eliminate the derivative, we can use the connection formula

Z′k = Zk−1(z)− k

z
Zk(z) = −Zk+1(z) + k

z
Zk(z) .

Hence, we have:

d2

dz2 Zk = −1
z

(
Zk−1(z)− k

z
Zk(z)

)
− (1− k2

z2 )Zk(z)

= −1
z

(
−Zk+1(z) + k

z
Zk(z)

)
− (1− k2

z2 )Zk(z) .

4
Here, we detail the expression of the stress components τ rr and τ rθ:

ω2τ rr = µfr

(
− 2

s2
P
∂2
rχP −

2
s2
B
∂2
rχB + 2∂rθ χS

s2
Sr

)
+ ω2 (− 2

3µfr + kfr + Mα2) (χP + χB) + ω2αM (WP χP +WB χB)

=
∑
k∈Z

[
µfr

(
−2 ak ω2 Z

′′

k(s̃ω sP r) ei k θ − 2 bk ω2 Z
′′

k(s̃ω sB r) ei k θ + 2
sSr

ck ω s̃ ik Z
′

k(s̃ω sS r) ei k θ
)

+ ω2 (− 2
3µfr + kfr + Mα2 + αMWP

)
ak Zk(s̃ω sP r) ei k θ

+ ω2 (− 2
3µfr + kfr + Mα2 + αMWB

)
bk Zk(s̃ω sB r) ei k θ

]

= −
∑
k∈Z

2µfr ω s̃

sP
ak Zk+1(s̃ω sP r) ei k θ +

∑
k∈Z

2µfr k

s2
P

ak Zk(s̃ω sP r) ei k θ +
∑
k∈Z

2µfr ak ω
2 Zk(s̃ω sP r) ei k θ

−
∑
k∈Z

2µfr k
2

s2
P

ak Zk(s̃ω sP r) ei k θ −
∑
k∈Z

2µfr ω s̃

sB
bk Zk+1(s̃ω sB r) ei k θ +

∑
k∈Z

2µfr k

s2
B

bk Zk(s̃ω sB r) ei k θ

+
∑
k∈Z

2µfr bk ω
2 Zk(s̃ω sB r) ei k θ −

∑
k∈Z

2µfr k
2

s2
B

bk Zk(s̃ω sB r) ei k θ +
∑
k∈Z

2µfr

s2
Sr

ck ω sS ik Z
′

k(s̃ω sS r) ei k θ

+
∑
k∈Z

ω2 (− 2
3µfr + kfr + Mα2 + αMWP

)
ak Zk(s̃ω sP r) ei k θ

+
∑
k∈Z

ω2 (− 2
3µfr + kfr + Mα2 + αMWB

)
bk Zk(s̃ω sB r) ei k θ ,
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ω2 τ rθ = µfr

(
− 2

s2
P

(
∂θr
r
χP −

∂θ
r2 χP

)
− 2

s2
B

(
∂θr
r
χB −

∂θ
r2 χB

)
+ 1

s2
S

(
∂θθ
r2 χS + ∂r

r
χS − ∂rr χS

))
=
∑
k∈Z

µfr

[
− 2

s2
P

(
ω s̃ sPi k

r
ak Z′k(s̃ω sP r) ei k θ − i k

r2 ak Zk(s̃ω sP r) ei k θ
)

− 2
s2
B

(
ω s̃ sBi k

r
bk Z′k(s̃ω sB r) ei k θ − i k

r2 bk Zk(s̃ω sB r) ei k θ
)

+ 1
s2
S

(
− k2

r2 ck Zk(s̃ω sS r) ei k θ + ω s̃ sS

r
ck Z′k(s̃ω sS r) ei k θ − ω2 s2

S ck Z′′k(s̃ω sS r) ei k θ
)]

= −
∑
k∈Z

2µfrω s̃ i k
r sP

ak Z′k(s̃ω sP r) ei k θ +
∑
k∈Z

2 iµfr k

r2 s2
P

ak Zk(s̃ω sP r) ei k θ

−
∑
k∈Z

2µfrω s̃ i k
r sB

bk Z′k(s̃ω sB r) ei k θ +
∑
k∈Z

2 iµfr k

r2 s2
B

bk Zk(s̃ω sB r) ei k θ

−
∑
k∈Z

µfr k
2

r2 s2
S
ck Zk(s̃ω sS r) ei k θ +

∑
k∈Z

µfr ω s̃

r sS
ck Z′k(s̃ω sS r) ei k θ

−
∑
k∈Z

µfr
ω s̃

sS
ck Zk+1(s̃ω sS r) ei k θ +

∑
k∈Z

µfr
k

s2
S
ck Zk(s̃ω sS r) ei k θ

+
∑
k∈Z

µfr ω
2 ck Zk(s̃ω sS r) ei k θ −

∑
k∈Z

µfr
k2

s2
S
ck Zk(s̃ω sS r) ei k θ .



178 APPENDIX A. APPENDICES TO CHAPTER 2



Appendix B

Appendices to Chapter 3

B.1 Elementary matrices
In sections 3.2 and 3.3, we have obtained from the discretization of (3.12) the system AKWK + BKΛK = CKsource .

B.1.1 In two dimensions
In two dimensions, WK and ΛK are defined in (3.17). In the above equation, AK is of dimension 8 dKi × 8dKi , written as:

AK =
(
AK1 AK2 AK3 AK4 AK5 AK6 AK7 AK8

)
,

where

AK1 =



iωρKa MK +
3∑

f=1

γ1Eβ(K,f)

0

iωρKf MK

0(
CK11DKx + CK13DKy

)(
CK12DKx + CK23DKy

)(
CK13DKx + CK33DKy

)
−MK

(
3∑

f=1

γ4Jβ(K,f)
x + αK11DKx + αK12DKy

)



, AK2 =



0

iωρKa MK +
3∑

f=1

γ1Eβ(K,f)

0

iωρKf MK(
CK13DKx + CK12DKy

)(
CK23DKx + CK22DKy

)(
CK33DKx + CK23DKy

)
−MK

(
3∑

f=1

γ4Jβ(K,f)
y + αK12DKx + αK22DKy

)



,

AK3 =



iωρKf MK

0

iωρKdynMK

0

0

0

0

MK(DKx )T


, AK4 =



0

iωρKf MK

0

iωρKdynMK

0

0

0

MK(DKy )T


AK5 =



−(DKx )T

0

0

0

iωMK

0

0

0


, AK6 =



0

−(DKy )T

0

0

0

iωMK

0

0


, AK7 =



−(DKy )T

−(DKx )T

0

0

0

0

iωMK

0


,

AK8 =

( 3∑
f=1

γ3Jβ(K,f)
x ,

3∑
f=1

γ3Jβ(K,f)
y ,−DKx ,−DKy , iωαK11MK , iωαK22MK , iωαK12MK , iωMK −

3∑
f=1

Mγ2Eβ(K,f)

)T
.

Similarly, we write BK in 9 columns of size 8 dKi × dFi :

BK =
(
Bλ1x,1 Bλ1x,2 Bλ1x,3 Bλ1y,1 Bλ1y,2 Bλ1y,3 Bλ2,1 Bλ2,2 Bλ2,3

)
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with

Bλ1x,f =



−γ1 Fβ(K,f)

0
0
0

(−CK11Q
β(K,f)
x − CK13Q

β(K,f)
y )

(−CK12Q
β(K,f)
x − CK23Q

β(K,f)
y )

(−CK13Q
β(K,f)
x − CK33Q

β(K,f)
y )

MK
(

(γ4 + αK11)Qβ(K,f)
x + αK12Q

β(K,f)
y

)


, Bλ1y,f =



0
−γ1Fβ(K,f)

0
0

(−CK13Q
β(K,f)
x − CK12Q

β(K,f)
y )

(−CK23Q
β(K,f)
x − CK22Q

β(K,f)
y )

(−CK33Q
β(K,f)
x − CK23Q

β(K,f)
y )

MK
(
αK12Q

β(K,f)
x + (γ4 + α22)Qβ(K,f)

y

)


,

Bλ2,f =



−γ3Qβ(K,f)
x

−γ3Qβ(K,f)
y

Qβ(K,f)
x

Qβ(K,f)
y

0
0
0

MKγ2 Fβ(K,f)


,

for f = 1, 2, 3.
The matrices PK and TK are:

PK =



−γ1 (Fβ(K,1))T 0 0 0 (Qβ(K,1)
x )T 0 (Qβ(K,1)

y )T −γ3 (Qβ(K,1)
x )T

−γ1 (Fβ(K,2))T 0 0 0 (Qβ(K,2)
x )T 0 (Qβ(K,2)

y )T −γ3 (Qβ(K,2)
x )T

−γ1 (Fβ(K,3))T 0 0 0 (Qβ(K,3)
x )T 0 (Qβ(K,3)

y )T −γ3 (Qβ(K,3)
x )T

0 −γ1 (Fβ(K,1))T 0 0 0 (Qβ(K,1)
y )T (Qβ(K,1)

x )T −γ3 (Qβ(K,1)
y )T

0 −γ1 (Fβ(K,2))T 0 0 0 (Qβ(K,2)
y )T (Qβ(K,2)

x )T −γ3 (Qβ(K,2)
y )T

0 −γ1 (Fβ(K,3))T 0 0 0 (Qβ(K,3)
y )T (Qβ(K,3)

x )T −γ3 (Qβ(K,3)
y )T

−γ4 (Qβ(K,1)
x )T −γ4 (Qβ(K,1)

y )T (Qβ(K,1)
x )T (Qβ(K,1)

y )T 0 0 0 −γ2 (Fβ(K,1))T

−γ4 (Qβ(K,2)
x )T −γ4 (Qβ(K,2)

y )T (Qβ(K,2)
x )T (Qβ(K,2)

y )T 0 0 0 −γ2 (Fβ(K,2))T

−γ4 (Qβ(K,3)
x )T −γ4 (Qβ(K,3)

y )T (Qβ(K,3)
x )T (Qβ(K,3)

y )T 0 0 0 −γ2 (Fβ(K,3))T



,

and

TK =



γ1 Gβ(K,1) 0 0 0 0 0 γ3 Hβ(K,1)
x 0 0

0 γ1 Gβ(K,2) 0 0 0 0 0 γ3 Hβ(K,2)
x 0

0 0 γ1 Gβ(K,3) 0 0 0 0 0 γ3 Hβ(K,3)
x

0 0 0 γ1 Gβ(K,1) 0 0 γ3Hβ(K,1)
y 0 0

0 0 0 0 γ1 Gβ(K,2) 0 0 γ3Hβ(K,2)
y 0

0 0 0 0 0 γ1Gβ(K,3) 0 0 γ3Hβ(K,3)
y

γ4 Hβ(K,1)
x 0 0 γ4 Hβ(K,1)

y 0 0 γ2 Gβ(K,1) 0 0

0 γ4 Hβ(K,2)
x 0 0 γ4 Hβ(K,2)

y 0 0 γ2 Gβ(K,2) 0

0 0 γ4 Hβ(K,3)
x 0 0 γ4 Hβ(K,3)

y 0 0 γ2 Gβ(K,3))



.

B.1.2 In three dimensions
In this case, AK is of dimension 13 dKi × 13dKi , written as:

AK =
(
AK1 AK2 AK3 AK4 AK5 AK6 AK7 AK8 AK9 AK10 AK11 AK12 AK13

)
,
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with

AK1 =



iωρKa MK +
4∑

f=1

γ1Eβ(K,f)

0

0

iωρKf MK

0

0(
CK11D

K
x + CK16D

K
y + CK15D

K
z

)(
CK21D

K
x + CK26D

K
y + CK25D

K
z

)(
CK31D

K
x + CK36D

K
y + CK35D

K
z

)(
CK41D

K
x + CK46D

K
y + CK45D

K
z

)(
CK51D

K
x + CK56D

K
y + CK55D

K
z

)(
CK61D

K
x + CK66D

K
y + CK65D

K
z

)
−MK

(
4∑

f=1

γ4J
β(K,f)
x + αK11D

K
x + αK12D

K
y + αK13D

K
z

)



, AK2 =



0

iωρKa MK +
4∑

f=1

γ1Eβ(K,f)

0

0

iωρKf MK

0(
CK16D

K
x + CK12D

K
y + CK14D

K
z

)(
CK26D

K
x + CK22D

K
y + CK24D

K
z

)(
CK36D

K
x + CK32D

K
y + CK34D

K
z

)(
CK46D

K
x + CK42D

K
y + CK44D

K
z

)(
CK56D

K
x + CK52D

K
y + CK54D

K
z

)(
CK66D

K
x + CK62D

K
y + CK64D

K
z

)
−MK

(
4∑

f=1

γ4J
β(K,f)
y + αK12D

K
x + αK22D

K
y + αK23D

K
z

)



,

AK3 =



0

0

iωρKa MK +
4∑

f=1

γ1Eβ(K,f)

0

0

iωρKf MK(
CK15D

K
x + CK14D

K
y + CK13D

K
z

)(
CK25D

K
x + CK24D

K
y + CK23D

K
z

)(
CK35D

K
x + CK34D

K
y + CK33D

K
z

)(
CK45D

K
x + CK44D

K
y + CK43D

K
z

)(
CK55D

K
x + CK54D

K
y + CK53D

K
z

)(
CK65D

K
x + CK64D

K
y + CK63D

K
z

)
−MK

(
4∑

f=1

γ4J
β(K,f)
z + αK13D

K
x + αK23D

K
y + αK33D

K
z

)



, AK4 =



iωρKf MK

0

0

iωρKdynM
K

0

0

0

0

0

0

0

0

MK(DKx )T



, AK5 =



0

iωρKf MK

0

0

iωρKdynM
K

0

0

0

0

0

0

0

MK(DKy )T
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AK6 =



0

0

iωρKf MK

0

iωρKdynM
K

0

0

0

0

0

0

0

MK(DKz )T



AK7 =



−(DKx )T

0

0

0

0

0

iωMK

0

0

0

0

0

0



, AK8 =



0

−(DKy )T

0

0

0

0

0

iωMK

0

0

0

0

0



, AK9 =



0

0

−(DKz )T

0

0

0

0

0

iωMK

0

0

0

0



, AK10 =



0

−(DKz )T

−(DKy )T

0

0

0

0

0

0

iωMK

0

0

0



,

AK11 =



−(DKz )T

0

−(DKx )T

0

0

0

0

0

0

0

iωMK

0

0



, AK12 =



−(DKy )T

−(DKx )T

0

0

0

0

0

0

0

0

0

iωMK

0



, A13K =



4∑
f=1

γ3J
β(K,f)
x

4∑
f=1

γ3J
β(K,f)
y

4∑
f=1

γ3J
β(K,f)
z

−DKx
−DKy
−DKz

iωαK11M
K

iωαK22M
K

iωαK33M
K

iωαK23M
K

iωαK13M
K

iωαK12M
K

iωMK −
4∑

f=1

Mγ2Eβ(K,f)



.

Based on the structure of the unknown ΛK , we write BK in 16 columns of size 13 dKi × dFi as:

BK =

(
Bλ1x,1 Bλ1x,2 Bλ1x,3 Bλ1x,4 Bλ1y,1 Bλ1y,2 Bλ1y,3 Bλ1y,4 ...

... Bλ1z ,1 Bλ1z ,2 Bλ1z ,3 Bλ1z ,4 Bλ2,1 Bλ2,2 Bλ2,3 Bλ2,4

)
,
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with

Bλ1x,f =



−γ1 Fβ(K,f)

0
0
0
0
0

(−CK11Q
β(K,f)
x − CK16Q

β(K,f)
y − CK15Q

β(K,f)
z )

(−CK21Q
β(K,f)
x − CK26Q

β(K,f)
y − CK25Q

β(K,f)
z )

(−CK31Q
β(K,f)
x − CK36Q

β(K,f)
y − CK35Q

β(K,f)
z )

(−CK41Q
β(K,f)
x − CK46Q

β(K,f)
y − CK45Q

β(K,f)
z )

(−CK51Q
β(K,f)
x − CK56Q

β(K,f)
y − CK55Q

β(K,f)
z )

(−CK61Q
β(K,f)
x − CK66Q

β(K,f)
y − CK65Q

β(K,f)
z )

MK

(
(γ4 + αK11)Qβ(K,f)

x + αK12Q
β(K,f)
y + αK13Q

β(K,f)
z

)



, Bλ1y,f =



0
−γ1 Fβ(K,f)

0
0
0
0

(−CK16Q
β(K,f)
x − CK12Q

β(K,f)
y − CK14Q

β(K,f)
z )

(−CK26Q
β(K,f)
x − CK22Q

β(K,f)
y − CK24Q

β(K,f)
z )

(−CK36Q
β(K,f)
x − CK32Q

β(K,f)
y − CK34Q

β(K,f)
z )

(−CK46Q
β(K,f)
x − CK42Q

β(K,f)
y − CK44Q

β(K,f)
z )

(−CK56Q
β(K,f)
x − CK52Q

β(K,f)
y − CK54Q

β(K,f)
z )

(−CK66Q
β(K,f)
x − CK62Q

β(K,f)
y − CK64Q

β(K,f)
z )

MK

(
αK12Q

β(K,f)
x + (γ4 + αK22)Qβ(K,f)

y + αK23Q
β(K,f)
z

)



,

Bλ1z ,f =



0
−γ1 Fβ(K,f)

0
0
0
0

(−CK15Q
β(K,f)
x − CK14Q

β(K,f)
y − CK13Q

β(K,f)
z )

(−CK25Q
β(K,f)
x − CK24Q

β(K,f)
y − CK23Q

β(K,f)
z )

(−CK35Q
β(K,f)
x − CK34Q

β(K,f)
y − CK33Q

β(K,f)
z )

(−CK45Q
β(K,f)
x − CK44Q

β(K,f)
y − CK43Q

β(K,f)
z )

(−CK55Q
β(K,f)
x − CK54Q

β(K,f)
y − CK53Q

β(K,f)
z )

(−CK65Q
β(K,f)
x − CK64Q

β(K,f)
y − CK63Q

β(K,f)
z )

MK

(
αK12Q

β(K,f)
x + (γ4 + αK22)Qβ(K,f)

y + αK23Q
β(K,f)
z

)



, Bλ2,f =



−γ3Q
β(K,f)
x

−γ3Q
β(K,f)
y

−γ3Q
β(K,f)
z

Qβ(K,f)
x

Qβ(K,f)
y

Qβ(K,f)
z

0
0
0
0
0
0

MKγ2 Fβ(K,f)



,

for f = 1, 2, 3, 4.
The matrices PK and TK are:

PK =



−γ1 (Fβ(K,1))T 0 0 0 0 0 ...

−γ1 (Fβ(K,2))T 0 0 0 0 0 ...

−γ1 (Fβ(K,3))T 0 0 0 0 0 ...

−γ1 (Fβ(K,4))T 0 0 0 0 0 ...

0 −γ1 (Fβ(K,1))T 0 0 0 0 ...

0 −γ1 (Fβ(K,2))T 0 0 0 0 ...

0 −γ1 (Fβ(K,3))T 0 0 0 0 ...

0 −γ1 (Fβ(K,4))T 0 0 0 0 ...

0 0 −γ1 (Fβ(K,1))T 0 0 0 ...

0 0 −γ1 (Fβ(K,2))T 0 0 0 ...

0 0 −γ1 (Fβ(K,3))T 0 0 0 ...

0 0 −γ1 (Fβ(K,4))T 0 0 0 ...

−γ4 (Qβ(K,1)
x )T −γ4 (Qβ(K,1)

y )T −γ4 (Qβ(K,1)
z )T (Qβ(K,1)

x )T (Qβ(K,1)
y )T (Qβ(K,1)

z )T ...

γ4 (Qβ(K,2)
x )T −γ4 (Qβ(K,2)

y )T −γ4 (Qβ(K,2)
z )T (Qβ(K,2)

x )T (Qβ(K,2)
y )T (Qβ(K,2)

z )T ...

−γ4 (Qβ(K,3)
x )T −γ4 (Qβ(K,3)

y )T −γ4 (Qβ(K,3)
z )T (Qβ(K,3)

x )T (Qβ(K,3)
y )T (Qβ(K,3)

z )T ...

γ4 (Qβ(K,4)
x )T −γ4 (Qβ(K,4)

y )T −γ4 (Qβ(K,4)
z )T (Qβ(K,4)

x )T (Qβ(K,4)
y )T (Qβ(K,4)

z )T ...

,
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... (Qβ(K,1)
x )T 0 0 0 (Qβ(K,1)

z )T (Qβ(K,1)
y )T −γ3 (Qβ(K,1)

x )T

... (Qβ(K,2)
x )T 0 0 0 (Qβ(K,1)

z )T (Qβ(K,2)
y )T −γ3 (Qβ(K,2)

x )T

... (Qβ(K,3)
x )T 0 0 0 (Qβ(K,1)

z )T (Qβ(K,3)
y )T −γ3 (Qβ(K,3)

x )T

... (Qβ(K,4)
x )T 0 0 0 (Qβ(K,1)

z )T (Qβ(K,4)
y )T −γ3 (Qβ(K,4)

x )T

... 0 (Qβ(K,1)
y )T 0 (Qβ(K,1)

z )T 0 (Qβ(K,1)
x )T −γ3 (Qβ(K,1)

y )T

... 0 (Qβ(K,2)
y )T 0 (Qβ(K,2)

z )T 0 (Qβ(K,2)
x )T −γ3 (Qβ(K,2)

y )T

... 0 (Qβ(K,3)
y )T 0 (Qβ(K,3)

z )T 0 (Qβ(K,3)
x )T −γ3 (Qβ(K,3)

y )T

... 0 (Qβ(K,4)
y )T 0 (Qβ(K,4)

z )T 0 (Qβ(K,4)
x )T −γ3 (Qβ(K,4)

y )T

... 0 0 (Qβ(K,1)
z )T (Qβ(K,1)

y )T (Qβ(K,1)
x )T 0 −γ3 (Qβ(K,1)

z )T

... 0 0 (Qβ(K,2)
z )T (Qβ(K,2)

y )T (Qβ(K,2)
x )T 0 −γ3 (Qβ(K,2)

z )T

... 0 0 (Qβ(K,3)
z )T (Qβ(K,3)

y )T (Qβ(K,3)
x )T 0 −γ3 (Qβ(K,3)

z )T

... 0 0 (Qβ(K,4)
z )T (Qβ(K,4)

y )T (Qβ(K,4)
x )T 0 −γ3 (Qβ(K,4)

z )T

... 0 0 0 0 0 0 −γ2 (Fβ(K,1))T

... 0 0 0 0 0 0 −γ2 (Fβ(K,2))T

... 0 0 0 0 0 0 −γ2 (Fβ(K,3))T

... 0 0 0 0 0 0 −γ2 (Fβ(K,4))T



,

and we write TK as

TK =

 T1 0 0 T2x
0 T1 0 T2y
0 0 T1 T2z
T3x T3y T3z T4

 ,

with

T1 =


γ

(K,1)
1 Gβ(K,1) 0 0 0

0 γ
(K,2)
1 Gβ(K,2) 0 0

0 0 γ
(K,3)
1 Gβ(K,3) 0

0 0 0 γ
(K,4)
1 Gβ(K,4)



T2• =


γ3Hβ(K,1)

• 0 0 0
0 γ3Hβ(K,2)

• 0 0
0 0 γ3Hβ(K,3)

• 0
0 0 0 γ3Hβ(K,4)

•

 ,

T3• =


γ4Hβ(K,1)

• 0 0 0
0 γ4Hβ(K,2)

• 0 0
0 0 γ4Hβ(K,3)

• 0
0 0 0 γ4Hβ(K,4)

•

 ,

and

T4 =

γ2Gβ(K,1) 0 0 0
0 γ2Gβ(K,2) 0 0
0 0 γ2Gβ(K,3) 0
0 0 0 γ2Gβ(K,4)

 .

B.2 Details for the implementation of boundary conditions of type 3
For a face on the boundary of the domain, we can impose four types of boundary conditions, see Section 1.4. In the case of
type 1, we impose the continuity of τh n and w · n, see equation (3.2). This means that the transmission conditions (3.34) for
an interior interface and on the boundary of the mesh are the same. In the following, we detail the expression of the elementary
matrices PK and TK in the case where we impose the continuity of u and p, as in equation (1.20c). The two other formulations
for the boundary conditions are linear combinations of these two formulations. From equation (1.20c), we impose:{

uh = fu,

ph = fp ,
⇒

{
λ1 = fu,

λ2 = fp ,

with fu and fp some exterior forces.
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Two dimensions Let us consider a two-dimensional element K with the face corresponding to the face 1 in local numbering
on the boundary of the domain Ω. In this case, the elementary matrices become:

PK =



0 0 0 0 0 0 0 0

−γ1 (Fβ(K,2))T 0 0 0 (Qβ(K,2)
x )T 0 (Qβ(K,2)

y )T −γ3 (Qβ(K,2)
x )T

−γ1 (Fβ(K,3))T 0 0 0 (Qβ(K,3)
x )T 0 (Qβ(K,3)

y )T −γ3 (Qβ(K,3)
x )T

0 0 0 0 0 0 0 0

0 −γ1 (Fβ(K,2))T 0 0 0 (Qβ(K,2)
y )T (Qβ(K,2)

x )T −γ3 (Qβ(K,2)
y )T

0 −γ1 (Fβ(K,3))T 0 0 0 (Qβ(K,3)
y )T (Qβ(K,3)

x )T −γ3 (Qβ(K,3)
y )T

0 0 0 0 0 0 0 0

−γ4 (Qβ(K,2)
x )T −γ4 (Qβ(K,2)

y )T (Qβ(K,2)
x )T (Qβ(K,2)

y )T 0 0 0 −γ2 (Fβ(K,2))T

−γ4 (Qβ(K,3)
x )T −γ4 (Qβ(K,3)

y )T (Qβ(K,3)
x )T (Qβ(K,3)

y )T 0 0 0 −γ2 (Fβ(K,3))T



,

and with I denoting the identity matrix of size dFi × dFi ,

TK =



I 0 0 0 0 0 0 0 0

0 γ1 Gβ(K,2) 0 0 0 0 0 γ3 Hβ(K,2)
x 0

0 0 γ1 Gβ(K,3) 0 0 0 0 0 γ3 Hβ(K,3)
x

0 0 0 I 0 0 0 0 0

0 0 0 0 γ1 Gβ(K,2) 0 0 γ3Hβ(K,2)
y 0

0 0 0 0 0 γ
(K,3)
1 Gβ(K,3) 0 0 γ3Hβ(K,3)

y

0 0 0 0 0 0 I 0 0

0 γ4 Hβ(K,2)
x 0 0 γ4 Hβ(K,2)

y 0 0 γ2 Gβ(K,2) 0

0 0 γ4 Hβ(K,3)
x 0 0 γ4 Hβ(K,3)

y 0 0 γ2 Gβ(K,3))



.

Three dimensions In three dimensions, the matrices P and T given in Section B.1.2 are modified in order to take into
account the boundary conditions of type 3 the same way as in two dimensions. This means that, if the face corresponding to
the first face is on the border of the mesh, the lines of P corresponding to the first face, i.e.the first, fifth, ninth and thirteenth
lines of P will be zeros. Moreover, the lines of T corresponding to the first face, i.e.the first, fifth, ninth and thirteenth lines of
T will be zeros except for the diagonal terms that will be equal to the identity matrix I.
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Appendix C

Appendices to Chapter 4

C.1 Details on the HDG method with RBC and PML
C.1.1 Elementary matrices for HDG method with RBC
Supposing that the first face of the element K is on Γabs, matrices PK and TK read then as:

PK =



−γ1(Fβ(K,1)
1 )T − γ4X2(Lβ(K,1)

xx1 )T −γ4X2(Lβ(K,1)
xy1 )T X2(Lβ(K,1)

xx1 )T X2(Lβ(K,1)
xy1 )T ...

−γ1(Fβ(K,2)
2 )T 0 0 0 ...

−γ1(Fβ(K,3)
3 )T 0 0 0 ...

−γ4X2(Lβ(K,1)
xy1 )T −γ1(Fβ(K,1)

1 )T − γ4X2(Lβ(K,1)
yy1 )T X2(Lβ(K,1)

xy1 )T X2(Lβ(K,1)
yy1 )T ...

0 −γ1(Fβ(K,2)
2 )T 0 0 ...

0 −γ1(Fβ(K,3)
3 )T 0 0 ...

− (Qβ(K,1)
x1 )X5 γ4 − (Qβ(K,1)

y1 )TX5 γ4 (Qβ(K,1)
x1 )TX5 (Qβ(K,2)

y1 )TX5 ...

−(Qβ(K,2)
x )T γ4 −(Qβ(K,2)

y )T γ4 (Qβ(K,2)
x2 )T (Qβ(K,2)

y2 )T ...

−(Qβ(K,3)
x )T γ4 −(Qβ(K,3)

y )T γ4 (Qβ(K,2)
x3 )T (Qβ(K,2)

y3 )T ...

... (Qβ(K,1)
x1 )T 0 (Qβ(K,1)

y1 )T −γ3(Qβ(K,1)
x1 )T − γ2X2(Qβ(K,1)

x1 )T

... (Qβ(K,2)
x2 )T 0 (Qβ(K,2)

y2 )T −γ3(Qβ(K,2)
x2 )T

... (Qβ(K,3)
x3 )T 0 (Qβ(K,3)

y3 )T −γ3(Qβ(K,3)
x3 )T

... 0 (Qβ(K,1)
y1 )T (Qβ(K,1)

x1 )T −γ3(Qβ(K,1)
y1 )T − γ2X2(Qβ(K,1)

y1 )T

... 0 (Qβ(K,2)
y2 )T (Qβ(K,2)

x2 )T −γ3(Qβ(K,2)
y2 )T

... 0 (Qβ(K,3)
y3 )T (Qβ(K,3)

x3 )T −γ3(Qβ(K,3)
y3 )T

... 0 0 0 −γ2X5(Fβ(K,1)
1 )T

... 0 0 0 −γ2(Fβ(K,2)
2 )T

... 0 0 0 −γ2(Fβ(K,3)
3 )T



,

and

TK =



γ1Gβ(K,1) + Oβ(K,2)
xx γ4X2 + Oβ(K,2)

xx X1 + Oβ(K,2)
yy X3 0 0 Oβ(K,2)

xy γ4X2 + Oβ(K,2)
xy X1 − Oβ(K,2)

xy X3 ...

0 γ1Gβ(K,2) 0 0 ...

0 0 γ1Gβ(K,3) 0 ...

Oβ(K,2)
xy γ4X2 + Oβ(K,2)

xy X1 − Oβ(K,2)
xy X3 0 0 γ1Gβ(K,1) + Oβ(K,2)

yy γ4X2 + Oβ(K,2)
yy X1 + Oβ(K,2)

xx X3 ...

0 0 0 0 ...

0 0 0 0 ...

Hβ(K,2)
x X4 + Hβ(K,2)

x X5γ4 0 0 Hβ(K,2)
y X4 + Hβ(K,2)

y X5γ4 ...

0 γ4H
β(K,2)
x 0 0 ...

0 0 γ4H
β(K,3)
x 0 ...

187
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... 0 0 γ3H
β(K,1)
x + Hβ(K,1)

x X2 γ2 0 0

... 0 0 0 γ3H
β(K,2)
x 0

... 0 0 0 0 γ3H
β(K,3)
x

... 0 0 γ3H
β(K,1)
y + Hβ(K,2)

y X2 γ2 0 0

... γ1Gβ(K,2) 0 0 γ3H
β(K,2)
y 0

... 0 γ1Gβ(K,3) 0 0 γ3H
β(K,3)
y

... 0 0 Gβ(K,1)(1 + X5γ2) 0 0

... γ4H
β(K,2)
y 0 0 γ2Gβ(K,2) 0

... 0 γ4H
β(K,3)
y 0 0 γ2Gβ(K,3)



.

C.1.2 HDG method with PML
Here, we detail the discretization of equations (1.16) when we use PML. We consider a two-dimensional porous domain Ω with
the boundary Γ on the plane (x, y). (u, w, τ , p) solve the poroelastic equations (1.16) on Ω. We consider a triangulation Th of
Ω, and Fh the set of all the faces. K is a triangle element of Th and F is a face of K. We use the approximation spaces defined
in Section 4.4. The local unknowns (uh, wh, τh, ph) ∈ (V p

h
× V p

h
× Σp

h
× V p

h
) solve the poroelastic equations (1.16) on Th. We

consider an element K ∈ Th, (ũ, w̃, τ̃ , p̃) ∈ (V p
h
×V p

h
×Σp

h
×V p

h
) test-functions. We multiply equations (1.16) by the test-functions

and integrate on the element K:∫
K

iωρauKx ũx +
∫
K

iωρauKy ũy +
∫
K

iωρfwKx ũx +
∫
K

iωρfwKy ũy −
∫
K

(
i ω

i ω + α(x)
∂τKxx
∂x

+
i ω

i ω + β(y)
∂τKxy

∂y

)
ũx

−
∫
K

(
i ω

i ω + α(x)
∂τKxy

∂x
+

i ω

i ω + β(y)
∂τKyy

∂y

)
ũy = 0 ,∫

K

iωρfuKx w̃x +
∫
K

iωρfuKy w̃y +
∫
K

iωρ̃wKx w̃x +
∫
K

iωρ̃wKy w̃y +
∫
K

i ω

i ω + α(x)
∂p
∂x
w̃x +

∫
K

i ω

i ω + β(y)
∂p
∂y
w̃y = 0 ,

∫
K

iωτKxx τ̃xx +
∫
K

iωα11phτ̃xx −
∫
K

C11
i ω

i ω + α(x)
∂uKx
∂x

τ̃xx −
∫
K

C12
i ω

i ω + β(y)
∂uKy
∂y

τ̃xx

−
∫
K

C13

(
i ω

i ω + α(x)
∂uKy
∂x

+
i ω

i ω + β(y)
∂uKx
∂y

)
τ̃xx

+
∫
K

iωτKyy τ̃yy +
∫
K

iωα22phτ̃yy −
∫
K

C12
i ω

i ω + α(x)
∂uKx
∂x

τ̃yy −
∫
K

C22
i ω

i ω + β(y)
∂uKy
∂y

τ̃yy

−
∫
K

C23

(
i ω

i ω + α(x)
∂uKy
∂x

+
i ω

i ω + β(y)
∂uKx
∂y

)
τ̃yy

+
∫
K

iωτKxy τ̃xy +
∫
K

iωα12phτ̃xy −
∫
K

C13
i ω

i ω + α(x)
∂uKx
∂x

τ̃xy −
∫
K

C23
i ω

i ω + β(y)
∂uKy
∂y

τ̃xy

−
∫
K

C33

(
i ω

i ω + α(x)
∂uKy
∂x

+
i ω

i ω + β(y)
∂uKx
∂y

)
τ̃xy = 0 ,

and ∫
K

iωphp̃ +
∫
K

M

(
i ω

i ω + α(x)
∂wKx
∂x

+
i ω

i ω + β(y)
∂wKy
∂y

)
p̃ +
∫
K

Mα11
i ω

i ω + α(x)
∂uKx
∂x

p̃

+
∫
K

Mα22
i ω

i ω + β(y)
∂uKy
∂y

p̃ +
∫
K

Mα12

(
i ω

i ω + β(y)
∂uKx
∂y

+
i ω

i ω + α(x)
∂uKy
∂x

)
p̃ = 0 .

By integrating by parts, we obtain:∫
K

iωρauKx ũx +
∫
K

iωρauKy ũy +
∫
K

iωρfwKx ũx +
∫
K

iωρfwKy ũy +
∫
K

i ω

i ω + α(x)
τKxx

∂ũx

∂x
+
∫
K

i ω

i ω + β(y)
τKxy

∂ũx

∂y

−
∫
F

i ω

i ω + α(x)
τ̂Kxxnxũx −

∫
F

i ω

i ω + β(y)
τ̂Kxynyũx +

∫
K

i ω

i ω + α(x)
τKxy

∂ũy

∂x
+
∫
K

i ω

i ω + β(y)
τKyy

∂ũy

∂y

−
∫
F

i ω

i ω + α(x)
τ̂Kxynxũy −

∫
F

i ω

i ω + β(y)
τ̂Kyynyũy = 0 ,
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∫
K

iωρfuKx w̃x +
∫
K

iωρfuKy w̃y +
∫
K

iωρ̃wKx w̃x +
∫
K

iωρ̃wKy w̃y −
∫
K

i ω

i ω + α(x)
p
∂w̃x

∂x
+
∫
F

i ω

i ω + α(x)
p̂nxw̃x

−
∫
K

i ω

i ω + β(y)
p
∂w̃y

∂y
+
∫
F

i ω

i ω + β(y)
p̂nyw̃y = 0 ,

∫
K

iωτKxx τ̃xx +
∫
K

iωα11phτ̃xx +
∫
K

C11
i ω

i ω + α(x)
uKx

∂τ̃xx

∂x
−
∫
F

C11
i ω

i ω + α(x)
ûKx nxτ̃xx

+
∫
K

C12
i ω

i ω + β(y)
uKy

∂τ̃xx

∂y
−
∫
F

C12
i ω

i ω + β(y)
ûKy ny τ̃xx +

∫
K

C13
i ω

i ω + α(x)
uKy

∂τ̃xx

∂x

−
∫
F

C13
i ω

i ω + α(x)
ûKy nxτ̃xx +

∫
K

C13
i ω

i ω + β(y)
uKx

∂τ̃xx

∂y
−
∫
F

C13
i ω

i ω + β(y)
ûKx ny τ̃xx

+
∫
K

iωτKyy τ̃yy +
∫
K

iωα22phτ̃yy +
∫
K

C12
i ω

i ω + α(x)
uKx

∂τ̃yy

∂x
−
∫
F

C12
i ω

i ω + α(x)
ûKx nxτ̃yy

+
∫
K

C22
i ω

i ω + β(y)
uKy

∂τ̃yy

∂y
−
∫
F

C22
i ω

i ω + β(y)
ûKy ny τ̃yy +

∫
K

C23
i ω

i ω + α(x)
uKy

∂τ̃yy

∂x

−
∫
F

C23
i ω

i ω + α(x)
ûKy nxτ̃yy +

∫
K

C23
i ω

i ω + β(y)
uKx

∂τ̃yy

∂y
−
∫
F

C23
i ω

i ω + β(y)
ûKx ny τ̃yy

+
∫
K

iωτKxy τ̃xy +
∫
K

iωα12phτ̃xy +
∫
K

C13
i ω

i ω + α(x)
uKx

∂τ̃xy

∂x
−
∫
F

C13
i ω

i ω + α(x)
ûKx nxτ̃xy

+
∫
K

C23
i ω

i ω + β(y)
uKy

∂τ̃xy

∂y
−
∫
F

C23
i ω

i ω + β(y)
ûKy ny τ̃xy +

∫
K

C33
i ω

i ω + α(x)
uKy

∂τ̃xy

∂x

−
∫
F

C33
i ω

i ω + α(x)
ûKy nxτ̃xy +

∫
K

C33
i ω

i ω + β(y)
uKx

∂τ̃xy

∂y
−
∫
F

C33
i ω

i ω + β(y)
ûKx ny τ̃xy = 0 ,

∫
K

iωphp̃−
∫
K

M
iω

i ω + α(x)
wKx

∂p̃
∂x

+
∫
F

M
iω

i ω + α(x)
ŵKx nxp̃−

∫
K

M
iω

i ω + β(y)
wKy

∂p̃
∂y

+
∫
F

M
iω

i ω + β(y)
ŵKy ny p̃−

∫
K

Mα11
i ω

i ω + α(x)
uKx

∂p̃
∂x

+
∫
F

Mα11
i ω

i ω + α(x)
ûKx nxp̃

−
∫
K

Mα22
i ω

i ω + β(y)
uKy

∂p̃
∂y

+
∫
F

Mα22
i ω

i ω + β(y)
ûKy ny p̃−

∫
K

Mα12
i ω

i ω + β(y)
uKx

∂p̃
∂y

+
∫
F

Mα12
i ω

i ω + β(y)
ûKx ny p̃−

∫
K

Mα12
i ω

i ω + α(x)
uKy

∂p̃
∂x

+
∫
F

Mα12
i ω

i ω + α(x)
ûKy nxp̃ = 0 .

Next we replace the numerical traces û, ŵ, τ̂ and p̂ by the expressions from equation (4.23):∫
K

iωρauKx ũx +
∫
K

iωρauKy ũy +
∫
K

iωρfwKx ũx +
∫
K

iωρfwKy ũy −
∫
K

i ω

i ω + α(x)
∂τKxx
∂x

ũx

+
∫
F

γ1
i ω

i ω + α(x)
(uKx − λ1x)n2

xũx +
∫
F

γ3
i ω

i ω + α(x)
(ph − λ2)nxũx −

∫
K

i ω

i ω + β(y)
∂τKxy

∂y
ũx

+
∫
F

γ1
i ω

i ω + β(y)
(uKx − λ1x)n2

yũx −
∫
K

i ω

i ω + α(x)
∂τKxy

∂x
ũy +

∫
F

γ1
i ω

i ω + α(x)
(uKy − λ1y)n2

xũy

−
∫
K

i ω

i ω + β(y)
∂τKyy

∂y
ũy +

∫
F

γ1
i ω

i ω + β(y)
(uKy − λ1y)n2

yũy +
∫
F

γ3
i ω

i ω + β(y)
(ph − λ2)nyũy = 0 ,

∫
K

iωρfuKx w̃x +
∫
K

iωρfuKy w̃y +
∫
K

iωρ̃wKx w̃x +
∫
K

iωρ̃wKy w̃y −
∫
K

i ω

i ω + α(x)
p
∂w̃x

∂x
+
∫
F

i ω

i ω + α(x)
λ2nxw̃x

−
∫
K

i ω

i ω + β(y)
p
∂w̃y

∂y
+
∫
F

i ω

i ω + β(y)
λ2nyw̃y = 0 ,
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∫
K

iωτKxx τ̃xx +
∫
K

iωα11phτ̃xx +
∫
K

C11
i ω

i ω + α(x)
uKx

∂τ̃xx

∂x
−
∫
F

C11
i ω

i ω + α(x)
λ1xnxτ̃xx

+
∫
K

C12
i ω

i ω + β(y)
uKy

∂τ̃xx

∂y
−
∫
F

C12
i ω

i ω + β(y)
λ1yny τ̃xx +

∫
K

C13
i ω

i ω + α(x)
uKy

∂τ̃xx

∂x

−
∫
F

C13
i ω

i ω + α(x)
λ1ynxτ̃xx +

∫
K

C13
i ω

i ω + β(y)
uKx

∂τ̃xx

∂y
−
∫
F

C13
i ω

i ω + β(y)
λ1xny τ̃xx

+
∫
K

iωτKyy τ̃yy +
∫
K

iωα22phτ̃yy +
∫
K

C12
i ω

i ω + α(x)
uKx

∂τ̃yy

∂x
−
∫
F

C12
i ω

i ω + α(x)
λ1xnxτ̃yy

+
∫
K

C22
i ω

i ω + β(y)
uKy

∂τ̃yy

∂y
−
∫
F

C22
i ω

i ω + β(y)
λ1yny τ̃yy +

∫
K

C23
i ω

i ω + α(x)
uKy

∂τ̃yy

∂x

−
∫
F

C23
i ω

i ω + α(x)
λ1ynxτ̃yy +

∫
K

C23
i ω

i ω + β(y)
uKx

∂τ̃yy

∂y
−
∫
F

C23
i ω

i ω + β(y)
λ1xny τ̃yy

+
∫
K

iωτKxy τ̃xy +
∫
K

iωα12phτ̃xy +
∫
K

C13
i ω

i ω + α(x)
uKx

∂τ̃xy

∂x
−
∫
F

C13
i ω

i ω + α(x)
λ1xnxτ̃xy

+
∫
K

C23
i ω

i ω + β(y)
uKy

∂τ̃xy

∂y
−
∫
F

C23
i ω

i ω + β(y)
λ1yny τ̃xy +

∫
K

C33
i ω

i ω + α(x)
uKy

∂τ̃xy

∂x

−
∫
F

C33
i ω

i ω + α(x)
λ1ynxτ̃xy +

∫
K

C33
i ω

i ω + β(y)
uKx

∂τ̃xy

∂y
−
∫
F

C33
i ω

i ω + β(y)
λ1xny τ̃xy = 0 ,∫

K

iωphp̃ +
∫
K

M
iω

i ω + α(x)
∂wKx
∂x

p̃−
∫
F

Mγ2
i ω

i ω + α(x)
(ph − λ2)n2

xp̃−
∫
F

Mγ4
i ω

i ω + α(x)
(uKx − λ1x)nxp̃

+
∫
K

M
iω

i ω + β(y)
∂wKy
∂y

p̃−
∫
F

Mγ2
i ω

i ω + β(y)
(ph − λ2)n2

y p̃−
∫
F

Mγ4
i ω

i ω + β(y)
(uKy − λ1y)ny p̃

−
∫
K

Mα11
i ω

i ω + α(x)
uKx

∂p̃
∂x

+
∫
F

Mα11
i ω

i ω + α(x)
λ1xnxp̃−

∫
K

Mα22
i ω

i ω + β(y)
uKy

∂p̃
∂y

+
∫
F

Mα22
i ω

i ω + β(y)
λ1yny p̃−

∫
K

Mα12
i ω

i ω + β(y)
uKx

∂p̃
∂y

+
∫
F

Mα12
i ω

i ω + β(y)
λ1xny p̃

−
∫
K

Mα12
i ω

i ω + α(x)
uKy

∂p̃
∂x

+
∫
F

Mα12
i ω

i ω + α(x)
λ1ynxp̃ = 0 .

Then, we replace the local unknowns and the local test-functions using equations (4.26a) and (4.26b). We obtain:∫
K

iωρauKx ϕ
K
j ϕ

K
i +

∫
K

iωρfwKx ϕ
K
j ϕ

K
i −

∫
K

i ω

i ω + α(x)
∂τKxx
∂x

ϕKj ϕ
K
i +

∫
F

γ1
i ω

i ω + α(x) (uKx ϕ
K
j − λ1xψ

β(K,f)
j )n2

xϕ
K
i

+
∫
F

γ3
i ω

i ω + α(x) (pKϕKj − λ2ψ
β(K,f)
j )nxϕKi −

∫
K

i ω

i ω + β(y)
∂τKxy
∂y

ϕKj ϕ
K
i +

∫
F

γ1
i ω

i ω + β(y) (uKx ϕ
K
j − λ1xψ

β(K,f)
j )n2

yϕ
K
i = 0 ,

∫
K

iωρauKy ϕ
K
j ϕ

K
i +

∫
K

iωρfwKy ϕ
K
j ϕ

K
i −

∫
K

i ω

i ω + α(x)τ
K
xy

∂ϕKj
∂x

ϕKi +
∫
F

γ1
i ω

i ω + α(x) (uKy ϕ
K
j − λ1yψ

β(K,f)
j )n2

xϕ
K
i

−
∫
K

i ω

i ω + β(y)
∂τKyy
∂y

ϕKj ϕ
K
i +

∫
F

γ1
i ω

i ω + β(y) (uKy ϕ
K
j − λ1yψ

β(K,f)
j )n2

yϕ
K
i +

∫
F

γ3
i ω

i ω + β(y) (pKϕKj − λ2ψ
β(K,f)
j )nyϕKi = 0 ,

∫
K

iωρfuKx ϕ
K
j ϕ

K
i +

∫
K

iωρ̃wKx ϕ
K
j ϕ

K
i −

∫
K

i ω

i ω + α(x)
pKϕKj

∂ϕKi
∂x

+
∫
F

i ω

i ω + α(x)
λ2ψ

β(K,f)
j nxϕ

K
i = 0 ,

∫
K

iωρfuKy ϕ
K
j ϕ

K
i +

∫
K

iωρ̃wKy ϕ
K
j ϕ

K
i −

∫
K

i ω

i ω + β(y)
pKϕKj

∂ϕKi
∂y

+
∫
F

i ω

i ω + β(y)
λ2ψ

β(K,f)
j nyϕ

K
i = 0 ,
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∫
K

iωτKxx ϕ
K
j ϕ

K
i +

∫
K

iωα11pKϕKj ϕ
K
i +

∫
K

C11
i ω

i ω + α(x)
uKx ϕ

K
j

∂ϕKi
∂x
−
∫
F

C11
i ω

i ω + α(x)
λ1xψ

β(K,f)
j nxϕ

K
i

+
∫
K

C12
i ω

i ω + β(y)
uKy ϕ

K
j

∂ϕKi
∂y
−
∫
F

C12
i ω

i ω + β(y)
λ1yψ

β(K,f)
j nyϕ

K
i +

∫
K

C13
i ω

i ω + α(x)
uKy ϕ

K
j

∂ϕKi
∂x

−
∫
F

C13
i ω

i ω + α(x)
λ1yψ

β(K,f)
j nxϕ

K
i +

∫
K

C13
i ω

i ω + β(y)
uKx ϕ

K
j

∂ϕKi
∂y
−
∫
F

C13
i ω

i ω + β(y)
λ1xψ

β(K,f)
j nyϕ

K
i = 0 ,

∫
K

iωτKyyϕ
K
j ϕKi +

∫
K

iωα22pKϕKj ϕ
K
i +

∫
K

C12
i ω

i ω + α(x)
uKx ϕ

K
j

∂ϕKi
∂x
−
∫
F

C12
i ω

i ω + α(x)
λ1xψ

β(K,f)
j nxϕ

K
i

+
∫
K

C22
i ω

i ω + β(y)
uKy ϕ

K
j

∂ϕKi
∂y
−
∫
F

C22
i ω

i ω + β(y)
λ1yψ

β(K,f)
j nyϕ

K
i +

∫
K

C23
i ω

i ω + α(x)
uKy ϕ

K
j

∂ϕKi
∂x

−
∫
F

C23
i ω

i ω + α(x)
λ1yψ

β(K,f)
j nxϕ

K
i +

∫
K

C23
i ω

i ω + β(y)
uKx ϕ

K
j

∂ϕKi
∂y
−
∫
F

C23
i ω

i ω + β(y)
λ1xψ

β(K,f)
j nyϕ

K
i = 0 ,

∫
K

iωτKyy ϕ
K
j ϕ

K
i +

∫
K

iωα22ph ϕKj ϕ
K
i +

∫
K

C13
i ω

i ω + α(x)
uKx ϕ

K
j

∂ϕKi
∂x
−
∫
F

C13
i ω

i ω + α(x)
λ1xψ

β(K,f)
j nxϕ

K
i

+
∫
K

C23
i ω

i ω + β(y)
uKy ϕ

K
j

∂ϕKi
∂y
−
∫
F

C23
i ω

i ω + β(y)
λ1yψ

β(K,f)
j nyϕ

K
i +

∫
K

C33
i ω

i ω + α(x)
uKy ϕ

K
j

∂ϕKi
∂x

−
∫
F

C33
i ω

i ω + α(x)
λ1yψ

β(K,f)
j nxϕ

K
i +

∫
K

C33
i ω

i ω + β(y)
uKx ϕ

K
j

∂ϕKi
∂y
−
∫
F

C33
i ω

i ω + β(y)
λ1xψ

β(K,f)
j nyϕ

K
i = 0 ,

and∫
K

iωpKϕKj ϕKi +
∫
K

M
iω

iω + α(x)wKx
∂ϕKj
∂x

ϕKi −
∫
F

Mγ2
i ω

i ω + α(x) (pKϕKj − λ2ψ
β(K,f)
j )n2

xϕ
K
i

−
∫
F

Mγ4
i ω

i ω + α(x) (uKx ϕ
K
j − λ1xψ

β(K,f)
j )nxϕKi +

∫
K

M
iω

iω + β(y)wKy
∂ϕKj
∂y

ϕKi −
∫
F

Mγ2
i ω

i ω + β(y) (pKϕKj − λ2ψ
β(K,f)
j )n2

yϕ
K
i

−
∫
F

Mγ4
i ω

i ω + β(y) (uKy ϕ
K
j − λ1yψ

β(K,f)
j )nyϕKi −

∫
K

Mα11
i ω

i ω + α(x)uKx ϕ
K
j
∂ϕKi
∂x

+
∫
F

Mα11
i ω

i ω + α(x)λ1xψ
β(K,f)
j nxϕ

K
i

−
∫
K

Mα22
i ω

i ω + β(y)uKy ϕ
K
j
∂ϕKi
∂y

+
∫
F

Mα22
i ω

i ω + β(y)λ1yψ
β(K,f)
j nyϕ

K
i −

∫
K

Mα12
i ω

i ω + β(y)uKx ϕ
K
j
∂ϕKi
∂y

+
∫
F

Mα12
i ω

i ω + β(y)λ1xψ
β(K,f)
j nyϕ

K
i −

∫
K

Mα12
i ω

i ω + α(x)uKy ϕ
K
j
∂ϕKi
∂x

+
∫
F

Mα12
i ω

i ω + α(x)λ1yψ
β(K,f)
j nxϕ

K
i = 0 ,

We define and recall the following matrices:

MK
ij =

∫
K

ϕKi ϕ
K
j dX , DKvij =

∫
K

ϕKj
∂ϕKi
∂l

dX , JFvij =
∫
F

ϕKi ϕ
K
j nv dS ,

QFvij =
∫
F

ϕKi ψ
F
j nu dS , LFuvij =

∫
F

ϕKi ψ
F
j nunvdS , NFuvij =

∫
F

ϕKi ϕ
K
j nunvdS ,

with u = x, y, v = x, y. The elementary matrices AK and BK are then expressed as follows:

AK =
(
AK1 AK2 AK3 AK4 AK5 AK6 AK7 AK8

)
,
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with

AK1 =



iωρKa MK +
3∑

f=1

γ1

(
i ω

i ω + α(x)
NKxl +

i ω

i ω + β(y)
NKyl
)

0

iωρKf MK

0(
C11

i ω

i ω + α(x)
DKx + C13

i ω

i ω + β(y)
DKy
)

(
C12

i ω

i ω + α(x)
DKx + C23

i ω

i ω + β(y)
DKy
)

(
C13

i ω

i ω + α(x)
DKx + C33

i ω

i ω + β(y)
DKy
)

−M

(
3∑

f=1

γ4
i ω

i ω + α(x)
Jβ(l,f)
x + α11

i ω

i ω + α(x)
DKx + α12

i ω

i ω + β(y)
DKy

)



,

AK2 =



0

iωρKa MK +
3∑

f=1

γ1

(
i ω

i ω + α(x)
NKxl +

i ω

i ω + β(y)
NKyl
)

0

iωρKf MK(
C13

i ω

i ω + α(x)
DKx + C12

i ω

i ω + β(y)
DKy
)

(
C23

i ω

i ω + α(x)
DKx + C22

i ω

i ω + β(y)
DKy
)

(
C33

i ω

i ω + α(x)
DKx + C23

i ω

i ω + β(y)
DKy
)

−M

(
3∑

f=1

γ4
i ω

i ω + β(y)
Jβ(l,f)
y + α12

i ω

i ω + α(x)
DKx + α22

i ω

i ω + β(y)
DKy

)



,

AK3 =



iωρKf MK

0

iωρ̃KMK

0

0

0

0

M
iω

i ω + α(x)
(DKx )T


, AK4 =



0

iωρKf MK

0

iωρ̃KMK

0

0

0

M
iω

i ω + β(y)
(DKy )T


,

AK5 =



−
i ω

i ω + α(x)
(DKx )T

0

0

0

iωMK

0

0

0


, AK6 =



0

−
i ω

i ω + β(y)
(DKy )T

0

0

0

iωMK

0

0


, AK7 =



−
i ω

i ω + β(y)
(DKy )T

−
i ω

i ω + α(x)
(DKx )T

0

0

0

0

iωMK

0


,
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AK8 =



3∑
f=1

γ3
i ω

i ω + α(x)
Jβ(K,f)
x

3∑
f=1

γ3
i ω

i ω + β(y)
Jβ(K,f)
y

−
i ω

i ω + α(x)
DKx

−
i ω

i ω + β(y)
DKy

iωαK11M
K

iωαK22M
K

iωαK12M
K

iωMK −
3∑

f=1

Mγ2

(
i ω

i ω + α(x)
Nβ(K,f)
x +

i ω

i ω + β(y)
Nβ(K,f)
y

)



,

and
BK =

(
Bλ1x,1 Bλ1x,2 Bλ1x,3 Bλ1y,1 Bλ1y,2 Bλ1y,3 Bλ2,1 Bλ2,2 Bλ2,3

)
with

Bλ1x,f =



−γ1

(
i ω

i ω + α(x)
Lβ(K,f)
x +

i ω

i ω + β(y)
Lβ(K,f)
y

)
0

0

0(
−C11

i ω

i ω + α(x)
Qβ(K,f)
x − C13

i ω

i ω + β(y)
Qβ(K,f)
y

)
(
−C12

i ω

i ω + α(x)
Qβ(K,f)
x − C23

i ω

i ω + β(y)
Qβ(K,f)
y

)
(
−C13

i ω

i ω + α(x)
Qβ(K,f)
x − C33

i ω

i ω + β(y)
Qβ(K,f)
y

)
M

(
(γ4 + α11)

i ω

i ω + α(x)
Qβ(K,f)
x + α12

i ω

i ω + β(y)
Qβ(K,f)
y

)



, for f = 1, 2, 3 ,

Bλ1y,f =



0

−γ1

(
i ω

i ω + α(x)
Lβ(K,f)
x +

i ω

i ω + β(y)
Lβ(K,f)
y

)
0

0(
−C13

i ω

i ω + α(x)
Qβ(K,f)
x − C12

i ω

i ω + β(y)
Qβ(K,f)
y

)
(
−C23

i ω

i ω + α(x)
Qβ(K,f)
x − C22

i ω

i ω + β(y)
Qβ(K,f)
y

)
(
−C33

i ω

i ω + α(x)
Qβ(K,f)
x − C23

i ω

i ω + β(y)
Qβ(K,f)
y

)
M

(
α12

i ω

i ω + α(x)
Qβ(K,f)
x + (γ4 + α22)

i ω

i ω + β(y)
Qβ(K,f)
y

)



, for f = 1, 2, 3 ,

Bλ2,f =



−γ3
i ω

i ω + α(x)
Qβ(K,f)
x

−γ3
i ω

i ω + β(y)
Qβ(K,f)
y

i ω

i ω + α(x)
Qβ(K,f)
x

i ω

i ω + β(y)
Qβ(K,f)
y

0

0

0

Mγ2(
i ω

i ω + α(x)
Lβ(K,f)
x +

i ω

i ω + β(y)
Lβ(K,f)
y )



, for f = 1, 2, 3 .
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C.2 HDG method using Absorbing Boundary Conditions
In this section, we present how to take into account the presence of absorbing boundary conditions in the HDG algorithm.
Recall that the HDG formulation is obtained by combining the local problem with two transmission conditions at the interfaces
of the mesh. The presence of the absorbing boundary has no impact on the local problem. In the previous section, we have
obtained the following radiation condition (see (4.35)):{

τ n+
(
X1(u · n) + X2(w · n)

)
n+ X3(u · t) t + X3(u · a) a = 0 ,

p + X4(u · n) + X5(w · n) = 0 .

We consider an element K of a mesh, and (η, ξ) ∈Mh × Mh (spaces defined in (3.5)) two test-functions defined on the faces of
the element K. On the absorbing boundary Frbc, we then impose instead of the transmission conditions:∑

F∈Frbc

∫
F

(
τ̂ n+

(
X1(û · n) + X2(ŵ · n)

)
n+ X3(û · t) t + X3(û · a) a

)
· η = 0 , (C.2a)

∑
F∈Frbc

∫
F

(p̂ + X4(û · n) + X5(ŵ · n))ξ = 0 . (C.2b)

In the following two sections, we consider a face of the mesh F , which is on the absorbing boundary Frbc, and we present the
discretization of the two equations given in (C.2).

C.2.1 Discretization of condition (C.2a)
Starting from equation (C.2a):∫

F

(
τ̂ n+

(
X1(û · n) + X2(ŵ · n)

)
n+ X3(û · t) t + X3(û · a) a

)
· η = 0 ,

and replacing the numerical traces ŵ, τ̂ , ŵ by their expressions given respectively in (3.10) and (3.14), we obtain∫
F

(τh n) · η −
∫
F

γ1(uh − λ1) · η −
∫
F

γ3(ph − λ2)n · η +
∫
F

(
X1(λ1 · n)n

)
· η +

∫
F

(
X2(wh · n)n

)
· η

−
∫
F

γ2X2(ph − λ2)n · η −
∫
F

((
γ4(uh − λ1) · n

)
n
)
· η +

∫
F

(
X3(λ1 · t) t

)
· η +

∫
F

(
X3(λ1 · a) a

)
· η = 0 .

The discretization of the equation on (x, y, z) is written for • = x, y, z, we replace the test-functions η• by basis functions ψβ(K,f)
i ,

and we express the unknowns with their decomposition given in equations (3.26) for the local solutions and equation (3.25) for
the local Lagrange unknowns.∫

F

τKx• n
K
x ϕ

K
j ψ

β(K,f)
i +

∫
F

τKy• n
K
y ϕ

K
j ψ

β(K,f)
i +

∫
F

τKz• n
K
z ϕ

K
j ψ

β(K,f)
i −

∫
F

γ1uK• ϕ
K
j ψ

β(K,f)
i dS

+
∫
F

γ1λ
β(K,f)
1• ψ

β(K,f)
j ψ

β(K,f)
i dS −

∫
F

γ3n
K
• pKϕKj ψ

β(K,f)
i dS +

∫
F

γ3n
K
• λ

K
2 ψ

β(K,f)
j ψ

β(K,f)
i dS

+
∫
F

X1(λβ(K,f)
1x nx + λ

β(K,f)
1y ny + λ

β(K,f)
1z nz)n•ψβ(K,f)

j ψ
β(K,f)
i dS +

∫
F

X2(wKx nx + wKy ny + wKz nz)n•ψβ(K,f)
j ψ

β(K,f)
i dS

−
∫
F

X2γ2 pKn•ϕKj ψ
β(K,f)
i dS +

∫
F

X2γ2 λ
K
2 n• ψ

β(K,f)
j ψ

β(K,f)
i dS −

∫
F

X2γ4 (uKx nx + uKy ny + uKz nz)n• ϕKj ψ
β(K,f)
i dS

+
∫
F

X2 γ4 (λβ(K,f)
1x nx + λ

β(K,f)
1y ny + λ

β(K,f)
1z nz)n• ψβ(K,f)

j ψ
β(K,f)
i dS

+
∫
F

X3 (λβ(K,f)
1x tx + λ

β(K,f)
1y ty + λ

β(K,f)
1z tz)t•ψβ(K,f)

j ψ
β(K,f)
i dS

+
∫
F

X3 (λβ(K,f)
1x ax + λ

β(K,f)
1y ay + λ

β(K,f)
1z az)a•ψβ(K,f)

j ψ
β(K,f)
i dS = 0 ,
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We write the above equation in terms of the elementary matrices defined in (4.28):

(Qβ(K,f)
x )T τKx• + (Qβ(K,f)

y )T τKy• + (Qβ(K,f)
z )T τKz• − γ1(Fβ(K,f))T uK• + γ1Gβ(K,f)λ

β(K,f)
1• − γ3(Qβ(K,f)

• )T pK

+ γ3H
β(K,f)
• λ

β(K,f)
2 + Oβ(K,f)

x• X1 λ
β(K,f)
1x + Oβ(K,f)

y• X1λ
β(K,f)
1y + Oβ(K,f)

z• X1λ
β(K,f)
1z + (Lβ(K,f)

x• )TX2 wKx

+ (Lβ(K,f)
y• )TX2 wKy + (Lβ(K,f)

z• )TX2 wKz − (Qβ(K,f)
• )TX2 γ2pK + Hβ(K,f)

• X2 γ2 λ
β(K,f)
2

− (Lβ(K,f)
x• )TX2 γ4 uKx − (Lβ(K,f)

y• )TX2 γ
β(K,f)
4 uKy − (Lβ(K,f)

z• )TX2 γ
β(K,f)
4 uKz + Oβ(K,f)

x• X2 λ
β(K,f)
1x

+ Oβ(K,f)
y• X2λ

β(K,f)
1y + Oβ(K,f)

z• X2λ
β(K,f)
1z + Gβ(K,f)txt•X3 λ

β(K,f)
1x + Gβ(K,f)

y• tyt•X3λ
β(K,f)
1y

+ Gβ(K,f)
z• tzt•X3λ

β(K,f)
1z + Gβ(K,f)axa•X3 λ

β(K,f)
1x + Gβ(K,f)

y• aya•X3λ
β(K,f)
1y + Gβ(K,f)

z• aza•X3λ
β(K,f)
1z = 0 ,

C.2.2 Discretization of condition (C.2b)
Considering equation (C.2b) on a face F gives ∫

F

(p̂ + X4(û · n) + X5(ŵ · n)) ξ = 0 .

Using the expressions of the numerical traces ŵ (3.10), ŵ (3.14), we have:∫
F

(
λ2 + X4(λ1 · n) + X5

(
(wh − (ph − λ2) γ2 − γ4(uh − λ1) · n

))
ξ = 0 .

The equation is discretized on (x, y, z) and the local solutions and lagrange operators are expressed with the expressions given
in (3.26) and (3.25):∫

F

λK2 ψ
β(K,f)
j ψ

β(K,f)
i dS +

∫
F

X4(λβ(K,f)
1x nx + λ

β(K,f)
1y ny + λ

β(K,f)
1z nz)ψβ(K,f)

j ψ
β(K,f)
i dS

+
∫
F

X5(wKx nx + wKy ny + wKz nz)ϕKj ψ
β(K,f)
i dS −

∫
F

X5 γ2pK ϕKj ψ
β(K,f)
i dS +

∫
F

X5 γ2λ
K
2 ψ

β(K,f)
j ψ

β(K,f)
i dS

−
∫
F

X5γ4(uKx nx + uKy ny + uKz nz)ϕKj ψ
β(K,f)
i dS +

∫
F

X5γ4(λβ(K,f)
1x nx + λ

β(K,f)
1y ny + λ

β(K,f)
1z nz)ψβ(K,f)

j ψ
β(K,f)
i dS = 0.

Using the elementary matrices, we obtain:

Gβ(K,f)λ
β(K,f)
2 + Hβ(K,f)

x X4λ
β(K,f)
1x + Hβ(K,f)

y X4λ
β(K,f)
1y + Hβ(K,f)

z X4λ
β(K,f)
1z + (Qβ(K,f)

x )TX5wKx + (Qβ(K,f)
y )TX5wKy

+ (Qβ(K,f)
z )TX5wKz − FK

T
X5 γ2pK + Gβ(K,f)X5 γ2λ

K
2 − (Qβ(K,f)

x )TX5 γ4 uKx − (Qβ(K,f)
y )TX5 γ4 uKy

− (Qβ(K,f)
z )TX5 γ4 uKz + Hβ(K,f)

x X5 γ4 λ
β(K,f)
1x + Hβ(K,f)

y X5 γ4 λ
β(K,f)
1y + Hβ(K,f)

z X5 γ4 λ
β(K,f)
1z = 0 .

With the discretization of the radiation condition, and the transmission condition on the other faces of an element K, we
can a build a system of the form ∑

K∈Th

(AKHDG)T
(
PKWK + TKAKHDGΛ

)
= Sinc ,

with WK and ΛK given in equation (3.27). The expression of the matrices PK and TK is detailed below. The resolution of the
HDG method with absorbing boundary conditions is given in Algorithm 2.

C.2.3 Elementary matrices in three dimensions with RBC
Recall that in the HDG method, the two transmission conditions are used to build a system of the form:∑

K∈Th

(AKHDG)T
(
PKWK + TKAKHDGΛ

)
= Sinc .
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If the four faces of the element K are internal faces, the matrices PK and TK are given in Appendix B.1.2. Here, we focus on
an element with a face on the absorbing boundary. If the face 1 of the element in local numbering is included in Frbc, the first,
fifth, ninth and thirteenth lines of PK are modified as follows:

PK1,: =
(
−γ1(Fβ(K,1)

1 )T − γ4X2(Lβ(K,1)
xx )T −γ4X2(Lβ(K,1)

xy )T −γ4X2(Lβ(K,1)
xz )T X2(Lβ(K,1)

xx )T X2(Lβ(K,1)
xy )T ...

... X2(Lβ(K,1)
xz )T (Qβ(K,1)

x )T 0 0 0 (Qβ(K,1)
z )T (Qβ(K,1)

y )T (−γ3 − γ2 X2) (Qβ(K,1)
x )T

)
,

PK5,: =
(
−γ4X2(Lβ(K,1)

xy )T −γ1(Fβ(K,1)
1 )T − γ4X2(Lβ(K,1)

yy )T −γ4X2(Lβ(K,1)
yz )T X2(Lβ(K,1)

xy )T X2(Lβ(K,1)
yy )T ...

... X2(Lβ(K,1)
yz )T 0 (Qβ(K,1)

y )T 0 (Qβ(K,1)
z )T 0 (Qβ(K,1)

y )T (−γ3 − γ2 X2) (Qβ(K,1)
y )T

)
,

PK9,: =
(
−γ4X2(Lβ(K,1)

xz )T −γ1(Fβ(K,1)
1 )T − γ4X2(Lβ(K,1)

yz )T −γ4X2(Lβ(K,1)
zz )T X2(Lβ(K,1)

xz )T X2(Lβ(K,1)
yz )T ...

... X2(Lβ(K,1)
zz )T 0 0 (Qβ(K,1)

z )T (Qβ(K,1)
y )T (Qβ(K,1)

x )T 0 (−γ3 − γ2 X2) (Qβ(K,1)
z )T

)
,

and
PK13,: =

(
−X5 γ4(Qβ(K,1)

x )T −X5 γ4(Qβ(K,1)
y )T −X5 γ4(Qβ(K,1)

z )T X5(Qβ(K,1)
x )T X5(Qβ(K,1)

y )T ...

... X5(Qβ(K,1)
z )T 0 0 0 0 0 0 −γ2X5(Fβ(K,1))T

)
.

The first, fifth, ninth and thirteenth lines of TK are also modified and are given below:

TK1,: =
((

γ1 + γ4X2n2
x + X1n2

x + X3t2x + X3a2
x

)
Gβ(K,1) 0 0 0 (γ4X2nxny + X1nxny + X3txty + X3axay)Gβ(K,1) ...

... 0 0 0 (γ4X2nxnz + X1nxnz + X3txtz + X3axaz)Gβ(K,1) 0 0 0 (γ3 + X2 γ2)Hβ(K,1)
x 0 0 0

)
,

TK5,: =
(

(γ1 + γ4X2nxny + X1nxny + X3txty + X3axay)Gβ(K,1) 0 0 0
(
γ4X2n2

y + X1n2
y + X3t2y + X3a2

y

)
Gβ(K,1) ...

... 0 0 0 (γ4X2nynz + X1nynz + X3tytz + X3ayaz)Gβ(K,1) 0 0 0 (γ3 + X2 γ2)Hβ(K,1)
y 0 0 0

)
,

TK9,: =
(

(γ1 + γ4X2nxnz + X1nxnz + X3txtz + X3axaz)Gβ(K,1) 0 0 0 (γ4X2nynz + X1nynz + X3tytz + X3ayaz)Gβ(K,1) ...

... 0 0 0
(
γ4X2n2

z + X1n2
z + X3t2z + X3a2

z

)
Gβ(K,1) 0 0 0 (γ3 + X2 γ2)Hβ(K,1)

z 0 0 0

)
,

and
TK13,: =

(
(X4 + X5γ4)Hβ(K,1)

x 0 0 0 (X4 + X5γ4)Hβ(K,1)
y 0 0 0 ...

... (X4 + X5γ4)Hβ(K,1)
z 0 0 0 (1 + X5 γ2)Gβ(K,1) 0 0 0

)
.

C.3 Three-dimensional discretization using PML in the HDG method
Here, we detail the discretization of the poroelastic equations using PML in the HDG method. The PML allow to model an
infinite domain. On the borders of our computational domain, we add an artificial absorbing layer, which prevents the reflections
by absorbing the outgoing waves. In the formulation, we use three absorbing functions α, β and γ representing the attenuation
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of the wave in the absorbing layer. The attenuation functions α, β and γ are taken equal to zero outside of the absorbing layers.
Considering ∂Ω the interface between the geophysical domain and the PML, the value of the attenuation functions in the PML
increases with the distance to ∂Ω. In practice the use of PML is taken into account by replacing the spatial derivatives as
follows:

∂x →
i ω

i ω + α(x)
∂x , ∂y →

i ω

i ω + β(y)
∂y , ∂z →

i ω

i ω + γ(z)
∂z .

We consider a three-dimensional porous domain Ω with the boundary Γ. The fields (u, w, τ , p) solve the poroelastic equations
(1.16) on Ω. We consider a triangulation Th of Ω, and Fh the set of all the faces. K is a triangle element of Th and F is a face of
K. We use the approximation spaces defined in Section 4.4. The local unknowns (uh, wh, τh, ph) ∈ (V p

h
× V p

h
×Σp

h
× V p

h
) solve

the poroelastic equations (1.16) on Th. The HDG discretization of the poroelastic equations (1.16) is modified. The transmission
conditions are not modified and stay the same as the one used in HDG method with no PML, see Chapter 3.

Starting from the poroelastic equations (1.16), we follow the same steps as in Section 3.1 to obtain the local problem. First,
we multiply the equations by test-functions and integrate on an element K. Then, we integrate the equation by parts to bring
out the numerical traces. Next, the numerical traces û, ŵ, τ̂ and p̂ are replaced by their expressions given in (3.10).

Once we have obtained the local problem, we discretize the equations as in Section 3.3, by replacing the test-functions by
basis functions, and by decomposing the unknowns (u, w, τ , p) and the local Lagrange unknowns λ1 and λ2 as given in equations
(3.25) and (3.26). We can then express the obtained system in terms of the elementary matrices defined in (3.28).

We obtain an elementary system expressed as:
AWK + BΛK = 0 ,

with WK and ΛK defined in (3.27). The elementary matrices AK and BK are then expressed as follows:
In this case, AK is of dimension 13 dKi × 13dKi , written as:

AK =
(
AK1 AK2 AK3 AK4 AK5 AK6 AK7 AK8 AK9 AK10 AK11 AK12 AK13

)
,

with

AK1 =



iωρKa MK +
4∑

f=1

γ1Eβ(K,f)
(

i ω

i ω + α(x)
n2
x +

i ω

i ω + β(y)
n2
y +

i ω

i ω + γ(z)
n2
z

)
0

0

iωρKf MK

0

0(
CK11D

K
x

i ω

i ω + α(x)
+ CK16D

K
y

i ω

i ω + β(y)
+ CK15D

K
z

i ω

i ω + γ(z)

)
(
CK21D

K
x

i ω

i ω + α(x)
+ CK26D

K
y

i ω

i ω + β(y)
+ CK25D

K
z

i ω

i ω + γ(z)

)
(
CK31D

K
x

i ω

i ω + α(x)
+ CK36D

K
y

i ω

i ω + β(y)
+ CK35D

K
z

i ω

i ω + γ(z)

)
(
CK41D

K
x

i ω

i ω + α(x)
+ CK46D

K
y

i ω

i ω + β(y)
+ CK45D

K
z

i ω

i ω + γ(z)

)
(
CK51D

K
x

i ω

i ω + α(x)
+ CK56D

K
y

i ω

i ω + β(y)
+ CK55D

K
z

i ω

i ω + γ(z)

)
(
CK61D

K
x

i ω

i ω + α(x)
+ CK66D

K
y

i ω

i ω + β(y)
+ CK65D

K
z

i ω

i ω + γ(z)

)
−MK

(
4∑

f=1

γ4J
β(K,f)
x

i ω

i ω + α(x)
+ αK11D

K
x

i ω

i ω + α(x)
+ αK12D

K
y

i ω

i ω + β(y)
+ αK13D

K
z

i ω

i ω + γ(z)

)



,
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AK2 =



0

iωρKa MK +
4∑

f=1

γ1Eβ(K,f)
(

i ω

i ω + α(x)
n2
x +

i ω

i ω + β(y)
n2
y +

i ω

i ω + γ(z)
n2
z

)
0

0

iωρKf MK

0(
CK16D

K
x

i ω

i ω + α(x)
+ CK12D

K
y

i ω

i ω + β(y)
+ CK14D

K
z

i ω

i ω + γ(z)

)
(
CK26D

K
x

i ω

i ω + α(x)
+ CK22D

K
y

i ω

i ω + β(y)
+ CK24D

K
z

i ω

i ω + γ(z)

)
(
CK36D

K
x

i ω

i ω + α(x)
+ CK32D

K
y

i ω

i ω + β(y)
+ CK34D

K
z

i ω

i ω + γ(z)

)
(
CK46D

K
x

i ω

i ω + α(x)
+ CK42D

K
y

i ω

i ω + β(y)
+ CK44D

K
z

i ω

i ω + γ(z)

)
(
CK56D

K
x

i ω

i ω + α(x)
+ CK52D

K
y

i ω

i ω + β(y)
+ CK54D

K
z

i ω

i ω + γ(z)

)
(
CK66D

K
x

i ω

i ω + α(x)
+ CK62D

K
y

i ω

i ω + β(y)
+ CK64D

K
z

i ω

i ω + γ(z)

)
−MK

(
4∑

f=1

γ4J
β(K,f)
y

i ω

i ω + β(y)
+ αK12D

K
x

i ω

i ω + α(x)
+ αK22D

K
y

i ω

i ω + β(y)
+ αK23D

K
z

i ω

i ω + γ(z)

)



,

AK3 =



0

0

iωρKa MK +
4∑

f=1

γ1Eβ(K,f)
(

i ω

i ω + α(x)
n2
x +

i ω

i ω + β(y)
n2
y +

i ω

i ω + γ(z)
n2
z

)
0

0

iωρKf MK(
CK15D

K
x

i ω

i ω + α(x)
+ CK14D

K
y

i ω

i ω + β(y)
+ CK13D

K
z

i ω

i ω + γ(z)

)
(
CK25D

K
x

i ω

i ω + α(x)
+ CK24D

K
y

i ω

i ω + β(y)
+ CK23D

K
z

i ω

i ω + γ(z)

)
(
CK35D

K
x

i ω

i ω + α(x)
+ CK34D

K
y

i ω

i ω + β(y)
+ CK33D

K
z

i ω

i ω + γ(z)

)
(
CK45D

K
x

i ω

i ω + α(x)
+ CK44D

K
y

i ω

i ω + β(y)
+ CK43D

K
z

i ω

i ω + γ(z)

)
(
CK55D

K
x

i ω

i ω + α(x)
+ CK54D

K
y

i ω

i ω + β(y)
+ CK53D

K
z

i ω

i ω + γ(z)

)
(
CK65D

K
x

i ω

i ω + α(x)
+ CK64D

K
y

i ω

i ω + β(y)
+ CK63D

K
z

i ω

i ω + γ(z)

)
−MK

(
4∑

f=1

γ4J
β(K,f)
z

i ω

i ω + γ(z)
+ αK13D

K
x

i ω

i ω + α(x)
+ αK23D

K
y

i ω

i ω + β(y)
+ αK33D

K
z

i ω

i ω + γ(z)

)



,
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AK4 =



iωρKf MK

0

0

iωρKdynM
K

0

0

0

0

0

0

0

0

MK(DKx )T
i ω

i ω + α(x)



, AK5 =



0

iωρKf MK

0

0

iωρKdynM
K

0

0

0

0

0

0

0

MK(DKy )T
i ω

i ω + β(y)



AK6 =



0

0

iωρKf MK

0

iωρKdynM
K

0

0

0

0

0

0

0

MK(DKz )T
i ω

i ω + γ(z)



AK7 =



−(DKx )T
i ω

i ω + α(x)
0

0

0

0

0

iωMK

0

0

0

0

0

0



, AK8 =



0

−(DKy )T
i ω

i ω + β(y)
0

0

0

0

0

iωMK

0

0

0

0

0



, AK9 =



0

0

−(DKz )T
i ω

i ω + γ(z)
0

0

0

0

0

iωMK

0

0

0

0



,

AK10 =



0

−(DKz )T
i ω

i ω + γ(z)
−(DKy )T

i ω

i ω + β(y)
0

0

0

0

0

0

iωMK

0

0

0



, AK11 =



−(DKz )T
i ω

i ω + γ(z)
0

−(DKx )T
i ω

i ω + α(x)
0

0

0

0

0

0

0

iωMK

0

0



, AK12 =



−(DKy )T
i ω

i ω + β(y)
−(DKx )T

i ω

i ω + α(x)
0

0

0

0

0

0

0

0

0

iωMK

0



,
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AK13 =



4∑
f=1

γ3J
β(K,f)
x

i ω

i ω + α(x)
4∑

f=1

γ3J
β(K,f)
y

i ω

i ω + β(y)
4∑

f=1

γ3J
β(K,f)
z

i ω

i ω + γ(z)

−DKx
i ω

i ω + α(x)
−DKy

i ω

i ω + β(y)
−DKz

i ω

i ω + γ(z)
iωαK11M

K

iωαK22M
K

iωαK33M
K

iωαK23M
K

iωαK13M
K

iωαK12M
K

iωMK −
4∑

f=1

Mγ2Eβ(K,f)
(

i ω

i ω + α(x)
n2
x +

i ω

i ω + β(y)
n2
y +

i ω

i ω + γ(z)
n2
z

)



.

Based on the structure of the unknown ΛK , we write BK in 16 columns of size 13 dKi × d
F
i as:

BK =
(
Bλ1x,1 Bλ1x,2 Bλ1x,3 Bλ1x,4 Bλ1y,1 Bλ1y,2 Bλ1y,3 Bλ1y,4 ...

... Bλ1z ,1 Bλ1z ,2 Bλ1z ,3 Bλ1z ,4 Bλ2,1 Bλ2,2 Bλ2,3 Bλ2,4

)
,

with

Bλ1x,f =



−γ1 Fβ(K,f)
(

i ω

i ω + α(x)
n2
x +

i ω

i ω + β(y)
n2
y +

i ω

i ω + γ(z)
n2
z

)
0
0
0
0
0

(−CK11Q
β(K,f)
x

i ω

i ω + α(x)
− CK16Q

β(K,f)
y

i ω

i ω + β(y)
− CK15Q

β(K,f)
z

i ω

i ω + γ(z)
)

(−CK21Q
β(K,f)
x

i ω

i ω + α(x)
− CK26Q

β(K,f)
y

i ω

i ω + β(y)
− CK25Q

β(K,f)
z

i ω

i ω + γ(z)
)

(−CK31Q
β(K,f)
x

i ω

i ω + α(x)
− CK36Q

β(K,f)
y

i ω

i ω + β(y)
− CK35Q

β(K,f)
z

i ω

i ω + γ(z)
)

(−CK41Q
β(K,f)
x

i ω

i ω + α(x)
− CK46Q

β(K,f)
y

i ω

i ω + β(y)
− CK45Q

β(K,f)
z

i ω

i ω + γ(z)
)

(−CK51Q
β(K,f)
x

i ω

i ω + α(x)
− CK56Q

β(K,f)
y

i ω

i ω + β(y)
− CK55Q

β(K,f)
z

i ω

i ω + γ(z)
)

(−CK61Q
β(K,f)
x

i ω

i ω + α(x)
− CK66Q

β(K,f)
y

i ω

i ω + β(y)
− CK65Q

β(K,f)
z

i ω

i ω + γ(z)
)

MK

(
(γ4 + αK11)Qβ(K,f)

x
i ω

i ω + α(x)
+ αK12Q

β(K,f)
y

i ω

i ω + β(y)
+ αK13Q

β(K,f)
z

i ω

i ω + γ(z)

)



,
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Bλ1y,f =



0

−γ1 Fβ(K,f)
(

i ω

i ω + α(x)
n2
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for f = 1, 2, 3, 4.
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Chapter 5

The Electrokinetic effects

In this chapter, we present the principles of the electrokinetic, following Pride’s theory, [105, 110]. The electrokinetic
theory was first introduced by Frenkel [109, 56], then it has been generalized to Pride’s model. The conversions have
been observed on the field and in laboratory experiments, [23, 117]. In this chapter, we first introduce in Section 5.1 the
principles of the electrokinetic and the physical parameters used to describe Pride’s equations, that we present in Section
5.2. In order to manipulate quantities with similar amplitudes, we use a non-dimensionalization of the equations, see
Section 5.3. Then, we present in Section 5.4 the boundary conditions used for Pride’s equations. Finally, in Section
5.5, we obtain by a plane analysis the slownesses of the four waves sustained in conducting poroelastic materials, and
the associated solutions.

5.1 Physical parameters
We consider a poroelastic material, composed of a solid frame and pores filled with fluid, or composed of grains
immersed in a fluid. In such materials, the wavelengths are significantly larger than the dimensions of the grains or the
pores. The geophysical poroelastic materials are neutral media, however, the surface of the solid is usually negatively
charged, and the fluid is an electrolyte, with ions in motion in the fluid, attracted by the opposite sign on the solid
surface [111, 108, 113]. The charges in the fluid are adsorbed by the negative charges on the surface of the solid,
which fixes a part of the positive charges, and forms the Stern layer, see Figure 5.1. In the diffusive layer, the negative
charges have an overall displacement that is more important than that of the positive charges, and this relative motion
between the charges creates an electric potential [66]. We will consider that the fluid is an ideal electrolyte and that
the material is isotropic.

+

+

+

+

+

+

+

Stern layer

+

+

+

+

−

−

−

−

−

−

−

−

+

+

+

+

Diffusive layer

−

−

−

−

−

−

−

−

−

−
−

−

−

+
+

+

+

+

+

Free fluid

Figure 5.1: Electric double layer

When a seismic wave propagates, the motion of the fluid in the porous media induces an electric current, that
creates an electromagnetic signal. This is called the seismoelectric phenomenon [129, 79]. The electromagnetic waves
generated with a seismic source are composed of a co-seismic electric or magnetic fields that propagate at the same
speed as the produced seismic waves, and the electromagnetic converted wave generated at an interface between two
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media with different properties. The converted wave propagates with the electromagnetic wavespeed which is very
much higher than the seismic wavespeeds and thus makes the problem multi-scale. We can observe those waves by
measuring the electric or magnetic fields. Similarly, an electromagnetic field acting on the layer causes the ions to
move in the electrical double layer, which leads to a relative displacement of the fluid and solid frame, and hence
seismic waves propagate in the medium. In a conducting poroelastic material, if the source is electromagnetic, we can
observed two kinds of waves generated by the electroseismic effects. The first one is a seismic signal accompanying the
electromagnetic wave, and the second is a seismic wave created by the reflection of the electromagnetic wave at the
interface between two different materials. The two phenomena are called the electrokinetic effects [78]. The converted
waves are very interesting because they are heavily sensitive to the medium properties, and have potential applications
in the detection of interfaces.

The electrokinetic model is based on the coupling of poroelastic and electromagnetic wave propagation. Thus,
the waves propagation in conducting poroelastic materials depend on the poroelastic parameters, electromagnetic
parameters and coupling parameters. The poroelastic and electromagnetic quantities have been introduced respectively
in Chapter 1 and Appendix G, hence we refer to those chapters for more details. We follow Pride’s hypothesis and
always assume that the materials are isotropic, which means that the speed of the waves and the attenuation do not
depend on the propagation direction.

Poroelastic parameters
We use the same parameters as for poroelasticity in Part I. We summarize the different poroelastic parameters in

Table 5.1. The first table gives the input parameters, and the second one gives parameters that are calculated from
the values of the first table.

Input parameters Notation Unity
Porosity φ -
Fluid Density ρf 103kg.m−3

Solid Density ρs 103kg.m−3

Viscosity η 10−3Pa.s
Permeability zero κ0 10−9m2

Tortuosity t -
Solid Bulk Modulus ks GPa
Fluid Bulk Modulus kf GPa
Frame Bulk Modulus kfr GPa
Frame Shear Modulus µfr GPa

(a): Input poroelastic parameters

Calculated parameters Notation Unity Formula

Averaged density ρa 103kg.m−3 ρa := (1− φ) ρs + φ ρf .

Dynamic density ρdyn 103kg.m−3 ρdyn(ω) = i η

(−sω) k(−sω) .

Dynamic permeability k 10−9m2 1
k(ω) = 1

k0

(√
1− i 4

m

ω

ωt
− i ω

ωt

)
,

with ωt = φ

tk0

η

ρf
and m = 8.

Effective stress α - α = α I, with α = 1− kfr

ks
.

Fluid-solid coupling modulus M GPa 1
M

= α

ks
+ φ

(
1
kf
− 1

ks

)
.

Biot incompressibilities constant H GPa kfr + 4
3µfr + α2M

Stiffness tensor C GPa given in equations (5.1) in 3D and (5.2) in 2D.

(b): Calculated poroelastic parameters
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Table 5.1: Poroelastic parameters.

In isotropic materials, the stiffness tensor Cfr is expressed in three dimensions as:

C =



kfr + 4
3µfr kfr − 2

3µfr kfr − 2
3µfr 0 0 0

kfr − 2
3µfr kfr + 4

3µfr kfr − 2
3µfr 0 0 0

kfr − 2
3µfr kfr − 2

3 kfr + 4
3µfrµfr 0 0 0

0 0 0 µfr 0 0
0 0 0 0 µfr 0
0 0 0 0 0 µfr


, (5.1)

which is simplified in two dimensions as:

C =


kfr + 4

3µfr kfr − 2
3µfr 0

kfr − 2
3µfr kfr + 4

3µfr 0
0 0 µfr

 . (5.2)

Electromagnetic parameters
We recall the three parameters that describe the electromagnetic wave propagation, see Appendix G:

• µ0 the permeability (N.A−2),

• ε0 the permittivity (F.m−1),

• σ the conductivity (S.m−1).

Coupling parameters
The coupling is expressed by using the tensor L, dependent on the frequency and as in [110], we write it in the

form L = L I. The coupling parameter is given by [109]:

L(ω) = L0

(
1 − i ω

ωt

)−1/2
, with L0 = ε0 kf ζ

η F
.

In the above equation, ζ is the electric potential expressed in Volt, and F is a formation factor with no dimension,
expressed as F = φ2, with φ the porosity. The viscosity η has a significant role in the coupling tensor, and we always
consider materials with viscosity, because otherwise the coupling tensor is not defined.

Finally, in the electrokinetic equations, the second constitutive law of Maxwell’s equations is modified and is
expressed using the electric factor δ0 given by:

δ0 = ε0

(
φ

t
(κf − κs) + κs

)
,

with κf and κs the fluid and solid permittivity.
In Table 5.2, we give the input parameters for Sand and Freshwater.
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Physical parameters Sand Freshwater
Porosity φ 0.3 0.15
Fluid Density ρf (103kg.m−3) 1 1
Solid Density ρs (103kg.m−3) 2.7 2.7
Viscosity η (10−3Pa.s) 1 1
Permeability κ0 (10−9m2) 0.01 0.001
Tortuosity t 3 3
Solid Bulk Modulus ks (GPa) 36 36
Fluid Bulk Modulus kf (GPa) 2.2 2.2
Frame Bulk Modulus kfr (GPa) 7 9
Frame Shear Modulus µfr (GPa) 5 7
Solid permittivity κf 4 4
Fluid permittivity κs 80 80
Conductivity σ (10−4 S.m−1) 3.88 3.88
Zeta potential ζ (V) 0.1 0.1

Table 5.2: Summary of the physical parameters of media in consideration. The parameters are taken from [71][Table
1].

5.2 Pride’s Equations
The electrokinetic equations have been proposed in 1994 by Pride [105]. The derivation of the equations relies on the
averaging of the electromagnetic and poroelastic equations on a macroscopic level. The equations have been obtained
in the frequency domain. Note that the non-linear dependency on the frequency of the physical parameters, including
the coupling tensor L, worsens the difficulties if we work in the time domain. In addition, the difference of wave
velocities between the seismic waves and the electromagnetic waves is quite difficult to handle in the time domain.
Hence, we choose to work in the harmonic domain, and we consider that the waves have an es iω t dependency. In this
framework, the time derivative is ∂t → s iω. We describe the propagation of waves in conducting poroelastic materials
using the following unknowns:

• the frame velocity u,

• the relative fluid velocity w,

• the fluid pressure p,

• the stress tensor τ ,

• the electric density field E,

• the magnetic intensity field H,

• the electric current density J .

We will also use the strain tensor, expressed as: ε = ∇u + (∇u)T

2 .

In three dimensions, u, w E, H, and J are vectors of size 3. The stress τ is a 6× 6 tensor and the pressure p is a
scalar. In two dimensions, two configurations can be considered, denoted ’TE’ and ’TM’ [110]:

• For TM transverse wave, the electric field E has the same polarization as the mechanical velocities and is in
the plane (x, y), while the magnetic fields is orthogonal to the plane (x, y) and carried by Oz. In this case, the
magnetic field is a scalar denoted by H.

• For TE transverse wave, the polarization of the mechanical velocities and the electric field are orthogonal to the
plane (x, y), while the polarization of the magnetic field is in the plane (x, y).

In the following, we always consider the case TM. Hence, in two dimensions, u, w, E, and J are vectors of size 2. The
stress τ is a 3× 3 tensor, the magnetic field is a scalar that we denote H.
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As the electromagnetic wavelengths are very large compared to the other wavelengths, some studies focus on
the quasi-static approximation of Maxwell equations. It has been shown in [60] that using this assumption, the
electromagnetic and seismic wave equations become uncoupled. The resolution can thus be made separately. In our
case, we do not make the quasi-static assumption and we consider the full model.

The first-order harmonic equations are given by:

s iω ρau + s iω ρf w = ∇ · τ + fu , (5.3a)

s iωρfu + s iω ρdyn w = −∇p + s iω ρdyn LE + fw , (5.3b)

s iωτ + s iωαp = C : ε(u) , (5.3c)

s iω p = −M∇ ·w− Mα : ε(u) , (5.3d)

s iω δ0E = curlH − J + fC , (5.3e)

s iω µ0H = − curlE , (5.3f)

J = σE + L(−∇p− s iω ρf u ) , (5.3g)

with fu, fw and fC exterior forces, and the operator : in equations (5.3c) and (5.3d) denoting the tensor scalar
product.

As mentioned above, we always consider the materials to be isotropic. This means that equations (5.3c) and (5.3d)
can also be written as

s iωτ = 2µfr ε(u) + (λfr + Mα2)∇ · u I + αM∇ ·w I ,

s iω p = −M ∇ ·w− αM ∇ · u .
(5.4)

In system (5.3), the four first equations (5.3a), to (5.3d) are the poroelastic equations with a coupling term in equation
(5.3b). Similarly, equations (5.3e) to (5.3g) are the electromagnetic equations with a coupling term in equation (5.3g).

Second-order formulation
To manipulate a more compact system of equations, we determine the second-order formulation of Pride’s equations

(5.3). For this, we introduce the solid and relative fluid displacements u and w, that are defined using the fact that
the velocities are the time derivatives of the displacements:

u = s iω u , w = s iωw .

In the following, we express the system (5.3) in terms of the solid displacement u, the relative fluid displacement w
and the electric field E.

Proposition 5.1. Second-order formulation
If (u,w, τ ,p,E,H,J) is solution of the electrokinetic system (5.3) in a homogeneous medium, then (u,w,E)

solves the following system:

−ω2ρau − ρfω
2w − H∇∇ · u + µfr curl curl u − αM ∇∇ · w = F1 , (5.5a)

−ω2ρfu − ω2 ρdyn w − η

k
LE −M ∇∇ · w − Mα∇∇ · u = F2 , (5.5b)

−ω2 ε̃µ0E − s iω µ0 Lω2 ρdyn w + curl curlE = F3 , (5.5c)

where we have denoted
ε̃ = δ0 −

s i
ω
σ + s i

ω

η

k
L2 ,

and with F1 = fu, F2 = fw and F3 = s iω µ0 fC .

Proof. First, we write system (5.3) in terms of the displacements instead of the velocities, using the isotropic notations
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(5.4):

− ω2 ρau− ω2 ρf w = ∇ · τ + fu , (5.6a)

− ω2 ρfu − ω2 ρdyn w = −∇p + s iω ρdyn LE + fw , (5.6b)

τ = 2µfr ε(u) + (λfr + Mα2)∇ · u I + αM∇ · w I , (5.6c)

p = −M ∇ · w− αM ∇ · u , (5.6d)

s iω δ0E = curlH − J + fC , (5.6e)

s iω µ0H = − curlE , (5.6f)

J = σE + L(−∇p + ω2 ρf u ) , (5.6g)

By using the calculations done for poroelasticity in Section 1.2, we can express the divergence of the stress (equation
(5.6c)) and the gradient of the pressure (equation (5.6d)) as:

∇ · τ = −µfr curl curl u + H∇∇ · u + αM ∇∇ · w ,

−∇p = M ∇∇ · w + M ∇fp + M α∇∇ · u .
(5.7)

By injecting this form of ∇ · τ in equation (5.6a), we obtain the first equation of the second-order formulation (5.5a).
Then, we inject the form of ∇p in (5.6b), and we recall that ρdyn = i η

(−sω) k , hence s iω ρdyn = η

k
. We then obtain

the second equation of the second formulation (5.5b).
For equation (5.5c), we first inject in (5.6e) the magnetic field H given in (5.6f), which gives:

curl curlE − ω2 δ0 µ0E + s iω µ0 J = s iω µ0 fC .

Then, we inject the expression of J given in (5.6g) in the above equation, and we obtain:

curl curlE − ω2 δ0 µ0E + s iω µ0 σE + s iω µ0 L(−∇p + ω2ρfu) = s iω µ0 fC .

We replace the gradient of the pressure ∇ p by its expression given in (5.7). After some simplifications, we have:

curl curlE − ω2 δ0 µ0E + s iω µ0 σE − s iω µ0 Lω2 ρdyn w− s iω µ0
η

k
L2E = s iω µ0 fC .

Finally, we introduce
ε̃ = δ0 −

s i
ω
σ + s i

ω

η

k
L2 ,

and we obtain the last equation of the second-order formulation (5.5c).

Remark 5.2. In two dimensions, as mentioned above, the electric field E is in the plane (x, y) and the magnetic field
H is a scalar orthogonal to the plane (x, y). We have introduced the vector and scalar rotationals, curl and curl in
(1.19):

curl f =
(
∂yf
−∂xf

)
, curl V = ∂xVy − ∂yVx , ∆ V = − curl curlV + ∇∇ · V .

The second order formulation of Pride’s equations (5.3) is

−ω2ρau − ρfω
2w − H∇∇ · u + µfr curl curl u − αM ∇∇ · w = F1 ,

−ω2ρfu − ω2 ρdyn w − η

k
LE −M ∇∇ · w − Mα∇∇ · u = F2 ,

curl curlE − ω2 δ0 µ0E + s iω µ0 σE − s iω µ0 Lω2 ρdyn w− s iω µ0
η

k
L2E = F3 .
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5.3 Non-dimensionalization of the equations
In the equations (5.3) the parameters and quantities have different orders of magnitude. In numerical simulations,
this difference can cause numerical errors during the calculations. To prevent this, we write Pride’s equations (5.3) in
terms of dimensionless equations. We write X = X0X for all the terms of the equations with X0 a characteristic unit
of measure. We assume that all bulk modulus and components of C are written as k• = C0k•. Hence, M = C0M and
α0 = 1. The porosity φ = Vf

VT
is considered as a ratio with no characteristic unit. We assume that ρa, ρdyn, ρf and ρs

have the same characteristic unit ρ0. The characteristic frequency has the same characteristic unit as ω. The electric
factor is expressed as:

δ0 = ε0

(
φ

α
(kf − ks) + ks

)
,

with φ, α, kf and ks with no dimension, which means that δ0 and ε0 have the same characteristic unit. We have then:

iω0 ω ρ0 ρa u0 u + iω0 ω ρ0 ρf w0 w = τ0
x0
∇ · τ ,

iω0ω ρ0ρfu0 u + iω0ω ρ0 ρdyn w0 w = −p0

x0
∇p + iω0ω ρ0 ρdyn L0 LE0E ,

iω0 ω τ0 τ + iω0 ωα0αp0 p = C0u0

x0
C · ε(u) ,

iω0 ω p0 p = − C0w0

x0
M∇ ·w− C0α0u0

x0
M α : ε(u) ,

curlE E0

x0
+ iω0ω µ0µ0H0H = 0 ,

curlH H0

x0
− iω0ω δ0δ0E0E − σ0σE0E − L0 L

p0

x0
∇p − L0 L iω0 ω ρ0 ρf u0 u = 0 .

(5.8)

In addition, we also write the expression of L0 and ρdyn in dimensionless terms:
ρ0 ρdyn = η0

k00ω0

η

k
,

L0 L = ε0 ε0 kf ξ0 ξ

η0 η F
.

(5.9)

To keep the equivalence between system (5.8) and Pride’s equations (5.3), the characteristic units have to be
coherent. We rewrite system (5.8) by isolating the characteristic units and the dimensionless quantities. For example,
this gives for the first equation:

(ω0 ρ0 u0) iω ρa u + (ω0 ρ0 w0) iω ρf w =
(
τ0
x0

)
∇ · τ .

Then, to consider a dimensionless system, the quantities in the parentheses have to be equal:

ω0 ρ0 u0 = ω0 ρ0 w0 = τ0
x0

.

This is done on all the equations of systems (5.8) and (5.9), and after some simplifications, we obtain the following
relations:

u0 = w0 = L0E0 , τ0 = p0 = ω0 ρ0 u0 x0, α0 = 1 , C0u0 = ω0 τ0 x0 ,

σ0 = ω0ε0 ,
E0

x0
= ω0µ0H0 ,

H0

x0
= ω0ε0E0 = L0

p0

x0
,

and ρ0 ω0 k00 = η0 , L0 = ε0 ξ0
η0

.

To be consistent with the results in poroelasticity, we choose:

u0 = w0 = 1 m.s−1 , τ0 = p0 = 106Pa , ω0 = 103 rad.s−1 , x0 = 1 m ,

C0 = 109 Pa , ρ0 = 103kg ·m−3 , k00 = 10−9m2 , η0 = 10−3 Pa.s .
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Similarly, we choose for the electromagnetic quantities:

E0 = 103 V.m−1 = 103N.C−1 = 103 kg.m.s−3.A−1 , H0 = 103 m−1.A ,

µ0 = 10−3 T.m.A−1 = 10−3 kg.m.s−2.A−2 , ε0 = 10−3 C2.N−1.m−2 = 10−3 kg−1.m−3.s4.A2 ,

σ0 = 1S.m−1 = 1 kg−1.m−3.s3.A2 .

Regarding the coupling quantities, this leads to:

L0 = 10−3 A

(Pa.m) , ξ0 = 10−3 V .

5.4 Boundary and interface conditions
In this section, we present the conditions on the boundaries for a bounded domain, and an interaction problem in a
conducting poroelastic material.

Bounded domains: On the external boundary Γ with outwardly direct unit normal vector n, we consider eight
types of boundary conditions with the boundary forces f inc, ginc, hinc .

Type 1

 τ n = f inc ,
w · n = ginc ,
n×E = hinc ,

(5.10a) Type 2

 u = f inc ,
w · n = ginc ,
n×E = hinc ,

Type 3

 τ n = f inc ,
p = ginc ,

n×E = hinc ,
Type 4

 u = f inc ,
p = ginc ,

n×E = hinc ,

Type 5

 τ n = f inc ,
w · n = ginc ,
n×H = hinc ,

Type 6

 u = f inc ,
w · n = ginc ,
n×H = hinc ,

Type 7

 τ n = f inc ,
p = ginc ,

n×H = hinc ,
Type 8

 u = f inc ,
p = ginc ,

n×H = hinc ,
(5.10b)

We note that the free-surface conditions are given by boundary conditions of type 3 and 7 with f inc and ginc equal
to zero. Similarly, the wall conditions correspond to the conditions of type 2 and 6 with f inc and ginc equal to zero.
In addition, the conditions for a perfect conductor are given by types 1 to 4, with hinc = 0. In two dimensions, the
condition n×H = hinc is H = hinc.

Interaction problems: We will consider the reflection of a conducting poroelastic obstacle immersed in an infinite
conducting poroelastic solid. We denote the outer infinite medium by Ω(I) and the obstacle by Ω(II). On the boundary
of the obstacle Γ, we impose the following transmission conditions:

u(I) − u(II) = 0 ,
p(I) − p(II) = 0 ,
(w(I) −w(II)) · n = 0 ,
(τ (I) − τ (II)) · n = 0 ,
n× (E(I) −E(II)) = 0 ,
n×

(
H(I) −H(II)

)
= 0 .

Domain truncation: In the above, we have presented boundary conditions for bounded domains. In Chapter 8, we
will present the development of boundary conditions used for truncating the computational domain.
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5.5 Plane wave analysis
In this section, we determine the forms of plane waves in conducting poroelastic media solution of (5.3) with no source
[107]. In addition, we obtain the values of the plane waves velocities. In conducting poroelastic materials, four kinds
of plane waves can propagate:
• ”P-wave”: the poroelastic fast compression wave,

• ”B-wave”: the poroelastic slow compression wave (Biot’s wave),

• ”S-wave”: the poroelastic shear wave,

• ”EM-wave”: the electromagnetic wave.
Considering an isotropic homogeneous conducting poroelastic material, we determine the form of the plane waves and
the complex slownesses s, by setting F1, F2, F3 to zero in (5.5):

−ω2ρau − ρfω
2w − H∇∇ · u + µfr curl curl u − αM ∇∇ · w = 0 ,

−ω2ρfu − ω2 ρdyn w − η

k
LE −M ∇∇ · w − Mα∇∇ · u = 0 ,

curl curlE − ω2 ε̃µ0E − s iω µ0 Lω2 ρdyn w = 0 .

(5.11)

A vectorial time-harmonic plane wave has the form

ei sωt ei k·X d ,

where we have defined the polarization d̂ with |d̂| = 1, the wave vector k = ω s(ω) k̂, and the direction of propagation
k̂ with |k̂| = 1.
Lemma 5.3. We will use the following properties:

∇∇ · eik·X d = − (d · k) k ei k·X ,

curl curl eik·Xd = eik·X
(
k× d

)
× k = eik·X

(
|k|2d − (k · d) k

)
.

(5.12)

5.5.1 Admissible plane waves and slowness calculation

Proposition 5.4 (Plane wave solutions to (5.11)).
The two longitudinal slownesses sustained in a conducting poroelastic medium are:

2 s2
• = − b ±

√
b2 − 4 c , for • = P B , (5.13)

with

b =
− ρdynH − ρaM + 2 ρf αM + H

ε̃
L2 ρ2

dyn

HM − α2M2 ,

and

c =
ρa ρdyn − ρ2

f −
ρa
ε̃

L2 ρ2
dyn

HM − α2M2 .

In (5.13), the − corresponds to the P wave while the + corresponds to the B wave.
The two transverse slownesses sustained in a conducting poroelastic medium are, for • = S ,EM:

2 s2
• =

(( ρa
µfr
−

ρ2
f

µfr ρdyn

)
+ ε̃µ0 + ρdyn L2 µ0

)
±

√√√√(( ρa
µfr
−

ρ2
f

µfr ρdyn

)
− ε̃µ0 − ρdyn L2 µ0

)2

− 4
ρ2
f

µfr
L2 µ0 .

(5.14)
The case with the + in front of the square root corresponds to the poroelastic transverse slowness sS, while the
case with the − corresponds to the electromagnetic slowness sEM.

For • ∈ {P , B ,S ,EM }, if (u•,w•,E•) is of the form

u• = ei k• ·X d̂ , w• = W• ei k•·X d̂ , E• = E• ei k•·X d̂ ,
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solving (5.11), then the slowness s•, the polarization d̂ and the direction of propagation k̂ have the following
forms:

1. The two types of longitudinal waves (those with polarization direction parallel to the propagation direction)
are given by the pair (u•,w•) with • ∈ {P ,B},

k• = ω s•(ω) d̂ , |d̂| = 1,

s•(ω) given by (5.13) ,

W• = − H s2
• − ρa

s2
• αM − ρf

,

E• = s iωL ρdyn

ε̃

H s2
• − ρa

s2
• αM − ρf

.

. (5.15)

2. The two types of transverse plane waves (those with polarization direction orthogonal to the propagation
direction) are given by the pair (u•,w•) with • ∈ {S ,EM}

kS = ω sS(ω) k̂ ;

sS(ω) given by (5.14) ,

k̂ ⊥ d̂ , |k̂| = |d̂| = 1 ,

W• = − ρa + s2
• µfr

ρf
,

E• = −s iω µ0 ρdyn L
ε̃µ0 − s2

•

− ρa + s2
• µfr

ρf
.

(5.16)

Proof. We write the plane wave solutions upw, wpw, Epw of equation (5.5) as:

upw = u0 e
i k ·x d̂ , wpw = w0 e

i k·x d̂ , Epw = E0 e
i k·x d̂ , (5.17)

and we inject those expressions in (5.11). Using equation (5.12) and dividing by eik·x, we obtain:(
− ω2 ρa u0 − ω2 ρf w0

)
d̂ +

(
H u0 + αM w0

)
(d̂ · k) k + µfr u0

(
d̂× k

)
R−π2

= 0 ,(
− ω2 ρfu0 +−ω2 ρdynw0 −

η

k
LE0

)
d̂ + M

(
w0 + αu0

)
(d̂ · k) k = 0 ,(

− ω2 ε̃µ0E0 − s iω µ0 Lω2 ρdyn w0

)
d̂ + E0

(
d̂× k

)
R−π2

= 0 .

(5.18)

• Transverse waves
In the case of a transverse wave, k · d̂ = 0 . Using this, equation (5.18) gives:(

− ω2 ρa u0 − ω2 ρf w0

)
d̂ + µfr u0 k2 d̂ = 0 ,(

− ω2 ρfu0 +−ω2 ρdynw0 −
η

k
L E•

)
d̂ = 0 ,(

− ω2 ε̃µ0 E• − s iω µ0 Lω2 ρdyn w0

)
d̂ + E• k2 d̂ = 0 .

Then, we divide by ω2 and replace s = k
ω

to obtain:

ρa u0 + ρf w0 − s2 µfr u0 = 0 ,

ρfu0 + ρdynw0 + η

ω2 k
LE0 = 0 ,

ε̃µ0E0 + s iω µ0 L ρdyn w0 − s2E0 = 0 .

(5.19)
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The above system in matrix form reads as
ρa − s2 µfr ρf 0

ρf ρdyn
η

ω2 k
L

0 s iω µ0 L ρdyn ε̃µ0 − s2


u0
w0
E0

 = 0 . (5.20)

This means, assuming that u0, w0, E0 do not vanish, that the above matrix is not invertible and has zero
determinant. After some calculations detailed in Appendix D.1.1, we obtain two complex roots. We define the
two complex slownesses sS and sEM as:

2 s2
• =

(( ρa
µfr
−

ρ2
f

µfr ρdyn

)
+ ε̃µ0 + ρdyn L2 µ0

)
±

√√√√(( ρa
µfr
−

ρ2
f

µfr ρdyn

)
− ε̃µ0 − ρdyn L2 µ0

)2

− 4
ρ2
f

µfr
L2 µ0 .

The case with the + in front of the square root corresponds to the poroelastic transverse slowness sS, while the
case with the − corresponds to the electromagnetic slowness sEM. If L is equal to zero, we retrieve the slownesses
of transverse poroelasticity and the electromagnetic slowness. The components of corresponding eigenvectors are
obtained from (5.19) for • = S, EM :

U• = 1 , W• = − ρa + s2
• µfr

ρf
, E• = −s iω µ0 ρdyn L

ε̃µ0 − s2
•

w0 = −s iω µ0 ρdyn L
ε̃µ0 − s2

•

− ρa + s2
• µfr

ρf
.

We write system (5.19) as follows:

A

u0
w0
E0

 − s2D

u0
w0
E0

 = 0 ,

where

A =


ρa ρf 0

ρf ρdyn
η

ω2 k
L

0 s iω µ0 L ρdyn ε̃µ0

 and D =


µfr 0 0

0 0 0

0 0 1

 . (5.21)

Supposing A invertible, the system is equivalent to:

c2

u0
w0
E0

 −A−1 D

u0
w0
E0

 = 0 , with c = 1
s .

This means that c2
• are eigenvalues of A−1D, and A−1D is diagonalizable. We can write

A−1D = Ptrans

 c2
S 0 0

0 0 0
0 0 c2

EM

 P−1
trans , with Ptrans =

US 0 UEM
WS 1 WEM
ES 0 EEM

 . (5.22)

• Longitudinal waves
For a longitudinal wave, k is parallel to d̂, k × d̂ = 0 and we can write

d̂ = ak , d̂ · k = a|k|2 , a ∈ R ,

so that equation (5.18) becomes(
H u0 + αM w0

)
a |k|2k +

(
− ω2 ρa u0 − ω2 ρf w0

)
ak = 0 ,

(−ω2 ρf u0 + −ω2 ρdyn w0 −
η

k
LE0) ak +M

(
w0 + αu0

)
a |k|2k = 0 ,(

− ω2 ε̃µ0E0 − s iω µ0 Lω2 ρdyn w0

)
ak = 0 .
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Dividing by ak and ω2 gives

s2
(
H u0 + αM w0

)
−
(
ρa u0 + ρf w0

)
= 0 ,

−
(
ρf u0 + ρdyn w0 + η

ω2 k
LE0

)
+ s2M

(
w0 + αu0

)
= 0 ,

−
(
ε̃µ0E0 + s iω µ0 L ρdyn w0

)
= 0 .

(5.23)

In matrix form, we obtain:
s2H − ρa s2 αM − ρf 0

− ρf + s2 αM − ρdyn + s2M
η

ω2 k
L

0 s iω µ0 L ρdyn ε̃µ0


u0
w0
E0

 = 0 . (5.24)

Considering that u0, w0, E0 are non trivial means that the determinant of the matrix is equal to zero. Using the
expression of the determinant (see App. D.1.2), we can find two complex slownesses s2

P and s2
B that are defined

as:
2 s2
• = − b ±

√
b2 − 4 c , • = P B ,

with

b =
− ρdynH − ρaM + 2 ρf αM + H

ε̃
L2 ρ2

dyn

HM − α2M2 ,

and

c =
ρa ρdyn − ρ2

f −
ρa
ε̃

L2 ρ2
dyn

HM − α2M2 .

The − corresponds to the P wave while the + corresponds to the B wave. The components of corresponding
eigenvectors are read from (5.23) for • = P, B :

U• = 1 , W• = − H s2
• − ρa

s2
• αM − ρf

, E• = − s iωL ρdyn

ε̃
W• = s iωL ρdyn

ε̃

H s2
• − ρa

s2
• αM − ρf

.

The system (5.24) is written as

A

u0
w0
E0

 − s2B

u0
w0
E0

 = 0 ,

where A is defined in equation (5.21) and

B =


H αM 0

αM M 0

0 0 0

 .

Supposing A invertible, the above system is then equivalent to:

c2

u0
w0
E0

 −A−1B

u0
w0
E0

 = 0 ,

which means that c2
• are eigenvalues of A−1B, and A−1B is diagonalizable. We can then write:

A−1B = Plong

 c2
P 0 0

0 c2
B 0

0 0 0

 P−1
long , with Plong =

UP UB 0
WP WB 0
EP EB 1

 . (5.25)
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5.5.2 First order formulation of the plane waves
We detail the plane wave expression of (u, w, τ , p, E, H, J), that we denote (upw, wpw, τ pw, ppw, Epw, Hpw, Jpw),
for transverse and longitudinal waves.

• For the longitudinal waves P and B, (• = P , B ), the plane wave is:

upw
• = ei k• ·x (s iω) d̂ , wpw

• = W• ei k•·x (s iω) d̂ ,

τ pw
• = iω s•(ω) eik•·x

(
2µfr d̂⊗ d̂ +

(
−2

3µfr + kfr + M α2 + W• αM
)

I
)
,

ppw
• = iω s•(ω) (−MW• − M α) eik•·x , Epw

• = E• ei k•·x d̂ ,

Hpw
• = 0 , Jpw

• =
(
σ E• + Lω2 ρf − Lω2 s2

•(ω)M (W• + α)
)
ei k·x d̂ ,

(5.26)

with polarization given by 
k• = ω s•(ω) d̂ , |d̂| = 1,

s•(ω) given by (5.13) ,

W• and E• given by (5.15) .

• The plane wave writes for the two types of transverse waves S and EM (• = S , EM ):

upw
• = ei k• ·x (s iω) d̂ , wpw

• = W• ei k•·x (s iω) d̂ ,

τ pw
• = iω s•(ω) ei k•·x µfr

(
k̂⊗ d̂ + d̂⊗ k̂

)
, ppw

• = 0 ,

Epw
• = E• ei k•·x d̂ , Hpw

• = − s

µ0
s• E• ei k·x (k̂ × d̂) ,

Jpw
• =

(
σ E• + Lω2 ρf

)
ei k·x d̂ ,

(5.27)

with polarization given by 
k• = ω s•(ω) k̂ , k̂ ⊥ d̂ , |k̂| = |d̂| = 1 ,

s•(ω) given by (5.14) ,

W• and E• given by (5.16) .

Proof. upw, wpw are the time derivatives of the displacements given in equation (5.17). The expressions of τ pw and
ppw are the same as for poroelasticity and their calculations are detailed in Section 1.5.2, page 37. The expression of
Hpw is obtained using equation (5.3e):

curlE + s iω µ0H = 0 .

We have:
Hpw
• = s i

ω µ0
curlE• = s i

ω µ0
curl

(
E• ei k·x d̂

)
,

with

curl
(
E• ei k·x d̂

)
= E• i ei k·x

 ky dz − kz dy
kz dx − kx dz
kx dy − ky dx

 = E• i ei k·x (k × d̂) .

For longitudinal waves, (k̂ × d̂) = 0, hence: Hpw
• = 0 . For transverse waves, k = ω s• k̂ , which gives:

Hpw
• = s i

ω µ0
ω s• E• i ei k·x (k̂ × d̂) = − s

µ0
s• E• ei k·x (k̂ × d̂) .
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In two dimensions, (k̂ × d̂) = 1, and the magnetic field is hence

Hpw
• = s i

ω µ0
ω s• E• i ei k·x .

For Jpw, from equation (5.3g), we have:

Jpw
• = σEpw

• + L (−∇ppw
• + ω2 ρf upw

• ) .

For transverse waves, ppw
• = 0 , which leads to :

Jpw
• = σ E• ei k·x d̂ + Lω2 ρf e

i k ·x d̂ =
(
σ E• + Lω2 ρf

)
ei k·x d̂ .

For longitudinal waves, we calculate the gradient of p:

ppw
• = iω s•(ω) (−MW• − M α) eik•·x ,

⇒ ∇ ppw
• = iω s•(ω) (−MW• − M α) ∇ eik•·x

= iω s•(ω) (−MW• − M α) i k• eik•·x

= ω2 s2
•(ω)M (W• + α) eik•·x d̂ .

Hence, we obtain

Jpw
• =

(
σ E• + Lω2 ρf − Lω2 s2

•(ω)M (W• + α)
)
ei k·x d̂ .

5.5.3 Expansion of incident plane waves in Bessel functions in two dimensions
The incident plane waves given in equations (5.27) and (5.26) are expanded in polar coordinates, and expressed
with Bessel functions. We choose to work in polar coordinates because we will consider circular geometries in the
development of the analytical solutions, see Chapter 6. The Jacobi-Anger expansion, (see for e.g [91, eqn (2.17)]) is

ei t cosϕ =
∞∑

k=−∞
ikJk(t) eikϕ , with Jk Bessel function.

When the direction of propagation k̂ =
(

cosαinc
sinαinc

)
, we have: ei k·x = eiω s k̂·x = eiω s (cosαinc,sinαinc) ·x, with s the

slowness of the wave. The multipole expansion relative to the origin 0R2 is given by

eiω sx ·(cosαinc,sinαinc) = eiω s r cos(θ−αinc) =
∞∑

k=−∞
ik Jk(ω s r) ei k(θ−αinc) .

Thus,

eiω s• k̂·x =
∞∑

k=−∞
ik Jk(ω s• |x|) ei k(θ−αinc) .

The above expression will be used to express (upw, wpw, τ pw, ppw, Epw, Hpw, Jpw) with series of Bessel functions.

5.5.3.1 Transverse waves

The expansion of the plane wave in equation (5.27) for • = S , EM is given in polar coordinates by:

upw
• = − s

s• r

∞∑
k=−∞

ik+1 k Jk(ω s• r) ei k(θ−αinc) er + s

s•

∞∑
k=−∞

ik ω s• J′k(ω s• r) ei k(θ−αinc) eθ ,
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wpw
• = − sW•

s• r

∞∑
k=−∞

ik+1 k Jk(ω s• r) ei k(θ−αinc) er + sW•
s•

∞∑
k=−∞

ik ω s• J′k(ω s• r) ei k(θ−αinc) eθ .

In circular geometry, we will use in particular τ n = τ rrer + τ rθeθ. Therefore, we detail only the components τ rr
and τ rθ.

τ pw
•,rr = − 2 µfr

iωs•
∂rθ(ei k•·x)

r
=

∞∑
k=−∞

−2 µfr

r
ik k J′k(ω s• r) ei k(θ−αinc) ,

τ pw
•,rθ = − µfr

iωs•

(
∂θθ(e i k•·x)

r2 + ∂r(e i k•·x)
r

− ∂rr(e i k•·x)
)

=
∞∑

k=−∞

µfr ik−1 k2

ωs• r2 Jk(ω s• r) ei k(θ−αinc) −
∞∑

k=−∞

µfr ik−1

r
J′k(ω s• r) ei k(θ−αinc)

+
∞∑

k=−∞
µfr ik−1 Jk+1(ω s• r) ei k(θ−αinc) −

∞∑
k=−∞

µfr k

ω sS
ik−1 Jk(ω s• r) ei k(θ−αinc)

−
∞∑

k=−∞
µfr ω sS ik−1 Jk(ω s• r) ei k(θ−αinc) +

∞∑
k=−∞

µfr k
2

ω2 s2
•

ik−1 Jk(ω s• r) ei k(θ−αinc) ,

ppw
• = 0 ,

Epw
• = − E•

ω s• r

∞∑
k=−∞

ik k Jk(ω s• r) ei k(θ−αinc) er + E•
ω s•

∞∑
k=−∞

ik−1 ω s• J′k(ω s• r) ei k(θ−αinc) eθ ,

Hpw
• = − s

µ0
s• E•

∞∑
k=−∞

ik Jk(ω s• r) ei k(θ−αinc) ,

and

Jpw
• = −

(
σ E• + Lω2 ρf

)
ω s• r

∞∑
k=−∞

ik k Jk(ω s• r) ei k(θ−αinc) er

+
(
σ E• + Lω2 ρf

)
ω s•

∞∑
k=−∞

ik−1 ω s• J′k(ω s• r) ei k(θ−αinc) eθ .

Proof. The calculations for the expansion of the poroelastic unknowns upw, wpw, τ pw, ppw, are given in details in
Section 1.5.2, page 37.. We have for Epw

• :

Epw
• = E• ei k•·x d̂ = E• i

ω s•
curl

(
ei k• ·x

)
.

Using curl in polar coordinates curl f = 1
r
∂θf er − ∂rf eθ, we obtain

Epw
• = − E•

ω s• r

∞∑
k=−∞

ik k Jk(ω s• r) ei k(θ−αinc) er + E•
ω s•

∞∑
k=−∞

ik−1 ω s• J′k(ω s• r) ei k(θ−αinc) eθ .

For Hpw
• , we have:

Hpw
• = − s

µ0
s• E• ei k·x = − s

µ0
s• E•

∞∑
k=−∞

ik Jk(ω s• r) ei k(θ−αinc) .

Finally,

Jpw
• =

(
σ E• + Lω2 ρf

)
ei k•·x d̂ =

(
σ E• + Lω2 ρf

)
i

ω s•
curl

(
ei k• ·x

)
.
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With the expression of curl in polar coordinates, we obtain:

Jpw
• =−

(
σ E• + Lω2 ρf

)
ω s• r

∞∑
k=−∞

ik k Jk(ω s• r) ei k(θ−αinc) er

+
(
σ E• + Lω2 ρf

)
ω s•

∞∑
k=−∞

ik−1 ω s• J′k(ω s• r) ei k(θ−αinc) eθ .

5.5.3.2 Longitudinal waves

The expansions of the unknowns given in equation (5.26) for the longitudinal plane waves (• = P , B ) are:

upw
• = s

s•

∞∑
k=−∞

ik ω s• J′k(ω s• r) ei k(θ−αinc) er + s

s• r

∞∑
k=−∞

ik+1 k Jk(ω s• r) ei k(θ−αinc) eθ ,

wpw
• = s

W•
s•

∞∑
k=−∞

ik ω s• J′k(ω s• r) ei k(θ−αinc) er + s
W•
s• r

∞∑
k=−∞

ik+1 k Jk(ω s• r) ei k(θ−αinc) eθ ,

For the components τ rr and τ rθ:

τ pw
•,rr = 2µfr

iω s•
∂rre

ik•·x +
(
− 2

3µfr + kfr + M α2 + W• αM
)

iω s• eik•·x

= 2µfr

∞∑
k=−∞

ik−1 Jk+1(ω s• r) ei k(θ−αinc) − 2µfr

ω s•

∞∑
k=−∞

ik−1 Jk(ω s• r) ei k(θ−αinc)

− 2µfr

∞∑
k=−∞

ik−1ω s• Jk(ω s• r) ei k(θ−αinc) + 2µfr

ω s•

∞∑
k=−∞

ik−1k2 Jk(ω s• r) ei k(θ−αinc)

+
(
− 2

3µfr + kfr + M α2 + W• αM
)

iω s•
∞∑

k=−∞
ik Jk(ω s• r) ei k(θ−αinc) ,

τ pw
•,rθ = 2µfr

iω s•

(
∂θr
r
eik•·x − ∂θ

r2 e
ik•·x

)
=

∞∑
k=−∞

2µfr ik k
r

J′k(ω s• r) ei k(θ−αinc) −
∞∑

k=−∞

2µfrik k
ω s• r2 Jk(ω s• r) ei k(θ−αinc) .

ppw
• = iω s• (−MW• − M α)

∞∑
k=−∞

ik Jk(ω s• r) ei k(θ−αinc) .

Epw
• = E•

ω s•

∞∑
k=−∞

ik−1 ω s• J′k(ω s• r) ei k(θ−αinc) er + E•
ω s• r

∞∑
k=−∞

ik k Jk(ω s• r) ei k(θ−αinc) eθ ,

Hpw
• = 0 ,

and

Jpw
• =

(
σ E• + Lω2 ρf − Lω2 s2

•(ω)M (W• + α)
) ∞∑
k=−∞

ik−1 J′k(ω s• r) ei k(θ−αinc) er

+
(
σ E• + Lω2 ρf − Lω2 s2

•(ω)M (W• + α)
)

ω s• r

∞∑
k=−∞

ik k Jk(ω s• r) ei k(θ−αinc) eθ .

Proof. For upw, wpw, τ pw, ppw, the expansion is detailed in 1.5.2, page 37. We have for Epw
• :

Epw
• = E• ei k·x d̂ = − E• i

ω s•
∇
(
ei k·x) .



5.5. PLANE WAVE ANALYSIS 221

We use ∇ in polar coordinates ∇f = ∂rf er + 1
r
∂θf eθ ,to obtain

Epw
• = − E• i

ω s•

∞∑
k=−∞

ik ω s• J′k(ω s• r) ei k(θ−αinc) er −
E• i
ω s• r

∞∑
k=−∞

ik+1 k Jk(ω s• r) ei k(θ−αinc) eθ ,

which leads to

Epw
• = E•

ω s•

∞∑
k=−∞

ik−1 ω s• J′k(ω s• r) ei k(θ−αinc) er + E•
ω s• r

∞∑
k=−∞

ik k Jk(ω s• r) ei k(θ−αinc) eθ ,

For J , we have:

Jpw
• =

(
σ E• + Lω2 ρf − Lω2 s2

•(ω)M (W• + α)
)
ei k·x d̂

= −
(
σ E• + Lω2 ρf − Lω2 s2

•(ω)M (W• + α)
) i
ω s•
∇
(
ei k·x) .

Using the expression of ∇, we finally obtain:

Jpw
• =

(
σ E• + Lω2 ρf − Lω2 s2

•(ω)M (W• + α)
) ∞∑
k=−∞

ik−1 J′k(ω s• r) ei k(θ−αinc) er

+
(
σ E• + Lω2 ρf − Lω2 s2

•(ω)M (W• + α)
)

ω s• r

∞∑
k=−∞

ik k Jk(ω s• r) ei k(θ−αinc) eθ .

Conclusion
In this chapter, we have presented the electrokinetic effects and the conversions appearing in Pride’s model. We have
introduced the physical parameters used to describe a conducting poroelastic material, then we have presented the
expression of Pride’s equations in harmonic domain both in first and second-order formulation. We have also proposed
boundary conditions for bounded domains and transmission problems. In such materials, we distinguish four kinds of
plane waves; a fast longitudinal plane wave, called P-wave, a slow longitudinal plane wave, the B-wave, a shear plane
wave, the S-wave and the electromagnetic wave, the EM-wave. We have determined the form of those plane waves and
the values of the associated slownesses. For each kind of plane waves, the solid velocity u, the relative fluid velocity w,
and the electric field are colinear. In addition, for the longitudinal P- and B-waves, the magnetic field H is zero. For
the transverse S- and EM-waves, the fluid pressure p is zero. All the introduced notions will be used in the following
chapters.
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Chapter 6

Analytical solutions for Pride’s equations
in two dimensions: construction and
analysis

In this chapter, we develop analytical solutions of Pride’s equations in two dimensions, presented in Chapter 5.
Analytical solutions are of great interest since they allow us to verify the accuracy of the numerical method developed
for computing numerical solutions. They are developed for different configurations; an homogeneous bounded domain,
the scattering of a plane wave by impenetrable or penetrable obstacles, and the response to a point-source. Following
what was formerly done for poroelasticity in Chapter 2, we express the unknowns in terms of potentials.

Concerning the electrokinetic equations, analytical solutions have been developed for point source using the Green
functions in homogeneous domain [59, 110, 70, 123] or layered spaces [71, 75]. Analytical solutions in layered materials
using the transmission conditions at interfaces have also been developed in many works, e.g. , [62, 63, 64, 132]. In
[95], analytical solutions have been constructed to consider the response of the vadose zone to a shear source. The
decomposition of the waves in potentials has been used in [60], where the authors present the analytical solution for
the complete electrokinetic equations and quasi-static EM approximation. This decomposition is also used in [137]
for a problem of interaction of fluid and porous medium in the case of a borehole to the complete Pride’s equations.
Finally, in [116] the authors develop an analytical solution for the fluid/porous interactions in the case of an incident
P-wave.

In the chapter, we first express Pride’s equations in potentials solving Helmholtz equations, see Section 6.1. The
potentials are expressed as series of Bessel functions. Using this, we build analytical solutions for the following
configurations: a bounded domain in Section 6.2, the scattering of a plane wave by an impenetrable obstacle in Section
6.3, and by a penetrable obstacle in Section 6.4. For those settings, we investigate numerically the existence of what we
denote as corresponding Jones’ modes by studying the invertiblity of the analytical system. Finally, we also consider
the response of a point-source in an infinite domain in Section 6.5.

6.1 Potential theory
In this section, starting with the second-order formulation of Pride’s equations, we find a decomposition of the unknowns
as functions of four scalar unknowns called potentials, that satisfy the Helmholtz equation.

6.1.1 Derivation
Recall that we have expressed in Section 5.5 the coefficients W• and E• for • = P, B, S, EM in equations (5.15) and
(5.16). We have also defined the following matrices, using s = ±1:

A =


ρa ρf 0

ρf ρdyn
η

ω2 k
L

0 s iω µ0 L ρdyn ε̃µ0

 , B =


H αM 0

αM M 0

0 0 0

 , D =


µfr 0 0

0 0 0

0 0 1

 , (6.1)

223
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Ptrans =

US 0 UEM
WS 1 WEM
ES 0 EEM

 , and Plong =

UP UB 0
WP WB 0
EP EB 1

 . (6.2)

Proposition 6.1. We consider an infinite medium with perfect outgoing conditions and regular sources. The fields
(u, w, E) solution of equations

−ω2ρau − ρfω
2w − H∇∇ · u + µfr curl curl u − αM ∇∇ · w = F1 , (6.3a)

−ω2ρfu − ω2 ρdyn w − η

k
LE −M ∇∇ · w − Mα∇∇ · u = F2 , (6.3b)

−ω2 ε̃µ0E − s iω µ0 Lω2 ρdyn w + curl curlE = F3 , (6.3c)

have the form
−ω2 u = 1

s2
P
∇χP + 1

s2
B
∇χB −

1
s2
S

curlχS −
1

s2
EM

curlχEM + F̃1 ,

−ω2 w = WP

s2
P
∇χP + WB

s2
B
∇χB −

WS

s2
S

curlχS −
WEM

s2
EM

curlχEM + F̃2 ,

−ω2E = EP
s2
P
∇χP + EBs2

B
∇χB −

ES
s2
S

s−2
S curlχS −

EEM

s2
EM

curlχEM + F̃3 ,

(6.4)

where we have denoted F̃i = πi

A−1

F1
F2
F3

, πi is the projection onto the i-th component of a vector. The

potentials χ• with • = P, B, S, EM are outgoing and satisfy the Helmholtz equations:

−ω2 s2
P χP − ∆χP = s2

P π1

 P−1
long A

−1

∇ · F1
∇ · F2
∇ · F3

 ,

−ω2 s2
B χB − ∆χB = s2

B π2

 P−1
long A

−1

∇ · F1
∇ · F2
∇ · F3

 ,

−ω2 s2
S χS − ∆χS = s2

S π1

P−1
transA

−1

curl F1
curl F2
curl F3

 ,

−ω2 s2
EM χEM − ∆χEM = s2

EM π3

P−1
transA

−1

curl F1
curl F2
curl F3

 .

(6.5)

Proof. We work with the following unknowns:

ϕ := ∇ · u , ϕ̃ := ∇ · w , ϕ := ∇ ·E ,

ψ := curl u , ψ̃ := curl w , ψ := curlE .
(6.6)

Step1 We first build a system of equations in terms of the unknowns defined in equation (6.6). We take the divergence
∇· of equations (6.3a), and use the fact that ∇ · curl = 0, and ∇ · ∇ = ∆, to obtain

∇ ·
(
− ω2ρau − ρfω

2w−H∇∇ · u + µfr curl curl u− αM∇∇ · w
)

= ∇ · F1 ,

⇒ −ω2ρaϕ − ρfω
2ϕ̃−H∆ϕ− αM∆ϕ̃ = ∇ · F1 .

The divergence of equation (6.3b) leads to

∇ ·
(
− ω2ρfu − ω2 ρdyn(ω) w− η

k
LE −M ∇∇ · w − Mα∇∇ · u

)
= ∇F3 ,

⇒ −ω2ρfϕ − ω2 ρdyn ϕ̃−
η

k
Lϕ−M ∆ϕ̃ − Mα∆ϕ = ∇ · F3 .
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Finally, applying the divergence to equation (6.3c) gives

∇ · (curl curlE − ω2 ε̃µ0E − s iω µ0 Lω2 ρdyn w) = ∇ · F3 ,

⇒ −ω2 ε̃µ0 ϕ − s iω µ0 Lω2 ρdyn ϕ̃ = ∇ · F3 .

The three next equations are obtained by taking curl of equations (6.3). Using curl curl = −∆ and curl∇ = 0, we
have

curl
(
− ω2ρau − ρfω

2w − H∇∇ · u + µfr curl curl u − αM ∇∇ · w
)

= curl f ,

⇒ −ω2 ρa ψ − ρf ω
2 ψ̃ − µfr ∆ψ = curl f ,

while the second equation (6.3b) gives

curl
(
− ω2ρfu − ω2 ρdyn w− η

k
LE −M ∇∇ · w − Mα∇∇ · u

)
= curl f̃ ,

⇒ −ω2 ρf ψ − ω2 ρdyn ψ̃ −
η

k
Lψ = curl f̃ ,

and the third equation (6.3c) becomes

curl
(
curl curlE − ω2 ε̃µ0E − s iω µ0 Lω2 ρdyn w

)
= curl F3 ,

⇒ −∆ψ − ω2 ε̃µ0 ψ − s iω µ0 Lω2 ρdyn ψ̃ = curl F3 .

We rewrite these six equations in matrix form to obtain

−ω2A

ϕϕ̃
ϕ

 − B∆

ϕϕ̃
ϕ

 =

∇ · F1
∇ · F2
∇ · F3

 , (6.7a)

and − ω2A

ψψ̃
ψ

 − D∆

ψψ̃
ψ

 =

curl F1
curl F2
curl F3

 , (6.7b)

with the matrices defined in Section 5.5 and recalled in equation (6.1). We have also used the following notation for

the Laplacian: ∆

ψψ̃
ψ

 :=

∆ψ

∆ ψ̃

∆ψ

.

Step 2a: Transverse waves Supposing that A can be inverted, we multiply equation (6.7b) by A−1, to obtain:

−ω2

ψψ̃
ψ

 − A−1D∆

ψψ̃
ψ

 = A−1

curl F1
curl F2
curl F3

 . (6.8)

We have seen in Section 5.5 that A−1D can be diagonalized, and expressed as (see eq. (5.22)):

A−1D = Ptrans

 c2
S 0 0

0 0 0
0 0 c2

EM

 P−1
trans , Ptrans =

US 0 UEM
WS 1 WEM
ES 0 EEM

 .

Equation (6.8) can hence be written as:

−ω2

ψψ̃
ψ

 − Ptrans

 c2
S 0 0

0 0 0
0 0 c2

EM

 P−1
trans∆

ψψ̃
ψ

 = A−1

curl F1
curl F2
curl F3

 ,

Multiplying by P−1
trans, we have

−ω2 P−1
trans

ψψ̃
ψ

 −
 c2

S 0 0
0 0 0
0 0 c2

EM

 P−1
trans∆

ψψ̃
ψ

 = P−1
transA

−1

curl F1
curl F2
curl F3

 ,
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which leads to

−ω2 P−1
trans

ψψ̃
ψ

 −
 c2

S 0 0
0 0 0
0 0 c2

EM

 ∆

P−1
trans

ψψ̃
ψ

 = P−1
transA

−1

curl F1
curl F2
curl F3

 .

We define the potentials  χS

χ0
χEM

 := P−1
trans

ψψ̃
ψ

 . (6.9)

We have then:

−ω2

 χS

χ0
χEM

 −
 c2

S 0 0
0 0 0
0 0 c2

EM

 ∆

 χS

χ0
χEM

 = P−1
transA

−1

curl F1
curl F2
curl F3

 . (6.10)

If we take first component of the above equation, we have:

−ω2 χS − c2
S ∆χS = π1

P−1
transA

−1

curl F1
curl F2
curl F3

 ,

which means that:

−ω2 s2
S χS − ∆χS = s2

S π1

P−1
transA

−1

curl F1
curl F2
curl F3

 .

The same calculation for the third component of (6.10) gives:

−ω2 s2
EM χEM − ∆χEM = s2

EM π3

P−1
transA

−1

curl F1
curl F2
curl F3

 .

Steb 2b: Longitudinal waves Multiplying equation (6.7a) by A−1, we obtain:

−ω2

ϕϕ̃
ϕ

 − A−1B∆

ϕϕ̃
ϕ

 = A−1

∇ · F1
∇ · F2
∇ · F3

 , (6.11)

Recall that A−1B can be diagonalized (see eq. (5.22)), we write

A−1B = Plong

 c2
P 0 0

0 c2
B 0

0 0 0

 P−1
long , and Ptrans =

UP UB 0
WP WB 0
EP EB 1

 .

Equation (6.11) is hence written as:

−ω2

ϕϕ̃
ϕ

 − Plong

 c2
P 0 0

0 c2
B 0

0 0 0

 P−1
long∆

ϕϕ̃
ϕ

 = A−1

∇ · F1
∇ · F2
∇ · F3

 .

Multiplying the above equation by P−1
long gives

−ω2 P−1
long

ϕϕ̃
ϕ

 −
 c2

P 0 0
0 c2

B 0
0 0 0

 P−1
long∆

ϕϕ̃
ϕ

 = P−1
long A

−1

∇ · F1
∇ · F2
∇ · F3

 .

We define the potentials: χP
χB
χ0l

 := P−1
long

ϕϕ̃
ϕ

 , (6.12)
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and obtain

−ω2

χP
χB
χ0l

 −
 c2

P 0 0
0 c2

B 0
0 0 0

 ∆

χP
χB
χ0l

 = P−1
long A

−1

∇ · F1
∇ · F2
∇ · F3

 . (6.13)

If we take first component of the above equation, we have:

−ω2 χP − c2
P ∆χP = π1 P

−1
long A

−1

∇ · F1
∇ · F2
∇ · F3

 ,

which means that

−ω2 s2
P χP − ∆χP = s2

P π1

 P−1
long A

−1

∇ · F1
∇ · F2
∇ · F3

 .

From the second component of equation (6.13), we obtain:

−ω2 s2
B χP − χP = s2

B π2

 P−1
long A

−1

∇ · F1
∇ · F2
∇ · F3

 .

Step 3: Expression of the unknowns u, w, E in terms of the potentials χ•.
From the second-order formulation of Pride’s equations (6.3), and the definition of ϕ and ψ, we have:

−ω2A

u
w
E

 − B

∇ϕ∇ϕ̃
∇ϕ

+ D

curlψ
curlψ̃
curlψ

 =

F1
F2
F3

 .

We multiply the above equation by A−1,

−ω2

u
w
E

 − A−1B

∇ϕ∇ϕ̃
∇ϕ

+ A−1D

curlψ
curlψ̃
curlψ

 = A−1

F1
F2
F3

 ,

and we use the diagonalized forms of the matrices (eqs. (5.22) and (5.25)) to obtain:

−ω2

u
w
E

 − Plong

 c2
P 0 0

0 c2
B 0

0 0 0

 P−1
long

∇ϕ∇ϕ̃
∇ϕ

+ Ptrans

 c2
S 0 0

0 0 0
0 0 c2

EM

 P−1
trans

curlψ
curlψ̃
curlψ

 = A−1

F1
F2
F3

 .

This can be expressed in terms of the potentials defined in equations (6.9) and (6.12) as follows:

−ω2

u
w
E

 − Plong

 c2
P 0 0

0 c2
B 0

0 0 0

 ∇χP
∇χB
∇χ0l

+ Ptrans

 c2
S 0 0

0 0 0
0 0 c2

EM

 curlχS

curlχ0
curlχEM

 = A−1

F1
F2
F3

 .

We obtain for the displacements and electric field respectively:

−ω2 u = Plong11 c2
P∇χP + Plong12 c2

B∇χB − Ptrans11 c2
S curlχS − Ptrans13 c2

EM curlχEM + F̃1 ,

−ω2 w = Plong21 c2
P∇χP + Plong22 c2

B∇χB − Ptrans21 c2
S curlχS − Ptrans23 c2

EM curlχEM + F̃2 ,

−ω2E = Plong31 c2
P∇χP + Plong32 c2

B∇χB − Ptrans31 c2
S curlχS − Ptrans33 c2

EM curlχEM + F̃3 .

Expressing the values of Ptrans and Plong from equation (6.2) in the above system leads to equation (6.4).

6.1.2 Potential form of the unknowns in first order formulation
The unknowns (u, w, τ , p, E, H, J) are expressed with the potentials as:
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s iω u = 1
s2
P
∇χP + 1

s2
B
∇χB −

1
s2
S

curlχS −
1

s2
EM

curlχEM + F̃1 ,

s iωw = WP

s2
P
∇χP + WB

s2
B
∇χB −

WS

s2
S

curlχS −
WEM

s2
EM

curlχEM + F̃2 ,

p = −M
(
WP + α)χP − M

(
WB + α)χB − M fp , (6.14a)

τ = µfr

ω2

(
− 2

s2
P
∇2χP −

2
s2
B
∇2χB + ∇curlχS + ∇T curlχS

s2
S

+ ∇curlχEM + ∇T curlχEM

s2
EM

)
+
(
− 2

3µfr + kfr + Mα2 + αMWP
)
χP I

+
(
− 2

3µfr + kfr + Mα2 + αMWB
)
χB I− µfr

ω2

(
∇F̃1 +∇T F̃1

)
,

−ω2E = EP
s2
P
∇χP + EBs2

B
∇χB −

ES
s2
S

curlχS −
EEM

s2
EM

curlχEM + F̃3 ,

H = s i
ω µ0

(
ES χS + EEM χEM

)
,

and

J =
(
− σ

ω2 EP s−2
P + LM

(
WP + α)− L ρf s−2

P

)
∇χP +

(
− σ

ω2 EB s−2
B + LM

(
WB + α)− L ρf s−2

B

)
∇χB

+
( σ

ω2 ES s−2
S + L ρf s−2

S

)
curlχS +

( σ

ω2 EEM s−2
S + L ρf s−2

EM

)
curlχEM + F .

(6.14b)

Proof. The velocities u and w are the time-derivatives of u and w defined in terms of potentials in equation (6.4). The
electric field E was also expressed with the potentials in this equation. The calculations for the poroelastic unknowns
(τ , p) are similar to the ones detailed in Chapter 2, Section 2.1. We only detail in the following the calculations for
H and J . The magnetic field is given by equation (5.3e):

H = − 1
s iω µ0

curlE = s i
ω µ0

curlE = s i
ω µ0

ψ .

Using (6.9), we have
ψ = ES χS + EEM χEM .

Hence,

H = s i
ω µ0

(
ES χS + EEM χEM

)
.

The current density is expressed using equation (5.3g)

J = σE + L(−∇p + ω2ρfu) .

Using equations (6.4) and (6.14a), we have:

J = − σ

ω2

(
EP s−2

P ∇χP + EB s−2
B ∇χB − ES s−2

S curlχS − EEM s−2
EM curlχEM + F̃3

)
+ L

(
M
(
WP + α)∇χP + M

(
WB + α)∇χB + M ∇ fp

)
− L ρf

(
s−2
P ∇χP + s−2

B ∇χB − s−2
S curlχS − s−2

EM curlχEM + F̃1
)
,

Reorganizing the terms gives equation (6.14b), where

F = − σ

ω2 F̃3 + LM ∇ fp − L ρf F̃1 .
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6.1.3 Expansion of generic solutions in terms of Bessel functions
We consider system (6.5) with no sources. In this case, the potentials χ• satisfy the homogeneous Helmholtz equation:(

−∆ − ω2 s2
P
)
χP = 0 ,(

−∆ − ω2 s2
B
)
χB = 0 ,(

−∆ − ω2 s2
S
)
χS = 0 ,(

−∆ − ω2 s2
EM
)
χEM = 0 .

(6.15)

We can obtain the form of the general solution of equations (5.3) in terms of Bessel functions for the following types
of domains: inside a disc, in an annulus and outside of a disc. On each considered domain, the potentials χ• can be
given as an expansion in terms of Bessel functions in polar coordinates.

(a) Inside a disc Ba centered at the origin and of radius a, a generic solution is given by:

χ•(r, θ) =
∑
k∈Z

a•,k Jk(ω s• r) ei k θ , • ∈ {P,B,S,EM .} (6.16)

(b) An outgoing solution on R2 \ Ba is given by

χ•(r, θ) =
∑
k∈Z

a•,k H(1)
k (ω s• r) ei k θ , • ∈ {P,B,S,EM .} (6.17)

Regarding the ‘outgoing’-ness of this solution, we refer to Remark 2.2, and Definition 2.3, see Chapter 2.

(c) On an annulus between inner radius a and outer radius b, a generic solution is given by:

χ•(r, θ) =
∑
k∈Z

a•,k H(1)
k (ω s• r) ei k θ +

∑
k∈Z

ã•,k H(2)
k (ω s• r) ei k θ , • ∈ {P,B,S,EM .} (6.18)

The expansion of u, w, τ , p, E, H, J , is obtained by substituting the expression of the potentials χ• (6.16), (6.17) or
(6.18) into (6.14). We also use the expression of curl ∇ and ∇2 in polar coordinates presented in Section A.1.1,. Case
(a) is covered in Section 6.2, and case (b) in Section 6.3.

6.2 Generic solution to homogeneous equation on bounded domain
We consider Pride’s equations (5.3) inside the disc B(0,a) with boundary conditions of type 1 and 8. Equation (6.14)
gives (u, w, τ , p, E, H, J), while the potentials are given by (6.15). Hence, in a bounded domain, the potentials
satisfy equation (6.16) and have the form:

χP(r, θ) =
∑
k∈Z

ak Jk(ω sP r) ei k θ ,

χB(r, θ) =
∑
k∈Z

bk Jk(ω sB r) ei k θ ,

χS(r, θ) =
∑
k∈Z

ck Jk(ω sS r) ei k θ ,

χEM(r, θ) =
∑
k∈Z

dk Jk(ω sEM r) ei k θ .

The series coefficients ak, bk, ck, dk are then determined by the boundary conditions imposed on ∂B(0,a), which are one
of the 8 types given in Section 5.4. Here we only detail the solutions for type 1 and 8, the others types are combinations
of the two presented.
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6.2.1 Boundary conditions of type 1
We consider equation (5.3) on the disc B(0,a) with the following boundary conditions

w · n = f , on ∂B(0,a) ,

τ n = g , on ∂B(0,a) ,

n×E = h , on ∂B(0,a) .

In polar coordinates, we have n = er, which means that w ·n = wr, τ n = τrr er + τrθ eθ, and n×E = Eθ . Hence,
in the following, we do not detail all the components of the vectors w, E and the tensor τ , and we focus on the
expressions of wr, Eθ, τrr and τrθ. For convenience, the boundary conditions are written as:

s iωwr = s iω f , ω2 τrr = ω2 gr , ω2 τrθ = ω2 gθ ω2Eθ = ω2 h , on ∂B(0,a) . (6.19)

Next, we expand the coefficients of each component in Fourier series. This gives for the right hand-side

f =
∑
k∈Z

fk e
i k θ , gr =

∑
k∈Z

gr,k e
i k θ , gθ =

∑
k∈Z

gθ,k e
i k θ hθ =

∑
k∈Z

hθ,k e
i k θ ,

and for the unknowns:

wr =
∑
k∈Z

wr,k ei k θ , τrr =
∑
k∈Z

τrr,k e
i k θ , τrθ =

∑
k∈Z

τrθ,k e
i k θ , Eθ =

∑
k∈Z

Eθ,k e
i k θ .
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Using the expression of the unknowns in terms of potential (6.14) we have:

s iωwr,k = ak
WP

sP
ω J′k(ω sP r)eikθ + bk

WB

sB
ω J′k(ω sB r)eikθ

− ck
WS

s2
S

ik
r

Jk(ω sS r)eikθ − dk
WEM

s2
EM

ik
r

Jk(ω sEM r)eikθ ,

ω2τrr,k =− 2µfr ω

sP r
ak Jk+1(ω sP r) ei k θ + 2µfr k

s2
P r

2 ak Jk(ω sP r) ei k θ + 2µfr ak ω
2 Jk(ω sP r) ei k θ

− 2µfr k
2

s2
P r

2 ak Jk(ω sP r) ei k θ − 2µfr ω

sB r
bk Jk+1(ω sB r) ei k θ + 2µfr k

s2
B r

2 bk Jk(ω sB r) ei k θ

+ 2µfr bk ω
2 Jk(ω sB r) ei k θ − 2µfr k

2

s2
B r

2 bk Jk(ω sB r) ei k θ + 2µfr

s2
S r

ck ω sS ik J
′

k(ω sS r) ei k θ

+ 2µfr

s2
EM r

dk ω sEM ik J
′

k(ω sEM r) ei k θ + ω2
(
−2

3µfr + kfr + Mα2 + αMWP

)
ak Jk(ω sP r) ei k θ

+ ω2
(
−2

3µfr + kfr + Mα2 + αMWB

)
bk Jk(ω sB r) ei k θ ,

ω2 τrθ,k = − 2µfrω i k
r sP

ak J′k(ω sP r) ei k θ + 2 iµfr k

r2 s2
P

ak Jk(ω sP r) ei k θ − 2µfrω i k
r sB

bk J′k(ω sB r)ei k θ

+ 2 iµfr k

r2 s2
B

bk Jk(ω sB r) ei k θ − µfr k
2

r2 s2
S
ck Jk(ω sS r) ei k θ + µfr ω

r sS
ck J′k(ω sS r) ei k θ

− µfr
ω

sS r
ck Jk+1(ω sS r) ei k θ + µfr

k

s2
S r

2 ck Jk(ω sS r) ei k θ

+ ω2 ck Jk(ω sS r) ei k θ − µfr
k2

s2
S r

2 ck Jk(ω sS r) ei k θ

− µfr k
2

r2 s2
EM

dk Jk(ω sEM r) ei k θ + µfr ω

r sEM
dk J′k(ω sEM r) ei k θ

− µfr
ω

sEM r
dk Jk+1(ω sEM r) ei k θ + µfr

k

s2
EM r2 dk Jk(ω sEM r) ei k θ

+ ω2 dk Jk(ω sEM r) ei k θ − µfr
k2

s2
EM r2 dk Jk(ω sEM r) ei k θ ,

−ω2Eθ,k =
∑
k∈Z

ak EP s−2
P

ik
r

Jk(ω sP r)eikθ +
∑
k∈Z

bk EB s−2
B

ik
r

Jk(ω sB r)eikθ

+
∑
k∈Z

ck ES s−1
S ω J′k(ω sS r)eikθ +

∑
k∈Z

dk EEM s−1
EM ω J′k(ω sEM r)eikθ .

Imposing (6.19), we obtain a linear system satisfied by ak, bk, ck, dk in each mode k

Aw,τ ,E
k


ak

bk

ck

dk

 =



s iω fk

ω2 gr,k

ω2 gθ,k

−ω2 hθ,k


,

where the coefficient matrix is defined as:

Aw,τ ,E
k =


A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

 (6.20)
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with

A11 = WP

sP
ω J′k(ω sPa) , A12 = WB

sB
ω J′k(ω sSa) , A13 = −WS

s2
S

ik
r

Jk(ω sSa) , A14 = −WEM

s2
EM

ik
r

Jk(ω sEMa) ,

A21 = − 2µfr ω

sP a
Jk+1(ω sP a) + 2µfr k

s2
P a2 Jk(ω sP a) + 2µfr ω

2 Jk(ω sP a)

− 2µfr k
2

s2
P a2 Jk(ω sP a) + ω2

(
−2

3µfr + kfr + Mα2 + αMWP

)
Jk(ω sPa) ,

A22 = − 2µfr ω

sB a
Jk+1(ω sB a) + 2µfr k

s2
B a2 Jk(ω sB a) + 2µfr ω

2 Jk(ω sB a) ei k θ

− 2µfr k
2

s2
B a2 Jk(ω sB a) ei k θ + ω2

(
−2

3µfr + kfr + Mα2 + αMWB

)
Jk(ω sBa) ,

A23 = 2µfr

sSa
ω ik J

′

k(ω sSa) , A24 = 2µfr

sEMa
ω ik J

′

k(ω sEMa) , A31 = −2ω µfrik
asP

J′k(ω sPa) + 2µfrik
a2s2

P
Jk(ω sPa) ,

A32 = −2ω µfrik
asB

J′k(ω sBa) + 2µfrik
a2s2

B
Jk(ω sBa) ,

A33 = − k2µfr

a2s2
S

Jk(ω sS a) + ω µfr

asS
J′k(ω sS a) − µfr ω

sS a
Jk+1(ω sS a) + µfr k

s2
S a

2 Jk(ω sS a)

+ µfr ω
2 Jk(ω sS a) − µfr k

2

s2
S a

2 Jk(ω sS a) ,

A34 = − k2µfr

a2s2
EM

Jk(ω sEM a) + ω µfr

asEM
J′k(ω sEM a) − µfr ω

sEM a
Jk+1(ω sEM a) + µfr k

s2
EM a2 Jk(ω sEM a)

+ µfr ω
2 Jk(ω sEM a) − µfr k

2

s2
EM a2 Jk(ω sEM a) ,

and

A41 = EP s−2
P

ik
a

Jk(ω sP a) , A42 = EB s−2
B

ik
a

Jk(ω sB a) ,

A43 = ES s−1
S ω J′k(ω sS a) , A44 = EEM s−1

EM ω J′k(ω sEM a) .

The uniqueness of the problem is characterized by the invertibility of the matrix Aw,τ ,E
k . If Aw,τ ,E

k can be inverted,
i.e.the determinant of Aw,τ ,E

k does not vanish, the uniqueness of the problem is guaranteed. Hence, we study the
eigenvalues of Aw,τ ,E

k . In the numerical experiments (Section 6.2.3), we investigate the value of the determinant of
Aw,τ ,E
k for the first modes k on a large range of frequency.

Definition 6.2. The pulsation ω is a type 1 boundary conditions eigenvalue if the system of equations (5.3)
associated with the boundary conditions

w · n = 0 , on ∂B(0,a) ,

τ n = 0 , on ∂B(0,a) ,

n×E = 0 , on ∂B(0,a)

admits a solution (w, τ , E) such that w 6= 0, τ 6= 0, E 6= 0. This also means that detAw,τ ,E
k (ω) = 0, where

Aw,τ ,E
k is the coefficient matrix defined in equation (6.20).
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6.2.2 Boundary conditions of type 8
We consider equations (5.3) on the disc B(0,a), with boundary conditions:

u = f , p = g , H = h , on ∂B(0,a) .

We work in polar coordinates, f = frer + fθ eθ and u = urer + uθ eθ. For clarity, the boundary conditions are
written as:

s iω ur = s iω hr , s iω uθ = s iω hθ , p = g , H = h , on ∂B(0,a) . (6.21)

The coefficients of each component are then expanded in Fourier series. We have for the right hand-side

fr =
∑
k∈Z

fr,k e
i k θ , fθ =

∑
k∈Z

fθ,k e
i k θ , g =

∑
k∈Z

gk e
i k θ , h =

∑
k∈Z

hk e
i k θ ,

and for the unknowns:

ur =
∑
k∈Z

ur,k ei k θ , uθ =
∑
k∈Z

uθ,k ei k θ , p =
∑
k∈Z

pk ei k θ , H =
∑
k∈Z

Hk e
i k θ .

Using the expression of the unknowns given in equations (6.14), we have:

s iω ur,k =
∑
k∈Z

ak s−1
P ω J′k(ω sP r)eikθ +

∑
k∈Z

bk s−1
B ω J′k(ω sB r)eikθ

−
∑
k∈Z

ck s−2
S

ik
r

Jk(ω sS r)eikθ −
∑
k∈Z

dk s−2
EM

ik
r

Jk(ω sEM r)eikθ ,

s iω uθ,k =
∑
k∈Z

ak s−2
P

ik
r

Jk(ω sP r)eikθ +
∑
k∈Z

bk s−2
B

ik
r

Jk(ω sB r)eikθ

+
∑
k∈Z

ck s−1
S ω J′k(ω sS r)eikθ +

∑
k∈Z

dk s−1
EM ω J′k(ω sEM r)eikθ ,

pk = −
∑
k∈Z

akM
(
WP + α) Jk(ω sP r) eikθ −

∑
k∈Z

bkM
(
WB + α) Jk(ω sB r) eikθ ,

Hk =
∑
k∈Z

ck
s i
ω µ0

ES Jk(ω sS r) ei k θ +
∑
k∈Z

dk
s i
ω µ0

EEM Jk(ω sEM r) ei k θ .

Imposing (6.21), we obtain a linear system satisfied by ak, bk, ck, dk in each mode k:

Au,p,H
k


ak

bk

ck

dk

 =


s iω hr,k
s iω hθ,k

gk

fk

 ,

where the coefficient matrix Au,p,H
k is defined as:

Au,p,H
k =



s−1
P ω J′k(ω sP a) s−1

B ω J′k(ω sS a) − s−2
S

ik
a

Jk(ω sS a) − s−2
EM

ik
a

Jk(ω sEM a)

s−2
P

ik
a

Jk(ω sP a) s−2
B

ik
a

Jk(ω sB a) s−1
S ω J′k(ω sS a) s−1

EM ω J′k(ω sEM a)

−M
(
WP + α) Jk(ω sP a) −M

(
WB + α) Jk(ω sB a) 0 0

0 0 s i
ω µ0

ES Jk(ω sS a) s i
ω µ0

EEM Jk(ω sEM a)


.

(6.22)
As before, the uniqueness of the problem is characterized by the value of the determinant of Au,p,H

k . There is
uniqueness of the problem if the matrix Au,p,H

k can be inverted, i.e.the determinant of Aw,τ ,E
k does not vanish. In the

numerical experiments (Section 6.2.3), we investigate the value of the determinant of Au,p,H
k for the first modes k on

a large range of frequency.
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Definition 6.3. We define the pulsation ω as a type 8 boundary conditions eigenvalue if the system of equations
(5.3) associated with the boundary conditions

u = 0 , on ∂B(0,a) ,

p = 0 , on ∂B(0,a) ,

H = 0 , on ∂B(0,a) ,

admits a solution (u, p, H) such that u 6= 0, p 6= 0, H 6= 0. This also means that detAu,p,H
k (ω) = 0, where Au,p,H

k

is the coefficient matrix defined in equation (6.22).

6.2.3 Numerical tests on bounded domain
The objective of this section is to determine if the uniqueness of the problem is guaranteed. For that purpose, we
study the value of the determinant of the coefficient matrices. If the determinant is equal to zero, we cannot invert
the matrix, and this means that the frequency is a eigenvalue. We will investigate the invertibility of the coefficient
matrices Au,p,H

k and Aw,τ ,E
k for the first modes k = 0, ..., 5, by looking at the absolute value of their determinant.

For the test, we consider the disc B(0,a) with a = 1m. From Section (5.4), we have seen that we can use 8 types of
boundary conditions. Here we only present tests for types 1 and 8. The corresponding coefficient matrices are given in
equations (6.22) and (6.20). We will consider a range [0, 104] m.s−1 for ωa. We run the tests for a material composed
of sand. The characteristics of the materials are given in Table 5.2. From Figures 6.1 and 6.2, we do not observe the
presence of generalized eigenvalues in geophysical range 104 m.s−1, for both boundary conditions of type 1 and 8. The
global trend of the curves is growing, with small oscillations. Here, no problem of invertibility of the matrix has been
identified in the considered range of frequency.
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Figure 6.1: Module of determinant of the coefficient matrix (log scale) in a bounded domain for modes 0 to 2 for sand.
The matrices corresponding with boundary conditions 1 and 8: Aw,τ ,E

k (6.20) in blue and Au,p,H
k (6.22) in red

.
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Figure 6.2: Module of determinant of the coefficient matrix (log scale) in a bounded domain for k in 3 : 5 for sand.
The matrices corresponding with boundary conditions 1 and 8: Aw,τ ,E

k (6.20)in blue and Au,p,H
k (6.22) in red

.
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6.3 Scattering of an impenetrable obstacle by a plane wave
We consider the scattering of a plane-wave by an impenetrable circular obstacle, as described in Figure 6.3. The total
wave is a superposition of the incident plane wave and the reflected wave. We define U• = (u, w, τ , p, E, H, J) for
• = pw, ref. Both Upw and Uref satisfy Pride equations (5.3) in R2 \B(0,a). The potentials satisfy Helmholtz equation
(6.15) and the unknowns u, w, τ , p, E, H, J are given by equation (6.14). The unknown is the scattered wave that is
outgoing, this means that it satisfies the outgoing Sommerfeld radiation condition (2.22), and is in addition uniquely
determined by how the obstacle scatters the plane wave. In this configuration, the potentials corresponding to the
reflected wave are given in equation (6.17):

χP(r, θ) =
∑
k∈Z

ak H(1)
k (ω sP r) ei k θ ,

χB(r, θ) =
∑
k∈Z

bk H(1)
k (ω sB r) ei k θ ,

χS(r, θ) =
∑
k∈Z

ck H(1)
k (ω sS r) ei k θ ,

χEM(r, θ) =
∑
k∈Z

dk H(1)
k (ω sEM r) ei k θ .

The series coefficients ak, bk, ck, dk are then determined by the boundary conditions imposed on ∂B(0,a), which are
one of the 8 conditions given in Section 5.4. Here we only detail the solutions for boundary conditions of type 1 and
8. The others are combinations of the two presented.

a

Ω

Γ

Upw U ref

Figure 6.3: Scattering of a plane wave by an impenetrable solid inclusion. The inclusion occupies the domain denoted
by Ω. The cross section of the inclusion is a disc of radius a. How the obstacle scatters the plane wave is mathematically
described by boundary conditions, for example (5.10a) or (5.10b).

6.3.1 Boundary conditions of type 1
With boundary conditions of type 1, the unknowns solve the poroelastic problem:

Uref solves Pride equations (5.3) in R2 \ Ω ;

Uref is outgoing by definition (2.22);

Boundary conditions
wpw · n + wref · n = 0 , on ∂B(0,a) ,

τ pw · n + τ ref · n = 0 , on ∂B(0,a) ,

n×Epw + n×Eref = 0 , on ∂B(0,a) .

In circular geometry, n = er, which means,

w · n = wr , τ n = τrr er + τrθ eθ , n×E = Eθ .
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Hence, in the following, we do not detail all the components of the vectors w, E and the tensor τ , and we focus on
the expressions of wr, Eθ, τrr and τrθ. For convenience, the boundary conditions are written as:

s iωwref
r = − s iωwpw

r , ω2 τ ref
rr = −ω2 τpw

rr , ω2 τrθ = ω2 τpw
rθ , ω2Eref

θ = −ω2Epw
θ , on ∂B(0,a) .

Next we expand the coefficients of each component in Fourier series. We have for the right hand-side,

wpw
r =

∑
k∈Z

wpw
r,k e

i k θ , τpw
rr =

∑
k∈Z

τpw
rr,k e

i k θ , τpw
rθ =

∑
k∈Z

τpw
rθ,k e

i k θ , Epw
θ =

∑
k∈Z

Epw
θ,k e

i k θ ,

and for the unknowns:

wref
r =

∑
k∈Z

wref
r,k e

i k θ , τ ref
rr =

∑
k∈Z

τ ref
rr,k e

i k θ , τ ref
rθ =

∑
k∈Z

τ ref
rθ,k e

i k θ , Eref
θ =

∑
k∈Z

Eref
θ,k e

i k θ .

Using the expansion of the unknowns in terms of potentials (6.14), we have for mode k ∈ Z:

s iωwr,k =ak
WP

sP
ωH(1)′

k (ω sP r) eikθ + bk
WB

sB
ωH(1)′

k (ω sB r) eikθ

− ck
WS

s2
S

ik
r

H(1)
k (ω sS r) eikθ − dk

WEM

s2
EM

ik
r

H(1)
k (ω sEM r) eikθ ,

ω2τrr,k =− 2µfr ω

sP r
ak H(1)

k+1(ω sP r) ei k θ + 2µfr k

s2
P r

2 ak H(1)
k (ω sP r) ei k θ + 2µfr ak ω

2 H(1)
k (ω sP r) ei k θ

−2µfr k
2

s2
P r

2 ak H(1)
k (ω sP r) ei k θ − 2µfr ω

sB r
bk H(1)

k+1(ω sB r) ei k θ + 2µfr k

s2
B r

2 bk H(1)
k (ω sB r) ei k θ

+2µfr bk ω
2 H(1)

k (ω sB r) ei k θ − 2µfr k
2

s2
B r

2 bk H(1)
k (ω sB r) ei k θ + 2µfr

s2
Sr

ck ω sS ikH(1)′
k (ω sS r) ei k θ

+ 2µfr

s2
EM r

dk ω sEM ikH(1)′
k (ω sEM r) ei k θ + ω2

(
−2

3µfr + kfr + Mα2 + αMWP

)
ak H(1)

k (ω sP r) ei k θ

+ω2
(
−2

3µfr + kfr + Mα2 + αMWB

)
bk H(1)

k (ω sB r) ei k θ ,

ω2 τrθ,k =− 2µfrω ik
rsP

akH(1)′
k (ω sPr) ei k θ + 2iµfrk

r2 s2
P
akH(1)

k (ω sP r) ei k θ − 2µfrω i k
r sB

bkH(1)′
k (ω sBr) ei k θ

+2 iµfr k

r2s2
B

bk H(1)
k (ω sBr) ei k θ − µfr k

2

r2 s2
S
ck H(1)

k (ω sS r) ei k θ + µfr ω

r sS
ck H(1)′

k (ω sS r) ei k θ

−µfr
ω

sS r
ck H(1)

k+1(ω sS r) ei k θ + µfr
k

s2
S r

2 ck H(1)
k (ω sS r) ei k θ

+ω2 ck H(1)
k (ω sS r) ei k θ − µfr

k2

s2
S r

2 ck H(1)
k (ω sS r) ei k θ

− µfr k
2

r2 s2
EM

dk H(1)
k (ω sEM r) ei k θ + µfr ω

r sEM
dk H(1)′

k (ω sEM r) ei k θ

− µfr
ω

sEM r
dk H(1)

k+1(ω sEM r) ei k θ + µfr
k

s2
EM r2 dk H(1)

k (ω sEM r) ei k θ

+ ω2 dk H(1)
k (ω sEM r) ei k θ − µfr

k2

s2
EM r2 dk H(1)

k (ω sEM r) ei k θ ,

−ω2Eθ,k = ak EP s−2
P

ik
r

H(1)
k (ω sP r)eikθ + bk EB s−2

B
ik
r

H(1)
k (ω sB r)eikθ

+ ck ES s−1
S ωH(1)′

k (ω sS r)eikθ + dk EEM s−1
EM ωH(1)′

k (ω sEM r)eikθ .
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Imposing the boundary condition, we obtain a linear system satisfied by ak, bk, ck, dk in each mode k.

Aw,τ ,E
k


ak

bk

ck

dk

 =



−s iωwpw
r,k

−ω2 τpw
rr,k

−ω2 τpw
rθ,k

ω2Epw
θ,k


,

where the coefficients matrix is defined as:

Aw,τ
k =


A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

 (6.23)

with

A11 = WP

sP
ωH(1)′

k (ω sPa) , A12 = WB

sB
ωH(1)′

k (ω sSa) , A13 = −WS

s2
S

ik
r

H(1)
k (ω sSa) , A14 = −WEM

s2
EM

ik
r

H(1)
k (ω sEMa) ,

A21 = − 2µfr ω

sP a
H(1)
k+1(ω sP a) ei k θ + 2µfr k

s2
P a2 H(1)

k (ω sP a) + 2µfr ω
2 H(1)

k (ω sP a)

− 2µfr k
2

s2
P a2 H(1)

k (ω sP a) + ω2
(
−2

3µfr + kfr + Mα2 + αMWP

)
H(1)
k (ω sPa) ,

A22 = − 2µfr ω

sB a
H(1)
k+1(ω sB a) + 2µfr k

s2
B a2 H(1)

k (ω sB a) + 2µfr ω
2 H(1)

k (ω sB a)

− 2µfr k
2

s2
B a2 H(1)

k (ω sB a) + ω2
(
−2

3µfr + kfr + Mα2 + αMWB

)
H(1)
k (ω sBa) ,

and

A23 = 2µfr

sSa
ω ikH(1)′

k (ω sSa) , A24 = 2µfr

sEMa
ω ikH(1)′

k (ω sEMa) , A31 = −2ω µfrik
asP

H(1)′
k (ω sPa) + 2µfrik

a2s2
P

H(1)
k (ω sPa) ,

A32 = −2ω µfrik
asB

H(1)′
k (ω sBa) + 2µfrik

a2s2
B

H(1)
k (ω sBa) ,

A33 = − k2µfr

a2s2
S

H(1)
k (ω sS a) + ω µfr

asS
H(1)′
k (ω sS a) − ω

sS a
H(1)
k+1(sS a) + k

s2
S a

2 H(1)
k (ω sS a) ,

+ ω2 H(1)
k (ω sS a) ei k θ − k2

s2
S a

2 H(1)
k (ω sS a) ,

A34 = − k2µfr

a2s2
EM

H(1)
k (ω sEM a) + ω µfr

asEM
H(1)′
k (ω sEM a) − ω

sEM a
H(1)
k+1(sEM a) + k

s2
EM a2 H(1)

k (ω sEM a) ,

+ ω2 H(1)
k (ω sEM a) ei k θ − k2

s2
S a

2 H(1)
k (ω sEM a) .
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6.3.2 Boundary conditions of type 8
With boundary conditions of type 8, the scattered wave solves the following system:

Uref solves Pride equations (5.3) in R2 \ Ω ;

Uref is outgoing by definition (2.22) ;

Boundary conditions
vpw + vref = 0 on ∂B(0,a) ,

ppw + pref = 0 on ∂B(0,a) ,

Hpw + Href = 0 on ∂B(0,a) .

In polar coordinates, we have upw = upw
r er + upw

θ eθ and uref = uref
r er + uref

θ eθ. For convenience, the boundary
conditions are written as:

s iω uref
r = − s iω upw

r , s iω uref
θ = − s iω upw

θ , pref = −ppw , Href = −Hpw , ∂B(0,a) . (6.24)

We expand the coefficient of each component in Fourier series. For the right hand-side we have,

upw
r =

∑
k∈Z

upw
r,k e

i k θ , upw
θ =

∑
k∈Z

upw
θ,k e

i k θ , ppw =
∑
k∈Z

ppw
k ei k θ , Hpw =

∑
k∈Z

Hpw
k ei k θ ,

and for the unknowns:

uref
r =

∑
k∈Z

uref
r,k e

i k θ , uref
θ =

∑
k∈Z

uref
θ,k e

i k θ , pref
k =

∑
k∈Z

pref
k ei k θ , Href

k =
∑
k∈Z

Href
k ei k θ .

Using the expansions of the unknowns given in equation (6.14), we have:

s iω ur,k = ak s−1
P ωH(1)′

k (ω sP r)eikθ + bk s−1
B ωH(1)′

k (ω sB r)eikθ − ck s−2
S

ik
r

H(1)
k (ω sS r)eikθ

− dk s−2
EM

ik
r

H(1)
k (ω sEM r)eikθ ,

s iω uθ,k = ak s−2
P

ik
r

H(1)
k (ω sP r)eikθ + bk s−2

B
ik
r

H(1)
k (ω sB r)eikθ + ck s−1

S ωH(1)′
k (ω sS r)eikθ

+ dk s−1
EM ωH(1)′

k (ω sEM r)eikθ ,

pk = − akM
(
WP + α) H(1)

k (ω sP r) ei k θ − bkM
(
WB + α) H(1)

k (ω sP r) ei k θ ,

Hk = ck
s i
ω µ0

ES H(1)
k (ω sS r) ei k θ + dk

s i
ω µ0

EEM H(1)
k (ω sEM r) ei k θ .

Imposing (6.24), we obtain the following linear system satisfied by ak, bk, ck in each mode k:

Au,p,H
k


ak

bk

ck

dk

 =


−s iω upw

r,k

−s iω upw
θ,k

−ppw
k

−Hpw
k

 ,

where the coefficients matrix is defined as:

Au,p,H
k =



s−1
P ωH(1)′

k (ω sP a) s−1
B ωH(1)′

k (ω sB a) − s−2
S

ik
a

H(1)
k (ω sS a) − s−2

EM
ik
a

H(1)
k (ω sEM a)

s−2
P

ik
a

H(1)
k (ω sP a) s−2

B
ik
a

H(1)
k (ω sB a) s−1

S ωH(1)′
k (ω sS a) s−1

EM ωH(1)′
k (ω sEM a)

−M
(
WP + α)H(1)

k (ω sP a) −M
(
WB + α)H(1)

k (ω sB a) 0 0

0 0 s i
ω µ0

ES H(1)
k (ω sS a) s i

ω µ0
EEM H(1)

k (ω sEM a)


.

(6.25)
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6.3.3 Numerical tests
In Figure 6.4, we present the solution of the scattering of an incident P plane wave by a circular obstacle with radius
a = 1m for two types of conditions, 1 and 8. In the development of the solution, we have considered an infinite domain.
However, for the representation of the solution, we only show the solution on an annulus with exterior radius equal
to 10m. The figure is similar to classical scattering figures. As for bounded domain, we study the invertibility of the
coefficient matrices Aw,τ ,E

k (6.23) and Au,p,H
k (6.25) for k = 0, ...5 by computing the determinant of these matrices, in

order to determine if we can detect values of frequency for which the determinant of the coefficient matrices vanishes.
Here, we expect no generalized eigenvalues because the problem is well-posed for outgoing solutions. This is confirmed
by the curves shown in Figures 6.5 and 6.6, which are free of peaks for each mode. We also observe that the determinant
for boundary conditions of type 1 is higher than the one for type 8.

(a) BC 1 (b) BC 8

Figure 6.4: Scattering of a P plane wave: Imaginary part of the solid velocity ux (103 m.s−1) for a medium composed
of sand for type of boundary condition 1 and 8, with f = 500Hz.
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(c) Mode k = 2

Figure 6.5: Module of determinant of the coefficients matrix (log scale) for modes 0 to 2 for sand. The matrices
corresponding with boundary conditions 1 and 8: Aw,τ ,E

k (6.20) in blue and Au,p,H
k (6.22) in red .
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Figure 6.6: Module of determinant of the coefficients matrix (log scale) for k in 3 : 5 for sand. The matrices
corresponding with oundary conditions 1 and 8: Aw,τ ,E

k (6.20) in blue and Au,p,H
k (6.22) in red .



244 CHAPTER 6. ANALYTICAL SOLUTIONS FOR PRIDE’S EQUATIONS IN TWO DIMENSIONS

6.4 Scattering of a penetrable obstacle by a plane wave
Consider the scattering of a time-harmonic plane wave by a penetrable circular obstacle immersed in an infinite medium
(see figure 6.7). The total wave outside the obstacle is a superposition of the incident plane wave, and the reflected
wave with each quantity satisfying Pride’s equations (5.3) in R2 \ B(0,a), while the transmitted wave is described by
the displacement inside the cylinder. The unknowns are now the reflected wave which is outgoing, and the transmitted
wave. They are uniquely determined by transmission conditions imposed on the interface Γ. For • = pw, ref, trans,
we denote: U• = (u•, w•, τ •, p•, E•, H•, J•). The unknowns Uref and Utrans solve the following problem:

Uref solves Pride equations (5.3) in R2 \ Ω;

Utrans solves Pride equations (5.3) in Ω;

Uref is outgoing;

Transmission conditions on the interface Γ :
upw + uref = utrans ,

ppw + pref = ptrans ,

wpw · n+ wref · n = wtrans · n ,
τ pw · n+ τ ref · n = τ trans · n ,
n×Epw + n×Eref = n×Etrans ,

Hpw + Href = Htrans .

(6.26)

a

Ω

Γ

Upw

U trans

U ref

Figure 6.7: Scattering of a plane wave by a penetrable inclusion. The inclusion occupies the domain denoted by Ω.
The cross section of the inclusion is a disc of radius denoted by a.

6.4.1 Construction of the analytical solution
The medium outside of the inclusion is denoted by medium 1, while the medium inside of the obstacle is denoted by
medium 2. We denote the slowness in the medium 1 by s•,(I) and in medium 2 by s•,(II). The unknown U• is given
in the two media by equation (6.14). In medium 1, the potentials corresponding to the outgoing reflected wave satisfy
equation (6.17):

χP,(I)(r, θ) =
∑
k∈Z

ak H(1)
k (ω sP,(I)r) ei k θ ,

χB,(I)(r, θ) =
∑
k∈Z

bk H(1)
k (ω sB,(I)r) ei k θ ,

χS,(I)(r, θ) =
∑
k∈Z

ck H(1)
k (ω sS,(I)r) ei k θ ,

χEM,(I)(r, θ) =
∑
k∈Z

dk H(1)
k (ω sEM,(I)r) ei k θ .
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In medium 2, the potentials associated with the transmitted wave are given by equation (6.16):

χP(II)(r, θ) =
∑
k∈Z

ek Jk(ω sP,(II)r) ei k θ ,

χB(II)(r, θ) =
∑
k∈Z

fk Jk(ω sB,(II)r) ei k θ ,

χS(II)(r, θ) =
∑
k∈Z

gk Jk(ω sS,(II)r) ei k θ ,

χEM(II)(r, θ) =
∑
k∈Z

hk Jk(ω sEM,(II)r) ei k θ .

We next determine the coefficients ak, bk, ck, dk, ek, fk by imposing the boundary conditions (6.26) at the interface
between the two materials. On Γ, we have in the polar basis:

u• = u•rer + u•θeθ , w• · n = w•r ,
τ • · n = τ•rr er + τ•rθ eθ , n×E• = E•θ ,

which leads to the following eight transmission conditions:

uref
r − utrans

r = −upw
r ,

uref
θ − utrans

θ = −upw
θ ,

pref − ptrans = −ppw ,

wref
r −wtrans

r = −wpw
r ,

τ ref
rr − τ trans

rr = −τ pw
rr ,

τ ref
rθ − τ trans

rθ = −τ pw
rθ ,

Eref
θ −E

trans
θ = −Epw

θ ,

Href
z −Htrans

z = −Hpw
z .

(6.27)

The expansion of the components in Fourier series is:

u•r =
∑
k∈Z

u•r,k ei k θ , u•θ =
∑
k∈Z

u•θ,k ei k θ , p• =
∑
k∈Z

p•k ei k θ , E•θ =
∑
k∈Z

E•k e
i k θ ,

w•r =
∑
k∈Z

w•r,k ei k θ , τ•rr =
∑
k∈Z

τ•rr,k e
i k θ , τ•rθ =

∑
k∈Z

τ•rθ,k e
i k θ , H• =

∑
k∈Z

p•k ei k θ , .

We have for the reflected wave:

s iωuref
r,k = ak

ω

sP,(I)
H(1)′
k (ω sP,(I) r)eikθ + bk

ω

sB,(I)
H(1)′
k (ω sB,(I) r)eikθ

− ck
ik

rs2
S,(I)

H(1)
k (ω sS,(I) r)eikθ − dk

ik
rs2

EM,(I)
H(1)
k (ω sEM,(I) r)eikθ ,

s iωuref
θ,k = ak

ik
r s2

P,(I)
H(1)
k (ω sP,(I)r)eikθ + bk

ik
r s2

B,(I)
H(1)
k (ω sB,(I)r)eikθ

+ ck
ω

sS,(I)
H(1)′
k (ω sS,(I)r)eikθ + dk

ω

sEM,(I)
H(1)′
k (ω sEM,(I)r)eikθ ,

pref
k = − akM

(
wP,(I) + α) H(1)

k (ω sP,(I) r) eikθ − bkM
(
wB,(I) + α) H(1)

k (ω sB,(I) r) eikθ ,

s iωwref
r,k = ak

wP,(I) ω

sP,(I)
H(1)′
k (ω sP,(I)r)eikθ + bk

wB,(I) ω

sB,(I)
H(1)′
k (ω sB,(I)r)eikθ

− ck
wS,(I)

s2
S,(I)

ik
r

H(1)
k (ω sS,(I)r)eikθ − dk

wEM,(I)

s2
EM,(I)

ik
r

H(1)
k (ω sEM,(I)r)eikθ ,



246 CHAPTER 6. ANALYTICAL SOLUTIONS FOR PRIDE’S EQUATIONS IN TWO DIMENSIONS

ω2τ ref
rr,k = − 2µfr ω

sP,(I) r
ak H(1)

k+1(ω sP,(I)r)ei k θ + 2µfr k

s2
P,(I) r

2 ak H(1)
k (ω sP,(I)r)ei k θ + 2µfr ω

2ak H(1)
k (ω sP,(I)r)ei k θ

− 2µfr k
2

s2
P,(I) r

2 ak H(1)
k (ω sP,(I) r) ei k θ − 2µfr ω

sB,(I) r
bk H(1)

k+1(ω sB,(I) r) ei k θ + 2µfr k

s2
B,(I) r

2 bk H(1)
k (ω sB,(I) r) ei k θ

+2µfr ω
2 bkH(1)

k (ω sB,(I) r) ei k θ − 2µfr k
2

s2
B,(I) r

2 bk H(1)
k (ω sB,(I) r) ei k θ + 2µfr ωik

sS,(I)r
ck H(1)′

k (ω sS,(I)r) ei k θ

+2µfr ωik
sEM,(I)r

dk H(1)′
k (ω sEM,(I)r) ei k θ + ω2

(
−2

3µfr + kfr + Mα2 + αMwP,(I)

)
ak H(1)

k (ω sP,(I) r) ei k θ

+ω2
(
−2

3µfr + kfr + Mα2 + αMwB,(I)

)
bk H(1)

k (ω sB,(I) r) ei k θ ,

ω2 τ ref
rθ,k = −2µfrω i k

r sP,(I)
ak H(1)′

k (ω sP,(I) r) ei k θ + 2 iµfr k

r2 s2
P,(I)

ak H(1)
k (ω sP,(I) r) ei k θ

− 2µfrω i k
r sB,(I)

bk H(1)′
k (ω sB,(I) r) ei k θ + 2 iµfr k

r2 s2
B,(I)

bk H(1)
k (ω sB,(I) r) ei k θ − µfr k

2

r2 s2
S,(I)

ck H(1)
k (ω sS,(I) r) ei k θ

+ µfr ω

r sS,(I)
ck H(1)′

k (ω sS,(I) r) ei k θ − µfr
ω

sS,(I)r
ck H(1)

k+1(ω sS,(I) r) ei k θ

+ µfr
k

s2
S,(I)r

2 ck H(1)
k (ω sS,(I) r) ei k θ + ω2 ck H(1)

k (ω sS,(I) r) ei k θ − µfr
k2

s2
S,(I)r

2 ck H(1)
k (ω sS,(I) r) ei k θ

− µfr k
2

r2 s2
EM,(I)

dk H(1)
k (ω sEM,(I) r) ei k θ + µfr ω

r sEM,(I)
dk H(1)′

k (ω sEM,(I) r) ei k θ

− µfr
ω

sEM,(I)r
dk H(1)

k+1(ω sEM,(I) r) ei k θ + µfr
k

s2
EM,(I)r

2 dk H(1)
k (ω sEM,(I) r) ei k θ

+ ω2 dk H(1)
k (ω sEM,(I) r) ei k θ − µfr

k2

s2
EM,(I)r

2 dk H(1)
k (ω sEM,(I) r) ei k θ ,

and
−ω2Eθ,k = ak

ik
r s2

P,(I)
EP,(I)H

(1)
k (ω sP,(I)r)eikθ + bk

ik
r s2

B,(I)
EB,(I)H

(1)
k (ω sB,(I)r)eikθ

+ ck
ω

sS,(I)
ES,(I)H

(1)′
k (ω sS,(I)r)eikθ + dk

ω

sEM,(I)
EEM,(I)H

(1)′
k (ω sEM,(I)r)eikθ ,

Hz,k = ck
s i
ω µ0

ES,(I) H(1)
k (ω sS,(I) r) ei k θ + dk

s i
ω µ0

EEM,(I) H(1)
k (ω sEM,(I) r) ei k θ .

The expression of the transmitted wave is given below:

s iω utrans
r,k = ek

ω

sP,(II)
J′k(ω sP,(II)r)eikθ + fk

ω

sB,(II)
J′k(ω sB,(II) r)eikθ − gk

ik
rs2

S,(II)
Jk(ω sS,(II)r)eikθ

− hk
ik

rs2
EM,(II)

Jk(ω sEM,(II) r)eikθ ,

s iω utrans
θ,k = ek

ik
r s2

P,(II)
Jk(ω sP,(II)r)eikθ + fk

ik
r s2

B,(II)
Jk(ω sB,(II)r)eikθ + gk

ω

sS,(II)
J′k(ω sS,(II)r)eikθ

+ hk
ω

sEM,(II)
J′k(ω sEM,(II)r)eikθ ,

pref
k = − akM

(
wP + α) Jk(ω sP,(II) r) eikθ − bkM

(
wB + α) Jk(ω sB,(II) r) eikθ ,

s iωwtrans
r,k = ek

wP,(II) ω

sP,(II)
J′k(ω sP,(II)r)eikθ + fk

wP,(II) ω

sB,(II)
J′k(ω sB,(II)r)eikθ − gk

wS,(II)

s2
S,(II)

ik
r

Jk(ω sS,(II)r)eikθ

− hk
wEM,(II)

s2
EM,(II)

ik
r

Jk(ω sEM,(II)r)eikθ ,
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ω2τ trans
rr,k = − 2µfr ω

sP,(II)r
ekJk+1(ω sP,(II)r) ei k θ + 2µfr k

s2
P,(II)r

2 ekJk(ω sP,(II)r) ei k θ + 2µfr ω
2 ekJk(ω sP,(II)r) ei k θ

− 2µfr k
2

s2
P,(I)r

2 ek Jk(ω sP,(II)r) ei k θ − 2µfr ω

sB,(II)r
fk Jk+1(ω sB,(II)r) ei k θ + 2µfr k

s2
B,(II)r

2 fk Jk(ω sB,(II)r) ei k θ

+ 2µfr fk ω
2 Jk(ω sB,(II)r) ei k θ − 2µfr k

2

s2
B,(II)r

2 fk Jk(ω sB,(II) r) ei k θ + 2µfrω ik
sS,(II)r

gk J′k(ω sS,(II) r) ei k θ

+ 2µfrω ik
sEM,(II)r

hk J′k(ω sEM,(II) r) ei k θ + ω2
(
−2

3µfr + kfr + Mα2 + αMwP

)
ek Jk(ω sP,(II) r) ei k θ

+ ω2
(
−2

3µfr + kfr + Mα2 + αMwB

)
fk Jk(ω sB,(II) r) ei k θ ,

ω2τ trans
rθ,k = −2µfrωik

rsP,(II)
ekJ′k(ωsP,(II)r)eikθ + 2 iµfrk

r2s2
P,(II)

ekJk(ωsP,(II)r)eikθ − 2µfrωik
rsB,(II)

fkJ′k(ω sB,(II)r)eikθ

+ 2 iµfr k

r2 s2
B,(II)

fk Jk(ω sB,(II)r) ei k θ − µfr k
2

r2 s2
S,(II)

gk Jk(ω sS,(II)r) ei k θ + µfr ω

r sS,(II)
gk J′k(ω sS,(II)r) ei k θ

− µfr
ω

sS,(II)r
gk Jk+1(ω sS,(II)r) ei k θ + µfr

k

s2
S,(II)r

2 gk Jk(ω sS,(II) r) ei k θ

+ ω2 gk Jk(ω sS,(II)r) ei k θ − µfr
k2

s2
S,(II)r

2 gk Jk(ω sS,(II)r) ei k θ

− µfr k
2

r2 s2
EM,(II)

hk Jk(ω sEM,(II)r) ei k θ + µfr ω

r sEM,(II)
hk J′k(ω sEM,(II)r) ei k θ

− µfr
ω

sEM,(II)r
hk Jk+1(ω sEM,(II)r) ei k θ + µfr

k

s2
EM,(II)r

2hk Jk(ω sEM,(II) r) ei k θ

+ ω2 hk Jk(ω sEM,(II)r) ei k θ − µfr
k2

s2
EM,(II)r

2 hk Jk(ω sEM,(II)r) ei k θ ,

and
−ω2Eθ,k = ek

ik
r s2

P,(II)
EP,(II)Jk(ω sP,(II)r)eikθ + fk

ik
r s2

B,(II)
EB,(II)Jk(ω sB,(II)r)eikθ

+ gk
ω

sS,(II)
ES,(II)J′k(ω sS,(II)r)eikθ + hk

ω

sEM,(II)
EEM,(II)J

′

k(ω sEM,(II)r)eikθ ,

Hk = gk
s i
ω µ0

ES,(II) Jk(ω sS,(II) r) ei k θ + hk
s i
ω µ0

EEM,(II) Jk(ω sEM,(II) r) ei k θ .

Imposing (6.27), we obtain a linear system satisfied by ak, bk, ck, dk, ek, fk, gk, hk in each mode k:

Ak



ak

bk

ck

dk

ek

fk

gk

hk


=



−s iω upw
r,k

−s iω upw
θ,k

−ppw

−s iωwpw
r,k

−ω2 τpw
rr,k

−ω2 τpw
rθ,k

ω2Epw
θ,k

−Hpw
k



,

with



248 CHAPTER 6. ANALYTICAL SOLUTIONS FOR PRIDE’S EQUATIONS IN TWO DIMENSIONS

A2media
k =



A11 A12 A13 A14 A15 A16 A17 A18

A21 A22 A23 A24 A25 A26 A27 A28

A31 A32 A33 A34 A35 A36 A37 A38

A41 A42 A43 A44 A45 A46 A47 A48

A51 A52 A53 A54 A55 A56 A57 A58

A61 A62 A63 A64 A65 A66 A67 A68

A71 A72 A73 A74 A75 A76 A77 A78

A81 A82 A83 A84 A85 A86 A87 A88


, (6.28)

A11 = ω

sP,(I)
H(1)′
k (ω sP,(I) a) , A12 = ω

sB,(I)
H(1)′
k (ω sB,(I) a) ,

A13 = − ik
as2

S,(I)
H(1)
k (ω sS,(I) a) , A14 = − ik

as2
EM,(I)

H(1)
k (ω sEM,(I) a) ,

A15 = − ω

sP,(II)
J′k(ω sP,(II) a) , A16 = − ω

sB,(II)
J
′

k(ω sB,(II) a) ,

A17 = ik
as2

S,(II)
Jk(ω sS,(II) a) , A18 = ik

as2
EM,(II)

Jk(ω sEM,(II) a) ,

A21 = ik
a s2

P,(I)
H(1)
k (ω sP,(I) a) , A22 = ik

a s2
B,(I)

H(1)
k (ω sB,(I) a) ,

A23 = s−1
S,(I) ωH(1)′

k (ω sS,(I) a) , A24 = s−1
EM,(I) ωH(1)′

k (ω sEM,(I) a) ,

A25 = − ik
a s2

P,(II)
Jk(ω sP,(II) a) , A26 = − ik

a s2
B,(II)

Jk(ω sB,(II) a) ,

A27 = −s−1
S,(II) ω J

′

k(ω sS,(II) a) , A28 = −s−1
EM,(II) ω J

′

k(ω sEM,(II) a) ,

A31 = −M
(
wP,(I) + α) H(1)

k (ω sP,(I) a) , A32 = −M
(
wB,(I) + α) H(1)

k (ω sB,(I) a) , A33 = 0 , A34 = 0 ,

A35 = M
(
wP,(II) + α) Jk(ω sP,(II) a) , A36 = M

(
wB,(II) + α) Jk(ω sB,(II) a) , A37 = 0 , A38 = 0 ,

A41 =
wP,(I)

sP,(I)
ωH(1)′

k (ω sP,(I)a) , A42 =
wB,(I)

sB,(I)
ωH(1)′

k (ω sB,(I)a) ,

A43 = −
wS,(I)

s2
S,(I)

ik
a

H(1)
k (ω sS,(I)a) , A44 = −

wEM,(I)

s2
EM,(I)

ik
a

H(1)
k (ω sEM,(I)a) ,

A45 = −
wP,(II)

sP,(II)
ω J
′

k(ω sP,(II)a) , A46 = −
wB,(II)

sB,(II)
ω J
′

k(ω sB,(II)a) ,

A47 =
wS,(II)

s2
S,(II)

ik
a

Jk(ω sS,(II)a) , A48 =
wEM,(II)

s2
EM,(II)

ik
a

Jk(ω sEM,(II)a) ,
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A51 = − 2µfr ω

sP,(I)a
H(1)
k+1(ω sP,(I) a) + 2µfr k

s2
P,(I)a

2 H(1)
k (ω sP,(I) a) + 2µfr ω

2 H(1)
k (ω sP,(I) a)

− 2µfr k
2

s2
P,(I)a

2 H(1)
k (ω sP,(I) a) + ω2

(
−2

3µfr + kfr + Mα2 + αMwP,(I)

)
H(1)
k (ω sP,(I)a) ,

A52 = − 2µfr ω

sB,(I)a
H(1)
k+1(ω sB,(I) a) + 2µfr k

s2
B,(I)a

2 H(1)
k (ω sB,(I) a) + 2µfr ω

2 H(1)
k (ω sB,(I) a)

− 2µfr k
2

s2
B,(I)a

2 H(1)
k (ω sB,(I) a) + ω2

(
−2

3µfr + kfr + Mα2 + αMwB,(I)

)
H(1)
k (ω sB,(I)a) ,

A53 = 2µfr

sS,(I)a
ω ikH(1)′

k (ω sS,(I)a) , A54 = 2µfr

sEM,(I)a
ω ikH(1)′

k (ω sS,(I)a) ,

A55 = 2µfr ω

sP,(II)a
Jk+1(ω sP,(II) a) − 2µfr k

s2
P,(I)a

2 Jk(ω sP,(I) a) − 2µfr ω
2 H(1)

k (ω sP,(II) a)

+ 2µfr k
2

s2
Pa

2 Jk(ω sP,(II) a) − ω2
(
−2

3µfr + kfr + Mα2 + αMwP,(II)

)
Jk(ω sP,(II)a) ,

A56 = 2µfr ω

sB,(II)a
Jk+1(ω sB,(II) a) − 2µfr k

s2
B,(I)a

2 H(1)
k (ω sB,(II) a) − 2µfr ω

2 Jk(ω sB,(II) a)

+ 2µfr k
2

s2
B,(II)a

2 Jk(ω sB,(II) a) ei k θ − ω2
(
−2

3µfr + kfr + Mα2 + αMwB,(II)

)
Jk(ω sB,(II)a) ,

A57 = − 2µfr

sS,(II)a
ω ik J

′

k(ω sS,(II)a) , A58 = − 2µfr

sEM,(II)a
ω ik J

′

k(ω sEM,(II)a) ,

A61 = −2ω µfrik
asP,(I)

H(1)′
k (ω sP,(I)a) + 2µfrik

a2s2
P,(I)

H(1)
k (ω sP,(I)a) ,

A62 = −2ω µfrik
asB,(I)

H(1)′
k (ω sB,(I)a) + 2µfrik

a2s2
B,(I)

H(1)
k (ω sB,(I)a) ,

A63 = − k2µfr

a2s2
S,(I)

H(1)
k (ω sS,(I) a) + ω µfr

asS,(I)
H(1)′
k (ω sS,(I) a) − ω

sS,(I)a
H(1)
k+1(ω sS,(I) a)

+ k

s2
S,(I)a

2 H(1)
k (ω s2

S,(I) a) + ω2 H(1)
k (ω sS,(I) a) ei k θ − k2

s2
S,(I)a

2 H(1)
k (ω sS,(I) a) ,

A64 = − k2µfr

a2s2
EM,(I)

H(1)
k (ω sEM,(I) a) + ω µfr

asEM,(I)
H(1)′
k (ω sEM,(I) a) − ω

sEM,(I)a
H(1)
k+1(ω sEM,(I) a)

+ k

s2
EM,(I)a

2 H(1)
k (ω s2

EM,(I) a) + ω2 H(1)
k (ω sEM,(I) a) ei k θ − k2

s2
EM,(I)a

2 H(1)
k (ω sEM,(I) a) ,



250 CHAPTER 6. ANALYTICAL SOLUTIONS FOR PRIDE’S EQUATIONS IN TWO DIMENSIONS

A65 = 2ω µfrik
asP,(II)

J
′

k(ω sP,(II)a)− 2µfrik
a2s2

P,(II)
Jk(ω sP,(II)a) ,

A66 = 2ω µfrik
asB,(II)

J
′

k(ω sB,(II)a)− 2µfrik
a2s2

B,(II)
Jk(ω sB,(II)a) ,

A67 = k2µfr

a2s2
S,(II)

Jk(ω sS,(II) a)− ω µfr

asS,(II)
J
′

k(ω sS,(II) a) + ω

sS,(II)a
Jk+1(ω sS,(II) a)

− k

s2
S,(II)a

2 Jk(ω sS,(II) a) − ω2 Jk(ω sS,(II) a) ei k θ + k2

s2
S,(II)a

2 Jk(ω sS,(II) a) ,

A68 = k2µfr

a2s2
EM,(II)

Jk(ω sEM,(II) a)− ω µfr

asEM,(II)
J
′

k(ω sEM,(II) a) + ω

sEM,(II)a
Jk+1(ω sEM,(II) a)

− k

s2
EM,(II)a

2 Jk(ω sEM,(II) a) − ω2 Jk(ω sEM,(II) a) + k2

s2
EM,(II)a

2 Jk(ω sEM,(II) a) .

A71 = ik
a s2

P,(I)
EP,(I)H

(1)
k (ω sP,(I) a) , A72 = ik

a s2
B,(I)

EB,(I)H
(1)
k (ω sB,(I) a) ,

A73 = s−1
S,(I) ωES,(I)H

(1)′
k (ω sS,(I) a) , A74 = s−1

EM,(I) ωEEM,(I)H
(1)′
k (ω sEM,(I) a) ,

A75 = − ik
a s2

P,(II)
EP,(II)Jk(ω sP,(II) a) , A76 = − ik

a s2
B,(II)

EB,(II)Jk(ω sB,(II) a) ,

A77 = −s−1
S,(II) ωES,(II)J

′

k(ω sS,(II) a) , A78 = −s−1
EM,(II) ωEEM,(II)J

′

k(ω sEM,(II) a) ,

A81 = 0 , A82 = 0 , A83 = s i
ω µ0

ES,(I)H
(1)
k (ω sS,(I) a) , A84 = s i

ω µ0
EEM,(I)H

(1)
k (ω sEM,(I) a) ,

A85 = 0 , A86 = 0 , A87 = − s i
ω µ0

ES,(II)Jk(ω sS,(II) a) , A88 = − s i
ω µ0

EEM,(II)Jk(ω sEM,(II) a) ,

6.4.2 Numerical tests
We consider an infinite medium denoted as the exterior medium, in which Ω is a circular inclusion (interior medium)
with radius a = 5m, see Figure 6.7, and we study the scattering of a P-plane wave by the inclusion. The solution is
plotted on the disc of radius r = 10m in Figure 6.8 for the exterior medium composed of freshwater and the interior
medium composed of sand (see Table 5.2). The total wave is presented, we can observe the bands of the incident
plane wave, which are a little distorted due to the reflections on the inclusion. Here, we want to determine if we can
find values of frequency for which the determinant of the coefficient matrices vanishes, which are the equivalent of
electrokinetic Jones’ modes. Hence, we study the determinant of the coefficients matrix (6.28) as a function of ω for
the first modes k = 0, ..., 5. From Figures 6.9 and 6.10, we can observe that there is no peaks on the curves, which
means that there is no eigenvalues in the problem for the considered frequency range.
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Figure 6.8: Scattering of a P plane wave by a penetrable solid inclusion. Total solution of the imaginary part of the
solid velocity ux for freshwater/sand test with f = 1kHz.
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Figure 6.9: Module of determinant of the coefficients matrix Ak (log scale) for modes 0 to 2 for for the exterior medium
composed of freshwater and the interior medium of sand.
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Figure 6.10: Module of determinant of the coefficients matrix Ak (log scale) for modes 3 to 5 for the exterior medium
composed of freshwater and the interior medium of sand.
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6.5 Analytical solution for fundamental solution for Pride’s equations
In this section, we consider a two-dimensional homogeneous medium, and we build the analytical solution corresponding
with the response to a point source. Starting with the second-order formulation of Pride’s equations (5.5), we have
expressed in (6.4) the unknowns u, w, E in terms of the potentials as:

−ω2

u
w
E

 − Plong

s−2
P 0 0
0 s−2

B 0
0 0 0

 ∇χP
∇χB

0

− Ptrans

s−2
S 0 0
0 0 0
0 0 s−2

EM

 curlχS

0
curlχEM

 = A−1

 fu
fw + ∇M fp
− s iω µ0 fC

 , (6.29)

where the matrices A, Plong and Ptrans have been given in (6.1) and (6.2). In addition, the potentials χ• solve Helmholtz
equations

−ω2 s2
P χP − ∆χP = s2

P π1

 P−1
long A

−1

∇ · F1
∇ · F2
∇ · F3

 ,

−ω2 s2
B χB − ∆χB = s2

B π2

 P−1
long A

−1

∇ · F1
∇ · F2
∇ · F3

 ,

−ω2 s2
S χS − ∆χS = s2

S π1

P−1
transA

−1

curl F1
curl F2
curl F3

 ,

−ω2 s2
EM χEM − ∆χEM = s2

EM π3

P−1
transA

−1

curl F1
curl F2
curl F3

 .

(6.30)

with
F1 = fu , F2 = fw + ∇M fp , F3 = − s iω µ0 fC .

In the following, we first study a point source generating pressure waves, and secondly a source that produces only
transverse waves, and we build an analytical solution for each case. Recall that a point-source is modeled as a Dirac
distribution, denoted by δY with Y the center of the source. We will use the fact that the outgoing Green kernel of

(−∆− (ω s•)2)G(X) = δY is G+(X) = i
4H(1)

0 (ω s•|X−Y|) , (6.31)

with H(1)
0 the Hankel function of first-order. In the following, to simplify the notations, we denote the Dirac distribution

by δ, and we consider Y = 0. Moreover, in a homogeneous infinite domain, the outgoing solution of

(−∆− (ω s•)2)G(X) = 0 is G+(X) = 0 inR2 . (6.32)

6.5.1 Source generating pressure waves
To model a source generating only pressure waves, we use the fact that curl∇ = 0, which leads to a null value of the
transverse potential. We set fu = ∇δ , fw = 0 , fp = 0 , fC = 0 , which means that F1 = ∇δ , F2 = 0 , F3 = 0 .
Since curl∇ = 0, the Helmholtz equations (6.30) become(

−∆ − ω2 s2
P
)
χP = s2

P [P−1
longA

−1]11 ∆ δ ,(
−∆ − ω2 s2

B
)
χB = s2

B [P−1
longA

−1]21 ∆δ ,(
−∆ − ω2 s2

S
)
χS = 0 ,(

−∆ − ω2 s2
EM
)
χEM = 0 ,

with the matrices Plong and A defined in (5.21) and (5.25). Using the relations given in (6.31) and (6.32), the potentials
read as:

χP = s2
P [P−1

longA
−1]11 ∆ i

4H(1)
0 (ω sPr) = s2

P [P−1
longA

−1]11

(
−(ω sP)2 i

4H(1)
0 (ω sPr)− δ

)
,

χB = s2
B [P−1

longA
−1]21 ∆ H(1)

0 (ω sBr) = s2
B [P−1

longA
−1]21

(
−(ω sB)2 i

4H(1)
0 (ω sBr)− δ

)
,

χS = 0 , χEM = 0 .
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The gradients of the longitudinal potentials are:

∇χP = s2
P [P−1

longA
−1]11

(
−(ω sP)2 i

4∇H(1)
0 (ω sPr)−∇δ

)
,

∇χB = s2
B [P−1

longA
−1]21

(
−(ω sB)2 i

4∇H(1)
0 (ω sBr)−∇δ

)
.

Then, we write equation (6.29) by using the above expression and the expression of A given in equation (6.1):

−ω2

u
w
E

 − Plong


[P−1

longA
−1]11

(
−(ω sP)2 i

4∇H(1)
0 (ω sPr)−∇δ

)
[P−1

longA
−1]21

(
−(ω sB)2 i

4∇H(1)
0 (ω sBr)−∇δ

)
0

 = A−1

∇δ0
0

 .

Note that here, ∇δ is the gradient of the Dirac in the sense of the distributions. Multiplying the above equation by
P−1

long, we obtain:

−ω2 P−1
long

u
w
E

 −


[P−1
longA

−1]11

(
−(ω sP)2 i

4∇H(1)
0 (ω sPr)−∇δ

)
[P−1

longA
−1]21

(
−(ω sB)2 i

4∇H(1)
0 (ω sBr)−∇δ

)
0

 =


[P−1

longA
−1]11∇δ

[P−1
longA

−1]21∇δ

0

 .

In the above equation, we simplify the gradient of Dirac in the second term and in the right-hand side. Then, we
multiply the system by −ω−2 Plong, to obtain the expressions of the displacements u, w, and the electric field E:

u
w
E

 = Plong


[P−1

longA
−1]11

(
s2
P

i
4∇H(1)

0 (ω sPr)
)

[P−1
longA

−1]21

(
s2
B

i
4∇H(1)

0 (ω sBr)
)

0

 .

Recall that in polar coordinates

∇H(1)
0 (ω s•r) = ω s•H(1)′

0 (ω s•r)er , and H(1)′
0 (ω s•r) = −H(1)

1 (ω s•r) .

Hence
u =

(
− [P−1

longA
−1]11 ω s3

P
i
4H(1)

1 (ω sPr) − [P−1
longA

−1]21 ω s3
B

i
4H(1)

1 (ω sBr)
)

er ,

w =
(
−WP [P−1

longA
−1]11 ω s3

P
i
4H(1)

1 (ω sPr) − WB [P−1
longA

−1]21 ω s3
B

i
4H(1)

1 (ω sBr)
)

er ,

E =
(
−EP [P−1

longA
−1]11 ω s3

P
i
4H(1)

1 (ω sPr) − EB [P−1
longA

−1]21 ω s3
B

i
4H(1)

1 (ω sBr)
)

er .

Proposition 6.4. The first-order variables for a point source in pressure waves are for the velocities:

u =
(

[P−1
longA

−1]11
ω2 s3

P
4 H(1)

1 (ω sPr) + [P−1
longA

−1]21
ω2 s3

B
4 H(1)

1 (ω sBr)
)

er ,

w =
(
WP [P−1

longA
−1]11

ω2 s3
P

4 H(1)
1 (ω sPr) + WB [P−1

longA
−1]21

ω2 s3
B

4 H(1)
1 (ω sBr)

)
er .

The stress tensor is:
τ = τrrer ⊗ er + τθθeθ ⊗ eθ ,
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with

τrr = − (2µfr + λfr + Mα2)
( i

4 ω
2 s4

P [P−1
longA

−1]11H(1)′
1 (ω sPr) + i

4 ω
2 s4

B [P−1
longA

−1]21H(1)′
1 (ω sBr)

)
− αM

( iWP

4 ω2 s4
P [P−1

longA
−1]11H(1)′

1 (ω sPr) + iWB

4 ω2 s4
B [P−1

longA
−1]21H(1)′

1 (ω sBr)
)
,

τθθ = − (λfr + Mα2)
( i

4 ω
2 s4

P [P−1
longA

−1]11H(1)′
1 (ω sPr) + i

4 ω
2 s4

B [P−1
longA

−1]21H(1)′
1 (ω sBr)

)
− αM

( iWP

4 ω2 s4
P [P−1

longA
−1]11H(1)′

1 (ω sPr) + iWB

4 ω2 s4
B [P−1

longA
−1]21H(1)′

1 (ω sBr)
)
.

The pressure is given as:

p = M
( iWP

4 ω2 s4
P [P−1

longA
−1]11H(1)′

1 (ω sPr) + iWB

4 ω2 s4
B [P−1

longA
−1]21H(1)′

1 (ω sBr)
)

+ M α
( i

4 ω
2 s4

P [P−1
longA

−1]11H(1)′
1 (ω sPr) + i

4 ω
2 s4

B [P−1
longA

−1]21H(1)′
1 (ω sBr)

)
.

The electromagnetic variables are

E =
(
−EP [P−1

longA
−1]11 ω s3

P
i
4H(1)

1 (ω sPr) − EB [P−1
longA

−1]21 ω s3
B

i
4H(1)

1 (ω sBr)
)

er ,

H = 0 ,

J = − s iω δ0
(
−EP [P−1

longA
−1]11 ω s3

P
i
4H(1)

1 (ω sPr) − EB [P−1
longA

−1]21 ω s3
B

i
4H(1)

1 (ω sBr)
)

er .

Proof. • The velocities u and w are calculated by taking the time derivative of the displacements u and w.

• From the calculation of τ in Section 2.6 for poroelasticity, we have

τ =
(

2µfr
∂ur
∂r

+ (λfr + Mα2)∂ur
∂r

+ αM
∂wr
∂r

)
er ⊗ er

+
(

(λfr + Mα2)∂ur
∂r

+ αM
∂wr
∂r

)
eθ ⊗ eθ ,

and the radial derivative of H(1)
1 (ω s•r) is:

∂

∂r
H(1)

1 (ω s•r) = ω s•H(1)′
1 (ω s•r) = ω s•H(1)

0 (ω s•r) −
1
r

H(1)
1 (ω s•r) .

With those two expressions, we obtain the expression of τ .

• For the calculation of p, we use the constitutive law (5.3d) and the expressions of the displacements u and w.

• Concerning the expression of the magnetic field H, we use equation (5.3e):

H = s i
ω µ0

curlE ,

and the curl of the electric field is:
curlE = ∂rEθ −

1
r
∂θEr = 0 ,

because Eθ = 0, and Er is independent of θ. Hence, the magnetic field is equal to zero.

• Finally, for the calculation of J , equation (5.3g) gives:

J = curl H − s iω δ0E = − s iω δ0Er er ,

because the magnetic field H is equal to zero.
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This analytical solution will be used to verify the numerical solution obtained with the HDG method (see Chapter
7). The solutions in terms of solid velocity u and electric field E are given respectively in Figures 6.11 and 6.12. On
the left, we present the total solution. Then, in figures (b), we only plot the contribution of the P-wave to the fields.
Similarly, in figures (c), we only show the contribution of the B-wave. By this way, we can identify clearly the two
kinds of longitudinal waves propagating in the medium. We observe that for u, the magnitude of contributions of the
P- and B-waves are close (see Figure 6.11). However, for E, the contribution of the B-wave has a greater amplitude
than the P-wave (cf. Figure 6.12). It shows that in this case, the conversion from seismic source to electromagnetic
signal is mostly carried by the B-wave.

(a) Total wave u (b) P-wave u (c) B-wave u

Figure 6.11: Decomposition of the analytical solution of u in longitudinal waves.

(a) Total wave E (b) P-wave E (c) B-wave E

Figure 6.12: Decomposition of the analytical solution of E in longitudinal waves.

6.5.2 Source generating transverse waves
Here, we want to have a point-source producing only transverse waves. For that, we set the forces to fu = curl δ ,
fw = 0 , fp = 0 , and fC = 0 , which means that F1 = curl δ , F2 = 0 , and F3 = 0 . Since curl∇ = 0 , the Helmholtz
equations (6.30) become (

−∆ − ω2 s2
P
)
χP = 0 ,(

−∆ − ω2 s2
B
)
χB = 0 ,(

−∆ − ω2 s2
S
)
χS = − s2

S [P−1
transA

−1]11 ∆ δ ,(
−∆ − ω2 s2

EM
)
χEM = − s2

EM [P−1
transA

−1]31 ∆ δ .
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Hence, using the expression (6.31) and (6.32) the potentials are:

χP = 0 , χB = 0 ,

χS = − s2
S [P−1

transA
−1]11 ∆ i

4H(1)
0 (ω sSr) = s2

S [P−1
transA

−1]11

(
(ω sS)2 i

4H(1)
0 (ω sSr) + δ

)
,

χEM = − s2
EM [P−1

transA
−1]31 ∆ H(1)

0 (ω sEMr) = s2
EM [P−1

transA
−1]31

(
(ω sEM)2 i

4H(1)
0 (ω sEMr) + δ

)
.

The curls of the transverse potentials χS and χEM are

curlχS = s2
S [P−1

transA
−1]11

(
(ω sS)2 i

4curl H(1)
0 (ω sSr) + curl δ

)
,

curlχEM = s2
EM [P−1

transA
−1]31

(
(ω sEM)2 i

4curl H(1)
0 (ω sEMr) + curl δ

)
.

We inject the above expression in equation (6.29):

−ω2

u
w
E

− Ptrans


[P−1

transA
−1]11

(
(ω sS)2 i

4curl H(1)
0 (ω sSr) + curl δ

)
0

[P−1
transA

−1]31

(
(ω sEM)2 i

4curl H(1)
0 (ω sEMr) + curl δ

)
 = A−1

curlδ
0
0

 .

Then, we multiply the system by P−1
trans, which gives:

−ω2 P−1
trans

u
w
E

−


[P−1
transA

−1]11

(
(ω sS)2 i

4curl H(1)
0 (ω sSr) + curl δ

)
0

[P−1
transA

−1]31

(
(ω sEM)2 i

4curl H(1)
0 (ω sEMr) + curl δ

)
 =


[P−1

transA
−1]11curlδ
0

[P−1
transA

−1]31curlδ

 .

The curls of the Dirac distribution in right-hand side and in the second term are simplified, and we finally multiply
the system by −ω−2 Ptrans to obtain the expression of the displacements u, w, and E:

u
w
E

 = Ptrans


[P−1

transA
−1]11 s2

S
i
4curl H(1)

0 (ω sSr)

0

[P−1
transA

−1]31 s2
EM

i
4curl H(1)

0 (ω sEMr)

 .

Recall that in polar coordinates, the curl of H(1)
0 (ω sSr) is

curl H(1)
0 (ω s•r) = −ω s•H(1)′

0 (ω s•r)eθ , and and H(1)′
0 (ω s•r) = −H(1)

1 (ω s•r) .

Hence,

u =
(

[P−1
transA

−1]11 ω s3
S

i
4H(1)

1 (ω sSr) + [P−1
transA

−1]31 ω s3
EM

i
4H(1)

1 (ω sEMr)
)

eθ ,

w =
(
WS [P−1

transA
−1]11 ω s3

S
i
4H(1)

1 (ω sSr) + WEM [P−1
transA

−1]31 ω s3
EM

i
4H(1)

1 (ω sEMr)
)

eθ ,

E =
(
ES [P−1

transA
−1]11 ω s3

S
i
4H(1)

1 (ω sSr) + EEM [P−1
transA

−1]31 ω s3
EM

i
4H(1)

1 (ω sEMr)
)

eθ .

Proposition 6.5. The first-order variables for a point source in transverse waves are expressed as:

u = −
(

[P−1
transA

−1]11
ω2 s3

S
4 H(1)

1 (ω sSr) + [P−1
transA

−1]31
ω2 s3

EM
4 H(1)

1 (ω sEMr)
)

eθ ,

w = −
(
WS [P−1

transA
−1]11

ω2 s3
S

4 H(1)
1 (ω sSr) + WEM [P−1

transA
−1]31

ω2 s3
EM

4 H(1)
1 (ω sEMr)

)
eθ ,
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for the velocities, the stress tensor is
τ = τrθer ⊗ eθ + τrθeθ ⊗ er ,

with
τrθ = µfr

(
[P−1

transA
−1]11 ω

2 s4
S

i
4H(1)′

1 (ω sSr) + [P−1
transA

−1]31 ω
2 s4

EM
i
4H(1)′

1 (ω sEMr)
)
.

The pressure is equal to zero
p = 0 ,

and the electromagnetic variables are:

E =
(
ES [P−1

transA
−1]11 ω s3

S
i
4H(1)

1 (ω sSr) + EEM [P−1
transA

−1]31 ω s3
EM

i
4H(1)

1 (ω sEMr)
)

eθ ,

H = s i
ω µ0

(
ES [P−1

transA
−1]11 ω

2 s4
S

i
4H(1)′

1 (ω sSr) + EEM [P−1
transA

−1]31 ω
2 s4

EM
i
4H(1)′

1 (ω sEMr)
)
.

Proof. • The velocities u and w are calculated by taking the time-derivative of the displacements u and w.

u = −
(

[P−1
transA

−1]11
ω2 s3

S
4 H(1)

1 (ω sSr) + [P−1
transA

−1]31
ω2 s3

EM
4 H(1)

1 (ω sEMr)
)

eθ ,

w = −
(
WS [P−1

transA
−1]11

ω2 s3
S

4 H(1)
1 (ω sSr) + WEM [P−1

transA
−1]31

ω2 s3
EM

4 H(1)
1 (ω sEMr)

)
eθ .

• From the calculation of τ in Section 2.6 for poroelasticity, we have

τ = τrθ er ⊗ eθ + τrθ eθ ⊗ er , with τrθ = µfr
∂uθ
∂r

.

By using the expression of the radial derivative of H(1)
1 (ω s•r),

∂

∂r
H(1)

1 (ω s•r) = ω s•H(1)′
1 (ω s•r) = ω s•H(1)

0 (ω s•r) −
1
r

H(1)
1 (ω s•r) ,

we find the value of τrθ.

• For the calculation of p, we use the constitutive law (5.3d) and the expressions of the displacements u and w.

• Concerning the expression of the magnetic field H, we use equation (5.3e):

H = s i
ω µ0

curlE ,

and the curl of the electric field is:

curlE = ∂rEθ −
1
r
∂θEr = ∂rEθ ,

because Er = 0. Hence, we find the expression of the magnetic field.

• Finally, for the calculation of J , equation (5.3g) gives:

J = curl H − s iω δ0E = (− ∂r H − s iω δ0Eθ) eθ ,

because the magnetic field H is independent of θ.
We have

∂r H = − s i
ω µ0

(
ES [P−1

transA
−1]11 ω

3 s5
S

i
4H(1)′′

1 (ω sSr) + EEM [P−1
transA

−1]31 ω
3 s5

EM
i
4H(1)′′

1 (ω sEMr)
)
.

Using the fact that the Hankel functions solve the following equation:

d2

dz2 H(1)
k = −1

z
H(1)′
k − (1− k2

z2 )H(1)
k ,

we can determine ∂r H and hence J .
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(a) Total wave u (b) S-wave u (c) EM-wave u

Figure 6.13: Decomposition for u.

(a) Total wave E (b) S-wave E (c) EM-wave E

Figure 6.14: Decomposition for E.

We will use this analytical solution to verify the numerical solution obtained with the HDG method (see Chapter
7). The solutions are given in Figure 6.13 for the solid velocity u and in Figure 6.14 for the electric field E. We show
the total solution on the left. Then, in figures (b), we remove the contribution of the EM-wave to the fields, in order
to isolate the EM-wave. Similarly, in figures (c), we remove the contribution of the S-wave to the fields. By this way,
we can identify clearly the two kinds of transverse waves propagating in the medium. For u, the wave is entirely a
S-wave, as we can see Figure 6.13c, there is no contribution of the EM-wave. For the electric field E, we observe that
the amplitude of the solution is very small. Moreover, the decomposition shows that the solution is mainly due to
contribution of the S-wave, however, we also observe the EM-wave, but with a smaller amplitude.

Conclusion
In this chapter, using the expression of the variables as functions of four potentials, we have built analytical solutions
in two-dimensions for different configurations: a bounded isotropic problem, the scattering of a plane wave penetrable
or impenetrable obstacles, and the response to a point-sources in infinite medium. We have performed numerical
investigations on the stability of the above problems. We did not observe corresponding Jones’ modes for any cases.
This is certainly due to the presence of viscosity in the equations. Indeed, in the poroelastic case (Chapter 2), we have
observed Jone’s modes when the material is inviscid, however, in the presence of viscosity, we did not observe mode.
The results of this chapter will play a crucial role in the two following chapters where we validate a HDG formulation for
solving Pride’s equations in harmonic regime (Chapter 7) and we construct a low-order radiation boundary conditions
for performing regional computations in bounded domains (Chapter 8).



Chapter 7

HDG method for Pride’s equations

The aim of this chapter is to develop a HDG method to solve Pride’s equations in the harmonic domain. We base
the proposed method on what has been developed for poroelasticity in Chapter 3 and for Maxwell’s equations in
Appendix G. Concerning the numerical simulations of electrokinetics, different methods have been developed. In
the time domain, due to the large difference of the seismic and electromagnetic wavespeeds, it is necessary to make
approximations of Pride’s model in order to decouple the electromagnetic fields from the poroelastic variables. For
example, Haines and Pride [72] consider a low frequency approximation, which leads to a reduced model, Wei [130],
Tohti [126] and Pain [104] makes the assumption that the electromagnetic problem is quasi-static Han & Wang [73]
and Zyserman [139], only consider the rotational shear wave. In harmonic domain, as we do not need time schemes,
we can consider the full model. However, in the literature, the authors consider approximations of Pride’s model, for
example Gao [61], Santos [115], Zyserman [138] only focus on the shear wave, and Revil [113] consider a quasi-static
problem. A different approach is to use a quasi-analytical method in layered domains [71, 62, 64, 132, 112, 83]. The
authors follow the Ursin or Kennett methods and perform a Fourier transform in time and space domain. This results
in an algebric system corresponding to the reflection-transmission matrix. More details on this method can be found
in [132].

As previously, we choose to develop a HDG method to solve the full Pride’s model. To the best of our knowledge, the
resolution of Pride’s equations has not been done using high-order DG methods. These methods present the significant
advantages to be robust to numerical pollution, to have good performance on unstructured meshes and to have the
major parts of the calculations done element-wise. As we have detailed before, the DG methods classically need to
duplicate the degrees of freedom. This is prevented in the HDG methods, where we introduce hybrid variables to
express the numerical traces on the skeleton of the mesh. This also allows to have access to the first-order formulation
unknowns by computing a system of the size of the second-order unknowns. We refer to Chapter 3 for additional
details and references on DG and HDG methods.

In this chapter, based on what we have done in Chapter 3 for poroelasticity and Appendix G for Maxwell’s equations,
we develop an HDG method for Pride’s equation in frequency domain. We consider that the time-harmonic waves have
their time dependency as eiωt. This means that we have ∂t → iω , which corresponds to setting s = 1 in (5.3). We
first present in Section 7.1 the formulation of the HDG method. Then, we detail the associated discretization in two
dimensions in Section 7.2, and we provide validations of the numerical simulations in Section 7.4. We also investigate
numerically the well-posedness of the problem, and the formulation of the HDG method, especially the values of the
stabilization parameters used to express the numerical traces. In Section 7.5, we describe the discretization of the
proposed method in three dimensions, and we perform numerical tests for the verification of the method in Section
7.6.

7.1 HDG formulation of Pride’s equations
In this section, we develop a HDG formulation for Pride’s equations (5.3), taking s = 1, and using boundary conditions
of type 1, see (5.10a). We first introduce useful notations, then describe how we obtain both the local problem and
the transmission conditions that are used to solve the equations.
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7.1.1 Notations
On a domain D, we recall the following function spaces,

L2(D), the space of square-integrable functions on the domain D ,

V p(D), the set of polynomials of degree at most p on D ,

V p(D) = (V p(D))d ,

Σp(D) = {τ ∈ (V p(D))d×d| τ symmetric } .

We next consider a triangulation Th of the domain D of dimension d. Note that we impose strongly the symmetry on
the stress tensor. We denote by K an element of the mesh, which in 2D is a triangle and in 3D a tetrahedron. We
also denote by F a face of the element K, and by n the outgoing unit normal vector to F . For a given triangulation
Th, we define the following spaces:

V ph = {v ∈ L2(D) : v|K ∈ V p(K) , ∀K ∈ Th} ,

V p
h = {v ∈ (L2(D))d : v|K ∈ V p(K) , ∀K ∈ Th} ,

Σp
h = {τ ∈ L2(D)d2

: τ |K ∈ Σp(K) , ∀K ∈ Th} ,

Mh = {ξ ∈ L2(Fh) : ξ|F ∈ V p(F ), , ∀K ∈ Fh} ,

Mh = {η ∈ (L2(Fh))d : η|F ∈ (V p(F ))d , ∀K ∈ Fh} .

The jumps J·K are defined as follows:

• On an interior face F = ∂K ∩ ∂K ′:

Jw · nK = wK · nK + wK′ · nK
′
, Jτ nK = τKnK + τK

′
nK

′
, JE × nK = EK × nK +EK′ × nK

′
,

• On an external boundary face:

Jw · nK = wK · nK , Jτ nK = τKnK , JE × nK = EK × nK .

7.1.2 Local problem
We consider an element K of Th, and a solution to Pride’s equations (5.3) on an element K denoted by
(u,w, τ ,p, E, H, J). We then define the following test functions:

(ũ, w̃, τ̃ , p̃, ẽ, h̃, j̃) ∈ (V p(K)× V p(K)×Σp(K)× V p(K)× V p(K)× V p(K)× V p(K)) .

The integration on an element of (5.3) gives:∫
K

iω ρa u · ũ +
∫
K

iω ρf w · ũ −
∫
K

(∇ · τ ) · ũ =
∫
K

fu · ũ ,∫
K

iω ρf u · w̃ +
∫
K

iω ρdyn w · w̃ +
∫
K

(∇ p) · w̃ −
∫
K

iω ρdyn (LE) · w̃ =
∫
K

fw · w̃ ,∫
K

iω τ : τ̃ +
∫
K

iωα p : τ̃ −
∫
K

(Cε(u)) : τ̃ = 0 ,∫
K

iω p p̃ +
∫
K

M ∇ ·w p̃ +
∫
K

M α : ε(u) p̃ = 0 ,∫
K

iω δ0E · ẽ −
∫
K

curlH · ẽ +
∫
K

J · ẽ =
∫
K

fC · ẽ ,∫
K

iω µ0H h̃ +
∫
K

curlE h̃ = 0 ,∫
K

J · j̃ −
∫
K

σE · j̃ +
∫
K

(L∇p) · j̃ +
∫
K

iω ρf (L u) · j̃ =
∫
K

(L fw) · j̃ .
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By integrating by parts, we have:∫
K

iω ρa u · ũ +
∫
K

iω ρf w · ũ +
∫
K

τ : ∇ ũ −
∫
∂K

τ̂n · ũ =
∫
K

fu · ũ ,∫
K

iω ρf u · w̃ +
∫
K

iω ρdyn w · w̃ −
∫
K

p∇ · w̃ +
∫
∂K

p̂n · w̃ −
∫
K

iω ρdyn (LE) · w̃ =
∫
K

fw · w̃ ,∫
K

iωτ : τ̃ +
∫
K

iωαp : τ̃ +
∫
K

u ·
(
∇ · (Cτ̃ )

)
−
∫
∂K

(û ·Cτ̃ )n = 0 ,∫
K

iω p p̃ −
∫
K

M w · ∇p̃ +
∫
∂K

M (ŵ · n) p̃ −
∫
K

M (αu) · ∇ p̃ +
∫
∂K

M (αû) · n p̃ = 0 ,∫
K

iω δ0E · ẽ −
∫
K

H curl ẽ +
∫
∂K

(n× ẽ) Ĥ +
∫
K

J · ẽ =
∫
K

fC · ẽ ,∫
K

iω µ0H h̃ +
∫
K

E · curl h̃+
∫
∂K

(n× Ê) h̃ = 0 ,∫
K

J · j̃ −
∫
K

σE · j̃ −
∫
K

p L : ∇j̃ +
∫
∂K

p̂ (Ln) · j̃ +
∫
K

iω ρf (L u) · j̃ =
∫
K

(L fw) · j̃ .

Note that in the above equation,
∫
K

(Cε(uh)) : τ̃ =
∫
K

ε(uh) : Cτ̃ because C is symmetric.

Introduction of the trace variables: We approximate the exact solution (u, w, τ , p, E, H, J) on K by
(uh, wh, τh, ph, Eh, Hh, Jh) ∈ (V p(K) × V p(K) ×Σp(K) × V p(K) × V p(K) × V p(K) × V p(K)) . The traces on
∂K are approximated by numerical traces (ûh, ŵh, τ̂h, p̂h, Êh, Ĥh). Following what we have done in Chapter 3 for
poroelasticity and Appendix G for Maxwell’s equations, we define three hybrid unknowns λ1 ∈Mh, λ2 ∈ Mh, λ3 ∈
Mh to replace the numerical traces ûh, p̂h and Êh, which are the the principal unknowns of the system. Note that
λ1, λ2, and λ3 are mesh-dependent and depend on h. However, for lighter notations, we drop the dependency in h.

λ1 = ûh, λ2 = p̂h, λ3 = Ĥ
t

h, ∀F ∈ Fh. (7.3)

We consider that the physical parameters are constant per element. We express the other traces (τ̂h , ŵh, Êh) in
terms of the hybrid unknowns λ1, λ2, λ3 as follows:

τ̂h n = τh n− S1(uh − λ1)− (ph − λ2)S3 n ,

ŵh · n = wh · n−
(
(ph − λ2)S2n

)
· n−

(
S4(uh − λ1)

)
· n ,

n× Êh = n×Eh − n×
(
S5
( (
Ht

h − λ3
)
× n

))
.

(7.4)

where Si, i = 1, 5 are the stabilization matrices. In particular, the two first equations of (7.4) are the transmission
conditions of poroelasticity (cf. Chapter 3 and [9]), and the last equation is the transmission condition for electromag-
netic wave equations, as in Appendix G and [85]. The solution is approximated and the numerical traces are replaced
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by their expressions (7.3) and (7.4) in (7.2) to give:∫
K

iω ρa uh · ũ +
∫
K

iω ρf wh · ũ +
∫
K

τh : ∇ ũ −
∫
∂K

τhn · ũ+
∫
∂K

S1 (uh − λ1) · ũ

+
∫
∂K

(ph − λ2) (S3 n) · ũ =
∫
K

fu · ũ ,∫
K

iω ρf uh · w̃ +
∫
K

iω ρdyn wh · w̃ −
∫
K

ph∇ · w̃ +
∫
∂K

λ2 n · w̃ −
∫
K

iω ρdyn (LEh) · w̃ =
∫
K

fw · w̃,∫
K

iωτh : τ̃ +
∫
K

iωαph : τ̃ +
∫
K

uh ·
(
∇ · (Cτ̃ )

)
−
∫
∂K

(λ1 ·Cτ̃ )n = 0 ,∫
K

iω ph p̃ −
∫
K

M wh · ∇p̃ +
∫
∂K

M (wh · n) p̃ −
∫
∂K

M (ph − λ2) (S2 n) · np̃ −
∫
∂K

M S4(uh − λ1) · n p̃

−
∫
K

M (αuh) · ∇ p̃ +
∫
∂K

M (αλ1) · n p̃ = 0 ,∫
K

iω δ0Eh · ẽ −
∫
K

Hh curl ẽ +
∫
∂K

(n× ẽ)λ3 +
∫
K

Jh · ẽ =
∫
K

fC · ẽ ,∫
K

iω µ0Hh h̃ +
∫
K

Eh · curl h̃ +
∫
∂K

(n×Eh) h̃ −
∫
∂K

n×
(
S5
(

(Hh − λ3)× n
))
h̃ = 0 ,∫

K

Jh · j̃ −
∫
K

σEh · j̃ −
∫
K

ph L : ∇j̃ +
∫
∂K

λ2 (Ln) · j̃ +
∫
K

iω ρf (L uh) · j̃ =
∫
K

(L fw) · j̃ .

By integrating by parts, we obtain the local problem:∫
K

iω ρa uh · ũ +
∫
K

iω ρf wh · ũ −
∫
K

(∇ · τh) · ũ +
∫
∂K

S1 (uh − λ1) · ũ

+
∫
∂K

(ph − λ2) (S3 n) · ũ =
∫
K

fu · ũ , (7.6a)∫
K

iω ρf uh · w̃ +
∫
K

iω ρdyn wh · w̃ −
∫
K

ph∇ · w̃ +
∫
∂K

λ2 n · w̃ −
∫
K

iω ρdyn (LEh) · w̃ =
∫
K

fw · w̃, (7.6b)∫
K

iωτh : τ̃ +
∫
K

iωαph : τ̃ +
∫
K

uh ·
(
∇ · (Cτ̃ )

)
−
∫
∂K

(λ1 ·Cτ̃ )n = 0 , (7.6c)∫
K

iω ph p̃ +
∫
K

M∇ · wh p̃ −
∫
∂K

M (ph − λ2) (S2 n) · np̃ −
∫
∂K

M S4(uh − λ1) · n p̃

−
∫
K

M (αuh) · ∇ p̃ +
∫
∂K

M (αλ1) · n p̃ = 0 , (7.6d)∫
K

iω δ0Eh · ẽ −
∫
K

Hh curl ẽ +
∫
∂K

(n× ẽ)λ3 +
∫
K

Jh · ẽ =
∫
K

fC · ẽ , (7.6e)∫
K

iω µ0Hh h̃ +
∫
K

curlEh h̃ −
∫
∂K

n×
(
S5
(

(Hh − λ3)× n
))
h̃ = 0 , (7.6f)∫

K

Jh · j̃ −
∫
K

σEh · j̃ −
∫
K

ph L : ∇j̃ +
∫
∂K

λ2 (Ln) · j̃ +
∫
K

iω ρf (L uh) · j̃ =
∫
K

(L fw) · j̃ . (7.6g)

7.1.3 Transmission conditions
We determine the HDG formulation by associating the local problem with transmission conditions at the interfaces
of the mesh. To construct the global HDG formulation, local problems have to be connected thanks to transmission
conditions that are set on the interfaces between elements. We define (η, ξ, ν) ∈Mh× Mh × Mh three test-functions
defined on the faces of the element K. We impose the following transmission conditions between the elements:

∑
F∈Fh

∫
F

Jτ̂h nK ·η =
∑

F∈Fext

∫
F

f inc ·η ,
∑
F∈Fh

∫
F

Jŵh ·nK ξ =
∑

F∈Fext

∫
F

ginc ξ ,
∑
F∈Fh

∫
F

Jn×ÊhK ·ν =
∑

F∈Fext

∫
F

hinc ·ν ,
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which are equivalent to

∑
K∈Th

∫
∂K

(τ̂h n) · η =
∑

F∈Fext

∫
F

f inc · η ,

(7.7a)

∑
K∈Th

∫
∂K

(ŵh · n) ξ =
∑

F∈Fext

∫
F

ginc ξ ,

(7.7b)

∑
K∈Th

∫
∂K

(n×Êh)·ν =
∑

F∈Fext

∫
F

hinc ·ν .

(7.7c)

7.2 Discretization of the HDG formulation in two dimensions
In this section, we detail the two-dimensional discretization of the HDG method in the (x, y) plane. In two dimensions,
the magnetic field Hh and the Lagrange unknown λ3 are scalars, denoted respectively by Hh and λ3. We consider
the stabilization matrices defined in (7.4), to be diagonal, i.e., Si = γi I for i = 1, 5. In this way, the expression (7.4)
simplifies to 

τ̂h n = τh n− γ1(uh − λ1)− (ph − λ2)γ3 n ,

ŵh · n = wh · n− γ2(ph − λ2)− γ4(uh − λ1) · n ,

n× Êh = n×Eh − γ5 (Hh − λ3) ,

As seen previsouly in Chapter 5, the coupling tensor matrix L is diagonal and reads as L = L I. The local solutions
are expressed along the x and y directions as:

uh =
(

uKx
uKy

)
, wh =

(
wKx
wKy

)
, τh =

(
τKxx τKxy

τKxy τKyy

)
, Eh =

(
EKx

EKy

)
.

Then, each component is written in terms of basis functions as follows:

uKl =
dKi∑
j=1

uKl,jϕKj , wKl =
dKi∑
j=1

wKl,jϕKj , τKkl =
dKi∑
j=1

τKkl,jϕ
K
j , pKh =

dKi∑
j=1

pKϕKj ,

EKl =
dKi∑
j=1

EKl,jϕ
K
j , HK

h =
dKi∑
j=1

HKϕKj , JKl =
dKi∑
j=1

JKl,jϕ
K
j , with l = x, y and k = x, y ,

(7.8)

where ϕKj denotes a basis function of V ph and dKi denotes the number of degrees of freedom of an element. The local
hybrid unknowns are also decomposed as follows:

λF1l =
dFi∑
j=1

λ1l
F
j
ψFj , λF2 =

dFi∑
j=1

λ2
F
j
ψFj λF3 =

dFi∑
j=1

λ3
F
j
ψFj , with l = x, y , (7.9)

where ψFi denotes a basis function of Mh and dFi the number of degrees of freedom of an edge. In (3.15), each
component is considered as a vector of the form uKl = (uKl,1, . . . ,uKl,dK

i

)T for l = x, y. Similarly, every local component
of the unknowns in (7.9) is written as: λ1l

F = (λ1l
F
1 , . . . , λ1l

F
dF
i

)T , with l = x, y. We then define two vectors of
unknowns WK and ΛK respectively of size 13 dKi and 12 dFi as:

WK = (uKx , uKy , wKx , wKy , τKxx, τKyy, τKxy, pK , EKx , EKy , HK , JKx , J
K
y )T ,

and

ΛK = (λβ(K,1)
1x , λ

β(K,2)
1x , λ

β(K,3)
1x , λ

β(K,1)
1y λ

β(K,2)
1y , λ

β(K,3)
1y , λ

β(K,1)
2 , λ

β(K,2)
2 , λ

β(K,3)
2 , λ3

β(K,1), λ3
β(K,2), λ3

β(K,3))T ,

where β(K, f) is the index in the global numbering of the f -th face of the element K. We also define the following
elementary matrices MK , DK , EK , JK of size dKi × dKi , and FK , QK of size dFi × dFi :

MK
ij =

∫
K

ϕKi ϕ
K
j dX , DKlij =

∫
K

ϕKj
∂ϕKi
∂l

dX , EFij =
∫
F

ϕKi ϕ
K
j dS , JFlij =

∫
F

ϕKi ϕ
K
j nl dS ,

FFij =
∫
F

ψFj ϕ
K
i dS , QFlij =

∫
F

ψFj ϕ
K
i nl dS , GFij =

∫
F

ψFj ψ
F
j dS , HFlij =

∫
F

ψFi ψ
F
j nl dS ,

(7.11)
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with l = x, y. Finally, we define six elementary source matrices of size dKi(
CK1x

)
i

=
∫
K

fKux ϕ
K
i ,

(
CK1y

)
i

=
∫
K

fKuy ϕ
K
i ,

(
CK2x

)
i

=
∫
K

fKwx ϕ
K
i ,(

CK2y
)
i

=
∫
K

fKwy ϕ
K
i ,

(
CK3x

)
i

=
∫
K

fKCx ϕ
K
i ,

(
CK3y

)
i

=
∫
K

fKCy ϕ
K
i .

7.2.1 Local problem
We discretize the seven equations of the local problem (7.6). We use the representations of the local unknowns given
above, and we write each equation in terms of the matrices defined in (7.11).

(a) Discretization of equation (7.6a)
Discretizing equation (7.6a) along the x− and y− component gives, taking • = x, y:∫

K

iω ρKa uK• ϕKi +
∫
K

iω ρKf wK• ϕKi −
∫
K

∂τKx•
∂x

ϕKi −
∫
K

∂τKy•
∂y

ϕKi +
∫
∂K

γ1 uK• ϕKi −
∫
∂K

γ1 λ1• ϕ
K
i

+
∫
∂K

γ3 pKh n• ϕKi −
∫
∂K

γ3 λ2 n• ϕ
K
i =

∫
K

fu• ϕ
K
i .

This can be rewritten as matrix-vector products between the local matrices and the unknown vectors defined
respectively in equations (7.11) and (7.10):

iω ρKa MKuK• + iω ρKf MKwK• − (DKx )T τKx• − (DKy )T τKy• +
3∑

f=1
γ1 Eβ(K,f) uK• −

3∑
f=1

γ1 Fβ(K,f) λ
β(K,f)
1•

+
3∑

f=1
γ3 Jβ(K,f)

• pK −
3∑

f=1
γ3 Qβ(K,f)

• λ
β(K,f)
2 = CK1• .

(b) Discretization of equation (7.6b)
Taking • = x, y, the discretization of (7.6b) along x and y directions is:∫

K

iω ρKf uK• ϕKi +
∫
K

iω ρKdyn wK• ϕKi −
∫
K

pKh
∂ϕKi
∂•

+
∫
∂K

λ2 n• ϕ
K
i −

∫
K

iω ρKdyn LEK• ϕKi =
∫
K

fw• ϕ
K
i .

In terms of the local matrices in (7.11) and the unknown vectors in (7.10), the above equation reads:

iω ρKf MKuK• + iω ρKdyn MKwK• − DK• pK −
3∑

f=1
Qβ(K,f)
• λ

β(K,f)
2 − iω ρKdyn LMKEK• = CK2• .

(c) Discretization of equation (7.6c)
The constitutive law expressed in (7.6c) is discretized in three equations corresponding to the three values of the
test function τ̃ . We have for the discretization on xx:∫

K

iω τKxx ϕKi +
∫
K

iω α11 pKh ϕKi +
∫
K

C11 uKx
∂ϕKi
∂x

+
∫
K

C13 uKx
∂ϕKi
∂y

+
∫
K

C13 uKy
∂ϕKi
∂x

+
∫
K

C12 uKy
∂ϕKi
∂y

−
∫
∂K

λ1x (C11ϕ
K
i nx + C13ϕ

K
i ny) −

∫
∂K

λ1y (C13ϕ
K
i nx + C12ϕ

K
i ny) = 0,

then on yy: ∫
K

iω τKyy ϕKi +
∫
K

iω α22 pKh ϕKi +
∫
K

C12 uKx
∂ϕKi
∂x

+
∫
K

C23 uKx
∂ϕKi
∂y

+
∫
K

C23 uKy
∂ϕKi
∂x

+
∫
K

C22 uKy
∂ϕKi
∂y

−
∫
∂K

λ1x (C12ϕ
K
i nx + C23ϕ

K
i ny) −

∫
∂K

λ1y (C23ϕ
K
i nx + C22ϕ

K
i ny) = 0,
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while the equation on xy gives:∫
K

iω τKxy ϕKi +
∫
K

iω α12 pKh ϕKi +
∫
K

C13 uKx
∂ϕKi
∂x

+
∫
K

C33 uKx
∂ϕKi
∂y

+
∫
K

C33 uKy
∂ϕKi
∂x

+
∫
K

C23 uKy
∂ϕKi
∂y

−
∫
∂K

λ1x (C13ϕ
K
i nx + C33ϕ

K
i ny) −

∫
∂K

λ1y (C33ϕ
K
i nx + C23ϕ

K
i ny) = 0.

Then, we express the above equations in terms of local matrices and the unknown vectors defined in equations
(7.11) and (7.10):

iωMK τKxx + iωα11MKpK + C11DKx uKx + C13DKy uKx + C13DKx uKy + C12DKy uKy

−
3∑

f=1
λ
β(K,f)
1x (C11QKxf + C13QKyf )−

3∑
f=1

λ
β(K,f)
1y (C13QKxf + C12QKyf ) = 0 ,

iωMK τKyy + iω α22 MK pK + C12DKx uKx + C23DKy uKx + C23DKx uKy + C22DKy uKy

−
3∑

f=1
λ
β(K,f)
1x (C12QKxf + C23QKyf ) −

3∑
f=1

λ
β(K,f)
1y (C23QKxf + C22QKyf ) = 0 ,

and

iωMK τKxy + iω α12 MK pK + C13DKx uKx + C33DKy uKx + C33DKx uKy + C23DKy uKy

−
3∑

f=1
λ
β(K,f)
1x (C13QKxf + C33QKyf ) −

3∑
f=1

λ
β(K,f)
1y (C33QKxf + C23QKyf ) = 0 .

(d) Discretization of equation (7.6d)
The discretization of equation (7.6d) gives:∫

K

iω pKh ϕKi +
∫
K

M
∂wKx
∂x

ϕKi +
∫
K

M
∂wKy
∂y

ϕKi −
∫
∂K

M pKh γ2 ϕ
K
i +

∫
∂K

M λ2 γ2 ϕ
K
i

−
∫
∂K

M γ4uKx nx ϕKi −
∫
∂K

M γ4uKy ny ϕKi +
∫
∂K

M γ4 λ1x nx ϕ
K
i +

∫
∂K

M γ4 λ1y nyϕ
K
i

−
∫
K

M (α11uKx + α12uKy )∂ϕ
K
i

∂x
−
∫
K

M (α12uKx + α22uKy )∂ϕ
K
i

∂y

+
∫
K

M (α11λ1x + α12λ1y)nx ϕKi +
∫
K

M (α12λ1x + α22λ1y)ny ϕKi = 0 .

In terms of the local matrices in (7.11) and the unknown vectors in (7.10), the above equations are

iωMK pK +M(DKx )T wKx +M(DKy )T wKy −
3∑

f=1
M γ2 Eβ(K,f)pK +

3∑
f=1

M γ2 Fβ(K,f) λ
β(K,f)
2

−
3∑

f=1
M γ4(Jβ(K,f)

x uKx + Jβ(K,f)
y uKy ) +

3∑
f=1

M γ4(Qβ(K,f)
x λ

β(K,f)
1x + Qβ(K,f)

y λ
β(K,f)
1y )

−M α11 DKx uKx −M α12DKy uKy +
3∑

f=1
M(α11λ

β(K,f)
1x + α12λ

β(K,f)
1y )Qβ(K,f)

x

−M α12 DKy uKx −M α22 DKx uKy +
3∑

f=1
M(α12λ

β(K,f)
1x + α22 λ

β(K,f)
1y )Qβ(K,f)

y = 0 .
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(e) Discretization of equation (7.6e)
Equation (7.6e) is discretized along x− component:∫

K

iω δK0 EKx ϕKi +
∫
K

Hh
∂ϕKi
∂y

−
∫
∂K

λ3ny ϕ
K
i +

∫
K

JKx ϕKi =
∫
K

fCx ϕ
K
i ,

and along y− component:∫
K

iω δK0 EKy ϕKi −
∫
K

Hh
∂ϕKi
∂x

+
∫
∂K

λ3nx ϕ
K
i +

∫
K

JKy ϕKi =
∫
K

fCy ϕ
K
i .

This is expressed in terms of local matrices (equation (7.11)) and the unknown vectors ((7.10)):

MK iω δK0 EKx + DKy H
K −

3∑
f=1

Qβ(K,f)
y λ3 + MKJKx = CK5 ,

and

MK iω δK0 EKy − DKx H
K +

3∑
f=1

Qβ(K,f)
x λ3 + MKJKy = CK6 .

(f) Discretization of equation (7.6f)
The discretization of equation (7.6f) is:∫

K

iω µK0 Hh ϕ
K
i +

∫
K

(
∂EKy
∂x
− ∂EKx

∂y

)
ϕKi −

∫
∂K

γ5 (Hh − λ3) ϕKi = 0 .

This is expressed with the local matrices and local unknowns that have been defined in equations (7.11) and
(7.10).

MK iω µK0 HK + (DKx )T EKy − (DKy )T EKx −
3∑

f=1
EK γ5H

K +
3∑

f=1
FKf γ5 λ3 = 0 .

(g) Discretization of equation (7.6g)
We discretize the last equation of the local problem (7.6g) on x and y direction. Taking • = x, y, we have:∫

K

JK• ϕKi −
∫
K

σK EK• ϕ
K
i −

∫
K

pKh L ∂ϕKi
∂•

+
∫
∂K

Ln• λ2 ϕ
K
i +

∫
K

iω ρKf L uK• ϕKi = L
∫
K

fw• ϕ
K
i ,

which is written in terms of local matrices and unknowns from equations (7.11) and (7.10) as

MKJK• −MKσK EK• − DK• L pK +
3∑

f=1
QK•f Lλ2 + MK iω ρKf L uK• = LCK2• .

Local system
The discretization of the local problem (7.6) detailed above can be written as a linear system of the form:

AKWK + BKΛK = CKsource ,

where WK and ΛK have been defined in (7.10). The matrix AK is of dimension 13 dKi ×13dKi , BK of size 13 dKi ×12dFi ,
and CKsource is the matrix of the external forces of dimension 13 dKi . The elementary matrix AK is written as:

AK =

 AKporo AKcoupling
EM→poro

AKcoupling
poro→EM

AKEM

 .

The expression of AKporo (of dimension 8 dKi × 8dKi ) corresponds to the matrix for poroelasticity with no electrokinetic
coupling (see [7]). Similarly, the expression AKEM (of dimension 5 dKi × 5dKi ) corresponds to the matrix for Maxwell’s
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equations. Matrices AKcoupling
EM→poro

(of dimension 8 dKi × 5dKi ) and AKcoupling
poro→EM

(of dimension 5 dKi × 8dKi ) represent the

electrokinetic coupling. The matrix AKporo is the same as for poroelasticity, and is given in Appendix B.1.1. The
electromagnetic matrix AKEM is given in equation (G.24), taking δ0 = ε0. Then, the coupling matrices AKcoupling

EM→poro

and

AKcoupling
poro→EM

are expressed as:

AKcoupling
EM→poro

=



0 0 0 0 0
0 0 0 0 0

− iωρdynMKL 0 0 0 0
0 − iωρdynMKL 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


,

and

AKcoupling
poro→EM

=


0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

MK iωρfL 0 0 0 0 0 0 −DKx L
0 MK iωρfL 0 0 0 0 0 −DKy L

 .

The unknown ΛK is composed of 4 times 3 subblocks corresponding to the four Lagrange unknowns (three poroe-
lastic variables and one electromagnetic variable) decomposed on the three faces of the triangle. Hence, BK has the
form:

BK =

 BKporo BKcoupling
EM→poro

BKcoupling
poro→EM

BKEM

 .

BKporo corresponds to the matrix for poroelasticity and is given in Appendix B.1.1. The matrix BKEM is given in
equation (G.25). BKcoupling

EM→poro

is written as

BKcoupling
EM→poro

=
(
Bλ3,1

coupling
EM→poro

Bλ3,2
coupling
EM→poro

Bλ33
coupling
EM→poro

)
, with Bλ3,f

coupling
EM→poro

= 0 , for f = 1, 2, 3 .

Similarly, the block BKcoupling
poro→EM

is decomposed as:

BKcoupling
poro→EM

=
(
Bλ1x,1

coupling
poro→EM

Bλ1x,2
coupling
poro→EM

Bλ1x,3
coupling
poro→EM

B
λ1y,1
coupling
poro→EM

B
λ1y,2
coupling
poro→EM

B
λ1y,3
coupling
poro→EM

Bλ2,1
coupling
poro→EM

Bλ2,2
coupling
poro→EM

Bλ2,3
coupling
poro→EM

)
,

with

Bλ1x,f
coupling
poro→EM

= 0 , B
λ1y,f
coupling
poro→EM

= 0 , Bλ2,f
coupling
poro→EM

=


0
0
0

LQβ(K,f)
xf

LQβ(K,f)
yf

 , for f = 1, 2, 3 .

Finally the local source vector is:

CKsource =
(
CK1 CK2 CK3 CK4 0 0 0 0 CK5 CK6 0 0 0

)T
.

Now that we have constructed the elementary problems on every cell, we connect them thanks to the physical
transmission conditions.
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7.2.2 Transmission conditions
We consider an interior face F of the triangulation Th such as F = ∂K ∩ ∂K ′ which means that β(K, f) = β(K ′, g).
This means that the global index of the f -th face of K is the same as g-th face of K ′. We define n the unit normal
vector of the face F outwardly directed to element K. Using the decomposition of the test functions η, ξ and ν, in
basis functions ψFi we discretize the transmission conditions (7.7) for this face, and write them with the elementary
matrices and local unknowns defined in equations (7.11) and (7.10).

(a) Discretization of equation (7.7a)
The first transmission equation (7.7a) is expressed as:

∑
K∈Th

∫
∂K

(
(τKh n) · η − γ1(uKh − λ1) · η − γ3 (pKh − λ2)n · η =

∑
F∈Fext

∫
F

f inc · η ,

The discretization of the above equation along x and y direction gives, with • = x, y:

∑
K∈Th

∫
∂K

(
τKx• nx ϕ

K
j ψ

F
i dS + τKy• ny ϕ

K
j ψ

F
i dS − γ1 ϕ

K
j uK• ψFi dS + γ1 ψ

F
j λ1• ψ

F
i dS

− γ3 n• pKϕKj ψFi dS + γ3 n• λ2 ψ
F
j ψ

F
i dS

)
=

∑
F∈Fext

∫
F

finc,•ψ
F
i dS .

Next, we write these equations in terms of the elementary matrices defined in equation (7.11). We have:∑
K∈Th

(
(Qβ(K,f)

x )T τKx• + (Qβ(K,f)
y )T τKy• − γ1 (Fβ(K,f))T uK• + γ1 Gβ(K,f) λ1•

− γ3 (Qβ(K,f)
• )T pK + γ3 Hβ(K,f)

• λ2

)
=

∑
F∈Fext

∫
F

finc,• ψ
F
i dS .

(7.22)

(b) Discretization of equation (7.7b)
The second transmission equation is:∑

K∈Th

∫
∂K

(
(wK

h · n) ξ − γ2 (pKh − λ2) ξ − γ4 (uKh − λ1) · n ξ
)

=
∑

F∈Fext

∫
F

ginc ξ ,

which is discretized by replacing the test-functions by the basis functions and by introducing the local unknowns
defined in (7.10) to give:∑

K∈Th

∫
∂K

(
wKx ϕKj nKx ψFi dS + wK

y ϕ
K
j n

K
y ψ

F
i dS − pK ϕKj γ2 ψ

F
i dS + λ2 ψ

F
j γ2 ψ

F
i dS − uKx ϕKj γ4 n

K
x ψ

F
i dS

− uKy ϕKj γ4 n
K
y ψ

F
i dS + λK1x ψ

F
j γ4 n

K
x ψ

F
i dS + λK1y ψ

F
j γ4 n

K
y ψ

F
i dS

)
=

∑
F∈Fext

∫
F

ginc ψ
F
i .

This can be expressed in terms of the matrices defined in equation (7.11):∑
K∈Th

∫
∂K

(
(Qβ(K,f)

x )T wKx + (Qβ(K,f)
y )T wKy − (Fβ(K,f))T pK γ2 + Gβ(K,f) λ2 γ2 − (Qβ(K,f)

x )T uKx γ4

− (Qβ(K,f)
y )T uKy γ4 + Hβ(K,f)

x λ1x γ4 + Hβ(K,f)
y λ1y γ4

)
=

∑
F∈Fext

∫
F

ginc ψ
F
i .

(7.23)

(c) Discretization of equation (7.7c)
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The third transmission equation is expressed as:

∑
K∈Th

∫
∂K

(
(n×EK

h ) ν− γ5
(
HK
h − λ3

)
ν

)
=

∑
F∈Fext

∫
F

hinc ν .

The above expression can be rewritten in terms of the basis functions and the local unknowns defined in (7.10):

∑
K∈Th

∫
∂K

((
nKx E

K
y − nKy E

K
x

)
ϕKj ψ

F
i dS − γ5

(
HKϕKj − λ3ψ

F
j

)
ψFi dS

)
=

∑
F∈Fext

∫
F

hinc ψ
F
i ,

which can be rewritten using the elementary matrices given in (7.11):

∑
K∈Th

(
(Qβ(K,f)

x )TEKy − (Qβ(K,f)
y )TEKx − (Fβ(K,f))THK γ5 + Gβ(K,f)λ3 γ5

)
=

∑
F∈Fext

∫
F

hinc ψ
F
i . (7.24)

Local system
The transmission conditions, equations (7.22), (7.23), (7.24) form the following system:∑

K∈Th

(AKHDG)T
(
PKWK + TKAKHDGΛ

)
= Sinc ,

where Sinc represents the matrices of the incident forces. Similarly to AK and BK , the elementary matrix PK has the
form:

PK =

PKporo 0

0 PKEM

 ,

where PKporo, corresponds to the matrix for poroelasticity, given in Appendix B.1.1, and PKEM to the electromagnetic
matrix given in equation (G.26).

Similarly, TK has the form:

TK =

TKporo 0

0 TKEM

 ,

where the poroelastic matrix TKporo is given in Appendix B.1.1, and the electromagnetic matrix TKEM is given in (G.26).
Remark 7.1. For a face on the boundary of the domain, we can impose one of the eight types of boundary conditions,
see Section 5.4. For type 1, we impose the continuity of τ̂ n, ŵ ·n and n×Ê. This means that the boundary conditions
for an external face are treated the same way as the transmission conditions (7.7) for an interior interface. However, if
we choose to impose a different boundary condition, the expression of the elementary matrices PK and TK is modified.
Here, we detail the boundary condition of type 8, as in equation (5.10b). The other formulations can be easily deduced
from these two formulations. This is similar to what has been done for poroelasticity. For the boundary condition of
type 8, we impose the condition in the strong way in the linear system, which means that we impose the value of û,
p̂, and Ĥ. From equation (5.10b), we impose:

λ1 = finc , λ2 = ginc , λ3 = hinc .

We consider an element with the first local face on the boundary of the mesh. In this case, the matrices PKporo and
TKporo are given in Appendix B.2, PKEM and PKEM in (G.27). The corresponding lines of PKcoupling

poro→EM

, and TKcoupling
poro→EM

, i.e.,

lines 1, 4 and 7 are equal to zero, and the first line of PKcoupling
EM→poro

and TKcoupling
EM→poro

are zero.

7.3 Resolution using HDG method
Here, we detail the algorithm for the resolution of Pride’s equations using the proposed HDG method. This is very
similar to what is done for poroelasticity, however since there are coupling terms to handle with, we detail the method
in the following. For an element K, we have the local system:

AWK + BΛK = CKsource (7.25)
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and the global system ∑
K∈Th

(AKHDG)T
(
PKWK + TKAKHDGΛ

)
= Sinc . (7.26)

If K is an interior element, SKinc = 0. Let Nface be the number of edges of the mesh in two dimensions and number
of faces in three dimensions. We define the global vector:

Λ = (λ1
1, λ

1
2, λ3

1, ...., λ
Nface
1 , λ

Nface
2 , λ3

Nface) .

We also define the local trace operator AHDG that links the local degrees of freedom of an element K to the global
degrees of freedom of the Lagrange multiplier Λ. This means that, for an element K,

AKHDG Λ = ΛK .

Equation (7.25) is written as:
AKWK = CKsource − BKAKHDGΛ .

Assuming that AK can be inverted for each element, we have:

WK = −(AK)−1BKAKHDGΛ + (AK)−1CKsource . (7.27)

Then WK is replaced in (7.26) by its expression in (7.27):∑
K∈Th

(AKHDG)T
(
PK(AK)−1CKsource − PK(AK)−1BKAKHDGΛ + TKAKHDGΛ

)
= Sinc ,

which means,∑
K∈Th

(AKHDG)T
(
−PK(AK)−1BK + TK

)
AKHDGΛ = −

∑
K∈Th

(AKHDG)T PK(AK)−1 CKsource + Sinc .

The global problem reads as:
KΛ = S ,

with K =
∑
K∈Th

(AKHDG)T
(
−PK(AK)−1BK + TK

)
and S = −

∑
K∈Th

(AKHDG)T PK(AK)−1 CKsource + Sinc.

The resolution can be divided in four steps, detailed in the following algorithm. First, we build the stiffness matrix
K and the source matrix S. These calculations can be done element by element. Then, the global system is resolved
and the solution is constructed. We use the MUMPS direct solver [3] for the resolution of the linear system, and this
is the only step that is global.



7.4. NUMERICAL RESULTS IN TWO DIMENSIONS 273

Step 1: Construction of the stiffness matrix
for K = 1, Nelem do

Compute the matrices MK and DKv , with v = x, y.
for f = 1, 3 do

Compute the matrices Eβ(K,f), Fβ(K,f), Gβ(K,f)
v , Qβ(K,f)

v , Jβ(K,f)
v , Hβ(K,f)

v , with v = x, y.
end for
Compute the matrices AK ,(AK)−1, BK .
Compute (AK)−1B.
Compute PK , and TK with the corresponding boundary conditions.
Compute KK = PK(AK)−1BK + TK .
Use the AHDG operator to determine the global degrees of freedom of the element and fill the global matrix K.

end for

Step 2: Construction of the source term
Localisation of the point source
for K = 1, Nelem do

Compute the local matrices CKsource and SKinc.
Compute PK(AK)−1CKsource.
Use the AHDG operator to determine the global degrees of freedom of the element and fill the global matrix S.

end for

Step 3: Resolution of the global system
Resolution of KΛ = S with MUMPS .

Step 4: Reconstruction of the solution
for K = 1, Nelem do

Compute the solutions WK using the AKHDG operator:
WK = −(AK)−1BKAKHDGΛ.

end for
Algorithm 3: Resolution with HDG Method

7.4 Numerical results in two dimensions
In this section, we validate the HDG method detailed in Section 7.1, and analyze the performance of our numerical
solver. First, we introduce the geophysical media considered in the numerical tests, and the quantities used to assess
the solver. Then, in Section 7.4.2, we validate the code in two dimensions by comparing the HDG numerical solutions
with reference ones. We carry out numerical tests to study the effect of stabilization parameters introduced in the
method on the numerical error, and the order of convergence. We show numerically that the presence of some of
the stabilization parameters leads to important errors, and prevents from obtaining an optimal order of convergence.
Finally, in Section 7.4.3, we study numerically the influence of the values of the stabilization parameters and the
frequency on the well-posedness of the problem.

7.4.1 Parameterization of the computational domains and quantities of interest
In the numerical experiments, we work with three different materials: two kinds of sand and freshwater. The cor-
responding input physical parameters are listed in Table 7.1. The other parameters are deduced using the relations
given in Section 5.1.

To assess the accuracy and the efficiency of the HDG numerical method, we will use the following quantities:

• The relative numerical error eh(U) is computed from the knowledge of the numerical solution denoted by Unumeric
and the reference solution Ureference, following the formula:

eh(U) = ||Unumeric − Ureference||2
||Ureference||2

, with ||U||2 =
( ∑
K∈Th

∫
K

|U|2
) 1

2

. (7.28)

• To study the stability of the discretization, we consider the condition number κ, defined, for a matrix A as
κ = ‖A−1‖ ‖A‖, where ‖A‖ stands for a matrix norm of A. We employ MUMPS [3] or LAPACK [4] to compute
κ with the L∞ norm, ‖A‖∞ = maxi

(∑n
j=1 |aij |

)
, where aij are the coefficients of A.
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Physical parameters Sand1 Freshwater Sand2
Porosity φ 0.3 0.15 0.4
Fluid Density ρf (103kg.m−3) 1 1 0.998
Solid Density ρs (103kg.m−3) 2.7 2.7 2.5
Viscosity η (10−3Pa.s) 1 1 1
Permeability κ0 (10−9m2) 0.01 0.001 0.00102
Tortuosity t 3 3 1.75
Solid Bulk Modulus ks (GPa) 36 36 36
Fluid Bulk Modulus kf (GPa) 2.2 2.2 2.5
Frame Bulk Modulus kfr (GPa) 7 9 13.16e-3
Frame Shear Modulus µfr (GPa) 5 7 7.9e-3
Solid permittivity κf 4 4 4
Fluid permittivity κs 80 80 80
Conductivity σ (10−4 S.m−1) 3.88 3.88 86.871
Zeta potential ζ (V) 0.1 0.1

Table 7.1: Summary of the physical parameters of media in consideration. The parameters for Sand1 and Freshwater
are taken from [71][Table 1].

7.4.2 Impact of the stabilization parameters on the accuracy of the numerical solution
In Section 7.1, we have expressed the numerical traces τ̂h, ŵh, Êh in the most general way, because we have written
the three traces as functions of (uh−λ1), (ph−λ2), and (Hh − λ3), see (7.4). For that, we have used five stabilization
parameters, denoted γi, for i = 1, 5. We recall the expression of the numerical traces below:

τ̂h n = τh n− γ1(uh − λ1)− (ph − λ2)γ3 n ,

ŵh · n = wh · n− γ2(ph − λ2)− γ4(uh − λ1) · n ,

n× Êh = n×Eh − γ5 (Hh − λ3) ,

(7.29)

In the following, we are going to determine if, in (7.29), all the stabilization parameters are necessary. For poroelasticity,
we have observed that we need the four parameters γ1, γ2, γ3 and γ4 to be different from zero to obtain the optimal
order (p+ 1) of convergence of the HDG method. In addition, if the four parameters are zero, we obtain an order of
convergence p. From now on, for simplicity, we consider that the four poroelastic stabilization parameters γ1, γ2, γ3
and γ4 are taken equal. For the electromagnetic wave equation, the presence of γ5 is necessary to obtain an optimal
convergence order of the method, see Appendix G.

We consider the propagation of an incident plane wave in a bounded domain of size D = [0 : 20] × [0 : 20]m
composed of homogeneous sand. The physical parameters of the material are given in Table 7.1. The domain D is
discretized by an unstructured mesh composed of 1239 triangles. On the edges of the mesh, we impose the exact
solution of the plane wave, which has been obtained in Section 5.5. We consider γi = 1, for i = 1, 5. We will work
with the four kinds of incident plane waves (P, B, S, EM). We present in Figure 7.1 the solution on the solid velocity
ux for the four kinds of plane waves. For the Biot incident wave, we observe the attenuation of the wave. For the EM
wave, we consider a significantly greater frequency than for the seismic waves, because the velocity of the EM wave
has an order of magnitude much greater than the others. In Tables 7.2 to 7.5, we show the relative error (defined in
(7.28)) of the numerical fields, for different kinds of incident waves.

eh(ux) eh(uy) eh(wx) eh(wy) eh(τxx) eh(τyy) eh(τxy) eh(p)

4.09e-3 4.46e-3 3.15e-2 4.29e-2 1.92e-3 1.98e-3 3.59e-3 2.29e-3
eh(Ex) eh(Ey) eh(H) eh(Jy) eh(Jx)

2.62e-2 3.26e-2 inf 69 106

Table 7.2: Relative errors (%) on the components of the unknowns of the HDG method for an incident P-wave, at
frequency f = 500Hz with θ = 0.58 rad and boundary conditions of type 1, using an order of discretization 4.



7.4. NUMERICAL RESULTS IN TWO DIMENSIONS 275

(a) Incident P-wave: solid velocity ux, with f =
500Hz.

(b) Incident B-wave: solid velocity ux, with f =
100Hz.

(c) Incident S-wave: solid velocity ux, with f =
300Hz.

(d) Incident EM-wave: solid velocity ux, with f =
30MHz.

Figure 7.1: Plane waves in homogeneous sand: imaginary part of the horizontal solid velocity ux for the four kinds of
plane waves.

For the incident P-wave, cf. Table 7.2, the poroelastic variables and the electric field are well simulated and the
relative error is small (less than 10−2%). Note that the error on the magnetic field H is infinite because in the case
of compression waves, the exact magnetic field is zero, hence the relative error is infinite. The relative error on the
current density J is also non-negligible because the norm of the exact solution is very small (1010), hence the numerical
method cannot attain this precision. For the incident B-wave, we retrieve the same results as for an incident P-wave,

eh(ux) eh(uy) eh(wx) eh(wy) eh(τxx) eh(τyy) eh(τxy) eh(p)

3.30e-2 3.59e-2 1.61e-2 1.97e-2 9.19e-3 4.71e-3 4.54e-3 2.33e-3
eh(Ex) eh(Ey) eh(H) eh(Jy) eh(Jx)

1.36e-2 1.63e-2 inf 157 238

Table 7.3: Relative errors (%) on the components of the unknowns of the HDG method for an incident B-wave, at
frequency f = 100Hz with θ = 0.58 rad and boundary conditions of type 1, using an order of discretization 4.

see Table 7.3. As before, the relative error on the current density J remains however non-negligible because the norm
of the exact solution is very small.

For the incident S-wave, cf. Table 7.4, the relative error for the poroelastic variables is small (less than 10−2%).
For the pressure, as we are now studying a transverse shear wave, the exact solution is equal to zero, hence the
numerical relative error is infinite. For the electromagnetic fields, the magnetic field H and the current density J
are well simulated. For the electric field E, the relative error remains non-negligible, because the norm of the exact
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eh(ux) eh(uy) eh(wx) eh(wy) eh(τxx) eh(τyy) eh(τxy) eh(p)

3.63e-3 3.41e-3 3.03e-2 2.02e-2 3.45e-3 3.69e-3 3.87e-3 inf
eh(Ex) eh(Ey) eh(H) eh(Jy) eh(Jx)

3.32e4 2.10e4 2.74e-3 2.35e-2 1.48e-2

Table 7.4: Relative errors (%) on the components of the unknowns of the HDG method for an incident S-wave, at
frequency f = 300Hz with θ = 0.58 rad and boundary conditions of type 1, using an order of discretization 4.

solution is very small (10−10), hence the numerical method cannot attain this precision and the numerical error can
not compensate it. For the incident EM-wave, see Table 7.5, the approximation of the electromagnetic variables and

eh(ux) eh(uy) eh(wx) eh(wy) eh(τxx) eh(τyy) eh(τxy) eh(p)

2.42e-3 2.28e-3 2.42e-3 2.28e-3 9.35 13.9 4.11e-2 inf
eh(Ex) eh(Ey) eh(H) eh(Jy) eh(Jx)

2.42e-3 2.28e-3 2.00e-3 2.42e-3 2.27e-3

Table 7.5: Relative errors (%) on the components of the unknowns of the HDG method for an incident EM-wave, at
frequency f = 300MHz with θ = 0.58 rad and boundary conditions of type 1, using an order of discretization 4.

the velocities u and w is accurate, with a relative error smaller than 10−2%. The incident wave is a transverse wave,
which means the exact pressure p is equal to zero, hence the numerical relative error is infinite. The error on the solid
stress τ is non-negligible, because the norm of the exact solution is very small.

We are now studying the order (p + 1) of convergence of the method, to make sure that we obtain the optimal
order of convergence of the HDG method. We present the order of convergence of the method in terms of the size of
mesh. For that, we use four meshes with straight edges generated by the software Triangle. The refinement of a given
mesh consists in dividing each of its cells into four cells. We denote by h the size of the mesh, which corresponds to
the longest edge of the elements in the mesh. We present the convergence curves for the case γ1→5 = 1 in Figure 7.2,
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Figure 7.2: Convergence curves of HDG method (component ux) for several orders of interpolation. Results for order
1 are plotted in blue , for order 2 in purple , for order 3 in orange and for order 4 in green .

where we display the relative error and thus the convergence order for the x-component ux as a function of the size
of the mesh. We observe that the solid velocity has a p+ 1 order of convergence. In Table 7.6, we give the results of
the order of convergence for all the fields, depending on the values of the stabilization parameters. These results show
that the presence of poroelastic stabilization parameters γ1→4 and the electromagnetic stabilization parameter γ5 is
necessary to have the optimal order of convergence.

In the following, we consider that the stabilization parametrs γ1, γ2, γ3, γ4 and γ5 are equal. We denote γi = γ,
for i = 1, 5.
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Stabilization parameters u w τ p E H J

1111 1 p+ 1 p+ 1 p+ 1 p+ 1 p+ 1 p+ 1 p+ 1

1111 0 p+ 1 p+ 1 p+ 1 p+ 1 p p p+ 1

0000 1 p p p p p+ 1 p+ 1 p

Table 7.6: Convergence order of the HDG method depending on the value of the stabilization parameters.

7.4.3 Numerical analysis of the well-posedness
In this section, we study numerically the well-posedness of the problem by analyzing the influence of the value of
stabilization parameter γ and the frequency on the condition number of the linear system. We consider the propagation
of a P plane wave in the domain D, in three different materials, sand1, freshwater, and sand2. The materials are
described in Table 7.1.

Influence of the stabilization parameters
We first consider the question of well-posedness at the local level for the local matrix AK , and secondly for the

global matrix K.

• For the reconstruction of WK , we have to invert the elementary matrix AK , see equation (7.27). Hence we study
the condition number of AK to evaluate if the calculation of (AK)−1 can be problematic. If the condition number
is too high, the inversion will be less accurate. Since this inversion is performed on every element of the mesh,
we consider the maximum value of the condition number, CTh = max

K∈Th
‖(AK)−1‖‖AK‖. For three different media

and four different interpolation orders, we show the maximal condition number of AK for every element of the
mesh in infinity norm as a function of the values of the stabilization parameters in Figure 7.3. We observe that for
all interpolation orders for the three materials, the condition number increases with the stabilization parameters.
For orders 2,3 and 4, the value of the condition number is close to 1016 for the stabilization parameter γ greater
than 104. This value of the condition number can start to be problematic for the inversion of AK . Moreover,
if the stabilization parameter γ is lower than 102, the condition number will be smaller than 1010. Hence, we
suggest to keep a value of γ smaller than 102 to have the smallest condition number possible.

• Next, we focus on the global system KΛ = S. We study numerically the question of the well-posedness by
computing the condition number of the global matrix K. If it is not too high, it ensures that the matrix can be
inverted. As formerly, we consider three different media (see Table 7.1). The condition number of K is presented
in Figure 7.4 as a function of the stabilization parameter γ. We observe that the curves have similar trends for
the three materials and every interpolation order. For γ between 10−6 and 1, the condition number decreases,
while for γ greater than 1, the condition number increases. For the three materials in consideration and the four
interpolation orders, the condition number stays below 108, which means that the inversion of the global system
will be obtained with a good accuracy. However, in order to attain the best precision, we suggest to choose γ
between 10−2 and 102.

Influence of the frequency
We continue the numerical study of the well-posedness by analyzing the influence of the frequency on the condition

number of the linear system. Note that, due to their dependency on the frequency, the parameters change with
frequency in the experiments. As previously done, we first consider the local system and then the global one. We set
γ1→5 = 1 and γ6→9 = 0.

• For the three different media described in Table 7.1, we show the maximal condition number of the matrices AK
on each element as a function of the frequency in Figure 7.5. For the three materials, and for the considered
frequencies, the condition number stays stable for the four orders of interpolation, and below 10−10. This means
that the elementary matrices AK can be inverted.

• Finally, the condition number of the global matrix K is presented in Figure 7.6 as a function of the frequency.
We observe that, overall, the condition number of the elementary matrix decreases with the frequency, and stays
below 107, which means that the inversion of the global system will be obtained with good accuracy.

As a conclusion, the condition number does not increase with the accuracy (or the number of points per wavelength),
and we can obtain both a well conditioned system and an accurate solution.
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Figure 7.3: Maximal condition number (infinity norm) on all the elementary matrices AK as a function of the sta-
bilization parameters, for three materials and three interpolation orders at frequency f = 1kHz. The stabilization
parameters γ1→5 are set at the same value γ, and γ6→9 = 0. The characteristics of the media are presented in Table
7.1. The results for sand1 are represented in blue , for freshwater in red and for sand2 in green .
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Figure 7.4: Condition number (infinity-norm) of the global matrix K as a function of the stabilization parameters, for
three materials and three interpolation orders at frequency f = 1kHz. The stabilization parameters γ1→5 are set at
the same value γ, and γ6→9 = 0. The characteristics of the media are presented in Table 7.1. The results for sand1
are represented in blue , for freshwater in red and for sand2 in green .
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Figure 7.5: Maximal condition number (infinity norm) of the matrix AK as a function of the frequency, for three
materials and four interpolation orders. The characteristics of the media are presented in Table 7.1. The stabilization
parameters are γ1→5 = 1 and γ6→9 = 0. The results for sand1 are represented in blue , for freshwater in red
and for sand2 in green .
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Figure 7.6: Condition number (infinity-norm) of the global matrix K as a function of the frequency, for three materials
and three interpolation orders. The characteristics of the media are presented in Table 7.1. The stabilization parameters
are γ1→5 = 1 and γ6→9 = 0. The results for sand1 are represented in blue , for freshwater in red and for
sand2 in green .
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7.5 Discretization of the HDG formulation in three-dimensions
We consider the stabilization matrices defined in (7.4), to be diagonal, i.e. Si = γi I for i = 1, 5. As for Maxwell’s
equations, we also consider that we only penalize the tangential component of the magnetic field Hh, see Appendix
G.4. In addition, we have seen in Section 7.4, that the coupling stabilization parameters γ6→9 should be taken as zero.
In this way, the expression (7.4) simplifies to

τ̂h n = τh n− γ1(uh − λ1)− (ph − λ2)γ3 n ,

ŵh · n = wh · n− γ2(ph − λ2)− γ4(uh − λ1) · n ,

n× Êh = n×Eh − γ5
(
Ht

h − λ3
)
.

The coupling tensor matrix L has the form L = L I. In the formulation, the test functions are decomposed in the
basis functions of Vp as ϕKi for ũ, w̃, τ̃ , p̃, ẽ, h̃, j̃ and as ψFi for η, ξ and ν. We define two unknown vectors WK and
ΛK respectively of size 22 dKi and 26 dFi as:

WK = (uKx , uKy , uKz , wKx , wKy , wKz , τKxx, τKyy, τKzz, τKyz, τKxz, τKxy, pK , EKx , EKy , EKz , HK
x , H

K
y , H

K
z , J

K
x , J

K
y , J

K
z )T ,

(7.30a)
and

ΛK =(λβ(K,1)
1x , λ

β(K,2)
1x , λ

β(K,3)
1x , λ

β(K,4)
1x , λ

β(K,1)
1y λ

β(K,2)
1y , λ

β(K,3)
1y , λ

β(K,4)
1y , λ

β(K,1)
1z λ

β(K,2)
1z , λ

β(K,3)
1z , λ

β(K,4)
1z ,

λ
β(K,1)
2 , λ

β(K,2)
2 , λ

β(K,3)
2 , λ

β(K,4)
2 , λ

β(K,1)
3x , λ

β(K,2)
3x , λ

β(K,3)
3x , λ

β(K,4)
3x ,

λ
β(K,1)
3y , λ

β(K,2)
3y , λ

β(K,3)
3y , λ

β(K,4)
3y , λ

β(K,1)
3z , λ

β(K,2)
3z , λ

β(K,3)
3z , λ

β(K,4)
3z )T ,

(7.30b)

where β(K, f) is the global index of the f -th face of the element K. We also define the following elementary matrices
MK , DK , EK , JK of size dKi × dKi , FK , QK of size dKi × dFi , and FK , QK of size dFi × dFi :

MK
ij =

∫
K

ϕKi ϕ
K
j dX , DKvij =

∫
K

ϕKj
∂ϕKi
∂v

dX , EFij =
∫
F

ϕKi ϕ
K
j dS , JFvij =

∫
F

ϕKi ϕ
K
j nv dS ,

FFij =
∫
F

ψFj ϕ
K
i dS , QFvij =

∫
F

ψFj ϕ
K
i nv dS , GFij =

∫
F

ψFj ψ
F
j dS , HFvij =

∫
F

ψFi ψ
F
j nv dS ,

(7.31)

with v = x, y, z. Finally, we define the elementary source matrices of size dKi(
CK1x

)
i

=
∫
K

fKux ϕ
K
i ,

(
CK1y

)
i

=
∫
K

fKuy ϕ
K
i ,

(
CK1z
)
i

=
∫
K

fKuz ϕ
K
i ,(

CK2x
)
i

=
∫
K

fKwx ϕ
K
i ,

(
CK2y

)
i

=
∫
K

fKwy ϕ
K
i ,

(
CK2z
)
i

=
∫
K

fKwz ϕ
K
i ,(

CK3x
)
i

=
∫
K

fKCx ϕ
K
i ,

(
CK3y

)
i

=
∫
K

fKCy ϕ
K
i ,

(
CK3z
)
i

=
∫
K

fKCz ϕ
K
i .

7.5.1 Local problem
(a) Discretization of equation (7.6a)

Discretizing equation (7.6a) along the x− y− and z− component gives, for • = x, y, z:∫
K

iω ρa u• ϕKi +
∫
K

iω ρf w• ϕKi −
∫
K

∂τx•
∂x

ϕKi −
∫
K

∂τy•
∂y

ϕKi −
∫
K

∂τz•
∂z

ϕKi +
∫
∂K

γ1 u•ϕKi −
∫
∂K

γ1 λ1• ϕ
K
i

+
∫
∂K

γ3 pKh n• ϕKi −
∫
∂K

γ3 λ2 n• ϕ
K
i =

∫
K

fu• ϕ
K
i .

This gives in terms of the local matrices and the unknown vectors defined respectively in equations (7.31) and (7.30a),
for • = x, y, z:

iω ρaMKuK• + iω ρf MKwK• − (DKx )T τKx• − (DKy )T τKy• − (DKz )T τKz• +
4∑

f=1
γ1 Eβ(K,f) uK• −

4∑
f=1

γ1 Fβ(K,f) λ
β(K,f)
1•

+
4∑

f=1
γ3 Jβ(K,f)

• pK −
4∑

f=1
γ3 Qβ(K,f)

• λ
β(K,f)
2 = CK1• .
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(b) Discretization of equation (7.6b)
The discretization of (7.6b) along x, y, and z direction is, for • = x, y, z:∫

K

iω ρf uK• ϕKi +
∫
K

iω ρdyn wK• ϕKi −
∫
K

pKh
∂ϕKi
∂•

+
∫
∂K

λ2 n• ϕ
K
i −

∫
K

iω ρdyn LEK• ϕKi =
∫
K

fw• ϕ
K
i .

In terms of the local matrices defined in equation (7.31) and the unknown vectors in (7.30a), the above equations read
as, for • = x, y, z:

iω ρf MKuK• + iω ρdyn MKwK• − DKx pK −
3∑

f=1
Qβ(K,f)
• λ

β(K,f)
2 − iω ρdyn LMKEK• = CK2• .

(c) Discretization of equation (7.6c)
The constitutive law expressed in (7.6c) is discretized in six equations corresponding to the six values of the test
function τ̃ . Using the Voigt notation for τ , α and C, with • = 1, 6, we have:∫

K

iω τ• ϕKi +
∫
K

iω α•pKh ϕKi +
∫
K

(
C• 1

∂ϕKi
∂x

+ C• 6
∂ϕKi
∂y

+
∫
K

C• 5
∂ϕKi
∂z

)
uKx

+
∫
K

(
C• 6

∂ϕKi
∂x

+ C• 2
∂ϕKi
∂y

+ C• 4
∂ϕKi
∂z

)
uKy +

∫
K

(
C• 5

∂ϕKi
∂x

+ C• 4
∂ϕKi
∂y

+ C• 3
∂ϕKi
∂z

)
uKz

−
∫
∂K

(
C• 1 ϕ

K
i nx + C• 6 ϕ

K
i ny + C• 5 ϕ

K
i nz

)
λ1x −

∫
∂K

(
C• 6 ϕ

K
i nx + C• 2 ϕ

K
i ny + C• 4 ϕ

K
i nz

)
λ1y

−
∫
∂K

(C• 5 ϕ
K
i nx + C• 4 ϕ

K
i ny + C• 3 ϕ

K
i nz)λ1z = 0 .

Then, the equations are expressed in terms of local matrices and the unknown vectors defined in (7.30a) and (7.31):

iωMK τK• + iωαK• MKpK +
(
CK• 1 DKx + CK• 6DKy + CK• 5DKy

)
uKx +

(
CK• 6DKx + CK• 2DKy + CK• 4DKz

)
uKy

+
(
CK• 5DKx + CK• 4DKy + CK• 3DKz

)
uKz −

4∑
f=1

(
CK• 1Qβ(K,f)

x + CK• 6Qβ(K,f)
y + CK• 5Qβ(K,f)

z

)
λ
β(K,f)
1x

−
4∑

f=1

(
CK• 6Qβ(K,f)

x + CK• 2Qβ(K,f)
y + CK• 4Qβ(K,f)

z

)
λ
β(K,f)
1y

−
4∑

f=1

(
CK• 5Qβ(K,f)

x + CK• 4Qβ(K,f)
y + CK• 3Qβ(K,f)

z

)
λ
β(K,f)
1z = 0 .

(d) Discretization of equation (7.6d)
The discretization of equation (7.6d) gives:∫

K

iωpKh ϕKi +
∫
K

M
∂wKx
∂x

ϕKi +
∫
K

M
∂wKy
∂y

ϕKi +
∫
K

M
∂wKz
∂z

ϕKi −
∫
∂K

MpKh γ2 ϕ
K
i +

∫
∂K

Mλ2γ2 ϕ
K
i

−
∫
∂K

Mγ4uKx nxϕKi −
∫
∂K

Mγ4uKy nyϕKi −
∫
∂K

Mγ4uKz nzϕKi +
∫
∂K

Mγ4λ1x nxϕ
K
i +

∫
∂K

Mγ4λ1y nyϕ
K
i

+
∫
∂K

Mγ4λ1z nzϕ
K
i −

∫
K

M(α11uKx + α12uKy + α13uKz )∂ϕ
K
i

∂x
−
∫
K

M(α12uKx + α22uKy + α23uKz )∂ϕ
K
i

∂y

−
∫
K

M(α13uKx + α23uKy + α33uKz )∂ϕ
K
i

∂z
+
∫
K

M(α11λ1x + α12λ1y + α13λ1z)nxϕKi

+
∫
K

M(α12λ1x + α22λ1y + α23λ1z)nyϕKi +
∫
K

M(α13λ1x + α23λ1y + α33λ1z)nzϕKi = 0 .
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In terms of the local matrices defined in equation (7.31) and the unknown vectors in (7.30a), the above equations are
written as

iωMK pK +MK(DKx )T wKx +MK(DKy )T wKy +MK(DKz )T wKz −
4∑

f=1
MKγ2 Eβ(K,f)pK +

4∑
f=1

MKγ2 λ
β(K,f)
2 Fβ(K,f)

−
4∑

f=1
MKγ4

(
Jβ(K,f)
x uKx + Jβ(K,f)

y uKy + Jβ(K,f)
z uKz

)
+

4∑
f=1

MKγ4

(
Qβ(K,f)
x λ

β(K,f)
1x + Qβ(K,f)

y λ
β(K,f)
1y + Qβ(K,f)

z λ
β(K,f)
1z

)

−MK DKx
(
αK11 uKx + αK12 uKy + αK13 uKz

)
+

4∑
f=1

MK
(
α11λ

β(K,f)
1x + αK12λ

β(K,f)
1y + αK13λ

β(K,f)
1z

)
Qβ(K,f)
x

−MK DKy
(
αK12 uKx + αK22 uKy + αK23 uKz

)
+

4∑
f=1

MK
(
αK12λ

β(K,f)
1x + αK22 λ

β(K,f)
1y + αK23 λ

β(K,f)
1z

)
Qβ(K,f)
y

−MK DKy
(
αK13 uKx + αK23 uKy + αK33 uKz

)
+

4∑
f=1

MK
(
αK13λ

β(K,f)
1x + αK23 λ

β(K,f)
1y + αK33 λ

β(K,f)
1z

)
Qβ(K,f)
z = 0 .

(e) Discretization of equation (7.6e)
Equation (7.6e) is discretized along x− component to give:∫

K

iω δ0EKx ϕKi +
∫
K

HK
y

∂ϕKi
∂z

−
∫
K

HK
z

∂ϕKi
∂y

−
∫
∂K

λ3ynz ϕ
K
i +

∫
∂K

λ3zny ϕ
K
i +

∫
K

JKx ϕKi =
∫
K

fCx ẽx ,

along y− component:∫
K

iω δ0EKy ϕKi −
∫
K

HK
x

∂ϕKi
∂z

+
∫
K

HK
z

∂ϕKi
∂x

+
∫
∂K

λ3xnz ϕ
K
i −

∫
∂K

λ3znx ϕ
K
i +

∫
K

JKy ϕKi =
∫
K

fCy ẽy ,

and along z− component:∫
K

iω δ0EKz ϕKi +
∫
K

HK
x

∂ϕKi
∂y

−
∫
K

HK
y

∂ϕKi
∂x

−
∫
∂K

λ3xny ϕ
K
i +

∫
∂K

λ3ynx ϕ
K
i +

∫
K

JKz ϕKi =
∫
K

fCz ẽz .

This is expressed in terms of local matrices (equation (7.31)) and the unknown vectors ((7.30a)):

MK iω δ0EKx + DKz H
K
y − DKy H

K
z −

4∑
f=1

QKzl λ
β(K,f)
3y +

4∑
f=1

QKyl λ
β(K,f)
3z + MKJKx = CK5 ,

MK iω δ0EKy − DKz H
K
x + DKx H

K
z +

4∑
f=1

QKzl λ
β(K,f)
3x −

4∑
f=1

QKxl λ
β(K,f)
3z + MKJKy = CK6 ,

and

MK iω δ0EKz + DKy H
K
x − DKx H

K
y −

4∑
f=1

QKyl λ
β(K,f)
3x +

4∑
f=1

QKxl λ
β(K,f)
3y + MKJKy = CK6z .

(f) Discretization of equation (7.6f)
The discretization of equation (7.6f) is:∫

K

iω µ0H
K
x ϕKi +

∫
K

(
∂EKz
∂y
−
∂EKy
∂z

)
ϕKi −

∫
∂K

γ5
(
Ht
x − λ3x

)
ϕKi = 0 ,∫

K

iω µ0H
K
y ϕKi +

∫
K

(
∂EKx
∂z
− ∂EKz

∂x

)
ϕKi −

∫
∂K

γ5
(
Ht
y − λ3y

)
ϕKi = 0 ,∫

K

iω µ0H
K
z ϕKi +

∫
K

(
∂EKy
∂x
− ∂EKx

∂y

)
ϕKi −

∫
∂K

γ5
(
Ht
z − λ3z

)
ϕKi = 0 .



7.5. DISCRETIZATION OF THE HDG FORMULATION IN THREE-DIMENSIONS 285

This is expressed with the local matrices and local unknowns that have been defined in equations (7.31) and (7.30a).

MK iω µ0H
K
x + (DKy )T EKz − (DKz )T EKy −

4∑
f=1

Eβ(K,f) γ5H
t
x +

4∑
f=1

Fβ(K,f) γ5 λ
β(K,f)
3x = 0 ,

MK iω µ0H
K
y + (DKz )T EKx − (DKx )T EKz −

4∑
f=1

Eβ(K,f)Ht
y +

4∑
f=1

Fβ(K,f) γ5 λ
β(K,f)
3y = 0 ,

MK iω µ0H
K
z + (DKx )T EKy − (DKy )T EKx −

4∑
f=1

Eβ(K,f)Ht
z +

4∑
f=1

Fβ(K,f) γ5 λ
β(K,f)
3z = 0 .

(g) Discretization of equation (7.6g)
We discretize the last equation of the local problem (7.6g) on x, y and z direction. We have for • = x, y, z:∫

K

JK• ϕKi −
∫
K

σ EK• ϕ
K
i −

∫
K

pKh L ∂ϕKi
∂•

+
∫
∂K

Ln• λ2 ϕ
K
i +

∫
K

iω ρf L uK• ϕKi = L
∫
K

fw• ϕ
K
i ,

which is written in terms of local matrices and unknowns from equations (7.31) and (7.30a) as

MKJK• −MKσ EK• − DK• L pK +
3∑

f=1
Qβ(K,f)
• Lλ2 + MK iω ρf L uK• = LCK2• .

Local system The discretization of the local problem (7.6) detailed above can be written as a system of the form:

AKWK + BKΛK = CKsource ,

where WK and ΛK have been defined in (7.30a). The matrix AK is of dimension 22 dKi ×22dKi , BK of size 22 dKi ×26dFi ,
and CKsource is the matrix of the external forces of dimension 22 dKi . The elementary matrix AK is written as:

AK =

 AKporo AKcoupling
EM→poro

AKcoupling
poro→EM

AKEM

 .

The expression of AKporo (of dimension 13 dKi × 13dKi ) corresponds to the matrix obtained for poroelasticity with no
electrokinetic coupling, given in Appendix B.1.2. Similarly, the matrix AKEM (of dimension 9 dKi ×9dKi ) corresponds to
the matrix obtained for Maxwell’s equations, see (G.33). Matrices AKcoupling

EM→poro

(of dimension 13 dKi × 9dKi ) and AKcoupling
poro→EM

(of dimension 9 dKi × 13dKi ) represent the electrokinetic coupling. The coupling matrices AK are given by:

AKcoupling
EM→poro

=



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

− iωρdynMKL 0 0 0 0 0 0 0 0
0 − iωρdynMKL 0 0 0 0 0 0 0
0 0 − iωρdynMKL 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0



,
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and

AKcoupling
poro→EM

=



0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

MK iωρfL 0 0 0 0 0 0 0 0 0 0 0 −DKx L
0 MK iωρfL 0 0 0 0 0 0 0 0 0 0 −DKy L
0 0 MK iωρfL 0 0 0 0 0 0 0 0 0 −DKz L


.

The unknown ΛK is composed of 7 times 4 columns corresponding to the four Lagrange unknowns (four poroelastic
variables and three electromagnetic variables) decomposed on the four faces of the element. Hence, BK has the form:

BK =

 BKporo BKcoupling
EM→poro

BKcoupling
poro→EM

BKEM

 .

BKporo corresponds to the matrix for poroelasticity, see Appendix B.1.2. BKEM is the electromagnetic matrix given in
(G.34). The coupling matrix BKcoupling

EM→poro

is written in 12 columns corresponding to the Lagrange unknown λ3. We have:

BKcoupling
EM→poro

= 0 .

The block BKcoupling
poro→EM

is decomposed as:

BKcoupling
poro→EM

=
(
Bλ1x,1

coupling
poro→EM

, Bλ1x,2
coupling
poro→EM

, Bλ1x,3
coupling
poro→EM

, Bλ1x,4
coupling
poro→EM

, B
λ1y,1
coupling
poro→EM

, B
λ1y,2
coupling
poro→EM

, B
λ1y,3
coupling
poro→EM

, B
λ1y,4
coupling
poro→EM

,

Bλ1z,1
coupling
poro→EM

, Bλ1z,2
coupling
poro→EM

, Bλ1z,3
coupling
poro→EM

, Bλ1z,4
coupling
poro→EM

, Bλ2,1
coupling
poro→EM

, Bλ2,2
coupling
poro→EM

, Bλ2,3
coupling
poro→EM

, Bλ2,4
coupling
poro→EM

)
,

with
Bλ1•,f

coupling
poro→EM

= 0 , for • = x, y, z and f = 1, 4,

and

Bλ2,f =



0
0
0
0
0
0

LQβ(K,f)
xf

LQβ(K,f)
yf

LQβ(K,f)
zf


, for f = 1, 4.

Finally, the local source vector is:

CKsource =
(
CK1x CK1y CK1z CK2x CK2y CK2z 0 0 0 0 0 0 0 CK3x CK3y CK3z 0 0 0 LCK2x LCK2y LCK2z

)T
.

7.5.2 Transmission conditions
The transmission conditions, given by equation (7.7), are expressed using the definition of the numerical traces in
equations (7.3) and (7.4). The equations are discretized on (x, y, z) by decomposing the unknowns using (7.30a) and
(7.30b) and replacing the test functions by the basis functions. They are then expressed in terms of the elementary
matrices defined in (7.31).
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(a) The first transmission equation (7.7a)
Equation (7.7a) is expressed as:∑

K∈Th

∫
∂K

τKh n
K · η −

∑
K∈Th

∫
∂K

γ1 (uKh − λ1) · η −
∑
K∈Th

∫
∂K

γ3 (pKh − λ2)nK · η =
∑

F∈Fext

∫
F

f inc · η , (7.37)

The discretization of (7.37) along x, y and z directions gives, taking • = x, y, z:∑
K∈Th

∫
∂K

τKx• n
K
x ϕ

K
j ψ

β(K,f)
i dS +

∑
K∈Th

∫
∂K

τKy• n
K
y ϕ

K
j ψ

β(K,f)
i dS +

∑
K∈Th

∫
∂K

τKz• n
K
z ϕ

K
j ψ

β(K,f)
i dS

−
∑
K∈Th

∫
∂K

γ1 ϕ
K
j uK• ψ

β(K,f)
i dS +

∑
K∈Th

∫
∂K

γ1 ψ
β(K,f)
j λK1• ψ

β(K,f)
i dS −

∑
K∈Th

∫
∂K

γ3n
K
• pKϕKj ψ

β(K,f)
i dS

+
∑
K∈Th

∫
∂K

γ3n
K
• λ

K
2 ψ

β(K,f)
j ψ

β(K,f)
i dS =

∑
F∈Fext

∫
F

finc,• ψ
β(K,f)
i dS .

The above equation is expressed in terms of the unknown vectors defined in (7.30a) and the local matrices in (7.31)
as: ∑

K∈Th

(
(Qβ(K,f)

x )T τKx• + (Qβ(K,f)
y )T τK•y + (Qβ(K,f)

z )T τK•z − γ1 (Fβ(K,f))T uK• + γ1 Gβ(K,f) λ
β(K,f)
1•

− γ3 (Qβ(K,f)
• )T pK + γ3 Hβ(K,f)

• λ
β(K,f)
2

)
=

∑
F∈Fext

∫
F

finc,• ψ
β(K,f)
i dS .

(7.38)

(b) The second transmission condition (7.7b)
Equation (7.7b) is expressed as:∑

K∈Th

∫
∂K

wK
h · nK ξ −

∑
K∈Th

γ2

∫
∂K

(pKh − λ2) ξ −
∑
K∈Th

∫
∂K

γ4 (uKh − λ1) · nK ξ =
∑

F∈Fext

∫
F

ginc ξ . (7.39)

The equation (7.39) is also discretized as

∑
K∈Th

∫
∂K

(
wKx ϕKj nKx ψ

β(K,f)
i + wK

y ϕ
K
j n

K
y ψ

β(K,f)
i + wK

z ϕ
K
j n

K
z ψ

β(K,f)
i − pK ϕKj γ2ψ

β(K,f)
i + λK2 ψ

β(K,f)
j γ2 ψ

β(K,f)
i

− uKx ϕKj γ4 n
K
x ψ

β(K,f)
i − uKy ϕKj γ4 n

K
y ψ

β(K,f)
i − uKz ϕKj γ4 n

K
z ψ

β(K,f)
i + λK1x ψ

β(K,f)
j γ4 n

K
x ψ

β(K,f)
i

+ λK1y ψ
β(K,f)
j γ4 n

K
y ψ

β(K,f)
i + λK1z ψ

β(K,f)
j γ4 n

K
z ψ

β(K,f)
i

)
=

∑
F∈Fext

∫
F

ginc ψ
β(K,f)
i dS ,

and expressed in terms of the local matrices and the unknown vectors defined respectively in (7.31) and (7.30a):∑
K∈Th

(
(Qβ(K,f)

x )T wKx + (Qβ(K,f)
y )T wKy + (Qβ(K,f)

z )T wKz − (Fβ(K,f))T pK γ2 + Gβ(K,f)λK2 γ2 − (Qβ(K,f)
x )TuKx γ4

−(Qβ(K,f)
y )TuKy γ4 − (Qβ(K,f)

z )TuKz γ4 + Hβ(K,f)
x λK1x γ4 + Hβ(K,f)

y λK1yγ4 + Hβ(K,f)
z λK1z γ4

)
=

∑
F∈Fext

∫
F

ginc ψ
β(K,f)
i dS .

(7.40)

(c) Discretization of the third transmission equation (7.7c)
Equation (7.7c) is expressed as:∑

K∈Th

∫
∂K

(nK ×EK
h ) · ν −

∑
K∈Th

∫
∂K

γ5
(
Ht

h − λ3
)
· ν =

∑
F∈Fext

∫
F

hinc ξ .
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We write the above expression in terms of the basis functions and the local unknowns defined in (7.30a):∫
F

(nKy EKz − nKz EKy )ϕKj ψFi −
∫
F

γ5
(
Ht
xϕ

K
j − λ3xψ

F
j

)
ψFi ,∫

F

(nKz EKx − nKx EKz )ϕKj ψFi −
∫
F

γ5
(
Ht
yϕ

K
j − λ3yψ

F
j

)
ψFi ,∫

F

(nKx EKy − nKy EKx )ϕKj ψFi −
∫
F

γ5
(
Ht
zϕ

K
j − λ3zψ

F
j

)
ψFi .

which reads in terms of elementary matrices (7.31):

(QFy )TEKz − (QFz )TEKy − (FF )THt
x γ5 + GFλ3x γ5 ,

(QFz )TEKx − (QFx )TEKz − (FF )THt
y γ5 + GFλ3y γ5 ,

(QFx )TEKy − (QFy )TEKx − (FF )THt
z γ5 + GFλ3z γ5 .

(7.41)

Local system The transmission conditions, equations (7.38), (7.40), (7.41) form the following system:∑
K∈Th

(AKHDG)T
(
PKWK + TKAKHDGΛ

)
= Sinc ,

where Sinc represents the matrices of the incident forces. Similarly to AK and BK , the elementary matrix PK has the
form:

PK =

PKporo 0

0 PKEM

 ,

where PKporo corresponds to the matrix for poroelasticity, see Appendix B.1.2, and PKEM to the electromagnetic matrix
given in (G.35).

TK has the same form:

TK =

TKporo 0

0 TKEM

 ,

where the poroelastic matrix TKporo is given in Appendix B.1.2, and the electromagnetic matrix TKEM is given in (G.36).
Remark 7.2. For a face on the boundary of the domain, we can impose one of the eight types of boundary conditions,
see Section 5.4. For type 1, we impose the continuity of τ n, w · n and n × Ê. This means that the transmission
conditions (7.7) for an interior interface and on the boundary of the mesh are the same. However, if we choose to
impose a different boundary condition, the expression of the elementary matrices PK and TK are modified. Here, we
detail the boundary condition of type 8 as in equation (5.10b). The other formulations can be easily deduced from
these two formulations. This is similar to what has been done for poroelasticity. For the boundary condition of type
8, we impose the condition in the strong way in the linear system, which means that we impose the value of û, p̂, and
Ĥ. From equation (5.10b), we impose:

λ1 = finc , λ2 = ginc , λ3 = hinc .

We consider an element with the first local face on the boundary of the mesh. In this case, the matrices PKporo and
TKporo are given in Appendix B.2, PKEM and PKEM in (G.37). The coupling matrices PKcoupling

poro→EM

, TKcoupling
poro→EM

, PKcoupling
EM→poro

and

TKcoupling
EM→poro

remain equal to zero.

7.6 Numerical results in three dimensions
In this section, we present the results obtained with the HDG method in three dimensions. We use the geophysical
materials, the relative numerical error and the condition numbers introduced in Section 7.4. We also use the results
obtained in two dimensions for the stabilization parameters, i.e., γi = 1 for i = 1, 5. We consider a porous domain
D of size [0 : 10] × [0 : 10] × [0 : 2]cm composed of sand1, given in Table 7.1 page 274. The domain is discretized in
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a mesh composed of 8164 elements (tetrahedra). A plane wave propagates in the material, and we impose the exact
solution (τ pw · n, upw · n, n × Epw) corresponding to the plane wave on the boundaries of the mesh. To validate
the code, we compare the numerical solution to the exact solution for plane wave, see Chapter 5. In Figure 7.7, we
present the numerical and exact solutions of the propagation of an incident B plane wave in sand1, for a frequency
f = 1.7kHz, and order of interpolation 3. We also give in Table 7.7 the relative L2 error on the variables. We observe
that the results are good, and the error is small, less than 1% on every component. We have also tested for the other
kinds of incident waves (P,S,EM). The results have a similar accuracy.

(a) Numerical solution: imaginary part of ux (b) Reference solution: imaginary part of ux

(c) Difference: imaginary part of ux

Figure 7.7: Numerical and reference solution for the three-dimensional propagation of an incident B plane wave in
sand1. The solid velocity ux is presented, for f = 400Hz and order of interpolation 3.

eh(ux) eh(uy) eh(uz) eh(wx) eh(wy) eh(wz) eh(τxx) eh(τyy) eh(τzz)

0.16 0.22 0.19 7.1e-2 7.6e-2 6.9e-2 9.2e-2 0.10 0.20

eh(τyz) eh(τxz) eh(τxy) eh(p) eh(Ex) eh(Ey) eh(Ez) eh(Hx) eh(Hy) eh(Hz)

0.17 0.13 0.17 6.1e-2 0.12 0.13 9.8e-2 inf inf inf

Table 7.7: Relative errors (%) on the components of the unknowns of the HDG method for an incident B plane wave
propagating in sand, at frequency f = 400Hz with boundary conditions of type 1, using an order of discretization 3.
The error for H is infinite because the exact solution is equal to zero, hence the relative error on H is not defined.

We now verify that the HDG method keeps an optimal order of convergence p + 1 in three dimensions. The
convergence curves are plotted for the solid velocity ux in 7.8 for the first interpolation orders as functions of h, the
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longest edge of the mesh. We observe on the curves that the method has an order of convergence p + 1 for ux. This
is also the case for the other components of the solid velocity u and the other unknowns.
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Figure 7.8: Convergence curves of HDG method (component ux) for several orders of interpolation. Results for order
1 are plotted in blue , for order 2 in purple , for order 3 in orange and for order 4 in green .

Conclusion
In this chapter, we have proposed a HDG method to solve Pride’s equations in harmonic domain. We have detailed
and implemented this method in two and three dimensions. The method has been validated using the comparison
with reference solutions and we have shown numerically that the method attains the optimal order of convergence.
In two dimensions, we have provided a detailed investigation on the influence of the stabilization parameters on the
accuracy and convergence of the method. In addition, we have numerically studied the condition number of the global
and local problems, and observed that its value remains in a good range to have stability and accuracy of the method
for the considered geophysical materials. Then, using the results on the stabilization parameters in two dimensions,
we have validated the method in three dimensions using plane wave propagation and verified that the method keeps
an optimal order of convergence. In the next chapter, we will detail this HDG method when we use two truncation
methods (ABC and PML) to simulate infinite domains.



Chapter 8

Truncation methods in two dimensions
for Pride’s equations

In this chapter, we address the same problem as in Chapter 4 for Pride’s equations. To our best knowledge, it does
not exist any radiation boundary condition (RBC) for Pride’s model. Contrary to the RBC, PMLs have been applied
to Pride’s equations, see [69, 61]. Gao [61] highlights the difficulty for the PML to absorb both the seismic and
electromagnetic waves. This comes from the fact that the wavelengths of the seismic and electromagnetic waves have
very different sizes. To prevent this, the authors propose to absorb only the seismic waves with the PML and to extend
widely the domain outside of the PML to prevent the reflections. This leads to a dramatic increase of computational
time.

In the following, we derive in Section 8.1 a low order RBC for Pride’s equations. For this, we first obtain an
outgoing radiation condition at infinity by using the expression of the unknowns in potentials and the expansions of
outgoing solutions given in Chapter 6. Then, when written in circular geometry, this exact condition is approximated
to obtain the RBC, assuming the radius of the circular boundary is large enough. The resulting condition consists
of the expression of the solid stress tensor τ , the fluid pressure p and the magnetic field H as functions of the solid
velocity u, the relative fluid velocity w and the electric field E. The relation is comparable to the relation obtained
for poroelasticity in Chapter 4. We then develop in Section 8.2 a reference solution associated with the radiation
condition on an annulus, which will be used to study the performance of the RBC. We investigate the performance of
the condition in Section 8.3, by comparison with the outgoing solution that we obtained in Chapter 6. We implement
in Section 8.4 the radiation condition in the HDG method presented in Chapter 7. In addition, we consider Perfectly
Matched Layer (PML) to prevent the reflections on the artificial boundaries of the domain. We also apply PML to
the HDG discretization in Section 8.5. Finally, we perform numerical tests to evaluate and compare the accuracy of
the HDG method using the RBC and PML in Section 8.6. We study in particular if the PML can absorb all kinds of
waves.

8.1 Derivation of low-order outgoing boundary radiation condition
In this section, we build a radiation boundary condition for Pride’s equations. For this purpose, we derive the outgoing
radiation conditions at infinity to find a relation between the stresses and the magnetic field (τ , p, H), and the velocities
and the electric field (u, w, E). We consider the scattering of a solid circular obstacle immersed in an infinite porous
medium by a plane wave, see Figure 8.1. First, we recall the expressions of the fields (u, w, τ , p, E, H, J) in terms
of the potentials χ• (6.4):

iω u = 1
s2
P
∇χP + 1

s2
B
∇χB −

1
s2
S

curlχS −
1

s2
EM

curlχEM + F̃1 ,

iωw = WP

s2
P
∇χP + WB

s2
B
∇χB −

WS

s2
S

curlχS −
WEM

s2
EM

curlχEM + F̃2 ,

p = −M
(
WP + α)χP − M

(
WB + α)χB − M fp ,

291
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a

Γn

Upw U ref

Figure 8.1: Scattering of a plane wave by an impenetrable solid immersed in a porous medium. The cross section of
the obstacle is a disc parameterized by r = a.

τ = µfr

ω2

(
− 2

s2
P
∇2χP −

2
s2
B
∇2χB + ∇curlχS + (∇curlχS)T

s2
S

+ ∇curlχEM + (∇curlχEM)T

s2
EM

)

+
(
−2

3µfr + kfr + Mα2 + αMWP

)
χP I

+
(
−2

3µfr + kfr + Mα2 + αMWB

)
χB I− µfr

ω2

(
∇F̃1 + (∇F̃1)T

)
,

−ω2E = EP
s2
P
∇χP + EBs2

B
∇χB −

ES
s2
S

curlχS −
EEM

s2
EM

curlχEM + F̃3 ,

H = i
ω µ0

(
ES χS + EEM χEM

)
,

and

J =
(
− σ

ω2 EP s−2
P + LM

(
WP + α)− L ρf s−2

P

)
∇χP +

(
− σ

ω2 EB s−2
B + LM

(
WB + α)− L ρf s−2

B

)
∇χB

+
( σ

ω2 ES s−2
S + L ρf s−2

S

)
curlχS +

( σ

ω2 EEM s−2
S + L ρf s−2

EM

)
curlχEM + F .

The potentials χ• solve the Helmholtz equation,(
−∆ − ω2 s2

•
)
χ• = 0 ,

and they can be expanded in terms of Bessel functions, as we describe in the next section.

8.1.1 Outgoing radiation condition at infinity

In polar coordinates, the potentials χ• that define a generic outgoing solution only contains H(1)
k Bessel functions and

are expressed as (eq. (6.17)).
χP(r, θ) =

∑
k∈Z

ak H(1)
k (ω sP r) ei k θ ,

χB(r, θ) =
∑
k∈Z

bk H(1)
k (ω sB r) ei k θ ,

χS(r, θ) =
∑
k∈Z

ck H(1)
k (ω sS r) ei k θ ,

χEM(r, θ) =
∑
k∈Z

dk H(1)
k (ω sEM r) ei k θ .

The expressions for the expansion of the unknowns (u, w, τ , p, E, H) are obtained by substituting this form of
potential in equation (8.1) and use the expression of curl ∇ and ∇2 in polar coordinates presented in Appendix A.1.1.
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We obtain the following expressions for the velocities:

iω ur =
∑
k∈Z

ak
ω

sP
H(1)′
k (ω sP r)eikθ +

∑
k∈Z

bk
ω

sB
H(1)′
k (ω sB r)eikθ

−
∑
k∈Z

ck
ik

s2
S r

H(1)
k (ω sS r)eikθ −

∑
k∈Z

dk
ik

s2
EM r

H(1)
k (ω sEM r)eikθ ,

iω uθ =
∑
k∈Z

ak
ik

s2
P r

H(1)
k (ω sP r)eikθ +

∑
k∈Z

bk
ik

s2
B r

H(1)
k (ω sB r)eikθ

+
∑
k∈Z

ck
ω

sS
H(1)′
k (ω sS r)eikθ +

∑
k∈Z

dk
ω

sEM
H(1)′
k (ω sS r)eikθ ,

iωwr =
∑
k∈Z

ak
WP

sP
ωH(1)′

k (ω sP r)eikθ +
∑
k∈Z

bk
WB

sB
ωH(1)′

k (ω sB r)eikθ

−
∑
k∈Z

ck ikWS

s2
S r

H(1)
k (ω sS r)eikθ −

∑
k∈Z

dk ikWEM

s2
EM r

H(1)
k (ω sEM r)eikθ .

For the stress τ , we have:

ω2τrr = −
∑
k∈Z

2µfr ω

sP r
ak H(1)

k+1(ω sP r) ei k θ +
∑
k∈Z

2µfr k

s2
P r

2 ak H(1)
k (ω sP r) ei k θ

+
∑
k∈Z

2µfr ak ω
2 H(1)

k (ω sP r) ei k θ −
∑
k∈Z

2µfr k
2

s2
P r

2 ak H(1)
k (ω sP r) ei k θ

−
∑
k∈Z

2µfr ω

sB r
bk H(1)

k+1(ω sB r) ei k θ +
∑
k∈Z

2µfr k

s2
B r

2 bk H(1)
k (ω sB r) ei k θ

+
∑
k∈Z

2µfr bk ω
2 H(1)

k (ω sB r) ei k θ −
∑
k∈Z

2µfr k
2

s2
B r

2 bk H(1)
k (ω sB r) ei k θ

+
∑
k∈Z

2µfr

sSr
ck ω ikH(1)′

k (ω sS r) ei k θ +
∑
k∈Z

2µfr

sEMr
dk ω ikH(1)′

k (ω sEM r) ei k θ

+
∑
k∈Z

ω2
(
−2

3µfr + kfr + Mα2 + αMWP

)
ak H(1)

k (ω sP r) ei k θ

+
∑
k∈Z

ω2
(
−2

3µfr + kfr + Mα2 + αMWB

)
bk H(1)

k (ω sB r) ei k θ ,
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ω2 τrθ = −
∑
k∈Z

2µfr ω i k
r sP

ak H(1)′
k (ω sP r) ei k θ +

∑
k∈Z

2 iµfr k

r2 s2
P

ak H(1)
k (ω sP r) ei k θ

−
∑
k∈Z

2µfrω i k
r sB

bk H(1)′
k (ω sB r) ei k θ +

∑
k∈Z

2 iµfr k

r2 s2
B

bk H(1)
k (ω sB r) ei k θ

−
∑
k∈Z

µfr k
2

r2 s2
S
ck H(1)

k (ω sS r) ei k θ +
∑
k∈Z

µfr ω

r sS
ck H(1)′

k (ω sS r) ei k θ

−
∑
k∈Z

µfr
ω

sS r
ck H(1)

k+1(ω sS r) ei k θ +
∑
k∈Z

µfr
k

s2
S r

2 ck H(1)
k (ω sS r) ei k θ

+
∑
k∈Z

µfr ω
2 ck H(1)

k (ω sS r) ei k θ −
∑
k∈Z

µfr
k2

s2
S r

2 ck H(1)
k (ω sS r) ei k θ

−
∑
k∈Z

µfr k
2

r2 s2
EM

dk H(1)
k (ω sEM r) ei k θ +

∑
k∈Z

µfr ω

r sEM
dk H(1)′

k (ω sEM r) ei k θ

−
∑
k∈Z

µfr
ω

sEM r
dk H(1)

k+1(ω sEM r) ei k θ +
∑
k∈Z

µfr
k

s2
EM r2 dk H(1)

k (ω sEM r) ei k θ

+
∑
k∈Z

µfr ω
2 dk H(1)

k (ω sEM r) ei k θ −
∑
k∈Z

µfr
k2

s2
EM r2 dk H(1)

k (ω sEM r) ei k θ ,

p = −
∑
k∈Z

akM
(
WP + α)H(1)

k (ω sP r) eikθ −
∑
k∈Z

bkM
(
WB + α)H(1)

k (ω sB r) eikθ .

The tangential component of the electric field is

−ω2Eθ =
∑
k∈Z

ak EP
ik

s2
Pr

H(1)
k (ω sP r)eikθ +

∑
k∈Z

bk EB
ik

s2
Br

H(1)
k (ω sB r)eikθ

+
∑
k∈Z

ck
ES
sS
ωH(1)′

k (ω sS r)eikθ +
∑
k∈Z

dk
EEM

sEM
ωH(1)′

k (ω sEM r)eikθ ,

and the magnetic field is expressed as

H = ck
i

ω µ0
ES H(1)

k (ω sS r) ei k θ + dk
i

ω µ0
EEM H(1)

k (ω sEM r) ei k θ .

In order to find a relation between the unknowns τ , p, H and u, w, E, we choose to approximate the components
by truncating at the first order in 1

r . We obtain for the poroelastic variables:

ur = −
∑
k∈Z

ak
i

sP
H(1)′
k (ω sP r)eikθ −

∑
k∈Z

bk
i

sB
H(1)′
k (ω sB r)eikθ + O(r− 3

2 ) ,

wr = −
∑
k∈Z

ak
iWP

sP
H(1)′
k (ω sP r)eikθ −

∑
k∈Z

bk
iWB

sB
H(1)′
k (ω sB r)eikθ + O(r− 3

2 ) ,

uθ = −
∑
k∈Z

ck
i
sS

H(1)′
k (ω sS r) + O(r− 3

2 ) −
∑
k∈Z

dk
i

sEM
H(1)′
k (ω sEM r) + O(r− 3

2 ) ,

(8.3)

and
τrr =

(
4
3µfr + kfr + α(Mα + MWP)

) ∑
k∈Z

ak H(1)
k (ω sP r) ei k θ

+
(

4
3µfr + kfr + α(Mα + MWB)

) ∑
k∈Z

bk H(1)
k (ω sB r) ei k θ + O(r− 3

2 ) ,

τrθ =
∑
k∈Z

µfr ck H(1)
k (ω sS r) ei k θ +

∑
k∈Z

µfr dk H(1)
k (ω sEM r) ei k θ + O(r− 3

2 ) ,

p = −
∑
k∈Z

akM
(
WP + α)H(1)

k (ω sP r) eikθ −
∑
k∈Z

bkM
(
WB + α)H(1)

k (ω sB r) eikθ .

(8.4)
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Note that these truncated expressions are the same as the ones obtained for the poroelasticity, (see Section 4.1) except
for the expressions of uθ and τrθ. The electromagnetic variables are approwimated as follows:

Eθ = −
∑
k∈Z

ck
ES

ω sS
H(1)′
k (ω sS r)eikθ −

∑
k∈Z

dk
EEM

ω sEM
H(1)′
k (ω sEM r)eikθ + O(r− 3

2 ) ,

H =
∑
k∈Z

ck
i

ω µ0
ES H(1)

k (ω sS r) ei k θ +
∑
k∈Z

dk
i

ω µ0
EEM H(1)

k (ω sEM r) ei k θ + O(r− 3
2 ) .

(8.5)

Important identities We recall the following asymptotic of Hankel functions, see equation (4.3).

H
(1)′
k (z) − iH(1)

k (z) = O(z− 3
2 ) , z →∞ . (8.6)

• Since the expressions of the radial velocities are the same as the ones obtained for poroelasticity, we can use once
again the relation obtained in Section 4.1:

∑
k∈Z

ak H(1)′
k (ω sP r)eikθ

∑
k∈Z

bk H(1)′
k (ω sB r)eikθ

 = 1
WB −WP

(
sPWB −sP

−WP sB sB

)(
i ur

i wr

)
+ O(r− 3

2 ) . (8.7)

• Using equations (8.3) and (8.5), we can write the system:

(
uθ

Eθ

)
=

−
i
sS

− i
sEM

ES

ω sS

EEM

ω sEM



∑
k∈Z

ck H(1)′
k (ω sS r)eikθ

∑
k∈Z

dk H(1)′
k (ω sEM r)eikθ

+ O(r− 3
2 ) . (8.8)

We can invert the above matrix:−
i
sS

− i
sEM

ES

ω sS

EEM

ω sEM


−1

= 1
EEM − ES

(
i sSEEM −ω sS

− i sEMES ω sEM

)
.

Hence, equation (8.8) becomes ∑
k∈Z ck H(1)′

k (ω sS r)eikθ

∑
k∈Z dk H(1)′

k (ω sEM r)eikθ

 = 1
EEM − ES

(
i sSEEM −ω sS

− i sEMES ω sEM

)(
uθ

Eθ

)
+ O(r− 3

2 ) . (8.9)

In the following, we express the solid stress τ , the fluid pressure p and the magnetic field H as functions of the
velocities u, w and the electrical field E.

(a) Radial component of the solid stress
Since the fields τrr, ur and wr have the same expression as for poroelasticity, they are linked by the same relation,
given in Section 4.1:

τrr + X1ur + X2wr = O(r− 3
2 ) ,

with

X1 = −

4
3µfr + kfr + α(Mα + MWP)

WB −WP
sPWB +

4
3µfr + kfr + α(Mα + MWB)

WB −WP
WP sB ,

X2 =

4
3µfr + kfr + α(Mα + MWP)

WB −WP
sP −

4
3µfr + kfr + α(Mα + MWB)

WB −WP
sB .

(b) Tangential component of the solid stress
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The tangential stress τrθ is expressed with equation (8.4). Using the identity (8.6), we have

τrθ + µfr i
∑
k∈Z

ck H(1)′
k (ω sS r) ei k θ + µfr i

∑
k∈Z

dk H(1)′
k (ω sEM r) ei k θ = O(r− 3

2 ) .

We relate this expression with uθ and Eθ by using the system (8.9), and we obtain:

τrθ + µfr i
EEM − ES

(i sSEEM uθ − ω sSEθ) + µfr i
EEM − ES

(− i sEMES uθ + ω sEMEθ) = O(r− 3
2 ) .

Reorganizing the terms gives:

τrθ + µfr

EEM − ES
(sEMES − sSEEM ) uθ + µfr iω

EEM − ES
(sEM − sS ) Eθ = O(r− 3

2 ) .

We write then:
τrθ + X3uθ + X4Eθ = O(r− 3

2 ) ,
with

X3 = µfr

EEM − ES
(sEMES − sSEEM ) , and X4 = µfr iω

EEM − ES
(sEM − sS ) .

(c) Fluid pressure
The truncated expression of p is the same as for poroelasticity, cf. Section 4.1, hence, using equation (8.4), the
radiating asymptotic (8.6) and the relation (8.7), we have:

p + X5ur + X6wr = O(r− 3
2 ) ,

with

X5 =
M
(
WP + α)
WB −WP

sPWB −
M
(
WB + α)
WB −WP

sBWP , and X6 = −
M
(
WP + α)
WB −WP

sP +
M
(
WB + α)
WB −WP

sB .

(d) Magnetic field
The magnetic field H given in equation (8.5) is expressed with relation (8.6):

H −
∑
k∈Z

ck
ω µ0

ES H(1)′
k (ω sS r) ei k θ −

∑
k∈Z

dk
1

ω µ0
EEM H(1)′

k (ω sEM r) ei k θ = O(r− 3
2 ) .

Using equation (8.9), we have:

H − 1
ω µ0

ES
EEM − ES

(i sSEEM uθ − ω sSEθ) −
1

ω µ0

EEM
EEM − ES

(− i sEMES uθ + ω sEMEθ) = O(r− 3
2 ) .

We reorganize the terms to obtain:

H + i
ω µ0

ESEEM

EEM − ES
( sEM − sS ) uθ + 1

µ0

1
EEM − ES

( sSES − sEMEEM)Eθ = O(r− 3
2 ) .

We have:
H + X7 uθ + X8Eθ = O(r− 3

2 ) ,
with

X7 = i
ω µ0

ESEEM

EEM − ES
( sEM − sS ) , and X8 = 1

µ0

1
EEM − ES

( sSES − sEMEEM) .

Proposition 8.1. Outgoing radiation condition at infinity. In circular geometry, if (u, w, τ , p, E, H, ) are
outgoing solutions of Pride’s equation (5.3), then they are solution to the outgoing radiation condition at infinity:

τrr + X1ur + X2wr = O(r− 3
2 ) ,

τrθ + X3uθ + X4Eθ = O(r− 3
2 ) ,

p + X5ur + X6wr = O(r− 3
2 ),

H + X7uθ + X8Eθ = O(r− 3
2 ) .

(8.10)
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8.1.2 Derivation of the radiation boundary condition
In the following, we propose the general radiation boundary condition.

Considering the domain described in Figure 8.2, we set artificial boundaries on Γabs, and we work in polar coordi-
nates. We have constructed in the previous section an outgoing radiation condition at infinity for the exact outgoing
solutions, see (8.10). When r tends to infinity, the terms O(r− 3

2 ) can be neglected. Hence, if we consider r large
enough, we can approximate equations (8.10) to obtain the RBC in polar coordinates:

τrr + X1ur + X2wr = 0 ,

τrθ + X3uθ + X4Eθ = 0 ,

p + X5ur + X6wr = 0,

H + X7uθ + X8Eθ = 0 .

(8.11)

Recall that on a circle, we have:

ur = u · n , wr = w · n , uθ = u · t = n× u ,

τ n = τrrer + τrθeθ , and Eθ = E · t = n×E , with t =
(
−ny
nx

)
= eθ .

By replacing the polar unknowns, we obtain the generalized RBC given below.

Conjecture 8.2. A low-order radiation boundary condition is given by:
τ n+

(
X1(u · n) + X2(w · n)

)
n+ X3(n× u) t + X4(n×E) t = 0 ,

p + X5(u · n) + X6(w · n) = 0 ,

H + X7(n× u) + X8 (n×E) = 0 ,

(8.12)

with

X1 = −

4
3µfr + kfr + α(Mα + MWP)

WB −WP
sPWB +

4
3µfr + kfr + α(Mα + MWB)

WB −WP
WP sB ,

X2 =

4
3µfr + kfr + α(Mα + MWP)

WB −WP
sP −

4
3µfr + kfr + α(Mα + MWB)

WB −WP
sB ,

X3 = µfr

EEM − ES
(sEMES − sSEEM ) , X4 = µfr iω

EEM − ES
(sEM − sS ) ,

X5 =
M
(
WP + α)
WB −WP

sPWB −
M
(
WB + α)
WB −WP

sBWP , X6 = −
M
(
WP + α)
WB −WP

sP +
M
(
WB + α)
WB −WP

sB ,

X7 = i
ω µ0

ESEEM

EEM − ES
( sEM − sS ) , and X8 = 1

µ0

1
EEM − ES

( sSES − sEMEEM) .

The two first equations of the condition are comparable to the one obtain for poroelasticity (see Chapter 4), without
the electric field. The last equation also resembles the RBC solution for Maxwell’s equations (see Appendix G) without
the solid velocity.

8.2 Reference RBC solution for the scattering of an impenetrable ob-
stacle by a plane wave

We consider the scattering of a solid circular obstacle immersed in an infinite porous medium by a plane wave. We
denote by Da the obstacle whose radius is a. Its boundary is denoted by Γn = ∂Da, see Figure 8.2.
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a b

Ωab

Γn

Γabs

Upw U ref

Figure 8.2: Scattering of a plane wave by an impenetrable solid immersed in a porous medium. The cross section of
the obstacle is a disc parameterized by r = a. The artificial boundary is set on Γabs = {r = b}.

For the RBC solution, we set an artificial boundary at radius b, denoted by Γabs = ∂Db, with b > a, cf. Figure
8.2. The RBC solution is then defined on the annulus Ωab := Db \Da.

Definition 8.3 (RBC solution). Considering a domain Ω with ∂Ω = Γabs ∪Γn, and Γabs ∩Γn = 0 . We define the
RBC solution of Pride equations (5.3) on Ω as follows:

(u, w, τ , p, E, H) solves Pride equations (5.3) on Ω, the RBC (8.12) on Γabs, and one of the eight boundary
conditions from equation (5.4) on Γn.

We use notation U to denote the ordered tuple (u, w, τ , p, E, H,J). The RBC solution Urbc -Ti solves the following
problem 

Pride equations (5.3) on Ωab,

Boundary condition Type i given in equation (5.4) on r = a ,

τ n+
(
X1(u · n) + X2(w · n)

)
n+ X3(n× u) t + X4(n×E) t = 0 ,

p + X5(u · n) + X6(w · n) = 0 , on r = b,

H + X7(n× u) + X8 (n×E) = 0 .

We recall that the solution U is completely determined by the potentials χ•, cf. (8.1), which are given by (6.18) in
the case of an annulus:

χP(r, θ) =
∑
k∈Z

ak H(1)
k (ω sP r) ei k θ +

∑
k∈Z

ãk H(2)
k (ω sP r) ei k θ ,

χB(r, θ) =
∑
k∈Z

bk H(1)
k (ω sB r) ei k θ +

∑
k∈Z

b̃k H(2)
k (ω sB r) ei k θ ,

χS(r, θ) =
∑
k∈Z

ck H(1)
k (ω sS r) ei k θ +

∑
k∈Z

c̃k H(2)
k (ω sS r) ei k θ ,

χEM(r, θ) =
∑
k∈Z

dk H(1)
k (ω sEM r) ei k θ +

∑
k∈Z

d̃k H(2)
k (ω sEM r) ei k θ ,

(8.13)

with the Hankel functions H(1)
k (z) = Jk(z) + Yk(z) and H(2)

k (z) = Jk(z) − Yk(z). The solution U is now represented
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by the coefficients ak, bk, ck, dk, ãk, b̃k, c̃k, d̃k. We build a linear system solved by these coefficients of the form:

Arbc-Ti



ak

bk

ck

dk

ãk

b̃k

c̃k

d̃k


=


frbc
Ti
0
0
0
0

 ,

where Arbc-Ti is a 8× 8 matrix and the right-hand-sides frbc
Ti are determined using boundary conditions on r = a. The

first four rows of the linear system are determined by the boundary condition imposed on Γn (the boundary of the
obstacle) while the last four rows are determined by the RBC imposed on Γabs the artificial boundary. The derivation
of the four first lines is similar to the ones given in Sections 6.2, 6.3 or 6.4.Therefore, we only detail here the derivation
associated to the RBC in order to obtain the last four lines of Arbc-Ti. On r = b, we apply condition (8.11) and we
replace the unknowns using equation (6.14):

• τrr + X1ur + X2wr = 0 gives:

iµfr

ω

(
− 2

s2
P
∂r2χP −

2
s2
B
∂r2χB + 2

s2
S

(
1
b
∂rθ −

1
b2 ∂θ

)
χS + 2

s2
EM

(
1
b
∂rθ −

1
b2 ∂θ

)
χEM

)

+ iω
(
−2

3µfr + kfr + Mα2
)

(χP + χB) + iωαM (wP χP + wB χB)

+ X1

(
1
s2
P
∂rχP + 1

s2
B
∂rχB −

1
s2
S b

∂θχS −
1

s2
EM b

∂θχEM

)
+ X2

(
wP

s2
P
∂rχP + wB

s2
B
∂rχB −

wS

s2
S b

∂θχS −
wEM

s2
EM b

∂θχEM

)
= 0 .

• τrθ + X3uθ + X4Eθ = 0 is expressed as

− 2µfr

s2
P

(
1
b
∂rθ −

1
b2 ∂θ

)
χP −

2µfr

s2
B

(
1
b
∂rθ −

1
b2 ∂θ

)
χB + 1

s2
S

(
µfr

b2 ∂θθ + 1
b
∂r − ∂r2

)
χS

+ µfr

s2
EM

(
1
b2 ∂θθ + 1

b
∂r − ∂r2

)
χEM − X3 iω

(
s−2
P

1
b
∂θχP + s−2

B
1
b
∂θχB + s−2

S ∂rχS + s−2
EM ∂rχEM

)
− X4

(
EPs−2

P
1
b
∂θχP + EBs−2

B
1
b
∂θχB + ESs−2

S ∂rχS + EEMs−2
EM ∂rχEM

)
= 0 .

• Next, we write p + X5ur + X6wr = 0 as

− iωM
(
wP + α)χP − iωM

(
wB + α)χB + X5

(
1
s2
P
∂rχP + 1

s2
B
∂rχB −

1
s2
S b

∂θχS −
1

s2
EM b

∂θχEM

)
+ X6

(
wP

s2
P
∂rχP + wB

s2
B
∂rχB −

wS

s2
S b
∂θ χS −

wEM

s2
EM b

∂θ χEM

)
= 0 .

• Finally, the expression of H + X7uθ + X8Eθ = 0 is

i
ω µ0

(
ES χS + EEM χEM

)
+ X7

iω

(
s−2
P

1
b
∂θχP + s−2

B
1
b
∂θχB + s−2

S ∂rχS + s−2
EM ∂rχEM

)
− X8

ω2

(
EPs−2

P
1
b
∂θχP + EBs−2

B
1
b
∂θχB + ESs−2

S ∂rχS + EEMs−2
EM ∂rχEM

)
= 0 .
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The matrix components corresponding to the RBC are given by:

A51 = − 2 iµfr ωH(1)′′
k (ω sP b) + iω(−2

3µfr + kfr +M α(α+ wP)) H(1)
k (ω sP b)

+ X1 ω

sP
H(1)′
k (ω sP b) + X2 ω wP

sP
H(1)′
k (ω sP b) ,

A52 = − 2 iµfr ωH(1)′′
k (ω sB b) + iω(−2

3µfr + kfr +M α(α+ wB)) H(1)
k (ω sB b)

+ X1 ω

sB
H(1)′
k (ω sB b) + X2 ω wB

sB
H(1)′
k (ω sB b) ,

A53 = − 2µfr k

sS b
H(1)′
k (ω sS b) + 2µfr k

ωs2
S b

2 H(1)
k (ω sS b) − X1 i k

s2
S b

H(1)
k (ω sS b) − X2 wS i k

s2
S b

H(1)
k (ω sS b) ,

A54 = − 2µfr k

sEM b
H(1)′
k (ω sEM b) + 2µfr k

ωs2
EM b2 H(1)

k (ω sEM b) − X1 i k
s2
EM b

H(1)
k (ω sEM b) − X2 wEM i k

s2
EM b

H(1)
k (ω sEM b) ,

A55 = − 2 iµfr ωH(2)′′
k (ω sP b) + iω(−2

3µfr + kfr +M α(α+ wP) )H(2)
k (ω sP b)

+ X1 ω

sP
H(2)′
k (ω sP b) + X2 ωwP

sP
H(2)′
k (ω sP b) ,

A56 = − 2 iµfr ωH(2)′′
k (ω sB b) + iω(−2

3µfr + kfr +M α(α+ wB) )H(2)
k (ω sB b)

+ X1 ω

sB
H(2)′
k (ω sB b) + X2 ωwB

sB
H(2)′
k (ω sB b) ,

A57 = − 2µfr k

sS b
H(2)′
k (ω sS b) + 2µfr k

ωs2
S b

2 H(2)
k (ω sS b) − X1 i k

s2
S b

H(2)
k (ω sS b) − X2 wS i k

s2
S b

H(1)
k (ω sS b) ,

A58 = − 2µfr k

sEM b
H(2)′
k (ω sEM b) + 2µfr k

ωs2
EM b2 H(2)

k (ω sEM b) − X1 i k
s2
EM b

H(2)
k (ω sEM b) − X2 wEM i k

s2
EM b

H(1)
k (ω sEM b) ,

A61 = − 2µfr ω i k
sP b

H(1)′
k (ω sP b) + 2µfr i k

s2
P b2 H(1)

k (ω sP b) + X3 ω k

s2
Pb

H(1)
k (ω sP b) − X4 EP i k

s2
Pb

H(1)
k (ω sP b) ,

A62 = − 2µfr ω i k
sB b

H(1)′
k (ω sB b) + 2µfr i k

s2
B b2 H(1)

k (ω sB b) + X3 ω k

s2
Bb

H(1)
k (ω sB b)− X4EB i k

s2
Bb

H(1)
k (ω sB b) ,

A63 = − k2 µfr

s2
S b

2 H(1)
k (ω sS b) + ω µfr

sS b
H(1)′
k (ω sS b) − ω2 µfr H(1)′′

k (ω sS b)

− X3 ω
2 i

sS
H(1)′
k (ω sS b)− X4 ESω

sS
H(1)′
k (ω sS b) ,

A64 = − k2 µfr

s2
EM b2 H(1)

k (ω sEM b) + ω µfr

sEM b
H(1)′
k (ω sEM b) − ω2 µfr H(1)′′

k (ω sEM b)

− X3 ω
2 i

sEM
H(1)′
k (ω sEM b)− X4 EEMω

sEM
H(1)′
k (ω sEM b) ,
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A65 = − 2µfr ω i k
sP b

H(2)′
k (ω sP b) + 2µfr i k

s2
P b2 H(2)

k (ω sP b) + X3 ω k

s2
Pb

H(1)
k (ω sP b) ,

A66 = − 2µfr ω i k
sB b

H(2)′
k (ω sB b) + 2µfr i k

s2
B b2 H(2)

k (ω sB b) + X3 ω k

s2
Bb

H(2)
k (ω sB b)− X4EB i k

s2
Bb

H(2)
k (ω sB b) ,

A67 = − k2 µfr

s2
S b

2 H(2)
k (ω sS b) + ω

sS b
H(2)′
k (ω sS b) − ω2 µfr H(2)′′

k (ω sS b)

− X3 ω
2 i

sS
H(2)′
k (ω sS b)− X4 ESω

sS
H(2)′
k (ω sS b) ,

A68 = − k2 µfr

s2
EM b2 H(2)

k (ω sEM b) + ω µfr

sEM b
H(2)′
k (ω sEM b) − ω2 µfr H(1)′′

k (ω sEM b)

− X3 ω
2 i

sEM
H(2)′
k (ω sEM b)− X4 EEMω

sEM
H(2)′
k (ω sEM b) ,

A71 = − iωM (wP + α)H(1)
k (ω sP b) + X5 ω

sP
H(1)′
k (ω sP b) + X6 ω wP

sP
H(1)′
k (ω sP b) ,

A72 = − iωM (wB + α)H(1)
k (ω sB b) + X5 ω

sB
H(1)′
k (ω sB b) + X6 ω wB

sB
H(1)′
k (ω sB b) ,

A73 = − X5 i k
s2
S b

H(1)
k (ω sS b) − X6 wS i k

s2
S

H(1)
k (ω sS b) ,

A74 = − X5 i k
s2
EM b

H(1)
k (ω sEM b) − X6 wEM i k

s2
S

H(1)
k (ω sEM b) ,

A75 = − iωM (wP + α)H(2)
k (ω sP b) + X5 ω

sP
H(2)′
k (ω sP b) + X6 ω wP

sP
H(2)′
k (ω sP b) ,

A76 = − iωM (wB + α)H(2)
k (ω sB b) + X5 ω

sB
H(2)′
k (ω sB b) + X6 ω wB

sB
H(2)′
k (ω sB b) ,

A77 = − X5 i k
s2
S b

H(2)
k (ω sS b)− X6 wS i k

s2
S

H(2)
k (ω sS b) ,

A78 = − X5 i k
s2
EM b

H(2)
k (ω sEM b) − X6 wEM i k

s2
S

H(2)
k (ω sEM b) ,

A81 = X7 k

s2
P ω b

H(1)
k (ω sP b) − X8 EP i k

s2
P ω

2 b
H(1)
k (ω sP b) ,

A82 = X7 k

s2
B ω b

H(1)
k (ω sB b)− X8EB i k

s2
B ω

2 b
H(1)
k (ω sB b) ,

A83 = ES
i

ω µ0
H(1)
k (ω sS b) − X7 i

sS
H(1)′
k (ω sS b)− X8 ES

ω sS
H(1)′
k (ω sS b) ,

A84 = EEM
i

ω µ0
H(1)
k (ω sEM b) − X7 i

sEM
H(1)′
k (ω sEM b)− X8 EEM

ω sEM
H(1)′
k (ω sEM b) ,
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A85 = X7 k

s2
P ω b

H(2)
k (ω sP b) − X8 EP i k

s2
P ω

2 b
H(2)
k (ω sP b) ,

A86 = X7 k

s2
B ω b

H(2)
k (ω sB b)− X8EB i k

s2
B ω

2 b
H(2)
k (ω sB b) ,

A87 = ES
i

ω µ0
H(2)
k (ω sS b) − X7 i

sS
H(2)′
k (ω sS b)− X8 ES

ω sS
H(2)′
k (ω sS b) ,

A88 = EEM
i

ω µ0
H(2)
k (ω sEM b) − X7 i

sEM
H(2)′
k (ω sEM b)− X8 EEM

ω sEM
H(2)′
k (ω sEM b) .

By inverting matrix Arbc-Ti for every mode k, we obtained the series of coefficients. Then, we can obtain the value
of the potentials χ• and the solution U. Now that we have obtained a reference solution, we are going to analyze the
performance of the RBC using this solution.

8.3 Performance assessment of the RBC
We have constructed the analytical outgoing solution U∞−Ti and the RBC solution Urbc-Ti for the scattering of a plane
wave by an impenetrable circular obstacle respectively in Sections 6.3 and 8.2. We consider the domain Ωab presented
in Figure 8.2, and we denote by U∞−Ti the restriction of U∞−Ti to Ωab. The boundary of the obstacle {r = a} is
denoted by Γ1, and we set an artificial boundary at radius b. In the following, we investigate the performance of
the RBC by comparing U∞−Ti to Urbc-Ti. We focus on the boundary condition of type 1 (”Neumann-like”) on a, see
Section 5.4. We simplify the notations U∞−T1 and Urbc-T1 to U∞ and Urbc. We study a material composed of sand1
(see Table 5.2), and we consider the scattering of the four plane waves of type (P, B, S, EM) by the obstacle. For all
the numerical experiments, we set a = 1m, while the value of the frequency f and of the exterior radius b will vary.

The outgoing solution U∞ is represented by the coefficients a∞k , b∞k , c∞k , d∞k , and the corresponding potentials χ∞•
are given by

χ∞P (r, θ) =
∑
k∈Z

a∞k H(1)
k (ω sP r) ei k θ ,

χ∞B (r, θ) =
∑
k∈Z

b∞k H(1)
k (ω sB r) ei k θ ,

χ∞S (r, θ) =
∑
k∈Z

c∞k H(1)
k (ω sS r) ei k θ ,

χ∞EM(r, θ) =
∑
k∈Z

d∞k H(1)
k (ω sEM r) ei k θ .

Similarly, the RBC solution Urbc is represented by the series of coefficients ak, bk, ck, dk, ãk, b̃k, c̃k, d̃k , and the
corresponding potentials χrbc

• are given by

χrbc
P (r, θ) =

∑
k∈Z

ak H(1)
k (ω sP r) ei k θ +

∑
k∈Z

ãk H(2)
k (ω sP r) ei k θ ,

χrbc
B (r, θ) =

∑
k∈Z

bk H(1)
k (ω sB r) ei k θ +

∑
k∈Z

b̃k H(2)
k (ω sB r) ei k θ ,

χrbc
S (r, θ) =

∑
k∈Z

ck H(1)
k (ω sS r) ei k θ +

∑
k∈Z

c̃k H(2)
k (ω sS r) ei k θ ,

χrbc
EM(r, θ) =

∑
k∈Z

dk H(1)
k (ω sEM r) ei k θ +

∑
k∈Z

d̃k H(2)
k (ω sEM r) ei k θ .

The function H(2)
k corresponds to the incoming solution, hence the coefficients associated to H(2)

k are the coefficients
representing the incoming part of the solution. For the solution to be accurate, we hence expect the coefficients
ãk, b̃k, c̃k, d̃k to be small. In the numerical tests, the Hankel functions are infinite series truncated to the first N terms
of the series, with N ≥ 2ka + 1 (see. [120]), where k = max(kP, kB, kS, kEM ). We compare the outgoing and RBC
solution using the following quantities:

• Comparison mode by mode of a∞k , b∞k , c∞k , d∞k with ak, bk, ck, dk. Module of ãk, b̃k, c̃k, d̃k.
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• Relative L2 error of ux:

eh(urbc
x ) = ||urbc

x − u∞x ||2
||u∞x ||2

. (8.15)

The L2 norm is theoretically equal to

||urbc
x − u∞x ||2 =

(∫
Ωab

|urbc
x − u∞x |2

) 1
2

,

In practice, we approximate the above equation by

||urbc
x − u∞x ||2 =

( ∑
K∈Th

∫
K

|urbc
x − u∞x |2

) 1
2

,

where we have defined a mesh Th of Ω with Nelem elements K which are triangles. We define on each element
the 10 Lagrange degrees of freedom corresponding with an interpolation of degree 3 on a triangle, and compute
the norm using this interpolation. We focus on the component ux, but the other components have the same
behaviour.

We will study the effect of different factors on the performance of the RBC:

• size of the exterior radius b.

• frequency,

• type of incident-wave (P,B,S,EM),

In the following, we first present in Section 8.3.1 the modules of the coefficients for b = 10m and f = 500Hz, for
various configurations. Then, in Section 8.3.2, we compare the RBC solution with the outgoing solution by using a
decomposition of the solution in potentials. In Section 8.3.3, we investigate the influence of the size of the domain used
for the RBC solution by varying the value of b. Afterwards, in Section 8.3.4 the performance of the RBC is studied
for a range of frequencies.

8.3.1 Comparison of the coefficients of outgoing and truncated solution
We consider the domain Ωab composed of sand1 (see Table 5.2), with a = 1m and b = 10m. We plot for frequency
f = 500Hz the values of the first terms of the coefficients series a∞k , b∞k , c∞k , d∞k and ak, bk, ck, dk, ãk, b̃k, c̃k, d̃k for
the scattering of a P, B, S, EM incident plane wave for sand1 with boundary condition of type 1 (”Neumann-like”) on
r = a (cf. (5.10a)), respectively in figures 8.3, 8.4, 8.5, 8.6.

From Figures 8.3 to 8.6, we can observe the following. The coefficients ak, bk, ck, dk representing the RBC solution
seem to approximate well the coefficients obtained for the outgoing solution. The coefficients c̃k are greater than
ãk and b̃k in every case. In addition, c̃k seems to follow the same pattern as ck and c∞k . When the incident plane
wave is a P-wave, the coefficients ak and bk are very close to the corresponding outgoing coefficients. We observe a
bigger difference for ck.We also note a difference for the coefficient dk but this is small because the amplitude of d∞k is
small (10−11). When the incident plane wave is a B-wave, we observe a slightly larger difference for ak, but the other
observations remain the same. For the four cases, the amplitude of dk is much smaller than the amplitudes of ak, bk
and ck.
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Figure 8.3: Obstacle scattering of an incident plane P-wave for the boundary condition of type 1 (”Neumann-like”
(5.10a)) on r = a at a frequency f = 500Hz for sandstone. The domain is an annulus with interior radius a = 1m and
exterior radius b = 10m. The coefficients with ∞ superscript correspond to the exact outgoing solution. a∞k , ak

, and ãk are the coefficients corresponding to the potential of the P-wave, b∞k , bk , and b̃k the
coefficients corresponding to the potential of the B-wave, c∞k , ck , and c̃k the coefficients corresponding
to the potential of the S-wave, and d∞k , dk , and d̃k the coefficients corresponding to the potential of the
EM-wave (see (8.13)).
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Figure 8.4: Obstacle scattering of an incident plane B-wave for the boundary condition of type 1 (”Neumann-like”
(5.10a)) on r = a at a frequency f = 500Hz for sandstone. The domain is an annulus with interior radius a = 1m and
exterior radius b = 10m. The coefficients with ∞ superscript correspond to the exact outgoing solution. a∞k , ak

, and ãk are the coefficients corresponding to the potential of the P-wave, b∞k , bk , and b̃k the
coefficients corresponding to the potential of the B-wave, c∞k , ck , and c̃k the coefficients corresponding
to the potential of the S-wave, and d∞k , dk , and d̃k the coefficients corresponding to the potential of the
EM-wave (see (8.13)).
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Figure 8.5: Obstacle scattering of an incident plane S-wave for the boundary condition of type 1 (”Neumann-like”
(5.10a)) on r = a at a frequency f = 500Hz for sandstone. The domain is an annulus with interior radius a = 1m and
exterior radius b = 10m. The coefficients with ∞ superscript correspond to the exact outgoing solution. a∞k , ak

, and ãk are the coefficients corresponding to the potential of the P-wave, b∞k , bk , and b̃k the
coefficients corresponding to the potential of the B-wave, c∞k , ck , and c̃k the coefficients corresponding
to the potential of the S-wave, and d∞k , dk , and d̃k the coefficients corresponding to the potential of the
EM-wave (see (8.13)).
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Figure 8.6: Obstacle scattering of an incident plane EM-wave for the boundary condition of type 1 (”Neumann-like”
(5.10a)) on r = a at a frequency f = 500Hz for sandstone. The domain is an annulus with interior radius a = 1m and
exterior radius b = 10m. The coefficients with ∞ superscript correspond to the exact outgoing solution. a∞k , ak

, and ãk are the coefficients corresponding to the potential of the P-wave, b∞k , bk , and b̃k the
coefficients corresponding to the potential of the B-wave, c∞k , ck , and c̃k the coefficients corresponding
to the potential of the S-wave, and d∞k , dk , and d̃k the coefficients corresponding to the potential of the
EM-wave (see (8.13)).
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8.3.2 Potential decomposition
In this section, we want to study more precisely the effect of the RBC on the four kinds of incident waves. For this,
we use the decomposition of the solution in potentials χP, χB, χS, χEM given in (6.14). We focus on the value of
the velocity u and boundary condition of type 1 (”Neumann-like”) on r = a. The wave decomposition of u for the
truncated solution is given by

uabc-T1 = uχ
abc-T1
P + uχ

abc-T1
P + uχ

abc-T1
P ,

with
uχ

abc-T1
P = − i

ωs2
P
∇χabc-T1

P , uχ
abc-T1
B = − i

ωs2
B
∇χabc-T1

B ,

uχ
abc-T1
S = i

ωs2
S

curlχabc-T1
S , uχ

abc-T1
EM = i

ωs2
EM

curlχabc-T1
EM .

The potentials χabc-T1
• are given in 8.3 and are represented by the coefficients (ak, bk, ck, dk, ãk, b̃k, c̃k, d̃k). Concerning

the outgoing solution, the velocity u∞ is decomposed as:

u∞−T1 = uχ
∞−T1
P + uχ

∞−T1
B + uχ

∞−T1
S ,

with
uχ
∞−T1
P = − i

ωs2
P
∇χ∞−T1

P , uχ
∞−T1
B = − i

ωs2
B
∇χ∞−T1

B ,

uχ
∞−T1
S = i

ωs2
S

curlχ∞−T1
S , uχ

∞−T1
EM = i

ωs2
EM

curlχ∞−T1
EM ,

with the potentials represented by the coefficients (a∞k , b∞k , c∞k , d∞k ).
We plot in Figures 8.7 and 8.8 the decomposition of the horizontal component of the solid velocity in the four

potentials for the truncated solution and the outgoing solution respectively.

(a) uabc-T1
x (b) uχ

abc-T1
P
x (c) uχ

abc-T1
B
x

(d) uχ
abc-T1
S
x (e) uχ

abc-T1
EM
x

Figure 8.7: Truncated solution: Decomposition of u (m.s−1) in the case of the scattering of a P-wave by an impenetrable
obstacle with boundary condition of type 1 (”Neumann-like”) on r = a cf. (1.20a) at a frequency f = 1kHz for sand1.
The radiation boundary condition is set at b = 10m.
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(a) u∞x (b) uχ
∞−T1
P (c) uχ

∞−T1
B

(d) uχ
∞−T1
S (e) uχ

∞−T1
EM

Figure 8.8: Outgoing solution: Decomposition of u (m.s−1) in the case of the scattering of a P-wave by an impenetrable
obstacle with boundary condition of type 1 (”Neumann-like”) on r = a, cf. (1.20a) at a frequency f = 1kHz for sand1.

ux uχP
x uχB

x uχS
x uχEM

x

Relative L2 error (%) 1.19 0.65 5.85 1.82 7.86e5

Table 8.1: Relative L2 error (%) on ux between the truncated solution and the outgoing solution for the decomposition
in potentials.

We compare the outgoing solution plotted in Figure 8.7 to the outgoing solution given in Figure 8.8. We do not
observe reflections on the RBC solution for the total wave and the potentials P, B, and S, but there can be weak
reflections that are not visible. For the EM potential, we observe a numerical artifact near the obstacle, that remains
small. Hence, this artifact does not affect much the total wave. The relative errors given Table 8.1, confirm that the
global error is low. This is also the case for potentials P,B and S. For the EM potential, the error is important. This
is also because the field associated to the EM potential is very small.
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8.3.3 Influence of the size of the truncated domain
In the previous sections, we set the artificial boundaries at b = 10m. For this value, we have observed good performance
of the RBC. We study now the errors of the RBC when the size of the truncated domain varies. We show in Figure
4.17 the RBC solution for two sizes of exterior radius. In addition, we plot the L2 error defined in equation (8.15), for
incident waves P, B, S, EM in Figure 8.10. As expected, when the size of the truncated domain decreases, the error
grows. Note that all the unknowns have the same behavior. For the incident B-wave, the error is greater than for the
P or S incident wave for b = 9m and b = 14m, see Figure 8.10.

For the four kinds of incident waves, the L2 error is lower than 5% from b = 10m. Hence, in the following tests,
we set b = 10m, in order to keep the same domain and observe the influence of other parameters. We have observed
in the previous section that this value is sufficient to limit the reflections.

(a) RBC solution with b = 10m (b) RBC solution with b = 3m

Figure 8.9: RBC solution: imaginary part of ux (m.s−1) for the scattering of a P-wave by a porous obstacle composed
of sand1 with boundary condition of type 1 (”Neumann-like”) on a, for different values of b.

5 10 15 20
0

20

40

b (m)

R
el

at
iv

e
L

2
er

ro
r

%

Figure 8.10: Relative L2 error (%) between the RBC solution and the outgoing solution as a function of the size of the
radius b for f = 500Hz and for boundary condition of type 1 (”Neumann-like”) on the interior radius. The solutions
are represented in blue for the incident P-wave, in red for the incident B-wave in green for the incident
S-wave and in orange for the incident EM-wave.
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8.3.4 Effect of the frequency
We now investigate the influence of the frequency on the accuracy of the RBC. We present two figures of scattering
of a P-wave for two different frequencies in Figure 8.11. In addition, we plot the L2 error between the truncated and
outgoing solution for a range of frequency [0.2 : 2.65 ]kHz in Figure 8.12.

(a) RBC solution at f = 1.5kHz (b) Outgoing solution at f = 1.5kHz

(c) RBC solution at f = 0.2kHz (d) Outgoing solution at f = 0.2kHz

Figure 8.11: Scattering of a P plane wave: Imaginary part of the solid velocity ux (103 m.s−1) of RBC solution for
a porous medium composed of inviscid sandstone for type of boundary condition 1 (”Neumann-like”) on the interior
radius, for f = 1.5kHz and f = 0.2 kHz.
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Figure 8.12: Relative L2 error (%) between the RBC solution and the outgoing solution as a function of the frequency
f in sand1 for the scattering of a plane wave for boundary condition of type 1 (”Neumann-like”) on a. The results are
given for a = 1m and b = 10m. The result for the incident P-wave is represented in blue , for the incident B-wave
in red , for the incident S-wave in green and for the incident EM-wave in orange .

For most of the frequencies, the error of the RBC solution is less than 10%. However, for some frequencies, the
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error is very high, and the solution is not good. This is due to the inversion of the matrix Aabc-T1, see Section 8.2. The
Hankel function for the complex slowness sEM can indeed be very high (it can reach 1050). Hence, when we need to
invert Aabc-T1, for some frequencies, the condition number of the matrix is very high and the determinant can be close
to zero. This leads to a lack of precision during the numerical inversion, and the RBC solution cannot be computed
correctly.

We have hence studied the performance of the RBC when varying several parameters. As expected, the error of
the RBC decreases when we consider more wavelengths in the domain. The performance of the RBC has a similar
order as the RBC constructed for poroelasticity in Chapter 4.

8.4 HDG method using Radiation Boundary conditions
In this section, we apply the HDG method for Pride’s equation with the low-order radiation boundary condition
derived in Section 8.1. We consider a two-dimensional domain Ω with the boundary Γ = Γl ∪ Γabs. The fields
(u, w, τ , pE, H, J) solve Pride’s equations (5.3) on Ω. On Γl, we impose one of the eight conditions given in Section
5.4. From Section 8.1, equation (8.12), we impose on the absorbing boundary Γabs:

τ n+
(
X1(u · n) + X2(w · n)

)
n+ X3(n× u) t + X4(n×E) t = 0 ,

p + X5(u · n) + X6(w · n) = 0 ,

H + X7(n× u) + X8 (n×E) = 0 .

(8.16)

We consider a triangulation Th of the domain Ω of dimension 2, and we denote by F an edge of the element K,
and n the unit normal vector to F . We will use the function spaces defined in Section 7.1. The approximate fields
(uh, wh, τh, ph, Eh, Hh, Jh) ∈ (V p(K) × V p(K) × Σp(K) × V p(K) × V p(K) × V p(K) × V p(K)) solve Pride’s
equations (5.3) on Th. The local problem given in Section 7.2 is not modified. The transmission conditions on the
interior faces and on Γl are also the ones given in Section 7.2. However, on the faces Γabs, the transmission conditions
are replaced by the radiation conditions by integrating equation (8.16), which gives:∑

F∈Fabc

∫
F

(
τ̂h n+ (X1(ûh · n) + X2(ŵh · n))n+ X3(n× ûh) t + X4(n× Êh) t

)
· η = 0 , (8.17a)

∑
F∈Fabc

∫
F

(
p̂h + X5(ûh · n) + X6(ŵh · n)

)
ξ = 0 , (8.17b)

∑
F∈Fabc

∫
F

(
Ĥh + X7(n× ûh) + X8 (n× Êh)

)
ν = 0 , (8.17c)

with (η, ξ, ν) ∈ (Mh× Mh× Mh) basis-functions on the faces. Then, we replace the numerical traces by their values,
cf. equations (7.3) and (7.4).

(a) Discretization of condition (8.17a)
We consider a face F in Γabs, and we replace the numerical traces in equation (8.17a). The fields τ̂h, ŵh and Êh are
expressed using equation (7.4), and ûh is replaced by λ1, as given in equation (7.3). We obtain∫

F

(τh n) · η −
∫
F

γ1 (uh − λ1) · η −
∫
F

γ3 (ph − λ2)n · η +
∫
F

(
X1(λ1 · n)n

)
· η

+
∫
F

X2

(
(wh · n)− γ2 (ph − λ2) − γ4(uh − λ1) · n

)
· η +

∫
F

(
X3(λ1 · t) t

)
· η

+
∫
F

(
X4
(
Eh · t − γ5 (Hh − λ3)

)
· η = 0 .

We replace the test-function η by the basis function ψFi , and we decompose the unknowns using equations (7.8) and
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(7.9). The discretization of the equation on (x, y) is written as follows:∫
F

τKxxnxϕ
K
j ψ

F
i dS +

∫
F

τKxynyϕ
K
j ψ

F
i dS −

∫
F

γ1ϕ
K
j uKx ψFi dS +

∫
F

γ1ψ
F
j λ

β(K,f)
1x ψFi dS −

∫
F

γ3nxpKϕKj ψFi dS

+
∫
F

γ3nxλ
β(K,f)
2 ψFj ψ

F
i dS +

∫
F

X1 (λβ(K,f)
1x nx + λ

β(K,f)
1y ny)nx ψFj ψFi dS +

∫
F

X2 wKx n2
xϕ

K
j ψ

F
i dS

+
∫
F

X2 wKy nxnyϕKj ψFi dS −
∫
F

X2 γ2pK nxϕKj ψFi dS +
∫
F

X2 γ2λ
β(K,f)
2 nx ψ

F
j ψ

F
i dS −

∫
F

X2 γ4 uKx n2
x ϕ

K
j ψ

F
i dS

−
∫
F

X2 γ4 uKy nxny ϕKj ψFi dS +
∫
F

X2 γ4 (λβ(K,f)
1x nx + λ

β(K,f)
1y ny)nx ψFj ψFi dS

+
∫
F

X3 (λβ(K,f)
1x n2

y − λ
β(K,f)
1y nxny)ψFj ψFi +

∫
F

X4 (EKx n2
y − E

K
y nxny)ϕKj ψFi

+
∫
F

X4 γ5H
K nyϕ

K
j ψ

F
i dS −

∫
F

X4 γ5λ3
β(K,f) ny ψ

F
j ψ

F
i dS = 0 ,

and∫
F

τKxynxϕ
K
j ψ

F
i dS +

∫
F

τKyynyϕ
K
j ψ

F
i dS −

∫
F

γ1ϕ
K
j uKy ψFi dS +

∫
F

γ1ϕ
K
j λ

β(K,f)
1y ψFi dS −

∫
F

γ3nypKϕKj ψFi dS

+
∫
F

γ3nyλ
β(K,f)
2 ψFj ψ

F
i dS +

∫
F

X1 (λβ(K,f)
1x nx + λ

β(K,f)
1y ny)ny ψFj ψFi dS +

∫
F

X2 wKx nxnyϕKj ψFi dS

+
∫
F

X2 wKy n2
yϕ

K
j ψ

F
i dS −

∫
F

X2 γ2pK nyϕKj ψFi dS +
∫
F

X2 γ2λ
β(K,f)
2 ny ψ

F
j ψ

F
i dS −

∫
F

X2 γ4 uKx nxny ϕKj ψFi dS

−
∫
F

X2 γ4 uKy n2
y ϕ

K
j ψ

F
i dS +

∫
F

X2 γ4 (λβ(K,f)
1x nx + λ

β(K,f)
1y ny)ny ψFj ψFi dS

+
∫
F

X3 (−λβ(K,f)
1x nxny + λ

β(K,f)
1y n2

x)ψFj ψFi dS +
∫
F

X4 (−EKx nxny + EKy n
2
x)ψFj ψFi dS

−
∫
F

X4 γ5H
K nxϕ

K
j ψ

F
i dS +

∫
F

X4 γ5λ3
β(K,f) nx ψ

F
j ψ

F
i dS = 0 .

In section 7.2, we have defined the following matrices:

FFij =
∫
F

ϕKi ψ
F
j dS , (QFk

)
ij

=
∫
F

ϕKi ψ
F
j nk dS , (LFkl

)
ij

=
∫
F

ϕKi ψ
F
j nk nl dS ,

GFij =
∫
F

ψFi ψ
F
j dS , (HFk

)
ij

=
∫
F

ψFi ψ
F
j nk dS ,

(
OFkl
)
ij

=
∫
F

ψFi ψ
F
j nk nl dS ,

(8.18)

with k = x, y , and l = x, y.
Using these notations, the two above equations are written as:

(Qβ(K,f)
x )T τKxx + (Qβ(K,f)

y )T τKxy − γ1(Fβ(K,f))TuKx + γ1Gβ(K,f)λ
β(K,f)
1x − γ3(Qβ(K,f)

x )TpK + γ3Hjxλ
β(K,f)
2

+ Oβ(K,f)
xx X1 λ

β(K,f)
1• + Oβ(K,f)

xy X1λ
β(K,f)
1y + (Lβ(K,f)

xx )TX2 wKx + (Lβ(K,f)
xyl )TX2 wKy − (Qβ(K,f)

x )TX2 γ2pK

+ Hβ(K,f)
x X2 γ2λ

β(K,f)
2 − (Lβ(K,f)

xx )TX2 γ4 uKx − (Lβ(K,f)
xy )TX2 γ4uKy + Oβ(K,f)

xx X2 γ4λ
β(K,f)
1x + Oβ(K,f)

xy X2γ4λ
β(K,f)
1y

+ Oβ(K,f)
yy X3 λ

β(K,f)
1x −Oβ(K,f)

xy X3 λ
β(K,f)
1y + (Lβ(K,f)

yy )TX4E
K
x − (Lβ(K,f)

xy )TX4E
K
y

+ (Qβ(K,f)
yl )TX4 γ5H

K − Hβ(K,f)
y X4 γ5λ3

β(K,f) + Oβ(K,f)
yy X4 λ

β(K,f)
1x −Oβ(K,f)

xy X4λ
β(K,f)
1y = 0 ,
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and

(Qβ(K,f)
x )T τKxy + (Qβ(K,f)

y )T τKyy − γ1(Fβ(K,f))TuKy + γ1Gβ(K,f)λ
β(K,f)
1y − γ3(Qβ(K,f)

y )TpK + γ3Hβ(K,f)
y λ

β(K,f)
2

+ Oβ(K,f)
xy X1 λ

β(K,f)
1x + Oβ(K,f)

yy X1λ
β(K,f)
1y + (Lβ(K,f)

xy )TX2 wKx + (Lβ(K,f)
yy )TX2 wKy − (Qβ(K,f)

y )TX2 γ2pK

+ Hβ(K,f)
y X2 γ2λ

β(K,f)
2 − (Lβ(K,f)

xy )TX2 γ4 uKx − (Lβ(K,f)
yy )TX2 γ4uKy + Oβ(K,f)

xy X2 γ4λ
β(K,f)
1x + Oβ(K,f)

yy X2γ4λ
β(K,f)
1y

−Oβ(K,f)
xy X3 λ

β(K,f)
1x + Oβ(K,f)

xx X3 λ
β(K,f)
1y − (Lβ(K,f)

xy )TX4E
K
x + (Lβ(K,f)

xx )TX4E
K
y

− (Qβ(K,f)
x )TX4 γ5H

K + Hβ(K,f)
x X4 γ5λ3

β(K,f) −Oβ(K,f)
xy X4 λ

β(K,f)
1x + Oβ(K,f)

xx X4λ
β(K,f)
1y = 0 .

(b) Discretization of condition (8.17b)
Considering a face F in Γabs, we replace in equation (8.17b) the numerical traces ŵh by using equation (7.4), and ûh
is replaced by λ1, as given in equation (7.3), which gives:∫

F

(
λ2 + X5(λ1 · n) + X6

(
(wh · n)− γ2 (ph − λ2) − S4(uh − λ1) · n

))
ξ = 0 .

The test-function ξ is replaced by the basis function ψFi , and we decompose the unknowns using equations (7.8) and
(7.9). We have:∫

F

λ
β(K,f)
2 ψFj ψ

F
i dS +

∫
F

X5(λβ(K,f)
1x nx + λ

β(K,f)
1y ny)ψFj ψFi dS +

∫
F

X6(wKx nx + wK
y ny)ϕKj ψFi dS

−
∫
F

X6 γ2pK ϕKj ψFi dS +
∫
F

X6 γ2λ
β(K,f)
2 ψFj ψ

F
i dS −

∫
F

X6 γ4 (uKx nx + uKy ny)ϕKj ψFi dS

+
∫
F

X6 γ4 (λβ(K,f)
1x nx + λ

β(K,f)
1y ny)ψFj ψFi dS = 0 .

Using the elementary matrices defined in equation (8.18), we obtain:

Gβ(K,f)λ
β(K,f)
2 + Hβ(K,f)

x X5λ
β(K,f)
1x + Hβ(K,f)

y X5λ
β(K,f)
1y + (Qβ(K,f)

x )TX6wKx

+ (Qβ(K,f)
y )TX6wKy − (Fβ(K,f))TX6 γ2pK + Gβ(K,f)X6 γ2λ

β(K,f)
2 − (Qβ(K,f)

xl )TX6 γ4 uKx

− (Qβ(K,f)
yl )TX6 γ4 uKy + Hβ(K,f)

x X6 γ4 λ
β(K,f)
1x + Hβ(K,f)

y X6 γ4 λ
β(K,f)
1y = 0 .

(c) Discretization of condition (8.17c)
We consider a face F in Γabs, and we replace in equation (8.17c) the numerical trace Êh by using equation (7.4).We
have: ∫

F

λ3 ν +
∫
F

X7(λ1 · t) ν +
∫
F

X8

(
Eh · t − γ5 (Hh − λ3)

)
ν = 0 .

We replace ν by the basis function ψFi , and the unknowns are decomposed using equations (7.8) and (7.9):∫
F

λ3
β(K,f)ψFj ψ

F
i dS +

∫
F

X7(−λβ(K,f)
1x ny + λ

β(K,f)
1y nx)ψFj ψFi dS +

∫
F

X8(−EKx ny + EKy nx)ϕKj ψFi dS

−
∫
F

X8γ5H
KϕKj ψ

F
i dS +

∫
F

X8γ5 λ3
β(K,f)ψFj ψ

F
i dS = 0 .

Finally, we express the above equation by using the notations introduced in equation (8.18):

Gβ(K,f)λ3
β(K,f) −Hβ(K,f)

y X7λ
β(K,f)
1x + Hβ(K,f)

x X7λ
β(K,f)
1y − (Qβ(K,f)

y )TX8E
K
x + (Qβ(K,f)

x )TX8E
K
y

− (Fβ(K,f))TX8 γ5H
K + Gβ(K,f)X8 γ5λ3

K = 0 .

The expression of the elementary matrices PK and TK for an element with a face on the absorbing border Γabs is
detailed in Appendix E.1.1.
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8.5 Local problem with PML
In this section, we apply a Perfectly Matched Layer (PML) to the discretization of Pride equations (5.3) using HDG
method. The perfectly matched layer is an artificial absorbing layer on the edges of the computational domain. It
absorbs the outgoing waves and prevents reflections. In the formulation, we use two damping functions α and β that
cause the attenuation of the wave in the absorbing layer. The absorption functions α and β are taken equal to zero
outside the absorbing layers, and the further the considered points in the layers are from the part with no attenuation,
the more their values grow. In practice, we replace the derivatives

∂

∂x
→ i ω

i ω + α(x)
∂

∂x
, and ∂

∂y
→ i ω

i ω + β(y)
∂

∂y
.

The application of the PML only changes the local problem, but does not modify the transmission conditions or the
boundary conditions. We give in Appendix E.1.2 the discretization of the local problem of Pride’s equations (5.3) with
PML.

8.6 Numerical results using HDG discretization
In this section, we study the HDG discretization of poroelastic equations with radiation boundary conditions or PML,
detailed in Sections 8.4 and 8.5. For several configurations, we evaluate the performance of two truncation methods,
by comparing the numerical solutions with reference solutions. In the code, for the PML, we use for the absorption
functions (see Section 8.5): α(x) = β0 d(x) and β(y) = β0 d(y), with d the horizontal or vertical distance between the
considered point and the beginning of the PML.

8.6.1 Square with a hole
We consider an infinite porous medium composed of sand1 (see Table 7.1), with a solid impenetrable inclusion Γ, see
Figure 8.13. We set artificial boundaries using either PML or RBC. In the first case, we impose the low-order RBC
developed in Section 8.1 as described in Section 8.4 on the square ∂Ω. Secondly, we consider additional layers Γ2 on

Ω

a

Γ

∂Ω

ABC

L

(a) Domain with RBC

Ω

∂Ω

Ω2

a

Γ

PML

L

l

(b) Domain with PML

Figure 8.13: Infinite porous domain with a solid obstacle, in which we build radiation boundary conditions. In the
tests, we take: a = 1m, L = 20m, β0 = 6.39, and l = 5m. We can use either PML or RBC.

the borders of Ω of length l = 5m, that we take as PML. We denote by ”RBC” the solution with radiation boundary
conditions, ”PML” the solution with PML, and ”exact” the reference solution. For the numerical tests, we use a = 1m
and L = 20m. On Γ, we set boundary conditions of type 1, see equation (5.10a). We can compare the solutions with
the reference solution developed in Section 8.2. We plot in Figure 8.14 the solution obtained on the horizontal solid
velocity ux for the two kinds of artificial boundaries. In the case of the RBC, the computational domain is discretized
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with 7116 elements. For the case with PML, as we need to discretize also the additional layers, the computational
mesh is composed of 14851 elements, which increases the time of the simulation. Note that the error is calculated only

(a) RBC (b) PML

(c) Reference solution

Figure 8.14: Imaginary part of the solid velocity ux (m.s−1) of the reflected wave for the scattering of a P-wave on
an obstacle with boundary conditions 1 at the interior radius, for a medium composed of sand1 with f = 1 kHz for a
domain with radiation boundary condition and a domain with PML.

on the part of the domain where the original problem is actually solved and which coincides with the domain used for
the case with radiation boundary conditions. We obtain for the L2 relative errors:

eh(ux) = 5.34% for RBC and eh(ux) = 3.35% for PML.

The order of magnitude for the errors is the same for the two truncation methods. They seem to both perform well.

8.6.2 Source in electromagnetic waves
We now want to study if the truncation methods are efficient to absorb the electromagnetic waves. In the previous
example, the amplitude of the electromagnetic wave was small, and the truncation methods had a good performance.
As the electromagnetic waves have a velocity way larger than the other velocities, it can be problematic for the artificial
conditions to prevent reflections. To observe the fast electromagnetic waves, we take a source as fC = δ ex, with δ a
Dirac distribution. We consider an homogeneous domain composed of sand1. For the numerical simulations, we set
artificial boundaries, first using RBC then PML. For the case with the RBC, we truncate the domain to the square
D = [0, 20] × [0, 20]m. For the PML, we use the domain D and we add absorbing layers. The total computational
domain is Dpml = [−4, 24]× [−4, 24]m. The point source is taken at (x, y) = (10, 10). We plot the results for the solid
velocity ux and the electric field Ex in Figure 8.15 for RBC and PML. Concerning the solid velocity ux, we observe
mainly the S wave, that seems to be well absorbed. We do not observe significant reflections. On the electric field Ex,
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(a) ux with RBC (b) ux with PML

(c) Ex with RBC (d) Ex with PML

Figure 8.15: Imaginary part of the solid velocity ux (m.s−1) and imaginary part of the electric field Ex (V.m−1) for
a porous medium composed of sand1 with f = 1 kHz for a domain with radiation boundary condition and a domain
with PML.

we can see the EM wave. For the method with RBC, we can observe the point source and no reflections are clearly
visible. However, for the PML, the solution is not as good as for the RBC. In the PML, we observe a strong reflected
wave. In this case, the RBC seems to be better than PML, but this can be different for other configurations. The
problem of the PML comes from the fact that the EM wave has a very large wavelength. In general, the size of the
PML is taken of the same order of one wavelength. However, for the EM wave, this would lead to a very large PML
and a drastic increase of computational time. This is the problem that also appears in [61].

Conclusion
In this chapter, starting from the potential formulation of the unknowns, we have built a low-order radiation condition
for Pride’s equations in two dimensions in harmonic domain. We have built an analytical solution associated to the
RBC in the setting of plane scattering by circular obstacles. We have used this analytical solution to assess the
performance of the RBC by comparing the RBC solution to the outgoing solution. The RBC has good accuracy, but
the inversion of the matrix for the computation of the reference RBC solution can be difficult, due to the large size of
the Hankel functions, which causes the condition number of the matrix to be very large. This problem only appears
in the reference RBC solution, which uses the Hankel functions, but not in HDG method, because we do not use
those functions. Then, we have implemented the radiation condition in a hybridizable dicontinuous Galerkin (HDG)
formulation. In addition, perfectly matched layers (PML) have also been included in the HDG discretization. We have
performed numerical tests to compare the performance of RBC and PML on several configurations. The HDG method
with RBC or PML performs well, regarding the simulation of the seismic waves (P, B, S). However, for the fast EM
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wave, we have observed a configuration where the PML does not prevent reflections, and deteriorates the solution.



Chapter 9

Towards comparison with geophysical
experiments

In the previous chapters, we have constructed a HDG method to solve the electrokinetic equations in the harmonic
domain. We have validated the method by using analytical solutions. The objective of this chapter is to perform
numerical experiments as a first step in the comparison between synthetic data and real data obtained in the laboratory.
For that purpose, we have to check the efficiency of the code snapshots as laboratory experiments deliver time-dependent
data . We focus on the simulation of converted waves as they have been recently measured in the laboratory by Victor
Martins Gomez, as part of his thesis in the CHICkPEA project. We consider two types of conversions: the first one
is the converted seismic wave obtained at an interface with an electromagnetic source. The second is the converted
electromagnetic wave that appears at the interface when a coseismic wave is reflected. For that, a first step is to
obtain the results in the time domain. The method to obtain the results in the time domain is detailed in Section
9.1. We present in Section 9.2 the investigation of the electroseismic conversion. Then, in Section 9.3, we study the
seismoelectric conversion.

9.1 Time domain transformation
In the previous chapters, we have worked at a fixed frequency. In this section, we present how to obtain the results
in the time domain from results in the frequency domain. The method is verified by comparing the results with a
reference solution.

9.1.1 Frequency to time transformation method
Let us consider a Ricker function in the time domain, of the form:

stime = −2α (1 + 2α t21) eα t
2
1 , with t1 = t − t0 , t0 = 1.2/f0 , α = π2 f2

0 , and f0 = 25 kHz.

The source is studied for a time range of [0 , tmax], and the signal is discretized in Ntime points with a time step dt,
with tmax = dtNtime, as given in Figure 9.1.

319
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Figure 9.1: Source in the time domain, with tmax = 2 ms and dt = 1µs.

To obtain the source in frequency domain, we apply a Fast Fourier Transform (FFT) to the signal. For this, we
use the function fft of the software Octave. The time interval is sampled as follows: if tmax = dtNtime and tn = ndt,
n is an integer between 0 and Ntime, the frequencies are given in the following order:

f = 1
tmax

[
0, 1, ..., Ntime

2 − 1,− Ntime

2 , ...,−1
]

if Ntime is even ,

f = 1
tmax

[
0, 1, ..., Ntime − 1

2 ,− Ntime − 1
2 , ...,−1

]
if Ntime is odd .

We then use the function fftshift of the software Octave to obtain the signal in the right order, and we only keep the
positive frequencies. The negative frequencies will be taken into account when we do the inverse Fourier transform
(IFT) by using the conjugate of the positive frequencies. For f = 0Hz, we consider the signal to be zero. The signal
of the source used is given in Figure 9.2.
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·105

−2

0

2
·1011

f (Hz)

So
ur

ce

Figure 9.2: FFT of the source given in Figure 9.1, in the frequency domain, with fmax = 500 kHz and df = 500 Hz.
The real part of the source is given in red , and the imaginary part of the source in blue .

We have now a list of frequencies between df and fmax, with fmax = 1
2 dt and df = 1

tmax
, and a corresponding

signal. We run the code for all the frequencies, with the given source. Because of the linearity of the problem, we can
either multiply the source at a fixed frequency by the signal given in Figure 9.2 in the code, or use the same source
for each frequency, and multiply afterwards the result by the corresponding amplitude given in Figure 9.2. Finally, we
perform an IFT on the obtained results to compute the signals in the time domain, by using the function ifftreal.

9.1.2 Verification of the time transformation
We now verify that our algorithm for the time transformation is correct. For this, we compare our results with a
reference solution, developed in the software Gar6more [45]. The reference solution is developed in the time domain,
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receiver

Point-source
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PML

l 0.7m

0.5m

Figure 9.3: Computational domain

however with necessary assumptions: the viscosity and the conductivity of the material are supposed to be equal to
zero, and the coupling tensor has a fixed value. In this case, we need to define limits for some parameters.

First, for k, we have:

η

k(ω) = 1
k0

(√
η2 − i 4

m
ω η

η

ωt
− i η

ωt
ω

)
= 1

k0

(√
η2 − 4i

m
ωη

tk0ρf
φ
− iω tk0ρf

φ

)
,

which leads to
lim
η→0,

η

k(ω) = − iω t ρf
φ

.

For a fixed L, and a zero conductivity σ we will use the following expression of ε̃:

ε̃ = δ0 + t ρf
φ

L2 .

We consider a homogenous domain composed of sand2, see Table 7.1. On the boundary of the computational domain,
we use ABC and PML (see Chapter 8). We set L = 1e− 9 A.Pa−1.m−1.

The analytical solution is computed with Gar6more. In Chapter 6, equation (6.14), we have obtained the following
expression of the electric field E:

−ω2E = EP
s2
P
∇χP + EBs2

B
∇χB −

ES
s2
S

curlχS −
EEM

s2
EM

curlχEM + F̃3 , (9.1)

with the potentials χ• with • = P, B, S, EM solutions of the Helmholtz equation. We assume that F̃3 = 0, that the
potentials χB = χS = χEM = 0, and

−ω2 s2
P χP − ∆χP = −ω2 δf(ω) , (9.2)

with δ a Dirac distribution in spatial domain and f the function plotted in Figure 9.2. By doing an inverse Fourier
transform, equation (9.2) is expressed in the time domain as:(

∂2

∂t2
− c2

P ∆
)
χ̂P = δ f̂ ′′(t) ,

with f̂ the transform function of f in the time domain, cP = s−1
P the velocity of the P-wave, and f ′′(t) the Ricker

function plotted in Figure 9.1, where we consider that f ′′(0) = f ′(0) = 0. Hence,

χ̂P = G(x, y, t) ∗ f ′′(t) ,

with G the Green function in the time domain in an acoustic infinite media with velocity cP (see e.g. [44]). Hence,
using expression (9.1), the electric field satisfies:

∂2

∂t2
E(x, y, t) = EP c2

P∇G(x, y, t) ∗ f ′′(t) ,
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which means that
E(x, y, t) = EP c2

P∇G(x, y, t) ∗ f(t) .

The expression ∇G(x, y, t) ∗ f(t) is the same as for acoustics and can be computed with Gar6more. Hence, we can
obtain the value of the electric field E. We can also obtain the other unknowns of the electrokinetic equations in the
same way.

Concerning the source in the HDG code, we set a source that only generates P-waves. For this, we take the source
as a point-source of the form:

fu = (ρa + ρfWP)
ω2 s4

P
∇ δ , fw =

(ρf + ρdynWP − i t ρf
ω φ

L EP)

ω2 s4
P

∇ δ , fC =

(
L ρdynWP −

si ε̃
ω
EP
)

ω2 s4
P

∇ δ ,

with fu, fw, fC the exterior forces of Pride’s equation (5.3). The calculations to obtain a source generating only
P-waves are given in Appendix F.1. We use a receiver at a distance of the source l = 0.222m. The results are plotted
in Figure 9.4. We observe that the two results are similar, however we observe oscillations in the numerical solution
after t = 250µs due to the spurious reflections on the boundary of the computational domain. The small difference
between the analytical and the numerical solution is due to the numerical error of the HDG method.
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Figure 9.4: Comparison of the seismogram on Ey. The result obtained numerically is represented in blue and the
reference solution is in red .

9.2 Electroseismic conversion
In this section, we want to detect the electroseismic conversion. When an electromagnetic wave propagates in a
conducting poroelastic material and impinges an interface, a converted wave is generated. We consider an infinite
domain composed of sand2 (see Table 7.1). On the edges of the computational domain, we set artificial boundaries
using the RBC developed in Chapter 8. The computational domain is presented in Figure 9.5. In the upper medium
(medium 1), we consider that the coupling tensor L is a hundred times larger than in medium 2, by setting the zeta
potential ζ = 0.1 V in medium 1 and ζ = 10 V in medium 2. The interface between the two media is plane and
horizontal.

The source in space is a point source at the coordinates (500, 800). A point source is modeled as a Dirac distribution,
denoted by δ. We consider the problem (5.3) with

fu = 0 , fw = 0 , fC = δ ey .
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Figure 9.5: Computational domain for the electroseismic conversion

In time, we consider the amplitude of the source as a Gaussian function, given by:

I(t) = 1
σg
√

2π
e
−

(t− t0)2

2σ2
g ,

with t0 = 2.5 · 10−2s and σg = t0
2 . We discretize this function for tn = dt , 2 dt , ... tmax, with dt = 5 · 10−3s and

tmax = 0.5s. The Fourier transform of this function is:

Ĩ(f) = e−2π2 f2 σ2
g ei 2π f t0 .

We use this source for f = df , 2 df , ...fmax, with df = 1
tmax

= 1 Hz and fmax = 1
2 dt = 100Hz, see Figure 9.6.
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Figure 9.6: Source in frequency domain, with fmax = 100 Hz and df = 0.2 Hz. The real part of the source is given in
red , and the imaginary part of the source in blue .

We run the code for the corresponding frequencies, and transform the result to time domain. We present in Figure
9.7 (respectively Figure 9.8) the electric field (respectively the velocity) at times t = 5, 50, 200, 600ms (respectively
t = 5, 50, 100, 150, 200, 250, 300, 350ms).

On the electric field (Figure 9.7), we observe mainly the EM wave generated by the point-source. This wave
propagates in the material very fast and has a large wavelength. As soon as the source is generated, the electromagnetic
waves propagate and impinges the interface. When this happens, it creates a seismic plane wave at the interface. The
electric field is not disturbed by the interface because the difference between the two materials is only in the coupling
tensor. On the velocity (Figure 9.8), we can observe both the wave generated by the point-source and the converted
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(a) t = 5ms (b) t = 50ms

(c) t = 200ms (d) t = 600ms

Figure 9.7: Electric field Ex at t = 5, 50, 200, 600ms.

plane wave generated at the interface. The first wave propagates from the source point. The converted waves is
generated at the plane interface, as soon as the electromagnetic impinges the interface, and propagates vertically in
the material.
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(a) t = 5ms (b) t = 50ms (c) t = 100ms

(d) t = 150ms (e) t = 200ms (f) t = 250ms

(g) t = 300ms (h) t = 350ms

Figure 9.8: Solid velocity ux at t = 5, 50, 100, 150, 200, 250, 300, 350ms.

9.3 Seismoelectric conversion
In this section, we study the seismoelectric converted wave, e.g. , a seismic wave generated by a seismic wave impinging
an interface and propagating at the electromagnetic wavespeed. We consider an infinite layered domain composed of
sand2 and sandstone. The corresponding physical parameters are given in Table 7.1. We set artificial boundaries using
the RBC developed in Chapter 8. The computational domain is presented in Figure 9.9. The interface between the
two media is plane and vertical. The source is a point source modeled as:

fu = δ ex , fw = 0 , fC = 0 .

We use the source given in Figure 9.2.
We record the signals by using a line of 200 receivers, see Figure 9.9. We present in Figure 9.10 the horizontal solid

velocity ux and the horizontal electric field Ex. On the velocity ux, we mainly observe the propagation of the P-wave.
On the electric field Ex, we observe a wave propagating at the same time as the P-wave on the velocity. This is the
coseismic wave. In addition, we observe another signal propagating at a very large speed when the P-wave is reflected
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Point-source

PML

Sand2 Sandstone

Receivers
×××××××××××××××××××

0.04m

0.64m

0.44m

0.88m

0.9m

Figure 9.9: Computational domain for the seismoelectric conversion

on the interface between the sand2 and the sandstone, and this is the converted wave. The amplitude of this wave is
smaller than the coseismic wave, and we can observe it only if saturating the picture. We also observe a much slower
wave corresponding to the S-wave.

(a) Solid velocity ux (b) Electric field Ex

S-wave

Converted
wave

Incident
P-wave

Reflected
P-wave

(c) Electric field Ex with higher saturation

Figure 9.10: Solid velocity ux and electric field Ex.

Conclusion
In this chapter, we have succeeded in numerically reproducing the converted waves associated with an electroseismic
case and a seismoelectric case. Those phenomena, in particular the seismo-electric one, are however hard to simulate,
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because their amplitudes are smaller than the amplitude of the other waves. The converted waves can also be hidden
by the other waves or the reflections on the border of the computational domain. We have presented the results for
two-dimensional cases. This can be extended to three dimensions, however this is quite difficult, due to the large size
of the global system that we need to inverse for each frequency. The main problem is that we use a direct solver
for the inversion of the matrix, which needs a very large amount of memory, hence we need to have access to large
computational resources. However, the use of a direct solver is essential, in particular for fields experiments, where
there are several thousands of sources and where we want to use the multi right-hand side functionality of the solver
MUMPS. To improve the performance of the solver in three dimensions, we will study the block analysis of the solver
and the Block-Low-Range (BLR) functionality, which allows to decrease the memory needed for the inversion of the
system.
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Appendix D

Appendices to Chapter 5

D.1 Calculation details on the determinant of the plane wave matrix
D.1.1 Transverse wave
From equation (5.20), we want to calculate the determinant of the matrix

ρa − s2 µfr ρf 0

ρf ρdyn
η

ω2 k
L

0 s iω µ0 L ρdyn ε̃µ0 − s2

 ,

which is equals to zero. The determinant is:(
ε̃µ0 − s2) ( (ρa − s2 µfr) ρdyn − ρ2

f

)
− η

ω2 k
L s iω µ0 L ρdyn (ρa − s2 µfr) = 0 ,

Using
η

ω2 k
L = s i ρdyn

ω
L ,

we have (
ε̃µ0 − s2) ( (ρa − s2 µfr) ρdyn − ρ2

f

)
− s i ρdyn

ω
L s iω µ0 L ρdyn (ρa − s2 µfr) = 0 ,

⇒
(
ε̃µ0 − s2) ( (ρa − s2 µfr) ρdyn − ρ2

f

)
+ ρ2

dyn L2 µ0 (ρa − s2 µfr) = 0 ,

We develop the above expression

(ε̃µ0 − s2) (ρa − s2 µfr) ρdyn − (ε̃µ0 − s2) ρ2
f + ρ2

dyn L2 µ0 ρa − ρ2
dyn L2 µ0 s2 µfr = 0 ,

(ε̃µ0 − s2) ρa ρdyn − (ε̃µ0 − s2) s2 µfr ρdyn − (ε̃µ0 − s2) ρ2
f + ρ2

dyn L2 µ0 ρa − ρ2
dyn L2 µ0 s2 µfr = 0 ,

ε̃µ0 ρa ρdyn − s2 ρa ρdyn − ε̃µ0 s2 µfr ρdyn + s2 s2 µfr ρdyn − ε̃µ0 ρ
2
f + s2 ρ2

f + ρ2
dyn L2 µ0 ρa − ρ2

dyn L2 µ0 s2 µfr = 0 ,

and obtain:

s4 µfr ρdyn − s2(( ρa ρdyn −ρ2
f ) + ε̃µ0 µfr ρdyn + ρ2

dyn L2 µ0 µfr
)

+
(
ε̃µ0 ( ρa ρdyn − ρ2

f ) + ρ2
dyn L2 µ0 ρa

)
= 0 . (D.1)
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This is a quadratic equation in s2. The discriminant ∆ is:

∆ =
(
( ρa ρdyn − ρ2

f ) + ε̃µ0 µfr ρdyn + ρ2
dyn L2 µ0 µfr

)2 − 4µfr ρdyn ( ε̃µ0 ( ρa ρdyn − ρ2
f ) + ρ2

dyn L2 µ0 ρa
)
,

= ( ρa ρdyn − ρ2
f )2 +

(
ε̃µ0 µfr ρdyn + ρ2

dyn L2 µ0 µfr
)2 + 2 ( ρa ρdyn − ρ2

f )
(
ε̃µ0 µfr ρdyn + ρ2

dyn L2 µ0 µfr
)

− 4µfr ρdyn ( ε̃µ0 ( ρa ρdyn − ρ2
f ) + ρ2

dyn L2 µ0 ρa
)
,

= ( ρa ρdyn − ρ2
f )2 +

(
ε̃µ0 µfr ρdyn + ρ2

dyn L2 µ0 µfr
)2

+ 2 ( ρa ρdyn − ρ2
f ) ε̃µ0 µfr ρdyn + 2 ρa ρ3

dyn L2 µ0 µfr − 2 ρ2
f ρ

2
dyn L2 µ0 µfr

− 4 ( ρa ρdyn − ρ2
f ) ε̃µ0 µfr ρdyn − 4 ρa ρ3

dyn L2 µ0 µfr ,

= ( ρa ρdyn − ρ2
f )2 +

(
ε̃µ0 µfr ρdyn + ρ2

dyn L2 µ0 µfr
)2

− 2 ( ρa ρdyn − ρ2
f ) ε̃µ0 µfr ρdyn − 2 ρa ρ3

dyn L2 µ0 µfr − 2 ρ2
f ρ

2
dyn L2 µ0 µfr ,

⇒ ∆ =
(
( ρa ρdyn − ρ2

f ) − ε̃µ0 µfr ρdyn − ρ2
dyn L2 µ0 µfr

)2 − 4 ρ2
f ρ

2
dyn L2 µ0 µfr .

The two roots of equation (D.1) are:

2 s2
• =

−
(
( ρa ρdyn − ρ2

f ) + ε̃µ0 µfr ρdyn + ρ2
dyn L2 µ0 µfr

)
±
√

∆
µfr ρdyn

,

using,
∆

(µfr ρdyn)2 =
(
( ρa
µfr
−

ρ2
f

µfr ρdyn
) − ε̃µ0 − ρdyn L2 µ0

)2 − 4
ρ2
f

µfr
L2 µ0 ,

we have

2 s2
• =

(( ρa
µfr
−

ρ2
f

µfr ρdyn

)
+ ε̃µ0 + ρdyn L2 µ0

)
±

√√√√(( ρa
µfr
−

ρ2
f

µfr ρdyn

)
− ε̃µ0 − ρdyn L2 µ0

)2

− 4
ρ2
f

µfr
L2 µ0 .

D.1.2 Longitudinal waves
We want to calculate the determinant of the following matrix (see equation (5.24)).

s2H − ρa s2 αM − ρf 0

− ρf + s2 αM − ρdyn + s2M
η

ω2 k
L

0 s iω µ0 L ρdyn ε̃µ0

 .

The determinant is zero:

ε̃µ0

((
s2H − ρa

) (
− ρdyn + s2M

)
−
(
− ρf + s2 αM

)2 )− η

ω2 k
L
(

s2H − ρa
)
s iω µ0 L ρdyn = 0 .

Using η

ω2 k
L = s i ρdyn

ω
L , we have

ε̃µ0

((
s2H − ρa

) (
− ρdyn + s2M

)
−
(
− ρf + s2 αM

)2)− s i ρdyn

ω
L
(

s2H − ρa
)
s iω µ0 L ρdyn = 0 ,

which gives

(
s2H − ρa

) (
− ρdyn + s2M

)
−
(
− ρf + s2 αM

)2 +
(

s2H − ρa
)

ε̃
L2 ρ2

dyn = 0 .

We develop the above expression and obtain

− ρdyn s2H + ρa ρdyn + s4HM − s2 ρaM
η

ω2 k
L − ρ2

f − s4 α2M2 + 2 ρf s2 αM +
(

s2H − ρa
)

ε̃
L2 ρ2

dyn = 0 .
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The quadratic equation in s2
• is:

s4
(
HM − α2M2

)
+ s2

(
− ρdynH − ρaM

η

ω2 k
L + 2 ρf αM + H

ε̃
L2 ρ2

dyn

)
+
(
ρa ρdyn − ρ2

f −
ρa
ε̃

L2 ρ2
dyn

)
= 0 ,

and we can define the roots as:
2 s2
• = − b ±

√
b2 − 4 c ,

with

b =
− ρdynH − ρaM + 2 ρf αM + H

ε̃
L2 ρ2

dyn

HM − α2M2 ,

and

c =
ρa ρdyn − ρ2

f −
ρa
ε̃

L2 ρ2
dyn

HM − α2M2 .
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Appendix E

Appendices to Chapter 8

E.1 Details on the HDG method with RBC and PML
E.1.1 Elementary matrices for HDG method with RBC
The elementary matrices PK and TK are modified for the rows corresponding to the faces on Γabs. We suppose that
the first face of the element K is on Γabs Then, the matrix PK has the following structure,

PK =

 PKporo PKcoupling
EM→poro

PKcoupling
poro→EM

PKEM

 ,

with

PKporo =



−γ1(Fβ(K,1))T − γ4X2(Lβ(K,1)
xx )T −γ4X2(Lβ(K,1)

xy )T X2(Lβ(K,1)
xx )T ...

−γ1(Fβ(K,2))T 0 0 ...

−γ1(Fβ(K,3))T 0 0 ...

−γ4X2(Lβ(K,1)
xy )T −γ1(Fβ(K,1))T − γ4X2(Lβ(K,1)

yy )T X2(Lβ(K,1)
xy )T ...

0 −γ1(Fβ(K,2))T 0 ...

0 −γ1(Fβ(K,3))T 0 ...

−X6γ4(Qβ(K,1)
x ) −X6γ4(Qβ(K,1)

y )T X6(Qβ(K,1)
x )T ...

−(Qβ(K,2)
x )T γ4 −(Qβ(K,2)

y )T γ4 (Qβ(K,2)
x )T ...

−(Qβ(K,3)
x )T γ4 −(Qβ(K,3)

y )T γ4 (Qβ(K,3)
x )T ...

... X2(Lβ(K,1)
xy )T (Qβ(K,1)

x )T 0 (Qβ(K,1)
y )T (−γ3 − γ2X2)(Qβ(K,1)

x1 )T

... 0 (Qβ(K,2)
x )T 0 (Qβ(K,2)

y )T −γ3(Qβ(K,2)
x )T

... 0 (Qβ(K,3)
x )T 0 (Qβ(K,3)

y )T −γ3(Qβ(K,3)
x )T

... X2(Lβ(K,1)
yy )T 0 (Qβ(K,1)

y )T (Qβ(K,1)
x )T (−γ3 − γ2X2)(Qβ(K,1)

y )T

... 0 0 (Qβ(K,2)
y )T (Qβ(K,2)

x )T −γ3(Qβ(K,2)
y )T

... 0 0 (Qβ(K,3)
y )T (Qβ(K,3)

x )T −γ3(Qβ(K,3)
y )T

... X6(Qβ(K,1)
y )T 0 0 0 −γ2X6(Fβ(K,1))T

... (Qβ(K,2)
y )T 0 0 0 −γ2(Fβ(K,2))T

... (Qβ(K,3)
y )T 0 0 0 −γ2(Fβ(K,3))T



,
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PKcoupling
poro→EM

=



X4(Lβ(K,1)
yy )T −X4(Lβ(K,1)

xy )T X4 γ5(Qβ(K,1)
y )T 0 0

0 0 0 0 0
0 0 0 0 0

−X4(Lβ(K,1)
xy )T X4(Lβ(K,1)

xx )T −X4 γ5(Qβ(K,1)
x )T 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



,

PKEM =


−X8(Qβ(K,1)

y )T X8(Qβ(K,1)
x )T −X8 γ5(Fβ(K,1))T 0 0

−(Qβ(K,2)
y )T (Qβ(K,2)

x )T −γ5(Fβ(K,2))T 0 0

−(Qβ(K,3)
y )T (Qβ(K,3)

x )T −γ5(Fβ(K,3))T 0 0

 , and PKcoupling
EM→poro

= 0 .

Then, TK has the form:

TK =

 TKporo TKcoupling
EM→poro

TKcoupling
poro→EM

TKEM

 ,

with the matrices

TKporo =



γ1Gβ(K,1) + (γ4X2 + X1)Oβ(K,1)
xx + (X3 + X4)Oβ(K,1)

yy 0 0 (γ4X2 + X1 −X3 −X4)Oβ(K,1)
xy ...

0 γ1Gβ(K,2) 0 0 ...

0 0 γ1Gβ(K,3) 0 ...

(γ4X2 + X1 −X3 −X4)Oβ(K,1)
xy 0 0 γ1Gβ(K,1) + (γ4X2 + X1)Oβ(K,1)

yy + (X3 + X4)Oβ(K,1)
xx ...

0 0 0 0 ...

0 0 0 0 ...

(X5 + X6γ4)Hβ(K,1)
x 0 0 (X5 + X6γ4)Hβ(K,1)

y ...

0 γ4H
β(K,2)
x 0 0 ...

0 0 γ4H
β(K,3)
x 0 ...

... 0 0 (γ3 + X2γ2)Hβ(K,1)
x 0 0

... 0 0 0 γ3H
β(K,2)
x 0

... 0 0 0 0 γ3H
β(K,3)
x

... 0 0 (γ3 + X2γ2)Hβ(K,1)
y 0 0

... γ1Gβ(K,2) 0 0 γ3H
β(K,2)
y 0

... 0 γ1Gβ(K,3) 0 0 γ3H
β(K,3)
y

... 0 0 (1 + X6γ2)Gβ(K,1) 0 0

... γ4H
β(K,2)
y 0 0 γ2Gβ(K,2) 0

... 0 γ4H
β(K,3)
y 0 0 γ2Gβ(K,3)



,
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TKcoupling
poro→EM

=



−X4γ5Hβ(K,1)
y 0 0

0 0 0
0 0 0

X4γ5Hβ(K,1)
x 0 0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0



, TKEM =


(1 + X8γ5)Gβ(K,1) 0 0

0 γ5Gβ(K,2) 0

0 0 γ5Gβ(K,3)

 ,

and

TKcoupling
EM→poro

=


−X7Hβ(K,1)

y 0 0 X7Hβ(K,1)
x 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

 .

E.1.2 HDG method with PML
Here, we write the discretization of the local problem with Pride’s equations (5.3) and PML. The transmission con-
ditions are not modified and stay the same as the one used in HDG method with no PML, see Section 3.1. We
consider a two-dimensional domain Ω with the boundary Γ on the plane (x, y). (u, w, τ , pE, H, J) solve Pride’s
equations (5.3) on Ω. We consider a triangulation Th of Ω, and Fh the set of all the faces. K is a triangu-
lar element of Th and F is an edge of K. We approximate the exact solution (u, w, τ , p, E, H, J) on K by
(uh, wh, τh, ph, Eh, Hh, Jh) ∈ (V p(K)×V p(K)×Σp(K)×V p(K)×V p(K)×V p(K)×V p(K)) . The local unknowns
solve Pride’s equations (5.3)on Th.

We define the following test functions:

(ũ, w̃, τ̃ , p̃, ẽ, h̃, j̃) ∈ (V p(K)× V p(K)×Σp(K)× V p(K)× V p(K)× V p(K)× V p(K)) .

We present the discretization equation by equation.

Discretization of equation (5.3a) We multiply equations (5.3a) with zero sources by the test-functions and inte-
grate on the element K:∫

K

iωρauKx ũx +
∫
K

iωρauKy ũy +
∫
K

iωρfwKx ũx +
∫
K

iωρfwKy ũy −
∫
K

(
i ω

i ω + α(x)
∂τKxx
∂x

+ i ω

i ω + β(y)
∂τKxy
∂y

)
ũx

−
∫
K

(
i ω

i ω + α(x)
∂τKxy
∂x

+ i ω

i ω + β(y)
∂τKyy
∂y

)
ũy = 0 .

By integrating by parts, we obtain:∫
K

iωρauKx ũx +
∫
K

iωρauKy ũy +
∫
K

iωρfwKx ũx +
∫
K

iωρfwKy ũy +
∫
K

i ω

i ω + α(x)τ
K
xx

∂ũx
∂x

+
∫
K

i ω

i ω + β(y)τ
K
xy

∂ũx
∂y

−
∫
F

i ω

i ω + α(x) τ̂
K
xxnxũx −

∫
F

i ω

i ω + β(y) τ̂
K
xynyũx +

∫
K

i ω

i ω + α(x)τ
K
xy

∂ũy
∂x

+
∫
K

i ω

i ω + β(y)τ
K
yy

∂ũy
∂y

−
∫
F

i ω

i ω + α(x) τ̂
K
xynxũy −

∫
F

i ω

i ω + β(y) τ̂
K
yynyũy = 0 ,
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Then we replace the numerical trace τ̂h by the expressions from equation (7.4) and integrate by parts the space
derivatives of τ :∫
K

iωρauKx ũx +
∫
K

iωρauKy ũy +
∫
K

iωρfwKx ũx +
∫
K

iωρfwKy ũy −
∫
K

i ω

i ω + α(x)
∂τKxx
∂x

ũx

+
∫
F

γ1
i ω

i ω + α(x) (uKx − λ1x)n2
xũx +

∫
F

γ3
i ω

i ω + α(x) (ph − λ2)nxũx

−
∫
K

i ω

i ω + β(y)
∂τKxy
∂y

ũx +
∫
F

γ1
i ω

i ω + β(y) (uKx − λ1x)n2
yũx −

∫
K

i ω

i ω + α(x)
∂τKxy
∂x

ũy +
∫
F

γ1
i ω

i ω + α(x) (uKy − λ1y)n2
xũy

−
∫
K

i ω

i ω + β(y)
∂τKyy
∂y

ũy +
∫
F

γ1
i ω

i ω + β(y) (uKy − λ1y)n2
yũy +

∫
F

γ3
i ω

i ω + β(y) (ph − λ2)nyũy = 0 .

Finally, we replace the local unknowns and the local test-functions using equations (3.15) and (3.16). We obtain on x:∫
K

iωρauKx ϕKj ϕKi +
∫
K

iωρfwKx ϕKj ϕKi −
∫
K

i ω

i ω + α(x)τ
K
xx

∂ϕKj
∂x

ϕKi +
∫
∂K

γ1
i ω

i ω + α(x) (uKx ϕKj − λ1xψ
F
j )n2

xϕ
K
i

+
∫
∂K

γ3
i ω

i ω + α(x) (pKϕKj − λ2ψ
F
j )nxϕKi −

∫
K

i ω

i ω + β(y)τ
K
xy

∂ϕKj
∂y

ϕKi

+
∫
∂K

γ1
i ω

i ω + β(y) (uKx ϕKj − λ1xψ
F
j )n2

yϕ
K
i = 0 ,

and on y :

∫
K

iωρauKy ϕKj ϕKi +
∫
K

iωρfwKy ϕKj ϕKi −
∫
K

i ω

i ω + α(x)τ
K
xy

∂ϕKj
∂x

ϕKi +
∫
∂K

γ1
i ω

i ω + α(x) (uKy ϕKj − λ1yψ
F
j )n2

xϕ
K
i

−
∫
K

i ω

i ω + β(y)τ
K
yy

∂ϕKj
∂y

ϕKi +
∫
∂K

γ1
i ω

i ω + β(y) (uKy ϕKj − λ1yψ
F
j )n2

yϕ
K
i +

∫
∂K

γ3
i ω

i ω + β(y) (pKϕKj − λ2ψ
F
j )nyϕKi = 0 .

Discretization of equation (5.3b) The integration of (5.3b) with zero sources on the element K gives:∫
K

iωρfuKx w̃x +
∫
K

iωρfuKy w̃y +
∫
K

iωρdynwKx w̃x +
∫
K

iωρdynwKy w̃y +
∫
K

i ω

i ω + α(x)
∂p
∂x
w̃x +

∫
K

i ω

i ω + β(y)
∂p
∂y
w̃y

+
∫
K

iω ρdyn LEKx w̃x +
∫
K

iω ρdyn LEKy w̃y = 0 .

Next we integrate by parts:∫
K

iωρfuKx w̃x +
∫
K

iωρfuKy w̃y +
∫
K

iωρdynwKx w̃x +
∫
K

iωρdynwKy w̃y −
∫
K

i ω

i ω + α(x)p∂w̃x
∂x

+
∫
F

i ω

i ω + α(x) p̂h nxw̃x

−
∫
K

i ω

i ω + β(y)p∂w̃y
∂y

+
∫
F

i ω

i ω + β(y) p̂h nyw̃y +
∫
K

iω ρdyn LEKx w̃x +
∫
K

iω ρdyn LEKy w̃y = 0 .

Then we replace the numerical trace p̂h by λ2 as given in equation (7.3) to obtain:∫
K

iωρfuKx w̃x +
∫
K

iωρfuKy w̃y +
∫
K

iωρdynwKx w̃x +
∫
K

iωρdynwKy w̃y −
∫
K

i ω

i ω + α(x)p∂w̃x
∂x

+
∫
F

i ω

i ω + α(x)λ2nxw̃x

−
∫
K

i ω

i ω + β(y)p∂w̃y
∂y

+
∫
F

i ω

i ω + β(y)λ2nyw̃y +
∫
K

iω ρdyn LEKx w̃x +
∫
K

iω ρdyn LEKy w̃y = 0 .

Finally, we replace the local unknowns and the local test-functions using equations (3.15) and (3.16). This gives on
x-direction:∫
K

iωρfuKx ϕKj ϕKi +
∫
K

iωρdyn wKx ϕKj ϕKi −
∫
K

i ω

i ω + α(x)pKϕKj
∂ϕKi
∂x

+
∫
F

i ω

i ω + α(x)λ2ψ
F
j nxϕ

K
i +

∫
K

iωρdynLEKx ϕKi = 0 ,

and on y-direction:∫
K

iωρfuKy ϕKj ϕKi +
∫
K

iωρdyn wKy ϕKj ϕKi −
∫
K

i ω

i ω + β(y)pKϕKj
∂ϕKi
∂y

+
∫
F

i ω

i ω + β(y)λ2ψ
F
j nyϕ

K
i +

∫
K

iωρdynLEKy ϕKi = 0 .
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Discretization of equation (5.3c) The variational formulation of equations (5.3c) is:∫
K

iωτKxx τ̃xx +
∫
K

iωα11phτ̃xx −
∫
K

C11
i ω

i ω + α(x)
∂uKx
∂x

τ̃xx −
∫
K

C12
i ω

i ω + β(y)
∂uKy
∂y

τ̃xx

−
∫
K

C13

(
i ω

i ω + α(x)
∂uKy
∂x

+ i ω

i ω + β(y)
∂uKx
∂y

)
τ̃xx

+
∫
K

iωτKyy τ̃yy +
∫
K

iωα22phτ̃yy −
∫
K

C12
i ω

i ω + α(x)
∂uKx
∂x

τ̃yy −
∫
K

C22
i ω

i ω + β(y)
∂uKy
∂y

τ̃yy

−
∫
K

C23

(
i ω

i ω + α(x)
∂uKy
∂x

+ i ω

i ω + β(y)
∂uKx
∂y

)
τ̃yy

+
∫
K

iωτKxy τ̃xy +
∫
K

iωα12phτ̃xy −
∫
K

C13
i ω

i ω + α(x)
∂uKx
∂x

τ̃xy −
∫
K

C23
i ω

i ω + β(y)
∂uKy
∂y

τ̃xy

−
∫
K

C33

(
i ω

i ω + α(x)
∂uKy
∂x

+ i ω

i ω + β(y)
∂uKx
∂y

)
τ̃xy = 0 .

By integrating by parts, we have:∫
K

iωτKxx τ̃xx +
∫
K

iωα11phτ̃xx +
∫
K

C11
i ω

i ω + α(x)uKx
∂τ̃xx
∂x
−
∫
F

C11
i ω

i ω + α(x) ûKx nxτ̃xx

+
∫
K

C12
i ω

i ω + β(y)uKy
∂τ̃xx
∂y
−
∫
F

C12
i ω

i ω + β(y) ûKy ny τ̃xx +
∫
K

C13
i ω

i ω + α(x)uKy
∂τ̃xx
∂x

−
∫
F

C13
i ω

i ω + α(x) ûKy nxτ̃xx +
∫
K

C13
i ω

i ω + β(y)uKx
∂τ̃xx
∂y
−
∫
F

C13
i ω

i ω + β(y) ûKx ny τ̃xx

+
∫
K

iωτKyy τ̃yy +
∫
K

iωα22phτ̃yy +
∫
K

C12
i ω

i ω + α(x)uKx
∂τ̃yy
∂x
−
∫
F

C12
i ω

i ω + α(x) ûKx nxτ̃yy

+
∫
K

C22
i ω

i ω + β(y)uKy
∂τ̃yy
∂y
−
∫
F

C22
i ω

i ω + β(y) ûKy ny τ̃yy +
∫
K

C23
i ω

i ω + α(x)uKy
∂τ̃yy
∂x

−
∫
F

C23
i ω

i ω + α(x) ûKy nxτ̃yy +
∫
K

C23
i ω

i ω + β(y)uKx
∂τ̃yy
∂y
−
∫
F

C23
i ω

i ω + β(y) ûKx ny τ̃yy

+
∫
K

iωτKxy τ̃xy +
∫
K

iωα12phτ̃xy +
∫
K

C13
i ω

i ω + α(x)uKx
∂τ̃xy
∂x
−
∫
F

C13
i ω

i ω + α(x) ûKx nxτ̃xy

+
∫
K

C23
i ω

i ω + β(y)uKy
∂τ̃xy
∂y
−
∫
F

C23
i ω

i ω + β(y) ûKy ny τ̃xy +
∫
K

C33
i ω

i ω + α(x)uKy
∂τ̃xy
∂x

−
∫
F

C33
i ω

i ω + α(x) ûKy nxτ̃xy +
∫
K

C33
i ω

i ω + β(y)uKx
∂τ̃xy
∂y
−
∫
F

C33
i ω

i ω + β(y) ûKx ny τ̃xy = 0 .
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Then we replace the numerical trace ûh by λ1 from equation (7.3):∫
K

iωτKxx τ̃xx +
∫
K

iωα11phτ̃xx +
∫
K

C11
i ω

i ω + α(x)uKx
∂τ̃xx
∂x
−
∫
F

C11
i ω

i ω + α(x)λ1xnxτ̃xx

+
∫
K

C12
i ω

i ω + β(y)uKy
∂τ̃xx
∂y
−
∫
F

C12
i ω

i ω + β(y)λ1yny τ̃xx +
∫
K

C13
i ω

i ω + α(x)uKy
∂τ̃xx
∂x

−
∫
F

C13
i ω

i ω + α(x)λ1ynxτ̃xx +
∫
K

C13
i ω

i ω + β(y)uKx
∂τ̃xx
∂y
−
∫
F

C13
i ω

i ω + β(y)λ1xny τ̃xx

+
∫
K

iωτKyy τ̃yy +
∫
K

iωα22phτ̃yy +
∫
K

C12
i ω

i ω + α(x)uKx
∂τ̃yy
∂x
−
∫
F

C12
i ω

i ω + α(x)λ1xnxτ̃yy

+
∫
K

C22
i ω

i ω + β(y)uKy
∂τ̃yy
∂y
−
∫
F

C22
i ω

i ω + β(y)λ1yny τ̃yy +
∫
K

C23
i ω

i ω + α(x)uKy
∂τ̃yy
∂x

−
∫
F

C23
i ω

i ω + α(x)λ1ynxτ̃yy +
∫
K

C23
i ω

i ω + β(y)uKx
∂τ̃yy
∂y
−
∫
F

C23
i ω

i ω + β(y)λ1xny τ̃yy

+
∫
K

iωτKxy τ̃xy +
∫
K

iωα12phτ̃xy +
∫
K

C13
i ω

i ω + α(x)uKx
∂τ̃xy
∂x
−
∫
F

C13
i ω

i ω + α(x)λ1xnxτ̃xy

+
∫
K

C23
i ω

i ω + β(y)uKy
∂τ̃xy
∂y
−
∫
F

C23
i ω

i ω + β(y)λ1yny τ̃xy +
∫
K

C33
i ω

i ω + α(x)uKy
∂τ̃xy
∂x

−
∫
F

C33
i ω

i ω + α(x)λ1ynxτ̃xy +
∫
K

C33
i ω

i ω + β(y)uKx
∂τ̃xy
∂y
−
∫
F

C33
i ω

i ω + β(y)λ1xny τ̃xy = 0 .

Finally, we replace the local unknowns and the local test-functions using equations (3.15) and (3.16). This gives the
three following equations:∫

K

iωτKxx ϕKj ϕKi +
∫
K

iωα11pKϕKj ϕKi +
∫
K

C11
i ω

i ω + α(x)uKx ϕKj
∂ϕKi
∂x
−
∫
F

C11
i ω

i ω + α(x)λ1xψ
F
j nxϕ

K
i

+
∫
K

C12
i ω

i ω + β(y)uKy ϕKj
∂ϕKi
∂y
−
∫
F

C12
i ω

i ω + β(y)λ1yψ
F
j nyϕ

K
i +

∫
K

C13
i ω

i ω + α(x)uKy ϕKj
∂ϕKi
∂x

−
∫
F

C13
i ω

i ω + α(x)λ1yψ
F
j nxϕ

K
i +

∫
K

C13
i ω

i ω + β(y)uKx ϕKj
∂ϕKi
∂y
−
∫
F

C13
i ω

i ω + β(y)λ1xψ
F
j nyϕ

K
i = 0 ,

∫
K

iωτKyyϕKj ϕKi +
∫
K

iωα22pKϕKj ϕKi +
∫
K

C12
i ω

i ω + α(x)uKx ϕKj
∂ϕKi
∂x
−
∫
F

C12
i ω

i ω + α(x)λ1xψ
F
j nxϕ

K
i

+
∫
K

C22
i ω

i ω + β(y)uKy ϕKj
∂ϕKi
∂y
−
∫
F

C22
i ω

i ω + β(y)λ1yψ
F
j nyϕ

K
i +

∫
K

C23
i ω

i ω + α(x)uKy ϕKj
∂ϕKi
∂x

−
∫
F

C23
i ω

i ω + α(x)λ1yψ
F
j nxϕ

K
i +

∫
K

C23
i ω

i ω + β(y)uKx ϕKj
∂ϕKi
∂y
−
∫
F

C23
i ω

i ω + β(y)λ1xψ
F
j nyϕ

K
i = 0 ,

and ∫
K

iωτKyy ϕKj ϕKi +
∫
K

iωα22ph ϕKj ϕKi +
∫
K

C13
i ω

i ω + α(x)uKx ϕKj
∂ϕKi
∂x
−
∫
F

C13
i ω

i ω + α(x)λ1xψ
F
j nxϕ

K
i

+
∫
K

C23
i ω

i ω + β(y)uKy ϕKj
∂ϕKi
∂y
−
∫
F

C23
i ω

i ω + β(y)λ1yψ
F
j nyϕ

K
i +

∫
K

C33
i ω

i ω + α(x)uKy ϕKj
∂ϕKi
∂x

−
∫
F

C33
i ω

i ω + α(x)λ1yψ
F
j nxϕ

K
i +

∫
K

C33
i ω

i ω + β(y)uKx ϕKj
∂ϕKi
∂y
−
∫
F

C33
i ω

i ω + β(y)λ1xψ
F
j nyϕ

K
i = 0 .

Discretization of equation (5.3d) We multiply equations (5.3d) by the test-functions and integrate on the element
K to obtain:∫

K

iωphp̃ +
∫
K

M

(
i ω

i ω + α(x)
∂wKx
∂x

+ i ω

i ω + β(y)
∂wKy
∂y

)
p̃ +

∫
K

Mα11
i ω

i ω + α(x)
∂uKx
∂x

p̃

+
∫
K

Mα22
i ω

i ω + β(y)
∂uKy
∂y

p̃ +
∫
K

Mα12

(
i ω

i ω + β(y)
∂uKx
∂y

+ i ω

i ω + α(x)
∂uKy
∂x

)
p̃ = 0 .
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The integration by parts of the space derivatives of u and w gives:∫
K

iωphp̃−
∫
K

M
iω

iω + α(x)wKx
∂p̃
∂x

+
∫
F

M
iω

iω + α(x) ŵKx nxp̃−
∫
K

M
iω

iω + β(y)wKy
∂p̃
∂y

+
∫
F

M
iω

iω + β(y) ŵKy nyp̃−
∫
K

Mα11
i ω

i ω + α(x)uKx
∂p̃
∂x

+
∫
F

Mα11
i ω

i ω + α(x) ûKx nxp̃

−
∫
K

Mα22
i ω

i ω + β(y)uKy
∂p̃
∂y

+
∫
F

Mα22
i ω

i ω + β(y) ûKy nyp̃−
∫
K

Mα12
i ω

i ω + β(y)uKx
∂p̃
∂y

+
∫
F

Mα12
i ω

i ω + β(y) ûKx nyp̃−
∫
K

Mα12
i ω

i ω + α(x)uKy
∂p̃
∂x

+
∫
F

Mα12
i ω

i ω + α(x) ûKy nxp̃ = 0 .

Next we replace the numerical traces ûh and ŵh by their expression given in equations (7.3) and (7.4):∫
K

iωphp̃ +
∫
K

M
iω

iω + α(x)
∂wKx
∂x

p̃−
∫
F

Mγ2
i ω

i ω + α(x) (ph − λ2)n2
xp̃−

∫
F

Mγ4
i ω

i ω + α(x) (uKx − λ1x)nxp̃

+
∫
K

M
iω

iω + β(y)
∂wKy
∂y

p̃−
∫
F

Mγ2
i ω

i ω + β(y) (ph − λ2)n2
yp̃−

∫
F

Mγ4
i ω

i ω + β(y) (uKy − λ1y)nyp̃

−
∫
K

Mα11
i ω

i ω + α(x)uKx
∂p̃
∂x

+
∫
F

Mα11
i ω

i ω + α(x)λ1xnxp̃−
∫
K

Mα22
i ω

i ω + β(y)uKy
∂p̃
∂y

+
∫
F

Mα22
i ω

i ω + β(y)λ1ynyp̃−
∫
K

Mα12
i ω

i ω + β(y)uKx
∂p̃
∂y

+
∫
F

Mα12
i ω

i ω + β(y)λ1xnyp̃

−
∫
K

Mα12
i ω

i ω + α(x)uKy
∂p̃
∂x

+
∫
F

Mα12
i ω

i ω + α(x)λ1ynxp̃ = 0 .

Finally, the local unknowns and the local test-functions are replaced using equations (3.15) and (3.16):∫
K

iωpKϕKj ϕKi +
∫
K

M
iω

iω + α(x)wKx
∂ϕKj
∂x

ϕKi −
∫
F

Mγ2
i ω

i ω + α(x) (pKϕKj − λ2ψ
F
j )n2

xϕ
K
i

−
∫
F

Mγ4
i ω

i ω + α(x) (uKx ϕKj − λ1xψ
F
j )nxϕKi +

∫
K

M
iω

iω + β(y)wKy
∂ϕKj
∂y

ϕKi −
∫
F

Mγ2
i ω

i ω + β(y) (pKϕKj − λ2ψ
F
j )n2

yϕ
K
i

−
∫
F

Mγ4
i ω

i ω + β(y) (uKy ϕKj − λ1yψ
F
j )nyϕKi −

∫
K

Mα11
i ω

i ω + α(x)uKx ϕKj
∂ϕKi
∂x

+
∫
F

Mα11
i ω

i ω + α(x)λ1xψ
F
j nxϕ

K
i

−
∫
K

Mα22
i ω

i ω + β(y)uKy ϕKj
∂ϕKi
∂y

+
∫
F

Mα22
i ω

i ω + β(y)λ1yψ
F
j nyϕ

K
i −

∫
K

Mα12
i ω

i ω + β(y)uKx ϕKj
∂ϕKi
∂y

+
∫
F

Mα12
i ω

i ω + β(y)λ1xψ
F
j nyϕ

K
i −

∫
K

Mα12
i ω

i ω + α(x)uKy ϕKj
∂ϕKi
∂x

+
∫
F

Mα12
i ω

i ω + α(x)λ1yψ
F
j nxϕ

K
i = 0 .

Discretization of equation (5.3e) The integration on an element of (5.3e) with zero sources gives:∫
K

iω δ0EKx ẽx +
∫
K

iω δ0EKy ẽy −
∫
K

i ω

i ω + β(y)
∂HK

z

∂y
ẽx +

∫
K

i ω

i ω + α(x)
∂HK

z

∂x
ẽy +

∫
K

JKx ẽx +
∫
K

JKy ẽy = 0 .

By integrating the space derivatives of HK
z , we have:∫

K

iω δ0EKx ẽx +
∫
K

iω δ0EKy ẽy +
∫
K

i ω

i ω + β(y)H
K
z

∂ẽx
∂y
−
∫
∂K

i ω

i ω + β(y)Ĥhny ẽx

−
∫
K

i ω

i ω + α(x)H
K
z

∂ẽy
∂x

+
∫
∂K

i ω

i ω + α(x)Ĥhnxẽy +
∫
K

JKx ẽx +
∫
K

JKy ẽy = 0 .

Then we replace the numerical trace Ĥh by λ3 as given in equation (7.3):∫
K

iω δ0EKx ẽx +
∫
K

iω δ0EKy ẽy +
∫
K

i ω

i ω + β(y)H
K
z

∂ẽx
∂y
−
∫
∂K

i ω

i ω + β(y)λ3ny ẽx

−
∫
K

i ω

i ω + α(x)H
K
z

∂ẽy
∂x

+
∫
∂K

i ω

i ω + α(x)λ3nxẽy +
∫
K

JKx ẽx +
∫
K

JKy ẽy = 0 .
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Next, the local unknowns and the local test-functions are replaced with the expressions given in equations (3.15) and
(3.16): The discretization along x− component gives:∫

K

iω δ0EKx ϕKi ϕKj +
∫
K

i ω

i ω + β(y)H
K ∂ϕKi

∂y
ϕKj −

∫
∂K

i ω

i ω + β(y)λ3ny ϕ
K
i ϕ

K
j +

∫
K

JKx ϕ
K
i ϕ

K
j = 0 ,

and along y− component:∫
K

iω δ0EKy ϕKi ϕKj −
∫
K

i ω

i ω + α(x)H
K ∂ϕKi

∂x
ϕKj +

∫
∂K

i ω

i ω + α(x)λ3nx ϕ
K
i ϕ

K
j +

∫
K

JKy ϕ
K
i ϕ

K
j = 0 .

Discretization of equation (5.3f) The multiplication of equations (5.3f) by the test-functions and integration on
the element K is: ∫

K

iω µ0H
K
z h̃ +

∫
K

i ω

i ω + α(x)
∂EKy
∂x

h̃ −
∫
K

i ω

i ω + β(y)
∂EKx
∂y

h̃ = 0 .

By integrating by parts, we have:∫
K

iω µ0H
K
z h̃ −

∫
K

i ω

i ω + α(x)E
K
y

∂h̃

∂x
+
∫
∂K

i ω

i ω + α(x) ÊKy nx h̃ +
∫
K

i ω

i ω + β(y)E
K
x

∂h̃

∂y
−
∫
∂K

i ω

i ω + β(y) ÊKx ny h̃ = 0 .

Next, we replace the numerical trace Ê by the expression given in equation (7.4) and integrate by parts the space
derivatives of E: :∫

K

iω µ0H
K
z h̃ +

∫
K

i ω

i ω + α(x)
∂EKy
∂x

h̃ −
∫
K

i ω

i ω + β(y)
∂EKx
∂y

h̃ −
∫
∂K

γ5
i ω

i ω + α(x)H
K
z n2

x h̃

+
∫
∂K

γ5
i ω

i ω + α(x)λ3 n
2
x h̃ −

∫
∂K

γ5
i ω

i ω + β(y)H
K
z n2

y h̃ +
∫
∂K

γ5
i ω

i ω + β(y)λ3 n
2
y h̃ = 0 .

Then we replace the local unknowns and the local test-functions using equations (3.15) and (3.16):∫
K

iω µ0H
K ϕKi ϕ

K
j +

∫
K

i ω

i ω + α(x)E
K
y

∂ϕKj
∂x

ϕKi −
∫
K

i ω

i ω + β(y)E
K
x

∂ϕKj
∂y

ϕKi −
∫
∂K

γ5
i ω

i ω + α(x)H
Kn2

xϕ
K
i ϕ

K
j

+
∫
∂K

γ5
i ω

i ω + α(x)λ3n
2
xϕ

K
i ϕ

K
j −

∫
∂K

γ5
i ω

i ω + β(y)H
Kn2

yϕ
K
i ϕ

K
j +

∫
∂K

γ5
i ω

i ω + β(y)λ3n
2
y ϕ

K
i ϕ

K
j = 0 .

Discretization of equation (5.3g) Finally, the variational formulation of equation (5.3g) on K with zero source is:∫
K

JKx ẽx +
∫
K

JKy ẽy −
∫
K

σ EKx ẽx −
∫
K

σ EKy ẽy +
∫
K

L i ω

i ω + α(x)
∂p
∂x

ẽx +
∫
K

L i ω

i ω + β(y)
∂p
∂y

ẽy

+
∫
K

iω ρf L uKx ẽx +
∫
K

iω ρf L uKy ẽy = 0 .

By integrating by parts the space derivatives of p, we have:∫
K

JKx ẽx +
∫
K

JKy ẽy −
∫
K

σ EKx ẽx −
∫
K

σ EKy ẽy −
∫
K

L i ω

i ω + α(x)p∂ẽx
∂x

+
∫
∂K

L i ω

i ω + α(x) p̂nx ẽx

+
∫
K

L i ω

i ω + β(y)p∂ẽy
∂y
−
∫
∂K

L i ω

i ω + β(y) p̂ny ẽy +
∫
K

iω ρf L uKx ẽx +
∫
K

iω ρf L uKy ẽy = 0 .

Next, the numerical trace p̂ is replaced by λ2 as given in equation (7.3). This gives:∫
K

JKx ẽx +
∫
K

JKy ẽy −
∫
K

σ EKx ẽx −
∫
K

σ EKy ẽy −
∫
K

L i ω

i ω + α(x)p∂ẽx
∂x

+
∫
∂K

L i ω

i ω + α(x)λ2 nx ẽx

+
∫
K

L i ω

i ω + β(y)p∂ẽy
∂y
−
∫
∂K

L i ω

i ω + β(y)λ2 ny ẽy +
∫
K

iω ρf L uKx ẽx +
∫
K

iω ρf L uKy ẽy = 0 .



E.1. DETAILS ON THE HDG METHOD WITH RBC AND PML 341

Finally, we replace the local unknowns and the local test-functions using equations (3.15) and (3.16). This gives on
x-direction:∫
K

JKx ϕ
K
i ϕ

K
j −

∫
K

σEKx ϕ
K
i ϕ

K
j −

∫
K

pKL i ω

i ω + α(x)
∂ϕKi
∂x

ϕKj +
∫
∂K

L i ω

i ω + α(x)nxλ2 ϕ
K
i ϕ

K
j +

∫
K

iωρfLuKx ϕKi ϕKj = 0 ,

and on y-direction:∫
K

JKy ϕ
K
i ϕ

K
j −

∫
K

σEKy ϕ
K
i ϕ

K
j −

∫
K

pKL i ω

i ω + β(y)
∂ϕKi
∂y

ϕKj +
∫
∂K

L i ω

i ω + β(y)nyλ2ϕ
K
i ϕ

K
j +

∫
K

iωρfL uKy ϕKi ϕKj = 0 .

Local system As in Section 7.2, the discretization of the seven equations composing the local problem detailed
above can be written as a system of the form:

AKWK + BKΛK = CKsource ,

where WK and ΛK have been defined in (3.17).
We now define the following matrices:

MK
ij =

∫
K

ϕKi ϕ
K
j dX , DKxij =

∫
K

i ω

i ω + α(x)ϕ
K
j

∂ϕKi
∂x

dX , DKyij =
∫
K

i ω

i ω + β(y)ϕ
K
j

∂ϕKi
∂y

dX ,

JFxij =
∫
F

i ω

i ω + α(x)ϕ
K
i ϕ

K
j ny dS , JFyij =

∫
F

i ω

i ω + β(y)ϕ
K
i ϕ

K
j ny dS ,

QFxij =
∫
F

i ω

i ω + α(x)ϕ
K
i ψ

F
j nx dS , QFyij =

∫
F

i ω

i ω + β(y)ϕ
K
i ψ

F
j ny dS ,

EFij =
∫
F

i ω

i ω + α(x)ϕ
K
i ϕ

K
j n

2
xdS +

∫
F

i ω

i ω + β(y)ϕ
K
i ϕ

K
j n

2
ydS ,

FFij =
∫
F

i ω

i ω + α(x)ϕ
K
i ψ

F
j n

2
xdS +

∫
F

i ω

i ω + β(y)ϕ
K
i ψ

F
j n

2
ydS .

With this notation, the matrices AK and BK are the ones given in Section 7.2.
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Appendix F

Appendices to Chapter 9

F.1 Calculation for the point-source in P-wave
In this section, we determine which source needs to be taken in order to generate only P-wave. We start from Pride’s
equations of the second-order with no sources:

−ω2ρau − ρfω
2w − H∇∇ · u + µfr curl curl u − αM ∇∇ · w = 0 ,

−ω2ρfu − ω2 ρdyn w − η

k
LE −M ∇∇ · w − Mα∇∇ · u = 0 ,

curl curlE − ω2 ε̃µ0E − s iω µ0 Lω2 ρdyn w = 0 ,

(F.1)

and we express u, w and E as:

u = ũ + usrc , w = w̃ + wsrc , E = Ẽ +Esrc .

The displacements usrc, wsrc, and the electric field Esrc are the fields generated by the point source, in an homogeneous
domain, and those terms are used as a right-hand side. This is injected in equation (F.1):

−ω2ρaũ − ρfω
2w̃ − H∇∇ · ũ + µfr curl curl ũ − αM ∇∇ · w̃ = rhs1 ,

−ω2ρf ũ − ω2 ρdyn w̃ − η

k
L Ẽ −M ∇∇ · w̃ − Mα∇∇ · ũ = rhs2 ,

curl curl Ẽ − ω2 ε̃µ0 Ẽ − s iω µ0 Lω2 ρdyn w̃ = rhs3 ,

with
rhs1 = ω2ρausrc + ρfω

2wsrc + H∇∇ · usrc − µfr curl curl usrc + αM ∇∇ · wsrc ,

rhs2 = ω2ρfusrc + ω2 ρdyn wsrc + η

k
LEsrc +M ∇∇ · wsrc + Mα∇∇ · usrc ,

rhs3 = − curl curlEsrc + ω2 ε̃µ0Esrc + s iω µ0 Lω2 ρdyn wsrc .

(F.3)

We express usrc, wsrc and Esrc using the potential decomposition, with χB = χS = χEM = 0. We have:

usrc = − 1
ω2 s2

P
∇χP , wsrc = − WP

ω2 s2
P
∇χP , Esrc = − EP

ω2 s2
P
∇χP ,

with the potential χP solution of the Helmholtz equation:

−ω2 s2
P χP − ∆χP = δ .

We inject the expressions in equation (F.3). We use the fact that:

curl (∇χP) = 0 , ∇∇ · (∇χP) = ∆(∇χP) .

We obtain:

rhs = − 1
s2
P
A

 ∇χP
WP∇χP
EP∇χP

 − 1
ω2 s2

P
B∆

 ∇χP
WP∇χP
EP∇χP

 ,
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that we write

ω2 s2
P rhs = −ω2A

 ∇χP
WP∇χP
EP∇χP

 − B∆

 ∇χP
WP∇χP
EP∇χP

 ,

with the matrices

A =


ρa ρf 0

ρf ρdyn
η

ω2 k
L

0 s iω µ0 L ρdyn ε̃µ0

 , B =


H αM 0

αM M 0

0 0 0

 ,

Multiplying by A−1, we have:

A−1 ω2 s2
P rhs = −ω2

 ∇χP
WP∇χP
EP∇χP

 − A−1B∆

 ∇χP
WP∇χP
EP∇χP

 ,

Recall that A−1B can be diagonalized, and is equal to

A−1B = Plong

 c2
P 0 0

0 c2
B 0

0 0 0

 P−1
long , and Plong =

 1 1 0
WP WB 0
EP EB 1

 .

This leads to:

A−1 ω2 s2
P rhs = −ω2

 ∇χP
WP∇χP
EP∇χP

 − Plong

 c2
P 0 0

0 c2
B 0

0 0 0

 P−1
long∆

 ∇χP
WP∇χP
EP∇χP

 .

Multiplying the above equation by P−1
long gives

P−1
longA

−1 ω2 s2
P rhs = −ω2 P−1

long

 ∇χP
WP∇χP
EP∇χP

 −
 c2

P 0 0
0 c2

B 0
0 0 0

 P−1
long∆

 ∇χP
WP∇χP
EP∇χP

 . (F.4)

The inverse of Plong is,

P−1
long = 1

WB −WP

 WB −1 0
−WP 1 0

EBWP − EPWB EP − EB WB −WP

 ,

and we have:

P−1
long


∇χP

WP∇χP

EP∇χP

 =


∇χP

0

0


We replace this in (F.4):

P−1
longA

−1 ω2 s2
P rhs = −ω2

∇χP
0
0

 −
 c2

P 0 0
0 c2

B 0
0 0 0

 ∆

∇χP
0
0

 ,

which gives

P−1
longA

−1 ω2 s4
P rhs =


−ω2 s2

P∇χP − ∆
(
∇χP

)
0
0

 =

∇ δ0
0

 .

Hence the right-hand side is,

rhs = 1
ω2 s4

P
APlong

∇ δ0
0

 = 1
ω2 s4

P

(APlong)11∇ δ
(APlong)21∇ δ
(APlong)31∇ δ

 = 1
ω2 s4

P


(ρa + ρfWP)∇ δ

(ρf + ρ̃WP + η

ω2 k
L EP)∇ δ

(s iω µ0 L ρdynWP + ε̃µ0 EP)∇ δ

 .
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We now need to express the exterior forces from equation (5.3). We recall that (see Proposition 5.1):

rhs1 = fu , rhs2 = fw , rhs3 = s iω µ0 fC .

Hence, we have:

fu = (ρa + ρfWP)
ω2 s4

P
∇ δ , fw =

(ρf + ρdynWP + η

ω2 k
L EP)

ω2 s4
P

∇ δ , fC = 1
ω2 s4

P

(
L ρdynWP −

s i ε̃
ω
EP
)
∇ δ .
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Appendix G

Propagation of electromagnetic waves

In this appendix, we introduce a computational framework based upon a HDG solution methodology for solving
Maxwell’s equations set in the timer-harmonic regime. It is worth mentioning that this does not contain new ideas.
It adopts the approach developed in [85] and [102]. However we have chosen to present this work in detail since it
is an important step forward in the development of a piece of software dedicated to electrokinetics which is actually
targeted in this thesis.

The modeling of electromagnetic (EM) waves has been introduced by Maxwell [94] and these equations are still
extensively studied in time and harmonic domain as they are involved in many applications. Several numerical methods
have been applied to solve the electromagnetic equations, as Finite Difference, Finite Volume [135] or Finite Element
e.g. , [5] in the time domain and [119] in frequency domain. Discontinuous Galerkin (DG) methods have also been
used to obtain a solution of Maxwell’s equations [36, 55, 47]. More recently, HDG methods for electromagnetism have
been proposed in time domain [100, 31] and harmonic domain [85, 102, 87, 86, 53].

In the following, we first present in Section G.1 the electromagnetic equations and plane wave solutions. Then, we
construct in Section G.2 analytical solutions in circular geometry. We develop in Sections G.3 and G.4 a HDG method
for Maxwell’s equations in two and three dimensions. We extend the method to the modeling of infinite domains by
applying a Radiation Boundary Condition (RBC) to the HDG discretization in Section G.5 and PML in Section G.6.
Finally, we present some numerical tests and results to valivate the HDG method in Section G.7.

G.1 Electromagnetic equations
The equations of propagation of electromagnetic waves have been proposed by Maxwell [94], and are represented by
the following quantities:

• the electric density E (V.m−1),

• the magnetic intensity H (A.m−1),

• the current density J (A.m−2),

• the electric induction D (C.m−2),

• the magnetic induction B (T).

The equations of electromagnetic wave propagation depend on the following parameters:

• the electromagnetic vacuum permeability µ0, expressed in (N/A2), that is a magnetic constant in vacuum, equal
to 12.566 10−7 N/A2.

• the electromagnetic vacuum permittivity ε0, equal to 8.8595 10−12 F.m−1.

• the conductivity σ (S.m−1).

Remark G.1. In two dimensions, we can consider two kinds of configurations corresponding to polarized waves:

• For a Transverse Magnetic wave, the magnetic field is supported by an axis d while the electric field is in the
plane orthogonal to d.
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• For a Transverse Electric field, the electric field is supported by an axis d while the magnetic field lies in the
plane orthogonal to d.

In this chapter, when we will only consider the case Transverse Magnetic (TM) electromagnetic fields . This is also
the configuration used for the electrokinetic equations in two dimensions.

The electromagnetic constitutive laws are expressed as:

B = µ0H ,

D = ε0E ,

J = σE .

The electromagnetic waves are governed by Maxwell’s equations::

curlE + µ0
∂B

∂t
= 0 ,

curlH − ε0
∂D

∂t
− J = fC .

with the operator curl defined in (1.17) in three dimensions, and fC an exterior force.
For the boundary conditions, we impose for a bounded domain of boundary Γ:

E × n = n× einc , or H × n = hinc × n on Γ , (G.1)

where f inc and hinc are incident forces. In two dimensions, the boundary condition for the magnetic field is:

E × n = n× einc , or H = hinc on Γ . (G.2)

Harmonic equations: Assuming that the electromagnetic fields are eiωtE(x) and eiωtH(x), the pair (E,H) satisfies
the time-harmonic Maxwell’s equations: We study the electromagnetic equation in the following form, by considering
a time derivative iω:

curlE + iω µ0H = 0 ,
curlH − iω ε0E − J = fC ,
J = σE .

(G.3)

As we have said above, in two dimensions, we consider the case of transverse electric, which means that E = (Ex , Ey)
and H = Hz. In this case, we write Maxwell’s equation (G.3) as:

curlE + iω µ0H = 0 ,
curl H− iω ε0E − J = fC ,
J = σE ,

(G.4)

with the operators curl and curl defined in equation (1.19) in two dimensions.

G.1.1 Plane wave analysis
In two dimensions First, we write Maxwell’s equation (G.3) without sources as:

curlE + iω µ0H = 0 ,

curl H− iω
(
ε0 −

iσ
ω

)
E = 0 .

(G.5)

The plane wave solutions of the above equations can be written as :

H = H eik·X , E = E eik·X d̂ , (G.6)

with d̂ the wave polarization and k the wave vector, equal to k = ω s k̂, with s the wave slowness, |k| the wavenumber
and k̂ the direction of propagation. Then, we replace those expressions in (G.5) and divide by eik·X . Using the
expression of the rotational in two dimensions (1.19), we have:

i |k| k̂x E d̂y − i |k| k̂y E d̂x + iω µ0H = 0 ,

iH |k| k̂y − iω
(
ε0 −

iσ
ω

)
E d̂x = 0 ,

−iH |k| k̂x − iω
(
ε0 −

iσ
ω

)
E d̂y = 0 .

(G.7)
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As the polarization of the wave is transverse, we have k · d = 0, and d̂ reads as d̂ =
(
−k̂y
k̂x

)
. This means that, using

|k̂| = 1, system (G.7) simplifies to:

i E |k|+ iω µ0H = 0 ,

iH |k|+ iω
(
ε0 −

iσ
ω

)
E = 0 .

Then, we divide by i and |k|, and we replace ω

|k| by c to obtain:

E + c µ0H = 0 ,

H+ c

(
ε0 −

iσ
ω

)
E = 0 .

This system, expressed in matrix form is equal to: c µ0 1

1 c

(
ε0 −

iσ
ω

)(H
E

)
= 0 . (G.8)

This system admits non trivial solutions if the determinant of the above matrix is zero.

c2
(
ε0 −

iσ
ω

)
µ0 − 1 = 0 ,

which leads to:
c = 1√(

ε0 −
iσ
ω

)
µ0

.

A solution of system (G.8) is:

H = 1, E = − c µ0 = − µ0

sEM
, with sEM =

√(
ε0 −

iσ
ω

)
µ0 . (G.9)

In three dimensions First, we write Maxwell’s equation (G.3) as:

curlE + iω µ0H = 0 ,

curlH − iω
(
ε0 −

iσ
ω

)
E = 0 .

The plane wave solution is expressed as:

E = E eik·X d̂ , H = H eik·X k̂× d̂ .

Using the definition of rotational in three dimensions (1.17), the electromagnetic equations are written as:

i |k| k̂y E dz − i |k| k̂z E dy + iωµ0H ( k̂y dz − k̂z dy ) = 0 ,
i |k| k̂z E dx − i |k| k̂x E dz + iωµ0H ( k̂z dx − k̂x dz ) = 0 ,
i |k| k̂x E dy − i |k| k̂y E dx + iωµ0H ( k̂x dy − k̂y dx ) = 0 ,

i |k| k̂yH ( k̂x dy − k̂y dx ) − i |k| k̂zH ( k̂z dx − k̂x dz ) − iω
(
ε0 −

iσ
ω

)
E dx = 0 ,

i |k| k̂zH ( k̂y dz − k̂z dy ) − i |k| k̂xH ( k̂x dy − k̂y dx ) − iω
(
ε0 −

iσ
ω

)
E dy = 0 ,

i |k| k̂xH ( k̂z dx − k̂x dz ) − i |k| k̂yH ( k̂y dz − k̂z dy ) − iω
(
ε0 −

iσ
ω

)
E dz = 0 .

(G.10)
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The wave is transverse, hence k · d = 0. After some calculations, system (G.10) simplifies to:

(i |k| E + iω µ0H ) d̂ = 0 ,

(− i |k|H − iωε0 E ) d̂ = 0 .

Dividing by i, d̂ and |k|, we obtain:

E + cµ0H = 0 ,
H+ c ε0E = 0 ,

with c = ω

|k| , which gives in matrix form:

(
cµ0 1
1 c ε0

)(
H
E

)
= 0 .

We assume that E and H do not vanish, which means that the above matrix has zero determinant:

c2 ε0 µ0 − 1 = 0 ,

which gives:
c = 1√(

ε0 −
iσ
ω

)
µ0

.

A solution of system G.1.1 is :
H = 1, E = − c µ0 = − µ0

sEM
,

with sEM the slowness defined in equation (G.9).

G.1.2 Expansion of plane waves in Bessel functions in two dimensions
The propagation of a plane wave can be expressed using series of Bessel functions. This will be used to build the
right-hand side at each mode for analytical solutions, see Section G.2. We will consider circular geometry, hence we
work in polar coordinates. First, we express the plane wave solutions (G.6), using the results from the previous section:

Hpw = eik·X , Epw = − µ0

sEM
eik·X d = − µ0

sEM

1
iω sEM

curl
(
eik·X) . (G.11)

Using the Jacobi-Anger and the multipole expansions given in (1.37), and (1.38), we have the following equality:

eiω sEM k̂·X =
∑
k∈Z

ik Jk(ω sEM |X|) ei k(θ−αinc) .

By replacing the above expression in the plane wave solution (G.11), the electric and magnetic fields are expressed in
polar coordinates as:

Epw = − µ0

iω s2
EM

curl
(∑
k∈Z

ik Jk(ω sEM r) ei k(θ−αinc)

)
,

Hpw =
∑
k∈Z

ik Jk(ω sEM r) ei k(θ−αinc) .

The components in polar coordinates of the electric field are given below:

Epw
r = − µ0

iω s2
EM

1
r
∂θ

(∑
k∈Z

ik Jk(ω sEM r) ei k(θ−αinc)

)
= −

∑
k∈Z

µ0 ik k
r ω s2

EM
Jk(ω sEM r) ei k(θ−αinc) ,

Epw
θ = µ0

iω s2
EM

∂r

(∑
k∈Z

ik Jk(ω sEM r) ei k(θ−αinc)

)
= −

∑
k∈Z

µ0

sEM
ik+1 J ′k(ω sEM r) ei k(θ−αinc) .
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G.2 Construction of analytical solutions in two dimensions
In this section, we build two analytical solutions for the two-dimensional electromagnetic equations. First, we express
the electromagnetic fields E and H in terms of a potential χ. For circular problems, this potential can be expressed
using series of Bessel functions. We use this form of potential to build the analytical solution on a bounded circular
domain, and for the scattering of a plane wave by a circular obstacle. Those solutions will be used as reference solutions
to verify the HDG method developed in Section G.3.

G.2.1 Expression of the electromagnetic variables in terms of potential
First, we write the second-order formulation of Maxwell’s equations (G.4) with no sources, by eliminating E and J :

curl 1
iωε0 + σ

curl H + iω µ0 H = 0 .

Using curl curl = ∆, the above expression leads to

−∆ H − ω2 s2
EMH = 0 ,

with sEM defined in (G.9). Hence, H verifies the homogeneous Helmholtz equation:

∆ H + k2H = 0 ,

with k = ω sEM the wave number. Hence we have the following result:

If the electromagnetic fields E and H are solution of equation (G.4), then H is solution of

curl 1
iωε0 + σ

curl H + iω µ0 H = 0 ,

and the electric field E reads:
E = 1

iω
(
ε0 −

iσ
ω

) curlχ ,
(G.12)

with H = χ , and where the potential χ is a solution of the homogeneous Helmholtz equation:

∆χ + k2χ = 0 . (G.13)

In the following, we will study two configurations, for which H admits a particular representation has a specific
expression:

a) On a disc Ba centered at the origin and of radius a, a generic solution is given by:

χ(x) =
∑
k∈Z

a•,k Jk(nω sEM r) ei k θ .

b) An outgoing solution on R2 \ Ba is given by

χ(x) =
∑
k∈Z

a•,k H(1)
k (ω sEM r) ei k θ .

G.2.2 Generic solution to homogeneous equation on bounded domain
Here, we consider the homogeneous two-dimensional electromagnetic equations (G.4) on a disc Ba of radius a. The
unknowns E and H are given by equation (G.12), while the potential verifies equation (G.13), and is expressed as:

χ =
∑
k∈Z

ak Jk(ω sEM r) ei k θ .
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This means that E and H are given by:

H(x) =
∑
k∈Z

ak Jk(ω sEM r) ei k θ ,

Er(x) =
∑
k∈Z

i k
(iωε0 + σ)r ak Jk(ω sEM r) ei k θ ,

Eθ(x) = −
∑
k∈Z

ω sEM

(iω ε0 + σ) ak J′k(ω sEM r) ei k θ .

In order to find the value of ak, we impose a condition on the boundary of the disc, i.e., for r = a. We can impose the
following condition,

H = Hpw , or n×E = n×Epw ,

with Hpw and Epw given in G.1.2.

Condition imposed on H: We impose H = Hpw for r = a, which gives∑
k∈Z

ak Jk(ω sEM a) ei k θ =
∑
k∈Z

ik Jk(ω sEM a) ei k(θ−αinc) .

This means that for each mode k:
ak = ik e−i kαinc , for k ∈ Z .

Condition imposed on E: We impose n × E = n × Epw. On a disc, n = er, hence n × E = Eθ. Then, the
condition becomes:

−
∑
k∈Z

ω sEM

(iω ε0 + σ) ak J′k(ω sEM a) ei k θ = −
∑
k∈Z

µ0

sEM
ik+1 J ′k(ω sEM a) ei k(θ−αinc) .

This means that, for each mode k ∈ Z:
ak = ik e−i kαinc .

G.2.3 Scattering of a plane wave by an impenetrable medium
We now consider a circular obstacle of radius a in an infinite medium, and we study the electromagnetic equations on
R2 \ Ba. The unknowns E and H are given by equation (G.12), while the potential verifies equation (G.13). Hence,
the potential is expressed as:

χ =
∑
k∈Z

ak H(1)
k (ω sEM r) ei k θ .

To express completely E and H, we need to impose a condition on the boundary of the obstacle that leads to determine
the coefficients ak.

Condition imposed on H: We impose H = Hpw for r = a, which gives

ak = − ik Jk(ω sEM a)
H(1)
k (ω sEM a)

e−i kαinc , for k ∈ Z .

Condition imposed on E: We impose n × E = n × Epw. On a disc, n = er, hence n × E = Eθ. Then, the
condition is:

−
∑
k∈Z

ωsEM

(iωε0 + σ) ak H(1)′
k (ω sEM r) ei k θ = −

∑
k∈Z

µ0

sEM
ik+1 J ′k(ω sEM r) ei k(θ−αinc) .

This condition can be written equivalently for each mode k:

ak = − ik+1 µ0
J′k(ω sEM a)

H(1)′
k (ω sEM a)

e−i kαinc , for k ∈ Z .

We consider the electromagnetic equations on the domain R2 \ Ba, with a = 10m, µ0 = 12.566 10−7 N/A2,
ε0 = 8.8595 10−12 F.m−1, and σ = 10−9 S.m−1 at frequency f = 150kHz. In the construction of the analytical
solution, the domain is considered as infinite, but the representation of the solution is plotted only on an annulus of
interior radius equal to 1m and exterior radius equal to 10m. We present the result in Figure G.1.
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Figure G.1: Scattering of an EM plane wave on an impenetrable solid obstacle. Imaginary part of the electric field Ey.

G.3 HDG method in two dimensions
In this section, we consider two-dimensional domain in the (x, y) plane. We work in the transverse electric setting,
which means that we consider E = (Ex, Ey), J = (Jx, Jy) and H = Hz. We base our development on the HDG
method described in [85]. However, in this paper, the authors consider the transverse magnetic configuration, which
justifies that we need to detail the development.

G.3.1 Formulation of the HDG method
We consider a two-dimensional domain D, and we will use the notations introduced in Section 3.1.1:

L2(D), the space of square-integrable functions on the domain D ,

V p(D), the set of polynomials of degree at most p on D ,

V p(D) = (V p(D))d ,

(G.14)

with d the dimension of the domain D. We consider a triangulation Th of the domain D, where K denotes an element
of the mesh, F a face of the element K, and n the outgoing unit normal vector to F . We consider here meshes
composed of triangles. Associated to triangulation Th, we introduce the following spaces:

V ph = {v ∈ L2(D) : v|K ∈ V p(K) , ∀K ∈ Th} ,

V p
h = {v ∈ (L2(D))d : v|K ∈ V p(K) , ∀K ∈ Th} ,

Mh = {ξ ∈ L2(Fh) : ξ|F ∈ V p(F ), , ∀K ∈ Fh} ,

Mh = {η ∈ (L2(Fh))2 : η|F ∈ (V p(F ))d , ∀K ∈ Fh} .

(G.15)

First, we consider equations (G.4) on an element K of Th. We multiply the equation by test functions (ẽ, h̃, j̃) ∈
(V p(K)× V p(K)× V p(K)) and integrate on the element K:∫

K

curlE ẽ+
∫
K

iω µ0 H ẽ = 0 ,∫
K

curl H · h̃ −
∫
K

iω ε0E · h̃ −
∫
K

J · h̃ =
∫
K

fC · h̃ ,∫
K

J · j̃ −
∫
K

σE · j̃ = 0 .

By integrating by parts, we obtain∫
K

E · curl ẽ−
∫
∂K

(n× Ê) ẽ+
∫
K

iω µ0 H ẽ = 0 ,∫
K

H curl h̃ +
∫
∂K

(n× h̃) Ĥ−
∫
K

iω ε0E · h̃ −
∫
K

J · h̃ =
∫
K

fC · h̃ ,∫
K

J j̃ −
∫
K

σE · j̃ = 0 .

(G.16)
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Introduction of the trace variables: The exact solution (E, H, J) is approximated by (Eh, Hh, Jh) ∈ (V p
h ×

V ph × V
p
h × V

p
h ). The traces on ∂K are approximated by numerical traces (Êh, Ĥh), that we choose as follows:

Ĥh = λ3 , Êh = Eh − γ5 (Hh − λ3)× n , (G.17)

with γ5 a stabilization parameter.1 We replace the traces in equation (G.16) by their expressions (G.17), and integrate
by parts the first equation of (G.16), to obtain the following local problem.∫

K

curlEh ẽ+
∫
∂K

γ5 (Hh − λ3) ẽ+
∫
K

iωµ0Hh ẽ = 0 ,∫
K

Hh curl h̃ +
∫
∂K

(n× h̃)λ3 −
∫
K

iωε0Eh · h̃ −
∫
K

Jh · h̃ =
∫
K

fC · h̃ ,∫
K

Jh · j̃ −
∫
K

σEh · j̃ = 0 .

(G.18)

To obtain the HDG method formulation, we need to associate the above local problem on the elements with
a transmission condition between the elements. We use the physical condition given in (G.2). The transmission
condition is, using a test-function ν ∈ Mh:∑

F∈Fh

∫
F

Jn× ÊhK ν =
∑

F∈Fext

∫
F

hinc ν ,

or equivalently ∑
K∈Th

∫
∂K

(n× Êh) ν =
∑

F∈Fext

∫
F

hinc ν . (G.19)

G.3.2 Discretization of the HDG method
In this section, we detail the two-dimensional discretization of the HDG method in the (x, y) plane. In the formulation,
the test functions are decomposed with the basis functions of Vp as ϕKi for ẽ, h̃, j̃ and ψFj for ν. The local solutions
are expressed along x and y directions:

EK
h =

(
EKx

EKy

)
, JKh =

(
JKx

JKy

)
.

They are decomposed as:

EKl =
dKi∑
j=1

EKl,jϕ
K
j , HK =

dKi∑
j=1

HK
j ϕ

K
j , and JKl =

dKi∑
j=1

JKl,jϕ
K
j , (G.20)

where dKi denotes the number of degrees of freedom of an element, and with l = x, y. The local Lagrange unknowns
are also decomposed as:

λF3 =
dFi∑
j=1

λ3
F
j
ψFj , (G.21)

where dFi denotes the number of degrees of freedom of an edge. In (G.20), each component is considered as a vector
of the form EKl = (EKl,1, . . . , EK,dK

i
)T for l = x, y. We define the two unknown vectors WK and ΛK respectively of size

5 dKi and 3 dFi as:

WK = (EKx , EKy , HK , JKx , J
K
y )T , and ΛK = (λβ(K,1)

3 , λ
β(K,2)
3 , λ

β(K,3)
3 )T , (G.22)

where β(K, f) is the global index of the f -th face of the element K. Moreover, we also recall the following elementary
matrices (cf. (3.18)): MK , DKv , EF , JFv of size dKi × dKi , FF , QFv of size dKi × dFi , and GF , HFv of size dFi × dFi :

MK
ij =

∫
K

ϕKi ϕ
K
j dX , DKvij =

∫
K

ϕKj
∂ϕKi
∂v

dX , EFij =
∫
F

ϕKi ϕ
K
j dS , JFvij =

∫
F

ϕKi ϕ
K
j nv dS ,

FFij =
∫
F

ψFj ϕ
K
i dS , QFvij =

∫
F

ψFj ϕ
K
i nv dS , GFij =

∫
F

ψFj ψ
F
j dS , HFvij =

∫
F

ψFi ψ
F
j nv dS ,

(G.23)

1Here, we number the stabilization parameter γ5 after the poroelastic parameters.
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with v = x, y. Finally, we define the elementary source vectors of size dKi(
CK1x

)
i

=
∫
K

fKC,x ϕ
K
i ,

(
CK1y

)
i

=
∫
K

fKC,y ϕ
K
i .

Local problem The discretization of the local problem (G.18) gives:∫
K

(
∂EKy
∂x
− ∂EKx

∂y

)
ϕKi −

∫
∂K

γ5
(
HK
h − λ3

)
ϕKi +

∫
K

iω µ0H
K
h ϕKi = 0 ,

−
∫
K

HK
h

∂ϕKi
∂y
−
∫
∂K

λ3 nyϕ
K
i −

∫
K

iω ε0EKx ϕKi −
∫
K

JKx ϕKi =
∫
K

fKC,x ϕ
K
i ,∫

K

HK
h

∂ϕKi
∂x

+
∫
∂K

λ3 nxϕ
K
i −

∫
K

iω ε0EKy ϕKi −
∫
K

JKy ϕKi =
∫
K

fKC,y ϕ
K
i ,∫

K

JKx ϕKi −
∫
K

σEKx ϕKi = 0 ,∫
K

JKy ϕKi −
∫
K

σEKy ϕKi = 0 .

We express the above system in terms of local unknowns and elementary matrices defined respectively in (G.22) and
(G.23):

(DKx )T EKy − (DKy )T EKx −
3∑

f=1
Eβ(K,f)K γ5 HK +

3∑
f=1

Fβ(K,f)γ5 λ3 + MK iω µ0 HK = 0 ,

−DKy HK −
3∑

f=1
Qβ(K,f−)
y λ3 −MK iω ε0EKx −MK JKx = CKx ,

DKx HK +
3∑

f=1
Qβ(K,f)
x λ3 −MK iω ε0EKy −MK JKy = CKy ,

MKJKx −MK σ EKx = 0 ,

MKJKy −MK σ EKy = 0 .

The above equations are written as the following system:

AWK + BΛK = CKsource ,

where WK and ΛK have been defined in (G.22). The matrices AK and BK are:

AK =



−MK iωε0 0 −DKy −MK 0
0 −MK iωε0 DKx 0 −MK

−(DKy )T (DKx )T MK iω µ0 −
3∑

f=1
γ5 Eβ(K,f) 0 0

−MK σ 0 0 MK 0
0 −MK σ 0 0 MK


, (G.24)

and

BK =



−Qβ(K,1)
y −Qβ(K,2)

y −Qβ(K,3)
y

Qβ(K,1)
x Qβ(K,2)

x Qβ(K,3)
x

γ5 Fβ(K,1) γ5 Fβ(K,2) γ5 Fβ(K,3)

0 0 0
0 0 0


. (G.25)
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Transmission condition Now, we present the discretization of the transmission condition (G.19). We consider a
face F = ∂K ∩ ∂K ′ in the interior of the mesh. On F , we can express the transmission condition as:∫

F

(n×Eh) ν −
∫
F

γ5 (Hh − λ3) ν = 0 .

We discretize the above equation and we replace the test function ν by ψβ(K,f)
i , to give:∫

F

(nxEy − nyEx)ψβ(K,f)
i −

∫
F

γ5
(
HK
h − λ3

)
ψ
β(K,f)
i = 0 ,

and we express this equation in terms of local unknowns and elementary matrices defined respectively in (G.22) and
(G.23):

(QFx )T EKy − (QFy )T EKx − (FF )T γ5 HK + GF γ5λ3 = 0 .

This equation is summed for the all the faces of the mesh to obtain a global system, with WK and ΛK defined in
(G.22): ∑

K∈Th

(AKHDG)T
(
PKWK + TKAKHDGΛ

)
= Sinc ,

and with the elementary matrices:

PK =

−(Qβ(K,1)
y )T (Qβ(K,1)

x )T − γ5 (Fβ(K,1))T

−(Qβ(K,2)
y )T (Qβ(K,2)

x )T − γ5 (Fβ(K,2))T

−(Qβ(K,3)
y )T (Qβ(K,3)

x )T − γ5 (Fβ(K,3))T

 and TK =

γ5 Gβ(K,1) 0 0
0 γ5 Gβ(K,2) 0
0 0 γ5 Gβ(K,3)

 .

(G.26)

G.3.3 Boundary conditions for a bounded domain
On the boundary of a bounded domain, we can impose two kinds of boundary conditions:

n×E = n× einc , or H = hinc ,

where einc and hinc are incident fields. In the first case, the matrices PK and TK in the transmission condition on the
boundary faces are not modified. However, when we impose a condition on the magnetic field, we impose directly

λ3 = hinc ,

on the boundaries of the mesh. In this case, PK and TK are modified. Let us consider an element K whose first face
is on the boundary of the mesh. Then, the matrices PK and TK are expressed as follows:

PK =

 0 0 0
−(Qβ(K,2)

y )T (Qβ(K,2)
x )T − γ5 (Fβ(K,2))T

−(Qβ(K,3)
y )T (Qβ(K,3)

x )T − γ5 (Fβ(K,3))T

 and TK =

I 0 0
0 γ5 Gβ(K,2) 0
0 0 γ5 Gβ(K,3)

 . (G.27)

G.4 HDG method in three dimensions
In this section, we apply the HDG method to the three-dimensional electromagnetic equations (G.3). We consider the
following unknowns: E = (Ex, Ey, Ez), J = (Jx, Jy, Jz) and H = (Hx, Hy, Hz). We base our development on the
HDG methods described in [87, 102].

G.4.1 Formulation of the HDG method
We consider a triangulation Th of a three-dimensional domain D, and we will use the notations given in (G.14) and
(G.15). We recall that K denotes an element of the triangulation Th, F a face of the element K, and n the unit
normal vector to F . We consider equations (G.3) on an element K of Th, and multiply the equation by test functions
(ẽ, h̃, j̃) ∈ (V p(K)× V p(K)× V p(K)) and integrate on the element K:∫

K

curlE · ẽ+
∫
K

iω µ0H · ẽ = 0 ,∫
K

curlH · h̃ −
∫
K

iω ε0E · h̃ −
∫
K

J · h̃ =
∫
K

fC · h̃ ,∫
K

J · j̃ −
∫
K

σE · j̃ = 0 ,
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and we integrate by parts the above equations to obtain:∫
K

Eh · curl ẽ−
∫
∂K

Ê · (n× ẽ) +
∫
K

iω µ0Hh · ẽ = 0 ,∫
K

Hh · curl h̃ −
∫
∂K

Ĥ · (n× h̃) −
∫
K

iω ε0Eh · h̃ −
∫
K

J · h̃ =
∫
K

fC · h̃ ,∫
K

J · j̃ −
∫
K

σE · j̃ = 0 .

(G.28)

Introduction of the trace variables: The numerical traces Ĥ
t

h and Êh are defined as:

Ĥ
t

h = λ3 , Êh = Eh − γ5
(
Ht

h − λ3
)
× n ,

with Ht
h = n× Hh the tangential component of Hh.

Remark G.2. We choose to stabilize only the tangential component of the magnetic field H. This is similar to what
is done in [87, 102]. In this way, the second term of equation (G.28) is:

−
∫
∂K

Ê · (n× ẽ) = −
∫
∂K

Eh · (n× ẽ) +
∫
∂K

(
γ5
(
Ht

h − λ3
)
× n

)
· (n× ẽ) .

We also have:((
Ht

h − λ3
)
× n

)
·(n×ẽ) =

(((
Ht

h − λ3
)
× n

)
× n

)
·ẽ =

(
Ht

h − λ3
)
·ẽ−

(((
Ht

h − λ3
)
· n
)
n
)
·ẽ =

(
Ht

h − λ3
)
·ẽ ,

because Ht
h and λ3 are tangential components, which means that Ht

h · n = 0 and λ3 · n = 0.
We replace in (G.28) the numerical traces Ĥ and Ê by their expressions (G.17), and we obtain:∫

K

Eh · curl ẽ−
∫
∂K

Eh · (n× ẽ)−
∫
∂K

γ5
(
Ht

h − λ3
)
· ẽ +

∫
K

iω µ0Hh · ẽ = 0 ,∫
K

Hh · curl h̃ −
∫
∂K

λ3 · (n× h̃) −
∫
K

iω ε0Eh · h̃ −
∫
K

J · h̃ =
∫
K

fC · h̃ ,∫
K

J · j̃ −
∫
K

σE · j̃ = 0 .

Finally, after an integration by parts of the first equation, we obtain the following local problem:∫
K

curlEh · ẽ−
∫
∂K

γ5
(
Ht

h − λ3
)
· ẽ +

∫
K

iω µ0Hh · ẽ = 0 ,∫
K

Hh · curl h̃ −
∫
∂K

λ3 · (n× h̃) −
∫
K

iω ε0Eh · h̃ −
∫
K

J · h̃ =
∫
K

fC · h̃ ,∫
K

J · j̃ −
∫
K

σE · j̃ = 0 .

As for the two-dimensional problem, we add a transmission condition between the elements to the local problem.
We hence impose the physical condition given in (G.1). Using a test-function ν ∈ Mh, the transmission condition is:∑

F∈Fh

∫
F

Jn× ÊhK ν =
∑

F∈Fext

∫
F

hinc · ν ,

where hinc is an incident magnetic field. This can be written equivalently∑
K∈Th

∫
∂K

(n× Êh) ν =
∑

F∈Fext

∫
F

hinc · ν . (G.29)

G.4.2 Discretization of the HDG method
In the following, we detail the three-dimensional discretization of the HDG method. In the formulation, the test
functions are decomposed in the basis functions of Vp as ϕKi for ẽ, h̃, j̃ and ψFj for ν. The local solutions are expressed
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along x, y and z directions:

EK
h =


EKx

EKy

EKz

 , EK
h =


HK
x

HK
y

HK
z

 , JKh =


JKx

JKy

JKz

 .

They are decomposed as:

EKl =
dKi∑
j=1

EKl,jϕ
K
j , HK

l =
dKi∑
j=1

HK
l,jϕ

K
j , and JKl =

dKi∑
j=1

JKl,jϕ
K
j , (G.30)

where dKi denotes the number of degrees of freedom of an element, and with l = x, y, z. The local Lagrange unknowns
are also decomposed as:

λF3,l =
dFi∑
j=1

λ3
F
l,j
ψFj , (G.31)

where dFi denotes the number of degrees of freedom of an edge. In (G.30), each component is considered as a vector
of the form EKl = (EKl,1, . . . , EK,dK

i
)T for l = x, y, z. We define the two unknown vectors WK and ΛK respectively of

size 9 dKi and 12 dFi as:
WK = (EKx , EKy , EKz , HK

x , HK
y , HK

z , J
K
x , J

K
y , J

K
z )T ,

and

ΛK = (λβ(K,1)
3x , λ

β(K,2)
3x , λ

β(K,3)
3x , λ

β(K,4)
3x , λ

β(K,1)
3x , λ

β(K,2)
3y , λ

β(K,3)
3y , λ

β(K,4)
3y , λ

β(K,1)
3z , λ

β(K,2)
3z , λ

β(K,3)
3z , λ

β(K,4)
3z )T ,

where β(K, f) is the global index of the f -th face of the element K. Moreover, we also recall the following elementary
matrices (cf. (3.18)): MK , DKv , EF , JFv of size dKi × dKi , FF , QFv of size dKi × dFi , and GF , HFv of size dFi × dFi :

MK
ij =

∫
K

ϕKi ϕ
K
j dX , DKvij =

∫
K

ϕKj
∂ϕKi
∂v

dX , EFij =
∫
F

ϕKi ϕ
K
j dS , JFvij =

∫
F

ϕKi ϕ
K
j nv dS ,

FFij =
∫
F

ψFj ϕ
K
i dS , QFvij =

∫
F

ψFj ϕ
K
i nv dS , GFij =

∫
F

ψFj ψ
F
j dS , HFvij =

∫
F

ψFi ψ
F
j nv dS ,

(G.32)

with v = x, y, z. Finally, we define the elementary source vectors of size dKi(
CKx
)
i

=
∫
K

fKC,x ϕ
K
i ,

(
CKy
)
i

=
∫
K

fKC,y ϕ
K
i ,

(
CKz
)
i

=
∫
K

fKC,z ϕ
K
i .

The discretization of the local problem is:∫
K

(
∂EKz
∂y
−
∂EKy
∂z

)
ϕKi −

∫
∂K

γ5H
K
x ϕKi +

∫
∂K

γ5 λ3x ϕ
K
i +

∫
K

iωµ0H
K
x ϕKi = 0 ,

∫
K

(
∂EKx
∂z
− ∂EKz

∂x

)
ϕKi −

∫
∂K

γ5H
K
y ϕKi +

∫
∂K

γ5 λ3y ϕ
K
i +

∫
K

iωµ0H
K
y ϕKi = 0 ,

∫
K

(
∂EKy
∂x
− ∂EKx

∂y

)
ϕKi −

∫
∂K

γ5H
K
z ϕKi +

∫
∂K

γ5 λ3z ϕ
K
i +

∫
K

iωµ0H
K
z ϕKi = 0 ,

∫
K

HK
y

∂ϕKi
∂z
−
∫
K

HK
z

∂ϕKi
∂y
−
∫
∂K

λ3y nzϕ
K
i +

∫
∂K

λ3z nyϕ
K
i −

∫
K

iωε0EKx ϕKi −
∫
K

Jx ϕ
K
i =

∫
K

fKC,x ϕ
K
i ,

−
∫
K

HK
x

∂ϕKi
∂z

+
∫
K

HK
z

∂ϕKi
∂x

+
∫
∂K

λ3x nzϕ
K
i −

∫
∂K

λ3z nxϕ
K
i −

∫
K

iωε0EKy ϕKi −
∫
K

Jy ϕ
K
i =

∫
K

fKC,y ϕ
K
i ,∫

K

HK
x

∂ϕKi
∂y
−
∫
K

HK
y

∂ϕKi
∂x
−
∫
∂K

λ3x nyϕ
K
i +

∫
∂K

λ3y nxϕ
K
i −

∫
K

iωε0EKz ϕKi −
∫
K

Jz ϕ
K
i =

∫
K

fKC,z ϕ
K
i ,
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and ∫
K

Jx ϕ
K
i −

∫
K

σEKx ϕKi = 0 ,∫
K

Jy ϕ
K
i −

∫
K

σEKy ϕKi = 0 ,∫
K

Jz ϕ
K
i −

∫
K

σEKz ϕKi = 0 .

This gives, using the matrices defined in (G.32):

(DKy )TEKz − (DKz )TEKy −
4∑

f=1
γ5 Eβ(K,f)HK

x +
4∑

f=1
γ5 Fβ(K,f)λ3x + MK iωµ0H

K
x = 0 ,

(DKz )TEKx − (DKx )TEKz −
4∑

f=1
γ5 Eβ(K,f)HK

y +
4∑

f=1
γ5 Fβ(K,f)λ3y + MK iωµ0H

K
y = 0 ,

(DKx )TEKy − (DKy )TEKx −
4∑

f=1
γ5 Eβ(K,f)HK

z +
4∑

f=1
γ5 Fβ(K,f)λ3z + MK iωµ0H

K
z = 0 ,

DKz H
K
y − DKy H

K
z −

4∑
f=1

Qβ(K,f)
z λ3y +

4∑
f=1

Qβ(K,f)
y λ3z −MK iωε0EKx −MKJKx = CKx ,

− DKz H
K
x + DKx H

K
z +

4∑
f=1

Qβ(K,f)
z λ3x −

4∑
f=1

Qβ(K,f)
x λ3z −MK iωε0EKy −MKJKy = CKy ,

DKy H
K
x − DKx H

K
y −

4∑
f=1

Qβ(K,f)
y λ3x +

4∑
f=1

Qβ(K,f)
x λ3y −MK iωε0EKz −MKJKz = CKz ,

and
MKJKx −MKσEKx = 0 ,

MKJKy −MKσEKy = 0 ,

MKJKz −MKσEKz = 0 .

The linear system can be written as:

AKWK + BKΛK = CKsource .

where WK , ΛK are defined in (G.30) and (G.31), and the elementary matrices AK and BK are given below:

AK =



−MK iωε0 0 0 0 DKz −DKy −MK 0 0

0 −MK iωε0 0 −DKz 0 DKx 0 −MK 0

0 0 −MK iωε0 DKy −DKx 0 0 0 −MK

0 −(DKz )T (DKy )T MK iωµ0 −
4∑
f=1

γ5 Eβ(K,f) 0 0 0 0 0

(DKz )T 0 −(DKx )T 0 MK iωµ0 −
4∑
f=1

γ5 Eβ(K,f) 0 0 0 0

−(DKy )T (DKx )T 0 0 0 MK iωµ0 −
4∑
f=1

γ5 Eβ(K,f) 0 0 0

−MKσ 0 0 0 0 0 MK 0 0

0 −MKσ 0 0 0 0 0 MK 0

0 0 −MKσ 0 0 0 0 0 MK


(G.33)
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and

BK =



0 0 0 0 −Qβ(K,1)
z −Qβ(K,2)

z −Qβ(K,3)
z −Qβ(K,4)

z Qβ(K,1)
y Qβ(K,2)

y Qβ(K,3)
y Qβ(K,4)

y

Qβ(K,1)
z Qβ(K,2)

z Qβ(K,3)
z Qβ(K,4)

z 0 0 0 0 −Qβ(K,1)
x −Qβ(K,2)

x −Qβ(K,3)
x −Qβ(K,4)

x

−Qβ(K,1)
y −Qβ(K,2)

y −Qβ(K,3)
y −Qβ(K,4)

y ) Qβ(K,1)
x ) Qβ(K,2)

x ) Qβ(K,3)
x Qβ(K,4)

x 0 0 0 0

γ5Fβ(K,1) γ5Fβ(K,2) γ5 Fβ(K,3) γ5Fβ(K,4) 0 0 0 0 0 0 0 0

0 0 0 0 γ5Fβ(K,1) γ5Fβ(K,2) γ5Fβ(K,3) γ5Fβ(K,4) 0 0 0 0

0 0 0 0 0 0 0 0 γ5Fβ(K,1) γ5Fβ(K,2) γ5Fβ(K,3) γ5Fβ(K,4)

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0



.

(G.34)

Next, we discretize the transmission condition. We consider a face F in the interior of the mesh. Then, we replace
the expression of the numerical trace Êh in (G.29), and as for the local problem we only penalize the tangential
components. We hence have ∫

F

(n× Ê) · ν =
∫
F

(n×Eh) · ν −
∫
F

(
γ5
(
Ht

h − λ3
) )
· ν .

We then replace ẽ by the basis functions ψβ(,f)i,∫
F

(
EKz ny − EKy nz

)
ψβ(,f)i +

∫
F

γ5H
K
x ψβ(,f)i −

∫
F

γ5 λ3x ψ
β(,f)i = 0 ,∫

F

(
EKx nz − EKz nx

)
ψβ(,f)i +

∫
F

γ5H
K
y ψβ(,f)i −

∫
F

γ5 λ3y ψ
β(,f)i = 0 ,∫

F

(
EKy nx − EKx ny

)
ψβ(,f)i +

∫
F

γ5H
K
z ψβ(,f)i −

∫
F

γ5 λ3z ψ
β(,f)i = 0 ,

and we express the above equations in terms of the elementary matrices (G.32):

− (Qβ(K,f)
z )TEKy + (Qβ(K,f)

y )TEKz − γ5 (Fβ(K,f))THK
x + γ5 (Gβ(K,f))Tλ3x = 0 ,

− (Qβ(K,f)
x )TEKz + (Qβ(K,f)

z )TEKx − γ5 (Fβ(K,f))THK
y + γ5 (Gβ(K,f))Tλ3y = 0 ,

− (Qβ(K,f)
y )TEKx + (Qβ(K,f)

x )TEKy − γ5 (Fβ(K,f))THK
z + γ5 (Gβ(K,f))Tλ3z = 0 .
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Finally, the elementary matrices are:

PK =



0 −(Qβ(K,1)
z )T (Qβ(K,1)

y )T −γ5 (Fβ(K,1))T 0 0 0 0 0

0 −(Qβ(K,2)
z )T (Qβ(K,2)

y )T −γ5 (Fβ(K,2))T 0 0 0 0 0

0 −(Qβ(K,3)
z )T (Qβ(K,3)

y )T −γ5 (Fβ(K,3))T 0 0 0 0 0

0 −(Qβ(K,4)
z )T (Qβ(K,4)

y )T −γ5 (Fβ(K,4))T 0 0 0 0 0

(Qβ(K,1)
z )T 0 −(Qβ(K,1)

x )T 0 −γ5 (Fβ(K,1))T 0 0 0 0

(Qβ(K,2)
z )T 0 −(Qβ(K,2)

x )T 0 −γ5 (Fβ(K,2))T 0 0 0 0

(Qβ(K,3)
z )T 0 −(Qβ(K,3)

x )T 0 −γ5 (Fβ(K,3))T 0 0 0 0

(Qβ(K,4)
z )T 0 −(Qβ(K,4)

x )T 0 −γ5 (Fβ(K,4))T 0 0 0 0

−(Qβ(K,1)
y )T (Qβ(K,1)

x )T 0 0 0 −γ5 (Fβ(K,1))T 0 0 0

−(Qβ(K,2)
y )T (Qβ(K,2)

x )T 0 0 0 −γ5 (Fβ(K,2))T 0 0 0

−(Qβ(K,3)
y )T (Qβ(K,3)

x )T 0 0 0 −γ5 (Fβ(K,3))T 0 0 0

−(Qβ(K,4)
y )T (Qβ(K,4)

x )T 0 0 0 −γ5 (Fβ(K,4))T 0 0 0


(G.35)

and

TK =


TKT 0 0
0 TKT 0
0 0 TKT

 with TKT =


γ5Gβ(K,1) 0 0 0

0 γ5Gβ(K,2) 0 0

0 0 γ5Gβ(K,3) 0

0 0 0 γ5Gβ(K,4)

 . (G.36)

G.4.3 Boundary conditions for a bounded domain
We can impose on the boundary: E × n = einc × n, or H = hinc. In the first case, the matrices are not modified.
We consider the second case. Suppose that the first face of the considered element in on the boundary, the elementary
matrices PK and TK are:

PK =



0 0 0 0 0 0 0 0 0

0 −(Qβ(K,2)
z )T (Qβ(K,2)

y )T −γ5 (Fβ(K,2))T 0 0 0 0 0

0 −(Qβ(K,3)
z )T (Qβ(K,3)

y )T −γ5 (Fβ(K,3))T 0 0 0 0 0

0 −(Qβ(K,4)
z )T (Qβ(K,4)

y )T −γ5 (Fβ(K,4))T 0 0 0 0 0
0 0 0 0 0 0 0 0 0

(Qβ(K,2)
z )T 0 −(Qβ(K,2)

x )T 0 −γ5 (Fβ(K,2))T 0 0 0 0

(Qβ(K,3)
z )T 0 −(Qβ(K,3)

x )T 0 −γ5 (Fβ(K,3))T 0 0 0 0

(Qβ(K,4)
z )T 0 −(Qβ(K,4)

x )T 0 −γ5 (Fβ(K,4))T 0 0 0 0
0 0 0 0 0 0 0 0 0

−(Qβ(K,2)
y )T (Qβ(K,2)

x )T 0 0 0 −γ5 (Fβ(K,2))T 0 0 0

−(Qβ(K,3)
y )T (Qβ(K,3)

x )T 0 0 0 −γ5 (Fβ(K,3))T 0 0 0

−(Qβ(K,4)
y )T (Qβ(K,4)

x )T 0 0 0 −γ5 (Fβ(K,4))T 0 0 0


(G.37)
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and

TK =


TKT 0 0
0 TKT 0
0 0 TKT

 with TKT =


I 0 0 0

0 γ5Gβ(K,2) 0 0

0 0 γ5Gβ(K,3) 0

0 0 0 γ5Gβ(K,4)

 .

G.5 HDG method with radiation boundary conditions
Here, we present the development of the HDG method applied to the electromagnetic equations, in the case of a
domain with absorbing boundary conditions. We consider a domain D with the boundary Γ = Γl ∪ Γabs. On Γl, we
impose either a condition on H or on n ×E. On Γabs, we impose a radiation boundary condition. In the following,
we first focus on the two-dimensional case, then we develop the method in three dimensions.

G.5.1 HDG method with RBC in two dimensions
On the absorbing boundaries Γabs, we impose the Silver-Müller condition:

√
ε0E × n + √µ0 H = 0 .

In the HDG method, imposing such a condition is equivalent to replace the transmission condition with:∑
F∈Fabs

∫
F

(√
ε0 Ê × n + √µ0 Ĥ

)
ν = 0 .

By using the expression of the numerical traces Ê and Ĥ given in (G.17), the above equation becomes:∑
F∈Fabs

∫
F

(√
ε0Eh × n+ γ5 (Hh − λ3) + √µ0 λ3

)
ν = 0 ,

We discretize the above condition by decomposing the local unknowns using (G.20) and (G.21) and by replacing the
test function ν by the basis function ψFj :

∑
F∈Fabs

∫
F

(√
ε0
(
EKx ϕ

K
j ny − EKy ϕ

K
j nx + γ5

(
HK
z ϕ

K
j − λ3 ψ

F
j

))
+ √µ0 λ3 ψ

F
j

)
ψFi = 0 ,

which gives in terms of elementary matrices defined in (G.23):

∑
F∈Fabs

(
√
ε0 (Qβ(K,f)

y )TEKx −
√
ε0 (Qβ(K,f)

x )TEKy +
√
ε0 (Fβ(K,f))T γ5H

K
z −
√
ε0 Gβ(K,f)γ5λ3+√µ0 Gβ(K,f)λ3

)
= 0 .

Let us consider an element K of Th, whose first local face is on Γabs. In this case, the elementary matrices of K
are modified as:

PK =


√
ε0 (Qβ(K,1)

y )T −√ε0 (Qβ(K,1)
x )T √

ε0 γ5 (Fβ(K,1))T

−(Qβ(K,2)
y )T (Qβ(K,2)

x )T − γ5 (Fβ(K,2))T

−(Qβ(K,3)
y )T (Qβ(K,3)

x )T − γ5 (Fβ(K,3))T

 ,

and

TK =

(−√ε0 γ5 +√µ0)Gβ(K,1) 0 0
0 γ5 Gβ(K,2) 0
0 0 γ5 Gβ(K,3)

 .

G.5.2 HDG method with RBC in three dimensions
On the absorbing boundaries, we impose the Silver-Müller condition:

√
ε0E × n −

√
µ0 (H × n )× n = 0 .
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If we consider a face F on the absorbing boundary Γabs, we have to impose the following condition:∫
F

(√
ε0 Êh × n −

√
µ0 (Ĥ

t

h × n)× n
)
· ν = 0 , (G.38)

with Ĥ
t

h = λ3 ,

Êh = Êh − γ5
(
Ht

h − λ3
)
× n .

By replacing the expression of the trace variables, equation (G.38) becomes:∫
F

√
ε0 (Eh × n) · ν +

∫
F

√
ε0 γ5 Hh · ν +

∫
F

(−
√
ε0 γ5 +√µ0)λ3 · ν = 0 .

We discretize this equation along the directions x, y, z by decomposing the components of Eh, Hh and of the test
function ν, to obtain:∫

F

√
ε0 (Ey nz −Ez ny)ψβ(K,f)

i +
∫
F

√
ε0 γ5Hx ψ

β(K,f)
i +

∫
F

(−
√
ε0 γ5 +√µ0)λ3x ψ

β(K,f)
i = 0 ,

∫
F

√
ε0 (Ez nx −Ex nz)ψβ(K,f)

i +
∫
F

√
ε0 γ5Hy ψ

β(K,f)
i +

∫
F

(−
√
ε0 γ5 +√µ0)λ3y ψ

β(K,f)
i = 0 ,

∫
F

√
ε0 (Ex ny −Ey nx)ψβ(K,f)

i +
∫
F

√
ε0 γ5Hz ψ

β(K,f) +
∫
F

(−
√
ε0 γ5 +√µ0)λ3z ψ

β(K,f)
i = 0 .

This gives, using the elementary matrices defined in (G.32):
√
ε0 (Qβ(K,f)

z )TEKy −
√
ε0 (Qβ(K,f)

y )TEKz +
√
ε0 γ5 (Fβ(K,f))T HK

x + (−
√
ε0 γ5 +√µ0)Gβ(K,f)λ3x = 0 ,

√
ε0 (Qβ(K,f)

x )TEKz −
√
ε0 (Qβ(K,f)

z )TEKx +
√
ε0 γ5 (Fβ(K,f))T HK

y + (−
√
ε0 γ5 +√µ0)Gβ(K,f)λ3y = 0 ,

√
ε0 (Qβ(K,f)

y )TEKx −
√
ε0 (Qβ(K,f)

x )TEKy +
√
ε0 γ5 (Fβ(K,f))T HK

z + (−
√
ε0 γ5 +√µ0)Gβ(K,f)λ3z = 0 .

The above three scalar equations are integrated in the global system of the transmission and boundary conditions that
is written as: ∑

K∈Th

(AKHDG)T
(
PKWK + TKAKHDGΛ

)
= Sinc ,

If, in the local numbering, the first face of the element is on the absorbing boundary Γabs, the elementary matrices PK
and TK become:

PK =



0 √
ε0 (Qβ(K,1)

z )T −√ε0 (Qβ(K,1)
y )T √

ε0 γ5 (Fβ(K,1))T 0 0 0 0 0

0 (Qβ(K,2)
z )T −(Qβ(K,2)

y )T −γ5 (Fβ(K,2))T 0 0 0 0 0

0 (Qβ(K,3)
z )T −(Qβ(K,3)

y )T −γ5 (Fβ(K,3))T 0 0 0 0 0

0 (Qβ(K,4)
z )T −(Qβ(K,4)

y )T −γ5 (Fβ(K,4))T 0 0 0 0 0

−√ε0 (Qβ(K,1)
z )T 0 √

ε0 (Qβ(K,1)
x )T 0 √

ε0 γ5 (Fβ(K,1))T 0 0 0 0

−(Qβ(K,2)
z )T 0 (Qβ(K,2)

x )T 0 −γ5 (Fβ(K,2))T 0 0 0 0

−(Qβ(K,3)
z )T 0 (Qβ(K,3)

x )T 0 −γ5 (Fβ(K,3))T 0 0 0 0

−(Qβ(K,4)
z )T 0 (Qβ(K,4)

x )T 0 −γ5 (Fβ(K,4))T 0 0 0 0
√
ε0 (Qβ(K,1)

y )T −√ε0 (Qβ(K,1)
x )T 0 0 0 √

ε0 γ5 (Fβ(K,1))T 0 0 0

(Qβ(K,2)
y )T −(Qβ(K,2)

x )T 0 0 0 −γ5 (Fβ(K,2))T 0 0 0

(Qβ(K,3)
y )T −(Qβ(K,3)

x )T 0 0 0 −γ5 (Fβ(K,3))T 0 0 0

(Qβ(K,4)
y )T −(Qβ(K,4)

x )T 0 0 0 −γ5 (Fβ(K,4))T 0 0 0
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and

TK =


TKT 0 0
0 TKT 0
0 0 TKT

 with TKT =


(−√ε0γ5 +√µ0)Gβ(K,1) 0 0 0

0 γ5Gβ(K,2) 0 0

0 0 γ5Gβ(K,3) 0

0 0 0 γ5Gβ(K,4)

 .

G.6 Application of PML in the HDG method
In the following section, we include a Perfectly Matched Layer (PML) to the discretization of the electromagnetic
equations using HDG method. The perfectly matched layer is an artificial absorbing layer on the borders of the
computational domain. It absorbs the outgoing waves and prevents from reflections.

G.6.1 Application of PML in the HDG method in two dimensions
In two dimensions, we use two absorbing functions α and β that represent the attenuation of the wave in the absorbing
layer. The attenuation functions α and β are taken equal to zero outside the absorbing layers, and the further the
considered points in the layers are from the part with no attenuation, the more the values of the attenuation functions
grow. In practice, we replace the derivatives

∂

∂x
→ i ω

i ω + α(x)
∂

∂x
, and ∂

∂y
→ i ω

i ω + β(y)
∂

∂y
.

With PML, the transmission conditions and the boundary conditions are not modified, contrary to the local
problem. In the following, we detail the discretization of the electromagnetic equations (G.4) with PML. Considering
an element K of Th, we multiply the equation by test functions (ẽ, h̃, j̃) ∈ (V p(K)× V p(K)× V p(K)) and integrate
on the element K:∫

K

(
i ω

i ω + α(x)
∂ EKy
∂x

− i ω

i ω + β(y)
∂ EKx
∂y

)
ẽ +

∫
K

iω µ0H
K ẽ = 0 ,

∫
K

i ω

i ω + β(y)
∂ HK

∂y
h̃x −

∫
K

i ω

i ω + α(x)
∂ HK

∂x
h̃y −

∫
K

iω ε0E · h̃ −
∫
K

J · h̃ =
∫
K

fC · h̃ ,∫
K

J · j̃ −
∫
K

σE · j̃ = 0 .

We integrate by parts the above equations:∫
K

EKy
i ω

i ω + α(x)
∂ẽ

∂x
−
∫
K

EKx
i ω

i ω + β(y)
∂ẽ

∂y
+
∫
∂K

ÊKy
i ω

i ω + α(x)nxẽ−
∫
∂K

ÊKx
i ω

i ω + β(y)ny ẽ+
∫
K

iω µ0H
K
h ẽ = 0,

−
∫
K

HK
h

i ω

i ω + β(y)
∂ h̃x
∂y

+
∫
∂K

i ω

i ω + β(y)Ĥ
K nyh̃x +

∫
K

HK
h

i ω

i ω + α(x)
∂ h̃y
∂x
−
∫
∂K

i ω

i ω + α(x)Ĥ
K nxh̃y

−
∫
K

iωε0Eh · h̃ −
∫
K

Jh · h̃ =
∫
K

fC · h̃ ,∫
K

J j̃ −
∫
K

σE · j̃ = 0 .

Then, we replace the numerical traces by their expressions given in (G.17), and we obtain∫
K

(
i ω

i ω + α(x)
∂EKy
∂x
− i ω

i ω + β(y)
∂EKx
∂y

)
ẽ−

∫
∂K

γ5
(
HK
h − λ3

)( i ω

i ω + α(x)n
2
x + i ω

i ω + β(y)n
2
y

)
ẽ+

∫
K

iωµ0H
K
h ẽ = 0 ,

−
∫
K

HK
h

i ω

i ω + β(y)
∂ h̃x
∂y

+
∫
∂K

i ω

i ω + β(y)λ3 nyh̃x +
∫
K

HK
h

i ω

i ω + α(x)
∂ h̃y
∂x
−
∫
∂K

i ω

i ω + α(x)λ3 nxh̃y

−
∫
K

iωε0Eh · h̃ −
∫
K

Jh · h̃ =
∫
K

fC · h̃ ,∫
K

J j̃ −
∫
K

σE · j̃ = 0 .
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Now, we discretize the local problem, by decomposing the unknowns as given in (G.22):∫
K

(
i ω

i ω + α(x)
∂EKy
∂x
− i ω

i ω + β(y)
∂EKx
∂y

)
ϕKi −

∫
∂K

γ5
(
HK
h − λ3

)( i ω

i ω + α(x)n
2
x + i ω

i ω + β(y)n
2
y

)
ϕKi +

∫
K

iωµ0H
K
h ϕ

K
i = 0 ,

−
∫
K

i ω

i ω + β(y) H
K
h
∂ϕKi
∂y

+
∫
∂K

i ω

i ω + β(y) λ3 nyϕ
K
i −

∫
K

iω ε0 EKx ϕKi −
∫
K

JKx ϕKi =
∫
K

fC,x h̃x ,∫
K

i ω

i ω + α(x) H
K
h
∂ϕKi
∂x
−
∫
∂K

i ω

i ω + α(x) λ3 nxϕ
K
i −

∫
K

iω ε0 EKy ϕKi −
∫
K

JKy ϕKi =
∫
K

fC,y h̃y , ,∫
K

JKx ϕKi −
∫
K

σEKx ϕKi = 0 ,∫
K

JKy ϕKi −
∫
K

σEKy ϕKi = 0 .

We can express the above expression in terms of local unknowns and elementary matrices defined in (G.22) and (G.23):

(DKx )T i ω

i ω + α(x)E
K
y − (DKy )T i ω

i ω + β(y)E
K
x −

3∑
f=1

γ5 HKEβ(K,f)
(

i ω

i ω + α(x)n
2
x + i ω

i ω + β(y) n
2
y

)

+
3∑

f=1

Fβ(K,f)
(

i ω

i ω + α(x)n
2
x + i ω

i ω + β(y) n
2
y

)
γ5 λ3 + MK iω µ0 HK = 0 ,

−DKy
i ω

i ω + β(y)HK −
3∑

f=1

Qβ(K,f)
y

i ω

i ω + β(y) λ3 −MK iω ε0 EKx −MK JKx =
∫
K

fC,x h̃x ,

DKx
i ω

i ω + α(x)HK +
3∑

f=1

Qβ(K,f)
x

i ω

i ω + α(x)λ3 −MK iω ε0 EKy −MK JKy =
∫
K

fC,y h̃y ,

MKJKx −MK σ EKx = 0 ,

MKJKy −MK σ EKy = 0 .

Recall that the above equation is written as a system:

AWK + BΛK = CKsource ,

where WK and ΛK have been defined in (G.22). The matrices AK and BK are:

AK =



−MK iωε0 0 −DKy
i ω

i ω + β(y) −MK 0

0 −MK iωε0 DKx
i ω

i ω + α(x) 0 −MK

−(DKy )T i ω

i ω + β(y) (DKx )T i ω

i ω + α(x) MK iω µ0 −
3∑

f=1

γ5 Eβ(K,f)
(

i ω

i ω + α(x)n
2
x + i ω

i ω + β(y) n
2
y

)
0 0
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,

and
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.

G.6.2 Application of PML in the HDG method in three dimensions
In three dimensions, we use two absorbing functions α and β that represent the attenuation of the wave in the absorbing
layer. The attenuation functions α and β are taken equal to zero outside of the absorbing layers. The value of the
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attenuation functions increases with the distance of the point in the layer. In practice, we replace the derivatives

∂x →
i ω

i ω + α(x)∂x , ∂y →
i ω

i ω + β(y)∂y , ∂z →
i ω

i ω + γ(z)∂z .

As before, we multiply equation (G.3) with test functions (ẽ, h̃, j̃) ∈ (V p(K)×V p(K)×V p(K)) and integrate on
an element K. Next, we integrate by part the equations and replace the numerical traces Ê and Ĥ by their expressions
(G.17). After that, the equations are integrated by parts to obtain the local problem. The local problem is discretized
along x, y, and z components, by decomposing the local unknowns (G.30) and the Lagrange unknowns (G.31), and
expressing the system with the elementary matrices (G.32). The matrices AK and BK are:

AK =



MK iωµ0 0 0 0 DKz
i ω

i ω + γ(z)
−DKy

i ω

i ω + β(y)
0 0 0

0 MK iωµ0 0 −DKz
i ω
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i ω
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i ω
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i ω
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0 0 0 0
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i ω
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,

with Nβ(K,f)
pml = Eβ(K,f)

(
i ω
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2
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, and BK of the form
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,

with f = 1, 2, 3, 4, and Lβ(K,f)
pml = Fβ(K,f)

(
i ω

i ω + α(x)n
2
x + i ω

i ω + β(y) n
2
y + i ω

i ω + γ(z) n
2
z

)
.

G.7 Numerical results
We present in this section the validation of the HDG method to solve the electromagnetic equations. We consider the
electromagnetic equations on a domain D defined later, with µ0 = 12.566 10−7 N/A2, ε0 = 8.8595 10−12 F.m−1, and
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σ = 10−9 S.m−1. To validate the method, we use the relative numerical error eh(U), which is computed from the
knowledge of the numerical solution denoted by Unumeric and the reference solution Ureference, following the formula:

eh(U) = ||Unumeric − Ureference||2
||Ureference||2

, with ||U||2 =
( ∑
K∈Th

∫
K

|U|2
) 1

2

.

G.7.1 Numerical results in two dimensions

(a) Numerical solution (b) Reference solution (c) Difference

Figure G.2: Propagation of an EM plane wave in a two-dimensional homogeneous medium.

We consider a two-dimensional squared domain D of size [0 : 1000]× [0 : 1000]m. On the boundary of the domain
Γ, we first impose the propagation of an EM plane wave, see Section G.1.1, and we solve the electromagnetic equations
using the HDG method described in Section G.3. We consider the frequency f = 3MHz, and we solve the equations
for several meshes and several orders of interpolation of the HDG method. We give in Figure G.2 the result obtained
for a mesh composed of 7750 elements and an order of interpolation 4. In this configuration, the relative errors are
small: eh(Ex) = 5.6e− 3 %, eh(Ey) = 4.2e− 3 %, and eh(Hz) = 5.78e− 2 %. We plot in Figure G.3 the convergence
curves of the method for different orders of interpolation. This shows that the method has an order of convergence
equal to p+ 1, which is the optimal order of convergence for the HDG methods.
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Figure G.3: Convergence curves of HDG method (component ux) for several orders of interpolation. Results for order
1 are plotted in blue , for order 2 in purple , for order 3 in orange and for order 4 in green .

Next, we consider an infinite two-dimensional domain. We consider a point-source at the coordinate x =
(500, 500)m. The point-source is modeled as a Dirac distribution, denoted δ, along the x-axis. In the computation, we
consider the two truncation methods presented in Sections G.5 and G.6, see Figure G.4.

We present the results for the two truncation methods in Figure G.5. Both the RBC and the PML seem to absorb
well the reflections.
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Ω

Point-source

ABC

L

(a) Domain with RBC

Ω

Point-source

PML

L

l

(b) Domain with PML

Figure G.4: Infinite domain used for the numerical tests, in which we set artificial boundaries, either RBC or PML.
In the tests, we have: L = 1000m and l = 100m.

(a) Ex with RBC (b) Ex with PML

Figure G.5: Electric field Ex (V.m−1) for a domain truncated with radiation boundary condition and a domain with
PML.

G.7.2 Numerical results in three dimensions
We now move on to the three-dimensional case. We consider a domain D of size [0 : 1000] × [0 : 1000] × [0 : 200]m.
We impose on the boundary of the domain Γ the propagation of an EM plane wave, see Section G.1.1, and the
electromagnetic equations are solved on D by using the HDG method developed in Section G.3, for several meshes
and several orders of interpolation of the HDG method at frequency f = 1.5MHz. Figure G.6 shows the result for a
mesh composed of 14983 tetrahedra and an order of interpolation 4. The relative errors are small for all components
(around 10−2 %). We show in Figure G.7 the convergence curves of the method for different orders of interpolation.
With the curves, we observe that the method converges with an order p+ 1, which is the optimal order of convergence
for the HDG methods.
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(a) Numerical solution (b) Reference solution (c) Difference

Figure G.6: Propagation of an EM plane wave in a three-dimensional homogeneous medium.
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Figure G.7: Convergence curves of HDG method (component ux) for several orders of interpolation. Results for order
1 are plotted in blue , for order 2 in purple , for order 3 in orange and for order 4 in green .

We now consider an infinite domain, and we use the truncation methods introduced in Sections G.5 and G.6 in the
numerical computation. We consider a point-source located at the coordinate x = (500, 500, 100)m. The point-source
is modeled as a Dirac distribution, denoted δ, along the x-axis. The domain is truncated to the domain Ω, see Figure
G.8.

The results for the two truncation methods are given in Figure G.9. This is presented as a clip along the (x, y)
plane. There is no visible reflections due to the RBC or the PML.
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Ω

Point-source
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(b) Domain with PML

Figure G.8: Infinite domain used for the numerical tests, in which we set artificial boundaries, either RBC or PML.
In the tests, we have: L1 = 1000m, L2 = 200m, l1 = 100m and l2 = 20m.

(a) Ex with RBC (b) Ex with PML

;

Figure G.9: Electric field Ex (V.m−1) for a domain truncated with radiation boundary condition and a domain with
PML.



Conclusion

The objective of this thesis was to provide a piece of software for simulating waves in porous conducting media. These
waves are governed by Pride’s model which is based upon the coupling of Biot’s and Maxwell equations. The model
is characterized by parameters that depend non linearly on the frequency. Hence, for convenience, the work has been
carried out in the frequency regime. All the numerical developments have been hosted by the software Hou10ni,
which, at the beginning, was only prepared for solving elastic wave equations with HDG method. The work has been
organized around three milestones:

• Definition of a convenient mathematical modeling by constructing analytical solutions that have been of great
utility for validating the numerical method. The well-posedness of the solutions has been studied numerically and it has
been shown that in presence of viscosity, the problems are well posed while there are some resonances corresponding
to specific modes as Jones modes in elasticity when there is no viscosity.
• Development of a HDG formulation for Pride’s equations. For this, the first step has been to develop a HDG

method for solving Biot’s equations in anisotropic porous media. A HDG formulation of Maxwell’s equations has also
been developed, following existing works. Convergence curves have been obtained for illustrating the optimal order of
convergence (p+1) of the methods that guarantee a very good accuracy. It is worth noting that in two dimensions,
the HDG formulations are stable in the sense that the condition number of both the global and local matrices stay in
a correct range for linear solvers.
• Construction of a radiation boundary conditions (RBC). The RBCs have been constructed from the character-

ization of outgoing solutions in an infinite domain and are easy to integrate in the HDG formulation. Regarding the
computations in truncated domains, we have also considered Perfectly Matched Layers. We have observed that their
efficiency is limited with Pride’s equations. This is due to the clear difference between the characteristic wavelengths
of seismic and electromagnetic waves.

The final achievement of this Ph.D. work is the simulation of converted waves that appear in a conducting porous
medium with interfaces. However, it is worth mentioning that the amplitude of the converted waves are small, and
hence they can be difficult to detect. This has also been observed experimentally.

This work paves the way to multiple perspectives, whether from a theoretical or numerical point of view:
• Regarding analytical solutions, we have performed a numerical study of the corresponding eigenvalues that raises

the interesting question of existing resonances (such as Jones modes) in presence of viscosity or not. Their extension
to 3D is not that obvious, due to the difficulty to establish an adequate decomposition into potentials.
• The HDG methods could be improved by computing the HDG fluxes in a more precise way and by automating the

values of the stabilization parameters. Another idea could be to consider a HDG+ formulation in which the unknowns
are approximated with different polynomial orders [76]. For example, for poroelasticity, one way to do that could be
to consider the solid velocity u and the pressure p in a polynomial space of one degree larger (p+ 1) than the spaces
used for the relative fluid velocity w and the stress τ (degree p). The hybrid unknowns would be considered of degree
p, which would not modify the size of the global system. In this way, we could obtain a more precise solution for the
solid velocity u and the pressure p with no significant additional cost. This method also requires a precise adjustment
of the numerical fluxes.
• Concerning the truncation methods, the performance of the RBC can be improved by increasing its order of

approximation. This represents a significant work of development, because the construction of outgoing solutions is
difficult.
• The main perspective is about the use of the method for more complex settings, in particular to simulate

electrokinetic conversions in three dimensions. We can extend the study carried in the last chapter to three dimensions,
but this is quite difficult, due to the large size of the global system that we need to inverse for each frequency. The
main problem is that we use a direct solver for the inversion of the matrix, which requires a very large amount of
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memory. Hence we need to have access to large computational resources. However, the use of a direct solver is essential,
in particular for fields experiments where we consider several sources, where the multi right-hand side functionality
of the direct solver MUMPS could be well suited for instance. To improve the performance of the solver in three
dimensions, we could study the Block-Low-Range (BLR) functionality, which allows to decrease the memory needed
for the inversion of the system.
• The extension to three dimensions could also allow the comparison with physical experiments carried in laboratory,

or field experiments, to compare the difference in amplitude. In complex media, with many kinds of materials, we
could enhance the strengths of the HDG method, as exploiting p-adaptivity of the method. We could also widen the
comparison that we have done with Gar6more [45] to layered domains and compare the results of our code with the
semi-analytical software developed by Garambois [62] or the software based upon Spectral Element method (SEM)
developed by Morency [97]. The last step towards geophysical exploration will be to integrate the code by using it in
an inverse problem software.
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Abstract
We consider the time-harmonic waves propagation in poroelastic and conducting poroelastic media. The poroelastic
materials are composed of an elastic solid frame and pores filled with fluid. Wave propagation in poroelastic materials
is described by Biot’s model. In geophysical media, due to the polarization of the fluid in the pores, we can observe the
conversions between electromagnetic and seismic fields, which are called electrokinetic effects and are modeled using
Pride’s equations, a coupling between Maxwell’s and Biot’s equations. The electrokinetic coupling has been observed in
natural geophysical media both in laboratory experiments and on the field. The converted waves are very interesting
because they are heavily sensitive to the medium properties, and the seismoelectric conversions could for example
help to locate interfaces in the material that seismic waves could not detect. The characterization of poroelastic or
conducting poroelastic media is complex and involves many physical parameters. Some of these parameters depend
non-linearly on the frequencies. In addition, the seismic and electromagnetic velocities are significantly different,
which is complicated to handle for time domain simulations. Hence, we have chosen to solve the equations in the
frequency domain and to use a Fourier transform to generate the seismograms in time domain. The main drawback
to this is that we must invert one global linear system for each frequency, and this has a large computational cost
because of the complexity of the equations and hence the high number of unknowns. We present the development and
implementation of a HDG method for solving the poroelastic, the electromagnetic and Pride’s equations. We validate
the code in two dimensions in circular geometry thanks to analytical solutions that we have developed. Using these
analytical solutions, we will show that the methods have an optimal order of convergence. In addition, to extend the
method to infinite domains, we propose new radiation boundary condition for poroelastic equations and electrokinetic
equations. We also use Perfectly Matched Layers. Finally, we present results of the electrokinetic conversions in time
domain.

Résumé
Dans cette thèse, nous étudions la propagations d’ondes dans des milieux poroélastiques et poro-conducteurs. Les
matériaux poroélastiques sont composés d’un squelette solide élastique et de pores remplis de fluide. La propagation
des ondes dans les matériaux poroélastiques est décrite par le modèle de Biot. Dans les milieux géophysiques, en raison
de la polarisation du fluide dans les pores, nous pouvons observer des conversions entre les champs électromagnétiques
et sismiques. C’est ce qu’on appelle effets électrocinétiques, modélisés par le système d’équations de Pride, qui est
écrit comme le couplage entre les équations de Maxwell et de Biot. Le couplage électrocinétique a été observé dans
les milieux géophysiques naturels à la fois dans des expériences de laboratoire et sur le terrain. Les ondes converties
sont intéressantes car elles sont très sensibles aux propriétés du milieu, et les conversions sismoélectriques pourraient
par exemple aider à localiser des interfaces que les ondes sismiques ne pourraient pas détecter. La caractérisation
des milieux poroélastiques ou poro-conducteurs est complexe et fait intervenir de nombreux paramètres physiques.
Certains de ces paramètres dépendent de la fréquence de manière non linéaire. De plus, les vitesses sismiques et
électromagnétiques sont fortement différentes, ce qui est compliqué à gérer pour les simulations dans le domaine
temporel. Nous avons donc choisi de résoudre les équations dans le domaine fréquentiel et d’utiliser une transformée
de Fourier pour générer des sismogrammes dans le domaine temporel. Le principal inconvénient de cette méthode est
que nous devons inverser un système linéaire global pour chaque fréquence, ce qui entrâıne un coût de calcul important
en raison de la complexité des équations et donc du nombre élevé d’inconnues. Nous présentons le développement
et l’implémentation d’une méthode HDG pour résoudre les équations poroélastiques, électromagnétiques et de Pride.
Nous validons le code en deux dimensions en géométrie circulaire grâce aux solutions analytiques que nous avons
développées. En utilisant ces solutions analytiques, nous montrons que les méthodes ont un ordre de convergence
optimal. De plus, afin d’étendre la méthode aux domaines infinis, nous proposons de nouvelles conditions aux limites
de radiation pour les équations poroélastiques et les équations électrocinétiques. Nous utilisons également des couches
parfaitement adaptées (PML). Enfin, nous présentons les résultats des conversions électrocinétiques dans le domaine
temporel.
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