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quel degré c’était parfois difficile pour eux d’interagir avec moi. Pour cela,
pour les fructueuses discussions scientifiques, pour leur aide et leurs encour-
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cours au centre linguistique FLEURA pour étudier le français et je remercie
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Résumé

Le condensat de Bose-Einstein (CBE) est un nouvel état de la matière
qui donne la possibilité étonnante d’observation de phénomènes quantiques,
comme l’existence de la fonction d’onde sur des échelles macroscopiques.
Cette recherche porte sur le type particulier de CBEs, en l’occurence celui
qui est basé sur les excitons-polaritons dans des microcavités optiques de
semi-conducteurs. Grâce aux interactions non-linéaires, le comportement
des condensats de Bose-Einstein ressemble à celui de fluides classiques. Une
meilleure compréhension de ces similarités est le but principal du projet
d’ANR ”Fluides quantique de lumière”, dans le cadre duquel cette recherche
a été réalisée. Les deux premiers chapitres du manuscrit sont introducteurs
et décrivent la physique des exciton-polaritons dans des nanostructures de
semi-conducteurs,les propriétés des condensats de polaritons, les propriétés
des défauts topologiques des fluids quantiques que sont les tourbillons quan-
tiques et les solitons.

Le chapitre 3 présente l’étude du phénomène de turbulence quan-
tique basé sur la résolution numérique de l’équation de Gross-Pitaevskii.
Nous avons étudié différentes stratégies d’agitation et démontré le trans-
fert d’énergie depuis les petites échelles spatiales vers les grandes échelles.
La présence de structures fractales formées de clusters de tourbillons a
été démontré numériquement. Le domaine d’échelle spatiale, où la loi de
Kolmogorov pour la dépendance de la densité d’énergie cinétique incom-
pressible est réalisée, cöıncide avec celle où on observe ces structures frac-
tales caractérisées par une dimension de Minkowski fractionnelle. Toute-
fois, ces régions deviennent visibles uniquement lorsque la contribution des
tourbillons isolés et des dipôle est éliminée. Par conséquent, les signa-
tures de la présence de ces structures fractales ne peuvent être obtenues
expérimentalement qu’à travers une mesure complète de la fonction d’onde
du fluide quantique en fonction du temps, notamment son amplitude et sa
phase. Cette difficulté peut etre résolue par l’utilisation de plateforme po-
laritonique qui se caractérise par une accessibilité unique à la mesure de la
dynamique des fonctions d’onde et qui est donc une plateforme attractive
pour l’étude de la turbulence quantique.

Dans les fluides classiques les solitons sont des ondes solitaires se
propageant sur de longues distances sans se déformer. Les solitons sont des
excitations stables des fluides quantiques 1D. Cependant, en 2D, ils subis-
sent la fameuse instabilité modulationnelle en se désintégrant en chaines de
paires de tourbillon/anti-tourbillon qui s’éloigne les unes des autres. Ce type
de phénomène dynamique peut difficilement être observé expérimentalement
sous pompage optique continu. Dans le Chapitre 4, nous introduisons une
configuration facile à réaliser expérimentalement et qui permet de résoudre
cette difficulté. Nous proposons de réaliser un couloir de potentiel unidi-



mensionel en utilisant une modulation spatiale de l’intensité de pompage et
le caractère bistable du système polaritonique. Les zones fortement pompés
occupe la branche haute de bistabilité optique et forment des murs de poten-
tiel abrupt par rapport à la zone faiblement pompée qui est sur la branche
basse de bistabilité. Nous avons démontré des solitons sombres se forment
dans ces couloirs. Leur nombre et leur parité (1-3 ou 2-4) sont contrôlés
par la différence de phase et l’écartement entre les murs. Les équations
de Bogoliubov-de Gennes montre que ces solitons sont instables et évoluent
vers une chaine stationnaires de tourbillon/anti-tourbillon. Ces châınes dont
l’évolution temporelle est bloquée par la présence des murs de potentiel peu-
vent être symétriques ou antisymétriques selon la distribution d’intensité du
laser. Lorsque l’intensité du laser augmente fortement les chaines de tour-
billons disparaissent à partir des extrémités fermés des couloir, alors que les
châınes restent stables au niveau des extrémités ouvertes. Ce phénomène
permet à la chaine de tourbillon de connecter uniquement son entrée et sa
sortie et d’ainsi réaliser un algorithme de résolution ”tout optique”.



Abstract
The Bose-Einstein condensate is a new state of matter which gives the

astonishing possibility of observation of quantum phenomena, like the exis-
tence of the wave function on macroscopic scales. Present research is devoted
to the particular type of BECs based on excitons-polaritons in semiconductor
microcavities. Due to non-linear interactions, the behavior of Bose-Einstein
condensates, and more general of polaritons at high densities, resembles
that of classical fluids. Better comprehension of these similarities is one of
the goals of ANR ”Quantum fluids of light” project, within which present
research was conducted. The first two chapters of the manuscript provide
the necessary introduction to the physics of excitons-polaritons and proper-
ties of polariton condensates (including the topological defects: vortices and
solitons), respectively.

In classical fluids, the solitons are solitary waves propagating over long
distances without deformation and similar situation is actual for 1D quan-
tum fluids. However, in 2D case the solitons undergo the so-called ”snake
instability” and transform to the chains of vortex-antivortex pairs, which is
a principal obstacle to study this phenomenon in polariton quantum fluids
especially in CW experiments. In the next chapter, the simple to implement
by the means of spatial light modulator configuration that allows avoiding
this restriction was proposed and extensively studied. The configuration
is a narrow 1D channel with the walls of high condensate density at up-
per bistability branch created by intensive laser radiation. It was shown
that in such channels dark solitons appear parallel to the channel axis by
odd (1-3) or even (2-4) number in order to accommodate the phase con-
straint induced between the walls. According to the Bogoliubov-de Gennes
analysis, these soliton molecules are typically unstable and trigged by the
disorder evolve toward stationary symmetric or anti-symmetric arrays of
vortex streets. Also the soliton head repulsion from the corridor dead-end
was demonstrated, giving a straight possibility to experimentally implement
maze solving procedure by dead-end stroking algorithm.

As for quantum turbulence, the possibility of observing the energy trans-
fer from small spatial scales to large ones (reverse energy cascade) and the
formation of fractal structures composed of quantum vortices in polaritonic
condensates were demonstrated. The region of Kolmogorov -5/3 power law
in the spectrum of incompressible kinetic energy coincides with the region
of fractional Minkowski dimension of the structures of clustered vortices.
However, for various condensate stirring methods, this power law becomes
visible only after eliminating the contribution of single vortices and vortex
dipoles. Thus, the experimental observation of the spectrum of such shape
will be possible after full wave function reconstruction including both ampli-
tude and phase, which justifies that polaritons are the promising platform
for studying quantum turbulence.
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The semiconductor technology contributed dramatically to the progress in science and
technology of the mankind in the second half of XX century. The examples of these tech-
nological breakthroughs are transistors [1] and other electronic components essential for
computers, digital and analog electronic devices of other types: light sensors, high power
components, solar cells etc. The important examples are also the light sources, including
diodes and semiconductor lasers. In the beginning of his Nobel lecture in the year 2001
[2], Zhores Alferov writes:

It is impossible to imagine now modern solid-state physics without semiconductor het-
erostructures. Semiconductor heterostructures and, particularly, double heterostructures,
including quantum wells, wires, and dots, are today the subject of research of two-thirds
of the semiconductor physics community.

Present chapter gives the necessary review presenting the topic of semiconductor mi-
crocavity exciton polaritons. The chapter is organized as follows. In the section 1 we
introduce the excitons as the electron-hole composite quasiparticles in semiconductors,
discuss their properties in quantum wells, describe the mechanisms of their decay and
the exciton-exciton interactions. The Section 2 is devoted to the description of semicon-
ductor microcavities, including the cavity photon dispersion. In Section 3 we will write
the Hamiltonian for the system of interacting quantum well exciton and cavity photon.
We will discuss the weak coupling regime and the strong coupling regime and show that
the realization of the latter will lead to the formation of a new unique quasiparticle, the
exciton-polariton, sharing the properties of matter and light. The chapter will be fin-
ished with a description of the Gross-Pitaevskii equation for cavity exciton polaritons,
the regime of quasi-resonant pumping, and the phenomenon of bistability.

1.1 Excitons in semiconductors

1.1.1 Exciton as a quasiparticle

One of the most famous and actively studied quasiparticles in physics of semiconductors
and an essential ingredient to form the polaritons are the excitons, the composite eletron-
hole hydrogen atom-like quasiparticles. The wave function of an electron in the periodic
potential of a semiconductor writes in the terms of the Bloch wave function [3]:

ψnk = eikrunk(r), (1.1)

where the function unk(r+R) = unk(r) reflects the periodicity of a crystal lattice. n is an
index of a band and R is a translation vector. The bands n are closely related with the
atomic orbitals and inherit their symmetry. They also exhibit a complex interplay between
spin and angular momentum. Due to the translational invariance, the actual wave vector
in the crystals k becomes restricted to the Brillouin zone of a crystal, approximately from
0 to π/a0, where a0 is a lattice constant. The energy dispersion relation for the electrons

3



in the periodic potential of a crystal reads

En(k) = E0n +
~2k2

2mn

, (1.2)

where mn is an effective mass of an electron in corresponding band n. The value of the
effective mass can be obtained from the overlap integrals γ in the Tight-Binding Model
[4] with the following general proportionality:

meffective ∝
~2a2

0

γ
. (1.3)

In the semiconductors, the n-th band lying below the Fermi level (an energy necessary
to place one new electron to the crystal) is nearly filled with electrons and the next
n+1-th band is nearly vacant. These bands correspond to valence and conduction bands,
respectively. Electron density in the upper (conduction) band increases with temperature
and also can be also increased by irradiation by light or application of electric bias. The
doping also allows the control of electron density in the bands. Within this formalism,
the absence of an electron in the band n can be considered as new quasiparticle with a
negative mass (and thus a negative energy) and a positive electric charge, called a hole.

The typical values of electron and hole effective masses are comparable at least by the
order of magnitude with the mass of a free electron m0. For the particular semiconductor
studied in this thesis, GaAs, the values are me = 0.067m0, mh = 0.51m0 and ml =
0.082m0 [5]. In fact, due to the anisotropy of crystals, the masses are tensor quantities
depending on the wave vector direction with respect to crystallographic axes. Also the
masses, being the derivative of the overlap integral, are thus sensitive to the pressure
(up to ≈ 1% per kilobar for GaAs) and to the temperature with the electron-phonon
interaction contribution up to dozen of percents for various materials, see. Ref. [6]. .
Fig. 1.1 shows the electronic structure of GaAs. The heavy holes (h), light holes (l), and
a split-off band originate from the mixture of p-symmetry atomic orbitals.

Being oppositely charged, the Bloch electron and the hole experience a mutual Coulomb
attraction. Thus the Schrödinger equation for these two interacting particles has a form:(

p̂2
e

2me

+
p̂2
h

2mh

− e2

ε|re − rh|

)
Ψ = EΨ, (1.4)

with p̂e,h representing the momentum operators for electron and hole, respectively, and
the effective masses denoted as me,h. ε is a dielectric constant of a medium, suppressing
the electron-hole attraction force. This equation completely resembles the equation for
the hydrogen atom and thus the solution is of the same structure. The variables are
separated for the center mass and for the relative motion. The energy of such system
reads

EX
ν (kX) =

~2k2

2M
− RX

ν2
+ Eg, (1.5)

The first term in the equation above represents the kinetic energy of the electron-hole
composite quasiparticle called exciton and the second term is the exciton binding energy.
Eg is the energy of the band gap separating the valence and the conduction bands. It is
important to write Eg explicitly because it should be accounted for, when tuning the light
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Figure 1.1: Band structure of GaAs for electrons with small wave-vectors. Valence band
is of three subbands: light holes (LH), heavy holes (HH), and split-off band (S)). Eg is
the size of the band gap. Adopted from Ref. [5].

energy for the creation of the exciton. M is the sum of the masses of an electron and a
hole and RX = µe4

2~2ε2 is a Rydberg for the exciton. ν enumerates the principal quantum
number and µ is the reduced mass. The Bohr radius of an exciton reads:

aX =
~2ε

µe2
, (1.6)

and for GaAs one obtains 11.6 nm for the radius and 4.8 meV for the binding energy.
Together with band gap Eg = 1.519 eV, one obtains 1.514 eV for the photon energy to
be completely in resonance with the exciton of bulk GaAs.

Importantly, optical transitions between the states in the valence and the conduction
bands are determined by the momentum conservation law telling that an electron transi-
tion accompanied by photon absorption is allowed only when the momentum of the final
state of the electron differs from the momentum of the initial state of the electron by the
magnitude of the photon momentum. Due to the fact that the latter is small compared
to the electron momentum in the crystal, it can be assumed that optical transitions in
semiconductors occur if the quasimomenta of the initial and final states are equivalent to
each other. This limitation makes optical transitions in a direct-gap semiconductor more
probable than in indirect-gap semiconductors. The optical transitions in indirect-gap ma-
terials are still possible, but they require the participation of additional particles (such as
phonons) to obey the momentum conservation law.

The important case of semiconductor excitons are the confined excitons in the low-
dimensional structures. Such confinement takes place when placing the semiconductor in
the material with larger band gap or in the dielectric matrix. Particularly efficient is the
technology of GaxAl1−xAs structures. From Fig. 1.2 one sees that this combination of
materials allows obtaining significant contrast in electronic properties (band gap width)
while the lattice constants for GaAs and AlAs differ weakly, which gives possibility to
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Figure 1.2: Band gaps versus lattice constant for various mixtures of zinc-blend materials
at low temperatures. Adopted from Ref. [7]

grow the structures with sufficiently low concentration of defects.
The limit case of quantum confinement is the 0D nanostructure, or a Quantum Dot.

The Schröedinger equation for a particle (including the exciton) in cubic QD reads:[
− ~2

2m
∇2 + U(r)

]
Ψ = EΨ, (1.7)

where the potential U(r) is defined as

U(x) =

{
U0, |x| > Lx/2 or |y| > Ly/2 or |z| > Lz/2

0, otherwise

Considering the case of a QD with an infinite barrier U0 (applying zero boundary
conditions for the wave function), one obtains for the electrons and the holes the problem
similar to the problem of an electromagnetic wave in a metallic resonator with the same
wave function spatial structure and the energy levels writing as:

EQD
e,h =

~2π2

2me,h

(
n2
x

L2
x

+
n2
y

L2
y

+
n2
z

L2
z

)
, (1.8)

where nα are quantum numbers and Lα are the dimensions of a quantum dots. Due to
parabolic dispersion of excitons, one has n2

α for them, instead of the power 1 in the case
of electromagnetic waves in the resonator in the shape of rectangular parallelepiped.

The effect of size quantization also takes place in quantum wires and the quantum
wells. The latter case is the most relevant for the present study:

EQW
e,h (k) =

~2

2me,h

(
k2 +

π2n2
z

L2
z

)
. (1.9)
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Figure 1.3: a) Energy band diagram of GaAs quantum well. b) Two lower energy levels
in quantum well and corresponding symmetric (1) and antisymmetric (2) wave functions.
Adopted from Ref. [8].

In the equation above k = (kx, ky) is the wave vector in the plane of quantum well, Lz is
its thickness and nz enumerates the z-direction quantized level (see Fig. 1.3). As a result,
in the quantum well the exciton energy is shifted by

EQW
X1 =

~2π2

2µ

1

L2
z

. (1.10)

The energy shift induced by the size quantization is visible when irradiating the GaAs
quantum well by linearly or circularly polarized light. In most number of semiconductors,
the orbital part of the wave function of the electrons in the conduction band originates
from the atomic orbitals of s-state symmetry and thus the possible projections of the
electron total angular momentum onto the structure growth axis (hereinafter referred to
as spin) are equal to Jze = ±1

2
. On the other hand, the wave functions of a hole in the

valence band usually have a an origin the states with p symmetry, and thus the total
angular momentum projection (a sum of spin and orbital momentum) is Jzh = ±1

2
,±3

2
. A

similar situation occurs for most semiconductor materials, such as GaAs, Si, Ge, CdTe,
etc. The states with the spin projection Jzh = ±1

2
correspond to light holes and the states

with Jzh = ±3
2

correspond to heavy holes.
The process of creation of an electron-hole pair by a photon should obey the angular

momentum conservation law. Fig. 1.4 shows the corresponding selection rules. One sees
that in bulk samples, the states of the heavy and light holes at k = 0 are degenerate
in energy. Thus, regardless of the polarization of light (linear, left circular, or right
circular) the energy of such transitions is the same. However, in low-dimensional systems
this degeneracy is lifted due to the difference in effective masses of the holes and a non-
zero value of the wave vector in the direction(s) of quantum confinement, according to
Eq. (1.10). Thus the energy levels of heavy holes are shifted smaller than the levels of light
holes. Using the circularly polarized light, one can create spin-polarized distributions of
electrons and holes, including both heavy holes and light holes (depending on the light
energy). However, the linearly polarized light, being a superposition of σ+ and σ−, can
not create polarized distributions of holes and electrons. But tuning the energy leaves the
possibility to create either heavy holes or light holes.

In the analogy with the electrons and other particles, the quantum value of the total
angular momentum can be also introduced for the exciton and in fact it is a sum of electron
and hole angular momenta. According to the angular momentum addition theorem [10],
the projection of the exciton total angular momentum on the growth axis of the structure
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Figure 1.4: Selection rules for bulk semiconductor a) and quantum well b). In the
case of quantum wells, one sees the difference in the transition energy due to quantum
confinement effect and differing masses of light holes and heavy holes. Red and blue
arrows denote right and left circular light polarization, respectively. Green arrow is for
linear polarization. Adopted from Ref. [9].

can take the values 0, ±1, or ±2. Again, due to the angular momentum conservation, only
the excitons with angular momenta 0, ±1 can interact with light. In the case of ±2 one
has the so-called dark excitons. They do not interact with light and lack the possibility to
form the polaritons. Meanwhile, the exciton-exciton interactions allow the optical access
to the properties of the excitons with extremely low oscillator strength (dark and indirect
excitons), see e.g. [11, 12].

The electrons and holes forming the excitons are fermions thus providing the bosonic
nature to excitons. However one can not completely avoid the fermionic nature of exciton
components and thus, unlike the photon, the phenomenon of exciton-exciton interaction
exists basing mostly on the overlap of electron and hole wave functions in the excitons
undergoing the scattering process. Despite this, due to bosonic nature, the effect of Bose-
Einstein condensation of excitons exists giving a possibility to study the systems of a
condensate of a weakly interacting bosons. The phenomenon of Bose-Einstein condensa-
tion will be described in more details in Chapter 2.

Depending on the nature of the hosting material, the two limit cases of exciton behavior
exist. First, in the materials with low dielectric constants, due to high electron-hole
attraction, the radius of exciton is small (of the order of lattice constant) and the energy
is high (up to 1 eV). Such exciton has a form of an electron bound to the localized hole
(in fact, an ionized atom in the crystal). This situation is also typical for the excitons
in molecular crystals, when the exciton is completely localized on the molecule [13, 14].
Such excitons are referred to as Frenkel excitons [15].

Another limit corresponds to the Wannier-Mott excitons typical, for semiconductors
[16]. Due to high dielectric constant and small electron mass, the Bohr radius of such
excitons exceed drastically the interatomic distance in the crystal up to several orders of
magnitude. This limit takes place in the semiconductors considered in present study. Due
to the low interaction energy, the energy difference between the states of free electrons
and holes and their bound state (exciton) is small, and thus the excitons in such materials
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are very sensitive to the temperature. In this sense, the transition metal dichalcogenides
(TMD) are perspective due to their high exciton energy, up to several hundreds meV
[17, 18].

To conclude the introduction to excitons, it is worth mentioning the so-called Rydberg
excitons, corresponding to the states with very high quantum numbers [19, 20, 21], up
to ν = 25. Also the biexcitons (an excitonic hydrogen molecule-like quasiparticle) and
excitonic ions (trions: two electrons + hole or two holes + electron) can exist [18].

1.1.2 Lifetime of excitons

The very important parameter of excitons, affecting also their possibility to interact with
light, is the lifetime. According to Matthiessen rule the expression for the exciton broad-
ening writes [22]:

ΓX =

∣∣∣∣ ∂E∂Lz 〈δLz〉
∣∣∣∣+ ΓI + γT +

ΓLO

exp(~ωLO/kBT )− 1
+ Γ0. (1.11)

The first term origins from the exciton energy fluctuations (see Eq. (1.9)) due to un-
avoidable fluctuations of the quantum well width. The second term denotes the scattering
by charged impurities and boundary scattering. Next two terms arise from the phonons:
third is for acoustic phonons contribution and the fourth for the optical phonons con-
tribution (mainly the longituginal optical phonons). Finally, the intrinsic broadening Γ0

(according to the terminology used in Ref. [22]) is a combination of multiple processes:
radiative decay, exciton-exciton scattering, exciton-carriers scattering etc.

Even in the middle of 90ies, the quantum well technology reached the level where
the exciton lifetime overcame hundreds of picoseconds [23]. One sees that in fact the
dependencies of broadening of exciton lines on temperature, quantum well width, and
carrier concentration are relatively weak (see Fig. 1.5). Thus other intrinsic mechanisms,
and importantly, the quality of a structure play the same role. It means that it is difficult
to make exciton lifetime sufficiently larger than several nanoseconds and at the same
time the exciton lifetime can not be smaller than at least hundreds of picoseconds for all
quantum well structures of sufficient quality.

1.1.3 Exciton-exciton interaction in quantum wells

The Hamiltonian of the system of excitons in the presence of exciton-exciton interaction
can be written as [24]

H =
∑
k

EX(k)χ†kχk +
∑
k

MX−X(k,k′,q)χ†k+qχ
†
k′−qχkχk′ , (1.12)

where MX−X(k,k′,q) is a matrix element of exciton-exciton interaction. The energy of
exciton-exciton interaction consists of the four terms [25]: direct Coulomb interaction,
exciton-exciton exchange interaction, electron-electron exchange interaction, and hole-
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Figure 1.5: Exciton emission broadening and lifetimes in GaAs quantum wells at various
temperatures (left panel) and carrier densities (right panel). Adopted from Ref. [23].

hole exchange interaction. The direct Coulomb interaction writes

HX−X
dir (k,k′,q) = −

∫
dre

∫
drh

∫
dre′

∫
drh′ ψ

†
k(re, rh)ψ

†
k′(re′ , rh′)

× VI(re, rh, re′ , rh′)ψk+q(re, rh)ψk′−q(re′ , rh′), (1.13)

where VI is the full energy of the interaction of two excitons being composed of pair-wise
contributions for all electrons and holes:

VI(re, rh, re′ , rh′) = V (|re − re′ |) + V (|rh − rh′ |)− V (|re − rh′ |)− V (|rh − re′|), (1.14)

and V is the Coulomb interaction in the medium with the dielectric constant ε

V (|re − re′ |) =
e2

εr
. (1.15)

The exciton-exciton exchange interaction (and also a hole-hole one) writes

HX−X
exch (k,k′,q) = −

∫
dre

∫
drh

∫
dre′

∫
drh′ ψ

†
k(re, rh)ψ

†
k′(re′ , rh′)

× VI(re, rh, re′ , rh′)ψk+q(re′ , rh′)ψk′−q(re, rh). (1.16)

Finally, the electron-electron exchange interaction has a similar form

He−e
exch(k,k

′,q) = −
∫
dre

∫
drh

∫
dre′

∫
drh′ ψ

†
k(re, rh)ψ

†
k′(re′ , rh′)

× VI(re, rh, re′ , rh′)ψk+q(re′ , rh)ψk′−q(re, rh′). (1.17)

The direct Coulomb interaction can be presented in a form

Hdir(q) =
1

S

e2

ε
aX

(
2

π

)2

Idir(qaX), (1.18)
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Figure 1.6: Wave vector dependencies of direct Coulomb Idir(qaX) and electron-electron
exchange Iexch(qaX) interactions. Adopted from Ref. [25].

where

Idir(qaX) =
π3

2qaX
· f(qaX). (1.19)

and f(qaX) is a function of the order of unity in magnitude and also depending on the
ratio of electron and hole masses me/mh.

In the same manner one writes for the exchange interaction

Hexch(q) =
1

S

e2

ε
aX

(
2

π

)2

· Iexch(qaX). (1.20)

The direct interaction is a long-range one, but because of its dipole-dipole character
it still decays very rapidly. Moreover, the factor Idir stemming from the geometry of the
overlapping wave functions is small. It drastically depends on the ratio of the electron
and hole masses. For me/mh ≈ 0.5 this factor is 4 times smaller than for the model case
me/mh = 0. The exchange interaction regulated by Iexch is short range and vanishes nearly
at the distances of Bohr radius (qaX ≈ 4). Fig. 1.6 shows the wave vector dependencies
of the function Idir(qaX) and Iexch(qaX).

The relevant wave vectors for the physics of polaritons are units of reciprocal microns.
It means that qaX � 1. In this limit the exciton-exciton interaction is governed by the
exchange interaction and one can make the following estimation:

M = 6EXa
2
X . (1.21)

For the GaAs excitons, the estimation M ≈ 7 meV·µm2 is actual. To obtain the
potential energy shift, which is experienced by the excitons due to interaction with other
excitons, one should multiply M by the density of excitons.
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1.2 Photons in microcavities

Historically, the development of the lasers has contributed drastically to the semiconductor
technology, especially for the heterostructures and microcavities. By the nature, the
lasers require a presence of some active medium (i. e. the hetero-structure in the case of
semiconductor lasers), to create in it a population inversion, and a high-quality resonator
for the photons. The active medium of semiconductor lasers (namely the quantum well)
is created with various types of epitaxy processes. The resonators (Fabry-Perot) can
be formed by mirrors made of polished heterostructure edges and in this case the light
propagation direction is parallel to the heterojunction plane.

However, the resonators can be formed by the epitaxial Bragg mirrors (distributed
Bragg reflector, DBR) above and below the active region. Using this geometry, a vertical-
cavity surface-emitting laser can be manufactured [26]. The structure of the same type is
essential for the fundamental studies of the interaction of light and excitons in the semi-
conductors and of the formation of a light-matter quasiparticle called exciton-polariton.

The Bragg mirror is a one-dimensional superlattice of alternating layers of semicon-
ductors or dielectrics with different refractive indices ni. Bragg mirror functions properly
when the layer thicknesses di are chosen so that the energy of the photonic stopband
(photonic band gap) lies in the desired interval, determined by the energy of the exciton
transition in the quantum well. This relation reads di = λ/4ni. The reflection coefficient
for a Bragg Mirror reads [27, 28]:

R =


(
n2

n1

)2N

− nf

n0(
n2

n1

)2N

+
nf

n0


2

, (1.22)

where n0 and nf are the refractive indices before and after the mirror composed of N
layers of materials with the indices n1 and n2.

Secondly, the distance between the two DBRs should be proportional to an integer
number of half-wavelengths of light in this medium (photon energy should be near the
center of photonic stopband). These two conditions provide the longest possible lifetime
of a photon in the cavity. The materials for the DBRs are chosen to provide sufficient
contrast in refractive indices and also should have close values of lattice constant to
obtain defect-free structures, see Fig. 1.7 for the diagram of refractive index versus lattice
constants for various materials. Fig. 1.8 shows the typical wavelength dependencies of the
reflectivity of the DBR structures of different materials.

The photon dispersion in the planar microcavity differs from the dispersion of a photon
in free space. And the confinement effect plays again a crucial role in this. For the energy
of a photon in free space one writes

Eph = ~c∗
√
k2
x + k2

y + k2
z , (1.23)

where c∗ = c√
ε

is the light velocity in the medium.

In the case of Bragg mirrors lying within (x,y) plane, the wave vector kz in the direction
perpendicular to the mirrors becomes quantized according with the distance between the
mirrors: kz = nz

π
Lz

(see Fig. 1.9). As a result, using the Taylor expansion, one obtains
the photon dispersion in the form
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Figure 1.7: The values of refractive indices for various materials. Adopted from [29]

Figure 1.8: Wavelength dependence of reflectivity for (a) InGaAsP–InP DBR structure
and (b) GaAs–AlAs DBR structure. Adopted from Ref. [30].
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Figure 1.9: Photon wave vector in the microcavity formed of two Distributed Bragg
Reflectors.

Eph = ~c∗
√
k2 + k2

z ≈ ~c∗kz +
h2k2

2mC

, (1.24)

where the cavity photon mass is defined by

mC =
~kz
2c∗

. (1.25)

The parameter nz controls a number of nodes of a standing wave in the resonator
and one can tune it to control the strength of photon-exciton coupling. Namely, with
increasing nz the number of nodes of electromagnetic field also increases and placing
multiple quantum wells (see Fig. 1.10) at the antinodes of the field, one also increases
the light-matter interaction which is crucial to obtain the regime of strong light-matter
coupling.

1.3 Strong light-matter coupling

1.3.1 Full Hamiltonian

The problem of exciton interaction with light is dating back to the pioneering works of
Hopfield [31]. To write the corresponding Hamiltionian, one should firstly write the energy
of dipole interaction of a certain material system and the electromagnetic field [32]:

U = −d · E, (1.26)

where d is the dipole moment of this material system and E is the electric field. This
equation corresponds to the first order term in the magnitudes of electric moments and
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Figure 1.10: Sketch of cavity photon mode. The cases of single QW in the microcavity
a) and triple quantum well b). In the latter case the photonic nz = 3 mode is tuned to
have the antinodes overlapping with quantum wells.

electric field, while for some cases the higher order electric multipoles play a role. Also a
magnetic field integrating with magnetic dipole moment of the system can be of interest
in some situations. To rewrite Eq. (1.26) in terms of quantum mechanics, one replaces the
classical dipole moment with the dipole moment, which corresponds to transition between
two electronic states (initial i and final f):

d→ d̂if = e

∫
drψ∗f (r)rψi(r). (1.27)

In terms of creation and annihilation operators for material excitations corresponding
to transitions between these states d̂ = degx(σ + σ†), where x gives the direction of
the dipole vector and deg is a factor of the order of atomic dipole moment. The latter
estimation can be straightly understood from the form of integral in Eq. (1.27).

The electric field magnitude can be also expressed via the quantized (ladder) operators
in the cavity (3.75, [33]):

E = e

√
~ω
2V
· (φe−iωt + φ†eiωt), (1.28)

where ω is the photon mode frequency, φ† and φ are creation and annihilation operators
for the photons, V is the volume accessible to the photon and e is the polarization.
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1.3.2 Hamiltonian of light matter interaction for the case of
polaritons

To describe the light-matter interaction in the microcavities the following Hamiltonian in
the second quantization form is used [33]:

H = ECφ
†φ+ EXχ

†χ+ hg(φ+ φ†)(χ+ χ†), (1.29)

where φ† and φ are creation and annihilation operators for cavity photons. Here we
assume that a single cavity photon mode (C) as well as a single exciton (X) mode couple
together in the system. First term describes the presence of a photon of the energy EC
in the cavity and the second one is for an exciton with energy EX . The creation and
annihilation operators are renamed to reflect now the excitonic and photonic nature of
the particles. The third term describes the exciton-photon interaction.

One sees the presence of the operators combinations φχ and φ†χ† stemming from the
third term of Eq. (1.29). These terms are off-resonant and correspond to presence of both
cavity photon and QW exciton or the absence of both (virtual states). Sometimes it is
important to take these into account, however, in most cases the Hamiltonian can be
simplified by omitting these terms:

H = ECφ
†φ+ EXχ

†χ+ hg(φχ† + φ†χ), (1.30)

Let us also introduce in the Hamiltonian the wave vector k dependencies for the
cavity photons and QW excitons. Accounting for energy dispersion relations is essential
for polaritons. After this the Hamiltonian takes a form

Hk = EC (k)φ†kφk + EX (k)χ†kχk + ~ΩR

(
φ†kχk + χ†kφk

)
, (1.31)

where EC(k) and EX(k) are the introduced above dispersion relations for cavity photon
and exciton, ΩR is half-Rabi splitting controlling the strength of photon-exciton interac-
tion. φ†k and φk are creation and annihilation operators, respectively, for cavity photon

with wave vector k, and χ†k and χk are creation and annihilation operators for quantum
well excitons.

In the matrix form this Hamiltonian can be rewritten as

M =

(
EC (k) ~ΩR

~ΩR EX (k)

)
, (1.32)

where the vector (1, 0)T corresponds to the presence of cavity photon and no exciton and
(0, 1)T to presence of the exciton and absence of the photon. As mentioned above, the
exciton mass is comparable with the effective masses of electrons and holes, and thus to
the mass of a free electron. For the cavity photon, one can estimate mC ≈ 5 · 10−5m0.
Thus with sufficient accuracy the exciton dispersion can be considered as flat. Let us
denote the detuning ∆ as a difference between the energies of cavity photon with zero
wave vector and exciton energy:

∆ = EC(0)− EX . (1.33)
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Diagonalization of the Hamiltonian leads to the following energies of the two eigen-
states, the first corresponding to the lower polariton branch:

EL (k) =
1

2

(
Eφ (k) + Eχ (k)−

√
[Eφ (k)− Eχ (k)]2 + 4~2Ω2

R

)
, (1.34)

and the second to the upper polariton branch

EU (k) =
1

2

(
Eφ (k) + Eχ (k) +

√
[Eφ (k)− Eχ (k)]2 + 4~2Ω2

R

)
. (1.35)

The polariton dispersions at various values of detuning are plotted in Fig. 1.11. From
the first two terms in Eqs. (1.35) and (1.34) it can be seen that the mass of polariton
writes (at low wave vectors):

1

mpol

≈ 1

2

(
1

mX

+
1

mC

)
. (1.36)

Due to the high exciton mass, one directly estimates with very high accuracy mpol =
2mX . In the plot with actual scales, the exciton dispersion is completely flat. Index U
corresponds to the upper polariton branch and index L corresponds to the lower polari-
ton branch. In fact, this diagonalization allows rewriting the Hamiltonian (1.31) in the
polariton basis:

Hk = EU (k)u†kuk + EL (k) l†klk, (1.37)

where u† and u are the creation and annihilation operators for the upper polariton branch
and l† and l are the creation and annihilation operators for the lower polariton branch
with the following definition:

uk, lk = XU,L(k)χk + CU,L(k)φk, (1.38)

where XU,L(k) and CU,L(k) are the Hopfield coefficients whose dispersion is drawn in
Fig. 1.12 for various values of detuning.

The Hopfield coefficients are expressed as:

CU (k) = XL (k) =
EU (k)− EX (k)√

~2Ω2
R + (EU (k)− EX (k))2

, (1.39)

and

XU (k) = −CL (k) =
~2Ω2

R√
~2Ω2

R + (EU (k)− EX (k))2
. (1.40)

Once the strong coupling regime is achieved (the difference between strong and weak
coupling regime implies accounting for the lifetime and it will be explained in the next
section), one can use the so-called parabolic approximation to write the Schrödinger equa-
tion for polaritons (either from the lower polariton branch or from the upper polariton
branch):

i~
d

dt
ψ(r, t) =

[
− ~

2m
∇2 + U(r)

]
ψ(r, t), (1.41)
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Figure 1.11: Dispersion of polaritons obtained based on the dispersion of exciton (hor-
izontal dashed line) and cavity photon (dashed parabola). The obtained lower polariton
branch (LP) is given in red and the upper polariton branch (UP) is given in blue. Panel
a) is for positive detuning ∆ = 2 meV, panel b) is for zero detuning, and panel c) is for
negative detuning ∆ = −2 meV. We have used a Rabi splitting of ~ΩR = 3 meV, typical
for a single quantum well cavity.

Figure 1.12: Excitonic and photonic fracions in terms of Hopfield coefficients (namely
their squares |XU,L(k)|2 and |CU,L(k)|2) for LP branch. Panel a) is for positive detuning
∆ = 2 meV, panel b) is for zero detuning, and panel c) is for negative detuning ∆ = −2
meV.
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where m is polariton mass and U(r) is the potential experienced by the polaritons, en-
gineered in reality by etching the microcavity, spatial modulation of the quantum well
thickness, interaction with exciton reservoir etc.

Concluding, exciton-polaritons are composite quasiparticles whose wave function is a
superposition of exciton and photon wave functions. In this regard, polaritons inherit
the properties of light with the properties of material excitations (excitons). So, their
effective mass is extremely small and in order of magnitude coincides with the effective
mass of the photon mode of the resonator. On the other hand, due to the presence of an
exciton component, polaritons retain the ability to effectively interact with each other,
acoustic and optical phonons, and free electrons.

The polaritons were obtained as a solutions of the first step of a Jaynes-Cummings/bosons
ladder, see Fig. 5.7 from [33].

1.3.3 Lifetime concept in the system of coupled excitons and
photons

Despite the description within the Hamiltonian formalism in quantum mechanics is correct
for conservative systems only, very important results on exciton-photon coupling can be
obtained when introducing the particle (excitons and photons) decay into the Hamiltonian
(1.32). In previous subsection, we did not account for cavity photon and exciton lifetimes,
the quantities which have a crucial importance for the principal possibility of polariton
existence as a composite exction-photon quasiparticle.

Despite the restrictions of the Hamiltonian approach, the lifetime can be straightfor-
wardly be added to the Hamiltonian as an imaginary part of the energies of excitons and
photons:

Mk =

(
EC (k)− i~ΓC ~ΩR

~ΩR EX (k)− i~ΓX

)
, (1.42)

where the decay rates are defined through the lifetimes:

ΓC =
1

2τC
, ΓX =

1

2τX
. (1.43)

In the case of zero detuning and for the bottom of the dispersions (zero wave vector
condition: EX(0) = EC(0) = E0), one obtains the following equation for the polariton
energies for upper and lower branches:

EU,L (0) = E0 − i~
ΓX + ΓC

2
± ~

2

√
− [ΓX − ΓC ]2 + 4Ω2

R. (1.44)

The two possibilities exist:
1. |ΓX − ΓC | > 2ΩR corresponds to a weak coupling regime, where the real parts

of the energies of the eigenstates of a coupled system in resonance are equal to each
other (crossing of exciton and cavity photon dispersions). The difference is present in the
imaginary parts of the energies corresponding to the line widths and thus the lifetimes of
elementary excitations. Thus the exciton-like excitation and photon-like excitation exist
and decay separately. In the case of ΩR � ΓX ,ΓC one obtains
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EU,L (0) ≈ E0 − i~ΓC,X , (1.45)

which means that exciton and photon do not feel each other, for each of them one observes
the specific decay rate. However, in the more realistic case ΓC > ΩR > ΓX ≈ 0, one
obtains from Eq. (1.44) the following expressions for the values of line broadening of
cavity photon and exciton:

Γ′C ≈ ΓC , (1.46)

Γ′X ≈
4Ω2

R

ΓC
,

where the values with primes are for the broadenings with accounting for the interaction.
One sees the increasing of the exciton broadening (in fact increasing the intensity of
emission) due to interaction with the cavity photon mode, or the so called Purcell effect
[34].

2. |ΓX−ΓC | < 2ΩR corresponds to the strong coupling regime, where the anti-crossing
of the dispersion branches takes place and an energy splitting between the upper and
lower polariton branches, called Rabi splitting (2ΩR), is observed at the intersection point
(k = 0). The second term in Eq. (1.44) corresponds to the decay rate of the excitations
(exciton-polaritons).

This behavior can be understood in the following way. Inverse Rabi frequency is
in fact the time of conversion of the excitation between the excitonic and the photonic
states. If the lifetime of the photonic or the excitonic state is lower than the inverse
Rabi frequency, it means that the collective excitation does not have enough time to
experience the exchange between the photonic and the excitonic states. As a result, these
states become completely independent. Fig. 1.13 shows the dispersions of the system of
coupled exciton and cavity photon at various photon lifetimes with the transition between
the strong and the weak coupling regimes.

This reasoning can be committed by the argument that the Rabi frequency is to be
compared with the quantity |ΓX − ΓC |. Indeed, if the excitonic and the photonic com-
ponents decay synchronously, the strong coupling regime will be also achieved. However,
in practice, if ΓX,C � ΩR, one will not be able to resolve the upper polariton branch
and the lower polariton branch because the broadening would be larger than the distance
between the modes. Actually, the lifetime of cavity photons is much less than the lifetime
of the excitons and therefore it is reasonable to compare the Rabi frequency ΩR with the
reciprocal cavity photon lifetime ΓC .

The transition between weak and strong coupling regimes is tightly connected with the
physics of the PT symmetric systems [35], the systems with the non-Hermitian ”Hamilto-
nian” but possessing real (not complex) eigenvalues. In the terms of two level system with
2x2 Hamiltonian, the time inversion operator T̂ is the complex conjugate and the parity
operator P̂ is a σx Pauli matrix. Applying the P̂ T̂ transformation one obtains [36, 37]:

Ĥ|ψ〉 = E|ψ〉 P̂ T̂−−→ P̂ T̂ ĤT̂ P̂ |ψ〉 = P̂ T̂ET̂ P̂ |ψ〉 = E∗|ψ〉. (1.47)

In the case of PT invariance of the Hamiltonian one obtains:
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Figure 1.13: Upper row: strong coupling regime. Dispersion of polaritons obtained
based on the dispersion of exciton (horizontal dashed line) and cavity photon (dashed
parabola), the detuning is negative: ∆ = −2 meV and ~ΩR = 3 meV. The obtained lower
polariton branch (LP) is given in red and the upper polariton branch (UP) is given in
blue. Panel a) is for broadening Γ = 0 meV, panel b) is for broadening Γ = 2 meV and
panel c) is for broadening Γ = 5.5 meV. In the lower row broadening reaches 2ΩR and
thus the weak coupling regime is realized and no polariton as a quasiparticle exists. In
fact only the perturbed dispersion of the cavity photon and an exciton remain. Panel d)
is for broadening Γ = 6 meV, panel e) is for broadening Γ = 6.5 meV and panel f) is for
broadening Γ = 12 meV.
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E∗ = E, (1.48)

which corresponds to the real eigenvalues. The PT invariant Hamiltonian in its general
form writes as [36]

HPT =

(
reiθ s
s re−iθ

)
, (1.49)

with real parameters θ, r, and s.
Obviously the Hamiltonian (1.42) can decomposed into the following sum:

M = HPT +HLosses +HZeeman, (1.50)

where

HLosses =

(
−ig 0

0 −ig

)
, (1.51)

and

HZeeman =

(
d/2 0
0 −d/2

)
. (1.52)

The second term defines the common part of the decay of the two components of
a wave function and the thid one shows the energy difference between the two states,
while namely the first term defines if decay is synchronous (real eigenvalues of HPT and
realization of strong coupling regime) or not (weak coupling regime). Obviously, the
condition for strong coupling regime expressed in the terms of r, s and θ is the same as
for the formulation via Rabi splitting and photon and exciton line widths.

Experimentally, the polariton dispersion is measured by the angle resolved photolu-
minescence [38, 39]. This experiment is based on the fact that the in-plane wave vector
k =

√
k2
x + k2

y defines the angle at which the light leaves the microcavity (see Fig. 1.9),
and this angle is arctan(k/kz). Thus collecting light from various directions and sending
it to the spectrometer one obtains the dispersion in terms of E(k) or even E(k) if the
dispersion is anisotropic in the cavity plane. Fig. 1.14 shows an example of such a dis-
persion. The sample was a 3.5 µm thick nanowire with a Rabi splitting of 15 meV and
a cavity photon lifetime 15 ps. The formation of 1D sub-bands due to the confinement
effect is also visible.

Using the same reasoning as for the polariton mass, one can conclude that the lifetime
of polaritons is approximately two times larger than the lifetime of photons:

Γpol ≈
1

2
(ΓX + ΓC) , (1.53)

and as far as typically ΓX � ΓC , one indeed concludes that τpol = 2τC . This picture
can be also understood in the following manner. If the Hopfield coefficients are equal (in
the case of resonance), for one half of all time polariton exists in the photonic state and
another half of time in the excitonic state. And existing in the cavity photon state the
polariton experiences the rapid decay as a photon. On the other hand, while being in the
excitonic state, there is no significant decay of the polariton.
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Figure 1.14: Experimentally observed dispersion (b) in a cavity in the shape of a wire
(a). The horizontal axis is given both in reciprocal microns and in degrees of the emission
angle. Adopted from Ref. [40].

1.3.4 Values of lifetimes and Rabi splitting in modern micro-
cavities

In this subsection we would like to outline the parameters of several real microcavities,
which are currently investigated in the context of polariton-based quantum fluids. A
significant number of results on the polariton quantum fluids were obtained in the lab-
oratory LKB in Paris by the group of Prof. Alberto Bramati [41, 42, 43, 44, 45] using
the cavity introduced in Ref. [46]. We pay a special attention to the parameters of this
sample, because these parameters were used to obtain the results of Chapter 3 on the
solitons and vortex chains in polariton quantum fluid. Taking the parameters of a really
existing cavity allowed to provide a direct connection of the theoretical predictions with
a real experiment and opened up a possibility of very rapid verification of the results.
Also, the description of this device allows to explicitly indicate a lot of important cavity
parameters, introduced and used in the equations in previous sections. This device was
a GaAs/AlGaAs microcavity with 21/24 (front/back) layers of DBR and In0.04Ga0.96As
quantum wells at each of the three antinodes of the confined electromagnetic field. The
experiments with this cavity should be performed in the cryostat below 10 K (0.86 meV).
The exciton energy is 1.485 eV, the cavity exciton-photon detuning is negative (-1.4 meV)
and the half Rabi splitting V is 2.55 meV. This yields a polariton mass ≈ 5 · 10−5 free
electron mass. The polariton lifetime in this cavity is ∼ 14 ps.

A similar value of the Rabi splitting was observed in a cavity in Ref. [47]. However,
the Rabi splitting can be several times larger in semiconductor mircicavities: up to 15 meV
[48] for a GaAs active region. In Ref. [40], the Rabi splitting was of the same magnitude
(15 meV) and a cavity photon life time was around 15 ps. In wide-bandgap materials (like
ZnO) the values of Rabi splitting can reach 100-200 meV [49, 50, 51, 52]. In the sample
used in Ref. [53], the lifetime was as large as several hundred ps with a Rabi splitting
of 16 meV, which makes this sample one of the most advanced for the present day. This
value of polariton lifetimes opens up possibilities to investigate even the outstanding
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Figure 1.15: Difference in the geometry of TE-TM modes. The growth axis is z axis.

by the complexity behavior in the systems of turbulent quantum fluids. The values of
Rabi splitting up to 15 meV can be achieved by the usage of multiple, e.g. 12 quantum
wells for the excitons. Concluding, for the most relevant for this research GaAs-based
microcavities, typical values of photon lifetimes are 15 ps (0.3 meV) and Rabi splitting
reaches 15 meV. In the state-of-the-art one can expect 10 times larger lifetime.

1.3.5 TE-TM splitting

As for other type of waveguides and resonators, in semiconductor microcavities exist TE
(transverse-electric) and TM (transverse-magnetic) modes differing in the directions of
electrical and magnetic field with respect to the plane of growth. When in-plane wave
vector of light differs from 0, the electric and magnetic fields penetrate to the mirrors
differently for TE and TM modes see. Fig. 1.15. As a result the energies of such modes
also become different, giving an origin for the effect of k-dependent TE-TM splitting.
Obviously, at zero wave vector, TE and TM modes have the same energy.

Additional contribution comes from the splitting of excitons [54, 55]. The effect of
TE-TM splitting can be expressed as a difference between longitudinal and transverse
polariton masses. As a result, in a basis of circular polarizations one can write

∆ELT =

(
0 βLT (ky − ikx)2

βLT (ky + ikx)
2 0

)
, (1.54)

where βLT is an effective constant of the TE-TM splitting that can be written via the
longitudinal and transverse polariton masses as

βLT =
~2

4

(
1

mL

− 1

mT

)
. (1.55)
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1.4 Driven-dissipative Gross-Pitaevskii equation for

cavity Polaritons

1.4.1 Gross-Pitaevskii equation for cavity Polaritons

The photon-photon interaction in microcavities due to Kerr effect and related phenom-
ena is weak, except the case when the interactions are mediated by material excitations
(excitons). Due to their excitonic component, the polaritons can interact with each other.
The equation for the polariton wave function accounting for such polariton-polariton in-
teraction reads

i~
∂

∂t
ψ(r, t) =

[
− ~2∇2

2mpol

+

∫
ψ†(r′, t)V (r− r′)ψ(r′, t)dr′ + U(r, t)

]
ψ(r, t), (1.56)

where mpol is the polariton mass and V (r) is the interaction potential between two po-
laritons separated by a distance r and U(r) is the external potential for the polaritons.
By the structure, the interaction term in this equation is similar to the case of interacting
excitons (see Eq. (1.13)).

As it was pointed out above, the polariton-polariton interaction is governed by the
repulsion of the excitons in the excitonic components, which is mainly exchange short-
range interaction with the characteristic scale comparable with Bohr radius of exciton, see
Fig. 1.6. To be precise, to account for the exciton-exciton interaction as for short-range
(contact) interaction expressed in term of δ-function, one should require that the exciton-
exciton potential decays at the distances much lower than the wave function variations.
Mathematically all this leads to the following approximation:

V (r) = gδ(r), (1.57)

and as a consequence to

i~
∂

∂t
ψ(r, t) =

[
− ~

2m
∇2 + U(r) + g|ψ(r, t)|2

]
ψ(r, t), (1.58)

which means that Eq. (1.56) becomes a mean-field equation where the mean-field poten-
tial energy induced by other polaritons is experienced by the polariton due to repulsive
interaction controlled by the term g|ψ|2, where g is an interaction constant. This equation
is a so called Gross-Pitaevskii equation and it is essential for description of the polariton
wave function including the case of Bose-Einstein condensates.

The interaction constant g for the polaritons is obtained straightly from the one of
excitons. The interaction constant for polaritons is smaller than one for excitons because
part of its life it exists in the form of non-interacting cavity photons. This attenuation is
controlled by the Hopfield coefficient XL. Finally one writes for the more relevant lower
polariton dispersion:

g = 6Eb|XL|2a2
B. (1.59)

This equation is directly based on the exciton-exciton matrix element given in Eq.
(1.21). Remarkably, for the polaritons it contains the Hoperfield coefficients in the form
|XL|2 (for the lower polariton branch) showing the excitonic fraction.
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To end this subsection, it is instructively to mention that the short range interaction is
not the only case for the polaritons. The electrically polarized exciton-polaritons (”dipo-
laritons”) are the systems with long range interaction [56, 57], the long-range interaction
is also expected in TMDs [58, 59].

1.4.2 Resonant pumping and bistability for cavity exciton-polaritons

In the same manner how the exciton and photon decay were included into the Jaynes-
Cummings Hamiltonian, one can add the dissipation and generation of polaritons due
to irradiation by a laser to the Gross-Pitaevskii equation (or Schrödinger equation). In
this chapter we give GPE as is, because its more gorunded derivation essentially requires
discussion the nature of quantum fluids and many-body wave function given in Chapter
2. The driven-dissipative Gross-Pitaevskii equation (DDGPE) takes a form:

i~
∂

∂t
ψ(r, t) =

[
− ~

2m
∇2 + U(r) + g|ψ(r, t)|2 − iΓpol

]
ψ(r, t) + P (r) exp(−iωt), (1.60)

where ω is laser frequency with respect to the bottom of polariton dispersion and P (r) is
a spatial profile of a laser electric field. Such equation is valid even in the case of a slight
detuning of the laser energy with respect to the energy of polariton mode. This case is
referred as quasi-resonant pumping.

In the case referred as a quasi-resonant pumping and with a positive laser detuning
(the laser is above the bare polariton mode), the phenomenon of bistability exists. It
corresponds to appearance of a hysteresis loop in the dependence of polariton density
versus the laser electric field amplitude. I.e. in some range of lase power the two possible
stable in time polariton density values exist and they depend on the history of the system
[60, 61, 62, 63]. The bistability can be analyzed as follows. First, we neglect the potential
energy U(r). Second, we consider a homogeneous system and thus we omit the kinetic
energy term. These two conditions lead to zero-dimensional DDGPE:

i~
∂ψ

∂t
=
[
g|ψ|2 − iΓpol

]
ψ + P exp(−iωt). (1.61)

Fig. 1.16 shows the typical curves of polariton density |ψ|2 versus laser field amplitude
P obtained for various polariton lifetimes by the means of numerical solution of Eq. (1.61)
in Matlab. The parameter g = 3 meV. Each curve corresponds to a single simulation
where the laser amplitude is slowly increased and then slowly decreased.

The behavior of the system can be described as follows. When one starts from the zero
density and zero laser power, the polariton density slowly increases with increasing the
laser power (field amplitude). The bistability loop is passed by the lower bistability branch
and at the right border of the bistability loop the abrupt jump to the high density takes
place. It happens because of the blue shift of the polariton energy due to the increase
of the interactions, bringing the mode in resonance with the laser. During the further
increase of the laser power, the system saturates and density goes up relatively slowly. If
one now starts decreasing the laser power, the bistability loop will be passed at the upper
bistability branch. It means that the system is sensitive to its history. The similar behavior
takes place for the magnetization of ferromagnetic materials and the bistability loop is
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Figure 1.16: Bistability for polaritons in the regime of quasi-resonant pumping obtained
in the real-time solution of zero dimensional DDGPE. Dependence of polariton density
as a function of electromagnetic wave amplitude. Red color is for Γ = 0.01Γ0, green color
is for Γ = 1.01Γ0, blue color is for Γ = 2.01Γ0, where Γ0 = ~/(2 · 15ps).
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in fact a hysteresis loop. Despite the slowness of laser power rising in the simulations (2
µs for the path there and back again for these simulations) , the red curve exhibits the
visible spike at the moment of the rapid switching from lower to upper bistability branch.

To analyze the features of the DDGPE leading to the bistability, one can also solve
(1.61) in the stationary case. In this case, there is no time dependencies except the
common multiplier exp(−iωt), which gives rise to the term with ~ω in the following
stationary reduced GPE:

P = −
[
−~ω + g|ψ|2 − iΓpol

]
ψ. (1.62)

Without losing the generality, one can assume P to be real and positive. This equation
is not simple to be straightforwardly solved in terms of ψ(P ), but it is a simple function
P (ψ). Obtained in this sense P has both real and imaginary parts, and thus for returning
to real and positive value, one should use the rotation in the complex plane P ′ = PP ∗/|P |,
where star is for complex conjugation. The same aligning of the argument is to be done
for the wave function: ψ′ = ψP ∗/|P |. Fig. 1.17 shows the dependence of |ψ|2 and the
relative phase of P and ψ versus P from the numerical solution of Eq. (1.62).

One sees that at lower bistability branch the polariton wave function has the phase
close to the phase of the pump P (approximately, P = ~ωψ). On the contrary at the
upper bistability branch, the polaritons are in the antiphase with the laser. One sees
that the wave function phase remains pinned (or locked) to the phase of laser, and at the
upper bistability branch this pinning is also very strong. This phenomenon is important
in the context of observation of topological defects in polariton quantum fluids and will
be discussed in the corresponding chapters. Noteworthy, at large Γ the polariton phases
at upper and lower branches becomes closer to each other. Having a parallel with the case
of Van der Waals isotherm, the part of a curve with negative slope is unstable, which can
be shown using the Bogoliubov-de Gennes approach, see the next chapter for the details.

The minimal pumping required for being at the upper bistability branch is

Pmin = Γ

√
~ω
g
, (1.63)

which is well illustrated in Figs. 1.16 and 1.17. At the upper bistability branch the
polariton density is approximately estimated from the relation ~ω = g|ψ|2. Bistability
for polaritons was observed numerous times in the system of quasi-resonantly pumped
cavities [64] : typical experimental curves are presented in Fig. 1.18. The situation is
more complex and demonstrates rich behavior when takes place the competition between
the polaritons with different polarizations due to the usage of circularly polarized light
[65].

1.4.3 Non-resonant pumping

In the case of quasi-resonant pumping, light excites directly the polaritons having the
energy the same or close to the energy at which the detection will take place. The
corresponding term in GPE was introduced in previous section.

Non-resonant pumping corresponds to the case where the difference of the laser energy
and polariton modes is much larger than the broadening. More precisely, the laser energy

28



Figure 1.17: Analytical bistability curve in the dimensionless equation (~ω = 1, g = 1).
Upper panel is for polariton density |ψ|2 and lower is for arg[ψ]. Red color is for Γ =
0.0001, green color is for Γ = 0.1001, blue color is for Γ = 0.2001, and orange color is for
Γ = 0.5001. Here Γ is given in arbitrary units natural for the dimensionless Eq. (1.62).
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Figure 1.18: Experimentally observed bistability for polaritons in the cavity etched in
the shape of a diatomic molecule of pillars. a) Scheme of experiment b) SEM image of
a cavity c) Bistability curves for the same pillar N1 and neighboring pillar N2. Adopted
from Ref. [64].

much is higher than on of the ”target” polaritons near the LP branch bottom to be
excited. Non-resonant pumping implies the processes of the irradiation-induced creation of
plasma of electron and holes, then to formation of excitons and polaritons with dominating
excitonic fraction and finally to the phonon-mediated relaxation of such polaritons to
the bottom of lower polariton branch where they will be detected, see Fig. 1.19. All
these scattering processes are complicated but can be described phenomenologically. The
very important concept is the so called reservoir, a pool of a polaritons with dominating
excitonic component at a flat part of lower polariton branch dispersion. From this reservoir
the polaritons can be scattered in stimulated regime to the bottom of lower polariton
branch. During this process the polaritons should unavoidably pass the ”bottleneck”,
a region where it is difficult to obey the energy and momentum conservation laws. In
case of very high pumping level, the polariton density can reach some threshold and the
Bose-Einstein condensation will occur.

To reflect the mentioned above stimulated regime and presence of the reservoir, the
following modification of GPE was proposed in the Diffusive Gross-Pitaevskii model [67]:

i~
∂

∂t
ψ(r, t) =

[
− ~2

2m
∇2 + U(r) + g|ψ(r, t)|2 + 2gRnR − iΓpol +

i

2
fR(nR(r, t))

]
ψ(r, t),

(1.64)
where fR(x) some monotonically growing function of the local density of the polariton
reservoir nR(r, t) in the bottleneck region, obeying the following kinetic equation:

∂

∂t
nR(r, t) = PR(r, t)− fR(nR(r, t))|ψ(r, t)|2 − γRnR(r, t), (1.65)
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Figure 1.19: The processes of polariton relaxation taking place when off-resonant exci-
tation. Adopted from Ref. [66].

where PR is pumping power and γR = 1/2τR is the inverse mean lifetime of polaritons in
the reservoir. For linear function fR(x) = Rx these equations can be rewritten as

i~
∂

∂t
ψ(r, t) =

[
− ~2

2m
∇2 + U(r) + g|ψ(r, t)|2 + 2gRnR

−iΓpol +
1

2

i~RPR(r, t)

γR +R|ψ(r, t)|2

]
ψ(r, t). (1.66)

In the stationary and homogeneous case, the two last terms (dissipative and driven) in
square brackets can be put equal with taking |ψ|2 ≡ n0, where n0 is homogeneous density

of polaritons: Γpol = 1
2
~RPR(r,t)
γR+Rn0

. Making this substitution for Γpol in Eq. (1.66) and then

using the Taylor expansion of the last term (assuming R|n0 − |ψ(r, t)|2| � γR + Rn0,
which is satisfied e.g. when γR � Rn0 and ΓR � R|ψ(r, t)|2), previous equation can be
rewritten as

i~
∂

∂t
ψ(r, t) =

[
− ~2

2m
∇2 + U(r) + g|ψ(r, t)|2 − iΛg

(
|ψ(r, t)|2 − n0

)]
ψ(r, t). (1.67)

Hybrid Boltzmann Gross-Pitaevskii model. This model is also formulated via the
system of the two coupled equations for the dynamics of the density in reservoir [68]

∂

∂t
nR(r, t) = PR(r, t)− γRnR(r, t)−

∫ (
κ− β~k

2

2m

)
nc(k, t)ρ

d
kdk, (1.68)

and for the condensate wave function

i~
∂

∂t
ψ(r, t) =

[
−(1− iβ/2)

~2

2m
∇2 + U(r) + g

(
|ψ(r, t)|2 + nR + i~κ/2

)]
ψ(r, t), (1.69)
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where κ = nRMXX (nR − f(T ))−Γpol, β = ~nRMXXf(T )
kT

−Γpol

ΩR
, f(T ) = mXkT

2π~2 exp(−Ex/kT ).
The excitonic reservoir and polaritons are coupled via exciton-exciton scattering, which
implies the explicit presence of the corresponding matrix element in the formulas below.
In this model, dissipation is proportional exclusively to the energy of the elementary
excitations of the condensate (Bogolons), and not to the total energy (which includes non-
linear interaction term). In the contrast with Diffusive Gross-Pitaevskii model, the BGP
model can correctly describe the condensate in motion with the excitations dispersion
satisfying the Landau superfluidity criterion described in the next chapter (see Fig. 5
from Ref. [68]). The mutual effects in the system reservoir-polariton ”condensate” lead
to the intriguing type of instabilities [69, 70, 71]. Briefly, the local spot of the high
polariton density leads to creation of density dip in the reservoir, which leads to formation
of potential well due to local lowering of 2grnR term. This well attracts the polaritons
and as a result a positive feedback loop is created.

The description of the models accounting for the case of non-resonant pumping was
given here for general scope, as very important practical case, actual e.g. for formation
of polariton Bose-Einstein condensates. In present work, the results were obtained in the
conservative case or using the quasi-resonant pumping scheme. From the point of view
of the studies of topological defects in polariton quantum fluids, the advantage of the
off-resonant pumping scheme is that is avoids the effect of phase fixing by laser, but its
issue is less direct optical control of the polariton quantum fluid wave function.
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“Dynamical instability of a nonequilibrium exciton-polariton condensate,” ACS Pho-
tonics, vol. 5, no. 1, pp. 111–118, 2018.

38



Chapter 2

Introduction to quantum fluids of
light

39



Contents

2 Introduction to quantum fluids of light 39
2.1 Bose-Einstein condensation of exciton-polaritons . . . . . . . . . . . . . . . 41
2.2 Bogoliubov excitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.2.1 Bogoliubov excitation dispersion . . . . . . . . . . . . . . . . . . . . 46
2.2.2 Bogolons as a linearized solutions of GPE . . . . . . . . . . . . . . 50
2.2.3 Landau criterion of superfluidity . . . . . . . . . . . . . . . . . . . . 50

2.3 Solitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.3.1 Solitons in 1D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.3.2 Snake instability of solitons in 2D . . . . . . . . . . . . . . . . . . . 55

2.4 Quantum vortices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.5 Quantum fluids of light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.6 Shaping polariton wave function and potential . . . . . . . . . . . . . . . . 67

2.6.1 Various techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.6.2 Progress in etching . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.6.3 Spatial light modulator . . . . . . . . . . . . . . . . . . . . . . . . . 68

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

40



The chapter is organized as follows. In the first section we will describe the phe-
nomenon of Bose-Einstein condensation paying a special attention to the case of po-
laritons. Sections 2, 3, and 4 are devoted to the description of typical solutions of the
Gross-Pitaevskii equation: bogolons, solitons, and quantum vortices, respectively. In sec-
tion 5, we will describe the fundamental experiments showing the superfluid nature of
polaritons at high densities, and in section 6 – the techniques of potential shaping for
polaritons.

2.1 Bose-Einstein condensation of exciton-polaritons

As we have already pointed out, a polariton is a composite particle having a photon
and an exciton components. In terms of statistic properties, polaritons are bosons. More
precisely, they exhibit bosonic properties when their concentration is sufficiently small and
the average distance between the excitons is much larger than the exciton radius, which
allows avoiding the overlap of real fermionic components of the excitons: the electron and
the hole [1]. This condition reads

nadB � 1, (2.1)

where d is the dimension of the system (the excitons in quantum wells are two-dimensional
and d = 2). Thus, in microcavities it is possible to observe the phenomena associated with
the transition of the system to a state of polariton Bose-Einstein condensate. Polariton
condensation is of the highest interest from the point of view of fundamental physics.

Other examples of solid state systems with observed condensation are the magnons [2,
3] and excitons [4, 5]. However, the most developed, both theoretically and experimentally,
is the system of atomic Bose-Einstein condensates and thus the comparison, when it will
be given, will be carried between the polariton and the atomic condensates. E.g. due
to the extremely small effective mass of polaritons, the observed critical temperature is
several tens of Kelvin, which is many orders of magnitude higher than the characteristic
critical condensation temperatures of cold atoms.

Theoretical description of Bose-Einstein condensation [6] starts from the Bose distri-
bution [7] of the occupation numbers

ni (T, µ) =
1

Ld
1

exp
(
Ei−µ
T

)
− 1

, (2.2)

where µ is the chemical potential of these particles, Ei is the energy in the quantum state
i, and T is the temperature. The total density of particles in the system is found by the
summation of densities given by Eq. (2.2) over all states i in the system:

n(T, µ) =
N∑
i=0

ni(T, µ). (2.3)

The chemical potential should be below the ground state E0, otherwise the nonphysical
negative density occurs. One sees that ni grows with the increase of the chemical potential
and the temperature. Due to this behavior, at fixed temperature T , it exists some maximal
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density of particles which occupy all the states above the ground state:

nmax(T ) =
N∑
i=1

ni(T, µ = 0). (2.4)

For the bosons with isotropic parabolic dispersion in a sufficiently big ”box” providing
the sufficient density of levels of quantized kinetic energy Eq. (2.4) can be rewritten as

nmax (T ) =
1

(2π)d

∫ +∞

0

f (k, T, µ = 0) kd−1dk, (2.5)

where

f (k, T, µ) =
1

exp
(
1
T

(~2k2
2m
− µ

))
− 1

. (2.6)

In case d = 3 this integral can be evaluated analytically:

nmax (T ) = ζ(3/2) ·
(
mT

2π~2

) 3
2

, (2.7)

where ζ is the Riemann Zeta function. One sees that the expression in the brackets in
the second multiplier in Eq. (2.7) is in fact a thermal de Broigle wave vector obtained

from the estimation T =
~2k2TdB

2m
.

Also one can find a critical temperature as a function of particle density n as:

Tc =
2π~2

m
·
(

n

ζ(3/2)

)2/3

. (2.8)

Obviously, with lowering the temperature, nmax(T ) also becomes smaller. Let us now
fix the number of bosons in the system, which is quite natural for the case of atoms,
and begin to decrease the temperature. While the temperatures are larger than Tc, the
states above the ground states can store all the bosons present in the system. However,
once Tc is reached, the states above the ground state are not enough despite they are
completely filled according to the distribution function. The ”excess” of the bosons will
go to the ground state because its occupation number has not such restriction when the
chemical potential approaches the energy of ground state. Such process is called a Bose-
Einstein condensation. The Bose-Einstein condensation requires the bosonic system to
be cold enough, so that the thermal de Broglie wavelength becomes larger than the mean
distance between particles n−1/3, which is similar to the condition of degeneracy for the
gas of fermions.

One can outline the following fingerprints of the Bose-Einstein condensation:

• Domination of the occupation of the ground state of a system

• Bose distribution of occupation of other states with chemical potential close to zero

The description of condensation was started from 3D systems from the historical point
of view and for consistency. I.e. for the systems of lower dimensions (d < 3), the integral
in Eq. (2.5) diverges. However this fact does not result in the impossibility to observe the
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the Bose-Einstein condensation in such systems. Due to the finite size of a system, the
number of energy levels in the system is finite and thus quasi-Bose-Einstein condensation
can still exist in the systems of low dimensions.

Firstly, the Bose-Einstein condensation was observed for cold atomic vapor [8]. The ex-
periment required the temperatures as low as 170 nK obtained by the sequential laser and
evaporative cooling. Such low temperatures are required because the critical temperature
is proportional to the inverse particle mass (see Eq. (2.8)). The polariton Bose-Einstein
condensation was firstly observed in the famous work in 2006 [9]. The CdTe/CdMgTe
microcavity with 26 meV Rabi splitting was used in the experiment. Further the effect
of condensation was observed in GaAs microcavities [10, 11, 12]. The polariton mass is
much lower than the mass of atoms and thus for the polaritons the condensation can be
observed at much higher temperatures.

However, there exists a fundamental difference between the atomic and the polaritonic
systems in the context of condensate formation. Atoms are long-living particles (seconds,
[8]) while the polaritons undergo a strong radiative decay (dozens of picoseconds typically,
hundreds in the best samples, see previous chapter for the details). Either their density
rapidly drops (with the time scales of hundreds of picoseconds in the best cavities) or it
is necessary to maintain the density by injection (optical quasi-resonant or non-resonant
pumping or electrical injection[13]). Thus, the polariton condensates are often out of equi-
librium. This is determined by the balance between the decay time and the thermalization
time. However, it is also possible to have the thermalization time much shorter than the
decay time, and thus to have a well-thermalized polariton condensation occurring as an
equilibrium phase transition [14, 15].

To overcome the polariton decay, in Ref. [9] the experiment was held with a sufficiently
intensive non-resonant pumping, see Fig. 2.1. Such pumping creates a plasma of free
carriers (electrons and holes) in the quantum wells significantly above the energies of
polaritons, which then form excitons and polaritons and after multiple scattering events
(involving also the phonons) relax to the ground state. Such process can be described
on the basis of the system of Boltzmann kinetic equations. The main fingerprint of a
Bose-Einstein condensation, namely the appearance of the domination of the occupation
of the ground state, is well visible in Fig. 2.2.

Although the polariton condensate is a non-equilibrium system in which the radia-
tive decay of polaritons is constantly compensated by optical pumping, it nevertheless
demonstrates a number of properties characteristic of Bose-Einstein condensates in a
state of thermodynamic equilibrium. In addition to the dominating occupation number
of a ground state, it was experimentally observed the stationary distribution function of
polaritons in excited states described with a high degree of accuracy by the Bose distri-
bution. The latter can be seen from the linear decay of excited states occupation number
versus their energy in the logarithmic plot on the panel b) of Fig. 2.3.

It should be noted that although the Boltzmann system of equations satisfactorily
describes the appearance of a macroscopically populated state at zero wave vector and
moreover allows one to calculate the pump threshold for a given microcavity geometry
with a good accuracy, it cannot be used to describe the dynamic properties of a polariton
condensate. In fact, Bose condensation is accompanied not only by the appearance of
a macroscopic population, but also by the spontaneous appearance of coherence in the
system. In this case, the condensate should be described using an order parameter, which
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Figure 2.1: Scheme of the experiment to observe the polariton Bose-Einstein condensa-
tion using the non-resonant pumping. Adapted from Ref. [9].

Figure 2.2: Experimentally observed polariton Bose-Einstein condensation. Maybe, the
most famous image from the domain of the physics of polaritons. Adopted from Ref. [9].
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Figure 2.3: Statistical justification of polariton Bose-Einstein condensation. Panel a).
Occupation number of a ground state (zero wave vector state) versus the pumping laser
power is plotted with black diamonds. Panel b). Occupation number of the states above
the ground state versus their energy. Adopted from Ref. [9].

has not only a macroscopic amplitude, but also a well-defined phase, and the presence of
the latter is not reflected in any way in the Boltzmann equations. Such an order parameter
required to describe the condensate dynamics is the shared wave function of a polaritons
in the condensate. The bosons in the condensate indeed occupy the same state which
results in the same phase of all particles and share the same single-particle wave function,
which also results in the coherence at large length scales. The Onsager-Penrose criterion
[16, 17] of the condensation involves the eigenvalue spectrum of the single-particle density
matrix ρ(r, r′). Let ∫

ρ(r, r′)φk(r
′)dr′ = nkr

′, (2.9)

be and eigenvalue problem with the corresponding eigenvalues and eigenfunctions whose
the largest eigenvalue gives the number of condensed particles N0. The criterion itself
requires that the fraction of condensed particles remains greater than zero in the limit of
macroscopic system:

lim
N→∞

N0

N
> 0. (2.10)

This criterion is satisfied only in the case of long-range density-correlation order in the
system expanding to the scales comparable with the size of the system.

Experimentally, for polaritons or excitons it means that the spatial coherence of emit-
ted light observable at large distances visible e.g. in the homodyne interference experi-
ments. The Boltzmann kinetic equations can not describe the behavior and dynamics of
such wave function.
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The appearance of such macroscopic wave function allows referring to polariton con-
densates as to quantum fluid. Even in the case of resonant pumping when the system
is even more strongly constrained by the field of a laser, such properties as spatial and
temporal coherence remain as well as the shared polariton wave function.

Such wave function of the condensate of interacting bosons obeys the Gross-Pitaevskii
equation (introduced in Chapter 1 for the interacting polaritons) and thus the GPE
becomes a powerful tool to investigate the dynamics of the condensate. Unlike the kinetic
equations, GPE can not describe the formation of the condensate and can just describe
its dynamics, after the condensation occurred. Thus GPE and kinetic equations describe
different particularities of the same phenomena, but a unified approach is highly desired
and numerous attempts are made in this direction [18, 19, 20, 21, 22].

To provide some grounds to introducing the Gross-Pitaevskii equation, one can start
with the many-body wave fucntion of N bosons [23]:

|Ψ〉 = ψ1 ⊗ ψ2 ⊗ ...⊗ ψN ≡ ψ ⊗ ψ ⊗ ...⊗ ψ, (2.11)

with the equivalence stemming from the same wave function shared by all bosons. The
stationary ground state of such system can be found via minimization of the free energy
F = E − µN with the energy E = 〈Ψ|Ĥ|Ψ〉/〈Ψ|Ψ〉 obtained based on the Hamiltonian

Ĥ = − ~2

2m

∑
i

∇2
i +

∑
i

U(ri) +
∑
i,j>i

V (|ri − rj|). (2.12)

In the next subsections we will describe the pool of typical solutions of Gross-Pitaevskii
equation. The infinitesimal variation of the wave function ψ → ψ + δψ (the same for its
complex conjugate) causes the variation (necessarily equal to zero) of free energy:

N

∫
drδψ∗(r)

[
−~2∆

2m
+ U(r)− µ+

N − 1

2

∫
dr′|ψ(r′)|2V (|r− r′|)

]
ψ(r), (2.13)

where square braces multiplied by ψ(r) in fact is an expression, which after taking a
δ-function potential, becomes a Gross-Pitaevskii equation.

The time-dependent Gross-Pitaevskii equation (without µ-term) can be obtained using
the least action principle and very similar variation of the action, see Ref. [24].

2.2 Bogoliubov excitations

2.2.1 Bogoliubov excitation dispersion

In fact, the typical solutions of the Gross-Pitaevskii equation have their analogs in the
domain of classical hydrodynamics. They are the acoustic wave-like excitations, solitons,
vortices, including also the phenomenon of turbulence. This brings a fascinating parallel
between the classical and the quantum fluids. This section (as well as the two following
sections) describes the typical classes of excitations of Bose-Einstein condensates.

However, we will start this section not from the Gross-Pitaevskii equation. Let us
write the second quantization Hamiltonian for the system of weakly interacting bosons in
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its general form:

Ĥ =
∑
k

~2k2

2m
â†kâk +

g

2L3

∑
k1,k2,q

â†k1+qâ
†
k2−qâk1 âk2 , (2.14)

where âk, â
†
k are annihilation and creation operators for a boson with k wave-vector,

respectively, g is an interaction constant and L is a size of a system. Now it is important
to consider the case of condensate. Mathematically it means following the ”Bogoliubov
prescription”[25, 26] consisting in the replacement

â0 = â†0 =
√
N0, (2.15)

where N0 is number of particles in condensate. At zero temperature N0 equals the total
number of particles in the system N and the ground state energy reads

E0 =
N2g

2L3
. (2.16)

From the energy of the system one can find the pressure:

P = −∂E0

∂V
=
gn2

2
, (2.17)

where n = N/V . Next, from the hydrodynamic relation (mc2)−1 = ∂n
∂P

one can find the
sound velocity:

c =

√
gn

m
. (2.18)

This is a fundamental quantity for the quantum fluids and it will appear a lot in the
formulas below. Also here one can introduce the chemical potential in the system:

µ = gn. (2.19)

Taking into account the high occupation number of a ground state and low occupation
numbers of the states with p 6= 0, one can pick up from the Hamiltonian in Eq. (2.14)
only the terms containing a pair of operators with p 6= 0 and the term giving the energy
of a ground state:

Ĥ =
g

2L3
â†0â

†
0â0â0 +

∑
k

~2k2

2m
â†kâk

+
g

2L3

∑
k 6=0

(
4â†0â

†
kâ0âk + â†kâ

†
−kâ0â0 + â†0â

†
0âkâ−k

)
. (2.20)

The total particle number writes:

N = â†0â0 +
∑
k 6=0

â†kâk, (2.21)
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and thus the sequence of 4 operators in the first term in Eq. (2.20) representing the square
of the number of particles in the condensate can be written as

a†0â
†
0â0â0 ≈ N2 − 2N

∑
k 6=0

â†kâk. (2.22)

Using Eqs. (2.21) and (2.22) one obtains from the Hamiltonian (2.20) the following
quadratic Hamiltonian

Ĥ =
1

2
gnN +

∑
k

~2k2

2m
â†kâk +

1

2
gn
∑
k 6=0

(
2â†kâk + â†kâ

†
−k + âkâ−k

)
. (2.23)

which can be diagonalized using the standard procedure of Bogoliubov linear transforma-
tions:

âk = ukb̂k + v−kb̂
†
−k,

â†k = ukb̂
†
k + v−kb̂−k.

(2.24)

To obey the Bose particles commutation relation b̂kb̂
†
k′ − b̂†k′ b̂k = δkk′ , the new operators

should obey the normalization

|uk|2 − |v−k|2 = 1. (2.25)

The parameters uk, v−k can be explicitly written as:

uk, v−k = ±
(
~2k2/2m+ αn

2ε(k)
± 1

2

)1/2

, (2.26)

and this form leads to vanishing of the off-diagonal term of a new Hamiltonian. The
energy dispersion relation of new excitation described by the operators bk and b†k reads:

ε(k) = ±

[
gn

m
~2k2 +

(
~2k2

2m

)2
]1/2

. (2.27)

As one can see, there are two dispersion branches - with positive and negative values
of energy.

In the new basis the Hamiltonian (2.20) takes a form

Ĥ = E0 +
∑
k 6=0

ε(k)b̂†kb̂k. (2.28)

It is a Hamiltonian of a new non-interacting quasiparticle obeying the Bose statis-
tics. These quasiparticles are called bogolons. By their nature, bogolons are the small
perturbations of the density of homogeneous condensate and resemble the waves on the
deep water. Their lowest energy is the energy of an unperturbed condensate given by Eq.
(2.16). The dispersion was observed both in atomic systems [27] and in exciton-polariton
quantum fluids [28, 29]. Some theoretical models predict that because of the out of equi-
librium properties of polariton condensates, the dispersion is actually flat at low wave
vectors [18]. This actually appears to be a model-dependent results [22].
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Figure 2.4: The dispersion of Bogoliubov excitations is plotted in black. Dashed curves
are for parabolic dispersion of the bare bosons and for acoustic wave-like dispersion given
by Eq. (2.29).

In the long wavelength limit, the dispersion becomes linear with the group velocity
coinciding with the sound velocity introduced above:

E(k) = ~ck. (2.29)

On the contrary, at large wave vectors, the dispersion in Eq. (2.31) becomes parabolic
and coincides with the bare dispersion E(k) = ~2k2

2m
(up to a constant).

The energy of bare particles E(k) grows with the wave vector and at some wave

vector khl reaches the value of the chemical potential in the system:
~2k2hl
2m

= 2gn. This
wave vector corresponds to some characteristic length

ξ =
~√

2mgn
=

~√
2mc

, (2.30)

called healing length, a typical scale of density variations in a condensate. Its meaning will
be illustrated best of all for the special (soliton and vortex) solutions of the GPE, which
is a particularly efficient tool to describe the Bose-Einstein condensates and quantum
fluids. Briefly, if a phase and an amplitude of a condensate wave function change at the
length scale of ξ, strong fluxes appear in the system that correspond to the kinetic energy
comparable with the interaction energy gn. Returning to Eq. (2.31), the wave vector
ξ−1 separates the infrared and ultraviolet limits. Using the dimensionless wave vector
k0 = kξ, the dispersion reads:

ε(k) = ±µ
[
2k20 + k40

] 1
2 . (2.31)

This dispersion is plotted in Fig. 2.4.

49



2.2.2 Bogolons as a linearized solutions of GPE

The result from the previous section can be obtained within the seemingly differing for-
malism, namely by the linearization of the Gross-Pitaevskii equation. First of all it is
instructive to set the reference energy to the chemical potential in the system:

i~
∂

∂t
ψ(r, t) =

[
− ~

2m
∇2 + g|ψ(r, t)|2 − µ

]
ψ(r, t), (2.32)

The stationary in time and homogeneous in space solution ψ0(r, t) =
√
n obeys this

equation. Let us now try to find the solutions in the slightly perturbed form:

ψ = ψ0 + δψ. (2.33)

As far as δψ is a complex-valued function, the following equations in the first order
on δψ and δψ∗ can be written to find both its real and imaginary parts:

i~
∂

∂t
δψ =

[
− ~

2m
∇2 + 2g|ψ0|2 − µ

]
δψ + gψ2

0δψ
∗, (2.34)

−i~ ∂
∂t
δψ∗ =

[
− ~

2m
∇2 + 2g|ψ0|2 − µ

]
δψ∗ + gψ∗20 δψ.

Let us try find δψ in the form

δψ(r, t) = A · exp(ikx− iωt)−B∗ · exp(−ikx + iωt), (2.35)

with A,B �
√
n. After making this ansatz one collects the terms containing exp(−iωt)

and exp(iωt). These terms are linear in A and B, and the whole procedure is a lin-
earization of GPE. Thus we find the first order correction to the background homoge-
neous wave function. This procedure corresponds to keeping only terms with pair of cre-
ation/annihilation operators (a†k/ak) in previous section for k 6= 0. The pair of operators

a†0/a0 gives the density corresponding to the mentioned above background homogeneous
wave function ψ0. As a result, one obtains from Eqs. (2.34) the following system:

[~2k2
2m

+ gn gn

−gn −~2k2
2m
− gn

] [
A
B

]
= ~ω

[
A
B

]
(2.36)

The solutions of this system ~ω(k) coincide with the excitiation dispersion in Eq.
(2.31). This matching of dispersion as well as the same assumptions, namely presence of
a homogeneous background of particle density and the small perturbations of the latter,
ascertain that in fact the same phenomenon was described within these approaches, which
look different but present in fact two formulations of the same approximation.

2.2.3 Landau criterion of superfluidity

The Landau criterion of superfluidity is obtained starting from the Galilean transforma-
tions:

E ′ = E −P ·V +
1

2
MV 2, P′ = P−MV (2.37)
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where P and E are the momentum of a fluid in some reference frame and V is the
velocity of a second reference frame with respect to a first one. The quantities in the
second reference frame are denoted with the primes.

This construction can be applied to the case of a fluid flowing through a capillary with
the velocity v. The question of superfluidity in this context is a question of the kinetic
energy dissipation to a heat. And the heat is carried by the fluid elementary excitations.
Let E0 be the energy of the fluid’s ground state in its own reference frame. The energy of
such fluid with a single excitation of wave vector p will write E0 + ε(p), where the second
term gives the excitations dispersion. In the lab reference frame, where the capillary does
not move (it has velocity −v with respect to the fluid), the energy and momentum of
fluid in such state are

E ′ = E0 + ε(p) + p · v +
1

2
Mv2, P′ = p +Mv. (2.38)

Thus in the laboratory coordinate frame the excitation energy is

εlab(p) = ε(p) + p · v. (2.39)

The excitation is favorable to be created only while having a negative energy, that is,
when εlab(p) < 0. It is possible to obey such criterion only if v > vcrit, where

vcrit = min

(
ε(p)

|p|

)
, (2.40)

thus finding a point where

dε

dp
=
ε

p
. (2.41)

For the case of Bose-Einstein condensates with the bogolons being such excitations,
vcrit ≡ vs. To better explain this phenomenon the case of liquid He4 is more illustrative
[30, 31]. The dispersion of the excitations of liquid He4 is linear at small wave vectors
(phonon part) and has a minimum at p0 (roton part). The rotons are the quasiparticles
corresponding to the presence of curls in the superfluids. Roton part of the spectrum
leads to lowering the critical velocity to 80 m/s while the sound velocity is approx. 240
m/s.

Importantly, in the employed logical construction the excitations were created for the
case when the walls of the capillary were moving with respect to the condensate. However,
it remains valid when some obstacle is moving inside the condensate or if the condensate
is flowing around the obstacle. The consequences of realization of superfluid regime for
polariton quantum fluids will be discussed in the ”Quantum fluids of light” section of this
chapter. Finally, we note that the Landau criterion allows to prove the superfluidity of
the quantum fluids only because of the absence of the single-particle excitations.
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Figure 2.5: Excitation spectrum in liquid He4 proposed by Lev Landau. Blue tangent
line slope is a sound velocity and green tangent line is for the critical velocity vcri affected
by the presence of roton peak. Adopted from [31].

Figure 2.6: The interacting solitons in shallow water. Photo from free sources [33].

2.3 Solitons

2.3.1 Solitons in 1D

The solitons were firstly observed as solitary waves in the channel with water travelling
without significant changing of the shape for a very long distance [32]. The example of
soliton in water is given in Fig. 2.6. Such behavior is possible only in non-linear systems,
because a wave packet in a linear system, being composed of the harmonics with different
wave vectors, normally rapidly delocalizes due to velocity dispersion.

To obtain the solitonic solution, the minimal equation is a one-dimensional time-
dependent Gross-Pitaevskii equation without external potential [34]:

i
∂

∂t
ψ(x, t) = − ~2

2m

∂2

∂2x
ψ(x, t) + g|ψ(x, t)|2ψ(x, t). (2.42)
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It is reasonable to look for the wave function in a form

ψ(x, t) =
√
nf(x, t) exp(−iµt/~), (2.43)

where n is the density of unperturbed condensate. Introducing the new variable

ζ =
x− vst
ξ

, (2.44)

and a single parameter of a problem, a dimensionless velocity

U =
mvξ

~
=

vs√
2c
, (2.45)

one obtains from Eq. (2.42) the following dimensionless equation:

2iU
df

dζ
=
d2f

dζ2
+ f(1− |f |2). (2.46)

By making the ansatz f = f1 + iv/c and considering the imaginary part of Eq. (2.46),
one obtains √

2
df1
dζ

=

(
1− v2s

c2
− f 2

1

)
. (2.47)

As a main result, after all algebra one obtains the following solution:

ψS(x− vst) =
√
n

[√
1− v2s

c2
tanh

(
x− vst
ξ
√

2

√
1− v2s

c2

)
+ i

vs
c

]
. (2.48)

This solution corresponds to a dip in the density of the condensate corresponding to
a zero argument of the tanh function and thus having a coordinate x = vst. Thus the
soliton is propagating with velocity vs. The minimal value of the density in the dip is
nmin = n(vs/c)

2. The argument of tanh changes at the scale of ξ/
√

1− v2s/c2, or simply
at ξ if the soliton velocity cs is much lower than sound velocity c. If vs = 0, the soliton
is completely dark. When its velocity becomes comparable with the sound velocity, the
soliton becomes gray and blurred due to the ”relativistic” factor. The phase jump of the
wave function between x = +∞ and x = −∞ is

∆φ = 2 arccos(vs/c). (2.49)

Fig. 2.7 shows the density and phase profile of the soliton in 1D for various value of
its velocity.

The distances x ≤ ξ correspond to the density dip in the soliton center. In this region
the interaction energy dominating at large distances is converted to the kinetic energy.
And again, if the condensate experiences the fluctuations in amplitude and in phase at
the scale of ξ, the kinetic energy of the corresponding fluxes becomes comparable with
µ. In some cases the soliton behaves as a massive particle. The energy (per unit of the
length) of the soliton is

ε =
4

3
~cn

(
1− v2s

c2

) 3
2

. (2.50)
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Figure 2.7: Condensate density (upper panel) and wave function argument (lower panel)
corresponding to the solitonic solutions of 1D time-dependent GPE in the soliton mass
center reference frame. Red, green, blue and orange curves correspond to vs/c = 0,
vs/c = 0.3, vs/c = 0.6, and vs/c = 0.9, respectively.

54



Figure 2.8: The space 2D pattern of an interference pattern ICCD(r) for the soliton wave
function ψ(r) and a reference beam having the amplitude 0.5 of the amplitude of wave
function. The soliton is visible as a shift of the fringes.

One can also attribute to soliton a negative mass (also per unit of the length)

msol = −4~n/c, (2.51)

which is in fact a mass of condensate absent in the density dip. The well defined phase
jump also provides to the soliton additional stability. All this allows to refer to the solitons
as to topological defects in the condensate wave function.

2.3.2 Snake instability of solitons in 2D

The phase patterns of polariton wave function in real experiments (dimension of space
is 2) including the case of the wave function of soliton can be efficiently visualized using
the homodyne interference configuration, when the real 2D pattern of the electromagnetic
wave emitted from the cavity proportional to ψ(r) is mixed with a reference beam having
a specific wave vector: A0e

−ik0r. Mathematically, it means the following equation for the
intensity going to the camera:

ICCD(r) = |ψ(r) + A0e
−ik0r|2. (2.52)

Figure 2.8 shows such interference pattern for the soliton wave function ψ(r) ≡
ψ(x, y) ≡ ψ(x), where ψ(x) is taken from Eq. (2.48) at t = 0.

However, unlike the case of 1D, the solitons in 2D exhibit sufficiently differing prop-
erties. While in 1D the soliton is stable, in 2D space the solitons experience the so-called
transverse (or snake, or modulational) instability, which leads to their bending and finally
to their decomposition into vortex-antivortex pairs.

Returning to the case of bogolons obtained as a linearized solution of GPE (see
Eq. (2.35)), it is worth mentioning that the eigenvalues of a problem Eq. (2.36) were
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real. It means that these excitations are really the stationary eigenmodes of the system,
and they neither grow nor decay in time. In the case of negative imaginary contribution
to the frequency, such excitation would decay and, on the contrary, in the case of positive
imaginary part it would grow in time, until the amplitude becomes comparable with

√
n,

which means that the approach with linearization becomes inapplicable.
For bogolons, the unperturbed function ψ0 was chosen as initial one. However, nothing

restricts us to this. One can take e.g. the solitonic wave function from Eq. (2.48) for
ψ0. In this case, the linearized Gross-Pitaevskii equation transforms to a system of the so
called Bogoliubov-de Gennes equations:

L(r)u(r) + gψ0(r)2v(r) = ~ωu(r), (2.53)

L(r)v(r) + g(ψ∗0(r))2u(r) = −~ωv(r),

where

L(r) = −~2∇2/2m+ 2g|ψ0(r)|2 − µ, (2.54)

and
ψ(r) = ψ0(r) + u(r) exp(−iωt)− v∗(r) exp(iωt) (2.55)

Not surprisingly, in case of ψ0(r) =
√
n, these equations lead to the eigenproblem from

Eq. (2.36).
Such equations can be solved numerically in 2D. In the case of N x N mesh for ψ0(r),

the resulting eigenproblem has 2N2 x 2N2 dimensions. It makes this problem challenging
even for powerful office workstations in 2020. Fig. 2.9 shows the spatial structure of u(r)
imaginary part for a ”bogolon” with the analytically defined bare wavefunction ψ0(r)
based on the solution of a dark soliton (Eq. (2.48) with vs = 0). Fig. 2.10 shows the
imaginary parts of eigenvalues for several eigenvectors. Both positive and negative values
are present due to the structure of the matrix. The solutions with positive values of
imaginary part gives rise to the snake instability.

As far as the ”bogolon” is symmetric and the soliton has an antisymmetric wave func-
tion, their superposition leads to the ”curling” of the soliton. Such curling is clearly visible
in Fig. 2.11. The latter shows the first experimental image of dark soliton instability ob-
tained with the condensate of sodium atoms.

In fact, the problem of snake instability for the solitons is a 1D problem and can be
solved analytically [36]. The main result is the instability growth rate as a function of
excitation wave vector along the soliton. This result is presented in Fig. 2.12 and matches
with the numerical one in Fig. 2.11. The reciprocal wave vector corresponding to the
maximum of the dispersion estimates the size scale of the soliton curling, which is of the
order of ξ in any case.

Noteworthy, the Bogoliubov-ge Gennes approach allows demonstrating that the parts
of bistability curves with negative slope are unstable, see Fig. 2.13.

2.4 Quantum vortices

Another type of topological defects specific to 2D condensates are the quantum vortices.
Due to their rotational nature they strictly require the demension of the system larger
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Figure 2.9: The example of profile of the imaginary part of u(r) function obtained using
the Bogoliubov-de Gennes approach for the bare wave function ψ0 corresponding to the
dark soliton. One sees that such excitation has a well defined wave vector directed along
Y axis and confined along X axis.

Figure 2.10: The numerically obtained imaginary parts of several eigenvalues of the
Bogoliubov-de Gennes system versus the wave vector of corresponding solutions. Dis-
creteness of wave vectors is due to periodic boundary conditions.
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Figure 2.11: Experimental observation of snake instability in atomic Bose-Einstein con-
densate. Panel A: First moments of instability development visible as curling the soliton.
Panel B: Longer time dynamics of the instability development. The appearance of quan-
tum vortices is visible. Adopted from [35].

Figure 2.12: Imaginary part of spectrum versus wave vector (in the units of healing
length). The parameter ν is the normalized soliton velocity vs/c. Adopted from [36].
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Figure 2.13: Bogoluibov-de Gennes analyis (right panel) of several points on a bistability
curve (left panel). Presence of positive imaginary values of Bogoliubov eigenfrequencies
indicates the growth of such excitation and thus the instability of such value of condensate
density. Adopted from [37].

than 1D. Due to specific phase pattern of the vortex it is useful to present its wave function
in the polar form used also for the Madelung formulation of Schrödinger equation [38, 39].
This form reads

ψ(r) =
√
n(r) exp(iS(r)/~), (2.56)

which leads to the fact that the velocity obtained with the relation

v = − i~
2m
· (ψ∗∇ψ − ψ∇ψ∗) 1

|ψ|2
, (2.57)

has a form

v =
1

m
∇S(r). (2.58)

The vorticity is defined as
ω = ∇× v. (2.59)

If S is defined on a simply connected space (in topology, a space where each 2 paths
between two arbitrary chosen points can be continuously mutually transformed within
this space), the vorticity Ω equals zero everywhere.

To preserve the property of having unambiguous value and thus a physical meaning
for the wave function, the velocity and vorticity should obey the following relations:∮

dr(∇S(r)) = m

∮
drv = m

∫
dSω = 2πN~, (2.60)

where N is an integer.
Consider from now (and everywhere below in this section) the wave function with

cylindrical symmetry

ψ(r) =
√
n(r) exp(iNθ) = f(r) exp(iNθ). (2.61)
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Such wave function has a phase singularity in the point r = 0. Plotting the phase of
such function one will also observe the phase dislocation: a 2D curve corresponding to
the phase jump from 0 to 2π in case of N = 1 (or several dislocations in case |N | ≥ 2).
In this case one obtains

v = eθ
~N
mr

, (2.62)

where eθ is polar coordinate frame wave vector orthogonal to er. The quantity N can
be also referred as a vortex charge. The sign of N regulates the direction of condensate
rotation around the vortex core.

To preserve the quantum mechanical probability current from having a divergence,
the density at such point should have a zero value with the asymptotic behavior rp, where
p ≥ 1. Thus the phase singularity is necessarily associated with a dip (with a zero value
in the center) in the amplitude of wave function. Such phase singularity is in fact a
topological defect, protected by the topological invariant called the ”winding number”.

The form of n(r) is shaped by a peculiar form of an equation for the wave function.
It will be affected both by the potential energy radial dependence (if it is present in the
equation) and by type of non-linear interactions. For the exciton polaritons the introduced
above Gross-Pitaevskii equation is of interest. The process of solution and further analysis
are described in details in Ref. [40]. The solution can be found in the form

ψ =
√
n0χ(ζ) exp(iθ), (2.63)

where ζ = r/ξ. The boundary conditions are

χ(ζ) =

{
0, ζ = 0
1, ζ =∞

The dimensionless GPE for the radial dependence reads(
−1

ζ

∂

∂ζ
ζ
∂

∂ζ
+

1

ζ2

)
χ = 2χ(1− χ2), (2.64)

whose solution can be found numerically. However it is useful write its simple analytical
approximate form

χ(ζ) =
ζ√

ζ2 + Λ−2
, (2.65)

where Λ ≈ 0.8249. Equations (2.63) and (2.65) are essential to calculate the energy of an
arbitrary given vortex spatial configuration based on their coordinates and signs. This
approach will be actively used in the Chapter 3 devoted to the quantum turbulence, the
phenomenon strictly based on the spatial correlations of quantum vortex positions. Fig.
2.14 shows the profiles of exact numerically obtained χ and the introduced ansatz. At
short distances r � ξ one sees that χ ∝ r, which shapes the vortex core with the density
dip, and at large distances (r � ξ) the density becomes a constant. The transition
between these two regimes takes place at distances r ≈ ξ and thus the healing length is in
fact a size of vortex core size. Fig. 2.15 shows the vortex phase pattern and a interference
fringes pattern for the homodyne experiment.
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Figure 2.14: Radial part χ of the quantum vortex wave function. Black dots are for
numerical solution and black curve is for the ansatz from Eq. (2.65). Red and orange
curves are for l.h.p. and r.h.p. of Eq. (2.64) when the ansatz is used, respectively, and
green curve is for their difference. Adopted from [40].

Figure 2.15: Panel a). Phase pattern of a quantum vortex. Panel b). The space 2D
pattern of ICCD(r) for the vortex wave function obtained in the homodyne interference
experiment. The votrex is visible as a dislocation of the fringes.
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The important value is the energy of the vortex, which is in fact a difference between
the energy of a homogeneous condensate and that of a condensate with a single vortex.

Ev =

∫ (
~2

2m
|∇ψ|2 +

g

2

(
|ψ|2 − n

)2)
rdrdθ (2.66)

The main contribution comes from the condensate kinetic energy at the distances r � ξ.
The estimation of the vortex energy is quite simple. According to Eq. (2.62) the velocity
behaves like 1/r and the rotational kinetic energy ∝

∫
rdr(1/r)2, which is ln(R/ξ). ξ

is logically the lower cutoff corresponding to the vortex core size. Upper cutoff is a
distance at which the phase dislocation propagates away from the vortex core. In case of
a condensate with single vortex inside, R estimates the physical size of the condensate.
The exact equation for the energy reads

E(N) = πnN2~2 ln(CR/ξ), (2.67)

where C is a constant of the order of 1.
The important consequence of this dependence of the vortex energy on the vortex

charge is that N vortices with charges +1 are energetically more favorable with respect
to single vortex of a charge +N . As a result, the latter is unstable and quickly becomes
torn to single-charged vortices. This can be referred as ”splitting instability” and can be
also analyzed using the Bogoliubov de-Gennes approach [41, 42].

In fact, all three described types of excitations of the condensate are very closely
related with each other with a possibility of mutual transformation. The very deep ”bo-
golon” generates so high condensate fluxes that the corresponding phase jump becomes
comparable with solitonic one. Also, a density dip in the presence of background inho-
mogeneous condensate fluxes can be torn into a vortex-antivortex pair. On the contrary,
the vortex and the antivortex can form a pair and continue their approaching, and can
finally annihilate, with the creation of a deep bogolon. As shown above, solitons in 2D
are unstable by their nature and are destroyed by the snake instability with the formation
of vortex-antivortex pairs.

2.5 Quantum fluids of light

Due to the essential part of the photon properties possessed by polaritons, one often refers
to polaritons at high densities as to ”Quantum fluids of light”. In this section, we will
describe the recent experiments proving the real quantum fluid nature of polaritons in
microcavities. Such phenomena are the presence of the superfluidity and the observed
typical solutions of GPE as solitons and quantum vortices.

The superfluid regime corresponds to the case when all flows in the quantum fluid are
subsonic. However, if a supersonic flow passes in the vicinity of an obstacle, this obstacle
begins producing the excitaions visible as a shock waves. Fig. 2.16 shows the various
experimentally measured regimes of polariton quantum fluid passing around a defect in a
cavity, playing the role of such obstacle. The superfluid regime corresponds to presence
of the shock waves, which are in fact the excitations with lead to the energy dissipation.
In the case of subsonic flows, the shock waves disappear.
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Figure 2.16: The polariton quantum fluid under scattering by a cavity defect in various
regimes. Row a) corresponds to low in-plane wave vector of the exciting laser (and thus
the subsonic flow). Polariton density increases from the frames I to III. In the row b) the
in-plane wave vector is larger, providing a supersonic flow evidenced by the presence of
the shock waves. Adopted from [43].
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Figure 2.17: Dark oblique solitons created in the the system of resonantly pumped
cavity. The in-plane wave vector creates the supersonic flow. Panel a) shows the emission
intensity spatial map and panel b) shows the interference map. Adopted from [45].

Fig. 2.17 also shows the solitons detected in the system in exciton-polariton quantum
fluids. From the point of view of the structure of GPE, this case is much more complicated
than the case of 1D dark or gray solitons. This is a 2D system, with resonant pumping
by a laser with the in-plane wave vector, also with the finite lifetime, and the presence of
a potential barrier. All this leads to formation of a pair of solitons having an angle 2α
and originating from the density dip created by the defect. The solitons are well visible
as dislocations in the interference fringes like in the theoretical Fig. 2.8. The connection
with the refined theoretical situation described above is more evident if one realizes that
the vertical dimension in the 2D image is in fact an effective time (because the regime is
supersonic) and thus the distance between the solitons increases with time. The solitons
do not experience the snake instability because due to the supersonic regime they are
effectively 1D. The truly 1D solitons were studied in the wire microcavity in Ref. [44]. To
be really 1D in this context, the width of the cavity should not exceed the healing length.
The fingerprints of the solitons were visible as the typical spatial and phase solitonic
profiles along the cavity.

Finally, quantum fluids of light reveals such solutions of GPE as quantum vortices.
Fig. 2.19 shows such results. Normally, the vortices can move freely in the condensate
dragged by the existing flows. However, in real cavities it is more energetically favorable
for the vortices to be pinned to the defects in the shape of point-like potential barriers.
This allows their detection in the cw experiments.

Some other experiments when the polatrions behave as quantum fluids involve neces-
sarily engineering the potential profile or a shape of the laser beam. They will be described
in the next subsection.
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Figure 2.18: Observation of 1D solitons in wire cavity. Panel a) shows the 2D emission
profile transferred then to 1D geometry (panel b). Panel c) shows the results of the
simulations. Panel d) is for total emission intensity vs the laser power showing the jump
to the upper bistability branch. Panels e) and f) show the experimental and numerical
evolution of emission profile when raising the laser power. Adopted from [44].
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Figure 2.19: Observation of vortices in the system of cavity exciton polatitons. Panels
a) and b) show the interferograms with the reference beams coming from two different
remote regions of polariton condensate. Vortices are seen as a fringes dislocations. Panel
c) shows the reconstructed phase and panel d) plots the phase around one of the vortices.
Adopted from [46].
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2.6 Shaping polariton wave function and potential

For electrons, excitons, and of course for polaritons in semiconductors the potential and
wave function shaping is of high importance and can generate multiple effects like non-
linear transport phenomena, open possibilities to study the analog physics, creating
polariton molecules and crystals with the specific band structure resembling the band
structure of real 2D crystalline materials [47]. First, the quantum wires can be also con-
sidered as a type of a patterning of the in-plane potential for quantum 2D well structures.
In this context, one should also mention the distributed feedback lasers with the grating
creating the photon stopband obtained as a periodic modulation of a 2D potential. Due
to the photonic component of the polaritons, one can also obtain a possibility to fully
control the wave function, namely tune its amplitude and shape, by controlling the phase
and amplitude of electromagnetic field of a pumping laser in the quasi resonant regime.
Such wave function engineering can be used in multiple ways, e.g. for setting the GPE
initial conditions in pulsed experiment or allowing to sustain the polariton density in a
cw experiment, overcoming the effect of polariton decay.

2.6.1 Various techniques

The potential for polaritons (as well as for other quasiparticles in semiconductors) can
be organized via the metallic masks deposition. The purposes of such patterning can be
various. E.g. the metallic stripes on the heterostructure surface can change the symmetry
of the system and, as a result, generate a class of non-linear phenomena: photogalvanic
and ratchet effects [48]. Using the metallic film with the round apertures in the square
lattice allowed the observation of the formation of a polaritonic band structure induced
by such superlattice [49]. The potential in the shape of a square lattice was also obtained
using the two crossing standing acoustic waves [50]. Such technique of crossing the beams
is very common in the optics of atoms [51], but with the crossing of laser beams. Due
to exciton-exciton interaction, the polaritons can create the potential for themselves. In
fact, it means that the points in the sample intensively irradiated by the laser start acting
as a potential barrier. It was demonstrated e.g. in Ref. [52].

2.6.2 Progress in etching

Wire microcavities are one of the first (middle of 90s) examples of polariton potential
shaping by the means of lithography and etching [53]. Nowadays, much more complicated
structures are under investigation. Along with sophistication of the pattern itself, the
progress was achieved in the increasing of polariton lifetime. The cavities in the shape
of wire were also used in the studies of confinement of polariton quantum fluids by the
optically-induced potentials [54, 55, 44]. Such shape of the cavity changes the dimension
of the system from 2D to 1D, which is important e.g. in the context of the soliton
stability in the quantum fluids. Other direction, which also involves the state-of-the-art
techniques in lithography and etching, is creating the polaritonic systems exhibiting the
states resembling the molecule-like and crystal-like electronic structures. The molecule-
like behavior, such as the manifestation of bonding and anti-bonding orbitals originating
from ”atomic” states with various angular momenta were observed in Ref. [56, 57].
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Figure 2.20: Polariton molecules. a) Emission spectrum of a single molecule (inset with
SEM image of a structure). Bonding (B) and antibonding (A) orbitals fingerprints are
observable. b) Process of hybridization. Emission spectra for various interpillar distances.
c) Experimentally measured and theoretical luminecsence intensity profiles d) sketch of
molecule formation. Adopted from [57].

Manufacturing a polariton honeycomb crystal and observation of a graphene-like po-
lariton band structure including the famous Dirac cones was reported in [58]. The progress
in the sample manufacturing allowed touching much more fine effects, such as the defor-
mation of the Dirac cones with an anisotropic modification of the hopping between the
pillars [59] or even observation of the Landau levels [60]. The topological edge states in a
polariton honeycomb lattice, predicted in [61], were recently observed in real experiments
[62]. Based on the polariton Mach–Zehnder interferometer obtained by the means of cav-
ity etching [63], the possibility of all-optical polariton phase control was demonstrated,
see Fig. 2.23.

2.6.3 Spatial light modulator

The spatial light modulator (SLM) is an electro-optical device, which allows regulating
amplitude and phase of an electromagnetic wave. There are various types of device which
are used either as phase or amplitude modulators. SLMs are actively used for the shaping
of laser beams in the physics of quantum fluids based both on atomic gases [64] and cavity
polaritons [65].

SLM is composed of an array of discrete pixels each acting as a variable waveplate.
Typically, SLM devices are based on the liquid crystal technology and operate either in
the reflection or in the transmission geometry. Due to rather moderate refresh rate of
the liquid crystals, the frequency of SLMs is typically lower than kHz, which is many
orders of magnitude longer than typical characteristic times of the physics of polaritons.
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Figure 2.21: Polariton honeycomb crystal. The SEM image of the grown and etched
structure with the hexagonal element of honeycomb lattice highlighted. Adopted from
Ref. [58]

Figure 2.22: Detection of a polariton condensate in a topological edge mode. a) Adopted
from [62]

.
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Figure 2.23: The polariton Mach–Zehnder interferometer based on the etched microcav-
ity. Adopted from [63]

.

E.g. for the excitation wave vectors of the order of 1 µm−1 the typical group velocities
estimate several µm/ps. In case of quantum fluids, the specific sound velocity (Bogoluibov
excitation or polariton density wave propagation speed) is of the same order. Thus, for
the sample sizes of the dozens of microns one obtains characteristic times of dozens of
picoseconds. The same magnitude is for the polariton lifetime (mainly due to relatively
short cavity photon lifetime) for many semiconductor cavities [66] and only the state-of-
the-art cavities can reach hundreds of picoseconds [67]. According to all this, the SLM can
not be an active real-time player in the processes with polariton wave function evolution.
But it can effectively replace the processes of the sample microfabrication (making the
masks or cavity etching). Thus the straight possibilities are opened to implement a lot of
configurations with the same sample and even in the same setup run. Such opportunity
would be appreciated e.g. for the experimental realization of the polaritonic neuron
concept [68], requiring creating the corridors of a complex shape. Spatial resolution of
SLMs estimates to 512x512 pixels (with a physical size of an active area of a device of
the order of 1 cm), which allows creating very complex patterns. This image can be then
projected using the lenses to the area of the order of micromenters in size, which is typical
scale for the physics of polaritons.

An example of the SLM usage is Ref. [69] where the SLM was used to imprint the beam
with a high angular momentum (Lauss-Laguerre) leading to the formation of a stationary
and thus observable in cw experiment quantum vortices in the polariton quantum fluid.
Developed configuration allowed the observation of the transition from the linear regime
(wave function follows the pumping laser profile) to the non-linear regime (thanks to
the interactions the wave function is not completely constrained by the laser, but the
topologically-protected solutions are stable, in this case the so-called quantum vortices).

Optical potential created using SLM allows trapping the condensates to the various
confined areas, e.g. having the ring geometry [65], and to observe the states with high
angular momentum. Besides the direct spatial imprinting of the optical potential or of
the polariton wave function, the SLM can act as an analogue optical component, e.g.
controlling the beam angles for dispersion measurements [70].
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Figure 2.24: Imprinting the vortices using the Gauss-Laguerre-like SLM-generated laser
profile. Upper row: the sent SLM ”hologram” (phase only (a) and phase + grating (b)
profiles), middle row: linear regime (density (a) and phase(b) of the polaritons), bottom
row: non-linear regime (density (a) and phase(b) of the polaritons). The quantum vortices
are clearly visible as the density defects of low density [69]

.
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Gonokami, A. Löffler, S. Höfling, A. Forchel, et al., “Observation of Bogoliubov
excitations in exciton-polariton condensates,” Nature Physics, vol. 4, no. 9, p. 700,
2008.

[29] T. Byrnes, T. Horikiri, N. Ishida, M. Fraser, and Y. Yamamoto, “Negative Bogoli-
ubov dispersion in exciton-polariton condensates,” Physical Review B, vol. 85, no. 7,
p. 075130, 2012.

[30] R. P. Feynman, “Superfluidity and superconductivity,” Reviews of modern physics,
vol. 29, no. 2, p. 205, 1957.

[31] A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Methods of quantum field
theory in statistical physics. Courier Corporation, 2012.

[32] J. S. Russell, “Report on waves,” in 14th meeting of the British Association for the
Advancement of Science, vol. 311, p. 1844, 1844.

[33] M. J. Ablowitz, Photographs of line soliton interactions, Accessed 19
Nov 2019. https://sites.google.com/site/ablowitz/line-solitons/

x-type-interactions.

[34] T. Tsuzuki, “Nonlinear waves in the Pitaevskii-Gross equation,” Journal of Low
Temperature Physics, vol. 4, no. 4, pp. 441–457, 1971.

[35] Z. Dutton, M. Budde, C. Slowe, and L. V. Hau, “Observation of quantum shock
waves created with ultra-compressed slow light pulses in a Bose-Einstein condensate,”
Science, vol. 293, no. 5530, pp. 663–668, 2001.

[36] E. Kuznetsov and S. Turitsyn, “Instability and collapse of solitons in media with a
defocusing nonlinearity,” Zh. Eksp. Teor. Fiz, vol. 94, p. 129, 1988.

[37] I. Carusotto and C. Ciuti, “Quantum fluids of light,” Reviews of Modern Physics,
vol. 85, no. 1, p. 299, 2013.

[38] E. Madelung, “Eine anschauliche deutung der gleichung von schrödinger,” Naturwis-
senschaften, vol. 14, no. 45, pp. 1004–1004, 1926.

[39] E. Madelung, “Quantentheorie in hydrodynamischer form,” Zeitschrift für Physik A
Hadrons and Nuclei, vol. 40, no. 3, pp. 322–326, 1927.

[40] A. S. Bradley and B. P. Anderson, “Energy spectra of vortex distributions in two-
dimensional quantum turbulence,” Physical Review X, vol. 2, no. 4, p. 041001, 2012.

[41] H. Saito and M. Ueda, “Split instability of a vortex in an attractive Bose-Einstein
condensate,” Physical review letters, vol. 89, no. 19, p. 190402, 2002.

74

https://sites.google.com/site/ablowitz/line-solitons/x-type-interactions
https://sites.google.com/site/ablowitz/line-solitons/x-type-interactions


[42] Y. Kawaguchi and T. Ohmi, “Splitting instability of a multiply charged vortex in a
bose-einstein condensate,” Physical Review A, vol. 70, no. 4, p. 043610, 2004.

[43] A. Amo, J. Lefrère, S. Pigeon, C. Adrados, C. Ciuti, I. Carusotto, R. Houdré, E. Gia-
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3.1 Introduction

3.1.1 Cascades in classical 3D and 2D turbulence

The classical turbulence is a complex behavior (also with a significant role of stochastic-
ity) of liquids at high Reynolds numbers, when in the Navier-Stokes equations (one can
consider the incompressible case for simplicity) the second (convective) term overcomes
the third one, governed by the diffusion (viscous) term. This hierarchy of terms makes
the Navier-Stokes equations non-linear ones, which leads to the complex chaotic behavior
mentioned above. The equation for the velocity u within this framework writes:

∂u

∂t
+ (u · ∇)u− ν∇2u = g, (3.1)

where ν is kinematic viscosity and g is the external force (like gravity). The additional
continuity equation is ∇u = 0.

At low fluid velocity, the second term is smaller than the third and thus no turbulence
occurs. In the case of static solution, no external forces, and no curls in the flow (the so
called potential flow), one can write

u = ∇ϕ, (3.2)

while the problem to be solved becomes

∆ϕ = 0. (3.3)

This is the simplest case of a linear hydrodynamics problem.
In general, the phenomenon of turbulence can be described as follows. We suppose

that the injection of energy takes place at a certain size scale. The injected energy becomes
the kinetic energy of the liquid, providing its motion (or ”pulsations” as said in Ref. [1])
at the size scale λinj. Such pulsations typically have a shape of eddies/vortices. At this
scale, the convection non-linear (second) term in Eq. (3.1) is higher than the dissipative
one (third term).

Then, the kinetic energy is transferred to the pulsations of the lower scales λ1 < λinj,
which form the eddies at the corresponding scale. And this process repeats by the transfer
of energy and creating the vortices of corresponding size for λinj > λ1 > λ2 > ... > λn >
... > λKolm. The last scale in this chain is the so called Kolmogorov scale [2, 3, 4, 5, 6]
at which the viscous term becomes comparable with convection term. In fact, it means
that kinetic energy starts effective dissipation into the heat and the process of its transfer
stops. Such structure of nested eddies was proposed by Lewis F. Richardson in 1922 [7].

The classical derivation of the Richardson cascade by Kolmogorov involves significantly
the reasoning by the method of dimensions. Let the value ε be an energy quantity that
is dissipated in one second per gramm of the liquid. The dimension of ε is erg/(cm · s) =
cm2/s3. This energy comes to the system from the macroscopic motion at the scale λinj
with the velocity of liquid displacement vinj. The macroscopic motion does not depend
on the value of the viscosity (since the corresponding term in the Navier-Stokes equations
is small). It means that ε should be expressed only via λinj and vinj. The only possible
combination giving the correct dimension is
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Figure 3.1: Scheme of energy transfer in the case of 3D classical turbulence resulting in
the Richardson cascade. Adopted from Ref. [8].

ε =
v3inj
λinj

. (3.4)

For the liquid velocity at the size scale λ, using the same reasoning of the dimensions,
one can write

vλ = (ελ)1/3. (3.5)

A parameter which is crucial for the turbulence is the so-called spectral energy density
E(k), defined as a kinetic energy density (or a kinetic energy per gram of a liquid) stored
in the wave vector interval dk. This definition implies that

Ekinetic =

∫ ∞
0

E(k)dk. (3.6)

The dimension of E(k) is cm3/s2. As a result, to correctly ”construct” E(k) from ε
and k, only the following combination is valid:

E(k) = const · ε2/3k−5/3. (3.7)

This is the so-called Kolmogorov law for the Richardson cascade.
If one integrates E(k) from some k′ to infinity, one obtains the energy stored in the

pulsations of the scales smaller than λ′ = 1/k′:∫ ∞
k′

E(k)dk ∝ ε2/3

k2/3
∝ (ελ′)2/3 ∝ v2λ′ . (3.8)

However, for the 2D turbulence this scheme is not relevant, as it was shown by
Kraichnan[9]. He considered the transfer of energy between the bins of various wave
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vectors: ... < ki−1 < ki < ki+1 < .... The basic event for the energy transfer is the elemen-
tary excitation (wave) scattering. For the 3D case, the pair interaction can satisfy both
energy and vorticity conservation laws. For the 2D case, the ”three-particle collisoins”
are obligatory. As a result, in 2D two different cascades take place. Let λinj be the size
scale at which the energy is injected into the 2D fluid. The energy cascade in the 2D case
is inverse and has a power law −5/3. Such a direction of energy transfer leads to the fact
that liquid becomes excited at larger and larger scales, finally at all scales up to the size
of the vessel. The flow of vorticity in this inverse energy cascade is zero. The vorticity is
involved in another cascade, which is direct. In this cascade, the energy flow is zero with
a steady state of E(k) ∝ η2/3k−3, where η is the vorticity transfer rate.

Kraichnan states that the considered 2D case is relevant for the atmospheric flows and
also gives a parallel with quantum fluids based on Bose-Einstein condensates:

There is a fairly close dynamical analogy in which the number density and kinetic-
energy density of the bosons play the respective roles of kinetic-energy density and squared
vorticity. (The flow of vorticity into small scales in two dimensional turbulence is then
analogous to the flow of kinetic energy into high wave numbers during the formation of
the boson condensate.)

So, the direct energy flow (larger to smaller scales) according to Kraichnan takes place
during the formation of a condensate. However, the process of condensate formation is
not a process of the excitation of the already existing condensate by applying the potential
obstacle ”in motion”. Still, the direction of energy cascade in 2D quantum turbulence
is under debates, the results that support both direct and inverse energy cascades were
obtained, as we will see below.

3.1.2 Current discussions on existence of cascades in 2D quan-
tum turbulence

The existence of a similar inverse cascade, suggested for quantum 2D turbulence [10], is
actually still a matter of a strong debate [11]. Contrary to the 3D quantum turbulence,
observed in liquid helium [12, 13, 14] and atomic condensates [15, 16, 17, 18, 19, 20],
the inverse cascade of 2D quantum turbulence remains elusive even in numerical simula-
tions, let alone real experiments [11, 20]. Indeed, while several works[10, 21] report the
numerical observation of an inverse cascade with a scaling of −5/3, others argue against
it [22]. The enstrophy in quantum fluids is proportional to the total number of quan-
tum vortices, which can appear and (most importantly) disappear only in pairs. While
there are arguments in favor of the formation of the enstrophy cascade [23], it is also
argued by other authors [22] that the dissipation of enstrophy in quantum fluids could
be expected to occur differently from the classical ones: instead of requiring a transfer to
smallest scales, it could on the contrary be dissipated at any scale above the vortex size
(healing length). For example, two very large clusters rotating in opposite directions and
forming a dipole could dissipate vorticity along their mutual boundary, without requiring
any transfer to smaller scales associated with the redistribution of vortices and formation
of smaller clusters and isolated vortex pairs. So, the enstrophy cannot be a priori con-
sidered as a conserved quantity which is transferred over scales in order to be dissipated

82



at the smallest ones, and thus the incompatibility of the scaling of cascades cannot be
used to prove the existence of the inverse energy cascade. Still, the self-organization of
individual vortices into clusters discussed theoretically [24, 25, 26, 27] and observed in
recent experiments [28, 29] strongly suggests that the inverse cascade should exist.

Not only the conclusions of the scaling arguments are controversial, but the mathe-
matical limits, imposed on numerical simulations by the properties of the real systems are
so stringent, that they prevent one from drawing definite conclusions from the numerically
observed energy cascades published in the most recent works. Indeed, one never observes
a cascade over more than 1 decade of wave vectors in such simulations (and even in recent
experiments with 3D condensates[19]), and the suggested scaling is usually not a fit of
the spectral density, but only a guide for the eyes. Actually, since the spectral energy
density often presents a transition between large and small scales (either at the injection
scale or at the vortex size), any scaling exponent can be suggested as a tangent to such
bell-like curve, and the interpretation is therefore highly arbitrary.

The chapter is organized as follows. Next section is devoted to introducing the meth-
ods of analysis used in the chapter: numerical solution of the GPE, calculation of the
incompressible kinetic energy (IKE) spectrum based on the Fourier transformation and
its semi-analytical calculation via the positions of vortices. Also the procedure of vortex
cluster separation is described. In the 3rd section, the main results are given: the ob-
tained IKE spectra for various quantum fluid stirring (excitation) methods, separating of
the contribution from clustered vortices, analysis of the obtained power laws, analysis of
the fractal dimensions of the structures of clustered vortices, analysis of energy transfer
between various size scales while exciting the quantum fluid. Finally, the conclusions will
be given.

3.2 Developing the tools to study quantum turbu-

lence

3.2.1 Gross Pitaevskii equation numerical solution

As it was discussed in the previous chapters, the basic tool for numerical simulations of
an interacting bosonic quantum fluid is the Gross-Pitaevski equation [30, 31]. It has been
used for the simulation of quantum turbulence in numerous papers [11, 24, 32], including
ones devoted to studying the energy cascade[33, 34, 21] and behavior of single vortices[35,
36]. This equation can also be extended, to account for the thermal (uncondensed) part
of the fluid [37, 38], and for other effects, such as the energy relaxation [39], finite lifetime
and pumping [40]. However, the description of large-scale systems is difficult to be carried
out at the level of full GPE numerical simulation of the quantum fluid, and in this case
other models are used, such as the point particle gas approximation with the specific
vortex-vortex potentials [25, 41, 42, 23].

The polaritonic quantum fluid is particularly well known for its non-equilibrium driven-
dissipative features, due to the finite lifetime of polaritons usually determined by the
quality factor of a cavity. In present chapter, I deliberately neglect these features, trying
to make an additional step towards the solution of the problem of inverse or direct nature
of the quantum turbulence in the general case of conservative quantum fluids. Such
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description of the polariton fluid corresponds to the limiting case of long lifetime and
fast relaxation processes [43]. It is valid for pulsed excitation case with long lifetime,
where the finite lifetime does not modify the dispersion; its only effect is the slow decay
of density with the corresponding change of the healing length. For this reason, liquid
helium and atomic condensates are usually considered as conservative, despite their decay
via evaporation, which is clearly non-zero. It was also shown previously that polariton
condensates can in many cases be well described as being at thermodynamic equilibrium
[43, 44, 45, 46, 47]. On the contrary, these predictions should not be extended to the case
of quasi-resonant pumping, where the laser is driving the system with a fixed frequency,
and where the effects such as bistability are known to occur [48]. The study of such
configurations is left for future works. One also can not make any conclusions on non-
resonantly pumped polariton condensates in the non-equilibrium (kinetic) limit, where
the relaxation is not sufficiently fast. These two configurations are described by various
versions of the Gross-Pitaevskii equation with model-dependent additional terms, known
to lead to different types of behavior [49, 50, 51, 52, 53, 54, 47, 55, 56]. In this sense,
present results are meant to be used as a reference for comparison.

The Gross-Pitaevskii equation in dimensionless units reads:

i
∂ψ

∂t
= −∆ψ + V ψ +

(
|ψ|2 − 1

)
ψ, (3.9)

where (x, y) = (x0, y0)/ξ (with healing length ξ = ~/
√

2gnm), t = t0gn/~, V = V0/gn,
ψ = ψ0/

√
n (the index 0 marks dimensional variables, n = |ψ0|2 is the density of the

fluid). Having in mind a particular implementation of a quantum fluid based on the
exciton-polariton system, m = 5×10−5m0 for the polariton mass (twice the cavity photon
mass at zero detuning) is used. g is the strength of the polariton-polariton interaction
governed by the exciton-exciton interaction. It can be written as

g = 6EbX
2
c a

2
B, (3.10)

where Eb is an exciton binding energy, aB is the exciton Bohr radius and Xc is the
excitonic fraction. The parameter g equal to 5 µeVµm2, which coincides with the values
given in Ref. [57] for GaAs 2D microcavities [58] is taken. Operating with densities
n ≈ 200 µm−2 yields healing length ξ close to 1µm. A typical time scale for polaritons
t0 = 1 ps corresponds to dimensionless t = 0.9. Thus, one concludes that micrometers
and picoseconds are quite natural units for consideration of the problem of turbulence in
polariton quantum fluids.

In general, the parameters are taken to be corresponding to the state-of-the-art GaAs
microcavities, which offer the best performance for the possible observation of the studied
effects. As said above, one neglects the finite lifetime, except in the subsection 3.3.5
shown for comparison. The polarization effects, and the non-parabolicity of the polariton
dispersion (which could change the k−3 spectrum of the vortex core) are also neglected.
One also entirely neglects structural disorder effects which in real systems might play
an important role in vortex dynamics. Indeed, the chemical potential is one order of
magnitude higher than the typical disorder amplitude in high-quality cavities. This is
why it is reasonable to neglect such disorder as a first approximation. All these effects
are left for future studies, for which the present results and methodologies will serve as
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b)a) c)

e)d)
Size: 1024 um x 1024 um
Mesh: 1024 x 1024 
Density: ~200 um-2 
Interaction strength g:
0.005 meV um2

Figure 3.2: Schematic representation of the employed stirring strategies. a) Large cross,
b) Classical spoon, c) Brownian spots d) White noise e) Gauss-Laguerre potential

a reference. The choice of the polariton system is important because of the possibility
of performing single-shot interference measurements, allowing the detection of the spatial
position of vortices, as will be discussed below. The choice of the polariton system is also
motivated by its extended coherence [59], providing a large ratio between the maximal
system size and the healing length.

In present numerical simulations, the time step was 0.01 ps and anN×N = 1024×1024
mesh was used. The Laplace operator was calculated using the Fourier transform with
massive parallelization provided by the GPU ensuring a 14-fold speed increase. The third
order Adams–Bashforth scheme was used for the integration over time. The Matlab and
Mathematica packages are used for numerical solution of DDGPE and further analysis.
The size of the square-shaped space region where the simulation was performed was
L =1024 µm, which corresponds to the maximal wave vector kmax =

√
2πN/L ≈ 4µm−1.

Higher wave vectors are required only for a better description of the vortex core.

3.2.2 Strategies of stirring the quantum fluid

The main feature of the turbulence is the energy flow from the injection scale towards
other scales. It is this flow that leads to the formation of self-similar spatial structures. A
cascade should manifest itself in the so-called incompressible energy part, associated with
rotation (see below). Thus, the observation of cascades, either direct or inverse, absolutely
requires the formation of quantum vortices, and not just of density waves. In classical
2D turbulence, a simplest random-potential scheme has been shown to be sufficiently
efficient for the observation of a large-scale inverse energy cascade [60]. In quantum 2D
turbulence, such method does not allow to create vortices efficiently, because, contrary to
the classical case, creating a pair of well-defined vortices with a vanishing order parameter
in their centres requires a finite amount of energy [61] Epair ≈ 6~2n/m precisely because
these vortices are quantum. A single quantum vortex requires even a larger minimal
energy Ev = πn~2 ln (1.46R0/ξ) /m (R0 is the system size) for its creation [62].

As mentioned above, the first strategy used was the stirring by a propagating potential
defect [32] or flow around stationary defects [34, 21]. Random imprinting of vortices
followed by healing by simulation with imaginary time has also been used[63, 24]. In

85



polariton condensates, persistent vortices have already been shown to appear because of
the flow of the condensate against a random potential [64].

In the present manuscript, several different quantum fluid stirring strategies were
compared (see Fig. 3.2):

• Large cross-like potential

• Classical rotating spoon

• Several spots in brownian motion

• White noise with spatial correlations (for comparison with a classical fluid [60])

• Several small potential wells defined by the intensity of the interference of 2 Gauss-
Laguerre (GL) beams

As it will be discussed below, these procedures inject energy at different scales. To
obtain a quasistationary configuration, very long times for the stirring of the quantum
fluid (5 ns), for its relaxation (20 ns), and for the averaging during the extraction of the
cascade (5 ns) were used. However, the analysis of the dynamics presented in the final
part of the work demonstrates that the characteristic formation time of the cascade is of
the order of 200 ps, which is much closer to the lifetimes of the state-of-the-art cavities.

1. Large cross-like potential
The length of the cross was 860 µm and the width 100 µm (with additional 64 µm Gaus-
sian filter-based smoothing of borders). The full 360◦ rotation took 1280 ps. The potential
depth V = 10 meV. Duration of stirring was 1.5 ns and total simulation time was 25 ns.

2. Gauss-Laguerres
The stirring was performed by 32 randomly placed rotating potentials during first 0.5
ns (total simulation time was 25 ns). The potential depth V = 10 meV. Profile of each
stirrer was given by a superposition of the two 2nd order Gauss-Laguerre beams. One of
them was stationary and the second one was rotating. To obtain the potential profile, the
electric field magnitude square was taken. The resulting profile resembled the 4 smoothed
spots with the distance between the opposite ones 20 µm, see also the sketch in Fig. 3.2.
The full 360◦ rotation of resulting potential (not the electric field) took 45 ps, which yields
approximately the same linear velocity as for large cross strategy.

3. Classical rotating spoon
The orbit diameter of the spoon was 632 µm. The shape of the spoon was given by
Ṽ (r) = (exp((r − 32µm)/(2.5µm)) + 1)−1. The full 360◦ rotation took 1280 ps, as for
the cross. The potential depth V = 10 meV. Duration of stirring was 3.0 ns and total
simulation time was 25 ns.

4. Several spots in Brownian motion
The trajectory was obtained as a Beta Spline curve defined by the points obtained by
random walks. Distance of each step was fixed to 50 µm and the direction was random
(30 ps between two steps). Hence, the speed of the spots was approx 2 µm/ps. Number
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of spots was 10, total simulation time 50 ns, stirring time 1.5 ns. The spots were in the
shape of Gaussian profiles with the radii of 7 µm and the potential depth V = 10 meV.
The routine BSplineFunction in the Mathematica package was used to obtain the
curve.

5. White noise
White noise was obtained from 1024x1024 matrix of uniform random values from 0 to 1
multiplied by the amplitude 80 meV. Then for smoothing and thus bringing some finite
spatial correlations the Fourier image was filtered with the Gaussian function in reciprocal
space. The width was of Gaussian was 2π

rcorrel
, where the correlation length rcorrel = 75 µm.

Instantaneous switching the potential to the new random realization was performed each
0.4 ps. Total simulation time was 50 ns and the white noise potential was applied during
the first 5 ns.

3.2.3 Definition of IKE spectrum

Once the numerical solution of GPE is performed, one obtains the possibility to extract
the polariton wave function (as a function of spatial coordinates and time) and to provide
the analysis essential for the studies of the turbulence. This analysis is based on the
spatial distribution of polarion velocity and density.

The kinetic energy associated with turbulent motion of quantum fluid is defined by
the incompressbile part of the velocity. Meanwhile, the compressible part is associated
with the Bogolons, introduced in previous chapter. The nature of Bogolons implies the
variation of fluid density, which corresponds to the characteristic feature of compressibility.

The quantum fluid velocity is closely related with the current operator and writes

v(r) =
1

|ψ(r)|2
· ~

2mi
· (ψ∗(r)∇ψ(r)− ψ(r)∇ψ∗(r)) , (3.11)

where m is the polariton mass.
According to Ref. [34], the kinetic energy can be calculated for the wave function via

the density weighted velocity field in space domain:

E(i,c) =
m

2

∫
drn(r)

(
|v(i,c)x (r)|2 + |v(i,c)y (r)|2

)
, (3.12)

where i and c indexes correspond to incompressible and compressible velocity parts and
n = |ψ|2 is the density. This requires obtaining an instantaneous information on both
density and phase of the quantum fluid, which can be obtained using interferometry [65].
The equation above can be rewritten as

E(i,c) =
m

2

∫
dr
(
|u(i,c)x (r)|2 + |u(i,c)y (r)|2

)
, (3.13)

where the density-weighted velocity u(i,c) is defined as follows: u(i,c) =
√
nv(i,c). The

incompressible and compressible density-weighted velocity parts should obey the following
relations:
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∇ · u(i) = 0

∇× u(c) = 0

These definitions straightly match with the Helmholtz decomposition of a vector field
to the incompressible and compressible parts.

Eq. (3.13) can be rewritten in the momentum domain

E(i,c) =
m

2

∫
dk
(
|u(i,c)x (k)|2 + |u(i,c)y (k)|2

)
, (3.14)

where u(i,c)(k) are the Fourier images of u(i,c)(r). The Fourier components u(i,c)(k) of
the incompressible and compressible density-weighted velocity parts obey the following
relation in the momentum domain:

k · u(i)(k) = 0,

k× u(c)(k) = 0.

If the angular dependence is integrated out, the spectral energy density can be written
as:

E(i,c)(k) =
mk

2

∫
dθ
(
|u(i,c)x (k)|2 + |u(i,c)y (k)|2

)
, (3.15)

where the absolute value k and the polar angle θ define the wave vector k.
This is the same spectral energy density, which figures in Eqs. (3.6) and (3.7).
It is this spectral energy density which is expected to scale as E(i)(k) ∝ k−5/3 in both

the direct and the inverse energy cascades.

3.2.4 Decomposition of velocity field to incompressible and com-
pressible components

In order to ensure that the obtained results are not method-dependent, the several tech-
niques of numerical decomposition of the velocity field into compressible and incompress-
ible parts were used. I present them in this section.

(i) The composition in the Fourier (momentum) domain
Incompressible components can be obtained from a given density-weighted velocity

field in the momentum domain u(k) as follows:

u(i)
α

(k) =
∑
β=x,y

(
δα,β −

kαkβ
k2

)
uβ(k), (3.16)

u(c)
α

(k) =
∑
β=1,2

kαkβ
k2

uβ(k), (3.17)

where α and β indices are the Cartesian coordinate directions.
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(ii) Decomposition in the spatial domain
Here, one operates fully in the spatial domain and the incompressible and compressible

velocity parts are defined via the vector potential Φ and scalar potential φ as follows[66]:

u(i)(r) = ∇× Φ(r),

u(c)(r) = ∇ · φ(r).

The vector potential can be derived via

Φ(r′) =

∫
dr(∇× u)(r) ·G(r− r′)−

∮
ds(n× u)(r) ·G(r− r′), (3.18)

where G is the Green’s function of Poisson equation in the space of a given dimensions.
For the considered here 2D problem it is G(r− r′) = 1

2π
ln(|r− r′|). In 3D one should use

G(r− r′) = 1
4π|r−r′| .

For the scalar potential φ one can write in the same manner

φ(r′) =

∫
dr(∇ · u)(r) ·G(r− r′)−

∮
ds(n · u)(r) ·G(r− r′). (3.19)

In the numerical implementation, the integrals (3.18) and (3.19) can be taken as a con-
volution of a matrix representing the curl of the velocity field ∇× u and a matrix for a
Green’s function G(r). The latter has a size of 2N × 2N with the r = 0 corresponding to
the center of the matrix: (N,N) cell (here N is the mesh size).

After the incompressible u(i)(r) and compressible u(c)(r) parts of the density-weighted
velocity are derived, one makes the Fourier transform and uses the formula (3.15). The
second terms in Eqs. (3.18) and (3.19) can be omitted due to periodic boundary con-
ditions. The same is for widely used ”cup” simulations due to zero density n at the
boundaries.

(iii) Mixed decomposition
Eqs. (3.18) and (3.19) are de facto the solution of the following spatial domain Poisson

equations for the vector and scalar potentials:

∆Φ = ∇× u,

∆φ = ∇ · u,

with the source terms being the curl and the divergence of the given velocity field u.
These Poisson equations can be solved using the Fourier transform scheme:

k2Φ = (∇× u)(k),

k2φ = (∇ · u)(k),

In 3D space, the systems written above contain 4 equations. For the present 2D case, the
curl of the field u aligned in (x, y) plane has only the z component and thus one has only
two equations.
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3.2.5 Analytical derivation of the IKE spectra via the position
of vortices

The Kolmogorov energy cascade is expected to form in the IKE spectral density, and its
observation requires the separation of the density-weighted velocity field into the com-
pressible and incompressible part [34, 66], with the selection of the latter. Importantly,
the spectral energy density of the incompressible part of the velocity field can also be
calculated analytically from the positions and the signs of the quantum vortices [34, 33].
This is possible because the quantum fluid is irrotational and all the vorticity is concen-
trated only in vortices. One also needs such parameters of the quantum fluid as its density
n, interaction constant g, and polariton mass m. One writes the IKE spectral density
(IKE spectrum) as

E(i)(k) = NvortΩξ
3F (kξ)G(k), (3.20)

where F = Λ−1f(kξΛ−1) is the single vortex spectrum, Nvort is the total amount of
vortices, Ω = 2π~2n/(mξ2) is the ensthropy quantum, the parameter Λ = 0.8249... and
the function f(z) writes

f(z) =
z

4

(
I1

(z
2

)
K0

(z
2

)
− I0

(z
2

)
K1

(z
2

))
. (3.21)

The function G(k) is shaped by the coordinates ri,j and the signs κi,j of the vortices:

G(k) = 1 +
2

Nvort

Nvort−1∑
i=1

Nvort∑
j=i+1

κiκjJ0 (k|ri − rj|) , (3.22)

where the indices i and j enumerate all vortices.
This approach allows not only to find the total incompressible energy spectrum, but

also to consider the contributions of single vortices and clusters separately [42, 33], which
turns out to be important in order to observe the Kolmogorov cascade at a large scale. The
cluster selection algorithm was adopted from Refs. [32, 42] with an additional optimization
available in Mathematica. The positions of vortices were determined from the phase of
the wave function.

The result of the comparison of 3 numerical schemes of IKE derivation introduced in
previous section (Fourier, spatial and mixed) and analytical approach is given in Fig. 3.3.
Unlike other figures below, the lower quantum fluid density (9 µm−2) was used to give the
possibility to look closer into the vortex core. The total kinetic energy is slightly higher
than its incompressible part, which means that the amplitude and the concentration of
Bogolons are relatively weak.

3.2.6 Clustering procedure

The formation of an energy cascade is necessarily accompanied with the formation of
spatial structures at different scales. For the incompressible part of the quantum fluid,
it means the formation of clusters of quantum vortices of different sizes. To confirm the
formation of such clusters and to separate their contribution from that of an uncorrelated
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Figure 3.3: Verification of IKE spectra calculation. 3 numerical schemes: Fourier, Spatial,
Mixed (points), and analytical (curve). Gray points show the total kinetic energy (mostly
rotational and affected by bogolons only at low wave vectors). The mesh and the region
size parameters were the same as in other simulations, but the quantum fluid density was
approx. 9 µm−2 (healing length ξ ≈5.5µm). Stirring was performed using four spoons. 8
vortices were generated.

vortex gas, the cluster detection technique was used. This technique will be described in
the present section.

One generally follows the cluster selection procedure described in section VI of Ref.
[42]. One begin with the creating the list of vectors li = (l(i, 1), l(i, 2), ..., l(i,NOSi)),
consisting of the indices of the neighbors of i-th vortex sorted by increasing the distance
(i = 1..Nvort, where Nvort it the total amount of vortices). The latter (or the only) member
of li is the index of the nearest vortex of the opposite sign, thus NOSi − 1 is the number
of the same-signed neighbors of i-th vortex lying closer than the Nearest Opposite Sign
neighbor. After that, one creates the l′i vectors by dropping the last element and thus l′i
vectors list only the neighbors of the same sign of i-th vortex. In some cases (e.g. for
vortex belonging to the dipole) l′i can be empty.

At the first step, one finds the vortex pairs by finding the pairs of i and j indices so
that NOSi = 1 and NOSl(i,1) = 1 is also equal to one. After that the pair (i, l(i, 1)) is put
to the list of connected vortices L.

At the second step, for all i and for all j ≤ NOSi − 1 one adds the pair (i, l′(i, j))
to the list of connected vortices L if l′l(i,j) contains index i. This procedure is in fact the
finding of mutual vortex pairings.

Then one considers the list of connected vortices L (containing both vortex pairs and
the clusters of the same-sign vortices) as a graph and separate its connectivity components
using the ConnectedGraphComponents routine of the Mahtematica package. Each
connectivity component is thus a cluster. If the connectivity component consist of exactly
two vortices with opposite circulation, it is marked as a pair, otherwise it is counted as a
cluster.
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Figure 3.4: The IKE spectra obtained numerically by decomposition in the reciprocal
space for different stirring strategies. The red arrow is for the inverse intervortex distance
kl.

3.3 Results

In this section, the total incompressible energy spectra for different stirring strategies
are first studied. It will be shown that, independently of the stirring strategy, such
spectra are strongly dominated by the contribution of individual vortices, which prevents
the observation of the cascade over large energy scales. In the second subsection, the
contribution of individual vortices will be removed while keeping only the one belonging
to clusters. This procedure reveals the cascade over a significantly large range, which
confirms the arrangement of clustered vortices in large scale self-similar structures. In the
last subsection, the inverse nature of the cascade will be demonstrated by analyzing the
time evolution of the energy distribution during the stirring procedure.

3.3.1 Total incompressible kinetic energy spectra

Figure 3.4 shows the IKE spectra obtained for various stirring strategies. The incompress-
ible energy part was separated by decomposition in the reciprocal space (see Methods).
One can expect to observe the −5/3 power law cascade in the IKE spectrum only between
the wave vectors kL = 2π/L (L is the system size) and kl = 2π/l, where l is the mean
inter-vortex distance (l was approximately 20 µm in most of conducted simulations and
thus klξ ≈ 0.3). In Fig. 3.4, such power law is visible only for the cross and spoon stirring,
and only in a narrow wave vector range (in the vicinity of kξ = 0.02). In this figure, kl
is marked by a red arrow. The difficulty to observe the −5/3 power law characteristic
for the formation of multiscale structures is explained by the large contribution of single
vortices, as will be shown in the next section.

It is natural [34] to measure the IKE spectral density in the units of ensthropy Ωξ3.
According to the definition, the function F (kξ) is of the order of 1 at kξ = 1 and the
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function G(k) ≈ 1 at k � kl. Thus, in the vicinity of the point kξ = 1 the magnitude of
IKE spectrum estimates the total amount of vortices in the system Nvort.

For kξ between klξ and 1, one should observe the energy spectrum of a single vortex:
k−1, because at this scale a vortex does not have any neighbors to form any structures.
For wave vectors larger than 1/ξ (short length scale), one obligatory observes a k−3 law
which is a fingerprint of the vortex core wave function (this might be different for exciton-
polaritons in some regimes because of their non-parabolic dispersion that is neglected
here). In Fig. 3.4, all stirring strategies exhibit similar behavior at wave vectors higher
than kl : there is a k−1 power law below 1/ξ and k−3 above 1/ξ.

It is interesting to note that in Ref. [33] the −5/3 cascade signatures have been
observed between kl and 1/ξ. In Refs. [34, 32] there was also no transitional k−1 regime
between 1/ξ and kl, and the −5/3 cascade started immediately after 1/ξ. The absence
of an intermediate region with k−1 power law in these works might be explained by the
short inter-vortex distance which is close to the healing length, or by a large variation in
the intervortex distance.

Finally, the differences between stirring strategies can be observed in Fig. 3.4 at kξ
smaller than 0.02-0.03. Indeed, the stirring based on the classical spoon and large cross
generates large-scale vortex clusters. The energy injection for these strategies is still
efficient at the scales of kξ = 0.01. The three other stirring procedures do not inject
energy at large scales and the IKE spectra drop below kξ = 0.03. However, in all cases
most of the energy spectrum is dominated by the signal arising from single vortices, which
strongly hinders the observation of the Kolmogorov energy cascade because of the wide
spreading of single vortex energy in k-space. So in the next subsection, the treatment
procedure will be changed to the procedure using the real space selection allowing to
eliminate single vortices in order to keep only the part of the IKE stored in clusters.

3.3.2 Incompressible kinetic energy spectra of clustered vortices

Here the IKE spectra will be computed using the analytical procedure described in the
”Tools” section. This procedure is based on the detection of vortices in real space. Indeed,
the knowledge of the wave function at any time allows to determine the position of all
vortices. The velocity field induced by these vortices is the whole incompressible velocity
field. Once the vortex position is known, the incompressible velocity field can be computed
analytically (see Methods). Figure 3.5 shows the result of this procedure (for all stirring
procedures). These results are compared with those obtained in the previous section based
on a decomposition in reciprocal space. One can indeed check that the results obtained
using both methods coincide for all stirring procedures, confirming the possibility to use
the analytical treatment.

It is then possible to make one step further by determining if a given vortex is single,
in a dipole, or in a cluster (details on the procedure are given in the Appendix). This is
illustrated by Fig. 3.6 showing a snapshot of the phase of the quantum fluid stirred by
Brownian potentials. The winding of each vortex is shown by colour (+1 - red, −1 - blue).
Single and dipole vortices are marked by small circles. Vortices belonging to clusters are
marked by large circles. One clearly sees that a large fraction of vortices (about 50%)
belong to clusters. At the same time, it is natural that the signal from the other 50%
that are not in clusters is quite important in the total IKE spectrum.
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Figure 3.5: IKE spectra obtained numerically (points) and analytically for all vortices
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Figure 3.6: Phase of the wave function for Brownian stirrers combined with the results
of clustering procedure. The vortices belonging to the clusters are highlighted with the
large circles. Relatively rare vortex dipoles are connected by green lines.
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Figure 3.7: IKE spectra for Brownian stirrers. Red dots are for numerical procedure,
green dots are for analytical procedure for all vortices, blue dots are for clustered vortices
only. The dashed lines are the guides for the eye with −5/3 (blue dashed) and −1 (red
dashed) power functions. The blue arrow shows the inverse potential spot size (∼ 7ξ) and
the orange one shows the inverse characteristic scale of Brownian motion (∼ 50ξ). The
red arrow is for kl.

Figure 3.7 compares the IKE spectra with and without selection of clustered vortices.
Arrows mark the characteristic scales from which the inverse cascade might be expected
to start: the inverse Brownian trajectory scale (orange), the inverse intervortex distance
kl (red), and the inverse spot size (blue). A −5/3 power law is visible for all vortices and
for clusters between kξ = 0.01 and kξ = 0.05, much lower than kl. The spectra differ
above kξ > 0.05. The removal of the single vortex and dipole contributions reveals a
very clear −5/3 slope over more than one order of magnitude, which was hidden in the
total IKE spectra. It becomes clear therefore, that the removal of single vortices is crucial
for the analysis of the turbulence phenomena via the incompressible energy spectrum.
The excess of single vortices in the system is explained by the relatively low density of
the vortex gas, preventing many vortices from participating in the interactions that allow
building the inverse cascade starting from the inverse trajectory scale (orange arrow).

Fig. 3.8 compares the IKE spectra analytically for all vortices and for clustered vortices
only for all employed strategies of fluid excitation. One sees that at low wave vectors the
curves coincide with high accuracy. It means that the macroscopic motion of the quantum
fluid is defined by the vortex clusters only. On the contrary, at the wave vectors larger
than wave vector kl the macroscopic motion can not be seen and IKE spectrum magnitude
is proportional to the number of vortices only. For such stirring schemes like spoon or
large cross number of clustered vortices is very large and thus IKE spectra for all vortices
and for clustered vortices nearly coincide. On the contrary for GL, white noise, and
Brownian spots schemes the difference is significant: the number of clustered vortices is
lower.

The power spectra computed with the same spatial selection procedure for all five
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Figure 3.8: IKE spectra obtained analytically for clustered vortices only (points) and for
all vortices (curves). One sees the high similarity at low wave vectors while for high wave
vectors energy for clusters goes down due to ”truncating” single vortices and dipoles. Red
arrow denotes the inverse characteristic intervortex distance.

stirring procedures are shown in Fig. 3.9. A −5/3 power law is now visible in all cases,
and also extends over more than one order of magnitude over k. This is demonstrating
the presence of self-similar structures of vortices with their size varying from about 30 µm
to 600 µm.

In order to check that the observed power law indeed corresponds to the expected
scaling of −5/3, one should fit the IKE resulting from the analytical procedure with an
allometric (power) function f = axγ with fitting parameters a and γ (Fig. 3.10, dots and
solid line). The non-linear least squares procedure used with the Levenberg-Marquardt
error minimization algorithm, with the confidence interval for parameter values obtained
from the variance-covariance matrix using the asymptotic symmetry method. The fit
shows that the expected value −1.(6) is within the bounds of the confidence interval:
γ = −1.5 ± 0.2, confirming the presence of the Kolmogorov scaling over more than one
order of magnitude of wave vectors and energies. It should be stressed that although the
precision is relatively low, this is a true fit of the numerical experiment, and not just a
guide for the eyes. The importance of performing a fit is underlined by the fact that even
for a completely random arrangement of vortices (vortex gas) obtained without solving
the Gross-Pitaevskii equation and so without any possible self-organization effects linked
with quantum turbulence, the IKE spectrum naturally demonstrates a bell-like curve,
which can have a tangent slope of −5/3 in a certain region. Thus, a thorough analysis
confirming the existence of a large scale cascade is really required to draw any conclusions
on the quantum turbulence.

Analyzing power law dependencies can be particularly difficult, because one needs to
confirm that the observed approximately linear distribution on the loglog plot is best
explained by a power law [67], and not by some other distribution function (for example,
exponential or log-normal). When there are no other means, one has to check if the
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Figure 3.9: The analytically obtained IKE spectra for all 5 stirring strategies for the
clustered vortices only. The red arrow is for inverse intervortex distance kl. The vertical
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Figure 3.10: IKE spectrum for Brownian stirrers (clusters only) with a power-law fit
giving γ = −1.5± 0.2 (expected −1.66).
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distance of the measured distribution from the ideal one is not higher than for simulated
power-law distributions. In a particular physical system, however, the power law energy
distribution arises from the formation of the self-similar spatial structures, that is, fractal
clusters. In the next section, I will analyze the spatial distribution of vortices in order to
confirm that the observed power-law distribution is not accidental.

3.3.3 Fractal dimension of vortex clusters

The Kolmogorov’s arguments for the existence of cascade in classical turbulence are based
on the self-similarity of observed spatial patterns at different scales. This self-similarity
in mathematics is what characterizes fractal structures. An inherent property of fractals
is their non-integer dimensionality: a fractal formed of an infinite number of points on a
plane is neither a 2D object like a polygone, nor a 0D object like a point, but something
between the two. Thus, checking if the clusters of vortices exhibit a non-integer (fractal)
dimension, allows us to prove that their spatial patterns are indeed self-similar, as required
for the formation of an energy cascade. Such methods could be applied to the recent
observation of vortex clusters in atomic condensates [28, 29].

One way to obtain the fractal dimension is the box-counting approach, and the cor-
responding dimension is called box-counting or Minkowski-Bouligand dimension. This
approach consists in covering the studied object by a mesh with the cells (boxes) of size
ε and counting the number of boxes required to fully cover the object Nbox(ε) for various
the mesh sizes ε. For present case, the curve of box count Nbox to cover all vortices vs.
box size ε is plotted. The slope of tangent line for this curve finally gives the box-counting
fractal dimension of the pattern formed by the clusters of vortices. The asymptotics of
the curve are always integer (non-fractal): at small scales, each vortex is just a 0D point,
whereas at large scales the whole system is just a 2D object. It is the existence of a large
transition region between the two limits which determines the fractal dimension.

It is reasonably to consider only the best configuration - the case of Brownian stirrer.
Vortices were treated as points with coordinates ri obtained from the wave function in the
same manner as for analytical calculation of IKE spectra. The system size was 2048 µm.
For this ”fractal” analysis, only the vortices of the same sign were used.

The results of the analysis are shown in Fig. 3.11 together with the IKE spectrum
shown for reference. The box size ε is given in terms of the corresponding wave vectors
2π/ε, to have a common horizontal axis with the energy distribution plots. I calculate
the fractal dimension for clustered vortices and compare it with that of all vortices (which
serve as a non-fractal reference). For clustered vortices (red curve), a clear transitional
regime is present between the 2D and 0D limits, with the fractional dimension of ≈ 0.6.
The scale range at which this regime is present straightly matches with the region of
−5/3 power law in IKE spectra, confirming that the energy cascade originates from the
self-similarity. For comparison, the case of all vortices (black line) shows an immedi-
ate transition between the 0D and 2D asymptotics, confirming the absence of a fractal
structure in this case. Therefore one can conclude that the clustered vortices exhibit a
well-defined fractal dimension confirming the self-similarity of their structure at the same
range of scales where the energy cascade is observed.

To check the applicability and robustness of the realization of the box counting ap-
proach, the comparison with a random distribution of points and with an artificially
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Figure 3.11: Fractal (box-counting) dimension of vortex clusters. Solid curves show the
dependence of box counts to cover all vortices on the size of the boxes. Dots are for
analytical IKE spectra. Red color is used for clustered vortices and black color is used
for all vortices. Dashed lines give the eye guides for some important powers. Red arrow
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Figure 3.12: Illustration of the box counting algorithm applied to determine the fractal
dimension of the patterns formed by votrtices. Box size corresponds to kξ = 0.9. Each
vortex is denoted with a red point. Only the same-sign vortices were taken into account.
Panel a) is for clustered vortices only and panel b) is for all vortices.

created pattern in the shape of the Sierpinskii triangle have been carried out.

Figure 3.12 illustrates the box-counting algorithm that was used for the determination
of the fractal dimension of the structures formed by vortices. As it was mentioned above,
for this purpose, the clusters of vortices of the same sign were considered. For the opposite
sign the picture is the same. The box size shown in the figure is chosen as an example of
the transitional regime 2πξ/ε = 0.9. For smaller box sizes, each vortex is covered with
a single box and the system is effectively 0D. On the contrary, for larger ε, all system is
covered by boxes (without voids) and thus it is 2D. The spatial distribution of all vortices
without cluster selection exhibits the 2D nature already at this size scale and does not
exhibit an evident transitional regime.

To prove that the transitional region observed for clustered vortices indeed corresponds
to what one would expect for a fractal structure, I have compared it with a set of randomly-
distributed points and with a well-known fractal structure (Sierpinski triangle). The latter
was generated by the so called chaos game method. Starting from a randomly chosen point
v1 in the triangle with the vertices p1, p2, and p3, one consequentially makes the steps
directed to randomly chosen triangle vertex but passing only half of required distance.
The corresponding recurrent formula reads vi+1 = (vi+pri)/2, where ri a random integer
from 1 to 3. Such Sierpinski triangle-like patterns were generated for 320 points and then
rescaled to give the same mean distance between the points as the one observed in the
vortex distributions (approx. 25ξ). Finally, all space was tiled with a 2D lattice of such
patterns to obey the transition to 2D regime at large scales.

Figure 3.13 allows to compare the size of the transitional region for randomly dis-
tributed points (blue), vortex structures arising from the turbulence (green), and a per-
fect fractal structure of the Sierpinski triangle (orange). For random points, this region
is the smallest and no fractal dimension can be determined. For the vortex clusters and
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Figure 3.13: Comparison of vortex clustering algorithm for clusters of vortices and arti-
ficially generated patterns in the shape of Sierpinski triangle and random spatial distri-
bution. The power function of log2 3 ≈ 1.58 corresponds to the exact value of Sierpinski
triangle fractal dimension.

the Sierpinski triangle, the transitional region is much larger, and a fractal dimension
of log2 3 can be determined correctly for the Sierpinski triangle. One can thus conclude
therefore that vortex clusters indeed form a fractal structure. The fact that the size of the
transitional region for the vortex clusters is slightly smaller than for the triangle could be
partially explained by the fact that the fractal dimensions are different, and the transition
to the 2D exponent is therefore smoother in the case of the Sierpinski fractal.

At the same time, Fig. 3.13 shows clearly that in a finite-size system the fractal dimen-
sion region does not have an infinite extension even for a perfect self-similar distribution
of points. In order to robustly observe the intermediate regime with fractional Minkowski-
Bouligand dimension one requires the system size to be at least two orders higher than
the average distance between the points. Practically, for polaritons such system sizes of
several hundreds of microns are already achievable, and increasing them to the scale of
1 mm should allow to significantly increase the reliability of the determination of the
fractal dimension.

In the next subsection, the time evolution of the energy spectra will be studied in
order to establish the nature (direct or inverse) of the observed energy cascade.
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3.3.4 Dynamics of the energy redistribution and cascade forma-
tion

In order to understand the formation of a −5/3 power law region in the IKE spectra,
one should analyze the time dynamics during the first stages of stirring by Brownian
potentials. In this section, the cluster selection procedure was not performed in order to
keep track of the total IKE spectrum. Similar analysis of the time evolution of the energy
distribution has been carried out in previous works [34, 21].

Fig. 3.14(a) shows the IKE spectra at four different times after the start of the stirring.
The corresponding wave vectors are marked with dashed lines in panel (a). One sees that
at the earlier time (225 ps, red dots) the kinetic energy is mostly concentrated at large
wave vectors (small size scales), which corresponds to the injection scale (spot size, peak
at approx. kξ = 0.3). Then the kinetic energy is transferred from high wave vectors to
lower wave vectors versus time. This is directly visible on the IKE spectra. It is also
quantitatively confirmed in panel (b), showing the ratio of the spectral energy density
measured at low and high wave vectors. This ratio grows from 0 at early times, when
there is no energy at all at small wave vectors, to about 15. One can see that this process
takes about 200 ps. This energy redistribution from small scales to large scales due to the
intervortex interactions clearly confirms the formation of the inverse Kolmogorov cascade.
The relative rapidity of this process provides an a posteriori justification for neglecting
the polariton lifetime (which can be of the order of hundreds of ps) in the simulations.
Interestingly, the energy spectrum at 500 ps shows a quite extended −5/3 slope without
eliminating isolated vortices. This situation corresponds to an optimal moment of time,
when the Kolmogorov cascade has built up, while the fraction of individual vortices re-
mains low. The dashed curve with hollow circles shown for comparison in the same figure
for the situation at 1 ns demonstrates a growth of the maximum at high wave vectors
due to the single vortices, which leads to the narrowing of the −5/3 region. At even later
moments of time, when the stirring stops, strong currents break up some of the clusters
increasing the relative fraction of individual vortices even more (by up to 20%). The final
conclusion is that at any moment of time removing the contribution of individual vortices
allows to increase the scale of the observation of the −5/3 cascade.

The difference in the IKE spectra for different stirring strategies stems from the limited
efficiency of the energy redistribution at large scales. If the energy is injected at a scale
which is too low, then the structures of the largest scales just cannot form, because of
the decay of the vorticity at all scales. Importantly, the observed signature of the inverse
cascade does not rule out the presence of a direct one: the energy can be transferred from
the injection point in both directions. For us, the most important was to demonstrate
the possibility of the inverse cascade, debated for a long time.

3.3.5 Finite lifetime effects

Here, one can see the results of a single simulation with a finite lifetime, which confirm
that present conclusions hold qualitatively for realistic polariton systems, provided that
pulsed pumping is used. An additional decay term in GPE describing the finite lifetime
was used:

i
∂ψ

∂t
= −∆ψ + (V − iΓ)ψ +

(
|ψ|2 − 1

)
ψ, (3.23)
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Figure 3.14: a). Net IKE spectra obtained analytically for Brownian stirrers at several
time moments during stirring. b) Ratio of the spectral energy density at two wave vectors
shown by dashed lines in (a), as a function of time. Vertical lines in (b) correspond to
the moments of time in (a).
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Figure 3.15: Net IKE spectra obtained analytically for Brownian stirrers at several time
moments during stirring for a simulation with a finite lifetime τ = 300 ps.

where Γ = ~/2τgn0 is the dimensionless decay rate (n0 is the initial density). As discussed
in the main text, the only effect of this term is the decay of particle density and the
associated increase of the healing length. This decay alone does not lead to any particular
driven-dissipative instabilities. On the contrary, the finite lifetime reduces the instabilities
existing in the conservative case, such as the modulational instability (see Ref. [68] and the
next chapter) and, by reducing the growth rate of the perturbations (determined by the
imaginary part of their energy). If the maximal growth rate drops to zero, the instability
disappears, and therefore the system becomes more stable than in the conservative case.
This may indeed affect the generation of vortex-antivortex pairs by the stirrers in the
quantum turbulence under the study: if the decay is sufficiently fast, no vortices will be
generated at all. However, in the limit of long lifetime Γ� gn (almost conservative case),
this reduction of the vortex generation is negligibly small, because the typical instability
growth rate is of the order of the interaction energy gn.

Figure 3.15 shows the time evolution of the energy cascade during the stirring, similar
to Fig. 3.14 of the main text, but with a finite lifetime of τ = 300 ps. The same energy
transfer from higher to lower wave vectors can be seen, and the formation of a large-
scale k−5/3 cascade at t = 375 ps are clearly visible, exactly like in the fully conservative
simulation. Of course, at longer times (t = 1000 ps) the energy distribution starts to
change, but there is a possibility to carry out the measurements before it happens.

In this simulation the density decreases in time. As a result, the value to which
the energy is normalized (in fact the energy of a single vortex) is not constant in time.
Healing length ξ also increases with time. Thus, the best option was to fix the energy
normalization in Figure 3.15 to the value Ω0ξ

3
0 and the wave vector normalization to be

kξ0, where the quantities with subscript 0 are obtained at 375 ps. In order to have a
time-average density similar to that of Fig. 3.14, one starts here with a higher initial
population.
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3.4 Discussion and conclusion

The existence of the −5/3 cascade in 2D quantum turbulence is currently a matter of
scientific debate, and its direct observation is quite difficult, even in numerical exper-
iments. Even with the maximal efficiency of existing computing hardware, using the
massive parallelization provided by the GPU but without recurring to supercomputers, it
was possible to clearly observe and fit the cascade only over 1-2 orders of magnitude. In
experiments, obtaining even 1 order of magnitude might be quite challenging. While the
scales of the experimental observation in the best quality microcavity samples could cover
several orders of magnitude in space or wave vector thanks to the extended coherence
length of polariton quantum fluids, additional complications arise from the fact that the
high-wave vector limit for the cascade is not the healing length ξ (of the order of 1 µm),
but the mean intervortex distance determining kl = 2π

l
. kl by its nature is greater than

ξ, and in present study it was typically one order greater: tens of microns.
The relatively low density of the vortex gas leaves many single vortices out of the

interaction, preventing them from joining the fractal structures and participating in the
cascade. The numerical IKE spectra are dominated by these single vortices with a charac-
teristic −1 slope. Removing the single vortices while keeping the vortex clusters allows to
observe the −5/3 IKE spectrum over a larger scale for all stirring strategies. The usage
of Brownian stirrers gives the most extended −5/3 region on IKE spectrum after vor-
tex clusters detection procedure. Fitting confirms that the expected scaling falls within
the bounds of the confidence interval. One can explicitly extract a non-integer (fractal)
dimension of the vortex clusters at the same scales.

It was demonstrated that the observed −5/3 is a result of the energy redistribution
during the initial moments of stirring. The energy is injected at relatively small scales
and transferred to the larger scales (smaller wave vectors). The analysis of the time
dependence of the energy stored in large-scale and small-scale structures supports the
hypothesis of the inverse energy cascade.

To conclude, the direct observation (using the angle-resolved luminescence detection)
of the −5/3 cascade in the energy spectrum still remains a challenging task for polariton
quantum fluids. It might require single-shot time-resolved measurement of the ampli-
tude and phase of the wave function, followed by the clustering procedure. Still, among
the different considered stirring procedures the Brownian stirrers are preferable. Time-
dependent studies should also allow to observe the energy redistribution during the for-
mation of the cascade.
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Chapter 4

Modulational instability of solitons
and vortex street formation in the
quantum fluids of cavity
exciton-polaritons
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4.1 Introduction

As it was outlined in the introductory chapters, the Bose-Einstein condensate is a new
state of matter which gives the astonishing possibility of observation of quantum phenom-
ena, like the existence of the wave function, on macroscopic scales. And a particular type
of BEC implementation is the one based on exciton-polaritons in semiconductor micro-
cavities [1]. These composite quasi-particles are semi-photons and semi-excitons existing
in the regime of strong coupling [2]. From the photons, the polaritons inherit the full-
optical control of excitation, as well as the possibility of optical detection. And due to
the non-linear interactions of the excitonic component, the behavior of polariton Bose-
Einstein condensates, and, more generally, of polaritons at high densities, resembles that
of quantum fluids [3]. The polariton quantum fluids are a promising platform for lasing
[4], topological physics [5, 6], and many other applications. Other direction of research
on polariton quantum fluids, more fundamental, is the analog physics [7, 8] and practi-
cal implementation of various algorithms: both analog and quantum. For example, the
polariton platform was used to implement the XY Hamiltonian by imprinting polariton
condensate lattices and engineering the coupling strengths between the lattice sites [9].
Other remarkable proposed concept consisted in the control of polariton spatial propa-
gation along the channels, resulting in the functioning of the ”polariton neurons” [10].
Among other algorithms, a particularly attractive field is that of the finding and research
of the physical systems possessing the properties of maze solving [11, 12, 13, 14, 15, 16].
It was also outlined that the spatio-temporal dynamics of polariton quantum fluids obeys
the Gross-Pitaevskii equation [17], the version of the Schrödinger equation with non-linear
interaction term and with additional possibility to phenomenologically take into account
the finite lifetime of polaritons, non-resonant or quasi-resonant pumping regimes, and
other specificities of polaritons in semiconductor microcavities, like the effects of various
polarizations. The conservative Gross-Pitaevskii equation possesses such typical solutions
as 0D quantum vortices and 1D solitons [18, 19]. These solutions have a form of density
dip (point-like and line-like, respectively) accompanied with strong fluxes corresponding
to abrupt phase alterations of the order of π. These phase patterns (especially for the vor-
tices associated with a point of diverging circulation) appear to be very stable due to their
topological nature and, as a result, provide the stability to the corresponding solutions
of GPE overall. Even in the driven-dissipative polariton systems, one has successfully
detected both vortices [20, 21, 22, 23] and solitons.

A bright example of the latter, which revealed the potential of polariton-based sys-
tems, is the observation of oblique dark solitons [24, 25, 26], which form when a su-
personic quantum fluid hits a defect (initially proposed in 2006 [27] for atomic BECs).
The 2D solitons forming behind the defect remained stable because the transverse ”snake
instability”[28, 29], making 2D solitons normally unstable, was carried away by the super-
sonic flow, making the soliton effectively 1D [30, 31]. Such supersonic flow is energetically
unstable, but polariton flows were efficiently decoupled from thermal relaxation [32, 33],
which made possible the observation of oblique dark solitons [25, 26]. Another configura-
tions allowed observing solitons bonded into the soliton molecules [34, 35] and thus being
quasi parallel for long distances. An interesting regime occurs if the fluid velocity is de-
creased just below the speed of sound. In such a case, the subsonic flow still interacts with
the defect exhibiting a local acceleration. This leads to the formation of quantum vortex
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streets composed of vortex-antivortex pairs. This quantum version of von Karman vortex
streets can be understood as a decay of the oblique solitons via the snake instability, when
the stabilization by the supersonic flow is lost.

The creation of vortex-antivortex pairs has been reported in time-resolved pulsed ex-
periments, both in polaritons [36, 37] and atomic quantum fluids [38]. Similar proposals
were made for non-resonantly pumped polaritons [39, 40]. However, the study of the snake
instability dynamics leading to quantum vortex streets requires both cw excitation and
time resolution, and it remained elusive so far. In a recent theoretical work, it was pro-
posed to improve this scheme by sustaining the propagating flow against radiative decay
by using a support laser covering the whole sample [41]. Interestingly, this configuration
demonstrates original density-phase defects. This pump-support scheme is not limited to
the study of the flow scattering on defects, but can be used in a more general frame to
create and study a large variety of topological defects [42, 43, 44]. Topological defects in
the driven-dissipative case can be stationary only when the support laser intensity falls
in the bistability loop of the non-linear system [45, 46, 47, 41], where the density can be
either low or high, depending on the laser absorption. Stationary phase defects exist in
low-density regions or within the bistability hysteresis loop, where the phase is not fixed,
because most particles are not directly injected by the laser but diffuse from higher-density
regions. The control of the spatial distribution of intensity and phase allows to realize
various confining potentials, such as 1D channels, 0D traps [20], or circuits made by the
combination of both.

The present chapter is devoted to theoretical study of snake (modulational) instabil-
ity in polariton quantum fluids and also proposes a scheme of a practical realization of
the polariton-based maze solver circuit. Confining the soliton pair along the axis of a
channel with the walls at high polariton density under laser irradiation (pump) resulted
in fixing the solitons at some stage of their decay to the chain of vortex pairs. The finite
lifetime of polaritons in the channel was overcome by the weaker support, falling within
or slightly lower the bistability hysteresis loop. Simultaneously tuning the values of pump
and support allowed to control the wave vector of modulational instability and even its
symmetry. Moreover, this scheme demonstrated enough flexibility to be used in the field
of algorithm implementation, developing the general ideas of ”polariton neurons”. By
shaping the channels in the form of a given maze and properly tuning the intensity of the
support beam, one can obtain a solution of this maze with the solitons tracing the desired
path. This solution is based on the well-known and perfomant algorithm of dead end
filling, which is physically realized by the effect of soliton repulsion from the dead ends of
closed channels. Prospectively, the proposed scheme can be verified experimentally with
the help of flexible and simple to implement spatial light modulator (SLM) engineering
of a laser profile.

The chapter is organized as follows. It contains 3 main sections and a concluding
section. The first of them will describe the peculiarities of motion of the domain wall
between the spatial domains at upper and lower bistability branches in the region of
laser intensities close to bistability hystheresis loop. Next section studies the behavior
of the soliton pair confined in the corridor with the walls ”made” of high-density regions
under intensive laser irradiation including the phenomenon of developing the modulational
instability in such system. Finally, the maze-solving property is studied, including the
parameters necessary for maze solving, size scaling of a scheme, robustness with respect
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to the disorder in a cavity, topology of the maze.

4.2 Domain wall between high and low density re-

gions in bistable regime

4.2.1 Pump/support scheme

The topological defects in quantum fluids like solitons and quantum vortices imply the
abrupt variation of the wave function phase and amplitude (straightly connected with
polariton density). Therefore, it is challenging to obtain such topological defects in ex-
periments with cw microcavity irradiation above the region of bistability: the phase be-
comes pinned to the phase of a laser and high density is expected in all irradiated area.
However this restriction can be avoided if one returns to the laser power lying within the
hysteresis loop on the bistability curve. Indeed, within the bistable hysteresis cycle, two
regions are available for the system, respectively at high and low polariton density and
also with opposite phase. In the high-density regions above the bistability regime, the
phase is fixed by the resonant laser, as mentioned above. On the contrary, the regions
of the bistability regime can have an arbitrary phase and a density from nearly zero to
density defined by the relation gn ≈ ~ω0, which enables the existence of a rich variety of
topological defects, while the radiative decay of the polaritons is compensated, allowing
long propagation distances in cw experiment.

The configuration studied in this chapter proposes the further development of the
so called ”pump/support” scheme, proposed in [41] for sustaining the propagation of
topological defects in dissipative polariton quantum fluid (see Fig. 4.1). In such scheme,
a strong localized pump drives the system to the upper bistability branch. This pump is
surrounded by a weaker support beam with the intensity falling within a bistability loop.
This condition allows to overcome the polariton decay while avoiding the phase fixing.

Numerous results in the chapter will be obtained from numerical simulations. The
resonantly pumped microcavity is modelled by the standard driven-dissipative Gross-
Pitaevskii equation, noteworthy, formally equivalent to the Lugiato-Lefever equation [48].
The polarization degree of freedom, the non-parabolicity of the polariton dispersion, and
any thermal effects [49, 50] are neglected. The equation to be simulated reads:

i~
∂ψ

∂t
=

[
−~2∇2

2m
− iΓ + g |ψ|2

]
ψ + (S + P (r))e−iω0t, (4.1)

where Γ = ~/(2τ) is the polariton decay rate (τ = 15 ps), m = 8×10−5m0 is the polariton
mass (m0 is the free electron mass), g = 5 µeVµm2 is the polariton-polariton interaction
constant. The detuning between the ground state and the pump laser is ω0 = 0.14 meV/~.
The support S and the pump P (r) are at normal incidence (zero wave vector). The terms
of pump and support are written explicitly, which stresses that pump can be spatially
controlled by designation P (r). The spatial step size was in most configurations equal
to 1 micrometer. The time step was 0.01 ps providing the best compromise between
calculation speed and precision. Laser detuning was taken as 14 µeV as a value typical
for the experiments with the cavity used e.g. in Ref. [35]. The presented simulations
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Figure 4.1: The sustained quantum fluid propagation in the ”pump/support” scheme.
Adopted from Ref. [41]. The intensive laser pump beam creates the high-density reservoir
from which the polaritons can propagate at long distances thanks to the support beam
protecting from the decay.

are in general devoted to design the experiments, that can be rapidly performed with the
same sample and with the usage of SLM in the group in LKB headed by Prof. A. Bramati.

4.2.2 Domain wall motion

First, the spatially homogeneous laser pumping profile (support only) is considered. The
bistability loop obtained for the employed parameters is shown in Fig. 4.2(a). Green
curve corresponds to the path upwards from zero laser intensity and red curve is for the
descending path from high power to zero.

Next, a half-space pump (x < 30 µm) locally switching the system to the higher branch
of the bistability loop is added, whereas the other half-space remains on the lower branch,
which is allowed by the support. The use of a spatially inhomogeneous pump P (r) allows
to control the pumping intensity in the high- and low-density regions independently.

Figure 4.2(b) shows the two regions of high and low density separated by a domain
wall (DW). The region under the pump shows a large intensity and a fixed phase. The
intensity at the DW decays within one healing length ξ = ~/

√
2gnm (n is the density)

and then exhibits small periodic oscillations of intensity. These oscillations are due to
the interference between the polaritons coming from the high-density region (and thus
gaining a phase) and the polaritons that are created locally by the support. The DW is
stable against the development of instabilities along Y , but can propagate along X. Such
DW propagation has been previously considered for polaritons [10, 51] and in general
for switching waves in optics [52, 53, 54] and beyond. Starting from this spatial profile
depicted in Fig. 4.2(b), the domain wall can move in two directions along the X axis:
either to the left (S < Sc, contracting the region at upper bistability branch) or to the
right (S > Sc, expanding the region at upper bistability branch). The velocity v of the
DW motion is an important parameter of the considered problem and it was computed
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Figure 4.2: a) Polariton bistability: density as a function of the pump (red, green); DW
velocity (black, right Y axis). b) A single high-density region generated by a pump (left),
with support present everywhere: condensate density (black curve) combined with the
profile of laser intensity (red curve). Starting from this spatial profile, the domain wall
can move either to the left (S < Sc) or to the right (S > Sc). c) ”Top view” 2D plot of
panel b) with the phase pattern of the domain wall combined with the polariton density
plot (black curve).

numerically for actual parameters as a function of support intensity. The numerical
results are shown in Fig. 4.2(a) (black curve, with the background of the bistability loop).
Reasonably, the area where the DW velocity is meaningful lies within the left and right
limits of the bistability loop. At the intensities out of the loop, the switching happens
not as a DW motion, but simultaneously in all space.

4.2.3 Derivation critical support value of domain wall stability

The behavior of a DW can be explained on the basis of so-called ”Maxwell construction”
for the phase transitions between vapor and liquid in thermodynamics [55]. The behavior
of bistable systems and, in particular, spatially inhomogeneous solutions present in such
systems were a subject of studies for a long time. An overview on optical systems can be
found in Ref. [52].
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One should start by looking for a stationary spatially inhomogeneous solution where a
part of the system is at the upper bistability branch, whereas another part is at the lower
bistability branch. These two parts are separated by a domain wall (or switching wall).
This problem can be solved analytically for negligibly small dissipation Γ (as compared
with the laser detuning δ = ~ω0), and then the solution can be generalized to non-zero Γ.

The stationary driven-dissipative Gross-Pitaevskii equation that needs to be satisfied
by the wave function reads:(

−~ω0 −
~2

2m
∆ + g|ψ0|2 − iΓ0

)
ψ0 + S = 0, (4.2)

where one will neglect the term Γ at first. Once it is neglected, the wave function ψ and
the pumping (the support S to be more precise) can be assumed to take only real values
without loss of generality (since all coefficients are real). The equation (4.2) can therefore
be rewritten as

m0
d2x

dt2
= F (x), (4.3)

which is a Newton’s equation of motion for a material point (x = ψ) with a mass m0 =
~2/2m under the effect of a position-dependent ”force”

F (x) = gx3 − δx+ S, (4.4)

to which one may attribute a ”potential”

U(x) = −
∫
F (x) dx = −gx

4

4
+
δx2

2
− Sx. (4.5)

The two maxima of this potential located at the coordinates x1 and x3 correspond
to the two stable domains (high density and low density), while the minimum located at
x2 corresponds to the inaccessible part of the bistability curve. The system is stationary
only if the values of the effective potentials at the two maxima are exactly the same:

U(x1) = U(x3), (4.6)

otherwise the domain wall starts to propagate. Indeed, a material point should start its
motion at one maximum and finish at the other maximum, and for this the two maxima
have to be at the same potential height. The points x1 and x3, corresponding to the
extrema of U(x), can be found analytically from the cubic equation F (x) = 0, and the
condition (4.6) can be rewritten as

x3∫
x1

F (x) dx = 0, (4.7)

corresponding to the Maxwell construction in thermodynamics [55]. Solving this equation
analytically for the unknown S gives finally:

Sc =
2δ3/2

3
√

3g1/2
, (4.8)
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and the ratio with respect to the pumping required for bistability Smin = Γ0

√
~ω/g is

given by
Sc
Smin

=
2

3
√

3

δ

Γ
. (4.9)

A more precise result can be obtained only numerically, which will be demonstrated
below. But still some analytical reasoning helps to obtain the final results. For non-
negligible Γ, all terms in the equation (4.2) become comparable. The real terms (the
kinetic and the interaction energy, the detuning) are of the order of δ = ~ω0, while the
only imaginary term is Γ (imaginary part of kinetic energy is small with respect to Γ).
Thus, the expression for the critical pumping Sc at Γ comparable with ~ω0 can be sought
by replacing of the first three terms in (4.2) by ~ω0 with some coefficient:

(C1~ω0 − iΓ0)ψ0 + S = 0. (4.10)

Together with assumption ψ ≈
√
~ω0/g one can write

Sc = C2

√
~ω0

g

√
(C1~ω0)2 + Γ2. (4.11)

These coefficients can be found from numerical simulations by the small variation of
parameters ω0 → ω0 + ∆ω0, Γ→ Γ + ∆Γ, and g → g + ∆g near some ”reference” values,
which allows obtaining the coefficients in the Taylor expansion:

Sc(ω0 + ∆ω0,Γ + ∆Γ, g + ∆g)

Sc(ω0,Γ, g)
= 1 + cω

∆ω0

ω0

+ cΓ
∆Γ

Γ
+ cg

∆g

g
. (4.12)

The coefficients are cω ≈ 0.75, cΓ ≈ 0.75, cg = −0.5. Fig. 4.3 shows the result of
simulations for Sc as a function of ∆ω0/ω0.

As a net result, one obtains

Sc =

√
~ω0

g

√(
3~ω0

32

)2

+ Γ2 (4.13)

One sees that this equation has the same Taylor expansion as Eq. (4.12) for actual
values of system parameters.

4.2.4 Derivation the velocity of domain wall

For S 6= Sc, one of the domains becomes more favorable than the other, and the domain
wall starts to propagate. Assuming that the density changes linearly with the position
across the domain wall (which is valid in the vicinity of the inflection point of this wall),
one can write the following expression for the speed of the wall:

v =
∂n

∂t

∆x

∆n
, (4.14)

where ∆x is the width of the domain wall and ∆n is the difference of the densities in the
high and low density regions.
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Figure 4.3: Critical support Sc as function of detuning at low values of ∆ω0/ω0. The
results obtained by GPE simulation of DW motion.

To find the derivative ∂n/∂t, one should define n0 as the density at the inflection point
which corresponds to Sc. The only contribution into ∂ψ/∂t at S 6= Sc can come from the
difference S−Sc (all other terms in the time-dependent driven-dissipative Gross-Pitaevskii
equation cancel):

∂ψ

∂t
=
S − Sc
i~

, (4.15)

which allows to write the solution

ψ (t) =
S − Sc
i~

t+
√
n0e

iφ0 . (4.16)

This expression strongly depends on the phase φ0 of the wave function at the inflection
point (with respect to the phase of the pump). In a homogeneous system, the phase is
given by tanφ = −Γ/(gn− ~ω0). In the low-density region, φ→ 0, whereas in the high-
density region φ → π/2 just above the threshold density gn ≈ ~ω0. It is reasonably to
assume that φ0 takes an intermediate value φ0 = π/4, and one can also assume that it
changes linearly with S−Sc for small deviations from Sc, in which case the time derivative
of the density can be found as:

∂n

∂t
=

∂

∂t
|ψ (t)|2 ≈ 2

√
n0
S − Sc

~
1√
2

(
1− χS − Sc

Sc

)
. (4.17)

For S ≈ Sc, the second-order correction can be neglected, but it starts to become impor-
tant for larger deviation of the pumping, creating an important difference between the
speed of the wall for the cases of shrinking or expanding high-density domain.

In the simplest case, the speed can be found as

v =
√

2
√
n0
S − Sc

~
∆x

∆n
(4.18)
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Figure 4.4: Scheme of laser profile shaping the corridor.

By estimating
√

∆n ≈ √n0 ≈ Sc/Γ and taking ∆x =
√

2ξ one rewrites Eq. (4.18) as

v ∼ 2
S − Sc
Sc

ξ

τ
(4.19)

The expression (4.19) for the values used in numerical simulations gives v = 12 µm/ns,
very close to the numerical value of 30 µm/ns for (S − Sc)/Sc = 0.05.

4.3 Solitons in the corridor

Next, it is instructively to consider a second high-density region with its boundary parallel
to the first one, defining an all-optically controlled confining potential. Similar configu-
ration, but without the support beam, has been studied in [56]. Fig. 4.4 sketches the
spatial structure of laser profile for such situation.

One should start by the simplest case, namely by considering high density regions with
the same phase and a fixed channel (corridor) width L = 24 µm (∼ 13ξ of the high density
region). Fig. 4.6 is computed at S = 0.25Sc and P = 1.25Sc. The left panel presents
the stationary intensity distribution with 2 dark solitons in the channel. The system is
effectively 1D, since it is translationally invariant along Y (periodic boundary conditions).
Single dark soliton is an anti-symmetric state with a π phase shift. The phase constraints
imposed by the high-density regions therefore only allow an even number of solitons.
Other possible explanation is that the in the case of the polaritons going from the walls
to the center of the corridor, they accumulate the same phase and thus the interference
in the center of the corridor is obligatory constructive giving a maximum of the density.
Away from the center, the interference is destructive, favoring the density dips, consistent
with the natural structure of solitons. These soliton multiplets are however unstable with
respect to the development of instability along Y for a large range of parameters.

The 2D modulational instabilities in the numerical simulations can be triggered by
any noise or fluctuations breaking the translational symmetry along the Y -axis. Here, a
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Figure 4.5: Left panel shows the initial density profile in the corridor. The problem is
effectively 1D, no gradients and fluxes along the Y axis are present. After adding some
disorder, the instability begins developing and finally becomes frozen in the state shown
in the right panel.

weak Gaussian disorder with a correlation length of 2 µm and an amplitude γ = 0.01 meV
is considered. The right panel of Fig. 4.5 shows the frozen snake instability developed
from the state shown in the left panel. In practice, instability can be switched by the
weakest disorder comparable with machine precision and much smaller e.g. than 1 µm in
size defect of µeV amplitude situated somewhere in the corridor. For obtaining the left
panel, no disorder was plugged.

4.3.1 Stability of driven-dissipative solitons in 2D

The soliton stability in the 2D driven-dissipative configuration can be analyzed using the
Bogoliubov-de Gennes equations for weak excitations of the quantum fluid in the very
similar manner as for the case of conservative system, which was considered in Chapter
2. Let ψ be the non-trivial solitonic solution of the driven-dissipative Gross-Pitaevskii
equation written on the polariton basis:

i~
∂ψ

∂t
= − ~2

2m
∆ψ + g|ψ|2ψ − iΓψ + P (x, y)e−iω0t. (4.20)

Next, one can write ψ = ψ0(x, y)e−iω0t, and the perturbed solution is ψ0(x, y)+A(x)ei(kyy−ωt)+
B∗(x)e−i(kyy−ωt), where ω is the perturbation frequency relative to the laser frequency ω0

and ψ0(x, y) is the solution of the stationary equation

~ω0ψ0 = − ~2

2m
∆ψ0 + g|ψ0|2ψ0 − iΓψ0 + P, (4.21)

given in fact in the left panel of Fig. 4.5 or in the left column of Fig. 4.6). As is seen from
the ansatz, if the excitiation frequency has a positive imaginary part, the amplitude of
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such excitation will grow in time. Linearizing (4.20), one can obtain the Bogoliubov-de
Gennes equations for coefficients A and B:(

L(x, ky)− ~ω gψ2
0

gψ∗2
0 L(x, ky) + ~ω

)(
A
B

)
=

(
0
0

)
, (4.22)

where one is interested in the bogolon states confined along the X direction by the walls
of the corridor. The definition

L(x, ky) = − ~2

2m

(
∂2

∂x2
− k2

y

)
+ 2g|ψ0|2 − iΓ− ~ω0 (4.23)

is used. The translational invariance along Y allowed to replace −∇2 → k2
y − ∂2/∂x2,

where ky is the wave vector of perturbations.
One sees that with respect to conservative system, the chemical potential µ is replaced

by the laser frequency in the driven-dissipative case [57, 58]. The main yield obtained
from the Bogoliubov-de Gennes equations is the dependencies of the highest in =ω(ky)
between all modes at each value of ky.

The value of the maximal instability wave vector for a single soliton can be estimated
from very general reasoning. For a single state quantized in a potential trap formed by
the profile of a single dark soliton, its energy (which is not yet the bogolon frequency)
can be estimated as [18]:

− ~2

2m

∂2A

∂x2
+ g|ψ0|2A− ~ω0A ≈ −

~ω0

2
A, (4.24)

which supposes that the system is above the bistability threshold and that the soliton is
almost dark. The diagonalization of the matrix (4.22) thus gives an equation(~2k2

y

2m
+ g|ψ0|2 − iΓ−

~ω0

2

)2

− g2|ψ0|4 = ~2ω2, (4.25)

which allows to estimate the value of the imaginary part of ω. Indeed, it is supposed
that Γ� ~ω0, the solution for ω becomes imaginary if the real part of (4.25) is negative.
Maximal imaginary part is achieved if the first square is zero and the second square is
maximized, which is obtained at a point x0 where g|ψ0(x0)|2 = ~ω0/2, determining the
maximal possible positive imaginary part of ~ω as

Γmax =
~ω0

2
− Γ. (4.26)

In this case, the soliton is clearly always unstable, because the negative contribution to
the imaginary part is much smaller than the positive one, as required for the bistability.
One can conclude that 2D solitons in the driven-dissipative configuration remain unstable
with respect to small perturbations, at least if they are obtained at the upper bistability
branch.

This also provides a criterion for the maximal wavevector ky of the unstable region:

k∗y =

√
mω0

~
. (4.27)

123



which is allowed at a different point x1, where g|ψ0(x1)|2 ≈ 0. At the upper part of the
bistability curve, where ~ω0 = gn, this expression can be linked with the inverse of the
healing length of the quantum fluid ξ:

k∗y =
1

ξ
√

2
. (4.28)

Between various solutions (eigenstates) of Eq. (4.22) the effect of mode competition
takes place. The profile of ψ0 acts in some sense as a potential profile for the bogolon
wave function within the Schrödinger equation. If several quantized states are present in
the trap with the energies En, the highest energy state forms the bogolon with the highest
imaginary part. Indeed, the imaginary part of ω from the simplified equation

~2ω2 =
(
g|ψ0(x)|2 − En

)2 − g2|ψ0(x)|4 (4.29)

is due to the second term, which is negative. The minimal value of the first term is zero.
It is achieved when g|ψ0(x)|2 = En, which determines the value of g|ψ0(x)|2, and the
imaginary part is therefore simply

=(~ω) = En (4.30)

measured from the energy of the bare states. Thus the conclusion on the mode competition
in the trap is therefore that the highest mode in the trap always wins (developing first
the instability), as soon as it is sufficiently well localized in it. A more exact result was
obtained by numerical solution.

The lowest energy mode in the double-well potential formed by the soliton pair is a
symmetric bound state, whereas the highest mode is an anti-symmetric anti-bound state
(like bonding and antibonding orbitals in the molecules). However, the symmetry of
the patterns is normally inversed (it will be seen in the 3rd column of Fig. 4.6), because
each soliton is anti-symmetric by itself (π phase jump). An antisymmetric superposition
of solitons is therefore a symmetric function, which gives rise to the symmetric pattern
observed in the 2nd line of Fig. 4.6.

4.3.2 Phase diagram versus Pump and Support

The behavior (to be precise, stability and parity) of the system of solitons in the channel
depends on the values of pump P and support S. Therefore, it is instructive to investi-
gate the system varying these parameters. Some typical situations are given in Fig. 4.6.
The parameters are S = 0.25Sc and three different values of P are taken. The first col-
umn of Fig. 4.6 shows the initial states with straight unperturbed solitons (effectively
1D problem). The second column of Fig. 4.6 shows the highest imaginary part of the
energy of the weak excitations versus their longitudinal wave vector ky, obtained from the
Bogoliubov-de Gennes equations, details on which were given in the previous subsection.
The winning mode and the corresponding wave vector are shown with an arrow. The third
column shows the developed and static in time frozen snake instability pattern consisting
of vortex-antivortex pairs. The fourth column gives the magnification on the cores of the
vortices plotted in third column and presents their phase patterns.
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Figure 4.6: Modulational instability of guided solitons. L = 25 µm. S = 0.25Sc, P =
0.4, 1.25, 2Sc (top, center, bottom rows, respectively). Columns: 1) stationary solution
with even number of solitons between the high-density walls. 2) imaginary part of the
energy of weak excitations of the stationary solution from the 1st column as a function
of ky. 3,4): stationary solution after the development of the modulational instability
(density in 3rd column and magnification with the phase in 4th column) in the presence
of weak disorder.
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Figure 4.7: Phase diagram versus support S and pump P . The color shows the maximal
instability wave vector k∗y for each pair (S, P + S). Green tones are for long period
antisymmetric excitations (snakes, smaller wave vector) and orange/red tones are for
symmetric excitations with shorter period. Lower left corner separated by the blue curve
corresponds to the 4-soliton initial state. Dark gray area is for oscillating in time solitons
and violet is for high density in channels (no solitons). Colored dots correspond to the
panels in the boxes of the same color in Fig. 4.6. Blue dot is for maze pathfinding regime.
The insets show the transverse profiles of unperturbed density in the channel.
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Figure 4.7 shows a phase diagram obtained from the Bogoliubov-de Gennes equations-
based stability analysis versus pump and support intensities (with constant L and ~ω0).
The phase in the upper right corner (purple) corresponds to high density in the channel
(no solitons or vortices). It occurs for support values typically smaller than Sc, because
of the particle flow coming from the two DWs instead of one. This regime is qualitatively
similar with the one of the polariton neuron picture [10]. The dark grey region corresponds
to a non-stationary steady state (limit cycle), at least in the conditions of the conducted
simulations, namely without energy relaxation and for sufficiently low disorder. This
phase shows a pair of breathing solitons oscillating in time. The small light-grey domain
corresponds to a lattice of four stable solitons. This occurs for small P and large S, so
weak transverse flows which favours the soliton lattice stability. In this phase the maximal
imaginary part of bogolon frequency is negative for all values of ky. The next phase located
at the bottom left corner corresponds to the collapse of 4 solitons into a symmetric pair
of vortex chains (see upper row of Fig. 4.6). The two next phases located above the blue
line correspond to the collapse of 2 solitons into symmetric and anti-symmetric vortex
chains respectively (as in bottom and center rows of Fig. 4.6). A tiny domain (lime-
green) exhibits the collapse of 4 solitons into an anti-symmetric pair of vortex chains.
The false color scale of the figure shows the maximal instability wave vector k∗y (except
for the non-stationary (limit cycle) and stable phases). The anti-symmetric solutions have
an approximately twice larger period than the symmetric ones. The k∗y gradient within
a given phase is relatively small, which means that the patterns visibility should not be
strongly affected by pump/support intensity fluctuations in a real experiment. Disorder
broadens the transitions between the phases, but the core regions remain well defined, see
next subsection for details.

The precise realization of the disorder determines the positioning (in fact due to the
pinning) of the pattern along Y , but does not affect the shape (parity and wave vector
ky), at least if the disorder amplitude is sufficiently small: γ � ~ω0. Additional sim-
ulations shown in the corresponding subsection confirm that these stationary patterns
are accessible considering realistic disorder parameters up to 0.1 meV. In all cases, the
solitons break into two vortex anti-vortex chains, which can be seen as stationary vortex
streets. 2D analysis confirms the stability of the final patterns. It means that the snake
instability develops, but is then frozen by the presence of the confining potential.

4.3.3 Effects of disorder on phase diagram

Disorder can lead to the vanishing of all the interesting effects by destroying solitons and
vortex pairs, but it is always present in the real samples and, moreover, the disorder is
the thing that switches on the instability by the breaking of the translational invariance
in the direction along the channel. In the absence of disorder, no transformation from
solitons to vortex street occurs in the simulations. In experiments, the patterns arising
from the development of the instability are affected in space by the pinning induced by
the disorder [59].

When disorder is present, the patterns are not as regular as in a quasi-ideal case,
which complicates the analysis of the obtained states. One can nevertheless discriminate a
symmetric and an anti-symmetric pattern using the standard deviation of the X coordinate
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Figure 4.8: Tracing of the center Xc(y) for the central left inset of Fig. S8. The concur-
rence of the symmetric and anti-symmetric modes is well visible and affected by spatial
realization of a disorder with dominating of the wave vectors from various ranges.

of the solitons mass center Xc(y). This deviation reads 〈∆2〉 =
〈

(Xc(y)− 〈Xc(y)〉y)2
〉
y
,

where 〈〉y means averaging over the Y coordinate (vertical axis). For symmetric patterns,
the center is nearly aligned vertically, while for the anti-symmetric patterns the center
undergoes sinusoidal trajectory and thus the deviation is larger, see Fig. 4.8. Computing
or measuring experimentally this quantity allows to clearly distinguish different phases,
as shown in the insets of Fig. 4.9.

Large disorder should lead to a smoothing of the phase diagram. To test the robustness
of the phases obtained based on the Bogoliubov-de Gennes equations discussed in previous
subsection with respect to the disorder, an alternative phase diagram (Fig. 4.9) where
the disorder amplitude is 0.1 meV (as compared with 0.01 meV in the previous one)
was plotted. The limit cycle with oscillating solitons can still persist in the presence of
disorder. This motion results in their broadening and ”shallowing”, as clearly seen in
the right inset of Fig. 4.9. Importantly, the disorder can also suppress the motion of
the solitons and thus the limit cycle phase region becomes much smaller with stronger
disorder. This diagram was calculated with newly randomly generated noise for each pair
(S, P ), which enhances the sampling.
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Figure 4.9: Phase diagram obtained by simulations with disorder. Color shows the stan-
dard deviation of center between the solitons Xc(y). Light gray area corresponds to limit
cycle phase with no solution stationary in time. Dark gray shows the no-soliton phase
with the full filling of the channel with polaritons.

Within the same disorder-based technique (not based on the Bogoliubov-de Gennes
equations) the case of the corridor walls situated closer to each other was considered. Fig.
4.10 shows the phase diagram for the corridor of lower size (16 µm). One sees that the
region, where the frozen modulational instability exists, is sufficiently contracted with
respect to wide corridor (gray and blue areas correspond to a filled channel or a stable
system).

4.3.4 Solitons under π phase shift

In previous subsections, the results obtained when the phase of the pumping laser is
homogeneous in space, and only the density profile is varying (allowing to obtain the
high-density walls), were shown. Another interesting possibility offered by this driven-
dissipative system is to tune the relative phase of the pump between the walls, which is
a generalization of Ref. [60] to 2D. In this subsection, the additional results concerning
the formation of solitons and their stability for a π phase difference between the pump at
the walls will be presented. In this case, no support is used (otherwise it would exhibit
different interference with the two pumping lasers of different phase). In such a case,
an odd number of solitons forms, decaying into the same number of chains of vortex-
antivortex pairs.

Figure 4.11 shows the results obtained in this configuration, with top and bottom rows
corresponding to two different values of the pump P . The first column shows the spatial
density profile with 3 or 1 solitons, depending on the distance available for them because
of the pump-induced broadening of the walls. The second column shows the imaginary
part of the energy obtained from the Bogoliubov-de Gennes analysis as described above.
Both curves exhibit a maximum with positive imaginary part, confirming the existence of
modulational instability. The final stage of the development of this instability is shown
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Figure 4.10: Phase diagram obtained by simulations with disorder for the corridor of 16
µm width.

Figure 4.11: Modulational instability of guided solitons with a π phase shift between the
walls. L = 15 µm, P = 0.8, 1.2Sc. (top, bottom). Columns: 1) stationary solution with
even number of solitons between the high-density walls. 2) imaginary part of the energy
of weak excitations of the stationary solution from the 1st column as a function of ky.
3,4): stationary solution after the development of the modulational instability (density,
phase) in the presence of weak disorder.
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in the 3rd column: it exhibits either 3 vortex chains or a single vortex chain. Finally,
the phase distribution shown in the 4th column confirms the formation of vortices and
anti-vortices evidenced by the density shown in the 3rd column.

4.4 Maze solving property

4.4.1 Soliton head in a maze as a domain wall

In previous sections of the chapter (in contrast with present section) a system infinite
in the Y direction (implemented by periodic boundary conditions) was considered. The
geometry that is addressed now is a 2D maze of 1D channels [Fig. 4.12(a,b)]. For a proper
value of (S, P ), immediately after the jump of the walls on the upper branch, the maze is
filled with solitons. However, the dead ends represent a configuration different from that
of Fig. 4.5 and Fig. 4.6: the heads of the vortex streets start to withdraw. Fig 4.12(a)
shows the intensity distribution 20 ps after driving pump and support are switched on
(blue circle in Fig. 4.7 in the non-stationary/limit cycle phase). The heads are moving in
the directions symbolized by the arrows. Fig 4.12(b) shows the final intensity distribution
(t = 1 ns), where the street only connects the two exits of the maze. A zoom on the vortex
street head is shown in Fig. 4.12(c).

This head is also a domain wall, but the conditions for its motion are different from the
lateral DW in an open 1D channel that were considered previously. Indeed, the motion of
the head-DW along X is facilitated by the confinement and the flow along Y coming from
the two lateral walls. When the head-DW arrives at a cross-roads, an open 1D channel
geometry is restored and the DW stops. Fig. 4.12(d) shows the critical support intensity
for the motion of the two types of DW (dead and open ends correspond to blue and red
colors, respectively). Both decrease when the corridor becomes narrower, tending to zero
for L ≈ 14 µm. This is the minimal width of a finite quantum well (of 0.14 meV depth,
given by the laser detuning), where the two-node state can exist for such particle mass.

As expected, there is a substantial support range where the head-DW propagates,
whereas an open 1D corridor remains stable. Within this range, this configuration rep-
resents an optical maze solver. The head-DW motion can be affected by disorder, but
being an extended object, it is less sensitive than vortices which easily pin on defects [22].
Numerical simulations show that disorder trapping can be avoided by working at higher
detunings ~ω0 > 3γ and, if necessary, shorter lifetimes, making the effects observable in
realistic systems.

As mentioned above, this soliton ”head” can be considered as a vertical domain wall
between the domains. This wall is between a high-density region (the wall limiting the
dead end) and a low-density region (the region with solitons). There are now 3 domain
walls in the system: two of them (horizontal) are opposite to each other, whereas one
(vertical, see Fig. 4.13) can propagate, depending on the conditions. The extra kinetic
energy appearing because of the variation of the wavefunction in the transverse direction
(vertical), absent in the infinite system (for a very large channel), changes the conditions
of the local bistability loop. The flows toward the low density region are also larger and
both effects together (kinetic energy and flows) make the low-density regime impossible
for the same parameters for which it was possible in the infinite system. The domain
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wall starts to propagate, leading to the expansion of the high-density region, erasing
progressively the solitons in the channel.

Figure 4.14 plots the velocity of the ”soliton head” (blue line) as a function of the
Support in the 24 µm channel for the same value of the pump which was used in the maze
solving regime (see Fig. 3). One sees a behavior very similar to the ”pure” domain wall
from Fig.4.2 (replotted as a black line), but shifted to much smaller values of S. This
shift is due to the confinement of the domain wall in the transverse direction (vertical)
and to the extra flows from the walls of the channel (shown in Fig. 4(c) of the main text).

To elucidate the contribution of these two effects, one can use an additional phase
diagram (Fig. 4.16), showing for a single channel having a dead end the boundary between
the two cases (solitons or high density in the channel) versus the channel width L and the
support amplitude S. The boundary between the two cases in shown in Fig. 4(d) of the
main text. It is well described by an inverse square function with a single-parameter fit:

S

Sc
= 1− L2

0

L2
(4.31)

giving L0 = 13.9±0.1 µm. This is the narrowest channel width where a pair of solitons can
exist without support. The inverse square dependence is typical for a quantity depending
on the confinement energy, and the value of L ≈ 14 µm corresponds to the minimal
width of a finite quantum well (with its depth of 0.14 meV given by the laser detuning)
where the two-node state can be confined for such particle mass (accounting for the finite
broadening due to the lifetime). For a wider channel, the kinetic energy of the two-node
state is lower, and the support and the flows shift it upwards via the interactions. The
inverse square law holds well up to L = 30 µm, which is larger than the channel width
used for the main phase diagram (24 µm). For even larger channels, the dependence
becomes more complicated, because the low-density solution can contain more than 2
solitons, depending on L. The detailed study of this dependence is beyond the scope of
the present work.

Noteworthy, Fig. 4.12 (d) plots the threshold support intensity versus the channel
width for an open-end system, which exhibits higher values than for the dead end case as
previously explained. Interestingly, the provided simulations show that in a large open-
end channel the threshold support can even be larger than Sc. Indeed, in such case the
lateral walls start to propagate towards the center where a 4-soliton structure forms. This
structure is quite stable and produces a quantum pressure, which counteracts the pressure
of the interactions and blocks the motion of the walls even if S is slightly larger than Sc.
One should take into account that the fact that the threshold for the open end channels
is higher than for a dead end channel, is what allows the head domain wall to withdraw
from from the dead ends, but to stop at the crossroads, and therefore the maze solving
process.

It is possible to plot the phase diagram (in the same Pump and Support coordinates
as in Fig. 4.7) that indicates the situation of the successful or not maze solving. Fig. 4.15
shows the relevant data. One sees that the region where the maze is successfully solved,
indeed well corresponds to the domain of the limit-cycle regime from Fig. 4.7 and Fig.
4.9.
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Figure 4.12: Maze solving: a) initial moments: soliton heads repelled from dead ends;
b) shows the stationary final distribution (maze solved); c) DW repelled from the dead
end: confinement and particle flows; d) Support threshold vs channel width for dead end
(blue) and open end (red).
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Figure 4.13: ”Head of a soliton” at higher horizontal scale. Panel a). 2D map of polariton
density together with the fluxes in the the quantum fluid. The corridor dead end is
visible from 50 to approx. 60 micrometers on the left. Red dashed semi-circle sketches
the domain wall curved profile. Panel b). Profile of polarion density averaged over Y
direction (between the blue dashed horizontal lines). The domain wall corresponding to
”soliton head” is clearly visible as abrupt jump of the mean density in the corridor from
40 to 60 micrometers.
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Figure 4.14: Velocity of DW in the 24 µm channel (blue curve) together with free DW
velocity. Maze solving regime is realized in the velocity range from 0 to ≈ 0.2µm/ps. The
bistability curve of a homogeneous system is plotted for a reference.

Figure 4.15: Phase diagram of maze solving. The legend corresponds to the situation (in
fact the density) in the corridor, the walls are always at upper bistability branch.
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Figure 4.16: Mean polariton density in the corridor as a function of corridor width and
support level S. Light grey area in upper left corner corresponds to full filling the corridor
with polaritons (repulsion of a dead end). Blue curve shows the inverse square fit S/Sc =
1− L2

0/L
2. The extracted values of 1− S/Sc and their fit for L < 30 µm in log-log scale

are shown in the inset.
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Figure 4.17: The maze of differing topology that can be solved by the proposed analog
algorithm. The common feature of the topologies is the path connecting the extensive
low density regions (regions far from the walls of pump).

4.4.2 Different maze topologies, size scaling, disorder effects,
speed of the maze solving

The main property of the vortex street repelled from the dead end is thus to connect
the areas with low density from which the repulsion does not take place. Thus one can
change the topology of the maze and also to obtain it solved. E.g. one can implement the
topology with the extensive enough central region, a path from which should be found to
the exterior of the maze. Fig. 4.17 shows the example of such a maze successfully solved.
Also, one can sufficiently increase the linear size of the maze without losing the maze-
solving property. Fig. 4.18 shows the solution of a maze of 1000 µm in size. Practically,
the size of the maze that can be solved is limited by the coherence length of the quantum
fluid and by the possibilities of the optics of the experimental setup to properly focus and
maintain the homogeneous spatial profile of the laser.

In presence of a larger (an more realistic for numerous samples) disorder the detuning
has to be increased to overcome its effect. Fig. 4.19 is computed for a disorder of 0.1
meV and justifies that the maze solving property remains in such conditions. To avoid
disorder disturbance, all parameters (detuning, lifetime, pump and support intensity) were
modified, in order for the kinetic and interaction energies to be at least 3 times larger
than the disorder amplitude. One should note that the used parameters are perfectly
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Figure 4.18: Scaling of the maze solving scheme up to 1024 µm size of the maze.
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Figure 4.19: The maze solved at disorder of 0.1 meV. The other parameters have been
increased with respect to the one used in the main text, namely detuning 3.2 times larger
(0.45 meV), lifetime 3.2 times smaller (4.7 ps), and laser intensity 7 times larger, support
S ≈ 5Sc and channel walls P + S ≈ 16Sc.
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accessible experimentally. As one can see, the maze remains well defined and is solved,
despite the disorder value.

The solving time is determined by the velocity v of the head-DW, see Fig. 4.14. In the
worst case, the length of the dead end is NL, where N is the number of cells in the maze
(or vertices in the graph) and L is the width of a channel. If Z is the overall system size,
the maximal number of cells is N = Z2/L2. The solving time is therefore t = NL/v. The
best among the other maze solving (pathfinding) algorithms [61] such as the Depth-First
Search also exhibit the worst-case complexity of O(N), but the practical advantage of the
present analog implementation is the small value of the prefactor L/v ∼ 0.5 ns: the high
velocity v reduces the solving time, allowing such an analog maze solver to outperform a
modern PC which needs hundreds of clock ticks to check a single cell.

4.5 Conclusions

To conclude, in this chapter I have shown that the modulational instability can be con-
trolled and stabilized in a driven-dissipative polariton system allowing the on-demand for-
mation of soliton molecules and vortex streets exhibiting a particularly rich phase diagram
for various levels of pump and support laser beams. The symmetric and anti-symmetric
phases exist for various values of these parameters. The development of instability was
analyzed both with the Bogiliubov-de Gennes equation (linearization of stationary GPE)
and using the complete simulation of DDGPE in presence of the disorder that in fact
switches on the development of the bistability. In some regimes the limit-cycle behavior
take place.

The non-stationary regimes can be used for fast analog maze solving. The demon-
strated property of all-optical maze solving is important for the large interdisciplinary
field of analog graph solving algorithms.
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[37] G. Nardin, G. Grosso, Y. Léger, B. Pi̧ etka, F. Morier-Genoud, and B. Deveaud-
Plédran, “Hydrodynamic nucleation of quantized vortex pairs in a polariton quantum
fluid,” Nature Physics, vol. 7, no. 8, p. 635, 2011.

[38] W. J. Kwon, J. H. Kim, S. W. Seo, and Y. Shin, “Observation of von kármán vortex
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Conclusions and perspectives

In the series of works on which this thesis is based, the phenomena related with real-space
topological defects (excitations) in exciton-polariton quantum fluids were studied. These
defects are quantum vortices and solitons.

Chapter 3 is devoted to the studies of quantum turbulence, arising in 2D as a com-
plex stochastic behavior of quantum vortices. First, the essential analysis tools were
introduced: numerical solution of the Gross-Pitaevskii equation, calculation of the in-
compressible kinetic energy (IKE) spectrum based on the Fourier transformation and its
semi-analytical calculation via the positions of vortices, the procedure of vortex cluster
separation. Using these tools, the following data was obtained: IKE spectra for various
quantum fluid stirring (excitation) methods, the separated contributions to IKE from
clustered vortices, power laws of these IKE, fractal dimensions of the structures formed
of clustered vortices, energy transfer rate between various size scales while exciting the
quantum fluid. It was shown that the polariton condensates are particularly suitable for
the possible observation of scaling on sufficiently large scales. The shape of raw energy
spectra was shown to depend on the procedure of condensate excitation (stirring), but the
energy spectra of clustered vortices always exhibited the -5/3 power law. In the optimal
case, the cascade was observed over almost 2 decades.

In Chapter 4 the modulational instability of solitons in exciton-polariton quantum
fluids in the bistable regime was studied. First, the peculiarities of motion of the domain
wall between the spatial domains at upper and lower bistability branches in the region of
laser intensities close to bistability hystheresis loop were described. Next, the soliton pair
confined in the channel with the walls ”made” of high-density regions under intensive
laser irradiation including the phenomenon of developing the modulational instability
in such system was studied. By the means of the numerical simulations of GPE and
the Bogoliubov-de Gennes equations, the formation of symmetric and anti-symmetric
quantum vortex streets was observed for various intensities of laser and the corresponding
phase diagram was plotted. Finally, the maze-solving property in such bistable system,
was demonstrated. The parameters of the system were taken close to ones of the cavity
that is used in LKB, UPMC (Paris), to give the straight possibility of the verification of
the obtained theoretical results. Thus, the perspective of the present research is a work in
close collaboration with experimental team, giving advises and support in order to obtain
the most favorable regimes in practice. To better reproduce the experimental results, the
usage of calculation in exction-photon basis will be possibly required, instead of the single-
component case. The first obtained experimental results (which were obtained when this
thesis was being written) are already very encouraging and promising.

The direction of quantum turbulence also appeals for further studies. Most of the
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results in Chapter 3 were obtained in the idealized conservative case: infinite polariton
lifetime, no pumping whether quasi-resonant or off-resonant, no disorder and cavity impu-
rities. One can aim to develop an ultimately realistic experimental scheme for observation
of quantum turbulence in the BECs/quantum fluids based on exciton-polaritons, which
is very challenging. Such parameters as polariton lifetimes, energy and spatial profile and
the regime (quasi-resonant or non-resonant) of pumping, can be analyzed by the means
of Gross-Pitaevskii equation with parameters most suitable to observe the turbulence.
One can use the quasi-resonant pumping scheme (close to the one used in Chapter 4)
and play with the bistability hysteresis loop or consider the off-resonant pumping with
the stimulated scattering from the reservoir. Other question to be solved is about the
method to excite (”stir”) the quantum fluid, in another words to inject the kinetic energy
and to create the complex stochastic fluxes, with experimentally accessible parameters of
the stirrers. Finally, one can extend the consideration to the spinor quantum fluids, when
each of the spinor components corresponds to a specific polarization, and these compo-
nents are coupled by the off-diagonal spin-orbit coupling Hamiltonian terms (e.g. TE-TM
splitting). As a result, the mutual transfer of angular momentum between the components
accompanied with vortex creation will take place. Fixation of the vortices after a period
of free turbulent motion (which gives the possibility to examine them in cw experiment)
can be realized via the so called effect of vortex pinning, when the vortex center overlaps
with the density dip created by the switched on point-like potential barrier. The scheme
of vortex pinning by the optically created pinning potential is also of high interest.
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• G. Lerario, S. V. Koniakhin, A. Mâıtre, D. Solnyshkov, A. Zilio, Q. Glorieux,
G. Malpuech, E. Giacobino, S. Pigeon, and A. Bramati, “Parallel dark soliton pair
in a bistable 2D exciton-polariton superfluid,” arXiv preprint arXiv:2003.11408,
2020

In preparation:
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8-12 July 2019. Oral talk

• S. V. Koniankin, “Snake instability control and stationary quantum vortex street in
a driven-dissipative quantum fluid of light,” in International Conference on Optics
of Excitons in Confined Systems, St. Petersburg, Russia, 16-20 September 2019.
Oral talk

• S. V. Koniankin, “Quantum turbulence in exciton-polatiron quantum fluids,” in 20th
International Conference on Physics of Light-Matter Coupling in Nanostructures,
Moscow, Russia, 1-7 July 2019. Poster

• S. V. Koniankin, “Analog Kerr black hole and Penrose effect in a Bose-Einstein
condensate,” in Chiral modes in optics and electronics of 2D systems, Aussois, 26-
28 Novembre 2018. Poster

149



Dynamics of topological defects in exciton-polariton quantum fluids

Abstract: The Bose-Einstein condensate is a new state of matter which gives the
astonishing possibility of observation of quantum phenomena, like the existence of the
wave function on macroscopic scales. Present research is devoted to the particular type
of BECs based on excitons-polaritons in semiconductor microcavities. Due to non-linear
interactions, the behavior of Bose-Einstein condensates, and more general of polaritons at
high densities, resembles that of classical fluids. Better comprehension of these similari-
ties is one of the goals of ANR ”Quantum fluids of light” project, within which present
research was conducted. The first two chapters of the manuscript provide the necessary
introduction to the physics of excitons-polaritons and properties of polariton condensates
(including the topological defects: vortices and solitons), respectively.

In classical fluids, the solitons are solitary waves propagating over long distances with-
out deformation and similar situation is actual for 1D quantum fluids. However, in 2D
case the solitons undergo the so-called ”snake instability” and transform to the chains
of vortex-antivortex pairs, which is a principal obstacle to study this phenomenon in po-
lariton quantum fluids especially in CW experiments. In the next chapter, the simple
to implement by the means of spatial light modulator configuration that allows avoiding
this restriction was proposed and extensively studied. The configuration is a narrow 1D
channel with the walls of high condensate density at upper bistability branch created by
intensive laser radiation. It was shown that in such channels dark solitons appear parallel
to the channel axis by odd (1-3) or even (2-4) number in order to accommodate the phase
constraint induced between the walls. According to the Bogoliubov-de Gennes analysis,
these soliton molecules are typically unstable and trigged by the disorder evolve toward
stationary symmetric or anti-symmetric arrays of vortex streets. Also the soliton head
repulsion from the corridor dead-end was demonstrated, giving a straight possibility to
experimentally implement maze solving procedure by dead-end stroking algorithm.

As for quantum turbulence, the possibility of observing the energy transfer from small
spatial scales to large ones (reverse energy cascade) and the formation of fractal structures
composed of quantum vortices in polaritonic condensates were demonstrated. The region
of Kolmogorov -5/3 power law in the spectrum of incompressible kinetic energy coincides
with the region of fractional Minkowski dimension of the structures of clustered vortices.
However, for various condensate stirring methods, this power law becomes visible only
after eliminating the contribution of single vortices and vortex dipoles. Thus, the experi-
mental observation of the spectrum of such shape will be possible after full wave function
reconstruction including both amplitude and phase, which justifies that polaritons are the
promising platform for studying quantum turbulence.

Keywords: Photonics, exciton-polaritons, Bose-Einstein condensates, Gross-Pitaevskii
equation, numerical simulations, Bogoliubov excitations, solitons, quantum vortices, quan-
tum turbulence
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