
HAL Id: tel-03444545
https://theses.hal.science/tel-03444545

Submitted on 23 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Making the most of available data : representation and
adaptation for few-shot image classification

Yann Lifchitz

To cite this version:
Yann Lifchitz. Making the most of available data : representation and adaptation for few-shot image
classification. Neural and Evolutionary Computing [cs.NE]. Université Rennes 1, 2021. English.
�NNT : 2021REN1S041�. �tel-03444545�

https://theses.hal.science/tel-03444545
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’UNIVERSITÉ RENNES 1

ÉCOLE DOCTORALE NO 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Signal, Image, Vision

Par

Yann LIFCHITZ

Making the most of available data: representation and adaptation for
few-shot image classification

Thèse présentée et soutenue à Rennes, le 20 Avril 2021
Unité de recherche : Inria Rennes Bretagne

Rapporteurs avant soutenance :
Nikos KOMODAKIS Professeur, Université d’Heraklion Crète
Stéphane CANU Professeur, INSA Rouen Normandie

Composition du Jury :
Présidente : Elisa FROMONT Professeur, Université de Rennes 1
Examinateurs : Frederic JURIE Professeur, Université de Caen Normandie

Patrick PEREZ Directeur scientifique, Valeo.ai Paris
Nikos KOMODAKIS Professeur, Université d’Heraklion Crète
Stéphane CANU Professeur, INSA Rouen Normandie

Dir. de thèse : Yannis AVRITHIS Chargé de recherche, Inria Rennes Bretagne
Encadr. de thèse : Sylvaine PICARD Responsable industriel, Safran

Invité :
Andrei BURSUC Chercheur, Valeo.ai Paris

Acknowledgements

I would like to thank all of the people that contributed to this thesis. As part of the
Cifre process, I had the chance to work with many people during three years.

I was very fortunate to have Yannis Avrithis as my director, his incredible dedication
to research and helping his students was a considerable help throughout the thesis. On
the Safran side, I want to thank Sylvaine Picard for her trust, guidance and ideas that
were always very useful. I also want to thank Andrei Bursuc, who also advised me at
the beginning of this work, setting me on the right track.

Thank you to Nikos Komodakis and Stéphane Canu that reviewed this manuscript
and gave valuable feedback as well as Elisa Fromont, Patrick Perez and Frédéric Jurie
for accepting to be part of my jury.

While at Inria and Safran, I was surrounded by many wonderful colleagues: thank
you all for making those years more enjoyable. Finally I would thank my friends and
family that were always there to support me.

iii

Contents

Contents v

List of Figures ix

List of Tables xv

Résumé en français xxi

1 Introduction 1
1.1 Traditional framework . 2

1.1.1 Hand-crafted descriptors . 3
1.1.2 Classifiers . 4

1.2 Deep learning methods . 4
1.3 Few-shot classification . 5
1.4 Objectives and contributions . 6

1.4.1 Representation . 7
1.4.2 Adaptation . 7
1.4.3 Role of data . 8

1.5 Outline . 9

2 Background 11
2.1 Fundamental concepts . 12
2.2 Few-shot classification problem formulation 13
2.3 Frameworks . 14

2.3.1 Traditional framework . 14
2.3.2 Meta-learning framework . 15

2.4 Main approaches . 16
2.4.1 Learning to compare . 16

v

vi CONTENTS

2.4.2 Transfer learning methods . 20
2.4.3 Adapting the representation to the few-shot task 22

2.5 Data augmentation . 24
2.6 Boosting few-shot learning . 26
2.7 Few-shot learning datasets . 27

2.7.1 Omniglot . 28
2.7.2 MiniImageNet . 28
2.7.3 FC100 . 28
2.7.4 CUB . 28

2.8 Proposed pipeline . 29
2.9 Positioning . 31

2.9.1 Local approach . 31
2.9.2 Embedding adapation . 31
2.9.3 Transductive few-shot learning . 32
2.9.4 Using extra unlabeled data . 32

3 Representation learning for few-shot learning 33
3.1 Choice of baseline model . 35

3.1.1 Few-shot learning embedding architectures 35
3.1.2 Training procedure . 39
3.1.3 Selection of architecture and method 44
3.1.4 Number of shot . 45

3.2 Dense Classification . 46
3.2.1 Method . 46
3.2.2 Discussion . 49
3.2.3 Inference on novel classes . 51

3.3 Experiments . 51
3.3.1 Experimental setup . 51
3.3.2 Results . 52

3.4 Conclusion . 55

4 Adaptation of the representation to the few-shot task 57
4.1 Implanting . 59

4.1.1 Related works . 59
4.1.2 Architecture . 59
4.1.3 Training . 60

CONTENTS vii

4.1.4 Inference on novel classes . 62
4.2 Implanting experiments . 63

4.2.1 Experimental setup . 63
4.2.2 Results . 63

4.3 Few-steps adaptation . 65
4.3.1 Related works . 65
4.3.2 Method . 66
4.3.3 Results . 70

4.4 Using base classes to augment the support set 71
4.4.1 Method . 71
4.4.2 Results . 73

4.5 Conclusion . 74

5 Local propagation for transductive few-shot learning 75
5.1 Background . 77

5.1.1 Transductive few-shot learning formulation 77
5.1.2 Label propagation . 78

5.2 Local features . 80
5.2.1 Spatial attention . 80
5.2.2 Feature pooling . 82

5.3 Local propagation . 83
5.3.1 General method . 83
5.3.2 Local feature propagation . 85
5.3.3 Local label propagation . 85
5.3.4 Inference . 85

5.4 Experiments . 86
5.4.1 Experimental setup . 86
5.4.2 Ablation studies . 87
5.4.3 Results . 90

5.5 Conclusion . 94

6 Few-shot Few-shot learning 95
6.1 Few-shot Few-shot formulation . 97

6.1.1 Reminder . 97
6.1.2 Few-shot few-shot classification . 97

6.2 Spatial attention from pre-training . 98

viii CONTENTS

6.2.1 Generating the attention weights 98
6.2.2 Applying the attention weights . 100

6.3 Few-shot few-shot classification model . 100
6.3.1 Base class training . 100
6.3.2 Novel class adaptation . 101
6.3.3 Novel class inference . 101

6.4 Experiments . 101
6.4.1 Experimental setup . 101
6.4.2 Results . 105

6.5 Comparison of spatial attention mechanisms 110
6.6 Conclusion . 111

7 Application to classification of aerial images 113
7.1 Problem . 114

7.1.1 Data . 114
7.1.2 Task . 115

7.2 Model . 116
7.2.1 Experimental setup . 117
7.2.2 Base class learning . 117
7.2.3 Novel class adaptation . 119

7.3 Conclusion . 120

Conclusion and perspectives 123

Bibliography 127

List of published contributions 139

List of Figures

1 Structure générique d’un modèle pour la classification d’images. L’extracteur
de caractéristiques renvoie une description de l’image facilitant la classi-
fication. Le classifieur utilise la représentation pour produire une proba-
bilité d’appartenance pour chaque catégorie. xxii

2 Structure proposée pour la classification d’un exemple ans un problème
de classification few-shot. La fonction d’extraction de caractéristique est
entraînée pendant la phase d’apprentissage de la représentation utilisant
les données de base puis adaptée avec les quelques exemples. Un classi-
fieur pour les classes few-shot est construit en utilisant les quelques exem-
ples. Une opération d’attention spatiale est utilisée pour sélectionner les
représentations locales pertinentes. En bleu sont notées nos contributions
et les chapitres dans lesquelles elles sont développées. xxvi

1.1 Standard structure for an image classification model. The feature extrac-
tor extract relevant description of the image, which is then treated by
the classifier. For each class, the classifier outputs the probability of the
image being from the class. 2

2.1 Examples of images from the few-shot datasets. Each image is from a
separate class to illustrate the inter-class diversity of datasets. 29

2.2 Proposed pipeline for few-shot classification. The feature extractor is
trained during representation learning on a prior dataset and then adapted
on the support examples. A classifier for the few-shot classes is built from
the support examples. A spatial attention module is used to select relevant
local representations. In blue are our contributions to the pipeline with
the chapter number where they are discussed. 30

ix

x LIST OF FIGURES

3.1 Four layers embedding networks architectures used for few-shot learning.
All C64F filters have 64 channels, whereas the two last layers of C128F
have 128 channels. The activation function used is ReLU. 36

3.2 Example of residual block from a residual network [He+16] 37
3.3 ResNet-18 architecture. The activation function used is ReLU. 38
3.4 ResNet-12 architecture. The activation function used is Swish. 40
3.5 Evolution of the base class validation accuracy and novel class validation

accuracy during representation learning using cosine classifier, ResNet-18
as embedding network and constant learning rate. We show 2 runs of the
same optimization. 43

3.6 miniImageNet few-shot 5-way accuracy with varying number of shot. The
embedding network is ResNet-12. 46

3.7 Flattening and pooling. Horizontal (vertical) axis represents feature (spa-
tial) dimensions. Tensors w1,w2,w3 represent class weights, and φ(x) the
embedding of example x. An embedding is compared to class weights by
similarity (s) and then softmax (σ) and cross-entropy (`) follow. (a) Flat-
tening is equivalent to class weights having the same r× d shape as φ(x).
(b) Global pooling. Embedding φ(x) is pooled (Σ) into vector a ∈ Rd

before being compared to class weights, which are in Rd too. 47
3.8 Dense classification. Notation is the same as in Figure 3.7. The embed-

ding a := φ(x) ∈ Rr×d is seen as a collection of vectors (a(1), . . . ,a(r))
in Rd (here r = 3) with each being a vector in Rd and representing a
region of the input image. Each vector is compared independently to the
same class weights and the losses are added, encouraging all regions to be
correctly classified. 48

3.9 Examples overlaid with correct class activation maps [Zho+16] (red is
high activation for ground truth) on ResNet-12 trained with global aver-
age pooling or dense classification (cf . (3.1)). From top to bottom: base
classes, classified correctly by both (walker hound, tile roof); novel classes,
classified correctly by both (king crab, ant); novel classes, dense classi-
fication is better (ferret, electric guitar); novel classes, pooling is better
(mixing bowl, ant). In all cases, dense classification results in smoother
activation maps that are more aligned with objects. 50

3.10 miniImageNet few-shot 5-way accuracy improvement when using dense
classification compared to global average pooling training, with varying
number of shot. ResNet-12 is used as embedding network. 54

LIST OF FIGURES xi

4.1 Neural implants for CNNs. The implants are convolutional filters oper-
ating in a new processing stream parallel to the base network. The input
of an implant is the depth-wise concatenation of hidden states from both
streams. When training neural implants, previously trained parameters
are frozen. Purple and black arrows correspond to the representation
learning stage flows; red and black to adaptation. 60

4.2 Neural implants for a residual block. Implants replicate the residual struc-
ture of the block, while utilizing the original data stream for each convo-
lutional block. 61

4.3 5-way 5-shot validation loss of miniImagenet as a function of the number
of learning steps at adaptation, relative to step 0 (no adaptation). Each
curve corresponds to a different few-shot task build from the validation
set. 67

4.4 5-way 5-shot adaptation training loss of miniImagenet as a function of
the number of learning steps at adaptation, relative to step 0 (no adapta-
tion). Each curve corresponds to a different few-shot task build from the
validation set. 68

4.5 5-way 5-shot average validation accuracy of miniImagenet as a function
of the number of learning steps at adaptation, relative to step 0 (no adap-
tation). 68

4.6 5-way 1-shot average validation accuracy of miniImagenet as a function
of the number of learning steps at adaptation, relative to step 0 (no adap-
tation). 69

4.7 Examples of selection of related base examples for a 5-way 1-shot task of
CUB. Each row depicts the support image for the novel class (left) and
the corresponding closest three examples in the base dataset based on
cosine similarity in the feature space (right). 72

5.1 Illustration of labeling strategies of the unlabeled samples on a toy exam-
ple. unlabeled samples are in grey. Labelled samples are colored squares,
each color corresponding to a different class. 79

5.2 Examples of images, each with the corresponding spatial attention heatmap
and clusters used in feature pooling (black indicates regions below thresh-
old in the heatmap). The first two lines correspond to CUB, the last two
to miniImageNet. We use τ = 0.3 for spatial attention and m = 10 for
feature pooling. 81

xii LIST OF FIGURES

5.3 Construction of the nearest neighbor adjacency matrix in the transductive
(a) and non transductive (b) few-shot setting. For queries each color
corresponds to local features coming from a common image. 84

5.4 Examples of CUB query images in 5-way 5-shot non-transductive tasks,
each followed by the heatmap of predicted probability for the correct class
using a prototype classifier, then using local label propagation. (a), (b)
Local label propagation helps classifying to the correct class. (c) Both
give a correct prediction. (d) Local label propagation fails. 86

5.5 Spatial attention on GAP+Proto [SSZ17]: 5-way few-shot classification
accuracy vs. threshold τ , relative to τ = 0 (no attention). 88

5.6 Spatial attention on our local label propagation, including feature pool-
ing and feature propagation: 5-way few-shot classification accuracy vs.
threshold τ , relative to τ = 0 (no attention). All other parameters fixed
to optimal. 89

5.7 Feature pooling on our local propagation: 5-way few-shot classification
accuracy vs. number of clusters m, relative to m = 10 for better visual-
ization. TR: transductive. We use spatial attention in all settings and
feature propagation only in transductive. All other parameters fixed to
optimal. 89

5.8 CUB 5-way 5-shot classification accuracy vs. number of queries per novel
class. Our local label propagation outperforms transductive and non-
transductive baselines in all settings. By contrast, global label prop-
agation only competes with non-trasductive methods when at least 10
unlabeled queries are available. We use spatial attention (also our con-
tribution) and feature propagation [Rod+20] for all methods. We use
feature pooling for local propagation . 93

6.1 Examples of images from CUB (top) andminiImageNet (bottom) overlaid
with entropy-based spatial attention maps obtained from (6.2) using only
the predicted class probabilites from ResNet-18 pre-trained on Places. See
section 6.4 for details on datasets and networks. 99

6.2 Examples of images from the Places dataset, from left to right: rainforest,
coffee shop, zen garden, bowling alley, bamboo forest. 102

7.1 Examples of images from the VEDAI dataset [RJ15]. Uncropped images
used in this study are similar in size and content. 115

LIST OF FIGURES xiii

7.2 Number of images for the four largest rare vehicles classes. 116

List of Tables

3.1 Comparison of the performance of the embedding network depending on
the validation metric used for early stopping. The first model is selected
from the best epoch regarding the base class validation accuracy, the
second regarding novel class validation accuracy. For each we report the
other metric result as well as few-shot test performance. All few-shot
accuracy reported are computed on 5-way tasks of miniImageNet with
ResNet-18 as embedding network. 44

3.2 Average 5-way accuracy on novel classes of miniImageNet using differ-
ent embedding networks and representation learning method. Novel class
inference is performed using the prototype classifier method. PN: proto-
typical networks, CC: cosine classifier. 45

3.3 Average 5-way accuracy on novel classes of miniImageNet, stage 1 only.
Pooling refers to stage 1 training. GAP: global average pooling; DC: dense
classification. At testing, we use global max-pooling on queries for models
trained with dense classification, and global average pooling otherwise. . . 52

3.4 Average 5-way 5-shot accuracy on base, novel and both classes of miniImageNet
with ResNet-12, stage 1 only. GMP: global max-pooling; GAP: global av-
erage pooling; DC: dense classification. Bold: accuracies in the confidence
interval of the best one. 53

xv

xvi LIST OF TABLES

3.5 Average 5-way accuracy on novel classes of miniImageNet. The top part
is our solutions and baselines, all on ResNet-12. GAP: global average
pooling (stage 1); DC: dense classification (stage 1). At testing, we use
GAP on support examples and GAP or DC on queries, depending on the
choice of stage 1. The bottom part results are as reported in the literature.
PN: Prototypical Network [SSZ17]. MAML [FAL17] and PN [SSZ17] use
four-layer networks; while PN [OLR18] and TADAM [OLR18] use the
same ResNet-12 as us. Gidaris et al. [GK18] use a Residual network of
comparable complexity to ours. 55

3.6 Average 5-way accuracy on novel classes of FC100 with ResNet-12. The
top part is our solutions and baselines. GAP: global average pooling
(stage 1); DC: dense classification (stage 1). At testing, we use GAP on
support examples and GAP or DC on queries, depending on the choice
of stage 1. The bottom part results are as reported in the literature. All
experiments use the same ResNet-12. 55

4.1 Average 5-way 5-shot accuracy on novel classes of miniImageNet with
ResNet-12 and implanting in stage 2. At testing, we use GAP for support
examples. GMP: global max-pooling; GAP: global average pooling; DC:
dense classification. 64

4.2 Average 5-way accuracy on novel classes of miniImageNet. The top part
is our solutions and baselines, all on ResNet-12. GAP: global average
pooling (stage 1); DC: dense classification (stage 1); WIDE: last residual
block widened by 16 channels (stage 1); IMP: implanting (stage 2). In
stage 2, we use GAP on both support and queries. At testing, we use
GAP on support examples and GAP or DC on queries, depending on the
choice of stage 1. The bottom part results are as reported in the literature.
PN: Prototypical Network [SSZ17]. MAML [FAL17] and PN [SSZ17] use
four-layer networks; while PN [OLR18] and TADAM [OLR18] use the
same ResNet-12 as us. Gidaris et al. [GK18] use a Residual network of
comparable complexity to ours. 65

LIST OF TABLES xvii

4.3 Average 5-way accuracy on novel classes of FC100 with ResNet-12. The
top part is our solutions and baselines. GAP: global average pooling (stage
1); DC: dense classification (stage 1); IMP: implanting (stage 2). In stage
2, we use GAP on both support and queries. At testing, we use GAP on
support examples and GAP or DC on queries, depending on the choice
of stage 1. The bottom part results are as reported in the literature. All
experiments use the same ResNet-12. 66

4.4 Average 5-way accuracy on novel classes of miniImageNet, all on ResNet-
12. DC: dense classification (representation learning stage); IMP: im-
planting (adaptation stage); few-steps: few-steps adaptation. 70

4.5 Average 5-way 1-shot accuracy on novel classes of CUB and miniImageNet.
Augmentation is performed by adding 100 extra examples from the base
dataset per novel class. ResNet-12 is used as embedding network. 73

5.1 5-way few-shot classification accuracy, comparing our local (feature and
label) propagation to baselines and existing work. A: spatial attention
(our work, also applied to baselines). P: feature pooling (clustering) (our
work). F: feature propagation [Rod+20]. 91

6.1 Top ranking miniImageNet classes in terms of classification to a a specific
Places class and our decision on if w consider it as overlapping with the
corresponding Places class. FO and PO respectively stand for full and
partial overlap. 103

6.2 Classes removed from miniImageNet to form the modified miniImageNet
dataset and the corresponding overlapping Places classes. 104

6.3 Average 5-way 1-shot novel class accuracy on CUB. We use ResNet-18
either pre-trained on Places or we train it from scratch on k base class
examples. ProtoNet [SSZ17] is as reported by Chen et al. [Che+19]. For
ensemble [DSM19], we report the distilled model from an ensemble of 20.
Baselines as reported in the literature, without attention or adaptation;
to be compared only to randomly initialized with k′ = all. 105

xviii LIST OF TABLES

6.4 Average 5-way 5-shot novel class accuracy on CUB. We use ResNet-18
either pre-trained on Places or we train it from scratch on k base class
examples. ProtoNet [SSZ17] is as reported by Chen et al. [Che+19]. For
ensemble [DSM19], we report the distilled model from an ensemble of 20.
Baselines as reported in the literature, without attention or adaptation;
to be compared only to randomly initialized with k′ = all. 106

6.5 Average 5-way 1-shot novel class accuracy on modified miniImageNet. We
use ResNet-18 either pre-trained on Places or we train it from scratch on
k′ base class examples. Baselines only shown in Table 6.7 on the original
miniImageNet. 106

6.6 Average 5-way 5-shot novel class accuracy on modified miniImageNet. We
use ResNet-18 either pre-trained on Places or we train it from scratch on
k′ base class examples. Baselines only shown in Table 6.8 on the original
miniImageNet. 107

6.7 Average 5-way 1-shot novel class accuracy on original miniImageNet. We
use ResNet-18 either pre-trained on Places or we train it from scratch
on k base class examples. ProtoNet [SSZ17] is as reported by Chen
et al. [Che+19]. CTM refers to the data-augmented version of Li et
al. [Li+19a]. For ensemble [DSM19], we use the distilled model from
an ensemble of 20. Baselines as reported in the literature, without atten-
tion or adaptation; to be compared only to randomly initialized with k′ =
all. 108

6.8 Average 5-way 5-shot novel class accuracy on original miniImageNet. We
use ResNet-18 either pre-trained on Places or we train it from scratch
on k base class examples. ProtoNet [SSZ17] is as reported by Chen
et al. [Che+19]. CTM refers to the data-augmented version of Li et
al. [Li+19a]. For ensemble [DSM19], we use the distilled model from
an ensemble of 20. Baselines as reported in the literature, without atten-
tion or adaptation; to be compared only to randomly initialized with k′ =
all. 109

6.9 Average 5-way novel class accuracy on CUB. We use ResNet-18 either
pre-trained on Places, pre-trained on Places then fine-tuned on CUB or
trained from scratch on CUB using all base class examples. We are ap-
plying different spatial attention strategies at inference. ESA cannot be
used when no pre-trained classifier is available. 109

LIST OF TABLES xix

6.10 Average 5-way novel class accuracy on modified miniImageNet. We use
ResNet-18 either pre-trained on Places, pre-trained on Places then fine-
tuned on modified miniImageNet or trained from scratch on modified
miniImageNet using all base class examples. We are applying different
spatial attention strategies at inference. ESA cannot be used when no
pre-trained classifier is available. 110

7.1 Detailed repartition of vehicle images in the Safran dataset. 115
7.2 Average recall of the novel class and accuracy with multiclass cross-entropy

and binary cross-entropy loss. The accuracy is computed using both base
classes and novel classes. Dense classification is used in both cases. RV1
and RV2 refers to rare vehicle classes 1 and 2. 118

7.3 Average recall of the novel class and accuracy with global average pooling
and dense classification. The accuracy is computed using both base classes
and novel classes. Binary cross-entropy is used in both cases. RV1 and
RV2 refers to rare vehicle classes 1 and 2. 119

Résumé en français

Ces dernières années ont connu l’émergence de nouvelles techniques de vision par ordina-
teur, permettant d’énormes progrès dans les tâches populaires telles que la classification
d’image, la détection d’objets ou la segmentation sémantique. Dans certains cas, les
performances atteintes dépassent même celles des humains. C’est notamment les cas
de la classification d’image, comme démontré par les résultats de la compétition an-
nuelle ImageNet. L’objectif du challenge est de développer des modèles capables de
classifier automatiquement des images dans 1000 catégories. Depuis 2015, les modèles
vainqueurs ont des taux d’erreurs inférieurs à celui d’un humain moyen. On peut ex-
pliquer ce succès par la concordance de l’apparition de nouveaux modèles, l’accessibilité
rapide à des vastes bases de données ainsi que le développement d’unités de calculs.
Plus spécifiquement, une partie du monde de la recherche en vision par ordinateur s’est
focalisé sur la conception et l’utilisation de réseaux de neurones profonds. Ces modèles
contiennent des millions de paramètres, qui, après avoir été réglés, peuvent approximer
des fonctions permettant de réaliser des tâches complexes, telles que le calcul de la
probabilité qu’une image appartiennent à une catégorie. Le réglage des paramètres est
un problème d’apprentissage statistique. Des exemples sont montrés aux modèles, les
paramètres sont ajustés grâce à un algorithme d’optimisation pour apprendre à bien
réaliser la tâche sur ceux-ci. L’apprentissage de l’ensemble des paramètres nécessite un
grand nombre d’exemples et est coûteux en ressources. Les GPUs modernes permettent
la parallélisation des opérations sous-jacentes, rendant l’utilisation de réseaux profonds
accessible.

Modèles pour la classification

Une tâche commune à toute application de vision par ordinateur utilisant des images
comme entrées est l’obtention d’une bonne méthode de représentation de celles-ci. Les
images sont généralement encodées numériquement sous la forme de séquences de valeurs

xxi

xxii RÉSUMÉ EN FRANÇAIS

Prediction par
classe

Extracteur de
caractéristiques

Image

C
lassifieur

R
eprésentation des caractéristiques

1 2 3 4 5 6

Figure 1 – Structure générique d’un modèle pour la classification d’images. L’extracteur
de caractéristiques renvoie une description de l’image facilitant la classification. Le
classifieur utilise la représentation pour produire une probabilité d’appartenance pour
chaque catégorie.

discrètes correspondant à l’intensité de chaque pixel. Il est difficile d’utiliser directement
cette représentation pour effectuer des tâches complexes telles que la classification. Une
représentation plus haut niveau, non pas selon les pixels mais selon le contenu de l’image,
est nécessaire, de la même manière qu’un humain peut juger de la nature des objets en
identifiant certains attributs remarquables.

Par conséquent, les modèles de vision par ordinateurs peuvent contenir deux étapes.
Tout d’abord, un modèle d’extraction de caractéristiques transforme la représentation
sous forme de pixels en représentation de caractéristiques. Les représentations de carac-
téristiques n’ont pas pour but de décrire parfaitement les images, à la place ils véhiculent
des informations sémantiques sur ce qui se trouve dans les images.

De nombreuses fonctions de représentation d’images ont été proposées. Certaines
sont définies par un algorithme fixe, ces algorithmes découlant de la compréhension
des chercheurs sur la structure des images. D’autres sont basées sur les méthodes
d’apprentissage automatique, auquel cas la fonction est apprise sur un ensemble d’exemples
d’images. Une revue récente ces méthodes est [Ma+21].

Une fois l’image convertie en une représentation haut niveau, un autre modèle la
traite pour effectuer la tâche souhaitée. Dans le cas de la classification d’images, le
classifieur produit un score ou une probabilité d’appartenance pour chacune des classes
possibles. Ce fonctionnement générique est illustré dans Figure 1

xxiii

Extraction de caractéristiques par apprentissage profond

Les fonctions d’extraction de caractéristiques fixes sont des fonctions génériques crées
pour pouvoir s’appliquer sur différents type d’images. Bien que ces représentations
soient suffisantes pour certaines tâches, idéalement, la fonction de représentation de-
vrait être adaptée à la tâche à résoudre. C’est ce que permettent les méthodes basées
sur l’apprentissage automatique. En particulier, les réseaux de neurones convolutifs se
sont récemment avérés produire de puissantes représentations des images. En plus de
remplacer les extracteurs de caractéristiques, les réseaux de neurones peuvent également
remplir le rôle du classifieur, unifiant les deux parties de l’approche de la Figure 1

Les réseaux de neurones sont constitués d’unités de calcul paramétrables appelées
neurones. Ceux-ci sont organisés en couches successives, de sorte que l’entrée d’un neu-
rone est la sortie des neurones de la couche précédente. Dans certains réseaux dits
convolutifs, certaines connexions entre neurones sont désactivées, permettant ainsi de
réaliser des opérations de convolution permettant de mieux traiter les images. Les con-
volutions extraient des informations localisées dans l’image. En conséquence, la première
couche d’un réseau neuronal peut apprendre à extraire des informations de bas niveau
localement, par exemple le type de texture. Les couches suivantes combinent ces infor-
mations pour l’extraction d’informations de plus haut niveau et moins localisées. Les
architectures récentes de réseaux de neurones sont dites profondes, c’est-à-dire qu’ils sont
constitués de nombreuses couches, plus de 100 dans les cas extrêmes. Ils contiennent des
millions de paramètres qui doivent être régler à l’aide de méthodes d’optimisation.

Lorsque des données annotées, c’est-à-dire dont on connaît la catégorie, sont acces-
sible, le réglage des paramètres peut passer par l’apprentissage supervisé. Lors de cet
apprentissage les données sont traitées par le réseau qui fournit les prédictions concer-
nant les catégories. Une fonction de perte évalue l’écart entre les prédictions avec la
vérité. Des algorithmes d’optimisation sont utilisés pour minimiser la fonction de perte
en ajustant les paramètres.

Classification few-shot

Les modèles basés sur les réseaux de neurones profonds nécessitent une énorme quan-
tité de données annotées pour la phase d’apprentissage pour atteindre des performances
rivalisant avec l’humain. Par exemple, la base de données ImageNet [Rus+14] contient
des millions d’images annotées. Le grand nombre d’images d’entraînement est impor-
tant pour que les bonnes performances pendant la phase d’apprentissage se généralisent

xxiv RÉSUMÉ EN FRANÇAIS

à des nouvelles données, jamais vues par le modèle. En pratique, dans de nombreux
cas, une telle quantité de données n’est pas accessible. Par conséquent, il est important
de trouver des méthodes réduisant cette dépendance à la supervision. Cela a motivé
les travaux sur l’apprentissage non-supervisé, où les données sont accessibles mais non
annotées, l’apprentissage semi-supervisé, où seul une partie des données sont annotées,
l’apprentissage actif où le modèle choisit un sous-ensemble d’images à faire annoter on
encore l’apprentissage par transfert, où la connaissance accumulées par l’apprentissage
d’une autre tâche est adaptée à la tâche en cours. Dans tous ces domaines, le nom-
bre d’exemples disponibles par l’apprentissage reste relativement grand, de l’ordre des
milliers.

Pousser à l’extrême la contrainte sur les données d’apprentissage amène à définir
l’apprentissage frugal, ou few-shot learning, pour lequel les données d’entraînement sont
annotées mais limitées à quelques exemples, appelés exemples support, des dizaines au
maximum. Dans le cas extrême du one-shot learning, un seul exemple par catégorie
est utilisable. Avec si peu de données, le problème de généralisation entre les données
d’entraînement et de test est plus difficile. Les exemples d’apprentissage ne représen-
tent que des définitions incomplètes de leurs catégories, ne décrivant pas les variabilités
d’apparences au sein des classes. Il est donc possible que certaines images à classifier ne
ressemblent à aucunes de celles vues lors de l’apprentissage. Avec aussi peu de supervi-
sion, l’entraînement complet d’un réseau de neurones profond n’est pas réalisable.

En comparaison, les humains possèdent la capacité d’être capable d’apprendre à
reconnaître de nouveaux objets, et plus généralement, à effectuer des nouvelles tâches en
se basant sur un nombre limité d’observations. Cela peut s’expliquer par l’accumulation
de connaissances préalables au cours de la vie, permettant une meilleure compréhension
de la structure des scènes ainsi que des méthodes générales de résolution de tâches. De la
même façon, les méthodes de few-shot learning, utilisent de connaissances extérieures à
la tâche, sous la forme d’une base de données plus grande avec des catégories disjointes,
pour apprendre à bien représenter les images pour la classification. Cette base de données
est appelée données de base. Certaines méthodes vont plus loin, en faisant du meta-
apprentissage, ce qui consiste à apprendre des méthodes permettant de mieux apprendre
à résoudre tout type de tâches. Ces méthodes utilisent alors la base de connaissance à
priori pour générer artificiellement des tâches few-shot afin d’apprendre à les résoudre.

Après cette étape préliminaire que nous appellerons étape d’apprentissage de représen-
tation, les quelques exemples supports de la tâche few-shot sont utilisés, en combinaison
avec la fonction de représentation obtenue, pour former un modèle de classification dans
les nouvelles catégories. Ce processus est similaire à celui mis en place dans le cas de

xxv

l’apprentissage par transfert. A la différence que pour l’apprentissage par transfert, la
fonction de représentation des images est généralement adaptée aux nouvelles données
lors d’une nouvelle phase d’entraînement sur les paramètres du réseau. Cette étape
d’adaptation est plus difficile à réaliser dans le cas du few-shot. Plus le modèle utilisé
contient de paramètres, plus il faut de données pour les ajuster, sinon le modèle sur-
apprend, c’est-à-dire est efficace sur les données d’apprentissage mais ne généralise plus
aux autre données. Par conséquent, l’adaptation est généralement limitée à la construc-
tion d’un classifieur pour les nouvelles classes, qui agit sur la sortie de la fonction de
représentation. Les classifieurs sont des modèles d’apprentissage automatique avec peu
de paramètres ou des modèles non-paramétriques pour éviter le surapprentissage.

Solutions

Dans cette thèse, nous abordons le problème de la classification frugale en se concentrant
sur l’apprentissage d’une bonne fonction de représentation des images et en utilisant les
quelques exemples supports pour l’adapter au mieux pour la tâche. En outre, dans le
souci d’utiliser au mieux toutes les données accessibles, nous étendons le cadre de la
classification few-shot standard à travers des tâches plus réalistes. Le diagramme de la
Figure 2 résume la structure utilisée pour classifier une image dans une tâche few-shot.
Nos contributions sont notées en bleu.

Apprentissage de représentation

L’apprentissage de représentation se fait grâce à l’utilisation des données de base. Après
avoir défini des méthodes pour la validation des paramètres pour la phase d’apprentissage
de représentation, on compare les efficacités de deux méthodes répandues : prototypical
networks et le classifieur cosinus. Les prototypicals networks apprennent à résoudre une
multitude de tâches échantillonnées dans les données de base. Tandis que le modèle du
classifieur cosinus est plus simple, il s’agit d’entraîner un réseau à résoudre un problème
de classification sur toutes les classes de base, puis de récupérer une partie du réseau
qui est interprétée comme fonction d’extraction de caractéristiques. On montre que
le classifieur cosinus, malgré sa simplicité est la méthode la plus prometteuse lorsque
l’on utilise des architectures de réseaux profonds telles que les residual networks. Nous
proposons la classification dense comme amélioration de cette méthode. En sortie du
réseau d’extraction de caractéristiques, les représentations sont des tenseurs 3d qui sont
généralement ramenés à des vecteurs en réduisant les dimensions spatiales. Avec la

xxvi RÉSUMÉ EN FRANÇAIS

Prédiction par
classe

Extracteur de
caractéristiques

Image

C
lassifieur

R
eprésentation des caractéristiques

1 2 3 4 5 6

Implantation
(chapitre 4)

Attention spatiale
(chapitres 5,6)

Apprentissage de
représentation

Adaptation de la
représentation

Données de base

Exemples
supports

Exemples
supports

Construction du
classifieur

Adaptation rapide
(chapitre 4)

Classification dense
(chapitre 3)

Peu de données du domaine
(chapitre 6)

Propagation locale
(chapitre 5)

Données à priori
(chapter 6)

Autres images à
classifier

(chapter 5)

Figure 2 – Structure proposée pour la classification d’un exemple ans un problème de
classification few-shot. La fonction d’extraction de caractéristique est entraînée pendant
la phase d’apprentissage de la représentation utilisant les données de base puis adaptée
avec les quelques exemples. Un classifieur pour les classes few-shot est construit en
utilisant les quelques exemples. Une opération d’attention spatiale est utilisée pour
sélectionner les représentations locales pertinentes. En bleu sont notées nos contributions
et les chapitres dans lesquelles elles sont développées.

xxvii

classification dense, on propose de ne pas effectuer cette réduction de dimensions, et
d’utiliser chaque position spatiale comme une représentation locale de l’image. Au lieu
de réunir ces représentations, on entraîne le réseau à classifier chacune des représentations
locales dans la classe de l’image. Ainsi, on apprend alors une fonction de représentation
plus riche qui permet d’améliorer les performances de classification, notamment sur les
nouvelles tâches few-shot.

Adaptation de la fonction de représentation

La fonction de représentation apprise sur les données de base n’est pas adaptée aux tâches
few-shot que l’on veut résoudre, étant donné que les données de base appartiennent à
des classes disjointes des classes few-shot. Dans cette thèse nous allons nous intéresser
aux méthodes permettant d’effectuer cette adaptation tout en évitant le problème du
surapprentissage. Nous proposons deux solutions. Tout d’abord l’implantation, méth-
ode qui consiste à ajouter en parallèle du réseau des nouvelles couches de convolution
appelés implants. Les paramètres des implants sont appris en sur les exemples supports
seulement, ils sont donc spécifiques à la tâche few-shot considérée. Ils permettent de
calculer des caractéristiques spécifiques à la tâche, qui sont concaténées aux caractéris-
tiques calculées par le réseau entraîné auparavant. Comme les paramètres à apprendre
sont moindre, on peut contrôler le surapprentissage, permettant alors d’apprendre sur les
exemples supports et d’améliorer la classification de nouveaux exemples. La deuxième
méthode consiste à ajuster plusieurs couches du réseau d’extraction de caractéristiques
avec un petit taux d’apprentissage et pour un petit nombre d’itérations seulement. Le
nombre d’itération d’apprentissage à effectuer est déterminé par observation du com-
portement moyen des courbes d’apprentissage sur une base de données de validation.
Bien que très simple, cette approche permet une amélioration notable des performances
dans de nombreux cas. Dans le cas extrême du one-shot learning, cette méthode est peu
efficace car le surapprentissage est quasi-immédiat. Dans ce cas, on montre que l’on peut
augmenter le nombre d’exemples support artificiellement en réutilisant des images des
classes de bases proches des exemples supports et en les assimilant à la nouvelle tâche.

Propagation locale

On propose également de s’intéresser au problème de la classification transductive, dans
lequel plusieurs images doivent être classifiées en même temps. Les images à classifier
peuvent être utilisées comme exemples non-annotés. La prise en compte de ces exemples
est d’autant plus importante dans le cadre du few-shot learning ou les données sont rares.

xxviii RÉSUMÉ EN FRANÇAIS

Une façon d’en tirer parti est de construire un graphe dans lequel les sommets sont les
exemples (annotées et non-annotées), puis de propager l’information de classe dans le
graphe pour classifier tous les sommets. Nous proposons une nouvelle version de cette
méthode consistant à augmenter artificiellement le nombre d’exemples en considérant un
sommet par représentation locale. La classification se base alors sur des comparaisons
locales entres les images. Dans ce contexte on montre l’importance de sélectionner
uniquement les régions pertinentes des images. On introduit alors un mécanisme simple
d’attention spatiale qui filtre les informations liées au fond des images. Ce mécanisme
est important pour la propagation locale mais on montre qu’elle apporte également des
améliorations de performances lorsque combinée avec d’autres méthodes.

Few-shot Few-shot learning

Dans les problèmes de few-shot standard, on présume l’accès aux données de base du
même domaine que les données few-shot (contenu similaire), et que celles-ci soient assez
nombreuses pour l’apprentissage d’une fonction de représentation. Cela n’est pas tou-
jours le cas, d’autant plus que le few-shot s’applique dans des domaines pour lesquels
l’information est difficilement accessible. Par contre, sont ignorées la multitude de
grandes bases de données accessibles publiquement. Ces données ne sont pas nécessaire-
ment dans le même domaine mais on peut se demander si elles peuvent être utilisées
pour les tâches few-shot. Nous proposons un nouveau cadre few-shot dans lesquels les
données de bases sont peu nombreuses et que l’on peut utiliser des données extérieures.
En l’occurrence, nous utilisons un réseau pré-entraîné sur la base Places. Si les données
de base sont accessibles, alors on peut adapter le réseau au domaine. Puis, le réseau peut
être une nouvelle fois adapté avec les exemples support. Dans ce contexte, on introduit
un autre nouveau mécanisme d’attention spatiale basé sur le classifieur pré-entraîné,
permettant de focaliser l’attention sur les régions pertinentes de l’image. On montre que
dans tous les cas, l’utilisation d’un réseau pré-entraîné est bénéfique. De plus, on montre
que quelques exemples de bases suffisent pour augmenter grandement les performances.

Application aux images aériennes

Nous avons également testé une partie de nos méthodes sur une application spécifique,
la classification de véhicules rares dans des images aériennes. Cette tâche comprenant
des spécificités propres, telles que le faible nombre de classes ainsi que la présence d’une
classe de fonds, qu’une étude spécifique future pourra étudier. On montre néanmoins
que la classification dense semble être bénéfique. De plus, les mécanismes d’attention

xxix

semblent pouvoir se généraliser.

Chapter 1

Introduction

Contents
1.1 Traditional framework . 2

1.1.1 Hand-crafted descriptors . 3

1.1.2 Classifiers . 4

1.2 Deep learning methods . 4

1.3 Few-shot classification . 5

1.4 Objectives and contributions 6

1.4.1 Representation . 7

1.4.2 Adaptation . 7

1.4.3 Role of data . 8

1.5 Outline . 9

In the last few years, novel computer vision algorithms have made huge progress
on popular tasks such as image classification, object recognition or semantic segmenta-
tion, exceeding sometimes human visual abilities. The results of the annual ImageNet
challenge are a testament of those improvements. The objective of this challenge is to
develop models able to classify images into 1000 classes. Since 2015, the winning model
of this challenge has error rate smaller than that of the average human. Such successes
are due to a concordance of the use of novel large models, access to large-scale datasets,
and powerful hardware to manage the two. More specifically, computer vision research
has refocused on the use of deep neural networks. Those models contain millions of pa-
rameters, which, once tuned, can approximate a complex function capturing a high-level
concept such as an image belonging to a class. Tuning of the parameters is a machine
learning problem. A model is shown input examples and is trained by adjusting its

1

2 CHAPTER 1. INTRODUCTION

Class
probabilities

Feature extractor

Image

C
lassifier

Feature representation 1 2 3 4 5 6

Figure 1.1 – Standard structure for an image classification model. The feature extractor
extract relevant description of the image, which is then treated by the classifier. For
each class, the classifier outputs the probability of the image being from the class.

parameters to perform better on those. To tune all parameters, it is necessary to use a
large number of examples. The use of deep models and their training is computation-
ally expensive. Modern GPUs allow paralellization of the underlying operations, which
makes them a viable solution.

1.1 Traditional framework

One of the challenges that come with designing models that automatically interpret
images is to find a good image representation. Images are digitally encoded as sequences
of discrete pixel values. Pixel information is hard to use for advanced tasks such as image
classification. A higher-level representation is needed for such tasks, in the same manner
that humans are able to recognize objects because they can identify their attributes in
the scenes.

For this reason, common computer vision models contain two stages. First, a feature
extraction model transforms the pixel representation to features representation. Feature
representations are not meant to perfectly describe the images at pixel level, rather carry
semantic information about what is in the image they encode.

Many image representation functions have been proposed. They can either be hand-
crafted, that is, have a fixed definition based on expert understanding of the structure
of images, or learning-based, where the function is learned on a set of image examples.
A recent survey of those methods can be found in [Ma+21].

Once the image is converted to a higher-level representation, another model treats it
to complete the desired task. In the case of image classification, the classifier outputs a
score or probability of belonging for each of the possible classes. This general framework
is illustrated in Figure 1.1.

1.1. TRADITIONAL FRAMEWORK 3

1.1.1 Hand-crafted descriptors

Hand-crafted descriptors can either be global, in which case a unique feature vector
represents an image, or local, in which case the regions of interest are each encoded
separately. Local features can be used independently to perform region-to-region match-
ing between two images, which can be useful for tasks such as image retrieval, stereo
vision, object tracking or panorama stitching. When aggregated, local features produce
powerful global representations.

Local features can be computed densely using a grid fitted on the image [TLF08],
or be computed on a selection of regions of interest. In the latter case, an extra step
of locating the regions of interest is introduced. Detectors aim to detect regions of the
image that can be consistently detected on different views of the same scene, which are
salient regions of the image. More specifically, most methods result in finding sharp
edges or corners in the image. A common way of performing this detection is to track
sudden variations of intensity, as done in the popular Harris corner method [HS88].
Alternatively, hybrid methods between dense and sparse local features have also been
proposed [Tuy10; Isc+15].

Representations are then obtained by applying local filtering operations. That is,
pixel values are combined with their neighbors by application of a filter. Filters reveals
low-level image information such as frequency and scale. SIFT [Low04] and HOG [DT05]
accumulate compute the direction of the change in intensity in small patches then ac-
cumulate them into histograms. GIST [OT06] uses a Gabor filter bank that act as
directional edge detectors, in doing so information about the direction of edges is ex-
tracted similarly to [Low04]. Evidences show that the early visual cortex of mammals
uses similar space frequency decomposition [Eve+98].

Multiple aggregation methods have been proposed to go from local features to a
global representation. Bag of words is a popular method [Wil+04]. After computing
local features of many different images, they are grouped together to produce a vocabu-
lary of features. Given this vocabulary, local features of a given image are approximated
by the closest visual word. The global representation is the frequency of appearance
of each visual word, effectively describing what appears in the image. The VLAD ap-
proach [Jég+10] also builds a vocabulary, however the final global representation is given
by the sum of the residuals between the local features and the closest visual word.

4 CHAPTER 1. INTRODUCTION

1.1.2 Classifiers

Representations of images are then input to a model that aims to achieve the desired
task. In the case of image classification, the task is to predict the class of the input image.
Classes being the category of the image. Class definition depends on the intended task.
For instance, in an animal classification context, classes can be very broad ("animal"
and "other"), individual animal ("cats", "dogs"...), or fine-grained, for instance all differ-
ent subspecies. As shown in Figure 1.1, the feature representation is the input to the
classifier, which usually outputs probabilities or scores for the considered classes. Such
classifier must be specialized to the task. To learn a classifier, a set of image examples
with the corresponding labels, called training dataset, is needed as prior knowledge of
the task. The training dataset is used for learning a machine learning model. Parameters
of the classifier model are tuned in accordance with the training examples.

Among the possible classifiers for image classification, naive Bayes [GHM07] and
support vector machines (SVM) are linear. They require few data to train but require a
good representation of the images. More specifically, image representations of different
classes should be separable by a hyperplane. Non-linear classifiers such as multi-layer
neural networks can handle intertwined representations of different classes. However,
they require more examples to train. SVMs can also be made non-linear by the use of
kernels; the choice of kernel requires prior knowledge of the task. Non-parametric classi-
fiers such as the nearest neighbor classifier [Men+13] does not use trainable parameters.
Rather, information about the examples are stored for future use. Performance is highly
dependent on the quality of the representation and they are expensive as they rely on
comparisons with all seen examples.

1.2 Deep learning methods

The hand-crafted features discussed above are fixed functions, designed by researchers
to extract relevant information from images. The representation is not adapted to the
images used for the desired tasks. Ideally, we would like a representation of the image
that is optimal for the task. This is performed by replacing the hand-crafted extractors
by learned representations. In particular, convolutional neural networks have recently
proven to produce powerful representations of images. On top of being able to replace the
feature extractors, neural networks can also fit the role of the classifier. The framework
of Figure 1.1, consisting of separate feature extractor and classifier, is simplified to a
single model performing both tasks.

1.3. FEW-SHOT CLASSIFICATION 5

Neural networks are composed of parameterizable computing units called neurons.
Neurons are organised in layers. Neurons take as input the output of the previous layers,
so that the data is sequentially processed layer per layer. When handling image inputs,
convolutional neural networks (CNN) are the structure of choice. In those networks,
some connections between neurons are disabled, implementing convolution operations
that can extract localized information in the image. As a result, the first layer of a
convolutional neural network extracts low-level localized information about the input
image. Subsequent layers combine the information to extract higher-level and less lo-
calized information. Recent neural network architectures contain many layers, hence
the name deep neural networks. The number of parameters they contain is in the order
of millions. Careful tuning of those parameters must be performed using optimization
algorithms.

The huge number of parameters of deep neural networks allow them to create pow-
erful extractors. However, strong extractors can only be achieved with a strong training
of the parameters. When training labeled data is available, parameters can be obtained
through supervised learning. When training, the network learns to map an image to
the corresponding output label. Parameters are learned by iteratively passing through
the training data. A loss function determines the performance of the parameters. Op-
timization algorithms are used to update the parameter to minimize the loss function,
resulting in maximization the performance over the whole dataset.

1.3 Few-shot classification

Deep learning models that can compete with human image classification abilities require
a huge amount of labeled data. For instance, the ImageNet dataset [Rus+14] contains
millions of annotated images that are used during the training stage. The large amount
of training images is important for high performance on the training set after training
to generalize to high performance on new data. The huge amount of data needed for
training can be problematic in many practical cases where such data is not accessible.
For this reason, reducing the need for supervision is becoming increasingly important.
This has motivated works on unsupervised learning, where data is available but not
annotated, semi-supervised learning, where only part of the data is annotated, active
learning where the model chooses a subset of images to annotate or transfer learning,
where knowledge gathered on another task is adapted for the current one. Still, in
those cases, examples available for training are in the order of thousands. In few-shot
learning training data is annotated but limited to few examples, tens at maximum. The

6 CHAPTER 1. INTRODUCTION

extreme case is one-shot learning where only one example per class is available. Zero-
shot learning also exists where no example for the task is given, however in this case,
information about the classes are given through a list of attributes, which make this
problem dissimilar to few-shot learning.

With so few data, the generalization problem between the training and testing dataset
is more challenging. The training data does not cover the range of appearance of the
class, so we might have to classify images with few similarities to what observed at
training. With so little supervision, training a deep learning model for feature extraction
is not feasible.

In contrast, humans display an impressive ability to learn to recognize new objects
and more generally to perform new tasks after encountering a limited number of exam-
ples. This can be explained by an accumulation of prior knowledge, allowing a better
understanding of scenes description as well as a general methods for performing tasks.
Similarly, few-shot learning methods use prior knowledge in accessing a larger dataset,
called base dataset, disjoint from the few-shot classes to learn a good representation func-
tion. Some methods also approach the problem through meta-learning [FAL17; RL17;
Wan+18a; NAS18], that is, learning how to solve similar problems. The latter methods
use the base dataset to create artificial few-shot tasks and learn models able to solve
those.

After this preliminary stage, that we will call the representation learning stage, the
few examples of the novel tasks are used to build a model that performs the few-shot
classification task, similarly to what is done in transfer learning. The difference is that
usually transfer learning methods adapt the representation function of the image with
the new data by continuing learning the network parameters. This adaptation stage
is harder to perform in the few-shot case. The more parameters the machine learning
model contains, the more data is needed for tuning the parameters, otherwise the model
overfits, that is, it performs well on the training data but does not generalize. Therefore,
adaptation is usually limited to building a classifier for the few-shot classes on top of
the representation function from the representation stage. Classifiers are simple machine
learning models or non-parametric classifiers similar to the one used with hand-crafted
descriptors.

1.4 Objectives and contributions

Here we introduce the objectives of the thesis, namely, improving the representation of
images, providing solutions to adapt the representation to a few-shot task, and rethinking

1.4. OBJECTIVES AND CONTRIBUTIONS 7

the role of data in a few-shot learning context. Our contributions related to those three
objectives are briefly introduced, a more detailed description is given in chapter 2.

1.4.1 Representation

With impressive results of deep learning methods for classification, few-shot learning has
recently become a very active area of research. Early works treat the problem as finding
new optimization methods that are suited for learning on small data using meta-learning
methods. Meta-learning is appealing for few-shot problems, because it allows building a
wide variety of few-shot tasks from a large dataset, on which learning is straightforward
and training for a particular few-shot task is fast, given the limited training set. An
underlying hypothesis is that learning on multiple tasks results in models that are task-
independent. However, since the tasks are generated from a limited base dataset, there is
no guarantee that the learned model is not specialized for base classes. We argue that the
most crucial element for few-shot learning is learning a good representation, which has
recently been advocated in other works [Che+19; Wan+19; Gid+19; Man+20; Tia+20].
It can be achieved through meta-learning but also through simple methods that we will
discuss in this thesis. In representation learning, we use the base dataset. Such dataset
is said to be in-domain, that is, containing images from classes disjoint from the few-
shot classes, but similar in content. For instance, when we learn a representation using
images of some animal species, this function should generalize to other unseen animal
species that correspond to the few-shot task.

In this thesis, we aim at improving the representation by studying for the first time
local representation in the context of few-shot learning. In particular, during the repre-
sentation learning stage, we take advantage of the CNN returning dense local features of
the image to devise a training method, called dense classification. Dense classification
encourages learning a wide variety of local details for maximum generalization to other
classes. When handling examples of novel classes, we also propose spatial attention
mechanisms that filters out background information, resulting in a more relevant repre-
sentation of novel classes. Furthermore, using local representations of few-shot images
allows to classify based on local similarities between examples, which we show to be a
good classification method.

1.4.2 Adaptation

The representation function learned during the representation learning stage is based
solely on examples from the base dataset. Thus, it is optimal for treating images from

8 CHAPTER 1. INTRODUCTION

this dataset. Assuming the base classes are diverse, we can hope to approach a task-
independent function. For instance, in the example of animal species, if the base dataset
covers all types of animals, the learned representation will probably generalize to the an-
imal classes of the few-shot dataset. Then, a simple solution is to use the representations
of few-shot examples to build a simple classifier without modifying the representation
function. However, even better than a task-independent representation would be to
have a task-specific function for the few-shot task. This is generally performed in trans-
fer learning methods by adapting the representation function in a new training phase.
In the case of few-shot learning, such adaptation is risky as it is prone to overfitting.
For this reason, adaptation is rarely attempted in few-shot learning methods outside of
meta-learning.

We propose two methods to adapt the representation function to the few-shot tasks
without overfitting and without resorting to complex meta-learning methods. First,
implanting, limits the number of task specific parameters to fine-tune with the few avail-
able data, simplifying the adaptation process. Alternatively, we show that performing
standard fine-tuning can be beneficial if training is limited to a few parameter updates.

1.4.3 Role of data

In the standard few-shot learning setting, we have a fairly large set of labeled in-domain
images as base dataset, then queries are treated independently at inference. We argue
that this setting is often unrealistic. Having access to a base dataset of labeled in-domain
examples can be difficult, especially in the case of few-shot learning where access to data
is rare by definition. Moreover this setting ignores extra data that can be accessed in
real life, for example, other distinct datasets may be abundant, or several queries may
be available at the same time.

In this thesis, we expand on the representation learning stage by studying the special
case where in-domain data is not available or limited to a few examples, introducing a
new few-shot learning setup called few-shot few-shot learning. In this case, we propose to
take advantage of a large-scale out-of-domain dataset, that is, with images from classes
outside of the few-shot classes domain. We discuss the impact of the final classification
accuracy on the few-shot task. We also also devise local propagation, a method that can
handle classification of multiple images at once if available, leveraging other queries as
unlabeled data for improved performance.

1.5. OUTLINE 9

1.5 Outline

The first chapters propose solutions for the standard few-shot learning setting, with a
focus on representation learning and adaptation with the few examples. In the subse-
quent chapters, we expand the scope beyond the standard setting to study more realistic
settings.

In chapter 2, we introduce the few-shot learning problem and approaches to tackle
it. We describe and discuss existing works that are relevant to the subsequent chapters.
We then introduce our contribution and position them in the literature.

In chapter 3, we focus on the first stage of few-shot learning methods where we use
data from well-represented classes to learn a representation of images. We discuss the
choice of model and the training procedure. We also propose a novel method in which
the training uses densely computed local descriptors. Using this training method, we
observe a better generalization from the large dataset to the few-shot dataset.

In chapter 4, we tackle the question of the possible adaptation of the representation
function to the few-shot task by utilizing only the few examples available. We propose
two possible solutions. The first one expands the trained network by adding a limited
set of parameters trained on the few-shot data. The second consists in adjusting slightly
the parameters of the network by few steps of optimization using the few-shot data.
Both methods successfully create task-specific representation functions that ultimately
result in higher accuracy on the few-shot tasks.

In chapter 5, we study a special case of the few-shot classification problem where
multiple images are to be classified at the same time. We propose a model that takes
advantage of the availability of other unlabeled images. In particular, we draw a connec-
tion between local representations of labeled and unlabeled images. We then propagate
the label information to all representations at once. In this context, we also introduce a
spatial attention mechanism that filters out irrelevant background.

In chapter 6, we propose a novel few-shot setting to address cases where the in-
domain data used to learn the representation in the first stage is few. We propose to
use a pre-trained network for the representation function. This network is then adapted
to the domain if in-domain data is available before adapting again to the few-shot task
using the few examples. In this context, we propose another spatial attention mechanism
that takes advantage of the pre-trained classifier.

In chapter 7, we focus on a specific aerial images classification task. We apply
methods from the other chapters and discuss their effectiveness in such task.

Chapter 2

Background

Contents
2.1 Fundamental concepts . 12

2.2 Few-shot classification problem formulation 13

2.3 Frameworks . 14

2.3.1 Traditional framework . 14

2.3.2 Meta-learning framework . 15

2.4 Main approaches . 16

2.4.1 Learning to compare . 16

2.4.2 Transfer learning methods . 20

2.4.3 Adapting the representation to the few-shot task 22

2.5 Data augmentation . 24

2.6 Boosting few-shot learning . 26

2.7 Few-shot learning datasets . 27

2.7.1 Omniglot . 28

2.7.2 MiniImageNet . 28

2.7.3 FC100 . 28

2.7.4 CUB . 28

2.8 Proposed pipeline . 29

2.9 Positioning . 31

2.9.1 Local approach . 31

2.9.2 Embedding adapation . 31

2.9.3 Transductive few-shot learning 32

11

12 CHAPTER 2. BACKGROUND

2.9.4 Using extra unlabeled data . 32

In this chapter we formally introduce the necessary background for the rest of the
thesis. First, we formally introduce the problem of few-shot learning. Then we explain
the general frameworks that few-shot learning methods follow. We discuss the most
influential existing works, focusing on those that are linked to the work of the thesis.
We also present our solutions and position them against the literature.

2.1 Fundamental concepts

We consider an image classification problem based on supervised learning. We are given a
collection of n training examples X := (x1, . . . ,xn) with each xi ∈ X , and corresponding
labels Y := (y1, . . . , yn) in c classes. The objective is to build a classifier function
f : X → Rc that maps the input to class confidence. Then a prediction for input x ∈ X
is made by assigning the label of maximum confidence, arg maxi f i(x)1.

We aim at finding a model that minimizes the expected risk R, that is, the expectancy
of the loss over the complete distribution of images P(x,y).

R(f) =
∫
`(f(x), y)dP (x, y) = E[`(f(x), y)] (2.1)

With ` : Rc×Rc → R a loss function that expresses the discrepancy between a prediction
and a label vector such as the cross-entropy loss

`(f(x), y) = − log(fy(x)). (2.2)

The optimal model is noted f∗. Search of the optimal function is limited by the consid-
ered model hypothesis search, we note f̂ the function that minimizes the expected risk
in the search space. Because the probability distribution of images is unknown, we can
only approximate the expected risk with the empirical risk

RX,Y (f) = 1
n

n∑
i=1

l(f(xi), yi). (2.3)

We note f̃ the function inside the search space that minimize the empirical risk. As-
suming we find f̃ through optimization of the parameters on the training dataset. The

1Given vector x ∈ Rm, xi denotes the i-th element of x. Similarly for f : A→ Rm, f i(a) denotes the
i-the element of f(a) for a ∈ A.

2.2. FEW-SHOT CLASSIFICATION PROBLEM FORMULATION 13

error with respect to f∗ is

E[R(f̃)−R(f∗)] = E[R(f̂)−R(f∗)] + E[R(f̃)−R(f̂)] = Eapp + Eest. (2.4)

Eapp corresponds to the approximation error that relates to the ability of the hypothesis
space to approximate the optimal solution. Eest corresponds to the estimation error
which reflects the impact of using the empirical risk instead of the expected risk.

The approximation error depends on the size of the hypothesis space. The larger
the hypothesis space is, the smaller is this error. In particular, deep learning models
used for state of the art image classification tasks can approximate a wide range of
functions [Elb+20], making the approximate error theoretically small.

On the other hand estimation error grows with the size of the hypothesis space [BB08].
In general, it can be reduced using a large number of examples to train on. However,
in the case of few-shot learning the available examples are only few. In this case, em-
pirical risk minimization fails as f̃ is not a good approximation of f̂ [Wan+20a]. This
phenomenon is called overfitting. As a result learning from scratch to solve an image
classification on only the few available examples is not feasible.

In order to mitigate those limitations, prior knowledge has to be used in complement
to the few examples in the form of extra data. The extra set of data should be large
enough to compensate for the lack of supervision for the few-shot task. Depending on
the few-shot method, prior knowledge is used differently. In all cases, it is at least used
to restrict the size of the hypothesis search which limits the estimation error.

2.2 Few-shot classification problem formulation

We are given a collection of training examples X := (x1, . . . ,xn) with each xi ∈ X , and
corresponding labels Y := (y1, . . . , yn) with each yi ∈ C, where C := [c]2 is a set of
base classes. This training data is prior knowledge that can be used to learn a generic
model that will then be used to learn new tasks. The model can be a task agnostic
representation function or a training method in the case of meta-learning.

For each few-shot learning task, we are given a collection of few support examples
X ′ := (x′1, . . . ,x′n′) with each x′i ∈ X , and corresponding labels Y ′ := (y′1, . . . , y′n′) with
each y′i ∈ C ′, where C ′ := [c′] is a set of novel classes disjoint from C and n′ � n.
Support examples are used in combination with the generic model learned on base data
to perform the few-shot classification task.

2We use the notation [i] := {1, . . . , i} for i ∈ N.

14 CHAPTER 2. BACKGROUND

Classification is called c′-way where c′ is the number of novel classes; in case there is
a fixed number k of support examples per novel class, it is called k-shot. Typically, few-
shot models are evaluated with between one and ten shots. As in standard classification,
there is usually a collection of queries for the evaluation of each task. Few-shot learning
is typically evaluated on a large number of new tasks, with queries and support examples
randomly sampled from (X ′, Y ′).

2.3 Frameworks

2.3.1 Traditional framework

In this section, we introduce the standard framework that most non-meta-learning few-
shot learning methods follow.

Learning stages We can distinguish two stages of learning. The first stage consists
in learning a representation of the domain of images X . This stage uses images from
the base classes only. It should be general enough to be used for new tasks. Training is
performed by learning to solve a task or multiple tasks built from the base class dataset.
We call this stage the representation learning stage.

The second stage consists in using the support examples to learn a classifier that maps
a new query example from X to a label prediction in C ′. It does not exclude continuing
representation learning on the support examples. We refer to the latter classifier learning
as adaptation stage.

Network model We consider a model that is conceptually composed of two parts: an
embedding network and a classifier. The embedding network φθ : X → Rr×d maps the
input to an embedding, where θ denotes its parameters. Since we shall be studying the
spatial properties of the input, the embedding is not a vector but rather a tensor, where
r represents the spatial dimensions and d the feature dimensions. For a 2d input image
and a convolutional network for instance, the embedding is a 3d tensor in Rw×h×d taken
as the activation of the last convolutional layer , where r = w×h is the spatial resolution
and Ω := [w]× [h] is the spatial domain. The embedding tensor F := φθ(x) contains a
feature vector F (r) = φθ(x)(r) ∈ Rd for each spatial position r ∈ Ω. In most cases, the
spatial resolution is reduced to r = 1, transforming the tensor to a vector, using spatial
pooling operations such as average pooling or max-pooling.

The classifier can be of any form and depends on the particular model, but it is
applied on top of φθ and its output represents confidence over c (resp. c′) base (resp.

2.3. FRAMEWORKS 15

novel) classes. If we denote by fθ : X → Rc (resp. Rc′) the network function mapping
the input to class confidence, then a prediction for input x ∈ X is made by assigning
the label of maximum confidence, arg maxi f iθ(x)

2.3.2 Meta-learning framework

Meta-learning refers to models that aim at "learning to learn". This idea comes from
the limitations of the machine learning models, one of them being the difficulty of learn-
ing with few data. In particular, here, the goal is to learn how to learn with only few
examples, which is not possible with usual algorithms. Meta-learning models have been
proposed before the rise in popularity of deep learning [Sch87; BBC91] but have recently
become popular solutions for few-shot learning, as well as reinforcement learning [FAL17;
Wan+17b; XHS18], neural architecture search [Kim+18; Lia+20], unsupervised learn-
ing [Met+19; AS19] and other tasks.

Meta-learning models contain two parametric models, the learner and the meta-
learner. The learner learns to perform the task based on a given dataset and a learning
algorithm. Its training process is the inner loop of the meta-learning methods. The
meta-learner is defining the learning algorithm used for the inner loop. The meta-
learner parameters are learned as well, using a loss function that reflects the quality
of the optimization of the learner. Parameters that are learned through meta-learning
can be for instance, a network initialization [FAL17], a model that generate update
rules [RL17], a generator that generates additional data [Wan+18b].

Specifically, in the case of few-shot classification, the meta-learner learns a learning
method that allows the learner to learn new tasks with few examples. Therefore, the
expected risk of the meta-learner is the expectancy of the trained learner over the few-
shot task distribution p(T):

R(θmeta) = E[`(fT , θmeta)], (2.5)

with fT the learner classifier after training on support data of task T , and θmeta the
parameters of the meta-learner. Training is performed through empirical risk minimiza-
tion by sampling tasks from the base dataset. Tasks can be sampled by sampling a
subset of classes and then sampling examples inside those classes. Few examples are
used as support in the learner training, some extra examples are used for evaluation of
the learner for training the meta-learner.

Learning iteratively on sampled tasks from the base dataset is called episode learning.
The operation is repeated on many different tasks, while the meta-learner adjusts the

16 CHAPTER 2. BACKGROUND

learning algorithm. After meta-learning is completed, a novel task can be learned by
application of the training strategy.

In the case of episode learning, there is no methological distinction between what
is performed on the base dataset and on the test dataset. For the sake of simplicity,
while describing such methods, we name an episode support set X ′, and corresponding
labels Y ′ with each y′i ∈ C ′, even though when meta-learning, the set is sampled from
the larger set X with labels Y in classes C

2.4 Main approaches

This section presents the most influential approaches for few-shot learning, on which our
work is based on.

2.4.1 Learning to compare

Solving a few-shot classification problem can be solved by learning to compare images.
Indeed, assuming we have access to a comparison function that reflects the semantic
similarities between images, for a given query, we can compare it to labeled references
for each class, and then aggregate all similarities to form a prediction. References can
be all supports examples, as in nearest-neighbor classification [BSI08b], or aggregated
example representations [SSZ17]. In this section we present influential methods for few-
shot learning where the base class dataset is used to learn explicitly to correctly compare
images. We can consider all those methods as metric learning methods. Initially, metric
learning aims at learning comparison functions between examples, but in practice, it
usually focuses on learning a good embedding function and then using a fixed function
for comparison in the resulting feature space.

Siamese networks A siamese network model learns to compare two examples [Bro+94]
by mapping them to a common feature space and learning a comparison function. Koch
et al. [KZS15] proposed to use this model for one-shot learning. They use a CNN ar-
chitecture with a fully connected layer on top, which maps an input x to φθ(x). During
training, pairs of images are sampled from the base classes. Two examples from the
same class form a positive pair while examples from different classes form a negative
pair. Positive pairs are assigned label 1 and negative pairs label 0. The prediction for a

2.4. MAIN APPROACHES 17

given pair of examples (x1, x2) is

p := S

(∑
i

αi|φiθ(x1)− φiθ(x2)|
)
, (2.6)

where S is the sigmoid function and αj are parameters of the comparison function.
Learning of the network parameters θ and comparison function α, is performed through
minimization of a regularized cross-entropy loss function

`(x1, x2) := y(x1, x2) log p(x1, x2) + (1− y(x1, x2)) log(1− y(x1, x2)) +R, (2.7)

with R a regularization term. When presented with a novel one-shot problem, the queries
are assigned the class for which the support example has maximum similarity.

Relation networks Building on siamese networks, Sung et al. [Yan+18] proposed re-
lation network. Similarly to meta-learning, training is performed on episodes mimicking
few-shot tasks, sampled from the base dataset. However, in this method, no learn-
ing happens at episode level since the examples are classified by comparing the query
representation with support representations as done in siamese networks [KZS15]. The
embedding network is a CNN, so the representations of images are feature maps in Rr×d.
For an episode, support examples and the query examples feature maps are computed.
When more than one support per class is given (k-shot with k > 1), representations of
support examples from each class are average to get a unique representation per class.
Contrary to siamese networks where comparison between representations is performed
by a single layer (2.6), relation networks use a multi-layer relation module. The relation
module is a CNN as well, it takes as input the concatenation of the query representa-
tion and a class representation and generates the relation score. This is repeated for all
classes in the episode. Optimization of both the embedding network and the representa-
tion module is performed using the mean square error loss with ground truth 1 for the
positive class and 0 for the negative class:

`(x,y) := ry(x)− 1 +
∑

i∈C′\y
ri(x), (2.8)

with ri the relation score with class i. Classification decision is done by assigning the
class with maximum relation score.

18 CHAPTER 2. BACKGROUND

Matching networks Vinyals et al. [Vin+16] proposed matching networks as a so-
lution for learning the embedding function also based on episode learning. Again, no
learning happens at episode level, examples are classified with a non-parametric clas-
sifier. In particular, support examples features are extracted by a CNN model φsup.
Query examples features are either extracted with φquery, which is either the same CNN
or a bidirectional long-short term memory [HS97] that combines them with the support
examples context. In all cases, a pooling operation reduces the spatial dimension of the
output of the network, making the representation vectors in Rd. For a given query exam-
ples x with representation φquery(x), a similarity score with all support representations
φsup(x′i) is computed:

a(x, x′i) := exp(cos(φquery(x), φsup(x′i)))∑
j exp(cos(φquery(x), φsup(x′j)))

(2.9)

where cos is cosine similarity. The network function is the aggregation of the the scores
for all support examples

fθ(x) :=
n′∑
i=0

a(x, xi)yi. (2.10)

The embedding functions are trained using minimization of the cross-entropy loss.

Naïve Bayes nearest neighbor Li et al. proposed a method similar to matching
networks in their revival [Li+19b] of the classic image-to-class approach [BSI08a], in
that the similarities between query representations and support representations are ag-
gregated to obtain a class score. The main difference is the use of local descriptors of
the images instead of global ones. Here, no pooling is performed on the feature maps.
Pixels of the feature maps are considered as local representations of the images to be
used independently. More formally, given X ′, Y ′ and an index set S ⊂ N ′ := [n′], let
the set Sj := {i ∈ S : y′i = j} index the support examples in S. One collects, for each
class j ∈ [c′], the features Vj := {φθ′(x′i)(r)}i∈Sj ,r∈Ω of all spatial positions of all support
examples labeled in class j. Then, given a query x ∈ X with feature tensor F := φθ(x),
for each class j, a score

sj(F) :=
∑
r∈Ω

∑
v∈NNVj (F (r))

cos(F (r),v) (2.11)

is defined as the average cosine similarity over the features F (r) at all spatial positions
r ∈ Ω and their k-nearest neighbors NNVj (F (r)) in Vj . Then, the prediction for x is the

2.4. MAIN APPROACHES 19

class of maximum score.

Prototypical networks Another popular episode based learning method, called pro-
totypical networks, has been proposed by Snell et al. [SSZ17]. While [Vin+16] use simi-
larity measures between a query and each support representations, in prototypical net-
works, a single vector is used as reference for the each novel class. The reference vector
is called prototype.

More formally, given Sj an index indexing the support examples from class j. The
prototype of class j is given by the average of those examples

pj := 1
|Sj |

∑
i∈Sj

φθ(x′i) (2.12)

for j ∈ C ′. Then, the network function is defined as 3

fθ(x) := σ
(
[s(φθ(x),pj)]c

′
j=1

)
(2.13)

for x ∈ X , where P := (p1, . . . ,pc′) and s is a similarity function which is generally the
negative squared euclidean distance, and σ : Rm → Rm is the softmax function defined
by

σ(x) :=
[

exp(xj)∑m
i=1 exp(xi)

]m
j=1

(2.14)

for x ∈ Rm and m ∈ N.

Graph-base approaches Garci and Bruna showed that few-shot learning tasks can
be represented by a graph where each node represents an example [GB18]. Common
to other methods, examples are first mapped to embedding using a CNN embedding
network. Then a graph with all examples is constructed. Node features of the graph
are given by the concatenation of the representations of the examples and the associated
one-hot encoded labels. They use a graph neural network (GNN) [GMS05; Sca+09]
to operate on the graph, computing for each node a prediction on the classification
into the novel classes. Graph neural networks consist in multiple layers. In each layer,
an adjacency matrix is computed using a parametric comparison function. Then the
adjacency matrix is used to aggregate node features, that is, combining features of
neighbors in the graph. The aggregation function is also parametric. Both functions’

3We define [e(i)]ni=1 := (e(1), . . . , e(n)) for n ∈ N and any expression e(i) of variable i ∈ N.

20 CHAPTER 2. BACKGROUND

parameters are learned with backpropagation as in standard neural networks. Garci
and Bruna showed that the above few-shot methods can be implemented with GNN.
For instance, siamese networks [KZS15] corresponds to a GNN with fixed comparison
function. Similarly, prototypical networks [SSZ17] consists in aggregation by averaging
of the support examples with the same label, then similarity computation.

An advantage of graph-based methods is the possibility of taking advantage of extra
unlabelled data. Any extra unlabelled example can be added to the graph which allows
semi-supervised learning [GB18] as well as transductive learning [Liu+19a]. Transductive
learning being the task where multiple queries are to be classified instead of one in the
standard setting.

2.4.2 Transfer learning methods

Above methods focus on using the base dataset to learn a representation of images
together with a comparison function directly applicable to few-shot tasks. In contrast,
transfer learning methods consist in learning a model to solve a source task on a large
dataset, then the model is adapted for the target task using a smaller dataset. Typically,
with deep learning based models, after learning the source task, the early layers of the
network implement a generic embedding function that is not specific to the source task.
Adaptation to the target task is done through fine-tuning of the last few layer of the
network [Oqu+14]. Few-shot learning is the extreme case of transfer learning where the
task dataset is very small.

Learning with imprinted weights Qi et al. [QBL18] proposed a simple approach
where the representation learning stage consists in learning to classify into the base
classes C. In particular, they use a fully-connected layer without bias as a parametric
linear classifier on top of the embedding function φθ followed by softmax and they train
in a standard supervised classification setting. More formally, let wj ∈ Rr×d be the
weight parameter of class j for j ∈ C. Then, similarly to (2.13), the network function is
defined by

fθ,W (x) := σ
(
[sτ (φθ(x),wj)]cj=1

)
(2.15)

for x ∈ X , whereW := (w1, . . . ,wc) is the collection of class weights and sτ is the scaled
cosine similarity

sτ (x,y) := τ 〈x̂, ŷ〉 (2.16)

2.4. MAIN APPROACHES 21

for x,y ∈ Rr×d; x̂ := x/ ‖x‖ is the `2-normalized counterpart of x for x ∈ Rr×d; 〈·, ·〉 and
‖·‖ denote Frobenius inner product and norm respectively; and τ ∈ R+ is a trainable
scale parameter. Then, training amounts to minimizing over θ,W the cost function

J(X,Y ; θ,W) :=
n∑
i=1

`(fθ,W (xi), yi) (2.17)

where ` is the cross-entropy loss.

Given a new task with support data (X ′, Y ′) over novel classes C ′, class prototypes
P are computed on N ′ according to (2.12). They can replace class weights W in the
classifier, in which case it is equivalent to using a prototype classifier, with scaled cosine
similarity as similarity function. Alternatively, prototypes can be imprinted in the clas-
sifier, that is, W is replaced by W ′ := (W,P). The network can now make predictions
on n+ n′ base and novel classes.

Few-shot learning without forgetting Gidaris and Komodakis [GK18], concur-
rently with [QBL18], developed a similar model that is able to classify examples of both
base and novel classes. The main difference to [QBL18] is that they learn a few-shot
classification weight generator module to generate novel classes weights, rather than us-
ing prototypes. The weight generator is a parametric classifier that combines support
representations and base class weights. Training of the weight generator requires an
additional training phase and is achieved through episode-based learning.

Comparison with learning to compare approaches Where learning to compare
approaches explicitly enforce good comparison in in the feature space, in the case of
transfer learning methods, the embedding function is implicitly learned on a disjoint
multiclass classification problem. One might expect that the former models result in
higher performance on the few-shot tasks. However, surprisingly, the latter models tend
to perform as well or better as shown in [Che+19; Wan+19]. In particular, Wang et
al. proposed SimpleShot [Wan+19], a simple model similar to [QBL18], except for the
choice of inverse squared euclidean distance as similarity function and the centering of
the feature representation. Their extensive experiments show impressive performance
compared to more complex meta-learning methods.

22 CHAPTER 2. BACKGROUND

2.4.3 Adapting the representation to the few-shot task

The first stage of learning uses the the base dataset to learn a good representation of
the images, in some cases together with a generic way of comparing data. An issue
of reusing the representation on a new few-shot task is the lack of adaptation to the
available support examples. Even if this data is few, using it to create a task-specific
model is appealing. The intuitive approach is to have an additional training stage on
the support examples. Fine-tuning of the last few layers of the network is typically
performed in transfer learning methods [Oqu+14]. The risk here is to overfit to the
support examples, which would result in worse generalization on the queries. Here we
present relevant methods for adapting representation functions.

Base and novel classes fine-tuning For methods that allow classification into both
base and novel classes [QBL18; GK18], it is possible to fine-tune the model using (2.17)
on the union of the base dataset and the support examples. In this case a class balancing
method should be used. For instance, [QBL18] oversamples the novel classes so that the
distribution of labels in a sampled training batch is uniform across all classes. This
method is specific to the problem of classification into all classes. Moreover, it requires
to have access to the base dataset to perform a new expensive training stage for every
few-shot task, which is not standard.

MAML Finn et al. proposed model agnostic meta-learning (MAML) [FAL17], a meta-
learning method in which the meta-learner is learning a good initialization for fast adap-
tation of the model on the support examples. It uses a fully-connected layer as classifier.
At adaptation, the embedding function is fine-tuned for each new task using (2.17) only
on the novel class data, but for few steps such that the classifier does not overfit. In
[FAL17], the whole embedding network is fine-tuned, while in [Sun+19], fine-tuning is
limited a scale and shifting parameters at every layers to further prevent overfitting.

More formally, if we consider a learner on task T that performs a single gradient
update of size α, the parameters θ of the learner becomes θ′

θ′ = θ − α∇θ`T (fθ), (2.18)

with `T the cross-entropy loss computed on the support set of T . During meta-learning,
the initial parameters θ are updated based on the loss of multiple learners that learned

2.4. MAIN APPROACHES 23

with task Ti sampled from the task distribution p(T)

θ ← θ − β∇θ
∑

Ti∼p(T)
`Ti(f ′θ), (2.19)

with β the size of the meta-learner update. Therefore, the meta-learning stage of MAML
requires to compute second derivatives which is computationally expensive. A first order
approximation can be used instead to solve this issue [FAL17; NAS18] without loss of
performance.

Meta-Learner LSTM Ravi and Larochelle go a step further into the conditioning
of the learner training by the meta-learner. They observe that traditional optimization
algorithm like stochastic gradient descent (SGD) is not suited for few-shot learning.
In [RL17], they propose to train an LSTM [HS97] to predict a suitable update rule for
the parameters. The gradient update (2.18) is replaced by

θ ← g � θ − i�∇θ`Ti(fθ) (2.20)

where g and i are parametric are the output of parametric regressors with input their
previous state and (∇θ`Ti(fθ), `Ti(fθ), θ and � is the Hadamard product. g not being
fixed to an all-one vector allows fast forgetting of the parameters when the loss is high
even with low gradients. i replaces the fixed step size by a learned one. Meta-learning
parameters related to the the update rule are shared across all parameters of the network
for computation cost and storage reasons.

Learning to predict layer parameters Some methods propose to obtain task-
specific embedding functions by predicting some of their parameters based on the support
examples without actually training on them. In an early one-shot learning work [Ber+16],
Bertinetto et al. propose to learn a model that takes as input a support example and
predicts parameters of layers of the embedding network. Because of the large number of
weights of neural networks layers, it is impossible to naively predict all of them. Instead,
they design factoring methods for both convolutional layers and linear layers to limit the
output size of the predictor. Parameters of the predictor as well as the fixed parameters
of the embedding networks are learned with an episodic training strategy.

TADAM Similarly, Oreshkin et al. [OLR18] proposed task-dependent adaptive met-
ric (TADAM), which builds on prototypical networks [SSZ17] by introducing task con-

24 CHAPTER 2. BACKGROUND

ditioning, that is, including task-specific parameters in the embedding network. More
specifically, the mean of the prototypes are used as representation of the task. This
representation is input to task embedding networks (TEN) which predict, for each layer
of the embedding network, additional scaling and shifting parameters γ and α. Given a
specific layer with corresponding representation of examples h, a new operation is added:

h← γ � h+ β, (2.21)

γ and β having as dimension the depth of the h. The modified embedding network is
then used as in prototypical networks. The parameters of the TEN are learned during
episodic learning, at the same time as the embedding network.

2.5 Data augmentation

Data augmentation is a common preprocessing stage when training a model to classify
images. It usually consists in applying fixed transformations on images such as flipping,
rotation, scaling, cropping, color jitter, effectively multiplying the number of training
examples. This augmentation makes the model invariant to such transformations, re-
sulting in better generalization. In the case of few-shot learning, such an augmentation
strategy is insufficient as the main obstacle is that the lack of diversity of annotated
examples which those methods cannot fix. More complex methods have been proposed
to artificially augment the size of the support set.

Hallucination Hallucination refers to the process of applying transformations on an
example to generate another of the same class. In few-shot learning, we are interested
in applying such process on the support examples. In an early one-shot learning work,
Miller et al. proposed to learn a distribution of 2D transforms that models intra-class
variability in handwritten digits classes [MMV00]. When presented with a new character,
it can be augmented by sampling transforms in the learned distribution. For most
domains outside of characters, 2D transforms cannot capture the complex relationship
between different examples in a class. Researchers produced solutions for hallucination
based on combining examples from the base classes and examples from the novel classes
to produce new relevant ones.

Hariharan and Girshick proposed to use a multilayer perception as generator for
hallucination [HG17]. Their idea is to capture analogies between examples from the
same classes in the base dataset. For instance, in the case of bird species categories, the

2.5. DATA AUGMENTATION 25

relationship between a bird sitting on a branch and the same bird flying is transferable
to other bird classes. The first step of the method is to mine analogies. For each base
class, they cluster the representations of all examples into a fixed number of clusters. For
each pair of cluster centroids (ca,1, ca,2) in class a, they search pairs from other classes
that correspond. Pair (cb,1, cb,2) from class b matches if cos(ca,1 − ca,2, cb,1 − cb,2) > 0.
All gathered quadruplets of the form (ca,1, ca,2, cb,1, cb,2) are used as training set for the
generator. It takes as input (ca,1, cb,1, cb,2) and output a prediction ˆca,2 of ca,2. The
training loss is a combination between the mean squared error function between ca,2

and ˆca,2 and the classification loss that results in applying the classifier on ˆca,2 where
a is the ground-truth label. After training, a new example of the novel classes can be
generated from a support example representation φθ(x′) by applying the generator on
(φθ(x′), ca,1, ca,2) with the pair (ca,1, ca,2) randomly sampled from the mined pairs.

Similarly Schwarz and Karlinsky proposed to use a modified auto-encoder called ∆-
encoder that takes as input a base class representation a novel classes representation,
and learn to adapt the base class example to the novel class [Sch+18]. Liu et al. go one
step further by performing class-to-class translation in the image space [Liu+19a].

Wang et al. proposed to train an hallucinator network with meta-learning. Taking
inspiration from the recent generation literature [Goo+14; KW14], the hallucinator takes
as input an example representation and a random noise vector. The output is used
as additional support, forming a larger support set. Training is performed conjointly
with an episode based method such as matching networks [Vin+16] or prototypical
networks [SSZ17].

Instead of hallucinating new examples, Afrasiyabi et al. proposed to reuse part of
the base class examples when learning to classify on the novel classes [ALG19]. For each
novel class, the closest base classes are selected. For a few-shot task, the embedding
network is fine-tuned similarly to [QBL18]. An additional loss term is added to enforce
alignment of the support representation and representations of examples from related
base classes.

Using extra unlabeled data Some works propose to depart from the initial few-
shot learning setting to take advantage of extra unlabeled data. Ren et al. defined a
new semi-supervised setting where on top of support examples, a set of unlabeled images,
some of which being relevant for the task, are available [Ren+18b]. They proposed a
modification of prototypical networks [SSZ17] where the prototype computation (2.12)
is replaced by a weighted average of the representations of the support and the extra
examples representations. Weights for the extra examples are computed as a function

26 CHAPTER 2. BACKGROUND

of the distance to the original prototypes (2.12). A distractor class is also introduced to
prevent unrelated images from affecting the prototype classifier.

Using extra unlabeled data is straightforward with graph-based methods [GB18;
Liu+19a]. Any extra unlabelled example can be added to the graph. Propagation of
label can also label the unlabelled data, making it a solution for transductive few-shot
learning. Transductive few-shot learning being the task where multiple queries are to be
classified instead of one in the standard setting. Douze et al. employ a similar method
but take advantage of a very large-scale dataset of almost 100 millions images [Dou+18].
Iscen et al. [Isc+19b] used the same large-scale dataset, but applied filtering based on
the names of the novel classes. Filtered examples are given a relevancy scores by a GNN
and are then used as noisy data for learning a prototype classifier or a cosine classifier.

2.6 Boosting few-shot learning

One of the key aspect of a successful few-shot learning method is to be able to learn a
robust embedding function. In this section we present methods that apply generalization
boosting methods which have been proven useful for other tasks, in the context of few-
shot learning. Boosting methods are applied in conjunction with a few-shot learning
method as introduced above.

Ensemble of models Quality of prediction can be improved by using an ensemble
strategy [HTF09]. Instead of training a single model, a set of models is used, predictions
are then aggregated to provide a single prediction which usually results in lower variance
and in some cases higher average accuracy. Dvornik et al. proposed to use an ensemble of
models for few-shot learning [DSM19]. Each model instance is trained like prototypical
networks [SSZ17]. Ensemble models can benefit from the diversity of models predictions.
Diversity is encouraged by adding a specific term to the loss function. Specifically, given
two models output predictions p1 and p2 where predictions for the ground truth class are
put to 0, then cos(p1, p2) is a possible penalty. This penalty is minimal when predictions
for incorrect classes are orthogonal. At the same time, cooperation of models results in
faster and more stable training which is important with small ensembles. Cooperation
can be encouraged using the Kullback–Leibler divergence between p1 and p2 are an extra
loss term.

Strong performances from ensemble models come at the cost of multiplying the num-
ber of parameters and computing cost. In [DSM19], the ensemble model is used as a
teacher model in order to train a single model using knowledge distillation [HVD15].

2.7. FEW-SHOT LEARNING DATASETS 27

Namely, the average prediction output is used to guide learning of the single model.

Representation learning with additional unsupervised supervision Improving
the representation learning can be achieved through extra supervision. In particular, reg-
ularization methods are commonly used in classification tasks [Sri+14; IS15; Ver+19].
Mangla et al. show that using manifold mixup [Man+20] during base class learning
results in a more generalizable feature space, ultimately resulting is higher few-shot ac-
curacy. Manifold mixup consists in adding a supplementary loss in the cost function
(2.17). Intermediate representation of examples are mixed together by linear interpola-
tion, and their labels are combined in the same way. The additional loss corresponds to
to the cross-entropy loss applied on the prediction of the interpolation. Enforcing grad-
ual prediction results in smoother decision boundaries in the intermediate representation
spaces.

Additionally self-supervision methods can be utilized to learn a richer representation
of images. Self-supervision consists in learning to solve auxiliary tasks on the input
images. Tasks are defined so that supervision is free of manual annotation. Possible
self-supervision tasks include prediction of a random rotation that have been applied in
images [GSK18], solving a jigsaw puzzle [NF16] or inpainting [Kra+16]. The assumption
is that those tasks help in learning generic features, useful for classification into all
classes. In the context of few-shot learning, improved results have been observed by
learning to predict image rotations [Gid+19; Man+20], learning to predict relative patch
location [Gid+19] and learning to group together representations of augmented versions
of examples [Man+20].

2.7 Few-shot learning datasets

In this section we present the few-shot classification datasets that we use in this thesis.
Those datasets or variations of them are the most used in recent few-shot learning works.
Datasets used for standard classification are usually split into three subsets of images. A
portion of images from each class is dedicated to training the model, another is dedicated
to validating the parameters and the rest of images are used to test the model. In the
case of few-shot classification, the splits of the dataset are performed on the classes.
Some classes are dedicated to base classes, some for validation and some for testing.
Even if they are to be used for few-shot, classes from the validation and testing set are
not few. At validation and test time, many few-shot learning tasks are sampled from
those sets to get statistically representative performance results.

28 CHAPTER 2. BACKGROUND

2.7.1 Omniglot

Early few-shot learning works [Lak+11; Vin+16; San+16; FAL17; SSZ17] were using
the Omniglot dataset [LST15]. This dataset contains 1623 hand-written characters from
50 alphabets, with 20 examples of each character. Images are black and white, with
resolution 105 × 105 but often resized to smaller dimensions. Rapidly, this dataset
has proven to be too easy, with simple methods such as prototypical networks [SSZ17]
giving 99% average accuracy on 5-way 1-shot tasks even with small neural networks as
embedding networks. Representation of such simple images was not a challenge, which
can explain why it was not the focus of early few-shot learning works.

2.7.2 MiniImageNet

MiniImagenet has become the most popular few-shot learning dataset. It was in-
troduced by Vinyals et al. [Vin+16] as a subset of the larger ImageNet ILSVRC-12
dataset [Rus+14]. It contains 100 classes with 600 images per class. MiniImageNet
classes cover a wide diversity of content, containing some animal species classes, as well
as vehicles and clothes. While multiple splits have been proposed, the most common is
from Ravi and Larochelle [RL17]: 64 classes are used as base classes and 36 as novel, out
of which 16 for validation and 20 for testing. The original ImageNet dataset images have
large resolutions of various size. Few-shot learning works tend to use a resized version
of the images, which is usually 84× 84 for older works or larger in more recent ones.

2.7.3 FC100

Oreshkin et al. [OLR18] introduced FC100, a few-shot version of CIFAR-100 [Kri09].
Similarily to miniImageNet, CIFAR-100 has 100 classes of 600 images each, although
the resolution is 32 × 32. All classes are grouped into 20 super-classes, for instance
"dolphin" and "seal" are grouped into the aquatic mammals superclass. 60 classes are
used for training, 20 for validation, and 20 for testing. Those splits are made so that the
super classes are not separated, so the classes are more similar in each split, creating a
semantic gap between base and novel classes. Because of the small resolution and the
semantic gap, FC100 is a more challenging task than miniImageNet.

2.7.4 CUB

The topic of fine-grained classification has also been studied in a few-shot learning con-
text. Hilliard et al. [Hil+18] have proposed to use the CUB-200-2011 dataset [Wah+11]

2.8. PROPOSED PIPELINE 29

(a) Omniglot dataset

(b) FC100 dataset

(c) miniImageNet dataset

(d) CUB dataset

Figure 2.1 – Examples of images from the few-shot datasets. Each image is from a
separate class to illustrate the inter-class diversity of datasets.

for few-shot learning. This dataset contains 11,788 images of birds across 200 classes
corresponding to different species. A commonly used split is the one of Ye et al. [Ye+18],
where 100 classes are used as base classes and the remaining 100 as novel, out of which
50 for validation and 50 for testing. Depending on the work, some preprocessing can be
applied on the images such as cropping using bounding box annotations, and resampling.

2.8 Proposed pipeline

In this thesis, we use a simple pipeline where a query is mapped to a representation using
an embedding network, then a classifier maps this representation to class predictions.
The pipeline is shown in Figure 2.2. We propose to add a spatial attention operation on
the representation to select relevant local regions in the image. The embedding function

30 CHAPTER 2. BACKGROUND

Class
probabilities

Em
bedding function

Image

C
lassifier

Feature representation 1 2 3 4 5 6

Implanting
(chapter 4)

Spatial attention
(chapters 5,6)

Representation
learning

Representation
adaptation

Base dataset

Support samples Support samples

Classifier
building

Few steps adaptation
(chapter 4)

Dense classification
(chapter 3)

Few-shot base
(chapter 6)

Local propagation
(chapter 5)

Prior dataset
(chapter 6)

Query samples
(chapter 5)

Figure 2.2 – Proposed pipeline for few-shot classification. The feature extractor is trained
during representation learning on a prior dataset and then adapted on the support
examples. A classifier for the few-shot classes is built from the support examples. A
spatial attention module is used to select relevant local representations. In blue are our
contributions to the pipeline with the chapter number where they are discussed.

2.9. POSITIONING 31

is learned on the base dataset using our proposed method, dense classification. We
also explore a new setting where we use a prior dataset to pretrain the network, then
continue training on few base examples only. We also propose to adapt the embedding
function to the few-shot task, using the support examples. In the standard setting,
the classifier is built from the support examples. We also study transductive few-shot
learning, where multiple queries are to be classified at the same time. Below, we describe
our contributions in more detail.

2.9 Positioning

In this section we position our work in the related literature. At the beginning of
the thesis, we experimented with popular few-shot learning models at the time, such as
prototypical networks [SSZ17], matching networks [Vin+16] and cosine classifier [QBL18;
GK18]. In parallel to [Che+19; Wan+19], we observed that methods that were explicitly
learning to compare examples by adopting an episode-based learning strategy were not
performing better than a simple cosine classifier trained on multiclass classification on the
base classes, combined with a prototype-like classifier at test time. Those experiments
also revealed the uttermost importance of the choice of architecture to implement the
embedding network. From those observations, we decided to focus on improving the
representation of images rather than designing complex meta-learning models. We chose
to use the cosine classifier model as base learning strategy for representation learning.

2.9.1 Local approach

In this context, in parallel to [Li+19a], we study for the first time spatially local infor-
mation in chapter 3. In our work, the pixels of feature maps are used as separate local
representations of the input example. With our proposed dense classification method,
classification of all local representations is encouraged, resulting in a more expressive
embedding function. Moreover, the distinction between local representations allows us
to design simple attention mechanisms in chapter 5 and chapter 6, able to select relevant
information in few-shot examples.

2.9.2 Embedding adapation

Our work is also related to methods that aim at producing task-dependent models.
More precisely, similarly to MAML [FAL17], we propose in chapter 4 to fine-tune the
model on the few support examples alone. However, our method does not rely on meta-

32 CHAPTER 2. BACKGROUND

learning. We also propose implanting, that is, adding a limited number of task specific
parameters to the model. Only the added parameters are trained on the few support
examples, reducing the risk of overfitting. This method is related to the work of Sun et
al. [Sun+19] developed in parallel to ours, in which scaling and shifting parameters for
each layer of the embdedding network are trained on the support examples.

2.9.3 Transductive few-shot learning

For transductive few-shot learning, we propose in chapter 5 local propagation as a solu-
tion to take advantage of the extra unalbeled data. Similarly to transductive propagation
networks [Liu+19c], we build a graph with labeled and unlabeled representations and
then propagate labels on it. However in our case, the graph is computed using local
representations of images, and we introduce a feature propagation step. Although trans-
ductive inference has a long history of research, this is the first time label propagation
is used for classification.

2.9.4 Using extra unlabeled data

In chapter 6, we redefine the few-shot learning problem, introducing the few-shot few-
shot setting. The access to the base class data is limited to a few examples. Moreover,
we take advantage of prior knowledge in the form of a pre-trained classifier on a large-
scale dataset from another domain. Using an extra large scale data has been studied
in [Dou+18; Isc+19b], however in those cases, extra data is used for enriching the support
set whereas we use it to to build the embedding network.

Chapter 3

Representation learning for
few-shot learning

Contents
3.1 Choice of baseline model . 35

3.1.1 Few-shot learning embedding architectures 35

3.1.2 Training procedure . 39

3.1.3 Selection of architecture and method 44

3.1.4 Number of shot . 45

3.2 Dense Classification . 46

3.2.1 Method . 46

3.2.2 Discussion . 49

3.2.3 Inference on novel classes . 51

3.3 Experiments . 51

3.3.1 Experimental setup . 51

3.3.2 Results . 52

3.4 Conclusion . 55

The image space does not allow semantic separation of images which we would need
to solve a classification task. Therefore, we need to convert the images to representa-
tions which are representative of their semantic. The machine learning approach to to
solve this problem is to learn this representation as a function φθ whose parameters are
learned on relevant data. In a usual classification problem, we would have access to many
labeled images coming from the classes that we want to classify. In this case, learning

33

34 CHAPTER 3. REPRESENTATION LEARNING FOR FEW-SHOT LEARNING

the representation and learning a classifier for those classes can be done conjointly. A
classifier being a model that assigns a class prediction to an image based on its repre-
sentation. Typically, the representation task would be implemented as a convolutional
network to which would be added a fully-connected network to handle the classification.
This would allow end-to-end training of both modules. The resulting embedding func-
tion would then be optimized to maximize the performance of the classifier, giving the
best representation for the task at hand.

In the case of few-shot learning, labeled data from the novel classes, that is to say,
classes into which we want to classify are only few. Therefore, it is not enough to hope
to learn an effective representation of images. However the few-shot learning scenario
assumes we have at disposal a larger collection of images from a semantically similar
but disjoint set of classes, the base classes. This set is sufficient in size and diversity
to learn the representation function. To do that few-shot learning models introduce
intermediate tasks involving base class images. Some few-shot learning methods learn
to solve a classification problems over all the base classes. Other methods, based on
meta-learning [SSZ17; RL17; FAL17; Mis+18], sample few-shot learning tasks from
the base class data to simulate a few-shot setting. Representation learning being the
mandatory first step of any few-shot learning method, for simplicity, we call it stage 1
in this chapter. Adapting the representation and using it for classification is referred to
as stage 2.

In this chapter, we explore multiple ways of getting a representation function from
the base class dataset. We show that the performance of such model depends on the
chosen embedding network, the representation learning model and the implementation
procedure. From this observation, we select the setting that will be used for the rest of
this work as baseline model.

Most few-shot learning approaches do not deal explicitly with spatial information
since feature maps are usually flattened or pooled before the classification layer. We
propose our own method, called dense classification, based on the chosen baseline. With
dense classification, we learn to represent and classify regions of the base images, which
results in learning a representation function that performs better on novel class data.
We show the effectiveness of dense classification through qualitative and quantitative
results. This work has been published in [Lif+19]

3.1. CHOICE OF BASELINE MODEL 35

3.1 Choice of baseline model

In this thesis, we focus on learning representation by learning to solve a classification
problem over the base classes. This section motivates this choice as well as implementa-
tion choices (network architectures, optimization procedure) for representation learning
that were made for the remaining of this manuscript.

3.1.1 Few-shot learning embedding architectures

A common trend in image classification tasks is to progressively use deeper networks [SZ14;
Sze+15] which usually perform better. Having progressively deeper networks results in
a more difficult learning process. For this reason, the networks used to be limited to a
few layers [BSF94]. However recent models have overcome optimization issues and use
deep and wide architectures, sometimes hundreds of layers [SGS15; He+16].

The same trend applies to few-shot learning models, we observe that the networks
used in the literature shifted in the last few years from small four-layer convolutional
networks to deep Residual Networks architectures [He+16] and more recently to Wide
Residual Network architectures [ZK16].

Finding the more effective network architecture for a given task is a research subject
of its own [EMH20]. Moreover as we will show, the choice of embedding network is
very impactful on the final few-shot performance, therefore to be able to make mean-
ingful comparisons with other methods, using the same or similar embedding network is
required. For those reasons we choose to experiment only with common architectures.

In this section we present the most commonly used embedding networks in the few-
shot learning community and then motivate the choices we made in our work.

CNN architectures In a pioneer few-shot learning work [Vin+16] is introduced a four
layers embedding network, later referenced as C64F. It is composed of 4 convolutional
layers, each with 64 filters of size 3×3, batch normalization [IS15], ReLU and maxpooling
2 × 2. This network was then widely used in other few-shot learning works [FAL17;
SSZ17; Yan+18]. A wider version of this network, called C128F, is also used in the
literature, with only difference with C64F that the last two layers have 128 channels.
Figure 3.1 illustrates those architectures. Those architectures gave impressive results
on the Omniglot dataset but our experiments suggest that their expressive power is not
sufficient to deal with more complex datasets such as miniImageNet.

36 CHAPTER 3. REPRESENTATION LEARNING FOR FEW-SHOT LEARNING

Conv 3x3

Batch Normalization

Activation

Input

Output

(a) Convolution block

Images

Conv Block 1

Conv Block 2

Feature
maps

64 channels

64 channels

64 or 128 channels

64 or 128 channels

Max Pooling 2x2

Conv Block 2

Max Pooling 2x2

Conv Block 2

Max Pooling 2x2

Max Pooling 2x2

Conv Block 1

Conv Block 2

(b) 4 layers embedding net-
work architecture

Figure 3.1 – Four layers embedding networks architectures used for few-shot learning. All
C64F filters have 64 channels, whereas the two last layers of C128F have 128 channels.
The activation function used is ReLU.

3.1. CHOICE OF BASELINE MODEL 37

Figure 3.2 – Example of residual block from a residual network [He+16]

Residual networks architectures To optimize a neural network, the gradient of
the loss with respect to all parameters is computed using the backpropagation method.
Using the chain rule, the derivative of the first layers is computed as a product of the
derivative from deeper layers. If the activation function has lower than 1 derivative,
which was always the case using the popular sigmoid activation, the gradients for a
given parameter would decrease exponentially with the layer distance to the output of
the network, making the training of early layers very challenging. This phenomenon
is known as the vanishing gradient problem [BSF94]. This problem, together with a
saturation of performance highlighted by some works. [SGS15; He+16], used to limit
networks depth. He et al. [He+16] proposed a new neural network architecture called
Residual network, referred to as ResNet. They propose to add residual connections to
convolutional networks. Residual connections are alternative data streams that allow
intermediate representations to skip some convolution layers as illustrated in Figure 3.2.
This innovation solves the vanishing gradient problem as it creates direct streams of
information to deep layers of the network, through which the gradient can propagate
without shrinking. Moreover, they showed improved performance on the classification
task using very deep architectures.

Multiple works highlighted that the shallow four-layer convolutional networks might
not be sufficient with complex images as found in the miniImageNet dataset [Mis+18;
OLR18]. Therefore, they proposed to use Residual network architectures, to get an
embedding network with higher representative power.

A commonly used architecture is a 18 layers Residual Network called ResNet-18.
This architecture also has the advantage to be widely used outside of few-shot learning
studies, so its implementation is easily found and some pre-trained version are publically
available, of which we will make use in chapter chapter 6. Figure 3.4 illustrates this
architecture.

38 CHAPTER 3. REPRESENTATION LEARNING FOR FEW-SHOT LEARNING

Conv Block 1

Conv Block 2

Input

N channels

2N channels

Output

2N channels

Conv Block 3

Conv Block 4

2N channels

2N channels

(a) Residual block of ResNet-18. Conv
Block refers to the same convolutional
block used in C64F and C128F (Fig-
ure 3.1a).

Images

Conv 7x7

Batch Normalization

Activation

64 channels

Max Pooling 2x2

Resnet block 1

64 channels

Resnet block 2

128 channels

Resnet block 3

256 channels

Resnet block 4

512 channels

Feature
maps

(b) Resnet-18 architecture

Figure 3.3 – ResNet-18 architecture. The activation function used is ReLU.

3.1. CHOICE OF BASELINE MODEL 39

Another common architecture is ResNet-12, introduced by Oreshkin et al. [OLR18],
it is composed of four residual blocks, each having three 3×3 convolutional layers with
batch normalization [IS15] and swish-1 activation function [RZL18]. Other versions of
this network with different activation functions have been used as well [Lee+19] but we
chose to use the original implementation. Each block is followed by 2×2 max-pooling.
The shortcut connections have a convolutional layer to adapt to the right number of
channels. The first block has 64 channels, which is doubled at each subsequent block
such that the output has depth 512. Figure 3.4 illustrates this architecture. Oreshkin at
al. [OLR18] performed hyper-parameters search to achieve this architecture (applying
their method using residual networks with varying number of layers and layer widths).
While this network is shallower than ResNet-18, it is worth noting that it has more
parameters than the later (about 12 millions, compared to 11 millions for ResNet-18).
Afterward, this architecture became a standard in the few-shot learning community.

Wide Residual Networks Zagoruyko et al. [ZK16] highlighted that the residual
networks as introduced in [He+16] were not fully benefiting from their sometimes very
large depths. Increasing performance by less than a percent of accuracy on a well studied
task such as classification on CIFAR-10 would necessitate more than double the number
of layers, which makes the optimization very slow. They identified this behaviour as
being a consequence of the diminushing feature reuse problem [SGS15], that is to say,
nothing forces the network to learn to use the weights of residual blocks, so many of them
might have very little contribution to the model. They show that wider architectures,
that is to say with more channels, make the use of additional layers more effective.

Recently, some few-shot learning papers [Rus+18; Gid+19; Man+20] have turned
to a wide residual network architecture called WRN-28-10. This network is composed
of 28 layers, each with residual blocks that are 10 times wider than the basic residual
network architecture. Because this architecture has only been recently embraced by the
few-shot learning community, we did not use it in this work to keep the focus on fair
comparison to earlier works. However, it should be noted that using this architecture
brings impressive results on common few-shot learning benchmarks [Man+20].

3.1.2 Training procedure

Training a machine learning model consists in solving an optimization problem, that is
to say finding the model parameters that minimize a loss function. The loss function is
representative of the effectiveness of the model. In the case of a model that is trained

40 CHAPTER 3. REPRESENTATION LEARNING FOR FEW-SHOT LEARNING

Conv Block 1

Conv Block 2

Conv Block 3

Conv 3x3

Conv 3x3

Batch Normalization

Activation

Max Pooling 2x2

Input

N channels

2N channels

2N channels

2N channels

2N channels

2N channels

Output

(a) Residual block of ResNet-12. Conv Block
refers to the same convolutional block used in
C64F and C128F (Figure 3.1a).

Images

Resnet block 1

Resnet block 2

Resnet block 3

Resnet block 4

Feature
maps

64 channels

128 channels

256 channels

512 channels

(b) Resnet-12 architecture

Figure 3.4 – ResNet-12 architecture. The activation function used is Swish.

3.1. CHOICE OF BASELINE MODEL 41

to classify images, an example of loss function we can use is the cross-entropy (2.2).
It is computed on the training dataset. However, this loss function does not always
reflect high performance on other data. In case of overfitting, the model can perform
perfectly on training data but without generalizing to unseen data. Therefore, a val-
idation set composed of extra data is generally used to select hyperparameters of the
training process, which ensures generalization outside of the training data. In case of
few-shot learning, the test classes are disjoint from the base classes, therefore the model
must generalize to data outside of the training classes. Stage 1 of few-shot learning
models aims at solving a classification on the base classes. Thus, we are presented with
two choices of validation metrics. On the one hand, we can build a validation set of
images coming from the base classes, which is consistent with the training task. On the
other hand, we can build a validation set of images from classes outside of the training
classes (and outside of the test classes as well for fairness), which would be consistent
with the test setting. In this section, we explore the relationship between the validation
measurements that could come from those sets and the impact of choosing one over the
other.

Base class validation Because our representation learning stage is equivalent to solv-
ing a classification problem over the base classes, it would be natural to use a valida-
tion set composed of images from the base classes C and use a traditional classifica-
tion loss or classification accuracy on it. Concretely, it would mean using a collec-
tion of examples Xval := (xval1 , . . . , xvaln) with each xvali ∈ X , and corresponding labels
Y val := (yval1 , . . . , yvaln) with each yvali ∈ C. In practice, such validation is not always
available for the given few-shot learning dataset. For instance, CUB, CIFAR-100 are
lacking additional images from the base classes to construct such set. MiniImageNet is
a subset of 100 classes of ImageNet, 64 being used as base classes, with 600 examples per
class. Because the chosen ImageNet classes have more examples, a disjoint validation
and test set using the same 64 classes can be created. We chose for this experiment to
use the splits of Gidaris et al. [GK18] from the extra ImageNet data. For each training
class, a set of 300 images disjoint from the training images are selected. Assuming we
can access such collection of data, we use the classification accuracy of our model on it
and we call it the base class validation accuracy.

Novel class validation Another way of evaluating the quality of our representation
learning stage is to use a disjoint set of classes from the base and novel classes. Con-
cretely, we use a collection of examples Xval := (xval1 , . . . , xvaln) with each xvali ∈ X , and

42 CHAPTER 3. REPRESENTATION LEARNING FOR FEW-SHOT LEARNING

corresponding labels Y val := (yval1 , . . . , yvaln) with each yvali ∈ Cval, where Cval := [cval]
is a set of validation classes disjoint from C and C ′. Such collection might not exist in
real life scenarios as we might want to use as many base classes as possible to learn a
stronger representation of the data. In this case, we could use a cross-validation strategy.
Usually, cross-validation consists in repeating the training process multiple times, each
time retaining a different subset of the training samples to use as validation. In our
few-shot learning context, the split between training and validation would be class-wise,
that is, we would retain some training classes to use as validation classes. In the case of
few-shot learning datasets, this collection is usually accessible, so cross-validation is not
necessary.

By using this validation set we can simulate our few-shot testing setting and therefore
evaluate the ability of our representation to generalize to novel classes. Because no
classifier for the novel validation classes has been learned during the representation
learning stage, we must choose and apply a stage 2 strategy to use this validation set.
We choose to use the prototype classifier as a method to evaluate stage 1 performance.
This choice is standard in few-shot learning, including our own research that we will
develop in the rest of this manuscript. The few-shot classification accuracy of the model
on this set is called the novel class validation accuracy.

Choice of validation metric We monitor the base class validation accuracy and
novel class validation accuracy to choose a metric to use for the representation learning
stage. For those experiments, we use the cosine classifier approach [QBL18; GK18] to
optimize ResNet-18 using SGD with nesterov momentum 0.9 and weight decay 5e − 4
for 100 epochs. We apply this setup for 2 separate runs to alleviate the randomness of
the initialization. In Figure 3.5, we show the evolution of both validation metrics during
optimization. Both metrics are smoothed over multiple epochs for easier visualization.
This experiment confirms that, as a general rule of thumb, the better the network has
learned to classify over base classes, the better it can be used on novel classes in a
few-shot scenario.

A closer observation reveals different phases of learning. During a first stage (up
to about 55% base class validation accuracy), the optimization improves both the base
class validation accuracy and the novel class validation accuracy. In this stage, the
relationship between the two metrics is almost linear. Then during a second stage,
the base class validation accuracy continue to improve while the novel class validation
accuracy stagnates or even decreases in some cases. Finally we sometimes observe a last
stage, where the base class accuracy also decreases.

3.1. CHOICE OF BASELINE MODEL 43

0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57

0.63

0.64

0.65

Base class validation accuracy

N
ov
el

cl
as
s
va
lid

at
io
n
ac
cu
ra
cy

Figure 3.5 – Evolution of the base class validation accuracy and novel class validation
accuracy during representation learning using cosine classifier, ResNet-18 as embedding
network and constant learning rate. We show 2 runs of the same optimization.

This experiment confirms that our optimization using the base dataset is able to
improve both the base class validation accuracy as well as the novel class validation
accuracy. Both of those metrics agree at the beginning of the optimization process. After
some epochs, the behaviour changes. The base class validation accuracy keeps increasing,
which demonstrates that we are not overfitting on the training data. However, the drop
in novel class validation accuracy shows that further optimization is not relevant for
novel classes. Such behaviour can be interpreted as overfitting, not on the training data
but on the training task (classification over the base classes).

In Table 3.1 we report all possible accuracy metrics for two optimized network. In
both cases, the learning rate is kept fixed. For the first model we select the epoch with
highest base class validation accuracy, while for the other we select the one with the
highest novel class validation accuracy. We observe that despite having 4% lower base
class validation accuracy, the second model performs better by about 2% for both 1-shot
and 5-shot 5-way classification on the test set. This confirms that the correct choice of
validation is the novel class accuracy, even for the representation learning stage. For this
reason, we will solely use the novel class validation through this thesis.

44 CHAPTER 3. REPRESENTATION LEARNING FOR FEW-SHOT LEARNING

Base Validation Novel validation Test
Used validation 1-shot 5-shot 1-shot 5-shot

Base class 59.34 49.91 ±0.46 65.42 ±0.39 47.76 ±0.44 63.04 ±0.38
Novel class 55.03 52.79 ±0.47 68.52 ±0.39 49.63 ±0.43 65.26 ±0.37

Table 3.1 – Comparison of the performance of the embedding network depending on the
validation metric used for early stopping. The first model is selected from the best epoch
regarding the base class validation accuracy, the second regarding novel class validation
accuracy. For each we report the other metric result as well as few-shot test performance.
All few-shot accuracy reported are computed on 5-way tasks of miniImageNet with
ResNet-18 as embedding network.

3.1.3 Selection of architecture and method

The quality of the representation model depends on the network architecture used to
implement it as well as the method used to train it. In this section, we experiment with
different combinations of those to choose the most relevant for our work.

We compare performances of the architecture of embedding networks most com-
monly used in the few-shot learning community. We perform our experiment using
miniImageNet as it is the most commonly used dataset. For representation learning we
experiment with two standard methods: prototypical networks and cosine classifier. We
compare few-shot classification accuracy using C64F, C128F, ResNet-12, and ResNet-18
as embedding networks. For C64F and C128F, we experiment with the original version
where output embedding features are flattened, referred to respectively as C64F+Flatten
and C128F+Flatten, as well as versions where the output embedding are pooled spa-
tially using global pooling, referred to respectively as C64F+GAP and C128F+GAP.
For inference, we use a prototype classifier.

We use stochastic gradient descent with nesterov momentum of 0.9 and weight decay
of 5e− 4 in all experiments. For each experiment, we decrease the learning rate on the
plateaus of the novel validation accuracy. Each reported result is the best out of 3 runs
according to validation accuracy.

In Table 3.2 we report 5-way 1-shot, and 5-shot accuracy on miniImagNet with
those settings. Accuracies are averaged over 2000 few-shot tasks sampled from the test
dataset with 15 queries per novel class for each. The best accuracy for 1-shot and 5-shot
classification is put in bold. We observe that the choice of embedding network architec-
ture and the choice of representation learning cannot be done entirely separately. Four
layers convolutional networks with flattening of the feature maps perform better with

3.1. CHOICE OF BASELINE MODEL 45

1-shot 5-shot
Network PN CC PP CC

C64F+Flatten 53.01 ±0.43 51.58 ±0.41 70.84 ±0.35 68.18 ±0.37
C128F+Flatten 53.57 ±0.43 52.45 ±0.41 71.42 ±0.36 69.53 ±0.35
C64F+GAP 52.10 ±0.45 51.95 ±0.43 69.08 ±0.36 68.69 ±0.36
C128F+GAP 52.58 ±0.45 52.70 ±0.42 69.71 ±0.37 69.99 ±0.36
ResNet-18 52.13 ±0.46 53.07 ±0.45 66.71 ±0.38 69.28 ±0.37
ResNet-12 60.09 ±0.47 60.38 ±0.44 75.02 ±0.35 77.55 ±0.33

Table 3.2 – Average 5-way accuracy on novel classes of miniImageNet using different
embedding networks and representation learning method. Novel class inference is per-
formed using the prototype classifier method. PN: prototypical networks, CC: cosine
classifier.

prototypical network than cosine classifier training (between 1% and 2% accuracy dif-
ference). Four layers convolutional networks with global pooling are performing about
as well with both representation methods. Residual architectures perform better using
the cosine classifier method with up to 2.6% accuracy increase on 5-way 5-shot classi-
fication with ResNet-18. ResNet-12 with cosine classifier is the best option out of all,
showing the best accuracies in the two task settings, the second best being ResNet-12
with prototypical classifier training. For most of the experiments in this thesis, we will
use residual network embdeddings with cosine classifier as baseline.

3.1.4 Number of shot

The term "few" in "few-shot learning" refers to having few training examples from the
novel class set. As defined in section 2.2, we have n′ labeled example for the novel class
data. Here we ask ourselves how few should few-shot data be.

To do that we perform experiments on the mini-ImageNet dataset where the em-
bedding network is ResNet-12 trained using the cosine classifier or prototypical network
method on the base dataset. We compute the test accuracy by sampling 2000 few-shot
tasks from the test set. Few-shot tasks are 5-way k-shot (we sample k support examples
per novel class). We make k vary from 1 to 20. Results are reported in Figure 3.6. We
observe that the addition of extra support examples makes a very large difference when
the initial number of shot is very low. For instance, there is a 6.8% increase in accuracy
when going from 1-shot to 2-shot using the cosine classifier method. The impact is lower
with higher numbers of shot, with improvements of maximum 0.5% accuracy per extra
shot for 10-shot and higher. This behaviour is easily explainable since the necessity of

46 CHAPTER 3. REPRESENTATION LEARNING FOR FEW-SHOT LEARNING

0 2 4 6 8 10 12 14 16 18 20

60

65

70

75

80

85

shot

A
cc
ur
ac
y

Prototypical network
Cosine classifier

Figure 3.6 – miniImageNet few-shot 5-way accuracy with varying number of shot. The
embedding network is ResNet-12.

gathering more information about the novel classes is more important if such informa-
tion is lacking which is the case with very few shots. In order to stay true to the idea
of few-shot learning, we choose to focus on this very few-shot setting, that is to say,
evaluating models based on how they perform 1-shot, 5-shot or at maximum 10-shot
classification. This choice is consistent with what can be found in the related literature.

3.2 Dense Classification

3.2.1 Method

As discussed in section 2.2, the embedding network φθ : X → Rr×d maps the input
to an embedding that is a tensor. There are two common ways of handling this high-
dimensional representation, as illustrated in Figure 3.7.

The first is to apply one or more fully connected layers. This can be seen as flattening
the activation into a long vector and multiplying with a weight vector of the same length
per class; alternatively, the weight parameter is a tensor of the same dimension as the
embedding. This representation is discriminative, but not invariant. This was standard
in many early few-shot learning works [Vin+16; SSZ17; GK18], generally using small
convolutional networks like C64F or C128F for image representation, then classifying

3.2. DENSE CLASSIFICATION 47

φ(x) w1 w2 w3

feature (d)

spatial(r)

s

class weights

σ `

[July 28, 2019 at 17:52 – classicthesis version 0.1]

(a)

φ(x)
w1 w2 w3

feature (d)

spatial(r)

sΣ

class weights

a σ `

[August 3, 2019 at 0:37 – classicthesis version 0.1]

(b)

Figure 3.7 – Flattening and pooling. Horizontal (vertical) axis represents feature (spatial)
dimensions. Tensors w1,w2,w3 represent class weights, and φ(x) the embedding of
example x. An embedding is compared to class weights by similarity (s) and then
softmax (σ) and cross-entropy (`) follow. (a) Flattening is equivalent to class weights
having the same r× d shape as φ(x). (b) Global pooling. Embedding φ(x) is pooled (Σ)
into vector a ∈ Rd before being compared to class weights, which are in Rd too.

48 CHAPTER 3. REPRESENTATION LEARNING FOR FEW-SHOT LEARNING

φ(x) +

feature (d)

spatial(r)

w1 w2 w3

φ(x)(r1) s σ `

φ(x)(r2) s σ `

φ(x)(r3) s σ `

class weights

[July 28, 2019 at 21:12 – classicthesis version 0.1]

Figure 3.8 – Dense classification. Notation is the same as in Figure 3.7. The embedding
a := φ(x) ∈ Rr×d is seen as a collection of vectors (a(1), . . . ,a(r)) in Rd (here r = 3) with
each being a vector in Rd and representing a region of the input image. Each vector is
compared independently to the same class weights and the losses are added, encouraging
all regions to be correctly classified.

using a single or multi-layer neural network.

The second way is to apply global pooling and reduce the embedding into a smaller
vector of length d. This reduces dimensionality significantly, so it only makes sense if d
is large enough. It is an invariant representation, but less discriminative. This method is
used in more recent few-shot learning works that used ResNet architecture as embedding
networks that have high dimensional outputs [Mis+18; GK18; OLR18].

We propose a different approach that we call dense classification and is illustrated
in Figure 3.8. We view the embedding φθ(x) as a collection of vectors [φ(k)(x)]rk=1, where
φ(k)(x) ∈ Rd for k ∈ [r]1. For a 2d image input and a convolutional network, φθ(x)
consists of the activations of the last convolutional layer, that is a tensor in Rw×h×d

where r = w × h is its spatial resolution. Then, φ(k)(x) is an embedding in Rd that
represents a single spatial location k on the tensor.

When learning from the training data (X,Y) over base classes C (stage 1), we adopt
the simple approach of training a parametric linear classifier on top of the embedding
function φθ, like [QBL18] and the initial training of [GK18]. The main difference in our
case is that the weight parameters do not have the same dimensions as φθ(x); they are
rather vectors in Rd and they are shared over all spatial locations. More formally, let
wj ∈ Rd be the weight parameter of class j for j ∈ C. Then, similarly to (2.15), the

1Given tensor a ∈ Rm×n, denote by a(k) the k-th n-dimensional slice along the first group of dimen-
sions for k ∈ [m].

3.2. DENSE CLASSIFICATION 49

classifier mapping fθ,W : X → Rr×c is defined by

fθ,W (x) :=
[
σ
(
[sτ (φ(k)

θ (x),wj)]cj=1

)]r
k=1

(3.1)

for x ∈ X , whereW := (w1, . . . ,wc) is the collection of class weights and sτ is the scaled
cosine similarity defined by (2.16), with τ being a learnable parameter as in [QBL18;
GK18]2. Here fθ,W (x) is a r × c tensor: index k ranges over spatial resolution [r] and j
over classes [c].

This operation is a 1× 1 convolution followed by depth-wise softmax. Then, f (k)
θ,W (x)

at spatial location k is a vector in Rc representing confidence over the c classes. On the
other hand, f (:,j)

θ,W (x) is a vector in Rr representing confidence of class j for j ∈ [c] as a
function of spatial location.3 For a 2d image input, f (:,j)

θ,W (x) is like a class activation map
(CAM) [Zho+16] for class j, that is a 2d map roughly localizing the response to class j,
but differs in that softmax suppresses all but the strongest responses at each location.

Given the definition (3.1) of fθ,W , training amounts to minimizing over θ,W the cost
function

J(X,Y ; θ,W) :=
n∑
i=1

r∑
k=1

`(f (k)
θ,W (xi), yi), (3.2)

where ` is cross-entropy (2.2). The loss function applies to all spatial locations and
therefore the classifier is encouraged to make correct predictions everywhere.

3.2.2 Discussion

Similarities can be found with semantic segmentation [LSD15; NHH15] , where given
per-pixel labels, the loss function applies per pixel and the network learns to make
localized predictions on upsampled feature maps rather than just classify. In our case
there is just one image-level label. In the case of the original version of miniImageNet,
using ResNet-12 as embedding network, the features maps have low resolution (5 × 5).
Moreover relevant object of miniImageNet images take a large portion of the image. In
this case, the receptive field of a particular location is large enough to assume we can
assign it the image label. In case of larger images, this assumption might not hold.

2Temperature scaling is frequently encountered in various formats in several works to enable soft-
labeling [HVD15] or to improve cosine similarity in the final layer [Wan+17a; OLR18; GK18; QBL18;
HHS18].

3Given tensor a ∈ Rm×n, denote by a(:,j) the j-th m-dimensional slice along the second group of
dimensions for j ∈ [n].

50 CHAPTER 3. REPRESENTATION LEARNING FOR FEW-SHOT LEARNING

Figure 3.9 – Examples overlaid with correct class activation maps [Zho+16] (red is
high activation for ground truth) on ResNet-12 trained with global average pooling or
dense classification (cf . (3.1)). From top to bottom: base classes, classified correctly
by both (walker hound, tile roof); novel classes, classified correctly by both (king crab,
ant); novel classes, dense classification is better (ferret, electric guitar); novel classes,
pooling is better (mixing bowl, ant). In all cases, dense classification results in smoother
activation maps that are more aligned with objects.

In this case, we can introduce a local average pooling operation before applying dense
classification to expand the receptive field of each location.

Dense classification improves the spatial distribution of class activations, as shown
in Figure 3.9. By encouraging all spatial locations to be classified correctly, we are en-
couraging the embedding network to identify all parts of the object of interest rather
than just the most discriminative details. Since each location on a feature map corre-
sponds to a region in the image where only part of the object may be visible, our model
behaves like implicit data augmentation of exhaustive shifts and crops over a dense grid
with a single forward pass of each example in the network.

3.3. EXPERIMENTS 51

3.2.3 Inference on novel classes

In Figure 3.2.1 we define a new way of handling spatial information during while training
an embedding network with a classifier for classification. In this case the classifier being
a one layer cosine classifier with learned scaling. We propose to use this new training
method for stage 1 of our few-shot learning model. At inference, we are again confronted
with a choice on how to handle spatial information of features maps from the support
and query examples. We adopt the prototype classifier model for inference. With this
choice, we have found that it is working best to perform global pooling of the support
examples before computing class prototypes P := (p1, . . . ,pc′) by (2.12). Given a query
x ∈ X , the standard prediction is then to assign it to the nearest prototype

arg max
j∈C′

s(φθ,θ′(x),pj), (3.3)

where s is cosine similarity [SSZ17]. Alternatively, we can use dense classification on
queries, that is to say soft-assigning independently the embedding φ(k)

θ,θ′(x) of each spatial
location, then average over all locations k ∈ [r] according to

fθ,θ′ [P](x) := 1
r

r∑
k=1

σ
(
[sτ (φ(k)

θ,θ′(x),pj)]c
′
j=1

)
, (3.4)

where sτ is the scaled cosine similarity (2.16), and finally classify to arg maxj∈C′ f jθ,θ′ [P](x).

3.3 Experiments

We evaluate our dense classification method extensively on theminiImageNet and FC100
datasets. We describe the experimental setup and report the results below.

3.3.1 Experimental setup

Networks In most experiments, we use a ResNet-12 network [OLR18] as our embed-
ding network. Because our dense classification method might affect the results of the
network study presented in subsection 3.1.3, we also test dense classification on a lighter
network C128F [GK18].

Datasets We test our method on the miniImageNet dataset, as well as CIFAR100.

52 CHAPTER 3. REPRESENTATION LEARNING FOR FEW-SHOT LEARNING

Network Pooling 1-shot 5-shot 10-shot

C128F GAP 54.28 ±0.18 71.60 ±0.13 76.92 ±0.12
C128F DC 49.84 ±0.18 69.64 ±0.15 74.61 ±0.13
ResNet-12 GAP 58.61 ±0.18 76.40 ±0.13 80.76 ±0.11
ResNet-12 DC 61.26 ±0.20 79.01 ±0.13 83.04 ±0.12

Table 3.3 – Average 5-way accuracy on novel classes of miniImageNet, stage 1 only.
Pooling refers to stage 1 training. GAP: global average pooling; DC: dense classifica-
tion. At testing, we use global max-pooling on queries for models trained with dense
classification, and global average pooling otherwise.

Evaluation protocol The training set X comprises images of the base classes C. To
generate the support set X ′ of a few-shot task on novel classes, we randomly sample
C ′ classes from the validation or test set and from each class we sample k images. We
report the average accuracy and the corresponding 95% confidence intervals over 10,000
few-shot tasks with 30 queries per class. Using the same task sampling, we also consider
few-shot tasks involving base classes C, following the benchmark of [GK18]. We sample
a set of extra images from the base classes to form a test set for this evaluation, which
is performed in two ways: independently of the novel classes C ′ and jointly on the union
C ∪C ′. In the latter case, the base prototypes learned at stage 1 are concatenated with
novel prototypes [GK18].

Implementation details In stage 1, we train the embedding network for 8,000 (12,500)
iterations with mini-batch size 200 (512) on miniImageNet (FC100). On miniImageNet,
we use stochastic gradient descent with Nesterov momentum. On FC100, we rather
use Adam optimizer [KB14]. We initialize the scale parameter at τ = 10 (100) on
miniImageNet (FC100).

3.3.2 Results

Networks In Table 3.3 we compare ResNet-12 to C128F, with and without dense
classification. We observe that dense classification improves the classification accuracy
on novel classes for ResNet-12, but it is detrimental for the small network. C128F is
only 4 layers deep and the receptive field at the last layer is significantly smaller than
the one of ResNet-12, which is 12 layers deep. It is thus likely that units from the last
feature map correspond to non-object areas in the image. Regardless of the choice of
using dense classification or not, ResNet-12 has a large performance gap over C128F.

3.3. EXPERIMENTS 53

For the following experiments, we use exclusively ResNet-12 as our embedding network.

Stage 1 training Support/query pooling at testing

Support → GMP GAP
Queries → GMP DC GAP DC

GAP
Base classes 63.55 ±0.20 77.17 ±0.11 79.37 ±0.09 77.15 ±0.11
Novel classes 72.25 ±0.13 70.71 ±0.14 76.40 ±0.13 73.28 ±0.14
Both classes 37.74 ±0.07 38.65 ±0.05 56.25 ±0.10 54.80 ±0.09

Base classes 79.28 ±0.10 80.67 ±0.10 80.61 ±0.10 80.70 ±0.10
DC Novel classes 79.01 ±0.13 77.93 ±0.13 78.55 ±0.13 78.95 ±0.13

Both classes 42.45 ±0.07 57.98 ±0.10 67.53 ±0.10 67.78 ±0.10

Table 3.4 – Average 5-way 5-shot accuracy on base, novel and both classes of
miniImageNet with ResNet-12, stage 1 only. GMP: global max-pooling; GAP: global
average pooling; DC: dense classification. Bold: accuracies in the confidence interval of
the best one.

Dense classification In Table 3.4 we evaluate 5-way 5-shot classification on mini-
ImageNet with global average pooling and dense classification at stage 1 training, while
exploring different pooling strategies at inference. We also tried using global max-pooling
at stage 1 training and got similar results as with global average pooling. Dense clas-
sification in stage 1 training outperforms global average pooling in all cases by a large
margin. It also improves the ability of the network to integrate new classes without
forgetting the base ones. Using dense classification at testing as well, the accuracy on
both classes is 67.78%, outperforming the best result of 59.35% reported by [GK18]. At
testing, dense classification of the queries with global average pooling of the support
examples is the best overall choice. One exception is global max-pooling on both the
support and query examples, which gives the highest accuracy for new classes but the
difference is insignificant.

In order to further investigate the impact of using dense classification in stage 1,
we computed 5-way accuracy with the number of shots ranging from 1 to 20 both with
our dense classification method and global pooling. We report in Figure 3.10 the im-
provements in accuracy for all those task settings. We observe that the largest accuracy
improvement (3.8%) is for the 1-shot setting. The relative gain decreases with the num-
ber of shot. Nevertheless, even in the worse case we observe around 1.5% accuracy
improvement brought by dense classification.

54 CHAPTER 3. REPRESENTATION LEARNING FOR FEW-SHOT LEARNING

0 2 4 6 8 10 12 14 16 18 20

1.5

2

2.5

3

3.5

4

shot

A
cc
ur
ac
y
pe

rc
en
ta
ge

im
pr
ov
em

en
t

Figure 3.10 – miniImageNet few-shot 5-way accuracy improvement when using dense
classification compared to global average pooling training, with varying number of shot.
ResNet-12 is used as embedding network.

Comparison with the state-of-the-art In Table 3.5 we compare our best dense
classification solution with previous few-shot learning methods on 5-way classification
on miniImageNet. All methods included are using the same ResNet-12 embedding net-
work for fairness of comparison. We also include results from our baseline which is the
embedding network trained with global average pooling in stage 1. Our solution outper-
forms by at least 2% accuracy other methods on 1, 5 and 10-shot classification. Note
that prototypical network on ResNet-12 [OLR18] is already giving very competitive per-
formance. TADAM [OLR18] builds on top of this baseline to achieve the previous state
of the art. In this work we rather use a cosine classifier in stage 1. This setting is our
baseline GAP and is already giving similar performance to TADAM [OLR18]. Dense
classification is able to improve on this baseline. Similar conclusions can be drawn from
Table 3.6, showing corresponding results on FC100. When comparing to prototypical
network [OLR18] and TADAM [OLR18], Our model outperforms TADAM here too, al-
though by a smaller margin. The lower resolution of CIFAR-100, may be the cause of
lower gain from using dense classification since the cost function (3.2) applies to fewer
spatial locations.

3.4. CONCLUSION 55

Method 1-shot 5-shot 10-shot

GAP 58.61 ± 0.18 76.40 ± 0.13 80.76 ± 0.11
DC (ours) 62.53 ± 0.19 78.95 ± 0.13 82.66 ± 0.11

MAML [FAL17] 48.70 ± 1.8 63.10 ± 0.9 -
PN [SSZ17] 49.42 ± 0.78 68.20 ± 0.66 -
Gidaris et al. [GK18] 55.45 ± 0.7 73.00 ± 0.6 -
PN [OLR18] 56.50 ± 0.4 74.20 ± 0.2 78.60 ± 0.4
TADAM [OLR18] 58.50 76.70 80.80

Table 3.5 – Average 5-way accuracy on novel classes of miniImageNet. The top part is
our solutions and baselines, all on ResNet-12. GAP: global average pooling (stage 1);
DC: dense classification (stage 1). At testing, we use GAP on support examples and
GAP or DC on queries, depending on the choice of stage 1. The bottom part results
are as reported in the literature. PN: Prototypical Network [SSZ17]. MAML [FAL17]
and PN [SSZ17] use four-layer networks; while PN [OLR18] and TADAM [OLR18] use
the same ResNet-12 as us. Gidaris et al. [GK18] use a Residual network of comparable
complexity to ours.

Method 1-shot 5-shot 10-shot

GAP 41.02 ± 0.17 56.63 ± 0.16 61.65 ±0.15
DC (ours) 42.04 ± 0.17 57.05 ± 0.16 61.91 ± 0.16

PN [OLR18] 37.80 ± 0.40 53.30 ± 0.50 58.70 ± 0.40
TADAM [OLR18] 40.10 ± 0.40 56.10 ± 0.40 61.60 ± 0.50

Table 3.6 – Average 5-way accuracy on novel classes of FC100 with ResNet-12. The top
part is our solutions and baselines. GAP: global average pooling (stage 1); DC: dense
classification (stage 1). At testing, we use GAP on support examples and GAP or DC
on queries, depending on the choice of stage 1. The bottom part results are as reported
in the literature. All experiments use the same ResNet-12.

3.4 Conclusion

We have seen that the way representation learning is approached in stage 1 is crucial
for few-shot performance even though the classes on which the latter is evaluated are
different from the ones used during training. We have experimented with two simple
methods used in few-shot learning works: prototypical networks and cosine classifier. We
have identified that the cosine classifier method is the most promising, and that deep
architectures such as ResNet-12 are the most effective for modern few-shot learning
datasets. This setting, with hyperparameters chosen using a validation set composed of

56 CHAPTER 3. REPRESENTATION LEARNING FOR FEW-SHOT LEARNING

images from a disjoint set of classes from the base and novel classes, allow impressive
results already.

We also bring a contribution to few-shot learning by building on this simple process.
We investigate for the first time in few-shot learning the activation maps and devise a
new way of handling spatial information by a dense classification loss that is applied to
each spatial location independently, significantly improving the spatial distribution of
the activation and performance on novel classes or when presented with a mix of base
and novel classes.

Chapter 4

Adaptation of the representation
to the few-shot task

Contents
4.1 Implanting . 59

4.1.1 Related works . 59

4.1.2 Architecture . 59

4.1.3 Training . 60

4.1.4 Inference on novel classes . 62

4.2 Implanting experiments . 63

4.2.1 Experimental setup . 63

4.2.2 Results . 63

4.3 Few-steps adaptation . 65

4.3.1 Related works . 65

4.3.2 Method . 66

4.3.3 Results . 70

4.4 Using base classes to augment the support set 71

4.4.1 Method . 71

4.4.2 Results . 73

4.5 Conclusion . 74

The success of deep learning methods for computer vision tasks is due to the capacity
of training a powerful representation of images that groups images with similar content
together. This representation is obtained by minimizing a loss function to optimize the

57

58CHAPTER 4. ADAPTATION OF THE REPRESENTATION TO THE FEW-SHOT TASK

parameters of the network. Many different losses can be used to get to such semantic
representation. Metric learning losses [HA15; Oh +16; Soh16; Wan+17c] directly enforce
mapping similar images close together in some feature space and dissimilar images far
away from each other. Classification losses such as the cross-entropy loss enforces good
classification of the images. Again, classification implies learning to represent images in
a feature space, where images from the same classes are grouped together. The learned
representation is especially powerful since it is specifically designed to work well on the
training data. In a traditional classification problem, the training dataset is a large set
of examples (e.g. thousands) from the classes that we want to classify into.

However, in few-shot learning, examples from the novel classes are limited to a few
ones, tens at maximum. This small amount of data is not enough to train deep network
as already discussed in the previous chapter. We have seen how we can use a larger set of
images, the base class dataset, to train the representation instead. This representation
alone with a simple classifier for the novel classes, a prototype classifier for instance,
is enough to have impressive classification results on few-shot tasks. However, this
method ignores the specificity of the novel classes in the representation, assuming that
the representation learned on base classes is enough.

In this chapter, we explore ways to adapt the representation of the images to the
novel data using the few-shot examples only to make it specific to the few-shot task.
Naturally, the objective is not to completely deviate from the representation learned on
the base class dataset, because we would run the risk of overfitting.

Instead, we propose two learning-based methods to slightly modify the representa-
tion. The first one is called implanting and has been published in [Lif+19]. It consists
in adding a limited number of new parameters, called implants, to the trained embed-
ding network. Only the implants alone are learned on the few-shot data. The outputs
of the implants are used as new dimensions in the vector representation of the images.
Learning a limited number of parameters allows multiple iterations of learning without
overfitting.

The second method is a simple fine-tuning of the embedding network with the few-
shot data and is part of [LAP20a]. With many iterations, we end up overfitting because
of the lack of data. To prevent this overfitting, we limit the training to a few iterations,
allowing on average to improve the few-shot accuracy.

4.1. IMPLANTING 59

4.1 Implanting

From the learning on the training data (X,Y) of base classes C (representation learning
stage) we only keep the embedding network φθ and we discard the classification layer.
The assumption is that features learned on base classes are generic enough to be used
for other classes, at least for the bottom layers [Yos+14]. However, given a new few-
shot task on novel classes C ′, we argue that we can take advantage of the support data
(X ′, Y ′) to find new features that are discriminative for the task at hand, at least in
the top layers. In this section, we propose a novel solution to perform this adaptation
through learning on the novel data without overfitting. Overfitting happens because the
number of parameters to learn is too large for the available data. Therefore, our solution
is to only learn a small number of parameters added to the embedding network. Original
parameters are frozen so that they are not squashed during the new training phase.

4.1.1 Related works

Network adaptation is common when learning a new task or new domain. One solution is
to learn to mask part of the network, keeping useful neurons and re-training/fine-tuning
the remaining neurons on the new-task [MDL18; ML18]. Rusu et al. [Rus+16] rather
widen the network by adding new neurons in parallel to the old ones at every layer.
New neurons receive data from all hidden states, while previously generated weights are
frozen when training for the new task. Our neural implants are related to [Rus+16]
as we add new neurons in parallel and freeze the old ones. Unlike [Rus+16], we focus
on low-data regimes, keeping the number of new implanted neurons small to diminish
overfitting risks and train faster, and adding them only at top layers, taking advantage
of generic visual features from bottom layers. Parallel to our work, Sun et al. [Sun+19]
proposed a related solution where task-dependent scaling and shifting parameters are
learned for each layer.

4.1.2 Architecture

We begin with the embedding network φθ, which we call base network. We widen this
network by adding new convolution kernels in a number of its top convolutional layers.
We call these new neurons implants. While learning the implants, we keep the base
network parameters frozen, which preserves the representation of the base classes.

Let al denote the output activation of the convolutional layer l in the base network.
The implant for this layer, if it exists, is a distinct convolutional layer with output

60CHAPTER 4. ADAPTATION OF THE REPRESENTATION TO THE FEW-SHOT TASK

activation a′l. Then the input of an implant at the next layer l + 1 is the depth-wise
concatenation [al,a′l] if a′l exists, and just al otherwise. If θ′l are the parameters of the
l-th implant, then we denote by θ′ := (θ′l0 , . . . , θ

′
L) the set of all new parameters, where

l0 is the first layer with an implant and L the network depth. The widened embedding
network is denoted by φθ,θ′ .

Forward all classes

CNN

C
onv

C
onv

C
onv

im
plant

C
onv

im
plant

Forward base classes

Forward novel classes

Backprop novel classes

x
<latexit sha1_base64="31KNSCxeks8q5lM5E0hdgMw5fLc=">AAACD3icbZC7TsMwFIYdrqXcAowsERWXqUoQEowVLIxFohcpjSrHcVqrvkS2A1RR3oCFV2FhACFWVjbeBqfNAC1HsvTpPxef84cJJUq77re1sLi0vLJaWauub2xubds7u20lUolwCwkqZDeEClPCcUsTTXE3kRiykOJOOLoq8p07LBUR/FaPExwwOOAkJghqI/Xtox7H90gwBnmUFZz7XpBlNS8/zqs9BvUwjLOHvG/X3Lo7CWcevBJqoIxm3/7qRQKlDHONKFTK99xEBxmUmiCKzehU4QSiERxg3yCHDKsgm9yTO4dGiZxYSPO4dibq744MMqXGLDSVxYZqNleI/+X8VMcXQUZ4kmrM0fSjOKWOFk5hjhMRiZGmYwMQSWJ2ddAQSoi0sbBqTPBmT56H9mndM3xzVmtclnZUwD44ACfAA+egAa5BE7QAAo/gGbyCN+vJerHerY9p6YJV9uyBP2F9/gB0GJzm</latexit><latexit sha1_base64="31KNSCxeks8q5lM5E0hdgMw5fLc=">AAACD3icbZC7TsMwFIYdrqXcAowsERWXqUoQEowVLIxFohcpjSrHcVqrvkS2A1RR3oCFV2FhACFWVjbeBqfNAC1HsvTpPxef84cJJUq77re1sLi0vLJaWauub2xubds7u20lUolwCwkqZDeEClPCcUsTTXE3kRiykOJOOLoq8p07LBUR/FaPExwwOOAkJghqI/Xtox7H90gwBnmUFZz7XpBlNS8/zqs9BvUwjLOHvG/X3Lo7CWcevBJqoIxm3/7qRQKlDHONKFTK99xEBxmUmiCKzehU4QSiERxg3yCHDKsgm9yTO4dGiZxYSPO4dibq744MMqXGLDSVxYZqNleI/+X8VMcXQUZ4kmrM0fSjOKWOFk5hjhMRiZGmYwMQSWJ2ddAQSoi0sbBqTPBmT56H9mndM3xzVmtclnZUwD44ACfAA+egAa5BE7QAAo/gGbyCN+vJerHerY9p6YJV9uyBP2F9/gB0GJzm</latexit><latexit sha1_base64="31KNSCxeks8q5lM5E0hdgMw5fLc=">AAACD3icbZC7TsMwFIYdrqXcAowsERWXqUoQEowVLIxFohcpjSrHcVqrvkS2A1RR3oCFV2FhACFWVjbeBqfNAC1HsvTpPxef84cJJUq77re1sLi0vLJaWauub2xubds7u20lUolwCwkqZDeEClPCcUsTTXE3kRiykOJOOLoq8p07LBUR/FaPExwwOOAkJghqI/Xtox7H90gwBnmUFZz7XpBlNS8/zqs9BvUwjLOHvG/X3Lo7CWcevBJqoIxm3/7qRQKlDHONKFTK99xEBxmUmiCKzehU4QSiERxg3yCHDKsgm9yTO4dGiZxYSPO4dibq744MMqXGLDSVxYZqNleI/+X8VMcXQUZ4kmrM0fSjOKWOFk5hjhMRiZGmYwMQSWJ2ddAQSoi0sbBqTPBmT56H9mndM3xzVmtclnZUwD44ACfAA+egAa5BE7QAAo/gGbyCN+vJerHerY9p6YJV9uyBP2F9/gB0GJzm</latexit><latexit sha1_base64="31KNSCxeks8q5lM5E0hdgMw5fLc=">AAACD3icbZC7TsMwFIYdrqXcAowsERWXqUoQEowVLIxFohcpjSrHcVqrvkS2A1RR3oCFV2FhACFWVjbeBqfNAC1HsvTpPxef84cJJUq77re1sLi0vLJaWauub2xubds7u20lUolwCwkqZDeEClPCcUsTTXE3kRiykOJOOLoq8p07LBUR/FaPExwwOOAkJghqI/Xtox7H90gwBnmUFZz7XpBlNS8/zqs9BvUwjLOHvG/X3Lo7CWcevBJqoIxm3/7qRQKlDHONKFTK99xEBxmUmiCKzehU4QSiERxg3yCHDKsgm9yTO4dGiZxYSPO4dibq744MMqXGLDSVxYZqNleI/+X8VMcXQUZ4kmrM0fSjOKWOFk5hjhMRiZGmYwMQSWJ2ddAQSoi0sbBqTPBmT56H9mndM3xzVmtclnZUwD44ACfAA+egAa5BE7QAAo/gGbyCN+vJerHerY9p6YJV9uyBP2F9/gB0GJzm</latexit>

�✓(x)
<latexit sha1_base64="D6nMDaWOeeiH7F5s2pVrK7HS1tY=">AAACTHicbZBLS8QwFIXT8T2+Rl26KQ6igkgrgi4FNy4VHBWmZUgzt04wSUtyqw6hP9CNC3f+CjcuFBFMZ0bwdSHwcc4JuTlJLrjBIHjyamPjE5NT0zP12bn5hcXG0vK5yQrNoMUykenLhBoQXEELOQq4zDVQmQi4SK6PKv/iBrThmTrDfg6xpFeKp5xRdFKnwSIFtyyTkqqurbhsh7G1zbDcKOtR3uMdG2EPkJabkaTYS1J7V27V16uorfzyK7A9lIbhH+lOoxnsBIPx/0I4giYZzUmn8Rh1M1ZIUMgENaYdBjnGlmrkTIDbqzCQU3ZNr6DtUFEJJraDMkp/3SldP820Owr9gfr9hqXSmL5MXLJa0fz2KvE/r11gehBbrvICQbHhQ2khfMz8qlm/yzUwFH0HlGnudvVZj2rK0PVfdyWEv7/8F853d0LHp3vNw+NRHdNklayRTRKSfXJIjskJaRFG7skzeSVv3oP34r17H8NozRvdWSE/pjb5CZRytgQ=</latexit><latexit sha1_base64="D6nMDaWOeeiH7F5s2pVrK7HS1tY=">AAACTHicbZBLS8QwFIXT8T2+Rl26KQ6igkgrgi4FNy4VHBWmZUgzt04wSUtyqw6hP9CNC3f+CjcuFBFMZ0bwdSHwcc4JuTlJLrjBIHjyamPjE5NT0zP12bn5hcXG0vK5yQrNoMUykenLhBoQXEELOQq4zDVQmQi4SK6PKv/iBrThmTrDfg6xpFeKp5xRdFKnwSIFtyyTkqqurbhsh7G1zbDcKOtR3uMdG2EPkJabkaTYS1J7V27V16uorfzyK7A9lIbhH+lOoxnsBIPx/0I4giYZzUmn8Rh1M1ZIUMgENaYdBjnGlmrkTIDbqzCQU3ZNr6DtUFEJJraDMkp/3SldP820Owr9gfr9hqXSmL5MXLJa0fz2KvE/r11gehBbrvICQbHhQ2khfMz8qlm/yzUwFH0HlGnudvVZj2rK0PVfdyWEv7/8F853d0LHp3vNw+NRHdNklayRTRKSfXJIjskJaRFG7skzeSVv3oP34r17H8NozRvdWSE/pjb5CZRytgQ=</latexit><latexit sha1_base64="D6nMDaWOeeiH7F5s2pVrK7HS1tY=">AAACTHicbZBLS8QwFIXT8T2+Rl26KQ6igkgrgi4FNy4VHBWmZUgzt04wSUtyqw6hP9CNC3f+CjcuFBFMZ0bwdSHwcc4JuTlJLrjBIHjyamPjE5NT0zP12bn5hcXG0vK5yQrNoMUykenLhBoQXEELOQq4zDVQmQi4SK6PKv/iBrThmTrDfg6xpFeKp5xRdFKnwSIFtyyTkqqurbhsh7G1zbDcKOtR3uMdG2EPkJabkaTYS1J7V27V16uorfzyK7A9lIbhH+lOoxnsBIPx/0I4giYZzUmn8Rh1M1ZIUMgENaYdBjnGlmrkTIDbqzCQU3ZNr6DtUFEJJraDMkp/3SldP820Owr9gfr9hqXSmL5MXLJa0fz2KvE/r11gehBbrvICQbHhQ2khfMz8qlm/yzUwFH0HlGnudvVZj2rK0PVfdyWEv7/8F853d0LHp3vNw+NRHdNklayRTRKSfXJIjskJaRFG7skzeSVv3oP34r17H8NozRvdWSE/pjb5CZRytgQ=</latexit><latexit sha1_base64="D6nMDaWOeeiH7F5s2pVrK7HS1tY=">AAACTHicbZBLS8QwFIXT8T2+Rl26KQ6igkgrgi4FNy4VHBWmZUgzt04wSUtyqw6hP9CNC3f+CjcuFBFMZ0bwdSHwcc4JuTlJLrjBIHjyamPjE5NT0zP12bn5hcXG0vK5yQrNoMUykenLhBoQXEELOQq4zDVQmQi4SK6PKv/iBrThmTrDfg6xpFeKp5xRdFKnwSIFtyyTkqqurbhsh7G1zbDcKOtR3uMdG2EPkJabkaTYS1J7V27V16uorfzyK7A9lIbhH+lOoxnsBIPx/0I4giYZzUmn8Rh1M1ZIUMgENaYdBjnGlmrkTIDbqzCQU3ZNr6DtUFEJJraDMkp/3SldP820Owr9gfr9hqXSmL5MXLJa0fz2KvE/r11gehBbrvICQbHhQ2khfMz8qlm/yzUwFH0HlGnudvVZj2rK0PVfdyWEv7/8F853d0LHp3vNw+NRHdNklayRTRKSfXJIjskJaRFG7skzeSVv3oP34r17H8NozRvdWSE/pjb5CZRytgQ=</latexit>

�0
✓,✓0(x)

<latexit sha1_base64="p4ZxETj0OU9tuJWnBmB7EHRStWc=">AAACMXicbZBNS8NAEIY3flu/qh69BIuoIJKIoMeClx4VrApNKJvtxC7ubsLuRC1L/pIX/4l48aCIV/+Em7YHvwYWnn1nhpl5k1xwg0Hw4k1MTk3PzM7N1xYWl5ZX6qtrFyYrNIM2y0SmrxJqQHAFbeQo4CrXQGUi4DK5Oanyl7egDc/UOQ5yiCW9VjzljKKTuvVWpOCOZVJS1bMVl50wtrYRlttlrfrbKO/zsmsj7APSvZE05LLciSTFfpLa+3K3W28E+8Ew/L8QjqFBxnHarT9FvYwVEhQyQY3phEGOsaUaORPghhcGcspu6DV0HCoqwcR2eHHpbzml56eZdk+hP1S/d1gqjRnIxFVWK5rfuUr8L9cpMD2OLVd5gaDYaFBaCB8zv7LP73ENDMXAAWWau1191qeaMnQm15wJ4e+T/8LFwX7o+Oyw0WyN7ZgjG2ST7JCQHJEmaZFT0iaMPJBn8krevEfvxXv3PkalE964Z538CO/zC9YUq9E=</latexit><latexit sha1_base64="p4ZxETj0OU9tuJWnBmB7EHRStWc=">AAACMXicbZBNS8NAEIY3flu/qh69BIuoIJKIoMeClx4VrApNKJvtxC7ubsLuRC1L/pIX/4l48aCIV/+Em7YHvwYWnn1nhpl5k1xwg0Hw4k1MTk3PzM7N1xYWl5ZX6qtrFyYrNIM2y0SmrxJqQHAFbeQo4CrXQGUi4DK5Oanyl7egDc/UOQ5yiCW9VjzljKKTuvVWpOCOZVJS1bMVl50wtrYRlttlrfrbKO/zsmsj7APSvZE05LLciSTFfpLa+3K3W28E+8Ew/L8QjqFBxnHarT9FvYwVEhQyQY3phEGOsaUaORPghhcGcspu6DV0HCoqwcR2eHHpbzml56eZdk+hP1S/d1gqjRnIxFVWK5rfuUr8L9cpMD2OLVd5gaDYaFBaCB8zv7LP73ENDMXAAWWau1191qeaMnQm15wJ4e+T/8LFwX7o+Oyw0WyN7ZgjG2ST7JCQHJEmaZFT0iaMPJBn8krevEfvxXv3PkalE964Z538CO/zC9YUq9E=</latexit><latexit sha1_base64="p4ZxETj0OU9tuJWnBmB7EHRStWc=">AAACMXicbZBNS8NAEIY3flu/qh69BIuoIJKIoMeClx4VrApNKJvtxC7ubsLuRC1L/pIX/4l48aCIV/+Em7YHvwYWnn1nhpl5k1xwg0Hw4k1MTk3PzM7N1xYWl5ZX6qtrFyYrNIM2y0SmrxJqQHAFbeQo4CrXQGUi4DK5Oanyl7egDc/UOQ5yiCW9VjzljKKTuvVWpOCOZVJS1bMVl50wtrYRlttlrfrbKO/zsmsj7APSvZE05LLciSTFfpLa+3K3W28E+8Ew/L8QjqFBxnHarT9FvYwVEhQyQY3phEGOsaUaORPghhcGcspu6DV0HCoqwcR2eHHpbzml56eZdk+hP1S/d1gqjRnIxFVWK5rfuUr8L9cpMD2OLVd5gaDYaFBaCB8zv7LP73ENDMXAAWWau1191qeaMnQm15wJ4e+T/8LFwX7o+Oyw0WyN7ZgjG2ST7JCQHJEmaZFT0iaMPJBn8krevEfvxXv3PkalE964Z538CO/zC9YUq9E=</latexit><latexit sha1_base64="p4ZxETj0OU9tuJWnBmB7EHRStWc=">AAACMXicbZBNS8NAEIY3flu/qh69BIuoIJKIoMeClx4VrApNKJvtxC7ubsLuRC1L/pIX/4l48aCIV/+Em7YHvwYWnn1nhpl5k1xwg0Hw4k1MTk3PzM7N1xYWl5ZX6qtrFyYrNIM2y0SmrxJqQHAFbeQo4CrXQGUi4DK5Oanyl7egDc/UOQ5yiCW9VjzljKKTuvVWpOCOZVJS1bMVl50wtrYRlttlrfrbKO/zsmsj7APSvZE05LLciSTFfpLa+3K3W28E+8Ew/L8QjqFBxnHarT9FvYwVEhQyQY3phEGOsaUaORPghhcGcspu6DV0HCoqwcR2eHHpbzml56eZdk+hP1S/d1gqjRnIxFVWK5rfuUr8L9cpMD2OLVd5gaDYaFBaCB8zv7LP73ENDMXAAWWau1191qeaMnQm15wJ4e+T/8LFwX7o+Oyw0WyN7ZgjG2ST7JCQHJEmaZFT0iaMPJBn8krevEfvxXv3PkalE964Z538CO/zC9YUq9E=</latexit>

f✓,✓0(x)
<latexit sha1_base64="e7ba0XTnzh39D852Y2cbmVbsxDs=">AAACinicjVFba9swFJa99bKsF7d97ItZCO1gLXYpvdCXwvrQxw6WJhCbICvHjYgkG+m4bRD+MftLfeu/mZxkY7087IDg47tIR+dkpeAGo+jZ8z98XFpeWf3U+ry2vrEZbG3fmqLSDLqsEIXuZ9SA4Aq6yFFAv9RAZSagl02+N3rvHrThhfqJ0xJSSe8Uzzmj6Khh8CtR8MAKKaka2QbXgzi1th3Xe3Wrkw9tgmNAWu8nkuI4y+1j/bX1l/7WJP5YXno6STnm78c785TT6/+4aBi0o8NoVuFbEC9AmyzqZhg8JaOCVRIUMkGNGcRRiamlGjkTULeSykBJ2YTewcBBRSWY1M5GWYcdx4zCvNDuKAxn7L8JS6UxU5k5Z9Ojea015HvaoML8LLVclRWCYvOH8kqEWITNXsIR18BQTB2gTHPXa8jGVFOGbnvNEOLXX34Lbo8OY4d/HLcvrxfjWCW75AvZJzE5JZfkmtyQLmHeinfgnXin/pp/5J/7F3Or7y0yO+RF+Ve/AX1Ax5g=</latexit><latexit sha1_base64="e7ba0XTnzh39D852Y2cbmVbsxDs=">AAACinicjVFba9swFJa99bKsF7d97ItZCO1gLXYpvdCXwvrQxw6WJhCbICvHjYgkG+m4bRD+MftLfeu/mZxkY7087IDg47tIR+dkpeAGo+jZ8z98XFpeWf3U+ry2vrEZbG3fmqLSDLqsEIXuZ9SA4Aq6yFFAv9RAZSagl02+N3rvHrThhfqJ0xJSSe8Uzzmj6Khh8CtR8MAKKaka2QbXgzi1th3Xe3Wrkw9tgmNAWu8nkuI4y+1j/bX1l/7WJP5YXno6STnm78c785TT6/+4aBi0o8NoVuFbEC9AmyzqZhg8JaOCVRIUMkGNGcRRiamlGjkTULeSykBJ2YTewcBBRSWY1M5GWYcdx4zCvNDuKAxn7L8JS6UxU5k5Z9Ojea015HvaoML8LLVclRWCYvOH8kqEWITNXsIR18BQTB2gTHPXa8jGVFOGbnvNEOLXX34Lbo8OY4d/HLcvrxfjWCW75AvZJzE5JZfkmtyQLmHeinfgnXin/pp/5J/7F3Or7y0yO+RF+Ve/AX1Ax5g=</latexit><latexit sha1_base64="e7ba0XTnzh39D852Y2cbmVbsxDs=">AAACinicjVFba9swFJa99bKsF7d97ItZCO1gLXYpvdCXwvrQxw6WJhCbICvHjYgkG+m4bRD+MftLfeu/mZxkY7087IDg47tIR+dkpeAGo+jZ8z98XFpeWf3U+ry2vrEZbG3fmqLSDLqsEIXuZ9SA4Aq6yFFAv9RAZSagl02+N3rvHrThhfqJ0xJSSe8Uzzmj6Khh8CtR8MAKKaka2QbXgzi1th3Xe3Wrkw9tgmNAWu8nkuI4y+1j/bX1l/7WJP5YXno6STnm78c785TT6/+4aBi0o8NoVuFbEC9AmyzqZhg8JaOCVRIUMkGNGcRRiamlGjkTULeSykBJ2YTewcBBRSWY1M5GWYcdx4zCvNDuKAxn7L8JS6UxU5k5Z9Ojea015HvaoML8LLVclRWCYvOH8kqEWITNXsIR18BQTB2gTHPXa8jGVFOGbnvNEOLXX34Lbo8OY4d/HLcvrxfjWCW75AvZJzE5JZfkmtyQLmHeinfgnXin/pp/5J/7F3Or7y0yO+RF+Ve/AX1Ax5g=</latexit><latexit sha1_base64="e7ba0XTnzh39D852Y2cbmVbsxDs=">AAACinicjVFba9swFJa99bKsF7d97ItZCO1gLXYpvdCXwvrQxw6WJhCbICvHjYgkG+m4bRD+MftLfeu/mZxkY7087IDg47tIR+dkpeAGo+jZ8z98XFpeWf3U+ry2vrEZbG3fmqLSDLqsEIXuZ9SA4Aq6yFFAv9RAZSagl02+N3rvHrThhfqJ0xJSSe8Uzzmj6Khh8CtR8MAKKaka2QbXgzi1th3Xe3Wrkw9tgmNAWu8nkuI4y+1j/bX1l/7WJP5YXno6STnm78c785TT6/+4aBi0o8NoVuFbEC9AmyzqZhg8JaOCVRIUMkGNGcRRiamlGjkTULeSykBJ2YTewcBBRSWY1M5GWYcdx4zCvNDuKAxn7L8JS6UxU5k5Z9Ojea015HvaoML8LLVclRWCYvOH8kqEWITNXsIR18BQTB2gTHPXa8jGVFOGbnvNEOLXX34Lbo8OY4d/HLcvrxfjWCW75AvZJzE5JZfkmtyQLmHeinfgnXin/pp/5J/7F3Or7y0yO+RF+Ve/AX1Ax5g=</latexit>

f✓(x)
<latexit sha1_base64="iRbF6QVrHNE4XhhDOquxDOQMYgs=">AAACZHicdVFNS+wwFE379KlVn/WJK0GKg+iDh7Qi6FJw41LBUWFahjRz6wSTtCS36hD6J925dOPvMJ0Zwc8LgcM5597cnOSV4Abj+Mnzf83M/p6bXwgWl5b/rISrfy9NWWsGXVaKUl/n1IDgCrrIUcB1pYHKXMBVfnvS6ld3oA0v1QWOKsgkvVG84Iyio/qhTRXcs1JKqgZj3PSSzNpO0uw0QdG3KQ4BabObSorDvLAPzb9gO62G/CfJjbCt3rwZ/k+oifmDux924r14XNFXkExBh0zrrB8+poOS1RIUMkGN6SVxhZmlGjkT0ARpbaCi7JbeQM9BRSWYzI5DaqJtxwyiotTuKIzG7PsOS6UxI5k7Z7ui+ay15Hdar8biKLNcVTWCYpOLilpEWEZt4tGAa2AoRg5QprnbNWJDqilD9y+BCyH5/OSv4HJ/L3H4/KBzfDqNY55skC2ySxJySI7JKTkjXcLIszfnhd6q9+Iv+Wv++sTqe9OeNfKh/M1XpLe55w==</latexit><latexit sha1_base64="iRbF6QVrHNE4XhhDOquxDOQMYgs=">AAACZHicdVFNS+wwFE379KlVn/WJK0GKg+iDh7Qi6FJw41LBUWFahjRz6wSTtCS36hD6J925dOPvMJ0Zwc8LgcM5597cnOSV4Abj+Mnzf83M/p6bXwgWl5b/rISrfy9NWWsGXVaKUl/n1IDgCrrIUcB1pYHKXMBVfnvS6ld3oA0v1QWOKsgkvVG84Iyio/qhTRXcs1JKqgZj3PSSzNpO0uw0QdG3KQ4BabObSorDvLAPzb9gO62G/CfJjbCt3rwZ/k+oifmDux924r14XNFXkExBh0zrrB8+poOS1RIUMkGN6SVxhZmlGjkT0ARpbaCi7JbeQM9BRSWYzI5DaqJtxwyiotTuKIzG7PsOS6UxI5k7Z7ui+ay15Hdar8biKLNcVTWCYpOLilpEWEZt4tGAa2AoRg5QprnbNWJDqilD9y+BCyH5/OSv4HJ/L3H4/KBzfDqNY55skC2ySxJySI7JKTkjXcLIszfnhd6q9+Iv+Wv++sTqe9OeNfKh/M1XpLe55w==</latexit><latexit sha1_base64="iRbF6QVrHNE4XhhDOquxDOQMYgs=">AAACZHicdVFNS+wwFE379KlVn/WJK0GKg+iDh7Qi6FJw41LBUWFahjRz6wSTtCS36hD6J925dOPvMJ0Zwc8LgcM5597cnOSV4Abj+Mnzf83M/p6bXwgWl5b/rISrfy9NWWsGXVaKUl/n1IDgCrrIUcB1pYHKXMBVfnvS6ld3oA0v1QWOKsgkvVG84Iyio/qhTRXcs1JKqgZj3PSSzNpO0uw0QdG3KQ4BabObSorDvLAPzb9gO62G/CfJjbCt3rwZ/k+oifmDux924r14XNFXkExBh0zrrB8+poOS1RIUMkGN6SVxhZmlGjkT0ARpbaCi7JbeQM9BRSWYzI5DaqJtxwyiotTuKIzG7PsOS6UxI5k7Z7ui+ay15Hdar8biKLNcVTWCYpOLilpEWEZt4tGAa2AoRg5QprnbNWJDqilD9y+BCyH5/OSv4HJ/L3H4/KBzfDqNY55skC2ySxJySI7JKTkjXcLIszfnhd6q9+Iv+Wv++sTqe9OeNfKh/M1XpLe55w==</latexit><latexit sha1_base64="iRbF6QVrHNE4XhhDOquxDOQMYgs=">AAACZHicdVFNS+wwFE379KlVn/WJK0GKg+iDh7Qi6FJw41LBUWFahjRz6wSTtCS36hD6J925dOPvMJ0Zwc8LgcM5597cnOSV4Abj+Mnzf83M/p6bXwgWl5b/rISrfy9NWWsGXVaKUl/n1IDgCrrIUcB1pYHKXMBVfnvS6ld3oA0v1QWOKsgkvVG84Iyio/qhTRXcs1JKqgZj3PSSzNpO0uw0QdG3KQ4BabObSorDvLAPzb9gO62G/CfJjbCt3rwZ/k+oifmDux924r14XNFXkExBh0zrrB8+poOS1RIUMkGN6SVxhZmlGjkT0ARpbaCi7JbeQM9BRSWYzI5DaqJtxwyiotTuKIzG7PsOS6UxI5k7Z7ui+ay15Hdar8biKLNcVTWCYpOLilpEWEZt4tGAa2AoRg5QprnbNWJDqilD9y+BCyH5/OSv4HJ/L3H4/KBzfDqNY55skC2ySxJySI7JKTkjXcLIszfnhd6q9+Iv+Wv++sTqe9OeNfKh/M1XpLe55w==</latexit>

Backprop base classes

Image

Figure 4.1 – Neural implants for CNNs. The implants are convolutional filters operating
in a new processing stream parallel to the base network. The input of an implant is
the depth-wise concatenation of hidden states from both streams. When training neural
implants, previously trained parameters are frozen. Purple and black arrows correspond
to the representation learning stage flows; red and black to adaptation.

As illustrated in Figure 4.1, we are creating a new stream of data in parallel to the
base network. The implant stream is connected to the base stream at multiple top layers
and leverages the previously learned features by learning additional connections for the
new tasks. For simplicity sake, in this example, the original embedding network is a
simple feed forward convolutional neural network. In our experiments, we use residual
network architectures as described in section 3.1. In this case, each convolutional block
inside of a residual block is widened as show in Figure 4.2, resulting in a skip connection
for the implant stream as well.

4.1.3 Training

When a new task is given, we want to learn the implant parameters on the support
data (X ′, Y ′) over novel classes C ′. Here we use an approach similar to prototypical
networks [SSZ17] in the sense that we generate a number of fictitious subtasks of the
new task, the main difference being that we are now working on the novel classes.

We choose the simple approach of using each one of the given examples alone as a
query in one subtask while all the rest are used as support examples. This involves no
sampling and the process is deterministic. Because only one example is missing from
the true support examples, each subtask approximates the true task very well.

4.1. IMPLANTING 61

C
onv

C
onv

C
onv

C
onv

C
onv

Im
plant

C
onv

Im
plant

C
onv

Im
plant

C
onv

Im
plant

Original
representation

Implant
representation

Figure 4.2 – Neural implants for a residual block. Implants replicate the residual struc-
ture of the block, while utilizing the original data stream for each convolutional block.

In parallel to our work, Wertheimer and Hariharan [WH19] introduced a similar
process called batch folding. They propose an alternative to the prototypical network
base learning stage where all subtasks possible within a batch are considered. The
difference is that we do this at adaptation stage.

In particular, for each i ∈ N ′ := [n′], we define a query set Qi := {i} and a support
set Si := N ′ \Qi. We compute class prototypes Pi on index set Si according to (2.12),
where we replace φθ by φθ,θ′ and θ′ are the implanted parameters. We define the widened
network function fθ,θ′ [Pi] on these prototypes by (2.13) with a similar replacement. We
then freeze the base network parameters θ and train the implants θ′ by minimizing a
cost function like (2.17). Similarly to (2.17) and taking all subtasks into account, the

62CHAPTER 4. ADAPTATION OF THE REPRESENTATION TO THE FEW-SHOT TASK

overall cost function we are minimizing over θ′ is given by

J(X ′, Y ′; θ, θ′) :=
n′∑
i=1

`(fθ,θ′ [Pi](x′i), y′i), (4.1)

where ` is cross-entropy (2.2).

In (4.1), activations are assumed flattened or globally pooled. Alternatively, we can
densely classify them and apply the loss function to all spatial locations independently.
Combining with (3.2), the cost function in this case is

J(X ′, Y ′; θ, θ′) :=
n′∑
i=1

r∑
k=1

`(f (k)
θ,θ′ [Pi](x

′
i), y′i). (4.2)

Prototypes in (4.1) or (4.2) are recomputed at each iteration based on the current version
of implants. Note that this training setup does not apply to the 1-shot scenario as it
requires at least two support examples per class.

4.1.4 Inference on novel classes

Inference is the same whether the embedding network has been implanted or not. Here
we adopt the prototypical network model too. What we have found to work best is to
perform global pooling of the embeddings of the support examples and compute class
prototypes P := (p1, . . . ,pc′) by (2.12). Given a query x ∈ X , the standard prediction
is then to assign it to the nearest prototype

arg max
j∈C′

s(φθ,θ′(x),pj), (4.3)

where s is cosine similarity [SSZ17]. Alternatively, we can densely classify the embedding
φθ,θ′(x), soft-assigning independently the embedding φ(k)

θ,θ′(x) of each spatial location,
then average over all locations k ∈ [r] according to

fθ,θ′ [P](x) := 1
r

r∑
k=1

σ
(
[sτ (φ(k)

θ,θ′(x),pj)]c
′
j=1

)
, (4.4)

where sτ is the scaled cosine similarity (2.16), and finally classify to arg maxj∈C′ f jθ,θ′ [P](x).

4.2. IMPLANTING EXPERIMENTS 63

4.2 Implanting experiments

4.2.1 Experimental setup

This set of experiments is in continuity with the ones described in section 3.3. Therefore
the setup is similar.

Networks We use a ResNet-12 network [OLR18] as our embedding network. We have
seen in section 3.3 that it performs better than the lighter C128F [GK18] network.

Datasets We test our method on the miniImageNet dataset, as well as CIFAR100.

Evaluation protocol The training set X comprises images of the base classes C. To
generate the support set X ′ of a few-shot task on novel classes, we randomly examples
C ′ classes from the validation or test set and from each class we sample k images. We
report the average accuracy and the corresponding 95% confidence interval over 10,000
few-shot tasks with 30 queries per class.

Implementation details In the representation learning stage, we train the embedding
network for 8,000 (12,500) iterations with mini-batch size 200 (512) on miniImageNet
(FC100). On miniImageNet, we use stochastic gradient descent with Nesterov momen-
tum. On FC100, we rather use Adam optimizer [KB14]. We initialize the scale parameter
at τ = 10 (100) on miniImageNet (FC100). For a given few-shot task in stage 2, the
implants are learned over 50 epochs with AdamW optimizer [LH19] and scale fixed at
τ = 10.

4.2.2 Results

Implanting In stage 2, we add implants of 16 channels to all convolutional layers of
the last residual block of our embedding network pre-trained in stage 1 on the base
classes with dense classification. The implants are trained on the few examples of the
novel classes and then used as an integral part of the widened embedding network φθ,θ′
at testing. In Table 4.1, we evaluate different pooling strategies for support examples
and queries in stage 2. Average pooling on both is the best choice, which we keep in the
following.

64CHAPTER 4. ADAPTATION OF THE REPRESENTATION TO THE FEW-SHOT TASK

Stage 2 training Query pooling at testing

Support Queries GAP GMP DC

GMP GMP 79.03 ± 0.19 78.92 ± 0.19 79.04 ± 0.19
GMP DC 79.06 ± 0.19 79.37 ± 0.18 79.15 ± 0.19
GAP GAP 79.62 ± 0.19 74.57 ± 0.22 79.77 ± 0.19
GAP DC 79.56 ± 0.19 74.58 ± 0.22 79.52 ± 0.19

Table 4.1 – Average 5-way 5-shot accuracy on novel classes of miniImageNet with
ResNet-12 and implanting in stage 2. At testing, we use GAP for support examples.
GMP: global max-pooling; GAP: global average pooling; DC: dense classification.

Ablation study In the top part of Table 4.2 we compare our best solutions with a
number of baselines on 5-way miniImageNet classification. One baseline is the embed-
ding network trained with global average pooling training in stage 1. As seen in the
previous chapter, dense classification is the preferred method. In stage 2, the implants
are able to further improve on the results of dense classification. To illustrate that our
gain does not come just from having more parameters and greater feature dimensionality,
another baseline is to compare it to widening the last residual block of the network by
16 channels in stage 1. It turns out that such widening does not bring any improvement
on novel classes. Similar conclusions can be drawn from the top part of Table 4.3, show-
ing corresponding results on FC100. The difference between different solutions is less
striking here. This may be attributed to the lower resolution of CIFAR-100, allowing for
less gain from either dense classification or implanting, since there may be less features
to learn.

Comparison with the state-of-the-art. In the bottom part of table 4.2 we compare
our model with previous few-shot learning methods on the same 5-way miniImageNet
classification. Implanting improving the results of dense classification alone, we obtain
even better results than the ones displayed in the previous chapter. Our best results
are at least 3% above TADAM [OLR18] in all settings. Finally, in the bottom part
of Table 3.6 we compare our model on 5-way FC100 classification against prototypical
network [OLR18] and TADAM [OLR18]. There too, we observe additional improvements
compared to dense classification, resulting in higher performance than previous models.

4.3. FEW-STEPS ADAPTATION 65

Method 1-shot 5-shot 10-shot

GAP 58.61 ± 0.18 76.40 ± 0.13 80.76 ± 0.11
DC (ours) 62.53 ± 0.19 78.95 ± 0.13 82.66 ± 0.11
DC + WIDE 61.73 ± 0.19 78.25 ± 0.14 82.03 ± 0.12
DC + IMP (ours) - 79.77 ± 0.19 83.83 ± 0.16

MAML [FAL17] 48.70 ± 1.8 63.10 ± 0.9 -
PN [SSZ17] 49.42 ± 0.78 68.20 ± 0.66 -
Gidaris et al. [GK18] 55.45 ± 0.7 73.00 ± 0.6 -
PN [OLR18] 56.50 ± 0.4 74.20 ± 0.2 78.60 ± 0.4
TADAM [OLR18] 58.50 76.70 80.80

Table 4.2 – Average 5-way accuracy on novel classes of miniImageNet. The top part is
our solutions and baselines, all on ResNet-12. GAP: global average pooling (stage 1);
DC: dense classification (stage 1); WIDE: last residual block widened by 16 channels
(stage 1); IMP: implanting (stage 2). In stage 2, we use GAP on both support and
queries. At testing, we use GAP on support examples and GAP or DC on queries,
depending on the choice of stage 1. The bottom part results are as reported in the
literature. PN: Prototypical Network [SSZ17]. MAML [FAL17] and PN [SSZ17] use
four-layer networks; while PN [OLR18] and TADAM [OLR18] use the same ResNet-12
as us. Gidaris et al. [GK18] use a Residual network of comparable complexity to ours.

4.3 Few-steps adaptation

Instead of limiting the number of parameters to learn as done with the implanting
method, it is possible to attempt to fine-tune some layers or even the entirety of the
embedding network. As stated before, the risk here is to run into overfitting. Overfitting
is typically prevented using regularization methods such as weight decay [KH92] or
dropout [Sri+14]. We experimented with regularization methods for few-shot adaptation
unsuccessfully.

In this section, we propose to adapt the embedding network for a few steps of train-
ing only to limit overfitting. We study the impact of the number of learning steps at
adaptation on the final classification accuracy.

4.3.1 Related works

Some influential few-shot learning works also propose to adapt the embedding network
without extra regularization methods. Specifically, Qi et al. [QBL18] fine-tune the entire
embedding network using the few-shot data in addition to all base data. They oversample
the few-shot data to balance the class distribution during adaptation. In this way, they
avoid the need for strong regularization. However, this method requires to have access

66CHAPTER 4. ADAPTATION OF THE REPRESENTATION TO THE FEW-SHOT TASK

Method 1-shot 5-shot 10-shot

GAP 41.02 ± 0.17 56.63 ± 0.16 61.65 ±0.15
DC (ours) 42.04 ± 0.17 57.05 ± 0.16 61.91 ± 0.16
DC + IMP (ours) - 57.63 ± 0.23 62.91 ± 0.22

PN [OLR18] 37.80 ± 0.40 53.30 ± 0.50 58.70 ± 0.40
TADAM [OLR18] 40.10 ± 0.40 56.10 ± 0.40 61.60 ± 0.50

Table 4.3 – Average 5-way accuracy on novel classes of FC100 with ResNet-12. The top
part is our solutions and baselines. GAP: global average pooling (stage 1); DC: dense
classification (stage 1); IMP: implanting (stage 2). In stage 2, we use GAP on both
support and queries. At testing, we use GAP on support examples and GAP or DC on
queries, depending on the choice of stage 1. The bottom part results are as reported in
the literature. All experiments use the same ResNet-12.

to the entire base class training set for adaptation, which could be problematic in terms
of storage and or computing cost, so it is not the standard few-shot learning setting.
Additionally, this method is designed for classification into both base and novel classes
together which is a more challenging task.

Finn et al. [FAL17] also propose to fine-tune the whole network using the few-shot
data. Contrary to [QBL18], they use only the few-shot data for fine-tuning. This
adaptation stage is replicated during the first training stage on the base dataset as they
adopt a meta-learning method to train the embedding network. Adaptation is limited to
a few gradient updates. Typically, they report few-shot classification results with three to
ten gradient steps at test time. This small number of steps has two advantages. First,
it allows them to integrate the adaptation process in their meta-learning framework.
Second, they stop the adaptation before they can observe overfitting on the novel data.
The difference is that in our case, we do not use meta learning to include the adaptation
into the representation learning stage.

4.3.2 Method

In this section, using the validation set, we observe the effect of fine-tuning the last few
layers of the embedding network on few-shot data. Contrary to the method introduced
before, we do not try to control the overfitting in any way other than setting the number
of steps.

Concretely, we use a prototype classifier with class prototypes P := (pj)c
′
j=1 which

are obtained per class by averaging embeddings of support examples φθ(x′) as defined
by (2.12). The prototypes are updated each time θ is updated. The classifier fθ,P : X →

4.3. FEW-STEPS ADAPTATION 67

−5 0 5 10 15 20 25 30 35 40 45 50 55 60 65

−4

−2

0

2

4

6

8
·10−2

Learning steps

Va
lid

at
io
n
lo
ss

Figure 4.3 – 5-way 5-shot validation loss of miniImagenet as a function of the number of
learning steps at adaptation, relative to step 0 (no adaptation). Each curve corresponds
to a different few-shot task build from the validation set.

Rc′ is a standard cosine classifier (2.15) and the loss function is standard cross-entropy
J(X,y; θ, P) (2.17).

To test this method, we use the same embedding network as the one used for im-
planting, that is to say ResNet-12 trained with dense classification on the base dataset of
miniImagenet. For each task, we fine-tuned the embedding network for adaptation while
keeping the first two residual blocks of the ResNet-12 fixed. We use Adam optimizer
with learning rate 5e− 5 for 60 learning steps to monitor the evolution of accuracy and
loss during adaptation.

In Figure 4.3 we show the evolution of the few-shot validation loss on eight 5-way
5-shot tasks built from the validation set of miniImagenet. We observe that fine-tuning
part of the embedding network is not a universal solution. For some tasks, the best
validation loss is observed at iteration 0, that is to say without adaptation. For some
other tasks, fine-tuning yields lower validation loss. In all cases, too many iterations
leads to a drop in performance. In Figure 4.4 we show the evolution of the adaptation
training loss on the same eight tasks. We observe that in all cases, the training loss is
decreasing with more iterations. We conclude that the drop in validation is indeed due
to overfitting.

68CHAPTER 4. ADAPTATION OF THE REPRESENTATION TO THE FEW-SHOT TASK

−5 0 5 10 15 20 25 30 35 40 45 50 55 60

−0.2

−0.15

−0.1

−5 · 10−2

0

Learning steps

Tr
ai
ni
ng

lo
ss

Figure 4.4 – 5-way 5-shot adaptation training loss of miniImagenet as a function of the
number of learning steps at adaptation, relative to step 0 (no adaptation). Each curve
corresponds to a different few-shot task build from the validation set.

−5 0 5 10 15 20 25 30 35 40 45 50 55 60 65

0

2

4

6

·10−3

Learning steps

Va
lid

at
io
n
ac
cu
ra
cy

Figure 4.5 – 5-way 5-shot average validation accuracy of miniImagenet as a function of
the number of learning steps at adaptation, relative to step 0 (no adaptation).

4.3. FEW-STEPS ADAPTATION 69

−5 0 5 10 15 20 25 30 35 40 45 50 55 60 65

−3

−2

−1

0

1
·10−3

Learning steps

Va
lid

at
io
n
ac
cu
ra
cy

Figure 4.6 – 5-way 1-shot average validation accuracy of miniImagenet as a function of
the number of learning steps at adaptation, relative to step 0 (no adaptation).

We also display the behavior of the learning curves averaged for 2000 tested few-shot
tasks sampled from the validation set of miniImagenet. Figure 4.5 shows the average
validation accuracy for 5-way 5-shot tasks. The peak of average accuracy is found at
41 steps of adaptation. Figure 4.6 shows the same average accuracy curve for 1-shot
classification. Since the learning rate used is still 5e − 5, the peak is found earlier, at
2 steps of adaptation. Shortly after the peak, the accuracy decreases abruptly. This
emphasizes the risk of overfitting learning with an extremely low amount of data. We
performed other experiments with various numbers of residual blocks and learning rates
which all resulted in lower accuracy or only marginally different to the one observed at
peak on those curves.

When going to the test set, we cannot fairly obtain such curves. Indeed, finding the
peak of the test accuracy and picking it would go against the core idea of having separate
validation and test sets. Therefore, we use the optimal number of steps observed in the
validation experiments as the number of learning steps to use at adaptation for the test
tasks. This relies on the assumption that the tasks seen in the validation process are
representative of the tasks built from the test set.

70CHAPTER 4. ADAPTATION OF THE REPRESENTATION TO THE FEW-SHOT TASK

Method 1-shot 5-shot 10-shot

DC 62.25 ± 0.26 78.63 ± 0.19 82.78 ± 0.16
DC + IMP - 79.77 ± 0.19 83.83 ± 0.16
DC + few-steps 62.33 ± 0.26 79.87 ± 0.18 84.54 ± 0.15

Table 4.4 – Average 5-way accuracy on novel classes of miniImageNet, all on ResNet-12.
DC: dense classification (representation learning stage); IMP: implanting (adaptation
stage); few-steps: few-steps adaptation.

4.3.3 Results

Experimental setup Since we want to compare the few-steps adaptation solution to
the implanting solution, we choose to use the same experimental setup. For adaptation,
we train for 2, 41 and 55 steps respectively for 1-shot, 5-shot, and 10-shot. We show
here the comparison on miniImageNet. In chapter 6 we use few steps adaptation on
an other network architecture and other datasets (specifically an upscaled version of
miniImagenet and CUB).

few-steps adaptation In Table 4.4 we show the test results of applying few-steps
adaptation on miniImageNet. In all cases, this method improves on the model without
adaptation. In the case of 1-shot the improvement is marginal. However, the more
support examples are available, the greater the gain from adaptation is, up to 1.7%
increase of accuracy in the 10-shot case. This is consistent with the aforementioned
relationship between training data and quality of learned model. In chapter 6 we oberve
similar results on the other few-shot learning setting we introduce in this chapter.

Comparison with Implanting In Table 4.4 we show the test results from our model
without any adaptation, with implanting adaptation and with few steps adaptation. Few
steps adaptation results in a higher accuracy and can be used for one-shot as well as
few-shot. As it is simplier and more versatile, we choose it as the preferred adaptation
method in the following chapters. Implanting can still be useful in cases where it is
impossible to determine an optimal number of learning steps to perform at adaptation
(lacking a validation set or semantic gap between the validation set and the test set).

4.4. USING BASE CLASSES TO AUGMENT THE SUPPORT SET 71

4.4 Using base classes to augment the support set

Overfitting during adaptation could also be limited if we could augment the support
set. Augmentation is a common preprocessing stage when dealing with a computer
vision task based on machine learning. It usually relies on simple transformations such
as image deformations, or color jitter. With such strategies, the augmented examples
are very similar to the original ones, no real new information about the class is added.
Therefore, we cannot expect it to compensate for the lack of support examples in a few-
shot learning task. A useful augmentation strategy for few-shot learning would generate
new examples that are not trivial, adding knowledge about the intra-class variability of
novel classes. Hallucination strategies have been proposed for this purpose [MMV00;
HG17; Sch+18; Liu+19a]. They rely on learning a model, the hallucinator, which maps
support examples to augmented versions. The hallucinator captures knowledge about
intra-class variability from the base dataset, then uses this knowledge to generate new
examples for the novel classes assuming a similar intra-class structure. In this section,
we explore solutions for artificially augmenting the size of the support set. Instead of
using complex hallucination models, we propose to select some related examples from
the base dataset.

4.4.1 Method

The base dataset is usually discarded after the representation learning stage. Indeed,
its only function is to train a task-specific model. Any adaptation method focuses on
the novel classes where base classes are irrelevant. We argue that in many cases, base
classes and novel classes are closely related. For instance, in the CUB dataset, classes
representing subspecies of warblers are found in both base and novel datasets. While
the subspecies are different, they share many common traits. We then propose a simple
augmentation method that consists in picking related examples from the base dataset
and using them as additional support examples.

More specifically, for each novel class i, we first compute its prototype Pi according
to (2.12). Then, for each base class example x, we compute the similarity between its
representation (after applying spatial pooling) φθ(x) with Pi: cos(φ(x), Pi). The top
kextra examples based on similarities are considered as closely related to the novel class,
so we add them to the support set with class label i. In Figure 4.7, we show examples
of the images selected by this method. Then, adaptation is performed by few gradient
updates as explained above.

A drawback of this method is that we need to be able to access the base dataset at all

72CHAPTER 4. ADAPTATION OF THE REPRESENTATION TO THE FEW-SHOT TASK

Figure 4.7 – Examples of selection of related base examples for a 5-way 1-shot task of
CUB. Each row depicts the support image for the novel class (left) and the corresponding
closest three examples in the base dataset based on cosine similarity in the feature space
(right).

4.4. USING BASE CLASSES TO AUGMENT THE SUPPORT SET 73

Base miniImageNet CUB

DC 63.13 ± 0.28 74.97 ± 0.29
DC + Few step 63.66 ± 0.27 75.07 ± 0.29
DC + Few step + Augmentation 65.84 ± 0.28 76.78 ± 0.29

Table 4.5 – Average 5-way 1-shot accuracy on novel classes of CUB and miniImageNet.
Augmentation is performed by adding 100 extra examples from the base dataset per novel
class. ResNet-12 is used as embedding network.

times, which could cause storage problem. Additionally, the selection of examples and
adaptation with the added examples makes solving a new few-shot task more expensive.
We limit those drawbacks by precomputing intermediate representations of all images
from the base dataset. In particular, global representations are stored to accelerate the
selection process. Intermediate representations given by the first blocks of the embedding
network are also stored as those layers get frozen during adaptation. In parallel to our
work, Afrasiyabi et al. [ALG19] also proposed adaptation by combining support examples
to related base examples. They select base classes that are similar to the novel ones and
then encourage the representation of the examples from the related classes to be close
to the one of the support examples during adaptation.

4.4.2 Results

We applied this simple method of augmentation of the support set on CUB and an
upscaled version of miniImageNet. In Table 4.5, we show the results for 1-shot classifi-
cation. We observe that for one-shot learning, this simple method is very effective. The
more examples we add to the support set, the better the final average accuracy is. We
report results with 100 extra examples per class, which corresponds to a plateau in terms
of accuracy. However, in the case of few-shot learning with multiple support examples,
this method seems to fail. We do not report those as in all cases adapting with the mix
of support and extra examples results in lower average accuracy than the model without
adaptation. Note that the results for miniImageNet without augmentation are not the
same as the ones reported in Table 4.4 as we are using a version of miniImageNet with
higher image resolution.

74CHAPTER 4. ADAPTATION OF THE REPRESENTATION TO THE FEW-SHOT TASK

4.5 Conclusion

We have seen in this chapter that it is indeed possible to adapt the embedding network
using only the few-shot data. We presented two solutions for such adaptation. First, im-
planting, which focuses on learning a few task-specific extra parameters, called implants,
on the novel data. We introduce a way to train the implants involving building subtasks
from the support examples. Another method introduced here is few-steps adaptation.
It consists in simply fine-tuning part of the embedding network for a limited number of
training steps. This early stopping strategy is based on the observed validation accuracy
peak computed with validation few-shot tasks. Although simple, this method is able to
improve significantly the performance of our model on 5-way 5-shot tasks. On one-shot
tasks, it is more difficult to stop before overfitting, resulting in only small improvements
compared to no adaptation. A way to make few-steps adaptation more impactful in the
one-shot case is to select relevant examples from the base classes by comparing their
representations with the support examples. While simple, this augmentation strategy
shows promising results.

Chapter 5

Local propagation for
transductive few-shot learning

Contents
5.1 Background . 77

5.1.1 Transductive few-shot learning formulation 77

5.1.2 Label propagation . 78

5.2 Local features . 80

5.2.1 Spatial attention . 80

5.2.2 Feature pooling . 82

5.3 Local propagation . 83

5.3.1 General method . 83

5.3.2 Local feature propagation . 85

5.3.3 Local label propagation . 85

5.3.4 Inference . 85

5.4 Experiments . 86

5.4.1 Experimental setup . 86

5.4.2 Ablation studies . 87

5.4.3 Results . 90

5.5 Conclusion . 94

The core problem of few-shot learning is the lack of data coming from the novel
classes. We have discussed in the previous chapters on how we can artificially augment
the novel data in order to directly tackle the issue. Generation based methods generate

75

76 CHAPTER 5. LOCAL LABEL PROPAGATION

new novel class data by using the base dataset. This is not ideal since there might be
a semantic gap between the base and novel classes. On top of that, base class data is
already used for representation learning as seen in chapter 3, so using it again in for
classification into the novel classes might be redundant.

One source of data that is not used in the usual few-shot learning formulation is
the queries themselves. In the case where we are presented with multiple queries to
classify, we can consider them as a set of unlabeled data from the novel classes. This
different few-shot setup is called transductive few-shot learning. In this case, learning
to classify among the novel classes becomes similar to the well studied semi-supervised
learning task. In semi-supervised learning, the training set is only partially labeled.
Some methods also aim at classifying the unlabeled images which is usually referred
to as transductive semi-supervised learning. There are two main approaches to semi-
supervised learning in the literature. On one hand, some methods guide the training
process by adding an unsupervised loss to it [GB04; LA17; SJT16; TV17]. On the other
hand, some methods assign pseudo labels to the unlabeled samples to include them in a
supervised training process [Lee13; Shi+18; Isc+19a]. In the context of few-shot learning,
supervised learning on the support examples is rarely attempted to avoid the risk of
overfitting, therefore the first category of methods is not easily applicable. Inspired
by the second category of methods, some few-shot learning works propose to build a
graph with labelled and unlabeled examples as vertices, then propagate information
from the labelled examples to the unlabeled ones. Liu et al. [Liu+19b] propagate label
information, Rodriguez et al. [Rod+20] propagate features and Garcia et al. [GB18]
learn the graph operation using a graph neural network.

Moreover, we argue that the global spatial pooling operation that is generally applied
to the image embedding ignores the rich data that is hidden in each given example. Each
image is inherently a collection of data, which has been exploited by dense classification
at representation learning as explained in section 3.2 and naïve Bayes nearest neighbor
(NBNN) [Li+19b] at inference.

In this chapter, we attempt to bridge these two ideas, i.e., using a collection of
query to classify as unlabeled data and using local representations of examples. We
propose to learn a representation function using dense classification. Then for few-shot
inference, we break down the convolutional activations of support and query images into
pieces corresponding to different spatial positions, consider all these pieces as different
examples, and then apply feature or label propagation [Rod+20] to these examples.
Pieces originating in support examples inherit their labels as in dense classification and
NBNN [Li+19b], while pieces originating in queries are unlabeled. Since there are a

5.1. BACKGROUND 77

number of unlabeled pieces per image, this gives rise to transductive inference even in
the case of a single query image.

Propagation of information across local features of images could fail if we take into
consideration irrelevant part of the image. For instance, the local features of the back-
grounds of two different objects could be close to each other in the feature space, by
having them both in the graph, we might incorrectly propagate information through
the corresponding edge. Therefore, it is important to add to our method an attention
mechanism, allowing to filter out some part of the image. Attention mechanisms in
the feature space [Vin+16; Mis+18; Ren+18a; GK18; OLR18; Li+19a] have commonly
been used in few-shot learning for a few years. However, studies on local information in
images have only appeared more recently, following our work on dense classification and
naïve Bayes nearest neighbor. Some works study spatial attention mechanisms [WH19;
ZZK19; Xv+19], other focus on finding alignment between local features from the sup-
port and query set [Hou+19a; Hao+19; Wu+19; Zha+20]. In this work, we propose our
own spatial attention mechanism. It is extremely simple and can be used at inference
without any cost as it only uses our embedding network trained with dense classification
in the representation learning stage. While being essential to our method, it also brings
significant gains in all baselines were we applied it.

Local label propagation and the spatial attention mechanism introduced in this chap-
ter have been published in [LAP20b].

5.1 Background

5.1.1 Transductive few-shot learning formulation

Transductive few-shot learning differs from the general few-shot learning definition as it
considers multiple queries jointly and exploits their distribution, even though they are
unlabeled. As introduced in section 2.2, we aim to classify query examples from X into
the novel class set C ′. Here we are given a set Q := {qi}qi=1 of query examples and a
prediction is required for all queries in Q. In this case, although queries are unlabeled,
we can take advantage of this additional data and learn a classifier f that is a function
of both the labeled support data X ′ and the unlabeled queries Q. This transductive
setting implies semi-supervised learning.

78 CHAPTER 5. LOCAL LABEL PROPAGATION

5.1.2 Label propagation

Many computer vision tasks can be addressed by forming a graph and propagating
information on it. Usually graph vertices are distinct examples and edge values are
similarities between their representations. Label propagation has been extensively re-
searched in transductive inference. An overview of tranductive inference methods can be
found in chapter 11 of [CSZ10]. In this case, vertices correspond to full images and label
information is propagated from the labeled examples to the unlabeled ones. Another
use is to segment semantically an image by building a graph where vertices are pixels.

Zhu and Ghahramani [ZG02] are the first to introduce an algorithm based on building
a graph using both labeled and unlabeled examples to propagate label information. Since
other similar algorithms have appeared with the same idea. [Zho+03a] is similar and is
used in a few-shot learning context in [Liu+19b]. We choose to use this algorithm in our
method.

Nodes of the graph are representations of the examples while edges are similarities
between them. Graph are generally represented as a squared matrixW with one column
(and row) for each node. Weight wij is the value given to the edge between vertices i
and j. Edge values differ with the method used. A popular choice in this case is to use
a Gaussian kernel [ZG02]:

Wij = e−
‖xi−xj‖2

2σ2 , (5.1)

with xi et xj respectively the representations used for examples i and j and σ is the
standard deviation of the kernel.

W is then symmetrically normalized:

W := D−1/2WD−1/2, (5.2)

where D := W1t is the degree matrix of the graph and 1t is the t × 1 all-ones vector.
Label information is encoded in matrix Y with one column per example and one line
per class. For unlabeled examples, the corresponding column is all zeros, for labelled
ones, the column is the one-hot encoded label vector. Labels are then propagated in an
iterative fashion:

F (t+ 1) := αF (t)W + (1− α)Y, (5.3)

with α ∈ [0, 1) a parameter of the method. The first term of the sum corresponds to

5.1. BACKGROUND 79

(a) Partially labelled samples.
(b) Unlabeled samples take the label of the
closest labelled sample.

(c) Unlabeled samples are labelled using la-
bel propagation.

Figure 5.1 – Illustration of labeling strategies of the unlabeled samples on a toy exam-
ple. unlabeled samples are in grey. Labelled samples are colored squares, each color
corresponding to a different class.

propagation of the label to its neighbors in the graph, as the updated class scores for a
class will be a weighted average of the scores of its neighbors. The second term ensures
that the scores remain close to the initial values given by Y . After convergence, examples
can be labelled with the class whose score is the highest. Interestingly, they show that
their iterative algorithm converges to a closed form solution:

lim
t→∞

F (t) = Y (1− α)(I − αW)−1. (5.4)

In Figure 5.1, we demonstrate on a toy example how label propagation can provide
a good labeling of unlabeled samples. In this case there is only one labelled example
per class but we can easily expand the behavior to multiple labelled examples per class.

80 CHAPTER 5. LOCAL LABEL PROPAGATION

In Figure 5.1b, we apply a simple labelling strategy where unlabeled samples take the
label from the closest labeled samples. We observe that the resulting labelling is not
satisfactory. Samples coming from a given class form a manifold, which is not captured by
this labelling method. Such methods only relying on the similarity with labelled samples
would only work if the representation of examples coming from the same class were all
clustered closely to each other and separable from the other samples. Typically, that is
what representation learning aims to do. However we cannot make those assumptions
on the representation when the feature space has not yet been optimized to separate
the classes or for transductive few-shot learning, where the feature space correctly is
optimized to separate the base classes (which are labelled) but we have no guarantee on
the novel classes. In contrast, label propagation captures the shape of the manifold of a
class, resulting in a visually satisfying labelling, as in Figure 5.1c

5.2 Local features

In section 3.2 we discussed how we can consider spatial location of feature maps as local
features of the image and how we can use those local features during the representation
learning stage. Here we plan on using local features on the support examples X ′ of the
novel classes. Because novel class data is lacking, it important in this stage to focus on
only the relevant parts of the support examples. That is what lead us to experiment
with spatial attention methods.

It is common in few-shot learning to use attention and adaptation mechanisms in the
feature space [Vin+16; Mis+18; Ren+18a; GK18; OLR18; Li+19a]. However, despite
being the subject of a pioneering work in 2005 [BU05], looking at local information in
images has not been studied more recently in few-shot learning, until dense classifica-
tion and naïve Bayes nearest neighbor [Li+19b]. We use the former for representation
learning. The latter is similar to our work in using local representations at inference,
the difference being that we apply propagation. These works have been followed by
studies on spatial attention [WH19; ZZK19; Xv+19] and alignment [Hou+19a; Hao+19;
Wu+19; Zha+20]. We experiment with an extremely simple spatial attention mechanism
in this work, which requires no learning and boosts significantly all baselines.

5.2.1 Spatial attention

Before we can use the features of all spatial positions as data, it is important to suppress
the background, which appears frequently across positions and images, without being

5.2. LOCAL FEATURES 81

Figure 5.2 – Examples of images, each with the corresponding spatial attention heatmap
and clusters used in feature pooling (black indicates regions below threshold in the
heatmap). The first two lines correspond to CUB, the last two to miniImageNet. We
use τ = 0.3 for spatial attention and m = 10 for feature pooling.

discriminative for the classification task. One approach to this problem is to learn
a class-agnostic spatial attention mechanism [WH19; ZZK19]. We choose not to do
that as it requires additional supervision. Indeed, [WH19] uses extra bounding box
annotations to learn a detector and [ZZK19] use a weakly labeled image detector on
data outside of the few-shot learning. Another approach is to study spatially the output
feature channels. [KMO16] proposes a weighting mechanism to create powerful image
representations for image search. One step of their method is to compute a spatial-wise
weighting S ∈ Rw×h for their feature maps:

Sij =

 S′ij(∑
m,n S

′a
mn

) 1
a

1
b

(5.5)

where S′ij is the l1 norm of φθ(x) at spatial location i, j, and a and b parameters of their
methods. They show that this spatial weighting correctly focuses on the most relevant

82 CHAPTER 5. LOCAL LABEL PROPAGATION

parts of the image for image search. It can be explained intuitively as the network has
learned to have a high output when coming across relevant information in the image for
the task at hand. Similarly, Zhou et al. [Zho+16] also showed that high response in a
particular spatial location indicates relevancy to the task. They propose to localize the
relevant regions of the image by computing a class activation map as a weighted sum of
the feature maps channels. In particular, their classifier is a fully-connected layer with
no bias, and the weights for the feature maps are the values of the vector of this layer
corresponding to the chosen class. This weighting is not applicable in our case as we
aim to produce spatial attention maps that are class agnostic. Instead we will simply
use the norm of the feature tensor at a particular position as evidence on the relevancy
of the corresponding image region.

In particular, given an example x ∈ X with feature tensor F := φθ′(x), we select a
subset of feature vectors a(F) ⊂ Rd at spatial positions r ∈ Ω where the `2-norm is at
least τ > 0 relative to the maximum over the domain:

a(F) := {F (r) : ‖F (r)‖ ≥ τ max
t∈Ω
‖F (t)‖, r ∈ Ω}. (5.6)

Examples are shown in Figure 5.2. We find this mechanism particularly effective for its
simplicity, not only for our method, but also for all baselines. No spatial attention is a
special case where τ = 0.

5.2.2 Feature pooling

Propagation tends to amplify elements that appear frequently in a dataset. Local prop-
agation does the same for elements originating from different spatial positions, which
in turn depends on the scale of objects relative to the spatial resolution. This can
be particularly harmful with elements originating from background clutter and bypass
condition (5.6), exactly because they appear frequently.

To obtain a fixed-size representation that only depends on the content, we perform
pooling in the feature space into a fixed number of vectors per example. We do so by
clustering: given an example x ∈ X with selected feature vectors a(φθ(x)) (5.6), we
apply k-means on these vectors to cluster them into m clusters (notation k being used
for k-shot classification). We obtain a set of m feature centroids, which we represent as
columns in the d × m matrix gθ′(x). Examples are shown in Figure 5.2. We use this
representation only for local propagation. Global propagation and no feature pooling
are special cases where m = 1 and m = w × h respectively.

5.3. LOCAL PROPAGATION 83

5.3 Local propagation

Whatever is propagated (similarities, features, or labels), there are two extremes in
graph-based propagation. At one extreme, vertices are global representations of images,
and the graph represents a dataset. This can be used e.g. for similarity search [Zho+03b]
or semi-supervised classification [ZG02; Zho+03a]. At the other extreme, vertices are
local representations of pixels in an image, which can be used e.g. for interactive [Gra06;
KLL08] or semantic [Ber+17] segmentation, or both [VC17]. Regional representations
across images have been used for similarity search [Isc+17], but we believe we are the
first to use local (pixel) or semi-local (clusters) representations across images for feature
or label propagation.

5.3.1 General method

We develop this idea under the transductive setting because it is more general: The
non-transductive is the special case where q = 1, the set of queries Q = {q1} is singleton
and we are making a prediction for q1. Given the support examples in X ′ and queries
Q, we represent the feature centroids of both as columns in the d× t matrix

V :=
(
gθ(x′1) . . . gθ(x′n) gθ(q1) . . . gθ(qq)

)
(5.7)

where t := (n′ + q)m.
We use the pairwise similarity function to construct the nearest neighbor graph of

the columns of V represented by the t× t symmetric non-negative adjacency matrix WV

with zero diagonal:

Wij :=

[cos(v1,v2)]γ+, if vi ∈ NN(vj) or vj ∈ NN(vi)

0, otherwise
(5.8)

where γ > 1 as in [Isc+17] and NN(v) refers to set of the nearest neighbors of v. We
therefore consider all edges between two examples if one of them belongs to the nearest
neighbors of the other. Another possibility that also gives a symmetric value is to only
consider the mutual nearest neighbors for edges as it is done in [Isc+17]. In the context
of our method, we experimented with the two options. We found similar results on our
tasks, assuming the number of neighbors that we consider is well adapted, our method
requiring a lower number of neighbors.

In terms of implementation, adding new unlabeled examples only requires computing
similarities between the unlabeled examples and the previous examples. When evaluat-

84 CHAPTER 5. LOCAL LABEL PROPAGATION

Support
Su

pp
or
t

Queries
Q
ue
rie
s

(a) Nearest neighbor
graph for transductive
few-shot learning

Support

Su
pp
or
t

Queries

Q
ue
rie
s

Support

Su
pp
or
t

Queries

Q
ue
rie
s

Support

Su
pp
or
t

Queries

Q
ue
rie
s

(b) Nearest neighbors graphs for non-transductive few-shot
learning. The blue part corresponding to similarities inside the
support examples set is fixed and can be reused for new queries.

Figure 5.3 – Construction of the nearest neighbor adjacency matrix in the transductive
(a) and non transductive (b) few-shot setting. For queries each color corresponds to
local features coming from a common image.

ing few-shot performance with different sets of queries, used as a set in a transductive
setting or as independent queries in a non-transductive setting, the part of the matrix
W dedicated to support/support similarity can be computed only once as show in Fig-
ure 5.3. Additionally, the adjacency matrix for the non-transductive case can be deduced
entirely from the transductive one with the same examples.

Following [Zho+03a], this matrix is symmetrically normalized asW := D−1/2WD−1/2,
where D := W1t is the degree matrix of the graph and 1t is the t× 1 all-ones vector.

Extending [Zho+03a], given any matrix A ∈ Ru×t (or row vector for u = 1), its
propagation on V is defined as

pV (A) := A(1− α)(I − αW)−1. (5.9)

This is a smoothing operation on the graph of V , where parameter α ∈ [0, 1) controls
the amount of smoothing: Columns of A corresponding to similar columns of V are
averaged together. It is infinitely-recursive, as revealed by the series expansion of the
matrix inverse [Zho+03a].

The operation (5.9) is called local propagation because the graph is defined on local
representations originating from different spatial positions of the given images. Global
propagation is the special case of having m = 1 cluster per image. This is the same as
global average pooling (GAP), with or without spatial attention.

5.3. LOCAL PROPAGATION 85

5.3.2 Local feature propagation

Using A = V , u = d in (5.9), local feature propagation amounts to propagating V on
itself:

Ṽ := pV (V), (5.10)

in the sense that similar feature vectors in columns of V are averaged together, becoming
even more similar. No feature propagation is a special case where α = 0, Ṽ = V .

5.3.3 Local label propagation

Given the propagated features Ṽ (5.10), we form a new graph with normalized adjacency
matrix W

Ṽ
. Extending [Zho+03a], we form the c′ × t zero-one label matrix Y with one

row per class and one column per spatial position over support examples and queries.
A column corresponding to a spatial position of a support example x′i is defined as the
one-hot label vector yi; a column corresponding to a position of a query qi is zero:

Y :=
(

y′11>m . . . y′n1>m 0c′×m . . . 0c′×m
)

(5.11)

where 0c′×m is the c′ × m zero matrix and there are q such matrices. Using A = Y ,
u = c in (5.9), local label propagation then amounts to propagating Y on Ṽ :

Ỹ := p
Ṽ

(Y), (5.12)

such that spatial positions with similar feature vectors obtain similar class scores. This
may make little difference on labeled (support) examples, but is a mechanism for spatial
positions of unlabeled (query) examples to obtain label information as propagated from
spatial positions of labeled examples with similar features.

5.3.4 Inference

In c′× t matrix Ỹ (5.12), there is one row per class and one column per spatial position
over support examples and queries. Ỹ is nonnegative; by column-wise `1-normalizing it
into c′ × t matrix Ŷ , we can interpret columns as probability distributions over classes
per position. For each query example qi, if Ŷi is the corresponding c×m submatrix of
Ŷ , we average these distributions over positions, obtaining a distribution pi := Ŷi1m/m.
Finally, as in (4.3), we make a discrete prediction π(pi) = arg maxj∈[c′] pij as the class of
maximum probability. This operation is similar to NBNN (2.11), but the quantities being

86 CHAPTER 5. LOCAL LABEL PROPAGATION

(a) (b)

(c) (d)

Figure 5.4 – Examples of CUB query images in 5-way 5-shot non-transductive tasks,
each followed by the heatmap of predicted probability for the correct class using a
prototype classifier, then using local label propagation. (a), (b) Local label propagation
helps classifying to the correct class. (c) Both give a correct prediction. (d) Local label
propagation fails.

averaged have undergone propagation rather than being direct similarities. Figure 5.4
shows examples of predicted probability for the correct class per spatial location. Local
label propagation results in spatially smooth predictions that covers a large portion of
the object.

5.4 Experiments

5.4.1 Experimental setup

Datasets We evaluate our method on CUB with images of resolution 224×224. We
also experiment with miniImageNet. Similarily to [Che+19; DSM19], we build a version
of miniImageNet with 224×224 images.

Network We test our method on a ResNet-12 embedding network. For input images
of size 224×224, the embedding features are tensors of resolution 14×14. To adapt the
the larger images before applying a dense classifier, we apply average pooling on these
feature tensors, with kernel size 3×3 and stride 1 without padding. The resulting tensors
are of resolution 12×12.

Base Training We train the network from scratch using stochastic gradient descent
with Nesterov momentum on mini-batches of size 32. The learning rate schedule is set

5.4. EXPERIMENTS 87

according to the 5-way 5-shot validation accuracy.

Evaluation protocol For each dataset, we obtain a unique embedding network re-
sulting from base training. All methods are then applied to the same features. For
all experiments, we sample 2000 5-way few-shot tasks from the test set, each with 15
queries per class. We report the average accuracy as well as 95% confidence intervals.
We evaluate two different settings: In the non-transductive setting, queries are treated
as 75 distinct sets Q with only one query each, whereas in the transductive setting, there
is a single set Q with all 75 queries.

Baselines In the non-transductive setting, we compare our method with variants of
four existing few-shot inference methods. The first, referred to as GAP+Proto, ap-
plies global average pooling (GAP) on feature tensors and then uses a prototype clas-
sifier [SSZ17] on the support set (2.12). The second is the inference mechanism of the
matching network [Vin+16], while the third, referred to as Local Match, is a modified
version as follows. For each support example x′ with feature tensor F := φθ(x′), we use
local feature vectors F (r) at all positions r ∈ Ω as independent support examples, with
the same label as x′. We do the same on queries and average the class score vectors over
positions. The fourth is the inference mechanism of NBNN [Li+19b] (2.11). For each
method, we experiment with and without our spatial attention mechanism (5.6). For
Local Match and NBNN, we select a subset of local features per image. For GAP+Proto
and Matching Net, we apply GAP to the selected subset only.

In the transductive setting, we compare with the inference mechanism of global
label propagation [Liu+19c; Rod+20], with and without global embedding propaga-
tion [Rod+20]. These baselines are again evaluated with and without spatial attention.
We always include spatial attention in our local propagation, but we experiment with
and without feature pooling, with and without feature propagation.

5.4.2 Ablation studies

Overall, our method has five parameters. Two refer to optional components related to
local information: the threshold τ for spatial attention and the number of clusters m for
feature pooling. The other three refer to propagation, like all related methods dating
back to [Zho+03a]: the number of neighbors in the graph, the exponent γ in the feature
similarity function and α, controlling the amount of smoothing. For all experiments,
we perform a fairly exhaustive parameter search over a small set of possible values per
parameter and we make choices according to validation accuracy. We present a summary

88 CHAPTER 5. LOCAL LABEL PROPAGATION

−5 · 10−2 0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

−0.5

0

0.5

1

1.5

2

2.5

3
·10−2

τ

re
la
tiv

e
ac
cu
ra
cy

CUB 1-shot
CUB 5-shot
MI 1-shot
MI 5-shot

Figure 5.5 – Spatial attention on GAP+Proto [SSZ17]: 5-way few-shot classification
accuracy vs. threshold τ , relative to τ = 0 (no attention).

of parameter search independently for τ and m, keeping other parameters fixed to the
optimal.

Spatial Attention As shown in Figure 5.5, referring to GAP+Proto baseline, there is
an optimal range of τ in [0.3, 0.5], such that we filter out the uniformative local feature
without removing too much information. The same behavior appears in Figure 5.6,
referring to our best method for each setting. For the remaining of the experiments, we
fix τ to 0.3.

Feature pooling This is a compromise between global pooling and a full set of local
features per image, which brings a consistent small improvement compared to both,
while making local propagation more efficient by limiting the graph size. According
to Figure 5.7, referring again to our best method for each setting, there is an optimal
number m of clusters that depends on the dataset and setting (transductive or not, 1/5-
shot). On CUB, we use m = 40 for 1-shot and m = 60 for 5-shot. On miniImageNet,
we use m = 60 in both cases.

Propagation parameters Propagation has been extensively researched in the past,
so we do not report the study of its parameters. It is known for instance that α should

5.4. EXPERIMENTS 89

−5 · 10−2 0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
−0.5

0

0.5

1

1.5

2

·10−2

τ

re
la
tiv

e
ac
cu
ra
cy

CUB 1-shot
CUB 5-shot
MI 1-shot
MI 5-shot

Figure 5.6 – Spatial attention on our local label propagation, including feature pooling
and feature propagation: 5-way few-shot classification accuracy vs. threshold τ , relative
to τ = 0 (no attention). All other parameters fixed to optimal.

CUB 1-shot CUB 5-shot CUB 1-shot TR CUB 5-shot TR
MI 1-shot MI 5-shot MI 1-shot TR MI 5-shot TR

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

0

1

2

3

4

·10−2

m

re
la
tiv

e
ac
cu
ra
cy

Figure 5.7 – Feature pooling on our local propagation: 5-way few-shot classification
accuracy vs. number of clusters m, relative to m = 10 for better visualization. TR:
transductive. We use spatial attention in all settings and feature propagation only in
transductive. All other parameters fixed to optimal.

90 CHAPTER 5. LOCAL LABEL PROPAGATION

be close to 1 and there is a local maximum with respect to the number of neighbors to
consider in the graph, which depends on the number of data [Isc+17]. After parameter
search, for most experiments, we set α = 0.9, γ = 4 and respectively 5 and 50 neighbors
in the graph for global and local propagation

5.4.3 Results

Table 5.1 presents a complete set of results using our method and baselines in different
settings, using different options. We discuss the effect of our contributions below.

Spatial attention We use spatial attention with our method but we also combine it
with baselines for fair comparison. It is an extremely simple mechanism that consis-
tently improves few-shot classification accuracy in most cases, including global or local,
with propagation or not, transductive or not. The only exception is Local Match on
miniImageNet. The gain is more pronounced on 1-shot tasks, which is expected as in-
formation selection is more important when information is scarce. It reaches 3% for the
baselines and 2% for propagation on CUB, as well as 1% on miniImageNet.

Feature pooling Clustering the set of local features into a given number of clusters for
each image is bringing small accuracy improvements when combined with propagation,
local or global. In particular, spatial attention and feature pooling brings a 0.30% to
0.75% increase of accuracy compared to spatial attention alone on CUB (transductive
and non-transductive). An exception is miniImageNet non-transductive where feature
pooling gives slightly worse accuracy by an insignificant margin.

Label propagation In the non-transductive setting, global label propagation fails.
Its performance is similar or inferior to GAP+Protonet. This is to be expected, as
this is method a transductive method, so it is not a natural choice given only one
query. By contrast, our local label propagation succeeds even in this setting, with up
to 2.7% improvement on CUB 5-way 1-shot compared to GAP+Proto. One exception
is miniImageNet 5-way 1-shot, where GAP+Proto is better by a small margin; in this
case however, the other local baselines (Local Match and NBNN) are worse than both
GAP+Proto and our local label propagation, by a larger margin.

In the transductive setting, label propagation, global or local, always helps by using
unlabeled data. Our local label propagation with spatial attention and feature pooling
improves 5-way 1-shot accuracy over the non-transductive setting by 6% and 5.5%, on
CUB and miniImageNet respectively. This improvement is lower for 5-shot tasks as

5.4. EXPERIMENTS 91

Method A P F CUB miniImageNet
1-shot 5-shot 1-shot 5-shot

GAP+Proto [SSZ17] 74.85±0.48 90.38±0.27 63.39±0.46 81.21±0.32

GAP+Proto [SSZ17] X 77.10±0.47 91.24±0.26 64.22±0.45 81.71±0.31

Matching Net [Vin+16] 74.85±0.48 89.23±0.29 63.39±0.46 78.14±0.33

Matching Net [Vin+16] X 77.10±0.47 89.95±0.28 64.22±0.45 78.70±0.33

Local Match [Vin+16] 75.92±0.46 89.16±0.28 64.05±0.46 78.45±0.34

Local Match [Vin+16] X 78.29±0.45 90.60±0.26 63.58±0.46 78.01±0.35

NBNN [Li+19b] 76.21±0.45 89.59±0.27 64.90±0.45 79.74±0.32

NBNN [Li+19b] X 79.14±0.44 91.40±0.25 65.18±0.45 80.00±0.31

Global Label Propagation, Non-Transductive

Propagation
74.69±0.48 87.96±0.30 63.39±0.46 75.89±0.36

X 76.94±0.47 89.14±0.30 64.22±0.45 76.40±0.36

X X 77.23±0.46 88.78±0.31 63.41±0.45 77.04±0.37

Local Label Propagation (this work), Non-Transductive

Propagation

78.24±0.44 91.07±0.26 65.52±0.45 80.49±0.31

X 79.02±0.44 91.81±0.25 65.74±0.45 81.13±0.31

X X 79.77±0.44 92.07±0.25 65.59±0.45 80.73±0.31

X X X 79.32±0.44 91.52±0.25 64.43±0.45 80.26±0.32

Global Label Propagation, Transductive

Propagation
83.64±0.48 90.63±0.27 70.07±0.51 80.96±0.34

X 85.52±0.46 91.67±0.27 70.67±0.51 81.44±0.33

X X 87.18±0.46 91.88±0.27 72.54±0.54 81.38±0.35

Local Label Propagation (this work), Transductive

Propagation

83.04±0.43 91.89±0.25 69.95±0.48 82.13±0.31

X 85.33±0.42 92.50±0.25 71.00±0.48 82.87±0.30

X X 85.80±0.41 92.92±0.24 71.12±0.48 82.83±0.31

X X X 87.77±0.41 93.35±0.23 72.57±0.51 82.76±0.33

Other models, Non-Transductive

SNAIL [Mis+18] - - 55.71±0.99 68.88±0.92

TADAM [OLR18] - - 58.50±0.30 76.70±0.30

DC+IMP [Lif+19] - - 62.53±0.19 79.77±0.19

Neg-Cosine [Liu+20] - - 62.33±0.82 80.94±0.59

Other models, Transductive

TPN [Liu+19b] - - 59.46±0.00 75.65±0.00

LR+ICI [Wan+20b] 88.06±0.00 92.53±0.00 66.80±0.00 79.26±0.00

EPNet [Rod+20] 82.85±0.81 91.32±0.41 66.50±0.89 81.06±0.60

Table 5.1 – 5-way few-shot classification accuracy, comparing our local (feature and la-
bel) propagation to baselines and existing work. A: spatial attention (our work, also
applied to baselines). P: feature pooling (clustering) (our work). F: feature propaga-
tion [Rod+20].

92 CHAPTER 5. LOCAL LABEL PROPAGATION

more labeled data are used. Compared with global label propagation, it improves by up
to 1.5% on 5-shot, CUB and miniImageNet.

Feature propagation In the non-transductive setting, feature propagation is mostly
harmful, especially when used with our local label propagation, which remains the best
option, together with feature pooling. In the transductive setting however, it helps both
global and local label propagation, the only exception being 5-shot, miniImageNet. In
the case of local label propagation with feature pooling, the gain is up to 2% and 1.5%
on 1-shot, CUB and miniImageNet respectively. Therefore this combination is the most
effective, improving over our best non transductive result by 8% and 6.5% on 1-shot,
CUB and miniImageNet respectively.

Universality As shown in Figure 5.8, our local label propagation is a universally safe
choice for few-shot inference under both transductive and non-transductive settings.
This contrasts with existing methods such as global label propagation, where the user
needs to make decisions depending on the amount of unlabeled data that is available.

Comparison to existing methods Table 5.1 also includes a number of recent few-
shot learning methods. For fair comparison, all reported results are using the same
ResNet12 as embedding network. We observe that our baseline GAP+Proto is bet-
ter than these models on non-transductive 5-shot classification on miniImageNet. Our
method is then outperforming those models as well. In the transductive setting, global
propagation is weaker than existing methods, but our best setting of local propagation
(including spatial attention, feature pooling, feature propagation, and label propaga-
tion) is stronger in general. The only exception is 1-shot classification on CUB, where
LR+ICI [Liu+19b] is stronger by a small margin.

In parallel with this work, two methods appeared very recently, which are stronger
than our solution on miniImageNet but weaker on CUB: (1) DGPN [Yan+20], which is
yet another graph-based method and could be easily integrated with our local propaga-
tion. (2) DeepEMD [Zha+20], which is based on pairwise image alignment. This is more
challenging to integrate, for instance, one would need to use alignment in the definition
of the graph itself. This can be interesting future work.

5.4. EXPERIMENTS 93

0 2 4 6 8 10 12 14 16 18 200.88

0.88

0.89

0.89

0.9

0.9

0.91

0.91

0.92

0.92

0.93

0.93

0.94

0.94

number of queries per novel class

ac
cu
ra
cy

Local LP+Att (ours) Local LP
Global LP+Att Global LP

NBNN NBNN+Att
GAP+Proto GAP+Proto+Att

Figure 5.8 – CUB 5-way 5-shot classification accuracy vs. number of queries per novel
class. Our local label propagation outperforms transductive and non-transductive base-
lines in all settings. By contrast, global label propagation only competes with non-
trasductive methods when at least 10 unlabeled queries are available. We use spatial
attention (also our contribution) and feature propagation [Rod+20] for all methods. We
use feature pooling for local propagation

94 CHAPTER 5. LOCAL LABEL PROPAGATION

5.5 Conclusion

We have seen that when possible, considering queries as a set of unlabeled data to classify
all at once can leave to improved classification performance. One way to take advantage
of this is to build a graph with both labelled and unlabeled examples and propagate
label information on it. Another way to artificially augment the size of the available
data is to consider local features of the images.

Our local propagation framework takes the best of both worlds: more data from
local representations and better use of this data from propagation. It provides a unified
solution that works well given few labeled data and an arbitrary number of unlabeled
data. As a result, it works better that solutions meant for the standard few-shot inference
and at the same time better than solutions meant for transductive few-shot inference.
Two secondary contributions are extremely simple and effective: (a) our feature pooling
helps control the additional cost related to local features, while improving performance
in most cases; (b) our spatial attention helps not only our method but all baselines too,
by a significant margin on 1-shot classification. Our solution only affects inference, so it
can easily be plugged into any alternative representation learning method. It is general
enough to integrate other state-of-the-art solutions, like pairwise image alignment, other
forms of propagation and propagation on several layers.

Chapter 6

Few-shot Few-shot learning

Contents
6.1 Few-shot Few-shot formulation 97

6.1.1 Reminder . 97

6.1.2 Few-shot few-shot classification 97

6.2 Spatial attention from pre-training 98

6.2.1 Generating the attention weights 98

6.2.2 Applying the attention weights 100

6.3 Few-shot few-shot classification model 100

6.3.1 Base class training . 100

6.3.2 Novel class adaptation . 101

6.3.3 Novel class inference . 101

6.4 Experiments . 101

6.4.1 Experimental setup . 101

6.4.2 Results . 105

6.5 Comparison of spatial attention mechanisms 110

6.6 Conclusion . 111

As introduced before, few-shot learning aims at replicating the ability of humans to
learn to solve new tasks from a small amount of training examples. However, there is
a considerable gap between this motivation and how the few-shot classification task is
classically set up. On the one hand, for the sake of simplicity in experiments, the base
class dataset where the representation is learned from scratch, contains a few dozen or
hundred classes with a few hundred examples each. This is by no means comparable to

95

96 CHAPTER 6. FEW-SHOT FEW-SHOT LEARNING

datasets available to date [Kuz+18; Mah+18], let alone the amount of prior knowledge
that a human may have accumulated before learning a new task. On the other hand,
for a given domain of novel classes, e.g. bird species [Wel+10], base class data of such
size in the same domain may not exist.

In this chapter, we depart from the standard few-shot classification scenario in two
directions. First, we allow the representation to be learned from a large-scale dataset in
a domain different than the base and novel class domain. In particular, we model prior
knowledge with a classifier that is pre-trained on such a dataset, having no access to
its training process. We thus maintain the difficulty of domain gap and the simplicity
of experiments (by not training from scratch), while allowing a powerful representation.
Second, we assume only few or zero examples per base class. Hence, the role of base
classes is to adapt the representation to the domain at hand rather than learn from
scratch. This scenario can be seen as few-shot version of few-shot learning. Hence, we
call it few-shot few-shot learning.

We treat this problem as a two-stage adaptation process, first on the few base class
examples if available and second on the even fewer novel class examples. Because of the
limited amount of data, it is not appropriate to apply e.g. transfer learning [Ben+11]
or domain adaptation [GL14], in either of the two stages. Because the network is pre-
trained, and we do not have access to its training process or data, meta-learning is not
an option either. We thus resort to few steps of fine-tuning as in the meta-testing stage
of Finn et al. [FAL17] and Ravi and Larochelle [RL17] and chapter 4.

Focusing on image classification, we then investigate the role of spatial attention in
the new problem. With large base class datasets, the network can implicitly learn the
relevant parts of the images to focus on. In our setup, base class data are few, so our
motivation is that a spatial attention mechanism may help the classifier in focusing on
objects, suppressing background clutter. We observe that although the prior classes of
the pre-trained classifier may be irrelevant to a new task, uncertainty over a large number
of such classes may express anything unknown like background. This is a class-agnostic
property and can apply to new tasks.

In particular, given an input image, we measure the entropy-based certainty of the
pre-trained classifier in its prediction on the prior classes at every spatial location and
we use it to construct a spatial attention map. This map can be utilized in a variety
of ways, for instance, weighted spatial pooling or weighted loss per location; and in
different situations like the two adaptation stages or at inference. We show that this
spatial attention mechanism is more suitable for few-shot few-shot learning than the
mechanism introduced in chapter 5. By using it, we are able to easily adapt a pre-

6.1. FEW-SHOT FEW-SHOT FORMULATION 97

trained network to novel classes, without meta-learning.
Few-shot few-shot learning and the spatial attention mechanism introduced in this

chapter have been published in [LAP20a].

6.1 Few-shot Few-shot formulation

The problem we consider is a variant of few-shot learning that has not been studied
before. It involves sequential adaptation of a given network in two stages, each com-
prising a limited amount of data. There are many ways of exploiting prior learning
to reduce the required amount of data and supervision like transfer learning [Ben+11;
Yos+14], domain adaptation [GL14; RBV17; MDL18], or incremental learning [LH18;
RKL16; Yoo+18]. However, none applies to the few-shot domain where just a handful of
examples are given. In this section, we formally introduce the problem and its notations.

6.1.1 Reminder

In the usual few-shot scenario we are given a set of training examples X := {xi}ni=1 ⊂ X ,
and corresponding labels y := (yi)ni=1 ⊂ Cn where C := [c] := {1, . . . , c} is a set of base
classes. The objective is to learn a representation on these data, a process that we
call base training, such that we can solve new tasks. A new task comprises a set of
support examples X ′ := {x′i}n

′
i=1 ⊂ X and labels y′ := (y′i)n

′
i=1 ⊂ (C ′)n′ , where n′ � n

and C ′ := [c′] is a set of novel classes disjoint from C. The most common setting is k
examples per novel class, so that n′ = kc′, referred to as c′-way, k-shot classification.
The objective now is to learn a classifier on these support data, a process that we call
adaptation. This classifier should map a new query example from X to a prediction in
C ′.

6.1.2 Few-shot few-shot classification

Few-shot classification assumes that there is more data in base than novel classes, and
a domain shift between the two, in the sense of no class overlap. Here we consider a
modified problem where n can be small or zero, but there is another set C◦ = [c◦] of
prior classes with even more data X◦ and labels y◦ with n� n◦ := |X◦| and a greater
domain shift to C,C ′. Again, the most common setting is k′ examples per base class,
so that n = k′c. We are using a classifier that is pre-trained on this data but we do
not have direct access to either X◦,y◦, or its learning process. The objective of base

98 CHAPTER 6. FEW-SHOT FEW-SHOT LEARNING

training is now to adapt the representation to the domain of C,C ′ rather than learn it
from scratch; but we still call it base training.

6.2 Spatial attention from pre-training

We have seen in chapter 5 that filtering out the background information of the images
is essential to our local label propagation method as it prevents propagation of labels
through similar irrelevant parts of the images. In the few-shot few-shot learning problem,
such issue does not appear. However, with few or even no base class images to learn on,
the embedding network cannot learn to focus on the parts of the images that are relevant
to the classification of images in the base and novel set domain. Therefore, albeit for
different motivation, spatial attention is useful for few-shot few-shot learning as well.
In this section, we propose a novel spatial attention mechanism that takes advantage of
the pre-trained classifier used in this setup. In order to differentiate between the two
attention mechanisms, we refer to the spatial attention from the previous chapter as
norm spatial attention (NSA) and the one introduced here as entropy spatial attention
(ESA).

6.2.1 Generating the attention weights

We assume a pre-trained network with an embedding function φθ◦ : X → Rr×d followed
by global average pooling (GAP) and a classifier that is a fully connected layer with
weightsW ◦ := (w◦j)c

◦
j=1 ∈ Rd×c◦ and biases b◦ ∈ Rc◦ , denoted jointly by U◦ := (W ◦,b◦).

Without re-training, we remove the last pooling layer and apply the classifier densely as
in 1× 1 convolution, followed by softmax with temperature T . Then, similarly to (3.1),
the classifier fθ◦,U◦ : X → Rr×c◦ maps an example to a vector of probabilities per
location, where classifier parameters U◦ are shared over locations:

fθ◦,U◦(x) :=
[
σ

(1
T

(
W ◦>φ

(q)
θ◦ (x) + b◦

))]r
q=1

. (6.1)

We now want to apply this classifier to examples in the set X (resp. X ′) of base
(resp. novel) classes C (resp. C ′) in order to provide a spatial attention mechanism to
embeddings obtained by parameters θ (resp. θ′). We formulate the idea on X,C, θ in
this section but it applies equally to X ′, C ′, θ′. In particular, given an example x ∈ X,
we use the vector of probabilities p(q) := f

(q)
θ◦,U◦(x) corresponding to spatial location

q ∈ [r] to compute a scalar weight w(q)(x), expressing the discriminative power of the

6.2. SPATIAL ATTENTION FROM PRE-TRAINING 99

Figure 6.1 – Examples of images from CUB (top) and miniImageNet (bottom) overlaid
with entropy-based spatial attention maps obtained from (6.2) using only the predicted
class probabilites from ResNet-18 pre-trained on Places. See section 6.4 for details on
datasets and networks.

particular location q of example x.
Since x belongs to a set of classes C different than C◦, there is no ground truth to be

applied to the output of the pre-trained classifier fθ◦,U◦ . However, the distribution p(q)

can still be used to evaluate how discriminative the input is. We use the entropy function
for this purpose, H(p) := −

∑
j pj log(pj). We map the entropy to [0, 1], measuring the

certainty of the pre-trained classifier in its prediction on the prior classes C◦:

w(q)(x) := 1−
H(f (q)

θ◦,U◦(x))
log c◦ (6.2)

for q ∈ [r], where we ignore dependence on parameters θ◦, U◦ to simplify the nota-
tion, since they remain fixed. We use this as a weight for location q assuming that
uncertainty over a large number of prior classes expresses anything unknown like back-
ground, which can apply to a new set of classes. We then `1-normalize the weights
w(x) := [w(q)(x)]rq=1 ∈ Rr as ŵ(x) := w(x)/ ‖w(x)‖1. We call ŵ(x) the spatial attention
weights of x.

Figure 6.1 shows examples of images with spatial attention maps. Despite the fact
that there has been no training involved for the estimation of attention on the particular
datasets, the result can still be useful in suppressing background clutter.

100 CHAPTER 6. FEW-SHOT FEW-SHOT LEARNING

6.2.2 Applying the attention weights

If the embedding φθ(x) is normally a vector in Rd obtained by GAP on a feature tensor
Φθ(x) ∈ Rr×d as 1

r

∑
q∈[r] Φ(q)

θ (x) for x ∈ X , then GAP is replaced by global weighted
average pooling (GwAP):

φθ(x) :=
∑
q∈[r]

ŵ(q)(x)Φ(q)
θ (x). (6.3)

for x ∈ X . We recall that this applies equally to θ′ in the case of novel classes.

It is also possible to combine ESA with NSA from chapter 5. In this case, NSA
is used first, then the spatial attention weights are computed for the remaining spatial
positions before pooling.

6.3 Few-shot few-shot classification model

In this section, we describe stage by stage our framework for few-shot few-shot learning,
which include using the attention maps at inference on novel classes, as well as learning on
novel classes. In the latter case, the weights are pre-computed for all training examples
since the pre-trained network remains fixed in this process. In summary, we either
replace GAP by GwAP (6.3) in all inputs to the embedding network, or use dense
classification (3.1).

6.3.1 Base class training

Starting from a pre-trained embedding network φθ◦ , we can either solve new tasks on
novel classes C ′ directly, in which case θ = θ◦, or perform base class training, fine-tuning
θ from θ◦. Adaptation may involve for instance fine-tuning the last layers or the entire
network, applying a spatial attention mechanism or not. Recalling that φθ◦ is still needed
for weight estimation (6.2), the most practical setting is to fine-tune the last layers, in
which case φθ shares the same backbone network with φθ◦ . Following MAML [FAL17],
we perform a few gradient descent steps with low learning rate.

We use a dense classifier fθ,W : X → Rr×c (3.1) with class weights W . Given the few
base class examples X and labels y, we learn W at the same time as fine-tuning θ by
minimizing (3.2).

6.4. EXPERIMENTS 101

6.3.2 Novel class adaptation

Optionally, given the few novel class support examples X ′ and labels y′, we can further
adapt the embedding network, while applying our attention mechanism to the loss func-
tion. As in subsection 6.3.1, φθ′ shares the same backbone with φθ, being derived from it
by fine-tuning the last layers. We perform even fewer gradient descent steps with lower
learning rate

We use a prototype classifier where vector embeddings φθ′(x′) of support exam-
ples x′ ∈ X ′ are obtained by GwAP with φθ′ defined as in (6.3) and class prototypes
P := (pj)c

′
j=1 are obtained per class by averaging embeddings of support examples as

defined by (2.12) and updated whenever θ′ is updated. The classifier fθ′,P : X → Rc′

is a standard cosine classifier (2.15) and the loss function is standard cross-entropy
J(X,y; θ, P) (2.17) with embedding φθ′ obtained by GwAP (6.3). Attention weights ap-
ply to embeddings of all inputs to the network, each time focusing on most discriminative
parts. In case of no adaptation to the embedding network, we fix θ′ = θ. Computing
the prototypes P is then the only learning to be done and we can proceed to inference
directly.

6.3.3 Novel class inference

At inference, as in subsection 6.3.2, we adopt a prototype classifier where vector embed-
dings φθ′(x′) of support examples x′ ∈ X ′ are obtained by GwAP with φθ′ defined as
in (6.3) and class prototypes P := (pj)c

′
j=1 are obtained per class by averaging embed-

dings of support examples as defined by (2.12). Then, given a query x ∈ X , we similarly
obtain a vector embedding φθ′(x) by GwAP (6.3) and predict the class π(fθ′,P (x)) of the
nearest prototype according to cosine similarity where π is given by (4.3) and fθ′,P by
(2.15). We thus focus on the discriminative parts of both support and query examples,
suppressing background clutter.

6.4 Experiments

6.4.1 Experimental setup

pre-trained Network We assume that we have gathered prior knowledge on unre-
lated visual tasks. This knowledge is modeled by a deep convolutional network, trained
on a large-scale dataset. In our experiments, we choose to use a ResNet-18 [He+16]
pre-trained on the Places365-Standard subset of Places365 [Zho+17]. We refer to this
subset as Places. This subset contains around 1.8 million images across 365 classes.

102 CHAPTER 6. FEW-SHOT FEW-SHOT LEARNING

Figure 6.2 – Examples of images from the Places dataset, from left to right: rainforest,
coffee shop, zen garden, bowling alley, bamboo forest.

The classes are outdoor and indoor scenes, some examples are shown in Figure 6.2. We
select this dataset for its large scale, diversity of content and different nature than other
popular datasets like CUB. Images are resampled to 224×224 pixels for training. We
choose ResNet-18 as the architecture of the pre-trained model as it is a powerful network
that is also used in other few-shot learning studies [Che+19; DSM19], which helps in
comparisons. We make no assumption on the pre-training of the network. We do not
access either the pre-training process or the dataset. We rather use a publicly available
converged model that has been trained with a fully-connected layer as a classifier, as
assumed in section 6.2.

Datasets We evaluate our method on CUB with images of resolution 224×224. We
also experiment with miniImageNet. Similarily to [Che+19; DSM19], we resample the
miniImageNet images to 224×224, which is consistent with the choice of pre-trained
network.

Dataset overlap Contrary to CUB, miniImageNet has some non-negligible overlap
with Places. Some classes or even objects appear in both datasets. To better satisfy our
assumption of domain gap, we remove the most problematic overlapping classes from
miniImageNet: 3 base classes, 1 validation class and 2 novel classes. We refer to this
pruned dataset as modified miniImageNet. For the sake of comparison and because this
overlap can happen in practice, we also experiment on the original miniImageNet.

In particular, we measure, for each miniImageNet class, what is the most frequent
prediction among Places classes by the pre-trained ResNet-18 classifier. We distinguish
two kinds of overlap: full overlap when we find two classes with the same semantic
definition, and partial overlap when a large portion of the two classes are in common.

6.4. EXPERIMENTS 103

Split Match rate miniImageNet class Places class FO PO

Train

0.89 carousel carrousel X
0.75 rock beauty underwater - ocean deep
0.68 slot amusement arcade X
0.66 yawl boat deck
0.61 jellyfish aquarium
0.56 dugong underwater - ocean deep
0.54 aircraft carrier landing deck
0.49 cliff cliff X
0.47 triceratops natural history museum
0.43 three-toed sloth rainforest

Validation

0.80 coral reef underwater - ocean deep X
0.51 catamaran boat deck
0.21 garbage truck loading dock
0.20 poncho clothing store

Test

0.52 school bus bus station - indoor X
0.48 bookshop bookstore X
0.41 black-footed ferret veterinarians office
0.40 theater curtain movie theater - indoor
0.36 african hunting dog watering hole

Table 6.1 – Top ranking miniImageNet classes in terms of classification to a a specific
Places class and our decision on if w consider it as overlapping with the corresponding
Places class. FO and PO respectively stand for full and partial overlap.

Partial overlap can occur for multimodal classes, for instance the slot machine class is a
subclass of amusement arcade. Alternatively, even if the semantic definitions of the two
classes are different, it can happen that the same objects are depicted in the two classes
as is the case for the school bus and bus station-indoor classes. Top-ranking classes in
terms of classification to a specific Places class and our decision on the overlap are shown
in Table 6.1. We remove all full and partial overlapping classes from miniImageNet.
Table 6.2 lists the classes removed from miniImageNet in this way.

Evaluation protocol To adapt to our few-shot version of few-shot learning, we ran-
domly keep only k′ images per base class. We experiment with k′ ∈ {0, 1, 5, 10} and
k′ ∈ {0, 20, 50} respectively for the CUB and miniImageNet. This is because CUB
classes refer to bird species, while miniImageNet classes to broad object categories, hence
have a lot more variability. For novel classes, we use the standard setting k ∈ {1, 5}. We

104 CHAPTER 6. FEW-SHOT FEW-SHOT LEARNING

miniImageNet split miniImageNet class Places class with overlap

train carousel carousel
train slot amusement arcade
train cliff cliff
validation coral reef underwater - ocean deep
test school bus bus station - indoor
test bookshop bookstore

Table 6.2 – Classes removed from miniImageNet to form the modified miniImageNet
dataset and the corresponding overlapping Places classes.

generate a few-shot task on novel classes by selecting a support set X ′. In particular, we
sample c′ classes from the validation or test set and from each class we sample k images.
In all experiments, c′ = 5, i.e. 5-way classification. For each task we additionally sam-
ple 30 novel class images per class, to use as queries for evaluation. We report average
accuracy and 95% confidence interval over 5,000 tasks for each experiment. The base
class training set X contains k examples per base class in C. Each experiment can be
seen as a few-shot classification task on few base class examples.

Baselines We evaluate experiments with the network being either pre-trained on
Places or randomly initialized. In both cases, we report measurements for different
numbers k of examples per base class, as well as all examples in X. In the latter case
(randomly initialized), we do not use the option k′ = 0 because then there would be no
reasonable representation to adapt or to perform inference on, given a few-shot task on
novel classes. Furthermore, in this case we do not apply the attention mechanism as it
is based on the pre-trained classifier. In all cases, we compare to the baselines of using
no adaptation and no spatial attention. When learning from scratch, spatial attention is
not applied as we do not have access to the pre-trained classifier. In the case of random
initialization, and using all examples in X, we compare to Baseline++ [Che+19] and
prototypical networks [SSZ17], as reported in the benchmark by Chen et al. [Che+19],
as well as category traversal (CTM) [Li+19a] and ensembles [DSM19], all using ResNet-
18. They can only be compared to our randomly initialized baseline when using base
training on all data.

Implementation details At base training, we use stochastic gradient descent with
Nesterov momentum with mini-batches of size 200. At adaptation, we perform a maxi-

6.4. EXPERIMENTS 105

Attention X X
Adaptation X X

Base Places

k′ = 0 38.80±0.24 39.69±0.24 39.76±0.24 40.79±0.24
k′ = 1 40.50±0.23 41.74±0.24 41.11±0.24 42.23±0.24
k′ = 5 56.47±0.28 57.16±0.29 56.69±0.29 57.32±0.29
k′ = 10 62.83±0.30 64.32±0.30 62.97±0.30 64.41±0.30
All 80.68±0.27 80.48±0.27 80.68±0.27 80.56±0.27

Base Randomly Initialized

k′ = 1 31.65±0.19 - 31.37±0.19 -
k′ = 5 40.52±0.25 - 40.50±0.26 -
k′ = 10 48.25±0.28 - 48.61±0.29 -
All 71.78±0.30 - 71.77±0.30 -

Baseline++ 67.02±0.90 - - -
ProtoNet 71.88±0.91 - - -
Ensemble 68.77±0.71 - - -

Table 6.3 – Average 5-way 1-shot novel class accuracy on CUB. We use ResNet-18
either pre-trained on Places or we train it from scratch on k base class examples. Pro-
toNet [SSZ17] is as reported by Chen et al. [Che+19]. For ensemble [DSM19], we report
the distilled model from an ensemble of 20. Baselines as reported in the literature,
without attention or adaptation; to be compared only to randomly initialized with k′ =
all.

mum of 60 iterations over the support examples using Adam optimizer with fixed learning
rate. In both cases, the learning rate, schedule if any and number of iterations are de-
termined on the validation set. The temperature used by (6.1) for the computation of
the entropy of ESA is fixed per dataset, again on the validation set. In particular, we
use T = 100 and T = 2.6 respectively for CUB and modified miniImageNet. For the
spatial attention threshold of NSA, we use τ = 0.7 and τ = 0.6 respectively for CUB
and modified miniImageNet.

6.4.2 Results

We present results in Tables 6.3 and 6.4 for CUB 1-shot and 5-shot respectively,
and in Tables 6.5 and 6.6 for modified miniImageNet 1-shot and 5-shot. The origi-
nal miniImageNet is discussed separately at the end of this section.

106 CHAPTER 6. FEW-SHOT FEW-SHOT LEARNING

Attention X X
Adaptation X X

Base Places

k′ = 0 55.09±0.24 56.95±0.23 63.29±0.24 64.27±0.23
k′ = 1 57.25±0.22 58.89±0.23 65.42±0.23 66.78±0.23
k′ = 5 74.27±0.23 74.95±0.23 75.82±0.23 76.32±0.23
k′ = 10 78.89±0.22 80.08±0.21 80.56±0.22 81.53±0.21
All 90.38±0.16 90.33±0.16 91.22±0.15 91.17±0.15

Base Randomly Initialized

k′ = 1 39.45±0.20 - 42.70±0.21 -
k′ = 5 52.94±0.25 - 53.45±0.25 -
k′ = 10 63.37±0.26 - 64.52±0.26 -
All 85.60±0.18 - 85.96±0.19 -

Baseline++ 83.58±0.54 - - -
ProtoNet 87.42±0.48 - - -
Ensemble 84.62±0.44 - - -

Table 6.4 – Average 5-way 5-shot novel class accuracy on CUB. We use ResNet-18
either pre-trained on Places or we train it from scratch on k base class examples. Pro-
toNet [SSZ17] is as reported by Chen et al. [Che+19]. For ensemble [DSM19], we report
the distilled model from an ensemble of 20. Baselines as reported in the literature,
without attention or adaptation; to be compared only to randomly initialized with k′ =
all.

Attention X X
Adaptation X X

Base Places

k′ = 0 61.66±0.30 63.36±0.29 62.09±0.30 63.56±0.30
k′ = 20 62.95±0.29 63.15±0.28 63.11±0.29 63.33±0.29
k′ = 50 65.07±0.29 65.10±0.29 65.18±0.29 65.24±0.29
All 66.20±0.29 65.94±0.29 66.23±0.29 66.06±0.29

Base Randomly Initialized

k′ = 20 33.43±0.21 - 33.35±0.21 -
k′ = 50 41.03±0.24 - 41.05±0.24 -
All 55.99±0.28 - 56.13±0.28 -

Table 6.5 – Average 5-way 1-shot novel class accuracy on modified miniImageNet. We
use ResNet-18 either pre-trained on Places or we train it from scratch on k′ base class
examples. Baselines only shown in Table 6.7 on the original miniImageNet.

6.4. EXPERIMENTS 107

Attention X X
Adaptation X X

Base Places

k′ = 0 78.86±0.22 80.15±0.22 80.38±0.22 81.05±0.22
k′ = 20 78.41±0.21 78.53±0.21 79.67±0.21 79.82±0.21
k′ = 50 79.94±0.20 79.99±0.20 80.88±0.20 80.96±0.20
All 80.37±0.21 80.24±0.21 81.56±0.20 81.50±0.20

Base Randomly Initialized

k′ = 20 43.83±0.21 - 44.21±0.21 -
k′ = 50 54.68±0.22 - 54.92±0.22 -
All 72.43±0.22 - 73.10±0.21 -

Table 6.6 – Average 5-way 5-shot novel class accuracy on modified miniImageNet. We
use ResNet-18 either pre-trained on Places or we train it from scratch on k′ base class
examples. Baselines only shown in Table 6.8 on the original miniImageNet.

Effect of base training For fine-grained few-shot classification (CUB), base training
is extremely important in adapting to the new domain, improving the baseline 1-shot
accuracy by more than 40% with no adaptation and no spatial attention. For general
object classification (modified miniImageNet), it is less important, improving by 4.5%.
It is the first time that experiments are conducted on just a small subset of the base
class training set. It is interesting that 50 examples per class are bringing nearly the
same improvement as all examples, i.e. hundreds per class.

Effect of (novel class) adaptation Fine-tuning the network on k novel class ex-
amples per class, even fewer than k′ in the case of base classes, comes with the risk of
over-fitting. We still show that a small further improvement is possible with a small
learning rate. The improvement is more significant when k is low, in which case, more
adaptation of the embedding network to the novel class domain is needed. In the ex-
treme case of CUB dataset without base training, adaptating on only the 25 images of
the 5-way 5-shot tasks brings an improvement of 8.20%.

Effect of spatial attention Spatial attention allows focusing on the most discrimina-
tive parts of the input, which is more beneficial when fewer examples are available. The
extreme case is having no base class images and only one image per novel class. In this
case, most improvement comes on modified miniImageNet without base training, where
spatial attention improves 5-way 5-shot classification accuracy by 1.5% after adaptation.

108 CHAPTER 6. FEW-SHOT FEW-SHOT LEARNING

Attention X X
Adaptation X X

Base Places

k′ = 0 65.80±0.31 67.56±0.31 66.41±0.32 67.96±0.31
k′ = 20 66.98±0.29 67.63±0.29 67.32±0.29 67.80±0.29
k′ = 50 69.11±0.29 69.17±0.29 69.22±0.29 69.30±0.29
All 69.71±0.29 69.81±0.29 69.70±0.29 70.00±0.29

Base Randomly Initialized

k′ = 20 37.75±0.23 - 37.74±0.23 -
k′ = 50 42.79±0.23 - 42.79±0.23 -
All 59.68±0.27 - 59.66±0.27 -

Baseline++ 51.87±0.77 - - -
ProtoNet 54.16±0.82 - - -
Ensemble 63.06±0.63 - - -
CTM 64.12±0.55 - - -

Table 6.7 – Average 5-way 1-shot novel class accuracy on original miniImageNet. We
use ResNet-18 either pre-trained on Places or we train it from scratch on k base class
examples. ProtoNet [SSZ17] is as reported by Chen et al. [Che+19]. CTM refers to
the data-augmented version of Li et al. [Li+19a]. For ensemble [DSM19], we use the
distilled model from an ensemble of 20. Baselines as reported in the literature, without
attention or adaptation; to be compared only to randomly initialized with k′ = all.

The attention maps appear to be domain-independent as they improve CUB accuracy
even when no images from the bird domain have been seen (k = 0).

Original miniImageNet results The original miniImageNet dataset partially over-
laps Places. We use T = 2.4 for the temperature in (6.1). The remaining setup is as for
modified miniImageNet. Results are shown in tables 6.7 ands 6.7.

Compared to the results of modifiedminiImageNet (tables 6.5 and 6.6), performances
are nearly uniformly increased by 3-4% and conclusions remain the same. The increase in
performance is due to having more training data, as well as putting back easily classified
classes in the test dataset. Observe that, unlike CUB (tables 6.3 and 6.4), CTM [Li+19a]
and ensembles [DSM19] perform better than our randomly initialized baseline.

6.5. COMPARISON OF SPATIAL ATTENTION MECHANISMS 109

Attention X X
Adaptation X X

Base Places

k′ = 0 81.90±0.23 83.00±0.22 83.45±0.22 84.09±0.22
k′ = 20 81.44±0.21 81.82±0.21 82.56±0.21 82.92±0.21
k′ = 50 83.14±0.20 83.25±0.20 83.97±0.19 84.10±0.19
All 83.31±0.19 83.25±0.19 84.20±0.19 84.24±0.19

Base Randomly Initialized

k′ = 20 49.13±0.23 - 49.67±0.23 -
k′ = 50 57.18±0.23 - 57.68±0.23 -
All 75.42±0.20 - 75.95±0.20 -

Baseline++ 75.68±0.63 - - -
ProtoNet 73.68±0.65 - - -
Ensemble 80.63±0.43 - - -
CTM 80.51±0.13 - - -

Table 6.8 – Average 5-way 5-shot novel class accuracy on original miniImageNet. We
use ResNet-18 either pre-trained on Places or we train it from scratch on k base class
examples. ProtoNet [SSZ17] is as reported by Chen et al. [Che+19]. CTM refers to
the data-augmented version of Li et al. [Li+19a]. For ensemble [DSM19], we use the
distilled model from an ensemble of 20. Baselines as reported in the literature, without
attention or adaptation; to be compared only to randomly initialized with k′ = all.

1-shot 5-shot

Base Places Places+CUB CUB Places Places+CUB CUB

No att 38.80±0.24 80.68±0.27 71.78±0.30 55.09±0.24 90.38±0.16 85.60±0.18
NSA 40.72±0.24 79.77±0.28 69.91±0.11 59.08±0.24 90.03±0.16 83.86±0.19
ESA 39.69±0.24 80.48±0.27 - 56.95±0.23 90.33±0.16 -
NSA+ESA 40.71±0.24 79.77±0.28 - 59.06±0.24 90.03±0.16 -

Table 6.9 – Average 5-way novel class accuracy on CUB. We use ResNet-18 either pre-
trained on Places, pre-trained on Places then fine-tuned on CUB or trained from scratch
on CUB using all base class examples. We are applying different spatial attention strate-
gies at inference. ESA cannot be used when no pre-trained classifier is available.

110 CHAPTER 6. FEW-SHOT FEW-SHOT LEARNING

1-shot 5-shot

Base Places Places+MMI MMI Places Places+MMI MMI

No att 61.66±0.30 66.20±0.29 55.99±0.28 78.86±0.22 80.37±0.21 72.43±0.22
NSA 63.23±0.29 65.30±0.29 53.54±0.27 80.32±0.21 79.88±0.21 70.01±0.22
ESA 63.36±0.29 65.94±0.29 - 80.15±0.22 80.24±0.21 -
NSA+ESA 63.45±0.29 65.32±0.29 - 80.43±0.21 79.87±0.21 -

Table 6.10 – Average 5-way novel class accuracy on modified miniImageNet. We use
ResNet-18 either pre-trained on Places, pre-trained on Places then fine-tuned on modified
miniImageNet or trained from scratch on modified miniImageNet using all base class
examples. We are applying different spatial attention strategies at inference. ESA cannot
be used when no pre-trained classifier is available.

6.5 Comparison of spatial attention mechanisms

In Tables 6.9 and 6.10 we present the accuracy test results of the two spatial attention
mechanisms, NSA and ESA, respectively on CUB and modified miniImageNet. In this
set of experiments, no novel class adaptation is performed. We apply spatial attention
at few-shot inference only. Each attention mechanism and combination of the two is
tested using embedding networks that are either just pre-trained on Places, pre-trained
on Places and then fine-tuned on the base classes of the few-shot learning dataset, or
trained from scratch on the few-shot dataset base classes (standard few-shot learning
setup). The threshold τ of NSA is kept fixed for all experiments of a given dataset,
fixed using a validation set with a pre-trained network on Places embedding network.
The temperature T of ESA is kept fixed for all experiments of a given dataset except
when combined with NSA, in which case it is selected again on the validation set using
a pre-trained classifier as embedding network.

We observe that NSA improves few-shot accuracy on both datasets while using the
network pre-trained on Places, in the case of CUB, the improvements are larger than
the ones observed with ESA, they are equivalent on modified miniImageNet. However,
in those experiments, NSA fails in all instances of the network being trained on the full
base set, decreasing the accuracy by about 2%. Note that it does not invalidate NSA
completely: NSA leads to the best 5-way 1-shot and 5-shot accuracies when using the
pre-trained network alone on the CUB dataset. It rather reveals that the threshold τ of
NSA depends on the number of base class examples. ESA shows consistent improvements
in accuracy on both datasets using the pre-trained network. When ESA is used with
the same temperature T using the pre-trained and fine-tuned network, the resulting

6.6. CONCLUSION 111

accuracy is marginally inferior to not using it. This makes ESA a safe choice of spatial
attention, as it has no effect in the worst case. We also observe that using ESA on top
of NSA does not influence the few-shot accuracy in any of the tested setups. This result
can be explained as in essence those two mechanisms aims at discarding the background
related features of novel examples; when those are suppressed by NSA, the effect of ESA
is very limited.

6.6 Conclusion

In this chapter we generalized the problem of few-shot learning by studying the case
where even base classes images are limited in number, introducing a new setup called
few-shot few-shot learning. To address it, we use a pre-trained network on a large-scale
dataset and a very simple spatial attention mechanism that does not require any training
on the base or novel classes. This spatial attention (ESA) is based on the class prediction
of the pre-trained network and improves few-shot classification accuracy in case where
base class examples are lacking and does not damage it when base class images are
available. We consider two few-shot learning datasets: CUB and miniImageNet, with
different domain gaps to our prior dataset Places. Our findings indicate that even when
the domain gap is large between the dataset used for pre-training and the base/novel
class domains, it is still possible to get significant benefit from base class training even
with a few examples, which is very important as it reduces the need for in-domain
supervision.

Chapter 7

Application to classification of
aerial images

Contents
7.1 Problem . 114

7.1.1 Data . 114

7.1.2 Task . 115

7.2 Model . 116

7.2.1 Experimental setup . 117

7.2.2 Base class learning . 117

7.2.3 Novel class adaptation . 119

7.3 Conclusion . 120

In all previous chapters, we explored the issues linked to few-shot learning and intro-
duced models to address those. This exploration aims at improving the state of the art
knowledge in this domain. In chapter 3, chapter 4, we worked on the standard few-shot
learning setting, used in most few-shot classification works. In chapter 5 we depart from
the standard few-shot learning setup to work on transductive few-shot learning which is
now also a commonly studied task. In chapter 6 we propose a novel, more realistic few-
shot learning setting called few-shot few-shot learning. This new setup is still general
enough to be picked up by the research community. In all those cases, we applied our
analysis and models to commonly used datasets: miniImageNet, CIFAR100 and CUB.
The first two can be considered as general classification. The last one is in a specific
domain, bird species, and is used as example of fine-grained classification. When using

113

114 CHAPTER 7. APPLICATION TO CLASSIFICATION OF AERIAL IMAGES

CUB, we always also used a general classification dataset to show the generalization to
other domains to guarantee the behavior of our models in the general case.

In this chapter, we depart from this protocol to focus on a specific application of
few-shot classification. In particular, we present a problem of interest at Safran. More
specifically, the objective is to classify land vehicles in aerial images. The task introduces
new challenges as the classes are few even for the base training set, the images are small
and background is treated as a separate class. This chapter aims at giving insights on
the application of previous few-shot learning methods on similar practical tasks.

7.1 Problem

In this section, we introduce the problem addressed in this section. Detailing the data
and constraints.

7.1.1 Data

For the sake of confidentiality, images from the dataset used for this task cannot be
released. Through an internal data collection campaign, people at Safran gathered a
number of large aerial images. Contrary to the other datasets used in this thesis where
images were RGB, the images here are infrared, encoded as single channel grayscale
images. Examples of aerial images similar to those used for this study is shown in
Figure 7.1. Because the object of interest in those images are vehicles, a detection
method was first used, in particular Faster RER-CNN [TJ18]. This model is based on
Faster R-CNN [Ren+15] which is composed of a detector network that proposes regions
of interest and a classifier that classifies the corresponding region. The regions are
rectangular and axis-aligned. In Faster RER-CNN, similarily to [Din+19], the region
proposal network proposes regions of interest with an orientation. This fits the task at
hand where vehicles are found in images without any preferred orientation.

With this method, 8051 regions of interest with highest detection scores are selected.
Corresponding image patches are extracted. The resulting images have small resolution
(about 30 pixels wide and long). For simplicity all images are resized to squared images
of 85 × 85 pixels. The images were warped to all have the same orientation, which we
found to help on the classification task. Because the detection model detects some false
positives, some images correspond to background with any vehicle.

Those images were then manually annotated into specialized classes, being the type
of vehicle or background. More specifically, we regroup most vehicles into a common

7.1. PROBLEM 115

Figure 7.1 – Examples of images from the VEDAI dataset [RJ15]. Uncropped images
used in this study are similar in size and content.

Meta-class Number of images

Generic vehicles 4405
Background 3581
Rare vehicles 65

Table 7.1 – Detailed repartition of vehicle images in the Safran dataset.

meta-class, called generic vehicles. We are most interested in rarely seen vehicle types,
which will form our novel classes. In Table 7.1, we show the number of images from each
of those meta classes used in this study.

7.1.2 Task

Many different tasks could be considered using the data presented above. In this work,
we focus on the classification of rare vehicles in infrared aerial images. The choice was
made to focus on developing a multiclass classifier that would classify into three classes:
background, generic vehicles and one of the rare vehicles class. Ultimately, it would be
interesting to be able to add all other rare vehicle classes to the classification. This task
would be similar to the few-shot classification into both base classes and novel classes
as done in [QBL18; GK18] and in this thesis in chapter 3. Still, we chose not go in this
direction because of the data limitations.

Inside the rare vehicles meta-class, most vehicle classes have very few examples. In
Figure 7.2 we show the distribution of the number of images of the 4 largest rare vehicles
classes. This work being a first approach to treating those classes, we chose to limit the
study to the largest two classes of rare vehicles having respectively 18 and 15 examples.

116 CHAPTER 7. APPLICATION TO CLASSIFICATION OF AERIAL IMAGES

1 2 3 4
0

5

10

15

20

Rare vehicle class number

N
um

be
r
of

im
ag

es

Figure 7.2 – Number of images for the four largest rare vehicles classes.

Other classes all have seven or less examples. Performance using such extremely scarce
data would be heavily dependent on the choice of the quality of the examples. In a
work that aims at drawing conclusions on a new task, those classes might introduce an
unwanted bias.

Using the standard few-shot learning setting was not satisfactory. Indeed, few-shot
learning datasets usually have many distinct classes fully dedicated to validation or
testing. In our case, we cannot afford to have novel validation classes, therefore we keep
some images in each class for this purpose and validate using the same novel classes.
Because of this, we cannot guarantee generalization to other novel classes but we can at
least verify consistency between the two used classes. Additionally, if we were to use both
rare vehicle classes together in classification, it would not guarantee a good performance
with other combinations of rare vehicle classes. With other few-shot datasets, one can
artificially generate thousands of different few-shot tasks by picking a subset of the novel
classes available which is not possible here.

7.2 Model

In this section are presented the choices made for the model used for the aerial images
classification task. The task here is not exactly defined as previous chapters few-shot
tasks as we are limited to only two classes for base classes and only one novel class.
Nevertheless, we adopt a similar method framework as previous chapters. Specifically,

7.2. MODEL 117

first we use base classes to learn a representation of images. Then we use few-shot data
to build a classifier for the novel class.

7.2.1 Experimental setup

In previous chapters, testing a method was performed by applying it on a high number of
few-shot tasks sampled from the validation or test dataset. This task sampling involved
sampling a subset of novel classes, then inside those classes, a subset of images to be used
as support examples and a disjoint subset to be used as query examples. In this study,
we only have one novel class in the classification. Therefore, the class sampling step is
skipped. We still sample a large number of tasks by sampling different combinations of
supports and query examples in the novel class. We report the average results separately
for the two possible novel classes.

7.2.2 Base class learning

Choice of embedding network We experimented with two networks for the em-
bedding function: ResNet-18 and ResNet-12. Without pretraining ResNet-12 proved to
be a better choice in other dataset experiments. Because ResNet-18 is a more common
architecture, we could find and use a version of it pre-trained on miniImageNet. Con-
sistent with what was observed in chapter 6, even though there is a large domain gap
between miniImageNet and aerial images, this pre-trained network resulting in the best
overall results.

Choice of training loss We used the same framework as described in chapter 3, that
is to say train the embedding network on a classification task on the base classes. In
this particular task, the base classes are only two: background and generic vehicles.
Therefore, the classification task becomes a binary classification task. We experimented
with two losses for binary classification. On the one hand, we used the usual multi-class
cross-entropy as in chapter 3, that is, using a one layer classifier parametrized by two
weight vectors for the two classes. In this case, we enforce background images to be
mapped to a particular point in the feature space. On the other hand, we modified the
classification layer to only have one output and applied a binary cross-entropy loss on
it. In this case, we enforce background images to be mapped far away from the vehicle
images. In this case (2.15) becomes

fθ,W (x) := S (sτ (φθ(x),W)) (7.1)

118 CHAPTER 7. APPLICATION TO CLASSIFICATION OF AERIAL IMAGES

Task RV1 Task RV2
Recall novel Accuracy Recall novel Accuracy

Loss Binary cross-entropy

1-shot 0.28 0.66 0.23 0.64
5-shot 0.70 0.82 0.42 0.72
10-shot 0.81 0.86 0.63 0.79

Loss Multiclass cross-entropy

1-shot 0.04 0.62 0.1 0.71
5-shot 0.42 0.74 0.11 0.61
10-shot 0.71 0.83 0.41 0.71

Table 7.2 – Average recall of the novel class and accuracy with multiclass cross-entropy
and binary cross-entropy loss. The accuracy is computed using both base classes and
novel classes. Dense classification is used in both cases. RV1 and RV2 refers to rare
vehicle classes 1 and 2.

where W ∈ Rd is the only parameter vector associated with the positive class and S is
the sigmoid function

S(x) := 1
1 + e−x

(7.2)

with x ∈ R. Similarly to dense classification, equation 3.1 becomes

fθ,W (x) :=
[
S
(
sτ (φ(k)

θ (x),W)
)]r
k=1

(7.3)

The result loss function is

`(p, y) := −y log p− (1− y) log(1− p) (7.4)

with p ∈ R. The resulting loss function minimization aims at enforcing that positive ex-
amples representations are grouped together, close toW , while having the representation
of the negative examples far from it. The generic vehicle class is the natural choice for
positive class. Because we are mostly interested in the rare vehicle class performance,
we measure the recall for the rare vehicle class, that is to say the proportion of rare
vehicle images that are classified properly at test time. We also measure the average
accuracy as done in previous chapters. Table 7.2 shows the average recall of the novel
class and total accuracy using those two losses for the representation learning stage.
For both rare vehicle class tasks and for all measures, we observe superior performance

7.2. MODEL 119

Task RV1 Task RV2
Recall novel Accuracy Recall novel Accuracy

Loss Dense classification

1-shot 0.28 0.66 0.23 0.64
5-shot 0.70 0.82 0.52 0.72
10-shot 0.81 0.86 0.63 0.79

Loss Global average pooling

1-shot 0.41 0.71 0.30 0.66
5-shot 0.61 0.76 0.51 0.70
10-shot 0.74 0.82 0.54 0.72

Table 7.3 – Average recall of the novel class and accuracy with global average pooling
and dense classification. The accuracy is computed using both base classes and novel
classes. Binary cross-entropy is used in both cases. RV1 and RV2 refers to rare vehicle
classes 1 and 2.

using the binary cross-entropy loss. Similarly in Table 7.3 we compare performances on
the novel class while using dense classification or regular global pooling. We observe
superior performance using dense classification for 5-shot and 10-shot for both classes.
Average pooling gives better performance in the 1-shot scenario.

7.2.3 Novel class adaptation

Novel classes classifier Similar to what was done in subsection 4.1.4, we build a
new one layer classifier by computing prototypes. There are however two differences.
Firstly, in this case we only have one novel class (one rare vehicle for each few shot task).
Secondly, we also produce prototypes for the base classes. In chapter 3, we reused the
learned parameters W for representative for the base classes. Here, because we used a
binary classifier, W ∈ Rd is a unique representative and therefore cannot be used for
both base classes. Prototypes for the base classes only have to be computed once at the
end of the representation learning stage, the computational cost is limited to a single
forward pass of the training dataset which is minimal. We also experimented with using
W as the prototype of the generic vehicle class and computing only a prototype for the
background class which gave worse results.

Novel class adaptation We attempted to adapt the representation of the embedding
network with few steps adaptation as done in section 4.3. As observed in this chapter,

120 CHAPTER 7. APPLICATION TO CLASSIFICATION OF AERIAL IMAGES

adaptation helps for some selection of support examples and fails for others. In sec-
tion 4.3 the early stopping was based on observing the number of training iterations
that on average improve classification on the validation classes. In this context, we do
not have the necessary data to implement this solution safely. Moreover, the observed
improvements were minimal. In the end, we did not choose to use novel class adaptation.

Spatial attention Following the work done on spatial attention in subsection 6.3.2, we
experimented with spatial attention for the aerial image classification task. Examination
of the feature maps as done in Figure 5.2 confirms that relevant regions of the images
have local descriptors of higher norms than non-discriminative regions. However, we did
not observe significant performance change by using the spatial attention. A possible
explanation is that the objects of interest in the images already cover most of the image
surface, so there are fewer distractor background regions to eliminate. Moreover, one
of the classes in this task is the background itself. This has two consequences on the
model. Firstly, because the background class is part of the base classes, the embedding
network might have learned to embed background regions with high norm descriptors.
Secondly, any spatial attention method that aims at discarding the background features
or their influence in the classification would not make sense when some of the images
are purely background. For this task and any tasks that include classification into a
background class, another method should be designed. A possible direction would be
to exclude the class from the classifier and instead classify images where few area are
judged discriminative as background. Due to lack of time, such study is left for future
work.

7.3 Conclusion

In this chapter, we explored one possible application of few-shot learning methods. This
work is preliminary but allows us to confirm that our observations on standard academic
settings and datasets can transfer to the aerial image classification task. Dense classi-
fication shows improvements on classifying the novel queries in most cases. The norm
can be used as a viable indicator that a region is relevant for classification. However
method used for the standard few-shot learning settings cannot be directly applied to
this problem. The task presented here has many specificities that would require more
exploration. The fact the the base classes are limited to two is different from the usual
many base class setup. We touched on having a small base dataset in chapter 6, however
we limited the number of examples per class and not the number of classes. Moreover

7.3. CONCLUSION 121

one of the class is the background class. Treating background samples as negative exam-
ples in a binary classification loss is a way of dealing with this, but other options could
be explored in relation to spatial attention.

Conclusion and perspectives

Representation learning In this thesis, we examined the problem of few-shot classi-
fication through the focus of representation learning and using the few support examples
to adapt as much as possible to the few-shot task. First, in chapter 3, we discussed how
to properly use a disjoint set of images, the base dataset, to learn a task-independent
embedding of the images. We experimented with models that implement the embed-
ding function with convolutional neural networks. We showed that the choice of CNN
architecture should not be overlooked, in particular the tested residual networks show
impressive results while being fast to train. With such powerful architectures, the sim-
ple cosine classifier strategy consisting in training on a multiclass classification task on
the base classes results in strong few-shot performance, exceeding that of more complex
meta-learning methods.

Since representation learning is used to learn an embedding that ultimately will be
used to classify novel classes, it is important that it learns to represent as many discrim-
inative details in the images as possible. With this in mind, we proposed to modify the
way spatial information is treated by the neural network during representation learn-
ing. Convolution layers of CNNs return tensors with spatial dimensions. By selecting
a specific pixel, we can extract a local representation of a region of the image. Usually,
spatial information is suppressed by the application of flattening or spatial pooling on
the output of the embedding network. Instead, in dense classification, we treat each lo-
cal representation independently. During training, all spatial locations must be mapped
by the cosine classifier to the label of the image. This simple modification shows impres-
sive improvements for classification into the novel classes, as well as classification on the
union of base and novel classes.

Adaptation In the first stage described above, the goal is to learn a task-invariant
embedding function, as we do not have access to any information on the few-shot task.
In chapter chapter 4, we explored methods that adapt it to be task-dependent, condi-

123

124 CONCLUSION AND PERSPECTIVES

tioned on the novel classes’ support examples. This stage is challenging as the lack of
data makes any learning-based strategy prone to overfitting. We introduced two solu-
tions. First, implanting a limited number of new parameters to the embedding network.
Implants are convolutional layers that operate in parallel to the original embedding net-
work. Only the implant parameters are trained on the support examples, effectively
limiting the adaptation to not depart too much from the original embedding function.
We also proposed an alternative strategy consisting in fine-tuning entire blocks of the
embedding network for a small number of parameter updates. The number of steps is
based on the observed optimal accuracy on a set of validation tasks. Such early stop-
ping strategy, while being simple, allows to adapt the representation without overfitting.
Those methods show limited improvement for one-shot learning. In this case, we showed
that it is possible to augment the support set with related images from the base dataset
to artificial create more shots for the task.

Role of data Continuing on the idea of utilizing the few available data as much as
possible, we also studied in chapter 5 the task of transductive few-shot learning. In this
task, the queries to classify are multiple. We can consider them as extra unlabelled data
that add further information about the novel classes. Organizing examples as nodes in a
graph allows using propagation methods to label all of them, including the queries. To
explore local similarities in images, which can help to classify them, we proposed local
propagation, whereby we use local representations of images as nodes in the graph. In
this context, we also introduced a simple spatial attention mechanism that selects only
the non-background regions for the graph. This method shows competitive results in the
standard few-shot learning setting and can efficiently take advantage of unlabeled data
in the transductive setting, making it a safe choice for few-shot classification in general.

Another source of data that is not considered in the standard few-shot learning
setting is all the large-scale datasets that are accessible. Usually, the representation
stage is limited to learning an embedding from scratch with the base class dataset. In
some cases, such base dataset is not available or limited to a few samples. Based on those
observations, we proposed, in chapter 6, few-shot few-shot learning as a novel few-shot
learning setting where prior knowledge is modeled as a large-scale dataset or directly
a CNN trained on such a dataset. Representation learning with base classes becomes
adaptation to the few-shot task domain, which can be performed similarly as before.
In this context, we introduced another spatial attention mechanism based on utilizing
predictions from the pre-trained classifier. We studied the effect of the spatial attention
mechanism and of previously introduced methods in this setting with varying sizes of

125

the base dataset. We showed that in all cases, pretraining on the large-scale dataset
improves the few-shot performance, even when its domain is far from the few-shot task
domain. We also observed that adaptation and spatial attention can help compensate
for the lack of base classes data to adapt the domain.

Aerial data Finally, in chapter 7, we focused on a particular few-shot learning prob-
lem, namely, classification of rare vehicle classes in aerial images. This is a hard task
since images have small resolution and base classes are limited to two: generic vehicles
and background. Preliminary experiments showed that dense classification, applied with
a binary classifier, improves few-shot accuracy. The spatial attention mechanism also
seems to select relevant regions in the images. However, since one class is background,
it does not result in improved performances.

Perspectives

Augmentation with related base local features In parallel to [ALG19], we ex-
perimented with the idea of augmenting the support set with related images from the
base classes. More precisely, for each novel class, we selected the images with the closest
representation to the class prototype and added them to the support set of the class. We
observed encouraging results for one-shot classification. A finer version of this method
would be to select the related local representations from the base dataset to use for
enriching the support set. For instance, we could stitch together local representations of
different base examples to form a global one that can be associated with a novel class.
We cannot expect the extra generated examples from the base dataset to carry as much
information on the novel classes as the support examples. Incorporating them in the
adaptation stage could be attempted by considering them as noisy data and applying
training methods dealing with such data noise [Son+20]. We have explored this direction
with inconclusive results, a more in-depth study would be interesting.

Integrating a distractor class In a few-shot task, we usually assume that the queries
to classify belong to one of the novel classes. In practice, such assumption cannot always
hold. It would be interesting for the classifier to be able to predict that the image is in
none of the novel classes as done in open-set recognition [GHC20]. A possible solution
would be to introduce a distractor class in the classifier. [Ren+18b] introduces such
distractor but only to prevent unlabeled data to be confused with one of the novel
classes, not for final prediction. Possible directions for this work would be to use spatial

126 CONCLUSION AND PERSPECTIVES

attention mechanisms to detect images that are mainly background, or reusing part of
the base class data as examples of external classes.

Other few-shot learning tasks While early few-shot learning methods focus on
classification, few-shot is not limited to it. A related task that has gained traction
recently is few-shot object detection. It consists in learning to locate and classify ob-
jects. A few methods [Che+18; Kar+19; Fan+20] propose a modified version of Faster
R-CNN [Ren+15]. The classifier part of Faster R-CNN needs to solve a few-shot classi-
fication problem, so the insights developed on classification can transfer to the detection
task. Moreover, the region proposal network selects parts of the images that contain an
object to classify, which is related to our effort on spatial attention to select only the
relevant information. Overall, the state of the art is less mature on this task, so there is
more to explore.

Incremental few-shot learning Incremental learning corresponds to the setting
where a model learns to solve a task and must then be able to learn new tasks when given
new training data, without forgetting the tasks learn before. The most common setting
is learning to classify among a set of classes, then learning new classes. In this sense,
few-shot classification where we classify among the union of base and novel classes, can
be seen as a particular case of incremental learning where there is only one set of new
classes to learn and examples for those classes are few. Incremental learning methods
also use similar training processes such as the use of cosine classifiers [Hou+19b]. The
challenge of incremental learning is to make sure that previous classes are not forgot-
ten. Methods have been proposed to store a subset of previously seen data [RKL16;
Cas+18] or intermediate representations [Ahm+20]. In which case, the adaptation of
the model to new classes is done with few examples of all classes. Another solution is
to learn generative models to produce data of previously seen classes [KK18], which is
also a common approach for few-shot learning. Additionally, forgetting is avoided by
using knowledge distillation methods [LH18], which can be applied spatially [Dha+19]
for improved performance. Our focus on spatial representation could be useful when
studying incremental learning.

Bibliography

[Ahm+20] I. Ahmet, Z. Jeffrey, L. Svetlana, and S. Cordelia. “Memory-Efficient Incre-
mental Learning Through Feature Adaptation”. In: ECCV (2020), pp. 699–
715 (cit. on p. 126).

[ALG19] A. Afrasiyabi, J.-F. Lalonde, and C. Gagné. “Associative Alignment for
Few-shot Image Classification”. In: arXiv preprint arXiv:1912.05094 (2019)
(cit. on pp. 25, 73, 125).

[AS19] A. Antoniou and A. J. Storkey. “Learning to Learn By Self-Critique”. In:
NIPS. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc,
E. Fox, and R. Garnett. 2019 (cit. on p. 15).

[BB08] L. Bottou and O. Bousquet. “The Tradeoffs of Large Scale Learning”. In:
NIPS. Ed. by J. Platt, D. Koller, Y. Singer, and S. Roweis. Vol. 20. Curran
Associates, Inc., 2008, pp. 161–168 (cit. on p. 13).

[BBC91] Y. Bengio, S. Bengio, and J. Cloutier. “Learning a synaptic learning rule”.
In: IJCNN-91-Seattle International Joint Conference on Neural Networks.
Vol. ii. 1991, p. 969 (cit. on p. 15).

[Ben+11] Y. Bengio, I. Guyon, G. Dror, V. Lemaire, G. Taylor, and D. Silver. “Deep
learning of representations for unsupervised and transfer learning”. In: in
Proc. of ICML. 2011 (cit. on pp. 96, 97).

[Ber+16] L. Bertinetto, J. F. Henriques, J. Valmadre, P. Torr, and A. Vedaldi.
“Learning feed-forward one-shot learners”. In: NIPS. 2016 (cit. on p. 23).

[Ber+17] G. Bertasius, L. Torresani, S. X. Yu, and J. Shi. “Convolutional Random
Walk Networks for Semantic Image Segmentation”. In: CVPR. 2017 (cit.
on p. 83).

[Bro+94] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah. “Signature
Verification using a "Siamese" Time Delay Neural Network”. In: NIPS. Ed.
by J. Cowan, G. Tesauro, and J. Alspector. Vol. 6. Morgan-Kaufmann,
1994, pp. 737–744 (cit. on p. 16).

[BSF94] Y. Bengio, P. Simard, and P. Frasconi. “Learning long-term dependencies
with gradient descent is difficult”. In: IEEE Transactions on Neural Net-
works 5.2 (1994), pp. 157–166 (cit. on pp. 35, 37).

127

128 BIBLIOGRAPHY

[BSI08a] O. Boiman, E. Shechtman, and M. Irani. “In Defense of Nearest-Neighbor
Based Image Classification”. In: CVPR. 2008 (cit. on p. 18).

[BSI08b] O. Boiman, E. Shechtman, and M. Irani. “In defense of Nearest-Neighbor
based image classification”. In: CVPR. 2008 (cit. on p. 16).

[BU05] E. Bart and S. Ullman. “Cross-Generalization: Learning Novel Classes
From a Single Example By Feature Replacement”. In: CVPR. 2005 (cit. on
p. 80).

[Cas+18] F. M. Castro, M. J. Marin-Jimenez, N. Guil, C. Schmid, and K. Alahari.
“End-to-End Incremental Learning”. In: ECCV. Sept. 2018 (cit. on p. 126).

[Che+18] H. Chen, Y. Wang, G. Wang, and Y. Qiao. “LSTD: A Low-Shot Transfer
Detector for Object Detection”. In: AAAI. 2018 (cit. on p. 126).

[Che+19] W. Chen, Y. Liu, Z. Kira, Y. F. Wang, and J. Huang. “A Closer Look at
Few-shot Classification”. In: ICLR (2019) (cit. on pp. 7, 21, 31, 86, 102,
104–106, 108, 109).

[CSZ10] O. Chapelle, B. Schlkopf, and A. Zien. Semi-Supervised Learning. 1st. The
MIT Press, 2010 (cit. on p. 78).

[Dha+19] P. Dhar, R. V. Singh, K.-C. Peng, Z. Wu, and R. Chellappa. “Learning
Without Memorizing”. In: CVPR. June 2019 (cit. on p. 126).

[Din+19] J. Ding, N. Xue, Y. Long, G.-S. Xia, and Q. Lu. “Learning RoI Transformer
for Oriented Object Detection in Aerial Images”. In: CVPR. June 2019 (cit.
on p. 114).

[Dou+18] M. Douze, A. Szlam, B. Hariharan, and H. Jégou. “Low-Shot Learning
With Large-Scale Diffusion”. In: CVPR. 2018 (cit. on pp. 26, 32).

[DSM19] N. Dvornik, C. Schmid, and J. Mairal. “Diversity with Cooperation: En-
semble Methods for Few-Shot Classification”. In: ICCV (2019) (cit. on
pp. 26, 86, 102, 104–106, 108, 109).

[DT05] N. Dalal and B. Triggs. “Histograms of oriented gradients for human de-
tection”. In: CVPR. Vol. 1. 2005, 886–893 vol. 1 (cit. on p. 3).

[Elb+20] D. Elbrächter, D. Perekrestenko, P. Grohs, and H. Bölcskei. “Deep neural
network approximation theory”. In: IEEE Transactions on Information
Theory, submitted Jan. 2019, revised (June 2020) (cit. on p. 13).

[EMH20] T. Elsken, J. Metzen, and F. Hutter. “Neural Architecture Search: A Sur-
vey”. In: jmlr (2020) (cit. on p. 35).

[Eve+98] R. M. Everson, A. K. Prashanth, M. Gabbay, B. W. Knight, L. Sirovich,
and E. Kaplan. “Representation of spatial frequency and orientation in the
visual cortex”. In: Proceedings of the National Academy of Sciences 95.14
(1998), pp. 8334–8338 (cit. on p. 3).

BIBLIOGRAPHY 129

[FAL17] C. Finn, P. Abbeel, and S. Levine. “Model-Agnostic Meta-Learning for
Fast Adaptation of Deep Networks”. In: ICML. 2017 (cit. on pp. 6, 15, 22,
23, 28, 31, 34, 35, 55, 65, 66, 96, 100).

[Fan+20] Q. Fan, W. Zhuo, C.-K. Tang, and Y.-W. Tai. “Few-Shot Object Detection
With Attention-RPN and Multi-Relation Detector”. In: CVPR. June 2020
(cit. on p. 126).

[GB04] Y. Grandvalet and Y. Bengio. “Semi-Supervised Learning by Entropy Min-
imization”. In: NIPS. 2004 (cit. on p. 76).

[GB18] V. Garcia and J. Bruna. “Few-Shot Learning with Graph Neural Net-
works”. In: ICLR. 2018 (cit. on pp. 19, 20, 26, 76).

[GHC20] C. Geng, S. .-.-J. Huang, and S. Chen. “Recent Advances in Open Set
Recognition: A Survey”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence (2020), pp. 1–1 (cit. on p. 125).

[GHM07] A. Gidudu, G. Hulley, and T. Marwala. “Image Classification Using SVMs:
One-against-One Vs One-against-All”. In: (2007) (cit. on p. 4).

[Gid+19] S. Gidaris, A. Bursuc, N. Komodakis, P. Pérez, and M. Cord. “Boosting
few-shot visual learning with self-supervision”. In: ICCV. 2019 (cit. on
pp. 7, 27, 39).

[GK18] S. Gidaris and N. Komodakis. “Dynamic Few-Shot Visual Learning without
Forgetting”. In: CVPR. 2018 (cit. on pp. 21, 22, 31, 41, 42, 46, 48, 49, 51–
53, 55, 63, 65, 77, 80, 115).

[GL14] Y. Ganin and V. Lempitsky. “Unsupervised Domain Adaptation By Back-
propagation”. In: (2014) (cit. on pp. 96, 97).

[GMS05] M. Gori, G. Monfardini, and F. Scarselli. “A new model for learning in
graph domains”. In: Proceedings. 2005 IEEE International Joint Confer-
ence on Neural Networks, 2005. Vol. 2. 2005, 729–734 vol. 2 (cit. on p. 19).

[Goo+14] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S.
Ozair, A. Courville, and Y. Bengio. “Generative Adversarial Nets”. In:
NIPS. Ed. by Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and
K. Q. Weinberger. Vol. 27. Curran Associates, Inc., 2014, pp. 2672–2680
(cit. on p. 25).

[Gra06] L. Grady. “Random Walks for Image Segmentation”. In: IEEE Trans.
PAMI 28.11 (2006), pp. 1768–1783 (cit. on p. 83).

[GSK18] S. Gidaris, P. Singh, and N. Komodakis. “Unsupervised Representation
Learning by Predicting Image Rotations”. In: ICLR. 2018 (cit. on p. 27).

[HA15] E. Hoffer and N. Ailon. “Deep Metric Learning Using Triplet Network”.
In: SIMBAD. 2015 (cit. on p. 58).

[Hao+19] F. Hao, F. He, J. Cheng, L. Wang, J. Cao, and D. Tao. “Collect and Select:
Semantic Alignment Metric Learning for Few-Shot Learning”. In: ICCV.
2019 (cit. on pp. 77, 80).

130 BIBLIOGRAPHY

[He+16] K. He, X. Zhang, S. Ren, and J. Sun. “Deep residual learning for image
recognition”. In: CVPR. 2016 (cit. on pp. 35, 37, 39, 101).

[HG17] B. Hariharan and R. B. Girshick. “Low-shot Visual Recognition by Shrink-
ing and Hallucinating Features”. In: ICCV (2017) (cit. on pp. 24, 71).

[HHS18] E. Hoffer, I. Hubara, and D. Soudry. “Fix your classifier: the marginal
value of training the last weight layer”. In: ICLR (2018) (cit. on p. 49).

[Hil+18] N. Hilliard, L. Phillips, S. Howland, A. Yankov, C. D. Corley, and N. O. Ho-
das. “Few-Shot Learning with Metric-Agnostic Conditional Embeddings”.
In: CoRR abs/1802.04376 (2018) (cit. on p. 28).

[Hou+19a] R. Hou, H. Chang, M. Bingpeng, S. Shan, and X. Chen. “Cross Attention
Network for Few-shot Classification”. In: NeurIPS. 2019 (cit. on pp. 77,
80).

[Hou+19b] S. Hou, X. Pan, C. C. Loy, Z. Wang, and D. Lin. “Learning a Unified
Classifier Incrementally via Rebalancing”. In: CVPR. June 2019 (cit. on
p. 126).

[HS88] C. Harris and M. Stephens. “A Combined Corner and Edge Detector”. In:
Alvey Vision Conference. 1988 (cit. on p. 3).

[HS97] S. Hochreiter and J. Schmidhuber. “Long Short-Term Memory”. In: Neural
Computation 9.8 (1997), pp. 1735–1780 (cit. on pp. 18, 23).

[HTF09] T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learn-
ing: data mining, inference and prediction. 2nd ed. Springer, 2009 (cit. on
p. 26).

[HVD15] G. Hinton, O. Vinyals, and J. Dean. “Distilling the knowledge in a neural
network”. In: arXiv preprint arXiv:1503.02531 (2015) (cit. on pp. 26, 49).

[IS15] S. Ioffe and C. Szegedy. “Batch normalization: Accelerating deep network
training by reducing internal covariate shift”. In: arXiv preprint arXiv:-
1502.03167 (2015) (cit. on pp. 27, 35, 39).

[Isc+15] A. Iscen, G. Tolias, P.-H. Gosselin, and H. Jégou. “A comparison of dense
region detectors for image search and fine-grained classification”. In: IEEE
Transactions on Image Processing (2015), p. 00 (cit. on p. 3).

[Isc+17] A. Iscen, G. Tolias, Y. Avrithis, T. Furon, and O. Chum. “Efficient Diffu-
sion on Region Manifolds: Recovering Small Objects with Compact CNN
Representations”. In: CVPR. 2017 (cit. on pp. 83, 90).

[Isc+19a] A. Iscen, G. Tolias, Y. Avrithis, and O. Chum. “Label Propagation for
Deep Semi-Supervised Learning”. In: CVPR. 2019 (cit. on p. 76).

[Isc+19b] A. Iscen, G. Tolias, Y. Avrithis, O. Chum, and C. Schmid. “Graph convo-
lutional networks for learning with few clean and many noisy labels”. In:
arXiv preprint arXiv:1910.00324 (2019) (cit. on pp. 26, 32).

BIBLIOGRAPHY 131

[Jég+10] H. Jégou, M. Douze, C. Schmid, and P. Pérez. “Aggregating local descrip-
tors into a compact image representation”. In: CVPR. 2010, pp. 3304–3311
(cit. on p. 3).

[Kar+19] L. Karlinsky, J. Shtok, S. Harary, E. Schwartz, A. Aides, R. Feris, R. Giryes,
and A. M. Bronstein. “RepMet: Representative-Based Metric Learning for
Classification and Few-Shot Object Detection”. In: CVPR. June 2019 (cit.
on p. 126).

[KB14] D. P. Kingma and J. Ba. “Adam: A Method for Stochastic Optimization”.
In: arXiv (2014) (cit. on pp. 52, 63).

[KH92] A. Krogh and J. Hertz. “A Simple Weight Decay Can Improve Generaliza-
tion”. In: NIPS. 1992 (cit. on p. 65).

[Kim+18] J. Kim, Y. Choi, M. Cha, J. Lee, S. Lee, S. Kim, Y. Choi, and J. Kim.
“Auto-Meta: Automated Gradient Based Meta Learner Search”. In: NIPS
2018 Workshop on Meta-Learning (MetaLearn 2018). Vol. abs/1806.06927.
2018 (cit. on p. 15).

[KK18] R. Kemker and C. Kanan. “FearNet: Brain-Inspired Model for Incremental
Learning”. In: ICLR. 2018. url: https://openreview.net/forum?id=
SJ1Xmf-Rb (cit. on p. 126).

[KLL08] T. H. Kim, K. M. Lee, and S. U. Lee. “Generative Image Segmentation
Using Random Walks with Restart”. In: ECCV. Springer. 2008, pp. 264–
275 (cit. on p. 83).

[KMO16] Y. Kalantidis, C. Mellina, and S. Osindero. “Cross-dimensional weighting
for aggregated deep convolutional features”. In: ECCVW. 2016 (cit. on
p. 81).

[Kra+16] P. Krahenbuhl, J. Donahue, T. Darrell, and A. Efros. “Context Encoders:
Feature Learning by Inpainting”. In: CVPR. 2016 (cit. on p. 27).

[Kri09] A. Krizhevsky. Learning multiple layers of features from tiny images. Tech.
rep. 2009 (cit. on p. 28).

[Kuz+18] A. Kuznetsova, H. Rom, N. Alldrin, J. Uijlings, I. Krasin, J. Pont-Tuset,
S. Kamali, S. Popov, M. Malloci, and T. Duerig. “The open images dataset
v4: Unified image classification, object detection, and visual relationship
detection at scale”. In: arXiv preprint arXiv:1811.00982 (2018) (cit. on
p. 96).

[KW14] D. P. Kingma and M. Welling. “Auto-Encoding Variational Bayes”. In:
ICLR. 2014 (cit. on p. 25).

[KZS15] G. Koch, R. Zemel, and R. Salakhutdinov. “Siamese neural networks for
one-shot image recognition”. In: ICMLW. 2015 (cit. on pp. 16, 17, 20).

[LA17] S. Laine and T. Aila. “Temporal Ensembling for Semi-Supervised Learn-
ing”. In: ICLR (2017) (cit. on p. 76).

https://openreview.net/forum?id=SJ1Xmf-Rb
https://openreview.net/forum?id=SJ1Xmf-Rb

132 BIBLIOGRAPHY

[Lak+11] B. Lake, R. Salakhutdinov, J. Gross, and J. Tenenbaum. “One shot learning
of simple visual concepts”. In: Proceedings of the Annual Meeting of the
Cognitive Science Society. 2011 (cit. on p. 28).

[Lee+19] K. Lee, S. Maji, A. Ravichandran, and S. Soatto. “Meta-Learning with
Differentiable Convex Optimization”. In: CVPR. 2019 (cit. on p. 39).

[Lee13] D.-H. Lee. “Pseudo-Label : The Simple and Efficient Semi-Supervised Learn-
ing Method for Deep Neural Networks”. In: (2013) (cit. on p. 76).

[LH18] Z. Li and D. Hoiem. “LearningWithout Forgetting”. In: IEEE Transactions
on Pattern Analysis and Machine Intelligence 40.12 (Dec. 2018), pp. 2935–
2947 (cit. on pp. 97, 126).

[LH19] I. Loshchilov and F. Hutter. “Decoupled Weight Decay Regularization”.
In: ICLR (2019) (cit. on p. 63).

[Li+19a] H. Li, D. Eigen, S. Dodge, M. Zeiler, and X. Wang. “Finding Task-Relevant
Features for Few-Shot Learning by Category Traversal”. In: CVPR. 2019
(cit. on pp. 31, 77, 80, 104, 108, 109).

[Li+19b] W. Li, L. Wang, J. Xu, J. Huo, Y. Gao, and J. Luo. “Revisiting Lo-
cal Descriptor Based Image-To-Class Measure for Few-Shot Learning”. In:
CVPR. 2019 (cit. on pp. 18, 76, 80, 87, 91).

[Lia+20] D. Lian, Y. Zheng, Y. Xu, Y. Lu, L. Lin, P. Zhao, J. Huang, and S. Gao.
“Towards Fast Adaptation of Neural Architectures with Meta Learning”.
In: ICLR. 2020 (cit. on p. 15).

[Liu+19a] M.-Y. Liu, X. Huang, A. Mallya, T. Karras, T. Aila, J. Lehtinen, and
J. Kautz. “Few-shot unsupervised image-to-image translation”. In: ICCV.
2019 (cit. on pp. 20, 25, 26, 71).

[Liu+19b] Y. Liu, J. Lee, M. Park, S. Kim, E. Yang, S. Hwang, and Y. Yang. “Learn-
ing to Propagate Labels: Transductive Propagation Network for Few-Shot
Learning”. In: ICLR. 2019 (cit. on pp. 76, 78, 91, 92).

[Liu+19c] Z. Liu, Z. Miao, X. Zhan, J. Wang, B. Gong, and S. X. Yu. “Large-Scale
Long-Tailed Recognition in an Open World”. In: CVPR. 2019 (cit. on
pp. 32, 87).

[Liu+20] B. Liu, Y. Cao, Y. Lin, Q. Li, Z. Zhang, M. Long, and H. Hu. “Negative
Margin Matters: Understanding Margin in Few-shot Classification”. In:
arXiv preprint arXiv:2003.12060 (2020) (cit. on p. 91).

[Low04] D. G. Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”.
In: Int. J. Comput. Vision 60.2 (Nov. 2004), pp. 91–110 (cit. on p. 3).

[LSD15] J. Long, E. Shelhamer, and T. Darrell. “Fully Convolutional Networks for
Semantic Segmentation”. In: CVPR. 2015 (cit. on p. 49).

[LST15] B. Lake, R. Salakhutdinov, and J. Tenenbaum. “Human-level concept learn-
ing through probabilistic program induction”. English (US). In: Science
350.6266 (Dec. 2015), pp. 1332–1338 (cit. on p. 28).

BIBLIOGRAPHY 133

[Ma+21] J. Ma, X. Jiang, A. Fan, J. Jiang, and J. Yan. “Image Matching from
Handcrafted to Deep Features: A Survey”. In: International Journal of
Computer Vision 129 (Jan. 2021) (cit. on pp. xxii, 2).

[Mah+18] D. Mahajan, R. Girshick, V. Ramanathan, K. He, M. Paluri, Y. Li, A.
Bharambe, and L. van der Maaten. “Exploring the limits of weakly super-
vised pretraining”. In: ECCV. 2018, pp. 181–196 (cit. on p. 96).

[Man+20] P. Mangla, N. Kumari, A. Sinha, M. Singh, B. Krishnamurthy, and V. N.
Balasubramanian. “Charting the right manifold: Manifold mixup for few-
shot learning”. In: WACV. 2020 (cit. on pp. 7, 27, 39).

[MDL18] A. Mallya, D. Davis, and S. Lazebnik. “Piggyback: Adapting a Single Net-
work to Multiple Tasks by Learning to Mask Weights”. In: ECCV. 2018
(cit. on pp. 59, 97).

[Men+13] T. Mensink, J. Verbeek, F. Perronnin, and G. Csurka. “Distance-Based
Image Classification: Generalizing to New Classes at Near-Zero Cost”. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence 35.11
(2013), pp. 2624–2637 (cit. on p. 4).

[Met+19] L. Metz, N. Maheswaranathan, B. Cheung, and J. Sohl-dickstein. “Meta-
Learning Update Rules for Unsupervised Representation Learning”. In:
ICLR. 2019 (cit. on p. 15).

[Mis+18] N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel. “A simple neural
attentive meta-learner”. In: ICLR (2018) (cit. on pp. 34, 37, 48, 77, 80,
91).

[ML18] A. Mallya and S. Lazebnik. “Packnet: Adding multiple tasks to a single
network by iterative pruning”. In: CVPR (2018) (cit. on p. 59).

[MMV00] E. G. Miller, N. E. Matsakis, and P. A. Viola. “Learning from One Example
Through Shared Densities on Transforms”. In: CVPR. 2000 (cit. on pp. 24,
71).

[NAS18] A. Nichol, J. Achiam, and J. Schulman. “On first-order meta-learning al-
gorithms”. In: CoRR, abs/1803.02999 (2018) (cit. on pp. 6, 23).

[NF16] M. Noroozi and P. Favaro. “Unsupervised Learning of Visual Representa-
tions by Solving Jigsaw Puzzles”. In: ECCV. Ed. by B. Leibe, J. Matas,
N. Sebe, and M. Welling. 2016 (cit. on p. 27).

[NHH15] H. Noh, S. Hong, and B. Han. “Learning deconvolution network for seman-
tic segmentation”. In: ICCV. 2015 (cit. on p. 49).

[Oh +16] H. Oh Song, Y. Xiang, S. Jegelka, and S. Savarese. “Deep metric learning
via lifted structured feature embedding”. In: CVPR. 2016 (cit. on p. 58).

[OLR18] B. N. Oreshkin, A. Lacoste, and P. Rodriguez. “TADAM: Task depen-
dent adaptive metric for improved few-shot learning”. In: arXiv preprint
arXiv:1805.10123 (2018) (cit. on pp. 23, 28, 37, 39, 48, 49, 51, 54, 55, 63–
66, 77, 80, 91).

134 BIBLIOGRAPHY

[Oqu+14] M. Oquab, L. Bottou, I. Laptev, and J. Sivic. “Learning and Transferring
Mid-level Image Representations Using Convolutional Neural Networks”.
In: CVPR. 2014 (cit. on pp. 20, 22).

[OT06] A. Oliva and A. Torralba. “Building the gist of a scene: the role of global
image features in recognition.” In: Progress in brain research 155 (2006),
pp. 23–36 (cit. on p. 3).

[QBL18] H. Qi, M. Brown, and D. G. Lowe. “Low-Shot Learning With Imprinted
Weights”. In: CVPR. 2018 (cit. on pp. 20–22, 25, 31, 42, 48, 49, 65, 66,
115).

[RBV17] S.-A. Rebuffi, H. Bilen, and A. Vedaldi. “Learning multiple visual domains
with residual adapters”. In: NIPS. 2017 (cit. on p. 97).

[Ren+15] S. Ren, K. He, R. Girshick, and J. Sun. “Faster R-CNN: Towards Real-
Time Object Detection with Region Proposal Networks”. In: nips. 2015
(cit. on pp. 114, 126).

[Ren+18a] M. Ren, R. Liao, E. Fetaya, and R. S. Zemel. “Incremental Few-Shot Learn-
ing with Attention Attractor Networks”. In: arXiv preprint arXiv:1810.07218
(2018) (cit. on pp. 77, 80).

[Ren+18b] M. Ren, S. Ravi, E. Triantafillou, J. Snell, K. Swersky, J. B. Tenenbaum,
H. Larochelle, and R. S. Zemel. “Meta-Learning for Semi-Supervised Few-
Shot Classification”. In: ICLR. 2018 (cit. on pp. 25, 125).

[RJ15] S. Razakarivony and F. Jurie. “Vehicle Detection in Aerial Imagery : A
small target detection benchmark”. In: Journal of Visual Communication
and Image Representation (Mar. 2015) (cit. on p. 115).

[RKL16] S.-A. Rebuffi, A. Kolesnikov, and C. H. Lampert. “iCaRL: Incremental
Classifier and Representation Learning”. In: arXiv preprint arXiv:1611.07725
(2016) (cit. on pp. 97, 126).

[RL17] S. Ravi and H. Larochelle. “Optimization as a model for few-shot learning”.
In: ICLR (2017) (cit. on pp. 6, 15, 23, 28, 34, 96).

[Rod+20] P. Rodriguez, I. Laradji, A. Drouin, and A. Lacoste. “Embedding Propa-
gation: Smoother Manifold for Few-Shot Classification”. In: arXiv preprint
arXiv:2003.04151 (2020) (cit. on pp. 76, 87, 91, 93).

[Rus+14] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, et al. “Imagenet large scale visual
recognition challenge”. In: arXiv (2014) (cit. on pp. xxiii, 5, 28).

[Rus+16] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick, K.
Kavukcuoglu, R. Pascanu, and R. Hadsell. “Progressive neural networks”.
In: arXiv preprint arXiv:1606.04671 (2016) (cit. on p. 59).

[Rus+18] A. A. Rusu, D. Rao, J. Sygnowski, O. Vinyals, R. Pascanu, S. Osindero,
and R. Hadsell. “Meta-learning with latent embedding optimization”. In:
arXiv preprint arXiv:1807.05960 (2018) (cit. on p. 39).

BIBLIOGRAPHY 135

[RZL18] P. Ramachandran, B. Zoph, and Q. V. Le. “Searching for activation func-
tions”. In: ICLR (2018) (cit. on p. 39).

[San+16] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap.
“Meta-learning with memory-augmented neural networks”. In: ICML. 2016
(cit. on p. 28).

[Sca+09] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini.
“The Graph Neural Network Model”. In: IEEE Transactions on Neural
Networks 20.1 (2009), pp. 61–80 (cit. on p. 19).

[Sch+18] E. Schwartz, L. Karlinsky, J. Shtok, S. Harary, M. Marder, A. Kumar,
R. Feris, R. Giryes, and A. Bronstein. “Delta-encoder: an effective sample
synthesis method for few-shot object recognition”. In: NIPS. 2018 (cit. on
pp. 25, 71).

[Sch87] J. Schmidhuber. “Evolutionary Principles in Self-Referential Learning. On
Learning now to Learn: The Meta-Meta-Meta...-Hook”. Diploma Thesis.
Technische Universitat Munchen, Germany, 1987 (cit. on p. 15).

[SGS15] R. K. Srivastava, K. Greff, and J. Schmidhuber. “Training Very Deep Net-
works”. In: NIPS. 2015 (cit. on pp. 35, 37, 39).

[Shi+18] W. Shi, Y. Gong, C. Ding, Z. M. Tao, and N. Zheng. “Transductive Semi-
Supervised Deep Learning using Min-Max Features”. In: ECCV. 2018 (cit.
on p. 76).

[SJT16] M. Sajjadi, M. Javanmardi, and T. Tasdizen. “Mutual exclusivity loss for
semi-supervised deep learning”. In: ICIP (2016) (cit. on p. 76).

[Soh16] K. Sohn. “Improved Deep Metric Learning with Multi-class N-pair Loss
Objective”. In: NIPS. 2016 (cit. on p. 58).

[Son+20] H. Song, M. Kim, D. Park, and J.-G. Lee. “Learning from Noisy Labels
with Deep Neural Networks: A Survey”. In: arXiv e-prints (July 2020) (cit.
on p. 125).

[Sri+14] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov. “Dropout: A Simple Way to Prevent Neural Networks from Over-
fitting”. In: Journal of Machine Learning Research (2014) (cit. on pp. 27,
65).

[SSZ17] J. Snell, K. Swersky, and R. Zemel. “Prototypical networks for few-shot
learning”. In: NIPS. 2017 (cit. on pp. 16, 19, 20, 23, 25, 26, 28, 31, 34, 35,
46, 51, 55, 60, 62, 65, 87, 88, 91, 104–106, 108, 109).

[Sun+19] Q. Sun, Y. Liu, T.-S. Chua, and B. Schiele. “Meta-Transfer Learning for
Few-Shot Learning”. In: CVPR. June 2019 (cit. on pp. 22, 32, 59).

[SZ14] K. Simonyan and A. Zisserman. “Very deep convolutional networks for
large-scale image recognition”. In: arXiv preprint arXiv:1409.1556 (2014)
(cit. on p. 35).

136 BIBLIOGRAPHY

[Sze+15] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich. “Going deeper with convolutions”. In:
CVPR. 2015 (cit. on p. 35).

[Tia+20] Y. Tian, Y. Wang, D. Krishnan, J. B. Tenenbaum, and P. Isola. “Rethink-
ing Few-Shot Image Classification: a Good Embedding Is All You Need?”
In: arXiv preprint arXiv:2003.11539 (2020) (cit. on p. 7).

[TJ18] J. O. du Terrail and F. Jurie. “Faster RER-CNN: application to the detec-
tion of vehicles in aerial images”. In: CoRR abs/1809.07628 (2018) (cit. on
p. 114).

[TLF08] E. Tola, V. Lepetit, and P. Fua. “A fast local descriptor for dense match-
ing”. In: CVPR. June 2008 (cit. on p. 3).

[Tuy10] T. Tuytelaars. “Dense interest points”. In: CVPR. 2010 (cit. on p. 3).
[TV17] A. Tarvainen and H. Valpola. “Mean Teachers Are Better Role Mod-

els: Weight-Averaged Consistency Targets Improve Semi-Supervised Deep
Learning Results”. In: NIPS. 2017 (cit. on p. 76).

[VC17] P. Vernaza and M. Chandraker. “Learning Random-Walk Label Propaga-
tion for Weakly-Supervised Semantic Segmentation”. In: CVPR. 2017 (cit.
on p. 83).

[Ver+19] V. Verma, A. Lamb, C. Beckham, A. Najafi, I. Mitliagkas, D. Lopez-Paz,
and Y. Bengio. “Manifold Mixup: Better Representations by Interpolating
Hidden States”. In: ICML. 2019 (cit. on p. 27).

[Vin+16] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al. “Matching net-
works for one shot learning”. In: NIPS. 2016 (cit. on pp. 18, 19, 25, 28, 31,
35, 46, 77, 80, 87, 91).

[Wah+11] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The Caltech-
UCSD Birds-200-2011 Dataset. Tech. rep. CNS-TR-2011-001. California
Institute of Technology, 2011 (cit. on p. 28).

[Wan+17a] F. Wang, X. Xiang, J. Cheng, and A. L. Yuille. “Normface: l 2 hypersphere
embedding for face verification”. In: ACM Multimedia. 2017 (cit. on p. 49).

[Wan+17b] J. X. Wang, Z. Kurth-Nelson, H. Soyer, J. Z. Leibo, D. Tirumala, R. Munos,
C. Blundell, D. Kumaran, and M. M. Botvinick. “Learning to reinforcement
learn”. In: ArXiv abs/1611.05763 (2017) (cit. on p. 15).

[Wan+17c] J. Wang, F. Zhou, S. Wen, X. Liu, and Y. Lin. “Deep metric learning with
angular loss”. In: ICCV. 2017 (cit. on p. 58).

[Wan+18a] W. Wan, Y. Zhong, T. Li, and J. Chen. “Rethinking feature distribution
for loss functions in image classification”. In: CVPR. 2018 (cit. on p. 6).

[Wan+18b] Y.-X. Wang, R. Girshick, M. Hebert, and B. Hariharan. “Low-Shot Learn-
ing from Imaginary Data”. In: CVPR. 2018 (cit. on p. 15).

BIBLIOGRAPHY 137

[Wan+19] Y. Wang, W.-L. Chao, K. Q. Weinberger, and L. van der Maaten. “Sim-
pleShot: Revisiting Nearest-Neighbor Classification for Few-Shot Learn-
ing”. In: arXiv preprint arXiv:1911.04623 (2019) (cit. on pp. 7, 21, 31).

[Wan+20a] Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni. “Generalizing from a Few
Examples: A Survey on Few-Shot Learning”. In: ACM Comput. Surv. 53.3
(June 2020) (cit. on p. 13).

[Wan+20b] Y. Wang, C. Xu, C. Liu, L. Zhang, and Y. Fu. “Instance Credibility Infer-
ence for Few-Shot Learning”. In: arXiv preprint arXiv:2003.11853 (2020)
(cit. on p. 91).

[Wel+10] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and P.
Perona. Caltech-UCSD Birds 200. Tech. rep. CNS-TR-2010-001. California
Institute of Technology, 2010 (cit. on p. 96).

[WH19] D. Wertheimer and B. Hariharan. “Few-Shot Learning With Localization
in Realistic Settings”. In: CVPR. 2019 (cit. on pp. 61, 77, 80, 81).

[Wil+04] J. Willamowski, D. Arregui, G. Csurka, C. R. Dance, and L. Fan. “Cate-
gorizing Nine Visual Classes Using Local Appearance Descriptors”. In: In
ICPR Workshop on Learning for Adaptable Visual Systems. 2004 (cit. on
p. 3).

[Wu+19] Z. Wu, Y. Li, L. Guo, and K. Jia. “PARN: Position-Aware Relation Net-
works for Few-Shot Learning”. In: ICCV. 2019 (cit. on pp. 77, 80).

[XHS18] Z. Xu, H. van Hasselt, and D. Silver. “Meta-Gradient Reinforcement Learn-
ing”. In: NIPS. NIPS’18. Montréal, Canada: Curran Associates Inc., 2018,
pp. 2402–2413 (cit. on p. 15).

[Xv+19] H. Xv, X. Sun, J. Dong, S. Zhang, and Q. Li. “Multi-level Similarity Learn-
ing for Low-Shot Recognition”. In: arXiv preprint arXiv:1912.06418 (2019)
(cit. on pp. 77, 80).

[Yan+18] F. S. Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M. Hospedales.
“Learning to compare: Relation network for few-shot learning”. In: CVPR.
2018 (cit. on pp. 17, 35).

[Yan+20] L. Yang, L. Li, Z. Zhang, E. Zhou, Y. Liu, et al. “DPGN: Distribution
Propagation Graph Network for Few-shot Learning”. In: arXiv preprint
arXiv:2003.14247 (2020) (cit. on p. 92).

[Ye+18] H. Ye, H. Hu, D. Zhan, and F. Sha. “Learning Embedding Adaptation for
Few-Shot Learning”. In: CoRR abs/1812.03664 (2018) (cit. on p. 29).

[Yoo+18] J. Yoon, E. Yang, J. Lee, and S. J. Hwang. “Lifelong Learning with Dy-
namically Expandable Networks”. In: (2018) (cit. on p. 97).

[Yos+14] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. “How transferable are
features in deep neural networks?” In: NIPS. 2014 (cit. on pp. 59, 97).

138 BIBLIOGRAPHY

[ZG02] X. Zhu and Z. Ghahramani. Learning From Labeled and Unlabeled Data
with Label Propagation. Tech. rep. Carnegie Mellon University, 2002 (cit.
on pp. 78, 83).

[Zha+20] C. Zhang, Y. Cai, G. Lin, and C. Shen. “DeepEMD: Few-Shot Image Clas-
sification With Differentiable Earth Mover’s Distance and Structured Clas-
sifiers”. In: CVPR. 2020 (cit. on pp. 77, 80, 92).

[Zho+03a] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf. “Learning
with local and global consistency”. In: NIPS. 2003 (cit. on pp. 78, 83–85,
87).

[Zho+03b] D. Zhou, J. Weston, A. Gretton, O. Bousquet, and B. Schölkopf. “Ranking
on Data Manifolds”. In: NIPS. 2003 (cit. on p. 83).

[Zho+16] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. “Learning
Deep Features for Discriminative Localization”. In: CVPR. 2016 (cit. on
pp. 49, 50, 82).

[Zho+17] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba. “Places: A
10 million Image Database for Scene Recognition”. In: IEEE Transactions
on Pattern Analysis and Machine Intelligence (2017) (cit. on p. 101).

[ZK16] S. Zagoruyko and N. Komodakis. “Wide Residual Networks”. In: BMVC.
2016 (cit. on pp. 35, 39).

[ZZK19] H. Zhang, J. Zhang, and P. Koniusz. “Few-Shot Learning via Saliency-
Guided Hallucination of Samples”. In: CVPR. 2019 (cit. on pp. 77, 80,
81).

List of published contributions

[LAP20a] Y. Lifchitz, Y. Avrithis, and S. Picard. “Few-Shot Few-Shot Learning and
the role of Spatial Attention”. In: ICPR (2020) (cit. on pp. 58, 97).

[LAP20b] Y. Lifchitz, Y. Avrithis, and S. Picard. “Local Propagation for Few-Shot
Learning”. In: ICPR (2020) (cit. on p. 77).

[Lif+19] Y. Lifchitz, Y. Avrithis, S. Picard, and A. Bursuc. “Dense Classification
and Implanting for Few-Shot Learning”. In: CVPR (2019) (cit. on pp. 34,
58, 91).

139

Titre : Exploiter au mieux les données disponibles : représentation et adaptation pour
la classification few-shot d’images
Mots-clés : Few-shot, apprentissage automatique, profond, representation, adaptation, vision

Résumé : Les réseaux de neurones pro-
fonds peuvent être entraînés pour produire
des modèles de classification d’images très
précis, à condition d’avoir accès à un grand
nombre de données d’apprentissage. Dans le
cas du few-shot learning, les données sont li-
mitées à quelques images ce qui ne permet
pas l’apprentissage complet. Dans un premier
temps, une fonction de représentation indé-
pendante de la tâche est apprise en résol-
vant une tâche distincte comme la classifica-
tion des classes de base. Ensuite, la repré-
sentation est combinée avec des exemples
des nouvelles classes pour résoudre la tâche
few-shot. Pour les deux étapes, nous intro-
duisons des solutions exploitant au mieux les
données disponibles. Pour l’apprentissage de
représentation, nous proposons la classifica-
tion dense, qui étudie pour la première fois
les activations locales pour le few-shot lear-
ning. De plus, nous proposons deux solutions
pour adapter la fonction de représentation à

la tâche few-shot. L’apprentissage est limité
à quelques paramètres dans le cas de l’im-
plantation, ou à quelques itérations. Nous étu-
dions également des problèmes de few-shot
learning pour lesquels l’accès à l’information
est modifié. Dans le cas du few-shot transduc-
tif, plusieurs images doivent être classifiées
en même temps. Nous proposons la propa-
gation locale, utilisant les similarités entre re-
présentations locales pour propager l’informa-
tion de classe. Nous proposons également un
nouveau problème, le few-shot few-shot lear-
ning, où peu ou aucunes données du domaine
n’est accessible. On peut utiliser un réseau
pré-entraîné en l’adaptant si possible avec des
données du modèle. Pour le few-shot lear-
ning, il est important de se focaliser sur les
régions pertinentes des images. Nous propo-
sons deux solutions simples d’attention. Enfin,
nous appliquons notre savoir dans le cas spé-
cifique de la classification d’images aériennes.

Title: Making the most of available data: representation and adaptation for few-shot
image classification
Keywords: Few-shot, machine learning, deep learning, representation, adaptation, vision

Abstract: Deep neural networks can be
trained to create highly accurate image clas-
sification models, provided we have access to
large datasets. In few-shot learning, data is
limited to few images, so training from scratch
is not feasible. First, a task-independent rep-
resentation function is learned on abundant
data by solving a distinct task such as multi-
class classification on a set of base classes.
Then, the learned representation is combined
with new data of novel classes to solve the
few-shot task. In both stages, we introduce
solutions that aim at leveraging available data
as much as possible. In particular, for repre-
sentation learning, we propose dense classi-
fication training, which for the first time stud-
ies local activations in the domain of few-shot
learning. We also propose two solutions to
adapt the representation function to the few-
shot task. Learning is limited to a few pa-
rameters in implanting or to few gradient up-

dates. Additionally, we study alternative few-
shot learning settings, in which access to data
is modified. In transductive learning, multiple
images need to be classified at the same time.
In this context, we propose local propagation,
a method that uses similarities between local
representations of images to propagate class
information. We also introduce few-shot few-
shot learning, a new setting, where only few
or no in-domain data is accessible for repre-
sentation learning. In this context, we take ad-
vantage of a classifier, pre-trained on a large-
scale dataset of a different domain, which can
still be adapted to the domain if data is avail-
able. In few-shot learning, because data is
so scarce, we show that selecting relevant re-
gions with an attention mechanism is impor-
tant. We propose two simple solutions that
successfully fulfill this role. Finally, we ap-
ply our knowledge of few-shot learning on the
specific problem of classifying aerial images.

	Contents
	List of Figures
	List of Tables
	Résumé en français
	Introduction
	Traditional framework
	Hand-crafted descriptors
	Classifiers

	Deep learning methods
	Few-shot classification
	Objectives and contributions
	Representation
	Adaptation
	Role of data

	Outline

	Background
	Fundamental concepts
	Few-shot classification problem formulation
	Frameworks
	Traditional framework
	Meta-learning framework

	Main approaches
	Learning to compare
	Transfer learning methods
	Adapting the representation to the few-shot task

	Data augmentation
	Boosting few-shot learning
	Few-shot learning datasets
	Omniglot
	MiniImageNet
	FC100
	CUB

	Proposed pipeline
	Positioning
	Local approach
	Embedding adapation
	Transductive few-shot learning
	Using extra unlabeled data

	Representation learning for few-shot learning
	Choice of baseline model
	Few-shot learning embedding architectures
	Training procedure
	Selection of architecture and method
	Number of shot

	Dense Classification
	Method
	Discussion
	Inference on novel classes

	Experiments
	Experimental setup
	Results

	Conclusion

	Adaptation of the representation to the few-shot task
	Implanting
	Related works
	Architecture
	Training
	Inference on novel classes

	Implanting experiments
	Experimental setup
	Results

	Few-steps adaptation
	Related works
	Method
	Results

	Using base classes to augment the support set
	Method
	Results

	Conclusion

	Local propagation for transductive few-shot learning
	Background
	Transductive few-shot learning formulation
	Label propagation

	Local features
	Spatial attention
	Feature pooling

	Local propagation
	General method
	Local feature propagation
	Local label propagation
	Inference

	Experiments
	Experimental setup
	Ablation studies
	Results

	Conclusion

	Few-shot Few-shot learning
	Few-shot Few-shot formulation
	Reminder
	Few-shot few-shot classification

	Spatial attention from pre-training
	Generating the attention weights
	Applying the attention weights

	Few-shot few-shot classification model
	Base class training
	Novel class adaptation
	Novel class inference

	Experiments
	Experimental setup
	Results

	Comparison of spatial attention mechanisms
	Conclusion

	Application to classification of aerial images
	Problem
	Data
	Task

	Model
	Experimental setup
	Base class learning
	Novel class adaptation

	Conclusion

	Conclusion and perspectives
	Bibliography
	List of published contributions

