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Résumé en français

Ces dernières années ont connu l'émergence de nouvelles techniques de vision par ordina-

teur, permettant d'énormes progrès dans les tâches populaires telles que la classi�cation

d'image, la détection d'objets ou la segmentation sémantique. Dans certains cas, les

performances atteintes dépassent même celles des humains. C'est notamment les cas

de la classi�cation d'image, comme démontré par les résultats de la compétition an-

nuelle ImageNet. L'objectif du challenge est de développer des modèles capables de

classi�er automatiquement des images dans 1000 catégories. Depuis 2015, les modèles

vainqueurs ont des taux d'erreurs inférieurs à celui d'un humain moyen. On peut ex-

pliquer ce succès par la concordance de l'apparition de nouveaux modèles, l'accessibilité

rapide à des vastes bases de données ainsi que le développement d'unités de calculs.

Plus spéci�quement, une partie du monde de la recherche en vision par ordinateur s'est

focalisé sur la conception et l'utilisation de réseaux de neurones profonds. Ces modèles

contiennent des millions de paramètres, qui, après avoir été réglés, peuvent approximer

des fonctions permettant de réaliser des tâches complexes, telles que le calcul de la

probabilité qu'une image appartiennent à une catégorie. Le réglage des paramètres est

un problème d'apprentissage statistique. Des exemples sont montrés aux modèles, les

paramètres sont ajustés grâce à un algorithme d'optimisation pour apprendre à bien

réaliser la tâche sur ceux-ci. L'apprentissage de l'ensemble des paramètres nécessite un

grand nombre d'exemples et est coûteux en ressources. Les GPUs modernes permettent

la parallélisation des opérations sous-jacentes, rendant l'utilisation de réseaux profonds

accessible.

Modèles pour la classi�cation

Une tâche commune à toute application de vision par ordinateur utilisant des images

comme entrées est l'obtention d'une bonne méthode de représentation de celles-ci. Les

images sont généralement encodées numériquement sous la forme de séquences de valeurs

xxi
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Figure 1 � Structure générique d'un modèle pour la classi�cation d'images. L'extracteur
de caractéristiques renvoie une description de l'image facilitant la classi�cation. Le
classi�eur utilise la représentation pour produire une probabilité d'appartenance pour
chaque catégorie.

discrètes correspondant à l'intensité de chaque pixel. Il est di�cile d'utiliser directement

cette représentation pour e�ectuer des tâches complexes telles que la classi�cation. Une

représentation plus haut niveau, non pas selon les pixels mais selon le contenu de l'image,

est nécessaire, de la même manière qu'un humain peut juger de la nature des objets en

identi�ant certains attributs remarquables.

Par conséquent, les modèles de vision par ordinateurs peuvent contenir deux étapes.

Tout d'abord, un modèle d'extraction de caractéristiques transforme la représentation

sous forme de pixels en représentation de caractéristiques. Les représentations de carac-

téristiques n'ont pas pour but de décrire parfaitement les images, à la place ils véhiculent

des informations sémantiques sur ce qui se trouve dans les images.

De nombreuses fonctions de représentation d'images ont été proposées. Certaines

sont dé�nies par un algorithme �xe, ces algorithmes découlant de la compréhension

des chercheurs sur la structure des images. D'autres sont basées sur les méthodes

d'apprentissage automatique, auquel cas la fonction est apprise sur un ensemble d'exemples

d'images. Une revue récente ces méthodes est [Ma+21].

Une fois l'image convertie en une représentation haut niveau, un autre modèle la

traite pour e�ectuer la tâche souhaitée. Dans le cas de la classi�cation d'images, le

classi�eur produit un score ou une probabilité d'appartenance pour chacune des classes

possibles. Ce fonctionnement générique est illustré dans Figure 1
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Extraction de caractéristiques par apprentissage profond

Les fonctions d'extraction de caractéristiques �xes sont des fonctions génériques crées

pour pouvoir s'appliquer sur di�érents type d'images. Bien que ces représentations

soient su�santes pour certaines tâches, idéalement, la fonction de représentation de-

vrait être adaptée à la tâche à résoudre. C'est ce que permettent les méthodes basées

sur l'apprentissage automatique. En particulier, les réseaux de neurones convolutifs se

sont récemment avérés produire de puissantes représentations des images. En plus de

remplacer les extracteurs de caractéristiques, les réseaux de neurones peuvent également

remplir le rôle du classi�eur, uni�ant les deux parties de l'approche de la Figure 1

Les réseaux de neurones sont constitués d'unités de calcul paramétrables appelées

neurones. Ceux-ci sont organisés en couches successives, de sorte que l'entrée d'un neu-

rone est la sortie des neurones de la couche précédente. Dans certains réseaux dits

convolutifs, certaines connexions entre neurones sont désactivées, permettant ainsi de

réaliser des opérations de convolution permettant de mieux traiter les images. Les con-

volutions extraient des informations localisées dans l'image. En conséquence, la première

couche d'un réseau neuronal peut apprendre à extraire des informations de bas niveau

localement, par exemple le type de texture. Les couches suivantes combinent ces infor-

mations pour l'extraction d'informations de plus haut niveau et moins localisées. Les

architectures récentes de réseaux de neurones sont dites profondes, c'est-à-dire qu'ils sont

constitués de nombreuses couches, plus de 100 dans les cas extrêmes. Ils contiennent des

millions de paramètres qui doivent être régler à l'aide de méthodes d'optimisation.

Lorsque des données annotées, c'est-à-dire dont on connaît la catégorie, sont acces-

sible, le réglage des paramètres peut passer par l'apprentissage supervisé. Lors de cet

apprentissage les données sont traitées par le réseau qui fournit les prédictions concer-

nant les catégories. Une fonction de perte évalue l'écart entre les prédictions avec la

vérité. Des algorithmes d'optimisation sont utilisés pour minimiser la fonction de perte

en ajustant les paramètres.

Classi�cation few-shot

Les modèles basés sur les réseaux de neurones profonds nécessitent une énorme quan-

tité de données annotées pour la phase d'apprentissage pour atteindre des performances

rivalisant avec l'humain. Par exemple, la base de données ImageNet [Rus+14] contient

des millions d'images annotées. Le grand nombre d'images d'entraînement est impor-

tant pour que les bonnes performances pendant la phase d'apprentissage se généralisent
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à des nouvelles données, jamais vues par le modèle. En pratique, dans de nombreux

cas, une telle quantité de données n'est pas accessible. Par conséquent, il est important

de trouver des méthodes réduisant cette dépendance à la supervision. Cela a motivé

les travaux sur l'apprentissage non-supervisé, où les données sont accessibles mais non

annotées, l'apprentissage semi-supervisé, où seul une partie des données sont annotées,

l' apprentissage actif où le modèle choisit un sous-ensemble d'images à faire annoter on

encore l'apprentissage par transfert, où la connaissance accumulées par l'apprentissage

d'une autre tâche est adaptée à la tâche en cours. Dans tous ces domaines, le nom-

bre d'exemples disponibles par l'apprentissage reste relativement grand, de l'ordre des

milliers.

Pousser à l'extrême la contrainte sur les données d'apprentissage amène à dé�nir

l' apprentissage frugal, ou few-shot learning, pour lequel les données d'entraînement sont

annotées mais limitées à quelques exemples, appelésexemples support, des dizaines au

maximum. Dans le cas extrême du one-shot learning, un seul exemple par catégorie

est utilisable. Avec si peu de données, le problème de généralisation entre les données

d'entraînement et de test est plus di�cile. Les exemples d'apprentissage ne représen-

tent que des dé�nitions incomplètes de leurs catégories, ne décrivant pas les variabilités

d'apparences au sein des classes. Il est donc possible que certaines images à classi�er ne

ressemblent à aucunes de celles vues lors de l'apprentissage. Avec aussi peu de supervi-

sion, l'entraînement complet d'un réseau de neurones profond n'est pas réalisable.

En comparaison, les humains possèdent la capacité d'être capable d'apprendre à

reconnaître de nouveaux objets, et plus généralement, à e�ectuer des nouvelles tâches en

se basant sur un nombre limité d'observations. Cela peut s'expliquer par l'accumulation

de connaissances préalables au cours de la vie, permettant une meilleure compréhension

de la structure des scènes ainsi que des méthodes générales de résolution de tâches. De la

même façon, les méthodes de few-shot learning, utilisent de connaissances extérieures à

la tâche, sous la forme d'une base de données plus grande avec des catégories disjointes,

pour apprendre à bien représenter les images pour la classi�cation. Cette base de données

est appeléedonnées de base. Certaines méthodes vont plus loin, en faisant du meta-

apprentissage, ce qui consiste à apprendre des méthodes permettant de mieux apprendre

à résoudre tout type de tâches. Ces méthodes utilisent alors la base de connaissance à

priori pour générer arti�ciellement des tâches few-shot a�n d'apprendre à les résoudre.

Après cette étape préliminaire que nous appellerons étape d'apprentissage de représen-

tation, les quelques exemples supports de la tâche few-shot sont utilisés, en combinaison

avec la fonction de représentation obtenue, pour former un modèle de classi�cation dans

les nouvelles catégories. Ce processus est similaire à celui mis en place dans le cas de
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l'apprentissage par transfert. A la di�érence que pour l'apprentissage par transfert, la

fonction de représentation des images est généralement adaptée aux nouvelles données

lors d'une nouvelle phase d'entraînement sur les paramètres du réseau. Cette étape

d'adaptation est plus di�cile à réaliser dans le cas du few-shot. Plus le modèle utilisé

contient de paramètres, plus il faut de données pour les ajuster, sinon le modèle sur-

apprend, c'est-à-dire est e�cace sur les données d'apprentissage mais ne généralise plus

aux autre données. Par conséquent, l'adaptation est généralement limitée à la construc-

tion d'un classi�eur pour les nouvelles classes, qui agit sur la sortie de la fonction de

représentation. Les classi�eurs sont des modèles d'apprentissage automatique avec peu

de paramètres ou des modèles non-paramétriques pour éviter le surapprentissage.

Solutions

Dans cette thèse, nous abordons le problème de la classi�cation frugale en se concentrant

sur l'apprentissage d'une bonne fonction de représentation des images et en utilisant les

quelques exemples supports pour l'adapter au mieux pour la tâche. En outre, dans le

souci d'utiliser au mieux toutes les données accessibles, nous étendons le cadre de la

classi�cation few-shot standard à travers des tâches plus réalistes. Le diagramme de la

Figure 2 résume la structure utilisée pour classi�er une image dans une tâche few-shot.

Nos contributions sont notées en bleu.

Apprentissage de représentation

L'apprentissage de représentation se fait grâce à l'utilisation des données de base. Après

avoir dé�ni des méthodes pour la validation des paramètres pour la phase d'apprentissage

de représentation, on compare les e�cacités de deux méthodes répandues : prototypical

networks et le classi�eur cosinus. Les prototypicals networks apprennent à résoudre une

multitude de tâches échantillonnées dans les données de base. Tandis que le modèle du

classi�eur cosinus est plus simple, il s'agit d'entraîner un réseau à résoudre un problème

de classi�cation sur toutes les classes de base, puis de récupérer une partie du réseau

qui est interprétée comme fonction d'extraction de caractéristiques. On montre que

le classi�eur cosinus, malgré sa simplicité est la méthode la plus prometteuse lorsque

l'on utilise des architectures de réseaux profonds telles que les residual networks. Nous

proposons la classi�cation dense comme amélioration de cette méthode. En sortie du

réseau d'extraction de caractéristiques, les représentations sont des tenseurs 3d qui sont

généralement ramenés à des vecteurs en réduisant les dimensions spatiales. Avec la
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Figure 2 � Structure proposée pour la classi�cation d'un exemple ans un problème de
classi�cation few-shot. La fonction d'extraction de caractéristique est entraînée pendant
la phase d'apprentissage de la représentation utilisant les données de base puis adaptée
avec les quelques exemples. Un classi�eur pour les classes few-shot est construit en
utilisant les quelques exemples. Une opération d'attention spatiale est utilisée pour
sélectionner les représentations locales pertinentes. En bleu sont notées nos contributions
et les chapitres dans lesquelles elles sont développées.
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classi�cation dense, on propose de ne pas e�ectuer cette réduction de dimensions, et

d'utiliser chaque position spatiale comme une représentation locale de l'image. Au lieu

de réunir ces représentations, on entraîne le réseau à classi�er chacune des représentations

locales dans la classe de l'image. Ainsi, on apprend alors une fonction de représentation

plus riche qui permet d'améliorer les performances de classi�cation, notamment sur les

nouvelles tâches few-shot.

Adaptation de la fonction de représentation

La fonction de représentation apprise sur les données de base n'est pas adaptée aux tâches

few-shot que l'on veut résoudre, étant donné que les données de base appartiennent à

des classes disjointes des classes few-shot. Dans cette thèse nous allons nous intéresser

aux méthodes permettant d'e�ectuer cette adaptation tout en évitant le problème du

surapprentissage. Nous proposons deux solutions. Tout d'abord l'implantation, méth-

ode qui consiste à ajouter en parallèle du réseau des nouvelles couches de convolution

appelés implants. Les paramètres des implants sont appris en sur les exemples supports

seulement, ils sont donc spéci�ques à la tâche few-shot considérée. Ils permettent de

calculer des caractéristiques spéci�ques à la tâche, qui sont concaténées aux caractéris-

tiques calculées par le réseau entraîné auparavant. Comme les paramètres à apprendre

sont moindre, on peut contrôler le surapprentissage, permettant alors d'apprendre sur les

exemples supports et d'améliorer la classi�cation de nouveaux exemples. La deuxième

méthode consiste à ajuster plusieurs couches du réseau d'extraction de caractéristiques

avec un petit taux d'apprentissage et pour un petit nombre d'itérations seulement. Le

nombre d'itération d'apprentissage à e�ectuer est déterminé par observation du com-

portement moyen des courbes d'apprentissage sur une base de données de validation.

Bien que très simple, cette approche permet une amélioration notable des performances

dans de nombreux cas. Dans le cas extrême du one-shot learning, cette méthode est peu

e�cace car le surapprentissage est quasi-immédiat. Dans ce cas, on montre que l'on peut

augmenter le nombre d'exemples support arti�ciellement en réutilisant des images des

classes de bases proches des exemples supports et en les assimilant à la nouvelle tâche.

Propagation locale

On propose également de s'intéresser au problème de la classi�cation transductive, dans

lequel plusieurs images doivent être classi�ées en même temps. Les images à classi�er

peuvent être utilisées comme exemples non-annotés. La prise en compte de ces exemples

est d'autant plus importante dans le cadre du few-shot learning ou les données sont rares.
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Une façon d'en tirer parti est de construire un graphe dans lequel les sommets sont les

exemples (annotées et non-annotées), puis de propager l'information de classe dans le

graphe pour classi�er tous les sommets. Nous proposons une nouvelle version de cette

méthode consistant à augmenter arti�ciellement le nombre d'exemples en considérant un

sommet par représentation locale. La classi�cation se base alors sur des comparaisons

locales entres les images. Dans ce contexte on montre l'importance de sélectionner

uniquement les régions pertinentes des images. On introduit alors un mécanisme simple

d'attention spatiale qui �ltre les informations liées au fond des images. Ce mécanisme

est important pour la propagation locale mais on montre qu'elle apporte également des

améliorations de performances lorsque combinée avec d'autres méthodes.

Few-shot Few-shot learning

Dans les problèmes de few-shot standard, on présume l'accès aux données de base du

même domaine que les données few-shot (contenu similaire), et que celles-ci soient assez

nombreuses pour l'apprentissage d'une fonction de représentation. Cela n'est pas tou-

jours le cas, d'autant plus que le few-shot s'applique dans des domaines pour lesquels

l'information est di�cilement accessible. Par contre, sont ignorées la multitude de

grandes bases de données accessibles publiquement. Ces données ne sont pas nécessaire-

ment dans le même domaine mais on peut se demander si elles peuvent être utilisées

pour les tâches few-shot. Nous proposons un nouveau cadre few-shot dans lesquels les

données de bases sont peu nombreuses et que l'on peut utiliser des données extérieures.

En l'occurrence, nous utilisons un réseau pré-entraîné sur la base Places. Si les données

de base sont accessibles, alors on peut adapter le réseau au domaine. Puis, le réseau peut

être une nouvelle fois adapté avec les exemples support. Dans ce contexte, on introduit

un autre nouveau mécanisme d'attention spatiale basé sur le classi�eur pré-entraîné,

permettant de focaliser l'attention sur les régions pertinentes de l'image. On montre que

dans tous les cas, l'utilisation d'un réseau pré-entraîné est béné�que. De plus, on montre

que quelques exemples de bases su�sent pour augmenter grandement les performances.

Application aux images aériennes

Nous avons également testé une partie de nos méthodes sur une application spéci�que,

la classi�cation de véhicules rares dans des images aériennes. Cette tâche comprenant

des spéci�cités propres, telles que le faible nombre de classes ainsi que la présence d'une

classe de fonds, qu'une étude spéci�que future pourra étudier. On montre néanmoins

que la classi�cation dense semble être béné�que. De plus, les mécanismes d'attention
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semblent pouvoir se généraliser.
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In the last few years, novel computer vision algorithms have made huge progress

on popular tasks such as image classi�cation, object recognition or semantic segmenta-

tion, exceeding sometimes human visual abilities. The results of the annual ImageNet

challenge are a testament of those improvements. The objective of this challenge is to

develop models able to classify images into 1000 classes. Since 2015, the winning model

of this challenge has error rate smaller than that of the average human. Such successes

are due to a concordance of the use of novel large models, access to large-scale datasets,

and powerful hardware to manage the two. More speci�cally, computer vision research

has refocused on the use of deep neural networks. Those models contain millions of pa-

rameters, which, once tuned, can approximate a complex function capturing a high-level

concept such as an image belonging to a class. Tuning of the parameters is a machine

learning problem. A model is shown input examples and is trained by adjusting its

1
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Figure 1.1 � Standard structure for an image classi�cation model. The feature extractor
extract relevant description of the image, which is then treated by the classi�er. For
each class, the classi�er outputs the probability of the image being from the class.

parameters to perform better on those. To tune all parameters, it is necessary to use a

large number of examples. The use of deep models and their training is computation-

ally expensive. Modern GPUs allow paralellization of the underlying operations, which

makes them a viable solution.

1.1 Traditional framework

One of the challenges that come with designing models that automatically interpret

images is to �nd a good image representation. Images are digitally encoded as sequences

of discrete pixel values. Pixel information is hard to use for advanced tasks such as image

classi�cation. A higher-level representation is needed for such tasks, in the same manner

that humans are able to recognize objects because they can identify their attributes in

the scenes.

For this reason, common computer vision models contain two stages. First, a feature

extraction model transforms the pixel representation to features representation. Feature

representations are not meant to perfectly describe the images at pixel level, rather carry

semantic information about what is in the image they encode.

Many image representation functions have been proposed. They can either be hand-

crafted, that is, have a �xed de�nition based on expert understanding of the structure

of images, or learning-based, where the function is learned on a set of image examples.

A recent survey of those methods can be found in [Ma+21].

Once the image is converted to a higher-level representation, another model treats it

to complete the desired task. In the case of image classi�cation, the classi�er outputs a

score or probability of belonging for each of the possible classes. This general framework

is illustrated in Figure 1.1.
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1.1.1 Hand-crafted descriptors

Hand-crafted descriptors can either be global, in which case a unique feature vector

represents an image, or local, in which case the regions of interest are each encoded

separately. Local featurescan be used independently to perform region-to-region match-

ing between two images, which can be useful for tasks such as image retrieval, stereo

vision, object tracking or panorama stitching. When aggregated, local features produce

powerful global representations.

Local features can be computed densely using a grid �tted on the image [TLF08],

or be computed on a selection of regions of interest. In the latter case, an extra step

of locating the regions of interest is introduced. Detectors aim to detect regions of the

image that can be consistently detected on di�erent views of the same scene, which are

salient regions of the image. More speci�cally, most methods result in �nding sharp

edges or corners in the image. A common way of performing this detection is to track

sudden variations of intensity, as done in the popular Harris corner method [HS88].

Alternatively, hybrid methods between dense and sparse local features have also been

proposed [Tuy10; Isc+15].

Representations are then obtained by applying local �ltering operations. That is,

pixel values are combined with their neighbors by application of a �lter. Filters reveals

low-level image information such as frequency and scale. SIFT [Low04] and HOG [DT05]

accumulate compute the direction of the change in intensity in small patches then ac-

cumulate them into histograms. GIST [OT06] uses a Gabor �lter bank that act as

directional edge detectors, in doing so information about the direction of edges is ex-

tracted similarly to [Low04]. Evidences show that the early visual cortex of mammals

uses similar space frequency decomposition [Eve+98].

Multiple aggregation methods have been proposed to go from local features to a

global representation. Bag of words is a popular method [Wil+04]. After computing

local features of many di�erent images, they are grouped together to produce a vocabu-

lary of features. Given this vocabulary, local features of a given image are approximated

by the closest visual word. The global representation is the frequency of appearance

of each visual word, e�ectively describing what appears in the image. The VLAD ap-

proach [Jég+10] also builds a vocabulary, however the �nal global representation is given

by the sum of the residuals between the local features and the closest visual word.
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1.1.2 Classi�ers

Representations of images are then input to a model that aims to achieve the desired

task. In the case of image classi�cation, the task is to predict the class of the input image.

Classes being the category of the image. Class de�nition depends on the intended task.

For instance, in an animal classi�cation context, classes can be very broad ("animal"

and "other"), individual animal ("cats", "dogs"...), or �ne-grained, for instance all di�er-

ent subspecies. As shown in Figure 1.1, the feature representation is the input to the

classi�er, which usually outputs probabilities or scores for the considered classes. Such

classi�er must be specialized to the task. To learn a classi�er, a set of image examples

with the corresponding labels, called training dataset, is needed as prior knowledge of

the task. The training dataset is used for learning a machine learning model. Parameters

of the classi�er model are tuned in accordance with the training examples.

Among the possible classi�ers for image classi�cation,naive Bayes [GHM07] and

support vector machines(SVM) are linear. They require few data to train but require a

good representation of the images. More speci�cally, image representations of di�erent

classes should be separable by a hyperplane. Non-linear classi�ers such asmulti-layer

neural networks can handle intertwined representations of di�erent classes. However,

they require more examples to train. SVMs can also be made non-linear by the use of

kernels; the choice of kernel requires prior knowledge of the task. Non-parametric classi-

�ers such as thenearest neighbor classi�er [Men+13] does not use trainable parameters.

Rather, information about the examples are stored for future use. Performance is highly

dependent on the quality of the representation and they are expensive as they rely on

comparisons with all seen examples.

1.2 Deep learning methods

The hand-crafted features discussed above are �xed functions, designed by researchers

to extract relevant information from images. The representation is not adapted to the

images used for the desired tasks. Ideally, we would like a representation of the image

that is optimal for the task. This is performed by replacing the hand-crafted extractors

by learned representations. In particular, convolutional neural networks have recently

proven to produce powerful representations of images. On top of being able to replace the

feature extractors, neural networks can also �t the role of the classi�er. The framework

of Figure 1.1, consisting of separate feature extractor and classi�er, is simpli�ed to a

single model performing both tasks.
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Neural networks are composed of parameterizable computing units calledneurons.

Neurons are organised inlayers. Neurons take as input the output of the previous layers,

so that the data is sequentially processed layer per layer. When handling image inputs,

convolutional neural networks (CNN) are the structure of choice. In those networks,

some connections between neurons are disabled, implementing convolution operations

that can extract localized information in the image. As a result, the �rst layer of a

convolutional neural network extracts low-level localized information about the input

image. Subsequent layers combine the information to extract higher-level and less lo-

calized information. Recent neural network architectures contain many layers, hence

the name deep neural networks. The number of parameters they contain is in the order

of millions. Careful tuning of those parameters must be performed using optimization

algorithms.

The huge number of parameters of deep neural networks allow them to create pow-

erful extractors. However, strong extractors can only be achieved with a strong training

of the parameters. When training labeled data is available, parameters can be obtained

through supervised learning. When training, the network learns to map an image to

the corresponding output label. Parameters are learned by iteratively passing through

the training data. A loss function determines the performance of the parameters. Op-

timization algorithms are used to update the parameter to minimize the loss function,

resulting in maximization the performance over the whole dataset.

1.3 Few-shot classi�cation

Deep learning models that can compete with human image classi�cation abilities require

a huge amount of labeled data. For instance, the ImageNet dataset [Rus+14] contains

millions of annotated images that are used during the training stage. The large amount

of training images is important for high performance on the training set after training

to generalize to high performance on new data. The huge amount of data needed for

training can be problematic in many practical cases where such data is not accessible.

For this reason, reducing the need for supervision is becoming increasingly important.

This has motivated works on unsupervised learning, where data is available but not

annotated, semi-supervised learning, where only part of the data is annotated, active

learning where the model chooses a subset of images to annotate ortransfer learning,

where knowledge gathered on another task is adapted for the current one. Still, in

those cases, examples available for training are in the order of thousands. Infew-shot

learning training data is annotated but limited to few examples, tens at maximum. The
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extreme case isone-shot learning where only one example per class is available.Zero-

shot learning also exists where no example for the task is given, however in this case,

information about the classes are given through a list of attributes, which make this

problem dissimilar to few-shot learning.

With so few data, the generalization problem between the training and testing dataset

is more challenging. The training data does not cover the range of appearance of the

class, so we might have to classify images with few similarities to what observed at

training. With so little supervision, training a deep learning model for feature extraction

is not feasible.

In contrast, humans display an impressive ability to learn to recognize new objects

and more generally to perform new tasks after encountering a limited number of exam-

ples. This can be explained by an accumulation of prior knowledge, allowing a better

understanding of scenes description as well as a general methods for performing tasks.

Similarly, few-shot learning methods use prior knowledge in accessing a larger dataset,

called base dataset, disjoint from the few-shot classes to learn a good representation func-

tion. Some methods also approach the problem throughmeta-learning [FAL17; RL17;

Wan+18a; NAS18], that is, learning how to solve similar problems. The latter methods

use the base dataset to create arti�cial few-shot tasks and learn models able to solve

those.

After this preliminary stage, that we will call the representation learning stage, the

few examples of the novel tasks are used to build a model that performs the few-shot

classi�cation task, similarly to what is done in transfer learning. The di�erence is that

usually transfer learning methods adapt the representation function of the image with

the new data by continuing learning the network parameters. This adaptation stage

is harder to perform in the few-shot case. The more parameters the machine learning

model contains, the more data is needed for tuning the parameters, otherwise the model

over�ts, that is, it performs well on the training data but does not generalize. Therefore,

adaptation is usually limited to building a classi�er for the few-shot classes on top of

the representation function from the representation stage. Classi�ers are simple machine

learning models or non-parametric classi�ers similar to the one used with hand-crafted

descriptors.

1.4 Objectives and contributions

Here we introduce the objectives of the thesis, namely, improving the representation of

images, providing solutions to adapt the representation to a few-shot task, and rethinking
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the role of data in a few-shot learning context. Our contributions related to those three

objectives are brie�y introduced, a more detailed description is given in chapter 2.

1.4.1 Representation

With impressive results of deep learning methods for classi�cation, few-shot learning has

recently become a very active area of research. Early works treat the problem as �nding

new optimization methods that are suited for learning on small data using meta-learning

methods. Meta-learning is appealing for few-shot problems, because it allows building a

wide variety of few-shot tasks from a large dataset, on which learning is straightforward

and training for a particular few-shot task is fast, given the limited training set. An

underlying hypothesis is that learning on multiple tasks results in models that are task-

independent. However, since the tasks are generated from a limited base dataset, there is

no guarantee that the learned model is not specialized for base classes. We argue that the

most crucial element for few-shot learning is learning a good representation, which has

recently been advocated in other works [Che+19; Wan+19; Gid+19; Man+20; Tia+20].

It can be achieved through meta-learning but also through simple methods that we will

discuss in this thesis. In representation learning, we use the base dataset. Such dataset

is said to be in-domain, that is, containing images from classes disjoint from the few-

shot classes, but similar in content. For instance, when we learn a representation using

images of some animal species, this function should generalize to other unseen animal

species that correspond to the few-shot task.

In this thesis, we aim at improving the representation by studying for the �rst time

local representation in the context of few-shot learning. In particular, during the repre-

sentation learning stage, we take advantage of the CNN returning dense local features of

the image to devise a training method, calleddense classi�cation. Dense classi�cation

encourages learning a wide variety of local details for maximum generalization to other

classes. When handling examples of novel classes, we also propose spatial attention

mechanisms that �lters out background information, resulting in a more relevant repre-

sentation of novel classes. Furthermore, using local representations of few-shot images

allows to classify based on local similarities between examples, which we show to be a

good classi�cation method.

1.4.2 Adaptation

The representation function learned during the representation learning stage is based

solely on examples from the base dataset. Thus, it is optimal for treating images from
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this dataset. Assuming the base classes are diverse, we can hope to approach a task-

independent function. For instance, in the example of animal species, if the base dataset

covers all types of animals, the learned representation will probably generalize to the an-

imal classes of the few-shot dataset. Then, a simple solution is to use the representations

of few-shot examples to build a simple classi�er without modifying the representation

function. However, even better than a task-independent representation would be to

have a task-speci�c function for the few-shot task. This is generally performed in trans-

fer learning methods by adapting the representation function in a new training phase.

In the case of few-shot learning, such adaptation is risky as it is prone to over�tting.

For this reason, adaptation is rarely attempted in few-shot learning methods outside of

meta-learning.

We propose two methods to adapt the representation function to the few-shot tasks

without over�tting and without resorting to complex meta-learning methods. First,

implanting, limits the number of task speci�c parameters to �ne-tune with the few avail-

able data, simplifying the adaptation process. Alternatively, we show that performing

standard �ne-tuning can be bene�cial if training is limited to a few parameter updates.

1.4.3 Role of data

In the standard few-shot learning setting, we have a fairly large set of labeled in-domain

images as base dataset, then queries are treated independently at inference. We argue

that this setting is often unrealistic. Having access to a base dataset of labeled in-domain

examples can be di�cult, especially in the case of few-shot learning where access to data

is rare by de�nition. Moreover this setting ignores extra data that can be accessed in

real life, for example, other distinct datasets may be abundant, or several queries may

be available at the same time.

In this thesis, we expand on the representation learning stage by studying the special

case where in-domain data is not available or limited to a few examples, introducing a

new few-shot learning setup calledfew-shot few-shot learning. In this case, we propose to

take advantage of a large-scaleout-of-domain dataset, that is, with images from classes

outside of the few-shot classes domain. We discuss the impact of the �nal classi�cation

accuracy on the few-shot task. We also also deviselocal propagation, a method that can

handle classi�cation of multiple images at once if available, leveraging other queries as

unlabeled data for improved performance.
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1.5 Outline

The �rst chapters propose solutions for the standard few-shot learning setting, with a

focus on representation learning and adaptation with the few examples. In the subse-

quent chapters, we expand the scope beyond the standard setting to study more realistic

settings.

In chapter 2, we introduce the few-shot learning problem and approaches to tackle

it. We describe and discuss existing works that are relevant to the subsequent chapters.

We then introduce our contribution and position them in the literature.

In chapter 3, we focus on the �rst stage of few-shot learning methods where we use

data from well-represented classes to learn a representation of images. We discuss the

choice of model and the training procedure. We also propose a novel method in which

the training uses densely computed local descriptors. Using this training method, we

observe a better generalization from the large dataset to the few-shot dataset.

In chapter 4, we tackle the question of the possible adaptation of the representation

function to the few-shot task by utilizing only the few examples available. We propose

two possible solutions. The �rst one expands the trained network by adding a limited

set of parameters trained on the few-shot data. The second consists in adjusting slightly

the parameters of the network by few steps of optimization using the few-shot data.

Both methods successfully create task-speci�c representation functions that ultimately

result in higher accuracy on the few-shot tasks.

In chapter 5, we study a special case of the few-shot classi�cation problem where

multiple images are to be classi�ed at the same time. We propose a model that takes

advantage of the availability of other unlabeled images. In particular, we draw a connec-

tion between local representations of labeled and unlabeled images. We then propagate

the label information to all representations at once. In this context, we also introduce a

spatial attention mechanism that �lters out irrelevant background.

In chapter 6, we propose a novel few-shot setting to address cases where the in-

domain data used to learn the representation in the �rst stage is few. We propose to

use a pre-trained network for the representation function. This network is then adapted

to the domain if in-domain data is available before adapting again to the few-shot task

using the few examples. In this context, we propose another spatial attention mechanism

that takes advantage of the pre-trained classi�er.

In chapter 7, we focus on a speci�c aerial images classi�cation task. We apply

methods from the other chapters and discuss their e�ectiveness in such task.
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2.9.4 Using extra unlabeled data . . . . . . . . . . . . . . . . . . . . 32

In this chapter we formally introduce the necessary background for the rest of the

thesis. First, we formally introduce the problem of few-shot learning. Then we explain

the general frameworks that few-shot learning methods follow. We discuss the most

in�uential existing works, focusing on those that are linked to the work of the thesis.

We also present our solutions and position them against the literature.

2.1 Fundamental concepts

We consider an image classi�cation problem based on supervised learning. We are given a

collection of n training examplesX := ( x1; : : : ; xn ) with each x i 2 X , and corresponding

labels Y := ( y1; : : : ; yn ) in c classes. The objective is to build aclassi�er function

f : X ! Rc that maps the input to class con�dence. Then a prediction for input x 2 X

is made by assigning the label of maximum con�dence,arg maxi f i (x)1.

We aim at �nding a model that minimizes the expected riskR, that is, the expectancy

of the loss over the complete distribution of images P(x,y).

R(f ) =
Z

`(f (x); y)dP(x; y) = E[`(f (x); y)] (2.1)

With ` : Rc � Rc ! R a loss function that expresses the discrepancy between a prediction

and a label vector such as thecross-entropy loss

`(f (x); y) = � log(f y(x)) : (2.2)

The optimal model is noted f � . Search of the optimal function is limited by the consid-

ered model hypothesis search, we notêf the function that minimizes the expected risk

in the search space. Because the probability distribution of images is unknown, we can

only approximate the expected risk with the empirical risk

RX;Y (f ) =
1
n

nX

i =1

l (f (x i ); yi ): (2.3)

We note ~f the function inside the search space that minimize the empirical risk. As-

suming we �nd ~f through optimization of the parameters on the training dataset. The

1Given vector x 2 Rm , x i denotes the i -th element of x . Similarly for f : A ! Rm , f i (a) denotes the
i -the element of f (a) for a 2 A.
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error with respect to f � is

E[R( ~f ) � R(f � )] = E[R(f̂ ) � R(f � )] + E[R( ~f ) � R(f̂ )] = Eapp + Eest: (2.4)

Eapp corresponds to theapproximation error that relates to the ability of the hypothesis

space to approximate the optimal solution. Eest corresponds to theestimation error

which re�ects the impact of using the empirical risk instead of the expected risk.

The approximation error depends on the size of the hypothesis space. The larger

the hypothesis space is, the smaller is this error. In particular, deep learning models

used for state of the art image classi�cation tasks can approximate a wide range of

functions [Elb+20], making the approximate error theoretically small.

On the other hand estimation error grows with the size of the hypothesis space [BB08].

In general, it can be reduced using a large number of examples to train on. However,

in the case of few-shot learning the available examples are only few. In this case, em-

pirical risk minimization fails as ~f is not a good approximation of f̂ [Wan+20a]. This

phenomenon is calledover�tting . As a result learning from scratch to solve an image

classi�cation on only the few available examples is not feasible.

In order to mitigate those limitations, prior knowledge has to be used in complement

to the few examples in the form of extra data. The extra set of data should be large

enough to compensate for the lack of supervision for the few-shot task. Depending on

the few-shot method, prior knowledge is used di�erently. In all cases, it is at least used

to restrict the size of the hypothesis search which limits the estimation error.

2.2 Few-shot classi�cation problem formulation

We are given a collection oftraining examplesX := ( x1; : : : ; xn ) with each x i 2 X , and

corresponding labelsY := ( y1; : : : ; yn ) with each yi 2 C, where C := [ c]2 is a set of

base classes. This training data is prior knowledge that can be used to learn a generic

model that will then be used to learn new tasks. The model can be a task agnostic

representation function or a training method in the case of meta-learning.

For each few-shot learning task, we are given a collection of fewsupport examples

X 0 := ( x0
1; : : : ; x0

n0) with each x0
i 2 X , and corresponding labelsY 0 := ( y0

1; : : : ; y0
n0) with

each y0
i 2 C0, where C0 := [ c0] is a set of novel classesdisjoint from C and n0 � n.

Support examples are used in combination with the generic model learned on base data

to perform the few-shot classi�cation task.

2We use the notation [i ] := f 1; : : : ; i g for i 2 N.
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Classi�cation is called c0-way where c0 is the number of novel classes; in case there is

a �xed number k of support examples per novel class, it is calledk-shot. Typically, few-

shot models are evaluated with between one and ten shots. As in standard classi�cation,

there is usually a collection of queries for the evaluation of each task. Few-shot learning

is typically evaluated on a large number of new tasks, with queries and support examples

randomly sampled from (X 0; Y 0).

2.3 Frameworks

2.3.1 Traditional framework

In this section, we introduce the standard framework that most non-meta-learning few-

shot learning methods follow.

Learning stages We can distinguish two stages of learning. The �rst stage consists

in learning a representation of the domain of imagesX . This stage uses images from

the base classes only. It should be general enough to be used for new tasks. Training is

performed by learning to solve a task or multiple tasks built from the base class dataset.

We call this stage the representation learning stage.

The second stage consists in using the support examples to learn a classi�er that maps

a new query example from X to a label prediction in C0. It does not exclude continuing

representation learning on the support examples. We refer to the latter classi�er learning

as adaptation stage.

Network model We consider a model that is conceptually composed of two parts: an

embedding network and a classi�er. Theembedding network� � : X ! Rr � d maps the

input to an embedding, where� denotes its parameters. Since we shall be studying the

spatial properties of the input, the embedding is not a vector but rather a tensor, where

r represents the spatial dimensions andd the feature dimensions. For a 2d input image

and a convolutional network for instance, the embedding is a 3d tensor inRw� h� d taken

as the activation of the last convolutional layer , wherer = w� h is the spatial resolution

and 
 := [ w] � [h] is the spatial domain. The embedding tensorF := � � (x ) contains a

feature vector F (r ) = � � (x )( r ) 2 Rd for each spatial position r 2 
 . In most cases, the

spatial resolution is reduced tor = 1 , transforming the tensor to a vector, using spatial

pooling operations such as average pooling or max-pooling.

The classi�er can be of any form and depends on the particular model, but it is

applied on top of � � and its output represents con�dence overc (resp. c0) base (resp.
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novel) classes. If we denote byf � : X ! Rc (resp. Rc0
) the network function mapping

the input to class con�dence, then a prediction for input x 2 X is made by assigning

the label of maximum con�dence, arg maxi f i
� (x)

2.3.2 Meta-learning framework

Meta-learning refers to models that aim at "learning to learn". This idea comes from

the limitations of the machine learning models, one of them being the di�culty of learn-

ing with few data. In particular, here, the goal is to learn how to learn with only few

examples, which is not possible with usual algorithms. Meta-learning models have been

proposed before the rise in popularity of deep learning [Sch87; BBC91] but have recently

become popular solutions for few-shot learning, as well as reinforcement learning [FAL17;

Wan+17b; XHS18], neural architecture search [Kim+18; Lia+20], unsupervised learn-

ing [Met+19; AS19] and other tasks.

Meta-learning models contain two parametric models, thelearner and the meta-

learner. The learner learns to perform the task based on a given dataset and a learning

algorithm. Its training process is the inner loop of the meta-learning methods. The

meta-learner is de�ning the learning algorithm used for the inner loop. The meta-

learner parameters are learned as well, using a loss function that re�ects the quality

of the optimization of the learner. Parameters that are learned through meta-learning

can be for instance, a network initialization [FAL17], a model that generate update

rules [RL17], a generator that generates additional data [Wan+18b].

Speci�cally, in the case of few-shot classi�cation, the meta-learner learns a learning

method that allows the learner to learn new tasks with few examples. Therefore, the

expected risk of the meta-learner is the expectancy of the trained learner over the few-

shot task distribution p(T):

R(� meta ) = E[`(f T ; � meta )]; (2.5)

with f T the learner classi�er after training on support data of task T, and � meta the

parameters of the meta-learner. Training is performed through empirical risk minimiza-

tion by sampling tasks from the base dataset. Tasks can be sampled by sampling a

subset of classes and then sampling examples inside those classes. Few examples are

used as support in the learner training, some extra examples are used for evaluation of

the learner for training the meta-learner.

Learning iteratively on sampled tasks from the base dataset is calledepisode learning.

The operation is repeated on many di�erent tasks, while the meta-learner adjusts the
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learning algorithm. After meta-learning is completed, a novel task can be learned by

application of the training strategy.

In the case of episode learning, there is no methological distinction between what

is performed on the base dataset and on the test dataset. For the sake of simplicity,

while describing such methods, we name an episode support setX 0, and corresponding

labels Y 0 with each y0
i 2 C0, even though when meta-learning, the set is sampled from

the larger set X with labels Y in classesC

2.4 Main approaches

This section presents the most in�uential approaches for few-shot learning, on which our

work is based on.

2.4.1 Learning to compare

Solving a few-shot classi�cation problem can be solved by learning to compare images.

Indeed, assuming we have access to a comparison function that re�ects the semantic

similarities between images, for a given query, we can compare it to labeled references

for each class, and then aggregate all similarities to form a prediction. References can

be all supports examples, as in nearest-neighbor classi�cation [BSI08b], or aggregated

example representations [SSZ17]. In this section we present in�uential methods for few-

shot learning where the base class dataset is used to learn explicitly to correctly compare

images. We can consider all those methods asmetric learning methods. Initially, metric

learning aims at learning comparison functions between examples, but in practice, it

usually focuses on learning a good embedding function and then using a �xed function

for comparison in the resulting feature space.

Siamese networks A siamese networkmodel learns to compare two examples [Bro+94]

by mapping them to a common feature space and learning a comparison function. Koch

et al. [KZS15] proposed to use this model for one-shot learning. They use a CNN ar-

chitecture with a fully connected layer on top, which maps an input x to � � (x). During

training, pairs of images are sampled from the base classes. Two examples from the

same class form a positive pair while examples from di�erent classes form a negative

pair. Positive pairs are assigned label1 and negative pairs label0. The prediction for a
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given pair of examples(x1; x2) is

p := S

 
X

i

� i j� i
� (x1) � � i

� (x2)j

!

; (2.6)

where S is the sigmoid function and � j are parameters of the comparison function.

Learning of the network parameters� and comparison function � , is performed through

minimization of a regularized cross-entropy loss function

`(x1; x2) := y(x1; x2) log p(x1; x2) + (1 � y(x1; x2)) log(1 � y(x1; x2)) + R; (2.7)

with R a regularization term. When presented with a novel one-shot problem, the queries

are assigned the class for which the support example has maximum similarity.

Relation networks Building on siamese networks, Sunget al. [Yan+18] proposedre-

lation network. Similarly to meta-learning, training is performed on episodes mimicking

few-shot tasks, sampled from the base dataset. However, in this method, no learn-

ing happens at episode level since the examples are classi�ed by comparing the query

representation with support representations as done in siamese networks [KZS15]. The

embedding network is a CNN, so the representations of images are feature maps inRr � d.

For an episode, support examples and the query examples feature maps are computed.

When more than one support per class is given (k-shot withk > 1), representations of

support examples from each class are average to get a unique representation per class.

Contrary to siamese networks where comparison between representations is performed

by a single layer (2.6), relation networks use a multi-layerrelation module. The relation

module is a CNN as well, it takes as input the concatenation of the query representa-

tion and a class representation and generates the relation score. This is repeated for all

classes in the episode. Optimization of both the embedding network and the representa-

tion module is performed using the mean square error loss with ground truth 1 for the

positive class and 0 for the negative class:

`(x ; y) := r y (x ) � 1 +
X

i 2 C0ny

r i (x ); (2.8)

with r i the relation score with classi . Classi�cation decision is done by assigning the

class with maximum relation score.
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Matching networks Vinyals et al. [Vin+16] proposed matching networks as a so-

lution for learning the embedding function also based on episode learning. Again, no

learning happens at episode level, examples are classi�ed with a non-parametric clas-

si�er. In particular, support examples features are extracted by a CNN model � sup.

Query examples features are either extracted with� query , which is either the same CNN

or a bidirectional long-short term memory [HS97] that combines them with the support

examples context. In all cases, a pooling operation reduces the spatial dimension of the

output of the network, making the representation vectors in Rd. For a given query exam-

ples x with representation � query (x ), a similarity score with all support representations

� sup(x0
i ) is computed:

a(x ; x0
i ) :=

exp(cos(� query (x ); � sup(x0
i )))P

j exp(cos(� query (x ); � sup(x0
j )))

(2.9)

where cosis cosine similarity. The network function is the aggregation of the the scores

for all support examples

f � (x) :=
n0

X

i =0

a(x; x i )yi : (2.10)

The embedding functions are trained using minimization of the cross-entropy loss.

Naïve Bayes nearest neighbor Li et al. proposed a method similar to matching

networks in their revival [Li+19b] of the classic image-to-class approach [BSI08a], in

that the similarities between query representations and support representations are ag-

gregated to obtain a class score. The main di�erence is the use of local descriptors of

the images instead of global ones. Here, no pooling is performed on the feature maps.

Pixels of the feature maps are considered as local representations of the images to be

used independently. More formally, givenX 0; Y 0 and an index set S � N 0 := [ n0], let

the set Sj := f i 2 S : y0
i = j g index the support examples inS. One collects, for each

classj 2 [c0], the featuresVj := f � � 0(x0
i )( r )gi 2 Sj ;r 2 
 of all spatial positions of all support

examples labeled in classj . Then, given a queryx 2 X with feature tensor F := � � (x ),

for each classj , a score

sj (F ) :=
X

r 2 


X

v 2 NN Vj (F (r ))

cos(F (r ); v) (2.11)

is de�ned as the average cosine similarity over the featuresF (r ) at all spatial positions

r 2 
 and their k-nearest neighbors NNVj (F (r )) in Vj . Then, the prediction for x is the
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class of maximum score.

Prototypical networks Another popular episode based learning method, calledpro-

totypical networks, has been proposed by Snellet al. [SSZ17]. While [Vin+16] use simi-

larity measures between a query and each support representations, in prototypical net-

works, a single vector is used as reference for the each novel class. The reference vector

is called prototype.

More formally, given Sj an index indexing the support examples from classj . The

prototype of classj is given by the average of those examples

p j :=
1

jSj j

X

i 2 Sj

� � (x0
i ) (2.12)

for j 2 C0. Then, the network function is de�ned as 3

f � (x ) := �
�
[s(� � (x ); p j )]c0

j =1

�
(2.13)

for x 2 X , where P := ( p1; : : : ; pc0) and s is a similarity function which is generally the

negative squared euclidean distance, and� : Rm ! Rm is the softmax function de�ned

by

� (x) :=

"
exp(x j )

P m
i =1 exp(x i )

#m

j =1

(2.14)

for x 2 Rm and m 2 N.

Graph-base approaches Garci and Bruna showed that few-shot learning tasks can

be represented by a graph where each node represents an example [GB18]. Common

to other methods, examples are �rst mapped to embedding using a CNN embedding

network. Then a graph with all examples is constructed. Node features of the graph

are given by the concatenation of the representations of the examples and the associated

one-hot encoded labels. They use agraph neural network (GNN) [GMS05; Sca+09]

to operate on the graph, computing for each node a prediction on the classi�cation

into the novel classes. Graph neural networks consist in multiple layers. In each layer,

an adjacency matrix is computed using a parametric comparison function. Then the

adjacency matrix is used to aggregate node features, that is, combining features of

neighbors in the graph. The aggregation function is also parametric. Both functions'

3We de�ne [e(i )]n
i =1 := ( e(1); : : : ; e(n)) for n 2 N and any expressione(i ) of variable i 2 N.
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parameters are learned with backpropagation as in standard neural networks. Garci

and Bruna showed that the above few-shot methods can be implemented with GNN.

For instance, siamese networks [KZS15] corresponds to a GNN with �xed comparison

function. Similarly, prototypical networks [SSZ17] consists in aggregation by averaging

of the support examples with the same label, then similarity computation.

An advantage of graph-based methods is the possibility of taking advantage of extra

unlabelled data. Any extra unlabelled example can be added to the graph which allows

semi-supervised learning[GB18] as well astransductive learning [Liu+19a]. Transductive

learning being the task where multiple queries are to be classi�ed instead of one in the

standard setting.

2.4.2 Transfer learning methods

Above methods focus on using the base dataset to learn a representation of images

together with a comparison function directly applicable to few-shot tasks. In contrast,

transfer learning methods consist in learning a model to solve asource taskon a large

dataset, then the model is adapted for thetarget task using a smaller dataset. Typically,

with deep learning based models, after learning the source task, the early layers of the

network implement a generic embedding function that is not speci�c to the source task.

Adaptation to the target task is done through �ne-tuning of the last few layer of the

network [Oqu+14]. Few-shot learning is the extreme case of transfer learning where the

task dataset is very small.

Learning with imprinted weights Qi et al. [QBL18] proposed a simple approach

where the representation learning stage consists in learning to classify into the base

classesC. In particular, they use a fully-connected layer without bias as a parametric

linear classi�er on top of the embedding function � � followed by softmax and they train

in a standard supervised classi�cation setting. More formally, let w j 2 Rr � d be the

weight parameter of classj for j 2 C. Then, similarly to (2.13), the network function is

de�ned by

f �;W (x ) := �
�
[s� (� � (x ); w j )]c

j =1

�
(2.15)

for x 2 X , whereW := ( w1; : : : ; wc) is the collection of class weights ands� is the scaled

cosine similarity

s� (x ; y) := � ĥx ; ŷ i (2.16)
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for x ; y 2 Rr � d; x̂ := x=kxk is the `2-normalized counterpart of x for x 2 Rr � d; h�; �i and

k�k denote Frobenius inner product and norm respectively; and� 2 R+ is a trainable

scale parameter. Then, training amounts to minimizing over�; W the cost function

J (X; Y ; �; W ) :=
nX

i =1

`(f �;W (x i ); yi ) (2.17)

where ` is the cross-entropy loss.

Given a new task with support data (X 0; Y 0) over novel classesC0, class prototypes

P are computed onN 0 according to (2.12). They can replace class weightsW in the

classi�er, in which case it is equivalent to using a prototype classi�er, with scaled cosine

similarity as similarity function. Alternatively, prototypes can be imprinted in the clas-

si�er, that is, W is replaced byW 0 := ( W; P). The network can now make predictions

on n + n0 base and novel classes.

Few-shot learning without forgetting Gidaris and Komodakis [GK18], concur-

rently with [QBL18], developed a similar model that is able to classify examples of both

base and novel classes. The main di�erence to [QBL18] is that they learn afew-shot

classi�cation weight generator module to generate novel classes weights, rather than us-

ing prototypes. The weight generator is a parametric classi�er that combines support

representations and base class weights. Training of the weight generator requires an

additional training phase and is achieved through episode-based learning.

Comparison with learning to compare approaches Where learning to compare

approaches explicitly enforce good comparison in in the feature space, in the case of

transfer learning methods, the embedding function is implicitly learned on a disjoint

multiclass classi�cation problem. One might expect that the former models result in

higher performance on the few-shot tasks. However, surprisingly, the latter models tend

to perform as well or better as shown in [Che+19; Wan+19]. In particular, Wang et

al. proposedSimpleShot [Wan+19], a simple model similar to [QBL18], except for the

choice of inverse squared euclidean distance as similarity function and the centering of

the feature representation. Their extensive experiments show impressive performance

compared to more complex meta-learning methods.
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2.4.3 Adapting the representation to the few-shot task

The �rst stage of learning uses the the base dataset to learn a good representation of

the images, in some cases together with a generic way of comparing data. An issue

of reusing the representation on a new few-shot task is the lack of adaptation to the

available support examples. Even if this data is few, using it to create a task-speci�c

model is appealing. The intuitive approach is to have an additional training stage on

the support examples. Fine-tuning of the last few layers of the network is typically

performed in transfer learning methods [Oqu+14]. The risk here is to over�t to the

support examples, which would result in worse generalization on the queries. Here we

present relevant methods for adapting representation functions.

Base and novel classes �ne-tuning For methods that allow classi�cation into both

base and novel classes [QBL18; GK18], it is possible to �ne-tune the model using (2.17)

on the union of the base dataset and the support examples. In this case a class balancing

method should be used. For instance, [QBL18] oversamples the novel classes so that the

distribution of labels in a sampled training batch is uniform across all classes. This

method is speci�c to the problem of classi�cation into all classes. Moreover, it requires

to have access to the base dataset to perform a new expensive training stage for every

few-shot task, which is not standard.

MAML Finn et al. proposed model agnostic meta-learning (MAML) [FAL17], a meta-

learning method in which the meta-learner is learning a good initialization for fast adap-

tation of the model on the support examples. It uses a fully-connected layer as classi�er.

At adaptation, the embedding function is �ne-tuned for each new task using (2.17) only

on the novel class data, but for few stepssuch that the classi�er does not over�t. In

[FAL17], the whole embedding network is �ne-tuned, while in [Sun+19], �ne-tuning is

limited a scale and shifting parameters at every layers to further prevent over�tting.

More formally, if we consider a learner on taskT that performs a single gradient

update of size� , the parameters � of the learner becomes� 0

� 0 = � � � r � `T (f � ); (2.18)

with `T the cross-entropy loss computed on the support set ofT. During meta-learning,

the initial parameters � are updated based on the loss of multiple learners that learned
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with task Ti sampled from the task distribution p(T)

�  � � � r �
X

Ti � p(T )

`Ti (f
0
� ); (2.19)

with � the size of the meta-learner update. Therefore, the meta-learning stage of MAML

requires to compute second derivatives which is computationally expensive. A �rst order

approximation can be used instead to solve this issue [FAL17; NAS18] without loss of

performance.

Meta-Learner LSTM Ravi and Larochelle go a step further into the conditioning

of the learner training by the meta-learner. They observe that traditional optimization

algorithm like stochastic gradient descent(SGD) is not suited for few-shot learning.

In [RL17], they propose to train an LSTM [HS97] to predict a suitable update rule for

the parameters. The gradient update (2.18) is replaced by

�  g � � � i � r � `Ti (f � ) (2.20)

where g and i are parametric are the output of parametric regressors with input their

previous state and (r � `Ti (f � ), `Ti (f � ); � and � is the Hadamard product. g not being

�xed to an all-one vector allows fast forgetting of the parameters when the loss is high

even with low gradients. i replaces the �xed step size by a learned one. Meta-learning

parameters related to the the update rule are shared across all parameters of the network

for computation cost and storage reasons.

Learning to predict layer parameters Some methods propose to obtain task-

speci�c embedding functions by predicting some of their parameters based on the support

examples without actually training on them. In an early one-shot learning work [Ber+16],

Bertinetto et al. propose to learn a model that takes as input a support example and

predicts parameters of layers of the embedding network. Because of the large number of

weights of neural networks layers, it is impossible to naively predict all of them. Instead,

they design factoring methods for both convolutional layers and linear layers to limit the

output size of the predictor. Parameters of the predictor as well as the �xed parameters

of the embedding networks are learned with an episodic training strategy.

TADAM Similarly, Oreshkin et al. [OLR18] proposed task-dependent adaptive met-

ric (TADAM), which builds on prototypical networks [SSZ17] by introducing task con-
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ditioning, that is, including task-speci�c parameters in the embedding network. More

speci�cally, the mean of the prototypes are used as representation of the task. This

representation is input to task embedding networks(TEN) which predict, for each layer

of the embedding network, additional scaling and shifting parameters
 and � . Given a

speci�c layer with corresponding representation of examplesh, a new operation is added:

h  
 � h + �; (2.21)


 and � having as dimension the depth of theh. The modi�ed embedding network is

then used as in prototypical networks. The parameters of the TEN are learned during

episodic learning, at the same time as the embedding network.

2.5 Data augmentation

Data augmentation is a common preprocessing stage when training a model to classify

images. It usually consists in applying �xed transformations on images such as �ipping,

rotation, scaling, cropping, color jitter, e�ectively multiplying the number of training

examples. This augmentation makes the model invariant to such transformations, re-

sulting in better generalization. In the case of few-shot learning, such an augmentation

strategy is insu�cient as the main obstacle is that the lack of diversity of annotated

examples which those methods cannot �x. More complex methods have been proposed

to arti�cially augment the size of the support set.

Hallucination Hallucination refers to the process of applying transformations on an

example to generate another of the same class. In few-shot learning, we are interested

in applying such process on the support examples. In an early one-shot learning work,

Miller et al. proposed to learn a distribution of 2D transforms that models intra-class

variability in handwritten digits classes [MMV00]. When presented with a new character,

it can be augmented by sampling transforms in the learned distribution. For most

domains outside of characters, 2D transforms cannot capture the complex relationship

between di�erent examples in a class. Researchers produced solutions for hallucination

based on combining examples from the base classes and examples from the novel classes

to produce new relevant ones.

Hariharan and Girshick proposed to use a multilayer perception as generator for

hallucination [HG17]. Their idea is to capture analogies between examples from the

same classes in the base dataset. For instance, in the case of bird species categories, the
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relationship between a bird sitting on a branch and the same bird �ying is transferable

to other bird classes. The �rst step of the method is to mine analogies. For each base

class, they cluster the representations of all examples into a �xed number of clusters. For

each pair of cluster centroids(ca;1; ca;2) in class a, they search pairs from other classes

that correspond. Pair (cb;1; cb;2) from class b matches if cos(ca;1 � ca;2; cb;1 � cb;2) > 0.

All gathered quadruplets of the form (ca;1; ca;2; cb;1; cb;2) are used as training set for the

generator. It takes as input (ca;1; cb;1; cb;2) and output a prediction ^ca;2 of ca;2. The

training loss is a combination between the mean squared error function betweenca;2

and ^ca;2 and the classi�cation loss that results in applying the classi�er on ^ca;2 where

a is the ground-truth label. After training, a new example of the novel classes can be

generated from a support example representation� � (x0) by applying the generator on

(� � (x0); ca;1; ca;2) with the pair (ca;1; ca;2) randomly sampled from the mined pairs.

Similarly Schwarz and Karlinsky proposed to use a modi�ed auto-encoder called� -

encoder that takes as input a base class representation a novel classes representation,

and learn to adapt the base class example to the novel class [Sch+18]. Liuet al. go one

step further by performing class-to-class translation in the image space [Liu+19a].

Wang et al. proposed to train an hallucinator network with meta-learning. Taking

inspiration from the recent generation literature [Goo+14; KW14], the hallucinator takes

as input an example representation and a random noise vector. The output is used

as additional support, forming a larger support set. Training is performed conjointly

with an episode based method such as matching networks [Vin+16] or prototypical

networks [SSZ17].

Instead of hallucinating new examples, Afrasiyabiet al. proposed to reuse part of

the base class examples when learning to classify on the novel classes [ALG19]. For each

novel class, the closest base classes are selected. For a few-shot task, the embedding

network is �ne-tuned similarly to [QBL18]. An additional loss term is added to enforce

alignment of the support representation and representations of examples from related

base classes.

Using extra unlabeled data Some works propose to depart from the initial few-

shot learning setting to take advantage of extra unlabeled data. Renet al. de�ned a

new semi-supervised setting where on top of support examples, a set of unlabeled images,

some of which being relevant for the task, are available [Ren+18b]. They proposed a

modi�cation of prototypical networks [SSZ17] where the prototype computation (2.12)

is replaced by a weighted average of the representations of the support and the extra

examples representations. Weights for the extra examples are computed as a function
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of the distance to the original prototypes (2.12). A distractor class is also introduced to

prevent unrelated images from a�ecting the prototype classi�er.

Using extra unlabeled data is straightforward with graph-based methods [GB18;

Liu+19a]. Any extra unlabelled example can be added to the graph. Propagation of

label can also label the unlabelled data, making it a solution fortransductive few-shot

learning. Transductive few-shot learning being the task where multiple queries are to be

classi�ed instead of one in the standard setting. Douzeet al. employ a similar method

but take advantage of a very large-scale dataset of almost 100 millions images [Dou+18].

Iscen et al. [Isc+19b] used the same large-scale dataset, but applied �ltering based on

the names of the novel classes. Filtered examples are given a relevancy scores by a GNN

and are then used as noisy data for learning a prototype classi�er or a cosine classi�er.

2.6 Boosting few-shot learning

One of the key aspect of a successful few-shot learning method is to be able to learn a

robust embedding function. In this section we present methods that apply generalization

boosting methods which have been proven useful for other tasks, in the context of few-

shot learning. Boosting methods are applied in conjunction with a few-shot learning

method as introduced above.

Ensemble of models Quality of prediction can be improved by using an ensemble

strategy [HTF09]. Instead of training a single model, a set of models is used, predictions

are then aggregated to provide a single prediction which usually results in lower variance

and in some cases higher average accuracy. Dvorniket al. proposed to use an ensemble of

models for few-shot learning [DSM19]. Each model instance is trained like prototypical

networks [SSZ17]. Ensemble models can bene�t from the diversity of models predictions.

Diversity is encouraged by adding a speci�c term to the loss function. Speci�cally, given

two models output predictions p1 and p2 where predictions for the ground truth class are

put to 0, then cos(p1; p2) is a possible penalty. This penalty is minimal when predictions

for incorrect classes are orthogonal. At the same time, cooperation of models results in

faster and more stable training which is important with small ensembles. Cooperation

can be encouraged using the Kullback�Leibler divergence betweenp1 and p2 are an extra

loss term.

Strong performances from ensemble models come at the cost of multiplying the num-

ber of parameters and computing cost. In [DSM19], the ensemble model is used as a

teacher model in order to train a single model using knowledge distillation [HVD15].
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Namely, the average prediction output is used to guide learning of the single model.

Representation learning with additional unsupervised supervision Improving

the representation learning can be achieved through extra supervision. In particular, reg-

ularization methods are commonly used in classi�cation tasks [Sri+14; IS15; Ver+19].

Mangla et al. show that using manifold mixup [Man+20] during base class learning

results in a more generalizable feature space, ultimately resulting is higher few-shot ac-

curacy. Manifold mixup consists in adding a supplementary loss in the cost function

(2.17). Intermediate representation of examples are mixed together by linear interpola-

tion, and their labels are combined in the same way. The additional loss corresponds to

to the cross-entropy loss applied on the prediction of the interpolation. Enforcing grad-

ual prediction results in smoother decision boundaries in the intermediate representation

spaces.

Additionally self-supervisionmethods can be utilized to learn a richer representation

of images. Self-supervision consists in learning to solve auxiliary tasks on the input

images. Tasks are de�ned so that supervision is free of manual annotation. Possible

self-supervision tasks include prediction of a random rotation that have been applied in

images [GSK18], solving a jigsaw puzzle [NF16] or inpainting [Kra+16]. The assumption

is that those tasks help in learning generic features, useful for classi�cation into all

classes. In the context of few-shot learning, improved results have been observed by

learning to predict image rotations [Gid+19; Man+20], learning to predict relative patch

location [Gid+19] and learning to group together representations of augmented versions

of examples [Man+20].

2.7 Few-shot learning datasets

In this section we present the few-shot classi�cation datasets that we use in this thesis.

Those datasets or variations of them are the most used in recent few-shot learning works.

Datasets used for standard classi�cation are usually split into three subsets of images. A

portion of images from each class is dedicated to training the model, another is dedicated

to validating the parameters and the rest of images are used to test the model. In the

case of few-shot classi�cation, the splits of the dataset are performed on the classes.

Some classes are dedicated to base classes, some for validation and some for testing.

Even if they are to be used for few-shot, classes from the validation and testing set are

not few. At validation and test time, many few-shot learning tasks are sampled from

those sets to get statistically representative performance results.
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2.7.1 Omniglot

Early few-shot learning works [Lak+11; Vin+16; San+16; FAL17; SSZ17] were using

the Omniglot dataset [LST15]. This dataset contains 1623 hand-written characters from

50 alphabets, with 20 examples of each character. Images are black and white, with

resolution 105 � 105 but often resized to smaller dimensions. Rapidly, this dataset

has proven to be too easy, with simple methods such as prototypical networks [SSZ17]

giving 99% average accuracy on 5-way 1-shot tasks even with small neural networks as

embedding networks. Representation of such simple images was not a challenge, which

can explain why it was not the focus of early few-shot learning works.

2.7.2 Mini ImageNet

Mini Imagenet has become the most popular few-shot learning dataset. It was in-

troduced by Vinyals et al. [Vin+16] as a subset of the larger ImageNet ILSVRC-12

dataset [Rus+14]. It contains 100 classes with 600 images per class.Mini ImageNet

classes cover a wide diversity of content, containing some animal species classes, as well

as vehicles and clothes. While multiple splits have been proposed, the most common is

from Ravi and Larochelle [RL17]: 64 classes are used as base classes and 36 as novel, out

of which 16 for validation and 20 for testing. The original ImageNet dataset images have

large resolutions of various size. Few-shot learning works tend to use a resized version

of the images, which is usually84� 84 for older works or larger in more recent ones.

2.7.3 FC100

Oreshkin et al. [OLR18] introduced FC100, a few-shot version of CIFAR-100 [Kri09].

Similarily to mini ImageNet, CIFAR-100 has 100 classes of 600 images each, although

the resolution is 32 � 32. All classes are grouped into 20 super-classes, for instance

"dolphin" and "seal" are grouped into the aquatic mammals superclass. 60 classes are

used for training, 20 for validation, and 20 for testing. Those splits are made so that the

super classes are not separated, so the classes are more similar in each split, creating a

semantic gap between base and novel classes. Because of the small resolution and the

semantic gap, FC100 is a more challenging task thanmini ImageNet.

2.7.4 CUB

The topic of �ne-grained classi�cation has also been studied in a few-shot learning con-

text. Hilliard et al. [Hil+18] have proposed to use the CUB-200-2011 dataset [Wah+11]
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(a) Omniglot dataset

(b) FC100 dataset

(c) mini ImageNet dataset

(d) CUB dataset

Figure 2.1 � Examples of images from the few-shot datasets. Each image is from a
separate class to illustrate the inter-class diversity of datasets.

for few-shot learning. This dataset contains 11,788 images of birds across 200 classes

corresponding to di�erent species. A commonly used split is the one of Yeet al. [Ye+18],

where 100 classes are used as base classes and the remaining 100 as novel, out of which

50 for validation and 50 for testing. Depending on the work, some preprocessing can be

applied on the images such as cropping using bounding box annotations, and resampling.

2.8 Proposed pipeline

In this thesis, we use a simple pipeline where a query is mapped to a representation using

an embedding network, then a classi�er maps this representation to class predictions.

The pipeline is shown in Figure 2.2. We propose to add a spatial attention operation on

the representation to select relevant local regions in the image. The embedding function
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Figure 2.2 � Proposed pipeline for few-shot classi�cation. The feature extractor is trained
during representation learning on a prior dataset and then adapted on the support
examples. A classi�er for the few-shot classes is built from the support examples. A
spatial attention module is used to select relevant local representations. In blue are our
contributions to the pipeline with the chapter number where they are discussed.
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is learned on the base dataset using our proposed method,dense classi�cation. We

also explore a new setting where we use a prior dataset to pretrain the network, then

continue training on few base examples only. We also propose to adapt the embedding

function to the few-shot task, using the support examples. In the standard setting,

the classi�er is built from the support examples. We also study transductive few-shot

learning, where multiple queries are to be classi�ed at the same time. Below, we describe

our contributions in more detail.

2.9 Positioning

In this section we position our work in the related literature. At the beginning of

the thesis, we experimented with popular few-shot learning models at the time, such as

prototypical networks [SSZ17], matching networks [Vin+16] and cosine classi�er [QBL18;

GK18]. In parallel to [Che+19; Wan+19], we observed that methods that were explicitly

learning to compare examples by adopting an episode-based learning strategy were not

performing better than a simple cosine classi�er trained on multiclass classi�cation on the

base classes, combined with a prototype-like classi�er at test time. Those experiments

also revealed the uttermost importance of the choice of architecture to implement the

embedding network. From those observations, we decided to focus on improving the

representation of images rather than designing complex meta-learning models. We chose

to use the cosine classi�er model as base learning strategy for representation learning.

2.9.1 Local approach

In this context, in parallel to [Li+19a], we study for the �rst time spatially local infor-

mation in chapter 3. In our work, the pixels of feature maps are used as separate local

representations of the input example. With our proposeddense classi�cation method,

classi�cation of all local representations is encouraged, resulting in a more expressive

embedding function. Moreover, the distinction between local representations allows us

to design simple attention mechanisms in chapter 5 and chapter 6, able to select relevant

information in few-shot examples.

2.9.2 Embedding adapation

Our work is also related to methods that aim at producing task-dependent models.

More precisely, similarly to MAML [FAL17], we propose in chapter 4 to �ne-tune the

model on the few support examples alone. However, our method does not rely on meta-
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learning. We also proposeimplanting, that is, adding a limited number of task speci�c

parameters to the model. Only the added parameters are trained on the few support

examples, reducing the risk of over�tting. This method is related to the work of Sun et

al. [Sun+19] developed in parallel to ours, in which scaling and shifting parameters for

each layer of the embdedding network are trained on the support examples.

2.9.3 Transductive few-shot learning

For transductive few-shot learning, we propose in chapter 5local propagation as a solu-

tion to take advantage of the extra unalbeled data. Similarly to transductive propagation

networks [Liu+19c], we build a graph with labeled and unlabeled representations and

then propagate labels on it. However in our case, the graph is computed using local

representations of images, and we introduce a feature propagation step. Although trans-

ductive inference has a long history of research, this is the �rst time label propagation

is used for classi�cation.

2.9.4 Using extra unlabeled data

In chapter 6, we rede�ne the few-shot learning problem, introducing the few-shot few-

shot setting. The access to the base class data is limited to a few examples. Moreover,

we take advantage of prior knowledge in the form of a pre-trained classi�er on a large-

scale dataset from another domain. Using an extra large scale data has been studied

in [Dou+18; Isc+19b], however in those cases, extra data is used for enriching the support

set whereas we use it to to build the embedding network.
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The image space does not allow semantic separation of images which we would need

to solve a classi�cation task. Therefore, we need to convert the images to representa-

tions which are representative of their semantic. The machine learning approach to to

solve this problem is to learn this representation as a function� � whose parameters are

learned on relevant data. In a usual classi�cation problem, we would have access to many

labeled images coming from the classes that we want to classify. In this case, learning

33
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the representation and learning a classi�er for those classes can be done conjointly. A

classi�er being a model that assigns a class prediction to an image based on its repre-

sentation. Typically, the representation task would be implemented as a convolutional

network to which would be added a fully-connected network to handle the classi�cation.

This would allow end-to-end training of both modules. The resulting embedding func-

tion would then be optimized to maximize the performance of the classi�er, giving the

best representation for the task at hand.

In the case of few-shot learning, labeled data from the novel classes, that is to say,

classes into which we want to classify are only few. Therefore, it is not enough to hope

to learn an e�ective representation of images. However the few-shot learning scenario

assumes we have at disposal a larger collection of images from a semantically similar

but disjoint set of classes, the base classes. This set is su�cient in size and diversity

to learn the representation function. To do that few-shot learning models introduce

intermediate tasks involving base class images. Some few-shot learning methods learn

to solve a classi�cation problems over all the base classes. Other methods, based on

meta-learning [SSZ17; RL17; FAL17; Mis+18], sample few-shot learning tasks from

the base class data to simulate a few-shot setting. Representation learning being the

mandatory �rst step of any few-shot learning method, for simplicity, we call it stage 1

in this chapter. Adapting the representation and using it for classi�cation is referred to

as stage 2.

In this chapter, we explore multiple ways of getting a representation function from

the base class dataset. We show that the performance of such model depends on the

chosen embedding network, the representation learning model and the implementation

procedure. From this observation, we select the setting that will be used for the rest of

this work as baseline model.

Most few-shot learning approaches do not deal explicitly with spatial information

since feature maps are usually �attened or pooled before the classi�cation layer. We

propose our own method, calleddense classi�cation, based on the chosen baseline. With

dense classi�cation, we learn to represent and classify regions of the base images, which

results in learning a representation function that performs better on novel class data.

We show the e�ectiveness of dense classi�cation through qualitative and quantitative

results. This work has been published in [Lif+19]
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3.1 Choice of baseline model

In this thesis, we focus on learning representation by learning to solve a classi�cation

problem over the base classes. This section motivates this choice as well as implementa-

tion choices (network architectures, optimization procedure) for representation learning

that were made for the remaining of this manuscript.

3.1.1 Few-shot learning embedding architectures

A common trend in image classi�cation tasks is to progressively use deeper networks [SZ14;

Sze+15] which usually perform better. Having progressively deeper networks results in

a more di�cult learning process. For this reason, the networks used to be limited to a

few layers [BSF94]. However recent models have overcome optimization issues and use

deep and wide architectures, sometimes hundreds of layers [SGS15; He+16].

The same trend applies to few-shot learning models, we observe that the networks

used in the literature shifted in the last few years from small four-layer convolutional

networks to deep Residual Networks architectures [He+16] and more recently to Wide

Residual Network architectures [ZK16].

Finding the more e�ective network architecture for a given task is a research subject

of its own [EMH20]. Moreover as we will show, the choice of embedding network is

very impactful on the �nal few-shot performance, therefore to be able to make mean-

ingful comparisons with other methods, using the same or similar embedding network is

required. For those reasons we choose to experiment only with common architectures.

In this section we present the most commonly used embedding networks in the few-

shot learning community and then motivate the choices we made in our work.

CNN architectures In a pioneer few-shot learning work [Vin+16] is introduced a four

layers embedding network, later referenced as C64F. It is composed of 4 convolutional

layers, each with 64 �lters of size3� 3, batch normalization [IS15], ReLU and maxpooling

2 � 2. This network was then widely used in other few-shot learning works [FAL17;

SSZ17; Yan+18]. A wider version of this network, called C128F, is also used in the

literature, with only di�erence with C64F that the last two layers have 128 channels.

Figure 3.1 illustrates those architectures. Those architectures gave impressive results

on the Omniglot dataset but our experiments suggest that their expressive power is not

su�cient to deal with more complex datasets such asmini ImageNet.
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Figure 3.1 � Four layers embedding networks architectures used for few-shot learning. All
C64F �lters have 64 channels, whereas the two last layers of C128F have 128 channels.
The activation function used is ReLU.
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Figure 3.2 � Example of residual block from a residual network [He+16]

Residual networks architectures To optimize a neural network, the gradient of

the loss with respect to all parameters is computed using the backpropagation method.

Using the chain rule, the derivative of the �rst layers is computed as a product of the

derivative from deeper layers. If the activation function has lower than 1 derivative,

which was always the case using the popular sigmoid activation, the gradients for a

given parameter would decrease exponentially with the layer distance to the output of

the network, making the training of early layers very challenging. This phenomenon

is known as the vanishing gradient problem [BSF94]. This problem, together with a

saturation of performance highlighted by some works. [SGS15; He+16], used to limit

networks depth. He et al. [He+16] proposed a new neural network architecture called

Residual network, referred to as ResNet. They propose to add residual connections to

convolutional networks. Residual connections are alternative data streams that allow

intermediate representations to skip some convolution layers as illustrated in Figure 3.2.

This innovation solves the vanishing gradient problem as it creates direct streams of

information to deep layers of the network, through which the gradient can propagate

without shrinking. Moreover, they showed improved performance on the classi�cation

task using very deep architectures.

Multiple works highlighted that the shallow four-layer convolutional networks might

not be su�cient with complex images as found in the mini ImageNet dataset [Mis+18;

OLR18]. Therefore, they proposed to use Residual network architectures, to get an

embedding network with higher representative power.

A commonly used architecture is a 18 layers Residual Network called ResNet-18.

This architecture also has the advantage to be widely used outside of few-shot learning

studies, so its implementation is easily found and some pre-trained version are publically

available, of which we will make use in chapter chapter 6. Figure 3.4 illustrates this

architecture.
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Figure 3.3 � ResNet-18 architecture. The activation function used is ReLU.
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Another common architecture is ResNet-12, introduced by Oreshkin et al. [OLR18],

it is composed of four residual blocks, each having three 3� 3 convolutional layers with

batch normalization [IS15] and swish-1 activation function [RZL18]. Other versions of

this network with di�erent activation functions have been used as well [Lee+19] but we

chose to use the original implementation. Each block is followed by 2� 2 max-pooling.

The shortcut connections have a convolutional layer to adapt to the right number of

channels. The �rst block has 64 channels, which is doubled at each subsequent block

such that the output has depth 512. Figure 3.4 illustrates this architecture. Oreshkin at

al. [OLR18] performed hyper-parameters search to achieve this architecture (applying

their method using residual networks with varying number of layers and layer widths).

While this network is shallower than ResNet-18, it is worth noting that it has more

parameters than the later (about 12 millions, compared to 11 millions for ResNet-18).

Afterward, this architecture became a standard in the few-shot learning community.

Wide Residual Networks Zagoruyko et al. [ZK16] highlighted that the residual

networks as introduced in [He+16] were not fully bene�ting from their sometimes very

large depths. Increasing performance by less than a percent of accuracy on a well studied

task such as classi�cation on CIFAR-10 would necessitate more than double the number

of layers, which makes the optimization very slow. They identi�ed this behaviour as

being a consequence of the diminushing feature reuse problem [SGS15], that is to say,

nothing forces the network to learn to use the weights of residual blocks, so many of them

might have very little contribution to the model. They show that wider architectures,

that is to say with more channels, make the use of additional layers more e�ective.

Recently, some few-shot learning papers [Rus+18; Gid+19; Man+20] have turned

to a wide residual network architecture called WRN-28-10. This network is composed

of 28 layers, each with residual blocks that are 10 times wider than the basic residual

network architecture. Because this architecture has only been recently embraced by the

few-shot learning community, we did not use it in this work to keep the focus on fair

comparison to earlier works. However, it should be noted that using this architecture

brings impressive results on common few-shot learning benchmarks [Man+20].

3.1.2 Training procedure

Training a machine learning model consists in solving an optimization problem, that is

to say �nding the model parameters that minimize a loss function. The loss function is

representative of the e�ectiveness of the model. In the case of a model that is trained
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Figure 3.4 � ResNet-12 architecture. The activation function used is Swish.
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to classify images, an example of loss function we can use is the cross-entropy (2.2).

It is computed on the training dataset. However, this loss function does not always

re�ect high performance on other data. In case of over�tting, the model can perform

perfectly on training data but without generalizing to unseen data. Therefore, a val-

idation set composed of extra data is generally used to select hyperparameters of the

training process, which ensures generalization outside of the training data. In case of

few-shot learning, the test classes are disjoint from the base classes, therefore the model

must generalize to data outside of the training classes. Stage 1 of few-shot learning

models aims at solving a classi�cation on the base classes. Thus, we are presented with

two choices of validation metrics. On the one hand, we can build a validation set of

images coming from the base classes, which is consistent with the training task. On the

other hand, we can build a validation set of images from classes outside of the training

classes (and outside of the test classes as well for fairness), which would be consistent

with the test setting. In this section, we explore the relationship between the validation

measurements that could come from those sets and the impact of choosing one over the

other.

Base class validation Because our representation learning stage is equivalent to solv-

ing a classi�cation problem over the base classes, it would be natural to use a valida-

tion set composed of images from the base classesC and use a traditional classi�ca-

tion loss or classi�cation accuracy on it. Concretely, it would mean using a collec-

tion of examples X val := ( xval
1 ; : : : ; xval

n ) with each xval
i 2 X , and corresponding labels

Y val := ( yval
1 ; : : : ; yval

n ) with each yval
i 2 C. In practice, such validation is not always

available for the given few-shot learning dataset. For instance, CUB, CIFAR-100 are

lacking additional images from the base classes to construct such set.Mini ImageNet is

a subset of 100 classes of ImageNet, 64 being used as base classes, with 600 examples per

class. Because the chosen ImageNet classes have more examples, a disjoint validation

and test set using the same 64 classes can be created. We chose for this experiment to

use the splits of Gidaris et al. [GK18] from the extra ImageNet data. For each training

class, a set of 300 images disjoint from the training images are selected. Assuming we

can access such collection of data, we use the classi�cation accuracy of our model on it

and we call it the base class validation accuracy.

Novel class validation Another way of evaluating the quality of our representation

learning stage is to use a disjoint set of classes from the base and novel classes. Con-

cretely, we use a collection of examplesX val := ( xval
1 ; : : : ; xval

n ) with each xval
i 2 X , and
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corresponding labelsY val := ( yval
1 ; : : : ; yval

n ) with each yval
i 2 Cval , where Cval := [ cval ]

is a set ofvalidation classesdisjoint from C and C0. Such collection might not exist in

real life scenarios as we might want to use as many base classes as possible to learn a

stronger representation of the data. In this case, we could use a cross-validation strategy.

Usually, cross-validation consists in repeating the training process multiple times, each

time retaining a di�erent subset of the training samples to use as validation. In our

few-shot learning context, the split between training and validation would be class-wise,

that is, we would retain some training classes to use as validation classes. In the case of

few-shot learning datasets, this collection is usually accessible, so cross-validation is not

necessary.

By using this validation set we can simulate our few-shot testing setting and therefore

evaluate the ability of our representation to generalize to novel classes. Because no

classi�er for the novel validation classes has been learned during the representation

learning stage, we must choose and apply a stage 2 strategy to use this validation set.

We choose to use the prototype classi�er as a method to evaluate stage 1 performance.

This choice is standard in few-shot learning, including our own research that we will

develop in the rest of this manuscript. The few-shot classi�cation accuracy of the model

on this set is called thenovel class validation accuracy.

Choice of validation metric We monitor the base class validation accuracy and

novel class validation accuracy to choose a metric to use for the representation learning

stage. For those experiments, we use the cosine classi�er approach [QBL18; GK18] to

optimize ResNet-18 using SGD with nesterov momentum 0.9 and weight decay5e � 4

for 100 epochs. We apply this setup for 2 separate runs to alleviate the randomness of

the initialization. In Figure 3.5, we show the evolution of both validation metrics during

optimization. Both metrics are smoothed over multiple epochs for easier visualization.

This experiment con�rms that, as a general rule of thumb, the better the network has

learned to classify over base classes, the better it can be used on novel classes in a

few-shot scenario.

A closer observation reveals di�erent phases of learning. During a �rst stage (up

to about 55% base class validation accuracy), the optimization improves both the base

class validation accuracy and the novel class validation accuracy. In this stage, the

relationship between the two metrics is almost linear. Then during a second stage,

the base class validation accuracy continue to improve while the novel class validation

accuracy stagnates or even decreases in some cases. Finally we sometimes observe a last

stage, where the base class accuracy also decreases.
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Figure 3.5 � Evolution of the base class validation accuracy and novel class validation
accuracy during representation learning using cosine classi�er, ResNet-18 as embedding
network and constant learning rate. We show 2 runs of the same optimization.

This experiment con�rms that our optimization using the base dataset is able to

improve both the base class validation accuracy as well as the novel class validation

accuracy. Both of those metrics agree at the beginning of the optimization process. After

some epochs, the behaviour changes. The base class validation accuracy keeps increasing,

which demonstrates that we are not over�tting on the training data. However, the drop

in novel class validation accuracy shows that further optimization is not relevant for

novel classes. Such behaviour can be interpreted as over�tting, not on the training data

but on the training task (classi�cation over the base classes).

In Table 3.1 we report all possible accuracy metrics for two optimized network. In

both cases, the learning rate is kept �xed. For the �rst model we select the epoch with

highest base class validation accuracy, while for the other we select the one with the

highest novel class validation accuracy. We observe that despite having 4% lower base

class validation accuracy, the second model performs better by about 2% for both 1-shot

and 5-shot 5-way classi�cation on the test set. This con�rms that the correct choice of

validation is the novel class accuracy, even for the representation learning stage. For this

reason, we will solely use the novel class validation through this thesis.
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Base Validation Novel validation Test
Used validation 1-shot 5-shot 1-shot 5-shot

Base class 59.34 49.91� 0.46 65.42� 0.39 47.76� 0.44 63.04� 0.38
Novel class 55.03 52.79� 0.47 68.52� 0.39 49.63 � 0.43 65.26 � 0.37

Table 3.1 � Comparison of the performance of the embedding network depending on the
validation metric used for early stopping. The �rst model is selected from the best epoch
regarding the base class validation accuracy, the second regarding novel class validation
accuracy. For each we report the other metric result as well as few-shot test performance.
All few-shot accuracy reported are computed on 5-way tasks ofmini ImageNet with
ResNet-18 as embedding network.

3.1.3 Selection of architecture and method

The quality of the representation model depends on the network architecture used to

implement it as well as the method used to train it. In this section, we experiment with

di�erent combinations of those to choose the most relevant for our work.

We compare performances of the architecture of embedding networks most com-

monly used in the few-shot learning community. We perform our experiment using

mini ImageNet as it is the most commonly used dataset. For representation learning we

experiment with two standard methods: prototypical networks and cosine classi�er. We

compare few-shot classi�cation accuracy using C64F, C128F, ResNet-12, and ResNet-18

as embedding networks. For C64F and C128F, we experiment with the original version

where output embedding features are �attened, referred to respectively as C64F+Flatten

and C128F+Flatten, as well as versions where the output embedding are pooled spa-

tially using global pooling, referred to respectively as C64F+GAP and C128F+GAP.

For inference, we use a prototype classi�er.

We use stochastic gradient descent with nesterov momentum of 0.9 and weight decay

of 5e � 4 in all experiments. For each experiment, we decrease the learning rate on the

plateaus of the novel validation accuracy. Each reported result is the best out of 3 runs

according to validation accuracy.

In Table 3.2 we report 5-way 1-shot, and 5-shot accuracy onmini ImagNet with

those settings. Accuracies are averaged over 2000 few-shot tasks sampled from the test

dataset with 15 queries per novel class for each. The best accuracy for 1-shot and 5-shot

classi�cation is put in bold. We observe that the choice of embedding network architec-

ture and the choice of representation learning cannot be done entirely separately. Four

layers convolutional networks with �attening of the feature maps perform better with
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1-shot 5-shot
Network PN CC PP CC

C64F+Flatten 53.01� 0.43 51.58� 0.41 70.84� 0.35 68.18� 0.37
C128F+Flatten 53.57� 0.43 52.45� 0.41 71.42� 0.36 69.53� 0.35
C64F+GAP 52.10� 0.45 51.95� 0.43 69.08� 0.36 68.69� 0.36
C128F+GAP 52.58� 0.45 52.70� 0.42 69.71� 0.37 69.99� 0.36
ResNet-18 52.13� 0.46 53.07� 0.45 66.71� 0.38 69.28� 0.37
ResNet-12 60.09� 0.47 60.38 � 0.44 75.02� 0.35 77.55 � 0.33

Table 3.2 � Average 5-way accuracy on novel classes ofmini ImageNet using di�erent
embedding networks and representation learning method. Novel class inference is per-
formed using the prototype classi�er method. PN: prototypical networks, CC: cosine
classi�er.

prototypical network than cosine classi�er training (between 1% and 2% accuracy dif-

ference). Four layers convolutional networks with global pooling are performing about

as well with both representation methods. Residual architectures perform better using

the cosine classi�er method with up to 2:6% accuracy increase on 5-way 5-shot classi-

�cation with ResNet-18. ResNet-12 with cosine classi�er is the best option out of all,

showing the best accuracies in the two task settings, the second best being ResNet-12

with prototypical classi�er training. For most of the experiments in this thesis, we will

use residual network embdeddings with cosine classi�er as baseline.

3.1.4 Number of shot

The term "few" in "few-shot learning" refers to having few training examples from the

novel class set. As de�ned in section 2.2, we haven0 labeled example for the novel class

data. Here we ask ourselves how few should few-shot data be.

To do that we perform experiments on the mini-ImageNet dataset where the em-

bedding network is ResNet-12 trained using the cosine classi�er or prototypical network

method on the base dataset. We compute the test accuracy by sampling 2000 few-shot

tasks from the test set. Few-shot tasks are 5-wayk-shot (we samplek support examples

per novel class). We make k vary from 1 to 20. Results are reported in Figure 3.6. We

observe that the addition of extra support examples makes a very large di�erence when

the initial number of shot is very low. For instance, there is a 6.8% increase in accuracy

when going from 1-shot to 2-shot using the cosine classi�er method. The impact is lower

with higher numbers of shot, with improvements of maximum 0.5% accuracy per extra

shot for 10-shot and higher. This behaviour is easily explainable since the necessity of
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Figure 3.6 � mini ImageNet few-shot 5-way accuracy with varying number of shot. The
embedding network is ResNet-12.

gathering more information about the novel classes is more important if such informa-

tion is lacking which is the case with very few shots. In order to stay true to the idea

of few-shot learning, we choose to focus on this very few-shot setting, that is to say,

evaluating models based on how they perform 1-shot, 5-shot or at maximum 10-shot

classi�cation. This choice is consistent with what can be found in the related literature.

3.2 Dense Classi�cation

3.2.1 Method

As discussed in section 2.2, theembedding network� � : X ! Rr � d maps the input

to an embedding that is a tensor. There are two common ways of handling this high-

dimensional representation, as illustrated in Figure 3.7.

The �rst is to apply one or more fully connected layers. This can be seen as�attening

the activation into a long vector and multiplying with a weight vector of the same length

per class; alternatively, the weight parameter is a tensor of the same dimension as the

embedding. This representation is discriminative, but not invariant. This was standard

in many early few-shot learning works [Vin+16; SSZ17; GK18], generally using small

convolutional networks like C64F or C128F for image representation, then classifying



3.2. DENSE CLASSIFICATION 47

� (x) w 1 w 2 w 3

feature (d)

spatial(r)

s

class weights

� `

[ July 28, 2019at 17:52– classicthesis version 0.1 ]

(a)

� (x)
w 1 w 2 w 3

feature (d)

spatial(r)

s�

class weights

a � `

[ August 3, 2019at 0:37– classicthesis version 0.1 ]

(b)

Figure 3.7 � Flattening and pooling. Horizontal (vertical) axis represents feature (spatial)
dimensions. Tensorsw1; w2; w3 represent class weights, and� (x) the embedding of
example x. An embedding is compared to class weights by similarity (s) and then
softmax (� ) and cross-entropy (̀ ) follow. (a) Flattening is equivalent to class weights
having the samer � d shape as� (x). (b) Global pooling. Embedding � (x) is pooled (� )
into vector a 2 Rd before being compared to class weights, which are inRd too.
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Figure 3.8 � Dense classi�cation. Notation is the same as in Figure 3.7. The embedding
a := � (x) 2 Rr � d is seen as a collection of vectors(a(1) ; : : : ; a(r ) ) in Rd (here r = 3 ) with
each being a vector inRd and representing a region of the input image. Each vector is
compared independently to the same class weights and the losses are added, encouraging
all regions to be correctly classi�ed.

using a single or multi-layer neural network.

The second way is to applyglobal poolingand reduce the embedding into a smaller

vector of length d. This reduces dimensionality signi�cantly, so it only makes sense ifd

is large enough. It is an invariant representation, but less discriminative. This method is

used in more recent few-shot learning works that used ResNet architecture as embedding

networks that have high dimensional outputs [Mis+18; GK18; OLR18].

We propose a di�erent approach that we call dense classi�cation and is illustrated

in Figure 3.8. We view the embedding� � (x ) as a collection of vectors[� (k) (x )]r
k=1 , where

� (k) (x ) 2 Rd for k 2 [r ]1. For a 2d image input and a convolutional network, � � (x )

consists of the activations of the last convolutional layer, that is a tensor in Rw� h� d

where r = w � h is its spatial resolution. Then, � (k) (x ) is an embedding in Rd that

represents a single spatial locationk on the tensor.

When learning from the training data (X; Y ) over base classesC (stage 1), we adopt

the simple approach of training a parametric linear classi�er on top of the embedding

function � � , like [QBL18] and the initial training of [GK18]. The main di�erence in our

case is that the weight parameters donot have the same dimensions as� � (x ); they are

rather vectors in Rd and they are shared over all spatial locations. More formally, let

w j 2 Rd be the weight parameter of classj for j 2 C. Then, similarly to (2.15), the

1Given tensor a 2 Rm � n , denote by a( k ) the k-th n-dimensional slice along the �rst group of dimen-
sions for k 2 [m].
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classi�er mapping f �;W : X ! Rr � c is de�ned by

f �;W (x ) :=
h
�

�
[s� (� (k)

� (x ); w j )]c
j =1

�i r

k=1
(3.1)

for x 2 X , whereW := ( w1; : : : ; wc) is the collection of class weights ands� is the scaled

cosine similarity de�ned by (2.16), with � being a learnable parameter as in [QBL18;

GK18]2. Here f �;W (x ) is a r � c tensor: index k ranges over spatial resolution[r ] and j

over classes[c].

This operation is a 1 � 1 convolution followed by depth-wise softmax. Then, f (k)
�;W (x )

at spatial location k is a vector in Rc representing con�dence over thec classes. On the

other hand, f (: ;j )
�;W (x ) is a vector in Rr representing con�dence of classj for j 2 [c] as a

function of spatial location.3 For a 2d image input, f (: ;j )
�;W (x ) is like a class activation map

(CAM) [Zho+16] for class j , that is a 2d map roughly localizing the response to classj ,

but di�ers in that softmax suppresses all but the strongest responses at each location.

Given the de�nition (3.1) of f �;W , training amounts to minimizing over �; W the cost

function

J (X; Y ; �; W ) :=
nX

i =1

rX

k=1

`(f (k)
�;W (x i ); yi ); (3.2)

where ` is cross-entropy (2.2). The loss function applies to all spatial locations and

therefore the classi�er is encouraged to make correct predictions everywhere.

3.2.2 Discussion

Similarities can be found with semantic segmentation[LSD15; NHH15] , where given

per-pixel labels, the loss function applies per pixel and the network learns to make

localized predictions on upsampled feature maps rather than just classify. In our case

there is just one image-level label. In the case of the original version ofmini ImageNet,

using ResNet-12 as embedding network, the features maps have low resolution (5 � 5).

Moreover relevant object ofmini ImageNet images take a large portion of the image. In

this case, the receptive �eld of a particular location is large enough to assume we can

assign it the image label. In case of larger images, this assumption might not hold.

2Temperature scaling is frequently encountered in various formats in several works to enable soft-
labeling [HVD15] or to improve cosine similarity in the �nal layer [Wan+17a; OLR18; GK18; QBL18;
HHS18].

3Given tensor a 2 Rm � n , denote by a(: ;j ) the j -th m-dimensional slice along the second group of
dimensions for j 2 [n].



50 CHAPTER 3. REPRESENTATION LEARNING FOR FEW-SHOT LEARNING

Figure 3.9 � Examples overlaid with correct class activation maps [Zho+16] (red is
high activation for ground truth) on ResNet-12 trained with global average pooling or
dense classi�cation (cf . (3.1)). From top to bottom: base classes, classi�ed correctly
by both (walker hound, tile roof); novel classes, classi�ed correctly by both (king crab,
ant); novel classes, dense classi�cation is better (ferret, electric guitar); novel classes,
pooling is better (mixing bowl, ant). In all cases, dense classi�cation results in smoother
activation maps that are more aligned with objects.

In this case, we can introduce a local average pooling operation before applying dense

classi�cation to expand the receptive �eld of each location.

Dense classi�cation improves the spatial distribution of class activations, as shown

in Figure 3.9. By encouraging all spatial locations to be classi�ed correctly, we are en-

couraging the embedding network to identify all parts of the object of interest rather

than just the most discriminative details. Since each location on a feature map corre-

sponds to a region in the image where only part of the object may be visible, our model

behaves likeimplicit data augmentation of exhaustive shifts and crops over a dense grid

with a single forward pass of each example in the network.
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3.2.3 Inference on novel classes

In Figure 3.2.1 we de�ne a new way of handling spatial information during while training

an embedding network with a classi�er for classi�cation. In this case the classi�er being

a one layer cosine classi�er with learned scaling. We propose to use this new training

method for stage 1 of our few-shot learning model. At inference, we are again confronted

with a choice on how to handle spatial information of features maps from the support

and query examples. We adopt the prototype classi�er model for inference. With this

choice, we have found that it is working best to perform global pooling of the support

examples before computing class prototypesP := ( p1; : : : ; pc0) by (2.12). Given a query

x 2 X , the standard prediction is then to assign it to the nearest prototype

arg max
j 2 C0

s(� �;� 0(x ); p j ); (3.3)

where s is cosine similarity [SSZ17]. Alternatively, we can usedense classi�cation on

queries, that is to say soft-assigning independently the embedding� (k)
�;� 0(x ) of each spatial

location, then average over all locationsk 2 [r ] according to

f �;� 0[P ](x) :=
1
r

rX

k=1

�
�
[s� (� (k)

�;� 0(x ); p j )]c0

j =1

�
; (3.4)

wheres� is the scaled cosine similarity (2.16), and �nally classify toarg maxj 2 C0 f j
�;� 0[P ](x).

3.3 Experiments

We evaluate ourdense classi�cationmethod extensively on themini ImageNet and FC100

datasets. We describe the experimental setup and report the results below.

3.3.1 Experimental setup

Networks In most experiments, we use a ResNet-12 network [OLR18] as our embed-

ding network. Because our dense classi�cation method might a�ect the results of the

network study presented in subsection 3.1.3, we also test dense classi�cation on a lighter

network C128F [GK18].

Datasets We test our method on the mini ImageNet dataset, as well as CIFAR100.
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Network Pooling 1-shot 5-shot 10-shot

C128F GAP 54.28� 0.18 71.60� 0.13 76.92� 0.12
C128F DC 49.84� 0.18 69.64� 0.15 74.61� 0.13
ResNet-12 GAP 58.61� 0.18 76.40� 0.13 80.76� 0.11
ResNet-12 DC 61.26� 0.20 79.01� 0.13 83.04� 0.12

Table 3.3 � Average 5-way accuracy on novel classes ofmini ImageNet, stage 1 only.
Pooling refers to stage 1 training. GAP: global average pooling; DC: dense classi�ca-
tion. At testing, we use global max-pooling on queries for models trained with dense
classi�cation, and global average pooling otherwise.

Evaluation protocol The training set X comprises images of the base classesC. To

generate the support setX 0 of a few-shot task on novel classes, we randomly sample

C0 classes from the validation or test set and from each class we samplek images. We

report the average accuracy and the corresponding 95% con�dence intervals over 10,000

few-shot tasks with 30 queries per class. Using the same task sampling, we also consider

few-shot tasks involving base classesC, following the benchmark of [GK18]. We sample

a set of extra images from the base classes to form a test set for this evaluation, which

is performed in two ways: independently of the novel classesC0 and jointly on the union

C [ C0. In the latter case, the base prototypes learned at stage 1 are concatenated with

novel prototypes [GK18].

Implementation details In stage 1, we train the embedding network for 8,000 (12,500)

iterations with mini-batch size 200 (512) onmini ImageNet (FC100). On mini ImageNet,

we use stochastic gradient descent with Nesterov momentum. On FC100, we rather

use Adam optimizer [KB14]. We initialize the scale parameter at � = 10 (100) on

mini ImageNet (FC100).

3.3.2 Results

Networks In Table 3.3 we compare ResNet-12 to C128F, with and without dense

classi�cation. We observe that dense classi�cation improves the classi�cation accuracy

on novel classes for ResNet-12, but it is detrimental for the small network. C128F is

only 4 layers deep and the receptive �eld at the last layer is signi�cantly smaller than

the one of ResNet-12, which is 12 layers deep. It is thus likely that units from the last

feature map correspond to non-object areas in the image. Regardless of the choice of

using dense classi�cation or not, ResNet-12 has a large performance gap over C128F.
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For the following experiments, we use exclusively ResNet-12 as our embedding network.

Stage 1 training Support/query pooling at testing

Support ! GMP GAP
Queries ! GMP DC GAP DC

GAP
Base classes 63.55� 0.20 77.17� 0.11 79.37� 0.09 77.15� 0.11
Novel classes 72.25� 0.13 70.71� 0.14 76.40� 0.13 73.28� 0.14
Both classes 37.74� 0.07 38.65� 0.05 56.25� 0.10 54.80� 0.09

Base classes 79.28� 0.10 80.67 � 0.10 80.61 � 0.10 80.70 � 0.10
DC Novel classes 79.01 � 0.13 77.93� 0.13 78.55� 0.13 78.95 � 0.13

Both classes 42.45� 0.07 57.98� 0.10 67.53� 0.10 67.78 � 0.10

Table 3.4 � Average 5-way 5-shot accuracy on base, novel and both classes of
mini ImageNet with ResNet-12, stage 1 only.GMP: global max-pooling; GAP: global
average pooling; DC: dense classi�cation. Bold: accuracies in the con�dence interval of
the best one.

Dense classi�cation In Table 3.4 we evaluate 5-way 5-shot classi�cation onmini -

ImageNet with global average pooling and dense classi�cation at stage 1 training, while

exploring di�erent pooling strategies at inference. We also tried using global max-pooling

at stage 1 training and got similar results as with global average pooling. Dense clas-

si�cation in stage 1 training outperforms global average pooling in all cases by a large

margin. It also improves the ability of the network to integrate new classes without

forgetting the base ones. Using dense classi�cation at testing as well, the accuracy on

both classes is 67.78%, outperforming the best result of 59.35% reported by [GK18]. At

testing, dense classi�cation of the queries with global average pooling of the support

examples is the best overall choice. One exception is global max-pooling on both the

support and query examples, which gives the highest accuracy for new classes but the

di�erence is insigni�cant.

In order to further investigate the impact of using dense classi�cation in stage 1,

we computed 5-way accuracy with the number of shots ranging from 1 to 20 both with

our dense classi�cation method and global pooling. We report in Figure 3.10 the im-

provements in accuracy for all those task settings. We observe that the largest accuracy

improvement (3.8%) is for the 1-shot setting. The relative gain decreases with the num-

ber of shot. Nevertheless, even in the worse case we observe around 1.5% accuracy

improvement brought by dense classi�cation.
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Figure 3.10 � mini ImageNet few-shot 5-way accuracy improvement when using dense
classi�cation compared to global average pooling training, with varying number of shot.
ResNet-12 is used as embedding network.

Comparison with the state-of-the-art In Table 3.5 we compare our best dense

classi�cation solution with previous few-shot learning methods on 5-way classi�cation

on mini ImageNet. All methods included are using the same ResNet-12 embedding net-

work for fairness of comparison. We also include results from our baseline which is the

embedding network trained with global average pooling in stage 1. Our solution outper-

forms by at least 2% accuracy other methods on 1, 5 and 10-shot classi�cation. Note

that prototypical network on ResNet-12 [OLR18] is already giving very competitive per-

formance. TADAM [OLR18] builds on top of this baseline to achieve the previous state

of the art. In this work we rather use a cosine classi�er in stage 1. This setting is our

baseline GAP and is already giving similar performance to TADAM [OLR18]. Dense

classi�cation is able to improve on this baseline. Similar conclusions can be drawn from

Table 3.6, showing corresponding results on FC100. When comparing to prototypical

network [OLR18] and TADAM [OLR18], Our model outperforms TADAM here too, al-

though by a smaller margin. The lower resolution of CIFAR-100, may be the cause of

lower gain from using dense classi�cation since the cost function (3.2) applies to fewer

spatial locations.



3.4. CONCLUSION 55

Method 1-shot 5-shot 10-shot

GAP 58.61 � 0.18 76.40� 0.13 80.76� 0.11
DC (ours) 62.53 � 0.19 78.95 � 0.13 82.66 � 0.11

MAML [FAL17] 48.70 � 1.8 63.10� 0.9 -
PN [SSZ17] 49.42� 0.78 68.20� 0.66 -
Gidaris et al. [GK18] 55.45 � 0.7 73.00� 0.6 -
PN [OLR18] 56.50 � 0.4 74.20� 0.2 78.60� 0.4
TADAM [OLR18] 58.50 76.70 80.80

Table 3.5 � Average 5-way accuracy on novel classes ofmini ImageNet. The top part is
our solutions and baselines, all on ResNet-12. GAP: global average pooling (stage 1);
DC: dense classi�cation (stage 1). At testing, we use GAP on support examples and
GAP or DC on queries, depending on the choice of stage 1. The bottom part results
are as reported in the literature. PN: Prototypical Network [SSZ17]. MAML [FAL17]
and PN [SSZ17] use four-layer networks; while PN [OLR18] and TADAM [OLR18] use
the same ResNet-12 as us. Gidaris et al. [GK18] use a Residual network of comparable
complexity to ours.

Method 1-shot 5-shot 10-shot

GAP 41.02 � 0.17 56.63� 0.16 61.65� 0.15
DC (ours) 42.04 � 0.17 57.05 � 0.16 61.91 � 0.16

PN [OLR18] 37.80 � 0.40 53.30� 0.50 58.70� 0.40
TADAM [OLR18] 40.10 � 0.40 56.10� 0.40 61.60� 0.50

Table 3.6 � Average 5-way accuracy on novel classes of FC100 with ResNet-12. The top
part is our solutions and baselines. GAP: global average pooling (stage 1); DC: dense
classi�cation (stage 1). At testing, we use GAP on support examples and GAP or DC
on queries, depending on the choice of stage 1. The bottom part results are as reported
in the literature. All experiments use the same ResNet-12.

3.4 Conclusion

We have seen that the way representation learning is approached in stage 1 is crucial

for few-shot performance even though the classes on which the latter is evaluated are

di�erent from the ones used during training. We have experimented with two simple

methods used in few-shot learning works: prototypical networks and cosine classi�er. We

have identi�ed that the cosine classi�er method is the most promising, and that deep

architectures such as ResNet-12 are the most e�ective for modern few-shot learning

datasets. This setting, with hyperparameters chosen using a validation set composed of
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images from a disjoint set of classes from the base and novel classes, allow impressive

results already.

We also bring a contribution to few-shot learning by building on this simple process.

We investigate for the �rst time in few-shot learning the activation maps and devise a

new way of handling spatial information by a dense classi�cation loss that is applied to

each spatial location independently, signi�cantly improving the spatial distribution of

the activation and performance on novel classes or when presented with a mix of base

and novel classes.
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The success of deep learning methods for computer vision tasks is due to the capacity

of training a powerful representation of images that groups images with similar content

together. This representation is obtained by minimizing a loss function to optimize the
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parameters of the network. Many di�erent losses can be used to get to such semantic

representation. Metric learning losses [HA15; Oh +16; Soh16; Wan+17c] directly enforce

mapping similar images close together in some feature space and dissimilar images far

away from each other. Classi�cation losses such as the cross-entropy loss enforces good

classi�cation of the images. Again, classi�cation implies learning to represent images in

a feature space, where images from the same classes are grouped together. The learned

representation is especially powerful since it is speci�cally designed to work well on the

training data. In a traditional classi�cation problem, the training dataset is a large set

of examples (e.g. thousands) from the classes that we want to classify into.

However, in few-shot learning, examples from the novel classes are limited to a few

ones, tens at maximum. This small amount of data is not enough to train deep network

as already discussed in the previous chapter. We have seen how we can use a larger set of

images, the base class dataset, to train the representation instead. This representation

alone with a simple classi�er for the novel classes, a prototype classi�er for instance,

is enough to have impressive classi�cation results on few-shot tasks. However, this

method ignores the speci�city of the novel classes in the representation, assuming that

the representation learned on base classes is enough.

In this chapter, we explore ways to adapt the representation of the images to the

novel data using the few-shot examples only to make it speci�c to the few-shot task.

Naturally, the objective is not to completely deviate from the representation learned on

the base class dataset, because we would run the risk of over�tting.

Instead, we propose two learning-based methods to slightly modify the representa-

tion. The �rst one is called implanting and has been published in [Lif+19]. It consists

in adding a limited number of new parameters, called implants, to the trained embed-

ding network. Only the implants alone are learned on the few-shot data. The outputs

of the implants are used as new dimensions in the vector representation of the images.

Learning a limited number of parameters allows multiple iterations of learning without

over�tting.

The second method is a simple �ne-tuning of the embedding network with the few-

shot data and is part of [LAP20a]. With many iterations, we end up over�tting because

of the lack of data. To prevent this over�tting, we limit the training to a few iterations,

allowing on average to improve the few-shot accuracy.
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4.1 Implanting

From the learning on the training data (X; Y ) of base classesC (representation learning

stage) we only keep the embedding network� � and we discard the classi�cation layer.

The assumption is that features learned on base classes are generic enough to be used

for other classes, at least for the bottom layers [Yos+14]. However, given a new few-

shot task on novel classesC0, we argue that we can take advantage of the support data

(X 0; Y 0) to �nd new features that are discriminative for the task at hand, at least in

the top layers. In this section, we propose a novel solution to perform this adaptation

through learning on the novel data without over�tting. Over�tting happens because the

number of parameters to learn is too large for the available data. Therefore, our solution

is to only learn a small number of parameters added to the embedding network. Original

parameters are frozen so that they are not squashed during the new training phase.

4.1.1 Related works

Network adaptation is common when learning a new task or new domain. One solution is

to learn to mask part of the network, keeping useful neurons and re-training/�ne-tuning

the remaining neurons on the new-task [MDL18; ML18]. Rusuet al. [Rus+16] rather

widen the network by adding new neurons in parallel to the old ones at every layer.

New neurons receive data from all hidden states, while previously generated weights are

frozen when training for the new task. Our neural implants are related to [Rus+16]

as we add new neurons in parallel and freeze the old ones. Unlike [Rus+16], we focus

on low-data regimes, keeping the number of new implanted neurons small to diminish

over�tting risks and train faster, and adding them only at top layers, taking advantage

of generic visual features from bottom layers. Parallel to our work, Sun et al. [Sun+19]

proposed a related solution where task-dependent scaling and shifting parameters are

learned for each layer.

4.1.2 Architecture

We begin with the embedding network � � , which we call base network. We widen this

network by adding new convolution kernels in a number of its top convolutional layers.

We call these new neuronsimplants. While learning the implants, we keep the base

network parameters frozen, which preserves the representation of the base classes.

Let al denote the output activation of the convolutional layer l in the base network.

The implant for this layer, if it exists, is a distinct convolutional layer with output
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activation a0
l . Then the input of an implant at the next layer l + 1 is the depth-wise

concatenation [al ; a0
l ] if a0

l exists, and just al otherwise. If � 0
l are the parameters of the

l-th implant, then we denote by � 0 := ( � 0
l0 ; : : : ; � 0

L ) the set of all new parameters, where

l0 is the �rst layer with an implant and L the network depth. The widened embedding

network is denoted by � �;� 0.
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Backprop base classes 

Image 

Figure 4.1 � Neural implants for CNNs. The implants are convolutional �lters operating
in a new processing stream parallel to the base network. The input of an implant is
the depth-wise concatenation of hidden states from both streams. When training neural
implants, previously trained parameters are frozen. Purple and black arrows correspond
to the representation learning stage �ows; red and black to adaptation.

As illustrated in Figure 4.1, we are creating a new stream of data in parallel to the

base network. The implant stream is connected to the base stream at multiple top layers

and leverages the previously learned features by learning additional connections for the

new tasks. For simplicity sake, in this example, the original embedding network is a

simple feed forward convolutional neural network. In our experiments, we use residual

network architectures as described in section 3.1. In this case, each convolutional block

inside of a residual block is widened as show in Figure 4.2, resulting in a skip connection

for the implant stream as well.

4.1.3 Training

When a new task is given, we want to learn the implant parameters on the support

data (X 0; Y 0) over novel classesC0. Here we use an approach similar to prototypical

networks [SSZ17] in the sense that we generate a number of �ctitioussubtasksof the

new task, the main di�erence being that we are now working on the novel classes.

We choose the simple approach of using each one of the given examples alone as a

query in one subtask while all the rest are used as support examples. This involves no

sampling and the process is deterministic. Because only one example is missing from

the true support examples, each subtask approximates the true task very well.
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Figure 4.2 � Neural implants for a residual block. Implants replicate the residual struc-
ture of the block, while utilizing the original data stream for each convolutional block.

In parallel to our work, Wertheimer and Hariharan [WH19] introduced a similar

process calledbatch folding. They propose an alternative to the prototypical network

base learning stage where all subtasks possible within a batch are considered. The

di�erence is that we do this at adaptation stage.

In particular, for each i 2 N 0 := [ n0], we de�ne a query set Qi := f ig and a support

set Si := N 0n Qi . We compute class prototypesPi on index set Si according to (2.12),

where we replace� � by � �;� 0 and � 0are the implanted parameters. We de�ne thewidened

network function f �;� 0[Pi ] on these prototypes by (2.13) with a similar replacement. We

then freeze the base network parameters� and train the implants � 0 by minimizing a

cost function like (2.17). Similarly to (2.17) and taking all subtasks into account, the
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overall cost function we are minimizing over� 0 is given by

J (X 0; Y 0; �; � 0) :=
n0

X

i =1

`(f �;� 0[Pi ](x0
i ); y0

i ); (4.1)

where ` is cross-entropy (2.2).

In (4.1), activations are assumed �attened or globally pooled. Alternatively, we can

densely classify them and apply the loss function to all spatial locations independently.

Combining with (3.2), the cost function in this case is

J (X 0; Y 0; �; � 0) :=
n0

X

i =1

rX

k=1

`(f (k)
�;� 0[Pi ](x0

i ); y0
i ): (4.2)

Prototypes in (4.1) or (4.2) are recomputed at each iteration based on the current version

of implants. Note that this training setup does not apply to the 1-shot scenario as it

requires at least two support examples per class.

4.1.4 Inference on novel classes

Inference is the same whether the embedding network has been implanted or not. Here

we adopt the prototypical network model too. What we have found to work best is to

perform global pooling of the embeddings of the support examples and compute class

prototypes P := ( p1; : : : ; pc0) by (2.12). Given a query x 2 X , the standard prediction

is then to assign it to the nearest prototype

arg max
j 2 C0

s(� �;� 0(x ); p j ); (4.3)

wheres is cosine similarity [SSZ17]. Alternatively, we can densely classify the embedding

� �;� 0(x ), soft-assigning independently the embedding� (k)
�;� 0(x ) of each spatial location,

then average over all locationsk 2 [r ] according to

f �;� 0[P ](x) :=
1
r

rX

k=1

�
�
[s� (� (k)

�;� 0(x ); p j )]c0

j =1

�
; (4.4)

wheres� is the scaled cosine similarity (2.16), and �nally classify toarg maxj 2 C0 f j
�;� 0[P ](x).
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4.2 Implanting experiments

4.2.1 Experimental setup

This set of experiments is in continuity with the ones described in section 3.3. Therefore

the setup is similar.

Networks We use a ResNet-12 network [OLR18] as our embedding network. We have

seen in section 3.3 that it performs better than the lighter C128F [GK18] network.

Datasets We test our method on the mini ImageNet dataset, as well as CIFAR100.

Evaluation protocol The training set X comprises images of the base classesC. To

generate the support setX 0 of a few-shot task on novel classes, we randomly examples

C0 classes from the validation or test set and from each class we samplek images. We

report the average accuracyand the corresponding 95%con�dence interval over 10,000

few-shot tasks with 30 queries per class.

Implementation details In the representation learning stage, we train the embedding

network for 8,000 (12,500) iterations with mini-batch size 200 (512) onmini ImageNet

(FC100). On mini ImageNet, we use stochastic gradient descent with Nesterov momen-

tum. On FC100, we rather use Adam optimizer [KB14]. We initialize the scale parameter

at � = 10 (100) on mini ImageNet (FC100). For a given few-shot task in stage 2, the

implants are learned over 50 epochs with AdamW optimizer [LH19] and scale �xed at

� = 10.

4.2.2 Results

Implanting In stage 2, we add implants of 16 channels to all convolutional layers of

the last residual block of our embedding network pre-trained in stage 1 on the base

classes with dense classi�cation. The implants are trained on the few examples of the

novel classes and then used as an integral part of the widened embedding network� �;� 0

at testing. In Table 4.1, we evaluate di�erent pooling strategies for support examples

and queries in stage 2. Average pooling on both is the best choice, which we keep in the

following.
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Stage 2 training Query pooling at testing

Support Queries GAP GMP DC

GMP GMP 79.03� 0.19 78.92� 0.19 79.04� 0.19
GMP DC 79.06� 0.19 79.37� 0.18 79.15� 0.19
GAP GAP 79.62� 0.19 74.57� 0.22 79.77 � 0.19
GAP DC 79.56� 0.19 74.58� 0.22 79.52� 0.19

Table 4.1 � Average 5-way 5-shot accuracy on novel classes ofmini ImageNet with
ResNet-12 and implanting in stage 2. At testing, we use GAP for support examples.
GMP: global max-pooling; GAP: global average pooling; DC: dense classi�cation.

Ablation study In the top part of Table 4.2 we compare our best solutions with a

number of baselines on 5-waymini ImageNet classi�cation. One baseline is the embed-

ding network trained with global average pooling training in stage 1. As seen in the

previous chapter, dense classi�cation is the preferred method. In stage 2, the implants

are able to further improve on the results of dense classi�cation. To illustrate that our

gain does not come just from having more parameters and greater feature dimensionality,

another baseline is to compare it to widening the last residual block of the network by

16 channels in stage 1. It turns out that such widening does not bring any improvement

on novel classes. Similar conclusions can be drawn from the top part of Table 4.3, show-

ing corresponding results on FC100. The di�erence between di�erent solutions is less

striking here. This may be attributed to the lower resolution of CIFAR-100, allowing for

less gain from either dense classi�cation or implanting, since there may be less features

to learn.

Comparison with the state-of-the-art. In the bottom part of table 4.2 we compare

our model with previous few-shot learning methods on the same 5-waymini ImageNet

classi�cation. Implanting improving the results of dense classi�cation alone, we obtain

even better results than the ones displayed in the previous chapter. Our best results

are at least 3% above TADAM [OLR18] in all settings. Finally, in the bottom part

of Table 3.6 we compare our model on 5-way FC100 classi�cation against prototypical

network [OLR18] and TADAM [OLR18]. There too, we observe additional improvements

compared to dense classi�cation, resulting in higher performance than previous models.
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Method 1-shot 5-shot 10-shot

GAP 58.61 � 0.18 76.40� 0.13 80.76� 0.11
DC (ours) 62.53 � 0.19 78.95 � 0.13 82.66� 0.11
DC + WIDE 61.73 � 0.19 78.25� 0.14 82.03� 0.12
DC + IMP (ours) - 79.77 � 0.19 83.83 � 0.16

MAML [FAL17] 48.70 � 1.8 63.10� 0.9 -
PN [SSZ17] 49.42� 0.78 68.20� 0.66 -
Gidaris et al. [GK18] 55.45 � 0.7 73.00� 0.6 -
PN [OLR18] 56.50 � 0.4 74.20� 0.2 78.60� 0.4
TADAM [OLR18] 58.50 76.70 80.80

Table 4.2 � Average 5-way accuracy on novel classes ofmini ImageNet. The top part is
our solutions and baselines, all on ResNet-12. GAP: global average pooling (stage 1);
DC: dense classi�cation (stage 1); WIDE: last residual block widened by 16 channels
(stage 1); IMP: implanting (stage 2). In stage 2, we use GAP on both support and
queries. At testing, we use GAP on support examples and GAP or DC on queries,
depending on the choice of stage 1. The bottom part results are as reported in the
literature. PN: Prototypical Network [SSZ17]. MAML [FAL17] and PN [SSZ17] use
four-layer networks; while PN [OLR18] and TADAM [OLR18] use the same ResNet-12
as us. Gidaris et al. [GK18] use a Residual network of comparable complexity to ours.

4.3 Few-steps adaptation

Instead of limiting the number of parameters to learn as done with the implanting

method, it is possible to attempt to �ne-tune some layers or even the entirety of the

embedding network. As stated before, the risk here is to run into over�tting. Over�tting

is typically prevented using regularization methods such as weight decay [KH92] or

dropout [Sri+14]. We experimented with regularization methods for few-shot adaptation

unsuccessfully.

In this section, we propose to adapt the embedding network for a few steps of train-

ing only to limit over�tting. We study the impact of the number of learning steps at

adaptation on the �nal classi�cation accuracy.

4.3.1 Related works

Some in�uential few-shot learning works also propose to adapt the embedding network

without extra regularization methods. Speci�cally, Qi et al. [QBL18] �ne-tune the entire

embedding network using the few-shot data in addition to all base data. They oversample

the few-shot data to balance the class distribution during adaptation. In this way, they

avoid the need for strong regularization. However, this method requires to have access
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Method 1-shot 5-shot 10-shot

GAP 41.02 � 0.17 56.63� 0.16 61.65� 0.15
DC (ours) 42.04 � 0.17 57.05 � 0.16 61.91� 0.16
DC + IMP (ours) - 57.63 � 0.23 62.91 � 0.22

PN [OLR18] 37.80 � 0.40 53.30� 0.50 58.70� 0.40
TADAM [OLR18] 40.10 � 0.40 56.10� 0.40 61.60� 0.50

Table 4.3 � Average 5-way accuracy on novel classes of FC100 with ResNet-12. The top
part is our solutions and baselines. GAP: global average pooling (stage 1); DC: dense
classi�cation (stage 1); IMP: implanting (stage 2). In stage 2, we use GAP on both
support and queries. At testing, we use GAP on support examples and GAP or DC on
queries, depending on the choice of stage 1. The bottom part results are as reported in
the literature. All experiments use the same ResNet-12.

to the entire base class training set for adaptation, which could be problematic in terms

of storage and or computing cost, so it is not the standard few-shot learning setting.

Additionally, this method is designed for classi�cation into both base and novel classes

together which is a more challenging task.

Finn et al. [FAL17] also propose to �ne-tune the whole network using the few-shot

data. Contrary to [QBL18], they use only the few-shot data for �ne-tuning. This

adaptation stage is replicated during the �rst training stage on the base dataset as they

adopt a meta-learning method to train the embedding network. Adaptation is limited to

a few gradient updates. Typically, they report few-shot classi�cation results with three to

ten gradient steps at test time. This small number of steps has two advantages. First,

it allows them to integrate the adaptation process in their meta-learning framework.

Second, they stop the adaptation before they can observe over�tting on the novel data.

The di�erence is that in our case, we do not use meta learning to include the adaptation

into the representation learning stage.

4.3.2 Method

In this section, using the validation set, we observe the e�ect of �ne-tuning the last few

layers of the embedding network on few-shot data. Contrary to the method introduced

before, we do not try to control the over�tting in any way other than setting the number

of steps.

Concretely, we use a prototype classi�er with class prototypesP := ( p j )c0

j =1 which

are obtained per class by averaging embeddings of support examples� � (x0) as de�ned

by (2.12). The prototypes are updated each time� is updated. The classi�er f �;P : X !
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Figure 4.3 � 5-way 5-shot validation loss ofmini Imagenet as a function of the number of
learning steps at adaptation, relative to step 0 (no adaptation). Each curve corresponds
to a di�erent few-shot task build from the validation set.

Rc0
is a standard cosine classi�er (2.15) and the loss function is standard cross-entropy

J (X; y; �; P ) (2.17).

To test this method, we use the same embedding network as the one used for im-

planting, that is to say ResNet-12 trained with dense classi�cation on the base dataset of

mini Imagenet. For each task, we �ne-tuned the embedding network for adaptation while

keeping the �rst two residual blocks of the ResNet-12 �xed. We use Adam optimizer

with learning rate 5e� 5 for 60 learning steps to monitor the evolution of accuracy and

loss during adaptation.

In Figure 4.3 we show the evolution of the few-shot validation loss on eight 5-way

5-shot tasks built from the validation set of mini Imagenet. We observe that �ne-tuning

part of the embedding network is not a universal solution. For some tasks, the best

validation loss is observed at iteration 0, that is to say without adaptation. For some

other tasks, �ne-tuning yields lower validation loss. In all cases, too many iterations

leads to a drop in performance. In Figure 4.4 we show the evolution of the adaptation

training loss on the same eight tasks. We observe that in all cases, the training loss is

decreasing with more iterations. We conclude that the drop in validation is indeed due

to over�tting.
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Figure 4.4 � 5-way 5-shot adaptation training loss of mini Imagenet as a function of the
number of learning steps at adaptation, relative to step 0 (no adaptation). Each curve
corresponds to a di�erent few-shot task build from the validation set.
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Figure 4.5 � 5-way 5-shot average validation accuracy ofmini Imagenet as a function of
the number of learning steps at adaptation, relative to step 0 (no adaptation).
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Figure 4.6 � 5-way 1-shot average validation accuracy ofmini Imagenet as a function of
the number of learning steps at adaptation, relative to step 0 (no adaptation).

We also display the behavior of the learning curves averaged for 2000 tested few-shot

tasks sampled from the validation set ofmini Imagenet. Figure 4.5 shows the average

validation accuracy for 5-way 5-shot tasks. The peak of average accuracy is found at

41 steps of adaptation. Figure 4.6 shows the same average accuracy curve for 1-shot

classi�cation. Since the learning rate used is still5e � 5, the peak is found earlier, at

2 steps of adaptation. Shortly after the peak, the accuracy decreases abruptly. This

emphasizes the risk of over�tting learning with an extremely low amount of data. We

performed other experiments with various numbers of residual blocks and learning rates

which all resulted in lower accuracy or only marginally di�erent to the one observed at

peak on those curves.

When going to the test set, we cannot fairly obtain such curves. Indeed, �nding the

peak of the test accuracy and picking it would go against the core idea of having separate

validation and test sets. Therefore, we use the optimal number of steps observed in the

validation experiments as the number of learning steps to use at adaptation for the test

tasks. This relies on the assumption that the tasks seen in the validation process are

representative of the tasks built from the test set.
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Method 1-shot 5-shot 10-shot

DC 62.25 � 0.26 78.63� 0.19 82.78� 0.16
DC + IMP - 79.77 � 0.19 83.83� 0.16
DC + few-steps 62.33 � 0.26 79.87 � 0.18 84.54 � 0.15

Table 4.4 � Average 5-way accuracy on novel classes ofmini ImageNet, all on ResNet-12.
DC: dense classi�cation (representation learning stage); IMP: implanting (adaptation
stage); few-steps: few-steps adaptation.

4.3.3 Results

Experimental setup Since we want to compare the few-steps adaptation solution to

the implanting solution, we choose to use the same experimental setup. For adaptation,

we train for 2, 41 and 55 steps respectively for 1-shot, 5-shot, and 10-shot. We show

here the comparison onmini ImageNet. In chapter 6 we use few steps adaptation on

an other network architecture and other datasets (speci�cally an upscaled version of

mini Imagenet and CUB).

few-steps adaptation In Table 4.4 we show the test results of applying few-steps

adaptation on mini ImageNet. In all cases, this method improves on the model without

adaptation. In the case of 1-shot the improvement is marginal. However, the more

support examples are available, the greater the gain from adaptation is, up to1:7%

increase of accuracy in the 10-shot case. This is consistent with the aforementioned

relationship between training data and quality of learned model. In chapter 6 we oberve

similar results on the other few-shot learning setting we introduce in this chapter.

Comparison with Implanting In Table 4.4 we show the test results from our model

without any adaptation, with implanting adaptation and with few steps adaptation. Few

steps adaptation results in a higher accuracy and can be used for one-shot as well as

few-shot. As it is simplier and more versatile, we choose it as the preferred adaptation

method in the following chapters. Implanting can still be useful in cases where it is

impossible to determine an optimal number of learning steps to perform at adaptation

(lacking a validation set or semantic gap between the validation set and the test set).
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4.4 Using base classes to augment the support set

Over�tting during adaptation could also be limited if we could augment the support

set. Augmentation is a common preprocessing stage when dealing with a computer

vision task based on machine learning. It usually relies on simple transformations such

as image deformations, or color jitter. With such strategies, the augmented examples

are very similar to the original ones, no real new information about the class is added.

Therefore, we cannot expect it to compensate for the lack of support examples in a few-

shot learning task. A useful augmentation strategy for few-shot learning would generate

new examples that are not trivial, adding knowledge about the intra-class variability of

novel classes. Hallucination strategies have been proposed for this purpose [MMV00;

HG17; Sch+18; Liu+19a]. They rely on learning a model, the hallucinator, which maps

support examples to augmented versions. The hallucinator captures knowledge about

intra-class variability from the base dataset, then uses this knowledge to generate new

examples for the novel classes assuming a similar intra-class structure. In this section,

we explore solutions for arti�cially augmenting the size of the support set. Instead of

using complex hallucination models, we propose to select some related examples from

the base dataset.

4.4.1 Method

The base dataset is usually discarded after the representation learning stage. Indeed,

its only function is to train a task-speci�c model. Any adaptation method focuses on

the novel classes where base classes are irrelevant. We argue that in many cases, base

classes and novel classes are closely related. For instance, in the CUB dataset, classes

representing subspecies of warblers are found in both base and novel datasets. While

the subspecies are di�erent, they share many common traits. We then propose a simple

augmentation method that consists in picking related examples from the base dataset

and using them as additional support examples.

More speci�cally, for each novel classi , we �rst compute its prototype Pi according

to (2.12). Then, for each base class examplex, we compute the similarity between its

representation (after applying spatial pooling) � � (x) with Pi : cos(� (x); Pi ). The top

kextra examples based on similarities are considered as closely related to the novel class,

so we add them to the support set with class labeli . In Figure 4.7, we show examples

of the images selected by this method. Then, adaptation is performed by few gradient

updates as explained above.

A drawback of this method is that we need to be able to access the base dataset at all
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Figure 4.7 � Examples of selection of related base examples for a 5-way 1-shot task of
CUB. Each row depicts the support image for the novel class (left) and the corresponding
closest three examples in the base dataset based on cosine similarity in the feature space
(right).
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Base mini ImageNet CUB

DC 63.13 � 0.28 74.97� 0.29
DC + Few step 63.66 � 0.27 75.07� 0.29
DC + Few step + Augmentation 65.84 � 0.28 76.78 � 0.29

Table 4.5 � Average 5-way 1-shot accuracy on novel classes of CUB andmini ImageNet.
Augmentation is performed by adding 100 extra examples from the base dataset per novel
class. ResNet-12 is used as embedding network.

times, which could cause storage problem. Additionally, the selection of examples and

adaptation with the added examples makes solving a new few-shot task more expensive.

We limit those drawbacks by precomputing intermediate representations of all images

from the base dataset. In particular, global representations are stored to accelerate the

selection process. Intermediate representations given by the �rst blocks of the embedding

network are also stored as those layers get frozen during adaptation. In parallel to our

work, Afrasiyabi et al. [ALG19] also proposed adaptation by combining support examples

to related base examples. They select base classes that are similar to the novel ones and

then encourage the representation of the examples from the related classes to be close

to the one of the support examples during adaptation.

4.4.2 Results

We applied this simple method of augmentation of the support set on CUB and an

upscaled version ofmini ImageNet. In Table 4.5, we show the results for 1-shot classi�-

cation. We observe that for one-shot learning, this simple method is very e�ective. The

more examples we add to the support set, the better the �nal average accuracy is. We

report results with 100 extra examples per class, which corresponds to a plateau in terms

of accuracy. However, in the case of few-shot learning with multiple support examples,

this method seems to fail. We do not report those as in all cases adapting with the mix

of support and extra examples results in lower average accuracy than the model without

adaptation. Note that the results for mini ImageNet without augmentation are not the

same as the ones reported in Table 4.4 as we are using a version ofmini ImageNet with

higher image resolution.
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4.5 Conclusion

We have seen in this chapter that it is indeed possible to adapt the embedding network

using only the few-shot data. We presented two solutions for such adaptation. First,im-

planting, which focuses on learning a few task-speci�c extra parameters, called implants,

on the novel data. We introduce a way to train the implants involving building subtasks

from the support examples. Another method introduced here isfew-steps adaptation.

It consists in simply �ne-tuning part of the embedding network for a limited number of

training steps. This early stopping strategy is based on the observed validation accuracy

peak computed with validation few-shot tasks. Although simple, this method is able to

improve signi�cantly the performance of our model on 5-way 5-shot tasks. On one-shot

tasks, it is more di�cult to stop before over�tting, resulting in only small improvements

compared to no adaptation. A way to make few-steps adaptation more impactful in the

one-shot case is to select relevant examples from the base classes by comparing their

representations with the support examples. While simple, this augmentation strategy

shows promising results.
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The core problem of few-shot learning is the lack of data coming from the novel

classes. We have discussed in the previous chapters on how we can arti�cially augment

the novel data in order to directly tackle the issue. Generation based methods generate
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new novel class data by using the base dataset. This is not ideal since there might be

a semantic gap between the base and novel classes. On top of that, base class data is

already used for representation learning as seen in chapter 3, so using it again in for

classi�cation into the novel classes might be redundant.

One source of data that is not used in the usual few-shot learning formulation is

the queries themselves. In the case where we are presented with multiple queries to

classify, we can consider them as a set of unlabeled data from the novel classes. This

di�erent few-shot setup is called transductive few-shot learning. In this case, learning

to classify among the novel classes becomes similar to the well studiedsemi-supervised

learning task. In semi-supervised learning, the training set is only partially labeled.

Some methods also aim at classifying the unlabeled images which is usually referred

to as transductive semi-supervised learning. There are two main approaches to semi-

supervised learning in the literature. On one hand, some methods guide the training

process by adding an unsupervised loss to it [GB04; LA17; SJT16; TV17]. On the other

hand, some methods assign pseudo labels to the unlabeled samples to include them in a

supervised training process [Lee13; Shi+18; Isc+19a]. In the context of few-shot learning,

supervised learning on the support examples is rarely attempted to avoid the risk of

over�tting, therefore the �rst category of methods is not easily applicable. Inspired

by the second category of methods, some few-shot learning works propose to build a

graph with labelled and unlabeled examples as vertices, then propagate information

from the labelled examples to the unlabeled ones. Liuet al. [Liu+19b] propagate label

information, Rodriguez et al. [Rod+20] propagate features and Garciaet al. [GB18]

learn the graph operation using a graph neural network.

Moreover, we argue that the global spatial pooling operation that is generally applied

to the image embedding ignores the rich data that is hidden in each given example. Each

image is inherently a collection of data, which has been exploited bydense classi�cation

at representation learning as explained in section 3.2 andnaïve Bayes nearest neighbor

(NBNN) [Li+19b] at inference.

In this chapter, we attempt to bridge these two ideas, i.e., using a collection of

query to classify as unlabeled data and using local representations of examples. We

propose to learn a representation function using dense classi�cation. Then for few-shot

inference, we break down the convolutional activations of support and query images into

pieces corresponding to di�erent spatial positions, consider all these pieces as di�erent

examples, and then apply feature or label propagation [Rod+20] to these examples.

Pieces originating in support examples inherit their labels as in dense classi�cation and

NBNN [Li+19b], while pieces originating in queries are unlabeled. Since there are a
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number of unlabeled pieces per image, this gives rise totransductive inference even in

the case of a single query image.

Propagation of information across local features of images could fail if we take into

consideration irrelevant part of the image. For instance, the local features of the back-

grounds of two di�erent objects could be close to each other in the feature space, by

having them both in the graph, we might incorrectly propagate information through

the corresponding edge. Therefore, it is important to add to our method an attention

mechanism, allowing to �lter out some part of the image. Attention mechanisms in

the feature space [Vin+16; Mis+18; Ren+18a; GK18; OLR18; Li+19a] have commonly

been used in few-shot learning for a few years. However, studies on local information in

images have only appeared more recently, following our work on dense classi�cation and

naïve Bayes nearest neighbor. Some works study spatial attention mechanisms [WH19;

ZZK19; Xv+19], other focus on �nding alignment between local features from the sup-

port and query set [Hou+19a; Hao+19; Wu+19; Zha+20]. In this work, we propose our

own spatial attention mechanism. It is extremely simple and can be used at inference

without any cost as it only uses our embedding network trained with dense classi�cation

in the representation learning stage. While being essential to our method, it also brings

signi�cant gains in all baselines were we applied it.

Local label propagation and the spatial attention mechanism introduced in this chap-

ter have been published in [LAP20b].

5.1 Background

5.1.1 Transductive few-shot learning formulation

Transductive few-shot learning di�ers from the general few-shot learning de�nition as it

considers multiple queries jointly and exploits their distribution, even though they are

unlabeled. As introduced in section 2.2, we aim to classify query examples fromX into

the novel class setC0. Here we are given a setQ := f q i g
q
i =1 of query examples and a

prediction is required for all queries in Q. In this case, although queries are unlabeled,

we can take advantage of this additional data and learn a classi�erf that is a function

of both the labeled support data X 0 and the unlabeled queriesQ. This transductive

setting implies semi-supervised learning.
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5.1.2 Label propagation

Many computer vision tasks can be addressed by forming a graph and propagating

information on it. Usually graph vertices are distinct examples and edge values are

similarities between their representations. Label propagation has been extensively re-

searched in transductive inference. An overview of tranductive inference methods can be

found in chapter 11 of [CSZ10]. In this case, vertices correspond to full images and label

information is propagated from the labeled examples to the unlabeled ones. Another

use is to segment semantically an image by building a graph where vertices are pixels.

Zhu and Ghahramani [ZG02] are the �rst to introduce an algorithm based on building

a graph using both labeled and unlabeled examples to propagate label information. Since

other similar algorithms have appeared with the same idea. [Zho+03a] is similar and is

used in a few-shot learning context in [Liu+19b]. We choose to use this algorithm in our

method.

Nodes of the graph are representations of the examples while edges are similarities

between them. Graph are generally represented as a squared matrixW with one column

(and row) for each node. Weight wij is the value given to the edge between verticesi

and j . Edge values di�er with the method used. A popular choice in this case is to use

a Gaussian kernel [ZG02]:

Wij = e�
kx i � x j k

2

2� 2 ; (5.1)

with x i et x j respectively the representations used for examplesi and j and � is the

standard deviation of the kernel.

W is then symmetrically normalized:

W := D � 1=2WD � 1=2; (5.2)

where D := W 1t is the degree matrix of the graph and 1t is the t � 1 all-ones vector.

Label information is encoded in matrix Y with one column per example and one line

per class. For unlabeled examples, the corresponding column is all zeros, for labelled

ones, the column is the one-hot encoded label vector. Labels are then propagated in an

iterative fashion:

F (t + 1) := �F (t)W + (1 � � )Y; (5.3)

with � 2 [0; 1) a parameter of the method. The �rst term of the sum corresponds to
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(a) Partially labelled samples.
(b) Unlabeled samples take the label of the
closest labelled sample.

(c) Unlabeled samples are labelled using la-
bel propagation.

Figure 5.1 � Illustration of labeling strategies of the unlabeled samples on a toy exam-
ple. unlabeled samples are in grey. Labelled samples are colored squares, each color
corresponding to a di�erent class.

propagation of the label to its neighbors in the graph, as the updated class scores for a

class will be a weighted average of the scores of its neighbors. The second term ensures

that the scores remain close to the initial values given byY . After convergence, examples

can be labelled with the class whose score is the highest. Interestingly, they show that

their iterative algorithm converges to a closed form solution:

lim
t !1

F (t) = Y (1 � � )( I � � W) � 1: (5.4)

In Figure 5.1, we demonstrate on a toy example how label propagation can provide

a good labeling of unlabeled samples. In this case there is only one labelled example

per class but we can easily expand the behavior to multiple labelled examples per class.
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In Figure 5.1b, we apply a simple labelling strategy where unlabeled samples take the

label from the closest labeled samples. We observe that the resulting labelling is not

satisfactory. Samples coming from a given class form a manifold, which is not captured by

this labelling method. Such methods only relying on the similarity with labelled samples

would only work if the representation of examples coming from the same class were all

clustered closely to each other and separable from the other samples. Typically, that is

what representation learning aims to do. However we cannot make those assumptions

on the representation when the feature space has not yet been optimized to separate

the classes or for transductive few-shot learning, where the feature space correctly is

optimized to separate the base classes (which are labelled) but we have no guarantee on

the novel classes. In contrast, label propagation captures the shape of the manifold of a

class, resulting in a visually satisfying labelling, as in Figure 5.1c

5.2 Local features

In section 3.2 we discussed how we can consider spatial location of feature maps as local

features of the image and how we can use those local features during the representation

learning stage. Here we plan on using local features on the support examplesX 0 of the

novel classes. Because novel class data is lacking, it important in this stage to focus on

only the relevant parts of the support examples. That is what lead us to experiment

with spatial attention methods.

It is common in few-shot learning to use attention and adaptation mechanisms in the

feature space [Vin+16; Mis+18; Ren+18a; GK18; OLR18; Li+19a]. However, despite

being the subject of a pioneering work in 2005 [BU05], looking at local information in

images has not been studied more recently in few-shot learning, until dense classi�ca-

tion and naïve Bayes nearest neighbor [Li+19b]. We use the former for representation

learning. The latter is similar to our work in using local representations at inference,

the di�erence being that we apply propagation. These works have been followed by

studies onspatial attention [WH19; ZZK19; Xv+19] and alignment [Hou+19a; Hao+19;

Wu+19; Zha+20]. We experiment with an extremely simple spatial attention mechanism

in this work, which requires no learning and boosts signi�cantly all baselines.

5.2.1 Spatial attention

Before we can use the features of all spatial positions as data, it is important to suppress

the background, which appears frequently across positions and images, without being
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Figure 5.2 � Examples of images, each with the corresponding spatial attention heatmap
and clusters used in feature pooling (black indicates regions below threshold in the
heatmap). The �rst two lines correspond to CUB, the last two to mini ImageNet. We
use� = 0 :3 for spatial attention and m = 10 for feature pooling.

discriminative for the classi�cation task. One approach to this problem is to learn

a class-agnosticspatial attention mechanism [WH19; ZZK19]. We choose not to do

that as it requires additional supervision. Indeed, [WH19] uses extra bounding box

annotations to learn a detector and [ZZK19] use a weakly labeled image detector on

data outside of the few-shot learning. Another approach is to study spatially the output

feature channels. [KMO16] proposes a weighting mechanism to create powerful image

representations for image search. One step of their method is to compute a spatial-wise

weighting S 2 Rw� h for their feature maps:

Sij =

0

B
B
@

S0
ij

� P
m;n S0a

mn

� 1
a

1

C
C
A

1
b

(5.5)

whereS0
ij is the l1 norm of � � (x) at spatial location i; j , and a and b parameters of their

methods. They show that this spatial weighting correctly focuses on the most relevant
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parts of the image for image search. It can be explained intuitively as the network has

learned to have a high output when coming across relevant information in the image for

the task at hand. Similarly, Zhou et al. [Zho+16] also showed that high response in a

particular spatial location indicates relevancy to the task. They propose to localize the

relevant regions of the image by computing aclass activation mapas a weighted sum of

the feature maps channels. In particular, their classi�er is a fully-connected layer with

no bias, and the weights for the feature maps are the values of the vector of this layer

corresponding to the chosen class. This weighting is not applicable in our case as we

aim to produce spatial attention maps that are class agnostic. Instead we will simply

use the norm of the feature tensor at a particular position as evidence on the relevancy

of the corresponding image region.

In particular, given an example x 2 X with feature tensor F := � � 0(x ), we select a

subset of feature vectorsa(F ) � Rd at spatial positions r 2 
 where the `2-norm is at

least � > 0 relative to the maximum over the domain:

a(F ) := f F (r ) : kF (r )k � � max
t 2 


kF (t )k; r 2 
 g: (5.6)

Examples are shown in Figure 5.2. We �nd this mechanism particularly e�ective for its

simplicity, not only for our method, but also for all baselines. No spatial attention is a

special case where� = 0 .

5.2.2 Feature pooling

Propagation tends to amplify elements that appear frequently in a dataset. Local prop-

agation does the same for elements originating from di�erent spatial positions, which

in turn depends on the scale of objects relative to the spatial resolution. This can

be particularly harmful with elements originating from background clutter and bypass

condition (5.6), exactly because they appear frequently.

To obtain a �xed-size representation that only depends on the content, we perform

pooling in the feature space into a �xed number of vectors per example. We do so by

clustering: given an examplex 2 X with selected feature vectorsa(� � (x )) (5.6), we

apply k-means on these vectors to cluster them intom clusters (notation k being used

for k-shot classi�cation). We obtain a set of m feature centroids, which we represent as

columns in the d � m matrix g� 0(x ). Examples are shown in Figure 5.2. We use this

representation only for local propagation. Global propagation and no feature pooling

are special cases wherem = 1 and m = w � h respectively.



5.3. LOCAL PROPAGATION 83

5.3 Local propagation

Whatever is propagated (similarities, features, or labels), there are two extremes in

graph-based propagation. At one extreme, vertices areglobal representations of images,

and the graph represents a dataset. This can be usede.g. for similarity search [Zho+03b]

or semi-supervised classi�cation [ZG02; Zho+03a]. At the other extreme, vertices are

local representations of pixels in an image, which can be usede.g. for interactive [Gra06;

KLL08] or semantic [Ber+17] segmentation, or both [VC17]. Regional representations

across images have been used for similarity search [Isc+17], but we believe we are the

�rst to use local (pixel) or semi-local (clusters) representations across images for feature

or label propagation.

5.3.1 General method

We develop this idea under the transductive setting because it is more general: The

non-transductive is the special case whereq = 1 , the set of queriesQ = f q1g is singleton

and we are making a prediction forq1. Given the support examples inX 0 and queries

Q, we represent the feature centroids of both as columns in thed � t matrix

V :=
�

g� (x0
1) : : : g� (x0

n ) g� (q1) : : : g� (qq)
�

(5.7)

where t := ( n0+ q)m.

We use the pairwise similarity function to construct the nearest neighbor graph of

the columns ofV represented by thet � t symmetric non-negativeadjacency matrix WV

with zero diagonal:

Wij :=

8
<

:

[cos(v1; v2)] 

+ ; if vi 2 NN(vj ) or vj 2 NN(vi )

0; otherwise
(5.8)

where 
 > 1 as in [Isc+17] and NN(v) refers to set of the nearest neighbors ofv. We

therefore consider all edges between two examples if one of them belongs to the nearest

neighbors of the other. Another possibility that also gives a symmetric value is to only

consider the mutual nearest neighbors for edges as it is done in [Isc+17]. In the context

of our method, we experimented with the two options. We found similar results on our

tasks, assuming the number of neighbors that we consider is well adapted, our method

requiring a lower number of neighbors.

In terms of implementation, adding new unlabeled examples only requires computing

similarities between the unlabeled examples and the previous examples. When evaluat-
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(a) Nearest neighbor
graph for transductive
few-shot learning

(b) Nearest neighbors graphs for non-transductive few-shot
learning. The blue part corresponding to similarities inside the
support examples set is �xed and can be reused for new queries.

Figure 5.3 � Construction of the nearest neighbor adjacency matrix in the transductive
(a) and non transductive (b) few-shot setting. For queries each color corresponds to
local features coming from a common image.

ing few-shot performance with di�erent sets of queries, used as a set in a transductive

setting or as independent queries in a non-transductive setting, the part of the matrix

W dedicated to support/support similarity can be computed only once as show in Fig-

ure 5.3. Additionally, the adjacency matrix for the non-transductive case can be deduced

entirely from the transductive one with the same examples.

Following [Zho+03a], this matrix is symmetrically normalized as W := D � 1=2WD � 1=2,

where D := W 1t is the degree matrix of the graph and 1t is the t � 1 all-ones vector.

Extending [Zho+03a], given any matrix A 2 Ru� t (or row vector for u = 1 ), its

propagation on V is de�ned as

pV (A) := A(1 � � )( I � � W) � 1: (5.9)

This is a smoothing operation on the graph ofV , where parameter � 2 [0; 1) controls

the amount of smoothing: Columns of A corresponding to similar columns ofV are

averaged together. It is in�nitely-recursive, as revealed by the series expansion of the

matrix inverse [Zho+03a].

The operation (5.9) is called local propagation because the graph is de�ned on local

representations originating from di�erent spatial positions of the given images. Global

propagation is the special case of havingm = 1 cluster per image. This is the same as

global average pooling(GAP), with or without spatial attention.
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5.3.2 Local feature propagation

Using A = V , u = d in (5.9), local feature propagation amounts to propagating V on

itself:

eV := pV (V ); (5.10)

in the sense that similar feature vectors in columns ofV are averaged together, becoming

even more similar. No feature propagation is a special case where� = 0 , eV = V.

5.3.3 Local label propagation

Given the propagated featureseV (5.10), we form a new graph with normalized adjacency

matrix WeV . Extending [Zho+03a], we form the c0 � t zero-onelabel matrix Y with one

row per class and one column per spatial position over support examples and queries.

A column corresponding to a spatial position of a support examplex0
i is de�ned as the

one-hot label vector y i ; a column corresponding to a position of a queryq i is zero:

Y :=
�

y0
11>

m : : : y0
n1>

m 0c0� m : : : 0c0� m

�
(5.11)

where 0c0� m is the c0 � m zero matrix and there are q such matrices. UsingA = Y ,

u = c in (5.9), local label propagationthen amounts to propagating Y on eV:

eY := peV (Y ); (5.12)

such that spatial positions with similar feature vectors obtain similar class scores. This

may make little di�erence on labeled (support) examples, but is a mechanism for spatial

positions of unlabeled(query) examples to obtain label information as propagated from

spatial positions of labeled examples with similar features.

5.3.4 Inference

In c0� t matrix eY (5.12), there is one row per class and one column per spatial position

over support examples and queries.eY is nonnegative; by column-wisè 1-normalizing it

into c0 � t matrix Ŷ , we can interpret columns as probability distributions over classes

per position. For each query exampleq i , if Ŷi is the correspondingc � m submatrix of

Ŷ , we average these distributions over positions, obtaining a distributionp i := Ŷi 1m =m.

Finally, as in (4.3), we make a discrete prediction� (p i ) = arg max j 2 [c0] pij as the class of

maximum probability. This operation is similar to NBNN (2.11), but the quantities being
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(a) (b)

(c) (d)

Figure 5.4 � Examples of CUB query images in 5-way 5-shot non-transductive tasks,
each followed by the heatmap of predicted probability for the correct class using a
prototype classi�er, then using local label propagation. (a), (b) Local label propagation
helps classifying to the correct class. (c) Both give a correct prediction. (d) Local label
propagation fails.

averaged have undergone propagation rather than being direct similarities. Figure 5.4

shows examples of predicted probability for the correct class per spatial location. Local

label propagation results in spatially smooth predictions that covers a large portion of

the object.

5.4 Experiments

5.4.1 Experimental setup

Datasets We evaluate our method on CUB with images of resolution 224� 224. We

also experiment with mini ImageNet. Similarily to [Che+19; DSM19], we build a version

of mini ImageNet with 224� 224 images.

Network We test our method on a ResNet-12 embedding network. For input images

of size 224� 224, the embedding features are tensors of resolution 14� 14. To adapt the

the larger images before applying a dense classi�er, we apply average pooling on these

feature tensors, with kernel size 3� 3 and stride 1 without padding. The resulting tensors

are of resolution 12� 12.

Base Training We train the network from scratch using stochastic gradient descent

with Nesterov momentum on mini-batches of size 32. The learning rate schedule is set
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according to the 5-way 5-shot validation accuracy.

Evaluation protocol For each dataset, we obtain a unique embedding network re-

sulting from base training. All methods are then applied to the same features. For

all experiments, we sample 2000 5-way few-shot tasks from the test set, each with 15

queries per class. We report the average accuracy as well as 95% con�dence intervals.

We evaluate two di�erent settings: In the non-transductive setting, queries are treated

as 75 distinct setsQ with only one query each, whereas in the transductive setting, there

is a single setQ with all 75 queries.

Baselines In the non-transductive setting, we compare our method with variants of

four existing few-shot inference methods. The �rst, referred to as GAP+Proto, ap-

plies global average pooling(GAP) on feature tensors and then uses a prototype clas-

si�er [SSZ17] on the support set (2.12). The second is the inference mechanism of the

matching network [Vin+16], while the third, referred to as Local Match, is a modi�ed

version as follows. For each support examplex0 with feature tensor F := � � (x0), we use

local feature vectorsF (r ) at all positions r 2 
 as independent support examples, with

the same label asx0. We do the same on queries and average the class score vectors over

positions. The fourth is the inference mechanism of NBNN [Li+19b] (2.11). For each

method, we experiment with and without our spatial attention mechanism (5.6). For

Local Match and NBNN, we select a subset of local features per image. For GAP+Proto

and Matching Net, we apply GAP to the selected subset only.

In the transductive setting, we compare with the inference mechanism of global

label propagation [Liu+19c; Rod+20], with and without global embedding propaga-

tion [Rod+20]. These baselines are again evaluated with and without spatial attention.

We always include spatial attention in our local propagation, but we experiment with

and without feature pooling, with and without feature propagation.

5.4.2 Ablation studies

Overall, our method has �ve parameters. Two refer to optional components related to

local information: the threshold � for spatial attention and the number of clusters m for

feature pooling. The other three refer to propagation, like all related methods dating

back to [Zho+03a]: the number of neighbors in the graph, the exponent
 in the feature

similarity function and � , controlling the amount of smoothing. For all experiments,

we perform a fairly exhaustive parameter search over a small set of possible values per

parameter and we make choices according to validation accuracy. We present a summary
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Figure 5.5 � Spatial attention on GAP+Proto [SSZ17]: 5-way few-shot classi�cation
accuracy vs. threshold � , relative to � = 0 (no attention).

of parameter search independently for� and m, keeping other parameters �xed to the

optimal.

Spatial Attention As shown in Figure 5.5, referring to GAP+Proto baseline, there is

an optimal range of � in [0:3; 0:5], such that we �lter out the uniformative local feature

without removing too much information. The same behavior appears in Figure 5.6,

referring to our best method for each setting. For the remaining of the experiments, we

�x � to 0.3.

Feature pooling This is a compromise between global pooling and a full set of local

features per image, which brings a consistent small improvement compared to both,

while making local propagation more e�cient by limiting the graph size. According

to Figure 5.7, referring again to our best method for each setting, there is an optimal

number m of clusters that depends on the dataset and setting (transductive or not, 1/5-

shot). On CUB, we usem = 40 for 1-shot and m = 60 for 5-shot. On mini ImageNet,

we usem = 60 in both cases.

Propagation parameters Propagation has been extensively researched in the past,

so we do not report the study of its parameters. It is known for instance that � should
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Figure 5.6 � Spatial attention on our local label propagation, including feature pooling
and feature propagation: 5-way few-shot classi�cation accuracyvs. threshold � , relative
to � = 0 (no attention). All other parameters �xed to optimal.
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Figure 5.7 � Feature pooling on our local propagation: 5-way few-shot classi�cation
accuracy vs. number of clusters m, relative to m = 10 for better visualization. TR:
transductive. We use spatial attention in all settings and feature propagation only in
transductive. All other parameters �xed to optimal.



90 CHAPTER 5. LOCAL LABEL PROPAGATION

be close to1 and there is a local maximum with respect to the number of neighbors to

consider in the graph, which depends on the number of data [Isc+17]. After parameter

search, for most experiments, we set� = 0 :9, 
 = 4 and respectively 5 and 50 neighbors

in the graph for global and local propagation

5.4.3 Results

Table 5.1 presents a complete set of results using our method and baselines in di�erent

settings, using di�erent options. We discuss the e�ect of our contributions below.

Spatial attention We use spatial attention with our method but we also combine it

with baselines for fair comparison. It is an extremely simple mechanism that consis-

tently improves few-shot classi�cation accuracy in most cases, including global or local,

with propagation or not, transductive or not. The only exception is Local Match on

mini ImageNet. The gain is more pronounced on 1-shot tasks, which is expected as in-

formation selection is more important when information is scarce. It reaches 3% for the

baselines and 2% for propagation on CUB, as well as 1% onmini ImageNet.

Feature pooling Clustering the set of local features into a given number of clusters for

each image is bringing small accuracy improvements when combined with propagation,

local or global. In particular, spatial attention and feature pooling brings a 0.30% to

0.75% increase of accuracy compared to spatial attention alone on CUB (transductive

and non-transductive). An exception is mini ImageNet non-transductive where feature

pooling gives slightly worse accuracy by an insigni�cant margin.

Label propagation In the non-transductive setting, global label propagation fails.

Its performance is similar or inferior to GAP+Protonet. This is to be expected, as

this is method a transductive method, so it is not a natural choice given only one

query. By contrast, our local label propagation succeeds even in this setting, with up

to 2.7% improvement on CUB 5-way 1-shot compared to GAP+Proto. One exception

is mini ImageNet 5-way 1-shot, where GAP+Proto is better by a small margin; in this

case however, the other local baselines (Local Match and NBNN) are worse than both

GAP+Proto and our local label propagation, by a larger margin.

In the transductive setting, label propagation, global or local, always helps by using

unlabeled data. Our local label propagation with spatial attention and feature pooling

improves 5-way 1-shot accuracy over the non-transductive setting by 6% and 5.5%, on

CUB and mini ImageNet respectively. This improvement is lower for 5-shot tasks as
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Method A P F
CUB mini ImageNet

1-shot 5-shot 1-shot 5-shot

GAP+Proto [SSZ17] 74.85� 0.48 90.38� 0.27 63.39� 0.46 81.21� 0.32

GAP+Proto [SSZ17] X 77.10� 0.47 91.24� 0.26 64.22� 0.45 81.71� 0.31

Matching Net [Vin+16] 74.85 � 0.48 89.23� 0.29 63.39� 0.46 78.14� 0.33

Matching Net [Vin+16] X 77.10� 0.47 89.95� 0.28 64.22� 0.45 78.70� 0.33

Local Match [Vin+16] 75.92� 0.46 89.16� 0.28 64.05� 0.46 78.45� 0.34

Local Match [Vin+16] X 78.29� 0.45 90.60� 0.26 63.58� 0.46 78.01� 0.35

NBNN [Li+19b] 76.21 � 0.45 89.59� 0.27 64.90� 0.45 79.74� 0.32

NBNN [Li+19b] X 79.14� 0.44 91.40� 0.25 65.18� 0.45 80.00� 0.31

Global Label Propagation, Non-Transductive

Propagation
74.69� 0.48 87.96� 0.30 63.39� 0.46 75.89� 0.36

X 76.94� 0.47 89.14� 0.30 64.22� 0.45 76.40� 0.36

X X 77.23� 0.46 88.78� 0.31 63.41� 0.45 77.04� 0.37

Local Label Propagation (this work), Non-Transductive

Propagation

78.24� 0.44 91.07� 0.26 65.52� 0.45 80.49� 0.31

X 79.02� 0.44 91.81� 0.25 65.74 � 0.45 81.13 � 0.31

X X 79.77 � 0.44 92.07 � 0.25 65.59� 0.45 80.73� 0.31

X X X 79.32� 0.44 91.52� 0.25 64.43� 0.45 80.26� 0.32

Global Label Propagation, Transductive

Propagation
83.64� 0.48 90.63� 0.27 70.07� 0.51 80.96� 0.34

X 85.52� 0.46 91.67� 0.27 70.67� 0.51 81.44� 0.33

X X 87.18� 0.46 91.88� 0.27 72.54� 0.54 81.38� 0.35

Local Label Propagation (this work), Transductive

Propagation

83.04� 0.43 91.89� 0.25 69.95� 0.48 82.13� 0.31

X 85.33� 0.42 92.50� 0.25 71.00� 0.48 82.87 � 0.30

X X 85.80� 0.41 92.92� 0.24 71.12� 0.48 82.83� 0.31

X X X 87.77 � 0.41 93.35 � 0.23 72.57 � 0.51 82.76� 0.33

Other models, Non-Transductive

SNAIL [Mis+18] - - 55.71� 0.99 68.88� 0.92

TADAM [OLR18] - - 58.50 � 0.30 76.70� 0.30

DC+IMP [Lif+19] - - 62.53 � 0.19 79.77� 0.19

Neg-Cosine [Liu+20] - - 62.33� 0.82 80.94� 0.59

Other models, Transductive

TPN [Liu+19b] - - 59.46 � 0.00 75.65� 0.00

LR+ICI [Wan+20b] 88.06 � 0.00 92.53� 0.00 66.80� 0.00 79.26� 0.00

EPNet [Rod+20] 82.85� 0.81 91.32� 0.41 66.50� 0.89 81.06� 0.60

Table 5.1 � 5-way few-shot classi�cation accuracy, comparing our local (feature and la-
bel) propagation to baselines and existing work. A : spatial attention (our work, also
applied to baselines). P: feature pooling (clustering) (our work). F: feature propaga-
tion [Rod+20].
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more labeled data are used. Compared with global label propagation, it improves by up

to 1.5% on 5-shot, CUB andmini ImageNet.

Feature propagation In the non-transductive setting, feature propagation is mostly

harmful, especially when used with our local label propagation, which remains the best

option, together with feature pooling. In the transductive setting however, it helps both

global and local label propagation, the only exception being 5-shot,mini ImageNet. In

the case of local label propagation with feature pooling, the gain is up to 2% and 1.5%

on 1-shot, CUB and mini ImageNet respectively. Therefore this combination is the most

e�ective, improving over our best non transductive result by 8% and 6.5% on 1-shot,

CUB and mini ImageNet respectively.

Universality As shown in Figure 5.8, our local label propagation is auniversally safe

choice for few-shot inference under both transductive and non-transductive settings.

This contrasts with existing methods such as global label propagation, where the user

needs to make decisions depending on the amount of unlabeled data that is available.

Comparison to existing methods Table 5.1 also includes a number of recent few-

shot learning methods. For fair comparison, all reported results are using the same

ResNet12 as embedding network. We observe that our baseline GAP+Proto is bet-

ter than these models on non-transductive 5-shot classi�cation onmini ImageNet. Our

method is then outperforming those models as well. In the transductive setting, global

propagation is weaker than existing methods, but our best setting of local propagation

(including spatial attention, feature pooling, feature propagation, and label propaga-

tion) is stronger in general. The only exception is 1-shot classi�cation on CUB, where

LR+ICI [Liu+19b] is stronger by a small margin.

In parallel with this work, two methods appeared very recently, which are stronger

than our solution on mini ImageNet but weaker on CUB: (1) DGPN [Yan+20], which is

yet another graph-based method and could be easily integrated with our local propaga-

tion. (2) DeepEMD [Zha+20], which is based on pairwise image alignment. This is more

challenging to integrate, for instance, one would need to use alignment in the de�nition

of the graph itself. This can be interesting future work.
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attention (also our contribution) and feature propagation [Rod+20] for all methods. We
use feature pooling for local propagation
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5.5 Conclusion

We have seen that when possible, considering queries as a set of unlabeled data to classify

all at once can leave to improved classi�cation performance. One way to take advantage

of this is to build a graph with both labelled and unlabeled examples and propagate

label information on it. Another way to arti�cially augment the size of the available

data is to consider local features of the images.

Our local propagation framework takes the best of both worlds: more data from

local representations and better use of this data from propagation. It provides a uni�ed

solution that works well given few labeled data and an arbitrary number of unlabeled

data. As a result, it works better that solutions meant for the standard few-shot inference

and at the same time better than solutions meant for transductive few-shot inference.

Two secondary contributions are extremely simple and e�ective: (a) ourfeature pooling

helps control the additional cost related to local features, while improving performance

in most cases; (b) ourspatial attention helps not only our method but all baselines too,

by a signi�cant margin on 1-shot classi�cation. Our solution only a�ects inference, so it

can easily be plugged into any alternative representation learning method. It is general

enough to integrate other state-of-the-art solutions, like pairwise image alignment, other

forms of propagation and propagation on several layers.
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As introduced before, few-shot learning aims at replicating the ability of humans to

learn to solve new tasks from a small amount of training examples. However, there is

a considerable gap between this motivation and how the few-shot classi�cation task is

classically set up. On the one hand, for the sake of simplicity in experiments, the base

class dataset where the representation is learned from scratch, contains a few dozen or

hundred classes with a few hundred examples each. This is by no means comparable to

95
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datasets available to date [Kuz+18; Mah+18], let alone the amount of prior knowledge

that a human may have accumulated before learning a new task. On the other hand,

for a given domain of novel classes,e.g. bird species [Wel+10], base class data of such

size in the same domain may not exist.

In this chapter, we depart from the standard few-shot classi�cation scenario in two

directions. First, we allow the representation to be learned from a large-scale dataset in

a domain di�erent than the base and novel class domain. In particular, we model prior

knowledge with a classi�er that is pre-trained on such a dataset, having no access to

its training process. We thus maintain the di�culty of domain gap and the simplicity

of experiments (by not training from scratch), while allowing a powerful representation.

Second, we assume only few or zero examples per base class. Hence, the role of base

classes is to adapt the representation to the domain at hand rather than learn from

scratch. This scenario can be seen as few-shot version of few-shot learning. Hence, we

call it few-shot few-shot learning.

We treat this problem as a two-stage adaptation process, �rst on the few base class

examples if available and second on the even fewer novel class examples. Because of the

limited amount of data, it is not appropriate to apply e.g. transfer learning [Ben+11]

or domain adaptation [GL14], in either of the two stages. Because the network is pre-

trained, and we do not have access to its training process or data, meta-learning is not

an option either. We thus resort to few steps of �ne-tuning as in the meta-testing stage

of Finn et al. [FAL17] and Ravi and Larochelle [RL17] and chapter 4.

Focusing on image classi�cation, we then investigate the role of spatial attention in

the new problem. With large base class datasets, the network can implicitly learn the

relevant parts of the images to focus on. In our setup, base class data are few, so our

motivation is that a spatial attention mechanism may help the classi�er in focusing on

objects, suppressing background clutter. We observe that although the prior classes of

the pre-trained classi�er may be irrelevant to a new task, uncertainty over a large number

of such classes may express anything unknown like background. This is a class-agnostic

property and can apply to new tasks.

In particular, given an input image, we measure the entropy-basedcertainty of the

pre-trained classi�er in its prediction on the prior classes at every spatial location and

we use it to construct a spatial attention map. This map can be utilized in a variety

of ways, for instance, weighted spatial pooling or weighted loss per location; and in

di�erent situations like the two adaptation stages or at inference. We show that this

spatial attention mechanism is more suitable for few-shot few-shot learning than the

mechanism introduced in chapter 5. By using it, we are able to easily adapt a pre-
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trained network to novel classes, without meta-learning.

Few-shot few-shot learning and the spatial attention mechanism introduced in this

chapter have been published in [LAP20a].

6.1 Few-shot Few-shot formulation

The problem we consider is a variant of few-shot learning that has not been studied

before. It involves sequential adaptation of a given network in two stages, each com-

prising a limited amount of data. There are many ways of exploiting prior learning

to reduce the required amount of data and supervision liketransfer learning [Ben+11;

Yos+14], domain adaptation [GL14; RBV17; MDL18], or incremental learning [LH18;

RKL16; Yoo+18]. However, none applies to the few-shot domain where just a handful of

examples are given. In this section, we formally introduce the problem and its notations.

6.1.1 Reminder

In the usual few-shot scenario we are given a set oftraining examplesX := f x i gn
i =1 � X ,

and corresponding labelsy := ( yi )n
i =1 � Cn where C := [ c] := f 1; : : : ; cg is a set ofbase

classes. The objective is to learn a representation on these data, a process that we

call base training, such that we can solve new tasks. A new task comprises a set of

support examplesX 0 := f x0
i g

n0

i =1 � X and labels y0 := ( y0
i )

n0

i =1 � (C0)n0
, where n0 � n

and C0 := [ c0] is a set ofnovel classesdisjoint from C. The most common setting isk

examples per novel class, so thatn0 = kc0, referred to as c0-way, k-shot classi�cation.

The objective now is to learn a classi�er on these support data, a process that we call

adaptation. This classi�er should map a new query examplefrom X to a prediction in

C0.

6.1.2 Few-shot few-shot classi�cation

Few-shot classi�cation assumes that there is more data in base than novel classes, and

a domain shift between the two, in the sense of no class overlap. Here we consider a

modi�ed problem where n can be small orzero, but there is another set C � = [ c� ] of

prior classeswith even more data X � and labelsy � with n � n� := jX � j and a greater

domain shift to C; C0. Again, the most common setting is k0 examples per base class,

so that n = k0c. We are using a classi�er that is pre-trained on this data but we do

not have direct access to eitherX � ; y � , or its learning process. The objective of base
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training is now to adapt the representation to the domain of C; C0 rather than learn it

from scratch; but we still call it base training.

6.2 Spatial attention from pre-training

We have seen in chapter 5 that �ltering out the background information of the images

is essential to our local label propagation method as it prevents propagation of labels

through similar irrelevant parts of the images. In the few-shot few-shot learning problem,

such issue does not appear. However, with few or even no base class images to learn on,

the embedding network cannot learn to focus on the parts of the images that are relevant

to the classi�cation of images in the base and novel set domain. Therefore, albeit for

di�erent motivation, spatial attention is useful for few-shot few-shot learning as well.

In this section, we propose a novel spatial attention mechanism that takes advantage of

the pre-trained classi�er used in this setup. In order to di�erentiate between the two

attention mechanisms, we refer to the spatial attention from the previous chapter as

norm spatial attention (NSA) and the one introduced here as entropy spatial attention

(ESA).

6.2.1 Generating the attention weights

We assume a pre-trained network with an embedding function� � � : X ! Rr � d followed

by global average pooling(GAP) and a classi�er that is a fully connected layer with

weights W � := ( w �
j )c�

j =1 2 Rd� c�
and biasesb � 2 Rc�

, denoted jointly by U � := ( W � ; b � ).

Without re-training, we remove the last pooling layer and apply the classi�er densely as

in 1 � 1 convolution, followed by softmax with temperature T. Then, similarly to (3.1),

the classi�er f � � ;U � : X ! Rr � c�
maps an example to a vector of probabilities per

location, where classi�er parametersU � are shared over locations:

f � � ;U � (x ) :=
�
�

�
1
T

�
W � > � (q)

� � (x ) + b �
� �� r

q=1
: (6.1)

We now want to apply this classi�er to examples in the set X (resp. X 0) of base

(resp. novel) classesC (resp. C0) in order to provide a spatial attention mechanism to

embeddings obtained by parameters� (resp. � 0). We formulate the idea on X; C; � in

this section but it applies equally to X 0; C0; � 0. In particular, given an example x 2 X ,

we use the vector of probabilitiesp (q) := f (q)
� � ;U � (x ) corresponding to spatial location

q 2 [r ] to compute a scalar weightw(q) (x ), expressing thediscriminative power of the
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Figure 6.1 � Examples of images from CUB (top) and mini ImageNet (bottom) overlaid
with entropy-based spatial attention maps obtained from (6.2) using only the predicted
class probabilites from ResNet-18 pre-trained on Places. See section 6.4 for details on
datasets and networks.

particular location q of examplex.

Sincex belongs to a set of classesC di�erent than C � , there is no ground truth to be

applied to the output of the pre-trained classi�er f � � ;U � . However, the distribution p (q)

can still be used to evaluate how discriminative the input is. We use the entropy function

for this purpose, H (p) := �
P

j pj log(pj ). We map the entropy to [0; 1], measuring the

certainty of the pre-trained classi�er in its prediction on the prior classesC � :

w(q) (x ) := 1 �
H (f (q)

� � ;U � (x ))

logc� (6.2)

for q 2 [r ], where we ignore dependence on parameters� � ; U � to simplify the nota-

tion, since they remain �xed. We use this as a weight for location q assuming that

uncertainty over a large number of prior classes expresses anything unknown like back-

ground, which can apply to a new set of classes. We theǹ1-normalize the weights

w(x) := [ w(q) (x )]r
q=1 2 Rr as ŵ(x) := w(x)=kw(x)k1. We call ŵ(x ) the spatial attention

weightsof x .

Figure 6.1 shows examples of images with spatial attention maps. Despite the fact

that there has been no training involved for the estimation of attention on the particular

datasets, the result can still be useful in suppressing background clutter.
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6.2.2 Applying the attention weights

If the embedding � � (x ) is normally a vector in Rd obtained by GAP on a feature tensor

� � (x ) 2 Rr � d as 1
r

P
q2 [r ] � (q)

� (x ) for x 2 X , then GAP is replaced by global weighted

average pooling (GwAP):

� � (x ) :=
X

q2 [r ]

ŵ(q) (x )� (q)
� (x ): (6.3)

for x 2 X . We recall that this applies equally to � 0 in the case of novel classes.

It is also possible to combine ESA with NSA from chapter 5. In this case, NSA

is used �rst, then the spatial attention weights are computed for the remaining spatial

positions before pooling.

6.3 Few-shot few-shot classi�cation model

In this section, we describe stage by stage our framework for few-shot few-shot learning,

which include using the attention maps at inference on novel classes, as well as learning on

novel classes. In the latter case, the weights are pre-computed for all training examples

since the pre-trained network remains �xed in this process. In summary, we either

replace GAP by GwAP (6.3) in all inputs to the embedding network, or use dense

classi�cation (3.1).

6.3.1 Base class training

Starting from a pre-trained embedding network � � � , we can either solve new tasks on

novel classesC0 directly, in which case � = � � , or perform base class training, �ne-tuning

� from � � . Adaptation may involve for instance �ne-tuning the last layers or the entire

network, applying a spatial attention mechanism or not. Recalling that � � � is still needed

for weight estimation (6.2), the most practical setting is to �ne-tune the last layers, in

which case� � shares the same backbone network with� � � . Following MAML [FAL17],

we perform a few gradient descent steps with low learning rate.

We use a dense classi�erf �;W : X ! Rr � c (3.1) with class weightsW . Given the few

base class examplesX and labels y, we learn W at the same time as �ne-tuning � by

minimizing (3.2).
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6.3.2 Novel class adaptation

Optionally, given the few novel class support examplesX 0 and labelsy0, we can further

adapt the embedding network, while applying our attention mechanism to the loss func-

tion. As in subsection 6.3.1,� � 0 shares the same backbone with� � , being derived from it

by �ne-tuning the last layers. We perform even fewer gradient descent steps with lower

learning rate

We use a prototype classi�er where vector embeddings� � 0(x0) of support exam-

ples x0 2 X 0 are obtained by GwAP with � � 0 de�ned as in (6.3) and class prototypes

P := ( p j )c0

j =1 are obtained per class by averaging embeddings of support examples as

de�ned by (2.12) and updated whenever� 0 is updated. The classi�er f � 0;P : X ! Rc0

is a standard cosine classi�er (2.15) and the loss function is standard cross-entropy

J (X; y; �; P ) (2.17) with embedding � � 0 obtained by GwAP (6.3). Attention weights ap-

ply to embeddings of all inputs to the network, each time focusing on most discriminative

parts. In case of no adaptation to the embedding network, we �x � 0 = � . Computing

the prototypes P is then the only learning to be done and we can proceed to inference

directly.

6.3.3 Novel class inference

At inference, as in subsection 6.3.2, we adopt a prototype classi�er where vector embed-

dings � � 0(x0) of support examplesx0 2 X 0 are obtained by GwAP with � � 0 de�ned as

in (6.3) and class prototypesP := ( p j )c0

j =1 are obtained per class by averaging embed-

dings of support examples as de�ned by (2.12). Then, given a queryx 2 X , we similarly

obtain a vector embedding� � 0(x ) by GwAP (6.3) and predict the class � (f � 0;P (x )) of the

nearest prototype according to cosine similarity where� is given by (4.3) and f � 0;P by

(2.15). We thus focus on the discriminative parts of both support and query examples,

suppressing background clutter.

6.4 Experiments

6.4.1 Experimental setup

pre-trained Network We assume that we have gathered prior knowledge on unre-

lated visual tasks. This knowledge is modeled by a deep convolutional network, trained

on a large-scale dataset. In our experiments, we choose to use a ResNet-18 [He+16]

pre-trained on the Places365-Standard subset of Places365 [Zho+17]. We refer to this

subset as Places. This subset contains around 1.8 million images across 365 classes.
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Figure 6.2 � Examples of images from the Places dataset, from left to right: rainforest,
co�ee shop, zen garden, bowling alley, bamboo forest.

The classes are outdoor and indoor scenes, some examples are shown in Figure 6.2. We

select this dataset for its large scale, diversity of content and di�erent nature than other

popular datasets like CUB. Images are resampled to 224� 224 pixels for training. We

choose ResNet-18 as the architecture of the pre-trained model as it is a powerful network

that is also used in other few-shot learning studies [Che+19; DSM19], which helps in

comparisons. We make no assumption on the pre-training of the network. We do not

access either the pre-training process or the dataset. We rather use a publicly available

converged model that has been trained with a fully-connected layer as a classi�er, as

assumed in section 6.2.

Datasets We evaluate our method on CUB with images of resolution 224� 224. We

also experiment with mini ImageNet. Similarily to [Che+19; DSM19], we resample the

mini ImageNet images to 224� 224, which is consistent with the choice of pre-trained

network.

Dataset overlap Contrary to CUB, mini ImageNet has some non-negligible overlap

with Places. Some classes or even objects appear in both datasets. To better satisfy our

assumption of domain gap, we remove the most problematic overlapping classes from

mini ImageNet: 3 base classes, 1 validation class and 2 novel classes. We refer to this

pruned dataset asmodi�ed mini ImageNet. For the sake of comparison and because this

overlap can happen in practice, we also experiment on the originalmini ImageNet.

In particular, we measure, for eachmini ImageNet class, what is the most frequent

prediction among Places classes by the pre-trained ResNet-18 classi�er. We distinguish

two kinds of overlap: full overlap when we �nd two classes with the same semantic

de�nition, and partial overlap when a large portion of the two classes are in common.
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Split Match rate mini ImageNet class Places class FO PO

Train

0.89 carousel carrousel X
0.75 rock beauty underwater - ocean deep
0.68 slot amusement arcade X
0.66 yawl boat deck
0.61 jelly�sh aquarium
0.56 dugong underwater - ocean deep
0.54 aircraft carrier landing deck
0.49 cli� cli� X
0.47 triceratops natural history museum
0.43 three-toed sloth rainforest

Validation

0.80 coral reef underwater - ocean deep X
0.51 catamaran boat deck
0.21 garbage truck loading dock
0.20 poncho clothing store

Test

0.52 school bus bus station - indoor X
0.48 bookshop bookstore X
0.41 black-footed ferret veterinarians o�ce
0.40 theater curtain movie theater - indoor
0.36 african hunting dog watering hole

Table 6.1 � Top ranking mini ImageNet classes in terms of classi�cation to a a speci�c
Places class and our decision on if w consider it as overlapping with the corresponding
Places class. FO and PO respectively stand for full and partial overlap.

Partial overlap can occur for multimodal classes, for instance theslot machine class is a

subclass ofamusement arcade. Alternatively, even if the semantic de�nitions of the two

classes are di�erent, it can happen that the same objects are depicted in the two classes

as is the case for theschool busand bus station-indoor classes. Top-ranking classes in

terms of classi�cation to a speci�c Places class and our decision on the overlap are shown

in Table 6.1. We remove all full and partial overlapping classes frommini ImageNet.

Table 6.2 lists the classes removed frommini ImageNet in this way.

Evaluation protocol To adapt to our few-shot version of few-shot learning, we ran-

domly keep only k0 images per base class. We experiment withk0 2 f 0; 1; 5; 10g and

k0 2 f 0; 20; 50g respectively for the CUB and mini ImageNet. This is because CUB

classes refer to bird species, while miniImageNet classes to broad object categories, hence

have a lot more variability. For novel classes, we use the standard settingk 2 f 1; 5g. We
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mini ImageNet split mini ImageNet class Places class with overlap

train carousel carousel
train slot amusement arcade
train cli� cli�
validation coral reef underwater - ocean deep
test school bus bus station - indoor
test bookshop bookstore

Table 6.2 � Classes removed frommini ImageNet to form the modi�ed mini ImageNet
dataset and the corresponding overlapping Places classes.

generate a few-shot task on novel classes by selecting a support setX 0. In particular, we

samplec0 classes from the validation or test set and from each class we samplek images.

In all experiments, c0 = 5 , i.e. 5-way classi�cation. For each task we additionally sam-

ple 30 novel class images per class, to use as queries for evaluation. We reportaverage

accuracy and 95% con�dence interval over 5,000 tasks for each experiment. The base

class training set X contains k examples per base class inC. Each experiment can be

seen as a few-shot classi�cation task on few base class examples.

Baselines We evaluate experiments with the network being either pre-trained on

Places or randomly initialized. In both cases, we report measurements for di�erent

numbers k of examples per base class, as well asall examples inX . In the latter case

(randomly initialized), we do not use the option k0 = 0 because then there would be no

reasonable representation to adapt or to perform inference on, given a few-shot task on

novel classes. Furthermore, in this case we do not apply the attention mechanism as it

is based on the pre-trained classi�er. In all cases, we compare to the baselines of using

no adaptation and no spatial attention. When learning from scratch, spatial attention is

not applied as we do not have access to the pre-trained classi�er. In the case of random

initialization, and using all examples in X , we compare to Baseline++ [Che+19] and

prototypical networks [SSZ17], as reported in the benchmark by Chenet al. [Che+19],

as well ascategory traversal (CTM) [Li+19a] and ensembles[DSM19], all using ResNet-

18. They can only be compared to our randomly initialized baseline when using base

training on all data.

Implementation details At base training, we use stochastic gradient descent with

Nesterov momentum with mini-batches of size 200. At adaptation, we perform a maxi-



6.4. EXPERIMENTS 105

Attention X X
Adaptation X X

Base Places

k0 = 0 38.80� 0.24 39.69� 0.24 39.76� 0.24 40.79� 0.24
k0 = 1 40.50� 0.23 41.74� 0.24 41.11� 0.24 42.23� 0.24
k0 = 5 56.47� 0.28 57.16� 0.29 56.69� 0.29 57.32� 0.29
k0 = 10 62.83� 0.30 64.32� 0.30 62.97� 0.30 64.41� 0.30
All 80.68� 0.27 80.48� 0.27 80.68� 0.27 80.56� 0.27

Base Randomly Initialized

k0 = 1 31.65� 0.19 - 31.37� 0.19 -
k0 = 5 40.52� 0.25 - 40.50� 0.26 -
k0 = 10 48.25� 0.28 - 48.61� 0.29 -
All 71.78� 0.30 - 71.77� 0.30 -

Baseline++ 67.02� 0.90 - - -
ProtoNet 71.88� 0.91 - - -
Ensemble 68.77� 0.71 - - -

Table 6.3 � Average 5-way 1-shot novel class accuracy on CUB.We use ResNet-18
either pre-trained on Places or we train it from scratch on k base class examples. Pro-
toNet [SSZ17] is as reported by Chenet al. [Che+19]. For ensemble [DSM19], we report
the distilled model from an ensemble of 20. Baselines as reported in the literature,
without attention or adaptation; to be compared only to randomly initialized with k0 =
all .

mum of 60 iterations over the support examples using Adam optimizer with �xed learning

rate. In both cases, the learning rate, schedule if any and number of iterations are de-

termined on the validation set. The temperature used by (6.1) for the computation of

the entropy of ESA is �xed per dataset, again on the validation set. In particular, we

use T = 100 and T = 2 :6 respectively for CUB and modi�ed mini ImageNet. For the

spatial attention threshold of NSA, we use � = 0 :7 and � = 0 :6 respectively for CUB

and modi�ed mini ImageNet.

6.4.2 Results

We present results in Tables 6.3 and 6.4 for CUB 1-shot and 5-shot respectively,

and in Tables 6.5 and 6.6 for modi�ed mini ImageNet 1-shot and 5-shot. The origi-

nal mini ImageNet is discussed separately at the end of this section.
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Attention X X
Adaptation X X

Base Places

k0 = 0 55.09� 0.24 56.95� 0.23 63.29� 0.24 64.27� 0.23
k0 = 1 57.25� 0.22 58.89� 0.23 65.42� 0.23 66.78� 0.23
k0 = 5 74.27� 0.23 74.95� 0.23 75.82� 0.23 76.32� 0.23
k0 = 10 78.89� 0.22 80.08� 0.21 80.56� 0.22 81.53� 0.21
All 90.38� 0.16 90.33� 0.16 91.22� 0.15 91.17� 0.15

Base Randomly Initialized

k0 = 1 39.45� 0.20 - 42.70� 0.21 -
k0 = 5 52.94� 0.25 - 53.45� 0.25 -
k0 = 10 63.37� 0.26 - 64.52� 0.26 -
All 85.60� 0.18 - 85.96� 0.19 -

Baseline++ 83.58� 0.54 - - -
ProtoNet 87.42� 0.48 - - -
Ensemble 84.62� 0.44 - - -

Table 6.4 � Average 5-way 5-shot novel class accuracy on CUB.We use ResNet-18
either pre-trained on Places or we train it from scratch on k base class examples. Pro-
toNet [SSZ17] is as reported by Chenet al. [Che+19]. For ensemble [DSM19], we report
the distilled model from an ensemble of 20. Baselines as reported in the literature,
without attention or adaptation; to be compared only to randomly initialized with k0 =
all .

Attention X X
Adaptation X X

Base Places

k0 = 0 61.66� 0.30 63.36� 0.29 62.09� 0.30 63.56� 0.30
k0 = 20 62.95� 0.29 63.15� 0.28 63.11� 0.29 63.33� 0.29
k0 = 50 65.07� 0.29 65.10� 0.29 65.18� 0.29 65.24� 0.29
All 66.20� 0.29 65.94� 0.29 66.23� 0.29 66.06� 0.29

Base Randomly Initialized

k0 = 20 33.43� 0.21 - 33.35� 0.21 -
k0 = 50 41.03� 0.24 - 41.05� 0.24 -
All 55.99� 0.28 - 56.13� 0.28 -

Table 6.5 � Average 5-way 1-shot novel class accuracy on modi�edmini ImageNet. We
use ResNet-18 either pre-trained on Places or we train it from scratch onk0 base class
examples. Baselines only shown in Table 6.7 on the originalmini ImageNet.
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Attention X X
Adaptation X X

Base Places

k0 = 0 78.86� 0.22 80.15� 0.22 80.38� 0.22 81.05� 0.22
k0 = 20 78.41� 0.21 78.53� 0.21 79.67� 0.21 79.82� 0.21
k0 = 50 79.94� 0.20 79.99� 0.20 80.88� 0.20 80.96� 0.20
All 80.37� 0.21 80.24� 0.21 81.56� 0.20 81.50� 0.20

Base Randomly Initialized

k0 = 20 43.83� 0.21 - 44.21� 0.21 -
k0 = 50 54.68� 0.22 - 54.92� 0.22 -
All 72.43� 0.22 - 73.10� 0.21 -

Table 6.6 � Average 5-way 5-shot novel class accuracy on modi�edmini ImageNet. We
use ResNet-18 either pre-trained on Places or we train it from scratch onk0 base class
examples. Baselines only shown in Table 6.8 on the originalmini ImageNet.

E�ect of base training For �ne-grained few-shot classi�cation (CUB), base training

is extremely important in adapting to the new domain, improving the baseline 1-shot

accuracy by more than 40% with no adaptation and no spatial attention. For general

object classi�cation (modi�ed mini ImageNet), it is less important, improving by 4.5%.

It is the �rst time that experiments are conducted on just a small subset of the base

class training set. It is interesting that 50 examples per class are bringing nearly the

same improvement as all examples,i.e. hundreds per class.

E�ect of (novel class) adaptation Fine-tuning the network on k novel class ex-

amples per class, even fewer thank0 in the case of base classes, comes with the risk of

over-�tting. We still show that a small further improvement is possible with a small

learning rate. The improvement is more signi�cant when k is low, in which case, more

adaptation of the embedding network to the novel class domain is needed. In the ex-

treme case of CUB dataset without base training, adaptating on only the 25 images of

the 5-way 5-shot tasks brings an improvement of 8.20%.

E�ect of spatial attention Spatial attention allows focusing on the most discrimina-

tive parts of the input, which is more bene�cial when fewer examples are available. The

extreme case is having no base class images and only one image per novel class. In this

case, most improvement comes on modi�edmini ImageNet without base training, where

spatial attention improves 5-way 5-shot classi�cation accuracy by 1.5% after adaptation.



108 CHAPTER 6. FEW-SHOT FEW-SHOT LEARNING

Attention X X
Adaptation X X

Base Places

k0 = 0 65.80� 0.31 67.56� 0.31 66.41� 0.32 67.96� 0.31
k0 = 20 66.98� 0.29 67.63� 0.29 67.32� 0.29 67.80� 0.29
k0 = 50 69.11� 0.29 69.17� 0.29 69.22� 0.29 69.30� 0.29
All 69.71� 0.29 69.81� 0.29 69.70� 0.29 70.00� 0.29

Base Randomly Initialized

k0 = 20 37.75� 0.23 - 37.74� 0.23 -
k0 = 50 42.79� 0.23 - 42.79� 0.23 -
All 59.68� 0.27 - 59.66� 0.27 -

Baseline++ 51.87� 0.77 - - -
ProtoNet 54.16� 0.82 - - -
Ensemble 63.06� 0.63 - - -
CTM 64.12� 0.55 - - -

Table 6.7 � Average 5-way 1-shot novel class accuracy on originalmini ImageNet. We
use ResNet-18 either pre-trained on Places or we train it from scratch onk base class
examples. ProtoNet [SSZ17] is as reported by Chenet al. [Che+19]. CTM refers to
the data-augmented version of Li et al. [Li+19a]. For ensemble [DSM19], we use the
distilled model from an ensemble of 20. Baselines as reported in the literature, without
attention or adaptation; to be compared only to randomly initialized with k0 = all .

The attention maps appear to be domain-independent as they improve CUB accuracy

even when no images from the bird domain have been seen (k = 0 ).

Original mini ImageNet results The original mini ImageNet dataset partially over-

laps Places. We useT = 2 :4 for the temperature in (6.1). The remaining setup is as for

modi�ed mini ImageNet. Results are shown in tables 6.7 ands 6.7.

Compared to the results of modi�ed mini ImageNet (tables 6.5 and 6.6), performances

are nearly uniformly increased by 3-4% and conclusions remain the same. The increase in

performance is due to having more training data, as well as putting back easily classi�ed

classes in the test dataset. Observe that, unlike CUB (tables 6.3 and 6.4), CTM [Li+19a]

and ensembles [DSM19] perform better than our randomly initialized baseline.
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Attention X X
Adaptation X X

Base Places

k0 = 0 81.90� 0.23 83.00� 0.22 83.45� 0.22 84.09� 0.22
k0 = 20 81.44� 0.21 81.82� 0.21 82.56� 0.21 82.92� 0.21
k0 = 50 83.14� 0.20 83.25� 0.20 83.97� 0.19 84.10� 0.19
All 83.31� 0.19 83.25� 0.19 84.20� 0.19 84.24� 0.19

Base Randomly Initialized

k0 = 20 49.13� 0.23 - 49.67� 0.23 -
k0 = 50 57.18� 0.23 - 57.68� 0.23 -
All 75.42� 0.20 - 75.95� 0.20 -

Baseline++ 75.68� 0.63 - - -
ProtoNet 73.68� 0.65 - - -
Ensemble 80.63� 0.43 - - -
CTM 80.51� 0.13 - - -

Table 6.8 � Average 5-way 5-shot novel class accuracy on originalmini ImageNet. We
use ResNet-18 either pre-trained on Places or we train it from scratch onk base class
examples. ProtoNet [SSZ17] is as reported by Chenet al. [Che+19]. CTM refers to
the data-augmented version of Li et al. [Li+19a]. For ensemble [DSM19], we use the
distilled model from an ensemble of 20. Baselines as reported in the literature, without
attention or adaptation; to be compared only to randomly initialized with k0 = all .

1-shot 5-shot

Base Places Places+CUB CUB Places Places+CUB CUB

No att 38.80� 0.24 80.68� 0.27 71.78� 0.30 55.09� 0.24 90.38� 0.16 85.60� 0.18
NSA 40.72� 0.24 79.77� 0.28 69.91� 0.11 59.08� 0.24 90.03� 0.16 83.86� 0.19
ESA 39.69� 0.24 80.48� 0.27 - 56.95� 0.23 90.33� 0.16 -
NSA+ESA 40.71� 0.24 79.77� 0.28 - 59.06� 0.24 90.03� 0.16 -

Table 6.9 � Average 5-way novel class accuracy on CUB.We use ResNet-18 either pre-
trained on Places, pre-trained on Places then �ne-tuned on CUB or trained from scratch
on CUB using all base class examples. We are applying di�erent spatial attention strate-
gies at inference. ESA cannot be used when no pre-trained classi�er is available.
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1-shot 5-shot

Base Places Places+MMI MMI Places Places+MMI MMI

No att 61.66� 0.30 66.20� 0.29 55.99� 0.28 78.86� 0.22 80.37� 0.21 72.43� 0.22
NSA 63.23� 0.29 65.30� 0.29 53.54� 0.27 80.32� 0.21 79.88� 0.21 70.01� 0.22
ESA 63.36� 0.29 65.94� 0.29 - 80.15� 0.22 80.24� 0.21 -
NSA+ESA 63.45� 0.29 65.32� 0.29 - 80.43� 0.21 79.87� 0.21 -

Table 6.10 � Average 5-way novel class accuracy on modi�edmini ImageNet. We use
ResNet-18 either pre-trained on Places, pre-trained on Places then �ne-tuned on modi�ed
mini ImageNet or trained from scratch on modi�ed mini ImageNet using all base class
examples. We are applying di�erent spatial attention strategies at inference. ESA cannot
be used when no pre-trained classi�er is available.

6.5 Comparison of spatial attention mechanisms

In Tables 6.9 and 6.10 we present the accuracy test results of the two spatial attention

mechanisms, NSA and ESA, respectively on CUB and modi�edmini ImageNet. In this

set of experiments, no novel class adaptation is performed. We apply spatial attention

at few-shot inference only. Each attention mechanism and combination of the two is

tested using embedding networks that are either just pre-trained on Places, pre-trained

on Places and then �ne-tuned on the base classes of the few-shot learning dataset, or

trained from scratch on the few-shot dataset base classes (standard few-shot learning

setup). The threshold � of NSA is kept �xed for all experiments of a given dataset,

�xed using a validation set with a pre-trained network on Places embedding network.

The temperature T of ESA is kept �xed for all experiments of a given dataset except

when combined with NSA, in which case it is selected again on the validation set using

a pre-trained classi�er as embedding network.

We observe that NSA improves few-shot accuracy on both datasets while using the

network pre-trained on Places, in the case of CUB, the improvements are larger than

the ones observed with ESA, they are equivalent on modi�edmini ImageNet. However,

in those experiments, NSA fails in all instances of the network being trained on the full

base set, decreasing the accuracy by about 2%. Note that it does not invalidate NSA

completely: NSA leads to the best 5-way 1-shot and 5-shot accuracies when using the

pre-trained network alone on the CUB dataset. It rather reveals that the threshold � of

NSA depends on the number of base class examples. ESA shows consistent improvements

in accuracy on both datasets using the pre-trained network. When ESA is used with

the same temperatureT using the pre-trained and �ne-tuned network, the resulting
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accuracy is marginally inferior to not using it. This makes ESA a safe choice of spatial

attention, as it has no e�ect in the worst case. We also observe that using ESA on top

of NSA does not in�uence the few-shot accuracy in any of the tested setups. This result

can be explained as in essence those two mechanisms aims at discarding the background

related features of novel examples; when those are suppressed by NSA, the e�ect of ESA

is very limited.

6.6 Conclusion

In this chapter we generalized the problem of few-shot learning by studying the case

where even base classes images are limited in number, introducing a new setup called

few-shot few-shot learning. To address it, we use a pre-trained network on a large-scale

dataset and a very simple spatial attention mechanism that does not require any training

on the base or novel classes. This spatial attention (ESA) is based on the class prediction

of the pre-trained network and improves few-shot classi�cation accuracy in case where

base class examples are lacking and does not damage it when base class images are

available. We consider two few-shot learning datasets: CUB andmini ImageNet, with

di�erent domain gaps to our prior dataset Places. Our �ndings indicate that even when

the domain gap is large between the dataset used for pre-training and the base/novel

class domains, it is still possible to get signi�cant bene�t from base class training even

with a few examples, which is very important as it reduces the need for in-domain

supervision.
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In all previous chapters, we explored the issues linked to few-shot learning and intro-

duced models to address those. This exploration aims at improving the state of the art

knowledge in this domain. In chapter 3, chapter 4, we worked on the standard few-shot

learning setting, used in most few-shot classi�cation works. In chapter 5 we depart from

the standard few-shot learning setup to work on transductive few-shot learning which is

now also a commonly studied task. In chapter 6 we propose a novel, more realistic few-

shot learning setting called few-shot few-shot learning. This new setup is still general

enough to be picked up by the research community. In all those cases, we applied our

analysis and models to commonly used datasets:mini ImageNet, CIFAR100 and CUB.

The �rst two can be considered as general classi�cation. The last one is in a speci�c

domain, bird species, and is used as example of �ne-grained classi�cation. When using
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CUB, we always also used a general classi�cation dataset to show the generalization to

other domains to guarantee the behavior of our models in the general case.

In this chapter, we depart from this protocol to focus on a speci�c application of

few-shot classi�cation. In particular, we present a problem of interest at Safran. More

speci�cally, the objective is to classify land vehicles in aerial images. The task introduces

new challenges as the classes are few even for the base training set, the images are small

and background is treated as a separate class. This chapter aims at giving insights on

the application of previous few-shot learning methods on similar practical tasks.

7.1 Problem

In this section, we introduce the problem addressed in this section. Detailing the data

and constraints.

7.1.1 Data

For the sake of con�dentiality, images from the dataset used for this task cannot be

released. Through an internal data collection campaign, people at Safran gathered a

number of large aerial images. Contrary to the other datasets used in this thesis where

images were RGB, the images here are infrared, encoded as single channel grayscale

images. Examples of aerial images similar to those used for this study is shown in

Figure 7.1. Because the object of interest in those images are vehicles, a detection

method was �rst used, in particular Faster RER-CNN [TJ18]. This model is based on

Faster R-CNN [Ren+15] which is composed of a detector network that proposes regions

of interest and a classi�er that classi�es the corresponding region. The regions are

rectangular and axis-aligned. In Faster RER-CNN, similarily to [Din+19], the region

proposal network proposes regions of interest with an orientation. This �ts the task at

hand where vehicles are found in images without any preferred orientation.

With this method, 8051 regions of interest with highest detection scores are selected.

Corresponding image patches are extracted. The resulting images have small resolution

(about 30 pixels wide and long). For simplicity all images are resized to squared images

of 85 � 85 pixels. The images were warped to all have the same orientation, which we

found to help on the classi�cation task. Because the detection model detects some false

positives, some images correspond to background with any vehicle.

Those images were then manually annotated into specialized classes, being the type

of vehicle or background. More speci�cally, we regroup most vehicles into a common
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Figure 7.1 � Examples of images from the VEDAI dataset [RJ15]. Uncropped images
used in this study are similar in size and content.

Meta-class Number of images

Generic vehicles 4405
Background 3581
Rare vehicles 65

Table 7.1 � Detailed repartition of vehicle images in the Safran dataset.

meta-class, called generic vehicles. We are most interested in rarely seen vehicle types,

which will form our novel classes. In Table 7.1, we show the number of images from each

of those meta classes used in this study.

7.1.2 Task

Many di�erent tasks could be considered using the data presented above. In this work,

we focus on the classi�cation of rare vehicles in infrared aerial images. The choice was

made to focus on developing a multiclass classi�er that would classify into three classes:

background, generic vehicles and one of the rare vehicles class. Ultimately, it would be

interesting to be able to add all other rare vehicle classes to the classi�cation. This task

would be similar to the few-shot classi�cation into both base classes and novel classes

as done in [QBL18; GK18] and in this thesis in chapter 3. Still, we chose not go in this

direction because of the data limitations.

Inside the rare vehicles meta-class, most vehicle classes have very few examples. In

Figure 7.2 we show the distribution of the number of images of the 4 largest rare vehicles

classes. This work being a �rst approach to treating those classes, we chose to limit the

study to the largest two classes of rare vehicles having respectively 18 and 15 examples.



116 CHAPTER 7. APPLICATION TO CLASSIFICATION OF AERIAL IMAGES

1 2 3 4
0

5

10

15

20

Rare vehicle class number

N
um

b
er

of
im

ag
es

Figure 7.2 � Number of images for the four largest rare vehicles classes.

Other classes all have seven or less examples. Performance using such extremely scarce

data would be heavily dependent on the choice of the quality of the examples. In a

work that aims at drawing conclusions on a new task, those classes might introduce an

unwanted bias.

Using the standard few-shot learning setting was not satisfactory. Indeed, few-shot

learning datasets usually have many distinct classes fully dedicated to validation or

testing. In our case, we cannot a�ord to have novel validation classes, therefore we keep

some images in each class for this purpose and validate using the same novel classes.

Because of this, we cannot guarantee generalization to other novel classes but we can at

least verify consistency between the two used classes. Additionally, if we were to use both

rare vehicle classes together in classi�cation, it would not guarantee a good performance

with other combinations of rare vehicle classes. With other few-shot datasets, one can

arti�cially generate thousands of di�erent few-shot tasks by picking a subset of the novel

classes available which is not possible here.

7.2 Model

In this section are presented the choices made for the model used for the aerial images

classi�cation task. The task here is not exactly de�ned as previous chapters few-shot

tasks as we are limited to only two classes for base classes and only one novel class.

Nevertheless, we adopt a similar method framework as previous chapters. Speci�cally,
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�rst we use base classes to learn a representation of images. Then we use few-shot data

to build a classi�er for the novel class.

7.2.1 Experimental setup

In previous chapters, testing a method was performed by applying it on a high number of

few-shot tasks sampled from the validation or test dataset. This task sampling involved

sampling a subset of novel classes, then inside those classes, a subset of images to be used

as support examples and a disjoint subset to be used as query examples. In this study,

we only have one novel class in the classi�cation. Therefore, the class sampling step is

skipped. We still sample a large number of tasks by sampling di�erent combinations of

supports and query examples in the novel class. We report the average results separately

for the two possible novel classes.

7.2.2 Base class learning

Choice of embedding network We experimented with two networks for the em-

bedding function: ResNet-18 and ResNet-12. Without pretraining ResNet-12 proved to

be a better choice in other dataset experiments. Because ResNet-18 is a more common

architecture, we could �nd and use a version of it pre-trained onmini ImageNet. Con-

sistent with what was observed in chapter 6, even though there is a large domain gap

betweenmini ImageNet and aerial images, this pre-trained network resulting in the best

overall results.

Choice of training loss We used the same framework as described in chapter 3, that

is to say train the embedding network on a classi�cation task on the base classes. In

this particular task, the base classes are only two: background and generic vehicles.

Therefore, the classi�cation task becomes a binary classi�cation task. We experimented

with two losses for binary classi�cation. On the one hand, we used the usual multi-class

cross-entropy as in chapter 3, that is, using a one layer classi�er parametrized by two

weight vectors for the two classes. In this case, we enforce background images to be

mapped to a particular point in the feature space. On the other hand, we modi�ed the

classi�cation layer to only have one output and applied a binary cross-entropy loss on

it. In this case, we enforce background images to be mapped far away from the vehicle

images. In this case (2.15) becomes

f �;W (x ) := S (s� (� � (x ); W)) (7.1)
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Task RV1 Task RV2
Recall novel Accuracy Recall novel Accuracy

Loss Binary cross-entropy

1-shot 0.28 0.66 0.23 0.64
5-shot 0.70 0.82 0.42 0.72
10-shot 0.81 0.86 0.63 0.79

Loss Multiclass cross-entropy

1-shot 0.04 0.62 0.1 0.71
5-shot 0.42 0.74 0.11 0.61
10-shot 0.71 0.83 0.41 0.71

Table 7.2 � Average recall of the novel class and accuracy with multiclass cross-entropy
and binary cross-entropy loss. The accuracy is computed using both base classes and
novel classes. Dense classi�cation is used in both cases. RV1 and RV2 refers to rare
vehicle classes 1 and 2.

where W 2 Rd is the only parameter vector associated with the positive class andS is

the sigmoid function

S(x) :=
1

1 + e� x (7.2)

with x 2 R. Similarly to dense classi�cation, equation 3.1 becomes

f �;W (x ) :=
h
S

�
s� (� (k)

� (x ); W)
�i r

k=1
(7.3)

The result loss function is

`(p; y) := � y logp � (1 � y) log(1 � p) (7.4)

with p 2 R. The resulting loss function minimization aims at enforcing that positive ex-

amples representations are grouped together, close toW , while having the representation

of the negative examples far from it. The generic vehicle class is the natural choice for

positive class. Because we are mostly interested in the rare vehicle class performance,

we measure the recall for the rare vehicle class, that is to say the proportion of rare

vehicle images that are classi�ed properly at test time. We also measure the average

accuracy as done in previous chapters. Table 7.2 shows the average recall of the novel

class and total accuracy using those two losses for the representation learning stage.

For both rare vehicle class tasks and for all measures, we observe superior performance
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Task RV1 Task RV2
Recall novel Accuracy Recall novel Accuracy

Loss Dense classification

1-shot 0.28 0.66 0.23 0.64
5-shot 0.70 0.82 0.52 0.72
10-shot 0.81 0.86 0.63 0.79

Loss Global average pooling

1-shot 0.41 0.71 0.30 0.66
5-shot 0.61 0.76 0.51 0.70
10-shot 0.74 0.82 0.54 0.72

Table 7.3 � Average recall of the novel class and accuracy with global average pooling
and dense classi�cation. The accuracy is computed using both base classes and novel
classes. Binary cross-entropy is used in both cases. RV1 and RV2 refers to rare vehicle
classes 1 and 2.

using the binary cross-entropy loss. Similarly in Table 7.3 we compare performances on

the novel class while using dense classi�cation or regular global pooling. We observe

superior performance using dense classi�cation for 5-shot and 10-shot for both classes.

Average pooling gives better performance in the 1-shot scenario.

7.2.3 Novel class adaptation

Novel classes classi�er Similar to what was done in subsection 4.1.4, we build a

new one layer classi�er by computing prototypes. There are however two di�erences.

Firstly, in this case we only have one novel class (one rare vehicle for each few shot task).

Secondly, we also produce prototypes for the base classes. In chapter 3, we reused the

learned parametersW for representative for the base classes. Here, because we used a

binary classi�er, W 2 Rd is a unique representative and therefore cannot be used for

both base classes. Prototypes for the base classes only have to be computed once at the

end of the representation learning stage, the computational cost is limited to a single

forward pass of the training dataset which is minimal. We also experimented with using

W as the prototype of the generic vehicle class and computing only a prototype for the

background class which gave worse results.

Novel class adaptation We attempted to adapt the representation of the embedding

network with few steps adaptation as done in section 4.3. As observed in this chapter,
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adaptation helps for some selection of support examples and fails for others. In sec-

tion 4.3 the early stopping was based on observing the number of training iterations

that on average improve classi�cation on the validation classes. In this context, we do

not have the necessary data to implement this solution safely. Moreover, the observed

improvements were minimal. In the end, we did not choose to use novel class adaptation.

Spatial attention Following the work done on spatial attention in subsection 6.3.2, we

experimented with spatial attention for the aerial image classi�cation task. Examination

of the feature maps as done in Figure 5.2 con�rms that relevant regions of the images

have local descriptors of higher norms than non-discriminative regions. However, we did

not observe signi�cant performance change by using the spatial attention. A possible

explanation is that the objects of interest in the images already cover most of the image

surface, so there are fewer distractor background regions to eliminate. Moreover, one

of the classes in this task is the background itself. This has two consequences on the

model. Firstly, because the background class is part of the base classes, the embedding

network might have learned to embed background regions with high norm descriptors.

Secondly, any spatial attention method that aims at discarding the background features

or their in�uence in the classi�cation would not make sense when some of the images

are purely background. For this task and any tasks that include classi�cation into a

background class, another method should be designed. A possible direction would be

to exclude the class from the classi�er and instead classify images where few area are

judged discriminative as background. Due to lack of time, such study is left for future

work.

7.3 Conclusion

In this chapter, we explored one possible application of few-shot learning methods. This

work is preliminary but allows us to con�rm that our observations on standard academic

settings and datasets can transfer to the aerial image classi�cation task. Dense classi-

�cation shows improvements on classifying the novel queries in most cases. The norm

can be used as a viable indicator that a region is relevant for classi�cation. However

method used for the standard few-shot learning settings cannot be directly applied to

this problem. The task presented here has many speci�cities that would require more

exploration. The fact the the base classes are limited to two is di�erent from the usual

many base class setup. We touched on having a small base dataset in chapter 6, however

we limited the number of examples per class and not the number of classes. Moreover
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one of the class is the background class. Treating background samples as negative exam-

ples in a binary classi�cation loss is a way of dealing with this, but other options could

be explored in relation to spatial attention.





Conclusion and perspectives

Representation learning In this thesis, we examined the problem of few-shot classi-

�cation through the focus of representation learning and using the few support examples

to adapt as much as possible to the few-shot task. First, in chapter 3, we discussed how

to properly use a disjoint set of images, the base dataset, to learn a task-independent

embedding of the images. We experimented with models that implement the embed-

ding function with convolutional neural networks. We showed that the choice of CNN

architecture should not be overlooked, in particular the tested residual networks show

impressive results while being fast to train. With such powerful architectures, the sim-

ple cosine classi�er strategy consisting in training on a multiclass classi�cation task on

the base classes results in strong few-shot performance, exceeding that of more complex

meta-learning methods.

Since representation learning is used to learn an embedding that ultimately will be

used to classify novel classes, it is important that it learns to represent as many discrim-

inative details in the images as possible. With this in mind, we proposed to modify the

way spatial information is treated by the neural network during representation learn-

ing. Convolution layers of CNNs return tensors with spatial dimensions. By selecting

a speci�c pixel, we can extract a local representation of a region of the image. Usually,

spatial information is suppressed by the application of �attening or spatial pooling on

the output of the embedding network. Instead, in dense classi�cation, we treat each lo-

cal representation independently. During training, all spatial locations must be mapped

by the cosine classi�er to the label of the image. This simple modi�cation shows impres-

sive improvements for classi�cation into the novel classes, as well as classi�cation on the

union of base and novel classes.

Adaptation In the �rst stage described above, the goal is to learn a task-invariant

embedding function, as we do not have access to any information on the few-shot task.

In chapter chapter 4, we explored methods that adapt it to be task-dependent, condi-
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tioned on the novel classes' support examples. This stage is challenging as the lack of

data makes any learning-based strategy prone to over�tting. We introduced two solu-

tions. First, implanting a limited number of new parameters to the embedding network.

Implants are convolutional layers that operate in parallel to the original embedding net-

work. Only the implant parameters are trained on the support examples, e�ectively

limiting the adaptation to not depart too much from the original embedding function.

We also proposed an alternative strategy consisting in�ne-tuning entire blocks of the

embedding network for a small number of parameter updates. The number of steps is

based on the observed optimal accuracy on a set of validation tasks. Such early stop-

ping strategy, while being simple, allows to adapt the representation without over�tting.

Those methods show limited improvement for one-shot learning. In this case, we showed

that it is possible to augment the support set with related images from the base dataset

to arti�cial create more shots for the task.

Role of data Continuing on the idea of utilizing the few available data as much as

possible, we also studied in chapter 5 the task oftransductive few-shot learning. In this

task, the queries to classify are multiple. We can consider them as extra unlabelled data

that add further information about the novel classes. Organizing examples as nodes in a

graph allows using propagation methods to label all of them, including the queries. To

explore local similarities in images, which can help to classify them, we proposedlocal

propagation, whereby we use local representations of images as nodes in the graph. In

this context, we also introduced a simple spatial attention mechanism that selects only

the non-background regions for the graph. This method shows competitive results in the

standard few-shot learning setting and can e�ciently take advantage of unlabeled data

in the transductive setting, making it a safe choice for few-shot classi�cation in general.

Another source of data that is not considered in the standard few-shot learning

setting is all the large-scale datasets that are accessible. Usually, the representation

stage is limited to learning an embedding from scratch with the base class dataset. In

some cases, such base dataset is not available or limited to a few samples. Based on those

observations, we proposed, in chapter 6,few-shot few-shotlearning as a novel few-shot

learning setting where prior knowledge is modeled as a large-scale dataset or directly

a CNN trained on such a dataset. Representation learning with base classes becomes

adaptation to the few-shot task domain, which can be performed similarly as before.

In this context, we introduced another spatial attention mechanism based on utilizing

predictions from the pre-trained classi�er. We studied the e�ect of the spatial attention

mechanism and of previously introduced methods in this setting with varying sizes of
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the base dataset. We showed that in all cases, pretraining on the large-scale dataset

improves the few-shot performance, even when its domain is far from the few-shot task

domain. We also observed that adaptation and spatial attention can help compensate

for the lack of base classes data to adapt the domain.

Aerial data Finally, in chapter 7, we focused on a particular few-shot learning prob-

lem, namely, classi�cation of rare vehicle classes in aerial images. This is a hard task

since images have small resolution and base classes are limited to two: generic vehicles

and background. Preliminary experiments showed that dense classi�cation, applied with

a binary classi�er, improves few-shot accuracy. The spatial attention mechanism also

seems to select relevant regions in the images. However, since one class is background,

it does not result in improved performances.

Perspectives

Augmentation with related base local features In parallel to [ALG19], we ex-

perimented with the idea of augmenting the support set with related images from the

base classes. More precisely, for each novel class, we selected the images with the closest

representation to the class prototype and added them to the support set of the class. We

observed encouraging results for one-shot classi�cation. A �ner version of this method

would be to select the related local representations from the base dataset to use for

enriching the support set. For instance, we could stitch together local representations of

di�erent base examples to form a global one that can be associated with a novel class.

We cannot expect the extra generated examples from the base dataset to carry as much

information on the novel classes as the support examples. Incorporating them in the

adaptation stage could be attempted by considering them as noisy data and applying

training methods dealing with such data noise [Son+20]. We have explored this direction

with inconclusive results, a more in-depth study would be interesting.

Integrating a distractor class In a few-shot task, we usually assume that the queries

to classify belong to one of the novel classes. In practice, such assumption cannot always

hold. It would be interesting for the classi�er to be able to predict that the image is in

none of the novel classes as done in open-set recognition [GHC20]. A possible solution

would be to introduce a distractor class in the classi�er. [Ren+18b] introduces such

distractor but only to prevent unlabeled data to be confused with one of the novel

classes, not for �nal prediction. Possible directions for this work would be to use spatial
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attention mechanisms to detect images that are mainly background, or reusing part of

the base class data as examples of external classes.

Other few-shot learning tasks While early few-shot learning methods focus on

classi�cation, few-shot is not limited to it. A related task that has gained traction

recently is few-shot object detection. It consists in learning to locate and classify ob-

jects. A few methods [Che+18; Kar+19; Fan+20] propose a modi�ed version of Faster

R-CNN [Ren+15]. The classi�er part of Faster R-CNN needs to solve a few-shot classi-

�cation problem, so the insights developed on classi�cation can transfer to the detection

task. Moreover, the region proposal network selects parts of the images that contain an

object to classify, which is related to our e�ort on spatial attention to select only the

relevant information. Overall, the state of the art is less mature on this task, so there is

more to explore.

Incremental few-shot learning Incremental learning corresponds to the setting

where a model learns to solve a task and must then be able to learn new tasks when given

new training data, without forgetting the tasks learn before. The most common setting

is learning to classify among a set of classes, then learning new classes. In this sense,

few-shot classi�cation where we classify among the union of base and novel classes, can

be seen as a particular case of incremental learning where there is only one set of new

classes to learn and examples for those classes are few. Incremental learning methods

also use similar training processes such as the use of cosine classi�ers [Hou+19b]. The

challenge of incremental learning is to make sure that previous classes are not forgot-

ten. Methods have been proposed to store a subset of previously seen data [RKL16;

Cas+18] or intermediate representations [Ahm+20]. In which case, the adaptation of

the model to new classes is done with few examples of all classes. Another solution is

to learn generative models to produce data of previously seen classes [KK18], which is

also a common approach for few-shot learning. Additionally, forgetting is avoided by

using knowledge distillation methods [LH18], which can be applied spatially [Dha+19]

for improved performance. Our focus on spatial representation could be useful when

studying incremental learning.
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Titre : Exploiter au mieux les données disponibles : représentation et adaptation pour
la classi�cation few-shot d'images

Mots-clés : Few-shot, apprentissage automatique, profond, representation, adaptation, vision

Résumé : Les réseaux de neurones pro-
fonds peuvent être entraînés pour produire
des modèles de classi�cation d'images très
précis, à condition d'avoir accès à un grand
nombre de données d'apprentissage. Dans le
cas du few-shot learning, les données sont li-
mitées à quelques images ce qui ne permet
pas l'apprentissage complet. Dans un premier
temps, une fonction de représentation indé-
pendante de la tâche est apprise en résol-
vant une tâche distincte comme la classi�ca-
tion des classes de base. Ensuite, la repré-
sentation est combinée avec des exemples
des nouvelles classes pour résoudre la tâche
few-shot. Pour les deux étapes, nous intro-
duisons des solutions exploitant au mieux les
données disponibles. Pour l'apprentissage de
représentation, nous proposons la classi�ca-
tion dense, qui étudie pour la première fois
les activations locales pour le few-shot lear-
ning. De plus, nous proposons deux solutions
pour adapter la fonction de représentation à

la tâche few-shot. L'apprentissage est limité
à quelques paramètres dans le cas de l'im-
plantation, ou à quelques itérations. Nous étu-
dions également des problèmes de few-shot
learning pour lesquels l'accès à l'information
est modi�é. Dans le cas du few-shot transduc-
tif, plusieurs images doivent être classi�ées
en même temps. Nous proposons la propa-
gation locale, utilisant les similarités entre re-
présentations locales pour propager l'informa-
tion de classe. Nous proposons également un
nouveau problème, le few-shot few-shot lear-
ning, où peu ou aucunes données du domaine
n'est accessible. On peut utiliser un réseau
pré-entraîné en l'adaptant si possible avec des
données du modèle. Pour le few-shot lear-
ning, il est important de se focaliser sur les
régions pertinentes des images. Nous propo-
sons deux solutions simples d'attention. En�n,
nous appliquons notre savoir dans le cas spé-
ci�que de la classi�cation d'images aériennes.

Title: Making the most of available data: representation and adaptation for few-shot
image classi�cation

Keywords: Few-shot, machine learning, deep learning, representation, adaptation, vision

Abstract: Deep neural networks can be
trained to create highly accurate image clas-
si�cation models, provided we have access to
large datasets. In few-shot learning, data is
limited to few images, so training from scratch
is not feasible. First, a task-independent rep-
resentation function is learned on abundant
data by solving a distinct task such as multi-
class classi�cation on a set of base classes.
Then, the learned representation is combined
with new data of novel classes to solve the
few-shot task. In both stages, we introduce
solutions that aim at leveraging available data
as much as possible. In particular, for repre-
sentation learning, we propose dense classi-
�cation training, which for the �rst time stud-
ies local activations in the domain of few-shot
learning. We also propose two solutions to
adapt the representation function to the few-
shot task. Learning is limited to a few pa-
rameters in implanting or to few gradient up-

dates. Additionally, we study alternative few-
shot learning settings, in which access to data
is modi�ed. In transductive learning, multiple
images need to be classi�ed at the same time.
In this context, we propose local propagation,
a method that uses similarities between local
representations of images to propagate class
information. We also introduce few-shot few-
shot learning, a new setting, where only few
or no in-domain data is accessible for repre-
sentation learning. In this context, we take ad-
vantage of a classi�er, pre-trained on a large-
scale dataset of a different domain, which can
still be adapted to the domain if data is avail-
able. In few-shot learning, because data is
so scarce, we show that selecting relevant re-
gions with an attention mechanism is impor-
tant. We propose two simple solutions that
successfully ful�ll this role. Finally, we ap-
ply our knowledge of few-shot learning on the
speci�c problem of classifying aerial images.
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