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Abstract
Recent years have witnessed rapid progress in enabling technologies for data

sensing, communication and mining, paving the way for the phenomenal growth of
smart connected environments (e.g., smart buildings, cities, factories). These envi-
ronments are currently providing interesting and useful applications that help users
in their everyday tasks (e.g. increasing comfort, reducing energy consumption).
However, such applications require to collect, exchange, store, and process large
amount of fine-granular data that is often privacy-sensitive for their users (e.g., loca-
tion, energy-consumption), as its analysis allows data consumers to reveal sensitive
information about them, such as their health conditions and preferences.

Consequently, involving users in the management of their privacy is nowadays
receiving extensive attention. Nonetheless, various improvements are still required.
For instance, how to raise user awareness of the privacy risks involved in their data
sharing and/or imposed by their environments. Moreover, how to enable users to
assess their situations and make optimal data utility-privacy decisions accordingly.

In this thesis, we focus on six main challenges: (i) representing diverse user con-
texts with a high semantic expressiveness power; (ii) performing a holistic (all-data-
inclusive) context-based privacy risk reasoning; (iii) achieving user-centric privacy
management; (iv) making optimal context-based privacy decisions; (v) coping with
the inter-context data dependency; and (vi) delivering scalability and efficiency in
order to assist the user in a variety of situations.

To address these challenges, we first present an ontology-based data model ca-
pable of representing various user contexts with high-level information coverage.
Following that, we introduce a context-aware semantic reasoning approach for pri-
vacy risk inference that provides a dynamic/contextual overview of risks tailored
to the user’s expertise. Then, to enable optimal management of data utility-privacy
trade-offs, we propose a user-centric multi-objective approach for context-aware pri-
vacy management that provides dynamic best data protection strategies to be imple-
mented based on user situations and preferences. Finally, we propose a new stochas-
tic gradient descent solution for privacy-preserving during protection transitions,
which gives an additional layer of protection against data inference attacks.

The aforementioned contributions are regrouped in one global generic and ex-
tensible framework for context-aware privacy management.
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Résumé
Ces dernières années, les technologies de détection, de communication et de

gestion de données ont connu de progrès rapides, ouvrant la voie à la croissance
phénoménale des environnements connectés intelligents (bâtiments, villes intelli-
gentes). Ces environnements fournissent actuellement des applications intéressantes
et utiles qui aident les utilisateurs dans leurs tâches quotidiennes (augmenter le con-
fort, réduire la consommation d’énergie). Cependant, de telles applications nécessi-
tent de collecter, échanger, stocker et traiter une grande quantité de données à gran-
ularité fine qui sont souvent sensibles pour leurs utilisateurs (localisation, consom-
mation d’énergie), d’autant plus que leur analyse permet aux consommateurs de
données de révéler des informations sensibles (état de santé, préférences des utilisa-
teurs).

Par conséquent, la participation des utilisateurs dans la gestion de leur vie privée
fait l’objet d’une grande attention. Néanmoins, diverses améliorations sont encore
nécessaires. Par exemple, comment sensibiliser les utilisateurs des risques pour la
vie privée liés au partage de leurs données et/ou imposés par leurs environnements.
De même, comment permettre aux utilisateurs d’évaluer leur situation et de prendre
des décisions optimales concernant l’utilité des données et le respect de la vie privée
en conséquence.

Dans cette thèse, nous nous concentrons sur six défis principaux: (i) représen-
ter des contextes diversifiés de l’utilisateur avec une haute puissance d’expressivité
sémantique ; (ii) effectuer un raisonnement holistique (toutes données incluses) et
contextuel sur les risques en matières de vie privée ; (iii) parvenir à une gestion
de vie privée centrée sur l’utilisateur ; (iv) prendre des décisions contextuelles op-
timales liées à la protection de la vie privée ; (v) gérer la dépendance des données
inter-contextuelles ; et (vi) fournir une solution évolutive et efficace afin d’assister
l’utilisateur dans diverses situations.

Pour ce faire, nous présentons d’abord un modèle de données basé sur une
ontologie capable de représenter divers contextes utilisateur avec une couverture
d’informations de haut niveau. Ensuite, nous introduisons une approche de raison-
nement sémantique qui fournit un aperçu dynamique/contextuel des risques en
matière de vie privée, adapté à l’expertise de l’utilisateur. Ensuite, pour permet-
tre une gestion contextuelle optimale des compromis entre utilité des données et
protection de la vie privée, nous proposons une approche multi-objectifs centrée sur
l’utilisateur qui fournit dynamiquement les meilleures stratégies de protection de
données à mettre en œuvre en fonction des situations et préférences des utilisateurs.
Enfin, nous proposons une nouvelle solution de descente de gradient stochastique
pour assurer une transition intélligente du niveau de protection des données. Cette
solution offre ainsi une couche supplémentaire de protection contre les attaques par
inférence de données.
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Les contributions susmentionnées sont regroupées dans un framework global
générique et extensible pour la gestion contextuelle de la vie privée.

Le manuscrit est organisé comme suit :

Chapitre 1

Introduction

Dans ce chapitre, nous introduisons les facteurs technologiques qui ont contribué
à la prolifération des environnements connectés pendant nos jours. Ensuite, nous
nous concentrons sur la vie privée des utilisateurs dans le contexte de ces environ-
nements (menaces et défis relatifs à la vie privée, lois et standards mondiales de
vie privée). Par la suite, nous présentons le contexte et les objectifs de cette thèse.
Nous étudions un scénario qui illustre la motivation de ce travail et les défis émer-
gents. Nous examinons les approches existantes dans la littérature sur la protection
contextuelle de la vie privée dans les environnements intelligents. Ensuite, nous
présentons notre framework proposé pour la gestion contextuelle de la vie privée
dans les environnements connectés (CaPMan), dans lequel chaque module répond
à un ensemble de besoins et de défis:

• Premier Module: Gestion de l’information. Ce module est responsable de la
gestion des informations contextuelles (acquisition et modélisation des infor-
mations) et des préférences de l’utilisateur. Nous nous focalisons dans cette
thèse sur la modélisation du contexte et nous proposons un modèle ontologique,
notée uCSN, permettant de représenter d’une manière expressive différentes
situations de l’utilisateur.

• Deuxième Module: Inférence de risques liés à la vie privée. Ce module com-
prend un raisonneur de risque, noté CaSPI, en charge de détecter d’une manière
dynamique les risques impliqués pour l’utilisateur en fonction de l’évolution
de sa situation.

• Troisième Module: Gestion de la vie privée. Ce module est chargé d’assister
l’utilisateur dans la gestion de sa vie privée et la protection de ses données
avant qu’elles ne soient communiquées aux consommateurs de données. Pour
ce faire, ce module comprend un gestionnaire de risque, noté δ-Risk, respon-
sable d’analyser les risques détectés et de fournir à l’utilisateur des stratégies
de protection de vie privée optimisées à appliquer en fonction de sa situation
et préférences. Pour la protection des données, nous nous concentrons dans
cette thèse sur les transitions de protection et nous proposons une nouvelle
approche de descente de gradient stochastique, notée P-SGD, qui permet de
surmonter les vulnérabilités aux attaques par inférence de données.

Finalement, nous répertorions les publications liées à ce rapport avant d’introduire
les chapitres suivants.
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Chapitre 2

Modélisation du contexte dans des environnements connectés

Dans ce chapitre, nous décrivons un modèle de données basé sur une ontologie.
Nous présentons une étude comparative des travaux existants sur la modélisation
de l’utilisateur (profile, activité), de l’environnement et du contexte (utilisateur, envi-
ronnement et d’autres dimensions). Ensuite, nous introduisons notre ontologie pour
la modélisation du contexte utilisateur dans les réseaux de capteurs (uCSN), dans
laquelle nous enrichissons la représentation du contexte pour prendre en compte
divers types de : (i) informations utilisateur/environnement (informations scalaires,
multimédias) ; (ii) sources de données (capteur, document) ; (iii) incertitudes (in-
certitudes liées à l’utilisateur, à l’environnement) ; et (iv) environnements (envi-
ronnements connectés/non connectés, environnements avec des systèmes et ap-
pareils statiques/mobiles). Pour ce faire, nous définissons de nouveaux concepts
et propriétés, et nous importons d’autres à partir des ontologies bien connues, à
savoir DPV [1], SOSA/SSN [2] et W3C Uncertainty Ontology [3], sans compromet-
tre la possibilité de réutilisation du modèle de données dans différents domaines
d’application. Enfin, nous évaluons la performance, la clarté, la cohérence et la pré-
cision de l’ontologie proposée.

Chapitre 3

Inférence de risques liés à la vie privée

Dans ce chapitre, nous décrivons le raisonneur de risque que l’on utilise pour dé-
duire les risques en matière de vie privée impliqués dans le contexte de l’utilisateur.
Nous passons en revue les travaux existants sur l’inférence des risques avant de dé-
tailler l’approche proposée (CaSPI [4]) qui exerce un raisonnement sémantique et
contextuel pour l’inférence dynamique des risques. Nous relevons les défis liés à
(i) l’augmentation de l’expressivité dans les définitions des risques ; (ii) la mise en
œuvre d’un raisonnement holistique prenant en compte différents types de com-
binaison données/informations contextuelles ; (iii) faire face à la dynamique et à
la dépendance contextuelle des risques liés à la vie privée ; (iv) gérer et s’adapter
à l’expertise des utilisateurs ; et (v) assurer l’évolutivité et l’efficacité de la solution.
Nous validons notre proposition en développant un prototype et nous illustrons son
fonctionnement en back-end et front-end. Enfin, nous évaluons ses performances en
considérant différents scénarios.
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Chapitre 4

Gestion de risques liés à la vie privée

Dans ce chapitre, nous décrivons le gestionnaire de risques qui évalue les valeurs
des risques inférés, puis calcule les meilleures stratégies de protection des données
adaptées à la situation et aux préférences de l’utilisateur. Nous présentons notre
approche multi-objectifs et contextuelle proposée pour la gestion de la vie privée (δ-
Risk [5]). Nous détaillons le processus suivi depuis les entrées (risques impliqués,
préférences de l’utilisateur) jusqu’aux meilleures stratégies fournies à la sortie à
l’utilisateur. Nous validons notre proposition en développant un prototype et il-
lustrons son fonctionnement en back-end et en front-end. Enfin, nous évaluons ses
performances en considérant différents scénarios et étudions formellement son effi-
cacité dans l’identification de stratégie.

Chapitre 5

Préservation de la vie privée pendant les transitions de protection

Dans ce chapitre, nous nous concentrons à surmonter la vulnérabilité du système
aux attaques par inférence de données pendant les transitions de protection des don-
nées (par exemple, lorsqu’un changement de stratégie se produit). Nous soulignons
les cas qui contribuent aux fuites temporelles de la confidentialité des données lors
des transitions de protection. Ensuite, nous introduisons notre solution de descente
de gradient stochastique proposée pour la préservation de la vie privée pendant les
transitions du niveau de protection des données (P-SGD [6]). La solution proposée
est connectée au composant de protection des données du framework, et déclenchée
lors des phases de descente de protection pour fournir une couche de protection
supplémentaire contre les attaques par inférence de données. Nous détaillons le pro-
cessus suivi par P-SGD et illustrons son fonctionnement en exécutant le prototype
développé. Enfin, nous présentons l’expérimentation et les résultats.

Chapitre 6

Conclusion et Travaux Futurs

Ce chapitre conclut le rapport en récapitulant tous les chapitres susmentionnés et
en détaillant les prochaines étapes, extensions futures, et de nouvelles orientations
possibles pour la suite de ce travail de recherche.
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Chapter 1

Introduction

"He’s not our hero. He’s a silent guardian, a watchful protector.
A dark knight."

– Jonathan Nolan, The Dark Knight

1.1 Connected Environments

Recent years have witnessed great strides in the fields of Ubiquitous Computing
(e.g., Internet of Things), Big Data, and Machine Learning that have led to the rapid
growth of smart connected environments. These environments are defined as infras-
tructures that host Cyber-Physical Systems (CPS), such as sensor networks, inter-
connected using various communication technologies (e.g., Bluetooth, 6LoWPAN).
Connected systems are capable of collecting valuable data that can be later mined
and processed to provide advanced services for both environments and users. Cur-
rent CPS-based applications are impacting numerous application domains including
smart healthcare (e.g. patient and elderly monitoring), smart buildings/homes (e.g.,
increasing occupants’ comfort, optimizing energy consumption), smart cities (e.g.,
traffic management, safety and disaster prevention, air quality monitoring), and so
forth. Figure 1.1 illustrates examples of connected environments.

The successful proliferation of connected environments has been driven by var-
ious technological factors. From the data sensing perspective, recent advances in
Sensing Technologies have enabled the development of low-cost, low-power, multi-
functional sensor nodes [7], such as cameras, microphones, GPS, environmental sen-
sors (e.g., sensors to measure temperature, humidity), and medical sensors (e.g.,
sensors to measure heart-rate, blood pressure). These sensors can be embedded on
various devices (e.g., mobile phones, smartwatches) or/and deployed in different
environments (e.g., cities, buildings). The advanced capabilities of the sensing ob-
jects have allowed the collection and transmission of numerous heterogeneous data
about users and environments (i.e., data with different types and formats). From the
data mining and processing perspective, recent advances in Information and Com-
munication Technologies (ICT), Big Data, and Data Mining techniques have made it
easier to deal with challenges related to managing big data volumes, heterogeneous
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data, continuous data streams, data pre-processing, and knowledge extraction from
data. This has paved the way for better monitoring and prediction of environmental
situations, events, and user behaviors and activities, which has improved the capa-
bilities of current applications to make knowledge-driven decisions.

FIGURE 1.1: Examples of Connected Environments

1.2 Privacy in Connected Environments

With the wide and rapid evolution of smart connected environments, the number
of applications involving users and the level of interaction with the user are both
bound to increase. These applications collect and process large amount of data in
order to provide better services that fulfill personal preferences and improve the
user experience. However, collected data can be also leveraged to draw detailed
profiles of users, including their behaviors, preferences, and activities, which raises
significant challenges with regard to the protection of users’ privacy.

So far, privacy has been difficult to define and formalize due to its changing
perspective over time and across cultures. Privacy was first defined in 1890 as "the
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right to be left alone" [8]. Then, in the 1960s, it was the rise of electronic data pro-
cessing that brought into being the notion of information privacy (or data privacy).
Westin [9] defined privacy as "the claim of individuals, groups, or institutions to deter-
mine for themselves when, how, and to what extent information about them is communicated
to others", which mainly emphasized the control of the data subjects over their data.
Following that, Ziegeldorf et al. [10] argued in the 2010s that Westin’s definition was
too general for the IoT area, and consequently defined IoT privacy as the threefold
guarantee including "(i) awareness of privacy risks imposed by smart things and services
surrounding the data subject; (ii) individual control over the collection and processing of
personal information by the surrounding smart things; and (iii) awareness and control of
subsequent use and dissemination of personal information by those entities to any entity out-
side the subjects personal control sphere". After reviewing existing privacy definitions,
the scope of this work is best summarized by the privacy perspective of Ziegeldorf
[10], which addresses the self-determined management of personal information in
the IoT era. This perspective is also compliant with the privacy needs outlined in
current privacy laws and standards.

In the following sub-sections, we present the definition of personal information.
Then, we outline the most recent threats and challenges to user privacy in connected
environments. After that, we provide an overview of the current data protection
laws from around the world, followed by the recently released privacy and data
protection standards.

1.2.1 Personal Information

The General Data Protection Regulation (GDPR) [11] defined personal information
(or personal data) as "any information relating to an identified or identifiable natural per-
son (data subject)". The National Institute of Standards and Technology [12] defined
personal information as "any information about an individual maintained by an agency,
including (1) any information that can be used to distinguish or trace an individual‘s iden-
tity [...]; and (2) any other information that is linked or linkable to an individual, such as
medical, educational, financial, and employment information". The California Consumer
Privacy Act (CCPA) [13] defined personal information as "any information that identi-
fies, relates to, describes, is reasonably capable of being associated with, or could reasonably
be linked, directly or indirectly, with a particular consumer or household". In light of this,
we distinguish between identifiable and sensitive information by introducing two
categories of personal information:

• Personally Identifiable Information (PII): Any information that can be used
to distinguish or trace the data subject’s identity. For example, the data sub-
ject’s name, home address, email, phone number, biometrics, pictures, social
security number, or domain-related ID like patient ID in e-health.
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• Sensitive Personal Information (SPI): Any other sensitive information that
alone does not identify the data subject but it is linked or linkable to him/her.
SPI communicates information that is private or likely to harm the data subject
if misused or sold to third parties. For example, age, gender, marital status, po-
litical/religion beliefs, locations, activities, habits, interests, or other domain-
specific information like medical, financial, or social information.

1.2.2 Privacy Threats & Challenges

Advances in sensing technologies and data mining techniques pose several threats
and challenges to the privacy of users in connected environments [10], [14], [15].
Recent threats vary from identification, localization and tracking, and profiling to
privacy-violating interaction and presentation, device life-cycle transitions, inven-
tory attack, and linkage. We discuss in the following each of the seven threats, before
concluding with the currently faced challenges.

(1) Identification: consists of linking the identifier (e.g., name, pseudonym) associ-
ated with collected sensor data to a specific user. This raises serious privacy
concerns for the user since collected data is often privacy-sensitive (e.g., location
of individuals, patients’ vital signs), implying that when processed, it can reveal
a plethora of SPI about the user. As well, the identification threat can also enable
other threats like profiling and tracking of users.

(2) Localization and tracking: the user’s location can be monitored and tracked in time
and space through different means, e.g., GPS sensors deployed on user devices
(e.g., mobile phone, smart watch), internet traffic, camera recordings. Besides
the uneasy feeling of being watched, mining and processing the locations and
trajectories of the user can lead to deduce sensitive information about her, such
as her performed/daily activities, habits, and health conditions, therefore sub-
jecting her to several privacy breaches.

(3) Profiling: refers to the threat of collecting and correlating profiles of data in order
to analyze or predict aspects concerning the user, including user’s economic sit-
uation, health, personal preferences, interests, reliability, behaviour, and move-
ments. Profiling methods are mostly used in e-commerce for personalization
(e.g., sending targeted advertisements or newsletters). Consequently, many pri-
vacy violations occur when user profiles are collected, processed, correlated, or
even sold to third parties interested in exploiting it (e.g., marketing companies).

(4) Privacy-violating interaction and presentation: sensor nodes and multi-sensor de-
vices may collect and transmit people’s private information through public means
in order to present the information (e.g. speakers, video screens) when people in-
teract with the devices (e.g. moving, speaking, touching). This could therefore
entail the leakage of private/sensitive information from what is presented to an
unwanted audience.
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(5) Device life-cycle transitions: during their life-cycle, devices (i.e., multi-sensor de-
vices like mobile phones, tablets) can be used, then sold or destroyed. Even
though it must destroy all data, some devices often store large amounts of histori-
cal data over their life-time that could be sensitive (e.g., personal photos, videos).
This entails privacy issues for the user if data was not deleted prior to changing
device ownership.

(6) Inventory attack: denotes the threat of targeting an object (i.e., sensor or device)
by sending various query requests to it and analyzing the related responses. An
adversary may use this type of attacks to compile an inventory list of other de-
vices and/or appliances in the environment (e.g., medical devices or smart alarm
systems at the user’s home). This list can be privacy-sensitive for the user as it
could be used for targeted break-ins at private homes/offices, or even may lead
to reveal SPI about the user such as her health conditions (it is enough to infer
the use of medical devices at home).

(7) Linkage: user data could be shared between service providers, or even sold to in-
terested third parties, with or without her knowledge. This raises serious privacy
concerns for the user as she may not be aware of how her data is being used, by
whom, with what data/information it is linked, or what SPI may be disclosed
when combining and processing data bits and pieces.

Privacy remains therefore a major challenge to address in the field of connected
environments. This was also supported by the European Union (EU) commission,
which identified security and privacy as major IoT research challenges [16]. In par-
ticular, the currently faced challenges for IoT privacy are more linked to the goals of
reducing the aforementioned threats. These include: how to enable users (data sub-
jects) to understand their privacy situations? how to empower them to control their
data sharing and protection appropriately in a way to meet their privacy require-
ments and business interests? and how to ensure data privacy protection throughout
the entire data life-cycle phases, i.e. during data collection, transmission, aggrega-
tion, storage, mining, and processing phases?

1.2.3 Worldwide Privacy Legislation

Privacy is considered as a fundamental human right in the United Nations Universal
Declaration of Human Rights and Article 8 of the European Convention on Human
Rights of 1950 [17]. This right became explicit by the emergence of numerous privacy
laws and regulations around the world. Nowadays, there is no general information
privacy legislation that covers all areas [18]. Figure 1.21 shows the distribution of ex-
isting privacy laws among states, countries, and regions. We present in the following
a brief overview of these laws.

1Source: https://termly.io/resources/infographics/privacy-laws-around-the-world/

https://termly.io/resources/infographics/privacy-laws-around-the-world/
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Currently, more than 130 countries enacted national/regional privacy laws, which
define different technical and organizational requirements for the storage and pro-
cessing of personal data in information systems [19]. As a successor of the Directive
95/46/EC, the European Union adopted the European General Data Protection Reg-
ulation (GDPR) [11], which came into force in 2018. Its key changes in terms of the
principles, compared with the Directive 95/46/EC, include six aspects: (1) consent,
the data subject’s consent should be graspable, distinguishable and easy to be with-
drawn; (2) breach notification, the GDPR makes the breach notification mandatory.
The notification should be sent within 72 hours after being aware of the breach; (3)
right to access, the GDPR grants data subjects the right to be informed about data pro-
cessing and to receive a copy of the handled personal data; (4) right to be forgotten, the
data is required to be erased when the personal data are no longer necessary in rela-
tion to the purposes or the consent is withdrawn; (5) right to data portability, the data
subject has the right to receive his uploaded data in a machine-readable format and
transmit it to other data controllers; and (6) privacy by design, the GDPR integrates
the privacy by design as a legal requirement, where the controller must implement
appropriate technical and organizational measures in order to meet the GDPR re-
quirements and protect the data subjects’ rights (the Privacy by Design standard is
further detailed in the following section).

FIGURE 1.2: Privacy Laws Around the World

For the United States (US), some states have its own laws. California adopts
the California Consumer Privacy Act (CCPA) and California Online Privacy Protec-
tion Act (CalOPPA) laws. The CCPA law came into force in 2020, and became the
first GDPR-like law in the country. It boasts three guiding principles: transparency,
accountability, and control. It grants data subject rights to access, portability and
deletion. The CalOPPA law is the first to require websites to post privacy policies
detailing data collection and use, however, it is only applicable to businesses and
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online operations with data subjects in California. Nevada adopts the Senate Bill
220 law, which became effective in 2019, and seems very similar to the CCPA but
has some significant differences, such as only giving data subjects the right to opt
out of having their data sold. There are several other US states in the process of
passing comprehensive data protection laws (e.g., Consumer Data Protection Act
for Virginia, which will be effective in 2023). Other countries have also adopted
their own privacy laws, such as PIPEDA for Canada, LGPD for Brazil, PDP for Ar-
gentina, POPI for South Africa, DPA for Senegal, Personal Data Protection Bill 2019
for India, Cyber Security Law for China, Data Privacy Act of 2012 for Philippines,
and Privacy Act 1988 for Australia.

1.2.4 International Privacy Standards

The laws principles are usually described with very general and broad terms [20]
that makes it hard for companies and organizations to properly integrate them in
the system design due to the variety and diversity of existing information technolo-
gies. Consequently, several privacy standards were introduced to bridge the gap
between legal frameworks and technologies by providing a set of guidelines that
translate legal principles into more engineer-friendly principles in order to facilitate
the design of privacy capabilities in systems and applications. Figure 1.3 illustrates
an overview of the existing privacy standards with their mappings. We provide next
a brief description of each standard and highlight the respective principles.

FIGURE 1.3: Privacy Standards

Privacy by Design (PbD) has brought a new vision for privacy protection to cope
with the increasing complexity and interconnectedness of information technologies.
Instead of reactively addressing privacy breaches after-the-fact, PbD approaches pri-
vacy proactively and tends to prevent privacy-invasive events before they happen
by making privacy the default setting [21]. In 2010, PbD has been unanimously
adopted as an international privacy standard in the 32nd International Conference
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of Data Protection and Privacy [22]. Nowadays, PbD is incorporated as a legal re-
quirement in the General Data Protection Regulation (GDPR) [11], and globally rec-
ognized as an ISO/AWI standard (ISO/AWI 31700 - under development) [23]. PbD
identifies seven foundational principles that should be followed when developing
privacy sensitive solutions:

(1) Proactive not reactive; Preventative not remedial. The solution should include
proactive measures to anticipate and prevent privacy violations, i.e., to pre-
vent privacy risks from occurring.

(2) Privacy as the Default Setting. The solution must deliver the maximum degree
of privacy and data protection by default, without requiring user intervention.

(3) Privacy Embedded into Design. Privacy must be incorporated as an essential
component of the solution’s core functionality.

(4) Full Functionality: Positive-Sum, not Zero-Sum. The solution seeks to accommo-
date all interests and objectives in a positive-sum (i.e., win-win manner).

(5) End-to-End Security. The solution should ensure data protection during the
entire life-cycle of data.

(6) Visibility and Transparency - Keep it Open. The solution must provide account-
ability, openness and compliance, which, in turn, improve user satisfaction and
trust.

(7) Respect for User Privacy - Keep it User-Centric. The solution should empower
data subjects (users) to play an active role in the control and management of
their data. This can be achieved by ensuring that appropriate notice is given,
and by supporting other user-friendly options, such as considering user prefer-
ences, delivering human-machine interfaces adaptable to users, and enabling
users to make informed privacy decisions.

The International Organization for Standardization (ISO) and the International
Electrotechnical Commission (IEC) drew up a new reference standard in 2019, ISO/
IEC 27701:2019 [24] for privacy information management. The design goal is to pro-
vide guidance for establishing, maintaining, and continually improving a Privacy
Information Management System (PIMS). This standard can be used by: (i) data
controllers, entities (e.g., person, organization) that, alone or jointly with others, de-
termines the purposes and means of the processing of personal data [11]; and data
processors, entities (e.g., person, organization) that processes personal data on be-
half of the controller [11]. It has been developed as an extension to ISO/IEC 27001
and ISO/IEC 27002, which respectively provide guidelines for Information Secu-
rity Management System (ISMS) implementation, and information security controls.
The ISO/IEC 27701 also includes mapping to other existing privacy standards and
legal frameworks, such as ISO/IEC 29100, ISO/IEC 27018, ISO/IEC 29151, Privacy
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by Design, and the GDPR regulation. The ISO/IEC 29100:2011 [25] provides a pri-
vacy framework that considers the following privacy safeguarding requirements to
protect personal information: (1) consent and choice, (2) purpose legitimacy and
specification, (3) Collection limitation, (4) Data minimization, (5) use, retention and
disclosure limitation, (6) accuracy and quality, (7) openness, transparency and no-
tice, (8) individual participation and access, (9) accountability, (10) information secu-
rity, and (11) privacy compliance. The ISO/IEC 27018:2019 and ISO/IEC 29151:2017
standards are both based on ISO/IEC 27002, where the first provides guidance for
the protection of personal information in public clouds acting as processors, and the
second defines guidelines for personally identifiable information protection.

Therefore, the ISO/IEC 27701 is perceived as a global standard, as stressed by the
National Commission on Informatics and Liberty2 (CNIL-France), that provides sev-
eral measures/requirements for the processing of personal data/information [24].
These measures can be classified into controller-specific and processor-specific mea-
sures. Controller-specific measures include: (i) privacy notices, controllers should
provide privacy policies to data subjects containing specific information regarding
the collection, use, and processing of their data; (ii) processor agreement requirements,
including data protection, breach notifications, and limiting data processing to the
agreed purposes; (iii) data subjects’ rights, including rights to access, correct, and
erase their data, and to restrict the processing of their data among others, (iv) privacy
by design and by default, controllers must adopt measures that operationalize the prin-
ciples of privacy by design and by default (e.g., minimization, data de-identification
and deletion, data retention). Processor-specific measures include: (1) processing lim-
itations to the purpose specified in the contract; (2) data subjects’ rights; (3) transfers
and disclosures, processors must inform data subjects in advance of data transfers be-
tween jurisdictions or any intended changes thereof; and (4) subcontractors, requires
processors to only engage subcontractors for processing data subjects’ data pursuant
to the terms of the contract.

1.3 Thesis Context

Sharing data in exchange for goods and services presents an opportunity for users
to improve their quality of life, however, it also exposes them to many privacy risks.
In fact, processing and analyzing collected sensor data (e.g., location of individuals,
patient’s vital signs), which are spatio-temporal in nature [26], can lead to disclosing
a wide variety of privacy-sensitive information about users [27], [28], such as health
conditions, performed or daily activities, habits, preferences, and so on. This dis-
closure may be intentional if users are aware of it and have entered into agreements
with relevant service providers. However, it can be harmful if the data/information

2Source: https://www.cnil.fr/en/iso-27701-international-standard-addressing-persona
l-data-protection

https://www.cnil.fr/en/iso-27701-international-standard-addressing-personal-data-protection
https://www.cnil.fr/en/iso-27701-international-standard-addressing-personal-data-protection
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of users is misused by providers, sold to interested third parties without user con-
sent, or stolen by cybercriminals as providers are often victims of cyber-attacks that
lead to data breaches.

Consequently, involving users in the control and protection of their privacy is
currently receiving extensive attention from both legal and technical perspectives
[11], [13], [21], [24], [25]. Nonetheless, existing legal frameworks for data protection
(e.g., GDPR [11]) might not necessarily deter data consumers from abusing, inten-
tionally or unintentionally, the data of users. The Facebook-Cambridge Analytica
[29] and Exactis [30] scandals are only few examples of a long series of data breach
scandals that happened despite the existence of appropriate data protection laws. In
addition, privacy laws vary among countries, some providing more protection than
others (e.g., GDPR [11] for the European Union, CCPA [13] for the state of Califor-
nia). This increases the difficulty and complexity of managing and preserving the
privacy of users, especially when users, service providers, and third parties are lo-
cated in different countries governed by different data protection laws. Therefore, all
these constraints emphasize the need for user-centric technical solutions that main-
tain the same level of data privacy protection in all countries.

Current approaches of user-centric privacy preserving [31]–[34] mainly rely on
preference specification and policy enforcement, where users specify their privacy
preferences and accept policies that enforce these preferences. However, they all
share two main limitations:

(1) lack of user awareness. The user may not be completely aware of the direct and
indirect privacy risks involved with the exchange of her data with providers to
correctly specify her preferences in the first place. She may simply not know
what sensitive information might be revealed from her data when data pieces
are analyzed in isolation or combined with each other or/and with other side
information acquired from external data sources (e.g., social networks).

(2) lack of context-based privacy decision making. The data sharing or protection deci-
sions are often made/accepted by the user in a static way. This means that they
remain unchanged regardless of context changes. However, the sensitivity of
data may vary from a context to another [28], [35], i.e., new privacy risks may
emerge as others may lose their significance. This makes static decisions over-
protective in some contexts, causing unnecessary loss of data quality which
may downgrade the accuracy of associated services; or under-protective, lead-
ing consequently to privacy violations. Therefore, the user must be able to
make dynamic adjustments to her privacy decisions to cope with the dynam-
icity of her context.
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1.3.1 Thesis Objectives

The objectives of this thesis are to design suitable solutions that overcome the afore-
mentioned two limitations, and to provide a complete context-aware privacy frame-
work that meets the guidelines of current privacy standards (i.e., Privacy by Design
[21] and ISO/IEC 27701 [24]). Specifically, the framework needs to cope with:

• Raising user awareness of the privacy risks associated with their data sharing
and/or imposed by their surrounding environments, by providing them with
a dynamic/contextual overview of risks tailored to their level of expertise.

• Assisting users in optimizing their data utility-privacy decisions according to
their situations, needs and preferences, by providing them with the best data
protection strategies that could be implemented in their situations.

• Ensuring appropriate protection of the data collected, according to user deci-
sions, before being transmitted to data consumers.

1.3.2 Motivating Scenario

To illustrate the motivations behind the objectives of this thesis, we investigate a
real-life scenario of a user, Alice, who shares data with service providers. This sce-
nario highlights some of the privacy risks that can arise from sharing Alice’s data,
and underlines the need for dynamic/contextual adaptations of her data protection
decisions. Figure 1.4 illustrates the proposed scenario.

FIGURE 1.4: Motivating Scenario

Assume that Alice is a COPD (Chronic Obstructive Pulmonary Disease) patient.
She pursues her medical treatment remotely using a NIV (Non-Invasive Ventilation)
device deployed at home. Consider that Alice shares fine-grained data with the
following service providers:
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• Electricity provider: Alice shares the energy consumption readings of her home
through deployed smart energy meters. In exchange, Alice receives personal-
ized recommendations to reduce her energy consumption and bills.

• Healthcare provider: Alice shares her location data through a mobile applica-
tion to benefit from an emergency care system that offers healthcare services,
such as the smart ambulance service that she would use in case of respiratory
distress.

The trust relationship between Alice and the providers is not static. It varies
due to many factors such as the sensitivity of her situation, or the third parties
with whom the provider communicates her data. Assume that both providers have
signed contracts with marketing companies and government agencies interested in
exploiting the data of their customers (e.g., Alice) for different purposes. For exam-
ple, marketing companies could be interested in exploiting the energy consumption
data to analyze the lifestyle of customers and send them targeted advertisements
(e.g., advertisements about appliances that customers own or do not own). Govern-
ment agencies could be interested in identifying customers involved in wrongdoing
(e.g., fraud, crimes).

FIGURE 1.5: Energy consumption signature / Location data pattern

Even though Alice is notified, through agreed policies, of consumers who have
access to her data, she may not necessarily be aware of the privacy risks involved
with this sharing. These risks can be of two types: mono-source and multi-source
risks. Mono-source risks arise from sharing data with a single data consumer. For
instance, analyzing the energy consumption data (see the signature in Figure 1.5)
can entail various mono-source risks for Alice, such as the risks of disclosing her
presence/absence hours at home, waking/sleeping cycles, some of her habits and
activities (e.g., cooking, TV watching, sports activity using a treadmill) [36]. More-
over, existing works (e.g., [37]) show that consumption signatures can be mined to
identify the use of specific appliances (e.g., medical devices). This would reveal the
health condition of Alice if the use of her NIV machine was identified. The analysis
of location data can also entail significant mono-source risks for Alice such as the
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risks of disclosing her habits, behaviors and health conditions by analyzing her tra-
jectory patterns (cf. Figure 1.5). For example, if Alice is located twice per week in
a pulmonary rehabilitation center for COPD patients, then she is very likely to be a
COPD patient. Multi-source risks are more complex risks that arise when customer
data are communicated between consumers (cf. Figure 1.4). For example, assume
that Alice has unlawfully certified that she is living alone to be eligible for a welfare
program when submitting her application. A marketing company having access to
both location and consumption data can infer this fraud (it is enough to identify
the use of particular devices, such as microwave and TV, while Alice is outside her
home).

All of this highlights the need to inform Alice, in an appropriate manner, of the
risks that she accepts to take, with or without her consent, when sharing her data
with consumers. This will then enable her to make informed and meaningful pri-
vacy decisions. To achieve this, the following needs should be considered:

Need 1. Build a global view of the user’s situation (e.g., Alice) by gathering context
information about the user and her surrounding environment.

Need 2. Infer the privacy risks involved in the current user context, and maintain
continuous monitoring of the risk evolution to cope with context changes.

Need 3. Provide a comprehensible overview of risks, which means an overview
adapted to the level of expertise of the user. This enables all users to understand the
implicit, direct and indirect implications of sharing their data with consumers.

After alerting Alice of the risks involved in her situation, she may want to adapt
her data privacy measures to reduce the risks. Nonetheless, such an adaptation can
be difficult for her as it also affects the data utility, and thus the quality of associated
services, which might be important to her as well. For instance, assume that the
health services are critical for Alice; stop sharing her location data can lead to elim-
inate the risks of disclosing her habits, behaviors and health conditions, but also to
lose the health services received in exchange. This raises consequently the following
need:

Need 4. Assist the user in optimizing data utility-privacy decisions in a way to
satisfy her privacy requirements and preferences while also maximizing the quality
of the main services received in exchange for her data.

However, continuously balancing data privacy can lead sometimes to large gaps
in precision between sequential data values, which mainly occurs when sharply de-
creasing the level of data protection. Such a happening improves the capabilities
of an adversary to estimate, with high confidence, the real values of protected data,
entailing temporal privacy leakages for the user (e.g., Alice). Accordingly, the fol-
lowing need emerges when considering data utility-privacy optimizations:
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Need 5. Measure data dependencies during the protection transition phases and
study their impact on data protection in order to avoid large gaps in precision, and
consequently ensure full protection of the user’s privacy.

1.3.2.1 Scientific Challenges

In order to address the aforementioned needs, one needs to: (1) model an expres-
sive representation of the user’s situation; (2) reason on the situational informa-
tion to infer the risks involved; (3) guide the user to optimize her decisions; and
(4) study inter-context dependencies and adapt the levels of data protection accord-
ingly. However, when considering all of the above, several challenges emerge:

Challenge 1. Coping with the information heterogeneity and semantics: Collected
context information can be heterogeneous in types, formats, granularity, origins,
and uncertainties. In addition, information pieces are often linked to each others
through various (complex) relationships, and can have different characteristics and
constraints. The framework must therefore be able to handle information hetero-
geneity and semantics in order to expressively represent various contexts. This chal-
lenge will be further detailed in Chapter 2.

Challenge 2. Performing a holistic (all-data-inclusive) privacy risk reasoning: As
discussed above, collected data pieces can be analyzed in isolation, or combined
with each other (e.g., electricity consumption and location data) and/or with other
side information acquired from external data sources (e.g., profiles on social net-
works, public databases). This improves the inference capability of data consumers,
thereby increasing the sphere of possible privacy risks. Therefore, the proposed risk
inference solution should take into account the different data/information shared
by the user or available to data consumers from external data sources, and explores
how they combine with each other.

Challenge 3. Coping with the dynamicity and context-dependency of privacy risks:
The sensitivity of data may depend on the context [28], [35]. For example, the sensi-
tivity of Alice’s location when she is in the pulmonary rehabilitation center is higher
than when she is at home, as in this case location data could be exploited to infer the
disease of Alice. That is, as context changes, new privacy risks may emerge, while
others may disappear or lose in significance. Therefore, the proposed inference so-
lution should keep track of context changes, analyze their impacts on privacy risks,
and maintain an updated risk overview.

Challenge 4. Achieving user-centric privacy management: Individuals may have
different levels of expertise to properly express their needs or preferences, and to
interact with the system (e.g., understand risks, make privacy decisions). The pro-
posed solution must therefore be user-friendly, allowing the guided assistance to
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be tailored to the user’s expertise in order to maintain a good quality of human-
machine interactions.

Challenge 5. Making optimal context-based privacy decisions: The user-privacy
decisions depend on her situation (e.g., risks inferred) and preferences. Therefore,
the proposed solution should always be able to provide the user with optimal and
adaptive protection strategies to cope with the dynamicity of her context and pref-
erences.

Challenge 6. Coping with the inter-context data dependency: The protection as-
signed to data prior to its release may increase or decrease depending on the context-
based user decisions. However, significantly lowering the level of data protection
makes subsequent data more precise. Due to data correlations, this may entail the
revealing of the real value of previous data that needed more protection, resulting
in temporal privacy leakage for the user. The proposed solution should therefore be
able to trace data dependencies during contextual transitions, and to appropriately
tune the decrease of the data protection level when needed in order to ensure full
protection of the user’s privacy.

Challenge 7. Delivering scalability and efficiency: The solution must be scalable,
i.e. handles reasoning over an increasing number of context information, including
sensed information (e.g., Location), and risks. It should also be fast to support the
user in different contexts, especially since user decisions must sometimes be made
in real-time. Finally, it should maintain low computational and storage complexity,
which makes it operational on various types of devices, including those with limited
resources.

Several other challenges may also arise when considering context-aware privacy-
preserving and user-centric privacy, however, we focus in our research work on tack-
ling the aforementioned needs and challenges.

1.4 Related Work

Several frameworks were proposed in the literature to address the challenges of
context-aware privacy-preserving and secure context awareness in the fields of per-
vasive IoT environments (or connected environments). Neisse et al. [38] introduced
a context-aware security and privacy framework for smart city applications. This
approach defines the context by relying on four parameters: time, location, network,
and speed. It provides a context-based security policy management to control access
to the data of users based on a set of Event-Condition-Action (ECA) rules. It also
provides a privacy-preserving mechanism based on pseudonymization and delayed
message delivery. Hence, the access to data could be accepted, denied, modified
(using pseudonymization), or delayed. Matos et al. [39] presented an overview of
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their context-aware security framework, that aims to provide authentication, autho-
rization, access control, and privacy-preserving in IoT environments. However, the
authors only provided a brief description of their framework modules without ex-
plaining how privacy is approached in their solution. Sylla et al. presented in [40]
a global vision of their context-aware security and privacy as a service (CASPaaS)
framework for IoT environments. They briefly discussed the role of each module.
The privacy module will be able to continuously analyze the user context and inform
her accordingly about the privacy risks involved. However, they have not yet ex-
plored any of the framework modules. Other works were proposed for specific IoT
domains. Gheisari et al. [41] proposed a context-aware privacy-preserving frame-
work for smart cities using Software Defined Networking. The authors showed that
the privacy is preserved by splitting sensitive data and sending split parts via a
secure route. The decision made by the SDN controller is based on data sensitivity
(that vary depending on the context) and routes credits. Alagar et al. [42] introduced
a Context-Sensitive Role-based Access Control (CRBAC) architecture for IoT-based
healthcare applications. The approach defines two types of access control: open ac-
cess, for authenticated clients/medical devices; and closed Access, for non-member
clients/devices. CRBAC is user-centric, where the user privacy requirements are in-
cluded as context-sensitive rules to be enforced whenever patient health information
are shared by things.

1.4.1 Comparative Study

In order to compare the referenced works, we define two levels of comparison cri-
teria: the first level consists of the main foundational principles and privacy mea-
sures stated by the Privacy-by-Design and ISO/IEC 27701 standards; the second-
level comprises specific criteria associated to the needs and challenges defined in
Section 1.3.2. The goal here is to assess how well existing works comply with pri-
vacy standards and the aforementioned contextual privacy management challenges.
We therefore define the following criteria:

• Criterion 1. Proactive & Preventative: includes proactive measures to prevent pri-
vacy violations, i.e., to prevent privacy risks from materializing.

• Criterion 2. Privacy as the Default Setting: protects the user’s privacy by default
without requiring user intervention.

• Criterion 3. Full Functionality - Positive-Sum: seeks to achieve all objectives in a
positive-sum (i.e., win-win manner). We focus here on:

– Data Utility-Privacy: optimizes the data utility-privacy trade-off to meet the
privacy needs while maximizing the quality of services received in return.

– Scalability: handles increasing (and decreasing) workloads.

• Criterion 4. Data Privacy Protection: three sub-criteria are considered:
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– End-to-End Protection: ensures data protection during the entire data life-cycle.

– Context-aware Protection: provides context-dependent data protection.

– Real-time Protection: offers real-time data protection.

• Criterion 5. Visibility, Transparency, and Openness: ensures that the data/service
exchanges are established in accordance with the stated promises and objectives.

• Criterion 6. User-centric Privacy: ensures an appropriate involvement of the user
in the protection of her privacy (i.e., empowers user-friendly options). We con-
sider four sub-criteria to cover user-centric dimensions:

– User Awareness: raises user awareness about the privacy risks involved in
the data sharing and the protection measures that could be taken accordingly
through understandable privacy notices.

– User-centric Management: empowers the user to take control and manage her
privacy protection.

– User-friendly Guidance: adapts the level of user assistance to her expertise.

– User Preferences: considers the preferences and interests of the user.

Criteria
Neisse et al.

[38]
Matos et al.

[39]
Sylla et al.

[40]
Gheisari et al.

[41]
Alagar et al.

[42]
CaPMan

[5]

Proactive & Preventative YES YES YES YES YES YES

Privacy as the Default Setting YES - YES YES YES YES

Data Utility-Privacy PARTIAL - PARTIAL YES PARTIAL YESFull
Functionality Scalability YES YES YES YES - YES

End-to-End Protection YES YES YES YES YES YES

Context-aware Protection YES YES YES YES YES YES
Data Privacy
Protection

Real-time Protection YES YES YES YES YES YES

Visibility, Transparency, and Openness YES NO - - - YES

User Awareness NO NO YES NO NO YES

User-centric Management NO NO YES NO YES YES

User-friendly Guidance NO NO - NO - YES

User-centric
Privacy

User Preferences NO NO YES NO YES YES

1 - means that the referenced work did not approach this aspect.

TABLE 1.1: Review of Context-aware Privacy Frameworks

Discussion. Table 1.1 shows that none of the aforementioned works fully com-
plies with current privacy standards and needs. Most of these works, i.e. [38]–[40],
[42], have only presented an overview of their proposed frameworks and briefly ex-
plained how they work. The frameworks in [38], [40], [42] have partially addressed
the trade-off between data utility and privacy by integrating access control mecha-
nisms. These mechanisms manage only the access rights of providers to user data,
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making the data either accessible in a fine-grained version or not accessible at all.
This affects the availability of the services for the user when needed, especially if
the full quality of service is not required (e.g., the user may wish to share her pres-
ence in the city rather than his exact location with the provider in order to get a list
of restaurants present in this city rather than just those nearby). In addition, only
works in [40] and [42] have been designed with the objective of involving the user
in the management of her privacy and considering her preferences when establish-
ing the context-dependent policies. However, they did not consider the fact that
individuals may have different levels of expertise, which could impact the quality
of individual-system interactions. Finally, some of these works (i.e., [41], [42]) lack
re-usability as they were designed to cope with the challenges of domain-specific
applications. Consequently, we detail in the following section our proposed generic
and re-usable framework [5], which fully meets the aforementioned criteria.

1.5 Proposal: CaPMan Framework

We present here an overview of our proposal for Context-aware Privacy Manage-
ment in connected environments, denoted CaPMan. The framework addresses the
needs and challenges mentioned in Section 1.3.2. Figure 1.6 presents a detailed view
of the framework modules and describes the different user-system interactions. The
aim of CaPMan is to introduce a user-centric reasoning system capable of keeping
the user up-to-date on her evolving privacy situation and assisting her in the man-
agement of her privacy protection. In the following, we start by describing the sys-
tem operation, and then we detail the framework modules.

FIGURE 1.6: Overview of CaPMan Framework

The CaPMan system can be embedded on user devices (e.g., computer, mobile
phone, tablet) and has two operational modes: passive and active. The passive mode
enables the system to be a notifier and a recommender system, where its role consists
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of: (i) alerting the user about the direct and indirect privacy risks involved in the
sharing of her data; and (ii) recommending data protection strategies to negotiate
with relevant data consumers, that lead to meet the user needs and preferences, and
to maximize the quality of services received in return. The active mode expands the
operations of the passive mode and adds the ability to control and protect user data,
based on her decisions, before it is communicated to related data consumers. We
consider in our study that all data consumers are not trusted by the user (i.e., service
providers and third parties). This is due to the fact that user’s data could be misused
by consumers, sold to interested third parties without the user consent, or stolen by
cybercriminals as data consumers are often victims of cyber-attacks that lead to data
breaches. In the active mode, the system is integrated as a middleware between data
sources (e.g., sensors, devices) and data consumers. We detail in what follows the
system operations and user-system interactions for both modes.

Passive mode. The user specifies her inputs: the list of sensed data that is currently
shared with data consumers (e.g., location), and the list of preferences (e.g., privacy
requirements, important services). The user preferences are detailed in Chapters 3
and 4. The system, on its side, collects further background data/information de-
scribing the user and her surrounding physical environment from other resources
(e.g., Web resources). The system models the acquired data/information pieces and
the relationships that exist between them to build the overview of the user’s situa-
tion, and launches the risk reasoner to infer the privacy risks involved in the relevant
context. Once the risk inference is completed, the risk manager identifies all possible
optimal data protection strategies according to her situation and preferences. Finally,
the system provides the user with a risk overview tailored to her expertise, and the
list of strategies on which the user can rely when negotiating with data consumers.
The levels of user expertise are defined in Chapter 3.

Active mode. Takes into account all passive interactions and operations, and provides
additional capabilities for the user to manage her privacy and protect her data. To
achieve this, the system has the right to access and control the data values during
the collection phase. It therefore operates in this mode as follows. If no risk is in-
ferred, the system continues to generate data values for consumers as received (i.e.,
without applying additional protection). Otherwise, it alerts the user about the risks
she accepts to take, and recommends a list of best protection strategies that could be
adopted in this situation. The goal of the strategies here is to improve the user de-
cision making regarding what appropriate amount of protection to associate to the
data before communicating it to consumers. Therefore, the system waits for the user
to select the strategy to implement and, meanwhile, stops communicating any data
to consumers. Upon the user’s choice of strategy, the system protects the pending
data values and releases a protected version of them to consumers. The system con-
tinues to apply the same protection strategy to the received data values until a new
context emerges, where the entire reasoning process is relaunched to consider the



20 Chapter 1. Introduction

changes in the user’s situation and their impact on the risk overview and strategies.

The CaPMan system has two types of execution for both passive and active
modes depending on user needs: (i) continuous computing, and (ii) on-demand
computing, which consists of on-time and scheduled computing. When consider-
ing continuous computing, the CaPMan system operates once per context to infer
the privacy risks involved and identify the best data protection strategies to be im-
plemented. At this point, when a context change occurs, the system computes the
similarity between the current and historical contexts (stored in the user’s private
storage environment). If a full similarity is detected, the user is given the option
of re-applying the actions of the previous similar context (i.e., re-applying the same
protection strategy) or launching the global process. This contributes to reducing
the computational cost of the system.

In the case of on-demand computing, the system operates only when requested
by the user, thereby reducing the use of computational resources. At this stage, if the
active mode is enabled, the system continues to protect user’s data using the same
strategy selected until the system is re-launched. The on-demand computing is not
recommended if the user has frequent changes of situation in order to cope with the
context-dependency of risks and strategies.

For the default storage management, the system stores locally the context char-
acterizing the present situation of the user only, as well as the associated risks and
strategies. This makes the system low-complex in storage, increasing its re-usability
on a variety of devices, including those with limited storage resources (cf. Challenge
7). Historical contexts with their associated risks, strategies, and user decisions can
be stored in an external storage environment that is private to the user (i.e., the com-
munications between the system and storage environment are secured by the use
of appropriate data security mechanisms). Historical information can be used by
the system to continuously improve/adjust the default parameters based on user
interactions. This will be further detailed in Chapter 4.

1.5.1 Framework Modules

As shown in Figure 1.6, CaPMan is a modular framework comprised of three mod-
ules: information management module, privacy risk inference module, and privacy
management module. These modules are detailed in what follows.

1.5.1.1 Information Management

Inferring context-aware risks requires first to build up a global view of the user’s
situation (cf. Need 1). Achieving this requires collecting context information de-
scribing the user and her surrounding physical environment. This module is conse-
quently responsible for managing context information (i.e., capturing and modeling
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FIGURE 1.7: Information Management Module

information) and user preferences. It comprises the following components (cf. Fig-
ure 1.7): (i) context acquisition, in charge of capturing data/information about the user
and her surrounding environments; (ii) user preferences, responsible for managing the
preferences of the user; and (iii) context modeling, liable for modeling the context in-
formation acquired and the relationships that exit among them, which helps in better
understanding the user situation. We explored in this thesis the context modeling
component, where we proposed a generic and modular ontology for user-context
modeling in connected environments, denoted uCSN. The proposal was motivated
by the fact that semantic data models allow representation of heterogeneous infor-
mation with a high expressive power, and maintain flexible data structures which
make them able to cope with the dynamicity of the environment. Hence, uCSN
introduces a rich vocabulary to represent general information about the user pro-
file, her activity, and the surrounding environment (including smart environment
aspects and the mobility of its components). uCSN can be easily aligned with other
ontologies, through its pluggable layer, to cover domain-specific knowledge of the
user (e.g., medical knowledge) or/and the environment (e.g., knowledge dedicated
to smart homes, hospitals, or cities). We further discuss our proposal in Chapter 2.

1.5.1.2 Privacy Risk Inference

FIGURE 1.8: Privacy Risk Inference Module
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This module is responsible for detecting the risks involved in the user context.
To achieve this, the module includes two components. First, the privacy rules compo-
nent, which handles the definition/import of privacy rules that specify the risks to
be detected by the system. The rules are defined according to the syntax proposed
in Chapter 3, and they are used as a reference schema for the reasoning process.
This schema is regularly updated by the privacy community that regroups experts
belonging to different application domains. This helps in improving the coverage
of potential information combinations that entail domain-specific risks, which con-
sequently improve the quality of the risk inference process. The rule updates are
imported by the system when relaunching the risk reasoner. It is important to state
that the accuracy of the risk inference process depends on the quality of the de-
fined rules. We assume in this study that the privacy rules defined by experts are
pre-validated (this validation will be further explored in future work). The second
component is the risk reasoner, which consists of a semantic rule-based reasoning en-
gine that examines modeled context information and dynamically infers the risks
involved. This engine is capable of monitoring the evolution of risk values based on
context changes. Chapter 3 details the entire risk inference process. The proposed
approach is published [4] in the Future Generation Computer Systems 3 journal:

– Bou Chaaya, Karam, et al. "Context-aware System for Dynamic Privacy Risk
Inference." Future Generation Computer Systems, Elsevier, 2019, 101, pp.1096-
1111.

1.5.1.3 Privacy Management

FIGURE 1.9: Privacy Management Module

This module is responsible for assisting the user in the management of her privacy
by: (i) assessing and minimizing the risks inferred based on the privacy require-
ments and interests of the user; (ii) delivering optimized and meaningful strategies;

3https://www.sciencedirect.com/journal/future-generation-computer-systems

https://www.sciencedirect.com/journal/future-generation-computer-systems
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and (iii) protecting sensor data streams according to the context-based protection
strategy selected by the user. In order to do so, the module consists of three com-
ponents. First, the risk manager component, in charge of managing user risks and
identifying the best protection strategies to be suggested to the user. Computed
strategies are optimal in that they seek to closely satisfy user requirements and pref-
erences while maximizing data utility and minimizing the cost of protection. The
risk manager continuously adjusts the strategies provided to cope with the dynamic
nature of the user context and preferences. In fact, the user might change progres-
sively her preferences due to the sensitivity of the risks entailed, or the sensitivity of
the situation (e.g., private meeting, located in a hospital). The privacy risk manage-
ment proposal is detailed in Chapter 4, and published [5] in the ACM Transactions
on Internet Technology4 journal:

– Bou-Chaaya, Karam, et al. "δ-Risk: Toward Context-aware Multi-objective
Privacy Management in Connected Environments." ACM Transactions on In-
ternet Technology (TOIT), 2021, 21(2), pp.1-31.

Second, the protection functions component, which includes the list of available
protection functions (e.g., random-noise function, generalization function) that the
risk manager and data protection components can rely on during their computing pro-
cesses. Finally, the data protection component, responsible for: (1) selecting the most
appropriate protection functions, in terms of compatibility and computational cost,
to be executed on sensor data streams to achieve required protection levels (i.e.,
the protection levels stated in the strategy chosen by the user); and (2) executing
selected functions on data pieces in order to communicate protected data to con-
sumers. This component provides therefore context-aware data protection based
on user decisions (i.e., when the system operates in active mode). However, en-
suring full protection of data requires also to focus on inter-context transitions and
their impact on privacy loss. In fact, the protection level assigned to a data stream
may increase/decrease from a context to another, making therefore subsequent data
values less/more precise at the context transition phase. This raises data leakage
problems, especially when protection significantly decreases, which widens the pre-
cision gap between prior/subsequent correlated data and makes subsequent data
more precise. The large gap in precision improves the capabilities of an adversary
when using advanced mining techniques to estimate/infer, with a high confidence,
the real values of prior data pieces where protection is critical. This makes conse-
quently the data protection process vulnerable to data inference attacks. To over-
come this vulnerability, we proposed a novel stochastic gradient descent approach
for privacy-preserving during protection transitions, denoted P-SGD. The goal of
this approach is to minimize protection deviation between sequential data values

4https://dl.acm.org/journal/toit

https://dl.acm.org/journal/toit
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at the context transition until reaching the targeted protection level (i.e., the protec-
tion stated in the newly selected strategy). The gradient descent rate is calculated
according to data dependency and protection function dependency (if changed in
the new context). The P-SGD approach is detailed in Chapter 5, and published [6]
in the proceedings of the 33rd International Conference on Advanced Information
Systems Engineering5 (CAISE’21):

– Bou-Chaaya, Karam, et al. "P-SGD: A Stochastic Gradient Descent Solution
for Privacy-preserving During Protection Transitions." In : International Con-
ference on Advanced Information Systems Engineering. Springer, Cham, 2021.
p. 37-53.

1.6 Report Organization

The remainder of the thesis is organized as follows:

Chapter 2 describes our ontology-based data model that enables the representa-
tion of various user situations with high semantic expressiveness power. We review
related work on user, environment, and context modeling. Then, we introduce our
ontology for user-Context modeling in Sensor Networks (uCSN), which improves
the context representation to consider diverse types of: (i) user/environment in-
formation (i.e., scalar, multimedia information); (ii) data sources (e.g., sensor, docu-
ment); (iii) uncertainties (e.g., uncertainties related to the user, the environment); and
(iv) environments (i.e., connected/unconnected environments, and environments
with static/mobile systems and devices). We do so by defining new concepts and
properties, and importing others from well-known ontologies, namely DPV [1], SSN
[2], HSSN [43], and W3C Uncertainty Ontology [3]. We keep uCSN generic and re-
usable in different application domains. Finally, we evaluate the accuracy, clarity,
performance, and consistency of the proposal.

Chapter 3 presents the risk reasoner that one uses to infer the privacy risks in-
volved in the user context. We review existing works on privacy risk inference before
delving into the proposed context-aware semantic reasoning approach for dynamic
risk inference (CaSPI [4]). We address the challenges of (i) increasing expressive-
ness in risk definitions; (ii) performing a holistic (all-data-inclusive) risk reasoning;
(iii) coping with the dynamicity and context-dependency of privacy risks; (iv) deal-
ing with user expertise; and (v) delivering scalability and efficiency. We validate our
proposal by developing a prototype, illustrate its functioning from the back-end and
front-end, and evaluate its performance by considering different scenarios.

5https://caise21.org/

https://caise21.org/
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Chapter 4 describes the risk manager that evaluates the values of the risks inferred,
and then calculates the best data protection strategies that cope with the user’s situ-
ation and preferences. We present our proposed approach for context-aware multi-
objective privacy management (δ-Risk [5]). We detail the process followed from the
incoming input (e.g., risks involved, user preferences) to the best strategies deliv-
ered at the output to the user. We validate our proposal by developing a prototype,
illustrate its functioning from the back-end and front-end, evaluate its performance
by considering different scenarios, and formally study its effectiveness in strategy
identification.

Chapter 5 focuses on overcoming the system’s vulnerability to data inference at-
tacks during data protection transitions (e.g., when a context change occurs). We
point out the cases that contribute to the temporal data privacy leakages during pro-
tection transitions. Then, we introduce our proposed privacy-preserving stochastic
gradient descent solution (P-SGD [6]). The proposed solution is connected to the
data protection component of the framework, and triggered at the protection descent
phases to provide an additional layer of protection against data inference attacks.
We detail the process followed by P-SGD and illustrate its functioning by executing
the developed prototype. Finally, we present the experimentation setup and results.

Chapter 6 concludes the report with a recap of all the aforementioned chapters and
discusses in details the next steps and potential future research directions.
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Chapter 2

Context Modeling in Connected
Environments

"For me context is the key - from that comes the understanding
of everything."

– Kenneth Noland

Context-awareness has emerged as a key paradigm for ubiquitous computing
and ambient intelligence applications (e.g., IoT-based applications). This paradigm
leverages situational information about people and their environments to better
improve the quality of machine-to-human communications (e.g., adapt behaviors
to people’s situation). However, doing so necessitates to represent user situations
with a high expressiveness power. Ontology-based data models have been widely
adopted as one of the most suitable modeling formats to deal with the heterogeneity
of context information.

However, existing ontology-based context models do not fully address the chal-
lenges of: (i) covering the representation of domain independent information that
describes the main context dimensions, i.e., user, environment, time, and location;
(ii) representing diverse data sources from which information can be collected; (iii)
representing heterogeneous information in terms of data types and metadata; (iv)
representing uncertainty aspects of collected information; and (v) providing a generic
model to allow re-usability in various application domains.

In this chapter, we propose uCSN, a generic and modular ontology for user-
Context modeling in Sensor Networks. uCSN provides a comprehensive view of
the user’s situation by introducing new concepts/properties and borrowing others
from existing well-known ontologies such as Data Privacy Vocabulary (DPV), Se-
mantic Sensor Network (SSN), Hybrid SSN (HSSN), and Uncertainty Ontology. We
evaluate the accuracy, clarity, performance, and consistency of our ontology. The
results show that uCSN can be adopted by various context-aware systems, includ-
ing those requiring high quality of information coverage and/or real-time reasoning
(e.g., privacy-preserving systems).



2.1. Introduction 27

2.1 Introduction

Recent years have witnessed rapid progress in enabling technologies for mobile and
ubiquitous computing, ambient intelligence, and machine learning. This allowed
the emergence of numerous Context-aware Systems (CAS) in these areas that are
capable of perceiving and interpreting changes in people’s situation and adapting
their operations accordingly. Hence, these systems have paved the way for proac-
tive and intelligent reasoning that helped in minimizing user effort and improving
human-computer interactions. Current context-aware applications are impacting
various domains, such as healthcare and elderly-care (e.g., [44]–[46]), homes (e.g.,
[47], [48]), cities (e.g., [49], [50]), military (e.g., [51]), tourism (e.g., [52]), and for
different purposes like providing CAS-users with context-driven recommendations,
privacy preservation, and so on. Nonetheless, achieving this requires to gather, at
any time and any place, as much context information as possible that describes the
user (e.g., profile, activity) and her surrounding environment (e.g., environment de-
scription, components, characteristics).

The more the information gathered is expressive, the more the CAS is able to un-
derstand and interpret the user’s situation, which helps in improving the quality of
the services/functions delivered in return. However, the system may receive huge
amounts of heterogeneous information in terms of data types and formats, origi-
nated from different sources (e.g., sensors, Web resources), and describing different
context dimensions (i.e., time, location, user, and environment). In addition, it can
be uncertain, incomplete, or ambiguous. Information pieces can have different lev-
els of granularity and can be correlated through implicit and explicit relationships.
All this makes the modeling of context information a challenging task. Various con-
text modeling techniques exist in the literature [53], including key–value, object ori-
ented, graphical, and ontology-based modeling. However, according to many sur-
veys and studies [53], [54], ontology-based data models have been adopted as one
of the most appropriate modeling formats to deal with the heterogeneity of context
information. Ontologies allow for information representation with a high semantic
expressiveness power, enable comprehensive and complex reasoning over modeled
information, and maintain a flexible and extensible data structure.

Several ontologies for context modeling were proposed in the literature [55]–
[62], however, they are restrictive due to the following issues: (i) lack of domain-
independent information coverage that describes the main context dimensions (i.e.,
user, environment, time, and location); (ii) lack of considered data and data types
(e.g., scalar, multimedia); (iii) lack of considered data sources (e.g., sensors, devices,
social network profiles, documents, public databases); (iv) no consideration of infor-
mation quality aspects (e.g., uncertainty level, nature and type), which is important
to limit the impact of context imperfection on the CAS behavior; and (v) lack of
genericity/re-usability, most of these approaches (e.g., [58], [59], [62]) are linked to
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a specific application domain, i.e. they include domain-specific knowledge, which
may increase the semantic complexity or/and computation costs of the data model,
and limit its re-usability in other domains.

To address the aforementioned limitations, we present here uCSN, a generic and
modular ontology for user-Context modeling in Sensor Networks. uCSN allows
the representation of a variety of user situations. It provides a high-level of infor-
mation coverage of the four context dimensions: time, location, user, and environ-
ment. Moreover, it supports the representation of scalar/ multimedia information
with their properties, diverse data sources, uncertainty aspects of collected infor-
mation, and hybrid environments with their static/mobile aspects and components.
To achieve this, uCSN introduces new concepts and properties, and imports others
from existing well-known ontologies such as: (i) Data Privacy Vocabulary (DPV)
[1], to enrich the representation of the user-profile; (ii) Semantic Sensor Network
(SSN) [2]/Hybrid SSN (HSSN) [43], to cover the modeling of hybrid connected
environments; and (iii) W3C Uncertainty Ontology [3], to represent uncertainty-
related aspects. uCSN does not contain domain-specific aspects but can be easily
extended and aligned with other ontology models, through its pluggable layer, to
cover domain-specific user/environment knowledge (e.g., user-medical data [58],
building topology ontology [63]).

The rest of this chapter is organized as follows. Section 2.2 illustrates a scenario
that motivates our proposal and identifies the challenges to tackle. Section 2.3 re-
views existing ontologies for user, environment, and context modeling. Section 2.4
details the uCSN ontology. Section 2.5 outlines the experimental evaluation of uCSN
accuracy, clarity, performance, and consistency. Finally, Section 2.6 presents a sum-
mary of the chapter.

2.2 Motivating Scenario

To motivate our proposal, we investigate the following scenario. Consider that Alice
uses a context-aware application that provides her with personalized recommenda-
tions to protect her privacy. This application requires a high level of information
coverage, i.e. it needs to gather all available information that characterize the con-
text of Alice to deliver a good quality of privacy recommendations.

Figure 2.1 illustrates the present situation of Alice. To start with the surrounding
environment, Alice is located at her home that hosts various sensors for monitoring
purposes like video surveillance cameras and energy-consumption sensors. Alice is
a COPD patient who follows her medical treatment from home using a NIV device.
In addition, other profile information are also collected by the application from ex-
ternal sources in order to better recommend Alice, such as her marital status and
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profile picture (from her Facebook profile), and her date of birth (from her Face-
book profile and the public voting database available on the Internet). Moreover,
Alice shares the energy-consumption readings of her home, which are sensed by the
deployed energy sensors, with an electricity provider, to benefit from personalized
recommendations to reduce her energy consumption and bills. She shares also her
location data with a healthcare provider, through the GPS sensor embedded on her
mobile device, to benefit from a smart ambulance service that she would use in case
of respiratory distress. From their side, providers collaborate with third parties inter-
ested in exploiting the data of their customers (e.g., Alice) for a variety of purposes,
including marketing companies and government agencies.

FIGURE 2.1: Running Example

To protect her privacy, the application needs to build the context view by gath-
ering and modeling all these information pieces, which are heterogeneous in types
(i.e., scalar and multimedia information), formats (e.g., text, numeric, vector, XML,
PNG, MOV), origins (e.g., sensor, social network profile, database, document) and
semantics. It also needs to represent the quality of these information that may impact
the system behavior. For example, the date of birth information captured from the
Facebook profile is incomplete, which might impact the relating recommendations.
Moreover, the application may need to track the dynamicity of the environment (e.g.,
mobile sensor locations and coverage areas, capabilities of devices). It may also get
access to sensor data (e.g., video data from surveillance cameras, location data from
the GPS sensor) to better monitor the user activity at home.

We considered in this example the case of a privacy-oriented application that re-
quires high-level of information coverage of all context dimensions. Nonetheless,
a wide range of context-aware applications exist in many domains [64], where the
information coverage requirements vary from one to another depending on their op-
erations. This means they can be interested in tracking user profile, activities, prefer-
ences, locations, or/and environment changes. This tracking is achieved by collect-
ing data from deployed/wearable sensors or/and information from other external
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resources (e.g., Web resources). Consequently, when modeling context information,
several challenges emerge:

• Challenge 1. Providing high-level information coverage: Context information
can characterize different dimensions, i.e., time, location, user, and environment.
These information pieces can also have different/complex types of relations among
each others, characteristics, and constraints. The data model should therefore
provide high-level and expressive information coverage of all context dimen-
sions. This makes it capable of meeting the needs of different applications.

• Challenge 2. Coping with information diversity: Contextual data/information
can be heterogeneous in terms of data types and properties (e.g., scalar and mul-
timedia data). The data model must allow the representation of scalar and mul-
timedia data/information with their properties. This enriches the representation
of user contexts, thereby improving the quality of CAS operations.

• Challenge 3. Coping with source diversity: The data/information can be col-
lected/extracted from a wide variety of data sources, which can be derived from
connected environments (e.g., scalar/multimedia sensors, documents) and/or
other external resources, such as Web resources (e.g., social network profiles,
public databases, emails, documents). Therefore, the data model must support
the representation of various data sources with their properties (e.g., origins,
data-serialization formats) in order to ensure the traceability of the data/infor-
mation sources.

• Challenge 4. Coping with multi-granular information: Context information
may have different levels of granularity. For example, the CAS receives two in-
formation about the user’s location, one indicating that the user is located in the
airport (captured from a post on Facebook), and another more precise informa-
tion indicating the exact location of the user collected from his wearable GPS
sensor. Accordingly, the data model must handle the modeling of information
with different granularity levels, which enriches the context representation.

• Challenge 5. Coping with information uncertainty and incompleteness: Contex-
tual data/information is collected, sometimes in real-time, from various/diverse
data sources (e.g., sensors, social media platforms). However, the uncertainty
level of information may vary due to many factors (i.e., regular and irregular un-
certainty [65]) such as node malfunctions/faults or misuse of social media plat-
forms. Furthermore, context information is often incomplete and/or ambiguous
[55], [66]. The data model must consequently be able to represent information
uncertainties, which can help to minimize negative impacts on the quality/be-
havior of the CAS.

• Challenge 6. Coping with environment dynamicity: The surrounding environ-
ment of the user is dynamic (i.e., it evolves/changes progressively). This makes
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the information modeling process complex, as the data/information received is
unpredictable, uncontrollable and unknown in advance.

• Challenge 7. Delivering re-usability, extensibility and efficiency: The data model
must be generic and re-usable in different application domains, i.e., it must not
contain domain-specific knowledge. It should also be extensible, so it can be
easily adapted to domain-specific particularities. Finally, it must maintain low
computational complexity in information retrieval, which makes it also usable
by applications where responsiveness and light processing costs are critical.

2.3 Context Background & Related Work

2.3.1 Context Background

The term context has been defined by many researchers. Dey et al. [67] evaluated
and stressed the weaknesses of these definitions. They claimed that the definition
provided by Schilit et al. [68] is based on examples and cannot be used to identify
new context. Further, the definitions provided by Brown [69], Franklin et al. [70],
Rodden et al. [71], Hull et al. [72], and Ward et al. [73] used synonyms to refer to con-
text, such as environment and situation. Therefore, these definitions also cannot be
used to identify new context. Abowd and Mynatt [74] identified the five W’s (Who,
What, Where, When, Why) as the minimum information that is necessary to under-
stand context. Schilit et al. [75] and Pascoe [76] have also defined the term context.
Dey claimed that these definitions were too specific and cannot be used to identify
context in a broader sense, and provided the following definition for context:

“Context is any information that can be used to characterise the situation of an entity. An
entity is a person, place, or object that is considered relevant to the interaction between a

user and an application, including the user and applications themselves.”

We accept the definition provided by Dey et al. [67] in our research work, because
this definition can be used to easily identify whether a provided data element is
context or not. Nonetheless, the entity of interest in our work is the user. Therefore,
we stress the definition provided by Dey et al. [67] and we consider in our study
that the term "context" represents the "group of information" instead of "a single
information", and the user-context can therefore be defined as follows:

“A user context is defined as the finite group of information that characterizes the situation
of the user in a specific time and space.”

The user context is spatio-temporal, and the user situation can therefore be re-
garded as "the sequence of user contexts in time and space". We provide in Chapter 3 a
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formal definition of user context that will be used after (cf. Definition 4). In what fol-
lows, we discuss the dimensions used by various researchers to represent a context,
and then we highlight the fundamental dimensions considered in our work.

So far, there is no standard to specify what type of information needs to be con-
sidered in context modeling [53]. Consequently, the main context dimensions remain
neither well defined nor delimited, resulting in a variety of dimensions depending
on the perspectives in the field. Authors in [77] considered four dimensions of con-
text information: location, time, identity, and activity. In [78], authors considered
the following context dimensions: location, time, identity, and environment. [79]
considered user, platform, and environment. [56] considered location, person, ac-
tivity and computational entity. [55] focused on location, time, user, environment,
service and device. [57] considered person, agent, belief-desire-intention, action,
policy, time, space and event. In [58], authors were focusing on the medical domain,
so they specified eight dimensions for context information, namely location, time,
individual, activity, medical, auxiliary, environment, and device.

Our objective here is to provide a generic data model that covers only domain-
independent knowledge, i.e. we focus only on domain-independent dimensions.
The dimensions outlined in the previous studies characterize four general elements:
time, location, user, and environment. From the user perspective, identity, activity,
action, belief-desire-intention are properties of the user dimension. Platform, device,
service and computational entity can be regarded as properties of the environment
dimension. Event is expressed by both time and location dimensions. Therefore, we
consider in this study time, location, user, and environment as the four fundamental
context dimensions to characterize the user’s situation (cf. Figure 2.2).

FIGURE 2.2: Fundamental Dimensions of user-Context Information

2.3.2 Related Work

In this section, we study and review existing ontology-based models that represent
the user (i.e., user-only models), environment (i.e., environment-only models), and
the combination of user and environment with other dimensions (i.e., context mod-
els). We compare these works based on the following criteria that are linked to the
challenges mentioned in Section 2.2:
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• Criterion 1. Re-usability: The approach is not related to a specific domain and
is compatible with different application purposes. In fact, integrating domain
specific knowledge can increase the semantic complexity and/or computation
costs of the data model. Hence, this criterion indicates if the approach is re-usable
in various application domains via {YES, NO}.

• Criterion 2. Extensibility: This criterion states {YES, NO} if the approach is ex-
tensible, i.e., adaptable to domain-specific applications.

• Criterion 3. Information Coverage: This criterion denotes by {YES, NO, PARTIAL}
the ability of the approach to cover the representation of domain-independent in-
formation related to the different context dimensions:

(1) Time (i.e., time instants and intervals).

(2) Location (i.e., location semantics through coordinates, textual descriptions,
or/and spatial zones).

(3) User:

– Profile, i.e., information describing the user’s profile (e.g., identity, prefer-
ences, public life, knowledge belief).

– Activity, i.e., information describing the user’s activity (e.g., locations vis-
ited, activities performed, data sensed and shared with data consumers in
exchange for services).

(4) Environment:

– Unconnected environment aspects (e.g., structure, descriptions, devices).

– Connected environment aspects (e.g., sensors, smart appliances, actuators
with their capabilities and properties). In addition, we consider the fol-
lowing two sub-criterion to underline also the ability of the approach to
handle sensor diversity/mobility in the environment:

* Sensor Diversity: The environment can host simple sensors or/and more
advanced multi-sensor devices that are capable of sensing, processing,
communicating, and storing data. In addition, sensors are capable of
sensing scalar or/and multimedia data. Hence, this criterion states the
ability of the approach to handle sensor diversity in terms of simple
sensors/multi-sensor devices and scalar/multimedia sensors.

* Sensor Mobility: The environment can be (i) static, i.e., hosts static sen-
sor nodes or/and multi-sensor devices that do not change locations/
coverage areas with time, or (ii) mobile, i.e., hosts at least one mobile
sensor/device. Integrating mobile sensing devices in the representa-
tion of sensor networks is important to consider mobile data sources
from which context information might be collected (e.g., smart phones,
drones). However, considering mobility adds challenges related to prop-
erly locating and tracking mobile sensors, and updating their coverage
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areas when they move. Consequently, this criterion states the ability of
the approach to represent sensor mobility.

– Service (i.e., services provided to the user with its characteristics).

• Criterion 4. Information diversity: This criterion indicates {YES, NO, PARTIAL}
if the approach is capable of modeling data/information with different data types.

• Criterion 5. Source diversity: This criterion indicates {YES, NO, PARTIAL} if the
approach handles the representation of heterogeneous data sources in terms of
origins and types.

• Criterion 6. Information Uncertainty: This criterion states {YES, NO, PARTIAL}
if the approach is capable of representing the uncertainty aspects of collected
context information.

We do not consider criteria related to information multi-granularity (cf. Chal-
lenge 4) and environment dynamicity (cf. Challenge 6) since they are both satisfied
when using ontology-based models to which our study is limited.

2.3.3 User Modeling

We present here existing ontologies for user modeling, i.e., ontologies that represent
user profile and/or activity information. We start by detailing each work separately
(the name of the model is highlighted in bold font). Finally, we evaluate them based
on the aforementioned criteria (for criterion 3, we only consider the user information
coverage).

A user profile is defined as "the explicit digital representation of a person’s identity. It
regroups all personal information describing the characteristics of a person" [80]. Existing
ontologies for user modeling describe the user profile in different manners depend-
ing on the usage purpose:

DPV. The Data Privacy Vocabulary (DPV) model [1] is a W3C (World Wide Web
Consortium) initiative released in January 2021 (version 2). It introduces classes and
properties to describe instances of legally compliant personal data handling accord-
ing to the EU General Data Protection Regulation (GDPR [11]). This model covers
all domain independent profile information and regroups them into different cat-
egories such as identifying, demographic, ethnicity, physical characteristics, public
life, and preference.

FOAF. The FOAF ontology [81] is one of the most widely used ontologies to model
people in the social network field. It specifies a vocabulary that can be used to define,
exchange and search for social information that describes people with their social
profile characteristics (e.g., first/last name, age, birthday, skypeID, yahooChatID)
and their social connections with others.
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UPO. In [82], authors proposed an ontological User Profile Modeling for context-
aware application personalization within mobile environments (UPO). They intro-
duced concepts and properties to represent the user profile/activity aspects includ-
ing contact, health, education, capabilities, interests, preferences, and activities.

UPOS. In [83], authors introduced the notion of personalized user profiles and
proposed the User Profile Ontology with Situation-Dependent Preferences Support
(UPOS). The aim of this ontology was to support the situation-dependent personal-
ization of services within changing environments by splitting the user profile into
several profile subsets where each is defined in response to a specific service.

Extended-UPOS. In [84], authors proposed an extension of UPOS ontology for
situation-aware social networking. They kept the dynamic aspects of user profiles,
and considered the conjunction of context dimensions in order to better identify in
real-time the situation of users.

CC/PP. The Composite Capabilities/Preference Profile (CC/PP) model [85] is a
W3C initiative that suggests an infrastructure to describe device capabilities and
user preferences. CC/PP is developed specifically to facilitate the decision making
process of a server on how to customize and transfer web content to the user’s de-
vice in a suitable format. It can guide to the adaptation of the content delivered to
the device according to software terminals, hardware terminals, and applications
such as a browser, data types, and protocols.

UP-PwD. In [86], authors proposed a user profile ontology-based approach that
provides context-aware personalized services for assisting People with Dementia in
mobile environments (UP-PwD). They introduce new classes and properties to rep-
resent generic user aspects (e.g., personal information, capabilities, preferences, ac-
tivities, and locations) as well as other domain-specific aspects such as educational,
health, and social information.

2.3.3.1 Comparative Study

Table 2.1 shows that none of the aforementioned works fully considers the entire list
of criteria. We discuss in what follows the results of this comparison according to
each criterion.

Re-usability. The UPOS [83] and CC/PP models [85] are said to be generic since
they do not contain domain-specific knowledge. The rest of data models contain
knowledge associated to specific domains (e.g., medical, social, educational), how-
ever they can be divided into two categories: (i) domain-independent models; and
(ii) domain-driven models. The DPV [1], UPO [82] and UP-PwD [86] ontologies be-
long to (i), i.e., they integrate domain-specific knowledge through modules/profiles
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Criteria
DPV

[1]
FOAF

[81]
UPO
[82]

UPOS
[83]

Extended-UPOS
[84]

CC/PP
[85]

UP-PwD
[86]

Re-usability YES NO YES YES NO YES YES

Extensibility YES YES YES YES YES YES YES

Profile YES PARTIAL PARTIAL PARTIAL PARTIAL PARTIAL PARTIALUser
Information
Coverage Activity PARTIAL PARTIAL PARTIAL PARTIAL PARTIAL PARTIAL PARTIAL

Information Diversity PARTIAL PARTIAL NO NO NO NO NO

Source Diversity YES NO NO NO NO NO NO

Information Uncertainty NO NO NO NO NO NO NO

TABLE 2.1: Comparative Study of Existing User Models

(e.g., health profile, social profile) which makes it easier to exclude the related con-
cepts/properties from the ontology and re-use it in other fields. The FOAF [81] and
Extended-UPOS [84] are oriented towards the field of social networks.

Extensibility. Most of the data models (i.e., [1], [82], [83], [85], [86]) are extensible
and can be adapted to the particularities of the application domain. The FOAF [81]
and Extended-UPOS [84] models can be extended, however, they are limited to their
field of interest.

User Information Coverage. All data models (except DPV) partially represent the
user profile information and activity information (i.e., performed activities or/and
visited locations). The DPV model [1] represents all domain-independent profile
information and categorizes them through different classes (i.e., identifying, prefer-
ences, demographic, ethnicity, physical characteristic, public life, knowledge belief,
and authenticating). However, the coverage of information on user activity remains
limited. At present, it only considers user behavioral information.

Information Diversity. DPV [1] and FOAF [81] consider the representation of images
along with scalar information, but lack the representation of other multimedia data
such as sounds and videos.

Source Diversity. DPV [1] is the only model to support representation of data sources
through the dpv:DataSource concept.

Information Uncertainty. None of the reviewed models supports the representation
of the information uncertainty aspects.

2.3.4 Environment Modeling

We discuss in this section existing ontologies for environment modeling. Environ-
ment ontologies vary between those integrating a generic vocabulary to represent
different environments and those integrating a domain-specific vocabulary to rep-
resent a specific environment in particular (e.g., building, home). In this study, we
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only focus on reviewing domain-independent ontologies that cover the representa-
tion of many environments. In what follows, we shall follow the same procedure
as in the previous subsection 2.3.3. For the information coverage criterion, we only
consider here the environment aspects. In addition, criterion 5 (i.e., source diversity)
is not considered as the focus here is on how to represent environment descriptions,
components (e.g., sensors), and services. Consequently, the only data sources to be
considered in such data models are the internal ones, if they exist (i.e., the sensors
deployed in the environment).

The surrounding physical environment of the user (e.g., home, mall, street, city)
can be a connected environment (i.e., hosts smart cyber-physical systems) or not.
Environments might have specific aspects that do not necessarily exist for others.
Therefore, we focus here on covering common generic aspects/components across
all connected/unconnected environments (e.g., zones, descriptions, components like
sensors, devices and appliances). Several ontology-based models exist in the fields
of semantic sensor network modeling, IoT/connected environment modeling:

SOSA/SSN. In [2], authors have proposed SOSA/SSN, a joint W3C and OGC (Open
Geospatial Consortium) standard, that constitutes the new version of the most foun-
dational ontology for sensors, the Semantic Sensor Network (SSN) Ontology. The
main innovation of this SSN new generation has been the introduction of the Sensor,
Observation, Sample, and Actuator (SOSA) ontology, which provides a lightweight
core for SSN. Together, SOSA/SSN ontologies describe systems of sensors and ac-
tuators, observations, platforms, involved procedures, studied features of interest,
observed properties, and so forth. SOSA/SSN is a generic and modular ontology
that respects the Ontology Design Pattern (ODP), which makes it easier to reuse/ex-
tend.

HSSN. In [43], authors have introduced HSSN, an ontology for Hybrid Semantic
Sensor Networks. HSSN extends the widely used Semantic Sensor Network ontol-
ogy (SOSA/SSN) to overcome existing limitations related to sensor diversity, plat-
form diversity and data diversity. HSSN defines new concepts and properties to
represent hybrid sensor networks, i.e., networks containing mobile/static sensors,
scalar/multimedia properties, and infrastructures/devices as platforms where sen-
sors are deployed.

Other approaches have also extended the SSN ontology. However, they were
all contributed before the newly released version of SSN (i.e., SOSA/SSN). Conse-
quently, they tried to deal with the limitations of the old SSN such as the lack of
description of essential IoT elements (e.g., objects, actuators, services, etc), services,
and so forth. These ontologies are respectively presented in the following.

IoT-O. In [87], authors have introduced IoT-O, a core-domain IoT ontology to rep-
resent connected devices networks and their relation with their environment. IoT-O
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expands from old SSN with descriptions of sensors, services, units, nodes, things
and actuators. It covers the following modules through alignments with existing on-
tologies: sensing (aligned with the old SSN ontology [88]), acting (aligned with SAN
ontology [89]), life-cycle (aligned with Life-cycle ontology [90]), service (aligned
with hRest [91], MSM [92], wsmo-lite [93]) and energy (aligned with PowerOnt [94]).

IoT-Lite. In [95], authors have proposed IoT-Lite Ontology, an instantiation of the
old SSN ontology. It is a lightweight ontology that represents IoT resources, enti-
ties and services. It allows the discovery and interoperability of IoT resources in
heterogeneous platforms using a common vocabulary.

IoT Ontology. IoT Ontology [96] is also an expansion of the old SSN. It integrates
new concepts such as physical-entity and smart-entity to support semantic expres-
sions for interconnected, aligned and clustered entities.

2.3.4.1 Comparative Study

Criteria
SOSA/SSN

[2]
HSSN

[43]
IoT-O

[87]
IoT-Lite

[95]
IoT-Ontology

[96]

Re-usable YES YES YES YES YES

Extensible YES YES YES YES YES

Unconnected Env. Aspects YES YES YES YES YES

Aspects YES YES YES YES YES

Sensor Diversity PARTIAL YES PARTIAL PARTIAL PARTIAL
Connected
Environment

Sensor Mobility NO YES NO NO NO

Environment
Information
Coverage

Service NO YES YES YES NO

Information Diversity NO YES NO NO NO

Information Uncertainty NO NO NO NO NO

TABLE 2.2: Comparative Study of Existing Environment Models

As shown in to Table 2.2, the HSSN ontology [43] covers most of the criteria. It
lacks only the representation of information uncertainty aspects. We discuss here-
after the comparison of the listed environment models.

All the aforementioned works (i.e., [2], [43], [87], [95], [96]) are generic and exten-
sible. They handle representation of domain-independent aspects of both connected
and unconnected environments (e.g., structure, descriptions, sensors, devices, ser-
vices). Moreover, they all consider representation of simple sensor nodes and multi-
sensor devices. However, these models (except HSSN [43]) do not consider the di-
versity of sensors and information in terms of scalar and multimedia properties, and
do not integrate sensor mobility into their representation of sensor networks. Only
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HSSN [43], IoT-O [87], and IoT-Lite [95] ontologies represent the services provided
to the user with their features (e.g., input/output variables, capabilities). Finally,
none of the models tackles the modeling of information uncertainty.

2.3.5 Context Modeling

A broad variety of ontologies exist for context modeling in the fields of connect-
ed/smart environments and sensor networks, including ontologies for human be-
havior/activity recognition. In the following, we start by detailing these works and
then we review them according to the aforementioned comparison criteria.

PiVOn. In [55], authors propose the Pervasive Information Visualization Ontology
(PiVOn) for context modeling in intelligent environments. They considered the fol-
lowing context dimensions: user, environment, device, and service. Thus, PiVOn
is composed of four independent ontologies that represent respectively informa-
tion related to the considered four dimensions. It integrates the following aspects
as properties (or meta-context) of the main dimensions: time, location (e.g., envi-
ronments where the user is located, GPS coordinates), identity (aligned with FOAF
ontology [81] to describe the user profile), and activity. The user context is analyzed
from the perspective of the 5 Ws Theory, a journalism principle regarded as basic in
information gathering (What, Who, Where, When, Why).

CONCON. In [56], the CONtext ONtology (CONCON) is introduced for modeling
context in pervasive computing environments. CONON provides an upper context
ontology that captures generic concepts and properties about basic context, and also
provides extensibility for adding domain-specific ontologies. Authors consider per-
son, activity (deduced/scheduled activities), surrounding location (i.e., indoor/out-
door space) and computational entity (e.g., device, service) are the fundamental di-
mensions to define the context.

SOUPA. Authors in [57] propose SOUPA, a Standard Ontology for Ubiquitous and
Pervasive Applications. SOUPA consists of two modules. First, the SOUPA-Core
that consists of nine ontologies, where together define a generic vocabulary for de-
scribing person contact information, beliefs, desires, and intentions of an agent, ac-
tions, policies (e.g., rights, obligations), time (i.e., time instants and intervals), space
(e.g., geographical regions, geo-spatial coordinates), and events (with their time/s-
pace features). The second module is the SOUPA-Extensions, that allows the align-
ment with other domain-specific ontologies, which justifies its extensibility.

COBRA-ONT. The Context Broker Architecture Ontology (CoBrA-Ont) is an ex-
tension of the SOUPA ontology [59]. It focuses on the domain of smart meeting
rooms and enriches accordingly the representation of people, places, activities and
devices. The main objective of this ontology is to enable knowledge sharing and on-
tology reasoning within the CoBra (for Context Broker Architecture) infrastructure.
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CoDAMoS. In [60], authors propose CoDAMoS, an ontology for context modeling
in mobile environments. This ontology has been designed with the aim of solving
the challenges of: application adaptation, automatic code generation, code mobility,
and generation of device-specific user interfaces. CoDAMoS defines six context di-
mensions: time, location, user, environment, platform, and service. It provides rep-
resentation of user preferences/activities/tasks, environmental conditions, device
resources (e.g., memory, network, power, and storage) and software (middleware,
OS, virtual machine), and the characteristics of the services delivered to the user
(e.g., service profile, model, and grounding).

mIO!. In [61], authors propose the mIO! ontology to represent the user context in
mobile environments. This accordingly allows to configure, discover, execute, and
enhance different services in which the user may be interested. mIO! is a modu-
lar ontology, it reuses existing ontologies to enrich some of its eleven core aspects:
user (aligned with FOAF [81]), role (i.e., user profiles and preferences; aligned with
Reco1), environment (aligned with CoDAMoS [60]), location (aligned with SOUPA
[57]), time (aligned with W3C Time [97]), service, provider, source, device (e.g., sen-
sors), interface and network.

PalSPOT. In [62], authors introduce an ontology for human activity recognition,
denoted PalSPOT. This ontology represent knowledge about user and social activi-
ties. It provides also an extensive taxonomy to represent several types of user activ-
ities such as personal, physical, professional, and traveling activities. Considering
the surrounding environment, PalSPOT is capable of representing their descriptions,
as well as the deployed simple sensor nodes. Finally, symbolic locations (e.g., indoor,
outdoor) and time granularity are provided.

2.3.5.1 Comparative Study

According to the comparative study presented in Table 2.3, none of the above works
fully considers the entire list of criteria. We discuss in the following the results of
this comparison according to each criterion.

Re-usability/Extensibility. The COBRA-ONT [59] and PalSPOT [62] ontologies inte-
grate domain-specific knowledge related respectively to the smart meeting rooms
and social domains. The rest of works (i.e., [55]–[57], [60], [61]) provide a generic
vocabulary to represent the user context. Nonetheless, all aforementioned works are
extensible and can be adapted to specific domains.

Information Coverage. All context works satisfy the coverage of information that
represent time and location dimensions, as well as the aspects of unconnected en-
vironments (e.g., descriptions, environmental conditions). Concerning connected
environments properties, the PiVOn ontology [55] handles representation of sensors,

1https://triplydb.com/ctic/reco

https://triplydb.com/ctic/reco
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Criteria
PiVOn

[55]
CONCON

[56]
SOUPA

[57]
COBRA-ONT

[59]
CoDAMoS

[60]
mIO!
[61]

PalSPOT
[62]

Re-usable YES YES YES NO YES YES NO

Extensible YES YES YES YES YES YES YES

Time YES YES YES YES YES YES YES

Location YES YES YES YES YES YES YES

Unconnected Env. Aspects YES YES YES YES YES YES YES

Aspects YES NO NO NO NO PARTIAL PARTIAL

Sensor Diversity PARTIAL NO NO NO NO PARTIAL NO
Connected
Environment

Sensor Mobility PARTIAL NO NO NO NO NO NO

Environment

Service YES NO NO NO YES YES NO

Profile PARTIAL PARTIAL PARTIAL PARTIAL PARTIAL PARTIAL PARTIAL

Information
Coverage

User
Activity PARTIAL PARTIAL PARTIAL PARTIAL PARTIAL PARTIAL PARTIAL

Information Diversity NO NO NO NO NO NO NO

Source Diversity NO NO NO NO NO YES NO

Information Uncertainty NO NO NO NO NO NO NO

TABLE 2.3: Comparative Study of Existing Context Models

actuators, dependent/autonomous devices, and multi-sensor devices with their ca-
pabilities. The mIO! ontology [61] introduces a specific taxonomy limited to the
representation of devices, including simple sensor nodes and multi-sensor devices.
The PalSPOT ontology [62] is limited to the representation of simple sensor nodes.
As regards sensor mobility, PiVOn [55] is capable of describing only current loca-
tions of sensors/devices. However, it does not associate temporal entities to these
locations, which denies the ability to track mobile sensors. For the service descrip-
tion, only PiVOn [55], CoDAMoS [60], and mIO! [61] provide classes and properties
to describe services with their characteristics (e.g., service profile, model). When
considering the coverage of user information, all works reviewed are partially rep-
resentative. None of them fully covers the representation of domain-independent
information that characterize the user’s profile and activity.

Information Coverage/Uncertainty & Source Diversity. The compared context models
consider only scalar context information. They lack multimedia data/information
in their context representation. They also lack representation of uncertainty features
of collected context information. As for source diversity, only mIO! [61] considers
multi-source modeling through its provided source ontology.

2.3.6 General Discussion

To summarize the previously-detailed studies, none of the existing context models
fully answers the list of criteria. They mainly share limitations related to: (i) cover-
ing the aspects and properties of connected environments, and the information that
characterize the profile and activities of the user; (ii) handling the representation of
diverse information (in terms of types/formats) and diverse data sources (in terms
of origins/types); and (iii) representing the uncertainty features of collected context
information.
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When considering the user-only models, we notice that the DPV [1] model presents
a rich vocabulary to represent all domain-independent profile information accord-
ing to the EU GDPR [11]. The generic profile classes can be easily extracted from this
model since they are grouped into categories (e.g., demographic, public life, pref-
erence), so they can be easily distinguished from domain-specific categories (e.g.,
medical, financial). As well, when considering environment-only models, we no-
tice that the HSSN ontology [43], which extends the well-known and widely used
SOSA/SSN standard ontology [2], is generic and extensible. It introduces classes
and properties to represent: (i) structure/component aspects of an environment; (ii)
scalar/multimedia sensors and multi-sensor devices; and (iii) services. Moreover,
it integrates mobility-related classes to represent mobile sensors and keep track of
their locations and coverage areas. Accordingly, we decide to import classes/prop-
erties from both DPV and HSSN ontologies to cover the representation of the user’s
profile and environment.

2.4 uCSN Ontology

In this section, we detail our proposed ontology for user-Context Modeling in Sen-
sor Networks, denoted uCSN. This ontology addresses the challenges mentioned
in Section 2.2. It introduces new concepts and properties, and imports others from
DPV [1], HSSN [43], SOSA/SSN [2], and W3C Uncertainty Ontology [3], in order to
provide a comprehensive view of the user’s situation. The following prefixes dpv:,
sosa:, ssn:, hssn:, mssn:, uo:, and time: refer to DPV [1], SOSA [2], SSN [2],
HSSN [43], MSSN [98], Uncertainty [3] and Time [97] ontologies respectively. We
start first by presenting an overview of our ontology.

2.4.1 Overview of uCSN

The uCSN ontology is comprised of two main layers as illustrated in Figure 2.3.
The core layer (i.e., yellow layer), is composed of the generic core concepts to rep-
resent the context dimensions: user (i.e., profile and activity), environment (e.g.,
descriptions, devices, sensors, services), time, and location (e.g., events). The second
layer (i.e., orange layer) is a pluggable layer that allows the alignment with exter-
nal ontology-based models to represent domain-specific knowledge related to the
user (e.g., medical, social) or a particular environment (e.g., home, building, city).
Consequently, the core layer ensures the genericity of the uCSN ontology and the
pluggable layer justifies its extensibility. Full documentation of the uCSN ontology
is available at this link2. Also, the ontology files are accessible online3 for download.

2https://spider.sigappfr.org/uCSNdoc/index-en.html
3https://spider.sigappfr.org/research-projects/ucsn/ (Ontology Files)

https://spider.sigappfr.org/uCSNdoc/index-en.html
https://spider.sigappfr.org/research-projects/ucsn/
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FIGURE 2.3: Overview of the uCSN Ontology

The core layer includes concepts to describe general aspects such as entities, data
sources, events, uncertainty features, and so forth (cf. Figure 2.3). It also includes
other concepts regrouped into two modules: (i) user module, contains the concepts
that characterize the user (i.e., profile and activity); and (ii) environment module,
comprises the concepts that describe the environment of the user. In the following,
we begin first by defining the entities, and then we explore the user and environment
modules with their related general concepts (e.g., data sources, events).

FIGURE 2.4: Entity Representation

Figure 2.4 illustrates the entities considered in uCSN. An entity, expressed by the
concept ucsn:Entity, can be: (i) the user of interest (or data subject according to
DPV [1]), whose data/information is collected, held, shared, or/and processed by
other entities (e.g., service providers), represented by the concept ucsn:User; (ii) a
physical environment, defined by the concept ucsn:Environment; or (iii) a data con-
sumer (or recipient according to DPV [1]), denoted by ucsn:DataConsumer. The data
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consumer is a stakeholder interested in collecting and/or exploiting the information
of users. It can be: (1) a ucsn:ServiceProvider, first-party responsible for collect-
ing the user’s data/information in exchange for services; or (2) a ucsn:ThirdParty,
external entity interested in buying user’s data/information from a principally in-
volved party (i.e., user/service provider) and exploiting it. A ucsn: DataConsumer

can collaborate with many ucsn:ThirdParty (ucsn:collaboratesWith property) and
exchange customer data for different purposes specified in the relevant agreements.

2.4.2 User Module

The user module contains the user’s personal information, expressed by the con-
cept ucsn:PersonalInformation (see in Figure 2.5). A ucsn:PersonalInformation

is spatio-temporal and can be of two types: (i) information that characterizes the
user profile, represented by ucsn:ProfileInformation, which barely changes over
time/space; or (ii) information characterizing the user’s activity, represented by
ucsn:ActivityInformation, which varies over time/space depending on the evo-
lution of the user’s situation. The user has many ucsn:PersonalInformation as
shown in Figure 2.6, each of which is captured from a ucsn:DataSource (e.g., sensor,
social network profile) and shared with many ucsn:DataConsumer (e.g., Facebook).

FIGURE 2.5: Personal Information

FIGURE 2.6: Personal Information Properties

Source Diversity. Figure 2.7 shows that uCSN is capable of representing different
types of data sources, i.e. sensors, devices and other external sources (e.g., social me-
dia platforms, databases, documents), through the sosa:Sensor, hssn:Device, and
ucsn:ExternalSource concepts (cf. Challenge 3). The data source’s origin, URI iden-
tifier, and data-serialization format can be also represented through the following
properties: ucsn:origin, ucsn:uri-identifier, and ucsn:serialization-format.
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FIGURE 2.7: Source Diversity

In order to enrich the representation of the generic profile information, we import
previously-defined concepts from the DPV model [1] and integrate them as sub-
concepts of ucsn:ProfileInformation. The profile information are consequently
grouped into different categories such as dpv:Identifying, dpv:Preference, and
dpv:PublicLife (cf. Figure 2.8). The categories are detailed in the next sub-section.
Each ucsn:ProfileInformation has a specific time and location of capture repre-
sented by the ucsn:hasCaptureTime and ucsn:hasCaptureLocation properties re-
lated to the time:TemporalEntity and mssn:Location concepts respectively.

In addition to profile information, it is also important to monitor the activity of
the user. This helps to better understand the current situation of the user and, con-
sequently, to improve the quality of the reasoning process. However, achieving this
requires to gather tracking information describing activities performed, locations/-
places visited, and user behavior, and to keep track of the information sensed by de-
ployed/wearable sensors. Accordingly, the ucsn:Activity, ucsn:UserLocation,

dpv:Behavioral, and ucsn:SensedInformation concepts are added as sub-concepts
of ucsn:ActivityInformation (cf. Figure 2.8). Further details on how to consider
the dynamicity of the user’s activity are provided in sub-section 2.4.2.2.

FIGURE 2.8: Profile/Activity Information
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2.4.2.1 Profile Information

Eight main categories of generic profile information are imported from the DPV
model [1], described by the following concepts: identifying, demographic, ethnic-
ity, physical characteristic, knowledge belief, public life, authenticating and pref-
erence. Figures 2.9, 2.10, and 2.11 detail the list of sub-concepts of each category.
The dpv:Identifying category contains all concepts describing information that
can be used to distinguish or trace the user’s identity, including dpv:Biometric,

dpv:Name, dpv:OfficialID and dpv:Contact. The DPV only considers pictures
(i.e., dpv:Picture) as identifiable multimedia information. Nonetheless, the CAS
may receive video/audio recordings that directly identify the user. Therefore, to
consider the diversity of information (cf. Challenge 2), a new sub-concept of dpv:
Identifying is added to characterize the identifiable multimedia information, named
ucsn:MultimediaInfo. This concept comprises three sub-concepts, namely ucsn:

IdentifiableImage, ucsn:IdentifiableAudio, and ucsn:IdentifiableVideo to re-
spectively represent the identifiable images, audios, and videos of the user (see in
Figure 2.9).

FIGURE 2.9: Profile Information (part-1)

As shown in Figure 2.10, dpv:Demographic contains three sub-concepts to rep-
resent dpv:Geographic, dpv:IncomeBracket, and dpv:PhysicalTrait information.
dpv:Ethnicity comprises three sub-concepts to describe dpv:EthnicOrigin, dpv:
Race, and dpv:Language information. The dpv:PhysicalCharacteristic category
consolidates concepts characterizing the physical characteristics of the user, includ-
ing dpv:Age, dpv:Gender, dpv:Height, and dpv:Weight. The dpv:KnowledgeBelief

category contains three sub-concepts to represent information about the dpv:Thought,
dpv:ReligiousBelief, and dpv:PhilosophicalBelief of the user. According to Fig-
ure 2.11, dpv:PublicLife comprises concepts representing public life information
about the user like dpv:MaritalStatus, dpv:PoliticalAffiliation, dpv:Character,
and dpv:SocialStatus. The dpv:Authenticating category regroups authentication
information of the user like dpv:Password, dpv:PINCode, and dpv:SecretText. Fi-
nally, the dpv:Preference category contains concepts characterizing the preferences
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of the user like dpv:Opinion, dpv:Interest, and dpv:PrivacyPreference.

FIGURE 2.10: Profile Information (part-2)

FIGURE 2.11: Profile Information (part-3)

2.4.2.2 Activity Information

Various kinds of information collected can trace the activity of the user in the area of
connected/pervasive environments. As shown in Figure 2.8, it can be information
describing: (i) the locations or places visited by the user (e.g., the user added a check
in post in Paris airport on Facebook), represented by the concept ucsn:UserLocation;
(ii) the activities performed by the user (e.g., Watching TV or sleeping in the domain
of smart homes), expressed by ucsn:Activity; and (iii) the evolving user behav-
ior (e.g., attitude/personality changes, calls made/received), modeled through the
dpv:Behavioral concept. It can also be the information collected from the sens-
ing nodes/devices that exist in the user’s environment, represented by the concept
ucsn:SensedInformation. All these information pieces are regrouped by the super-
concept ucsn:ActivityInformation. However, the user activity is dynamic, which
means it varies over time and space. This necessitates the incorporation of rele-
vant concepts and properties in order to monitor activity changes. Consequently,
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for each ucsn:UserLocation, a time:TemporalEntity is associated to indicate the
time instant/interval of this information (cf. Figure 2.12).

A ucsn:Activity depends on the domain of interest. For example, the activ-
ity can be showering or eating in the smart home domain, as it can be moving
hand or using medical equipment in the medical domain. Hence, we do not aim
to detail the activity description to keep it re-usable and allow alignments with
other activity ontologies depending on the application. However, an activity in
general can take place once, as it can be a daily or regular activity. Consequently,
the same ucsn:Activity can be performed at different times and locations, i.e.,
an activity can have one or more associated events. An event is a happening that
takes place at a particular time (instant or interval) and location [99]. It is repre-
sented by the ucsn:Event concept (see in Figure 2.13). The ucsn:hasEventTime and
ucsn:hasEventLocation properties are added to map events to their corresponding
time instants/intervals and locations. The activity is therefore mapped to its related
events through the property ucsn:isPerformedAt as illustrated in Figure 2.12.

FIGURE 2.12: Location/Activity Information Properties

FIGURE 2.13: Event Representation

According to Figure 2.14, a dpv:Behavioral comprises several sub-concepts im-
ported from the DPV model to describe different information about user behavior,
including dpv:Attitude, dpv:Personality, dpv:CallLog, and dpv:Demeanor. Each
dpv:Behavioral has a specific time and location of capture represented through the
ucsn:hasCaptureTime and ucsn:hasCaptureLocation properties. In addition to be-
havioral information, a wide range of information can be sensed from the user’s en-
vironment, represented by the ucsn:SensedInformation concept. Indeed, advances
in sensor technologies have paved the way for the deployment of various sensors



2.4. uCSN Ontology 49

that are capable of sensing scalar information (e.g., location, temperature, energy-
consumption) or multimedia information (e.g., sounds, images, and videos). Col-
lected data values of this information can be very useful, and sometimes mandatory
for multiple context-aware applications to monitor and interpret the user’s activ-
ity. For example, a medical application may need to collect continuous data values
from a heart-rate sensor to monitor the user’s heart activity. Therefore, in order to
cover information diversity, hssn:ScalarProperty and hssn:MultimediaProperty

are added as sub-concepts of ucsn:SensedInformation to represent scalar and mul-
timedia sensed information respectively. The ucsn:SensedInformation is equiva-
lent to the sensor’s sosa:ObservableProperty in SOSA/SSN [2].

FIGURE 2.14: Sensed/Behavioral Information

Figure 2.15 details the concepts and properties that describe the characteristics of
sensed information. A ucsn:SensedInformation can describe the user (e.g., location,
hear-rate) or her surrounding environment (e.g., energy-consumption of the user’s
home, room temperature). Hence, the ucsn:describesEntity property is added
to map the information sensed to its describing ucsn:Entity. The ucsn:Entity is
therefore equivalent to sosa:FeatureOfInterest in SOSA/SSN. The same ucsn:

SensedInformation can be shared with different groups of data consumers using
different communication protocols, and its data values can be sensed by different
sensors within different sensing events. Thus, the same ucsn:SensedInformation

can have many sensing statuses, represented by the concept ucsn:SensingStatus.
Each ucsn:SensingStatus indicates a specific set of ucsn:DataConsumer with which
the information is shared, using a ucsn:CommunicationProtocol to communicate
collected ucsn:DataValue to consumers that are sensed by a sosa:Sensor within
specific ucsn:Event (cf. Figures 2.15 and 2.16). A ucsn:DataValue (equivalent to
sosa:Observation) is spatio-temporal, i.e., it has a time and location of capture de-
scribed by the ucsn:hasCaptureTime and ucsn:hasCaptureLocation properties.
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FIGURE 2.15: Characteristics of Sensed Information

FIGURE 2.16: Sensing Status/Communication Protocol/Data Value

2.4.3 Environment Module

The environment module includes aspects that allow the description of the user’s
surrounding environment. We aligned this module with the SOSA/SSN [2] and
HSSN [43] ontologies that provide a rich vocabulary to represent the environment’s
structure (e.g., location map), systems deployed (e.g., sensors, actuators), devices,
and services. We detail in the following each of these aspects.

FIGURE 2.17: Environment Representation

In SOSA/SSN, sensors are deployed on platforms. The HSSN model extends this
description and add two child concepts of sosa:Platform to distinguish between:
(i) hssn:Infrastructure, a physical environment having locations where sensors
could be deployed, which is equivalent to ucsn:Environment; and (ii) hssn:Device,
an electronic equipment where sensors could be embedded (e.g., smart phone, drone).
This distinction is illustrated in Figure 2.17. A ucsn:Environment can host many
sosa:Platform, i.e. can host other environments (e.g., cities host buildings, houses
host rooms), or devices (e.g., the user’s home hosts mobile phones). Regarding the



2.4. uCSN Ontology 51

structure of the environment, Figure 2.17 shows that each ucsn:Environment is de-
scribed by a mssn:LocationMap that is composed of a set of mssn:Location.

Figure 2.18 details the general representation of devices. A hssn:Device has
hssn:Hardware features related to storage, processing, communication, and power
supply, in addition to the ability of embedding sensors via its expansion card. These
features are respectively represented by the hssn:Memory, hssn:NetworkInterface,
hssn:Processor, hssn:PowerSupply, and hssn:ExpansionCard concepts. The hssn:

Software is also considered in the device modeling.

FIGURE 2.18: Device Representation

FIGURE 2.19: System Representation

For the system description, the combination of SSN/HSSN ontologies allows
the representation of different types of ssn:System that could be hosted by plat-
forms (i.e., environments or devices), including samplers, actuators, and sensors
(see in Figure 2.19). Sensors vary from hssn:MobileSensor that has the ability to
move or change location, to hssn:StaticSensor that does not change location in time.
As shown in Figure 2.20, each sosa:Sensor, mobile or static, observes a specific
ucsn:SensedInformation, is located in a specific mssn:Location, and has a specific
hssn:CoverageArea, a geographical zone that limits the sensing activity of a sensor
(i.e., any happening outside of this zone is not detected by the sosa:Sensor). Mobile
sensors are capable of continuously changing their locations and coverage areas. To
cover the modeling of sensor mobility, the properties hssn:hasPastLocation and
hssn:hasPastCoverageArea are added to map sensors to their previous locations
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and coverage areas (cf. Figure 2.21). From their side, locations and coverage areas
are mapped to time instants or intervals in order to allow sensor tracking.

FIGURE 2.20: Sensor Properties

FIGURE 2.21: Sensor Mobility

Numerous services could be provided by many ucsn:ServiceProvider to the
ucsn:User (e.g., personalized recommendations). The hssn:Service is provided
through a specific hssn:Device at many service ucsn:Event (cf. Figure 2.22). The
HSSN ontology represents only general features of a service to keep it re-usable in
different domains. It therefore integrates the following concepts: (i) hssn:Metadata,
to describe the properties of a hssn:Service; (ii) hssn:Variables, to represent the
set of hssn:Input and hssn:Output variables of a service (i.e., the set of inputs
required for correct service execution and the set of generated results); (iii) hssn:
Interface, to handle the user/service communications; and (iv) hssn:Capability,
to describe the functionality of the service.

FIGURE 2.22: Service Representation
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2.4.4 User/Environment Mediation

We detail here the properties that ensure the interconnection of the user and envi-
ronment modules. The ucsn:User can be located in an ucsn:Environment, but also
can control the environment, i.e., controls the information sensed from this environ-
ment (e.g., in case of her home or office). For example, the user controls the data
collected by sensors deployed in her home, such as energy-consumption, temper-
ature, or humidity data. These two relations are respectively represented by the
ucsn:isLocatedInEnv and ucsn:controlsEnv properties. In order to track the pres-
ence of the user in the environments, the ucsn:hasUserPresenceTime property is
added to map the ucsn:Environment to the related time:TemporalEntity. In addi-
tion, a hssn:Device can be attached to the ucsn:User (e.g., mobile phone, tablet).
This is represented by the ucsn:isAttachedToUser property. Figure 2.23 illustrates
the aforementioned properties.

FIGURE 2.23: User/Environment Mediation

2.4.5 Information Uncertainty

The collected context information may be uncertain, incomplete, and/or ambigu-
ous [65], [66]. This affects the quality of corresponding contexts, which can con-
sequently impact the functionality of the CAS and/or the quality of its outputs
(e.g., context-aware services). Therefore, we aim to integrate concepts that describe
uncertainty aspects of modeled information. For this purpose, three concepts are
imported from the W3C Uncertainty ontology [3]: (i) uo:Uncertainty, indicates
the statement about the uncertainty associated with the information collected; (ii)
uo:UncertaintyNature, expresses whether the uncertainty is an inherent property
of the world or a lack of information; and (iii) uo:UncertaintyType, indicates the
type of uncertainty (e.g., incompleteness, ambiguity). The properties uo:nature and
uo:uncertaintyType map the uo:Uncertainty to its related nature and type. Each
uo:Uncertainty has an associated value represented by the uo:uncertaintyValue

property. As shown in Figure 2.24, the uo:UncertaintyNature comprises two sub-
concepts, uo:Aleatory and uo:Epistemic, that respectively indicates whether the
uncertainty arises from the entities described by the information or from the related
data source. In addition, the uo:UncertaintyType contains five sub-concepts: (1)
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uo:Ambiguity, means that the information is not clearly specified; (2) uo:Empirical,
means that the information about an entity is either satisfied or not for all entities,
but it is not known for which entities it is satisfied; (3) uo:Incompleteness, means
that the information about the entity is incomplete; (4) Inconsistency, means that
there is no entity that would satisfy the statement; and (5) Vagueness, means that
there is no precise correspondence between the information and the related entities.

FIGURE 2.24: Uncertainty Representation

Figure 2.25 shows which of the modeled context information is associated with
uncertainties. Locations, times, and events might be uncertain. From the user side,
collected personal information (i.e., profile and activity information) and sensed data
values can be uncertain. From the environment side, location maps, coverage areas,
sensing angles (i.e., horizontal and vertical), and service variables can be uncertain.

FIGURE 2.25: Uncertainty related to User/Environment Information

2.5 uCSN Experimental Evaluation

In this section, we detail the experimental protocol followed to evaluate both the
syntactic and semantic aspects of the uCSN ontology (i.e., the concepts and the se-
mantic inter-concept relations). The objectives of this protocol are:

1. Accuracy Evaluation: Checks if the uCSN concepts and properties are capable
of answering the challenges mentioned in Section 2.2.
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2. Clarity Evaluation. Checks if the labels used to describe the newly added con-
cepts and properties are clear and unambiguous to domain stakeholders. The
aim is to evaluate the clarity and compatibility of our extensions with respect
to the context-awareness domain.

3. Performance Evaluation. Measures the impact of the uCSN ontology on perfor-
mance (i.e., query run time). The aim is to evaluate the feasibility, in terms of
performance, of integrating uCSN in context-aware applications.

4. Consistency Evaluation. Checks if the added concepts and properties generate
inconsistencies (e.g., anti-patterns) within the structure of the ontology. The
aim is to evaluate the soundness of the ontology graph.

2.5.1 Accuracy Evaluation

In order to study the accuracy of uCSN, we elaborate a query-based evaluation that
highlights the ontology impact towards overcoming the challenges of (i) information
coverage, (ii) information diversity, (iii) source diversity, and (iv) information uncer-
tainty. The accuracy evaluation of sensor mobility and diversity is detailed in the
HSSN experiments [43]. We start first by detailing the query setup process, then we
discuss the obtained results and we compare them according to the expected ones.

2.5.1.1 Query Setup

The aforementioned challenges can be addressed by answering SPARQL queries re-
lated to user, environment, and uncertainty information in uCSN. We define in the
following the list of queries to execute with respect to each challenge.

Information Coverage. The information coverage queries are divided into user-
oriented, environment-oriented and context-oriented queries.

User Information. In order to expressively extract the information characterizing the
user from the ontology, we define the following five queries:

• Query 1: Extracts the list of sensed information with their describing entities
and sensing statuses (i.e., data consumers with whom information is shared,
sensors used to sense related data values, sensing events, and communication
protocols used to communicate data to consumers).

• Query 2: Extracts the data values of each sensed information, collected during
a specific time interval [t1; t2], with their respective times/locations of capture.

• Query 3: Generates the list of information describing the contextual activity
of the user, i.e. user locations, activities performed, behavioral and sensed
information with their respective times and locations.



56 Chapter 2. Context Modeling in Connected Environments

• Query 4: Generates a detailed view of the user profile at a given time instant t.
It extracts all profile information characterizing the user at t.

• Query 5: Generates the list of information that express user location semantics,
i.e. user locations acquired from external sources (e.g., Facebook), location data
values sensed by GPS sensors, and environments where the user is located.

Query 1: Knowing sensed information with their characteristics

SELECT distinct ?user ?sensedInfo ?entity ?status ?consumer
?sensor ?protocol ?event ?time ?location

WHERE {
?user :hasPersonalInformation ?sensedInfo.
?sensedInfo rdf:type ucsn:SensedInformation;

:describesEntity ?entity;
:hasSensingStatus ?status.

?status :isSharedWith ?consumer;
:hasCommunicationProtocol ?protocol;
:isSensedBy ?sensor;
:hasSensingEvent ?event.

?event :hasEventLocation ?location;
:hasEventTime ?time.

}

Query 2: Generate the list of data values captured during [t1; t2]

SELECT distinct ?user ?sensedInfo ?datavalue ?time ?location
WHERE {

?user :hasPersonalInformation ?sensedInfo.
?sensedInfo rdf:type ucsn:SensedInformation;

:hasDataValue ?datavalue.
?datavalue :hasCaptureTime ?time;

:hasCaptureLocation ?location.
FILTER (?time >= t1 && ?time <= t2)

}
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Query 3: Knowing the contextual activity of the user

SELECT distinct ?user ?activityInfo ?value ?time ?location
WHERE {

{ ?user :hasPersonalInformation ?value.
?value rdf:type ucsn:UserLocation;

rdf:type ?activityInfo;
:hasLocationTime ?time. }

UNION
{ ?user :hasPersonalInformation ?value.

?value rdf:type ucsn:Activity;
rdf:type ?activityInfo;
:isPerformedAt ?event.

?event :hasEventTime ?time;
:hasEventLocation ?location .}

UNION
{ ?user :hasPersonalInformation ?value.

?value rdf:type ucsn:SensedInformation;
rdf:type ?activityInfo;
:hasSensingStatus ?status.

?status :hasSensingEvent ?event.
?event :hasEventTime ?time;

:hasEventLocation ?location .}
UNION
{ ?user :hasPersonalInformation ?value.

?value rdf:type dpv:Behavioral;
rdf:type ?activityInfo;
:hasCaptureTime ?time;
:hasCaptureLocation ?location. }

}

Query 4: Generate a view of the user profile at time t

SELECT distinct ?user ?profileInfo ?value ?time ?location
WHERE {

?user :hasPersonalInformation ?value.
?value rdf:type ucsn:ProfileInformation;

rdf:type ?profileInfo;
:hasCaptureLocation ?location;
:hasCaptureTime ?time.

FILTER (?time <= t)
}
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Query 5: Generate the list of information expressing user location semantics

SELECT distinct ?user ?location ?time
WHERE {

{ ?user :hasPersonalInformation ?location.
?location rdf:type ucsn:UserLocation;

:hasLocationTime ?time. }
UNION
{ ?user :isLocatedInEnv ?location.

?location :hasUserPresenceTime ?time. }
UNION
{ ?user :hasPersonalInformation ucsn:Location.

ucsn:Location rdf:type ucsn:SensedInformation;
:hasDataValue ?location.

?location :hasCaptureTime ?time. }
}

Environment Information. The context-aware application may need to extract an ex-
pressive description of the user’s surrounding environment, and/or the services
provided to her. The following queries answer these needs:

• Query 6: Generates a detailed view of the user surrounding environment, i.e.
spatial description, systems (e.g., sensors, actuators) and devices deployed in
the environment, as well as the devices attached to the user.

Query 6: Knowing the user’s surrounding environment

SELECT distinct ?user ?environment ?locationMap ?location
?component ?componentType

WHERE {
?user :isLocatedInEnv ?environment.
?environment :isDescribedBy ?locationMap.
?locationMap :isComposedOf ?location.
{ ?component :isHostedBy ?environment;

rdf:type ssn:System;
rdf:type ?componentType. }

UNION
{ ?component rdf:type hssn:Device.

?environment :hosts ?component. }
UNION
{ ?component rdf:type hssn:Device;

:isAttachedToUser ?user. }
}

• Query 7: Generates a detailed view of the services provided to the user, i.e. in-
formation on services, related service providers, devices, variables, interfaces,
metadata, capability, and associated availability/usage events.
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Query 7: Generate a detailed view of the user services

SELECT distinct ?user ?service ?provider ?device ?variable
?interface ?metadata ?capability ?event

WHERE {
?provider :providesService ?service.
?service :isProvidedTo ?user;

:isProvidedThrough ?device;
:hasVariables ?variable;
:hasInterfaces ?interface;
:hasMetadata ?metadata;
:hasCapability ?capability;
:isProvidedAt ?event.

}

Context Information. In order to generate a complete and expressive view of the user’s
context, we define Query 8 which extracts all of modeled context information with
their relationships.

Query 8: Generate the complete view of the user’s situation

SELECT distinct ?domainType ?domainValue ?relation ?rangeType
?rangeValue

WHERE {
?relation rdf:type owl:ObjectProperty.
?domainValue ?relation ?rangeValue.
?domainValue rdf:type ?domainType.
?rangeValue rdf:type ?rangeType.

}

Information Diversity. In order to consider information diversity, on should be able
to distinguish scalar and multimedia information. Therefore, Query 9 selects only
the multimedia identifiable information of the user, and Query 10 extracts the list of
scalar and multimedia sensed information and highlights the type of each one.

Query 9: Knowing the user’s multimedia identifiable information

SELECT distinct ?user ?mediaType ?mediaValue
WHERE {

?user :hasPersonalInformation ?mediaValue.
?mediaValue rdf:type ucsn:MultimediaInfo;

rdf:type ?mediaType.
}
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Query 10: Knowing the user’s scalar and multimedia sensed information

SELECT distinct ?user ?sensedType ?sensedValue
WHERE {

{ ?user :hasPersonalInformation ?sensedValue.
?sensedValue rdf:type hssn:ScalarProperty;

rdf:type ?sensedType. }
UNION
{ ?user :hasPersonalInformation ?sensedValue.

?sensedValue rdf:type hssn:MultimediaProperty;
rdf:type ?sensedType. } }

Source Diversity. To highlight the representation of diverse data sources (i.e., sen-
sors, devices, and external sources) with their properties (e.g., origin, data serialisa-
tion format), we define Query 11.

Query 11: Generate the list of data sources with their properties

SELECT distinct ?source ?origin ?serialisation
WHERE {

?source rdf:type ucsn:DataSource;
:origin ?origin;
:serialisation -format ?serialisation. }

Information Uncertainty. The application may need to extract uncertainty knowl-
edge of modeled information in order to adjust its behavior/outputs accordingly.
To do so, we consider three categories to distinguish the uncertainties related to the
user, the environment, and the time/location properties. The uncertainty informa-
tion for the three categories is respectively extracted using Queries 12, 13, and 14.

Query 12: Uncertainties related to the user

SELECT distinct ?infoType ?infoValue ?uncertainty ?uValue
?uNature ?uType

WHERE {
{ ?user :hasPersonalInformation ?infoValue.

?infoValue rdf:type ?infoType. }
UNION
{ ?user :hasPersonalInfo ?sensedInfo.

?sensedInfo rdf:type ?infoType;
:hasDataValue ?infoValue. }

?infoValue :hasUncertainty ?uncertainty.
?uncertainty :uncertaintyValue ?uValue;

:nature ?natureInstance;
:uncertaintyType ?typeInstance;

?natureInstance rdf:type ?uNature.
?typeInstance rdf:type ?uType. }
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Query 13: Uncertainties related to the environment

SELECT distinct ?infoType ?infoValue ?uncertainty ?uValue
?uNature ?uType

WHERE {
{ ?infoValue rdf:type mssn:LocationMap;

rdf:type ?infoClass. }
UNION
{ ?infoValue rdf:type hssn:CoverageArea;

rdf:type ?infoClass. }
UNION
{ ?infoValue rdf:type hssn:HorizontalSensingAngle;

rdf:type ?infoClass. }
UNION
{ ?infoValue rdf:type hssn:VerticalSensingAngle;

rdf:type ?infoClass. }
UNION
{ ?infoValue rdf:type hssn:Variables;

rdf:type ?infoClass. }
?infoValue :hasUncertainty ?uncertainty.
?uncertainty :uncertaintyValue ?uValue;

:nature ?natureInstance;
:uncertaintyType ?typeInstance;

?natureInstance rdf:type ?uNature.
?typeInstance rdf:type ?uType.

}

Query 14: Uncertainties related to Location & Time

SELECT distinct ?infoType ?infoValue ?uncertainty ?uValue
?uNature ?uType

WHERE {
{ ?infoValue rdf:type ucsn:Event;

rdf:type ?infoClass. }
UNION
{ ?infoValue rdf:type time:TemporalEntity;

rdf:type ?infoClass. }
UNION
{ ?infoValue rdf:type mssn:Location;

rdf:type ?infoClass. }
?infoValue :hasUncertainty ?uncertainty.
?uncertainty :uncertaintyValue ?uValue;

:nature ?natureInstance;
:uncertaintyType ?typeInstance;

?natureInstance rdf:type ?uNature.
?typeInstance rdf:type ?uType.

}
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2.5.1.2 Query Run & Discussion

We created a population of individuals and ran the aforementioned queries. Then,
we compared the obtained and expected results. We created an environment de-
scribed by a location map containing 20 locations. This environment hosts 20 actu-
ators, 100 sensors (50 static, 50 mobile, 50 scalar, and 50 multimedia sensors), and
20 devices. Each sensor is located in one location, covers one coverage area, and ob-
serves one information (i.e., 50 scalar and 50 multimedia sensed information). Each
of the sensed information describes one entity and has one sharing status (for each
sensed information: 5 data consumers, 1 sensor, 1 communication protocol, and 1
sensing event associated with 1 temporal entity and 1 location). In addition, each of
the sensed information has 50 data values where each has 1 time and location of cap-
ture. We created also 10 user locations collected from an external source, 5 activities
performed, 2 behavioral information. The user profile is composed of 140 informa-
tion (20 individuals per sub-concept). Each of the profile and activity information
has one data source (140 in total divided into 40 sensors, 40 devices, and 60 external
sources). We considered 5 devices attached to the user and 25 services provided to
her. We associate an uncertainty value, nature, and type with half of the personal
information, data value, time and location individuals. Finally, we consider that 20
of the coverage areas are uncertain (i.e., each of them has an associated uncertainty
individual with its corresponding nature and type).

We ran queries 1-14 on the population of individuals, and for each case, the re-
turned results matched exactly the expected ones. Therefore, the query results con-
firmed that our ontology is able to accurately answer the challenges mentioned in
Section 2.2. In addition, the results show that uCSN provides a high-level of generic
information coverage to represent the user and the environment. This makes it us-
able by various context-aware systems in multiple domains, including those requir-
ing high quality of information coverage (e.g., privacy-preserving systems).

2.5.2 Clarity Evaluation

We created an evaluation form4 to assess the ambiguity of the labels used to describe
the uCSN concepts and inter-concept relations (i.e., the object properties). We focus
only on evaluating the ambiguity of the newly defined concepts/properties. We
sent the form to 50 ontology and sensor network experts, divided into 3 categories
as shown in Figure 2.26: 25 computer scientists (i.e., assistant professors, associate
professors, full professors, and PhD students), 18 research engineers experts in the
fields of semantic web and context-aware computing, and 7 experts in network en-
gineering. From a demographic standpoint (cf. Figures 2.26 and 2.27), the survey

4http://bit.ly/uCSN-clarity-evaluation

http://bit.ly/uCSN-clarity-evaluation
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respondents are divided into 31 males and 19 females, and belong to different coun-
tries: France (26 respondents), Lebanon (12), United Arab Emirates (6), United States
of America (2), Tunisia (2), Germany (1) and United Kingdom (1).

FIGURE 2.26: Respondents Genders/Fields of Expertise

FIGURE 2.27: Countries of Respondents

2.5.2.1 Clarity Results & Discussion

In the form, participants were first asked to guess the correct labels to assign to
related concepts according to the described meanings of the concepts. For each con-
cept, a list of 3 to 4 possible choices is provided, where choices are synonyms from
several domains. For example, for the user concept, the participant had to choose
between the following four labels: person, user, human, and client. Figure 2.28 con-
firms that the terms used are clear for the multi-domain experts with an average of
90% for guessing correct concept labels. The term "Service Provider" was the most
ambiguous, with a 78% correct match percentage, especially for computer scientists
where 7 of them (i.e., 28%) chose the term "Supplier".

Next, participants were asked to guess the correct labels of inter-concept rela-
tions based on their described meanings. Figure 2.29 shows that labels were cor-
rectly matched to their corresponding relations with an average of 88%. Therefore,
the terms used to describe the semantic relations are clear for the three categories
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FIGURE 2.28: Concept Evaluation

of experts. The most ambiguous label matching was for relation 16 (i.e., the rela-
tion that maps the ucsn:UserLocation concept to mssn:Location) where 19 of the
experts (6 computer scientists and 13 engineers) have considered the opposite rela-
tion between the two concepts, i.e., they considered mssn:Location as sub-concept
of ucsn:UserLocation. Knowing that mssn:Location is a more general concept that
can also be used to describe other location aspects such as the spatial descriptions
of the environments and locations of sensors/devices. Consequently, having only a
62% correct match for relation 16 is explained by the fact that the two concepts are
syntactically and semantically close, thus linking them without having their descrip-
tions was difficult for the participants. In fact, we only provide the name of the two
concepts with a list of possible inter-relations in the relations section of the form.

FIGURE 2.29: Property Evaluation

To conclude, the evaluation showed that all concept/relation labels achieve a
satisfactory level of clarity based on feedback from multi-cultural stakeholders with
different fields of expertise. This reinforces the re-usability of uCSN since it is un-
ambiguous and easily understood.
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2.5.3 Performance Evaluation

In order to evaluate the performance of uCSN, we considered several scenarios to
study the impact of user, environment and context complexity on performance. Per-
formance tests consist of executing queries related to each scenario (i.e., from the
list of previously defined queries) on different population sizes. The performance
results take into account the query run-time by running 10 times and calculating the
average execution time. The tests were conducted on a machine equipped with an
Intel i7 - 2.8 GHz processor, and 16 GB of RAM.

2.5.3.1 User Impact

We studied here the impact of user information on performance. We considered
therefore two scenarios, one focusing on user’s personal information from a general
point of view, and the other targeting the complexity of sensed information in terms
of number and associated characteristics.

In the first scenario, we varied the percentage of personal information (divided in
half between profile and activity) from 0, 30, 50, 70, to 100% in the population of in-
dividuals, while considering the following three population sizes: 100, 1000, and 10
000 context information. Then, we retrieved the list of personal information by com-
bining queries 3 and 4 and measuring the corresponding run-time. In figure 2.30, we
noticed that increasing the percentage of personal information in the population of
individuals increases the time needed to retrieve it. For example, in the cases of 100
and 1000 context information, the execution time has respectively increased from
10ms (0%) to 30ms (100%), and from 15ms (0%) to 141ms (100%). The progression
from 0% to 100% personal information had a quasi-linear impact on query run-time
for all three cases (100, 1000, and 10 000 context information). When considering the
worst-case scenario of 10 000 personal information describing the user in a single
context, the process was able to retrieve it in less than 650ms.

FIGURE 2.30: User Complexity Impact

In the second scenario, we studied the impact of complex sensed information
on performance. We considered a two-dimensional complexity, one increasing the
number of sensed information from 1, 10, 50, to 100, and the other increasing the
number of associated elements per sensed information from 0, 10, 100, to 500. For the
associated elements, we considered random partitions between data values, sensing
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statuses, data consumers, sensors, and sensing events. We combined and executed
queries 1 and 2 for this scenario. Figure 2.31 shows that the process maintained
good performance for all complexity cases and the evolution of the query run-time is
quasi-linear. When considering the case of 10 sensed information with 100 elements
per information (most close to real scenarios), the time required to retrieve it was
less than 100ms. The worst case was when having 100 sensed information with 500
elements per information (i.e., 50 000 individuals to retrieve), the process was able
to retrieve all these information pieces with an average of 1s.

FIGURE 2.31: Impact of Sensed Information Complexity

2.5.3.2 Environment Impact

Here, we checked the impact of having surrounding environments, with various
levels of complexity, on performance. To do so, we considered a two-dimensional
environment complexity, where the first indicates the number of sub-environments
hosted by the environment (e.g., the user’s home hosts 5 rooms), and the second
states the number of associated individuals per environment/sub-environment. The
individuals describe location maps with their associated locations, sensors, actua-
tors, and devices deployed in the environment. We ran query 6 for this scenario and
we measured the query run-time for each case. Figure 2.32 shows that increasing
the complexity of the environment had a quasi-linear impact on the time required to
retrieve the corresponding descriptions and components. Nonetheless, the informa-
tion retrieval process maintained good performance for all cases, which highlights
the ability of the ontology to handle complex environments. If we consider the case
of 1 environment with 100 individuals that characterize it (quasi-real scenario), the
time required to retrieve the environment characteristics was less than 40ms. The
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worst case was that for 100 environments (i.e., 1 environment that contains 99 sub-
environments) with 500 describing individuals per environment, the process was
able to build a view of all environments in an average of 1s.

FIGURE 2.32: Environment Complexity Impact

2.5.3.3 Context Impact

Previous tests were conducted by considering controlled scenarios of information
partitioning. We aim in this test to create random scenarios and study the impact of
various contexts on performance. To do so, we varied the size of the context from 1,
5, 10, 50, 100, 500, 1000, 5000, to 10 000 describing information. Then, we considered
for each context size three scenarios of random information partitioning between
the user and the environment. We ran query 8 for this test. According to Figure
2.33, the information partitioning per context had no impact on the query run-time.
This is due to the fact that all context information are individuals regardless of their
semantics, and each modeled individual has at least one associated relation, so the
overall number of modeled individuals and relations is closely similar for all three
scenarios. Finally, the context size had a quasi-linear impact on the query run-time
(cf. Figure 2.33). Nonetheless, the information retrieval process maintained good
performance, even for large contexts of 10 000 information, where it was able to
retrieve context information within an average time of 523ms.

FIGURE 2.33: Context Complexity Impact
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Discussion. The performance evaluation showed that adopted uCSN concepts and
properties do not heavily impact the query run time, which remains quasi-linear.
Moreover, the uCSN ontology can handle various types of contexts, including com-
plex ones from the user or/and the environment perspectives, while maintaining
low computational complexity (i.e., in time). This highlights the feasibility of using
uCSN for numerous context-aware applications, including those subject to real-time
constraints.

2.5.4 Consistency Evaluation

Consistency is defined as a criterion that verifies if the ontology includes or allows
any contradictions [100]. The formal and informal descriptions in the ontology must
therefore be consistent. In order to evaluate consistency, we adopted the following
SPARQL queries that search for anti-patterns in the ontology, a strong indicator of
inconsistencies. Query 15 detects concepts with no parent, and Query 16 detects ab-
normally disjointed concepts in the ontology. Finally, to conclude the inconsistency
evaluation, we ran Protege’s HermiT 1.3.8.413 reasoner, and found no inconsisten-
cies between the asserted class hierarchy and inferred one.

Query 15: Searching for concepts with no parent

SELECT distinct ?a
WHERE {

?a SubClassOf owl:Nothing.
}

Query 16: Searching for abnormally disjointed concepts

SELECT distinct ?A ?B1 ?B2 ?C
WHERE {

?B1 subClassOf ?A.
?B2 subClassOf ?A.
?C subClassOf ?B1.
?C disjointWith ?B2.

}

Discussion. The query results show no inconsistencies in the uCSN ontology struc-
ture. The only concept subsuming nothing is owl:Nothing (Query 15). Query 16
results indicate that there are no concepts that have abnormal disjoint relations with
their relatives. This underlines the soundness of our newly added and imported con-
cepts, and therefore the soundness of the graph structure. This proves critical when
considering future alignments between uCSN and other ontologies (e.g., domain-
specific user/environment ontologies).
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2.6 Summary

Many works adopted ontologies for better semantic representation of user contexts.
However these works do not fully address the challenges of information cover-
age, information diversity, source diversity, and information uncertainty. Moreover,
some context models contain domain specific knowledge and are not re-usable for
different application purposes. Consequently, we propose in this chapter uCSN, a
generic, modular, and extensible ontology for user-Context modeling in Sensor Net-
works. uCSN provides a high-level coverage of context information by introducing
new concepts and properties and importing others from the DPV [1], SOSA/SSN
[2], HSSN [43], and W3C Uncertainty [3] ontologies. We implemented uCSN and
evaluated its accuracy, clarity, performance, and consistency.
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Chapter 3

Privacy Risk Inference

"Nothing in life is to be feared, it is only to be understood. Now
is the time to understand more, so that we may fear less."

– Marie Curie

With the rapid expansion of smart cyber–physical systems and environments,
users are becoming increasingly concerned about their privacy, and asking for more
involvement in the control and protection of their data. However, users may not be
completely aware of the direct and indirect privacy risks involved with exchanging
data with data consumers to properly manage their privacy decisions.

Existing approaches of user privacy risk awareness suffer from several draw-
backs, including: (i) no consideration of user contextual knowledge and its impact
on data sensitivity, and thus on user privacy; (ii) lack of expressiveness in risk def-
initions to consider various simple/complex data combinations; (iii) lack of repre-
sentation and serialization of data that are heterogeneous in terms of types, formats,
sources, and semantics, to allow for holistic (all-data-inclusive) risk reasoning; (iv)
lack of value-based reasoning; (v) lack of high-level risk detection that encompasses
risks of various types and inferences; (vi) lack of an adaptable/user-friendly risk
overview; (vii) lack of efficiency, performance-wise, to support the user in various
contexts; and (viii) lack of re-usability in different application domains.

To address the aforementioned limitations, we propose in this chapter CaSPI, a
context-aware semantic reasoning approach for dynamic privacy risk inference. This
approach relies on the use of ontologies and inference rules for contextual knowl-
edge representation and privacy risk definitions with high semantic expressiveness
power. The risk inferences are thus achieved by performing rule-based reasoning
over modeled context knowledge, which includes sensed data, as well as other back-
ground data about the user and her environment, with their relationships. CaSPI is
generic and re-usable in different domains. Performance results showed that it pro-
vides scalability and computational and storage efficiency, making it able to assist
the user in different contexts, including ephemeral ones.
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3.1 Introduction

Advances in mobile and ubiquitous computing, such as the Internet of Things (IoT),
have reshaped the lives of people over the last few years. Current applications
of smart IoT-enabled cyber–physical systems touch almost all aspects of our daily
life, including healthcare (e.g., patient and elderly monitoring), entertainment and
leisure (e.g., smart entertainment spaces), transportation (e.g., vehicle networks,
smart highways), environmental (e.g., energy management, pollution level moni-
toring), and work (smart manufacturing and work environments).

While such systems promise to ease our lives, they raise major privacy concerns
for their users, as the data they collect is often privacy-sensitive, such as location
of individuals, patients’ vital signs, accelerometer data, and energy consumption
data of environments (e.g., building, home). In fact, the processing and analysis of
collected sensor data can lead to reveal a wealth of sensitive information about the
user, such as her routines and habits, health conditions, political/religious affilia-
tions, preferences, activities performed (general activities like running and driving,
or domain-related activities like hand moving in the medical domain), and so forth
[101], [102], [103], [104]. This can cause serious harms for the user (e.g., mental,
physical, dignity/reputation, financial, and societal harms) if the sensed data or dis-
closed information were misused by the providers of these systems, or even sold to
interested third parties (with/without user consent) and exploited for various pur-
poses.

Many studies (e.g., [105], [106]) showed that users are becoming more and more
conscious of their privacy and willing to play an active role in controlling their data.
This fact was also backed by the newly released privacy regulations (e.g., GDPR
[11], CCPA [13]) and standards (e.g., PbD [21], ISO/IEC 27701 [24]), which call for
more involvement of users in the control and protection of their data by enabling
them to control what is collected, when, by whom, and for what purposes. Some
works (e.g., [31]–[34]) tried to deal with this requirement by enabling users to specify
their privacy preferences and accept privacy policies that enforce these preferences.
However, the user may not be aware of the privacy risks associated with her data
sharing to correctly specify her preferences in the first place. She may simply not
know what can be inferred from her data when data bits and pieces are analyzed in
isolation, or combined with each other and/or with other contextual data about the
user or her surrounding environment, that could be acquired from external sources
(e.g., social network profiles, public websites and databases).

To overcome this issue, several approaches [107]–[111] have been proposed to
raise user privacy risk awareness in the fields of connected and web environments.
However, these approaches share the following limitations: (i) no consideration of
user contextual knowledge and its impact on data sensitivity, and thus on the plau-
sible inferences of sensitive information; (ii) lack of expressiveness in risk definitions
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to consider different combinations of sensed data together and/or with other con-
textual data, and their implications for the disclosure of sensitive information; (iii)
lack of representation and serialization of heterogeneous data in terms of types, for-
mats, sources, and semantics, to allow for holistic (all-data-inclusive) risk reasoning;
(iv) lack of value-based reasoning, the approaches are limited to general reasoning
over attributes’ names (e.g., location, blood pressure) and do not support reasoning
over attributes’ data values, constraints, and properties; (v) lack of high-level risk
detection that encompasses risks of various types (i.e., direct and indirect risks) and
sensitive information inferences (e.g., information describing the user profile and ac-
tivity); (vi) lack of adapted risk overview to user expertise and interests; (vii) lack of
efficiency, performance-wise, to support the user in various contexts; and (viii) lack
of genericity and re-usability in different application domains.

Accordingly, we propose in this chapter a context-aware semantic reasoning ap-
proach for dynamic privacy risk inference, entitled CaSPI. This approach is capable
of providing the user with a complete overview of the direct and indirect privacy
risks that she accepts to take. Direct risks are those associated with the sharing of
sensed data and that the user can control. Indirect risks are those imposed by the
surrounding connected environment and on which the user has no control, such
as being under a CCTV surveillance in a monitored area (e.g., airport, mall). To
achieve this, CaSPI relies on the use of ontologies and inference rules to respectively
represent the user contexts and define the risks to be detected with high semantic
expressiveness power. For data representation, an ontology-based data model en-
ables the representation of heterogeneous data (e.g., scalar and multimedia data)
that could be acquired from different types of data sources (e.g., sensors, devices,
social network profiles, public databases, documents). It also allows to represent the
semantics of the relationships between data. For the risk definition, CaSPI features a
generic semantic rule syntax for explicitly defining various types of risks, and con-
sidering diverse data combinations using basic and advanced operators (e.g., logical,
spatio-temporal, semantic operators). For the risk inferences, CaSPI incorporates a
semantic reasoner that performs rule-based reasoning over modeled context infor-
mation in order to infer the privacy risks involved in the current situation of the
user. In addition, it monitors the evolution of risks to cope with the dynamicity of
the user context. CaSPI is generic and re-usable in numerous application domains.
To validate our proposal, we developed a prototype based on Semantic Web tools
(e.g., OWL API, SWRL API, Pellet reasoner), and illustrated its functioning from
both back-end and front-end perspectives. We also evaluated its performance in dif-
ferent scenarios. Our results showed that CaSPI delivers scalability and efficiency in
time and space, which makes it able to assist the user in various contexts, including
ephemeral ones (i.e., contexts with short time periods).

The remainder of this chapter is organized as follows. Section 3.2 presents a sce-
nario that motivates our proposal and identifies the challenges to address. Section
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3.3 evaluates existing approaches. Section 3.4 details the different modules of CaSPI
and provides formal definitions of the key terms. Section 3.5 presents the implemen-
tation and experimental protocol. Finally, Section 3.6 summarizes the chapter.

3.2 Motivating Scenario

In order to motivate our proposal, consider the scenario presented in Chapter 1 that
illustrates the situation of Alice who shares her energy-consumption and location
data respectively with the electricity and healthcare providers. Alice is a COPD pa-
tient and follows her medical treatment from home using a NIV device (medical
device). Figure 3.1 details the data/service exchange processes and the additional
background data known about Alice in her current situation. Background data in-
cludes her marital status, profile picture, and date of birth collected from her Face-
book profile. The date of birth is also captured in a different format from the public
voting records.

FIGURE 3.1: Running Example

Even though Alice is notified, through agreed policies, of data consumers who
have access to her data (i.e., service providers and third parties), she may not neces-
sarily be aware of the privacy risks associated with this sharing. For instance, ana-
lyzing the energy consumption signatures of her home (cf. Figure 3.2 can lead to dis-
close numerous sensitive information about Alice related to her lifestyle and habits
[36], including her presence/absence hours at home, waking/sleeping cycles, and
activities performed at home with their time duration (e.g., cooking, watching TV,
workouts using the treadmill). In addition, existing works (e.g., [37]) showed that
consumption signatures can be analyzed to identify the use of specific appliances
and devices. This would reveal the disease of Alice if the use of her NIV machine
was identified. The analysis of location data patterns (cf. Figure 3.2) can also entail
significant risks for Alice such as the risks of disclosing her habits and routines, be-
haviors, health conditions based on frequent visits to hospitals, political/religious
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affiliations, and her identity based on her locations in personal environments (e.g.,
home, office) [102], [112].

FIGURE 3.2: Energy consumption signature / Location data pattern

As well, data consumers can exchange customer data between each others (cf.
Figure 1.4), and collect other background data about them from external data sources,
like social network profiles or public databases, to enrich customer profiles with new
insights and make it more valuable. However, this can expose users to other more
complex privacy risks. For example, assume that Alice has unlawfully certified that
she is living alone to be eligible for a welfare program when submitting her appli-
cation. The parties that have access to both location and consumption data (e.g.,
marketing company) can infer this fraud (it is enough to identify the use of particu-
lar smart appliances, such as microwave, television, or coffee maker, while Alice is
outside her home). Also, if Alice stated in her application that she is a teenager, col-
lecting her date of birth from her Facebook profile or from the public voting records
leads to infer the fraud.

FIGURE 3.3: CCTV surveillance in a smart mall

All the previous risks were direct risks that can be controlled by Alice as they are
associated with her sensed data. However, Alice can be also exposed to other risks
that are out of her control zone (i.e., indirect risks). For example, as shown in Figure
3.3, being under CCTV surveillance in a monitored area (e.g., malls, streets, airports)
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can lead to reveal Alice’s presence in the area, her interests, activities, meetings,
social relationships, and so on.

All of this highlights the need to inform Alice of the direct and indirect risks that
she accepts to take, with or without her consent, in order to enable her to make in-
formed privacy decisions. However, when considering various types of risks, data
heterogeneity (e.g., scalar, multimedia) and semantics, user expertise, and the time
constraints of user decisions, several challenges emerge. The challenges related to
data heterogeneity and semantics were detailed and addressed in the previous chap-
ter (cf. Sections 2.2 and 2.4). We focus here on the challenges related to risk defini-
tion, risk detection and monitoring, user expertise, and solution efficiency:

Challenge 1. Increasing expressiveness in risk definitions: Contextual data (i.e.,
sensed and background data) can be processed and/or combined in many simple
and complex forms, yielding a variety of sensitive information inferences for the
user. The approach should therefore feature a generic syntax that allows the defi-
nition of privacy risks with high expressiveness power. This syntax must consider
various types of data combinations, including combinations using: (i) basic oper-
ators, such as logical and comparison operators; and (ii) advanced operators like
spatio-temporal operators that examine the spatio-temporal correlations among data
elements, and semantic operators that accurately reflect the semantics of the rela-
tionships between them. In addition, it must consider different types of sensitive
information that could be revealed about the user, such as information describing
the user profile (e.g., age, marital-status, disease) and activity (e.g., habit, behavior).

Challenge 2. Performing a holistic (all-data-inclusive) risk reasoning: As dis-
cussed above, sensed data can be analyzed in isolation, or combined with each other
(e.g., energy-consumption and location data) and/or with other background data
acquired from external sources (e.g., social network profiles, public databases, docu-
ments). This improves the inference capability of data consumers, thereby enlarging
the sphere of privacy risks. Consequently, the proposed solution must be capable of
representing and serializing data that is heterogeneous in terms of type (e.g., scalar
and multimedia data), metadata, and format. This paves the way for holistic reason-
ing over contextual data, including attribute-based and value-based reasoning.

Challenge 3. Coping with the dynamicity and context-dependency of privacy risks:
The sensitivity of data may depend on the user context [28], [35]. For example, the
sensitivity of Alice’s location when she is in a hospital is higher than at home, as in
this case location data could be used to infer the disease of Alice. Consequently,
as context changes, new privacy risks may emerge, while others may disappear
or lose in significance. Therefore, the proposed solution should keep track of con-
text changes, analyze their impacts on privacy risks, and maintain an updated risk
overview.
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Challenge 4. Dealing with user expertise: People may have different levels of exper-
tise when it comes to specifying their preferences and understanding their privacy
risks. The proposed solution should be able to tailor the preference specifications
and risk overview to the user’s expertise. This ensures good quality of human-
machine interactions and allows all users to understand the privacy implications.

Challenge 5. Delivering scalability and efficiency: The solution must be scalable,
i.e. handles reasoning over an increasing number of contextual data and privacy
risks. It should also react fast to support the user in different contexts, especially as
user decisions must sometimes be made in real-time. Finally, it should maintain low
computational and storage complexity, which makes it operational on various types
of devices, including those with limited resources.

Other challenges may also arise when considering privacy risk inferences, how-
ever, we focus in our research work on tackling the aforementioned ones.

3.3 Related-work

Several works were proposed in the fields of Connected environments and Web en-
vironments to tackle the challenges of user privacy risk awareness.

- Christin et al. [107] proposed a graphical-based warning approach to inform users
about the risks of disclosing sensitive information about them in participatory
sensing applications. They considered four types of attributes that can be shared
by users: location, pictures, audio samples, and acceleration. They defined three
levels of granularity (i.e., fine, medium, coarse) for each of these attributes, and
associated a list of possible risks to each level. The approach does not include
a risk detection mechanism; instead, it discusses some of the risks that might be
associated with data sharing. The risks are represented through picture-based
warnings, making them easily comprehensible by users. The approach does not
cover the risks that may be generated when attributes are combined together
and/or with other contextual information. The authors have tested their alert-
ing approach by conducting a user study involving 30 participants.

- Wagner et al. [108] provided a user-centric approach to create privacy-aware user
interfaces for mobile eHealth applications. They focused on three classes of ap-
plications: fitness trackers, personal well-being applications, and medical appli-
cations. The approach features an Inform-Alert-Mitigate (I-AM) cycle that (i) in-
forms users of potential privacy issues for each of these applications regarding
privacy policies and permissions; (ii) considers the user’s contextual information
and alerts her about privacy risks that she exposes herself to; and (iii) provides
the user with concrete actions that can mitigate the current risk-exposure. It con-
siders the following attributes that could be collected by apps: identifiable (e.g.,
name, email), demographic (e.g., date of birth, gender), activity (e.g., location,
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time), nutrition, and medical attributes (e.g., heart rate). However, the authors
only provided an overview of the I-AM cycle phases without going into detail
about the process used to determine the risks involved for the user.

- Alrayes et al. [109] examined the user awareness regarding the privacy risks asso-
ciated with location data sharing in Geo-Social Networks (GeoSNs). They carried
out user studies, in form of online surveys, to gauge users’ perceptions to privacy
threats as a consequence of recording their location information of GeoSNs. They
addressed the following aspects in these studies: (i) the extent of users’ aware-
ness of the terms of use they agree to when using these applications; (2) their
understanding and attitude to potential privacy implications; and (3) how they
may wish to control access to their personal information on these applications.
For the privacy implications, the questions focused on evaluating users’ aware-
ness of plausible inferences about their private places, activities at different times,
their connections to other users, and possible knowledge of this information by
the applications. The approach does not feature a risk inference process, it only
provides some recommendations for the design of privacy-sensitive GeoSNs.

- Alemany et al. [110] proposed two soft-paternalism mechanisms in the form of
nudges that provide information to the user about the privacy risk of publishing
information on Social Networks. Privacy awareness refers to the users’ knowl-
edge about the potential audience that might see their publication disclosure. The
first mechanism shows the profile images of users that are part of the potential au-
dience that may have access to the message with a risk-level alert (e.g., low, high).
The second mechanism shows the number of users that are part of the audience
that may have access to the message. The two mechanisms were tested with 42
teenagers in an online social network called PESEDIA. The results obtained sug-
gest that the use of soft-paternalism mechanisms could be a suitable option to
improve the decision-making process and prevent teenagers from privacy risk
publications that could have negative consequences.

- Petkos et al. [111] proposed a scoring framework for raising user awareness in
Online Social Networks (OSN) regarding the sensitive information that could be
disclosed by OSN operators and other third parties that can access their data.
They identified eight categories of sensitive information, including demograph-
ics, psychological traits, sexual profiles, political attitudes, religious beliefs, health
factors, location, and consumer profile. The data to be shared in OSN includes
posted content (text, images), explicitly declared profile data, user network data,
sets of likes, and so forth. The approach introduces a privacy scoring mechanism
that enriches the sensitive information with several scores, each reflecting a dif-
ferent aspect of information disclosure. The overall privacy score is obtained by
multiplying the scores of the following aspects: (i) level of confidence to infer the
information; (ii) sensitivity of the disclosed information for the user; and (iii) vis-
ibility of the information to other people. Other aspects were also considered to
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enrich the scoring model, including (1) the information source (i.e., declared by
the user or inferred); (2) the associated data in case of inferred information; and
(3) the level of control of the user on the information disclosure. The authors did
not conduct experiments to showcase the applicability and effectiveness of their
scoring approach. Their ongoing work focuses on developing a risk inference
mechanism to complete the computational aspects of their framework.

3.3.1 Comparative Study

In order to compare existing works, we define the following criteria based on the
challenges and needs discussed in Section 3.2. The criteria focus mainly on applica-
tion domains, risk definition, data representation, risk inference, user expertise, and
operational features of the approach. These are:

• Criterion 1. Application Domain: states the domain of application of the proposed
approach (e.g., connected environments, social networks).

For the risk definition, we specify criteria related to the scope of attributes consid-
ered and the expressiveness of risks:

• Criterion 2. Attribute Scope. Checks information coverage when defining risks:

(2.1) Attribute Diversity: denotes {YES, NO} if the approach considers privacy
risks related to numerous/diverse attributes of the user.

(2.2) Context Coverage: indicates {YES, NO} if the approach considers the user’s
contextual information when defining risks.

• Criterion 3. Expressiveness. Checks the ability of the approach to provide ex-
pressive risk definitions, i.e. to consider different/complex data combinations
of various attributes together and/or with other contextual data when defining
risks. This helps to broaden the coverage and improve the expressiveness of the
risks associated with data sharing. We look at data combinations using basic and
advanced operators:

(3.1) Basic Operators: states {YES, NO} if the approach considers basic operators
(e.g., Logical operators) to combine data.

(3.2) Advanced Operators: states {YES, NO} if the approach supports advanced
operators (e.g., semantic, spatial, temporal operators) to combine data.

For the data representation, we specify criteria related to data heterogeneity and
data serialisation:

• Criterion 4. Data Heterogeneity: indicates {YES, NO} if the approach supports
representation of heterogeneous data in terms of data types and metadata (i.e.,
scalar and multimedia data).
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• Criterion 5. Data Serialisation: indicates {YES, NO} if the approach supports: (i)
data extraction from diverse data sources (e.g., sensors, social network profiles,
documents), having different serialization formats (e.g., json, rdf, pdf, docx, jpeg,
mov); and (ii) data representation in a unified serialization format, allowing con-
sequently the reasoning on heterogeneous data.

For the risk inference, we specify criteria related to the nature and level of control of
the risks inferred, and the handling of attribute/value-based risk reasoning:

• Criterion 6. Risk Nature. Checks the nature of the risks inferred:

(6.1) Identity Disclosure: denotes {YES, NO} if the approach identifies risks re-
lated to the disclosure of the user’s identity (i.e., risks of re-identification).

(6.2) Sensitive Information Disclosure: states {YES, NO, PARTIAL} if the approach
identifies risks related to (i) the disclosure of the user-shared sensitive data
by unwanted parties, and (ii) the disclosure of other SPI (cf. Section 1.2.1)
about the user when processing her shared data.

• Criterion 7. Risk Control. Checks the ability of the approach to infer direct and
indirect risks for the user:

(7.1) Direct Risks: denotes {YES, NO} if the approach identifies direct risks that
can be controlled by the user, such as those associated with her data sharing.

(7.2) Indirect Risks: denotes {YES, NO} if the approach identifies indirect risks,
i.e. risks related to the user but over which the user has no control (e.g., the
risks imposed by the surrounding connected environment).

• Criterion 8. Reasoning. Checks the ability of the approach to handle attribute-
based or/and value-based risk reasoning:

(8.1) Attribute-based: indicates {YES, NO} if the approach performs risk reason-
ing on attribute names and/or properties.

(8.2) Value-based: indicates {YES, NO} if the approach performs risk reasoning
on data values of attributes (e.g., examines conditions applied to data values
and/or properties).

In addition to the aforementioned criteria, we define other criteria related to the risk
indicators delivered to the user and the operational features of the approach:

• Criterion 9. User Expertise: denotes {YES, NO} if the risk overview provided by
the approach is tailored to the user’s level of expertise.

• Criterion 10. Operational Features:

(10.1) Automation Degree: denotes {AUTO, SEMI, MANUAL} if the approach is
respectively automatic, semi-automatic, or manual.
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(10.2) Performance. We consider two sub-criteria:

(i) Scalability: denotes {YES, NO} if the approach is capable of performing
over an increasing number of information and risks;

(ii) Efficiency: states {YES, NO} if the approach provides appropriate per-
formance in terms of time behavior, resource utilization, and capacity in
various scenarios.

Criteria
Christin et al.

[107]
Wagner et al.

[108]
Alrayes et al.

[109]
Alemany et al.

[110]
Petkos et al.

[111]
CaSPI

[4]

Application Domain
Connected

Environments
eHealth

Technologies
Geo-Social
Networks

Social
Networks

Social
Networks

Generic

Attribute Diversity YES YES NO YES YES YESAttribute
Scope

Context Coverage NO YES NO NO NO YES

Basic Operators NO NO NO NO NO YES

Risk
Definition

Expressiveness

Advanced Operators NO NO NO NO NO YES

Data Heterogeneity YES NO NO NO NO YESData
Representation

Data Serialisation NO NO NO NO NO YES

Identity Disclosure NO YES NO NO NO YESRisk
Nature

SPI Disclosure YES PARTIAL YES PARTIAL YES YES

Direct Risks YES YES YES YES YES YESRisk
Control

Indirect Risks NO NO NO NO NO YES

Attribute-based YES - YES YES YES YES

Risk
Inference

Reasoning

Value-based NO - NO NO NO YES

User Expertise PARTIAL - NO PARTIAL NO YES

Automation Degree AUTO - AUTO AUTO AUTO AUTO

Scalability - - - - - YES
Operational
Features Performance

Efficiency - - - - - YES

1 - means that the referenced work did not approach this aspect.

TABLE 3.1: Review of Privacy Risk Inference Approaches

Discussion. All of the proposed approaches contribute to raising user awareness of
the privacy risks associated with sharing their attributes. However, they all suffer
from the same limitations. They lack re-usability as they focus on inferring risks
related to specific user information in particular domains. The majority of them
(i.e., [107], [109]–[111]) do not consider the impact of user contexts on plausible in-
ferences of sensitive information, despite the fact that data sensitivity varies across
contexts, and thus the sphere of risks (cf. Challenge 4). They mainly focus on iden-
tifying the risks associated with processing each attribute separately, without con-
sidering the risks involved in combining and processing attributes’ data together
and/or with other contextual data. Only [107] addresses data heterogeneity from
the perspective of considering risks associated with location data, pictures, audio



3.4. CaSPI Proposal 81

samples, and acceleration data, without tackling the challenges of data representa-
tion. When it comes to risk nature, existing works mainly identify risks related to
disclosing user-shared attributes by unwanted audience [108], [110], and revealing
some of the user-related SPI when executing inference mechanisms on shared data
[107], [109], [111]. They consequently cannot be used to identify the risks of user re-
identification through protected data patterns (e.g., anonymized/pseudonymized
data) when data is processed and sometimes combined with other side information.
Moreover, none of them is capable of identifying the indirect privacy risks for the
user, or performing a value-based risk reasoning. When considering the risk indi-
cators delivered to the user, [107] and [110] are capable of delivering simple/user-
friendly indicators that could be comprehensible by all users. However, none of
the works is capable of tailoring the risk overview based on the user’s expertise.
Indeed, expert/advanced users may require a more detailed view of their privacy
implications than non-savvy/beginner users, who prefer a summary of the main
risks. Finally, none of these works includes experiments that evaluate the scalability
and efficiency of the proposed solution in various scenarios. Table 3.1 details the
comparison between the aforementioned works according to the defined criteria.

3.4 CaSPI Proposal

In this section, we detail our proposed risk inference approach, entitled CaSPI,
which stands for Context-aware Semantic reasoning approach for dynamic Privacy
risk Inference. CaSPI addresses all the needs and challenges specified in Section 3.2.
We start by describing the approach’s functioning. We present after formal defini-
tions of the key terms used in this study, and discuss the user profiles with their
characteristics. Then, we detail the proposed rule syntax to define risks and the rea-
soning algorithm of our approach.

FIGURE 3.4: Overview of the CaSPI proposal

Figure 3.4 illustrates an overview of the solution. CaSPI receives as input: (1)
the modeled contextual data providing information about the current user situation,
including sensed and background data; (2) the list of user-sensitive information,
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which can be personalized by the user depending on her profile; and (3) the list of
inference rules expressing the privacy risks to be detected. It launches consequently
the rule-based reasoner over modeled data/information in order to infer the direc-
t/indirect risks involved in the current context. The risks inferred are delivered as
output (4) through an adaptive user interface according to the specified user profile
and preferences. This allows all users, with different levels of expertise, to under-
stand the privacy implications of sharing their data with data consumers (i.e., service
providers and third parties) and their presence in the environment (cf. Challenge 5).

When a context change occurs (cf. Definition 4), the system computes the simi-
larity between the current and historical contexts. If a full similarity is detected (cf.
Definition 4.1), the user is given the option of re-applying the actions of the previ-
ous similar context, or launching the risk reasoner. This contributes to reducing the
computational cost of the global CaPMan system.

3.4.1 Context Representation

The quality of the risk inferences depends on the quality of the context coverage (i.e.,
coverage of data/information that characterizes the user’s situation). The approach
must consequently enable the collection and representation of various attributes’
data describing the user and her surrounding environment, as well as the semantics
of the relationships between them, in order to provide a high and expressive con-
text coverage. The data collected is heterogeneous in terms of types and metadata
(e.g., scalar and multimedia data), and can be of two categories: (1) sensed data by
a wearable or deployed sensor in the user’s environment, that is shared with data
consumers in exchange for services; and (2) background data, additional data that de-
scribes the user (e.g., profile data, activities) and/or her environment, such as the
environment’s structure, description, or a hosted component like sensor, appliance,
etc. The data can therefore be acquired from various nodes (i.e., data sources) in the
user’s connected and web environments, including sensors, devices, social network
profiles, public databases, and so on. However, data of these sources do not follow
a common structure and are serialized in different formats (e.g., json, rdf, xml, pdf,
docx, xlsx, png, jpeg, mov, mp4). Consequently, the challenges of data extraction and
representation are handled respectively by the context acquisition and context model-
ing modules of the CaPMan framework. In what follows, we formally define a data
node, physical environment, user context, context similarity, attribute, sensed attribute, and
a background-oriented attribute.

Let u denotes the user of interest.

Definition 1 (Data Node). Let DN be the set of data nodes {dn1 ; ... ; dnn} that
could be: (i) sources from which data is collected (e.g., sensors, devices, social net-
works); (ii) smart systems deployed in the user’s environment (e.g., actuators, appli-
ances); or (iii) data consumers with whom the data is shared (e.g., service providers,
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third parties). dn ∈ DN is formalized as follows:

dn : 〈 desc ; id 〉 , where:

• desc is the textual description of dn (e.g., GPS-sensor, Healthcare-provider).

• id is the identity of dn, expressed as a uniform resource identifier (URI). �

Example 1. The sources of the data collected, describing Alice and her home, are the GPS
sensor, energy-consump sensor, Facebook profile, and the public database of voting records:

- sensor-1:〈 GPS ; http://46.89.1.47:80/ 〉

- sensor-2:〈 Energy consumption ; http://46.193.0.164:80/ 〉

- socialAccount-1:〈 Facebook ; https://www.facebook.com/Alice 〉

- database-1:〈 Voting records ; https://publicvoting/records.html 〉

Example 2. The data consumers with whom Alice shares her sensed data are the electricity
and healthcare providers:

- provider-1:〈 Electricity provider ; http://58.17.37.23:1751/ 〉

- provider-2:〈 Healthcare provider ; http://64.31.3.12:5051/ 〉

Definition 2 (Physical Environment). Let Eu be the set of physical environments
{env1 ; ... ; envn} where the user u is/was located. env ∈ Eu can be of two types:
connected (i.e., hosts smart systems) or unconnected environment.

∀ env ∈ Eu , env : 〈 desc ; sz ; Sys 〉 , where:

• desc denotes the textual description of env (e.g., home, office, mall, street)

• sz expresses the spatial zone of env (cf. Definition 3)

• Sys v DN represents the set of systems (data nodes) deployed in env (e.g.,
sensors, actuators). For unconnected environments, Sys = ∅. �

Definition 3 (Spatial Zone). A spatial zone, sz, is defined as a geographical surface
bounded by a set of distinct locations, where each is expressed by coordinates in
space, such that:

sz : 〈 loc1 ; loc2 ; ... ; locn 〉 , where:

• loc is a location, defined as 3-tuple loc : 〈 long ; lat ; alt 〉, where long, lat,
and alt denote respectively the longitude, latitude, and altitude of loc. �

Example 3. The home of Alice can be represented as follows:
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- environment-1:〈 Home ; zone-1 ; Sys-1 〉

- zone-1:〈 loc-1 ; loc-2 ; loc-3 ; loc-4 〉

- loc-1:〈 -1.53245 ; 34.0132 ; 200.03 〉
- loc-2:〈 -1.53310 ; 34.0140 ; 205.14 〉
- loc-3:〈 -1.51025 ; 34.0581 ; 216.57 〉
- loc-4:〈 -1.51090 ; 34.0571 ; 218.13 〉

- Sys-1={sensor-2 ; device-1}

- device-1:〈 NIV medical device ; http://64.17.15.2:5051/ 〉

Definition 4 (User Context). A user context, c ∈ C, is a spatio-temporal semantic
context, defined as the finite group of information characterizing the user’s situ-
ation within the respective space-time. Specifically, c ∈ C consists of: (i) the set
of attributes’ data and properties collected/known about the user, u, and her sur-
rounding environment, env ∈ Eu, within the relevant space-time; and (ii) the set
of semantic relations expressing how these attributes are linked within the relevant
space-time. c ∈ C is formalized as follows:

c : 〈 t ; s ; A ; RelA 〉 , where:

• t denotes the time period of c, defined as 2-tuple t : 〈 tstart ; tend 〉 , where
tstart and tend are two time instants.

• s expresses the spatial zone of c (cf. Definition 3).

• A = {a1 ; a2 ; . . . ; an} is the set of attributes characterizing c (cf. Definition
5), where each includes data that is either collected within {t; s} or previously
collected but still valid within {t; s}.

• RelA = {rel1 ; rel2 ; . . . ; relm} represents the set of semantic relations
between attributes {a1, ..., an} ∈ A, such that:

∀ rel ∈ RelA, rel ≡ rel(ai ; aj) | {ai ; aj} v A and i, j ∈ [1, n]

- rel(ai ; aj) is a unidirectional relation, with a primitive type of String, that
specifies how attribute ai is linked to attribute aj.

A context change means a change in the user’s situation. It occurs if at least one
of the context parameters varies. �

Definition 4.1 (Context Similarity). Let ci, cj be two user contexts, such that {ci; cj} v
C. The similarity between ci and cj is determined by computing the similarity be-
tween their groups information (i.e., c.At c.RelA):

simc(ci, cj) = simc( ci.At ci.RelA ; cj.At cj.RelA )→ [0; 1]
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Where:

• sim is a unit similarity function that compares the exact match between at-
tribute descriptions and described entities, as well as the exact match between
the sets of semantic relations. sim returns a value ranging from 0 to 1, where 0
means that the two contexts are not similar and 1 means a full similarity.

sim(ci, cj) = 1 only if:∀ax ∈ ci.A, ∃! ay ∈ cj.A : ax.desc = ay.desc and ax.ent = ay.ent

ci.RelA = cj.RelA

�

Definition 5 (Attribute). Let A be the set of attributes {a1 ; a2 ; ... ; an} describ-
ing the user u and her physical environments ∑ env ∈ Eu. An attribute a ∈ A is
formalized as follows:

a : 〈 desc ; ent ; Log ; access 〉 , where:

• desc denotes the textual description of a (e.g., location data, energy-consump
data, user activities, profile images, home appliances).

• ent ∈ {u} ∪ Eu denotes the entity related to a, which can be the user u or an
environment env ∈ Eu.

• Log = {〈 d ; M 〉} is the set of spatio-temporal data values of a. Log can be
viewed as the log file of a, where:

– d denotes the data value, which can be scalar (e.g., location, temperature,
age, marital-status) or multimedia (e.g., image, audio, video).

– M = {meta1 ; ... ; metan} is the set of metadata characterizing d. For
instance, M can include the following metadata:

* tcapture, denotes the time of capture of d.

* lcapture, denotes the location of capture of d.

* source ∈ DN, denotes the data source from which d is captured. source
can derive from connected environments (e.g., sensor, device) or web
environments (e.g., social media platform, public database).

* Dconsumer v DN, represents the set of data consumers with whom d is
shared (e.g., service providers, third parties), such that:

Dconsumer = { dc1 ; dc2 ; ... ; dcn } ∪ {⊥} , where:

· dci ∈ Dconsumer is a data node expressing a data consumer.

· Dconsumer = ∅ indicates that data consumers are unknown.

· Dconsumer = {⊥} denotes that a is a public attribute.
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• access ∈ {r ; r/w} denotes the access rights of the CaPMan system to the data
of a, which can be read or read/write. It expresses the level of control of the
system over the data of a. �

Definition 5.1 (Sensed Attribute). Let SA v A be the set of sensed attributes,
i.e. attributes characterizing sensed data by deployed/wearable sensors, and on
which the CaPMan system has access to control and manage, such that: ∀a ∈ SA :
a.access = r/w. �

Definition 5.2 (Background-oriented Attribute). Let BA v A be the set of background-
oriented attributes, i.e. attributes characterizing background data about the user
and/or her environment, and on which the CaPMan system has read-only access,
such that: ∀a ∈ BA : a.access = r. �

Example 4. Alice has two sensed attributes: her location and the energy-consumption of her
home. They can be represented as follows:

- a-1:〈 Location ; u ; Log-1 ; r/w 〉

- Log-1={〈(-1.53234,34.0180);Meta-1〉 ; 〈(-1.53210;34.0132);Meta-2〉}
- Meta-1={tcapture :11:00:00; lcapture :(-1.53234,34.0180); source :sensor-1;

Dconsumer={provider-2}}
- Meta-2={tcapture :11:03:00; lcapture :(-1.53210;34.0132); source :sensor-1;

Dconsumer={provider-2}}

- a-2:〈 Energy-consump ; environment-1 ; Log-2 ; r/w 〉

- Log-2={〈89;Meta-3〉 ; 〈115;Meta-4〉}
- Meta-3={tcapture :21:05:00; lcapture :(-1.53245;34.0132); source :sensor-2;

Dconsumer={provider-1}}
- Meta-4={tcapture :21:15:00; lcapture :(-1.53245;34.0132); source :sensor-2;

Dconsumer={provider-1}}

Example 5. The system collected several background data about Alice, such as her marital
status, profile picture, date of birth (two data collected from different sources), and the ser-
vices provided in exchange for her sensed data. We represent here the ’date of birth’ attribute:

- a-3:〈 Date-of-Birth ; u ; Log-3 ; r 〉

- Log-3={〈(1976);Meta-5〉 ; 〈(26-02-1976);Meta-6〉}
- Meta-5={tcapture :09:00:00; source :socialAccount-1; Dconsumer={⊥}}
- Meta-6={tcapture :17:30:00; source :database-1; Dconsumer={⊥}}

The goal of our study is to detect the user-related privacy risks in the context
of connected environments. So we use the uCSN1 ontology proposed in Chapter

1https://spider.sigappfr.org/uCSNdoc/index-en.html

https://spider.sigappfr.org/uCSNdoc/index-en.html
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2 to represent the user’s contextual knowledge, as it provides: (i) high coverage of
generic attributes describing the user and her surrounding connected/unconnected
environment; (ii) rich description of scalar/multimedia data and metadata, and data
sources with their properties; and (iii) extensibility through the pluggable layer to
cover domain-specific knowledge, making it re-usable in various application do-
mains (e.g., smart homes, buildings, cities). The use of an ontology-based data
model enables the handling of data heterogeneity in terms of types, metadata, for-
mats, and sources. Data is therefore serialized in a unified format (e.g., RDF/XML),
allowing holistic (all-data-inclusive) reasoning to detect the risks involved (cf. Chal-
lenge 2). In what follows, we represent previous definitions with their constraints
using the formal Description Logic (DL) language [100] in order to clarify their inte-
gration in the data model in terms of uCSN classes and properties. DL is a popular
knowledge representation language that provides logical formalism for ontologies
and the Semantic Web. We do not represent here the user context (cf. Definition 4)
in DL since it consists of all the modeled individuals (i.e., attributes’ data) and their
relationships in the respective ontology file.

Definition 1: Data Node

(DataSource t DataConsumer) (DATA-NODE)

DataSource ≡ Sensor t Device t ExternalSource

Sensor ≡ StaticSensor t MobileSensor

DataSource v (description.VALUE) u (origin.VALUE) u (uri-identifier.VALUE)

DataSource v serialization-format.VALUE

DataConsumer ≡ ServiceProvider t ThirdParty

DataConsumer v collaboratesWith.ThirdParty

DataConsumer v (description.VALUE) u (uri-identifier.VALUE)

Definitions 2 and 3: Physical Environment and Spatial Zone

(Environment t (Platform u ¬Device)) (PHYSICAL-ENVIRONMENT)

Platform ≡ Environment t Device

Environment v (description.VALUE) u (isDescribedBy.SpatialZone)

SpatialZone v isComposedOf.Location

Environment v hosts.(Platform t System)

Device v (hosts.System) u (hasSoftware.Software) u (hasHardware.Hardware)

System ≡ Sensor t Actuator t Sampler

System v (hasSubSystem.System) u (uri-identifier.VALUE)

The contextual attributes vary from sensed to background-oriented attributes (cf.
Definitions 5.1 and 5.2), such that A = SA∪ BA. We represent next both categories
of attributes with their properties using DL.
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Definition 5.1: Sensed Attribute

(SensedInformation) (SENSED-ATTRIBUTE)

SensedInformation ≡ ScalarProperty t MultimediaProperty

MultimediaProperty ≡ Image t Audio t Video

SensedInformation v (describesEntity.(User t Environment)) u (access.VALUE)

SensedInformation v hasSensingStatus.SensingStatus

SensingStatus v (isSharedWith.DataConsumer) u (isSensedBy.Sensor)

SensingStatus v hasCommunicationProtocol.CommunicationProtocol

SensingStatus v (hasSensingEvent.Event) u (hasDataValue.DataValue)

Event v (hasEventTime.TemporalEntity) u (hasEventLocation.Location)

DataValue v (hasCaptureTime.TemporalEntity) u (hasCaptureLocation.Location)

DataValue ≡ ScalarValue t MultimediaValue

Definition 5.2: Background-oriented Attribute (User-related attribute)

(PersonalInformation u ¬(SensedInformation v access.R/W)) (USER-BG-ATTRIBUTE)

PersonalInformation v (isCapturedFrom.DataSource)u (isSharedWith.DataConsumer)

PersonalInformation ≡ ProfileInformation t ActivityInformation

(Identifying t PhysicalCharacteristic t PublicLife t Demographic t Ethnicity

t KnowledgeBelief t Preference t Authenticating) v ProfileInformation

ProfileInformation v (hasCaptureTime.TemporalEntity)u (hasCaptureLocation.Location)

(Activity t UserLocation t Behavioral t SensedInformation) v ActivityInformation

Activity v isPerformedAt.Event

Event v (hasEventTime.TemporalEntity) u (hasEventLocation.Location)

UserLocation v hasLocationTime.TemporalEntity

Behavioral v (hasCaptureTime.TemporalEntity) u (hasCaptureLocation.Location)

Definition 5.2: Background-oriented Attribute (Environment-related attribute)

(Environment t SpatialZone t Device t System t CoverageArea

t Property) (ENV-BG-ATTRIBUTE)

Environment v (description.VALUE) u (isDescribedBy.SpatialZone)

Environment v hosts.(Platform t System)

Platform ≡ Environment t Device

Device v hosts.System

System ≡ Sensor t Actuator t Sampler

Sensor v (currentlyCovers.CoverageArea)

System v (hasOperatingRange.OperatingRange) u (hasSurvivalRange.SurvivalRange)

System v (hasSystemCapability.SystemCapability) u (hasSubSystem.System)

OperatingRange t SurvivalRange t SystemCapability v Property
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The uCSN ontology considers also the representation of background data de-
scribing the characteristics of (i) devices deployed in the environment (e.g., fire/CO
detection device deployed at home) or held by the user (e.g., mobile phone); and (ii)
services provided to the user in exchange for her sensed data, such as the personal-
ized energy-saving recommendations provided to Alice by the electricity provider
(cf. Section 3.2).

Definition 5.2: Background-oriented Attribute (Device-related attribute)

(Devicet Software t Hardware t NetworkInterface t Processor t ExpansionCard

t Memory t PowerSupply) (DEVICE-BG-ATTRIBUTE)

Device v (hasSoftware.Software) u (hasHardware.Hardware)

Hardware v (hasComUnit.NetworkInterface) u (hasDeployUnit.ExpansionCard)

Hardware v (hasProcessingUnit.Processor) u (hasStorageUnit.Memory)

Hardware v (hasPowerUnit.PowerSupply)

Definition 5.2: Background-oriented Attribute (Service-related attribute)

(Servicet Capability t Metadata t Interface t Event t Variables)

(SERVICE-BG-ATTRIBUTE)

ServiceProvider v providesService.Service

Service v (isProvidedTo.User) u (providedThrough.Device) u (hasCapability.Capability)

Service v (hasMetadata.Metadata) u (hasInterfaces.Interface)

Service v (isProvidedAt.Event) u (hasVariables.Variables)

Variables ≡ Inputt Output

3.4.2 Privacy Risk Definition

Following the modeling of the user’s contextual data, the reasoner requires a refer-
ence schema that contains the list of inference rules on which it will rely to detect
the privacy risks involved for the user. Nonetheless, the rule definition process is
challenging due to the variety of risk types (e.g., direct/indirect risks), as well as
the diversity of attribute/data combinations that may entail the disclosure of one or
more sensitive information (cf. Challenge 1). To address this challenge, we propose
next a generic and re-usable privacy rule syntax that allows the definition of vari-
ous types of risks with high expressiveness power. This is achieved by considering
different types of attributes/data combinations, including combinations through:
(i) logical operators to connect attributes, data, and constraints; (ii) comparison opera-
tors to assign conditions to data values; (iii) spatio-temporal operators to examine the
spatio-temporal correlations among data values; and (iv) semantic operators that ac-
curately reflects the semantics of attributes/data relations. One can therefore use
the proposed syntax to define basic combinations of attributes and data, as well as
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more advanced combinations that consider the semantics of the relationships be-
tween them, which improves the quality of the risk definitions. In the following, we
formally define a sensitive information, and a privacy rule.

Definition 6 (Sensitive Information). Let SI be the set of sensitive information
{si1 ; ... ; sin}, which expresses sensitive personal information about a user that
could be disclosed when combining and/or processing her contextual data. Such
a disclosure can cause serious harms for the user if misused (e.g., mental, physi-
cal, dignity/reputation, financial, or societal harms [113]). si ∈ SI can be of two
types: profile information (e.g., age, disease), or activity information (e.g., behavior,
physical activity). The set SI can thus be formalized as follows:

SI = Prof ile t Activity , where:

• Prof ile represents the set of sensitive information characterizing the user pro-
file, which may vary from generic to domain-specific information, such that:

Prof ile = Generic t Medical t Financial t Prof essional

t Social t Other

– Generic represents the set of generic profile information

Generic = {re-identification ; age ; date-of-birth; marital-status ; gender ;

height ; weight ; political-affiliation ; sexual-orientation ; physical-trait ;

ethnic-origin ; race ; religion ; language ; dialect ; accent ; preference ; interest}

* re-identification is the happening that occurs when the anonymized sensed
data (e.g., location data) is matched with its true owner (i.e., user).

– Medical represents the set of medical profile information

Medical = {disease ; allergy ; surgery ; immunization ; blood-type ;

drug-test ; mental-health ; genetic}

– Financial represents the set of financial profile information

Financial = {credit-information ; bank-account-information ;

transactional-information ; card number ; card type}

– Prof essional represents the set of professional profile information

Prof essional = {salary ; job ; certification ; academic-degree}
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– Social represents the set of social profile information

Social = {family ; friend ; association ; membership ; meeting}

– Other represents the set of other profile information that could be specified
by the user or by the privacy community when defining risks.

• Activity represents the set of sensitive information characterizing the user ac-
tivity, such that:

Activity = {behavior ; habit ; performed-activity ; presence-absence ;

sleeping-cycle ; fraud} t Other

– Other represents the set of other activity information that could be speci-
fied by the user or by the privacy community when defining risks. �

Definition 7 (Privacy Rule). Let PR be the set of privacy rules, {pr1 ; ... ; prn}, that
define the risks to be detected by the reasoner. A privacy rule, pr ∈ PR, is an infer-
ence rule, specified by means of an ontology language (e.g., OWL [100]) in the form
of an if-then (antecedent-consequent) sentence. It explicitly specifies a sequence of
attribute/data elements that, when combined using the stated operators, results in
the disclosure of one or more sensitive information. pr ∈ PR is defined according
to the following syntax:

pr : ϕ(E)→ SI′ , where:

• ϕ(E) = e1 θ e2 θ ... θ en represents the sequence of attribute/data elements
{e1 ; e2 ; ... ; en} ∈ E, combined through operators θ, such that:

– ∀e ∈ E, e ∈ {class ; individual ; comparisonValue}, where:

* class is an ontology class denoting a user, environment, attribute (i.e.,
sensed or background-oriented attribute), data node, or a metadata re-
lated to the previous classes (e.g., time, location).

* individual is an ontology individual expressing a data value of a class.

* comparisonValue is a comparison value with a primitive data type of
Boolean, Decimal, or String, that is used when a condition is assigned to
one or more data values.

– θ is an operator that combines two or more attribute/data elements. It be-
longs to one of the following categories:

θ ∈ {Logical t Comparisont Spatial t Temporal t Semantic} , where:

* Logical = {AND ; OR ; NOT} is the set of logical operators.



92 Chapter 3. Privacy Risk Inference

* Comparison = {> ; < ; >= ; <= ; = ; !=} is the set of comparison operators.

* Spatial = {contains ; covers ; crosses ; equals ; above ; below ; closeTo ; dis-
jointWith ; farFrom ; leftOf ; rightOf ; overlaps} is the set of spatial operators.

* Temporal = {inside ; before ; after ; contains ; disjoint ; during ; equals ;
overlaps} is the set of temporal operators.

* Semantic is the set of semantic operators (i.e., ontology relations).

• SI′ v SI represents the set of sensitive information disclosed by ϕ(E). �

Next, we provide examples of privacy rules, defined using the proposed syntax,
and expressing direct and indirect risks.

Example 6. We provide here examples of rules that express direct risks (i.e., risks controlled
by the user):

• Rule 1: A user is sharing her location data with a data consumer without any
protection. This raises the risk of inferring her habits, behaviors and preferences.

PR1 : (User) hasPersonalInformation (SensedInformation = Location)

AND (Location) hasSensingStatus (SensingStatus = Status-1)

AND (Status-1) isSharedWith (DataConsumer)

AND (Status-1) isProtected (= false)

−→ {habits ; behaviors ; preferences}

• Rule 2: A user is sharing her location data with a data consumer, the data is
anonymized and the user shares publicly her home address on Facebook. This
raises the risk of re-identification of the user through protected data.

PR2 : (User) hasPersonalInformation (SensedInformation = Location)

AND (User) hasPersonalInformation (HomeAddress)

AND (Location) hasSensingStatus (SensingStatus = Status-1)

AND (Status-1) isSharedWith (DataConsumer)

AND (Status-1) isProtected (= true)

AND (Status-1) isProtectedUsing (ProtectionFunction = Anonymization)

AND (HomeAddress) isSharedWith (DataConsumer = ⊥)
−→ {re-identification}

• Rule 3: A user is sharing her location data with a data consumer without protec-
tion, and is located in a medical center dedicated to the treatment of a specific
disease. This raises the risk of inferring her disease.

PR3 : (User) hasPersonalInformation (SensedInformation = Location)

AND (Location) hasSensingStatus (SensingStatus = Status-1)

AND (Status-1) isSharedWith (DataConsumer)

AND (Status-1) isProtected (= false)
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AND (User) isLocatedIn (Environment)

AND (Environment) hasDescription (= "Medical-Center" OR "Hospital")

AND (Environment) isDedicatedFor (Disease)

−→ {disease}

• Rule 4: A user is sharing the energy consumption data of her home with data
consumers without protection. This raises the risks of inferring her presence/ab-
sence, sleeping cycles, and home activities.

PR4 : (SensedInformation = Energy-consump)

AND (Energy-consump) describesEntity (Environment)

AND (Environment) hasDescription (= "Home")

AND (Energy-consump) hasSensingStatus (SensingStatus = Status-1)

AND (Status-1) isSharedWith (DataConsumer)

AND (Status-1) isProtected (= false)

−→ {presence-absence, sleeping-cycles, activities}

• Rule 5: A user has a chronic disease and follows her medical treatment using a
medical device deployed at home. She is sharing the energy consumption data
of her home without protection. This raises the risk of inferring her disease.

PR5 : (User) controlsEnv (Environment)

AND (Environment) hasDescription (= "Home")

AND (Environment hosts (Device = MedicalDevice))

AND (SensedInformation = Energy-consump)

AND (Energy-consump) describesEntity (Environment)

AND (Energy-consump) hasSensingStatus (SensingStatus = Status-1)

AND (Status-1) isSharedWith (DataConsumer)

AND (Status-1) isProtected (= false)

−→ {disease}

Example 7. We provide here examples of rules that express indirect risks (i.e., risks uncon-
trolled by the user):

• Rule 6: A user is located in a public environment (e.g., mall, street) that hosts
CCTV cameras. This raises the risks of inferring user presence/absence in the
environment, her interests, and her activities in this environment.

PR6 : (User) isLocatedIn (Environment)

AND (User) NOT (controlsEnv Environment)

AND (Environment) hosts (System = CCTV)

−→ {presence-absence ; interests ; activities}

• Rule 7: The home/office street of the user hosts a CCTV camera, and this camera
has a coverage area that contains the spatial zone of the home/office. This raises
the risks of inferring the presence/absence of the user at home/office, and her
activities in the area covered by the camera.
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PR7 : (User) controlsEnv (Environment-1)

AND (Environment-1) hasDescription (= "Home" OR "Office")

AND (Environment-1) hasSpatialZone (SpatialZone)

AND (Environment-2) NOT (hasDescription (= "Home"))

AND (Environment-2) hosts (System = CCTV)

AND (Surveillance-camera) hasCoverageArea (CoverageArea)

AND (CoverageArea) covers (SpatialZone)

−→ {presence-absence ; activities}

• Rule 8: The user is located in a public environment that hosts Automatic Num-
ber Plate Recognition (ANPR) sensors. This raises the risk of inferring the pres-
ence/absence of the user in the environment.

PR8 : (Environment) hosts (System = ANPR)

AND (User) NOT (controlsEnv Environment)

AND (User) isLocatedIn (Environment)

−→ {presence-absence}

• Rule 9: The user is located in a medical center or hospital that hosts CCTV cam-
eras. This raises the risks of inferring the presence/absence of the user in the
medical environment, her medical information (e.g., disease, surgery, allergy).

PR9 : (User) isLocatedIn (Environment)

AND (Environment) hasDescription (= "Medical-Center" OR "Hospital")

AND (Environment) hosts (System = CCTV)

−→ {presence-absence ; medical-information}

Enhancing the quality of the risk inference process necessitates not only expand-
ing the coverage of direct and indirect risks, but also providing high-quality rule
definitions. Indeed, the more we explore application domains, the more we discover
combinations of attribute/data elements that lead to disclose sensitive information
about a user. In addition, the privacy rules defined must be regularly updated in
order to cope with evolution of data sensing and mining technologies. To over-
come these problems, the CaPMan system collaborates with a group of privacy ex-
perts belonging to various application domains. This collaboration is done using an
outsourcing solution that enables the privacy community to define various privacy
rules using the proposed syntax, and update existing ones. It also checks the rules
validity, and manages the rules conflicts and dependencies. The implementation of
this solution and the tackling of associated challenges will be explored further in fu-
ture work. At this stage, we consider that the expert-defined rules are pre-validated.
The rule updates are thus imported regularly by the privacy rules component of the
CaPMan framework and converted to the chosen semantic rule language (e.g., W3C
Semantic Web Rule Language [114]) before being provided as input to the risk rea-
soner as shown in Figure 3.5.
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FIGURE 3.5: Privacy Rules Import

The privacy rules defined can be of two categories: (i) domain-independent
rules, generic rules that are valid in all application domains; and (ii) domain-specific
rules, rules that are only valid in specific domains (e.g., smart homes, vehicles, hospi-
tals, buildings, cities). For example, rules PR1, PR2, PR6, PR7, and PR8 are domain-
independent rules, PR3 and PR9 are specific to the smart hospital domain, and PR4

and PR5 are specific to the smart home domain. Experts are therefore able to define
rules from both categories. Domain-specific rules rely on the use of domain-specific
vocabulary imported from existing ontology-based models (e.g., Vehicle Signal and
Attribute Ontology [115], ontology for smart homes [116], building topology on-
tology [63]). Thus, in addition to the generic rules, the system imports the rules
related to the considered domains, and the associated ontologies are plugged into
the generic uCSN ontology to ensure interoperability between inference rules and
knowledge representation.

3.4.3 User Profiles

Users might have different levels of expertise when it comes to specifying their pref-
erences (e.g., which sensitive information is significant for them), and understand-
ing their privacy risks (cf. Challenge 4). The guided assistance must therefore be
tailored to the user’s expertise, which helps in improving the quality of user-system
interactions. Consequently, we define in the following three user profiles:

• Beginner: The user is not familiar with her privacy, which means she does not
know how to interpret what is sensitive for her and what is not; nonetheless, she
asks for comprehensible descriptions of the risks she accepts to take.

• Intermediate: The user understands how to specify her preferences for sensitive
information. However, she only requires a detailed overview of the significant
risks to her (i.e., the risks associated with significant information inferences).

• Advanced: The user is expert in interpreting and analyzing her privacy situa-
tion. She can ask for full details about the significant and non-significant risks
involved in her situation.
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FIGURE 3.6: User Profiles

Figure 3.6 details the defined profiles and their characteristics. The goal here is
to limit the level of user-interaction with the system, and the bunch of information
provided, according to her profile. The level of user-interaction is expressed by a
min-max number in Figure 3.6. For a beginner, the system requires only to receive
the list of sensed data. It reasons over contextual information while considering all
sensitive information as significant inferences for the user. Once done, it summa-
rizes the risks detected and provides the user with comprehensible descriptions of
her current privacy situation through picture-based warnings. For an intermediate,
the system asks for the list of sensed data and allows the personalization of sensitive
information. It reasons accordingly over context information to detect only the user-
significant risks. Once done, it provides comprehensible picture-based warnings
that summarizes the current privacy situation, as well as a detailed risk overview
using textual warnings, which includes the risks with their associated sensed data,
sensitive information, and values. For an advanced, the system provides all interme-
diate options plus an optional detailed overview of non-significant risks.

3.4.4 CaSPI Reasoner

CaSPI employs a semantic reasoner that performs rule-based reasoning over mod-
eled context information, based on the privacy rules imported, in order to infer the
risks involved in the relevant user context. The reasoner is launched by default
when a context change occurs, allowing continuous monitoring of the risk evolution
to cope with the dynamicity of the user context (cf. Challenge 3). In the following,
we formally describe the risk inference process and define a privacy risk. Then, we
detail our proposed algorithm.

The risk inference process consists of executing the riskReasoner() function that
takes as input: (i) user-context information, (c.At c.RelA); (ii) user profile, prof ile;
(iii) user preferences related to sensitive information, uSI v SI; and (iv) privacy
rules, PR. It returns an overview of the risks taken by the user u in c, denoted by Rc.
This can be represented as follows:
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riskReasoner((c.At c.RelA) ; prof ile ; uSI ; PR)→ Rc

Where:
Rc =

[
r1 r2 . . . rn

]
| n ∈N

Definition 8 (Privacy Risk). A privacy risk, r ∈ Rc, is defined as the risk of dis-
closing one or more sensitive information about the user. Each r ∈ Rc is associated
with one distinct privacy rule, pr ∈ PR, that is satisfied in the context c ∈ C. It
expresses the probability of achieving the logical consequence of the related pr in c
(i.e., pr.SI′). r has a probabilistic value ranging from 0 to 1, where 0 indicates that r
is negligible, and 1 indicates that the information disclosure is materialized at 100%
(i.e., the disclosure of pr.SI′). r can be represented as follows:

r : 〈 id ; value ; SI′ ; SA′ 〉 | ∃! pr ∈ PR : r ∼ pr

where:

• id ∈N denotes the risk identifier.

• value ∈ [0; 1] denotes the risk value. The quantification of r.value is detailed
in Chapter 4.

• SI′ = SI′pr is the set of sensitive information associated with r.

• SA′ = {a1, ..., an} v (Epr u c.SA) denotes the set of sensed attributes associ-
ated with r (i.e., stated in the set of elements of pr, Epr). �

The number of risks to detect when executing the riskReasoner() function de-
pends on the number of privacy rules imported in this iteration, such that: |PR| =
|Rc| only if all pr ∈ PR are satisfied. The privacy risks detected are stored with their
properties in the ontology file of the relevant context. They are modeled according
to the following classes and properties represented in DL:

Privacy Risk and Sensitive Information

(PrivacyRisk) (RISK)

PrivacyRisk v (risk-identifier.VALUE) u (hasValue.VALUE)

PrivacyRisk v (hasInference.SensitiveInformation) u (hasSensedInfo.SensedInformation)

SensitiveInformation ≡ PersonalInformation u ¬Identifying

SensitiveInformation ≡ (ProfileInformation u ¬Identifying) t ActivityInformation

(Generic t Medical t Financial t Professional t Social) v ProfileInformation

SensitiveInformation v hasDescription.VALUE
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The uCSN ontology is extended in the current application to account for pri-
vacy risk modeling. Privacy risks are therefore represented as individuals of the
ucsn:PrivacyRisk concept. The risk identifiers and values are respectively repre-
sented by the ucsn:risk-identifier and ucsn:hasValue properties. On one hand,
each ucsn:PrivacyRisk has one or more associated ucsn:SensitiveInformation

that may vary from ucsn:ProfileInformation to ucsn:ActivityInformation (cf.
Definition 6). ucsn:ProfileInformation can be ucsn:Generic (e.g., age, marital-
status) or domain-specific, such as ucsn:Medical (e.g., disease), ucsn:Financial
(e.g., card number), ucsn:Professional (e.g., salary), and ucsn:Social (e.g., friends).
An additional description can be provided to each ucsn:SensitiveInformation, us-
ing the ucsn:hasDescription property, which helps in better expressing its mean-
ing in the relevant context. On the other hand, a ucsn:PrivacyRisk may have one
or more associated ucsn:SensedInformation (e.g., location, energy-consumption).

3.4.4.1 Reasoning Algorithm

Algorithm 1 presents the algorithm of the riskReasoner() function, which takes as
input: (i) the ontology file comprising context information, contextFile; (ii) the array
of privacy rules, PR; (iii) the user profile, pro f ile; and (iv) the list of sensitive infor-
mation with their preference flags for the user, uSI. uSI is a two-dimensional array,
where the first column contains the list of sensitive information (i.e., SI), and the sec-
ond column contains the associated flags expressing user preferences, with a value
of 1 if the information is significant for the user, and 0 otherwise. It is important to
receive both significant and non-significant information as input, so that the system
can provide advanced users with an additional insight into non-significant but taken
risks (See Figure 3.6). For beginner/intermediate users, the preference flags allow filter-
ing the privacy rules so that only those that lead to the disclosure of user-significant
information are considered.

The algorithm outputs the array of privacy risks involved in the relevant user
context, Rc. This is done following five major steps:

• Step 1 (lines 3-4): It filters the array of rules (PR) before launching the reasoning
process, to consider only:

(a) rules that are significant for the user (i.e., those involving at least one sensi-
tive information of SI that is user-significant).

(b) rules including only the sensed attributes in the relevant context (i.e., ∀e ∈
Epr u SA : e ∈ c.SA).

(c) rules comprised of only background-oriented attributes and data (i.e., ex-
pressing indirect risks).
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To do so, it starts by extracting the list of sensed attributes from contextFile and
stores it in the sensedAttribute array (line 3). This is done by calling the func-
tion getSensedAttributes(). Then, it calls the f ilterPrivacyRules() function that
returns the filtered array of rules (line 4).

• Step 2 (lines 5-6): It calls the createRuleEngine() function that creates a rule en-
gine instance based on the privacy rules considered, and maps it to the ontology
file (line 5). Then, it calls the createReasoner() function that creates an ontology
reasoner instance and maps it to the ontology file (line 6).

• Step 3 (line 7): It launches the rule-based inference engine to detect the risks
involved, by calling the function in f er().

• Step 4 (lines 8-9): It flushes the changes stored in the buffer (i.e., risks inferences)
by calling the function f lush(), causing the reasoner to append the changes in the
ontology instance. Then, the ontology file is updated to save the new inferences
by calling the function saveUpdates() (line 9).

• Step 5 (line 10): It extracts the privacy risks with their properties (i.e., r.id, r.value,
r.SI′, and r.SA′) from the ontology file using the getPrivacyRisks() function, and
stores them in the four-dimensional array Rc, where each row denotes one risk.

Algorithm 1: CaSPI Reasoner
Input: contextFile, PR[], uSI[][], pro f ile; // the ontology file containing individuals and

relationships expressing the current context, the array of privacy rules, the array of sensitive
information with their preference flag, and the user profile;

Output: Rc[][][][]; // the overview of risks, where each row presents the properties of a risk: risk id,
risk value, associated sensitive information and sensed data (for direct risks);

1 Variables: sensedAttributes[], ruleEngine, reasoner; // set of sensed attributes, the rule engine

variable, and the ontology reasoner variable;

2 begin
3 sensedAttributes[]← getSensedAttributes(contextFile); // returns the set of the

currently sensed attributes ;

4 PR[]← f ilterPrivacyRules(PR[], sensedAttributes[], uSI[][], pro f ile); // returns the

set of filtered rules ;

5 ruleEngine← createRuleEngine(PR[], contextFile); // create the rule engine instance,

associate the considered privacy rules, and map it to the ontology file;

6 reasoner ← createReasoner(contextFile); // create the ontology reasoner instance and map

it to the ontology file;

7 ruleEngine← in f er(); // run the inference function to infer the involved privacy risks;

8 reasoner ← f lush(); // flush the reasoner to consider the risk inferences;

9 contextFile← saveUpdates(); // save the updates in the ontology file;

10 Rc[][][][]← getPrivacyRisks(contextFile); // get the list of privacy risks inferred with

their properties: id, value, associated sensitive information and sensed attributes (if exist);

11 return Rc[][][][]

The pseudo-codes of the functions called in the reasoning algorithm are detailed
in the prototype source code provided in Section 3.5.
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3.5 Implementation & Evaluation

In this section, we present the implementation phases of the CaSPI proposal from
the back-end and front-end perspectives. Then, we evaluate the performance of the
risk reasoner in multiple cases and we formally study its storage complexity.

3.5.1 CaSPI Implementation

In order to validate our proposal, we developed a Java-based prototype of the sys-
tem using Semantic Web tools, such as OWL API, SWRL API, and Pellet reasoner,
and we embedded it on the user’s mobile device. As illustrated in Figure 3.7, the
prototype collects and models the contextual data of the user (i.e., sensed and back-
ground data), as well as user inputs, which vary according to the selected profile
(cf. Section 3.4.3). It performs then rule-based reasoning over modeled data, based
on imported and filtered rules, and outputs an overview of the risks involved in the
relevant context with their characteristics. The produced overview is consequently
tailored to the user’s profile before being released in order to allow all users to under-
stand their privacy implications. The source code of the CaSPI prototype is available
online for download via this link2.

FIGURE 3.7: Implementation of the CaSPI proposal

In what follows, we illustrate how the prototype works in the back-end. Then,
we present the front-end mockups of the associated mobile application. It is impor-
tant to note that this application is currently under development. We only represent
here the mockups of the respective user interfaces.

3.5.1.1 Back-end: Java-based Prototype

The goal here is to showcase how the system works and to highlight its ability to
track the evolution of risks in response to changes in the user context (cf. Challenge

2https://spider.sigappfr.org/research-projects/privacy-oracle/

https://spider.sigappfr.org/research-projects/privacy-oracle/
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3). To do so, we consider the context describing Alice’s situation in Section 3.2 as the
first context, followed by two context changes.

• Context-1: Alice is located at home, shares her location data, sensed by GPS
sensor of her mobile phone, with a healthcare provider, and shares the energy-
consumption data of her home, sensed by a deployed energy sensor, with an elec-
tricity provider. Alice has a NIV device deployed at home. Other background
data are also known about Alice, such as her date of birth, and marital-status.
Figure 3.8 shows how current context information are modeled as uCSN indi-
viduals, along with their relationships. We used Protege 5.5.03 to illustrate them.

• Context-2: Alice continues to share the same data with consumers, but she is now
located in a shopping mall that hosts surveillance cameras.

• Context-3: Alice leaves the mall two hours later.

FIGURE 3.8: Context-1 of Alice

Besides, we define the nine privacy rules, provided as examples in Section 3.4.2,
using the Semantic Web Rule Language (SWRL) [114]. SWRL is a W3C recom-
mended standard language that combines OWL expressivity with the Rule Markup
Language (RuleML) to define rules. It can be roughly considered as the union of
Horn-Logic and OWL based on the description logic SHOIN . SWRL allows for in-
teroperability, re-usability, extensibility (through built-ins), and computational scal-
ability [114]. As explained by Fiorentini [117], SWRL provides association rules, that
allows to associate new individuals to classes and create properties between individ-
uals. The SWRL-based rule syntax follows the same structure of the one provided in
Definition 7. We represent in the following PR1 and PR4 using SWRL. The remain-
ing seven rules are included in the prototype source code.

3https://protege.stanford.edu/

https://protege.stanford.edu/
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PR1 in SWRL syntax

A user is sharing her location data with a data consumer without any protection. This raises the risk of
inferring her habits, behaviors and preferences.

ucsn:User(?u) ∧ ucsn:hasPersonalInformation(?u, ucsn:LOCATION)

∧ ucsn:SensedInformation(ucsn:LOCATION) ∧ ucsn:isProtected(ucsn:LOCATION, false)

∧ ucsn:hasSensingStatus(ucsn:LOCATION, ?status) ∧ ucsn:DataConsumer(?d)

∧ ucsn:isSharedWith(?status, ?d)

∧ swrlx:createOWLThing(?r, ucsn:HABIT, ucsn:PREFERENCE, ucsn:BEHAVIOR)

−→

ucsn:PrivacyRisk(?r) ∧ ucsn:ActivityInformation(ucsn:HABIT)

∧ ucsn:Generic(ucsn:PREFERENCE) ∧ ucsn:ActivityInformation(ucsn:BEHAVIOR)

∧ ucsn:hasDescription(ucsn:HABIT, "Habits of the user")

∧ ucsn:hasDescription(ucsn:PREFERENCE, "Preferences of the user")

∧ ucsn:hasDescription(ucsn:BEHAVIOR, "Behaviors of the user")

∧ ucsn:hasValue(?r, 1) ∧ ucsn:hasInference(?r, ucsn:HABIT)

∧ ucsn:hasInference(?r, ucsn:PREFERENCE) ∧ ucsn:hasInference(?r, ucsn:BEHAVIOR)

∧ ucsn:hasSensedInfo(?r, ucsn:LOCATION)

PR4 in SWRL syntax

A user is sharing the energy consumption data of her home with data consumers without protection.
This raises the risks of inferring her presence/absence, sleeping cycles, and home activities.

ucsn:User(?u) ∧ ucsn:Environment(?env) ∧ ucsn:hasDescription(?env, "Home")

∧ ucsn:controlsEnv(?u, ?env) ∧ ucsn:SensedInformation(ucsn:ENERGY-CONSUMP)

∧ ucsn:describesEntity(ucsn:ENERGY-CONSUMP, ?env)

∧ ucsn:hasSensingStatus(ucsn:ENERGY-CONSUMP, ?status) ∧ ucsn:DataConsumer(?d)

∧ ucsn:isSharedWith(?status, ?d) ∧ ucsn:isProtected(ucsn:ENERGY-CONSUMP, false)

∧ swrlx:createOWLThing(?r, ucsn:PRESENCE-ABSENCE)

∧ swrlx:createOWLThing(ucsn:SLEEPING-CYCLE, ucsn:PERFORMED-ACTIVITY)

−→

ucsn:PrivacyRisk(?r) ∧ ucsn:ActivityInformation(ucsn:PRESENCE-ABSENCE)

∧ ucsn:ActivityInformation(ucsn:SLEEPING-CYCLE)

∧ ucsn:ActivityInformation(ucsn:PERFORMED-ACTIVITY)

∧ ucsn:hasDescription(ucsn:PRESENCE-ABSENCE, "User’s presence/absence at Home")

∧ ucsn:hasDescription(ucsn:SLEEPING-CYCLE, "Sleeping cycles of the user")

∧ ucsn:hasDescription(ucsn:PERFORMED-ACTIVITY, "Home activities of the user")

∧ ucsn:hasValue(?r, 1) ∧ ucsn:hasInference(?r, ucsn:PRESENCE-ABSENCE)

∧ ucsn:hasInference(?r, ucsn:SLEEPING-CYCLE)

∧ ucsn:hasInference(?r, ucsn:PERFORMED-ACTIVITY)

∧ ucsn:hasSensedInfo(?r, ucsn:ENERGY-CONSUMP)
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The system monitors the user’s situation continuously and launches the risk rea-
soner by default when a change takes place. When launched in context-1, only rules
PR1, PR4, and PR5 are satisfied, generating consequently three privacy risks. The
corresponding risk overview, Rc, is illustrated in Figure 3.9. The sensitive information
column includes the descriptions of the associated disclosed sensitive information,
which are defined in the rules using the ucsn:hasDescription property. When the
system receives information about the changed environment (i.e., context-2), it re-
launches the reasoner and updates the risk overview based on the new inferences.
Figure 3.10 shows that previous risks are still valid in the new context because the
changes had no effect on them, and a new risk is inferred related to the rule PR6.
Once Alice leaves the mall (i.e., context-3), the system detects the changes and the
inference engine is relaunched. Figure 3.11 shows that the fourth risk detected in
context-2 became negligible and was thus eliminated. Only the first three risks re-
mains valid. The average time of the reasoning process is 1 ms in all three contexts.

FIGURE 3.9: Privacy Risk Overview in Context-1

FIGURE 3.10: Privacy Risk Overview in Context-2
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FIGURE 3.11: Privacy Risk Overview in Context-3

3.5.1.2 Front-end: User Interfaces

The mockups of the mobile application user interfaces were designed using Inkscape
graphics editor 1.04. The user starts first by logging in to the application through
the login page illustrated in Figure 3.12. The user can create her account automat-
ically by syncing it to her Facebook or Google account, or she can register manu-
ally through the application. For each of these scenarios, the user must specify her
privacy-aware level of expertise (i.e., Beginner, Intermediate, Expert) that will be
assigned to her account (cf. Figure 3.12).

FIGURE 3.12: Login and Profile Specification Interfaces

Once logged in, the user is asked to select her currently sensed data, which may
vary from generic user/environment data to domain-specific data (e.g., healthcare
data). The user specifies the environment description (e.g., home, office) and selects

4https://inkscape.org/

https://inkscape.org/
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the related sensed data. She can define several environments with the "add" button.
The user has the possibility to define new inputs of data and/or domains, which will
be automatically taken into account for future specifications. Figure 3.13 illustrates
the respective user interface. In the example of Alice, the data selected in her current
context are her "Location" and the "Energy consumption" of her home.

FIGURE 3.13: Sensed Data Selection Interface

FIGURE 3.14: Personalizing Sensitive Information Interface
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After specifying her sensed data, only an Intermediate or Advanced user has the
option to personalize her sensitive information as shown in Figure 3.14. The per-
sonalization can be done by selecting predefined groups of information (e.g., ethnic
information, public life information), which could be available in the default settings
of the application or customized by the user. As well, the user can manually choose
the instances of information that are sensitive to her regardless of their groups. The
information instances vary from profile to activity information (cf. Definition 6).
On one hand, profile information can be generic (e.g., re-identification, age, gender,
marital-status), or domain-specific, such as medical (e.g., disease, blood type, mental
health), financial (e.g., bank account information), social (e.g., family, friends, associ-
ations), professional (e.g., salary, job), and so on. The user has also the possibility to
define new inputs for each of these categories, as well as new domain categories. On
the other hand, activity information are related to user habits, behaviors, performed
activities, presence/absence, and so on. The user has also the possibility to define
new inputs. For Alice, only the "Date of birth", "Age", "Marital Status", "Political
Affiliation", and "Preference" are significant from the generic category, as well as the
full list of the medical profile and activity information.

FIGURE 3.15: Privacy Risks Interface: Picture-based Warnings for
a Beginner (left) and Intermediate/Advanced (right) user
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The CaSPI reasoner is launched subsequently to detect the privacy risks involved
in the current user context. Once done, the outputted risk overview, Rc, is summa-
rized into comprehensible picture-based warnings associated with each sensed data,
and delivered to the user. Only an Intermediate or Advanced user has the possibil-
ity to access a detailed view of her risks by clicking on the "Detailed view" button.
Figure 3.15 illustrates the picture-based warnings that have been sent to Alice in
context-1, such that the figure on the left represents the Beginner view, and the one
on the right represents the Intermediate/Advanced view depending on her profile.

FIGURE 3.16: Privacy Risks Interface: Textual Warnings for
an Intermediate (left) and Advanced (right) user

Upon clicking the "Detailed view" button, the user accesses a detailed view of
her risks, presented as a table of four columns that details the content of Rc (i.e.,
risk identifiers, related sensed data, sensitive information, and risk values). As pre-
viously stated in Section 3.4.3, the Intermediate view includes only user significant
risks, and the Advanced view includes two tables of respectively user significant
and non-significant risks. Figure 3.16 illustrates the textual warnings that may be
sent to Alice if her profile was Intermediate (the interface on the left) or Advanced
(the interface on the right).

3.5.2 Performance Evaluation

The objective here is to evaluate the ability of the approach, performance-wise, to
operate in various scenarios, including worst case ones, and to meet the needs of
scalability and efficiency (in time and space) outlined in Challenge 5. To achieve this,
we start by considering three cases that measure the impact of the following metrics
on performance: (1) the number of privacy rules imported by the system for a single
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reasoning iteration; (2) the number of risks to be detected in a single iteration; and
(3) the size diversity of the user context. Then, we formally study the storage com-
plexity of the proposal. The performance is evaluated based on two criteria: the total
execution time and memory usage of one iteration. The tests are conducted on a ma-
chine equipped with an Intel i7 2.80 GHz processor and 16 GB of RAM. The chosen
execution value for each scenario is an average of 10 sequenced values. We select the
peak value of the in-use memory for each scenario when measuring memory usage.

Case 1: We study here the impact of privacy rules on performance by progressively
increasing the number of rules imported by the system. We limit the context size to
100 individuals modeled with their relationships, and we consider a mixed list of
satisfying/non-satisfying rules in the current context, such that only satisfying rules
generate risks to the user. We execute the CaSPI reasoner 6 times, taking into account
the following number of rules for each iteration: 1 (satisfying); 10 (5 are satisfying);
50 (25); 100 (50); 500 (100); and 1,000 (100). Figure 3.17 shows that the number of
privacy rules has a quasi-linear impact on the total execution time, with an average
of 2 s for 10 rules, 3.5 s for 50 rules, 5 s for 100 rules, and up to 27 s for 1000 rules. The
evolution is similar for the RAM consumption (see in Figure 3.17), with an average
of 150 MB for 10 rules, 170 MB for 50 rules, 210 MB for 100 rules, and up to 278 MB
for 1000 rules. This consequently highlights the importance of filtering the list of
rules before launching the risk reasoning process.

FIGURE 3.17: Privacy Rules Impact

Case 2: We investigate here the impact of the risk number (to be detected) on perfor-
mance, by increasing the number of satisfying rules in the global pool of rules. We
limit the context size to 100 individuals modeled with their relationships, and the
pool of rules to 100. We execute the CaSPI reasoner 6 times, taking into account the
following number of satisfying rules for each iteration: 1; 10; 30; 50; 70; and 100. Fig-
ure 3.18 shows that the amount of risks to be detected has no computation impact on
performance. The time and RAM consumption are the same in all scenarios, with an
average of respectively 5 s and 210 MB. This is due to the fact that the reasoner scans
all rules one by one and generate the relevant inferences. Therefore, only the number
of imported rules impacts the performance regardless of their satisfying status.
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FIGURE 3.18: Privacy Risks Impact

Case 3: We evaluate here the influence of the context size on performance, in terms
of number of ontology individuals with their relationships. To do so, we limit the
pool of rules imported to 100, including 50 satisfying rules (i.e., 50 risks to be de-
tected for the user). We execute the CaSPI reasoner 8 times, taking into account the
following number of individuals for each iteration: 1; 10; 50; 100; 500; 1,000; 5,000;
and 10,000. Figure 3.19 shows that the context size has a quasi-constant impact on
the total execution time up to 1,000 individuals with an average of 5 s, and then the
evolution becomes quasi-linear with an average of 8 s for 5,000 individuals and 12 s
for 10,000. The evolution of the RAM usage is quasi-linear (see in Figure 3.19) with
an average of 200 MB for 100 individuals and up to 830 MB for 10,000. This conse-
quently underlines the ability of the CaSPI solution to assist the user in a variety of
contexts, including ephemeral ones (i.e., contexts with short time periods).

FIGURE 3.19: Context Diversity Impact

THEOREM 1. The CaSPI process maintains low storage complexity.

PROOF. Let i denotes the maximum number of individuals and relationships that
express the user context, and p the maximum number of privacy rules imported by
the system. The amount of storage space required by the system is increased with
the increase of input value, n = i + p, resulting in a linear storage complexity of
O(n). Therefore, even in the worst case scenario of a large context size (e.g., 10,000
individuals) and a large number of rules (i.e., 1,000 rules), the system maintains a
low storage complexity. �

Discussion. The experiments and studies conducted show that CaSPI is scalable,
and maintains computational and storage efficiency (cf. Challenge 5). The solution
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is capable of operating and assisting the user in different scenarios, including worst
case ones. This increases its re-usability for a variety of applications, including those
requiring real-time assistance, and allows it to operate on a variety of devices, in-
cluding those with limited resources.

3.6 Summary

In this chapter, we present a Context-aware Semantic reasoning approach for Privacy
risk Inference (CaSPI). The approach is equipped with a semantic rule-based rea-
soner that is used to infer the risks involved in user contexts. To achieve this, CaSPI
relies on the use of ontologies (e.g., uCSN ontology) and inference rules that respec-
tively represent contextual knowledge and define the risks to be detected by the
reasoner with high semantic expressiveness power. In order to define the rules, we
introduce a generic rule syntax that enables the combination of sensed/background
data using basic and advanced operators (i.e., logical, comparison, spatio-temporal,
and semantic operators), and considers various types of sensitive inferences (e.g.,
re-identification, sensitive profile or activity information). CaSPI is generic and re-
usable in several domains. It is capable of providing the user with a complete and
dynamic overview of risks to cope with the dynamicity of her context. The risk
overview is tailored to the user’s expertise, allowing all users to understand their
privacy situations. We developed a prototype to validate our proposal and we il-
lustrated its functioning from both back-end and front-end perspectives. We also
evaluated its performance by considering multiple cases. The results show that our
approach is scalable and achieves efficiency in terms of computation and storage,
even in worst-case scenarios. This increases its re-usability to support the user in
different contexts.
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Chapter 4

Privacy Risk Management

"What gets measured, gets managed."

– Peter Drucker

In today’s highly connected environments (e.g., IoT environments), multiple sys-
tems collect, exchange, store, and process large amount of fine-granular data in ev-
ery aspect of life. Such detailed data improve the delivery of advanced services
across a wide range of application domains (e.g., smart homes, cities, e-health).
However, the produced data is often privacy-sensitive for their users (e.g., location,
blood pressure), and its analysis allows data consumers to deduce sensitive infor-
mation about users, such as their behaviors, activities, preferences, and so on.

Therefore, users must be able to make appropriate data utility-privacy decisions
based on their situations and interests, in order to meet their privacy needs while
also maximizing the quality of services received in exchange for their data. How-
ever, involving users in the management of such trade-offs is challenging due to
the: (i) variety of expertise levels of users to express their needs and preferences;
(ii) dynamicity of user contexts and the privacy risks involved; and (iii) complexity
of reducing privacy risks to meet user needs without compromising main services.
This raises consequently the need for a solution that can assist users in optimizing
their data privacy decisions. Nonetheless, such a solution must be adaptive, scalable
and fast in order to support the user in various contexts.

To address these challenges, we propose in this chapter δ-Risk, a user-centric
multi-objective approach for context-aware privacy management in connected en-
vironments. Our approach features a new privacy risk quantification model to dy-
namically calculate and select the best data protection strategies for the user based
on her situation and preferences. Computed strategies are optimal in that they seek
to closely satisfy user preferences, while also maximizing data utility and minimiz-
ing the cost of protection. We implemented our proposed approach, evaluated its
performance in various scenarios, and formally studied its effectiveness. The re-
sults show that δ-Risk delivers scalability and efficiency (performance-wise). It also
provides the user with at least one best strategy per context.



112 Chapter 4. Privacy Risk Management

4.1 Introduction

Advances in the fields of ubiquitous computing (e.g., Internet of Things), sensing
technologies, and Big Data have allowed the fast evolution of smart connected en-
vironments. These environments are equipped with Cyber-Physical Systems (CPS),
such as sensor networks, capable of collecting and exchanging data that could be
later mined and processed in order to provide advanced services. Current CPS-
based applications are impacting numerous application domains including medical
(e.g., patient and elderly monitoring), building/housing (e.g., increasing occupants’
comfort, optimizing energy consumption), environmental (e.g., monitoring air and
water pollution levels), and so on.

Providing smart services requires collecting massive amounts of sensor data,
which are spatio-temporal in nature [26], such as individual’s location, patient’s vital
signs, and energy-consumption of user’s home. However, collected data are often
privacy-sensitive as their analysis exposes associated users to various privacy risks,
such as the risks of disclosing their routines and habits, health conditions, behaviors,
activities, preferences, and so forth [101], [102], [103], [104]. This can be harmful for
users if their data/information is misused by providers, sold to interested third par-
ties, or stolen by cybercriminals as providers are often victims of cyber-attacks that
lead to data/information breaches. Therefore, involving users in the control and
management of their data privacy is currently receiving tremendous attention from
both legal and technical perspectives (e.g., [11], [13], [21], [24]).

Nonetheless, achieving effective user involvement requires improving their pri-
vacy decision-making. To do so, we first focused on raising user awareness of the
privacy risks they face by proposing CaSPI in the previous chapter, which provides
a dynamic context-based risk overview tailored to the user’s expertise. This allows
all users to understand their implicit, direct and indirect privacy risks, and paves the
way to make informed data privacy decisions. However, the interests and privacy
needs vary from one user to another, and thus their privacy decisions. For instance,
a user may agree to take the risks and share fine-granular data in order to benefit
from all the services received in exchange for her data; nonetheless, another user
may need to reduce the risks but without compromising the main services for her.

Users might not always know the appropriate data protection measures to apply
in their situations. Indeed, over-protective measures limit the utility of shared data
to eliminate the risks, but could also downgrade the accuracy of services. Under-
protective measures may improve the accuracy of services, but might also lead to
privacy breaches. Therefore, optimizing data utility-privacy trade-offs according to
user needs, interests and contexts remains a key challenge to tackle. What makes
it more challenging is that user-decisions must sometimes be fast (i.e., in real-time),
and users may have different levels of expertise to express their needs and prefer-
ences. Therefore, the proposed solution needs to: (i) tailor the guided assistance to
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the user’s expertise; (ii) adapt the optimal data utility-privacy decisions to cope with
the dynamic nature of user contexts and preferences; and (iii) provide scalability and
computational/storage efficiency, which allows it to assist the user in different con-
texts, and operate on a variety of devices, including those with limited resources.

To address the aforementioned needs and challenges, we propose in this chapter
δ-Risk, a user-centric multi-objective approach for context-aware privacy manage-
ment in connected environments. Our approach is capable of assisting the user in
optimizing her data utility-privacy decisions, by providing dynamic and optimal
data protection strategies according to her context and preferences. Each of these
strategies intends to minimize the user’s risks in a way to meet her interests and
privacy needs, while also maximizing data utility and minimizing the cost of data
protection. To achieve this, the approach involves a new privacy risk quantifica-
tion model, that is used to calculate and select the best protection strategies. These
strategies are the best combinations of data protection levels in the relevant situa-
tion. Each level expresses the amount of protection to add to the data of a specific
sensed attribute before being released to data consumers. The assistance provided
by our approach is adapted to the selected user profile, which may vary from begin-
ner, intermediate, to advanced. To validate our proposal, we developed a Java-based
prototype and illustrated its functioning from both back-end and front-end perspec-
tives. We also evaluated its performance in different scenarios, and formally studied
its effectiveness in strategy identification. The results show that δ-Risk delivers scal-
ability and efficiency. In addition, it is always capable of: (i) identifying all possible
strategies that satisfy the relevant data utility-privacy trade-off; (ii) delivering the
best strategies; and (iii) providing at least one best strategy per context.

The rest of the chapter is organized as follows. Section 4.2 illustrates a scenario
that motivates our proposal and identifies the challenges to tackle. Section 4.4 details
our δ-Risk proposal and provides formal definitions of the key terms. Section 4.5
outlines the implementation phases and experimental protocol. Finally, Section 4.6
summarizes the chapter.

4.2 Motivating Scenario

We consider again the scenario describing Alice’s situation, represent the associated
overview of privacy risks, and consider a variety of interests/requirements for Al-
ice, in order to highlight the need for dynamic adaptation of data utility-privacy
decisions based on changes in the user context and preferences.

First, we remind the reader that Alice is a COPD patient and shares fine-granular
energy consumption and location data with an electricity and a healthcare provider
respectively, as illustrated in Figure 4.1. She receives several services in exchange



114 Chapter 4. Privacy Risk Management

for her data, which are respectively the list of personalized recommendations to re-
duce her energy consumption and bills, and other healthcare services (e.g., smart
ambulance service).

FIGURE 4.1: Alice’s Situation

When launching the risk reasoner over modeled context information, Alice re-
ceives an overview of the privacy risks involved in her situation as shown in Figure
4.2. Consider that this overview includes three risks, the first is associated with the
sharing of location data, and the other two with the sharing of energy-consumption
data. All risks are at their highest level (i.e., their values are 100%) as the associated
data pieces are shared in their fine-granular version (i.e., without protection).

FIGURE 4.2: Alice’s Privacy Situation

Once Alice is alerted, she may want to adapt her data privacy measures to reduce
the risks. Nonetheless, such an adaptation can be difficult for her as it also affects
the data utility, and thus the quality of associated services, which might be impor-
tant to her as well. For instance, stop sharing her location data can lead to eliminate
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risk-1, but also to lose the health services received in exchange. Therefore, assist-
ing the user in optimizing data utility-privacy decisions according to her situation
and preferences becomes essential. However, when considering such assistance, the
following needs emerge:

Need 1. Coping with data diversity. The user can share a variety of sensed data
with data consumers, which could be diverse in terms of attributes (e.g., location,
temperature, camera recordings) and types (e.g., scalar and multimedia data). The
risk manager should be capable of determining the appropriate levels of protection
to assign to the data of diverse attributes when optimizing data privacy strategies.

Need 2. Quantifying privacy risks and the global risk level. The risk manager should
be able to measure the impact of data protection on the risk values, and quantify
the resulting global risk level for the user. This helps in optimizing the amount
of protection to add in order to meet user preferences while also maximizing the
quality of associated services.

Need 3. Coping with the diversity of user preferences. The user preferences can
be related to three different aspects: data privacy protection, risk level, and service
importance. For example, Figure 4.3 describes three cases of preference specification
by Alice. In case-1, Alice wants to have a full privacy protection. In case-2, Alice
wants also to preserve the full quality of her health services. In case-3, Alice requires
also to reduce the global risk level to 50%. Therefore, the risk manager should be
capable of adapting the strategies to satisfy all user preferences of different aspects.

FIGURE 4.3: Privacy Needs and Interests of Alice

Need 4. Coping with protection function diversity and changes. The protection
function executed on data pieces may vary from one attribute to another (e.g., random-
noise function, generalization function). As well, the function assigned to an at-
tribute may change from one context to another. However, each protection function
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has its computational cost that impacts the overall computational cost of the data
protection process. Therefore, the risk manager should be able to consider the costs
of associated protection functions when optimizing the data protection strategies in
order to minimize the global cost of protection.

Need 5. Responding to user-time constraints. User decisions must sometime be fast
(i.e., in real-time). The risk manager should consequently be fast when identifying
the optimal data protection strategies.

However, when considering the aforementioned needs, the following challenges
emerge:

Challenge 1. Coping with user expertise: People may have different levels of ex-
pertise to properly express their preferences and interact with the system. The pro-
posed solution must therefore be user-friendly, allowing the guided assistance to be
tailored to the user’s expertise in order to maintain good quality of human-machine
interactions.

Challenge 2. Dealing with the dynamicity and context-dependency of data pro-
tection strategies: As user context changes, new privacy risks may emerge, while
others may become negligible. As well, the user’s preferences can change depend-
ing on her situation. Therefore, the proposed solution should always be capable of
providing adaptive optimal data protection strategies to cope with the dynamicity
of the user’s context and preferences.

Challenge 3. Delivering scalability and efficiency: The solution must be scalable,
i.e., handles reasoning over an increasing number of sensed attributes and privacy
risks. It should also maintain computational and storage efficiency in order to sup-
port the user in various contexts, and be operational on different types of devices,
including resource-constrained ones.

4.3 Data Privacy Background

Data privacy has received extensive attention over the last decade. Existing func-
tions for data protection vary from data perturbation to data restriction. Figure
4.4 illustrates a proposed classification of data protection functions, based on their
perspective of protection. This classification consists of two major categories: data
perturbation and data restriction functions. Data perturbation functions focus on
modifying original data by either hiding sensitive parts of it leading to user re-
identification, or distorting its value by injecting noise [118]. Accordingly, this cate-
gory regroups anonymization and noise-addition techniques. Anonymization func-
tions (e.g., k-Anonymity [119]), l-Diversity [120], t-Closeness [121], CASTLE [122])
focus on dissociating the link between data and related data owner, and preserv-
ing the full utility of the data value. To do so, anonymization operations mask the
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owner’s identity from the data by removing explicit identifiers, and decreasing the
granularity of quasi-identifiers using operations such as generalization and suppres-
sion [118], [123]. Noise-addition functions focus on distorting the value of the orig-
inal data by injecting additive noise. This impacts the utility of the data value, but
preserves the link between data and related owner (this link is critical if the owner
receives services in exchange for data). Random-noise [124], generalization [125],
data swapping [126], and differential privacy [127] are examples of noise-addition
functions.

FIGURE 4.4: Classification of Data Protection Functions

Data restriction functions aim at limiting data use by blocking access or encrypt-
ing inputs. This is achieved by either applying access-control or encryption opera-
tions to data pieces. Therefore, data restriction category includes access-control and
encryption techniques. Access-control functions (e.g., [128]–[130]) achieve privacy
protection through authorization models and access control policy operations. They
focus on limiting access to owner’s data by enabling only authorized parties to read
and/or manipulate data. Encryption functions (e.g., [128], [131]) vary from (i) secure
multiparty computation (SMC) functions, focus on aggregating inputs of distributed
entities to produce outputs while preserving the privacy of inputs; (ii) asymmet-
ric/symmetric encryption functions, use encryption keys to protect released data;
to (iii) public key infrastructure (PKI) functions, focus on delivering certificates to
communicating entities in order to secure the identification process.

4.4 δ-Risk Proposal

In order to address the needs and challenges stated in Section 4.2, we propose in
the following δ-Risk, a new user-centric multi-objective approach for context-aware
privacy risk management in connected environments. δ is a privacy parameter that
expresses the risk threshold, i.e., the maximum level of risk that the user accepts to
take in her relevant situation. The objective of this approach is to assist the user in
optimizing her data utility-privacy decisions, in a way to meet her preferences while
also maximizing data utility and minimizing the cost of protection. Accordingly,
δ-Risk provides a list of best protection strategies from which the user selects one
to implement in her relevant situation. In addition to her privacy preferences, the
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approach considers also the interests of the user (e.g., which services are important to
her), thereby making the strategies provided not only optimal but also meaningful.

Figure 4.5 illustrates an overview of our proposal, including related inputs and
outputs. δ-Risk receives as input:

(1) The set of sensed attributes in the relevant context (cf. Definition 5.1 in Section
3.4.1), c.SA = {a1; a2; . . . ; am} | m ∈N

(2) The lists of user preferences, which vary from privacy to service preferences (de-
tailed in the following subsection)

(3) The overview of privacy risks in the relevant context, Rc = {~r; v}, such that:

– ~r =
[
r1 r2 . . . rn

]
| n ∈ N is a risk vector representing the privacy

risks involved in c.

– v expresses the global risk level that the user takes in c. Rc.v is used to
interact with the δ value. Its quantification is detailed in Section 4.4.3.1.

The impact matrix, Wc, representing the impact value of sensed attributes on
the risks inferred (cf. Definition 9)

(4) The list of protection functions (cf. Definition 10) selected by the data protection
module of CaPMan to be executed on data values of sensed attributes.

FIGURE 4.5: Overview of the δ-Risk proposal

Consequently, δ-Risk outputs (5) the list of best data protection strategies that
might be adopted in the relevant situation. The user (6) selects one of these strate-
gies to be implemented, which remains valid as long as no changes occur in the
entries. Finally, (7) δ-Risk transmits the chosen strategy to the data protection module
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of CaPMan, which is responsible for protecting sensed data values prior to its re-
lease to data consumers. The δ-Risk principle is defined as follows: the global risk
level to maintain in the user context should not bypass the threshold δ. The δ value
can be fixed directly by the user (if she wants to limit the maximum level of risk),
or automatically computed when executing the risk manager in a way to maximize
the user’s privacy protection (i.e., δ is fixed at the lowest-possible value that satisfies
user preferences in the current situation). In what follows, we formally define an
impact matrix and a protection function.

Definition 9 (Impact Matrix). Let Wc be the impact matrix, expressing the impact
status of sensed attributes {a1, a2, ..., am} of c.SA on risks {r1, r2, ..., rn} of Rc.~r. Wc

is automatically identified by the risk reasoner module of CaPMan after performing
the risk reasoning process, such that:

Wc =


ω11 ω12 . . . ω1m

ω21 ω22 . . . ω2m
...

...
. . .

...
ωn1 ωn2 ... ωnm

 , where ωij =

0 if aj /∈ ri.SA′

1 if aj ∈ ri.SA′

We remind the reader that according to Definition 8, r : 〈 id ; value ; SI′ ; SA′ 〉.
The impact status ωij of an attribute aj on a risk ri is therefore equal to 1 only if aj is
included in the set of attributes associated with ri. �

Example 8. Alice is taking 3 risks in her situation, where the first is associated with her
location data and the two others with the energy-consumption data of her home. The risk
vector, set of sensed attributes, and impact matrix are consequently represented as follows:

Rc.~r =
[
r1 r2 r3

]
; c.SA = {a1 ; a2} ; Wc =

1 0
0 1
0 1


where a1 (i.e., Location) impacts only r1, and a2 (i.e., energy-consump) impacts r2 and r3.

Definition 10 (Protection Function). A protection function, f ∈ PF, is a protection
method that can be executed on data values of an attribute a ∈ c.SA prior to their
release to data consumers. f is a local function stored in the CaPMan system, such
that:

f : 〈 name ; categ ; Feature ; Param 〉, where:

• name denotes the textual name of f (e.g., generalization, random-noise)

• categ represents the category to which f belongs, such that:
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categ ∈ {noise-addition ; anonymization ; access-control ; encryption}

• Feature is the set of features characterizing f , including at least:

– cost, the computational cost of f in terms of processing time and memory
overhead

• Param represents the set of input parameters of f , including at least:

– SA′ v SA is the set of attributes to which f is associated

– P is the set of protection levels to achieve for the data of attributes in SA′ �

4.4.1 User Preferences

As previously stated, user preferences can range from privacy to service preferences.
From privacy standpoint, preferences can be related to: (i) the level of risk that the
user accepts to maintain; or (ii) the level of data protection for specific attributes
(e.g., 80% protection on location data). From service standpoint, the user can specify
her preferences regarding the services important to her, allowing the risk manager
to maximize the quality of the main services when optimizing the strategies. The
preferences can be represented as follows:

• Privacy Preferences:

1. The risk threshold δ, with a value between 0 and 1, where 0 indicates that the
user u requires maximum protection and does not accept to take any risk,
and 1 means that u accepts to take all risks and share fine-granular data to
preserve the full quality of services.

If the user does not specify a value for δ, this means that she wants to max-
imize her privacy protection while also considering the other preferences. δ

should be accordingly fixed at the lowest possible value.

2. The data protection levels enforced for specific sensed attributes. Users can
manually enforce specific protection levels to achieve for the data of related
attributes prior to its release. Let eP denotes the set of enforced data protection
levels. eP can also include protection levels extracted from pre-signed agree-
ments with data consumers. It can be represented as follows:

eP = {ep1; ep2; . . . ; epm} , where:

∀i ∈ [1; m], epi ∈ [0; 1] and ∃! ai ∈ c.SA : epi ∼ ai

• Service Preferences:

3. The services important to the user, expressed by a value of 1 (or 0 if not).
Each of the services is associated with one or more sensed attributes. Let S
denotes the set of services offered to the user in exchange of her data:

∀s ∈ S, s : 〈 SA′ ; li 〉 , where:
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– SA′ v c.SA represents the set of sensed attributes associated with s

– li denotes the level of importance of s to u. li has a primitive Boolean
data type with a value of 1 if s is important and 0 if not

4.4.2 User Profiles

Even though the approach is capable of considering a variety of user preferences,
people may have different levels of expertise to interact with the system, such as to
correctly express their preferences and/or select one of the best strategies to imple-
ment (cf. Challenge 1). In order to overcome this issue, we extend the user profiles
defined in Chapter 3 (cf. Section 3.4.3) in order to tailor the assistance provided to
the user’s expertise. We remind the reader of the three profiles defined:

• Beginner: The user is not familiar with her privacy, she does not know how to
specify her preferences, interpret her risks and the protection strategies provided.

• Intermediate: The user understands how to specify her preferences related to
sensitive inferences and services personalization, as well as limiting the maxi-
mum level of risk when needed. However, she only requires a detailed overview
of the significant risks to her, and a short list of best protection strategy options.

• Advanced: The user is expert in specifying her preferences, interpreting and ana-
lyzing her privacy situation. She can ask for full details about the significant and
non-significant risks involved in her situation, as well as more options of best
protection strategies to choose from.

Figure 4.6 details the extended characteristics of the user profiles, which are re-
lated to preference specification and protection strategy selection. The goal here is
to limit the level of user-interaction with the system, as well as the bunch of infor-
mation provided, according to her profile. The level of user-interaction is expressed
by a min-max number in Figure 4.6. We only discuss in what follows the additional
characteristics for each profile. For all profiles, δ is by default free (i.e., not specified),
which means that the user wants to maximize privacy protection. However, a begin-
ner has the option to manually specify a value of 0 or 1 for δ only during a fixed time
period, otherwise the system proceeds with the default δ (i.e., maximize protection).
The enforced data protection levels are only extracted from pre-signed agreements
with data consumers (if exist). Finally, the system selects automatically one of the
best protection strategies without requiring user intervention. An intermediate can
manually specify a value for δ ranging from 0 to 1, and has the option to personal-
ize important services to her. The enforced data protection levels are only extracted
from pre-signed agreements with data consumers (if exist). Finally, an intermediate
has to select one of the K-best strategies provided by the system during a fixed time
period, otherwise the system selects one of these strategies and implements it. For an
advanced, the system provides all intermediate options plus the possibility to enforce
specific data protection levels for her sensed attributes.
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FIGURE 4.6: Extended Characteristics of User Profiles

4.4.3 δ-Risk Operations

After collecting user preferences, computing adaptive optimal data protection strate-
gies to cope with the dynamicity of the user’s context and preferences becomes a
challenging endeavor (cf. Challenge 2). To address this challenge, the δ-Risk process
consists of two operations: protection strategy identification and best strategy se-
lection. Before detailing these operations, we start by formally defining a protection
strategy, data protection level, and a best protection strategy.

Definition 11 (Protection Strategy). A protection strategy, ~p ∈ Pc, is a protection
vector composed of an appropriate combination of data protection levels p1, p2, ..., pm

to be achieved for data of attributes {a1; a2; . . . ; am} of c.SA. Appropriate means
a combination that meets the privacy preferences of the user u (i.e., δ and eP) while
maximizing data utility. ~p ∈ Pc can be represented as follows:

~p =
[

p1 p2 ... pm

]
, where:

∀i ∈ [1; m], pi ∈ [0; 1] and ∃! ai ∈ c.SA : pi ∼ ai �

Definition 12 (Data Protection Level). A data protection level, p, expresses the
amount of protection to be achieved for the data values of an attribute a ∈ c.SA.
p is probabilistic with a value between 0 and 1, where 0 means that data is shared
in fine-granular version (i.e., without any protection), and 1 means that data is not
shared (i.e., highest level of protection). A value between 0 and 1 indicates the level
of protection that should be reached when executing a protection function f ∈ PF on
the data of a. Knowing that the way to achieve p depends on the selected protection
function. �
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Definition 13 (Best Protection Strategy). A best protection strategy, ~bp ∈ BPc, is an
appropriate strategy~p ∈ Pc, that also satisfies the service preferences of u (expressed
by ~wA), and has the lowest cost of protection (i.e., based on the corresponding com-
bination of protection functions). These constraints are expressed by the ranking score
assigned to ~p, which is computed as follows:

score(~p) = Rank(~p, ~wA, cPF)→N , where:

• ~wA =
[
wa1 ... wam

]
denotes the vector of weights assigned to attributes

{a1; . . . ; am} of c.SA. Each wai of ~wA expresses the weight of attribute ai ∈
c.SA, which is calculated based on the service preferences of the user. wai is
equal to the number of important services from the set S = {s1; . . . ; sn} to
which ai is associated:

∀ i ∈ [1; m], wai =
n

∑
k=1

αk | αk =

0 if ai /∈ sk.SA′

sk.li if ai ∈ sk.SA′

• cPF represents the set of costs of the protection functions selected by the system
to be executed on attributes of c.SA.

• Rank() expresses the ranking function. It takes as input a protection strategy
~p ∈ Pc, the vector of weights, ~wA, and the set of costs of selected protection func-
tions, cPF. It outputs the ranking score of ~p that is calculated according to the
distance between~p and ~wA, and the costs of the combined protection functions.
Algorithm 4 details the Rank() function.

Therefore, ~p is said to be one of the best protection strategies, ~bp ∈ BPc, only if it has
the highest ranking score:

∀ ~pi ∈ Pc : ~pi |= ~bp only if ∀~pj ∈ Pc, score(~pj) ≤ score(~pi) �

Figure 4.7 details the δ-Risk process. The first operation consists of identifying
all possible protection strategies (i.e., Pc):

• If no strategies result from this operation, this means that the combination of the
privacy preferences (i.e., δ and eP) is inconsistent (cf. Definition 14). In this case,
the system asks u to change one of these preferences and assigns a timeout period
for this query: (1) if u fails to respond before the timeout expires, the system
releases the value of δ, which leads to maximize the user-privacy protection; (2)
otherwise, the first operation is re-launched while considering user changes.

• If this operation generates several protection strategies, the second operation pro-
ceeds with ranking the resulting strategies using the Rank() function, and select-
ing the K-best strategies to be proposed to u.
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FIGURE 4.7: δ-Risk Operations

The δ-Risk process is by default executed once per user context unless a full con-
text similarity is detected (cf. Definition 4.1) and the user has chosen to re-apply
the actions of the previous similar context. However, within the same context, the
user may change her service preferences or the system may select new protection
functions, which requires recalculating new best strategies. To handle this while re-
ducing the computational overhead caused by the relaunch of the global process,
the system locally stores the protection strategies identified by the first operation (i.e.,
Pc) as long as no context change occurs. Therefore, if ~wA or cPF has been changed
within the same context, only the second operation is re-executed to select new best
strategies that cope with these changes.

Example 9. In order to illustrate the functioning of the process, assume that the first operation
generates the following two strategies:

P =

[
~p1

~p2

]
=

[
0.3 0.6
0.6 0.3

]
Assume also that attributes a1 and a2 have the same weight, and the cost of the protection
functions associated with a1 and a2 are respectively 2 and 1. When executing the Rank()
function (detailed in Section 4.4.3.3), the score of ~p2 will be higher than ~p1. ~p2 will be
therefore selected as the best strategy, which suggests applying 60% protection on data of a1

and 30% on data of a2.

Determining appropriate combinations of data protection levels requires first to
quantify privacy risks in order to study the impact of these levels on risk values;
then, to quantify the global risk level (i.e., Rc.v) in order to ensure that the resulting
combinations satisfy the δ-Risk principle. Therefore, we begin by formally quantify-
ing a privacy risk and the global risk level. Then, we detail the two δ-Risk operations.

4.4.3.1 Privacy Risk & Global Risk Level Quantification

Privacy risks (i.e., direct risks) have one or more associated sensed attributes. This
means that increasing the protection of attributes’ data will lead to minimize the risk
values. Consequently, the risk vector~r depends on the protection levels assigned to
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sensed attributes, ~p, and the impact matrix of attributes on risks, Wc. This can be
represented as follows:

~r = F(Wc ; ~p) (4.1)

Where:

• F is the risk quantification function, which takes an impact matrix and a pro-
tection vector as parameters, and returns the risk vector with the calculated
risk values.


r1.value
r2.value

...
rn.value

 = F




ω11 ω12 . . . ω1m

ω21 ω22 . . . ω2m
...

...
. . .

...
ωn1 ωn2 . . . ωnm

 ;


p1

p2
...

pm




Before exploring the risk quantification function (F ), we define the assumptions to
consider:

1. A (direct) privacy risk has at least one impacting shared attribute aj ∈ c.SA.
This means that:

∀ ~wi ∈Wc,
m

∑
j=1

ωij 6= 0

2. If no protection assigned to attributes impacting ri, the risk value, ri.value, is
equal to 1 (i.e., highest level).

3. If the full protection is assigned to attributes impacting ri, ri is negligible (i.e.,
ri.value = 0).

4. The higher the protection level pj impacting ri, the lower the value of ri.

Attributes may have different values of impact on a single risk, ranging from 0 to
1. For example, two attributes may impact a same privacy risk, however, the impact
value could be 40% for the first and 60% for the second attribute. The challenge of
determining the impact value of a specific attribute on a risk is addressed in future
work. In order to simplify the process, we consider in this study that attributes have
the same value of impact on a privacy risk (e.g., if two attributes are impacting the
risk, their impact values are equal to 0.5). Accordingly, we proceed with identifying
the impact values of attributes on risks according to the impact matrix Wc. Let W̃c

denotes the matrix of impact values. W̃c is computed as follows:
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W̃c =


ω̃11 ω̃12 . . . ω̃1m

ω̃21 ω̃22 . . . ω̃2m
...

...
. . .

...
ω̃n1 ω̃n2 . . . ω̃nm

 | ∀i ∈ [1, n],∀j ∈ [1; m], ω̃ij =
ωij

m

∑
k=1

ωik

(4.2)

Privacy risks are therefore quantified as follows:

~r = F(Wc ; ~p)

~r = 1− (W̃c×~p) (4.3)


r1.value
r2.value

...
rn.value

 = 1−




ω̃11 ω̃12 . . . ω̃1m

ω̃21 ω̃22 . . . ω̃2m
...

...
. . .

...
ω̃n1 ω̃n2 . . . ω̃nm

×


p1

p2
...

pm




Example 10. According to Examples 8 and 9, the best strategy delivered to Alice in her
situation is ~bp =

[
0.6 0.3

]
. Once implemented, the risk values will be minimized to:

r1.value
r2.value
r3.value

 = 1−


1 0

0 1
0 1

× [
0.6
0.3

] =

0.6
0.3
0.3



After quantifying the privacy risks, we now focus on how to measure the global
risk level in the user context, Rc.v. This level is used to interact with the value of δ in
order to determine whether or not it satisfies the δ-Risk principle. Accordingly, Rc.v
is equal to the maximum value of risk in Rc.~r. This can be formalized as follows:

Rc.v = max


r1.value
r2.value

...
rn.value

 | Rc.v ∈ [0, 1] (4.4)

4.4.3.2 Protection Strategy Identification

We detail in this section the first δ-Risk operation, which consists of identifying the
appropriate protection strategies (cf. Definition 11) that could be implemented in the
relevant user’s situation. To achieve this, we start from the δ-Risk principle, which
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states that the global risk level to maintain (i.e., Rc.v) should not bypass the thresh-
old δ. Accordingly:

Rc.v 6 δ (4.5)

⇒ max


r1.value
r2.value

...

rn.value

 6 δ

⇒


r1.value
r2.value

...
rn.value

 6 δ

However, maximizing the utility of attributes’ data requires assigning the lowest-
possible protection levels to these data. These levels are obtained when minimizing
risks to the highest acceptable values. Therefore, optimizing the data utility-privacy
trade-off necessitates considering only the combinations of data protection levels
that satisfy Rc.~r.value = δ. This results in the following linear system of n equations
with m unknowns:


r1.value
r2.value

...
rn.value

 = δ

⇒ 1− (


ω̃11 ω̃12 . . . ω̃1m

ω̃21 ω̃22 . . . ω̃2m
...

... . . .
...

ω̃n1 ω̃n2 . . . ω̃nm

×


p1

p2
...

pm

) = δ

⇒


ω̃11.p1 + ω̃12.p2 + . . . + ω̃1m.pm = 1− δ

ω̃21.p1 + ω̃22.p2 + . . . + ω̃2m.pm = 1− δ
...

...
...

...
...

ω̃n1.p1 + ω̃n2.p2 + . . . + ω̃nm.pm = 1− δ

(4.6)
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To solve the resulted system, we use the Gauss-Jordan Elimination (GJE) method,
an implicit pivoting strategy that performs row operations to convert a matrix into
a reduced row echelon form [132]. This method has been widely used in various
domains to solve systems of linear equations, such as for traffic control manage-
ment [133], image change and climate prediction [134], [135], cluster and grid com-
puting [136], [137], and location privacy [138]. Solving the linear system using the
GJE method can result in three possible cases: (1) system is inconsistent, resulted
when the δ/eP combination is inconsistent, which does not generate any solution;
(2) system independent, resulted when attributes are independent, which generates
exactly one solution; and (3) system dependent, resulted when attributes are depen-
dent, which generates an infinite number of solutions.

The inconsistency problem presented in case (1) is typically resulted when the
system contains at least one equation that includes only enforced protection levels (i.e.,
{p1; . . . ; pm} v eP). This leads to limiting the options for δ to one possible value,
and will therefore entail an inconsistency if the specified δ value by the user/system
does not match the acceptable one. Definition 14 discusses this constraint.

Definition 14 (δ/eP Inconsistency). Let {p1; p2} be the protection levels to be as-
signed to attributes {a1; a2} v c.SA. Assume that risk ri of~r is impacted only by
{a1, a2}. The linear system will therefore include the following equation: ω̃11.p1 +

ω̃12.p2 = 1− δ. Accordingly, the δ/eP combination is said to be inconsistent only if:

{p1; p2} v eP and δ 6= 1− (ω̃11.p1 + ω̃12.p2) �

Reasoning Algorithm. Algorithm 2 presents the protection strategy identification
algorithm that takes as input the impact matrix, Wc[][], the δ value (specified by the
user or left empty), and the array of enforced protection levels, eP[]. It outputs the
array of identified protection strategies, Pc[][]. This is done following one major step
that varies according to the δ value. Indeed, the process starts by checking the value
of δ, which can be specified by the user (i.e., δ ∈ [0; 1]) or left empty (i.e., the user
asks for maximizing privacy protection).

• Step 1 (lines 3-5): If δ is equal to 0 (line 3), this means that the user does not
accept to take any risk and the data protection levels must consequently be at their
highest levels. The process calls the createFullProtStrategy function that returns
the full protection strategy, ~p =

[
1 1 . . . 1

]
(line 5).

• Step 2 (lines 6-8): If δ is equal to 1 (line 6), this means that the user agrees to
take all risks and share fine-grained data in order to maintain the full quality of
services received in return. The data protection levels should thus be left at their
default values. The process calls consequently the createDe f aultStrategy function
that assigns the enforced value to pj of ~p if pj ∈ eP, or a value of 0 if not (line 8).
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• Step 3 (lines 11-17): If δ was not specified by the user (i.e., equals to NULL), this
means that the user wants to maximize her privacy protection while consider-
ing other preferences. The process calls the getLowestPossibleDelta() function (cf.
Algorithm 2) accordingly, which returns the lowest-possible δ value that can be
considered in the relevant situation. This function can return a value greater than
1 (line 14) if the linear system has generated inconsistencies for all possible δ val-
ues, which will outputs an empty array of strategies (line 17). Otherwise, the
minimized value of δ ∈ [0; 1] is adopted and the process proceeds accordingly.

• Step 4 (lines 18-34): If δ ∈]0; 1[ (line 18), which can be specified by the user or iden-
tified by the system when calling the getLowestPossibleDelta() function, the pro-
cess builds the linear system by calling the buildSystem() function and stores the
resulted system in the two-dimensional array System[][] (line 20). Then, it solves
the system using the GJE method by calling the solveSystemGJE() function (line
21). This function returns a reduced row echelon form stored in M[][]. Follow-
ing that, the process checks for inconsistency by calling the checkInconsistency()
function, which returns a Boolean value stored in inconsistency (line 22). In fact,
the system can generate inconsistencies here only when the user specifies δ.

– If inconsistency equals False, this means that the system is consistent. The pro-
cess checks attribute dependency in M[][] by calling the checkDependency()
function, which returns a Boolean value stored in the variable dependency (line
24).

* If dependency equals False (line 25), this means that attributes are indepen-
dent, and the system results in one exact solution for each unknown pj value,
leading to create one protection strategy. This procedure is done by calling
the createIndependentStrategy() function (line 27).

* If dependency equals True, this means that attributes are dependent, and the
system has an infinite number of possible solutions. The process calls accord-
ingly the createDependentStrategies function (line 20), which starts by identi-
fying existing dependencies among the unknown pj items. Then, it performs
two operations on each dependent pj item. The first operation prioritizes the
attribute of the selected pj, by assigning a 0 value to pj, which means that
no protection is applied on aj. The second operation assigns a value of 1
to pj (i.e., stop sharing aj), which gives priority to the associated dependent
attributes. Next, both operations calculate the remaining p items that are de-
pendent from pj. This function consequently identifies several appropriate
strategies, where each emphasizes at least one dependent attribute.

– If inconsistency equals True (i.e., δ/eP combination is inconsistent), the process
generates an empty array of strategies.
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Algorithm 2: Protection Strategy Identification
Input: Wc[][], δ, eP[]; // impact matrix, risk threshold, and the enforced data protection levels;
Output: Pc[][]; // the array of protection strategies;

1 Variables: System[][], M[][], inconsistency, dependency;
2 begin
3 if (δ == 0) then
4 // user requests the maximum privacy protection;

5 Pc← createFullStrategy(1); // returns a strategy comprised of p values equal to 1 (i.e.,

100% data protection);

6 else if (δ == 1) then
7 // user accepts to share fine-granular data;

8 Pc← createDe f aultStrategy(0, eP[]); // returns a strategy comprised of the default

protection levels (i.e., p ∈ eP[] OR 0) ;

9 else
10 // δ value is not specified by the user OR δ ∈]0; 1[ ;

11 if (δ == NULL) then
12 // δ is not specified by the user (i.e., maximize protection);

13 δ← getLowestPossibleDelta(Wc[][], eP[]); // returns the lowest-possible value

for δ that meets eP preferences (i.e., it does not generate inconsistencies);

14 if (δ > 1) then
15 // this can be resulted from the getLowestPossibleDelta() function;
16 // it means that the linear system has generated inconsistencies for all possible δ values ->

the user should change at least one of the enforced protection levels in eP;

17 Pc = EMPTY; // the resulted set of strategies is therefore empty;

18 else
19 // δ ∈]0; 1[ specified by the user or identified by the system (δ minimized);

20 System← buildSystem(Wc[][], δ, eP[]); // build the linear system;

21 M← solveSystemGJE(System); // solves the linear system using the GJE method;

22 inconsistency← checkInconsistency(M); // returns True if δ/eP combination is

inconsistent;

23 if (inconsistency == False) then
24 dependency← checkDependency(M[][]); // returns True if system is

dependent;

25 if (dependency == False) then
26 // attributes are independent (one exact solution);

27 Pc← createIndependentStrategy(M[][], eP[]);
28 else
29 // attributes are dependent (infinite number of solutions) ;

30 Pc← createDependentStrategies(M[][], eP[]);

31 else
32 // the linear system is inconsistent and the user must change δ OR p ∈ eP;
33 // the inconsistency occurs here only if the user has specified a value for δ ∈]0; 1[;

34 Pc = EMPTY; // the set of strategies is therefore empty ;

35 return Pc[][]

Algorithm 3 details the getLowestPossibleDelta() function that is used to identify
the lowest-acceptable value of δ in the relevant user’s situation. It receives as input
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the impact matrix, Wc[][], and the array of enforced protection levels, eP[]. It outputs
the minimized value of δ. This is done following two major steps:

• Step 1 (line 3): It sets the value of δ to 0 (start with the lowest value for δ).

• Step 2 (lines 4-13): While the value of δ is lower than or equal to 1, the process
proceeds with the following sub-steps:

– Step 2.1 (line 5): It builds the linear system by calling the buildSystem() function
and stores the resulted system in the array System[][].

– Step 2.2 (line 6): It solves the system using the GJE method by calling the
solveSystemGJE(), which returns a reduced row echelon form stored in M[][].

– Step 2.3 (lines 7-13): It checks for inconsistencies in M[][] by calling the function
checkInconsistency(), which returns a Boolean value stored in inconsistency.

* If inconsistency equals False (line 8), this means that the relevant δ value
leads to have a consistent system, making it the lowest-acceptable value in
the relevant situation.

* If inconsistency equals True (line 11), this means that the combination of the
relevant δ value with the enforced data protection levels of eP is inconsis-
tent (cf. Definition 14). The process increments accordingly the value of δ

by 0.1 and re-enters the while loop (line 13). In fact, we chose to increase the
δ value by 0.1 in order to address the trade-off between minimizing δ and
reducing the computational cost caused by the total number of iterations
required to find the lowest-acceptable value. This satisfies the performance
requirements stated in Challenge 3.

Algorithm 3: getLowestPossibleDelta Method (cf. Algorithm 2 - Line 13)
Input: Wc[][], eP[]; // impact matrix, and the array of enforced data protection levels;
Output: δ; // the lowest-possible value for δ;

1 Variables: System[][], M[][], inconsistency;
2 begin
3 δ = 0;// set the δ value to 0 to start with;

4 while (δ <= 1) do
5 System← buildSystem(Wc[][], δ, eP[]); // build the linear system with the fixed δ;

6 M← solveSystemGJE(System); // solves the linear system using the GJE method;

7 inconsistency← checkInconsistency(M); // returns True if the system is inconsistent;

8 if (inconsistency == False) then
9 // this means that the current δ is the lowest-possible value in relation to eP;

10 break;

11 else
12 // the linear system is inconsistent -> increase the value of δ;

13 δ = δ + 0.1; // increment δ by 0.1;

14 return δ
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We only detail in this chapter the pseudo-code of the main process, including the
minimization of δ. However, the pseudo-codes of the remaining functions called in
Algorithm 2 are detailed in the prototype source code provided in Section 4.5.

4.4.3.3 Best Strategy Selection

The second operation of δ-Risk is performed when the number of strategies resulted
from the first operation is greater than 1 (i.e., |Pc| > 1). At this point, ranking
the strategies and selecting the K−best ones to be proposed to the user becomes
a need. K expresses the number of best protection strategies, i.e., those with the
highest ranking score (cf. Definition 13). However, fixing the maximum value of K is
challenging as many factors may contribute to the perceived choice overload, such
as the number of options, time constraints, and user expertise [139]. Accordingly, we
assign the following default values to max(K) based on user profiles: 1 for beginner,
3 for intermediate, and 5 for advanced. Nevertheless, the value of max(K) can be
changed manually by the user, and also updated by the system administrator based
on user interactions.

The best protection strategies should best meet the privacy and service prefer-
ences of the user (cf. Section 4.4.1, while also minimizing the cost of data protection.
To achieve this, the current operation ranks the resulting strategies (i.e., Pc) based
on the user-service preferences, expressed by ~wA, and the costs of protection func-
tions selected by the data protection module of CaPMan, cPF. The ranking process
is carried out by the Rank() function based on the following principle: the highest
ranking score corresponds to the strategy with the shortest distance to ~wA and the
lowest cost of protection.

Reasoning Algorithm. Algorithm 4 presents the Rank() function, which takes as
input the array of protection strategies, Pc[][], the array of weights assigned to at-
tributes, wA[], and the array of protection function costs, cPF[]. It outputs the array
of K−best protection strategies, BPc[][]. This is done following three major steps:

• Step 1 (lines 3-14): It identifies the strategies with the shortest distance to wA[]:

– Step 1.1 (line 3): It calls the sortAndFilter() function, which identifies the num-
ber of different weight values, sort the array wA[] in a descending sequence,
and removes the redundant values. The resulting array is stored in sortedWA[].

– Step 1.2 (lines 4-10): For each distinct weight value (line 4), the process checks
the number of attributes having this weight using the attributesSimilarWeight()
function (line 5). In fact, having several attributes with the same weight re-
quires considering strategies that prioritize each of them separately. Hence, for
each of these attributes (line 7), the process looks for the strategy that includes
the related minimal protection value (line 9), and adds the attribute’s weight to
the score of the relevant strategy (line 10).
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– Step 1.3 (lines 11-14): The process then filters the resulting array of strategies
so that only the strategies with the highest score are considered. This will ul-
timately lead to strategies that include the lowest-possible protection levels as-
signed to attributes based on their importance to the user. These strategies are
said to have the shortest distance to wA[].

• Step 2 (lines 15-18): It calculates the cost of protection of the resulting strategies.
The cost of a strategy is equal to the sum of costs of the protection functions asso-
ciated to the attributes protected by this strategy (i.e., attributes having protection
levels higher than 0 in the relevant strategy).

• Step 3 (lines 19-21): It adds the calculated costs to the scores of strategies. Then,
only strategies with the highest ranking score are selected and added to the array
BPc[][], which will consequently include the best strategies that could be imple-
mented in the current situation (lines 20-21).

Algorithm 4: Best Strategy Selection - Rank() function
Input: Pc[][], wA[], cPF[]; // the array of protection strategies, vector of weights, and the

array of costs of protection functions;
Output: BPc[][]; // the array of best protection strategies;

1 Variables: sortedWA[], A[], minP, Score[][], maxScore, CostPc[][];
2 begin
3 sortedWA← sortAndFilter(wA[]); // sorts wA[] in a descending sequence and

removes redundant values;
4 foreach weight ∈ sortedWA do
5 A← attributesSimilarWeight(wA[], weight);
6 // the array A will include attributes having the same weight weight;
7 foreach a ∈ A do
8 minP← getMinP(Pc[][], a); // minimal protection level to be assigned to a;
9 Score← addScore(Pc[][], minP, a, wA[]); // updates the score of strategies

having minP;

10 maxScore← getMaxScore(Score[][]); // returns the maximal score;

11 for k← 0 to |Score| do
12 if (Score[k][1] ! = maxScore) then
13 Pc← deleteStrategy(k); // keeps only strategies with the highest score;

14 for i← 0 to |Pc| do
15 for j← 0 to |Pc[0]| do
16 if (Pc[i][j] ! = 0) then
17 CostPc[i][1] = CostPc[i][1] + cPF[j]; // calculate the cost of protection

for each strategy;

18 Score← addCostToScore(Score[][], CostPc[][]); // adds the cost to the strategy score;

19 maxScore← getMaxScore(Score[][]);
20 BPc← selectBestStrategies(Pc[][], Score[][], maxScore); // BPc includes only the

best strategies, i.e., the strategies with the highest score;

21 return BPc[][]
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4.5 Implementation & Evaluation

In this section, we present the implementation phases of the δ-Risk proposal from
the back-end and front-end perspectives. Then, we evaluate the performance of the
risk reasoner in multiple cases, and we formally study its storage complexity and
effectiveness in strategy identification.

4.5.1 δ-Risk Implementation

In order to validate our δ-Risk solution, we developed a Java-based prototype and
embedded it on the user’s mobile device. As illustrated in Figure 4.8, the prototype
performs continuous reasoning over the user’s situation and generates dynamic pro-
tection strategies based on user preferences and contexts. The source code of the
δ-Risk prototype is accessible online for download via this link1.

FIGURE 4.8: Implementation of the δ-Risk proposal

In what follows, we illustrate the prototype operation in the back-end. Then, we
present the front-end mockups of the associated mobile application. It is important
to note that this application is currently under development. We only represent here
the mockups of the respective user interfaces.

4.5.1.1 Back-end: Java-based Prototype

We consider the privacy situation of Alice described in Section 4.2 to showcase how
the system works. Figure 4.9 presents the overview of risks that has been resulted
from the execution of the CaSPI reasoner (cf. Chapter 3). Assume that after alerting
Alice about these risks, she adjusted her privacy preferences and accepted to take
a maximum risk level of 60% in her current situation, as shown in Figure 4.10. We
also illustrate in this figure the impact matrix, Wc, of location and energy-consump
attributes on the risks, which is automatically calculated by the risk reasoner. The

1https://spider.sigappfr.org/research-projects/delta-risk/

https://spider.sigappfr.org/research-projects/delta-risk/
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δ-Risk process is consequently executed, and generates one best strategy that sug-
gests achieving 40% protection for energy-consumption data and 40% protection for
location data (cf. Fig.4.10).

FIGURE 4.9: Alice’s Privacy Situation

FIGURE 4.10: Alice Preferences, Impact Matrix, and Resulted Strat-
egy

4.5.1.2 Front-end: User Interfaces

In this section, we present the mockups of the mobile application user interfaces
related to preference specification, protection strategy selection, and the global pri-
vacy situation. The mockups were designed using Inkscape graphics editor 1.02.
Figure 4.11 shows the preference specification interface, which varies according to
the user’s profile. A beginner user has only the option to set the value of the risk
threshold (δ) to 0 (i.e., maximum protection) or 1 (i.e., maximum quality of services)
as previously described in Section 4.4.2. An intermediate user can personalize her
sensitive information (see in Figure 3.14), services, and enforce a value for δ rang-
ing from 0 to 1. An expert user has all intermediate properties plus the possibility to

2https://inkscape.org/

https://inkscape.org/
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enforce a specific data protection level to a particular sensed attribute. For all user
profiles, if no value is specified for δ, the user asks therefore to maximize her privacy
protection while also considering the other preferences.

FIGURE 4.11: Preference Specification Interface

Upon the selection of the "personalize your services" button in the preferences in-
terface, the service preferences interface is loaded, and the user has the ability to se-
lect which services are important to her. This allows consequently the risk manager
to maximize the quality of important services to the user in the strategies provided.

FIGURE 4.12: Service Preference Specification Interface

When a change occurs in the user situation, the risk reasoner is launched to infer
the risks involved, and the δ-Risk manager is executed subsequently to identify the
best protection strategies based on user situation and preferences. Once the process
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is complete, intermediate and advanced users receive a notification to select one of
the best data protection strategies that could be implemented in their situations.
Figure 4.13 illustrates the strategy selection interface. As previously discussed, a
timeout period is assigned to this query, such that if the user fails to respond within
this period of time, the system selects randomly one of the strategies. The default
maximum number of strategies provided is fixed at 3 for an intermediate and 5 for an
advanced as stated in Section 4.4.3.3. Nonetheless, the user can manually change this
variable by sliding the relative cursor.

FIGURE 4.13: Protection Strategy Selection Interface

FIGURE 4.14: Global Privacy Situation Interface
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The user can access at anytime the summary of her global privacy situation in-
terface illustrated in Figure 4.14, which includes the risk summary (i.e., risk number
and global risk level) and the protection strategy selected. She can also change the
strategy selected by clicking on the "select your protection strategy" button.

4.5.2 Performance Evaluation

The objective here is to evaluate the ability of the approach, performance-wise, to
operate in various scenarios, including worst case ones, and to meet the needs of
scalability and efficiency (in time and space) outlined in Challenge 3. To achieve
this, we start by considering four cases that measure the impact of the following
metrics on performance: (i) the number of privacy risks involved in a single user
situation, |Rc.~r|; (ii) the number of sensed attributes in a single user situation, |c.SA|;
(iii) the level of dependency of sensed attributes in the impact matrix Wc; and (iv)
the complexity of the strategy ranking process. Then, we formally study the storage
complexity of the proposal. The performance is evaluated based on two criteria: the
total execution time and memory usage of one iteration. The tests are conducted
on a machine equipped with an Intel i7 2.80 GHz processor and 16 GB of RAM.
The chosen execution value for each scenario is an average of 10 sequenced values.
We select the peak value of the in-use memory for each scenario when measuring
memory usage.

Case 1: We study here the impact of privacy risks on performance by progressively
increasing the number of risks inferred for the user in her situation. We limit the
number of sensed attributes to 4, the level of dependency of attributes in Wc to 4
(i.e., all attributes are dependent), the δ value to 0.6, the vector of weights ~wA =[
1 2 1 2

]
, and the number of protection functions to 4 with the following costs

cPF = {1, 3, 1, 1}. We execute the δ-Risk process 7 times, taking into account the
following number of risks for each iteration: 1; 10; 50; 100; 500; 1000; and 2000.
Figure 4.15 shows that the number of privacy risks has a quasi-linear impact on the
total execution time, with an average of 1 s up to 100 risks, 1.5 s for 500 risks, 2.2 s for
1000 risks, and 3.4 s for 2000 risks. The evolution is similar for the RAM consumption
(see in Figure 4.15), with an average of less than 220 MB up to 100 risks, 250 MB for
1000 risks, and 290 MB for 2000 risks. This consequently highlights the importance
of using the GJE method to solve the linear system. It is important to note that in
practice, the number of risks inferred in a given situation will not practically exceed
100 for the user.
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FIGURE 4.15: Case 1: Privacy Risks Impact

Case 2: We investigate here the impact of user-sensed attributes in a single situa-
tion on performance. We limit the number of risks to 100, the maximum level of
dependency of attributes in Wc to 4 (i.e., each four attributes are dependent from
each others), the δ value to 0.6, the vector of weights the vector of weights ~wA =[
1 2 1 2 0 . . . 0

]
, and the number of protection functions to 4 with the fol-

lowing costs cPF = {1, 3, 1, 1}. We execute the δ-Risk process twelve times, taking
into account the following number of sensed attributes for each iteration: 1; 5; 10;
20; 30; 40; 50; 60; 70; 80; 90; and 100. Figure 4.16 shows that the number of sensed
attributes has a quasi-linear impact on the total execution time, with an average of
1 s up to 10 attributes, 2 s up to 50 attributes, and 4 s up to 100 attributes. The evo-
lution is similar for the RAM consumption (see in Figure 4.16), with an average of
less than 200 MB up to 10 attributes, 1000 MB up to 40 attributes, and 2000 MB up
to 100 attributes. It is important to note that in practice, the number of user-sensed
attributes in her situation will not practically exceed 50.

FIGURE 4.16: Case 2: Attributes Impact

Case 3: We evaluate here the influence of the attribute dependency level on per-
formance. To do so, we limit the number of sensed attributes to 50, the vector of
weights ~wA =

[
1 2 1 2 0 . . . 0

]
, the δ value to 0.6, and the number of pro-

tection functions to 4 with the following costs cPF = {1, 3, 1, 1}. We execute the
δ-Risk process six times, taking into account the following maximum levels of at-
tribute dependency for each iteration: 1 (i.e., attributes are independent); 2; 4; 6;
8; and 10. According to figure 4.17, the number of sensed attributes has a quasi-
constant impact on the total execution time, with an average of 1 s up to a maximum
dependency level of 6. Then, the impact tends to be exponential with an average
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of 9s for a dependency level of 8, and 1227s for 10. The evolution is similar for the
RAM consumption (see in Figure 4.17), with an average of less than 1000 MB up to
a maximum dependency of 6, and then tends to be exponential, reaching an average
of 9500 MB up to a dependency level of 10. However, it is important to note that
it is almost impossible to combine more than six sensed attributes in order to reveal
certain sensitive information about the user that could not be revealed otherwise.

FIGURE 4.17: Case 3: Attribute Dependencies Impact

Case 4: We study here the impact of the strategy-ranking complexity on perfor-
mance. To do so, we limit the number of risks to 100, the number of attributes to 50,
the maximum level of dependency of attributes in Wc to 4 (i.e., each four attributes
are dependent from each others), the δ value to 0.6, and the number of protection
functions to 5. Then, we only execute the ranking function, Rank(), eight times,
varying each time the sets of attribute weights, ~wA, and costs of protection func-
tions, cPF. As shown in Figure 4.18, the complexity of the strategy ranking pro-
cess has no impact on the system’s performance. The total execution time remains
quasi-constant in all scenarios with an average of less than 500 ms. The same for
the RAM consumption with an average of 300 MB. This emphasizes consequently
the importance of storing the appropriate protection strategies resulting from the first
δ-Risk operation (i.e., Pc) as long as no changes occur in the user’s context.

FIGURE 4.18: Case 4: Strategy Ranking Complexity Impact

THEOREM 2. The δ-Risk process maintains low storage complexity.

PROOF. The system stores locally the information characterizing only the current
user situation. The amount of local storage space required by the system depends
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on: (i) the number of individuals/relationships constituting the user context (indi-
viduals represents the user’s sensed and background-oriented attributes); (ii) the
preference specifications by the user; (iii) the number of risks involved in the user’s
situation; and (iv) the number of appropriate strategies identified in the current sit-
uation. This results consequently in a linear storage complexity of O(n). Therefore,
even in the worst case scenario of a large context size (e.g., 10,000 individuals/rela-
tionships) and a high number of risks (e., 1,000 risks), the system maintains a low
storage complexity. �

Discussion. The experiments and studies conducted show that δ-Risk is scalable,
and maintains computational and storage efficiency (cf. Challenge 3). In fact, in the
worst case scenario of 1000 privacy risks, 50 sensed attributes with a maximum de-
pendency level of 6, and 5 different protection functions assigned to these attributes,
the solution is able to respond and provide strategies within an average time of 3 s
and an average RAM space of 1200 MB. Nonetheless, if we consider a more quasi-
real scenario of 20 risks, 5 sensed attributes with a dependency level of 3, and 5
protection functions, the solution responds within an average time of 550 ms and an
average RAM space of 180 MB. Therefore, our proposal is capable of operating and
assisting the user in different situations. This increases its re-usability for a variety of
applications, including those requiring real-time assistance, and enables it to operate
on a variety of devices, including those with limited resources.

4.5.3 Effectiveness in Strategy Identification

In this section, we formally study the effectiveness of the δ-Risk proposal in identify-
ing always the best data protection strategies for the user according to her situation
and preferences.

THEOREM 3. The δ-Risk process is always capable of identifying all possible appro-
priate strategies in the current situation, {~p1; ~p2; . . . ; ~pn} v Pc (i.e., strategies that
meet Rc.v = δ).

PROOF. The proof consists of two cases, namely a simple and a generic case.

SIMPLE CASE. Consider that the user has only one sensed attribute, such that c.SA =

{a1}. According to Assumption 1 stated in Section 4.4.3.1, all (direct) risks in-
evitably impact the attribute a1, which means that Wc is composed of a single vec-
tor with values of 1. Consequently, the resulting linear system consists of a sin-
gle equation p1 = 1− δ (cf. Equation 2.6), generating one protection strategy
~p =

[
p1

]
=

[
(1− δ)

]
, which will therefore constitute the best strategy to be deliv-

ered, ~bp = ~p =
[
(1− δ)

]
.
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GENERIC CASE. Consider that the user has m sensed attributes in her context c,
c.SA = {a1; . . . ; am}, and the number of risks inferred is n, Rc.~r =

[
r1 . . . rn

]
.

Wc will therefore be a n×m matrix of {0,1} values expressing the impact of attributes
of c.SA on risks of Rc.~r. According to Equation 2.6, this results in a linear system of
n equations with m unknowns (i.e., p1; p2; . . . ; pm). The process will consequently
proceed to identify the appropriate strategies based on the value of δ:

• If δ = 0, this means that the user does not accept to take any risk and the data
protection levels must be at their highest levels. All risks must consequently be
eliminated, such that Rc.~r =

[
r1 . . . rn

]
=

[
0 . . . 0

]
, which leads, according

to Equation 2.3, to the full protection strategy ~bp = ~p =
[
1 . . . 1

]
.

• If δ = 1, this means that the user agrees to take all risks and share fine-grained
data in order to maintain the full quality of services received in return. Conse-
quently, no additional protection is needed, and the data protection levels should
be left at their default values. The output will therefore consist of the following
strategy:

~bp = ~p =
[

p1 ... pm

]
, where:

∀j ∈ [1; m], pj =

0 if pj /∈ eP

val ∈ ]0; 1] if pj ∈ eP, such that pj = val

• If δ is not specified by the user (i.e., equals to NULL), this means that the user
wants to maximize her privacy protection while also considering other privacy
preferences (i.e., the enforced data protection levels). Accordingly, the process
identifies the lowest-possible value for δ that meet current needs.

– If the process fails, which occurs when the linear system generates inconsis-
tencies for all considered δ values due to the δ/eP combination (cf. Definition
14), the process outputs in this case an empty array of strategies (i.e., Pc = ∅).
Following that, the user is asked to adjust her privacy preferences, and a time-
out period is assigned to this task. If the user fails to respond before the time-
out expires, the system sets the value of δ to 0, and the full protection strategy
is implemented.

– Otherwise, the identified value for δ is adopted in the current situation, and
the process proceeds accordingly.

• If δ ∈ ]0; 1[, this means that the user agrees to take risks to preserve as much as
possible from the quality of services received in exchange for her data, however,
the risk values should not bypass the specified threshold (i.e., δ). Accordingly,
the process identifies all possible appropriate strategies that optimize the data
utility-privacy trade-off (i.e., strategies that meet Rc.v = δ) using the Gauss Jor-
dan Elimination method to solve the linear system, such that:
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ω̃11 ω̃12 . . . ω̃1m 1− δ

ω̃21 ω̃21 . . . ω̃2m 1− δ
...

...
. . .

...
...

ω̃n1 ω̃n1 . . . ω̃nm 1− δ

→ M =


α11 α12 . . . α1m v1

α21 α22 . . . α2m v2
...

...
. . .

...
...

αn1 αn2 . . . αnm vm



The process results in three possible cases:

1. System is inconsistent, which occurs when the δ/eP combination is inconsis-
tent (cf. Definition 14). At this stage, the user is asked to either release the
value of δ (if specified) or one of the impacting p ∈ eP. The δ-Risk process
is re-launched accordingly with the updated δ/eP, or with δ = 0 in the case
when the assigned timeout period for this task expires without user response.

2. Attributes are independent, and the system has a unique solution:

M =


1 0 . . . 0 v1

0 1 . . . 0 v2
...

...
. . .

...
...

0 0 . . . 1 vm


This yields a single appropriate strategy, which will thus constitute the best
strategy to deliver: ~bp = ~p =

[
v1 v2 . . . vm

]
.

3. Attributes are dependent, and the system has an infinite number of solutions:

M =


α11 α12 . . . α1m v1

α21 α22 . . . α2m v2
...

...
. . .

...
...

αn1 αn2 . . . αnm vm

 , where:

∃ ~αi ∈ M and ∃ j, k ∈ [1; m] : αij× αik 6= 0

At this point, the process iteratively assigns the lowest protection level (i.e.,
0) to each dependent attributes (e.g., aj, ak) and calculates the remaining pro-
tection levels according to the matrix of dependencies M. After, it repeats
the same iterations but with a value of 1, which stands for the highest protec-
tion level. When completed, the process identifies several appropriate strate-
gies, {~p1; ~p2; . . . ; ~pn} v Pc, where each emphasizes at least one dependent
attribute.
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Therefore, for all δ values, the process is always capable of calculating all possible
appropriate strategies that lead to optimizing the data utility-privacy trade-off in the
current user situation. �

THEOREM 4. The δ-Risk process is capable of always selecting the best data pro-
tection strategies to be delivered to the user.

PROOF. After identifying all possible appropriate strategies, the process executes
the ranking function, Rank(), in order to select only the best ones, which stands for
the strategies that best meet user preferences and minimize the cost of protection.
The Rank() function ranks the strategies according to the service preferences of the
user (i.e., ~wA) and the costs of the selected protection functions (i.e., cPF). It assigns
the highest ranking score to the strategy with the shortest distance to ~wA and the
lowest cost of protection. Therefore, for each δ value:

• If |Pc| = 1, the identified strategy is automatically chosen as the best one.

• If |Pc| > 1, the process ranks the strategies and selects the K-best ones to be
delivered to the user. �

THEOREM 5. δ-Risk provides the user with at least one best data protection strategy
per context.

PROOF. As proved in the preceding theorems, the process is capable of providing at
least one best strategy in all existing cases. �

4.6 Summary

We present in this chapter our proposed user-centric multi-objective approach for
context-aware privacy management in connected environments (δ-Risk). This ap-
proach features a new privacy risk quantification model to dynamically calculate
and select the best data protection strategies for the user based on her preferences
and contexts (e.g., involved risks). Computed strategies are optimal in that they seek
to closely satisfy user requirements and preferences while maximizing data utility
and minimizing the cost of protection. We developed a prototype to validate our
proposal and illustrated its functioning from both back-end and front-end perspec-
tives. We also evaluated its performance by considering multiple cases, and formally
studied its effectiveness in strategy identification. The results show that δ-Risk de-
livers scalability and efficiency, making it capable of supporting the user in a variety
of contexts, including ephemeral ones, and providing her with at least one best strat-
egy per context.
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Chapter 5

Privacy-preserving during
Protection Transitions

"Inference is always an invasion of the unknown, a leap from the
known."

– John Dewey

Advances in privacy-enhancing technologies, such as context-aware and per-
sonalized privacy models, have paved the way for successful management of data
utility-privacy trade-offs. However, significantly lowering the level of data pro-
tection when balancing utility-privacy to meet the individual’s needs makes sub-
sequent protected data more precise. This increases the adversary’s capability to
reveal the real values of the previous correlated data that needed more protection,
making existing privacy models vulnerable to inference attacks.

To overcome this problem, we propose in this paper a new stochastic gradient de-
scent solution for privacy-preserving during protection transitions, denoted P-SGD.
The goal of this solution is to minimize the precision gap between sequential data
values when decreasing data protection by the privacy model. P-SGD intervenes at
the protection descent phase and performs an iterative process that measures data
dependencies, and gradually reduces protection accordingly until the desired pro-
tection level is reached. It considers also possible changes in protection functions
and studies their impact on the protection descent rate. We validated our proposal
and evaluated its performance. The results show that P-SGD is fast, scalable, and
maintains low computational and storage complexity.
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5.1 Introduction

The rapid expansion of cyber-physical systems and the technological advances in
sensing technologies and data mining techniques have contributed to the tremen-
dous development of smart people-driven applications. These applications tend to
reshape the lives of people in many domains by providing them with advanced ser-
vices (e.g., increasing comfort, monitoring patients and elderlies). Delivering such
services requires collecting and processing massive amounts of data (e.g., location
data, health data) to discover underlying patterns and trends. However, privacy
concerns hinder the wider use of this data especially as data mining and processing
may give rise to serious privacy risks for application users, such as disclosing their
health conditions, habits, activities, and so forth [101], [103], [104].

Consequently, balancing trade-offs between data utility and privacy protection
has been subject to intense study in recent years [140]–[143]. Current context-aware
privacy solutions [143]–[145], including our CaPMan proposal, as well as personal-
ized privacy solutions [142], [146], [147] aim to maximize the usefulness of data by
optimizing the level of protection according to data sensitivity in the current con-
text and/or user preferences. However, these solutions do not consider the effect of
temporal correlations between sequential data values on privacy loss. They assign
the appropriate level of protection to the data according to the user’s context (e.g.,
privacy risks involved) and/or preferences.

Nonetheless, continuously balancing data protection levels without considering
previous protection patterns may entail temporal privacy leakage. In particular,
this leakage occurs when the protection level significantly decreases, which widens
the precision gap between prior/subsequent correlated data and makes subsequent
data more precise. The large gap in precision improves the capabilities of an ad-
versary, when using advanced mining techniques, to reveal the real values of prior
data pieces that required more protection. This makes existing privacy-preserving
solutions vulnerable to data inference attacks. A data inference attack is a data min-
ing attack in which adversaries are capable of estimating/inferring real values of
protected data with high confidence. One of the possible solutions to overcome this
vulnerability is to integrate a gradient descent mechanism at the protection descent
phase. This helps to reduce the precision gap between sequential protected data
when downshifting the protection level. Gradient descent is a general paradigm that
underlies algorithms for solving optimization problems [148]. It has been widely ap-
plied to many fields such as location-based applications for predicting moving desti-
nation [149], differential privacy [150], and personalized privacy [151]. Nonetheless,
to the best of our knowledge, there has not been any work on securing data protec-
tion transitions using gradient descent.
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The implementation of a gradual descent process for data protection levels is
challenging, as the corresponding deviation rate depends on several dynamic fac-
tors. First, the temporal correlations between sequential data values, which may
vary from sequence to sequence as the data can be generated in regular or irregular
time series. Second, the dynamicity of the protection function chosen by the system
to be executed on data values. In fact, the system can change the data protection
function at the protection transition phases with a view to improving protection, re-
ducing the cost of protection (i.e., computational costs), or due to errors in function
operations. However, the protection functions can share similarities in their opera-
tions (e.g., generalization and random-noise functions add noise to the real value of
data), making it important to consider their dependence and its impact on the pro-
tection deviation rate. What makes it more challenging is the need for a fast and low
complex solution, which makes it re-usable by various privacy models, including
those offering real-time protection, and operational even for resource-constrained
devices. Finally, the solution should follow a non-deterministic descent to avoid
revealing the deviation rate by adversaries in case of repeated descent patterns.

To address these challenges, this chapter introduces P-SGD, a stochastic gradi-
ent descent solution for privacy-preserving during protection transitions. P-SGD
empowers existing privacy models against data inference attacks, by minimizing
the precision gaps of sequential protected data values during the protection descent
phase. It follows an iterative process to identify the appropriate protection level
to be assigned to each transitional data until the targeted level is reached. Com-
puted protection levels consider the temporal dependencies between data values
and the dependencies between protection functions (in case of change). Our solu-
tion is generic (i.e., it handles attributes with different data types and formats), and
supports simultaneous reasoning over multiple attributes. We validated our pro-
posal and evaluated its performance. Results show that P-SGD is fast, scalable, and
maintains low computational and storage complexity.

The rest of the chapter is organized as follows. Section 5.2 presents the motivat-
ing scenario. Section 5.3 details our P-SGD proposal and provides formal definitions
of the key terms used. Section 5.4 outlines the experiments and results. Section 5.5
presents an overview existing privacy models to which our proposal can be con-
nected (i.e., context-aware and personalized privacy models). Finally, Section 5.6
summarizes the chapter.

5.2 Motivating Scenario

To motivate our proposal, we consider here a second scenario for Alice. We re-
mind the reader that Alice is a COPD patient, and shares her location data with a
healthcare provider to benefit from an emergency care system that offers healthcare
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services (e.g., smart ambulance service that she would use in case of respiratory dis-
tress). Alice also shares her location data with several other service providers in
exchange for their services through applications and social media platforms (e.g.,
Facebook, Google Maps).

The trust relationship between Alice and the providers may vary greatly due to
many factors, such as the privacy risks associated with the sharing of data, the sensi-
tivity of her context (e.g., private meeting), or the third parties with whom her data is
communicated. Alice may therefore want to protect her privacy in some situations
but without completely losing associated services. To do so, she uses a context-
aware privacy-preserving system (e.g., CaPMan) that optimizes the data protection
according to her contexts and preferences.

Consider that Alice has a medical appointment at the Belharra-Ramsay center
for her COPD treatment. She takes the road from her home to the treatment center.
However, locating Alice in the pulmonary rehabilitation center can entail the disclo-
sure of her health condition, which involves privacy concerns for her. Accordingly,
assume that the privacy system increases data protection to 80% when Alice arrives
at the center, and then shifts the level of protection to 20% when she leaves. The
system protects sensed data using a generalization-based protection function. In the
following, three cases are considered to highlight the impact of the second protection
transition phase (from 80% to 20%) on privacy loss.

FIGURE 5.1: Case-1

In case-1, represented in Figure 5.1, the system shifts the level of protection to
20% and continues to perform the same protection function on generated data (i.e.,
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the generalization function). The location data are generated at a regular time inter-
val. When processing and analyzing protected data values, an adversary can notice
a significant gap in the level of precision between transitional/correlated data (see in
Figure 5.1). The precision gap limits the range for estimating previous user locations
where protection was critical (e.g., Alice’s presence in the medical center), which en-
tails privacy problems. This consequently underlines the need for a gradual descent
in the protection level in order to overcome vulnerabilities that may arise during
protection transitions.

FIGURE 5.2: Case-2

As previously mentioned in Section 5.1, the system can change the protection
function to be executed on data at the protection transition phase. In case-2, illus-
trated in Figure 5.2, the system changes the function when the protection level shifts
to 20%, and adopts a randomization-based function that adds random noise to the
real location positions. However, the generalization and randomization functions
share similarities. They both add noise to the data, which makes them dependent,
and the privacy issues related to lowering the protection level persist. This high-
lights the need to examine dependencies between protection functions and their im-
pact on the protection deviation rate.

In the previous two cases we considered regular time series data. However, data
can be also collected in irregular time series, i.e., the data collected follow a tempo-
ral sequence, but the measurements may not occur at regular time intervals. For in-
stance, case-3 assumes that after leaving the medical center, the system has stopped
sharing (protected) location data only for a specific time interval due to loss of con-
nectivity with the GPS sensor (cf. Figure 5.3). When data sharing started again, the
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temporal distance between the last data shared and the current one has already ex-
ceeded the temporal granularity of the attribute (i.e., location). The two data pieces
are thus independent and the adversary will not be able to link previous and subse-
quent location patterns. It is thereby important to measure the temporal correlations
between sequential data and study its impact on data protection.

FIGURE 5.3: Case-3

However, designing the gradient descent solution while keeping the aforemen-
tioned needs in mind requires addressing the following challenges:

Challenge 1. Coping with data dependency: How to track and measure the tem-
poral dependencies between sequential data values and study their impact on the
protection descent rate?

Challenge 2. Coping with protection function dependency: How to compute the
similarity between transitional protection functions (in case of change) and adjust
the downshifting mechanism accordingly?

Challenge 3. Providing a non-deterministic solution: The data protection level can
fluctuate between two same values for several transitions. This may entail the dis-
closure of the deviation rate by adversaries if the executed process is deterministic
(cf. Figure 5.4). The solution should therefore be non-deterministic to overcome the
vulnerabilities arising from repeated transition patterns.
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FIGURE 5.4: Repeated Protection Transition Patterns

Challenge 4. Delivering scalability and efficiency: The solution must be scalable,
i.e., handles simultaneous reasoning over an increasing number of attributes. More-
over, it should maintain computational and storage efficiency, which increases its re-
usability to also include privacy models subject to real-time constraints, and makes
it operational on a variety of devices, including those with limited resources.

5.3 P-SGD Proposal

Current context-aware and personalized privacy-preserving models (e.g., CaPMan)
enable the variation of data protection levels based on user preferences and/or situ-
ations (e.g., privacy risks involved) in order to optimize the balancing of data utility-
privacy. However, these models perform direct shifting of the data protection level,
which may lead in certain cases to temporal privacy leakage due to data correla-
tions. In particular, the data privacy leakage occurs when significantly decreasing
the level of protection, creating a significant gap in the level of precision between
previous and subsequent data. This increases the ability of an adversary to reveal
the real values of previous correlated data that needed more protection, entailing
privacy concerns for the user.

In order to overcome this vulnerability, we propose P-SGD, a Privacy-based
Stochastic Gradient Descent solution for privacy-preserving during protection tran-
sitions. Our solution addresses the challenges and needs mentioned in Section 5.2.
It operates during protection descent phases to minimize precision gaps between
sequential protected data values. To do so, P-SGD features an iterative protection
descent process that identifies the appropriate data protection level (cf. Definition 12)
to be achieved for each data piece prior to its release to data consumers. The pro-
cess stops when reaching the targeted protection level, i.e., the one specified by the
privacy model.

P-SGD supports attribute diversity, i.e., it is capable of operating for data of var-
ious sensed attributes (e.g., location, energy-consumption, camera recordings) with
different data types (e.g., scalar and multimedia data). It also supports protection
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function diversity. In fact, existing protection functions vary from data anonymiza-
tion, data perturbation using noise addition, privacy-aware access control to en-
cryption (cf. Section 4.3). Each of these functions achieves differently the desired
data protection level. This makes therefore our approach generic and compatible with
numerous existing privacy models in various application domains. P-SGD can be
plugged into the privacy model, as shown in Fig. 5.5, to provide an additional layer
of protection against data inference attacks.

FIGURE 5.5: Integration of P-SGD

Before delving into the process, we would like to remind the reader of some
formal definitions that were provided in previous chapters and will be used next.
Specifically, the definitions of an attribute, sensed attribute, protection function, and a
data protection level. However, we extend the attribute definition to take into account
the standard time periods during which the data of attributes are dependent.

*Definition 5 (Attribute). Let A be the set of attributes {a1 ; a2 ; ... ; an} describ-
ing the user u and her physical environments ∑ env ∈ Eu. An attribute a ∈ A is
formalized as follows:

a : 〈 desc ; ent ; Log ; access ; τ 〉 , where:

• desc denotes the textual description of a (e.g., location data, energy-consump
data, user activities, profile images, home appliances).

• ent ∈ {u} ∪ Eu denotes the entity related to a, which can be the user u or an
environment env ∈ Eu.

• Log = {〈 d ; M 〉} is the set of spatio-temporal data values of a. Log can be
viewed as the log file of a, where:

– d denotes the data value, which can be scalar (e.g., location, temperature,
age, marital-status) or multimedia (e.g., image, audio, video).

– M = {meta1 ; ... ; metan} is the set of metadata characterizing d. For
instance, M can include the following metadata:

* tcapture, denotes the time of capture of d.
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* lcapture, denotes the location of capture of d.

* source ∈ DN, denotes the data source from which d is captured. source
can derive from connected environments (e.g., sensor, device) or web
environments (e.g., social media platform, public database).

* Dconsumer v DN, represents the set of data consumers with whom d is
shared (e.g., service providers, third parties), such that:

Dconsumer = { dc1 ; dc2 ; ... ; dcn } ∪ {⊥} , where:

· dci ∈ Dconsumer is a data node expressing a data consumer.

· Dconsumer = ∅ indicates that data consumers are unknown.

· Dconsumer = {⊥} denotes that a is a public attribute.

• access ∈ {r ; r/w} denotes the access rights of the CaPMan system to the data
of a, which can be read or read/write. It expresses the level of control of the
system over the data of a.

• τ denotes the standard time period during which two data values of a are said
to be time-dependent. �

*Definition 5.1 (Sensed Attribute). Let SA v A be the set of sensed attributes,
i.e., attributes characterizing sensed data by deployed/wearable sensors, and on
which the CaPMan system has access to control and manage, such that: ∀a ∈ SA :
a.access = r/w. �

*Definition 10 (Protection Function). A protection function, f ∈ PF, is a protection
method that can be executed on data values of an attribute a ∈ c.SA prior to their
release to data consumers. f is a local function stored in the CaPMan system, such
that:

f : 〈 name ; categ ; Feature ; Param 〉, where:

• name denotes the textual name of f (e.g., generalization, random-noise)

• categ represents the category to which f belongs, such that:

categ ∈ {noise-addition ; anonymization ; access-control ; encryption}

• Feature is the set of features characterizing f , including at least:

– cost, the computational cost of f in terms of processing time and memory
overhead

• Param represents the set of input parameters of f , including at least:

– SA′ v SA is the set of attributes to which f is associated

– P is the set of protection levels to achieve for the data of attributes in SA′ �
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*Definition 12 (Data Protection Level). A data protection level, p, expresses the
amount of protection to be achieved for the data values of an attribute a ∈ c.SA.
p is probabilistic with a value between 0 and 1, where 0 means that data is shared
in fine-granular version (i.e., without any protection), and 1 means that data is not
shared (i.e., highest level of protection). A value between 0 and 1 indicates the level
of protection that should be reached when executing a protection function f ∈ PF on
the data of a. Knowing that the way to achieve p depends on the selected protection
function. �

A stochastic gradient descent (SGD) method is generally defined as an iterative
method for optimizing an objective function with suitable smoothness properties
[152]. It has been widely adopted mainly for high-dimensional optimization prob-
lems as it reduces the computational burden, achieving faster iterations in trade for
a lower convergence rate. This agrees with our needs listed in Challenge 4. We detail
in what follows our proposed P-SGD method.

FIGURE 5.6: P-SGD process

According to Figure 5.6, let:

• ptarget
i refers to the targeted protection level, i.e., the next protection level spec-

ified by the privacy model for data of attribute ai ∈ SA. This level indicates
the target level that must be reached in order to complete the P-SGD process

• pold
i denotes the protection level of the previous data value of attribute ai ∈ SA

• pcurrent
i expresses the protection level to be assigned to the current data value

of attribute ai ∈ SA, such that pcurrent
i ∈ [ptarget

i ; pold
i ]

The iterative process followed by P-SGD is thus defined by the following formula:

pcurrent = pold− η5 , where: (5.1)

• η represents the deviation rate of the protection level (the quantification of η is
detailed in the following subsection)
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• 5 ∈ [0; 1] expresses the random noise added to η

We consider in this study that attributes are independent. The P-SGD process
is therefore performed on the data values of each attribute separately. In order to
track and measure the correlations in sequential data and the dependencies between
their associated protection functions (cf. Challenges 1 and 2), we define a transition
matrix, Trans, that contains only the properties of the last data value (i.e., dold

i ) of
each sensed attribute ai ∈ SA. We store only the properties of the last data values
since the process operates iteratively. This reduces storage overhead and allows for
scalability in attribute number (cf. Challenge 4). Trans denotes therefore the cache,
and can be represented as follows:

Trans =


told

1 pold
1 f old

1

told
2 pold

2 f old
2

...
...

...
told

n pold
n f old

n

 (5.2)

Where:

• told
i denotes the time of capture of dold

i of attribute ai

• pold
i refers to the protection level of dold

i of attribute ai

• f old
i is the protection function associated to dold

i of attribute ai

5.3.1 Deviation Rate Quantification

The deviation rate, η, depends on: (1) the temporal dependency of previous and
current data values of ai, dold

i and dcurrent
i ; and (2) the level of dependency of their

related protection functions, f old
i and f current

i .

Definition 15 (Time Dependency of Data). Let dependt denotes the temporal de-
pendency score of two data values, dold

i and dcurrent
i , of an attribute ai ∈ A. dependt

has a value between 0 and 1, where 0 means that the data are time-independent, and
1 means that the data are fully dependent (time-wise), which typically occurs only
when told

i and tcurrent
i are similar. The higher the temporal distance between the two

data values is, the lower their time dependency is. The two data values are said to
be time-dependent only if their temporal distance is less than the standard time period
of their attribute ai (i.e., ai.τ). dependt is therefore computed as follows:

dependt(dold
i , dcurrent

i ) =

1− tcurrent
i −told

i
ai .τ

if (tcurrent
i − told

i ) 6 ai.τ

0 otherwise
�
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Definition 16 (Protection Function Dependency). Let f old
i and f current

i denotes two
protection functions. f old

i and f current
i are said to be dependent only if their similarity

score is above or equal 0.

sim( f old
i , f current

i )→ [0; 1], where:

• sim is a unit similarity function that checks the exact matching between the
classes and the lists of features of the two protection functions, and returns a
value between 0 and 1, such that:

sim( f old
i , f current

i ) = 1 only if:

f old
i .class = f current

i .class and f old
i .Feature = f current

i .Feature �

The P-SGD process will therefore be executed only if the sequential data values
are dependent and their associated protection functions are also dependent (i.e., only
if depend 6= 0 and sim 6= 0). In order to quantify η, we consider the following
principles:

1. The more the temporal distance between previous/current data values in-
creases, the more the time dependency among these data values decreases,
and the protection gap between them can be enlarged.

2. The more previous/current protection functions are similar, the more the pro-
tection gap should be reduced.

Accordingly, η is quantified as follows:

η = ci× sim( f old
i , f current

i )× dependt(dold
i , dcurrent

i ) (5.3)

Where:

• ci ∈ C is a system parameter that expresses the maximum deviation value of
data protection level for attribute ai ∈ A. ci controls therefore the convergence
speed of the protection level towards ptarget

i

• sim( f old
i , f current

i ) is the similarity function that returns a score ∈ ]0; 1]

• dependt(dold
i , dcurrent

i ) ∈ ]0; 1] is the temporal dependency score

5.3.2 P-SGD Algorithm

We present here the reasoning algorithm of our P-SGD solution.
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Algorithm 5: P-SGD Process
Input: a, c, tcurrent, f current, ptarget; // attribute, default deviation value, time of capture and

protection function of dcurrent, and the targeted protection level;

Output: pcurrent; // the protection level to be assigned to dcurrent;

1 Variables: Trans[][], dependt, simScore,5, η; // transition matrix, dependency score of data,

similarity score of prot-functions, random noise and deviation rate;

2 begin

3 dependt = 1− tcurrent−Trans[a][0]
a.τ ; // Trans[][0] is the told column of dold values;

4 simScore← sim(Trans[a][2], f current); // Trans[][2] is the f old column associated to dold

values;

5 if (dependt ! = 0 && simScore ! = 0) then
6 // dependent data values and dependent protection functions;

7 5 ← randomNumber(0, 1); // returns a random value between 0 and 1;

8 η = c× simScore× dependt; // calculate the value of η;

9 pcurrent = pold − η5; // calculate the value of pcurrent;

10 if (pcurrent <= ptarget) then
11 pcurrent = ptarget; // check the validity of the calculated pcurrent value ;

12 else
13 pcurrent = ptarget; // data values or/and protection functions are independent;

14 Trans← updateTransMatrix(a, tcurrent, pcurrent, f current);

15 return pcurrent

Algorithm 5 presents the algorithm of our P-SGD solution that takes as input the
concerned attribute, a, the maximum deviation value of protection, c, the properties
of the current data value (i.e., tcurrent and f current), and the targeted protection level
ptarget. It outputs the calculated protection level to be assigned to the current data
value, pcurrent. This is done following four major steps:

• Step 1 (line 3): It computes the dependency score of previous/current data val-
ues, dold and dcurrent, and stores the result in the dependt variable.

• Step 2 (line 4): It calculates the similarity score of previous/current protection
functions, f old and f current, and stores the result in the simScore variable.

• Step 3: It checks the need or not for executing the gradient descent process:

– Step 3.1 (lines 5-11): If data values are time-dependent and the related protec-
tion functions share similarities (line 5), the process is executed:

* It starts by calculating the amount of the random noise,5, to be appended
to η (line 7).

* It calculates the value of the deviation rate η (line 8) and the value of
pcurrent accordingly (line 9).

* It checks the validity of the calculated value for pcurrent. If this value is less
than or equal to ptarget (lines 10), this means that the process has achieved



158 Chapter 5. Privacy-preserving during Protection Transitions

the protection level specified by the privacy model. Consequently, the
value of pcurrent equals the one of ptarget and the downshifting process ends
(line 11). Otherwise, the calculated value for pcurrent is valid.

– Step 3.2 (lines 10-11): If data and/or associated functions are independent,
the gradient process is not executed and the protection level is downshifted
directly to ptarget, i.e., the value of pcurrent equals the one of ptarget.

• Step 4 (line 14): the data properties of the relevant attribute are updated in the
transition matrix, Trans[][], and the process is ended.

We only detail in this chapter the pseudo-code of the main P-SGD process. Nonethe-
less, the pseudo-codes of the aforementioned functions are detailed in the prototype
source code provided in Section 5.4.

5.3.3 P-SGD Integration in CaPMan

As previously discussed, the P-SGD proposal is generic and can be connected to
various privacy models, including our proposed CaPMan model. We detail in this
section the integration of P-SGD in CaPMan. As shown in Figure 5.7, P-SGD is con-
nected to the data protection module of CaPMan that is responsible for applying pro-
tection on data before being delivered to data consumers. The protection is added
based on the protection strategy selected in the relevant user’s situation.

FIGURE 5.7: P-SGD Integration in CaPMan

The data protection module receives as input: (1) the data values of sensed at-
tributes; (2) the strategy selected; and (3) the protection functions to be executed on
relevant data of attributes. It calls the P-SGD process when the protection level to be
assigned to the data of an attribute is decreased, which typically occurs when chang-
ing the protection strategy. Accordingly, the P-SGD process is iteratively executed for
each data value upon its arrival in order to determine the appropriate protection level
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to achieve for this data prior to its release. Once identified, the data protection mod-
ule applies the corresponding protection function to this data in order to achieve the
identified protection level, and then outputs (4) the protected version of this data to
related data consumers.

5.4 Experimental Validation & Evaluation

In order to implement and validate our approach, we developed a Java-based pro-
totype (the source code is available online through this link1). We illustrate in the
following the prototype operation by considering the scenario of Alice described in
Section 5.2. We focus on the second protection transition (i.e., from 80% to 20%), and
assume that the protection function remains unchanged. We repeated the descent
process three times to emphasize the non-deterministic nature of the solution in the
case of repeated transition patterns (cf. Challenge 3). We consider here regular time
series data with a data generation time of 1s, and we fix c at 0.5 (i.e., the maximum
protection deviation is 50%).

FIGURE 5.8: Securing protection transitions using the P-SGD process

As shown in Figure 5.8, the proposed P-SGD process is able to iteratively and
gradually decrease the protection level until reaching the targeted one (i.e., 20%),
with an average of 35ms per iteration. The deviation pattern varied between the
three similar transition cases, as well as the number of data values required to achieve
protection convergence (7 for transitions 1-2 and 8 for transition 3). This is due to
the noise value associated with the deviation rate (i.e., 5), which varies randomly
with each iteration.

1https://spider.sigappfr.org/research-projects/psgd/ (P-SGD Prototype)

https://spider.sigappfr.org/research-projects/psgd/
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5.4.1 Performance Evaluation

The objective here is to evaluate the approach’s effectiveness, in terms of perfor-
mance, to operate in different scenarios. The approach is said to be effective if it
meets the needs outlined in Challenge 4: (1) fast; (2) scalable (i.e., supports multi-
attribute handling); and (3) low-complex in time and space (i.e., in terms of mem-
ory overhead and storage). To do so, we start by considering two cases to study
the impact of the following two metrics on performance: (i) the complexity of the
protection functions dependency; and (ii) the number of attributes handled simul-
taneously. Then, we formally study the storage complexity of the proposal. The
performance is evaluated based on two criteria: the total execution time of one iter-
ation and the memory overhead. The tests were conducted on a machine equipped
with an Intel i7 2.80 GHz processor and 16 GB of RAM. The chosen execution value
for each scenario is an average of 10 sequenced values.

Case 1: We consider two dimensions to study the complexity of the functions de-
pendency: the first increases the number of features and the second increases the
diversity in features between the two functions. We execute the P-SGD process 13
times, taking into account the following number of features for each iteration: 1, 5,
10, 15, 20, 30, 40, 50, 60, 70, 80, 90 and 100. For each of these scenarios, we consider
three sub-scenarios where we vary respectively the percentage of diverse features
from 0%, 50% to 100%. As shown in Figure 5.9, the number and diversity of the
features have no impact on the function dependency procedure, and thus on perfor-
mance. This is due to the fact that the procedure verifies only the exact matching
of the features’ names and values. The process is executed in all scenarios with an
average time of 35ms and 10MB of RAM usage.

FIGURE 5.9: Protection Function Similarity Impact

Case 2: To study the impact of multi-attribute handling, we incorporate multithread-
ing features in order to perform parallel execution of the process on an increasing
number of attributes. We consider the following number for each iteration: 1, 5, 10,
20, 30, 40, 50, 60, 70, 80, 90, and 100. Figure 5.10 shows that increasing the number of
attributes has a quasi-linear impact on the total execution time, with an average time
of 35ms for 5 attributes and up to 100ms for 100 attributes. The RAM usage remains



5.5. Privacy Models Background 161

constant with an average of 10MB. This highlights the importance of integrating a
low-cost transition matrix.

FIGURE 5.10: Multi-attribute Impact

THEOREM 6. The P-SGD process maintains low storage complexity.

PROOF. Let n denotes the maximum number of attributes that could be shared by
the user with data consumers. As previously mentioned in Section 5.3, the solution
stores only the three properties of the last data value for each attribute in Trans, and
the values of ci ∈ C, resulting in a linear storage complexity of O(4n). However, the
number of attributes shared by the user will not practically exceed 100, which makes
the storage complexity low. �

Discussion. The experiments conducted show that P-SGD is scalable and efficient
in time and space (cf. Challenge 4). The solution is able to maintain effective per-
formance in different scenarios, including worst-case ones. This increases its re-
usability to also include privacy models that require real-time reasoning, and allows
it to operate on a variety of devices, including resource-constrained ones.

5.5 Privacy Models Background

Several approaches have been proposed in the literature to address the challenges of
security and privacy in the fields of pervasive Internet of Things (IoT) environments
(connected environments). However, to the best of our knowledge, this is the first
work to tackle the problem of preserving user privacy against data inference attacks
during protection transitions. Therefore, we discuss in this section existing privacy-
preserving models to which our P-SGD solution could be connected.

Balancing data utility-privacy has received extensive attention in the last decade.
Existing approaches vary from context-aware to personalized privacy-preserving. In
our research work, we proposed CaPMan [5], a user-centric context-aware model for
privacy management in connected environments that meets current privacy stan-
dards (i.e., Privacy by Design and ISO/IEC 27701 standards). Matos et al. [145]
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proposed a context-aware security approach, that provides authentication, autho-
rization, access control, and privacy-preserving to fog and edge computing environ-
ments. Gheisari et al. [153] introduced a context-aware privacy-preserving approach
for IoT-based smart city using Software Defined Networking. Sylla et al. [144] pre-
sented a context-aware security and privacy as a service (CASPaaS) architecture to
inform the user about the contextual risks involved. Gao et al. [142] proposed a
personalized anonymization model for balancing trajectory privacy and data utility.
Qiu et el. [146] provided a semantic-aware personalized privacy model that stud-
ies user requirements and location’s privacy sensitivity to adapt the trajectory con-
struction accordingly. Xiong et al. [147] proposed a personalized privacy protection
model based on game theory and data encryption.

5.6 Summary

We introduce in this chapter a new privacy-preserving stochastic gradient descent
solution (P-SGD) that can be integrated into numerous existing privacy models in
order to provide an additional layer of protection against data inference attacks dur-
ing protection transitions. P-SGD features an iterative non-deterministic process that
gradually decreases the data protection level during the protection descent phases.
This allows preserving an appropriate precision gap between sequential protected
data values to avoid potential data leakages.
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Chapter 6

Conclusion & Future Work

"I am not the product of my circumstances. I am the product of
my decisions."

– Stephen Covey

6.1 Report Recap

The study presented in this thesis focuses mainly on privacy risk inference and man-
agement in connected environments.

In Chapter 1 we give the reader an insight on connected environments, and why
privacy in the context of these environments is considered a topic of interest nowa-
days. Specifically, we discuss current privacy threats and challenges encountered in
these environments, as well as existing international privacy regulations and stan-
dards. Then, we focus on our thesis’s objectives of raising user awareness of the
privacy risks involved in their situations, assisting users in the optimization of their
data utility-privacy decisions based on their preferences and situations, and ensur-
ing appropriate protection of the data collected before being transmitted to data
consumers. We present a real-life scenario of a user situation and illustrate some
of the privacy risks involved in this latter in order to showcase the motivation be-
hind this work and the challenges that lie ahead. Following that, we review existing
works of context-aware privacy management in connected environments according
to the identified needs and challenges. Then, we present our proposed framework
for Context-aware Privacy Management in connected environments (CaPMan) and
detail its corresponding modules that answer the objectives and address the set of
needs and challenges. Finally, we list the publications related to this report before
introducing the following chapters.

In Chapter 2 we present an ontology-based data model for user-Context mod-
eling in Sensor Networks (uCSN) where we improve the context representation to
consider diverse types of: (i) user/environment information (i.e., scalar and mul-
timedia information); (ii) data sources (e.g., sensor, device, social network profile,
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document); (iii) uncertainties (e.g., uncertainties related to the user and the envi-
ronment); and (iv) environments (i.e., connected/unconnected environments, and
environments with static/mobile systems and devices). We do so by defining new
concepts and properties, and importing others from well-known ontologies, namely
DPV, SSN, HSSN, and W3C Uncertainty ontologies. The uCSN ontology is generic
and re-usable in different application domains. Finally, we evaluate the accuracy of
our additions, their clarity, consistency, and the overall impact on performance.

In Chapter 3 we present a Context-aware Semantic reasoning approach for Pri-
vacy risk Inference (CaSPI). This approach is equipped with a semantic rule-based
reasoner that is used to infer the risks involved in user situations. To achieve this,
CaSPI relies on the use of ontologies (e.g., uCSN ontology) and inference rules that
respectively represent contextual knowledge and define the risks to be detected
by the reasoner with high semantic expressiveness power. CaSPI is generic and
re-usable in several domains. It is capable of providing the user with a dynamic
overview of risks that copes with the evolution of her situation and is tailored to
her expertise. This allows all users to understand their privacy situations, paving
the way for them to make informed data privacy decisions. We developed a proto-
type to validate our proposal, illustrated its operation from both the back-end and
front-end, and evaluated its performance in several scenarios.

In Chapter 4 we introduce a user-centric multi-objective approach for context-
aware privacy management in connected environments (δ-Risk). This approach fea-
tures a new privacy risk quantification model to dynamically calculate and select the
best data protection strategies for the user based on her situation and preferences.
Computed strategies are optimal in that they seek to closely satisfy user require-
ments and preferences, while also maximizing data utility and minimizing the cost
of protection. We developed a prototype to validate our proposal and illustrated its
functioning from both back-end and front-end perspectives. We also evaluated its
performance by considering multiple cases, and formally studied its effectiveness in
best strategy identification.

In Chapter 5 we propose a new stochastic gradient descent solution for privacy-
preserving during protection transitions (P-SGD). The proposed approach can be
connected to numerous existing privacy models, providing an additional layer of
protection against data inference attacks during protection transitions. P-SGD fea-
tures an iterative non-deterministic process that gradually decreases the data pro-
tection level during the protection descent phases. It is capable of measuring data
dependencies as well as similarity in protection functions, and adapt the descent
rate accordingly. This allows preserving an appropriate precision gap between se-
quential protected data values, avoiding consequently potential data leakages. We
developed a prototype to validate our proposal, and we evaluated its performance
in multiple scenarios.
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6.2 Future Research Directions

Various improvements still need to be considered for this work. We detail future
research directions for each contribution separately.

6.2.1 Context Modeling in Connected Environments

Completeness Evaluation. We would like to continue the ongoing evaluation of the
completeness of the uCSN ontology through comparisons with situation, user, envi-
ronment, and mobility taxonomies. This evaluation will potentially help us discover
missing concepts or properties that could complement uCSN.

6.2.2 Privacy Risk Inference

Privacy Rules Validity, Dependencies and Conflicts. We aim to address the chal-
lenges of verifying the validity of defined privacy rules, as well as the existing de-
pendencies and conflicts between them. For the validity, we would like to consider
two validation aspects: (i) testing aspect, which involves evaluating the accuracy of
the defined rule in several different scenarios prior to its consideration by the CaSPI
reasoner; (ii) human aspect, which involves checking and validating it by a group of
privacy experts following the development of the outsourcing solution. In order to
manage rule dependencies and conflicts, we would like to proceed with comparing
existing rules by measuring the similarities between their related sequences of data
elements, as well as the similarities of their associated sets of sensitive information.

Outsourcing Solution for Rule Definitions. We aim to develop and implement the
outsourcing solution for the privacy rule definitions with a group of privacy experts
in order to provide a high-level risk coverage in various application domains.

Privacy Rules Implementation. Current semantic rule languages (e.g., SWRL [114])
presents some limitations when considering spatial, temporal, and logical operators
(e.g., logical disjunction, negation) to define rules. We aim consequently to address
these limitations by proposing a new built-in for the extensible SWRL language that
enables the use of spatio-temporal and expanded logical operators.

CaSPI Evaluation. Once the development of the mobile application is complete, we
would like to extend the evaluation of the CaSPI proposal to also evaluate the time
required by users of different profiles to interact with the application (e.g., inputs
specification).

Inter-Context Risk Coverage. At this point, the CaSPI proposal reasons over each
context separately (i.e., intra-context information reasoning), without considering
inter-context patterns and their impact on the privacy situation of the user. For in-
stance, a user located every Tuesday in a sports gym can lead to disclose her regular
activity, and also to predict her future time of presence at home on Tuesdays. Such
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risks are not currently covered by our proposal. To overcome this limitation, we aim
to improve the risk coverage, by allowing for the definition of inter-context privacy
rules, and the reasoning over historical contexts to identify the plausible information
patterns based on their time and spatial dependencies.

6.2.3 Privacy Risk Management

Privacy Risk Quantification. We would like to improve our risk quantification
model to also consider the uncertainty aspects of information elements and their
impact on associated risk values.

δ-Risk Evaluation. Once the development of the mobile application is complete, we
would like to extend the evaluation of the δ-Risk proposal to also evaluate the time
costs of user interactions with the application, such as to specify their inputs (e.g.,
preferences, sensed data), making their privacy decisions by choosing the protection
strategy to implement, and so on.

6.2.4 Privacy-preserving during Protection Transitions

Data Dependency. Sensor data are spatio-temporal in nature [26], which means that
in addition to their temporal correlations, they also hold spatial correlations that
must be considered when measuring data dependency. In addition, the spatial and
temporal distances between generated data can vary according to the user’s context.
For example, distances between location data vary whether the user is driving a
vehicle, running, or walking. Therefore, we aim to improve the data dependency
measurement by introducing a three-dimensional dependency graph of temporal,
spatial, and contextual dimensions.

Time Dependency of Data. We considered in this study that the standard time pe-
riod during which two data values of an attribute are said to be dependent (i.e., a.τ)
is provided as input to the system. As future work, we aim to automate the comput-
ing of a.τ, which could be calculated based on several metrics, such as the historical
data distribution in time (e.g., regular/irregular time series) and the velocity of data
value changes and relative gaps.

Protection Function Similarity. The current similarity measurement of protection
functions takes into consideration the exact match between functions’ classes and
feature lists. We thus aim to improve the similarity measurement to further consider
the semantic similarity of their features.

6.2.5 CaPMan Framework

CaPMan Implementation. We are developing the CaPMan mobile application that
assists the user in managing her privacy based on her situation. This application
consists of the context acquisition, context modeling, risk reasoner, risk manager,
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and the data protection engines. The implementation has the highest priority from
all future work, since it allows for the testing of our CaPMan framework’s accuracy
in real-world scenarios, as well as the end to end evaluation of the entire framework
operations.

Crowdsourcing Solution for Environment Modeling. We aim to integrate in the
mobile application a crowdsourcing solution that allows all CaPMan users for ma-
nipulating the maps of their environments, such as adding new components (e.g.,
sensors, devices, actuators) and reporting updates in their environments (e.g., loca-
tion change of a camera in the mall). This will improve the quality of information
coverage, and enable users to practically exchange information about their environ-
ments and contribute to the reinforcement of their privacy protection.

Data Protection. We would like to explore the data protection module of CaPMan,
and specifically address the challenges of: (i) protection functions selection, which
can depend on several metrics, such as the computational cost, vulnerabilities to
data inference, and compatibility with attribute type and data format; and (ii) Sys-
tem vulnerability assessment in the face of security threats.

CaPMan Extension. The proposed CaPMan framework is user-centric. As future
work, we aim to expand the indexing of the framework to make it entity-centric,
where an entity could be a user or an environment (e.g., company, mall).
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