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Résumé: La complexité et la finesse des
modèles numériques utilisés pour prédire le com-
portement sismique (souvent non linéaire) des
structures en béton armé imposent un temps
de calcul de plusieurs jours pour résoudre les
équations aux dérivées partielles du problème
de référence. De plus, pour l’évaluation des
marges, les analyses de sécurité ou la mise à
jour des modèles, la prise en compte des in-
certitudes associées aux paramètres constitutifs
ou au chargement sismique lui-même impose
généralement de prévoir cet effort numérique,
non pas pour la simulation d’un seul modèle,
mais d’une famille de modèles soumis à un en-
semble d’entrées probables définissant le scé-
nario sismique. Pour réduire les temps de cal-
cul, certaines techniques, appelées “réduction
de l’ordre des modèles", doivent être envis-
agées. La méthode à grand incrément de temps
(LATIN dans son acronyme anglais) utilisée
en combinaison avec la technique de réduction
de l’ordre des modèles appelée Décomposition
Propre Généralisée (PGD dans son acronyme
anglais) a prouvé son efficacité pour la résolu-
tion de problèmes non linéaires en mécanique.
Jusqu’à présent, la méthode LATIN-PGD n’a
jamais été appliquée à la résolution de problèmes
non linéaires en dynamique. Dans ce contexte,
le cadre de LATIN-PGD est d’abord adapté
au cas dynamique, où les non-linéarités con-
sidérées correspondent aux matériaux typiques
du béton armé, c’est-à-dire l’endommagement

isotrope quasi-fragile pour le béton et l’élasto-
viscoplasticité pour les métaux; de plus, des
stratégies dédiées sont développées pour ré-
duire les coûts de calcul lors de la prise en
compte d’excitations complexes et de grande
durée, telles que les sollicitations sismiques ou
de fatigue. Les contributions de ce travail de
thèse sont les suivantes: (i) une adaptation
de la méthode de Galerkin discontinue dans
le temps (TDGM dans son acronyme anglais)
pour résoudre les problèmes temporels incré-
mentaux dans le cadre de LATIN-PGD, qui
permet de résoudre efficacement les problèmes
où l’intervalle de temps est relativement grand,
(ii) une nouvelle technique d’approximation du
signal et une nouvelle stratégie multi-échelle
dans le temps sont développées pour optimiser
la résolution des fonctions PGD temporelles
lors du traitement d’excitations à long terme
telles que les entrées sismiques ou les charges
de fatigue; (iii) une technique d’hyper-réduction
est proposée pour accélérer la construction de
l’approximation PGD à faible rang et enfin, On
introduit une stratégie de résolution en temps
parallèle basée sur l’utilisation de TDGM, qui
vise à accélérer la résolution temporelle de la
PGD en tirant parti des architectures parallèles
des ordinateurs récents. Toutes les contribu-
tions précédentes permettent une forte optimi-
sation du cadre LATIN-PGD, ce qui permet par
conséquent une réduction considérable du coût
numérique pour obtenir la réponse non linéaire
d’une structure en dynamique.
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Abstract: The complexity and the fineness
of the numerical models used to predict the
(often nonlinear) seismic behavior of reinforced
concrete structures impose a calculation time
of several days to solve the partial differen-
tial equations of the reference problem. More-
over, for margin assessment, safety analyses or
model updating purposes, taking into account
the uncertainties associated with constitutive
parameters or the seismic loading itself gener-
ally impose to foresee this numerical effort, not
for the simulation of a single model, but of a
family of models submitted to a set of likely
inputs defining the seismic scenario. To re-
duce computational times, certain techniques,
called “model order reduction", must be con-
sidered. The Large Time Increment (LATIN)
method used in combination with the model or-
der reduction technique called Proper General-
ized Decomposition (PGD) has proven its ef-
ficiency for solving nonlinear problems in me-
chanics. Until now, the LATIN-PGD method-
ology has never been applied for solving nonlin-
ear problems in dynamics. In this context, the
LATIN-PGD framework is first adapted to the
dynamic case, where the nonlinearities consid-
ered correspond to typical reinforced concrete
materials, i.e. quasi-brittle isotropic damage for

concrete and elasto-visco-plasticity for metals;
additionally, dedicated strategies are developed
to reduce computational costs when considering
complex and large duration excitations, such as
seismic inputs or fatigue loading. The contribu-
tions of this thesis work are the following: (i) an
adaptation of the Time-Discontinuous Galerkin
Method (TDGM) for solving incremental tem-
poral problems in the LATIN-PGD framework,
which allows to efficiently solve problems where
the time interval is relatively large, (ii) a new
signal approximation technique and a new mul-
tiscale strategy in time is developed to opti-
mize the resolution of temporal PGD functions
when dealing with long time excitations such as
seismic inputs or fatigue loading, (iii) a hyper-
reduction technique is proposed to accelerate
the construction of the low-rank PGD approx-
imation and finally, (iv) a parallel-time resolu-
tion strategy based on the use of TDGM is in-
troduced, which aims at accelerating the tem-
poral PGD resolution by taking advantage of
the parallel architectures of recent computers.
All the previous contributions allow a high opti-
mization of the LATIN-PGD framework, which
consequently allows a considerable reduction of
the numerical cost to obtain the nonlinear re-
sponse of a structure in dynamics.
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at CentraleSupélec (in my academic exchange period back in 2015) and who, seeing my enthusiasm for
learning and discovering science, helped and motivated me from the very beginning to do a PhD thesis.
His quality as a person and his unconditional help has allowed me to become a doctor today!.

I would also like to thank the supervising team of this thesis, starting with David Néron for directing this
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Notations

(a) Continuous problem (b) Space discretization (c) Temporal discretization

Ω

fN

uD

u

|
0

|
TI

Solution u(x, t)

u

f N

uD

|
0

|
TI

uh(x, t) = χ(x).u(t)

u

fN

uD

|
0

|
T

| | | |

uN (x, t) =
[
χ(x)⊗ ψ(t)

]
: u

For all the thesis the following convection is adopted:

• The continuous tensors of order 1,2 and 4 are noted as u, σ and K respectively (fourth order tensor
is written in a simplified form to alleviate notations), for example the Hooke’s law is written as:

σ = K : ε

• The semi-discretized vectors and matrices are denoted as u and M respectively, for example, the
semi-discretized dynamic equation is written as:

M ü(t) + D u̇(t) + K u(t) = f (t)

• The discretized matrices in space and time are denoted in bold u, for example, the discretized
dynamic equation writes:

A : u = B

with A ∈ RnS×nS ⊗ RnT×nT and B ∈ RnS×nT , and where we considered the following operation:

(A⊗B) : C = D ⇐⇒
∑
j,l

AijBklCjl = Dik
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Chapter 1

Introduction

The problems raised by Seismic Risk Assessment and Earthquake Resistant Design are subjected to a
high degree of uncertainties. The major lack-of-knowledge resides in the excitation itself that, by nature,
can not be characterized in a deterministic manner. In most cases, the likely seismic scenario is described
by a vector θ of uncertain parameters (magnitude, site-to-source distance, local shear wave velocity,
etc.) that usually lives in a broad probabilistic space Iθ. Even if the seismic scenario was precisely
specified, it would of course not lead to a unique representative seismic action to apply to structures. The
literature for generating potential seismic inputs from seismic scenario θ ∈ Iθ is vast [Douglas and Aochi,
2008, Charbonnel, 2018] and can be based on regression techniques on complete seismic database (see
e.g. NGA-PEER Database [Power et al., 2008, Chiou and Youngs, 2008, Baker and Jayaram, 2008, Boore
and Atkinson, 2008, Abrahamson and Silva, 2008] in California or RESORCE Database [Akkar et al.,
2014] in Europe), on single recordings or spectral specifications (see e.g. [Rezaeian and Der Kiureghian,
2008, Rezaeian and Der Kiureghian, 2010, Yamamoto and Baker, 2011, Lancieri et al., 2012, Zentner
et al., 2013, Rossetto et al., 2016, Lancieri et al., 2018]) or on full physical soil medium modeling (see
e.g. [Zerva, 1988, Gatti et al., 2018]). To account for the huge variability of the possible ground motion
inputs and according to the different earthquake resistant design recommendations for civil constructions
[EUROCODE-8, 2004, Elghazouli, 2009, NEHRP, 2010, Bisch et al., 2012] numerical models, together
with their own uncertainties (material parameters), must be subjected, not only to a single seismic loading,
but to a set of potential seismic inputs (see figure 1.1).

Figure 1.1: Samples of potential ground motions (full scales harmonized) generated from a single accel-
eration recording using the methodology proposed by [Rezaeian and Der Kiureghian, 2010].

Of course Nuclear Power Plants (NPPs) qualification does not except to this rule [IAEA, 2003]. More-
over after the Fukushima Dai-ichi accident, safety requirements have tightened; two consecutive Eu-
ropean projects, leaded by french nuclear actors, were launched with the objective of assessing the
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Chapter 1. Introduction

NPPs robustness against extreme events and identifying whether some reinforcements were needed.
The ASAMPSA E (2013–2016) project first aimed at promoting good practices to extend the scope of
existing probabilistic safety assessments in decision-making. This project led to a collection of guidance
reports that described existing practices and identified their limits. The current H2020 project NARSIS
(2017–2021) in turn aims at proposing some improvements to be integrated in existing probabilistic safety
assessment procedures for NPPs, considering single, cascade and combined external natural hazards
(earthquakes, flooding, extreme weather, tsunamis). Overview of both projects and further details are
given in [Foerster et al., 2020]. The project will lead to the release of various tools together with recom-
mendations and guidelines for use in nuclear safety assessment.

The present doctoral work falls within the scope of seismic risk assessment and focuses on developing
advanced numerical framework for obtaining decision-making tools, such as fragility curves, using high
fidelity Finite Element Models (FEMs), with the objective of decreasing associated computational costs.

For correctly answering the problematic, the methodology to be developed will have to match particular
requirements, namely:

(R1) being suitable for low-frequency nonlinear dynamics,

(R2) capable of handling complex loadings,

(R3) adapted to typical reinforced-concrete nonlinearities due to the major role it plays in earth-
quake engineering applications.

Among the different strategies dedicated to reduce the computational efforts, some methods released in
the 2000s are currently booming. They propose to use an ingredient referred to as model order reduction
(MOR) which confers them a powerful numerical efficiency. The main idea is to exploit the redundancy
of information contained in the solution to propose an approximated and numerically efficient resolution
of the problem, which guarantees that the calculated approximation, called low-rank approximation, stays
close enough to the reference solution. For that purpose, the solution of the reference problem is thus
approached by a sum of m terms where each of the terms is a product of functions with separate variables
(space, time and eventually parameters). The integer m is called the rank of the approximation and in
practice, the approximation space (which basis contains the separate variables functions) is constructed
incrementally.

The model reduction techniques that are widely used correspond to the Proper Orthogonal Decomposi-
tion (POD) and the Proper Generalized Decomposition (PGD). The main difference between them lies
on the way the low-rank approximation is calculated. While in the POD a data set of the problem solution
is required for the construction of the approximation in a training phase, for PGD this is not necessary, the
approximation is constructed on the fly using the partial differential equations of the problem. Due to the
aforementioned differences in the way the low-rank approximation is constructed, the POD is referred to
as a posteriori while the PGD is classified as a priori model order reduction.

When solving a given problem a POD reduced basis can be used. Since its introduction in [Karhunen,
1946, Loeve, 1948], the general idea of the method that uses the POD in its formulation consists in the
“offline” construction of a reduced order basis (ROB) by using the full finite element solution of the refer-
ence problem in some specific points of the time or parameter domain. The reduced order basis is formed
by considering only the most energetic POD modes. Once the reduced order model is built, it can be
used in a “online” stage to achieve a high decrease of the computational cost when solving the reference
problem over the whole time-parameter domain by projecting the discretized reference equations of the
problem over the ROB, reducing in this way the total degrees of freedom of the problem. Among the
uses of the POD we can cite its application to aeroelastic problems [Lieu et al., 2005, Lieu and Farhat,
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2005, Lieu and Farhat, 2007, Amsallem and Farhat, 2008], computational fluid dynamics [Kunisch and
Volkwein, 2002, Amsallem and Farhat, 2014], nonlinear dynamics [Kerschen et al., 2005], face image
reconstruction [Everson and Sirovich, 1995], among many others.

A well known solver that exploits the POD approximation to solve nonlinear problems in solid mechanics
is the A Priori Hyper-Reduction method. In this method, the POD basis used to approximate the solution
is constructed “online” using an adaptive strategy and the reference problem is solved in a “Reduced
Integration Domain” (RID), which allows to accelerate the solution of the nonlinear problem [Ryckelynck,
2005, Ryckelynck et al., 2006a]. The use of a reduced integration domain for the solution of the problem
gives its name of hyper-reduction. This method has been successfully applied to solve nonlinear internal
variable problems [Ryckelynck, 2009], damage problems [Ryckelynck et al., 2011] or parametric nonlinear
problems [Ryckelynck et al., 2012].

Another important technique in the field of a posteriori model reduction is the Certified Reduced Basis
Method (CRBM). The CRBM has been introduced initially in [Maday et al., 2002, Prud’Homme et al., 2002]
for the resolution of elliptic parametric problems. The methodology resides in the sequential construction
of reduced basis of the solution space on which governing equations are projected, which enables the
accelerated “online” resolution of the parametric problem. The reduced basis itself is constructed “offline”
and incrementally by determining the reduced basis as a set of reference solutions over a given para-
metric set. This set is efficiently determined by employing error estimators which guarantees an optimal
selection of the set of parametric solutions that minimize a reconstruction error over the whole paramet-
ric domain. One of the underlying hypotheses for the “online” computation of the parametric solution is
the affine decomposition of the operators related to the reference problem with respect to the parameter
vector; i.e. the linear and bilinear forms involved in the problem definition must be written as a sum of
products of contributions with separated space-parameter variables. This so-called affine decomposition
allows the construction of the spatial operators only once, allowing enormous computational savings dur-
ing the online resolution. The CRBM has then been adapted for parabolic problems and extended in the
nonlinear range for the resolution of problems having any kind of parametric dependence by employing
the Empirical Interpolation Method (EIM) [Barrault et al., 2004, Grepl et al., 2007, Maday et al., 2009] for
the approximation of non affine operators as an affine sequence (see [Prud’Homme et al., 2002, Grepl,
2005, Quarteroni et al., 2011, Veys, 2014] for details).

Alternatively, the PGD was introduced in [Ladevèze, 1985] under the vocable “radial approximation” as
one of the main ingredients of the LATIN method. The LATIN method, for LArge Time INcrement method,
proposes a general strategy for the resolution of nonlinear problems in mechanics involving an alternating
sequence of nonlinear and linear steps. At each linear step, a global space-time problem expressing
the equilibrium of the system must be solved and the PGD is used to provide a reliable and numerically
economical low-rank approximation of the solution of this linear problem.

Since its introduction in [Ladevèze, 1985], the PGD has been the subject of numerous other publications
for the resolution of different types of linear problems. For instance, parametric linear problems are solved
following both deterministic [Ammar et al., 2006, Chinesta et al., 2010, Ammar et al., 2010, Ammar et al.,
2012] and stochastic [Nouy, 2008, Nouy, 2009, Nouy, 2010b] approaches where rather than PGD, the
denomination Generalized Spectral Decomposition (GSD) is used. Other developments intend to improve
its performance for time dependent solid mechanics problems as in [Nouy, 2010a] and [Boucinha et al.,
2013, Boucinha et al., 2014]. In addition, a wide number of applications of the PGD have shown its
performance by reducing the computational cost for many different kind of problems, for instance mid-
frequency problems in the context of the Variational Theory of Complex Rays (VTCR) [Barbarulo, 2012],
and further developed in [Chevreuil and Nouy, 2012, Barbarulo et al., 2013, Riou et al., 2013, Barbarulo
et al., 2014a, Barbarulo et al., 2014c, Barbarulo et al., 2014b], hyperelastic materials [Niroomandi et al.,
2010], correlation of high resolution digital images [Passieux and Périé, 2012], parameterized Helmholtz
problem [Signorini et al., 2017], geometrically parameterized heat problem [Zlotnik et al., 2015], among a
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whole range of different applications.

This doctoral work proposes several enhancements for applying the LATIN-PGD methodology in nonlinear
low-frequency dynamics for the purpose of seismic risk assessment. More precisely, for evolutionary
problems, the LATIN approach consists in a sequence of (i) local stages where constitutive relations are
solved for each Gauss point of the finite element formulation, and (ii) global stages where the equilibrium
on the whole space-time domain is imposed. The most numerically expensive task is by far the re-
imposition of the global equilibrium at the second step (ii) ; however, this step is linear and its solution can
be approached using a low-rank approximation, known as the Proper Generalized Decomposition (PGD),
which greatly improves the numerical performance of the approach. The LATIN-PGD method has proved
particularly efficient for treating nonlinear problems such as elasto-visco-plasticity in [Ladevèze et al.,
2010b, Relun et al., 2013], a multiscale approach for the simulation of composite materials [Passieux,
2008, Relun et al., 2011]. Large parametric problems for materials under quasi-static conditions and with
typical elastic-visco-plastic behavior have been treated in [Boucard and Ladevèze, 1999, Néron et al.,
2015] or more recently [Vitse et al., 2019] on reinforced concrete. Also an hyper-reduction technique
called Reference Point Method specially dedicated for the approximation of the tangent operator of the
LATIN-PGD in elasto-visco-plasticity was developed in [Capaldo et al., 2017].

In the parametric nonlinear context, the PGD within the LATIN framework was successfully used for deal-
ing with a wide range of problems including, heat transfer [Heyberger et al., 2012, Heyberger et al., 2013],
the study of solid mechanics problems considering as nonlinearity elasto-visco-plasticity [Relun et al.,
2013, Néron et al., 2015], and more recently reinforced concrete under quasi-static conditions [Vitse
et al., 2019], where material properties and amplitude load have been parameterized. The efficiency of
the PGD made it possible to deal with problems involving up to a dozen of parameters but passed that
number, the PGD seem to loose its empirically observed convergence properties. Recent developments
[Paillet et al., 2017, Ladevèze et al., 2018, Paillet et al., 2018a, Paillet et al., 2018b], based on the Saint-
Venant’s principle and a multiscale description of the parameter dependency, propose to overcome this
limitation and extend the scope of the method to the case of high dimensions.

Finally, due to it is main characteristic, i.e. the global resolution of the problem in space and time at the
linear stage, the idea of treating cyclic fatigue problems on large time intervals naturally arose. Many
works have been done in this domain, the first one was introduced by [Cognard and Ladevèze, 1993] for
the case of viscoplasticity and, a year later, [Arzt and Ladevèze, 1994] extended some of the notions of
the first work. More recent developments for the case of viscoplasticity and damage for fatigue problems
were presented on [Bhattacharyya et al., 2018a, Bhattacharyya et al., 2018b, Bhattacharyya et al., 2018c]
and [Bhattacharyya et al., 2019]. The main idea introduced in the aforementioned references is, from the
observation that the evolution of the solution is very slow according to loading time, to compute the time
corrections on so-called nodal cycles, the rest of the solution being interpolated.

The LATIN-PGD alliance strategy then represents an efficient framework for nonlinear problems, but from
now on, its range of applications only assumes quasi-static evolution. The studies proposed by earth-
quake engineering applications impose to bypass this limitation. The aim of the present work is to extent
the framework of the LATIN-PGD methodology in order to simulate nonlinear dynamics problems in me-
chanics, and to develop dedicated strategies for the fast resolution of the temporal functions related to the
PGD decomposition when dealing with complex excitations of long duration in time.

The contributions of this doctoral work to address the seismic risk assessment problematic and match
requirements (R1), (R2) and (R3) can be summarized as below:

1. Extension of the LATIN-PGD framework to the case of nonlinear vibratoric dynamic problems in solid
mechanics.

2. Implementation of a new multiscale signal approximation, together with a new multiscale strategy for
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solving the temporal PGD functions in the global stage of the LATIN method, which seeks to optimize
the resolution of nonlinear problems when considering complex input signals of long duration in time,
such as seismic excitations or fatigue loads.

3. Application of a hyper-reduction technique for the reduction of the computational cost associated
with the evaluation of the constitutive relation in the local stage, which also approximates the solution
of the local stage (local variables) under a low-rank decomposition that optimizes the spatio-temporal
integration operations required in the global stage of the LATIN-PGD method. Optimizing the solver
from a numerical point of view when solving problems of long time duration.

4. Definition of a parallel resolution strategy in time in order to bring additional efficiency when solving
problems where the imposed excitation have a long duration and a complex behavior in time.

The present manuscript is then structured as follows:

• Chapter 2 introduces the mathematical formulation of the reference problem at the core of our
study along with the constitutive relations considered in this work. The developments detailed in
next chapters will refer to the two constitutive relations associated to elasto-visco-plasticity typical
of steel reinforcements and isotropic damage for quasi-brittle material such as concrete medium.
Please note that the two constitutive relations are considered independently; no reinforced-concrete
modeling (both models working in parallel) is developed in this work.

• Chapter 3 gives a concise state-of-the-art regarding model order reduction techniques as well as
their usage for solving linear and nonlinear solid mechanics problems. The main ingredients of the
LATIN-PGD solver are explained at the end of this chapter.

• Chapter 4 describes in detail the LATIN-PGD methodology used to solve low-frequency dynamics
problems. This chapter uses the two constitutive relations presented in chapter 2 to explain the
methodology and implementation details for each particular case.

• Chapter 5 presents the new temporal multiscale strategy for signal approximation and the multiscale
approximation of the temporal PGD functions of the LATIN solver for the two constitutive relations
considered.

• Chapter 6 details the hyper-reduction technique applied to the local stage of the LATIN-PGD method
for the fast evaluation of the constitutive relation quantities and its low-rank approximation for the op-
timization of the PGD resolution in the global stage when dealing with long time duration excitations.

• Chapter 7 presents a parallel strategy based on the use of Time Discontinuous Galerkin Method
(TDGM), specifically dedicated to the calculation of the temporal PGD functions of the LATIN-PGD,
this in order to give a new way of reducing the computational expenses by exploiting a parallel
hardware architecture.

All presented developments have been developed in the Matlab framework. This work is part of the WP.4
work package of the NARSIS project that is acknowledged for partially supporting this doctoral work. The
tandem CEA-IRSN is also deepfully thanked for funding this research activity.
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Chapter 2

Context and reference problem

This chapter introduces the notations of the reference problem in dynamics considered
throughout this doctoral work. Strong and weak forms of the reference problem are re-
called. Both continuous and discretized spaces are presented along with the Finite Ele-
ment Method (FEM) for its approximation. Finally, the two nonlinear constitutive relations
considered in this work and involved in the derivation of the methodology in the next chap-
ters are also detailed.

Contents
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2.3 Nonlinear constitutive relations considered . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
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2.1. Introduction

2.1 Introduction

As explained in chapter 1, the main objective of this thesis is to efficiently solve nonlinear solid mechanics
problems in low-frequency dynamics. For this purpose, it is necessary to first formalize the reference
problem by formulating it mathematically. Once the mathematical foundations have been presented, it is
possible to move easily towards the introduction of methodologies that allow the efficient solution of this
problem.

This chapter is structured as follows: first, the mathematical bases of an elastic problem in dynamics are
presented, where a global spatio-temporal formulation is considered because of its use in future chapters.
Secondly, the nonlinear problem in dynamics is introduced, considering as the source of nonlinearity the
material behavior. A damaging medium is considered for modeling the concrete matrix and an elasto-
visco-plastic behavior is considered for modeling steel reinforcements. The two constitutive relations at
stake are detailed in the sections 2.3.1 and 2.3.2 respectively. Let us stress once again that the two
constitutive relations are considered independently. The modeling of reinforced-concrete (both models
working in parallel) is not carried out in this work.

Finally, the numerical values associated with the different parameters for each material are listed; these
values are fixed and are used throughout this manuscript for each section of numerical results.

2.2 Reference problem

The reference problem concerns the dynamic isothermal evolution of a structure assuming small pertur-
bations. Lets consider a structure occupying the domain Ω ∈ Rd with d ∈ {1, 2, 3} over the time domain
I = [0, T ], with a boundary ∂Ω = ∂NΩ ⊕ ∂DΩ, where ∂NΩ and ∂DΩ are the boundaries related to the
imposed Neumann and Dirichlet conditions respectively. This structure is subjected to external forces fN

in ∂NΩ, a displacements uD on ∂DΩ and to volumetric forces ρf over Ω (with ρ the density of the material).

Ω

fN

uD

ρf

|
0

|
TI

Figure 2.1: Continuous reference problem.

The unique source of nonlinearities taken into account in this thesis correspond to the material behavior;
of course other nonlinearities (of geometric nature for example) could be taken into account, but this is out
of the scope of the present work.

In what follows the mathematical formulations related to linear and nonlinear problems are presented. A
global spatio-temporal formulation is presented for the linear problem, where concepts of great importance
used throughout this manuscript are defined. After presenting the linear problem, a brief formulation is
given for the nonlinear case.
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Chapter 2. Context and reference problem

2.2.1 Elastic formulation in dynamics

2.2.1.1 Strong formulation

The elastic reference problem consists in finding the displacement field u(x, t) ∈ U and the stress field
σ(x, t) ∈ F such that they verifies:

• Initial conditions on Ω:
u
∣∣∣
t=0+

= uin and u̇
∣∣∣
t=0+

= u̇in (2.1)

Because we are dealing with vibratory dynamics problems, the initial conditions of equation (2.1)
are considered to be null, otherwise we can produce a shock as initial condition that would produce
propagative waves on the solid, a type of problem that is outside the scope of this thesis.

• Equilibrium equation over Ω× I:
ρü = div(σ) + ρf (2.2)

with div(·) the divergence operator.

• Dirichlet and Neumann conditions:

σ · n = fN , over ∂NΩ× I. (2.3)

u = uD, over ∂DΩ× I. (2.4)

with n the outward unit normal vector to the surface ∂NΩ.

• Linear elasticity constitutive relations:

When dealing with a linear problem the stress is simply given by the following elastic constitutive
relation:

σ(u) = K : ε(u) + D : ε(u̇), over Ω× I. (2.5)

where K, D, ε and σ respectively denote the Hooke tensor, the damping tensor, the elastic strain
tensor and the elastic stress tensor. The elastic strain tensor is defined as:

ε(u) =
1

2

(
∇u+∇uT

)
(2.6)

where the (·)T and ∇(·) denotes the transpose and gradient operators respectively.

Remark: The Hooke tensor K for the elastic problem is considered to be isotropic (although it is not limited
to this, anisotropic behaviour can also be considered), its matrix representation using Voigt notation is
given as follows:

σxx
σyy
σzz
σyz
σxz
σxy

 =
E

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1−2ν

2 0 0
0 0 0 0 1−2ν

2 0
0 0 0 0 0 1−2ν

2


︸ ︷︷ ︸

K



εxx
εyy
εzz
2εyz
2εxz
2εxy

 (2.7)

where E and ν correspond to the Young modulus and the Poisson coefficient respectively.
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2.2. Reference problem

2.2.2 Weak formulation

Taking advantage of the fact that the variables t and x play very different roles, we separate these variables
by considering henceforth the solution u(x, t) as a function of time t with values in a function space defined
in Ω (the same for the load f(x, t). We denote US this space of spatial functions. More precisely, in the
domain I = [0, T ] we assume the solution u defined by:

u : I → US
t→ u(t)

(2.8)

where u(t) is a function of the spatial variable x. We will continue to note u(x, t) the value of the field
u(t)(x) evaluated at point x.

2.2.2.1 Space weak formulation

The weak formulation of equation (2.2) in space consists in writing the local equation to a global one.
Thus the solution field u is searched in the space US(Ω, uD) of kinematically admissible functions defined
as:

US(Ω;uD) =
{
u ∈ H1(Ω,Rd) | u(x) = uD, ∀x ∈ ∂DΩ

}
(2.9)

where H1(Ω) defines the Sobolev space of the function u defined over Ω in Rd, where u and ∇u are
square integrable. Once the above space defined, the weak formulation in space can be written:

∀v ∈ US(Ω, 0), ∀t ∈ I,
m(ü(t), v) + d (u̇(t), v) + k (u(t), v) = f (v; t) (2.10)

with the initial conditions:

∀x ∈ Ω,

u(x, 0) = uin(x)

u̇(x, 0) = u̇in(x)
(2.11)

The symmetric bilinear forms m(., .), d (., .), k (., .) are defined by:

m(u, v) =

∫
Ω
ρv · u dΩ (2.12)

d (u, v) =

∫
Ω
ε(v) : D : ε(u) dΩ (2.13)

k (u, v) =

∫
Ω
ε(v) : K : ε(u) dΩ (2.14)

The linear form in turn writes:

f (v; t) =

∫
Ω
v · ρf(t) dΩ +

∫
∂NΩ

v · fN (t) dS (2.15)

2.2.2.2 Space - time weak formulation

As for the spatial case, a weak formulation in time can be written [Allaire, 2005], by reducing the space U
where the solution is searched to the following space:

L2(I;US) =

{
v : I → US

∣∣∣ ∫
I
‖v(t)‖2S dt <∞

}
(2.16)

9



Chapter 2. Context and reference problem

where ‖.‖S is a norm over US . By denoting UT = L2(I;R), the space U = L2(I;US) is identified to the
tensor product space US ⊗ UT [Allaire, 2005, Nouy, 2010a]. Thus a weak solution of the space-time
problem consists in searching u ∈ US(Ω;uD)⊗ UT (I) verifying:

∀v ∈ US(Ω; 0)⊗ UT (I),
A(u, v) = B(v) (2.17)

where the bilinear and linear forms are defined by:

A(u, v) =

∫
I

m(ü, v̇)dt+

∫
I

d (u̇, v̇)dt+

∫
I

k (u, v̇)dt+ m(u̇(0+), v̇(0+)) + k (u(0+), v(0+)) (2.18)

B(v) =

∫
I

f (v̇; t)dt+ m(u̇in, v̇(0+)) + k (uin, v(0+)) (2.19)

with v(0+) = limt→0+v(t).

The variational formulations given by (2.18) and (2.19) are the starting points for the calculation of an
approximate space-time solution, which is presented in the next section.

2.2.3 Discretization of the space-time problem

2.2.3.1 Space approximation

The discretization of the spatial problem defined by the weak space formulation of equation (2.10) is
performed thanks to the classical Galerkin approach, which consists in searching the solution no longer
in the space US but in a finite dimensional subspace USh of dimension nS . This approximation space is
constructed as follows:

USh (Ω, uD) =

{
uh ∈ US(Ω, uD)

∣∣∣ uh(x) =

nS∑
i=1

χi(x)ui(t), ∀x ∈ Ω

}
(2.20)

where the vector space {χ1, χ2, ....χnS} contains the shape-functions in space associated to each nodal
values of the semi-discretized displacements [u1(t),u2(t), ....unS (t)]. In this thesis work, the shape func-
tions come from the application of the Finite Element Method (FEM) [Zienkiewicz et al., 2000, Nikishkov,
2010, Smith et al., 2013]. The discretized space weak formulation of equation (2.10) is therefore given by:

∀vh ∈ USh (Ω, 0), ∀t ∈ I,

m(üh(t), vh) + d (u̇h(t), vh) + k (uh(t), vh) = f (vh; t) (2.21)

From the above considerations, the resolution of the semi-discretized version of (2.10) consists in finding
the vector of temporal nodal displacements u : I → RnS verifying:

M ü(t) + D u̇(t) + K u(t) = f (t)

u(0) = u in

u̇(0) = u̇ in

(2.22)

Where the mass, stiffness and damping matrices are given by M
ij

= m(χi, χj), K
ij

= k (χi, χj) and
D
ij

= d (χi, χj) respectively, and the vector f (t) = f (χ; t).

The equations developed in this section allow us to solve the problem approximately in space, but a study
is still needed to approximate the time evolution of the system.
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2.2. Reference problem

The temporal response of the semi-discretized equation (2.22) can be solved by applying incremental
temporal approximation strategies. For instance, we can cite the classic Newmark scheme [Newmark,
1959] or the Runge-Kutta solver [Runge, 1895, Kutta, 1901]. These approximations do not require a
global formulation of the reference problem in time as was done here for the spatial domain. However, a
different temporal approximation is followed in this thesis, which is presented in the following section.

2.2.3.2 Temporal approximation

Many schemes and methods can be used for performing the integration in time. In this work, the Time
Continuous Galerkin Method (TCGM) [Argyris and Scharpf, 1969] and the Time Discontinuous Galerkin
Method (TDGM) [Hulbert and Hughes, 1990] are considered. However, because of its greater adaptability
and robustness the TDGM is retained for the main developments of this thesis work (with the exception of
chapter 5 where TCGM is used). The DGM time-integration details are given in the following lines.

Lets consider at first the time domain divided into a number NT of open intervals of length ∆tk such that:

I =

NT⋃
k=1

Ĭk , with Ĭk =]tk−1, tk[ ; t0 = 0 and tNT+1 = T (2.23)

Figure 2.2 gives an illustration of this temporal division.

t

Ĭk|
. . .

|
tk−1

|
tk

|
. . .

• •
•

•
• •

u(t+k−1)

u(t−k−1)

Figure 2.2: Discretization scheme in time.

Every component of the semi discretized vector u(t) is searched in the space of discontinuous functions:

U T̆ (I) =

{
u ∈

NT⋃
k=1

H1(Ĭk)

}
(2.24)

where H1(Ĭk) designates the Sobolev space of functions u over Ĭk where u and ∇u are square integrable.
As the name of the method suggests, the displacements, velocities and accelerations are discontinuous
in the vicinity of each tk; this gap is minimized by re-imposing the continuity in a weak sense between
each time interval. With the above considerations, the bilinear A(u, v) and linear B(v) forms of equations
(2.18) and (2.19) are modified by taking into account the imposition of the continuity in a weak sense of the
displacement and the velocity between the intervals Ĭk−1 at t−k−1 and Ĭk at t+k−1, ∀k ∈ [1, ..., NT ] [Hulbert
and Hughes, 1990, Boucinha et al., 2013], giving the new bilinear and linear forms A ′(v, u) and B ′(v) by:

A ′(u, v) = A(u, v) +

NT∑
k=1

m(u̇(t+k ), v̇(t+k )) + k (u(t+k ), v(t+k )) (2.25)

B ′(v) = B(v) +

NT∑
k=1

m(u̇(t−k ), v̇(t+k )) + k (u(t−k ), v(t+k )) (2.26)
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Chapter 2. Context and reference problem

For the approximation of the time evolution of the problem, a finite element basis in time is introduced
in this section, which will be used throughout this thesis work. Thus a finite dimensional approximation
space is defined by:

UT∆t(I) =

{
u ∈ U T̆ (I)

∣∣∣ u ∈ NT⋃
k=1

Hp(Ĭk)

}
(2.27)

where Hp is the approximation space defined using Hermite polynomials of degree p = 3 and defined on
each Ĭk in R. These shape functions are chosen to better approximate the acceleration and therefore the
dynamics behavior of the system. From a uniform element of size ∆tk = tk − tk−1, the cubic Hermite
shape functions on a temporal element “k” are given by:

∀t ∈ Ĭk,

ψ
[k]
1 (t) =

(
1− 3

∆t2k
(t− tk−1)2 +

2

∆t3k
(t− tk−1)3

)
ψ

[k]
2 (t) =

(
(t− tk−1)− 2

∆tk
(t− tk−1)2 +

1

∆t2k
(t− tk−1)3

)
ψ

[k]
3 (t) =

(
3

∆t2k
(t− tk−1)2 − 2

∆t3k
(t− tk−1)3

)
ψ

[k]
4 (t) =

(
− 1

∆tk
(t− tk−1)2 +

1

∆t2k
(t− tk−1)3

)
(2.28)

As a result, the approximation of a given time function λ[k](t) on the interval Ĭk =]tk−1, tk[ is given by:

∀t ∈ Ĭk,
λ[k](t) = λ(tk−1)ψ

[k]
1 (t) + λ̇(tk−1)ψ

[k]
2 (t) + λ(tk)ψ

[k]
3 (t) + λ̇(tk)ψ

[k]
4 (t) (2.29)

That can be written under the following condensed form:

λ[k](t) = ψ[k](t) · λ[k] (2.30)

with the following nodal values and shape functions at element k given by:

λ[k] =


λ(tk−1)

λ̇(tk−1)

λ(tk)

λ̇(tk)

 and ψ[k](t) =


ψ

[k]
1 (t)

ψ
[k]
2 (t)

ψ
[k]
3 (t)

ψ
[k]
4 (t)


For the approximation of temporal functions over the whole time domain, we define the total vector of
shape functions over all the temporal elements ψ as:

ψ(t) =
[
ψ1(t), ψ2(t), · · · , ψnT (t)

]
(2.31)

From the above considerations, the dimension of the space is dim(U T̆ ) = nT = 4NT . In addition, the
space-time discretized displacement field is given by:

∀x ∈ Ω, ∀t ∈ I,
uN (x, t) =

[
χ(x)⊗ ψ(t)

]
: u , uN ∈ USh ⊗ UT∆t (2.32)

with u ∈ RnS ⊗ RnT , a second order tuple given by:

u =
[
u1(t1), · · · ,u4(k−1)+1, u̇4(k−1)+2,u4(k−1)+3, u̇4k, · · · , u̇nT

(T )
]

(2.33)
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2.2. Reference problem

where ⊗ denote the Dyadic product and “:” the bi-contracted product between second order tensors:

∀a, b ∈
2⊕
d=1

Rnd , a : b =

n1∑
i=1

n2∑
j=1

ai,j bi,j (2.34)

From the aforementioned temporal approximation, the weak formulation of equations (2.25) and (2.26)
associated with the Time Discontinuous Galerkin approach finally consists in finding uN ∈ USh ⊗UT∆t such
that:

∀vN ∈ USh ⊗ UT∆t,
A ′(uN , vN ) = B ′(vN ) (2.35)

To obtain the equations of the discretized system, in the following we consider the space-time approx-
imation over a temporal element “k”. Once the equations for this element are obtained, a subsequent
assembly in time is applied to obtain the final discretized equations. Therefore, let us consider the semi
discretized solution in time u(t) with t ∈ Ĭk given as follows:

u(t) = ψ[k](t) · u[k] (2.36)

Lets also consider a test function:

v(t) = ψ[k](t) · v[k] (2.37)

where for both cases we have:

u[k] = [u4(k−1)+1, u̇4(k−1)+2,u4(k−1)+3, u̇4k]

v[k] = [v4(k−1)+1, v̇4(k−1)+2, v4(k−1)+3, v̇4k]
(2.38)

such as:

u =

u1(t1) · · · ,u4(k−1)+1, u̇4(k−1)+2,u4(k−1)+3, u̇4k︸ ︷︷ ︸
u[k]

, · · · , u̇nT
(T )


v =

v1(t1) · · · , v4(k−1)+1, v̇4(k−1)+2, v4(k−1)+3, v̇4k︸ ︷︷ ︸
v[k]

, · · · , v̇nT (T )
 (2.39)

The details on the derivation of the discretized equations are given in appendix A. From the discretization
of the bilinear and linear operators for a given temporal element k, the following equations are obtained:[

M ⊗ (Q12

k
+ P11

k
) + D ⊗Q11

k
+ K ⊗ (Q10

k
+ P00

k
)
]

: u[k] =

(I ⊗Q10

k
) : f [k] +

[
M ⊗R11

k
+ K ⊗R00

k

]
: u[k−1]

(2.40)

The discrete solution u[1] over the initial element Ĭ1 in turn verifies:[
M ⊗ (Q12

1
+ P11

1
) + D ⊗Q11

1
+ K ⊗ (Q10

1
+ P00

1
)
]

: u[1] =

(I ⊗Q10

1
) : f [1] + (M .u̇ in)⊗P1

1
+ (K .u in)⊗P0

1

(2.41)

where the matrix related to the discretization of the temporal evolution over the interval Ĭk given by:

Q ij

k
=

∫
Ĭk

∂iψ[k](t)

∂ti
⊗
∂jψ[k](t)

∂tj
dt (2.42)
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and the matrices related to the weak imposition of continuity between time intervals given as follows:

P ij
k

=
∂iψ[k](tk−1)

∂ti
⊗
∂jψ[k](tk−1)

∂tj
(2.43)

Rij
k

=
∂iψ[k](tk−1)

∂ti
⊗
∂jψ[k−1](tk−1)

∂tj
(2.44)

P1
1 = ψ[1](0) (2.45)

P0
1 = ψ̇

[1]
(0) (2.46)

The full temporal evolution of the elastic problem is therefore obtained by the incremental resolution over
all the temporal elements “k” of the time domain I. However, the above system of equations can also be
compressed by doing a space-time assembly giving:

A : u = B (2.47)

From the last equation we considered A a fourth dimensional matrix, this is, A ∈ RnS×nS ⊗ RnT×nT ,

additionally B ∈ RnS×nT . The last consideration is assumed in order to be coherent with the approximation
introduced in (2.32). However in practice A is considered to be a two dimensional matrix.

From the above compression we consider the following operations:

(A⊗B) : C = D ⇐⇒
∑
j,l

AijBklCjl = Dik (2.48)

Remark: Due to the time-discontinuous formulation thanks to the TDGM, the resolution of the elastic
problem is performed incrementally in time for each temporal element k (one temporal element after the
other). This has a great advantage, since instead of inverting an assembled matrix (which takes into
account all spatio-temporal degrees of freedom) of size nSnT , only a matrix defined on a time element
of size nS4, where 4 corresponds to the number of time nodes in an element k, has to be inverted.
Despite this remarkable numerical advantage, it should be noted that if the spatial degrees of freedom
nS are large, even the inversion of a matrix of size nS4 can be extremely costly. In this regard, for the
efficient resolution of the elastic problem in dynamics, the model reduction technique Proper Generalized
Decomposition (PGD) is used together with the modal basis of the system. The PGD along with other
model reduction techniques are introduced in the next chapter 3, on the other hand, the details related to
the efficient resolution of the elastic problem are presented in chapter 4.

2.2.4 Nonlinear solid mechanics in dynamics

Nonlinear problems can arise from different sources, for instance geometric ones as for the case of large
deformations, contacts problems or simply by considering a nonlinear constitutive relation of the material
under consideration. In this thesis work the last one is only considered, this is, a nonlinearity that comes
from the material behavior. This behavior is represented by the stress tensor σ, that under some condition
is not linearly related to the displacement field through Hooke’s law. In other words, we have:

σ = J (u) over Ω× I (2.49)

where J (·) is a nonlinear function.

As seen from section 2.2.1, where different approximative approaches were introduced for the resolution
of linear problems (as the use of FEM in space and TDGM in time), once the spatial and temporal domain
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are discretized the solution is obtained by simple determination of spatial and temporal “nodal unknowns”.
These unknowns are calculated by inverting a certain matrix, which is constructed by discretizing the
equilibrium equation. The determination of the elastic solution does not pose great difficulty, since its
solution is simple and straightforward. However, when the problem is nonlinear, its resolution become
harder to obtain, the direct solution of this type of problem is not possible and special dedicated algorithms
must be used to find the correct solution. The semi-discretized equilibrium equation for a time t ∈ I when
the problem is nonlinear due to the behavior of the material is given by:


M ü(t) + D u̇(t) + g(t) = f (t)

u(0) = u in

u̇(0) = u̇ in

(2.50)

with g(t) ∈ RnS calculated using the FEM method, such as it verifies:

∀vh ∈ USh , ∀v ∈ RnS ,

v · g(t) =

∫
Ω
J (uh(t)) : ε(vh) dΩ (2.51)

The algorithms used for the solution of the nonlinear problem (2.50) are mainly based on the linearization
of the equilibrium equation (2.50) in order to solve a classic linear problem iteratively, where the nonlinear
solution is approximated by a sequence of linear solutions. Based in their resolution strategy, the nonlinear
solvers can be classified into two groups:

• Time-incremental algorithms: On this group we find the family of Newton’s type algorithms, which
allows to solve incrementally in time the reference nonlinear problem [Simo and Hughes, 2006].

• Non time-incremental algorithms: On the other hand, the LArge Time INcrement method (LATIN)
[Ladevèze, 1985, Ladevèze, 1996, Ladevèze, 1999], also allows the iterative solution of the nonlin-
ear reference problem, but in this case the solution will be found over the whole space-time domain
at each iteration.

More details about incremental nonlinear solvers can be found in chapter 3, where details about the non-
incremental LATIN method, which is the solver considered along this thesis work, are also given.

Remark: Numerically speaking, solving nonlinear problems could be really expensive, since its computa-
tional cost increases exponentially with the number of degrees of freedom (DOF) of the discretized model,
this is due to the iterative procedure needed for their resolution. Although both time-incremental and non
time-incremental methods aim at solving the same nonlinear problem, this does not mean that both are
equally effective in solving it. In chapter 3 (and the numerical results of chapter 4) it will be shown that the
non time-incremental LATIN method presents enormous advantages over the classical incremental one,
mainly due to the introduction of model order reduction techniques in its formulation that allow a huge de-
crease of the computational cost. However, as mentioned above, the cost of solving nonlinear problems
increases with the number of DOF to be determined due to the discretization of the spatial and temporal
domain. This does not exclude the LATIN method, where there are still different types of problems that
remain intractable due to the high resolution times even for this optimized method, e.g. complex fatigue
problems or seismic inputs of long time duration; typical problems in the domain of seismic engineering.
This kind of situations are, in fact, the main problem that the present thesis intends to solve by proposing
specific strategies that will be presented throughout this thesis in upcoming chapters.
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2.3 Nonlinear constitutive relations considered

In this section the nonlinear constitutive relations considered in the whole manuscript are presented. The
first one consists in modeling the damage generated in concrete structures (section 2.3.1) and the second
one corresponds to elasto-visco-plasticity, which consists of plastic deformation, isotropic and kinematic
hardening in metals (section 2.3.2). Both constitutive relations are studied to take into account the main
phenomena involved regarding reinforced concrete structures (concrete plus metallic reinforcements), ma-
terials widely used for constructions, which are treated independently in this thesis. Finally, the numerical
constants used for both constitutive relationships throughout the thesis are presented.

2.3.1 Isotropic damage model for concrete materials

The following sub-sections present the constitutive relations considered to model the damage on a con-
crete structure. In the earthquake engineering context that is considered in this work, alternate cyclic
loading is expected on the solid domain. Thus, two important characteristics of concrete must be repro-
duced by the model namely: (i) the asymmetric traction-compression behavior referred to as unilateral
effect [Mazars et al., 1990] and (ii) the crack-closure phenomenon. The simplified concrete modeling,
developed in [Vitse et al., 2019] from previous work by [Richard and Ragueneau, 2013] and [Vassaux
et al., 2015], is used here. Among other simplifications, no damage in compression is considered.

The quasi-brittle behavior of the concrete medium in tension is modeled in the classical continuum damage
mechanics framework [Lemaitre and Desmorat, 2005] using a scalar damage variable denoted d. In
tension, the effective stress tensor in the concrete medium classically writes (see figure 2.3a):

σ̃
me

=
σ
me

1− d

with the stress σ̃
me

following an elastic law:

σ̃
me

= K : ε (2.52)

In compression however (see figure 2.3b), the main idea proposed in [Vassaux et al., 2015] for handling
unilateral effect and progressive micro-cracks re-closure phenomena consists in the use of an additional
stress tensor σ

cr
. The stress tensor in the concrete representative volume element (RVE) then writes

using a Kelvin-Voigt description (see figure 2.3):

σ = σ
me

+ σ
cr

(2.53)

introducing σ
me

the stress in the concrete medium and σ
cr

accounting for the proportion of closed micro-
cracks.

An effective stress tensor associated to gradually closed micro-cracks can then be defined as (see figure
2.3b and 2.3c.):

σ̃
cr

=
σ
cr

d
(2.54)

Following the Kelvin-Voigt description and using coherent indexing, the strain tensor writes:

ε = ε
me

= ε
cr

(2.55)
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σ

σ
me

(a) apparition of micro-cracks
when loading

σ

σ
me

σ
cr

(b) progressive cracks reclosure in
compression

σ

σ
me

σ
cr

(c) closed cracks and full stiffness
recovery

Figure 2.3: Handling unilateral effect in concrete RVE – uniaxial illustration with only one micro-crack.

Section 2.3.1.1 describes how the quasi-brittle behavior in tension is modeled, assuming that σ
cr

= 0. In
turn section 2.3.1.2 describes how tensor σ

cr
is added to σ

me
in a progressive manner for compression

loading phases. Again, no damage in compression will be taken into account in the modeling. The scalar
variable d only models the micro-cracks occurring during tension loading phases.

More sophisticated modeling strategies can be taken into account to model the unilateral effect and can
be used into the LATIN-PGD method without difficulties. For instance, the anisotropic damage (tensorial
damage variable, handling damage in tension and compression) presented in [Souid et al., 2009] and
suitable for alternative low dynamic loading can be considered.

2.3.1.1 Quasi-brittle behavior in tension

According to the continuum damage mechanics framework [Lemaitre and Chaboche, 1994], the Helmoltz
free enthalpy, taken as the state potential of the cracked material, is a function of all the primal state
variables and writes:

Ψme(d, ε, z) =
1

2
(1− d) ε : K : ε+H(z) (2.56)

introducing the classical fourth order Hooke’s tensor K and the potential H(z) and variable z associated
to isotropic softening related to damage. The choice of the potential function H(z) governs the post-peak
behavior of the concrete medium in tension. In [Richard and Ragueneau, 2013], the following choice is
made:

H(z) =
1

Ad
(−z + log(1 + z)) (2.57)

the following variables are then introduced by duality writing:

Z =
∂Ψme

∂z
=
∂H(z)

∂z
and Ȳ = −∂Ψme

∂d
=

1

2
ε : K : ε (2.58)

where Ȳ is an energy release rate. Since damage mainly occurs in traction stresses, the dissipated energy
released in the damage process will be considered different from Ȳ instead we consider [Mazars, 1984]:

Y =
1

2
〈ε〉+ : K : 〈ε〉+ (2.59)
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Chapter 2. Context and reference problem

where the Macaulay brackets 〈•〉+ denote the positive part of the tensor “•” in the sense of the eigenvalues,
this is:

〈ε〉+ =
3∑
i=1

〈ei〉ni ⊗ ni (2.60)

with 〈ei〉 the positive part of the i eigenvalue associated to the eigenvector ni.

In turn Z, also homogeneous to an energy rate, is the thermodynamical force involved in the definition
of the damage threshold and defines the actual size of the elastic domain. Thus, the surface threshold
defined in terms of energy released through damage [Mazars, 1984] reads:

f(Y,Z;Y0) = Y − (Y0 + Z)

{
f < 0 elasticity
f > 0 damage activation

(2.61)

An analytical expression of damage can be obtained [Richard et al., 2010] so that the evolution laws
become:

d̄ = 1− 1

1 +Ad(Y − Y0)
and z = −d̄ (2.62)

Classical continuum damage theory based models may have difficulties to describe fracture properly;
indeed, the loss of ellipticity is a recurrent issue when dealing with materials with softening behavior,
leading to a localization of the deformation and mesh dependency issues [Bazant et al., 1984]. One way
of overcoming such numerical difficulties is to use localization limiters [Lasry and Belytschko, 1988]. In
this work the damage is regularized using a viscosity law. A strategy similar to what is described in [Allix
and Deü, 1997, Allix et al., 2003, Allix, 2013] is implemented. The introduction of a delay effect leads to a
new damage evolution law that can be written as:

ḋ =
1

τc

[
1− exp

(
−a
[
〈d̄− d〉+

])]
(2.63)

where d̄ is the damage value computed using equation (2.62) and the scalars (τc, a) are two new param-
eters associated to damage regularization. The damage variable d now verifies a nonlinear first order
differential equation. The maximum damage rate is given by ḋmax = 1

τc
and the more or less brittle

character of the damage evolution law is governed by the choice of the parameter a.

2.3.1.2 Progressive micro-crack re-closure

The unilateral effect is modelled using an auxiliary stress tensor σ
c

accounting for the progressive micro-
cracks re-closure in compression and enabling full stiffness recovery. In this manner, even though perma-
nently damaged in tension, the concrete medium will behave in compression almost independently from
its history in tension. The progressive stiffness regain can be handled by the means of a diffeomorphism
F : R3 ⊗ R3 −→ R3 ⊗ R3 such that:

σ̃
cr

= K : F(ε) (2.64)

and with F(ε) verifying: {
F(ε) ∼ ε in compression
F(ε) ∼ 0 in tension

(2.65)

The tangent behavior is then defined writing:

dσ̃
cr

= K :

[
∂F
∂ε

]
: dε (2.66)

18



2.3. Nonlinear constitutive relations considered

where
[
∂F
∂ε

]
is a fourth order tensor. In this work, following the lines of [Vassaux et al., 2015], the following

function is used:

σ̃
cr

= K :

ε− (εmax
ac

)
log

(
1 + exp

(
ac

tr(ε)
tr(εmax)

))
F(ε)

 (2.67)

where εmax(t) = max tr(ε(x, t)) with 0 < t < T and ac a constant parameter that can be modified to define
a more or less progressive crack-closure ( ac −→ ∞ for more sudden crack-closure). This expression for
σ̃
cr

verifies condition (2.65) and thus by writing:

σ
cr

= dσ̃
cr

one can prove that the stiffness is fully recovered in compression. More details and uni-axial interpreta-
tions of the different parameters involved in the crack-closure relation (2.67) can be found in the reference
[Vassaux et al., 2015].

2.3.1.3 Synthesis

From what has been presented in this section, the isotropic damage model considers three fundamental
points, (i) the generation of damage in the structure due to tensile stresses, (ii) the consideration of
unilateral effects so that the structure does not suffer damage in compression and (iii) the regularization
of the damage variable. All the equations of the constitutive relations considered for isotropic damage in
the concrete material are recorded in the table 2.1.

Damage calculation Stress calculation

Y = 1
2 〈ε〉+ : K : 〈ε〉+ σ̃

me
= K : ε

d̄ = 1− 1
1+Ad(Y−Y0) σ̃

cr
= K :

[
ε−

(
ε

max
ac

)
log
(

1 + exp
(
ac

tr(ε)
tr(ε

max
)

))]
ḋ = 1

τc

[
1− exp

(
−a
[
〈d̄− d〉+

])]
σ = σ

me
+ σ

cr
= (1− d)σ̃

me
+ d σ̃

cr

Table 2.1: Constitutive relations for the isotropic damage in concrete material.

2.3.1.4 Constants considered in the whole manuscript

For the determination of the material parameters used for the isotropic damage model, here we consider
the numerical calibration of a simple traction-compression response (at single Gauss point level) in or-
der to reproduce a experimental data. In this sense, the reference parameters presented in table 2.2
have been chosen such as reproducing the main features of the results obtained for uni-axial tests on a
double-notched concrete specimen in [Nouailletas et al., 2015]. Figure 2.4 reproduces for convenience
the experimental set-up description and uni-axial response of the concrete specimen extracted from the
above-mentioned reference.
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Figure 2.4: Uni-axial test results on double-notched concrete specimen described in [Nouailletas et al.,
2015]. (Left) Imposed displacement in the vertical direction, two Crack Mouth Opening Displacement
(CMOD) sensors are measuring the displacement between the two faces of each notch. (Right) Stress
vs. strain plot in the vertical direction; the “normal strain” on abscissa is an averaged value computed from
the two CMOD sensors.

Figure 2.5 shows a first illustration of the model response in a Gauss point to an uni-axial strain imposed in
the x direction (with seven loops). One can particularly appreciate how the softening behavior is handled
by the potential H and observe the evolution of damage taking into account (d) or not (d̄) the damage
delay of equation (2.63).

Figure 2.5: Mechanical response of the model at a Gauss point to a uni-axial tension-compression loading.

One can observe that the simplified concrete modeling considered in this work is capable of reproducing
the softening behavior in tension and handling stiffness recovery in compression, and this, while taking
advantage of the regularizing action of the damage delay technique. No dissipative mechanism is intro-
duced in our simplified modeling to reproduce the hysteresis loops (unlike what can be found in [Richard
and Ragueneau, 2013, Vassaux et al., 2015], that use a visco-plastic potential in their constitutive relation
formulations). As previously mentioned, no damage in compression is taken into account.
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2.3. Nonlinear constitutive relations considered

Mat. Parameters Ref. value Description
C

on
cr

et
e

ρ 2550 [kg/m3] Material density

E 37.9 [GPa] Young’s modulus

ν 0.2 Poisson’s ratio

Y0 150 [J.m3.kg−1] Damage activation energy threshold

Ad 8.10−3 [J−1.m−3.kg] Brittleness coefficient

τc 0.05 [s] Damage delay time constant

a 15 Damage delay exp. constant

ac 9 Crack-closure dimensionless constant

Table 2.2: Reference material parameters.

2.3.2 Elasto-visco-plastic constitutive relation

As mentioned previously, the behavior of steel is modeled using an elasto-visco-plastic law. In this sense,
let us consider a material undergoing kinematic and isotropic hardening along with plastification. In this
situation, the elastic and plastic deformation tensors εe and εp verify the following strain partition relation:

ε = εe + εp (2.68)

in a Maxwell context, where ε is the total deformation.

The constitutive relation considered and detailed below corresponds to the standard variant of the Marquis-
Chaboche plasticity model ([Lemaitre and Chaboche, 1985, Marquis, 1989]) introduced in [Ladevèze,
1985, Ladevèze, 1989]. This choice of elasto-visco-plastic behavior follows the work in [Ladevèze, 1999],
although another plasticity model could be considered without difficulty.

2.3.2.1 Internal variables and thermodynamical framework

The dual description (in the stress plane) of the plasticity domain involves two internal variables:

• R : a scalar variable implicated in the plasticity threshold expression and describing the actual size
of the plasticity domain (isotropic hardening),

• β : a tensor variable for positioning the plasticity domain with respect to the stress state (kinematic
hardening).

The corresponding primal variables r and α are introduced by duality and the Gibbs’s free energy writes
in terms of primal variables:

ρΨ = ρΨe + H(α) + G(r) (2.69)

involving two nonlinear potential functions H(α) and G(r). Primal and dual variables are linked to each
other writing:

β = ρ
∂Ψ

∂α
, R = ρ

∂Ψ

∂r
= G′(r) (2.70)
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The dissipation verifies:
Φ = σ : ε̇p −Rṙ − β : α̇ > 0 (2.71)

In the standard version the plasticity threshold function fs writes:

fs =

√
3

2
τ : τ +

a

2C
β : β −R− σy (2.72)

with τ = σD − β, where σD correspond to the deviatoric stress tensor and σy is the yield stress. The
elasticity domain corresponds to fs ≤ 0, plasticity domain is characterized by fs = 0 and visco-plasticity
by fs > 0.

Remark: The standard version of the Marquis-Chaboche model differs from the non standard one [Lemaitre
and Chaboche, 1985, Chaboche, 1989, Marquis, 1989, Lemaitre and Chaboche, 1994] in the evolution of
the internal variable that describes the kinematic hardening. In this sense, an additional term a

2Cβ : β in
the plasticity threshold function of equation (2.72) is considered for the standard version.

2.3.2.2 Choice of the potential functions; state equations

Kinematic hardening is described using a quadratic potential writing:

H(α) =
1

2
Cα : α (2.73)

using a constant material parameter C, that leads to:

ρ
∂Ψ

∂α
= β = Cα (2.74)

The isotropic potential G on the other hand, can be modeled using a exponential description:

G(r) = R∞

[
r +

1

b
(exp (−br)− 1)

]
(2.75)

introducing two new material constants b and R∞. The variable R involved in the expression of the
plasticity threshold then writes:

ρ
∂Ψ

∂r
= R(r) = R∞(1− exp (−br)) (2.76)

2.3.2.3 Evolution laws

The standard formulation of the Marquis-Chaboche model is associated with the dual potential of dissipa-
tion:

ϕ∗(σ, β, r) =
K

ns + 1

[
〈fs(σ, β, r)〉+

K

]ns+1

(2.77)

with K, ns material constants and 〈•〉+ the positive part of •. The differentiation of the dual dissipation
potential leads to the laws of evolution that writes:

ε̇p =
∂ϕ∗

∂σ
, −α̇ =

∂ϕ∗

∂β , −ṙ =
∂ϕ∗

∂R
(2.78)
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2.3. Nonlinear constitutive relations considered

In this way, by considering the definition of the constant k = K−ns , the plastic strain rate writes:

ε̇pij = k〈fs〉ns+

3

2

τij√
3
2τ : τ

 (2.79)

along with the evolution of the kinematic hardening:

α̇ij = −k〈fs〉ns+

−3

2

τij√
3
2τ : τ

+
a

C
βij

 (2.80)

and the isotropic hardening:
ṙ = k〈fs〉ns+ (2.81)

2.3.2.4 Normal formulation applied to the isotropic hardening

To apply the LATIN method for the resolution of the internal variables the state equations should be
described by linear operators, this is not the case of the isotropic hardening as it is shown in equation
(2.76), this is:

R(r) = R∞(1− exp (−br))

In order to have a linear relation between R and r a normal formulation was introduced in [Ladevèze,
1989]. The normal formulation consists of applying the following change of variables:

R̄ = R∞r̄ = R∞

∫ r

0


(
∂2G(r̃)
∂r̃2

)
R∞

1/2

dr̃ (2.82)

where:

r̄ =

∫ r

0


(
∂2G(r̃)
∂r̃2

)
R∞

1/2

dr̃ =
2

b
1
2

[
1− exp(−br

2
)

]
(2.83)

by using (2.82) and (2.83) we can write:

R = R∞

(
R̄

R∞

b
1
2

2

)(
2− R̄

R∞

b
1
2

2

)
(2.84)

along with:

˙̄r = −k〈fs〉ns+

(
R̄

R∞

b

2
− b

1
2

)
(2.85)

and the plasticity threshold function finally can be written as:

fs =

√
3

2
τ : τ +

a

2C
β : β −R∞

(
R̄

R∞

b
1
2

2

)(
2− R̄

R∞

b
1
2

2

)
− σy (2.86)

Fore more information and details about the normal formulation see [Ladevèze, 1999].
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2.3.2.5 Synthesis

The equations associated to elasto-visco-plastic constitutive relations are gathered in table 2.3, where the
normal formulation is already taken into account for the isotropic hardening.

State laws Evolution laws

σ = K : (ε− εp) ε̇p = k〈fs〉ns+

[
3
2

τ√
3
2
τ :τ

]
β = Cα α̇ = ε̇p − k〈fs〉ns+

a
Cβ

R̄ = R∞r̄ ˙̄r = −k〈fs〉ns+

(
R̄
R∞

b
2 − b

1
2

)
Table 2.3: Constitutive relations for elasto-visco-plastic behavior.

Those equations can be divided into state equations and evolution equations. Introducing the mapping B,
and denoting X = (α, r̄) and Z = (β, R̄), those relations can be written:

• Evolution equations: ε̇p
Ẋ

 = B(σ, Z) (2.87)

• State equations:  σ = K : (ε− εp)

Z = Ῡ X
, Ῡ =

C 0

0 R∞

 (2.88)

with Ῡ a linear operator.

2.3.2.6 Constants considered in the whole manuscript

Here we present the material parameters related to steel and its elasto-visco-plastic model, these con-
stants are considered for all this thesis work. The parameters related to the steel material are presented
in the table 2.4.

Mat. Parameters Ref. value Description

S
te

el

ρ 7850 [kg/m3] Material density

E 200 [GPa] Young’s modulus

ν 0.3 Poisson’s ratio

σy 350 [MPa] Yield stress

Table 2.4: Reference material parameters considered for steel (May vary depending on the type of steel).

In addition, the constants related to the elasto-visco-plasticity model are chosen as presented in table 2.5
[Lemaitre and Desmorat, 2005].
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Parameters Ref. value

R∞ 36 [MPa]

C 5500 [MPa]

a 250 [MPa]

b 2 [MPa]

ns 2.5

K 1220× 106

k K−ns

Table 2.5: Constitutive relation parameters for elasto-visco-plasticity.

2.4 Conclusions

This chapter introduces the reference problem considered in this thesis work, which consists of a non-
linear dynamic problem in solid mechanics. First, the principal notations were introduced along with the
approximation spaces by presenting the formulation of an elastic dynamic problem, where the govern-
ing discretized equations where obtained. Secondly, the nonlinear problem in dynamics was presented,
where the source of nonlinearity of the problem comes from the material behavior. Finally, the main con-
stitutive relations considered throughout this manuscript were presented, which are intended to simulate
the behavior of reinforced concrete widely used in large constructions such as buildings, nuclear power
plants, etc. These materials correspond to concrete and the steel frame reinforcements, whose behavior
is modeled by a quasi-brittle isotropic damage in the case of concrete, which takes into account the loss
of stiffness due to the existence of cracks in the material, and elasto-visco-plasticity for the steel reinforce-
ment, which simulates the plastic deformations that are highly present in metallic materials. We recall that
these behaviors are treated independently throughout this thesis, where the different ideas developed are
applied to both behaviors separately, although the differences and complexities of these ideas applied to
each material are highlighted.

As presented in chapter 1, the main objective of this thesis work consists in the fast solution of nonlinear
problems in dynamics, in this sense the next chapter 3 introduces innovative techniques called model
order reduction methods, which when combined with nonlinear solvers allow the efficient resolution of
nonlinear problems. The main model order reduction methods, as well as the nonlinear solvers that use
these models in their formulation, are presented in this chapter.
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Chapter 3

Overview of Model Order Reduction
techniques and their application for
solving nonlinear problems

This chapter gives an overview of the different Model Order Reduction (MOR) strategies.
Those strategies propose the use of a so-called low-rank approximation for finding an ac-
curate and cheap solution to linear problems. Yielding methodologies for solving nonlinear
evolutionary problems, possibly including parameters dependency, are also presented.
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3.1. Introduction

3.1 Introduction

When solving large evolutionary problems, i.e. when the sizes of the spatial and temporal integration
domains are big, known numerical issues can be encountered. On the one hand, there is a large memory
resources demand due to all data that must be saved and, on the other hand, the inherent limitation of
the processor speed can lead to very long computational times. Model order reduction techniques arise
as some of the most efficient strategies for reducing the computational costs and enable memory savings
when dealing with those kinds of problems. The main idea is based on the approximation of a linear
solution by a low-rank decomposition taking advantage of the redundancy of the sought solution.

In the linear range, Model Order Reduction (MOR) techniques can be classified into two main groups: the
a posteriori and a priori techniques. The objective of the present chapter is to give an overview of the
methods corresponding to these two groups for the resolution of solid mechanics problems. In a second
time, nonlinear solvers built around those MOR techniques are presented.

3.2 Low-rank approximation for time-dependent/parametric problems

In the present section, an overview of the state-of-the-art of linear MOR techniques is given. The a
posteriori MOR Proper Orthogonal Decomposition (POD) and the a priori MOR that is widely used in this
thesis, the Proper Generalized Decomposition (PGD), are presented. But before that, some definitions on
low-rank approximation and corresponding approximation spaces for linear problems are given.

3.2.1 Approximation of rank m

The key idea is to reduce the product space US⊗UT where the solution of a linear problem is sought (see
chapter 2). Thus, for time-dependent problems, the reference solution u(x, t) is sought as:

u(x, t) ≈ um(x, t) =
m∑
i=1

wi(x)λi(t) = W
m

(x) · Λm(t) (3.1)

where:
W

m
(x) =

[
w1(x), w2(x), ..., wm(x)

]
, Λm(t) =

[
λ1(t), λ2(t), ..., λm(t)

]T
(3.2)

The functions wi(x) ∈ US are called space generalized eigenfunctions (or spatial modes) and the functions
λi(t) ∈ UT are called temporal generalized eigenfunctions (or temporal modes). The total number of
functions m is called the rank of the approximation.

Now assuming that the linear reference problem is discretized using classical FEs in space and Time
Discontinuous Galerkin Method (TDGM) in time, the numerical solution uN (x, t) belonging to the approxi-
mation space USh ⊗ UT∆t of finite dimension writes:

uN (x, t) =
[
χ(x)⊗ ψ(t)

]
: u , u ∈ RnS ⊗ RnT (3.3)

introducing the vector of shape function basis χ(x) in space and ψ(t) in time, according to the notations
introduced in chapter 2 and where “:” denotes the bi-contraction operation (see chapter 2, section 2.2.3.2).

The discretized low-rank approximation can thus be written:

uNm(x, t) =
[
χ(x)⊗ ψ(t)

]
:

(
m∑
i=1

w i ⊗ λi

)
︸ ︷︷ ︸

u
m

with

 w i ∈ RnS

λi ∈ RnT
(3.4)
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with ⊗ the dyadic product and where u
m

denotes the discretized low-rank approximation of matrix u.

The problem consists therefore in finding an approximation of u(x, t) in the subset Rm of space-time
representations with separated variables of rank m defined as:

Rm =

{
um ∈ US ⊗ UT

∣∣ um(x, t) =
m∑
i=1

wi(x)λi(t) with wi ∈ US , λi ∈ UT
}

(3.5)

For the case of a solution sought in FEM approximation space, of finite dimension, associated low-rank
approximation space writes:

RNm =
{
uNm ∈ USh ⊗ UT∆t

∣∣ uNm(x, t) =
[
χ(x)⊗ ψ(t)

]
: u

m
with u

m
∈Rm

}
(3.6)

whereRm is the subset of space-time decompositions of rank m defined by:

Rm =

{
u
m
∈ RnS ⊗ RnT

∣∣ u
m

=

m∑
i=1

w i ⊗ λi with w i ∈ RnS , λi ∈ RnT
}

(3.7)

In addition, the following canonical scalar product together with associated L2-norms are introduced and
applied to functions u and v of the space US ⊗ UT as follows:

〈v, u〉Ω =

∫
Ω
v · u dΩ, ‖v‖Ω =

√
〈v, v〉Ω

〈v, u〉I =

∫
I
v · u dt, ‖v‖I =

√
〈v, v〉I

〈〈v, u〉〉 =

∫
Ω

∫
I
v · u dΩdt, |||v||| =

√
〈〈v, v〉〉

(3.8a)

(3.8b)

(3.8c)

The low-rank approximation can be constructed in two different ways:

1. A posteriori construction: This strategy corresponds to the construction of the approximation
uNm(x, t) ∈ Rm by minimizing an a posteriori norm JO(uNm , u

N ) that measures the distance between
the approximation and the reference finite element solution field uN (x, t) which is known.

2. A priori construction: The field uN (x, t) remains unknown and the approximation uNm(x, t) ∈ Rm is
calculated only by using the governing equations of the reference problem (i.e the bilinear and linear
forms (A and B respectively) defined for the elastic problem in chapter 2) by minimizing an a priori
norm JM(uNm ,A,B), that measures the residue of the reference problem.

The description of these two strategies is the main objective of the two following sections.

3.2.2 A posteriori Model Order Reduction - Proper Orthogonal Decomposition (POD)

The decomposition known as Proper Orthogonal Decomposition (POD), Karhunen-Loève decomposition
(KLD) [Karhunen, 1946, Kosambi, 1943, Loeve, 1948, Obukhov, 1954] and also called Principal Compo-
nent Analysis [Pearson, 1901] (PCA), consists in calculating a decomposition of the reference solution
u(x, t) which is optimal in the sense of a given norm |||·|||O. Many publications as [Wu et al., 2003] show
the equivalence between the POD, KLD, PCA and their connexion with the Singular Value Decomposition
(SVD) in some particular cases.
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3.2. Low-rank approximation for time-dependent/parametric problems

3.2.2.1 Best approximation of rank m

To illustrate the concepts, lets consider that the displacement solution u(x, t) of a given problem is already
known, and we want to approximate it by a low-rank decomposition. The best approximation of rank m is
therefore defined as the one that minimizes a given distance to the reference solution u(x, t) in the sense
of the norm |||·|||O defined on US ⊗ UT :

um = arg min
u∗(x,t)∈Rm

JO(u∗;u) = arg min
u∗(x,t)∈Rm

|||u(x, t)− u∗(x, t)|||2O (3.9)

where the norm |||·|||O is associated to the scalar product 〈〈·, ·〉〉O. The choice of different norms |||·|||O
defined over US⊗UT for the minimization problem gives different approximations um, optimal in the sense
of the chosen norm. In what follows the canonical norm |||·|||2 = 〈〈·, ·〉〉 is chosen.

In this context, the Karhunen-Loève decomposition is obtained as follows:

um = arg min
wi ∈ US

λi ∈ UT

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣u(x, t)−

m∑
i=1

wi(x)λi(t)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

(3.10)

subjected to the orthonormalization of the spatial functions:

∀(i, j) ∈ [1, ...,m], ∫
Ω
wi · wj dΩ = δij with δij =

{
1 if i = j

0 if i 6= j
(3.11)

It is possible to show that the problem (3.10) can be reduced to an eigenvalue problem as follows:

∀i ∈ [1, ...,m],
GΩ(wi) = ςiwi and GI(λi) = ςiλi (3.12)

where the operators GΩ(wi) and GI(λi) are called spatial and temporal correlation operators respec-
tively; the eigenvalue ςi is associated to the proper functions wi(x) and λi(t). Indeed, by developing the
expression (3.10):

J =

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣u−

m∑
i=1

wiλi

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

= 〈〈u, u〉〉 − 2

m∑
i=1

〈〈u,wiλi〉〉+

m∑
i=1

m∑
j=1

〈〈wiλi, wjλj〉〉 (3.13)

and minimizing it with respect to the spatial and temporal functions (wi and λi respectively) and consider-
ing the orthonormalization condition (3.11), one obtains:

∀i ∈ [1, ...,m],

∀x, dJ

dwi
= −2〈u(x, t), λi〉I + 2〈λi, λi〉I wi = 0⇐⇒ wi(x) =

〈u(x, t), λi〉I
〈λi, λi〉I

(3.14)

∀t, dJ

dλi
= −2〈u(x, t), w〉Ω + 2〈wi, wi〉Ω λi = 0⇐⇒ λi(t) =

〈u(x, t), wi〉Ω
〈wi, wi〉Ω

(3.15)

By introducing the equation (3.15) into (3.14) we finally obtain:

〈u(x, t),
〈u(x, t), wi〉Ω
〈wi, wi〉Ω

〉I︸ ︷︷ ︸
GΩ(wi)

= 〈〈u(x, t), wi〉Ω
〈wi, wi〉Ω

,
〈u(x, t), wi〉Ω
〈wi, wi〉Ω

〉I︸ ︷︷ ︸
ςi ≥ 0

wi (3.16)
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In a similar way, the operator GI(λi) can be obtained by introducing the equation (3.14) into (3.15).

The Karhunen-Loève decomposition verifies convergence to the original function u(x, t). Indeed, by intro-
ducing the low-rank approximation um ∈ Rm in equation (3.13), and considering the orthonormalization
condition (3.11), the truncation error verifies the following convergence property [Karhunen, 1946]:∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣u(x, t)−

m∑
i=1

wi(x)λi(t)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

= |||u(x, t)|||2 −
m∑
i=1

ςi −→
m→∞

0 (3.17)

with the eigenvalues verifying ς1 ≥ ς2 ≥ ... ≥ 0. In practice, a low number of POD modes is required to
correctly approximate a given solution, so, in general, a truncation of the POD decomposition is considered
taking into account only the first m terms, with m a small value.

3.2.2.2 Discrete a posteriori construction of the approximation

In the present section the discrete version of the POD is shown. To illustrate the methodology we consider
the data to be approximated as the discretized space-time displacement u ∈ RnS ⊗ RnT , which is known.
Following (3.10), the discrete POD decomposition must be constructed such as:

u
m

= arg min
u∗∈Rm

∣∣∣∣∣∣u∗ − u
∣∣∣∣∣∣2 (3.18)

where the norm
∣∣∣∣∣∣u∣∣∣∣∣∣ =

√
u : u corresponds to the Euclidean norm.

The discretized approximation basically postulates that the nT observed variables of matrix u can be
approximately obtained from a linear transformation W of m unknown reduced latent variables, which in
this example corresponds to the discretized POD time functions Λ = [λ1,λ2, ...,λm]T ∈ Rm ⊗ RnT , such
that:

u ≈W Λ (3.19)

with the matrix W ∈ RnS ⊗ Rm given by:

W =
[
w1,w1, · · · ,wm

]
(3.20)

In the context of the POD, the reduced basis vectors w i, ∀i ∈ [1, ...,m] are determined by calculating the
eigenvectors associated to the highest m eigenvalues of the following correlation matrix C ∈ RnS × RnS
[Lee and Verleysen, 2007]:

C = uuT (3.21)

where the obtained spatial terms verify the orthonormalization property, that is:

I = W TW (3.22)

where I is a identity matrix of size m×m.

Once the discretized spatial functions have been obtained, due to their orthonormalization property, the
temporal terms are simply obtained as follows:

Λ = W T u (3.23)

From the above developments we can therefore write:

u =
m∑
i=1

w i ⊗ λi︸ ︷︷ ︸
u
m

+

nS∑
j=m+1

w j ⊗ λj︸ ︷︷ ︸
≈ 0

(3.24)
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3.2. Low-rank approximation for time-dependent/parametric problems

where nS −m terms are left out for defining the approximation u
m

.

Remark: It should be noted that the correlation matrix can also be determined as uTu, where in this case
the eigenvectors of this matrix would be the temporal functions.

3.2.3 Galerkin projection onto a reduced space-basis in linear dynamics problems

One of the interesting applications of POD is in efficient problem solving. Indeed, for evolutionary prob-
lems, once the solution (u(x, t) in our case) is determined for a given parametric set, truncated POD
spatial basis (wi)

m
i=1 can be constructed using this solution over specific “snapshots” in time (where the

number of snapshots is smaller than the total discretized temporal DOFs) as shown in section 3.2.2.2.
Once the spatial functions of the truncated POD decomposition are determined, the idea is to reduce the
equations needed for the calculation of the reference problem (and approximate the new solution) for a
given new set of parameters by using the spatial basis (wi)

m
i=1. In other words, the spatial approximation

space of rank m is reduced to:
USm = span{wi}mi=1 (3.25)

Now using this space and considering, for instance, the weak semi-discretized formulation in space intro-
duced in chapter 2 (equation (2.10)), we obtain the following reduced equations:

m∑
j=1

m∑
i=1

[
m(wi, wj)λ̈i(t) + d (wi, wj)λ̇i(t) + k (wi, wj)λi(t)

]
=

m∑
j=1

f (wj ; t) (3.26)

which can be converted into the following discretized equation when using the finite element method in
space: (

W TM W
)︸ ︷︷ ︸

M̄

Λ̈m(t) +
(
W TD W

)︸ ︷︷ ︸
D̄

Λ̇m(t) +
(
W TK W

)︸ ︷︷ ︸
K̄

Λm(t) = W T f (t)︸ ︷︷ ︸
f̄ (t)

(3.27)

Equation (3.27) can be written in a more condensed form as:

M̄ Λ̈m(t) + D̄ Λ̇m(t) + K̄ Λm(t) = f̄ (t) (3.28)

where M̄ , D̄ and K̄ correspond to the reduced mass, damping and stiffness matrices respectively, which
all have a size ofm×m. The loading term f̄ (t) of sizem×1 corresponds to the reduced external excitation.

The reduced equation (3.28) obtained by using the POD method allows the reference problem to be
solved inexpensively, since the size of the spatial matrices involved in the equation are drastically reduced
compared to a classically discretized problem without the application of POD, i.e m� nS .

3.2.3.1 Synthesis of the Proper Orthogonal Decomposition

After the works of [Sirovich, 1987] or [Berkooz et al., 1993], the Proper Orthogonal Decomposition has
met a great success for the analysis of model order reduction applied to transient problems. Other areas
where POD has been successfully applied can be mentioned such as electrodynamics [Liang et al., 2002],
elastodynamics [Lülf et al., 2015], interpolation of POD basis [Lieu et al., 2005, Lieu and Farhat, 2005, Lieu
and Farhat, 2007, Amsallem and Farhat, 2008], and more generally nonlinear dynamics (see for example
[Kerschen et al., 2005] and the many references therein). In the nonlinear range, the transient evolution
of dynamic systems can be written in the following general form:

M ü(t) + g(u , u̇ ; t) = f (t) (3.29)
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where g(u , u̇ ; t) is a nonlinear vector function representing the internal forces. The robustness of the
POD with respect to the different nonlinearities encountered has been studied in dynamics by Feeny and
Kappagantu [Feeny and Kappagantu, 1998]. Let one also mention the study of error estimators for linear
and nonlinear parabolic problems in [Kunisch and Volkwein, 2001, Kunisch and Volkwein, 2002].

The POD has also been used to deal with parametric problems [Christensen et al., 1999, Lieu and
Lesoinne, 2004, Schmit and Glauser, 2004, Amsallem and Farhat, 2008]. In such analyses, it is as-
sumed that the equations of the problem depend on a certain number of parameters θ ∈ Iθ. However, in
these studies special care must be taken when choosing the parametric “snapshots”, since depending on
the problem studied (if it has strong variations in the boundary conditions or a strong dynamic evolution)
the reduced basis could severely affect the approximation as presented in [Glüsmann and Kreuzer, 2009].

In this context, a more successful method for the definition of efficient reduced bases for the fast solution
of parametric problems was developed. Referenced under the name of Certified Reduced Basis Method
(CRBM), the selection of the “snapshots” is performed in order to certify that the generated reduced basis
allows to correctly approximate the solution in the parametric domain by using error estimators. The
following section 3.2.4 is dedicated to this methodology.

3.2.4 Certified reduced basis method (CRBM)

The resolution of parametric problems in the context of continuum mechanics can present some limita-
tions. The main difficulty that arises is the computational time needed to realize parametric studies, for
instance when treating large industrial problems. In this context, the Certified Reduce Basis Method was
developed in order to decrease the computational cost by using model order reduction techniques.

The CRBM was initially presented in [Prud’Homme et al., 2002, Maday et al., 2002] and was increasingly
developed since the 2000’s [Prud’Homme et al., 2002, Maday and Ronquist, 2004, Grepl, 2005, Maday,
2006, Rozza et al., 2007, Nguyen, 2008, Quarteroni et al., 2011, Veys, 2014, Galvis and Kang, 2014, Chen
et al., 2017, Hain et al., 2019, Abbasi et al., 2020, Nonino et al., 2021]. The method is dedicated to the
fast and reliable resolution of partial differential equations, elliptic and parabolic parametrized by a vector
θ ∈ Iθ.

The reduced basis method is based on two stages procedure, called offline and online stages. During
the offline stage, the reference problem is solved using classical finite element techniques on a coarse
set of parametric values. The main idea of this direct resolution is to construct a reduced basis that can
approximate the solution manifold over the whole parametric domain. On the other hand, the online stage
consists of a Galerkin projection of the problem’s equations into the space spanned by the reduced basis
calculated at the offline stage. This projection allows to drastically reduce the computational cost during
the online stage and therefore allowing a fast computation on the parametric domain.

In the next subsections, the basic principles of the CRBM framework are presented considering only elliptic
partial differential equations, but this strategy is also suited for solving parametric parabolic problems (see
e.g. [Grepl, 2005] for more details).

3.2.4.1 General description for elliptic partial differential equations

Lets consider the case of an elliptic solid mechanic problem written in a weak form for a given time t as:

∀v ∈ US , θ ∈ Iθ,
k (u, v; θ) = f (v; θ) (3.30)

where one seeks to compute the parametric displacement solution u(x, θ). Lets define the solution of
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3.2. Low-rank approximation for time-dependent/parametric problems

equation (3.30) as the exact solution, this solution belong to the exact solution manifold given as:

M = {u(x, θ) | ∀x ∈ Ω , θ ∈ Iθ} ⊂ US (3.31)

The representation of this manifold is illustrated in figure 3.1.

US

u(x, θ)

•

•
• ••

•

•

u(x, θp)

u(x, θ1)

M

Figure 3.1: Representation of the manifoldM.

As we consider complex solid mechanics problems, finding an analytic expression of the exact solution
becomes impossible, therefore we seek an approximation by using the finite element method in space
(see chapter 2):

∀vh ∈ USh , θ ∈ Iθ,
k (uh(x, θ), vh; θ) = f (vh; θ) (3.32)

By consequence, we can define the approximated manifold solutions as:

Mh = {uh(x, θ) | ∀x ∈ Ω , θ ∈ Iθ} ⊂ USh (3.33)

As in the POD method, the idea is to build a reduced basis in an offline stage, which will then serve to
effectively solve the reference problem (3.32) by means of a Galerkin projection. The big difference of the
CRBM with the POD is that the reduced basis is constructed incrementally, making use of error estimators,
in order to certify that the reduced basis allows to correctly approximate the solution in the online stage
for all the values in the parameter domain. The presentation of the construction of the reduced base is
presented in the next subsection.

3.2.4.2 Reduced basis generation

The reduced basis construction is done during the offline stage that consists in searching a low-rank
approximation of the manifold obtained by solving the discretized reference parametric problem over some
specific values of the parametric domain Iθ. These specific values are also called “snapshots”. This
process is similar to the POD, however in the context of the CRBM the snapshots are selected on-the-fly
based on the maximization of a reconstruction error over the whole parametric domain [Maday, 2006] as:

θ1 = arg max
θ∈Iθ

∥∥∥uh(x, θ)
∥∥∥
USh

θm+1 = arg max
θ∈Iθ

∥∥∥uh(x, θ)− Pmuh(x, θ)
∥∥∥
USh

(3.34)

with the norm given by:

∀vh ∈ USh , θ ∈ Iθ, ∥∥∥vh∥∥∥
USh

=
√

k (vh, vh; θ) (3.35)
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Pmu
h is the orthogonal projection into the reduced basis space constructed as:

USm = span{uh(x, θ1), uh(x, θ2), ..., uh(x, θm)} (3.36)

The construction of the reduced basis in the offline step can eventually be very costly, this because
the entire parameter domain must be searched to find the solutions that verify (3.34), where for each
parametric value an approximation and an error must be computed. To reduce these computational times,
an error estimator is introduced [Prud’Homme et al., 2002, Veroy and Patera, 2005, Rozza et al., 2007,
Rozza, 2011], which is based on the hypothesis that the problem is compliant and coercive [Hesthaven,
2016], and whose determination involves the use of the Successive Constraint Method (SCM) which
makes its determination inexpensive [Huynh et al., 2007, Huynh et al., 2010, Hesthaven, 2016]. This
estimator allows to reduce the computational cost of the error evaluation in the offline and online resolution
steps, allowing to speed up both stages. In addition, to further decrease the computational burden, an
affine decomposition of the bilinear and linear forms (k (u, v; θ) and f (v; θ) respectively) is used, which
establish a separate variable approximation as follows:

∀v ∈ US , θ ∈ Iθ,

k (u, v; θ) =

mk∑
i=1

Gk
i (θ)ki(u, v) (3.37)

f (v; θ) =

mf∑
i=1

G
f
i (θ)fi(v) (3.38)

This assumption is made in order to speed up the offline and online computations due to the once con-
struction of the spatial operators involved (where the approximation of ki(u, v) and fi(v) can be constructed
independently from the parametric domain). For more complicated problems where the affine decompo-
sition doesn’t hold, the operators can be approximated by using the Empirical Interpolation Method (EIM)
to lead to an affine decomposition approximation [Barrault et al., 2004, Grepl et al., 2007, Maday et al.,
2009, Chaturantabut and Sorensen, 2009, Eftang et al., 2010, Chaturantabut and Sorensen, 2010].

The introduction of error bounds and their application for the offline step to assure a properly construction
of the reduced basis are the key point of the CRBM. The use of error estimators allied to the use of
reduced models allows to drastically decrease the CPU expenses while at the same time certifying a good
quality of the approximation, making CRBM a really powerful and attractive solver for the fast resolution of
parametric problems.

3.2.4.3 Synthesis of the method

The Certified Reduced Basis Method defines a general methodology for the resolution of linear paramet-
ric problems. It allows to reduce large FEM problems of dimension nS into a low dimensional approxi-
mation by constructing iteratively an approximation space USm based on reduced basis with guaranteed
convergence properties to USh . This certified reduced space enables the approximation of the reference
manifold into the whole parametric domain. The general methodology is summed up on figure 3.2 where
online/offline stages are highlighted. Indeed, one of the characteristics of the CRBM approach is the par-
tition of the computational tasks into online and offline stages. During the offline stage, the operators that
don’t depend on the parameter θ are calculated once and then reused along all the parametric domain
by exploiting the affine decomposition of the operators. For more complex cases where the operators in-
volved are not affine the Empirical Interpolation Method (EIM) can be applied to approximate the operators
on a small parametric interval as an affine decomposition. The a posteriori error estimators are calculated
in an inexpensive way by using the Successive Constraint Method (SCM) for the fast verification on the
online stage if the approximated low-rank solution is of appropriate guaranteed quality.
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3.2. Low-rank approximation for time-dependent/parametric problems

We should recall that all the above works (POD and CRBM) needed to calculate the complete solution
(FEM) for a given set of parameters or time steps for the construction of the reduced basis. However, in the
next section 3.2.5, we present another model order reduction technique that does not require knowledge
of the reference solution for the construction of the basis.

Inputs:
Geometry Ω,
Parametric
Space Iθ,

k , f

Affine
Decom-
position

CRBM

SCM

EIM

Reduced
Basis model

Online step =⇒ Parametric resolution of the problem by Galerkin projection

Offline step =⇒ Construction of the reduced basis

( Offline /Online Strategy )

Figure 3.2: Synthesis of the Certified Reduce Basis Method.

3.2.5 A priori Model Order Reduction - Proper Generalized Decomposition (PGD)

This section is dedicated to the Proper Generalized Decomposition (PGD) [Chinesta et al., 2011b, Chinesta
et al., 2013, Chinesta and Ladevèze, 2014], initially introduced in [Ladevèze, 1985] under the vocable Ra-
dial Approximation as one of the main ingredients of the LATIN framework (the LATIN methodology itself
is presented later in section 3.4).

Lets recall for convenience the low-rank approximation that is sought as:

u(x, t) ≈ um(x, t) =
m∑
i=1

wi(x)λi(t) = W
m

(x) · Λm(t)

Unlike the a posteriori techniques, the PGD strategy tends to build the decomposition um(x, t) (respec-
tively u

m
) without prior knowledge of the reference solution u(x, t); the only information considered are the

operators that define the equations of the problem, naming, A and B the bilinear and linear form respec-
tively for the case of a dynamic elastic problem (A and B respectively for the discrete case, see chapter

2). We define therefore a residual function R (u) from the equilibrium equation as:

∀v ∈ US ⊗ UT ,
A(u, v)− B(v) = 〈〈v,A(u)− B〉〉M = 〈〈v,R (u)〉〉M (3.39)

whereA and B are the Riesz representations of the bilinear A and linear B forms respectively in the Hilbert
space US ⊗ UT equipped with the scalar product 〈〈·, ·〉〉M. The residual function R (u) can be interpreted
as the function that measures how much u verifies the equilibrium equation.

The functional to be minimized is therefore written using the norm |||·|||M over US ⊗ UT and the best
approximation of rank m is obtained by solving:

um(x, t) = arg min
u∗∈Rm

JM(u∗; A,B) = arg min
u∗∈Rm

|||R (u∗)|||2M (3.40)
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As in the case of the a posteriori approximation, the choice of the norm |||·|||M gives rise to different
approximations. In the following, in order to simplify the presentation, we consider the norm |||·|||.

The problem is solved iteratively between the space and time in order to determine the functions (wi(x), λi(t)).
Many techniques have been derived for the calculation of the low-rank decomposition (see e.g. [Nouy,
2010b]). The followings subsections give a brief overview of the most standard techniques.

3.2.5.1 Rank 1 approximation: Galerkin orthogonality criterion (G)PGD

A first proposition for the calculation of the decomposition consists in imposing the minimization of the
residue R (u) in a Galerkin orthogonality sense [Ladevèze, 1999, Ammar et al., 2006, Nouy, 2008]. Using
the scalar product 〈〈·, ·〉〉 over US ⊗ UT the following orthogonality condition can be expressed:

∀w∗1 ∈ US , ∀λ∗1 ∈ UT ,
〈〈w∗1λ1 + w1λ

∗
1,R (w1λ1)〉〉 = 0 (3.41)

or equivalently:
A(w1λ1, w

∗
1λ1 + w1λ

∗
1) = B(w∗1λ1 + w1λ

∗
1) (3.42)

The above expression can be separated in two equations which can be solved iteratively using a fixed-
point strategy, writing:

∀w∗1 ∈ US , ∀λ∗1 ∈ UT ,

A(w1λ1, w
∗
1λ1) = B(w∗1λ1) (3.43)

A(w1λ1, w1λ
∗
1) = B(w1λ

∗
1) (3.44)

The point-fixed technique consists of solving the above equations alternately, where (3.43) and (3.44) are
solved assuming known temporal and spatial functions respectively, whose results come from the solution
of these equations in a previous iteration of the fixed-point strategy.

3.2.5.2 Rank 1 approximation: Minimization of the residual function (R)PGD

Another strategy for the calculation of the low-rank approximation consists in the direct minimization of the
residual function R (u∗) [Nouy and Ladevèze, 2004, Beylkin and Mohlenkamp, 2005, Ammar et al., 2010].
This construction is the most robust due to the proof of monotonic convergence of the decomposition to
the solution u(x, t). The problem is written as follows:

{w1, λ1} = arg min
w1 ∈ US

λ1 ∈ UT

|||A(w1λ1)− B|||2 (3.45)

which expression can be developed into:

∀w∗1 ∈ US , ∀λ∗1 ∈ UT , ∫
Ω×I
A(w∗1λ1 + w1λ

∗
1)[(A(w1λ1)− B]dΩdt = 0 (3.46)

As for the case of Galerkin orthogonality PGD the above expression can be separated into a spatial and
temporal problem, which can be solved iteratively.
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3.2.5.3 Improvements to the Galerkin (G)PGD and the residual minimization (R)PGD strategies

Many developments were done in order to improve the quality of the PGD decomposition. The POD
modes are optimal in the sense that they minimize a truncation residual (3.9) written using a posteriori
norm |||·|||O. The PGD basis in turn is optimal in the sense of an a priori norm |||·|||M that is not necessarily
the norm of interest. Indeed, PGD basis is computed such as minimizing equilibrium residual R (u∗) in the
sense of norm |||·|||M and in some applications, a large number of modes might be required for a good
approximation of the reference solution. Most improvements intend to make the computation of the PGD
basis (computed by definition using a priori norm) optimal in the sense of the a posteriori norm of interest.

1. Minimax PGD:

A first attempt for minimizing the a posteriori functional JO(uNm , u
N ) while constructing the reduced

order basis a priori by minimizing JM(uNm ,A,B) was proposed in [Nouy, 2010a] under the name of
Minimax PGD. This new strategy proposed an improvement of the convergence properties related
to the Galerkin PGD (G)PGD framework by introducing an additional orthogonality criterion step of
Petrov-Galerkin type. The general idea is to impose for the residual a new orthogonality condition to
an additional set of modes. The optimality of the basis of interest in the sense of |||·|||O can then be
imposed using this second set of modes.

2. Residual minimization in an ideal norm:

An improvement to the construction of the low-rank approximation by minimizing the residual func-
tion is described in [Billaud-Friess et al., 2014] and presented in the context of a parametric study.
The authors propose to choose a different norm called ‘ideal’ for the minimization of the functional
JM(uNm ,A,B); more precisely, the idea is to modify |||·|||M for enabling a conjoint minimization of
|||u∗ − u|||O in the sense of the canonic norm of interest. This strategy was implemented in dynam-
ics in [Boucinha et al., 2014].

3.2.5.4 Different strategies for the construction of the decomposition

As presented previously, the main problem to be solved to construct the PGD decomposition in its general
form consists in minimizing a priori functional JM such as:

um(x, t) = arg min
u∗∈Rm

JM(u∗; A,B) = arg min
u∗∈Rm

|||R (u∗)|||2M

with R (u) the residual function verifying:

∀v ∈ US ⊗ UT ,
A(u, v)− B(v) = 〈〈v,R (u)〉〉M

The determination of the PGD modes can be performed in different ways. The main strategies for the
construction of this low-rank approximation are described below.

1. Greedy construction:

The easiest way of constructing the low-rank approximation that minimizes equation (3.40) is based
on an incremental construction, this is, mode after mode. Lets suppose that m − 1 modes of the
decomposition have already been computed and that one seeks a new mode enrichment wmλm that
minimizes the actual residual:

wmλm = arg min
wm ∈ US

λm ∈ UT

JM(um−1 + wmλm; A,B) (3.47)
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Once the new mode is calculated, we actualize the total approximation as um = um−1 + wmλm until
we decrease the functional JM(uNm ,A,B) to a given threshold.

2. Direct construction:

Another variant for the calculation of the PGD modes consists in calculating the decomposition up
to rank m directly by imposing the orthogonality of the residue with respect to span{w}mi=1 and
span{λ}mi=1 simultaneously, such that a complete group of spatial and temporal modes are calcu-
lated at each iteration. The a priori functional is minimized in consequence as:

W
m

(x) · Λm(t) = arg min
u∗ ∈ Rm

JM(u∗; A,B) (3.48)

3. Greedy with actualization of modes:

Finally, a strategy that can be seen as a mixture between the greedy and the direct construction is
presented. This last idea basically consists in calculating a new couple of modes wmλm in a greedy
way:

wmλm = arg min
wm ∈ US

λm ∈ UT

JM(um−1 + wmλm; A,B)

Once this new mode is calculated, the groups of modes span{wi}mi=1 and span{λi}mi=1 are actualized
[Nouy, 2010a]. In [Ammar et al., 2010] the authors advise to orthonormalize the groups of modes. On
the one hand, this will avoid that the norm of the spatial mode tends towards zero while its temporal
counterpart tends towards infinity or vice versa and on the other hand the orthogonalization allows
to find a rich decomposition due to the fact that the new mode that will be added will be orthogonal
to the previous ones.

Finally, the whole time-functions are subjected to a final updating pass, i.e. sought such as mini-
mizing the a priori functional and considering that the space functions W

m
(x) are known and fixed:

Λm(t) = arg min
(λi)

m
i=1 ∈ UT

JM(W
m

(x) · Λm(t); A,B) (3.49)

3.2.5.5 Synthesis of the Proper Generalized Decomposition

During the last few years, the Proper Generalized Decomposition (PGD) has gained great interest for
solving partial differential equations due to its robustness, effectiveness and memory savings allowed by
the nature of low-rank approximation of the reference solution. The method has been applied to a wide
variety of problems covering a wide range of scientific domains; among many others, we can find:

1. Dynamic problems:

In the domain of low frequency dynamics (see figure 3.3) PGD has found a successful application.
For example we can find its application to the solution of elastodynamics problems [Boucinha et al.,
2014], also the solution of dynamic problems using a frequency and stochastic approach [Chevreuil
and Nouy, 2012].

On the other hand, PGD has also been introduced to deal with medium-frequency dynamic problems
(see figure 3.3). In this context, the PGD is applied together with Virtual Theory of Complex Rays
(VTCR) to simulate the frequency response of the pressure field of an acoustic cavity a range of
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3.2. Low-rank approximation for time-dependent/parametric problems

frequencies [Barbarulo, 2012, Barbarulo et al., 2013, Barbarulo et al., 2014a, Barbarulo et al., 2014c,
Cettour-Janet, 2019].

Figure 3.3: Qualitative frequency response of a system, where LF, MF and HF correspond to low-
frequency, mid-frequency and high-frequency respectively.

2. Parametric problems:

In addition, the PGD is very attractive when dealing with parametric problems. A natural multidimen-
sional extension can indeed be obtained by simply adding new coordinates to the PGD representa-
tion writing:

um+1(x, t, θ1, ..., θnP ) =
m+1∑
i=1

wi(x)λi(t)

nP∏
j=1

πji (θj) (3.50)

where the parametric functions πji (θj) with θj the parameter variable, need to be solved iteratively
in a fixed point strategy. Two principal methodologies exist, the parametric approach where each
parametric function is calculated by using finite element shape functions [Chinesta et al., 2010,
Chinesta et al., 2011a, Ammar et al., 2012], and the stochastic parametric approach presented in
[Nouy, 2008, Chevreuil and Nouy, 2012].

Recently new developments were done in order to consider high number of parameters in the PGD
formulation and, at the same time, overcoming the so called “curse of dimensionality” (which is
the exponential grow of degrees of freedom when more parameters are added) that classical PGD
framework can not overcome. Before these works, the maximum value of parameters to be consid-
ered in a PGD decomposition with acceptable convergence properties was about 15 to 20. On the
work presented in [Paillet et al., 2017, Paillet et al., 2018b], the number of parameters considered on
the PGD decomposition raised until 1000 by using a new formulation called “parameter-multiscale
PGD”, which is based on Saint-Venant’s principle.

3. Nonlinear problems:

The PGD has also been used in the nonlinear range within the framework of the LArge Time INcre-
ment (LATIN) method methodology, where the decomposition is a fundamental part of the efficiency
of the solver (see e.g. [Ladevèze, 1985, Ladevèze et al., 2010b, Relun et al., 2011, Relun et al.,
2013]). Indeed, parametric studies on nonlinear problems have also been carried out using the
LATIN method. The great numerical efficiency is brought by the use and re-use of PGD spatial ba-
sis for the fast resolution of parametric problems as is the case of buckling problems [Boucard and
Ladevèze, 1999], diffusion problems [Heyberger et al., 2012, Heyberger et al., 2013], and elasto-
visco-plasticity [Néron et al., 2015].

Additionally, the parametric study for the nonlinear case can be achieved by exploiting the decom-
position (3.50), this is, by considering the full parametric solution to be approximated by a sum of
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functions of separate variables, as presented in [Vitse, 2016, Vitse et al., 2019] for the case of re-
inforced concrete and in [Ladevèze et al., 2018] for elasto-visco-plasticity and considering a large
number of parameters by using the development of [Paillet et al., 2017, Paillet et al., 2018b].

In addition, the PGD has been applied in different domains such as hyperelastic materials [Niroomandi
et al., 2010], advection-diffusion-transient problems [Nouy, 2010a], high resolution digital image correlation
[Passieux and Périé, 2012], inverse problems [Signorini et al., 2017], heat propagation [Zlotnik et al.,
2015, Favoretto et al., 2019], domain decomposition [Huerta et al., 2018], among many others

3.3 Incremental nonlinear solvers that use low-rank approximations

The present section introduces the general framework for the resolution of nonlinear solid mechanics
problems in a temporal incremental way. Once this framework presented, the principal time-incremental
methods that used model reduction techniques into its formulation are presented, which consists on a
variation of the Certified Reduced Basis Method applied to nonlinear problems and the A Priori Hyper-
Reduction (APHR) method.

3.3.1 Newton-Raphson method: framework for the incremental resolution of nonlinear
solid mechanics problems

Lets consider a classic incremental strategy for which a solution sk = {uk, εk, σk} is computed at time step
tk and where the solution sk+1 = {uk+1, εk+1

, σ
k+1
} at next time step tk+1 is sought, given the loading

terms f
k+1
∈ Ω, fN

k+1
∈ ∂NΩ and uDk+1 ∈ ∂DΩ. The resolution of the problem mainly consists in two steps,

that are:

1. The local integration of the nonlinear constitutive relations that gives σ
k+1

as function of uk+1 and
sk.

2. The linearization of the global equilibrium equations of the system and their resolution in an iterative
way.

The global equilibrium of the structure in space at current time step tk+1 can be written as:

∀v ∈ US(Ω, 0), ∫
Ω
ρük+1 · v dΩ +

∫
Ω
σ
k+1

: ε(v) dΩ =

∫
Ω
f
k+1
· v dΩ +

∫
∂NΩ

fN
k+1
· v dS (3.51)

where the stress tensor σ
k+1

writes as a function of the solution sk at previous time-step and the displace-
ment increment ∆uk = uk+1 − uk writing:

σ
k+1

= J (ε(∆uk); sk) (3.52)

3.3.1.1 Incremental resolution

For each time step tk+1, the nonlinear problem consists in finding a kinematically admissible correction
∆uk (verifying the Dirichlet condition ∆uDk ) verifying equilibrium (3.51) and the constitutive relations (3.52).
Hence, the resolution of the global equilibrium consists in finding an incremental ∆uk ∈ US(Ω,∆uDk ) such
as:
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3.3. Incremental nonlinear solvers that use low-rank approximations

∀v ∈ US(Ω, 0),
R (∆uk; v, sk) = 0 (3.53)

where the dynamic residual equilibrium writes:

∀v ∈ US(Ω, 0),

R (∆uk; v, sk) =

∫
Ω
ρük+1 · vdΩ +

∫
Ω
J (ε(∆uk; sk) : ε(v)dΩ−

∫
Ω
f
k+1
· v dΩ−

∫
∂NΩ

fN
k+1
· v dS (3.54)

The residue of equation (3.54) is minimized by approaching the incremental displacement ∆uk as the sum
of n+ 1 incremental corrections:

∆uk ≈ ∆u
(n+1)
k = ∆u

(n)
k + δu

(n)
k (3.55)

where each incremental correction δu
(n)
k is solution of the equation (3.54) linearized around ∆u

(n)
k in a

Newton-Raphson manner (as illustrated in figure 3.4), which is written:

∀v ∈ US(Ω, 0),

R ′(∆u(n)
k ; v, sk) · δu

(n)
k = −R (∆u

(n)
k ; v, sk) (3.56)

The functional R ′ = ∂R
∂∆u

(n)
k

corresponds to the tangent linear application of the residue R evaluated at

∆u
(n)
k :

∆u

R (∆uk; v, sk)

0

•∆u
(0)
k = 0

δu
(1)
k

•∆u
(1)
k

δu
(2)
k

•
∆u

(2)
k

δu
(3)
k

uk

uk+1

Figure 3.4: Calculation of ∆uk as a sum of incremental corrections δunk .

Once the problem is solved at time step tk+1, the iterative resolution process is repeated for all subsequent
time steps. The resolution of the linearized problem (3.56) requires the discretization of the spatial domain
and the approximation of the temporal evolution. However, the level of details of its implementation is
beyond the scope of this chapter, which is intended to provide a general framework for the incremental
nonlinear resolution; nevertheless, the complete presentation of the incremental resolution strategy is
presented in appendix B.

3.3.2 CRBM framework

As seen in section 3.2.4, the Certified Reduced Basis Method is well established for the treatment of linear
parameterized partial differential equations, but they can also be applied to solve nonlinear problems
[Grepl et al., 2007, Canuto et al., 2009, Jung et al., 2009]. The CRBM has largely been applied to solve
nonlinear fluid mechanics problems [Peterson, 1989, Veroy et al., 2003a, Veroy et al., 2003b, Quarteroni
and Rozza, 2007, Deparis and Rozza, 2009] as well as heat transfer [Rozza et al., 2009].
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Chapter 3. Overview of MOR techniques and their application for solving nonlinear problems

In what follows we will present an overview on how to apply the CRBM to a quasi-static nonlinear problem.
In fact, none of the concepts presented in section 3.2.4 changes, since the classic incremental resolution
of nonlinear problems requires the linearization of the governing equations, as is the case of classic
Newton types methods, where all the CRBM strategy can be applied to this linearized problem.

The general CRBM framework for solving parameterized nonlinear problems will not be detailed any fur-
ther. The interested reader is referred to the above mentioned citations. The following lines will only give
some hints on the manner to extend the CRBM framework from elliptical problems to problems where
nonlinearity is introduced. Lets thus consider that a quasi-static nonlinear problem is parameterized by
a parameter θ ∈ Iθ. As presented in section 3.3.1, the linearization of the nonlinear problem is given by
applying Newton-Raphson method (equation (3.56) by neglecting the dynamic term):

∀v ∈ US(Ω, 0), θ ∈ Iθ,

R ′(∆u(n)
k (θ); v, sk(θ), θ) · δu

(n)
k (θ) = −R (∆u

(n)
k (θ); v, sk(θ), θ) (3.57)

where we can associate the bilinear and linear forms as follows:

∀v ∈ US(Ω, 0), θ ∈ Iθ,

k (δu
(n)
k (θ), v; θ) = R ′(∆u(n)

k (θ); v, sk(θ), θ) · δu
(n)
k (θ) (3.58)

f (v; θ) = R (∆u
(n)
k (θ); v, sk(θ), θ) (3.59)

where all the formalism presented in 3.2.4 to describe the resolution of parameterized elliptical problems
can be applied. The CRBM and EIM methodologies for the decomposition of operators can be used,
provided that l is linear and k bilinear, continuous and coercive.

Therefore the reduction of the nonlinear problem is done by using a reduced basis
(
w

(n)
i

)mn
i=1

that depends
on each iteration of the Newton-Raphson algorithm (n), and the problem is efficiently solved by projecting
these basis onto the linearized equation for all the time steps.

3.3.3 A Priori Hyper-Reduction (APHR) method

The APHR method, firstly introduced in [Ryckelynck, 2005] (summarized in [Ryckelynck et al., 2006b]) also
exploits reduced basis for approaching solutions of nonlinear problems, and since 2005, many extensions
and applications have been presented, for instance for the treatment of nonlinear problems involving in-
ternal variables [Ryckelynck, 2009], damage problems [Ryckelynck et al., 2011] and parametric problems
[Ryckelynck et al., 2012] among many others.

The main idea of the method consists in using a Reduced Order Model (ROM) for approximating the
solution of a nonlinear problem. The ROM and the state evolution variables are simultaneously improved
by the algorithm, thanks to an adaptive strategy. The denotation of hyper-reduction comes from the fact
that a Reduced Integration Domain (RID) is considered for the calculation of the reduced state variables
of the ROM, that in the case of space-time problems correspond to the temporal functions of the POD
decomposition.

To illustrate the method, lets consider a nonlinear problem in quasi-statics, where its equilibrium equation
writes:

∀v ∈ US(Ω, 0), ∫
Ω
σ
k+1

: ε(v) dΩ =

∫
Ω
f
k+1
· v dΩ +

∫
∂NΩ

fN
k+1
· v dS (3.60)
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where a nonlinear constitutive relation is considered for the stress tensor as presented in equation (3.52).
By discretizing equation (3.60) using the finite element method in space, and by defining a residual equi-
librium as done in equation (3.54) (but neglecting the dynamic terms), we obtain:

∀vh ∈ USh (Ω, 0), ∀v ∈ RnS ,

R (∆uhk ; vh, sk)︸ ︷︷ ︸
vTRk+1

=

∫
Ω
σ
k+1

: ε(vh) dΩ︸ ︷︷ ︸
vTg

k+1

−
∫

Ω
f
k+1
· vh dΩ−

∫
∂ΩN

fN
k+1
· vh dS︸ ︷︷ ︸

−vT f
k+1

(3.61)

From the above equation we can define the following discretized residual vector Rk+1:

Rk+1 = g
k+1
− f

k+1
(3.62)

where the vectors g
k+1
∈ RnS and f

k+1
∈ RnS correspond to the internal forces and the vector of external

forces respectively.

The main idea of the present APHR method is to reduce the norm of Rk+1 but in an inexpensive way. To
do so we consider the following reduced order approximation space:

R̃m =

{
um ∈ US(Ω, uD)

∣∣∣ um(x, tk+1) =

m∑
i=1

wi(x)ai, ∀x ∈ Ω

}
(3.63)

where m is the rank of the decomposition and ai the reduced state variables of the problem at time tk+1.
By using the ROM and projecting it into the equilibrium equation (3.62), we obtain the problem needed to
be solved to determine the reduced state variables:

W TRk+1 = 0 (3.64)

where we recall the use of the matrix W ∈ RnS ⊗ Rm containing all the reduced space basis given by:

W =
[
w1,w1, · · · ,wm

]
The previous problem requires to performs matrix-vector multiplications, these operations can eventually
be very costly if the number of DOFs of the spatial discrete problem is large. In this sense, in order
to reduce the cost associated with the computation of the state variables, the APHR method considers
a reduced integration domain (RID) for the resolution of problem (3.64) as shown in figure 3.5. This is
achieved by introducing a rectangular matrix Π that allows to perform the selection of specific equilib-
rium equations associated to different elements in space. By introducing an orthogonal condition for this
reduction of the equilibrium equations we obtain:

W TΠ TΠ Rk+1 = 0 (3.65)

Figure 3.5: Full spatial domain of the reference problem (left) and Reduced Integration Domain (RID)
(right) in space considered for the computation of the reduced state variables of the ROM approximation.
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Once the state variables are determined, the displacement field is reconstructed over the entire spatial
domain simply using the reduced basis already calculated:

u(tk+1) ≈
m∑
i=1

w iai , ai ∈ R (3.66)

On the other hand, the construction of the reduced order basis can be done in many ways [Ryckelynck,
2005, Ryckelynck et al., 2006b], being the following two the principal ones:

1. Adaptation of the basis functions by a Karhunen-Loève expansion

Here a reduced basis is constructed and adapted during the resolution of the nonlinear problem by
a Karhunen-Loève expansion of the evolution of reduced state variables.

2. Construction of a basis by snapshots.

A variant, introduced in [Ryckelynck, 2009], exploits the idea of determining a reduced order basis by
applying the snapshot POD to the displacement solution of the reference nonlinear problem and also
to the local result related to the integration of the constitutive relation, this is, the internal variables.
The main idea behind this snapshot POD is to reduce the computational cost for the evaluation of
the constitutive relation, this because numerical results show that even if a reduced order model
is used to accelerate the resolution of the nonlinear equilibrium equations, this computational time-
saving is neglected when treating large discretized problem in space due to the cost associated to
the evaluation of the constitutive relation. Therefore, in [Ryckelynck, 2009], in order to reduce this
local evaluation of the constitutive relations, the nonlinear material behavior is calculated only on the
reduced integration domain (see figure 3.5) and therefore, a reduced basis obtained by snapshots
for the internal variables is used to reconstruct the complete field in the whole space domain. This
idea is based on the concept of Gappy POD first introduced in [Everson and Sirovich, 1995].

3.4 Non incremental nonlinear solver that use low-rank approximations:
the LATIN-PGD framework

In this section, a global overview of the LATIN-PGD method is introduced. Also a short description of all the
different applications of the method developed along the years is presented in the following subsections.
A particular emphasis is put on the advantages of using this framework for the fast resolution of nonlinear
problems of different kinds.

3.4.1 Introduction

The LATIN method was introduced in [Ladevèze, 1985] and consists in approaching the solution set S as
the limit of a sequence Sn of iterates defined on the whole space-time domain and containing the solution
fields of the reference problem. The solution set is defined as S = (dual variables,primal variables). For
instance, in the case of elasto-visco-plasticity, one has S = {ε̇p, σ, Ẋ, Z}. This solution set is denoted
differently from the one introduced for the incremental solver (s), capital notation is chosen to highlight
that the sought solution concerns the whole space-time domain.

The main characteristics of the LATIN method is that it is a global nonlinear solver, contrary to classical
time-incremental solvers. As illustrated in figure 3.6a, classical incremental solvers consist in minimizing
an equilibrium residual iteratively (see section 3.3.1) at current time step tk+1 from the knowledge of the
solution fields at previous time step tk. This process is repeated for all the time steps until the whole
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3.4. Non incremental nonlinear solver that use low-rank approximations: the LATIN-PGD framework

temporal domain is solved. On the other hand as presented in figure 3.6b, the LATIN method is also
iterative but non-time-incremental; successive corrections to the nonlinear problem are sought on the
whole space-time domain at each iteration of the method. As can be seen, the notations related to the
LATIN method differ from the classical solver, where the LATIN iterative index is written below. This
particular choice is made to better fit the LATIN nomenclature used in the present manuscript. In addition,
the first solution of the LATIN method corresponding to the elastic solution is denoted by the index 0, since
it is considered outside the iterative process of the LATIN method (the enumeration starts after the solution
of a local and global stages).
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Figure 3.6: Algorithms for solving nonlinear problems.

In order to define the LATIN framework, the reference problem must be re-formulated, for which, two sets
of equations can be distinguished:

1. The equations defining the admissibility of the solution S. Two sets of equations in dynamics define
admissibility for the solution: the global equilibrium equation over the whole time-space domain and
the prescribed boundary conditions on ∂DΩ. These two equations define an affine subspace Ad of
admissible solutions.

2. The equations associated to the nonlinear part of the constitutive relations. We denote Γ the mani-
fold corresponding to the set of solutions of the constitutive relations.

Those sets of equations are solved implementing an alternation of global stages and local stages, as
explained in the following.

1. Initial elastic solution (first solution of the global stage):

The initialization of the method begins with the elastic calculation of the structure on the whole
space-time domain, this solution set is denoted S0. This elastic solution verifies all the boundary
conditions, i.e. imposed external forces and displacements. This process is illustrated in the red
straight line (u(0)(x, t)) of figure 3.6b.

Once the elastic solution is determined, the iterative process of the LATIN method begins, which
consists in the alternate resolution of local and global stages. This procedure is detailed in the
following lines.
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2. Loop iterations: Iterative resolution between the local and global stages.

• Local stage: At the beginning of the local stage, a full space-time solution Sn is available
(equal to the elastic admissible solution for the first iteration) but the constitutive relations are
not verified. In order to verify the material behavior, an ascent search direction G is used. This
search direction allows the projection of the current solution iterate from the admissible space
Ad, onto the manifold Γ (see Fig. 3.7a). The search direction is defined using a linear operator
acting on every space-time integration points. Therefore, the solution Ŝn+1/2 that is sought in Γ
at the local stage implies the resolution of the constitutive relations verifying at the same time
the ascent search direction.

• Global stage: Once the solution Ŝn+1/2 of the local stage is computed, one needs to reimpose
equilibrium and kinematic admissibility. Introducing then a descent search direction A, the new
iterate Sn+1 lies at the intersection of two affine spaces (see Fig. 3.7b). The resolution is thus
linear but implies the re-imposition of equilibrium on the whole space-time domain. The re-
imposition of the equilibrium equation is sought by computing corrective terms which allow to
improve the global solution.

The global stage can be really numerically expensive due to the full inversion of a space and
time discretized problem. But a whole space and time resolution enables the introduction of
the model order reduction Proper Generalized Decomposition presented on section 3.2.5. This
alliance between the LATIN and the PGD greatly improves the numerical performance of the
nonlinear solver. The corrections will then be sought as a low-rank approximation, i.e. a com-
bination of PGD modes, products of separate variables functions. The global stage is divided
into two sub-stages called enrichment step and the preliminary step, which are explained
below.

– Enrichment step: This step consists in a classical calculation of a PGD basis that ap-
proximates the global correction. New PGD modes are computed such that a convergence
criterion is reached. Let one note that the PGD corrections have to be computed for every
solution field of the reference problem (displacement, stress, damage, plastic strain tensor,
etc.).

– Preliminary step: The Enrichment step is of course mandatory at the beginning of the
algorithm when no PGD modes are computed, but if the already computed PGD basis is
rich enough to correctly approach the corrections along the iterations, enrichment stage
can be skipped. Thereby, prior to the calculation of a new PGD couple an additionally
step is performed, consisting in fixing all the spatial PGD functions of the problem and
actualizing only the temporal functions. This procedure not only decreases the overall
computational cost due to an optimized computation of temporal functions by avoiding the
expensive calculation of new spatial PGD functions, but also increases the convergence
rate of the method.

The iterative resolution, starting from the elastic solution S0 can be summarized writing:

S0 ∈ Ad −→ Ŝ1/2 ∈ Γ... −→ Ŝn+1/2 ∈ Γ −→ Sn+1 ∈ Ad... −→ S̄ ∈ Ad ∩ Γ. (3.67)

where the distance between the two spaces Γ and Ad is decreased with the use of the search directions
G and A at each iteration of the LATIN method. The solution S̄ over the whole space-time domain then
lies at the intersection of those two subspaces.
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(a) Local stage: calculation of the local solution of space
Γ.
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(b) Global stage: calculation of the global solution of
space Ad.

Figure 3.7: Local and global stages; iterative steps of the LATIN method.

During the last few years a wide range of developments have been applied to the LATIN method in order
to solve the most challenging problems. In order to give an overview of the main variants and applications
of the method, the following sections introduce the areas where the LATIN method has been successfully
applied.

3.4.2 Resolution of parametrized nonlinear solid mechanics problems

The idea of applying the LATIN-PGD to solve nonlinear parametric problems resides mainly in the use of
the PGD decomposition for the approximation of the linear manifold solution. Its representation as a sum
of separate variable functions products leads to the idea of reusing such basis for solving parametrized
problems or extending the space-time decomposition to a more general space-time-parameter one. Both
cases will be briefly presented in this section.

3.4.2.1 Case of elasto-visco-plastic problems

In this section, an example of the strategy that could be implemented for the fast resolution of parametrized
solid mechanics problems considering an elasto-visco-plastic behavior is given. The reader interested in
further details is referred to [Néron et al., 2015] and to many related developments as for the case of
diffusion problems [Heyberger et al., 2012, Heyberger et al., 2013] or earlier developments in the case of
buckling [Boucard and Ladevèze, 1999].

Let one consider a structure for which one wishes to compute the mechanical response for several pa-
rameters sets (θi)

P
i=1 ∈ Iθ. Assuming that the solution Si+1 (see figure 3.8), associated to manifold Γi+1

is close to the solution Si, associated to manifold Γi, if the parameters vectors θi+1 and θi describing the
manifolds are sufficiently similar, one can define two improvements:

• The solution Si+1 can be initialized to Si, and not to the initial solution as for the classical LATIN
version, with the objective of reducing the number of iterations.

• The PGD basis that have been already computed are preciously kept for being reused when com-
puting Si+1 at global stages; this enables to skip most PGD enrichment sub-stages and perform
additional computational time-saving.
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Figure 3.8: Graphical representation of the LATIN method when applying the re-utilization of the PGD
basis and optimal initialization.

In [Néron et al., 2015], the reference problem is a quasi-static isothermal evolution of a structure assuming
small perturbations, and one of the numerical tests considered consists of a blade with imposed displace-
ments as see in figure 3.9a. For the test studied many material parameters were considered as well as
the loading amplitude of the imposed displacement.

(a) Reference blade test with defined boundary con-
ditions.

(b) Maximum von Mises of the parametric study calculated
using the LATIN-PGD parametric strategy.

Figure 3.9: Test case and parametric results.

In order to estimate the gain in computational cost of the proposed reuse of PGD basis compared to
a classical LATIN-PGD resolution in function of the number of parameters i considered, the following
indicator was defined:

Gi =
i× T1

Ti,param

where T1 corresponds to the time required for the calculation of the nonlinear solution for a given para-
metric set and Ti,param the whole CPU time when applied the strategy of reusing the reduced basis. This
gain was studied as a function of the number of parameters considered, obtaining the figure 3.10.

The last results estimated a gain of 27 when a sufficient number of parameters are considered, which was
further verified on numerical tests using the commercial solver ABAQUS. In this test 1000 parameters
were considered. This strategy of re-using the PGD basis led to greatly decrease the computational
costs, where the following results were obtained:
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• 25 days (estimated time) necessary to complete the 1000 resolutions with ABAQUS.

• 18 days (estimated time) necessary to complete the 1000 resolutions with the classical LATIN-PGD.

• Less than 17 h to complete the 1000 resolutions with the new strategy.

From the above results 97 [%] reduction of the computational time was obtained when compared to the
classic incremental method implemented in ABAQUS and a factor of 25 in gain was obtained when com-
pared to the classic LATIN-PGD resolution, verifying the curve of figure 3.10. The results of the maximum
von Mises stress as a function of the parameters considered can be see in figure 3.9b.

Figure 3.10: Estimated gain Gi by reusing the reduced PGD basis.

3.4.2.2 Case of isotropic damage concrete problems

Another parametrization strategy has been applied to solve parametric isotropic damage in concrete ma-
terial problems. This work, developed on Vitse’s thesis [Vitse, 2016] and presented in [Vitse et al., 2019],
consists in extending the space-time decomposition of the PGD to a more general space-time-parameter
one:

um+1(x, t, θ1, ..., θnP ) = u0(x, t, θ1, ..., θnP ) +

m+1∑
i=1

wi(x)λi(t)

nP∏
j=1

πji (θj) (3.68)

where πj(θj) corresponds to the PGD function of the parameter θj ∈ Iθ. This work treated, as usual,
a quasi-static isothermal problem assuming small perturbations. For this study, a reinforced-concrete
medium was tested in tension (see Fig. 3.11a) and in bending (see Fig. 3.11b) and varying parameters
were related to the amplitude of the loading displacement and damage thresholds concrete parameters.

(a) Traction test considered. (b) Damage field of the bending test.

Figure 3.11: Example of test cases considered in [Vitse, 2016, Vitse et al., 2019].
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3.4.3 Treatment of high-cycle fatigue

The global strategy of resolution and the decoupling of the equations due to the PGD space-time decom-
position allows to treat also fatigue problems whose resolution using classical incremental approaches are
prohibitive. Lets consider a structure submitted to a given loading, that could be, inertial loading, imposed
displacements or external forces and lets consider that the temporal content of these loadings are com-
posed of periodic functions whose amplitude varies slowly during the studied time interval I = [0, T ]. The
pioneering works of [Cognard and Ladevèze, 1993, Arzt and Ladevèze, 1994] described a strategy for
solving this temporal problem at low numerical cost in the framework of cyclic elasto-visco-plasticity. The
resolution of the linear problem on the full interval I = [0, T ] was replaced by an approximated resolution
on a coarse regularly-spaced discretization called macro intervals (see Fig. 3.12). Each macro interval
is limited at the beginning and at the end by the so called nodal cycles. From the solution known on the
nodal cycles, the solution on the full interval [0, T ] is interpolated by using shape functions adapted to the
problem (linear [Cognard and Ladevèze, 1993] or quadratics [Arzt and Ladevèze, 1994] depending on the
evolution of the envelope of the sinusoidal functions) that evolves slowly over the macro intervals.

The improvements described by [Cognard and Ladevèze, 1993] mainly concern the global stage of the
LATIN method, where the operators used to compute the temporal PGD functions are interpolated over
I = [0, T ].

t

λ(t)

0

Transitional
zone

nodal cycle 1

nodal cycle 2

nodal cycle 3

︸ ︷︷ ︸
Macro interval Interpolation

· · ·

Figure 3.12: Nodal cycles and interpolation strategy introduced in [Cognard and Ladevèze, 1993].

The main idea consists in computing the operator on each nodal cycle and using an affine approximation
for the in-between cycles; the initial conditions of current nodal cycle can thus be retrieved, cycle after
cycle, in an inexpensive iterative scheme, from the previous nodal cycle’s final condition. For more details
see also [Ladevèze, 1996, Ladevèze, 1999]. More recently, similar approaches have been introduced for
the treatment of elasto-visco-plasticity with damage [Bhattacharyya et al., 2018a, Bhattacharyya et al.,
2018b, Bhattacharyya et al., 2018c, Bhattacharyya et al., 2019]; these approaches also make use of the
idea of interpolation between nodal cycles, but whose interpolation is applied to the converged solution of
the problem rather than the computation of the time functions in the global stage.

3.4.4 Domain decomposition, parallel resolution and multiscale strategy

A special extension of LATIN-PGD has been developed to take advantage of the parallel architecture of
current machines and to distribute the computational load among several processors.

The main idea lies in splitting the entire domain into subdomains, each of which having its own consti-
tutive relations and equilibrium equations, and interfaces by the means of which each spatial subdomain
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communicates with its neighbors (see figure 3.13). Under these considerations, the resolution of each
subdomain can be distributed to the different cores of the hardware architecture.

The novelty of this idea is that the interfaces are considered as mechanical entities and not just mathe-
matical surfaces, in this sense, in addition to the constitutive relation related to the material behavior, there
is also the behavior of the interfaces, which can be perfect contact, frictional contact or a more general
and complex nonlinear behavior.

The ideas of this strategy were first introduced in [Ladevèze and Lorong, 1991, Champaney et al., 1997,
Dureisseix and Ladevèze, 1998], however many developments and improvements have been done in the
field since then. For instance, the introduction of a micro-macro spatial representation of the unknowns
in [Ladevèze and Dureisseix, 2000] due to the degradation of the convergence’s rate of the original idea
when the number of subdomains increases (for more details see [Ladevèze, 1996, Dureisseix, 1997,
Ladevèze, 1999]).

ΩE ΩE′LEE′

Figure 3.13: Domain decomposition strategy in space, where ΩE and ΩE′ denote different subdomains
that share a common interface given by LEE′ .

The aforementioned developments allowed a parallelization for the resolution of the spatial problem, how-
ever in time a serial resolution still had to be performed. To avoid this problem and to achieve a full spatio-
temporal parallel resolution, a spatio-temporal homogenization technique was included to the multiscale
strategy [Ladevèze and Nouy, 2002, Ladevèze and Nouy, 2003], which basically consists in extending the
idea of micro-macro representation to the temporal domain by defining a “macro” and “micro” temporal
discretization. By defining the coarse interval of a macro temporal element “i” as Ii = [Ti−1, Ti] (such as
T0 = 0 and TN = T with N the total macro elements in time), the temporal domain is discretized as seen
in figure 3.14.

t
Ii

|
. . .

|
Ti−1

|| | | | | | | | | |

Ti

|
. . .

Figure 3.14: Interval of a macro element “i”, which in turn is divided into a fine discretization.

The technique consists in approximating with different strategies the macro temporal evolution from the
micro evolution, achieving a serial resolution for the temporal macro problem (defined on the coarse
discretization) and a parallel and independent resolution for the temporal micro problem (defined in all
temporal subdomains). The problem is iteratively solved until continuity and convergence is reached.

These works were further improved in [Ladevèze et al., 2007, Passieux et al., 2008, Passieux et al.,
2010, Ladevèze et al., 2010a, Ladevèze et al., 2010b]. For more information about this space-time ho-
mogenization technique see [Relun et al., 2011] where a detailed example is given and the following thesis
works [Néron, 2004, Passieux, 2008].
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This domain decomposition strategy has been successfully applied to the delamination of 3D composite
structures [Kerfriden, 2008, Kerfriden et al., 2009, Saavedra Redlich, 2012], to multiphysics problems
[Dureisseix et al., 2003, Néron and Dureisseix, 2008], the treatment of multiscale problems [Alart and
Dureisseix, 2008, Cremonesi et al., 2013], contacts problems [Oumaziz et al., 2017, Oumaziz et al.,
2018] or more recently in a deep analysis of the LATIN multiscale [Oumaziz et al., 2021].

3.4.5 Actual limitations of the method

Despite the wide range of applications solved using the LATIN-PGD strategy and the many developments
brought towards the years, proving through examples that drastic computational time-saving can be ob-
tained when solving nonlinear problems, there still exist some limitations:

1. Extension for the treatment of dynamics problems using the PGD:

All the developments of the LATIN-PGD alliance have been done under quasi-static conditions, let-
ting apart dynamic problems which is the very concern of earthquake engineering that this doctoral
work aims at developing tools for.

2. Complexity of the input excitation and duration in time:

The external excitation considered in most previous LATIN-applications is of short duration (few
seconds) except in the case of fatigue problems. The case of fatigue problems (mentioned in section
3.4.3) is really particular because many assumption are made on the excitation and solution itself,
like periodicity that must be verified on the whole duration in time.

This means that on the one hand, if excitation is complex, better be of short duration, and on the
other hand, treating long duration excitation is possible, but with a really small complexity of the
signal input. Those limitations naturally brought us to developing a more suitable approach for
treating complex excitation that could be of long duration while keeping, at the same time, a low
computational cost.

3.5 Conclusions

In the present chapter, an overview of model order reduction strategies was given with a particular em-
phasis on the way of introducing MOR techniques for solving nonlinear problems. For linear problems,
approaches can be classified as a posteriori and a priori model order reduction:

• A posteriori : this first group is built around the Proper Orthogonal Decomposition (POD), also
called Principal Component Analysis or Singular Value Decomposition. It is a method that builds
a rough approximation of the range of a reference problem by using the results of this for certain
specific points of the time- (for evolutionary problems) or parametric- intervals called snapshots.
Due mainly to the fact that the results of reference calculations are needed for its construction such
methodologies are called a posteriori.

• A priori : in this second group we find the Proper Generalized Decomposition (PGD), which is a
method that does not need to know the final results of a problem to generate a reduced basis, but
only the linear operators of the problem.

The Certified Reduced Basis Method (CRBM) is also presented, which provides a rigorous mathematical
basis for solving evolutionary or parametric problems. In this method the reduced basis is constructed
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by using the results on certain and carefully selected snapshots of the parametric domain of the system
by employing error estimators in an offline stage, and then approximate the results for any value of the
parametric domain in an online stage using Galerkin’s projection of the previously calculated basis. The
interesting thing about this method is that it delivers low-cost computational expressions for error control
in the online stage of the method, making it especially attractive for real-time simulations.

Additionally, nonlinear resolution methods in solid mechanics were presented, which can be classified into
two groups, incremental and non incremental solvers:

• Incremental solver: Within the incremental classification we have the Newton-Raphson method,
which consists in linearizing the equilibrium equations around current time-step.

• Non incremental or Global solver: Within the category of non incremental solver we find the LArge
Time INcrement (LATIN) method, which allows the linearization of the nonlinear problem in the entire
spatial and temporal domain.

Within the classification of methods that solve the nonlinear reference problem in an incremental way,
we find again the CRBM framework, where all the developments of the method can be applied to the
linearized problem at each iteration of the Newton-Raphson method. In addition, we find the A Priori
Hyper-Reduction method (APHR) which solves the nonlinear problem using a reduced basis built on-the-
fly as the problem is solved or can be calculated applying the POD on some snapshots. The novelty of
the method consists in reducing the spatial domain in where the problem is solved, where only certain
number of finite elements of the domain are used to calculate the state variables associated with each
reduced basis. Both methods reduce the costs associated with the incremental resolution of nonlinear
solid mechanics problems by using reduced basis constructed a posteriori, this is, the reduced basis is
constructed from the known solution over some snapshots.

On the other hand, the LATIN method allows to linearize the equilibrium equations on the whole space-
time domain, allowing to naturally exploit the PGD model reduction method. The LATIN method together
with PGD has shown great interest in the last years due to its robustness and has shown great reduction
of the computational time in a great variety of problems like parametric studies, fatigue problems, damage
of structures like concrete, multiscale problems, parallel resolution, etc.

However, as presented in section 3.4.5 some limitations remain, these include the resolution of dynamics
problems by using the LATIN-PGD and the development of dedicated strategies for the fast resolution of
problems subjected to complex and long duration signals excitation. These limitations are, in fact, the
main points to be solved in the context of earthquake engineering problems, which is the main problem
addressed in this thesis work. In this sense, the adaptation of the LATIN-PGD methodology to dynamics
is presented in the next chapter 4, in addition, the different developments devoted to improve the perfor-
mance of the LATIN-PGD method when dealing with long duration and complex excitations are detailed
in the chapters 5, 6 and 7, which consists in the introduction of a new temporal multiscale approximation,
a hyper-reduction strategy for the fast evaluation of the constitutive relations and a new temporal parallel
approach respectively.
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Chapter 4

The LATIN-PGD method extended to
low-frequency dynamics problems

This chapter presents one of the central contributions of this doctoral work, which con-
sists of the adaptation of the LATIN-PGD framework for solving nonlinear low frequency
dynamics problems. The admissibility space is modified to include inertial forces and the
computation of the time-space PGD modes at the global stage is rewritten as a minimiza-
tion problem. It is particularly detailed how this minimization problem is solved using a
fixed point strategy implemented in a mixed approach, adopting a Galerkin-like strategy
for computing the space modes and a classical residual minimization strategy involving
Time-Discontinuous Galerkin for the temporal modes, where a novel incremental resolu-
tion strategy is used. The derived approach is carried out for solving nonlinear dynamic
problems in the low-frequency range and this involving two different kind of constitutive re-
lations: quasi-brittle damage behavior typical of concrete and elasto-visco-plasticity typical
of steel-reinforcements. Numerical examples involving the two considered nonlinear laws
are carried out, comparing the LATIN-PGD against the classic Newton-Raphson solver.
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4.1. Introduction

4.1 Introduction

The LATIN method introduced in chapter 3 has shown its performances when dealing with nonlinear solid
mechanics problems. The method consists in adding successive corrections to an initial kinematically
admissible elastic solution S0. Every solution field composing the solution S of the reference problem is
corrected on the whole space-time domain in a succession of so-called local and global stages (see figure
4.1).

Primal variables

Dual variables

Ad

Γ

�
S̄

•
Sn

•
Ŝn+1/2

local stage

•
Sn+1

global stage

G
A

Figure 4.1: LATIN iterative resolution.

The dynamic reference problem introduced in chapter 2, is therefore re-written by introducing:

• An affine spaceAd, called admissibility space, on which initial conditions, kinematic and equilibrium
equations are verified, the global stage quantities S belong to this admissibility space.

• A manifold Γ where the nonlinear part of the constitutive relations are verified, and its calculation is
done at the local stage where the solution set Ŝ is determined.

The jumps from one space to the other are handled by means of so-called search directions A and G,
that are very important parameters of the method and allow the alternate resolution of the global and local
stages. The local stage consists in the evaluation of the constitutive relation locally on every integration
point of the space-time domain, while on the global stage a linear problem must be solved on the whole
space-time domain for re-applying admissibility. The linear problem of the global stage is solved by em-
ploying a low-rank PGD approximation which brings the LATIN solver its efficiency, and the construction of
this decomposition is separated on two main steps, the enrichment and the preliminary steps. Since we
approximate the global quantities S by a low-rank approximation, on the enrichment step a new mode is
added to this decomposition, increasing by consequence its rank, while on the preliminary step the rank
is fixed and the temporal PGD functions are updated. A synthetic flowchart of the LATIN methodology
is given in the diagram of figure 4.2 where the sub-steps associated to the PGD approximation at global
stage are detailed. From this diagram a very important detail must be noticed related to the indexes n and
m, which correspond to the LATIN iteration and number of modes of the PGD approximation respectively,
which are not necessarily equal. To better distinguish both indexes lets consider the total displacement
field at the global stage at iteration n of the LATIN method which is approximated by m PGD terms plus
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the initial elastic solution u0(x, t) :

un(x, t) =
m∑
i=1

ūi(x)λi(t)︸ ︷︷ ︸
PGD terms

+ u0(x, t) (4.1)

The above expression is valid because LATIN iterations increase after the resolution of both local and
global stages as shown in the diagram 4.2, however, the number of modes only increases at the en-
richment step. On the preliminary step, only an actualization of the temporal PGD functions is done,
maintaining the same number of PGD modes. For the above reasons, the LATIN iterations are eventu-
ally larger than the PGD modes determined. The enrichment and preliminary steps are carried out in
order to obtain the best approximation of the PGD so as to minimize the distance between the local and
global solution quantities after each LATIN iteration. The convergence of the LATIN solver is achieved
when the distance between the two solutions sets S and Ŝ is less than a given threshold [Ladevèze,
1996, Ladevèze, 1999].

Large Time Increment method along with the PGD, iterative solver resolution

Inital solution S0 ∈ Ad : Elastic dynamic solution
PGD index m = 0 , LATIN iteration n = 0

Local stage Γ: Integration of the
constitutive relation over Ω × I

Global stage Ad: Enrichment of the Initial
solution approximated by using the PGD

m > 1?Initial correction

Preliminary step:
Update of the

temporal PGD basis

Enrichment step:
Add of a new PGD
basis: m = m + 1

Actualization
error

ζup < ζ ?

LATIN
error

ξn+1 < ξ ?

LATIN iteration
n = n + 1

LATIN iteration
n = n + 1

Save solution

no

yes

no

yes

no yes

Figure 4.2: LATIN-PGD strategy.

The large application fields of the LATIN method (see chapter 3) in nonlinear mechanics, including param-
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eter dependency, makes it an excellent candidate for answering to the virtual charts problematic proposed
by seismic risk assessment and described in the introduction chapter 1. However, the application of the
LATIN method together with PGD has only been developed for problems under quasi-static conditions.
Therefore one of the objective of the current chapter is to adapt the methodology described from quasi-
static to the framework of nonlinear low frequency dynamics problems. Another novelty introduced in this
chapter is the use of the Time Discontinuous Galerkin Method (TDGM) to obtain the time functions of the
PGD decomposition incrementally over the whole time interval for both enrichment and preliminary steps.
This allows an efficient resolution of the time functions since the discretized operators to be inverted in
each discontinuous time interval are of reduced and constant size, which causes that the computational
cost associated with their resolution grows linearly with the size of the temporal domain considered. This
property is of particular interest in seismic engineering applications, where the excitation could be of rel-
atively long duration. The idea of using TDGM in the LATIN-PGD solver is not new, in fact it has been
extensively used in previous works [Nouy, 2003, Néron, 2004, Gupta, 2005, Passieux, 2008, Nachar,
2019], however, in those works the TDGM was never applied to incrementally solve the time functions
while minimizing complicated functionals as will be seen in successive sections.

Every block described in the flow chart of figure 4.2 will be detailed in the next sections, starting from the
computation of the initial elastic solution (sec. 4.2), to the description of the local and global stages.

Let us recall that our ambition is to deal with two kinds of material nonlinearities, naming quasi-brittle
damaging concrete and elasto-visco-plastic steel. Unfortunately, the application of the LATIN strategy
to those two kinds of nonlinearities requires dedicated adaptations, especially when computing the PGD
corrections. For the sake of completeness, the derived methodology will be described in two similar and
barely independent sections dedicated to concrete material on the one hand (sec. 4.3) and elasto-visco-
plasticity on the other hand (sec. 4.4).

The methodology will be exemplified by a numerical example consisting of a 3D simply supported beam
subjected to imposed displacements. For this beam, the material behaviors described above are consid-
ered separately.

4.2 Initial elastic solution

The LATIN method is initialized by determining the first solution of the admissibility space S0 ∈ Ad, which
corresponds to the elastic solution of the reference problem, as can be seen in figure 4.3.

Primal variables

Dual variables
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Γ

�
S̄

•
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•
Ŝ1/2

•
S1

· · ·

G
A

Figure 4.3: Initialization of the solver by the elastic solution S0.
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This solution includes the elastic displacement, strain and stress:

S0 = {u0, ε0
, σ

0
} (4.2)

In order to determine the elastic solution, the space domain is first discretized by employing the Finite
Element Method (FEM), where the spatial nodal unknowns are determined at a given time by the following
semi-discretized problem:

M ü0(t) + D u̇0(t) + K u0(t) = f (t) (4.3)

with M , D and K the mass, damping and stiffness matrices respectively; the vector f (t) contains the
Neumann load conditions and body forces.

As exposed in previous chapters, in the present thesis the TDGM is chosen for the simulation of the time
evolution, when this discontinuous strategy in time is applied to the semi-discretized equation (4.3) we
obtain the following discretized equations defined on the discontinuous interval Ĭk, with “k” a temporal
element (see chapter 2):[

M ⊗ (Q12

k
+ P11

k
) + D ⊗Q11

k
+ K ⊗ (Q10

k
+ P00

k
)
]

: u[k]
0

=

(I ⊗Q10

k
) : f [k] +

[
M ⊗R11

k
+ K ⊗R00

k

]
: u[k−1]

0

(4.4)

The discrete solution u
[1]
0 over the initial element Ĭ1 in turn verifies:[

M ⊗ (Q12

1
+ P11

1
) + D ⊗Q11

1
+ K ⊗ (Q10

1
+ P00

1
)
]

: u[1]
0

=

(I ⊗Q10

1
) : f [1] + (M .u̇ in)⊗P1

1
+ (K .u in)⊗P0

1

(4.5)

where we recall the following operations employed:

(A⊗B) : C = D ⇐⇒
∑
j,l

AijBklCjl = Dik

The above equations allow to determine the dynamic response of the elastic problem incrementally in
time. However, its resolution could be really expensive due to the need of inverting matrices of size
nS × 4, with nS the DOFs in space and 4 the number of unknowns on a temporal element by using cubic
Hermite shape functions (see chapter 2). In the following, an approximate way of solving these equations
is presented, which resolves this limitation through the use of model order reductions.

4.2.1 Approximation of the elastic dynamic solution

The strategy that will be shown in this section corresponds to a well known modal base approximation of
the elastic solution in dynamics (for more details see e.g [Clough and Penzien, 2003]). The approximation
consists in separating the total elastic solution as the sum of two terms, a quasi-static term and dynamic
one. The quasi-static term is approximated by using the classic PGD approach while the dynamic term is
approximated exploiting the modal base of the system. Therefore the elastic solution is written as:

u0(x, t) = u0,q(x, t)︸ ︷︷ ︸
quasi-static

+ u0,d(x, t)︸ ︷︷ ︸
dynamic

(4.6)

The quasi-static solution verifies u0,q ∈ US(Ω, uD) and the dynamic term u0,d ∈ US(Ω, 0). Following
[Clough and Penzien, 2003], the semi-discretized quasi-static solution is calculated such as it verifies the
equilibrium equation in where the dynamics terms are neglected, that is:

K u0,q(t) = f (t) (4.7)
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by introducing approximation (4.6) into (4.3) we obtain:

M
(
ü0,q(t) + ü0,d(t)

)
+ D

(
u̇0,d(t) + u̇0,q(t)

)
+ K

(
u0,d(t) + u0,q(t)

)
= f (t) (4.8)

and by using (4.7) we finally obtain the equation related to the dynamic term:

M ü0,d(t) + D u̇0,d(t) + K u0,d(t) = −M ü0,q(t)−D u̇0,q(t) = f
d
(t) (4.9)

Both quasi-static and dynamic terms are calculated by discretizing the temporal domain, the discretization
corresponding to the quasi-static term is given as:[

K ⊗ (Q10

k
+ P00

k
)
]

: (u
0,q

)[k] = (I ⊗Q10

1
) : f [k] +

[
K ⊗R00

k

]
: (u

0,q
)[k−1] (4.10)

and the space-time discretization of equation (4.9) for the calculation of the dynamic term by:[
M ⊗ (Q12

k
+ P11

k
) + D ⊗Q11

k
+ K ⊗ (Q10

k
+ P00

k
)
]

: (u
0,d

)[k] =
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1
) : f [k]

d
+
[
M ⊗R11

k
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k

]
: (u

0,d
)[k−1]

(4.11)

where f [k]
d
∈ RnS ⊗ R4 is obtained by discretizing f

d
(the right hand side of equation (4.9)) in time using

FEM. Following the reference problem of this thesis introduced in chapter 2, the initial conditions associ-
ated to the quasi-static and to the dynamic solution of the elastic problem are both set equals to zero:

(u
0,q

)[0] = 0

(u
0,d

)[0] = 0

The separation of the reference elastic problem into a quasi-static solution which verifies the Dirichlet
conditions and a dynamic solution which is admissible to zero, allows the use of model order reduction
techniques for its fast calculation. The quasi-static solution is approximated by using the PGD, that is:

u0,q(x, t) ≈
mq∑
i=1

wq(x)λq(t) (4.12)

The PGD approximation of the quasi-static solution is calculated by using a classic Greedy approach (see
section 3.2.5.4). On the other hand the dynamic term is approximated by using a modal base approach,
this is:

u0,d(x, t) ≈
mb∑
i=1

φ
i
(x)υi(t) (4.13)

where φ(x) and υ(t) correspond to the spatial and temporal modal base functions and with mb the quantity
of modal basis considered. The spatial functions are determined by computing the eigenvectors associ-
ated to the following eigenvalue problem:

∀i ∈ [1, ...,mb] , (
M−1K

)
φ
i

= ω2
iφi (4.14)

where ω2
i corresponds to the eigenvalue associated to eigenvector i and such that ωi = 2πfi, with fi the

natural frequency of the system at mode i. On the other hand the temporal functions υi(t) are determined
by projecting the discretized spatial modal basis functions into the discretized dynamic part equilibrium
equation (4.11). To do so, lets introduce the total discretized unknown of the temporal modal functions as:

Υ [k] =
[
υ

[k]
1 ,υ

[k]
2 , · · · ,υ[k]

mb

]T
(4.15)
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By projecting the spatial modal basis into the dynamic equilibrium equation we obtain:[
(ΦTM Φ)⊗ (Q12

k
+ P11

k
) + (ΦTD Φ)⊗Q11

k
+ (ΦTK Φ)⊗ (Q10

k
+ P00

k
)
]

: Υ [k] =[
(ΦTM Φ)⊗R11

k
+ (ΦTK Φ)⊗R00

k

]
: Υ [k−1] + (I ⊗Q10

k
) : (ΦT f [k]

d
)

(4.16)

with the equation associated with the first time element:[
(ΦTM Φ)⊗ (Q12

1
+ P11

1
) + (ΦTD Φ)⊗Q11

1
+ (ΦTK Φ)⊗ (Q10

1
+ P00

1
)
]

: Υ [1] =

(I ⊗Q10

1
) : (ΦT f [1]

d
)

(4.17)

with I ∈ Rm ⊗ Rm the identity matrix and Φ the matrix that contains the modal basis given by:

Φ =
[
φ

1
,φ

2
, · · · ,φ

mb

]
(4.18)

The modal basis have the interesting property of being orthogonal to the mass and stiffness matrices, but
might not be the case for the damping matrix. In either case, the damping is assumed to be diagonal in
the modal basis (small damping ratios) and the decoupled equations are written as follows:

∀i ∈ [1, ...,mb] ,[
mi(Q

12

k
+ P11

k
) + diQ

11

k
+ ki(Q

10

k
+ P00

k
)
]
υ

[k]
i =

[
miR

11
k

+ kiR
00
k

]
υ

[k−1]
i + (f

d
)
[k]
i (4.19)

with the modal masses, damping and stiffness scalars:

∀i ∈ [1, ...,mb] ,

mi = φT
i

M φ
i

di = φT
i

D φ
i

ki = φT
i

K φ
i

(4.20)

and the total external force as:
(f
d
)
[k]
i = Q10

k
(φT

i
f [k]
d

)T (4.21)

For the sake of simplicity, equation (4.19) can be rewritten as follows:

∀i ∈ [1, ...,mb] ,

Q [k]

i
υ

[k]
i =R[k]

i
υ

[k−1]
i + (f

d
)
[k]
i (4.22)

where Q [k]

i
andR[k]

i
are matrices given by:

∀i ∈ [1, ...,mb] ,

Q [k]

i
=
[
mi(Q

12

k
+ P11

k
) + diQ

11

k
+ ki(Q

10

k
+ P00

k
)
]

R[k]
i

=
[
miR

11
k

+ kiR
00
k

] (4.23)

After the displacement u0(x, t) is determined, the initial stress and strain tensors are computed as:

ε
0

=
1

2

(
∇u0 +∇uT0

)
, σ

0
= K : ε

0
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4.3. Isotropic damage modeling for concrete material

with K the Hooke’s tensor. Once the initial elastic solution S0 in dynamics is determined, the iterative
process between the local and global stages begins:

S0 ∈ Ad −→ Ŝ1/2 ∈ Γ ... −→ Ŝn+1/2 ∈ Γ −→ Sn+1 ∈ Ad ... −→ S̄ ∈ Ad ∩ Γ. (4.24)

which allows to correct the initial solution until the final solution is reached.

In the following section 4.3, this process is explained for the case of isotropic damage in concrete, while
the elasto-visco-plasticity case is explained in section 4.4.

4.3 Isotropic damage modeling for concrete material

On the present section the iterative resolution process between the global and local stages for the simu-
lation of isotropic damageable concrete material is introduced. The details about this constitutive relation
were presented in chapter 2.

The strategy of resolution presented herein differs from the one introduced in Vitse’s work [Vitse, 2016,
Vitse et al., 2019]. While the previous work calculated the spatial and temporal functions of the PGD de-
composition by a Galerkin orthogonality projection into the equilibrium equations, in the present strategy
only the spatial functions are calculated in this way, while the temporal functions are determined by min-
imizing a constitutive relation error [Ladevèze and Moës, 1998] introduced in the following subsections.
The above has shown better convergence properties [Passieux, 2008].

For the following sections, we assume that a global Sn solution have already been computed.

4.3.1 Local nonlinear stage

Once the linear solution Sn ∈ Ad is computed, the local nonlinear solution Ŝn+1/2 ∈ Γ is calculated, this
solution must verify also an ascent search direction G. This can be resumed as follows:

Find Ŝn+1/2 ∈ Γ such that
(
Ŝn+1/2 − Sn

)
∈ G (4.25)

with the local solution given by:

Ŝn+1/2 = {ε̂
n+1/2

, σ̂
n+1/2

, d̂n+1/2} (4.26)

with d the isotropic damage variable (see chapter 2). The local stage process is depicted in figure 4.4.

[
σ, d
]

ε

Ad

Γ

�
S̄

•
Sn

•
Ŝn+1/2

•
Sn+1

G

Figure 4.4: Calculation of the local solution of space Γ.
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The ascent search direction is chosen as:

G :

 d̂n+1/2 − g(ε̂
n+1/2

) = 0[
σ̂
n+1/2

− σ
n

]
+ Ĥε :

[
ε̂
n+1/2

− ε
n

]
= 0

(4.27)

From the above equation we denoted g : R3⊗R3 → R, the nonlinear function that condense the operations
given in chapter 2 for the determination of the damage variable. For simplicity, in the second equation of
(4.27) the positive operator Ĥε is chosen as:

Ĥ−1
ε = 0 (4.28)

which means that the search direction is chosen to be constant. Under this condition, the local strain is
simply given by:

ε̂
n+1/2

= ε
n

(4.29)

The stress tensor on the other hand is simply determined once the damage is computed, by:

σ̂
n+1/2

= h(ε̂
n+1/2

, d̂n+1/2) (4.30)

where h(ε̂
n+1/2

, d̂n+1/2) is a function that summarises all the procedures outlined in section 2.3.1 for the
simulation of the unilateral effect.

Remark: Note that the damage variable can be calculated locally in space, but not in time, where an
ordinary differential equation must be solved as presented in section 2.3.1.

4.3.2 Global linear stage: Equilibrium and compatibility equations

After the resolution of the local stage, where the constitutive relation is evaluated and the solution Ŝn+1/2

is calculated, the new global stage solution Sn+1 ∈ Ad at LATIN iteration n+ 1 is computed. This solution
must verify the admissibility conditions of the reference problem and at the same time the descent search
direction, this is:

Find Sn+1 ∈ Ad such that
(
Sn+1 − Ŝn+1/2

)
∈ A (4.31)

with the global stage solution at iteration n+ 1 given by:

Sn+1 = {un+1, εn+1
, σ

n+1
, dn+1} (4.32)

The global stage process summarized by equation (4.31) is illustrated in figure 4.5.

[
σ, d
]

ε

Ad

Γ

�
S̄

•
Sn

•
Ŝn+1/2

•
Sn+1

A

Figure 4.5: Calculation of the global solution of space Ad for the case of isotropic damage.
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The descent search direction is given by:

A :

{
dn+1 − d̂n+1/2 = 0[

σ
n+1
− σ̂

n+1/2

]
−Hε :

[
ε
n+1
− ε̂

n+1/2

]
= 0

(4.33)

from the above expressions we consider the damage quantity at the global stage equals to the one from
the local stage:

dn+1 = d̂n+1/2 (4.34)

The operator Hε is chosen to be constant and equal to the Hooke’s tensor of the concrete material:

Hε = K (4.35)

The main objective of the global stage at LATIN iteration n + 1 consists in determining the solution set
Sn+1. However, a direct resolution of the global unknowns is generally very expensive, but as exposed
in the introductory section the global stage is solved by employing the model reduction technique PGD,
that approximates the global stage solution as a low-rank decomposition, which allows to decreases the
computational costs. Under this approximation lets assume that m modes have already been computed
for approximating the global solution at LATIN iteration n as follows:

un(x, t) =

m∑
i=1

ūi(x)λi(t) + u0(x, t)

ε
n
(x, t) =

m∑
i=1

ε̄
i
(x)λi(t) + ε

0
(x, t)

σ
n
(x, t) =

m∑
i=1

σ̄
i
(x)λi(t) + σ

0
(x, t)

(4.36)

In order to solve the global stage at iteration n + 1, we seek a corrective term such as the global stage
solution can be written as follows:

Sn+1 = ∆Sn+1 + Sn (4.37)

with the corrective solution set given by:

∆Sn+1 = {∆un+1,∆εn+1
,∆σ

n+1
} (4.38)

These corrective terms apply only to the stress, strain and displacement. For their determination, the
second equation of (4.33) is rewritten as:

∆σ
n+1
−Hε : ∆ε

n+1
+ ∆

n+1
= 0 (4.39)

with the residual term (considering the result of (4.29)) given as follows:

∆
n+1

= (σ
n
− σ̂

n+1/2
) (4.40)

The expression (4.39) expresses the linear constitutive relation given by the descent search direction. It
gives an equation in where the corrective terms ∆σ

n+1
and ∆ε

n+1
allow to decrease the distance between

the global and local quantities, a key aspect in order to ensure the convergence of the method. In this
sense, we define a constitutive relation error Jc [Passieux, 2008] such as:

Jc =
∣∣∣∣∣∣∣∣∣∆σ

n+1
−Hε : ∆ε

n+1
+ ∆

n+1

∣∣∣∣∣∣∣∣∣2
H−1
ε

(4.41)
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with the norm chosen as:
|||·|||2H−1

ε
=

∫
Ω×I

(·) : H−1
ε : (·)dΩdt (4.42)

From the above developments, in order to determine Sn+1 we simply need to compute the corrective
terms of equation (4.38) over the whole space-time domain such that the constitutive relation error Jc

is minimized, while verifying at the same time the equilibrium equations and the admissibility conditions.
However, since the global stage quantities are approximated by a low-rank PGD decomposition, the min-
imization is done by solving two steps: the enrichment and preliminary steps, which are detailed in the
following sections.

Remark: After the determination of the corrective solution set ∆Sn+1, a relaxation of the solution is applied
in order to ensure the convergence of the method [Ladevèze, 1999], this is simply done as follows:

Sn+1 ← (1− µ)Sn + µSn+1 (4.43)

where the relaxation coefficients for the case of isotropic damage is chosen equal to µ = 0.4. This
parameter is problem dependent, so it could be potentially different for other kind of applications, where
empirical numerical tests must be performed for its optimal determination.

4.3.2.1 Enrichment step: enrichment of the PGD approximation

The enrichment step consists in the calculation of a new PGD mode in order to enrich the PGD approx-
imation for each global quantities. These rank-one modes are determined such that it approximates the
corrective term that must be determined at the global stage, in other words, the modes are found as the
correction from solution Sn to Sn+1 and are defined as:

∆un+1(x, t) = un+1 − un = ūm+1(x)λm+1(t)

∆ε
n+1

(x, t) = ε
n+1
− ε

n
= ε̄

m+1
(x)λm+1(t)

∆σ
n+1

(x, t) = σ
n+1
− σ

n
= σ̄

m+1
(x)λm+1(t)

(4.44)

The spatial and temporal functions are calculated in an iterative way by using a fixed point strategy. The
spatial functions are calculated by verifying the admissibility equations and the temporal functions are
calculated by minimizing the constitutive relation error. After each fixed point iteration when a space-time
couple of functions are calculated a stagnation error is defined in order to stop the process. To do so, first
the spatial functions are normalized with respect to the norm of the deformation tensor, this is, we define
the scalar:

cc =
∥∥∥ε̄

m+1

∥∥∥
Ω

, ‖·‖Ω =

√∫
Ω

(·) : (·) dΩ (4.45)

which is used to adapt the spatial and temporal PGD functions:

ūm+1 ← ūm+1/cc

ε̄
m+1

← ε̄
m+1

/cc

σ̄
m+1

← σ̄
m+1

/cc

,

λm+1 ← λm+1 cc

λ̇m+1 ← λ̇m+1 cc

λ̈m+1 ← λ̈m+1 cc

The stagnation error of the fixed point process is defined as:

ζPGD =

∥∥∥|λ(i)
m+1| − |λ

(i−1)
m+1 |

∥∥∥
I∥∥∥|λ(i)

m+1|+ |λ
(i−1)
m+1 |

∥∥∥
I

, ‖·‖I =

√∫
I
(·)2dt (4.46)
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with |·| the absolute value. The functions λ(i)
m+1 and λ(i−1)

m+1 stands for the temporal mode at iteration i and
i− 1 respectively. The fixed point strategy stops when the stagnation indicator reaches a given threshold
or a maximum number of iterations of the process is reached. At the end of the process the spatial and
temporal functions are kept and are added to the current low-rank approximation.

In this work, the space functions of the decomposition are determined by a Galerkin projection into the
equilibrium equation, which allows to easily verify the boundary conditions of the problem, while the tem-
poral function is determined by minimizing the constitutive relation error defined in (4.41). These steps
are detailed in the following sections, where, for simplicity, the PGD index is omitted as shown below:

∆un+1(x, t) = ūm+1(x)λm+1(t) = ū(x)λ(t)

∆ε
n+1

(x, t) = ε̄
m+1

(x)λm+1(t) = ε̄(x)λ(t)

∆σ
n+1

(x, t) = σ̄
m+1

(x)λm+1(t) = σ̄(x)λ(t)

(4.47)

4.3.2.1.1 Space and time resolution associated to the admissibility problem

In the following lines the space and temporal problems needed to be solved on the enrichment step are
detailed; the space problem is first presented, assuming that the temporal functions are known, and later
the temporal problem is solved using the result of the space problem. This process is applied in an itera-
tive way until the final PGD mode is determined.

• Space problem:

The terms of the corrective solution set ∆Sn+1 must be determined such as they verify the admissibility
conditions of the original problem and at the same time verify the descent search direction. The verification
of the admissibility condition is simple, it just suffices to consider the equilibrium equation at this global
stage which is recalled below:

∀v ∈ US(Ω, 0)⊗ UT (I),∫
Ω×I

ρün+1 · v dΩdt+

∫
Ω×I

σ
n+1

: ε(v) dΩdt =

∫
Ω×I

ρf · v dΩdt+

∫
∂NΩ×I

fN · v dSdt (4.48)

Now subtracting the equilibrium equations for both space solutions Sn+1 and Sn, leads to:

∀v ∈ US(Ω, 0)⊗ UT (I), ∫
Ω×I

ρ∆ün+1 · v dΩdt+

∫
Ω×I

∆σ
n+1

: ε(v) dΩdt = 0 (4.49)

The search direction (4.39) is now used in order to replace the stress correction and obtain an expression
only in function of the displacement correction, obtaining:

∀v ∈ US(Ω, 0)⊗ UT (I),∫
Ω×I

ρ∆ün+1 · v dΩdt+

∫
Ω×I

ε(v) : Hε : ∆ε
n+1

dΩdt =

∫
Ω×I

∆
n+1

: ε(v) dΩdt (4.50)

Now lets use the low-rank approximation of equation (4.47) and introduce these into the equilibrium equa-
tion (4.50) to obtain:

∀v̄ ∈ US(Ω, 0),∫
Ω
ρ < λ̈λ > ū · v̄ dΩ +

∫
Ω
< λλ > ε̄(v̄) : Hε : ε̄(ū)dΩ =

∫
Ω
< ∆

n+1
λ >: ε̄(v̄) dΩ (4.51)
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where we denote < · >=
∫
I(·)dt to simplify the notations.

The above formulation only depends on the displacement term, therefore it can be easily solved by em-
ploying classical FEM. After calculating the corrective spatial displacement field ū(x) ∈ US(Ω, 0), we com-
pute the spatial corrective strain ε̄(ū) and finally, the space function of the corrective stress is computed
by using the search direction (4.39):

σ̄(x) = Hε : ε̄(x)−

∫
I λ∆

n+1
dt∫

I λ
2dt

(4.52)

Once the space functions ū(x), ε̄(x) and σ̄(x) computed, the temporal function λ(t) must be determined.
This determination is shown below.

• Temporal problem:

As exposed in the introductory section, the temporal functions are determined such as the constitutive
relation error of equation (4.41) is minimized, this is:

{λm+1} = arg min
λm+1∈UT

∣∣∣∣∣∣∣∣∣σ̄
m+1

λm+1 −Hε : ε̄
m+1

λm+1 + ∆
n+1

∣∣∣∣∣∣∣∣∣2
H−1
ε

(4.53)

By dropping out the index m+ 1 (λ = λm+1) and writing the stationarity condition of (4.53) with respect to
λ, one reads:

∀δλ ∈ UT , ∫
Ω×I

δλλ(σ̄ −Hε : ε̄) : H−1
ε : (σ̄ −Hε : ε̄) + δλ(σ̄ −Hε : ε̄) : H−1

ε : ∆
n+1

dΩdt = 0 (4.54)

Due to the constant choice of the operator Hε we can define the following scalar value:

Ac =

∫
Ω

(σ̄ −Hε : ε̄) : H−1
ε : (σ̄ −Hε : ε̄) dΩ (4.55)

and the temporal function:

Dc(t) = −
∫

Ω
(σ̄ −Hε : ε̄) : H−1

ε : ∆
n+1

dΩ (4.56)

which can be used in equation (4.54), to obtain the following compact formulation:

∀δλ ∈ UT , ∫
I
δλλAc dt =

∫
I
δλDc(t) dt (4.57)

As mentioned in the introduction, the temporal problem is solved by using the TDGM. The idea is to solve
incrementally the function over the temporal domain using at the same time a finite element formulation.
In this sense, the temporal FEM discretization of expression (4.57) applied at time element “k” is given as:

Q [k]λ[k] = f [k] (4.58)

with:
Q [k] =

∫
Ĭk

ψ[k](t)⊗ ψ[k](t)Acdt , f [k] =

∫
Ĭk

ψ[k](t)Dc(t)dt (4.59)

and where λ[k] corresponds to the nodal values of the temporal function at time element k.

However, this equation is incomplete since it does not impose continuity between time intervals. To resolve
this issue, continuity between time elements must be imposed in a weak sense as illustrated in figure 4.6.
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t

ĬkĬk−1|
. . .

|
tk−1

|
tk

|
. . .

• ••
••

•
λ(t+k−1)

λ(t−k−1)

Figure 4.6: Weak imposition of the continuity between the intervals.

The idea consists in transmitting the end value of the time function of the interval Ĭk−1 (λ(t−k−1)) to the
initial value of the interval Ĭk (λ(t+k−1)), by using some operators that must be included in the discretized
equation (4.58) (see figure 4.6 ). The easiest way to do this consists in defining the following operators:

L[k] = 1.1 max(Q [k])ψ[k](tk−1)⊗ ψ[k](t+k−1)

R[k] = 1.1 max(Q [k])ψ[k](tk−1)⊗ ψ[k−1](t−k−1)
(4.60)

whose detailed representations are given by:

L[k] =


1.1 max(Q [k]) 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

 , R[k] =


0 0 0 1.1 max(Q [k])

0 0 0 0
0 0 0 0
0 0 0 0


These operators are introduced in the discretized equation of each time interval Ĭk in the following way:(

Q [k] +L[k]
)
λ[k] =R[k]λ[k−1] + f [k] (4.61)

The factor 1.1 max(Q [k]), with max(·) the function that finds the maximum value of the matrix (·), is chosen

in order to add terms in the same order of magnitude compared to the discretized elemental matrix Q [k]

of the problem.

What these operators do simply consists in unbalancing the equation associated to the first nodal value of
λ[k] (first row) of equation (4.61), such as the only way of approximately solving the original problem given
in (4.58) is to have L[k]λ[k] ≈R[k]λ[k−1], which is traduced in λ(t−k−1) ≈ λ(t+k−1).

Thanks to this formulation, the time functions are solved incrementally, imposing in a weak sense the
continuity between each time interval of the discretization. This idea is also applied to the update of the
temporal PGD functions at the preliminary step as shown in the next subsection.

4.3.2.2 Preliminary step

Since every time a new mode is calculated from the enrichment step, the question if the low-rank approxi-
mation can be re-arranged in order to better decrease the LATIN error without calculating additional PGD
couples naturally arises. This can be achieved by simply actualizing the temporal functions of the PGD
decomposition without modifying the spatial ones. This operation allows to accelerate the convergence to
the solution of the problem while avoiding the computation of new space-time PGD pairs functions, allow-
ing by consequence a most compressed solution representation. The details about the temporal update
of PGD functions are given below.
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4.3.2.2.1 Update of the temporal functions

The idea of the preliminary step consists in updating the temporal functions of all the global quantities
while maintaining the space functions fixed, i.e:

∀i ∈ [1, ...,m+ 1],
λi ← λi + ∆λi(t) (4.62)

where the main unknowns are the time corrective functions (∆λi(t))
m+1
i=1 . This procedure allows to actual-

ize the PGD approximation of the global quantities as follows:

un+1(x, t) =
m+1∑
i=1

ūi(x) [λi(t) + ∆λi(t)] + u0(x, t)

ε
n+1

(x, t) =
m+1∑
i=1

ε̄
i
(x) [λi(t) + ∆λi(t)] + ε

0
(x, t)

σ
n+1

(x, t) =
m+1∑
i=1

σ̄
i
(x) [λi(t) + ∆λi(t)] + σ

0
(x, t)

(4.63)

The time corrective functions are calculated by minimizing the constitutive relation error (4.41). In this
sense, by introducing the expressions (4.63) into (4.41) we obtain:

∀i ∈ [1, ...,m+ 1] ,

{∆λi} = arg min
{∆λi}m+1

i=1 ∈UT

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
m+1∑
i=1

σ̄
i
∆λi −Hε :

(
m+1∑
i=1

ε̄
i
∆λi

)
+ ∆

n+1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

H−1
ε

(4.64)

As in the case of the enrichment step, the above problem can also be solved incrementally in time by
applying the TDGM. For this, we first develop the minimization problem, to obtain:

∀δ∆λi ∈ UT , ∀i ∈ [1, ...,m+ 1] ,∫
Ω×I

(
m+1∑
i=1

(
σ̄
i
−Hε : ε̄

i

)
δ∆λi

)
: H−1

ε :

m+1∑
j=1

(
σ̄
j
−Hε : ε̄

j

)
∆λj + ∆

n+1

 dΩdt = 0 (4.65)

which can be simplified in: ∫
I

m+1∑
i=1

m+1∑
j=1

δ∆λi∆λjA
c
ij dt =

m+1∑
i=1

δ∆λiD
c
i (t) dt (4.66)

with the constants:

∀(i, j) ∈ [1, ...,m+ 1] ,

Acij =

∫
Ω

(
σ̄
i
−Hε : ε̄

i

)
: H−1

ε :
(
σ̄
j
−Hε : ε̄

j

)
dΩ (4.67)

and the respective temporal functions:

∀i ∈ [1, ...,m+ 1] ,

Dc
i (t) = −

∫
Ω

(
σ̄
i
−Hε : ε̄

i

)
: H−1

ε : ∆
n+1

dΩ (4.68)

As explained for the enrichment step, the discretization of expression (4.66) requires the definition of
operators that allow to impose the continuity between the temporal intervals, but this time for all the m+ 1
functions considered, this is illustrated in figure 4.7.
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tĬkĬk−1
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. . .
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• •

∆λ1(t)

∆λ2(t)

∆λm+1(t)

...

Figure 4.7: Weak imposition of the continuity between the intervals for all the temporal PGD functions.

In this sense, by applying the same ideas as previously explained for the enrichment step, the following
discretized equation is obtained when applied to an element “k”:

∀i ∈ [1, ...,m+ 1],
m+1∑
j=1

Q [k]

ij
∆λ

[k]
j +

m+1∑
j=1

L[k]
ij

∆λ
[k]
j =

m+1∑
j=1

R[k]
ij

∆λ
[k−1]
j + f [k]

i
(4.69)

The above expression can be condensed into:

(
Q [k]

up
+L[k]

up

)
∆Λ[k] =R[k]

up
∆Λ[k−1] + f [k]

up
(4.70)

with the vector containing the nodal values of all the temporal functions given by:

∆Λ =


∆λ1

∆λ2
...

∆λm+1

 (4.71)

The full expression of the matrices are given by:

Q [k]

up
=


Q [k]

11
Q [k]

12
· · · Q [k]

1 m+1

Q [k]

21

. . .
...

Q [k]

m+1 1
Q [k]

m+1 m+1

 , f [k]
up

=


f [k]

1

f [k]
2
...

f [k]
m+1


with:

∀(i, j) ∈ [1, ...,m+ 1] ,

Q [k]

ij
=

∫
Ĭk

ψ[k](t)⊗ ψ[k](t)Acijdt

f [k]
i

=

∫
Ĭk

ψ[k](t)Dc
i (t)dt

(4.72)

and the matrices that allow the weak imposition of the initial conditions over all the temporal functions:
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L[k]
up

=


L[k]

11
L[k]

12
· · · L[k]

1 m+1

L[k]
21

. . .
...

L[k]
m+1 1

L[k]
m+1 m+1

 , R[k]
up

=


R[k]

11
R[k]

12
· · · R[k]

1 m+1

R[k]
21

. . .
...

R[k]
m+1 1

R[k]
m+1 m+1


with:

∀(i, j) ∈ [1, ...,m+ 1] ,

L[k]
ij

= 1.1 max(Q [k]

ij
)ψ[k](tk−1)⊗ ψ[k](t+k−1) (4.73)

R[k]
ij

= 1.1 max(Q [k]

ij
)ψ[k](tk−1)⊗ ψ[k−1](t−k−1) (4.74)

The discretized equation (4.70) allows the imposition of the continuity between the intervals Ĭk and Ĭk−1

for all the involved corrective temporal PGD functions. Therefore, its resolution can be done incrementally
over the whole time domain.

To control the iterative improvement of the temporal PGD basis, every time the actualization of the tempo-
ral functions is done, an indicator of stagnation of the updated functions is calculated as follows:

ζup = max

(∥∥∥∥0.5

(
|∆Λ|

|Λ|+ |∆Λ|

)∥∥∥∥
2

)
(4.75)

where ‖·‖2 denotes the euclidean norm, and the terms Λ and ∆Λ correspond to the vectors that contain
all the time discretized PGD functions and their respective corrections computed at the current preliminary
step.

Remark: After each preliminary step, the local stage must be evaluated as presented in the diagram of
figure 4.2. Once the update indicator reaches a certain threshold, the preliminary step is stopped and a
new PGD mode is calculated in the enrichment step, starting a preliminary step process again.

4.3.3 LATIN error indicator

Once the global and local stages are solved, an error indicator is computed in order to assess the quality
of the solution obtained. The error indicator can be defined in different ways, however, herein this error is
defined with the objective of being fast to evaluate and give a real distance between the local and global
quantities of interest. This error is simply defined as follows:

ξn+1 = 100

√√√√√√

∣∣∣∣∣∣∣∣∣σ

n+1
− σ̂

n+1/2

∣∣∣∣∣∣∣∣∣2∣∣∣∣∣∣∣∣∣σ
n+1

∣∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣∣ε
n+1
− ε̂

n+1/2

∣∣∣∣∣∣∣∣∣2∣∣∣∣∣∣∣∣∣ε
n+1

∣∣∣∣∣∣∣∣∣2
[%] (4.76)

with the used norm given by: ∣∣∣∣∣∣•∣∣∣∣∣∣2 =

∫
Ω×I

(•) : (•) dΩdt

The LATIN-PGD method is said to converge when the above indicator is less than a given threshold.

70



4.4. Elasto-visco-plastic material

4.4 Elasto-visco-plastic material

The present section details the application of the LATIN-PGD strategy for solving nonlinear dynamic prob-
lems involving this time elasto-visco-plastic constitutive relations. Dealing with a constitutive law of differ-
ent nature is not straightforward. Compared to what has been presented in section 4.3, of course, the
local stage, where constitutive relations are solved, has to be modified but also the search directions must
be changed and the global stage itself must be deeply adapted. For completeness, every sub-steps are
detailed, once again, for this new kind of material nonlinearity.

As was done in previous section 4.3, the following subsections detail the iterative resolution process
between the local and global stages by assuming that a global solution Sn ∈ Ad is known.

4.4.1 Local nonlinear stage

After the resolution of the global stage Sn ∈ Ad where the admissibility conditions are verified, the consti-
tutive relation quantities Ŝn+1/2 ∈ Γ are computed at the local stage. For the case of elasto-visco-plasticity

[
εp, X

]

[
σ, Z

]

Ad

Γ

�
S̄

•
Sn

•
Ŝn+1/2

•
Sn+1

G

Figure 4.8: Calculation of the local solution of space Γ.

the local quantities that must be determined are:

Ŝn+1/2 = {σ̂
n+1/2

, ˆ̇εp
n+1/2

, β̂
n+1/2

, ˆ̇α
n+1/2

, ˆ̄̇rn+1/2,
ˆ̄Rn+1/2} (4.77)

where α and r̄ corresponds to the kinematic and isotropic hardening internal variables with β and R̄ their
corresponding dual representation; εp corresponds to the plastic deformation.

The local solution must also verify the ascent search direction, this is:

Find Ŝn+1/2 ∈ Γ such that
(
Ŝn+1/2 − Sn

)
∈ G (4.78)

where the global quantities at iteration n of the LATIN method are given by:

Sn = {un, εn, σn, ε
p
n
, β

n
, α

n
, r̄n, R̄n} (4.79)

The idea of equation (4.78) is illustrated in figure 4.8, in where the following definition is used for the
internal variables (see chapter 2):

Ẋ =
[
α̇, ˙̄r
]T and Z =

[
β, R̄

]T
(4.80)
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The ascent search direction written in mathematical form is given by:

G :

{[
ˆ̇εpn+1/2 − ε̇

p
n

−( ˆ̇X
n+1/2

− Ẋ
n
)

]
+ Ĥ :

[
σ̂
n+1/2

− σ
n

Ẑ
n+1/2

− Z
n

]
= 0 (4.81)

where Ĥ is any positive definite operator. As presented for the case of isotropic damage, here we also
choose a constant ascent search direction, meaning that:

Ĥ−1 = 0 (4.82)

This condition allows to easily determine the local quantities related to the stress and the internal variables
as:

σ̂
n+1/2

= σ
n

Ẑ
n+1/2

= Z
n

=
[
β
n
, R̄n

] (4.83)

The remaining quantities related to the rate of plastic deformation and internal variables are simply deter-
mined by verifying the elasto-visco-plasticity constitutive relation, which is recalled below under a synthetic
form: [

ε̇p(x, t)

Ẋ(x, t)

]
= B

(
σ(x, t), Z(x, t)

)
where εp stands for the plastic deformation and X the internal variables. By using the full expression of
the above equation (see chapter 2), the remaining local quantities are determined as:

ˆ̇εp
n+1/2

(x, t) = k〈fs〉ns+

3

2

τ̂
n+1/2√

3
2 τ̂n+1/2

: τ̂
n+1/2


ˆ̇α
n+1/2

(x, t) = −k〈fs〉ns+

−3

2

τ̂
n+1/2√

3
2 τ̂n+1/2

: τ̂
n+1/2

+
a

C
β̂
n+1/2


ˆ̄̇rn+1/2(x, t) = −k〈fs〉ns+

(
ˆ̄Rn+1/2

R∞

b

2
− b

1
2

)
(4.84)

with:

τ̂
n+1/2

= σ̂D
n+1/2

− β̂
n+1/2

(4.85)

The variables σ̂D
n+1/2

, α̂
n+1/2

and ˆ̄rn+1/2 correspond respectively to the deviatoric stress tensor, the kine-
matic and the isotropic hardening respectively, with the plasticity threshold function given by:

fs =

√
3

2
τ̂
n+1/2

: τ̂
n+1/2

+
a

2C
β̂
n+1/2

: β̂
n+1/2

−R∞

(
ˆ̄Rn+1/2

R∞

b
1
2

2

)(
2−

ˆ̄Rn+1/2

R∞

b
1
2

2

)
− σy (4.86)

Remark: The local stage quantities for the case of elasto-visco-plasticity are locally determined over the
space and time domain, which allows to introduce parallel strategies for its resolution.
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4.4. Elasto-visco-plastic material

4.4.2 Global linear stage: equilibrium and compatibility equations

Once the local nonlinear solution Ŝn+1/2 is calculated, we compute the solution Sn+1 on the linear space
Ad. In the global stage, apart from the state laws and admissibility conditions, the solution set Sn+1 ∈ Ad

must also satisfy the descent search direction:

[
ε̇p, Ẋ

]

[
σ, Z

]

Ad

Γ

�
S̄

•
Sn

•
Ŝn+1/2

•
Sn+1

A

Figure 4.9: Calculation of the global solution Sn+1 ∈ Ad.

This requirement can be stated as follows:

Find Sn+1 ∈ Ad such that
(
Sn+1 − Ŝn+1/2

)
∈ A (4.87)

where the global solution set at LATIN iteration n+ 1 is given by:

Sn+1 = {un+1, εn+1
, εp
n+1

, σ
n+1

, β
n+1

, α
n+1

, r̄n+1, R̄n+1} (4.88)

The requirement of equation (4.87) can be mathematically written as the following descent search direc-
tion:

A :

{[
ε̇p
n+1
− ˆ̇εpn+1/2

−(Ẋ
n+1
− ˆ̇X

n+1/2
)

]
−H :

[
σ
n+1
− σ̂

n+1/2

Z
n+1
− Ẑ

n+1/2

]
= 0 (4.89)

where:

Ẋ
n+1

=

[
α̇
n+1

˙̄rn+1

]
and Z

n+1
=

[
β
n+1

R̄n+1

]
(4.90)

and with the operator H given by:

H =

[
Hσ 0
0 HZ

]
, with HZ =

[
Hβ 0
0 HR̄

]
(4.91)

As for the isotropic damage case, the operators Hσ, Hβ and HR̄ are chosen to be constant to reduce the
complexity of the LATIN-PGD implementation that will be presented in following sections, in this sense,
the operators are chosen as follows:

Hσ = c(K)−1 (4.92)

Hβ = (K)−1 (4.93)

HR̄ = R−1
∞ (4.94)
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Chapter 4. The LATIN-PGD method extended to low-frequency dynamics problems

with the factor c = 10−4. Constants operators allows a faster global stage resolution, however, this is just
a choice and the implementation of a tangent operator could also be considered without restrictions. The
operator Hσ is constructed in a different way as seen from equation (4.92), which involves the use of a
factor c, the explanation about this construction is left to the enrichment step section, where an analysis
must be carried out for its determination in order to improve the LATIN-PGD convergence properties.

The expression of the descent search direction of equation (4.89) can be fully written as:

A :


ε̇p
n+1
− ˆ̇εp

n+1/2
−Hσ :

(
σ
n+1
− σ̂

n+1/2

)
= 0

−(α̇
n+1
− ˆ̇α

n+1/2
)−Hβ : (C α

n+1
− β̂

n+1/2
) = 0

−( ˙̄rn+1 − ˆ̄̇rn+1/2)−HR̄(R∞ r̄n+1 − ˆ̄Rn+1/2) = 0

(4.95)

where in the above expression the following relation is used (see section 2.3.2):

Z
n+1

= ῩX
n+1

, Ῡ =

[
C 0
0 R∞

]
In the same way as done for the case of isotropic damage, in order to solve the global quantities at iteration
n+ 1 of the LATIN method, a corrective solution is computed, such as:

Sn+1 = ∆Sn+1 + Sn (4.96)

with the corrective term solution given by:

∆Sn+1 = {∆un+1,∆εn+1
,∆εp

n+1
,∆σ

n+1
,∆β

n+1
,∆α

n+1
,∆r̄n+1,∆R̄n+1} (4.97)

By rewriting the expressions of equation (4.95) by considering the corrective terms that are the main
unknowns of the global stage and using the result of (4.83), we have:

∆ε̇p
n+1
−Hσ : ∆σ

n+1
+ ∆

n+1
= 0 (4.98)

∆α̇
n+1

+ Hβ :
(
C∆α

n+1

)
+ ∆α

n+1
= 0 (4.99)

∆ ˙̄rn+1 +HR̄R∞∆r̄n+1 + ∆r̄
n+1 = 0 (4.100)

with the residual terms given by:

∆
n+1

= ε̇p
n
− ˆ̇εp

n+1/2
(4.101)

∆α
n+1

= α̇
n
− ˆ̇α

n+1/2
(4.102)

∆r̄
n+1 = ˙̄rn − ˆ̄̇rn+1/2 (4.103)

In the same way as presented in section 4.3, the above expressions lead to the definition of the constitutive
relation errors (CRE) related to the different search directions and defined as follows:

Jp =
∣∣∣∣∣∣∣∣∣∆ε̇p

n+1
−Hσ : ∆σ

n+1
+ ∆

n+1

∣∣∣∣∣∣∣∣∣2
H−1
σ

(4.104)

Jα =
∣∣∣∣∣∣∣∣∣∆α̇

n+1
+ Hβ :

(
C∆α

n+1

)
+ ∆α

n+1

∣∣∣∣∣∣∣∣∣2
H−1
β

(4.105)

J r̄ =
∣∣∣∣∣∣∆ ˙̄rn+1 +HR̄R∞∆r̄n+1 + ∆r̄

n+1

∣∣∣∣∣∣2
H−1
R̄

(4.106)
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with the norms given by:

|||·|||2H−1
σ

=

∫
Ω×I

(·) : H−1
σ : (·) dΩdt

|||·|||2H−1
β

=

∫
Ω×I

(·) : H−1
β : (·) dΩdt

|||·|||2
H−1
R̄

=

∫
Ω×I

(·)H−1
R̄

(·) dΩdt

(4.107)

Therefore, in order to decrease the distance between the global and local quantities, i.e, achieving con-
vergence of the LATIN solver, the corrective terms must be determined such as minimizing the CRE Jp,
Jα and J r̄ [Passieux, 2008].

For the fast resolution of the global solution Sn+1, the PGD is used. In this sense, we consider that
the global stage solution at iteration n of the LATIN method is simply approximated by m PGD terms as
follows:

un(x, t) =

m∑
i=1

ūi(x)λi(t) + u0(x, t)

ε
n
(x, t) =

m∑
i=1

ε̄
i
(x)λi(t) + ε

0
(x, t)

σ
n
(x, t) =

m∑
i=1

σ̄
i
(x)λi(t) + σ

0
(x, t)

,

ε̇p
n
(x, t) =

m∑
i=1

ε̄p
i
(x)λ̇i(t)

α̇
n
(x, t) =

m∑
i=1

ᾱ
i
(x)λ̇αi (t)

˙̄rn(x, t) =

m∑
i=1

¯̄ri(x)λ̇r̄i (t)

(4.108)

The corrective solution set ∆Sn+1, like the case of isotropic damage material, is constructed on two
principal steps, the enrichment and the preliminary steps. Despite the similarity of the steps to be solved
compared to the isotropic damage case, their resolution differ, since the admissibility equations and the
minimization of the constitutive relations errors depend on the material considered. These differences are
presented in details in the coming sections along with the full presentation of these steps.

Remark: After the determination of the corrective solution set ∆Sn+1, a relaxation of the solution is applied
in order to ensure the convergence of the method:

Sn+1 ← (1− µ)Sn + µSn+1 (4.109)

where the relaxation coefficient for the case of elasto-visco-plasticity is chosen equal to µ = 0.4 [Ladevèze,
1999].

4.4.2.1 Enrichment step: Enrichment of the PGD approximation

As exposed in previous sections, on the enrichment step the low-rank approximation of the global stage
solution is enriched. This is simply achieved by approximating the corrective global stage quantities as a
rank one decomposition, this is:

∆un+1(x, t) = ūm+1(x)λm+1(t)

∆ε
n+1

(x, t) = ε̄
m+1

(x)λm+1(t)

∆σ
n+1

(x, t) = σ̄
m+1

(x)λm+1(t)

∆ε̇p
n+1

(x, t) = ε̄p
m+1

(x)λ̇m+1(t)

,
∆α̇

n+1
(x, t) = ᾱ

m+1
(x)λ̇αm+1(t)

∆ ˙̄rn+1(x, t) = ¯̄rm+1(x)λ̇r̄m+1(t)
(4.110)
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The above corrective terms are separated into two groups, those that need to verify the admissibility
conditions, which are the displacement, strain, stress and plastic deformation (∆un+1, ∆ε

n+1
, ∆σ

n+1
and

∆ε̇p
n+1

), and the internal variables terms (∆α̇
n+1

and ∆ ˙̄rn+1).

The spatial and temporal functions are calculated in an iterative way by using a fixed point strategy. After
each iteration when a space-time couple of functions is calculated a stagnation error is defined in order to
stop the iterations. This procedure is applied to the admissibility terms and the internal variables whose
details are presented in the following sections for each respective case.

4.4.2.1.1 Space and time resolution associated to the admissibility quantities

The enrichment stage related to the admissibility quantities is solved in an alternate fixed point strategy.
To control the iterations we define a stagnation measure. This indicator will be given in function of the
temporal function, similar as exposed in section 4.3; to do so, we normalize the spatial functions by the
following constant:

cp =
∥∥ε̄p∥∥

Ω
, ‖·‖Ω =

√∫
Ω

(·) : (·) dΩ (4.111)

where the spatial and temporal functions are scaled as follows:

ūm+1 ← ūm+1/cp

ε̄
m+1

← ε̄
m+1

/cp

σ̄
m+1

← σ̄
m+1

/cp

ε̄p
m+1

← ε̄p
m+1

/cp

,

λm+1 ← λm+1 cp

λ̇m+1 ← λ̇m+1 cp

λ̈m+1 ← λ̈m+1 cp

The stagnation indicator of the fixed point process is therefore defined as:

ζPGD =

∥∥∥|λ(i)
m+1| − |λ

(i−1)
m+1 |

∥∥∥
I∥∥∥|λ(i)

m+1|+ |λ
(i−1)
m+1 |

∥∥∥
I

, ‖·‖I =

√∫
I
(·)2dt (4.112)

where λ(i)
m+1 and λ(i−1)

m+1 stands for the temporal mode at iteration i and i− 1 respectively.

The strategy is stopped when the indicator is below a given threshold or when a maximum number of
iterations is reached. At the end of the process the spatial and temporal functions are kept and added to
the current low-rank approximation.

The space and time functions of the PGD decomposition are determined using a mixed formulation fol-
lowing the same idea as for the isotropic damage case. On one hand, the space functions are solved
by a Galerkin projection on the equilibrium equations and on the other hand, the temporal functions are
obtained by minimizing the constitutive relation error.

In what follows, for the case of the spatial and temporal problem, since the new mode to be calculated
corresponds to the m+1, the indexes of the PGD mode are dropped out in order to alleviate the notations:

∆un+1(x, t) = ūm+1(x)λm+1(t) = ū(x)λ(t)

∆ε
n+1

(x, t) = ε̄
m+1

(x)λm+1(t) = ε̄(x)λ(t)

∆σ
n+1

(x, t) = σ̄
m+1

(x)λm+1(t) = σ̄(x)λ(t)

∆ε̇p
n+1

(x, t) = ε̄p
m+1

(x)λ̇m+1(t) = ε̄p(x)λ̇(t)

(4.113)
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• Space problem:

To calculate the spatial functions of the corrective terms associated to the admissibility problem we must
first consider the weak form of the equilibrium equation presented below:

∀v ∈ US(Ω, 0)⊗ UT (I),∫
Ω×I

ρün+1 · v̇ dΩdt+

∫
Ω×I

σ
n+1

: ε(v̇) dΩdt =

∫
Ω×I

ρf · v̇ dΩdt+

∫
∂NΩ×I

fN · v̇ dSdt (4.114)

By subtracting the equilibrium equations related to the solutions sets Sn+1 and Sn we obtain the equilibrium
equation written in function of the corrective quantities as follows:

∀v ∈ US(Ω, 0)⊗ UT (I), ∫
Ω×I

ρ∆ün+1 · v̇ dΩdt+

∫
Ω×I

∆σ
n+1

: ε(v̇) dΩdt = 0 (4.115)

In this case, unlike the isotropic damage case, the kinematic admissibility of the strain correction equation
is used, this allows to obtain an equilibrium equation in function of the total corrective strain:

∀σ∗ ∈ F(Ω, 0) , ∀v ∈ US(Ω, 0)⊗ UT (I),∫
Ω×I

ρ∆u̇n+1 · v̈ dΩdt+

∫
Ω×I

∆ε̇
n+1

: σ∗dΩdt = 0 (4.116)

By using the strain partition relation ∆ε
n+1

= ∆εe
n+1

+ ∆εp
n+1

, with ∆εe
n+1

the elastic deformation term,
and introducing it into equation (4.116), we obtain:

∀v ∈ US(Ω, 0)⊗ UT (I), ∀σ∗ ∈ F(Ω, 0),∫
Ω×I

ρ∆u̇n+1 · v̈ dΩdt+

∫
Ω×I

[
K−1 : ∆σ̇

n+1
+ ∆ε̇p

n+1

]
: σ∗dΩdt = 0 (4.117)

By replacing ∆ε̇p
n+1

by using the descent search direction (4.98) into (4.117) and considering the simplified
notation of (4.113) along with σ∗ = λσ̄∗, we obtain:

∀v̄ ∈ US(Ω, 0)⊗ UT (I), ∀σ̄∗ ∈ F(Ω, 0),∫
Ω
ρ < λ̈λ̇ > ū · v̄ dΩ +

∫
Ω

[
< Hσλ

2 >: σ̄+ < λ̇λ > K−1 : σ̄− < ∆
n+1

λ >
]

︸ ︷︷ ︸
ε(ū)

: σ̄∗dΩ = 0 (4.118)

where we recall < · >=
∫
I(·)dt.

From the above equation we can define a strain field correction ε(ū) using an unknown displacement
space-field ū defined on Ω and kinematically admissible to zero. Furthermore, from the last equation we
can define the following operator:

W−1 =
[
< Hσλ

2 > + < λ̇λ > K−1
]

(4.119)

by using this operator and by denoting:

δ
n+1

=< ∆
n+1

λ > (4.120)

the strain ε(ū) can be rewritten as:
ε(ū) = W−1 : σ̄ − δ

n+1
(4.121)
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The above equation allows the determination of the stress space functions as:

σ̄ = W : (ε(ū) + δ
n+1

) (4.122)

By using the fact that the space function of the stress tensor σ̄ must be admissible to zero as shown in
equation (4.115), we can write:

∀v̄ ∈ US(Ω, 0), ∫
Ω
σ̄ : ε(v̄)dΩ = −

∫
Ω ρ < λ̈λ̇ > ū · v̄ dΩ

< λλ̇ >
(4.123)

which is finally converted using equation (4.122) into:

∀v̄ ∈ US(Ω, 0),

< λ̈λ̇ >

∫
Ω
ρv̄ · ū dΩ+ < λλ̇ >

∫
Ω
ε(v̄) : W : ε(ū)dΩ = − < λλ̇ >

∫
Ω
ε(v̄) : W : δ

n+1
dΩ (4.124)

Equation (4.124) allows the determination of the displacement function ū by using classical FEM. Once
the corrective spatial displacement field ū ∈ US(Ω, 0) is determined, we compute the spatial corrective
strain part ε(ū). The space function of the corrective stress is computed by using the expression (4.122)
while the function related to the plastic deformation is computed by using (4.98) as follows:

ε̄p(x) =
1

< λλ̇ >

[
< λλ > Hσ : σ̄ − δ

n+1

]
(4.125)

Finally the space function associated to the total deformation is calculated using the strain partition prop-
erty:

ε̄(x) = K−1 : σ̄(x) + ε̄p(x) (4.126)

Remark: The choice of the operator Hσ used at this step affects the rate of convergence of the method.
As exposed at the beginning of this section, the operator used in the descent search direction related to
the admissibility problem has the following form:

Hσ = c(K)−1

with c a constant scalar.

In what follows, it will be shown how the simple choice of the scalar c can improve the convergence of
the LATIN-PGD method. In fact, by replacing its expression into the construction of the spatial functions
σ̄
m+1

(x) and ε̄p
m+1

(x) ((4.122) and (4.125) respectively) we have:

σ̄
m+1

(x) =
(
< cλ2 > + < λ̇λ >

)−1
(K) : (ε(ū) + δ

n+1
) (4.127)

ε̄p
m+1

(x) =
1

< λλ̇ >

[
< λλ > c (K)−1 : σ̄

m+1
− δ

n+1

]
(4.128)

From the above equations it is easy to see that, the smaller the constant c, the more localized is the
spatial function associated with the plastic correction, since its construction consists of two contributions,
one from the space function σ̄

m+1
and the other from the function δ

n+1
as seen below:

ε̄p
m+1

(x) =
1

< λλ̇ >

< λλ > c (K)−1 : σ̄
m+1︸ ︷︷ ︸

global

− δ
n+1︸︷︷︸

local

 (4.129)
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As can be seen from the above equations, the spatial function related to stress is global since its calcula-
tion comes from a FEM resolution, however, the function δ

n+1
is local in space since it comes mainly from

the evaluation of the constitutive relation.

The above property is of key importance when dealing with problems with a high degree of localization of
the constitutive relation quantities. Indeed, on this situation if we use a classic constant operator as the
Hooke’s tensor (c = 1) we will construct plastic space functions that will have a global behavior rather than
a local one. This will produce that the LATIN-PGD solver converges slowly to the desired solution since
many iterations will be required just to remove the global plastic deformation that is added in spatial zones
where there is actually no plastic deformation on the local solution Ŝ. Therefore, in order to improve the
constant operator Hσ a constant c = 10−4 is chosen.

To illustrate the advantages of modifying the constant search direction operator by simply multiplying it
by a constant c, a 3D bending beam problem with vertical displacements imposed at both ends (as the
numerical tests to be presented in section 4.6.2) is solved. Under these conditions the reference problem
is solved by considering a constant c = 1 and c = 10−4. The plots of LATIN error versus the number of
modes is presented in figure 4.10 for both cases.

(a) Error vs N° of modes when c = 1. (b) Error vs N° of modes when c = 10−4.

Figure 4.10: LATIN error versus number of modes.

From the previous figure it can be observed that many more modes are needed for the case of c = 1 than
for the case of c = 10−4, where this simple modification allows to obtain better PGD modes. Moreover, a
reduction in the computational cost is achieved, the table 4.1 exposes the computational time needed to
solve the problem considering both cases.

Operator’s factor (c) Computational time
c = 1 5.72 minutes

c = 10−4 2.8 minutes

Table 4.1: Computational time with different factor c.

From these results we can observe a 51[%] reduction in the overall computational cost, which desearves to
be emphasized considering that only one multiplication factor separates the two operators. Furthermore,
the number of LATIN iterations needed to converge are also reduced, where 28 iterations are required
with c = 10−4, while 60 are needed for c = 1, showing that a better operator is built while maintaining its
simplicity.
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Remark: It should be noted that the same procedure as described previously cannot be applied to the
case of isotropic damage. This is due to the fact that the spatial PGD functions used in that case, which
correspond to the stress and total deformation, are both global variables (determined directly from a FEM
formulation, see (4.52)), making it impossible the application of the above methodology.

• Temporal problem:

Once the space functions ūm+1, σ̄
m+1

and ε̄p
m+1

of the corrective terms (4.110) have been computed, the
common temporal function λm+1 is calculated by minimizing the CRE of equation (4.104) as shown below:

{λm+1} = arg min
λm+1∈UT

∣∣∣∣∣∣∣∣∣ε̄p
m+1

λ̇m+1 −Hσ : σ̄
m+1

λm+1 + ∆
n+1

∣∣∣∣∣∣∣∣∣2
H−1
σ

(4.130)

In what follows we drop out the mode index to simplify the notations following the expressions in (4.113)
and we minimize equation (4.130) with respect to λ, giving:

∀δλ ∈ UT , ∫
Ω×I

(ε̄pδλ̇−Hσ : σ̄δλ) : H−1
σ : (ε̄pλ̇−Hσ : σ̄λ+ ∆

n+1
) dΩdt = 0 (4.131)

By expanding this last equation, we obtain:

∀δλ ∈ UT ,∫
I
δλ̇λ̇dt

∫
Ω

(ε̄p : H−1
σ : ε̄p) dΩ−

∫
I
δλ̇λ

∫
Ω
ε̄p : σ̄ dΩdt+

∫
I
δλ̇

∫
Ω

(ε̄p : H−1
σ : ∆

n+1
) dΩdt

−
∫
I
δλλ̇

∫
Ω
σ̄ : ε̄p dΩdt+

∫
I
δλλ

∫
Ω

(Hσ : σ̄) : σ̄ dΩdt

−
∫
I
δλ

∫
Ω
σ̄ : ∆

n+1
dΩdt = 0

(4.132)

By denoting the constants A11, A10, A01, A00 and the temporal functions D1(t) and D0(t) as follows:

A11 =

∫
Ω
ε̄p : H−1

σ : ε̄p dΩ

A10 = −
∫

Ω
ε̄p : σ̄ dΩ

A01 = −
∫

Ω
σ̄ : ε̄p dΩ

A00 =

∫
Ω

(Hσ : σ̄) : σ̄ dΩ

,

D1(t) = −
∫

Ω
(ε̄p : H−1

σ : ∆
n+1

) dΩ

D0(t) =

∫
Ω
σ̄ : ∆

n+1
dΩ

(4.133)

the expression (4.132) can be simplified to:

∀δλ ∈ UT , ∫
I
δλ̇λ̇A11 + δλ̇λA10 + δλλ̇A01 + δλλA00 =

∫
I
δλ̇D1(t) + δλD0(t) (4.134)

By applying the TDGM in the same way as presented for the isotropic damage case, the discretization of
expression (4.134) applied on the time element “k” gives:(

Q [k] +L[k]
)
λ[k] =R[k]λ[k−1] + f [k] (4.135)
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where λ[k] corresponds to the nodal values of the time function at time step k, and where the elementary
discretized matrix is given by:

Q [k] =

∫
Ĭk

[
ψ̇

[k]
(t)⊗ ψ̇[k]

(t)A11 + ψ̇
[k]

(t)⊗ ψ[k](t)A10 + ψ[k](t)⊗ ψ̇[k]
(t)A01 + ψ[k](t)⊗ ψ[k](t)A00

]
dt

(4.136)
and the discretized vector by:

f [k] =

∫
Ĭk

[
ψ̇

[k]
(t)D1(t) + ψ[k](t)D0(t)

]
dt (4.137)

In addition, the matrices that allows to weakly impose the continuity between the temporal intervals are
given by:

L[k] = 1.1 max(Q [k])ψ[k](tk−1)⊗ ψ[k](t+k−1)

R[k] = 1.1 max(Q [k])ψ[k](tk−1)⊗ ψ[k−1](t−k−1)
(4.138)

4.4.2.1.2 Space and time resolution associated to the internal variables

The enrichment step associated to the internal variables follows the same rules as those outlined above
for the admissibility problem, i.e., the alternate resolution of a space and time problem by a fixed point
strategy. In this case it is also necessary to control the number of iterations of the fixed-point algorithm
by defining a stagnation quantity, which is determined for each internal variable. This implies once again
the re-scaling of the spatial and temporal functions, which is done by defining the norms associated to the
space PGD function of kinematic and isotropic hardening as:

cα =
∥∥∥ᾱ

m+1

∥∥∥
Ω

cr̄ = ‖¯̄rm+1‖Ω
(4.139)

From the two defined constants of equation (4.139), the PGD functions related to kinematic hardening are
re-scaled as:

ᾱ
m+1

← ᾱ
m+1

/cα ,
λαm+1 ← λαm+1 cα

λ̇αm+1 ← λ̇αm+1 cα

while the ones related to isotropic hardening by:

¯̄rm+1 ← ¯̄rm+1/cr̄ ,
λr̄m+1 ← λr̄m+1 cr̄

λ̇r̄m+1 ← λ̇r̄m+1 cr̄

Once the PGD functions re-scaled, the definition of the stagnation indicators for each internal variable are
given below:

ζαPGD =

∥∥|(λαm+1)(i)| − |(λαm+1)(i−1)|
∥∥
I∥∥|(λαm+1)(i)|+ |(λαm+1)(i−1)|
∥∥
I

(4.140)

ζ r̄PGD =

∥∥|(λr̄m+1)(i)| − |(λr̄m+1)(i−1)|
∥∥
I∥∥|(λr̄m+1)(i)|+ |(λr̄m+1)(i−1)|
∥∥
I

(4.141)

The enrichment step (fixed point iterations) is applied separately for the kinematic and isotropic hardening
quantities and is stopped when the stagnation quantity is less than a given threshold or a maximum
number of iterations is reached in the same way as for the admissibility quantities.
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Since the internal variables does not require to verify external boundary conditions, its space and temporal
functions are simply determined by minimizing the CRE presented in equations (4.105) and (4.106) for
the case of kinematic and isotropic hardening respectively.

In the following lines the spatial and temporal problem associated with the enrichment stage is detailed,
where the index related to the PGD mode is left out, in order to alleviate the notation, writing:

∆α̇
n+1

= ᾱ
m+1

(x)λ̇αm+1(t) = ᾱ(x)λ̇α(t)

∆ ˙̄rn+1 = ¯̄rm+1(x)λ̇r̄m+1(t) = ¯̄r(x)λ̇r̄(t)
(4.142)

• Space problem:

The calculation of the spatial functions related to the PGD approximation of the internal variables are
simply determined by solving their descent search direction, obtained in section 4.4.2, which are recalled
below for convenience:

∆α̇
n+1

+ Hβ : (C∆α
n+1

) + ∆α
n+1

= 0

∆ ˙̄rn+1 +HR̄R∞∆r̄n+1 + ∆r̄
n+1 = 0

with the residual functions given by:

∆α
n+1

= α̇
n
− ˆ̇α

n+1/2
(4.143)

∆r̄
n+1 = ˙̄rn − ˆ̄̇rn+1/2 (4.144)

By using the PGD approximations and simplifications of equation (4.142) we have:

ᾱλ̇α + Hβ : Cᾱλα + ∆α
n+1

= 0 (4.145)

¯̄rλ̇r̄ +HR̄R∞ ¯̄rλr̄ + ∆r̄
n+1 = 0 (4.146)

As mentioned previously, no admissibility conditions are imposed to the internal variables, therefore the
space functions can be simply calculated after integrating the above expressions in time as follows:

ᾱ =

[
(

∫
I
λ̇αdt) + HβC(

∫
I
λαdt)

]−1

:

(
−
∫
I

∆α
n+1

dt

)
(4.147)

¯̄r =

[
(

∫
I
λ̇r̄dt) +HR̄R∞(

∫
I
λr̄dt)

]−1(
−
∫
I

∆r̄
n+1dt

)
(4.148)

• Time problem:

The temporal functions of the PGD decomposition on the other hand are calculated by minimizing the
constitutive relation errors related to kinematic and isotropic hardening( (4.105) and (4.106) respectively)
writing:

{λα} = arg min
λα∈UT

∣∣∣∣∣∣∣∣∣ᾱλ̇α + Hβ : Cᾱλα + ∆α
n+1

∣∣∣∣∣∣∣∣∣2
H−1
β

(4.149)

{λr̄} = arg min
λr̄∈UT

∣∣∣∣∣∣∣∣∣¯̄rλ̇r̄ +HR̄R∞ ¯̄rλr̄ + ∆r̄
n+1

∣∣∣∣∣∣∣∣∣2
H−1
R̄

(4.150)

As can be seen, the determination of the time functions follows the same steps as those associated with
the admissibility problem, therefore, the application of the TDGM for this case is omitted herein but its
presentation is detailed in appendix C.
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4.4.2.2 Preliminary step

As for the case of isotropic damage, once a new mode is determined at the enrichment step, the PGD
decomposition is improved by actualizing the time PGD functions at the preliminary step. Since in elasto-
visco-plasticity we have the low-rank approximation of the admissibility terms and the ones related to the
internal variables, the preliminary step is applied to both of them. But this imposes a limitation, indeed the
preliminary step is an iterative process that must be stopped when reaching a given stagnation limit; this
stagnation can’t be defined over the admissibility and the internal variables terms at the same time, and
only one of them must be chosen for the definition of the stagnation indicator. The one selected herein
corresponds to the admissibility terms, writing:

ζup = max
∥∥∥∥0.5

(
|∆Λ|

|Λ|+ |∆Λ|

)∥∥∥∥
2

(4.151)

where we recall the terms Λ and ∆Λ which correspond to the matrices that contains all the discretized time
PGD functions and their respective correction for the admissibility quantities computed at this actualization
step:

Λ =


λ1

λ2
...

λm+1

 , ∆Λ =


∆λ1

∆λ2
...

∆λm+1


The stagnation of equation (4.151) is computed each time the actualization of the temporal functions is
done. Once the preliminary step is completed, the final approximation of the PGD decomposition related
to the admissibility quantities can be rewritten as:

un+1(x, t) =
m+1∑
i=1

ūi(x) [λi(t) + ∆λi(t)] + u0(x, t)

ε
n+1

(x, t) =

m+1∑
i=1

ε̄
i
(x) [λi(t) + ∆λi(t)] + ε

0
(x, t)

σ
n+1

(x, t) =
m+1∑
i=1

σ̄
i
(x) [λi(t) + ∆λi(t)] + σ

0
(x, t)

ε̇p
n+1

(x, t) =
m+1∑
i=1

ε̄p
i
(x)
[
λ̇i(t) + ∆λ̇i(t)

]
(4.152)

The update of the time functions associated with the internal variables, unlike the case of the admissibility
quantities, imposes a major limitation, which lies in the poor conditioning found in numerical tests. To
solve this ill-conditioning and at the same time improve the PGD temporal functions, only the last mode is
updated, i.e:

α
n+1

(x, t) =

m∑
i=1

ᾱ
i
(x)λαi (t) + ᾱ

m+1
(x)
[
λαm+1(t) + ∆λαm+1(t)

]
r̄n+1(x, t) =

m∑
i=1

¯̄ri(x)λr̄i (t) + ¯̄rm+1(x)
[
λr̄m+1(t) + ∆λr̄m+1(t)

] (4.153)

4.4.2.2.1 Time functions associated to the admissibility quantities

The corrective temporal functions are determined such that the constitutive relation error is minimized,
in this sense, by injecting the PGD approximations of (4.152) and introducing it into the CRE (4.104) we
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obtain:

∀i ∈ [1, ...,m+ 1],

{∆λi} = arg min
{∆λi}m+1

i=1 ∈UT

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
m+1∑
i=1

ε̄p
i
∆λ̇i −Hσ :

m+1∑
i=1

σ̄
i
∆λi + ∆

n+1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

H−1
σ

(4.154)

The minimization problem of expression (4.154) gives:

∀δ∆λi ∈ UT , ∀i ∈ [1, ...,m+ 1] ,∫
Ω×I

(
m+1∑
i=1

ε̄p
i
δ∆λ̇i −Hσ :

m+1∑
i=1

σ̄
i
δ∆λi

)
: H−1

σ :

m+1∑
j=1

ε̄p
j
∆λ̇j −Hσ :

m+1∑
j=1

σ̄
j
∆λj + ∆

n+1

 = 0 (4.155)

which can be simplified in:

∀δ∆λi ∈ UT , ∀i ∈ [1, ...,m+ 1] ,∫
I

m+1∑
i=1

m+1∑
j=1

δ∆λ̇i

(
∆λ̇jA

11
ij + ∆λjA

10
ij

)
+ δ∆λi

(
∆λ̇jA

01
ij + ∆λjA

00
ij

)
dt =

∫
I

m+1∑
i=1

δ∆λ̇iD
1
i (t) + δ∆λiD

0
i (t) dt

(4.156)
with the different constants and temporal functions terms given by:

∀(i, j) ∈ [1, ...,m+ 1] ,

A11
ij =

∫
Ω
ε̄p
i

: H−1
σ : ε̄p

j
dΩ

A10
ij = −

∫
Ω
ε̄p
i

: σ̄
j
dΩ

A01
ij = −

∫
Ω
σ̄
i

: ε̄p
j
dΩ

A00
ij =

∫
Ω

(Hσ : σ̄
i
) : σ̄

j
dΩ

,

D1
i (t) = −

∫
Ω

(ε̄p
i

: H−1
σ : ∆) dΩ

D0
i (t) =

∫
Ω
σ̄
i

: ∆ dΩ

(4.157)

Discretizing once again the above system of equations using the TDGM, the discrete form of equation
(4.156) on a time element “k” is given by:(

Q [k]

up
+L[k]

up

)
∆Λ[k] =R[k]

up
∆Λ[k−1] + f [k]

up
(4.158)

where the full expression of the matrices are given by:

Q [k]

up
=


Q [k]

11
Q [k]

12
· · · Q [k]

1 m+1

Q [k]

21

. . .
...

Q [k]

m+1 1
Q [k]

m+1 m+1

 , f [k]
up

=


f [k]

1

f [k]
2
...

f [k]
m+1


with:

∀(i, j) ∈ [1, ...,m+ 1] ,

Q [k]

ij
=

∫
Ĭk

(
ψ̇

[k]
(t)⊗ ψ̇[k]

(t)A11
ij + ψ̇

[k]
(t)⊗ ψ[k](t)A10

ij + ψ[k](t)⊗ ψ̇[k]
(t)A01

ij + ψ[k](t)⊗ ψ[k](t)A00
ij

)
dt

(4.159)
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f [k]
i

=

∫
Ĭk

(
ψ̇

[k]
(t)D1

i (t) + ψ[k](t)D0
i (t)

)
dt (4.160)

and the matrices that allows the weak imposition of the initial conditions over all the temporal functions
are given by:

L[k]
up

=


L[k]

11
L[k]

12
· · · L[k]

1 m+1

L[k]
21

. . .
...

L[k]
m+1 1

L[k]
m+1 m+1

 , R[k]
up

=


R[k]

11
R[k]

12
· · · R[k]

1 m+1

R[k]
21

. . .
...

R[k]
m+1 1

R[k]
m+1 m+1


with:

∀(i, j) ∈ [1, ...,m+ 1] ,

L[k]
ij

= 1.1 max(Q [k]

ij
)ψ[k](tk−1)⊗ ψ[k](t+k−1) (4.161)

R[k]
ij

= 1.1 max(Q [k]

ij
)ψ[k](tk−1)⊗ ψ[k−1](t−k−1) (4.162)

Remark: The resolution technique described above allows to obtain the time functions element by ele-
ment of the time FEM discretization in an incremental way. This fact is of great importance since it over-
comes a major limitation when solving the temporal functions by minimizing the constitutive relation error
when considering an elasto-visco-plastic behavior. This problem, which was first exposed in Jean-Charles
Passieux’s thesis [Passieux, 2008], shows that the minimization process of equation (4.130) generates a
system of differential equations, which requires as a condition for its resolution the knowledge of the time
function at the end of the interval, making its resolution non-trivial. This limitation is avoided using TDGM,
where the time functions are obtained element by element due to the minimization of the functional in
discontinuous time intervals, where the continuity of the function is weakly imposed from one time inter-
val to the other. This incremental resolution strategy allows to decrease the computational cost of the
preliminary step when long duration excitations are considered.

4.4.2.2.2 Time functions associated to internal variables

As exposed at the beginning of the section, due to bad numerical conditioning when updating a pack
of temporal PGD modes associated to the internal variables, only the last PGD mode is chosen to be
actualized, this is:

λαm+1 ← λαm+1 + ∆λαm+1 (4.163)
λr̄m+1 ← λr̄m+1 + ∆λr̄m+1 (4.164)

with the first m corrective functions set equals to 0:

∀i ∈ [1, ...,m],

∆λαi = 0

∆λr̄i = 0
(4.165)

By considering the constitutive relation error on the internal variables equations (4.105) and (4.106), and
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introducing the above considerations we obtain:

{∆λαm+1} = arg min
∆λαm+1∈UT

∣∣∣∣∣∣∣∣∣ᾱ
m+1

∆λ̇αm+1 + Hβ : Cᾱ
m+1

∆λαm+1 + ∆α
n+1

∣∣∣∣∣∣∣∣∣2
H−1
β

(4.166)

{∆λr̄m+1} = arg min
∆λr̄m+1∈UT

∣∣∣∣∣∣∣∣∣¯̄rm+1∆λ̇r̄m+1 +HR̄R∞ ¯̄rm+1∆λr̄m+1 + ∆r̄
n+1

∣∣∣∣∣∣∣∣∣2
H−1
R̄

(4.167)

From the above equations, it can be noted that the determination of the corrective time functions for the
case of isotropic and kinematic hardening verifies equations similar to those presented in the enrichment
step (see section 4.4.2.1.2). From the above it can be concluded that their determination follows the same
steps explained in the appendix C, and consequently the detailed presentation for obtaining the corrective
time functions is omitted in this section.

4.4.3 LATIN error indicator

Finally, the LATIN error defined for the elasto-visco-plasticity case is simply considered as follows:

ξn+1 = 100

√√√√√√

∣∣∣∣∣∣∣∣∣ε̇p

n+1
− ˆ̇εpn+1/2

∣∣∣∣∣∣∣∣∣2∣∣∣∣∣∣∣∣∣ε̇p
n+1

∣∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣∣σ
n+1
− σ̂

n+1/2

∣∣∣∣∣∣∣∣∣2∣∣∣∣∣∣∣∣∣σ
n+1

∣∣∣∣∣∣∣∣∣2
[%] (4.168)

where we recall the norm
∣∣∣∣∣∣•∣∣∣∣∣∣2 =

∫
Ω×I(•) : (•) dΩdt.

On the above definition the main variables of interest considered for the definition of the error are the
stress σ and the plastic deformation ε̇p. The internal variables are not considered since its effect is
indirectly included in the plastic deformation.

4.5 Synthesis on the LATIN-PGD solver

The LATIN method along with the model reduction technique PGD was presented for solving quasi-fragile
isotropic damage concrete and elasto-visco-plasticity problems. The methodology is very similar on both
cases, nevertheless, technical implementation details differ.

The key idea of the LATIN-PGD methodology consists in the iterative enrichment of an initial elastic solu-
tion (which is calculated in dynamics in this thesis) by an alternating process that consists in two stages,
the local and the global ones. On the local step the nonlinear constitutive relation is evaluated, where the
calculations are done over the whole space-time integration points. On the global step a linear problem
is solved by a low-rank approximation, whose main objective is to compute a corrective term in order to
enrich the elastic solution with the objective of minimizing the distance between the local and global space
solutions (Ŝ and S respectively). The solver converges when the distance between these two spaces are
less than a given threshold [Ladevèze, 1999].
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Enrichment step: Fixed-point iteration

Save PGD mode

Space problem:
Galerkin projection onto
the equilibrium equation
(admisibility quantities)
or minimization of the

CRE for internal variables.

Temporal problem:
Minimization of the

corresponding consti-
tutive relation error.

ζPGD < 0.1

Max N° of
iterations?

no

no

yes

yes

Figure 4.11: Enrichment step, iteratively resolution strategy.

The resolution of the local stage is straightforward, however the global stage is solved in two steps, the
enrichment and the preliminary steps. On the enrichment step, a rank one PGD decomposition is added
to the whole approximation, where the space functions related to the admissibility problem (displacement,
stress, strain, etc) are determined by a Galerkin projection into the equilibrium equation and the temporal
functions by minimizing a constitutive relation error (CRE) defined on the search directions and differently
for each material considered [Passieux, 2008]. This last is modified for the internal variables of elato-
visco-plasticity where no boundary conditions must be verified and therefore the space-time functions
are obtained by minimizing their CRE only. The space and time problems are solved iteratively using a
fixed-point strategy and the process stops if a certain stagnation threshold ζPGD is reached or when a
maximum number of iterations is surpassed. The diagram in figure 4.11 summarizes this process.

LATIN-PGD iterative process

Enrichment step

Local step:
Integration of the consti-
tutive relation over Ω × I

Preliminary step:
Given the spatial PGD functions,
update the time PGD functions.

ζup < 0.1

Max N° of
iterations?

no

no

yes

yes

Figure 4.12: LATIN-PGD iterative process.

On the other hand, the preliminary step consists in updating the temporal functions of the already com-
puted PGD approximation. This process is applied after each enrichment step and allows to increase the
rate of convergence of the solver while maintaining a low number of PGD modes. The diagram of figure
4.12 summarizes this procedure.

The temporal functions are updated until a given stagnation threshold is reached. Once the preliminary
step is done, a new PGD mode is determined on the enrichment step, continuing this process until a
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global convergence criterion on the LATIN error ξn+1 < ξlim is met. In practice, the error threshold ξlim is
chosen between 0.1 and 2 [%] to ensure good results.

Algorithm 1 presents a global synthesis of the LATIN-PGD methodology.

Algorithm 1: LATIN-PGD algorithm in low-frequency dynamics.

Input : u0, u̇0, M , D , K , (f
k
)NTk=1, (uD

k )NTk=1, NT (Discretized elements in time)

Output : S̄: Solution set containing all the global variables.
Parameters: ξlim (Limit error)

1 Compute of the elastic solution S0 in dynamics.
2 n = 1 (Index of the LATIN iteration to be calculated)
3 while ξ ≥ ξlim do
4 • Local stage (Nonlinear constitutive relations):

5 Calculate→ Ŝn+1/2 ∈ Γ

6 • Global stage (Admissibility conditions):

7 Calculate→ Sn+1 ∈ Ad

8 • LATIN Error calculation ξn+1.
9 n = n+ 1

10 end
11 S̄ = Sn

4.6 Numerical examples

This section details numerical implementations of the LATIN-PGD method in dynamics. These tests con-
sist of a 3D bending beam in dynamics subjected to a displacement in the “z” direction on both sides of
the beam and corresponding zero displacements in the other directions as illustrated on figure 4.13.

y

z

d2

d3

x

y

z

0
uDz (t)

uDz (t)

d1

Figure 4.13: Test case considered, along with its dimensions.

The numerical tests that will be introduced in the following have the objective of illustrating the capabilities
of the LATIN-PGD methodology. These tests are academic due to their relatively low number of degrees of
freedom; intensive tests are left for future works. In addition, with the aim of presenting the computational
time-savings of the LATIN method, the results will be compared against a classical step-by-step resolution,
where Newmark scheme is employed for time-integration and a Newton-Raphson scheme for handling the
material nonlinearity. More precisely, the equilibrium residual is minimized using a quasi-Newton strategy
where a preliminary Cholesky decomposition of the associated operator to invert is performed in order
to compare the performances of the proposed developments with a classical but robust and powerful
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algorithm (see appendix B). To measure the error between the LATIN-PGD and Newton-Raphson solution
the following error indicator is defined:

ξ = 100

√√√√√√

∣∣∣∣∣∣∣∣∣σNR − σLATIN

∣∣∣∣∣∣∣∣∣2∣∣∣∣∣∣∣∣∣σNR

∣∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣∣εNR − εLATIN

∣∣∣∣∣∣∣∣∣2∣∣∣∣∣∣∣∣∣εNR

∣∣∣∣∣∣∣∣∣2
[%] (4.169)

with
∣∣∣∣∣∣•∣∣∣∣∣∣2 =

∫
Ω×I(•) : (•) dΩdt.

The variables σNR, σLATIN, εNR and εLATIN correspond to the stress and total deformation tensors obtained
by the Newton-Raphson (NR) and LATIN solver. It should be noted that both solvers use different nu-
merical strategies for the simulation of their time response. On the one hand, the NR method is chosen
to use the Newmark method due to its incremental resolution strategy in time, while on the other hand
the LATIN-PGD use the Time Discontinuous Galerkin Method. To simplify the resolution of the problem,
the time domain is uniformly discretized, however the difference in the time scheme considered implies a
different number of temporal DOFs to be solved for both solvers, in this sense, the table 4.2 shows the
number of DOFs in time for both solvers (nT ) as a function of the total number of temporal discretized
elements (NT ).

Solver Temporal DOFs (nT )
NR 2NT + 1

LATIN-PGD 4NT

Table 4.2: Temporal DOFs for each solver.

The number of DOFs for the NR case is given by the simple choice that on each temporal element
there exist 3 nodal values that must be determined, this is chosen in order to ensure a smooth temporal
response. On the other hand, the LATIN-PGD with the TDGM needs the definition of 4 unknowns by
temporal element, due to its Discontinuous approach and use of cubic Hermite polynomials (see section
2.2.3.2).

In the following, two numerical tests will be presented, where each one considers a different constitutive
relation, being isotropic damage for concrete material and elasto-visco-plasticity for steel. The LATIN
threshold considered for convergence are chosen differently for the two materials. This is because nu-
merical tests have shown that isotropic damage requires a lower indicator than elasto-visco-plasticity to
produce accurate results compared to the incremental nonlinear NR solver. In this regard, to ensure good
results, the table 4.3 summarizes the LATIN and NR error thresholds considered for each case:

Constitutive relation LATIN error threshold [%] NR error (norm of the equilibrium)
Isotropic damage 0.1 10−4

Elasto-visco-plasticity 1 10−4

Table 4.3: LATIN error threshold considered for each material behavior.

In contrast to the LATIN error, which measures the distance between the local and global solutions man-
ifolds, the error threshold of the Newton-Raphson method is determined by computing a norm over the
equilibrium equation (see appendix B). Both solvers use different error definitions, which makes it difficult
to compare them under equal conditions. In this context, the error thresholds considered for both solvers
were chosen based on empirical results only. Further research should be conducted to relate both errors
in order to compare both solvers under equivalent conditions.
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4.6.1 Isotropic damage example

In the present subsection, the LATIN method is considered for solving an isotropic damage constitutive
relation in dynamics. For this test we consider the following dimensions for the beam presented in figure
4.13.

d1 = 8 [m]

d2 = d3 = 0.3 [m]
(4.170)

The prescribed vertical displacement uDz (t) is shown in figure 4.14, which consists of a sinusoidal excita-
tion of frequency 3 [Hz].

Figure 4.14: Imposed displacement.

Under this condition the magnitude of the stress tensor field on the beam at the end of the time interval
(t = T ) given for the LATIN-PGD and the NR method is presented in figure 4.15.

(a) Stress magnitude field obtained by the LATIN-PGD. (b) Stress magnitude field obtained by the NR.

Figure 4.15: Magnitude of the stress tensor obtained with the LATIN-PGD (a) and NR (b) at the end of the
temporal domain (t = T ) for the case of isotropic damage.

In figure 4.15 a difference in the maximum value obtained for the stress magnitude for both solvers can be
observed. This difference in the solution of both solvers can be also seen in the graph of the evolution of
the damage variable over the most requested integration point in space, given in figure 4.16a. From this
figure we can see that there is a clear difference between the damage evolution obtained by the global
LATIN-PGD and the incremental NR along the time domain. This difference is due, on the one hand, to the
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different approximation strategy considered for the simulation of the time response and, on the other hand,
to the inherent approximation of the solution delivered by the LATIN-PGD method, where the elastic and
the LATIN corrections are approximated by a low-rank decomposition. In spite of the above, the maximum
damage level of the structure is well reproduced, these values are shown in the table 4.4.

Solver Damage
NR 0.4592

LATIN-PGD 0.4493

Table 4.4: Comparison of Damage.

Figure 4.16b show the stress vs. strain curve on the most solicited integration point in space, from this
curve it can be seen that the phenomena of unilateral effect present in concrete materials is well repro-
duced.

(a) (b)

Figure 4.16: (a) Damage comparison between the LATIN-PGD and the NR method; (b) Stress vs strain
curve on the most solicited integration point by using the LATIN-PGD method.

As mentioned previously, the time evolution technique considered for both solvers is completely different,
while the Newton-Raphson solves the problem on the nodal values arising from a uniform discretization in
time, the LATIN-PGD solves it on the nodes related to the FEM formulation using TDGM. In this sense, the
total DOFs related to the reference problem, which are the multiplication between the space and temporal
ones are resumed in table 4.5 for each solver.

Solver Space DOFs Time DOFs Total DOFs
NR 6,471 901 5,830,371

LATIN-PGD 6,471 1,800 11,647,800

Table 4.5: DOFs of the reference problem.

Under these considerations, the resolution time obtained for each solver is resumed in table 4.6.
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Solver Computing time
NR 10.5 minutes

LATIN-PGD 4.3 minutes

Table 4.6: Time comparison for the case of isotropic damage.

From the above results we can highlight a 59 [%] computational gain enabled by the LATIN-PGD approach
when compared to classical incremental solver, even if the total DOFs in time doubled. The graph of the
LATIN error vs the number of modes computed for the reference problem is shown in figure 4.17.

Figure 4.17: LATIN error vs PGD modes for the isotropic damage case.

For this particular problem, the required number of space-time PGD functions needed to converge is 16.
This low number of modes gives the LATIN-PGD method its superior performance against the incremental
solver. Finally, by using the error indicator (4.169) between the LATIN-PGD and the Newton-Raphson we
obtained a value of 1.7497 [%].

4.6.2 Elasto-visco-plasticity example

Let us now consider a steel material with an elasto-visco-plasticity behavior. The dimensions of the
considered beam are different from the case of concrete of section 4.6.1; these are chosen as:

d1 = 6 [m]

d2 = d3 = 0.1 [m]
(4.171)

In addition, the imposed vertical displacement uDz (t) considered is shown in figure 4.18, where the signal
frequency is also 3 [Hz] but of different amplitude.
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Figure 4.18: Imposed displacement.

Under this considerations the beam undergoes plasticity due to its inertia. Figures 4.19 and 4.20 shows
the stress magnitude on the beam at the last time step obtained using the LATIN-PGD and the NR re-
spectively.

Figure 4.19: Stress magnitude field obtained by the LATIN-PGD at (t = T ).

Figure 4.20: Stress magnitude field obtained by the NR at (t = T ).

In order to compare the degree of accuracy of the LATIN-PGD, the plots of the rate of: plastic deforma-
tion, kinematic and isotropic hardening obtained from the most solicited integration point are shown in
figures 4.21, 4.22 and 4.23 respectively, comparing the results obtained using the LATIN-PGD and the
NR method.
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(a) (b)

Figure 4.21: Rate of plastic deformation of LATIN-PGD (a) and NR (b) on the most solicited integration
point.

(a) (b)

Figure 4.22: Rate of kinematic hardening of LATIN-PGD (a) and NR (b) on the most solicited integration
point.

(a) (b)

Figure 4.23: Rate of isotropic hardening of LATIN-PGD (a) and NR (b) on the most solicited integration
point.
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The present test have a different spatial discretization compared to the concrete material test; this is
mainly due to the different spatial dimensions considered, however the temporal domain is discretized in
the same way. The DOFs related to the space and temporal domain of the reference problem are given in
table 4.7.

Solver Space DOFs Time DOFs Total DOFs
NR 7,239 901 6,522,339

LATIN-PGD 7,239 1,800 13,030,200

Table 4.7: DOFs of the reference problem.

The computational time required for both solvers for the resolution of the problem are resumed in table
4.8.

Solver Computing time
NR 6.3 minutes

LATIN-PGD 2.8 minutes

Table 4.8: Time comparison for the case of elasto-visco-plasticity.

In this case the LATIN-PGD achieves a 55.55 [%] reduction in computational cost compared to the in-
cremental solver. The graph of the LATIN error versus the number of PGD modes is shown in figure
4.24.

Figure 4.24: LATIN error vs PGD modes for elasto-visco-plasticity behavior.

Finally, the error between both methods following equation (4.169) gives a value close to 1 [%], confirming
by consequence that the LATIN-PGD approach gives good results in low frequency dynamics problems
when dealing with elasto-visco-plasticity.

4.6.3 Comparison between the discontinuous (TDGM) and continuous (TCGM) approaches
for the temporal resolution in the LATIN-PGD method

As shown in the present chapter, the Time Discontinuous Galerkin Method (TDGM) is used for the resolu-
tion of the PGD time functions in the LATIN method. This discontinuous formulation allows an incremental
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resolution of the time functions while making use of a finite element formulation. As presented in previous
sections, the incremental resolution of the temporal PGD functions in both the enrichment and preliminary
steps, allows to optimize the temporal resolution when the temporal domain is relatively large, because
only small size matrices (corresponding to the FEM formulation in a temporal element) must be inverted
for its resolution. This is a considerable advantage over a continuous formulation using the Time Continu-
ous Galerkin Method (TCGM), where the finite element formulation over the entire time interval I = [0, T ]
requires the inversion of large matrices, both in the enrichment stage and in the preliminary stage, the
latter being the most sensitive due to the determination of a set of time functions. To show the advantage
of TDGM over TCGM, the numerical test considered in the previous section are solved by considering
the same LATIN error thresholds given in table 4.3. The error curves versus the number of PGD modes
obtained while solving the nonlinear problems using the TCGM are shown in figure 4.25, where the figures
4.25a and 4.25b shows respectively the results obtained for the cases of isotropic damage and elasto-
visco-plasticity.

(a) Error vs PGD modes for the numerical test of section
4.6.1 considering isotropic damage and TCGM.

(b) Error vs PGD modes for the numerical test of section
4.6.2 considering elasto-visco-plasticity and TCGM.

Figure 4.25: LATIN error versus number of PGD modes for the case of isotropic damage and elasto-visco-
plasticity considering a continuous formulation in time.

The following table 4.9 summarizes the computational times needed to converge for TCGM and recalls
those needed for TDGM, which were obtained in sections 4.6.1 and 4.6.2 for the isotropic and elasto-
visco-plasticity damage case, respectively.

Method Isotropic damage Elasto-visco-plasticity
TDGM 4.3 minutes 2.8 minutes
TCGM 5.8 minutes 7.9 minutes

Table 4.9: Time comparisons between the TDGM and the TCGM for the resolution of the numerical tests
of sections 4.6.1 and 4.6.2.

From the table 4.9, we can see that the TDGM achieves a shorter computational time required for solving
the nonlinear problems, in addition to a faster convergence rate, especially when elasto-visco-plasticity is
involved. In fact, as observed in figure 4.25b, when using TCGM the total number of modes required to
converge is 16, while for TDGM only 8 are required to reach the same LATIN threshold of 1[%]. This is a
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very interesting property, which could be explained by recalling that the TDGM allows a small discontinuity
between the temporal elements of the FEM formulation. This discontinuity slightly modifies the temporal
PGD functions obtained, thus positively modifying the convergence rate of the LATIN method.

Remark: It is worth noting that the advantages of TDGM over TCGM for solving PGD time functions
increase significantly when a longer time interval is considered.Thus, the difference in computational
times shown in the table 4.9 are larger as the time interval considered is longer, positioning TDGM as
a very attractive and efficient strategy for the fast resolution of nonlinear problems in the context of the
LATIN-PGD.

4.6.4 Conclusions on the numerical results

From the numerical results shown in the lasts sections, we saw a gain in performance of the LATIN-PGD
method compared to the classical incremental solver for both isotropic damage and elasto-visco-plasticity.
This last is achieved due to the use of the model reduction technique PGD, which allows to accelerate the
calculations. However, it should be noted that this reduction in computational time is due to the fact that
the solution of the nonlinear problem can be approximated by a low-rank decomposition. If the nonlinear
solution we are trying to obtain does not support a low-rank decomposition, the LATIN-PGD method is
likely to decrease its performance and end up being more expensive than the incremental solver. This
point is of main importance and is one of the reasons why the extension of the LATIN-PGD method is
limited to low-frequency dynamics problems. This means that the problems that can be solved with good
numerical performance are those that do not involve propagative solutions in the solid medium. The ap-
proximation of propagative solutions, i.e. where the spatial solution is completely coupled with its temporal
response, does not allow a low-rank approximation, which would limit the effectiveness of the LATIN-PGD
method for this type of problems. However, in the domain of the dynamics of massive structures, which
is the area studied in the present thesis, the solution lies within the range of slow dynamics, where the
present extension of the LATIN-PGD method can be applied without problems.

An additional point to note is the accuracy of the solution obtained. From the results sections, it is clear that
the LATIN-PGD and the incremental solver give solutions that differ slightly from each other, especially
the damage evolution in the case of isotropic damage as presented in figure 4.16. This is due to all
the approximate considerations that help to speed up the resolution in the LATIN-PGD, starting from
an approximate elastic solution employing the modal basis of the system up to the use of the PGD in
the global stage of the LATIN method. All these points have an associated error that contributes to the
difference found in the results. However, the error between the LATIN-PGD and the incremental solver
remained below 2 [%] for both constitutive relations considered, showing that the solver allows to correctly
approximate the final nonlinear solution.

Finally, as can be seen in section 4.6.3, the Time Discontinuous Galerkin Method (TDGM) used in this
chapter demonstrated better performance when solving nonlinear problems compared to the continuous
approach (TCGM) in the context of the LATIN-PGD (where the efficiency is higher when the time domain
is large). The above is explained by the fact that when using the TDGM the temporal functions are
determined incrementally in time (for each finite time element), which results in the inversion of small size
matrices, allowing to optimize the temporal resolution in the enrichment and preliminary stages of the
LATIN-PGD method. In addition, the convergence rate of the LATIN method is improved, allowing a faster
convergence to the reference solution.

All the aforementioned points makes the LATIN-PGD method along with the TDGM an attractive solver
when performance, accuracy and reliability are the main considerations when solving low-frequency dy-
namics problems.
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4.7 Conclusions

In this chapter, the LATIN-PGD method is reformulated to introduce inertial effects when dealing with
low-frequency dynamics nonlinear problems. This extension is presented for the case of two constitutive
relations corresponding to isotropic damage in concrete and elasto-visco-plasticity for metals, but other
types of materials could be considered without major difficulty. The LATIN-PGD allows to reduce the
computational time in comparison with classical incremental solvers when solving with nonlinear problems.
Such reduction is directly proportional to the number of degrees of freedom considered for both spatial
and temporal domain. The LATIN is a non-incremental resolution method that enables the use of the
model order reduction PGD to express the nonlinear solution of the problem as a low-rank approximation.
The PGD allows to capture the redundancies of the nonlinear solution in both space and time, allowing a
considerable simulation time reduction.

In addition, an incremental time resolution strategy based on the Time Discontinuous Galerkin Method
(TDGM) was introduced, which allows to efficiently solve the temporal PGD functions, since it allows
to reduce the size of the operators needed to be inverted for the enrichment and preliminary steps of
the LATIN-PGD method. This is very useful and imposes an advantage over the classically used meth-
ods, which correspond to a continuous formulation in time using the Time Continuous Galerkin Method
(TCGM), especially when the time domain is large. In these situations, the continuous formulation requires
the assembly and inversion of large matrices for the temporal resolution, which decreases the efficiency
of the LATIN-PGD method. On the other hand, in the case of the discontinuous formulation using the
TDGM, the temporal PGD functions are computed element by element of the temporal FEM discretiza-
tion, avoiding the construction and inversion of large assembled matrices, thus increasing the efficiency
of the LATIN-PGD method.

Despite the performance of the LATIN-PGD method and the efficiency in time resolution that TDGM allows,
there are still certain problems where these ideas are not enough to effectively reduce the computational
cost of their resolution. Among them are the problems in which the input excitation has a long duration
in time, for example, seismic excitations or fatigue signals of rich frequency content, which are typical
excitations to which buildings are subjected and therefore their treatment is a fundamental part of this
thesis work. The classical application of the LATIN-PGD to solve these types of problems can consume
prohibitive computational resources due to the large number of degrees of freedom in time that must be
determined in the global stage, as well as the increased cost related to the evaluation of the constitutive
relations quantities in the local stage. The loss of efficiency of the LATIN method in this sense is mainly
due to its inherent global solver nature, which implies the manipulation of large size matrices for its correct
application, reducing in this sense its performance.

In this context, in the next chapter, a new multiscale temporal approximation is presented, which aims
to optimize the resolution of the PGD temporal functions when excitations of long duration and complex
behavior are considered. Additionally, due to the high computational cost related to the integration of the
constitutive relation in the whole spatio-temporal domain when the temporal domain is large (spatial as
well), a hyper-reduction technique applied to the local stage is introduced in chapter 6. This technique
allows not only to speed up the evaluation of the local stage variables, but also to express them as a
low-rank approximation that reduces memory consumption and optimizes the integration operations of
the global stage, thus achieving a more optimized LATIN-PGD method when dealing with problems of
large temporal duration.
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Chapter 5

LATIN-PGD multiscale in time for the
resolution of complex fatigue problems

As seen in the previous chapters, the LATIN-PGD method allows to decrease the com-
putational cost when solving nonlinear problems. This increase in performance is mainly
due to the use of a low-rank PGD approximation in the global stage, which allows to re-
duce a large coupled space-time problem to a smaller one decoupled in space and time.
However, there are problems in which this reduction in computational cost is not sufficient
for the rapid resolution of the problem, for example when considering external excitation
of long duration and rich frequency content, such as seismic loads or complex fatigue in-
puts. In this case, one of the main factors that limit the performance of the solver is the
determination of a large number of degrees of freedom (DOF) of the discretized temporal
problem at each global stage. In order to overcome this limitation, a new multiscale ap-
proximation in time is proposed in this chapter. This consists of (i) a method dedicated to
the multiscale approximation of the external input excitation and (ii) a multiscale approx-
imation of the PGD temporal functions in the LATIN-PGD method. This new multiscale
strategy aims not only at optimizing the LATIN-PGD solver, but also seeks to provide new
tools and a framework that could help in the future to introduce new ideas to further opti-
mize the LATIN-PGD method when solving nonlinear problems considering long duration
excitations with rich frequency content. To illustrate the method, the chapter ends with
numerical examples considering isotropic damage in concrete and elasto-visco-plasticity
in metals.
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Chapter 5. LATIN-PGD multiscale in time for the resolution of complex fatigue problems

5.1 Introduction

As seen in chapter 4, the use of the PGD into the LATIN formulation allows to increase the computational
efficiency of the solver. However, despite this advantage, if external excitations are of long duration as
could be the case of seismic signals or fatigue loads, computing the LATIN-PGD solution could become
really expensive and prohibitive. This increase in computational cost is due to the large number of DOFs in
time corresponding to the discretization of the temporal functions in the large time domain (when using the
Time Discontinuous Galerkin method or a continuous approach as the Time Continuous Galerkin method).
For instance, if we consider a monoperiodic excitation composed of 105 cycles and a discretization such
that within each cycle there are 10 time-elements, the total number of DOFs to be determined is in the
order of one million, which is an exorbitant amount and a real limitation if such problem need to be solved
fast.

For particular cases where the external excitation (imposed displacement, external forces, etc.) has a
unique periodic pattern that repeats throughout the time domain and whose amplitude changes slowly,
it is possible to apply the classical multiscale approximation introduced in section 3.4.3. This technique
assumes that the nonlinear evolution response does not undergo abrupt changes over the time interval
so that the time response can be easily interpolated. This technique consists in applying an interpolation
of the response in the time domain knowing the solution over so-called nodal cycles that are defined in
specific time subdomains distributed along the entire time interval.

However, if the external loading has a richer frequency content and a long duration in time, there exists
no dedicated strategies for its approximation. In this situation only a classical LATIN-PGD resolution
such as the one presented in chapter 4 can be used for the temporal resolution, resulting in increased
computational costs. This imposes a serious drawback, especially when a temporal problem has to be
solved several times within the global stage on the enrichment and preliminary steps, as well as when
parametric studies have to be performed.

To overcome this limitation, the present chapter introduces a new multiscale strategy, capable of macro-
scopically interpolating a complex multiperiodic solution. This method is based on a new micro-macro
formulation, which is composed of two main ingredients: (i) the multiscale approximation of the external
load and (ii) the multiscale approximation of the temporal PGD functions in the LATIN solver.

The new multiscale strategy presented in this chapter aims to provide new tools in the signal theory
domain to optimize the resolution of nonlinear problems when the external load has complex behavior
and long time duration.

To properly understand the main ideas of this new approach, it is first necessary to give a quick overview
of the previous multiscale versions of the LATIN-PGD, in order to highlight some ideas that will be of
key importance for the development of the new strategy. The previous multiscale versions and the new
strategy are introduced in the following sections.

5.1.1 Previous multiscale approximation for simple fatigue problems

The first work that tried to exploit a multiscale strategy for the approximation of the time evolution in the
LATIN method was presented in [Cognard and Ladevèze, 1993] where a strategy for solving cyclic fatigue
problems at low numerical cost in the framework of elasto-visco-plasticity was described. The resolution of
the problem on the full interval I = [0, T ] is replaced by an approximated resolution on a coarse regularly-
spaced discretization called macro intervals. Each macro interval is limited at the beginning and at the
end by the so called nodal cycles as shown in figure 5.1. From the solution known on the nodal cycles, the
solution on the full interval I = [0, T ] is interpolated by using specific shape functions (linear or quadratics
depending on the external excitation’s signal [Cognard and Ladevèze, 1993] or [Arzt and Ladevèze, 1994]
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5.1. Introduction

respectively) that evolve slowly in time. The determination of the solution in the nodal cycles (without
computing the solution in-between them), is performed by estimating an initial condition in each nodal
cycle and interpolating the operator used to solve the temporal problem in the global stage, both under
the hypothesis of a slow macro evolution of the temporal solution (see [Ladevèze, 1999]).

t

λ(t)

0

Transitional
zone

nodal cycle 1

nodal cycle 2

nodal cycle 3

Interpolation Interpolation

· · ·

Figure 5.1: Cyclic approximation – definition of nodal cycles.

The strategy proposed in [Cognard and Ladevèze, 1993] is well suited for sinusoidal fatigue loading but
needs to be extended for more complex inputs. Indeed, the main hypothesis for the application of this
multiscale approach lies in the periodicity and slow evolution of the excitation amplitude. This is not
verified if a multi-frequency signal is considered, for example the one presented in figure 5.2. This signal
presents such a complicated behavior that makes a multiscale approximation based on the interpolation
of nodal cycles impossible.

t

λ(t)

0

· · ·

Figure 5.2: Complex signal where the previous temporal multiscale approximation can’t be applicable.

For complex and long time duration external excitations, the classical multiscale approximation of the
LATIN-PGD method is no longer applicable, therefore, for the multiscale approximation of such problems
it is necessary to consider a more general approach.
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Chapter 5. LATIN-PGD multiscale in time for the resolution of complex fatigue problems

5.1.2 New temporal multiscale approximation

As already mentioned, for the case of complex excitations with long time duration, the previous multiscale
strategy is no longer applicable. Therefore, in this section a new temporal multiscale approximation is
presented [Ladevèze, 2018]. The main idea consists in approximating the temporal PGD basis functions
as the sum of multiscale sub-modes, under the form:

λ(t) ≈
ms∑
`=1

λ̄`(t; τ`) =

ms∑
`=1

AI
`(t)h

I
`(t; τ`) +AR

` (t)hR
` (t; τ`) +Ao`(t) (5.1)

Each sub-mode λ̄` is composed of macro functions AI
`(t), A

R
` (t), Ao`(t) and micro functions hI

`(t) and
hR
` (t). The micro functions correspond to patterns that quickly repeat over time and the macro terms

correspond to the envelope of the micro functions (AI
`(t) and AR

` (t)) plus an additional free term (Ao`(t)),
whose evolution is slow over time. The micro functions are separated into two groups, the symmetric
(hR
` (t)) and the antisymmetric ones (hI

`(t)). As an example lets consider the signal presented in figure 5.2,
and lets apply the approximation of equation (5.1), in this way the function is simply approached by the
sum of two multiscales sub-modes (λ̄`)

2
`=1, where the first one is given in figure 5.3.

t

λ̄1(t)

0

· · ·

Figure 5.3: First temporal sub-mode.

While the second temporal sub-mode is given in figure 5.4.

t

λ̄2(t)

0

· · ·

Figure 5.4: Second temporal sub-mode.

As already mentioned, the micro functions of each sub-mode consist of patterns that repeat over the
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5.1. Introduction

whole time interval at a given characteristic period denoted τ` as can be seen in figures 5.5 and 5.6,
where the macro and micro functions are also illustrated.

t

AI
1(t)

0 · · ·
(a) Macro function.

t

AR
1 (t)

0 · · ·
(b) Macro function.

t

Ao1(t)

0 · · ·

(c) Macro function.

t

hI
1(t)

0

τ1︷ ︸︸ ︷
· · ·

(d) Antisymmetric micro function.

t

hR
1 (t)

0 · · ·
(e) Symmetric micro function.

Figure 5.5: Macro and micro functions of the first sub-mode.

The determination of the characteristic periods of each sub-mode is performed from a frequency study
of the external excitation applied to the structure. This idea can be visualized in a simple way by con-
sidering the case of a monoperiodic external excitation, where the characteristic period is well known a
priori (excitation period), in this particular case it is known that all PGD time functions will present the
same characteristic period along their evolution. The determination of this important period for the case
of a monoperiodic excitation is straightforward and simple, however, if the external excitation corresponds
to a seismic signal or some fatigue loading with a complex behavior in time, the determination of these
characteristic periods becomes complicated. To this end, we introduce a novel method in section 5.2 that
achieves this requirement and approximates the input excitation as the sum of sinusoidal contributions.
Once the characteristic periods of the external excitation are determined, they are used in the new mul-
tiscale approximation of the PGD time functions for the determination of the micro functions hR

` (t) and
hI
`(t).

t

AI
2(t)

0 · · ·
(a) Macro function.

t

AR
2 (t)

0 · · ·
(b) Macro function.

t

Ao2(t)

0 · · ·
(c) Macro function.

t

hI
2(t)

0 · · ·
(d) Antisymmetric micro function.

t

hR
2 (t)

0

τ2︷ ︸︸ ︷

· · ·

(e) Symmetric micro function.

Figure 5.6: Macro and micro functions of the second sub-mode.

103



Chapter 5. LATIN-PGD multiscale in time for the resolution of complex fatigue problems

For the optimal construction of each temporal sub-mode of the equation (5.1) it is necessary to intro-
duce some important considerations for the determination of the macro and micro functions, which are
discussed below.

1. Multiscale behavior of the temporal sub-modes:

In order for all sub-modes to have a multiscale behavior, the discretization of the macro functions
must be such that within a finite macro element of size ∆T` there are several cycles of characteristic
period τ`, this requirement can be expressed as:

∀` ∈ [1, ...,ms],
∆T`
τ`

= nc , nc ∈ N (5.2)

This condition imposes that within a macro finite element there are nc cycles of characteristic period
(τ`)

ms
`=1 as illustrated in figure 5.7. The value nc is constant and fixed for all the sub-modes. This

condition is necessary to reduce the computational time associated with the determination of the
macro functions, where the higher the constant nc the fewer temporal DOFs need to be computed
for each sub-mode `.

t

︸ ︷︷ ︸
∆T` = ncτ`

τ`︷ ︸︸ ︷
· · ·· · ·· · ·

Figure 5.7: Macro and micro functions representation.

Condition (5.2) also implies that the different temporal sub-modes may have different macro dis-
cretizations, this particularity makes impossible the application of direct or update techniques as
presented in chapter 3 for their optimal determination. By consequence, the above statements imply
that the sub-modes must be determined incrementally by a “greedy” algorithm (see section 3.2.5.4).

The difference in the temporal sizes related to the micro and macro functions for each sub-mode
requires a dedicated definition for each temporal domain, in this sense, as it will be widely used in
the next sections, we introduce the temporal domain related to the macro functions as:

∀k ∈ [1, ..., N`] , ∀` ∈ [1, ...,ms],

IMk,` = [(k − 1)∆T`, (k)∆T`] (5.3)

where M stands for “macro” (to differentiate with the micro time interval defined below) and N` the
total number of temporal FEM elements in the macro discretization for a given sub-mode `. On the
other hand, the domain related to the micro discretization is defined as:

∀p ∈ [1, ..., Nc,`] , ∀` ∈ [1, ...,ms],

Ip,` = [(p− 1)τ`, (p)τ`] (5.4)

where we denote the total number of micro intervals equals to Nc,` = ncN` for a given sub-mode `.
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5.1. Introduction

From the above definitions, in order to keep the notations used in chapter 4, the index “k” denotes
the macro element of the FEM discretization, while the index “p” denotes a micro interval. This
convention will be used throughout this chapter.

2. Continuity of the micro functions:

To guarantee the continuity of the sub-modes over the time interval, the micro functions must verify
certain conditions. For instance, the antisymmetric functions must have a pattern with an initial and
final value equal to zero, that is:

∀p ∈ [1, ..., Nc,`] , ∀` ∈ [1, ...,ms],

hI
`

∣∣∣
t=(p−1)τ`

= hI
`

∣∣∣
t=(p)τ`

= 0 (5.5)

On the other hand, symmetric micro functions simply verify the following condition:

∀p ∈ [1, ..., Nc,`] , ∀` ∈ [1, ...,ms],

hR
`

∣∣∣
t=(p−1)τ`

= hR
`

∣∣∣
t=(p)τ`

(5.6)

The micro functions presented in figures 5.8a and 5.8b illustrate these continuity conditions.

t

hI
`(t)

0

τ`︷ ︸︸ ︷

. . .

(a) Micro antisymmetric component of the signal.

t

hR
` (t)

0

τ`︷ ︸︸ ︷

. . .

(b) Micro symmetric component of the signal.

Figure 5.8: Micro functions of the temporal PGD multiscale approximation associated to the LATIN
method.

3. Approximation of the macro functions:

The approximation of the macro functions is performed by using the finite element method in time;
the used shape functions correspond to the cubic Hermite polynomials, the approximation generated
by these functions and their time-derivatives are continuous. The shape functions defined on a
macro element for each of the sub-modes are given by:

∀t ∈ IMk,` , ∀k ∈ [1, ..., N`] , ∀` ∈ [1, ...,ms],

Ψ
[k]
1,`(t) =

(
1− 3

∆T 2
`

(t− tk−1)2 +
2

∆T 3
`

(t− tk−1)3

)
Ψ

[k]
2,`(t) =

(
(t− tk−1)− 2

∆T`
(t− tk−1)2 +

1

∆T 2
`

(t− tk−1)3

)
Ψ

[k]
3,`(t) =

(
3

∆T 2
`

(t− tk−1)2 − 2

∆T 3
`

(t− tk−1)3

)
Ψ

[k]
4,`(t) =

(
− 1

∆T`
(t− tk−1)2 +

1

∆T 2
`

(t− tk−1)3

)
(5.7)
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Chapter 5. LATIN-PGD multiscale in time for the resolution of complex fatigue problems

where we considered tk−1 = (k − 1)∆T`, and the macro temporal domain IMk,` defined as presented
in equation (5.3).

Lets therefore define the vector of macro shape functions on a given element “k” of the macro
discretization when computing the sub-mode “`” as:

∀t ∈ IMk,` ,∀k ∈ [1, ..., N`] , ∀` ∈ [1, ...,ms],

Ψ
[k]
` (t) =

[
Ψ

[k]
1,`(t),Ψ

[k]
2,`(t),Ψ

[k]
3,`(t),Ψ

[k]
4,`(t)

]T
(5.8)

Contrary to chapter 4 where the Time Discontinuous Galerkin Method is used, here a classic Con-
tinuous Galerkin approach is employed. This is considered due to the complexity of the multiscale
formulation and to improve the continuity of the approximation, however the introduction of a discon-
tinuous approach is proposed as a perspective for future works.

5.1.3 Important remarks

The previous temporal multiscale approach introduced in section 5.1.1 and the new multiscale technique
have different considerations that must be highlighted. These considerations include two main points,
which are the elastic solution and the local stage of the LATIN method, these are presented in the following
subsections.

5.1.3.1 Initial elastic solution

The multiscale approximation presented in [Cognard and Ladevèze, 1993] was developed to the resolu-
tion of quasi-static problems and monoperiodic excitations, those considerations allowed the nodal cycle
interpolation to be applicable also to the determination of the elastic solution.

The new multiscale strategy, on the other hand, can also be used for the determination of quasi-static
elastic solutions, however, this is not the case of the present thesis work, where the elastic solution is
determined under dynamics conditions. Dynamics problems introduced an additional difficulty, which
corresponds to the inertial effects, these effects can produced transitional solutions in time which are
complicated to approximate using a multiscale approach. For this reason, in the present chapter the elastic
solution in dynamics is simple calculated over the whole time domain by using the Time Discontinuous
Galerkin Method as presented in chapter 4. This discontinuous formulation allows solving long duration
problems easily due to its incremental resolution in time, which positions TDGM as an efficient alternative
for obtaining the elastic solution.

5.1.3.2 Local stage

When the external excitation is monoperiodic, the determination of the constitutive relation quantities
at the local stage can also be interpolated by using the nodal cycles idea of the previous multiscale
approach. However, this is not the case in the present chapter, where a complex external excitation is
considered, since the solution at the local stage cannot be interpolated due to the complexity of the input
signal coming from the global solution of the LATIN method. For this reason in this chapter the local
stage is fully evaluated without any approximation. This can increase a lot the computational cost due
to the whole evaluation of the constitutive relation on the large temporal domain. In order to decrease
the computational efforts of the local stage evaluation, a hyper-reduction technique is introduced next in
chapter 6, although this technique is not considered in this chapter in the numerical examples section.
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5.2. Novel temporal multiscale approximation of signals

5.2 Novel temporal multiscale approximation of signals

As presented in the introductory section, the new multiscale approximation needs the knowledge of the
characteristic periods of the signal associated to the external excitation. To do so, here a multiscale
approximation of signals initially described in [Ladevèze, 2018] is presented, this method allows in an
easy and inexpensive way the determination of these characteristic periods.

To introduce the ideas, let us consider a given signal sref (t), and decompose it by introducing two time
scales, one micro and one macro. At the micro scale the evolution is cyclic and varies rapidly, however the
evolution is slow at the macro scale. Under these considerations the signal is approximated as follows:

sref (t) ≈ sms(t) =

ms∑
`=1

AR
` (t) cos

(
2πt

τ`

)
+AI

`(t) sin
(

2πt

τ`

)
+Ao`(t) (5.9)

where sref (t) is the original signal that we want to approximate, and sms(t) its multiscale approximation
considering ms sub-modes.

In this expression, AR
` (t), AI

`(t) and Ao`(t) are the functions that represent the evolution at the macro
scale of the approximation, they can be seen as the respective envelope of each sub-mode “`” of the
representation, ”R” denotes the real part (cosine’s envelope), ”I” the imaginary part (sine’s envelope) and
Ao`(t) corresponds to the macro free term (a term that is not associated to a micro function). The micro
evolution is given in a sinusoidal way which is function of their characteristic period τ` different for each
sub-mode, which are the key variables of the method and the main unknowns needed to be determined.
The procedure required to compute τ` and the macro functions will be explained below.

5.2.1 Determination of the multiscale sub-modes

The characteristic periods to be determined may have very different values from each other, which implies
that a different macro discretization must be considered for each sub-mode. Therefore, each sub-mode
must be determined incrementally or in a greedy manner. This incremental construction of the sub-modes
is presented in detail in the following subsections.

5.2.1.1 “Greedy” calculation of multiscale sub-modes

In what follows, let’s consider that we have already computed ` − 1 sub-modes of the decomposition
and that our objective is to determine the sub-mode “`”. Under these considerations we can define the
following residual function:

r`(t) = sref (t)− s`−1(t) (5.10)

where sref (t) is the original signal that we want to approximate, and s`−1(t) the multiscale approximation
given by:

s`−1(t) =

`−1∑
i=1

s̄i(t) (5.11)

where s̄`(t) corresponds to the sub-mode ` of the signal decomposition, which is given as:

s̄`(t) = AR
` (t) cos

(
2πt

τ`

)
+AI

`(t) sin
(

2πt

τ`

)
+Ao`(t) (5.12)

The idea is to find the best sub-mode s̄`(t) that minimizes the following functional J in the sense of a norm
L2(0, T ):

J = ‖r` − s̄`‖2I =

∫ T

0

[
r`(t)−

(
AR
` (t) cos

(
2πt
τ`

)
+AI

`(t) sin
(

2πt
τ`

)
+Ao`(t)

)]2
dt (5.13)
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By defining the vector of micro functions n` and the vector of nodal macro amplitudes A
[k]
` on a given

element k by:

n` =


cos

(
2πt
τ`

)
sin
(

2πt
τ`

)
1

 (5.14) A
[k]
` =

(AR
` )[k]

(AI
`)

[k]

(Ao
`)

[k]

 (5.15)

such that the approximation of the sub-mode on a given macro interval can be written as:

∀t ∈ IMk,`,
s̄`(t) = nT`

(
I ⊗ (Ψ

[k]
` )T

)
A

[k]
` (5.16)

with I a 3×3 identity matrix and ⊗ denotes the Kronecker product. The expression (5.13) can be rewritten
as:

J =

N∑̀
k=1

∫
IMk,`

r2
` + (A

[k]
` )T

(
n`n

T
` ⊗Ψ

[k]
` (Ψ

[k]
` )T

)
A

[k]
` − 2(A

[k]
` )T

(
I ⊗Ψ

[k]
`

)
n`r` dt (5.17)

By minimizing J with respect to A
[k]
` , ∀k ∈ [1, ..., N`] we obtain:

W
`
A` = f

`
(5.18)

where A` corresponds to the vector containing all the DOFs related to the macro FEM discretization over
the whole temporal domain, this is:

A` =

N⊕̀
k=1

A
[k]
` (5.19)

and with the matrices and vector given by:

W
`

=

N⊕̀
k=1

∫
IMk,`

(
n`n

T
` ⊗Ψ

[k]
` (Ψ

[k]
` )T

)
dt , f

`
=

N⊕̀
k=1

∫
IMk,`

(
I ⊗Ψ

[k]
`

)
n`r`(t)dt (5.20)

where
N⊕̀
k=1

stands for the assembly operator over the macro FEM discretization.

From the above developments, the macro functions can be obtained by solving the equation (5.18), how-
ever this equation is still in function of the characteristic period τ`. To obtain this period, we use (5.18) to
rewrite the functional J as follows:

J =

∫
I
r2
`dt+ AT

` W
`
A` − 2AT

` f
`

(5.21)

By re-injecting the value of A` = W −1
`

f
`

in equation (5.21) we obtain:

{τ`} = arg min
τ`>0

J(τ`) = arg min
τ`>0

[∫
I r

2
`dt− f T

`
W −1

`
f
`

]
(5.22)

Therefore the minimization of J(τ`) is given by:

{τ`} = arg max
τ`>0

[
f T
`

W −1
`

f
`

]
(5.23)

The maximization of equation (5.23) allows to determine the characteristic period of the multiscale ap-
proximation, thus completing the construction of the sub-mode “`”. However, the maximization of this
expression is not straightforward and an iterative search for the characteristic period must be applied to
maximize the expression, a tedious and costly process. For this reason in the next subsection an approx-
imation is introduced that allows the direct calculation of the characteristic period, greatly simplifying the
maximization problem.
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5.2.1.1.1 Determination of the characteristic periods

As developed before, the characteristic periods are obtained such that the expression (5.23) is maximized.
However, this maximization requires an iterative search process that makes the procedure tedious. In
order to solve this issue, we approximate the matrix W

`
by:

W
`
≈

N⊕̀
k=1

I ⊗ 1

2

∫
IMk,`

Ψ
[k]
` (Ψ

[k]
` )Tdt (5.24)

this approximation arise naturally due to the difference in time scales between the macro and micro tem-
poral intervals. By using equation (5.24) into the expression of equation (5.23) we obtain:

[f T
`

W −1
`

f
`
] = AT

` W
`
A` ≈

T

N`

N∑̀
k=1

4∑
l=1

[
(AR

l ,`)
[k]
]2

+
[
(AI

l ,`)
[k]
]2

(5.25)

where l denotes the DOFs on a macro element k (which are 4 due to the use of cubic Hermite polynomials
shape functions). The right-hand term of the equation (5.25) involves the sum of the quadratic nodal
values of the discretized macro functions, this means that the expression f T

`
W −1

`
f
`

can be approximately
identified with a Fourier transformation (FT) on that macro element, which means f T

`
f
`
≈ f T

`
W −1

`
f
`
. In

this sense, we have:

∀k ∈ [1, ..., N`] , l ∈ [1, ..., 4], [
(AR

l ,`)
[k]
]2

+
[
(AI

l ,`)
[k]
]2
∝ |FT(r`(t)Ψ

[k]
l ,`)|

2

Therefore, the characteristic period τ` that maximizes equation (5.23) can be approximately taken as:

{τ`} = arg max
τ`>0

√√√√ N∑̀
k=1

4∑
l=1

|FT(r`(t)Ψ
[k]
l ,`)|2 (5.26)

where in order to be independent of the macro discretization, we simply consider:

{τ`} = arg max
τ`>0

|FT (r`(t))| (5.27)

The expression (5.27) allows to easily determine the characteristic periods for each sub-mode by simply
applying a Fourier transformation of the residual function r`(t). As stated before these developments are
an approximative way for the determination of the characteristics periods, its only simplifies the iterative
process necessary for the maximization of the equation (5.23).

Once the characteristic period has been determined, one needs to compute the macro functions to com-
pletely construct the sub-mode. This is done using classical temporal FE formulation and solving equation
(5.18), however, certain considerations must be taken into account before obtaining them. These consid-
erations are explained below.

5.2.1.1.2 Considerations of the macro discretization and resolution

As presented in section 5.1.2 (equation (5.2)), in order to ensure a multiscale behavior of each sub-mode
the following micro-macro relation is chosen:

∆T`
τ`

= nc , nc ∈ N
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Added to the last condition, an integer number of cycles should exist into each macro time interval. This
induce a macro discretization that is not in all the cases compatible with the total duration of the signal. To
solve this issue, we allow the last macro element of the discretization of each sub-mode ` to be defined
on an interval outside the time domain by just adding zero values in this zone, allowing the method to
work without modifications as presented previously. Finally, the macro functions for all the sub-modes is
not imposed to be null at t = 0 and t = T even if the value of the studied signal is zero at these points,
this consideration allows to obtain better temporal sub-modes that improve the final approximation and
therefore obtain better characteristic times.

5.2.1.2 Error calculation

In order to measure the quality of the approximation, after the calculation of a new sub-mode, an error
estimator is computed. In this way, if we consider that we have already computed the k − 1 sub-modes of
the decomposition (s`−1(t)) and by remembering the definition of the residual function as r`(t) = sref (t)−
s`−1(t), we define the relative error at mode ` as follows:

e` = 100

√(∫
I(r`(t)− s̄`(t))2dt∫

I sref (t)2dt

)
[%] (5.28)

Each extra mode is calculated until the error converged to a desired value e` < ec or until a given quantity
of modes mc is reached.

5.2.2 Synthesis of the signal approximation

A new method for the approximation of signals was presented. The main idea of the method consists in
approximating a given signal by a sum of multiscale sub-modes such as to allow at the same time the de-
termination of very important parameters called characteristic periods. These parameters are needed for
the temporal multiscale approximation of the PGD functions at the LATIN method which will be introduced
in section 5.3. Algorithm 2 summarizes the different steps of the proposed method.

Algorithm 2: Search of the best ` sub-modes with ∆T`
τ`

= nc

Input : sref (t) : Original signal, mc = 10 (signal modes), ec (stop error threshold)
Output : Characteristic periods {τ`}ms`=1

1 s0(t) = 0; e0 = 100; ` = 0

2 while (` < mc) and (e` > ec) do
3 ` = `+ 1

4 Definition of the residual function: → r`(t) = s(t)− s`−1(t)

5 Characteristic period determination: τ` = arg max
τ`>0

|FT (r`(t))|

6 Determination of the macro functions by solving: W
`
A` = f

`

7 Construction of the new signal sub-mode: s̄`(t) = AR
` (t) cos

(
2πt
τ`

)
+AI

`(t) sin
(

2πt
τ`

)
+Ao`(t)

8 Error calculation e` (equation (5.28)):
9 Enrichment of the decomposition: s`(t) = s`−1(t) + s̄`(t)

10 end

In order to show the performance of the presented signal modeling approach, the following section shows
its application for the approximation of real seismic signals.
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5.2.3 Numerical examples: approximation of seismic signals

To test the signal approximation strategy introduced, we consider here the approximation of 3 different
seismic signals in order to obtain the important characteristic periods associated with each of them. All
signals are considered to have a duration of 10 seconds, these are presented in figures 5.9a, 5.9b and
5.9c. In addition, a micro-macro relation ∆T`

τ`
= 3 is considered for all signals for they approximation,

i.e., each sub-mode to be computed contains 3 cycles in a macro interval. This particular value for
the micro-macro condition is arbitrary, however empirical numerical tests show that a number between
3 and 6 gives good results. The optimal value of the micro-macro ratio actually depends on the signal
to be approximated, although its determination is complicated. For its correct choice several factors
must be taken into account, for instance, a small ratio gives good results but the sub-modes lose their
multiscale behavior and on the other hand, a large number could produce bad approximations. The
optimal determination of the micro-macro ratio is still unknown and future research still should be done to
numerically optimize its choice.

(a) Seismic signal 1. (b) Seismic signal 2.

(c) Seismic signal 3.

Figure 5.9: Seismic signals considered for their approximation.

Once the multiscale approximation is applied to the signals, we obtain the results shown in figure 5.10.
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Figure 5.10: Comparison of reference signal to the approximated one at left, and the error vs sub-modes
at right.

For all the signals studied, a maximum of 8 sub-modes are considered in order to present the convergence
ratio for each of the signals. From the results in figure 5.10 we can observe that the multiscale strategy
manages to approximate the considered signals very well, where very low errors are obtained even with
a number of sub-modes less than 8, which verifies the high performance of the method.
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Figure 5.11 presents the first 3 multiscale sub-modes for the approximation of the seismic signals consid-
ered. From them we can clearly see the different macro discretization for each of the sub-modes, which
is a function of its characteristic period, where the red dots indicate the FEM macro discretization.

(a) 3 first multiscale sub-modes of seismic signal 1. (b) 3 first multiscale sub-modes of seismic signal 2.

(c) 3 first multiscale sub-modes of seismic signal 3.

Figure 5.11: First three multiscale sub-modes for the seismic signals considered.

It should be remembered that the main objective of the signal approximation method is to determine
the characteristic periods of the external excitation signal. These periods are of great importance since
they are used for the application of the multiscale approximation of the PGD time functions of the LATIN
method. It should be remembered that the same amount of sub-modes determined from the external
excitation are considered for the multiscale approximation of the temporal PGD functions, from this it can
be concluded that the less sub-modes are required for the approximation of the external excitation, the
faster the calculation of the temporal PGD functions will be.

All the details related to the new multiscale time approximation applied to the LATIN method are presented
in the following sections, where the importance of the characteristic periods determined by the signal
approximation discussed above will be clarified.
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5.3 New temporal multiscale approach applied to the LATIN-PGD solver

As presented in chapter 4, the LATIN method is a global nonlinear solver which exploits the use of the
model reduction technique PGD for enabling the decrease of the computational expenses. The PGD ap-
proximates the quantities of interest of the LATIN solver by a low-rank decomposition, in where space and
temporal functions must be determined. This section focuses on the determination of the temporal PGD
functions, where the new multiscale approximation introduced in equation 5.1 is applied. As presented in
chapter 4, the calculation of the time functions is performed in two main steps which are the enrichment
and the preliminary steps, where in both steps the new multiscale approach is applied. A brief expla-
nation about the new multiscale approximation applied to these steps is given below, where important
considerations for this approach are introduced.

• Enrichment step:

This step consists in the calculation of a new space-time PGD couple function in order to enrich
the reduced order model corresponding to the global solution. Its calculation is splitted into a space
and a time problem, where in each one of them the spatial and temporal PGD function respec-
tively are calculated. Once the spatial problem is solved, the time function is determined, which is
approximated here in a multiscale manner as follows:

λm+1(t) ≈
ms∑
`=1

λ̄`(t) =

ms∑
`=1

AI
`(t)h

I
`(t) +AR

` (t)hR
` (t) +Ao`(t) (5.29)

Remark: It should be remembered that the number of sub-modes ms and the characteristic periods
(τ`)

ms
`=1 used for the multiscale approximation of the temporal PGD functions are known since they

have been determined when approximating the external excitation by the multiscale approximation
explained in section 5.2.

By defining the vector of micro functions n` and the nodal values of the FEM approximation of the
macro terms A

[k]
` at the sub-mode “`”, as:

n` =

hR
` (t)

hI
`(t)
1

 ; A
[k]
` =

(AR
` )[k]

(AI
`)

[k]

(Ao
`)

[k]


the discretized approximation defined on the macro interval IMk,` can be written as:

∀t ∈ IMk,`,

λm+1(t) ≈
ms∑
`=1

nT`

(
I ⊗ (Ψ

[k]
` )T

)
A

[k]
` (5.30)

λ̇m+1(t) ≈
ms∑
`=1

ṅT`

(
I ⊗ (Ψ

[k]
` )T

)
A

[k]
` + nT`

(
I ⊗ (Ψ̇

[k]
` )T

)
A

[k]
` (5.31)

where I represent a 3× 3 identity matrix and ⊗ denotes the Kronecker product.

• Preliminary step:

While the enrichment step consists in increasing the rank of the PGD decomposition, on the pre-
liminary step the temporal PGD functions are actualized in order to improve the convergence to the
nonlinear solution. This update is done by computing a group of corrective temporal functions such
that:

114



5.3. New temporal multiscale approach applied to the LATIN-PGD solver

∀i ∈ [1, ...,m+ 1],

λi ← λi + ∆λi (5.32)

these temporal corrections are also approximated in a multiscale way as follows:

∀i ∈ [1, ...,m+ 1] , ∀t ∈ IMk,`,

∆λi(t) ≈
ms∑
`=1

∆λ̄i,`(t) =

ms∑
`=1

nTi,`

(
I ⊗ (Ψ

[k]
` )T

)
A

[k]
i,` (5.33)

∆λ̇i(t) ≈
ms∑
`=1

∆ ˙̄λi,`(t) =

ms∑
`=1

ṅTi,`

(
I ⊗ (Ψ

[k]
` )T

)
A

[k]
i,` + nTi,`

(
I ⊗ (Ψ̇

[k]
` )T

)
A

[k]
i,` (5.34)

with the micro functions and discretized vector of unknown variables associated to the macro func-
tions at mode i given by:

∀i ∈ [1, ...,m+ 1],

ni,` =

hR
i,`(t)

hI
i,`(t)

1

 ; A
[k]
i,` =

(AR
i,`)

[k]

(AI
i,`)

[k]

(Ao
i,`)

[k]


These compressed representations will be used along the following sections for the temporal functions
associated to the isotropic damage and elasto-visco-plasticity which will be introduced later in this chapter.

• Construction of the micro functions associated with the temporal PGD approximation:

The micro functions used for the approximation of the PGD time functions are different compared to the
signal approximation method presented in section 5.2, due to the nonlinear behavior of the material under
consideration the micro functions are no longer simple sinusoids. Here they have a complex shape that
must be determined at each enrichment or preliminary steps, however, they share the same characteristic
period for all the sub-modes of the signal approximation method. The micro functions are constructed as
the superposition of different functions, where each of them has a time domain equal to the characteristic
time of the studied sub-mode. To this end, we introduce here a key notation that will be used throughout
this section. Let us define the partition of a given function f(t) as [f(t)]p such as:

f(t) =
⋃
p

[f(t)]p (5.35)

To visualize this idea, figure 5.12 illustrates the partitioning of a given function f(t), defined on a time-
segment of length τ`.

t

f(t)

0

[f(t)]1

[f(t)]2
[f(t)]3

︸ ︷︷ ︸
τ`

︸ ︷︷ ︸
τ`

︸ ︷︷ ︸
τ`

. . .

Figure 5.12: Partitioning of a function f(t).
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The function f(t) used will depend on the treated problem and material nonlinearity as will be shown in
the coming sections. From the above definitions the micro functions (symmetric and antisymmetric) are
calculated as the superposition of functions, that is:

hR
` (t) =

Nc,`∑
p=1

ap [f(t)]R,p , hI
`(t) =

Nc,`∑
p=1

bp [f(t)]I,p (5.36)

where [f(t)]R,p corresponds to the symmetric part of [f(t)]p and [f(t)]I,p to the antisymmetric part but with
each beginning and end values equals to zero in order to ensure the continuity of each sub-mode (see
section 5.1.2). From the above developments we can see that the main unknowns to be determined for
the construction of the micro functions (apart from the good choice of f(t)) are the constants ap and bp
∀p ∈ [1, ..., Nc,`].

The details about the determination of the macro and micro functions of the new multiscale approximation
are given in sections 5.3.1 and 5.3.2 for the case of isotropic damage and elasto-visco-plasticity respec-
tively. The presentation of the multiscale strategy for each material behavior is barely independent, since
although the ideas are the same, the mathematical machinery behind is different.

Although in the present thesis the strategy is applied to two types of constitutive relations, it should be
noted that its application to other types of behavior does not pose any difficulty.

5.3.1 Temporal multiscale approach applied to isotropic damage

On this section the new multiscale approximation in time is applied to the global stage when an isotropic
damage constitutive relation is considered. The variables that must be determined at the global stage are
the stress tensor σ(x, t), the total deformation tensor ε(x, t) and the damage variable d(x, t). Therefore, in
the global stage at LATIN iteration n+ 1 the following solution set must be determined:

Sn+1 = {un+1, εn+1
, σ

n+1
, dn+1}

As presented in chapter 4, the global stage solution is computed such as it verifies the admissibility
conditions and a descent search direction as illustrated in figure 5.13.

[
σ, d
]

ε

Ad

Γ

�
S̄

•
Sn

•
Ŝn+1/2

•
Sn+1

A

Figure 5.13: Calculation of the global solution of space Ad.

This search direction is given by:
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A :

{
dn+1 − d̂n+1/2 = 0[

σ
n+1
− σ̂

n+1/2

]
−Hε :

[
ε
n+1
− ε̂

n+1/2

]
= 0

As exposed in chapter 4, instead of determining the full global stage quantities at iteration n + 1 of the
LATIN method, a corrective set solution is determined, which is given by:

∆Sn+1 = {∆un+1,∆εn+1
,∆σ

n+1
}

so that it is verifies:
Sn+1 = ∆Sn+1 + Sn

From the above statements the following constitutive relation error (CRE) is defined:

Jc =
∣∣∣∣∣∣∣∣∣∆σ

n+1
−Hε : ∆ε

n+1
+ ∆

n+1

∣∣∣∣∣∣∣∣∣2
H−1
ε

, |||·|||2H−1
ε

=

∫
Ω×I

(·) : H−1
ε : (·) dΩdt

with:
∆
n+1

= (σ
n
− σ̂

n+1/2
)

The corrective terms are determined such as the CRE is minimized and the global stage solution is ap-
proached by employing the model reduction technique PGD, which allows the global variables to be written
in a low-rank decomposition. In this sense, the global solution at LATIN iteration n (Sn) is approximated
as follows:

un(x, t) =
m∑
i=1

ūi(x)λi(t) + u0(x, t)

ε
n
(x, t) =

m∑
i=1

ε̄
i
(x)λi(t) + ε

0
(x, t)

σ
n
(x, t) =

m∑
i=1

σ̄
i
(x)λi(t) + σ

0
(x, t)

where u0(x, t), ε
0
(x, t) and σ

0
(x, t) correspond to the initial elastic solution and ūi(x), σ̄

i
(x), ε̄

i
(x) , λi(t)

correspond to the spatial and temporal PGD functions.

As mentioned previously, the PGD decomposition is constructed in the enrichment and preliminary steps.
In the next sections the new multiscale approach is applied to the temporal problems associated with each
of these steps.

5.3.1.1 Enrichment step: computation of the temporal PGD functions

For the approximation of the corrective solution set ∆Sn+1, the PGD is used, where a single PGD mode
is calculated in order to approximate these corrections at the enrichment step, this is:

∆un+1 = un+1 − un = ūm+1(x)λm+1(t)

∆ε
n+1

= ε
n+1
− ε

n
= ε̄

m+1
(x)λm+1(t)

∆σ
n+1

= σ
n+1
− σ

n
= σ̄

m+1
(x)λm+1(t)

(5.37)

This step is computed iteratively by solving a spatial and temporal problem as presented in section 4.3.2.1.
Here we focus our attention on the temporal problem, where the multiscale approximation is applied. The
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main problem consists in calculating a time function that minimizes the following minimization problem
(which correspond to the constitutive relation error defined in chapter 4):

{λm+1} = arg min
λm+1∈UT

∣∣∣∣∣∣∣∣∣σ̄
m+1

λm+1 −Hε : ε̄
m+1

λm+1 + ∆
n+1

∣∣∣∣∣∣∣∣∣2
H−1
ε

(5.38)

In what follows the main calculation steps of the new multiscale approach are presented, which consists
in the determination of the macro and micro time functions.

• Macro functions determination:

First of all the determination of the macro functions is explained, these macro terms depend on the choice
of the micro functions, therefore this have to be seen as an intermediate process necessary to obtain both
macro and micro functions of the multiscale decomposition. In this sense, lets consider the micro functions
as a known variable and lets determine the best macro function such as it minimize the expression (5.38).
Lets also remember that at this point the number of sub-modes ms as well as the characteristic periods
(τ`)

ms
`=1 are known.

Due to the different sizes of the macro discretization, the temporal sub-modes are determined in an
incremental way by a “greedy” process, this means, if we consider that the `− 1 sub-modes have already
been calculated, we can rewrite (5.38) as:

{
λ̄`
}

= arg min
λ̄`∈UT

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣σ̄
(
`−1∑
s=1

λ̄s + λ̄`

)
−Hε : ε̄

(
`−1∑
s=1

λ̄s + λ̄`

)
+ ∆

n+1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

H−1
ε

(5.39)

where we consider σ̄ = σ̄
m+1

, ε̄ = ε̄
m+1

and λ = λm+1 to alleviate the notations. By rearranging the
terms of the minimization problem we obtain:{

λ̄`
}

= arg min
λ̄`∈UT

∣∣∣∣∣∣∣∣∣σ̄λ̄` −Hε : ε̄λ̄` + ∆̄
`

n+1

∣∣∣∣∣∣∣∣∣2
H−1
ε

(5.40)

with the residual function given by:

∆̄
`

n+1
= ∆

n+1
+
(
σ̄ −Hε : ε̄

)(`−1∑
s=1

λ̄s

)
(5.41)

The minimization of equation (5.40) simply gives:

∀δλ̄` ∈ UT , ∫
I
δλ̄`λ̄`A

c dt =

∫
I
δλ̄`R

c
`(t) dt (5.42)

where the constant scalar Ac is given by:

Ac =

∫
Ω

(
σ̄ −Hε : ε̄

)
: H−1

ε :
(
σ̄ −Hε : ε̄

)
dΩ

and the residual temporal function by:

Rc`(t) = Dc(t)−Ac
`−1∑
s=1

λ̄s(t) , with: Dc(t) = −
∫

Ω

(
σ̄ −Hε : ε̄

)
: H−1

ε : ∆
n+1

dΩ

By discretizing equation (5.42) using the multiscale approximation, we obtain:

Q
`

A` = f
`
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with the matrices and vector given by:

Q
`

=

N⊕̀
k=1

∫
IMk,`

[
n`n

T
` ⊗Ψ

[k]
` (Ψ

[k]
` )TAc

]
dt and f

`
=

N⊕̀
k=1

∫
IMk,`

[(
I ⊗Ψ

[k]
`

)
n`R

c
`(t)
]
dt (5.43)

So finally, the macro functions are simply determined as:

A` = Q−1

`
f
`

(5.44)

As mentioned above these macro functions still depend on the choice of the micro ones. The determina-
tion of these micro functions is presented below.

• Micro functions determination:

As exposed above, equation (5.44) still needs the determination of a good micro function that actually
allows to decrease the constitutive relation error (5.40) , to do so, lets consider the CRE as follows:

Jc =
∣∣∣∣∣∣∣∣∣σ̄λ̄` −Hε : ε̄λ̄` + ∆̄

`

n+1

∣∣∣∣∣∣∣∣∣2
H−1
ε

(5.45)

by expanding the functional Jc we have:

Jc =

∫
Ω×I

∆̄
`

n+1
: H−1

ε : ∆̄
`

n+1
+ λ̄`λ̄`

(
σ̄ −Hε : ε̄

)
: H−1

ε :
(
σ̄ −Hε : ε̄

)
+2λ̄`

(
σ̄ −Hε : ε̄

)
:
(
H−1
ε : ∆̄

`

n+1

)
dΩdt

(5.46)

which can be simplified into:

Jc =

∫
Ω×I

∆̄
`

n+1
: H−1

ε : ∆̄
`

n+1
dΩdt+

∫
I

[
λ̄2
`A

c − 2λ̄`R
c
`(t)
]
dt (5.47)

By introducing the macro and micro approximation into equation (5.47) we obtain the following expression:

Jc =

∫
Ω×I

∆̄
`

n+1
: H−1

ε : ∆̄
`

n+1
dΩdt+ AT

` Q
`
A` − 2AT

` f
`

(5.48)

By using the solution of the minimization of Jc with respect to the macro functions A` given in expression
(5.44) and introducing it to the above equation we obtain:

Jc =

∫
Ω×I

∆̄
`

n+1
: H−1

ε : ∆̄
`

n+1
dΩdt+

(
Q−1

`
f
`

)T
Q
`

(
Q−1

`
f
`

)
− 2

(
Q−1

`
f
`

)T
f
`

which is reduced to:
Jc =

∫
Ω×I

∆̄
`

n+1
: H−1

ε : ∆̄
`

n+1
dΩdt− f T

`
Q−1

`
f
`

From the above expression of Jc we can conclude that:

min Jc =⇒ max f T
`

Q−1

`
f
`

this means that the micro functions should be determined such as:

{n`} = max f T
`

Q−1

`
f
`

(5.49)
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The maximization of the equation (5.49) is complex since it requires knowledge of the matrix Q−1

`
, which

also depends on the micro functions. From the above we conclude that (5.49) must be solved iteratively,
however, this increases the complexity of the strategy as well as the computational cost, both because of
the iterative process and the inversion of the Q

`
in each iteration. To solve this limitation, we approximate

(5.49) as follows:
q` = f T

`
f
`
≈ f T

`
Q−1

`
f
`

(5.50)

This approximation allows not only the direct determination of the micro functions, but also a considerable
simplification for their determination. By neglecting the constant macro term (because it is not associated
to a micro function) the above expression is written as:

q` =
4∑

l=1

N∑̀
k=1

[∫
IMk,`

Rc`(t)Ψ
[k]
l ,`h

R
` (t) dt

]2

+

[∫
IMk,`

Rc`(t)Ψ
[k]
l ,`h

I
`(t) dt

]2

(5.51)

where we recall the index l which corresponds to each component of the cubic Hermite shape functions.
Although the equation (5.51) is the original functional to maximize, its maximization is numerically expen-
sive due to the large number of operations to be performed. From the above we proceed to maximize an
approximation of this functional, which is simply written as follows:

q` ≈
4∑

l=1

[∫
I
Rc`(t)Ψl ,`h

R
` (t) dt

]2

+

[∫
I
Rc`(t)Ψl ,`h

I
`(t) dt

]2

(5.52)

where we denoted Ψ` = Ψ
[k]
` , ∀k ∈ [1, ..., N`] to simplify the notations (since the shape functions are the

same due to the uniform macro discretization). This new expression eliminates the dependency on the
macro discretization, greatly reducing the number of operations. This approximation is not new, indeed it
was already used in the signal approximation technique in equation (5.27) to speed up the determination
of the characteristic periods. This approximation will be used all along the present section to obtain the
micro functions for the multiscale approach of the PGD functions.

The expression (5.52) still requires the definition of the micro functions. It is natural to realize that the
temporal solution of the PGD will have a pattern similar to that of the residual time function Rc`(t), in this
sense, it seems natural to construct the micro functions as follows:

hR
` (t) =

Nc,`∑
p=1

a(`)
p [Rc`(t)]R,p , hI

`(t) =

Nc,`∑
p=1

b(`)p [Rc`(t)]I,p (5.53)

By injecting the expression (5.53) into (5.52) we obtain:

q` ≈
4∑

l=1

Nc,`∑
p1=1

∫
Ip1,`

[Rc`(t)Ψl ,`]p1

Nc,`∑
p2=1

a(`)
p2

[Rc`(t)]R,p2
dt

2

︸ ︷︷ ︸
aT` N R

`
a`

+
4∑

l=1

Nc,`∑
p1=1

∫
Ip1,`

[Rc`(t)Ψl ,`]p1

Nc,`∑
p2=1

b(`)p2
[Rc`(t)]I,p2

dt

2

︸ ︷︷ ︸
bT` N I

`
b`

(5.54)
with:

a` =


a

(`)
1

a
(`)
2
...

aNc,`

 and b` =


b
(`)
1

b
(`)
2
...

b
(`)
Nc,`

 (5.55)
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The maximization of equation (5.54) simply consists in determining the vectors a` and b` such as they
maximize aT` N R

`
a` and bT` N I

`
b`, therefore those vectors are easily selected as the eigenvector of matri-

ces N R
`

and N I
`

associated to the their maximum eigenvalue.

Remark: Since we use the approximation (5.50), the micro functions are determined directly, this means
that once the micro functions are determined, the macro terms are simply calculated using (5.44), which
finalizes the multiscale approximation without the need for additional iterations.

5.3.1.2 Preliminary step: updating of the time functions

In this section, the preliminary resolution step, when applying the multiscale approximation is presented.
As stated at the beginning of this section and in the last chapter, the main idea is to actualize the temporal
PGD functions while maintaining the spatial one fixed. This process improves the convergence rate of the
LATIN solver and avoids the computation of a large quantity of PGD modes. The main problem consists
in finding the corrective temporal functions ∆λi ∀i ∈ [1, ...,m + 1] such that they minimize the CRE given
as follows (see chapter 4):

{∆λi}m+1
i=1 = arg min

{∆λi}m+1
i=1 ∈UT

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
m+1∑
i=1

σ̄
i
∆λi −Hε :

(
m+1∑
i=1

ε̄
i
∆λi

)
+ ∆

n+1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

H−1
ε

The idea herein consists in applying the new multiscale approximation for the determination of those cor-
rective functions.

• Macro functions determination:

First of all lets consider the calculation of the macro functions. To do so lets assume that the first ` − 1
sub-modes of the corrective functions have already been computed, this is:

{
∆λ̄i,`

}m+1

i=1
= arg min
{∆λ̄i,`}m+1

i=1 ∈UT

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
`−1∑
s=1

m+1∑
i=1

σ̄
i

(
∆λ̄i,s(t) + ∆λ̄i,`(t)

)
−Hε :

`−1∑
s=1

m+1∑
i=1

ε̄
i

(
∆λ̄i,s(t) + ∆λ̄i,`(t)

)
+ ∆

n+1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

H−1
ε

By rearranging the known and unknown terms, the last expression can be reduced to the main problem
that must be solved:

{
∆λ̄i,`

}m+1

i=1
= arg min
{∆λ̄i,`}m+1

i=1 ∈UT

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
m+1∑
i=1

σ̄
i
∆λ̄i,`(t)−Hε :

m+1∑
i=1

ε̄
i
∆λ̄i,`(t) + ∆̄

`

n+1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

H−1
ε

(5.56)

with the residual term given by:

∆̄
`

n+1
= ∆

n+1
+

`−1∑
s=1

m+1∑
i=1

(
σ̄
i
−Hε : ε̄

i

)
∆λ̄i,s(t) (5.57)

By minimizing the above expression we obtain:

∀δ∆λ̄i,` ∈ UT , ∀i ∈ [1, ...,m+ 1] ,

∫
I

m+1∑
i=1

m+1∑
j=1

δ∆λ̄i,`∆λ̄j,`A
c
ij dt =

∫
I

m+1∑
i=1

δ∆λ̄i,`R
c
i,`(t) dt (5.58)

where we recall below the definition of the following constants and temporal functions:
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∀(i, j) ∈ [1, ...,m+ 1] ,

Acij =

∫
Ω

(
σ̄
i
−Hε : ε̄

i

)
: H−1

ε :
(
σ̄
j
−Hε : ε̄

j

)
dΩ and Dc

i (t) = −
∫

Ω

(
σ̄
i
−Hε : ε̄

i

)
: H−1

ε : ∆
n+1

dΩ

and the residual functions:

∀i ∈ [1, ...,m+ 1] ,

Rci,`(t) = Dc
i (t)−

`−1∑
s=1

m+1∑
j=1

Acij λ̄j,s(t) (5.59)

By discretizing the temporal functions and introducing the new multiscale approximation (5.33), we obtain:

Q
up,`

Aup,` = f
up,`

(5.60)

where Aup,` correspond to the nodal values in time of the macro functions associated to all the actualized
modes at the sub-mode “`”.

Aup,` =


A1,`

A2,`
...

Am+1,`

 (5.61)

and the matrices and vectors given by:

Q
up,`

=


Q

11,`
Q

12,`
· · · Q

1 m+1,`

Q
21,`

. . .
...

Q
m+1 1,`

Q
m+1 m+1,`

 , f
up,`

=


f

1,`

f
2,`
...

f
m+1,`


with:

∀(i, j) ∈ [1, ...,m+ 1] ,

Q
ij,`

=

N⊕̀
k=1

∫
IMk,`

ni,`n
T
j,` ⊗Ψ

[k]
` (Ψ

[k]
` )TAcij dt and f

i,`
=

N⊕̀
k=1

∫
IMk,`

(
I ⊗Ψ

[k]
`

)
ni,`R

c
i,`(t) dt (5.62)

• Micro functions determination:

Equation (5.60) gives the best macro functions for a given group of micro functions. The micro functions
are determined following the same ideas as exposed in section 5.3.1.1 for the enrichment step. In this
sense, we consider again the CRE (5.56):

Jc =

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
m+1∑
i=1

σ̄
i
∆λ̄i,`(t)−Hε :

m+1∑
i=1

ε̄
i
∆λ̄i,`(t) + ∆̄

`

n+1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

H−1
ε

By developing the expression of Jc we have:

Jc =

∫
Ω×I

∆̄
`

n+1
: H−1

ε : ∆̄
`

n+1
dΩdt+

m+1∑
i=1

m+1∑
j=1

∆λ̄i,`(t)∆λ̄j,`(t)A
c
ijdt− 2

m+1∑
i=1

∆λ̄i,`(t)R
c
i,`(t)dt (5.63)
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By introducing the macro and micro approximation and using the result of equation (5.60) we obtain:

Jc =

∫
I×Ω

∆̄
`

n+1
: H−1

ε : ∆̄
`

n+1
dΩdt− f T

up,`
Q−1

up,`
f
up,`

From the above expression we can conclude that the minimization of Jc is achieved when the second
term on the right is maximized, this is:

min Jc =⇒ max f T
up,`

Q−1

up,`
f
up,`

this means that the micro functions must be determined such as:

∀i ∈ [1, ...,m+ 1] , {
ni,`
}

= max f T
up,`

Q−1

up,`
f
up,`

As for the enrichment step case, the following approximation is considered in order to avoid an iterative
calculation of the micro functions:

g` = f T
up,`

f
up,`
≈ f T

up,`
Q−1

up,`
f
up,`

which can be simplified following the same ideas as for the enrichment step case as follows:

g` ≈
m+1∑
i=1

4∑
l=1

[∫
I
Rci,`(t)Ψl ,`h

R
i,`(t) dt

]2

+

[∫
I
Rci,`(t)Ψl ,`h

I
i,`(t) dt

]2

(5.64)

In the same way as in the enrichment step, we propose the micro functions to be constructed as follows:

∀i ∈ [1, ...,m+ 1] ,

hR
i,`(t) =

Nc,`∑
p=1

a
(`)
i,p

[
Rci,`(t)

]
R,p , hI

i,`(t) =

Nc,`∑
p=1

b
(`)
i,p

[
Rci,`(t)

]
I,p (5.65)

By injecting the micro functions of expression (5.65) into (5.64) we finally obtain:

g` ≈
m+1∑
i=1

aTi,`N
R
i,`

a i,` + bTi,`N
I
i,`

bi,` (5.66)

with:

∀i ∈ [1, ...,m+ 1] ,

aTi,`N
R
i,`

a i,` =
4∑

l=1

Nc,`∑
p1=1

∫
Ip1,`

[
Rci,`(t)Ψl ,`

]
p1

Nc,`∑
p2=1

a
(`)
i,p2

[
Rci,`(t)

]
R,p2

dt

2

bTi,`N
I
i,`

bi,` =

4∑
l=1

Nc,`∑
p1=1

∫
Ip1,`

[
Rci,`(t)Ψl ,`

]
p1

Nc,`∑
p2=1

b
(`)
i,p2

[
Rci,`(t)

]
I,p2

dt

2

where the vector that contains the constants for each mode i that are defined as a i,` and bi,` are deter-
mined by calculating the eigenvector of matrices N R

i,`
and N I

i,`
associated to the their maximum eigen-

value.
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5.3.2 Temporal multiscale approach applied to elasto-visco-plasticity

In the same way as presented for the case of isotropic damage, in this section the new multiscale approx-
imation is applied to the global stage when considering elasto-visco-plasticity. For this material behavior
the principal variables that must be determined correspond to the plastic deformation εp(x, t) , the stress
σ(x, t), total deformation ε(x, t) and the internal variables X(x, t), that are composed of the kinematic and
isotropic hardening α and r̄ respectively. Therefore, the quantities that must be determined at the global
stage at LATIN iteration n+ 1 are given by the following solution set:

Sn+1 = {un+1, εn+1
, σ

n+1
, εp
n+1

, β
n+1

, α
n+1

, r̄n+1, R̄n+1} (5.67)

[
ε̇p, Ẋ

]

[
σ, Z

]

Ad

Γ

�
S̄

•
Sn

•
Ŝn+1/2

•
Sn+1

A

Figure 5.14: Calculation of the global solution of space Ad.

This solution set must verify the admissibility conditions of the problem and at the same time the descent
search direction as illustrated in figure 5.14, which is given below:

A :

{[
ε̇p
n+1
− ˆ̇εpn+1/2

−(Ẋ
n+1
− ˆ̇X

n+1/2
)

]
−H :

[
σ
n+1
− σ̂

n+1/2

Z
n+1
− Ẑ

n+1/2

]
= 0 (5.68)

As presented in chapter 4, the unknown to be determined in the global stage corresponds to the corrective
solution set ∆Sn+1, such that:

Sn+1 = ∆Sn+1 + Sn
with the corrective term solution given by:

∆Sn+1 = {∆un+1,∆εn+1
,∆σ

n+1
,∆εp

n+1
,∆β

n+1
,∆α

n+1
,∆r̄n+1,∆R̄n+1} (5.69)

This corrective solution set must be determined such that the distance between the global and local stages
solution is minimized. To this end, by using the descent search direction, the following constitutive relation
errors are defined:

Jp =
∣∣∣∣∣∣∣∣∣∆ε̇p

n+1
−Hσ : ∆σ

n+1
+ ∆

n+1

∣∣∣∣∣∣∣∣∣2
H−1
σ

(5.70)

Jα =
∣∣∣∣∣∣∣∣∣∆α̇

n+1
+ Hβ : (C∆α

n+1
) + ∆α

n+1

∣∣∣∣∣∣∣∣∣2
H−1
β

(5.71)

J r̄ =
∣∣∣∣∣∣∆ ˙̄rn+1 +HR̄R∞∆r̄n+1 + ∆r̄

n+1

∣∣∣∣∣∣2
H−1
R̄

(5.72)
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with the residual terms and the used norms given by:

∆
n+1

= ε̇p
n
− ˆ̇εp

n+1/2

∆α
n+1

= α̇
n
− ˆ̇α

n+1/2

∆r̄
n+1 = ˙̄rn − ˆ̄̇rn+1/2

,

|||·|||2H−1
σ

=

∫
Ω×I

(·) : H−1
σ : (·) dΩdt

|||·|||2H−1
β

=

∫
Ω×I

(·) : H−1
β : (·) dΩdt

|||·|||2
H−1
R̄

=

∫
Ω×I

(·) : H−1
R̄

: (·) dΩdt

As for the isotropic damage case the global stage solution is calculated in an approximate and inexpensive
way using the PGD, which allows to express the global quantities as a low-rank decomposition:

un(x, t) =

m∑
i=1

ūi(x)λi(t) + u0(x, t)

ε
n
(x, t) =

m∑
i=1

ε̄
i
(x)λi(t) + ε

0
(x, t)

σ
n
(x, t) =

m∑
i=1

σ̄
i
(x)λi(t) + σ

0
(x, t)

,

ε̇p
n
(x, t) =

m∑
i=1

ε̄p
i
(x)λ̇i(t)

α̇
n
(x, t) =

m∑
i=1

ᾱ
i
(x)λ̇αi (t)

˙̄rn(x, t) =

m∑
i=1

¯̄ri(x)λ̇r̄i (t)

As explained previously, this low-rank approximation is constructed at the enrichment and preliminary
steps. The sections that follows present the temporal multiscale approximation applied to both steps. The
procedure that will be exposed below follows the same ideas as exposed for the case of isotropic damage,
however, the multiscale approximation applied to elasto-visco-plasticity is far more complicated since the
constitutive relation is written in rate form. This makes necessary not only the correct construction of the
micro and macro functions, but also their time derivatives. All these details are exposed below.

5.3.2.1 Enrichment step: computation of the temporal PGD functions

On the enrichment step, the rank of the PGD approximation is increased and only one PGD mode is de-
termined. On this step a spatial and temporal problem must be solved as presented in previous chapters,
however this section only focus on the resolution of the temporal problem by applying the new multiscale
approximation. In this sense, the corrective terms of equation (5.69) are approximated by a rank-one
decomposition, this is:

∆un+1 = un+1 − un = ūm+1(x)λm+1(t)

∆ε
n+1

= ε
n+1
− ε

n
= ε̄

m+1
(x)λm+1(t)

∆σ
n+1

= σ
n+1
− σ

n
= σ̄

m+1
(x)λm+1(t)

,

∆ε̇p
n+1

= ε̇p
n+1
− ε̇p

n
= ε̄p

m+1
(x)λ̇m+1(t)

∆α̇
n+1

= α̇
n+1
− α̇

n
= ᾱ

m+1
(x)λ̇αm+1(t)

∆ ˙̄rn+1 = ˙̄rn+1 − ˙̄rn = ¯̄rm+1(x)λ̇r̄m+1(t)

(5.73)

The space and temporal PGD functions are determined such that they minimize the constitutive relation
errors defined in equations (5.70), (5.71) and (5.72). The sections that follows present the calculation of
the temporal PGD functions of equation (5.73) by applying the new multiscale approximation.

5.3.2.1.1 Temporal PGD function associated to the admissibility problem

Once the space functions ūm+1, σ̄
m+1

and ε̄p
m+1

of the corrective terms (5.73) are computed, the temporal
function λm+1 is calculated by minimizing the CRE (5.70), this is:

{λm+1} = arg min
λm+1∈UT

∣∣∣∣∣∣∣∣∣ε̄p
m+1

λ̇m+1 −Hσ : σ̄
m+1

λm+1 + ∆
n+1

∣∣∣∣∣∣∣∣∣2
H−1
σ

(5.74)
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In order to alleviate the notations in what follows we write λ = λm+1, ε̄p = ε̄p
m+1

and σ̄ = σ̄
m+1

. In the
following the determination of the macro and micro functions of the multiscale approximation applied to
the temporal PGD function are presented.

• Macro functions determination:

First, we will determine the macro functions. For this purpose, we consider that the ` − 1 temporal sub-
modes are already determined, therefore we can write:

{
λ̄`
}

= arg min
λ̄`∈UT

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ε̄p
(
`−1∑
s=1

˙̄λs + ˙̄λ`

)
−Hσ : σ̄

(
`−1∑
s=1

λ̄s + λ̄`

)
+ ∆

n+1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

H−1
σ

(5.75)

By rearranging the different terms, we obtain the problem to be solved:

{
λ̄`
}

= arg min
λ̄`∈UT

∣∣∣∣∣∣∣∣∣ε̄p ˙̄λ` −Hσ : σ̄λ̄` + ∆̄
`

n+1

∣∣∣∣∣∣∣∣∣2
H−1
σ

(5.76)

with:

∆̄
`

n+1
= ∆

n+1
+

`−1∑
s=1

(
ε̄p ˙̄λs −Hσ : σ̄λ̄s

)
(5.77)

By developing the minimization problem we obtain:

∀δλ̄` ∈ UT , ∫
I
δ ˙̄λ`

(
˙̄λ`A

11 + λ̄`A
10
)

+ δλ̄`

(
˙̄λ`A

01 + λ̄`A
00
)
dt =

∫
I
δ ˙̄λ`R

1
` (t) + δλ̄`R

0
` (t) dt (5.78)

with the temporal residual functions given by:

R1
` (t) = D1(t)−

`−1∑
s=1

(
˙̄λsA

11 + λ̄sA
10
)

(5.79)

R0
` (t) = D0(t)−

`−1∑
s=1

(
˙̄λsA

01 + λ̄sA
00
)

(5.80)

where the constants and temporal functions are given by:

A11 =

∫
Ω
ε̄p : H−1

σ : ε̄p dΩ

A10 = −
∫

Ω
ε̄p : σ̄ dΩ

A01 = −
∫

Ω
σ̄ : ε̄p dΩ

A00 =

∫
Ω

(Hσ : σ̄) : σ̄ dΩ

,

D1(t) = −
∫

Ω
(ε̄p : H−1

σ : ∆
n+1

) dΩ

D0(t) =

∫
Ω
σ̄ : ∆

n+1
dΩ

By discretizing equation (5.78) using the multiscale approximation of the temporal PGD function (5.30)
and its derivative (5.31), we obtain:

Q
`

A` = f
`

(5.81)
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with the discretized matrix and vector given by:

Q
`

=

N⊕̀
k=1

∫
IMk,`

[(
ṅ`ṅ

T
` ⊗Ψ

[k]
` (Ψ

[k]
` )T

)
+
(
ṅ`n

T
` ⊗Ψ

[k]
` (Ψ̇

[k]

` )T
)

+
(
n`ṅ

T
` ⊗ Ψ̇

[k]

` (Ψ
[k]
` )T

)
+
(
n`n

T
` ⊗ Ψ̇

[k]

` (Ψ̇
[k]

` )T
)]
A11

+
[(
ṅ`n

T
` ⊗Ψ

[k]
` (Ψ

[k]
` )T

)
+
(
n`n

T
` ⊗ Ψ̇

[k]

` (Ψ
[k]
` )T

)]
A10 +

[(
n`ṅ

T
` ⊗Ψ

[k]
` (Ψ

[k]
` )T

)
+
(
n`n

T
` ⊗Ψ

[k]
` (Ψ̇

[k]

` )T
)]
A01

+
[
n`n

T
` ⊗Ψ

[k]
` (Ψ

[k]
` )T

]
A00 dt

(5.82)

f
`

=

N⊕̀
k=1

∫
IMk,`

[(
I ⊗Ψ

[k]
`

)
ṅ` +

(
I ⊗ Ψ̇

[k]
`

)
n`

]
R1
` (t) +

(
I ⊗Ψ

[k]
`

)
n`R

0
` (t) dt (5.83)

Of course, the above resolution still depends on the micro functions which have to be determined, this
procedure is exposed below.

• Micro functions determination:

The discretized equation (5.81) gives the best macro functions for a given micro ones. The micro functions,
on the other hand, are determined such that they minimize the CRE. In this sense, lets consider the error
to minimize:

Jp =
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which full expression is given by:
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By developing and simplifying the terms we obtain:
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By introducing the discretized multiscale approximation of the temporal PGD function along with the solu-
tion of the macro functions that minimize the CRE into the above expression we obtain:

Jp =

∫
Ω×I

∆̄
`

n+1
: H−1

σ : ∆̄
`

n+1
dΩdt− f T

`
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`
f
`

(5.86)

The above expression is equivalent to the one obtained in the isotropic damage case, therefore the micro
functions must be calculated such that:

{n`} = max f T
`

Q−1

`
f
`

As explained for the case of isotropic damage, the following approach is taken to calculate the micro
functions directly (to avoid an iterative resolution strategy by avoiding the term Q−1

`
):

q` = f T
`

f
`
≈ f T

`
Q−1

`
f
`
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Whose approximation is given by:
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(5.87)
It should be noted that the expression (5.87) implies the use of the micro functions and their derivatives
in time, which increases the complexity for their determination. If we follow the same argument stated
for the isotropic damage case, here we find two possible candidate functions for the construction of the
micro terms, R1

` (t) and R0
` (t), both residual functions given in (5.79) and (5.80) respectively. Both can be

chosen, however, in this thesis work we consider the function R1
` (t), this implies that:
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By injecting the expression of the micro functions (5.88) into (5.87) we finally obtain:

q` ≈
4∑

l=1

Nc,`∑
p1=1

∫
Ip1

[
Ψl ,`R

1
` (t)
]
p1

Nc,`∑
p2=1

a(`)
p2

[
R1
` (t)
]

I,p2
+
[
Ψ̇l ,`R

1
` (t) + Ψl ,`R

0
` (t)
]
p1

(

Nc,`∑
p2=1

a(`)
p2

∫ [
R1
` (t)
]

I,p2
dt) dt

2

︸ ︷︷ ︸
aT` N R

`
a`

+
4∑

l=1

Nc,`∑
p1=1

∫
Ip1

[
Ψl ,`R

1
` (t)
]
p1

Nc,`∑
p2=1

b(`)p2

[
R1
` (t)
]

R,p2
+
[
Ψ̇l ,`R

1
` (t) + Ψl ,`R

0
` (t)
]
p1

(

Nc,`∑
p2=1

b(`)p2

∫ [
R1
` (t)
]

R,p2
dt)dt

2

︸ ︷︷ ︸
bT` N I

`
b`

(5.89)

where the vectors a` and b` are determined by calculating the eigenvector of matrices N R
`

and N I
`

asso-
ciated to the their maximum eigenvalue. Once the unknown vectors determined, the micro functions are
completely defined, and therefore the macro functions can be computed using equation (5.81).

5.3.2.1.2 Internal variables

As shown in chapter 4, the temporal PGD functions related to the internal variables are also determined
such that they minimize their respective CRE:

{λαm+1} = arg min
λαm+1∈UT

∣∣∣∣∣∣∣∣∣ᾱ
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(5.90)
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(5.91)

The resolution of the above problems is completely equivalent to the resolution of the temporal func-
tion associated to the admissibility problem (λm+1), therefore the presentation of the temporal multiscale
approximation applied to the internal variables quantities is omitted.
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5.3.2.2 Preliminary step: updating of the time functions

The development of the macro and micro problems in the preliminary stage applied to elasto-visco-
plasticity follows the same rules exposed for the isotropic damage case; in this sense, in order to ease the
presentation of the multiscale strategy, the details of the preliminary stage applied to elasto-visco-plasticity
are presented in the appendix D.

5.4 Numerical examples

This section presents numerical examples illustrating the new multiscale time approach, which is com-
pared with the LATIN-PGD version using the Time Discontinuous Galerkin method presented in chapter
4. These examples consider isotropic damage and elasto-visco-plastic material behaviors, where in both
cases the same 3D bending beam used in chapter 4 is considered, this in order to simplify the test and put
a special focus on the new strategy. The numerical tests therefore consist in a beam where a displacement
is imposed in both-end sides as shown in figure 5.15.

y

z

d2

d3

x

y

z

0
uDz (t)

uDz (t)

d1

Figure 5.15: Test case considered, along with its dimensions.

We recall (as given in chapter 4) that the beam dimensions for the isotropic damage case are d1 =
8 [m], d2 = d3 = 0.3 [m], while for elasto-visco-plasticity they are d1 = 6 [m], d2 = d3 = 0.1 [m].

The purpose of the following results is entirely academic, where signals of relatively short duration in time
are considered, the latter in order to better illustrate the strategy. More computationally intensive cases
are left as a perspective, as many optimizations still need to be developed. The following results consider
the following micro-macro relation:

∆T`
τ`

= 3 , ∀` (sub-mode)

The LATIN thresholds considered to converge are chosen differently for the case of isotropic damage and
elasto-visco-plasticity. This because isotropic damage requires a lower indicator than the elasto-visco-
plasticity to produce accurate results compared to classical nonlinear incremental solvers as shown in
chapter 4. In this sense, the following table resumes the LATIN threshold considered for each case.

Constitutive relation LATIN error threshold
Isotropic damage 0.5 [%]

Elasto-visco-plasticity 1 [%]

Table 5.1: LATIN error threshold considered for each material behavior.

On the other hand, in the cases where a complex excitation is considered, the error threshold for the signal
approximation (to determine the characteristic periods) is considered equal to 2 [%]. This choice is based
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on empirical results, which show that a good signal approximation can be obtained while maintaining a
low number of sub-modes.

5.4.1 Isotropic damage example

For the exemplification of the method, herein we will consider as first example the same monoperiodic
excitation as presented in section 4.6.1 but with a smoother increase of the amplitude to allow a better
multiscale approximation. This imposed displacement is shown in figure 5.16.

Figure 5.16: Imposed displacement.

The multiscale signal approximation for this case requires only one temporal sub-mode, with a character-
istic period equal to the excitation period, which is given by:

τ = 0.33 [s]

Under these conditions, the DOFs of the temporal domain associated to each of the classic and multiscale
version of the LATIN-PGD are presented in table 5.2. These DOFs are separated in the FEM for the
classical discretization of the temporal domain and the DOFs related to the resolution of the macro and
micro functions of the multiscale strategy.

Solver FEM DOFs DOFs of micro problem ( Sym + Asym )
Classic LATIN-PGD 1800 0

Multiscale LATIN-PGD 36 24

Table 5.2: Temporal DOFs.

When applying the multiscale approximation for the resolution of the first temporal PGD mode, a group
of micro and macro functions are obtained. In this simple case figure 5.17 shows the symmetric and
antisymmetric micro functions obtained for the first temporal PGD mode. These plots only show the
function over a temporal interval equal to the characteristic time for a better visualization of them, which
in this case corresponds to 0.33 [s], however the micro functions are defined and repeated all along the
whole time interval. The macro functions in turn are shown in figure 5.18.
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(a) Micro symmetric function. (b) Micro antisymmetric function.

Figure 5.17: Micro functions.

(a) Macro symmetric term. (b) Macro antisymmetric term. (c) Macro free term.

Figure 5.18: Macro functions.

A comparison between the classic and the multiscale time functions are exposed in figure 5.19.

(a) Classic PGD time function. (b) Multiscale PGD time function.

Figure 5.19: Comparison between the classic and the multiscale PGD approximation.
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Even if the temporal multiscale approximation introduced some errors due to the multiscale interpolation,
the iterative resolution of the LATIN-PGD makes this approach converge towards the final solution without
difficulty. This can be seen in figure 5.20 where a comparison of both resolution strategies is shown for
the evolution of the damage variable over the most solicited integration point in space.

Figure 5.20: Damage evolution comparison between a classic and a multiscale temporal resolution ap-
proach.

The LATIN error versus the number of PGD modes obtained by the multiscale approximation is compared
against the classic strategy in figure 5.21. An interesting point to be noticed is the difference in the number
of modes needed to converge, showing that the convergence of the LATIN method is very sensitive on
how the low-rank approximation is constructed.

(a) Classic LATIN-PGD (b) Multiscale LATIN-PGD

Figure 5.21: LATIN error vs number of PGD modes for the classic and multiscale temporal resolution.

Table 5.3 summarizes the computational times required for both strategies.
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Solver Computing time
Classic LATIN-PGD 2.3 minutes

Multiscale LATIN-PGD 2 minutes

Table 5.3: Time comparison for the case of isotropic damage.

The first example is the simplest when applying the multiscale approach, because the external excitation
is monoperiodic. In order to carry out the method for a more general case, in the following we imposed to
the structure a seismic signal which is shown in figure 5.22a.

(a) (b)

Figure 5.22: (a) Imposed displacement and (b) its approximation using the multiscale signal approach.

After the application of the signal approximation method presented in section 5.2, the signal of figure 5.22b
is obtained, where the following 5 characteristic periods are obtained:

τ =
[
0.24 [s], 0.36 [s], 0.52 [s], 0.68 [s], 0.92 [s]

]
(5.92)

The temporal DOFs under this new situation are exposed below in table 5.4.

Solver FEM DOFs DOFs of micro problem ( Sym + Asym )
Classic LATIN-PGD 4000 0

Multiscale LATIN-PGD 498 438

Table 5.4: Comparison of DOFs in time.

As can be seen in table 5.4, due to the larger number of characteristic periods obtained from the external
excitation, the number of degrees of freedom associated with the multiscale approach increased consider-
ably compared to the single-period case. In spite of this, the multiscale approach also allows to drastically
reduce the DOFs to be determined compared to the classical method.

Figure 5.32 shows the temporal functions obtained for the first PGD mode when using the classic and the
new multiscale strategy.
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(a) Classic PGD time function. (b) Multiscale PGD time function.

Figure 5.23: Comparison between the classic and the multiscale PGD approximation of the first temporal
PGD function λ1(t).

From the figure above it can be seen that the multiscale method manages to correctly approximate the
PGD time function in the case of a multi-periodic external excitation. As presented in previous sections, in
the multi-periodic case the functions are approximated as the sum of sub-modes, in this sense the figure
5.24 shows the first 3 sub-modes obtained for the approximation of the function shown in figure 5.23b.

Figure 5.24: First 3 temporal multiscale sub-modes of the first temporal PGD function λ1(t).

The computational times needed for the resolution of the reference problem are summarized in table 5.5.

Solver Computing time
Classic LATIN-PGD 5.5 minutes

Multiscale LATIN-PGD 5 minutes

Table 5.5: Time comparison for the case of isotropic damage.
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Finally, figure 5.25 shown the curves of LATIN error versus the number of PGD modes for the classical
and the multiscale approaches.

(a) Classic LATIN-PGD (b) Multiscale LATIN-PGD

Figure 5.25: LATIN error vs number of PGD modes for the classic and multiscale temporal resolution.

5.4.2 Elasto-visco-plasticity example

To illustrate the temporal multiscale approximation for the case of elasto-visco-plasticity, we reconsider the
same monoperiodic external excitation as presented in the numerical example of section 4.6.2, but with a
smoother increase of the amplitude to allow a better multiscale approximation:

Figure 5.26: Imposed displacement.

This input signal have the same number of temporal DOFs as presented in table 5.2 for the case of
isotropic damage and the same characteristic time (τ = 0.33 [s]). In this situation when applying the
multiscale approach for the determination of the first temporal PGD function we obtain the following micro
functions presented in figure 5.27. On the other hand the macro functions obtained are shown in figure
5.28.
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(a) Micro symmetric function. (b) Micro antisymmetric function.

Figure 5.27: Micro functions.

(a) Macro symmetric term. (b) Macro antisymmetric term. (c) Macro free term.

Figure 5.28: Macro functions.

Figure 5.29 shows a comparison between the first classical time PGD function and the multiscale one.

(a) Classic PGD time function. (b) Multiscale PGD time function.

Figure 5.29: Comparison between the classic and the multiscale approximation of the first temporal PGD
function λ1(t).
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The multiscale approximation as for the case of isotropic damage have no difficulties in converging to the
final solution, a comparison of the classic and multiscale LATIN error versus the number of PGD modes
are shown in figure 5.30.

(a) Classic LATIN-PGD (b) Multiscale LATIN-PGD

Figure 5.30: LATIN error vs number of PGD modes for the classic and multiscale temporal resolution.

Finally, the computational times for the resolution of the reference problem are given in table 5.6.

Solver Computing time
Classic LATIN-PGD 2.8 minutes

Multiscale LATIN-PGD 2.1 minutes

Table 5.6: Time comparison for the case of elasto-visco-plasticity.

The temporal multiscale strategy is also applicable for a complex signal excitation. In the following we
consider that the imposed displacement uDz (t) is given by the signal shown in figure 5.31a, which is
created artificially by the sum of several sinusoidal contributions.

(a) (b)

Figure 5.31: (a) Imposed displacement and (b) its approximation using the multiscale signal approach.
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The characteristic period needed for the approximation of the signal 5.31a are given by:

τ =
[
0.13 [s], 0.2 [s], 0.24 [s], 0.27 [s], 0.39 [s], 0.68 [s]

]
(5.93)

Under this situation, the DOFs associated to each resolution strategy is presented in table 5.7.

Solver FEM DOFs DOFs of micro problem ( Sym + Asym )
Classic LATIN-PGD 4000 0

Multiscale LATIN-PGD 540 468

Table 5.7: Comparison of DOFs in time.

The approximation of the first temporal PGD function related to the stress and plastic deformation can be
seen in figure 5.32 where the derivative of the PGD function is presented against the classic resolution
result.

(a) Derivative of classic PGD time function. (b) Derivative of multiscale PGD time function.

Figure 5.32: Comparison between the classic and the multiscale approximation for λ̇1(t).

Figure 5.33: First 3 temporal multiscale sub-modes of λ̇1(t).

138



5.4. Numerical examples

In addition, figure 5.33 presents the first three derivative sub-modes of the approximation, where the red
dots indicate the macro discretization.

Even if the approximation introduces some bifurcations or noise, the presented strategy fix those errors
iteratively, therefore the convergence to the final solution is not affected, this can be verified by inspecting
the curves of figure 5.34, which show the LATIN error versus the number of PGD modes required for both
classic and multiscale approximations.

(a) Classic LATIN-PGD (b) Multiscale LATIN-PGD

Figure 5.34: LATIN error vs number of PGD modes for the classic and multiscale temporal resolution.

Finally, the computational times required for the resolution of the problem are resumed in table 5.8.

Solver Computing time
Classic LATIN-PGD 10.18 minutes

Multiscale LATIN-PGD 10.1 minutes

Table 5.8: Time comparison for the case of elasto-visco-plasticity.

5.4.3 Conclusions on the numerical results

From the results presented in the previous section, two important points can be highlighted; (i) the drastic
decrease in the temporal DOFs to be solved and (ii) the performance of the multiscale strategy, these
points are detailed below.

(i) Decrease of the temporal DOFs:

In general, the number of DOFs needed to be solved decreases for all the numerical test performed,
achieving a large reduction when a monoperiodic external excitation is considered for both the isotropic
and the elasto-visco-plasticity case as shown in table 5.2 (both tests have the same TDGM and multiscale
DOFs). Obtaining 1800 DOFs for the TDGM and only 60 for the multiscale approach (36 for the determi-
nation of the macro functions and 24 for the micro ones). However, the number of DOFs increases with
the complexity of the input signal, which is related to the higher number of signal sub-modes needed to
approximate the external excitation (see section 5.2). Of course, this increase in DOFs is directly related
to the selected micro-macro ratio, which in the above examples has a fixed value of 3 for all the cases,
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but other values could be used, modifying in this sense the number of DOFs. In this aspect, the new
multiscale approach achieves very well the goal of reducing the temporal DOFs to be determined at each
global stage of the LATIN-PGD method, overcoming one of the main limitation when solving large time
duration problems in the context of the LATIN-PGD method.

(ii) Performance of the strategy:

Regarding computational times, the numerical tests performed for both isotropic damage and elasto-visco-
plasticity allow a slight computational saving when using the multiscale approach. However, as can be
seen from the curves of error versus number of modes for each case, the main reason is due to the
smaller number of PGD modes needed to converge. The difference in the number of PGD modes in the
convergence is due to the construction quality of the time functions, which affect the iterative processes
such as the fixed-point technique in the enrichment step, as well as the stagnation of the updated time
functions in the preliminary step, which consequently affect the convergence ratio of the LATIN-PGD
method.

The computational savings related to temporal resolution using the multiscale approach is negligible com-
pared to the TDGM, mainly due to the short temporal duration of all test cases. Moreover, as presented in
chapter 4, the TDGM solves the temporal problem incrementally, which makes it a really efficient method.
In contrast, the multiscale method (as developed in this chapter in order to improve the continuity of the
approximation) uses a continuous approach in its macro FEM formulation, so its resolution is less efficient
than a discontinuous approach and, therefore, reducing the computational time compared to the TDGM
is really difficult. However, the comparison of the multiscale strategy with the TDGM was done in order to
show that even a method as efficient as the TDGM is not more effective than the multiscale method, even
when dealing with problems of relatively short duration.

Another interesting point of the temporal multiscale approximation is the number of LATIN iterations
needed to converge. In general, due to the multiscale approximation of the temporal PGD functions,
the number of iterations performed in the enrichment and preliminary steps are increased. This is the rea-
son why, although fewer PGD modes are needed to converge when using the multiscale approximation,
the computational times are very close to the classical LATIN-PGD using the TDGM. For instance, let us
consider the complex input excitation for the elasto-visco-plasticity case, where the computational times
are given in table 5.8. When using the multiscale approach the problem converges in 10 modes while the
classical approach required 14, as shown in figure 5.34. However, the multiscale approach required 58
LATIN iterations to converge, while the classical approach required 59. The latter means that the multi-
scale approach required on average 6 iterations for each mode, while the classical approach required only
4. This phenomenon of increasing the number of LATIN iterations for each PGD mode calculated when
using the multiscale method is repeated in all the numerical tests performed. This is a disadvantage, since
in the view of solving problems in which the time domain is very large, an increase in the number of LATIN
iterations would mean a considerable increase in the computational cost, due to the additional operations
to be performed in both the local and global stages.

5.5 Conclusions

The LATIN method together with the PGD has managed to reduce the computational costs when solving
nonlinear problems. Despite this advantage there are still certain problems that the LATIN-PGD cannot
address due to its high computational cost, for instance, when the external excitation have a rich frequency
content and it have a large duration in time like fatigue loads or seismic excitations. In these cases, the
large temporal domain induce that a large number of temporal degrees of freedom must be determined at
each global stage of the LATIN-PGD method, reducing in this way its performance.
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In this context, a new temporal multiscale approximation has been introduced in this chapter with the ob-
jective of improving the efficiency of the temporal resolution at the global stage of the LATIN-PGD method.
The main idea of this strategy consists in first determining some very important parameters called charac-
teristic periods, that are obtained from the imposed external excitation which represent the periods of the
different repeating patterns in the signal. These characteristic periods are determined by approximating
the external excitation using a multiscale approach, which approximates the reference signal as the sum
of functions with macro and micro behavior, where the micro functions correspond to sinusoids and the
macro terms to polynomial functions that have a slow evolution in time. Once the characteristic periods
are determined, these parameters are used to approximate the temporal PGD functions in the global
stage of the LATIN method. The temporal PGD functions are also approximated using two time scales,
one macro and one micro, but in this case the micro functions differ from the sinusoids and must be prop-
erly determined using the assumption that the different micro functions have a periodicity equals to the
characteristic periods associated with the external excitation. Once the micro functions are determined,
the associated macro terms are calculated. This new multiscale strategy was applied for two different
constitutive relations, the isotropic damage for concrete materials and elasto-visco-plasticity for metals,
where the difficulties and the mathematical framework associated with each of them were exposed.

This method allows to reduce the total number of DOFs associated with the time resolution when dealing
with long duration input excitations, which is achieved due to the coarse discretization needed for the
approximation of the macro terms and the few DOF needed for the determination of the micro functions.
However, as discussed in section 5.4.3, the multiscale approximation tends to increase the LATIN itera-
tions needed to compute each PGD mode on average, which is a disadvantage if long duration external
excitations are considered where several PGD modes should be determined to reproduce the final solu-
tion. The latter is due to the additional local and global stages that need to be solved for the additional
LATIN iterations, which in the context of large time domains translates into large operations for the consti-
tutive relation evaluation in the local stage, as well as costly spatio-temporal integration operations in the
global stage at the enrichment and preliminary steps.

It follows from the above that in order to really improve LATIN-PGD when dealing with large time domains
two aspects need to be optimized. The first one consists in the improvement of the multiscale approach
to reduce the supplementary LATIN iterations and secondly, dedicated strategies must be developed to
decrease the cost of each LATIN iteration. The first point is left as a perspective for future developments,
where different strategies can be included to the multiscale approach to improve its construction, such
as a better construction of the micro functions, or the introduction of the TDGM formulation to obtain the
macro terms. The second point, is discussed in the next chapter 6, where a hyper-reduction technique is
considered to speed up the evaluation of the local stage and the spatio-temporal integrations in the global
stage.

The new multiscale strategy still needs to be refined and improved. Nevertheless, the multiscale method
presented in this chapter proves to be a robust method, allowing the multiscale approximation of complex
responses over time for both isotropic damage and elasto-visco-plasticity. The ideas presented in this
chapter are not only intended to deliver a solution to optimize the LATIN-PGD method, but also to provide
a new framework for the treatment of nonlinear problems where the external excitation has a large time
duration and complex behavior. Where these ideas can serve for future developments that could allow
further optimization of the time resolution in the LATIN-PGD method.
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Chapter 6

Hyper-reduction technique applied to the
LATIN-PGD method

As shown in chapter 4, the LATIN-PGD allows a reduction in the computational expenses
when solving low-frequency dynamics nonlinear problems. Additionally, chapter 5 adapted
the temporal resolution at the global stage when dealing with large temporal excitations
with complex behavior by introducing a new multiscale resolution. Both developments aim
at optimizing the LATIN-PGD method, however, reducing only the cost of the global stage
resolution is not enough to achieve a high-performance solver. Due to the global resolu-
tion strategy of the LATIN method, a big part of the solver’s cost is indeed related to the
evaluation of the constitutive relation and the integrals over the space and time needed for
the calculation of the low-rank PGD decomposition. To reduce this expenses, this chapter
introduces a hyper-reduction technique based on the Gappy POD principle to compute the
constitutive relations on the entire space-time domain as a low-rank approximation. This
approach allows not only a faster evaluation of the constitutive relations, but also faster
iterations of the LATIN method, since the spatio-temporal integrals involved for the con-
struction of the PGD approximation are simplified. The chapter ends with an application
in elasto-visco-plasticity comparing the classical LATIN-PGD implementation with the new
version including hyper-reduction.
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6.1 Introduction

As seen in previous chapters, the computational cost related to the global stage resolution is greatly re-
duced by using the PGD, however, the local stage remains unchanged, where a direct calculation of the
constitutive relations is simply performed. This classical resolution strategy have a deep inconvenient
when solving problems defined on large space-time domains. In fact, as exposed in [Capaldo, 2015],
when the spatio-temporal domain becomes large, the numerical overhead of the LATIN-PGD increases
drastically due to the amount of data to be handled and operated at each iteration (in addition to the
cost related to the global stage resolution). The last is due to the fact that in each LATIN iteration a
large number of evaluations at each integration point of the spatio-temporal domain must be performed
to evaluate the constitutive relations at the local stage, as well as a large number of operations needed
to perform the reduced basis projections and the spatio-temporal integrations required at the global stage
for the determination of the PGD functions. To overcome one of these limitations, specifically the reduced
basis projection costs, so-called hyper-reduction methods have been widely developed mainly in the con-
text of nonlinear incremental solvers using model reduction techniques. Among these methods we can
mention the EIM [Grepl et al., 2007] (used in the context of CRBM, see chapter 3) and its discretized
version DEIM [Chaturantabut and Sorensen, 2010], or the ECSW method [Farhat et al., 2014, Farhat
et al., 2015, Chapman et al., 2017, Farhat et al., 2020, Grimberg et al., 2021], where the result of the re-
duced basis projection on the discretized linearized equations is approximated using a coarse FEM mesh,
thus reducing numerical operations and projection costs. The first hyper-reduction method applied to the
LATIN-PGD corresponds to the Reference Point Method (RPM) presented in [Capaldo, 2015, Capaldo
et al., 2017]. The RPM was developed specifically to reduce the number of operations in the LATIN-PGD
when using non-constant tangent operators (Hσ, Ĥ and HR̄) when solving elasto-visco-plasticity problems
via the approximation of these operators. The main idea of the RPM consists in the approximation of a
given function over the space-time domain by considering a separate variable representation by space-
time patches, whose functions are computed analytically and inexpensively. The patches are formed by
considering a set of reference points in the spatial and temporal domain, which are used to construct the
final approximation, that can be written as:

∀(i, j) ∀(x, t) ∈ Ωi × Ij ,
f(x, t) ≈ f̄(x, t) = āij(x)b̄ij(t) (6.1)

with āij(x) and b̄ij(t) the spatial and temporal functions of the approximation which are defined on a given
spatio-temporal patch Ωi × Ij , defined by the reference points as shown in figure 6.1.

I

Ω

Ωi × Ij

0
|• |• |• |• |• |•

tj

−

•

−

•

−

•

−

•

xi

...

. . .

Figure 6.1: Coarse patches defined by the reference points (xi and tj) in space and time of the RPM.

Figure 6.2 show one of the results presented in [Capaldo et al., 2017] for the approximation of a given func-

143



Chapter 6. Hyper-reduction technique applied to the LATIN-PGD method

tion by using the RPM. Figure 6.2a shows the reference space-time function and 6.2b its approximation
by the RPM. It is important to note that the RPM representation is continuous only by patches.

Ω I

(a) Reference function.

Ω I

(b) Approximated function by the RPM.

Figure 6.2: Reference function (left) and approximation by using the RPM (right).

The RPM allowed an optimized LATIN-PGD, where a faster convergence is achieved due to: (i) a faster
construction of the tangent operators in the local stage and (ii) an optimized global stage due to the use
of the tangent operators and the reduction of the projection operations in the global stage by using a
separate variable approximation by patches of them. However, despite the contributions of the RPM, the
calculation of the constitutive relations remained unchanged. The main reason for not approximating the
constitutive relation with the RPM is the lack of continuity of the approximation generated, as can be seen
in figure 6.2b. Since the LATIN method converges when the distance between the local and global solution
is less than a given threshold, the lack of continuity when approximating the variables of the constitutive
relations in the local stage would generate at convergence a solution with many associated errors.

In order to achieve a continuous approximation of the constitutive relations at the local stage to effectively
optimize the LATIN-PGD method when dealing with long duration input excitations, a different approach
is considered in the present chapter. For this purpose, a hyper-reduction technique based on the Gappy
POD is used at the local stage of the LATIN solver. The main idea is to economically reconstruct the
quantities of the constitutive relations over the totality of the integration points by means of a low-rank
approximation, which can allow faster projective and integration operations at the global stage due to
its separate variable representation. The construction of the low-rank approximation is performed by
exploiting the same idea of the spatio-temporal reference points used in the RPM, which leads to an
economic reconstruction. It should be noted that the tangent operators are not approximated here since
in this thesis work they are chosen to be constant (see chapter 4). The Gappy POD was first introduced
in [Everson and Sirovich, 1995] for facial image reconstruction and subsequently applied in the A Priori
Hyper Reduction method [Ryckelynck, 2005, Ryckelynck et al., 2006a, Ryckelynck, 2009, Ryckelynck
et al., 2011, Ryckelynck et al., 2012], in which the full-field solution is obtained by solving the problem on
certain finite elements selected from the entire discretized domain, giving it its name “Hyper Reduction”
(see section 3.3.3). The main difference between the ideas presented for face image reconstruction or
the A Priori Hyper Reduction method and the strategy presented in this chapter is that this reconstruction
is performed on the complete spatio-temporal domain due to the global nature of the LATIN solver.

In the following sections the hyper-reduction strategy is presented, where its effectiveness for the approx-
imation of a 2D function is first demonstrated to better illustrate the main steps of the method. Finally
the hyper-reduction strategy is applied to the LATIN-PGD method for the elasto-visco-plasticity case (the

144



6.2. Hyper-reduction technique for function approximation

reasons why it is applied to this behavior will be given in the following sections). This chapter ends with a
comparison of the computational cost between the classical LATIN-PGD method (as presented in chapter
4) and the hyper-reduced LATIN-PGD method.

6.2 Hyper-reduction technique for function approximation

As mentioned earlier, the strategy considered to reduce the computational cost associated with the local
step evaluation of the LATIN method is the Gappy POD. The idea of using this method for the approxi-
mation of the constitutive relations quantities is not new, in fact it has been applied in the context of the
A Priori Hyper Reduction method [Ryckelynck, 2009], where a spatial POD basis is constructed from
the known solution of the nonlinear constitutive relation in an offline procedure. This is done in order to
make a quick evaluation of the material behavior for different time steps in an online resolution. However,
since the quantities of interest are determined at a given time, their low-rank approximation is written in a
general way as follows:

∀x ∈ Ω, tj ∈ I,

f(x, tj) ≈
mr∑
i=1

Θi(x)aij (6.2)

where Θi(x) correspond to the space reduced order basis functions and aij their associate scalar factors
∀i ∈ [1, ...,mr], with mr denoting the rank of the approximation. The numeric value of the scalar factors aij
must be calculated for each solution at a given time step tj to be approximated, the spatial POD functions
are known and determined beforehand in an offline stage.

Due to the global space-time nature of the LATIN method, the novelty of the approach that is proposed
herein consists in no longer considering scalar factors aij associated to each space POD functions, but
temporal functions itself µi(t):

∀x ∈ Ω, ∀t ∈ I,

f(x, t) ≈
mr∑
i=1

Θi(x)µi(t) (6.3)

The main problem consists in calculating the functions Θi(x) and µi(t), ∀i ∈ [1, ...,mr] in an inexpensive
way; to do so, we use the concept of reference points in space and time in order to construct this low-rank
approximation using limited information of f(x, t) on these points.

In the following sections, the main steps of the considered hyper-reduction, i.e. the computation of the
spatial and temporal functions, are presented. These sections introduce in a simple way the main ideas
of the strategy that will be used later for the approximation of the constitutive relations quantities in the
LATIN method.

6.2.1 Reference points in time: determination of the spatial POD functions

Lets consider a reference function f(x, t) defined over a domain Ω × I, and suppose that this function
allows a low-rank approximation in the form of equation (6.3). This means that the original function evalu-
ated on some reference points in time can be also approximated by this low-rank representation:

f(x, t̄) ≈
mr∑
i=1

Θ̄i(x)µ̄i(t̄) (6.4)

where t̄ = {t1, t2, ..., tn̄t,g} correspond to the reference points in time which are chosen following a regular
discretization over the temporal domain I = [0, T ] as seen in figure 6.3.
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Chapter 6. Hyper-reduction technique applied to the LATIN-PGD method

Since the POD approximation is done over an incomplete set of temporal data points, the functions Θ̄i(x)
and µ̄i(t) are a priori different from the real POD approximation of the complete function f(x, t), however
these functions remains a good approximation. By consequence, in what follows we suppose that the
original space POD functions of f(x, t) is well approximated by the spatial POD functions obtained by
using the expression (6.4) only defined over few time reference points, this is:

∀i ∈ [1, ...,mr] ,
Θi(x) ≈ Θ̄i(x) (6.5)

where Θi(x) is the reference space POD function if the POD is applied to the whole space-time domain
Ω× I. Therefore the spatial function of the whole hyper-reduced approximation is simply given by:

∀i ∈ [1, ...,mr] ,
Θi(x) = Θ̄i(x) (6.6)

I

Ω

0
|
t1

|
t2

|
t3

|
t4

|
t5

|
t6

|
tn̄t,g. . .

Figure 6.3: Reference integration points in time.

The functions Θ̄i(x) are simply obtained by following the procedure described in section 3.2.2.2 applied to
the incomplete data set. That is, if we denote the discretized matrix that contains the values of the function
at the spatial integration points (whose quantity is denoted as ns,g) and at the temporal reference points
t̄ as f ∈ Rns,g ⊗ Rn̄t,g , the discretized spatial POD functions Θ̄ i ∀i[1, ...,mr] are determined by simply
calculating the first mr eigenvectors of the correlation matrix C ∈ Rns,g ⊗ Rns,g given by:

C = f f T (6.7)

Remark 1: The eingenvectors associated with the largest mr eigenvalues of the correlation matrix of
equation (6.7) directly give the discretized POD functions. However, the correlation matrix C = f T f can
also be considered, especially when the quantity of reference temporal points are less than the spatial
integration points. In this situation the eigenvectors of this new correlation matrix will give temporal func-
tions, which projected onto the matrix C finally give the discretized spatial POD functions (see section
3.2.2.2).

Remark 2: In the case where the function to approximate f(x, t) is a tensor (as is the case when approx-
imating the elasto-visco-plasticity quantities as will be seen in section 6.3.1), the spatial POD functions
follow the same resolution strategy. In this case the discretized matrix f is formed by rearranging in the
rows the values corresponding to the integration points in space (considering all the components of the
tensor) and in the columns those associated to the temporal ones. Finding in this way, a problem equiva-
lent to the one presented in this section, whose solution follows the same steps previously exposed.
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6.2. Hyper-reduction technique for function approximation

6.2.2 Reference points in space: determination of the temporal POD functions

As mentioned above, the low-rank approximation to be determined is the one presented in the equation
(6.3), the latter of which is recalled below:

∀x ∈ Ω, ∀t ∈ I,

f(x, t) ≈
mr∑
i=1

Θi(x)µi(t)

Since the last section, by using the reference points in time the spatial POD functions Θi(x) were de-
termined, now, for the determination of the temporal functions µi(t) we simply employ the knowledge of
the reference function f(x, t) over the reference points in space, minimizing the reconstruction error over
those points, that is:

∀i ∈ [1, ...,mr] ,

{µi(t)} = arg min
{µi(t)}mri=1∈UT

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
mr∑
i=1

Θi(x̄)µi(t)− f(x̄, t)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

2

(6.8)

with:
|||·|||22 =

∫
Ωr×I

(·)2 dΩdt

where x̄ = {x1, x2, ..., xn̄s,g} correspond to the group of reference points in space and Ωr to the reduced
domain defined by these reference points selected as shown in figure 6.4.

I

Ω

0
−

x1

−

x2

−

x3

−

x4

...

xn̄s,g

|
T

Figure 6.4: Reference Gauss points in space.

By minimizing the problem of equation (6.8) we obtain:

∀δµi(t) ∈ UT ,
mr∑
i=1

mr∑
j=1

∫
I
δµi(t)µj(t)A

r
ijdt =

mr∑
i=1

∫
I
δµi(t)D

r
i (t)dt (6.9)

with the constants and temporal functions given by:

∀(i, j) ∈ [1, ...,mr] ,

Arij =

∫
Ωr

Θi(x̄)Θj(x̄)dx̄ (6.10) Dr
i (t) =

∫
Ωr

Θi(x̄)f(x̄, t)dx̄ (6.11)

The terms of equations (6.10) and (6.11) are simply approximated by the following operations on dis-
cretized vector fields Θ(x̄) and f (x̄, t) as:
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∀(i, j) ∈ [1, ...,mr] ,

Arij = ΘT
i (x̄)Θj(x̄) (6.12) Dr

i (t) = ΘT
i (x̄) f (x̄, t) (6.13)

with the discretized vectors over the reference points in space given by:

∀i ∈ [1, ...,mr] ,

Θ i(x̄) =
[
Θi(x1), · · · ,Θi(xn̄s,g)

]T
, f (x̄, t) =

[
f(x1, t), · · · , f(xn̄s,g , t)

]T
For the case where the functions Θi(x̄) and f(x̄, t) are tensors, the above discretized operations remains
unchanged by a simple reshape of the discretized multi-dimensional matrix into a vector form. Since
the choice of the test functions δµi(t) is arbitrary, it can be simply chosen as non-zero values, this is,
δµi(t) 6= 0, ∀i ∈ [1, ...,mr]. With this choice, the resolution of the temporal POD functions is given by:

µ1(t)
µ2(t)

...
µmr(t)

 =


Ar11 Ar12 · · · Armrmr
Ar21 Ar22

...
. . .

Armr1 Armrmr


−1 

Dr
1(t)

Dr
2(t)
...

Dr
mr(t)

 (6.14)

The above expression has many numerical advantages, one of which is the inversion of a small constant
matrix of size mr ×mr, which is used to determine the time functions of the decomposition by perform-
ing simple matrix-vector multiplication operations, which can be performed completely in parallel, thus
reducing the computational cost for the determination of the hyper-reduced approximation.

6.2.3 Synthesis of the strategy

The hyper-reduction strategy presented in this section consists in computing a low-rank approximation of
a given function f(x, t), this is:

f(x, t) ≈
mr∑
i=1

Θi(x)µi(t) (6.15)

The low-rank representation is economically computed by exploiting the use of reference points in space
and time, which allows to build the approximation on a compressed representation of the original function
by applying the POD to these limited data (Gappy POD). This strategy can be summarized in two main
steps, which are listed below:

• Determination of the spatial functions Θi(x): By using reference points in time, a compressed
representation of the reference function f(x, t) is obtained, written as f(x, t̄) with the reference
temporal points t̄ = {t1, t2, ..., tn̄t,g}. This representation contains the whole spatial information over
some specific reference points in time chosen uniformly. With this data the spatial functions of the
POD decomposition Θi(x), ∀i ∈ [1, ...,mr] are determined following the steps given in section 6.2.1.

• Determination of the temporal functions µi(t): Once the spatial POD functions are determined,
we exploit the use of spatial reference points in order to obtain another compressed representation of
f(x, t), written as f(x̄, t) with the reference spatial points x̄ = {x1, x2, ..., xn̄s,g}. This representation
contains the whole information in time at given reference spatial points. In this sense, the temporal
functions of the POD approximation are determined such that the low-rank decomposition (6.15)
reconstructs this compressed representation as presented in section 6.2.2.

To illustrate the performance of the introduced hyper-reduced strategy, a numerical application consisting
in the approximation of a given function is presented in the next section.
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6.2.4 Example: 2D space-time function approximation

In the present section the hyper-reduced strategy is applied for the approximation of a 2D function which
is presented in figure 6.5a and is given explicitly by:

f(x, t) = e−|(x−0.5)(t−1)| + sin(xt) (6.16)

For the representation of the function, 1000 points in space and 3000 in time were considered in order to
simulate a behavioral relationship where the time interval is large. On the other hand, for the determination
of the approximation only 7 reference points in time and 5 in space were used as shown in figure 6.5b.

(a) Reference function. (b) Reference points.

Figure 6.5: Reference function (left) and the function evaluated on the reference space-time points (right).

After the determination of the space and time POD functions as shown in sections 6.2.1 and 6.2.2 we
obtained an approximation with an error of 0.01[%] only by computing 3 POD modes, this approximation
is compared against the reference space-time function in figure 6.6 and the POD modes obtained are
shown in figure 6.7.

(a) Reference function. (b) Approximated function by using 3 POD modes.

Figure 6.6: Reference function and its approximation by the hyper-reduced strategy.
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(a) First POD mode. (b) Second POD mode.

(c) Third POD mode.

Figure 6.7: First 3 POD modes calculated for the approximation of the reference function.

The time required for the complete direct evaluation of the function takes a total of 0.0363 milliseconds
while the low-rank approximation takes only 0.0017 milliseconds, which translates into a 95.23 [%] reduc-
tion in computational time.

Although the direct evaluation of the function in this particular case does not take much time (because it
is an academic problem), the reduction in computational cost achieved with the hyper-reduction method
is considerable and therefore its application to the evaluation of the local stage of the LATIN method
naturally emerges as a viable option to reduce the computational time of the solver. However, it should be
noted that the method can only be applied if the constitutive relation to be approximated can be evaluated
explicitly in space and time. These types of constitutive relations fall into the so-called internal variable
relationships [Ladevèze, 1999]. In this sense, the following section applies the presented strategy to the
LATIN-PGD method, where an elasto-visco-plasticity constitutive relation is considered.

6.3 Hyper-reduced LATIN-PGD applied to elasto-visco-plasticity

In this section, the LATIN-PGD method is presented considering a hyper-reduction method applied to the
local stage. As presented in previous chapters, the LATIN method solves the nonlinear problem over the
whole space-time domain at each iteration of the solver. The main ingredients involved in the iterative
resolution consist in defining a local and a global manifolds (Γ and Ad respectively), where the local one
corresponds to the evaluation of the constitutive relations of the considered material and the global one
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to the verification of the equilibrium and compatibility equations. The main idea consists in solving the
reference problem at the global (S ∈ Ad) and local stages (Ŝ ∈ Γ) in an iterative way by using the so
called search directions, searching at each iteration of the method to decrease the distance between both
solutions manifolds. This iterative procedure is remembered below:

S0 ∈ Ad −→ Ŝ1/2 ∈ Γ... −→ Ŝn+1/2 ∈ Γ −→ Sn+1 ∈ Ad... −→ S̄ ∈ Ad ∩ Γ. (6.17)

Being S0 the elastic solution calculated in dynamics. This process is ilustrated in figure 6.8 for the case of
elasto-visco-plasticity.

[
ε̇p, Ẋ

]

[
σ, Z

]

Ad

Γ

�
S̄

•
Sn

•
Ŝn+1/2

•
Sn+1

G
A

Figure 6.8: General resolution scheme of the LATIN solver.

In what follows, only the key and different points of the hyper-reduced LATIN-PGD method will be pre-
sented, especially the ones related to the low-rank approximation evaluation of the constitutive relations
and the simplifications related to projections and integrals that must be done at the global stage. For more
details about the different steps involved in the LATIN-PGD method for the case of elasto-visco-plasticity
see chapter 4.

6.3.1 Local stage: hyper-reduced evaluation of the constitutive relations

After each global stage solution is determined (Sn ∈ Ad), the local stage solution must be computed
(Ŝn+1/2 ∈ Γ), in where the nonlinear constitutive relations quantities are determined. In this section, the
hyper-reduction method presented in section 6.2 is applied to the constitutive relation for its fast evaluation
and its low-rank approximation, which will allow a more optimized global stage by speeding up the spatio-
temporal integral operations to be performed as will be seen in section 6.3.2. The constitutive relations
studied herein correspond to the elastic-visco-plasticity introduced in chapter 2 (see section 2.3.2). This
choice is not arbitrary, in fact for the construction of the low-rank approximation we need to exploit the
idea of reference integration points in space and time, which makes it necessary that the constitutive
relations can be computed locally in space and time (each integration point is computed independently of
the others). This is precisely the case of elasto-visco-plasticity, however this is not the case of isotropic
damage, where the damage variable at a given time t∗ depends on the solution of the damage for all time
t < t∗ (see section 2.3.1), in where a simple ordinary differential equation (ODE) in time must be solved
to find the temporal evolution of damage. For the particular case of isotropic damage or other types of
constitutive relations that don’t fit the requisite of being explicitly evaluated, further developed must be
taken into account, such development are proposed as perspectives in section 6.5.
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Figure 6.9: Calculation of the local stage solution Ŝn+1/2 ∈ Γ.

As presented in chapter 4, the variables that must be solved at the local stage when considering elasto-
visco-plasticity are given by:

Ŝn+1/2 = {ˆ̇εp
n+1/2

, σ̂
n+1/2

, β̂
n+1/2

, ˆ̇α
n+1/2

, ˆ̄̇rn+1/2,
ˆ̄Rn+1/2} (6.18)

They are determined by solving the ascent search direction as illustrated in figure 6.9, which for the case
of elasto-visco-plasticity is given by:

G :

{[
ˆ̇εpn+1/2 − ε̇

p
n

−( ˆ̇X
n+1/2

− Ẋ
n
)

]
+ Ĥ :

[
σ̂
n+1/2

− σ
n

Ẑ
n+1/2

− Z
n

]
= 0 (6.19)

where the global stage variables at iteration n of the LATIN method are known and given by:

Sn = {un, εn, ε
p
n
, σ

n
, β

n
, α

n
, r̄n, R̄n} (6.20)

A constant ascent direction is used in order to simplify the computations at the local stage, this means
that Ĥ−1 = 0, which means:

σ̂
n+1/2

= σ
n

Ẑ
n+1/2

= Z
n

=
[
β
n
, R̄n

] (6.21)

and therefore the remaining local variables are given as:

ˆ̇εp
n+1/2

(x, t) = k〈fs〉ns+

3

2

τ̂
n+1/2√

3
2 τ̂n+1/2

: τ̂
n+1/2

 (6.22)

ˆ̇α
n+1/2

(x, t) = −k〈fs〉ns+

−3

2

τ̂
n+1/2√

3
2 τ̂n+1/2

: τ̂
n+1/2

+
a

C
β̂
n+1/2

 (6.23)

ˆ̄̇rn+1/2(x, t) = −k〈fs〉ns+

(
ˆ̄Rn+1/2

R∞

b

2
− b

1
2

)
(6.24)

with the plastic threshold function given by:

fs =

√
3

2
τ̂
n+1/2

: τ̂
n+1/2

+
a

2C
β̂
n+1/2

: β̂
n+1/2

−R∞

(
ˆ̄Rn+1/2

R∞

b
1
2

2

)(
2−

ˆ̄Rn+1/2

R∞

b
1
2

2

)
− σy (6.25)
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where τ̂
n+1/2

= σ̂D
n+1/2

− β̂
n+1/2

, with σ̂D
n+1/2

the deviatoric stress tensor.

Lets notice that the whole constitutive relation is given explicitly in space and time as required for the
application of the hyper-reduction method.

Before starting with the following sections, it is necessary to define the space-time domain where the
reference points will be selected in order to construct the low-rank approximation as presented in section
6.2.1. The data that we want to approximate consist of the plastic deformation, and the internal variables
(ˆ̇εpn+1/2, ˆ̇α

n+1/2
and ˆ̄̇rn+1/2), these variables are only defined on a limited space domain that we will define

herein as Ωnl such that Ωnl ⊂ Ω and over the whole time domain I = [0, T ]. An example of a restricted
spatial domain where plasticity occurs can be visualized in figure 6.10, where the red points indicate the
presence of the cumulative plastic deformation for a bending test of a 3D beam.

Figure 6.10: Localized nonlinear affected zone Ωnl.

For the definition of Ωnl we must first search all the elements and integration points in space that under-
goes an elasto-visco-plastic behavior, this is simply done as follows:

Ωnl = {x ∈ Ω | t 6 T, fs(x, t) > 0} (6.26)

with fs the plasticity threshold function given in equation (6.25). The nonlinear variables appears only
when the threshold function is positive, which give us a good indicator to determine the domain Ωnl ⊂ Ω.

The idea behind the determination of the restricted domain Ωnl consists in avoiding a big number of POD
modes for the approximation of the local quantities. If some element on this restricted domain have a
null value on the whole space-time domain, the required number of POD modes will increase since many
recombination of them will be required to ensure this null value. In this sense, applying the hyper-reduced
approximation to the restricted domain where all its elements undergo nonlinear behavior ensures a low
number of POD modes.

The following sections present the main steps for the application of the hyper-reduction method to the
approximation of the local stage quantities, which are the inexpensive construction of the space-time
POD functions as presented for the simple example in section 6.2.

6.3.1.1 Reference points in time: determination of the spatial POD functions

The reference points in time are chosen equidistant on the whole interval I = [0, T ] as presented in figure
6.3. Of course a better choice of the most important points in time can be done by employing some
optimization algorithm, but this is given as a perspective and not treated herein. The number of reference
points in time are simply chosen as a fraction of the whole temporal integration points in I, this is:

n̄t,g = atnt,g (6.27)
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where nt,g correspond to the total integration points in time and at the fraction number. The value of this
fraction is based on empirical numerical tests and in the present work for the approximation of elasto-
visco-plasticity is chosen to be at = 0.2.

By following section 6.2.1, the spatial POD functions of the hyper-reduced approximation of all the local
stage quantities are determined such that the scattered data of the involved variables are well approxi-
mated by a low-rank POD decomposition, this is:

∀x ∈ Ωnl, t̄ ∈ I,

ˆ̇εp
n+1/2

(x, t̄) ≈
mpr∑
i=1

Θ̄
p

i
(x)µ̄pi (t̄)

ˆ̇α
n+1/2

(x, t̄) ≈
mαr∑
i=1

Θ̄
α

i
(x)µ̄αi (t̄)

ˆ̄̇rn+1/2(x, t̄) ≈
mr̄r∑
i=1

Θ̄r̄
i (x)µ̄r̄i (t̄)

(6.28)

Where t̄ = {t1, t2, ..., tn̄t,g} correspond to the vector that contains all the reference points in time, and
mp
r , mα

r and mr̄
r to the rank of the approximation of the plastic deformation, kinematic hardening and

isotropic hardening respectively. Following section 6.2.1, the spatial POD functions of the hyper-reduced
approximation are chosen equal to those obtained in the previous process, that is:

∀i1 ∈ [1, ...,mp
r ], ∀i2 ∈ [1, ...,mα

r ], ∀i3 ∈ [1, ...,mr̄
r], ∀x ∈ Ωnl,

Θp
i1

(x) = Θ̄
p

i1
(x)

Θα
i2

(x) = Θ̄
α

i2
(x)

Θr̄
i3(x) = Θ̄r̄

i3(x)

(6.29)

Once the spatial POD functions Θp
i
(x), Θα

i
(x) and Θr̄

i (x) related to the plastic deformation, kinematic
hardening and isotropic hardening respectively are determined, the temporal POD functions must be
calculated. The following section shows this determination process.

6.3.1.2 Reference points in space: determination of the temporal POD functions

As presented in section 6.2.2, the temporal POD functions of the hyper-reduced approximation are deter-
mined by minimizing a reconstruction error defined over some reference points in space x̄ = {x1, x2, ..., xn̄s,g}.
As for the temporal reference points, the number of spatial reference points is given as a fraction of the
total integration points in space denoted here ns,g, this is:

n̄s,g = asns,g (6.30)

with the fraction chosen as as = 0.2. These spatial reference points are chosen as the points where the
cumulative plastic deformation is larger, this is:

{x1, x2, ..., xn̄s,g} = max
x̄∈Ωnl

∑
t6T

|fs(x, t)| , x ∈ Ωnl (6.31)

Once the spatial reference points determined, the temporal functions of the approximation are simply
determined by solving the following minimization problems:
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x̄ ∈ Ωnl,

{µpi (t)}
mpr
i=1 = arg min

{µpi (t)}m
p
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i=1∈UT

∣∣∣∣∣∣
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α
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2

{µr̄i (t)}
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{µr̄i (t)}
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i=1∈UT
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(6.32)

with the norm:
|||·|||22 =

∫
Ωr×I

(·) D. (·) dΩdt , Ωr ⊂ Ωnl

where D. correspond to the canonical scalar product between tensors of order D.

The temporal POD functions are obtained following the same resolution procedure as exposed in section
6.2.2. Once the temporal POD functions determined, the approximation of the local stage quantities are
given by:

∀x ∈ Ωnl, ∀t ∈ I,

ˆ̇εp
n+1/2

(x, t) ≈
mpr∑
i=1

Θp
i
(x)µpi (t)

ˆ̇α
n+1/2

(x, t) ≈
mαr∑
i=1

Θα
i
(x)µαi (t)

ˆ̄̇rn+1/2(x, t) ≈
mr̄r∑
i=1

Θr̄
i (x)µr̄i (t)

(6.33)

6.3.1.3 Extensibility of the low-rank decomposition defined on the reduced domain Ωnl to the
total space domain Ω

It must be remarked that the low-rank approximation presented on the precedent sections is only defined
on a reduced domain Ωnl × I, a domain where the cumulative plastic deformation is not null. In order to
extend this decomposition to the total domain Ω × I in order to fit correctly for the global stage operation
of the LATIN method, the spatial POD functions are filled with zero values at the DOFs corresponding to
Ω \ Ωnl, this is, the spatial function are filled such that:

∀x ∈ Ω \ Ωnl,

{Θp
i
(x)}m

p
r

i=1 = 0, {Θα
i
(x)}m

α
r

i=1 = 0, {Θr̄
i (x)}m

r̄
r

i=1 = 0 (6.34)

6.3.1.4 Rank determination of the decomposition

So far we have not discussed how to determine the optimal number of POD modes for the decomposition
of all variables in the local stage, in the present section we present an idea for its determination, although
different variants can be applied.
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The number of POD modes is a very important parameter of the hyper-reduced method, where an op-
timal number of modes must be determined for each variable, since a low value could produce a bad
approximation and a high value could increase the computational cost related to the construction. The
procedure considered in this work consists in determining 10 POD modes in an initial computation for
each local variable, and then selecting the most relevant ones, such that a given error is verified. This
error is defined over additional indicator points in time defined on the domain Iind, in where the spatial
solution of the local stage variables is completely known. In order to make this an easy and fast algorithm
for the optimal mode determination, we consider the number of indicator points in time to be a fraction of
the number of reference points, that is:

¯̄nt,g = 0.1 n̄t,g (6.35)

This fraction is chosen to be 10[%] of the number of temporal reference points, so this allows a fast
algorithm. The error is simply determined as:

∀tj ∈ Iind,

ep = 100

∥∥∥∑¯̄nt,g
j=1

ˆ̇εp(x, tj)−
∑mpr

i=1 Θp
i
(x)cpij

∥∥∥
Ω∥∥∥∑¯̄nt,g

j=1
ˆ̇εp(x, tj)

∥∥∥
Ω

[%] (6.36)

eα = 100

∥∥∥∑¯̄nt,g
j=1

ˆ̇α(x, tj)−
∑mαr

i=1 Θα
i
(x)cαij

∥∥∥
Ω∥∥∥∑¯̄nt,g

j=1
ˆ̇α(x, tj)

∥∥∥
Ω

[%] (6.37)

er̄ = 100

∥∥∥∑¯̄nt,g
j=1

ˆ̄̇r(x, tj)−
∑mr̄r

i=1 Θr̄
i (x)cr̄ij

∥∥∥
Ω∥∥∥∑¯̄nt,g

j=1
ˆ̄̇r(x, tj)

∥∥∥
Ω

[%] (6.38)

with ‖·‖2Ω =
∫

Ω(·) D. (·) dΩ.

Due to the orthonormalization of the space POD functions, the different constants cpij , c
α
ij and cr̄ij are

simply calculated by the following projections:

∀i1 ∈ [1, ...,mp
r ], ∀i2 ∈ [1, ...,mα

r ], ∀i3 ∈ [1, ...,mr̄
r], ∀tj ∈ Iind,

cpi1j =

∫
Ω

Θp
i1

(x) : ˆ̇εp(x, tj) dΩ ; cαi2j =

∫
Ω

Θα
i2

(x) : ˆ̇α(x, tj) dΩ ; cr̄i3j =

∫
Ω

Θr̄
i3(x)ˆ̄̇r(x, tj) dΩ

The quantity of POD modes considered for each variable is such that the error estimator for each variable
is below 2 [%], an empirically determined error threshold. An error threshold below 2 [%] would lead to
increasing the computational cost due to the higher amount of POD modes required for its approximation.

6.3.1.5 Error estimator of the approximation

To verify that the low-rank construction is indeed a good approximation of the local stage quantities over
the whole space-time domain, an error indicator must be defined. The exact error is impossible to com-
pute, this because to do so, the knowledge of the entire solution over the space-time domain must be
known, which is impossible since the low-rank construction only uses the solution over few space-time
reference points. This limitation complicates the definition of an exact error indicator and therefore here
an estimator of this error is given using only few additional indicator points in space defined over Ωind.
Those points are not used for the construction of the decomposition and are only used to calculate an
approximated error estimator of the final approximation. The number of these points are selected as a
fraction of the total number of reference spatial points, this is:

¯̄ns,g = 0.1 n̄s,g (6.39)
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In this sense, the error estimator for each local stage variable is defined as follows:

∀xj ∈ Ωind,
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(6.40)

with ‖·‖22 =
∫

Ωind×I(·)
D. (·) dΩdt.

The above error estimators only serve as indicators to ensure the quality of the hyper-reduced decompo-
sition. A large error estimator would mean that the local variables are not approximated correctly, so the
user can move to a classical local stage calculation in order to converge to the desired nonlinear solution.

6.3.2 Global linear stage: Equilibrium and compatibility equations

Once the local stage solution set Ŝn+1/2 is computed, the global stage solution set Sn+1 must be de-
termined as seen in figure 6.11, and this is done by enriching the already computed solution Sn, this
enrichment is done by calculating corrective terms associated to each variable of the solution set. This
section shows the principal differences that arise at the global stage when applying the hyper-reduction
method at the local stage for the approximation of the constitutive relation quantities, for further details
see section 4.4.2.

[
ε̇p, Ẋ

]

[
σ, Z

]

Ad

Γ

�
S̄

•
Sn

•
Ŝn+1/2

•
Sn+1

A

Figure 6.11: Calculation of the global solution of space Ad.

The principal variables that must be determined at this step are:

Sn+1 = {un+1, εn+1
, εp
n+1

, σ
n+1

, β
n+1

, α
n+1

, r̄n+1, R̄n+1}
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The solution set Sn+1 must also verify the descent search direction as illustrated in figure 6.11, which is
given by:

A :

{[
ε̇p
n+1
− ˆ̇εpn+1/2

−(Ẋ
n+1
− ˆ̇X

n+1/2
)

]
−H :

[
σ
n+1
− σ̂

n+1/2

Z
n+1
− Ẑ

n+1/2

]
= 0 (6.41)

As presented in chapter 4, the global stage solution at iteration n + 1 is determined by computing a
corrective set ∆Sn+1, such as:

Sn+1 = Sn + ∆Sn+1

with:
∆Sn+1 = {∆un+1,∆εn+1

,∆εp
n+1

,∆σ
n+1

,∆β
n+1

,∆α
n+1

,∆r̄n+1,∆R̄n+1} (6.42)

where the corrective terms are calculated in an inexpensive way by employing the model reduction PGD,
which means that the variables at the global stage are approximated as a low-rank decomposition in
a separate space-time representation. The low-rank approximation is constructed in two main steps, the
enrichment and the preliminary steps. The enrichment step consists in determining the corrective terms of
(6.42) as a rank one approximation and the preliminary step consists in actualizing the temporal functions
of the PGD decomposition. The corrective terms must be determined such as the constitutive relation
errors Jp, Jα and J r̄ related to the descend search directions are minimized (see chapter 4), this is:

min Jp = min
∣∣∣∣∣∣∣∣∣∆ε̇p

n+1
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+ ∆

n+1

∣∣∣∣∣∣∣∣∣2
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σ

(6.43)

min Jα = min
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)
+ ∆α
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β

(6.44)

min J r̄ = min
∣∣∣∣∣∣∆ ˙̄rn+1 +HR̄R∞∆r̄n+1 + ∆r̄

n+1

∣∣∣∣∣∣2
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(6.45)

with the residual terms given by:

∆
n+1

= ε̇p
n
− ˆ̇εp

n+1/2
; ∆α

n+1
= α̇

n
− ˆ̇α

n+1/2
; ∆r̄

n+1 = ˙̄rn − ˆ̄̇rn+1/2

The variables ε̇p
n
, α̇

n
and ˙̄rn are the global stage solution quantities at LATIN iteration n of the rate of plastic

deformation, the rate of kinematic hardening and the rate of isotropic hardening respectively. Therefore
they are approximated as a low-rank decomposition by employing the PGD (see chapter 4), this is:

ε̇p
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=
m∑
i=1

ε̄p
i
(x)λ̇i(t) ; α̇

n
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m∑
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ᾱ
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¯̄ri(x)λ̇r̄i (t)

In addition, due to the approximation of the constitutive relation quantities ˆ̇εpn+1/2, ˆ̇α
n+1/2

and ˆ̄̇rn+1/2 at the
local stage by using the hyper-reduction technique, the residual functions associated to each minimization
problem are completely given as a low-rank approximation as follows:

∆
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i
(x)λ̇i(t)−

mpr∑
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ᾱ
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∆r̄
n+1 =

m∑
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¯̄ri(x)λ̇r̄i (t)−
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j=1

Θr̄
j(x)µr̄j(t) (6.48)
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6.4. Numerical example

The residual functions of the equations (6.46), (6.47) and (6.48) appear in both the enrichment and pre-
liminary stages, as shown in chapter 4. Therefore, due to the low-rank approximation of the residual
functions, the different spatio-temporal integration operations that must be carried out in the global stage,
in order to compute a new PGD mode at the enrichment step or improve the decomposition by updating
the temporal PGD functions at the preliminary step are drastically optimized. Therefore, the approximation
of the local stage by applying the hyper-reduction technique not only decreases the computational cost
related to its evaluation, but also decreases the cost of the global stage operations. These computational
savings are of great importance when the LATIN-PGD method considers input excitations of long time
duration.

6.4 Numerical example

This section presents the numerical results obtained when applying the hyper-reduction technique to the
LATIN-PGD method for the elasto-visco-plasticity case and using the TDGM for the temporal resolution.
The reference problem corresponds to the same 3D bending beam considered in previous chapters (to
show comparable results), which is recalled below in figure 6.12:

y

z

d2

d3

x

y

z

0
uDz (t)

uDz (t)

d1

Figure 6.12: Test case considered, along with its dimensions.

The dimension considered are the same as the one presented in chapter 4 for the case of elasto-visco-
plasticity, these are:

d1 = 6 [m], d2 = d3 = 0.1 [m]

The imposed vertical displacement uDz (t) considered for this example corresponds to a signal of relatively
large duration and is presented in figure 6.13.

Figure 6.13: Imposed displacement.
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For this test the total number of spatial integration points is equal to 6727, however, after the selection of
the domain Ωnl (where plasticity is effectively generated) the total number of integration points in space
is reduced to 605. On the other hand, the total number of integration points in time considering the
above excitation is 4000. In this context, the number of spatio-temporal reference points are selected as
presented in section 6.3.1. The information on the number of reference points considered is summarized
in the table 6.1.

Domain Integration points Reference points Fraction [%]
Space 605 121 20
Time 4000 800 20

Table 6.1: Number of integration points and reference points for the considered numerical test.

Under this conditions, the local stage quantities are well approximated on average by 6 POD modes,
where each local stage solution produced an approximated error between 1 [%] and 2 [%] for each local
variable. The LATIN error of the classical resolution and that obtained with the hyper-reduced method are
shown in figure 6.14, these results considered a LATIN error of 2 [%] as a stopping criterion.

(a) Error using the strategy of chapter 4. (b) Error using the hyper-reduced strategy.

Figure 6.14: Error comparison between a classic and an hyper-reduced LATIN method when the LATIN
error threshold is 2 [%].

This error is enough for the good approximation of the nonlinear solution when considering an elasto-
visco-plastic behavior. Under these considerations the calculation times for the resolution of the reference
problem are resumed in table 6.2.

Classic LATIN-PGD LATIN-PGD + Hyper-reduction Cost reduction [%]
9.18 minutes 4.04 minutes 56

Table 6.2: Comparison of computational time.

From table 6.2, we can observe a 56 [%] reduction in computational time, a reduction that must be high-
lighted. However, some numerical problems related to the convergence rate of the hyper-reduced LATIN-
PGD method arise when the required error floor is very small.The latter occurs because the low-rank
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6.5. Conclusions

approximation applied in the local stage captures the main features of the solution, while the local de-
tails are less approximated, introducing an associated error. This error affects the resolution of the global
stage, which also generates a solution with an associated error, resulting in more iterations being required
to converge.The latter occurs because the low-rank approximation applied in the local stage captures the
main features of the solution, while the local details are less approximated, introducing an associated
error. This error affects the solution of the global stage, which also generates a solution with an associ-
ated error, resulting in more iterations being required to converge. This phenomenon results in a higher
computational cost due to the additional iterations to be performed, as illustrated in figure 6.15, where a
convergence error of 1 [%] is considered, furthermore, a comparison of the computational cost between
the classical and the hyper-reduced LATIN-PGD method for this situation is given in table 6.3.

Classic LATIN-PGD Hyper-reduced LATIN-PGD
10.18 minutes 11.11 minutes

Table 6.3: Comparison of computational time.

(a) Error using the classic strategy. (b) Error using the hyper-reduced strategy.

Figure 6.15: LATIN error versus the number of PGD modes between the classical and a hyper-reduced
LATIN-PGD method when the LATIN error threshold is 1 [%].

From the above, it follows naturally that if a low LATIN error is required, the hyper-reduced LATIN-PGD
can be used as an accelerator for the first iterations of the solver, while a classical LATIN-PGD method
could be used later to reach the required convergence error. In this sense, many different solver strategies
can be considered to accelerate resolutions using the hyper-reduced technique presented in this chapter,
a technique that opens the door to further developments and improvements.

6.5 Conclusions

Due to the global resolution strategy of the LATIN-PGD method, it requires at each iteration of the method
the computation of the constitutive relations in the local stage and then performing costly integration
operations in the global stage when computing the space-time PGD functions, this cost increases propor-
tionally with the size of the considered spatio-temporal domain. In order to overcome these limitations, a
hyper-reduction technique was introduced in this chapter, that allows to reduce the computational times
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for the evaluation of the material constitutive relation and at the same time to approximate it as a low-rank
decomposition. This low-rank approximation of the local stage quantities also allows for a more efficient
global stage, where the spatial and temporal integrals needed to be performed are computed econom-
ically. Of course, the aforementioned advantages of the hyper-reduced strategy are proportional to the
size of the spatio-temporal domain considered, motivating its application to problems where the external
excitation has a long duration. In this sense, the present hyper-reduction technique is the natural solution
when dealing with complex fatigue problems or long seismic inputs.

Despite the advantages of using the hyper-reduced strategy in the local stage, it should be remembered
that this technique can only be applied to constitutive relations that can be evaluated locally in the space-
time domain. This is not always the case, in fact isotropic damage behavior does not verify this property,
therefore a more robust strategy must be developed to consider all types of material behaviors. The
domain of artificial intelligence, more specifically deep learning [Goodfellow et al., 2016], could be a
possible solution to this limitation, where its universal approximation property can be exploited in order to
obtain an approximate constitutive relation that can be evaluated locally in the spatio-temporal domain.

Although the hyper-reduced strategy presented in this chapter has a limited application to certain ma-
terial behaviors, the author of this thesis strongly believes that the idea of reducing the local stage and
approximating it by using a low-rank decomposition is the future of the LATIN-PGD method. This idea
helps to solve one of the major disadvantages of the solver, which as mentioned before corresponds to
the costly evaluation of the constitutive relation and the integration operations required to compute the
PGD approximation in the global stage when the spatial and temporal domains are large, and thus being
able to optimize the LATIN-PGD method at the highest level.
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Chapter 7

Parallel strategy in time applied to the
LATIN-PGD method

In the previous chapters different strategies have been presented to decrease the com-
putational cost related to the time resolution of the LATIN-PGD method. This last chapter
goes in the same direction but exploiting a parallel temporal resolution strategy, which
arises as a natural consequence of the use of the Time Discontinuous Galerkin method.
Numerical results applying this strategy are presented at the end of the chapter, which
considers the behavior of an elasto-visco-plastic material.
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Chapter 7. Parallel strategy in time applied to the LATIN-PGD method

7.1 Introduction

Dealing with nonlinear problems defined over a large spatial and temporal domain induces a large con-
sumption of computational resources when the problem is discretized for subsequent solution by a com-
puter. The use of model order reduction techniques allows to reduce the computational cost associated to
solving large spatio-temporal problems as seen in chapter 3, but this is not the only way to reduce them,
domain decomposition methods are another possibility. Domain decomposition methods also intend to
reduce the computational costs by splitting the original (generally space) domain into little subdomains
in which the numeric resolution is inexpensive. In addition each subdomain can be solved in parallel
by exploiting the architecture of computers by associating a subdomain to each processor, allowing to
drastically reduce the time needed to solve the original problem.

Many spatial domain decomposition methods have been developed in recent years, among them we find
the Schwarz alternating method [Lions, 1988, Lions, 1990], the additive Schwarz method [Toselli and
Widlund, 2006], the Krylov methods [Van der Vorst, 2003], Neumann-Neumann [Bourgat et al., 1988,
Mandel, 1993, Le Tallec, 1994], FETI methods [Farhat and Roux, 1992, Farhat et al., 2001], among many
others. A spatial domain decomposition strategy was also proposed for the LATIN method (see section
3.4.4), initially presented in [Ladevèze and Lorong, 1991] and further developed in [Champaney et al.,
1997, Dureisseix and Ladevèze, 1998, Ladevèze and Dureisseix, 2000, Ladevèze et al., 2001].

The idea of domain decomposition can also be applied to the time domain, but this requires special
treatment because time evolution must verify the causality principle, which imposes that every state or
solution at time t∗ depends on the solution at all times preceding it, i.e., ∀t < t∗.

Among the best known time-domain decomposition methods, we find the group of Multiple Shot Type
Methods. The first implementation of a multiple shooting method is due to Nievergelt in [Nievergelt, 1964],
which idea was further improved by [Bellen and Zennaro, 1989] and [Chartier and Philippe, 1993]. The
main idea of these methods lies in the decomposition of the temporal domain into macro intervals or
temporal subdomains, in where the main objective is to determine the correct initial condition of each
subdomain. To do so, the temporal evolution is obtained by solving two problems, a fine problem defined
in each temporal subdomain followed by a coarse resolution over the initial conditions of each subdomain.
The fine resolution simply consists in solving the problem classically in the time subdomain based on
an initial condition that is estimated by the coarse resolution iteratively. The iterative methods seek to
determine the correct initial conditions of each time subdomain, once determined, the continuity of the
solution in time is ensured.

One of the best known and most widely used method for its robustness and extension to deal with non-
linear problems, which belongs to this kind of methods, is the Pararéel method [Lions, 2001]. The main
idea consists in the iterative minimization of a temporal jump between a macro and micro solutions. For
example, lets consider that a displacement field is obtained, and we denote the semi-discretized coarse
displacement solution as U (t) and the fine displacement solution as u(t), under this considerations the
main problem to be solved consists in minimizing the discontinuity between the fine and coarse solutions
at the initial conditions of each subdomain, this is:

min
∥∥u j

p(Tp)−U j
p

∥∥
2

(7.1)

with ‖·‖2 the euclidean norm, and where j denotes the iterative index that translates how many times the
strategy is applied and the index p denotes the temporal subdomain, as shown in figure 7.1. In [Lions,
2001] an implicit Euler method is used for the approximation of the time evolution for the coarse and fine
problem (U (t) and u(t) respectively), that is why the macro solution is illustrated with straight lines in
figure 7.1.
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Figure 7.1: Strategy of Pararéel method for the temporal resolution.

The Pararéel method was developed in such a way that it can be applied to solve problems of scalar
time functions or semi-discretized vectors, but despite its popularity and good performance it is difficult
to implement in the context of the LATIN-PGD method, due to the need of solving complex minimization
problems in time for the calculation of the PGD time functions at the enrichment and preliminary steps of
the global stage.

Different works have been developed in the context of domain decomposition applied to the LATIN method
to achieve time-parallel resolution. For example, we can cite [Ladevèze and Nouy, 2002, Ladevèze and
Nouy, 2003, Nouy, 2003, Néron, 2004, Ladevèze et al., 2007, Passieux et al., 2008, Passieux et al.,
2010, Ladevèze et al., 2010a, Ladevèze et al., 2010b], in where a spatio-temporal domain decompo-
sition technique is applied to achieve a fully scalable LATIN solver for the parallel resolution of large
spatio-temporal problems. In these works, an homogenization technique in time is applied following a
macro-micro temporal resolution strategy (making use of the definition of coarse and fine intervals as in
the Pararéel method). The macro evolution (defined over the coarse discretization) is assumed to have a
smooth evolution such that it can be approximated using dedicated temporal shape functions, while the mi-
cro problem (defined on a temporal subdomain) is solved using the Time Discontinuous Galerkin Method
(TDGM) of order 0. Both macro and micro problems are solved iteratively during the LATIN resolution,
such as they ensure at convergence the continuity between the temporal subdomains.

The aforementioned strategy achieves a temporal parallel resolution in the context of the LATIN-PGD
method, however it requires the decomposition of the spatial domain, which increases the complexity of
the implementation. In this sense, in the present chapter a different strategy is followed, also based on the
Time Discontinuous Galerkin Method but making use of its incremental resolution property (see chapter
4), where the idea of macro and micro resolution is reused although from a different point of view. On
the one hand, the micro problem is based on an incremental resolution of the functions along the time
subdomains considering for each one some given initial conditions, on the other hand, the macro problem
consists in the low-cost determination of these initial conditions but unlike the methods exposed above,
without assuming any macroevolution. The determination of these values in the macro problem does
not require any additional formulation or inversion of operators of any kind, its determination is simply
performed incrementally for all temporal subdomains involving only the multiplication of a so-called “trans-
mission operator”. This strategy is easy to implement and its ideas are well adapted to the LATIN-PGD
method. However, this strategy is only applicable when constant operators are involved in the descent
search directions in the global stage of the LATIN method and when a uniform temporal discretization is
used in time (fine mesh). Its application extends both to the initial elastic problem in dynamics and to the
solution of the PGD time functions that are determined at each iteration of the method. All the details of
this parallel solving strategy are presented in the following sections.
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7.2 Initial elastic problem

As discussed in the previous chapters, the LATIN method is initialized with the elastic solution in dynamics
S0 ∈ Ad, with Ad the admissibility manifold. This solution starts the iterative resolution between the local
and global stages, where solutions Ŝn+1/2 ∈ Γ and Sn+1 ∈ Ad are calculated respectively (at a given
LATIN iteration n), with Γ the manifold on which the constitutive relations are verified. This iterative
process is recalled below:

S0 ∈ Ad −→ Ŝ1/2 ∈ Γ... −→ Ŝn+1/2 ∈ Γ −→ Sn+1 ∈ Ad... −→ S̄ ∈ Ad ∩ Γ. (7.2)

We recall that, at each iteration of the solver, the distance between the local and global solutions must
be minimized, where the method is said to converge when the distance between the two solutions Ŝn+1/2

and Sn+1 is less than a given threshold.

As shown is chapter 4, the elastic dynamic solution is computed by solving the following equilibrium
equation:

M ü0(t) + D u̇0(t) + K u0(t) = f (t)

with M , D and K the mass, damping and stiffness matrices respectively, and where the vector u0(t)
corresponds to the discretized elastic displacement solution at a given time t. As seen in chapter 4,
this solution is approximately calculated by using a low-rank decomposition and by computing the elastic
solution as a sum of two main terms, a quasi-static and a dynamic term:

u0(x, t) = u0,q(x, t)︸ ︷︷ ︸
quasi-static term

+ u0,d(x, t)︸ ︷︷ ︸
dynamic term

Where the quasi-static term is aproached by using the PGD and the dynamic term by using the modal
basis of the structure:

u0,q(t) ≈
mq∑
i=1

(wq)i(x)(λq)i(t) and u0,d(t) ≈
mb∑
i=1

φ
i
(x)υi(t)

where φ
i
(x) and υi(t) correspond to the spatial and temporal modal basis functions, while (wq)i(x) and

(λq)i(t) correspond to the spatial and temporal functions of the PGD applied to the quasi-static term, being
mq andmb the rank of the quasi-static and dynamic term approximation. Due to the PGD and the use of the
modal basis approximation, the temporal evolution of the elastic solution simply consists in the calculation
of scalar temporal functions (once the spatial ones are determined). The temporal functions associated to
the quasi-static and dynamic terms can be computed in parallel by using the same methodology that will
be introduced in section 7.4. In this regard, the presentation of the elastic resolution is omitted to avoid
re-explanation of the strategy, however, the application of the parallel strategy to the elastic problem is
straightforward and does not impose any additional difficulty.

7.3 Local stage

The local stage of the LATIN-PGD method remains unchanged, the degree of parallelization of this stage
depends on the formulation of the constitutive relation itself. One recalls here that the nonlinear part of
the constitutive relations must be evaluated for each Gauss point in time and space. Some constitutive
relations can be computed easily in a parallel way, this is the case for instance of elasto-visco-plasticity
(see section 2.3.2) because of its explicitly calculation in space and time; indeed, each point of the space-
time domain is calculated in an independent way from one another. On the other hand the constitutive
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relation associated to isotropic damage (see section 2.3.1) can be calculated in parallel for each spatial
point but can not be calculated in parallel for the temporal domain due to the need of the resolution of an
ordinary differential equation in time. Many different constitutive relations are formulated in different ways,
so therefore the degree of parallelization must be evaluated for each particular case.

7.4 Global stage: Parallel resolution of the temporal functions

After the evaluation of the constitutive relation at the local stage where the solution Ŝn+1/2 ∈ Γ is deter-
mined, a linear problem is solved at the global stage where the solution Sn+1 ∈ Ad must be computed. As
presented in chapter 4, the global stage quantities are approximated by employing the model reduction
technique PGD, the construction of this low-rank approximation is done in two steps, the enrichment and
the preliminary steps. The enrichment step consists in enriching or adding a new PGD mode (space-time
couple functions) to the already low-rank decomposition and the preliminary step consists in improving
this low-rank representation by actualizing the temporal PGD functions (while keeping the spatial functions
fixed).

In the present section, a parallel strategy for the computation of the temporal PGD functions of the global
stage is presented. The parallel methodology is adapted to both enrichment and preliminary steps. Herein
we will consider only the step where the temporal functions are calculated without detailing how the
equations are obtained. For more details about the developments of the different equations, please refer
to chapter 4.

Before showing the details of the parallel strategy applied to the enrichment and the preliminary steps, it
is necessary to introduce the key notation that will be used throughout the following sections, as well as
the general idea for achieving parallel computation, these are presented below.

1. Macro-micro temporal discretization:

Lets consider that the total interval of time I = [0, T ] is divided into N macro temporal subdomains,
this is:

Ip = [Tp−1, Tp] , ∀p ∈ [1, 2, ..., N ] (7.3)

with T0 = 0 and TN = T . Also lets define the maximum number of temporal finite elements inside
Ip as N (p)

T , as illustrated in figure 7.2, where the index kp denotes a temporal FEM element on the
macro interval “p”.

t
Ip−1 Ip Ip+1

|
. . .

|
Tp−1

|| | | | | | | | | |

kp ∈
[
0, ..., N

(p)
T

]
︷ ︸︸ ︷

Tp

|
. . .

Figure 7.2: Macro-micro temporal discretization.

In this chapter, the macro subdomains are considered to be uniform as well as the micro
discretization, in this sense, it must be noted that N − 1 temporal subdomains have the same size,
furthermore, this implies that the number of finite elements within those uniform subdomains are
equal, in other words:

∀p ∈ [1, 2, ..., N − 2] ,

N
(p+1)
T = N

(p)
T (7.4)
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The only subdomain with a size eventually different from the others is the last one p = N , which is
illustrated in figure 7.3.

t
|
. . .

|
TN−2

| | | | | | | | |

kN ∈
[
0, ..., N

(N)
T

]
︷ ︸︸ ︷

TN−1

|
TN = T

Figure 7.3: Last temporal subdomain.

Considering uniform macro and micro discretizations brings a great advantage, since many op-
erations of the parallel strategy that will be introduced are simplified and operators are reused,
decreasing by consequence the overall computational cost of the technique.

2. Micro and macro problems:

Once the time domain I = [0, T ] is divided into a few subdomains, the parallel strategy of reso-
lution simply consists in solving 3 main problems, two micro and one macro problems. For the
presentation of these problems we define the following notation for the temporal function:

λ`,p(t) (7.5)

where the index ` represents the number of micro problems to be solved and p denotes the temporal
subdomain. The main idea of these three problems are explained below.

(a) First micro resolution (` = 1):
The first stage of the parallel strategy is to set all initial conditions in each time subdomain equal
to zero and then solve the functions using the TDGM in each subdomain independently. This
process is illustrated in figure 7.4.

tIp−1 Ip Ip+1

|
. . .

|
Tp−1

|
Tp

|
. . .

•
•
•

•
••

λ1,p(T
+
p−1) = 0λ1,p−1(T−p−1) 6= 0

Figure 7.4: First micro problem, all the initial conditions of the temporal subdomains set equals to 0.

At the end of this step, the temporal function obtained over the entire time domain is completely
discontinuous as illustrated in figure 7.4, in order to re-impose continuity a macro resolution is
performed, which is presented below.

(b) Macro resolution:
Once the first fine problem is solved, the time functions suffer from high discontinuities, to solve
this, the final values in each subdomain are updated following a serial resolution over the macro
discretization as shown in figure 7.5.
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tIp−1 Ip Ip+1
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Tp

|
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• •
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Figure 7.5: Macro problem defined on each temporal subdomain.

In the following sections it will be shown how the end values in each subdomain are actualized
by solving this macro problem. In addition, it will be shown that by using the TDGM the correct
initial conditions on each subdomain are obtained by solving this problem only once.

(c) Second micro resolution (` = 2):

Once the macro problem is solved, the correct values of the initial conditions in each time sub-
domain are obtained, so the last step is to solve again a micro problem but this time considering
the updated initial conditions. At the end of this step the global continuity of the time function is
obtained as illustrated in figure 7.6.

tIp−1 Ip Ip+1

|
. . .

|
Tp−1

|
Tp

|
. . .

• •
•

λ2,p(T
+
p−1)λ2,p−1(T−p−1)≈

Figure 7.6: Second micro problem, recovery of the continuity.

From the above, it should be noted that the “micro” problems can be solved completely independently
since all the initial conditions are known, so that their calculation can be performed in parallel. On the
other hand, the “macro” problem must be solved serially and incrementally.

In the next sections, the parallel strategy applied for the resolution of the temporal PGD functions as-
sociated to the enrichment and preliminary steps is presented. Only the details related to the temporal
resolution will be exposed, omitting therefore some details such as the spatial problem of the enrichment
step or how the discretized equations are obtained in time, for more details on these points see chapter 4.

7.4.1 Enrichment step: temporal function determination

The enrichment step consists in the computation of a spatio-temporal pair function usually denoted as
PGD mode. For its computation a spatial and a temporal problem must be solved iteratively, however in
this section only the temporal problem is studied. The temporal PGD function in the enrichment step is
determined by minimizing the constitutive relation error, this error is defined according to the behavior of
the material considered, for example for isotropic damage this error is given by:

{λm+1} = arg min
λm+1∈UT

∣∣∣∣∣∣∣∣∣σ̄
m+1

λm+1 −Hε : ε̄
m+1

λm+1 + ∆
n+1

∣∣∣∣∣∣∣∣∣2
H−1
ε

(7.6)
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while for elasto-visco-plasticity by:

{λm+1} = arg min
λm+1∈UT

∣∣∣∣∣∣∣∣∣ε̄p
m+1

λ̇m+1 −Hσ : σ̄
m+1

λm+1 + ∆
n+1

∣∣∣∣∣∣∣∣∣2
H−1
σ

{λαm+1} = arg min
λαm+1∈UT

∣∣∣∣∣∣∣∣∣ᾱ
m+1

λ̇αm+1 + Hβ : Cᾱ
m+1

λαm+1 + ∆α
n+1

∣∣∣∣∣∣∣∣∣2
H−1
β

{λr̄m+1} = arg min
λr̄m+1∈UT

∣∣∣∣∣∣∣∣∣¯̄rm+1λ̇
r̄
m+1 +HR̄R∞ ¯̄rm+1λ

r̄
m+1 + ∆r̄

n+1

∣∣∣∣∣∣∣∣∣2
H−1
R̄

(7.7)

After discretization of the minimization problems of equations (7.6) or (7.7) by using the TDGM as pre-
sented in chapter 4, the following equation can be obtained without loss of generality:(

Q +L
)
λ[k] =Rλ[k−1] + f [k] (7.8)

with the matrix Q corresponding to the finite element discretization using TDGM approach, while L andR
correspond to the matrices that help to ensure the continuity in a weak sense from one element to another.
Lets remark that the elemental index “k” used in chapter 4 is dropped off, this is, Q = Q [k], L = L[k] and

R =R[k], since these matrices have entry values which are constants along the whole temporal domain
due to the choice of a uniform micro discretization and the choice of constants operators Hε, Hσ, Hβ and
HR̄.

Equation (7.8) gives the solution at the element k from the knowledge of the solution at k−1, however this
expression is not very useful if we consider to develop a parallel strategy. In this sense, in order to obtain
a more useful expression, we seek the solution at element k from an initial value in the temporal domain,
i.e., element k = 0. To do so, lets calculate the nodal values of the temporal function at a given element k
recursively, in this way the solution of the first element is given by:

λ[1] =
(

Q +L
)−1
Rλ[0] +

(
Q +L

)−1
f [1]

In the same way, the solution at the second element (k = 2) is given by:

λ[2] =
(

Q +L
)−1
Rλ[1] +

(
Q +L

)−1
f [2]

By introducing the solution of element k = 1 into k = 2 we obtain:

λ[2] =
(

Q +L
)−1
R
((

Q +L
)−1
Rλ[0] +

(
Q +L

)−1
f [1]

)
+
(

Q +L
)−1

f [2]

which can be expressed as:

λ[2] =

[(
Q +L

)−1
R
]2

λ[0] +

((
Q +L

)−1
R
) (

Q +L
)−1

f [1] +
(

Q +L
)−1

f [2]

The above steps can be recursively generalized to an arbitrary element k as follows:

λ[1] =
(

Q +L
)−1
Rλ[0] +

(
Q +L

)−1
f [1]

λ[2] =

[(
Q +L

)−1
R
]2

λ[0] +

((
Q +L

)−1
R
) (

Q +L
)−1

f [1] +
(

Q +L
)−1

f [2]

...

λ[k] =

[(
Q +L

)−1
R
]k
λ[0] +

k∑
i=1

[(
Q +L

)−1
R
]k−i (

Q +L
)−1

f [i]

(7.9)
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with
((

Q +L
)−1
R
)0

equals the identity matrix I ∈ R4 ⊗ R4 (with 4 the elementary number of nodal

values in time when using cubic Hermite shape functions).

Therefore, from equation (7.9) the solution of the discretized temporal PGD function at temporal element
k is given by:

λ[k] =

[(
Q +L

)−1
R
]k
λ[0] +

k∑
j=1

[(
Q +L

)−1
R
]k−j (

Q +L
)−1

f [j] (7.10)

Equation (7.10) allows to compute the solution at any given time element k as the sum of two terms, one
associated to the initial condition and other related to a particular solution:

λ[k] =

[(
Q +L

)−1
R
]k
λ[0]︸ ︷︷ ︸

Initial condition term

+
k∑
j=1

[(
Q +L

)−1
R
]k−j (

Q +L
)−1

f [j]

︸ ︷︷ ︸
Particular solution

The above expression intrinsically hides the parallel methodology that will be presented in the following
sections and is one of the heart equations of the entire chapter.

7.4.1.1 Parallel resolution

The parallel strategy simply begins by considering the splitting of the original time domain I = [0, T ] into
macro subdomains as presented at the beginning of the section and by applying on each of them the
same idea of equation (7.10), this is:

∀` ∈ [1, 2], ∀kp ∈
[
0, ..., N

(p)
T

]
, ∀p ∈ [1, 2, ..., N ] ,

λ
[kp]
`,p =

[(
Q +L

)−1
R
]kp

λ
[0]
`,p +

kp∑
j=1

[(
Q +L

)−1
R
]k−j (

Q +L
)−1

f [j]
p

(7.11)

where f
p

corresponds to the external excitation vector defined within Ip. With the use of equation (7.11)
the parallel strategy simply stands as follows:

1. First micro problem (` = 1):

Solve the temporal problem for all the subdomains by imposing an initial condition equal to 0 on all
of them, this is:

∀p ∈ [1, 2, ..., N ] ,

λ
[0]
1,p = 0

this means that the solution λ1,p is given by:

∀kp ∈
[
0, ..., N

(p)
T

]
, ∀p ∈ [1, 2, ..., N ] ,

λ
[kp]
1,p =

kp∑
j=1

[(
Q +L

)−1
R
]kp−j (

Q +L
)−1

f [j]
p

(7.12)

Since the initial conditions of all considered temporal subdomains are set equal to zero, the time
function can be calculated following the equation (7.12) in parallel form, where the time function
is determined independently in each time subdomain and thus its resolution can be assigned to
different computer processors.
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2. Macro problem:

Once the first micro problem (` = 1) is solved, the initial conditions of each subdomain is actualized
for the second micro problem (` = 2) by solving a macro problem. This macro problem is obtained
by considering equation (7.11) and by imposing to obtain the solution at the second micro problem
(` = 2) and at the last temporal element on each subdomain p (kp = N

(p)
T ), this is:

∀p ∈ [1, 2, ..., N − 1] ,

λ
[N

(p)
T ]

2,p =

[(
Q +L

)−1
R
]N(p)

T

λ
[0]
2,p +

N
(p)
T∑
j=1

[(
Q +L

)−1
R
]k−j (

Q +L
)−1

f [j]
p

(7.13)

By remembering that due to the use of the TDGM we have λ[0]
2,p+1 = λ

[N
(p)
T ]

2,p (the solution on the last
element of subdomain p is the initial condition of subdomain p + 1) and by recognizing the result of
(7.12) in the right side term of (7.13), we can write:

∀p ∈ [1, 2, ..., N − 1] ,

λ
[0]
2,p+1 = λ

[N
(p)
T ]

2,p =

[(
Q +L

)−1
R
]N(p)

T

λ
[0]
2,p︸ ︷︷ ︸

P λ
[0]
2,p

+

N
(p)
T∑
j=1

[(
Q +L

)−1
R
]k−j (

Q +L
)−1

f [j]
p︸ ︷︷ ︸

λ
[N

(p)
T ]

1,p

(7.14)

where the matrix P is denoted the “transmission operator”, which is a constant matrix given by:

P =

[(
Q +L

)−1
R
]N(1)

T

, P ∈ R4 ⊗ R4 (7.15)

where in the above expression we recall that N (1)
T = N

(p)
T , ∀p ∈ [1, 2, ..., N − 1], since the micro and

macro discretization are chosen to be uniform.

With all the above considerations, the macro problem can by simply stated as follows:

∀p ∈ [1, 2, ..., N − 1] ,

λ
[0]
2,p+1 = P λ

[0]
2,p + λ

[N
(p)
T ]

1,p with λ
[0]
2,p=1 = 0 (Initial condition at t=0) (7.16)

Equation (7.16) allows determining the correct initial condition for each time subdomain by incre-
mentally solving one subdomain after another, where in each subdomain the constant transmission
operator is used together with the final solution of the first micro problem (` = 1). Figure 7.7 illus-
trates this solving process.

tIp Ip+1 Ip+2

λ
[0]
2,p+1︸ ︷︷ ︸ = P λ

[0]
2,p︸︷︷︸+λ

[N
(p)
T ]

1,p︸ ︷︷ ︸

|
. . .

|
Tp

|
Tp+1

|
. . .

• •

•

Figure 7.7: Solving the macro problem: Updating the initial conditions for all subdomains of the second
micro problem (red dots) from the final value in each subdomain of the first micro solution (blue dots).
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7.4. Global stage: Parallel resolution of the temporal functions

Remark: The computation of the transmission operator requires the evaluation of a matrix raised
to the power of N (1)

T , which is the total number of finite elements over time in each uniform time
subdomain. Note that the choice of uniform subdomains implies a constant matrix transmission
operator P that can be reused throughout the resolution of the macro problem. It should also be
noted that the solution of the macro problem is performed incrementally for each time subdomain
(serially), so the macro problem cannot be solved in parallel, however its solution is inexpensive
due to the constant transmission operator used, which reduces the solution of the macro problem
to the realization of inexpensive matrix-vector multiplication operations for the determination of the
new initial conditions in each subdomain. Finally, it should be noted that at the end of the solution
of the macro problem, the new initial conditions determined in each time subdomain are actually the
initial conditions of the converging time function, this is because their determination verifies exactly
the equation of the time solution 7.11. In this sense, after the solution of the macro problem, only an
additional solution of the micro problem is required to obtain the desired time function (which verifies
the continuity of the function in the TDGM sense).

3. Second micro problem (` = 2):

Once the correct initial conditions for all the subdomains are determined at the macro problem, the
solution of the second micro problem λ2,p is simply determined over each subdomain as:

∀kp ∈
[
0, ..., N

(p)
T

]
, ∀p ∈ [1, 2, ..., N ] ,

λ
[kp]
2,p =

[(
Q +L

)−1
R
]kp

λ
[0]
2,p +

kp∑
j=1

[(
Q +L

)−1
R
]k−j (

Q +L
)−1

f [j]
p

(7.17)

Since the determination of the initial condition at the macro problem correspond to the exact initial
condition as if a classic TDGM is used, the final temporal solution λ simply corresponds to the union
of all the computed solutions at this step, finally obtaining:

λ =
N⋃
p=1

λ2,p (7.18)

7.4.2 Preliminary step: Temporal functions actualization

As stated in precedents chapters, an improvement in the convergence of the LATIN method is achieved
if the update of the temporal PGD functions is done at the preliminary step. The update of the temporal
functions is done by simply considering that the temporal PGD functions of the global variables can be
corrected as:

∀i ∈ [1, ...,m+ 1],
λi ← λi + ∆λi (7.19)

The expression (7.19) is true for the case of the admissibility variables (displacement, stress, total defor-
mation, etc), for particular cases as internal variables, it is chosen to simply correct the last PGD mode in
order to avoid bad conditioning (see chapter 4):

λαm+1 ← λαm+1 + ∆λαm+1 (7.20)
λr̄m+1 ← λr̄m+1 + ∆λr̄m+1 (7.21)

By introducing those expression into the different descent search directions (which are function of the ma-
terial considered) we simply obtain the following minimization problems for the case of isotropic damage:
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∀i ∈ [1, ...,m+ 1] ,

{∆λi} = arg min
{∆λi}mi=1∈UT

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
m+1∑
i=1

σ̄
i
∆λi −Hε :

(
m+1∑
i=1

ε̄
i
∆λi

)
+ ∆

n+1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

H−1
ε

(7.22)

while for elasto-visco-plasticity we have:

∀i ∈ [1, ...,m+ 1],

{∆λi} = arg min
{∆λi}mi=1∈UT

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
m+1∑
i=1

ε̄p
i
∆λ̇i −Hσ :

m+1∑
i=1

σ̄
i
∆λi + ∆

n+1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

H−1
σ

(7.23)

with the minimization problem related to the internal variables given by:

{∆λαm+1} = arg min
∆λαm+1∈UT

∣∣∣∣∣∣∣∣∣ᾱ
m+1

∆λ̇αm+1 −Hβ : Cᾱ
m+1

∆λαm+1 + ∆α
n+1

∣∣∣∣∣∣∣∣∣2
H−1
β

(7.24)

{∆λr̄m+1} = arg min
∆λr̄m+1∈UT

∣∣∣∣∣∣∣∣∣¯̄rm+1∆λ̇r̄m+1 −HR̄R∞ ¯̄rm+1∆λr̄m+1 + ∆r̄
n+1

∣∣∣∣∣∣∣∣∣2
H−1
R̄

(7.25)

By discretizing the above expressions we obtain the following general equation (see chapter 4):(
Q
up

+L
up

)
∆Λ[k] =R

up
∆Λ[k−1] + f [k]

up
(7.26)

Using expression (7.26) and following the ideas as presented for the enrichment step, the temporal func-
tions to be determined at the preliminary step can also be written for each time subdomain and micro
iteration ` as:

∀` ∈ [1, 2], ∀kp ∈
[
0, ..., N

(p)
T

]
, ∀p ∈ [1, 2, ..., N ] ,

(∆Λ)
[kp]
`,p =

[(
Q
up

+L
up

)−1

R
up

]kp
(∆Λ)

[0]
`,p +

kp∑
j=1

[(
Q
up

+L
up

)−1

R
up

]kp−j (
Q
up

+L
up

)−1

(f
up

)[j]
p

(7.27)
The above expression allows also a parallel resolution for the determination of the temporal corrective
PGD functions, indeed all the procedures and equations presented for the enrichment step remain the
same. In this sense, the macro and micro problems are solved in the same way as exposed previously,
where the macro problem involves the use of the constant transmission operator P

up
given by:

P
up

=

[(
Q
up

+L
up

)−1

R
up

]N(1)
T

, P
up
∈ R4m ⊗ R4m (7.28)

As can be seen from the above developments, the parallel method presented here naturally arises from
a classical temporal resolution using TDGM. The parallel strategy converges only in 3 stages, where the
temporal function obtained corresponds exactly to a temporal function obtained by a serial solving strategy
using the TDGM as presented in chapter 4. This is a strong point, since in this sense the parallel strategy
does not modify the convergence rate of the LATIN-PGD method.
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7.5. Numerical example

7.5 Numerical example

For the demonstration of the parallel strategy we consider herein the same example as the one treated
in chapter 4 for the case of elastic-visco-plasticity, this choice of constitutive relation is totally arbitrary
and the application of the parallel strategy for the case of isotropic damage or other complex material can
be equally applicable with no difficulties. The bending test considered is recalled herein and is shown in
figure 7.8.

y

z

d2

d3

x

y

z

0
uDz (t)

uDz (t)

d1

Figure 7.8: Test case considered, along with its dimensions.

We recall (as given in chapter 4) that the beam dimensions for this case are d1 = 6 [m], d2 = d3 = 0.1 [m].
In addition, the vertical displacement uDz (t) considered consists in a simple sinusoidal excitation of 3[Hz]
as shown in figure 7.9.

Figure 7.9: Imposed displacement.

From the results presented in chapter 4 the final solution is already known, so the principal idea of con-
sidering the same test is to demonstrate that exactly the same solution is obtained by the parallel strategy
introduced in this chapter.

The results presented in this section were implemented in a serial code, so numerical savings are omitted,
however, their correct implementation exploiting the parallel architecture of nowadays clusters is consid-
ered as a perspective for future developments.

For the application of the parallel method 10 macro temporal elements are considered, this choice is
completely arbitrary and its selection is based only for illustrative purposes. Under these considerations,
figures 7.10, 7.11 and 7.12 illustrate the temporal PGD functions associated to the first rank of the PGD
decomposition for the approximation of the global quantities associated to the admissibility conditions, the
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kinematic and isotropic hardening respectively, where the macro temporal mesh is marked as red points.
In these figures we can see the final results associated with the first and second micro problems.

(a) First micro resolution. (b) Second micro resolution.

Figure 7.10: Enrichment step applied to the temporal PGD function λ1(t).

(a) First micro resolution. (b) Second micro resolution.

Figure 7.11: Enrichment step applied to the temporal PGD function λα1 (t).

(a) First micro resolution. (b) Second micro resolution.

Figure 7.12: Enrichment step applied to the temporal PGD function λr̄1(t).
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On the other hand, figures 7.13a and 7.13b show the results obtained for the first and second micro
problems respectively at the preliminary step for the update of 3 time functions applied to the admissibility
temporal terms (displacement, strain, plastic deformation and stress).

(a) First micro resolution. (b) Second micro resolution.

Figure 7.13: Preliminary step solutions when applying the parallel strategy for the update of 3 PGD tem-
poral functions.

As mentioned previously, the parallel resolution strategy does not introduce approximation errors, so the
convergence of the LATIN-PGD method remains the same as if a classical TDGM resolution strategy were
used, this can be easily seen in figure 7.14 where the error curves versus the number of PGD modes are
shown for the classical and parallel temporal strategy.

(a) Error using the classic strategy. (b) Error using the parallel strategy.

Figure 7.14: Error comparison between a classic and a parallel resolution strategy applied to the LATIN-
PGD method.

The same convergence rate is obtained because the whole parallel solving strategy allows to resolve the
same equations as if TDGM were used in a serial way as presented in chapter 4. This property is very
powerful and outlines the advantages of the present strategy for future developments or its application to
solve large industrial problems.
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7.6 Conclusions

Model reduction methods are widely used in the context of solid mechanics when the reference prob-
lem contains a high amount of degrees of freedom and when calculating a direct resolution is prohibitive
due to the high computational cost. But model reduction methods are not the only solution to reduce the
computational burden, domain decomposition methods also does, which make use of the parallel architec-
ture of current computers to distribute the load among them, obtaining as a consequence a considerable
reduction of computational time.

In this context, this chapter introduced a parallel computational strategy to obtain the temporal functions
of the LATIN-PGD decomposition. The main objective of this strategy is to achieve a greater reduction
in computational time when the LATIN method and PGD are used, a reduction that increases with the
number of processors used for the calculation. This strategy is based on the use of the Time Discontinuous
Galerkin Method (TDGM) and the idea is to solve independently and in parallel the temporal PGD functions
over temporal subdomains of uniform size. For this purpose, two “micro” and one “macro” problems are
solved, where the micro problem consists in independently solving the time function on a given number of
time macro elements, and whose calculation is performed independently in parallel. The “macro” problem
is solved serially and its resolution is inexpensive due to the use of a “transmission operator” which solves
the problem by performing inexpensive multiplicative operations. For summing things up, the technique
starts by (i) setting all initial conditions on all subdomains equal to zero and solving the temporal functions
independently on each of them (first micro problem), (ii) actualizing and correctly determining the initial
values on each subdomain by solving a macro problem and finally (iii) a last micro problem is solved
taking into account the correct initial conditions determined at the macro problem, where a continuous
time function is obtained (in the sense of the TDGM). These three simple steps allow at the end of the
process to obtain the desired temporal PGD functions, both in the enrichment step and in the updating of
the time functions in the preliminary step. However, for the optimal application of the introduced parallel
strategy, an uniform micro and macro discretization must be considered, along with constant operators
related to the descent search direction at the global stage. These considerations allow the definition of
constants “transmission operators” that drastically accelerate the resolution of the macro problems.

The parallel strategy introduced in this chapter does not require any modification of the spatial domain,
since it only solves the temporal problems arising in the enrichment and preliminary steps. This is one of
the main differences when compared to the pioneering works to achieve a parallel resolution in the LATIN
framework [Ladevèze and Nouy, 2002, Ladevèze and Nouy, 2003, Nouy, 2003, Néron, 2004, Ladevèze
et al., 2007, Passieux et al., 2008, Passieux et al., 2010, Ladevèze et al., 2010a, Ladevèze et al., 2010b].
In these references, a spatio-temporal homogenization technique is applied (see section 3.4.4), where a
macro-micro spatio-temporal representation of the unknowns is introduced at the interfaces of the spatial
subdomains. The temporal formulation in time follows ideas similar to the parallel strategy introduced
in this chapter, especially for the micro problem, which simply consists of a resolution in each temporal
subdomain. However, the macro problem differs, since in this case a time function is determined following
a slow evolution in time and employing a FEM formulation.

Finally, a powerful property of the parallel strategy introduced in this chapter is the fact that no modification
of the convergence properties is observed when compared to a classical solving strategy such as the one
presented in chapter 4. This is because in both cases exactly the same temporal equations are solved
in the enrichment and preliminary steps. Maintaining in this sense the same convergence rate in the
LATIN-PGD method. This feature positions the parallel resolution method as a powerful technique for the
efficient resolution of problems where the external excitation has a long duration and complex behavior.
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Conclusions and perspectives

The main objective of the present thesis work consisted on the development of dedicated strategies for
the fast resolution of nonlinear low-frequency dynamics problems in solid mechanics, where the structure
is subjected to loading with complex behavior and long duration in time. These developments considered
the materials most commonly used for building construction, i.e. concrete and steel. From the above,
two constitutive relationships, an isotropic damage model for the simulation of concrete materials and
a standard version of the Marquis Chaboche elasto-visco-plasticity model for the simulations of metallic
materials such as steel reinforcement, were considered. Under this context and due to the high compu-
tational cost when using incremental nonlinear solvers for their resolution, the LATIN method along with
the model reduction technique Proper Generalized Decomposition (PGD) were considered. The LATIN
method, contrary to incremental nonlinear approaches, solves the reference problem globally over the
whole space and time domain at each iteration of the method. This global resolution strategy allows an
easy introduction of model order reduction techniques into its formulation, which gives the LATIN-PGD its
well-known efficiency. The use of the PGD allows to solve the nonlinear problem seeking the solution on a
reduced order basis that can be calculated on the fly without previous knowledge of the solution. Despite
the continuous development of the LATIN-PGD method in recent years, its adaptation for the treatment
of problems in low-frequency dynamics has not been the focus of recent works until the present thesis,
mainly because the attention had been centered on the study of problems under quasi-static conditions.
In addition, the development of strategies dedicated to the rapid resolution of the time evolution of the
LATIN method for the case of complex behavior and long time duration excitations, such as seismic or
fatigue loads, is limited, although great efforts have been made in this area. For years, approximation
techniques have been developed in the case of long-duration loading such as fatigue problems, however
they are limited to the treatment of mono-periodic excitations [Cognard and Ladevèze, 1993, Arzt and
Ladevèze, 1994, Bhattacharyya et al., 2018a, Bhattacharyya et al., 2018c, Bhattacharyya et al., 2019].
Along the same lines, domain decomposition and parallel computation methods have been introduced to
deal with problems with a large number of degrees of freedom, both in space and time [Ladevèze and
Nouy, 2003, Néron, 2004, Passieux, 2008], but its formulation is complex and require the sub-division of
the spatial domain, which is not always desired.

In this sense, the need of solving low-frequency nonlinear dynamics problems with numerical efficiency,
even in the case of external excitations of long duration and complex behavior, gave rise to the develop-
ment of new solution strategies. Each of them aims at solving different points of great importance, these
strategies are briefly explained below:

1. As mentioned above, one of the main objectives of the present thesis is to be able to solve low-
frequency nonlinear dynamic problems, so the first development presented in chapter 4 consisted
in the extension of the LATIN-PGD framework to take into account the dynamic effects of the struc-
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ture. Additionally, in this chapter the Time Discontinuous Galerkin method is applied for a novel
incremental resolution of the temporal PGD functions in both enrichment and preliminary steps.
The LATIN-PGD method is verified for solving problems in dynamics by comparing the numerical
results with a classical step-by-step solver (Newton-Raphson) for the case of isotropic damage and
elasto-visco-plasticity.

2. Apart from the treatment of nonlinear problems in dynamics, the present thesis also focuses on the
resolution of problems where the external load has a long time duration and complex behavior, such
as seismic or fatigue loads. In this situation, the temporal degrees of freedom to be determined at
each iteration of the LATIN-PGD can be very large, which would impair the efficiency of the solver.
To circumvent this limitation, in chapter 5, a multiscale temporal approximation is developed, whose
objective is to approximate the temporal PGD functions to be determined in the global stage of the
LATIN-PGD method as a sum of different signal contributions whose computation is inexpensive and
where the temporal degrees of freedom are drastically reduced.

3. As exposed in the previous point, when problems with a long time duration are studied, their dis-
cretization introduces a high number of temporal degrees of freedom. In this context, and due to the
global resolution nature of the LATIN-PGD method, at each iteration of the method the processes
of evaluating the constitutive relation at all spatio-temporal integration points at the local stage, as
well as the spatio-temporal integration operations required at the global stage for the construction
of the PGD approximation start to become very costly. Due to this problem, in chapter 6 a hyper-
reduction technique is introduced. This method exploits the idea of spatio-temporal reference points
to economically construct a low-rank approximation of the constitutive relation quantities in the whole
spatio-temporal domain at the local stage, thus allowing a considerable reduction of the integration
operations at the global stage and, consequently, drastically decreasing the computational cost of
the whole LATIN-PGD method.

4. Finally, under the same objective of efficiently solving the time evolution of a nonlinear problem in
the context of the LATIN-PGD method when long time duration external excitations are considered,
in chapter 7 a parallel temporal resolution strategy is presented to take advantage of the current
processor architecture. This resolution strategy allows obtaining in parallel the temporal PGD func-
tions of both the enrichment and preliminary steps in the global stage, and its development arises
naturally from the use of the Time Discontinuous Galerkin Method (TDGM).

Despite the number of developments that have been made during this doctoral work to improve the per-
formance of the LATIN-PGD solver, there are still many interesting ideas to be tested, these ideas are
presented below as perspectives for future research:

1. In this thesis work, all the operators related to the ascent search directions are considered to be
constant. Therefore a first perspective could be the use of more optimized search directions by
considering tangent operators in order to accelerate the convergence of the solver. Of course, this
perspective excludes the parallel strategy presented in chapter 7, since the use of constant operators
is a key requirement of the strategy.

2. In the context of the multiscale approach introduced in chapter 5, an interesting perspective could
be the introduction of an iterative resolution method for the determination of the macro functions and
the application of a parallel strategy for the determination of the micro functions in order to speed up
the resolution. The use of the Time Discontinuous Galerkin method to accelerate the resolution of
the macro functions is also considered as perspective.
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3. The use of the hyper-reduction technique introduced in chapter 6 needs a constitutive relation that
can be evaluated locally in the spatio-temporal domain such as the elasto-visco-plasticity constitu-
tive relation. On the other hand, isotropic damage simulation for concrete material can be evaluated
locally in the spatial domain but not in the time domain, on which a differential equation must be
solved in time. The need to solve an ordinary differential equation in time for the case of isotropic
damage behavior makes it impossible to apply the low-rank approximation of the hyper-reduced
technique without calculating the complete spatio-temporal solution. This restriction makes nec-
essary an extension of the method to take into account this type of constitutive relations. In this
sense, an interesting perspective could be the approximation of the damage model by an explicit
function that can be derived by applying Deep Learning techniques or other methods that can ap-
proximate the original behavior of the material. This mapping approach will require state-of-the-art
developments and is considered a major challenge for the acceleration of the LATIN-PGD solver.

4. Finally, in the same line of the hyper-reduced technique, an interesting application arises naturally,
which consists in the low-rank approximation of the variables of the constitutive relation over a spatio-
temporal-parametric domain. This application seems very interesting when parametric studies have
to be performed, especially when the constitutive relation has to be evaluated several times for each
parameter. Thus, the use of the hyper-reduction technique presented in this thesis could drastically
reduce the computational burden of such studies.

It should be emphasized that the ideas presented in the present thesis work were applied only to “aca-
demic” problems, on the one hand due to the prematurity of the new developments proposed, as well as
the limited time of a thesis work. In this context, apart from the perspectives given previously for future
research, as a general perspective it is considered the application of the different ideas developed in this
thesis to solve real industrial problems, which can truly demonstrate the capabilities and optimizations
presented in this thesis for the LATIN-PGD method.

It is humbly expected that the work carried out in this thesis will open the doors to new developments that
further improve the performance of the LATIN-PGD method, that constitutes a favorable framework for
including endless optimization techniques into its formulation that still remain to be developed.

The codes developed for the application of the different methods exposed in this thesis were carried out
in MATLAB version R2020a, however these developments will be introduced later in CAST3M, which is
an open source program developed by the CEA specially dedicated for numerical simulations, in order to
allow its wide industrial usage.
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Appendix A

Bilinear and linear discretization of the
elastic dynamic problem

The following lines shows the construction of the bilinear (Ak(uN , vN ) and linear (B ′k(v
N )) operators for a

given temporal element k (see chapter 2).

• Bilinear operator construction:

We start by calculating the operator Ak(uN , vN ) defined as follows:

Ak(uN , vN ) =

∫
Ĭk

v̇(t) ·
(
M ü(t) + D u̇(t) + K u(t)

)
dt (A.1)

The discretization of the operator Ak by using the finite elements shape functions in space and time gives:

∫
Ĭk

v̇(t) ·M · ü(t)dt =

∫
Ĭk

 4∑
j=1

ψ̇
[k]

j
(t)v[k]

j

 ·M ·

(
4∑
i=1

ψ̈
[k]

i
(t)u[k]

i

)
dt

=
4∑
j=1

4∑
i=1

v[k]
j
·M ·

(∫
Ĭk

ψ̇
[k]

j
(t)ψ̈

[k]

i
(t)dt

)
u[k]
i

= v[k] :

[
M ⊗

∫
Ĭk

ψ̇
[k]

(t)⊗ ψ̈[k]
(t)dt

]
: u[k]

(A.2)

The discretized bilinear operator writes:

Ak(uN , vN ) = v[k] :
[
M ⊗Q12

k
+ D ⊗Q11

k
+ K ⊗Q10

k

]
: u[k] (A.3)

with:

Q ij

k
=

∫
Ĭk

∂iψ[k](t)

∂ti
⊗
∂jψ[k](t)

∂tj
dt (A.4)

By summing the continuity conditions between elements k and k − 1 to the operator Ak, we can write:

A ′k(u
N , vN ) = Ak(uN , vN ) + v̇(t+k−1) ·M · u̇(t+k−1) + v(t+k−1) ·K · u(t+k−1) (A.5)

where the last two terms are given by:

v̇(t+k−1) ·M · u̇(t+k−1) = v[k] :
[
M ⊗

(
ψ̇

[k]
(tk−1)⊗ ψ̇[k]

(tk−1)
)]

: u[k] = v[k] :
[
M ⊗P11

k

]
: u[k] (A.6)
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v(t+k−1) ·K · u(t+k−1) = v[k] :
[
K ⊗

(
ψ[k](tk−1)⊗ ψ[k](tk−1)

)]
: u[k] = v[k] :

[
K ⊗P00

k

]
: u[k] (A.7)

with:

P ij
k

=
∂iψ[k](tk−1)

∂ti
⊗
∂jψ[k](tk−1)

∂tj
(A.8)

• Linear operator construction:

The linear operator B ′k(v
N ) is given by :

B ′k(v
N ) =

∫
Ĭk

v̇(t) · f (t)dt+ v̇(t+k−1) ·M · u̇(t−k−1) + v(t+k−1) ·K · u(t−k−1) (A.9)

and the three discretized terms in time are calculated as follows:∫
Ĭk

v̇(t) · f (t)dt = v[k] :

[
I ⊗

∫
Ĭk

ψ̇
[k]

(t)⊗ ψ[k](t)dt

]
: f [k] = v[k] :

[
I ⊗Q10

k

]
: f [k] (A.10)

v̇(t+k−1) ·M · u̇(t−k−1) = v[k] :
[
M ⊗

(
ψ̇

[k]
(tk−1)⊗ ψ̇[k−1]

(tk−1)
)]

: u[k−1] = v[k] :
[
M ⊗R11

k

]
: u[k−1]

(A.11)

v(t+k−1) ·K ·u(t−k−1) = v[k] :
[
K ⊗

(
ψ[k](tk−1)⊗ ψ[k−1](tk−1)

)]
: u[k−1] = v[k] :

[
K ⊗R00

k

]
: u[k−1] (A.12)

with the following notation:

Rij
k

=
∂iψ[k](tk−1)

∂ti
⊗
∂jψ[k−1](tk−1)

∂tj
(A.13)

• Taking into account the initial conditions:

The information of the initial condition of the problem is taken into account in the linear operator B ′1(.), that
is:

B ′1(vN ) =

∫
Ĭ1

v̇(t) · f (t)dt+ v̇(t+0 ) ·M · u̇ in + v(t+0 ) ·K · u in (A.14)

with u in and u̇ in the initial displacement and velocity in I = [0, T ]. This term is calculated as:∫
Ĭ1

v̇(t) · f (t)dt = v[1] :

[
I ⊗

∫
Ĭ1

ψ̇
[1]

(t)⊗ ψ[1](t)dt

]
: f [1] = v[1] :

[
I ⊗Q10

1

]
: f [1] (A.15)

v̇(t+0 ) ·M · u̇ in = v[1] :
[
M · u̇ in ⊗ ψ̇

[1]
(t0)
]

= v[1] :
[
M · u̇ in ⊗ ψ̇

[1]
(0)
]

(A.16)

v(t+0 ) ·K · u in = v[1] :
[
K · u in ⊗ ψ[1](t0)

]
= v[1] :

[
K · u in ⊗ ψ[1](0)

]
(A.17)

• Final assembly: Solving the equilibrium equation in a discretized weak sense leads to compute the
discrete tensor u[k] (on intervals Ĭk) as the solution of:[

M ⊗ (Q12

k
+ P11

k
) + D ⊗Q11

k
+ K ⊗ (Q10

k
+ P00

k
)
]

: u[k] =

(I ⊗Q10

k
) : f [k] +

[
M ⊗R11

k
+ K ⊗R00

k

]
: u[k−1]

(A.18)
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The discrete solution u[1] over the initial element Ĭ1 in turn verifies:[
M ⊗ (Q12

1
+ P11

1
) + D ⊗Q11

1
+ K ⊗ (Q10

1
+ P00

1
)
]

: u[1] =

(I ⊗Q10

1
) : f [1] + (M · u̇ in)⊗P1

1 + (K · u in)⊗P0
1

(A.19)

with:

P1
1 = ψ[1](0) (A.20)

P0
1 = ψ̇

[1]
(0) (A.21)
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Appendix B

General framework for the incremental
resolution of nonlinear solid mechanics
problems

Lets consider a classic incremental strategy for which a solution sk = {uk, εk, σk} is computed at time step
tk and where the solution sk+1 = {uk+1, εk+1

, σ
k+1
} at next time step tk+1 is sought, given the loading

terms f
k+1
∈ Ω, fN

k+1
∈ ∂NΩ and uDk+1 ∈ ∂DΩ. The resolution of the problem mainly consists on two

steps, that are:

1. The local integration of the nonlinear constitutive relations that gives σ
k+1

in function of uk+1 and sk.

2. The linearization of the global equilibrium equations of the system and their resolution in an iterative
way.

The global equilibrium of the structure in space at current time step tk+1 can be written as:

∀v ∈ US(Ω, 0), ∫
Ω
ρük+1 · vdΩ +

∫
Ω
σ
k+1

: ε(v) dΩ =

∫
Ω
f
k+1
· v dΩ +

∫
∂NΩ

fN
k+1
· v dS (B.1)

where the nonlinear stress tensor σ
k+1

writes as a function of the solution sk at previous time-step and
the displacement increment ∆uk = uk+1 − uk writing:

σ
k+1

= J (ε(∆uk); sk) (B.2)

B.1 Temporal incremental approximation

In dynamics, the Newmark method is generally used for the incremental approximation in time [Dokainish
and Subbaraj, 1989, Gavin, 2001]. In the Newmark framework the temporal evolution of the displacement
is approximated as:

uk+1 ≈ uk + ∆tu̇k + ∆t2
[(

1

2
− βs

)
ük + βsük+1

]
(B.3)

u̇k+1 ≈ u̇k + ∆t
[
(1− γs)ük + γsük+1

]
(B.4)
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B.2. Incremental resolution

where the corrections in terms of velocity δu̇k = u̇k+1− u̇k and acceleration δük = ük+1− ük are in function
of the displacement correction δuk = uk+1 − uk as:

δu̇k =
γs
βs∆t

δuk −
γs
βs
u̇k + ∆t

(
1− γs

2βs

)
ük (B.5)

δük =
1

βs∆t2
δuk −

1

βs∆t
u̇k −

1

2βs
ük (B.6)

From equations (B.3) and (B.4) one can write the acceleration as:

ük+1 = L(δuk; sk) (B.7)

which its full expression is given by:

ük+1 ≈
δuk −∆tu̇k −∆t2

(
1
2 − βs

)
ük

∆t2βs
(B.8)

B.2 Incremental resolution

For each time step tk+1, the nonlinear problem consists in finding a kinematically admissible correction
∆uk verifying equilibrium (B.1), constitutive relations (B.2) and acceleration prediction (B.8). Hence, the
resolution of the global equilibrium consists in finding an incremental ∆uk ∈ US(Ω,∆uDk ) such as:

∀v ∈ US(Ω, 0),

R (∆uk; v, sk) = 0 (B.9)

where the dynamic residual equilibrium writes:

∀v ∈ US(Ω, 0),

R (∆uk; v, sk) =

∫
Ω
ρL(∆uk; sk) ·vdΩ+

∫
Ω
J (ε(∆uk; sk) : ε(v)dΩ−

∫
Ω
f
k+1
·v dΩ−

∫
∂NΩ

fN
k+1
·v dS (B.10)

The residue of equation (B.10) is minimized by approaching the incremental displacement ∆uk as the
sum of n+ 1 incremental corrections, this is:

∆uk ≈ ∆u
(n+1)
k = ∆u

(n)
k + δu

(n)
k (B.11)

where each incremental correction δu
(n)
k is solution of the equation (B.10) linearized around ∆u

(n)
k in a

Newton-Raphson manner, as illustrated in figure B.1, which is written:

∀v ∈ US(Ω, 0),

R ′(∆u(n)
k ; v, sk) · δu

(n)
k = −R (∆u

(n)
k ; v, sk) (B.12)

The functional R ′ = ∂R
∂∆u

(n)
k

corresponds to the tangent linear application of the residue R evaluated at

∆u
(n)
k :

R ′(∆u(n)
k ; v, sk) · δu

(n)
k =

∫
Ω
ρδu

(n)
k L

′(∆uk; sk) · vdΩ +

∫
Ω
J ′(ε(∆uk); sk) : ε(δu

(n)
k ) : ε(v)dΩ

=

∫
Ω
ρδu

(n)
k

(
1

βs∆t2

)
· vdΩ +

∫
Ω
Top(∆ε(n)

k
; sk) : ε(δu

(n)
k ) : ε(v)dΩ

(B.13)
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Appendix B. General framework for the incremental resolution of nonlinear solid mechanics problems

where Top is the tangent operator that can be expressed as:

Top(∆ε(n)
k

; sk) =
∂σ

k+1

∂∆ε
k

(∆εn
k
; sk) = K′(∆ε(n)

k
; sk) +

(
γs
βs∆t

)
D′(∆ε(n)

k
; sk) (B.14)

introducing K′ and D′ the tangent stiffness and damping operators.

∆u

R (∆uk; v, sk)

0

•∆u
(0)
k = 0

δu
(1)
k

•∆u
(1)
k

δu
(2)
k

•
∆u

(2)
k

δu
(2)
k

uk

uk+1

Figure B.1: Calculation of ∆uk as a sum of incremental corrections δunk .

B.2.1 Spatial discretization and temporal incremental resolution

After discretizing the space domain US by using finite elements in space, the solution of equation (B.1) is
searched in the subspace USh of dimension nS . Therefore the vectors of nodal values, the residual at time
tk+1 writes:

∀vh ∈ USh (Ω, 0), ∀v ∈ RnS ,

R (∆uhk ; vh, sk)︸ ︷︷ ︸
vTRk+1

=

∫
Ω
ρühk+1 · vh dΩ︸ ︷︷ ︸
vTM ük+1

+

∫
Ω
σ
k+1

: ε(vh) dΩ︸ ︷︷ ︸
vTg

k+1

−
∫

Ω
f
k+1
· vh dΩ−

∫
∂ΩN

fN
k+1
· vh dS︸ ︷︷ ︸

−vT f
k+1

(B.15)

where we have the inertial loading M ük+1 ∈ RnS , the vector g
k+1
∈ RnS of internal forces and the vector

f
k+1
∈ RnS of external forces.

A discretized version of the tangent operator of the functional R can be introduced writing:

R ′(∆u(n)
k ; v, sk) · δu

(n)
k ≈ S

k
δu

(n)
k

where the tangent operator writes in function of the chosen βs and γs parameters of the Newmark scheme:

S
k

= K ′
k

+
γs
βs∆t

D ′
k

+
1

βs∆t2
M (B.16)

denoting K ′
k

and D ′
k

the tangent matrices that have to be recomputed at each time step k. Alternatively,
those matrices can be chosen constant (quasi-Newton algorithm) K ′

k
= K and D ′

k
= D ; the conver-

gence might be slower considering the iterations count, but time is saved since the re-computation and
reassembling (time consuming step) of the tangent matrices are no longer needed. Here we assume a
quasi-Newton algorithm, therefore S

k
= S .

The corrections are computed as follows:
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B.2. Incremental resolution

• Iteration n = 1, application of Dirichlet conditions:

The first correction is searched on the space US(Ω,∆uDk ), in a way that ∆uk is admissible to ∆uDk :

δu
(1)
k = δu

(1,0)
k + ∆uDk (B.17)

where ∆uDk corresponds to the increment from time tk to tk+1 of the imposed displacement. The
iterations for n > 1 are therefore searched on the space US(Ω, 0), so that ∆u

(n)
k , by construction, will

be kinematically admissible to ∆uDk . The determination of δu(1,0)
k is given by:

R ′(0; v, sk) · δu
(1,0)
k = −R (0; v, sk)− R ′(0; v, sk) ·∆uDk (B.18)

which, after discretization, consists in finding δu (1,0)
k verifying:

S δu
(1,0)
k = −M ü∗k+1 − g

k
+ f

k+1
− SD ∆uD

k︸ ︷︷ ︸
R

(1)
k+1

(B.19)

where SD is the tangent operator addressed on the degrees of freedoms related to the imposed
displacements. The inertial guess term at tk+1 is calculated by using equation (B.8) and setting
∆uk = 0, giving:

ü∗k+1 ≈
−∆tu̇k −∆t2

(
1
2 − βs

)
ük

∆t2βs
(B.20)

• Iteration n > 1:

For (n > 1) we seek a correction δu (n)
k ∈ RnS verifying:

S δu
(n)
k = −M ü

(n)
k+1 − g (n)

k+1
+ f

k+1︸ ︷︷ ︸
R

(n)
k+1

(B.21)

Once the correction in displacement determined, the correction in speed and acceleration are computed
using expressions (B.5) and (B.6) respectively.

The iterative procedure is applied until a given error threshold is reached, which is given as follows:∥∥Rk+1

∥∥ < e (B.22)

with ‖·‖ the euclidean norm and e a given number. The error defined in (B.22) measures the verification
of the equilibrium equation.
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Appendix C

Enrichment step: temporal problem of
internal variables by using TDGM

In the following lines the details related to the calculation of the temporal functions at the enrichment step
for the case of the internal variables is detailed. Lets consider for this the following simplification for the
notations (the index related to the PGD mode is dropped):

∆α̇
n+1

= ᾱ
m+1

(x)λ̇αm+1(t) = ᾱ(x)λ̇α(t)

∆ ˙̄rn+1 = ¯̄rm+1(x)λ̇r̄m+1(t) = ¯̄r(x)λ̇r̄(t)
(C.1)

The temporal functions are determined such as they minimize their respective constitutive relations errors,
this means:

{λα} = arg min
λα∈UT

∣∣∣∣∣∣∣∣∣ᾱλ̇α + Hβ : Cᾱλα + ∆α
n+1

∣∣∣∣∣∣∣∣∣2
H−1
β

(C.2)

{λr̄} = arg min
λr̄∈UT

∣∣∣∣∣∣∣∣∣¯̄rλ̇r̄ +HR̄R∞ ¯̄rλr̄ + ∆r̄
n+1

∣∣∣∣∣∣∣∣∣2
H−1
R̄

(C.3)

By developing the minimization of the equation (C.2) and (C.3) we obtain respectively:

∀δλα, δλr̄ ∈ UT , ∫
Ω×I

(
ᾱδλ̇α + Hβ : Cᾱδλα

)
: H−1

β :
(
ᾱλ̇α + Hβ : Cᾱλα + ∆α

)
dΩdt = 0 (C.4)∫

Ω×I

(
¯̄rδλ̇r̄ +HR̄R∞ ¯̄rδλr̄

)
: H−1

R̄
:
(

¯̄rλ̇r̄ +HR̄R∞ ¯̄rλr̄ + ∆r̄
)
dΩdt = 0 (C.5)

By defining the constants and temporal functions as follows:

A11,α =

∫
Ω
ᾱ : H−1

β : ᾱ dΩ

A10,α =

∫
Ω
Cᾱ : ᾱ dΩ

A01,α =

∫
Ω
Cᾱ : ᾱ dΩ

A00,α =

∫
Ω
C2Hβ : ᾱ : ᾱ dΩ

,

D1,α(t) = −
∫

Ω
ᾱ : H−1

β : ∆α dΩ

D0,α(t) = −
∫

Ω
Cᾱ : ∆α dΩ

(C.6)

190



and:

A11,r̄ =

∫
Ω

¯̄r H−1
R̄

¯̄r dΩ

A10,r̄ =

∫
Ω
R∞ ¯̄r2 dΩ

A01,r̄ =

∫
Ω
R∞ ¯̄r2 dΩ

A00,r̄ =

∫
Ω
R2
∞HR̄

¯̄r2 dΩ

,

D1,r̄(t) = −
∫

Ω

¯̄r H−1
R̄

∆r̄ dΩ

D0,r̄(t) = −
∫

Ω
R∞ ¯̄r∆r̄ dΩ

(C.7)

By discretizing the equations (C.4), (C.5) and using (C.6), (C.7) we obtain the followings elemental matri-
ces and vector at temporal element [k]:

Q [k],α =

∫
Ĭk

(
ψ̇

[k] ⊗ ψ̇[k]
A11,α + ψ̇

[k] ⊗ ψ[k]A10,α + ψ[k] ⊗ ψ̇[k]
A01,α + ψ[k] ⊗ ψ[k]A00,α

)
dt (C.8)

f [k],α =

∫
Ĭk

(
ψ̇

[k]
D1,α(t) + ψ[k]D0,α(t)

)
dt (C.9)

and:

Q [k],r̄ =

∫
Ĭk

(
ψ̇

[k] ⊗ ψ̇[k]
A11,r̄ + ψ̇

[k] ⊗ ψ[k]A10,r̄ + ψ[k] ⊗ ψ̇[k]
A01,r̄ + ψ[k] ⊗ ψ[k]A00,r̄

)
dt (C.10)

f [k],r̄ =

∫
Ĭk

(
ψ̇

[k]
D1,r̄(t) + ψ[k]D0,r̄(t)

)
dt (C.11)

By defining the matrices that transmit the continuity between the elements when using the Discontinuous
Galerkin approach for the kinematic hardening terms as:

L[k],α = 1.1 max(Q [k],α)ψ(tk−1)⊗ ψ(t+k−1)

R[k],α = 1.1 max(Q [k],α)ψ(tk−1)⊗ ψ(t−k−1)
(C.12)

and the isotropic hardening ones by:

L[k],r̄ = 1.1 max(Q [k],r̄)ψ(tk−1)⊗ ψ(t+k−1)

R[k],r̄ = 1.1 max(Q [k],r̄)ψ(tk−1)⊗ ψ(t−k−1)
(C.13)

we finally obtain the discretized equations in order to determine the temporal functions:(
Q [k],α +L[k],α

)
λ[k],α =R[k],αλ[k−1],α + f [k],α (C.14)(

Q [k],r̄ +L[k],r̄
)
λ[k],r̄ =R[k],r̄λ[k−1],r̄ + f [k],r̄ (C.15)

where λ[k],α and λ[k],r̄ correspond to the nodal values of the time function associated to the kinematic and
isotropic hardening at time step k.
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Appendix D

Temporal multiscale approximation
applied to the preliminary step when
dealing with elasto-visco-plasticity

The preliminary step consists in the actualization of the temporal PGD functions of the low-rank approxi-
mation of the global stage quantities while maintaining the spatial functions fixed, in order to improve the
approximation and accelerate the convergence.

D.1 Temporal functions associated to the admissibility problem

First we consider the actualization of the temporal PGD functions associated to the admissibility quantities,
i.e, the stress, strain and plastic deformation. Mathematically this is consists in finding corrective temporal
functions ∆λi with i ∈ [1, ...,m+ 1] such as:

∀i ∈ [1, ...,m+ 1],

λi ← λi + ∆λi (D.1)

As presented in chapter 4, when considering the equation (D.1) the minimization problem (5.70) can be
rewritten as:

{∆λi}m+1
i=1 = arg min

{∆λi}m+1
i=1 ∈UT

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
m+1∑
i=1

ε̄p
i
∆λ̇i −Hσ :

m+1∑
i=1

σ̄
i
∆λi + ∆

n+1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

H−1
σ

(D.2)

In what follows the determination of the macro and micro functions needed for the multiscale approxima-
tion of the corrective temporal functions is presented.

• Macro functions determination:

As for the case of the enrichment step, the first objective is to determine the macro functions associated
to the temporal corrective terms, for this, we consider that ` − 1 sub-mode have already been computed
so that the minimization problem can be rewritten as:

{
∆λ̄i,`

}m+1

i=1
= arg min
{∆λ̄i,`}m+1

i=1 ∈UT

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
`−1∑
s=1

m+1∑
i=1

ε̄p
i

(
∆ ˙̄λi,s(t) + ∆ ˙̄λi,`(t)

)
−Hσ :

`−1∑
s=1

m+1∑
i=1

σ̄
i

(
∆λ̄i,s(t) + ∆λ̄i,`(t)

)
+ ∆

n+1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

H−1
σ

By rearranging the known and unknown terms, the above expression can be reduced to the main problem
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D.1. Temporal functions associated to the admissibility problem

needed to be solved:

{
∆λ̄i,`

}m+1

i=1
= arg min
{∆λ̄i,`}m+1

i=1 ∈UT

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
m+1∑
i=1

ε̄p
i
∆ ˙̄λi,`(t)−Hσ :

m+1∑
i=1

σ̄
i
∆λ̄i,`(t) + ∆̄

`

n+1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

H−1
σ

(D.3)

with the residual term given by:

∆̄
`

n+1
= ∆

n+1
+

`−1∑
s=1

m+1∑
i=1

ε̄p
i
∆ ˙̄λi,s(t)−Hσ : σ̄

i
∆λ̄i,s(t) (D.4)

By defining the following constants and temporal functions as follows:

∀(i, j) ∈ [1, ...,m+ 1] ,

A11
ij =

∫
Ω
ε̄p
i

: H−1
σ : ε̄p

j
dΩ

A10
ij = −

∫
Ω
ε̄p
i

: σ̄
j
dΩ

A01
ij = −

∫
Ω
σ̄
i

: ε̄p
j
dΩ

A00
ij =

∫
Ω

(Hσ : σ̄
i
) : σ̄

j
dΩ

,

D1
i (t) = −

∫
Ω

(ε̄p
i

: H−1
σ : ∆

n+1
) dΩ

D0
i (t) =

∫
Ω
σ̄
i

: ∆
n+1

dΩ

(D.5)

and developing the minimization problem we obtain:

∀δ∆λ̄i,` ∈ UT , ∀i ∈ [1, ...,m+ 1] ,∫
I

m+1∑
i=1

m+1∑
j=1

δ∆ ˙̄λi,`

(
∆ ˙̄λj,`A

11
ij + ∆λ̄j,`A

10
ij

)
+ δ∆λ̄i,`

(
∆ ˙̄λj,`A

01
ij + ∆λ̄j,`A

00
ij

)
dt =

∫
I

m+1∑
i=1

δ∆ ˙̄λi,`R
1
i,`(t) + δ∆λ̄i,`R

0
i,`(t) dt

(D.6)

where the residual temporal functions at sub-mode ` are given by:

∀i ∈ [1, ...,m+ 1] ,

R1
i,`(t) = D1

i (t)−
`−1∑
s=1

m+1∑
j=1

(
∆ ˙̄λj,sA

11
ij + ∆λ̄j,sA

10
ij

)

R0
i,`(t) = D0

i (t)−
`−1∑
s=1

m+1∑
j=1

(
∆ ˙̄λj,sA

01
ij + ∆λ̄j,sA

00
ij

) (D.7)

By developing the corresponding equations and introducing the new multiscale approximation of equations
(5.33) and (5.34) into (D.6), we obtain the following discretized linear system that allows to determine the
value of the macro amplitudes:

Q
up,`

Aup,` = f
up,`

(D.8)

where Aup,` correspond to the nodal values in time of the macro functions associated to all the actualized
modes at the sub-mode “`”.

Aup,` =


A1,`

A2,`
...

Am+1,`

 (D.9)
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elasto-visco-plasticity

and the matrices and vectors given by:

Q
up,`

=


Q

11,`
Q

12,`
· · · Q

1 m+1,`

Q
21,`

. . .
...

Q
m+1 1,`

Q
m+1 m+1,`

 , f
up,`

=


f

1,`

f
2,`
...

f
m+1,`


where the different terms are given by:

∀(i, j) ∈ [1, ...,m+ 1],

Q
ij,`

=

N⊕̀
k=1

∫
IMk,`

[(
ṅi,`ṅ

T
j,` ⊗Ψ

[k]
` (Ψ

[k]
` )T

)
+
(
ṅi,`n

T
j,` ⊗Ψ

[k]
` (Ψ̇

[k]

` )T
)

+
(
ni,`ṅ

T
j,` ⊗ Ψ̇

[k]

` (Ψ
[k]
` )T

)
+
(
ni,`n

T
j,` ⊗ Ψ̇

[k]

` (Ψ̇
[k]

` )T
)]
A11
ij

+
[(
ṅi,`n

T
j,` ⊗Ψ

[k]
` (Ψ

[k]
` )T

)
+
(
ni,`n

T
j,` ⊗ Ψ̇
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f
i,`

=
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k=1
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)
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(
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[k]
`

)
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]
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(
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`

)
ni,`R

0
i,`(t) dt (D.11)

Once the macro problem stated, the only variables that remains to be determined are the micro functions.
The procedure for their computation is shown below.

• Micro functions determination:

In order to obtain the micro functions, we simple reconsider the constitutive relation error related to the
admissibility problem given as:

Jp =

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
m+1∑
i=1

ε̄p
i
∆ ˙̄λi,`(t)−Hσ :

m+1∑
i=1

σ̄
i
∆λ̄i,`(t) + ∆̄

`

n+1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

H−1
σ

(D.12)

By developing the above functional we can write:

Jp =

∫
Ω×I

(
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i=1
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j
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`
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 dΩdt
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where the above expression can by simplified by using the terms given in (D.5) and (D.7) as follows:

Jp =

∫
Ω×I
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(D.14)
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D.1. Temporal functions associated to the admissibility problem

By introducing the multiscale approximation of equations (5.33) and (5.34) into (D.14) and using the am-
plitude solution of equation (D.8) we have:

Jp =

∫
I

∆̄
`

n+1
: H−1

σ : ∆̄
`

n+1
dΩdt− f T

up,`
Q−1

up,`
f
up,`

which states that the micro functions must be determined such that they maximize f T
up,`

Q−1

up,`
f
up,`

. By

applying the same approximation as introduced in the enrichment step case (see section 5.3.2.1), to
avoid an iterative determination of the micro functions, we define the following functional:

g` = f T
up,`

f
up,`
≈ f T

up,`
Q−1

up,`
f
up,`

By approximating the above expression applying the same ideas as presented in section 5.3.1 we obtain:
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(ḣI
i,`Ψl ,` + hI

i,`Ψ̇l ,`)R
1
i,`(t) + hI

i,`Ψl ,`R
0
i,`(t) dt

]2
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Following the same ideas as for the enrichment step, in order to maximize the above expression we define
the micro functions as the superposition of the following terms:

∀i ∈ [1, ...,m+ 1],
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By injecting the expression of the micro functions (D.16) into (D.15) we finally obtain:

g` ≈
m+1∑
i=1

aTi,`N
R
i,`

a i,` + bTi,`N
I
i,`

bi,` (D.17)

where the term associated to the symmetric micro function is given by:

∀i ∈ [1, ...,m+ 1] ,
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and the one associated to the antisymmetric micro functions as:

∀i ∈ [1, ...,m+ 1] ,
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where the vectors a i,` and bi,` are determined by calculating the eigenvector of matrices N R

i,`
and N I

i,`

associated to the their maximum eigenvalue for each actualized temporal PGD mode for the construction
of the micro functions.
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Appendix D. Temporal multiscale approximation applied to the preliminary step when dealing with
elasto-visco-plasticity

D.2 Internal variables

As presented in chapter 4, the actualization of the temporal functions associated to the internal variables
bring out some numerical issues due to bad conditioning of the constructed matrices. To avoid this issue
only the last PGD mode is actualized, this is:

λαm+1 ← λαm+1 + ∆λαm+1

λr̄m+1 ← λr̄m+1 + ∆λr̄m+1

(D.20)

and therefore the minimization problem to be solved is written as:{
∆λαm+1

}
= arg min
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(D.21)

As can be seen, the above formulation is equivalent to that of the enrichment step, which in turn follows
the same procedure outlined for the enrichment step applied to the admissibility quantities as presented
in section 5.3.2.1.1, therefore, its presentation herein is omitted.
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mathématique et à la simulation numérique. Editions Ecole Polytechnique.

[Allix, 2013] Allix, O. (2013). The bounded rate concept: A framework to deal with objective failure pre-
dictions in dynamic within a local constitutive model. International Journal of Damage Mechanics,
22(6):808–828.
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systems. Strojniški vestnik-Journal of Mechanical Engineering, 60(5):307–313.

[Barrault et al., 2004] Barrault, M., Maday, Y., Nguyen, N. C., and Patera, A. T. (2004). An ‘empirical in-
terpolation’ method: application to efficient reduced-basis discretization of partial differential equations.
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within the proper generalized decomposition framework. Computational Mechanics, 49(3):277–289.

[Heyberger et al., 2013] Heyberger, C., Boucard, P.-A., and Néron, D. (2013). A rational strategy for the
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les problèmes à grand nombre de paramètres. In 13e colloque national en calcul des structures.
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