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me rendais (avant la pandémie) à Rennes une semaine tous les deux ou trois mois environ.
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Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
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• E. Selva, S. Ans, Y. Louët and A. Kountouris, “Support Estimation of Frequency-Sparse

Signals,” in the submission process, 2021.

Patents

• Esteban Selva and Apostolos Kountouris. Détermination du bruit dans un signal, 2020.
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Résumé en français

Introduction

La forte augmentation présente et à venir du nombre d’objets connectés à l’internet des ob-

jets (IdO) n’est pas sans poser de questions quant à la mise à l’échelle de la collecte des

messages provenant de ces objets connectés. En outre, plusieurs études mettent en lumière

l’encombrement du spectre fréquentiel alloué, et il y a une réelle difficulté à allouer de nou-

velles bandes de fréquences à de nouveaux utilisateurs tels que les objets connectés. On sait

pourtant que certaines bandes de fréquence sous license sont sous-utilisées par les détenteurs

de licence. Cela a donné naissance à l’accès au spectre dynamique (ASD), un cadre établissant

une hiérarchie entre utilisateurs primaires détenteurs d’une license sur une bande de fréquences

mais qui sous-utilisent la bande qui leur est allouée d’une part, et utilisateurs secondaires, non

détenteurs d’une telle license mais souhaitant communiquer tout de même d’autre part. Dans

ce cadre, un utilisateur secondaire peut communiquer dans une bande de fréquence allouée mais

libre de toute émission, tant que cette communication ne gêne pas l’utilisateur primaire de cette

bande. La détection de spectre (DS, en anglais spectrum sensing) permet de déterminer si une

bande de fréquence donnée est libre de communication ou non. Afin de trouver la meilleure

opportunité de communication possible, un utilisateur secondaire peut effectuer une DS-bande

large (DS-BL), c’est-à-dire une DS sur une large bande de fréquence. Ceci est au coeur de la

radio cognitive (RC), un cadre dans lequel chaque utilisateur acquiert des connaissances sur son

environnement radio afin d’optimiser ses capacités de communication.

Dans cette thèse, nous proposons une application proche de l’ASD mais qui en diffère sur

plusieurs aspects. Cette application utilise également les préceptes de la RC, y compris la DS-

LB, et consiste en la collecte efficace des signaux émis par les objets connectés. De manière

générale, la collecte des signaux s’effectue via une étape d’échantillonnage. Dans l’industrie,

l’échantillonnage est souvent effectué à la fréquence de Nyquist, car cela repose sur des com-

posants électroniques simples et n’implique pas de calculs complexes. Cependant, nous pensons

que dans notre situation, l’échantillonnage à la fréquence de Nyquist est inefficace et difficile

à mettre en place. Nous travaillons sur des signaux large bande, ce qui implique un taux

d’échantillonnage à la fréquence de Nyquist élevé, pour lequel les convertisseurs analogique-

numériques (CAN) peuvent être mis en défaut. De plus, nous considérons que les objets con-

nectés émettent sporadiquement, ce qui signifie que le signal reçu est parcimonieux, c’est-à-dire

principalement constitué de trous (dans les domaines fréquentiel, temporel et/ou spatial). Dans

ce contexte, la théorie de l’échantillonnage comprimé (ÉC) semble particulièrement appropriée.
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Celle-ci stipule que si un signal est parcimonieux, moins de valeurs du signal peuvent être ac-

quises, et ce sans perte de données. Ainsi, l’ÉC nous permet d’échantillonner des signaux plus

efficacement.

Ces éléments nous permettent d’imaginer une infrastructure efficace de collecte des signaux

provenant d’objets connectés. Nous nous appuierons sur un schéma d’ÉC intitulé l’échantillonnage

multi-taux (ÉMT), ainsi que sur la DS-LB et la RC qui nous permettront d’acquérir des infor-

mations précieuses sur l’environnement radio des antennes de collecte.

Nos contributions sont les suivantes. Tout d’abord, nous effectuerons un état de l’art de

l’ÉC et de la DS. Ensuite, nous présenterons deux outils que nous avons développé dans le cadre

de la RC, à savoir l’estimateur de la variance du bruit sur la base des K-moyennes (EVBK) et

l’estimateur de support spectral (ES). Après, nous nous intéresserons au paramétrage de l’ÉMT.

Enfin, nous introduirons et évaluerons notre prototype d’infrastructure d’échantillonnage, avant

de conclure.

État de l’art

L’ÉC peut être modélisé par un système d’équations linéaires sous-déterminé (SELS)

y = Ax, (1)

où x est le vecteur d’entrée de taille N (supposé discret et échantillonné à la fréquence de

Nyquist), y est le vecteur de mesures (de taille M < N) et A est la matrice d’échantillonnage

de taille M ×N .

Reconstruire le message contenu dans un signal échantillonné grâce à l’ÉC revient à résoudre

le SELS (1). Un résultat très connu d’algèbre linéaire stipule qu’un SELS possède une infinité

de solutions. Pour trouver la solution x̂ qui correspond à l’entrée x, nous utilisons la parcimonie

du signal x, qui peut être mesurée par la pseudo-norme `0. Il existe des garanties théoriques sur

la capacité d’un SELS à être résolu, comme la propriété d’isométrie restreinte (PIR, en anglais

Restricted Isometry Property).

Il existe plusieurs schémas d’ÉC, comme l’échantillonnage multi-coset, le convertisseur à

bande large modulée ou l’ÉMT précédemment mentionné. Dans cette thèse, nous nous con-

centrons sur l’ÉMT. Cet échantillonneur est constitué de L branches parallèles, sur chacune

desquelles se situe un CAN échantillonnant de manière uniforme à un taux différent des autres

CAN et sous la fréquence de Nyquist dans tous les cas. La matrice A du SELS (1) dépend de

L et des taux d’échantillonnage dans chaque branche.

La DS-BL peut nous fournir des informations précieuses quant à la structure du signal

d’entrée. En général, les méthodes de DS-BL s’appuient sur la DS en bande étroite (DS-BÉ),

appliquée itérativement à un découpage d’une bande large en plusieurs bandes, ou sur l’ÉC,

auquel cas le vecteur de mesures y est utilisé pour reconstruire non pas le signal original x, mais

pour extraire des informations sur celui-ci (par exemple son support spectral). Cependant, nous

estimons qu’il est possible d’utiliser des informations issues de la DS-BL pour résoudre un SELS

obtenu par ÉC, plutôt que l’inverse, c’est-à-dire résoudre (même partiellement) un SELS obtenu
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Figure 0.1: Description de l’estimateur de la variance du bruit fondé sur les K-moyennes.

par ÉC pour en déduire des informations relatives à la DS-BL. En particulier, nous allons nous

intéresser à l’estimation du support fréquentiel du signal grâce aux échantillons collectés par

l’ÉMT, puis nous servir de cette estimation pour simplifier le SELS (1).

Outils pour la radio cognitive

Dans le cadre de cette thèse, nous avons développé deux outils pour l’estimation du support

fréquentiel d’un signal parcimonieux, sans information préalable sur le signal reçu (nous sup-

posons que le canal de transmission est un canal bruit blanc gaussien additif, BBGA, de variance

inconnue). Le premier outil est l’estimateur de la variance du bruit fondé sur les K-moyennes

(EVBK), et le second est l’estimateur de support (ES). Plus précisément, l’estimation du sup-

port du signal est effectuée par l’ES, qui prend comme entrée la variance du BBGA calculée

par l’EVBK.

Pour les deux outils, nous supposons que le signal reçu est un mélange de signal utile et de

BBGA. Le signal utile n’est pas présent dans tout le domaine fréquentiel, alors que le BBGA si.

Nous supposons que le signal utile possède une certaine compacité, c’est-à-dire que les valeurs

non nulles de signal utile dans le domaine fréquentiel sont concentrées autour d’un nombre

limité de points, et qu’il y a des trous relativement larges dans le domaine fréquentiel.

Nous commençons par la présentation de l’EVBK. L’EVBK consiste à séparer les valeurs de

signal reçu correspondant à du bruit uniquement de celles correspondant à un mélange signal

utile et bruit. C’est une méthode de complexité linéaire en la taille du vecteur d’entrée. La figure

0.1 décrit les différentes étapes de l’EVBK. Ces différentes étapes comprennent un prétraitement

qui consiste en un moyennage glissant, une estimation du nombre optimal de clusters grâce au

score de silhouette, un clustering grâce à l’algorithme des K-moyennes et un post-traitement

qui consiste en le filtrage des valeurs aberrantes. Ensuite, l’EVBK renvoie l’estimation de la

variance du bruit.

La figure 0.2 montre les résultats de l’EVBK pour un signal reçu en fonction du rapport

signal à bruit (RSB). Le BBGA a une variance connue de 1.0 (unité arbitraire): ainsi, une valeur

d’estimation de la variance du bruit proche ou égale à 1.0 correspond à une bonne performance

de l’EVBK, qui peut alors être considéré comme non-biaisé. Même pour des signaux peu

parcimonieux, on voit qu’on peut estimer la variance du bruit de manière très satisfaisante pour

un régime de RSB élevé (RSB > −7 dB pour un taux d’occupation spectrale de 20%, RSB > 4
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Figure 0.2: Estimation de la variance du BBGA en fonction du RSB pour différents taux

d’occupation du spectre fréquentiel.

dB pour un taux d’occupation spectrale de 90%).

L’EVBK a fait l’objet d’une publication en conférence internationale avec relecture des pairs

[3] ainsi que d’une demande de brevet auprès de l’Institut National de la Propriété Intellectuelle

[4].

Nous passons ensuite à la présentation de l’ES. L’ES repose sur la détection d’énergie (une

technique de DS), appliquée à chaque valeur de la transformée de Fourier Y du vecteur de

mesure y. Chaque valeur Y [i] contient soit du bruit uniquement (hypothèse nulle H0), soit

un mélange signal-bruit (hypothèse alternative H1). Ainsi, la détection d’énergie dans chaque

valeur Y [i] consiste en une décision binaire: soit H0 est décidé, soit H1. La décision se fait en

comparant l’énergie contenue dans Y [i] à un seuil dépendant de la variance du BBGA, d’où

l’intérêt de l’EVBK précédemment introduit.

On dit qu’une détection correcte (resp. une erreur de type I) se produit quand H1|H1 (resp.

H1|H0) est décidé. La théorie de Neyman-Pearson propose un cadre dans lequel la probabilité

de détection PD est maximisée pour une probabilité d’erreur de type I PFA donnée. Seulement,

les expressions explicites (comme celle liant PD à PFA) proposées dans le cadre de la théorie

de Neyman-Pearson reposent sur le théorème central limite, inapplicable dans notre cas. Pour

l’ES, nous revisitons donc ces équations et proposons une réécriture de celles-ci sans l’utilisation

du théorème central limite. La figure 0.3 illustre la courbe ROC (Receiver Operating Curve)

de l’ES pour différentes valeurs d’énergie du signal utile (ces valeurs sont reliées au RSB et au

niveau d’occupation spectrale). On voit que plus l’énergie du signal utile est grande, plus la

courbe ROC est proche du coin supérieur gauche du plan PD − PFA, indiquant une meilleure

performance de l’ES.

Nous mettons également au point une amélioration de l’ES, qui se matérialise par un

prétraitement consistant en une étape de fenêtrage similaire à celle de l’EVBK. Celui-ci permet

d’améliorer la performance de l’ES, à énergie du signal utile constante.

Grâce à l’EVBK et à l’ES, nous pouvons estimer le support fréquentiel du signal utile dans

un vecteur de mesure. Désormais, nous abordons le paramétrage de l’ÉMT, le schéma d’ÉC
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Figure 0.3: Courbe ROC de l’ES sans fenêtrage pour différentes valeurs d’énergie Emin (unités

arbitraires).

utilisé au cours de cette thèse.

Paramétrer l’ÉMT

Afin de pouvoir reconstruire le SELS (1), il est important de bien régler les paramètres de

l’ÉMT. Ceux-ci sont le nombre de branches L et les taux d’échantillonnage νi (1 ≤ i ≤ L).

Dans chaque branche, nous définissons l’entier Mi = ∆νi (resp. N = ∆νNyq) comme le nombre

d’échantillons acquis dans la branche i (resp. dans une branche hypothétique échantillonnant

à la fréquence de Nyquist νNyq) pendant la durée d’acquisition ∆. Ainsi, nous étudions le rôle

du nombre de branches L et des Mi.

Dans cette section, notre contribution est double. D’abord, à travers le théorème 0.1, nous

établissons un lien entre L, les Mi et le rang de la matrice d’échantillonnage A, noté rg A.

Ensuite, pour quantifier la capacité d’un ÉMT à échantillonner de manière à ce que le SELS

(1) soit résoluble, nous proposons de remplacer la métrique communément admise du nombre

de mesures M =
∑

iMi par rg A.

Théorème 0.1 (Limite supérieure du rang de la matrice). Soit A la matrice d’échantillonnage

de taille M ×N d’un ÉMT à L branches. Alors

rg A ≤M − (L− 1). (2)

Le cas d’égalité est atteint si et seulement si les Mi sont deux-à-deux premiers entre eux.

À la lumière de simulations, il apparâıt que rg A est plus à même de caractériser la capacité

d’un ÉMT à recouvrer un signal échantillonné sous la fréquence de Nyquist que le nombre

de mesures M . La figure 0.4a montre la transition entre les phases1 de succès et d’échec de

résolution de SELS dans le plan ρ − δ, où ρ = k/M est le taux d’occupation spectrale et où

δ = M/N est le nombre de mesures normalisé. Au dessus de chaque courbe, un ÉMT ne peut

1Ici, le terme ”phase” se comprend comme une région du plan ρ− δ où la performance de reconstruction est

uniforme.
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Figure 0.4: Transitions entre phases de succès et d’échec pour un (a) nombre de mesures nor-

malisé; (b) rg A normalisé. QFR-MRS = ÉMT avec Mi premiers entre eux deux-à-deux.

DR-MRS = ÉMT avec Mi non deux-à-deux premiers entre eux.

pas espérer résoudre un signal non bruité ayant k éléments non nuls avec l’algorithme de min-

imisation de norme `1 CVXOPT. En dessous de chaque courbe, un ÉMT acquiert suffisamment

d’informations pour une parfaite reconstruction du signal. La courbe étiquetée ”QFR-MRS”

(resp. ”DR-MRS”) correspond à des Mi deux-à-deux premiers entre eux (resp. non deux-à-

deux premiers entre eux). On voit que pour toute valeur de δ, la performance de l’ÉMT avec

taux premiers entre eux est supérieure à celle de l’ÉMT avec taux non premiers entre eux. En

outre, la performance ne dépend pas que de M , mais aussi du fait que les taux soient ou non

premiers entre eux. En revanche, en remplaçant M par rg A, les courbes se superposent presque

parfaitement (figure 0.4b), indiquant que le rg A est plus à même de caractériser la performance

de reconstruction d’un ÉMT.

Ces travaux ont fait l’objet d’une publication en conférence internationale avec relecture des

pairs [5]. À présent, nous nous intéressons à la combinaison de tous les blocs étudiés jusqu’à

présent au sein d’une infrastructure d’échantillonnage fondée sur l’ÉMT et tournée vers l’IdO.

Une infrastructure d’échantillonnage tournée vers l’IdO fondée

sur l’ÉMT

Nous proposons de donner à notre proposition d’infrastructure d’échantillonnage l’objectif

d’échantillonner efficacement des signaux provenant d’objets connectés. Pour ce faire,

l’infrastructure se doit d’échantillonner ni trop lentement, pour ne pas perdre d’information

provenant des objets connectés ni trop vite, ce qui causerait un gâchis d’énergie et de

mémoire. La nature de l’environnement radio étant susceptible d’évoluer au cours du temps,

l’infrastructure doit également être pourvue de facultés d’adaptation à cet environnement radio.

Notre infrastructure se compose de plusieurs blocs fonctionnels, tels qu’une interface

analogique, un ÉMT à L branches, L EVBK parallèles, L ES parallèles, un bloc de combi-

naison de supports estimés partiels, une base de données de stockage d’échantillons et un bloc
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Figure 0.5: Racine de l’erreur quadratique moyenne relative en fonction du nombre de mesures

normalisé pour un faible volume de trafic et un RSB élevé (RSB = 3 dB).

de résolution de SELS (aussi appelé solveur).

Pour tester les différentes étapes de notre infrastructure, nous mettons au point un générateur

de trafic IdO, où les trames des objets connectés sont représentés par des signaux de forme QPSK

filtrée. Ces trames sont soumises à un canal de Rayleigh avec addition de BBGA. Différents

volumes de trafic, représentatif de différents scénarios de fonctionnement, sont implantés.

Nous testons ensuite chaque étape de notre infrastructure, et ce pour différents nombres de

branches L et valeurs de Mi et différents RSB.

Concernant le bloc de reconstruction, en fin de la châıne de traitement, nous implantons des

solveurs représentatifs de différentes familles d’algorithmes de résolution de SELS.

De manière générale, plus le niveau d’occupation spectrale est bas, plus le nombre de mesures

M (quasiment égal à rg A dans le cas où les Mi sont deux-à-deux premiers entre eux) peut

être réduit tout en conservant une capacité de reconstruction du signal satisfaisante. Ainsi, la

figure 0.5 représente l’erreur entre le signal reçu, échantillonné puis reconstruit et le signal reçu

échantillonné à la fréquence de Nyquist, en fonction du nombre de mesure normalisé pour un

faible volume de trafic pour un RSB élevé. Le nombre de branches de l’ÉMT est L = 4 branches.

Les différentes courbes représentent les différents solveurs testés. Il y a un compromis à faire

entre haute qualité de reconstruction et faible nombre de mesures; néanmoins il est possible

d’avoir un nombre de mesures bas et une erreur relative basse. Par exemple, le solveur OMP-

RP permet d’avoir une erreur relative assez faible, de 0.2, avec un nombre de mesures N = M/2.

Les conditions d’environnement radio ayant un impact sur la performance de l’infrastructure

d’échantillonnage sont principalement le RSB et le niveau d’occupation spectrale. En fonc-

tion de ces paramètres, certains solveurs sont à privilégier. De plus, il convient d’adapter les

paramètres de l’ÉMT (principalement son nombre de mesures, donc ses taux d’échantillonnage)
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en fonction des conditions d’environnement radio. Nous proposons donc des pistes afin de rendre

l’infrastructure d’échantillonnage adaptative.

Conclusion et perspectives

Nous revenons sur les travaux effectués au cours de la thèse et les enseignements qu’il est pos-

sible d’en tirer. Simultanément, nous offrons des perspectives d’amélioration de l’infrastructure

d’échantillonnage proposée. Ensuite, nous explorons la perspective d’une extension de plus

grande ampleur de l’infrastructure d’échantillonnage. Il s’agit de l’extension d’une architec-

ture mono-site, où il y a une unique antenne située sur un seul site, vers une architecture

multi-sites, où des antennes situées à des endroits géographiquement distincts échantillonnent

les signaux reçus avant regroupement des échantillons en un centre de fusion pour traitements

ultérieurs. Cela permettrait d’exploiter la diversité et la parcimonie spatiales, mais plusieurs

défis se présenteraient alors.
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General Introduction

0.1 History and context of wireless transmission-collecting in-

frastructure

The 1912 sinkage of – then commonly considered unsinkable – RMS Titanic astonished the

people of the early 20th century. As a response, the Safety of Life at Sea Convention (SOLAS)[6]

was ratified in 1915. This treaty contained provisions for the safety of ships, among which a

chapter on radio communications. In particular, Article 33 specifies that the larger ships be

“required to be fitted with a radiotelegraph installation” with a “continuous service” in order

to receive potential distress signals from other ships. Even though the service was not meant to

process the received signals any further – except by taking action and rescue the ship in distress

–, nor to save them for future use, this constitutes the first example of an ad-hoc, point-to-point

wireless network with a systematic harvesting of radio transmissions, a mere 20 years after

the first successful wireless transmission experiments by Guglielmo Marconi. By essence, this

primitive network was completely decentralized.

Later on, two paradigms for radio communications emerged. On the one hand, point-to-

point radio communications remained used mainly for marine, aviation and military purposes.

On the other hand, radiodiffusion, based on downlink broadcasting, became popular amongst

the general public. The sophistication of the transmitters and receivers, as well as the grow-

ing number in users, led the US Congress to pass the Radio Act of 1927 [7], which required

broadcasters to obtain a license to operate on a frequency band. Aside from radio broadcast

recorders, the radio waves transmitted by licensees were not stored nor processed beyond the

pleasure of listening to a radiophonic program.

For the general public, duplex wireless communications remained marginal until the 1990s.

0.1.1 Centralized versus decentralized signal processing

The cellular model, backbone of the 1990s’ boom of wireless communications Ap-

proximately eighty years after Titanic sank, the major breakthrough that drove the massifica-

tion of wireless communications is the introduction of digital signal processing (DSP) [8]. It was

carried by then-recent advances in hardware technology: Very Large Scale Integration (VLSI)

of metal-oxide semiconductor (MOS) transistors [9]. Partly because of cheaper end-user equip-

ment, there was an increasing demand on wireless network infrastructure. It was accomodated

with more offer of spectrum resource, thanks to more spectral-efficient digital modulations.
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Around the turn of the 1990s, the cellular model, initially conceived by Bell Labs in 1947 [10],

was also widely implemented. The Global System for Mobile Communications (GSM) was the

first digital cellular network standard. In GSM, a geographical unit called a cell is served by a

Base Transceiver Station (BTS); phones (known as User Equipments, UE) present in the cell

communicate in duplex mode with the cell’s BTS. The geographical division of land was driven

by the possibility of reusing frequency channels in different cells. For uplink communications,

DSP takes place at the BTS, and the processed information is then transmitted to the core

network.

Unity makes strength (and scaling reduces costs) Closer to our day and age, there

has been a trend towards (more) centralized DSP. This shift from decentralized to centralized

DSP is for instance exhibited in the Cloud-Radio Access Network (C-RAN) architecture [11].

In C-RAN, several Remote Radio Units (RRU) are connected through a Fronthaul link to a

pool of Baseband Units (BBU). In previous generation networks, the BBU and RRU would

have been combined to form a BTS. This is done in an effort to mutualize the DSP in the

BBU pool while lowering costs of RRU deployment (thus allowing to deploy more RRUs, and

more service for the end users, at constant cost). This centralization of DSP is analog to what

has been witnessed in cloud computing in the recent years, with the massification of remote

computations with the aim of reducing costs through scaling effects.

The Next Episode: Collaboration is Key The next step in the race towards higher data-

rate, lower latency communications is the development of Cell-Free (CF) massive Multi Input

Multi Output (MIMO). Massive MIMO is a technology developed to provide more connectivity

to end users. It relies on precise user-targeted spatial multiplexing, which increases the system

throughput. However, a bottleneck in massive MIMO is inter-cell interference [12]. To suppress

this interference, the cellular network model is challenged by cell-free network models. In CF

massive MIMO, UE data is transmitted to and from several Access Points (AP) connected to a

Central Processing Unit (CPU), which performs DSP on signals jointly received by the different

APs. This collaboration between the different APs makes it possible for CF massive MIMO to

take advantage of added macro-diversity, and the characteristics of the communications system

(such as the channel gain) are improved. Since the DSP is performed at the CPU (except

for channel estimation), APs do not need strong computing capabilities. This centralization of

DSP is somewhat analog to cloud computing, where a user with high computation requirements

can use remote (“cloud”) scalable processing resources instead of a local, high-end processing

system.

Keep calm and become aware of your radio environment Contrary to the centralized

DSP trend, the paradigm of the Cognitive Radio (CR), introduced by Joseph Mitola III in

1999 [13], advocates for a different type of radio. Through Spectrum Sensing, the process

of monitoring the surrounding radio environment for signal identification, a CR is aware of its

spectrum environment and can adapt the characteristics of its communications through software
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DSP performed...

System Model locally (at BTS/UE/RRU/AP/equiv.) remotely (at BBU/CPU/equiv.)

Cellular • • • • • ◦ ◦ ◦ ◦ ◦
Cognitive Radio • • • • ◦ • ◦ ◦ ◦ ◦ (distributed)

C-RAN ◦ ◦ ◦ ◦ ◦ • • • • •
Cell-Free • ◦ ◦ ◦ ◦ • • • • ◦

Table 1: Distribution of DSP capabilities between local, field-deployed equipment and remote,

cloud-like equipment for different system models.

reconfiguration. In this scenario, DSP is mainly carried out at the UE itself. This paradigm has

come out as a solution to the inefficiency of frequency spectrum use. Indeed, while the spectrum

is utilized to its maximum capacity in some frequency bands (such as the cellular bands), other

bands are underutilized (for instance, amateur radio or paging bands). Hence, a software-

reconfigurable radio would be able to operate on bands not used at a given time/space. Since

the CR paradigm is in essence decentralized, it is well-suited for unplanned, ad-hoc networks.

Crowd-sourcing initiatives, like Electrosense [14], have taken advantage of the CR paradigm

for spectrum data collection and analysis. However, since its inception, the CR paradigm has

not reached widespread commercial deployment for end-user communications, and the IEEE

802.22 standard aiming at using TV white space for CR communications has entered a state of

hibernation in July 2019.

Table 1 summarizes the distribution of the DSP for the aforementioned infrastructure archi-

tectures.

0.1.2 The Internet of Things: reshuffling the cards of service requirements

New requirements for new use cases The Internet of Things (IoT) is a network where

diverse devices (things) are interconnected and able to send and receive data without human

interaction. IoT communication requirements are typically quite different from those of humans:

where (some) people strive for instant 4K video streaming anytime, anywhere, a IoT device

such as a connected sensor might communicate as little as one 12-byte payload a day. On

the other hand, IoT use cases raise other constraints that make current and future wireless

communications standards (LTE, Bluetooth, CF massive MIMO...) irrelevant and inefficient.

For instance, the complexity of the LTE protocol (overhead, back-and-forth communication for

resource allocation, and so on) is incompatible with the necessity for the device to save its

energy (to keep maintenance costs low, the battery needs to be changed as rarely as possible).

Ideal and reality The ideal scenario for an IoT device would be to transmit its message with

little or no preprocessing and overhead, without prior channel listening or resource allocation.

A radio unit would switch itself on and collect data transmitted according to a schedule pre-

defined by the device(s) and the radio. There would be one communication standard and no
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interference.

Of course, predefined schedules are hardly scalable, and the perspective of a single standard

seems unlikely at the present time. There is also the problem of interference, between devices

themselves first, and between devices and other non-IoT wireless uses. This problem is closely

related to that of the frequency spectrum scarcity: most if not all frequency spectrum suitable

for wireless communications is already allocated, leaving little room for new agents and use

cases.

On the data-collecting infrastructure Since scheduling seems to be too strong a hypothe-

sis, it is fair to consider that a device can transmit its message at virtually any time – based on

some inner heuristic or algorithmic output – and that someone who wants to get the message

needs to scan the radio environment at all times. Furthermore, the (current) multiplicity of

IoT communications standards and the will to keep IoT costs low – necessary for widespread

deployment of the technology – leads to considering a unique, multi-standard, inexpensive-to-

deploy radio data-collecting infrastructure. An argument for having a unique multi-standard

data-harvesting infrastructure rather than one infrastructure per standard is that a critical mass

of data is needed to make a collecting infrastructure profitable: the more low duty-cycle IoT

devices one can collect information from (at constant cost), the better. A unique infrastructure

also obviously lowers the barriers to entry for new agents with new modulation standards fitted

to their own specific communication needs.

Best of both worlds: centralized DSP combined with local intelligence IoT’s specific

communication requirements call for new solutions for data-collecting infrastructure. Several

principles of the CR paradigm seem particularly fitted to new IoT use cases. For instance,

based on the knowledge of spectral occupation by the IoT devices, a radio environment-aware

(or “intelligent”) radio unit could routinely and adaptively configure its sampling characteristics,

such as its sampling rate(s) or bandwidth. It does not matter whether this environment analysis

takes place locally at the radio unit or remotely at some processing unit, as long as it is actually

performed and as long as the radio unit can self-reconfigure accordingly.

Other innovations present in next-generation technologies like CF massive MIMO can be

put to good use in IoT data-collecting infrastructure. The most straightforward such innovation

is collaboration between spatially distinct radio units. Since collaboration aims at improving

the efficiency of communications, it can be beneficial to use cases as diverse as instant, high

data rate communications (the use case targeted by CF massive MIMO) or thousands of low

duty-cycle IoT devices deployed in vast areas. We will define the level of collaboration and its

implications on the system design later on.

0.1.3 Conclusion

On the one hand, user-oriented wireless communications are being driven towards higher data

rates, lower costs and lower latency; this is (in part) made possible by a shift from local, decen-

tralized DSP to remote, centralized DSP. On the other hand, the particularities of IoT (many

34



cheap, low-duty-cycle, energy-constrained devices deployed in extremely diverse environments)

reshuffle the cards and call for new data-collecting principles. How can a technology-agnostic

infrastructure efficiently collect low-overhead data sent irregularly in time, space and frequency

by thousands of devices? This PhD thesis aims at providing answers to this vast question.

0.2 Stakes of the present study

0.2.1 Preliminary considerations: scope of the study

At the PHY layer of the OSI model, acquisition of a digitally-modulated signal consists in

three consecutive steps:

1. Analog preprocessing (amplification, filtering);

2. Sampling i.e. the transform of a continuous signal into discrete samples;

3. Demodulation i.e. the operation of converting signal realizations (samples) into symbols

and bits.

The symbols then follow a processing chain whose aim is to extract an actual exploitable payload

containing the user or application data.

Out of these three steps, we will focus on what we believe is the cornerstone of digital

communications, the most universal and most crucial step: sampling. Therefore, our main

objective will be the obtention of exploitable samples by upper stack layers. Since we wish to

develop a technology-agnostic platform, we will not favor a particular modulation scheme over

another. However, for didactic purposes, we may use one or several common IoT modulation

schemes to illustrate our findings.

The huge quantity of field-deployed IoT devices entails massive DSP on the uplink, on which

we focus throughout this document. The downlink also has its shares of interesting problems

but of a quite different nature, which are beyond the scope of the present thesis.

0.2.2 Efficient sampling and how we can do it

We now introduce key concepts lying at the heart of this thesis. First, we delve into the

structure of the considered signals and explore the available levers to efficiently sample them.

This leads us to take an interest in Compressed Sensing (CS), a sampling paradigm which allows,

in certain conditions, to losslessly lower the sampling rate. Afterwards, we turn our attention

to Spectrum Sensing (SS), a discipline central to the CR paradigm, and identify its synergies

with CS. Finally, we explore spatial diversity, understood as a way to enhance the capabilities

of a sampling infrastructure.

The considered signals of interest As mentioned earlier, IoT devices may transmit over

wide space/time/frequency ranges: we will have to monitor a wide portion of the frequency

spectrum. Since the sizes (in bits) of the transmitted messages are low (up to a few kilobits in
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many applications), the signal transmitted by a single device typically does not extend over a

wide time-frequency span. Furthermore, low duty cycles mean that a single device will have a

very small occupation of the time-frequency spectrum. Even though devices can be numerous

in a given area, this combination of factors leads us to make a reasonable assumption on the

received signals: we will concentrate our study on (very) sparse, wide-bandwidth, multi-band

signals. In the basic meaning of the word, sparsity means that at any given time, a very small

portion of the frequency spectrum is occupied by device transmissions. This is materialized by

a power spectrum density (PSD) consisting mostly of zeros. This mostly-null PSD corresponds

to an ideal, noiseless case. In practice, communications undergo propagation in channels with

various impairments, such as thermal noise, path-loss, shadowing or multi-path fading. As a

result, the PSD of the received signal has no actual zero values and is, formally speaking, no

longer sparse unless we consider some form of “information-carrying” energy on a band. A

strategy to adapt sparse PSD signals mechanisms to noisy scenarii is the following: instead

of dismissing only the zero values of the PSD, one retains the values above some noise-related

threshold [15].

The fundamental theorem of sampling and why we need to go beyond The historic

Nyquist sampling theorem (first formulated by Kotelnikov in 1933 [16]) states that a bandlimited

signal with no frequency component above fmax can be perfectly reconstructed from samples

taken uniformly at a rate of 2fmax (a rate further referred to as the Nyquist rate). Uniform

sampling is rather easy to perform; moreover, the reconstruction of the original signal from

such samples is facilitated by convenient interpolation formulas. This theorem has been the

cornerstone of analog-to-digital conversion ever since its introduction and remains the industry-

standard way to sample signals, up to the present day.

However, it is not well-suited for sampling wideband sparse signals. Indeed, every Analog-

to-Digital Converter (ADC), the electronic component used for sampling a received signal, has

an upper limit on sampling rate [17], typically lower than the Nyquist rate for a wideband signal.

Even if ADC technology improves, sampling sparse signals at the Nyquist rate is inefficient, for

doing so takes far more samples to reconstruct each narrow IoT transmission than necessary.

Inefficiency in this domain results in two problems: an energy problem, since high rate ADCs

consume a lot of energy, and a volume-of-data problem, since the enormous quantity of collected

samples would quickly take a lot of memory. Furthermore, processing more samples demands

higher computational resources. While storage is not a problem in the case of real-time sample

stream processing, we might want to store samples temporarily for on-request further processing.

As a consequence, we need to consider sub-Nyquist Sampling, the art of sampling (in a

reconstructible manner) below the Nyquist rate.

Compressed Sensing and a theoretical lower-bound Sub-Nyquist Sampling, Compressed

Sampling or Compressed Sensing (CS), was introduced by Candès, Tao, Donoho et al. in 2006

[18, 19]. The core principle behind CS is that a signal with the property of sparsity can be

completely described by a number of coefficients (sometimes much) smaller than the number of
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time-domain samples that would have been taken by sampling the signal at the Nyquist rate.

These coefficients are not necessarily the acquired time-domain samples but are to be under-

stood as values representing the signal in some basis. Collecting these information-containing

coefficients can be done using various sampling methods that have been proposed in the past

years. These methods will be thoroughly presented in Chapter 1; yet in this thesis we will

focus on one method in particular, called Multi-Rate Sampling (MRS) [20]. MRS relies on the

combination of observations of the signal by different sampling branches, each branch sampling

uniformly at a rate well below the Nyquist rate2. In other words, MRS possesses the advantage

of relying on uniform sampling – at a rate lower than Nyquist – as an underlying mechanism.

This emphasis on uniform sampling is consistent with our will to deploy a cheap infrastructure,

since uniform sampling prevails in the industry.

A key result in CS is the Landau lower-bound on sampling rates [21]. It links the minimum

sampling rate for which information can be reconstructed to the Lebesgue measure of the

support (in some basis) of the signal. As is often the case, this result is theoretical and can be

approached only in a limited number of scenarii.

In this study, the overall sampling rate will typically be bounded by the Landau rate (lower-

bound) and the Nyquist rate (upper-bound). Since our aim is to reduce the sampling rate and

number of collected samples – under the constraint that we must be able to reconstruct the

signal –, we will strive to approach the Landau rate. Since the Landau rate depends on the level

of spectrum occupancy of the signal, this level must either be modeled or measured/estimated

at some point, using Spectrum Sensing techniques.

Spectrum Sensing and signal support detection Spectrum Sensing (SS) was introduced

in the CR paradigm as a enabler for Dynamic Spectrum Access (DSA). DSA relies on a hier-

archical model [22] where wireless network users are divided into two categories: the Primary

Users (PU), who enjoy unlimited, anytime access to a given set of licensed frequency bands

(typically allocated either free of charge or for a fee by the regulator), and the Secondary Users

(SU) who are not granted this access but can operate on the same bands as the PU if these

bands are not used and if no interference is provoked by SU activity. In this context, SS helps

determine whether PU signal is present or absent on a given band. SS methods vary in com-

plexity, efficiency and necessary prior knowledge about the signal to detect, and mostly belong

to three detection families: energy detection, cyclostationary feature detection and matched

filtering [23].

Because SUs constantly need to look for new available bands, wideband SS has attracted

attention in the past years. CS is, for the aforementioned reasons, an enabler of wideband SS

[24]. Understandably, the main objective of wideband SS has been spectrum hole identification

for SU communications: there was no need to reconstruct the signal transmitted by PUs. Yet,

if we move away from the DSA use-case and focus on collecting the samples of this existing

2We restrain our attention to the situation where the total sampling rate, or overall sampling rate, defined as

the number of measurements taken across all branches during one second, is also below the Nyquist rate. However,

this is not mandatory, and the total sampling rate of the MRS can be equal to or above that of Nyquist.
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radio traffic, it becomes clear that wideband SS can be used for signal support detection, or

support recovery. For some CS schemes, like MRS, support recovery is particularly useful as

it provides a strong clue for signal reconstruction (materialized in the reduction procedure of

MRS). In particular, support recovery allows to compute the level of spectrum occupancy, on

which the Landau rate depends, as mentioned previously. However, to the best of our knowledge,

precise support recovery in noisy scenarii for the purpose of signal reconstruction has not been

undertaken so far.

Exploit spatial diversity and minimize redundancy Any signal that propagates in the

medium is subject to various channel impairments. If transmissions from a device face difficult

propagation conditions, the Signal-to-Noise Ratio (SNR) drops and the transmitted messages

are lost. Collaborative fusion of samples taken by spatially distributed radio units has been

proposed as a solution for this problem [25]. Indeed, the transmissions from a device to the

different radio units undergo propagation in independently-fading channels, increasing the odds

that the original transmission (or its spectral support) can be recovered. This is an example of

the gains made possible by spatial diversity. Of course, because the samples taken at different

sampling sites need to be forwarded for reconstruction, spatial diversity exploitation incurs

overhead: there is a trade-off to be found between cooperation overhead and signal recovery

gains [26].

Under good propagation conditions however, neighbor reception sites can suffer from redun-

dancy. For instance, imagine that a message is transmitted by a device and that the observations

(samples) made by a single reception site suffice to extract the useful information present in

the message. This renders the neighboring reception sites useless (for this particular device and

message). Put differently, this makes sampling by neighbor reception sites redundant. An easy

way to mitigate this inefficiency is to switch off redundant sampling sites. On the opposite, a

finer approach is to exploit this redundancy, which is more desirable when the totality of sites

and redundancies are considered. For example, this can be done by lowering the sampling rate

at each site and make the neighbor sites collaborate to obtain an exploitable signal, an idea

developed in [27]. Either way, when designing a sampling system, it is valuable to make the

sampling sites (re)configurable, so that they can either exploit spatial diversity for improved

signal recovery (from transmission impairments) or scale their sampling parameters so as to

reduce unwanted redundancy [28].

Centralized or decentralized DSP? In a multi-site sampling infrastructure, samples gath-

ered by the reception sites need to be processed both in a local, individual fashion – to become

aware of the local radio environment – and in a collective fashion – to combine the samples

and recover the original signal. Collective processing can be done in a distributed manner or a

centralized manner, but in our scenario, centralized processing in a Fusion Center (FC) seems

more adequate, as we will see in the following section. In short, DSP is performed both locally

and remotely.
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0.2.3 Prototype of an IoT-aimed, multi-site, sub-Nyquist sampling infras-

tructure: use case of this PhD thesis

The introduction of the stakes and underlying key concepts of this thesis allows us to set the

ground for a prototype of an IoT-aimed, multi-site, sub-Nyquist sampling infrastructure. This

is the prototype of a solution that a telecom operator like Orange (the sponsor of this PhD

program) could offer to a business client.

Figure 0.6 provides a vision of the system that includes all the stakeholders to the entire

sampling system. This infrastructure consists in local sampling sites (later referred to as cogni-

tive radios, CR) and a fusion center (FC). In our scenario, the client rolls out their IoT devices

(later referred to as end devices) over a specific geographical area. The devices live their lives

and transmit data at their discretion. Our proposed infrastructure samples the radio environ-

ment and performs detection using Spectrum Sensing techniques: if a signal is detected, the

samples are kept and stored, otherwise they are dropped. In a simplified vision, to obtain the

end devices’ data, the client queries our infrastructure by sending a request containing a date

and time interval, a frequency range and an optional geographical area. The infrastructure then

responds with the samples matching the parameters of the query. If no sample matches the

query, an empty response is sent to the client.

Figure 0.6: Proposed scenario of an IoT-aimed, multi-site, sub-Nyquist sampling infrastructure.

Choice of the sub-Nyquist sampling scheme We have chosen to use our proposed ex-

tension to the MRS, called the Spatial Diversity Multi-Rate Sampling (SD-MRS) scheme. This

extension of MRS seems particularly suitable for fast adoption of our system. Indeed, the hard-
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ware in the CRs (the point of entry of end devices’ data in the sampling system) is fairly simple

and virtually similar to what is embedded on current smartphones. There is no requirement

for new ultra-specific hardware components, thus lowering the deployment cost of an SD-MRS

based solution. Moreover, SD-MRS is adaptive, resilient and effective.

The role of the CR A CR implements a reception architecture (reception antenna, analog

preprocessor, sampler). It can embed one or several sampling branches. Each sampling branch is

clocked to a given sampling rate. The samples of each branch undergo a (digital) preprocessing

stage that consists in two steps. First, a decision on the presence (or absence) of any actual

information in the samples is taken. Second, if presence of information is decided, the location in

the wideband spectrum of the sub-bands that contain the information (i. e., the signal support)

is estimated. Samples where information is believed to be present are timestamped and sent to

the FC via a backhaul link; the other samples are dropped. To keep CR computations light,

the tests are based on energy detection. This is facilitated by the fact that sampling below the

Nyquist rate does not decrease the SNR, usually a crucial factor that decides the fate of energy-

based detection. However, since the samples are taken more distantly in time, the acquisition

time for a given number of samples is higher. This reduced time resolution can be detrimental

to short messages. A failsafe is to make the statistical tests more tolerant: since a type I error

corresponds to a sample containing information dismissed as a sample without information, we

just want as little type I errors as possible, and can act accordingly on the parameters of the

test.

The role of the FC The first function of the FC is to interact with the Sample Storage

unit. Upon reception of the samples sent by the CRs, the FC labels the samples and store

them in a sample database. When the client queries the sampling system, the FC retrieves the

samples corresponding to the query and combines them. The combination stage occurs in two

steps: first, the actual signal support is determined (based on the signal support estimations

done locally by the CRs), second, the signal of interest itself is recovered. Note that tight

synchronicity between the different CRs is a plus, albeit not strictly necessary. Finally, the FC

sends the recombined samples to the client.

Performance measurement The performance objective that determines some quality of

service of the system will have to be defined between the infrastructure manager (typically the

telecom operator) and the client, based on some appropriate figure of merit. A candidate for the

figure of merit is the average sample error rate. For instance, the client may have a requirement

such as “I want to gather the correct samples3 more than 99.9% of the time, and a failure from

the telecom operator to provide the remaining 0.1% correct samples is tolerable”. The bit error

rate (BER) could be another figure of merit, but it depends on the modulation scheme used for

the communication which we do not a priori know.

3A correct sample, in a noisy setting, could be a sample that is not or marginally altered by sub-Nyquist

sampling, regardless of phenomena outside of the scope of the sampling infrastructure e.g. noise-induced impair-

ments.
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Here is a non-exhaustive list of exogenous factors that all have an influence on any proposed

figure of merit:

• end device spatial density;

• end device duty cycle;

• end device transmission modulation type;

• environment (rural, urban, industrial...);

• level of interference.

The sampling infrastructure possesses some levers that can be activated to achieve satisfac-

tory performance:

• CR spatial density;

• CR sampling rate;

• CR sampling bandwidth;

• FC computing power.

There is no optimal setup and there are a lot of trade-offs between the different mentioned

factors (for example, is it better to have many CRs sampling at low rates or few CRs sampling

at high rates?). We will study some trade-offs throughout this thesis, such as the one between

high infrastructure performance and low sampling rates. However, these are only scaling factors,

and underlying mechanisms at play in the proposed infrastructure will be the main focus of our

study.

0.3 Plan of the thesis and contributions

Following this general introduction, Chapter 1 provides an extensive review of two tightly

inter-connected fields: Compressive Sampling (CS) and Spectrum Sensing (SS). Fundamen-

tally, CS theory relies on solving underdetermined systems of linear equations (USLE) (this

step is also called signal reconstruction or recovery). We therefore explore conditions for good

reconstruction as well as methods to solve a USLE. CS theory is complemented by several sub-

Nyquist sampling schemes. Typically, to each sampling scheme corresponds a different USLE.

We present the principal sampling schemes and their characteristics, with a particular attention

brought to MRS. Finally, USLEs are solved using the additional assumption that the signal is

sparse in some basis. In particular, knowledge of the spectral support allows the reduction of

the space of possible solutions of the USLE subjacent to the MRS. We go through the principal

SS techniques present in the literature, as they are a prior to signal support detection.
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Chapter 2 is dedicated to novel SS techniques that will help us in our MRS-based sampling

infrastructure. We start by presenting our novel K-means-based Noise Variance Estimator

(KNVE), an algorithm based on K-means clustering to estimate the noise variance in frequency-

sparse signals corrupted by white Gaussian noise of unknown variance. Then, we shed some light

on signal support detection for sparse signals and introduce our proposed Support Estimator

(SE), which estimates the signal support from samples obtained in an MRS branch, using

sample-wise energy detection. Both presented methods are compatible with the MRS, though

not limited to this particular sampling scheme. As the different MRS branches collect samples

at different rates, the signal support estimates vary from one branch to another because of

aliasing: we say that each branch partially estimates the signal support. We discuss strategies

of combination of these signal support partial estimates into a global signal support estimation.

Though MRS was introduced over a decade ago, we believe it has not been studied thoroughly.

In particular, the choice of the sampling rates has received little attention. To fill this gap, in

Chapter 3, we introduce new theoretical results. Our first contribution of this chapter is a

necessary condition for satisfactory resolution of the USLE related to the MRS. This condition

states that the rank of the matrix representation of the USLE be as high as possible. Our

second theoretical contribution is an upper-bound for the rank of this matrix, based solely on

the ADC sampling rates and the number of ADCs. We demonstrate that choosing pairwise

coprime sampling rates allows to reach this upper-bound. In addition, we provide simulations

results underlining the relevance of the rank indicator for asserting the performance of an MRS

system.

Now that these important aspects of MRS have been developed and clarified, in Chapter

4 we present a demonstrator for a complete mono-site4 MRS sampling infrastructure. In this

processing chain, we generate narrowband (NB) signals using typical IoT characteristics (mod-

ulations, message sizes, duty cycles...) and the aggregated wideband (sparse) signal undergoes

propagation through a Rayleigh channel and an AWGN channel of unknown variance. We

sample this signal, estimate the noise variance and the signal frequency-domain support, and

reconstruct the original NB signals transmitted by the devices using several solvers. Finally,

we evaluate the performance of our system for different sets of parameters, using as a metric

the root mean square error (RMSE) between the received noisy signal and the undersampled-

then-reconstructed signal. In the light of the simulation results, we provide elements to help

scale the sampling infrastructure. Finally, we present ways to make the sampling infrastructure

adaptive to changes in radio environment.

The infrastructure studied in Chapter 4 is mono-site. This is an intermediary step towards a

multi-site infrastructure, such as the one envisioned in Section 0.2.3 of this general introduction.

In the general conclusion, we discuss the opportunities as well as the challenges associated

4A mono-site sampling infrastructure is an infrastructure equipped with one physical reception antenna,

contrary to a multi-site infrastructure in which several antennas are located at distinct geographical sites.
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with a multi-site sampling infrastructure based on Spatial Diversity MRS (SD-MRS). We also

explore various possible improvements and refinements to the sampling infrastructure proposed

in Chapter 4.
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Chapter 1

Review of Compressed Sensing and

Spectrum Sensing

1.1 Introduction

In this chapter, we will first introduce a self-contained overview of the Compressed Sensing (CS)

framework. Because an underlying structure is present in many signals of interest, including

telecommunications signals, the information conveyed by such signals can be represented by

fewer coefficients than in traditional signal representations. This assertion lies at the heart of

the CS framework. In telecommunications, an example of a traditional signal representation

is the temporal signal sampled uniformly at the Nyquist rate. In practice, to each hardware

implementation of CS corresponds a sampling matrix in Km×n, where K ∈ {C,R}. Because

a CS scheme takes fewer samples than traditional Nyquist sampling, we have m < n; thus,

the sampling matrix is equivalent to an Underdetermined System of Linear Equations (USLE),

which has either zero or an infinite number of solutions. Assumptions on the structure of the

signal then help find the solution closest to the original signal. Section 1.2 will consider the

main theoretical aspects behind CS, while several applications and hardware architectures of

CS in telecommunications will be described in Section 1.3.

A concept that somewhat intersects with CS is Spectrum Sensing (SS). SS is a core com-

ponent of the Cognitive Radio (CR) paradigm. It consists in monitoring spectrum usage and

exploiting this knowledge for a variety of applications. Its principal application is the detection

of Primary Users (PUs) for Dynamic Spectrum Access (DSA). As mentioned in Section 0.2.2

of the General Introduction, CS is considered as an enabler for wideband SS (WB-SS) in the

DSA use case. However, by giving information about spectrum usage, SS can also be used

to provide knowledge about the underlying structure of the signal, in order to solve a given

USLE obtained through CS. In Section 1.4, we will present two flavors of SS: narrowband-

and wideband-SS. Narrowband-SS (NB-SS) permits signal detection in a given narrow band,

which is crucial to DSA because it helps determine whether or not the spectrum is occupied

by another user. WB-SS makes signal support estimation possible (we consider in this regard

that the signal is composed of several narrowband components), which is useful for solving a
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CS-originated USLE for the purpose of signal recovery.

1.2 Theoretical aspects of Compressed Sensing

1.2.1 Preliminary considerations on signal and vector spaces

1.2.1.1 Continuous or discrete signals?

Consider a real-valued1 continuous baseband signal x(t), whose support (set of frequencies where

x is non-zero) is comprised within [−fmax, fmax]. Although a strictly band-limited signal should

be of infinite duration, we suppose x(t) is of finite duration ∆. The continuous signal x(t) is

sampled at the Nyquist rate fNyq = 2fmax. Let x = [x[0] . . . x[n− 1]]T , n = ∆fNyq be the vector

of discrete time-domain representations (samples) of x(t). Each of its values is obtained as

follows:

x[k] = x(
k

fNyq
), 0 ≤ k ≤ n− 1. (1.1)

Using the Whittaker-Shannon interpolation formulas, the continuous signal x(t) can be

completely recovered from the Nyquist-rate sampled signal x[k] (the interpolation error obtained

as a consequence of the finiteness of x(t) is not taken into account). For this reason, throughout

the remainder of this manuscript, “signal recovery” (or its synonym “signal reconstruction”)

will refer to the recovery of the finite-length discrete signal x[k] and not that of its continuous

counterpart x(t). This discrete, finite-length signal x[k] (also referred to as x) is an element of

Rn.

1.2.1.2 Norms

A norm on vector space V is a non-negative linear application || · || : V −→ R verifying three

properties. For all a, b ∈ V and λ ∈ R:

• ||a|| = 0↔ a = 0 (a norm is positive definite);

• ||λa|| = |λ|||a|| (a norm is absolutely homogeneous);

• ||a+ b|| ≤ ||a||+ ||b|| (a norm verifies the triangular inequality).

Different norms are useful to represent distinct physical phenomena. We now introduce several

norms on vector space Rn and the quantities they physically represent.

For a vector x = [x1 . . . xn] ∈ Rn, the `p-norm || · ||p (1 ≤ p < +∞) is defined as

||x||p = (
n∑
i=1

|xi|p)
1
p . (1.2)

Further, the `∞-norm || · ||∞ is defined as

||x||∞ = max
1≤i≤n

|xi|. (1.3)

1Throughout this document, almost all considered signals are complex. However, unless mentioned other-

wise, the real and imaginary parts of these signals are processed separately as real-valued signals and summed

afterwards.
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Let the support of x be the set of indices of nonzeros of x:

supp(x) = {i, xi 6= 0}. (1.4)

The `0-pseudonorm || · ||0 is defined as

||x||0 = Card(supp(x)), (1.5)

where Card(·) denotes the number of elements in a set. Because it is not absolutely homoge-

neous, || · ||0 is not a norm, but rather a pseudonorm.

Examples of norms representing different physical phenomena are the `2-norm and the `0-

pseudonorm. The `2-norm typically represents the square root of the energy in a signal x. The

`0-pseudonorm is a measure of sparsity of a signal, that is, of how much a signal’s information

is contained within a few coefficients, a concept that is key to CS as we will see in Section 1.2.2.

1.2.1.3 Bases

A set {φi}ni=1 of elements of Rn is said to be a basis of Rn if it consists of linearly independent

vectors. For any x ∈ Rn, there is a unique set of coefficients {ci}ni=1 that describes x in the

basis:

x =

n∑
i=1

ciφi = Φc, (1.6)

where Φ is the n× n matrix with columns given by φi and c is the vector of the ci values.

If the basis is orthonormal, meaning

〈φi, φj〉 =

1, i = j

0, i 6= j
, (1.7)

we have ΦTΦ = In where In is the n× n identity matrix. c can then be easily obtained:

c = ΦTx. (1.8)

1.2.1.4 Frames

A frame is a set {φi}ni=1 of elements of Rd, d < n of associated matrix Φ ∈ Rd×n that verifies,

for any x ∈ Rd:
A||x||22 ≤ ||ΦTx||22 ≤ B||x||22, (1.9)

where 0 < A ≤ B <∞.

A frame is a generalization of a basis where the number of elements in the set {φi} is higher

than the dimension of the considered space. Due to the linear dependence of the φi in a frame,

for any given x, there are an infinity of vectors c that verify x = Φc.

One way to obtain feasible coefficients is to use the dual frame Φ̃. A dual frame verifies

ΦΦ̃T = Φ̃ΦT = In. (1.10)
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Similarly to (1.8), a dual frame allows to obtain c from any x:

c = Φ̃Tx. (1.11)

A particular dual frame is the canonical dual frame, also known as the Moore-Penrose

pseudoinverse (MPPI), defined by

Φ̃ = (ΦΦT )−1Φ. (1.12)

Note that ΦΦT is invertible if and only if the rows of Φ are linearly independent.

The MPPI solves the “least-squares” problem, meaning that the coefficients cmppi obtained

by choosing the MPPI as the dual frame in (1.11) verifies

||cmppi||22 ≤ ||c||22 subject to x = Φc. (1.13)

Bases and frames are routinely called dictionaries and their elements are called atoms.

1.2.2 Signal sparsity

Some signals can be represented – or approximated – by a linear combination of only a few

atoms of a dictionary, meaning that the majority of atoms in the dictionary contain little to no

information about the signal.

Consider the aforementioned signal x. x is said to be k-sparse if it has k or fewer nonzero

values, meaning that ||x||0 ≤ k. Let

Σk = {x, ||x||0 ≤ k} (1.14)

be the set of all k-sparse vectors. Other measures of sparsity have been proposed and compared

in [29]. Note that Σk is not closed under addition and that for x1, x2 ∈ Σk, we have x1+x2 ∈ Σ2k.

A sparse signal is a signal consisting mostly of zeros, that is, k � n. Often, a signal2 might

not be directly sparse, but its representation in another basis Φ is. Consider non-sparse signal s.

If there is a basis Φ so that x = Φs with ||x||0 ≤ k, we will consider that x is k-sparse, and that

s is k-sparse in some basis. Φ is called the sparsifying basis. Fig. 1.1 displays the sparsifying

transform, where a non-sparse signal of size N = 10 samples becomes a k-sparse signal x with

k = 3.

Signal sparsity is key to data compression [30]: by finding the right dictionary in which

to express the signals, most coefficients describing the signal can be dropped out, achieving a

reduction in signal size. The compression can be either lossless (no information at all is lost) or

lossy (some information is lost during compression). A pioneering work in lossy compression was

the conception of the Discrete Cosine Transform (DCT) by Ahmed et al [31]. This transform

concentrates most of the signal information in a few low-frequency components, making it

possible to drop most higher-frequency components and thus reduce the size of the signal. This

transform is now a central part to many compression and coding standards, such as JPEG,

H.265 and MP3. Note that a lot of signals, such as natural images or audio recordings, are

not exactly sparse, but are approximately sparse. This means that they can be approximated

2More precisely, its sample representation resulting from some physical acquisition process.
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=

x Φ s

Figure 1.1: Sparsifying transform: transforming a non-sparse signal s into a k-sparse signal x

through multiplication by a sparsifying basis Φ.

by sparse signals by setting the numerous small coefficients to zero: setting the n − k lowest

coefficients to zero yields a k-sparse approximation of the signal.

Signal sparsity is also exploited in denoising [32] and image processing [33]. Other applica-

tions of sparsity include statistics and learning theory, where sparsity has been used to avoid

overfitting [34], and the study of the human visual system [35].

The difference between data compression and CS is the following. In data compression, we

start with a known non-compressed signal, to which we apply an adequate transform, and this

yields a sparse representation. When sampling, this strategy is suboptimal, because we would

first have to sample the signal at a high, Nyquist rate, only to “throw away” the majority

of coefficients of the signal at compression because they contain little information. In his

groundlaying work [19], Donoho advocates that if a signal x ∈ Rn is compressible through

a known transform, the compressed version of x can be obtained without going through the

energy-intensive, high-rate sampling step: the required number of linear mesurements m can

be much smaller than n. In another major work, Candès, Romberg and Tao [18] observe a

connection between the number of necessary observations and the number of nonzeros in x.

In addition to signal sparsity, there are other models to describe signals that have the ability

to be represented with far fewer atoms of a given dictionary than that of another. Union of

Subspaces [36] and Finite Rate of Innovation [37] are such frameworks. In particular, they

are helpful with applying CS theory to analog, non-discretized signals for which (1.14) is not

relevant. Though these models will not be studied in the remainder of this document, the

interested reader is referred to Chapters 3 and 4 of [38].
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1.2.3 Sampling matrix properties

CS consists in acquiring a signal x ∈ Rn through m < n linear measurements:

y = Ax, (1.15)

where y ∈ Rm is called the measurement vector and A ∈ Rm×n is called the sampling matrix.

Some applications, such as DSA, do not require the recovery of x, but rather characteristics

derived from x; however, for completeness, we will aim to recover x from (1.15). Fig. 1.2

represents the measurement acquisition process of CS.

=

y A

x

n x 1

m x nm x 1

k non-zeros
k < m << n

Figure 1.2: Compressed Sensing: collecting m � n measurements through a sampling matrix

A. The m-sized vector y contains all the information present in n-sized x and represents it in

fewer coefficients.

Since A has more columns than rows, it corresponds to a USLE. As a consequence, with y

and A known, there are either zero or an infinity of solutions for x to (1.15). Since x is supposed

to be sparse, we will try to recover the sparsest x̂ that verifies y = Ax̂. In other words, we will

consider the `0-pseudonorm minimization problem:

x̂ = argminz||z||0 subject to y = Az. (1.16)

The processing of CS-acquired signals is summarized in Fig. 1.3.

An important factor of success for reco3very of x lies in the design of A. First, A needs to

be designed so that if x is sparse, all the information in x is present in y. Second, the design of

A should allow for a pratical and effective recovery of x from the measurement vector y.

We will now present several sampling matrix properties that provide guarantees for signal

recovery, and see how these properties influence the sampling matrix design procedure.

3Throughout this document, almost all considered signals are complex. However, unless mentioned other-

wise, the real and imaginary parts of these signals are processed separately as real-valued signals and summed

afterwards.
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Compressible signal s Sparse transform
x = Φs

Compress
y = Ax

Recover signal
||x||0 s.t. y = Ax

Compress and sample
at low speed

Figure 1.3: Processing CS-acquired signals.

1.2.3.1 Spark

Consider distinct vectors x, x′ ∈ Σk for which Ax = Ax′. This situation is not desirable because

it is impossible to recover the actual original vector x from measurement vector y. In this case,

notice we have both x − x′ ∈ Σ2k and x − x′ in the nullspace of A. For A to represent an

injective function of Σk into Rm, there should be no vector both in kerA \ {0} and Σ2k. The

spark introduced in [39] helps us characterize A in this regard.

Definition 1.1 (Spark). The spark of a given matrix A is the smallest number j of columns of

A for which a subset of j columns of A are linearly dependent.

The following holds:

Theorem 1.2. If it exists, a solution x ∈ Σk to y = Ax (for any y ∈ Rm) is unique if and only

if spark(A) > 2k.

Proof is given in [39].

From the definition of the spark, we can see that spark(A) ∈ [2,m + 1]. As a consequence

of Theorem 1.2, the minimum number of measurements required is m ≥ 2k. This is an elegant

rewriting of the Landau bound [21]. Note that if the original signal is not sparse at all (k = n),

then the spark condition yields the Nyquist rate.

1.2.3.2 Null Space Property

In general, the `0-pseudonorm minimization problem defined in (1.16) is NP-hard [40]. As

an alternative, the technique of `1-relaxation is commonly used. It consists in solving the

`1-problem:

x̂ = argminz||z||1 subject to y = Az, (1.17)

instead of the `0 problem. The advantage of this relaxation is that the `1-problem is convex,

and therefore solvable through linear programming techniques. However, for the l1-relaxation

to be relevant, it is necessary that the `0- and `1-problems have the same answer x̂. The null

space property (NSP) is one way to guarantee equivalence:

Definition 1.3 (Null space property). A matrix A satisfies the NSP of order s if for all index

sets S with s = Card(S) ≤ n, we have ||ηS ||1 < ||ηSC ||1 for every η ∈ kerA \ {0}.

The NSP allows the following recovery condition:
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Theorem 1.4. Let A ∈ Rm×n. Then every k-sparse signal x is the unique solution to the

`1-relaxation problem with y = Ax if and only if A satisfies the NSP of order k.

Proof is given in [41].

1.2.3.3 Restricted Isometry Property

While the NSP is suitable for noiseless measurements, error quantization or noise contamination

can prevent a matrix A satisfying the NSP from successfully recovering x. To account for

impairments during the acquisition of measurements, the Restricted Isometry Property (RIP)

was introduced by Candès and Tao in [42] and has since then been one of the most used matrix

properties in CS.

Definition 1.5 (Restricted Isometry Property). A matrix A satisfies the Restricted Isometry

Property of order k if there exists a δk ∈ (0, 1) such that for all x ∈ Σk:

(1− δk)||x||22 ≤ ||Ax||22 ≤ (1 + δk)||x||22. (1.18)

The RIP is a powerful property because it provides stability for k-sparse vectors. Indeed,

the distance between any given pair of k-sparse vectors is approximately preserved by a matrix

satisfying the RIP of order 2k. This means that a matrix satisfying the RIP corresponds to a

well-posed problem and solutions will be numerically stable: this is particularly important if

the input signal is impaired by noise or quantization errors.

Another way to consider the RIP is by noticing that a matrix satisfying the RIP of order

2k is almost orthonormal when operating on vectors in Σk.

It is possible to propose bounds for the minimum number of measurements m needed for

the matrix A to satisfy the RIP of order k. Davenport [43] proposes the following lower bound,

for given n and k:

Theorem 1.6. Let A an m × n matrix that satisfies the RIP of order 2k with constant

δ2k ∈ (0, 1). Then

m ≥ Cδk log
(n
k

)
, (1.19)

where Cδ < 1 depends only on δ2k.

Other similar bounds are proposed in [38].

Finally, the RIP is related to the NSP, and is even strictly stronger than the NSP: if a matrix

satisfies the RIP, then it also satisfies the NSP. Proof of this can be found in [38].

1.2.3.4 Coherence

The spark, NSP and RIP all propose guarantees for the recovery of k-sparse signals, sometimes

with stability and robustness to impairments. However, verifying that a matrix A satisfies any

of these properties usually involves a combinatorial search over
(
n
k

)
submatrices. The coherence

of a matrix [44] is a property that measures the correlation between the distinct columns of A.

It is easy to compute and provides guarantees for signal recovery.
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Definition 1.7 (Coherence). The coherence µ(A) of a matrix A is the largest absolute inner

product between any two distinct columns ai, aj of A:

µ(A) = max
1≤i,j≤n,i 6=j

|〈ai, aj〉|
||ai||2||aj ||2

. (1.20)

The coherence is upper-bounded by 1 and lower-bounded by the Welch bound [45]:√
n−m
m(n− 1)

≤ µ(A) ≤ 1. (1.21)

In particular, if m� n, the lower bound can be approximated by µ(A) ≥ 1/
√
m.

The coherence of a matrix can be linked to its spark by the following relation.

Lemma 1.8. For any matrix A ∈ Rm×n,

spark(A) ≥ 1 +
1

µ(A)
. (1.22)

A proof of this lemma using the Gram matrix G = ATA can be found in [39].

Combining Theorem 1.2 and Lemma 1.8 yields a direct relation between the matrix coherence

and the required level of sparsity for uniqueness of recovery:

Theorem 1.9. If

k <
1

2

(
1 +

1

µ(A)

)
, (1.23)

then at most one signal x ∈ Σk verifies y = Ax for any given measurement vector y ∈ Rm.

From the Welch bound (1.21) and Theorem 1.9, we can exhibit a relation between sparsity

order k and number of measurements m guaranteeing uniqueness using the coherence property:

k = O(
√
m). (1.24)

Notice that for a given level of sparsity k, a matrix A typically requires more measurements

m to satisfy the coherence property than the RIP: in the order of k log
(
n
k

)
for the RIP (1.19)

and k2 for coherence. Remember that these values are lower bounds.

1.2.4 Sampling matrix construction

Now that we have properties to ascertain that a given matrix A will be suitable for uniquely

and exactly recovering an original k-sparse signal x from a measurement vector y of length m,

we wish to effectively construct sampling matrices that satisfy the aforementioned properties.

Two approaches have drawn particular attention for this purpose: deterministic and random

matrices.

1.2.4.1 Deterministic matrices

A m × n Vandermonde matrix V built with m distinct scalars satisfies spark(V ) = m + 1.

However, when n is large, V is poorly conditioned, making the recovery of x ∈ Σk from y = Ax

numerically unstable [46].
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A construction based on the Gabor frame obtained from a sequence known as the Alltop

sequence creates a m × m2 sampling matrix that reaches the lower bound coherence µ(A) =

1/
√
m [47].

RIP-satisfying deterministic matrices have also been an ongoing subject of research for years

([48, 49, 50, 51, 52]). However, the proposed constructions usually require a large number of

measurements m (for example, in the order of magnitude of m = O(k2 log n) in [49]), and most

known approaches are confronted with the so-called
√
m bottleneck, meaning that deterministic

RIP-satisfying m × n matrices can only deal with signals x of sparsity level
√
m. Bourgain et

al. [48] provided a way to go beyond this bottleneck using the flat RIP. Their theoretical

contribution was proposed alongside a construction of a RIP-satisfying matrix that allows a

sheer gain over the
√
m bottleneck. In [50], Bandeira et al. use the theoretical contribution of

Bourgain et al. [48] to conceive a method that can demonstrate RIP for levels of sparsity k >
√
m. Nonetheless, due to high required numbers of measurements, deterministic-constructed,

RIP-satisfying matrices are typically inadequate for real-world sampling environments.

1.2.4.2 Random matrices

Random matrices have also stimulated a lot of interest because they can satisfy the RIP with

fewer measurements m and/or lower values of δk with high probabilities.

A major result states that a random matrix has a high probability of satisfying the RIP if

its entries follow any sub-gaussian distribution. In particular, Theorem 5.65 of [38] states the

following:

Theorem 1.10. If a m× n matrix A with

m = O(k log(n/k)/δ2
2k) (1.25)

has its entries chosen from a sub-gaussian distribution, then A satisfies the RIP of order 2k

with a probability of at least

p ≥ 1− 2e−cδ
2
2km, (1.26)

with c a positive constant.

Through this result, the optimal number of measurements presented in (1.19) is reached up

to a constant, which makes a strong case for random matrices.

Another advantage of random matrices is that they allow for measurements that are demo-

cratic [53], that is, each measurement contains approximately the same quantity of information.

It also means that any sufficiently large subset of measurements can effectively be used for signal

recovery. For this reason, random matrix constructions bring about robustness by redundancy:

taking a few more measurements allows to “lose” some measurements to corruption or channel

impairments.

One additional consideration is that a signal x might only be k-sparse in respect to some

basis Φ. In this scenario, the matrix that should satisfy the RIP is no longer A, but AΦ. If A

is built in a deterministic fashion, construction should take Φ into account. On the contrary, if
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A is a random matrix, AΦ will be very likely to satisfy the RIP with the same probability as

A4, meaning that it is unecessary to take Φ into consideration for the construction of A. As a

consequence, random matrices have a clear advantage over deterministic sampling matrices.

The major caveat of the random matrix approach is that it seems impractical to build in an

actual hardware setup. A way to mitigate this problem consists in allowing for some randomness

to be implemented in hardware architectures (which will be covered in a further section). These

architectures correspond to sampling matrices A that exhibit more structure than fully-random

matrices. However, these more structured matrices can, in some cases, satisfy the RIP or have

a low coherence.

1.2.5 Beyond properties of guarantee of recovery

The different properties presented in Section 1.2.3 and the guarantees they provide regarding

recovery only describe one side of the picture. Because the properties are sufficient and not

necessary, for a given matrix A, there is a gap between the recovery guarantees and the actual

recovery possibilities. For example, in a simple experiment, Bruckstein et al. [55] were able to

exhibit a case where the actual signal recovery algorithm (usual signal recovery methods will be

covered in Section 1.2.6) could on average successfully recover a signal with a level of sparsity

k 26 times higher than what coherence guaranteed.

1.2.5.1 The gap between guaranteed performance and actual recovery perfor-

mance

Beyond this simple yet eloquent example, there is a documented gap [56, 57, 55] between what

a satisfied property (RIP, low coherence, spark, and others) guarantees and what is achievable.

One reason that could explain this gap is that a property has to guarantee k-sparse signal

recovery for the worst-case scenario, which might correspond to an extremely limited subset of

all possible signals x ∈ Σk and might occur with a very low (if not zero) probability. On the

contrary, the typical behavior of the system, seen as the combination of the original signal x,

the sampling matrix A and the recovery method, does not account for the worst-case scenario

and can incur satisfactory recovery of k′-sparse signals (k′ > k) in most cases.

For the coherence property, the worst-case scenario unravels in the following fashion. Recall

that if any two columns of a sampling matrix A have a high inner product, the coherence of the

whole matrix will be too high to guarantee signal recovery for any substantial sparsity level k.

However, the matrix may have thousands of columns, and the two aforementioned correlated

columns will only project two elements of x (out of thousands) onto subspaces close to each

other. In the extreme example that two columns ai and aj of A are identical, the coherence

will be highest at µ(A) = 1, only guaranteeing the recovery of a 1-sparse signal. Consider a

2-sparse signal ξ. In the worst-case scenario, the two nonzeros of ξ are located at the ith and

jth indices, thus jeopardizing recovery of ξ. However, in the typical behavior scenario, there is a

probability of 998
1000 ×

997
999 ≈ .996 that ξ has both of its nonzeros at indices other than i or j, and

4This is true for matrices built with sub-gaussian distributions [54].
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that recovery can be performed correctly (notwithstanding other impairments in the sampling

matrix).

While there seems to be a wider gap between what a low coherence guarantees and actual

signal recovery than for the other properties, the same reasoning applies to all of them. This

means that signal recovery guarantees often cannot provide more than a lower-bound estimate

of the achievable recovery performance in the typical behavior regime.

1.2.5.2 Phase transitions

In the context of signal recovery, let us define a “success” outcome as either a perfect recovery

of a sparse signal (x̂ = x) or a low-mean square error (MSE) recovery (||x̂− x||22 ≤ ε for a given

error ε > 0), and a “failure” outcome as a non-successful outcome. Let us use the notations of

[55] where the occupancy ratio is defined as δ = k/m and the undersampling ratio is defined as

ρ = m/n.

Interestingly, success rate and failure rate for given sampling matrices and recovery algo-

rithms and given values of δ and ρ are far from random [58, 55, 59]. Figure 1.4 taken from [55]

depicts the “success” and “failure” phases for signal recovery versus ρ and δ. Gaussian matrices

with n = 1600 are used. The shaded area boundaries are well defined in both panels, and the

transitions between a high success rate and a high failure rate (depicted by the red curves) are

clearly visible: a small variation of k, all other parameters being equal, can cause a drop from a

100% success rate to a 0% success rate. As the number of equations n increases, the transition

becomes increasingly sharp [58].

Figure 1.4: Phase transitions for two different recovery algorithms ((a): `1 minimization (b):

StOMP, see Section 1.2.6). The sampling matrices are Gaussian with n = 1600. The different

shades represent fractions of cases in which the signal recovery algorithm successfully finds the

sparsest solution (darkest: 0% success rate, brightest: 100% success rate).
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There is a conjectured threshold η on the degree of sparsity k of the signal in case the sam-

pling matrix is Gaussian with m� n, and considering the recovery algorithm is `1 minimization

[55]:

η =
m

2 log(n/m)
. (1.27)

If k is – even slightly – above this threshold η, we are in the failure phase, and if k is under the

threshold, we are in the success phase.

Comprehensive statistical studies of phase transitions in CS have been carried out [60, 61].

They are mostly based on Gaussian matrices and various recovery algorithms, and provide

useful insights for analysis and problem resolution in CS.

1.2.6 Signal recovery

Fundamentally, recovering a signal from CS measurements consists in solving a USLE. We will

now present the principal classes of algorithms for USLE resolution in the context of CS. Note

that in this section, we will only cover the full recovery of original signal x. The recovered signal

is noted x̂. However, some applications, such as detection or parameter estimations, do not aim

for a full signal recovery, but rather for some level of knowledge about the original signal.

1.2.6.1 `1-minimization algorithms

Perhaps the most natural approach to recovering x from measurement vector y is to solve the

`0-minimization problem (1.16). However, this non-convex problem is NP-hard. Furthermore,

for a general matrix A, finding an approximation of the true minimum is NP-hard [62].

To obtain a more tractable problem, a `1-relaxation has been applied to the problem to

yield the `1-minimization problem (1.17). This problem is also called Basis Pursuit (BP).

Regularization has been proposed to counter BP’s tendency to favor exactitude of recovery

over sparsity, even in a noisy setting. A regularized problem derived from BP, called Basis

Pursuit Denoising (BPDN), “`1-least squares” (L1LS) or Least Absolute Shrinkage and Selection

Operator (LASSO), has been studied extensively:

x̂ = argminz
1

2
||Az − y||22 + λ||z||1, (1.28)

where the regularization parameter λ > 0 aims at providing a balance between sparsity (brought

by a low `1-norm) and recovery fidelity (brought by a low `2-norm).

Several approaches for determining the optimal λ are proposed in [63, 64].

Note that for any given value of λ, solving the unconstrained formulation of BPDN (1.28)

will yield the same result as solving the constrained version of the problem:

x̂ = argminz||z||1 subject to ||Az − y||2 ≤ ε, (1.29)

although the relation between ε and λ is unknown a priori. An interest of the constrained

formulation of BPDN lies in its similitude to a natural parameterization of the problem, where

solution RMSE ||Ax̂− y||2 is bounded by a noise or quantization error threshold.
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Since BP and BPDN are convex, they can be solved by any given general-purpose convex

optimization software using methods such as Dantzig’s simplex algorithm [65]. However, several

algorithms have been proposed to solve the `1-minimization problem specifically in the context

of CS. These algorithms are based on various convex optimization techniques: gradient descent

for the (Fast) Iterative Soft-Thresholding Algorithm (FISTA) [66], gradient projections [67], co-

ordinate descent [68], fixed-point continuation [69], predual resolution for the Predual Proximal

Point Algorithm (PPPA) [70], specialized interior-point method [71] to name a few.

Though `1-minimization algorithms provide satisfying results in terms of MSE between

original signal x and solution x̂, one of their drawbacks is that they typically involve heavy

computations and tend to be slow for larger problems.

1.2.6.2 Greedy algorithms

The family of greedy algorithms has garnered a lot of attention for sparse signal recovery from

compressed measurements. Greedy algorithms obtain solutions through iterative approxima-

tions of the signal coefficients or signal support and run until a convergence criterion is met.

Each iteration can involve a first-order convex optimization technique, such as a gradient de-

scent. Performance of greedy algorithms routinely match that of `1-minimization algorithms

[38], with smaller complexities and lower computation times. We will now review two important

greedy algorithms and their variants.

Orthogonal Matching Pursuit A very popular greedy algorithm is Orthogonal Matching

Pursuit (OMP) [44]. The principle of OMP is to iteratively pick the columns of A most strongly

correlated to the remaining part of the measurement vector y. Then, the contribution of the

selected column of A to the mesurements is removed and the algorithm iterates on the residual.

At each step i, the level of sparsity of the iteratively-built solution ||x̂i||0 increases by 1. The

algorithm stops after a predefined number of steps that can be set to be the estimated number

of nonzeros of x (though other stopping criteria, such as an `2 error condition can be used as

well). A more formal description of OMP is presented in Algorithm 1.1 (formulation originally

taken from [38]). In Algorithm 1.1, † denotes the Moore-Penrose pseudo inverse (MPPI) of a

matrix, ·C denotes the complement and Hk represents the hard thresholding operator, which

selects the k elements of x with the highest magnitude and set all other entries to zero.

OMP has some empirical guarantees on signal recovery [44], with a required number of

measurements of roughly m = O(Ck log n) for a Gaussian sampling matrix A (with C a positive

constant). Complexity depends on the practical implementation of OMP. While there is a trade-

off between time and memory complexities, time complexity can be as low as O(nk+mk) [72].

Extensions of OMP have been proposed, that provide gains in speed, efficiency, or stability.

Block OMP (BOMP, [73]) yields better recovery than OMP for block-sparse signals. Stagewise

OMP (StOMP, [59]) enhances OMP by using hard thresholding with a specific threshold in order

to put several residual entries in Si at Step 2 of Algorithm 1.1’s for loop. Similarly, Regularized

OMP (ROMP, [74]) updates Si with not one but several entries of the residual, based on

the similarity of their magnitudes. Compressive Sampling Matching Pursuit (CoSaMP, [75])
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Algorithm 1.1: Orthogonal Matching Pursuit (OMP)

Input: Sampling matrix A, measurement vector y, estimate of number of nonzeros k̂

Initialize: x̂0 = 0, r0 = y, S0 = {}
for i = 1; i = i+ 1; i < k̂ do

gi ← AT ri−1 (form signal estimate from residual)

Si ← Si−1 ∪ supp(H1(gi)) (update support estimate with largest residual entry)

A[Si]
† ←MPPI(A[Si]) (compute MPPI of A[Si])

x̂i[Si]← A[Si]
†y, x̂i[S

C
i ]← 0 (update estimate)

ri ← y −Ax̂i (update residual)

end

Output: Sparse signal estimate x̂

improves upon ROMP and includes concepts found in combinatorial algorithms to guarantee

speed and to provide rigorous error bounds.

Iterative Hard Thresholding Iterative Thresholding algorithms, like Iterative Hard Thresh-

olding (IHT) or Subspace Pursuit (SP) have also played a prominent role in the greedy algorithm

literature. We now focus on IHT. Akin to projected gradient approaches, IHT iteratively builds

the solution by performing a nonlinear shrinkage (hard thresholding) after a gradient descent

step. The algorithm runs until a stopping criterion is met, for example an `2 error condition.

IHT is described more precisely in Algorithm 1.2.

Algorithm 1.2: Iterative Hard Thresholding (IHT)

Input: Sampling matrix A, measurement vector y, estimate of number of nonzeros k̂,

step size µ

Initialize: x̂0 = 0

for i = 1; i = i+ 1 until stopping criterion is met do

x̂i = Hk̂(x̂i−1 + µAT (y −Ax̂i−1))

end

Output: Sparse signal estimate x̂

IHT has recovery guarantees of the same order as convex optimization approaches, whenever

the RIP holds [76]. However, while worst-case scenarios are covered with theoretical RIP-related

guarantees, the comparison of numerical results [77] of typical-behavior scenarios for IHT, OMP

and convex optimization algorithms seems to be at the expense of IHT.

Variations and improvements of IHT have been put forward. In order to improve numerical

results without compromising on convergence or recovery guarantees, Normalized IHT [78]

proposes to compute an optimal step size µ of IHT at each iteration. Using another approach,

Iterative Soft Feedback Thresholding (ISFT, [79]) substitutes the hard thresholding step for a

soft-feedback step. This allows to take the discrete nature of the signal into account to yield

higher performance than IHT without any significant increase in complexity. Block Normalized
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IHT (BNIHT, [80]) has a performance superior to IHT for signals with the additional structure

feature of block sparsity.

1.2.6.3 Other approaches to signal recovery

Greedy and `1-minimization algorithms for CS have been the focus to a tremendous amount of

research. However, other classes of algorithms, that sometimes emerged in domains far different

from CS, can be applied to solve the same problem as CS. We now quickly mention three such

classes of algorithms.

Combinatorial methods Combinatorial methods have been applied to problems that have a

strong connection to CS and the resolution of USLEs with the hypothesis of signal sparsity. One

of such problems is that of combinatorial group testing [81]. CS approaches using combinatorial

group testing have been researched notably in the biomedical field [82, 83]. In combinatorial

group testing, one wishes to separate k anomalous or defective items out of n items in total, but

does not wish to test all n items for defectiveness. In this scenario, the vector x indicates the

defective items, that is, xi 6= 0 for the k anomalous items and xi = 0 otherwise. Each test for

defectiveness on a subset of items is akin to a measurement yi in CS. If the outputs of the tests

are linear with respect to the inputs, defining a binary matrix A which elements are aij = 1 if

the jth item is part of the ith test and 0 otherwise yields an USLE y = Ax. Recovering the set

x of k anomalous items is then the same problem as sparse signal recovery in CS.

In combinatorial group testing, the designer is often considered to have full control over the

sampling matrix A. This is a significant difference from practical telecommunications applica-

tions of CS, as we will see in a later section. In order to gain speed, A is often sparse itself,

leading the way for low-complexity, faster algorithms [84].

Bayesian Compressive Sensing Generally speaking, Bayesian inference consists in updat-

ing the probability of a hypothesis as more information becomes available. This very rich

framework has been successfully applied to CS [85, 86]. The Bayesian viewpoint of CS is that

it consists in a linear-regression problem with a prior that the original signal x is sparse. More

formally, the solution to the unconstrained formulation of BPDN (1.28) corresponds to a max-

imum a posteriori estimate for x using the Laplace sparseness prior, a prior that is popular to

promote sparseness on x [87, 88]. Relevance Vector Machines have also been used to solve the

regression problem with the hypothesis of sparsity [85].

Improvements upon Bayesian Compressive Sensing include the use of the variational Bayesian

framework for CS [89] and hierarchical Bayesian algorithms [90]. Note that [90], unlike much

of the literature, applies the Bayesian framework to a sampling matrix A that is not random,

but rather a custom interpolation matrix. This suggests that the Bayesian approach could be

used in telecommunications applications, where random matrices are, as previously mentioned,

hard to build in practice.

More material on Bayesian inference applied to CS can be found in Chapter 6 of [38].
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Deep Learning The Deep Learning (DL) revolution that started to take place in the early

2010s has brought a technological rupture to dozens of various fields and applications, from

image classification [91] to network traffic control [92] through natural language processing [93]

and self driving [94]. Because DL excels at automatic feature recognition, it can take advantage

from signal sparsity (and other structural features) to recover a signal from compressed mea-

surements [95]. DL can also be combined with `1-minimization algorithms like (F)ISTA [96, 97]

or used to directly recover the sparse signal support [97].

DL-based approaches to sparse signal recovery have shown interesting results but not the

radical breakthrough experienced in other domains so far.

1.2.7 Conclusion on the theoretical aspects of CS

We have now covered the basics of CS, a powerful mathematical framework aiming at the

recovery of signals from limited quantities of measurements. After witnessing that at the core

of CS lies a USLE y = Ax with assumptions on original signal x, we have studied the implications

of the design of A on the theoretical guarantees of signal recovery, and understood that these

guarantees offer a limited insight into actual recovery performance in typical behavior scenarios.

We have then explored a few methods and algorithms used to perform signal recovery from the

measurement vector y and sampling matrix A. For more details on sparse signal recovery, the

interested reader can refer to [98, 38].

Keeping the CS mathematical framework in mind, we now turn to more practical consider-

ations.

The CS framework is very broad and often allows for an impactful reduction of the number

of measurements. In the following section, we will present some cases in which CS has been

applied in telecommunications.

1.3 Implementation of Compressed Sensing in Telecommunica-

tions

Various fields5 have taken advantage of CS and its potential to reduce the number of acquired

measurements. Uses of CS emerge when two conditions are met: (i) the signal to acquire is

sparse in some basis and (ii) measuring the signal is impractical, complicated or costly. These

conditions are the common denominator between all the applications for which the use of CS

has been proposed, although the practical details of how these conditions are met (e.g. source

of sparsity, corresponding representation basis, and so on) depend on the considered field and

application.

Many applications of CS for telecommunications have been proposed. In this section, we

will first present the most prominent applications of CS in communications networks. We will

then focus on the physical layer and present some CS-based implementation schemes for signal

sampling.

5Some examples include medical tomography [99], radio astronomy [100] and photography [101].
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1.3.1 Applications of Compressed Sensing in Telecommunications

CS is an elegant framework which formalizes intuitive reasonings regarding the acquisition of

data. Its broad scope has permitted applications in many domains within the communications

field. To help the reader grasp how broad CS can span, we present three representative applica-

tions of CS to communications networks: spectrum sensing, detection of active devices in IoT

systems and channel estimation.

1.3.1.1 Cognitive Radio: Spectrum Sensing for Dynamic Spectrum Access

The Cognitive Radio (CR) technology relies on becoming aware of the surrounding radio envi-

ronment for real-time adjustment of transmission parameters. Envisioned as a response to the

problem of the inefficient usage of limited spectrum, CR can be used for the purpose of finding

available communication holes in the spectrum. Spectrum Sensing (SS) is a key component of

CR because it enables a device to dynamically scan the surrounding radio environment. A more

detailed introduction to CR and SS will be provided in Section 1.4 of this chapter. For now, we

will see how SS can benefit from CS techniques.

In order to find available communication holes, a CR system should be able to scan a

wideband of frequencies, up to a few GHz for example. However, directly sampling such a

wideband would be both impractical and inefficient. First, it would be impractical, as it would

require energy-intensive, high-speed ADCs. This requirement would face hardware limitations

on ADCs [17]. Furthermore, the high volume of samples would necessitate powerful and power-

hungry data processing infrastructure. Second, it would be inefficient: measurement campaigns

have shown that many locations of the spectrum are underutilized, meaning that at any given

time, a wideband signal covering several GHz of bandwidth typically exhibits sparsity.

An option is to subdivide a wideband into adjacent narrowbands, and to scan these narrow-

bands one-by-one, using conventional techniques, in order to find transmission opportunities.

However, if done sequentially, this may take too much time to be practical (finding white space

for communication is a real-time application), and parallel processing would be costlier, more

complex and more energy-consuming. Note that sequential scanning allows to stop the process

whenever an available band is identified, thus substantially speeding up the operation, except

in the worst-case behavior where no band is available or where only one band is available and

is scanned last.

CS enables to scan the wideband at once. Using CS principles, a dedicated sub-Nyquist

sampling infrastructure can sample the signal in the wideband below the Nyquist rate, thus

relaxing some constraints on the ADCs. Several such architectures are presented in Section

1.3.2.

The authors of [102] classify SS as a support identification problem. Indeed, in this applica-

tion, we are not interested in recovering the signal itself, but rather its support i.e. the locations

of active signal components in the frequency domain. In a naive reasoning, algorithms presented

in Section 1.2.6 can be used to recover the wideband signal itself, and once the signal is recov-

ered, estimating its support using spectrum analysis is fairly simple. However, this can be a
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waste of time and computational resources, because several of these algorithms (particularly the

greedy algorithms) first estimate the signal support, then use the estimated signal support to

remove equations from the USLE and ultimately recover the signal itself. Skipping the last step

(signal recovery from the estimated support) allows to save time and computational resources.

1.3.1.2 Detection of Active Devices in IoT networks

Many Internet of Things (IoT) devices, including sensors and monitoring devices, embrace a

paradigm of communications different from H2H or H2M communications. More specifically, a

great number of devices can be deployed in a limited geographical area, yet every single device

transmits data quite rarely to the corresponding Access Point (AP), meaning that the number

of active devices at any given time is much lower than the total number of devices.

Many IoT devices are subject to energy constraints and their messages are rather short[103].

As a consequence, conducting active user identification through message handshaking would

be too cumbersome [104]. The problem of easily identifying active devices at the AP is of

crucial importance in massive Machine Type Communications (mMTC), present in 5G wireless

communications.

In mMTC, the high total number of devices makes it difficult to allocate orthogonal time-

frequency resources to every single device. To mitigate this issue, non-orthogonal multiple

access (NOMA) has been proposed [105]. Suppose the network hosts n devices and that a quasi-

orthogonal signature (codeword) of length m < n is assigned from a codebook Q = {q1, . . . , qn}).
Since m < n, it is not possible to guarantee orthogonality between any two codewords (i.e.

〈qi, qj〉 6= 0 for i 6= j). Out of n devices in total, k � n are trying to reach the AP at a given

time. To do so, each device sends its signature codeword to the AP. In turn, the AP has to

determine which devices are transmitting information to the AP. This step is called active user

detection (AUD). Under the flat fading channel assumption, the received vector at the AP is of

the form:

y =
n∑
i=1

hiqipi + w

=
[
q1 . . . qn

]
h1p1

...

hnpn

+ w

= Hs+ w,

(1.30)

where pi is the symbol transmitted from the ith device, hi is the scalar channel from the ith

device to the AP, H = [q1 . . . qn] is the m× n matrix generated using the codebook Q and w is

the m× 1 noise vector.

Because only k � n devices are active, the vector s is sparse. Moreover, the set of active

devices coincides with the set of indices of the non-zero elements of s (i.e. the support of s). As

a consequence, CS-based AUD is another instance of a support identification problem and can

be solved in a similar fashion. After the support of s is determined, an USLE can be derived

from (1.30) by removing the rows of s and afferent columns of H that correspond to elements
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not present in the support of s. This new USLE is overdetermined and can be solved using

conventional Least-Squares.

1.3.1.3 Channel Estimation

Knowledge about the propagation channel of a transmission, or channel state information (CSI),

is crucial to many signal processing algorithms. CSI acquisition, or channel estimation (CE),

is often performed by sending known signals called pilots before along with communications.

Because pilots constitute overhead (no user data is sent but time and power resources are

consumed nonetheless), research has been carried out towards maximizing the efficiency of

pilot-based CE.

Leveraging on the sparsity of the channel impulse response (CIR) is one way to increase

the efficiency of pilot-based CE. In practice, in several multi-path scenarios, the number of

propagation paths can be small. As a consequence, the communication channel has a sparse

representation in the delay-Doppler domain [106] or in the angular domain [107]. CIR sparsity in

the delay-Doppler domain is present in several channel models, like the ultra-wideband (UWB)

channel [108], the underwater acoustic channel [102] or the extended typical urban (ETU)

channel model in long term evolution (LTE). CIR sparsity in the angular domain is more

prevalent in models for communications contexts with high spatial resolution properties, like

millimeter wave [109] and MIMO [107].

Owing to CIR sparsity, CS techniques can be applied to CE to reduce the pilot-induced

overhead. Let us consider the case where the CIR is modeled as h = [h1 . . . hL]T with ||h||0 � L.

The channel is then convoluted with the known pilot sequence a = [a1 . . . aP ]T . Assuming

P > L, the received signal is y = [y1 . . . yP−L+1]T . A matrix system where the unknown sparse

input is the CIR h can be constructed using the linear relation between y and h:

y = Ah+ w, (1.31)

where A is the Toeplitz matrix of size (P − L+ 1)× L derived from the pilot sequence a:

A =


aL aL−1 . . . a1

aL+1 aL . . . a2

...
...

. . .
...

aP aP−1 . . . aP−L+1

 . (1.32)

If L and the length P of the pilot sequence verifies P − L + 1 < L, A corresponds to a CS

matrix and (1.31) is an USLE solvable with CS techniques presented in Section 1.2.6. Note that

random Toeplitz matrices satisfy the RIP under certain conditions [110], providing some CIR

recovery guarantees.

CS-based methods for CE have outperformed conventional pilot-training CE techniques

[111].
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1.3.1.4 Other applications

These three applications (spectrum sensing, detection of active IoT devices and channel esti-

mation) are only a handful of the possibilities enabled by CS. For additional material regarding

the applications of CS to telecommunications, we refer the reader to the following surveys:

[111, 102, 112].

1.3.2 Compressed Sensing Radiofrequency Architectures

Legacy, ubiquitous Nyquist sampling is, from a hardware perspective, well mastered because it

relies on uniform sampling and common analog processing steps. As mentioned in the general

introduction, Nyquist sampling is in practice limited by ADCs bounds on sampling rates [17].

Consequently, the CS theory provides key concepts to go beyond the limits of Nyquist sampling.

However, not all the findings stemming from CS (some of which were presented in previous

sections) can be directly implemented in telecommunications radio receiver architectures. Since

the development of the CS theory, several CS-based architectures, also referred to as CS schemes

in this document, have been proposed.

The principle common to all CS schemes is to sample a signal below the Nyquist rate and

rely on the sparsity property of the signal to ultimately recover either the signal itself or some

characteristic of it. Representations in which signal sparsity manifests itself are diverse and

include the time, frequency, space, code and angle-of-arrival domains. Meanwhile, dictionaries

Φ used to go from the original representation of the signal x (in which x is non-sparse) to a

representation in which it is sparse include the DFT and DCT matrices as well as the wavelet

transform. Here, we will assume signal sparsity in the frequency domain, and the considered

sparsity dictionary is the DFT matrix. Furthermore, we will suppose that x is a multi-band

signal, meaning that its energy in the frequency domain is contained in a finite union of closed

intervals [113]. The author of [114] proposes to classify the various CS schemes into 3 categories:

• Non-Uniform Sampling (NUS);

• Variable Rate Sampling (VRS);

• Random Demodulation (RD).

In this subsection, we study one typical CS scheme per category. First, we present Multi-

Coset Sampling, a NUS scheme. Then we turn our attention to Multi-Rate Sampling, a VRS

scheme. Finally, we focus on the Modulated Wideband Converter, a RD scheme. For more

exhaustive coverage of CS schemes, the reader is referred to the following surveys: [114, 115].

1.3.2.1 Multi-Coset Sampling

Multi-Coset Sampling (MCS) [116] or Periodic Non Uniform Sampling is a scheme in which

several interleaved ADCs sample a wideband signal x(t) under the Nyquist rate, as depicted in

Fig. 1.5. Let T = 1/fNyq denote the Nyquist period. The scheme consists in p branches, each of

which contains an ADC that samples uniformly with a sampling period LT at a time different
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from the ADCs of the other branches. The ADC of branch i samples at instants tk = kLT +ciT

where ci is an integer that verifies 0 ≤ ci < L. The sorted set C = {ci}0≤i<p is called a pattern

of MCS. The sampling instants of MCS are depicted in Fig. 1.6.

⏲  kLT + c2T

⏲  kLT + cpT

x(t)

⏲  kLT + c1T

Figure 1.5: Description of MCS.

t

(1)

(2)

(3)

(4)
T

LT
k = 0 k = 1 k = 2

Figure 1.6: Multi-Coset sampling grid. The crosses represent the sampling instants kLT + ciT

of MCS for p = 4 branches with L = 7 and ci = 0, 1, 3 and 6 respectively. T is the Nyquist

period.

MCS can also be described as Nyquist sampling where only p < L samples out of every

L Nyquist-rate samples are kept. The p kept samples are indexed by the values of C. The

sampling sequence of the ith sampling branch is described in [117] and reproduced here:

xci [n] =

x(nT ), n = mL+ ci,m ∈ Z

0 otherwise.
(1.33)

Because each branch samples at a 1/LT rate, the signal, of total bandwidth 1/T Hz, is

folded onto a 1/LT Hz wide bandwidth due to aliasing. If we represent the original frequency-
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domain signal into L 1/LT -Hz-wide slices, we can say that all spectrum slices are folded onto

the central spectrum slice in each branch. Between the different branches, the variations are in

the complex phases of the spectrum slices.

The Fourier transform Xci(e
j2πfT ) of xci [n] is related to the unknown Fourier transform

X(f) of x(t). This USLE can be expressed in a matrix form:

y(f) = Ax(f), ∀f ∈ [0,
1

LT
). (1.34)

where y(f) is a vector of length p whose ith element is Xci(e
j2πfT ), A is the sampling matrix

whose ikth coefficient is

Aik =
1

LT
ej2πcik/L, (1.35)

and x(f) is a vector of length L whose ith element is X(f + i
LT ).

Parameter tuning The main parameters of the MCS are p, L and C. If information about

band locations is known [116], signal recovery is possible if x(f) is p-sparse, ∀f ∈ [0, 1
LT ).

The choice of these parameters determines the average sampling period of the MCS, which is

Ts = LT/p and its average sampling rate of fs = p/LT .

Using the spark of A, it is shown in [116] that there are so-called universal sampling patterns

for which spark(A) = p. Thanks to this property, signal recovery is guaranteed. Note that in the

blind scenario, where band locations are unknown, spark(A) = p would only guarantee recovery

of p
2 -sparse signals. Construction of universal sampling patterns is explored in [117, 118].

Another important practical aspect is the numerical stability of A. Indeed, sampling im-

pairments, quantization errors, and noise can alter y(f) in such a way that a poorly conditioned

sampling matrix A could make signal recovery impossible in practice [119]. Consequently, the

choice of C should also result in a well-conditioned sampling matrix A [120].

Advantages and drawbacks MCS is a simple and straightforward scheme that allows for a

reduction of the average sampling rate and thus of the number of acquired samples. Further-

more, the post-processing step for signal recovery is rather simple [121], opening the way for a

quick signal recovery, which is convenient in online applications like DSA.

A disadvantage of MCS is that a large analog bandwidth is still required for the ADCs, even

if they do not sample at the Nyquist rate [122]. This is because there is no analog preprocessing

step to reduce the received signal bandwidth prior to sampling. Furthermore, the shifters that

maintain accurate delays between the different branches of the MCS require a Nyquist-rate

clock for synchronizing the MCS branches [123]. Finally, the number of required MCS branches

p to recover the active signal bands might be impractically high [115].

1.3.2.2 Multi-Rate Sampling

Before introducing Multi-Rate Sampling (MRS), we remind the reader of another sampling

technique called undersampling.
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Figure 1.7: Undersampling a sparse multi-band signal at sampling rates 2fs1 and 2fs2 (signals

represented in the frequency domain).

Undersampling Undersampling a signal consists in sampling it at a rate below the Nyquist

rate. Doing so causes the spectral component(s) of the signal to fold and form alias(es). How-

ever, when acquiring the lower-frequency alias(es) of the signal component(s) instead of the

original signal component(s), no information inside the signal component(s) is lost [122] except

to possible alias interference and noise folding. By performing translation to baseband at no

extra cost, undersampling turns aliasing from a phenomenon often seen as detrimental into an

advantageous sampling method. The location in the frequency spectrum of the alias of a signal

band depends on the sampling rate and on the location of the original band. Undersampling

is generally poorly fitted for multi-band signals and for signals with unknown frequency sup-

port, as a badly chosen sampling rate will result in band aliases interfering with each other.

Furthermore, while the information in an alias is the same as in the original band, the location

of this band in the frequency spectrum cannot be determined based solely on the location of

its alias. The adequacy of undersampling with regard to this property depends on the targeted

application.

Fig. 1.7 depicts the undersampling of a real sparse signal made of two frequency components

(and their symmetrical counterparts, due to the signal being real). On the first line, we see

the frequency-domain representation of the signal sampled at the Nyquist rate 2fmax. On the

second line, the signal is sampled at rate 2fs1 < 2fmax. As a consequence, the pentagon-shaped

component (in light blue), whose original frequency is above fs1, is folded onto the [−fs1, fs1]

interval, so what is sampled is actually an alias of this component. Meanwhile, the triangle-

shaped component (in orange) is not folded. On the third line, the sampling rate 2fs2 is lower,

and both the pentagon-shaped and the triangle-shaped components are folded. Note that the

position of the alias of the pentagon-shaped component differs depending on the sampling rate.

As shown in Fig. 1.7, if several samplers on different branches undersample the same signal

at different rates, the location of the aliases in the frequency spectrum will differ from branch

to branch, opening the way for support recovery and full signal recovery: this is the principle

of the MRS.
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Presentation of the MRS scheme MRS is a CS scheme in which the received signal

goes through L branches, each of which contains an ADC sampling uniformly at a rate below

Nyquist, as depicted in Fig. 1.8. Essentially, undersampling is carried out in each branch. The

sampling rates of the different ADCs are different from one another. As a consequence, the

frequency-domain representation of the sampled signal is different from one branch to another.

More precisely, the various representations display the same artefacts (possibly mirrored) but

in different locations of the spectrum.

⏲  kT2

⏲  kTL

x(t)

⏲  kT1

y1[n]

y2[n]

yL[n]

Figure 1.8: Description of MRS.

MRS comes in two flavors: Asynchronous MRS (AMRS) [113] and Synchronous MRS

(SMRS) [20]. In AMRS (resp. SMRS), the time difference between the sampling instants

of the different branches is unknown (resp. known).

In AMRS, the envelope of the signal, as well as its frequency support, can be recovered

from the observations in the different branches. However, the observations cannot be combined

to recover the signal phase. Note that the signal phase can still be retrieved if for each signal

band, there is at least one branch in which the signal band does not interfere with other aliases.

The major advantage of AMRS is that no tight synchronicity between the different branches’

ADCs is required. This seems particularly adapted to the multi-site architecture presented in

Section 0.2.3 of the general introduction, due to the possible relaxed synchronization between

geographically-distant sites.

In SMRS, both the signal envelope and phase can be recovered from the combined obser-

vations (provided that the corresponding USLE can be solved somehow). However, a tight

synchronization between the different branches’ ADCs is needed, which can in practice require

a clock running at a much higher speed than each ADC’s clock.

In the remainder of this manuscript, we will focus on SMRS and refer to it as MRS. Nonethe-

less, since AMRS and SMRS are fairly similar, many findings concerning SMRS are also appli-

cable to AMRS.
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Mathematical description of the MRS Let x(t) be a sparse real-valued continuous

baseband signal, whose support (set of frequencies where x is non-zero) is comprised within

[−fmax, fmax]. The L ≥ 1 branches of a Multi-Rate Sampler (MRS) each sample x(t) uniformly

at a sampling rate νi, 0 ≤ i < L (sampling period Ti = 1/νi). The resulting sampled signals are

given by

yi(t) =
+∞∑
j=−∞

x(t)10(t− j

νi
), 0 ≤ i < L, (1.36)

where 10(z) is the indicator function of the {z = 0} set.

Let ∆ be the duration of the time window during which the signal is sampled and Mi = ∆νi

(resp. N = ∆νNyq) be the number of samples collected by branch i (resp. collected by an

hypothetical branch sampling at the Nyquist rate) during the time window (see Fig. 1.9). Since

Mi and N are integers, the time window duration ∆ and the sampling rates νi must be chosen

with care. From now on, yi (resp. x) will refer to a discrete sample vector of length Mi (resp.

N). N is called the block size. Let δi = Mi/N ≤ 1 be the undersampling ratio at branch i. Fig.

1.9 depicts an example of sampling grid for MRS.

t

(1)

(2)

(3)

(4)

j = 0 j = 1

Figure 1.9: Multi-Rate sampling grid. This grid displays the Dirac impulses (sampling instants)

for L = 4 branches with Mi = 5, 4, 3 and 6 respectively.

Undersampling can be represented as Yi = FiX in the frequency domain, where Fi is a

Mi ×N folding matrix and Yi (resp. X) is the Fourier Transform of yi (resp. x).

The coefficients of Fi have been described in [20] and can be rewritten as follows. If N is

odd (resp. even), the coefficients of Fi are obtained as such:

fjl =

δi10((j − l) mod Mi), if l ≤ N−1
2 (resp. l < N

2 )

δi10((j − l +N) mod Mi), if l > N−1
2 (resp. l > N

2 )
. (1.37)

Additionally, if N is even and l = N
2 , we have

fjl =
1

2
δi(10((j − l) mod Mi) + 10((j − l +N) mod Mi)). (1.38)

Next, the observations Yi and folding matrices Fi are concatenated to yield the following
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system:

Y = AX, where Y =


Y0

...

YN−1

 and A =


F0

...

FN−1

 . (1.39)

Here, Y is the measurement vector of size M =
∑

iMi < N , A is the sampling matrix of size

M ×N and X is still of size N .

The USLE (1.39) can be solved directly using the hypothesis that X is sparse. However, to

reduce the complexity of USLE resolution, a reduction procedure is proposed in [20]. The main

idea behind the reduction procedure is the following: a down-converted signal band’s location

in the frequency spectrum determines a limited set of possible locations for the original band’s

location. Furthermore, when a signal is undersampled at different rates, the locations of the alias

of a signal band differ, and so do corresponding up-converted aliases. The only up-converted

alias identically located no matter the sampling rate is the one corresponding to the location of

the original band. This simple and straightforward reduction procedure can be done without

numerical system resolution. It is the main method for signal support recovery in AMRS [113]

and is also a crucial step to SMRS. Indeed, identifying the signal support (or a set of intervals

that contain the support, if some uncertainty remains after the reduction procedure) allows to

set variables of the USLE (1.39) not located in the signal support to zero. Doing so reduces

the number of variables, but the number of equations remains unchanged. Consequently, the

reduced USLE is easier to solve, and depending on the level of sparsity of x and the number

of measurements M , the reduced problem can even be overdetermined. An overdetermined

problem is much easier to solve than an underdetermined problem.

Parameters of MRS The main parameters of MRS are the number of branches L and the

marginal sampling rates Mi. In [124], it is suggested that the {Mi}i be different primes. We

will improve this contribution in Chapter 3. Note that the authors of [113, 20] advise to have

a limited number L of branches (up to 5-10 branches) while the authors of [124], who focus

on AMRS applied to signal energy detection, routinely use hundreds of branches. A limited

number of branches seems more adequate for practical implementation. Furthermore, having a

lot of branches and a low overall number of measurements M requires each branch to sample

at a rate Mi several orders of magnitude below Nyquist, which can cause a lot of interference

for aliased signals (especially is the occupancy ratio k/N of a signal is high).

Advantages and drawbacks Because ADCs sample uniformly at a rate lower than Nyquist,

the MRS, and especially its asynchronous flavor, has a low implementation complexity. It also

features fewer branches than MCS. MRS entails a fairly straightforward post-processing step. It

is robust with not very sparse input signals [114]. However, as in MCS, a large analog bandwidth

is required for MRS, and synchronization (in the synchronous flavor) can be challenging [115].
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1.3.2.3 Modulated Wideband Converter

The Modulated Wideband Converter (MWC) [125] is a CS scheme inspired from previous works

on Random Demodulation [126]. MWC features m parallel branches. In each of these branches,

the input signal is analogically mixed with a periodic sequence of pseudo-random ±1’s varying

at a rate higher or equal to the Nyquist rate fNyq, then goes through an ideal low-pass filter, and

is finally sampled uniformly at a low rate fs. The periodic mixing step allows for the RF signal

bands to be folded at baseband, which in turn permits low-rate sampling. Note that the ideal

low-pass filter can be substituted by any filter satisfying the Nyquist intersymbol interference

(ISI) criterion [127]. Fig. 1.10 depicts the structure of the MWC.

x(t)

LPF

p1(t)

p2(t)

pm(t)

LPF

⏲  kTs

LPF

y1[n]

y2[n]

ym[n]

Figure 1.10: Description of the MWC.

In the MWC, the diversity is brought by the different mixing functions pi(t), 0 ≤ i < m with

which the signal is multiplied. Indeed, these functions determine which signal bands are active

in the aliased sampled signal. Resulting linear equations can be combined to form an USLE,

which can be solved using signal recovery techniques presented in Section 1.2.6.

Mathematical Description of the MWC In each branch, the input signal x(t) is multiplied

by a mixing function pi(t), 0 ≤ i < m. The mixing functions are Tp-periodic and contain M ±1’s

in each period. An example of a mixing function is depicted in Fig. 1.11. After being multiplied

by a mixing function, the signal goes through a low-pass filter with cut-off frequency 1/(2Ts),

where Ts is the sampling period. The filtered signal is subsequently sampled by conventional
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ADCs with sampling period Ts > TNyq to yield yi[n], the sequence of samples acquired at branch

i.

t

Tp

Tp/M ⩽TNyq

Figure 1.11: Mixing function pi(t).

In order to explicit the relationship between sample sequences yi[n] and the unknown signal

x(t), we reproduce the reasoning presented in [125]. Let us introduce the following:

fp = 1/Tp, Fp = [−fp/2, fp/2], (1.40)

fs = 1/Ts, Fs = [−fs/2, fs/2]. (1.41)

We focus on the ith channel. Since pi(t) is periodic, it accepts the following Fourier decom-

position:

pi(t) =
∞∑

l=−∞
cile

j2πlt/Tp , (1.42)

where the Fourier coefficients cil follow:

cil =
1

Tp

∫ Tp

0
pi(t)e

−j2πlt/Tpdt. (1.43)

The Fourier transform of the analog multiplication x̃i(t) = x(t)pi(t) is

X̃i(f) =

∫ ∞
−∞

x(t)

( ∞∑
l=−∞

cile
j2πlt/Tp

)
e−j2πftdT

=
∞∑

l=−∞
cilX(f − lfp)

(1.44)

Since X(f) = 0 for f /∈ [−fNyq/2,+fNyq/2], the sum in (1.44) contains a finite number of

nonzero terms.

The signal x̃i(t) now passes through an ideal low-pass filter with cut-off frequency fs/2. As

a consequence, the filtered signal only contains the frequencies present in the interval Fs. The

discrete-time Fourier transform (DTFT) for sample sequence yi[n] can be written as:

Yi(e
j2πfTs) =

∞∑
n=−∞

yi[n]e−j2πfnTs

=

+L0∑
l=−L0

cilX(f − lfp), f ∈ Fs,
(1.45)
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where L0 is chosen to be the smallest integer so that the sum in (1.44) contains every nonzero

contributions of X(f) over Fs.
Eq. (1.45) links known sequences yi[n] (or more exactly, their DTFTs) to the unknown

input signal X(f). This equation can be written in matrix form so as to match the typical

USLE (1.15) of the CS framework:

y(f) = Az(f), f ∈ Fs, (1.46)

where y(f) is a vector of length m whose ith element is yi(f) = Yi(e
j2πfTs).

The unknown vector z(f) = [z1(f), . . . , zL(f)]T is of length L = 2L0 + 1 (a closed-form

expression to evaluate L0 is proposed in [125]), and its ith element is given by

zi(f) = X(f + (i− L0 − 1)fp), 1 ≤ i ≤ L, f ∈ Fs. (1.47)

Finally, the m× L matrix A contains the coefficients cil:

Ail = ci,−l = c∗il (1.48)

Advantages and drawbacks The main difference between MWC and the previously men-

tioned schemes (MCS/MRS) is the presence of the analog mixing step. Because all ADCs

sample uniformly and simultaneously, synchronization is easy (only one low-rate clock is re-

quired). Furthermore, since the analog mixing folds all frequencies to baseband, the inputs of

the ADCs have a narrow (analog) bandwidth, so the need for a large ADC analog bandwidth

is alleviated.

The analog mixing codes run at least at the Nyquist rate. While there is no particu-

lar hardware implementation limitation to this [128], this step is fairly energy-intensive [114].

Furthermore, because the MWC assumes a static spectrum over a long period of time, time-

dependant input like Radar pulses or short IoT messages can alter the performance of MWC

[129]. Finally, a bottleneck for the MWC resides in the mixing codes, which need to be selected

carefully. A review of popular mixing codes is provided in [130].

1.3.3 Conclusion on the Applications and Architectures of CS

In this section, we have described a few applications of CS in telecommunications, as examples

of how this recent yet rich framework can be used to make telecommunications more efficient.

We have also described the main radiofrequency architectures used for CS-based signal sam-

pling. It is important to keep in mind that signal sparsity in telecommunications can manifest

itself in a variety of ways. This underlines the potential of CS when it comes to sampling

telecommunications signals, compared to the Nyquist approach to sampling.

What was still a theoretical subject of interest just over a decade ago is evermore present

in today’s communications. CS is in phase with many current concerns, such as the struggle

against spectrum scarcity, or the energy consumption issue with wideband sampling. As a

consequence, its further expansion in future communications systems would not come off as a

surprise.
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We now turn to the study of spectrum sensing, a subject that somewhat intersects CS (see

Section 1.3.1.1) and offers promising solutions for some of the industry’s aforementioned issues.

1.4 Spectrum Sensing

As mentioned in Section 1.3.1.1, spectrum sensing (SS) is a core component of the CR. In

this section, we will first introduce SS and the closely related problem of Dynamic Spectrum

Access (DSA). We will also see how SS can be used for our purpose of efficiently sampling IoT

communications that are sparse in time and/or frequency.

SS can be decomposed in two subproblems: narrowband SS (where only one frequency

channel is sensed at a time) and wideband SS (several frequency channels are sensed at the

same time). We will first focus on the signal processing techniques that have been applied to

narrowband SS. Following the study of narrowband SS, we will turn to wideband SS, present

the main techniques used for this subproblem, and see how it can be used jointly with CS.

1.4.1 Introduction: Dynamic Spectrum Access and Sampling Infrastructure

1.4.1.1 Dynamic Spectrum Access

The radio spectrum has historically been managed in a static fashion, with regulating bodies

like the FCC in the USA or the ANFR in France allocating operating licenses to users based

on their specified requirements. However, a large part of the electromagnetic spectrum has now

been allocated, offering little to no leverage for the introduction of new users. Still, the number

of use cases, users and devices relying on wireless communications is growing, exacerbating

the problem known as spectrum scarcity. A way to combat spectrum scarcity is to reallocate

unused spectrum bands. Consider the “digital dividend” bands [131]: at the turn of the 2010s,

the analog TV bands were switched off and the freed spectrum was reallocated to various

users (digital TV, 4G communications, and so on). However, this solution is often tedious to

implement. Another solution to fight spectrum scarcity is to find new spectrum bands on which

to operate. An example planned in 5G is communications using millimeter waves (mmWave).

The development of communications on new bands is often hindered by unfavorable physical

channel characteristics, such as absorption by atmospheric gases for mmWave [132]. It is also

subject to hardware limitations, such as ADC sampling rate requirements or synchronization

issues. Consequently, extending the span of operable frequencies is more to be seen as a long-

term improvement than an immediate cure-all for spectrum scarcity.

A third approach to reduce the detrimental effects of spectrum scarcity is to improve spectral

efficiency. While using spectral resources more efficiently is often carried out through more elab-

orate modulations, a simpler consideration can incur dramatic gains. Measurement campaigns

over the last decades have shown that the licensed spectrum is often underutilized, meaning

that some licensed frequency bands are temporarily vacant [133, 134]. This has led to the rise

of dynamic spectrum management. Regulatory frameworks like Licensed Shared Access (LSA)

[135] in Europe or Citizens Broadband Radio Service (CBRS) [136] in the USA have been pro-
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posed in order to allow voluntary spectrum sharing. While the specifics of each shared spectrum

scheme slightly differ from one another, all of them are governed by three principles:

1. There are at least two categories of users, the “primary users” (PU) having primacy over

“secondary users” (SU) for access to the resource;

2. SUs can use the resource as long as they cause no interference to PUs;

3. A SU is required to back off from the resource as soon as i) PU activity is detected by the

SU or ii) a PU request for medium access is received by the SU.

As we can see, these schemes are hierarchy-based and thus differ from horizontal MAC

schemes like listen-before-talk or ALOHA.

To be able to transmit data, the SU needs to know the status of the resource (either vacant or

occupied), and this knowledge is typically acquired through SS. (Other means like transmission

schedules can be relevant in some use cases but are usually not very scalable, as the size of the

table where the schedules are saved grows in a polynomial fashion.) As a consequence, SS needs

to be fairly accurate. If SS detects a frequency channel to be free when it is not, subsequent

SU transmissions will cause interference to the communications of the PU, resulting in possible

sanctions to the SU. If SS detects that a channel is occupied when it is not, the SU will miss

out on a transmission opportunity.

1.4.1.2 Infrastructure for Efficient IoT Sampling

Our proposed infrastructure (see section 0.2.3 of the General Introduction) can also greatly

benefit from SS. We aim to sample in a blind fashion, meaning that we do not know the locations

of the transmitted messages in the frequency spectrum before sampling. As a consequence, even

if we have an idea of the level of spectral occupancy of the signal, we have to take more samples

than if we were in a non-blind scenario, where the locations of the transmitted messages in the

frequency spectrum are known before sampling. For example, for the MCS scheme presented in

Section 1.3.2.1, recovering a blindly-acquired signal requires twice as many samples as recovering

a non-blindly acquired signal [117].

Once samples are collected using a CS scheme, we wish to reduce the quantity of samples

to store in the database as much as possible. One way to proceed is to keep the samples

corresponding to the transmitted signal of interest and discard the other samples, as shown in

Fig. 1.12. SS is appropriate for this purpose, as it takes a decision on presence or absence of

signal of interest from a sequence of samples.

Many SS techniques have been developed with DSA in mind, yet our proposed application

of SS is different from DSA. Two characteristics seem particularly relevant to us, for any given

SS technique to be used for our proposed application:

• Our application does not require live processing, contrary to DSA. In this regard, our

application has a relaxed requirement over DSA – although live processing enables to make

our sampling system adaptive to changes in spectral occupancy over time for example.
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Figure 1.12: High-level flowchart describing the acquisition-storage part of our proposed infras-

tructure. The test for presence of signal of interest is carried out using SS techniques.

• DSA aims at finding any white space in the resource for transmission, while our proposed

application seeks to find all occupied frequency channels. For wideband SS, as we will

see in Section 1.4.3, scanning the entire band (required for our proposed application)

corresponds to the worst-case scenario for some techniques, especially the sequential ones.

As a consequence, these techniques are not to be favored for our proposed application.

1.4.1.3 Narrowband versus Wideband SS

According to the authors of [1], there are two categories in which a SS method can be classified:

narrowband (NB) and wideband (WB) (see Fig. 1.13 for a classification of SS techniques). In

NB-SS, test for presence of PU transmissions is carried out in one frequency channel at a time.

In Section 1.4.2, we will present NB-SS techniques belonging to one of four families: energy

detection, cyclostationary detection, matched filter detection, and covariance-based detection.

Additionally, machine learning-based sensing can be used for NB-SS, but it will not be covered

in the remainder of this manuscript: a review of machine learning-based approaches to SS is

provided in [1].

An extension to NB-SS, WB-SS focuses on analyzing several frequency channels at a time.

According to the authors of [137], WB-SS techniques can be categorized based on whether they

rely on Nyquist-rate sampling or sub-Nyquist sampling. Nyquist-sampling WB-SS approaches

include performing NB-SS on each frequency channel, whether sequentially or simultaneously

while sub-Nyquist WB-SS techniques rely on the use of the CS framework. The principal

approaches to WB-SS are presented in 1.4.3.

NB-SS and WB-SS are quite different, as can be inferred from Fig. 1.14. In NB-SS, we wish
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Figure 1.13: Classification of spectrum sensing techniques, as proposed by the authors of [1].

to know whether PU signal is present in the narrowband signal. In WB-SS, we also seek to

locate the positions of PU signal in the frequency spectrum of the wideband signal.

1.4.2 Narrowband Spectrum Sensing

The aim of NB-SS is to decide whether a signal of interest is present in a sequence of samples

of the received signal. In this regard, it is an application of binary hypothesis testing. Under

the null and alternative hypotheses H0 and H1, the received signal is respectively modeled as

follows:

H0 : y[n] = w[n], (1.49)

and:

H1 : y[n] = s[n] + w[n], (1.50)

where y[n] is the received signal, s[n] is the transmitted signal and w[n] is additive white

Gaussian noise with zero mean and a variance of σ2
w.

The null (resp. alternative) hypothesis corresponds to an absence (resp. presence) of signal

of interest in the received signal.

Two widely used metrics to evaluate the performance of NB-SS techniques are the proba-

bilities of correct detection PD and the probability of false alarms PFA, defined as follows:

PD = P (H1|H1), (1.51)

and:

PFA = P (H1|H0), (1.52)
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Figure 1.14: Power spectrum densities (PSD) of a (a) NB; (b) WB signal (semilog scale).

where P (Hi|Hj), (i, j) ∈ {0, 1}2 denotes the probability that Hj is true and Hi is decided.

1.4.2.1 Energy Detection

In energy detection (ED), a test statistic TED(Y ) is compared to a threshold η which depends

on the noise characteristics:

TED(Y )
H0

≶
H1

η. (1.53)

Under the Neyman-Pearson (NP) theory, the test statistic T (Y ) is proportional to the energy

of Y [138]:

TED(Y ) =
1

N

N∑
n=1

|Y [n]|2, (1.54)

where N is the total number of samples and Y denotes the discrete Fourier transform of the

received signal y.

The choice of the threshold η has a major impact on detection performance. If η is low

(resp. high), the probability of correct detection PD will be high (resp. low), and so will the

probability of false alarms PFA.

Suppose the transmitted signal s(n) in (1.50) is a Gaussian random process with zero mean

and variance σ2
s . From (1.54) and the definition of s(n) and w(n), the test statistic TED(Y )

is a sum of N squares of independant Gaussian random variables. Consequently, it follows a

central Chi-square distribution under hypothesis H0 and a non-central Chi-square distribution

under hypothesis H1 [139]. For a large N , the central limit theorem applied to TED(Y ) holds

and we have [140]: {
H0 : TED(Y ) ∼ N (Nσ2

w, 2Nσ
4
w)

H1 : TED(Y ) ∼ N (N(σ2
w + σ2

s), 2N(σ2
w + σ2

s)
2)

, (1.55)
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From (1.51), (1.52), (1.53) and (1.55), we obtain [140]:

PD = Q
(
η −Nσ2

w(1 + γ)√
2Nσ2

w(1 + γ)

)
, (1.56)

and

PFA = Q
(
η −Nσ2

w√
2Nσ2

w

)
, (1.57)

where Q(·) is the complementary distribution function of the standard Gaussian and γ is the

SNR defined as σ2
s/σ

2
w.

From (1.56) and (1.57), PD can be rewritten as:

PD = Q

(
1

1 + γ

[
Q−1(PFA)− γ

√
N

2

])
. (1.58)

In the NP theory, η, PD, PFA and N are thus linked through the closed-form expression

(1.58). For example, η can be set to a value associated in turn to a given, fixed false alarm

rate. However, this closed-form expression also depends on the AWGN variance σ2
w, which is

generally unknown beforehand.

A straightforward way to estimate the AWGN variance is to estimate the channel statistics

when the channel is free of transmissions [141]. The immediate caveat of this approach is the

absence of certitude that the channel is free of transmissions without prior knowledge of the

channel state information. The author of [2] estimates the AWGN variance by separating noise

realizations which follow a Gaussian distribution from signal-of-interest realizations which are

considered as outliers from the aforementioned Gaussian distribution. In [142], the AWGN

variance is estimated by computing autocorrelations on the noisy received signal. The authors

of [143] propose a double-threshold system to deal with the intermediate space where it is unsure

whether there is a PU signal or not.

Advantages and Drawbacks of ED ED is extremely popular for two main reasons. First, it

is computationally simple. Second, it requires no prior knowledge about the transmitted signal.

A downside of ED’s simplicity is that it cannot perform identification of signal components

based on some intrinsic characteristic. Furthermore, its performance is heavily degraded under

low SNRs. Finally, it requires a correct estimation of the noise variance. In Chapter 2, we will

present a new method for AWGN variance estimation, which is suited to the class of signals we

are interested in, that is, sparse multi-band signals.

1.4.2.2 Cyclostationary Detection

A signal generated by a process whose statistical characteristics vary periodically with time is

said to be cyclostationary. Virtually all telecom signals are cyclostationary, thanks to periodic

statistics such as modulation rate or carrier frequency. Meanwhile, most noise is stationary

(i.e. its statistical characteristics do not vary with time). Detecting cyclostationary processes

makes it possible to discriminate communications signals from noise and is the key enabler to

cyclostationary detection (CD).
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For CD, a received discretized signal y[n] is considered cyclostationary if its mean and

autocorrelation are periodic. Consider the instantaneous autocorrelation function:

ry(n, ν) = E{y[n]y∗[n+ ν]}. (1.59)

If y[n] is cyclostationary, ry(n, ν) is periodic in n and can be decomposed using a Fourier

transform. The coefficients of this decomposition are given by the cyclic autocorrelation func-

tion:

Definition 1.11 (Cyclic Autocorrelation Function).

r̃y(α, ν) =
1

N

N−1−ν∑
n=0

ry(n, ν)e−j2παn∆s . (1.60)

∆s is the sampling period and α is called a cyclic frequency or cycle.

By performing a Fourier transform on the cyclic auto-correlation function over the time lags

ν, the spectral correlation function is obtained:

Definition 1.12 (Spectral correlation function or cyclic spectrum).

sy(α, f) =
N−1∑
ν=0

r̃y(α, ν)e−j2πfν∆. (1.61)

The cyclic spectrum is a function of two variables, f and α, whereas the power spectrum is

a function of only f : this makes the cyclic spectrum richer than the power spectrum, but also

more expensive to compute.

After the cyclic autocorrelation function is estimated [144], detection is carried out. A

widespread test for detection is that of Dandawaté & Giannakis [145]: for a given cycle α 6= 0,

a signal is said to be present if there is at least one time lag ν so that r̃y(α, ν) is greater than

some error threshold.

Advantages Cyclostationarity-based detection methods are good at discriminating cyclosta-

tionary processes from stationary processes such as noise. As such, in the low SNR regime,

cyclostationarity-based methods outperform energy-based methods [115], which model signals

as wide-sense stationary. Furthermore, they are also robust to noise level uncertainty [146].

Drawbacks A limitation is that computing the cyclic spectrum is more computationally de-

manding than the usual frequency spectrum, especially without knowledge of the cyclic fre-

quencies to test.

Another drawback is the acquisition time, which can be long in the low SNR regime (the

lower the SNR, the more samples needed to discriminate signal from ambient noise). This can

be impractical for live scenarii in which a decision on the presence of signal needs to be done

(quasi) instantaneously, such as SS for DSA. However, this constraint is relaxed in our scenario,

since the signal information is to be retrieved and processed later in time.

Finally, the phenomenon of cyclic frequency mismatch, due to unknown errors at the trans-

mitter clock, is detrimental to CD; however, it can be mitigated by using a Slepian basis

expansion instead of the Fourier basis expansion previously mentioned [147].
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1.4.2.3 Pilot-based Matched-filter Detection

Pilot-based matched-filter detection (MFD) [148, 149] is based on pilot sequences sent by the

transmitter and known by the receiver beforehand. Using the pilot sequences, the following test

statistic is computed on the sequence of samples y[n]:

TMFD =
1

N

N∑
n=1

y[n]x∗p[n], (1.62)

where N is the number of samples and xp are the pilot samples. This test statistic is compared

to a threshold η:

TMFD(Y )
H0

≶
H1

η. (1.63)

The particularity of MFD is its reliance on pilot sequences: the detector must know the

pilot sequences used by the transmitter. In the context of SS, it can be a stark constraint,

although some specific use cases are suitable for MFD, e.g. DSA on licensed bands used by

mono-application primary users, like TV bands. If the pilot sequence knowledge constraint is

met, MFD is efficient: highly-performing detection can be carried out with a small number of

samples.

As in ED, the choice of the threshold has a significant influence over the outcome of the

detection. The authors of [149] have proposed a method to select a dynamic threshold for MFD.

1.4.2.4 Covariance-based Detection

In covariance-based detection (CovD) [150, 151], the structure of the sample covariance matrix

of the received signal is evaluated for presence of a primary user. This is possible because the

sample covariance matrices of signal and noise are generally different (this difference being a

necessary condition for CovD).

While all CovD techniques exploit the structure of covariance matrices, they use different

approaches and test statistics. The authors of [150] proposed to compute the ratio between two

test statistics defined as follows:

T1 =
1

N

N∑
n=1

N∑
m=1

|rnm|, (1.64)

and

T2 =
1

N

N∑
n=1

|rnn|, (1.65)

where rij is the ith-row, jth-column element of the sample covariance matrix of the received

signal Ry and N is the number of consecutive samples. Here a sample is defined as a N -sized

vector whose elements consecutive values of the received signal, meaning that in the usual sense

of the word “sample” in this manuscript, this method takes N2 samples as an input.

If there is no transmitted signal in the received signal, the off-diagonal elements of Ry are 0,

so T1 = T2. In practice, T1/T2 is compared to a threshold η whose selection process is detailed

in [150].
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Another approach consists in computing the eigenvalues of the covariance matrix [151], e.g

through a singular value decomposition. In this approach, the test statistics is the maximum

eigenvalue to minimum eigenvalue ratio, which is compared against a pre-defined threshold to

decide H0 or H1:

λmax/λmin

H0

≶
H1

η. (1.66)

If there is only noise, the correlations are small and the eigenvalues are close to one another,

resulting in a small ratio: H0 is decided. On the contrary, a high ratio means that there are

a lot of correlations in the received signal: primary user signal is present, which leads to the

decision H1.

Other test statistics based on the eigenvalues of the sample covariance matrix can be used

[152, 153]. For example, the left-hand side quantity in (1.66) can be replaced by λmax/Λ, where

Λ is the average of the eigenvalues of the covariance matrix, or by λmax/Tr(cov(Ry)), where

Tr(cov(Ry)) is the trace of the covariance matrix Ry.

CovD is particularly adapted to samples acquired through random sampling matrices, and

random matrix theory has also relied on CovD to perform blind SS for DSA [150, 151, 153].

Advantages and Drawbacks CovD methods are blind and do not require any knowledge

about the primary user signal or the noise. Furthermore, they are more robust to noise level

uncertainty than ED methods. However, the benefits of CovD methods come at a price: they

require a lot of samples [154] and are computationally complex, especially when eigenvalue

decomposition is involved.

1.4.3 Wideband Spectrum Sensing

The continuous increase in data rates ever since the introduction of wireless communications

has led to a need for ever higher bandwidths. As a consequence, secondary users that wish to

perform DSA need to sense wide frequency ranges in order to find the best communications

opportunities. In an infrastructure-oriented scenario, performing SS on wide frequency ranges

can also induce an increase in performance compared to NB-SS, in the sense that a wider range

of users can have their communications gathered successfully.

A variety of methods for Wideband SS (WB-SS) have been proposed [137]. Early approaches

involve splitting, or slotting, a wide frequency band into several narrowband channels, then to

perform NB-SS on each of these NB channels, either sequentially (at the expense of increased

sensing time) or simultaneously (with the hardware constraints related to Nyquist-rate wide-

band sampling). Alternatively, WB-SS can be carried out using CS techniques, requiring fewer

samples than conventional Nyquist-rate WB-SS.

1.4.3.1 Nyquist Wideband Spectrum Sensing

Nyquist-rate WB-SS techniques include wavelet detection (WD) [155], multi-band joint detec-

tion [156] and filter bank based sensing [157]. A common feature of these techniques is that

they rely on conventional ADCs operating at the Nyquist rate to sample the wideband signal.
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Wavelet Detection When there are adjacent frequency channels with different occupancy

statuses (e.g. a vacant channel located next to an occupied one), the power spectrum density

(PSD) exhibits discontinuities at the edge of the two adjacent channels. As a consequence,

frequency channel location estimation (necessary in WB-SS) can be considered as an edge

detection problem, for which the wavelet transform is adequate [158].

In WD [155], the PSD of the sampled signal is computed, and the wavelet transform is

applied. Local maxima then yield important information about frequency channel locations.

Once potential frequency channels are estimated, a NB-SS technique (usually ED) is sequen-

tially carried out in said channels, resulting in a decision on signal-of-interest presence in each

frequency channel candidate.

Multi-Band Joint Detection Multi-band joint detection proposes to conduct ED in every

NB subband simultaneously rather than sequentially. For this purpose, the WB is sliced into

K adjacent non-overlapping NB subbands. For the ith NB subband (1 ≤ i ≤ K), as per

conventional ED description, a threshold γi has to be selected, based on the target probabilities

of detection and false alarm. The authors of [156] propose to perform a joint optimization on a

threshold vector γ = [γ1 . . . γK ]T . The threshold vector is then used to carry out ED in parallel

over all NB subbands.

Filter Bank Based Sensing Similar to multi-band joint detection, filter bank based sensing

aims to perform ED simultaneously in adjacent NB subbands. For this purpose, this technique

relies on implementing band-pass filters through a poly-phase decomposition of the prototype

filter [157]. Filter bank analysis consists in an array of band-pass filters. The input of each

band-pass filter is the received signal, and its output is a single NB subband, on which ED is

carried out to decide H1 or H0.

1.4.3.2 Sub-Nyquist Wideband Spectrum Sensing

The CS framework provides powerful tools for a variety of applications (see Section 1.3.1 and

surveys referenced therein). In particular, WB-SS can particularly benefit from CS principles

and tools. A definitive requirement for application of CS to WB-SS is that the signal of interest

must be sparse in some domain (usually the frequency domain, although alternative domains

can be considered). Two approaches for applying CS tools to WB-SS have been favored: partial

USLE resolution and adaptation of Nyquist-rate SS techniques to CS.

Partial USLE resolution Solving the CS USLE (1.15) using either convex optimization,

greedy algorithms or other methods, typically involves estimating the location of the non-zeros

(that is, the frequency support of the signal) as an intermediary step to full signal recovery.

As mentioned in Section 1.3.1.1, this intermediary step is an opportunity to perform WB-SS,

as the outcome of SS is generally the frequency support of the signal of interest, or charac-

teristics derived from it. An advantage is that this approach is compatible with the different

hardware architectures and their relative USLEs/sampling matrixes. However, this approach
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has a somewhat high complexity [159], although complexity depends on the method used for

USLE resolution.

Adapting Nyquist-rate SS techniques to CS A path towards compressed WB-SS that has

attracted attention is the adaptation of SS techniques to compressed samples. More precisely, it

is to note that the techniques presented in Section 1.4.2 all compute a statistic from the Nyquist-

rate samples, then compare it to some threshold. For a given method, it is often possible to

compute the same statistic from the compressed samples directly, without recovering the signal

of interest or its frequency-domain support first.

Examples for various SS methods include the following. An early example is the development

of a compressive wavelet-based edge detector [24]. The smashed filter, a compressive version

of the matched filter, was introduced in [160]. Compressive energy detection was proposed in

[140, 161], and a power spectrum computation from compressed samples is discussed in [162].

Cyclostationary detection from compressed samples is explored in [163, 164]. A Bayesian CS

approach to WB-SS is put forward in [165]. Other examples of the computation of signal-induced

characteristics from compressed samples are referenced in [159].

An observation about these proposed techniques is that they are often coupled to specific

constructions of the CS sampling matrix A in the CS USLE y = Ax. These constructions

are sometimes compatible with a limited number of hardware architectures, e.g. the MWC

or other RD-based schemes, and sometimes limited to theoretical objects that have not been,

to the best of our knowledge, the subject of any hardware implementation in communications

yet, e.g. random matrices. As a consequence, these techniques rely on assumptions about the

properties of the sampling matrix A that cannot be met in general. This specificity hinders

their widespread use.

1.4.4 Conclusion on Spectrum Sensing

In this section, we first reviewed the main techniques for NB-SS, a flavor of SS which is mostly

dedicated to the detection of a signal in a narrow band. Afterwards, we presented WB-SS,

which aims at detecting the support of the signal of interest in a wide band - possibly with a

somewhat coarse granularity. WB-SS can be performed either by applying NB-SS techniques

to narrowband subbands of the wide band, either sequentially or simultaneously, or by using

principles borrowed to CS. Although WB-SS has been the focus of quite some research for the

past several years, much of it remains to be explored.

In Chapter 2, we will contribute to WB-SS; yet we will apply SS techniques as a preprocessing

step for the resolution of the USLE of CS rather than use CS to solve a SS-related problem.

1.5 Conclusion

This chapter served several purposes. First, it provided elements to grasp the fundamentals of

CS and SS. Second, it reviewed popular and recent techniques in CS and SS. Third, it lay the
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ground for the presentation of our contributions to both fields, keeping in mind the objective

of developing a prototype of an IoT-aimed, multi-site, sub-Nyquist sampling infrastructure.

Glancing at CS and SS, the uninitiated eye could see subjects that are both well-investigated

and covered by proficient literature. While these subjects are certainly not terræ incognitæ,

there is still leverage for interesting discoveries in both fields: as the sphere of our knowledge

gets bigger, so does our interface with the unknown. Although the era of major theoretical

breakthroughs in CS seems to be mostly behind us, many practical aspects remain to be im-

proved upon, for the industry to largely embrace CS.

In the remainder of this manuscript, we will build upon what we have reviewed in this

chapter, and we will fill the gaps between what the literature offers and what we need for

our envisioned prototype. More precisely, in Chapter 2, we will provide contributions in SS

regarding the estimations of i) unknown noise variance for ED and ii) spectral support of

signals of interest. In Chapter 3, our contribution to CS will be related to an essential setting

of the MRS CS scheme. Chapter 4 will be a case study of a sampling infrastructure prototype,

aimed at empirically validating our contributions through realistic scenarios.
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Chapter 2

Spectrum Sensing: Noise Variance

and Support Estimations of Sparse

Signals

2.1 Introduction

Success or failure of a sampling infrastructure depends heavily on its ability to identify signals

of interest (SoIs) and their location in the time and frequency domains. While Spectrum

Sensing (SS) literature is proficient, we have found that some specific signal processing steps

have received less coverage than others, and are skipped as trivial or taken for granted in many

publications. In particular, there are two steps that take place in our MRS-based sampling

infrastructure prototype, but that have not been, to the best of our knowledge, the subject of

satisfactory, implementation-proof research. These steps are the blind estimation of the noise

variance in an AWGN channel and the estimation of the frequency-domain support of a sparse

SoI. Consequently, we have developed a novel method for each of these two problems. The

noise variance estimator has been the subject of a peer-reviewed publication in an international

conference [3] and of a patent submitted to INPI [4], the French patent governing body. The

support estimator has been the subject of a publication, currently in the submission process.

2.1.1 Motivation for estimating the noise variance and the signal support

For our envisioned sampling infrastructure presented in Section 0.2.3 of the general introduction,

we wish to identify and store sub-Nyquist samples of any SoI present. As we consider wideband

sparse signals, the SoI can be multi-band, meaning that the possible narrowband frequency-

domain components of the SoI are not necessarily adjacent. Naturally, we wish to store samples

of the SoI components only, we are not interested in keeping samples corresponding to white

noise. It is therefore of utmost importance that we perform WB-SS, that is, that we identify

the support of the SoI. Once the support of the SoI is estimated, we can apply the reduction

procedure promoted by the authors of the MRS scheme [20], and presented in Section 1.3.2.2 of

Chapter 1 of this manuscript. Indeed, this reduction procedure allows to solve the MRS-related
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USLE more easily (we still need a procedure to recover Nyquist-rate samples from compressed

samples, that we have acquired in a sub-Nyquist fashion). Note that the authors of [20] did

not, however, provide a way to estimate the support of the SoI: filling this gap is the main

motivation of the present chapter.

In a way, when some solve (sometimes partially) a CS-acquired USLE to extract the support

of the SoI ([166, 167, 168]), we reverse the order of the operations. We use non-CS-related tech-

niques (presented here) to obtain the support of the SoI, and then use this acquired information

about the SoI to solve the USLE more easily.

Remember that the MRS relies on undersampling, which means that the samples acquired

at each branch exhibit aliases of the same SoI frequency components. These aliases contain the

same information as the original SoI components, but from one branch to another, they are in

different locations of the spectrum, because the signal was not sampled at the same rate. Using

our method, we will first be able to estimate the support of the SoI in each branch of the MRS.

We will then aggregate these so-called partial support estimates, using the method described in

[20], to form an estimate of the support corresponding to Nyquist-rate sampling. Afterwards,

the reduction procedure is applied.

Our method is based on sample-wise energy detection (ED). Instead of applying energy

detection (a NB-SS technique) to a large number of samples, we apply it to one sample, or at

most to a very limited number of samples. This is done in an effort to increase the resolution

of our estimator as much as possible.

Understandably, our method shares some characteristics with ED applied as a NB-SS tech-

nique. In particular, knowledge of the background noise variance is crucial [138, 169, 170, 171,

172, 173], because it is used to set the threshold η discriminating a SoI component from noise.

However, the existing methods for blind noise variance estimation were not in line with the

specificities of our use case, for several reasons that are exposed in Section 2.2.1.1. As a conse-

quence, we developed our own method. It is based on the separation of noise-only values and

signal-plus-noise values in the frequency representation of the received signal. This separation

is conducted using the K-means algorithm and requires for the signal to exhibit some sparsity

and compacity. Note that noise variance estimation is important for other signal processing

applications, such as SNR estimation too [174, 154, 141]: the scope of our novel method is

broader than what we intend to use it for.

2.1.2 Chapter Outline

In this chapter, we put forward two methods related to SS of sparse signals: noise variance

estimation and support estimation. We will start by describing our noise variance estimator,

because its output is used as an input to our support estimator. Section 2.2 will be dedicated

to the noise variance estimator, while the support estimator is presented in Section 2.3.
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2.2 Noise Variance Estimation

2.2.1 Introduction to Noise Variance Estimation

In the Additive White Gaussian Noise (AWGN) channel model, on which this section focuses,

the variance σ2
w of the AWGN is the only variable at stake, meaning that acquiring channel

state information (CSI) consists in finding σ2
w. Here, we will therefore aim at estimating the

variance σ2
w of the AWGN in the propagation channel, in the presence of an unknown signal:

this constitutes blind estimation.

2.2.1.1 Previous works

A common solution to acquire CSI is for the sender and receiver to rely on protocol-specific

pilots, located in the overhead of the transmissions. However, this may be impratical or impos-

sible if a sender and receiver use two different, mutually unintelligible protocols, which is often

the case in Detection Theory applications [138]. An alternative is to listen to the channel at

a time when it is free of transmissions [141]. Yet, this method is unsatisfactory because it can

be difficult to determine whether this channel is free of transmissions or not, without having

information about the channel.

When some information about the signal is known, data-aided estimators can be imple-

mented. Pauluzzi et al [174] compared several SNR estimators that work only on signals of

certain modulations, or need knowledge of at least some parameters of the transmitted signals.

Mathew et al [170] estimated the AWGN variance by applying autocorrelation on the cyclic pre-

fix of LDACS-modulated signals. These methods are not suited for blind AWGN variance/SNR

estimation.

For blind AWGN variance/SNR estimation, a popular approach ([169, 154, 171]) involved

the computation of the eigenvalues of the sample covariance matrix and their classification into

either noise or signal values using various criteria. While effective, these methods have a high

complexity, of at least O(N3) (the problem size N is the number of samples), can be difficult

to implement and require a high number of samples (typically N ≥ 40, 000).

Another technique for AWGN variance estimation was proposed by Makovoz in [2]. The

author considered time-sparse signals, so that a sample vector consists mostly of AWGN. Noise

realizations follow a Gaussian distribution and SoI realizations are considered as outliers from

the aforementioned Gaussian distribution. The method consists first in finding a subset of sam-

ples without SoI outliers, then in sorting this subset in order to recover a part of the cumulative

distribution function of the normal distribution whose variance is that of the Gaussian noise.

While this method has a high accuracy, its precision is rather poor: in many scenarii, the results

have a standard deviation of about 20% around the true value of the variance. A possible cause

for this limited precision is the slow convergence between the statistics of the realizations of

a random variable following a given distribution and the parameters of the distribution itself:

the first converges only asymptotically towards the second. Statistics of realizations of a ran-

dom variable too far apart from the parameters of a distribution lead to inadequate numerical

parameters for equation resolution, resulting in turn in a poor precision. Further, this method
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is limited to SoIs occupying less than 50% of the total bandwidth. In our proposed sampling

infrastructure, we never consider SoIs with an occupancy ratio higher than 50% when they

are sampled at the Nyquist rate; however, when undersampled in an MRS branch, spectrum

folding causes signal components to be aliased over spectrum holes, leading to an increase of

the occupancy ratio (more details of this process can be found in Chapter 4). As a consequence,

we are interested to consider the performance of a noise variance estimator for signals that have

an occupancy ratio greater than 50%.

2.2.1.2 Principle and characteristics of our proposed method

We propose a new method to determine the variance σ2
w of an AWGN. Our method, conceptually

close to that of Makovoz, relies on separating frequency-domain samples containing noise only

from samples containing a mixture of SoI and noise. This separation is mainly conducted using

K-means clustering [175], applied to preprocessed data and followed by a postprocessing step.

Our method has a high accuracy (non-biasedness) and a high precision (low standard deviation),

yet a low complexity, and requires a limited amount of signal samples to achieve satisfactory

accuracy and precision. While the considered signal is unknown, it should follow two hypotheses:

a certain degree of sparsity, meaning that the signal frequency support should not occupy the

entire considered bandwidth, and some compacity, meaning that the signal support elements

should be grouped enough and allow for noise-only sub-bandwidths. Sparse multi-band signals,

which stem from multiple access in communications, are a class of signals for which this method

is particularly adapted. Note that while we focus on frequency-sparse signals, this method is

actually applicable to any sparsity.

2.2.2 System Model

Notations: for a given baseband signal x, let x(t) be its continuous time-domain representation,

x[n] be its discrete time-domain representation (sample), x = [x[0]x[1] . . . x[N − 1]]T be the

vector of signal samples of length N , and X be the discrete Fourier transform (DFT) of x,

multiplied by 1/N for normalization (the elements of X, are denoted X[k], 0 ≤ k ≤ N − 1).

Let x(t) be a frequency-domain sparse, noiseless and continuous baseband signal. Its support

is the set of frequencies where X is non-zero. Signal x propagates through the AWGN channel.

In the frequency domain, the received sampled signal is of form

Y = X +W, (2.1)

where W [i] ∼ N (0, 1
2σ

2
w) + jN (0, 1

2σ
2
w), where 0 ≤ i ≤ N − 1 and where σ2

w is the unknown

AWGN variance.

Indices of frequency samples present (resp. absent) in the support of X correspond to Y ’s

”signal and noise mixture” (resp. ”noise only”) elements. Fig. 2.2 displays the energy of the

noiseless signal X, noisy signal Y and the support of X (black intervals). At acquisition, the

support of X is unknown.

While signal x is unknown, it is subject to two hypotheses:
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1. Sparsity – The support of X should occupy a limited portion of the total bandwidth.

Were it not the case, there would not be a sufficient quantity of noise-only frequency

samples for our method to operate successfully. The sparsity of X is measured by its

occupancy ratio, which is the number of samples in the support of X divided by N , the

total number of samples. The sparsity requirement depends on the size N of the sampling

vector and is quite lax. For example, for a sample vector of size N = 5000 samples, noise

variance estimation can be carried out with an occupancy ratio of 90%. Other suitable

occupancy ratios are presented in Section 2.2.4.

2. Compacity – The support of X can spread out over the entire bandwidth, but should

always contain uninterrupted, unoccupied spans of the bandwidth (also called gaps). This

allows for a smoother preprocessing step. The gaps can be fairly narrow (less than 2% of

the bandwidth is typically enough for a sample vector of size N = 5000 samples, as shown

in Section 2.2.4).

Throughout the entire method, we will focus on the ”SoI-plus-noise” mixture Y .

2.2.3 Noise Variance Estimation based on K-means clustering

The general principle of the method is to separate samples of Y corresponding to noise only

(located outside of the support of X) from those corresponding to a mixture of noise and

signal (located inside the support of X), using K-means clustering, a partitioning method. This

separation is conducted on the energy of each sample in the frequency domain.

Fig. 2.1 summarizes the important steps of our method, which will be described in this

section.

A guiding example To illustrate the successive steps of our method, an example based on

a given signal is provided throughout this section. The steps of our method are exemplified

in Figs. 2.2, 2.3, 2.4 and 2.5. The signal used as an example for these figures consists in two

filtered QPSK sub-signals, located at two different positions in the frequency spectrum. The

characteristics of the sub-signals are as follows. Each sub-signal occupies a fraction of the entire

considered bandwidth, so the total occupancy ratio is ρ = 30.2%. An AWGN is added to the

entire bandwidth; overall, the SNR is 2.1 dB for the simulations in this section.

This example is intended for the step-by-step illustration of the method. Section 2.2.4 will

provide simulations results with various SNRs.

Fig. 2.2 displays the noiseless signal X and noisy signal Y . Having access only to Y , the

aim is to isolate noise-only samples (samples outside of the black intervals) using our novel

clustering-based method.

2.2.3.1 Preprocessing: regrouping noise values closer together

The first step of the method starts with a moving average smoothing step. The energy of the

vector Y (the element-wise squared modulus of Y , divided by its length) is windowed (in the
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Figure 2.1: Description of our K-means-based method for blind noise variance estimation.

frequency domain) by a rectangular window of length wl and of height 1/wl (see Fig. 2.3). This

operation yields a new vector, P , defined as follows:

P [i] =
1

wl

i+wl−1∑
m=i

|Y [m]|2, 0 ≤ i ≤ N − wl. (2.2)

The aim of this O(N)-complexity preprocessing step is the reduction of the scatter of the

values of |Y |2 corresponding to noise only. Fig. 2.3 displays the signal energy |Y |2 (before

preprocessing) and P (after preprocessing). We can see that after the vector is preprocessed,

the scatter between noise-only values is considerably reduced1.

Indeed, the values of |Y [k]|2 follow a χ2 distribution with 2 degrees of freedom (d.o.f.), while

the values of P [i] follow a χ2 distribution with 2wl d.o.f., multiplied by 1/wl. The high quantiles

of the χ2(2wl)-based distribution are lower than those of the χ2(2) distribution, hence the values

of P in the noise-only domain are less spread out than those of Y . The same reasoning goes for

the ”SoI-and-noise mixture” part of Y , in the way that noise incurs less value dispersion in P

than in Y .

However, the size of the window wl is limited by side effects that take place at the edges of

the support of X. Indeed, windowing implies that some values of P contain a mixture of noise-

only components (those outside of the support of X) and of SoI-plus-noise-mixture components

(those inside the support of X). While the impact of such elements is limited for small-sized

1This is done at the expense of the frequency resolution: an error in support estimation is deliberately added.
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Figure 2.2: Energy of noiseless signal X, its support (black intervals), and noisy signal Y =

X +W . Signals are represented in the linear scale.

Figure 2.3: Before and after the preprocessing step. Signals are represented in the log scale for

better visibility. The window length is wl = 30 samples.

boxcar windows, excessively high values of wl can alter the efficiency of the subsequent clustering

step.

Another characteristic that can detrimentally impact the performance of the method is the

violation of the compacity hypothesis on X. Indeed, the absence of large enough gaps in the

support of X result in a lack of ”pure” noise-only values in P , in which case the method fails

(meaning that the noise variance will be overestimated).

The trade-off between lower noise value scatter and side effects is discussed in Section 2.2.4.3.

2.2.3.2 Estimating the optimal number of clusters

After preprocessing, the values in P are ready to be classified into categories, or clusters. K-

means clustering (described more thoroughly in the next subsection) does not detect by itself

the optimal number of clusters (ONC) to partition the data. As a consequence, the ONC is an

input to K-means clustering, and needs to be determined beforehand.

At a first glance, the most relevant partitioning for values in P would be between a ”noise

only” set and a ”SoI plus noise” set (and potentially a ”mixture of noise-only and SoI plus

noise values” set). However, the absence of any particular assumption on the values of the SoI

X renders the partition in two (or three) clusters possibly less relevant than another partition:

what if SoI X is the sum of, say, five sub-signals of different, constant amplitude? what if there

is no signal (meaning the support of X is empty)? In the first case, the ONC could be six (five

clusters for SoI components and one for noise-only components), while in the second case, the

ONC could be one. Consequently, making a guess on the ONC is hasardous.
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To estimate the ONC, we suggest to use the average silhouette width [176]. For a given

partition of values into clusters, let value i be associated to cluster Ci. Let

ai =
1

|Ci| − 1

∑
j∈Ci,i 6=j

d(i, j) (2.3)

be the mean distance between i and the other values in Ci (in our case, d(., .) is the 1D Euclidean

distance).

Now let

b(i) = min
k 6=i

1

|Ck|
∑
j∈Ck

d(i, j) (2.4)

be the smallest distance of i to all points in any other cluster than Ci.

The silhouette of i is defined as follows:

s(i) =
b(i)− a(i)

max {a(i), b(i)}
. (2.5)

Finally, the average silhouette width is defined as the average of the silhouette s(i) over all

values i in the entire dataset (here, the vector P ).

One way to determine the ONC is to exhibit a partition using K-means clustering for different

numbers of clusters (this number usually ranges from 2 to 7), and to compute the average

silhouette width for the given partition.

The average silhouette width ranges from −1 to 1 and measures the quality of the partition of

a dataset into clusters (the higher the average silhouette width, the more relevant the partition).

A partition is usually considered relevant if its corresponding average silhouette width is above

0.7 [176]. The number of clusters k for which the corresponding average silhouette width is

maximal becomes the ONC.

Fig. 2.4 displays the average silhouette width for different number of clusters, computed

by averaging the silhouettes computed on our example signal using (2.3), (2.4) and (2.5). All

scores are above 0.7. This is an indication that clustering is relevant. Here, the ONC k is 3.

Figure 2.4: Average silhouette widths for different number of clusters.

We now present two refinements to the ONC estimation.

First, if the ONC k determined during this step has an average silhouette width below 0.7, we

consider that clustering is inappropriate, and no partitioning is conducted. k is then set to 1 and

we skip to the last step of the estimator, depicted in Fig. 2.1 and presented in Section 2.2.3.5.
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Empirically, this happens in two situations: a) when there is no SoI (support of X is empty);

partitioning into 2 or more clusters is therefore useless and even detrimental to correct noise

variance estimation, or b) the signal of interest is spread out on too many frequency samples (in

violation of the parcimony and/or compacity hypotheses), and no partition whatsoever allows

the exhibition of a cluster containing noise-only values. In case a), the method is resilient to

absence of SoI and typically succeeds, (i.e. the noise variance estimation is correct, while in

case b), the method fails. A drawback of the method is that during its processing (and even

afterwards), it is difficult to identify whether we are in the first or in the second situation.

Second, while the algorithm used for K-means clustering has a low complexity, the computa-

tion of the average silhouette width is fairly resource-intensive because it is more complex. This

problem can be mitigated by computing the average silhouette width on a subset of values of P :

empirically, a random draw (without replacement) of 100 values of P has been shown to greatly

reduce the resource use of this step of the method without any significant negative impact on

the ONC estimation. As a consequence, the complexity of this step is constant: O(1).

2.2.3.3 K-means clustering

If k ≥ 2, the Lloyd’s algorithm for K-means clustering [177] is applied to all values of P . The

K-means algorithm is iterative. During initialization, k centroids are determined using the k-

means++ method [178]. At each iteration, each value of the vector P is assigned to the closest

centroid; the set of values assigned to a given centroid constitutes a cluster. The position of the

centroid is then updated and set to the average of data points in the cluster, and the iteration

is completed. The algorithm stops when the position of centroids remains unchanged from one

iteration to the next, or when the maximum number of iterations is reached (this condition is

implemented so as to make sure the algorithm ends).

The cluster with the lowest mean, or minimal mean cluster (MMC), corresponds mostly to

values of P containing only noise, while other clusters contain values of P corresponding to the

SoI-plus-noise mixture.

The values in the MMC are distributed according to a χ2(2wl) distribution, already weighted

during the preprocessing step so that its expected value is σ̂2
w, that is, the estimate for the noise

variance. As a consequence, a first estimation σ̂2
w of the noise variance σ2

w is the arithmetic

mean of the MMC. Due to its high number of d.o.f., the χ2(2wl) distribution converges towards

a normal distribution G ∼ N (σ2
w, σ

2).

The complexity of this step is that of the Lloyd’s algorithm, which is O(kNi) [179]. i is the

number of iterations, capped to a maximum value in our implementation. Since i, k � N , we

consider this step to be of linear complexity.

2.2.3.4 Postprocessing step: filtering the outliers

The MMC obtained in the partitioning step of the method mostly consists in noise-only values,

but not only. Indeed, values corresponding to low-energy SoI, or values containing a noise and

SoI-plus-noise mixture (due to the side effects of the windowing, occurring at the preprocessing

step), can be closer to the centroid of the MMC than to centroids of other clusters. This

94



introduces a bias that causes the MMC to diverge from a collection of points that would be

obtained through a Gaussian process (see the tail in Fig. 2.5). To mitigate this bias, we consider

that these aforementioned, non-noise-only values are outliers for G. This is justified by the fact

that if the previous clustering step was successful, these values are typically much higher than

noise-only values and present in small amounts, therefore easy to single out.
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Figure 2.5: Histogram of the values in the MMC before postprocessing, based on our example

signal. The values that remain after the postprocessing step are located on the left-hand side

of the vertical line.

During the O(N)-complexity postprocessing step, such outliers are withdrawn from the

MMC using the three-sigma rule [180]. As 99.7% of values drawn according to G are located

between σ2
w−3σ and σ2

w+3σ, values of the MMC above σ2
w+3σ most likely do not correspond to

realizations of G. Therefore, this step consists in computing the mean µ and standard deviation

s of the values in the MMC and in removing values above µ+ 3s from the MMC. This process

is repeated until no value is removed, the MMC is then considered consistent. Convergence

is typically reached between 1 and 10 iterations; nonetheless, a limit of 20 iterations is set, in

order to guarantee termination.

Fig. 2.5 displays a histogram of the values in the MMC before postprocessing. The vertical

line is located at the highest value remaining after applying the three-sigma rule iteratively on

the MMC. Therefore, it represents the limit between values remaining in the MMC (left) and

removed values (right) after the postprocessing step.

2.2.3.5 Output

After these different steps, the MMC is considered to contain exactly the noise-only values of

P . Its mean is computed and returned: it is our noise variance estimation σ̂2
w. Our estimator

is noted KNV E. Note that if k was set to 1 when computing the ONC, clustering is not

performed, all the values of P are considered as noise, and the mean of the values of P is

computed and returned.
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2.2.4 Simulation Results and Discussions

2.2.4.1 Comparison with previous works

First, we compare the KNV E to Makovoz’ MSL and AMSL [2]. For this purpose, we gen-

erate sets of SoI-only (noiseless) data and noise-only data. The noise-only data are normally

distributed, with a mean of zero and a standard deviation of 1. The SoI-only data consists

in data points drawn either uniformly between 3 and 8 or normally with a mean of 4 and a

standard deviation of 1. These simulation hypotheses are those of [2]. In order to meet the

compacity hypothesis on the structure of the signal, we split the bandwidth into 10 channels

in which the SoI-only data are slotted (this constraint is not present in [2]). For the sparsity

hypothesis, we limit the occupancy ratio to a maximum value of 90%, higher than [2]’s 50%

fraction of outliers. Finally, the simulations are run for X vector lengths of N = 300, 1000 and

5000 samples. Each simulation being repeated 1000 times so as to compute the mean and the

standard deviation of the MMC estimator. The results are displayed in Table 2.1.

Spectrum occupancy ratio of signal-of-interest-only data

SoI Type Size 20% 30% 40% 50% 70% 90%

100 .98 1.06 1.09 1.08 - -

(.28 ) (.34 ) (.38 ) (.50 )

300 1.00 1.92 4.91 8.46 11.2 11.5

(.10) (2.30) (5.32) (6.74) (6.87) (2.33)

1000 .997 1.01 .995 1.03 1.000 1.01 1.000 .99 1.316 2.783

U
n

if
or

m

(.051 .20 ) (.057 .21 ) (.061 .18 ) (.102 .09 ) (.836) (1.319)

5000 .993 .993 .995 .994 .996 1.001

(.023) (.024) (.026) (.029) (.038) (.065)

100 .98 1.06 1.11 - - -

(.28 ) (.34 ) (.40 )

300 1.01 1.63 3.16 5.08 6.43 6.35

(.10) (1.27) (2.73) (3.44) (3.69) (1.24)

1000 .996 1.02 1.000 1.03 .997 1.01 1.006 1.192 1.930

G
au

ss
ia

n

(.054 .19 ) (.056 .21 ) (.063 .19 ) (.080) (.472) (.677)

5000 .995 .995 .995 .994 .995 .999

(.023) (.025) (.026) (.029) (.037) (.067)

Table 2.1: The mean (standard deviation) of the proposed noise variance estimator ([2]’s AMSL

in italics). The smoothing window length is wl = 30 samples.

For a limited amount of samples (N = 300 samples), our estimator performs poorly, and far

worse than the AMSL estimator of [2] with 100 samples2: these failures are typically caused

by the side effects induced by the preprocessing step. However, with more data (N = 1000),

2For N = 100 samples, whatever the signal parameters, our method almost never identifies more than one

cluster. Consequently, the method is ineffective, so we chose not to include them in Table 2.1.
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the KNV E outperforms the AMSL for almost every occupancy ratio, both in accuracy (the

closer to 1 the mean, the more accurate) and in precision (the closer the standard deviation,

or scatter, to 0, the more precise). Estimating on even more values (N = 5000) lowers the

estimation scatter and, perhaps more importantly, allows to estimate the noise variance in

datasets with more SoI-plus-noise-mixture datapoints than noise-only datapoints, thus going

beyond [2].

2.2.4.2 Robustness to low SNRs

Now, we test our method for different SNRs. The signal is generated as follows. As in Section

2.2.4.1, the bandwidth is split into 10 channels. A subset of these channels, whose size is

proportional to the given occupancy ratio, is randomly selected and set to be the frequency

support of the noiseless signal X. In this support, a noiseless signal is generated in the following

manner. Each frequency sample is set to a value drawn according to the so-called ”constant

energy” distribution defined as:

X[i] =
√
EejU , (2.6)

where E is the energy per sample of X, U ∼ U(0, 2π) and U is the uniform distribution. Inside

its frequency support, each sample of X is of constant energy E. Outside of the support,

X[i] = 0. Let CX be the number of elements inside the support of X.

Noise-only values W [i], 0 ≤ i ≤ N − 1 are now generated according to the distribution

presented in Section 2.2.2. Finally, the noiseless data vector X and the noise vector W are

added to give Y .

The SNR varies with E, the energy in each sample of the support. The relationship between

the linear SNR, E, σ2
w and the occupancy ratio ρ is the following:

SNRlinear =
CXE

σ2
wN

= ρ
E

σ2
w

. (2.7)

In this experiment, the size of Y is set to N = 5000 samples, the window length to wl = 30

samples, and the occupancy ratios vary from 20% to 90%. The SNR (dB) varies from −15 dB

to 7 dB. Each simulation is averaged over 100 runs.

Fig. 2.6 displays the mean σ̂2
w, the noise variance estimated by our method, versus SNR

(dB), for various occupancy ratios. As a reminder, in our case, the actual noise variance is

σ2
w = 1. The first observation is that for each occupancy ratio ρ, there are three regimes: a

”low SNR” regime, in which the estimator basically picks the entire energy of the SoI-plus-noise

mixture as noise energy; a ”high SNR” regime, in which only the noise values are detected as

such; and a transition regime in between. Let a ”success” (resp. ”failure”) estimation be an

estimation with a relative error under (resp. above) 5%. In the ”low SNR” regime, the success

rate of the estimator is low; in the ”high SNR regime”, its failure rate is low; finally, in the

intermediary regime, both failure and success occur frequently. As a consequence, the estimator

is only reliable in the ”high SNR” regime.

We can also observe that the entrance in the ”high SNR” regime depends on the occupancy

ratio. In particular, the edges of the different SNR regimes vary for different occupancy ratios:
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Figure 2.6: Noise variance estimation σ̂2
w vs SNR (dB) for various occupancy ratios ρ. N = 5000

samples, wl = 30 samples.

for ρ = 20%, the transitions are at −11 dB (low SNR regime/intermediary regime) and −7 dB

(intermediary regime/high SNR regime), while for ρ = 90%, these transitions are respectively

at 0 dB and 4 dB. Two factors contribute to this phenomenon. First, for a given signal sample

energy E, the total energy increases with the occupancy ratio. However, the values our estimator

uses are aggregated from local frequency samples in a bottom-up fashion. To oversimplify,

the estimator performance depends on the energy per sample E, not the total energy CXE.

Consequently, for a given value of E and a given estimator performance, a higher occupancy

ratio results in a higher SNR, but estimator performance is unchanged (as long as side effects

mentioned in Section 2.2.3.1 do not take place on a massive scale). Second, the lower the

occupancy ratio, the more numerous the noise-only values in Y and in P : this higher number

eases the clustering process, an effect already witnessed by the authors of [154].

It is important to note that our proposed noise variance estimator is robust to low SNRs,

in particular for sparse SoIs. Even with a very high occupancy ratio of 90% of the total

bandwidth, a mere 4 dB SNR ensures a very good noise variance estimation. However, the

estimator performance can be improved by the tuning of another parameter: the smoothing

window length wl.

2.2.4.3 Smoothing window length wl: a trade-off

As mentioned in Section 2.2.3.1, having a high smoothing window length allows to reduce the

scatter of noise-only values, but makes the process subject to side effects (namely, the higher

proportion of noise/SoI-plus-noise mixtures). On the other hand, a small window length yields

fewer side effects but makes it harder to discriminate between SoI-plus-noise and noise-only

values during the clustering step.

Fig. 2.7 displays the mean σ̂2
w versus SNRdB for simulation parameters identical to the

experiment conducted in Section 2.2.4.2, except for the following parameters: the occupancy

ratio is fixed to ρ = 70% and the window length wl ranges from 30 samples to 200 samples. For

window length wl = 100 samples, the three different regimes for the estimator are shifted to
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Figure 2.7: Noise variance estimation σ̂2
w vs SNR (dB) for various smoothing window lengths

wl. N = 5000 samples, ρ = 70%.

the left, towards the lower SNRs, by approximately 4 dB, compared to window length wl = 30

samples. This is an illustration of the improvement brought by the reduction of the scatter of

noise-only values through window smoothing.

However, there is a limit to how much window lengths can be increased, due to the afore-

mentioned side effects. Consider the wl = 200 samples line in Fig. 2.7. After the transition

regime, there is no ”high SNR” regime in which the estimator has a high success rate. Indeed,

because of the side effects at the edges of the support of X, there is not enough noise-only values

in P for the estimator to have a high success rate.

To quantify the maximum suitable window length wl, the compacity of X, or equivalently

the size of the gaps in its support (corresponding to noise-only values in Y ), is a crucial aspect.

If the frequency support of X is divided into channels, then the number of channels in the total

bandwidth is an indication of the compacity of X. For example, a 5-channel bandwidth gives a

more compact signal than a 1, 000-channel bandwidth. Fig. 2.8 displays the maximum empirical

window length wl, as a percentage of N , for which the noise variance estimation is acceptable

(relative mean error under 10%, standard deviation under 10%) versus channel relative width,

defined as the inverse of the number of channels in which the total bandwidth is divided. The

number of points is N = 1000 and the occupancy ratio is 40%. Each simulation is averaged

over 50 runs.

From Fig. 2.8, we can see that the higher the relative channel width, the more compact

the signal, and the higher the maximum smoothing window size. Another observation is that

noise variance estimation on low compacity signals (relative channel width around 2%) can

only perform well with windows of maximum size wl ≈ 0.01N . While we previously introduced

a compacity hypothesis, we still wish to be have a method which is robust in the event that

its design hypothesis is not entirely met, a method that is able to process as many signals as

possible even if they have a limited compacity. As a result, we will set the smoothing window

size to wl = b0.01Nc. Note that for higher signal compacity applications, a higher value of wl

can be set. This will improve the estimator performance, as shown earlier.
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Figure 2.8: Maximum relative smoothing window size vs relative channel width, subject to

estimation performance constraints.

Note that extremely low compacity signals (relative channel width under 1%) can only

be processed with very small smoothing windows, jeopardizing the results of the method for

N = 1000 samples; however, noise variance estimation can be improved using higher numbers

of samples N , at the expense of a loss in time resolution.

2.2.4.4 Application to a telecom signal: the filtered QPSK

Finally, we want to test the proposed method with a more realistic SoI than the ”constant

energy” SoI previously used. For this purpose, we use the same simulation conditions as in

Section 2.2.4.2, except that in each channel of the frequency support, the signal of interest X

is a random character string modulated by a filtered QPSK with roll-off factor β = 0.35. X

is subsequently normalized and multiplied by
√
E in order to obtain the desired SNR. The

simulation is run 50 times and the median value is returned.

Figure 2.9: σ̂2
w vs SNR for various occupancy ratios. The SoI X is a sum of filtered QPSKs.

Fig. 2.9 displays the results of the simulation for occupancy ratios ρ ranging from 20% to

40% and for SNRs between −11 dB and 11 dB. The first observation is that compared to the

simulation in Section 2.2.4.2, the transitions between the different regimes are less clear. For

lower occupancy ratios (under 40%), the estimator performs fairly well, although the interme-

diary regime seems larger than in the ”constant energy” simulation. For the lowest occupancy
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ratios (20% and under), the estimator is very robust to very low SNRs. For higher occupancy

ratios (40% and above, which are not depicted), the ”high SNR” regime, where the estimator

has the highest success rates, is reached at higher SNRs than in the ”constant energy” simu-

lation. Yet, the relative error in the low SNR/intermediary regime for a 40% occupancy ratio

remains at a reasonable level, around 10%. This suggests that the method struggles to perform

correct clustering for high occupancy ratio, low SNR signals. This is most likely due to the

structure of the SoI: the values of |X|2 are less grouped together than in Section 2.2.4.2, making

it harder for the proposed method to conduct clustering on the energy of samples.

2.2.5 Conclusion and Perspectives on Noise Variance Estimation

We proposed a novel application of the K-means algorithm, which solves the problem of blind

noise variance estimation in an AWGN channel, under two hypotheses of signal sparsity and

compacity. This method is robust, has a low complexity (each step has a linear or constant

complexity) and requires a reasonable amount of samples.

While the AWGN channel is a rather simplistic model for terrestrial communications, it is

useful to simulate background noise, on which our estimator focuses. In practice, more complex

impairments, such as fading, shadowing or interference, may affect the signal of interest, but

not the level of the background noise. As a consequence, our estimator is still relevant even in

a richer, closer-to-reality model – as long as there is background noise in which the signal of

interest lies.

Improvements in the method’s performance could be obtained either through a finer tuning

of its parameters or through slight changes in the structure of the method. For example,

this could consist in choosing another smoothing window, in adding a feedback loop for the

compacity level of the input signal to adaptively update wl. The gains would either be in terms

of number of required samples or in robustness (to absence of sparsity/compacity).

Here, we focused only on a one-dimensional signal sparsity, that is, in the frequency domain

(though the method is also directly applicable to sparsity in the time domain). However, the

method could be extended to take advantage of higher-dimensional sparsity: for example, exploit

a two-dimensional sparsity, in both the time and frequency domains. Further, other types of

clustering, like density-based clustering, could be explored instead of the centroid-based K-

means.

2.3 Support Estimation

2.3.1 Introduction to Support Estimation

Now that we are able to blindly estimate the AWGN variance σ2
w, we can turn to support

estimation. Note that the outcome of the support estimator will be used later when the MRS

is considered.
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2.3.1.1 Previous works

The support estimation problem, framed in [181, 182], is related to the well-known problem of

signal detection [139]. Several approaches to support estimation in a wideband signal involve

successive ”channel-by-channel” signal detections ([163, 183, 184, 185]). These are quick and

convenient for dynamic spectrum access because communication can take place as soon as an

empty channel is identified. However, for full support recovery, the procedure involves signal

detection in all channels, which takes more time, as mentioned in Chapter 1. Furthermore,

these solutions have granularity and slotting issues and can underperform if the channel width

for detection is unadapted.

Cai and Wang [15] explored an energy-based method and introduced a criterion for non-

zero signal values to be detected with a given probability. However a parameter of the method

depends on the level of spectral occupation of the signal, which is not necessarily known.

2.3.1.2 Principle of our method and section outline

We now propose a novel method for signal support estimation of a sparse wideband signal

corrupted by an AWGN with known variance (see our proposed method for blind noise variance

estimation in Section 2.2). Our method consists in an enhanced sample-wise energy detection

based on the Neyman-Pearson (NP) theory. We present our method in the context of uniform

sampling: our findings can also be used for regular SS with legacy, Nyquist sampling.

Throughout this section, we will perform the following. First, in the context of the support

estimation problem, we will derive closed-form expressions for several thresholds and quantities

stemming from the NP theory. Second, we will confirm and discuss our findings through sim-

ulations. Third, we will apply our support estimation method to realistic telecommunication

signals, compare the outcome with the theoretical results and draw conclusions on the efficiency

of the method.

As we will see, this study shares some similitudes with that of Section 2.2, regarding the

system model for instance. The updated system model for support estimation is presented in

Section 2.3.2. Section 2.3.3 investigates the sample-wise energy threshold for support estima-

tion and explores optimal signal values for correct support estimation. Section 2.3.4 proposes an

enhancement, based on window smoothing, of our support estimation method. This enhance-

ment is similar to the preprocessing step of our noise variance estimator. In Section 2.3.5, our

theoretical findings are evaluated against empirical observations. Section 2.3.6 puts forward an

application of our method to sparse telecommunication signals.

2.3.2 System Model

In this study, we keep the naming conventions and definitions of Section 2.2.2. We now introduce

additional quantities and concepts pertaining to this study.

The frequency-domain support K of the signal X is the subset of J0, N − 1K that contains

all the indices j so that X[j] is non-zero.

K = {j ∈ {0, 1, . . . , N − 1}, X[j] 6= 0}. (2.8)
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The purpose of the method is to recover the unknown signal support K from noisy signal vector

Y .

Let ||X||0 = Card(K) be the `0-pseudonorm of X. In other terms, this pseudonorm is the

number of nonzero elements in X. The signal X is said to be sparse if ||X||0 � N .

In contrast to the system model of the noise variance estimator, the variance σ2
w of the

AWGN is supposed to be known. For simplicity and without loss of generality, we also suppose

that σ2
w = 1. Were it not the case, Y should be divided by

√
σ2
w to obtain a AWGN channel

with normalized variance.

In Sections 2.3.3 to 2.3.5, the SoI X is supposed to be constant inside its support:

X[i] =
√
Eejπ/4, i ∈ K, (2.9)

where E is the energy of each sample of X inside its support. This simplifying assumption is

not necessary in any way. However, it allows each sample of Y to be modeled with simple, usual

distributions that typically require many signal samples [139]. It also eases the discussion on

the minimal level of energy of each sample to avoid signal misdetection, and makes it possible

to discuss the link between the SNR and the signal occupancy ratio (or sparsity). Simulation

results with more realistic SoIs will be presented in Section 2.3.6.

2.3.3 Sample-wise energy-based signal detection

2.3.3.1 Reminder on energy detection

As mentioned in Section 1.4.2.1, energy-based signal detection is an application of statistical

hypothesis testing. The two hypotheses are the null hypothesis H0 (absence of signal) and the

alternative hypothesis H1 (presence of signal). To make a decision on absence or presence of

signal, a test statistic TED(Y ) is compared to a threshold η:

TED(Y )
H0

≶
H1

η. (2.10)

Under NP theory, the test statistic TED(Y ) is proportional to the energy of Y [138].

Gains in detection accuracy are partly provided by increasing the number of values in the

array to test. Hence, detection is usually conducted on a large number of samples, at the

expense of a lower resolution in time or frequency. While this is not a serious problem if energy

detection in a ”large” bandwidth is considered, it is not suitable for signal support detection

because of the loss in frequency resolution. For our purpose, we will perform single-sample

signal detection.

2.3.3.2 Sample-wise detection

Our proposed method consists in a sample-wise energy-based signal detection, performed on

each sample of the frequency support.
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Let us consider the signal Y described in (2.1). If a frequency sample is in K, then it

contains both SoI and noise. Otherwise, if the sample is not in K, it only contains noise:

∀i,

{
H0(i /∈ K) : |Y [i]|2 = |W [i]|2

H1(i ∈ K) : |Y [i]|2 = |X[i] +W [i]|2
. (2.11)

Since W is an AWGN and X is constant in its support with energy E in each sample (split

evenly between the real and imaginary parts), the test statistic is as follows:

∀i,

{
H0(i /∈ K) : 2|Y [i]|2 ∼ χ2(2)

H1(i ∈ K) : 2|Y [i]|2 ∼ χ2(2, 2E)
, (2.12)

where χ2(k) (resp. χ2(k, λ)) is the central (resp. non-central of non-centrality parameter λ) Chi-

squared distribution with k dof. Note that these equations were already presented by Urkowitz

[139], but for the purpose of energy detection: in [139], the Chi-square distributions resulted

from an approximation on many samples, whereas here we consider only one complex sample.

We wish to find the threshold η that separates the noise outside of the support from the

SoI-plus-noise mixture. Let (m,n) ∈ {0, 1}2. Consider the decision Hm|Hn (Hm is decided

while Hn is true), taken on one sample. In binary decision, there are two successful outcomes

(H1|H1 and H0|H0) and two unsuccessful outcomes: H1|H0 (false positive or type I error) and

H0|H1 (false negative or type II error).

A common procedure when performing signal detection using the NP theory is to set the

desired probability of false alarm PFA, then to compute the threshold η using a closed-form

expression, such as (1.58) of Chapter 1, derived from a system of equations. However, these

equations rely on the assumption of a high number of samples, so that the Chi-square distribu-

tions under H0 and H1 can be approximated by Gaussian distributions using the central limit

theorem [138]. On the contrary, our decision is taken on only two values (the real and imaginary

parts of a given complex sample), rendering the aforementioned closed-form expression inade-

quate for our purpose. To handle this issue, we resort to the original Chi-squared expression of

the test statistic.

2.3.3.3 Link between the threshold η and PFA

Under H0, the threshold η is simply half3 the (1-PFA)th quantile of the central Chi-squared

distribution with two dof. This is a direct consequence of the definition of a quantile:

P (2|Y [i]|2 < 2η) = 1− PFA. (2.13)

The cumulative distribution function (cdf) F (x; 2) of the χ2(2) distribution is the following:

F (x; 2) = 1− e−x/2. (2.14)

Combining (2.13) and (2.14) yields the expression of the threshold η as a function of PFA:

η = − logPFA. (2.15)

3Indeed, it is 2|Y [i]|2 that follows a central Chi-squared distribution with two dof, not |Y [i]|2.
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Through this framework, type I errors can be controlled and set to any given level. However,

the fewer the type I errors, the higher the threshold η, and the more the type II errors. Type II

errors are problematic when support estimation is performed as a preprocessing step for further

operations on a signal. For this reason, we need to analyze what the energy of the SoI should

be in order to control type II errors.

2.3.3.4 Mitigating Type II errors

Let Emin represent the energy that a (noiseless) sample of the SoI X should have, so that

the outcome of the sample-wise detection on the noise-contaminated sample has a fixed, given

probability of a type II error. Under H1, the problem is the following: find Emin so that

P (2|Y [i]|2 < 2η) = 1− PD with 2|Y [i]|2 ∼ χ2(2, 2Emin), (2.16)

where PD is the probability of detection. Note that PM = 1 − PD is the probability of misde-

tections, or type II errors.

From the cdf F (x; k, λ) of the χ2(k, λ) distribution and (2.16), we obtain a relationship4

between PD, η and Emin:

PD = 1− e−Emin

+∞∑
j=0

Emin
j

j!
Q (1 + j, η) , (2.17)

where Q(a, x) is the regularized lower incomplete gamma function, defined as:

Q(a, x) =
1

Γ(a)

∫ x

0
ta−1e−tdt (2.18)

with Γ(a) the gamma function.

Combining (2.15) and (2.17) yields a relationship between PD, PFA and Emin:

PD = 1− e−Emin

+∞∑
j=0

Emin
j

j!
Q(1 + j,− logPFA). (2.19)

A numerical computation is then carried out in order to obtain Emin. Receiver Operating

Characteristic (ROC) curves for varying values of Emin are depicted in Fig. 2.11 of Section 2.3.5.

As Emin increases, the ROC curve approaches the upper left-hand corner of the PD−PFA plane.

As one could have expected, a higher energy in each SoI sample results in better detection

performance.

2.3.3.5 Link between PD, PFA, occupancy rate and SNR

From (2.19), setting PD and PFA also sets the value of Emin, that is, the energy of one frequency

sample to reach the fixed values of PD and PFA.

The energy in one sample Emin is proportional to the linear SNR by the following relation:

SNR =
Esignal
Enoise

=
||X||0Emin

Nσ2
w

, (2.20)

4How this relationship is obtained is detailed step-by-step in Appendix A.
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where the noise variance is σ2
w = 1.

Let ρ = ||X||0
N be the spectral occupancy ratio. (2.20) becomes

SNR = ρEmin. (2.21)

As a consequence, using (2.17) and (2.21), it is possible to link SNR, PD, PFA and ρ.

These relations put forward the fact that relatively high SNRs (or equivalently, large values

of Emin) are needed for successful sample-wise energy detection. For example, with PD = 0.99,

PFA = 0.01 and ρ = 0.4, a 7.4 dB SNR is required. Table 2.2 presents required SNRs for values

of ρ.

ρ 0.1 0.2 0.3 0.4 0.5 0.7 0.9

SNR (dB) 1.4 4.4 6.1 7.4 8.4 9.8 10.9

Table 2.2: Required SNR (dB) and various occupancy ratios ρ for sample-wise detection with

PD = 0.99 and PFA = 0.01.

In order to perform support estimation under lower SNRs, a moving average can be applied

to |Y |2.

2.3.4 Enhancing sample-wise energy detection with the moving average

2.3.4.1 The principle of the moving average

We now introduce the moving average as a way to perform support estimation under lower

SNRs. Conceptually, it permits the smoothing of the noise-corresponding samples, which allows

for lower thresholds η. In this regard, this step plays exactly the same role as the preprocessing

step in the noise variance estimator of Section 2.2. However, this is at the expense of resolution,

which is lowered when a moving average is performed. Note that a standard energy detection on

an entire bandwidth corresponds to an extreme scenario of moving average applied to sample-

wise detection.

Support estimation with a moving average differs from channel-wise signal detection because

it is not subject to improper channel slotting, a situation where a signal on the edge between

two channels does not contain enough energy in any of the two adjacent channels to be detected

in either of the two channels.

Mathematically, moving average is performed by multiplying the signal by a window: we

use the rectangular smoothing window, of length wl < N and of amplitude 1.

The moving average is applied to |Y |2 as follows:

|Y ma[i]|2 =

bi+wl
2 c∑

k=bi−wl
2 c+1

|Y [k%N ]|2, 0 ≤ i < N. (2.22)

The modulo function in the argument of the sum in (2.22) corresponds to the fact that after

the last (resp. before the first) values of Y , the first (resp. the last) values of Y can be used

again, since Y is periodic as the output of a discrete Fourier transform.
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As a consequence of the application of a smoothing window, under H0, realizations of

2|Y ma[i]|2 no longer follow Chi-square distributions with 2 dof, but with 2wl dof. Subsequently,

the new test statistic is the following:

∀i,

{
H0(i /∈ K) : 2|Y ma[i]|2 ∼ χ2(2wl)

H1(i ∈ K) : 2|Y ma[i]|2 ∼ χ2(2wl, wlE)
. (2.23)

2.3.4.2 Link between the threshold η and PFA

The cdf F (x; k) of the χ2(k) distribution is the following:

F (x; k) = Q(
k

2
,
x

2
). (2.24)

Replacing Y by Y ma in (2.13) and combining the latter with (2.24) yields:

η = Q−1(wl, 1− PFA), (2.25)

where Q−1 is the reciprocal of the regularized lower incomplete gamma function. Note that

setting wl to 1 yields a reformulation of (2.15).

2.3.4.3 Mitigating Type II errors

Under H1, the problem is very similar to (2.16). We wish to find Emin so that

P (2|Y ma[i]|2 < 2η) = 1− PD with 2|Y ma[i]|2 ∼ χ2(2wl, 2wlEmin). (2.26)

The equivalent of (2.17) with the moving average is:

PD = 1− e−wlEmin

+∞∑
j=0

(wlEmin)j

j!
Q
(
wl + j,Q−1(wl, 1− PFA)

)
. (2.27)

Again, this relation is solved for Emin with fixed PD and PFA through a numerical computation.

ROC curves for varying values of wl are depicted in Fig. 2.12 of Section 2.3.5. As Emin increases,

the ROC curve approaches the upper left-hand corner of the PD − PFA plane.

Unsurprisingly, the longer the smoothing window, the higher the performance of the detec-

tor. This is another illustration of a decision on presence or absence of energy taken on more

samples and therefore more accurate. Note that higher values of both Emin and wl can combine

constructively to yield ROC curves even closer to the upper left-hand corner of the PD − PFA
plane.

2.3.4.4 Effect of the smoothing window length on required SNRs

Similarly to what happens in ED, increasing the number of samples improves the estimator’s

performance.

Figure 2.10 displays the tradeoff between window length and SNR, for different (PD, PFA)

pairs and an occupancy ratio ρ of 40%. We can see that a small window size wl < 10 samples

already results in a substantial gain in SNR. For example, a 3 to 4 dB gain in SNR is obtained

by using a window length of 3, compared to no windowing (wl = 1).
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Figure 2.10: Required SNR (dB) versus window length wl, for various (PD, PFA) pairs. The

occupancy ratio is ρ = 40%.

2.3.4.5 ”Neither Hypothesis” samples: a side effect of windowing

When performing a moving average in support estimation, a side effect takes place. Indeed,

at the edges of the intervals inside the SoI support, averaging causes samples of Y both inside

and outside the support to be associated in (2.22). This results in samples of Y ma for which

neither H0 nor H1 is true. We will refer to these side-effect samples as neither hypothesis (NH)

samples. By definition, a NH sample follows neither of the two Chi-squared distributions of

(2.26). Consequently, deriving closed-form expressions such as (2.25) and (2.27) is less tractable

for NH samples. Intuitively, a decision taken on a NH sample is less predictable and therefore

closer to a random decision than a decision taken on a non-NH sample. Having too many NH

samples is detrimental for support estimation because the binary decision on these samples is

ultimately unreliable.

Actual performance of support estimation on NH samples depends on the energy in these

NH samples and though equations could potentially be tractable in our simplistic model, we

deem them to be too specific to provide useful insight for more realistic models. Instead, to

quantify the magnitude of this side effect, we will consider the fraction ν of NH samples in a

sampled signal Y :

ν ,
Card{NH samples}

N
. (2.28)

We identified four factors that can make ν go up, and now present them using qualitative

argumentation. For simplicity, every factor is discussed with all other parameters being equal.

First, a lower compacity (characterized by smaller intervals in K) results in more intervals in

K. In turn, there are more support edges and thus more samples at the support edges. Second,

following the same reasoning, a higher occupancy ratio also increases the number of intervals

in K and thus results in more samples at the support edges. Third, a higher window length

increases the number of NH samples at each support edge. Fourth, a lower number of samples

n (for a given acquisition time) reduces the frequency resolution: every component of the SoI

is represented with fewer frequency samples. Consequently, each interval in K contains fewer

elements, resulting in more NH samples.
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Out of these four identified factors, the compacity and occupancy ratio are not under our

control and cannot be changed, the number of samples can be amended but not without altering

sampling rate and/or duration, and the window length is easier to modify.

We now bound ν. Let l be the average size of an interval in K and c = l/N ( c stands for

compacity and is a basic measure of the compacity of SoI X). Let ι be the number of intervals

in K. Because each interval yields up to 2wl NH samples, we have

ν ≤ 2ιwl
N

. (2.29)

Numerical example: for a number of samples N = 1000 samples, a window length wl = 10

samples, an average interval length l = 100 samples (yielding a compacity c = 0.1) and a

number of intervals ι = 3 intervals (yielding an occupancy ratio ρ = 0.3), from (2.29), we have

a fraction of NH samples ν ≤ 0.06.

Since on average ιl = ||X||0, we have ρ = ιl/N = nc. Thus, (2.29) becomes

ν ≤ 2ρwl
Nc

. (2.30)

Exact values of ν depend on the actual positions of the SoI components in the spectrum, and

are lower than the upper-bound (2.29) if either an interval of K or a white space between two

consecutive intervals of K are smaller than 2wl samples.

Theoretically quantifying the degradation caused by a high fraction ν of NH samples can be

tenuous. For now, we make a reasonable assumption that having NH samples shifts PD and PFA

towards the center of the PD − PFA plane, thus worsening the performance of the estimator.

We also suppose that the higher the value of ν, the stronger the shift. In the following section,

we will provide empirical evidence of this shift.

2.3.5 Simulations: support estimation

To perform support estimation, we perform sample-wise energy detection on every sample in

the vector, with (wl > 1) and without (wl = 1) windowing.

2.3.5.1 Performance metric

Each sample of |Y |2 (or |Y ma|2) is compared to a threshold η, computed using (2.25). The

result is the estimated signal support, a N -sized boolean vector. To evaluate the performance

of our estimator, we use pd and pfa. Since we are not considering random variable distributions

but realizations, pd and pfa are not probabilities but proportions, defined as follows:

pd =
d

||X||0
, pfa =

fa

N − ||X||0
, (2.31)

where d (resp. fa) is the number of samples for which H1|H1 (resp. H1|H0) is decided.

If K̂ denotes the estimated support, another formulation of pd is

pd =
Card K ∩ K̂

Card K
. (2.32)
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2.3.5.2 Simulation results for different values of Emin

First, we compare empirical performance of our estimator for various values of Emin without

windowing (wl = 1). Fig. 2.11 displays the ROC curves for varying values of Emin (in arbitrary

units). The constant parameters for the simulation are N = 2000, ρ = 40%, and c = 10%.

Dashed lines correspond to theory presented in Section 2.3.3 while solid lines display empirical

results. Each simulation is averaged over 500 runs.

Figure 2.11: ROC curves of empirical sample-wise energy detection for varying values of Emin.

The empirical results perfectly match the theory. In our model, the SNR and ρ are linked to

Emin by (2.21), but have no other specific influence on estimator performance. Consequently,

they will not be studied explicitely in the remainder of this section. An exception to this is

the role played by ρ in the wl > 1 case, where it affects the number of NH samples, as seen in

(2.30). This topic will be covered in Section 2.3.5.4.

For Emin = 1.0 (arbitrary unit), corresponding to a SNR of −4.0 dB in this setup, the

performance of our support estimator is low. We now consider the effect of using the moving

average to improve estimator performance.

2.3.5.3 Simulation results for varying window lengths

Fig. 2.12 displays the ROC curves for varying window lengths. The constant parameters for the

simulation are N = 5000, ρ = 40%, SNR = −4.0 dB and c = 5%. The case wl = 1 corresponds

to non-averaged support estimation. Dashed lines correspond to theory presented in Section

2.3.4 while solid lines display empirical results.

We observe that for the general trend, the experimental results validate the theory. In both

cases, estimation can be very good: for instance, a value of PFA = 0.1 allows for a theoretical

PD = .977 and an empirical pd = 0.964. Note that estimation performance does not depend on

the SNR directly, but on Emin. Eq. (2.21) allows for similar estimation performance for various

values of SNR and ρ, as long as Emin is unchanged. As a consequence, estimation performance

is the same for SNR = −4.0 dB and ρ = 0.4 than for SNR = −10 dB and ρ = 0.1. This opens

the way to high estimation performance for low-SNR and very sparse signals.

For wl = {10, 20} samples, the empirical results diverge slightly from the theoretical ROC
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Figure 2.12: ROC curves of sample-wise energy detection with moving average and varying

window lengths wl.

curve: this is an illustration of the detrimental effect caused by NH samples. Fractions ν of NH

samples are respectively 2.9% and 6.0% for wl = {10, 20} samples.

2.3.5.4 Degradation caused by NH samples

The fraction ν of NH samples is a basic indicator of the presence of discrepancies between

theoretical and empirical results, and quantifying the performance degradation caused by a high

value of ν is difficult when all parameters are taken into account at the same time. Nonetheless,

we wish to document, even partially, the degradation caused by NH samples. Fig. 2.13 displays

the ROC curves for varying values of ν. The constant parameters are N = 2000, ρ = 40%,

SNR = −4.0 dB and wl = 20. The dashed lane represents the theoretical estimator performance

(for which ν = 0). To alter the fraction of NH samples, we changed the compacity c of the SoI.

Indeed, the closed-form expressions of Section 2.3.4 do not involve c, which only comes into

play when NH samples are concerned.

Figure 2.13: ROC curves of sample-wise energy detection with moving average for varying

fractions of NH samples ν.

For this scenario, each increase of the fraction of NH samples by 0.1 results in an estimator

performance degradation that is equivalent to a reduction of approximately 0.6− 0.7 dB of SoI
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SNR. This figure varies with N , the SNR and wl.

To limit the influence of the moving average side effect, we recommend having ν ≤ 0.1. Table

2.3 provides recommended window lengths for several values of N , compacity c and occupancy

ratios ρ. These values are computed using (2.30). The (c, ρ) pairs represent different scenarios,

from the easiest to process (high compacity, low occupancy ratio which corresponds to few

users each transmitting a wide component of the SoI) to the hardest to process (low compacity,

high occupancy ratio: many users transmit narrow signals to form the SoI at the receiver). As

the transmission scenario becomes less favorable, the required wl becomes smaller, entailing

overall lower performance of the support estimator. In a realistic scenario, (c, ρ) may not be

known beforehand: a possible way to proceed is to first compute a rough support estimate with

conservative parameters (high N if possible, low wl), then to use this first support approximation

to evaluate c and ρ and to tune wl and N more finely.

ρ = .1 ρ = .3 ρ = .6

N c = .01 .05 c = .01 .05 c = .01 .05

1000 5 25 1 8 1 8

2000 10 50 3 16 2 10

5000 25 125 8 41 5 25

Table 2.3: Recommended window lengths for a fraction of NH samples ν ≤ .1.

The performance of our estimator mostly matches the theory, and discrepancies have been

investigated. However, all of our findings so far involve a simplistic signal model, where the SoI

is constant in its support. As a consequence, we now study the performance of our estimator

on more realistic telecommunications signals.

2.3.6 Application to a telecommunications signal: the filtered QPSK

2.3.6.1 A new signal model

For this round of simulations, the SoI X no longer follows (2.9). Instead, X is the sum of

QPSK-modulated random messages. The frequency spectrum is slotted into 20 channels and

each of these messages is in a different channel. Each QPSK goes through a root-raised cosine

filter with roll-off factor β = 0.35.

Strictly speaking, X is never non-zero because of spectrum leakage. For this reason, we

slightly adapt our definition of the support K, which now consists of the indices of X corre-

sponding to the highest-energy samples of X. The threshold for the cumulative sum of highest-

energy samples is 0.999||X||2, meaning that indices of low-energy samples collectively making

up for less than 0.1% of the energy of X are discarded. For normalization purposes, we then

multiply X by
√
Emin

Card K
||X||2 so that on an average made on every sample in K, the energy in

a sample in K is Emin.

Because the SoI follows a different model, the closed-form expressions put forward in Sec-

tions 2.3.3 and 2.3.4 are no longer valid. Nonetheless, to validate the estimator performance
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in practice, we will compare the results on QPSK-based SoIs to the theoretical ROC curves

obtained through (2.27) (later referred to as the theory). This comparison is relevant because

the model for SoI presented in (2.9) corresponds to a constant signal with the same sample-wise

energy than the average sample-wise energy of the QPSK-based SoI.

To simplify the analysis and without loss of generality, in our experiment, each QPSK-based

message (also referred to as a SoI component) contains the same energy. Roughly speaking,

samples in the middle (resp. on the edges) of a SoI component have a higher (resp. lower)

energy than the average energy Emin of a sample. Consequently, no matter the estimator setup,

detection of the samples in the middle (resp. on the edges) of a component should in general

be easier (resp. harder) than that of samples with average energy Emin.

2.3.6.2 Support estimation performance: exact SoI support is hard to recover...

We have seen in Section 2.3.5 that the performance of the detector, represented by ROC curves

in Figs. 2.11 and 2.12, is affected by variations in wl and Emin in a similar fashion, meaning

that a lower value of Emin can be compensated by a higher value of wl and vice-versa. The

same statement holds with another SoI model. For this reason, we will consider the window

length wl as the sole varying parameter. We chose to make wl vary because in practice it is a

parameter easier to tune than Emin.

Fig. 2.14 displays the ROC curves for varying window lengths. The constant parameters for

the simulation are N = 2000, ρ = 40%, SNR = −4.0 dB and c = 5%. Dashed lines correspond

to constant SoI-based theory presented in Section 2.3.4 while solid lines display empirical results

with QPSK-based signals. Each simulation is averaged over 100 runs.

Figure 2.14: ROC curves of our support estimator with varying window lengths wl, applied to

(i) QPSK-based SoIs (solid lines); (ii) SoIs based on the constant energy model (dashed lines) .

For lower detection performance (wl = 3 samples), the estimator outperforms the theory for

a wide range of values of pfa. We attribute this to the shape of the QPSK. While the estimator

inconsistently decides H1|H1 in the constant SoI model due to high noise levels, the samples in

the middle of the QPSK component are typically larger than Emin and stand out from the noise.

As a result, the estimator decides H1 more consistently for these central samples. Meanwhile,

the samples on the edge of the QPSK are typically under the noise floor: while the estimator
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decides H1 even less for them than for constant SoI samples, it does not make a huge difference

on overall estimation performance.

On the contrary, for higher detection performance (wl = 20 samples), the estimator under-

performs the theory for all values of pfa. Again, this can be explained from the shape of the

QPSK. When pd is high, the comparative advantage of central QPSK samples over constant

SoI samples is no longer meaningful; however, samples on the edge of the QPSK component,

being lower than Emin, are more often under the estimator threshold than in the constant SoI

theory, and the estimator decides H1 less frequently on them, even as pfa goes up.

Finally, the case wl = 10 samples corresponds to the border between the two aforementioned

regimes. Interestingly, the shape of the QPSK ultimately tends to reduce the theoretical gap

between high and low estimator performances.

Overall, the performance of our estimator on detecting the precise support in which the

SoI is located is below what we could expect from the theory, at least for high values of pd.

Fortunately, not all support indices are created equal: some SoI samples carry more imformation

than others.

2.3.6.3 ... But we can recover most of the energy of the SoI

In filtered QPSK, as in many modulations, the information content is greater in the higher

energy region, located at the center of the frequency-domain representation of the filtered QPSK,

than in the lower energy region, located at the edges of the QPSK. Applications whose aim is to

ultimately recover the signal information can take advantage of this fact and focus on estimating

the location in the frequency spectrum of the highest energy samples. This observation can

even be useful to a user that wishes to acquire knowledge about its radio surroundings without

recovering the received signal.

In this regard, considering the SoI energy in the estimated support can be insightful. Since

our estimator decides H1 more frequently for high-energy SoI samples than for average- and

low-energy samples, we can expect the SoI energy in the estimated support to be higher for the

QPSK-based SoI than for the constant SoI of (2.9).

Let X̂ be the SoI X multiplied by the indicator function of the estimated support K̂. X̂

can be described as follows:

∀0 ≤ i < N, X̂[i] =

{
X[i] if i ∈ K̂
0 otherwise

. (2.33)

In other words, X̂ is the SoI X over the estimated support K̂. It is reminded that X̂ is not

obtainable in practice because the received signal is Y = X +W .

Let ed = ||X̂||2/||X||2 be the fraction of SoI energy in the estimated support K̂ over the

total SoI energy (we neglect the QPSK spectral leakage phenomenon mentioned earlier). In a

way, ed resembles pd of (2.32), except pd considers the cardinalities of K and K̂ ∩K while ed

focuses on the energy of the samples in K and K̂ ∩K. Note that for the constant-energy SoI

model (2.9), since every sample of X in K has the same energy, we have pd = ed. Finally, by

definition of X, samples for which H1|H0 is decided have no energy in X.
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Fig. 2.15 displays the fraction of detected energy ed versus pfa for varying window lengths.

The constant parameters for the simulation are N = 2000, ρ = 40%, SNR = −4.0 dB and

c = 5%. Dashed lines correspond to the constant energy SoI-based theory of (2.27) presented

in Section 2.3.4 while solid lines display simulation results with QPSK-based signals. Each

simulation is averaged over 100 runs.

Figure 2.15: Fraction ed of energy present in the support estimate K̂ vs proportion of false

alarms pfa with varying window lengths wl, applied to (i) QPSK-based SoIs (solid lines); (ii)

constant energy SoIs (dashed lines).

As expected, for the QPSK-based SoI, ed ≥ pd for any given values of pfa and wl. A

remarkable fact is that for every value of wl, the solid curve is above the dashed curve: this

means the estimator outperforms the theory, based on empirical results of ed. Our estimator is

great for deciding H1 for support elements that contribute significantly to the energy - and the

information - of the SoI. For example, with a window length wl = 20 samples and a proportion

of false alarms pfa = 0.1, the support estimated by our method contains 99.0% of the energy

of the SoI X.

2.3.7 Conclusion on Support Estimation

In this section, we first presented a method for signal support estimation for noisy signals, based

on sample-wise energy detection. Afterwards, we put forward an improvement to the method,

consisting in a window smoothing preprocessing step. In both cases, we derived closed-form

expressions for support estimation performance, for a simple (constant) model of signal of

interest. Finally, we quantified the performance of our estimator on two types of signal of

interest: a basic theoretical signal and a more realistic, QPSK-based signal.

Our method has a high performance for both types of signal and allows to estimate the

frequency-spectrum location of an overwhelming proportion of the energy of a signal of interest.

While being fast and simple, our estimator works well even in SNRs as low as −10 dB, without

prior knowledge on the signal of interest. For these reasons, our estimator is particularly suitable

as a preprocessing step for recovery of signals acquired through CS schemes such as the MRS.

We identified two directions in which our estimator can be improved upon. First, the

relevance of adding a small-scale post-thresholding step should be studied as it can marginally
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improve estimation performance. Such a step could for instance remove a single outlier in a

large white space area from the support estimate, or conversely fill one- or two-sample holes in

the support estimate. Second, we know that using the estimator on an unknown signal with

cautiously picked parameters yields some information about the signal of interest. Applying

the estimator to the received signal a second time, with finer parameters (e.g. the window

length) computed from the first support estimation, should yield improvements in estimation

performance that ought to be observed and quantified.

2.4 Conclusion

In this chapter, we have introduced a novel K-means-based technique to perform blind noise

variance estimation on a sparse wideband signal in an AWGN channel. Afterwards, we put

forward a new solution for frequency-domain signal support estimation. The output of the first

method is used as an input for the second method, so both procedures are well interconnected.

Thanks to these two methods, we can extract the support of the signal of interest from

uniform, sub-Nyquist signal samples, provided the signal of interest respects somewhat lax

constraints of sparsity and compacity. In Chapter 4, they will be applied to signals sampled

with the MRS, in a bid to recover the frequency-domain support of the Nyquist rate signal of

interest, in a low-complexity fashion (i.e. without solving a CS-related USLE). In turn, this

will allow us to separate samples corresponding to signal of interest from white noise samples.

These ”samples of interest” can then be stored for later customer-issued queries, as part of the

envisioned use case for our sampling infrastructure.

In order to successfully recover the signal support from MRS samples, there are some nec-

essary conditions on the parameters of the MRS scheme. Amongst these, the choice of the

sampling rate of each MRS branch seems particularly important. The following chapter of this

manuscript addresses this issue.
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Chapter 3

Configuring the MRS settings

3.1 Introduction

A central element to our proposed sampling infrastructure is the chosen Compressed Sensing

(CS) sampling scheme. We believe the Multi-Rate Sampling (MRS) to be adapted to our

scenario of a low-cost, sub-Nyquist sampling infrastructure. Indeed, its hardware requirements

are relaxed in the asynchronous flavor, and moderate in the synchronous version, rendering

deployment with largely available hardware components possible in the near future.

The principal characteristics of any MRS implementation are the number of branches and

the sampling rates in each branch. They directly affect the construction of the sampling matrix

A of the CS Underdetermined System of Linear Equations (USLE) y = Ax (1.15), where y is the

measurement vector of size M , x is the original signal of size N and A is the sampling matrix

of size M ×N . Consequently, correctly tuning these parameters is of utmost importance. It is

to note that the authors of [20] do not specify how to choose the sampling rates, despite their

influence on the MRS performance.

As we recall from Chapter 1, CS relies on two principles, according to the authors of [186]:

sparsity and incoherence. Sparsity is the capacity of the signal of interest to be expressed in a

very small number of coefficients in some basis Φ: this means that the signal of interest possesses

much fewer degrees of freedom than its number of coefficients in some representation. Incoher-

ence pertains to the method of sampling: incoherent sampling stipulates that contrary to the

signal of interest, the waveforms used for sampling have a dense (non-sparse) representation in

Φ. In the MRS, an improper choice of sampling rates can negatively impact the aforementioned

incoherence of the sampling system.

This idea is somewhat developed in the coprime sampling literature. In [187], a pair of

sampling periods is chosen to be coprime integers multiples of a common δT . The authors sub-

sequently derive very interesting results for different applications, though none pertains directly

to the reconstruction of sub-Nyquist-sampled signals. They also do not explore situations with

three samplers or more.

In this chapter, we aim to bring the two approaches to this sampling paradigm, namely MRS

and coprime sampling, closer together, as we believe coprime sampling to be a decisive tool

towards higher MRS performance. We propose the sampling matrix rank as an indicator of the
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recoverability of the original signal, superseding (for the MRS) the number of measurements M

indicator, common in CS [55]. We also derive an upper-bound for the measurement matrix rank

relying on the chosen sampling rates and the number of branches L, and present a condition

on the choice of sampling rates to reach this upper-bound. Although the matrix rank is an

interesting indicator, we observe that it is not perfect either, and that recovery performance

depends not only on the sampling rates but also on the number of branches. Subsequently, we

introduce graphical insights into sizing an MRS based on signal recovery quality requirements.

The work presented in this chapter has been the subject of a peer-reviewed publication in an

international conference [5].

Linking the MRS sampling rates to the sampling matrix rank is based on theoretical analysis,

while relating the sampling rates (or rank) and number of branches to recovery performance

is more experimental. We will first explore the mathematical relation between sampling rates

and the sampling matrix rank, then turn to the examination of simulation results with varying

parameters to draw insights regarding ways to adequately size an MRS.

3.2 Link between Sampling Rates and the Measurement Matrix

Rank

3.2.1 Recovery guarantee properties do not characterize the typical behavior

of a sampling setup

Previous work on sampling using random and deterministic matrices [38] put forward several

properties (such as the Restriction Isometry Property, RIP, the spark, and the coherence) that

guarantee the reconstruction1 of x under certain conditions, usually on the level of sparsity k

(number of nonzero values) of X = DFT (x). Unfortunately, these properties require a high

level of incoherence in the measurement matrix A. The sampling matrix of the MRS exhibits

too much structure and correlations between columns for these properties to be satisfied for

significant levels of sparsity. This is partly because properties have to guarantee recovery in the

worst-case scenarios, which may happen with low or zero probability, in constrast to the typical

behavior of a sampling system, for which a user might care more.

As we mentioned in Section 1.2.5 of Chapter 1, while these properties provide sufficient

conditions for recovery, these conditions are by no means necessary, and USLEs not satisfying

the aforementioned properties can be solved nonetheless. In particular, there is a documented

gap between what the properties guarantee and empirical recovery performance [56, 55].

Let us consider ”success” of a recovery procedure as an outcome with a low Mean Square

Error (MSE) between original signal X and recovered signal estimate X̂, and a ”failure” as a

different outcome. Let δ = M/N be the undersampling ratio and ρ = k/M be the occupancy

ratio. If we consider the recovery success rate on a ρ− δ plane, there is evidence that there are

well-defined success and failure phases for recovery (see Fig. 1.4 of Chapter 1). Furthermore,

as the size of the problem N increases, the transition between the success phase and failure

1See Section 1.2.3 of Chapter 1 for a more extensive review of these properties.
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phase is increasingly sharp. This means that a small variation of k, all other parameters being

equal, can cause a drop from a 100% success rate to a 0% success rate. While these phases and

transitions are documented for Gaussian sampling matrices, we believe that the same behavior

can be observed with other sampling systems, such as the MRS. In Section 3.3, we will use

empirical evidence to back this assumption.

3.2.2 Motivation for using the matrix rank as an indicator of the quality of

recovery

For a variety of sampling schemes, including random-matrix-based schemes [38], the quality

of recovery increases with the number of measurements M . However, for the MRS, a higher

number of measurements M does not necessarily entail a better recovery if the sampling rates

are not chosen properly.

This is why we propose the measurement matrix rank as a rough indicator of recoverability of

the MRS-based system. By definition, the rank of a matrix A (written rankA) is the dimension

of the subspace generated by the columns of A. A high rank is a necessary condition for

signal recovery. Indeed, when rankA is low, the columns of A generate a low-dimensional

subspace, and the projection of X onto the subspace generated by the columns of A results in

an irretrievable loss of information. Note that a high rank is not sufficient for signal recovery:

if any two columns of A are linearly independent yet differ by a small angle, the problem may

be ill-conditioned and recovery may be subject to numerical instabilities. Still, we suppose that

the higher the rank, the better the recovery, and we will seek to maximize rankA.

3.2.3 On the information acquisition process underlying the MRS

Let us consider the information acquisition process that underlies sampling in the temporal

domain, that is, multiplication of the received signal with a Dirac comb function.

Each Dirac impulse (sampling instant) multiplied with the received signal corresponds to a

projection of the signal onto an element of some basis B of a subspace V of the signal space.

A Dirac impulse not exactly coinciding with any other Dirac impulse in the temporal domain

increases the cardinality of B (and thus the dimensionality of the subspace V, noted dimV) by

1. However, if two given Dirac impulses are superimposed (meaning they are exactly coinciding

in the same place in the temporal domain), they project the signal onto the same element of

the basis B: as a result, dimV does not increase. Because of this, dimV is the number of

non-overlapping Dirac impulses.

Now, the measurement matrix A is precisely a matrix that represents a homomorphism

between the signal space and the subspace V. By definition of the rank, rankA = dimV.

Therefore, rankA is the number of unique sampling instants.

This identity between rankA and the unique sampling instants lays the ground for the

following mathematical results.

119



3.2.4 Sampling rates and matrix rank

Notation: while working on the MRS, we rely on the description of the MRS made in Chapter

1, Section 1.3.2.2.

We start with a simple result on the rank of the folding matrix Fi.

Lemma 3.1. Let Fi be a Mi × N folding matrix of an L-branch MRS system, with Mi being

the number of samples collected at branch i. Then

rankFi = Mi. (3.1)

Proof. Suppose N is even. Let {Ci}1≤i≤N denote the set of columns of Fi. By construction, if

Mi ≤ N
2 , we have [ C1 ... CMi ] = IMi (where In is the n×n identity matrix). If Mi >

N
2 , we have

[ C1 ... CN
2
C

N−(Mi−
N
2 −1)

... CN ] = IMi . IMi is trivially of rank Mi. Reasoning for odd values of N

is similar by replacing N
2 by N−1

2 .

This means that each folding matrix Fi folds the signal space (of dimension N) onto a

subspace of dimension Mi, the number of samples collected at branch i.

Now, in the following theorem, we will bound rankA.

Theorem 3.2 (Matrix rank upper-bound). Let A be the M×N sampling matrix of an L-branch

MRS system, obtained as shown in Eq. (1.39) in Chapter 1. Then

rankA ≤M − (L− 1). (3.2)

Proof. By induction on L. Let P (L) be the statement: rankA ≤
∑L

i=1Mi − (L− 1).

Base case: If L = 1, we have (Lemma 3.1) rankA = rankF1 = M1 ≤
∑L

i=1Mi − (L − 1).

So P (1) is true.

Inductive step: Suppose P (L). Let Ak =

[
F1

...
Fk

]
for k ≥ 1. We have (Lemma 3.1)

rankAL+1 ≤ rankAL + rankFL+1 ≤ Q where Q =
∑L+1

i=1 Mi − (L− 1) (the latter inequality is

obtained through the induction hypothesis). However, there is a linear combination between the

rows of AL+1. Indeed, the sum of first M1 rows of AL+1 is proportional (with ratio M1/ML+1)

to the sum of its last ML+1 rows. This linear dependency prevents the quantity Q from being

reached by rankAL+1: therefore, we have rankAL+1 ≤ Q− 1. Hence, P (L)⇒ P (L+ 1).

This means that under our definition of MRS, the measurement matrix A can never be of

full rank (except for the trivial L = 1 case). However, it can be only L − 1 units away from

being full rank. If L�M (a typical scenario), the rank deficiency is low and A can be almost

full rank.

To pursue on the reasoning previously developed, the common divisor(s) of a pair (Mi,Mj)

correspond to simultaneous Dirac impulses in branch i and j, as per Eq. (1.36). Whether or

not the set of Mi is coprime, they all have 1 as a common divisor, so the first sampling instant

is common to every sampling branch: every branch’s first symbol is redundant but one. This

explains the (L− 1) factor in (3.2).

We now present the equality condition of (3.2).

120



t

(1)

(2)

(3)

(4)

∆

Figure 3.1: Multi-Rate sampling grid. This grid displays the Dirac impulses (sampling instants)

for L = 4 branches with Mi = 5, 4, 3 and 6 respectively. During the duration ∆ of the time

window, only the samples comprised within the dashed area provide new information. Samples

outside of the dashed area are redundant.

Theorem 3.3 (Equality condition).

rankA = M − (L− 1)⇔ {Mi}1≤i≤L is pairwise coprime. (3.3)

Proof. Necessary part of the equivalence (⇒): By contraposition, we will prove that non-coprime

values of Mi imply absence of equality. Suppose, without loss of generality, that L = 2 and

that M1 and M2 are not coprime. Let D be the set of common divisors of (M1,M2). Let Rlk
denote the k-th row of folding matrix Fl. For every element d ∈ D, there is a linear combination

between the rows of F1 and the rows of F2 (which is found again in A, the concatenation of

F1 and F2): 1
M1

∑M1/d
i=1 R1

di = 1
M2

∑M2/d
i=1 R2

di. This reduces the maximal value reachable by

rankA: the inequality of Theorem 3.2 becomes strict. (Note that the case d = 1 corresponds

to the linear dependency already exhibited in the proof of Theorem 3.2 and is the cause of the

inevitable small rank deficiency of A.)

Sufficient part of the equivalence (⇐): Having a pairwise coprime set of Mi allows to min-

imize the number of common divisors, leading to the maximization of the number of unique

sampling instants and of rankA.

3.2.5 Illustration of the link between sampling rates and sampling matrix

rank

Fig. 3.1 presents an example of an MRS grid with various values of Mi. The ticks within the

dashed area correspond to the Dirac impulses which project the signal onto a new element of

subspace V and provide new information about the signal. If we consider an MRS system with

only the first three branches, all Mi are pairwise coprime, and every sample (except the first

sample of branch 2 and 3) carries new information: rankA is maximal and Theorem 3.3 is

verified. If we add the fourth branch (with M4 = 6), then the pairs (M2, M4) and (M3, M4)

are both non-coprime: this leads to redundancy and to a reduction of rankA.
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3.3 Empirical relations between MRS settings and recovery per-

formance

3.3.1 Introduction

3.3.1.1 Scope of the simulations

The previous mathematical discussion pertains to the link between sampling rates and the

matrix rank. We now focus on the parameters of the MRS.

The main parameters of the MRS are the number of branches L and the sampling rates

Mi, 1 ≤ i ≤ L. In this section, we will provide empirical evidence that it is relevant to use the

sampling matrix rank as an indicator of the recoverability of the original signal, rather than

the number of measurements M =
∑

iMi, common in the CS literature [55]. We will also

quantitatively link the sampling matrix rank to the recovery performance of a MRS scheme.

Alone, the matrix rank indicator does not perfectly encompass the situation. In particular,

for a given matrix rank, it appears that a higher number of branches L entails better recovery

performance. We have not seen any mention of this phenomenon elsewhere in the literature.

Though the causes of this phenomenon are unknown for the time being, our aim is to quantify

this effect and use it to provide insights on the choice of the number of branches.

We will run our simulations on two kinds of received signals:

• k-sparse2 noiseless signals, with k < N non-zeros drawn according to a Gaussian distri-

bution;

• Filtered QPSK-based noisy signals, where information-carrying QPSK-modulated spectral

components are corrupted by AWGN.

The first type of signals enables us to benchmark MRS performance and compare it to other

CS sampling schemes, while the second type shows the impact of the MRS settings in a more

realistic situation.

For both kinds of signals, we will first focus on the rank as a relevant indicator, and then

consider the impact of the number of branches L on signal recovery.

3.3.1.2 On the choice of metrics

Since our work is related to the sampling and recovery of a signal, the metric that first comes

to mind is the Mean Square Error (MSE) between the actual received signal sampled at the

Nyquist rate and the subsampled-then-recovered samples. When dealing with k-sparse noiseless

signals, we use this metric to ascertain recovery success.

The MSE and its variants have the advantage of not depending on any external factor, such

as choice of modulation or carrier impairments. However, it provides results that are rather

difficult to interpret for a user whose motivation is to successfully transmit a message. In this

regard, the Bit Error Rate (BER) is more explicit and therefore more relevant, despite being

2Signal sparsity is in the frequency domain.
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dependent on the choice of the modulation scheme. We use the BER metric to present and

discuss the results pertaining to the filtered QPSK-based noisy signals.

3.3.2 Simulation Results: Recovering k-sparse noiseless signals

3.3.2.1 Comparing the impact of sampling matrix rank and number of measure-

ments on recovery

Simulation Setup A k-sparse signal X is generated in the following manner. A N = 1024-

sized vector is initialized with zeros; then 1 ≤ k < N of its elements are chosen randomly

and each is set to a realization of a random variable following the N (0, 1) distribution. Signal

X then undergoes an Inverse Fast Fourier Transform and is sampled by an MRS system with

L = 5 branches. The sampling rates Mi are chosen at random so that 30 ≤ Mi < 250. After

the sampling rates Mi are chosen, we construct the sampling matrix A and compute its rank.

Based on whether or not the {Mi}i form a coprime set, the MRS system is either categorized as

a quasi-full-rank (QFR) MRS or a deficient-rank (DR) MRS. Let us define the rank deficiency

as d = rankA/M (where M =
∑

iMi). For greater result readability, we chose to discard

DR-MRSs for which d > 0.90. Indeed, such high values of d mean that even if the {Mi}i are

not coprime, the matrix rank is very close to the upper-bound in (3.2). Finally, the reduction

procedure proposed in [20] is applied, and an estimate X̂ of the original signal X is computed

using the CVXPY convex optimization solver. The relative RMSE (Root MSE) ||X̂−X||2/||X||2
is computed. The signal recovery is considered successful if the relative RMSE is under 1% and

unsuccessful otherwise.

In total, 388 MRS systems (66 QFR, 322 DR) are tested for ratios ρ = k/M ranging from

0.01 to 1. The simulation is averaged over 10 runs.

Phases and transitions Fig. 3.2 displays the success rate of recovery on the ρ − δ plane

(the lighter the hue, the higher the success rate), for both QFR-MRS (panel (a)) and DR-MRS

(panel (b)). The solid line depicts the successive maximum values of ρ for which the success

rate of recovery is at least 90%.

We observe two very visible phases3. The transition between the ”success” and ”failure”

phases is rather sharp. This is consistent with the behavior for Gaussian matrices [56] and

validates our hypothesis on phase transitions, even though the location of the transitions differs

between Gaussian-based sampling and MRS. Note that the relatively high proportion of DR-

MRS setups for which recovery is typically suboptimal (the ”holes” below the solid line in

Panel (b) of Fig. 3.2) show that the high rank property is a necessary, yet not sufficient condition

for signal recovery.

Furthermore, on the ρ − δ plane, the transition is lower for DR-MRS than for QFR-MRS.

For example, a signal with a given sparsity k can be well recovered by a QFR-MRS and poorly

recovered by a DR-MRS, even if both MRSs have the same number of measurements M . Con-

sider k = 180 non-zeros (out of N = 1024 samples). For QFR-MRS, M ≈ 510 measurements

3Here, the term ”phase” should be understood as a region in the ρ − δ plane where recovery performance is

uniform, akin to a phase in a thermodynamic system. It does not refer to the angle of a periodic function.
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Figure 3.2: Phases for (a) QFR-MRS; (b) DR-MRS. Black phase: signal recovery is unsuccessful.

White phase: signal recovery is successful. The solid line displays the transition between the

two phases.
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Figure 3.3: Phase transitions vs normalized (a) number of measurements; (b) matrix rank.

suffice for successful recovery (δ = M/N ≈ 0.5, rho = k/M ≈ 0.36 on Fig. 3.3(a)). However,

for DR-MRS, M ≈ 570 measurements are required for successful recovery (δ = M/N ≈ 0.56,

rho = k/M ≈ 0.33 on Fig. 3.3(a)). In other words, in this example, successful recovery requires

approximately 12% more samples for DR-MRS, compared to QFR-MRS.

In any case, this is a strong hint that the important factor here is not the number of

measurements.

Transition locations depend on the MRS matrix rank Fig. 3.3 depicts the phase tran-

sitions for DR- and QFR-MRS. Panel (a) depicts the transitions on the ρ − δ plane: we can

see that the transition for DR-MRS is lower that for QFR-MRS. Panel (b) represent the same

transitions but on the ρ′ − δ′ plane, where ρ′ = k
rankA and δ′ = rankA

N . The trends for the
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Figure 3.4: Phase transitions in the ρ − δ plane for varying number of branches L, using the

CVXPY `1-minimization solver.

transitions of QFR- and DR-MRS are now extremely similar, indicating that the MRS matrix

rank rank(A) is a more relevant factor than M when considering the recoverability of a k-sparse

signal.

3.3.2.2 Asserting the impact of the number of branches L on recovery performance

As previously seen, the phase transition is lower when the sampling rates {Mi}i of the MRS are

non-coprime. For the remainder of this chapter, we will focus on MRS systems with coprime

{Mi}i only. Going beyond the rank indicator, we now investigate the effect of the number of

branches L on recovery performance. For this purpose, we will compare recovery performance

for MRS systems with the same rank, but with different values of L.

Simulation Setup The successive steps of the experiment are the same as in Section 3.3.2.1.

However, the number of branches L is no longer set to 5, but varies between 2 and 8. We will

see that at some point, adding more branches simply increases the implementation complexity

of the MRS system without any significant impact on recovery performance.

Additionally, we only run simulations over coprime sets of sampling rates Mi, as they have

shown to generally outperform non-coprime rates for a given number of measurements M =∑
iMi. Therefore, we only deal with QFR-MRS systems, refer to them as MRS, and colloquially

consider that M = rankA as they only differ by a factor L− 1�M .

We now focus on the phase transitions between successful recovery (RMSE under 1% at

least 90% of the time) and unsuccessful recovery.
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Phase transitions for various number of branches Fig. 3.4 depicts the phase transitions

for noiseless k-sparse signals. Starting with L = 2 branches, the phase transition is rather low,

meaning that only very sparse signals can be recovered correctly, no matter the total sampling

rate. This suggests that a 2-branch MRS system is perhaps too simplistic for noiseless signal

recovery: having only two different sampling rates does not bring in enough diversity in sampling

instants, leading to low recovery performance. As new branches are added, overall recovery

performance goes up, meaning that signals with a higher occupancy ratio ρ can be successfully

recovered with as many different samples. However, for values of L > 6 branches, adding extra

branches does not come with higher phase transitions. A possible explanation is that at some

point (reached for L = 6 branches), the different sampling instants carry enough diversity to

represent the sampled signal in a sufficiently rich way, so as to enable high phase transitions,

and adding other sampling instants does not bring about more diversity.

Noticeably, for L = {3, 4} branches, the values of ρ on the transition line rapidly grow with

the normalized number of samples δ, but then they reach a sort of plateau (at δ ∼ 0.19, resp.

δ ∼ .48 for L = 3 branches, resp. L = 4 branches) where their progression becomes limited.

This effect is also present, though to a lesser extent, for L = 5 branches.

From L = 6 branches on, adding more branches do not entail better recovery. As a conse-

quence, we recommend using L = 6 branches for the recovery of noiseless k-sparse signals. Note

that L = 6 branches may only be adequate for N = 1024 samples. Simulations for other values

of N have been inconclusive, as higher values of N entail higher-dimensional USLEs which were

to computationally expensive to solve.

Note that Fig. 3.4 only represents the situation for the CVXPY solver based on `1-convex

optimization used together with the MRS reduction procedure. Using other solvers may result

in completely different phase transition diagrams.

Consider Fig. 3.5, where a solver based on `2-minimization or Least-Squares, is used (pre-

sented in more details in Section 3.3.3.1). The MRS reduction procedure is not applied. Fur-

thermore, instead of setting the threshold for successful signal recovery at RMSE = 1%, it is

now set to RMSE = 30%. We can see that the phase transitions are significantly shifted to the

right, meaning that successful recovery with this solver is only possible for high matrix ranks

– in other words, this solver has a performance inferior to CVXPY. Another observation is

that changing the number of branches has no significant impact on phase transitions using this

solver.

3.3.2.3 Conclusion on the recovery of noiseless k-sparse signals

From simulations conducted on k-sparse noiseless signals, we have seen that the quality of

recovery increases with the number of measurements M/rankA. However, for a given number

of measurements and number of branches L, the highest recovery performance is obtained with

the highest rank, which is reached when the sampling rates {Mi}i are coprime integers.

Furthermore, the number of branches plays a role in recovery performance. When using

the right solver, recovery for a given number of measurements M =
∑

iMi is better when L is

higher, up to a certain value where recovery performance reaches a peak. For signals of length
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Figure 3.5: Phase transitions in the ρ − δ plane for varying number of branches L, using a

Least-Squares-based solver.

N = 1024 samples, this tipping point is at L = 6 branches, and values of L ≥ 7 branches will

not entail a better recovery. Other values of N have not been studied, so the existence of a

relationship between N and the optimal value of L remains an open question.

Consequently, based on simulations, we recommend having L = 6 coprime Mi in order to

solve noiseless k-sparse signals. We now turn to the study of noisy, QPSK-based signals.

3.3.3 Application: Recovering noisy QPSK-based signals

3.3.3.1 Simulation Setup

To accomodate situations more likely to occur in telecommunications than noiseless k-sparse

signals, we are now interested in the study of noisy, QPSK-based signals. Indeed, these are

more representative of what an actual MRS-based sampling infrastructure would process. Four

users each transmit a message modulated by a filtered QPSK on four subbands of bandwidth

1 MHz located at random positions, each distinct from one another, in a 79 MHz band. User

1’s message contains useful information that we wish to recover and the other users’ disposable

messages consist in random bits. An Additive White Gaussian Noise with noise variance σ2
w

corrupts the signal. more Upon reception, the signal is first sampled by an MRS system with

L = 3 branches. ∆ is set to 1024/νNyq seconds so that the block size is N = 1024. The values

for Mi vary from 2 to 1022.

The Moore-Penrose pseudo-inverse (MPPI) of the sampling matrix A is computed and mul-

tiplied by the observation vector to yield an estimate X̂ of the signal. Contrary to the scenario

of the noiseless k-sparse signals experiment, we chose to use a basic USLE solver. Indeed, the
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MPPI yields the solution of the ”least-squares” (LS) problem, that is, the `2-minimization prob-

lem. Though not as good as other solvers, such as the ones based on `1-minimization or greedy

optimization (see Chapter 1), the MPPI-based solver is valuable because it is fairly robust to

noise, does not rely on hyperparameters and is fast. A study on solvers will be provided in

Chapter 4, in which the LS-based solver will act as the baseline solver.

This scenario involves noisy signals. As a consequence, the RMSE between the transmitted

signal and the received, subsampled-then-reconstructed signal bears less relevance than in the

noiseless signal scenario. Therefore, we will not study the phase transitions between successful

and unsatisfactory recoveries, as these are built using the aforementioned RMSE. To offer a

different perspective, we propose to study recovery performance based on the BER between the

transmitted message and the reconstructed one.

For this experiment, we chose to set the signal sparsity k to a fixed value. Indeed, despite

the substantial number of varying parameters (sampling rates, sampling matrix rank, number

of branches, Eb/N0), we wished our analysis to remain clear and concise. In Chapter 4, different

scenarios with various traffic models and occupancy ratios will be investigated.

3.3.3.2 Influence of the matrix rank on the BER

Panel (a) of Fig. 3.6 depicts the BER versus Eb/N0 for signals sampled in different MRS setups,

each corresponding to a different matrix rank. Additionally, the dashed curve is the classic BER

curve for QPSK, where the Nyquist-sampled signal does not go through the MRS. For a given

Eb/N0, using an MRS with a lower matrix rank results in an increase of the BER. In particular,

for MRS setups with high matrix ranks, the BER curve approaches that of the Nyquist-sampled

signal.

To visualize the impact of the matrix rank on the BER more clearly, Fig. 3.6b presents the

BER versus matrix rank for different values of Eb/N0. Continuous lines represent the moving

average of the BER for various sets of Mi. All curves start at a high BER, a consequence

of a low-quality recovery for low matrix ranks. As the matrix rank increases, every curve

approaches the Nyquist-rate BER (letters A to D). Hence, there is a trade-off between sampling

rate reduction and BER minimization.

To help solve this trade-off, Fig. 3.7 can be insightful. It displays the achievable matrix rank

reduction at the expense of a degraded Eb/N0 (compared to a full-matrix-rank baseline). For

example, if one can afford to lose 3.1 dB of Eb/N0, one can reduce the matrix rank (and the

overall sampling rate) by 50%. Note that the ADC literature presents trade-offs (of reduction of

the sampling rate versus Eb/N0 reduction) of similar magnitude [17]. This leads to considering

the MRS as an additional source of noise, on top of other impairments undergone by the signal.

3.3.3.3 Impact of the number of branches on recovery

Panel (a) (resp. (b)) of Fig. 3.8 depicts BER vs. MRS matrix rank for Eb/N0 = 2 dB (resp.

Eb/N0 = 6 dB) and for various numbers of branches L ∈ {2, 3, 4, 5, 6}. In this scenario, it

appears that adding or removing branches does not have a significant impact in terms of BER

between original and decoded signals. This is most likely due to the baseline USLE solver based

129



0 1 2 3 4 5 6 7 8
Eb/N0 (dB)

10−3

10−2

10−1

100

BE
R

A

B

C

D

Matrix rank
243
635

1009
N q.

(a)

0 200 400 600 800 1000
MRS Matrix Rank

10−3

10−2

10−1

100

BE
R

A

B

C

D

Eb/N0 (dB)
0
2
4
6

(b)

Figure 3.6: BER vs. (a) Eb/N0; (b) MRS matrix rank. Matrix rank maximum value is 1024.
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Figure 3.7: Eb/N0 degradation vs matrix rank reduction for original Eb/N0 = 6 dB.

on least-squares resolution. Indeed, the same behavior is present in Fig. 3.5, which depicts

phase transitions in noiseless signals using the baseline solver.

3.4 Conclusion and Perspectives

In this chapter, we have first proposed and proved a mathematical relationship between the

rank of the MRS sampling matrix and the number of measurements. This relationship takes

the form of an upper-bound for the matrix rank, based on the MRS sampling rates and the

number of sampling branches. We have presented a simple condition to reach this upper-bound,

namely, that the sampling rates be proportional to coprime integers.

Afterwards, we have linked the MRS matrix rank to recovery performance, for noiseless

k-sparse signals and noisy filtered QPSK-based signals. We have seen that having coprime

sampling rates results in better recovery, for a given number of measurements. Another way

to improve recovery of noiseless k-sparse signals, for a given quantity of measurements, is to

add more branches to the MRS - up to a certain limit where additional branches are of no

use, but are the source of a higher implementation complexity. However, this effect has been

documented for only one solver out of the two that we have used in this chapter: this shows

how crucial to successful signal recovery the choice of the solver is. In the following chapter, we

will delve into the impact of the solver on signal recovery performance.

The settings of the MRS are central to our targeted MRS-based sampling infrastructure

131



0 200 400 600 800 1000
MRS Matri  Rank (Eb/N0= 2 dB)

10−1

100

BE
R

Nr of branches L
2
3

4
6

(a)

0 200 400 600 800 1000
MRS Matri  Rank (Eb/N0= 6 dB)

10−3

10−2

10−1

100

BE
R

Nr of branches L
2
3

4
6

(b)

Figure 3.8: BER vs. MRS matrix rank with varying number of branches L for Eb/N0 = (a) 2

dB ; (b) 6 dB. Matrix rank maximum value is 1024.
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prototype. In Chapter 4, we will rely on this chapter’s discussion about the settings of the MRS

to adequately size the infrastructure to accomodate various types of traffic.
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Chapter 4

Experimental analysis of an

MRS-based sampling infrastructure

for IoT traffic

4.1 Introduction

The objective of our sampling infrastructure is to acquire the information transmitted by IoT

devices at all times over a wide frequency range, as proposed in Fig. 0.6 of the general intro-

duction of this document. The number of devices and their duty cycles are unknown, so the

occupancy ratio of the spectrum at a given time is unknown too. Nonetheless, our sampling

infrastructure should operate in an adaptive manner, for example by acquiring fewer samples

when device activity is low, while retaining the capability to detect when the conditions change

so as to increase the number of collected samples. This allows the infrastructure to collect all

the information transmitted by the devices, and to be able to adapt to events such as a spike

in the volume of transmissions.

For this purpose, we rely on the content of the previous chapters, which aimed both at pre-

senting the tools we developed towards acquisition of knowledge about the spectrum, effectively

bringing cognitive functions to the table (Chapter 2) and at properly setting the parameters of

an MRS (Chapter 3). In this chapter, we assemble these bricks towards a cognitive, adaptive,

IoT-oriented sampling infrastructure based on the MRS sampling scheme.

Our proposed infrastructure is mono-site, meaning that we limit our study to one geograph-

ical site where a reception antenna is located. This can be seen as a intermediate step towards a

multi-site sampling infrastructure such as the one put forward in the general introduction. The

stakes and implications regarding the development of a multi-site infrastructure will be covered

in the general conclusion of the document.

The reminder of this chapter is organized as follows. In Section 4.2, we present the main

characteristics of our MRS-based, IoT-oriented sampling infrastructure, as well as its different

parts. Elaborating on the components of our prototype, we proceed on a step-by-step basis. In

Section 4.3, a IoT-sourced traffic generator is introduced. In Section 4.4, the toolkit providing
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cognitive functionalities to our infrastructure, presented in Chapter 2, is tested with the MRS

sampling scheme and the traffic originating from the traffic generator. Section 4.5 tackles

the recovery of signals undersampled by the MRS. Section 4.6 outlines leads towards accurate

infrastructure adaptivity. Finally, Section 4.7 concludes this section.

4.2 Presentation of the sampling infrastructure prototype

We now introduce our MRS-based, IoT-oriented sampling infrastructure prototype. Our in-

frastructure is intended as a framework for clients to deploy IoT devices and collect messages

transmitted by said devices. In this regard, the prototype follows the ”Infrastructure as a

Service” (IaaS) paradigm.

The infrastructure, displayed in Fig. 4.1, is composed of the following blocks:

1. an analog front-end, which consists in a reception antenna and an analog preprocessing

component;

2. an L-branch MRS system;

3. a K-means-based noise variance estimator (KNVE) in each branch;

4. a partial support estimator (SE) in each branch;

5. a support combinator (SC);

6. a database (DB) to store samples;

7. a signal reconstruction block.

We now review the different blocks of the infrastructure.

Analog front-end First, a wideband antenna1 receives the transmissions sent by the IoT de-

vices (the nature of this traffic is detailed in Section 4.3). Then, the received signal goes through

usual analog components: passband filter, low-noise amplifier. Impairments provoked by these

components are modeled as AWGN in our study. The output of the analog preprocessing block

is a continuous signal y(t). Following the notation in use in this document, it is assimilated to

a discrete signal y[n] sampled at the Nyquist rate (noted Y in the frequency domain).

MRS The received signal goes through L parallel branches. In the ith branch (1 ≤ i ≤ L),

an ADC uniformly samples the signal at a sub-Nyquist rate to yield the sequence zi[n]. The

sampling rate of the ith ADC is νi, set so that during ∆block seconds2, Mi samples are acquired.

N is the corresponding number of samples for a Nyquist-rate acquired signal. The sequence

zi[n] undergoes a DFT, so the outcome of this step at the ith branch is a Mi-sized complex

vector noted Zi.

1The antenna is wideband with regard to the underlying signals.
2See Section 4.3.1 for an introduction to our block-processing paradigm and to the duration ∆block.
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2 

z L
[n

], 
σ ŵ
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Figure 4.1: Schematic describing our proposed MRS-based sampling infrastructure.
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KNVE In each branch, the variance of the additive white noise is estimated to yield σ̂2
w (index

i is omitted because the noise variance estimates of the different branches are never processed

jointly). The {Zi} are also propagated.

SE Based on the vector Zi and noise variance estimate σ̂2
w, a partial support estimation is

carried out in each branch to yield Ŝi, a Mi-sized boolean vector. This support estimate is called

”partial” because it reflects the support as seen in an undersampled signal in one branch (due

to undersampling, the spectral components of the signal of interest are folded onto different

locations of the frequency spectrum). Again, the Zi are propagated for future processing.

SC Combining the partial support estimates from all L parallel branches allows to estimate

the frequency support of the received signal y[n] as if it were sampled at the Nyquist rate. This

support estimate, noted Ŝ, is a boolean vector of size N .

DB The signal samples {Zi} and support estimate Ŝ are stored in a database. The samples

and support estimate can be stored for a given duration that depends on the options of the IaaS

contract. For the samples, there are two possible storage modes: full storage and information-

only storage. In the first storage mode, all samples {Zi} are stored in base. In the second storage

mode, only samples identified to contain signal of interest (through the support estimate Ŝ) are

stored in base. The choice of the storage mode is intrinsically linked to the choice of the solver

in the Signal Reconstruction block.

Signal Reconstruction According to CS literature (reviewed in Chapter 1), an underdeter-

mined system of linear equations (USLE) is associated to every CS sampling scheme. Solving

this USLE for Y is called signal reconstruction, or signal recovery. It is carried out on an on-

demand basis upon a user request. Several solvers can be used for this purpose. Some solvers

take advantage of the reduction procedure of the MRS, originally introduced in [20], through

which the dimensionality of the USLE to solve is reduced using the knowledge brought by the

support estimate Ŝ. In this case, the information-only storage mode of the DB can be favored.

However, other solvers require all samples for signal reconstruction, in which case it is necessary

to use the full storage mode of the DB.

After presenting the different blocks of the proposed sampling infrastructure, we dive deeper

into every block (except the analog preprocessing and DB blocks). But first, we introduce our

traffic generator, aimed at accurately simulating IoT-like transmissions.

4.3 The IoT-oriented traffic generator

Our infrastructure is aimed at collecting samples of signals corresponding to IoT communica-

tions. In order to test our infrastructure prototype, we have developed a traffic generator to

simulate messages transmitted by IoT devices. As its name suggests, the traffic generator gen-

erates a traffic, which is essentially a (typically wideband) signal containing data components.

The role of the traffic generator is to create and modulate messages that encapsulate data, to

137



translate them into IF/RF and finally, to transmit them in a channel. We have opted for a

traffic generator that is completely simulative and do not actually transmit a traffic over the

air using antennas. As a consequence, the generated traffic is discrete by nature.

This traffic generator is characterized by several parameters, that we now introduce and

discuss while keeping in mind the IoT context.

4.3.1 Parameters of the traffic generator

The traffic generator is characterized by the following three parameters: bandwidth, duration,

and channel model and block size. We now review the choice of parameters we have made for

the traffic generator.

Total observation bandwidth The aim for the generated traffic is to emulate a realistic

sparse and multi-band signal. For this purpose, we have chosen a channel bandwidth BW = 100

MHz. This is the same bandwidth as the 2.4 GHz ISM band. When the BW is set to higher

values, a resolution problem arises. Indeed, for a given block size (the number of samples

processed at once, in a batch fashion), the sparse signal components are represented by fewer

samples in the frequency domain as the total bandwidth increases. As the block size remains

the same and the total bandwidth increases, the sampling duration and therefore the overall

frequency resolution decreases. This can be problematic, as too low resolutions notably prevent

correct support estimation. A solution is to increase the block size, as it increases the frequency

resolution. However, this comes at the expense of higher computational requirements: as the

block size increases, so does the USLE size.

Duration The duration is useful to set the total number of samples in the generated traffic.

However, it corresponds to no physical quantity. It is more to be seen as a parameter for our

batch-processing chain, in which all the traffic is generated first, than as an intrinsic parameter

of the traffic generator having a significant influence on an implemented stream-processing chain.

We have set it to ∆ = 500 ms. As a consequence, the maximum3 number of samples in a traffic

is ∆×BW = 5× 107 complex samples.

Channel model An actual sampling infrastructure receives signals subject to fading. Fading

is usually classified as either short-scale or long-scale, depending on the characteristics of the

fades. Long-scale fading is mainly caused by shadowing or path loss and is considered not to be

time-varying. Short-scale fading is principally due to multi-path fading and scattering, and is

considered to be time-varying. We made the decision not to account for long-scale fading, as it

is mainly due to the geographical configuration of the reception site and its surroundings. The

rationale behind this decision is that if transmissions from a device undergo shadowing, there

is not much a mono-site sampling infrastructure can do about it.4 We also consider that the

channel impulse response is frequency-invariant. This strong assumption is mainly formulated

3This maximum number of samples corresponds to Nyquist-rate sampling.
4On the contrary, this is typically the sort of impairment that a multi-site infrastructure could help mitigate.
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to keep the study tractable. If a mechanism towards estimation of the channel impulse response

is implemented, its outcome can be used to equalize reconstructed Nyquist-rate samples Ŷ for

further information retrieval, but this is out of the scope of our study.

Following these assumptions, we implement the Rayleigh channel model to account for

small-scale fading. Additionally, we add white Gaussian noise to account for thermal noise and

impairments caused by the analog preprocessing component. As a consequence, the frequency-

domain representation of the received signal is:

Y = HX +W, (4.1)

where Y is the received signal as processed by the MRS (impairments due to the analog pre-

processing component are comprised even if they technically occur after reception by the Rx

antenna), H is the (frequency-flat) multiplicative Rayleigh channel, X is the sum of the signal

components (each signal component represents an IoT transmission) and W is the AWGN.

Block size The block size N is the number of Nyquist-rate samples processed together in one

batch. A block represents the acquisition of a signal for a duration of ∆block = N/BW . The

block size is to be set carefully: a low N entails a smaller acquisition duration and a lower fre-

quency resolution, but a high N results in a bigger and more computationally expensive USLE.

It is to note that some processing steps, e.g. noise variance estimation or even support estima-

tion, can take place over several blocks, as they are less computationally demanding than USLE

resolution. In general, we will use N = 2000 samples, as it is a reasonable trade-off between the

size of the underdetermined problem to solve and the frequency resolution/acquisition duration.

At BW = 100 MHz, we have ∆block = 20 µs.

Medium access We consider an extremely basic medium access control scheme in which the

devices transmit at random frequencies and instants, without any prior listening. Interference

is assumed to be mitigated by the sporadicity of the communications in the time and frequency

domains. Transmission power is however controlled: each device transmits their message with

the same power.

After discussing the parameters of the traffic generator, we now turn to the presentation of

the characteristics of the signal components representing IoT messages.

4.3.2 Modulation types

We focus on three IoT standards that are popular at the time of writing this manuscript:

• LoRaWan, using chirp-based spread spectrum modulation;

• NB-IoT, using OFDM;

• eMTC (LTE Cat. M2), also using OFDM.
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These three standards all have their modulations, failsafe mechanisms and other character-

istics e.g. payload size, typical frame duration, and so on. Our platform aims to be technology-

agnostic, so as to allow an easier introduction of new actors with their own modulations and

spectrum occupancy characteristics. As a consequence, we do not focus on specific modulations,

but rather on some characteristics of these three standards, namely their typical bandwidth and

frame duration.

We create frames that have the same bandwidth than the three aforementioned standards,

with an on-air duration corresponding to a payload of 100 bytes, a size representative of a

variety of IoT applications, such as sensors communications for the smart city. To simplify the

generation and analysis of the frames, we mimic them using the filtered QPSK modulation, with

bandwidths and durations set to match the payload size of 100 bytes for the actual modulation.

Due to the modulation being different (filtered QPSK instead of whatever the actual modulation

of the standard is), the payload size may not actually be 100 bytes, but is instead linked to the

bitrate and duration of the QPSK frame. Nonetheless, we are aware that the actual waveforms

may have a different behavior than QPSK on the different steps of our sampling infrastructure.

Our payloads consist in randomly generated ASCII messages, with no regard for traditionally

encapsulated overhead e.g. receiver address or frame check sequences, as this is a subject beyond

the recovery of Nyquist-rate samples from a signal acquired below the Nyquist rate. The nature

of the frames for the different standards is now discussed.

LoRaWan-like frame LoRaWan frames have three possible bandwidths of 125 kHz, 250 kHz

and 500 kHz (only 125 kHz and 250 kHz in Europe). The duration for a 100-byte payload varies

with the bandwidth used and the spreading factor, a parameter varying between 7 and 12 whose

effect is to improve the communication range of LoRaWan at the expense of a higher energy

consumption and a longer duration. For a 100-byte payload, the duration varies between 95

ms (SF7, bandwidth = 125 kHz) and 615 ms (SF9, bandwidth = 250 kHz - it is to note that

higher spreading factors are not available with this payload size as per the LoRaWan specs).

For our LoRaWan-like frame, we will use a duration of 95 ms with a 250 kHz bandwidth.

This bandwidth represents 0.25% of the total bandwidth of the generated traffic, a priori in

contradiction to the compacity hypothesis of the support estimator presented in Chapter 2.

NB-IoT-like frame NB-IoT uses a 200 kHz bandwidth. At 40 kbits/s (the uplink peak rate is

66.9 kbps for a single-tone system), the duration for a 100-byte payload is approximately 20 ms.

As a consequence, we use a bandwidth of 200 kHz and an duration of 20 ms. This bandwidth

represents 0.2% of the total bandwidth of the generated traffic, again in contradiction to the

compacity hypothesis of the support estimator presented in Chapter 2.

eMTC-like frame The LTE Cat M2 specification for eMTC proposes a 5 MHz bandwidth,

representing a 5% fraction of the total bandwidth of the generated traffic. At a bitrate of 4

Mbps (the peak rate for uplink communications is around 7 Mbps), the duration for a 100-byte

payload is approximately 200 µs.
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Other frame types In this study, we have left out other popular standards, such as Sigfox,

which is based on Ultra Narrow-Band (UNB) communications. With its 100 Hz bandwidth,

a Sigfox packet represents a millionth of the total bandwidth, which raises concerns about

frequency resolution notably for the support estimation step. However, nothing inherently

prevents our proposed sampling infrastructure to process UNB transmissions. To do so, two

possible adjustments the infrastructure could implement are the following. First, the KNVE

and SE would probably have to operate without the smoothing window step, as such a narrow

signal component would likely not be spread over several frequency samples. Second, in an effort

to increase the frequency resolution for the KNVE and SE to have an acceptable performance,

the input to these components should have a longer duration. However, the resulting loss in

time resolution can be detrimental to other types of modulations. One way to mitigate this

issue is by having two (or more) acquisition durations targeted at the various bandwidth and

duration ranges of the different modulation types.

The characteristics of the frames transmitted by our traffic generator are summarized in Table

4.1.

Frame type LoRaWan-like NB-IoT-like eMTC-like

Bandwidth 250 kHz 200 kHz 5 MHz

Duration 95 ms 20 ms 200 µs

Table 4.1: Characteristics of our QPSK-based frames used to simulate the behavior of IoT

communications.

We now introduce the different scenarios for the generated traffic, mainly characterized by

its instantaneous occupancy ratio.

4.3.3 Traffic types

To characterize the performance of our sampling infrastructure prototype, we test it for several

scenarios of traffic volume. The difference between the scenarios is the level of spectral occu-

pancy or spectral occupancy ratio. We chose occupancy ratios that seemed reasonable and that

could correspond to realistic use cases. The three used scenarios are the following:

• Scenario 1: Low-volume traffic, corresponding to an area with a limited amount of de-

ployed IoT devices which seldom communicate. The occupancy ratio is between 2-3%;

• Scenario 2: Medium-volume traffic, with more devices that communicate more often. The

occupancy ratio corresponding to this scenario is 8-12%;

• Scenario 3: High-volume traffic, where there are many devices, possibly with high duty

cycles. This can also correspond to an exceptional situation where there is a burst of

activity for a great quantity of devices. The corresponding occupancy ratio is 22-28%.
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Figure 4.2: 2D time-frequency traffic visualizations for average occupancy ratios of (a) 2.5%;

(b) 10%; (c) 25%.
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Traffic scenario 1 Traffic scenario 2 Traffic scenario 3

High SNR regime 3 dB 9 dB 12 dB

Medium SNR regime −3 dB 3 dB 6 dB

Low SNR regime −9 dB −3 dB 0 dB

Table 4.2: Total SNR for the different SNR regimes and traffic scenarios.

Traffic scenarios with even higher occupancy ratios correspond to signals that we have found

not to be able to be processed satisfactorily by our sampling infrastructure, as they exhibit

too little sparsity considering our assumptions and infrastructure setup. These are therefore

excluded from our study. Fig. 4.2 displays examples of generated traffics in the 2D time-

frequency plane. Each rectangle represents a frame: the LoRaWan-like frames are the long

horizontal ones, the NB-IoT-like frames are the short horizontal ones and the eMTC-like frames

are the vertical ones.

From Section 4.4 on, we consider the different traffic scenarios in three different SNR regimes

(high, medium and low). The impactful factor is the in-band SNR, defined as the energy of

the signal of interest divided by the energy of the noise in the support of the signal of interest.

However, in this study, we consider the total SNR (defined as the energy of the signal of interest

divided by the energy of the noise in the entire band of observation), which depends on the in-

band SNR and on the occupancy ratio. The correspondance between the SNR regime, the

traffic scenario and the (total) SNR is found in Table 4.2.

We have defined the conditions in which our simulations take place. Now, we turn to the

experimental validation of our preprocessing methods put forward in Chapter 2, namely, the

noise variance estimator and the signal support estimator.

4.4 Validation of the toolkit introduced in Chapter 2

4.4.1 Introduction

In Chapter 2, we have proposed tools to determine the frequency-domain support of sparse

multi-band signals, a step towards simplified USLE resolution.

Early in this section, we present some practical aspects that need to be considered when it

comes to using these tools, namely the K-means-based noise variance estimator (KNVE) and

support estimator (SE). We then turn to the analysis of the performance of the KNVE and SE

as part of our proposed sampling infrastructure.

Another subject tackled in this section is the recovery of the Nyquist-rate support from

the partial support estimates acquired at every MRS branch. The SE’s outcome represent

the support for the signal sampled by one branch, which is different from the support of the

Nyquist-rate sample sequence due to undersampling - this is the very principle of the MRS.

To recover the support estimate for the Nyquist-rate sequence, we apply a procedure originally

introduced by Fleyer et al. in [20]. In Section 4.4.5, we will characterize this procedure and

identify its strengths and weaknesses.
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The structure of the remainder of this section is as follows. First, we provide a discussion

about practical considerations to keep in mind when using the KNVE and SE on signals gen-

erated by our IoT traffic generator. Second, we indicate suitable parameters to operate the

KNVE in our sampling infrastructure for the different traffic scenarios. Third, we study the

performance of the SE in each MRS branch. Fourth, we focus on the support combination

procedure to recover the Nyquist-rate support estimate from the support estimates taken from

each MRS branches.

4.4.2 Practical considerations when using our toolkit

Several aspects need to be considered when it comes to using the KNVE and SE as part of our

sampling infrastructure. These are now discussed.

Low compacity of the signal components First, the nature of the traffic is less favorable

than what the KNVE and SE have been tested for in Chapter 2. Indeed, signal components

presented in Section 4.3.2, especially the LoRaWan-like frame and the NB-IoT-like frame, have

a very little compacity in that they occupy extremely small fractions of the spectrum. This

affects the windowing step of both the KNVE and SE.

Change in occupancy ratio when undersampling Second, sampling using the MRS

entails a change in spectrum occupancy in the different MRS branches. To comprehend this,

remember the spectrum occupancy ratios of the different traffic scenarios introduced in Section

4.3.3 are given for Nyquist-rate sampling. As the traffic undergoes undersampling through each

MRS branch, every signal component is aliased onto a smaller total bandwidth. Consequently,

the occupancy ratio of the sample sequence acquired at each MRS branch is higher than that of

the Nyquist-rate-acquired sequence. As a rule of thumb, for sparse signals, if the sampling rate

in branch i is a fraction δi = Mi/N of the Nyquist rate, the occupancy rate is multiplied by δi.

Note that this rule of thumb does not take into account different signal components that are

undersampled onto the same frequencies. The repercussion is that a signal whose Nyquist-rate

representation is sparse does not necessarily have a sparse representation when undersampled

by an MRS branch. This is a concern as the KNVE and SE rely on a hypothesis of sparsity,

yet are applied to the sequences sampled at each MRS branch.

In this section, we will present adjustments to mitigate and overcome these issues. These

solutions principally consist in increasing the number of samples on which the KNVE and SE

are applied. This is made possible both by the relatively low complexities of the two methods

and by the relatively high time resolution with regard to the duration of the various frame types

considered.

We now turn to the analysis of the performance of the KNVE as part of our proposed

sampling infrastructure.
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4.4.3 Using the K-means-based noise variance estimator in our sampling

infrastructure

After the received signal is sampled using the MRS, the next step in the signal processing chain

is the KNVE. The KNVE is applied to DFT Zi of the sample sequence zi[n] acquired in one

branch. The idea is to use the output of the KNVE, that is, the estimated noise variance, as

an input to the energy-based SE. As a reminder, the KNVE is based on separating noise-only

values of the received sample sequence from signal-plus-noise values using K-means.

The noise-only values consist of additive noise and are not subject to Rayleigh fading,

contrary to the signal-plus-noise values which are affected by Rayleigh fading. Therefore, even

if the KNVE was put forward in the context of the AWGN channel in Chapter 2, the impact of

the Rayleigh fading channel should be moderate.

As mentioned in Section 4.4.1, the occupancy ratio of the signal undersampled in an MRS

branch is higher than its Nyquist-rate counterpart. Indeed, all the original signal components

are folded into a smaller bandwidth. For low sampling rates, the resulting occupancy ratio can

be fairly high, encroaching on the KNVE hypothesis of a sparse input signal. Furthermore,

the signal components considered in our application have a low compacity, in the sense that

they consist in many narrowband signals instead of a few ”wideband” signals. This means

that considered signals typically fail to meet KNVE’s second hypothesis of compacity. Luckily,

our tests have demonstrated the robustness of the KNVE even if the two hypotheses are not

completely satisfied.

To analyse the performance of the KNVE for our application, the following experiment is

conducted. For a given traffic scenario, the received signal is sampled at some rate Mi = Nδi

(δi is called the undersampling ratio at branch i) for durations varying from 40 µs to 1 ms.

The noise variance is estimated (the estimate is noted σ̂2
w) and compared to the actual noise

variance σ2
w of the received signal. The estimation is considered successful when the relative

error RE = |σ̂2
w − σ2

w|/σ2
w is below 5%. This simulation is carried out on a signal which went

through a Rayleigh fading channel and for SNRs varying from −10 dB to 10 dB (except for

Scenario 3 for which results for SNR of −6 dB and below are inconclusive). The simulations

are averaged over 100 runs.

Fig. 4.3 depicts the average optimal (lowest) undersampling ratios for which KNVE makes

a successful estimation, as a function of the SNR. Each of the three scenarios is represented by

a subfigure. Since each block of samples lasts 20 µs, the ”number of blocks” parameter (nblocks)

measures the acquisition time of the sequence of samples on which the KNVE was applied.

It is also a measure of the number of samples on which the KNVE was applied: this number

of samples is nblocksδiN . From these simulation results, some observations are summarized as

follows.

The lower the traffic volume, the lower the sampling rates. As the average occupancy

ratio increases, so does the requirement for higher sampling rates. While correct estimation

can be achieved with a sampling rate as low as 4% of the Nyquist rate for Scenario 1, a higher

sampling rate of 36% Nyquist is required in Scenario 3. Noticeably, between the different

145



10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
SNR (dB)

0.04

0.06

0.08

0.10

0.12

0.14

Un
de

rs
am

pl
in

g 
ra

tio
 

i

Nr of blocks
2
5
10
20
50

(a) Scenario 1: 2.5% average occupancy ratio.
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(b) Scenario 2: 10% average occupancy ratio.
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(c) Scenario 3: 25% average occupancy ratio.

Figure 4.3: Optimal undersampling ratios δi for successful noise variance estimation with the

KNVE versus SNR, for different sampling durations (represented by the number of 20-µs blocks)

and different traffic scenarios.
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scenarios, the scale (for nblocks = 50 and SNR = 10 dB) between the optimal sampling rate

and the average occupancy ratio is approximately constant, at ∼ 1.5. This means that for high

SNRs, a rule of thumb to find the lowest suitable sampling rate for the KNVE is to multiply

the average occupancy ratio by 1.5N .

The longer the acquisition duration, the better. Increasing the number of blocks on

which the KNVE is applied lowers the requirements on sampling rates, for every scenario. For

instance, in Scenario 1, a sampling rate of 12% Nyquist is required when the decision is taken on

nblocks = 2 blocks, and this requirement drops by half when raising nblocks tenfold. While this

hike in sampling duration might seem large, we remind the reader that the KNVE is scalable due

to a linear complexity, and the total duration of the acquisition (of 1 millisecond for nblocks = 50

blocks) remains low compared to the rate at which the noise variance changes. However, it is

to note that the law of diminishing returns applies here, and at some point, further expansion

of the sampling duration does not come with lower sampling rates requirements. For example,

setting nblocks = 50 blocks gives about the same performance as nblocks = 20 blocks.

For lower SNRs, correct estimation requires higher sampling rates. For lower SNRs,

it is important to accurately estimate the noise variance, so as to precisely set the threshold of

the SE. However, when confronted with lower SNRs, the KNVE has more difficulty separating

noise-only values from signal-plus-noise values, and can use a little help in the form of a relaxed

sampling rate requirement, which allows for a higher fraction of noise-only values.

Note that in Scenario 1, the surge observed for SNR = 10 dB can be explained by the fact

that the actual noise variance is possibly extremely small, drastically increasing the relative

error RE on the estimation despite a low absolute error (for example due to spectrum leakage).

However, it is not extremely worrysome: even if off by, say, 10%, the noise variance estimation

will be sufficient for the SE for such a high SNR.

After studying the conditions in which the KNVE operates, we turn to the parameterization

of the SE.

4.4.4 Signal support estimation in each MRS branch

The stakes regarding the use of the frequency-domain support estimator (SE) in our sampling

infrastructure are now reminded. Because we do not know the locations of the signal components

in the frequency spectrum in advance, we have to sample at a higher rate than what could be

achieved if these locations were known beforehand. In other words, our sampling infrastructure

typically collects samples that are not strictly necessary for recovery of signal components. In

an effort to minimize the amount of samples to be processed and stored in base, we strive to

discard samples that do not convey relevant information. For this purpose, the SE can be very

helpful as it separates a frequency-domain sparse signal into (frequency-domain) information-

containing samples on the one hand, and (frequency-domain) noise-only samples on the other

hand.

147



Given that our sampling infrastructure relies on sub-Nyquist sampling, a naive approach

would be to first recover the Nyquist-rate samples from the sub-Nyquist samples using CS

tools, then from the recovered Nyquist-rate samples, to identify the frequency-domain support

of the received signal using the SE to discard useless samples. However, the MRS scheme, based

on undersampling, allows for a more clever use of the SE, where intermediary recovery of the

Nyquist-rate samples is not required. Consider the different branches of the MRS, in which

each signal is undersampled. At each branch, the acquired sample sequence contains the same

signal components, except that they are aliased onto different frequencies from one branch to

another. It is therefore possible to perform support estimation on the sample sequence acquired

at each branch Zi: the resulting estimate Ŝi then represents the frequency-domain support of

the aliases of the signal components. As we will see in Section 4.4.5, it is possible to combine

these so-called partial support estimates {Ŝi} to recover the frequency-domain support of the

signal Ŝ as if it were sampled at the Nyquist rate, using computations of a far lower complexity

than CS tools for USLE resolution.

In this section, we focus on the computation of partial support estimates {Ŝi}, that is, on

sample sequences acquired at each MRS branch. Each support estimate Ŝi is a Mi-sized boolean

vector whose jth element is 1 if signal-of-interest is present at the jth position of the sampled

signal’s DFT and 0 otherwise. For the combination of these partial support estimates into the

so-called total support estimate, see Section 4.4.5.

4.4.4.1 Parameters of the SE

A few parameters of the SE are now discussed in light of the context in which it is applied.

Type I/II error trade-off The SE relies on binary hypothesis testing, and the choice of the

detection threshold involves an arbitration between type I errors (false positives) and type II

errors (false negatives). In our application, a type I error results in a noise-only sample being

labeled as containing information, while a type II error discards an information-containing

sample as noise-only. Type I errors call for needless computation and storage resources, and

should generally be avoided; but type II errors result in a net loss of information, defeating the

original purpose of the sampling infrastructure. Therefore, we seek to minimize type II errors by

setting a requirement of PD ≥ 0.99 on the probability of detection. Following this requirement,

we wish to minimize the probability of false alarms PFA which measures the proportion of type

I errors.

The resolution issue and the SE window length The frequency resolution, understood as

the frequency difference between two adjacent frequency-domain samples, directly impacts the

performance of the SE. Indeed, when the resolution is low, a narrowband signal component is

represented by only a handful of frequency-domain samples, necessitating for the SE to operate

with a small window length wl (see Section 2.3.4 in Chapter 2 for a study on the impact of the

window length parameter for support estimation). Working with a small window length typically

reduces the performance of the SE because separating noise-only values from signal-plus-noise

148



values is more difficult with a shorter smoothing window. A solution to combat this phenomenon

is to increase the resolution, which is done by raising the duration of signal acquisition. Indeed,

the frequency resolution of nblocks 20-µs-blocks is δf = 1/(nblocks · 2 · 10−5) = 50/nblocks kHz.

Doing so allows the SE to operate with a higher window length and reduces the strength of

spectral leakage. However, this comes at the expense of the time resolution. If a transmission’s

duration is shorter than the duration of acquisition, chances are that the transmission will not

contribute enough energy to be detected successfully by the SE.

In a way, the choice of the window length wl also has an impact of the trade-off between

type I and type II errors. A too large window length would cause large side effects on the edges

of the signal components, likely resulting in a higher PFA, and a too little window length would

decrease the performance of the SE in a low SNR regime, in the way that PD and PFA would be

closer from one another, while we want them to be as close as possible to 1 and 0 respectively.

Further, wl needs to account for signal components with narrow bandwidths. For now, we set

wl = 10nblocks samples; this choice will be discussed in Section 4.4.4.2.

Note that the outcome of a support estimation carried out on nblocks is a boolean nblocksMi-

sized vector. To obtain a support estimate Ŝi of length Mi, we subdivide the nblocksMi vector

in Mi smaller vectors each of length nblocks. A voting rule is applied to each of the Mi smaller

vectors: if at least 20% of the nblocks boolean elements are 1’s, then the corresponding element

of the Mi-sized support estimate is set to 1. This has not shown to reduce PD and can even

filter out sporadic type I errors, thus marginally reducing PFA.

The impact of undersampling on the SE performance When the received signal is un-

dersampled, the resolution of the signal components is not altered because sampling duration

is unchanged. However, a lower number of samples is acquired, detrimentally impacting the

performance of the SE. Because of spectrum folding due to undersampling, the occupancy ratio

in the sample sequence goes up whenever the undersampling ratio decreases. As a consequence,

even if the number of type I errors is unchanged, PFA increases, simply because there is pro-

portionally fewer samples that do not contain any signal component. In an extreme situation

of a very low undersampling ratio, very few samples, if any, do not contain any useful informa-

tion, resulting in an extremely high PFA in the likely event of type I errors, if the PFA is even

computable in the first place (if every frequency-domain sample contains information, there is

no possible type I error so PFA cannot be computed).

4.4.4.2 Validation of the SE

We now present an experiment to quantify the performance of the SE. For each traffic scenario,

the received signal is sampled, and the noise variance and partial support Ŝi are estimated. Ŝi

is compared to the actual partial (folded) signal support Si by computing PD and PFA. The

simulation is averaged over 50 runs. The varying parameters are the following:

• the occupancy ratio ρ of the Nyquist-rate signal;

• the SNR;
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• the duration of acquisition ∆acq = nblocks · 2 · 10−5;

• the undersampling ratio δi;

• the window length parameter wl for the SE.

Two of these factors are not under our control, namely the SNR and the occupancy ratio

at the Nyquist rate. Of these two factors, the SNR can be estimated after sampling, but before

running the SE, by using the previously computed noise variance estimate using the following

equation:

SNR =
Psignal
Pnoise

≈
Psignal+noise − Pnoise

Pnoise
=
Preceived signal

Pnoise
− 1, (4.2)

where P denotes the power or energy and Pnoise is the noise variance multiplied by the considered

number of samples. Note that the approximation in (4.2) consists in the omission of cross terms

in the computation of Psignal+noise.

The other factor, the occupancy ratio at the Nyquist rate, is unknown prior to SE, but can

be found after SE is performed.

For each set of parameters, we filter out results for which PD < 0.99 and consider PFA.

Fig. 4.4 displays the PFA corresponding to a value of PD ≥ 0.99 as a function of the

undersampling ratio for the different traffic scenarios and for three SNR regimes. The number

of 20µs blocks is nblocks = 20, corresponding to a sampling duration of 400 µs and to a Nyquist-

rate vector of size Nnblocks = 40000 samples - but support estimation is performed on a much

smaller vector, of size Nnblocksδi. The SE window length is set to wl = 10nblocks = 200 samples.

A series of observations can be made from this experiment.

PFA heavily depends on the traffic scenario and the undersampling ratio For a given

traffic scenario, as the undersampling ratio goes up, PFA declines. This is because an important

contributor to type I errors is the side effect taking place at the edges of signal components.

When the undersampling ratio increases, so does the number of noise-only samples, while the

number of side-effect-related type I errors remains about the same, thus effectively diminishing

PFA.

For every traffic scenario, every SNR regime can be accomodated In all three con-

sidered SNR regimes, for every traffic scenario, it is possible to have PD ≥ 0.99 without PFA = 1

(which indicates that the SE is of no use). However, depending on the undersampling ratio,

the share of type I errors can be quite high. Generally speaking, the lower the SNR, the higher

the PFA; however, for every scenario, it seems like the high SNR and medium SNR regimes

have about the same performance in terms of PFA, meaning that we could have reached a PFA

lower-bound for this set of settings.

To gain more insight on the role of the other parameters, such as the acquisition duration

represented by nblocks or the SE window length wl, we run some follow-up simulations, with the

same metric (PFA under PD ≥ 0.99) but with a variation of some parameters. We specifically

focus on the high and medium SNR regimes as they offer possibilities to either reduce the
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Figure 4.4: Probability PFA of type II errors (under PD ≥ 0.99) versus undersampling ratio δi

for various SNR regimes and traffic scenarios. The lower the PFA, the better.
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acquisition duration at no expense, or reduce PFA through the window length parameter wl of

the SE.

A higher SNR regime offers leverage to curb PFA through the wl setting A lot of

type I errors are the expression of the side effect taking place at the edges of the different signal

components in the frequency spectrum. The scope of this side effect heavily depends on the

window length parameter wl of the SE: the smaller wl is, the lower the magnitude of the side

effect. However, wl is also useful because it smoothes noise-only values, making them easier to

discriminate from signal-plus-noise values. Fig. 4.5 helps solve this trade-off for the high and

medium SNR regimes. For this simulation, the window length varies from wl = 4nblocks samples

to wl = 10nblocks samples.

Lowering the window length from wl = 10nblocks to wl = 6nblocks incurs massive gains in

PFA: consider Fig. 4.5(b), which represents the medium SNR regime in Scenario 1. For these

settings, the PFA for a 10%-of-Nyquist sampling rate drops from 24% for wl = 10nblocks to a

mere 7% for wl = 6nblocks. Similar gains can be obtained for various undersampling ratios,

traffic scenarios and in the high and medium SNR regimes. Note that changing wl does not

seem to have a strong impact in the low SNR regime.

A downside of this parameter tuning is that reducing the window length too aggressively

results in a spike in PFA. To illustrate, consider wl = 4nblocks samples in all panels of Fig. 4.5.

It is not clear why PFA increases to such an extent. It is perhaps due to the bandwidth of

the narrowest signal components, which is precisely 4nblocks in an Nnblocks frequency-domain

representation of the entire traffic sampled during 20nblocks µs.

A higher SNR allows for lower acquisition durations Fig. 4.6 displays PFA versus the

undersampling ratio δi for different acquisition durations (represented by the number nblocks of

20 µs blocks) in Scenario 1 for the high SNR regime (panel (a)) and the low SNR regime (panel

(b)). The SE window length is wl = 10nblocks samples. In the low SNR regime, reducing the

number of 20-µs blocks (and thus the acquisition duration and number of points) results in a

degradation of the PFA. This means that the higher frequency resolution that comes at the

cost of a lower time resolution is necessary in the lower SNR regime. The same logic applies to

the intermediate SNR regime, not depicted for conciseness. However, in the high SNR regime,

lowering the acquisition duration (and thus increasing the time resolution) can be done with no

increase in PFA. This opens the path towards an enhanced time resolution in high SNR regimes,

which is useful for very brief signals. The same phenomenon appears in Scenario 2 and 3. Note

that the combined effects of shortening the SE window length and the acquisition duration has

not been tested; however, it is expected that both cannot be achieved at the same time (except

perhaps for even higher SNRs), because one effect relies on a higher time resolution and the

other on a higher frequency resolution, which are antagonistic.

Impact of the noise variance estimation and thresholding step The noise variance

estimation performed at the previous step using the KNVE is principally used to set the PFA

152



0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Undersampling ratio i

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P F
A

SE window length
4 nblocks

6 nblocks

8 nblocks

10 nblocks

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Undersampling ratio i

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P F
A

SE window length
4 nblocks

6 nblocks

8 nblocks

10 nblocks
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Figure 4.5: Probability PFA of type I errors (under PD ≥ 0.99) versus undersampling ratio δi

for various SE window lengths wl, in different SNR regimes and traffic scenarios. The lower the

PFA, the better.
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Figure 4.6: Probability PFA of type I errors (under PD ≥ 0.99) versus undersampling ratio δi

in traffic scenario 1 for various acquisition durations in the (a) high SNR regime; (b) low SNR

regime. The lower the PFA, the better.
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threshold for the SE. However, even with a successful noise variance estimation, we have noticed

that the measured PFA vastly differs from the target PFA used to set the threshold for detection.

This discrepancy between the target PFA and the measured PFA is caused by an anomalous

number of type II errors. We believe undersampling in each MRS branch to be the main source

of type II errors not attributable to actual outliers of the noise distribution. The spectrum

folding of the noise, signal components, and of their respective energies, probably calls for a

revision of the equations of the SE, in a fashion similar to that of [140]. As a consequence,

we had to set the PFA threshold a posteriori, and we were not able to assess the degradation

caused by an inaccurate noise variance estimation.

Beyond the problem of the discrepancy between target and measured PFA, the support

estimation step requires calibration. Indeed, Neyman-Pearson-theory-based energy detection

seeks to maximize PD for some fixed PFA target. On the contrary, for our infrastructure, we

wish to minimize PFA for a fixed value of PD ≥ 0.99. This task is more difficult than the first

one because through the KNVE, we primarily have information about noise (which is underH0),

not so much about signal-of-interest components (which are under H1). Hence, a calibration

step to set the threshold of the SE according to our objective (minimize PFA for a fixed PD) is

an open issue and should be investigated.

For the remainder of this study, we will set this issue aside and use partial support estimates

Ŝi for which the fulfillment of the detection condition (PD ≥ 0.99) is validated a posteriori.

4.4.5 Combination of partial support estimates

After partial support estimation has been carried out on the samples acquired at every MRS

branch, a combination procedure is applied to obtain a new support estimate Ŝ, representative

of the received signal if it had been sampled at the Nyquist rate. This combination procedure

was initially introduced in [20], and is presented in our context in Algorithm 4.1.

Algorithm 4.1: Support combination procedure of the MRS.

Input: Support estimates at each MRS branch {Ŝi}1≤i≤L, block size N

Initialize: Ŝ = 0N

for i = 1; i = i+ 1; i ≥ L do

Ŝexpi = expand(Ŝi, N) (support expansion)

end

Ŝ =
∏

1≤i≤L Ŝ
exp
i (combination of expanded support)

Output: Full support estimate Ŝ

In Algorithm 4.1, the expand function consists in considering the partial support estimate

as a (frequency) period and reproducing this period until the length of the outcome reaches

block size N (see Fig. 4.7 for an illustration of the expansion procedure).

The full support estimate Ŝ is crucial as it determines which Nyquist-rate samples will be

reconstructed and which will be dropped. The study of the combination procedure will be

separated in two parts. First, we are interested in its performance in optimal conditions, that
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Figure 4.7: Illustration of the support expansion procedure. The estimates are centered around

0 for visual clarity. The Mi-sized partial support estimate (solid line) is periodically reproduced

to form the N -sized expanded support estimate (dotted line).

is, its performance if the inputs are perfect partial support (a perfect partial support verifies

PD = 1 and PFA = 0 and is obtained by multiplying the exact signal support S by the folding

matrix Fi). Indeed, perfect {Si} do not necessarily result in an perfect full support estimate.

The expansion procedure reproduces all aliases onto the total bandwidth, potentially entailing a

lot of type I errors for the Nyquist-rate frequency-domain signal. Contrary to aliases, ”original”

signal components are at the same location in the frequency spectrum no matter what the

sampling rate is, so the combination of the expanded support estimates should remove these

type I errors. However, if there are not enough MRS branches and/or the sampling rates are

too low, the combination procedure cannot solve the support so as to remove all type I errors.

After studying the performance of the combination procedure in optimal conditions, we will

test its resistance to faults. To do so, we will use partial support estimates {Ŝi} issued from

the previous steps of our processing chain, with PD ≥ 0.99 and various values of PFA.

4.4.5.1 Performance of the combination procedure in optimal conditions

In this section, we use perfect partial supports {Si} (with PD = 1 and PFA = 0), and combine

them to form a full support estimate Ŝ. The varying parameters are the number L of MRS

branches, the total undersampling ratio (defined as δ =
∑

iMi/N) and the traffic scenario. We

then compare Ŝ to S and compute PFA (PD is always equal to 1 since every partial support

estimate as a PD of 1). The varying parameters are the traffic scenario, the number of branches

L and the undersampling ratio δ. The simulation is averaged over 50 runs.

Fig. 4.8 displays the probability of false alarms PFA as a function of the undersampling

ratio δ =
∑

iMi/N for different traffic scenarios and different number of branches L. We can

see that to reach a low PFA, higher occupancy ratios result in higher requirements for sampling
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(c) Scenario 3: 25% average occupancy ratio.

Figure 4.8: PFA versus undersampling ratio δ for support combination of L perfect partial

supports (PD = 1, PFA = 0), each computed in an MRS branch.
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rates.

For a 25% occupancy ratio (Scenario 3), it is generally not possible to perfectly estimate

the signal support, even from perfect partial support estimates5. Yet, for
∑

iMi ≈ N , values

of PFA are rather low. This suggests that even for a high spectrum occupancy ratio, using the

MRS can be beneficial: it allows to reduce the sampling rates in each branch (and thus relaxing

constraints on the ADCs), although it does not permit a reduction of the number of acquired

samples (compared to the Nyquist rate).

However, if the sampling rate in one branch is too low compared to the Nyquist-rate occu-

pancy ratio, the samples collected in this branch are basically composed of aliases only, due to

too much spectrum folding. The ability of this branch to contribute to support combination is

therefore reduced. This is why in Scenario 3, the more branches an MRS has, the worse sup-

port combination turns out to be. Indeed, for a given undersampling ratio, the more branches,

the smaller the sampling rate of each branch. For example, for L = 5 branches, the average

sampling rate of a branch is 20%-of-Nyquist if δ = 1.0. Compare this with the occupancy ratio

of 25% in Scenario 3: it makes sense that the partial support in any branch of a L = 5-branch

MRS is subject to heavy spectrum folding.

4.4.5.2 Combination of partial support estimates Ŝi

In realistic operating conditions, we cannot use perfect partial supports {Si} but have to rely

on partial support estimates {Ŝi}. We now measure the PFA versus undersampling ratio δ for

different scenarios and SNR regimes. For traffic scenarios 1 and 2, the number of branches has

a very limited impact on PFA, so we restrict our study to MRS systems with L = 4 branches

to simplify the analysis. For traffic scenario 3, the number of branches has a higher impact on

PFA. For conciseness, here we only present the results with L = 4 branches.

Fig. 4.9 represents support combination from support estimates {Ŝi} computed for various

SNR regimes and for the three traffic scenarios. The dashed line represents the corresponding

support combination carried out with perfect partial supports {Si} instead of support estimates:

it corresponds to the optimal performance of the support combination step.

For every SNR regime, the PFA follow the same trend as when support combination is carried

out on perfect partial supports {Si} (dashed line), except that they are shifted up. Indeed, the

type I errors in the partial support estimates {Ŝi} propagate into the support combination Ŝ.

The higher the SNR, the closer Ŝ is to the perfect support combination. An exception can be

found in Scenario 3, for which results are better in the medium SNR regime than in the high

SNR regime. We do not have an explanation to this phenomenon. Note that its significance

may be low, as for Scenario 3, values of PFA are very high even for high sampling rates anyway.

4.4.6 Conclusion

In this section, we have tried and validated our K-means-based noise variance estimator (KNVE),

support estimator (SE). We also quantified the performance of the support combination proce-

5This study is carried out with the following constraint:
∑

iMi ≤ N . If we relax this constraint, we can reach

PFA = 0 for the support combination.
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Figure 4.9: PFA versus undersampling ratio δ for support combination of L = 4 partial sup-

port estimates, each computed in an MRS branch, for various SNR regimes. The dashed line

represents the performance in optimal conditions.
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dure.

Generally speaking, the low-traffic scenario allows for a significant reduction in total number

of acquired samples M =
∑

iMi compared to sample acquisition at the Nyquist-rate. The

medium-traffic scenario makes some reduction of M possible, while the high-traffic scenario

does not. Nonetheless, even if the occupancy ratio is too high to permit a reduction in M , a

relaxation of the sampling rate constraints on each ADC is achievable.

Now that we have described the conditions to obtain a satisfactory signal support estimate,

we turn to the reconstruction of the MRS-acquired signal, a critical component of our proposed

sampling infrastructure.

4.5 Impact of the reduction procedure and solver

4.5.1 Introduction

After determining the frequency-domain support of the signal of interest Ŝ, the next step in

our processing chain is the recovery, or reconstruction, of Nyquist-rate samples Ŷ from the

sub-Nyquist MRS samples {Zi}i. It is conducted whenever there is a request from the client

to recover the messages transmitted by their deployed devices. Signal recovery consists in

solving the CS USLE and is carried out on-demand: as it requires a substantial amount of

computational resources, it would be pointless to perform it if no one benefits from it.

Several strategies towards signal recovery can be implemented. Some rely on support es-

timation while some do not. Generally speaking, the reduction procedure permitted by the

support estimation step allows for faster and more accurate USLE6 resolution. The gain in

speed is provided by the fact that the reduced USLE is smaller than the non-reduced one, while

the gain in accuracy is a consequence of the reduction of the USLE solution space. However,

these gains can be lowered and even counterbalanced by a defective support estimation. For

every solving method relying on the support estimation and reduction procedure, we compare

the outcome of signal recovery carried out with our support estimate Ŝ to that with the actual

support S. Indeed, not only is this a good way to see how a solver copes with an imperfect

support estimation, but it can also depict a realistic scenario where a client actually knows the

locations in time and frequency of their devices’ transmissions.

To measure the performance of the different solvers, we look at the difference between

received frequency-domain samples Y hypothetically sampled at the Nyquist rate and recon-

structed samples Ŷ . This difference is only evaluated in the support S of the Nyquist-rate

samples. This is done in an effort to restrict the evaluation to that of our sampling infrastruc-

ture and not include impairments beyond the scope of our study, such as Rayleigh fading. We

use the relative root-mean-square error (relative RMSE) metric:

RMSErel =
||Ŷ [S]− Y [S]||2
||Y [S]||2

. (4.3)

6Strictly speaking, the ”Underdetermined” part (U) of the denomination ”USLE” might not even be true once

the reduction procedure is applied, in which case there is oftentimes more equations than unknowns. Nonetheless,

for simplicity, we still (abusively) refer to the system to solve as an USLE.
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This metric has its flaws. In particular, the relationship between the relative RMSE and an

information retrieval metric such as the BER is a priori not linear. Indeed, reconstructed

samples can be as suitable as Nyquist-rate samples for retrieval of transmitted messages, yet

have a substantial relative RMSE, simply because due to noise folding, the AWGN7 in the

reconstructed samples has different realizations than in the Nyquist-rate samples. Nonetheless,

it remains a useful indicator to estimate the degradation caused by our sampling infrastructure

and make qualitative comparisons between solving methods and MRS settings.

We also consider the time performance of the different solvers. Although signal recovery is

a somewhat complex step, some solving methods are simpler than others. The conditions of

simulations are such that the resolution times are not necessarily representative of a real-life

implementation designed for this specific purpose, however these resolution times can be the

support of a discussion and comparison of the complexities of the different solvers.

In the reminder of this section, we will first introduce the different tested solvers, then turn

to the analysis of their performance based on simulations carried out in different setups. Finally,

we will draw insights for choosing the solver that is the most adapted to a given situation.

4.5.2 Presentation of tested solvers

To solve the CS USLE, we have tested 8 different solvers. Two are based on convex optimization

(`1-minimization), three on greedy optimization, two on `2-minimization, and one specific to the

MRS based on alias resolution. The other families of solvers (combinatorial methods, Bayesian

methods, and so on) presented or mentioned in Chapter 1 are not covered because we were not

able to identify a solver which was applicable to the MRS. Neither did we explore the variants

of greedy algorithms and of convex optimization methods.

4.5.2.1 Solvers based on `1-minimization: CVXOPT and CVXOPT-RP

For the USLE resolution based on `1-minimization, we use the CVXPY [188] package. It is

a general-purpose convex optimization program to solve constrained Basis Pursuit Denoising

(BPDN) (1.29). When applied to the non-reduced USLE, we call the solver CVXOPT (short

for ConVeX OPTimization). When applied to the reduced USLE after the reduction procedure,

it is referred to as CVXOPT-RP (short for CVXOPT-Reduction Procedure).

Note that in the constraint of (1.29), there is an error parameter called ε which is not trivial

to set. If set too low, the problem is infeasible (as per CVXPY terminology); if set too high,

the solution is suboptimal. To overcome this issue, we implemented a simple heuristic that

consisted in trying to solve the problem for a low value of ε, and if the problem turned out to

be infeasible, we progressively increased ε until the problem was feasible or after an iteration

counter was exceeded. This potentially resulted in execution times higher than what CVXOPT

and CVXOPT-RP are capable of.

7Throughout this section, we only consider noisy signals coming from the previous steps of our sampling

infrastructure, and leave noiseless signals aside.
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4.5.2.2 Solvers based on `2-minimization: PINV and PINV-RP

The solvers based on `2-minimization find the least-squares solution to the USLE. The `2 norm

tends to promote energy over sparsity, which is promoted by the `0-pseudonorm and, to a lesser

extent, by the `1-norm. Therefore, it seems that `2-minimization would be less efficient than

other approaches: we will see that this depends on the considered settings. These solvers are

based on the computation of the Moore-Penrose pseudo-inverse (MPPI) A† of the sampling

matrix A (or of its reduced version Ared). After the computation of the MPPI, it is multiplied

by the observation vector Z = [Z1 . . . ZL]T to yield an estimate Ŷ of Y . The names of the two

solvers are drawn from numpy.linalg.pinv, the name of the Numpy method for the computation

of the MPPI. The solvers come in two flavors: PINV (without the reduction procedure) and

PINV-RP (for which the reduction procedure is applied).

PINV is extremely fast: after the MPPI of A is computed once and for all, applying PINV to

every block consists in a mere matrix multiplication A†Z. In contrast, every time the support

estimate changes, so does the reduced sampling matrix Ared, and PINV-RP has to compute

a new MPPI at each evolution of the support estimate. However, these evolutions can be

somewhat sporadic (at least compared to the duration of one block) and most importantly,

the reduced sampling matrix Ared can be much smaller than A, entailing considerable gains

in execution times. A downside of PINV-RP is that it can be numerically unstable, especially

when the support estimate is bad.

4.5.2.3 Solvers based on greedy optimization: OMP-SE, OMP-CV and OMP-RP

For the study of the behavior of greedy algorithms on our MRS-sampled signals, we use an

implementation of Orthogonal Matching Pursuit (OMP) [189] present in the Scikit-learn package

for Python. We compare three flavors of OMP. As we recall from Chapter 1, OMP needs a

stopping criterion, generally in the form of the degree of sparsity k. OMP-SE (short for OMP-

Support Estimation) operates on the non-reduced USLE, but relies on the support estimation

previously carried out to determine the number of frequency-domain samples in the support of

the signal of interest (proxy for the number of non-zeros in a noisy setting) and use it as its

stopping criterion. OMP-CV does not take the support estimate as an input but uses cross-

validation to estimate the degree of sparsity and fix its stopping criterion. Finally, OMP-RP is

OMP-SE applied to the reduced USLE.

Because an internal step of OMP is based on `2-minimization, OMP-RP shares similitudes

with PINV-RP.

4.5.2.4 Solver based on alias resolution: AMRS

Finally, a solver specific to the MRS and presented in the context of the AMRS [113] was

tested. This solver does not rely on any equation resolution. The principle of this solver is, for

each element in the signal support estimate, to find an MRS branch in which the corresponding

element is not aliased with any other signal component, and to select this corresponding element.

If there is no branch in which the corresponding element is non-aliased, then it is considered
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Figure 4.10: Relative RMSE versus undersampling ratio δ for traffic scenario 1 (low traffic) in

the high SNR regime (SNR = 3 dB).

non-retrievable and arbitrarily set to zero in the vector solution. By essence, this solver relies

on support estimation and cannot be applied without the support estimation step.

Now, we turn to the analysis of simulation results.

4.5.3 Simulation results

We compare the performance of the different solvers for different traffic scenarios, SNR regimes

and undersampling ratios δ. For each setting, we have conducted support estimation on nblocks =

20 blocks and with a smoothing window of length wl = 6nblocks = 120 samples. Each solver was

tested (when applicable) with our support estimate and with the actual signal support. Each

simulation point is averaged over 5 runs.

Additionally, we tested every solver for L ∈ {2, 3, 4, 5}. However, all other settings being

equal, no significant variation in solver performance has been observed when L was modified.

Therefore, for the remainder of this section, we will present results obtained with an L = 4-

branch MRS.

4.5.3.1 Traffic scenario 1 (low traffic), high SNR regime

This is the most favorable set of settings. Fig. 4.10 depicts the performance of the different

solvers.

Solver performance in terms of relative RMSE Apart from AMRS and PINV, all the

solvers have more or less the same performance, though PINV-RP and OMP-RP are a little

better than the others for higher undersampling ratios. Although what can be considered a

satisfactory relative RMSE depends on a variety of factors, notably the choice of the signal
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Solver Execution time (s) Ratio To Fastest

PINV .013 fastest

PINV-RP .021 1.6

OMP-RP .039 3.1

AMRS .047 3.7

CVXOPT-RP .104 8.2

OMP-SE .272 21

CVXOPT 1.70 134

OMP 2.29 180

Table 4.3: Execution times (in seconds) for the different solvers for traffic scenario 1 (low traffic)

in the high SNR regime (SNR = 3 dB).

modulation and the implemented error correction protocol, we can see that a relative RMSE of

0.2 is reached for δ = .5 with OMP-RP and PINV-RP, meaning that 4 branches can sample at

an average rate of 12.5% of Nyquist and recover the sampled signal fairly well.

PINV’s performance increases linearly with the undersampling ratio. The regularity with

which the relative RMSE decreases when δ increases is quite an interesting phenomenon, even

more so as we will see that it takes place for all the other sets of settings.

AMRS has a lower performance than all other solvers, a trend that we will witness in every

other set of settings.

Execution time Though the performance in terms of relative RMSE is about the same for

most solvers, the same cannot be said about execution times. Again, the elapsed times are to be

taken cautiously as they were run on a setup that is not dedicated to this task. Yet, comparing

these execution times helps us understand which solver could be adequate and which could not.

Except from the AMRS, which was not thoroughly optimized (however, the relative RMSE

performance a priori excludes it anyway), all solvers rely on third-party packages that have

been optimized by their respective authors. Table 4.3 displays these execution times in the

ascending order. All times are in seconds. Values are averaged over the number of branches L

and the undersampling ratio δ.

PINV is the fastest solver. Following are the reduction-procedure-based solvers, which take

advantage of the signal sparsity and therefore of the smaller problem size. In this pack there

is also AMRS, which does not rely on equation solving. Solvers not based on the reduction

procedure have to cope with a much larger problem and are thus slower. Cross-validation and

hyperparameter selection (which concerns OMP and CVXOPT) take their toll in the form of a

much longer execution time.

4.5.3.2 Traffic scenario 2 (medium traffic), high SNR regime

While still in a high SNR regime, we now increase the traffic. Fig. 4.11 depicts the performance

of the different solvers.
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Figure 4.11: Relative RMSE versus undersampling ratio δ for traffic scenario 2 (medium traffic)

in the high SNR regime (SNR = 9 dB).

Solver performance in terms of relative RMSE For high undersampling ratio, all solvers

(except AMRS and PINV) have about the same performance. However, for lower values of

δ, solvers based on support estimation (with the notable exception of CVXOPT-RP) output

relative RMSEs above 1.0 and/or numerically unstable results. This outlines the crucial role of

correct support estimation. As a basis of comparison, consider Fig. 4.12 (CVXOPT and OMP

are not depicted because their performance are the same as in Fig. 4.11). It is clear that when

the actual signal support is known, performance of reduction-procedure-based solvers is much

better than when the signal support is estimated (especially for low sampling rates).

Execution time Table 4.4 displays execution times in the ascending order. All times are in

seconds. Values are averaged over the number of branches L and the undersampling ratio δ.

All reduction-procedure-based solvers take a severe hit in terms of execution times. However,

this is mostly due to the bad support estimation for low sampling rates. Indeed, the execution

times for these solvers with the actual signal support, displayed in Table 4.5, show only a

twofold increase, instead of the more-than-tenfold increase witnessed when solvers are applied

on support estimates.

4.5.3.3 Traffic scenario 3 (high traffic), high SNR regime

In the most demanding traffic scenario, the phenomena at stake with the medium traffic scenario

are still present and even exacerbated. Fig. 4.13 depicts the performance of the different solvers.

Solver performance in terms of relative RMSE The solvers based on support estimation

do not converge if the undersampling ratio is not very high (of at least δ ≥ 0.85 for PINV-RP
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Figure 4.12: Relative RMSE versus undersampling ratio δ for traffic scenario 2 (medium traffic)

in the high SNR regime (SNR = 9 dB). Solvers use the actual signal support for USLE resolution

(when applicable).

Solver Execution time (s) Ratio To Fastest

PINV .013 fastest

AMRS .059 4.7

PINV-RP .330 26

CVXOPT-RP .507 40

OMP-RP .671 53

CVXOPT 1.62 126

OMP-SE 2.02 158

OMP 2.40 188

Table 4.4: Execution times for the different solvers for traffic scenario 2 (medium traffic) in the

high SNR regime (SNR = 9 dB).

Solver Execution time (s) Ratio To Fastest

PINV .013 fastest

PINV-RP .057 4.2

OMP-RP .102 7.6

CVXOPT-RP .104 7.7

OMP-SE .509 38

Table 4.5: Execution times for the different solvers for traffic scenario 2 (medium traffic) in

the high SNR regime (SNR = 9 dB). Solvers use the actual signal support for USLE resolution

(when applicable).
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Figure 4.13: Relative RMSE versus undersampling ratio δ for traffic scenario 3 (high traffic) in

the high SNR regime (SNR = 12 dB).

and OMP-RP, δ ∼ 0.70 for OMP-SE). Again, CVXOPT-RP is the notable exception and is even

the best solver for lower undersampling ratios. The performance of PINV-RP and OMP-RP

increases when the actual signal support is used instead of the support estimate, as can be seen

in Fig. 4.14.

Execution time Table 4.6 displays execution times in the ascending order. All times are in

seconds. Values are averaged over the number of branches L and the undersampling ratio δ.

The reduction-procedure-based solvers are once again taking a toll in terms of execution

time. Noticeably, CVXOPT-RP, OMP-RP and OMP-SE now take longer than their non-

reduction-procedure-based counterparts. For OMP-RP and OMP-SE, this could be because

the stopping criterion, based on the support estimate, entails a higher number of iterations

Solver Execution time (s) Ratio To Fastest

PINV .013 fastest

AMRS .058 4.7

PINV-RP 1.07 85

CVXOPT 1.76 141

OMP 2.35 188

CVXOPT-RP 2.50 200

OMP-RP 4.52 361

OMP-SE 6.80 543

Table 4.6: Execution times for the different solvers for traffic scenario 3 (high traffic) in the

high SNR regime (SNR = 12 dB).
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Figure 4.14: Relative RMSE versus undersampling ratio δ for traffic scenario 3 (high traffic) in

the high SNR regime (SNR = 12 dB). Solvers use the actual signal support for USLE resolution

(when applicable).

Solver Execution time (s) Ratio to fastest

PINV .013 fastest

CVXOPT-RP .238 19

PINV-RP .306 24

OMP-RP .604 47

OMP-SE 1.71 134

Table 4.7: Execution times for the different solvers for traffic scenario 3 (high traffic) in the

high SNR regime (SNR = 12 dB). Solvers use the actual signal support for USLE resolution

(when applicable).

than OMP (due to a pollution of the support estimate by type I errors in lower undersampling

ratios). For CVXOPT-RP, this can be because the reduced problem is infeasible (due to type

I error pollution) except with a high ε parameter: our construction of CVXOPT-RP could

therefore be the source of the longer execution time.

Similarly to the previous settings (medium traffic, high SNR regime), the reduction-procedure-

based solvers become faster when the actual support is used instead of the support estimate, as

seen in Table 4.7.

4.5.3.4 Traffic scenario 1 (low traffic), medium SNR regime

Fig. 4.15 depicts simulation results for an MRS in traffic scenario 1 in a medium SNR regime.
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Figure 4.15: Relative RMSE versus undersampling ratio δ for traffic scenario 1 (low traffic) in

the medium SNR regime (SNR = −3 dB).

Solver performance in terms of relative RMSE For traffic scenario 1, in the medium

SNR regime, the solvers behave exactly in the same way than in the high SNR regime, except

the relative RMSE curves are shifted upwards.

Execution time As depicted in Table 4.8, the execution times are extremely similar to those

in the high SNR regime. Support estimation is very good for many undersampling ratios, leading

to a low PFA for support estimation: reduction-procedure-based solvers are not polluted by an

excessive amount of type I errors.

Solver Execution time (s) Ratio to fastest

PINV .013 fastest

PINV-RP .020 1.5

OMP-RP .035 2.7

AMRS .046 3.7

CVXOPT-RP .118 9.4

OMP-SE .252 20

CVXOPT 1.56 124

OMP 2.26 179

Table 4.8: Execution times for the different solvers for traffic scenario 1 (low traffic) in the

medium SNR regime (SNR = −3 dB).
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Figure 4.16: Relative RMSE versus undersampling ratio δ for traffic scenario 2 (medium traffic)

in the medium SNR regime (SNR = 3 dB).

4.5.3.5 Traffic scenario 2 (medium traffic), medium SNR regime

Fig. 4.16 depicts simulation results for an MRS in traffic scenario 2 in a medium SNR regime.

Solver performance in terms of relative RMSE In the medium traffic scenario and

medium SNR regime, there starts to be a significant degradation of the performance of all solvers

except PINV, to the point that PINV outperforms all the other solvers, except CVXOPT and

CVXOPT-RP for undersampling ratios under δ ∼ 0.5. Of course, this is in part due to the

inexact support estimation, as reduction-procedure-based solvers beat PINV when applied with

the actual signal support as input, as shown in Fig. 4.17.

Execution time The execution times for scenario 2 in the medium SNR regime are very

similar to that in the high SNR regime. No matter whether the support estimate or the actual

support is used for the support-estimate-based solvers, this is true in both cases.

4.5.3.6 Traffic scenario 3 (high traffic), medium SNR regime

Fig. 4.18 depicts simulation results for an MRS in traffic scenario 3 in a medium SNR regime.

Solver performance in terms of relative RMSE In the high traffic scenario and medium

SNR regime, PINV has almost the same performance as CVXOPT and CVXOPT-RP, except

for higher sampling rates (δ ≥ 0.75) where PINV outperforms CVXOPT and CVXOPT-RP.

Other solvers result in a higher relative RMSE, whatever the undersampling ratio. With these

settings, even using the actual signal support as input does not improve the performance of

support-estimation-based solvers, as shown in Fig. 4.19.
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Figure 4.17: Relative RMSE versus undersampling ratio δ for traffic scenario 2 (medium traffic)

in the medium SNR regime (SNR = 3 dB). Solvers use the actual signal support for USLE

resolution (when applicable).
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Figure 4.18: Relative RMSE versus undersampling ratio δ for traffic scenario 3 (high traffic) in

the medium SNR regime (SNR = 6 dB).
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Figure 4.19: Relative RMSE versus undersampling ratio δ for traffic scenario 3 (high traffic)

in the medium SNR regime (SNR = 3 dB). Solvers use the actual signal support for USLE

resolution (when applicable).

Execution time The execution times for scenario 3 in the medium SNR regime are very

similar to that in the high SNR regime. No matter whether the support estimate or the actual

support is used for the support-estimate-based solvers, this is true in both cases.

4.5.4 Low SNR regime

In the low SNR regime, it does not matter whether the support estimate or the actual support

is used as input to reduction-procedure-based solvers. The traffic scenario does not matter

either, nor does the undersampling ratio. Whatever the settings, in the low SNR regime, PINV

is always the best solver. Fig. 4.20 displays the results for all traffic scenarios in the low SNR

regime, with reconstruction carried out with signal support estimates Ŝ.

Solver performance in terms of relative RMSE PINV outperforms every other solver

for every traffic scenario and every undersampling ratio, except in a few sporadic, insignificant

occasions.

Note that these results must be taken with a pinch of salt. It is possible that the other

solvers assign values to the solution X̂ that result in a high relative RMSE, just because noise

folding affects reconstruction with these solvers in a different manner than PINV, in a manner

does not necessarily prevent information retrieval. However, only extracting the information

from the samples and computing a metric such as the BER will tell us whether or not this is

the case.
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(a) Scenario 1: 2.5% average occupancy ratio.
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(b) Scenario 2: 10% average occupancy ratio.
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(b) Scenario 3: 25% average occupancy ratio.

Figure 4.20: Relative RMSE versus undersampling ratio δ for all three traffic scenarios in the

low SNR regime (SNR = −9 dB for Scenario 1, −3 dB for Scenario 2 and 0 dB for Scenario 3).
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Execution time PINV is several orders of magnitude faster than all the other solvers (except

AMRS).

4.5.5 Discussion on the performance of solvers

The first conclusion to be drawn is that no solver is optimal in every situation8. Therefore, for

different conditions, it is recommended to pick the solver that works best under said conditions,

and the results presented in this section can help with this task.

Generally speaking, the reduction procedure of the MRS plays an important part in the

success of signal recovery. When the SE operates under favorable conditions (high SNR regime

or medium SNR regime with low or medium traffic), the reduction procedure of the MRS

provides a decisive improvement to the quality of signal recovery. Otherwise, the reduction

procedure is of little use and sometimes even detrimental to signal recovery: it is then better

to use a solver not based on the reduction procedure. However, it is not clear why greedy

optimization and `1 minimization algorithms not based on the reduction procedure perform

worse than PINV in unfavorable conditions (low SNR regime or medium SNR regime with high

traffic).

In any case, the main conditions which should drive the choice of the solver are mainly

the SNR regime and the traffic scenario. The choice of the best solver also depends on the

undersampling ratio: for high undersampling ratios (δ ≈ 1), PINV is always better than the

other solvers, but there are strong contenders for every other undersampling ratio. An exception

is in the low SNR regime where PINV is better than every other solver no matter what the

undersampling ratio is.

Along with the performance in terms of relative RMSE, one should also consider the ex-

ecution times when choosing a solver, especially if the signal recovery procedure is intended

to frequently take place. PINV is always the fastest, but reduction-procedure-based solvers

have execution times of the same order of magnitude as PINV when traffic and SNR condi-

tions are clement. Such favorable conditions are the same that allow for a high performance of

reduction-procedure-based solvers. Meanwhile, non-reduction-based solvers are orders of mag-

nitude slower than reduction-procedure-based solvers in favorable traffic and SNR conditions

and PINV.

Taking into account performance in terms of relative RMSE and execution times, Table 4.9

helps pick the best solver depending on the traffic scenario and SNR regime. In this table, we

do not consider the fraction of very high undersampling ratios (δ ≈ 1) where PINV performs

best.

4.5.6 Conclusion on the analysis of solvers

In this section, we have studied the resolution of MRS-originated USLE systems by different

solvers. Some of these solvers depend on the reduction procedure allowed by the support

estimation step carried out earlier, while some do not.

8However, it seems that PINV and CVXOPT-RP take the lion’s share in terms of applicability.
9CVXOPT-RP is to be preferred if time is not a strong constraint, PINV should be favored otherwise.
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Traffic scenario

1 (low traffic) 2 (medium traffic) 3 (high traffic)

High if δ ≤ .35: CVXOPT-RP CVXOPT-RP δ ≤ .7: CVXOPT-RP

SNR PINV-RP/OMP-RP otherwise OMP-SE otherwise

Medium if δ ≤ .5: CVXOPT-RP CVXOPT-RP/PINV9 PINV

SNR PINV-RP/OMP-RP otherwise

Low PINV PINV PINV

SNR

Table 4.9: Best solvers for different traffic scenarios and SNR regimes.

Performance of the different solvers depend mainly on the traffic scenario, the SNR regime

and the undersampling ratio. There is no almighty solver that outperforms all other solvers in

every situation. Instead, we have identified the solver that fits each set of conditions the most.

Signal reconstruction is the ultimate step of our sampling infrastructure. Now, for the in-

frastructure to capitalize on its cognitive capabilities, we explore possible ways towards infras-

tructure adaptivity to changes in the radio environment and discuss implementable heuristics.

4.6 Towards infrastructure adaptivity

We have studied the performance of our sampling infrastructure in various environments with

a diversity of parameters. Depending on the context, some infrastructure parameters are more

sensible than others. For our infrastructure to be adaptive, it is therefore crucial to identify

the environmental characteristics very quickly, if not instantly, and to be able to perform a live

adjustment of the infrastructure parameters.

In this section, we first identify the radio environment characteristics impacting the per-

formance of the MRS-based sampling infrastructure, and how they can be quantified in near

real-time. Then, we introduce the relevant levers to adapt the infrastructure to changes in the

radio environment.

4.6.1 Characteristics impacting the performance of the MRS-based infras-

tructure

We have identified two main exogenous factors that alter the performance of the infrastructure:

the noise level and the spectrum occupancy ratio. The first factor is modeled in our study by

high, medium and low SNR regimes, and the second by three traffic scenarios. The way these

factors affect the performance of our sampling infrastructure has been detailed throughout this

chapter; consequently, we do not cover it again here. We now explain how to estimate the SNR

regime and spectrum occupancy ratio. An advantage is that this can be done in (relatively)

early stages of the processing chain of the proposed infrastructure and notably before the on-

demand step of signal reconstruction, giving the possibility to use the most adequate solver to

whichever radio context after the acquisition of samples.
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Determination of the SNR regime After the noise variance is estimated, as presented in

Section 4.4.3, the SNR can be computed in each branch10 using (4.2). However, the SNR regime

does not solely depend on the SNR, but also on the spectrum occupancy (see next paragraph

on ascertaining the spectrum occupancy ratio).

Ascertaining the spectrum occupancy ratio The support combination step (see Section

4.4.5) allows to compute the signal support estimate Ŝ, which can then be used to find the

spectrum occupancy ratio. The spectrum occupancy ratio is defined by ρ = K/N , where K is

the number of non-zeros in S, the support of Y . As a consequence, an estimate of the spectrum

occupancy ratio is ρ̂ = K̂/N , where K̂ is the number of non-zeros in Ŝ.

4.6.2 Adapting to radio environmental changes

Now that we have identified and explained how to quantify the exogenous factors impacting the

performance of the sampling infrastructure, we turn to the presentation of the control levers

that can be activated and what should drive the decision to activate them. On a system level,

these levers are endogenous factors that impact the sampling infrastructure performance.

Adapting the sampling rates Tuning the sampling rates is a powerful way to modify the

performance of the sampling infrastructure. This can be done either by switching on (resp. off)

an MRS branch to increase (resp. decrease) the number of measurements M . However, the

number of active branches should never be lower than 2. This can also be done by changing

the sampling rate(s) of one (or more) ADC(s) of the MRS, if we assume the clocks driving

the ADCs to be reconfigurable. Note that the number of branches is, generally speaking, not

impactful.

The main criterion that should drive a change in sampling rates is an evolution of the

spectrum occupancy ratio. If this ratio goes up, the number of measurements M should go up,

either by activating an inactivated MRS branch or by increasing the sampling rate(s) of one

or several ADC(s). If the spectrum occupancy ratio is reduced, the number of measurements

should go down - except in the event of a low SNR, in which case it is recommended that the

number of measurements M be close to N .

Fig. 4.21 depicts a decision tree to help tune the sampling rates, starting from a number of

measurements M ≈ N . This heuristic can be run at each change in radio environment. A rule

of thumb is that the number of measurements M and thus the sampling rates can be reduced

(from Nyquist) if the SNR is not low and if the spectrum occupancy ratio is not high. Otherwise,

our infrastructure can still be used, with the advantage that the sampling rate requirements of

the ADCs are reduced compared to having one ADC sampling at the Nyquist rate.

10The SNR should be the same in every branch, up to an error factor. If there is a discrepancy between the

different branches, this can be an indication that noise variance estimation has been unsuccessful in a branch.

Comparing the SNRs at each branch, or even the noise variance estimates, is a good way to provide robustness

to KNVE failure.
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Figure 4.21: Decision tree to help tune the number of measurements M (and thus the sampling

rates Mi).
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Switching solvers As seen in Section 4.5, there is no one-size-fits-all, optimal solver. On the

other hand, for a given radio context, there are solvers that have shown to perform better than

the others, as summarized in Table 4.9. Nonetheless, though the choice of the solver has an

impact on recovery performance, it cannot compensate for the loss of information incurred by

sampling rates too low for the radio context.

4.6.3 Conclusion on infrastructure adaptivity

Our proposed sampling infrastructure exhibits several elements that make it prone to adaptivity.

First, quantifiable exogenous factors impacting infrastructure performance have been identified.

Second, levers to tune relevant parameters in near real-time have been explored.

4.7 Summary of our experimental findings

This chapter was dedicated to the presentation and analysis of our MRS-based, IoT-oriented

sampling infrastructure prototype. We now summarize the content of this chapter.

First, we introduced our sampling infrastructure prototype and functionally described its

different components. These components include an analog front-end for signal reception and

preprocessing, an MRS composed of L parallel branches, blocks for the estimation of charac-

teristics of the received signal (namely the KNVE, SE and SC blocks), a database for sample

storage and a solver.

We then presented our IoT-emulating traffic generator. This simulatory traffic generator

relies on reasonable assumptions to provide signals to the sampling infrastructure. The traffic

generator is configured to output signals, based on IoT transmissions, that correspond to various

scenarios of SNR regimes and traffic loads. A constraint was to have a moderate number of

varying parameters (in order to keep the evaluation of the sampling infrastructure tractable)

while being able to analyze the performance of the infrastructure in diverse realistic conditions.

Afterwards, we proceeded to evaluate four key blocks of the sampling infrastructure: the

KNVE, the SE, the SC and the signal recovery block. The KNVE and SE have shown to

be robust to moderate infringements of the formalized hypotheses of signal compacity and

sparsity. For signal recovery, we have analyzed the performance of several solvers on signals with

diverse characteristics of SNR and traffic load. We have found that there is no optimal solver

that outperforms the other solvers in every situation; however, for specific radio environment

conditions and MRS settings, it is possible to pick an optimal solver. For these four key blocks

of the sampling infrastructure, a rule of thumb is that overall reduction of the sampling rate can

be carried out under favorable radio conditions (low or medium traffic load, high or medium

SNR). In less favorable conditions (high traffic load, low SNR), the overall sampling rate cannot

be much reduced from the Nyquist rate without adverse effects on signal reconstruction. In this

case however, since the MRS operates with parallel ADCs, each ADC can sample at a rate quite

below that of Nyquist.

Depending on the radio environment conditions, the parameters of the sampling infras-

tructure can be modified to provide satisfactory gains in sampling rates while complying with
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signal reconstruction requirements. In this regard, an adaptive sampling infrastructure can be

extremely valuable. Such an infrastructure can detect changes in the radio environment and

automatically change its settings accordingly. In this chapter, we discussed some steps towards

infrastructure adaptability and how they could be implemented in our sampling infrastructure.

In the general conclusion of this document, we will explore future perspectives to improve

upon our proof-of-concept mono-site sampling infrastructure prototype. In particular, we will

discuss the extension towards a multi-site infrastructure and detail its stakes and remaining

challenges.
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Conclusion and perspectives

Summary of our contributions and perspectives

The problem at the heart of this PhD thesis work was the efficient sampling of sparse telecom-

munications signals. The sparsity in telecommunications can be seen as a form of sporadicity of

communications in some domain e.g. signals that are sporadic in time, in frequency or in space.

We addressed the problem of efficient sampling within the Compressed Sensing (CS) framework,

which allows, under certain conditions, to lower the amount of acquired samples in comparison

with continuously sampling at the Nyquist rate at multiple sites. We have mainly considered

signal sparsity in the frequency domain. Nonetheless, sparsity in the time domain was also

taken into account: indeed, time-domain sparsity consists in the absence of information-bearing

signal components in the received signal in given time intervals. In this case, the frequency-

domain spectrum during such intervals is effectively free of signal components, and the sampling

parameters can be set accordingly.

An enabler towards reducing the number of acquired samples is the knowledge of the radio

environment, in line with the Cognitive Radio (CR) paradigm. Acquiring knowledge of the

radio context can be performed with Spectrum Sensing (SS) techniques. It allows to locate the

radio communications in time, frequency and space, thus providing crucial information to tune

the sampling parameters.

Our contribution in Chapter 2 of this document consisted in several cognitive tools, that

is, tools that allow a receiver to sense its radio environment. The first tool is a K-means-

based noise variance estimator (KNVE), capable to blindly estimate the variance of an AWGN

channel with sparse signals. The second tool is a signal support estimator (SE), which estimates

the frequency-domain support of a frequency-sparse received signal. Both the KNVE and the

SE have a low complexity and have two moderate requirements of sparsity and compacity of

the received signal. Both estimators rely on preliminary signal windowing with a rectangular

window of size wl samples. The choice of the wl parameter has a substantial impact on KNVE

and SE performance in terms of detection probability: it would be interesting to understand the

underlying phenomena involved when windowing is carried out, in an effort to set wl correctly.

Another open question is whether choosing another averaging window would lead to a better

performance of the SE and KNVE.

Sampling a signal at the Nyquist rate is fairly simple and can be carried out using a low-pass

filter and an ADC operating uniformly. On the contrary, sub-Nyquist sampling requires a more

complex setup. In this thesis, we focused on the multi-rate sampler (MRS), a CS sampling
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scheme based on several parallel branches uniformly sampling the same signal at different rates,

each of them lower than the Nyquist rate. Chapter 3 aimed at correctly setting the parameters

of the MRS scheme. First, we have shown that if we represent the MRS sampling rates as

integer multiples of a time quantum, a very important condition for an MRS to thrive is that

the different sampling rates be coprime integers. We have also linked the number of samples to

the quality of recovery of the original signal. Generally, an increase in number of measurements

entails a better signal recovery. However, there are local variations in performance, meaning that

some sets of sampling rates seem to consistently result in a higher recovery performance than

others (at a comparable number of measurements). It would be interesting to identify these

”special” sets, comprehend what makes them better and especially to characterize whether

they entail higher performance with any sparse signal. Finally, we tried to quantify the impact

of having different number of parallel branches, but the results we obtained were difficult to

generalize. It seems that in most cases, the number of branches has a limited impact on system

performance, but a more extensive study on this parameter would help settle the question.

In Chapter 4, we proposed an MRS-based sampling infrastructure targeted at sampling

messages transmitted by Internet of Things (IoT) devices.

To provide a framework for the evaluation of our proposed sampling infrastructure, we intro-

duced an IoT traffic generator, whose purpose was to simulate a realistic radio environment. To

keep the number of varying settings and simulation results tractable, we made some simplifying

assumptions about this traffic generator, that we now review. First, the reception power of all

transmissions is the same. The assumption of an equally-shared transmission power throughout

all users is reasonable, especially if a power control scheme is implemented; however, it is un-

likely that transmissions from different IoT devices would arrive at the reception antenna with

the same power. More realistically, each transmission would probably arrive with a different

in-band SNR. This can be viewed as a manifestation of sparsity due to the geometric charac-

teristics of signal propagation, and paves the way for a signal-component-by-signal-component

recovery procedure. Second, we implemented a time-varying, yet flat channel. This assumption

would likely be contradicted by reality, even more so as we consider a wideband channel. Miti-

gating this discrepancy involves implementing a more complex channel, with frequency-selective

fades, requiring an additional step of channel equalizing. Third, we simulated different modula-

tion standards using the same waveform (filtered QPSK). We envisioned a technology-agnostic

sampling platform, and though it is impossible to predict what the IoT modulations of tomor-

row will be, it would be interesting to contemplate the sampling infrastructure performance on

signals with different waveforms.

Our proposed infrastructure samples the received signals at different sub-Nyquist rates in

parallel branches, then relies on the building blocks introduced in Chapter 2 to compute partial

signal frequency-domain support estimations (estimations of the signal support as seen in sam-

ples acquired in each branch). This step is based on the Neyman-Pearson theory, in which we

seek to maximize the probability of detection for a given probability of false alarms. However,

for our purpose, we would like to minimize the probability of false alarms for a given probability

of detection. A decisive improvement would be to formalize a way to do so, ideally with the
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least possible amount of information about the received signal of interest. After estimating the

signal support in each MRS branch, a combination procedure is applied. This yields a support

estimate of the signal as if it were sampled at the Nyquist rate.

The Nyquist-rate samples can now be recovered. This is done by solving an underdetermined

system of linear equations (USLE) related to the settings of the MRS. We provided a compre-

hensive benchmarking of different USLE solvers (the method or algorithm used to solve an

USLE) under diverse traffic loads and SNR regimes. The solvers we have selected are represen-

tative of some families of solvers, including those based on greedy optimization, `1-minimization

and `2-minimization. In particular, the performance of an `1-minimization based solver named

CVXOPT is promising, and it would likely be enhanced if the setting of the error parameter ε

of CVXOPT was investigated more thoroughly.

Each family of solvers is composed of various solvers, each with its specific steps and charac-

teristics. Generally speaking, we only benchmarked one method per family. As a consequence,

for each family, it is possible that other solvers would perform better than the one tested, so

marginal gains could be obtained through a more comprehensive benchmark in each family of

solvers. It would also be interesting to benchmark solvers based on other paradigms, such as

those based on Bayesian inference.

A conclusion of our benchmark is that there is no one-size-fits-all solver that outperforms

the other solvers in every set of radio environment conditions; however, depending on the SNR

regime and traffic load, some solver is to be preferred to the others. In Table 4.9, we described

which solver to choose depending on the conditions.

We have seen in Chapter 4 that under low traffic loads (signal that are sparse in the time and

frequency domains), the number of acquired samples can be significantly reduced, while under

high traffic loads, it is impossible to successfully retrieve the information contained in signals

if the number of acquired samples is not of the same magnitude of the hypothetical number of

samples acquired through Nyquist rate sampling. As a consequence, a very important aspect

of our sampling infrastructure is its capability to adapt to the changes in radio environment

conditions. We have identified relevant environmental conditions impacting the performance of

the sampling infrastructure, and the levers that can be activated to adapt to these conditions.

A difficulty is to make sure that these levers (mainly the solver and the sampling rates of the

sampling infrastructure) are indeed adapted to the environment conditions.

A future endeavor could include the development of heuristics to tune the relevant infras-

tructure parameters. In particular, we believe that artificial intelligence, and especially neural

networks, have the potential to satisfactorily conduct this task. To use a neural network, we need

a differentiable parametrable program, whose parameters can be updated through the gradient

descent of a differentiable error function. We believe it is possible to propose such a program

and error function for this problem of infrastructure adaptation, although their specifics remain

to be defined. To benefit from accurate predictions from a neural network, we also need to have

a large training dataset, but such data is likely to be fairly abundant.

In this thesis, we have mainly considered sparsity in the time and frequency domains. On the

contrary, we have not mentioned sparsity in the space domain, and more generally speaking, the
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phenomena at stake when spatial diversity comes into play. We now explore some opportunities

and challenges of a multi-site sampling infrastructure, as envisioned in the general introduction

of the manuscript. A particular attention to these should be paid by anyone who wants to

extend our proposed mono-site sampling infrastructure to a multi-site one.

Extension: towards a multi-site sampling infrastructure

The main difference between a mono-site infrastructure and a multi-site one is that in the

latter, the reception antennas are geographically distinct from one another. Fig. 5.1 reproduces

the envisioned multi-site sampling infrastructure described in the general introduction of this

document. We suppose that each reception site is equipped with a reception antenna and one

or several MRS branch(es), and that the outcoming samples are then sent to a fusion center for

further processing.

Figure 5.1: Proposed scenario of an IoT-aimed, multi-site, sub-Nyquist sampling infrastructure.

The first opportunity a multi-site infrastructure offers is the spatial diversity of the IoT

messages. Indeed, having separate sampling locations can mitigate channel impairments caused

by the geographical environment, e.g. shadowing. If a message from a device is not received by

the only reception antenna of a mono-site sampling infrastructure because of shadowing, it is

irremediably lost. On the contrary, in case the sampling infrastructure is multi-site, the message

may be received by another antenna. This adds resilience and robustness to the sampling

infrastructure. However, this added spatial diversity can be problematic for the step of support

combination of the infrastructure. Indeed, in the mono-site MRS, presence of signal at some

location (in the frequency spectrum) in one branch and absence of signal at the same location in
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another branch results to the system considering the artefact as an alias instead of an original

signal component. In the multi-site infrastructure, absence of signal in a branch can be caused

by a non-reception of the signal by the reception site relative to this branch, leading actual signal

components to be considered as aliases. To mitigate this issue, voting rules can be implemented.

Early into this PhD, a peer-reviewed publication in an international conference focused on the

benefits of spatial diversity for an MRS-based sampling infrastructure and investigated several

voting rules [28]. However, the choice of the optimal voting rule - and especially how to set it

a priori - remains an open question.

Another opportunity that a multi-site infrastructure can capitalize on is the signal sparsity

in the spatial domain. It might be so that the density of IoT devices is uneven, with some

reception sites of the sampling infrastructure surrounded by many IoT devices and some others

surrounded by very few of them. In this case, the sites which receive little activity from IoT

devices have the possibility to adapt their sampling settings accordingly. The decision to adapt

to the radio environment can be taken at the reception site or at the fusion center. This

additional domain of sparsity is a new lever towards the reduction of the number of acquired

samples, and thus, towards an increased efficiency of sampling. Note that gains in sample

volumes can be counterbalanced by the overhead that a multi-site infrastructure induces, mostly

through sending the received samples to the fusion center via a backhaul link.

Clock synchronization is a challenge that is present in a mono-site infrastructure and ex-

acerbated in a multi-site infrastructure. The important thing to know is the delay between

the clocks of the different branches. In the mono-site infrastructure, a possible solution for

clock synchronicity would be to have each branch’s ADC controlled by a separate clock, with

a separate low-rate master clock used to measure the drift between branches’ clocks after each

block (a duration introduced in Chapter 4). In the multi-site infrastructure, synchronization

using GPS receivers is likely not to be sufficiently precise. However, a tight synchronization is

only necessary for the recovery of the phase of the original signal, and not for previous steps

such as support estimation and combination. A way to circumvent the issue of tight synchro-

nization could then consist in using samples from the branches on different sites to estimate the

signal support (as this step only requires a loose synchronization), then to use this estimate to

reconstruct the signal phase from samples of different branches of the same reception site, for

which tight synchronization can be assumed.
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Appendix A

Appendix relative to Chapter 2

A.1 Relationship between PD, η and Emin in Section 2.3.3.4

By definition of the cumulative distribution function (cdf), we have:

F (x; 2, 2Emin) = P (2|Yi|2 < x). (A.1)

From (2.16) and (A.1), we obtain:

F (2η; 2, 2Emin) = P (2|Yi|2 < 2η) = 1− PD. (A.2)

The cdf F (x; k, λ) of the χ2(k, λ) distribution is

F (x; k, λ) = e−λ/2
+∞∑
j=0

(λ/2)j

j!
Q

(
k

2
+ j,

x

2

)
, (A.3)

where Q(a, x) is the regularized lower incomplete gamma function, defined as:

Q(a, x) =
1

Γ(a)

∫ x

0
ta−1e−tdt, (A.4)

with Γ(a) the gamma function.

Combining (A.2) and (A.3) yields:

1− PD = F (2η; 2, 2Emin) = e−Emin

+∞∑
j=0

Emin
j

j!
Q(1 + j, η), (A.5)

leading to the relationship presented in (2.17).
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Titre : Numérisation, compression et reconstruction d’un trafic radio large échelle pour l’Internet des Objets 

Mots clés : traitement de signal parcimonieux, Echantillonnage Comprimé, infrastructure d’échantillonnage, 
Internet des Objets. 

Résumé : La multiplication des cas d’utilisation dans 
le cadre de l’Internet des Objets appelle au 
développement de nouveaux protocoles de 
télécommunications et de nouvelles modulations. 
Cependant, la nécessité de déployer une 
infrastructure dédiée à la collecte et au traitement 
des données envoyées par les appareils connectés 
peut freiner le développement de nouveaux 
standards de télécommunications.  Dans cette thèse, 
nous proposons et étudions une infrastructure ne 
dépendant pas de la technologie de communication 
choisie, dont le but est de collecter et traiter les 
données émises par des appareils connectés 
déployés sur le terrain. Comme les communications 
des appareils connectés peuvent être sporadiques, 
notamment dans le cas des réseaux de capteurs, 
nous considérons que les signaux reçus par les 
points d’accès de l’infrastructure sont parcimonieux 
en temps et/ou en fréquence. Sous cette condition, le 
cadre de l’Echantillonnage Comprimé (EC) offre la 
possibilité d’abaisser le taux d’échantillonnage, par 

rapport au taux d’échantillonnage de Nyquist 
standard. 
Pour cela, notre infrastructure proposée de collecte 
de données s’appuie sur l’Echantillonneur Multi-
Taux (EMT), un schéma d’échantillonnage fondé 
sur l’EC qui permet la réduction du taux 
d’échantillonnage et la relaxation de contraintes 
matérielles liées à l’échantillonnage à haute 
fréquence. Dans cette thèse, nous proposons une 
analyse poussée afin de dimensionner de manière 
adéquate une infrastructure fondée sur l’EMT. 
Parmi les résultats majeurs se trouvent le 
paramétrage, à l’aide de nombres premiers entre 
eux, des taux d’échantillonnage de l’EMT, 
l’estimation de la variance du bruit et du support 
spectral fréquentiel pour des signaux parcimonieux 
en fréquence, et une analyse complète des 
performances de l’EMT en fonction de plusieurs 
paramètres (nombre d’échantillonneurs, niveau de 
parcimonie du signal, taux d’erreur binaire, et 
autres). 

 

Title: Digitization, Compression and Reconstruction of a Large-Scale Radio Traffic for the Internet of Things  

Keywords: sparse signal processing, Compressed Sensing, Multi-Rate Sampler, sampling infrastructure, 
Internet of Things. 

Abstract: The multiplicity of novel use cases for the 
Internet of Things (IoT) calls for new 
telecommunications protocols and modulations. 
However, the necessity to roll out a dedicated 
infrastructure to collect and process data sent by IoT 
devices can hinder the development of new 
standards for communications.  In this thesis, we 
propose and study a technology-agnostic 
infrastructure aimed at collecting and processing 
information transmitted by IoT devices deployed on 
the field. Because communications from IoT devices 
can be sporadic, in particular when sensor networks 
are concerned, we consider that the signals received 
by the infrastructure access points are sparse in the 
time and/or frequency domains. Under such a 
condition,  the Compressed Sensing (CS) framework 

offers the possibility to lower the sampling rate from 
the standard Nyquist rate. Our proposed 
infrastructure for data collection relies on the Multi-
Rate Sampler (MRS), a CS-based sampling 
scheme that permits the reduction of the sampling 
rate and a relaxation of hardware constraints related 
to high-speed sampling. In this thesis, we provide a 
comprehensive analysis to adequately size an 
MRS-based infrastructure. Major results include a 
provision based on coprime integers to define the 
sampling rates of the MRS, the estimation of the 
noise variance and of the frequency-domain 
spectrum support for frequency-sparse signals, and 
a complete analysis of the MRS performance 
depending on a variety of parameters (number of 
samplers, signal sparsity level, bit error rate, and 
others). 
 

 


