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THÈSE DE DOCTORAT DE L’UNIVERSITÉ PARIS-SACLAY 7
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Introduction (English version)

This thesis contains three parts. In this introductory chapter, we will explain the general background
in the first section, and then in the following three sections we will focus on each part and provide
specific introductions.

0.1 General context

Let F0 be a non-archimedean locally compact field of residue characteristic p and let R be an alge-
braically closed field of characteristic l 6= p, and in particular when l > 0 we are in the “l-modular
case”. For instance, we will mainly focus on the following three cases: R being the complex number
field C, the algebraic closure of the field of l-adic numbers denoted by Ql, or the algebraic closure of
the finite field of l elements denoted by Fl when l 6= 0. Let G be a reductive group1 over F0 and let
G be the locally profinite group consisting of the F0-rational points of G. We are interested in the
category of smooth irreducible representations of a locally profinite group and we denote by IrrR(G)
the set of isomorphism classes of smooth irreducible representations of G over R.

0.1.1 Local Langlands correspondence

First of all let us consider the case where R = C. We fix a separable closure F0 of F0, we denote by
WF0 the Weil group of F0 with respect to F0 and by WDF0 =WF0 × SL2(C) the Weil-Deligne group
of F0. We define the dual group of G, denoted by Ĝ, as the complex reductive group (identified with
the complex topological group of its rational points by abuse of notation) determined by the dual of
the root datum of G. Since the root datum of G is endowed with a WF0-action, so is the group Ĝ
after fixing a pinning of the root datum, and we denote by LG = ĜoWF0 the L-group of G.

Definition 0.1.1. An L-parameter of G (over C) is a homomorphism φ : WDF0 → LG such that

• The following diagram is commutative:

WF0 × SL2(C) = WDF0

((

φ // LG = ĜoWF0

xx
WF0

where the two unmarked arrows are canonical projections.

• φ|WF0
×{1} is continuous with image consisting of semisimple elements2, and φ|{1}×SL2(C) is al-

gebraic 3 with image consisting of unipotent elements in Ĝ.

1We will only consider connected reductive groups.
2An element (g, w) in LG is semisimple if for any r as a finite dimensional representation of LG, the image r((g, w))

is semisimple.
3That is, it is an algebraic representation from the complex algebraic group SL2 into the complex algebraic group Ĝ .

9
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Two L-parameters are said to be isomorphic if they are in the same Ĝ-conjugacy class, and we
denote by Φ(G) the isomorphism classes of Langlands parameters of G. The famous local Langlands
correspondence is stated as follows.

Conjecture 0.1.2. There is a unique finite-to-one surjection

LLC : IrrR(G) −→ Φ(G)

satisfying certain desiderata.

Definition 0.1.3. For φ ∈ Φ(G), we call Πφ := LLC−1(φ) the L-packet of φ as a finite set of
irreducible representations of G.

Here we won’t specify what exactly do these desiderata mean (compatible with parabolic induction,
transfer L-factors and ε-factors, etc.) but refer to [Bor79] for an expository introduction. The local
Langlands correspondence for certain reductive groups is known, such as G being a torus, GLn or
certain classical groups, due to the work of Langlands [Lan97], Harris-Taylor [HT01], Arthur [Art13],
etc.

Moreover, although the original conjecture of Langlands is only proposed for representations over
C, for other R under our settings it is still possible to give a definition for L-parameters and to propose
the corresponding conjecture with the corresponding desiderata being adapted to the new situations.
For example, there are pioneering work of Vignéras [Vig01] for G = GLn, and also recent work of Dat-
Helm-Kurinczuk-Moss [DHKM20] for general reductive groups and representations over an integral
domain with p being invertible within instead of over a field R. Finally we mention the recent result
of Fargues-Scholze [FS21]. Using geometric method and under general enough settings (more general
than ours), they constructed Φ(G) (indeed as a stack) and the local Langlands correspondence, and
verified the corresponding desiderata under their settings (cf. ibid. Theorem IX.0.5).

0.1.2 Local Langlands functoriality

Now we discuss the local Langlands functoriality and we still assume that R = C. Let G0 be another
reductive group over F0, and let G0 be the group of F0-rational points of G0. As in the previous sub-
section, we may similarly define its dual group Ĝ0, its L-group LG0 = Ĝ0oWF0 and the isomorphism
classes Φ(G0).

Definition 0.1.4. A group homomorphism

ι : LG0 −→ LG

is called an L-homomorphism, if

• it is continuous, and its restriction to Ĝ0 is an algebraic representation of Ĝ0 into Ĝ.

• The following diagram is commutative

WF0 n Ĝ0 = LG0

''

ι // LG = ĜoWF0

xx
WF0

where the two unmarked arrows are canonical projections.
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By definition, given an L-parameter φ0 in Φ(G0), the composition ι◦φ0 is an L-parameter in Φ(G).
Thus we construct a map between isomorphism classes of L-parameters:

Φ(ι) : Φ(G0) −→ Φ(G), φ0 7−→ ι ◦ φ0.

If we admit the local Langlands correspondence for both G0 and G, we have the following diagram

IrrR(G0)

Π(ι)

��

LLC // Φ(G0)

Φ(ι)

��
IrrR(G)

LLC
// Φ(G)

The local Langlands functoriality predicts the existence of a map Π(ι), called local lifting with re-
spect to ι, such that the above diagram is commutative. Moreover this map Π(ι) is expected to be
constructed independently of this diagram, but using other technical tools such as trace formula or
L-function. On the one hand, understanding different local liftings maps forms an important part of
the local Langlands program. On the other hand, it also plays a crucial role in the inductive strategy,
proposed by Langlands-Shelstad [LS87] and called the method of endoscopy, of constructing the local
Langlands correspondence for general reductive group, which has become a prosperous area in recent
years with fruitful results, including the work of Arthur, Kottwitz, Langlands, Laumon, Ngô, Shelstad,
Waldspurger, etc.

Still we need not confine ourself in complex representations, instead we consider possible local
lifting over R. For example, one expectation for the expected local lifting over Fl is that, it is
supposed to be compatible with the local lifting over Ql, after we identify C with Ql via a certain
algebraic isomorphism and implement the modulo l reduction. One typical result is about the Jacquet-
Langlands correspondence as one natural enough lifting between GLn and its inner form. Over Fl, the
construction of this map and also its compatibility with the usual Jacquet-Langlands correspondence
was studied by Dat [Dat12] for special case, and then generalized by Mı́nguez-Sécherre [MS17] for
general case.

0.1.3 Problem of distinction

Let H ⊂ G be a closed algebraic subgroup over F0 and we denote by H the group of F0-rational
points of H. For π ∈ IrrR(G) and ρ ∈ IrrR(H), we say that π is (H, ρ)-distinguished if

HomH(π, ρ) 6= 0,

or in other words, the restriction of π to H admits ρ as a quotient. In particular, when ρ is trivial,
we call π distinguished by H or H-distinguished. Still for simplicity we temporarily assume R = C.

The problem of distinction is ubiquitous and plays an important role in the representation theory
of p-adic groups. For example, if G is quasisplit, we let H = U be the unipotent radical of a Borel
subgroup of G and we let ψ be a non-degenerate character of H = U , that is, its restriction to any
unipotent subgroup Uα of U related to a simple root α is non-trivial. One well-known result [Sha74]
is that the vector space

HomU (π, ψ)

is of dimension smaller than or equal to one. Those π with the corresponding dimension equalling
one are called generic representations. By the Frobenius reciprocity, such π can be embedded into
the space of (U,ψ)-invariant G-linear forms, which is called the Whittaker model of π and plays an
prominent role in the local and global theory of L-functions. In another example we consider V as
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a finite dimensional vector space over F0 endowed with a sesquilinear form, and W as a subspace of
V . We denote by G the group of F0-automorphisms of V and by H the group of F0-automorphisms
of W , preserving the sesquilinear form. Then the corresponding problem of distinction is related to
the “branching laws”, which dates back to the representation theory of complex algebraic groups and
has been performing as an active area in decades because of the initiation and breakthrough of the
Gan-Gross-Prasad conjecture [GGP12] and its variants.

Under good settings, the problem of distinction is closely related to the local Langlands corre-
spondence and its functoriality. In the remarkable book [SV17a], Sakellaridis and Venkatesh proposed
a general framework to study the problem of distinction, in which they assume G to be split and
X = H\G to be a spherical variety with X denoting its F0-rational points. Their starting point is
the construction of the dual group ĜX for X as a complex reductive group, under an assumption on
the roots of X, together with a canonical algebraic representation

ιX : ĜX × SL2(C) −→ Ĝ.

Under their conjectural proposal, roughly speaking, the H-distinguished representations of G cor-
respond to the X-distinguished Arthur parameters via the local Langlands correspondence, where
Arthur parameters are the analogue of L-parameters with a corresponding version of local Langlands
correspondence related, and those Arthur parameters factoring through ιX are called X-distinguished,
for which we leave ibid. section 16 for more details. So the idea behind is that, under good circum-
stances, the property of being distinguished is transferred by the local Langlands correspondence.
In [Pra15], Prasad considered the case where X = H\G is a symmetric space with respect to a Galois
involution. He constructed a quasisplit subgroup G0 (denoted by Gop in loc. cit.) over F0, a natural
L-homomorphism ι : LG0 → LG which simply comes from the restriction, and a character ωH of H.
Finally he conjectured that, for π an irreducible representation of G distinguished by (H,ωH), the
L-packet of π is derived from the local lifting related to ι, or more precisely there exists φ0 ∈ Φ(G0)
such that π ∈ Π(ι ◦ φ0). Moreover a conjectural formula for the dimension of the space of distinction
has been given. These two general frameworks, combining with various concrete examples being veri-
fied, should be regarded as our guideline of the results we should expect under the language of local
Langlands correspondence and its functoriality.

We briefly introduce some known methods of dealing with problem of distinction. One important
method, initiated by Jacquet and developed by himself, his students and other followers, is called the
relative trace formula method, for which we name a few articles [JLR93], [JY96], [Guo96], [Mao98].
The idea, roughly speaking, is first to solve the corresponding problem over a global field, and then to
realize our local field F0 as a component of the ring of adèles of a global field and to use a global-to-
local argument. Then one compares two different trace formulae as distributions on two spaces of test
functions, one of which relates exactly to our global problem. After verifying the fundamental lemma
and the existence of smooth transfer, one obtains sufficient many pairs of matching test functions such
that two trace formulae coincide. If the other trace formula is well understood, we get the information
to solve the global problem of distinction. In addition, to solve the local Gan-Gross-Prasad conjecture
for orthogonal groups, Waldspurger [Wal10], [Wal12] initiated a new method with the consideration
of a local relative trace formula, such that the dimension of the space of distinction can be expressed
inside, and then he used sophisticated techniques in harmonic analysis over p-adic reductive groups
to reformulate the trace formula and to obtain the result. In the last decade this method has been
developed and applied to different situations by some people including Beuzart-Plessis and C. Wan.
For example in [BP18] using the similar method, Beuzart-Plessis solved part of the above conjecture
proposed by Prasad for essentially square integrable representations.

Another possible method to study the problem of distinction is algebraic, which first studies the
same problem for supercuspidal representations as the starting point, and then applies parabolic
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induction to study more general irreducible representations. For π a supercuspidal representation of
G, a general belief is that it can be written down as the compact induction of a finite dimensional
smooth irreducible representation, more precisely, there exists a pair (J ,Λ) such that J is a compact
subgroup of G modulo the centre, and Λ is a smooth irreducible finite dimensional representation
of J such that π ∼= indGJΛ. This belief is verified for many cases, including tame supercuspidal
representations [Yu01], [Fin21] for tamely ramified reductive group G, and also general supercuspidal
representations for classical groups [BK93], [Ste08]. Then if we focus on the study of H-distinguished
supercuspidal representation π, using the Mackey formula and the Frobenius reciprocity, it is easily
seen that

HomH(π, 1) ∼= HomH(indGJΛ, 1) ∼=
∏

g∈J\G/H

HomJg∩H(Λg, 1).

Thus we only need to study those g ∈ J\G/H such that the R-vector space HomJg∩H(Λg, 1) is
non-zero, and then to study corresponding dimension. To that aim, we date back to the detailed con-
struction of (J ,Λ). One typical work is [HM08], where the authors studied, for G/H as a symmetric
space, tame supercuspidal representations π of G distinguished by H using the idea mentioned above
and the structural result of J.-K. Yu [Yu01] for such representations.

Still we are not necessarily confined in the case where R = C, but we focus on the general R in
our settings. In this case the two analytic methods mentioned above become invalid. By contrast
the algebraic method remains valid, since the structural result for the (J ,Λ), once being established,
usually works for general R rather that just R = C, such as [Vig96], [MS14b] and [Fin19]. To
sum up, searching the possible relation between the problem of distinction and the local Langlands
correspondence and its functoriality for general R should be regarded as the original motivation for
this thesis.

0.1.4 Our concrete settings

Although the context above is quite general, the aim of this thesis is humble, which focuses on the
understanding of several special examples. Fix n as a positive integer. Let F/F0 be a finite cyclic
extension of non-archimedean locally compact fields of residue characteristic p of degree r, and let G
be the Weil restriction of the reductive group GLn over F , which is a reductive group over F0. In
particular we have G = GLn(F ). For most of the time, we will concentrate on cuspidal or supercuspidal
representations of G over R, which should be regarded as the building blocks for general irreducible
representations. Recall that an irreducible representation of G is cuspidal (resp. supercuspidal) if it
doesn’t occur as a subrepresentation (resp. subquotient) of the parabolic induction of an irreducible
representation of a proper Levi subgroup of G. When char(R) = 0 the two concepts above are
equivalent, however when char(R) = l > 0, a supercuspidal representation must be cuspidal, but the
existence of counter-example manifests that the converse is false in general.

To study a cuspidal representation π ofG overR, our main tool is the simple type theory established
by Bushnell-Kutzko [BK93] when char(R) = 0, and further generalized by Vignéras [Vig96] to the
l-modular case. We refer to chapter 1, section 3 or chapter 3, section 2 for a detailed introduction for
the theory, but here we also give a brief introduction for ease of giving more details.

As indicated above, the idea of simple type theory is to realize π as the compact induction of a
finite dimensional irreducible representation Λ of J , which is an open subgroup of G compact modulo
the centre. Such a pair (J ,Λ) is called an extended maximal simple type which we will abbreviate to
simple type for short. The main theorem says that, any π can be constructed in this way, and the
corresponding simple type (J ,Λ) is unique up to G-conjugacy. We also mention the following main
properties of (J ,Λ):
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(1) The group J contains a unique maximal open compact subgroup J which contains a unique
maximal normal pro-p-subgroup J1;

(2) We have J/J1 ∼= GLm(l). Here l is the residue field of E, where E is a field extension over F
of degree d. Moreover we have n = md, where m and d are integers determined by π;

(3) We may write Λ = κ ⊗ ρ, where κ and ρ are irreducible representations of J such that the
restriction κ|J1 = η is an irreducible representation of J1, called a Heisenberg representation, and ρ|J
is the inflation of a cuspidal representation of GLm(l) ∼= J/J1;

(4) There exists a pro-p-subgroup of J1 denoted by H1, and a character of H1 denoted by θ and
called a simple character, such that the restriction of η to H1 equals the direct sum of (J1 : H1)1/2

copies of θ.

Finally we enter the introduction for our concrete work. For the first part, we study the problem
of distinction related to a unitary subgroup of G and its relation with the Langlands functoriality,
or embodied as the quadratic base change lift in our settings; For the second part, we study the
problem of distinction related to an orthogonal subgroup of G, and we focus only on supercuspidal
representations over R = C, which is the first step towards the understanding of more general irre-
ducible representations; For the final part for R = C we give explicit constructions for two special
local liftings, the base change lift and the automorphic induction, for supercuspidal representations.

0.2 Problem of distinction related to unitary subgroups of GLn(F )
and l-modular base change lift

0.2.1 Background

The first eight sections of chapter 1 is based on the preprint [Zou19]. In this subsection we assume
F/F0 to be a quadratic extension of p-adic fields of residue characteristic p, and we let σ denote its
non-trivial automorphism. For G and G as above, we write ε for a hermitian matrix in G, that is,
σ( tε) = ε with t denoting the transpose of matrices. We define

τε(x) = εσ( tx−1)ε−1

for any x ∈ G, called a unitary involution on G, which also induces an F0-automorphism on G. We
fix one τ = τε, and we denote by Gτ the subgroup of G over F0, such that Gτ is the subgroup of G
consisting of the elements fixed by τ . Such Gτ (resp. Gτ ) is called the unitary subgroup of G (resp.
G) with respect to τ .

For π a smooth irreducible representation of G over C, Jacquet proposed to study the problem
of distinction related to the pair (G,Gτ ) as above, that is, to study the space of Gτ -invariant linear
forms

HomGτ (π, 1)

and its dimension as a complex vector space. For n = 3 and π supercuspidal, he proved in [Jac01] by
using global argument, that π is distinguished by Gτ if and only if π is σ-invariant, that is, πσ ∼= π,
where πσ := π ◦ σ. Moreover he showed that this space is of dimension one as a complex vector space
when the condition above is satisfied. Besides in ibid., he also sketched a similar proof when n = 2
and π is supercuspidal, to give the same criterion of distinction and the same dimension one theorem.
Based on these results as one of the main reasons, he conjectured that in general, π is distinguished by
Gτ if and only if π is σ-invariant. Moreover, the dimension of the space of Gτ -invariant linear forms
is not necessary to be one in general. Under the assumption that π is σ-invariant and supercuspidal
Jacquet further conjectured that the dimension is one.
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In addition, an irreducible representation π of G is contained in the image of quadratic base change
lift with respect to F/F0 if and only if it is σ-invariant ( [AC89]). Thus for irreducible representations,
the conjecture of Jacquet gives a connection between quadratic base change lift and Gτ -distinction.

Besides the special case mentioned above, there are two more evidences which support the con-
jecture. First we consider the analogue of the conjecture in the finite field case. For ρ an irreducible
complex representation of GLn(Fq2), Gow [Gow84] proved that ρ is distinguished by the unitary sub-
group Un(Fq) if and only if ρ is isomorphic to its twist under the non-trivial element of Gal(Fq2/Fq).
Under this condition, he also showed that the space of Un(Fq)-invariant linear forms is of dimen-
sion one as a complex vector space. In addition, Shintani [Shi76] showed that there is a one-to-one
correspondence between the set of irreducible representations of GLn(Fq) and that of Galois invari-
ant irreducible representations of GLn(Fq2), where the correspondence, called the base change map,
is characterized by a trace identity. These two results give us a clear feature between base change
map and Un(Fq)-distinction. Finally, when ρ is generic and Galois-invariant, Anandavardhanan and
Matringe [AM18] recently showed that the Un(Fq)-average of Bessel function of ρ on the Whittaker
model as a Un(Fq)-invariant linear form is non-zero. Since the space of Un(Fq)-invariant linear forms
is of dimension one, this result gives us a concrete characterization of the space of distinction.

The other evidence for the Jacquet conjecture is its global analogue. We assume K/K0 to be a
quadratic extension of number fields and we denote by σ its non-trivial automorphism. We consider
τ to be a unitary involution on GLn(K), which also gives us an involution on GLn(AK), still denoted
by τ by abuse of notation, where AK denotes the ring of adèles of K. We denote by GLn(K)τ (resp.
GLn(AK)τ ) the unitary subgroup of GLn(K) (resp. GLn(AK)) with respect to τ . For φ a cusp form
of GLn(AK), we define

Pτ (φ) =

∫
GLn(K)τ\GLn(AK)τ

φ(h)dh

to be the unitary period integral of φ with respect to τ . We say that a cuspidal automorphic represen-
tation Π of GLn(AK) is GLn(AK)τ -distinguished if there exists a cusp form in the space of Π such that
Pτ (φ) 6= 0. In 1990’s, Jacquet and Ye began to study the relation between GLn(AK)τ -distinction and
global base change lift (see for example [JY96] when n = 3). For general n, Jacquet [Jac05] showed
that Π is contained in the image of quadratic base change lift (or equivalently Π is σ-invariant [AC89])
with respect to K/K0 if and only if there exists a unitary involution τ such that Π is Gτ -distinguished.
This result may be viewed as the global version of Jacquet conjecture for supercuspidal representations.

In fact, for the special case of the Jacquet conjecture in [Jac01], Jacquet used the global analogue
of the same conjecture and relative trace formula as two main techniques to finish the proof. To say it
simple, he first proved the global analogue of the conjecture. Then he used the relative trace formula
to write a non-zero unitary period integral as the product of its local components at each place of K0,
where each local component characterizes the distinction of the local component of Π with respect to
the corresponding unitary group over local fields. When π is σ-invariant, he chose Π as a σ-invariant
cuspidal automorphic representation of GLn(AK) and v0 as a non-archimedean place of K0 such that
(Gτ , π) = (GLn(Kv0)τ ,Πv0). Then the product decomposition leads to the proof of the “if” part of
the conjecture. The “only if” part of the conjecture, which will be discussed in chapter 1, section 4,
requires the application of globalization theorem. His method was generalized by Feigon-Lapid-Offen
in [FLO12] to general n and more general family of representations. They showed that the Jacquet
conjecture works for generic representations of G. Moreover for the same family of representations,
they were able to give a lower bound for the dimension of HomGτ (π, 1) and they further conjectured
that the inequality they gave is actually an equality. Finally, Beuzart-Plessis [BP20] recently verified
the equality based on the work of Feigon-Lapid-Offen and the relative local trace formula. Thus for
generic representations of G, the Jacquet conjecture was settled.

Instead of using global-to-local argument, there are also partial results based on the algebraic
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method we explained before. In [HM98] Hakim-Mao verified the conjecture when π is supercuspidal
of level zero, that is, π is supercuspidal such that π1+pFMn(oF ) 6= 0, where oF denotes the ring of
integers of F and pF denotes its maximal ideal. When π is supercuspidal and F/F0 is unramified,
Prasad [Pra01] proved the conjecture by applying the simple type theory developed by Bushnell-
Kutzko in [BK93]. When π is tame supercuspidal, that is, π is a supercuspidal representation arising
from the construction of Howe [How77], Hakim-Murnaghan [HM02b] verified the conjecture. Noting
that in the results of Hakim-Mao and Hakim-Murnaghan, they need the additional assumption that
the residue characteristic p 6= 2.

The discussion above leaves us an open question: Is there any local and algebraic method that leads
to a proof of the Jacquet conjecture which works for all supercuspidal representations of G? First, this
method will generalize the results of Hakim-Mao, Prasad and Hakim-Murnaghan which we mentioned
in the last paragraph. Secondly, we are willing to consider F/F0 to be a quadratic extension of
non-archimedean locally compact fields instead of p-adic fields. Since the result of Feigon-Lapid-Offen
heavily relies on the fact that the characteristic of F equals 0, their method fails when considering non-
archimedean locally compact fields of positive characteristic. Finally, instead of considering complex
representations, we are also willing to study l-modular representations with l 6= p. One hopes to
prove an analogue of the Jacquet conjecture for l-modular supercuspidal representations, which will
generalize the result of Feigon-Lapid-Offen for supercuspidal representations. Noting that they use
global method in their proof, which strongly relies on the assumption that all the representations are
complex. Thus their method doesn’t work anymore for l-modular representations.

The aim of chapter 1 is first to address the question above, and then to explore the problem of
distinction for more general irreducible representations in the l-modular case and its relation with the
“l-modular” base change lift whose construction will be given.

0.2.2 Main results

To begin with, from now on we assume F/F0 to be a quadratic extension of non-archimedean locally
compact fields of residue characteristic p instead of p-adic fields, and we assume that p 6= 2. We fix
R an algebraically closed field of characteristic l 6= p, allowing that l = 0. We assume π to be an
irreducible representation of G = GLn(F ) over R. Now we state our first main theorem.

Theorem 0.2.1. For π a supercuspidal representation of G and τ a unitary involution, π is distin-
guished by Gτ if and only if πσ ∼= π.

Moreover, we may also calculate the dimension of the space of Gτ -invariant linear forms.

Theorem 0.2.2. For π a σ-invariant supercuspidal representation of G, we have

dimRHomGτ (π, 1) = 1.

One important corollary of Theorem 0.2.1 relates to the Ql-lift of a σ-invariant supercuspidal
representation of G over Fl when l > 0, where we denote by Ql, Zl and Fl the algebraic closure of an
l-adic field, its ring of integers and the algebraic closure of the finite field of l elements respectively.
For (π̃, V ) a smooth irreducible representation of G over Ql, we call it integral if it admits an integral
structure, that is, a Zl[G]-submodule LV of V such that LV ⊗Zl Ql = V . For such a representation,

the semi-simplification of LV ⊗Zl Fl doesn’t depend on the choice of LV , which we denote by rl(π̃)

a representation of G over Fl, called the modulo l reduction of π (see [Vig96] for more details). The
following theorem which will be proved at the end of chapter 1, section 8, says that it is always possible
to find a σ-invariant Ql-lift for a σ-invariant supercuspidal representation of G over Fl.
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Theorem 0.2.3. For π a σ-invariant supercuspidal representation of G over Fl, there exists an integral
σ-invariant supercuspidal representation π̃ of G over Ql, such that rl(π̃) = π.

For irreducible generic representations, we are able to prove one direction of the Jacquet conjecture,
which is new only if char(R) = l > 0.

Theorem 0.2.4 (see Theorem 1.9.1). Let π be an irreducible generic representation of G over R. If
π is distinguished by Gτ , then π is σ-invariant.

Our next goal is to characterize l-modular distinguished representations via local Langlands func-
toriality, or base change lift in our settings. To that aim, first we need to construct an l-modular base
change lift. The upshot is the following theorem:

Theorem 0.2.5 (see Theorem 1.10.17). We may define the l-modular cyclic base change lift

BCFl : IrrFl(GLn(F0)) −→ Irrσ−inv
Fl

(GLn(F ))

which satisfies and is determined by the following commutative diagram

IrrInt
Ql

(GLn(F0))

Jl

��

BCQl// IrrInt,σ−inv

Ql
(GLn(F ))

Jl
��

IrrFl(GLn(F0))
BCFl // Irrσ−inv

Fl
(GLn(F ))

We briefly explain the notations and leave the corresponding section for more details. Here the
superscripts Int and σ-inv represent integral and σ-invariant respectively, BCQl represents the base

change lift of Arthur-Clozel being transferred to representations over Ql via a certain algebraic isomor-
phism C ∼= Ql, and for π̃0 (resp. π̃) in IrrInt

Ql
(GLn(F0)) (resp. IrrInt,σ−inv

Ql
(GLn(F ))), the image Jl(π̃0)

(resp. Jl(π̃)) is the unique irreducible constituent in rl(π̃0) (resp. rl(π̃)) having the highest deriva-
tive sequence. Finally as an application, we explore the distinguished cuspidal (but not necessarily
supercuspidal) representations in the l-modular case.

0.2.3 Organization of the chapter 1

Let us outline the content of chapter 1. We introduce our settings in section 1 and basic knowledge
about hermitian matrices and unitary subgroups in section 2. Our main tool to prove the theorems
will be the simple type theory developed by Bushnell-Kutzko in [BK93], and further generalized by
Vignéras [Vig96] to the l-modular case. In section 3 we will give a detailed introduction of this theory.

For a given supercuspidal representation π of G, our starting point is to prove the “only if” part
of Theorem 0.2.1. When R = C and char(F ) = 0, it is a standard result by using global argument,
especially the globalization theorem ( [HM02a], Theorem 1). When char(F ) = p > 0, we may keep the
original proof except that we need a characteristic p version of the globalization theorem. Fortunately
we can use a more general result due to Gan-Lomeĺı [GL18] to get the result we need. Since any
supercuspidal representation of G over a characteristic 0 algebraically closed field can be realized as a
representation over Q up to twisting by an unramified character, we finish the proof when char(R) = 0.
When R = Fl, we consider the projective envelope PΛ|J of Λ|J and we use the results in [Vig96] to study

its irreducible components and the irreducible components of its Ql-lift. Finally we show that there
exists a Ql-lift of π which is supercuspidal and Gτ -distinguished. Thus by using the characteristic
0 case we finish the proof for the “only if” part for any R under our settings. The details will be
presented in section 4.



18 0.2. INTRODUCTION OF CHAPTER 1

In section 5, we prove the τ -selfdual type theorem, which says that for any given unitary involution
τ and a σ-invariant cuspidal representation of G with a technical condition (see Theorem 1.5.3), which
is automatically true at least in the supercuspidal case, we may find a simple type (J ,Λ) contained
in π such that τ(J) = J and Λτ ∼= Λ∨, where ∨ denotes the contragredient. In other words, we find
a “symmetric” simple type contained in π with respect to τ . Our strategy follows from [AKM+19],
section 4. First we consider the case where E/F is totally wildly ramified and n = d. Then for E/F
in general with n = d, we make use of the techniques about endo-class and tame lifting developed
in [BH96] to prove the theorem by reducing it to the former case. Finally by using the n = d case, we
prove the general theorem.

In section 6, for a given σ-invariant cuspidal representation π and a certain unitary involution τ
satisfying the technical condition, we first use our results in section 5 to choose a τ -selfdual simple
type (J ,Λ) contained in π. The main result of section 6, which we call the distinguished type theorem,
says that π is distinguished by Gτ if and only if there exists a τ -selfdual and distinguished simple type
of π. More specifically, by the Frobenius reciprocity and the Mackey formula, we have

HomGτ (π, 1) ∼=
∏

g∈J\G/Gτ
HomJg∩Gτ (Λg, 1).

We concentrate on those g in the double coset such that HomJg∩Gτ (Λg, 1) 6= 0. The proof of the
distinguished type theorem also shows that there are at most two such double cosets which can be
written down explicitly. Moreover for those g we have

HomJg∩Gτ (Λg, 1) ∼= HomJg∩Gτ (κg, χ−1)⊗R HomJg∩Gτ (ρg, χ),

where κτ ∼= κ∨ and χ is a quadratic character of Jg ∩Gτ which is trivial when restricting to J1g ∩Gτ .
In the tensor product, the first term HomJg∩Gτ (κg, χ−1) is of dimension one as an R-vector space. So
essentially we only need to study the second term. If we denote by ρg the cuspidal representation of
GLm(l) ∼= Jg/J1g whose inflation equals ρg|Jg , and by χ the character of H := Jg ∩ Gτ/J1g ∩ Gτ
whose inflation equals χ|Jg∩Gτ , then we further have

HomJg∩Gτ (ρg, χ) ∼= HomH(ρg, χ).

Here H could be a unitary subgroup, an orthogonal subgroup or a symplectic subgroup of GLm(l).
So we reduce our problem to study the H-distinction of a supercuspidal representation of GLm(l).

Now we assume that π is supercuspidal. At the beginning of section 6, we use the result in section 5
to extend σ to a non-trivial involution on E. We write E0 = Eσ, where E/E0 is a quadratic extension.
When E/E0 is unramified, H is a unitary subgroup. We first use the result of Gow [Gow84] to deal
with the characteristic 0 case. For char(R) > 0, we use the same method as in section 4. When E/E0

is ramified, H is either an orthogonal subgroup or a symplectic subgroup. When H is orthogonal,
we use Deligne-Lusztig theory [DL76], precisely a formula given by Hakim-Lansky [HL12] to calculate
the dimension of HomH(ρg, χ) when char(R) = 0. For char(R) > 0, we use again the same method
as in section 4 to finish the proof. When H is symplectic, we show that the space is always 0. These
two cases will be dealt with in section 7 and section 8 separately. As a result, we finish the proof of
Theorem 0.2.1, Theorem 0.2.2 and Theorem 0.2.3.

The section 9 is dedicated to the proof of Theorem 0.2.4. We first deal with the cuspidal case,
whose strategy follows from the same argument in section 5-8. In particular, we also give a new proof
of the main result of section 4, which is purely local and doesn’t depend on the globalization theorem.
And then using the parabolic induction and following the similar argument of Feigon-Lapid-Offen, we
finish the proof for the generic case.

Finally in section 10, we construct the l-modular base change map as promised in Theorem 0.2.5.
The strategy of construction is quite naive. We first construct the l-modular base change lift from
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the Galois side, which corresponds to a restriction map. Then we use the l-modular local Langlands
correspondence developed by Vignéras [Vig01] to transfer this map to the GLn side, such that it
is compatible with the desired l-modular local Langlands functoriality. What remains to show is
the compatibility of the constructed map with the usual base change lift of Arthur-Clozel, which
relies on the local Langlands correspondence over Ql and Fl and their compatibility, and the local
Langlands functoriality for base change lift over Ql. However it should be pointed out that our l-
modular base change lift is in some sense “artificial”, since in the theorem the map Jl is not the usual
modulo l reduction rl, and in general we cannot ensure that the modulo l reduction of an irreducible
representation is irreducible. But for cuspidal representations, the definition of rl and Jl coincides,
thus we could make use of our l-modular base change lift to study the distinction of l-modular cuspidal
representations, which will be displayed in the final subsection.

It is worth mentioning that in [Séc19], Sécherre studied the σ-selfdual supercuspidal representations
of G over R, with the same notation unchanged as before. He proved the following Dichotomy Theorem
and Disjunction Theorem: For π a supercuspidal representation of G, it is σ-selfdual (that is, πσ ∼= π∨)
if and only if π is either distinguished by GLn(F0) or ω-distinguished, where ω denotes the unique
non-trivial character of F×0 which is trivial on NF/F0

(F×). The method we use in this chapter is the
same as that was developed in ibid. For example, our section 5 corresponds to section 4 of [AKM+19]
and our section 6 corresponds to section 6 of [Séc19], etc.

To point out the main differences in our case as the end of the introduction, first in section 5 we
will find that in a certain case, it is even impossible to find a hereditary order a such that τ(a) = a ,
which isn’t a problem in section 4 of [AKM+19]. That’s why we need to add a technical condition in
the main theorem of section 5 and finally verify it for supercuspidal representations. Precisely, for a
σ-invariant supercuspidal representation, we first consider the unitary involution τ = τ1 corresponding
to the identity hermitian matrix In. In this case, we may use our discussion in section 5 to find a
τ -selfdual type contained in π and we may further use our discussion in section 6 and section 7 to
show that m is odd when E/E0 is unramified. This affirms the technical condition we need, thus we
may repeat the procedure of section 5 and section 6 for general unitary involutions. This detouring
argument also indicates that a σ-invariant cuspidal not supercuspidal representation does not always
contain a τ -selfdual simple type. Moreover in section 9 we also provide another method to deal with
this difficult. The rough idea is to regard a general unitary involution as a twist of a special unitary
involution. This idea enable us to prove Theorem 0.2.4 for cuspidal representations.

Furthermore in section 8, we may find out that the character χ mentioned above cannot always
be realized as a character of J , thus cannot be assumed to be trivial a priori as in [Séc19]. It means
that we need to consider a supercuspidal representation of the general linear group over finite field
distinguished by a non-trivial character of an orthogonal subgroup instead of the trivial one. That’s
why the result of Hakim-Lansky ( [HL12], Theorem 3.11) shows up.

Last but not least, in section 6 a large part of our results are stated and proved for a general
involution instead of a unitary one. This provides the possibility to generalize this method to study
the distinction of supercuspidal representations of G by other involutions. For instance, the similar
problem for orthogonal subgroups is explored in chapter 2 of the thesis.

0.3 Problem of distinction related to orthogonal subgroups of GLn(F )

0.3.1 Background

This chapter is based on the preprint [Zou20]. Let F = F0 be a non-archimedean locally compact field
of residue characteristic p. We will only consider the case where R = C, although the main results
of this chapter are also expected to be true for R in general. As before we let G = GLn be as an
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algebraic group over F and we have G = GLn(F ). For ε a symmetric matrix in G, we denote by

τε(x) = ε−1 tx−1ε for any x ∈ G

the orthogonal involution with respect to ε, and by Gτε the orthogonal subgroup of G, such that
the group of its F0-rational points, denoted by Gτε and called the orthogonal subgroup of G, is the
subgroup of G consisting of the elements fixed by τε. In this settings, we are interested in the problem
of distinction related to the pair (G,Gτε), and its relation with the local Langlands correspondence
and its functoriality.

If we write S for the set of invertible symmetric matrices as a topological subspace of G, which is
endowed with a continuous right G-action

ε · g := tgεg, g ∈ G, ε ∈ S,

then we have the following decomposition as G-spaces

S =
⊔
[ε]

Gτε\G,

where [ε] ranges over S/G, and Gτε is the orthogonal group defined by a certain representative ε in
the class [ε]. A more uniformed version of the above problem is to study the space

HomG(π, C∞(S)) ∼=
⊕
[ε]

HomG(π, IndGGτε1) ∼=
⊕
[ε]

HomGτε (π, 1), (0.3.1)

for irreducible representation π of G, and to determine a criterion for the space being non-zero and
to study the corresponding dimension, where C∞(S) denotes the space of uniformly locally constant
functions on S with complex values.

The study of this problem was first proposed by Jacquet [Jac91]. The method, as we already intro-
duced before, is first to consider its global analogue, and then to initiate a global-to-local argument,
and the key point is to compare two relative trace formulae: one relates to the relative trace formula
for the symmetric matrices or orthogonal groups, and the other relates to the Kuznetsov trace formula
for the two-fold metaplectic covering of GLn (see [Mao98] for a brief introduction).

We provide a brief summary for the known results. In [Off05], Offen followed Jacquet’s argumen-
t [Jac03] to consider the Kloosterman-Fourier transform for orbital integrals with respect to sym-
metric matrices, which might be a partial step to prove the existence for smooth transfer in the
non-archimedean case, and the corresponding archimedean case remains a mystery. For the funda-
mental lemma for unit Hecke elements, Mao [Mao98] gave a proof, for n = 3, by direct calculation and
Do first proved, for general n, for local fields of positive characteristic via geometric method [Do15],
and then he transferred the result to p-adic fields for p large enough [Do18]. However for ease of
later application, a stronger version of fundamental lemma working with general Hecke elements is
needed but remains unknown. The spectral sides of both trace formulae are less studied. Partial
results due to Chinta and Offen [CO12], [CO13], on the one hand, shed some light on the spectral
expansions, but on the other hand, indicate the difficult of solving the full question. In particular,
since the local Whittaker model for the two-fold metaplectic covering group of GLn is not unique, the
terms of the spectral side of Kuznetsov trace formula are not factorizable, adding the difficulty to the
global-to-local argument.

One subtle point of this problem is that, it is out of the reach of known general proposals, for
example the one proposed by Sakellaridis-Venkatesh as we introduced before. In fact for X = Gτ\G
with τ a given orthogonal involution, even if X is a spherical variety, the assumption on the roots
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of X is not satisfied, which prevents us from constructing the dual group ĜX . If we believe in the
existence of the connection between distinction and the local Langlands functoriality as we explained
before, then an expected local lifting should be constructed

IrrC(G0) −→ IrrC(G),

for G0 as at least a locally profinite group, such that those distinguished representations are exactly
in its image. As already indicated in the work of Jacquet and his successors above, a general belief
is that, the group G0 should be the two-fold metaplectic covering of GLn(F ), and the corresponding
lifting should be the metaplectic correspendence studied by Flicker-Kazhdan [FK86]. However to the
knowledge of the author, no precise statement or conjecture has been made, which is probably due to
the lack of known cases of the problem of distinction itself. Instead of understanding the full problem,
it should also be cheerful if enlightening partial results or even reasonable guesses could be made.

Another strategy starts from studying the distinction of supercuspidal representations, and then
uses parabolic induction to get at least some partial results for more general representations. For the
study of a supercuspidal representation π, as we introduced before, the rough idea is first to regard it
as the compact induction of a finite dimensional representation Λ of an open subgroup J of G which
is compact modulo its centre, and then to use the Mackey formula and the Frobenius reciprocity to
write the original distinguished space as direct product, ranging over the double cosets in J\G/H, of
distinguished spaces with respect to Λ. Under the assumption that p 6= 2, the question is completely
addressed by Hakim and Mao [HM99] when π is of level 0 and by Hakim and Lansky [HL12] and
Hakim [Hak13] when π is tamely ramified. The goal of this chapter is to generalize their results to all
supercuspidal representations of G, which we explain in the following subsection.

0.3.2 Statement of the main theorems

From now on we further assume that p 6= 2. For π a supercuspidal representation of G, we recall
several invariants given by the simple type theory of Bushnell-Kutzko [BK93] and the theory of endo-
class of Bushnell-Henniart [BH96], which we refer to §2.1.2 for more details. First of all, there is a
unique tamely ramified extension T/F up to F -isomorphism, called the tame parameter field of π.
We write d for the degree of the endo-class of π which divides n and is divided by [T : F ]. We write
m for the integer such that n = md. Let Tm be the unramified extension of degree m over T . Here T ,
d, m, Tm are intrinsically determined by π.

To give an impression of what these invariants should be, we let ϕπ be the irreducible representation
of the Weil groupWF corresponding to π via the local Langlands correspondence. Then the restriction
of ϕπ to the wild inertia subgroup PF of WF is semisimple and can be written as direct sum of
irreducible representations with each irreducible component of multiplicity exactly m. We choose α
to be any irreducible component of ϕπ|PF , then there exists a finite tamely ramified extension T/F
such that

NF (α) := {g ∈ WF |αg ∼= α}

as a subgroup of WF equals WT . And it turns out that T/F is uniquely determined up to an F -
isomorphism and independent of the choice of α. We let n = dim(ϕπ), d = n/m and Tm be as above.
Then T , d, m, Tm defined here from the Galois side match with those defined from the GLn side
mentioned in the last paragraph (see [BH14b] for more details).

The following theorem gives a criterion for distinction.

Theorem 0.3.1. Let π be a supercuspidal representation of G and let T , d, m, Tm be as above. Then
π is distinguished by an orthogonal group H if and only if the following two conditions hold:

1. ωπ(−1) = 1, where ωπ denotes the central character of π;
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2. Precisely one of the following conditions holds:

• NTm/F (T×m)F×2/F×2 = F×/F×2 and H is split;

• NTm/F (T×m)F×2/F×2 is a subgroup of F×/F×2 of order 2 and H is either split or H = Gτε

which is quasisplit but not split, where ε is a symmetric matrix such that (−1)n(n−1)/2det(ε)
∈ NTm/F (T×m)− F×2;

• NTm/F (T×m)F×2/F×2 = {1} and H is either split or not quasisplit.

In particular, it is easily seen that:

Corollary 0.3.2. When H is split, π is distinguished by H if and only if ωπ(−1) = 1.

Moreover, the following theorem calculates the dimension of the distinguished space.

Theorem 0.3.3. Let π be a supercuspidal representation of G such that ωπ(−1) = 1 and let H be an
orthogonal group satisfying the condition 2 of Theorem 0.3.1.

1. If H is not split, then dimCHomH(π, 1) = 1;

2. If H is split, then

• If NTm/F (T×m)F×2/F×2 = F×/F×2, then dimCHomH(π, 1) = 1;

• If NTm/F (T×m)F×2/F×2 is a subgroup of F×/F×2 of order 2, then dimCHomH(π, 1) = 2;

• If NTm/F (T×m)F×2/F×2 = {1}, then dimCHomH(π, 1) = 3.

Finally using (0.3.1) and the same argument in [Hak13], the following theorem holds as a corollary
of Theorem 0.3.3.

Theorem 0.3.4. For π a supercuspidal representation of G, it is distinguished by a certain orthogonal
subgroup if and only if ωπ(−1) = 1. Moreover, if this condition holds, then

dimCHomG(π, C∞(S)) = 4.

Thus for p 6= 2 and any supercuspidal representation π of G = GLn(F ), the problem of distinction
for orthogonal subgroups is fully settled. The only restriction on π, being the triviality of its central
character on −1, can also be rephrased as the triviality of the determinant character of its Langlands
parameter on −1 via the local Langlands correspondence for GLn.

0.3.3 Sketch of the proof and the structure of chapter 2

We sketch the proof and the structure of chapter 2. We briefly recall the simple type theory we need
in section 1, which is indeed a proper subset of chapter 1, section 2. In section 2 we build up necessary
results for symmetric matrices, orthogonal involutions and orthogonal groups for future use.

In section 3 we prove our first main theorem, the tau-selfdual type theorem, which says that
for a certain well-chosen orthogonal involution τ0 depending on π, there exists a simple type (J ,Λ)
compactly inducing π such that τ0(J) = J and Λ ◦ τ0 = Λ∨, where Λ∨ denotes the contragredient
of Λ. In fact, for each orthogonal group H satisfying Theorem 0.3.1, condition 2, we may find a τ0

satisfying H = Gτ0 and the tau-selfdual theorem. Such a simple type is called τ0-selfdual and will be
regarded as the starting point to pursue the problem of distinction.
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In section 4, we study the distinction with respect to an arbitrary orthogonal involution τ and
the corresponding orthogonal group Gτ . We fix a τ0-selfdual simple type (J ,Λ) and we may use the
Mackey formula and the Frobenius reciprocity to write the distinguished space as follows:

HomGτ (π, 1) ∼=
∏

g∈J\G/Gτ
HomJg∩Gτ (Λg, 1).

The distinguished type theorem says that for those double cosets g ∈ J\G/Gτ contributing to the
distinction, the simple type (Jg,Λg) is τ -selfdual. In particular, when τ = τ0 we may also give out all
the possible J -Gτ0 double cosets contributing to the distinction.

Finally in section 5, we continue to study the distinguished space HomJg∩Gτ (Λg, 1). The techniques
developed in section 4 enable us to further study the distinguished space via the more delicate structure
given by the simple type theory, and finally reduce the question to study the distinguished space
HomH(ρ, χ), where H is an orthogonal subgroup of a finite general linear group G = GLm(Fq), and ρ
is a supercuspidal representation of G, and χ is a character of H of order 1 or 2. Using the Deligne-
Lusztig theory, the condition for the space being non-zero is given and the dimension is at most one.
The condition turns out to be the central character of π being trivial at −1. Thus for those special τ0

in section 4, we fully study the distinguished space and the corresponding dimension. Since those τ0

correspond exactly to the orthogonal groups in Theorem 0.3.1 and Theorem 0.3.3, we prove the “if”
part of Theorem 0.3.1 and Theorem 0.3.3.

It remains the “only if” part of Theorem 0.3.1, of which we take advantage to explain the condition
for the orthogonal groups or corresponding orthogonal involutions in the theorem. For Em/F an
extension of degree n and τ an orthogonal involution, we call Em τ -split if there exists an embedding
ι : E×m ↪→ GLn(F ) such that τ(ι(x)) = ι(x)−1 for any x ∈ E×m. The following intermediate proposition
gives important information for π being distinguished by Gτ :

Proposition 0.3.5. For π a given supercuspidal representation of G with ωπ(−1) = 1, there exists a
field Em of degree n over F which is totally wildly ramified over Tm, such that if π is distinguished by
Gτ , then Em is τ -split.

The construction of Em is derived from the construction of τ0-selfdual simple type given in section
3. In particular, when τ0 corresponds to a split orthogonal group, from the “if” part of Theorem 0.3.1,
Em is τ0-split. Once knowing this, it is not hard to study all the involutions τ such that Em is τ -split,
which turn out to be those involutions satisfying the condition of Theorem 0.3.1, proving the “only
if” part of the theorem.

When Tm/F is of degree n, or equivalently when π is essentially tame in the sense of Bushnell-
Henniart [BH05a], which is the same as being tamely ramified in the context of Hakim [Hak13] thanks
to the work of Mayeux [May20], our result gives another proof for the result of Hakim by using the
simple type theory instead of Howe’s construction for tamely ramified representations. It is worth
mentioning that we also borrow many lemmas from [HM99], [HL12], [Hak13], which effectively help
us to reduce our task.

As in chapter 1, it should also be pointed out that the method we use here is not new. It has first
been developed by Sécherre to solve the similar problem where τ is a Galois involution [AKM+19],
[Séc19], and then by us for the case where τ is a unitary involution (cf. chapter 1), and then by
Sécherre for the case where τ is an inner involution [Séc20] (there G can also be an inner form of
GLn(F )). The sketches of the proof in different cases are similar, but one major difference in the
current case is worth to be mentioned, that is, we need to consider those involution τ not contributing
to the distinction. In this case we cannot construct a τ -selfdual simple type (J ,Λ) using the method
in section 3. The novelty of our argument is first to consider a special involution τ0, and then to
regard τ as another involution which differs from τ0 up to a G-conjugation. Thus we choose (J ,Λ)
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to be a τ0-selfdual simple type and, using the general results built up in chapter 1, we can still study
those J -Gτ double cosets contributing to the distinction. If one wants to fit the method in the above
cases to a general involution τ , one major problem encountered is to construct a τ -selfdual simple
type, which, as we explained, may be impossible if Gτ does not contribute to the distinction. The
strategy we explained above gives a possible solution, which helps to consider the same question for
an abstract involution.

0.4 Explicit base change lift and automorphic induction for super-
cuspidal representations

0.4.1 Background

Let F/F0 be as in §0.1.4, and we only consider the case R = C in this chapter. We will focus on
two special local liftings, say base change lift and automorphic induction with respect to F/F0. More
precisely, when F/F0 is tamely ramified and for supercuspidal representations, we will study these two
maps via the simple type theory.

First we give a brief introduction for the local Langlands correspondence for general linear groups,
whose existence and properties have been known for a while ( [LRS93], [HT01], [Hen00], [Sch13]).
For n′ a certain positive integer and G0 = GLn′ as a reductive group over F0, the local Langlands
correspondence is a bijection

LLCF0 : IrrC(G0) −→ Φ(G0).

Here we keep the notations of §0.1.1 and in this case Φ(G0) consists of GLn′(C)-conjugacy classes of
homomorphisms

φ0 = (ϕ0, λ0) :WF0 × SL2(C) −→ GLn′(C),

such that ϕ0 := φ0|WF0
×{1} is a smooth representation of WF0 , and λ0 := φ0|{1}×SL2(C) is an algebraic

representation of SL2(C) of dimension n′. For n a positive integer, let G be the Weil restriction of
the reductive group GLn over F , which is a reductive group over F0 with G = GLn(F ). Still the local
Langlands correspondence is a bijection

LLCF : IrrC(G) −→ Φ(G).

Here Φ(G) is the isomorphism classes of L-parameters related to G, which can be naturally identified
with the isomorphism classes of L-parameters related to GLn over F . Using this identification, Φ(G)
consists of GLn(C)-conjugacy classes of homomorphisms

φ = (ϕ, λ) :WF × SL2(C) −→ GLn(C),

such that ϕ := φ|WF×{1} is a smooth representation of WF , and λ := φ0|{1}×SL2(C) is an algebraic
representation of SL2(C) of dimension n.

Now we introduce the base change lift and automorphic induction related to F/F0. First we assume
n′ = n and we define the restriction map

ResF/F0
: Φ(G0) −→ Φ(G), φ0 = (ϕ0, λ0) 7−→ φ = (ϕ0|WF

, λ0),

where we notice that WF is a subgroup of WF0 . Thus the base change lift is the expected local lifting
BCF/F0

: IrrC(G0)→ IrrC(G) such that the following diagram is commutative:

IrrC(G0)

BCF/F0
��

LLCF0// Φ(G0)

ResF/F0
��

IrrC(G)
LLCF

// Φ(G)
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Secondly we assume n′ = nr and we define the induction map

IndF/F0
: Φ(G) −→ Φ(G0), φ = (ϕ, λ) 7−→ φ′0 = (Ind

WF0
WF

ϕ, i ◦ λ),

where i : GLn(C)→ GLnr(C) is a group embedding4. Thus the automorphic induction is the expected
local lifting AF/F0

: IrrC(G)→ IrrC(G0) such that the following diagram is commutative:

IrrC(G0)
LLCF0// Φ(G0)

IrrC(G)
LLCF

//

AF/F0

OO

Φ(G)

IndF/F0

OO

In [AC89], [HH95] and [HL11], the base change lift for all irreducible representations, and the auto-
morphic induction for at least essentially unitary generic representations have been constructed via
the method of trace formula without the utilisation of the local Langlands correspondence, and the
functoriality above have been verified.

Although for GLn the local Langlands correspondence has already been constructed as a bijection
with desiderata being verified, it seems that the information extracted from the two sides are not
equal. Let us focus on supercuspidal representations, then for any n ∈ N the correspondence can be
realized as a bijection

LLCF : A0
n(F ) −→ G0

n(F )

from the set of equivalence classes of supercuspidal representations of GLn(F ), to the set of equivalence
classes of smooth irreducible representations of the Weil groupWF of dimension n, denoted by A0

n(F )
and G0

n(F ) respectively. Usually we get few concrete information for irreducible representations ofWF

from the representation theory, but by contrast we have the classification theory for supercuspidal
representations of GLn(F ), the so-called simple type theory built up by Bushnell-Kutzko [BK93],
which is down-to-earth and sophisticated. So one natural question is, can we characterize the LLCF

above using the structural theory for supercuspidal representations of GLn(F )?
To answer this question, Bushnell and Henniart initiate a long-running project with the outcome

contained in a series of articles [BH96], [BH99], [BH05c] [BH03], [BH05a], [BH05b], [BH10], [BH14b],
[BH17], [BH19], etc. Especially, in [BH05a], [BH05b], [BH10] they fully addressed the question above
for a special class of supercuspidal representations, say essentially tame supercuspidal representations.
To do that, they first constructed an algebraic version of local Langlands correspondence, which they
called “näıve local Langlands correspondence”, as a bijection between same sets as LLCF and denoted
by NLCF . For ϕ ∈ G0

n(F ), let Tm be defined as the tamely ramified extension of F related to ϕ as in
the last section. For µ a tamely ramified character of T×m , they constructed a certain “twist” of ϕ by µ,
denoted by ϕ� µ, which is another representation in G0

n(F ). The upshot is the comparison theorem,
which predicts the existence of a tamely ramified character µϕ of T×m , such that LLC−1

F (ϕ) is isomorphic
to NLC−1

F (ϕ�µϕ). In the essentially tame case in the sense of [BH10], the character µϕ of T×m is of order
dividing 4 which can be calculated explicitly, thus in this case the local Langlands correspondence is
fully understand in an algebraic way. In the general case as in [BH14b], the construction of the näıve
local Langlands correspondence relies on the local Langlands correspondence in the wildly ramified
case as a “black box”, and the full characterization of the character µϕ remains unknown. So to
fully understand the LLCF in general, we first need to understand its special case for wildly ramified
supercuspidal representations, which seems to be a deep enough question, and then we need to calculate
the character µϕ above, which will be discussed in chapter 3 later on.

4Using basic argument in linear algebra we may show that the definition doesn’t depend on the choice of i.
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The principal aim of this chapter is to adapt the idea of Bushnell-Henniart above to the base
change lift and automorphic induction, that is, we will construct algebraic versions of the two maps,
and then will compare them with the original maps correspondingly. More details will be given in the
subsection below.

0.4.2 Main results

To give a detailed introduction, we use the basic terminologies and properties of the simple type theory
and the theory of cyclic base change and automorphic induction, for which the readers may refer to
chapter 3, section 2 and section 4 respectively. For F/F0 as before, let Σ = Gal(F/F0) be the Galois
group and fix σ ∈ Σ a generator. For π0 a supercuspidal representation of GLn(F0), we define its base
change π := BCF/F0

(π0) as an irreducible representation of GLn(F ). We further assume that either
π is supercuspidal, or r divides n and there exists a supercuspidal representation π′ of GLn/r(F ) such
that π is isomorphic to the parabolic induction

π′ × π′σ × ...× π′σr−1
.

Equivalently we have π0 = AF/F0
(π′) as the automorphic induction of π′ in the latter case. Our aim is

to give an explicit construction of π and π′ in the two cases respectively, using the simple type theory
and the information from π0. To that end, we need to assume the additional condition that F/F0 is
tamely ramified.

Let [a0, β] be a maximal simple stratum in Mn(F0), and let θ0 be a simple character of H1(a, β)
contained in π0. We choose κ0 to be a full Heisenberg representation of θ0 as a representation of
J(a0, β), and then there exists a unique representation ρ0 of J(a0, β) trivial on J1(a0, β), such that

π0 is isomorphic to the compact induction ind
GLn(F0)
J(a0,β) (κ0 ⊗ ρ0). Here E0 = F0[β] is a field of degree d

over F0 with n = md for m an integer, and we denote by T0 its maximal tamely ramified subextension
over F0 and by T0,m the unramified extension of degree m over T0. Then the representation ρ0

can be characterized by the ∆0-orbit of a ∆0-regular tamely ramified character ξ0 of T×0,m, where
∆0 = Gal(T0,m/T0).

We first consider the case where π is supercuspidal. Using the tame lifting result in [BH96]
and [BH03], we construct [a, β] as a maximal simple stratum in Mn(F ), and θb as a simple character of
H1(a, β) contained in π. And such θb may be regarded as the base change lift of θ0 for simple characters.
Then we determine a full Heisenberg representation κb of θb in an algebraic way, which relies only on
θ0 and κ0, but not π0. Then there exists a unique representation ρb of J(a, β) trivial on J1(a, β), such

that π is isomorphic to the compact induction ind
GLn(F )
J(a,β) (κb ⊗ ρb). Such ρb is characterized by the

∆-orbit of a ∆-regular tamely ramified character ξb of T×m , where Tm = F ⊗F0 T0,m and T = F ⊗F0 T0

are fields over F and ∆ = Gal(Tm/T ). The following comparison theorem is recorded as the main
theorem for base change.

Theorem 0.4.1 (See Theorem 3.6.2). There exists a tamely ramified character bφ
F/F0

θ0
of T×m , such

that ξb · bφ
F/F0

θ0
and ξ0 ◦NTm/T0,m

are in the same ∆-orbit.

Similarly we consider the case where π0 equals the automorphic induction of a supercuspidal
representation π′ of GLn/r(F ). To proceed, we further assume that either F is identified with a
subfield of E0 via an embedding, which corresponds to the interior automorphic induction case, or
E = F ⊗F0 E0 is a field of degree r over E0, which corresponds to the exterior automorphic induction
case, and we divide the latter case into two subcases depending on E/E0 unramified or totally ramified,
since in different cases the corresponding situations and methods are different. Still using the tame
lifting method in [BH96] and [BH03], we construct [c, β] as a simple stratum in Mn/r(F ) and θa as a
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simple character of H1(c, β) contained in π′ And θ0 may be regarded as the automorphic induction of
θa for simple characters. Like the base change case, we determine a full Heisenberg representation κa
of θa in an algebraic way depending only on θ0 and κ0, and then there exists a unique representation ρa

of J(c, β) trivial on J1(c, β), such that π′ is isomorphic to the compact induction ind
GLn/r(F )

J(c,β) (κa⊗ρa).
In the interior automorphic induction case the representation ρa is characterized by the ∆0-orbit of a
∆0-regular tamely ramified character ξa of T×0,m. In the exterior automorphic induction case we write
T = F ⊗F0 T0 as a field and we let Tm/r be the unramified extension of degree m/r over T , then for
∆ = Gal(Tm/r/T ) the representation ρa is characterized by the ∆-orbit of a ∆-regular tamely ramified

character of T×m/r, still denoted by ξa. In this case if E/E0 is unramified, Tm/r is identified with T0,m

and ∆ is identified with a subgroup of ∆0, and if E/E0 is totally ramified, Tm = F ⊗F0 T0,m is a field
of degree m over T with Tm/r being regarded as its subfield, and we write ∆′ = Gal(Tm/T ). The
following comparison theorem is recorded as the main theorem for automorphic induction.

Theorem 0.4.2 (See Theorem 3.6.4, Theorem 3.6.6 and Theorem 3.6.8). (1) In the interior auto-

morphic induction case, there exists a tamely ramified character aφ
F/F0

θ0
of T×0,m such that ξa · aφF/F0

θ0
and ξ0 are in the same ∆0-orbit;

(2) In the exterior automorphic induction case, there exists a tamely ramified character aφ
F/F0

θ0
of

T×m/r such that

• if E/E0 is unramified, ξa · aφF/F0

θ0
and ξ0 are in the same ∆0-orbit;

• if E/E0 is totally ramified, (ξa · aφF/F0

θ0
) ◦NTm/Tm/r and ξ0 ◦NTm/T0,m

are in the same ∆′-orbit.

We mention three applications of the above two theorems to end this subsection. The first ap-
plication relates to the study of ρb and ρa via ρ0, where ρ0 is the supercuspidal representation of
GLm(kE0) ∼= J(a0, β)/J1(a0, β) whose inflation equals ρ0|J(a0,β) with kE0 denoting the residue field
of E0, and ρb is the supercuspidal representation of GLm(kE) ∼= J(a, β)/J1(a, β) whose inflation
equals ρb|J(a,β) with kE denoting the residue field of E in the base change case, and ρa is the super-
cuspidal representation of GLm(kE0) ∼= J(c, β)/J1(c, β) in the interior automorphic induction case,
of GLm/r(kE) ∼= J(c, β)/J1(c, β) in the exterior automorphic induction case, whose inflation equals

ρa|J(c,β). Then the restriction of bφ
F/F0

θ0
and aφ

F/F0

θ0
to those elements in the ring of integers are

quadratic characters which can be fully characterized, the representations ρb and ρa are understood
via the theory of Green (cf. [Gre55]). In particular for E/E0 as an unramified extension of degree
r in the base change case or exterior automorphic induction case, this gives a relation between the
Arthur-Clozel base change lift and the Shintani base change map (cf. [Shi76]) for supercuspidal rep-
resentations, see Corollary 3.6.3 and Corollary 3.6.9.

The second application relates to the l-modular representations. For l a prime number different
from p, we fix an algebraic isomorphism Ql ∼= C, thus all the representations above can be realized
as representations over Ql. We further assume that π0 is integral, saying that it comes from a repre-
sentation over a Zl-lattice by extension of scalar. Using the two theorems, we may prove that tamely
ramified cyclic base change lift and automorphic induction are compatible with modulo l reduction for
supercuspidal representations. More precisely, for one such π0 with its base change π supercuspidal, π
is also integral, and if we change π0 by another integral supercuspidal representation with its modulo
l reduction rl(π0) unchanged as a cuspidal representation over Fl, then the corresponding π is still
integral supercuspidal with its modulo l reduction rl(π) unchanged. Similarly for one such π0 as the
automorphic induction of π′ as a supercuspidal representation, π′ is integral, and if we change π′ by
another integral supercuspidal representation with its modulo l reduction rl(π

′) unchanged as a cusp-
idal representation over Fl, then the corresponding π0 is still integral supercuspidal with its modulo l
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reduction rl(π0) unchanged. The proof is direct and will not be given in this chapter, but the readers
may consult [BH14a] for a similar idea.

The final application relates to the calculation of the character µϕ related to the comparison
theorem in [BH14b] mentioned in the last subsection. The strategy is to consider a certain unramified
base change lift, and then to compare the corresponding characters “mu” related the two base fields,
which has already been used for the essentially tame case in [BH05a]. To that end we need to study

bφ
F/F0

θ0
in the case where F/F0 is unramified.

Theorem 0.4.3 (See Theorem 3.9.1). When F/F0 is unramified, the character bφ
F/F0

θ0
is unramified,

and bφ
F/F0

θ0
($ps

T0
) = (−1)(t−1)(r−1), where $T0 denotes a uniformizer of T×m , and K0 denotes the

maximal unramified subextension of T0,m over F0, and t = [T0,m : K0] and [E0 : T0] = ps.

Using a special case of the theorem, that is Proposition 3.9.9, we may update the values of µϕ
which will be discussed in the last section. Our result there is obviously incomplete and not satisfactory
enough.

0.4.3 Structure of the chapter 3

We sketch the structure of chapter 3. The sections 1-4 are preliminaries, including a brief introduction
and summary of the simple type theory, symplectic signs, and base change lift and automorphic
induction respectively. After the first elementary discussion in section 5, in section 6 we formulate
our algebraic construction of tamely ramified cyclic base change and automorphic induction following
the sketch mentioned in the last subsection and state Theorem 0.4.1 and Theorem 0.4.2. But the
construction of the corresponding full Heisenberg representations remains to be done until section 7,
whose strategy relies on the idea of a series of results of Bushnell-Henniart which will be recalled
and reformulated there. The proof of Theorem 0.4.1 and Theorem 0.4.2 will be given in section 8
which seems to be surprisingly easy, which actually relies on two highly-nontrivial ingredients: the
local Langlands functoriality for base change lift and automorphic induction, and the comparison
theorem of Bushnell-Henniart. The section 9 is devoted to prove Theorem 0.4.3 and the section 10 is
its application to calculate the character µϕ related to the comparison theorem.

The author would like to take advantage of this place to thank Colin J. Bushnell and Guy Henniart
for their enormous influence on the author and on this chapter. Actually it is better to regard this
part as a (clumsy) continuation of their work rather than an independent work, since almost all the
important ideas and techniques are originated from their articles listed above. Moreover the author
would like to thank them for their generous encouragements, which indeed helped a lot to a young
PhD student who was not confident and was even suspicious with the necessity of his work.



Introduction (version française)

Cette thèse contient trois parties. Dans ce chapitre introductif, nous expliquerons le contexte général
dans la première section, puis dans les trois sections suivantes, nous nous concentrerons sur chaque
partie et fournirons des introductions spécifiques.

0.1 Contexte général

Soient F0 un corps localement compact non archimédien de caractéristique résiduelle p et R un corps
algébriquement clos de caractéristique l 6= p, et en particulier lorsque l > 0 nous dirons que nous
sommes dans le cas “l-modulaire”. Par exemple, nous nous concentrerons principalement sur les trois
cas suivants: R est le corps des nombres complexes C, la clôsure algébrique du corps l-adique noté
Ql, ou la clôsure algébrique du corps fini avec l éléments noté Fl quand l 6= 0. Soient G un groupe
réductif 5 sur F0 et G le groupe localement profini constitué des F0-points rationnels de G. Nous
nous intéressons à la catégorie des représentations irréductibles lisses d’un groupe localement profini
et nous désignons par IrrR(G) l’ensemble des classes d’isomorphisme de représentations irréductibles
lisses de G sur R.

0.1.1 Correspondance de Langlands locale

Considérons tout d’abord le cas où R = C. Fixons une clôsure séparable F0 de F0, et notons WF0

le groupe de Weil de F0 par rapport à F0 et WDF0 = WF0 × SL2(C) le groupe de Weil-Deligne de
F0. Définissons le groupe dual de G, noté Ĝ, comme le groupe réductif complexe (identifié au groupe
topologique complexe de ses points rationnels par abus de notation) déterminé par le dual de la donnée
radicielle de G. Puisque la donnée radicielle de G est munie d’une action par WF0 , il en est de même
pour le groupe Ĝ en fixant un épinglage, et nous notons LG = ĜoWF0 le L-groupe de G.

Définition 0.1.1. Un L-paramètre de G (sur C) est un homomorphisme φ : WDF0 → LG tel que

• Le diagramme suivant est commutatif:

WF0 × SL2(C) = WDF0

((

φ // LG = ĜoWF0

xx
WF0

où les deux flèches transversales sont les projections canoniques.

5Nous ne considérerons que les groupes réductifs connexes.

29
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• φ|WF0
×{1} est continu et d’image constituée d’éléments semi-simples6, et φ|{1}×SL2(C) est al-

gébrique 7 et d’image constituée d’éléments unipotents dans Ĝ.

Deux L-paramètres sont dits isomorphes s’ils sont dans la même Ĝ-classe de conjugaison, et nous
notons Φ(G) l’ensemble des classes d’isomorphisme des paramètres de Langlands de G. La célèbre
correspondance de Langlands locale est énoncée comme suit.

Conjecture 0.1.2. Il y a une surjection unique

LLC : IrrC(G) −→ Φ(G)

avec fibres finies et satisfaisant certaines desiderata.

Définition 0.1.3. Pour φ ∈ Φ(G), nous appelons Πφ := LLC−1(φ) le L-paquet de φ. C’est un
enemble fini de représentations irréductibles de G.

Ici, nous ne précisons pas ce que signifient exactement ces desiderata (compatibilité avec l’induction
parabolique, transfert des L-facteurs et des ε-facteurs, etc.) mais nous nous référons à [Bor79] pour
une introduction explicative. La correspondance de Langlands locale pour certains groupes réductifs
est connue, comme pour les tores, GLn ou certains groupes classiques, grâce aux travaux de Langlands
[Lan97], Harris-Taylor [HT01], Arthur [Art13], etc.

De plus, bien que la conjecture de Langlands ne soit énoncée que pour les représentations sur C,
il est possible de l’étendre aux représentations à coefficients dans R, en adaptant les définitions des
L-paramètres et des desiderata. Par exemple, il existe des travaux novateurs de Vignéras [Vig01] pour
G = GLn, ainsi que des travaux récents de Dat-Helm-Kurinczuk-Moss [DHKM20] pour les groupes
réductifs généraux et représentations sur un anneau intègre dans lequel p est inversible au lieu de
sur un corps R. Enfin, nous mentionnons le résultat récent de Fargues-Scholze [FS21]. En utilisant
des méthodes géométriques et sous des paramètres assez généraux (plus généraux que les nôtres), ils
ont construit Φ(G) (en fait comme un champ) et la correspondance de Langlands locale, et vérifié les
desiderata correspondants sous leurs paramètres (cf. ibid. Theorem IX.0.5).

0.1.2 Fonctorialité de Langlands locale

Maintenant nous discutons la fonctorialité de Langlands locale et nous supposons que R = C. Soient
G0 un autre groupe réductif sur F0 et G0 le groupe de F0-points rationnels de G0. Comme dans la
sous-section précédente, nous pouvons définir de la même manière son groupe dual Ĝ0, son L-groupe
LG0 = Ĝ0 oWF0 et l’ensemble des classes d’isomorphisme des L-paramètres Φ(G0).

Définition 0.1.4. Un homomorphisme de groupe

ι : LG0 −→ LG

est appelé un L-homomorphisme, si

• il est continu, et sa restriction à Ĝ0 est une représentation algébrique de Ĝ0 dans Ĝ.

6Un élément (g, w) dans LG est semi-simple si pour tout r comme une représentation de dimension finie de LG,
l’image r((g, w)) est semi-simple.

7C’est-à-dire qu’il s’agit d’une représentation algébrique du groupe algébrique complexe SL2 dans le groupe algébrique
complexe Ĝ .
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• Le diagramme suivant est commutatif

WF0 n Ĝ0 = LG0

''

ι // LG = ĜoWF0

xx
WF0

où les deux flèches transversales sont des projections canoniques.

Étant donné un L-paramètre φ0 dans Φ(G0), la composition ι ◦φ0 est un L-paramètre dans Φ(G).
Ainsi, nous construisons une application entre les classes d’isomorphisme des L-paramètres:

Φ(ι) : Φ(G0) −→ Φ(G), φ0 7−→ ι ◦ φ0.

Si nous admettons la correspondance de Langlands locale pour G0 et G, nous avons le diagramme
suivant:

IrrR(G0)

Π(ι)
��

LLC // Φ(G0)

Φ(ι)
��

IrrR(G)
LLC

// Φ(G)

La fonctorialité de Langlands locale prédit l’existence d’une application Π(ι), appelée relèvement local
par rapport à ι, telle que le diagramme ci-dessus est commutatif. De plus, cette application Π(ι)
devrait être construite indépendamment de ce diagramme, mais en utilisant d’autres outils techniques
comme la formule des traces ou les fonctions L. D’une part, la compréhension des relèvements locaux
constitue une partie importante du programme de Langlands local. D’autre part, il joue également un
rôle crucial dans la stratégie inductive, proposée par Langlands-Shelstad [LS87] et appelée la méthode
d’endoscopie, pour construire la correspondance de Langlands locale pour un groupe réductif général,
qui est devenu un domaine prospère depuis quelques décennies avec des résultats fructueux, notamment
les travaux d’Arthur, Kottwitz, Langlands, Laumon, Ngô, Shelstad, Waldspurger, etc.

Néanmoins, nous n’avons pas besoin de nous confiner aux représentations complexes, mais nous
pouvons aussi considérer un relèvement local possible sur R. Par exemple, une attente pour un
relèvement local sur Fl est que, il soit compatible avec le relèvement local sur Ql, en identifiant C
avec Ql via un certaine isomorphisme algébrique et appliquant la réduction modulo l. Un résultat
typique est la correspondance de Jacquet-Langlands qui est un relèvement assez naturel entre GLn et
ses formes intérieures. Sur Fl, la construction de cette application et aussi sa compatibilité avec la
correspondance de Jacquet-Langlands habituelle a été étudiée par Dat [Dat12] dans un cas particulier,
puis généralisée par Mı́nguez-Sécherre [MS17] dans le cas général.

0.1.3 Problème de la distinction

SoitH ⊂ G un sous-groupe algébrique fermé sur F0 et nous notons H le groupe de F0-points rationnels
de H. Pour π ∈ IrrR(G) et ρ ∈ IrrR(H), nous disons que π est (H, ρ)-distinguée si

HomH(π, ρ) 6= 0,

ou en d’autres termes, la restriction de π à H admet ρ comme un quotient. En particulier, lorsque
ρ est triviale, nous appelons π distinguée par H ou H-distinguée. Pour simplifier, nous supposons
temporairement R = C.

Le problème de la distinction est omniprésent et joue un rôle important dans la théorie des
représentations des groupes p-adiques. Par exemple, si G est quasi-déployé, nous notons H = U
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le radical unipotent d’un sous-groupe Borel de G et nous choisissons ψ comme un caractère non
dégénéré de H = U , c’est-à-dire que sa restriction à tout sous-groupe unipotent Uα de U lié à une
racine simple α n’est pas triviale. Un résultat bien connu [Sha74] est que l’espace vectoriel

HomU (π, ψ)

est de dimension inférieure à un. Ces π pour lesquelles cette dimension vaut un sont appelés les
représentations génériques. Par la réciprocité de Frobenius, une telle π peut être plongée dans l’espace
des formes linéaires (U,ψ)-invariantes G, qui est appelé le modèle de Whittaker de π et joue un rôle
important dans la théorie locale et globale des L-fonctions. Dans un autre exemple, nous considérons
V comme un espace vectoriel de dimension finie sur F0 muni d’une forme sesquilinéaire, et W comme
un sous-espace de V . On note G le groupe de F0-automorphismes de V et H le groupe de F0-
automorphismes de W , en préservant la forme sesquilinéaire. Ensuite, le problème de la distinction
correspondant est lié aux “lois de branchement”, qui remontent à la théorie des représentations des
groupes algébriques complexes et se sont comportées comme un domaine actif depuis des décennies en
raison de l’initiation et de la percée de la conjecture de Gan-Gross-Prasad [GGP12] et ses variantes.

Dans de bonnes conditions, le problème de la distinction est étroitement lié à la correspondance de
Langlands locale et à sa fonctorialité. Dans le livre remarquable [SV17a], Sakellaridis et Venkatesh ont
proposé un cadre général pour étudier le problème de la distinction, dans lequel ils supposent que G
soit déployé et X = H\G soit une variété sphérique avec X désignant ses F0-points rationnels. Leur
point de départ est la construction du groupe dual ĜX pour X comme un groupe réductif complexe,
sous une hypothèse sur les racines de X, avec une représentation algébrique canonique

ιX : ĜX × SL2(C) −→ Ĝ.

Selon leur suggestion conjecturale, grosso modo, les représentations de G distinguées par H corre-
spondent aux paramètres d’Arthur X-distingués via la correspondance de Langlands locale, où les
paramètres d’Arthur sont l’analogue des L-paramètres avec une version correspondante de la corre-
spondance de Langlands locale, et ces paramètres d’Arthur factorisés via ιX sont appelés X-distingués,
pour lesquels nous laissons ibid. section 16 pour plus de détails. L’idée sous-jacente est donc que,
dans de bonnes circonstances, la propriété d’être distinguée est préservée par la correspondance de
Langlands locale. Dans [Pra15], Prasad a considéré le cas où X = H\G est un espace symétrique par
rapport à une involution galoisienne. Il a construit un sous-groupe quasi-déployé G0 (noté Gop dans
loc. cit.) sur F0, un L-homomorphisme naturel ι : LG0 → LG qui vient simplement de la restriction,
et un caractère ωH de H. Finalement, il a conjecturé que, pour π une représentation irréductible de G
distinguée par (H,ωH), le L-paquet de π vient du relèvement local lié à ι, ou plus précisément il existe
φ0 ∈ Φ(G0) tel que π ∈ Π(ι ◦ φ0). De plus, une formule conjecturale pour la dimension de l’espace de
la distinction a été donnée. Ces deux cadres généraux, combinés aux exemples divers concrets, doivent
être considérés comme notre ligne directrice des résultats auxquels nous devrions nous attendre dans
le langage de la correspondance de Langlands locale et de sa fonctorialité.

Nous présentons brièvement quelques méthodes connues pour traiter le problème de la distinction.
Une méthode importante, initiée par Jacquet et développée par lui-même, ses étudiants et d’autres
adeptes, est appelée la méthode de la formule de trace relative, pour laquelle nous nommons quelques
articles [JLR93], [JY96], [Guo96] , [Mao98]. L’idée, grosso modo, est d’abord de résoudre le problème
correspondant sur un corps global, puis de réaliser notre corps local F0 comme un composant de
l’anneau des adèles d’un corps global et d’utiliser un argument global-local. Ensuite, nous comparons
deux formules de trace différentes comme des distributions sur deux espaces de fonctions de test, dont
l’une se rapporte exactement à notre problème global. Après avoir vérifié le lemme fondamental et
l’existence d’un transfert lisse, nous obtenons suffisamment de paires de fonctions de test correspon-
dantes pour que deux formules de trace cöıncident. Si l’autre formule de trace est bien comprise, nous
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obtenons les informations pour résoudre le problème global de la distinction. De plus, pour résoudre
la conjecture locale de Gan-Gross-Prasad pour les groupes orthogonaux, Waldspurger [Wal10], [W-
al12] a lancé une nouvelle méthode avec la considération d’une formule de trace relative locale, telle
que la dimension de l’espace de la distinction peut être exprimée, puis il a utilisé des techniques so-
phistiquées d’analyse harmonique sur des groupes réductifs p-adiques pour reformuler la formule de
trace et obtenir le résultat. Au cours de la dernière décennie, cette méthode a été développée et ap-
pliquée à différentes situations par certaines personnes dont Beuzart-Plessis et C. Wan. Par exemple
dans [BP18] en utilisant la méthode similaire, Beuzart-Plessis a résolu une partie de la conjecture
ci-dessus proposée par Prasad pour des représentations essentiellement de carré intégrable.

Une autre méthode possible pour étudier le problème de la distinction est algébrique: on étudie
d’abord le problème pour les représentations supercuspidales, puis on applique l’induction parabolique
pour étudier des représentations irréductibles plus générales. Pour π une représentation supercusp-
idale de G, une croyance générale est que, elle peut être écrite comme l’induction compacte d’une
représentation lisse irréductible de dimension finie. Plus précisément, il existe une paire (J ,Λ) telle
que J est un sous-groupe compact de G modulo le centre, et Λ est une représentation irréductible
lisse de dimension finie de J telle que π ∼= indGJΛ. Cette croyance est vérifiée dans de nombreux
cas, y compris les représentations supercuspidales modérées [Yu01], [Fin21] pour un groupe réductif
modérément ramifié G, et aussi les représentations supercuspidales générales pour les groupes clas-
siques [BK93], [Ste08]. En ce moment si nous nous concentrons sur l’étude de la représentation
supercuspidale π distinguée par H, en utilisant la formule de Mackey et la réciprocité de Frobenius,
on voit facilement que

HomH(π, 1) ∼= HomH(indGJΛ, 1) ∼=
∏

g∈J\G/H

HomJg∩H(Λg, 1).

Il suffit donc d’étudier les g ∈ J\G/H tels que HomJg∩H(Λg, 1) est différent de zéro, puis d’étudier la
dimension correspondante. Pour cela, nous remontons à la construction détaillée de (J ,Λ). Un travail
typique est [HM08], où les auteurs ont étudié, pour G/H un espace symétrique, les représentations
supercuspidales modérées π de G distinguées par H en utilisant l’idée mentionnée ci-dessus et le
résultat structurel de J.-K. Yu [Yu01] pour de telles représentations.

Pourtant, nous ne sommes pas forcément confinés au cas où R = C, mais nous nous concentrons sur
le général R dans nos paramètres. Les deux méthodes analytiques mentionnées ci-dessus deviennent
invalides. En revanche, la méthode algébrique reste valide, puisque le résultat structurel pour (J ,Λ),
une fois établi, fonctionne généralement pour R général plutôt que juste R = C, comme [Vig96],
[MS14b] et [Fin19]. En résumé, la recherche de la relation possible entre le problème de la distinction
et la correspondance de Langlands locale et sa fonctorialité pour le R général doit être considérée
comme la motivation originelle de cette thèse.

0.1.4 Notre paramètres concrets

Bien que le contexte ci-dessus soit assez général, le but de cette thèse est humble, qui se concentre
sur la compréhension de quelques exemples particuliers. Fixons n un entier positif. Soit F/F0 une
extension cyclique finie de corps localement compacts non archimédiens de caractéristique résiduelle
p de degré r, et soit G la restriction de Weil du groupe réductif GLn/F , qui est un groupe réductif
sur F0. En particulier, nous avons G = GLn(F ). La plupart du temps, nous nous concentrerons sur
les représentations cuspidales ou supercuspidales de G sur R, qui devraient être considérées comme
les blocs de construction des représentations irréductibles générales. Rappelons qu’une représentation
irréductible de G est cuspidale (resp. supercuspidale) si elle ne se produit pas comme une sous-
représentation (resp. sous-quotient) de l’induction parabolique d’une représentation irréductible d’un
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sous-groupe de Levi propre de G. Quand char(R) = 0 les deux concepts ci-dessus sont équivalents,
cependant quand char(R) = l > 0, une représentation supercuspidale est cuspidale, mais l’existence
de contre-exemples montre que l’inverse est faux en général.

Pour étudier une représentation cuspidale π de G sur R, notre outil principal est la théorie des types
simples établie par Bushnell-Kutzko [BK93] lorsque char(R) = 0, et généralisée par Vignéras [Vig96]
au cas l-modulaire. Nous nous référons au chapitre 1, section 3 ou au chapitre 3, section 2 pour une
introduction détaillée de la théorie, mais ici nous donnons également une brève introduction pour
faciliter les détails.

Comme indiqué ci-dessus, l’idée de la théorie des types simples est de réaliser π comme l’induction
compacte d’une représentation irréductible de dimension finie Λ de J , qui est un sous-groupe ouvert
de G compact modulo le centre. Une telle paire (J ,Λ) est appelée un type simple maximal étendu que
nous abrégerons en type simple. Le théorème principal dit que toute π peut être construite de cette
manière, et le type simple correspondant (J ,Λ) est unique à G-conjugaison près. Nous mentionnons
également les principales propriétés suivantes de (J ,Λ):

(1) Le groupe J contient un unique maximal sous-groupe compact ouvert J qui contient un unique
maximal pro-p-sous-groupe distingué J1;

(2) Nous avons J/J1 ∼= GLm(l). Ici l est le corps résiduel de E, où E est une extension de corps
sur F de degré d. De plus, nous avons n = md, où m et d sont entières déterminés par π;

(3) On peut écrire Λ = κ ⊗ ρ, où κ et ρ sont des représentations irréductibles de J tel que la
restriction κ|J1 = η est une représentation irréductible de J1, appelée représentation de Heisenberg,
et ρ|J est l’inflation d’une représentation cuspidale de GLm(l) ∼= J/J1;

(4) Il existe un pro-p-sous-groupe de J1 noté H1, et un caractère de H1 noté θ et appelé un
caractère simple, tels que la restriction de η à H1 égale la somme directe de (J1 : H1)1/2 copies de θ.

Enfin, nous entrons dans l’introduction pour nos travaux concrets. Pour la première partie, nous
étudions le problème de la distinction lié à un sous-groupe unitaire de G et sa relation avec la foncto-
rialité de Langlands, ou incarné comme le changement de base quadratique dans nos contextes; Pour
la deuxième partie, nous étudions le problème de la distinction lié à un sous-groupe orthogonal de
G, et nous nous concentrons uniquement sur les représentations supercuspidales sur R = C, ce qui
est la premiere étape vers la compréhension de représentations irréductibles plus générales; Pour la
partie finale, nous donnons des constructions explicites pour deux relèvements locaux particuliers, le
changement de base et l’induction automorphe, pour les représentations supercuspidales sur R = C.

0.2 Le problème de la distinction pour le sous-groupe unitaire de
GLn(F ) et le changement de base l-modulaire

0.2.1 Contexte général

Les huit premières sections du chapitre 1 sont basées sur la prépublication [Zou19]. Dans cette sous-
section, nous supposons que F/F0 est une extension quadratique de corps p-adiques de caractéristique
résiduelle p, et nous notons σ son automorphisme non trivial. Pour G et G comme ci-dessus, nous
notons ε pour une matrice hermitienne dans G, c’est-à-dire σ( tε) = ε avec t désignant la transposition
des matrices. Nous définissons

τε(x) = εσ( tx−1)ε−1

pour tout x ∈ G, appelée une involution unitaire sur G, qui induit également un F0-automorphisme
sur G. Nous fixons une τ = τε, et nous notons Gτ le sous-groupe de G sur F0, tel que Gτ est le
sous-groupe de G constitué des éléments fixés par τ . Un tel Gτ (resp. Gτ ) est appelé le sous-groupe
unitaire de G (resp. G) par rapport à τ .
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Pour π une représentation lisse irréductible de G sur C, Jacquet a proposé d’étudier le problème de
la distinction lié au couple (G,Gτ ) comme ci-dessus, c’est-à-dire, d’étudier l’espace des formes linéaires
Gτ -invariantes

HomGτ (π, 1)

et sa dimension en tant qu’espace vectoriel complexe. Pour n = 3 et π supercuspidale, il a prouvé
dans [Jac01] en utilisant un argument global, que π est distinguée par Gτ si et seulement si π est
σ-invariante, c’est-à-dire πσ ∼= π où πσ := π ◦ σ. De plus, il a montré que cet espace est de dimension
un en tant qu’un espace vectoriel complexe lorsque la condition ci-dessus est satisfaite. D’ailleurs dans
ibid., Il a aussi esquissé une preuve similaire lorsque n = 2 et π est supercuspidale, en donnant le
même critère de la distinction et le même théorème de dimension un. Il a conjecturé qu’en général,
π est distinguée par Gτ si et seulement si π est σ-invariante. De plus, la dimension de l’espace des
formes linéaires Gτ -invariantes n’est pas nécessairement un en général. Sous l’hypothèse que π est
σ-invariante et supercuspidale, Jacquet a conjecturé que la dimension est un.

De plus, une représentation irréductible π de G est contenue dans l’image du changement de base
quadratique par rapport à F/F0 si et seulement si elle est σ-invariante ( [AC89]). Ainsi pour les
représentations irréductibles, la conjecture de Jacquet donne un lien entre le changement de base
quadratique et Gτ -distinction.

Outre le cas particulier mentionné ci-dessus, il existe deux autres motivations qui corroborent la
conjecture. Nous considérons d’abord l’analogue de la conjecture dans le cas de corps finis. Pour ρ
une représentation complexe irréductible de GLn(Fq2), Gow [Gow84] a prouvé que ρ est distinguée
par le sous-groupe unitaire Un(Fq) si et seulement si ρ est isomorphe à sa torsion par l’élément non
trivial de Gal(Fq2/Fq). Sous cette condition, il a également montré que l’espace des formes linéaires
Un(Fq)-invariantes est de dimension un en tant qu’espace vectoriel complexe. De plus, Shintani [Shi76]
a montré qu’il existe une bijection entre l’ensemble des représentations irréductibles de GLn(Fq) et
celle des représentations irréductibles Galois-invariantes de GLn(Fq2), où la correspondance, appelée
l’application de changement de base, est caractérisée par une identité de traces. Ces deux résultats nous
donnent une caractérisation claire entre le changement de base et la distinction par Un(Fq). Enfin,
lorsque ρ est générique et Galois-invariante, Anandavardhanan et Matringe [AM18] ont récemment
montré que la Un(Fq)-moyenne de la fonction de Bessel de ρ sur le modèle de Whittaker en tant
que une forme linéaire Un(Fq)-invariante est non nulle. Puisque l’espace des formes linéaires Un(Fq)-
invariantes est de dimension un, ce résultat nous donne une caractérisation concrète de l’espace de la
distinction.

L’autre motivation de la conjecture de Jacquet est son analogue global. Nous supposons que K/K0

est une extension quadratique de corps de nombres et nous notons σ son automorphisme non trivial.
Nous considérons τ comme une involution unitaire sur GLn(K), ce qui nous donne aussi une involution
sur GLn(AK), notée τ par abus de notation, où AK désigne l’anneau des adèles de K. Nous notons
GLn(K)τ (resp. GLn(AK)τ ) le sous-groupe unitaire de GLn(K) (resp. GLn(AK)) par rapport à τ .
Pour φ une forme automorphe cuspidale de GLn(AK), nous définissons

Pτ (φ) =

∫
GLn(K)τ\GLn(AK)τ

φ(h)dh

comme l’intégrale de période unitaire de φ par rapport à τ . Nous disons qu’une représentation auto-
morphe cuspidale Π de GLn(AK) est GLn(AK)τ -distinguée s’il existe une forme automorphe cuspidale
dans l’espace de Π telle que Pτ (φ) 6= 0. Dans les années 1990, Jacquet et Ye ont commencé à étudier la
relation entre GLn(AK)τ -distinction et le changement de base globale (voir par exemple [JY96] quand
n = 3). Pour n général, Jacquet [Jac05] a montré que Π est contenu dans l’image du changement de
base quadratique (ou de manière équivalente Π est σ-invariant [AC89]) par rapport à K/K0 si et seule-
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ment s’il existe une involution unitaire τ telle que Π est Gτ -distinguée. Ce résultat peut être considéré
comme la version globale de la conjecture de Jacquet pour les représentations supercuspidales.

En fait, pour le cas particulier de la conjecture de Jacquet dans [Jac01], Jacquet a utilisé l’analogue
global de la même conjecture et la formule des traces relative comme deux techniques principales
pour terminer la démonstration. Pour le dire simple, il a d’abord prouvé l’analogue global de la
conjecture. Puis il a utilisé la formule des traces relative pour écrire une intégrale de période u-
nitaire non nulle comme le produit de ses composantes locales à chaque place de K0, où chaque
composante locale caractérise la distinction de chaque composante locale de Π par le sous-groupe
unitaire correspondant. Lorsque π est σ-invariante, il choisit Π comme une représentation automor-
phique cuspidale σ-invariante de GLn(AK) et v0 comme une place non archimédienne de K0 telles que
(Gτ , π) = (GLn(Kv0)τ ,Πv0). Ensuite, la décomposition du produit conduit à la preuve de la partie
“si” de la conjecture. La partie “seulement si” de la conjecture, qui sera discutée dans chapitre 1,
section 4, a besoins de l’application du théorème de la globalisation. Sa méthode a été généralisée
par Feigon-Lapid-Offen dans [FLO12] aux n général et représentations plus générales. Ils ont montré
que la conjecture de Jacquet fonctionne pour des représentations génériques de G. De plus pour la
même famille de représentations, ils ont donné une borne inférieure pour la dimension de HomGτ (π, 1)
et ils ont en outre conjectué que l’inégalité qu’ils ont donnée est en fait une égalité. Enfin, Beuzart-
Plessis [BP20] a récemment vérifié l’égalité sur la base des travaux de Feigon-Lapid-Offen et de la
formule de trace locale relative. Ainsi pour les représentations génériques de G, la conjecture de
Jacquet a été résolue.

Au lieu d’utiliser l’argument global-local, il existe également des résultats partiels basés sur la
méthode algébrique que nous avons expliquée précédemment. Dans [HM98] Hakim-Mao a vérifié la
conjecture lorsque π est supercuspidale de niveau zéro, c’est-à-dire que π est supercuspidale telle que
π1+pFMn(oF ) 6= 0, où oF désigne l’anneau des entiers de F et pF désigne son idéal maximal. Quand π est
supercuspidale et F/F0 est non ramifiée, Prasad [Pra01] a prouvé la conjecture en appliquant la théorie
des types simples développée par Bushnell-Kutzko dans [BK93]. Quand π est supercuspidale modérée,
c’est-à-dire que π est une représentation supercuspidale donnée par la construction de Howe [How77],
Hakim-Murnaghan [HM02b] a vérifié la conjecture. Notant que dans les résultats de Hakim-Mao
et Hakim-Murnaghan, ils ont besoin de l’hypothèse supplémentaire que la caractéristique résiduelle
p 6= 2.

La discussion ci-dessus nous laisse une question ouverte: Y a-t-il une méthode locale et algébrique
qui mène à une preuve de la conjecture de Jacquet qui fonctionne pour toutes les représentations su-
percuspidales de G? Premièrement, cette méthode généralisera les résultats de Hakim-Mao, Prasad
et Hakim-Murnaghan dont nous avons parlé dans le dernier paragraphe. Deuxièmement, nous con-
sidérons F/F0 comme une extension quadratique de corps localement compacts non archimédiens au
lieu de corps p-adiques. Puisque le résultat de Feigon-Lapid-Offen repose fortement sur le fait que la
caractéristique de F est nulle, leur méthode échoue lorsqu’on considère des corps localement compacts
non archimédiens de caractéristique positive. Enfin, au lieu de considérer des reprsentations complexes,
nous sommes également disposés à étudier les représentations l-modulaires avec l 6= p. Nous espérons
prouver un analogue de la conjecture de Jacquet pour les représentations supercuspidales l-modulaires,
qui généralisera le résultat de Feigon-Lapid-Offen pour les représentations supercuspidales. Notons
qu’ils utilisent les méthodes globales dans leur preuve, qui repose fortement sur l’hypothèse que toutes
les représentations sont complexes. Ainsi leur méthode ne fonctionne plus pour les représentations
l-modulaires.

Le but du chapitre 1 est d’abord de répondre la question ci-dessus, puis d’explorer le problème
de la distinction pour des représentations irréductibles plus générales dans le cas l-modulaire et sa
relation avec le changement de base “l-modulaire” dont la construction sera donnée.
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0.2.2 Principaux résultats

Pour commencer, nous supposons désormais que F/F0 est une extension quadratique de corps locale-
ment compacts non archimédiens de caractéristique résiduelle p au lieu de corps p-adiques, et nous
supposons que p 6= 2. Nous fixons R un corps algébriquement clos de caractéristique l 6= p, perme-
ttant que l = 0. Nous supposons que π est une représentation irréductible de G = GLn(F ) sur R.
Maintenant, nous énonçons notre premier théorème principal.

Théorème 0.2.1. Pour π une représentation supercuspidale de G et τ une involution unitaire, π est
distinguée par Gτ si et seulement si πσ ∼= π.

De plus, nous pouvons aussi calculer la dimension de l’espace de formes linéaires Gτ -invariantes.

Théorème 0.2.2. Pour π une représentation supercuspidale σ-invariante de G,

dimRHomGτ (π, 1) = 1.

Un corollaire important du Théorème 0.2.1 concerne le Ql-relèvement d’une représentation super-
cuspidale σ-invariante de G sur Fl quand l > 0, où nous notons Ql, Zl et Fl la clôsure algébrique d’un
corps l-adique, son anneau des entiers et la clôsure algébrique d’un corps fini à l éléments respective-
ment. Pour (π̃, V ) une représentation lisse et irréductible de G sur Ql, nous l’appelons entière si elle
admet une structure entière, c’est-à-dire un Zl[G]-sous-module LV de V tel que LV ⊗Zl Ql = V . Pour

une telle représentation, la semi-simplification de LV ⊗Zl Fl ne dépend pas du choix de LV , que nous

notons rl(π̃) une représentation de G sur Fl, appelé la réduction modulo l de π (voir [Vig96] pour plus
de détails). Le théorème suivant qui sera prouvé à la fin du chapitre 1, section 8, dit qu’il est toujours
possible de trouver un Ql-relèvement σ-invariant pour une représentation supercuspidale σ-invariante
de G sur Fl.

Théorème 0.2.3. Pour π une représentation supercuspidale σ-invariante de G sur Fl, il existe une
représentation entière σ-invariante π̃ de G sur Ql, telle que rl(π̃) = π.

Pour les représentations génériques irréductibles, nous pouvons prouver une direction de la con-
jecture de Jacquet, qui n’est nouvelle que si char(R) = l > 0.

Théorème 0.2.4 (Voir Theorem 1.9.1). Soit π une représentation irréductible générique de G sur R.
Si π est distinguée par Gτ , alors π est σ-invariante.

Notre prochain objectif est de caractériser les représentations distinguées l-modulaires via la fonc-
torialité de Langlands locale, ou le changement de base dans notre paramètre. Pour ce faire, nous
devons d’abord construire un changement de base l-modulaire. Le résultat est le théorème suivant:

Théorème 0.2.5 (Voir Theorem 1.10.17). Nous pouvons définir le changement de base cyclique l-
modulaire

BCFl : IrrFl(GLn(F0)) −→ Irrσ−inv
Fl

(GLn(F ))

qui satisfait et est déterminé par le diagramme commutatif suivant

IrrInt
Ql

(GLn(F0))

Jl

��

BCQl// IrrInt,σ−inv

Ql
(GLn(F ))

Jl
��

IrrFl(GLn(F0))
BCFl // Irrσ−inv

Fl
(GLn(F ))



38 0.2. INTRODUCTION DU CHAPITRE 1

Nous expliquons brièvement les notations et laissons la section correspondante pour plus de détails.
Ici, les exposants Int et σ-inv représentent respectivement entier et σ-invariant, BCQl représente le

changement de base d’Arthur-Clozel aux représentations sur Ql via un certain isomorphisme algébrique
C ∼= Ql, et pour π̃0 (resp. π̃) dans IrrInt

Ql
(GLn(F0)) (resp. IrrInt,σ−inv

Ql
(GLn(F )), l’image Jl(π̃0) (resp.

Jl(π̃)) est l’unique composant irréductible dans rl(π̃0) (resp. rl(π̃)) ayant la séquence dérivée la plus
haute. Enfin, en tant qu’une application, nous explorons les représentations cuspidales distinguées
(mais pas nécessairement supercuspidales) dans le cas l-modulaire.

0.2.3 Organisation du chapitre 1

Décrivons le contenu du chapitre 1. Nous introduisons nos paramètres dans la section 1 et les con-
naissances de base sur les matrices hermitiennes et les sous-groupes unitaires dans la section 2. Notre
principal outil pour prouver les théorèmes sera la théorie des types simples développée par Bushnell-
Kutzko dans [BK93], et généralisé par Vignéras [Vig96] au cas l-modulaire. Dans la section 3, nous
donnerons une introduction détaillée de cette théorie.

Pour une représentation supercuspidale donnée π de G, notre point de départ est de prouver la
partie “seulement si” du Théorème 0.2.1. Quand R = C et char(F ) = 0, c’est un résultat standard
en utilisant un argument global, en particulier le théorème de globalisation ( [HM02a], Theorem 1).
Quand char(F ) = p > 0, nous pouvons garder la preuve originale sauf que nous avons besoin d’une
version en caractéristique p du théorème de globalisation. Heureusement, nous pouvons utiliser un
résultat plus général en raison de Gan-Lomeĺı [GL18] pour obtenir le résultat dont nous avons besoin.
Comme toute représentation supercuspidale de G sur un corps algébriquement clos de caractéristique
0 peut être réalisée comme une représentation sur Q à torsion près par un caractère non ramifié, nous
terminons la démonstration lorsque char(R) = 0. Quand R = Fl, nous considèrons l’enveloppe projec-
tive PΛ|J de Λ|J et nous utilisons les résultats de [Vig96] pour étudier ses composants irréductibles et

les composants irréductibles de son Ql-relèvement. Enfin nous montrons qu’il existe un Ql-relèvement
de π qui est supercuspidal et Gτ -distingué. Ainsi, en utilisant le cas de caractéristique 0, nous finissons
la preuve de la partie “seulement si” pour tout R sous nos conditions. Les détails seront présentés
dans la section 4.

Dans la section 5, nous prouvons le théorème du type τ -autodual, qui dit que pour toute involution
unitaire τ et toute représentation cuspidale σ-invariante de G avec une condition technique (voir
Theorem 1.5.3) qui est automatiquement vraie au moins dans le cas supercuspidal, on peut trouver un
type simple (J ,Λ) contenu dans π tel que τ(J) = J et Λτ ∼= Λ∨, où ∨ désigne la contragrédiente. En
d’autres termes, nous trouvons un type simple “symétrique” contenu dans π par rapport à τ . Notre
stratégie découle de [AKM+19], section 4. Nous considérons d’abord le cas où E/F est totalement
ramifiée et n = d. Ensuite, pour E/F quelconque avec n = d, nous utilisons les techniques sur l’endo-
classe et le relèvement modéré développées dans [BH96] pour prouver le théorème en le réduisant au
cas précédent. Enfin en utilisant le cas n = d, nous prouvons le théorème général.

Dans la section 6, pour une représentation cuspidale σ-invariante π et une certaine involution
unitaire τ satisfaisant la condition technique, nous utilisons d’abord nos résultats dans la section 5
pour choisir un type simple τ -autodual (J ,Λ) contenu dans π. Le résultat principal de la section 6,
que nous appelons le théorème du type distingué, dit que π est distinguée par Gτ si et seulement s’il
existe un type simple de π qui est τ -autodual et distingué. Plus précisément, par la réciprocité de
Frobenius et la formule de Mackey, nous avons

HomGτ (π, 1) ∼=
∏

g∈J\G/Gτ
HomJg∩Gτ (Λg, 1).

Nous nous concentrons les g tels que HomJg∩Gτ (Λg, 1) 6= 0. La preuve du théorème du type distin-
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gué montre également qu’il existe au plus deux doubles classes de ce type qui peuvent être décrites
explicitement. De plus pour ces g nous avons

HomJg∩Gτ (Λg, 1) ∼= HomJg∩Gτ (κg, χ−1)⊗R HomJg∩Gτ (ρg, χ),

où κτ ∼= κ∨ et χ est un caractère quadratique de Jg ∩ Gτ qui est trivial quand on le restreint à
J1g ∩Gτ . Dans le produit tensoriel, le premier terme HomJg∩Gτ (κg, χ−1) est de dimension un comme
un espace vectoriel sur R. Donc essentiellement, nous n’avons besoin d’étudier que le deuxième terme.
Si nous notons ρg la représentation cuspidale de GLm(l) ∼= Jg/J1g dont l’inflation est égale à ρg|Jg , et
χ le caractère de H := Jg ∩Gτ/J1g ∩Gτ dont l’inflation est égale à χ|Jg∩Gτ , alors nous avons encore

HomJg∩Gτ (ρg, χ) ∼= HomH(ρg, χ).

Ici H est un sous-groupe unitaire, ou un sous-groupe orthogonal ou un sous-groupe symplectique de
GLm(l). Nous réduisons donc notre problème à étudier la distinction d’une représentation supercus-
pidale de GLm(l) par H.

Nous supposons maintenant que π est supercuspidale. Au début de la section 6, nous utilisons le
résultat de la section 5 pour étendre σ à une involution non triviale sur E. Nous écrivons E0 = Eσ, où
E/E0 est une extension quadratique. Lorsque E/E0 n’est pas ramifiée, H est un sous-groupe unitaire.
Nous utilisons d’abord le résultat de Gow [Gow84] pour traiter le cas liée de caractéristique 0. Pour
char(R) > 0, nous utilisons la même méthode que dans la section 4. Lorsque E/E0 est ramifiée, H
est soit un sous-groupe orthogonal soit un sous-groupe symplectique. Lorsque H est orthogonal, nous
utilisons la théorie de Deligne-Lusztig [DL76], précisément une formule donnée par Hakim-Lansky
[HL12] pour calculer la dimension de HomH(ρg, χ) quand char(R) = 0. Pour char(R) > 0 nous
utilisons à nouveau la même méthode que dans la section 4 pour terminer la preuve. Lorsque H est
symplectique, nous montrons que l’espace est toujours 0. Ces deux cas seront traités séparément aux
sections 7 et 8. En conséquence, nous terminons la démonstration du Théorème 0.2.1, du Théorème
0.2.2 et du Théorème 0.2.3.

La section 9 est dédiée à la preuve du Théorème 0.2.4. Nous traitons d’abord le cas cuspidal, dont
la stratégie découle du même argument dans les sections 5-8. En particulier, nous donnons également
une nouvelle preuve du résultat principal de la section 4, qui est purement local et ne dépend pas du
théorème de globalisation. Puis en utilisant l’induction parabolique et en suivant l’argument similaire
de Feigon-Lapid-Offen, nous terminons la preuve pour le cas générique.

Enfin dans la section 10, nous construisons le changement de base l-modulaire comme promis
dans le Théorème 0.2.5. La stratégie de construction est assez näıve. Nous construisons d’abord le
changement de base l-modulaire du côté galoisien, ce qui correspond à l’application de restriction.
Ensuite, nous utilisons la correspondance locale de Langlands l-modulaire développée par Vignéras
[Vig01] pour transférer cette application au côté de GLn, de sorte qu’elle soit compatible avec le
fonctorialité de Langlands local l-modulaire. Ce qui reste à montrer est la compatibilité de l’application
construite avec le changement de base d’Arthur-Clozel, qui repose sur la correspondance de Langlands
locale sur Ql et Fl et leur compatibilité, et la fonctorialité de Langlands locale pour le changement de
base surQl. Cependant, il faut souligner que notre changement de base l-modulaire est en quelque sorte
“artificiel”, puisque dans le théorème l’application Jl n’est pas rl, la réduction modulo l habituelle,
et en général la réduction modulo l d’une représentation irréductible n’est pas irréductible. Mais
pour les représentations cuspidales, la définition de rl et Jl cöıncide, donc nous pourrions utiliser
notre changement de base l-modulaire pour étudier la distinction des représentations cuspidales l-
modulaires, qui seront exposés dans la sous-section finale.

Il est à noter que dans [Séc19], Sécherre a étudié les représentations supercuspidales σ-autoduales
de G sur R, avec la même notation que précédemment. Il a prouvé le Théorème de Dichotomie et
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Théorème de Disjonction: Pour π une représentation supercuspidale de G, elle est σ-autoduale (c’est-
à-dire πσ ∼= π∨) si et seulement si π est soit distinguée par GLn(F0) soit ω-distinguée, où ω désigne
le caractère non trivial unique de F×0 qui est trivial sur NF/F0

(F×). La méthode que nous utilisons
dans ce chapitre est la même que celle développe dans ibid. Par exemple, notre section 5 correspond
à la section 4 de [AKM+19] et notre section 6 correspond à la section 6 de [Séc19], etc.

Pour signaler les principales différences dans notre cas pour finir cette introduction, d’abord dans
la section 5 nous verrons que dans un certain cas, il est impossible de trouver un ordre héréditaire a tel
que τ(a) = a, ce qui n’est pas un problème dans la section 4 de [AKM+19]. C’est pourquoi nous devons
ajouter une condition technique dans le théorème principal de la section 5 et enfin la vérifier pour les
représentations supercuspidales. Précisément, pour une représentation supercuspidale σ-invariante,
nous considérons d’abord l’involution unitaire τ = τ1 correspondant à la matrice hermitienne In.
Dans ce cas, nous pouvons utiliser notre discussion dans la section 5 pour trouver un type simple
τ -autodual contenu dans π et nous pouvons utiliser notre discussion dans les sections 6 et 7 pour
montrer que m est impair quand E/E0 n’est pas ramifiée. Cela confirme la condition technique dont
nous avons besoin, nous pouvons donc répéter la procédure des sections 5 et 6 pour les involutions
unitaires générales. Cet argument de détour indique également qu’une représentation cuspidale non
supercuspidale σ-invariante ne contient pas toujours un type simple τ -autodual. De plus, dans la
section 9, nous fournissons également une autre méthode pour résoudre ce problème. L’idée est de
considérer une involution unitaire générale comme une torsion d’une involution unitaire particulière.
Cette idée nous permet de prouver Théorème 0.2.4 pour les représentations cuspidales.

De plus dans la section 8, nous pouvons découvrir que le caractère χ mentionné ci-dessus ne peut
pas toujours être réalisé comme un caractère de J , donc ne peut pas être supposé trivial a priori comme
dans [Séc19]. Cela signifie que nous devons considérer une représentation supercuspidale du groupe
linéaire général sur un corps fini distinguée par un caractère non trivial d’un sous-groupe orthogonal
au lieu du caractère trivial. C’est pourquoi le résultat de Hakim-Lansky ( [HL12], Theorem 3.11)
apparâıt.

Enfin, dans la section 6, une grande partie de nos résultats sont énoncés et prouvés pour une
involution générale au lieu d’une involution unitaire. Ceci offre la possibilité de généraliser cette
méthode pour étudier la distinction des représentations supercuspidales de G par d’autres involutions.
Par exemple, le problème similaire pour les sous-groupes orthogonaux est exploré au chapitre 2 de la
thèse.

0.3 Problème de la distinction pour le sous-groupe orthogonal de
GLn(F )

0.3.1 Contexte général

Ce chapitre est basé sur la prépublication [Zou20]. Soit F = F0 un corps localement compact non
archimédien de caractéristique résiduelle p. Nous ne considérerons que le cas où R = C, bien que
les principaux résultats de ce chapitre devraient également être vrais pour R en général. Comme
précédemment, soient G = GLn comme un groupe algébrique sur F et G = GLn(F ). Pour ε une
matrice symétrique dans G, nous notons

τε(x) = ε−1 tx−1ε pour tout x ∈ G

l’involution orthogonale par rapport à ε, et Gτε le sous-groupe orthogonal de G, tel que le groupe de
ses F0-points rationnels, noté Gτε et appelé le sous-groupe orthogonal de G, est le sous-groupe de G
constitué des éléments fixés par τε. Dans ce cadre, nous nous intéressons au problème de la distinction
lié au couple (G,Gτε), et sa relation avec la correspondance de Langlands locale et sa fonctorialité.
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Si nous écrivons S pour l’ensemble des matrices symétriques inversibles comme un sous-espace
topologique de G, qui est doté d’une G-action continue à droite

ε · g := tgεg, g ∈ G, ε ∈ S,

alors nous avons la décomposition suivante comme G-espaces

S =
⊔
[ε]

Gτε\G,

où [ε] parcourt S/G, et Gτε est le groupe orthogonal défini par un certain représentant ε dans la classe
[ε]. Une version plus uniforme du problème ci-dessus consiste à étudier l’espace

HomG(π, C∞(S)) ∼=
⊕
[ε]

HomG(π, IndGGτε1) ∼=
⊕
[ε]

HomGτε (π, 1), (0.3.1)

pour la représentation irréductible π de G, et déterminer un critère pour que l’espace soit non nul
et pour étudier la dimension correspondante, où C∞(S) désigne l’espace des fonctions uniformément
localement constantes sur S à valeurs complexes.

L’étude de ce problème a d’abord été proposée par Jacquet [Jac91]. La méthode, comme nous
l’avons déjà introduit précédemment, consiste d’abord à considérer son analogue global, puis à initier
un argument global-local, et le point clé est de comparer deux formules de trace relatives: l’une
concerne la formule de trace relative pour les matrices symétriques ou groupes orthogonaux, et l’autre
se rapporte à la formule de trace de Kuznetsov pour le revêtement métaplectique double de GLn
(voir [Mao98] pour une brève introduction).

Nous fournissons un bref résumé des résultats connus. Dans [Off05], Offen a suivi l’argument de
Jacquet [Jac03] pour considérer la transformation de Kloosterman-Fourier pour les intégrales orbitales
par rapport aux matrices symétriques, ce qui pourrait être une étape partielle pour prouver l’existence
d’un transfert lisse dans le cas non-archimédien, et le cas archimédien correspondant reste un mystère.
Pour le lemme fondamental pour l’unité de l’algèbre de Hecke, Mao [Mao98] a donné une preuve, pour
n = 3, par calcul direct et Do a d’abord prouvé, pour n général, pour les corps locaux de caractéristique
positive via la méthode géométrique [Do15], puis il a transféré le résultat aux corps p-adiques pour p
assez grand [Do18]. Cependant, pour faciliter l’application ultérieure, une version plus forte du lemme
fondamental fonctionnant pour des éléments généraux dans l’algèbre de Hecke est nécessaire mais reste
inconnu. Les côtés spectraux des deux formules de trace sont moins étudiés. Des réultats partiels dus
à Chinta et Offen [CO12], [CO13], d’une part, jettent un peu de lumière sur les expansions spectrales,
mais d’autre part, indiquent la difficulté de résoudre la question complète. En particulier, comme
le modèle de Whittaker local pour le revêtement métaplectique double de GLn n’est pas unique, les
termes du côté spectral de la formule de trace de Kuznetsov ne sont pas factorisables, ajoutant la
difficulté à un argument global-local.

Un point subtil de ce problème est qu’il est hors de portée des propositions générales connues, par
exemple celle proposée par Sakellaridis-Venkatesh comme nous l’avons présenté précédemment. En
fait pour X = Gτ\G avec τ une involution orthogonale donnée, même si X est une variété sphérique,
l’hypothèse sur les racines de X n’est pas satisfaite, ce qui nous empêche de construire le groupe dual
ĜX . Si nous croyons en l’existence du lien entre la distinction et la fonctorialité de Langlands locale
comme nous l’avons expliqué précédemment, alors un relèvement local attendu doit être construit:

IrrC(G0) −→ IrrC(G),

pour G0 comme au moins un groupe localement profini, de sorte que les représentations distinguées
soient exactement dans son image. Comme déjà indiqué dans les travaux de Jacquet et de ses suc-
cesseurs ci-dessus, une croyance générale est que, le groupe G0 devrait être le revêtement métaplectique
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de GLn(F ), et le relèvement correspondant doit être la correspondance métaplectique étudiée par
Flicker-Kazhdan [FK86]. Cependant, à la connaissance de l’auteur, aucune déclaration ou conjecture
précise n’a été faite, ce qui est probablement dû à l’absence de cas connus du problème de la distinction
elle-même. Au lieu de comprendre le problème complètement, il est également joyeux si des résultats
partiels éclairants ou même des suppositions raisonnables pouvaient être faites.

Une autre stratégie commence par étudier la distinction des représentations supercuspidales, puis
utilise l’induction parabolique pour obtenir au moins des résultats partiels pour les représentations
plus générales. Pour l’étude d’une représentation supercuspidale π, comme nous l’avons présenté
précédemment, l’idée approximative est d’abord de la considérer comme l’induction compacte d’une
représentation de dimension finie Λ d’un sous-groupe ouvert J de G qui est compact modulo son centre,
puis d’utiliser la formule de Mackey et la réciprocité de Frobenius pour écrire l’espace de la distinction
comme produit direct sur les doubles cosets dans J\G/H, des espaces de la distinction par rapport à
Λ. Sous l’hypothèse que p 6= 2, la question est complètement traitée par Hakim et Mao [HM99] lorsque
π est de niveau 0 et par Hakim et Lansky [HL12] et Hakim [Hak13] lorsque π est modérément ramifiée.
Le but de ce chapitre est de généraliser leurs résultats à toutes les représentations supercuspidales de
G, ce que nous expliquons dans la sous-section suivante.

0.3.2 Énoncé des principaux théorèmes

À partir de maintenant, nous supposons en outre que p 6= 2. Pour π une représentation supercuspidale
de G, nous rappelons plusieurs invariants donnés par la théorie des types simples de Bushnell-Kutzko
[BK93] et la théorie de l’endo-classe de Bushnell-Henniart [BH96], qui on se réfère à §2.1.2 pour plus
de détails. Tout d’abord, il existe une unique extension modérément ramifiée T/F à F -isomorphisme
après, appelée le corps de paramètre modéré de π. Nous écrivons d pour le degré de l’endo-classe
de π qui divise n et est divisé par [T : F ]. Nous écrivons m pour l’entier tel que n = md. Soit Tm
l’extension non ramifiée du degré m sur T . Ici, T , d, m, Tm sont intrinsèquement déterminés par π.

Pour donner une idée de ce que devraient être ces invariants, nous notons ϕπ la représentation
irréductible du groupe de Weil WF correspondante à π via la correspondance de Langlands locale.
Alors la restriction de ϕπ au sous-groupe d’inertie sauvage PF de WF est semi-simple et peut être
écrite comme somme directe de représentations irréductibles avec chaque composante irréductible de
multiplicité exactement m. Soit α n’importe quel composant irréductible de ϕπ|PF , alors il existe une
extension finie modérément ramifiée T/F telle que

NF (α) := {g ∈ WF |αg ∼= α}

en tant que sous-groupe de WF est égal à WT . Et il s’avère que T/F est uniquement déterminée à
F -isomorphisme près et indépendante du choix de α. Soient n = dim(ϕπ), d = n/m et Tm comme
ci-dessus. Alors T , d, m, Tm définis ici à partir du côté galoisien correspondent à ceux définis du côté
de GLn mentionné dans le dernier paragraphe (voir [BH14b] pour plus de détails).

Le théorème suivant donne un critère de distinction.

Théorème 0.3.1. Soit π une représentation supercuspidale de G et soient T , d, m, Tm comme ci-
dessus. Alors π est distinguée par un sous-groupe orthogonal H si et seulement si les deux conditions
suivantes sont valables:

1. ωπ(−1) = 1, où ωπ désigne le caractère central de π;

2. Precisement une des trois conditions suivantes est valable:

• NTm/F (T×m)F×2/F×2 = F×/F×2 et H est déployé;
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• NTm/F (T×m)F×2/F×2 est un sous-groupe de F×/F×2 d’ordre 2 et H est soit déployé ou
H = Gτε qui est quasi-déployé mais pas déployé, où ε est une matrice symétrique telle que
(−1)n(n−1)/2det(ε) ∈ NTm/F (T×m)− F×2;

• NTm/F (T×m)F×2/F×2 = {1} et H est soit déployé ou non-quasi-déployé.

En particulier, c’est facile de voir que:

Corollaire 0.3.1. Quand H est déployé, π est distinguée par H si et seulement si ωπ(−1) = 1.

De plus, le théoème suivant calcule la dimension de l’espace de la distinction.

Théorème 0.3.2. Soit π une représentation supercuspidale de G telle que ωπ(−1) = 1 et soit H un
sous-groupe orthogonal satisfaisant la condition 2 du Théorème 0.3.1.

1. Si H n’est pas déployé, alors dimCHomH(π, 1) = 1;

2. Si H est déployé, alors

• Si NTm/F (T×m)F×2/F×2 = F×/F×2, alors dimCHomH(π, 1) = 1;

• Si NTm/F (T×m)F×2/F×2 est un sous-groupe de F×/F×2 de l’ordre 2, alors
dimCHomH(π, 1) = 2;

• Si NTm/F (T×m)F×2/F×2 = {1},alors dimCHomH(π, 1) = 3.

Finalement en utilisant (0.3.1) et le même argument dans [Hak13], le théorème suivant est valable
comme un corollaire du Théorème 0.3.3.

Théorème 0.3.3. Pour π une représentation supercuspidale de G, elle est distinguée par un certain
sous-groupe orthogonal si et seulement si ωπ(−1) = 1. De plus, si cette condition est valable, alors

dimCHomG(π, C∞(S)) = 4.

Ainsi pour p 6= 2 et toute représentation supercuspidale π de G = GLn(F ), le problème de la
distinction pour les sous-groupes orthogonaux est entièrement résolu. La seule restriction sur π, étant
la trivialité de son caractère central sur −1, peut également être reformulée comme la trivialité du
caractère déterminant de son paramètre de Langlands sur −1 via la correspondance de Langlands
locale pour GLn.

0.3.3 Esquisse de la preuve et de la structure du chapitre 2

Nous esquissons la preuve et la structure du chapitre 2. Nous rappelons brièvement la théorie des
types simples dont nous avons besoin dans la section 1, qui est en effet un sous-ensemble propre du
chapitre 1, section 2. Dans la section 2, nous construisons les résultats nécessaires pour les matrices
symétriques, involutions orthogonales et groupes orthogonaux pour une utilisation future.

Dans la section 3, nous prouvons notre premier théorème principal, le théorème du type tau-
autodual, qui dit que pour une certaine involution orthogonale bien choisie τ0 dépendant de π, il
existe un type simple (J ,Λ) compactement induisant π tel que τ0(J) = J et Λ ◦ τ0 = Λ∨, où Λ∨

désigne le contragrédient de Λ. En fait, pour chaque groupe orthogonal H satisfaisant le théorème
0.3.1, condition 2, on peut trouver une τ0 satisfaisant H = Gτ0 et le théorème du type tau-autodual.
Un tel type simple est appelé τ0-autodual et sera considéré comme le point de départ pour poursuivre
le problème de la distinction.

Dans la section 4, nous étudions la distinction par rapport à une involution orthogonale arbitraire
τ et le groupe orthogonal correspondant Gτ . Nous fixons un τ0-autodual type simple (J ,Λ) et nous
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pouvons utiliser la formule de Mackey et la réciprocité de Frobenius pour écrire l’espace de la distinction
comme suit:

HomGτ (π, 1) ∼=
∏

g∈J\G/Gτ
HomJg∩Gτ (Λg, 1).

Le théorème du type distingué dit que pour les doubles classes g ∈ J\G/Gτ contribuant à la distinction,
le type simple (Jg,Λg) est τ -autodual. En particulier, quand τ = τ0 nous pouvons aussi donner toutes
les J -Gτ0 doubles classes contribuant à la distinction.

Enfin dans la section 5, nous continuons à étudier l’espace de la distinction HomJg∩Gτ (Λg, 1). Les
techniques développées dans la section 4 nous permettent d’étudier plus avant l’espace de la distinction
via la structure plus délicate donnée par la théorie des types simples, et enfin de réduire la question à
étudier l’espace de la distinction HomH(ρ, χ), où H est un sous-groupe orthogonal d’un groupe linéaire
général fini G = GLm(Fq), et ρ est une représentation supercuspidale de G, et χ est un caractère de
H d’ordre 1 ou 2. En utilisant la théorie de Deligne-Lusztig, la condition pour que l’espace soit non
nul est donnée et la dimension est au plus un. La condition s’avère être le caractère central de π
étant trivial à −1. Ainsi pour ces τ0 spéciales dans la section 4, nous étudions entièrement l’espace de
la distinction et la dimension correspondante. Puisque ces τ0 correspondent exactement aux groupes
orthogonaux dans les Théorème 0.3.1 et Théorème 0.3.2, nous prouvons la partie “si” du Théorème
0.3.1 et Théorème 0.3.2.

Il reste la partie “seulement si” du théorème 0.3.1, dont nous profitons pour expliquer la condition
des groupes orthogonaux ou des involutions orthogonales correspondantes dans le théorème. Pour
Em/F une extension de degré n et τ une involution orthogonale, nous appelons Em τ -déployé s’il
existe un plongement ι : E×m ↪→ GLn(F ) tel que τ(ι(x)) = ι(x)−1 pour tout x ∈ E×m. La proposition
intermédiaire suivante donne des informations importantes pour que π soit distinguée par Gτ :

Proposition 0.3.2. Pour π une représentation supercuspidale de G avec ωπ(−1) = 1, il existe un
corps Em de degré n sur F qui est totalement sauvagement ramifié sur Tm, tel que si π est distinguée
par Gτ , alors Em est τ -déployé.

La construction de Em provient de la construction de type simple τ0-autodual donnée dans la
section 3. En particulier, lorsque τ0 correspond à un groupe orthogonal déployé, de la partie “si” du
Théorème 0.3.1, Em est τ0-déployé. En sachant cela, il n’est pas difficile d’étudier toutes les involutions
τ telles que Em est τ -déployé, qui s’avèrent être involutions satisfaisant la condition du théorème 0.3.1,
prouvant la partie “seulement si” du théorème.

Lorsque Tm/F est de degré n, ou de manière équivalente lorsque π est essentiellement modérée
au sens de Bushnell-Henniart [BH05a], ce qui revient à être modérément ramifiée dans le contexte
de Hakim [Hak13] grâce au travail de Mayeux [May20], notre résultat donne une autre preuve du
résultat de Hakim en utilisant la théorie des types simples au lieu de la construction de Howe pour
des représentations modérément ramifiées. Notons que nous empruntons également nombreux lemmes
à [HM99], [HL12], [Hak13], qui nous aident à réduire notre tâche.

Comme dans le chapitre 1, il convient également de souligner que la méthode que nous utilisons ici
n’est pas nouvelle. Elle a d’abord été développée par Sécherre pour résoudre le problème similaire où τ
est une involution galoisienne [AKM+19], [Séc19], puis par l’auteur pour le cas où τ est une involution
unitaire (cf. chapitre 1), puis par Sécherre pour le cas ou τ est une involution intérieure [Séc20] (là G
peut aussi être une forme intérieure de GLn(F )). Les stratégies de preuves dans ces différents cas sont
similaires, mais une différence majeure dans le cas actuel mérite d’être mentionnée, c’est-à-dire que
nous devons considérer ces involutions τ ne contribuant pas à la distinction. En ce moment, nous ne
pouvons pas construire un type simple τ -autodual (J ,Λ) en utilisant la méthode de la section 3. La
nouveauté de notre argument est d’abord de considérer une involution spéciale τ0, puis de considérer
τ comme une autre involution qui diffère de τ0 à G-conjugaison prés. Ainsi, nous choisissons (J ,Λ)
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comme un type simple τ0-autodual et, en utilisant les résultats généraux construits au chapitre 1, nous
pouvons encore étudier les J -Gτ doubles classes contribuant à la distinction. Si l’on veut adapter la
méthode dans les cas ci-dessus à une involution générale τ , un problème majeur est de construire un
type simple τ -autodual, ce qui, comme nous l’avons expliqué, peut être impossible si Gτ ne contribue
pas à la distinction. La stratégie que nous avons expliquée ci-dessus donne une solution possible, ce
qui permet de considérer la même question pour une involution abstraite.

0.4 Changement de base et induction automorphe explicites pour
les représentations supercuspidales

0.4.1 Contexte général

Soit F/F0 comme dans §0.1.4, et nous ne considérons que le cas R = C dans ce chapitre. Nous
nous concentrerons sur deux relèvements locaux spéciaux, disons le changement de base et l’induction
automorphe par rapport à F/F0. Plus précisément, lorsque F/F0 est modérément ramifiée et pour les
représentations supercuspidales, nous étudierons ces deux applications via la théorie des types simples.

Nous donnons d’abord une brève introduction pour la correspondance de Langlands locale pour
les groupes linéaires généraux, dont l’existence et les propriétés sont connues depuis un certain temps
( [LRS93], [HT01], [Hen00], [Sch13]). Pour n′ un certain entier positif et G0 = GLn′ comme un groupe
réductif sur F0, la correspondance de Langlands locale est une bijection

LLCF0 : IrrC(G0) −→ Φ(G0).

Ici nous gardons les notations de §0.1.1 et Φ(G0) est constitué de GLn′(C)-classes de conjugaison
d’homomorphismes

φ0 = (ϕ0, λ0) :WF0 × SL2(C) −→ GLn′(C),

tels que ϕ0 := φ0|WF0
×{1} est une représentation lisse de WF0 , et λ0 := φ0|{1}×SL2(C) est une

représentation algébrique de SL2(C) de dimension n′. Pour n un entier positif, soit G la restric-
tion de Weil du groupe réductif GLn sur F , qui est un groupe réductif sur F0 avec G = GLn(F ). La
correspondance de Langlands locale est une bijection

LLCF : IrrC(G) −→ Φ(G).

Ici Φ(G) est constitué des classes d’isomorphisme des L-paramètres liés àG, qui peuvent être naturelle-
ment identifiés avec les classes d’isomorphisme des L-paramètres liés à GLn over F . En utilisant cette
identification, Φ(G) est constitué des GLn(C)-classes de conjugaison d’homomorphismes

φ = (ϕ, λ) :WF × SL2(C) −→ GLn(C),

tels que ϕ := φ|WF×{1} est une représentation lisse deWF , et λ := φ0|{1}×SL2(C) est une représentation
algébrique de SL2(C) de dimension n.

Nous introduisons maintenant le changement de base et l’induction automorphe liés à F/F0.
D’abord nous supposons n′ = n et nous définissons l’application de restriction

ResF/F0
: Φ(G0) −→ Φ(G), φ0 = (ϕ0, λ0) 7−→ φ = (ϕ0|WF

, λ0),

où nous remarquons queWF est un sous-groupe deWF0 . Ainsi, le changement de base est le relèvement
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local BCF/F0
: IrrC(G0)→ IrrC(G) tel que le diagramme suivant est commutatif:

IrrC(G0)

BCF/F0
��

LLCF0// Φ(G0)

ResF/F0
��

IrrC(G)
LLCF

// Φ(G)

Deuxièmement, nous supposons n′ = nr et nous définissons l’application d’induction

IndF/F0
: Φ(G) −→ Φ(G0), φ = (ϕ, λ) 7−→ φ′0 = (Ind

WF0
WF

ϕ, i ◦ λ),

où i : GLn(C) → GLnr(C) est un plongement des groupes 8. Ainsi l’induction automorphe est le
relèvement local AF/F0

: IrrC(G)→ IrrC(G0) tel que le diagramme suivant est commutatif:

IrrC(G0)
LLCF0// Φ(G0)

IrrC(G)
LLCF

//

AF/F0

OO

Φ(G)

IndF/F0

OO

Dans [AC89], [HH95] et [HL11], le changement de base pour toutes les représentations irréductibles, et
l’induction automorphe pour au moins les représentations génériques essentiellement unitaires ont été
construits via la méthode de la formule des traces sans l’utilisation de la correspondance de Langlands
locale, et la fonctorialité ci-dessus a été vérifiée.

Bien que pour GLn la correspondance de Langlands locale ait déjà été construite comme une
bijection avec les desiderata vérifés, il semble que les informations extraites des deux côtés ne soien-
t pas égales. Concentrons-nous sur les représentations supercuspidales, alors pour tout n ∈ N la
correspondance peut être réalisée comme une bijection

LLCF : A0
n(F ) −→ G0

n(F )

de l’ensemble des classes équivalentes de représentations supercuspidales de GLn(F ), dans l’ensemble
des classes équivalentes de représentations lisses irréductibles du groupe de Weil WF de dimension n,
notés respectivement A0

n(F ) et G0
n(F ). Habituellement, nous obtenons peu d’informations concrètes

pour les représentations irréductibles deWF à partir de la théorie des représentations, mais en revanche
nous avons la théorie de classification pour les représentations supercuspidales de GLn(F ), la théorie
des types simples construite par Bushnell-Kutzko [BK93], qui est terre-à-terre et sophistiquée. Une
question naturelle est donc la suivante: pouvons-nous caractériser le LLCF ci-dessus en utilisant la
théorie structurale pour les représentations supercuspidales de GLn(F )?

Pour répondre à cette question, Bushnell et Henniart lancent un projet de longue haleine don-
t le résultat est contenu dans une série d’articles [BH96], [BH99], [BH05c] [BH03], [BH05a], [B-
H05b], [BH10], [BH14b], [BH17], [BH19], etc. Surtout, dans [BH05a], [BH05b], [BH10] ils ont en-
tièrement répondu à la question ci-dessus pour une classe spéciale de représentations supercuspidales,
les représentations supercuspidales essentiellement modérées. Pour ce faire, ils ont d’abord construit
une version algébrique de la correspondance de Langlands locale, qu’ils ont appelée “correspondance
näıve de Langlands locale”, comme une bijection entre les mêmes ensembles que LLCF et notée par
NLCF . Pour ϕ ∈ G0

n(F ), définissons Tm comme l’extension modérément ramifiée de F liée à ϕ comme

8En utilisant un argument de base en algèbre linéaire, nous pouvons montrer que la définition ne dépend pas du choix
de i.
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dans la dernière section. Pour µ un caractère modérément ramifié de T×m , ils ont construit une certaine
“torsion” de ϕ par µ, notée ϕ�µ, qui est une autre représentation dans G0

n(F ). Le résultat final est le
théorème de comparaison, qui prédit l’existence d’un caractère modérément ramifié µϕ de T×m , tel que
LLC−1

F (ϕ) est isomorphe à NLC−1
F (ϕ� µϕ). Dans le cas essentiellement modéré au sens de [BH10], le

caractère µϕ de T×m est d’ordre divisant 4 et peut être calculé explicitement, donc dans ce cas la cor-
respondance de Langlands locale est pleinement comprise de manière algébrique. Dans le cas général
comme dans [BH14b], la construction de la correspondance näıve de Langlands local s’appuyait sur
la correspondance de Langlands locale dans le cas sauvagement ramifié comme une “bôıte noire”, et
la caractérisation complète du caractère µϕ reste inconnue. Donc, pour bien comprendre le LLCF en
général, nous devons d’abord comprendre le cas particulier pour les représentations supercuspidales
sauvagement ramifiées, ce qui est une question assez profonde, puis nous devons calculer le caractère
µϕ ci-dessus, qui sera abordé dans le chapitre 3 plus tard.

L’objectif principal de ce chapitre est d’adapter l’idée de Bushnell-Henniart ci-dessus aux change-
ment de base et induction automorphe, c’est-à-dire que nous construirons des versions algébriques
des deux applications, puis les comparerons avec les applications originales respectivement. Plus de
détails seront donnés dans la sous-section ci-dessous.

0.4.2 Principaux résultats

Pour donner une introduction détaillée, nous utilisons les terminologies et propriétés de base de la
théorie des types simples et de la théorie du changement de base et l’induction automorphe cycliques,
pour lesquelles les lecteurs peuvent se référer respectivement au chapitre 3, section 2 et section 4.
Pour F/F0 comme précédemment, soient Σ = Gal(F/F0) le groupe de Galois et σ ∈ Σ un générateur.
Pour π0 une représentation supercuspidale de GLn(F0), nous définissons son changement de base
π := BCF/F0

(π0) comme une représentation irréductible de GLn(F ). Nous supposons en outre que
soit π est supercuspidale, ou soit r divise n et qu’il existe une représentation supercuspidale π′ de
GLn/r(F ) telle que π est isomorphe à l’induction parabolique

π′ × π′σ × ...× π′σr−1
.

De manière équivalente, nous avons π0 = AF/F0
(π′) comme l’induction automorphe de π′ dans le

dernier cas. Notre but est de donner une construction explicite de π et π′ respectivement dans les
deux cas, en utilisant la théorie des types simples et les informations de π0. Pour cela, nous devons
supposer la condition supplémentaire que F/F0 est modérément ramifiée.

Soit [a0, β] une strate simple maximale dans Mn(F0), et soit θ0 un caractère simple de H1(a, β)
contenu dans π0. Nous choisissons κ0 comme une représentation de Heisenberg complète (full Heisen-
berg representation) de θ0 comme une représentation de J(a0, β), et en ce moment il existe une
représentation unique ρ0 de J(a0, β) triviale sur J1(a0, β), telle que π0 est isomorphe à l’induction

compacte ind
GLn(F0)
J(a0,β) (κ0 ⊗ ρ0). Ici E0 = F0[β] est un corps de degré d sur F0 avec n = md pour m un

entier, et nous notons T0 sa sous-extension maximale modérément ramifiée sur F0 et T0,m l’extension
non ramifiée de degré m sur T0. En ce moment, la représentation ρ0 peut être caractérisée par ∆0-
orbite d’un caractère ξ0 de T×0,m qui est ∆0-régulier et modérément ramifié, où ∆0 = Gal(T0,m/T0).

Nous considérons d’abord le cas où π est supercuspidale. En utilisant le résultat de relèvement
modéré dans [BH96] et [BH03], nous construisons [a, β] comme une strate simple maximale dans
Mn(F ), et θb comme un caractère simple de H1(a, β) contenu dans π. Et un tel θb peut être considéré
comme le changement de base de θ0 pour des caractères simples. Ensuite, nous déterminons une
représentation de Heisenberg complète κb de θb de manière algébrique, qui ne depend que de θ0 et κ0,
mais pas de π0. Alors il existe une représentation unique ρb de J(a, β) trivial sur J1(a, β), telle que π

est isomorphe à l’induction compacte ind
GLn(F )
J(a,β) (κb⊗ρb). Une telle ρb est caractérisée par la ∆-orbite
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d’un caractère ∆-régulier modérément ramifié ξb de T×m , où Tm = F ⊗F0 T0,m et T = F ⊗F0 T0 sont
des corps sur F et ∆ = Gal(Tm/T ). Le théorème de comparaison suivant est le théorème principal
pour le changement de base.

Théorème 0.4.1 (Voir Theorem 3.6.2). Il existe un caractère modérément ramifié bφ
F/F0

θ0
de T×m , tel

que ξb · bφ
F/F0

θ0
et ξ0 ◦NTm/T0,m

sont dans la même ∆-orbite.

De même, nous considérons le cas où π0 est égale à l’induction automorphe d’une représentation
supercuspidale π′ de GLn/r(F ). Pour continuer, nous supposons en outre que soit F est identifié avec
un sous-corps de E0 via un plongement, ce qui correspond au cas de l’induction automorphe intérieure,
soit E = F ⊗F0 E0 est un corps de degré r sur E0, qui correspond au cas de l’induction automorphe
extérieure, et nous divisons ce dernier cas en deux sous-cas en fonction de E/E0 non ramifiée ou
totalement ramifiée, car dans les différents cas, les situations et les méthodes correspondantes sont
différentes. En utilisant la méthode de relèvement modéré dans [BH96] et [BH03], nous construisons
[c, β] comme une strate simple dans Mn/r(F ) et θa comme un caractère simple de H1(c, β) contenu dans
π′, et θ0 peut être considéré comme l’induction automorphe de θa pour les caractères simples. Comme
dans le cas de changement de base, nous déterminons une représentation de Heisenberg complète
κa de θa de manière algébrique qui depend seulement de θ0 et κ0, et en ce moment il existe une
représentation unique ρa de J(c, β) triviale sur J1(c, β), telle que π′ est isomorphe à l’induction

compacte ind
GLn/r(F )

J(c,β) (κa⊗ρa). Dans le cas de l’induction automorphe intérieure, la représentation ρa

est caractérisée par la ∆0-orbite d’un caractère ∆0-régulier modérément ramifié ξa sur T×0,m. Dans le
cas de l’induction automorphe extérieure, nous écrivons T = F ⊗F0 T0 comme un corps et nous notons
Tm/r l’extension non ramifiée de degré m/r sur T , alors pour ∆ = Gal(Tm/r/T ) la représentation ρa
est caractérisée par la ∆-orbite d’un caractère ∆-régulier modérément ramifié de T×m/r, encore désigné

par ξa. En ce moment, si E/E0 n’est pas ramifiée, Tm/r est identifié avec T0,m et ∆ est identifié avec
un sous-groupe de ∆0, et si E/E0 est totalement ramifiée, Tm = F ⊗F0 T0,m est un corps de degré
m sur T avec Tm/r étant considéré comme son sous-corps, et nous écrivons ∆′ = Gal(Tm/T ). Le
théorème de comparaison suivant est le principal théorème pour l’induction automorphe.

Théorème 0.4.2 (Voir Theorem 3.6.4, Theorem 3.6.6, Theorem 3.6.8). (1) Dans le cas de l’induction

automorphe intérieure, il existe un caractère modérément ramifié aφ
F/F0

θ0
de T×0,m tel que ξa · aφF/F0

θ0
et ξ0 sont dans la même ∆0-orbite;

(2) Dans le cas de l’induction automorphe extérieure, il existe un caractère modérément ramifié

aφ
F/F0

θ0
de T×m/r tel que

• Si E/E0 est non-ramifiée, ξa · aφF/F0

θ0
et ξ0 sont dans la même ∆0-orbite;

• Si E/E0 est totalement ramifiée, (ξa · aφF/F0

θ0
) ◦ NTm/Tm/r et ξ0 ◦ NTm/T0,m

sont dans la même

∆′-orbite.

Nous mentionnons trois applications des deux théorèmes ci-dessus pour terminer cette sous-section.
La première application concerne l’étude de ρb et ρa par ρ0, où ρ0 est la représentation supercusp-
idale de GLm(kE0) ∼= J(a0, β)/J1(a0, β) dont l’inflation est égale à ρ0|J(a0,β) avec kE0 désignant le
corps résiduel de E0, et ρb est la représentation supercuspidale de GLm(kE) ∼= J(a, β)/J1(a, β) dont
l’inflation est égale à ρb|J(a,β) avec kE désignant le corps résiduel de E dans le cas de changement
de base, et ρa est la représentation supercuspidale de GLm(kE0) ∼= J(c, β)/J1(c, β) dans le cas de
l’induction automorphe intérieure, de GLm/r(kE) ∼= J(c, β)/J1(c, β) dans le cas de l’induction au-

tomorphe extérieure, dont l’inflation est égale à ρa|J(c,β). En ce moment, les restrictions de bφ
F/F0

θ0
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et aφ
F/F0

θ0
à ces éléments dans l’anneau des entiers sont des caractères quadratiques qui peuvent être

entièrement caractérisés, les représentations ρb et ρa sont compris via la théorie de Green (cf. [Gre55]).
En particulier pour E/E0 en tant qu’une extension non ramifiée de degré r dans le cas du changement
de base ou dans le cas de l’induction automorphe extérieure, cela donne une relation entre le change-
ment de base d’Arthur-Clozel et l’application de changement de base de Shintani (cf. [Shi76]) pour
les représentations supercuspidales, voir Corollary 3.6.3 et Corollary 3.6.9.

La seconde application concerne les représentations l-modulaires. Pour l un nombre premier dif-
férent de p, nous fixons un isomorphisme algébrique Ql ∼= C, ainsi toutes les représentations ci-dessus
peuvent être réalisées comme des représentations sur Ql. Nous supposons en outre que π0 est entière,
c’est-à-dire qu’il provient d’une représentation sur un Zl-réseau par extension des scalaires. En util-
isant les deux théorèmes, nous pouvons prouver que le changement de base et l’induction automorphe
cycliques modérément ramifiés sont compatibles avec la réduction modulo l pour les représentations
supercuspidales. Plus précisément, pour une telle π0 avec son changement de base π supercuspidal,
π est également entière, et si nous changeons π0 par une autre représentation supercuspidale entière
avec sa modulo l réduction rl(π0) inchangée comme une représentation cuspidale sur Fl, alors la π cor-
respondante est encore supercuspidale entière avec sa modulo l réduction rl(π) inchangée. De même
pour une telle π0 comme l’induction automorphe de π′ comme une représentation supercuspidale en-
tière, π0 est également entière, et si nous changeons π′ par une autre représentation supercuspidale
entière avec sa modulo l réduction rl(π

′) inchangée comme une représentation cuspidale sur Fl, alors la
π0 correspondante est supercuspidale entière avec sa modulo l réduction rl(π0) inchangée. La preuve
est directe et ne sera pas donnée dans ce chapitre, mais les lecteurs peuvent consulter [BH14a] pour
une idée similaire.

L’application finale concerne le calcul du caractère µϕ lié au théorème de comparaison dans [BH14b]
mentionné dans la dernière sous-section. La stratégie est de considérer une certaine changement de
base non ramifiée, puis de comparer les caractères correspondants “mu” liés aux deux corps de base,
qui a déjà été utilisé pour le cas essentiellement modéré dans [BH05a]. Pour cela, nous avons besoin

d’étudier bφ
F/F0

θ0
dans le cas où F/F0 est non-ramifiée.

Théorème 0.4.3 (Voir Theorem 3.9.1). Quand F/F0 est non-ramifiée, le caractère bφ
F/F0

θ0
est non-

ramifié, et bφ
F/F0

θ0
($ps

T0
) = (−1)(t−1)(r−1), où $T0 désigne une uniformisante de T×m , et K0 désigne la

sous-extension maximale de T0,m sur F0, et t = [T0,m : K0] et [E0 : T0] = ps.

En utilisant un cas particulier du théorème, c’est-à-dire la proposition 3.9.9, nous pouvons mettre
à jour les valeurs de µϕ qui seront discutées dans la dernière section. Notre résultat est évidemment
incomplet et pas assez satisfaisant.

0.4.3 La structure du chapitre 3

Nous esquissons la structure du chapitre 3. Les sections 1-4 sont des préliminaires, y compris une brève
introduction et un résumé de la théorie des types simples, des signes symplectiques, du changement
de base et de l’induction automorphe respectivement. Après la première discussion élémentaire de
la section 5, dans la section 6 nous formulons notre construction algébrique du changement de base
cyclique et de l’induction automorphe modérément ramifiés en suivant l’esquisse mentionnée dans
la dernière sous-section et énonçons le théorème 0.4.1 et le théorème 0.4.2. Mais la construction
des représentations de Heisenberg complètes correspondantes reste à faire jusqu’à la section 7, dont
la stratégie repose sur l’idée d’une série de résultats de Bushnell-Henniart qui y seront rappelés et
reformulés. La preuve du théorème 0.4.1 et théorème 0.4.2 sera donnée dans la section 8 qui semble
étonnamment simple, qui repose en fait sur deux ingrédients hautement non triviaux: la fonctorialité de
Langlands locale pour le changement de base et l’induction automorphe, et le théorème de comparaison
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de Bushnell-Henniart. La section 9 est consacrée à prouver le théorème 0.4.3 et la section 10 est son
application pour calculer le caractère µϕ lié au théorème de comparaison.

L’auteur tient à remercier Colin J. Bushnell et Guy Henniart pour leur énorme influence sur
l’auteur et sur ce chapitre. En fait, il est préférable de considérer cette partie comme une continuation
(maladroite) de leur travail plutôt que comme un travail indépendant, puisque presque toutes les idées
et techniques importantes proviennent de leurs articles énumérés ci-dessus. De plus, l’auteur tient à
les remercier pour leurs généreux encouragements, qui ont en effet beaucoup aidé un jeune doctorant
qui n’était pas confiant et même était méfiant à la nécessité de son travail.



Chapter 1

Problem of distinction related to
unitary subgroups of GLn(F ) and
l-modular base change lift

1.1 Notation and basic definitions

Let F/F0 be a quadratic extension of non-archimedean locally compact fields of residue characteristic
p 6= 2 and let σ be the unique non-trivial involution in the Galois group. Write oF and oF0 for the
ring of integers of F and F0 and write k and k0 for the residue field of F and F0 respectively. The
involution σ induces a k0-automorphism of k generating Gal(k/k0), still denoted by σ.

Let R be an algebraically closed field of characteristic l ≥ 0 different from p. If l > 0, then we are
in the “modular case”.

We fix a character
ψ0 : F0 → R×

trivial on the maximal ideal of oF0 but not on oF0 , and we define ψ = ψ0 ◦ trF/F0
.

Let G be the locally profinite group GLn(F ) with n ≥ 1, equipped with the involution σ acting
componentwise. Let ε be a hermitian matrix in Mn(F ), which means that ε∗ = ε. Here x∗ := σ( tx)
for any x ∈ Mn(F ) with t denoting the transpose operator. Sometimes we write σ1(x) := x∗ for any
x ∈ Mn(F ) to emphasize that σ1 is an anti-involution on Mn(F ) extending σ. For ε hermitian and
g ∈ G, we define τε(g) = εσ( tg−1)ε−1, called the unitary involution corresponding to ε. For τ = τε a
fixed unitary involution, we denote by Gτ the corresponding unitary subgroup, which consists of the
elements of G fixed by τ .

By representations of a locally profinite group, we always mean smooth representations on an
R-module. Given a representation π of a closed subgroup H of G, we write π∨ for the smooth
contragredient of π. We write πσ and πτ for the representations π ◦ σ and π ◦ τ of groups σ(H) and
τ(H) respectively. We say that π is τ -selfdual if H is τ -stable and πτ is isomorphic to π∨. We say that
π is σ-invariant if H is σ-stable and πσ is isomorphic to π. For g ∈ G, we write Hg = {g−1hg|h ∈ H}
as a closed subgroup and we write πg : x 7→ π(gxg−1) as a representation of Hg.

For a an oF -subalgebra of Mn(F ) and τ = τε a unitary involution, we denote by

τ(a) := σε(a) = {σε(x)|x ∈ a}

an oF -subalgebra of Mn(F ), where σε(x) := εσ( tx)ε−1 is an anti-involution for any x ∈ Mn(F ). We
say that a is τ -stable if τ(a) = a. Moreover for g ∈ G, we obtain

τ(a)g = g−1σε(a)g = σε(σε(g)aσε(g
−1)) = σε(τ(g)−1aτ(g)) = τ(aτ(g))

51
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In other words, the notation τ(a) is compatible with G-conjugacy.
For τ a unitary involution and π a representation of H as above, we say that π is H ∩ Gτ -

distinguished, or just distinguished, if the space HomH∩Gτ (π, 1) is non-zero.
An irreducible representation of G is called cuspidal if it doesn’t occur as a subrepresentation

of a proper parabolically induced representation. It is called supercuspidal if it doesn’t occur as a
subquotient of a proper parabolically induced representation.

1.2 Hermitian matrices and unitary groups

We make use of this subsection to introduce basic knowledge of hermitian matrices and unitary groups.
The references will be [HM98] and [Jac62].

Let E/E0 be a quadratic extension of non-archimedean locally compact fields which are algebraic
extension of F and F0 respectively. Write oE for the ring of integers of E and oE0 for that of E0. Let
σ′ ∈ Gal(E/E0) be the unique non-trivial involution in the Galois group. For ε′ ∈ GLm(E), just as in
the last subsection, we say that ε′ is a hermitian matrix if (ε′)∗ = ε′, where we consider (·)∗ as before
with n, F , F0, σ replaced by m, E, E0, σ′ respectively. Write $E for a uniformizer of E such that

σ′($E) =

{
$E if E/E0 is unramified,

−$E if E/E0 is ramified.

Let X denote the set of all the hermitian matrices. The group G acts on X by g · x = gxg∗. We
have the following proposition:

Proposition 1.2.1 ( [Jac62], Theorem 3.1). There are exactly two GLm(E)-orbits of X with respect to
the action given above. Furthermore, the elements in each orbit are exactly determined by the classes
of their determinants in E×0 /NE/E0

(E×).

We may also consider the GLm(oE)-orbits of X . We consider sequences α = (α1, ..., αr) of certain
triples αi = (ai,mi, δi), such that a1 > ... > ar is a decreasing sequence of integers, and m1 + ...+mr =
m is a partition of m by positive integers, and δ1, ..., δr are elements of E such that:

(1) If E/E0 is unramified, then δi = 1;
(2) If E/E0 is ramified and ai is odd, then δi = 1 and mi is even;
(3) If E/E0 is ramified and ai is even, then δi is either 1 or ε, with ε ∈ o×E0

\NE/E0
(o×E) fixed.

Let A be the set of all sequences α satisfying these requirements. For each α = (α1, ..., αr) ∈ A, we
introduce a hermitian matrix $α

E = $α1
E ⊕ ... ⊕ $

αr
E , where $αi

E ∈ GLmi(E) is a hermitian matrix,
such that:

(i) In the case (1), $αi
E = $ai

E Imi ;

(ii) In the case (2), $αi
E = $ai

E Jmi/2, where Jmi/2 =

(
0 Imi/2

−Imi/2 0

)
;

(iii) In the case (3), $αi
E = $ai

E diag(1, ..., 1, δi), where diag(∗, ..., ∗) denotes the diagonal matrix
with corresponding diagonal elements.

We state the following proposition which classifies all the GLm(oE)-orbits of X .

Proposition 1.2.2 ( [Jac62], Theorem 7.1, Theorem 8.2). Each class of the GLm(oE)-orbits of X
contains a unique representative of the form $α

E for a certain α ∈ A.

Now we study unitary groups. For ε′ ∈ X , we denote by Um(ε′) the unitary group consisting of
those g ∈ GLm(E) such that gε′g∗ = ε′. We say that two unitary groups are equivalent if and only
if they are conjugate by some g ∈ G. Since it is easy to check that gUm(ε′)g−1 = Um(gε′g∗), by
Proposition 1.2.1, there are at most two equivalence classes of unitary groups, which are represented
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by Um(E/E0) := Um(Im) and U′m(E/E0) := Um(ε) for ε = diag(1, ..., 1, ε), where ε ∈ E×0 \NE/E0
(E×)

is fixed.

Remark 1.2.3. We list the following result for completeness: Um(E/E0) is equivalent to U′m(E/E0)
if and only if m is odd. Since we will never use it in the future, we omit the proof.

Remark 1.2.4. In the future, we only consider the following two cases. First, we consider E = F ,
E0 = F0, m = n and σ′ = σ. For any two unitary involutions with the corresponding hermitian
matrices in the same GLn(F )-orbit, we already showed that the corresponding two unitary groups are
equivalent. Since distinction is a property invariant up to equivalence of unitary groups, we may choose
a hermitian matrix in its G-orbit such that the corresponding unitary involution τ is simple enough
to simplify the problem. Secondly, we consider E as a finite field extension of F determined by a
cuspidal representation π such that n = m[E : F ]. We will find out that if πσ ∼= π, then we may find
an involution σ′ on E such that E0 = Eσ

′
and σ′|F = σ. So we may make use of the propositions in

this subsection to study hermitian matrices and unitary groups of GLm(E).

1.3 Preliminaries on simple types

In this section, we recall the main results we will need on simple strata, characters and types [BK93],
[BH96], [BH14b], [MS14b]. We mainly follow the structure of [AKM+19] and [Séc19].

1.3.1 Simple strata and characters

Let [a, β] be a simple stratum in Mn(F ) for a certain n ≥ 1. Recall that a is a hereditary order of
Mn(F ) and β is in G = GLn(F ) such that:

(1) the F -algebra E = F [β] is a field with degree d over F ;
(2) E× normalizes a×.
The centralizer of E in Mn(F ), denoted by B, is an E-algebra isomorphic to Mm(E) with n = md.

The intersection b := a ∩B is a hereditary order of B.
We denote by pa the Jacobson radical of a, and U1(a) the compact open pro-p-subgroup 1 + pa of

G. Similarly, we denote by pb the Jacobson radical of b and U1(b) the compact open pro-p-subgroup
1 + pb of B×. For any x ∈ B×, we have ( [BK93], Theorem 1.6.1)

U1(a)xU1(a) ∩B× = U1(b)xU1(b). (1.3.1)

Associated with [a, β], there are open compact subgroups

H1(a, β) ⊂ J1(a, β) ⊂ J(a, β)

of a× and a finite set C(a, β) of simple characters of H1(a, β) depending on the choice of ψ. We denote
by J(a, β) a subgroup of G generated by J(a, β) and the normalizer of b× in B×.

The above definition excludes the “null” case, which we explain here. In this case for a simple
stratum [a, β], conventionally we write β = 0, E = F , A = B, a = b and H1(a, β) = J1(a, β) = 1 + pa.
Moreover, the set C(a, β) is a singleton consisting of the trivial character of H1(a, β). Later on all the
simple strata we consider should also include this case.

Proposition 1.3.1 ( [Séc19], Proposition 5.1). We have the following properties:
(1) The group J(a, β) is the unique maximal compact subgroup of J(a, β);
(2) The group J1(a, β) is the unique maximal normal pro-p-subgroup of J(a, β);
(3) The group J(a, β) is generated by J1(a, β) and b×, and we have

J(a, β) ∩B× = b×, J1(a, β) ∩B× = U1(b); (1.3.2)
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(4) The normalizer of any simple character θ ∈ C(a, β) in G is equal to J(a, β);

(5) The intertwining set of any θ ∈ C(a, β) in G, which we denote by IG(θ), is equal to

J1(a, β)B×J1(a, β) = J(a, β)B×J(a, β).

Remark 1.3.2. We write for short J , J1, H1 for J(a, β), J1(a, β), H1(a, β) respectively if a and β
are clear to us.

When b is a maximal order in B, we call the simple stratum [a, β] and the simple characters in
C(a, β) maximal. In this case we may find an isomorphism of E-algebras B ∼= Mm(E) which identifies
b with the standard maximal order, and moreover we have group isomorphisms

J(a, β)/J1(a, β) ∼= b×/U1(b) ∼= GLm(l), (1.3.3)

where l denotes the residue field of E.

1.3.2 Simple types and cuspidal representations

A pair (J ,Λ), called an extended maximal simple type in G (we always write simple type for short), is
made of a subgroup J of G which is open and compact modulo centre, and an irreducible representation
Λ of J . It has been constructed in [BK93] in the characteristic 0 case and in [Vig96], [MS14b] in the
modular case.

Given a simple type (J ,Λ) in G, there are a maximal simple stratum [a, β] in Mn(F ) and a
maximal simple character θ ∈ C(a, β), such that J(a, β) = J and θ is contained in the restriction
of Λ to H1(a, β). Such a character θ is said to be attached to Λ. By [BK93], Proposition 5.1.1
(or [MS14b], Proposition 2.1 in the modular case), the group J1(a, β) has, up to isomorphism, a
unique irreducible representation η whose restriction to H1(a, β) contains θ. Such a representation η,
called the Heisenberg representation associated to θ, has the following properties:

(1) the restriction of η to H1(a, β) is made of (J1(a, β) : H1(a, β))1/2 copies of θ. Here (J1(a, β) :
H1(a, β))1/2 is a power of p;

(2) the direct sum of (J1(a, β) : H1(a, β))1/2 copies of η, which we denote by η(J1(a,β):H1(a,β))1/2
, is

isomorphic to IndJ
1

H1θ;

(3) the representation η extends to J ;

(4) the intertwining set of η, which we denote by IG(η), equals IG(θ);

(5) for h ∈ IG(η), we have dimR(HomJ1∩J1h(ηh, η)) = 1.

For any representation κ of J extending η, there exists a unique irreducible representation ρ of J
trivial on J1(a, β) such that Λ ∼= κ⊗ ρ. Through (1.3.3), the restriction of ρ to J = J(a, β) identifies
with the inflation of a cuspidal representation of GLm(l).

Remark 1.3.3. Recall that in [BK93], Bushnell and Kutzko also assume κ0 = κ|J(a,β) to be a so
called beta-extension, which means that:

(1) κ0 is an extension of η;

(2) if we denote by IG(κ0) the intertwining set of κ0, then IG(κ0) = IG(η) = IG(θ).

However in our case, since GLm(l) is not isomorphic to GL2(F2) (p 6= 2), any character of GLm(l)
factors through the determinant. It follows that any representation of J extending η is a beta-extension.
So finally our consideration of κ0 coincides with the original assumption of Bushnell and Kutzko.

We now give the classification of irreducible cuspidal representations of G in terms of simple types
(see [BK93], 6.2, 8.4 and [MS14b], Section 3 in the modular case).
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Proposition 1.3.4 ( [BK93], [MS14b]). Let π be a cuspidal representation of G.
(1) There is a simple type (J ,Λ) such that Λ is a subrepresentation of the restriction of π to J .

It is unique up to G-conjugacy;
(2) Compact induction c-IndGJ gives a bijection between the G-conjugacy classes of simple types

and the isomorphism classes of cuspidal representations of G.

1.3.3 Endo-classes, tame parameter fields and tame lifting

In this subsection, we introduce the concepts of endo-classes, tame parameter fields and tame lifting.
The main references will be [BK93], [BH96] and [BH14b].

For [a, β] a simple stratum in Mn(F ) and [a′, β′] a simple stratum in Mn′(F ) with n, n′ ≥ 1, if we
have an isomorphism of F -algebras φ : F [β]→ F [β′] such that φ(β) = β′, then there exists a canonical
bijection

tβ,β
′

a,a′ : C(a, β)→ C(a′, β′),

called the transfer map (see [BK93], Theorem 3.6.14).
Now let [a1, β1] and [a2, β2] be simple strata of Mn1(F ) and Mn2(F ) respectively with n1, n2 ≥ 1.

We call two simple characters θ1 ∈ C(a1, β1) and θ2 ∈ C(a2, β2) endo-equivalent, if there are simple
strata [a′, β′1] and [a′, β′2] of Mn′(F ) for some n′ ≥ 1 such that θ1 and θ2 transfer to two simple
characters θ′1 ∈ C(a′, β′1) and θ′2 ∈ C(a′, β′2) respectively which intertwine (or by [BK93], Theorem
3.5.11 which are GLn′(F )-conjugate). This defines an equivalence relation on⋃

[a,β]

C(a, β),

where the union runs over all simple strata in Mn(F ) for all n ≥ 1 (see [BH96], section 8). An
equivalence class for this equivalence relation is called an endo-class.

For π a cuspidal representation of G = GLn(F ), there exist a simple stratum [a, β] and a simple
character θ ∈ C(a, β) contained in π. The set of simple characters θ contained in π constitutes a
G-conjugacy class, thus those simple characters are endo-equivalent. So we may denote by Θπ the
endo-class of π which is the endo-class determined by any θ contained in π.

Given θ ∈ C(a, β), the degree of E/F , its ramification index and its residue class degree depend
only on the endo-class of θ. They are called the degree, ramification index and residue class degree
of this endo-class. Although the field extension E/F is not uniquely determined, its maximal tamely
ramified subextension is uniquely determined by the endo-class of θ up to F -isomorphisms. This field
is called a tame parameter field of the endo-class (see [BH14b], 2.2, 2.4).

We denote by E(F ) the set of endo-classes of simple characters over F . Given a finite tamely
ramified extension T of F , we have a surjection

E(T )→ E(F )

with finite fibers, which is called restriction map (see [BH14b], 2.3). Given Θ ∈ E(F ), the endo-classes
Ψ ∈ E(T ) restricting to Θ are called the T/F -lifts of Θ. If Θ has a tame parameter field T , then
AutF (T ) acts faithfully and transitively on the set of T/F -lifts of Θ (see [BH14b], 2.3, 2.4).

Let [a, β] be a simple stratum and let θ ∈ C(a, β) be a simple character. Let T be the maximal
tamely ramified extension of F in E. Let Θ be the endo-class of θ, then T is a tame parameter field
of Θ. Let C ∼= Mn/t(T ) denote the centralizer of T in Mn(F ), where t = [T : F ]. The intersection
c = a∩C is an order in C which gives rise to a simple stratum [c, β]. The restriction of θ to H1(c, β),
denoted by θT , is a simple character associated to this simple stratum, called the interior T/F -lift of
θ. Its endo-class, denoted by Ψ, is a T/F -lift of Θ. For the origin and details of the construction of
Ψ by using interior T/F -lift of θ, see [BH96].
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We may change our choice of simple stratum [a, β] but fix T ↪→ Mn(F ) unchanged, then the map

a 7→ a ∩ C

is injective from the set of hereditary orders of Mn(F ) normalized by T× to the set of hereditary orders
of C (see [BH96], section 2). For [a, β1], [a2, θ2] two simple strata, and θ1 ∈ C(a, β1), θ2 ∈ C(a, β2) two
simple characters, such that θ1 and θ2 have the same tame parameter field T , if

C(c, β1) = C(c, β2) and (θ1)T = (θ2)T ,

then (see [BH96], Theorem 7.10, Theorem 7.15)

C(a, β1) = C(a, β2) and θ1 = θ2.

In particular, when β1 = β2 = β, the interior T/F -lift is injective from C(a, β) to C(c, β).

1.3.4 Supercuspidal representations

Let π be a cuspidal representation of G. By Proposition 1.3.4, it contains a simple type (J ,Λ). Fix a
maximal simple stratum [a, β] such that J = J(a, β), and write Λ = κ⊗ ρ as in subsection 1.3.2. Let
ρ be the cuspidal representation of J/J1 ∼= GLm(l) whose inflation equals ρ|J . We have the following
proposition:

Proposition 1.3.5 ( [MS14a], Proposition 6.10). The representation π is supercuspidal if and only if
ρ is supercuspidal.

1.4 One direction of Theorem 0.2.1 for a supercuspidal representa-
tion

Let G = GLn(F ) and let Gτ be the unitary group corresponding to a unitary involution τ . We state
the following theorem which is well-known when R = C and char(F ) = 0 (see for example [HM02a],
section 4, corollary or more ancient paper [HLR86] which illustrates the idea).

Theorem 1.4.1. Let π be a supercuspidal representation of G. If π is distinguished by Gτ , then π is
σ-invariant.

Before proving Theorem 1.4.1, we state a useful lemma which will be used not only in the proof
of the theorem, but also in the latter sections.

Lemma 1.4.2. For δ a unitary involution on G and for (J ,Λ) a simple type in G, we have J ∩Gδ =
J ∩Gδ.

Proof. For x ∈ J ∩ Gδ, we have δ(x) = x which implies that σ(det(x))det(x) = 1, where we denote
by det(·) the determinant function defined on G. Thus we have det(x) ∈ o×F . Since J = E×J , we get
x ∈ o×EJ ∩Gδ = J ∩Gδ. Since x is arbitrary, we finish the proof.

Moreover, we need the following lemma which says that the properties of distinction and σ-
invariance are maintained up to change of base fields.
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Lemma 1.4.3. Let R1 ↪→ R2 be a fixed embedding of two algebraically closed fields of characteristic
l ≥ 0. Let π0 be a supercuspidal representation of G over R1. Let π = π0⊗R1 R2 be the corresponding
representation of G over R2. Then:

(1) π0 is distinguished by Gτ if and only if π is distinguished by Gτ ;

(2) πσ0
∼= π0 if and only if πσ ∼= π.

Proof. For (1), let (J ,Λ0) be a simple type of π0. Then (J ,Λ) := (J ,Λ0⊗R1 R2) is a simple type of π
and thus π is also supercuspidal. Using the Frobenius reciprocity and the Mackey formula1, we have

HomR1[Gτ ](π0, 1) 6= 0⇐⇒ There exists g ∈ G such that HomR1[Jg∩Gτ ](Λ
g
0, 1) 6= 0

and

HomR2[Gτ ](π, 1) 6= 0⇐⇒ There exists g ∈ G such that HomR2[Jg∩Gτ ](Λ
g, 1) 6= 0

By Lemma 1.4.2, Jg∩Gτ = Jg∩Gτ is a compact group, and Λg0 is a representation of finite dimension.
Thus

HomR1[Jg∩Gτ ](Λ
g
0, 1)⊗R1 R2

∼= HomR2[Jg∩Gτ ](Λ
g, 1)

which finishes the proof of (1). For (2), from [Vig96], Chapitre I, 6.13 we know that π0 is isomorphic
to πσ0 if and only if their trace characters are equal up to a scalar in R×1 , which works similarly for
π and πσ. Since the trace characters of π0 and π are equal up to the change of scalars, which works
similarly for πσ0 and πσ, we finish the proof of (2).

Proof of Theorem 1.4.1. First we consider R = C. For char(F ) = 0, it is a standard result proved by
using global method ( [HM02a], section 4, Corollary). Especially, their result is based on the global-
ization theorem, saying a distinguished π under our settings can be realized as a local component of
a cuspidal automorphic representation Π of GLn(AK), which is distinguished by a unitary subgroup
of GLn(AK) with respect to a quadratic extension of number fields K/K0 (see ibid., Theorem 1). If
char(F ) > 0, in order to use the proof of Hakim-Murnaghan, we only need a variant of globaliza-
tion theorem for characteristic positive case. Fortunately, Gan-Lomeĺı already built up such kind
of result for general reductive groups over function fields and locally compact fields of characteristic
positive (see [GL18], Theorem 1.3). Following their settings, we choose the reductive group H to
be RK/K0

(GLn(K)), where K/K0 is a quadratic extension of function fields, and RK/K0
is the Weil

restriction. We choose V to be Mn(K) as a K0-vector space and ι : H → GL(V ) to be a representation
over K0 defined by

ι(h)x = hxσ( th), x ∈ V, h ∈ H,

where σ denotes the non-trivial involution in Gal(K/K0). If we choose x0 ∈ V to be a hermitian
matrix in Mn(K) and Hx0 to be the stabilizer of x0, then Hx0 becomes a unitary subgroup of H which
satisfies the condition of loc. cit. In order to use their result, we only need to verify the condition (a)
and (b) in their theorem. For condition (a), ι is semisimple since it is the direct sum of two irreducible
subrepresentations, composed of hermitian matrices and anti-hermitian matrices respectively 2. For
condition (b), since we only care about the case where χ = 1, it is automatically satisfied. Thus,
if we use [GL18], Theorem 1.3 to replace [HM02a], Theorem 1 and follow the proof in [HM02a],
then we finish the proof when R = C and F/F0 is a quadratic extension of locally compact fields of
characteristic p.

1This argument will occur several times in this section, so we refer to the reader for more details in the proof of
Theorem 1.4.1.

2Here we need the assumption p 6= 2.
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For char(R) = 0 in general, a supercuspidal representation of G can be realized as a representation
over Q up to twisted by an unramified character, where Q is the algebraic closure of Q. More precisely,
there exists a character χ : F× → R× such that χ|o×F = 1 and πχ can be realized as a representation

over Q. Since Gτ ∩ F× = Gτ ∩ o×F , we deduce that π is Gτ -distinguished if and only if πχ is, as
a representation over R, and also as a representation over Q or C by Lemma 1.4.3.(1). Using the
complex case, πχ is σ-invariant as a representation over C, and also as a representation over Q or R
by Lemma 1.4.3.(2). By definition, χ is σ-invariant, thus π is also σ-invariant.

For R = Fl, we write π ∼= c-IndGJΛ for a simple type (J ,Λ). Using the Mackey formula and the
Frobenius reciprocity, we have

0 6= HomGτ (π, 1) ∼=
∏

g∈J\G/Gτ
HomJg∩Gτ (Λg, 1).

Thus π is distinguished if and only if there exists g ∈ G such that HomJg∩Gτ (Λg, 1) 6= 0. Let
γ = τ(g)g−1 and let δ(x) = γ−1τ(x)γ for x ∈ G which is also a unitary involution, then we have

0 6= HomJg∩Gτ (Λg, 1) ∼= HomJ∩Gδ(Λ, 1) = HomJ∩Gδ(Λ
0, 1) ∼= HomJ(Λ0, IndJJ∩GδFl),

where Λ0 = Λ|J and we use the fact that J ∩Gδ = J ∩Gδ by Lemma 1.4.2.
Since π is supercuspidal, if we consider PΛ0 as the projective envelope of Λ0 as a Zl[J ]-module,

where we denote by Zl the ring of integers of Ql, then we have ( [Vig96], chapitre III, 4.28 and [Ser77],
chapter 14, Proposition 42 for finite group case. Since Λ0 is a smooth representation of the compact
group J of finite dimension, it can be regarded as a representation of a finite group.):

(1) PΛ0 ⊗Zl Fl is the projective envelope of Λ0 as a Fl[J ]-module, which is indecomposable of finite

length, with each irreducible component isomorphic to Λ0. Thus HomFl[J ](PΛ0 ⊗Zl Fl, IndJJ∩GδFl) 6= 0;

(2) If we write P̃Λ0 = PΛ0 ⊗Zl Ql as the Ql-lift of PΛ0 , then P̃Λ0
∼=
⊕

Λ̃0, where Λ̃0 in the direct

sum are Ql-lifts of Λ0 of multiplicity 1 (The multiplicity 1 statement is derived from counting the

length of PΛ0 ⊗Zl Fl, and the number of different Λ̃0 in P̃Λ0 , and then showing that they are equal.
The argument is indicated in the proof of [Vig96], chapitre III, 4.28, or more precisely, ibid., chapitre
III, Théorème 2.2 and Théorème 2.9);

(3) In (2), each (J, Λ̃0) can be extended to a simple type (J , Λ̃) of G as a Ql-lift of (J ,Λ).
Using (1), we have HomFl[J ](PΛ0 ⊗Zl Fl, IndJJ∩GδFl) 6= 0. Since PΛ0 is a projective Zl[J ]-module, it

is a free Zl-module. Since IndJJ∩GδZl is a free Zl-module,

HomZl[J ](PΛ0 , IndJJ∩GδZl)

is a free Zl-module. As a result,

HomFl[J ](PΛ0 ⊗Zl Fl, IndJJ∩GδFl) ∼= HomZl[J ](PΛ0 , IndJJ∩GδZl)⊗Zl Fl 6= 0

if and only if
HomZl[J ](PΛ0 , IndJJ∩GδZl) 6= 0

if and only if

HomQl[J ](P̃Λ0 , IndJJ∩GδQl) ∼= HomZl[J ](PΛ0 , IndJJ∩GδZl)⊗Zl Ql 6= 0,

So there exists Λ̃0 as in condition (2) such that HomQl[J ](Λ̃
0, IndJJ∩GδQl) 6= 0. Using (3), we may choose

(J , Λ̃) as an extension of (J, Λ̃0). We write π̃ = c-IndGJ Λ̃ which is a supercuspidal representation of G
over Ql. By using

HomJg∩Gτ (Λ̃g, 1) ∼= HomJ∩Gδ(Λ̃, 1) = HomJ∩Gδ(Λ̃
0, 1) ∼= HomJ(Λ̃0, IndJJ∩GδQl) 6= 0
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and the Mackey formula and the Frobenius reciprocity as before, π̃ is Gτ -distinguished. Using the
result of characteristic 0 case, we have π̃σ ∼= π̃. Using (3), Λ̃ is a Ql-lift of Λ. So π̃ is a Ql-lift of π. So
we have πσ ∼= π.

For char(R) = l > 0 in general, as in the characteristic zero case, there exists a character χ : F× →
R× such that χ|o×F = 1 and πχ can be realized as a representation over Fl. Since Gτ ∩ F× = Gτ ∩ o×F ,

we deduce that π is Gτ -distinguished if and only if πχ is, as a representation over R, and also as a
representation over Fl by Lemma 1.4.3.(1). Using the case above, πχ is σ-invariant, as a representation
over Fl, and also as a representation over R by Lemma 1.4.3.(2). By definition, χ is σ-invariant, thus
π is also σ-invariant.

Remark 1.4.4. In section 9, we will give a purely local proof (without using the result of complex
supercuspidal case) for this theorem which also works for cuspidal case.

1.5 The τ-selfdual type theorem

Let G = GLn(F ) and let τ be the unitary involution of G corresponding to a hermitian matrix ε.
Let π be a cuspidal representation of G. From our settings of section 3, there exist a maximal simple
stratum [a, β] and a simple character θ ∈ C(a, β) contained in π. First of all, we have the following
lemma:

Lemma 1.5.1. If π is σ-invariant, then we may choose the simple stratum above such that σ( tβ) = β.
As a result, σ1 (see section 2) is an involution defined on E whose restriction to F is σ.

Let E0 = Eσ1 , where E = F [β] and β is chosen as in Lemma 1.5.1. We state the following
important theorem.

Theorem 1.5.2. Let π be a σ-invariant cuspidal representation of G and let τ be a unitary involution.
We also assume the following additional condition:

If the hermitian matrix corresponding to τ is not in the same G-class as In in X and if there exists
a maximal simple stratum [a, β] as in Lemma 1.5.1 with a θ ∈ C(a, β) contained in π, such that the
corresponding E/E0 is unramified, then m is odd.

Then there exist a maximal simple stratum [a′, β′] and a simple character θ′ ∈ C(a′, β′) contained
in π such that:

(1) τ(β′) = β′−1;

(2) τ(a′) = a′ and3 τ(H1(a′, β′)) = H1(a′, β′);

(3) θ′ ◦ τ = θ′−1.

As a corollary of Theorem 1.5.2, we state the following theorem as the main theorem of this section:

Theorem 1.5.3 (The τ -selfdual type theorem). Under the same condition of Theorem 1.5.2, there
exists a simple type (J ,Λ) contained in π such that τ(J) = J and Λτ ∼= Λ∨.

In the following subsections, we will focus on the proof of the results stated.

3For the definition of τ(a′), see §1.1. Same notations work for Theorem 1.5.5 and further proofs.
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1.5.1 Endo-class version of main results

To prove Theorem 1.5.2 and Theorem 1.5.3, we state their corresponding endo-class versions. Let
Θ be an endo-class over F . As mentioned in section 3, we write d = deg(Θ). Moreover, its tame
parameter field T as a tamely ramified extension over F is unique up to F -isomorphism.

From the definition of endo-class, we may choose a maximal simple stratum [a, β] and a simple
character θ ∈ C(a, β) such that θ ∈ Θ. We denote by Θσ the endo-class of θσ which doesn’t depend
on the choice of θ. We denote by n the size of a, that is, a ↪→ Mn(F ) as a hereditary order. We write
n = md with m a positive integer. First of all, we have the following lemma as the endo-class version
of Lemma 1.5.1 which will be proved in subsection 5.4.

Lemma 1.5.4. If Θσ = Θ, then we may choose the simple stratum above such that σ( tβ) = β. As a
result, σ1 is an involution defined on E whose restriction to F is σ.

Let E0 = Eσ1 , where E = F [β] and β is chosen as in Lemma 1.5.4. The following theorem as an
endo-class version of Theorem 1.5.2 says that we may adjust our choice of simple stratum and simple
character such that they are τ -selfdual with respect to a unitary involution τ :

Theorem 1.5.5. Let Θ ∈ E(F ) be an endo-class over F such that Θσ = Θ. Let τ be a unitary
involution of G. We also assume the following additional condition:

If the hermitian matrix corresponding to τ is not in the same G-class as In in X and if there exists
a maximal simple stratum [a, β] as in Lemma 1.5.4 with a θ ∈ C(a, β) contained in Θ, such that the
corresponding E/E0 is unramified, then m = n/d is odd.

Then there exist a maximal simple stratum [a′, β′] in Mn(F ) and a simple character θ′ ∈ C(a′, β′)
such that:

(1) τ(β′) = β′−1;
(2) τ(a′) = a′ and τ(H1(a′, β′)) = H1(a′, β′);
(3) θ′ ∈ Θ and θ′ ◦ τ = θ′−1.

Later we will focus on the proof of Theorem 1.5.5. So before we begin our proof, it is necessary to
illustrate how does this theorem imply Theorem 1.5.2 and Theorem 1.5.3. First, we have the following
important result due to Gelfand and Kazhdan (see [BZ76], Theorem 7.3 for complex case and [SV17b],
Proposition 8.4 for l-modular case):

Proposition 1.5.6. For π an irreducible representation of GLn(F ), the representation defined by
g 7→ π( tg−1) is isomorphic to π∨.

For π given as in Lemma 1.5.1, if we denote by Θπ the endo-class corresponding to π, then we get
Θσ
π = Θπ. So we may use Lemma 1.5.4 to get Lemma 1.5.1 and use Theorem 1.5.5 to get Theorem

1.5.2.
Now we show that Theorem 1.5.2 implies Theorem 1.5.3. Using Proposition 1.5.6, we have πτ∨ ∼=

πσ ∼= π. Let (J ,Λ) be a simple type of π containing θ′, where θ′ is obtained from Theorem 1.5.2 such
that θ′ ◦ τ = θ′−1. Thus τ(J) = J since they are the G-normalizers of θ′ ◦ τ and θ′−1 respectively.
Since πτ∨ ∼= π, it contains both (J ,Λ) and (J ,Λτ∨). By Proposition 1.3.4, there exists g ∈ G such
that (J ,Λτ∨) = (Jg,Λg). Since Λτ∨ ∼= Λg contains both (θ′ ◦ τ)−1 = θ′ and θ′g as simple characters,
the restriction of Λg to the intersection

H1(a′, β′) ∩H1(a′, β′)g, (1.5.1)

which is a direct sum of copies of θ′g restricting to (1.5.1), contains the restriction of θ′ to (1.5.1). It
follows that g intertwines θ′. By Proposition 1.3.1.(5), we know that g ∈ J(a′, β′)B′×J(a′, β′) with B′

the centralizer of E′ in Mn(F ). Thus we may assume g ∈ B′×. From the uniqueness of the maximal
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compact subgroup in J , we deduce that Jg = J implies J(a′, β′)g = J(a′, β′). Intersecting it with B′×

implies that b′×g = b′×. Since b′× is a maximal compact subgroup of B′× ∼= GLm(E′) and g ∈ B′×,
we deduce that g ∈ E′×b′× ⊂ J . Thus (Jg,Λg) = (J ,Λ), which finishes the proof of Theorem 1.5.3.

Finally we state the following two lemmas which will be useful in our further proof:

Lemma 1.5.7. Let [a, β] be a maximal simple stratum of Mn(F ) and let Θ be a σ-invariant endo-class
over F , such that there exists a simple character θ ∈ C(a, β) in Θ. Then θ ◦ τ and θ−1 are in the same
endo-class. In particular, if the hereditary order a is τ -invariant, then θ ◦ τ is conjugate to θ−1 by an
element in U(a).

Proof. We choose π as a cuspidal representation of G containing θ. Thus by definition, we have
Θπ = Θ. Using Proposition 1.5.6, we have πτ ∼= πσ∨. So θ ◦ τ ∈ Θπτ = Θπσ∨ = Θσ

π∨ and θ−1 ∈ Θπ∨ .
Since Θσ = Θ, we have Θσ

π∨ = Θπ∨ , which means that θ ◦ τ and θ−1 are in the same endo-class.
If τ(a) = a, then by definition and construction of endo-equivalence ( [BH96], Theorem 8.7), θ ◦ τ
intertwines with θ−1. By [BK93], Theorem 3.5.11, θ ◦ τ is conjugate to θ−1 by an element in U(a).

The following lemma will be used to change the choice of unitary involution up to G-action on its
corresponding hermitian matrix.

Lemma 1.5.8. Let τ = τε be the unitary involution on GLn(F ) corresponding to a hermitian matrix
ε, let [a, β] be a maximal simple stratum in Mn(F ) and let θ ∈ C(a, β) be a simple character, such that

τ(a) = a, θ ◦ τ = θ−1 (and τ(β) = β−1).

Then for τ ′ = τε′ the unitary involution on GLn(F ) corresponding to a hermitian matrix ε′ =
g−1εσ( tg−1), we have

τ ′(ag) = ag, θg ◦ τ ′ = (θg)−1 (and τ ′(βg) = (βg)−1).

Proof. The proof is just a simple calculation. We have

τ ′(ag) = τ ′(g−1)τ ′(a)τ ′(g) = τ ′(g−1)ε′ε−1τ(a)(ε′ε−1)−1τ ′(g) = g−1τ(a)g,

where in the last step we use

(ε′ε−1)−1τ ′(g) = εσ( tg−1)ε′−1 = g.

Since τ(a) = a, we get τ ′(ag) = ag. The other two equations can be proved in a similar way.

1.5.2 The maximal and totally wildly ramified case

Now we focus on the proof of Theorem 1.5.5. We imitate the strategy in [AKM+19], section 4 which
first considered special case, and then used tame lifting developed by Bushnell and Henniart [BH96]
and other tools developed by Bushnell and Kutzko [BK93] to generalize their result. In this subsection,
we prove the following proposition as a special case of (2) and (3) of Theorem 1.5.5:

Proposition 1.5.9. Let [a, β] be a simple stratum in Mn(F ) and let θ ∈ C(a, β) such that θ ∈ Θ
with Θ a σ-invariant endo-class. Let E/F be totally wildly ramified of degree n. Let τ = τ1 with
τ1(x) := σ( tx−1) for any x ∈ G. Then there exist a simple stratum [a′′, β′′] and a simple character
θ′′ ∈ C(a′′, β′′) such that (a′′, θ′′) is G-conjugate to (a, θ) with the property τ(a′′) = a′′ and θ′′◦τ = θ′′−1.

Remark 1.5.10. We have [E : F ] = d = n, which is a power of p as an odd number.
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Up to G-conjugacy, we may and will assume that a is standard (that is, a is made of matrices with
upper triangular elements in oF and other elements in pF .). First we prove the following lemma:

Lemma 1.5.11. There exist g1 ∈ G and a1, ..., an ∈ o×F such that

τ(g1)g−1
1 = A :=



0 0 . . . 0 a1

0 . .
.

. .
.
a2 0

... . .
.

. .
.
. .
. ...

0 an−1 . .
.
. .
.

0
an 0 . . . 0 0


.

Moreover, if we define a′ := ag1, then we have τ(a′) = a′.

Proof. First we claim that we may choose ai ∈ o×F such that A is a hermitian matrix and det(A) ∈
NF/F0

(F×). To do this, noting that A∗ = A if and only if ai = σ(an+1−i) for i = 1, 2, ..., n. So

we choose ai = σ(an+1−i) ∈ o×F for i = 1, 2, ..., (n − 1)/2 and a(n+1)/2 ∈ o×F0
to make sure that

det(A) ∈ NF/F0
(F×). So we finish the proof of the claim.

Since A is a hermitian matrix which is in the same G-orbit as In by considering the determinant,
using Proposition 1.2.1, there exists an element g1 ∈ G such that (g−1

1 )∗g−1
1 = A, which means that

τ(g1)g−1
1 = A. By definition τ(a′) = a′ if and only if τ(g−1

1 )τ(a)τ(g1) = g−1
1 ag1. Since a∗ = ta, we

deduce that τ(a′) = a′ if and only if A−1 taA = (τ(g1)g−1
1 )−1 taτ(g1)g−1

1 = a. From our choice of A
and the definition of a, this can be verified directly. So we finish the proof.

Now fix g1 as in Lemma 1.5.11. We write θ′ = θg1 and β′ = βg1 . Since a′ = ag1 , we also have:

(1) U ′i := U i(a′) = U i(a)g1 , where U i(a) := 1 + pia for i ≥ 1;

(2) J ′ := J(a′, β′) = J(a, β)g1 ;

(3) J ′1 := J1(a′, β′) = J1(a, β)g1 ;

(4) J ′ := J(a′, β′) = J(a, β)g1 ;

(5) H ′1 := H1(a′, β′) = H1(a, β)g1 ;

(6) M ′ := Mg1 , where M = o×F × ...× o×F is the subgroup of diagonal matrices contained in a.

Since a′ is τ -stable and Θσ = Θ, using Lemma 1.5.7, there exists u′ ∈ U(a′) such that θ′ ◦ τ =
(θ′−1)u

′
. Since θ′ = θ′ ◦ τ ◦ τ = (θ′−1)u

′ ◦ τ = θ′u
′τ(u′), we deduce that u′τ(u′) normalizes θ′, which

means that u′τ(u′) ∈ J ′ ∩ U(a′) = J ′ by using Proposition 1.3.1.(4). To prove Proposition 1.5.9, we

only need to find x′ ∈ G such that a′′ := a′x
′

and θ′′ := θ′x
′

have the desired property. By direct
calculation, it means that τ(x′)x′−1 normalizes a′ and u′τ(x′)x′−1 normalizes θ′, so using Proposition
1.3.1.(4) and the fact that u′−1J ′ is contained in the normalizer of a′, it suffices to choose x′ such that
u′τ(x′)x′−1 ∈ J ′.

First we prove the following lemma:

Lemma 1.5.12. There exists y′ ∈M ′ such that u′τ(y′)y′−1 ∈ J(a′, β′)U1(a′) = o×FU
1(a′).

Proof. First we write u′ = g−1
1 ug1 for a certain u ∈ U(a). Then u′τ(u′) ∈ J(a′, β′) implies that

uA−1(u−1)∗A ∈ J(a, β) ⊂ o×FU
1(a) by direct calculation, where A is defined as in Lemma 1.5.11.

We choose y′ = g−1
1 yg1 with y = diag(y1, ..., yn) ∈M = o×F × ...× o×F to be determined. By direct

calculation, u′τ(y′)y′−1 ∈ J(a′, β′)U1(a′) if and only if uA−1(y−1)∗Ay−1 ∈ J(a, β)U1(a) = o×FU
1(a).

We use ui, a, yi and b to denote the image of ui, a, yi, b in kF ∼= oF /pF respectively, where ui, a, b ∈ oF
will be defined in the future.
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We write A =



0 0 . . . 0 a1

0 . .
.

. .
.
a2 0

... . .
.

. .
.
. .
. ...

0 an−1 . .
.
. .
.

0
an 0 . . . 0 0


and u =



u1 ∗oF . . . . . . ∗oF
∗pF u2

. . .
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . . un−1 ∗oF
∗pF . . . . . . ∗pF un


, where ∗oF and

∗pF represent elements in oF and pF respectively. By direct calculation, we have

uA−1(u−1)∗A =



u1σ(u−1
n ) ∗oF . . . . . . ∗oF

∗pF u2σ(u−1
n−1)

. . .
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . . un−1σ(u−1
2 ) ∗oF

∗pF . . . . . . ∗pF unσ(u−1
1 )


∈ o×FU

1(a),

which means that there exists a ∈ o×F such that

u1σ(u−1
n ), u2σ(u−1

n−1), ..., unσ(u−1
1 ) ∈ a(1 + pF ). (1.5.2)

Also by direct calculation, we have

uA−1(y−1)∗Ay−1 =



u1y
−1
1 σ(y−1

n ) ∗oF . . . . . . ∗oF
∗pF u2y

−1
2 σ(y−1

n−1)
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . . un−1y

−1
n−1σ(y−1

2 ) ∗oF
∗pF . . . . . . ∗pF uny

−1
n σ(y−1

1 )


,

which means that the lemma is true if and only if there exists b ∈ o×F such that

u1y
−1
1 σ(y−1

n ), u2y
−1
2 σ(y−1

n−1), ..., uny
−1
n σ(y−1

1 ) ∈ b(1 + pF ). (1.5.3)

If we consider modulo pF , then the condition (1.5.2) becomes

u1σ(un
−1) = u2σ(un−1

−1) = ... = unσ(u1
−1) = a. (1.5.4)

Moreover, if we consider modulo U1(a), then uA−1(y−1)∗Ay−1 ∈ o×FU
1(a) if and only if there exist

yi ∈ o×F such that there exists b ∈ o×F in the condition (1.5.3) such that

u1y1
−1σ(yn

−1) = u2y2
−1σ(yn−1

−1) = ... = unyn
−1σ(y1

−1) = b. (1.5.5)

We choose b = u(n+1)/2, thus we have bσ(b
−1

) = a. Furthermore we choose yi = b−1ui when
i = 1, 2, ..., (n − 1)/2 and yi = 1 when i = (n + 1)/2, ..., n. Combining with the equation (1.5.4), the
equation (1.5.5) is satisfied. So we finish the proof.

Let us write z′u′τ(y′)y′−1 ∈ U ′1 for some y′ ∈M ′ and z′ ∈ o×F given by Lemma 1.5.12. By replacing
the simple stratum [a′, β′] with [a′y

′
, β′y

′
], the simple character θ′ with θ′y

′
and u′ with y′−1z′u′τ(y′),

which doesn’t affect the fact that the order is τ -stable, we can and will assume that u′ ∈ U ′1. We
write J ′i = J ′∩U ′i for i ≥ 1. We state the following two lemmas which correspond to Lemma 4.16 and
Lemma 4.17 in [AKM+19]. Actually the same proofs work when one replaces the Galois involution σ
in the original lemmas with any involution τ on G.
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Lemma 1.5.13. Let v′ ∈ U ′i for some i ≥ 1 and assume that v′τ(v′) ∈ J ′i. Then there exist j′ ∈ J ′i
and x′ ∈ U ′i such that j′v′τ(x′)x′−1 ∈ U ′i+1.

Using Lemma 1.5.13 to replace Lemma 4.16 in [AKM+19], we may prove the following lemma:

Lemma 1.5.14. There exists a sequence of (x′i, j
′
i, v
′
i) ∈ U ′i × J ′i × U ′i+1 for i ≥ 0, satisfying the

following conditions:

(1) (x′0, j
′
0, v
′
0) = (1, 1, u′);

(2) for all i ≥ 0, if we set y′i = x′0x
′
1...x

′
i ∈ U ′1, then the simple character θ′i = θ′y

′
i ∈ C(a′, β′y′i)

satisfies θ′i ◦ τ = (θ′−1
i )v

′
i;

(3) for all i ≥ 1, we have y′iv
′
i = j′iy

′
i−1v

′
i−1τ(x′i).

Let x′ ∈ U ′1 be the limit of y′i = x′0x
′
1...x

′
i and let h′ ∈ J ′1 be that of j′i...j

′
1j
′
0 when i tends to

infinity. By Lemma 1.5.14.(3), we have

y′iv
′
iτ(y′−1

i ) = j′iy
′
i−1v

′
i−1τ(y′−1

i−1) = ... = j′i...j
′
1j
′
0u
′.

Passing to the limit, we get x′τ(x′)−1 = h′u′, which implies that u′τ(x′)x′−1 = h′−1 ∈ J ′. Let
(a′′, θ′′) = (a′x

′
, θ′x

′
), which finishes the proof of Proposition 1.5.9.

1.5.3 The maximal case

In this subsection, we generalize Proposition 1.5.9 to the following situation:

Proposition 1.5.15. Let [a, β] be a simple stratum in Mn(F ) such that [E : F ] = n and let θ ∈ C(a, β)
such that θ ∈ Θ with Θ a σ-invariant endo-class. Let τ be a given unitary involution. Then there
exist a simple stratum [a′′, β′′] and a simple character θ′′ ∈ C(a′′, β′′) such that (a′′, θ′′) is G-conjugate
to (a, θ) with the property τ(a′′) = a′′ and θ′′ ◦ τ = θ′′−1.

Let T be a tame parameter field of Θ. First we have the following lemma:

Lemma 1.5.16. Let Θ be a σ-invariant endo-class and let T/F be its tame parameter field. Then
given a T/F -lift Ψ of Θ, there is a unique involution α of T extending σ such that Ψα = Ψ.

Proof. The proof of Lemma 4.8 in [AKM+19] can be used almost unchanged to our lemma. We only
need to consider Θ instead of Θ∨ and Ψ instead of Ψ∨.

Let α be the involution of T given by Lemma 1.5.16, and let T0 be the subfield of T fixed by α.
Thus T0 ∩ F = F0. We write t = [T : F ] = [T0 : F0]. We need the following proposition due to Hakim
and Murnaghan (see [HM02b], Proposition 2.1):

Proposition 1.5.17. There exists an embedding ι : T ↪→ Mt(F ) of F -algebras such that for x ∈ T , we
have ι(α(x)) = ι(x)∗ := σ( tι(x)). Consequently, ι(T0) is contained in the set of hermitian matrices.

Proof of Proposition 1.5.15. Let E = F [β] and let T be the maximal tamely ramified extension of F
in E. It is a tame parameter field of the endo-class Θ. The simple character θ gives Ψ, the endo-class
of the interior T/F -lift of Θ, as we introduced in §1.3.3. Let α be defined as in Lemma 1.5.16 and let
ι be defined as in Proposition 1.5.17. By abuse of notation, we define

ι : Mn/t(T ) ↪→ Mn/t(Mt(F )) = Mn(F )
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with each block defined by the original ι. First we consider τ(x) = εσ( tx−1)ε−1 for any x ∈ G with
ε = In or diag(ι(ε), ..., ι(ε), ι(ε)), where ε ∈ T×0 \NT/T0

(T×). The determinant of the latter matrix is

NT0/F0
(ε)n/t. Since

NT0/F0
: T×0 → F×0

is a homomorphism which maps NT/T0
(T×) to NF/F0

(F×), it leads to a group homomorphism

NT0/F0
: T×0 /NT/T0

(T×)→ F×0 /NF/F0
(F×)

between two groups of order 2. We state and proof the following lemma in general:

Lemma 1.5.18. Let F, F0 be defined as before. Let L0/F0 be a finite extension such that L = L0F is
a field with [L : L0] = 2 and F0 = L0 ∩ F . Then the group homomorphism

NL0/F0
: L×0 → F×0

induces an isomorphism

NL0/F0
: L×0 /NL/L0

(L×)→ F×0 /NF/F0
(F×)

of groups of order 2.

Proof. We first consider the case where L0/F0 is abelian. If on the contrary the induced homomorphism
is not an isomorphism, then we get NL0/F0

(L×0 ) ⊂ NF/F0
(F×) which means that F is contained in L0

by Local Class Field Theory ( [Ser79], Chapter 14, Theorem 1), which is absurd.

When L0/F0 is Galois, we may write F0 = L0
0 ( ... ( Lr0 = L0, such that Li+1

0 /Li0 is abelian for
i = 0, ..., r − 1 ( [Ser79], Chapter 4, Proposition 7). We write Li = Li0F . Thus it is easy to show that
Li/Li0 is quadratic, Li0 = Li+1

0 ∩ Li and Li+1
0 Li = Li+1 for i = 0, ..., r − 1. Using the abelian case,

NLi+1
0 /Li0

: Li+1×
0 /NLi+1/Li+1

0
(Li+1×)→ Li×0 /NLi/Li0

(Li×)

is an isomorphism for i = 0, 1, ..., r − 1. Composing them together, we finish the proof.

When L0/F0 is separable, we write L′0 as the normal closure of L0 over F0. Thus L′0 contains L0

and L′0/F0 is a finite Galois extension. We write L′ = L′0F . Using the Galois case,

NL′0/F0
: L′×0 /NL′/L′0

(L′×)→ F×0 /NF/F0
(F×)

is an isomorphism. Since NL′0/F0
(L′×0 ) ⊂ NL0/F0

(L×0 ),

NL0/F0
: L×0 /NL/L0

(L×)→ F×0 /NF/F0
(F×)

is also an isomorphism.

In the characteristic p case in general, we write Lsep0 for the maximal separable subextension of F0

contained in L0, thus L0/L
sep
0 is purely inseparable. Thus NL0/L

sep
0

(x) = xp
[L0:L

sep
0 ]

for any x ∈ L×0 .

Since p 6= 2 and L×0 /NL/L0
(L×) is of order 2, we deduce that

NL0/L
sep
0

: L×0 /NL/L0
(L×)→ Lsep×0 /NLsep/Lsep0

(Lsep×)

is an isomorphism, where Lsep := LLsep0 . So we come back to the separable case which finishes the
proof.
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Using Lemma 1.5.18 for L0 = T0, the homomorphism above is actually an isomorphism. Since n/t
is odd and ε ∈ T×0 \NT/T0

(T×), we have det(ε) = NT0/F0
(ε)n/t ∈ F×0 \NF/F0

(F×). So indeed these two
involutions represent all the two G-classes of hermitian matrices. Thus using Lemma 1.5.8, we may
from now on assume τ to be the two unitary involutions we mentioned above. Furthermore, ι(T )× is
normalized by τ from the exact construction of τ and Proposition 1.5.17, where we regard T as an
F -subalgebra of Mn/t(T ) given by the diagonal embedding.

Since T and ι(T ) are isomorphic as F -subalgebras contained in Mn(F ), by the Skolem-Noether
theorem, there exists g ∈ G such that ι(T ) = T g. Thus, if we write [a′, β′] = [ag, βg], θ′ = θg and
E′ = F [β′], then θ′ ∈ Θ such that its tame parameter field equals ι(T ). Since τ normalizes ι(T )×, we
deduce that θ′ ◦ τ and θ′−1 have the same parameter field ι(T ). If we write Ψ′ as the endo-class of the
interior ι(T )/F -lift corresponding to θ′, and if we choose α′ = ι|T ◦ α ◦ ι|−1

ι(T ), then we have Ψ′α
′

= Ψ′.

Let C ′ = Mn/t(ι(T )) denote the centralizer of ι(T ) in Mn(F ). For c ∈ Mn/t(T ), we have

τ(ι(c)) = εσ( tι(c)−1)ε−1 = ε( tC′ ι(α(c))−1)ε−1 = ε(α′( tC′ ι(c))−1)ε−1 = τ ′(ι(c)),

where we denote by tC′ the transpose on C ′ = Mn/t(ι(T )) and τ ′(c′) = ε(α′( tC′ c′−1))ε−1 for any
c′ ∈ C ′× . Thus τ ′, the restriction of τ to C ′×, is the unitary involution τ1 on C ′× = GLn/t(ι(T )) with
respect to the Galois involution α′ ∈ Gal(ι(T )/F ). The intersection c′ = a′ ∩ C ′ gives rise to a simple
stratum [c′, β′]. The restriction of θ′ to H1(c′, β′), denoted by θ′ι(T ), is a simple character associated

to this simple stratum with endo-class Ψ′. Since E′/ι(T ) is totally wildly ramified, using Proposition
1.5.9 with G, θ, Θ, σ and τ replaced by C ′×, θ′ι(T ), Ψ′, α′ and τ ′ respectively, there exists c′ ∈ C ′×

such that τ ′(c′c
′
) = c′c

′
and θ′c

′

ι(T ) ◦ τ
′ = (θ′c

′

ι(T ))
−1.

By the injectivity of a 7→ a∩C ′ between sets of hereditary orders as mentioned in §1.3.3, we know
that a′′ := a′c

′
is τ -stable. Moreover if we write θ′′ = θ′c

′
, then from our construction of τ and the

definition of ι(T )/F -lift,

(θ′′ ◦ τ)ι(T ) = θ′′ ◦ τ |H1(τ(c′),τ(β′)) = θ′′ ◦ τ ′|H1(τ(c′),τ(β′)) = θ′′ι(T ) ◦ τ
′

and
(θ′′−1)ι(T ) = θ′′−1

ι(T )

are equal. Since the interior ι(T )/F -lift θ′′ 7→ θ′′ι(T ) is injective between sets of simple characters as

mentioned in §1.3.3, the simple character θ′′ satisfies the property θ′′ ◦ τ = θ′′−1.

1.5.4 The general case

In this subsection, we finish the proof of Lemma 1.5.4 and Theorem 1.5.5. First of all, we recall the
following result similar to that appearing in the paper of Stevens:

Proposition 1.5.19 ( [Ste01], Theorem 6.3). Let [a, β] be a simple stratum in Mn(F ) with σ1(a) = a.
Suppose that there exists a simple character θ ∈ C(a, β) such that H1(a, β) is σ1-stable and θ ◦ σ1 = θ.
Then there exists a simple stratum [a, γ] such that θ ∈ C(a, γ) and σ1(γ) = γ.

Proof. The original proof of [Ste01], Theorem 6.3 can be modified a little bit as follows, thus can
be used in our case without difficulty. For any x ∈ Mn(F ), we use −σ1(x) to replace x; we use σ1

to replace σ; for [a, β] a simple stratum, we say that it is σ1-invariant if σ1(a) = a, and σ1(β) = β
and we use this concept to replace the concept skew simple stratum in the original proof. With these
replacements, the original proof can be used directly.
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We choose [a0, β0] as a maximal simple stratum in Md(F ) and θ0 ∈ C(a0, β0) such that θ0 ∈ Θ. By
Proposition 1.5.15, there are a maximal simple stratum [a′0, β

′
0] and a simple character θ′0 ∈ C(a′0, β′0)

which is GLd(F )-conjugate to θ0 such that:
(1) the order a′0 is τ1-stable;
(2) the group H1(a′0, β

′
0) is τ1-stable and θ′0 ◦ τ1 = θ′−1

0 ;
Furthermore, using Proposition 1.5.19 we may assume that:
(3) σ1(β′0) = β′0.
We embed Md(F ) diagonally into the F -algebra Mn(F ). This gives an F -algebra homomorphism

ι′ : F [β′0] ↪→ Mn(F ). Write β′ = ι′(β′0) = β′0 ⊗ ... ⊗ β′0 and E′ = F [β′]. The centralizer B′ of E′ in
Mn(F ) is naturally identified with Mm(E′). We regard σ1 as an involution on E′ extending σ and we
write E′0 = E′σ1 . Let b′ be a maximal standard hereditary order in B′ which may be identified with
Mm(oE′), and let a′ = Mm(a′0) be the unique hereditary order of Mn(F ) normalized by E′× such that
a′ ∩ B′ = b′. Then we have [a′, β′] in Mn(F ) as a simple stratum which satisfies the requirement of
Lemma 1.5.4, finishing its proof.

Now we focus on the proof of Theorem 1.5.5. By Lemma 1.5.8, we may change τ up to G-action
on its corresponding hermitian matrix which doesn’t change the content of the theorem. So if ε is in
the same G-class as In, we may simply choose τ = τ1, where τ1(x) = σ( tx−1) for any x ∈ G. If not,
we fix ε ∈ E′×0 \NE′/E′0

(E′×). Regarding ε as an element in Md(F ), we have det(ε) = NE′0/F0
(ε). Since

NE′0/F0
: E′×0 → F×0

is a homomorphism which maps NE′/E′0
(E′×) to NF/F0

(F×), by Lemma 1.5.18 with L0 = E′0, it leads
to an isomorphism

NE′0/F0
: E′×0 /NE′/E′0

(E′×)→ F×0 /NF/F0
(F×)

of the two groups of order 2. Thus we have NE′0/F0
(ε) ∈ F×0 \NF/F0

(F×). If E′/E′0 is unramified,

we write ε = diag(ε, ..., ε). We deduce that det(ε) = NE′0/F0
(ε)m ∈ F×0 \NF/F0

(F×), which is because

F×0 /NF/F0
(F×) is a group of order 2, and m is odd from the condition of the theorem. If E′/E′0 is

ramified, we may further assume that ε ∈ o×
E′0

. We choose ε = diag(Id, ..., Id, ε) and we have det(ε) =

NE′0/F0
(ε) ∈ F×0 \NF/F0

(F×). For both two cases, τε is a unitary involution whose corresponding
hermitian matrix is not in the same G-class as In. So from now on, we only consider the three unitary
involutions above. From our assumption of τ , the restriction of τ on GLm(E′) is also a unitary
involution τ ′ = τ1 or τε with ε = diag(1, ..., 1, ε). In particular, since ε is an element in E′, we know
that ε commutes with elements in E′ and we have τ(β′) = β′−1.

Since a′0 is τ1-stable and b′ is τ ′-stable, from our assumption of τ we deduce that a′ is τ -stable, or
by definition εσ1(a′)ε−1 = a′. Since σ1(β′) = β′, by direct calculation we have

τ(H1(a′, β′)) = εH1(σ1(a′), σ1(β′))−1ε−1 = H1(σ1(a′)ε
−1
, β′ε

−1
) = H1(a′, β′ε

−1
) = H1(a′, β′).

Let M be the standard Levi subgroup of G isomorphic to GLd(F )× ...×GLd(F ), let P be the standard
parabolic subgroup of G generated by M and upper triangular matrices, and let N be its unipotent
radical. Let N− be the unipotent radical of the parabolic subgroup opposite to P with respect to M .
By [SS08], Théorème 2.17, we have

H1(a′, β′) = (H1(a′, β′) ∩N−) · (H1(a′, β′) ∩M) · (H1(a′, β′) ∩N), (1.5.6)

H1(a′, β′) ∩M = H1(a′0, β
′
0)× ...×H1(a′0, β

′
0). (1.5.7)

Let θ′ ∈ C(a′, β′) be the transfer of θ′0. By loc. cit., the character θ′ is trivial on H1(a′, β′) ∩N− and
H1(a′, β′) ∩N , and the restriction of θ′ on H1(a′, β′) ∩M equals θ′0 ⊗ ...⊗ θ′0. We have

θ′ ◦ τ |H1(a′,β′)∩N− = θ′ ◦ τ |H1(a′,β′)∩N = θ′−1|H1(a′,β′)∩N− = θ′−1|H1(a′,β′)∩N = 1
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and
θ′ ◦ τ |H1(a′,β′)∩M = θ′0 ◦ τ1 ⊗ ...⊗ θ′0 ◦ τ1 = θ′−1

0 ⊗ ...⊗ θ′−1
0 = θ′−1|H1(a′,β′)∩M

for τ = τ1 or τε with ε = diag(ε, ..., ε) or diag(1, ..., 1, ε), since ε ∈ F [β′0]× normalizes θ′0. Thus by
equation (1.5.6), we have θ′ ◦ τ = θ′−1.

Remark 1.5.20. From the proof of Theorem 1.5.5, we observe that if τ is chosen as one of the three
unitary involutions mentioned in the proof, then we may choose the same simple stratum and simple
character which satisfy the conclusion of the theorem.

Remark 1.5.21. We give a counter-example to show that the condition in Theorem 1.5.5 is necessary.
Let n = 2, F/F0 unramified, Θ is trivial and ε = diag(1, $F0). Then d = 1, m = n = 2, E = F and
E0 = F0. If the theorem is true, then a = M2(oF )g for some g ∈ GL2(F ) and τ(a) = a. By direct
calculation σ( tg−1)ε−1g−1 normalizes M2(oF ), which means that σ( tg−1)ε−1g−1 ∈ F×GL2(oF ). It is
impossible since det(σ( tg−1)ε−1g−1) ∈ $F0NF/F0

(F×), while det(F×GL2(oF )) ⊂ NF/F0
(F×).

1.6 The distinguished type theorem

Let π be a cuspidal representation of G such that πσ ∼= π. From the statements and proofs of Theorem
1.5.2, 1.5.3 and 1.5.5, we may assume the following conditions as a remark of section 5:

Remark 1.6.1. (1) For τ = τ1, there exist a simple stratum [a, β] and a simple character θ ∈ C(a, β)
contained in π such that τ(a) = a, τ(H1(a, β)) = H1(a, β), θ ◦ τ = θ−1 and τ(β) = β−1, where
τ1(x) := σ( tx−1) for any x ∈ GLn(F );

(2) For τ = τ1, there exists a simple type (J ,Λ) containing θ and contained in π such that τ(J) = J
and Λτ ∼= Λ∨;

(3) σ1 is an involution on E = F [β], whose restriction to F equals σ. So by abuse of notation,
we identify σ with σt. Let E0 = Eσ. We assume further in this section that if E/E0 is
unramified, then m is odd4.;

(4) Write τ(x) = εσ( tx−1)ε−1 for any x ∈ G such that: when E/E0 is unramified, we assume
ε = In or diag($E , ..., $E) ∈ GLm(E) ↪→ GLmd(F ) = GLn(F ); when E/E0 is ramified, we assume
ε = In or diag(1, ..., 1, ε) ∈ GLm(E) ↪→ GLn(F ) with ε ∈ o×E0

\NE/E0
(o×E). By Remark 1.5.20, we

assume further that for these three unitary involutions, condition (1) and (2) are also satisfied. From
now on until the end of this section, we assume ε to be one of these three hermitian
matrices and τ to be one of these three corresponding involutions.

(5) the element β has the block diagonal form:

β = diag(β0, ..., β0) ∈ Mm(Md(F )) = Mn(F )

for some β0 ∈ Md(F ), where d is the degree of β over F and n = md. The centralizer B of E in
Mn(F ) is identified with Mm(E). If we regard τ as the restriction of the original involution to B×,
then it is a unitary involution with respect to B× = GLm(E), E/E0 and σ ∈ Gal(E/E0);

(6) the order b = a∩B is the standard maximal order Mm(oE) of Mm(E). Thus if we write a0 as
the hereditary order of Md(F ) normalized by E, then a is identified with Mm(a0);

(7) $E is a uniformizer of E such that:

σ($E) =

{
$E if E is unramified over E0;

−$E if E is ramified over E0.

4 Although this condition seems a little bit annoying, finally in §1.7 we may find out that this condition is automatically
satisfied for π a σ-invariant supercuspidal representation.
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Now we state the main theorem of this section:

Theorem 1.6.2 (distinguished type theorem). For π a σ-invariant cuspidal representation, it is Gτ -
distinguished if and only if it contains a τ -selfdual simple type (J ,Λ) such that HomJ∩Gτ (Λ, 1) 6= 0.

Remark 1.6.3. Since every hermitian matrix is equivalent to one of the hermitian matrices mentioned
in Remark 1.6.1.(4) up to G-action, and the property of distinction is invariant up to equivalence
of unitary groups, the theorem works for every unitary involution, although we only consider those
occurring in loc. cit.

Choose (J ,Λ) as in Remark 1.6.1, using the Mackey formula and the Frobenius reciprocity, we
have

HomGτ (π, 1) ∼=
∏
g

HomJg∩Gτ (Λg, 1),

where g ranges over a set of representatives of (J , Gτ )-double cosets in G. So π is Gτ -distinguished if
and only if there exists g as a representative of a (J , Gτ )-double coset such that HomJg∩Gτ (Λg, 1) 6= 0.
We will study such g and will show that (Jg,Λg) is actually τ -selfdual. This will finish the proof of
this theorem.

1.6.1 Double cosets contributing to the distinction of θ

First we have the following proposition:

Proposition 1.6.4. For g ∈ G, the character θg is trivial on H1g∩Gτ if and only if τ(g)g−1 ∈ JB×J .

Proof. We only need to use the same proof of [Séc19], Proposition 6.6, with σ replaced by τ .

As a result, since HomJg∩Gτ (Λg, 1) 6= 0 implies that HomH1g∩Gτ (θg, 1) 6= 0, using Proposition
1.6.4 we have γ := τ(g)g−1 ∈ JB×J .

1.6.2 The double coset lemma

The next step is to prove the following double coset lemma:

Lemma 1.6.5. Let g ∈ G. Then γ = τ(g)g−1 ∈ JB×J if and only if g ∈ JB×Gτ .

Proof. If g ∈ JB×Gτ , one verifies immediately that γ ∈ JB×J . Conversely, suppose that γ ∈ JB×J ,
first we need the following lemma:

Lemma 1.6.6. There exists an element b ∈ B× such that γ ∈ JbJ and bτ(b) = 1.

Proof. Since B×∩J = b× is a maximal compact subgroup of B×, using the Cartan decomposition over
B× ∼= GLm(E), we write γ = xcy with x, y ∈ J and c = diag($a1

E Im1 , ..., $
ar
E Imr), where a1 > ... > ar

as integers and m1 + ...+mr = m.
If E/E0 is unramified, then by definition c∗ = c. So if we choose b = cε−1, then bε(b∗)−1ε−1 =

c(c∗)−1 = 1, that is, bτ(b) = 1.
If E/E0 is ramified, since τ(γ)γ = 1, we know that xcy = εy∗c∗x∗ε−1 which is equivalent to

(y∗)−1ε−1xc = c∗x∗ε−1y−1. Let z = x∗ε−1y−1 ∈ J , then we have z∗c = c∗z. We regard z and c as
matrices in Mm(Md(F )). Denote by z(j) ∈ Mmj (Md(F )) the block matrix in z which is at the same

place as $
aj
E Imj in c. Since z∗c = c∗z, by direct calculation

(z(j))∗$
aj
E = (−1)aj$

aj
E z

(j) for j = 1, ..., r. (1.6.1)
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By considering the following embedding

Mmj (Md(F )) ↪→Mm(Md(F ))

h 7→diag(0m1d, ..., 0mj−1d, h, 0mj+1d, ..., 0mrd),

we may regard Mmjd(F ) as a subalgebra of Mmd(F ) which we denote by A(j), where 0mjd represents

the zero matrix of size mjd ×mjd. We write a(j) = a ∩ A(j). By abuse of notation, we identify the
element β0 ⊗ ... ⊗ β0, which consists of mj copies of β0 and is contained in Mmj (Md(F )), with β.

By [SS08], Théorème 2.17, since z ∈ J(a, β), we get z(j) ∈ J(a(j), β) for j = 1, ..., r. By loc. cit., if we
denote by

M = GLm1d(F )× ...×GLmrd(F )

the Levi subgroup of G corresponding to the partition n = m1d+ ...+mrd, then

M ∩ J = J(a(1), β)× ...× J(a(r), β)

and

M ∩ J1 = J1(a(1), β)× ...× J1(a(r), β).

Thus we get diag(z(1), ..., z(r)) ∈M ∩ J . And further we have

M ∩ J/M ∩ J1 ∼= J(a(1), β)/J1(a(1), β)× ...× J(a(r), β)/J1(a(r), β) ∼= GLm1(l)× ...×GLmr(l).

Since (·)∗ fixes M ∩ J and M ∩ J1, we know that (·)∗ induces a map

M ∩ J/M ∩ J1 ∼= GLm1(l)× ...×GLmr(l) −→ GLm1(l)× ...×GLmr(l)
∼= M ∩ J/M ∩ J1,

(z(1), ..., z(r)) 7−→ ((z(1))∗, ..., (z(r))∗),

where l is the residue field of E and E0, and z(j) ∈ J(a(j), β)/J1(a(j), β) ∼= GLmj (l) is the image of

z(j).

We show that for any i such that 2 - ai, we have 2 | mi. Consider j = i in equation (1.6.1), we get
(z(i))∗ = −$ai

E z
(i)$−aiE . Since J/J1 ∼= U(b)/U1(b) on which E× acts trivially by conjugation, we get

z(i) = $ai
E z

(i)$−aiE = −(z(i))∗ = − tz(i). Since there exists no anti-symmetric invertible matrix of odd
dimension, we must have 2|mi. Now for αj = (aj ,mj), define

$
αj
E =

{
$
aj
E Imj if 2|aj ;

$
aj
E Jmj/2 if 2 - aj .

and c′ = diag($α1
E , ..., $αr

E ), where Jmj/2 :=

(
0 Imj/2

−Imj/2 0

)
. We have c′ = c′∗ and c′ is in the same

J-J double coset as c. Let b = c′ε−1, we get bτ(b) = 1.

Now we write γ = x′bx with x, x′ ∈ J and b ∈ B× as in Lemma 1.6.6. Replacing g by τ(x′)−1g
does not change the double coset JgGτ but changes γ into bxτ(x′). So from now on, we will assume
that

γ = bx, bτ(b) = 1, x ∈ J, b is of the form in the proof of Lemma 1.6.6. (1.6.2)

Write K for the group J ∩ b−1Jb. Since τ(b) = b−1 and J is τ -stable, we have x ∈ K. We have
the following corollary of Lemma 1.6.6.
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Corollary 1.6.7. The map δb : k 7→ b−1τ(k)b is an involution on K.

Now for a1 > ... > ar as in the proof of Lemma 1.6.6, and M = GLm1d(F )× ...×GLmrd(F ) ⊆ G,
we write P for the standard parabolic subgroup of G generated by M and upper triangular matrices.
We write N and N− for the unipotent radicals of P and its opposite parabolic subgroup respectively.
By definition of b, it normalizes M and we have

K = (K ∩N−) · (K ∩M) · (K ∩N).

For V = K ∩B× = U ∩ b−1Ub as a subgroup of B×, similarly we have

V = (V ∩N−) · (V ∩M) · (V ∩N),

where U = U(b) and U1 = J1 ∩B× = U1(b). By definition, V is also fixed by δb.

Lemma 1.6.8. The subset
K1 = (K ∩N−) · (J1 ∩M) · (K ∩N)

is a δb-stable normal pro-p-subgroup of K, and we have K = V K1.

Proof. The proof is the same as that in [Séc19], Lemma 6.10.

Lemma 1.6.9. Let y ∈ K such that yδb(y) = 1, then there are k ∈ K and v ∈ V such that:
(1) the element v is in GLm1(oE)× ...×GLmr(oE) ⊆ B× such that vδb(v) = 1;
(2) one has δb(k)yk−1 ∈ vK1.

Proof. Let V 1 = V ∩K1. We have

V 1 = (V ∩N−) · (U1 ∩M) · (V ∩N).

Thus we have canonical δb-equivariant group isomorphisms

K/K1 ∼= V/V 1 ∼= (U ∩M)/(U1 ∩M). (1.6.3)

Since B× ∩M = GLm1(E) × ... ×GLmr(E), the right side of (1.6.3) identifies with M = GLm1(l) ×
... × GLmr(l), where l denotes the residue field of E. As in the proof of Lemma 1.6.6, we may write
ε−1b = diag($a1

E c1, ..., $
ar
E cr) with cj ∈ GLmj (oE). Moreover, the involution δb acts on M by

(g1, ..., gk) 7→ (c1
−1σ(tg−1

1 )c1, ..., cr
−1σ(tg−1

r )cr),

where we denote by cj the image of cj in GLmj (l). We denote by (g1, ..., gr) the image of y in
M = GLm1(l)× ...×GLmr(l).

When E/E0 is unramified, we denote by l0 the residue field of E0. So l/l0 is quadratic and the
restriction of σ to l is the non-trivial involution in Gal(l/l0). Since (b−1ε)∗ = ε(b∗)−1ε−1ε = τ(b)ε =
b−1ε, we get cj

∗ = cj . If yδb(y) = 1, then we get (cjgj)
∗ = g∗j cj = cjgj . We need the following lemma:

Lemma 1.6.10 ( [KL90], Proposition 2.3.1). For x = x∗ in GLs(l), there exists A ∈ GLs(l) such that
AxA∗ = Is.

Using Lemma 1.6.10, we choose kj ∈ GLmj (oE) such that its image kj in GLmj (l) satisfies

(kj
∗
)−1cjgjkj

−1
= Imj . Choose k = diag(k1, ..., kr) and v = diag(v1, ..., vr) = diag(c−1

1 , ..., c−1
r ),

we get δb(k)yk−1 ∈ vV 1 and δb(v)v = diag(c−1
1 c∗1c1c

−1
1 , ..., c−1

r c∗rcrc
−1
r ) = 1.

When E/E0 is ramified, the restriction of σ on l is trivial. Since (b−1ε)∗ = b−1ε, we get c∗j =
(−1)ajcj and tcj = (−1)ajcj . We need the following two lemmas:
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Lemma 1.6.11 ( [KL90], Proposition 2.5.4). For x = tx in GLs(l), there exists A ∈ GLs(l) such
that Ax tA is either Is or εs = diag(1, ..., 1, ε), where ε ∈ l×\l×2 with l×2 denoting the group of square
elements of l×.

Lemma 1.6.12 ( [KL90], Proposition 2.4.1). For x = − tx in GLs(l) and s even, there exists A ∈
GLs(l) such that Ax tA = Js/2.

When aj is even, using Lemma 1.6.11 we may choose kj ∈ GLmj (oE) such that its image kj in

GLmj (l) satisfies that ( tkj)
−1cjgjkj

−1
equals either Imj or εmj , where we choose εmj = diag(1, ..., 1, ε)

∈ GLmj (oE) such that its image εmj in GLmj (l) is diag(1, ..., 1, ε) as in Lemma 1.6.11. Let vj be c−1
j

or c−1
j εmj in the two cases respectively.

When aj is odd mj is even from the proof of Lemma 1.6.6. Using Lemma 1.6.12, we may choose

kj ∈ GLmj (oE) such that its image kj in GLmj (l) satisfies ( tkj)
−1cjgjkj

−1
= Jmj/2 . We choose

vj = c−1
j Jmj/2.

Choose k = diag(k1, ..., kr) and v = diag(v1, ..., vr), we know that

δb(k)yk−1 ∈ vV 1

and

δb(v)v = diag(c−1
1 (v∗1)−1c1v1, ..., c

−1
r (v∗r )

−1crvr) = 1

by direct calculation in the two cases respectively. So no matter E/E0 is ramified or not, we finish
the proof.

Now we finish the proof of Lemma 1.6.5. Applying Lemma 1.6.9 to x gives us k ∈ K and v ∈ V ,
such that bvτ(bv) = 1 and δb(k)xk−1 ∈ vK1. Thus we have τ(k)γk−1 ∈ bvK1. Therefore replacing g
by kg and b by bv, we assume that γ can be written as:

γ = bx, bτ(b) = 1, x ∈ K1, b ∈ $a1
E GLm1(oE)× ...×$ar

E GLmr(oE). (1.6.4)

Furthermore, we have δb(x)x = 1.

Since K1 is a δb-stable pro-p-group and p is odd, the first cohomology set of δb on K1 is trivial. Thus
x = δb(y)y−1 for some y ∈ K1, hence γ = τ(y)by−1. Consider the determinant of this equation, we
have det(b) ∈ NF/F0

(F×). If we denote by detB the determinant function defined on B× = GLm(E),
then we have det(b) = NE/F (detB(b)). Using Lemma 1.5.18 for L = E, we get detB(b) ∈ NE/E0

(E×)
and detB(ε−1b) ∈ detB(ε−1)NE/E0

(E×). Since τ(b)b = 1, we have (ε−1b)∗ = ε−1b. Using Proposition
1.2.1, there exists h ∈ B× such that ε−1b = (h∗)−1ε−1h−1. So we have b = τ(h)h−1. Thus g ∈ yhGτ ⊆
JB×Gτ , which finishes the proof of Lemma 1.6.5.

1.6.3 Distinction of the Heisenberg representation

Now let η be the Heisenberg representation of J1 associated to θ. We have the following result similar
to [Séc19], Proposition 6.12. by replacing σ with τ :

Proposition 1.6.13. Given g ∈ G, we have:

dimRHomJ1g∩Gτ (ηg, 1) =

{
1 if g ∈ JB×Gτ ,
0 otherwise.
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Proof. It is useful to recall the detail of the proof of this proposition, which will be used in the next
subsection. We write δ(x) := γ−1τ(x)γ for any x ∈ G which is an involution on G. And for any
subgroup H ⊂ G, we have Hg ∩Gτ = (H ∩Gδ)g.

When g /∈ JB×Gτ , restricting ηg to H1g and using Proposition 1.6.4 and Lemma 1.6.5, we
know that the dimension equals 0. When g ∈ JB×Gτ , we need to prove that HomJ1g∩Gτ (ηg, 1) =
HomJ1∩Gδ(η, 1) is of dimension 1. We state the following general proposition which works for a general
involution on G:

Proposition 1.6.14. Let δ be an involution on G such that δ(H1) = H1γ and θ ◦ δ = θ−1γ, where
γ ∈ B× such that δ(γ)γ = 1. Then we have

dimRHomJ1∩Gδ(η, 1) = 1.

Since Proposition 1.6.14 in our special case implies Proposition 1.6.13, we only need to focus on
the proof of this proposition. We only need to prove that the space

HomJ1∩Gδ(η
(J1:H1)1/2

, 1) ∼= HomJ1∩Gδ(IndJ
1

H1(θ), 1)

is of dimension (J1 : H1)1/2. First we prove the following lemmas which will also be used in the next
subsection:

Lemma 1.6.15. For H a subgroup of G such that δ(H) = Hγ with δ and γ as in Proposition 1.6.14,
we have

H ∩Gδ = Hγ ∩Gδ = H ∩Hγ ∩Gδ.

Proof. We have H ∩Gδ = δ(H ∩Gδ) = δ(H) ∩ δ(Gδ) = Hγ ∩Gδ which proves the lemma.

Lemma 1.6.16. Let δ and γ be as in Proposition 1.6.14, then we have the following isomorphisms of
finite dimensional representations:

(1) IndJ
1

H1θ|J1∩J1γ
∼=
⊕

H1\J1/J1∩J1γ IndJ
1∩J1γ

H1∩J1γθ;

(2) IndJ
1γ

H1γθγ |J1∩J1γ
∼=
⊕

H1γ\J1γ/J1∩J1γ IndJ
1∩J1γ

J1∩H1γθγ;

(3) IndJ
1

H1θ|J1∩Gδ
∼=
⊕

H1\J1/J1∩J1γ

⊕
H1∩J1γ\J1∩J1γ/J1∩Gδ IndJ

1∩Gδ
H1∩Gδθ;

(4) IndJ
1γ

H1γθγ |J1γ∩Gδ
∼=
⊕

H1γ\J1γ/J1∩J1γ

⊕
J1∩H1γ\J1∩J1γ/J1γ∩Gδ IndJ

1γ∩Gδ
H1γ∩Gδθ.

Proof. We only prove (1) and (3), since the proofs of (2) and (4) are similar to the proofs of (1) and
(3) respectively.

For (1), using the Mackey formula, we have

IndJ
1

H1θ|J1∩J1γ
∼=

⊕
x∈H1\J1/J1∩J1γ

IndJ
1∩J1γ

H1x∩(J1∩J1γ)θ
x

∼=
⊕

H1\J1/J1∩J1γ

IndJ
1∩J1γ

H1∩J1γθ.

The last step is because x ∈ J1 normalizes H1 and θ.
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For (3), using the Mackey formula again, we have

IndJ
1

H1θ|J1∩Gδ
∼=

⊕
H1\J1/J1∩J1γ

IndJ
1∩J1γ

H1∩J1γθ|J1∩Gδ

∼=
⊕

H1\J1/J1∩J1γ

⊕
y∈H1∩J1γ\J1∩J1γ/J1∩Gδ

IndJ
1∩Gδ

(H1∩J1γ)y∩(J1∩Gδ)θ
y

∼=
⊕

H1\J1/J1∩J1γ

⊕
H1∩J1γ\J1∩J1γ/J1∩Gδ

IndJ
1∩Gδ
H1∩Gδθ.

The last step is because y ∈ J1 ∩ J1γ normalizes H1 ∩ J1γ and θ, and H1 ∩ J1γ ∩ J1 ∩Gδ = H1 ∩Gδ
by Lemma 1.6.15.(2) for H = J1. So we finish the proof.

Lemma 1.6.17. Let δ and γ be as in Proposition 1.6.14, then we have:

(1) |H1\J1/J1 ∩ J1γ | · |H1 ∩ J1γ\J1 ∩ J1γ/J1 ∩Gδ| = (J1 : H1)1/2;

(2) |H1γ\J1γ/J1 ∩ J1γ | · |J1 ∩H1γ\J1 ∩ J1γ/J1γ ∩Gδ| = (J1γ : H1γ)1/2;

(3) (J1 : H1)1/2 = (J1γ : H1γ)1/2 = (J1 ∩Gδ : H1 ∩Gδ).

Proof. For (3), we refer to [Séc19] subsection 6.3 for a proof, by noting that all the results and proofs
from Lemma 6.14 to the end of subsection 6.3 in ibid. can be generalized to a general involution δ
of G, with τ in loc. cit. replaced by δ in our settings. For (1), since J1 normalizes H1 and J1 ∩ J1γ

normalizes H1 ∩ J1γ , we have

left hand side of (1) =(J1 : H1(J1 ∩ J1γ)) · (J1 ∩ J1γ : (H1 ∩ J1γ)(J1 ∩Gδ))
=(J1 : H1) · (J1 ∩ J1γ : H1 ∩ J1γ)−1·
· (J1 ∩ J1γ : H1 ∩ J1γ) · (J1 ∩Gδ : H1 ∩ J1γ ∩Gδ)−1

=(J1 : H1) · (J1 ∩Gδ : H1 ∩Gδ)−1

=(J1 : H1)1/2,

where we use Lemma 1.6.15 for H = J1γ and (3) in the last two equations. So we finish the proof of
(1), and the proof of (2) is similar.

Combining Lemma 1.6.16.(3) with Lemma 1.6.17.(1)(3), we have

dimRHomJ1∩Gδ(IndJ
1

H1θ, 1) = dimR

⊕
H1\J1/J1∩J1γ

⊕
H1∩J1γ\J1∩J1γ/J1∩Gδ

HomJ1∩Gδ(IndJ
1∩Gδ
H1∩Gδθ, 1)

= (J1 : H1)1/2dimRHomH1∩Gδ(θ|H1∩Gδ , 1)

= (J1 : H1)1/2.

For the last step, since γ intertwines θ−1 and since θ ◦ δ = θ−1γ , we know that θ is trivial on

{yδ(y)|y ∈ H1 ∩H1γ}.

This set equals H1 ∩ Gδ since the the first cohomology group of δ−1-action on H1 ∩ H1γ is trivial.
Thus θ|H1∩Gδ is a trivial character. So we finish the proof.
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1.6.4 Distinction of extensions of the Heisenberg representation

Let κ be an irreducible representation of J extending η. There is a unique irreducible representation
ρ of J , which is trivial on J1 satisfying Λ ∼= κ⊗ ρ. First we have the following lemma:

Lemma 1.6.18. Let g ∈ JB×Gτ .
(1) There is a unique character χ of Jg ∩Gτ trivial on J1g ∩Gτ such that

HomJ1g∩Gτ (ηg, 1) = HomJg∩Gτ (κg, χ−1).

(2) The canonical linear map

HomJ1g∩Gτ (ηg, 1)⊗HomJg∩Gτ (ρg, χ)→ HomJg∩Gτ (Λg, 1).

is an isomorphism.

Proof. The proof is the same as that in [Séc19], Lemma 6.20.

For g ∈ JB×Gτ , we have τ(g) ∈ τ(JB×Gτ ) = JB×Gτ , which means that we may consider the
similar thing for τ(g) as for g in Lemma 1.6.18. Thus, there exists a unique character χ′ of Jτ(g) ∩Gτ
trivial on J1τ(g) ∩Gτ such that

HomJ1τ(g)∩Gτ (ητ(g), 1) ∼= HomJτ(g)∩Gτ (κτ(g), χ′−1).

Moreover, we know that τ(J) = J , τ(J) = J , τ(J1) = J1 and τ(H1) = H1, thus using Lemma 1.4.2
and Lemma 1.6.15, we have Jg ∩ Gτ = Jτ(g) ∩ Gτ = Jg ∩ Gτ = Jτ(g) ∩ Gτ , J1g ∩ Gτ = J1τ(g) ∩ Gτ
and H1g ∩ Gτ = H1τ(g) ∩ Gτ . As a result, χ and χ′ are characters defined on the same group
Jg ∩ Gτ = Jτ(g) ∩ Gτ . A natural idea is to compare them. For the rest of this subsection, we focus
on the proof of the following proposition:

Proposition 1.6.19. For χ and χ′ defined above as characters of Jg ∩ Gτ = Jτ(g) ∩ Gτ , we have
χ = χ′.

We write δ(x) = γ−1τ(x)γ for any x ∈ G with γ = τ(g)g−1. From §1.3.1, we have γ ∈ IG(η) =
IG(κ0), where κ0 = κ|J . Moreover we have

dimR(HomJ∩Jγ (κ0γ , κ0)) = dimR(HomJ1∩J1γ (ηγ , η)) = 1.

Using Lemma 1.6.15, we have J1 ∩Gδ = J1γ ∩Gδ as a subgroup of J1 ∩J1γ and H1 ∩Gδ = H1γ ∩Gδ.
We claim the following proposition which works for general γ and δ:

Proposition 1.6.20. Let δ and γ be as in Proposition 1.6.14, then for a non-zero homomorphism
ϕ ∈ HomJ1∩J1γ (ηγ , η) = HomJ∩Jγ (κ0γ , κ0), it naturally induces an R-vector space isomorphism:

fϕ : HomJ1∩Gδ(η, 1)→ HomJ1γ∩Gδ(η
γ , 1),

λ 7→ λ ◦ ϕ

First we show that how does Proposition 1.6.20 imply Proposition 1.6.19. Using Proposition 1.6.13
for g and τ(g) respectively, we have dimRHomJ1g∩Gτ (ηg, 1) = dimRHomJ1τ(g)∩Gτ (ητ(g), 1) = 1. By
Proposition 1.6.20, we deduce that

fϕ : HomJ1g∩Gτ (ηg, 1)→ HomJ1τ(g)∩Gτ (ητ(g), 1),

λ 7→ λ ◦ ϕ,
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is bijective. If we choose

0 6= λ ∈ HomJ1g∩Gτ (ηg, 1) and 0 6= λ′ := fϕ(λ) = λ ◦ ϕ ∈ HomJ1τ(g)∩Gτ (ητ(g), 1),

then for any v in the representation space of η and any x ∈ Jg ∩Gτ = Jτ(g) ∩Gτ , we have

χ′(x)−1λ′(v) = λ′(κ0τ(g)(x)v) (by Proposition 1.6.18.(1))

= λ(ϕ(κ0τ(g)(x)v)) (by definition of λ′)

= λ(κ0g(x)ϕ(v)) (since ϕ ∈ HomJg∩Jτ(g)(κ0τ(g), κ0g))

= χ(x)−1λ(ϕ(v)) (by Proposition 1.6.18.(1))

= χ(x)−1λ′(v) (by definition of λ′).

Since v and x ∈ Jg∩Gτ = Jτ(g)∩Gτ are arbitrary, we have χ′|Jτ(g)∩Gτ = χ|Jg∩Gτ which is Proposition
1.6.19.

So we only need to focus on the proof of Proposition 1.6.20. First of all, we need the following
important lemma:

Lemma 1.6.21. Let δ and γ be as in Proposition 1.6.14, then there exist an R[J1 ∩ J1γ ]-module
homomorphism

Φ : ηγ(J1:H1)1/2 |J1∩J1γ
∼= IndJ

1γ

H1γθ
γ |J1∩J1γ → IndJ

1

H1θ|J1∩J1γ
∼= η(J1:H1)1/2 |J1∩J1γ

and a linear form L̃0 ∈ HomJ1∩Gδ(η
(J1:H1)1/2

, 1), such that

0 6= L̃0 ◦ Φ ∈ HomJ1∩Gδ(η
γ(J1γ :H1γ)1/2

, 1).

Proof. We prove this lemma by giving a direct construction of Φ and L̃0. First we choose our L̃0. We
choose λ0 ∈ HomJ1∩Gδ(IndJ

1∩Gδ
H1∩Gδ1, 1) ∼= R with the isomorphism given by the Frobenius reciprocity,

such that its corresponding image in R equals 1. Then we choose L̃0 = (λ0, ..., λ0) as a element in⊕
H1\J1/J1∩J1γ

⊕
H1∩J1γ\J1∩J1γ/J1∩Gδ

HomJ1∩Gδ(IndJ
1∩Gδ
H1∩Gδ1, 1) ∼= HomJ1∩Gδ(η

(J1:H1)1/2
, 1),

where the isomorphism is determined by Lemma 1.6.16.(3), and by Lemma 1.6.17 the number of copies
equals (J1 : H1)1/2.

Now we focus on the construction of Φ. We define

f0(g) :=

{
θγ(g1)θ(g2) if g = g1g2 ∈ (J1 ∩H1γ)(H1 ∩ J1γ)

0 if g ∈ J1 ∩ J1γ\(J1 ∩H1γ)(H1 ∩ J1γ)
. (1.6.5)

as a continuous function defined on J1∩J1γ with values in R. Since (J1∩H1γ)∩(H1∩J1γ) = H1∩H1γ

and θγ = θ on H1 ∩H1γ , we know that f0 is well-defined.
We want to verify that f0 ∈ IndJ

1∩J1γ

H1∩J1γθ and f0 ∈ IndJ
1∩J1γ

J1∩H1γθγ . Since J1 normalizes H1 and J1γ

normalizes H1γ , by direct calculation we deduce that J1 ∩ J1γ normalizes J1 ∩H1γ and H1 ∩ J1γ . In
particular, we have (J1∩H1γ)(H1∩J1γ) = (H1∩J1γ)(J1∩H1γ). Moreover, since J1 and J1γ normalize
θ and θγ respectively, we deduce that (J1 ∩H1γ)(H1 ∩ J1γ) = (H1 ∩ J1γ)(J1 ∩H1γ) normalizes θ and
θγ .

For g′1 ∈ J1 ∩H1γ , g′2 ∈ H1 ∩ J1γ and g ∈ J1 ∩ J1γ , if g /∈ (J1 ∩H1γ)(H1 ∩ J1γ), then we have
g′1g, g

′
2g /∈ (J1 ∩H1γ)(H1 ∩ J1γ), thus

f0(g′1g) = f0(g′2g) = 0;
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if g = g1g2 ∈ (J1 ∩H1γ)(H1 ∩ J1γ), we have

f0(g′1g) = θγ(g′1)θγ(g1)θ(g2) = θγ(g′1)f0(g)

and

f0(g′2g) = f0(g′2g1g
′−1
2 g′2g2) = θγ(g′2g1g

′−1
2 )θ(g′2)θ(g2) = θ(g′2)θγ(g1)θ(g2) = θ(g′2)f0(g).

Considering these facts, we have f0 ∈ IndJ
1∩J1γ

H1∩J1γθ and f0 ∈ IndJ
1∩J1γ

J1∩H1γθγ .
We consider J1∩J1γ-action on f0 given by the right translation and we let 〈f0〉 be the R[J1∩J1γ ]-

subspace of both IndJ
1∩J1γ

J1∩H1γθγ and IndJ
1∩J1γ

H1∩J1γθ generated by f0. We choose Vf0 to be a R[J1 ∩ J1γ ]-

invariant subspace of IndJ
1∩J1γ

J1∩H1γθγ such that IndJ
1∩J1γ

J1∩H1γθγ = 〈f0〉 ⊕ Vf0 .
We define an R[J1 ∩ J1γ ]-module homomorphism

Φ1 : IndJ
1∩J1γ

J1∩H1γθ
γ → IndJ

1∩J1γ

H1∩J1γθ

such that Φ1(f0) = f0 and Φ1|Vf0 = 0. And we define

Φ :
⊕

H1γ\J1γ/J1∩J1γ

IndJ
1∩J1γ

J1∩H1γθ
γ →

⊕
H1\J1/J1∩J1γ

IndJ
1∩J1γ

H1∩J1γθ

given by Φ = diag(Φ1, 0, ..., 0) ∈ MN1(HomR[J1∩J1γ ](IndJ
1∩J1γ

J1∩H1γθγ , IndJ
1∩J1γ

H1∩J1γθ)), where the coordinates
are indexed by N1 := |H1γ\J1γ/J1∩J1γ | = |H1\J1/J1∩J1γ |. In particular, we let the first coordinate
correspond to the trivial double cosets H1γ(J1 ∩ J1γ) and H1(J1 ∩ J1γ) respectively. As a result, Φ
gives an R[J1 ∩ J1γ ]-module homomorphism. By Lemma 1.6.16 we have

η(J1:H1)1/2 ∼= IndJ
1

H1θ|J1∩J1γ
∼=

⊕
H1\J1/J1∩J1γ

IndJ
1∩J1γ

H1∩J1γθ (1.6.6)

and
ηγ(J1:H1)1/2 ∼= IndJ

1γ

H1γθ
γ |J1∩J1γ

∼=
⊕

H1γ\J1γ/J1∩J1γ

IndJ
1∩J1γ

J1∩H1γθ
γ . (1.6.7)

With these two isomorphisms, we may regard Φ as a homomorphism from ηγ(J1:H1)1/2 |J1∩J1γ to

η(J1:H1)1/2 |J1∩J1γ .

Finally, we study L̃0 ◦ Φ. First we calculate

Φ1 : IndJ
1∩J1γ

J1∩H1γθ
γ |J1∩Gδ → IndJ

1∩J1γ

H1∩J1γθ|J1∩Gδ .

We have the following isomorphism

IndJ
1∩J1γ

H1∩J1γθ|J1∩Gδ
∼=

⊕
H1∩J1γ\J1∩J1γ/J1∩Gδ

IndJ
1∩Gδ
H1∩Gδ1. (1.6.8)

By definition of Φ1 and (1.6.5),(1.6.8), Φ1(f0|J1∩Gδ) = f0|J1∩Gδ equals

(1H1∩Gδ , ...,1H1∩Gδ , 0, ..., 0) ∈
⊕

H1∩J1γ\J1∩J1γ/J1∩Gδ
IndJ

1∩Gδ
H1∩Gδ1, (1.6.9)

where the coordinates are indexed by the double coset H1∩J1γ\J1∩J1γ/J1∩Gδ, and those coordinates
which equal the characteristic function 1H1∩Gδ are exactly indexed by the subset H1 ∩ J1γ\(J1 ∩
H1γ)(J1 ∩H1γ)/J1 ∩Gδ.
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We define v0 = (f0|J1∩Gδ , 0, ..., 0) as an element in both⊕
H1\J1/J1∩J1γ

IndJ
1∩J1γ

J1∩H1γθ
γ |J1∩Gδ

and ⊕
H1γ\J1γ/J1∩J1γ

IndJ
1∩J1γ

H1∩J1γθ|J1∩Gδ ,

where the first coordinate corresponds to the trivial double cosets H1(J1 ∩ J1γ) and H1γ(J1 ∩ J1γ)
respectively as in our definition of Φ. Thus we have

(L̃0 ◦ Φ)(v0) = L̃0((Φ1(f0|J1∩Gδ), 0, ..., 0)) = L̃0((f0|J1∩Gδ , 0, ..., 0))

= |H1 ∩ J1γ\(H1 ∩ J1γ)(J1 ∩H1γ)/J1 ∩Gδ|λ0(1H1∩Gδ) 6= 0,

where we use the definition of L̃0 and (1.6.9) for the last equation. Thus we get L̃0 ◦ Φ 6= 0 which
finishes the proof.

We also need the following lemma:

Lemma 1.6.22. We keep the same notations as in Proposition 1.6.20 and we fix

0 6= λ′0 ∈ HomJ1∩Gδ(η, 1) and 0 6= λ′′0 ∈ HomJ1∩Gδ(η
γ , 1).

Then:
(1) For any L̃ ∈ HomJ1∩Gδ(η

(J1:H1)1/2
, 1), there exists an R[J1 ∩ J1γ ]-homomorphism

Pr : η(J1:H1)1/2 |J1∩J1γ → η|J1∩J1γ

such that L̃ = λ′0 ◦ Pr;

(2) For any L̃ ∈ HomJ1∩Gδ(η
γ(J1:H1)1/2

, 1), there exists an R[J1 ∩ J1γ ]-homomorphism

s : ηγ |J1∩J1γ → ηγ(J1:H1)1/2 |J1∩J1γ

such that λ′′0 = L̃ ◦ s.

Proof. The proof is just a simple application of linear algebra. We write N = (J1 : H1)1/2. For (1), we

define pri : η(J1:H1)1/2 |J1∩J1γ → η|J1∩J1γ as the projection with respect to the i-th coordinate. Since

λ′0 ◦ pr1,...,λ′0 ◦ prN are linearly independent, and dimRHomJ1∩Gδ(η
(J1:H1)1/2

, 1) = N as an R-vector

space by Proposition 1.6.13, λ′0 ◦ pr1,...,λ′0 ◦ prN generate HomJ1∩Gδ(η
(J1:H1)1/2

, 1). So we may choose
Pr to be a linear combination of prj which proves (1). The proof of (2) is similar.

Now we finish the proof of Proposition 1.6.20. Using Lemma 1.6.22.(1) we choose Pr such that

L̃0 = λ′0 ◦ Pr, where L̃0 is defined as in the statement of Lemma 1.6.21. Using Lemma 1.6.21, there

exists Φ such that L̃0 ◦Φ 6= 0. Using Lemma 1.6.22.(2) we choose s such that L̃0 ◦Φ ◦ s = λ′′0 6= 0. We
define ϕ′ = Pr ◦ Φ ◦ s and we have the following commutative diagram

ηγ(J1:H1)1/2 |J1∩J1γ
Φ // η(J1:H1)1/2 |J1∩J1γ

Pr

��
ηγ |J1∩J1γ

s

OO

ϕ′ // η|J1∩J1γ
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By definition we have λ′0◦ϕ′ = λ′0◦Pr◦Φ◦s = λ′′0 6= 0, which means that ϕ′ 6= 0. Since HomJ1∩J1γ (ηγ , η)
is of dimension 1, we deduce that ϕ equals ϕ′ multiplying with a non-zero scalar, which means that
λ′0 ◦ ϕ 6= 0. Since HomJ1∩Gδ(η, 1) and HomJ1∩Gδ(η

γ , 1) are of dimension 1, we know that fϕ is an
R-vector space isomorphism which proves Proposition 1.6.20.

1.6.5 Existence of a τ-selfdual extension of η

Now our aim is to choose a simple κ as an extension of η. Specifically, under the condition of Remark
1.6.1, we show that we may assume κ to be τ -selfdual, which means that κτ ∼= κ∨. First of all, we
have the following lemma whose proof is the same as that in [Séc19], Lemma 5.21:

Lemma 1.6.23. There exists a unique character µ of J trivial on J1 such that κτ∨ ∼= κµ. It satisfies
the identity µ ◦ τ = µ.

Now we are going to prove the following important proposition:

Proposition 1.6.24. When char(R) = 0, there exists a character φ of J trivial on J1 such that
µ = φ(φ ◦ τ). Moreover for any R, we may choose κ as an extension of η such that κτ∨ ∼= κ.

Proof. First we consider the case where char(R) = 0. we need the following elementary lemma:

Lemma 1.6.25. Assume char(R) = 0. For N odd and A ∈ GLN (R) such that A2s = cIN for s ∈ N
and c ∈ R×, we have Tr(A) 6= 0.

Proof. s = 0 is trivial, so from now on we assume s ≥ 1. Let ζ2s be a primitive 2s-th root of 1 in R
and let c1/2s be a 2s-th root of c in R, then we get Tr(A) = c1/2s

∑N
i=1 ζ

ni
2s with ni ∈ {0, 1, 2, ..., 2s−1}.

We know that P (x) = x2s−1
+ 1 is the minimal polynomial of ζ2s in Q[x]. If Tr(A) = 0, then for

Q(x) =
∑N

i=1 x
ni , we have Q(ζ2s) = 0. As a result, P (x)|Q(x) in Q[x] thus in Z[x] by the Gauss

lemma. However, the sum of all the coefficients of P (x) is even and the sum of all the coefficients of
Q(x) equals N which is odd. We get a contradiction. So Tr(A) 6= 0.

Come back to our proof. We choose κ as any extension of η, thus as in Lemma 1.6.23, there exists
φ as a character of J such that κτ∨ ∼= κµ. If E/E0 is unramified, we let

µ : GLm(l) ∼= J/J1 → R×

be the character whose inflation is µ|J . There exists a character ϕ : l× → R× such that µ = ϕ ◦ det.
Since µ◦τ = µ, we get (ϕ◦σ)ϕ = 1, or equivalently ϕ|l×0 = 1, where l0 is the residue field of E0, and σ

acts on l as the Frobenius map corresponding to l0. Let Q be the cardinality of l0, then the cardinality
of l is Q2. If we fix ζl a generator of l×, then ζQ+1

l is a generator of l×0 . So we have ϕ(ζl)
Q+1 = 1.

Choose α : l× → R× as a character such that

α(ζml )Q−1 = ϕ(ζl)
−m for m ∈ Z.

Since
α(ζl)

Q2−1 = ϕ(ζl)
−Q−1 = 1,

α is well-defined as a character of l×. Moreover, we get ϕ = α(α ◦ σ)−1. Choose φ0 : J → R× as the
inflation of α ◦ det, we get µ|J = φ0(φ0 ◦ τ).

Since $E and J generate J , to choose φ as a character of J extending φ0, it suffices to show that
µ($E) = 1. Since µ = µ ◦ τ , we get

µ($E) = µ(τ($E)) = µ($E)−1, thus µ($E) ∈ {1,−1}.



80 1.6. THE DISTINGUISHED TYPE THEOREM

Let e be the ramification index of E/F , and let $e
E = a0$F for a certain a0 ∈ o×E . We have

$
e(Q−1)
E = aQ−1

0 $Q−1
F with aQ−1

0 ∈ 1 + pE ⊂ H1(a, β).

We write e(Q− 1) = 2su for 2 - u and s ∈ N. For A = κ($u
E), we have

A2s = κ(aQ−1
0 $Q−1

F ) = θ(aQ−1
0 )ωκ($Q−1

F )IN ,

where we use the fact that the restriction of κ to H1(a, β) equals N -copies of θ with N = (J1 : H1)1/2,
and ωκ is the central character of κ. Using Lemma 1.6.25 with A and c = θ(aQ−1

0 )ωκ($Q−1
F ), we get

Tr(κ($u
E)) 6= 0. Since κτ∨ ∼= κµ, considering the trace of both sides at $u

E , we get

Tr(κ($u
E)) = Tr(κ($u

E))µ($u
E),

thus µ($u
E) = 1. Since u is odd and µ($E) equals either 1 or −1, we get µ($E) = 1 which finishes

the proof of this case.
If E/E0 is ramified, first we show that µ|l× = 1, where we consider the embedding l× ↪→ E×. Let

Q be the cardinality of l = l0 and let ζl be a generator of l×, then we want to show that µ(ζl) = 1.
Write Q− 1 = 2su with 2 - u and use Lemma 1.6.25 with A = κ(ζul ) and c = 1, we get Tr(κ(ζul )) 6= 0.
Since κτ∨ ∼= κµ, we get

Tr(κ(ζul )) = Tr(κ(ζul ))µ(ζul )

after considering the trace of the isomorphism. Thus µ(ζul ) = 1. Since µ(ζl) equals either 1 or −1
which can be proved as the former case and u is odd, we get µ(ζl) = 1. Thus µ|J = 1.

To finish the definition of φ : J → R× such that µ = φ(φ ◦ τ), we only need to verify the equation

µ($E) = φ($E)φ(τ($E)) = φ($E)φ(−$E))−1 = φ(−1)−1.

Since we have already showed that µ(−1) = 1, using the relation µ = µ◦τ , we get µ($2
E) = µ(−$2

E) =
µ($E)µ(τ($E))−1 = 1, so we deduce that µ($E) equals either 1 or −1. Choose φ(−1) = µ($E) which
is well defined, we finish the definition of φ such that µ = φ(φ ◦ τ). Let κ′ = κφ, then κ′ is τ -selfdual.

Now we suppose R = Fl. Let θ̃ be the lift of θ to Ql given by the canonical embedding Fl
×
↪→ Ql

×
,

then θ̃ is a simple character and θ̃ ◦ τ = θ̃−1. There is a τ -selfdual representation κ̃ of J extending the
Heisenberg representation η̃ of J1 corresponding to θ̃. Moreover we can further choose κ̃ such that the

central character of κ̃ is integral. To do this, first we choose κ̃0 as a representation of J extending η.

We extend κ̃0 to a representation of F×J . This requires us to choose a quasi-character ω̃ : F× → Ql
×

extending ω
κ̃0 . We choose ω̃ such that it is integral. If we further extend this representation to κ̃

as a representation of J = E×J , then κ̃ is also integral. From the proof of characteristic 0 case, we
may further assume κ̃τ∨ ∼= κ̃ without losing the property that κ̃ is integral. By [MS14b], 2.11, the
reduction of κ̃ to Fl, denoted by κ, is thus a τ -selfdual representation of J extending η.

For char(R) = l > 0 in general, we fix ι : Fl ↪→ R an embedding. For θ a simple character over R
as before which is of finite image, there exists a simple character θ0 over Fl corresponding to the same
simple stratum [a, β], such that θ = ι ◦ θ0 and θ0 ◦ τ = θ−1

0 . Let η0 be the Heisenberg representation
of θ0 and choose κ0 to be a τ -selfdual extension of η0 by the former case. Then κ = κ0 ⊗Fl R is what
we want.

1.6.6 Proof of Theorem 1.6.2

Using Proposition 1.6.24, we may assume that κ is τ -selfdual. From its proof, when R = Fl, we assume
further that κ is the reduction of a τ -selfdual representation κ̃ of J over Ql, and when char(R) = l > 0
in general, we assume κ to be realized as a Fl-representation via a certain field embedding Fl ↪→ R.
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Proposition 1.6.26. The character χ defined by Lemma 1.6.18.(1) is quadratic when restricting to
Jg ∩Gτ , that is, χ2|Jg∩Gτ = 1.

Proof. First we assume that char(R) = 0. We have the following isomorphisms

HomJ1τ(g)∩Gτ (ητ(g), 1) ∼= HomJ1g∩Gτ (ηg, 1)

∼= HomJg∩Gτ (κg, χ−1)
∼= HomJg∩Gτ (χ,κg∨) (by the duality of contragredient)
∼= HomJg∩Gτ (κg∨, χ) (since char(R) = 0)
∼= HomJg∩Gτ (κg∨ ◦ τ, χ ◦ τ)

∼= HomJg∩Gτ ((κτ∨)τ(g), χ ◦ τ)

∼= HomJτ(g)∩Gτ (κτ(g), χ ◦ τ) (since κ is τ -selfdual).

Using Proposition 1.6.19 and the uniqueness of χ′ in the loc. cit., we have χ ◦ τ = χ−1. Since χ is
defined on Jg ∩Gτ which is τ -invariant, we have χ ◦ τ = χ. Thus χ2 = χ(χ ◦ τ) = 1.

If R = Fl, we denote by κ̃ a τ -selfdual Ql-lift of κ and we denote by χ̃ the character defined by
Lemma 1.6.18.(1) with respect to κ̃ and η̃, where η̃ is a J1 ∩Gτ -distinguished Ql-lift of η. Using this
proposition for Ql-representations, we get χ̃2 = 1. From the uniqueness of χ, we know that χ̃ is a
Ql-lift of χ. As a result, we get χ2 = 1.

If char(R) = l > 0 in general, from the assumption of κ mentioned at the beginning of this
subsection, via a field embedding Fl ↪→ R, we may realize all the representations mentioned in this
proposition as representations over Fl, so we finish the proof by using the former case.

As in the proof of Lemma 1.6.5, we assume g ∈ B× and

γ = bx, bτ(b) = 1, x ∈ K1, b ∈ $a1
E GLm1(oE)× ...×$ar

E GLmr(oE). (1.6.10)

There exists a unique standard hereditary order bm ⊆ b such that

U1(bm) = (U ∩ δ(U1))U1 = (U ∩ U1γ)U1,

where we define δ(y) = γ−1τ(y)γ for any y ∈ G as an involution on G. First we have the following
lemma whose proof is the same as that in [Séc19], Lemma 6.22, inspired by [HM08], Proposition 5.20:

Lemma 1.6.27. We have U1(bm) = (U1(bm) ∩Gδ)U1.

Now we state and prove the following important theorem:

Theorem 1.6.28. Let g ∈ G and suppose that HomJg∩Gτ (Λg, 1) is non-zero. Then τ(g)g−1 ∈ J .

Proof. It is enough to show that r = 1 in (1.6.10). If not, bm by definition is a proper suborder of b.
Furthermore, U1(bm) := U1(bm)/U1 is a non-trivial unipotent subgroup of U/U1 ∼= GLm(l). Using
Lemma 1.6.18.(2), we have

HomJ∩Gδ(ρ, χ
g−1

) ∼= HomJg∩Gτ (ρg, χ) 6= 0.

Restricting to U1(bm) ∩Gδ, we have

HomU1(bm)∩Gδ(ρ, χ
g−1

) 6= 0. (1.6.11)
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Using Lemma 1.6.27, we have the isomorphism

(U1(bm) ∩Gδ)U1/U1 ∼= U1(bm)/U1.

We denote by ρ the cuspidal representation of U0/U1 ∼= GLm(l) whose inflation is ρ|U0 , and χg−1 the
character of U1(bm) whose inflation is χg

−1
. So if we consider the equation (1.6.11) modulo U1, then

we get

Hom
U1(bm)

(ρ, χg−1) 6= 0.

Since χg
−1 |J∩Gδ is quadratic and U1(bm) is a p-group with p 6= 2, we get χg−1 = 1, thus

Hom
U1(bm)

(ρ, 1) 6= 0,

which contradicts the fact that ρ is cuspidal. So we finish the proof.

Proof of Theorem 1.6.2. If there exists a τ -selfdual simple type (J ,Λ) in π such that HomJ∩Gτ (Λ, 1) is
non-zero, then π is Gτ -distinguished. Conversely, there exists g ∈ G such that HomJg∩Gτ (Λg, 1) 6= 0.
Using Theorem 1.6.28, we conclude that (Jg,Λg) is a τ -selfdual simple type.

Finally we state the following corollary of Theorem 1.6.28 as the end of this section:

Corollary 1.6.29. Under the assumption of Theorem 1.6.28, we have g ∈ JGτ or g ∈ Jg1G
τ , where

the latter case exists only if m is even, and g1 ∈ B× is fixed such that

τ(g1)g−1
1 =

{
$EIm if E/E0 is unramified.

$EJm/2 if E/E0 is ramified.

As a result,
HomGτ (π, 1) ∼= HomJ∩Gτ (Λ, 1)⊕HomJg1∩Gτ (Λg1 , 1).

Proof. Recall that we have already assumed that g ∈ B×. Since τ(g)g−1 ∈ J ∩ B× = E×b×, by
changing g up to multiplying an element in E× which doesn’t change the double coset it represents,
we may assume (g∗)−1ε−1g−1 ∈ b× or $Eb

×, where ε equals Im for E/E0 unramified5 and ε equals
Im or diag(1, ..., 1, ε) with ε ∈ o×E0

\NE/E0
(o×E) for E/E0 ramified. Using Proposition 1.2.2, we may

change g−1 up to multiplying an element in b× on the right, thus we may write (g∗)−1ε−1g−1 = $α
E ,

where $α
E is defined as in §1.2. Thus we get detB($α

E)/detB(ε−1) ∈ NE/E0
(E×).

If (g∗)−1ε−1g−1 ∈ b×, from the definition and the uniqueness of $α
E in Proposition 1.2.2, we get

$α
E = ε. We may further change g−1 up to multiplying an element in b× on the right, such that

(g∗)−1ε−1g−1 = ε−1. Thus we get τ(g) = ε(g∗)−1ε−1 = g, which means that g ∈ Gτ .
If (g∗)−1ε−1g−1 ∈ $Eb

×, by considering the determinant we deduce that detB((g∗)−1ε−1g−1) ∈ E×
is of even order with respect to the discrete valuation of E. Since the determinant of elements in
$Eb

× is of order m, we know that m is even. Thus from the definition and the uniqueness of $α
E

in Proposition 1.2.2, we get $α
E = $Eε when E/E0 is unramified and $α

E = $EJm/2 when E/E0 is
ramified. For the former case, we have ε = Im. Using Proposition 1.2.1, we may choose g1 ∈ B×

such that (g∗1)−1g−1
1 = $EIm = (g∗)−1g−1. Thus g ∈ g1G

τ . For the latter case, considering the
determinant we must have detB(ε) ∈ NE/E0

(E×), thus ε = Im. Using Proposition 1.2.1, we may

choose g1 ∈ B× such that (g∗1)−1g−1
1 = $EJm/2 = (g∗)−1g−1, thus g ∈ g1G

τ .

5It is also possible in the unramified case that ε = diag($E , ..., $E). However ε ∈ E× which commutes with B×,
thus this case can be combined into the case where ε = Im.
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1.7 The supercuspidal unramified case

In this section, we study the distinction of σ-invariant supercuspidal representations of G in the case
where E/E0 is unramified.

1.7.1 The finite field case

In this subsection, we assume l/l0 to be a quadratic extension of finite fields with characteristic p 6= 2.
Let |l0| = Q, then we have |l| = Q2. Let σ be the non-trivial involution in Gal(l/l0). For m a positive
integer, we first consider the σ-invariant supercuspidal representation of GLm(l).

Lemma 1.7.1. (1) If there exists a σ-invariant supercuspidal representation of GLm(l), then m is
odd.

(2) When char(R) = 0, the converse of (1) is true.

Proof. Let t be an extension of degree m over l. We identify t× with a maximal torus of GLm(l). By a
Gal(t/l)-regular (or regular for short) character ξ : t× → R×, we mean ξ|l|

i 6= ξ for any i = 1, ...,m−1.
By Green [Gre55] when char(R) = 0 and James [Jam86] when char(R) = l > 0 is relatively prime to
p, there is a surjective map

ξ 7→ ρξ

between regular characters of t× and isomorphism classes of supercuspidal representations of GLm(l),
whose fibers are Gal(t/l)-orbits. Thus, for ρ a supercuspidal representation of GLm(l), we choose ξ
as a regular character of t× such that ρ = ρξ.

The representation ρ is σ-invariant if and only if

ξQ
2i

= ξQ for a certain i ∈ {1, ...,m}.

Applying this equality twice gives us the equality ξQ
4i−2

= ξ. The regularity assumption on ξ implies
that 2m divides 4i− 2. Since 1 ≤ i ≤ m, we get m = 2i− 1 as an odd number.

Conversely, for m = 2i− 1 and char(R) = 0, we pick a character ξ of t× of order Qm− 1. Thus we
have ξQ

2i
= ξQ

m+1
= ξQ and ξ is regular. Thus the corresponding ρξ is a σ-invariant supercuspidal

representation.

Let H = Um(l/l0) := Um(Im) be the unitary subgroup of GLm(l) corresponding to the hermitian
matrix Im. We have the following lemma:

Lemma 1.7.2. Suppose that m = 2i − 1 with i ≥ 1, and let ρ be a supercuspidal representation of
GLm(l). The following assertions are equivalent:

(1) The representation ρ is σ-invariant;

(2) The representation ρ is H-distinguished;

(3) The R-vector space HomH(ρ, 1) has dimension 1.

Proof. When R has characteristic 0, this is [Gow84], Theorem 2.1, Theorem 2.4. Suppose now that
R = Fl. First we prove that (1) is equivalent to (2).

For ρ a supercuspidal representation of GLm(l), we denote by Pρ the projective envelope of ρ as a
Zl[GLm(l)]-module, where Zl is the ring of integers of Ql. Using [Vig96], chapitre III, Théorème 2.9
and [Ser77], Proposition 42, we have:

(1) Pρ ⊗Zl Fl is the projective envelope of ρ as a Fl[GLm(l)]-module, which is indecomposable of
finite length, with each irreducible component isomorphic to ρ;
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(2) If we write P̃ρ = Pρ ⊗Zl Ql as the Ql-lift of Pρ, then P̃ρ ∼=
⊕
ρ̃, where ρ̃ in the direct sum are

supercuspidal as Ql-lifts of ρ of multiplicity 1.
Using the result above, we have

HomH(ρ, 1) 6= 0;⇐⇒ HomFl[GLm(l)](ρ,Fl[H\GLm(l)]) 6= 0;

⇐⇒ HomFl[GLm(l)](Pρ ⊗Zl Fl,Fl[H\GLm(l)]) 6= 0;

⇐⇒ HomZl[GLm(l)](Pρ,Zl[H\GLm(l)]) 6= 0;

⇐⇒ HomQl[GLm(l)](P̃ρ,Ql[H\GLm(l)]) 6= 0;

⇐⇒ There exists ρ̃ as above such that HomQl[GLm(l)](ρ̃,Ql[H\GLm(l)]) 6= 0;

⇐⇒ There exists ρ̃ as above such that ρ̃
σ

= ρ̃;

⇐⇒ ρσ = ρ.

For the former equivalences, they are of the similar reason to in the proof of Theorem 1.4.1. For the
second last equivalence we use the result for characteristic 0 case. For the last equivalence, we use the
construction of supercuspidal representation given by Green and James in Lemma 1.7.1. Since it is
always possible to lift a σ-invariant regular character over Fl to a σ-invariant regular character over
Ql, it is always possible to find a σ-invariant Ql-lift ρ̃ for a σ-invariant supercuspidal representation ρ.

Since (3) implies (2) by definition, we only need to prove (2) implies (3). We sum up the proof
occurring in [Séc19], Lemma 2.19. We have the following Fl[GLm(l)]-module decomposition

Fl[H\GLm(l)] = Vρ ⊕ V ′,

where Vρ is composed of irreducible components isomorphic to ρ, and V ′ has no irreducible component
isomorphic to ρ. First we verify that EndFl[GLm(l)](Vρ) is commutative. By [Gow84], Theorem 2.1, the

convolution algebra Zl[H\GLm(l)/H] is commutative. Modulo l we deduce that

Fl[H\GLm(l)/H] ∼= EndFl[GLm(l)](Fl[H\GLm(l)]) ∼= EndFl[GLm(l)](Vρ)⊕ EndFl[GLm(l)](V
′)

is commutative, thus EndFl[GLm(l)](Vρ) is commutative.

If we write P = Pρ, then there exists a nilpotent endomorphism N ∈ EndFl(P ) such that

EndFl[GLm(l)](P ) = Fl[N ]. And there exist r ≥ 1 and n1, ..., nr positive integers such that

Vρ ∼=
r⊕
i=1

P/NniP.

Since EndFl[GLm(l)](Vρ) is commutative, we have r = 1 and Vρ = P/Nn1P . Thus

HomH(ρ, 1) ∼= HomGLm(l)(ρ, Vρ) = HomGLm(l)(ρ, P/N
n1P ) ∼= Fl.

Now for char(R) = l > 0 in general, there exists an equivalence of categories between represen-
tations of GLm(l) over Fl, and representations of GLm(l) over R, which is given by tensor product
ρ0 7→ ρ0 ⊗Fl R for ρ0 a representation of GLm(l) over Fl. Thus we may use the former result to finish
the proof.

Remark 1.7.3. We give an example of a σ-invariant cuspidal non supercuspidal representation of
GLm(l) over Fl which is not distinguished by H. Assume m = 2 and l 6= 2 such that l|Q2 +1. Let B be
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the subgroup of GL2(l) consisting of upper triangular matrices. For Ind
GL2(l)
B 1, it is a representation of

length 3, with each component of dimension 1, Q2− 1, 1. Denote by ρ the representation of dimension

Q2 − 1 as the subquotient of Ind
GL2(l)
B 1. It is thus cuspidal (not supercuspidal) and σ-invariant. Let

ρ̃ be a Ql-lift of ρ which is an irreducible cuspidal representation. We write ρ̃|H = V1 ⊕ ... ⊕ Vr its
decomposition of irreducible components. Since |H| = Q(Q+1)(Q2−1) is prime to l, reduction modulo
l preserves irreducibility. So ρ|H decomposes as W1⊕ ...⊕Wr, where the irreducible representation Wi

is the reduction of Vi modulo l for each i = 1, ..., r. Suppose that ρ is distinguished. Then Wi = Fl for
some i. Thus Vi is a character which must be trivial. It implies that ρ̃ is distinguished. It is impossible
by Lemma 1.7.1 and Lemma 1.7.2, since m = 2 is even.

Finally, we need the following finite group version of Proposition 1.5.6:

Proposition 1.7.4. For ρ an irreducible representation of GLm(l), we have ρ∨ ∼= ρ( t·−1), where
ρ( t·−1) : x 7→ ρ( tx−1) for any x ∈ GLm(l).

Proof. By definition, the Brauer characters of ρ∨ and ρ( t·−1) are the same. Thus we finish the proof.

1.7.2 Distinction criterion in the unramified case

Let π be a σ-invariant supercuspidal representation of G. In this subsection we want to prove Theorem
0.2.1 and Theorem 0.2.2 in the case where E/E0 is unramified. Combining with Theorem 1.4.1, we
only need to show that π is distinguished by any unitary subgroup to finish the proof of Theorem
0.2.1. Since changing τ up to a G-action doesn’t change the content of the theorem, we only need to
consider two special unitary involutions as representatives of G-orbits of hermitian matrices mentioned
in Remark 1.6.1. To ensure that, first we prove the following lemma:

Lemma 1.7.5. For any σ-invariant supercuspidal representation π with E/E0 unramified, m is odd.

Proof. We consider τ = τ1, where τ1(x) = σ( tx−1) for any x ∈ G. We follow the settings of Remark
1.6.1. For (J ,Λ) a simple type as in Remark 1.6.1.(2), we may write Λ ∼= κ ⊗ ρ as before. Using
Proposition 1.6.24, we may further assume κτ∨ ∼= κ. Since Λ and κ are τ -selfdual, we deduce that ρ
is τ -selfdual. Let ρ be the supercuspidal representation of GLm(l) ∼= J/J1 whose inflation equals ρ|J ,
then ρτ∨ ∼= ρ when regarding τ as a unitary involution of GLm(l). Using Proposition 1.7.4, we have
ρ ◦ σ ∼= ρ. Using Lemma 1.7.1, we conclude that m is odd.

With the aid of Lemma 1.7.5, we may assume as in Remark 1.6.1.(4) that τ(x) = εσ( tx−1)ε−1 for
any x ∈ G with ε equalling In or diag($E , ..., $E), representing the two classes of unitary involutions.
For (J ,Λ) a simple type as in Remark 1.6.1.(2), we may write Λ ∼= κ⊗ρ as before. Using Proposition
1.6.24, we may further assume κτ∨ ∼= κ. Using Lemma 1.6.18 with g = 1, there exists a quadratic
character χ : J ∩Gτ → R× such that

dimRHomJ∩Gτ (κ, χ−1) = 1

and

HomJ∩Gτ (Λ, 1) ∼= HomJ∩Gτ (κ, χ−1)⊗R HomJ∩Gτ (ρ, χ).

We want to show that χ = 1. First we need the following lemma:

Lemma 1.7.6. The character χ can be extended to a character χ′ of J .
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Proof. Using Lemma 1.4.2, we have J ∩ Gτ = J ∩ Gτ . Write χ as the character of Um(l/l0) ∼=
J ∩Gτ/J1∩Gτ whose inflation equals χ. Since it is well-known that the derived subgroup of Um(l/l0)
is SUm(l/l0) := {g ∈ Um(l/l0)|det(g) = 1} (see [Cam00], Theorem 5.4 and Theorem 5.5), there exists φ
as a quadratic character of det(Um(l/l0)) = {x ∈ l×|xσ(x) = xQ+1 = 1}, such that χ = φ◦det|Um(l/l0).

We extend φ to a character of l× and we write χ′ = φ ◦ det which is a character of GLm(l) extending
χ. Write χ′0 as the inflation of χ′ with respect to the isomorphism GLm(l) ∼= J/J1. Finally we choose
χ′ as a character of J extending χ′0 by choosing χ′($E) 6= 0 randomly. By construction, χ′|J∩Gτ = χ.

Proposition 1.7.7. (1) When char(R) = 0, for any χ′ extending χ we have χ′(χ′ ◦ τ) = 1.
(2) Furthermore, for any R we have χ = 1.

Proof. First we consider char(R) = 0. Since m is odd, Lemma 1.7.1 implies that GLm(l) possesses

a σ-invariant supercuspidal representation ρ′. Using Proposition 1.7.4, we get ρ′
τ∨ ∼= ρ′. We denote

by ρ′ a representation of J trivial on J1 such that its restriction to J is the inflation of ρ′. Since
σ($E) = $E , we have ρ′(τ($E)) = ρ′($E)−1 which means that ρ′ is τ -selfdual. By Lemma 1.7.2, it
is also distinguished.

Let Λ′ denote the τ -selfdual simple type κ⊗ ρ′. The natural isomorphism

HomJ∩Gτ (Λ′, χ−1) ∼= HomJ∩Gτ (κ, χ−1)⊗R HomJ∩Gτ (ρ′, 1)

shows that Λ′ is χ−1-distinguished.
By Lemma 1.7.6, there exists a character χ′ extending χ. The representation Λ′′ = Λ′χ′ is thus

a distinguished simple type. Let π′′ be the supercuspidal representation of G compactly induced by
(J ,Λ′′). It is distinguished, thus τ -selfdual by Theorem 1.4.1 and Proposition 1.5.6. Since Λ′′ and
Λ′′τ∨ ∼= Λ′′χ′−1(χ′−1 ◦ τ) are both contained in π′′, it follows that χ′(χ′ ◦ τ) is trivial.

We write χ = φ ◦ det with the same notation as in the proof of Lemma 1.7.6. Since χ′(χ′ ◦ τ) = 1,

we get φ(φ ◦ σ)−1 = φ
1−Q

= 1. Choose ζl as a primitive root of l×, we know that ζQ−1
l generates the

group det(Um(l/l0)) = {x ∈ l×|xσ(x) = xQ+1 = 1}. Since φ(ζ1−Q
l ) = 1, we deduce that φ|det(Um(l/l0))

is trivial, which means that χ is trivial. Thus χ as the inflation of χ is also trivial.
Now we consider R = Fl. As already mentioned in the proof of Proposition 1.6.26, if we denote by

κ̃ the Ql-lift of κ and if we denote by χ̃ the character defined by Lemma 1.6.18.(1) with respect to κ̃
and η̃, then we know that χ̃ is a Ql-lift of χ. By using the characteristic 0 case we already proved, we
get χ̃ = 1 which implies that χ = 1.

When R = l > 0 in general, we just follow the same logic as in Proposition 1.6.26 to finish the
proof.

Remark 1.7.8. In fact in Proposition 1.7.7, we proved that when m is odd and E/E0 is unramified,
any τ -selfdual κ constructed in Proposition 1.6.24 as an extension of a J1∩Gτ -distinguished Heisenberg
representation η is J ∩Gτ -distinguished.

Now we come back to the proof of our main theorem. We have

HomJ∩Gτ (Λ, 1) ∼= HomJ∩Gτ (κ, 1)⊗R HomJ∩Gτ (ρ, 1),

where HomJ∩Gτ (κ, 1) is of dimension 1, and HomJ∩Gτ (ρ, 1) ∼= HomUm(l/l0)(ρ, 1) is also of dimension
1 by Lemma 1.4.2, Lemma 1.7.2 and Proposition 1.7.4. So HomJ∩Gτ (Λ, 1) is of dimension 1, which
implies that π is Gτ -distinguished. Thus we finish the proof of Theorem 0.2.1 when E/E0 is unramified.
Using Corollary 1.6.29 and the fact that m is odd, we deduce that HomGτ (π, 1) is of dimension 1,
which finishes the proof of Theorem 0.2.2 when E/E0 is unramified.
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1.8 The supercuspidal ramified case

In this section, we study the distinction of σ-invariant supercuspidal representations of G in the case
where E/E0 is ramified. This finishes the proof of our main theorem.

1.8.1 The finite field case

Let l be a finite field of characteristic p 6= 2 and let |l| = Q. For m a positive integer, we denote by
G the reductive group GLm over l. Thus by definition, G(l) = GLm(l). For ε a matrix in G(l) such
that tε = ε, the automorphism defined by τ(x) = ε tx−1ε−1 for any x ∈ GLm(l) gives an involution
on GLm(l), which induces an involution on G. Thus Gτ is the orthogonal group corresponding to
τ , which is a reductive group over l, and Gτ (l) = GLm(l)τ which is a subgroup of GLm(l). In this
subsection, for ρ a supercuspidal representation of GLm(l) and χ a character of GLm(l)τ , we state the
result mentioned in [HL12] which gives a criterion for ρ distinguished by χ.

First of all, we assume R = Ql. We recall a little bit of Deligne-Lusztig theory (see [DL76]).
Let T be an elliptic maximal l-torus in G, where elliptic means that T(l) = t× and t/l is the field
extension of degree m. Let ξ be a regular character of T(l), where regularity means the same as in
the construction of Green and James in subsection 7.1. Using [DL76], Theorem 8.3, there is a virtual
character RT,ξ as the character of a cuspidal representation of GLm(l). Moreover if we fix T, we know
that ξ 7→ RT,ξ gives a bijection from the set of Galois orbits of regular characters of T to the set of
cuspidal representations of GLm(l). So we may choose ξ such that Tr(ρ) = RT,ξ. Moreover, using
[DL76], Theorem 4.2, we get RT,ξ(−1) = dim(ρ)ξ(−1) with dim(ρ) = (Q − 1)(Q2 − 1)...(Qm−1 − 1).
So if we denote by ωρ the central character of ρ, we get ωρ(−1) = ξ(−1).

Under the same settings, we have the following proposition due to Hakim and Lansky ( [HL12],
Proposition 6.7):

Proposition 1.8.1. For τ , ρ, T and ξ above, we have:

dimR(HomGτ (l)(ρ, χ)) =

{
1 if ωρ(−1) = ξ(−1) = χ(−1),

0 otherwise.

Now we consider the l-modular case and assume char(R) = l > 0.

Proposition 1.8.2. For τ above and ρ a supercuspidal representation of GLm(l) over R, the space
HomGLm(l)τ (ρ, χ) 6= 0 if and only if ωρ(−1) = χ(−1). Moreover if the condition is satisfied, then we
have dimR(HomGLm(l)τ (ρ, χ)) = 1.

Proof. First we assume R = Fl. We use the similar proof to that in Lemma 1.7.2. Let H = GLm(l)τ

with other notations unchanged. We choose χ̃ as a character of H lifting χ, which is defined over Zl
or Ql by abuse of notation. For S = Zl,Ql, we define

S[H\GLm(l)]χ̃ := {f |f : GLm(l)→ S, f(hg) = χ̃(h)f(g) for any h ∈ H, g ∈ GLm(l)}.

Especially we have

Ql[H\GLm(l)]χ̃ = Ind
GLm(l)
H χ̃

as a representation of GLm(l) over Ql, and we have Zl[H\GLm(l)]χ̃ as a free Zl-module. If we further
define

Fl[H\GLm(l)]χ = Ind
GLm(l)
H χ,

then we have
Zl[H\GLm(l)]χ̃ ⊗Zl Fl = Fl[H\GLm(l)]χ
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and
Zl[H\GLm(l)]χ̃ ⊗Zl Ql = Ql[H\GLm(l)]χ̃.

We deduce that

HomH(ρ, χ) 6= 0;⇐⇒ HomFl[GLm(l)](ρ,Fl[H\GLm(l)]χ) 6= 0;

⇐⇒ HomFl[GLm(l)](Pρ ⊗Zl Fl,Fl[H\GLm(l)]χ) 6= 0;

⇐⇒ HomZl[GLm(l)](Pρ,Zl[H\GLm(l)]χ̃) 6= 0;

⇐⇒ HomQl[GLm(l)](P̃ρ,Ql[H\GLm(l)]χ̃) 6= 0;

⇐⇒ There exists ρ̃ lifting ρ such that HomQl[GLm(l)](ρ̃,Ql[H\GLm(l)]χ̃) 6= 0;

⇐⇒ There exists ρ̃ lifting ρ such that ωρ̃(−1) = χ̃(−1);

⇐⇒ ωρ(−1) = χ(−1).

The former equivalences are of the same reason as in the proof of Lemma 1.7.2, and we use Proposition
1.8.1 for the second last equivalence. For the last equivalence, the “⇒” direction is trivial. For
the other direction, when l 6= 2, we choose ρ̃ to be any supercuspidal Ql-lift of ρ. Thus we have
ωρ̃(−1) = ωρ(−1) = χ(−1) = χ̃(−1). When l = 2, using the construction of Green and James, for ξ

a regular character over Fl corresponding to ρ, we may always find a Ql-lift ξ̃ which is regular and
satisfies ξ̃(−1) = χ̃(−1). Thus the supercuspidal representation ρ̃ corresponding to ξ̃ as a lift of ρ
satisfies ωρ̃(−1) = χ̃(−1). So we finish the proof of the first part.

To calculate the dimension, as in the proof of Lemma 1.7.2 if we write

Fl[H\GLm(l)]χ = Vρ ⊕ V ′,

where Vρ is composed of irreducible components isomorphic to ρ, and V ′ has no irreducible component
isomorphic to ρ, then we only need to show that EndFl[GLm(l)](Vρ) is commutative. We consider the

following Zl[GLm(l)]-module decomposition

Zl[H\GLm(l)]χ̃ = Ṽρ ⊕ Ṽ ′,

where Ṽρ⊗Zl Ql =
⊕

ρ̃ ρ̃ with the direct sum ranging over all the irreducible representations ρ̃ over Ql
occurring in P̃ρ counting the multiplicity, and Ṽ ′ denotes a Zl[GLm(l)]-complement of Ṽρ, such that

Ṽ ′ ⊗Zl Ql contains no irreducible component of ρ̃. Using Proposition 1.8.1, we know that Ṽρ ⊗Zl Ql
is multiplicity free, which means that EndQl[GLm(l)](Ṽρ ⊗Zl Ql) is commutative. Since the canonical

embedding from Zl[H\GLm(l)]χ̃ to Ql[H\GLm(l)]χ̃ induces the following ring monomorphism

EndZl[GLm(l)](Zl[H\GLm(l)]χ̃) ↪→ EndQl[GLm(l)](Ql[H\GLm(l)]χ)

given by tensoring Ql, which leads to the ring monomorphism

EndZl[GLm(l)](Ṽρ) ↪→ EndQl[GLm(l)](Ṽρ ⊗Zl Ql),

thus EndZl[GLm(l)](Ṽρ) is also commutative.

The modulo l map from Zl[H\GLm(l)]χ̃ to Fl[H\GLm(l)]χ induces the following ring epimorphism

EndZl[GLm(l)](Zl[H\GLm(l)]χ̃) � EndFl[GLm(l)](Fl[H\GLm(l)]χ),
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which leads to the ring epimorphism

EndZl[GLm(l)](Ṽρ) � EndFl[GLm(l)](Vρ).

Since EndZl[GLm(l)](Ṽρ) is commutative, we know that EndFl[GLm(l)](Vρ) is also commutative. Thus we
may use the same proof as in Lemma 1.7.2 to show that

dimFl(HomGLm(l)τ (ρ, χ)) = 1.

Finally for char(R) = l > 0 in general, we follow the corresponding proof in Lemma 1.7.2.

Remark 1.8.3. For Gτ (l) an orthogonal group with m ≥ 2, it is well-known that its derived group is
always a subgroup of Gτ0(l) of index 2 (see [Cam00], Proposition 6.5) , which means that there exists
a character of Gτ (l) which isn’t trivial on Gτ0(l). It means that we cannot expect χ to be trivial on
Gτ0(l) in general. However, for those χ occurring in the next subsection, it is highly possible that χ
is trivial on Gτ0(l). For example, [HL12], Proposition 6.4 gives an evidence in the case where π is
tame supercuspidal. However, I don’t know how to prove it.

Now we assume that m is even. We write Jm/2 =

(
0 Im/2

−Im/2 0

)
and we denote by

Spm(l) = {x ∈ GLm(l)| txJm/2x = Jm/2}

the symplectic subgroup of GLm(l).

Proposition 1.8.4. For ρ a cuspidal representation of GLm(l), we have HomSpm(l)(ρ, 1) = 0.

Proof. Using [Kly84], Corollary 1.4. whose proof also works for the l-modular case, we know that an
irreducible generic representation cannot be distinguished by a symplectic subgroup. Since a cuspidal
representation is generic, we finish the proof.

1.8.2 Distinction criterion in the ramified case

Still let π be a σ-invariant supercuspidal representation of G. In this subsection we prove Theorem
0.2.1 and Theorem 0.2.2 in the case where E/E0 is ramified. Using Theorem 1.4.1, we only need
to show that π is distinguished by any unitary subgroup to finish the proof of Theorem 0.2.1. We
may change τ up to a G-action which doesn’t change the property of distinction. Thus using Remark
1.6.1.(4), we may assume τ(x) = εσ( tx−1)ε−1 for any x ∈ G, where ε equals In or diag(Id, ..., Id, ε)
with ε ∈ o×E0

\NE/E0
(o×E), representing the two classes of unitary involutions. We denote by ε the

image of ε in GLm(l).
For (J ,Λ) a simple type in Remark 1.6.1.(2), we write Λ ∼= κ ⊗ ρ. Using Proposition 1.6.24, we

may further assume κτ∨ ∼= κ. Using Lemma 1.6.18 with g = 1, there exists a quadratic character
χ : J ∩Gτ → R× such that

dimRHomJ∩Gτ (κ, χ−1) = 1 (1.8.1)

and
HomJ∩Gτ (Λ, 1) ∼= HomJ∩Gτ (κ, χ−1)⊗R HomJ∩Gτ (ρ, χ). (1.8.2)

If we denote by ωκ the central character of κ defined on F×, using (1.8.1), we get ωκ = χ−1 as
characters of F× ∩ (J ∩Gτ ). In particular, ωκ(−1) = χ−1(−1). Since κτ∨ ∼= κ, we get ωκ ◦ τ = ω−1

κ .
In particular we have

ωκ($F )−1 = ωκ(τ($F )) = ωκ($F )−1ωκ(−1)−1,
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where we use the fact that σ($F ) = −$F . Thus we get ωκ(−1) = χ(−1) = 1.

Since Λ and κ are τ -selfdual, ρ is τ -selfdual. Using the same proof as that for κ, we get ωρ(−1) = 1.
Let ρ be the supercuspidal representation of GLm(l) ∼= J/J1 whose inflation equals ρ|J and let χ be
the character of

Gτ (l) ∼= J ∩Gτ/J1 ∩Gτ

whose inflation equals χ, where τ naturally induces an orthogonal involution on G with respect to ε
with the notation in subsection 1.8.1. By definition and Lemma 1.4.2 we get

HomJ∩Gτ (ρ, χ) ∼= HomGτ (l)(ρ, χ).

Since ωρ(−1) = χ(−1) = 1, using Proposition 1.8.1 and Proposition 1.8.2, the space above is non-zero.
Thus by (1.8.2) we have

HomJ∩Gτ (Λ, 1) 6= 0

which means that π is distinguished by Gτ , finishing the proof of Theorem 0.2.1. Moreover using
Proposition 1.8.1, Proposition 1.8.2, (1.8.1) and (1.8.2), we get

dimRHomJ∩Gτ (Λ, 1) = 1.

Now if m is even and ε = Im, we also need to study the space HomJg1∩Gτ (Λg1 , 1), where g1 is
defined in Corollary 1.6.29 such that τ(g1)g−1

1 = $EJm/2 ∈ B×. Using Lemma 1.6.18, there exists a
quadratic character χ1 : Jg1 ∩Gτ → R× such that

dimRHomJg1∩Gτ (κg1 , χ−1
1 ) = 1. (1.8.3)

and

HomJg1∩Gτ (Λg1 , 1) ∼= HomJg1∩Gτ (κg1 , χ−1
1 )⊗R HomJg1∩Gτ (ρg1 , χ1). (1.8.4)

So we only need to study the space HomJg1∩Gτ (ρg1 , χ1) ∼= Hom
J∩Gδg1 (ρ, χ

g−1
1

1 ), where

δg1(x) := (τ(g1)g−1
1 )−1τ(x)(τ(g1)g−1

1 ) = ($EJm/2)−1τ(x)$EJm/2

for any x ∈ G as an involution on G.

Let ρ be the supercuspidal representation of GLm(l) ∼= J/J1 whose inflation equals ρ|J and let

χ
g−1
1

1 be the character of

Spm(l) ∼= J ∩Gδg1/J1 ∩Gδg1

whose inflation equals χ
g−1
1

1 , then we get

Hom
J∩Gδg1 (ρ, χ

g−1
1

1 ) ∼= HomSpm(l)(ρ, χ
g−1
1

1 ) = HomSpm(l)(ρ, 1),

where the last equation is because of the well-known fact that Spm(l) equals its derived group (

[Cam00], Lemma 4.8), thus χ
g−1
1

1 |Spm(l) is trivial. Using Proposition 1.8.4, we get HomSpm(l)(ρ, 1) = 0.
Thus HomJg1∩Gτ (Λg1 , 1) = 0.

Using Corollary 1.6.29, we get

dimRHomGτ (π, 1) = dimRHomJ∩Gτ (Λ, 1) + dimRHomJg1∩Gτ (Λg1 , 1) = 1,

which finishes the proof of Theorem 0.2.2 when E/E0 is ramified.
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Remark 1.8.5. From the proof above, we may find out that when E/E0 is ramified, for the two
τ -selfdual simple types mentioned in Corollary 1.6.29, it is always the simple type (J ,Λ) which con-
tributes to the distinction, and (Jg1 ,Λg1) never contributes to the distinction.

Remark 1.8.6. In general, if we weaken the condition for the representation π such that it is only
cuspidal, and if we still assume that it is σ-invariant such that E/E0 is totally ramified, then the
argument above still works and we have

HomGτ (π, 1) ∼= HomGτ (l)(ρ, χ)

as R-vector space, where Gτ (l) is an orthogonal subgroup of GLm(l), ρ is a cuspidal representation
of GLm(l) and χ is a quadratic character of Gτ (l) such that ωρ(−1) = χ(−1). Furthermore we may
prove that this space is non-zero. When char(R) = 0 it has been proved and when char(R) = l > 0
we assume R = Fl without loss of generality. Using the argument of Proposition 1.8.2 we may find
a cuspidal representation ρ̃ of GLm(l) as a Ql-lift of ρ and χ̃ as a quadratic character of Gτ (l) as a
Ql-lift of χ, such that ωρ̃(−1) = χ̃(−1). Then by Proposition 1.8.1 we get HomGτ (l)(ρ̃, χ̃) 6= 0 and thus
HomGτ (l)(ρ, χ) 6= 0. Thus even for a σ-invariant cuspidal representation π as above, it is distinguished
by a given unitary subgroup, however in this case we don’t know the multiplicity one result.

1.8.3 Proof of Theorem 0.2.3

Let π be a σ-invariant supercuspidal representation of G over Fl. For τ a unitary involution, by
Theorem 0.2.1, π is distinguished by Gτ . From the proof of Theorem 1.4.1, there exists π̃ as a
distinguished integral σ-invariant supercuspidal representation of G over Ql which lifts π. So we finish
the proof of Theorem 0.2.3.

1.9 Generalization of Theorem 1.4.1

In this section, we generalize Theorem 1.4.1 to the irreducible generic representations, while in the
meantime we also give another proof of the original theorem which is purely local. Precisely, we prove
the following theorem:

Theorem 1.9.1. Let π be an irreducible generic representation of G over R. If π is distinguished by
Gτ , then π is σ-invariant.

1.9.1 The finite analogue

To begin with, we first study the finite analogue of the theorem:

Proposition 1.9.2. Let l/l0 be a quadratic extension of finite fields of characteristic p and let ρ be an
irreducible generic representation of G = GLm(l) over R. If ρ is distinguished by the unitary subgroup
H of G, then it is σ-invariant.

Proof. When char(R) = 0, the proposition was proved by Gow [Gow84] for any irreducible represen-
tations. So we only consider the l-modular case and without loss of generality we assume R = Fl. We
write Pρ for the projective envelope of ρ as a Zl[G]-module. Thus Pρ⊗ZlFl is a projective Fl[G]-module,
and moreover

HomFl[H](ρ, 1) ∼=HomFl[G](ρ,Fl[H\G]) 6= 0
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implies that

HomFl[G](Pρ ⊗Zl Fl,Fl[H\G]) 6= 0.

From the property of projective envelope, equivalently we have

HomQl[G](Pρ ⊗Zl Ql,Ql[H\G]) 6= 0,

and thus there exists ρ as an irreducible constituent of Pρ ⊗Zl Ql such that

HomQl[G](ρ,Ql[H\G]) 6= 0.

By [Ser77], §14.5, §15.4, ρ is a constituent of rl(ρ). Since ρ is H-distinguished, it is σ-invariant and so is
rl(ρ). We choose ρ1, ..., ρk to be cuspidal representations ofG overQl, such that ρ is a subrepresentation
of the parabolic induction ρ1 × ... × ρk. We write ρi = rl(ρi) as cuspidal representations of G over
Fl, then all the irreducible constituents of rl(ρ) are subquotients of ρ1 × ... × ρk, and in particular
so is ρ. Since ρ is generic (or non-degenerate), by [Vig96], III.1.10, it is the unique non-degenerate
subquotient contained in ρ1 × ...× ρk, thus it is the unique non-degenerate constituent in rl(ρ). Thus
it is σ-invariant.

1.9.2 The cuspidal case

In this subsection, we first prove the case where π is cuspidal. We choose (J ,Λ) to be a simple type
of π, then by the Frobenius reciprocity and the Mackey formula, there exists g ∈ G such that

HomJg∩Gτ (Λg, 1) 6= 0. (1.9.1)

Let H1 be the corresponding subgroup of J , let θ be the simple character of H1 contained in Λ and
let η be the Heisenberg representation of θ. Restricting (1.9.1) to H1g ∩ Gτ we get θg|H1g∩Gτ = 1.
Following the proof of [Séc19], Lemma 6.5, we have

(θ ◦ τ)τ(g)|τ(H1g)∩H1g = θg ◦ τ |τ(H1g)∩H1g = (θg)−1|τ(H1g)∩H1g , (1.9.2)

or in other words, θ ◦ τ intertwines with θ−1. Using the Intertwining Theorem (cf. [BH13]), θ ◦ τ and
θ−1 are endo-equivalent, which, from the argument of Lemma 1.5.7, is equivalent to Θσ = Θ, where
Θ denotes the endo-class of θ.

We let τ1 be the unitary involution corresponding to In, which in particular satisfies the condition
of Theorem 1.5.5. Since Θσ = Θ, by loc. cit., we may choose a simple stratum [a, β] and θ′ ∈ H1(a, β)
with θ′ ∈ Θ, such that

τ1(β) = β−1, τ1(a) = a and θ′ ◦ τ1 = θ′−1.

Up to G-conjugacy, we may and will assume that J = J(a, β) and θ′ = θ. We write E = F [β]
and B ∼= Mm(E) as the centralizer of E in Mn(F ). Using Proposition 1.6.24, we write Λ = κ ⊗ ρ
with κ an extension of the Heisenberg representation η such that κτ1 ∼= κ∨. Let ε be an hermitian
matrix such that τ(x) = εσ( tx−1)ε−1 = τ1(x)ε

−1
for any x ∈ G. For a fixed g ∈ G, we define

γ = ε−1τ(g)g−1 = τ1(g)ε−1g−1 and by direct calcualtion we have τ1(γ) = γ.

Proposition 1.9.3. Let g ∈ G such that HomJg∩Gτ (Λg, 1) 6= 0.
(1) Changing g up to another representative in the same J-Gτ double coset, we may assume

γ ∈ B×;
(2) The dimension dimRHomJ1g∩Gτ (ηg, 1) = 1;
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(3) There is a unique quadratic character χ of Jg ∩Gτ trivial on J1g ∩Gτ , such that

HomJ1g∩Gτ (ηg, 1) ∼= HomJg∩Gτ (κg, χ−1) ∼= R.

Moreover

HomJg∩Gτ (Λg, 1) ∼= HomJg∩Gτ (κg, χ−1)⊗HomJg∩Gτ (ρg, χ);

(4) The element γ ∈ J , thus under the assumption of (1) γ ∈ B× ∩ J = E×b×.

Proof. We sketch the proof which follows from that of Theorem 1.6.2 (actually the same theorem
if τ = τ1). Using (1.9.2) and the fact that τ(H1g) = τ1(H1)ε

−1τ(g) = H1ε−1τ(g) and (θ ◦ τ)τ(g) =
(θ ◦ τ1)ε

−1τ(g) = (θ−1)ε
−1τ(g), we have

(θε
−1τ(g))−1|

H1ε−1τ(g)∩H1g = (θ ◦ τ)τ(g)|τ(H1g)∩H1g = θg ◦ τ |τ(H1g)∩H1g = (θg)−1|
H1ε−1τ(g)∩H1g ,

which means that γ intertwines θ, or in other words γ ∈ JB×J . The following lemma follows from
the same proof of Lemma 1.6.5, once we replace the γ there with our γ here and τ there with τ1.

Lemma 1.9.4. There exist y ∈ J = J(a, β) and b ∈ B×, such that γ = τ1(y)by.

Thus we change g by y−1g and then the corresponding γ = b ∈ B×, which proves (1). For (2), we
denote

δ(x) := (τ(g)g−1)−1τ(x)τ(g)g−1 = γ−1τ1(x)γ for any x ∈ G

as an involution on G, then by definition we have

HomGτ (ηg, 1) ∼= HomGδ(η, 1),

and

γδ(γ) = γγ−1τ1(γ)γ = 1.

Moreover, by direct calculation we have

δ(H1) = (τ(g)g−1)−1H1ε−1
τ(g)g−1 = H1γ and θ ◦ δ = (θ−1)ε

−1τ(g)g−1
= (θ−1)γ .

So using Proposition 1.6.14, we finish the proof of (2).

Using (2) and the same argument of Proposition 1.6.18 we get the statement (3), except the part
χ being quadratic. To finish that part, since

τ1(τ1(g)ε−1)ε−1(τ1(g)ε−1)−1 = gετ1(g)−1 = (τ1(g)ε−1g−1)−1 = γ−1 ∈ B×,

we may replace g with ε−1τ(g) = τ1(g)ε−1 in the statement (3) to get a unique character χ′ of
Jε
−1τ(g) ∩Gτ trivial on J1ε−1τ(g) ∩Gτ . Moreover, using the facts τ(J) = Jε

−1
, τ(J) = Jε

−1
, τ(J1) =

J1ε−1
and τ(H1) = H1ε−1

and Lemma 1.4.2, it is easy to show that

Jg ∩Gτ = Jε
−1τ(g) ∩Gτ = Jg ∩Gτ = Jε

−1τ(g) ∩Gτ (1.9.3)

As a result, χ and χ′ are characters defined on the same group Jg ∩Gτ = Jε
−1τ(g) ∩Gτ . We have the

following lemma similar to Proposition 1.6.19:

Lemma 1.9.5. We have χ = χ′.
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Proof. We write δ for the involution defined as above. By §1.3.2, we have γ ∈ IG(η) = IG(κ0) and

dimR(HomJ∩Jγ (κ0γ , κ0)) = dimR(HomJ1∩J1γ (ηγ , η)) = 1,

where κ0 = κ|J . By direct calculation, we have J1 ∩ Gδ = J1γ ∩ Gδ as a subgroup of J1 ∩ J1γ and
H1 ∩Gδ = H1γ ∩Gδ. Using statement (2) for g and ε−1τ(g) respectively, we get

dimRHomJ1g∩Gτ (ηg, 1) = dimRHom
J1ε−1τ(g)∩Gτ (ηε

−1τ(g), 1) = 1.

By Proposition 1.6.20, for 0 6= ϕ ∈ HomJ1∩J1γ (ηγ , η) = Hom
J1g∩J1ε−1τ(g)(η

ε−1τ(g), ηg), the map

fϕ : HomJ1g∩Gτ (ηg, 1) −→ Hom
J1ε−1τ(g)∩Gτ (ηε

−1τ(g), 1),

λ 7−→ λ ◦ ϕ,

is bijective6. If we choose

0 6= λ ∈ HomJ1g∩Gτ (ηg, 1) and 0 6= λ′ := fϕ(λ) = λ ◦ ϕ ∈ Hom
J1ε−1τ(g)∩Gτ (ηε

−1τ(g), 1),

then for any v in the representation space of η and any x ∈ Jg ∩Gτ = Jε
−1τ(g) ∩Gτ , we have

χ′(x)−1λ′(v) = λ′(κ0ε−1τ(g)(x)v) (by the statement (3))

= λ(ϕ(κ0ε−1τ(g)(x)v)) (by definition of λ′)

= λ(κ0g(x)ϕ(v)) (since ϕ ∈ Hom
Jg∩Jε−1τ(g)(κ

0ε−1τ(g), κ0g))

= χ(x)−1λ(ϕ(v)) (by the statement (3))

= χ(x)−1λ′(v) (by definition of λ′).

Since v and x ∈ Jg ∩Gτ = Jε
−1τ(g) ∩Gτ are arbitrary, we have χ′|

Jε
−1τ(g)∩Gτ = χ|Jg∩Gτ . Combining

with (1.9.3) we finish the proof of the lemma.

To prove that χ is quadratic, we first assume that char(R) = 0. We have the following isomorphisms

Hom
J1ε−1τ(g)∩Gτ (ηε

−1τ(g), 1) ∼= HomJ1g∩Gτ (ηg, 1)

∼= HomJg∩Gτ (κg, χ−1)
∼= HomJg∩Gτ (χ,κg∨) (by the duality of contragredient)
∼= HomJg∩Gτ (κg∨, χ)
∼= HomJg∩Gτ (κg∨ ◦ τ, χ ◦ τ)

∼= HomJg∩Gτ ((κ∨ ◦ τ1)ε
−1τ(g), χ ◦ τ)

∼= Hom
Jε
−1τ(g)∩Gτ (κε

−1τ(g), χ ◦ τ) (since κ is τ1-selfdual).

Using the above lemma and the uniqueness of χ′, we have χ ◦ τ = χ−1. Since χ is defined on
Jg ∩ Gτ = Jg ∩ Gτ which is τ -invariant, we have χ ◦ τ = χ, thus χ2 = χ(χ ◦ τ) = 1. When
char(R) = l > 0 the same argument in Proposition 1.6.26 can be used directly.

Finally using (3) and the distinction of the simple type, we have HomJg∩Gτ (ρg, χ) 6= 0. Then the
proof of (4) are the same of that in subsection 1.6.6, once we replace γ there with our γ here.

6Noting that J1g ∩ Gτ = J1 ∩ Gδ and J1ε−1τ(g) ∩ Gτ = J1γ ∩ Gδ, thus HomJ1g∩Gτ (ηg, 1) = HomJ1∩Gδ (η, 1) and

Hom
J1ε−1τ(g)∩Gτ (ηε

−1τ(g), 1) = HomJ1γ∩Gδ (ηγ , 1)
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Corollary 1.9.6. For g ∈ G such that HomJg∩Gτ (Λg, 1) 6= 0, we may choose g up to changing the
representative in the J-Gτ double coset, such that

γ =

{
Im or $EIm if E/E0 is unramified;

Im or diag(1, ..., 1, ε) or $EJm/2 if E/E0 is ramified,

as an element in GLm(E) ∼= B× ↪→ G, where ε ∈ o×E0
\NE/E0

(o×E)

Proof. We have proved that γ = τ1(g)ε−1g−1 ∈ B× ∩ J = E×b×. Changing g up to multiplying by
an element in E× which doesn’t change the double coset it represents, we may assume γ ∈ b× or
$Eb

×. Using Proposition 1.2.2 and changing g up to multiplying by an element in b× on the left, we
may assume that γ = $α

E , and from the uniqueness we must have $α
E = Im or $EIm when E/E0 is

unramified, and $α
E = Im or diag(1, ..., 1, ε) or $EJm/2 when E/E0 is totally ramified.

Thus for g ∈ G as above, we get

HomJ∩Gδ(ρ, χ
g−1

) ∼= HomJ∩Gδ(ρ, χ
g−1

) ∼= HomJg∩Gτ (ρg, χ) 6= 0.

Write H = J ∩Gδ/J1 ∩Gδ for the subgroup of G = GLm(l) ∼= J/J1, which, from the expression of γ
in Corollary 1.9.6, is either a unitary subgroup, or an orthogonal subgroup, or a symplectic subgroup
of G. Thus we have

HomH(ρ, χ′) 6= 0,

where ρ is a cuspidal representation of G whose inflation is ρ|J and χ′ is a quadratic character of H
whose inflation is χg

−1 |J∩Gδ .
When H is unitary which also means that E/E0 is unramified, by Lemma 1.7.6 (or more precisely

its argument) χ′ can be extended to a quadratic character ofG. Thus ρχ′
−1

as a cuspidal representation
of G is distinguished by H, and thus it is σ-invariant by Proposition 1.9.2. Since p is odd, as a quadratic
character χ is σ-invariant. Thus ρ is also σ-invariant, or by Proposition 1.7.4, ρτ1 ∼= ρ∨. Thus both κ
and ρ are τ1-selfdual, which means that Λ and π are τ1-selfdual. By Proposition 1.5.6, π is σ-invariant.

When H is orthogonal which also means that E/E0 is totally ramified, comparing the central
character as in §1.8.2 we have ρ(−Im) = id. Thus ρτ1 |J = ρ( t·−1)|J ∼= ρ|J by Proposition 1.7.4 and
ρ(τ1($E)) = ρ(−$E) = ρ($E), which means that ρ is τ1-selfdual, finishing the proof as above.

Finally by Proposition 1.8.4 and the fact that Spm(l) equals its derived subgroup, the case where
H is symplectic never occurs, which ends the proof of Theorem 1.9.1 when π is cuspidal.

1.9.3 The discrete series case

In the following two subsections we use the result in [FLO12] and our cuspidal result to finish the
proof of Theorem 1.9.1. Since the characteristic 0 case has been proved in ibid, Theorem 6.1, we only
consider the case where char(R) = l > 0. In this subsection we assume that π is a discrete series
representation, of which we give the definition below.

For ρ a cuspidal representation of GLn′(F ), we denote by f(ρ) the number of unramified characters
χ such that ρχ ∼= ρ and we write q(ρ) = qf(ρ). We denote by o(ρ) the smallest positive integer such
that l divides q(ρ)o(ρ) − 1. We let e(ρ) be the smallest integer e′ such that 1 + q(ρ) + ... + q(ρ)e

′−1

is divided by l. Thus we always have e(ρ) ≥ o(ρ) and the equality holds if and only if o(ρ) 6= 1. We
write ∆ρ,[a,b] for the segment {ρνa, ρνa+1, ..., ρνb}, where ν(·) = |det(·)|F , a, b ∈ Z and k = b − a + 1
is a positive integer. When k is smaller than e(ρ), the normalized parabolic induction

ρνa × ρνa+1 × ...× ρνb
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has a unique non-degenerate irreducible quotient ( [MS14a], Lemma 7.14, Proposition 7.21.(3), Ex-
ample 8.2.), which we denote by

St(∆ρ,[a,b]).

We call it a discrete series representation.

Remark 1.9.7. Noting that in our definition a discrete series representation is always non-degenerate.
One may also regard [MS14a], Définition 7.5.(2) as another possible definition for discrete series
representations, which is a larger category than ours and includes degenerate representations.

Proposition 1.9.8. If kn′ = n and π = St(∆ρ,[a,b]) as above is distinguished by Gτ , then both
St(∆ρ,[a,b]) and ρ are σ-invariant.

Proof. Since π is distinguished byGτ , the parabolic induction ρνa×ρνa+1×...×ρνb is also distinguished
by Gτ . By [FLO12], Lemma 6.10. (note that their argument also works for l-modular case), for
M = GLn′(F ) × ... ×GLn′(F ) as a Levi subgroup of G and for each i ∈ {0, 1, ..., k − 1}, either there
exists a unitary involution τ ′ of GLn′(F ) such that ρνa+i is distinguished by GLn′(F )τ

′
, or ρσνa+i is

isomorphic to ρνa+i′ for another i′ ∈ {0, 1, ..., k − 1}.
If for a certain i the first situation occurs, then using the theorem for the cuspidal case ρνi and ρ

are σ-invariant 7, then ρνa× ρνa+1× ...× ρνb and π are σ-invariant which finishes the proof. Thus we
assume that for each i we are in the second situation, and in particular we choose i to be the smallest
integer in {0, 1, ..., k − 1} such that ρσνa ∼= ρνa+i.

If i = 0, we finish the proof as above. In particular if q(ρ) equals 1 modulo l, we have ρν ∼= ρ which
means that ρσνa ∼= ρνa+i ∼= ρνa, included in the i = 0 case. So we assume that i > 0 and l doesn’t
divide q(ρ)−1 indicating o(ρ) = e(ρ). We have ρνa+2i ∼= ρσνa+i ∼= ρνa and thus o(ρ) divides 2i. Since
i ≤ k < e(ρ) = o(ρ) from our assumption, we have 2i = e(ρ) > k. Then ρσνa+i−1 ∼= ρνa+i−1+i and
since ρσνa+i−1 is isomorphic to ρνa+j′ for a certain j′ ∈ {0, 1, ..., k − 1}, we know that 2i− 1− j′, as
an integer between 2− k and 2i− 1 = e(ρ)− 1, is divided by e(ρ), thus 2i− 1 = j′ which implies that
2i− 1 ≤ k − 1, or 2i ≤ k, contradictory! Thus we finish the proof.

1.9.4 The generic case

Finally we assume that π is generic and distinguished by Gτ . Using [MS14a], Théorème 9.10, for
i = 1, ..., r there exist ni, ki ∈ N and ai, bi ∈ Z satisfying n1k1 + ... + nrkr = n and bi − ai + 1 = ki,
and ρi cuspidal representations of GLni(F ) satisfying ki < e(ρi), such that

π ∼= St(∆ρ1,[a1,b1])× ...× St(∆ρr,[ar,br]),

where for i1 6= i2, the corresponding segments ∆ρi1 ,[ai1 ,bi1 ] and ∆ρi2 ,[ai2 ,bi2 ] are not linked (lié in French)
in the sense of ibid, Définition 7.3. We write ∆1, ...,∆r for those segments for short. For ∆1+...+∆r as
a multisegment, we define its support to be

∑r
i=1

∑bi
j=ai

ρiν
j as a multiset of cuspidal representations.

Lemma 1.9.9. For each i there exist segments ∆i1, ...,∆iji with ∆i and ∆i1+...+∆iji having the same
support, such that for each corresponding representation St(∆ij), either it is distinguished by a unitary
subgroup, or there exist i′ ∈ {1, ..., r}, j′ ∈ {1, ..., ji′} such that ∆σ

i′j′ = ∆ij and St(∆i′j′)
σ ∼= St(∆ij).

Proof. The proof of the lemma is indicated in [FLO12], §6.2. By the geometric lemma, the restriction
π|Gτ = St(∆ρ1,[a1,b1])× ...× St(∆ρr,[ar,br])|Gτ is written as a finite filtration of Gτ -invariant subspaces.
Since π is distinguished by Gτ , there exists at least one subquotient in the filtration contributing to the

7As an unramified character ν is always σ-invariant.
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distinction. Thus by Lemma 6.4. of loc. cit., for M = GLn1k1(F )× ...×GLnrkr(F ) as a Levi subgroup
of G, there exists a Levi subgroup L of M , such that the Jacquet module JL,M (St(∆ρ1,[a1,b1]) ⊗
... ⊗ St(∆ρr,[ar,br])) as a representation of L is distinguished by a unitary subgroup of L. Using
[MS14a], Proposition 7.16. to calculate the Jacquet module, we deduce that JL,M (St(∆ρ1,[a1,b1])⊗ ...⊗
St(∆ρr,[ar,br])) must be of the form

St(∆11)⊗ ...⊗ St(∆1j1)⊗ St(∆21)⊗ ...⊗ St(∆2j2)⊗ ...⊗ St(∆r1)⊗ ...⊗ St(∆rjr),

where ∆i1,...,∆iji form a partition of ∆i. Finally by [FLO12], (6.5), each corresponding representation
St(∆ij) is either distinguished by a unitary subgroup, or there exist i′ ∈ {1, ..., r}, j′ ∈ {1, ..., ji′}
such that St(∆i′j′)

σ ∼= St(∆ij). By considering the cuspidal support the latter case also implies that
∆σ
i′j′ = ∆ij .

Lemma 1.9.10. For any multiset s of cuspidal representations, the multisegment ∆1 + ...+ ∆r such
that

• its support is s;

• its elements are not linked;

• ki < e(ρi) for each i

is unique, if it exists.

Proof. We choose ρ to be a cuspidal representation contained in s. We let k be the largest integer,
such that there exist a, b ∈ Z with ρνa, ρνa+1, ..., ρνb in s and k = b − a + 1. From the non-linked
condition, k < e(ρ) and the multisegment contains a segment with ∆ρ,[a,b] as its subsegment, thus it
contains ∆ρ,[a,b] since k is the largest. Thus we finish the proof by eliminating ∆ρ,[a,b] and by induction
on the cardinality of s.

For ∆i as one segment given as above, if there exists one ∆ij as in the lemma such that St(∆ij) is
distinguished by a unitary subgroup, by Proposition 1.9.8 both ρi and St(∆i) are σ-invariant.

Now we consider those ∆i such that ρσi is not isomorphic to ρi. First we assume that ρσi is not
isomorphic to ρi twisted by any power of ν. We let ∆i1 , ...,∆is be those segments such that each ρit
is isomorphic to ρi twisted by a certain power of ν, correspondingly let ∆i′1

, ...,∆i′
s′

be those segments

such that each ρi′
t′

is isomorphic to ρσi twisted by a power of ν. Thus using Lemma 1.9.9 every ∆σ
itj

equals a certain ∆i′
t′j
′ . Thus ∆σ

i1
+ ...+ ∆σ

is
and ∆i′1

+ ...+ ∆i′
s′

have the same support and are equal

to each other by Lemma 1.9.10. Thus ∆σ
i equals a certain ∆i′ with i′ ∈ {1, ..., r} and ρσi is isomorphic

to ρi′ twisted by a power of ν.
Now we assume that ρσi is isomorphic to ρi twisted by a certain power of ν. As above we let

∆i1 , ...,∆is be those segments such that each ρit is isomorphic to ρi twisted by a power of ν, still
using Lemma 1.9.9 every ∆σ

itj
equals a certain ∆it′j

′ . Thus ∆σ
i1

+ ... + ∆σ
is

and ∆i1 + ... + ∆is have
the same support and are equal to each other by Lemma 1.9.10. Thus ∆σ

i equals a certain ∆i′ with
i′ ∈ {1, ..., r}.

Thus we have proved that for each ∆i there exists i′ such that ∆σ
i = ∆i′ (it is possible that i′ = i),

where i and i′ range over {1, ..., r}, thus

πσ ∼= St(∆σ
1 )× ...× St(∆σ

r ) ∼= St(∆1)× ...× St(∆r) ∼= π,

which finishes the proof.

Remark 1.9.11. In general it should be interesting to know whether Theorem 1.9.1 and Proposition
1.9.2 are true or not for general irreducible l-modular representations.
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1.10 “`-modular” base change lift and applications

In this section, we study a “l-modular” version of cyclic base change lift via l-modular local Langlands
correspondence developed by Vignéras. Here we use quotation mark to indicate that our map is not
always compatible with the cyclic base change lift over Ql if we consider the usual modulo l map rl,
instead we need to replace rl by another modified modulo l map Jl whose definition will be given later.
As an application, we will study all the σ-invariant cuspidal representations of G = GLn(F ) over Fl
having a Ql-lift as a σ-invariant cuspidal representation of G.

1.10.1 l-modular local Langlands correspondence

We briefly recall the l-modular local Langlands correspondence developed by Vignéras [Vig01]. Let F
be a non-archimedean locally compact field and let R be Ql or Fl. We write WF for the Weil group of
F . By representations ofWF over R, say Weil representations, we mean semisimple finite dimensional
smooth representations. By a Weil-Deligne representation over R we mean a pair (%,N), where % is a
Weil representation of WF and N is a nilpotent linear transformation defined on the space of %, such
that

vF (w)%(w)N = N%(w)

for any w ∈ WF , where vF is given by the exact sequence

0 // IF //WF
vF // Z // 0

whose evaluation at the arithmetic Frobenius map is 1. We denote by RepR(WF ) and RepR(WDF ) the
equivalence classes of Weil representations and Weil-Deligne representations, by IrrR(WF ) the equiva-
lence classes of irreducible Weil representations, by IrrR(WF (n)) the equivalence classes of irreducible
Weil representations of dimension n, by IrrR(GLn(F )) the equivalence classes of smooth irreducible
representations of GLn(F ), by RepR(WDF (n)) the equivalence classes of Weil-Deligne representations
with the dimension of the corresponding Weil representation equaling n and by ScuspR(GLn(F )) the
equivalence classes of irreducible supercuspidal representations of GLn(F ) over R. We identify Ql
with C via an algebraic isomorphism,

Theorem 1.10.1 (Laumon-Rapoport-Stuhler, Harris-Taylor, Henniart, Scholze, Vignéras [LRS93],
[HT01], [Hen00], [Sch13], [Vig01]). (1) The local Langlands correspondence is defined as a bijection

LLCR : ScuspR(GLn(F )) −→ IrrR(WF (n))

determined by certain desiderata.

(2) When R = Ql, the map LLCQl can be extended to irreducible representations, which is a
bijection

LLCQl : IrrQl(GLn(F )) −→ RepQl(WDF (n))

determined by certain desiderata;

(3) LLCFl is compatible with LLCQl, saying that for any π̃ as an integral supercuspidal represen-

tation of GLn(F ) over Ql with the supercuspidal support of its modulo l reduction rl(π̃) denoted by
{π1, ..., πs} as a multiset, LLCQl(π̃) is also integral and ⊕si=1LLCFl(πi) = rl(LLCQl(π̃)).

Remark 1.10.2. Our consideration of LLCQl and LLCFl depends on the choice of the isomorphism

Ql ∼= C. Actually it only depends on the choice of a certain square root of q in Ql for q denoting the
cardinality of the residue field of F ( cf. [Dat07], §2.2).
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Recall that we have defined ν = |det(·)|F as a character of GLn(F ) for any n. By abuse of
notations we also regard ν as a character of WF defined by ν(w) = q−vF (w) for any w ∈ WF . By
a (super)cuspidal segment of GLn(F ), we mean a multiset ∆ρ,[a,b] = {ρνa, ρνa+1, ..., ρνb} with a ≤ b
integers and ρ a (super)cuspidal representation of GLn′(F ) such that n′(b − a + 1) = n. Similarly
by a segment of WF (n), we mean a multiset ∆%,[a,b] = {%νa, %νa+1, ..., %νb} with a ≤ b integers and
% ∈ IrrR(WF ) such that dim(%)(b− a+ 1) = n. In both cases we call n the length of the segment, and
without imposing on the restriction on the length we call ∆ρ,[a,b] a (super)cuspidal segment of GL(F ),
and ∆%,[a,b] a segment of WF . A multisegment of GL(F ) (resp. WF ) means a multiset composed of
cuspidal segments of GL(F ) (resp. segments of WF ), whose length equals the sum of that of each
segment. We denote by MulR(GLn(F )) the set of multisegments of GL(F ) of length n composed of
supercuspidal segments and by MulR(WF (n)) the set of multisegments of WF of length n. The
following proposition extend the local Langlands correspondence above to multisegments, whose proof
is direct.

Proposition 1.10.3. For each n the local Langlands correspondence as above extends to a bijection

LLCR : MulR(GLn(F )) −→ MulR(WF (n)),

given by the relation
LLCR(∆ρ,[a,b]) = ∆LLCR(ρ),[a,b]

for any a, b and ρ ∈ ScuspR(GLn′(F )), and

LLCR(∆1 + ...+ ∆r) = LLCR(∆1) + ...+ LLCR(∆r)

for ∆i segments of GL(F ).

We consider MulInt
Ql

(GLn(F )) as the subset of MulQl(GLn(F )) with each supercuspidal constituent

integral, and for any n we define

rl : MulInt
Ql

(GLn(F )) −→ MulFl(GLn(F ))

such that
rl(∆ρ̃,[a,b]) =

∑
ρ∈SC(rl(ρ̃))

∆ρ,[a,b]

for any a, b and ρ̃ ∈ ScuspInt
Ql

(GLn′(F )) with SC(rl(ρ̃)) denoting the supercuspidal support of rl(ρ̃),

and
rl(∆1 + ...+ ∆r) = rl(∆1) + ...+ rl(∆r)

for ∆i integral segments of GL(F ) over Ql. Similarly we consider MulInt
Ql

(WF (n)) as the subset of

MulQl(WF (n)) with each irreducible constituent integral, and for any n we define

rl : MulInt
Ql

(WF (n)) −→ MulFl(WF (n))

such that
rl(∆%̃,[a,b]) =

∑
%∈rl(%̃)

∆%,[a,b]

for any a, b and %̃ ∈ IrrInt
Ql

(WF (n′)), and

rl(∆1 + ...+ ∆r) = rl(∆1) + ...+ rl(∆r)

for ∆i integral segments of WF over Ql.
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Corollary 1.10.4. LLCQl maps integral multisegments to integral multisegments and we have the
following commutative diagram

MulInt
Ql

(GLn(F ))

rl

��

LLCQl //MulInt
Ql

(WF (n))

rl

��
MulFl(GLn(F ))

LLCFl //MulFl(WF (n))

Proof. The first part is obvious and the second part follows from Theorem 1.10.1.(3).

Fix ψF : oF → Zl
×

a non-trivial character and extend it to a character ψF : F → R× by extension
of scalar. For Un the standard unipotent subgroup of GLn(F ) and λ = (λ1 ≥ λ2 ≥ ... ≥ λs) a partition
of n, we define a character of Un

ψλ(u) := ψF (
∑
i

ui,i+1),

where the sum ranges over i 6= λ1, λ1 + λ2, ..., λ1 + λ2 + ... + λs. We have a total order λ ≥ λ′ for
partitions λ = (λ1 ≥ λ2 ≥ ... ≥ λs) and λ′ = (λ′1 ≥ λ′2 ≥ ... ≥ λ′s′) of n, saying that either λ = λ′, or
there exists k ∈ {1, 2, ..., s} such that

λ1 = λ′1, λ2 = λ′2, ... λk−1 = λ′k−1, and λ1 + ...+ λk > λ′1 + ...+ λ′k.

For π a smooth representation of GLn(F ) of finite length over R, we write λπ for the largest partition
λ such that

HomR[Un](π, ψλ) 6= 0,

called the derivative sequence of π. The dimension of the above R-vector space equals exactly the
number of irreducible subquotients of π having the same derivative sequence. In particular, if the space
is of dimension 1 as an R-vector space, we may associate to π with its unique irreducible subquotient
π′ such that λπ = λπ′ , that is, amongst all the subquotients of π, the subquotient π′ is unique having
the highest derivative sequence.

For ∆ = ∆ρ,[a,b] with ρ a cuspidal representation of GLn′(F ), when R = Ql we define Z(∆) to

be the subrepresentation of ρνa × ... × ρνb which is unique up to ismorphism, such that its Jacquet
module corresponding to the Levi subgroup GLn′(F ) × ... × GLn′(F ) equals ρνa ⊗ ... ⊗ ρνb. When
R = Fl the above construction doesn’t work due to the lack of uniqueness, but we have the following
lemma:

Lemma 1.10.5 ( [Dat12], Proposition 2.2.3). For ρ a cuspidal representation of GLn′(F ), there exists
an integral supercuspidal representation ρ̃ of GLn′(F ) such that ρ = rl(ρ̃). Moreover the representation
rl(Z(∆ρ̃,[a,b])) is irreducible and independent of the choice of ρ̃.

Using this lemma we define Z(∆) := rl(Z(∆ρ̃,[a,b])) for R = Fl. Moreover for m = ∆1 + ...+ ∆r as
a multisegment of GLn(F ), the R-vector space

HomR[Un](Z(∆1)× ...× Z(∆r), ψλZ(∆1)×...×Z(∆r)
)

is of dimension 1, and
Z(m) = Z(∆1, ...,∆r)

is defined to be the unique subquotient of Z(∆1) × ... × Z(∆r) such that λZ(∆1)×...×Z(∆r) = λZ(m)

(cf. [Dat12], §2.2.5). We have the following classification theorem for IrrR(GLn(F )).
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Proposition 1.10.6. We have the bijection

ZR : MulR(GLn(F )) −→ IrrR(GLn(F ))

m 7−→ Z(m).

Moreover when R = Ql it maps integral multisegments to integral representations and vice versa.

Proof. The first part follows from [Vig98] Théorème, V.12. For the second part since the Jacquet
functor and the parabolic induction maintain the property of being integral, and the subrepresentation
of an integral representation is also integral ( [MS14a], §1.2), we know that an irreducible representation
is integral if and only if all the representations in its cuspidal support are integral, which finishes the
proof.

Corollary 1.10.7. For π̃ an irreducible integral representation of GLn(F ) over Ql, we have λπ̃ = λrl(π̃)

and HomFl[Un](rl(π̃), ψλrl(π̃)
) ∼= Fl, thus we may define a map

Jl : IrrInt
Ql

(GLn(F )) −→ IrrFl(GLn(F ))

π̃ 7−→ Jl(π̃)

with Jl(π̃) denoting the unique irreducible subquotient of rl(π̃) such that λπ̃ = λJl(π̃). Moreover Jl is
surjective and we have the commutative diagram

MulInt
Ql

(GLn(F ))

rl

��

ZQl // IrrInt
Ql

(GLn(F ))

Jl

��
MulFl(GLn(F ))

ZFl // IrrFl(GLn(F ))

Proof. The first part follows from the fact that Un is a pro-p-group and p 6= l. The surjectivity
of Jl follows from [Vig98], V.9.2. Now we prove the commutativity of the diagram. We choose
m = ∆1 + ... + ∆r ∈ MulInt

Ql
(GLn(F )) and we write π̃ = Z(m) which is an irreducible representation.

By definition Jl(π̃) equals the unique subquotient of rl(Z(∆1)) × ... × rl(Z(∆r)) having the highest
derivative sequence. By definition rl(Z(∆i)) = Z(∆i) for each i, where for ∆i = ∆ρ̃i,[ai,bi], we write

∆i = ∆ρi,[ai,bi] as a segment over Fl with ρi = rl(ρ̃i) cuspidal (but not necessarily supercusidal) over

Fl. Then Jl(π̃) is the unique subquotient of Z(∆1)×Z(∆2)× ...×Z(∆r) having the highest derivative
sequence, which by definition equals Z(

∑r
i=1 ∆i). Finally using [MS14a], Théorème 9.36, we have

Z(
∑r

i=1 ∆i) = Z(rl(m)) which finishes the proof.

For (%̃, N) ∈ RepQl(WDF (n)), we call it integral if %̃ is integral and N is realized from an element

in EndZl(M) by extension of scalar with M denoting one Zl-lattice corresponding to %̃, and we define
rl(%̃, N) := (rl(%̃), rl(N)). For Weil-Deligne represenations, we have the following classification theorem
whose proof is clear by definition and the utilization of Jordan normal form.

Proposition 1.10.8. We have a bijection

GR : MulR(WF (n)) −→ RepR(WDF (n))
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determined by the relations

GR(∆%,[a,b]) :=

(
%νa ⊕ %νa+1 ⊕ ...⊕ %νb,



0 In′ 0 . . . 0
... 0 In′

. . .
...

...
. . .

. . .
. . . 0

...
. . .

. . . 0 In′

0 . . . . . . . . . 0


)

for any a, b and % ∈ IrrR(WF (n′)), and

GR(∆1 + ...+ ∆r) := GR(∆1)⊕ ...⊕ GR(∆r)

for ∆i segments of IrrR(WF ). Moreover if R = Ql it maps integral multisegments to integral repre-
sentations and vice versa.

Corollary 1.10.9. We have the following commutative diagram:

MulInt
Ql

(WF (n))

rl

��

GQl // RepInt
Ql

(WDF (n))

rl

��
MulFl(WF (n))

GFl // RepFl(WDF (n))

Proof. By definition we only need to study a single segment, which is direct.

Finally we define the so-called Zelevinsky correspondence which is analogous to the local Langlands
correspondence and was indicated by Zelevinsky [Zel80]. We define the map

ZelR : IrrR(GLn(F )) −→ RepR(WDF )

as the composition of Z−1
R , LLCR and GR which is a bijection. More precisely, for π = Z(m) with

m ∈ MulR(GLn(F )), we define ZelR(π) = GR(LLCR(m)). In particular restricting to supercuspidal
representations, the Zelevinsky correspondence coincides with the Langlands correspondence. We end
this subsection with the l-modular property of Zelevinsky correspondence.

Proposition 1.10.10. We have the following commutative diagram

IrrInt
Ql

(GLn(F ))

Jl

��

ZelQl // RepInt
Ql

(WDF )

rl

��
IrrFl(GLn(F ))

ZelFl // RepFl(WDF )

Proof. We only need to combine the above three commutative diagrams together.



THÈSE DE DOCTORAT DE L’UNIVERSITÉ PARIS-SACLAY 103

1.10.2 l-modular base change lift

In this subsection, we make use of the Zelevinsky correspondence defined above to construct a l-
modular version of cyclic base change lift. To that end, we assume F/F0 to be a cyclic extension
of degree r of non-archimedean locally compact fields of residue characteristic p 6= l. We fix σ ∈
Gal(F/F0) a generator and ωF/F0

a character of F×0 with kernel NF/F0
(F×) which is usually identified

with a character of GLn(F0) by composing with the determinant map. We write ν0 = |det(·)|F0 as a
character of GLn(F0), which is also regarded as a character of WF0 by abuse of notations. And for
segments of GL(F0) (resp. GL(F )) and WF0 (resp. WF ), they are related to the character ν0 (resp.
ν). We fix an algebraic isomorphism Ql ∼= C to identify this two fields. For ρ̃0 ∈ ScuspQl(GLn′(F0)),

let c(ρ̃0) be the cardinality of the set of isomorphism classes C(ρ̃0) := {ρ̃0ω
k
F/F0
|k ∈ Z}/ ∼=. It is easy

to see that c(ρ̃0) divides r.

We also recall the Langlands classification, which says that for any π̃0 as an irreducible represen-
tation of GLn(F0) over Ql, there exists a multisegment m0 = ∆0

1 + ... + ∆0
k such that π̃0 = L(m0),

where L(m0) denotes the unique irreducible quotient of St(∆0
1)× ...× St(∆0

k) if m0 is rearranged such
that ∆0

i does not precede ∆0
j for i < j (see for example [MS13], Théorème 1.4).

Theorem 1.10.11. The base change lift

BCQl : IrrQl(GLn(F0)) −→ Irrσ−inv
Ql

(GLn(F ))

satisfies and is determined by the following properties:

• For ρ̃0 ∈ ScuspQl(GLn′(F0)), the integer r/c(ρ̃0) divides n′. And moreover there exists ρ̃ ∈
ScuspQl(GLn′c(ρ̃0)/r(F )) such that ρ̃σ

i ∼= ρ̃ if and only if i is divided by r/c(ρ̃0), and for any
a ≤ b integers,

BCQl(St(∆ρ̃0,[a,b])) = St(∆ρ̃,[a,b])× St(∆ρ̃,[a,b])
σ × ...× St(∆ρ̃,[a,b])

σr/c(ρ̃0)−1
. (1.10.1)

Conversely let c be a positive integer dividing r with r/c dividing n′. For ρ̃ ∈ ScuspQl(GLn′c/r(F ))

such that ρ̃σ
i ∼= ρ̃ if and only if i is divided by r/c, there exists ρ̃0 satisfying (1.10.1) and c(ρ̃0) = c,

and moreover

BC−1
Ql

(St(∆ρ̃,[a,b])× St(∆ρ̃,[a,b])
σ × ...× St(∆ρ̃,[a,b])

σr/c−1
) = {St(∆ρ̃′0,[a,b]

)|ρ̃′0 ∈ C(ρ̃0)}.

• The base change lift is compatible with the Langlands quotient. That is, for π̃0 = L(m0) as above,
we have

BCQl(L(m0)) = L(BCQl(m0)),

where for any segment ∆ρ̃0,[a,b] as above we define

BCQl(∆ρ̃0,[a,b]) := ∆ρ̃,[a,b] + ∆ρ̃σ ,[a,b] + ...+ ∆
ρ̃σ
r/c(ρ̃0)−1

,[a,b]

as a multisegment of GL(F ), and for any multisegment m0 = ∆0
1 + ...+ ∆0

k we define

BCQl(m0) :=
k∑
i=1

BCQl(∆
0
i ).

In addition, it maps integral representations to integral representations.
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Proof. All the properties are listed in [AC89], chapter 1, section 6 and [HL11], chapter 2, except the fi-
nal one. Since base change lift transfers the information of central characters, it maps integral supercus-
pidal representations to integral supercuspidal representations. More precisely for ρ̃0 a supercuspidal

representation of GLn′(F0) and BCQl(ρ̃0) = ρ̃×ρ̃σ...×ρ̃σr/c(ρ̃0)−1
, we have ωρ̃0

=
∏r/c(ρ̃0)−1
i=0 ω

ρ̃σi
◦NF/F0

,

where ωρ̃0
and ω

ρ̃σi
denote the central character of ρ̃0 and ρ̃σ

i
respectively. Thus ωρ̃0

is integral if and

only if ωρ̃ is integral, which means that ρ̃0 is integral if and only if ρ̃ is integral by [Vig96], II.4.12,
confirming the assertion above. Finally using the first two properties listed in the theorem it maps
integral irreducible representations to integral irreducible representations.

Remark 1.10.12. Our consideration of base change lift over Ql still depends on the choice of the
isomorphism Ql ∼= C, or more precisely the choice of a certain square root of q in Ql for q denoting
the cardinality of the residue field of F0. This is unlike the Jacquet-Langlands correspondence over Ql
which doesn’t depend on the embedding since there the local Langlands correspondences (for GLn(F )
and its inner form) are over the same base field, thus once we consider their composition and change
the embedding, the changes of two local Langlands correspondences (as signs) compensate with each
other. However for base change lift since the base fields (and in particular the cardinalities of residue
fields) are not the same, this kind of cancelation doesn’t happen in general (for example F/F0 is
unramified and quadratic).

One important property and motivation for the consideration of cyclic base change lift is that it
satisfies the local Langlands functoriality. For (%,N) ∈ RepR(WDF0), since WF can be regarded as
an open subgroup of WF0 , we define the restriction8

ResF/F0
: RepR(WDF0) −→ RepR(WDF )

(%,N) −→ ((%|WF
)ss, N)

Proposition 1.10.13. We have the following commutative diagram:

IrrQl(GLn(F0))

BCQl
��

LLCQl // RepQl(WDF0)

ResF/F0

��
IrrQl(GLn(F ))

LLCQl // RepQl(WDF )

Proof. The proof follows from the fact that the base change lift, the restriction ResF/F0
and the

local Langlands correspondence transfer the information of L-factors and ε-factors, which determines
the irreducible representations of general linear groups or Weil-Deligne representations. See [AC89],
Proposition 6.9, [HL11], II.3.5 and [HT01].

In addition, the restriction is compatible with the modulo l reduction, whose proof is direct:

Proposition 1.10.14. We have the following commutative diagram:

RepInt
Ql

(WDF0))

rl

��

ResF/F0// RepInt
Ql

(WDF )

rl

��
RepFl(WDF0))

ResF/F0// RepFl(WDF ))

8The superscript “ss” denotes the semi-simplification.
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For the future use, we need the functoriality with respect to the Zelevinsky correspondence. First
we recall the Zelevinsky involution ( [Zel80], section 9), which is an involution between multisegments

TZel : MulQl(GLn(F )) −→ MulQl(GLn(F ))

whose combinatorial definition is given by Moeglin-Waldspurger [MW86], leading to an involution
between irreducible representations (still called the Zelevinsky involution)

TZel : IrrQl(GLn(F )) −→ IrrQl(GLn(F ))

determined by the relation
TZel(Z(m)) = Z(TZel(m))

for any multisegment m over Ql. Zelevinsky further conjectured that

LLCQl ◦ TZel = ZelQl

which is known (For example see [MS13], Proposition A.7).

Proposition 1.10.15. We have the following commutative diagram:

IrrQl(GLn(F0))

BCQl
��

ZelQl // RepQl(WDF0)

ResF/F0

��
IrrQl(GLn(F ))

ZelQl // RepQl(WDF )

Proof. By proposition 1.10.13 and the result mentioned above, we only need to prove that the base
change lift is compatible with the Zelevinsky involution, that is, for any π̃0 ∈ IrrQl(GLn(F0)) we have
BCQl(TZel(π̃0)) = TZel(BCQl(π̃0)). Using Theorem 1.10.11, we have

BCQl(L(m0)) = L(m)

for m = BCQl(m0). Moreover we have

Lemma 1.10.16. TZel(m) = BCQl(TZel(m0)).

Proof. Using the algorithm given by Moeglin-Waldspurger in [MW86], we only need to consider
the case where the elements in the support of m0 belong to {ρ̃0ν

i
0|i ∈ Z}. We may write m =

m1 + ...+ mr/c(ρ̃0), where mi is the multisegment having the same combinatorial structure as m0, but

with ρ̃0ν
j
0 in each segment replaced by ρ̃σ

i−1
νj . Since the algorithm is independence of the supercus-

pidal representations in each segment but only the combinatorial structure, once we replace m0 with
TZel(m0), each mi is replaced with TZel(mi), which proves the lemma.

By definition and [MS13], Proposition A.7, we have

TZel(L(m0)) = L(TZel(m0)) = Z(m0) and TZel(L(m)) = L(TZel(m)) = Z(m).

Thus combining them together we have

TZel(BCQl(π0)) = TZel(BCQl(L(m0)) = TZel(L(m)) = Z(m)

and

BCQl(TZel(π0)) = BCQl(TZel(L(m0))) = BCQl(L(TZel(m0))) = L(BCQl(TZel(m0))) = L(TZel(m))

= Z(m).



106 1.10. “`-MODULAR” BASE CHANGE LIFT AND APPLICATIONS

Finally we may give our definition of l-modular base change lift. We consider the following diagram

RepInt
Ql

(WDF0)
ResF/F0

(I)
//

rl (II)

��

RepInt
Ql

(WDF )

rl(III)

��

IrrInt
Ql

(GLn(F0))

ZelQl

hh

Jl

��

BCQl

(V)
// IrrInt,σ−inv

Ql
(GLn(F ))

Jl
��

ZelQl
66

IrrFl(GLn(F0))

ZelFlvv

BCFl // Irrσ−inv
Fl

(GLn(F ))
ZelFl

))
RepFl(WDF0)

ResF/F0

(IV)
// RepFl(WDF )

The diagram (I) is commutative by Proposition 1.10.15 and the diagram (II) and (III) are commutative
by Propsition 1.10.10. In the diagram (IV) since ZelFl is bijective, we may define the map BCFl to
make the diagram commutative. In this case from the commutativity of (I), (II), (III), (IV) and the
outer diagram via Proposition 1.10.14, by diagram chasing the inner diagram (V) is also commutative.
To sum up, we have proved the following theorem:

Theorem 1.10.17. We may define the l-modular cyclic base change lift

BCFl : IrrFl(GLn(F0)) −→ Irrσ−inv
Fl

(GLn(F ))

which satisfies and is determined by the following commutative diagram

IrrInt
Ql

(GLn(F0))

Jl

��

BCQl// IrrInt,σ−inv

Ql
(GLn(F ))

Jl
��

IrrFl(GLn(F0))
BCFl // Irrσ−inv

Fl
(GLn(F ))

Remark 1.10.18. Similarly we have a finite version of l-modular base change lift. Let l/l0 be an
extension of finite fields of characteristic p of degree r, then we may define the l-modular cyclic base
change lift

bcFl : IrrFl(GLn(l0)) −→ Irrσ−inv
Fl

(GLn(l))

which satisfies and is determined by the following commutative diagram

IrrQl(GLn(l0))

Jl

��

bcQl // Irrσ−inv
Ql

(GLn(l))

Jl
��

IrrFl(GLn(l0))
bcFl // Irrσ−inv

Fl
(GLn(l))

where bcQl denotes the Shintani base change lift as a bijection ( cf. [Shi76]) and Jl is defined in the
same manner as in the p-adic case.

To apply the above method, we use the Shintani base change lift and also its further development
(for example [SZ05], Corollary 5.7.) in place of the theory of local base change lift of Arthur-Clozel,
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and we use the classification theorem of Green ( [Gre55], over Ql) and Dipper-James ( [DJ86], over
Fl) of finite linear groups in place of the classification theorem for irreducible representations of p-adic
linear groups and also the local Langlands correspondence. In this case the group lim←−nF

×
qn plays the

role of the Weil group. Then we may simply imitate our proof above, for which we omit the detail.

1.10.3 Application

In this subsection, we assume that F/F0 is quadratic of residue characteristic p 6= 2. We are going
to classify all the σ-invariant cuspidal representations π of GLn(F ) over Fl coming from the modulo l
reduction of a certain σ-invariant integral cuspidal representation π̃ of GLn(F ) over Ql.

Proposition 1.10.19 ( [MS14a], section 6). For π a cuspidal representation of GLn(F ) over Fl,
there exists a supercuspidal representation ρ of GLn/k(F ) over Fl with k being 1 or e(ρ)ls for s a

non-negative integer, such that9 π = Z(ρ, ρν, ..., ρνk−1).

Proposition 1.10.20. For ρ̃0 an integral cuspidal representation of GLn′(F0) over Ql such that
ρ̃ = BCQl(ρ̃0) is cuspidal, ρ̃ is l-supercuspidal if and only if ρ̃0 is l-supercuspidal, where being l-
supercuspidal means that the modulo l reduction is supercuspidal.

Proof. If ρ̃0 is not l-supercuspidal, then rl(ρ̃0) is written as Z(ρ0, ..., ρ0ν
k0−1
0 ) with ρ0 supercuspidal

for k0 > 1. Let ρ̃′0 be a Ql-lift of ρ0, then by Theorem 1.10.17 we get

rl(ρ̃) = BCFl(rl(ρ̃0)) = BCFl(Jl(Z(ρ̃′0, ..., ρ̃
′
0ν
k0−1
0 ))) = Jl(BCQl(Z(ρ̃′0, ..., ρ̃

′
0ν
k0−1
0 )))

which is not supercuspidal by Theorem 1.10.11 and direct calculation. Now we focus on the other
direction, that is, we assume ρ̃0 to be l-supercuspidal and we prove that ρ̃ is l-supercuspidal. We need
the following lemma whose proof is a simple corollary of [Dat12], §2.2.4.

Lemma 1.10.21. If l doesn’t divide q(ρ̃)− 1, then ρ̃ is l-supercuspidal.

We first study the l 6= 2 case. For ρ = rl(ρ̃), using the fuctoriality of the local Langlands corre-
spondence k = e(ρ)ls equals the number of irreducible constituents of

rl(LLCQl(ρ̃)) = ResF/F0
(rl(LLCQl(ρ̃0))),

where rl(LLCQl
(ρ̃0)) is irreducible since rl(ρ̃0) is supercuspidal. Since [WF0 : WF ] = 2, we know

that k is smaller than 2. If k = 1, then by definition ρ̃ is l-supercuspidal. Otherwise we must have
k = o(ρ) = e(ρ) = 2 since l 6= 2. Thus l doesn’t divide q(ρ̃) − 1 = q(ρ) − 1, meaning that ρ̃ is
l-supercuspidal by the above lemma.

We sketch the proof of the l = 2 case using the explicit base change lift, which we refer to chapter
3, section 1, section 5 and section 6 for more information. Let E0 be the a parameter field of ρ̃0, let
d = [E0 : F0], let n′ = m′d, let l0 be the residue field of E0 and let t0 be the unramified extension of
degree m′ over l0. Since ρ̃ is also cuspidal, E = E0 ⊗F0 F is quadratic over E0 as a parameter field of
ρ̃. Let l be the residue field of E and let t = t0⊗l0 l. Then there exists a Gal(t0/l0)-regular character
ξ0 of t×0 over Ql characterizing the “level 0 part” of ρ̃0 (more precisely up to twisting a quadratic
character) via the theory of Green. From our assumption ρ̃0 is l-supercuspidal, or equivalently the
modulo l reduction of ξ0 as a character of t×0 over Fl is also Gal(t0/l0)-regular. If E/E0 is unramified,
then both l/l0 and t/t0 are quadratic. Using Theorem 3.6.2, ξ = ξ0 ◦ Nt/t0 is a Gal(t/l)-regular

character of t× over Ql characterizing the “level 0 part” of ρ̃. Moreover by direct verification the

9Here each ρνi is regarded as a segment and Z(·) is defined in §1.10.1. In [MS14a] the notation St(ρ, k) was used
instead which is the isomorphic to the representation Z(ρ, ρν, ..., ρνk−1).
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modulo l reduction of ξ is Gal(t/l)-regular. If E/E0 is totally ramified, then l = l0 and t = t0. Still
using Theorem 3.6.2, ξ = ξ2

0 is a Gal(t0/l0)-regular character of t×0 over Ql characterizing the “level 0
part” of ρ̃. Since l = 2 and the modulo l reduction of ξ0 is Gal(t0/l0)-regular, the modulo l reduction
of ξ is also Gal(t0/l0)-regular. Thus in both cases ρ̃ is l-supercuspidal.

Lemma 1.10.22. For ρ a σ-invariant supercuspidal representation of GLn(F ) over Fl, there exists
a supercuspidal representation ρ0 of GLn(F0) over Fl such that BCFl(ρ0) = ρ. Furthermore, e(ρ0) is
independent of the choice of ρ0.

Proof. Using Theorem 0.2.3 we choose ρ̃ to be a σ-invariant integral cuspidal representation of GLn(F )
over Ql such that rl(ρ̃) = ρ. Then by Theorem 1.10.11 we choose ρ̃0 to be an integral cuspidal
representation of GLn(F0) over Ql such that BCQl(ρ̃0) = ρ̃. If we write ρ0 = rl(ρ̃0) which is cuspidal,
by definition we have BCFl(ρ0) = ρ. Using Proposition 1.10.20, ρ0 must be supercuspidal. Finally,
by [BH03], Theorem A, and the fact that modulo l reduction maintains the endo-class, the endo-class
of ρ equals the unique F/F0-lift of that of ρ0. Thus the endo-class of ρ0 is independent of the choice
of ρ0, and so is e(ρ0) (cf. [MS14a], §5.2).

Lemma 1.10.23. Let π0 = Z(ρ0, ..., ρ0ν
k0−1
0 ) be a cuspidal representation of GLn(F ) over Fl with ρ0

supercuspidal, let T0 be the tame parameter field of π0 and ρ0, let π̃0 be a Ql-lift of π0, and let ρ̃0 be
a Ql-lift of ρ0. Assume that T = T0 ⊗F0 F is quadratic over T0.

• If T/T0 is unramified, then BCQl(π̃0) being cuspidal implies that BCQl(ρ̃0) is cuspidal, and the
converse is true if and only if k0 is odd.

• If T/T0 is totally ramified and l 6= 2, and if ρ̃0 can be chosen such that BCQl(ρ̃0) is cuspidal,
then BCQl(π̃0) is cuspidal.

• If T/T0 is totally ramified and l = 2, then BCQl(ρ̃0) is cuspidal, and BCQl(π̃0) is cuspidal if and
only k0 = 1, or k0 = 2 and q(ρ0) + 1 is divided by 4.

Proof. If T/T0 is unramified, using Proposition 3.5.14, BCQl(π̃0) is cuspidal if and only if n/[T0 : F0]
is odd (noting that p 6= 2). Similarly BCQl(ρ̃0) is cuspidal if and only if n/k0[T0 : F0] is odd. Thus
the first claim is proved.

Now we assume that T/T0 is totally ramified. Let E0 be a parameter field of both π0 and ρ0, let
d = [E0 : F0], let m = n/d which is a positive integer divided by k0, let l0 be the residue field of
E0, let t0/l0 be an extension of degree m and let t′0/l0 be its subextension of degree m/k0. Recall
that there exists a character ξ0 of t×0 over Ql which is Gal(t0/l0)-regular, characterizing the “level 0
part” of π̃0, and moreover by loc. cit. BCQl(π̃0) is cuspidal if and only if ξ2

0 is also Gal(t0/l0)-regular.

Similarly, there exists a character ξ′0 of t′×0 over Ql which is Gal(t′0/l0)-regular, charactering the “level
0 part” of ρ̃0, and moreover BCQl(ρ̃0) is cuspidal if and only if ξ′20 is also Gal(t′0/l0)-regular. Finally

the modulo l reduction of ξ′0 is Gal(t′0/l0)-regular as a character over Fl and the modulo l reduction
of ξ0 coincides with that of ξ′0 ◦Nt0/t′0 (see [DJ86] section 3).

Let s be the maximal integer such that ls divides the cardinality of t×0 . We write ξ0 = (ξ′0◦Nt0/t′0)·ξ′1,

where ξ′1 is a character of t×0 of order a power of l to be determined, such that the order of ξ0 is divided
by ls, and let ξ1 be a character of t×0 of order ls. If l 6= 2 and ξ′20 is Gal(t′0/l0)-regular, we have10

l0[ξ′20 ] ∼= t′0. Thus
l0[ξ2

0 ] = l0[(ξ′0 ◦Nt0/t′0)2, ξ2
1 ] ∼= t′0[ξ2

1 ],

10Here ξ′20 is identified with a root of unity in the algebraic closure of l0 of the same order (where the choice of
identification is not important), and thus l0[ξ′20 ]/l0 is a field extension.
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and similarly since ξ0 is Gal(t0/l0)-regular, we have

t0 ∼= l0[ξ0] ∼= t′0[ξ1].

Since l is odd and ξ1 is of order a power of l, we must have t′0[ξ2
1 ] = t′0[ξ1], meaning that ξ2

0 is
Gal(t0/l0)-regular and BCQl(π̃0) is cuspidal. If l = 2, it is easy to see that l0[ξ′0] = l0[ξ′20 ]. Since ξ′0 is

Gal(t0/l0)-regular, ξ′20 is Gal(t0/l0)-regular, meaning that BCQl(ρ̃0) is cuspidal. Similarly we have

t0 ∼= l0[ξ0] ∼= t′0[ξ1] and l0[ξ2
0 ] ∼= t′0[ξ2

1 ].

Let Q0 be the cardinality of t′0 and recall that k0 = [t0 : t′0]. An elementary argument shows that
there exists ξ0 as above, such that the corresponding ξ1 satisfies t′0[ξ2

1 ] = t′0[ξ1], if and only if k0 = 1,
or k0 = 2 and 4 - Q0 − 1. Noting that q(ρ0) = Q0, we finish the proof.

Theorem 1.10.24. Let π be a σ-invariant cuspidal representation of GLn(F ), let T be the tame
parameter field of π and let T0 be the tame parameter field11 of any supercuspidal representation of
GLn(F0) over Fl whose base change is π. Write π = Z(ρ, ρν..., ρνk−1) as in Proposition 1.10.19. for
ρ a supercuspidal representation of GLn/k(F ).

(1) Let ρ be σ-invariant and let ρ0 be any supercuspidal representation of GLn/k(F0) such that

BCFl(ρ0) = ρ, then π has a σ-invariant Ql-lift if and only if

• k = 1, or k > 1 and e(ρ0) = e(ρ) in the case where l 6= 2;

• k = 1 in the case where l = 2 and T/T0 is unramified;

• k = 1, or k = 2 and q(ρ) + 1 is divided by 4 in the case where l = 2 and T/T0 is totally ramified.

(2) If ρ is not σ-invariant, then π doesn’t have a σ-invariant Ql-lift if T/T0 is unramified, and
conversely π always has a σ-invariant Ql-lift if T/T0 is totally ramified;

Proof. First we prove (1). To begin with we consider the case l 6= 2. We assume that π = rl(π̃) for
π̃ an integral σ-invariant cuspidal representation of GLn(F ) over Ql, and we write π̃ = BCQl(π̃0) for

π̃0 an integral cuspidal representation of GLn(F0) over Ql. We define π0 = rl(π̃0) which is a cuspidal
representation of GLn(F0) over Fl. By Proposition 1.10.19, we write π0 = Z(ρ′0, ρ

′
0ν0, ..., ρ

′
0ν
k0−1
0 ) with

ρ′0 supercuspidal.

If T/T0 is unramified, by Lemma 1.10.23 we choose ρ̃0 to be an integral cuspidal representation
of GLn/k0

(F0) lifting ρ′0, such that ρ̃ = BCQl(ρ̃0) is an integral cuspidal representation of GLn/k0
(F ).

Thus Jl(Z(ρ̃0, ρ̃0ν0, ..., ρ̃0ν
k0−1
0 )) = Z(ρ′0, ρ

′
0ν0, ..., ρ

′
0ν
k0−1
0 ). Using Theorem 1.10.17 and the fact that

BCQl(Z(ρ̃0, ..., ρ̃0ν
k0−1
0 )) = Z(ρ̃, ..., ρ̃νk0−1), for ρ′ = rl(ρ̃) we have

Z(ρ, ..., ρνk−1) = π = rl(π̃) = Jl(Z(ρ̃, ..., ρ̃νk0−1)) = Z(ρ′, ..., ρ′νk0−1).

By Proposition 1.10.20 ρ′ is supercuspidal, thus we must have k0 = k and we may assume ρ = ρ′

without loss of generality (when k0 = k = 1 it is automatic). And since BCFl(ρ
′
0) = ρ′ we may also

assume ρ0 = ρ′0 without loss of generality. Thus if k0 6= 1, since π is cuspidal and ρ is supercuspidal,
there exists a non-negative integer s such that e(ρ0)ls0 = k0 = k = e(ρ)ls. Since both e(ρ0) and e(ρ)
are either equal to l or prime to l, we must have s = s0 and e(ρ) = e(ρ0). If T/T0 is totally ramified,
the condition e(ρ) = e(ρ0) is automatic by direct calculation.

11By [BH03], T/T0 is a quadratic extension.



110 1.10. “`-MODULAR” BASE CHANGE LIFT AND APPLICATIONS

Conversely we show that the condition listed above is also sufficient. If k = 1, using Theorem 0.2.3
there exists a σ-invariant integral cuspidal representation ρ̃ of GLn(F ) over Ql such that rl(ρ̃) = ρ.
If k > 1 and there exists a supercuspidal representation ρ0 of GLn/k(F0) such that BCFl(ρ0) = ρ

and e(ρ0) = e(ρ), then Z(ρ0, ..., ρ0ν
k−1
0 ) is a cuspidal representation of GLn(F0) over Fl which we

denote by π0. In particular when T/T0 is unramified we have q(ρ) = q(ρ0)2, thus e(ρ0) = e(ρ)
implies that o(ρ0) = l is odd, meaning that k0 = e(ρ0)ls is odd. Choose ρ̃0 to be a Ql-lift of ρ0 and
write ρ̃ = BCQl(ρ̃0), then we have Jl(ρ̃) = ρ which is supercuspidal. Considering the supercuspidal
support we know that ρ̃ must be cuspidal. By Lemma 1.10.23, we choose π̃0 to be an integral cuspidal
representation of GLn(F0) over Ql lifting π0, such that π̃ := BCQl(π̃0) is cuspidal. By Theorem 1.10.17
we have rl(π̃) = π.

Now we let l = 2. For π having a σ-invariant Ql-lift, we define π̃, π̃0, π0 and ρ′0 as in the l 6= 2
case. When T/T0 unramified, since k0 is either 1 or even, using Lemma 1.10.23 we have k0 = 1, saying
that rl(π̃0) = ρ′0. Using Proposition 1.10.20, we must have k = 1. When T/T0 is totally ramified, by
Lemma 1.10.23, we have k0 = 1, or k0 = 2 and q(ρ′0) + 1 is divided by 4. Using Proposition 1.10.20
and similar argument to the l 6= 2 case we have k = k0 and q(ρ′0) = q(ρ). Conversely, if k = 1,
using Theorem 0.2.3 π = ρ has a Ql-lift which is σ-invariant. If k = 2, T/T0 is totally ramified and
q(ρ0) + 1 = q(ρ) + 1 is not divided by 4, let π̃0 be an integral cuspidal representation of GLn(F0) over
Ql, such that rl(π̃0) = Z(ρ0, ρ0ν0). By Lemma 1.10.23 π̃ = BCQl(π̃0) is cuspidal. Thus by Theorem
1.10.17 we have rl(π̃) = Z(ρ, ρν) = π, finishing the proof of (1).

Finally we prove (2). Comparing the supercuspidal support, we must have o(ρ) is even and
ρσ ∼= ρνo(ρ)/2. In particular we have l 6= 2. When T/T0 is unramified if we assume on the contrary
that there exists a σ-invariant Ql-lift of π, then using the same argument as (1), there exists a σ-
invariant supercuspidal representation ρ′ of GLn/k0

(F ), such that

Z(ρ, ..., ρνk−1) = π = Z(ρ′, ..., ρ′νk0−1).

Since both ρ and ρ′ are supercuspidal, k = k0 and ρ is isomorphic to ρ′ twisted by a power of ν,
which must be σ-invariant, contradictory! When T/T0 is totally ramified, we let ρ̃ be a Ql-lift of ρ
as a cuspidal representation of GLn/k(F ). Then ρ̃σ is not isomorphic to ρ̃. Using Theorem 1.10.11,

there exists ρ̃0 as a supercuspidal representation of GL2n/k(F0) over Ql, such that BCQl(ρ̃0) = ρ̃× ρ̃σ.
We write ρ0 = rl(ρ̃0) as a cuspidal represenation of GL2n/k(F0). Using the same proof as the in first
paragraph of Proposition 1.10.20, ρ0 is supercuspidal. Since by definition q(ρ0) = q(ρ)2, we have
2o(ρ0) = o(ρ), thus k/2 = o(ρ0)ls and Z(ρ0, ..., ρ0ν

k/2) is cuspidal.

Lemma 1.10.25. We may choose π̃0 to be a Ql-lift of Z(ρ0, ..., ρ0ν
k/2) as a cuspidal representation

of GLn(F0), such that π̃ = BCQl(π̃0) is cuspial.

Proof. For l0, t0 introduced as in the proof of Lemma 1.10.23 and for ξ0 as a Gal(t0/l0)-regular
character of t×0 characterizing the “level 0 part” of π̃0, using Proposition 3.5.14, π̃ is cuspidal if
and only if ξ2

0 is Gal(t0/l0)-regular. Let s′ be the maximal positive integer such that ls
′

divides the
cardinality of t×0 , then it is elementary to prove that for ζ ′ as a ls

′
-th primitive root of unity, l0[ζ ′] ∼= t0.

Thus if we choose ξ1 to be a character of t×0 of order a power of l, such that the order of ξ0ξ1 is divided
by ls

′
, then we have

t0 ∼= l0[ξ0ξ1] ∼= l0[(ξ0ξ1)2].

Replacing ξ0 by ξ0ξ1, the corresponding π̃ is cuspidal.

For such π̃0 and π̃, by Theorem 1.10.17 we get rl(π̃) = π, which finishes the proof.
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Combining with [KM20], Theorem 3.4 and Theorem 0.2.1 for R = Ql, we have

Corollary 1.10.26. For π a cuspidal representation of G over Fl having a σ-invariant Ql-lift, that
is, satisfying the corresponding condition of Theorem 1.10.24, it is distinguished by Gτ for any τ as a
unitary involution.

Remark 1.10.27. When T/T0 is totally ramified, Remark 1.8.6 indicates that all the σ-invariant
cuspidal representations are distinguished, which is stronger that the corollary above. When T/T0 is
unramified, it is interesting to know if the condition of being distinguished in the corollary is necessary
or not, which is beyond the scope of the author.
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Chapter 2

Problem of distinction related to
orthogonal subgroups of GLn(F )

2.1 Notation

2.1.1 General notation

Let F be a non-archimedean locally compact field of residue characteristic p 6= 2. We write oF , pF ,
k for its ring of integers, the corresponding maximal ideal and its residue field respectively. We fix
ψF : F → C× an additive character which is trivial on pF but not on oF .

Fix n a positive integer. We write G = GLn(F ) as a locally profinite group. By representations of
G and its closed subgroups, we always mean complex smooth representations. For a closed subgroup
H of G, an element g ∈ G and a representation π of H, we write Hg := {g−1hg|h ∈ H} as a subgroup
of G, and πg : g 7→ π(ghg−1) as its representation. We write π∨ for the contragredient of π. Given
τ a continuous involution of G, we write πτ for the representation π ◦ τ of τ(H). We say that π is
τ -selfdual if τ(H) = H and πτ ∼= τ∨.

Given π a representation of H and µ a representation of Gτ ∩H, we say that π is µ-distinguished
if HomGτ∩H(π, µ) 6= 0, where Gτ denotes the subgroup of G consisting of the elements fixed by τ . In
particular, if µ is the trivial character, we simply call π Gτ ∩H-distinguished.

2.1.2 A brief recall of the simple type theory

In this subsection, we follow the introduction of the simple type theory given in chapter 1, section 3
summarizing results of [BK93], [BH96], [BH14b]. Since it seems redundant to repeat the same words
again, we simply recall the necessary notation.

We write [a, β] for a simple stratum in Mn(F ), where a is a hereditary order in Mn(F ) and β is an
element in GLn(F ) such that

(1) the F -algebra E = F [β] is a field, where [E : F ] = d and n = md for a positive integer m;
(2) E× normalizes a×.
We write B for the centralizer of E in Mn(F ) identifying with Mm(E), and b = a ∩ B for the

hereditary order in B. We denote by pa (resp. pb) the Jacobson radical of a (resp. b), and U1(a)
(resp. U1(b)) the compact open pro-p-subgroup 1 + pa (resp. 1 + pb) of GLn(F ) (resp. B×).

Associated to [a, β], there are compact open subgroups

H1(a, β) ⊂ J1(a, β) ⊂ J(a, β)

of a×, and there is a finite set C(a, β) of characters of H1(a, β), depending on the choice of ψF , called
simple characters. We denote by J(a, β) the subgroup of G generated by J(a, β) and the normalizer of

113
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b× in B× which is compact modulo the centre F×. We write J , J , J1, H1 for short for J(a, β), J(a, β),
J1(a, β), H1(a, β) respectively if a and β are clear to us. When b is a maximal order in B, we call the
simple stratum [a, β] and the simple characters in C(a, β) maximal. In this case b×/1 + pb ∼= GLm(l),
where l is the residue field of E.

We denote by (J ,Λ) an extended maximal simple type (we always write simple type for short)
in GLn(F ), which means that there are a maximal simple stratum [a, β] in Mn(F ) and a maximal
simple character θ ∈ C(a, β) such that J(a, β) = J and θ is contained in the restriction of Λ to
H1(a, β). We write η for the Heisenberg representation associated to θ. For any representation κ
of J extending η, there is, up to isomorphism, a unique irreducible representation ρ of J such that
Λ ∼= κ⊗ρ, and moreover ρ|J is the inflation of a supercuspidal representation of J/J1 ∼= GLm(l). For
π a supercuspidal representation of G, there exists a unique G-conjugacy class of simple type (J ,Λ)
such that π ∼=c-IndGJΛ, the compact induction of Λ.

For [a, β] a simple stratum in Mn(F ) and [a′, β′] a simple stratum in Mn′(F ) with n, n′ ≥ 1, and
for a given F -algebra isomorphism φ : F [β]→ F [β′] such that φ(β) = β′, we denote by

tβ,β
′

a,a′ : C(a, β)→ C(a′, β′)

the corresponding transfer map. We use capital Greek letter Θ to denote the endo-class of a simple
character θ and Θπ to denote the endo-class of π, a supercuspidal representation of G. We write
d = [F [β] : F ] for the degree of Θ which does not depend on the choice of [a, β] and θ, but only on Θ
itself.

Let Θ be as above and let T be its tame parameter field with respect to E/F , that is, the maximal
tamely ramified subextension of E over F . Noting that T only depends on Θ up to F -isomorphism,
so it is also called the tame parameter field of Θ. Let C ∼= Mn/t(T ) denote the centralizer of T in
Mn(F ), where t = [T : F ]. The intersection c = a ∩ C is an order in C, which gives rise to a simple
stratum [c, β]. The restriction of θ to H1(c, β), denoted by θT and called the interior T/F -lift of θ, is
a simple character associated to the simple stratum [c, β]. If we change our choice of simple stratum
[a, β] but fix T ↪→ Mn(F ) unchanged, then the map

a 7→ a ∩ C

is injective from the set of hereditary orders in Mn(F ) normalized by T× to the set of hereditary orders
in C (see [BH96], section 2). For [a, β1], [a, β2] two simple strata, and θ1 ∈ C(a, β1), θ2 ∈ C(a, β2) two
simple characters, such that θ1 and θ2 have the same tame parameter field T , if

C(c, β1) = C(c, β2) and (θ1)T = (θ2)T ,

then we have

C(a, β1) = C(a, β2) and θ1 = θ2

(see [BH96], Theorem 7.10, Theorem 7.15). In particular, when β1 = β2 = β, the interior T/F -lift is
injective from C(a, β) to C(c, β).

2.2 Symmetric matrices and orthogonal involutions

In this section, we recall some basic but important results about symmetric matrices and orthogonal
involutions. Let E be a non-archimedean locally compact field of residue characteristic p 6= 2, let $E

be a uniformizer of E and let m be a fixed positive integer.
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2.2.1 Orbits of symmetric matrices, orthogonal involutions and orthogonal groups

Let S denote the set of the symmetric matrices in GLm(E), that is

S := {ε ∈ GLm(E)| tε = ε}.

Especially, if we write

Jm :=



0 0 . . . 0 1

0 . .
.
. .
.

1 0
... . .

.
. .
.
. .
. ...

0 1 . .
.
. .
.

0
1 0 . . . 0 0


∈ Mm(E),

then it is an element in S.

We consider GLm(E)-action on S as follows:

ε · g := tgεg, g ∈ GLm(E), ε ∈ S.

We say that two elements in S are similar if they are in the same GLm(E)-orbit. For ε ∈ S, we denote
by discE(ε) its discriminant, saying the image of det(ε) in E×/E×2 which is a group isomorphic to
Z/2Z× Z/2Z. We denote by1

HasseE(ε) =
∏
i<j

HilE(ai, aj) ∈ {1,−1}

its Hasse invariant, where diag(a1, ..., am) denotes a diagonal matrix similar to ε, and

HilE(a, b) =

{
1, if ax2 + by2 = 1 has a solution (x, y) ∈ E × E;

−1, otherwise.

denotes the Hilbert symbol for a, b ∈ E×. Noting that the definition of HasseE(ε) doesn’t depend on
the choice of diag(a1, ..., am) similar to ε (see [O’M71], 63.13). When E is clear to us, we simply write
disc, Hil and Hasse instead.

The following proposition characterizes all the GLm(E)-orbits in S.

Proposition 2.2.1 ( [O’M71], Theorem 63.20). (1) When m = 1, there are four GLm(E)-orbits in
S represented by elements in E×/E×2;

(2) When m ≥ 2, any two GLm(E)-orbits in S are different if and only if their discriminants or
Hasse invariants are different. Moreover,

• When m ≥ 3 there are eight GLm(E)-orbits;

• When m = 2, any ε ∈ S with disc(ε) = −1 satisfies Hasse(ε) = 1, and there are seven GLm(E)-
orbits.

We may also consider the GLm(oE)-orbits of S. We consider α = (α1, ..., αr) of certain triples
αi = (ai,mi, εi), such that a1 > ... > ar is a decreasing sequence of integers, and m1, ...,mr are

1In [Hak13] Hakim used i ≤ j instead of i < j in the product for the definition, however in the proof of various propo-
sitions (for example, Proposition 6.6. of ibid.) he indeed used the second definition (i < j). This little inconsideration
of course doesn’t affect his results and proofs.
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positive integers such that m1 + ... + mr = m, and ε1, ..., εr are either 1 or ε0, where ε0 ∈ o×E\o
×2
E is

fixed. For each α = (α1, ..., αr) as above, we introduce a symmetric matrix

$α
E = $α1

E ⊕ ...⊕$
αr
E ,

where
$αi
E := $ai

E diag(1, ..., 1, εi) ∈ GLmi(E).

The following proposition studies all the GLm(oE)-orbits.

Proposition 2.2.2 ( [O’M71], §92). Each GLm(oE)-orbit in S contains exactly one representative of
the form $α

E defined as above.

Now for ε ∈ S a given symmetric matrix, we denote by

τε(x) := ε−1 tx−1ε for any x ∈ GLm(E)

the orthogonal involution corresponding to ε. The group GLm(E) acts on the set of orthogonal
involutions by

g · τε = τε·g = τ tgεg.

Given ε1, ε2, it is elementary to see that τε1 = τε2 if and only if ε1E
× = ε2E

×. Thus we build up
a bijection between S/E× and the set of orthogonal involutions, which is given by εE× 7→ τε. The
following proposition studies the GLm(E)-orbits of S/E×, thus classifies all the GLm(E)-orbits of
orthogonal involutions.

Proposition 2.2.3. (1) When m = 1, there is one GLm(E)-orbit in S/E×;
(2) When m ≥ 3 is odd, there are two GLm(E)-orbits in S/E×. A representative in each orbit

can be chosen to have any given discriminant, and two representatives with the same discriminant
represent different orbits if and only if they have different Hasse invariants;

(3) When m = 2, there are four GLm(E)-orbits in S/E× determined by the discriminants;
(4) When m ≥ 4 is even, the discriminant leads to a map from (S/E×)/GLm(E) to E×/E×2

which is surjective. The fiber corresponding to (−1)m(m−1)/2, the discriminant of Jm, is composed
of two orbits distinguished exactly by the Hasse invariant, and the other three fibers are composed of
exactly one orbit.

Proof. The proof is a refinement of Proposition 2.2.1. For more detail, see [O’M71], §63.

For τ = τε an orthogonal involution, we denote by

GLm(E)τ := {x ∈ GLm(E)|τ(x) = x}

the orthogonal group corresponding to τ .

Lemma 2.2.4. Let τ1 and τ2 be two orthogonal involutions such that GLm(E)τ1 = GLm(E)τ2, then
τ1 = τ2. As a result, τ 7→ GLm(E)τ gives a bijection between GLm(E)-orbits of orthogonal involutions
and the set of GLm(E)-conjugacy classes of orthogonal subgroups of GLm(E).

Proof. For a proof, see [Hak13], Lemma 2.7.

Combining Proposition 2.2.3 and Lemma 2.2.4, we get all the possible GLm(E)-conjugacy classes
of orthogonal groups.
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Proposition 2.2.5. (1) When m = 1, there is only one orthogonal group {1,−1};
(2) When m ≥ 3 is odd, there are two GLm(E)-conjugacy classes of orthogonal groups, the one

corresponding to the symmetric matrix Jm is split, and the other one is not quasisplit;
(3) When m = 2, there are four GLm(E)-conjugacy classes of orthogonal groups, the one corre-

sponding to the symmetric matrix Jm is split, and the other three are quasisplit but not split;
(4) When m ≥ 4 is even, there are five GLm(E)-conjugacy classes of orthogonal groups. The one

corresponding to the symmetric matrix Jm is split, and the one whose corresponding symmetric matrix
is in the same fiber as Jm but not similar to Jm, as mentioned in Proposition 2.2.3, is not quasisplit,
and the other three orthogonal groups are quasisplit but not split.

2.2.2 τ-split embedding

Now for Em a field extension of degree m over E and ε ∈ S, we say that an E-algebra embedding
ι : Em → Mm(E) is ε-symmetric if its image consists of ε-symmetric matrices, or in other words,

ε−1 tι(x)ε = ι(x) for any x ∈ Em.

For τ = τε an orthogonal involution, we say that Em is τ -split if there exists an embedding ι as above
such that it is ε-symmetric, or equivalently for any x ∈ E×m, we have τ(ι(x)) = ι(x)−1. In particular, we
get τ(E×m) = E×m. We have the following important proposition which gives all the possible symmetric
matrices via a given symmetric embedding:

Proposition 2.2.6. Let τ = τε0 be a given orthogonal involution with ε0 ∈ S and let

ι0 : Em → Mm(E)

be an ε0-symmetric embedding. Then any symmetric matrix ε in S such that there exists

ι : Em → Mm(E)

as an ε-symmetric embedding is similar to an element in ε0ι0(E×m).

Proof. We follow the proof of [Hak13], Proposition 4.3. For ε ∈ S and corresponding ι satisfying our
condition, by the Skolem-Noether theorem, there exists g ∈ GLm(E) such that

ι(x) = g−1ι0(x)g

for any x ∈ E×m. Then we have

τ0(ι0(x)) = ι0(x)−1 and τ(ι(x)) = ι(x)−1,

thus
τ(g)−1ε−1ε0ι0(x)−1ε−1

0 ετ(g) = τ(g)−1τ(ι0(x))τ(g) = ι(x)−1 = g−1ι0(x)−1g,

which means that
ε−1

0 ετ(g)g−1 = ε−1
0

tg−1εg−1

commutes with any ι0(x) ∈ ι0(E×m). Thus ε−1
0

tg−1εg−1 ∈ ZMm(E)(ι0(Em))\{0} = ι0(E×m), which
means that ε is similar to an element in ε0ι0(E×m).

In particular, we call an E-algebra embedding

ι : Em → Mm(E),

J-symmetric if it is Jm-symmetric, omitting the size of matrices. The following proposition ensures
the existence of J-symmetric embedding when Em/E is tamely ramified.
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Proposition 2.2.7. When Em/E is tamely ramified, there exists a J-symmetric embedding ι.

Proof. See for example [HL12], Proposition 5.15 or [Hak13], §4.2.

Remark 2.2.8. We don’t know whether Proposition 2.2.7 is true or not when Em/E is not necessarily
tamely ramified.

2.2.3 Calculation of Hilbert symbol and Hasse invariant in certain cases

In this subsection, we display elementary results for calculating Hilbert symbol and Hasse invariant.

Lemma 2.2.9 ( [HL12], Lemma 5.9). If ε ∈ GLm(oE) ∩ S, then Hasse(ε) = 1.

Lemma 2.2.10. Let A ∈ Mn1(E) and B ∈ Mn2(E) be two symmetric matrices, then

Hasse

(
A 0
0 B

)
= Hasse(A) ·Hasse(B) ·Hil(det(A),det(B)).

Proof. We assume that A is similar to diag(a1, ..., an1) and B is similar to diag(b1, ..., bn2), thus by
definition

Hasse

(
A 0
0 B

)
= Hasse(diag(a1, ..., an1 , b1, ..., bn2)) = Hasse(A) ·Hasse(B)

n1,n2∏
i,j=1

Hil(ai, bj)

= Hasse(A) ·Hasse(B) ·Hil(det(A), det(B)).

Corollary 2.2.11. Let Ai ∈ Mni(E) be symmetric matrices for i = 1, ..., k such that for any 1 ≤ i <
j ≤ k, we have Hil(det(Ai), det(Aj)) = 1. Then

Hasse(diag(A1, ..., Ak)) =
k∏
i=1

Hasse(Ai).

Proof. We use Lemma 2.2.10 for k − 1 times to finish the proof.

Lemma 2.2.12. For ε1, ε2 ∈ o×E and $E a uniformizer of E, we denote by l the residue field of E,
and ε1, ε2 the image of ε1, ε2 in l respectively, then:

(1)

Hil($Eε1, $Eε2) =

{
1 if − ε1/ε2 ∈ l×2,

−1 otherwise.

(2)

Hil(ε1, $Eε2) =

{
1 if ε1 ∈ l×2,

−1 otherwise.

Proof. For (1) we notice that
Hil($Eε1, $Eε2) = 1

if and only if
Z2 + ε2/ε1 −$EC

2/ε1 = 0 has a solution for Z ∈ o×E and C ∈ oE .
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Since if the equation $Eε1X
2 + $Eε2Y

2 = 1 has a solution, comparing the order we must have
X−1, Y −1 ∈ pE and X/Y ∈ o×E . Thus we can change the variables Z = X/Y and C = $−1

E Y −1.
Using the Hensel lemma for the polynomial P (Z) = Z2 + ε2/ε1 −$EC

2/ε1 and the fact that p 6= 2,
the condition above is true if and only if

Z
2

= −ε2/ε1 has a solution for Z ∈ l×,

which is equivalent to −ε1/ε2 ∈ l×2. Thus we finish the proof of (1), and the proof of (2) is similar.

Remark 2.2.13. In the latter sections, we mainly consider two cases: E = F or E/F is a field
extension of degree d given by a certain simple stratum related to a given supercuspidal representation.
In the former case, we have m = n; In the latter case, we have m such that n = md with d = [E : F ].
Moreover, we will simply write det, disc and Hasse for short when E = F .

From now on until the end of this section, we assume E to be a tamely ramified extension of
degree d = ef over F , where f denotes its residue class degree and e denotes its ramification index.
Using Proposition 2.2.7, we fix a J-symmetric embedding E ↪→ Md(F ). We fix ε0 ∈ o×E\o

×2
E and $E

a uniformizer of E, such that E×/E×2 = {1, ε0, $E , ε0$E}. By Section 3 of [Hak13], we have three
different cases:

Proposition 2.2.14. (1) NE/F (E×)F×2/F×2 = {1} if and only if E contains three quadratic subex-
tensions over F , and exactly one of them is unramified. Thus both e and f are even;

(2) NE/F (E×)F×2/F×2 is of order 2 if and only if E contains exactly one quadratic subextension
over F . Thus either e or f is even;

(3) NE/F (E×)F×2/F×2 = F×/F×2 if and only if E contains no quadratic subextension over F .
Thus d = ef is odd.

For case (1), we have the following lemma:

Lemma 2.2.15. If NE/F (E×)F×2/F×2 = {1}, then we may further choose the uniformizer $E of E,
such that

Hasse(Jd$E) = 1 and Hasse(Jd$Eε0) = −1,

where Jd$E and Jd$Eε0 are symmetric matrices in GLd(F ).

Proof. We may use [Hak13], Proposition 6.6 directly.

For case (2), first we assume that f is odd and e is even. We have:

Lemma 2.2.16. For f odd and e even, we have Hasse(Jd$E) 6= Hasse(Jd$Eε0).

Proof. We use the proof of [Hak13], Proposition 6.6 directly, except that right now f is odd instead
of being even. Our question reduces to calculate the following term

Hasse(diag(u1, ..., uf , u1$F , ..., uf$F )) (with u1, ..., uf ∈ o×F )

in the case where
∏f
i=1 ui ∈ F×2 or ε′0F

×2 respectively with ε′0 ∈ o×F \o
×2
F fixed, and to show that they

are different. From the calculation in loc. cit., we have

Hasse(diag(u1, ..., uf , u1$F , ..., uf$F )) = (

f∏
i=1

Hil(ui, $F ))2f−1 ·Hil($F , $F )f(f−1)/2

= Hil(

f∏
i=1

ui, $F ) ·Hil($F , $F )f(f−1)/2
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Thus by Lemma 2.2.12.(2), when
∏f
i=1 ui ∈ F×2 or ε′0F

×2 respectively, the corresponding terms are
different.

Corollary 2.2.17. Under the assumption of Lemma 2.2.16, the Hasse invariants

Hasse(diag(Jd$E , ..., Jd$E , Jd$E)) and Hasse(diag(Jd$E , ..., Jd$E , Jd$Eε0))

are different, where the two matrices are in Mm(Md(F )) = Mmd(F ).

Proof. We write

A = diag(Jd$E , ..., Jd$E) ∈ Mm−1(Md(F )) = M(m−1)d(F ),

then using Lemma 2.2.10, we have

Hasse(diag(Jd$E , ..., Jd$E , Jd$E)) = Hasse(A) ·Hasse(Jd$E) ·Hil(det(A),det(Jd$E))

and

Hasse(diag(Jd$E , ..., Jd$E , Jd$Eε0)) = Hasse(A) ·Hasse(Jd$Eε0) ·Hil(det(A),det(Jd$Eε0)).

Thus using Lemma 2.2.16, we only need to show that

Hil(det(A), det(Jd$E)) = Hil(det(A), det(Jd$Eε0)),

which follows from the fact that det(ε0) = NE/F (ε0) ∈ F×2 when e is even.

Now we assume that e is odd. First we consider the case where f is even. In this case, NE/F (ε0) /∈
F×2. We choose $′E to be another uniformizer of E such that NE/F ($′E) ∈ F×2.

Lemma 2.2.18. If e and m are odd and if f is even, then

Hasse(diag(Jd$E , ...Jd$E , Jd$
′
E)) = 1

and

Hasse(diag(Jd$Eε0, ...Jd$Eε0, Jd$
′
Eε0)) = −1,

where the two matrices are in Mm(Md(F )) = Mmd(F ).

Proof. To begin with, we state and proof the following general lemma which is useful not only in this
proof, but in the latter sections.

Lemma 2.2.19. Let E/L be a finite extension of non-archimedean locally compact fields of residue
characteristic p 6= 2 with odd degree, and let

L×/L×2 → E×/E×2

be the homomorphism induced by the canonical embedding L ↪→ E, then the homomorphism above
induces two isomorphisms

L×/L×2 ∼= E×/E×2 and o×L/o
×2
L
∼= o×E/o

×2
E .
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Proof. The embedding L ↪→ E leads to the following embedding:

L×/E×2 ∩ L× ↪→ E×/E×2.

First we have L×2 ⊂ E×2 ∩ L×. And for x ∈ E×2 ∩ L×, let x = y2 with y ∈ E×. Thus L[y] is a
subextension of E over L which is of degree 1 or 2. Since [E : L] is odd, we must have L[y] = L and
y ∈ L. So x ∈ L×2, which means that E×2 ∩L× = L×2 since x is arbitrary. Thus the homomorphism
in the lemma is injective, which is an isomorphism since [E× : E×2] = [L× : L×2] = 4.

Moreover, since |o×L/o
×2
L | = |o

×
E/o

×2
E | = 2, the isomorphism above also leads to an isomorphism

o×L/o
×2
L
∼= o×E/o

×2
E .

Come back to the original proof. We write L for the maximal unramified subextension of E over
F , then [L : F ] = f and [E : L] = e. Since e is odd, by Lemma 2.2.19 we have an isomorphism

o×E/o
×2
E
∼= o×L/o

×2
L .

Since the result doesn’t depend on the choice of $E , $′E and ε0 as representatives in E×/E×2,
we may assume that $e

E = $L is a uniformizer in L, and $′eE = $′L is a uniformizer in L such
that NL/F ($′L) ∈ F×2, and ε0 ∈ o×L\o

×2
L . From the construction of the J-symmetric embedding in

Proposition 2.2.7 (see the proof of [Hak13], Proposition 6.6 for more details), we may write

Jd$E = diag(J(e−1)f , Jf$L) and Jd$
′
E = diag(Je(f−1), Jf$

′
L)

and
Jd$Eε0 = diag(J(e−1)f ε0, Jf$Lε0) and Jd$

′
Eε0 = diag(Je(f−1)ε0, Jf$

′
Lε0).

Since det(J(e−1)f ) ∈ o×F , and since det(diag(Jf$L, ..., Jf$L, Jf$
′
L)) is of even order in F×, using

Lemma 2.2.9 and Corollary 2.2.11, we get

Hasse(diag(Jd$E , ..., Jd$E , Jd$
′
E)) = Hasse(diag(Jf$L, ..., Jf$L, Jf$

′
L)), (2.2.1)

where the matrix in the Hasse of the right hand side is of size fm. Similarly we have

Hasse(diag(Jd$Eε0, ..., Jd$Eε0, Jd$
′
Eε0)) = Hasse(diag(Jf$Lε0, ..., Jf$Lε0, Jf$

′
Lε0)), (2.2.2)

where the matrix in the Hasse of the right hand side is also of size fm. Since L/F is unramified, we
may write $L = $F v and $′L = $F v

′ with v, v′ ∈ o×T , thus the term in (2.2.1) equals

Hasse(diag(Jfv$F , ..., Jfv$F , Jfv
′$F )), (2.2.3)

and the term in (2.2.2) equals

Hasse(diag(Jfvε0$F , ..., Jfvε0$F , Jfv
′ε0$F )). (2.2.4)

Since f is even, det(Jf$F ) and det(Jfv
′$F ) are of even order in F×, thus by Lemma 2.2.11, (2.2.3)

equals
Hasse(Jfv$F )m−1 ·Hasse(Jfv

′$F ) = Hasse(Jfv
′$F )

and similarly (2.2.4) equals

Hasse(Jfvε0$F )m−1 ·Hasse(Jfv
′ε0$F ) = Hasse(Jfv

′ε0$F ).
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We assume that Jfv
′ is similar to diag(1, ..., 1, u1) and Jfv

′ε0 is similar to diag(1, ..., 1, u2) with u1, u2 ∈
o×F , then (2.2.3) equals

Hasse(diag($F , ..., $F , $Fu1)),

and (2.2.4) equals

Hasse(diag($F , ..., $F , $Fu2)).

By direct calculation, we get

det(Jfv
′$F ) = (−1)f(f−1)/2NL/F ($′L) ∈ (−1)f(f−1)/2F×2

and

det(Jfv
′ε0$F ) = (−1)f(f−1)/2NL/F (ε0$

′
L) ∈ (−1)f(f−1)/2NL/F (ε0)F×2,

where NL/F (ε0) ∈ o×F \o
×2
F .

If −1 ∈ F×2 or if −1 /∈ F×2 and 4|f , then det(Jfv
′) ∈ o×2

F and det(Jfv
′ε0) ∈ o×F \o

×2
F . We may

assume u1 = 1 and u2 ∈ o×F \o
×2
F , where in the latter case we may further assume u2 = −1. So by

Lemma 2.2.12.(1), when −1 ∈ F×2 we have

Hasse(diag($F , ..., $F , $Fu1)) = 1

and

Hasse(diag($F , ..., $F , $Fu2)) = (−1)f−1 = −1.

When −1 /∈ F×2 and 4|f , we have

Hasse(diag($F , ..., $F , $Fu1)) = (−1)f(f−1)/2 = 1,

and

Hasse(diag($F , ..., $F ,−$F )) = (−1)(f−1)(f−2)/2 = −1.

If −1 /∈ F×2 and 4 - f , then det(Jfv
′) ∈ o×F \o

×2
F and det(Jfv

′ε0) ∈ o×2
F . We may assume u1 = −1

and u2 = 1 and we have

Hasse(diag($F , ..., $F ,−$F )) = (−1)(f−1)(f−2)/2 = 1

and

Hasse(diag($F , ..., $F , $F )) = (−1)f(f−1)/2 = −1.

Thus we finish the proof.

Finally, we drop the assumption that f is even.

Lemma 2.2.20. If e is odd, m is even and one of the three cases happens:

• 2|d;

• 2 - d and 4|m;

• 2 - d, 4 - m and −1 ∈ F×2,

then Hasse(diag(Jd$E , ..., Jd$E , Jd$Eε0)) = −1, where the matrix in Hasse is in Mmd(F ).
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Proof. We write L for the maximal unramified extension of F contained in E, thus [L : F ] = f and
[E : L] = e. Since e is odd, by Lemma 2.2.19 we get

o×E/o
×2
E
∼= o×L/o

×2
L .

Since the result doesn’t depend on the choice of $E and ε0 as representatives in E×/E×2, we may
choose $E as a uniformizer of E such that $e

E = $L is a uniformizer in L, and ε0 ∈ o×L\o
×2
L . As in

Lemma 2.2.18, we may write

Jd$E = diag(J(e−1)f , Jf$L) and Jd$Eε0 = diag(Je(f−1)ε0, Jf$Lε0).

Thus by Corollary 2.2.11 and the fact that m is even, we get

Hasse(diag(Jd$E , ..., Jd$E , Jd$Eε0)) = Hasse(diag(Jf$L, ..., Jf$L, Jf$Lε0)), (2.2.5)

where the last term in the Hasse is a matrix of size fm. Since L/F is unramified, we may write
$L = $F v with v ∈ o×T , thus the term in (2.2.5) equals

Hasse(diag(Jfv$F , ..., Jfv$F , Jfv$F ε0)).

If we assume that Jfv is similar to diag(1, ..., 1, u1), and Jfvε0 is similar to diag(1, ..., 1, u2), then we
get u2/u1 ∈ o×F \o

×2
F . Moreover we get

Hasse(diag(Jfv$F , ..., Jfv$F , Jfv$F ε0)) = Hasse(diag(Im(f−1)$F , u1$F , ..., u1$F , u2$F )), (2.2.6)

where the last diagonal matrix in Hasse is of size fm.
If −1 ∈ F×2, we may choose either u1 = 1 and u2 = ε′0, or u1 = ε′0 and u2 = 1 with ε′0 ∈ o×F \o

×2
F .

Thus in the former case, by Lemma 2.2.12.(1) the (2.2.6) equals

Hasse(diag(Imf−1$F , $F ε
′
0)) = (−1)mf−1 = −1,

and in the latter case, by Lemma 2.2.12.(1) the (2.2.6) equals

Hasse(diag(Imf−m+1$F , Im−1$F ε
′
0)) = (−1)(mf−m+1)(m−1) = −1.

If −1 /∈ F×2, we may assume ε′0 = −1, u1 equals 1 or −1 and u2 = −u1, and for the two cases
using Lemma 2.2.12.(1) the (2.2.6) equals

Hasse(diag(Ifm−1$F ,−$F )) = (−1)(fm−1)(fm−2)/2 = −1

or
Hasse(diag(I(f−1)m+1$F ,−Im−1$F )) = (−1)fm(fm−1)/2−((f−1)m+1)(m−1) = −1,

where in both cases we use the fact that 4|fm and 2|m, thus we finish the proof.

Finally we have the following lemma which completes Lemma 2.2.20.

Lemma 2.2.21. If d is odd, m is even not divided by 4 and −1 /∈ F×2, then

Hasse(diag(Jd$E , ..., Jd$E , Jd$E)) = −1,

where the matrix is in Mmd(F ).

Proof. We may follow the same proof as Lemma 2.2.20, which finally shows that

Hasse(diag(Jd$E , ..., Jd$E , Jd$E)) = Hasse(Ifm$F ).

Since −1 /∈ F×2, by Lemma 2.2.12.(1) the latter term equals (−1)fm(fm−1)/2, which is −1 since under
our assumption fm ≡ 2 (mod 4). Thus we finish the proof.
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2.3 τ-selfdual type theorem

Let π be a supercuspidal representation of G. Let τ = τε be the orthogonal involution corresponding
to a symmetric matrix ε, such that for H = Gτ as the orthogonal group corresponding to τ , it satisfies
the condition 2 of Theorem 0.3.1 with respect to π. For a an oF -subalgebra of Mn(F ), we define

τ(a) := ε−1 taε

which is an oF -subalgebra of Mn(F ). We say that a is τ -stable if τ(a) = a. For any g ∈ G, it is easy
to show that τ(ag) = τ(a)τ(g).

In this section, we follow the strategy in chapter 1, section 5 to prove the following theorem:

Theorem 2.3.1. For π and τ as above, there exists a maximal simple stratum [a, β] and a simple
character θ ∈ C(a, β) contained in π, such that

(1) τ(a) = a and τ(H1(a, β)) = H1(a, β);

(2) θ ◦ τ = θ−1;

(3) τ(β) = β−1.

As a corollary of Theorem 2.3.1, we have the following τ -selfdual type theorem.

Theorem 2.3.2. For π and τ as above, there exists a τ -selfdual simple type (J ,Λ) that compactly
induces π.

Proof. We only need to follow the proof of Theorem 1.5.3, with Theorem 1.5.2 replaced by Theorem
2.3.1.

Now we state the following general theorem which implies Theorem 2.3.1.

Theorem 2.3.3. Let [a, β] be a maximal simple stratum in Mn(F ), let T be the maximal tamely
ramified subextension of E/F , let Tm be the unramified extension of degree m over T and let θ ∈ C(a, β)
be a simple character. Let τ be an orthogonal involution of G such that H = Gτ satisfies the condition 2
of Theorem 0.3.1. Then there exist a maximal simple stratum [a′, β′] in Mn(F ) and a simple character
θ′ ∈ C(a′, β′) such that

(1) τ(a′) = a′ and τ(H1(a′, β′)) = H1(a′, β′);

(2) θ′ and θ are in the same endo-class and θ′ ◦ τ = θ′−1;

(3) τ(β′) = β′−1.

For π given as in Theorem 2.3.1, if we choose [a, β] to be a maximal simple stratum and θ ∈ C(a, β)
to be a simple character contained in π, then Theorem 2.3.3 implies Theorem 2.3.1. So from now on,
we focus on the proof of Theorem 2.3.3. We write E = F [β], d = [E : F ] and m = n/d. In the
following subsections, we gradually consider the following three cases: E/F is maximal and totally
wildly ramified, E/F is maximal and the general case.

To begin with, we state the following lemmas which will be useful in our future proof.

Lemma 2.3.4. Let [a, β] be a maximal simple stratum in Mn(F ) and let θ ∈ C(a, β), then for τ as
an orthogonal involution on G, the simple characters θ ◦ τ and θ−1 are in the same endo-class. In
particular, if τ(a) = a, then θ ◦ τ is conjugate to θ−1 by an element in U(a).

Proof. We follow the same proof of Lemma 1.5.7, with σ in loc. cit. replaced by the trivial action.
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Lemma 2.3.5. Let τ = τε be the orthogonal involution on G corresponding to a symmetric matrix ε,
let [a, β] be a maximal simple stratum in Mn(F ) and let θ ∈ C(a, β) be a simple character, such that

τ(a) = a, θ ◦ τ = θ−1 (and τ(β) = β−1).

Then for τ ′ = τε′ as the orthogonal involution on G corresponding to the symmetric matrix ε′ = tgεg,
we have

τ ′(ag) = ag, θg ◦ τ ′ = (θg)−1 (and τ ′(βg) = (βg)−1).

Proof. Same proof as Lemma 1.5.8.

Lemma 2.3.6. Let [a, β] be a maximal simple stratum in Mn(F ) and let θ ∈ C(a, β) such that τ(a) = a,
τ(H1(a, β)) = H1(a, β) and θ ◦ τ = θ−1. Then there exists a simple stratum [a, γ] such that θ ∈ C(a, γ)
and τ(γ) = γ−1.

Proof. For τ = τε with respect to a symmetric matrix ε, we define

σε(x) := ε−1 txε for any x ∈ Mn(F )

as an anti-involution on Mn(F ). Then we may use the same argument in Proposition 1.5.19, with σt
in loc. cit. replaced by σε, and the original proof in [Ste01], Theorem 6.3 works.

2.3.1 The maximal and totally wildly ramified case

In this subsection, we prove the following special case of Theorem 2.3.3.

Proposition 2.3.7. Let [a, β] be a simple stratum in Mn(F ) and let θ ∈ C(a, β) be a simple character,
where n = d and E/F is totally wildly ramified. Then for τ = τIn the orthogonal involution on
G, there exist a simple stratum [a′, β′] and a simple character θ′ ∈ C(a′, β′) such that (a′, θ′) is G-
conjugate to (a, θ) with the property τ(a′) = a′ and θ′ ◦ τ = θ′−1. Moreover, we may further assume
that a′ ⊂ Mn(oF ).

Proof. We explain how the proof of Proposition 1.5.9 could be used directly in our case. First up to
G-conjugacy, we may assume a to be the standard minimal order of Mn(F ). We have the following
lemma corresponding to Lemma 1.5.11:

Lemma 2.3.8. There exist g1 ∈ GLn(oF ) and a1, ..., an ∈ o×F such that

τ(g1)g−1
1 = A :=



0 0 . . . 0 a1

0 . .
.

. .
.
a2 0

... . .
.

. .
.
. .
. ...

0 an−1 . .
.
. .
.

0
an 0 . . . 0 0


.

Moreover, if we define a′′ := ag1, then we have τ(a′′) = a′′.

Proof. We choose a1 = ... = a(n−1)/2 = a(n+3)/2 = ... = an = 1, and a(n+1)/2 equals 1 or −1 to make
sure that det(A) = 1. Since the oF -lattice of rank n equipped with a quadratic form corresponding
to A is unimodular in the sense of [O’M71], §92, by §92:1 in loc. cit., there exists g1 ∈ GLn(oF ) such
that tg−1

1 g−1
1 = A, or equivalently τ(g1)g−1

1 = A. Then we may use the same proof as that in Lemma
1.5.11 to obtain τ(a′′) = a′′.
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By Lemma 2.3.8, we may choose g1 ∈ GLn(oF ) such that a′′ = ag1 is τ -invariant. Let M = o×F×...×
o×F be the subgroup of GLn(oF ) via diagonal embedding, let M ′′ = Mg1 and U ′′1 = U1g1 := U1(a)g1 .
Then using directly the proof of Proposition 1.5.9, with all the Galois involution in loc. cit. replaced
by the trivial action, there exists x ∈ M ′′U ′′1 such that for a′ = a′′x = ag1x and θ′ = θg1x, we have
τ(a′) = a′ and θ′ ◦ τ = θ′−1. Moreover since g1x ∈ g1M

′′U ′′1 = MU1g1 ⊂ GLn(oF ) and a ⊂ Mn(oF ),
we get a′ = ag1x ⊂ Mn(oF ).

2.3.2 The maximal case

In this subsection, we further use the result proved in §2.3.1 to consider the following special case of
Theorem 2.3.3.

Proposition 2.3.9. Let [a, β] be a simple stratum in Mn(F ) and let θ ∈ C(a, β) be a simple character
with n = d. Then for an orthogonal involution τ = τε which is G-conjugate to τJn, there exist a simple
stratum [a′, β′] and a simple character θ′ ∈ C(a′, β′) such that (a′, θ′) is G-conjugate to (a, θ) with the
property τ(a′) = a′, θ′ ◦ τ = θ′−1 and τ(β′) = β′−1.

Remark 2.3.10. If we assume E/F to be totally wildly ramified, then by direct calculation and Lemma
2.2.9, we have

det(In) = det(Jn) or det(−Jn) and Hasse(In) = Hasse(Jn) = Hasse(−Jn) = 1.

Thus In is G-conjugate to Jn or −Jn, which means that τIn is G-conjugate to τJn. Choosing ε = In,
Proposition 2.3.9 implies Proposition 2.3.7.

Remark 2.3.11. Since τJn represents the split orthogonal group, it satisfies the condition of Theorem
2.3.3, which justifies that Proposition 2.3.9 is indeed a special case of Theorem 2.3.3.

Proof. We write n = t(n/t) with t = [T : F ] and n/t a power of p as an odd number, where T is the
maximal tamely ramified subextension of E over F . We define

Jt,n/t := diag(Jt, ..., Jt)

as a matrix in Mn/t(Mt(F )) = Mn(F ). Using Lemma 2.2.9, we have

Hasse(Jt,n/t) = Hasse(Jn) = Hasse(−Jn) = 1.

Moreover by direct calculation we have

det(Jt,n/t) = det(Jn) or det(−Jn).

Thus using Proposition 2.2.1, Jt,n/t is similar to Jn or −Jn. Thus τJt,n/t is G-conjugate to τJn and τε.

By Proposition 2.2.3, we may replace ε by multiplying an element in F× to make sure that ε is similar
to Jt,n/t. Thus using Lemma 2.3.5, we only need to consider the case where ε = Jt,n/t and τ = τJt,n/t .
So from now on we assume ε = Jt,n/t.

Using Proposition 2.2.7, we may choose

ι : T ↪→ Mt(F )

to be an F -algebra embedding which is Jt-symmetric. By abuse of notation, we consider the following
embedding

ι : Mn/t(T ) ↪→ Mn/t(Mt(F )) = Mn(F )
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given by mapping each entry T to the corresponding Mt(F ) via the original ι. If we regard T as an
F -subalgebra of Mn/t(T ) given by the diagonal embedding, then ι(T )× is fixed by τ . By the Skolem-
Noether theorem, we may choose g ∈ G such that ι(T ) = T g. Thus using [ag, βg] and θg to replace
[a, β] and θ, we may suppose ι(T ) to be the maximal tamely ramified extension with respect to E/F .
Thus we identify T with ι(T ) and omit ι.

Let C = Mn/t(T ) denote the centralizer of T in Mn(F ) and let tC denote the transpose on C. For
c = (cij)ij ∈ GLn/t(T ), we have

τ(c) = (J−1
t,n/t

tcJt,n/t)
−1 = ((J−1

t
tcjiJt)ij)

−1 = ((cji)ij)
−1 = tCc−1 = τ ′(c)

where we use the fact that ι is Jt-symmetric and we write τ ′(x) = tCx−1 for any x ∈ C×. Thus τ ′

as the restriction of τ to C× is the orthogonal involution τIn/t on C× = GLn/t(T ). As mentioned
in §2.1.2, the intersection c = a ∩ C gives rise to a simple stratum [c, β] and the restriction of θ to
H1(c, β), denoted by θT , is the interior T/F -lift of θ. Since E/T is totally wildly ramified, using
Proposition 2.3.7 with G, θ and τ replaced by C×, θT and τ ′ respectively, there exists c ∈ C× such
that τ ′(cc) = cc and θcT ◦ τ ′ = (θcT )−1. As a corollary, we also have τ ′(H1(cc, βc)) = H1(cc, βc) and
C(cc,−βc) = C(cc, τ ′(βc)).

By the injectivity of a 7→ a ∩ C between sets of hereditary orders mentioned in §2.1.2, a′ := ac is
τ -stable. Moreover if we write θ′ = θc and T ′ = T c, then from our construction of τ and the definition
of T ′/F -lift, we know that

(θ′ ◦ τ)T ′ = θ′ ◦ τ |H1(cc,βc) = θ′ ◦ τ ′|H1(cc,βc) = θ′T ′ ◦ τ ′

and
(θ′−1)T ′ = θ′−1

T ′

are equal. Thus by the last paragraph of §2.1.2, the simple character θ′ satisfies the property θ′ ◦ τ =
θ′−1.

Finally using Lemma 2.3.6 with ε = Jt,n/t, we may choose β′ in the simple stratum such that
θ′ ∈ C(a′, β′) and τ(β′) = β′−1, thus we finish the proof.

Before we prove the general case, we state and prove the following important lemma which studies
the set εE′× consisting of symmetric matrices, where E′ = F [β′] with β′ chosen as in Proposition
2.3.9.

Lemma 2.3.12. We may choose [a′, β′] and θ′ ∈ C(a′, β′) satisfying the conclusion of Proposition 2.3.9
and T as a tame parameter field of θ′, and we may fix ι : T ↪→ Mt(F ) as a J-symmetric embedding
given by Proposition 2.2.7, such that for any x ∈ E′×, there exists xt ∈ T× such that εx is similar to
diag(Jtι(xt), ..., Jtι(xt)).

Proof. First we assume ε = Jt,d/t. We recall that in the proof of Proposition 2.3.9, first we obtain a
simple stratum [a′, β] and a simple character θ′ ∈ C(a′, β), such that τ(a′) = a′ and θ′ ◦ τ = θ′−1, then
we use Lemma 2.3.6 to get β′. In this case we have θ′ ∈ C(a′, β) ∩ C(a′, β′), thus J1(a′, β) = J1(a′, β′)
as the maximal pro-p-subgroup of the normalizer of θ. Moreover from our construction of [a′, β], for T
the maximal tamely ramified subextension of E/F with E = F [β] and for ι : T ↪→ Mt(F ) the chosen
J-symmetric embedding, we have

T = {diag(ι(xt), ..., ι(xt)) ∈ Md/t(Mt(F )) = Md(F )|xt ∈ T}.

Thus we get
εT× = {diag(Jtι(xt), ..., Jtι(xt)) ∈ Md/t(Mt(F )) = Md(F )|xt ∈ T×}.
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We write T ′ for the maximal tamely ramified subextension of E′/F with E′ = F [β′]. By Lemma
2.2.19 with E = E′ and L = T ′, the embedding T ′ ↪→ E′ induces an isomorphism

T ′×/T ′×2 ∼= E′×/E′×2.

Thus for any x ∈ E′×, there exists y ∈ E′× such that xy2 ∈ T ′×. Thus

εx = ty−1ε(xy2)y−1,

where we use the fact that ε−1 ty−1ε = y−1. Thus every element in εE′× is similar to an element in
εT ′×. Thus to finish the proof, we only need to show that any element in εT ′× is similar to an element
in εT×.

Using [BH14b], Proposition 2.6, there exists j ∈ J1(a′, β) = J1(a′, β′) such that T ′ = T j . For any
x ∈ T×, we have j−1xj ∈ T ′×. Thus we get τ(x) = x−1 and τ(j−1xj) = (j−1xj)−1, which implies that

kxk−1 = τ(x−1) = x,

where k := τ(j)j−1 ∈ C ∩J1(a′, β) = J1(c′, β) ⊂ U1(c′) with C = ZMd(F )(T ) = Md/t(T ). Moreover we
have

εj−1xj = (εj−1ε−1)εxj = tτ(j)εxj = tj tkεxj,

So we only need to show that tkεx is similar to εx.

We denote by τ ′ the restriction of τ to C×, thus by definition τ ′(c) = tCc−1 for any c ∈ C×, where
tC denotes the transpose on C. Since τ(k)k = 1, we have τ ′(k)k = 1, or equivalently tCk = k. Since
detC(k) ∈ 1 + pT ⊂ T×2 and HasseT (k) = 1 by Proposition 2.3.7 and Lemma 2.2.9, by Proposition
2.2.1, there exists m ∈ C× such that

tCmm = tCk or equivalently τ(m)−1m = τ(k)−1,

where we denote by detC the determinant with respect to C = Md/t(T ) and by HasseT the Hasse
invariant with respect to T . Thus

tkεx = ετ(k)−1x = ετ(m)−1mx = tmεmx = tmεxm,

which means that tkεx is similar to εx. So we finish the proof when ε = Jt,d/t.

For the general case, since τε and τJt,d/t are G-conjugate, we may choose ε up to multiplying an

element in F×, such that ε = tgJt,d/tg with a certain g ∈ G. We assume that [a′, β′] and θ′ satisfy
this lemma for τ = τJt,d/t . We choose [a′′, β′′] := [a′g, β′g], θ′′ = θ′g, and by Lemma 2.3.5 we have

τε(a
′′) = a′′, θ′′ ◦ τε = θ′′−1 and τε(β

′′) = β′′−1.

Moreover we have

εE′′× = tgJt,d/tgE
′×g = tg(Jt,d/tE

′×)g,

which means that each element in εE′′× is similar to an element in Jt,d/tE
′×. Thus [a′′, β′′], θ′′ satisfy

the condition of the lemma when τ = τε.

Remark 2.3.13. From the proof we may further observe that when ε = Jt,d/t, if we identify T with
the maximal tamely ramified subextension of E′ over F via an F -embedding, then x and xt are in the
same class of T×/T×2 ∼= E′×/E′×2 given by Lemma 2.2.19 for E = E′ and L = T .
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Finally we state and prove the following corollary, saying the results for calculating Hasse invariant
in §2.2.3 can be generalized to the case where E/F is not necessarily tamely ramified, once E is well-
chosen.

Corollary 2.3.14. For ε = Jd and [a′, β′], θ′ constructed in Lemma 2.3.12, the results in Lemma
2.2.15, Lemma 2.2.16, Corollary 2.2.17, Lemma 2.2.18, Lemma 2.2.20, Lemma 2.2.21 hold for E =
E′.

Proof. Since all the proofs are similar, we only prove Lemma 2.2.20 as an example.

First of all when d is even, by direct calculation and Lemma 2.2.9 we have det(Jt,d/t) = det(Jd)
and Hasse(Jt,d/t) = Hasse(Jd) = 1. Thus Jt,d/t is similar to Jd. Using this fact and Remark 2.3.13, we
deduce that when ε = Jd, we may assume x and xt in the result of Lemma 2.3.12 to be in the same
class of E′×/E′×2 ∼= T×/T×2, where we identify T with the maximal tamely ramified subextension
of E′ over F via an embedding. In particular, when x = $E′ is a uniformizer of E′, we may assume
xt = $T to be a uniformizer of T in the same class as that of $E′ , and when x = $E′ε0 with ε0 an
element in o×E′\o

×2
E′ , we may also assume xt = $T ε

′
0 with ε′0 an element in o×T \o

×2
T . Thus using Lemma

2.3.12 for x = $E′ and x = $E′ε0, we have

Hasse(diag(Jd$E′ , ..., Jd$E′ , Jd$E′ε0))

= Hasse(diag(diag(Jt$T , ..., Jt$T ), ...,diag(Jt$T , ..., Jt$T ), diag(Jt$T ε
′
0, ..., Jt$T ε

′
0)))

= Hasse(diag(diag(Jt$T , ..., Jt$T , Jt$T ε
′
0), ...,diag(Jt$T , ..., Jt$T , Jt$T ε

′
0)))

= Hasse(diag(Jt$T , ..., Jt$T , Jt$T ε
′
0))n/t

= Hasse(diag(Jt$T , ..., Jt$T , Jt$T ε
′
0)),

where the matrix in the third line is the direct sum of n/t copies of diag(Jt$T , ..., Jt$T , Jt$T ε
′
0) ∈

Mtm(F ), and for the fourth line we use the fact that det(diag(Jt$T , ..., Jt$T , Jt$T ε
′
0)) is of even order

in F× and Corollary 2.2.11, and for the final line we use the fact that n/t is odd. Thus we may use
the tamely ramified case to finish the proof.

When d is odd, if det(Jt,d/t) = det(Jd) we can still follow the proof above verbatim. If det(Jt,d/t) =
det(−Jd), we deduce that Jt,d/t is similar to −Jd. Thus following the above proof, when x = $E′

(resp. $E′ε0) we may choose xt = −$T (resp. −$T ε
′
0), where $E′ , $T , ε0, ε′0 are defined as above.

Thus for $′T = −$T as a uniformizer of T and using the same calculation, we have

Hasse(diag(Jd$E′ , ..., Jd$E′ , Jd$E′ε0)) = Hasse(diag(Jt$
′
T , ..., Jt$

′
T , Jt$

′
T ε
′
0)).

And still we use the tamely ramified case to finish the proof.

2.3.3 The general case

In this subsection, we finish the proof of Theorem 2.3.3. For [a, β] and θ ∈ C(a, β) given as in the
theorem, we choose β0 ∈ Md(F ) such that there exists an F -algebra isomorphism F [β0]→ F [β] which
maps β0 to β. Let a0 be the unique hereditary order of Md(F ) normalized by β0. Thus [a0, β0] is

a simple stratum of Md(F ) and we let θ0 = tβ,β0
a,a0 (θ) be the transfer of θ as a simple character with

respect to [a0, β0]. Using Proposition 2.3.9, for τJd the involution on GLd(F ), there exist a simple
stratum [a′0, β

′
0] and a simple character θ′0 ∈ C(a′0, β′0) such that (a′0, θ

′
0) is GLd(F )-conjugate to (a0, θ0)

with the following property:

(1) τJd(a
′
0) = a′0 and τJd(H

1(a′0, β
′
0)) = H1(a′0, β

′
0);

(2) θ′0 ◦ τJd = θ′−1
0 ;
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(3) τJd(β
′
0) = β′−1

0 ;

(4) Corollary 2.3.14 holds.

Now we embed Md(F ) diagonally in Mn(F ), which gives an F -algebra homomorphism ι′ : F [β′0] ↪→
Mn(F ). We write β′ = ι′(β′0) = β′0 ⊗ ...⊗ β′0 and E′ = F [β′]. The centralizer of E′ in Mn(F ), denoted
by B′, is naturally identified with Mm(E′). Let b′ be a maximal standard hereditary order in B′ which
may be identified with Mm(oE′), and let a′ be the unique hereditary order in Mn(F ) normalized by E′×

such that a′∩B′ = b′. Then we obtain a simple stratum [a′, β′] in Mn(F ). Let θ′ = t
β′0,β

′

a′0,a
′ (θ
′
0) ∈ C(a′0, β′0)

be the transfer of θ′0.

We denote by T ′ the maximal tamely ramified subextension of E′/F and we denote by T ′m an
unramified extension of degree m over T ′. We denote by E′m = T ′mE

′ an unramified extension of
degree m over E′. Since E′/T ′ and E′m/T

′
m are totally wildly ramified, it is easy to check that

NT ′/F (T ′×)F×2/F×2 = NE′/F (E′×)F×2/F×2 (2.3.1)

and

NT ′m/F
(T ′×m )F×2/F×2 = NE′m/F

(E′×m )F×2/F×2. (2.3.2)

The latter group is a subgroup of the former one, and both of them are subgroups of F×/F×2, which
is a group of order four.

We consider the following special orthogonal involutions τ = τε such that

Case (i) If NT ′m/F
(T ′×m )F×2/F×2 = F×/F×2, then ε = Jd,m = diag(Jd, ..., Jd) ∈ Mm(Md(F )) =

Mn(F );

Case (ii) If NT ′m/F
(T ′×m )F×2/F×2 is a subgroup of F×/F×2 of order two, we consider the following

two cases:

(ii.a) If 2|m, then ε equals Jd,m or diag(Jd, ...Jd, Jdε), where ε ∈ o×E′ ;

(ii.b) If 2 - m, then ε equals Jd,m or diag(Jdε, ..., Jdε), where ε ∈ E′×;

Case (iii) If NT ′m/F
(T ′×m )F×2/F×2 = {1}, then ε equals Jd,m or diag(Jd$E′ , ..., Jd$E′ε), where

ε ∈ o×E′ and $E′ is a certain uniformizer of E′. We distinguish the following two cases:

(iii.a) NT ′/F (T ′×)/F×2 = {1};
(iii.b) NT ′/F (T ′×)F×2/F×2 is not trivial.

We want to check that for [a′, β′], θ′ and τ = τε given as above, the conditions (1), (2) and (3)
in Theorem 2.3.3 are satisfied. For each ε above, we may write ε = Jd,maεεE′ , where aε ∈ E′× and
εE′ = diag(1, ..., 1, ε) ∈ GLm(E′) with ε ∈ o×E′ . Thus for x = (xij)ij ∈ GLm(E′), we have

τ(x) = ((Jd,maεεE′)
−1 t((xij)ij)Jd,maεεE′)

−1 = ((ε−1
E′ a

−1
ε ((J−1

d
txjiJd)ij)aεεE′)

−1

= (ε−1
E′ a

−1
ε ((xji)ij)aεεE′)

−1 = (ε−1
E′ (

tE′x)εE′)
−1 = τ ′(x), (2.3.3)

where we write tE′ for the transpose on GLm(E′) and τ ′ := τεE′ for the orthogonal involution defined on
GLm(E′) corresponding to εE′ , and we use the fact that the embedding E′ ↪→ Md(F ) is Jd-symmetric
and aε commutes with elements in GLm(E′). Thus we proved that the restriction of τ to GLm(E′)
equals τ ′ as an orthogonal involution on GLm(E′). In particular, since ε is an element in E′, we know
that εE′ commutes with elements in E′ and we have τ(β′) = β′−1. Thus condition (3) is verified.

Since b′ is a maximal standard hereditary order in B′ which may be identified with Mm(oE′), it
is τ ′-stable. Thus from our assumption of τ and construction of a′, we deduce that a′ is τ -stable. By
definition H1(a′, β′) is τ -stable, which means that condition (1) is verified.

Let M be the standard Levi subgroup of G isomorphic to GLd(F ) × ... × GLd(F ). Let P be the
standard parabolic subgroup of G generated by M and upper triangular matrices, and let N be its
unipotent radical. Let N− be the unipotent radical of the parabolic subgroup opposite to P with
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respect to M . By [SS08], Théorème 2.17, we have

H1(a′, β′) = (H1(a′, β′) ∩N−) · (H1(a′, β′) ∩M) · (H1(a′, β′) ∩N), (2.3.4)

H1(a′, β′) ∩M = H1(a′0, β
′
0)× ...×H1(a′0, β

′
0). (2.3.5)

By loc. cit., the character θ′ is trivial on H1(a′, β′) ∩N− and H1(a′, β′) ∩N , and the restriction of θ′

to H1(a′, β′) ∩M equals θ′0 ⊗ ...⊗ θ′0. We have

θ′ ◦ τ |H1(a′,β′)∩N− = θ′ ◦ τ |H1(a′,β′)∩N = θ′−1|H1(a′,β′)∩N− = θ′−1|H1(a′,β′)∩N = 1.

Moreover since τ = τε with

ε = diag(Jd, ..., Jd) or diag(Jdε, ..., Jdε) or diag(Jd, ..., Jd, Jdε) or diag(Jd$E′ , ..., Jd$E′ , Jd$E′ε),

and since ε and $E′ normalize θ′0, we have

θ′ ◦ τ |H1(a′,β′)∩M = θ′0 ◦ τJd ⊗ ...⊗ θ
′
0 ◦ τJd = θ′−1

0 ⊗ ...⊗ θ′−1
0 = θ′−1|H1(a′,β′)∩M .

Thus by equation (2.3.4), we have θ′ ◦ τ = θ′−1, which is the condition (2). Thus for those special
orthogonal involutions, we finish the proof.

Finally we show that for a given orthogonal involution τ and the corresponding orthogonal group
H = Gτ satisfying the condition of Theorem 2.3.3, τ is conjugate to one of the orthogonal involutions
mentioned in Case (i), (ii) or (iii). We consider them separately.

Case (i) By definition,

NE′m/F
(E′×m )F×2/F×2 = NT ′m/F

(T ′×m )F×2/F×2 = F×/F×2 (2.3.6)

then using Proposition 2.2.14 for E = T ′m, we deduce that [T ′m : F ] is odd, thus n = [E′m : F ] is odd.
By Lemma 2.2.9, we have

Hasse(Jn) = Hasse(−Jn) = Hasse(Jd,m) = 1.

And moreover
det(Jd,m) = det(Jn) or det(Jd,m) = det(−Jn).

So by Proposition 2.2.1, Jd,m is similar to Jn or −Jn, which means that τJn and τJd,m are in the same
G-orbit.

Case (ii) By Lemma 2.2.9, we have

Hasse(Jn) = Hasse(Jd,m) = 1.

(ii.a) Since T ′m/T
′ is unramified and m is even, we get

NT ′m/F
(T ′×m )F×2/F×2 = NT ′/F (o×T ′)F

×2/F×2 = NT ′m/F
(o×T ′m

)F×2/F×2.

Thus using equation (2.3.1) and (2.3.2) we know that

NE′m/F
(o×E′m

)F×2/F×2 = NT ′m/F
(o×T ′m

)F×2/F×2 = NE′/F (o×E′)F
×2/F×2 = NT ′/F (o×T ′)F

×2/F×2

is a subgroup of F×/F×2 of order two. Thus there exists ε0 ∈ o×E′ such that the image of NE′/F (ε0)

in NE′/F (o×E′)F
×2/F×2 is nontrivial. From now on we fix one such ε0.

(ii.a.1) If either of the three cases is true:



132 2.3. τ -SELFDUAL TYPE THEOREM

• 2|d;

• 2 - d and 4|m;

• 2 - d, 4 - m and −1 ∈ F×2,

then by direct calculation we get

1 = disc(Jd,m) = disc(Jn).

Thus by Proposition 2.2.1, Jd,m is in the same G-orbit as Jn, representing the G-conjugacy class of
split orthogonal group. Moreover, we have

det(Jd, ..., Jd, Jdε0) = NE′/F (ε0)

which is non-trivial in F×/F×2. Thus by Proposition 2.2.3 and Proposition 2.2.5, we know that
τε corresponds to the G-conjugacy class of orthogonal groups mentioned in Theorem 2.3.3, which is
quasisplit but not split.

(ii.a.2) If 2 - d, 4 - m and −1 /∈ F×2, we get

NT ′m/F
(T ′×m )F×2/F×2 = {1,−1}.

By direct calculation we get

det(diag(Jd, ..., Jd,−Jd)) = det(Jn) = −1

and

det(Jd,m) = 1.

Thus if we further choose ε = −1 and ε = diag(Jd, ..., Jd,−Jd), then by Proposition 2.2.3 and Propo-
sition 2.2.5, τε and τJd,m correspond to the two G-conjugacy classes of orthogonal groups respectively
mentioned in Theorem 2.3.3, where the former class is split, and the latter class is quasisplit but not
split.

(ii.b) Since m is odd, we deduce that

NT ′m/F
(T ′×m )F×2/F×2 = NT ′/F (T ′×)F×2/F×2 = NE′/F (E′×)F×2/F×2

and d is even by Proposition 2.2.14 with E = T ′. We fix ε ∈ NE′/F (E′×) whose image in F×/F×2 is
non-trivial. By direct calculation we get

det(Jd,m) = (−1)md(d−1)/2 = (−1)md(n−1)/2 = det(Jn).

Thus by Proposition 2.2.1, Jd,m is in the same G-orbit as Jn, representing the G-conjugacy class of
split orthogonal group. Moreover, we have

det(Jdε, ..., Jdε) = NE′/F (ε)m

which is non-trivial in F×/F×2. Thus by Proposition 2.2.3 and Proposition 2.2.5, τε correspond to
the G-conjugacy class of orthogonal groups mentioned in Theorem 2.3.3, which is quasisplit but not
split.

Case (iii) First of all since

NE′m/F
(E′×m )F×2/F×2 = NT ′m/F

(T ′×m )F×2/F×2 = {1},
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by Proposition 2.2.14 with E = T ′m we know that 4|[T ′m : F ]. Thus 4|[E′m : F ] = n. By direct
calculation, we have

det(Jd,m) = det(Jn) = 1.

Moreover, by Lemma 2.2.9 we get

Hasse(Jd,m) = Hasse(Jn) = 1.

Thus by Proposition 2.2.1, Jd,m is in the same G-orbit as Jn, representing the G-conjugacy class of
split orthogonal group. Thus we only need to show that for ε = diag(Jd$E′ , ..., Jd$E′ε) with $E′ and
ε ∈ o×E well-chosen, τ = τε corresponds to the non-quasisplit orthogonal group. By direct calculation,
we have

det(ε) = (−1)n(d−1)/2NE′/F ($E′)
mNE′/F (ε) = NE′/F ($E′)

mNE′/F (ε).

(iii.a) Since

NE′/F (E′×)F×2/F×2 = NT ′/F (T ′×)F×2/F×2 = {1},

det(ε) is trivial as an element in F×/F×2. Thus we only need to choose ε such that Hasse(ε) = −1.
By Lemma 2.2.15 and Corollary 2.3.14, we may choose $E′ and ε0 such that Hasse(Jd$E′) = 1 and
Hasse(Jd$E′ε0) = −1. Then using Corollary 2.2.11 and the fact that det(Jd$E′), det(Jd$E′ε0) ∈ F×2,
we get

Hasse(ε) = Hasse(Jd$E′)
m−1Hasse(Jd$E′ε0) = −1.

(iii.b) Since NE′/F (E′×)F×2/F×2 is not trivial and NE′m/F
(E′×m )F×2/F×2 is trivial, m is even and

there exists a uniformizer $′F of F such that

NE′/F (E′×)F×2/F×2 = {1, $′F }.

Thus

det(ε) = NE′/F ($E′)
mNE′/F (ε) ≡ NE′/F (ε) (mod F×2).

Since NE′/F (ε) ∈ o×F ∩NE′/F (E′×), its image in F×/F×2 is trivial, that is, disc(ε) = 1. So as in (iii.a),

we only need to show that Hasse(ε) = −1. Fix ε0 ∈ o×E′\o
×2
E′ , by Corollary 2.2.17 and Corollary 2.3.14,

we may choose ε equals 1 or ε0, such that

Hasse(ε) = Hasse(diag(Jd$E′ , ..., Jd$E′ , Jd$E′ε)) = −1.

So we finish the discussion for (iii.b).

Thus for H = Gτ given as an orthogonal group in Theorem 2.3.3 with τ = τε, we have shown
that τ is G-conjugate to one of the special orthogonal involutions mentioned in Case (i), (ii) or (iii).
Furthermore, we may change ε up to multiplying by an element in E′× such that ε is similar to one
of the special symmetric matrices mentioned in Case (i), (ii) or (iii). Using Lemma 2.3.5 and the
special cases proved, we end the proof of Theorem 2.3.3.

Remark 2.3.15. In the proof of Theorem 2.3.3, we actually showed that for τ as an involution in
Case (i), (ii) or (iii), the choices of [a′, β′] and θ′ are the same. Moreover, E = E′ = F [β′] satisfies
Corollary 2.3.14.
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2.4 Distinguished type theorem and the orbits of distinguished type

Let π be a supercuspidal representation of G, let T be a tame parameter field of π and let Tm be the
unramified extension of degree m over T , where n = md is determined by π as before. From Theorem
2.3.1, Theorem 2.3.2, Theorem 2.3.3 and Remark 2.3.15, there exist a simple stratum [a, β], a simple
character θ ∈ C(a, β) attached to π and a simple type (J ,Λ) containing θ and compactly inducing π
such that

(1) τ0(a) = a and τ0(H1(a, β)) = H1(a, β);

(2) θ ◦ τ0 = θ−1;

(3) τ0(β) = β−1;

(4) τ0(J) = J and Λτ0 = Λ∨;

(5) Lemma 2.2.15, Lemma 2.2.16, Corollary 2.2.17, Lemma 2.2.18, Lemma 2.2.20, Lemma 2.2.21
hold for E = F [β].

Here we assume τ0 = τε0 , where ε0 is a symmetric matrix in Mn(F ) as follows:

Case (i) If NTm/F (T×m)F×2/F×2 = F×/F×2, then ε0 = Jd,m.

Case (ii) If NTm/F (T×m)F×2/F×2 is a subgroup of F×/F×2 of order two, we consider the following
two cases:

(ii.a) If 2|m, then ε0 equals Jd,m or diag(Jd, ...Jd, Jdε0), where ε0 ∈ o×E\o
×2
E ;

(ii.b) If 2 - m, then ε0 equals Jd,m or diag(Jdε, ..., Jdε), where ε is chosen to be either a uniformizer
in E or an element in o×E\o

×2
E , such that NE/F (ε) ∈ NTm/F (T×m)− F×2.

Case (iii) If NTm/F (T×m)F×2/F×2 = {1}, we consider the following two cases:

(iii.a) If NT/F (T×)F×2/F×2 = {1}, then ε0 equals Jd,m or diag(Jd$E , ..., Jd$E , Jd$Eε0), where

ε0 ∈ o×E\o
×2
E and $E is a uniformizer of E chosen by Lemma 2.2.15, such that Hasse(Jd$E) = 1 and

Hasse(Jd$Eε0) = −1;

(iii.b) If NT/F (T×)F×2/F×2 is not trivial, then ε0 equals Jd,m or diag(Jd$E , ..., Jd$E , Jd$Eε0)

where ε0 ∈ o×E and $E is a certain uniformizer of E, such that Hasse(diag(Jd$E , ..., Jd$E , Jd$Eε0)) =
−1.

Thus in different cases, Gτ0 represents all possible G-conjugacy classes of orthogonal groups men-
tioned in Theorem 2.3.3 respectively.

From now on until the end of this section, we fix ε0, [a, β], θ and (J ,Λ) as above. By (2.3.3) if we
restrict τ0 to B× = GLm(E), it becomes an orthogonal involution τε0E with respect to E, where ε0E

equals Im or diag(1, ..., 1, ε0) with ε0 ∈ o×E\o
×2
E . We fix ε a symmetric matrix in GLn(F ) and τ = τε

an orthogonal involution on G. We write u = ε−1
0 ε, then by direct calculation we get

τ(x) = u−1τ0(x)u for any x ∈ G

and

uτ0(u) = ε−1
0 εε−1

0
tε0

tε−1ε0 = 1. (2.4.1)

We write γ = uτ(g)g−1. We first state the following main theorem of this section:

Theorem 2.4.1. For π a supercuspidal representation and Gτ an orthogonal group of G, the repre-
sentation π is distinguished by Gτ if and only if there exists a τ -selfdual simple type (J ,Λ) of π such
that HomJ∩Gτ (Λ, 1) 6= 0.

The “if” part of this theorem is obvious, so we only need to prove the “only if” part of this theorem.
We assume π to be distinguished by Gτ and we choose (J ,Λ) to be τ0-selfdual as above. By direct
calculation, we get

τ(H1) = τ0(H1)u = H1u, θτ ∼= (θτ0)u ∼= (θ−1)u and τ(β) = (β−1)u, (2.4.2)
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and

τ(J) = τ0(J)u = Ju and Λτ ∼= (Λτ0)u ∼= Λ∨u. (2.4.3)

Using the Mackey formula and the Frobenius reciprocity, we have

0 6= HomGτ (π, 1) ∼=
∏

g∈J\G/Gτ
HomJg∩Gτ (Λg, 1).

The main step is to prove the following important theorem:

Theorem 2.4.2. For g ∈ G such that HomJg∩Gτ (Λg, 1) 6= 0, we have γ = uτ(g)g−1 ∈ J .

Thus for the simple type (Jg,Λg), we get

τ(Jg) = τ0(J)uτ(g) = Jγg = Jg and (Λg)τ ∼= (Λτ0)uτ(g) ∼= (Λ∨)γg ∼= (Λg)∨,

where we use the fact that γ ∈ J normalizes J and Λ. Thus (Jg,Λg) is what we want, which finishes
the “only if” part of Theorem 2.4.1. So from now on, we focus on the proof of Theorem 2.4.2.

2.4.1 Double cosets contributing to the distinction of θ

In this subsection, we prove the following proposition:

Proposition 2.4.3. For g ∈ G, the character θg is trivial on H1g ∩Gτ if and only if γ ∈ JB×J .

Proof. We follow the proof of [Séc19], Lemma 6.5. We choose τ , χ and H in loc. cit. to be our τ , θ
and H1 respectively. We use the assumptions τ(H1) = H1u and θ ◦ τ = θ−1u to replace the original
assumptions τ(H) = H and χ ◦ τ = χ−1 respectively. And we use γ = uτ(g)g−1 to replace τ(g)g−1 in
loc. cit. Finally we notice that γ intertwines θ if and only if γ ∈ JB×J . With the replacements and
remarks mentioned above, the original proof can be used directly.

As a result, for g ∈ G such that HomJg∩Gτ (Λg, 1) 6= 0, restricting to H1g we get θg|H1g∩Gτ = 1, or
equivalently γ ∈ JB×J .

2.4.2 The double coset lemma

In this section we prove the following double coset lemma:

Lemma 2.4.4. Let g ∈ G and let γ = uτ(g)g−1 ∈ JB×J . Then by changing g with another repre-
sentative in JgGτ , we may assume γ ∈ B×.

Remark 2.4.5. By direct calculation, we get

γ = uτ(g)g−1 = ε−1
0

tg−1εg−1 = τ0(g)ug−1, (2.4.4)

and

τ0(γ)γ = gτ0(u)τ0(g)−1τ0(g)ug−1 = gτ0(u)ug−1 = 1. (2.4.5)

Since τ0(J) = J , if we change g with a new representative of JgGτ , the new γ belongs to the same
J-J double coset represented by the original γ, that is, the property γ ∈ JB×J doesn’t depend on the
choice of g in the J-Gτ double coset.

Proof. First of all, we need the following lemma:
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Lemma 2.4.6. There exists b ∈ B× such that γ ∈ JbJ and τ0(b)b = 1.

Proof. Since b× is a maximal order of B×, using the Cartan decomposition for B× ∼= GLm(E), we
may assume γ = xcy such that x, y ∈ J and

c = diag($a1
E Im1 , ..., $

ar
E Imr), (2.4.6)

where a1 > ... > ar as integers and m1 + ...+mr = m. By definition of ε0, the restriction of τ0 to B×

is also an orthogonal involution τ ′0 defined by

τ ′0(z) = ε−1
0E

tEz−1ε0E for any z ∈ B×,

where tE represents the transpose on GLm(E). If we write b = cε0E , then by definition we get

τ0(b)b = τ ′0(cε0E)cε0E = ε−1
0E

tEc−1 tEε−1
0Eε0Ecε0E = ε−1

0E
tEc−1cε0E = ε−1

0Eε0E = 1.

So the choice of b satisfies our conditions.

Now we write γ = x′bx with x, x′ ∈ J , b = cε0E ∈ B× and c as in (2.4.6). Replacing g by τ0(x′)−1g
does not change the double coset JgGτ but changes γ into bxτ0(x′). So we may and will assume that
γ = bx with x ∈ J .

Write K for the group J ∩ Jb. Since τ0(b) = b−1 and τ0(J) = J , using (2.4.5) we have x ∈ J and
bxb−1 = γb−1 = τ0(γ−1)τ0(b) = τ0(x−1) ∈ J , thus x ∈ K. Moreover, we have the following corollary
of Lemma 2.4.6.

Corollary 2.4.7. The map δb : k 7→ b−1τ0(k)b is an involution on K.

For a1 > ... > ar and m1 + ...+mr = m as in (2.4.6), and M = GLm1d(F )× ...×GLmrd(F ) ⊆ G,
let P be the standard parabolic subgroup of G generated by M and upper triangular matrices. Let
N and N− be the unipotent radicals of P and its opposite parabolic subgroup with respect to M . By
definition, b normalizes M and we have

K = (K ∩N−) · (K ∩M) · (K ∩N).

We have similar properties for the subgroup V = K ∩B× = U ∩ b−1Ub of B×:

V = (V ∩N−) · (V ∩M) · (V ∩N),

where U = U(b) and U1 = J1 ∩B× = U1(b). By definition, V is also fixed by δb.

Lemma 2.4.8. The subset

K1 = (K ∩N−) · (J1 ∩M) · (K ∩N)

is a δb-stable normal pro-p-subgroup of K, and we have K = V K1.

Proof. The proof is the same as that in [Séc19], Lemma 6.10.

Lemma 2.4.9. For x ∈ K satisfying xδx(y) = 1, there exist k ∈ K and v ∈ V such that

(1) the element v is in GLm1(oE)× ...×GLmr(oE) ⊆ B× satisfying vδb(v) = 1;

(2) δb(k)xk−1 ∈ vK1.
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Proof. We may follow the same proof as Lemma 1.6.9, by replacing σ and ∗ in loc. cit. with trivial
map and t. Noting that in instead of considering the three cases separately by using Lemma 1.6.10,
Lemma 1.6.11 and Lemma 1.6.12 in loc. cit., there is only one case to consider in our lemma and we
only need to use Lemma 1.6.11 in loc. cit. to finish the proof.

We finish the proof of Lemma 2.4.4. Applying Lemma 2.4.9 gives us k ∈ K and v ∈ V such that
bvτ0(bv) = 1 and δb(k)xk−1 ∈ vK1. Thus we have τ0(k)γk−1 ∈ bvK1. Therefore, replacing g by kg
and b by bv, we may assume that γ is written as

γ = bx, bτ0(b) = 1, x ∈ K1, b ∈ $a1
E GLm1(oE)× ...×$ar

E GLmr(oE). (2.4.7)

Furthermore, we have δb(x)x = 1.
Since K1 is a δb-stable pro-p-group and p is odd, the first cohomology set of δb in K1 is trivial.

Thus x = δb(y)y−1 for some y ∈ K1, hence using (2.4.4) we have γ = τ0(g)ug−1 = τ0(y)by−1. As a
result, if we further use y−1g to replace g, we get γ = b ∈ B×, which finishes the proof of Lemma
2.4.4.

Remark 2.4.10. Noting that in [Séc19] and §1.6.1, the corresponding double coset lemma says that
γ ∈ JB×J if and only if g ∈ JB×Gτ . However in our case if we assume ε = ε0 and γ = τ(g)g−1 ∈
JB×J , then it is possible that g is not in JB×Gτ . We will discuss this new phenomenon and calculate
all the possible J-Gτ cosets in §2.4.7 .

2.4.3 Distinction of the Heisenberg representation

Let η be the Heisenberg representation of J1 associated to θ, we have the following result as in [Séc19],
Proposition 6.12 and Proposition 1.6.13.

Proposition 2.4.11. Given g ∈ G, we have

dimCHomGτ (ηg, 1) =

{
1 if γ = uτ(g)g−1 ∈ JB×J,
0 otherwise.

Proof. First we restrict ηg to H1g which is isomorphic to θg(J
1:H1)1/2

. Using Proposition 2.4.3 when
γ /∈ JB×J , the dimension equals 0.

When γ ∈ JB×J , by Lemma 2.4.4 we may further assume γ ∈ B×. We denote

δ(x) := (τ(g)g−1)−1τ(x)τ(g)g−1 for x ∈ G

as an involution on G, then by definition and (2.4.5) we have

HomGτ (ηg, 1) ∼= HomGδ(η, 1),

and
γδ(γ) = γγ−1τ0(γ)γ = 1. (2.4.8)

Moreover, using (2.4.2) we have

δ(H1) = (τ(g)g−1)−1H1uτ(g)g−1 = H1γ and θ ◦ δ = (θ−1)uτ(g)g−1
= (θ−1)γ . (2.4.9)

So using Proposition 1.6.14, we finish the proof.
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2.4.4 Distinction of the extension of a Heisenberg representation

Let κ be an irreducible representation of J extending η, then there exists a unique representation ρ of
J trivial on J1 up to isomorphism, such that Λ = κ⊗ρ. First of all we have the following proposition:

Proposition 2.4.12. Let g ∈ G such that γ ∈ JB×J .

(1) There is a unique character χ of Jg ∩Gτ trivial on J1g ∩Gτ such that

HomJ1g∩Gτ (ηg, 1) = HomJg∩Gτ (κg, χ−1).

(2) The canonical linear map

HomJ1g∩Gτ (ηg, 1)⊗HomJg∩Gτ (ρg, χ)→ HomJg∩Gτ (Λg, 1).

is an isomorphism.

Proof. With the aid of Proposition 2.4.11, the proof is the same as that in [Séc19], Lemma 6.20.

For g ∈ G such that γ = uτ(g)g−1 = τ0(g)ug−1 ∈ JB×J , using uτ(g) = τ0(g)u to replace g, we
have

τ0(τ0(g)u)u(τ0(g)u)−1 = gu−1τ0(g)−1 = (τ0(g)ug−1)−1 ∈ JB×J,

which means that we may consider uτ(g) instead of g in Proposition 2.4.12. Thus there exists a unique
character χ′ of Juτ(g) ∩Gτ trivial on J1uτ(g) ∩Gτ such that

HomJ1uτ(g)∩Gτ (ηuτ(g), 1) ∼= HomJuτ(g)∩Gτ (κuτ(g), χ′−1).

Moreover, we know that τ(J) = Ju, τ(J) = Ju, τ(J1) = J1u and τ(H1) = H1u, thus as in Lemma
1.4.2 and Lemma 1.6.15, it is easy to show that

Jg ∩Gτ = Juτ(g) ∩Gτ = Jg ∩Gτ = Juτ(g) ∩Gτ (2.4.10)

As a result, χ and χ′ are characters defined on the same group Jg ∩Gτ = Juτ(g) ∩Gτ .

Proposition 2.4.13. For χ and χ′ defined above as characters of Jg ∩ Gτ = Juτ(g) ∩ Gτ , we have
χ = χ′.

Proof. We write δ(x) = (τ(g)g−1)−1τ(x)τ(g)g−1 for any x ∈ G. Using the basic results in simple type
theory, we have γ = uτ(g)g−1 ∈ IG(η) = IG(κ0), where κ0 = κ|J and IG(η) (resp. IG(κ0)) denotes
the intertwining set of η (resp. κ0). Moreover we have

dimC(HomJ∩Jγ (κ0γ , κ0)) = dimC(HomJ1∩J1γ (ηγ , η)) = 1.

By direct calculation, we have J1∩Gδ = J1γ ∩Gδ as a subgroup of J1∩J1γ and H1∩Gδ = H1γ ∩Gδ.
Using Proposition 1.6.20 for our γ and δ, we have:

Proposition 2.4.14. For a non-zero homomorphism ϕ ∈ HomJ1∩J1γ (ηγ , η) = HomJ∩Jγ (κ0γ , κ0), it
naturally induces a C-vector space isomorphism

fϕ : HomJ1∩Gδ(η, 1)→ HomJ1γ∩Gδ(η
γ , 1),

λ 7→ λ ◦ ϕ.
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Now we use Proposition 2.4.14 to finish the proof of Proposition 2.4.13. Using Proposition 2.4.11
for g and uτ(g) respectively, we have

dimCHomJ1g∩Gτ (ηg, 1) = dimCHomJ1uτ(g)∩Gτ (ηuτ(g), 1) = 1.

By Proposition 2.4.14, for 0 6= ϕ ∈ HomJ1∩J1γ (ηγ , η) = HomJ1g∩J1uτ(g)(ηg, ηuτ(g)),

fϕ : HomJ1g∩Gτ (ηg, 1)→ HomJ1uτ(g)∩Gτ (ηuτ(g), 1),

λ 7→ λ ◦ ϕ,

is bijective. If we choose

0 6= λ ∈ HomJ1g∩Gτ (ηg, 1) and 0 6= λ′ := fϕ(λ) = λ ◦ ϕ ∈ HomJ1uτ(g)∩Gτ (ηuτ(g), 1),

then for any v in the representation space of η and any x ∈ Jg ∩Gτ = Juτ(g) ∩Gτ , we have

χ′(x)−1λ′(v) = λ′(κ0uτ(g)(x)v) (by Proposition 2.4.12.(1))

= λ(ϕ(κ0uτ(g)(x)v)) (by definition of λ′)

= λ(κ0g(x)ϕ(v)) (since ϕ ∈ HomJg∩Juτ(g)(κ0uτ(g), κ0g))

= χ(x)−1λ(ϕ(v)) (by Proposition 2.4.12.(1))

= χ(x)−1λ′(v) (by definition of λ′).

Since v and x ∈ Jg ∩ Gτ = Juτ(g) ∩ Gτ are arbitrary, we have χ′|Juτ(g)∩Gτ = χ|Jg∩Gτ , which finishes
the proof with the aid of (2.4.10).

2.4.5 Existence of a τ-selfdual extension of η

Proposition 2.4.15. There is κ as an extension of η such that κτ0∨ ∼= κ.

Proof. We refer to Proposition 1.6.24 for a proof. Noting that the restriction of τ0 to GLm(l) becomes
an orthogonal involution with respect to the symmetric matrix ε0E ∈ GLm(l), where ε0E represents
the image of ε0E in GLm(l) ∼= GLm(oE)/(1 + Mm(pE)), thus if we replace σ and τ in the loc. cit. by
the trivial action and τ0, then the same proof in the case where E/E0 is ramified in loc. cit. works
for our proposition.

From now on until the end of this section we fix κ as in Proposition 2.4.15. We have the following
corollary:

Corollary 2.4.16. The character χ defined by Lemma 2.4.12.(1) is quadratic, that is, χ2 = 1.

Proof. We have the following isomorphisms

HomJ1uτ(g)∩Gτ (ηuτ(g), 1) ∼= HomJ1g∩Gτ (ηg, 1)

∼= HomJg∩Gτ (κg, χ−1)
∼= HomJg∩Gτ (χ,κg∨) (by the duality of contragredient)
∼= HomJg∩Gτ (κg∨, χ)
∼= HomJg∩Gτ (κg∨ ◦ τ, χ ◦ τ)

∼= HomJg∩Gτ ((κτ0∨)uτ(g), χ ◦ τ)

∼= HomJuτ(g)∩Gτ (κuτ(g), χ ◦ τ) (since κ is τ0-selfdual).
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Using Proposition 2.4.13 and the uniqueness of χ′, we have χ ◦ τ = χ−1. Since χ is defined on
Jg ∩Gτ = Jg ∩Gτ which is τ -invariant, we have χ ◦ τ = χ, thus χ2 = χ(χ ◦ τ) = 1.

2.4.6 Proof of Theorem 2.4.2

In this subsection, we finish the proof of Theorem 2.4.2. For g ∈ G given as in loc. cit., by Lemma
2.4.4 and Cartan decomposition, we may replace g by another representative in the same J-Gτ double
coset, such that

γ := uτ(g)g−1 ∈ $a1
E GLm1(oE)× ...×$ar

E GLmr(oE), (2.4.11)

where ai, mi are defined as in Lemma 2.4.6. Thus there exists a unique standard hereditary order
bm ⊆ b such that

U1(bm) = (U ∩ δ(U1))U1 = (U ∩ U1γ)U1,

where we define U = U(b), U1 = U1(b) and δ(x) = (τ(g)g−1)−1τ(x)τ(g)g−1 for any x ∈ G as an
involution on G. First we have the following lemma whose proof is the same as that in [Séc19],
Lemma 6.22, inspired by [HM08], Proposition 5.20:

Lemma 2.4.17. We have U1(bm) = (U1(bm) ∩Gδ)U1.

To finish the proof, it is enough to show that r = 1 in (2.4.11). If not, we know that bm by
definition is a proper suborder of b. Furthermore, U1(bm) := U1(bm)/U1 is a non-trivial unipotent
subgroup of U/U1 ∼= GLm(l). Using Proposition 2.4.12.(2), we have

HomJ∩Gδ(ρ, χ
g−1

) ∼= HomJg∩Gτ (ρg, χ) 6= 0.

Restricting to U1(bm) ∩Gδ, we have

HomU1(bm)∩Gδ(ρ, χ
g−1

) 6= 0. (2.4.12)

Using Lemma 2.4.17, we have the isomorphism

(U1(bm) ∩Gδ)U1/U1 ∼= U1(bm)/U1.

We denote by ρ the cuspidal representation of U0/U1 ∼= GLm(l) whose inflation is ρ|U0 , and χg−1 the
character of U1(bm) whose inflation is χg

−1
. We consider the equation (2.4.12) modulo U1 and we

have

Hom
U1(bm)

(ρ, χg−1) 6= 0.

Since χg
−1 |J∩Gδ is quadratic and U1(bm) is a p-group with p 6= 2, we get χg−1 |

U1(bm)
= 1, thus

Hom
U1(bm)

(ρ, 1) 6= 0

which contradicts to the fact that ρ is supercuspidal. So we finish the proof.
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2.4.7 Double cosets contributing to the distinction of π

In this subsection, we assume ε = ε0 and τ = τ0. We want to study all the possible J -Gτ double
cosets contributing to the distinction of π. Precisely, we want to study those g ∈ G such that

HomJg∩Gτ (Λg, 1) 6= 0.

By Lemma 2.4.4, we may change g with another representative in JgGτ to assume that γ = τ(g)g−1 ∈
B×. Moreover, by Theorem 2.4.2 we get γ ∈ J . As a result, we have

γ ∈ J ∩B× = E×b×. (2.4.13)

First by changing g up to multiplying an element in E× on the left, which doesn’t change the double
coset JgGτ , we may assume γ ∈ b× or $Eb

×. Since J ∩B× = b× = GLm(oE), using Proposition 2.2.2
we may change g up to multiplying an element in b× on the left, which doesn’t change the double
coset JgGτ , such that

γ = Im or diag(1, ..., 1, ε0) or diag($E , ..., $E , $E) or diag($E , ..., $E , $Eε0). (2.4.14)

By definition, we have

NE/F (detB(γ)) = det(γ) ∈ F×2, (2.4.15)

where detB denotes the determinant on B× = GLm(E). By studying different cases separately, we
will give out all the possible double cosets of g satisfying the condition (2.4.14).

Case (i) If NTm/F (T×m)F×2/F×2 = F×/F×2, then

NE/F : E×/E×2 −→ F×/F×2

is bijective. Thus (2.4.15) shows that detB(γ) ≡ 1 (mod E×2). Thus from (2.4.14) and the fact that
m is odd, we get γ = 1, which means that g ∈ Gτ . Thus in this case there is only one double coset
JGτ .

Case (ii) If NTm/F (T×m)F×2/F×2 is a subgroup of F×/F×2 of order two, we consider the following
two cases:

(ii.a) If 2|m, then from the same argument in §2.3.3 we have NEm/E(E×m)E×2/E×2 = {1, ε0}, where

ε0 ∈ o×E\o
×2
E as above. And moreover the ramification index of E/F is odd and NE/F (ε0) /∈ F×2. Using

(2.4.14) and (2.4.15), γ equals Im or diag($E , ..., $E).

(ii.a.1) We assume one of the three cases is true:

• 2|d;

• 2 - d and 4|m;

• 2 - d, 4 - m and −1 ∈ F×2.

If ε = Jd,m and ε0E = Im, then in the case where γ = τ(g)g−1 = Im, we have g ∈ Gτ . In the case
where γ = diag($E , ..., $E), using Proposition 2.2.1 and the fact that

detB(diag($E , ..., $E)) = $m
E ∈ E×2 and HasseE(diag($E , ..., $E)) = 1,

there exists g1 ∈ B× such that τ(g1)g−1
1 = diag($E , ..., $E), where we denote by HasseE the Hasse

invariant for the symmetric matrices in B× = GLm(E) and we use Lemma 2.2.12 to calculate the
Hasse invariant. Thus we have g ∈ Jg1G

τ . So there are two possible double cosets JGτ and Jg1G
τ .
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If ε = diag(Jd, ..., Jd, Jdε0) and ε0E = diag(1, ..., 1, ε0) with ε0 ∈ o×E\o
×2
E , then in the case where

γ = Im, we have g ∈ Gτ . In the case where γ = diag($E , ..., $E), by direct calculation we get

tg−1diag(Jd, ..., Jd, Jdε0)g−1 = diag(Jd$E , ..., Jd$E , Jd$Eε0).

Using Lemma 2.2.9 we obtain Hasse( tg−1diag(Jd, ..., Jd, Jdε0)g−1) = 1. However by Lemma 2.2.20
and Corollary 2.3.14, we have Hasse(diag(Jd$E , ..., Jd$E , Jd$Eε0)) = −1, thus there doesn’t exist
any g ∈ G such that γ = diag($E , ..., $E , $E), so there is only one possible double coset JGτ .

(ii.a.2) If 2 - d, 4 - m and −1 /∈ F×2, then we may choose ε0 = −1 ∈ o×E\o
×2
E .

If ε = diag(Jd, ..., Jd,−Jd) and ε0E = diag(1, ..., 1,−1), then in the case where γ = τ(g)g−1 = Im,
we have g ∈ Gτ . In the case where γ = diag($E , ..., $E), using Proposition 2.2.1 and the fact that
(by Lemma 2.2.12 for example)

detB(diag($E , ...,−$E)) = −$m
E ∈ ε0E×2 and HasseE(diag($E , ...,−$E)) = 1,

there exists g1 ∈ B× such that tg−1
1 ε0Eg

−1
1 = diag($E , ...,−$E), or in other words τ(g1)g−1

1 =
diag($E , ..., $E , $E). Thus we have g ∈ Jg1G

τ . So there are two possible double cosets JGτ and
Jg1G

τ .
If ε = Jd,m and ε0E = Im, then in the case where γ = Im, we have g ∈ Gτ . In the case where

γ = diag($E , ..., $E), by direct calculation we get

tg−1diag(Jd, ..., Jd, Jd)g
−1 = diag(Jd$E , ..., Jd$E , Jd$E).

Using Lemma 2.2.9 we get Hasse( tg−1diag(Jd, ..., Jd, Jd)g
−1) = 1. Using Lemma 2.2.21 and Corollary

2.3.14 we have Hasse(diag(Jd$E , ..., Jd$E , Jd$E)) = −1, thus there doesn’t exist any g as above such
that γ = diag($E , ..., $E , $E), so there is only one possible double coset JGτ .

(ii.b) If 2 - m, then ε equals Jd,m or diag(Jdε, ..., Jdε), where ε ∈ E×. In this case we have
NEm/F (E×m)F×2/F×2 = NE/F (E×)F×2/F×2 and 2|d. Furthermore by Proposition 2.2.14, either the
ramification index or the residue class degree of E/F is odd. We further consider the following two
cases:

(ii.b.1) If the ramification index of E/F is odd, then ε = ε0 ∈ o×E\o
×2
E such that NE/F (ε0) /∈ F×2.

By (2.4.14) and (2.4.15), we deduce that γ equals Im or diag($E , ..., $E , $
′
E), where $′E equals $E

or $Eε0 such that NE/F ($′E) ∈ F×2.
If ε = Jd,m, we have g ∈ Gτ in the case where γ = Im. In the case where γ = diag($E , ..., $E , $

′
E),

using Lemma 2.2.9, Lemma 2.2.18 and Corollary 2.3.14, we have

det(Jd,mdiag($E , ..., $E , $
′
E)) ∈ det(Jd,m)F×2 and Hasse(Jd,mdiag($E , ..., $E , $

′
E)) = 1,

thus by Proposition 2.2.1, there exists g1 ∈ G such that

tg−1
1 Jd,mg

−1
1 = Jd,mdiag($E , ..., $E , $

′
E) = Jd,mγ,

or in other words τ(g1)g−1
1 = γ. Thus g ∈ g1G

τ . So we get two double cosets JGτ and Jg1G
τ .

Remark 2.4.18. Since detB(diag($E , ..., $E , $
′
E)) = $m

E$E′ /∈ E×2, it is impossible to choose
g1 ∈ B× such that τ(g1)g1 = γ. Thus Jg1G

τ is disjoint with JB×Gτ . Similar phenomena also occur
in (ii.b.2) and (iii) below.

If ε = diag(Jdε0, ..., Jdε0), we get g ∈ Gτ in the case where γ = Im. In the case where γ =
diag($E , ..., $E , $

′
E), by direct calculation we have

tg−1diag(Jdε0, ...Jdε0, Jdε0)g−1 = diag(Jd$Eε0, ...Jd$Eε0, Jd$
′
Eε0). (2.4.16)
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By Lemma 2.2.9, we get

Hasse( tg−1diag(Jdε0, ...Jdε0, Jdε0)g−1) = 1.

And by Lemma 2.2.18 and Corollary 2.3.14, we obtain Hasse(diag(Jd$Eε0, ...Jd$Eε0, Jd$
′
Eε0)) = −1,

thus the condition (2.4.16) is never satisfied. Thus there is only one possible double coset JGτ .

(ii.b.2) If the residue class degree of E/F is odd, then ε = $E as a uniformizer of E such that
NE/F ($E) /∈ F×2. By (2.4.14) and (2.4.15), we get NE/F (detB(γ)) ∈ F×2, thus detB(γ) equals 1 or
ε0, which means that γ equals Im or diag(1, ..., 1, ε0).

If ε = Jd,m, we have g ∈ Gτ in the case where γ = Im. In the case where γ = diag(1, ..., 1, ε0),
using Lemma 2.2.9 we have

det(Jd,mdiag(1, ..., 1, ε0)) ∈ det(Jd,m)F×2 and Hasse(Jd,mdiag(1, ..., 1, ε0)) = Hasse(Jd,m) = 1,

thus by Proposition 2.2.1, there exists g1 ∈ G such that

tg−1
1 Jd,mg

−1
1 = Jd,mdiag(1, ..., 1, ε0),

or equivalently τ(g1)g−1
1 = γ. Thus g ∈ g1G

τ . So we get two double cosets JGτ and Jg1G
τ .

If ε = diag(Jd$E , ..., Jd$E), we get g ∈ Gτ in the case where γ = Im. In the case where
γ = diag(1, ..., 1, ε0), by direct calculation we have

tg−1diag(Jd$E , ...Jd$E , Jd$E)g−1 = diag(Jd$E , ...Jd$E , Jd$Eε0), (2.4.17)

However by Corollary 2.2.17 and Corollary 2.3.14, this condition is never satisfied. Thus there is only
one possible double coset JGτ .

Case (iii) If NTm/F (T×m)F×2/F×2 = {1}, we consider the following two cases:

(iii.a) If NE/F (E×)F×2/F×2 = {1}, then ε equals Jd,m or diag(Jd$E , ..., Jd$Eε0), where ε0 ∈
o×E\o

×2
E and $E is a uniformizer of E satisfying Lemma 2.2.15 with E′ = E.

If ε = Jd,m, by (2.4.14) we have

tg−1Jd,mg
−1 = Jd,m or diag(Jd, ..., Jd, Jdε0) or diag(Jd$E , ..., Jd$E , Jd$E)

or diag(Jd$E , ..., Jd$E , Jd$Eε0) (2.4.18)

Since the determinants of both sides of (2.4.18) are in F×2, and by Lemma 2.2.9, Lemma 2.2.15
and Corollary 2.3.14, we have

Hasse(Jd,m) = Hasse(diag(Jd, ..., Jd, Jdε0)) = Hasse(diag(Jd$E , ..., Jd$E , Jd$E)) = 1,

and

Hasse(diag(Jd$E , ..., Jd$E , Jd$Eε0)) = −1,

then by Proposition 2.2.1 there exist g0 = 1, g1 and g2 which satisfy equation (2.4.18) with the first
three terms on the right separately. Furthermore, equation (2.4.18) with the last term on the right is
never satisfied. Thus there are exactly three double cosets JGτ , Jg1G

τ and Jg2G
τ .

If ε = diag(Jd$E , ..., Jd$Eε0), then by (2.4.14) we have

tg−1εg−1 = εIm or εdiag(1, ..., 1, ε0) or εdiag($E , ..., $E , $E)

or εdiag($E , ..., $E , $Eε0) (2.4.19)
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Since the determinants of both sides of (2.4.19) are in F×2, and by Lemma 2.2.9, Lemma 2.2.15
and Corollary 2.3.14, we have

Hasse(εdiag(1, ..., 1, ε0)) = Hasse(εdiag($E , ..., $E , $E))

= Hasse(εdiag($E , ..., $E , $Eε0)) = 1,

and

Hasse(ε) = −1.

Then equation (2.4.19) is never satisfied with the last three terms on the right, and g0 = 1 satisfies
(2.4.19) with the first term on the right. Thus there is only one double coset JGτ .

(iii.b) If NE/F (E×)F×2/F×2 is not trivial, then ε equals Jd,m or diag(Jd$E , ..., Jd$Eε0), where

ε0 ∈ o×E and $E is a uniformizer of E. Using the similar proof as (iii.a), with Lemma 2.2.15 replaced
by Corollary 2.2.17, we can show that if ε = Jd,m, there are three double cosets Jg0G

τ , Jg1G
τ and

Jg2G
τ , where g0 = 1, g1 and g2 are defined such that τ(gi)g

−1
i equal three of the four terms on the

right side of equation (2.4.14). If ε = diag(Jd$E , ..., Jd$Eε0), then there is only one double coset
JGτ .

We sum up the main result of this subsection as the following proposition:

Proposition 2.4.19. Case (i) When NTm/F (T×m)F×2/F×2 = F×/F×2, the only double coset con-
tributing to the distinction is Jg0G

τ0, where we write g0 = 1 here and after to normalize the notation;

Case (ii) When NTm/F (T×m)F×2/F×2 is a subgroup of F×/F×2 of order 2, if Gτ0 is quasisplit
but not split, then the only double coset contributing to the distinction is Jg0G

τ0; If Gτ0 is split,
then there are two different double cosets Jg0G

τ0 and Jg1G
τ0 contributing to the distinction, where

τ0(g1)g−1
1 ∈ B×;

Case (iii) When NTm/F (T×m)F×2/F×2 = {1}, if Gτ0 is not quasisplit, then the only double coset
contributing to the distinction is Jg0G

τ0; If Gτ0 is split, then there are three different double cosets
Jg0G

τ0, Jg1G
τ0 and Jg2G

τ0 contributing to the distinction, where τ0(g1)g−1
1 , τ0(g2)g−1

2 ∈ B×.

Remark 2.4.20. The above proposition doesn’t guarantee that each of the double coset corresponds
to a distinguished space, and it says nothing about the dimension. However in the next section we will
find out that each double coset indeed contributes to the distinction and the corresponding dimension
is one respectively.

Remark 2.4.21. We may also give out all the maximal simple characters contained in π that are
τ0-selfdual. Let θ be a fixed maximal simple character such that θ ◦ τ0 = θ−1. Any other maximal
simple characters contained in π can be written as θg with g ∈ G. Thus θg is τ0-selfdual if and only
if γ = τ0(g)g−1 normalizes θ, that is, γ ∈ J . Thus from the above argument, g is in the same J-Gτ0

double coset as one of the gi in Proposition 2.4.19. Thus one has a one-to-one correspondence between
J-Gτ0 double cosets in loc. cit. and Gτ0-orbits of τ0-selfdual maximal characters contained in π.

2.5 Proof of the main theorems

In this section, we finish the proof of our main theorem. Let π be a given supercuspidal representation
of G and let τ be a given orthogonal involution on G. First of all, if π is distinguished by Gτ , then
we restrict π to F× ∩ Gτ = {1,−1} which is contained in the centre of G and we get ωπ(−1) = 1.
So ωπ(−1) = 1 is indeed a necessary condition for π to be distinguished by Gτ . So from now on we
assume further that π satisfies this condition.
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2.5.1 The finite field case

Let l be a finite field of characteristic p 6= 2 and let l be a fixed algebraic closure of l. We denote by
Fr ∈ Gal(l/l) the arithmetic Frobenius map, then we have HFr := H(l)Fr = H(l) for any algebraic
group H over l. For m ≥ 1, let G = GLm be the reductive group over l. Let τ be an orthogonal
involution of G over l, which means that the symmetric matrix corresponding to τ is of coefficients
in l. Thus τ commutes with Fr and Gτ denotes the corresponding orthogonal subgroup of G as a
reductive group over l.

For S a maximal torus of G over l, we write Sτ = S ∩Gτ . We say that S is τ -stable if τ(S) = S.
Furthermore, we say that S is τ -split if τ(x) = x−1 for any x ∈ S(l). We denote by T the set
of maximal tori S of G, such that there exists a Borel subgroup B of G over l with the property
S = B ∩ τ(B). By [Vus74], Proposition 5, the Gτ -action on T given by conjugation is transitive.
Since this Gτ -action maintains the τ -split property, and since T contains a τ -split torus2, T consists
of τ -split tori.

As in [Lus90], section 2, for S a τ -stable maximal torus of G over l, we may define a character

εS : (Sτ )Fr → {±1}.

given by
εS(t) = (−1)rankl(ZG((Sτ )◦))+rankl(ZG((Sτ )◦)∩ZG(t)◦),

where (·)◦ denotes the connected component of an algebraic group, ZG(·) denotes the centralizer of
an element or an algebraic group in G and rankl(·) denotes the rank of an algebraic group over l. For
T a maximal torus of G over l, we define

ΞT = {g ∈ G(l)|g−1T g is τ -stable}

as a variety over l, and we denote by ΞFrT = ΞT ∩ GFr its l-points. By definition, it consists of
TFr-(Gτ )Fr double cosets. For λ a character of TFr and χ a character of (Gτ )Fr, we define

ΞFrT,λ,χ = {g ∈ ΞFrT |λ(t) = χ(g−1tg)εg−1Tg(g
−1tg) for any t ∈ T(l) such that g−1tg ∈ ((Tg)τ )Fr}.

It is a subset of ΞFrT which also consists of TFr-(Gτ )Fr double cosets.
We choose lm/l to be a finite extension of degree m and we fix an embedding lm ↪→ Mm(l). We

assume T to be elliptic, which means that T(l) = l×m. By [HM99], Lemma 2, ΞFrT consists of a single
TFr-(Gτ )Fr double coset. Moreover, from its proof we know that for g ∈ ΞFrT , we have g−1Tg ∈ T ,
thus g−1Tg is τ -split.

For any ρ as a supercuspidal representation of G(l), by [DL76] we may associate it to a virtual
character RT,λ as the trace of ρ, where λ is a non-singular character of TFr, that is, λFr

i 6= λ for any
i = 1, ...,m− 1. If

HomGτ (l)(ρ, χ) 6= 0,

then by [HL12], Theorem 3.11, we get ΞFrT,λ,χ 6= 0, which means that ΞFrT,λ,χ = ΞFrT consists of a single

TFr-(Gτ )Fr double coset. Thus for h ∈ ΞFrT,λ,χ we know that h−1Th is τ -split, which also means that

h−1lmh is τ -split. Thus we have proved the following proposition:

Proposition 2.5.1. For ρ a supercuspidal representation of G(l) and χ a character of Gτ (l), if

HomGτ (l)(ρ, χ) 6= 0,

then there exists a τ -split embedding lm ↪→ Mm(l) , where lm/l is the field extension of degree m.

2If τ = τε corresponds to the diagonal symmetric matric ε = diag(1, ..., 1, ε) with ε equalling 1 or ε0 ∈ l×\l×2, then
S0 defined as the diagonal maximal torus is τ -split which is contained in T .
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2.5.2 Orthogonal groups contributing to the distinction of π

In this subsection, we first assume that H = Gτ satisfies the condition of Theorem 0.3.1. From the
proof of Theorem 2.3.3, Gτ is conjugate to Gτ0 with τ0 = τε0 defined as in the beginning of §2.4. Since
the property of distinction doesn’t depend on the choice of the representative of a G-conjugacy class,
we may suppose τ = τ0.

We choose a τ -selfdual simple type (J ,Λ) of π as in §2.4, then using the Mackey formula and the
Frobenius reciprocity we get

HomGτ (π, 1) ∼=
∏

g∈J\G/Gτ
HomJg∩Gτ (Λg, 1).

In §2.4.7, we studied all the possible double cosets that contribute to the distinction. By Proposition
2.4.19, we have

HomGτ (π, 1) ∼=
⊕
gi

HomJgi∩Gτ (Λgi , 1),

where gi runs over a finite set of representatives, depending on Case (i), Case (ii) or Case (iii) of
loc. cit.

Moreover, we may write
Λ ∼= κ⊗ ρ,

where by Proposition 2.4.15 we assume κτ∨ ∼= κ, thus we also have ρτ∨ ∼= ρ. By Proposition 2.4.12,
we get

dimCHomJgi∩Gτ (κgi , χ−1
i ) = 1 (2.5.1)

and
HomJgi∩Gτ (Λgi , 1) ∼= HomJgi∩Gτ (κgi , χ−1

i )⊗HomJgi∩Gτ (ρgi , χi),

where χi is a quadratic character of Jgi ∩ Gτ . Thus to finish the proof for τ = τ0, we only need to
calculate

dimCHomJgi∩Gτ (ρgi , χi).

We define δi(x) = γ−1
i τ(x)γi for any x ∈ G with γi = τ(gi)g

−1
i , then by the exact definition of τ and

δi, the restriction of δi to GLm(l) ∼= J/J1 is an orthogonal involution, and we denote by GLm(l)δi the
corresponding orthogonal group. So we have

HomJgi∩Gτ (ρgi , χi) ∼= HomJ∩Gδi (ρ, χ
g−1
i
i ) ∼= HomGLm(l)δi (ρ, χ

g−1
i
i ),

where ρ and χ
g−1
i
i denote the representations of J/J1 and J ∩ Gδi/J1 ∩ Gδi whose inflations equal

ρ := ρ|J and χ
g−1
i
i respectively. Using (2.5.1) we get ωκ(−1) = χ

g−1
i
i (−1)−1, where ωκ denotes the

central character of κ. By [HL12], Proposition 6.7, HomGLm(l)δi (ρ, χ
g−1
i
i ) is non-zero and of dimension

1 if and only if ωρ(−1) = χ
g−1
i
i (−1), or equivalently

ωρ(−1) = χ
g−1
i
i (−1), (2.5.2)

where ωρ and ωρ denote the central character of ρ and ρ respectively. If we denote by ωΛ and ωπ the
central character of Λ and π respectively, then we get

ωπ(−1) = ωΛ(−1) = ωκ(−1)ωρ(−1) = χ
g−1
i
i (−1)−1ωρ(−1), (2.5.3)

Combining (2.5.2) with (2.5.3), HomGLm(l)δi (ρ, χ
g−1
i
i ) is non-zero and of dimension 1 if and only if

ωπ(−1) = 1. Thus we proved the “if” part of Theorem 0.3.1 and Theorem 0.3.3.
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2.5.3 Other orthogonal groups

In this subsection, we finish the proof of Theorem 0.3.1, by showing that if π is distinguished, then
the corresponding orthogonal group must satisfy the condition of loc. cit.

Let τ(x) = ε−1 tx−1ε for x ∈ G as an orthogonal involution and let Gτ be the corresponding
orthogonal group. We assume that ε0 = Jd,m and we write τ0 = τε0 . We choose [a, β], θ and (J ,Λ) as
in §2.4.

If π is distinguished by Gτ , then by Theorem 2.4.1, Theorem 2.4.2 and Lemma 2.4.4, there exists
g ∈ G with γ = uτ(g)g−1 ∈ J ∩B× = E×b×, such that (Jg,Λg) is a simple type of π satisfying

τ(Jg) = Jg, (Λg)τ∨ ∼= Λg and HomGτ (Λg, 1) 6= 0.

Moreover from Proposition 2.4.12, if we write Λ = κ⊗ ρ, then there exists a character χ of Jg ∩Gτ
trivial on J1g ∩Gτ such that

0 6= HomJg∩Gτ (Λg, 1) ∼= HomJg∩Gτ (κg, χ−1)⊗HomJg∩Gτ (ρg, χ),

where HomJg∩Gτ (κg, χ−1) is of dimension 1. Thus we get

HomJg∩Gτ (ρg, χ) = HomJg∩Gτ (ρg, χ) 6= 0.

If we define

δ(x) = (τ(g)g−1)−1τ(x)τ(g)g−1 = γ−1ε−1
0

tx−1ε0γ for any x ∈ G

as an orthogonal involution of G, then we have

J = δ(J), J1 = δ(J1), Jg ∩Gτ = (J ∩Gδ)g and J1g ∩Gτ = (J1 ∩Gδ)g.

By definition for x ∈ B×, we have δ(x) = γ−1 tEx−1γ, where tE denotes the transpose with respect to
B ∼= Mm(E). Since γ ∈ E×b×, the restriction of δ induces an orthogonal involution on GLm(l) ∼= J/J1.
Thus we have

HomGLm(l)δ(ρ, χ
g−1) = HomJ∩Gδ(ρ, χ

g−1
) = HomJg∩Gτ (ρg, χ) = HomJg∩Gτ (ρg, χ) 6= 0,

where ρ and χg−1 denote the representations of J/J1 and J ∩Gδ/J1∩Gδ whose inflations equal ρ and
χg
−1

respectively.

By Proposition 2.5.1, there exists lm/l as a field extension of degree m and an embedding lm ↪→
Mm(l) such that lm is δ-split. Using this embedding, l×m can be regarded as a δ-split subgroup of J .
We denote by Em = E[l×m] the maximal unramified extension of degree m over E which is a δ-split,
thus Egm is a τ -split which is F -isomorphic to Em. In other words, there exists an F -embedding
ι : Em ↪→ Mn(F ) which is τ -split. We have proved Proposition 0.3.5.

Using the results in §2.5.2 we know that π is distinguished by GτJn , thus we may in particular
consider the argument above for ε = Jn and we deduce that Em is τJn-split, that is, the condition of
the following lemma is satisfied.

Lemma 2.5.2 ( [Hak13], Lemma 6.4). Assume that there exists a J-symmetric embedding Em ↪→
Mn(F ). Then for YEm/F = E×m/(E

×2
m F×) and OEm the set of E×m-orbits of orthogonal involutions τ

such that Em is τ -split, the map

µEm/F : YEm/F → O
Em

which sends the coset of x ∈ E×m to the orbit of τJnx is a bijection.
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In particular we have τJn , τ ∈ OEm . Since Em/Tm is totally wildly ramified, as in Lemma 2.2.19 it
is easy to see that E×m/E

×2
m F× ∼= T×m/T

×2
m F×, and we denote by yTm/F the corresponding cardinality.

Thus by [Hak13], Lemma 6.2, yTm/F − 1 equals the number of quadratic extensions of F contained in
Tm. Furthermore by [Hak13], Lemma 3.8 we have

yTm/F =


1 Case (i),

2 Case (ii),

4 Case (iii).

Thus in Case (i), we have |OEm | = 1, which means that OEm consists of the E×m-orbit represented by
the split involution τJn , thus Gτ is split. In Case (ii), we have |OEm | = 2. And by direct calculation,

det(JnE
×
m)F×2/F×2 = (−1)n(n−1)/2NEm/F (E×m)F×2/F×2 = (−1)n(n−1)/2NTm/F (T×m)F×2/F×2,

which is of order 2. Thus OEm consists of two E×m-orbits, one of which is split, and the other is
quasisplit but not split with the determinants of its corresponding symmetric matrices contained in
(−1)n(n−1)/2NTm/F (T×m)F×2\(−1)n(n−1)/2F×2. Thus Gτ is either split or quasisplit that satisfies the
condition of Theorem 0.3.1. In Case (iii),

det(JnE
×
m)F×2/F×2 = (−1)n(n−1)/2NEm/F (E×m)F×2/F×2 = {1}.

Thus by Proposition 2.2.5, Gτ is either split or non-quasisplit. Combining these three cases together,
we have shown that Gτ must satisfy the condition of Theorem 0.3.1, which finishes the “only if” part
of Theorem 0.3.1.



Chapter 3

Explicit base change lift and
automorphic induction for
supercuspidal representations

3.1 General notations

For F a non-archimedean locally compact field of residue characteristic p, we denote by oF its ring
of integers, by pF the maximal ideal, by kF its residual field, by µF the group of roots of unity of
order relatively prime to p in F×, by | · |F the corresponding discrete absolute value and by vF the
corresponding discrete valuation. We leave the notations AF and CF to stand for a certain F -algebra
isomorphic to Mm(F ) with the positive integer m to be specified, whose exact definitions will be given
later according to the context, and we denote by detF the determinant map and by TrAF or TrCF
the trace map. We leave the notation GF to stand for A×F or C×F according to the context. For
E/F a finite extension of non-archimedean locally compact fields, we denote by f(E/F ) its residue
class degree and by e(E/F ) its ramification index, and by NE/F and TrE/F the norm and trace map
respectively. Later without further mention, any finite separable extension E/F should be regarded
as subextension in a fixed algebraic separable closure F/F . We denote by WF the Weil group of F
and by WE the Weil group of E as a subgroup of WF .

We regard GLn(F ) as a locally profinite group endowed with p-adic topology. By representations
of a locally profinite group we always mean smooth complex representations, and by characters we
mean one dimensional smooth representations with complex values. We will use ∨ “check” to denote
the contragredient of a smooth representation. For a character of F×, it is called unramified if its
restriction to o×F is trivial, and called tamely ramified if its restriction to 1 + pF is trivial.

We fix a prime number p and a non-archimedean locally compact field F0 of residue characteristic
p, we fix once and for all an algebraic separable closure F0/F0, and we write |kF0 | = q. We fix a
character ψF0 : F0 → C× of level 0, saying that it is trivial on pF0 but not on oF0 . For any F/F0 as a
finite separable tamely ramified extension, we choose ψF = ψF0 ◦ TrF/F0

which is a character of F of
level 0.

For G a group and Σ a subgroup of the group of automorphisms of G, we define the semi-direct
product Go Σ as a group via the relations

(g, σ) · (g′, σ′) = (gσ(g′), σσ′)

for any g, g′ ∈ G and σ, σ′ ∈ Σ.
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3.2 Preliminaries for the simple type theory

In this section, we briefly recall the simple type theory built up by Bushnell and Kutzko, and further
developed by Bushnell and Henniart in a series of articles. Our main reference will be [BK93], [BH96]
and [BH14b].

3.2.1 Simple strata and simple characters

Let F be a non-archimedean locally compact field of residue characteristic p and let A = AF = Mn(F )
for n ≥ 1 fixed. We consider a simple stratum [a,mβ, 0, β] in A defined as in [BK93], section 1, where

a is a hereditary in A, and β is an element in A× satisfying βa = p
−mβ
a for mβ a positive integer, such

that E := F [β] is a field normalizing a. Since mβ is uniquely determined by a and β, we abbreviate
the above notation to [a, β]. We denote by B the centralizer of E in A and we write b = a ∩B which
is a hereditary order in B. We say that [a, β] is maximal if b is a maximal order in B. In particular
for E′/E a finite extension with [E′ : F ] = n, we choose an F -algebra embedding E′ ↪→ A whose
restriction to E is identity. Thus, the ideal chain of E′ gives rise to a hereditary order in A, denoted by
aF (E′), and [aF (E′), β] is a simple stratum in A which is maximal if and only if E′/E is unramified.

Associated with [a, β], there is a chain of open compact subgroups (see [BK93], section 3)

H1(a, β) ⊂ J1(a, β) ⊂ J(a, β)

of a×, where J(a, β) = b×J1(a, β). We denote by J(a, β) the subgroup of A× generated by J(a, β)
and the normalizer of b× in B×, which is compact modulo F×. We may write H1(a, β) = 1 + h1(a, β)
and J1(a, β) = 1 + j1(a, β) for h1(a, β) and j1(a, β) sub-oF -lattices of pa.

We attach to [a, β] a finite set of characters of H1(a, β) as in [BK93], §3.2, denoted by C(a, β, ψF )
and called simple characters, and we simply write C(a, β) by omitting ψF . We use small Greek letter
θ (with additional superscripts and subscripts) to denote a simple character.

Given a simple stratum [a, β] and a simple character θ of H1(a, β), the normalizer of θ equals
J(a, β), whose unique maximal compact subgroup equals J(a, β). The unique maximal normal pro-
p-subgroup of J(a, β) equals J1(a, β). Thus even if we change our choice of simple stratum [a, β], the
chain of subgroups

H1(a, β) ⊂ J1(a, β) ⊂ J(a, β) ⊂ J(a, β)

is only determined by θ. In particular, [a, β] is maximal if and only if J(a, β)/J1(a, β) ∼= GLm(kE),
which only depends on θ. Thus we say that θ is maximal if for one maximal simple stratum [a, β] we
have θ ∈ C(a, β).

We explain our convention for the “null” case for a simple stratum [a, β]. In this case conventionally
we write β = 0, E = F , A = B, a = b and H1(a, β) = J1(a, β) = 1 + pa. Moreover, the set C(a, β) is a
singleton consisting of the trivial character of H1(a, β). Later on our discussion will also include this
case.

3.2.2 Endo-class and interior tame lifting

For [a, β] a simple stratum in Mn(F ) and [a′, β] a simple stratum in Mn′(F ), where we identify β
with an element in both Mn(F ) and Mn′(F ) via certain F -algebra embeddings, we have a bijection
(see [BK93], §3.6.)

tβa,a′ : C(a, β) −→ C(a′, β)

called the transfer map. Now let [a1, β1] and [a2, β2] be simple strata in Mn1(F ) and Mn2(F ) re-
spectively. We say that a simple character θ1 ∈ C(a1, β1) is endo-equivalent to another simple char-
acter θ2 ∈ C(a2, β2), if there exist simple strata [a′, β1] and [a′, β2] in Mn′(F ) and simple characters
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θ′1 ∈ C(a′, β1) and θ′2 ∈ C(a′, β2), such that θ′i = tβiai,a′(θi) for i = 1, 2, and θ′1 is GLn′(F )-conjugate to θ′2.
This definition does not depend on the choice of n′, [a′, β1], [a′, β2] and the embeddings, which indeed
gives an equivalence relation on the set of all the simple characters (see [BH96], section 8). We use
the capital Greek letter Θ (with superscripts and subscripts) to denote the corresponding equivalence
class, called endo-class, of a certain simple character. We use E(F ) to denote the set of endo-classes
of F . For a simple stratum [a, β] and a simple character θ in the endo-class Θ, we say that θ realizes
Θ and E = F [β] is a parameter field of Θ. Such a parameter field is not unique, however its degree
d = [E : F ] and its maximal tamely ramified subextension T/F up to F -isomorphism are uniquely
determined by Θ. We call d the degree of Θ and T/F the tame parameter field of Θ.

Now we consider the interior tame lifting (see [BH96], section 7). Given a simple stratum [a, β] in
A, let L/F be a tamely ramified subextension in A such that L[β] is a subfield of A normalizing a. We
denote by AL the centralizer of L in A, and we write aL = a∩A for the hereditary order in AL. Thus
[aL, β] is a simple stratum in AL and we have H1(aL, β) = A×L ∩H1(a, β), J1(aL, β) = A×L ∩ J1(a, β),
J(aL, β) = A×L ∩ J(a, β) and J(aL, β) = A×L ∩J(a, β). Moreover, given a simple character θ ∈ C(a, β),
we know that θL := θ|H1(aL,β) is a simple character in C(aL, β). We call such θL the interior L/F -lift
of θ.

In general, given a tamely ramified extension L/F , there exists a surjection (see [BH14b], §2.3)

iL/F : E(L) −→ E(F )

with finite fibers. For Θ ∈ E(F ), the elements in the finite set i−1
L/F (Θ) are called the L/F -lifts of Θ.

To find out all the fibers, we choose a simple stratum [a, β] and a simple character θ ∈ C(a, β) realizing
Θ. We have an F -algebra isomorphism F [β]⊗F L ∼=

∏k
i=1 Li, where Li are fields over L. Then there

is a canonical bijection

{L1, ..., Lk} −→ i−1
L/F (Θ)

Li 7−→ Θi,

such that Li is a parameter field of Θi. In particular, if θL is the interior L/F -lift of θ, then the
endo-class of θL is a L/F -lift of that of θ.

Finally we state and proof two technical lemmas to end this subsection.

Lemma 3.2.1. Let [a, β] be a simple stratum in A, let L/F be a tamely ramified subextension in A
such that L[β] is a field normalizing a, and let L′ be a subfield of L over F . Then for θ ∈ C(a, β), we
have (θL′)L = θL.

Proof. By definition, we have θL′ = θ|H1(aL′ ,β) and θL = θ|H1(aL,β). Since AL is also the centralizer of
L in AL′ , considering the tamely ramified extension L/L′ we have aL = (aL′)L, [aL, β] = [(aL′)L, β],
H1(aL, β) = A×L ∩H1(aL′ , β) and θL = θL′ |H1(aL,β), which finishes the proof.

Lemma 3.2.2. Let [a, β] and [ã, β] be two maximal simple strata in Mn(F ) and Mn′(F ) respectively
and let L/F be a tamely ramified subextension in both Mn(F ) and Mn′(F ), such that L[β] is a subfield of

Mn(F ) and Mn′(F ) normalizing both a and ã. Then for any θ ∈ C(a, β), we have (tβ
a,̃a

(θ))L = tβ
aL ,̃aL

(θL)

as a simple character in C(ãL, β).

Proof. We write E′ = L[β] as a field containing E and normalizing both a and ã, and we write
t = [L : F ] and s = [E′ : F ]. We need to show that the following diagram is commutative:
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C(aL, β)
tβ
aL,ãL // C(ãL, β)

C(a, β)

|H1(aL,β)

OO

tβ
a,ã

// C(ã, β)

|H1(ãL,β)

OO
(3.2.1)

First we assume that n = n′, thus both a and ã are hereditary orders in Mn(F ). By [BK93], Theorem

3.6.1, θ̃ := tβ
a,̃a

(θ) is the unique simple character in C(ã, β) such that θ|H1(a,β)∩H1(ã,β) = θ̃|H1(a,β)∩H1(ã,β).

By definition, [aL, β] and [ãL, β] are simple strata in Mn/t(L), and θL and θ̃L are the interior L/F -lifts

of θ and θ̃ respectively, and moreover

θL|H1(aL,β)∩H1(ãL,β) = θ|GLn/t(L)∩H1(a,β)∩H1(ã,β) = θ̃|GLn/t(L)∩H1(a,β)∩H1(ã,β)

= θ̃L|H1(aL,β)∩H1(ãL,β),

thus θ̃L = tβ
aL ,̃aL

(θL), which finishes the proof of the case n = n′.

Now we consider the case n′ = nk for k a positive integer. By [BK93], §1.2, since E′ normalizes
a, there exist an E′-vector space V of dimension n/s and an oE′-lattice chain L = {Li} in V , such
that EndF (V ) ∼= Mn(F ) induces End0

oF
(L) = a, where End0

oF
(L) denotes the ring of endomorphisms

of L as in loc. cit. We write Ṽ = V ⊕ ... ⊕ V of k-copies and L̃ = L ⊕ ... ⊕ L of k-copies as a
oE′-lattice chain of Ṽ , and we have End0

oF
(L̃) ∼= ã given by the isomorphism EndF (Ṽ ) ∼= Mn′(F ),

which is naturally induced by EndF (V ) ∼= Mn(F ) given above. We further assume End0
oF

(L̃) = ã. To
simplify the notation, we write

G = GLF (V ′) and M = GLF (V )× ...×GLF (V )

of k-copies which is actually a Levi subgroup of G. Thus by [BK93], Proposition 7.1.19, we have

H1(ã, β) ∩M = H1(a, β)× ...×H1(a, β)

of k-copies and for θ̃ := tβ
a,̃a

(θ) we have

θ̃|H1(ã,β)∩M = θ ⊗ ...⊗ θ.

Similarly we may consider interior L/F -lifts. From our construction, aL = End0
oL

(L) and ãL =

End0
oL

(L̃) are hereditary orders in EndL(V ) and EndL(Ṽ ), and [aL, β] and [ãL, β] are corresponding
simple strata respectively. We write

GL = GLL(Ṽ ) and ML = GLL(V )× ...×GLL(V )

as a Levi subgroup of GL, and if we denote by θL and θ̃L the interior L/F -lifts of θ and θ̃ respectively,
by definition we have

θ̃L|H1(ãL,β)∩ML
= θ̃|H1(ã,β)∩ML

= θ|H1(a,β)∩GLL(V ) ⊗ ...⊗ θ|H1(a,β)∩GLL(V ) = θL ⊗ ...⊗ θL.

Using [BK93], Proposition 7.1.19 again, we must have θ̃L = tβ
aL ,̃aL

(θL).

Finally we consider the general case. We choose a simple stratum [a′, β] in Mnn′/s(F ), such that a′

is determined by the oE′-lattice chain as the direct sum of n′/s-copies of the lattice chain corresponding
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to a. Similarly we choose a simple stratum [ã′, β] in Mnn′/s(F ), such that ã′ is determined by the oE′-
lattice chain as the direct sum of n/s-copies of the lattice chain corresponding to ã. Thus the following
two diagrams are commutative:

C(aL, β)
tβ
aL,a

′
L // C(a′L, β) C(ãL, β)

tβ
ãL,ã

′
L // C(ã′L, β)

C(a, β)

|H1(aL,β)

OO

tβ
a,a′

// C(a′, β)

|H1(a′
L
,β)

OO

C(ã, β)

|H1(ãL,β)

OO

tβ
ã,ã′

// C(ã′, β)

|H1(ã′
L
,β)

OO

Since both [a′, β] and [ã′, β] are simple strata in Mnn′/s(F ), using the previous case the following
diagram is commutative:

C(a′L, β)
tβ
a′
L
,ã′
L // C(ã′L, β)

C(a′, β)

|H1(a′
L
,β)

OO

tβ
a′,ã′

// C(ã′, β)

|H1(ã′
L
,β)

OO

Combining these three diagrams together we get (3.2.1), which finishes the proof.

3.2.3 Full Heisenberg representation

Let [a, β] be a simple stratum in A and let θ ∈ C(a, β) be a simple character. We denote by I(θ)
the set of elements of A× which intertwine θ. There exists a unique irreducible representation η of
J1(a, β) containing θ, called the Heisenberg representation of θ. We further consider a representation
κ of J(a, β) as a extension of η. Such a representation is called a full Heisenberg representation of θ if
every element in I(θ) also intertwines κ, whose existence is guaranteed by [BH14b], §3.2. In particular
κ := κ|J(a,β) is a so-called β-extension.

3.2.4 Extended maximal simple type and supercuspidal representation

We fix a maximal simple stratum [a, β] and a simple character θ ∈ C(a, β) with E = F [β], we
let T be the maximal tamely ramified subextension of E over F , and we write d = [E : F ] and
n = md. We consider an extended maximal simple type1 (J ,Λ) of θ in the sense of [BK93], section
6, such that J = J(a, β) and Λ is a representation of J whose restriction to H1(a, β) is a multiple
of θ. We write T (θ) for the set of isomorphism classes of representations Λ of J , such that (J ,Λ)
is an extended maximal simple type of θ. We denote by Tm(E) the set of isomorphism classes of
representations ρ of E×GLm(oE) trivial on 1 + Mm(pE), such that ρ|GLm(oE) is the inflation of a
supercuspidal representation of GLm(kE) ∼= GLm(oE)/(1 + Mm(pE)). Via the natural isomorphism
J/J1 ∼= E×GLm(oE)/(1 + Mm(pE)), we will also regard elements in Tm(E) as representations of J
trivial on J1 = J1(a, β) without further mention.

We denote by Θ the endo-class of θ and byA0
m(F,Θ) the set of isomorphism classes of supercuspidal

representations of GLmdeg(Θ)(F ) whose endo-class is Θ.

Proposition 3.2.3 ( [BH14b], §3.6, [BK93], §6.2, §8.4.). (1) Given any full Heisenberg representation
κ of θ, we have the following bijection

Tm(E) −→ T (θ), ρ 7−→ κ⊗ ρ.
1Later we will always write simple type for short.
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(2) We have the following bijection

T (θ) −→ A0
m(F,Θ), Λ 7−→ indGJΛ,

where indGJ represents the compact induction.

Finally, we denote by X1(Tm) (resp. X1(Em)) the set of tamely ramified characters of T×m (resp.
E×m) endowed with a ∆-action, where Tm (resp. Em) is the unramified extension of degree m over T
(resp. E) and ∆ = Gal(Em/E) ∼= Gal(Tm/T ). Since Em/Tm is wildly ramified, it is easy to see that

X1(Tm) −→ X1(Em), ξ 7−→ ξE := ξ ◦NEm/Tm (3.2.2)

is a bijection. We say that ξ is ∆-regular if ξδ is not equal to ξ for any non-trivial δ ∈ ∆ and
we have a similar definition for ξE to be ∆-regular. We write X1(Tm)∆−reg (X1(Em)∆−reg) for the
set of ∆-regular tamely ramified characters of T×m (resp. E×m), then it is easy to see that (3.2.2)
induces a bijection between these two sets. We write ∆\X1(Tm)∆−reg (resp. ∆\X1(Em)∆−reg) for the
corresponding quotient with respect to the ∆-action.

Proposition 3.2.4 ( [BH14b], §3.5, Proposition). (1) For ξE ∈ X1(Em)∆−reg, there exists a unique
representation ρξE ∈ Tm(E) such that

tr(ρξE )(zζ) = (−1)m−1ξE(z)
∑
δ∈∆

ξδE(ζ)

for any z ∈ E× and any ∆-regular element ζ ∈ µEm;
(2) The representation ρξE depends only on the ∆-orbit of ξE, which induces the following bijection

∆\X1(Em)∆−reg −→ Tm(E), ξE 7−→ ρξE ;

(3) Combining (2) with (3.2.2), we have the following bijection

∆\X1(Tm)∆−reg −→ Tm(E), ξ 7−→ ρξE , (3.2.3)

and we write ρξ := ρξE for short.

As a corollary of the above two propositions, we have:

Corollary 3.2.5. If m = 1, then for κ a fixed full Heisenberg representation of θ and any simple type Λ
containing θ, there exists a unique tamely ramified character ξ of T×m = T×, such that Λ ∼= κ·(ξ◦NE/T ),
where ξ ◦NE/T is regarded as a character of J via the canonical isomorphism J/J1 ∼= E×/(1 + pE).

Finally for π a supercuspidal representation of GLn(F ) containing θ and κ a β-extension of θ, the
finite dimensional vecter space HomJ1(κ, π) is endowed with a J/J1-action given by

g · f := π(g−1) ◦ f ◦ κ(g), g ∈ J, f ∈ HomJ1(κ, π),

thus is realized as a representation of GLm(kE) ∼= J/J1 denoted by Kκ(π), which is necessarily
irreducible and supercuspidal (cf. [SZ99]). If we choose a full Heisenberg representation κ extending
κ, then we get a ∆-regular character ξE of E×m which is trivial on 1 + pEm by the propositions above.
In particular we get a Gal(kEm/kE)-regular character ξ of k×Em whose inflation equals ξE |o×Em via the

isomorphism k×Em
∼= o×Em/(1 + pEm). It is easily seen that the cuspidal representation of GLm(kE)

related to ξ via Green’s theory [Gre55] and Kκ(π) coincide.
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3.3 Symplectic signs

In this section, we sum up basic results corresponding to symplectic signs, which are useful when
comparing the trace of two (full) Heisenberg representations. The main reference will be [BF83],
[BH10].

Fix p a prime number and let Γ be a finite cyclic group of order relatively prime to p. We call
(V, h) a symplectic Fp[Γ]-module if

(1) V is a finite Fp[Γ]-module;

(2) h is a non-degenerate, alternating, bilinear form V ×V → Fp, such that h(γv1, γv2) = h(v1, v2)
for any v1, v2 ∈ V and γ ∈ Γ.

For two symplectic Fp[Γ]-modules (V1, h1) and (V2, h2), we may consider their direct sum (V1 ⊕
V2, h1 ⊕ h2) which is also a symplectic Fp[Γ]-module, where

(h1 ⊕ h2)((v1, v2), (v′1, v
′
2)) := h1(v1, v

′
1) · h2(v2, v

′
2), (v1, v2), (v′1, v

′
2) ∈ V1 ⊕ V2.

Usually we omit the corresponding symplectic form and write V1, V2 and V = V1 ⊕ V2 instead.
In general, every Fp[Γ]-module can be written as direct sum of indecomposable Fp[Γ]-modules, and
indecomposable Fp[Γ]-modules are classified into two basic types.

Given a symplectic Fp[Γ]-module V , we may define a sign t0Γ(V ) ∈ {±1} and a quadratic character
t1Γ(V ) : Γ → {±1}. Here it is unnecessary to recall the exact definition, which the interested readers
may find in [BH10]. We recall the following useful properties instead:

Proposition 3.3.1. (1) If V = V1⊕V2 as symplectic Fp[Γ]-modules, then t0Γ(V ) = t0Γ(V1) · t0Γ(V2) and
t1Γ(V ) = t1Γ(V1) · t1Γ(V2);

(2) For any γ as a generator of Γ, the sign tΓ(V ) := t0Γ(V ) · t1Γ(V )(γ) doesn’t depend on the choice
of γ;

(3) For Σ a subgroup of Γ acting trivially on V and γ a generator of Γ, we have t0Γ(V ) = t0Γ/Σ(V )

and t1Γ(V )(γ) = t1Γ/Σ(V )(γ);

(4) For ∆ a subgroup of Γ such that V ∆ = V Γ and δ a generator of ∆, we have t0Γ(V ) · t1Γ(V )(δ) =
t0∆(V ) · t1∆(V )(δ).

Proof. Properties (1)(2)(3) follow from direct definition, property (4) is [BH10], Proposition 5.

We call t0Γ(V ), t1Γ(V ) and tΓ(V ) in the proposition symplectic signs, although t1Γ(V ) is indeed a
quadratic character. Now we focus on concrete examples. Let A = Mn(F ), let [a, β] be a maximal
simple stratum in A and let θ ∈ C(a, β). For g1, g2 ∈ J1(a, β), the pairing

〈g1, g2〉 7→ θ(g1g2g
−1
1 g−1

2 )

induces a non-degenerate alternating bilinear form

J1(a, β)/H1(a, β)× J1(a, β)/H1(a, β)→ Fp,

which endows V = J1(a, β)/H1(a, β) with a finite dimensional symplectic space structure ( [BK93],
Theorem 3.4.1). Moreover if we write g1 = 1+x and g2 = 1+y for x, y ∈ j1(a, β), then θ(g1g2g

−1
1 g−1

2 ) =
ψF (TrA(β(xy − yx))) ( [BH05c], 6.1.1 Proposition). In other words, the symplectic structure on
V = J1(a, β)/H1(a, β) ∼= j1(a, β)/h1(a, β) can also be given by

〈x, y〉 7→ ψF (TrA(β(xy − yx))). (3.3.1)
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Now we denote by Em the maximal unramified extension of degree m over E = F [β] and we fix
an E-embedding Em ↪→ B such that o×Em is contained in GLm(oE), where n = md and B = Mm(E).
Let Tm be the maximal tamely ramified subextension of Em over F . As a result, E×m is contained in
J(a, β) and thus normalizes H1(a, β), J1(a, β), V and θ. For any uniformizer $F of F , the quotient
E×m/〈$F 〉 acts on V via conjugacy, which maintains the symplectic structure. Thus for any Γ as a
cyclic subgroup of E×m/〈$F 〉, we may endow V with a Fp[Γ] symplectic module structure.

Example 3.3.2. (1) For µTm being regarded as a subgroup of E×m/〈$F 〉, we endow V with Fp[µTm ]
symplectic module structure and we have symplectic signs ε0F (µTm) := t0µTm (V), ε1F (µTm) := t1µTm (V)
and εF (µTm) := tµTm (V);

(2) Let $T be a uniformizer of T and Tm, such that $F = $
e(Tm/F )
T ζ for ζ a root of unity in

T×. Thus the subgroup of E×m/〈$F 〉, generated by $T and denoted by 〈$T 〉/〈$F 〉, is cyclic of order
relatively prime to p. Then we endow V with Fp[〈$T 〉/〈$F 〉] symplectic module structure and we have
symplectic signs ε0F ($T ) := t0〈$T 〉/〈$F 〉(V), ε1F ($T ) := t1〈$T 〉/〈$F 〉(V) and εF ($T ) := t〈$T 〉/〈$F 〉(V);

(3) Under the notation of (2) if we further assume ζ = 1, then we actually have 〈$T 〉/〈$F 〉 ∼=
T×/F×o×T

∼= T×m/F
×o×Tm. In this particular case, we use ε0T/F , ε1T/F and εT/F to denote the symplectic

signs ε0F ($T ), ε1F ($T ) and εF ($T ) instead respectively, which are independent of the choice of $T .

Moreover, for L/F as a subextension of Tm/F , we write AL for the centralizer of L in A and
aL = AL ∩ a as a hereditary order in AL. Thus [aL, β] is a simple stratum in AL and θL = θ|H1(aL,β)

is the interior T/F -lift of θ. Thus VL = J1(aL, β)/H1(aL, β) is a Fp[ΓL] symplectic module, where the
symplectic structure is given by θL and ΓL is a cyclic subgroup of E×m/〈$L〉 with $L a uniformizer of
L.

Example 3.3.3. (1) We have symplectic signs ε0L(µTm) := t0µTm (VL), ε1L(µTm) := t1µTm (VL) and
εL(µTm) := tµTm (VL);

(2) For $T a uniformizer of T and Tm such that $L = $
e(Tm/L)
T ζL for ζL a root of unity in

T×, we have symplectic signs ε0L($T ) := t0〈$T 〉/〈$L〉(VL), ε1L($T ) := t1〈$T 〉/〈$L〉(VL) and εL($T ) :=

t〈$T 〉/〈$L〉(VL);
(3) If we further assume ζL = 1, we may use ε0T/L, ε1T/L and εT/L to denote the symplectic signs

ε0L($T ), ε1L($T ) and εL($T ) respectively instead, which are independent of the choice of $T .

Remark 3.3.4. As indicated in [BH14b], section 5, the symplectic signs in the above examples are
independent of the choice of the simple stratum [a, β] and the embedding Em ↪→ B, but only depend
on θ and thus only depend on the endo-class of θ, since any such two maximal simple characters in
the same endo-class are conjugate.

3.4 Cyclic base change and automorphic induction

In this section, we recall the definition and basic properties of cyclic base change and automorphic
induction.

3.4.1 Cyclic base change

In this subsection, we sum up the results in [AC89], [HL11] to give a brief introduction of cyclic base
change. Let F/F ′ be a finite cyclic extension of non-archimedean locally compact fields of degree r,
let Σ = Gal(F/F ′) and fix σ ∈ Σ a generator. For π an irreducible representation of GLn(F ), it is
called σ-invariant if πσ ∼= π, or equivalently there exists an intertwining operator Iσ such that Irσ = id
and π(σ(g)) ◦ Iσ = Iσ ◦ π(g) for any g ∈ GLn(F ). Once Iσ is chosen, we may also regard π as an
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irreducible representation of GF oΣ defined by π(g, σ) = π(g) ◦ Iσ acting on the same representation
space. For π0 an irreducible representation of GLn(F ′), we call π the Shintani base change lift of π0,
if there exist Iσ as above and a non-zero complex number c(Iσ) depending on Iσ such that

tr(π)(g, σ) = c(Iσ) · tr(π0)(g0)

for any g ∈ GLn(F ) such that g0 := NF/F ′(g) = gσ(g)...σr−1(g) is a semisimple regular element in
GLn(F ′), where tr(π) and tr(π0) denote the Harish-Chandra characters. We remark that such π,
once exists, is uniquely determined by π0. We denote by Irr(GLn(F ′)) the set of equivalence classes
of irreducible representations of GLn(F ′) and by Irrσ−inv(GLn(F )) the set of equivalence classes of
irreducible representations of GLn(F ) that are σ-invariant.

Theorem 3.4.1 ( [AC89], chapter I, section 6, [HL11], chapter II). We have the map

BCF/F ′ : Irr(GLn(F ′)) −→ Irrσ−inv(GLn(F ))

π0 7−→ π

such that π0 is essentially tempered if and only if π is essentially tempered. In this case π is the
Shintani base change lift of π0, and their central characters ωπ0 and ωπ satisfy the relation

ωπ(z) = ωπ0(NF/F ′(z))

for any z ∈ F×;

In particular, we are interested in the supercuspidal case. We fix ωF/F ′ a character of F ′× whose
kernel is NF/F ′(F

×).

Proposition 3.4.2 ( [AC89], chapter I, section 6, [HL11], chapter II). (1) For π0 a supercuspidal
representation of GLn(F ′), let c(π0) be the cardinality of the set of isomorphism classes

C(π0) := {π0ω
k
F/F ′ |k ∈ Z}/ ∼=

dividing r. Then r/c(π0) divides n and there exists a supercuspidal representation π′ of GLnc(π0)/r(F )

such that π′σ
i ∼= π′ if and only if r/c(π0) divides i, and

BCF/F ′(π0) = π′ × π′σ × ...× π′σr/c(π0)−1
. (3.4.1)

(2) Conversely for c a positive integer dividing r such that r/c divides n, and for π′ as a supercus-
pidal representation of GLnc/r(F ), such that π′σ

i ∼= π′ if and only if r/c divides i, there exists π0 as a
supercuspidal representation of GLn(F ′) satisfying (3.4.1), c(π0) = c and

BC−1
F/F ′(π

′ × π′σ × ...× π′σr/c−1
) = {π′0|π′0 ∈ C(π0)}.

Remark 3.4.3. Since we may decompose F/F ′ into a sequence of subextensions F ′ ( F1 ( ... ( Fk =
F , such that Fi+1/Fi and F1/F

′ are cyclic of a prime degree, in practice we only need to focus on two
special cases in the proposition above: either c(π0) = r or c(π0) = 1. In the former case BCF/F ′(π0)
is a supercuspidal representation of GLn(F ), and in the latter case it equals the parabolic induction
π′ × π′σ × ...× π′σr−1

with π′ a supercuspidal representation of GLn/r(F ).

3.4.2 Cyclic automorphic induction

In this subsection, we sum up the results in [HH95], [HL10], [BH10], [HL11] to give a brief introduction
of cyclic automorphic induction.
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3.4.2.1

Let K/F be a finite cyclic extension of non-archimedean locally compact fields of degree l. We fix
a certain F -algebra embedding K ↪→ Mn(F ) to identify K with an F -subalgebra of Mn(F ), thus
GLn/l(K) is regarded as the centralizer of K× in GLn(F ). Moreover, we fix the following data:

(1) a generator σ0 of Σ0 = Gal(K/F );

(2) a character κK/F of F× with kernel NK/F (K×);

(3) an element el ∈ K× such that σ0(el) = (−1)n(l−1)/lel.

We call such a triple (σ0,κK/F , el) a transfer system for K/F in relative dimension n/l.

For g, g′ two elements in GLn/l(K) with eigenvalues g1, ..., gn/l and g′1, ..., g
′
n/l in an algebraic

closure of K, we define

rK/F (g, g′) =

n/l∏
i,j=1

(gi − g′j) ∈ K,

and moreover for g a semisimple regular element in GLn/l(K), we define

∆̃K/F (g) =
∏

0≤i<j≤l−1

rK/F (σi0(g), σj0(g)).

By definition, we have el∆̃K/F (g), ∆̃K/F (g)2 ∈ F×. We further define

∆1
K/F (g) = |∆̃K/F (g)2|1/2F |det(g)|n(l−1)/2l

F ,

∆2
K/F (g) = κK/F (el∆̃K/F (g)),

δK/F (g) = ∆2
K/F (g)/∆1

K/F (g).

These definitions, depending on the embedding and the choice of transfer factors, will be the starting
point of the cyclic automorphic induction.

3.4.2.2

Let π be an irreducible representation of GLn(F ) such that πκK/F ∼= π, where we identify κK/F with
κK/F ◦detF as a character of GLn(F ). Equivalently, there exists a κK/F -intertwining operator Φ such
that

Φ ◦ (π(g)κK/F (g)) = π(g) ◦ Φ, g ∈ GLn(F ),

which determines Φ up to a scalar. We define the κK/F -trace of π as a distribution of the space of
smooth compactly supported functions on GLn(F ):

trκK/F (π) : f 7−→ tr(Φ ◦ π(f)), f ∈ C∞c (GLn(F )),

which can also be realized as a locally constant function defined on the set of semisimple regular
elements of GLn(F ). Similarly for τ as an irreducible representation of GLn/l(K), we have the ordinary
trace

tr(τ) : f 7−→ tr(τ(f)), f ∈ C∞c (GLn/l(K))

which can be realized as a locally constant function defined on the set of semisimple regular elements
of GLn/l(K). We call such π a κK/F -lift of τ , if a certain relation between κK/F -trace of π and the
trace of τ is satisfied for all semisimple regular elements of GLK(K), which we shall not recall here
(see [HH95], §3.11). Since such a relation, if exists, uniquely determines π, in this case we also call π
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the automorphic induction of τ and we write π = AK/F (τ). In particular, for any elliptic elements g
in GLn/l(K), the above omitted relation is easy to describe and can be written as follows:

trκK/F (π)(g) = δK/F (g) · c(τ,Φ)

l−1∑
i=0

tr(τ)(σi0(g)), (3.4.2)

where c(τ,Φ) is a non-zero complex number independent of g. For supercuspidal representations, we
sum up the following result:

Proposition 3.4.4 ( [BH05c], §1.2.). (1) When π is supercuspidal satisfying πκK/F ∼= π, there exists

a supercuspidal representation τ such that AK/F (τ) = π. Each τ is Σ0-regular, saying that τσ
i
0 is not

isomorphic to τ for i = 1, 2, ..., l − 1, and its Σ0-orbit is uniquely determined by π.
(2) Conversely, for any supercuspidal representation τ that is Σ0-regular, its automorphic induction

π = AK/F (τ) is well defined and supercuspidal satisfying πκK/F ∼= π.
(3) For (1) and (2), (3.4.2) is enough to determine π via the Σ0-orbit of τ , and vice versa.

3.4.2.3

We further assume that π = AK/F (τ) is generic. We let (U, ϑ) be a Whittaker pair, where U is
the unipotent radical of a Borel subgroup of GLn(F ), and ϑ is a nondegenerate character of U .
Being generic means that the vector space HomU (π, ϑ) is of dimension 1, thus we choose λ to be a
non-zero vector in this space. Since the restriction of κK/F to U is trivial, we have HomU (π, ϑ) =
HomU (πκK/F , ϑ).

For Φ an intertwining operator as before, λ◦Φ is another non-zero vector in HomU (πκK/F , ϑ), thus
is proportional to λ. We may change Φ up to a scalar such that λ ◦ Φ = λ and we denote by Φ(π, ϑ)
this special intertwining operator. We write cK/F (ϑ) = c(τ,Φ(π, ϑ)) for the constant determined by
(3.4.2), which is independent of τ and π by the main result of [HL10].

In particular, for ψ an additive character of F of level 0, we may consider the special Whittaker
pair (U0, ϑψ), where U0 is the unipotent radical of the upper triangular Borel subgroup, and ϑψ(u) :=

ψ(
∑n−1

i=1 uii+1) for u = (uij) ∈ U0. In this case we write c
K/F
n (ψ) = cK/F (ϑψ) for the corresponding

constant. We may also compare two different constants with respect to two Whittaker pairs: for any
g ∈ GLn(F ) such that (U, ϑ) = (Ug0 , ϑ

g
ψ), we have (see [HL10], §3.3.)

cK/F (ϑ) = κK/F (detF (g))−1 · cK/Fn (ψ), (3.4.3)

where Ug0 := g−1U0g and ϑgψ(u) := ϑψ(gug−1) for any u ∈ Ug0 .

3.4.2.4

We further assume τ to be supercuspidal and π = AK/F (τ). Let [a, β] be a maximal simple stratum in
Mn(F ) and let θ be a simple character contained in π. Let Em be an unramified extension of E = F [β]
of degree m such that E×m normalizes a, where n = md and d = [E : F ]. We further choose K/F to be
a cyclic subextension of Em/F of degree l. We choose (J(a, β),Λ) to be an extended maximal simple
type containing θ and compactly inducing π.

We fix V a vector space of dimension n over F and an isomorphism EndF (V ) ∼= Mn(F ). By an
F -flag F of V , we mean a sequence

{0} = V0 ( V1 ( V2 ( ... ( Vn = V,

where Vi is a subspace of V of dimension i for i = 1, 2, ..., n. Considering the stabilizer, we get a
unipotent subgroup UF of GLn(F ). We have the following Uniform Induction Theorem:
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Theorem 3.4.5. (1) There exists a Whittaker pair (U, ϑ) of GLn(F ), unique up to J(a, β)-conjugacy,
such that Λ|J(a,β)∩U contains ϑ|J(a,β)∩U . As a result,

• Φθ
π := Φ(π, ϑ) is a κK/F -intertwining operator which acts trivially on the θ-isotypic subspace of

the representation space of π;

• (3.4.2) is satisfied for all τ supercuspidal with π = AK/F (τ) supercuspidal containing θ, and all

elliptic elements g ∈ GLn/l(K), where Φ = Φθ
π. We set c

K/F
θ = c(τ,Φθ

π) for later use.

(2) There exist an F -flag F , the corresponding unipotent subgroup U = UF and a nondegenerate
character ϑ of U , such that

θ|U∩H1(a,β) = ϑ|U∩H1(a,β).

(3) When E/F is of degree n, the Whittaker pair in (2) satisfies the result in (1).

Proof. (1) follows from [BH14b], §1.3, §1.5, and (2) follows from [PS08], Theorem 3.3. To prove (3),
since U is a pro-p-group and J(a, β) = E×J1(a, β), we have

U ∩ J(a, β) = U ∩ J(a, β) = U ∩ J1(a, β).

Thus we only need to prove
HomU∩J1(a,β)(η, ϑ) 6= 0

for η the Heisenberg representation of θ. Since we have

η⊕(J1(a,β):H1(a,β))1/2 ∼= Ind
J1(a,β)
H1(a,β)

θ,

we only need to prove that

HomU∩J1(a,β)(Ind
J1(a,β)
H1(a,β)

θ, ϑ) 6= 0

or by the Mackey formula and the Frobenius reciprocity⊕
H1(a,β)\J1(a,β)/U∩J1(a,β)

HomU∩H1(a,β)(θ, ϑ) 6= 0,

which follows from (2).

3.4.3 Functorial property

One of the most important motivations for the base change and automorphic induction above is that
they satisfy the functoriality of local Langlands correspondence for general linear groups. Let K/F
be a finite separable extension of non-archimedean locally compact fields. We denote by WF the Weil
group with respect to F and WK the Weil group with respect to K identifying with a subgroup of
WF . For n a positive integer, we denote by A0

n(F ) (resp. A0
n(K)) the set of isomorphism classes

of supercuspidal representations of GLn(F ) (resp. GLn(K)), and by G0
n(F ) (resp. G0

n(K)) the set of
isomorphism classes of irreducible representations of WF (resp. WK) of dimension n. Then we have
the following local Langlands correspondence.

Theorem 3.4.6 ( [LRS93], [HT01], [Hen00], [Sch13]). For F a non-archimedean locally compact field,
the local Langlands correspondence is a bijection2

LLCF : G0
n(F ) −→ A0

n(F )

satisfying certain desiderata.

2We notice that the definition of LLCF here is actually the inverse of that considered in the introduction. This minor
modification is more compatible with the notations in the results of Bushnell-Henniart.
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For ρ ∈ G0
n(F ) and πρ = LLCF (ρ) ∈ A0

n(F ), we let ResK/F (ρ) := ρ|WK
= ρ1 ⊕ ... ⊕ ρk, where

ρi ∈ G0
ni(K) for i = 1, ..., k with n1 + ... + nk = n. Then πρi := LLCK(ρi) is a supercuspidal

representation of GLni(K). The following proposition is known as the functoriality for the base
change map:

Proposition 3.4.7 ( [AC89], chapter I, section 6, [HL11], chapter II). (1) The parabolic induction
πρ1 × ...× πρk is an irreducible representation of GLn(K), which we denote by BCK/F (πρ);

(2) When K/F is cyclic, the definition of BCK/F (πρ) coincide with that in §3.4.1.

Similarly for ρ′ ∈ G0
n(K) and πρ′ = LLCK(ρ′) ∈ A0

n(K), we let IndK/F (ρ′) := IndWF
WK

ρ′ = ρ′1⊕ ...⊕
ρ′k′ , where ρ′i ∈ G0

n′i
(F ) for i = 1, ..., k′ with n′1 + ... + n′k′ = n|WF /WK |. Then πρ′i := LLCF (ρ′i) is a

supercuspidal representation of GLni(F ). The following proposition is known as the functoriality for
the automorphic induction:

Proposition 3.4.8 ( [HH95]). (1) The parabolic induction πρ′1 × ...× πρ′k′ is an irreducible represen-

tation of GLn|WF /WK |(F ), which we denote by AK/F (πρ′);
(2) When K/F is cyclic, the definition of AK/F (πρ′) coincides with that in §3.4.2.

Proposition 3.4.9. Let K/F and F/F ′ be finite separable extensions of non-archimedean locally
compact fields.

(1) For πF ′ ∈ A0
n(F ′) such that BCK/F ′(πF ′) is supercuspidal, we have

BCK/F ′(πF ′) = BCK/F (BCF/F ′(πF ′));

(2) For πK ∈ A0
n(K) such that AK/F ′(πK) is supercuspidal, we have

AK/F ′(πK) = AF/F ′(AK/F (πK));

(3) If moreover K ′ is a subfield of K over F ′ such that K ′F = K and K ′ ∩ F = F ′, and if
πK′ ∈ A0

n(K ′) such that AK/F (BCK/K′(πK′)) is supercuspidal, then

AK/F (BCK/K′(πK′)) = BCF/F ′(AK′/F ′(πK′)).

Proof. It follows from the equalities ResK/F ′ = ResK/F ◦ ResF/F ′ , IndK/F ′ = IndF/F ′ ◦ IndK/F and
IndK/F ◦ ResK/K′ = ResF/F ′ ◦ IndK′/F ′ .

3.5 Basic classification

Let F/F0 be a tamely ramified cyclic extension of non-archimedean locally compact fields of degree r
of residue characteristic p. We fix ωF/F0

a primitive character of the cyclic group F×0 /NF/F0
(F×), and

by abuse of notation we identify it with a character of GLn(F0) by composing with the determinant
map. We write Σ = Gal(F/F0) and we fix σ ∈ Σ a generator.

For π0 a supercuspidal representation of GLn(F0), we denote by π the base change of π0 as an
irreducible representation of GLn(F ). Our aim is to give an explicit construction of π via π0 using
the simple type theory. As mentioned in Remark 3.4.3 essentially we only need to focus on two
cases: either π is supercuspidal, or π is the parabolic induction of r supercuspidal representations of
GLn/r(F ).

Let [a0, β] be a maximal simple stratum in Mn(F0) and let E0 = F0[β]. We write d = [E0 : F0]
and n = md. We write E0,m for the unramified extension of degree m over E0, we fix an embedding
E0,m ↪→ Mn(F0) whose restriction to E0 is identity, and we define AF0 := EndF0(E0,m) ∼= Mn(F0) as
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the endomorphism ring of F -vector space E0,m and GF0 = A×F0

∼= GLn(F0). Thus up to GF0-conjugacy,
we may and will assume a0 = aF0(E0,m). We choose θ0 ∈ C(a0, β) to be a simple character contained
in π0, we denote by η0 the Heisenberg representations of θ0, and we choose κ0 to be a full Heisenberg
representation extending η0. Thus there is a unique representation ρ0 of J(a0, β) trivial on J1(a0, β)
up to isomorphsim, such that Λ0 = κ0 ⊗ ρ0 compactly induces π0. Here ρ0|J(a0,β) is the inflation of a
supercuspidal representation ρ0 of GLm(kE0) ∼= J(a0, β)/J1(a0, β).

3.5.1 Supercuspidal case

In this subsection we assume π to be supercuspidal. We first restate the following corollary of Propo-
sition 3.4.2.

Proposition 3.5.1. π is supercuspidal if and only if π0ω
i
F/F0

� π0 for any i = 1, 2, ..., r − 1.

Since π0
∼= ind

GF0

J(a0,β)Λ0, for i = 1, ..., r − 1 we have

π0ω
i
F/F0

� π0 ⇐⇒ Λ0ω
i
F/F0

� Λ0 ⇐⇒ ρ0ω
i
F/F0

� ρ0 (3.5.1)

Thus in particular we have

ωiF/F0
|J(a0,β) = ωiF/F0

|NE0/F0
(E×0 )mNE0/F0

(o×E0
) 6= 1, i = 1, ..., r − 1 (3.5.2)

Since NE0/F0
(E×0 )mNE0/F0

(o×E0
) ⊂ NE0/F0

(E×0 ), finally we have

ωiF/F0
|NE0/F0

(E×0 ) 6= 1, i = 1, ..., r − 1 (3.5.3)

Proposition 3.5.2. (3.5.3) is true if and only if for any non-trivial subextension F ′/F0 of F/F0, the
field F ′ is not isomorphic to any subfield of E0 over F0. Thus E = F [β] = F ⊗F0 E0 is a field and
E/E0 is of degree r.

Proof. (3.5.3) is true if and only if NE0/F0
(E×0 ) is not contained in the kernel of ωiF/F0

for each i, thus

NE0/F0
(E×0 ) * NF ′/F0

(F ′×) for any F ′/F0 as a non-trivial subextension of F/F0. By the local class
field theory, it is equivalent to the fact that each F ′ is not isomorphic to a subfield of E0.

We write T0 (resp. T ) for the maximal tamely ramified extension of E0 (resp. E) over F0 (resp.
F ), and e0 (resp. e) for the ramification index and f0 (resp. f) for the residue class degree of T0/F0

(resp. T/F ), and we have d = [E0 : F0] = [E : F ].

Proposition 3.5.3. (3.5.2) implies that:

• If F/F0 is unramified, then (r,mf0) = 1 and E/E0 is unramified;

• If F/F0 and E/E0 are totally ramified, then (r, e(E0/F0)) = 1;

• If F/F0 is totally ramified and E/E0 is unramified, then r|e0 and (r,m) = 1.

Proof. We first consider the case where r is a prime number. By (3.5.2), we know that

NE0/F0
(E×0 )mNE0/F0

(o×E0
) * NF/F0

(F×), (3.5.4)

which implies that
NT0/F0

(T×0 )mNT0/F0
(o×T0

) * NF/F0
(F×). (3.5.5)
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Choose $F0 to be a uniformizer of F0 and $T0 to be a uniformizer of T0, such that $e0
T0

= $F0ζT0 for
a certain ζT0 ∈ µT0 . Thus for F ′0 denoting the maximal unramified subextension of T0 over F0, the

element ζ ′0 := NF ′0/F0
(ζT0) is in µF0 and we have NT0/F0

($T0) = $f0

F0
ζ ′0. Moreover

NT0/F0
(T×0 )mNT0/F0

(o×T0
) = 〈$mf0

F0
ζ ′m0 〉NT0/F0

(o×T0
) = 〈$mf0

F0
ζ ′m0 〉k

×e0
F0

(1 + pF0).

If F/F0 is unramified, we have

NF/F0
(F×) = 〈$r

F0
〉o×F0

.

Thus (3.5.5) is equivalent to (r,mf0) = 1, and moreover T/T0 and E/E0 are unramified. If F/F0

is totally and tamely ramified, we have (r, p) = 1. Choose $F to be a uniformizer of F such that
$r
F = $F0ζ0 for a certain ζ0 ∈ k×F0

, and we have

NF/F0
(F×) = 〈$F0ζ0〉NF/F0

(o×F ) = 〈$F0ζ0〉k×rF0
(1 + pF0).

To ensure (3.5.5), either of the conditions is true:

• (r, e0) = 1;

• r|e0 and ζ ′m0 (ζmf0
0 )−1 /∈ krF0

.

In the first case T/T0 is totally ramified, since r divides the ramification index of T/T0. Thus E/E0

is also totally ramified. In the second case we must have (r,m) = 1. Moreover Xr = $F0ζT0 has a
solution in T0 and Xr = $F0ζ0 has a solution in F , so we have

T ∼= T0[X]/(Xr −$F0ζ0) ∼= T0[X]/(Xr − ζ0ζ
−1
T0

).

As a result T/T0 is unramified, thus E/E0 is also unramified.

In general, we choose F ′/F0 to be a subextension of F/F0 of prime degree and we write E′ = F ′E0.
Then the proposition follows if we consider all such F ′ using the previous result.

Remark 3.5.4. As already indicated in the proof, if F/F0 is of prime degree, then the proposition clas-
sifies all the possibilities. In general, we may consider extensions F0 ⊂ F1 ⊂ F2 ⊂ F and E1 = E0F1

and E2 = E0F2, such that F1/F0 is unramified, F2/F1 is totally ramified and E2/E1 is unramified,
and both F/F2 and E/E2 are totally ramified. So essentially we only need to study the three cases
listed in the proposition.

Corollary 3.5.5. In the first and second cases of Proposition 3.5.3, we have e = e0 and f = f0.

Now we assume that F/F0 and E/E0 are totally ramified.

Lemma 3.5.6. (3.5.1) implies that ρ0|J(a0,β) · ωiF/F0
� ρ0|J(a0,β) for i = 1, 2, ..., r − 1.

Proof. We choose $E to be a uniformizer of E. Since E/E0 is totally ramified, $E0 = NE/E0
($E)

is a uniformizer of E0. Thus by definition detF0($E0) ∈ NF/F0
(F×), meaning that ωF/F0

($E0) = 1.
Since J(a0, β) = 〈$E0〉J(a0, β), we finish the proof.

Since F/F0 is tamely ramified, ωF/F0
is trivial on 1 + pF0 . We denote by ω the character of k×E0

whose inflation equals ωF/F0
◦ NE0/F0

|o×E0

. Moreover, since ωF/F0
◦ detF0 |GLm(oE0

) = ωF/F0
◦ NE0/F0

◦
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detE0 |GLm(oE0
), we know that ωF/F0

◦ detF0 |J(a0,β) is the inflation of ω ◦ detkE0
. By abuse of notation,

we identify ω with ω ◦ detkE0
and we have

ρ0 · ωi � ρ0 (3.5.6)

for i = 1, 2, ..., r − 1.
By definition kE0,m is the field of degree m over kE0 . We write ξ0 for a Gal(kE0,m/kE0)-regular

character of k×E0,m
corresponding to ρ0 via the theory of Green [Gre55]. Thus (3.5.6) implies that for

any k ∈ {0, 1, 2, ...,m− 1} and any i ∈ {1, 2, ..., r − 1},

ξ0 · (ω ◦NkE0,m
/kE0

)i 6= ξQ
k

0 , (3.5.7)

where Q denotes the cardinality of kE0 .

Lemma 3.5.7. The character ω ◦NkE0,m
/kE0

of k×E0,m
is of order r.

Proof. By definition and direct calculation, if we write ω′ for the character of k×F0

∼= o×F0
/1 + pF0

whose inflation equals ωF/F0
|o×F0

, then ω ◦ NkE0,m
/kE0

= (ω′ ◦ NkE0,m
/kF0

)e(E0/F0). By definition ω′

has kernel k×r0 , thus it is a character of order r. Using the fact that (r, e(E0/F0)) = 1, the character
(ω′ ◦NkE0,m

/kF0
)e(E0/F0) is also of order r.

Corollary 3.5.8. The character ξ := ξr0 of k×E0,m
is Gal(kE0,m/kE0)-regular, thus it corresponds to a

supercuspidal representation of GLm(kE0).

Proof. We assume on the contrary that there exists k ∈ {1, ...,m − 1} such that ξQ
k

= ξ, which

also means that ξrQ
k

0 = ξr0. As a result, ξQ
k

0 equals ξ0 multiplying by a character of k×E0,m
of order

dividing r, which is of the form (ω ◦NkE0,m
/kE0

)i by Lemma 3.5.7, contradicting to (3.5.7). Thus ξ is

Gal(kE0,m/kE0)-regular.

3.5.2 Non-supercuspidal case

Now we consider the following non-supercuspidal case, where there exists π′ as a supercuspidal repre-
sentation of GLn/r(F ) such that

π ∼= π′ × π′σ × ...× π′σr−1
.

Since π′ is σ-regular, by [BH03], (5.1.2), we have AF/F0
(π′) = π0 and A−1

F/F0
(π0) = {π′, π′σ, ..., π′σr−1},

where AF/F0
denotes the automorphic induction.

By Proposition 3.4.2, we have
ρ0ωF/F0

∼= ρ0 (3.5.8)

Restricting to J(a0, β), we have
ρ0ω ∼= ρ0, (3.5.9)

where ρ0 and ω are defined as in the last subsection.
We focus on two special cases: either F is isomorphic to a subfield of E0, or any non-trivial

subextension F ′/F0 of F/F0 is not isomorphic to a subfield of E0. In particular if r is a prime number,
then either of the two cases happens.

For the former case, by [BH03], Theorem B, the endo-class of π′ is one of the F/F0-lifts of the
endo-class of π0, which is of degree d/r. We say that π0 is the interior automorphic induction of π′.
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For the latter case, E := E0 ⊗F0 F is a field of degree r over E0. Thus σ can also be regarded as
a generator of Gal(E/E0). Still by [BH03], Theorem B, the endo-class of π′ is the unique F/F0-lift of
the endo-class of π0 which is of degree d. As a corollary we have d|(n/r), or equivalently r|m. We say
that π0 is the exterior automorphic induction of π′, which we study more precisely.

Proposition 3.5.9. For F/F0 unramified, the field extension E/E0 is also unramified, and we have
(r, f0) = 1.

Proof. Since F is not isomorphic to a subfield of E0, we must have (r, f0) = 1. Thus r divides the
residue class degree of E/E0, which means that E/E0 is also unramified.

Proposition 3.5.10. For F/F0 totally ramified, (r, e0) = 1 if and only if E/E0 is totally ramified,
and r|e0 if and only if E/E0 is unramified.

Proof. If (r, e0) = 1, then r divides the ramification index of E/E0, which means that E/E0 is totally
ramified. If r|e0, we may choose $F0 as a uniformizer of F0 and ζT0 ∈ µT0 , such that Xr = $F0ζT0

has a solution in E0. Moreover, we may choose $F to be a uniformizer of F such that $r
F = $F0ζ0,

where ζ0 ∈ k×F0
. Thus E ∼= E0[X]/(Xr −$F0ζ0) ∼= E0[X]/(Xr − ζ0ζ

−1
T0

), which implies that E/E0 is
unramified.

For the other direction of the first equivalence if r is a prime number the proof is finished. In
general we consider a certain subextension F ′/F0 of F/F0 of degree l as a prime number. If E/E0

is totally ramified, then (l, e0) = 1 from the prime case. Since F ′/F0 is arbitrary we must have
(r, e0) = 1. To finish the second equivalence if E/E0 is unramified, since r divides the ramification
index of E0/F0, we must have r|e0.

Proposition 3.5.11. For F/F0 and E/E0 totally ramified and for ξ0 a regular character of k×E0,m

corresponding to ρ0, the character ξr0 is not Gal(kE0,m/kE0)-regular.

Proof. By (3.5.9), we have ξ0ω = ξQ
k

0 for a certain k ∈ {1, ...,m− 1}. Since ω is a character of order

r, we have ξ
r(Qk−1)
0 = 1, meaning that ξr0 is not Gal(kE0,m/kE0)-regular.

3.5.3 A brief summary

The following corollary gives a partial criterion for π being supercuspidal, whose proof is the com-
bination of Proposition 3.5.3, Corollary 3.5.8, Proposition 3.5.9, Proposition 3.5.10 and Proposition
3.5.11.

Corollary 3.5.12. For π0 and π = BCF/F0
(π0) as above such that E = E0 ⊗F0 F is a field of degree

r over E,

• if F/F0 is unramified, or if F/F0 is totally ramified but E/E0 is unramifed, then π is supercus-
pidal if and only if (r,m) = 1. Moreover for the F/F0 unramified case we have (r, f0) = 1;

• if both F/F0 and E/E0 are totally ramified, then (r, e0) = 1. In this case π is supercuspidal if
and only if ξr0 is Gal(kE0,m/kE0)-regular.

Remark 3.5.13. In the corollary, it is possible in the F/F0 totally ramified and E/E0 unramified
case that r is NOT relatively prime to f0. For example we choose r = 2 and we assume F/F0 to be
totally ramified. And we may choose π0 such that e0 = f0 = 2, E0 = T0 and E0/F0 is not cyclic.
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Using the basic argument in the local class field theory, there exists a unique quadratic subextension
of degree 2 of E0/F0 which is unramified. In this case E = E0 ⊗F0 F must be a field, otherwise F is
isomorphic to a subfield of E0 which is impossible. And E/E0 must be unramified since r|e0. However
r = f0 = 2.

Finally when r is a prime number, our discussion above is actually exhaustive. Precisely we have
the following proposition:

Proposition 3.5.14. Assume r prime and let π0 be a supercuspidal representation of GLn(F0).

1. If F is isomorphic to a subfield of E0, then π0 is the interior automorphic induction of a super-
cuspidal representation of GLn/r(F ).

2. If F is not isomorphic to a subfield of E0, then E = F ⊗F0 E0 is a field and moreover

• if F/F0 is unramified, then E/E0 is unramified and (r, f0) = 1. If F/F0 is totally ramified
and E/E0 is unramified, then r|e0. Moreover for these two cases (r,m) = 1 if and only
if BCF/F0

(π0) is supercuspidal, otherwise r divides m and π0 is the exterior automorphic
induction of a supercuspidal representation of GLn/r(F ).

• if both F/F0 and E/E0 are totally ramified, then BCF/F0
(π0) is supercuspidal if and only

if ξr0 is a Gal(kE0,m/kE0)-regular character of k×E0,m
, otherwise r divides m and π0 is the

exterior automorphic induction of a supercuspidal representation of GLn/r(F ). Moreover
(r, e0) = 1.

3.6 Statement of the main theorems

In this section we state the main theorems providing an explicit construction of tamely ramifed cyclic
base change and automorphic inductions, whose proof will be given in §3.8. Let F/F0, π0, π, [a0, β],
θ0, η0, E0, E0,m, T0 be as in the last section and let T0,m be the maximal tamely ramified subextension
of E0,m over F0, and let θT0,m be the interior T0,m/F0-lift of θ0. We fix a uniformizer $F0 of F0. We
denote by CT0,m($F0) the subgroup of T×0,m containing $F0 , such that CT0,m($F0)× U1

T0,m
→ T×0,m is

bijective. By [BH14b], §5.6, Lemma 2, we refine our choice of the full Heisenberg representation κ0

extending η0 such that

CT0,m($F0) ⊂ Ker(det(κ0)) and $F0 ∈ Ker(κ0). (3.6.1)

Thus we get ρ0 as the unique representation of J(a0, β) trivial on J1(a0, β) up to isomorphism, such
that Λ0 = κ0 ⊗ ρ0 compactly induces π0. Moreover by (3.2.3), there exists a ∆0-regular tamely
ramified character ξ0 of T×0,m unique up to ∆0-action such that ρ0 = ρξ0 , where ∆0 = Gal(T0,m/T0).
We denote by κ0 the restriction of κ0 to J(a0, β) as a β-extension of θ0.

3.6.1 Base change in supercuspidal case

First we assume π to be supercuspidal. Using the results in §3.5, E = F ⊗F0 E0
∼= F [β] is a field

of degree r over E0, and Em = F ⊗F0 E0,m is a field of degree r over E0,m, and we define T = T0F

and Tm = T0,mF . We write ÃF0 := EndF0(Em) ∼= Mnr(F0) for the endomorphism ring of Em as

an F -vector space and we denote by ã0 = aF0(Em) the hereditary order in ÃF0 given by the ideal

chain of Em, which gives a simple stratum [ã0, β] in ÃF0 . We write θ̃0 for the simple character of
H1(ã0, β) as the transfer of θ0. Since F/F0 is tamely ramified, we may consider the interior F/F0-lift
of θ̃0 as follows: First let AF be the centralizer of F in ÃF0 , which is isomorphic to Mn(F ). We
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write a := ã0 ∩ AF , which by definition is identified with aF (Em) as a hereditary order in AF . Thus
we get a simple stratum [a, β] in AF , and for GF := A×F , we have H1(a, β) = H1(ã0, β) ∩ GF and

θb = θ̃0|H1(a,β) serving as the interior F/F0-lift of θ̃0. As a result, the endo-class of θb is the F/F0-lift of
the endo-class of θ0. Using [BH03], Theorem A, the supercuspidal representation π of GF contains θb.
The Galois action σ ∈ Gal(F/F0) ∼= Gal(E/E0) naturally induces an action on AF , and by definition
a and H1(a, β) are σ-invariant, σ(β) = β and θb ◦σ = θb (see [BH96], §11.3, Remark). We sum up the
discussion above as the following proposition:

Proposition 3.6.1. For π a supercuspidal representation of GLn(F ) as the base change of a super-
cuspidal representation of GLn(F0), there are a simple stratum [a, β] in Mn(F ) and a simple character
θ ∈ C(a, β), such that:

(1) σ(a) = a and σ(H1(a, β)) = H1(a, β);
(2) θ ◦ σ = θ;
(3) σ(β) = β.

We denote by ηb the Heisenberg representation of θb, then ηb ◦ σ ∼= ηb. For $F a uniformizer of
F , we denote by CTm($F ) the subgroup of T×m containing $F such that CTm($F ) × U1

Tm
→ T×m is a

bijection, where Tm is the maximal tamely ramified subextension of Em over F . In the next section,
we will first choose $F , and then describe a unique way to construct a σ-invariant full Heisenberg
representation κb extending ηb, such that

CTm($F ) ⊂ Ker(det(κb)) and $F ∈ Ker(κb). (3.6.2)

Right now we just assume the existence of such κb.
By Proposition 3.2.3, there is a unique σ-invariant representation ρb of J(a, β) trivial on J1(a, β)

up to isomorphism, such that Λb = κb ⊗ ρb compactly induces π. And by (3.2.3), we may choose ξb
to be a ∆-regular tamely ramified character of T×m , unique up to ∆-action, such that ρb = ρξb , where
∆ = Gal(Tm/T ) ∼= Gal(T0,m/T0) = ∆0. One interesting question is to compare ξ0 with ξb, which
equivalently gives a direct construction of an extended maximal simple type of π via that of π0.

Theorem 3.6.2. (1) There exists a tamely ramified character bφ
F/F0

θ0
of T×m depending only on the

endo-class of θT0,m, such that ξb · bφ
F/F0

θ0
and ξ0 ◦NTm/T0,m

are in the same ∆-orbit.

(2) bφ
F/F0

θ0
|o×Tm is a quadratic character.

Using (2), there exists a quadratic character bϕ
F/F0

θ0
of o×E trivial on 1 + pE such that bϕ

F/F0

θ0
◦

NEm/E = bφ
F/F0

θ0
|o×Tm ◦ NEm/Tm . The supercuspidal representation Kκ0(π0) of GLm(kE0) is given

by the regular character ξ0 of k×E0,m
whose inflation equals (ξ0 ◦ NE0,m/T0,m

)|o×E0,m

. Moreover for

κb = κb|J(a,β) and κ′b := κb · ( bϕ
F/F0

θ0
◦ detE), the supercuspidal representation Kκ′b

(π) is given by

the regular character ξ′b of k×Em whose inflation equals ( bϕ
F/F0

θ0
◦ NEm/E) · (ξb ◦ NEm/Tm)|o×Em , and by

definition ξ′b and (ξ0 ◦NkEm/kE0,m
)e(E/E0) are in the same Gal(kEm/kE0,m)-orbit. In particular:

Corollary 3.6.3. For [a0, β], [a, β], θ0, θb as above such that E/E0 is unramified, there exist a β-
extension κ0 of θ0 and a β-extension κ′b of θb such that

Kκ′b
(BCF/F0

(π0)) = BCkE/kE0
(Kκ0(π0))

for any π0 supercuspidal containing θ0 whose base change BCF/F0
(π0) is also supercuspidal, where

BCkE/kE0
denotes the Shintani base change given in [Shi76].
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3.6.2 Interior automorphic induction

In this subsection, we assume that F is isomorphic to a subfield of E0 over F0 and we identify F with
a subfield of E0 via a certain F0-embedding. We denote by CF the centralizer of F in AF0 and we
identify GLm/r(F ) with3 GF := C×F . Thus there exists a supercuspidal representation π′ of GF such

that AF/F0
(π′) = π0. By [BH03], Theorem A, the endo-classes of π′σ

i
run over all the F/F0-lifts of

that of θ0 when i = 0, 1, ..., r − 1. Changing π′ by its twist with a certain σi if necessary, we further
assume that the endo-class of π′ is that of the interior F/F0-lift of θ0.

By definition c = a0 ∩CF is a hereditary order and [c, β] is a simple stratum in CF . We also have
H1(c, β) = H1(a0, β)∩GF and θa := θ0|H1(c,β) serving as the interior F/F0-lift of θ0. Thus π′ contains
θa. We denote by ηa the Heisenberg representation of θa. In the next section, we will construct a full
Heisenberg representation κa extending ηa, which in particular satisfies

CT0,m($F ) ⊂ Ker(det(κa)) and $F ∈ Ker(κa), (3.6.3)

where $F will be chosen later as a uniformizer of F . Thus there exists ρa as a representation of J(c, β)
trivial on J1(c, β) unique up to isomorphism, such that Λa = κa ⊗ ρa compactly induces π′. Here
J(c, β)/J1(c, β) ∼= J(a0, β)/J1(a0, β) ∼= E×0 GLm(oE0), and in this sense we identify the representations
of J(c, β) trivial on J1(c, β) with the representations of J(a0, β) trivial on J1(a0, β). We choose ξa to
be a ∆0-regular tamely ramified character of T×0,m corresponding to ρa via (3.2.3). We denote by κa
the restriction of κa to J(c, β).

Theorem 3.6.4. (1) There exists a tamely ramified character aφ
F/F0

θ0
of T×0,m depending only on the

endo-class of θT0,m, such that ξa · aφF/F0

θ0
and ξ0 are in the same ∆0-orbit.

(2) The restriction aφ
F/F0

θ0
|o×T0,m

is quadratic. Thus there exists a quadratic character aϕ
F/F0

θ0
of

o×E0
trivial on 1 + pE0 determined by aϕ

F/F0

θ0
◦ NE0,m/E0

= aφ
F/F0

θ0
◦ NE0,m/T0,m

|o×E0,m

, and moreover

Kκ′a(π′) is isomorphic to Kκ0(π0) as a supercuspidal representation of GLm(kE0), where κ′a := κa ·
( aϕ

F/F0

θ0
◦ detE0).

Remark 3.6.5. In the theorem we may also consider all the representations of the form π′σ
i
. What

we need to do is to replace the original F0-embedding F ↪→ E0 with its composition with σi. Thus the
notations CF , c, H1(c, β), J1(c, β), J(c, β) and ∆0 remain unchanged, but we replace θa, ηa, κa, ρa,
Λa and ξa with θσ

i

a , ησ
i

a , κσ
i

a , ρσ
i

a , Λσ
i

a and ξσ
i

a respectively to obtain the corresponding theorem.

3.6.3 Exterior automorphic induction

We now consider exterior automorphic induction in this subsection. More precisely, we assume that
any non-trivial subextension of F over F0 is not isomorphic to any subfield of E0, and there exists
a supercuspidal representation π′ of GLn/r(F ) such that AF/F0

(π′) = π0. In this case we write
E = E0 ⊗F0 F = F [β] as a field extension of degree r over E0. We further consider the following two
cases:

3.6.3.1

Suppose that E/E0 is unramified. Since r divides m, we identify E with the subfield of E0,m which is
unramified of degree r over E0. Since F/F0 is tamely ramified, for CF the centralizer of F in AF0 , and

3Indeed GF may represent A×F (for the base change case) or C×F (for the automorphic induction case) by abuse of
notations, however since we are in different situations, we hope this abbreviation won’t cause any trouble.
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c = a0∩CF , we know that [c, β] is a simple stratum in CF . Moreover we have H1(c, β) = H1(a0, β)∩CF
and θa = θ0|H1(c,β) as the interior F/F0-lift of θ0. Using [BH03], Theorem B, π′ as a supercuspidal
representation of GF ∼= GLn/r(F ) contains θa.

We denote by Tm/r the unramified extension of degree m/r over T which is contained in E0,m,
thus by definition Tm/r = T0,m. For $F a uniformizer of F , we define CTm/r($F ) as before. In the
next section we will first specify $F , and then give a direct construction of a full Heisenberg extension
κa of J(c, β) extending ηa which satisfies

$F ∈ Ker(κa) and CTm/r($F ) ⊂ Ker(det(κa)), (3.6.4)

and we denote by κa the restriction of κa to J(c, β). Corresponding to π′, we define ρa and ξa as in
the interior case, but here ∆ = Gal(Tm/r/T ) is a subgroup of ∆0.

Theorem 3.6.6. (1) There exists a tamely ramified character aφ
F/F0

θ0
of T×0,m depending only on the

endo-class of θT0,m, such that ξa · aφF/F0

θ0
and ξ0 are in the same ∆0-orbit.

(2) The restriction aφ
F/F0

θ0
|o×T0,m

is quadratic.

Thus there exists a quadratic character aϕ
F/F0

θ0
of o×E trivial on 1 + pE determined by aϕ

F/F0

θ0
◦

NE0,m/E = aφ
F/F0

θ0
◦ NE0,m/T0,m

|o×E0,m

. In this case the supercuspidal representation Kκ0(π0) is given

by the regular character ξ0 of k×E0,m
whose inflation equals (ξ0 ◦ NE0,m/T0,m

)|o×E0,m

, and for κ′a :=

κa · ( aϕF/F0

θ0
◦ detE), the supercuspidal representation Kκ′a(π′) is given by the regular character ξa of

k×Em/r whose inflation equals (ξa◦NEm/r/Tm/r)|o×Em/r
, thus ξ0 and ξa as characters of k×E0,m

= k×Em/r are

in the same Gal(kE0,m/kE0)-orbit. Moreover, we may also change π′ above by π′σ
i

with i = 0, 1, ..., r−1.

Then for different i the corresponding π′σ
i

are inequivalent, thus the corresponding ξa are in different
∆-orbits, and the corresponding ξa are in different Gal(kEm/r/kE)-orbits. As a result when i varies,
ξa ranges over exactly all the Gal(kEm/r/kE)-orbits which are contained in the Gal(kE0,m/kE0)-orbit
of ξ0. In other words, we have proved:

Corollary 3.6.7. The parabolic induction Kκ′a(π′)×Kκ′a(π′σ)× ...×Kκ′a(π′σ
r−1

) is isomorphic to the
Shintani base change of Kκ0(π0) related to kE/kE0.

3.6.3.2

When E/E0 is totally ramified, we write Em = E0,m ⊗E0 E for the unramified extension of degree m

over E and Em/r for its subextension of degree m/r over E. We denote by C̃F0 = EndF0(Em/r) the
endomorphism ring of F0-vector space Em/r. Then c̃0 := aF0(Em/r) is a hereditary order and [̃c0, β] is

a simple stratum in C̃F0 . We define θ̃′0 = tβ
a0 ,̃c0

(θ0) the transfer of θ0 as a simple character of H1(̃c0, β).

We write CF ∼= Mn/r(F ) for the centralizer of F in C̃F0 . Since F/F0 is tamely ramified, c = c̃0 ∩ CF
is a hereditary order in CF , and [c, β] is a simple stratum in CF , and H1(c, β) = H1(̃c0, β) ∩ CF and
θa = θ̃′0|H1(c,β) is the interior F/F0-lift.

Using [BH03], Theorem B, the supercuspidal representation π′ of GF contains θa. We denote
by Tm/r the unramified extension of degree m/r over T which is contained in Em/r and we define
CTm/r($F ) as before. In the next section, we will specify our choice of $F and will construct a
full Heisenberg extension κa of J(c, β) extending ηa which satisfies (3.6.4). Corresponding to π′,
we define κa, ρa and ξa as in the E/E0 unramified case, but here ∆ = Gal(Tm/r/T ). We write
∆′ := Gal(Tm/T ) ∼= Gal(T0,m/T0) = ∆0.



170 3.6. STATEMENT OF THE MAIN THEOREMS

Theorem 3.6.8. (1) There exists a tamely ramified character aφ
F/F0

θ0
of T×m depending only on the

endo-class of θT0,m, such that (ξa ◦NTm/Tm/r) · aφ
F/F0

θ0
and ξ0 ◦NTm/T0,m

are in the same ∆′-orbit.

(2) The restriction aφ
F/F0

θ0
|o×Tm is quadratic. Thus there exists a quadratic character aϕ

F/F0

θ0
of o×E

trivial on 1 + pE determined by aϕ
F/F0

θ0
◦ NEm/E = aφ

F/F0

θ0
◦ NEm/Tm |o×Em , such that for Kκ′a(π′) the

supercuspidal representation of GLm/r(kE) given by a regular character ξ′, and Kκ0(π0) the supercusp-
idal representation of GLm(kE0) given by a regular character ξ0, the characters ξr0 and ξ′◦NkE0,m

/kEm/r

are in the same Gal(kE0,m/kE0)-orbit, where κ′a := κa · ( aϕF/F0

θ0
◦ detE).

3.6.4 base change in non-supercuspidal case

Finally we finish the discussion for base change. We assume that there exists a supercuspidal repre-
sentation π′ of GLn/r(F ) such that π = BCF/F0

(π0) ∼= π′ × π′σ × ... × π′σr−1
. Since π′ is σ-regular,

by [BH03], (5.1.2), we have AF/F0
(π′) = π and A−1

F/F0
(π) = {π′, π′σ, ..., π′σr−1}. Thus the result in the

last two subsections are enough to study π.
We give a “base change” version of Corollary 3.6.7 to end this section. We assume E/E0 to be

unramified of degree r and we write F ⊗F0 E0,m =
∏r
i=1Ei, where each Ei is isomorphic to E0,m. We

denote by ã0 the hereditary order over F0 defined by the ideal chain {
∏r
i=1 p

k
Ei
|k ∈ Z}, thus [ã0, β] is

a simple stratum in ÃF0 := EndF0(F ⊗F0 E0,m) ∼= Mmr(F0). Just as in the first paragraph of §3.6.1,

we define θ̃0, AF , a, [a, β] and θb := θ̃0|H1(a,β). Moreover the flag

E1 ⊂ E1 ⊕ E2 ⊂ ... ⊂ E1 ⊕ ...⊕ Er = F ⊗F0 E0,m

gives a parabolic subgroup Pb of A×F with the corresponding Levi subgroup denoted by Mb and unipo-
tent radical denoted by Ub. We write ai = aF (Ei) for the hereditary order and [ai, β] the corresponding
simple stratum in AF,i := EndF (Ei), thus by definition Mb = A×F,1 × ...×A

×
F,r. We have

H1(a, β) ∩Mb = H1(a1, β)× ...×H1(ar, β)

and
θb|H1(ab,β)∩Mb

= θ1 ⊗ ...⊗ θr,

where θi is the corresponding simple character of H1(ai, β). By identifying each Ei with E0,m, we
identify AF,i with CF , [ai, β] with [c, β] and θi with θa respectively. Via this identification, we further
denote by ηi the Heisenberg representation and κi the β-extension corresponding to ηa and κa respec-
tively, and we regard π′σ

i−1
as a supercuspidal representation of A×F,i. We denote by ηb the Heisenberg

extension of θb and we may choose κb to be a β-extension extending ηb, such that

Kκb ◦ Ind
A×F
Pb

= Ind
GLm(kE)

Pb
◦ (Kκ1 ⊗ ...⊗Kκr),

as functors from the category of finite length smooth representations of Mb to that of GLm(l), where
Pb is the corresponding parabolic subgroup of GLm(kE) (see [MS14b], section 5 for more details), thus
in particular we have

Kκb(π
′ × ...× π′σr−1

) = Kκ1(π′)×Kκ2(π′σ)× ...×Kκr(π
′σr−1

).

By Corollary 3.6.7, we finally have

Kκb(π
′ × ...× π′σr−1

) = BCkE/kE0
(Kκ′0

(π0)).

We record this result as the following corollary:
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Corollary 3.6.9. For n = md with m divisible by r and [a0, β], [a, β], θ0, θb as above, there exist a
β-extension κ0 of θ0 and a β-extension κb of θb, such that

Kκα(BCF/F0
(π0)) = BCkE/kE0

(Kκ0(π0))

for any supercuspidal representation π0 of GLn(F0) containing θ0.

3.7 A precise construction of the full Heisenberg representation

In the previous section, we stated several results related to the base change lift and automorphic
induction. More precisely, for F/F0 a cyclic tamely ramified extension of degree r, we considered
π0 as a supercuspidal representation of GLn(F0) such that either its base change BCF/F0

(π0) as
a representation of GLn(F ) is supercuspidal, or there exists a supercuspidal representation π′ of
GLn/r(F ) such that AF/F0

(π′) = π0. We fixed a simple stratum [a0, β] and a character θ0 related to
π0, and we fixed a certain full Heisenberg representation κ0 of θ0, which gives a unique representation
ρ0 and the corresponding ∆0-regular orbit represented by ξ0. In the base change case, we constructed
a σ-invariant simple stratum [a, β] and a σ-invariant simple character θb related to π via that of π0. In
this section, we will give an explicit construction of a σ-invariant full Heisenberg representation κb of
θb. Similarly in the automorphic induction case, we constructed a simple stratum [c, β] and a simple
character θa related to π via that of π0. Still in this section, we will give an explicit construction of a
full Heisenberg representation κa of θa.

3.7.1 Several results of Bushnell-Henniart

In this subsection, we recall and reformulate several known results in a series of articles of Bushnell-
Henniart.

3.7.1.1

First of all, we recall the result related to the base change in the wild case. Let [a0, β], [a, β], θ0, θb
be as in §3.6.1, and we assume further that n = d = ps for a certain s ∈ N and E0/F0 is totally

wildly ramified. By definition, π′0 := ind
GF0

J(a0,β)κ0 is a supercuspidal representation of GF0 . We fix a

uniformizer $F0 of F0 and we choose $F to be a uniformizer of F such that NF/F0
($F ) ∈ 〈$F0〉µF0 .

By Corollary 3.5.12, π′ := BCF/F0
(π′0) is a supercuspidal representation of GF .

Theorem 3.7.1 ( [BH96], Proposition 14.10, [BH99], Theorem 1.8, Proposition 1.8.). (1) There is a
unique σ-invariant full Heisenberg representation κb of θb such that π′ ∼= indGFJ(a,β)κb;

(2) When either r or vE0(β) = −mβ is relatively prime to p, the full Heisenberg representation κb
can be constructed explicitly.

Corollary 3.7.2. For $F a uniformizer of F and $F0 a uniformizer of F0 such that NF/F0
($F ) ∈

〈$F0〉µF0, the map bF/F0
: κ0 7→ κb is a bijection between full Heisenberg representations of θ0 and

that of θb satisfying respectively

〈$F0〉µF0 ⊂ Ker(κ0) and 〈$F 〉µF ⊂ Ker(κb) (3.7.1)

Proof. By Theorem 3.4.1 we have ωκ0 ◦NF/F0
= ωκb with ωκ0 and ωκb denoting the central characters,

thus

NF/F0
(〈$F 〉µF ) ⊂ Ker(κ0) if and only if 〈$F 〉µF ⊂ Ker(κb).
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Since NF/F0
(〈$F 〉µF ) ⊂ 〈$F0〉µF0 , the map bF/F0

must be surjective. Moreover, by [BH14b], §5.6.,
Lemma 2, both sets of the full Heisenberg representations satisfying the condition of the statement
are of cardinality ps, thus bF/F0

is actually a bijection.

Let κ0 and κb be two full Heisenberg representations satisfying Theorem 3.7.1.(1) and (3.7.1). For
any supercuspidal representation π0 of GF0 containing θ0, by Corollary 3.2.5, there exists a unique

tamely ramified character ξ0 of F×0 , such that π0
∼= ind

GF0

J(a0,β)(κ0 · (ξ0 ◦ NE0/F0
)). We write π =

BCF/F0
(π0) which is a supercuspidal representation of GF containing θb. Still by loc. cit. there exists

a unique tamely ramified character ξb of F×, such that π ∼= indGFJ(a,β)(κb ·(ξb◦NE/F )). Here ξ0◦NE0/F0

and ξb ◦ NE/F are regarded as characters of J(a0, β) and J(a, β) respectively via the isomorphisms

J(a0, β)/J1(a0, β) ∼= E×0 /1 + pE0 and J(a, β)/J1(a, β) ∼= E×/1 + pE .

Proposition 3.7.3. We have ξb = ξ0 ◦NF/F0
in the setting above.

Proof. Comparing the central character of π0 and π and using Theorem 3.7.1, we get ξnb = (ξ0◦NF/F0
)n,

which means that ξb and ξ0◦NF/F0
coincide on (1+pF )F×n. To finish the proof, we only need to show

that ξb($F ) = ξ0(NF/F0
($F )). We fix a uniformizer $E of E such that $n

E ∈ $F (1 + pF ). We fix

an integer k and we choose h0 ∈ J1(a0, β) such that h′0 := NE/E0
($k

E)h0 is an elliptic element in GF0 ,
and moreover tr(π′0)(h′0) 6= 0 (Using, for example, [BH14b], §9.5, Linear Independence Lemma). Since
it is easy to see that detF0(h′0) ∈ NF/F0

(F×), we may choose h′ to be an element in F [h′0]× ⊂ GF
such that the norm NF [h′0]/F0[h′0](h

′) = h′σ(h′)...σr−1(h′) equals h′0. By direct calculation we have
vF (detF (h′)) = k.

Since κb is σ-invariant, we may choose a certain extension to regard κb as a representation of
J(a, β)oΣ, which naturally extends π′ as a representation of GF oΣ via compact induction. Similarly
since ξb is a σ-invariant character, we realize κb · (ξb ◦NE/F ) as a representation of J(a, β)oΣ and π
as a representation of GF o Σ. Using the trace formula for the cyclic base change, we have

tr(π′)(h′, σ) = c′ · tr(π′0)(h′0) and tr(π)(h′, σ) = c · tr(π0)(h′0),

where c′ and c are non-zero constants depending on the choice of the extension above.

Lemma 3.7.4. We have

tr(π0)(h′0) = tr(π′0)(h′0) · ξ0(NF/F0
($k

F )) and tr(π)(h′, σ) = tr(π′)(h′, σ) · ξb($k
F ).

Proof. For the first equation, using the Mackey formula4 we have

tr(π′0)(h′0) =
∑

g0∈J(a0,β)\GF0
,

g−1
0 h′0g0∈J(a0,β)

tr(κ0)(g−1
0 h′0g0)

and
tr(π0)(h′0) =

∑
g0∈J(a0,β)\GF ,
g−1
0 h′0g0∈J(a0,β)

tr(κ0)(g−1
0 h′0g0) · (ξ0 ◦NE0/F0

)(g−1
0 h′0g0)

Since detF0(g−1
0 h′0g0) = detF0(h′0), it is easy to see that the images of g−1

0 h′0g0 ∈ J(a0, β) and h′0 in
J(a0, β)/J1(a0, β) ∼= E×0 /(1 + pE0) are identical. Thus

(ξ0 ◦NE0/F0
)(g−1

0 h′0g0) = (ξ0 ◦NE0/F0
)(h′0) = ξ0(NF/F0

($k
F )),

4Note that there are only finite many non-zero terms in the sum of the right hand side, see for example [BH11],
Lemma 1.2.
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finishing the first equation. For the second equation, we have

tr(π′)(h′, σ) =
∑

g∈J(a,β)\GF ,
g−1h′σ(g)∈J(a,β)

tr(κb)(g
−1h′σ(g), σ)

and
tr(π)(h′, σ) =

∑
g∈J(a,β)\GF ,
g−1h′σ(g)∈J(a,β)

tr(κb)(g
−1h′σ(g), σ) · (ξb ◦NE/F )(g−1h′σ(g))

Since ξb is σ-invariant, there exists a character ξ′0 of F×0 such that ξb = ξ′0 ◦ NF/F0
. For g ∈ GF such

that g−1h′σ(g) ∈ J(a, β) and NF/F0
(h) := h′σ(h′)...σr−1(h′), we have

(ξb ◦NE/F )(g−1h′σ(g)) = (ξ′0 ◦NE0/F0
)(g−1NF/F0

(h′)g) = (ξ′0 ◦NE0/F0
)(NF/F0

(h′)) = (ξb ◦NE/F )(h′),

where the equation in the middle follows from the fact that detF (g−1NF/F0
(h′)g) = detF (NF/F0

(h′)),
and thus g−1NF/F0

(h′)g and NF/F0
(h′) are identical in J(a, β)/J1(a, β) ∼= E×/(1 + pE). Thus

(ξb ◦NE/F )(g−1h′σ(g)) = (ξb ◦NE/F )(h′) = ξb($
k
F ),

finishing the proof of the second equation.

Using this lemma and the above equations, we get

0 6= c′ · tr(π′0)(h′0) · ξb($k
F ) = c · tr(π′0)(h′0) · ξ0(NF/F0

($k
F )).

Since k is arbitrary, we must have c = c′ and ξb($F ) = ξ0(NF/F0
($F )), finishing the proof of the

proposition.

3.7.1.2

Now we consider unramified automorphic induction. Let [a0, β] and θ0 be as before, let K0 be the
maximal unramified subextension of E0,m over F0. We denote by AK0 the centralizer of K0 in AF0 and
we write GK0 := A×K0

, thus aK0 = a0 ∩ AK0 is a hereditary order, and [aK0 , β] is a simple stratum in

AK0 . Moreover H1(aK0 , β) = H1(a0, β) ∩GK0 and θK0 = θ0|H1(aK0
,β) is the interior K0/F0-lift of θ0.

We fix a uniformizer $F0 as in §3.6.1 and we choose a full Heisenberg κ0 representation of θ0 satisfying
(3.6.1). The group E×0 J

1(a0, β)/〈$F0〉 has a unique pro-p-subgroup, and we denote by pJ(a0, β)($F0)
its inverse image in J(a0, β). We have pJ(aK0 , β)($F0) = pJ(a0, β)($F0) ∩GK0 which is a subgroup
of J(aK0 , β) = J(a0, β) ∩GK0 .

Proposition 3.7.5 ( [BH14b], §5.6, Lemma 3, Lemma 4 and Proposition). There exists a unique
∆0-invariant full Heisenberg representation κK0 of J(aK0 , β) of θK0 satisfying

CT0,m($F0) ⊂ Ker(det(κK0)) and $F0 ∈ Ker(κK0), (3.7.2)

such that for any h ∈ pJ(aK0 , β)($F0) and any ζ0 ∈ µK0 which is Gal(K0/F0)-regular,

tr(κK0)(h) = ε0F0
(µK0) · ε1F0

(µK0)(ζ0) · tr(κ0)(ζ0h).

( cf. Example 3.3.2) Moreover the map lurK0/F0
: κ0 7→ κK0 given above induces a bijection from the

set of full Heisenberg extensions of θ0 satisfying (3.6.1) to the set of full Heisenberg extensions of θK0

satisfying (3.7.2).
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Using [BH14b], §9.1, Proposition, the following unramified automorphic induction is bijective:

AK0/F0
: ∆0\A0

1(K0,ΘK0)∆0−reg −→ A0
m(F0,Θ0),

where ΘK0 denotes the endo-class of θK0 , and ∆0\A0
1(K0,ΘK0)∆0−reg denotes the ∆0-orbits of ∆0-

regular representations in A0
1(K0,ΘK0). Thus we may choose πK0 to be a supercuspidal representation

of GK0 containing θK0 , such that π0 = AK0/F0
(πK0). Let (J(aK0 , β),ΛK0) be an extended maximal

simple type compactly inducing πK0 . By Corollary 3.2.5, there exists a unique tamely ramified char-
acter ξK0 of T×0,m, such that ΛK0 = κK0 · (ξK0 ◦NE0,m/T0,m

).

Theorem 3.7.6 ( [BH14b], §9.1, Unramified Induction Theorem, §10.7, Corollary). There exists a

∆0-fixed tamely ramified character µ
K0/F0

θ0
of T×0,m uniquely determined by the following equations ( cf.

Example 3.3.2, 3.3.3):

(1) µ
K0/F0

θ0
|µT0,m

= ε1F0
(µT0,m);

(2) µ
K0/F0

θ0
($F0) = κK0/F0

($F0)n([K0:F0]−1)/2 = (−1)[E0,m:K0]([K0:F0]−1), where κK0/F0
is a primitive

character of F×0 /NK0/F0
(K×0 );

(3) For $T0 a uniformizer of T0 lying in CT0($F0) and L0 = F0[$T0 ],

µ
K0/F0

θ0
($T0)[E0:T0] = d′ · εK0($T0) · εF0($T0) · ε0L0

(µT0,m) · ε0F0
(µT0,m),

where d′ = κK0/F0
($F0)n([K0:F0]−1)[E0:T0]/2 = (−1)[E0,m:K0]([K0:F0]−1)[E0:T0].

More importantly for any ξ0 and ξK0 as above, ξ0 is ∆0-conjugate to ξK0 · µ
K0/F0

θ0
.

Remark 3.7.7. In the original statement of [BH14b], §10.7, Corollary, the sign d′ is not explicitly
given, which is actually a simple corollary of ibid., Transfer Lemma (Using the exact value of d given
in the last paragraph of its proof), (10.4.9), (10.5.1) and (10.6.3).

3.7.1.3

Finally we consider the automorphic induction in the maximal totally ramified case, that is, we assume
that n = d and E0/F0 is totally ramified. Thus we have m = 1, E0 = E0,m and T0 = T0,m. Let AT0

be the centralizer of T0 in AF0 and let GT0 = A×T0
. Similarly we define aT0 , [aT0 , β], H1(aT0 , β) and

θT0 = θ0|H1(aT0
,β), where θT0 is the T0/F0-lift of θ0.

Proposition 3.7.8 ( [BH14b], §5.3, Proposition, §5.6, Lemma 2). For κ0 a full Heisenberg represen-
tation of J(a0, β) of θ0, there exists a unique full Heisenberg representation κT0 of J(aT0 , β) of θT0,
such that ( cf. Example 3.3.2)

tr(κT0)(x) = εT0/F0
· tr(κ0)(x)

for any x ∈ J(aT0 , β) such that vT0(detT0(x)) is relatively prime to t = [T0 : F0]. The map ltrT0/F0
:

κ0 7→ κT0 given above is a bijection between full Heisenberg representations of θ0 and that of θT0.
Moreover,

CT0($F0) ⊂ Ker(det(κ0)) and $F0 ∈ Ker(κ0)

if and only if
CT0($F0) ⊂ Ker(κT0).

Remark 3.7.9. In the maximal totally ramified case, by definition (J(a0, β),κ0) is actually an ex-
tended maximal simple type containing θ0, and every extended maximal simple type containing θ0 is
of this form. Similarly, (J(aT0 , β),κT0) ranges over all the extended maximal simple type containing
θT0 when κT0 ranges over all the full Heisenberg representations of θT0.
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Since T0/F0 is not always cyclic (not even Galois), we cannot use the construction of Henniart-
Herb [HH95] to define the automorphic induction AT0/F0

. However in §4.3. we gave the definition
from the Galois side instead. We denote by WF0 the Weil group of F0 and by WT0 the Weil group
of T0 regarded as a subgroup of WF0 . Since T0/F0 is tamely ramified, we denote by PF0 = PT0 the
wild inertia subgroup of WF0 (resp. WT0) and we denote by P̂F0 = P̂T0 the set of equivalence classes
of smooth irreducible representations of PF0 = PT0 , which naturally endows with a WF0 (resp. WT0)-
action. By [BH14b], §6.1, Ramification Theorem, there exists a unique α ∈ P̂T0 such that WT0 ·α = α
and the following bijection is induced from the ordinary local Langlands correspondence:

LLCT0 : G0
1(T0, α) −→ A0

1(T0,ΘT0),

where G0
1(T0, α) denotes the set of irreducible representations ofWT0 whose restriction to PT0 contains

α with multiplicity 1. Since α can be naturally regarded as an element in P̂F0 , thus as an orbit
in WF0\P̂F0 , by ibid., §6.1, Ramification Theorem and §6.2, Proposition, the following bijection is
induced from the ordinary local Langlands correspondence:

LLCF0 : G0
1(F0, α) −→ A0

1(F0,Θ0),

where G0
1(F0, α) denotes the set of irreducible representations ofWF0 whose restriction to PF0 overlaps

with the orbit α ∈ WF0\P̂F0 with multiplicity 1. By ibid., §6.3, Tame Parameter Theorem and §1.5,
Proposition, we have the following bijection:

IndT0/F0
: G0

1(T0, α) −→ G0
1(F0, α).

Combining these together, the automorphic induction AT0/F0
leads to a bijection

AT0/F0
: A0

1(T0,ΘT0) −→ A0
1(F0,Θ0),

such that the following diagram is commutative:

G0
1(T0, α)

IndT0/F0
��

LLCT0 // A0
1(T0,ΘT0)

AT0/F0
��

G0
1(F0, α)

LLCF0 // A0
1(F0,Θ0)

We fix κ0 as a full Heisenberg representation of θ0 and we let κT0 be the full Heisenberg representation
of θT0 given by Proposition 3.7.8. Let π0 be a supercuspidal representation of GF0 containing θ0, or
in other words, π0 ∈ A0

1(F0,Θ0). By Corollary 3.2.5, there exists a unique tamely ramified character
ξ0 of T×0 such that

ind
GF0

J(a0,β)(κ0 · (ξ0 ◦NE0/T0
)) ∼= π0.

We choose πT0 to be the supercuspidal representation ofGT0 containing θT0 such that AT0/F0
(πT0) = π0.

Still by Corollary 3.2.5, there exists a unique tamely ramified character ξT0 of T×0 such that

ind
GT0

J(aT0
,β)(κT0 · (ξT0 ◦NE0/T0

)) ∼= πT0 .

Proposition 3.7.10 ( [BH14b], §8.2, Corollary). There exists a unique tamely ramified character

µ
T0/F0

θ0
of T×0 depending only on the endo-class of θT0, such that ξ0 = ξT0 · µ

T0/F0

θ0
.
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We further let L0 be a subfield of T0 over F0, let AL0 be the centralizer of L0 in AF0 and let
GL0 = A×L0

. We define aL0 , [aL0 , β], H1(aL0 , β) and θL0 = θ0|H1(aL0
,β) in the similar way. By

definition θT0 = θL0 |H1(aT0
,β), and by Proposition 3.7.8 with F0 replaced by L0, there exists a full

Heisenberg κL0 of θL0 , such that

tr(κT0)(x) = εT0/L0
· tr(κL0)(x)

for any x ∈ J(aT0 , β) such that vT0(detT0(x)) is relatively prime to [T0 : L0]. Thus we have the
following corollary of Proposition 3.7.8:

Corollary 3.7.11. For κ0 as a full Heisenberg representation of J(a0, β) containing θ0, there exists
a unique Heisenberg representation κL0 of J(aL0 , β) containing θL0, such that

εT0/L0
· tr(κL0)(x) = εT0/F0

· tr(κ0)(x)

for all x ∈ J(aT0 , β) such that vT0(detT0(x)) is relative to [T0 : F0], and the map atrL0/F0
: κ0 7→ κL0

given above is a bijection between full Heisenberg representations containing θ0 and those containing
θL0. Moreover for $L0 a uniformizer of L0 such that CT0($F0) = CT0($L0),

CT0($F0) ⊂ Ker(det(κ0)) and $F0 ∈ Ker(κ0)

if and only if
CT0($L0) ⊂ Ker(det(κL0)) and $L0 ∈ Ker(κL0).

With F0 replaced by L0, we similarly consider the bijection AT0/L0
: A0

1(T0,ΘT0) → A0
1(L0,ΘL0).

Using Proposition 3.4.9 we haveAT0/F0
= AL0/F0

◦AT0/L0
as a bijection fromA0

1(T0,ΘT0) toA0
1(F0,Θ0).

We denote by πL0 the supercuspidal representation of GL0 containing θL0 , such that AL0/F0
(πL0) = π0.

Thus we also have AT0/L0
(πT0) = πL0 . By Corollary 3.2.5, there exists a unique tamely ramified char-

acter ξL0 of T×0 such that

ind
GL0

J(aL0
,β)(κL0 · (ξL0 ◦NE0/T0

)) ∼= πL0 .

Using Proposition 3.7.10 with F0 replaced by L0, we may define a tamely ramified character µ
T0/L0

θL0
of

T×0 . When L0/F0 is cyclic of degree l, we fix a related transfer system (σ0,κL0/F0
, el), and we consider

∆̃L0/F0
, ∆1

L0/F0
, ∆2

L0/F0
and δL0/F0

as in §3.4.2.

Proposition 3.7.12. For L0/F0 cyclic and of prime degree l, there exists a unique tamely ramified

character χ
L0/F0

θ0
of T×0 such that

χ
L0/F0

θ0
(detT0(h0)) = εT0/L0

· εT0/F0
· cL0/F0

θ0
· δL0/F0

(h0) (3.7.3)

for all h0 ∈ J(aT0 , β) with vT0(detT0(h0)) relatively prime to n, where c
L0/F0

θ0
is the constant occurring

Theorem 3.4.5. Moreover we have

ξ0 = ξL0 · χ
L0/F0

θ0
and µ

T0/F0

θ0
= µ

T0/L0

θL0
· χL0/F0

θ0
.

Proof. This proposition is morally [BH14b], §8.9, Corollary, except that in loc. cit. they assume l to
be the largest prime divisor of |Γ0|, where Γ0 = Aut(T0/F0). We explain how this assumption can be
weakened to our settings.

As indicated in ibid., §8.6, for any γ ∈ Γ0 we may choose gγ contained in the normalizer of T×0 in
GF0 , such that g−1

γ xgγ = xγ for every x ∈ T0 and det(gγ) equals 1 or −1. Thus

κ : γ 7→ κL0/F0
(det(gγ))
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is a character of Γ0 of order dividing 2. By definition, κ is trivial except when

l = 2, q ≡ 3 (mod 4) and [T0 : F0] ≡ |Γ0| ≡ 2 (mod 4). (3.7.4)

Using the same argument of ibid. (8.7.3), we may prove that

εT0/F0

∑
γ∈Γ0

χ
L0/F0

θ0
(detT0(hγ0)) · tr(πT0)(hγ0) · κ(γ) = εT0/L0

· cL0/F0

θ0
· δL0/F0

(h0)
∑
γ∈Γ0

tr(πT0)(hγ0)

for any elliptic h0 ∈ J(aT0 , β) such that vT0(detT0(h0)) is relatively prime to n. When the condition

(3.7.4) fails, as in ibid. §8.7. we deduce that χ
L0/F0

θ0
(detT0(h0)) = χ

L0/F0

θ0
(detT0(hγ0)), and χ

L0/F0

θ0
|µT0

and κ are trivial. When the condition (3.7.4) holds, κT0/F0
(−1) = −1 and κ is a character of order 2.

By ibid. §8.8, Lemma 1 and Lemma 2, we deduce that χ
L0/F0

θ0
|µT0

is of order 2 and χ
L0/F0

θ0
(detT0(h0)) =

χ
L0/F0

θ0
(detT0(hγ0)) · κ(γ). Thus in both cases we have

εT0/F0
· χL0/F0

θ0
(detT0(h0))

∑
γ∈Γ0

tr(πT0)(hγ0) = εT0/L0
· cL0/F0

θ0
· δL0/F0

(h0)
∑
γ∈Γ0

tr(πT0)(hγ0).

Thus for those h0 satisfying
∑

γ∈Γ0
tr(πT0)(hγ0) 6= 0, we have

χ
L0/F0

θ0
(detT0(h0)) = εT0/F0

· εT0/L0
· cL0/F0

θ0
· δL0/F0

(h0). (3.7.5)

Finally for any h′0 ∈ J(aT0 , β) with vT0(detT0(h0)) relatively prime to n, by ibid. §8.1. Corol-
lary we may choose h0 ∈ J(aT0 , β) elliptic, such that

∑
γ∈Γ0

tr(πT0)(hγ0) 6= 0 and vT0(detT0(h0)) =
vT0(detT0(h′0)). Using ibid., §8.5 Transfer Lemma, the last paragraph of §8.7 and §8.8 Lemma 1, we
have

δL0/F0
(h0)/δL0/F0

(h′0) = χ
L0/F0

θ0
(detT0(h0))/χ

L0/F0

θ0
(detT0(h′0)).

Combining with (3.7.5) we have

χ
L0/F0

θ0
(detT0(h′0)) = εT0/F0

· εT0/L0
· cL0/F0

θ0
· δL0/F0

(h′0),

which finishes the proof.

Corollary 3.7.13. When l is odd, for p 6= 2 the character χ
L0/F0

θ0
defined above is trivial, and for

p = 2, the character χ
L0/F0

θ0
is unramified such that χ

L0/F0

θ0
($

[E0:T0]
T0

) = 1.

Proof. First we have the following lemma:

Lemma 3.7.14. For l odd, $E0 a uniformizer of E0 such that $n
E0
/$F0 ∈ 1 + pF0 and a an integer

relatively prime to p, the value δL0/F0
($a

E0
) is independent of a.

Proof. Let E′0/F0 be a Galois extension containing E0 and all the n-th roots of unity. Using the
calculation in [BH05a], Lemma 4.5, we may prove that

∆̃L0/F0
($a

E0
) = $

an(l−1)/2l
F0

· ε ·Π · u0,

where Π is the product of certain differences of two different n-th roots of unity as an element in E′0
independent of a, whose exact expression is not important here, ε is a sign and u0 ∈ 1 + pE′0 . Thus

el ·Π · u0 is an element in F×. By definition ∆1
L0/F0

($a
E0

) = 1 and

∆2
L0/F0

($a
E0

) = κL0/F0
($

an(l−1)/2l
F0

· ε) · κL0/F0
(el ·Π · u0).
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Since $F0 ∈ NT0/F0
(T×0 ) and l is odd, κT0/F0

($
an(l−1)/2l
F0

· ε) = κT0/F0
(ε) = 1. Moreover since κL0/F0

is tamely ramified, κL0/F0
(el ·Π · u0) is independent of u0, and thus independent of a. Thus

δL0/F0
($a

E0
) = κL0/F0

(el ·Π · u0)

is independent of a.

As a by-product of the proof of Proposition 3.7.12 , the character χ
L0/F0

θ0
is unramified when l is

odd. If p 6= 2, we choose h1 = $E0 and h2 = $2
E0

, then using the above lemma and Proposition 3.7.12,

we obtain χ
L0/F0

θ0
(detT0(h2h

−1
1 )) = 1, meaning that χ

L0/F0

θ0
is trivial on a uniformizer of T0, thus it is

trivial. For p = 2 and [E0 : T0] = 2s, the case s = 0 is trivial. And for s ≥ 1, we choose h−1 = $−1
E0

and h1 = $E0 , thus using the same argument we get χ
L0/F0

θ0
(detT0(h1h

−1
−1)) = 1, which implies that

χ
L0/F0

θ0
($2

T0
) = 1.

When l = 2 correspondingly we have:

Corollary 3.7.15. For l = 2, the character χ
L0/F0

θ0
|µT0

is of order 2.

Proof. It follows from [BH14b], §8.8, Lemma 1.

Corollary 3.7.16. For the character µ
T0/F0

θ0
of T×0 in Proposition 3.7.10, its restriction to µT0 is

quadratic.

Proof. We may choose a sequence of field extensions F0 ⊂ F1 ⊂ ... ⊂ Fk ⊂ T0, such that Fi/Fi−1 is
cyclic and of prime order, and Aut(T0/Fk) = {1}. Thus by Proposition 3.7.12

µ
T0/F0

θ0
= µ

T0/Fk
θFk

·
k∏
i=1

χ
Fi/Fi−1

θFi−1
,

where θF0 := θ0 and θFi denotes the interior Fi/F0-lift of θ0. By [BH14b], §8.3, Remark, µ
T0/Fk
θFk

is

unramified, and combining with Corollary 3.7.13 and Corollary 3.7.15 we finish the proof.

3.7.2 Construction in the interior automorphic induction case

In this subsection, we follow the same setting as §3.6.2. We give an exact construction of the full
Heisenberg representation κa.

3.7.2.1

When F/F0 is unramified, F is also a subfield of K0 and T0. We choose $F = $F0 to be a uniformizer
of F . We denote by AK0 the centralizer of K0 in AF0 and we write aK0 = a0 ∩ AK0 as a hereditary
order in AK0 , thus [aK0 , β] is a simple stratum in AK0 . Moreover H1(aK0 , β) = H1(a0, β) ∩ GK0

and θK0 = θ0|H1(aK0
,β) is the interior K0/F0-lift of θ0. Using Proposition 3.7.5, there exists a unique

∆0-invariant full Heisenberg representation κK0 of θK0 , such that lurK0/F0
(κ0) = κK0 . Moreover AK0

is also the centralizer of K0 in CF . By definition, aK0 = c ∩ AK0 , H1(aK0 , β) = H1(c, β) ∩ GK0 and
θK0 is the interior K0/F -lift of θa. Thus replacing F0 by F in Proposition 3.7.5, there exists a unique
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κa as a full Heisenberg extension of θa, such that lurK0/F
(κa) = κK0 . This gives the construction of κa

in the unramified case. For ease of reference, we write aurF/F0
: κ0 7→ κa for the above correspondence

which is a bijection between those κ0 satisfying (3.6.1) and those κa satisfying (3.6.3).

κK0

(lur
K0/F

)−1

��

K0

mf0/r

κa F
r

κ0

aur
F/F0

OO
lur
K0/F0

XX

F0

3.7.2.2

When F/F0 is totally ramified, we choose $F to be any uniformizer of F , such that $r
F /$F0 is in

µF , and in particular CT0,m($F0) = CT0,m($F ). We denote by K the maximal unramified subfield of
T0,m over F , thus K/K0 is a totally tamely ramified extension of degree r. As in the previous case,
we define aK0 , [aK0 , β], H1(aK0 , β) and θK0 . Similarly we write CK for the centralizer of K in CF and
we write cK = c ∩ CK , thus [cK , β] is a simple stratum in CK . Moreover H1(cK , β) = H1(c, β) ∩GK
and θK = θa|H1(cK ,β) is the interior K/F -lift of θa. By definition we also have θK = θK0 |H1(cK ,β),
which means that θK is the interior K/K0-lift of θK0 . By Proposition 3.7.5 as above, there exists a
unique ∆0-invariant full Heisenberg representation κK0 of θK0 such that lurK0/F0

(κ0) = κK0 , which in

particular satisfies (3.7.2). Since E0,m = K0[β] is a totally ramified extension of degree n/[K0 : F0]
over K0, by Corollary 3.7.11 with L0 = K and F0 = K0, there exists a full Heisenberg extension κK
of J(cK , β) containing θK such that atrK/K0

(κK0) = κK , and in particular we have

CT0,m($F ) ⊂ Ker(det(κK)) and $F ∈ Ker(κK). (3.7.6)

Using Proposition 3.7.5 for F0 = F and K0 = K, there exists a unique full Heisenberg representation
κa of θa satisfying equation (3.6.3), such that lurK/F (κa) = κK . This gives the contruction of κa in the

totally ramified case. For ease of reference, we write atrF/F0
: κ0 7→ κa for the above correspondence,

which is actually in accordance with the notation in Corollary 3.7.11. Such atrF/F0
is a bijection between

those κ0 satisfying (3.6.1) and those κa satisfying (3.6.3).

κK
(lur
K/F

)−1

��

κK0

atr
K/K0oo K

mf

r
K0

mf0

κa κ0
atr
F/F0

oo

lur
K0/F0

OO

F
r

F0

3.7.2.3

In general, we let F1/F0 be the maximal unramified subextension of F/F0. We choose $F1 = $F0

as a uniformizer of F1 and F0, and $F as a uniformizer of F such that $
[F :F1]
F /$F0 is in µF . Thus

combining the above two cases together, we obtain aF/F0
= atrF/F1

◦ aurF1/F0
as a bijection between

those κ0 of θ0 satisfying (3.6.1) and those κa of θa satisfying (3.6.3).

3.7.3 Construction in the supercuspidal base change case

In this subsection, we follow the same setting as §3.6.1. Our aim is to construct the full Heisenberg
extension κb of J(a, β) of θb.
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Lemma 3.7.17. We may choose $F as a uniformizer of F , and $T0 and $T as uniformizers of T0

and T respectively satisfying $F0 ∈ µT0〈$T0〉, $F ∈ µT 〈$T 〉 and NT/T0
($T ) ∈ µT0〈$T0〉.

Proof. We consider a sequence of field extensions F0 ⊂ F1 ⊂ F2 ⊂ F , such that for E1 = F1E0

and E2 = F2E0, both E1/E0 and F1/F0 are unramified, E2/E1 is unramified and F2/F1 is totally
ramified, and both E/E2 and F/F2 are totally ramified. We write T1 = F1T0 and T2 = F2T0 and we
have e0 = e(T0/F0) = e(T1/F1), and e = e(T2/F2) = e(T/F ) = e0/[F2 : F1].

Using Hensel lemma, we choose $T0 to be a uniformizer of T0 such that $F0 = $e0
T0
ζT0 for a certain

ζT0 ∈ µT0 , and $F2 to be a uniformizer of F2 such that $F0 = $
[F2:F1]
F2

ζF2 for a certain ζF2 ∈ µF0 , and
finally $T2 to be a uniformizer of T2 such that $F2 = $e

T2
ζT2 for a certain ζT2 ∈ µT2 . By definition,

($T2/$T0)e0 = ζT0/ζF2ζ
[F2:F1]
T2

which is a root of unity in µT2 , thus $T2/$T0 must be a root of unity
in µT2 which we denote by ζ ′T2

. Still using Hensel lemma, we choose $F to be a uniformizer of F such

that $F2 = $
[F :F2]
F ζF for a certain ζF ∈ µF , and $T to be a uniformizer of T such that $F = $e

T ζT

for a certain ζT ∈ µT . Thus by definition, ($
[F :F2]
T /$T2)e = ζT2/ζF ζ

[F :F2]
T which is a root of unity in

µT . Thus $
[F :F2]
T /$T2 must be a root of unity in µT = µT2 which we denote by ζ ′T . By definition we

get $F0 ∈ µT0〈$T0〉, $F ∈ µT 〈$T 〉, and moreover

NT/T0
($T ) = NT2/T0

(NT/T2
($T )) = NT2/T0

($T2ζ
′
T ) = NT2/T0

(ζ ′T ζ
′
T2

)$
[F2:F0]
T0

∈ µT0〈$T0〉

We choose $F , $T0 and $T as in the above lemma. For K0 the maximal unramified subextension
of E0,m over F0, let AK0 , aK0 , [aK0 , β], H1(aK0 , β) and θK0 be as in the last subsection. Using
Proposition 3.7.5 there exists a full Heisenberg representation κK0 = lurK0/F0

(κ0) of θK0 satisfying

(3.7.2). For the simple stratum [aK0 , β] and simple character θK0 , we are in the totally ramified
maximal case, that is, E0,m = K0[β] is totally ramified over K0 of degree n/[K0 : F0]. Let AT0,m be the
centralizer of T0,m in AF0 and let aT0,m = aK0 ∩AT0,m . Thus [aT0,m , β] is a simple stratum in AT0,m and
H1(aT0,m , β) = H1(aK0 , β)∩GT0,m . Moreover since T0,m/K0 is tamely ramified, θT0,m = θK0 |H1(aT0,m

,β)

is the interior T0,m/K0-lift of θK0 . Using Proposition 3.7.8 for T0 = T0,m and F0 = K0, there exists a
unique full Heisenberg representation κT0,m = ltrT0,m/K0

(κK0) of θT0,m satisfying

µT0,m〈$T0〉 = CT0,m($F0) ⊂ Ker(κT0,m) (3.7.7)

The composition of the two maps given above

κ0
�
lur
K0/F0 // κK0

�
ltr
T0,m/K0// κT0,m

is a bijection between those κ0 satisfying (3.6.1) and those κT0,m satisfying (3.7.7).

The above argument also works for [a, β] and θb. Let AK be the centralizer of K in AF . We
similarly define aK , [aK , β], H1(aK , β) and θK = θb|H1(aK ,β). For any full Heisenberg representation
κb of J(a, β) of θb satisfying (3.6.2), by Proposition 3.7.5 with F0 = F and K0 = K, there exists a
unique full Heisenberg representation κK = lurK/F (κb) of θK , which satisfies (3.7.6). For [aK , β] and θK ,

we are also in the totally ramified maximal case. We similarly define ATm , aTm , [aTm , β], H1(aTm , β)
and θTm = θK |H1(aTm ,β). Thus by Proposition 3.7.8 with F0 = K and T0 = Tm, there exists a unique

full Heisenberg representation κTm = ltrTm/K(κK) of θTm satisfying

µTm〈$T 〉 = CTm($F ) ⊂ Ker(κTm). (3.7.8)
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The composition of the two maps given above

κb
� l

ur
K/F // κK

� l
tr
Tm/K // κTm (3.7.9)

is a bijection between those κb satisfying (3.6.1) and those κTm satisfying (3.7.8). To connect the two
sides, we need the following lemma:

Lemma 3.7.18. We have θTm = (θT0,m)b, where (θT0,m)b is the simple character in C(aTm , β) con-
structed by the procedure in §3.6.1. In particular, the endo-class of θTm is the Tm/T0,m-lift of that of
θT0,m.

Proof. We write ÃF0 = EndF0(Em) and ã0 = aF0(Em) as a hereditary order in ÃF0 . From the
construction, we have

θTm = (θb)Tm = ((tβ
a0 ,̃a0

(θ0))F )Tm .

Using Lemma 3.2.1 for the tamely ramified field extensions Tm/F/F0 and Tm/T0,m/F0, we have

θTm = ((tβ
a0 ,̃a0

(θ0))F )Tm = (tβ
a0 ,̃a0

(θ0))Tm = ((tβ
a0 ,̃a0

(θ0))T0,m)Tm .

On the other hand, we write ÃT0,m = EndT0,m(Em) and ãT0,m = aT0,m(Em) as a hereditary order in

ÃT0,m . From the construction, we have

(θT0,m)b = (tβ
aT0,m

,̃aT0,m
(θT0,m))Tm .

Using Lemma 3.2.2 for F = F0, L = T0,m, a = a0 and ã = ã0, combining with the fact that
(a0)T0,m = aT0,m and (ã0)T0,m = ãT0,m , we get

tβ
aT0,m

,̃aT0,m
(θT0,m) = (tβ

a0 ,̃a0
(θ0))T0,m .

Combining these equations together, we finally get (θT0,m)b = θTm .

Remark 3.7.19. To sum up, we actually proved that each block in the following diagram is commu-
tative:

C(a0, β)
tβ
a0,ã0 //

|H1(aT0,m
,β)

��

C(ã0, β)
|H1(a,β) //

|H1(ãT0,m
,β)

��

C(a, β)

|H1(aTm
,β)

��
C(aT0,m , β)

tβ
aT0,m

,ãT0,m

// C(ãT0,m , β)
|H1(aTm

,β)

// C(aTm , β)

Combining this lemma with Theorem 3.7.1 for the extension Tm/T0,m, we choose κTm to be the
unique full Heisenberg extension extending θTm , such that

BCTm/T0,m

(
ind

GT0,m

J(aT0,m
,β)(κT0,m)

)
= ind

GTm
J(aTm ,β)

(
κTm

)
.

By Corollary 3.7.2, such κTm satisfies (3.7.8). Thus by (3.7.9) we get the corresponding full Heisenberg
representation κb of θb which satisfies (3.6.2). The map κ0 7→ κb given above is a bijection between
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those κ0 satisfying (3.6.1) and those κb satisfying (3.6.2), which we denote by bF/F0
for ease of

reference.

κTm
(ltr
Tm/K

)−1

��

κT0,m

bTm/T0,moo Tm
e

r
T0,m

e0

κK
(lur
K/F

)−1

��

κK0

ltr
T0,m/K0

OO

K

mf

K0

mf0

κb κ0
bF/F0

oo

lur
K0/F0

OO

F
r

F0

3.7.4 Construction in the exterior automorphic induction case

In this subsection, we follow the same setting as §3.6.3. We will construct the full Heisenberg extension
κa in the exterior automorphic induction case.

3.7.4.1

First we consider the case where E/E0 is unramified and we follow the setting of 3.6.3.1. We write K0

for the maximal unramified subfield of T0,m over F0 and we denote by AK0 the centralizer of K0 in AF0 .
As before we define aK0 , [aK0 , β], H1(aK0 , β) and θK0 = θ0|H1(aK0

,β). Similarly we write K for the
maximal unramified subfield of Tm/r over F . Thus K0 is a subfield of K by noting that T0,m = Tm/r,
and in particular K0 = K if and only if F/F0 is unramified. Regarding K/F0 as a tamely ramified
subextension of T0,m/F0, we may denote by AK the centralizer of K in AF and we may similarly
define aK , [aK , β], H1(aK , β) and θK = θ0|H1(aK ,β). Thus by definition θK0 |H1(aK ,β) = θK , meaning
that θK is the interior K/K0-lift of θK0 .

On the other hand, we denote by CK the centralizer of K in CF . Thus cK = cF ∩ CK is a
hereditary order, and [cK , β] is a simple stratum in CK . By direct definition, we actually have AK =
CK = EndK(E0,m), aK = cK = aK(E0,m). Using Lemma 3.2.1, we have θK = θa|H1(cK ,β) as the
K/F -interior lift of θa.

We choose $F to be a uniformizer of F , such that $
e(F/F0)
F /$F0 is in µF . In particular we

have CT0,m($F0) = CTm/r($F ). For κ0 a full Heisenberg representation of θ0 satisfying (3.6.1), by
Proposition 3.7.5, there exists a full Heisenberg representation κK0 = lurK0/F0

(κ0) of θK0 satisfying

(3.7.2). Then using Corollary 3.7.11 with F0 = K0 and L0 = K, we get a full Heisenberg representation
κK = atrK/K0

(κK0) of θK satisfying

CTm/r($F ) ⊂ Ker(det(κK)) and $F ∈ Ker(κK). (3.7.10)

Finally using Proposition 3.7.5 again, there exists a full Heisenberg representation κa = (lurK/F )−1(κK)

satisfying (3.6.4). Thus we obtain a bijection from those κ0 satisfying (3.6.1) to those κa satisfying
(3.6.4), which is denoted by eaurF/F0

.

κK
(lur
K/F

)−1

��

κK0

atr
K/K0oo K

mf/r

f/f0
K0

mf0

κa κ0

lur
K0/F0

OO

eaur
F/F0

oo F
r

F0

3.7.4.2

Then we consider the case where both E/E0 and F/F0 are totally ramified. Using Lemma 3.7.17 (which
also works for our settings here), we choose $F as a uniformizer of F , and $T0 and $T as uniformizers
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of T0 and T respectively satisfying $F0 ∈ µT0〈$T0〉, $F ∈ µT 〈$T 〉 and NT/T0
($T ) ∈ µT0〈$T0〉. Let

K0 be the maximal unramified subfield of T0,m over F0 and let K be the maximal unramified subfield
of Tm/r over F . Then for K ′ = KK0 as a subfield of Em, both K ′/K0 and K ′/K are cyclic extensions
of degree r. The former is totally ramified, and the latter is unramified.

Let [a0, β], θ0 be given as before. Still we write AK0 for the centralizer of K0 in AF0 , and we
define aK0 , [aK0 , β], H1(aK0 , β) and θK0 = θ0|H1(aK0

,β) as before. We write ÃK0 = EndK0(Em) and

ãK0 = aK0(Em) its hereditary order. Thus [ãK0 , β] is a simple stratum in ÃK0 and we denote by

θ̃K0 the tranfer of θK0 which is a simple character of H1(ãK0 , β). Furthermore we write AK′ for the
centralizer of K ′ in ÃK0 and aK′ = ãK0∩AK′ for its hereditary order. Thus [aK′ , β] is a simple stratum

in AK′ and H1(aK′ , β) = H1(ãK0 , β) ∩GK′ . Moreover θ̃K0 |H1(aK′ ,β) is the interior K ′/K0-lift of θ̃K0 .

On the other hand, let CF , c, [c, β], θa be defined as in §3.6.3 in the case where E/E0 is totally
ramified. We write CK for the centralizer of K in CF and we may similarly define cK , [cK , β], H1(cK , β)
and θK = θa|H1(cK ,β). We write C̃K = EndK(Em) and c̃K = aK(Em) its hereditary order. Let θ̃K
be the transfer of θK which is a simple character of H1(c̃K , β). Furthermore we write CK′ for the
centralizer of K ′ in C̃K and cK′ = c̃K ∩ CK′ for its hereditary order. By definition we actually have
CK′ = AK′ = EndK′(Em), cK′ = aK′ = aK′(Em) and [cK′ , β] = [aK′ , β] as a simple stratum in AK′ .
Then θ̃K |H1(cK′ ,β) is a simple character which is the interior K ′/K-lift of θ̃K .

Lemma 3.7.20. We have θ̃K0 |H1(aK′ ,β) = θ̃K |H1(cK′ ,β), which we denote by θK′ as a simple character

of H1(aK′ , β) = H1(cK′ , β).

Proof. From the construction, we have

θ̃K0 |H1(aK′ ,β) = tβ
aK0

,̃aK0
(θK0)|H1(aK′ ,β) = (tβ

aK0
,̃aK0

(θK0))K′ .

Using Lemma 3.2.2 for F = F0, L = K0, a = a0 and ã = ã0 := aF0(Em), and noting that (a0)K0 = aK0

and (ã0)K0 = ãK0 := aK0(Em), we get

tβ
aK0

,̃aK0
(θK0) = (tβ

a0 ,̃a0
(θ0))K0 .

Recall that c̃0 := aF0(Em/r) is a hereditary order in C̃F0 := EndF0(Em/r). Using the transitivity of
the transfer map, we have

tβ
c̃0 ,̃a0

(tβ
a0 ,̃c0

(θ0)) = tβ
a0 ,̃a0

(θ0) =: θ̃0

as a simple character in C(ã0, β). Using Lemma 3.2.1 for the tamely ramified extensions K ′/K0/F0

and K ′/K/F0, we get

((θ̃0)K0)K′ = (θ̃0)K′ = ((θ̃0)K)K′ .

Combining these equations together we get

θ̃K0 |H1(aK′ ,β) = ((tβ
c̃0 ,̃a0

(θ̃′0))K)K′ ,

where by definition θ̃′0 := tβ
a0 ,̃c0

(θ0) is a simple character in C (̃c0, β). We use Lemma 3.2.2 for another

time with F = F0, L = K, a = c̃0 and ã0, and noting that by definition (̃c0)K = cK := aK(Em/r) and
(ã0)K = c̃K := aK(Em), we get

(tβ
c̃0 ,̃a0

(θ̃′0))K = tβ
cK ,̃cK

((θ̃′0)K),

thus

θ̃K0 |H1(aK′ ,β) = (tβ
cK ,̃cK

((tβ
a0 ,̃c0

(θ0))K))K′ .
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On the other hand, by definition we have

θ̃K |H1(cK′ ,β) = (tβ
cK ,̃cK

((θa)K))K′ = (tβ
cK ,̃cK

(((tβ
a0 ,̃c0

(θ0))F )K))K′ .

Using Lemma 3.2.1 with the tamely ramified extensions K/F/F0, we get

(tβ
a0 ,̃c0

(θ0))K = ((tβ
a0 ,̃c0

(θ0))F )K

which finally shows that

θ̃K0 |H1(aK′ ,β) = θ̃K |H1(cK′ ,β).

Remark 3.7.21. In the above proof, we actually showed that each block in the following diagram is
commutative:

C(a0, β)
tβ
a0 ,̃c0 //

tβ
a0,ã0

))
|H1(aK0

,β)

��

C(̃c0, β)

tβ
c̃0,ã0��

|H1(c,β) // C(c, β)
|H1(cK,β) // C(cK , β)

tβ
cK,̃cK��

C(ã0, β)
|H1(̃cK,β) //

|H1(ãK0
,β)

��

C(̃cK , β)

|H1(cK′ ,β)

��
C(aK0 , β)

tβ
aK0

,ãK0 // C(ãK0 , β)
|H1(cK′ ,β)

// C(cK′ , β)

Given κ0 a full Heisenberg representation of θ0 satisfying (3.6.1), by Proposition 3.7.5, we obtain
a ∆0-invariant full Heisenberg representation κK0 = lurK0/F0

(κ0), where ∆0 = Gal(T0,m/T0). Then

using §3.7.3 for the unramified extension K ′/K0, we obtain a full Heisenberg representation κK′ =
bK′/K0

(κK0) of θK′ . In particuler, such κK′ satisfies

CTm($F ) ⊂ Ker(det(κK′)) and $F ∈ Ker(κK′) (3.7.11)

We use §3.7.3 again for the unramified extension K ′/K to get a unique full Heisenberg representation
of θK , such that bK′/K(κK) = κK′ . Finally using Proposition 3.7.5 for the unramified extension K/F ,
there exists a unique full Heisenberg representation κa of θa satisfying (3.6.3) such that lurK/F (κa) = κK .

We denote by eatrF/F0
the above map from those full Heisenberg representations κ0 satisfying (3.6.1)

to those full Heisenberg representations κa satisfying (3.6.3). From the construction it is a bijection.

κK′

(bK′/K)−1

��

κK0

bK′/K0oo K ′

r

r
K0

mf0κK
(lur
K/F

)−1

��

K

mf/r

κa κ0eatr
F/F0

oo

lur
K0/F0

OO

F
r

F0

Remark 3.7.22. In defining aurF/F0
, atrF/F0

, aF/F0
, bF/F0

, eaurF/F0
and eatrF/F0

, we always precise the
uniformizers $F0 and $F at the beginning, however the definitions of those maps do not rely on our
choice of the uniformizers. It is because those maps are combinations of the bijections between the
full Heisenberg representations considered in Theorem 3.7.1, Proposition 3.7.5 and Proposition 3.7.8,
whose definitions are independent of the choice of the uniformizers.
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3.8 Proof of the main theorems

In this section, we prove the results mentioned in section 3.6.

3.8.1 Interior automorphic induction

We follow the setting of §3.6.2 and §3.7.2, and we will prove Theorem 3.6.4.

3.8.1.1

When F/F0 is unramified, by §3.7.1.2 we choose πK0 to be a supercuspidal representation of GK0

containing θK0 , such that AK0/F (πK0) = π′. Since AF/F0
◦ AK0/F = AK0/F0

by Proposition 3.4.9.(2),
we also have AK0/F0

(πK0) = π0. Moreover by Corollary 3.2.5, there exists a unique ∆0-regular tamely

ramified character ξK0 of T×0,m, such that

πK0
∼= ind

GK0

J(aK0
,β)(κK0 · (ξK0 ◦NE0,m/T0,m

)).

Using Theorem 3.7.6 for K0/F0 and K0/F , both ξ0 · (µK0/F0

θ0
)−1 and ξa · (µK0/F

θa
)−1 are in the same

∆0-orbit as ξK0 . Thus

aφ
F/F0

θ0
:= (µ

K0/F
θa

)−1 · µK0/F0

θ0

as a tamely ramified character of T×0,m satisfies the condition (1) of the theorem.

3.8.1.2

When F/F0 is totally ramified, we choose πK0 to be a supercuspidal representation of GK0 such that
AK0/F0

(πK0) = π0. Since K/K0 is totally ramified, by §3.7.1.3 we choose πK to be a supercuspidal
representation of GK containing θK , such that AK/K0

(πK) = πK0 . Since

π0 = AK0/F0
(AK/K0

(πK)) = AK/F0
(πK) = AF/F0

(AK/F (πK))

by Proposition 3.4.9.(2), AK/F (πK) equals π′σ
i

for a certain i. Moreover, the endo-class of AK/F (πK)
must be that of θa, thus we have AK/F (πK) = π′. By Corollary 3.2.5, there exist unique tamely

ramified characters ξK0 and ξK of T×0,m, such that respectively

πK0
∼= ind

GK0

J(aK0
,β)(κK0 · (ξK0 ◦NE0,m/T0,m

)) and πK ∼= indGKJ(cK ,β)(κK · (ξK ◦NE0,m/T0,m
)).

Using Theorem 3.7.6 for K0/F0 and K/F , we deduce that ξ0 (resp. ξa) is in the same ∆0-orbit as

ξK0 · µ
K0/F0

θ0
(resp. ξK · µK/Fθa

). Moreover by Proposition 3.7.10 for T0,m/K0 and T0,m/K, we have

ξK0 = ξK · µ
T0,m/K0

θK0
· (µT0,m/K

θK
)−1. Thus

aφ
F/F0

θ0
:= (µ

K/F
θa

)−1 · (µT0,m/K
θK

)−1 · µT0,m/K0

θK0
· µK0/F0

θ0

as a tamely ramified character of T×0,m satisfies the condition (1) of the theorem.

3.8.1.3

In general, we consider the extensions F/F1/F0, such that F1/F0 is unramified, and F/F1 is totally
ramified. In this case, the character

aφ
F/F0

θ0
:= aφ

F/F1

θF1
· aφF1/F0

θ0

satisfies the statement (1), where θF1 denotes the interior F1/F0-lift of θ0. Moreover the statement
(2) follows from Theorem 3.7.6 and Corollary 3.7.16.
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3.8.2 Base change in supercuspidal case

We follow the setting of §3.6.1 and §3.7.3 and we will prove Theorem 3.6.2. By §3.7.1.2 and §3.7.1.3,
we choose πK0 to be a ∆0-regular supercuspidal representation of GK0 containing θK0 such that
AK0/F0

(πK0) = π0, and then πT0,m to be a supercuspidal representation of GT0,m containing θT0,m such
that AT0,m/K0

(πT0,m) = πK0 , where AT0,m/K0
is defined as in §3.4.3 since T0,m/K0 is not necessarily

cyclic. We write πTm = BCTm/T0,m
(πT0,m) for the base change of πT0,m which is a supercuspidal

representation of GTm by Corollary 3.5.12 and we write πK = ATm/K(πTm) for the automorphic
induction of πTm defined as in §3.4.3 as a representation of GK . Using Proposition 3.4.9.(3), we have
πK = BCK/K0

(πK0) which is supercuspidal by Corollary 3.5.12. Still using Proposition 3.4.9.(3) we
have π = AK/F (πK).

Now it is not difficult to study the relation between ξ0 and ξb. By Corollary 3.2.5 we choose ξK0

and ξK to be the unique tamely ramified characters of T×0,m and T×m respectively, such that

πK0
∼= ind

GK0

J(aK0
,β)(κK0 · (ξK0 ◦NE0,m/T0,m

) and πK ∼= indGKJ(aK ,β)(κK · (ξK ◦NEm/Tm)).

And similarly we choose ξT0,m and ξTm to be the unique tamely ramified characters of T×0,m and T×m
respectively such that

πT0,m
∼= ind

GT0,m

J(aT0,m
,β)(κT0,m · (ξT0,m ◦NE0,m/T0,m

)) and πTm
∼= ind

GTm
J(aTm ,β)(κTm · (ξTm ◦NEm/Tm)).

Thus by Theorem 3.7.6, ξ0 equals ξK0 · µ
K0/F0

θ0
up to a ∆0-action and ξb equals ξK · µK/Fθb

up to a

∆-action. Moreover by Proposition 3.7.10, ξK0 = ξT0,m · µ
T0,m/K0

θK0
and ξK = ξTm · µ

Tm/K
θK

. Finally by

Proposition 3.7.3, ξT0,m ◦NTm/T0,m
= ξTm . Combining these together, if we write

bφ
F/F0

θ0
= (µ

K/F
θb
· µTm/KθK

)−1 · (µK0/F0

θ0
· µT0,m/K0

θK0
) ◦NTm/T0,m

,

then ξb · bφ
F/F0

θ0
and ξ0 ◦NTm/T0,m

are in the same ∆-orbit, finishing the proof of statement (1) in this
case. The statement (2) follows from Theorem 3.7.6 and Corollary 3.7.16.

3.8.3 Exterior automorphic induction

Finally we follow the setting of §3.6.3 and §3.7.4, and we will prove Theorem 3.6.6 and Theorem 3.6.8.

3.8.3.1

First we consider the case where E/E0 is unramified. Let πK be a supercuspidal representation
of GK containing θK such that AK/F (πK) = π′. Let πK0 = AK/K0

(πK) which is a supercuspidal
representation of GK0 containing θK0 by Proposition 3.4.4 and [BH03], Theorem B. By Proposition
3.4.9.(2), we have

π0 = AF/F0
(AK/F (πK)) = AK0/F0

(AK/K0
(πK)) = AK0/F0

(πK0).

By Corollary 3.2.5, we choose ξK0 (resp. ξK) to be a tamely ramified character of T×0,m = T×m/r such
that

πK0
∼= ind

GK0

J(aK0
,β)(κK0 · (ξK0 ◦NE0,m/T0,m

)) (resp. πK ∼= indGKJ(cK ,β)(κK · (ξK ◦NEm/r/Tm/r))).

By Theorem 3.7.6 for K0/F0 and K/F , we have a tamely ramified character µ
K0/F0

θ0
(resp. µ

K/F
θa

) of

T×0,m = T×m/r such that ξK0 · µ
K0/F0

θ0
(resp. ξK · µK/Fθa

) and ξ0 (resp. ξa) are in the same ∆0 (resp.
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∆)-orbit. Furthermore using Theorem 3.6.4 for F0 = K0 and F = K, the characters ξK · aφK/K0

θK0
and

ξK0 are in the same ∆0-orbit. Thus if we define

aφ
F/F0

θ0
:= (µ

K/F
θa

)−1 · aφK/K0

θK0
· µK0/F0

θ0

as a tamely ramified character of T×0,m, we conclude that ξa · aφF/F0

θ0
and ξ0 are in the same ∆0-orbit.

Finally using Theorem 3.7.6 and Corollary 3.7.16, we finish the proof of Theorem 3.6.6.

3.8.3.2

Then we assume that both F/F0 and E/E0 are totally ramified and we will prove Theorem 3.6.8.
By §3.7.1.2 we choose πK to be a supercuspidal representation of GK = C×K containing θK such
that AK/F (πK) = π′. By Corollary 3.5.12 πK′ := BCK′/K(πK) is a supercuspidal representation of

GK′ = C×K′ = A×K′ containing θK′ .

Lemma 3.8.1. There exists a supercuspidal representation πK0 of GK0 containing θK0, such that
AK0/F0

(πK0) = π0 and BCK′/K0
(πK0) = πK′.

Proof. We consider the equation

AF/F0
(AK/F (AK′/K(πK′))) = AK0/F0

(AK′/K0
(πK′))

which follows from [BH03], Lemma 6.2.(2). We choose κK′/K0
as a character of K×0 whose kernel is

NK′/K0
(K ′×), and κK′/K as a character of K× whose kernel is NK′/K(K ′×), and κF/F0

the character

of F×0 satisfying κF/F0
◦ NK0/F0

= κK′/K0
whose kernel is NF/F0

(F×). Using ibid., Theorem B and
(5.1.2), there exists a supercuspidal representation π′K0

of GK0 containing θK0 , such that

AK′/K0
(πK′) = π′K0

× π′K0
· κK′/K0

× ...× π′K0
· κr−1

K′/K0
.

Let π′0 := AK0/F0
(π′K0

) which is a supercuspidal representation of GF0 , thus by ibid. (5.1.1) and the
fact that automorphic induction commutes with parabolic induction for generic representations (see
for example [HH95], section 5), we get

AK0/F0
(AK′/K0

(πK′)) = π′0 × π′0 · κF/F0
× ...× π′0 · κr−1

F/F0

as an irreducible representation of GF0 . On the other hand using [BH03] again, we have

AK′/K(πK′) = πK × πK · κK′/K × ...× πK · κr−1
K′/K ,

thus

AK0/F0
(AK′/K0

(πK′)) = AF/F0
(AK/F (AK′/K(πK′))) = π0 × πc0,

where π0 = AF/F0
(AK/F (πK)) from the construction and πc0 := AF/F0

(AK/F (πK · κK′/K × ... × πK ·
κr−1
K′/K)). Since the factorization of an irreducible generic representation as parabolic induction of

discrete series representations is unique, we get π0
∼= π′0 · κiF/F0

for a certain i ∈ {0, 1, ..., r − 1}. Let

πK0 := π′K0
· κiK′/K0

be as a supercuspidal representation of GK0 , then AK0/F0
(πK0) = π0. Finally

by [BH03], (5.1.2) and (5.1.3), we have BCK′/K0
(πK0) = πK′ .
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Choose πK0 as in the lemma. By Corollary 3.2.5, we choose ξK0 (resp. ξK) to be the unique
tamely unramified character of T×0,m (resp. T×m/r) such that

πK0
∼= ind

GK0

J(aK0
,β)(κK0 · (ξK0 ◦NE0,m/T0,m

)) (resp. πK ∼= indGKJ(cK ,β)(κK · (ξK ◦NEm/r/Tm/r)))

and we choose ξK′ to be the unique tamely unramified character of T×m such that

πK′ ∼= ind
GK′
J(cK′ ,β)(κK′ · (ξK′ ◦NEm/Tm)).

Using Theorem 3.7.6, we have a tamely ramified character µ
K0/F0

θ0
(resp. µ

K/F
θa

) of T×0,m (resp. T×m/r)

such that ξ0 (resp. ξa) and ξK0 · µ
K0/F0

θ0
(resp. ξK · µK/Fθa

) are in the same ∆0 (resp. ∆)-orbit. Since
πK′ = BCK′/K0

(πK0) = BCK′/K(πK), by Theorem 3.6.2 there exists a tamely ramified character

bφ
K′/K0

θK0
(resp. bφ

K′/K
θK

) of T×m such that ξK′ · bφ
K′/K0

θK0
(resp. ξK′ · bφ

K′/K
θK

) equals ξK0 ◦NTm/T0,m
(resp.

ξK ◦NTm/Tm/r). Thus if we write

aφ
F/F0

θ0
:= (µ

K/F
θa
◦NTm/Tm/r)

−1 · ( bφ
K′/K
θK

)−1 · bφ
K′/K0

θK0
· (µK0/F0

θ0
◦NTm/T0,m

)

as a tamely ramified character of T×m , then (ξa ◦NTm/Tm/r) · aφ
F/F0

θ0
and ξ0 ◦NTm/T0,m

are in the same

∆′ = Gal(Tm/T )-orbit, finishing the proof of Theorem 3.6.8.(1), and the statement (2) follows from
Theorem 3.7.6 and Corollary 3.7.16.

3.9 Calculation of bφ
F/F0

θ0
in the F/F0 unramified case

In the previous section, we proved the main theorems of §3.6. However, it should be more interesting
to calculate the corresponding characters, which in practice gives the explicit construction of base

change and automorphic induction5. In this section, we focus on the calculation of bφ
F/F0

θ0
when F/F0

is unramified.
The motivation for concentrating on this special case is two-fold. On the one hand, the values of

this character are expected to be simple, since the symplectic signs in the definition compensate with
each others, which is not the case when F/F0 is not unramified or when we consider the automorphic
induction instead of base change, and which can also be expected from the known results of Bushnell-
Henniart in the essentially tame case [BH05a], [BH05b], [BH10]. On the other hand, this special
case is quite useful. For example, it will help us to update the values of the character related to the

Comparison Theorem in [BH14b], or more concretely the character µ
T0/F0

θ0
in Proposition 3.7.10, which

will be explained in the next section. Here comes the main theorem:

Theorem 3.9.1. When F/F0 is unramified, the character bφ
F/F0

θ0
in Theorem 3.6.2 is unramified,

and moreover bφ
F/F0

θ0
($ps

T0
) = (−1)(t−1)(r−1), where t = [T0,m : K0] and [E0 : T0] = ps.

Remark 3.9.2. In particular when E0/F0 is totally and tamely ramified, we return to the known
result [BH05b], Corollary 2.3.

From now on until the end of this section, we will follow the settings of §3.6.1, §3.7.3 and §3.8.2,
and we always assume that F/F0 is unramified.

5More precisely, we still need to admit the explicit construction of the full Heisenberg representation κb in Theorem
3.7.1 as a black box. Or in other words, we assume that the explicit construction of base change map in the totally
wildly ramified case is fully understood.
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3.9.1 Reduction to the maximal totally ramified case

In this subsection, we will show that Theorem 3.9.1 can be reduced to the maximal and totally ramified
case.

3.9.1.1

Proposition 3.9.3. µ
K0/F0

θ0
◦ NTm/T0,m

= µ
K/F
θb

as tamely ramified characters of T×m , where µ
K0/F0

θ0

and µ
K/F
θb

are defined as in Theorem 3.7.6.

Proof. We use the exact formula of the two characters given in Theorem 3.7.6. By Proposition 3.5.3,
r is relatively prime to mf0, thus by definition K/K0 is unramified of degree r, and [K : F ] = [K0 :
F0] = mf0. Moreover since [Em : F ] = [E0,m : F0] = n, we have [Em : K] = [E0,m : K0]. Thus

µ
K0/F0

θ0
($F0) = (−1)[E0,m:K0]([K0:F0]−1) = (−1)[Em:K]([K:F ]−1) = µ

K/F
θb

($F0)

and

d′F := (−1)[E0,m:K0]([K0:F0]−1)ps = (−1)[Em:K]([K:F ]−1)ps =: d′F0
.

If r is odd, then

(−1)r[E0,m:K0]([K0:F0]−1) = (−1)[Em:K]([K:F ]−1)

and

(−1)r[E0,m:K0]([K0:F0]−1)ps = (−1)[Em:K]([K:F ]−1)ps .

If r is even, then [K0 : F0] = [K : F ] is odd and thus

(−1)r[E0,m:K0]([K0:F0]−1) = (−1)[Em:K]([K:F ]−1) = 1

and

(−1)r[E0,m:K0]([K0:F0]−1)ps = (−1)[Em:K]([K:F ]−1)ps = 1.

Therefore we have

µ
K0/F0

θ0
(NTm/T0,m

($F0)) = µ
K0/F0

θ0
($F0)r = µ

K/F
θb

($F0) and d′F = (d′F0
)r.

To finish the proof, it is enough to prove the following proposition:

Proposition 3.9.4. (1) ε1F (µTm) = ε1F0
(µT0,m) ◦NTm/T0,m

as quadratic characters of µTm;

(2) ε0F (µTm) = ε0F0
(µT0,m)r and ε0L(µTm) = ε0L0

(µT0,m)r, where L0 = F0[$T0 ] for $T0 a uniformizer
of T0 lying in CT0($F0) and L = F [$T0 ];

(3) εF ($T0) = εF0($T0)r and εL($T0) = εL0($T0)r.

Recall that all the symplectic signs in this proposition have been defined in Example 3.3.2 and
3.3.3. Once this proposition is proved, we further have

µ
K0/F0

θ0
◦NTm/T0,m

|µTm = µ
K/F
θb
|µTm

and

µ
K0/F0

θ0
(NTm/T0,m

($T0)p
s
) = µ

K/F
θb

($ps

T0
),

finishing the proof of Proposition 3.9.3.
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3.9.1.2

Thus we only need to prove Proposition 3.9.4. We refer to §3.2.1 for the definition of j1(a, β), j1(a0, β),
h1(a, β), h1(a0, β) in the lemma below.

Lemma 3.9.5 ( [BH96], Proposition 11.14). We have the isomorphisms j1(a, β) ∼= j1(a0, β) ⊗oF0
oF ,

h1(a, β) ∼= h1(a0, β)⊗oF0
oF and j1(a, β)/h1(a, β) ∼= j1(a0, β)/h1(a0, β)⊗kF0

kF .

We choose {v1, ..., vr} to be a basis of oF as a oF0-lattice, such that TrF/F0
(vivj) = δij for 1 ≤

i, j ≤ r, where δij equals 1 for i = j or 0 otherwise, which is possible for unramified extension F/F0.
Thus using the above lemma we have

j1(a, β) ∼=
r⊕
i=1

j1(a0, β)⊗oF0
vi and h1(a, β) ∼=

r⊕
i=1

h1(a0, β)⊗oF0
vi (3.9.1)

as oF0-modules. Moreover, for any xi, xj ∈ j1(a0, β), we have

ψF
(
TrAF

(
β
(
(xi ⊗ vi) · (xj ⊗ vj)− (xj ⊗ vj) · (xi ⊗ vi)

)))
=

ψF0

(
TrAF0

(
β
(
xixj ⊗ TrF/F0

(vivj)− xjxi ⊗ TrF/F0
(vjvi)

)))
= δij · ψF0

(
TrAF0

(
β(xixj − xjxi)

))
.

Combining with (3.3.1) we proved that:

Lemma 3.9.6. (3.9.1) gives an isomorphism of symplectic spaces over Fp:

j1(a, β)/h1(a, β) ∼=
r⊕
i=1

j1(a0, β)/h1(a0, β)⊗kF0
vi, (3.9.2)

where the right hand side is the orthogonal direct sum of j1(a0, β)/h1(a0, β) ⊗oF0
vi identifying with

j1(a0, β)/h1(a0, β) as symplectic spaces via x⊗ vi 7→ x.

We study a finite cyclic group Γ acting on both sides of (3.9.2). First we consider Γ = 〈$T0〉/〈$F0〉,
where $T0 is a uniformizer of T0 lying in CT0($F0) and the action on the left hand side is given by
conjugation. We regard j1(a0, β)/h1(a0, β) ⊗kF0

vi as a symplectic Fp[Γ]-module with the Γ-action
giving by conjugation on the first coordinate of the tensor product, which is naturally isomorphic to
the symplectic Fp[Γ]-module j1(a0, β)/h1(a0, β). We define the Γ-action on the right hand side of (3.9.2)
by acting on each summand j1(a0, β)/h1(a0, β)⊗kF0

vi together. Thus comparing the symplectic signs
of both sides, we get εF ($T0) = εF0($T0)r, finishing the proof of the first statement of Proposition
3.9.4.(3).

We fix ζ0 a given generator of µT0,m and ζ a generator of µTm such that NTm/T0,m
(ζ) = ζ0.

Lemma 3.9.7. For ζ ′ ∈ µF ∼= k×F a generator, x0 := ζ0 ⊗ ζ ′ being regarded as an element in
µTm

∼= k×Tm via the isomorphism kT0,m ⊗kF0
kF ∼= kTm satisfies x0 = ζu for an odd u.

Proof. Recall that q is the cardinality of kF0 . Since ζ0 is a generator of µT0,m , its order is exactly
qmf0 − 1. Similarly the order of ζ ′ is qr − 1, and thus the order of x0 is the least common divisor of
qmf0 − 1 and qr − 1, denoted by [qmf0 − 1, qr − 1]. To finish the proof, we only need to show that
[qmf0−1, qr−1] and qmf0r−1 have the same maximal divisor as a power of 2, which is an easy exercise
by noting that (mf0, r) = 1.
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Now we let Γ = 〈x0〉 be as a subgroup of µTm for x0 as in the lemma above, and we consider its
action on (3.9.2). Still on the left hand side the Γ-action is given by conjugation, and on the right hand
side it is given by Γ conjugation on each summand j1(a0, β)/h1(a0, β) ⊗kF0

vi together. Comparing
the symplectic signs we have:

t0Γ(j1(a, β)/h1(a, β)) =
r∏
i=1

t0Γ(j1(a0, β)/h1(a0, β)⊗kF0
vi) (3.9.3)

and

t1Γ(j1(a, β)/h1(a, β)) =
r∏
i=1

t1Γ(j1(a0, β)/h1(a0, β)⊗kF0
vi) (3.9.4)

Since ζ0 is a generator of k×T0,m
, it is easily seen that

kF [x0] = kF [ζ0] = kTm = kF [ζ2
0 ] = kF [x2

0],

which implies that for Γ′ := 〈x2
0〉 as a subgroup of Γ,

(j1(a, β)/h1(a, β))Γ′ = (j1(a, β)/h1(a, β))Γ = (j1(a, β)/h1(a, β))µTm

Thus by Proposition 3.3.1.(4) and the equation x0 = ζu with u being odd, we get

t0Γ(j1(a, β)/h1(a, β)) · t1Γ(j1(a, β)/h1(a, β))(x0) = ε0F (µTm) · ε1F (µTm)(x0) = ε0F (µTm) · ε1F (µTm)(ζ)

and

t0Γ(j1(a, β)/h1(a, β)) · t1Γ(j1(a, β)/h1(a, β))(x2
0) = t0Γ′(j

1(a, β)/h1(a, β)) · t1Γ′(j1(a, β)/h1(a, β))(x2
0)

= ε0F (µTm) · ε1F (µTm)(x2
0) = ε0F (µTm) · ε1F (µTm)(ζ2),

which imply that

t0Γ(j1(a, β)/h1(a, β)) = ε0F (µTm) and t1Γ(j1(a, β)/h1(a, β))(x0) = ε1F (µTm)(ζ). (3.9.5)

Moreover Ξ := 〈x
|µT0,m

|
0 〉 = 〈1⊗ζ ′|µT0,m

|〉 as a subgroup of Γ acts trivially on j1(a0, β)/h1(a0, β)⊗kF0
vi.

And by definition, the symplectic Fp[Γ/Ξ]-module j1(a0, β)/h1(a0, β) ⊗kF0
vi is identified with the

symplectic Fp[µT0,m ]-module j1(a0, β)/h1(a0, β) via the group isomorphism Γ/Ξ → µT0,m , x0 7→ ζ0.
Thus by Proposition 3.3.1.(3), we have

t0Γ(j1(a0, β)/h1(a0, β)⊗kF0
vi) = ε0F0

(µT0,m)

t1Γ(j1(a0, β)/h1(a0, β)⊗kF0
vi)(x0) = ε1F0

(µT0,m)(ζ0). (3.9.6)

Combining (3.9.3), (3.9.4), (3.9.5), (3.9.6) together, we have

ε0F (µTm) = ε0F0
(µT0,m)r and ε1F (µTm)(ζ) = ε1F0

(µT0,m)(ζr0).

So the first part of Proposition 3.9.4.(2) is proved, and noting that ζ generates µTm and ζ0 =
NTm/T0,m

(ζ), we further have

ε1F (µTm) = (ε1F0
(µT0,m) ◦NTm/T0,m

)r.

When r is odd, we have

ε1F (µTm) = (ε1F0
(µT0,m) ◦NTm/T0,m

)r = ε1F0
(µT0,m) ◦NTm/T0,m

.
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When r is even, ε1F (µTm) = (ε1F0
(µT0,m) ◦ NTm/T0,m

)r = 1 and [kT0,m : kF0 ] = [K0 : F0] is relatively

prime to r which is odd. Thus |µT0,m/µF0 | = |k×T0,m
/k×F0

| is odd. Using Proposition 3.3.1.(3), we have

ε1F0
(µT0,m)(ζ0) = t1µT0,m

/µF0
(j1(a0, β)/h1(a0, β))(ζ0) = 1,

implying that

ε1F (µTm) = ε1F0
(µT0,m) ◦NTm/T0,m

= 1.

Thus Proposition 3.9.4.(1) is proved no matter r is odd or even. Finally, for all the symplectic signs
with respect to L0 and L, we use L0, [aL0 , β], θL0 , L, [aL, β], θL to replace F0, [a0, β], θ0, F, [a, β], θb
respectively and the rest of the statements in Proposition 3.9.4 can be proved using the same argument
as above.

3.9.1.3

We finish this subsection by explaining that to deal with Theorem 3.9.1, we only need to deal with the
maximal and totally ramified case. We consider πK0 , πK exactly as in §3.8.2 and the corresponding

character bφ
K/K0

θK0
. Thus from the construction of bφ

K/K0

θK0
and bφ

F/F0

θ0
there and Proposition 3.9.3, we

have

bφ
F/F0

θ0
= (µ

K/F
θb

)−1 · bφ
K/K0

θK0
· (µK0/F0

θ0
◦NTm/T0,m

) = bφ
K/K0

θK0
.

So we only need to consider πK0 and πK = BCK/K0
(πK0) instead. Then K0[β] = E0,m is totally

ramified over K0, thus we reduce the theorem to the maximal and totally ramified case.

3.9.2 A special case of Theorem 3.9.1

From the argument of the previous subsection, from now on until the end of this section we may
and will assume that m = 1 and E0/F0 is totally ramified in the statement of Theorem
3.9.1. In this subsection, we expect the following result is true:

Conjecture 3.9.8. If F/F0 is unramified, t = [T0 : F0] is odd and (r, t) = 1, then bφ
F/F0

θ0
is a trivial

character of T×.

However due to the incompleteness of a key step which we will explain later, we could only prove
the following special case:

Proposition 3.9.9. If F/F0 is unramifed, t = [T0 : F0] is odd and (r, t) = 1, then bφ
F/F0

θ0
is an

unramified character of T×, and moreover bφ
F/F0

θ0
($ps

T0
) = 1, where ps = [E0 : T0].

3.9.2.1

We first recall our notations in §3.7.3 and §3.8.2 in the maximal and totally ramified case. Let θ0 and θb
be the simple characters contained in π0 and π respectively as before, let θT0 be the interior T0/F0-lift
of θ0 and let θT be the interior T/F -lift of θb. For κ0 a full Heisenberg representation of θ0 satisfying
(3.6.1), we use Proposition 3.7.8 to construct the full Heisenberg representation κT0 = ltrT0/F0

(κ0) of

θT0 . And then we use Theorem 3.7.1 to construct the full Heisenberg representation κT = bT/T0
(κT0) of

θT . Finally using Proposition 3.7.8 again we get the full Heisenberg representation κb = (ltrT/F )−1(κT )
of θb. In particular, κb and κT are σ-invariant.

To calculate bφ
F/F0

θ0
, we only need to choose a special supercuspidal representation π0. Thus in

particular we assume π0
∼= ind

GF0

J(a0,β)κ0, or in other words, we assume ξ0 = 1. Thus by Theorem 3.6.2,
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we have π ∼= indGFJ(a,β)κ
′
b with κ′b := κb·( bφ

F/F0

θ0
)−1, where by abuse of notations we identify bφ

F/F0

θ0
with

the corresponding character of J(a, β)/J1(a, β) as in Corollary 3.2.5. We write πT0 := ind
GT0

J(aT0
,β)κT0 as

a supercuspidal representation of GT0 = A×T0
and πT := indGTJ(aT ,β)κT as a supercuspidal representation

of GT = A×T , so we further have BCT/T0
(πT0) = πT . For J(a0, β), J(aT0 , β), J(a, β), J(aT , β), we will

write JF0 , JT0 , JF , JT for short respectively. Similar abbreviation for groups as J1
F0

and H1
F0

works
without further mention.

By construction the central characters of κ0 and κb are trivial, thus the central character of π0 is
trivial. Using the formula for the central characters of base change, the central character of π is also
trivial. From the construction in the maximal case, every extended maximal simple type containing
θb and having trivial central character equals κb twisted by a character of JF /F

×J1
F , which is a cyclic

group of order dividing n (see for example [BK93], Proposition 6.1.2). Thus:

Proposition 3.9.10. bφ
F/F0

θ0
is an unramified character of order dividing n.

3.9.2.2

Since κb is σ-invariant, we fix a representation κ̃b of JF o Σ such that κ̃b|JF = κb, where Σ =
Gal(F/F0). We have the following proposition as a generalization of Proposition 3.7.8.

Proposition 3.9.11. There exists a representation κ̃T of JT o Σ extending κT , such that

tr(κ̃T )(g, σi) = εT/F · tr(κ̃b)(g, σi)

( cf. Example 3.3.2) for all g ∈ JT such that (vT (detT (g)), t) = 1 and all integers i.

Proof. We follow exactly the same proof of [BH14b], §5.3, Proposition. We write pJF = pJF ($F0)
for the subgroup of JF such that pJF /〈$F0〉 is the Sylow pro-p-subgroup of JF /〈$F0〉, and we write

pJT = pJF ∩JT . Since CF ($F0) ⊂ F× ⊂ Ker(κb), we may view κ̃b as the inflation of a representation
of CT ($F0)/CF ($F0) n ( pJF /〈$F0〉 o Σ). The group CT ($F0)/CF ($F0) ∼= T×/o×T F

× is of order t,
which is relatively prime to the order of pJF /〈$F0〉oΣ, thus using the Glauberman correspondence,
we get a representation κ̃T of pJT /〈$F0〉o Σ such that

tr(κ̃T )(x, σi) = ε · tr(κ̃b)(ζ · (x, σi))

for any x ∈ pJT /〈$F0〉, any integer i and any generator ζ of CT ($F0)/CF ($F0). Moreover if we restrict
both sides to pJT /〈$F0〉 × {1}, we come back to the trace formula in loc. cit., which implies that
κ̃T | pJT = κT | pJT and ε = εT/F . We extend κ̃T trivially to a representation of CT ($F0)/CF ($F0) ×
( pJT /〈$F0〉 o Σ) and inflate it to a representation of CT ($F0) · ( pJT /〈$F0〉 o Σ) = JT o Σ, still
denoted by κ̃T . This representation satisfies the condition of the proposition.

Since bφ
F/F0

θ0
is σ-invariant and has been identified with a character of JF /J

1
F as we explained

before, it extends to a character of JF oΣ whose restriction to Σ is trivial. Thus κ̃′b := κ̃b · ( bφ
F/F0

θ0
)−1

is a representation of JF o Σ extending κ′b. Let π̃ = indGFoΣ
JFoΣ κ̃

′
b be a representation of GF o Σ and

let π̃T = indGToΣ
JToΣ κ̃T be a representation of GT o Σ. Thus π̃ extends π and π̃T extends πT .

3.9.2.3

We denote by NT0 (resp. NT ) the normalizer of T×0 (resp. T×) in GF0 (resp. GF ), and we write Γ0 =
Aut(T0/F0) (resp. Γ = Aut(T/F )). Thus by definition we have Γ0

∼= NT0/GT0 (resp. Γ ∼= NT /GT ).
The following conjecture is expected to be true in general, although we cannot give a proof.



194 3.9. CALCULATION OF Bφ
F/F0

θ0
IN THE F/F0 UNRAMIFIED CASE

Conjecture 3.9.12. Let a be an integer relatively prime to t. There exists an elliptic regular element
h0 ∈ JT0 such that

• vT0(detT0(h0)) = vF0(detF0(h0)) = a;

• F0[h0]/F0 is totally ramified with T0/F0 its maximal tamely ramified subextension;

• tr(π0)(h0) = εT0/F0

∑
γ∈Γ0

tr(πT0)(hγ0) 6= 0 ( cf. Example 3.3.2).

Instead we will use and prove the following special case:

Proposition 3.9.13. If moreover a is either relatively prime to n, or it is divisible by ps, then the
conjecture above is true.

Proof. When a is relatively prime to n, it is derived from [BH14b], §8.1. When a = a′ps for an integer
a′, we explain how the similar idea works. Using the principal theorem (which is due to Howe [How77]
when char(F0) = 0) of [BHL10], for any elliptic element h′0 ∈ GT0 sufficiently close to 1, the trace
tr(π0)(h′0) is a non-zero constant C. We choose one such h′0 such that F0[h′0]/F0 is totally ramified
of degree n and h′0 ∈ J1(a, β), which is possible since J1(a, β) is open. We write h0 = $a′

T0
h′0 as an

element in JT0 . By definition T0 is contained in the centralizer of F0[h0], which is F0[h0] itself, thus
F0[h0]/F0 is a totally ramified field extension of degree n with T0/F0 its maximal tamely ramified
subextension, and vT0(detT0(h0)) = a′ps = a. Moreover

εT0/F0

∑
γ∈Γ0

tr(πT0)(hγ0) = εT0/F0
· C · |Γ0| 6= 0,

and we only need to show that it equals tr(π0)(h0). This follows from [BH14b], §8.1, Proposition,
whose proof can be adapted here, since in loc. cit. the condition (n, a) = 1 is only needed to prove
Lemma 1 there, which is actually our second condition for h0 in our proposition and has been verified.

We choose b to be an integer relatively prime to t, such that a = br satisfies the condition of
Proposition 3.9.13. We fix h0 ∈ JT0 in loc. cit., thus detF0(h0) ∈ NF/F0

(F×) since F/F0 is unramified
of degree r. Using [AC89], Lemma 1.4, there exists h ∈ GT such that NF/F0

(h) = NT/T0
(h) = h0.

Proposition 3.9.14. For h ∈ GT such that NF/F0
(h) = h0, we have

tr(π̃)(h, σ) = εT/F · bφ
F/F0

θ0
(detT (h))−1

∑
γ∈Γ0

tr(π̃T )(hγ , σ),

where Γ0 is naturally identified with a subgroup of Γ = Aut(T/F ).

Proof. Using the Mackey formula, we have

tr(π̃)(h, σ) =
∑

g∈GF /JF ,g−1hσ(g)∈JF

tr(κ̃′b)(g
−1hσ(g), σ).

For g−1hσ(g) ∈ JF , we further have NF/F0
(g−1hσ(g)) = g−1h0g ∈ JF .

Lemma 3.9.15. For g ∈ GF such that g−1h0g ∈ JF , there exists y ∈ NT such that yJT = gJF ∩NT ,
thus γy(t) := y−1ty for any t ∈ T is an element in Γ. Moreover if g−1hσ(g) ∈ JF , we further have
γy ∈ Γ0.
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Proof. As indicated in the proof of [BH14b], §8.1, Lemma 2, we may use ibid. §2.6, Conjugacy Lemma
and §5.5, Lemma to choose y ∈ gJF such that y−1h0y ∈ JT . By definition, T is contained in the
centralizer of y−1h0y in AF , which is F [y−1h0y]. Thus both yTy−1 and T are contained in F [h0] and
tamely ramified over F , implying that y−1Ty = T and y ∈ NT and proving the first statement.

Since h ∈ GT , the conjugation by y−1σ(y) restricting to T equals the conjugation by y−1hσ(y)
restricting to T , which gives an action in Γ. Since y−1hσ(y) ∈ JF = E×J1

F , where E× is commutative
with T× and J1

F is a pro-p-group with p relatively prime to |Γ|, the above two conjugations restricting
to T give the trivial action in Γ. Thus

x = (y−1σ(y))−1ty−1σ(y) = σ ◦ γy ◦ σ−1 ◦ γ−1
y (x) (3.9.7)

for all x ∈ T by direct calculation. In particular, if we consider $T0 as a uniformizer of T0 such that
$t
T0

= $F0 is a uniformizer of F0, then γy($T0) = ζ$T0 for a certain ζ ∈ µF . Choose x = $T0 in
(3.9.7), we get σ(ζ)ζ−1$T0 = $T0 , which means that ζ ∈ µF0 . Since T0 = F0[$T0 ], the restriction of
γy to T0 is in Γ0 = Aut(T0/F0) which finishes the proof.

Using this lemma and Proposition 3.9.11, we further have

tr(π̃)(h, σ) =
∑

y∈NT /JT ,y−1hσ(y)∈JT

tr(κ̃′b)(y
−1hσ(y), σ)

=
∑
γ∈Γ0

∑
g∈GT /JT ,g−1hγσ(g)∈JT

tr(κ̃′b)(g
−1hγσ(g), σ)

=
∑
γ∈Γ0

∑
g∈GT /JT ,g−1hγσ(g)∈JT

εT/F · ( bφ
F/F0

θ0
(detT (g−1hγσ(g))))−1 · tr(κ̃T )(g−1hγσ(g), σ)

Lemma 3.9.16. For g ∈ GT such that g−1hγσ(g) ∈ JT , we have bφ
F/F0

θ0
(detT (g−1hγσ(g))) =

bφ
F/F0

θ0
(detT (hγ)).

Proof. First we have NT/T0
(g−1hγσ(g)) = g−1NT/T0

(hγ)g ∈ JT , as a result it is easy to see that

NT/T0
(g−1hγσ(g)) ≡ NT/T0

(hγ) (mod J1
T ). We write hγ ≡ $k

E0
ζ (mod J1

T ) for k ∈ N and ζ ∈ µE , thus

by direct calculation we have NT/T0
(hγ) ≡ NE/E0

($k
E0
ζ) (mod J1

T ). Similarly if we write g−1hγσ(g) ≡
$k′
E0
ζ ′ (mod J1

T ) for k′ ∈ N and ζ ′ ∈ µE , then we have NT/T0
(g−1hγσ(g)) ≡ NE/E0

($k′
E0
ζ ′) (mod J1

T ).

As a result, we must have k = k′ and NE/E0
(ζ) = NE/E0

(ζ ′). Since bφ
F/F0

θ0
is unramified, we have

bφ
F/F0

θ0
(detT (g−1hγσ(g))) = bφ

F/F0

θ0
(NE/T ($k

E0
ζ ′)) = bφ

F/F0

θ0
(NE/T ($k

E0
ζ)) = bφ

F/F0

θ0
(detT (hγ)).

Lemma 3.9.17. We have ( bφ
F/F0

θ0
)γ = bφ

F/F0

θ0
as characters of T× for any γ ∈ Γ.

Proof. Since the action γ maps a certain uniformizer $T to its multiplication with a certain root of

unity, we finish the proof by using the fact that bφ
F/F0

θ0
is unramified.

Using these two lemmas and the Mackey formula again, we finish the calculation:
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tr(π̃)(h, σ) = εT/F · ( bφ
F/F0

θ0
(detT (h)))−1

∑
γ∈Γ0

∑
g∈GT /JT ,g−1hγσ(g)∈JT

tr(κ̃T )(g−1hγσ(g), σ)

= εT/F · ( bφ
F/F0

θ0
(detT (h)))−1

∑
γ∈Γ0

tr(π̃T )(hγ , σ)

3.9.2.4

We choose h0 and h as before. For π0 and π = BCF/F0
(π0), using the trace formula of base change,

there exists a non-zero constant c independent of the choice of h0 and h, such that

tr(π̃)(h, σ) = c · tr(π0)(h0). (3.9.8)

Similarly for πT0 and πT = BCT/T0
(πT0), using the trace formula of base change there exists a non-zero

constant c′, independent of the choice of h0 and h, such that

tr(π̃T )(h, σ) = c′ · tr(πT0)(h0).

For γ ∈ Γ0 ⊂ Γ, using hγ0 and hγ to replace h0 and h respectively, we further have:

tr(π̃T )(hγ , σ) = c′ · tr(πT0)(hγ0). (3.9.9)

Combining Proposition 3.9.13, Proposition 3.9.14, (3.9.8), (3.9.9) together, we get:

c · εT0/F0
· tr(π0)(h0) = εT/F · bφ

F/F0

θ0
(detT (h))−1 · c′ · tr(π0)(h0),

which implies that

bφ
F/F0

θ0
(detT (h)) = εT/F · εT0/F0

· c′ · c−1, (3.9.10)

where vT (detT (h)) = vF (detF (h)) = b is relatively prime to t. Since t is odd, for b = ps and b = 2ps,
which in particular guarantee the condition of Proposition 3.9.13 for a, there exist h = h1 and h = h2

respectively such that (3.9.10) is satisfied. As a result we get

bφ
F/F0

θ0
(detT (h2/h1)) = 1 with vT (detT (h2/h1)) = ps,

concluding that bφ
F/F0

θ0
($ps

T0
) = 1 and finishing the proof of Proposition 3.9.9.

Remark 3.9.18. If Conjecture 3.9.12 is proved, we may use it to replace Proposition 3.9.13, and then
we may choose b = 1 and 2 in the argument instead to prove Conjecture 3.9.8 with the same proof.

Remark 3.9.19. Moreover the assumption t being odd in Conjecture 3.9.8 Proposition 3.9.9 can be
dropped. When t is even, which implies that r is odd since (r, t) = 1, using Proposition 3.9.4.(3) we
have εT/F = εT0/F0

. Moreover we may use the Whittaker model to regularize our choice of κ̃b and π̃
to make sure that c = 1 (see [AC89], §1.2.). Then we can show that κ̃T and π̃T are also “regularized”
by the Whittaker model as extensions of κT and πT respectively, meaning that c′ = 1. Thus the right
hand side of (3.9.10) is 1, and the introduction of h2 is avoided whose existence relies on the fact that
(2, t) = 1.
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3.9.3 A reductive procedure when Γ0 is non-trivial

In this subsection, we consider the case where Γ0 = Aut(T0/F0) is non-trivial. We fix a prime number
l dividing |Γ0|. We choose L0 to be the unique cyclic subextension of T0 of degree l over F0 and we
write L = L0F which is a subfield of T of degree l over F . We write θL0 for the interior L0/F0-lift of

θ0. We want to compare bφ
F/F0

θ0
with bφ

L/L0

θL0
. More concretely, we will prove the following proposition,

which permits us to reduce the degree t = [T0 : F0] to t/l = [T0 : L0] by replacing F0 with L0.

Proposition 3.9.20. bφ
F/F0

θ0
· ( bφ

L/L0

θL0
)−1 is an unramified character of T×, and moreover

bφ
F/F0

θ0
($T0) · ( bφ

L/L0

θL0
($T0))−1 = (−1)(r−1)(l−1)n/l.

3.9.3.1

We choose πT0 and πT as in §3.8.2 (here T0 = T0,m and T = Tm). We choose πL0 to be the supercuspidal
representaion πL0 = AT0/L0

(πT0) of GL0 := A×L0
, where AL0 is the centralizer of L0 in AF0 . Thus πL0

contains θL0 . Using Proposition 3.4.9.(3) and Corollary 3.5.12,

πL = BCL/L0
(πL0) = AT/L(πT )

is a supercuspidal representation of GL := A×L , where AL is the centralizer of L in AF . Again using
Proposition 3.4.9.(3), we have

π = BCF/F0
(AL0/F0

(πL0)) = AL/F (πL).

We write θL for the interior L/F -lift of θb. From the exact formula in §3.8.2, we have

bφ
F/F0

θ0
= (µ

T/F
θb

)−1 · (µT0/F0

θ0
◦NT/T0

) and bφ
L/L0

θL0
= (µ

T/L
θL

)−1 · (µT0/L0

θL0
◦NT/T0

).

Using Proposition 3.7.12, we finally have

bφ
F/F0

θ0
· ( bφ

L/L0

θL0
)−1 = (χ

L/F
θb

)−1 · (χL0/F0

θ0
◦NT/T0

), (3.9.11)

where for L0/F0 we fix a transfer system (σ0,κL0/F0
, el) and for L/F we fix the transfer system

(σ0,κL/F , el), with σ0 a generator of Gal(L/F ) ∼= Gal(L0/F0), and κL/F := κL0/F0
◦ NF/F0

and

el ∈ L×0 such that σ0(el) = (−1)(l−1)n/l. Moreover χ
L0/F0

θ0
and χ

L/F
θb

are determined by the formula
(3.7.3).

3.9.3.2

We fix a regular elliptic element h0 ∈ JT0 such that vT0(detT0(h0)) = 1. We want to show that

χ
L/F
θb

(detT (h0)) = (χ
L0/F0

θ0
(detT0(h0)))r · (−1)(r−1)(l−1)n/l. (3.9.12)

Combining this equation with (3.9.11), we have

bφ
F/F0

θ0
($T0) · ( bφ

L/L0

θL0
($T0))−1 = bφ

F/F0

θ0
(detT (h0)) · ( bφ

L/L0

θL0
(detT (h0)))−1 = (−1)(r−1)(l−1)n/l,

finishing the proof of Proposition 3.9.20. So we focus on the proof of (3.9.12).
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3.9.3.3

Using (3.7.3), we have

χ
L/F
θb

(detT (h0)) = εT/L · εT/F · c
L/F
θb
· δL/F (h0)

and
χ
L0/F0

θ0
(detT0(h0)) = εT0/L0

· εT0/F0
· cL0/F0

θ0
· δL0/F0

(h0).

Using Proposition 3.9.4.(3) (also with F and F0 replaced by L and L0), we have

εT/L = εrT0/L0
and εT/F = εrT0/F0

.

By direct calculation we have (cf. §3.4.2)

∆̃L/F (h0) = ∆̃L0/F0
(h0) and el∆̃L/F (h0) = el∆̃L0/F0

(h0) ∈ F×0 .

Since | · |F = | · |rF0
, we get ∆1

L/F (h0) = ∆1
L0/F0

(h0)r. And since κL/F := κL0/F0
◦ NF/F0

, by direct
calculation we get

∆2
L/F (h0) = κL/F (el∆̃L/F (h0)) = κL0/F0

(NF/F0
(el∆̃L0/F0

(h0))) = ∆2
L0/F0

(h0)r.

Thus finally

δL/F (h0) = ∆2
L/F (h0)/∆1

L/F (h0) = ∆2
L0/F0

(h0)r/∆1
L0/F0

(h0)r = δL0/F0
(h0)r.

Thus to finish the proof, we only need to show that c
L/F
θb

= (−1)(r−1)(l−1)n/l · (cL0/F0

θ0
)r

3.9.3.4

For a given F0-algebra isomorphism AF0
∼= EndF0(E0) and the induced isomorphism AF ∼= F⊗F0AF0

∼=
EndF (F ⊗F0 E0) ∼= EndF (E), we consider the flag

F : 0 = V0 ( V1 ( V2 ( ... ( Vn = E0

of the F0-vector space E0, also being regarded as a flag of the F -vector space E by extension of scalars,
and then we get the corresponding unipotent subgroup U(F0) of GF0 and the unipotent subgroup U(F )
of GF . Moreover by Theorem 3.4.5.(2), there exists a non-degenerate character ϑ0 of U(F0), such that
(U(F0), ϑ0) is a Whittaker pair of GF0 satisfying

θ0|H1(a0,β)∩U(F0) = ϑ0|H1(a0,β)∩U(F0).

By extension of scalars we get a Whittaker pair (U(F ), ϑ) of GF . To be more precise, the character
ϑ is realized as follows: The norm map induces the following group homomorphism

NF/F0
: U(F )/Uder(F ) −→ U(F0)/Uder(F0),

where Uder denotes the derived subgroup of U , thus

ϑ(u) = ϑ0(NF/F0
(u))

for any u ∈ U(F ), where u and NF/F0
(u) should be regarded as in U(F )/Uder(F ) and U(F0)/Uder(F0)

respectively. Then by definition and [BH96], Theorem 12.6. the following condition is satisfied:

θb|H1(a,β)∩U(F ) = ϑ|H1(a,β)∩U(F ).
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By Theorem 3.4.5.(3), we have

c
L/F
θb

= cL/F (ϑ) and c
L0/F0

θ0
= cL0/F0(ϑ0).

Moreover, we choose a certain element g0 ∈ GF0 such that (U(F0), ϑ0) = (U0(F0)g0 , ϑg0

ψF0
), where

U0(F0) is the upper triangular unipotent radical of GF0 . Here g0 can be realized as the base change
matrix, which is invariant up to extension of scalar. In other words, we also have (U(F ), ϑ) =
(U0(F )g0 , ϑg0

ψF
), where U0(F ) is the upper triangular unipotent radical of GF . By (3.4.3), we have

cL0/F0(ϑ0) = cL0/F0
n (ψF0) · (κL0/F0

(detF0(g0)))−1

and
cL/F (ϑ) = cL/Fn (ψF ) · (κL/F (detF (g0)))−1 = cL/Fn (ψF ) · (κL0/F0

(detF0(g0))r)−1.

Thus we actually proved that

c
L/F
θb

/(c
L0/F0

θ0
)r = cL/Fn (ψF )/cL0/F0

n (ψF0)r,

so we only need to calculate the latter term.
Finally we also point out that this ratio is independent of the choice of the embedding L0 ↪→

AF0 , since by the Skolem-Noether Theorem, any two embeddings are conjugate by a certain g′ ∈
GF0 . Thus when we change one embedding to the other, the above ratio varies by multiplying
κL0/F0

(detF0(g′))r/κL/F (detF (g′)) = 1 ( [HL10], §3.3.) and remains unchanged. Similarly using
ibid. §3.2. this ratio is also independent of the choice of the transfer system (σ0,κL0/F0

, el).

3.9.3.5

We first calculate c
L/F
n (ψF )/c

L0/F0
n (ψF0)r in a special case. We temporarily assume E0 = L0 and

E = L. In this case the supercuspidal representation π0 and π are essentially tame, saying that E0/F0

and E/F are tamely ramified. Moreover, πL0 (resp. πL) are Γ0-regular (resp. Γ-regular) characters of
GL0 = L×0 (resp. GL = L×) for Γ0 = Gal(L0/F0) (resp. Γ = Gal(L/F )). Moreover πL = πL0 ◦NL/L0

.

Using [BH05b] Corollary 2.3, we get bφ
F/F0

θ0
($T0) = (−1)(r−1)(l−1) with $T0 a uniformizer of T0

and bφ
L/L0

θL0
is trivial (noting that in the essentially tame case, our character bφ

F/F0

θ0
coincides with

the character ν in loc. cit.). If we choose the transfer system for L0/F0 and L/F to be (σ0,κL0/F0
, e′l)

and (σ0,κL/F , e′l) respectively, where σ0, κL0/F0
, κL/F are as before, and e′l is an element in L×0 such

that σ0(e′l) = (−1)l−1. Thus using the previous argument, we have

(−1)(r−1)(l−1) = bφ
F/F0

θ0
($T0)/ bφ

L/L0

θL0
($T0) = c

L/F
l (ψF )/c

L0/F0

l (ψF0)r (3.9.13)

3.9.3.6

Finally we come back to the general case. We let ξL0 be a Γ0-regular character of L×0 , thus π′0 =
AL0/F0

(ξL0) is a supercuspidal representation of AutF0(L0) ∼= GLl(F0). Since the automorphic induc-
tion maintains the parabolic induction, for τ0 := ξL0 × ... × ξL0 as a generic representation of GL0

∼=
GLn/l(L0), the automorphic induction AL/F (τ0) is exactly the parabolic induction π0 := π′0 × ...× π′0
as a generic representation of GF0

∼= GLn(F0). For τ0 and π0, using [HL10], Proposition 3.7, we have

cL0/F0
n (ψF0) = ζ0 · cL0/F0

l (ψF0)n/l, (3.9.14)

where ζ0 = κL0/F0
(ς0) and ς0 := (−1)n(n/l−1)(l−1)/4 · (e′l)n/l/el is an element in F×0 .
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Correspondingly, we consider the L/F -side and we have

cL/Fn (ψF ) = ζ · cL/Fl (ψF )n/l, (3.9.15)

where ζ = κL/F (ς0). Since

ζ = κL/F (ς0) = κL0/F0
(ς0)r = ζr0 ,

using (3.9.13), (3.9.14), (3.9.15), we finally have

cL/Fn (ψF )/cL0/F0
n (ψF0)r = (−1)(r−1)(l−1)n/l,

finishing the proof of Proposition 3.9.20. We note the following interesting by-product as a corollary
for ease of reference:

Corollary 3.9.21. Let F , F0 be as before, let L0/F0 be a cyclic totally ramified extension of degree
l and let L = FL0. For n divisible by l, we fix an F0-embedding L0 ↪→ Mn(F0) which induces an F -
embedding L ↪→ Mn(F ) by extension of scalars, which respectively induces an embedding GLn/l(L0) ↪→
GLn(F0) and an embedding GLn/l(L) ↪→ GLn(F ) by taking the centralizer, and we fix a transfer system
(σ0,κL0/F0

, el) for L0/F0 and the transfer system (σ0,κL/F , el) for L/F with κL0/F0
◦NF/F0

= κL/F ,
then we have

cL/Fn (ψF )/cL0/F0
n (ψF0)r = (−1)(r−1)(l−1)n/l.

3.9.4 The end of the proof

Finally we finish the proof of Theorem 3.9.1. As before we assume that m = 1 and E0/F0 is totally
ramified.

We initiate by induction on t = [T0 : F0]. When t = 1 we are in the wildly ramified case, and by

definition bφ
F/F0

θ0
is trivial. We assume the theorem is true for [T0 : F0] smaller than t, and we will

prove the theorem for [T0 : F0] = t > 1.

3.9.4.1

First we assume that Γ0 is non-trivial. We choose a prime number l dividing |Γ0|, we let L0/F0 be
the unique cyclic subsection of T0 over F0 of degree l and we let L = FL0. We define πL0 and πL

as before. Since [T0 : L0] = t/l < t, using the induction hypothesis the unramified character bφ
L/L0

θL0

satisfies

bφ
L/L0

θL0
($ps

T0
) = (−1)(t/l−1)(r−1).

Combining with Proposition 3.9.20, the unramified character bφ
F/F0

θ0
satisfies

bφ
F/F0

θ0
($ps

T0
) = (−1)(t/l−1)(r−1)+ps(r−1)(l−1)n/l.

If ps is odd we have

(−1)(t/l−1)(r−1)+ps(r−1)(l−1)n/l = (−1)(t/l−1)(r−1)+(r−1)(l−1)t/l = (−1)(r−1)(t−1),

and if ps is even both t− 1 and t/l − 1 are even, thus

(−1)(t/l−1)(r−1)+ps(r−1)(l−1)n/l = (−1)(r−1)(t−1) = 1,

which finishes the proof.
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3.9.4.2

Now we assume that Γ0 is trivial, then t = [T0 : F0] is odd. We choose l to be the minimal prime divisor
of t. We let F ′0/F0 be the unramified extension of degree l − 1, and we let F ′/F ′0 be the unramified
extension of degree r, such that F ′/F is unramified of degree l − 1. We further write T ′0 = T0F

′
0 and

T ′ = TF ′.

F ′

l−1

r
F ′0

l−1

T ′

l−1

r
T ′0

l−1

F r F0 T r T0

We consider the base change lifts for unramified extensions F ′/F , F/F0, F ′/F ′0, F ′0/F0 and F ′/F0.
Using the exact construction in §3.8.2, we have:

bφ
F ′/F0

θ0
= bφ

F ′/F ′0
θF ′0

· ( bφ
F ′0/F0

θ0
◦NT ′/T ′0

) = bφ
F ′/F
θb

· ( bφ
F/F0

θ0
◦NT ′/T ),

where θF ′0 denotes the simple character constructed in §3.6.1 (θb in loc. cit.) with F replaced by F ′0.

Since l is minimal, l− 1 is relatively prime to t. Thus using Proposition 3.9.9 we have bφ
F ′/F
θb

($ps

T0
) =

bφ
F ′0/F0

θ0
($ps

T0
) = 1, and we obtain

bφ
F ′/F ′0
θF ′0

($ps

T0
) = bφ

F/F0

θ0
(NT ′/T ($ps

T0
)). (3.9.16)

Since l divides ql−1 − 1, which also means that l divides |Γ′0| for Γ′0 = Aut(T ′0/F
′
0), we may use the

above result to show that bφ
F ′/F ′0
θF ′0

($ps

T0
) = (−1)(t−1)(r−1)n/t = 1 (since t − 1 is even). By (3.9.16) we

have bφ
F/F0

θ0
($

(l−1)ps

T0
) = 1.

Since bφ
F/F0

θ0
is an unramified character of order dividing n = pst, where t is relatively prime to

l − 1, we finally have bφ
F/F0

θ0
($ps

T0
) = 1 which finishes the proof.

Remark 3.9.22. In general our method here is not enough to give a full characterization of bφ
F/F0

θ0
, or

equivalently to calculate bφ
F/F0

θ0
($T0). Indeed in the above argument, it is possible that l−1 is divisible

by ps
′

for a certain s′. Thus even if we have proved Conjecture 3.9.8 and have got the equation

bφ
F ′/F ′0
θF ′0

= bφ
F/F0

θ0
◦NT ′/T

in place of (3.9.16), it only provides information of bφ
F/F0

θ0
evaluating at $ps

′

T0
instead of $T0 itself.

3.10 Contribution to the calculation of the character µ
T0/F0

θ0
.

In this section as before we let θ0 be a simple character of degree d with respect to a simple stratum
[a0, β] in Mn(F0), let θT0 be the interior T0/F0-lift of θ0. We further assume that n = d and E0/F0 is

totally ramified. Our aim is to update the information of the character µ
T0/F0

θ0
given by Proposition

3.7.10, which is closely related to the explicit Langlands correspondence in the totally ramified case6,
however not well understood from the GLn side, see [BH14b], §8.9. for a brief summary.

6Reducing from the general case to the totally ramified case is fully understood, which is Theorem 3.7.6.
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To do that, we choose π0 = ind
GF0
JF0
κ0 as a supercuspidal representation of GF0 and we write

πT0 = ind
GT0
JT0

(κT0 · (µ
T0/F0

θ0
)−1) which is the supercuspidal representation of GT0

∼= GLps(T0) satisfying

AT0/F0
(πT0) = π0, where κ0 is a full Heisenberg representation of θ0 satisfying (3.6.1), and κT0 is a

full Heisenberg representation of θT0 , which is uniquely determined by Proposition 3.7.8.
Later we will focus on the case where t is odd. Indeed, in general we choose a sequence of field

extensions
F0 ( F1 ( ... ( Fk ( T0

such that Fi/Fi−1 is cyclic of prime degree, and Aut(T0/Fk) is trivial. For θ0 the simple character
contained in π0 as before, let θFi be the interior Fi/F0-lift of θ0. Thus using Proposition 3.7.12, we
get

µ
T0/F0

θ0
= µ

T0/Fk
θFk

·
k∏
i=1

χ
Fi/Fi−1

θFi−1
.

Those characters χ
Fi/Fi−1

θFi−1
are completely characterized by the formula given in loc. cit., albeit not

always having a simple expression, which can be regarded as “known”. As a result, essentially we only

need to study the character µ
T0/Fk
θFk

, whence [T0 : Fk] is odd.

3.10.1 Evaluating at $ps

T0

Comparing the central character of π0 and πT0 , we have

1 = ωπ0 = det(LLC−1
F0

(π0)) = det(IndT0/F0
(LLC−1

T0
(πT0)))

= (dT0/F0
)t · det(LLC−1

T0
(πT0))

= (dT0/F0
)t · ωπT0

|F×0 = (dT0/F0
)t · ((µT0/F0

θ0
)p
s |F×0 )−1,

or to sum up

(µ
T0/F0

θ0
)p
s |F×0 = (dT0/F0

)t,

where dT0/F0
denotes the character det(IndT0/F0

1WT0
) of F×0 , and from the first line to the second line

we use [BH06], Proposition 29.2. If t is odd, dT0/F0
is exactly the unramified quadratic character with

the value on a uniformizer equalling to the Jacobi symbol ( qt ). As a result,

Proposition 3.10.1. When t is odd, µ
T0/F0

θ0
is an unramified character of F×0 order 2n.

Moreover we have the following proposition:

Proposition 3.10.2. When t is odd, we have µ
T0/F0

θ0
($ps

T0
) = ( qt ).

Proof. We prove this proposition by induction on t. We first consider the case where Γ0 = Aut(T0/F0)
is non-trivial. We choose l to be a prime divisor of |Γ0| and we let L0/F0 be the cyclic subextension of

T0/F0 of degree l. As before we have µ
T0/F0

θ0
= χ

L0/F0

θ0
·µT0/L0

θL0
and using Corollary 3.7.13 we know that

χ
L0/F0

θ0
($ps

T0
) = 1. Thus using the induction hypothesis for T0/L0, we get µ

T0/F0

θ0
($ps

T0
) = µ

T0/L0

θM0
($ps

T0
) =

( q
t/l ) = ( qt ), since l|q − 1 and thus ( ql ) = 1.

Now we assume that Γ0 is trivial. We let l be the minimal prime divisor of t. We choose F/F0 to
be an unramified extension of degree l − 1 and we write T = T0F which is a totally tamely ramified
extension of degree t over F . We write πT = BCT/T0

(πT0) as a supercuspidal representation of GT
and π = BCF/F0

(π0) as a supercuspidal representation of GF . Thus using Propsition 3.4.9.(3) we have
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AT/F (πT ) = π. Using Theorem 3.6.2 and the exact definition of the corresponding character, we get

bφ
F/F0

θ0
= (µ

T/F
θb

)−1 · (µT0/F0

θ0
◦ NT/T0

). Since (l − 1, t) = 1 and t is odd, by Proposition 3.9.9 we have

bφ
F/F0

θ0
($ps

T0
) = 1, thus µ

T/F
θb

($ps

T0
) = µ

T0/F0

θ0
(NT/T0

($ps

T0
)). Since l|ql−1 − 1 which also means that l||Γ|

for Γ = Aut(T/F ), using the previous case we know that µ
T/F
θb

($ps

T0
) = ( q

l−1

t ), which also means that

µ
T0/F0

θ0
($

(l−1)ps

T0
) = ( qt )

l−1. Since (µ
T0/F0

θ0
)p
s

is a character of order 2t and l− 1 is relatively prime to t,

we must have µ
T0/F0

θ0
($ps

T0
)2 = ( qt )

2. Finally since µ
T0/F0

θ0
($ps

T0
)t = µ

T0/F0

θ0
($ps

F0
) = ( qt ) = ( qt )

t, we have

µ
T0/F0

θ0
($ps

T0
) = ( qt ).

3.10.2 Epsilon factors

For π′0 (resp. π′T0
) a supercuspidal representation of GF0 (resp. GT0), we denote by ε(π′0) :=

ε(π′0, 1/2, ψF0) (resp. ε(π′T0
) := ε(π′T0

, 1/2, ψT0)) the corresponding epsilon factors evaluating at 1/2.

Lemma 3.10.3. We have
ε(π0) = ε(πT0) · λtT0/F0

,

where λT0/F0
:= λT0/F0

(ψF0) denotes the Langlands constant.

Proof. It follows from [BH06], (30.4.2) and the fact that the local Langlands correspondence maintains
epsilon factors.

Now we define π′T0
= ind

GT0
JT0

(κT0), then

Lemma 3.10.4 ( [BH99], Theorem 1.4.). ε(π′T0
) · µT0/F0

θ0
(NE0/T0

(β)) = ε(πT0).

We write mβ = −vE0(β), which by definition is a positive integer. Thus vT0(NE0/T0
(β)) = −mβ.

Combining with the above two lemmas, we get

µ
T0/F0

θ0
($T0)mβ = ε(π′T0

) · λtT0/F0
/ε(π0) = (

q

t
) · ε(π′T0

)/ε(π0), (3.10.1)

where we use the fact that t is odd and [BH05b], Lemma 1.5.(2) for the last equation.

3.10.3 A more detailed discussion for supercuspidal representations of Carayol
type

In this subsection we assume that t is odd and mβ is relatively prime to p and we call the supercuspidal
representation π0 with one corresponding simple stratum satisfying the latter condition of Carayol type.

In this case Proposition 3.10.2 and (3.10.1) together give a full characterization of µ
T0/F0

θ0
. However

the right hand side of equation (3.10.1) is quite vague, thus we will provide more details.
We denote by ZVF0

(β) (resp. ZVT0
(β)) the group of fixed points of β (with β acting by conjugation)

in VF0 := J1(a0, β)/H1(a0, β) (resp. VT0 := J1(aT0 , β)/H1(aT0 , β)) and we define ψAF0
:= ψF0 ◦TrAF0

(resp. ψAT0
:= ψT0 ◦ TrAT0

).

Proposition 3.10.5. We assume that E0 6= T0.

• When mβ is odd, we have

ε(π0) = tr(κ∨0 )(β) · ψAF0
(β)/|ZVF0

(β)|1/2 and ε(π′T0
) = tr(κ∨T0

)(β) · ψAT0
(β)/|ZVT0

(β)|1/2,
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• When mβ is even, there exist h0 ∈ 1 + p
mβ/2
a0 and h′0 ∈ 1 + p

mβ/2
aT0

, such that

tr(κ∨0 )(βh0) 6= 0 and tr(κ∨T0
)(βh′0) 6= 0,

and for any such h0, h
′
0, we have

ε(π0) = tr(κ∨0 )(βh0) · ψAF0
(βh0)/|ZVF0

(β)|1/2

and

ε(π′T0
) = tr(κ∨T0

)(βh′0) · ψAT0
(βh′0)/|ZVT0

(β)|1/2.

Proof. The case where mβ is odd follows directly from [BH99], §6.1, Lemma 2 and §6.3, Proposition
1. The case where mβ is even follows from ibid. §6.1, Lemma 2 and §6.3, Proposition 2, and we only
need to prove that the condition of §6.3, Proposition 2 is satisfied. For [a0,mβ,mβ − 1, α] a simple
stratum equivalent to [a0,mβ,mβ − 1, β], we need to prove that F0[α]/F0 is not tamely ramified.
By [BK93], Theorem 2.4.1, we know that e(F0[α]/F0) divides e(E0/F0) and f(F0[α]/F0) = 1, and
moreover vF0[α](α)/e(F0[α]/F0) = vE0(β)/e(E0/F0) = −mβ/e(E0/F0), thus e(F0[α]/F0) is divisible
by ps, otherwise p divides mβ, contradictory! Thus F0[α]/F0 is not tamely ramified since E0 6= T0 and
s ≥ 1. For [aT0 ,mβ,mβ − 1, α′] a simple stratum equivalent to [aT0 ,mβ,mβ − 1, β], similarly we prove
that T0[α′]/T0 is not tamely ramified, verifying the condition of §6.3, Proposition 2.

Corollary 3.10.6. Let k be an integer such that kps −mβ is relatively prime to t.

• When mβ is odd, then

µ
T0/F0

θ0
($T0)mβ = (

q

t
) ·
|ZVF0

(β)|1/2

|ZVT0
(β)|1/2

·
tr(κ∨0 )(β$k

T0
)

tr(κ∨0 )(β)
.

• When mβ is even, then for h0 and h′0 as in the proposition,

µ
T0/F0

θ0
($T0)mβ = (

q

t
) ·
|ZVF0

(β)|1/2

|ZVT0
(β)|1/2

·
tr(κ∨0 )(βh′0$

k
T0

)

tr(κ∨0 )(βh0)
·
ψAF0

(βh′0)

ψAF0
(βh0)

.

Proof. We only prove the second case, whence the first case is similar and simpler. By construction
we know that ψAT0

(βh′0) = ψAF0
(βh′0). Since $T0 ∈ CT0($F0) ⊂ Ker(κ∨T0

), we have κ∨T0
(βh′0) =

κ∨T0
(βh′0$

k
T0

). Since vT0(detT0(βh′0$
k
T0

)) = kps −mβ is relatively prime to t, using Proposition 3.7.8

with κ0 and κT0 replaced by κ∨0 and κ∨T0
, we get tr(κ∨T0

)(βh′0) = tr(κ∨0 )(βh′0$
k
T0

). Thus the proof
follows from (3.10.1) and the above proposition.

Unfortunately the author doesn’t know how to proceed to simplify the result in the corollary. For
example, the right hand side of the two equations should be a 2n-th root of unity, which seems not
clear from the expression itself. Instead we consider the following special case to end our discussion.

Corollary 3.10.7. If mβ is relatively prime to n, then µ
T0/F0

θ0
($T0) = ( qt ).
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Proof. We may choose k = 0, and h0 = h′0 if mβ is even, then we get

µ
T0/F0

θ0
($T0)mβ = (

q

t
) ·
|ZVF0

(β)|1/2

|ZVT0
(β)|1/2

.

Since µ
T0/F0

θ0
($T0)mβ is a root of unity, we must have

|ZVF0
(β)|1/2 = |ZVT0

(β)|1/2 and µ
T0/F0

θ0
($T0)mβ = (

q

t
).

Combining with Proposition 3.10.2 we finish the proof.
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[Vig98] M.-F. Vignéras. Induced r-representations of p-adic reductive groups. Selecta Math. (N.S.),
4:549–623, 1998.
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Titre : Représentations supercuspidales de GLpnq sur un corps local non archimédien : distinc-
tion par un sous-groupe unitaire ou orthogonal, changement de base et induction automorphe.
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Résumé : Dans cette thèse, nous considérons
quelques exemples concrets de la relation entre la
correspondance de Langlands locale, sa fonctorialité
et le problème de la distinction. Soit F {F0 une exten-
sion cyclique finie de corps localement compacts non-
archimédiens de caractéristique résiduelle p et soit
R un corps algébriquement clos de caractéristique
l ‰ p. Dans la première partie, nous supposons que
F {F0 est quadratique et p ‰ 2, et nous étudions les
représentations irréductibles de GLnpF q sur R dis-
tinguées par un sous-groupe unitaire. Nous résolvons
complètement le problème pour les représentations

supercuspidales et obtenons des résultats partiels
pour les représentations génériques. Nous définissons
également une version l-modulaire du changement
de base cyclique. Dans la deuxième partie, nous sup-
posons F “ F0 et p ‰ 2, et nous caractérisons com-
plètement les représentations supercuspidales com-
plexes de GLnpF q distinguées par un sous-groupe
orthogonal. Dans la dernière partie pour F {F0 mod-
érément ramifiée, nous étudions le changement de
base et l’induction automorphe pour des représen-
tations supercuspidales complexes via la théorie des
types simples.

Title : Supercuspidal representations of GLpnq over a non-archimedean local field : distinction
by a unitary or orthogonal subgroup, base change and automorphic induction
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Abstract : In this thesis, we consider several con-
crete examples of the relation among the local Lang-
lands correspondence, its functoriality and the prob-
lem of distinction. Let F {F0 be a finite cyclic ex-
tension of non-archimedean locally compact fields of
residue characteristic p and let R be an algebraically
closed field of characteristic l ‰ p. In the first part,
we assume F {F0 to be quadratic and p ‰ 2, and we
study the irreducible representations of GLnpF q over
R distinguished by a unitary subgroup. We com-
pletely solve the problem for supercuspidal represen-

tations and get partial results for generic representa-
tions. Meanwhile we also define an l-modular version
of the cyclic base change lift. In the second part, we
assume F “ F0 and p ‰ 2, and we fully charac-
terize the complex supercuspidal representations of
GLnpF q distinguished by an orthogonal subgroup. In
the final part for F {F0 tamely ramified, we study the
base change lift and the automorphic induction for
complex supercuspidal representations via the sim-
ple type theory.
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