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Dedicate to my grandparents

1 wish for this night-time to last for a lifetime
The darkness around me, shores of a solar sea
Oh how I wish to go down with the sun
Sleeping, weeping, with you

“Sleeping sun”, Nightwish

At the end of the river the sundown beams
All the relics of a life long lived

Here, weary traveller rest your wand

Sleep the journey from your eyes

“Turn loose the mermaids”, Nightwish
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Introduction (English version)

This thesis contains three parts. In this introductory chapter, we will explain the general background
in the first section, and then in the following three sections we will focus on each part and provide
specific introductions.

0.1 General context

Let Fy be a non-archimedean locally compact field of residue characteristic p and let R be an alge-
braically closed field of characteristic [ # p, and in particular when [ > 0 we are in the “/-modular
case”. For instance, we will mainly focus on the following three cases: R being the complex number
field C, the algebraic closure of the field of l-adic numbers denoted by Q;, or the algebraic closure of
the finite field of I elements denoted by F; when [ # 0. Let G be a reductive grou over Fy and let
G be the locally profinite group consisting of the Fy-rational points of G. We are interested in the
category of smooth irreducible representations of a locally profinite group and we denote by Irrr(G)
the set of isomorphism classes of smooth irreducible representations of G over R.

0.1.1 Local Langlands correspondence

First of all let us consider the case where R = C. We fix a separable closure Fyy of Fyy, we denote by
W, the Weil group of Fy with respect to Fy and by WD g, = Wpg, x SLa(C) the Weil-Deligne group
of Fy. We define the dual group of GG, denoted by G, as the complex reductive group (identified with
the complex topological group of its rational points by abuse of notation) determined by the dual of
the root datum of G. Since the root datum of G is endowed with a Wg,-action, so is the group G
after fixing a pinning of the root datum, and we denote by G = G W, the L-group of G.

Definition 0.1.1. An L-parameter of G (over C) is a homomorphism ¢ : WDg, — LG such that

o The following diagram is commutative:

Wi, % SLa(C) = WD, ¢ LG =G x W,

T~

Wr,

where the two unmarked arrows are canonical projections.

° ¢|WFO><{1} is continuous with image consisting of semisimple elementﬂ and ¢’{1}><SL2((C) s al-

gebmz’c with image consisting of unipotent elements in G.

'We will only consider connected reductive groups.

2An element (g, w) in G is semisimple if for any r as a finite dimensional representation of “G, the image r((g,w))
is semisimple.

3That is, it is an algebraic representation from the complex algebraic group SLz into the complex algebraic group G .

9



10 0.1. GENERAL CONTEXT

Two L-parameters are said to be isomorphic if they are in the same G—conjugacy class, and we
denote by ®(G) the isomorphism classes of Langlands parameters of G. The famous local Langlands
correspondence is stated as follows.

Conjecture 0.1.2. There is a unique finite-to-one surjection
LLC : Irrr(G) — @(G)
satisfying certain desiderata.

Definition 0.1.3. For ¢ € ®(G), we call 11 := LLCY(¢) the L-packet of ¢ as a finite set of
wrreducible representations of G.

Here we won’t specify what exactly do these desiderata mean (compatible with parabolic induction,
transfer L-factors and e-factors, etc.) but refer to [Bor79] for an expository introduction. The local
Langlands correspondence for certain reductive groups is known, such as G being a torus, GL, or
certain classical groups, due to the work of Langlands [Lan97|, Harris-Taylor [HTO01], Arthur |Art13],
etc.

Moreover, although the original conjecture of Langlands is only proposed for representations over
C, for other R under our settings it is still possible to give a definition for L-parameters and to propose
the corresponding conjecture with the corresponding desiderata being adapted to the new situations.
For example, there are pioneering work of Vignéras [Vig01| for G = GL,,, and also recent work of Dat-
Helm-Kurinczuk-Moss [DHKM20] for general reductive groups and representations over an integral
domain with p being invertible within instead of over a field R. Finally we mention the recent result
of Fargues-Scholze [FS21|. Using geometric method and under general enough settings (more general
than ours), they constructed ®(G) (indeed as a stack) and the local Langlands correspondence, and
verified the corresponding desiderata under their settings (cf. ibid. Theorem 1X.0.5).

0.1.2 Local Langlands functoriality

Now we discuss the local Langlands functoriality and we still assume that R = C. Let G be another
reductive group over Fp, and let Gy be the group of Fy-rational points of Gy. As in the previous sub-
section, we may similarly define its dual group Go, its L-group “Go = Go WF, and the isomorphism
classes ®(Gp).

Definition 0.1.4. A group homomorphism
L LGO — g
1s called an L-homomorphism, if
e it is continuous, and its restriction to éo is an algebraic representation of Go into G.

o The following diagram is commutative

WFOIXG()ZLGO - LGZGNWFO

T~

W,

where the two unmarked arrows are canonical projections.
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By definition, given an L-parameter ¢g in ®(Gp), the composition o ¢g is an L-parameter in ®(G).
Thus we construct a map between isomorphism classes of L-parameters:

Q1) : (Gog) — P(G), ¢or—> 1o Pp.

If we admit the local Langlands correspondence for both Gy and G, we have the following diagram

Irrp(Go) ~2% &(Go)

II(¢) i@(L)
v
Irrr(G) o ®(G)

The local Langlands functoriality predicts the existence of a map II(¢), called local lifting with re-
spect to ¢, such that the above diagram is commutative. Moreover this map II(¢) is expected to be
constructed independently of this diagram, but using other technical tools such as trace formula or
L-function. On the one hand, understanding different local liftings maps forms an important part of
the local Langlands program. On the other hand, it also plays a crucial role in the inductive strategy,
proposed by Langlands-Shelstad |[LS87] and called the method of endoscopy, of constructing the local
Langlands correspondence for general reductive group, which has become a prosperous area in recent
years with fruitful results, including the work of Arthur, Kottwitz, Langlands, Laumon, Ngo, Shelstad,
Waldspurger, etc.

Still we need not confine ourself in complex representations, instead we consider possible local
lifting over R. For example, one expectation for the expected local lifting over F; is that, it is
supposed to be compatible with the local lifting over Q;, after we identify C with Q; via a certain
algebraic isomorphism and implement the modulo ! reduction. One typical result is about the Jacquet-
Langlands correspondence as one natural enough lifting between GL,, and its inner form. Over F;, the
construction of this map and also its compatibility with the usual Jacquet-Langlands correspondence
was studied by Dat [Datl12] for special case, and then generalized by Minguez-Sécherre [MS17] for
general case.

0.1.3 Problem of distinction

Let H C G be a closed algebraic subgroup over Fy and we denote by H the group of Fp-rational
points of H. For 7 € Irrg(G) and p € Irrg(H), we say that « is (H, p)-distinguished if

Homp (m, p) # 0,

or in other words, the restriction of m to H admits p as a quotient. In particular, when p is trivial,
we call 7 distinguished by H or H -distinguished. Still for simplicity we temporarily assume R = C.

The problem of distinction is ubiquitous and plays an important role in the representation theory
of p-adic groups. For example, if G is quasisplit, we let H = U be the unipotent radical of a Borel
subgroup of G' and we let ¢ be a non-degenerate character of H = U, that is, its restriction to any
unipotent subgroup U, of U related to a simple root « is non-trivial. One well-known result [Sha74]
is that the vector space

Homys (7, 1))

is of dimension smaller than or equal to one. Those m with the corresponding dimension equalling
one are called generic representations. By the Frobenius reciprocity, such © can be embedded into
the space of (U, )-invariant G-linear forms, which is called the Whittaker model of 7 and plays an
prominent role in the local and global theory of L-functions. In another example we consider V' as
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a finite dimensional vector space over Fy endowed with a sesquilinear form, and W as a subspace of
V. We denote by G the group of Fy-automorphisms of V' and by H the group of Fp-automorphisms
of W, preserving the sesquilinear form. Then the corresponding problem of distinction is related to
the “branching laws”, which dates back to the representation theory of complex algebraic groups and
has been performing as an active area in decades because of the initiation and breakthrough of the
Gan-Gross-Prasad conjecture |[GGP12| and its variants.

Under good settings, the problem of distinction is closely related to the local Langlands corre-
spondence and its functoriality. In the remarkable book [SV17a], Sakellaridis and Venkatesh proposed
a general framework to study the problem of distinction, in which they assume G to be split and
X = H\G to be a spherical variety with X denoting its Fy-rational points. Their starting point is
the construction of the dual group Gx for X as a complex reductive group, under an assumption on
the roots of X, together with a canonical algebraic representation

Lx . G’X X SLQ(C) — é’

Under their conjectural proposal, roughly speaking, the H-distinguished representations of G cor-
respond to the X-distinguished Arthur parameters via the local Langlands correspondence, where
Arthur parameters are the analogue of L-parameters with a corresponding version of local Langlands
correspondence related, and those Arthur parameters factoring through ¢ x are called X-distinguished,
for which we leave ibid. section 16 for more details. So the idea behind is that, under good circum-
stances, the property of being distinguished is transferred by the local Langlands correspondence.
In [Pral5|, Prasad considered the case where X = H\G is a symmetric space with respect to a Galois
involution. He constructed a quasisplit subgroup Gy (denoted by G in loc. cit.) over Fjy, a natural
L-homomorphism ¢ : “Gy — G which simply comes from the restriction, and a character wg of H.
Finally he conjectured that, for m an irreducible representation of G distinguished by (H,wp), the
L-packet of 7 is derived from the local lifting related to ¢, or more precisely there exists ¢g € ®(Gg)
such that 7m € II(¢ o ¢p). Moreover a conjectural formula for the dimension of the space of distinction
has been given. These two general frameworks, combining with various concrete examples being veri-
fied, should be regarded as our guideline of the results we should expect under the language of local
Langlands correspondence and its functoriality.

We briefly introduce some known methods of dealing with problem of distinction. One important
method, initiated by Jacquet and developed by himself, his students and other followers, is called the
relative trace formula method, for which we name a few articles [JLR93|, |[JY96], |Guo96|, [Mao98|.
The idea, roughly speaking, is first to solve the corresponding problem over a global field, and then to
realize our local field Fy as a component of the ring of adeles of a global field and to use a global-to-
local argument. Then one compares two different trace formulae as distributions on two spaces of test
functions, one of which relates exactly to our global problem. After verifying the fundamental lemma
and the existence of smooth transfer, one obtains sufficient many pairs of matching test functions such
that two trace formulae coincide. If the other trace formula is well understood, we get the information
to solve the global problem of distinction. In addition, to solve the local Gan-Gross-Prasad conjecture
for orthogonal groups, Waldspurger [Wall0], [Wall2| initiated a new method with the consideration
of a local relative trace formula, such that the dimension of the space of distinction can be expressed
inside, and then he used sophisticated techniques in harmonic analysis over p-adic reductive groups
to reformulate the trace formula and to obtain the result. In the last decade this method has been
developed and applied to different situations by some people including Beuzart-Plessis and C. Wan.
For example in [BP18§| using the similar method, Beuzart-Plessis solved part of the above conjecture
proposed by Prasad for essentially square integrable representations.

Another possible method to study the problem of distinction is algebraic, which first studies the
same problem for supercuspidal representations as the starting point, and then applies parabolic
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induction to study more general irreducible representations. For m a supercuspidal representation of
G, a general belief is that it can be written down as the compact induction of a finite dimensional
smooth irreducible representation, more precisely, there exists a pair (J, A) such that J is a compact
subgroup of G modulo the centre, and A is a smooth irreducible finite dimensional representation
of J such that = = ind?A. This belief is verified for many cases, including tame supercuspidal
representations [YuOl], [Fin21] for tamely ramified reductive group G, and also general supercuspidal
representations for classical groups [BK93|, [Ste08]. Then if we focus on the study of H-distinguished
supercuspidal representation 7, using the Mackey formula and the Frobenius reciprocity, it is easily

seen that

Homp (m,1) = Homy (ind§A, 1) = J[  Homgsnn(AY,1).
geJ\G/H

Thus we only need to study those g € J\G/H such that the R-vector space Homjong(AY,1) is
non-zero, and then to study corresponding dimension. To that aim, we date back to the detailed con-
struction of (J,A). One typical work is [HMO§|, where the authors studied, for G/H as a symmetric
space, tame supercuspidal representations 7 of G distinguished by H using the idea mentioned above
and the structural result of J.-K. Yu [Yu0l1] for such representations.

Still we are not necessarily confined in the case where R = C, but we focus on the general R in
our settings. In this case the two analytic methods mentioned above become invalid. By contrast
the algebraic method remains valid, since the structural result for the (J, A), once being established,
usually works for general R rather that just R = C, such as [Vig96], [MS14b] and [Finl9]. To
sum up, searching the possible relation between the problem of distinction and the local Langlands
correspondence and its functoriality for general R should be regarded as the original motivation for
this thesis.

0.1.4 Our concrete settings

Although the context above is quite general, the aim of this thesis is humble, which focuses on the
understanding of several special examples. Fix n as a positive integer. Let F/Fy be a finite cyclic
extension of non-archimedean locally compact fields of residue characteristic p of degree r, and let G
be the Weil restriction of the reductive group GL, over F', which is a reductive group over Fy. In
particular we have G = GL,,(F'). For most of the time, we will concentrate on cuspidal or supercuspidal
representations of G over R, which should be regarded as the building blocks for general irreducible
representations. Recall that an irreducible representation of G is cuspidal (resp. supercuspidal) if it
doesn’t occur as a subrepresentation (resp. subquotient) of the parabolic induction of an irreducible
representation of a proper Levi subgroup of G. When char(R) = 0 the two concepts above are
equivalent, however when char(R) = [ > 0, a supercuspidal representation must be cuspidal, but the
existence of counter-example manifests that the converse is false in general.

To study a cuspidal representation 7 of GG over R, our main tool is the simple type theory established
by Bushnell-Kutzko [BK93| when char(R) = 0, and further generalized by Vignéras [Vig96| to the
[-modular case. We refer to chapter 1, section 3 or chapter 3, section 2 for a detailed introduction for
the theory, but here we also give a brief introduction for ease of giving more details.

As indicated above, the idea of simple type theory is to realize m as the compact induction of a
finite dimensional irreducible representation A of J, which is an open subgroup of G compact modulo
the centre. Such a pair (J, A) is called an eztended mazimal simple type which we will abbreviate to
simple type for short. The main theorem says that, any 7 can be constructed in this way, and the
corresponding simple type (J,A) is unique up to G-conjugacy. We also mention the following main
properties of (J,A):
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(1) The group J contains a unique maximal open compact subgroup J which contains a unique
maximal normal pro-p-subgroup J';

(2) We have J/J' = GL,,,(1). Here I is the residue field of E, where E is a field extension over F
of degree d. Moreover we have n = md, where m and d are integers determined by 7;

(3) We may write A = k ® p, where k and p are irreducible representations of J such that the
restriction k|;1 = 7 is an irreducible representation of J!, called a Heisenberg representation, and p|;
is the inflation of a cuspidal representation of GL,, (1) = J/J;

(4) There exists a pro-p-subgroup of J! denoted by H!, and a character of H' denoted by 6 and
called a simple character, such that the restriction of 7 to H' equals the direct sum of (J' : H')/?
copies of 6.

Finally we enter the introduction for our concrete work. For the first part, we study the problem
of distinction related to a unitary subgroup of G and its relation with the Langlands functoriality,
or embodied as the quadratic base change lift in our settings; For the second part, we study the
problem of distinction related to an orthogonal subgroup of G, and we focus only on supercuspidal
representations over R = C, which is the first step towards the understanding of more general irre-
ducible representations; For the final part for R = C we give explicit constructions for two special
local liftings, the base change lift and the automorphic induction, for supercuspidal representations.

0.2 Problem of distinction related to unitary subgroups of GL,(F)
and /[-modular base change lift

0.2.1 Background

The first eight sections of chapter 1 is based on the preprint [Zoul9|. In this subsection we assume
F/Fy to be a quadratic extension of p-adic fields of residue characteristic p, and we let o denote its
non-trivial automorphism. For G and G as above, we write € for a hermitian matriz in G, that is,
o(te) = e with ¢ denoting the transpose of matrices. We define

7e(x) = eo(tx1)e™!

for any x € G, called a unitary involution on G, which also induces an Fy-automorphism on G. We
fix one 7 = 7., and we denote by G” the subgroup of G over Fy, such that G7 is the subgroup of G
consisting of the elements fixed by 7. Such G7 (resp. G7) is called the unitary subgroup of G (resp.
G) with respect to 7.

For 7 a smooth irreducible representation of G over C, Jacquet proposed to study the problem
of distinction related to the pair (G,G") as above, that is, to study the space of G7-invariant linear
forms

Homgr (7, 1)

and its dimension as a complex vector space. For n = 3 and 7 supercuspidal, he proved in |Jac01] by
using global argument, that m is distinguished by G7 if and only if 7 is o-invariant, that is, 77 = «,
where 77 := 7w o 0. Moreover he showed that this space is of dimension one as a complex vector space
when the condition above is satisfied. Besides in ibid., he also sketched a similar proof when n = 2
and 7 is supercuspidal, to give the same criterion of distinction and the same dimension one theorem.
Based on these results as one of the main reasons, he conjectured that in general, 7 is distinguished by
G7 if and only if 7 is o-invariant. Moreover, the dimension of the space of GT-invariant linear forms
is not necessary to be one in general. Under the assumption that 7 is o-invariant and supercuspidal
Jacquet further conjectured that the dimension is one.
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In addition, an irreducible representation 7 of GG is contained in the image of quadratic base change
lift with respect to F'/Fy if and only if it is o-invariant ( [AC89]). Thus for irreducible representations,
the conjecture of Jacquet gives a connection between quadratic base change lift and G"-distinction.

Besides the special case mentioned above, there are two more evidences which support the con-
jecture. First we consider the analogue of the conjecture in the finite field case. For p an irreducible
complex representation of GL,(F,2), Gow |Gow84] proved that p is distinguished by the unitary sub-
group U, (F,) if and only if p is isomorphic to its twist under the non-trivial element of Gal(F,2/F).
Under this condition, he also showed that the space of U,(F,)-invariant linear forms is of dimen-
sion one as a complex vector space. In addition, Shintani [Shi76] showed that there is a one-to-one
correspondence between the set of irreducible representations of GL,,(F;) and that of Galois invari-
ant irreducible representations of GL,(F2), where the correspondence, called the base change map,
is characterized by a trace identity. These two results give us a clear feature between base change
map and U, (F,)-distinction. Finally, when p is generic and Galois-invariant, Anandavardhanan and
Matringe [AM18] recently showed that the U, (F,)-average of Bessel function of p on the Whittaker
model as a U, (F,)-invariant linear form is non-zero. Since the space of U, (F,)-invariant linear forms
is of dimension one, this result gives us a concrete characterization of the space of distinction.

The other evidence for the Jacquet conjecture is its global analogue. We assume K/Ky to be a
quadratic extension of number fields and we denote by ¢ its non-trivial automorphism. We consider
7 to be a unitary involution on GL,(K), which also gives us an involution on GLj,(Ax), still denoted
by 7 by abuse of notation, where Ax denotes the ring of adeles of K. We denote by GL,(K)" (resp.
GL,(Ax)T) the unitary subgroup of GL,(K) (resp. GL,(Ax)) with respect to 7. For ¢ a cusp form

of GL,,(Ax), we define
P.o)= | o(h)dh
GL, (K)"\GLn (Ax)™

to be the unitary period integral of ¢ with respect to 7. We say that a cuspidal automorphic represen-
tation IT of GL,,(Ax) is GL, (Ax)"-distinguished if there exists a cusp form in the space of II such that
Pr(¢) #0. In 1990’s, Jacquet and Ye began to study the relation between GL,,(Ax)"-distinction and
global base change lift (see for example [JY96] when n = 3). For general n, Jacquet [Jac05] showed
that IT is contained in the image of quadratic base change lift (or equivalently II is o-invariant [AC89|)
with respect to K/Ky if and only if there exists a unitary involution 7 such that II is G"-distinguished.
This result may be viewed as the global version of Jacquet conjecture for supercuspidal representations.

In fact, for the special case of the Jacquet conjecture in [JacO1], Jacquet used the global analogue
of the same conjecture and relative trace formula as two main techniques to finish the proof. To say it
simple, he first proved the global analogue of the conjecture. Then he used the relative trace formula
to write a non-zero unitary period integral as the product of its local components at each place of Ko,
where each local component characterizes the distinction of the local component of IT with respect to
the corresponding unitary group over local fields. When 7 is o-invariant, he chose II as a o-invariant
cuspidal automorphic representation of GL, (Ax) and vy as a non-archimedean place of Ky such that
(G™,m) = (GL,(Ky,)7,IL,,). Then the product decomposition leads to the proof of the “if” part of
the conjecture. The “only if” part of the conjecture, which will be discussed in chapter 1, section 4,
requires the application of globalization theorem. His method was generalized by Feigon-Lapid-Offen
in [FLO12] to general n and more general family of representations. They showed that the Jacquet
conjecture works for generic representations of G. Moreover for the same family of representations,
they were able to give a lower bound for the dimension of Homg- (7, 1) and they further conjectured
that the inequality they gave is actually an equality. Finally, Beuzart-Plessis [BP20] recently verified
the equality based on the work of Feigon-Lapid-Offen and the relative local trace formula. Thus for
generic representations of G, the Jacquet conjecture was settled.

Instead of using global-to-local argument, there are also partial results based on the algebraic
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method we explained before. In [HM98] Hakim-Mao verified the conjecture when 7 is supercuspidal
of level zero, that is, 7 is supercuspidal such that w!*PrMn(er) -£ 0 where op denotes the ring of
integers of F' and pp denotes its maximal ideal. When 7 is supercuspidal and F'/Fj is unramified,
Prasad [Pra0Ol] proved the conjecture by applying the simple type theory developed by Bushnell-
Kutzko in [BK93]. When 7 is tame supercuspidal, that is, 7 is a supercuspidal representation arising
from the construction of Howe [How77|, Hakim-Murnaghan [HMO02b| verified the conjecture. Noting
that in the results of Hakim-Mao and Hakim-Murnaghan, they need the additional assumption that
the residue characteristic p # 2.

The discussion above leaves us an open question: Is there any local and algebraic method that leads
to a proof of the Jacquet conjecture which works for all supercuspidal representations of G¢ First, this
method will generalize the results of Hakim-Mao, Prasad and Hakim-Murnaghan which we mentioned
in the last paragraph. Secondly, we are willing to consider F/Fy to be a quadratic extension of
non-archimedean locally compact fields instead of p-adic fields. Since the result of Feigon-Lapid-Offen
heavily relies on the fact that the characteristic of F' equals 0, their method fails when considering non-
archimedean locally compact fields of positive characteristic. Finally, instead of considering complex
representations, we are also willing to study l-modular representations with [ # p. One hopes to
prove an analogue of the Jacquet conjecture for -modular supercuspidal representations, which will
generalize the result of Feigon-Lapid-Offen for supercuspidal representations. Noting that they use
global method in their proof, which strongly relies on the assumption that all the representations are
complex. Thus their method doesn’t work anymore for [-modular representations.

The aim of chapter 1 is first to address the question above, and then to explore the problem of
distinction for more general irreducible representations in the [-modular case and its relation with the
“l-modular” base change lift whose construction will be given.

0.2.2 Main results

To begin with, from now on we assume F'/Fj to be a quadratic extension of non-archimedean locally
compact fields of residue characteristic p instead of p-adic fields, and we assume that p # 2. We fix
R an algebraically closed field of characteristic | # p, allowing that [ = 0. We assume 7 to be an
irreducible representation of G = GL,,(F') over R. Now we state our first main theorem.

Theorem 0.2.1. For 7w a supercuspidal representation of G and T a unitary involution, 7 is distin-
guished by G7 if and only if 7% = 7.

Moreover, we may also calculate the dimension of the space of G"-invariant linear forms.

Theorem 0.2.2. For w a o-invariant supercuspidal representation of G, we have
dimgHomeg- (7, 1) = 1.

One important corollary of Theorem relates to the Q-lift of a o-invariant supercuspidal
representation of G over F; when [ > 0, where we denote by Q;, Z; and F; the algebraic closure of an
l-adic field, its ring of integers and the algebraic closure of the finite field of | elements respectively.
For (7, V) a smooth irreducible representation of G' over Q;, we call it integral if it admits an integral
structure, that is, a Z;[G]-submodule Ly of V such that Ly ®Z—l@ = V. For such a representation,
the semi-simplification of Ly ®ZTE doesn’t depend on the choice of Ly, which we denote by r;(7)
a representation of G over I, called the modulo | reduction of 7 (see [Vig96| for more details). The
following theorem which will be proved at the end of chapter 1, section 8, says that it is always possible
to find a o-invariant Q-lift for a o-invariant supercuspidal representation of G over F;.
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Theorem 0.2.3. For w a o-invariant supercuspidal representation of G over Fy, there exists an integral
o-invariant supercuspidal representation T of G over Qy, such that r(7) = .

For irreducible generic representations, we are able to prove one direction of the Jacquet conjecture,
which is new only if char(R) =1 > 0.

Theorem 0.2.4 (see Theorem [1.9.1). Let m be an irreducible generic representation of G over R. If
7 18 distinguished by G, then m is o-invariant.

Our next goal is to characterize [-modular distinguished representations via local Langlands func-
toriality, or base change lift in our settings. To that aim, first we need to construct an I-modular base
change lift. The upshot is the following theorem:

Theorem 0.2.5 (see Theorem [1.10.17). We may define the l-modular cyclic base change lift
BC; : It (GLy, (Fp)) — Irr%inV(GLn(F))

which satisfies and is determined by the following commutative diagram

I @; GL F BCQTZ:[ Int,afinv GL F
I (GLy (Fy)) —= T2 (GL, (F))

le lJz
BC—

Itz (GLy (Fp)) —— g™ (GL, (F))

We briefly explain the notations and leave the corresponding section for more details. Here the
superscripts Int and o-inv represent integral and o-invariant respectively, BC@ represents the base

change lift of Arthur-Clozel being transferred to representations over @ via a certain algebraic isomor-
phism C 2 Q;, and for 7y (resp. 7) in Irr}QTnlt(GLn(Fo)) (resp. Irrg’aﬂnv(GLn(F))), the image J;(7o)
(resp. Ji(7)) is the unique irreducible constituent in r;(7g) (resp. r;(7)) having the highest deriva-
tive sequence. Finally as an application, we explore the distinguished cuspidal (but not necessarily

supercuspidal) representations in the l-modular case.

0.2.3 Organization of the chapter 1

Let us outline the content of chapter 1. We introduce our settings in section 1 and basic knowledge
about hermitian matrices and unitary subgroups in section 2. Our main tool to prove the theorems
will be the simple type theory developed by Bushnell-Kutzko in [BK93|, and further generalized by
Vignéras [Vig96] to the I-modular case. In section 3 we will give a detailed introduction of this theory.

For a given supercuspidal representation m of G, our starting point is to prove the “only if” part
of Theorem When R = C and char(F') = 0, it is a standard result by using global argument,
especially the globalization theorem ( [HM02a], Theorem 1). When char(F') = p > 0, we may keep the
original proof except that we need a characteristic p version of the globalization theorem. Fortunately
we can use a more general result due to Gan-Lomeli [GL18| to get the result we need. Since any
supercuspidal representation of GG over a characteristic 0 algebraically closed field can be realized as a
representation over Q up to twisting by an unramified character, we finish the proof when char(R) = 0.
When R = [}, we consider the projective envelope Py, of A|; and we use the results in [Vig96| to study
its irreducible components and the irreducible components of its Q;-lift. Finally we show that there
exists a Q-lift of 7 which is supercuspidal and G7-distinguished. Thus by using the characteristic
0 case we finish the proof for the “only if” part for any R under our settings. The details will be
presented in section 4.
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In section 5, we prove the 7-selfdual type theorem, which says that for any given unitary involution
7 and a o-invariant cuspidal representation of G with a technical condition (see Theorem, which
is automatically true at least in the supercuspidal case, we may find a simple type (J, A) contained
in 7 such that 7(J) = J and AT = AV, where ¥ denotes the contragredient. In other words, we find
a “symmetric” simple type contained in 7 with respect to 7. Our strategy follows from [AKM™19],
section 4. First we consider the case where F/F' is totally wildly ramified and n = d. Then for E/F
in general with n = d, we make use of the techniques about endo-class and tame lifting developed
in [BH96| to prove the theorem by reducing it to the former case. Finally by using the n = d case, we
prove the general theorem.

In section 6, for a given o-invariant cuspidal representation 7w and a certain unitary involution 7
satisfying the technical condition, we first use our results in section 5 to choose a 7-selfdual simple
type (J,A) contained in 7. The main result of section 6, which we call the distinguished type theorem,
says that 7 is distinguished by G7 if and only if there exists a 7-selfdual and distinguished simple type
of . More specifically, by the Frobenius reciprocity and the Mackey formula, we have

Homgr(m,1) = H Hom jongr (A9, 1).
geJ\G/GT

We concentrate on those g in the double coset such that Homjyongr(A9,1) # 0. The proof of the
distinguished type theorem also shows that there are at most two such double cosets which can be
written down explicitly. Moreover for those g we have

HOHngmGT (Ag7 1) = HomJgﬂGT ('{"'97 X_l) ®R HOHngﬁG’T (ng X>7

where k7 = k" and Y is a quadratic character of J9NGT which is trivial when restricting to J N GT.
In the tensor product, the first term Hom jongr (K9, x 1) is of dimension one as an R-vector space. So
essentially we only need to study the second term. If we denote by p9 the cuspidal representation of
GL,, (1) =& J9/J% whose inflation equals p9|;s , and by X the character of H := J9NG"/JY N GT
whose inflation equals x|jsngr, then we further have

HOHIngG‘r (pg’ X) = HomH (ﬁv Y)

Here H could be a unitary subgroup, an orthogonal subgroup or a symplectic subgroup of GL,y,(I).
So we reduce our problem to study the H-distinction of a supercuspidal representation of GL,, ().

Now we assume that 7 is supercuspidal. At the beginning of section 6, we use the result in section 5
to extend o to a non-trivial involution on E. We write Ey = E?, where E/E) is a quadratic extension.
When E/Ep is unramified, H is a unitary subgroup. We first use the result of Gow |Gow84] to deal
with the characteristic 0 case. For char(R) > 0, we use the same method as in section 4. When E/E)
is ramified, H is either an orthogonal subgroup or a symplectic subgroup. When H is orthogonal,
we use Deligne-Lusztig theory [DL76|, precisely a formula given by Hakim-Lansky [HL12] to calculate
the dimension of Hompg(p9,%) when char(R) = 0. For char(R) > 0, we use again the same method
as in section 4 to finish the proof. When H is symplectic, we show that the space is always 0. These
two cases will be dealt with in section 7 and section 8 separately. As a result, we finish the proof of
Theorem Theorem [0.2.2] and Theorem

The section 9 is dedicated to the proof of Theorem We first deal with the cuspidal case,
whose strategy follows from the same argument in section 5-8. In particular, we also give a new proof
of the main result of section 4, which is purely local and doesn’t depend on the globalization theorem.
And then using the parabolic induction and following the similar argument of Feigon-Lapid-Offen, we
finish the proof for the generic case.

Finally in section 10, we construct the [-modular base change map as promised in Theorem [0.2.5
The strategy of construction is quite naive. We first construct the l-modular base change lift from
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the Galois side, which corresponds to a restriction map. Then we use the [-modular local Langlands
correspondence developed by Vignéras [Vig01| to transfer this map to the GL,, side, such that it
is compatible with the desired [-modular local Langlands functoriality. What remains to show is
the compatibility of the constructed map with the usual base change lift of Arthur-Clozel, which
relies on the local Langlands correspondence over Q; and F; and their compatibility, and the local
Langlands functoriality for base change lift over Q;. However it should be pointed out that our I-
modular base change lift is in some sense “artificial”, since in the theorem the map J; is not the usual
modulo ! reduction 7;, and in general we cannot ensure that the modulo [ reduction of an irreducible
representation is irreducible. But for cuspidal representations, the definition of r; and J; coincides,
thus we could make use of our I-modular base change lift to study the distinction of I-modular cuspidal
representations, which will be displayed in the final subsection.

It is worth mentioning that in [Séc19], Sécherre studied the o-selfdual supercuspidal representations
of G over R, with the same notation unchanged as before. He proved the following Dichotomy Theorem
and Disjunction Theorem: For 7 a supercuspidal representation of G, it is o-selfdual (that is, 77 = 1)
if and only if 7 is either distinguished by GL,,(Fp) or w-distinguished, where w denotes the unique
non-trivial character of Fj which is trivial on Np g (F*). The method we use in this chapter is the
same as that was developed in ibid. For example, our section 5 corresponds to section 4 of [AKM™19)
and our section 6 corresponds to section 6 of [Sécl9|, etc.

To point out the main differences in our case as the end of the introduction, first in section 5 we
will find that in a certain case, it is even impossible to find a hereditary order a such that 7(a) = a ,
which isn’t a problem in section 4 of [AKM™19]. That’s why we need to add a technical condition in
the main theorem of section 5 and finally verify it for supercuspidal representations. Precisely, for a
o-invariant supercuspidal representation, we first consider the unitary involution 7 = 71 corresponding
to the identity hermitian matrix I,,. In this case, we may use our discussion in section 5 to find a
T-selfdual type contained in 7w and we may further use our discussion in section 6 and section 7 to
show that m is odd when E/Ej is unramified. This affirms the technical condition we need, thus we
may repeat the procedure of section 5 and section 6 for general unitary involutions. This detouring
argument also indicates that a o-invariant cuspidal not supercuspidal representation does not always
contain a 7-selfdual simple type. Moreover in section 9 we also provide another method to deal with
this difficult. The rough idea is to regard a general unitary involution as a twist of a special unitary
involution. This idea enable us to prove Theorem for cuspidal representations.

Furthermore in section 8, we may find out that the character x mentioned above cannot always
be realized as a character of J, thus cannot be assumed to be trivial a priori as in [Séc19]. It means
that we need to consider a supercuspidal representation of the general linear group over finite field
distinguished by a non-trivial character of an orthogonal subgroup instead of the trivial one. That’s
why the result of Hakim-Lansky ( [HL12], Theorem 3.11) shows up.

Last but not least, in section 6 a large part of our results are stated and proved for a general
involution instead of a unitary one. This provides the possibility to generalize this method to study
the distinction of supercuspidal representations of G by other involutions. For instance, the similar
problem for orthogonal subgroups is explored in chapter 2 of the thesis.

0.3 Problem of distinction related to orthogonal subgroups of GL,,(F')

0.3.1 Background

This chapter is based on the preprint [Zou20|. Let F' = Fj be a non-archimedean locally compact field
of residue characteristic p. We will only consider the case where R = C, although the main results
of this chapter are also expected to be true for R in general. As before we let G = GL,, be as an
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algebraic group over F' and we have G = GL,,(F). For £ a symmetric matrix in G, we denote by

Te(x) = tlate forany z € G

the orthogonal involution with respect to €, and by G" the orthogonal subgroup of G, such that
the group of its Fy-rational points, denoted by G and called the orthogonal subgroup of G, is the
subgroup of GG consisting of the elements fixed by 7.. In this settings, we are interested in the problem
of distinction related to the pair (G, G"), and its relation with the local Langlands correspondence
and its functoriality.

If we write S for the set of invertible symmetric matrices as a topological subspace of G, which is
endowed with a continuous right G-action

c.g:='geg, g€G, €S,

then we have the following decomposition as G-spaces

S=||c™\G,
e

where [¢] ranges over S/G, and G™ is the orthogonal group defined by a certain representative ¢ in
the class [¢]. A more uniformed version of the above problem is to study the space

Homg(,C>(S)) = €D Home(r, Ind-. 1) = @D Homgr (, 1), (0.3.1)
] ]

for irreducible representation 7 of GG, and to determine a criterion for the space being non-zero and
to study the corresponding dimension, where C*°(S) denotes the space of uniformly locally constant
functions on S with complex values.

The study of this problem was first proposed by Jacquet [Jac91]. The method, as we already intro-
duced before, is first to consider its global analogue, and then to initiate a global-to-local argument,
and the key point is to compare two relative trace formulae: one relates to the relative trace formula
for the symmetric matrices or orthogonal groups, and the other relates to the Kuznetsov trace formula
for the two-fold metaplectic covering of GL,, (see [Mao98| for a brief introduction).

We provide a brief summary for the known results. In [Off05], Offen followed Jacquet’s argumen-
t |Jac03] to consider the Kloosterman-Fourier transform for orbital integrals with respect to sym-
metric matrices, which might be a partial step to prove the existence for smooth transfer in the
non-archimedean case, and the corresponding archimedean case remains a mystery. For the funda-
mental lemma for unit Hecke elements, Mao [Ma098| gave a proof, for n = 3, by direct calculation and
Do first proved, for general n, for local fields of positive characteristic via geometric method [Dol5,
and then he transferred the result to p-adic fields for p large enough [Dol8|. However for ease of
later application, a stronger version of fundamental lemma working with general Hecke elements is
needed but remains unknown. The spectral sides of both trace formulae are less studied. Partial
results due to Chinta and Offen |[CO12|, [CO13|, on the one hand, shed some light on the spectral
expansions, but on the other hand, indicate the difficult of solving the full question. In particular,
since the local Whittaker model for the two-fold metaplectic covering group of GL,, is not unique, the
terms of the spectral side of Kuznetsov trace formula are not factorizable, adding the difficulty to the
global-to-local argument.

One subtle point of this problem is that, it is out of the reach of known general proposals, for
example the one proposed by Sakellaridis-Venkatesh as we introduced before. In fact for X = G"\G
with 7 a given orthogonal involution, even if X is a spherical variety, the assumption on the roots
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of X is not satisfied, which prevents us from constructing the dual group Gx. If we believe in the
existence of the connection between distinction and the local Langlands functoriality as we explained
before, then an expected local lifting should be constructed

Irre(Go) — Irre(G),

for Gy as at least a locally profinite group, such that those distinguished representations are exactly
in its image. As already indicated in the work of Jacquet and his successors above, a general belief
is that, the group G should be the two-fold metaplectic covering of GL,(F), and the corresponding
lifting should be the metaplectic correspendence studied by Flicker-Kazhdan |[FK86]. However to the
knowledge of the author, no precise statement or conjecture has been made, which is probably due to
the lack of known cases of the problem of distinction itself. Instead of understanding the full problem,
it should also be cheerful if enlightening partial results or even reasonable guesses could be made.

Another strategy starts from studying the distinction of supercuspidal representations, and then
uses parabolic induction to get at least some partial results for more general representations. For the
study of a supercuspidal representation 7, as we introduced before, the rough idea is first to regard it
as the compact induction of a finite dimensional representation A of an open subgroup J of G which
is compact modulo its centre, and then to use the Mackey formula and the Frobenius reciprocity to
write the original distinguished space as direct product, ranging over the double cosets in J\G/H, of
distinguished spaces with respect to A. Under the assumption that p # 2, the question is completely
addressed by Hakim and Mao [HM99] when 7 is of level 0 and by Hakim and Lansky [HL12] and
Hakim [Hak13] when 7 is tamely ramified. The goal of this chapter is to generalize their results to all
supercuspidal representations of G, which we explain in the following subsection.

0.3.2 Statement of the main theorems

From now on we further assume that p # 2. For 7w a supercuspidal representation of GG, we recall
several invariants given by the simple type theory of Bushnell-Kutzko [BK93| and the theory of endo-
class of Bushnell-Henniart [BH96|, which we refer to for more details. First of all, there is a
unique tamely ramified extension T'/F up to F-isomorphism, called the tame parameter field of .
We write d for the degree of the endo-class of 7 which divides n and is divided by [T : F]. We write
m for the integer such that n = md. Let T}, be the unramified extension of degree m over T'. Here T,
d, m, T,, are intrinsically determined by 7.

To give an impression of what these invariants should be, we let ¢, be the irreducible representation
of the Weil group Wp corresponding to 7 via the local Langlands correspondence. Then the restriction
of ¢, to the wild inertia subgroup Pr of Wpr is semisimple and can be written as direct sum of
irreducible representations with each irreducible component of multiplicity exactly m. We choose «
to be any irreducible component of ¢r|p,, then there exists a finite tamely ramified extension 7'/F
such that

Np(a) :={g € Wp|a? = o}

as a subgroup of Wy equals Wy. And it turns out that T/F is uniquely determined up to an F-
isomorphism and independent of the choice of a. We let n = dim(¢r), d = n/m and T,,, be as above.
Then T, d, m, T,, defined here from the Galois side match with those defined from the GL,, side
mentioned in the last paragraph (see [BH14b| for more details).

The following theorem gives a criterion for distinction.

Theorem 0.3.1. Let w be a supercuspidal representation of G and let T, d, m, Ty, be as above. Then
7 18 distinguished by an orthogonal group H if and only if the following two conditions hold:

1. wr(—1) =1, where wy denotes the central character of ;
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2. Precisely one of the following conditions holds:

o Ny, /p(T3)F>*?/F*? = F* [F*? and H is split;
o Ny p(T3)F*2/F*2 is a subgroup of F* /F*? of order 2 and H s either split or H = G

which is quasisplit but not split, where € is a symmetric matriz such that (—1)*™=1/2det ()
€ N, /r(T) — F*%;

o Ny, /p(TX)F*?/F*? = {1} and H is either split or not quasisplit.
In particular, it is easily seen that:
Corollary 0.3.2. When H is split, w is distinguished by H if and only if w(—1) = 1.
Moreover, the following theorem calculates the dimension of the distinguished space.

Theorem 0.3.3. Let 7 be a supercuspidal representation of G such that wy(—1) =1 and let H be an
orthogonal group satisfying the condition 2 of Theorem|0.35.1).

1. If H is not split, then dimcHompg (7w, 1) = 1;
2. If H is split, then

o IfNy, /p(T5)F*?/F*2 = F*/F*?, then dim¢Homp(m, 1) = 1;
o If NTm/F(TT,XL)FXZ/FX2 is a subgroup of F*/F*2 of order 2, then dimcHompy (7, 1) = 2;
o If Ny, /p(T3)F*?/F*? = {1}, then dim¢Homp (7, 1) = 3.

Finally using (0.3.1]) and the same argument in [Hak13|, the following theorem holds as a corollary
of Theorem [0.3.3]

Theorem 0.3.4. For m a supercuspidal representation of G, it is distinguished by a certain orthogonal
subgroup if and only if wy(—1) = 1. Moreover, if this condition holds, then

dimcHomg (7, C*(S)) = 4.

Thus for p # 2 and any supercuspidal representation m of G = GL,,(F'), the problem of distinction
for orthogonal subgroups is fully settled. The only restriction on 7, being the triviality of its central
character on —1, can also be rephrased as the triviality of the determinant character of its Langlands
parameter on —1 via the local Langlands correspondence for GL,,.

0.3.3 Sketch of the proof and the structure of chapter 2

We sketch the proof and the structure of chapter 2. We briefly recall the simple type theory we need
in section 1, which is indeed a proper subset of chapter 1, section 2. In section 2 we build up necessary
results for symmetric matrices, orthogonal involutions and orthogonal groups for future use.

In section 3 we prove our first main theorem, the tau-selfdual type theorem, which says that
for a certain well-chosen orthogonal involution 7y depending on 7, there exists a simple type (J,A)
compactly inducing 7 such that m9(J) = J and A o9 = AV, where AV denotes the contragredient
of A. In fact, for each orthogonal group H satisfying Theorem [0.3.1 condition 2, we may find a 7g
satisfying H = G™ and the tau-selfdual theorem. Such a simple type is called mp-selfdual and will be
regarded as the starting point to pursue the problem of distinction.
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In section 4, we study the distinction with respect to an arbitrary orthogonal involution 7 and
the corresponding orthogonal group G7. We fix a 7p-selfdual simple type (J,A) and we may use the
Mackey formula and the Frobenius reciprocity to write the distinguished space as follows:

Homg~ (777 1) = H Hom jonar (Ag, 1).
geJ\G/GT

The distinguished type theorem says that for those double cosets ¢ € J\G/G" contributing to the
distinction, the simple type (JY, A9) is T-selfdual. In particular, when 7 = 7y we may also give out all
the possible J-G™ double cosets contributing to the distinction.

Finally in section 5, we continue to study the distinguished space Hom jsng- (A9, 1). The techniques
developed in section 4 enable us to further study the distinguished space via the more delicate structure
given by the simple type theory, and finally reduce the question to study the distinguished space
Hom(p, X), where H is an orthogonal subgroup of a finite general linear group G = GL,,(F,), and p
is a supercuspidal representation of G, and ¥ is a character of H of order 1 or 2. Using the Deligne-
Lusztig theory, the condition for the space being non-zero is given and the dimension is at most one.
The condition turns out to be the central character of w being trivial at —1. Thus for those special 1
in section 4, we fully study the distinguished space and the corresponding dimension. Since those 7
correspond exactly to the orthogonal groups in Theorem and Theorem [0.3.3] we prove the “if”
part of Theorem and Theorem [0.3.3

It remains the “only if” part of Theorem [0.3.1} of which we take advantage to explain the condition
for the orthogonal groups or corresponding orthogonal involutions in the theorem. For F,,/F an
extension of degree n and 7 an orthogonal involution, we call E,, 7-split if there exists an embedding
L: BX < GL,(F) such that 7(¢(z)) = «(z) ! for any € EX. The following intermediate proposition
gives important information for 7 being distinguished by G7:

Proposition 0.3.5. For m a given supercuspidal representation of G with wr(—1) =1, there exists a
field E,, of degree n over F' which is totally wildly ramified over T,,, such that if ™ is distinguished by
G7, then E,, is T-split.

The construction of E,, is derived from the construction of rg-selfdual simple type given in section
3. In particular, when 7y corresponds to a split orthogonal group, from the “if” part of Theorem [0.3.1]
FE,, is 19-split. Once knowing this, it is not hard to study all the involutions 7 such that E,, is 7-split,
which turn out to be those involutions satisfying the condition of Theorem [0.3.1] proving the “only
if” part of the theorem.

When T,,/F is of degree n, or equivalently when 7 is essentially tame in the sense of Bushnell-
Henniart [BH05a], which is the same as being tamely ramified in the context of Hakim [Hak13| thanks
to the work of Mayeux [May20], our result gives another proof for the result of Hakim by using the
simple type theory instead of Howe’s construction for tamely ramified representations. It is worth
mentioning that we also borrow many lemmas from [HM99|, [HL12], [Hak13], which effectively help
us to reduce our task.

As in chapter 1, it should also be pointed out that the method we use here is not new. It has first
been developed by Sécherre to solve the similar problem where 7 is a Galois involution [AKM™19],
Sécl9|, and then by us for the case where 7 is a unitary involution (c¢f. chapter 1), and then by
Sécherre for the case where 7 is an inner involution [Séc20] (there G can also be an inner form of
GL,(F)). The sketches of the proof in different cases are similar, but one major difference in the
current case is worth to be mentioned, that is, we need to consider those involution 7 not contributing
to the distinction. In this case we cannot construct a 7-selfdual simple type (J,A) using the method
in section 3. The novelty of our argument is first to consider a special involution 7y, and then to
regard 7 as another involution which differs from 79 up to a G-conjugation. Thus we choose (J,A)
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to be a 7p-selfdual simple type and, using the general results built up in chapter 1, we can still study
those J-G7 double cosets contributing to the distinction. If one wants to fit the method in the above
cases to a general involution 7, one major problem encountered is to construct a 7-selfdual simple
type, which, as we explained, may be impossible if G” does not contribute to the distinction. The
strategy we explained above gives a possible solution, which helps to consider the same question for
an abstract involution.

0.4 Explicit base change lift and automorphic induction for super-
cuspidal representations

0.4.1 Background

Let F/Fy be as in and we only consider the case R = C in this chapter. We will focus on
two special local liftings, say base change lift and automorphic induction with respect to F/Fy. More
precisely, when F'/Fj is tamely ramified and for supercuspidal representations, we will study these two
maps via the simple type theory.

First we give a brief introduction for the local Langlands correspondence for general linear groups,
whose existence and properties have been known for a while ( [LRS93|, [HT01], [Hen00], [Sch13]).
For n/ a certain positive integer and Gy = GL, as a reductive group over Fj, the local Langlands
correspondence is a bijection

LLCpg, : Irtc(Go) — ®(Go).

Here we keep the notations of and in this case ®(Gy) consists of GL,(C)-conjugacy classes of
homomorphisms

$o = (0, Ao) : Wr, x SLa(C) —» GL,(C),
such that ¢g := ¢0’WF0 x{1} 1 a smooth representation of Wg,, and g := ¢0]{1}XSL2(Q is an algebraic
representation of SLy(C) of dimension n’. For n a positive integer, let G' be the Weil restriction of
the reductive group GL,, over F', which is a reductive group over Fy with G = GL,,(F'). Still the local
Langlands correspondence is a bijection

LLCp : Irtc(G) — ©(G).

Here ®(G) is the isomorphism classes of L-parameters related to G, which can be naturally identified
with the isomorphism classes of L-parameters related to GL,, over F. Using this identification, ®(G)
consists of GL, (C)-conjugacy classes of homomorphisms

¢ = (¢, A) : Wp x SLy(C) — GL,(C),

such that ¢ = ¢|yy, «{1} is a smooth representation of Wg, and A := ¢o|{1}xsL,(c) s an algebraic
representation of SLg(C) of dimension n.

Now we introduce the base change lift and automorphic induction related to F'/Fy. First we assume
n’ = n and we define the restriction map

Resp/p, : ®(Go) — @(G),  ¢o = (¥0, o) — ¢ = (¢olwg; o),

where we notice that Wr is a subgroup of Wg,. Thus the base change lift is the expected local lifting
BCp/p, : Irrc(Go) — Irre(G) such that the following diagram is commutative:

LLCF,
Irre (Go) — ©(Go)
BCF/FO iReSF/FO

Irr(cv(G) o(G)

—
LLCpg
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Secondly we assume n’ = nr and we define the induction map
w .
IndF/Fo : q)(G) — (I)(GO)7 ¢ = (QO, )‘) — ¢6 = (IHdWII:OQO,Z © )‘)7

where i : GL,,(C) — GL,,(C) is a group embeddingﬁ Thus the automorphic induction is the expected
local lifting A g/, : Irrc(G) — Irre(Go) such that the following diagram is commutative:

LLCF,
Irre (Go) — ©(Go)
A
AF/FO TIndF/FO

Irre(G) e P(G)

In [AC8Y|, [HH95| and |[HL11], the base change lift for all irreducible representations, and the auto-
morphic induction for at least essentially unitary generic representations have been constructed via
the method of trace formula without the utilisation of the local Langlands correspondence, and the
functoriality above have been verified.

Although for GL,, the local Langlands correspondence has already been constructed as a bijection
with desiderata being verified, it seems that the information extracted from the two sides are not
equal. Let us focus on supercuspidal representations, then for any n € N the correspondence can be

realized as a bijection
LLCp : A (F) — G(F)

from the set of equivalence classes of supercuspidal representations of GL,, (F'), to the set of equivalence
classes of smooth irreducible representations of the Weil group Wy of dimension n, denoted by A% (F)
and G2 (F) respectively. Usually we get few concrete information for irreducible representations of Wg
from the representation theory, but by contrast we have the classification theory for supercuspidal
representations of GL,,(F'), the so-called simple type theory built up by Bushnell-Kutzko |[BK93],
which is down-to-earth and sophisticated. So one natural question is, can we characterize the LLCp
above using the structural theory for supercuspidal representations of GL,,(F")?

To answer this question, Bushnell and Henniart initiate a long-running project with the outcome
contained in a series of articles [BH96|, [BH99|, [BHO05¢| [BHO03|, [BHO5a|, [BHO5b|, [BH10], [BH14b],
IBH17|, [BH19], etc. Especially, in [BHO5a], [BHO5b|, [BH10] they fully addressed the question above
for a special class of supercuspidal representations, say essentially tame supercuspidal representations.
To do that, they first constructed an algebraic version of local Langlands correspondence, which they
called “naive local Langlands correspondence”, as a bijection between same sets as LLCr and denoted
by NLCpg. For ¢ € GY(F), let T}, be defined as the tamely ramified extension of F related to ¢ as in
the last section. For p a tamely ramified character of T)%, they constructed a certain “twist” of ¢ by p,
denoted by ¢ ® u, which is another representation in G2(F). The upshot is the comparison theorem,
which predicts the existence of a tamely ramified character pu, of 7,7, such that LLC}I () is isomorphic
to NLC' (p®py). In the essentially tame case in the sense of [BH10], the character p1,, of . is of order
dividing 4 which can be calculated explicitly, thus in this case the local Langlands correspondence is
fully understand in an algebraic way. In the general case as in [BH14b|, the construction of the naive
local Langlands correspondence relies on the local Langlands correspondence in the wildly ramified
case as a “black box”, and the full characterization of the character p, remains unknown. So to
fully understand the LLCFg in general, we first need to understand its special case for wildly ramified
supercuspidal representations, which seems to be a deep enough question, and then we need to calculate
the character p, above, which will be discussed in chapter 3 later on.

4Using basic argument in linear algebra we may show that the definition doesn’t depend on the choice of .
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The principal aim of this chapter is to adapt the idea of Bushnell-Henniart above to the base
change lift and automorphic induction, that is, we will construct algebraic versions of the two maps,
and then will compare them with the original maps correspondingly. More details will be given in the
subsection below.

0.4.2 Main results

To give a detailed introduction, we use the basic terminologies and properties of the simple type theory
and the theory of cyclic base change and automorphic induction, for which the readers may refer to
chapter 3, section 2 and section 4 respectively. For F//F, as before, let ¥ = Gal(F/Fy) be the Galois
group and fix o € ¥ a generator. For 7y a supercuspidal representation of GL,,(Fp), we define its base
change 7 := BCp/p, (7o) as an irreducible representation of GL,(F). We further assume that either
7 is supercuspidal, or r divides n and there exists a supercuspidal representation 7’ of GL,, /r(F) such
that 7 is isomorphic to the parabolic induction

r—1
7 x 7' x ..ox @

Equivalently we have mo = Ap/p, (') as the automorphic induction of 7/ in the latter case. Our aim is
to give an explicit construction of m and 7’ in the two cases respectively, using the simple type theory
and the information from my. To that end, we need to assume the additional condition that F'/Fj is
tamely ramified.

Let [ag, 3] be a maximal simple stratum in M, (Fp), and let § be a simple character of H'(a, 3)
contained in my. We choose kg to be a full Heisenberg representation of 6y as a representation of
J(ag, 3), and then there exists a unique representation py of J(ag, ) trivial on J'(ag, 3), such that
o is isomorphic to the compact induction indga’gfg’)(mo ® po). Here Ey = Fy[f] is a field of degree d
over Fy with n = md for m an integer, and we denote by Tj its maximal tamely ramified subextension
over Fy and by Ty, the unramified extension of degree m over Tp. Then the representation pg
can be characterized by the Ag-orbit of a Agp-regular tamely ramified character £y of TOX,m, where
A() = Gal(To,m/To).

We first consider the case where 7 is supercuspidal. Using the tame lifting result in [BH96]
and [BHO3|, we construct [a, ] as a maximal simple stratum in M,,(F"), and 6, as a simple character of
H'(a, 3) contained in 7. And such 6, may be regarded as the base change lift of f for simple characters.
Then we determine a full Heisenberg representation &y of 8, in an algebraic way, which relies only on
6o and kg, but not 7. Then there exists a unique representation py, of J(a, 3) trivial on J!(a, 3), such

that 7 is isomorphic to the compact induction ind??ﬂ"‘g?(nb ® pp). Such py is characterized by the

A-orbit of a A-regular tamely ramified character &, of T}, where 15, = F @5, To,m and T = F ®p, Ty
are fields over F' and A = Gal(7,,/T). The following comparison theorem is recorded as the main
theorem for base change.

Theorem 0.4.1 (See Theorem [3.6.2). There exists a tamely ramified character bqbg)/Fo of T}, such

that &, - bqbéz/Fo and & o N, /1, ,, are in the same A-orbil.

Similarly we consider the case where my equals the automorphic induction of a supercuspidal
representation 7' of GL,,/.(F). To proceed, we further assume that either F' is identified with a
subfield of Fy via an embedding, which corresponds to the interior automorphic induction case, or
E = F®p, Ey is a field of degree r over Ey, which corresponds to the exterior automorphic induction
case, and we divide the latter case into two subcases depending on E/Ey unramified or totally ramified,
since in different cases the corresponding situations and methods are different. Still using the tame
lifting method in [BH96| and [BHO3|, we construct [c, 3] as a simple stratum in M,, /.(F') and 0, as a
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simple character of H'(c, 3) contained in 7/ And 6 may be regarded as the automorphic induction of
0, for simple characters. Like the base change case, we determine a full Heisenberg representation k,
of 8, in an algebraic way depending only on fy and k¢, and then there exists a unique representation p,
of J (¢, B) trivial on J(¢, B), such that 7’ is isomorphic to the compact induction ind?ifﬁ/;'(F) (Ka® pa)-
In the interior automorphic induction case the representation p, is characterized by the Ag-orbit of a
Ag-regular tamely ramified character &, of Tj;',,. In the exterior automorphic induction case we write
T =F ®p, Tp as a field and we let T,, . be the unramified extension of degree m/r over T, then for
A = Gal(T},/,/T) the representation p, is characterized by the A-orbit of a A-regular tamely ramified
character of Tnx1 I still denoted by &,. In this case if E/FEy is unramified, T, /r is identified with T ;,
and A is identified with a subgroup of Ay, and if E/Ej is totally ramified, T;,, = F ®p, To,m is a field
of degree m over T' with T,/ being regarded as its subfield, and we write A" = Gal(T;,/T). The
following comparison theorem is recorded as the main theorem for automorphic induction.

Theorem 0.4.2 (See Theorem Theorem and Theorem [3.6.8). (1) In the interior auto-
morphic induction case, there exists a tamely ramified character aqbg; Fo of Tofm such that &, - agbg:)/Fo

and &y are in the same Ag-orbit;
(2) In the exterior automorphic induction case, there ezists a tamely ramified character a(ﬁgo/FO of

T* such that

m/r

e if E/Ey is unramified, &, - a¢£;/Fo and &y are in the same Ag-orbit;

e if E/Ey is totally ramified, (&, - a(b(’jo/FO) o NTm/Tm/T and & oNr, /1, . are in the same A-orbit.

We mention three applications of the above two theorems to end this subsection. The first ap-
plication relates to the study of p, and p, via py, where p, is the supercuspidal representation of
GLy(kg,) = J(ao,3)/J (a0, B) whose inflation equals pol (4, 5 With kg, denoting the residue field
of Ey, and p, is the supercuspidal representation of GL,,(kg) = J(a,3)/J'(a,3) whose inflation
equals pp| J(a,8) With kg denoting the residue field of F in the base change case, and p, is the super-
cuspidal representation of GL,,(kg,) = J(c,3)/J (¢, 3) in the interior automorphic induction case,

of GL,/(kg) = J(c,8)/J (¢, B) in the exterior automorphic induction case, whose inflation equals

Paly(,3)- Then the restriction of bgbgo/ Fo and agbgo/ Fo {5 those elements in the ring of integers are
quadratic characters which can be fully characterized, the representations p, and p, are understood
via the theory of Green (cf. [Greb5|). In particular for E/Ey as an unramified extension of degree
r in the base change case or exterior automorphic induction case, this gives a relation between the
Arthur-Clozel base change lift and the Shintani base change map (cf. [Shi76|) for supercuspidal rep-
resentations, see Corollary and Corollary [3.6.9

The second application relates to the I-modular representations. For [ a prime number different
from p, we fix an algebraic isomorphism Q; = C, thus all the representations above can be realized
as representations over ;. We further assume that 7 is integral, saying that it comes from a repre-
sentation over a Z;-lattice by extension of scalar. Using the two theorems, we may prove that tamely
ramified cyclic base change lift and automorphic induction are compatible with modulo ! reduction for
supercuspidal representations. More precisely, for one such 7y with its base change 7 supercuspidal, ™
is also integral, and if we change my by another integral supercuspidal representation with its modulo
I reduction 7;(mp) unchanged as a cuspidal representation over F;, then the corresponding 7 is still
integral supercuspidal with its modulo [ reduction r;(7) unchanged. Similarly for one such 7y as the
automorphic induction of 7’ as a supercuspidal representation, 7’ is integral, and if we change 7" by
another integral supercuspidal representation with its modulo I reduction 7;(7’) unchanged as a cusp-
idal representation over F;, then the corresponding 7 is still integral supercuspidal with its modulo !
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reduction 7;(mp) unchanged. The proof is direct and will not be given in this chapter, but the readers
may consult [BH14a| for a similar idea.

The final application relates to the calculation of the character pu, related to the comparison
theorem in [BH14b| mentioned in the last subsection. The strategy is to consider a certain unramified
base change lift, and then to compare the corresponding characters “mu” related the two base fields,
which has already been used for the essentially tame case in [BH05a]. To that end we need to study

quﬁg)/ Fo in the case where F / Fy is unramified.

Theorem 0.4.3 (See Theorem [3.9.1)). When F/FEy is unramified, the character b(;Sg:J/FO is unramified,

and b(Z)gFO/FO(w%) = (=1)ED0=D where wy, denotes a uniformizer of TS, and Ky denotes the
mazimal unramified subextension of Ty m over Fy, and t = [Ty : Ko) and [Ey : To] = p®.

Using a special case of the theorem, that is Proposition [3.9.9, we may update the values of n,
which will be discussed in the last section. Our result there is obviously incomplete and not satisfactory
enough.

0.4.3 Structure of the chapter 3

We sketch the structure of chapter 3. The sections 1-4 are preliminaries, including a brief introduction
and summary of the simple type theory, symplectic signs, and base change lift and automorphic
induction respectively. After the first elementary discussion in section 5, in section 6 we formulate
our algebraic construction of tamely ramified cyclic base change and automorphic induction following
the sketch mentioned in the last subsection and state Theorem and Theorem But the
construction of the corresponding full Heisenberg representations remains to be done until section 7,
whose strategy relies on the idea of a series of results of Bushnell-Henniart which will be recalled
and reformulated there. The proof of Theorem and Theorem will be given in section 8
which seems to be surprisingly easy, which actually relies on two highly-nontrivial ingredients: the
local Langlands functoriality for base change lift and automorphic induction, and the comparison
theorem of Bushnell-Henniart. The section 9 is devoted to prove Theorem and the section 10 is
its application to calculate the character j, related to the comparison theorem.

The author would like to take advantage of this place to thank Colin J. Bushnell and Guy Henniart
for their enormous influence on the author and on this chapter. Actually it is better to regard this
part as a (clumsy) continuation of their work rather than an independent work, since almost all the
important ideas and techniques are originated from their articles listed above. Moreover the author
would like to thank them for their generous encouragements, which indeed helped a lot to a young
PhD student who was not confident and was even suspicious with the necessity of his work.



Introduction (version francaise)

Cette these contient trois parties. Dans ce chapitre introductif, nous expliquerons le contexte général
dans la premiere section, puis dans les trois sections suivantes, nous nous concentrerons sur chaque
partie et fournirons des introductions spécifiques.

0.1 Contexte général

Soient F{y un corps localement compact non archimédien de caractéristique résiduelle p et R un corps
algébriquement clos de caractéristique [ # p, et en particulier lorsque ! > 0 nous dirons que nous
sommes dans le cas “I-modulaire”. Par exemple, nous nous concentrerons principalement sur les trois
cas suivants: R est le corps des nombres complexes C, la closure algébrique du corps [-adique noté
Q;, ou la closure algébrique du corps fini avec [ éléments noté F; quand [ # 0. Soient G' un groupe
réductif El sur Fy et G le groupe localement profini constitué des Fy-points rationnels de G. Nous
nous intéressons a la catégorie des représentations irréductibles lisses d’'un groupe localement profini
et nous désignons par Irrg(G) 'ensemble des classes d’isomorphisme de représentations irréductibles
lisses de G sur R.

0.1.1 Correspondance de Langlands locale

Considérons tout d’abord le cas ot R = C. Fixons une closure séparable Fy de Fy, et notons Wk,
le groupe de Weil de Fy par rapport a Fy et WD, = Wpg, x SLa(C) le groupe de Weil-Deligne de
Fy. Définissons le groupe dual de G, noté é, comme le groupe réductif complexe (identifié au groupe
topologique complexe de ses points rationnels par abus de notation) déterminé par le dual de la donnée
radicielle de G. Puisque la donnée radicielle de G' est munie d'une action par Wrg, il en est de méme
pour le groupe G en fixant un épinglage, et nous notons G = G x Wr, le L-groupe de G.

Définition 0.1.1. Un L-parametre de G (sur C) est un homomorphisme ¢ : WDpg, — LG tel que

e Le diagramme suivant est commutatif:

Wr, x SLy(C) = WDg, La =G xWp,

T~

WE,

ot les deux fleches transversales sont les projections canoniques.

5Nous ne considérerons que les groupes réductifs connezes.

29
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° (z)‘WFOX{l} est continu et d’image constituée d’éléments semz’—sz’mpleﬂ et dl{11xsLy(c) est al-

gébm’que et d’image constituée d’éléments unipotents dans G.

Deux L-paramétres sont dits isomorphes s'ils sont dans la méme G-classe de conjugaison, et nous
notons ®(G) l'ensemble des classes d’isomorphisme des parametres de Langlands de G. La célebre
correspondance de Langlands locale est énoncée comme suit.

Conjecture 0.1.2. Il y a une surjection unique
LLC : Irre(G) — ®(G)
avec fibres finies et satisfaisant certaines desiderata.

Définition 0.1.3. Pour ¢ € ®(G), nous appelons Ily := LLC™Y(¢) le L-paquet de ¢. C’est un
enemble fini de représentations irréductibles de G.

Ici, nous ne précisons pas ce que signifient exactement ces desiderata (compatibilité avec 'induction
parabolique, transfert des L-facteurs et des e-facteurs, etc.) mais nous nous référons a [Bor79| pour
une introduction explicative. La correspondance de Langlands locale pour certains groupes réductifs
est connue, comme pour les tores, GL,, ou certains groupes classiques, grace aux travaux de Langlands
|Lan97), Harris-Taylor [HTO01], Arthur |Art13], etc.

De plus, bien que la conjecture de Langlands ne soit énoncée que pour les représentations sur C,
il est possible de I'étendre aux représentations a coefficients dans R, en adaptant les définitions des
L-parametres et des desiderata. Par exemple, il existe des travaux novateurs de Vignéras |[Vig01] pour
G = GL,, ainsi que des travaux récents de Dat-Helm-Kurinczuk-Moss [DHKM20| pour les groupes
réductifs généraux et représentations sur un anneau integre dans lequel p est inversible au lieu de
sur un corps R. Enfin, nous mentionnons le résultat récent de Fargues-Scholze [FS21]. En utilisant
des méthodes géométriques et sous des parametres assez généraux (plus généraux que les nétres), ils
ont construit ®(G) (en fait comme un champ) et la correspondance de Langlands locale, et vérifié les
desiderata correspondants sous leurs parametres (cf. ibid. Theorem 1X.0.5).

0.1.2 Fonctorialité de Langlands locale

Maintenant nous discutons la fonctorialité de Langlands locale et nous supposons que R = C. Soient
G\ un autre groupe réductif sur Fy et Gg le groupe de Fy-points rationnels de Gg. Comme dans la
sous-section précédente, nous pouvons définir de la méme maniere son groupe dual Gg, son L-groupe
LGy = Go x W, et 'ensemble des classes d’isomorphisme des L-parametres ®(Gy).
Définition 0.1.4. Un homomorphisme de groupe

v FGy — tG

est appelé un L-homomorphisme, si

e il est continu, et sa restriction a éo est une représentation algébrique de Go dans G.

5Un élément (g, w) dans LG est semi-simple si pour tout r comme une représentation de dimension finie de ©G,
I'image r((g,w)) est semi-simple.

7C’est—é:dire qu’il s’agit d’une représentation algébrique du groupe algébrique complexe SL2 dans le groupe algébrique
complexe G .
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e Le diagramme suivant est commutatif

WFO[XGO:LGQ LG:GNWFO

T~

L
Wr,

ou les deux fleches transversales sont des projections canoniques.

Etant donné un L-paramétre ¢y dans ®(Gy), la composition ¢ o ¢y est un L-paramétre dans ®(G).
Ainsi, nous construisons une application entre les classes d’isomorphisme des L-parametres:

O(1) : P(Go) — P(G), ¢Po+— Lo Pp.

Si nous admettons la correspondance de Langlands locale pour Gg et G, nous avons le diagramme
suivant:

Irr p(Go) =25 ®(Go)
() ié(b)

Irr;(G) o(G)

_—
LLC

La fonctorialité de Langlands locale prédit I'existence d’une application II(¢), appelée relévement local
par rapport a ¢, telle que le diagramme ci-dessus est commutatif. De plus, cette application II(¢)
devrait étre construite indépendamment de ce diagramme, mais en utilisant d’autres outils techniques
comme la formule des traces ou les fonctions L. D’une part, la compréhension des relevements locaux
constitue une partie importante du programme de Langlands local. D’autre part, il joue également un
role crucial dans la stratégie inductive, proposée par Langlands-Shelstad [LS87] et appelée la méthode
d’endoscopie, pour construire la correspondance de Langlands locale pour un groupe réductif général,
qui est devenu un domaine prospere depuis quelques décennies avec des résultats fructueux, notamment
les travaux d’Arthur, Kottwitz, Langlands, Laumon, Ngo6, Shelstad, Waldspurger, etc.

Néanmoins, nous n’avons pas besoin de nous confiner aux représentations complexes, mais nous
pouvons aussi considérer un relevement local possible sur R. Par exemple, une attente pour un
relevement local sur F; est que, il soit compatible avec le relevement local sur Q, en identifiant C
avec Q; via un certaine isomorphisme algébrique et appliquant la réduction modulo . Un résultat
typique est la correspondance de Jacquet-Langlands qui est un relevement assez naturel entre GL,, et
ses formes intérieures. Sur F;, la construction de cette application et aussi sa compatibilité avec la
correspondance de Jacquet-Langlands habituelle a été étudiée par Dat [Dat12] dans un cas particulier,
puis généralisée par Minguez-Sécherre [MS17]| dans le cas général.

0.1.3 Probléme de la distinction

Soit H C G un sous-groupe algébrique fermé sur Fj et nous notons H le groupe de Fy-points rationnels
de H. Pour 7 € Irrr(G) et p € Irrg(H), nous disons que 7 est (H, p)-distinguée si

Homp (7, p) # 0,

ou en d’autres termes, la restriction de # a H admet p comme un quotient. En particulier, lorsque
p est triviale, nous appelons 7w distinguée par H ou H-distinguée. Pour simplifier, nous supposons
temporairement R = C.

Le probleme de la distinction est omniprésent et joue un réle important dans la théorie des
représentations des groupes p-adiques. Par exemple, si G est quasi-déployé, nous notons H = U
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le radical unipotent d’un sous-groupe Borel de G et nous choisissons ¥ comme un caractére non
dégénéré de H = U, c’est-a-dire que sa restriction a tout sous-groupe unipotent U, de U lié a une
racine simple « n’est pas triviale. Un résultat bien connu [Sha74] est que 'espace vectoriel

HOI’HU (7(7 w)

est de dimension inférieure a un. Ces 7 pour lesquelles cette dimension vaut un sont appelés les
représentations génériques. Par la réciprocité de Frobenius, une telle 7w peut étre plongée dans I’espace
des formes linéaires (U, v)-invariantes G, qui est appelé le modele de Whittaker de 7 et joue un réle
important dans la théorie locale et globale des L-fonctions. Dans un autre exemple, nous considérons
V' comme un espace vectoriel de dimension finie sur Fy muni d’une forme sesquilinéaire, et W comme
un sous-espace de V. On note G le groupe de Fy-automorphismes de V et H le groupe de Fp-
automorphismes de W, en préservant la forme sesquilinéaire. Ensuite, le probleme de la distinction
correspondant est lié aux “lois de branchement”, qui remontent a la théorie des représentations des
groupes algébriques complexes et se sont comportées comme un domaine actif depuis des décennies en
raison de U'initiation et de la percée de la conjecture de Gan-Gross-Prasad |[GGP12] et ses variantes.

Dans de bonnes conditions, le probleme de la distinction est étroitement lié a la correspondance de
Langlands locale et a sa fonctorialité. Dans le livre remarquable [SV17a], Sakellaridis et Venkatesh ont
proposé un cadre général pour étudier le probleme de la distinction, dans lequel ils supposent que G
soit déployé et X = H\G soit une variété sphérique avec X désignant ses Fy-points rationnels. Leur
point de départ est la construction du groupe dual Gx pour X comme un groupe réductif complexe,
sous une hypothese sur les racines de X, avec une représentation algébrique canonique

Lx GX X SLQ((C) — é

Selon leur suggestion conjecturale, grosso modo, les représentations de G distinguées par H corre-
spondent aux parametres d’Arthur X-distingués via la correspondance de Langlands locale, ou les
parametres d’Arthur sont ’analogue des L-parametres avec une version correspondante de la corre-
spondance de Langlands locale, et ces parametres d’Arthur factorisés via ¢ x sont appelés X-distingués,
pour lesquels nous laissons ibid. section 16 pour plus de détails. L’idée sous-jacente est donc que,
dans de bonnes circonstances, la propriété d’étre distinguée est préservée par la correspondance de
Langlands locale. Dans |[Pral5|, Prasad a considéré le cas ou X = H\G est un espace symétrique par
rapport a une involution galoisienne. Il a construit un sous-groupe quasi-déployé Gy (noté G’ dans
loc. cit.) sur Fy, un L-homomorphisme naturel ¢ : “Gy — G qui vient simplement de la restriction,
et un caractere wy de H. Finalement, il a conjecturé que, pour m une représentation irréductible de G
distinguée par (H,wpr), le L-paquet de 7 vient du relevement local lié & ¢, ou plus précisément il existe
oo € P(Go) tel que m € TI(¢ 0 ). De plus, une formule conjecturale pour la dimension de I'espace de
la distinction a été donnée. Ces deux cadres généraux, combinés aux exemples divers concrets, doivent
étre considérés comme notre ligne directrice des résultats auxquels nous devrions nous attendre dans
le langage de la correspondance de Langlands locale et de sa fonctorialité.

Nous présentons brievement quelques méthodes connues pour traiter le probleme de la distinction.
Une méthode importante, initiée par Jacquet et développée par lui-méme, ses étudiants et d’autres
adeptes, est appelée la méthode de la formule de trace relative, pour laquelle nous nommons quelques
articles |[JLR93|, [JY96], [Guo96] , [Mao9g|. L’idée, grosso modo, est d’abord de résoudre le probléeme
correspondant sur un corps global, puis de réaliser notre corps local Fy comme un composant de
I’anneau des adeles d’un corps global et d’utiliser un argument global-local. Ensuite, nous comparons
deux formules de trace différentes comme des distributions sur deux espaces de fonctions de test, dont
I’'une se rapporte exactement a notre probleme global. Apres avoir vérifié le lemme fondamental et
Iexistence d’un transfert lisse, nous obtenons suffisamment de paires de fonctions de test correspon-
dantes pour que deux formules de trace coincident. Si ’autre formule de trace est bien comprise, nous
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obtenons les informations pour résoudre le probleme global de la distinction. De plus, pour résoudre
la conjecture locale de Gan-Gross-Prasad pour les groupes orthogonaux, Waldspurger [Wall0], [W-
all2] a lancé une nouvelle méthode avec la considération d’une formule de trace relative locale, telle
que la dimension de ’espace de la distinction peut étre exprimée, puis il a utilisé des techniques so-
phistiquées d’analyse harmonique sur des groupes réductifs p-adiques pour reformuler la formule de
trace et obtenir le résultat. Au cours de la derniere décennie, cette méthode a été développée et ap-
pliquée a différentes situations par certaines personnes dont Beuzart-Plessis et C. Wan. Par exemple
dans |BP1§| en utilisant la méthode similaire, Beuzart-Plessis a résolu une partie de la conjecture
ci-dessus proposée par Prasad pour des représentations essentiellement de carré intégrable.

Une autre méthode possible pour étudier le probleme de la distinction est algébrique: on étudie
d’abord le probleme pour les représentations supercuspidales, puis on applique 'induction parabolique
pour étudier des représentations irréductibles plus générales. Pour 7w une représentation supercusp-
idale de GG, une croyance générale est que, elle peut étre écrite comme l'induction compacte d’une
représentation lisse irréductible de dimension finie. Plus précisément, il existe une paire (J, A) telle
que J est un sous-groupe compact de G modulo le centre, et A est une représentation irréductible
lisse de dimension finie de J telle que m = indgA. Cette croyance est vérifiée dans de nombreux
cas, y compris les représentations supercuspidales modérées [YuOl], [Fin21] pour un groupe réductif
modérément ramifié G, et aussi les représentations supercuspidales générales pour les groupes clas-
siques [BK93], [Ste08]. En ce moment si nous nous concentrons sur ’étude de la représentation
supercuspidale 7 distinguée par H, en utilisant la formule de Mackey et la réciprocité de Frobenius,
on voit facilement que

Homp(m,1) = Homp (indGA, 1) = H Hom jonp(AY,1).
geJ\G/H

11 suffit donc d’étudier les g € J\G/H tels que Hom jonpg (A9, 1) est différent de zéro, puis d’étudier la
dimension correspondante. Pour cela, nous remontons a la construction détaillée de (J, A). Un travail
typique est [HMOS§|, ou les auteurs ont étudié, pour G/H un espace symétrique, les représentations
supercuspidales modérées m de G distinguées par H en utilisant 1’idée mentionnée ci-dessus et le
résultat structurel de J.-K. Yu [YuOl] pour de telles représentations.

Pourtant, nous ne sommes pas forcément confinés au cas ou R = C, mais nous nous concentrons sur
le général R dans nos parametres. Les deux méthodes analytiques mentionnées ci-dessus deviennent
invalides. En revanche, la méthode algébrique reste valide, puisque le résultat structurel pour (J,A),
une fois établi, fonctionne généralement pour R général plutdt que juste R = C, comme [Vig96,
IMS14b| et [Finl9]. En résumé, la recherche de la relation possible entre le probleme de la distinction
et la correspondance de Langlands locale et sa fonctorialité pour le R général doit étre considérée
comme la motivation originelle de cette these.

0.1.4 Notre parametres concrets

Bien que le contexte ci-dessus soit assez général, le but de cette these est humble, qui se concentre
sur la compréhension de quelques exemples particuliers. Fixons n un entier positif. Soit F/Fy une
extension cyclique finie de corps localement compacts non archimédiens de caractéristique résiduelle
p de degré r, et soit G la restriction de Weil du groupe réductif GL,/F, qui est un groupe réductif
sur Fy. En particulier, nous avons G = GL,,(F'). La plupart du temps, nous nous concentrerons sur
les représentations cuspidales ou supercuspidales de G sur R, qui devraient étre considérées comme
les blocs de construction des représentations irréductibles générales. Rappelons qu'une représentation
irréductible de G est cuspidale (resp. supercuspidale) si elle ne se produit pas comme une sous-
représentation (resp. sous-quotient) de l'induction parabolique d’une représentation irréductible d’un
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sous-groupe de Levi propre de G. Quand char(R) = 0 les deux concepts ci-dessus sont équivalents,
cependant quand char(R) = [ > 0, une représentation supercuspidale est cuspidale, mais I’existence
de contre-exemples montre que l'inverse est faux en général.

Pour étudier une représentation cuspidale w de GG sur R, notre outil principal est la théorie des types
simples établie par Bushnell-Kutzko [BK93| lorsque char(R) = 0, et généralisée par Vignéras [Vig96|
au cas [-modulaire. Nous nous référons au chapitre 1, section 3 ou au chapitre 3, section 2 pour une
introduction détaillée de la théorie, mais ici nous donnons également une breve introduction pour
faciliter les détails.

Comme indiqué ci-dessus, I'idée de la théorie des types simples est de réaliser m comme I'induction
compacte d’une représentation irréductible de dimension finie A de J, qui est un sous-groupe ouvert
de G compact modulo le centre. Une telle paire (J, A) est appelée un type simple maximal étendu que
nous abrégerons en type simple. Le théoreme principal dit que toute m peut étre construite de cette
maniére, et le type simple correspondant (J, A) est unique a G-conjugaison pres. Nous mentionnons
également les principales propriétés suivantes de (J, A):

(1) Le groupe J contient un unique maximal sous-groupe compact ouvert J qui contient un unique
maximal pro-p-sous-groupe distingué J';

(2) Nous avons J/J! = GL,(1). Ici I est le corps résiduel de E, ol E est une extension de corps
sur F' de degré d. De plus, nous avons n = md, ol m et d sont entieres déterminés par ;

(3) On peut écrire A = K ® p, ol Kk et p sont des représentations irréductibles de J tel que la
restriction k|;1 = 7 est une représentation irréductible de J', appelée représentation de Heisenberg,
et p|; est l'inflation d’une représentation cuspidale de GL,, (1) = J/J*;

(4) Tl existe un pro-p-sous-groupe de J' noté H', et un caractére de H' noté 6 et appelé un
caractere simple, tels que la restriction de n & H' égale la somme directe de (J' : H 1)1/ 2 copies de 6.

Enfin, nous entrons dans I'introduction pour nos travaux concrets. Pour la premiere partie, nous
étudions le probleme de la distinction lié & un sous-groupe unitaire de G et sa relation avec la foncto-
rialité de Langlands, ou incarné comme le changement de base quadratique dans nos contextes; Pour
la deuxieme partie, nous étudions le probleme de la distinction lié & un sous-groupe orthogonal de
G, et nous nous concentrons uniquement sur les représentations supercuspidales sur R = C, ce qui
est la premiere étape vers la compréhension de représentations irréductibles plus générales; Pour la
partie finale, nous donnons des constructions explicites pour deux relevements locaux particuliers, le
changement de base et I'induction automorphe, pour les représentations supercuspidales sur R = C.

0.2 Le probleme de la distinction pour le sous-groupe unitaire de
GL,(F) et le changement de base [-modulaire

0.2.1 Contexte général

Les huit premieres sections du chapitre 1 sont basées sur la prépublication [Zoul9]. Dans cette sous-
section, nous supposons que F'/Fj est une extension quadratique de corps p-adiques de caractéristique
résiduelle p, et nous notons o son automorphisme non trivial. Pour G et G comme ci-dessus, nous
notons £ pour une matrice hermitienne dans G, c’est-a-dire o(‘c) = ¢ avec ! désignant la transposition
des matrices. Nous définissons

7o(x) = eo(tet)e™!

pour tout = € G, appelée une involution unitaire sur G, qui induit également un Fy-automorphisme
sur G. Nous fixons une 7 = 7., et nous notons G” le sous-groupe de G sur Fp, tel que G7 est le
sous-groupe de G constitué des éléments fixés par 7. Un tel G™ (resp. G7) est appelé le sous-groupe
unitaire de G (resp. G) par rapport a 7.
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Pour 7 une représentation lisse irréductible de G sur C, Jacquet a proposé d’étudier le probleme de
la distinction 1ié au couple (G, G™) comme ci-dessus, c’est-a-dire, d’étudier I'espace des formes linéaires
G7-invariantes

Homg- (7, 1)

et sa dimension en tant qu’espace vectoriel complexe. Pour n = 3 et 7 supercuspidale, il a prouvé
dans |Jac0l] en utilisant un argument global, que 7 est distinguée par G7 si et seulement si m est
o-invariante, c’est-a-dire 79 = 7 ou 7% := wo ¢. De plus, il a montré que cet espace est de dimension
un en tant qu’un espace vectoriel complexe lorsque la condition ci-dessus est satisfaite. D’ailleurs dans
1bid., 11 a aussi esquissé une preuve similaire lorsque n = 2 et w est supercuspidale, en donnant le
méme critere de la distinction et le méme théoreme de dimension un. Il a conjecturé qu’en général,
7 est distinguée par G7 si et seulement si 7 est g-invariante. De plus, la dimension de ’espace des
formes linéaires G7-invariantes n’est pas nécessairement un en général. Sous I’hypothese que 7 est
o-invariante et supercuspidale, Jacquet a conjecturé que la dimension est un.

De plus, une représentation irréductible m de G est contenue dans I'image du changement de base
quadratique par rapport a F'/Fj si et seulement si elle est o-invariante ( |[AC89]). Ainsi pour les
représentations irréductibles, la conjecture de Jacquet donne un lien entre le changement de base
quadratique et G7-distinction.

Outre le cas particulier mentionné ci-dessus, il existe deux autres motivations qui corroborent la
conjecture. Nous considérons d’abord I'analogue de la conjecture dans le cas de corps finis. Pour p
une représentation complexe irréductible de GL,(F2), Gow [Gow84] a prouvé que p est distinguée
par le sous-groupe unitaire U, (F,) si et seulement si p est isomorphe & sa torsion par 1’élément non
trivial de Gal(F2/FF,). Sous cette condition, il a également montré que l'espace des formes linéaires
U, (F,)-invariantes est de dimension un en tant qu’espace vectoriel complexe. De plus, Shintani [Shi76]
a montré qu’il existe une bijection entre I’ensemble des représentations irréductibles de GL,(FF,) et
celle des représentations irréductibles Galois-invariantes de GL,,(F,2), ol la correspondance, appelée
Uapplication de changement de base, est caractérisée par une identité de traces. Ces deux résultats nous
donnent une caractérisation claire entre le changement de base et la distinction par U, (F;). Enfin,
lorsque p est générique et Galois-invariante, Anandavardhanan et Matringe |AM18] ont récemment
montré que la U, (F,)-moyenne de la fonction de Bessel de p sur le modele de Whittaker en tant
que une forme linéaire U, (F,)-invariante est non nulle. Puisque 'espace des formes linéaires Uy, (F,)-
invariantes est de dimension un, ce résultat nous donne une caractérisation concrete de I’espace de la
distinction.

L’autre motivation de la conjecture de Jacquet est son analogue global. Nous supposons que K/Kg
est une extension quadratique de corps de nombres et nous notons ¢ son automorphisme non trivial.
Nous considérons 7 comme une involution unitaire sur GL,, (K), ce qui nous donne aussi une involution
sur GL,,(Ax), notée T par abus de notation, ou Ax désigne 'anneau des adeles de K. Nous notons
GL,(K)T (resp. GL,(Ax)") le sous-groupe unitaire de GL,(K) (resp. GL,(Ax)) par rapport a 7.
Pour ¢ une forme automorphe cuspidale de GL,(Ax), nous définissons

Pr(9) = o(h)dh

/GLn(IC)T\GLn(A;C)T

comme ’intégrale de période unitaire de ¢ par rapport a 7. Nous disons qu’une représentation auto-
morphe cuspidale IT de GL, (Ax) est GL,,(Ax)"-distinguée §'il existe une forme automorphe cuspidale
dans l'espace de II telle que P-(¢) # 0. Dans les années 1990, Jacquet et Ye ont commencé a étudier la
relation entre GL,,(Ax)"-distinction et le changement de base globale (voir par exemple [JY96] quand
n = 3). Pour n général, Jacquet |Jac05] a montré que II est contenu dans l'image du changement de
base quadratique (ou de maniere équivalente IT est o-invariant [AC89|) par rapport a K /Ky si et seule-
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ment s’il existe une involution unitaire 7 telle que II est G"-distinguée. Ce résultat peut étre considéré
comme la version globale de la conjecture de Jacquet pour les représentations supercuspidales.

En fait, pour le cas particulier de la conjecture de Jacquet dans [JacO1], Jacquet a utilisé ’analogue
global de la méme conjecture et la formule des traces relative comme deux techniques principales
pour terminer la démonstration. Pour le dire simple, il a d’abord prouvé ’analogue global de la
conjecture. Puis il a utilisé la formule des traces relative pour écrire une intégrale de période u-
nitaire non nulle comme le produit de ses composantes locales & chaque place de Ky, ou chaque
composante locale caractérise la distinction de chaque composante locale de II par le sous-groupe
unitaire correspondant. Lorsque 7 est o-invariante, il choisit II comme une représentation automor-
phique cuspidale o-invariante de GL,,(Ax) et vg comme une place non archimédienne de Ky telles que
(G™,m) = (GL,(Ky,)7,I1,,). Ensuite, la décomposition du produit conduit & la preuve de la partie
“si” de la conjecture. La partie “seulement si” de la conjecture, qui sera discutée dans chapitre 1,
section 4, a besoins de l'application du théoreme de la globalisation. Sa méthode a été généralisée
par Feigon-Lapid-Offen dans [FLO12| aux n général et représentations plus générales. Ils ont montré
que la conjecture de Jacquet fonctionne pour des représentations génériques de G. De plus pour la
méme famille de représentations, ils ont donné une borne inférieure pour la dimension de Homg- (7, 1)
et ils ont en outre conjectué que l'inégalité qu’ils ont donnée est en fait une égalité. Enfin, Beuzart-
Plessis [BP20] a récemment vérifié 1’égalité sur la base des travaux de Feigon-Lapid-Offen et de la
formule de trace locale relative. Ainsi pour les représentations génériques de (i, la conjecture de
Jacquet a été résolue.

Au lieu d’utiliser 'argument global-local, il existe également des résultats partiels basés sur la
méthode algébrique que nous avons expliquée précédemment. Dans [HM9§] Hakim-Mao a vérifié la
conjecture lorsque 7 est supercuspidale de niveau zéro, c’est-a-dire que 7 est supercuspidale telle que
mltPEMa(er) £ (0 ol 0f désigne Panneau des entiers de F et pp désigne son idéal maximal. Quand  est
supercuspidale et F'/Fj est non ramifiée, Prasad [Pra0l] a prouvé la conjecture en appliquant la théorie
des types simples développée par Bushnell-Kutzko dans [BK93|. Quand 7 est supercuspidale modérée,
c’est-a-dire que 7 est une représentation supercuspidale donnée par la construction de Howe [How77|,
Hakim-Murnaghan [HMO02b| a vérifié la conjecture. Notant que dans les résultats de Hakim-Mao
et Hakim-Murnaghan, ils ont besoin de ’hypothese supplémentaire que la caractéristique résiduelle

p#2.

La discussion ci-dessus nous laisse une question ouverte: Y a-t-il une méthode locale et algébrique
qui mene a une preuve de la conjecture de Jacquet qui fonctionne pour toutes les représentations su-
percuspidales de G? Premiérement, cette méthode généralisera les résultats de Hakim-Mao, Prasad
et Hakim-Murnaghan dont nous avons parlé dans le dernier paragraphe. Deuxiemement, nous con-
sidérons F'/Fy comme une extension quadratique de corps localement compacts non archimédiens au
lieu de corps p-adiques. Puisque le résultat de Feigon-Lapid-Offen repose fortement sur le fait que la
caractéristique de F est nulle, leur méthode échoue lorsqu’on considere des corps localement compacts
non archimédiens de caractéristique positive. Enfin, au lieu de considérer des reprsentations complexes,
nous sommes également disposés a étudier les représentations I-modulaires avec [ # p. Nous espérons
prouver un analogue de la conjecture de Jacquet pour les représentations supercuspidales I-modulaires,
qui généralisera le résultat de Feigon-Lapid-Offen pour les représentations supercuspidales. Notons
qu’ils utilisent les méthodes globales dans leur preuve, qui repose fortement sur I’hypothése que toutes
les représentations sont complexes. Ainsi leur méthode ne fonctionne plus pour les représentations
[-modulaires.

Le but du chapitre 1 est d’abord de répondre la question ci-dessus, puis d’explorer le probleme
de la distinction pour des représentations irréductibles plus générales dans le cas I-modulaire et sa
relation avec le changement de base “I-modulaire” dont la construction sera donnée.
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0.2.2 Principaux résultats

Pour commencer, nous supposons désormais que F'/Fj est une extension quadratique de corps locale-
ment compacts non archimédiens de caractéristique résiduelle p au lieu de corps p-adiques, et nous
supposons que p # 2. Nous fixons R un corps algébriquement clos de caractéristique [ # p, perme-
ttant que [ = 0. Nous supposons que 7 est une représentation irréductible de G = GL,(F) sur R.
Maintenant, nous énongons notre premier théoreme principal.

Théoréme 0.2.1. Pour w une représentation supercuspidale de G et T une involution unitaire, w est
distinguée par G si et seulement si 7% = .

De plus, nous pouvons aussi calculer la dimension de ’espace de formes linéaires G"-invariantes.

Théoréme 0.2.2. Pour m une représentation supercuspidale o-invariante de G,
dimRHomGT (71', 1) =1.

Un corollaire important du Théoreme concerne le Q;-relévement d’une représentation super-
cuspidale o-invariante de G sur IF; quand [ > 0, ot nous notons Q;, Z; et F; la closure algébrique d’un
corps l-adique, son anneau des entiers et la closure algébrique d’un corps fini a [ éléments respective-
ment. Pour (7, V) une représentation lisse et irréductible de G sur Q;, nous I'appelons entiére si elle
admet une structure entiére, c’est-a-dire un Z;[GJ-sous-module Ly de V tel que Ly ®Z@ = V. Pour
une telle représentation, la semi-simplification de Ly ®ZE ne dépend pas du choix de Ly, que nous
notons 7(7) une représentation de G sur IF;, appelé la réduction modulo [ de 7 (voir [Vig96] pour plus
de détails). Le théoreme suivant qui sera prouvé a la fin du chapitre 1, section 8, dit qu’il est toujours
possible de trouver un Q;-relévement o-invariant pour une représentation supercuspidale o-invariante

de G sur F;.

Théoréeme 0.2.3. Pour m une représentation supercuspidale o-invariante de G sur Fy, il existe une
représentation entiére o-invariante ™ de G sur Qy, telle que ri(7) = 7.

Pour les représentations génériques irréductibles, nous pouvons prouver une direction de la con-
jecture de Jacquet, qui n’est nouvelle que si char(R) =1 > 0.

Théoréme 0.2.4 (Voir Theorem [1.9.1). Soit m une représentation irréductible générique de G sur R.
St est distinguée par G”, alors 7w est o-invariante.

Notre prochain objectif est de caractériser les représentations distinguées [-modulaires via la fonc-
torialité de Langlands locale, ou le changement de base dans notre parametre. Pour ce faire, nous
devons d’abord construire un changement de base [-modulaire. Le résultat est le théoreme suivant:

Théoréme 0.2.5 (Voir Theorem [1.10.17)). Nous pouvons définir le changement de base cyclique -
modulaire .
BCy; : IrrE(GLn(FO)) — Irr%l_mv(GLn(F))

qui satisfait et est déterminé par le diagramme commutatif suivant

I Int GL. (F BC@I Int,oc—inv GL.(F
rrg (GLn (F)) ——Trrg- (GLn(F))

Q
Jll lJz
BC—

It (GLn(FY)) ——> Trng= ™ (GLo(F))




38 0.2. INTRODUCTION DU CHAPITRE 1

Nous expliquons brievement les notations et laissons la section correspondante pour plus de détails.
Ici, les exposants Int et o-inv représentent respectivement entier et o-invariant, BC@ représente le

changement de base d’Arthur-Clozel aux représentations sur Q; via un certain isomorphisme algébrique
C = Qy, et pour 7y (resp. 7) dans Irr(%llt(GLn(Fo)) (resp. Irr%llt’g_mv(GLn(F)), I'image J;(7o) (resp.
Ji(7)) est I'unique composant irréductible dans 7;(7g) (resp. (7)) ayant la séquence dérivée la plus
haute. Enfin, en tant qu’une application, nous explorons les représentations cuspidales distinguées

(mais pas nécessairement supercuspidales) dans le cas [-modulaire.

0.2.3 Organisation du chapitre 1

Décrivons le contenu du chapitre 1. Nous introduisons nos parametres dans la section 1 et les con-
naissances de base sur les matrices hermitiennes et les sous-groupes unitaires dans la section 2. Notre
principal outil pour prouver les théoremes sera la théorie des types simples développée par Bushnell-
Kutzko dans [BK93|, et généralisé par Vignéras [Vig96] au cas [-modulaire. Dans la section 3, nous
donnerons une introduction détaillée de cette théorie.

Pour une représentation supercuspidale donnée 7 de GG, notre point de départ est de prouver la
partie “seulement si” du Théoreme Quand R = C et char(F) = 0, c’est un résultat standard
en utilisant un argument global, en particulier le théoreme de globalisation ( [HMO02a], Theorem 1).
Quand char(F) = p > 0, nous pouvons garder la preuve originale sauf que nous avons besoin d’une
version en caractéristique p du théoreme de globalisation. Heureusement, nous pouvons utiliser un
résultat plus général en raison de Gan-Lomeli |[GL18] pour obtenir le résultat dont nous avons besoin.
Comme toute représentation supercuspidale de G sur un corps algébriquement clos de caractéristique
0 peut étre réalisée comme une représentation sur Q & torsion prés par un caractére non ramifié, nous
terminons la démonstration lorsque char(R) = 0. Quand R = F;, nous considérons I’enveloppe projec-
tive Py|, de A|; et nous utilisons les résultats de [Vig96] pour étudier ses composants irréductibles et
les composants irréductibles de son Q;-relevement. Enfin nous montrons qu’il existe un Qj-relevement
de 7 qui est supercuspidal et G"-distingué. Ainsi, en utilisant le cas de caractéristique 0, nous finissons
la preuve de la partie “seulement si” pour tout R sous nos conditions. Les détails seront présentés
dans la section 4.

Dans la section 5, nous prouvons le théoréme du type T-autodual, qui dit que pour toute involution
unitaire 7 et toute représentation cuspidale o-invariante de G avec une condition technique (voir
Theorem qui est automatiquement vraie au moins dans le cas supercuspidal, on peut trouver un
type simple (J,A) contenu dans 7 tel que 7(J) = J et AT = AV, ot ¥ désigne la contragrédiente. En
d’autres termes, nous trouvons un type simple “symétrique” contenu dans w par rapport a 7. Notre
stratégie découle de [AKM™19], section 4. Nous considérons d’abord le cas ou E/F est totalement
ramifiée et n = d. Ensuite, pour E/F quelconque avec n = d, nous utilisons les techniques sur I’endo-
classe et le relevement modéré développées dans [BH96| pour prouver le théoreme en le réduisant au
cas précédent. Enfin en utilisant le cas n = d, nous prouvons le théoréeme général.

Dans la section 6, pour une représentation cuspidale o-invariante 7 et une certaine involution
unitaire 7 satisfaisant la condition technique, nous utilisons d’abord nos résultats dans la section 5
pour choisir un type simple T-autodual (J,A) contenu dans m. Le résultat principal de la section 6,
que nous appelons le théoréme du type distingué, dit que 7 est distinguée par G” si et seulement s’il
existe un type simple de 7 qui est T-autodual et distingué. Plus précisément, par la réciprocité de
Frobenius et la formule de Mackey, nous avons

Homgr (77, 1) = H Hom jonar (Ag, 1).
geJ\G/G™

Nous nous concentrons les g tels que Hom jsngr(A9,1) # 0. La preuve du théoreme du type distin-



THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY 39

gué montre également qu’il existe au plus deux doubles classes de ce type qui peuvent étre décrites
explicitement. De plus pour ces g nous avons

Hom jongr(A?,1) = Hom gongr (K9, x 1) @ Homgsng- (07, X),
ol kT = kY et x est un caractére quadratique de J9 N GT qui est trivial quand on le restreint &
JYNG™. Dans le produit tensoriel, le premier terme Hom jong- (K9, x 1) est de dimension un comme
un espace vectoriel sur R. Donc essentiellement, nous n’avons besoin d’étudier que le deuxieme terme.
Si nous notons p9 la représentation cuspidale de GL,,(l) & J9/J'9 dont I'inflation est égale & p9| g, et
X le caractere de H := J9NG"/J 191 G7 dont I'inflation est égale & X|Js9nG~, alors nous avons encore

Hom ysncr(p?, x) = Homp (p?,X).

Ici H est un sous-groupe unitaire, ou un sous-groupe orthogonal ou un sous-groupe symplectique de
GL,,(1). Nous réduisons donc notre probleme & étudier la distinction d’une représentation supercus-
pidale de GL,,(I) par H.

Nous supposons maintenant que 7 est supercuspidale. Au début de la section 6, nous utilisons le
résultat de la section 5 pour étendre o & une involution non triviale sur E. Nous écrivons Ey = E, ou
E/Ej est une extension quadratique. Lorsque E/FEqy n’est pas ramifiée, H est un sous-groupe unitaire.
Nous utilisons d’abord le résultat de Gow |Gow84] pour traiter le cas liée de caractéristique 0. Pour
char(R) > 0, nous utilisons la méme méthode que dans la section 4. Lorsque E/Ej est ramifiée, H
est soit un sous-groupe orthogonal soit un sous-groupe symplectique. Lorsque H est orthogonal, nous
utilisons la théorie de Deligne-Lusztig [DL76|, précisément une formule donnée par Hakim-Lansky
[HL12] pour calculer la dimension de Homp(p9,%) quand char(R) = 0. Pour char(R) > 0 nous
utilisons a nouveau la méme méthode que dans la section 4 pour terminer la preuve. Lorsque H est
symplectique, nous montrons que l’espace est toujours 0. Ces deux cas seront traités séparément aux
sections 7 et 8. En conséquence, nous terminons la démonstration du Théoreme du Théoreme
022 et du Théoreme [0.2.3]

La section 9 est dédiée a la preuve du Théoreme[0.2.4L Nous traitons d’abord le cas cuspidal, dont
la stratégie découle du méme argument dans les sections 5-8. En particulier, nous donnons également
une nouvelle preuve du résultat principal de la section 4, qui est purement local et ne dépend pas du
théoreme de globalisation. Puis en utilisant I'induction parabolique et en suivant ’argument similaire
de Feigon-Lapid-Offen, nous terminons la preuve pour le cas générique.

Enfin dans la section 10, nous construisons le changement de base [-modulaire comme promis
dans le Théoreme La stratégie de construction est assez naive. Nous construisons d’abord le
changement de base [-modulaire du c6té galoisien, ce qui correspond a l'application de restriction.
Ensuite, nous utilisons la correspondance locale de Langlands I-modulaire développée par Vignéras
[Vig01] pour transférer cette application au coté de GL,, de sorte qu’elle soit compatible avec le
fonctorialité de Langlands local [-modulaire. Ce qui reste & montrer est la compatibilité de I’application
construite avec le changement de base d’Arthur-Clozel, qui repose sur la correspondance de Langlands
locale sur Q; et F; et leur compatibilité, et la fonctorialité de Langlands locale pour le changement de
base sur Q;. Cependant, il faut souligner que notre changement de base [-modulaire est en quelque sorte
“artificiel”, puisque dans le théoréeme 'application J; n’est pas r;, la réduction modulo [ habituelle,
et en général la réduction modulo [ d’une représentation irréductible n’est pas irréductible. Mais
pour les représentations cuspidales, la définition de r; et J; coincide, donc nous pourrions utiliser
notre changement de base [-modulaire pour étudier la distinction des représentations cuspidales I-
modulaires, qui seront exposés dans la sous-section finale.

Il est & noter que dans [Séc19], Sécherre a étudié les représentations supercuspidales o-autoduales
de GG sur R, avec la méme notation que précédemment. Il a prouvé le Théoréme de Dichotomie et
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Théoréme de Disjonction: Pour m une représentation supercuspidale de G, elle est o-autoduale (c’est-
a~dire 77 = 71V) si et seulement si 7 est soit distinguée par GL, (Fp) soit w-distinguée, o w désigne
le caractére non trivial unique de Fj qui est trivial sur N F/ry (F). La méthode que nous utilisons
dans ce chapitre est la méme que celle développe dans ibid. Par exemple, notre section 5 correspond
a la section 4 de [AKM™19] et notre section 6 correspond a la section 6 de [Séc19], etc.

Pour signaler les principales différences dans notre cas pour finir cette introduction, d’abord dans
la section 5 nous verrons que dans un certain cas, il est impossible de trouver un ordre héréditaire a tel
que 7(a) = a, ce qui n’est pas un probleme dans la section 4 de [AKM™19]. C’est pourquoi nous devons
ajouter une condition technique dans le théoreme principal de la section 5 et enfin la vérifier pour les
représentations supercuspidales. Précisément, pour une représentation supercuspidale o-invariante,
nous considérons d’abord l'involution unitaire 7 = 71 correspondant a la matrice hermitienne I,,.
Dans ce cas, nous pouvons utiliser notre discussion dans la section 5 pour trouver un type simple
T-autodual contenu dans w et nous pouvons utiliser notre discussion dans les sections 6 et 7 pour
montrer que m est impair quand E/Ej n’est pas ramifiée. Cela confirme la condition technique dont
nous avons besoin, nous pouvons donc répéter la procédure des sections 5 et 6 pour les involutions
unitaires générales. Cet argument de détour indique également qu’une représentation cuspidale non
supercuspidale o-invariante ne contient pas toujours un type simple 7-autodual. De plus, dans la
section 9, nous fournissons également une autre méthode pour résoudre ce probleme. L’idée est de
considérer une involution unitaire générale comme une torsion d’une involution unitaire particuliere.
Cette idée nous permet de prouver Théoreme pour les représentations cuspidales.

De plus dans la section 8, nous pouvons découvrir que le caractere y mentionné ci-dessus ne peut
pas toujours étre réalisé comme un caractere de J, donc ne peut pas étre supposé trivial a priori comme
dans [Sécl9|. Cela signifie que nous devons considérer une représentation supercuspidale du groupe
linéaire général sur un corps fini distinguée par un caractere non trivial d’un sous-groupe orthogonal
au lieu du caractere trivial. C’est pourquoi le résultat de Hakim-Lansky ( [HL12|, Theorem 3.11)
apparait.

Enfin, dans la section 6, une grande partie de nos résultats sont énoncés et prouvés pour une
involution générale au lieu d’une involution unitaire. Ceci offre la possibilité de généraliser cette
méthode pour étudier la distinction des représentations supercuspidales de GG par d’autres involutions.
Par exemple, le probleme similaire pour les sous-groupes orthogonaux est exploré au chapitre 2 de la
these.

0.3 Probleme de la distinction pour le sous-groupe orthogonal de
GL(F)

0.3.1 Contexte général

Ce chapitre est basé sur la prépublication [Zou20]. Soit F' = Fy un corps localement compact non
archimédien de caractéristique résiduelle p. Nous ne considérerons que le cas ou R = C, bien que
les principaux résultats de ce chapitre devraient également étre vrais pour R en général. Comme
précédemment, soient G = GL,, comme un groupe algébrique sur F' et G = GL,(F). Pour & une
matrice symétrique dans G, nous notons

1t 1

Te(x) =e " 'x e pour tout x € G

I’involution orthogonale par rapport a €, et G’¢ le sous-groupe orthogonal de G, tel que le groupe de
ses Fp-points rationnels, noté G et appelé le sous-groupe orthogonal de G, est le sous-groupe de G
constitué des éléments fixés par 7.. Dans ce cadre, nous nous intéressons au probléme de la distinction

lié au couple (G, G™), et sa relation avec la correspondance de Langlands locale et sa fonctorialité.
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Si nous écrivons S pour I'ensemble des matrices symétriques inversibles comme un sous-espace
topologique de G, qui est doté d’'une G-action continue a droite

e-g:='geg, g€G, €S,

alors nous avons la décomposition suivante comme G-espaces

S=|]|c™\q,
e

ou [e] parcourt S/G, et G™ est le groupe orthogonal défini par un certain représentant ¢ dans la classe
[e]. Une version plus uniforme du probléme ci-dessus consiste a étudier ’espace

Homg(m,C®(8)) = € Homg (7, IndGr. 1) = € Homgr (, 1), (0.3.1)
] ]

pour la représentation irréductible w de G, et déterminer un critére pour que ’espace soit non nul
et pour étudier la dimension correspondante, ou C>°(S) désigne 'espace des fonctions uniformément
localement constantes sur S a valeurs complexes.

L’étude de ce probléme a d’abord été proposée par Jacquet [Jac91]. La méthode, comme nous
I’avons déja introduit précédemment, consiste d’abord a considérer son analogue global, puis a initier
un argument global-local, et le point clé est de comparer deux formules de trace relatives: 1'une
concerne la formule de trace relative pour les matrices symétriques ou groupes orthogonaux, et l'autre
se rapporte a la formule de trace de Kuznetsov pour le revétement métaplectique double de GL,,
(voir [Mao98| pour une breve introduction).

Nous fournissons un bref résumé des résultats connus. Dans |Off05], Offen a suivi Pargument de
Jacquet |Jac03| pour considérer la transformation de Kloosterman-Fourier pour les intégrales orbitales
par rapport aux matrices symétriques, ce qui pourrait étre une étape partielle pour prouver I'existence
d’un transfert lisse dans le cas non-archimédien, et le cas archimédien correspondant reste un mystere.
Pour le lemme fondamental pour I'unité de ’algebre de Hecke, Mao [Mao098| a donné une preuve, pour
n = 3, par calcul direct et Do a d’abord prouvé, pour n général, pour les corps locaux de caractéristique
positive via la méthode géométrique [Dol5|, puis il a transféré le résultat aux corps p-adiques pour p
assez grand [Dol§|. Cependant, pour faciliter 'application ultérieure, une version plus forte du lemme
fondamental fonctionnant pour des éléments généraux dans I'algebre de Hecke est nécessaire mais reste
inconnu. Les cOtés spectraux des deux formules de trace sont moins étudiés. Des réultats partiels dus
a Chinta et Offen [CO12|, [CO13], d’une part, jettent un peu de lumiere sur les expansions spectrales,
mais d’autre part, indiquent la difficulté de résoudre la question complete. En particulier, comme
le modele de Whittaker local pour le revétement métaplectique double de GL,, n’est pas unique, les
termes du coté spectral de la formule de trace de Kuznetsov ne sont pas factorisables, ajoutant la
difficulté & un argument global-local.

Un point subtil de ce probleme est qu’il est hors de portée des propositions générales connues, par
exemple celle proposée par Sakellaridis-Venkatesh comme nous 'avons présenté précédemment. En
fait pour X = G™\G avec 7 une involution orthogonale donnée, méme si X est une variété sphérique,
I’hypothese sur les racines de X n’est pas satisfaite, ce qui nous empéche de construire le groupe dual
Gx. Sinous croyons en ’existence du lien entre la distinction et la fonctorialité de Langlands locale
comme nous 'avons expliqué précédemment, alors un relevement local attendu doit étre construit:

Irre(Go) — Irre(G),

pour Gy comme au moins un groupe localement profini, de sorte que les représentations distinguées
soient exactement dans son image. Comme déja indiqué dans les travaux de Jacquet et de ses suc-
cesseurs ci-dessus, une croyance générale est que, le groupe Gg devrait étre le revétement métaplectique
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de GL,,(F), et le relevement correspondant doit étre la correspondance métaplectique étudiée par
Flicker-Kazhdan |[FK86]. Cependant, a la connaissance de 'auteur, aucune déclaration ou conjecture
précise n’a été faite, ce qui est probablement dii & ’absence de cas connus du probleme de la distinction
elleeméme. Au lieu de comprendre le probleme complétement, il est également joyeux si des résultats
partiels éclairants ou méme des suppositions raisonnables pouvaient étre faites.

Une autre stratégie commence par étudier la distinction des représentations supercuspidales, puis
utilise I'induction parabolique pour obtenir au moins des résultats partiels pour les représentations
plus générales. Pour I’étude d’une représentation supercuspidale m, comme nous ’avons présenté
précédemment, 1’idée approximative est d’abord de la considérer comme l'induction compacte d’une
représentation de dimension finie A d’un sous-groupe ouvert J de G qui est compact modulo son centre,
puis d’utiliser la formule de Mackey et la réciprocité de Frobenius pour écrire ’espace de la distinction
comme produit direct sur les doubles cosets dans J\G/H, des espaces de la distinction par rapport a
A. Sous 'hypothese que p # 2, la question est complétement traitée par Hakim et Mao [HM99| lorsque
7 est de niveau 0 et par Hakim et Lansky |[HL12| et Hakim |[Hak13] lorsque 7 est modérément ramifiée.
Le but de ce chapitre est de généraliser leurs résultats a toutes les représentations supercuspidales de
G, ce que nous expliquons dans la sous-section suivante.

0.3.2 Enoncé des principaux théorémes

A partir de maintenant, nous supposons en outre que p # 2. Pour 7 une représentation supercuspidale
de G, nous rappelons plusieurs invariants donnés par la théorie des types simples de Bushnell-Kutzko
IBK93| et la théorie de I’endo-classe de Bushnell-Henniart [BHI6|, qui on se réfere a pour plus
de détails. Tout d’abord, il existe une unique extension modérément ramifiée 7'/F & F-isomorphisme
apres, appelée le corps de parametre modéré de w. Nous écrivons d pour le degré de 1’endo-classe
de 7 qui divise n et est divisé par [T : F]. Nous écrivons m pour Uentier tel que n = md. Soit T,
I’extension non ramifiée du degré m sur T'. Ici, T, d, m, T,, sont intrinsequement déterminés par .

Pour donner une idée de ce que devraient étre ces invariants, nous notons ¢, la représentation
irréductible du groupe de Weil Wp correspondante a 7 via la correspondance de Langlands locale.
Alors la restriction de ¢, au sous-groupe d’inertie sauvage Pr de Wrg est semi-simple et peut étre
écrite comme somme directe de représentations irréductibles avec chaque composante irréductible de
multiplicité exactement m. Soit o n’importe quel composant irréductible de ¢|p,., alors il existe une
extension finie modérément ramifiée T'/F telle que

Nr(a) :={g9 € Wr|a?d = a}

en tant que sous-groupe de Wp est égal a Wy. Et il s’avere que T'/F est uniquement déterminée a
F-isomorphisme pres et indépendante du choix de a. Soient n = dim(p), d = n/m et T,, comme
ci-dessus. Alors T', d, m, T;, définis ici & partir du coté galoisien correspondent & ceux définis du coté
de GL,, mentionné dans le dernier paragraphe (voir [BH14b| pour plus de détails).

Le théoréme suivant donne un critere de distinction.

Théoreme 0.3.1. Soit m une représentation supercuspidale de G et soient T, d, m, T,, comme ci-
dessus. Alors 7 est distinguée par un sous-groupe orthogonal H si et seulement si les deux conditions
susvantes sont valables:

1. wr(—=1) =1, ot w, désigne le caractére central de T;
2. Precisement une des trois conditions suivantes est valable:

o Ny p(LX)F*2/F*2 = F*[F** et H est déployé;



THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY 43

o Ny /p(T3)F>*2/F*? est un sous-groupe de F*/F** d’ordre 2 et H est soit déployé ou
H = G™ qui est quasi-déployé mais pas déployé, ou € est une matrice symétrique telle que
(=1 D2det(e) € Ny, /p(T%) — F*2;

o Ny /p(T3)F>*2/F*2 = {1} et H est soit déployé ou non-quasi-déployé.
En particulier, c¢’est facile de voir que:
Corollaire 0.3.1. Quand H est déployé, m est distinguée par H si et seulement si wy(—1) = 1.
De plus, le théoeme suivant calcule la dimension de I'espace de la distinction.

Théoréme 0.3.2. Soit T une représentation supercuspidale de G telle que wr(—1) =1 et soit H un
sous-groupe orthogonal satisfaisant la condition 2 du Théoréme [0.53.1].

1. Si H n’est pas déployé, alors dimcHomp(m,1) =1;
2. Si H est déployé, alors

o SiNg, p(T})F*?/F*2 = F*/F*2, alors dimcHomp (m,1) = 1;

o SiNg, p(T})F*2/F*% est un sous-groupe de F* /F*? de l'ordre 2, alors
dimcHompy (7, 1) = 2;

e SiNg, p(T%)F*?/F** = {1},alors dimcHomp (m,1) = 3.

Finalement en utilisant (0.3.1)) et le méme argument dans [Hak13], le théoréme suivant est valable
comme un corollaire du Théoréme [0.3.31

Théoréme 0.3.3. Pour m une représentation supercuspidale de G, elle est distinguée par un certain
sous-groupe orthogonal si et seulement si wr(—1) = 1. De plus, si cette condition est valable, alors

dimcHomg (7, C*(S)) = 4.

Ainsi pour p # 2 et toute représentation supercuspidale # de G = GL,,(F'), le probleme de la
distinction pour les sous-groupes orthogonaux est entierement résolu. La seule restriction sur 7, étant
la trivialité de son caractére central sur —1, peut également étre reformulée comme la trivialité du
caractere déterminant de son parametre de Langlands sur —1 via la correspondance de Langlands
locale pour GL,,.

0.3.3 Esquisse de la preuve et de la structure du chapitre 2

Nous esquissons la preuve et la structure du chapitre 2. Nous rappelons brievement la théorie des
types simples dont nous avons besoin dans la section 1, qui est en effet un sous-ensemble propre du
chapitre 1, section 2. Dans la section 2, nous construisons les résultats nécessaires pour les matrices
symétriques, involutions orthogonales et groupes orthogonaux pour une utilisation future.

Dans la section 3, nous prouvons notre premier théoreme principal, le théoreme du type tau-
autodual, qui dit que pour une certaine involution orthogonale bien choisie 79 dépendant de w, il
existe un type simple (J,A) compactement induisant 7 tel que 7o(J) = J et Aoy = AV, ot AV
désigne le contragrédient de A. En fait, pour chaque groupe orthogonal H satisfaisant le théoréme
condition 2, on peut trouver une 7y satisfaisant H = G™ et le théoréme du type tau-autodual.
Un tel type simple est appelé mp-autodual et sera considéré comme le point de départ pour poursuivre
le probleme de la distinction.

Dans la section 4, nous étudions la distinction par rapport a une involution orthogonale arbitraire
7 et le groupe orthogonal correspondant G7. Nous fixons un rp-autodual type simple (J,A) et nous
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pouvons utiliser la formule de Mackey et la réciprocité de Frobenius pour écrire ’espace de la distinction
comme suit:
Homg-(m,1) = [ Homgsnar(A%,1).
geJ\G/GT

Le théoreme du type distingué dit que pour les doubles classes g € J\G/GT contribuant a la distinction,
le type simple (J9, AY) est 7-autodual. En particulier, quand 7 = 7y nous pouvons aussi donner toutes
les J-G™ doubles classes contribuant a la distinction.

Enfin dans la section 5, nous continuons a étudier 'espace de la distinction Hom jongr (A9, 1). Les
techniques développées dans la section 4 nous permettent d’étudier plus avant I’espace de la distinction
via la structure plus délicate donnée par la théorie des types simples, et enfin de réduire la question a
étudier I'espace de la distinction Homz(p, X), ot H est un sous-groupe orthogonal d’un groupe linéaire
général fini G = GL,, (Fq), et p est une représentation supercuspidale de G, et X est un caractere de
H d’ordre 1 ou 2. En utilisant la théorie de Deligne-Lusztig, la condition pour que l’espace soit non
nul est donnée et la dimension est au plus un. La condition s’avere étre le caractere central de
étant trivial & —1. Ainsi pour ces 19 spéciales dans la section 4, nous étudions entierement I’espace de
la distinction et la dimension correspondante. Puisque ces 7y correspondent exactement aux groupes
orthogonaux dans les Théoreme [0.3.1] et Théoreme |0.3.2] nous prouvons la partie “si” du Théoreme
[0.3d] et Théoreme [0.3.21

Il reste la partie “seulement si” du théoréme[0.3.1} dont nous profitons pour expliquer la condition
des groupes orthogonaux ou des involutions orthogonales correspondantes dans le théoreme. Pour
E,,/F une extension de degré n et 7 une involution orthogonale, nous appelons E,, 7-déployé s'il
existe un plongement ¢ : EX < GL,(F) tel que 7(¢(z)) = «(z)~! pour tout z € E)S. La proposition
intermédiaire suivante donne des informations importantes pour que 7 soit distinguée par G7:

Proposition 0.3.2. Pour m une représentation supercuspidale de G avec wr(—1) = 1, il existe un
corps B, de degré n sur F' qui est totalement sauvagement ramifié sur T,,, tel que si 7 est distinguée
par G, alors E,, est T-déployé.

La construction de FE,, provient de la construction de type simple mp-autodual donnée dans la
section 3. En particulier, lorsque 7y correspond a un groupe orthogonal déployé, de la partie “si” du
Théoréme[0.3.1], E,, est 7o-déployé. En sachant cela, il n’est pas difficile d’étudier toutes les involutions
7 telles que E,, est 7-déployé, qui s’averent étre involutions satisfaisant la condition du théoreme|0.3.1
prouvant la partie “seulement si” du théoreme.

Lorsque T,,/F est de degré n, ou de maniere équivalente lorsque 7 est essentiellement modérée
au sens de Bushnell-Henniart [BHO0ba], ce qui revient a étre modérément ramifiée dans le contexte
de Hakim [Hak13| grace au travail de Mayeux [May20|, notre résultat donne une autre preuve du
résultat de Hakim en utilisant la théorie des types simples au lieu de la construction de Howe pour
des représentations modérément ramifiées. Notons que nous empruntons également nombreux lemmes
a [HM99], [HL12], [Hak13|, qui nous aident & réduire notre tache.

Comme dans le chapitre 1, il convient également de souligner que la méthode que nous utilisons ici
n’est pas nouvelle. Elle a d’abord été développée par Sécherre pour résoudre le probleme similaire ou 7
est une involution galoisienne [AKM™19|, [Séc19|, puis par 'auteur pour le cas ol 7 est une involution
unitaire (cf. chapitre 1), puis par Sécherre pour le cas ou 7 est une involution intérieure [Séc20] (la G
peut aussi étre une forme intérieure de GL,,(F')). Les stratégies de preuves dans ces différents cas sont
similaires, mais une différence majeure dans le cas actuel mérite d’étre mentionnée, c’est-a-dire que
nous devons considérer ces involutions 7 ne contribuant pas a la distinction. En ce moment, nous ne
pouvons pas construire un type simple 7-autodual (J,A) en utilisant la méthode de la section 3. La
nouveauté de notre argument est d’abord de considérer une involution spéciale 7y, puis de considérer
7 comme une autre involution qui differe de 79 & G-conjugaison prés. Ainsi, nous choisissons (J,A)
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comme un type simple 1g-autodual et, en utilisant les résultats généraux construits au chapitre 1, nous
pouvons encore étudier les J-G7 doubles classes contribuant a la distinction. Si 'on veut adapter la
méthode dans les cas ci-dessus a une involution générale 7, un probleme majeur est de construire un
type simple T-autodual, ce qui, comme nous 'avons expliqué, peut étre impossible si G” ne contribue
pas a la distinction. La stratégie que nous avons expliquée ci-dessus donne une solution possible, ce
qui permet de considérer la méme question pour une involution abstraite.

0.4 Changement de base et induction automorphe explicites pour
les représentations supercuspidales

0.4.1 Contexte général

Soit F/Fy comme dans et nous ne considérons que le cas R = C dans ce chapitre. Nous
nous concentrerons sur deux relevements locaux spéciaux, disons le changement de base et 'induction
automorphe par rapport & F'/Fy. Plus précisément, lorsque F/Fj est modérément ramifiée et pour les
représentations supercuspidales, nous étudierons ces deux applications via la théorie des types simples.

Nous donnons d’abord une breve introduction pour la correspondance de Langlands locale pour
les groupes linéaires généraux, dont ’existence et les propriétés sont connues depuis un certain temps
( [LRS93|, [HT01], [Hen00|, |Sch13]). Pour n’ un certain entier positif et Gp = GL,, comme un groupe
réductif sur Fy, la correspondance de Langlands locale est une bijection

LLCFO : Irr(c(Go) — ‘I)(G()).

Ici nous gardons les notations de §0.1.1] et ®(Gy) est constitué de GL,/(C)-classes de conjugaison
d’homomorphismes

®0 = (0, Ao) : Wg, x SLa(C) — GL,/(C),

tels que ¢y = ¢0’WF0><{1} est une représentation lisse de Wg,, et Ao = ¢0\{1}XSL2(C) est une
représentation algébrique de SLo(C) de dimension n’. Pour n un entier positif, soit G la restric-
tion de Weil du groupe réductif GL,, sur F, qui est un groupe réductif sur Fy avec G = GL,(F). La
correspondance de Langlands locale est une bijection

LLCp : Irtc(G) — ©(G).

Ici ®(@G) est constitué des classes d’isomorphisme des L-parametres liés & G, qui peuvent étre naturelle-
ment identifiés avec les classes d’isomorphisme des L-parametres liés a GL,, over F. En utilisant cette
identification, ®(G) est constitué des GL,,(C)-classes de conjugaison d’homomorphismes

¢ = (¢, A) : Wp x SLy(C) — GL,(C),

tels que ¢ := gb]WFx{l} est une représentation lisse de Wpg, et A := ¢0|{1}XSL2 (c) est une représentation
algébrique de SL2(C) de dimension n.

Nous introduisons maintenant le changement de base et l'induction automorphe liés & F/Fjp.
D’abord nous supposons n’ = n et nous définissons ’application de restriction

Resp/p, : (Go) — ®(G), @0 = (¢0, Ao) — ¢ = (@olwp; Ao)s

ol nous remarquons que Wr est un sous-groupe de Wg,. Ainsi, le changement de base est le relevement



46 0.4. INTRODUCTION DU CHAPITRE 3

local BCpp, : Irrc(Go) — Trre(G) tel que le diagramme suivant est commutatif:

LLCp,
Irrc(Go) —— @(Go)
BCr/ry lResF/Fo

Irr(cv(G) o(G)

—_
LLCF

Deuxiémement, nous supposons n’ = nr et nous définissons I’application d’induction
w .
IndF/Fo : q)(G) — (I)(GO)7 ¢ = (@7 )‘) — ¢6 = (IndWII:OSOaZ © )‘)7

ou i : GL,(C) — GL,,(C) est un plongement des groupes ﬁ Ainsi 'induction automorphe est le
relevement local Ap/p @ Trre(G) — Trre(Go) tel que le diagramme suivant est commutatif:

LLCp,
Irrc(Go) —— @(Go)
A
AF/FO TIHdF/FO

Irrc (G) T o(G)
Dans [AC89|, [HH95] et [HL11], le changement de base pour toutes les représentations irréductibles, et
I’induction automorphe pour au moins les représentations génériques essentiellement unitaires ont été
construits via la méthode de la formule des traces sans 'utilisation de la correspondance de Langlands
locale, et la fonctorialité ci-dessus a été vérifiée.

Bien que pour GL, la correspondance de Langlands locale ait déja été construite comme une
bijection avec les desiderata vérifés, il semble que les informations extraites des deux cOtés ne soien-
t pas égales. Concentrons-nous sur les représentations supercuspidales, alors pour tout n € N la
correspondance peut étre réalisée comme une bijection

LLCp : A%(F) — GU(F)

de I'ensemble des classes équivalentes de représentations supercuspidales de GL,, (F'), dans I’ensemble
des classes équivalentes de représentations lisses irréductibles du groupe de Weil W de dimension n,
notés respectivement A% (F) et GY(F). Habituellement, nous obtenons peu d’informations concrétes
pour les représentations irréductibles de Wy a partir de la théorie des représentations, mais en revanche
nous avons la théorie de classification pour les représentations supercuspidales de GL,,(F'), la théorie
des types simples construite par Bushnell-Kutzko [BK93|, qui est terre-a-terre et sophistiquée. Une
question naturelle est donc la suivante: pouvons-nous caractériser le LLCg ci-dessus en utilisant la
théorie structurale pour les représentations supercuspidales de GL,,(F)?

Pour répondre a cette question, Bushnell et Henniart lancent un projet de longue haleine don-
t le résultat est contenu dans une série d’articles [BH96|, |[BH99], [BHO5c| [BHO3|, |[BHO5a], |B-
HO5b|, [BH10], [BH14b], [BH17], [BH19|, etc. Surtout, dans [BHO5a], [BHO5b], [BH10| ils ont en-
tierement répondu a la question ci-dessus pour une classe spéciale de représentations supercuspidales,
les représentations supercuspidales essentiellement modérées. Pour ce faire, ils ont d’abord construit
une version algébrique de la correspondance de Langlands locale, qu’ils ont appelée “correspondance
naive de Langlands locale”, comme une bijection entre les mémes ensembles que LLCr et notée par
NLCpg. Pour ¢ € GY(F), définissons T},, comme I’extension modérément ramifiée de F' liée & ¢ comme

8En utilisant un argument de base en algebre linéaire, nous pouvons montrer que la définition ne dépend pas du choix
de .
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dans la dernieére section. Pour p un caractere modérément ramifié de 7,5, ils ont construit une certaine
“torsion” de ¢ par j, notée ¢ ® 1, qui est une autre représentation dans GO(F). Le résultat final est le
théoreme de comparaison, qui prédit 'existence d’'un caractere modérément ramifié pu, de 7%, tel que
LLCL' () est isomorphe & NLC,' (¢ ® p1,,). Dans le cas essentiellement modéré au sens de [BH10), le
caractere i, de T} est d’ordre divisant 4 et peut étre calculé explicitement, donc dans ce cas la cor-
respondance de Langlands locale est pleinement comprise de maniere algébrique. Dans le cas général
comme dans [BH14b], la construction de la correspondance naive de Langlands local s’appuyait sur
la correspondance de Langlands locale dans le cas sauvagement ramifié comme une “boite noire”, et
la caractérisation complete du caractére p, reste inconnue. Donc, pour bien comprendre le LLCg en
général, nous devons d’abord comprendre le cas particulier pour les représentations supercuspidales
sauvagement ramifiées, ce qui est une question assez profonde, puis nous devons calculer le caractere
My ci-dessus, qui sera abordé dans le chapitre 3 plus tard.

L’objectif principal de ce chapitre est d’adapter I'idée de Bushnell-Henniart ci-dessus aux change-
ment de base et induction automorphe, c’est-a-dire que nous construirons des versions algébriques
des deux applications, puis les comparerons avec les applications originales respectivement. Plus de
détails seront donnés dans la sous-section ci-dessous.

0.4.2 Principaux résultats

Pour donner une introduction détaillée, nous utilisons les terminologies et propriétés de base de la
théorie des types simples et de la théorie du changement de base et 'induction automorphe cycliques,
pour lesquelles les lecteurs peuvent se référer respectivement au chapitre 3, section 2 et section 4.
Pour F'/Fy comme précédemment, soient 3 = Gal(F/Fp) le groupe de Galois et o € ¥ un générateur.
Pour 7y une représentation supercuspidale de GL,(Fp), nous définissons son changement de base
7 := BCp/p,(mo) comme une représentation irréductible de GL,(F'). Nous supposons en outre que
soit 7 est supercuspidale, ou soit r divise n et qu’il existe une représentation supercuspidale 7’ de
GL,,/-(F) telle que 7 est isomorphe & I'induction parabolique

' x w7 x X7
De maniere équivalente, nous avons mg = Ap/g (7') comme l'induction automorphe de 7’ dans le
dernier cas. Notre but est de donner une construction explicite de 7w et 7’ respectivement dans les
deux cas, en utilisant la théorie des types simples et les informations de my. Pour cela, nous devons
supposer la condition supplémentaire que F/Fy est modérément ramifiée.

Soit [ag, 3] une strate simple maximale dans M,,(Fp), et soit 6y un caractere simple de H'(a, 3)
contenu dans 7y. Nous choisissons kg comme une représentation de Heisenberg compléte (full Heisen-
berg representation) de 6y comme une représentation de J(ag, ), et en ce moment il existe une
représentation unique pg de J(ag, 3) triviale sur J'(ag, 3), telle que 7o est isomorphe & 'induction
compacte ind?&fg))(no ® po). Ici Eg = Fy[f] est un corps de degré d sur Fy avec n = md pour m un
entier, et nous notons 7p sa sous-extension maximale modérément ramifiée sur Fy et T, 'extension
non ramifiée de degré m sur Ty. En ce moment, la représentation pg peut étre caractérisée par Ag-
orbite d’un caractere &y de TOX’m qui est Ag-régulier et modérément ramifié, ou Ay = Gal(To,/To).

Nous considérons d’abord le cas ou 7 est supercuspidale. En utilisant le résultat de relevement
modéré dans [BH96| et [BHO3|, nous construisons [a, 5] comme une strate simple maximale dans
M, (F), et 8, comme un caractere simple de H'(a, 3) contenu dans 7. Et un tel 6, peut étre considéré
comme le changement de base de 6y pour des caracteres simples. Ensuite, nous déterminons une
représentation de Heisenberg complete Ky de 6, de maniere algébrique, qui ne depend que de 6y et kg,
mais pas de my. Alors il existe une représentation unique p, de J(a, 3) trivial sur J!(a, ), telle que 7

est isomorphe a I'induction compacte indga"éf)(nb ® pp). Une telle py est caractérisée par la A-orbite
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d’un caractere A-régulier modérément ramifié &, de 7,5, ot T}, = F ®@p, To,m et T = F ®p, To sont
des corps sur F' et A = Gal(T,,/T). Le théoréme de comparaison suivant est le théoréme principal
pour le changement de base.

Théoréme 0.4.1 (Voir Theorem [3.6.2)). 1l existe un caractére modérément ramifié bqbg:)/FO de T}, tel

F/F{
que & - g™

et & o N1, /1, sont dans la méme A-orbite.

De méme, nous considérons le cas ou my est égale a 'induction automorphe d’une représentation
supercuspidale 7’ de GL,, /T(F ). Pour continuer, nous supposons en outre que soit F' est identifié avec
un sous-corps de Fy via un plongement, ce qui correspond au cas de 'induction automorphe intérieure,
soit ' = F'®p, Ey est un corps de degré r sur Ey, qui correspond au cas de 'induction automorphe
extérieure, et nous divisons ce dernier cas en deux sous-cas en fonction de F/Ey non ramifiée ou
totalement ramifiée, car dans les différents cas, les situations et les méthodes correspondantes sont
différentes. En utilisant la méthode de relevement modéré dans [BH96| et [BHO3|, nous construisons
[¢, B] comme une strate simple dans M,, ;,.(F) et 6, comme un caractere simple de H (¢, B) contenu dans
7/, et Oy peut étre considéré comme l'induction automorphe de 6, pour les caracteres simples. Comme
dans le cas de changement de base, nous déterminons une représentation de Heisenberg complete
Kq de 6, de maniere algébrique qui depend seulement de 6y et kg, et en ce moment il existe une

représentation unique p, de J(c,3) triviale sur Jl(c, ), telle que 7’ est isomorphe & l'induction

. GL,.(F . . . , .
compacte 1n Kqg a)- ans le cas de l'induction automorpine interieure, la representation Pg
te ind; "5 (e ® pu). Dans le cas de induction automorphe int 1 tation p

est caractérisée par la Ag-orbite d’un caractere Ag-régulier modérément ramifié &, sur Tofm. Dans le
cas de I'induction automorphe extérieure, nous écrivons I' = F'®pg, Ty comme un corps et nous notons
T/ Vextension non ramifiée de degré m/r sur T', alors pour A = Gal(T,,/,/T) la représentation p
est caractérisée par la A-orbite d’un caractere A-régulier modérément ramifié de TWX1 /s ETICOTE désigné
par §,. En ce moment, si E/Ey n’est pas ramifiée, T, . est identifié avec Ty, et A est identifié avec
un sous-groupe de Ag, et si E/Ey est totalement ramifiée, T}, = F ®p, Tom est un corps de degré
m sur T avec T,/ étant considéré comme son sous-corps, et nous écrivons A" = Gal(T;,/T). Le
théoreme de comparaison suivant est le principal théoreme pour I'induction automorphe.

Théoréme 0.4.2 (Voir Theorem Theorem Theorem [3.6.8). (1) Dans le cas de l'induction

automorphe intérieure, il existe un caractere modérément ramifié a¢6’0/ O de Tofm tel que &, - a%o/ 0

et & sont dans la méme Ag-orbite;
(2) Dans le cas de linduction automorphe extérieure, il existe un caractére modérément ramifié

oty de T

m/r

tel que

e Si E/Ey est non-ramifiée, &, - aﬁbg)/FO

et & sont dans la méme Ag-orbite;
e Si E/Ey est totalement ramifiée, (&, - agbgz)/FO) o NTm/Tm/r et &0 o Nz, /1y, sont dans la méme
A’-orbite.

Nous mentionnons trois applications des deux théoremes ci-dessus pour terminer cette sous-section.
La premiere application concerne 1’étude de p, et p, par py, ou py est la représentation supercusp-
idale de GLy(kg,) = J(ao,3)/J (a0, ) dont I'inflation est égale & pol (4, 5) avec kg, désignant le
corps résiduel de Ey, et p, est la représentation supercuspidale de GL,,(kg) = J(a,3)/J"(a,3) dont
Iinflation est égale & py|;(a,3) avec kg désignant le corps résiduel de E dans le cas de changement

de base, et p, est la représentation supercuspidale de GL,,(kg,) = J(c,3)/J (¢, ) dans le cas de

Pinduction automorphe intérieure, de GL,, ;. (kg) = J(c,3)/J' (¢, 8) dans le cas de I'induction au-

tomorphe extérieure, dont l'inflation est égale a pg| J(c,3)- Em ce moment, les restrictions de bgbé:)/ Fo
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et aqbgo/ Fo 3 ces éléments dans 'anneau des entiers sont des caracteres quadratiques qui peuvent étre
entierement caractérisés, les représentations py, et p, sont compris via la théorie de Green (cf. |Greb5|).
En particulier pour E/Ej en tant quune extension non ramifiée de degré r dans le cas du changement
de base ou dans le cas de I'induction automorphe extérieure, cela donne une relation entre le change-
ment de base d’Arthur-Clozel et I'application de changement de base de Shintani (cf. [Shi76|]) pour
les représentations supercuspidales, voir Corollary et Corollary

La seconde application concerne les représentations [-modulaires. Pour [ un nombre premier dif-
férent de p, nous fixons un isomorphisme algébrique Q; = C, ainsi toutes les représentations ci-dessus
peuvent étre réalisées comme des représentations sur Q;. Nous supposons en outre que 7 est entiere,
c’est-a-dire qu’il provient d’une représentation sur un Z;-réseau par extension des scalaires. En util-
isant les deux théoremes, nous pouvons prouver que le changement de base et I'induction automorphe
cycliques modérément ramifiés sont compatibles avec la réduction modulo [ pour les représentations
supercuspidales. Plus précisément, pour une telle my avec son changement de base 7 supercuspidal,
7w est également entieére, et si nous changeons my par une autre représentation supercuspidale entiere
avec sa modulo [ réduction r;(mp) inchangée comme une représentation cuspidale sur [y, alors la 7 cor-
respondante est encore supercuspidale entiere avec sa modulo [ réduction r;(7) inchangée. De méme
pour une telle mp comme 'induction automorphe de 7’ comme une représentation supercuspidale en-
tiere, my est également entiere, et si nous changeons 7’ par une autre représentation supercuspidale
entiere avec sa modulo [ réduction r;(7’) inchangée comme une représentation cuspidale sur [F;, alors la
7o correspondante est supercuspidale entiére avec sa modulo [ réduction r;(my) inchangée. La preuve
est directe et ne sera pas donnée dans ce chapitre, mais les lecteurs peuvent consulter [BH14a| pour
une idée similaire.

L’application finale concerne le calcul du caractere pu, lié au théoreme de comparaison dans [BH14b]
mentionné dans la derniére sous-section. La stratégie est de considérer une certaine changement de
base non ramifiée, puis de comparer les caracteres correspondants “mu” liés aux deux corps de base,
qui a déja été utilisé pour le cas essentiellement modéré dans [BHO5a]. Pour cela, nous avons besoin

d’étudier b¢90/ ? dans le cas o F'/Fy est non-ramifiée.

Théoréme 0.4.3 (Voir Theorem [3.9.1)). Quand F/Fy est non-ramifiée, le caractére b(bg;/FO est non-
ramifié, et bqﬁg)/FO (wg;) = (=1)EDO=D o5 wpy désigne une uniformisante de T,
sous-extension mazimale de Tp , sur Fy, et t = [Tom, : Ko| et [Eg : To] = p°.

et Ky désigne la

En utilisant un cas particulier du théoreme, c’est-a-dire la proposition [3.9.9 nous pouvons mettre
a jour les valeurs de p, qui seront discutées dans la derniere section. Notre résultat est évidemment
incomplet et pas assez satisfaisant.

0.4.3 La structure du chapitre 3

Nous esquissons la structure du chapitre 3. Les sections 1-4 sont des préliminaires, y compris une breve
introduction et un résumé de la théorie des types simples, des signes symplectiques, du changement
de base et de l'induction automorphe respectivement. Apres la premiere discussion élémentaire de
la section 5, dans la section 6 nous formulons notre construction algébrique du changement de base
cyclique et de I'induction automorphe modérément ramifiés en suivant ’esquisse mentionnée dans
la derniere sous-section et énongons le théoréme [0.4.1] et le théoréme [0.4.2] Mais la construction
des représentations de Heisenberg completes correspondantes reste a faire jusqu’a la section 7, dont
la stratégie repose sur l'idée d’une série de résultats de Bushnell-Henniart qui y seront rappelés et
reformulés. La preuve du théoreme [0.4.1] et théoreme [0.4.2] sera donnée dans la section 8 qui semble
étonnamment simple, qui repose en fait sur deux ingrédients hautement non triviaux: la fonctorialité de
Langlands locale pour le changement de base et 'induction automorphe, et le théoreme de comparaison
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de Bushnell-Henniart. La section 9 est consacrée a prouver le théoréme [0.4.3| et la section 10 est son
application pour calculer le caractere pu, 1ié au théoreme de comparaison.

L’auteur tient & remercier Colin J. Bushnell et Guy Henniart pour leur énorme influence sur
I’auteur et sur ce chapitre. En fait, il est préférable de considérer cette partie comme une continuation
(maladroite) de leur travail plutét que comme un travail indépendant, puisque presque toutes les idées
et techniques importantes proviennent de leurs articles énumérés ci-dessus. De plus, 'auteur tient a
les remercier pour leurs généreux encouragements, qui ont en effet beaucoup aidé un jeune doctorant
qui n’était pas confiant et méme était méfiant a la nécessité de son travail.



Chapter 1

Problem of distinction related to
unitary subgroups of GL,(F) and
[-modular base change lift

1.1 Notation and basic definitions

Let F'/Fy be a quadratic extension of non-archimedean locally compact fields of residue characteristic
p # 2 and let ¢ be the unique non-trivial involution in the Galois group. Write op and op, for the
ring of integers of F' and Fy and write k and kg for the residue field of F' and Fj respectively. The
involution o induces a kg-automorphism of k generating Gal(k/kg), still denoted by o.

Let R be an algebraically closed field of characteristic [ > 0 different from p. If [ > 0, then we are
in the “modular case”.

We fix a character

ZZ)(] : FO — R*

trivial on the maximal ideal of o, but not on op,, and we define ) = 99 o trp/p,.

Let G be the locally profinite group GL,(F) with n > 1, equipped with the involution o acting
componentwise. Let € be a hermitian matriz in M, (F), which means that e* = e. Here z* := o(‘x)
for any € M,,(F) with ¢ denoting the transpose operator. Sometimes we write o1(x) := z* for any
x € M, (F) to emphasize that oy is an anti-involution on M,,(F') extending o. For e hermitian and
g € G, we define 7.(g9) = eo('g~1)e™!, called the unitary involution corresponding to . For 7 = 7. a
fixed unitary involution, we denote by G7 the corresponding unitary subgroup, which consists of the
elements of G fixed by 7.

By representations of a locally profinite group, we always mean smooth representations on an
R-module. Given a representation 7 of a closed subgroup H of G, we write 7" for the smooth
contragredient of 7. We write 77 and 77 for the representations m o o and 7 o 7 of groups ¢(H) and
7(H) respectively. We say that m is 7-selfdual if H is T-stable and 77 is isomorphic to V. We say that
7 is o-invariant if H is o-stable and 79 is isomorphic to 7. For g € G, we write HY = {g~'hg|h € H}
as a closed subgroup and we write 79 : x + 7(grg~') as a representation of HY.

For a an op-subalgebra of M,,(F') and 7 = 7. a unitary involution, we denote by

7(a) :=o-(a) = {oe(z)|x € a}
an op-subalgebra of M, (F'), where o.(z) := eo(‘x)e™! is an anti-involution for any = € M, (F). We

say that a is 7-stable if 7(a) = a. Moreover for g € G, we obtain

1

7(a)! = g7l oe(a)g = 0e(0:(9)a0-(g7")) = 0=(7(9) "ar(9)) = T(a7?)

o1
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In other words, the notation 7(a) is compatible with G-conjugacy.

For 7 a unitary involution and 7 a representation of H as above, we say that m is H N G"-
distinguished, or just distinguished, if the space Homgngr(, 1) is non-zero.

An irreducible representation of G is called cuspidal if it doesn’t occur as a subrepresentation
of a proper parabolically induced representation. It is called supercuspidal if it doesn’t occur as a
subquotient of a proper parabolically induced representation.

1.2 Hermitian matrices and unitary groups

We make use of this subsection to introduce basic knowledge of hermitian matrices and unitary groups.
The references will be [HM98| and |Jac62].

Let E/Ey be a quadratic extension of non-archimedean locally compact fields which are algebraic
extension of F' and Fp respectively. Write o for the ring of integers of E and o, for that of Ey. Let
o' € Gal(E/Ep) be the unique non-trivial involution in the Galois group. For ¢’ € GL,,(E), just as in
the last subsection, we say that €’ is a hermitian matrix if (¢/)* = &/, where we consider (-)* as before
with n, F, Fy, o replaced by m, E, Ey, o’ respectively. Write @y for a uniformizer of E such that

, wgr  if E/Ey is unramified,
o (wp) =
—wpg if E/Ep is ramified.

Let X denote the set of all the hermitian matrices. The group G acts on X by g-x = grg*. We
have the following proposition:

Proposition 1.2.1 ( [Jac62], Theorem 3.1). There are exactly two GL,,(E)-orbits of X with respect to
the action given above. Furthermore, the elements in each orbit are exactly determined by the classes
of their determinants in Eg /Ny, g, (E*).

We may also consider the GL,,(0g)-orbits of X. We consider sequences o = (v, ..., ) of certain
triples oy = (a4, m;, d;), such that a; > ... > a, is a decreasing sequence of integers, and mj +...+m, =
m is a partition of m by positive integers, and 41, ..., §, are elements of E such that:

(1) If E/Ey is unramified, then ¢; = 1;

(2) If E/Ey is ramified and a; is odd, then §; = 1 and m; is even;

(3) If E/Ep is ramified and a; is even, then d; is either 1 or ¢, with € € 05, \Np/p, (o) fixed.

Let A be the set of all sequences « satisfying these requirements. For each o = (a1, ...,a;) € A, we
introduce a hermitian matrix w® = wy' @ ... ® wyy, where w}y € GLy, (F) is a hermitian matrix,
such that:

(i) In the case (1), @y = @y In,;

(ii) In the case (2), wy' = @y Jpm, /2, Where Jp, 5 = (_Ii o I"Sﬁ);

(iii) In the case (3), wy = wpdiag(l,...,1,d;), where diag(x,...,*) denotes the diagonal matrix
with corresponding diagonal elements.

We state the following proposition which classifies all the GL,,(0g)-orbits of X.

Proposition 1.2.2 ( |[Jac62], Theorem 7.1, Theorem 8.2). Each class of the GLy,(0g)-orbits of X
contains a unique representative of the form w$ for a certain o € A.

Now we study unitary groups. For ¢’ € X, we denote by U,,(¢’) the unitary group consisting of
those g € GL,,,(F) such that ge'g* = &’. We say that two unitary groups are equivalent if and only
if they are conjugate by some g € G. Since it is easy to check that gU,,(¢')g~! = U,.(ge'g*), by
Proposition there are at most two equivalence classes of unitary groups, which are represented
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by Unn(E/Eo) := Up(In) and Uy, (E/Ep) := Up(¢) for € = diag(1, ..., 1,¢), where ¢ € Ef \Ng /g, (E*)
is fixed.

Remark 1.2.3. We list the following result for completeness: U,,(E/Ey) is equivalent to U, (E/Ey)
if and only if m is odd. Since we will never use it in the future, we omit the proof.

Remark 1.2.4. In the future, we only consider the following two cases. First, we consider E = F,
Ey = Fy, m = n and o' = 0. For any two unitary involutions with the corresponding hermitian
matrices in the same GL,,(F)-orbit, we already showed that the corresponding two unitary groups are
equivalent. Since distinction is a property invariant up to equivalence of unitary groups, we may choose
a hermitian matriz in its G-orbit such that the corresponding unitary involution T is simple enough
to simplify the problem. Secondly, we consider E as a finite field extension of F determined by a
cuspidal representation m such that n = m[E : F|. We will find out that if #° = m, then we may find
an inwvolution o' on E such that Ey = E° and o'|p = 0. So we may make use of the propositions in
this subsection to study hermitian matrices and unitary groups of GLy,(E).

1.3 Preliminaries on simple types

In this section, we recall the main results we will need on simple strata, characters and types |[BK93],
IBHO6|, [BH14b|, [MS14b|. We mainly follow the structure of [AKM™19| and [Séc19].

1.3.1 Simple strata and characters

Let [a, 3] be a simple stratum in M, (F') for a certain n > 1. Recall that a is a hereditary order of
M, (F) and 3 is in G = GL,,(F) such that:

(1) the F-algebra E = F[f] is a field with degree d over F;

(2) E* normalizes a*.

The centralizer of E in M,,(F'), denoted by B, is an E-algebra isomorphic to M,,,(E) with n = md.
The intersection b := a N B is a hereditary order of B.

We denote by p, the Jacobson radical of a, and U'(a) the compact open pro-p-subgroup 1+ p, of
G. Similarly, we denote by py the Jacobson radical of b and U'(b) the compact open pro-p-subgroup
1+ pp of B*. For any « € B>, we have ( [BK93], Theorem 1.6.1)

UNa)zUa) N B* = U (6)zU(b). (1.3.1)

Associated with [a, 8], there are open compact subgroups

H'(a,8) C J'(a,8) C J(a,B)

of a* and a finite set C(a, 3) of simple characters of H'(a, 3) depending on the choice of ). We denote
by J(a, 3) a subgroup of G' generated by J(a, 3) and the normalizer of b* in B*.

The above definition excludes the “null” case, which we explain here. In this case for a simple
stratum [a, 3], conventionally we write 3 =0, E=F, A= B, a=b and H'(a,8) = J'(a,) = 1+ pq.
Moreover, the set C(a, 3) is a singleton consisting of the trivial character of H!(a, 3). Later on all the
simple strata we consider should also include this case.

Proposition 1.3.1 ( [Sécl9|, Proposition 5.1). We have the following properties:
(1) The group J(a, ) is the unique mazimal compact subgroup of J(a,3);
(2) The group J'(a, B) is the unique mazimal normal pro-p-subgroup of J(a, B);
(3) The group J(a,B3) is generated by J'(a,3) and b*, and we have

J(a,3) N B* =b*,JYa,3) N B* = U(b); (1.3.2)
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(4) The normalizer of any simple character 6 € C(a,8) in G is equal to J(a,();
(5) The intertwining set of any 6 € C(a, ) in G, which we denote by I5(0), is equal to

JY(a, B)B*JY(a,8) = J(a, 8)B* J(a, B).

Remark 1.3.2. We write for short J, J', H' for J(a,B), J'(a,3), H'(a,3) respectively if a and S
are clear to us.

When b is a maximal order in B, we call the simple stratum [a, 8] and the simple characters in
C(a, ) mazimal. In this case we may find an isomorphism of E-algebras B = M,,,(F) which identifies
b with the standard maximal order, and moreover we have group isomorphisms

J(a,B)/J (a, B) = 6> /U (b) = GL,,(1), (1.3.3)

where I denotes the residue field of E.

1.3.2 Simple types and cuspidal representations

A pair (J, A), called an extended mazimal simple type in G (we always write simple type for short), is
made of a subgroup J of G which is open and compact modulo centre, and an irreducible representation
A of J. It has been constructed in [BK93| in the characteristic 0 case and in [Vig96], [MS14b| in the
modular case.

Given a simple type (J,A) in G, there are a maximal simple stratum [a, 5] in M, (F) and a
maximal simple character § € C(a, ), such that J(a,3) = J and 6 is contained in the restriction
of A to H'(a,3). Such a character § is said to be attached to A. By [BK93], Proposition 5.1.1
(or |MS14b|, Proposition 2.1 in the modular case), the group J'(a,3) has, up to isomorphism, a
unique irreducible representation 1 whose restriction to H'(a, 3) contains 6. Such a representation 7,
called the Heisenberg representation associated to 6, has the following properties:

(1) the restriction of 7 to H'(a, 8) is made of (J'(a, 3) : H'(a, 8))'/? copies of §. Here (J'(a,B) :
Hl(a,ﬂ))l/2 is a power of p;

(2) the direct sum of (J'(a, ) : H'(a, 3))"/? copies of 7, which we denote by (T (@B):H @B)? g
isomorphic to Indﬁl 0,

(3) the representation 7 extends to J;

(4) the intertwining set of 1, which we denote by I¢(n), equals I(0);

(5) for h € I5(n), we have dimg(Hom jin1x (0", 1)) = 1.

For any representation k of J extending 7, there exists a unique irreducible representation p of J
trivial on J!(a, 3) such that A = k ® p. Through , the restriction of p to J = J(a, 8) identifies
with the inflation of a cuspidal representation of GL,,(1).

Remark 1.3.3. Recall that in [BK93], Bushnell and Kutzko also assume £° = K|z to be a so
called beta-extension, which means that:

(1) k¥ is an extension of n;

(2) if we denote by I(k°) the intertwining set of k°, then Ig(k°) = Ig(n) = I(0).

However in our case, since GLy, (1) is not isomorphic to GLy(F2) (p # 2), any character of GLy, (1)
factors through the determinant. It follows that any representation of J extending n is a beta-extension.
So finally our consideration of k° coincides with the original assumption of Bushnell and Kutzko.

We now give the classification of irreducible cuspidal representations of G in terms of simple types
(see [BK93|, 6.2, 8.4 and |[MS14b|, Section 3 in the modular case).
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Proposition 1.3.4 ( [BK93|, [MS14b]). Let w be a cuspidal representation of G.

(1) There is a simple type (J,A) such that A is a subrepresentation of the restriction of m to J.
It is unique up to G-conjugacy;

(2) Compact induction c—Ind(J; gives a bijection between the G-conjugacy classes of simple types
and the isomorphism classes of cuspidal representations of G.

1.3.3 Endo-classes, tame parameter fields and tame lifting

In this subsection, we introduce the concepts of endo-classes, tame parameter fields and tame lifting.
The main references will be [BK93|, [BH96| and |[BH14b].

For [a, 8] a simple stratum in M,,(F) and [a’, 5] a simple stratum in M, (F') with n,n" > 1, if we
have an isomorphism of F-algebras ¢ : F[3] — F[f'] such that ¢(8) = ', then there exists a canonical
bijection ,

td :Ca,B) = C(d, B),
called the transfer map (see [BK93|, Theorem 3.6.14).

Now let [ay, 51] and [ag, 52] be simple strata of M, (F') and M,, (F') respectively with ny,ny > 1.
We call two simple characters 6; € C(ay, 51) and 02 € C(ag, 52) endo-equivalent, if there are simple
strata [o’, 81] and [d/, 5] of M,/(F) for some n’ > 1 such that 6; and 6 transfer to two simple
characters 0] € C(d/, 1) and 0, € C(d',8)) respectively which intertwine (or by [BK93|, Theorem
3.5.11 which are GL,(F')-conjugate). This defines an equivalence relation on

U ¢(a, ),
[a,8]

where the union runs over all simple strata in M, (F') for all n > 1 (see [BH96|, section 8). An
equivalence class for this equivalence relation is called an endo-class.

For 7 a cuspidal representation of G = GL,,(F'), there exist a simple stratum [a, 8] and a simple
character 6 € C(a,3) contained in 7. The set of simple characters 6 contained in 7w constitutes a
G-conjugacy class, thus those simple characters are endo-equivalent. So we may denote by © the
endo-class of m which is the endo-class determined by any 6 contained in 7.

Given 0 € C(a,3), the degree of E/F, its ramification index and its residue class degree depend
only on the endo-class of §. They are called the degree, ramification index and residue class degree
of this endo-class. Although the field extension E/F' is not uniquely determined, its maximal tamely
ramified subextension is uniquely determined by the endo-class of 6 up to F-isomorphisms. This field
is called a tame parameter field of the endo-class (see [BH14b|, 2.2, 2.4).

We denote by E(F') the set of endo-classes of simple characters over F. Given a finite tamely
ramified extension T of F', we have a surjection

E(T) — E(F)

with finite fibers, which is called restriction map (see [BH14b|, 2.3). Given © € E(F'), the endo-classes
U € &(T) restricting to © are called the T'/F-lifts of ©. If © has a tame parameter field T', then
Autp(T) acts faithfully and transitively on the set of 7'/ F-lifts of © (see [BH14b], 2.3, 2.4).

Let [a, 8] be a simple stratum and let § € C(a,3) be a simple character. Let T' be the maximal
tamely ramified extension of F' in E. Let © be the endo-class of 8, then T is a tame parameter field
of ©. Let C = M,,/(T') denote the centralizer of T'in M,,(F'), where ¢t = [T": F]. The intersection
¢ =anC is an order in C which gives rise to a simple stratum [c, ]. The restriction of § to H!(c, ),
denoted by 6p, is a simple character associated to this simple stratum, called the interior T/ F-lift of
6. Its endo-class, denoted by ¥, is a T'/F-lift of ©. For the origin and details of the construction of
U by using interior 7'/ F-lift of 6, see [BH96).
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We may change our choice of simple stratum [a, 5] but fix T" < M,,(F) unchanged, then the map
a—ancC

is injective from the set of hereditary orders of M,,(F') normalized by T to the set of hereditary orders
of C (see [BH96|, section 2). For [a, 31], [a2, 2] two simple strata, and 6, € C(a, 51), 62 € C(a, 52) two
simple characters, such that #; and #> have the same tame parameter field T, if

C(c, 1) =C(c,B2) and (61)r = (62)r,
then (see [BH96], Theorem 7.10, Theorem 7.15)
C(Cl, ﬁl) = C(a,BQ) and 01 = 92.

In particular, when 1 = 83 = 3, the interior T'/F-lift is injective from C(a, 3) to C(c, 3).

1.3.4 Supercuspidal representations

Let 7 be a cuspidal representation of G. By Proposition it contains a simple type (J,A). Fix a
maximal simple stratum [a, 3] such that J = J(a, ), and write A = K ® p as in subsection Let
p be the cuspidal representation of J/J' = GL,,(I) whose inflation equals p|;. We have the following
proposition:

Proposition 1.3.5 ( [MS14a], Proposition 6.10). The representation 7 is supercuspidal if and only if
P s supercuspidal.

1.4 One direction of Theorem 0.2.1 for a supercuspidal representa-
tion

Let G = GL,(F) and let G be the unitary group corresponding to a unitary involution 7. We state
the following theorem which is well-known when R = C and char(F) = 0 (see for example [HM02a],
section 4, corollary or more ancient paper [HLR86] which illustrates the idea).

Theorem 1.4.1. Let w be a supercuspidal representation of G. If w is distinguished by G”, then 7 is
o-1nvariant.

Before proving Theorem we state a useful lemma which will be used not only in the proof
of the theorem, but also in the latter sections.

Lemma 1.4.2. For § a unitary involution on G and for (J,A) a simple type in G, we have JNG? =
JNG.

Proof. For x € J N G?, we have §(z) = = which implies that o(det(z))det(z) = 1, where we denote
by det(-) the determinant function defined on G. Thus we have det(z) € 0. Since J = E*J, we get
z €05JNG° =JNGC. Since z is arbitrary, we finish the proof.

O

Moreover, we need the following lemma which says that the properties of distinction and o-
invariance are maintained up to change of base fields.



THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY 57

Lemma 1.4.3. Let Ry — Ry be a fized embedding of two algebraically closed fields of characteristic
1> 0. Let my be a supercuspidal representation of G over Ry. Let m = my ®p, Ra be the corresponding
representation of G over Ro. Then:

(1) mg is distinguished by G™ if and only if 7 is distinguished by G™;

(2) ©§ = o if and only if m° = 7.

Proof. For (1), let (J,Ag) be a simple type of my. Then (J,A) := (J, Ao ®pr, R2) is a simple type of w
and thus 7 is also supercuspidal. Using the Frobenius reciprocity and the Mackey formulaﬂ we have

Hom g, (-1 (70, 1) # 0 <= There exists g € G such that Hompg, [yong(AJ, 1) # 0

and
Homp,gr(m, 1) # 0 <= There exists g € G such that Homp,[j9ngr (A9, 1) # 0

By Lemma JING™ = J9INGT is a compact group, and AJ is a representation of finite dimension.
Thus
Homp, [yong-(A§, 1) @r, Rz = Homp,[jongr) (A7, 1)

which finishes the proof of (1). For (2), from [Vig96|, Chapitre I, 6.13 we know that mp is isomorphic
to n§ if and only if their trace characters are equal up to a scalar in R;, which works similarly for
m and w?. Since the trace characters of mg and 7 are equal up to the change of scalars, which works

similarly for 7§ and 77, we finish the proof of (2).
O

Proof of Theorem[1.4.1]. First we consider R = C. For char(F) = 0, it is a standard result proved by
using global method ( [HMO02a], section 4, Corollary). Especially, their result is based on the global-
ization theorem, saying a distinguished 7 under our settings can be realized as a local component of
a cuspidal automorphic representation II of GL,,(Ax), which is distinguished by a unitary subgroup
of GL,,(Ax) with respect to a quadratic extension of number fields /Ky (see ibid., Theorem 1). If
char(F) > 0, in order to use the proof of Hakim-Murnaghan, we only need a variant of globaliza-
tion theorem for characteristic positive case. Fortunately, Gan-Lomeli already built up such kind
of result for general reductive groups over function fields and locally compact fields of characteristic
positive (see [GL18], Theorem 1.3). Following their settings, we choose the reductive group H to
be Rk, (GLn(K)), where K/Kq is a quadratic extension of function fields, and Ry, is the Weil
restriction. We choose V' to be M,,(K) as a Ky-vector space and ¢ : H — GL(V') to be a representation
over Ky defined by
t(h)x = hzo(h), x€V, heH,

where o denotes the non-trivial involution in Gal(XC/Ky). If we choose zo € V to be a hermitian
matrix in M,,(K) and H® to be the stabilizer of g, then H* becomes a unitary subgroup of H which
satisfies the condition of loc. cit. In order to use their result, we only need to verify the condition (a)
and (b) in their theorem. For condition (a), ¢ is semisimple since it is the direct sum of two irreducible
subrepresentations, composed of hermitian matrices and anti-hermitian matrices respectively El For
condition (b), since we only care about the case where y = 1, it is automatically satisfied. Thus,
if we use [GL1§|, Theorem 1.3 to replace [HMO02a|, Theorem 1 and follow the proof in [HMO02a],
then we finish the proof when R = C and F/Fj is a quadratic extension of locally compact fields of
characteristic p.

IThis argument will occur several times in this section, so we refer to the reader for more details in the proof of
Theorem -‘1 4.1
2 .
Here we need the assumption p # 2.
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For char(R) = 0 in general, a supercuspidal representation of G can be realized as a representation
over Q up to twisted by an unramified character, where Q is the algebraic closure of Q. More precisely,
there exists a character x : F* — R* such that x| oX = 1 and 7y can be realized as a representation
over Q. Since G"NFX = G™ N 05, we deduce that = is G7-distinguished if and only if 7y is, as
a representation over R, and also as a representation over Q or C by Lemma M(l) Using the
complex case, Ty is o-invariant as a representation over C, and also as a representation over Q or R
by Lemma M( ). By definition, x is o-invariant, thus 7 is also o-invariant.

~

For R = T}, we write m = c- IndGA for a simple type (J,A). Using the Mackey formula and the
Frobenius reciprocity, we have

0# Homgr(m,1) = [[ Homysner (A9, 1).
geJ\G/G™

Thus 7 is distinguished if and only if there exists ¢ € G such that Homjongr(A9,1) # 0. Let

v =17(g)g~ " and let §(x) = y~'7(z)y for z € G which is also a unitary involution, then we have

0 # Hom jorgr (A9, 1) 2 Hom jrs (A, 1) = Hom jrqs (A, 1) = Hom, (A%, Ind? s Fy),

where A = A|; and we use the fact that J N G% = JNG? by Lemmam

Since 7 is supercuspidal, if we consider Pyo as the projective envelope of AY as a Z;[.J]-module,
where we denote by Z; the ring of integers of Q;, then we have ( [Vig96], chapitre I1I, 4.28 and [Ser77],
chapter 14, Proposition 42 for finite group case. Since A° is a smooth representation of the compact
group J of finite dimension, it can be regarded as a representation of a finite group.):

(1) Ppo ®7E is the projective envelope of A? as a IF;[.J]-module, which is indecomposable of finite

length, with each irreducible component isomorphic to AY. Thus Hom]F ] (Ppo Q7 F;, Ind‘] G(;I[Tl) #0;

(2) If we write Pyo = Ppo ®7 Q, as the Q-lift of Pyo, then Pyo @AO, where A0 in the direct
sum are Q-lifts of A® of multiplicity 1 (The multlphclty 1 statement is derived from counting the

length of Pyo Q7 F;, and the number of different AD in PAo and then showing that they are equal.
The argument is 1ndlcated in the proof of [Vig96|, chapitre III, 4.28, or more precisely, ibid., chapitre
ITI, Théoréeme 2.2 and Théoréme 2.9);

(3) In (2), each (J, AO) can be extended to a simple type (J,A) of G as a Qp-lift of (J,A).
Using (1), we have Homg, [J](PAO ®7 Fy, Inde(;IFl) # 0. Since Pyo is a projective Z;[J]-module, it

is a free Z;-module. Since Ind JmcéZl is a free Z;-module,
Homg, , (Ppo, Indij(g )
is a free Z;-module. As a result,
HomE[J}(PAo Q7 F, Indsz(gFﬁ) = HomZ[J](PAo, Indij(;Zl) ®ZE #0

if and only if o
Homz, ;\(Pyo, Ind’ s Z;) # 0

if and only if
Homgy ) (Pao, Ind s Q1) = Homgy ) (Pao, Ind s Z) @7, Qi # 0,

So there exists A0 as in condition (2) such that Homgy; (Ka, Ind? . sQ;) # 0. Using (3), we may choose

(J,A) as an extension of (J, ;\\6) We write 7 = ¢-Ind§ A which is a supercuspidal representation of G
over ;. By using

Hom yorgr (A9, 1) = Hom jqs (A, 1) = Hom ;s (Ka, 1) = HomJ(Ka, IndﬁmGg@) #0
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and the Mackey formula and the Frobenius reciprocity as before, 7 is G7-distinguished. Using the
result of characteristic 0 case, we have 7 = 7. Using (3), A is a Qp-lift of A. So 7 is a Q-lift of . So
we have 77 = 7.

For char(R) = > 0 in general, as in the characteristic zero case, there exists a character x : F'* —
R* such that X|0; =1 and 7y can be realized as a representation over F;. Since GTNF* = G™ N 0r,
we deduce that 7 is G7-distinguished if and only if 7y is, as a representation over R, and also as a
representation over F; by Lemma@(l). Using the case above, my is o-invariant, as a representation
over F;, and also as a representation over R by Lemma M(Q) By definition, x is o-invariant, thus
7 is also o-invariant.

O]

Remark 1.4.4. In section 9, we will give a purely local proof (without using the result of complex
supercuspidal case) for this theorem which also works for cuspidal case.

1.5 The 7-selfdual type theorem

Let G = GL,(F) and let 7 be the unitary involution of G corresponding to a hermitian matrix e.
Let 7 be a cuspidal representation of G. From our settings of section 3, there exist a maximal simple
stratum [a, ] and a simple character 6 € C(a, ) contained in 7. First of all, we have the following
lemma:

Lemma 1.5.1. If 7 is o-invariant, then we may choose the simple stratum above such that o('3) = J.
As a result, o1 (see section 2) is an involution defined on E whose restriction to F is o.

Let Ey = E°', where E = F[f] and 3 is chosen as in Lemma We state the following

important theorem.

Theorem 1.5.2. Let w be a o-invariant cuspidal representation of G and let T be a unitary involution.
We also assume the following additional condition:

If the hermitian matrix corresponding to 7 is not in the same G-class as I, in X and if there exists
a maximal simple stratum [a, ] as in Lemma with a 6 € C(a, 8) contained in 7, such that the
corresponding E/Fy is unramified, then m is odd.

Then there exist a mazimal simple stratum [a, '] and a simple character 8’ € C(a',8) contained
in m such that:

(1) 7(8') =B
(2) 7(o) = o’ and] r(H' (o', 8) = H'(o/, 5');
(3) 0 or =01,

As a corollary of Theorem [1.5.2] we state the following theorem as the main theorem of this section:

Theorem 1.5.3 (The 7-selfdual type theorem). Under the same condition of Theorem there
exists a simple type (J,\) contained in  such that 7(J) = J and AT = AV.

In the following subsections, we will focus on the proof of the results stated.

3For the definition of 7(a), see §1.1. Same notations work for Theorem and further proofs.
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1.5.1 Endo-class version of main results

To prove Theorem and Theorem |1.5.3] we state their corresponding endo-class versions. Let
© be an endo-class over F. As mentioned in section 3, we write d = deg(©). Moreover, its tame
parameter field T" as a tamely ramified extension over F' is unique up to F-isomorphism.

From the definition of endo-class, we may choose a maximal simple stratum [a, 5] and a simple
character 6 € C(a, 3) such that § € ©. We denote by ©7 the endo-class of #7 which doesn’t depend
on the choice of §. We denote by n the size of a, that is, a < M,,(F') as a hereditary order. We write
n = md with m a positive integer. First of all, we have the following lemma as the endo-class version
of Lemma which will be proved in subsection 5.4.

Lemma 1.5.4. If ©7 = O, then we may choose the simple stratum above such that o('8) = 3. As a
result, o1 is an involution defined on E whose restriction to F is o.

Let Ey = E°', where E = F[f] and f is chosen as in Lemma m The following theorem as an
endo-class version of Theorem [1.5.2 says that we may adjust our choice of simple stratum and simple
character such that they are 7-selfdual with respect to a unitary involution 7:

Theorem 1.5.5. Let © € E(F) be an endo-class over F such that ©7 = O. Let T be a unitary
mwolution of G. We also assume the following additional condition:

If the hermitian matrix corresponding to 7 is not in the same G-class as I, in X and if there exists
a maximal simple stratum [a, 5] as in Lemma with a 6 € C(a, ) contained in ©, such that the
corresponding E/Ey is unramified, then m = n/d is odd.

Then there exist a mazimal simple stratum [@', 5'] in M,,(F) and a simple character 8’ € C(d, 3')
such that:

(1) T(8') = B"1;

(2) 7(a') = o’ and T(H' (', B')) = H' (', B);

(3)0 €O and @ o =61

Later we will focus on the proof of Theorem [I.5.5] So before we begin our proof, it is necessary to
illustrate how does this theorem imply Theorem and Theorem First, we have the following
important result due to Gelfand and Kazhdan (see [BZ76|, Theorem 7.3 for complex case and [SV17b],
Proposition 8.4 for I-modular case):

Proposition 1.5.6. For 7 an irreducible representation of GL,(F), the representation defined by
g+ m(tg™1) is isomorphic to 7.

For 7 given as in Lemma [L.5.1} if we denote by O, the endo-class corresponding to 7, then we get
©7 = ©,. So we may use Lemma to get Lemma and use Theorem to get Theorem
1.0.2)

Now we show that Theorem implies Theorem [L.5.3] Using Proposition we have 77V &
77 = 7. Let (J,A) be a simple type of 7 containing ¢, where 6’ is obtained from Theorem such
that ¢’ o7 = =1, Thus 7(J) = J since they are the G-normalizers of § o 7 and ¢'~! respectively.
Since 7™V = 7, it contains both (J,A) and (J,A™). By Proposition there exists g € G such
that (J,A™V) = (J9,A9). Since A™Y =2 A9 contains both (6’ o 7)~! = ¢ and 0" as simple characters,
the restriction of A9 to the intersection

H'(d, 8N H" (', 8, (1.5.1)

which is a direct sum of copies of 6" restricting to ((1.5.1]), contains the restriction of 6" to (1.5.1). It
follows that g intertwines 6. By Proposition [L.3.1}(5), we know that g € J(da, 8')B"*J (&, 3') with B’
the centralizer of E’ in M,,(F'). Thus we may assume g € B"*. From the uniqueness of the maximal
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compact subgroup in J, we deduce that J9 = J implies J(a', 3')7 = J(a’, 8’). Intersecting it with B’

implies that b’*9 = b'*. Since b’ is a maximal compact subgroup of B’* = GL,,(E’) and g € B’*,

we deduce that g € E’*b’* C J. Thus (J9,A9) = (J, A), which finishes the proof of Theorem m
Finally we state the following two lemmas which will be useful in our further proof:

Lemma 1.5.7. Let [a, 5] be a mazimal simple stratum of M,,(F') and let © be a o-invariant endo-class
over F, such that there exists a simple character § € C(a,3) in ©. Then ot and 6~ are in the same
endo-class. In particular, if the hereditary order a is T-invariant, then 0 o T is conjugate to ' by an
element in U(a).

Proof. We choose m as a cuspidal representation of G containing 6. Thus by definition, we have
O, = 0. Using Proposition we have 77 2 77V, So o7 € Opr = O 0v = ©7, and 0~ cO,v.
Since ©7 = ©, we have ©7, = O,v, which means that 6 o 7 and 6~! are in the same endo-class.
If 7(a) = a, then by definition and construction of endo-equivalence ( [BH96|, Theorem 8.7), 6 o 7
intertwines with #~!. By [BK93|, Theorem 3.5.11, § o 7 is conjugate to #~' by an element in U(a).
O

The following lemma will be used to change the choice of unitary involution up to G-action on its
corresponding hermitian matrix.

Lemma 1.5.8. Let 7 = 7. be the unitary involution on GL,(F) corresponding to a hermitian matriz
g, let [a, B] be a mazimal simple stratum in M, (F) and let 6 € C(a, 3) be a simple character, such that

(@) =a, Oor=0"" (and7(B)=p"").

Then for ™ = 7o the unitary involution on GL,(F) corresponding to a hermitian matriz & =

g teo(tg™1), we have

) =af, or = (697 (and 7(5%) = (37
Proof. The proof is just a simple calculation. We have
7'(a%) = 7'(g7 )7 ()7 (9) = 7' (g7 Ne'e T T (a)('e )T (9) = g 7 (a)g,
where in the last step we use

(e (g) =eo(lg e =g

Since 7(a) = a, we get 7/(a9) = a9. The other two equations can be proved in a similar way. O]

1.5.2 The maximal and totally wildly ramified case

Now we focus on the proof of Theorem We imitate the strategy in [AKM™19)], section 4 which
first considered special case, and then used tame lifting developed by Bushnell and Henniart [BH96|
and other tools developed by Bushnell and Kutzko [BK93| to generalize their result. In this subsection,
we prove the following proposition as a special case of (2) and (3) of Theorem m

Proposition 1.5.9. Let [a,] be a simple stratum in M, (F) and let € C(a,3) such that § € ©
with © a o-invariant endo-class. Let E/F be totally wildly ramified of degree n. Let T = 11 with
m1(z) := o(tz™Y) for any x € G. Then there exist a simple stratum [a”, B"] and a simple character
0" € C(a”, ") such that (a”,0") is G-conjugate to (a,8) with the property T(a”) = a” and §" o = 6”1

Remark 1.5.10. We have [E : F| = d = n, which is a power of p as an odd number.
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Up to G-conjugacy, we may and will assume that a is standard (that is, a is made of matrices with
upper triangular elements in op and other elements in pp.). First we prove the following lemma:

Lemma 1.5.11. There exist g1 € G and a, ..., a, € 0 such that

0 0 e 0 aj

0 as O
r(g1)gr' = A=

0 an—1 - - 0

an, 0 ... 0 O

Moreover, if we define @' := a9t then we have 7(a') = d'.
Proof. First we claim that we may choose a; € 0} such that A is a hermitian matrix and det(A4) €
Ng g (F*). To do this, noting that A* = A if and only if a; = o(ant1-4) for i = 1,2,...,n. So
we choose a; = o(apt1-;) € op for i = 1,2,...,(n — 1)/2 and a(,41y/2 € 05, to make sure that

det(A) € Np/p, (F*). So we finish the proof of the claim.
Since A is a hermitian matrix which is in the same G-orbit as I,, by considering the determinant,
using Propos1t10n there exists an element g; € G such that (g; 1)*gf 1 = A, which means that
m(g1)g9; ' = A. By deﬁmtlon m(a') = o if and only if 7(g; )7 (a)T (gl) = gy 'agy. Since a* = ta, we
deduce that 7(a’) = o if and only if A= taA = (1(g1)g; ")~ tar(g1)g9; ' = a. From our choice of A

and the definition of a, this can be verified directly. So we finish the proof.

O

Now fix g; as in Lemma [1.5.11 We write 6/ = 69! and ' = 39'. Since @’ = a9!, we also have:

(1) U" = Ui( ’) U(a)9t, where U'(a) := 1+ p? for i > 1;

(2) J' = J( ) = ( )g1

(3) J' = ( B') = T (a, B)%;

(4) J' = J( B) = J(a,B)%;

(5) H" = (a B = Hl(a, 6)91;

(6) M’ := M9, where M = 0} X ... X 05 is the subgroup of diagonal matrices contained in a.

Since a’ is 7-stable and ©7 = O, using Lemma there exists v/ € U(a’) such that §' o7 =
(@)%, Since ¢ =@ oroT = (0 o7 = ¢"7") we deduce that u'r(u’) normalizes ¢, which
means that u/7(u') € J'NU(a’") = J' by using Proposition (4). To prove Proposition we
only need to find 2/ € G such that a” := d * and 0" := ' have the desired property. By direct
calculation, it means that 7(z')z’~! normalizes a’ and /7 (2")2'~! normalizes #’, so using Proposition
1.3.1}(4) and the fact that w'~1J’ is contained in the normalizer of o', it suffices to choose z’ such that
u't(2)a’"t e J'.

First we prove the following lemma:

Lemma 1.5.12. There exists y' € M’ such that u't(y)y'~! € J(a/, BYUN (') = o UN(d').

Proof. First we write v’ = gy 'ug; for a certain u € U(a). Then u'r(v/) € J(o',5") implies that
uA=(u=h)*A € J(a,8) C 0xU(a) by direct calculation, where A is defined as in Lemma

We choose y' = gy 'yg1 with y = diag(y1, ..., yn) € M = 0% X ... X 0% to be determined. By direct
calculation, u/7(y')y'~! € J(«, 3 )UL(d') if and only if ud=(y~1)*Ay~! € J(a,B)U(a) = 0 U (a).
We use ;, @, 7; and b to denote the image of u;, a, y;, b in kr = o /pF respectively, where u;, a,b € op
will be defined in the future.
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F *op
0 as O *pp U2 :
We write A = | : ot landu= | . e © |, where %,, and
0 ap—1 - - 0 : i Tt Up—1  Kop
a, 0 ... 0 O Kpp  eee eee Fpp o Up

*p, represent elements in o and pp respectively. By direct calculation, we have

ulg(ugl) *op *op
—1 N
*pp UQU(un—l) :
uA™ M (u) A= : : € 0xU(a),
Up—10(uy ) *o 1
—1
*p *p uUpo(uy ™)
which means that there exists a € 03 such that
uro(uy ), ugo(uy b)), o uno(uyt) € a(1+pr). (1.5.2)
Also by direct calculation, we have
wryy to(yyt) *o o *o o
—1_, —1
*pp u2yy 0 (Y1)
Ay Ay = | ,
Un—ly;,lla(ygl) *op )
*p o *p unyp to(y; )

which means that the lemma is true if and only if there exists b € 0 such that

wryy o (yn V) uays Lo (yn ), e tnyy o (ypt) € (1 + pr). (1.5.3)
If we consider modulo pp, then the condition ((1.5.2)) becomes

o (U ) = o (i1 b)) = ... = Upo(uy b)) =a. (1.5.4)

Moreover, if we consider modulo U'(a), then uA™'(y~!)*Ay~! € 03U (a) if and only if there exist
yi € 0y such that there exists b € o in the condition 1) such that

Ulyl_la(%_l) = U292_10(yn71_1) =..= unyn_la(ﬁ_l) =b. (1.5.5)

We choose b = u(,11)/2, thus we have bo(b ") = @ Furthermore we choose y; = b~lu; when
i=1,2,...,(n—1)/2 and y; = 1 when ¢ = (n+ 1)/2,...,n. Combining with the equation (1.5.4)), the
equation (|1.5.5)) is satisfied. So we finish the proof.

O

Let us write 2'u/7(y')y'~! € U for some y' € M’ and 2’ € o} given by Lemma By replacing
the simple stratum [/, 8'] with [a’¥, 3], the simple character & with 8% and o/ with y/~'2"u/7(y/),
which doesn’t affect the fact that the order is 7-stable, we can and will assume that «’ € U't. We
write J'* = J'NU" for i > 1. We state the following two lemmas which correspond to Lemma 4.16 and
Lemma 4.17 in [AKM™19]. Actually the same proofs work when one replaces the Galois involution o
in the original lemmas with any involution 7 on G.
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Lemma 1.5.13. Let v’ € U" for some i > 1 and assume that v'T(v') € J". Then there exist j € J"
and ¥’ € U'" such that j'v'r(x')2'~1 € U"*L.

Using Lemma [1.5.13| to replace Lemma 4.16 in [AKM™ 19|, we may prove the following lemma:

Lemma 1.5.14. There exists a sequence of (z},ji,v}) € Ut x J'* x Ut for i > 0, satisfying the
following conditions:
(1) (xlo,jé,?}é)) - (la laul); ) )
2) for all i > 0, if we set y, = xha}...x, € U, then the simple character 0 = §Vi € C(d«, '
% 01 i %
satisfies 0 o = (0/71)%;

(8) for all i > 1, we have yjv; = jiy;_1v;_17(x}).

Let 2’ € U™ be the limit of y! = x{x}...7; and let b’ € J'* be that of ji...5]j, when i tends to
infinity. By Lemma [1.5.14](3), we have

yiT(y ) = Gy viaT(ysy) = = diediiod
Passing to the limit, we get 2/7(2')~! = h/4/, which implies that u'r(z)2’~! = B'~1 € J'. Let
(a”,0") = (a'*',0'"), which finishes the proof of Proposition

1.5.3 The maximal case

In this subsection, we generalize Proposition to the following situation:

Proposition 1.5.15. Let [a, 5] be a simple stratum in My, (F) such that [E : F| =n and let 6 € C(a, 3)
such that 0 € © with © a o-invariant endo-class. Let T be a given unitary involution. Then there
exist a simple stratum [a”, "] and a simple character 8" € C(a”,B") such that (a”,0") is G-conjugate
to (a,0) with the property 7(a") = a” and 0" o7 = "~ 1.

Let T be a tame parameter field of ©. First we have the following lemma:

Lemma 1.5.16. Let © be a o-invariant endo-class and let T/F be its tame parameter field. Then
given a T/F-lift U of ©, there is a unique involution o of T extending o such that ¥* = V.

Proof. The proof of Lemma 4.8 in [AKM™19] can be used almost unchanged to our lemma. We only
need to consider © instead of ©®V and ¥ instead of V.
O

Let « be the involution of T given by Lemma [1.5.16] and let T be the subfield of T fixed by «.
Thus To N F = Fy. We write t = [T : F| = [T : Fy]. We need the following proposition due to Hakim
and Murnaghan (see [HMO2b], Proposition 2.1):

Proposition 1.5.17. There exists an embedding ¢ : T — My(F') of F-algebras such that for x € T, we
have 1(a(z)) = t(x)* := o(tu(x)). Consequently, (Ty) is contained in the set of hermitian matrices.

Proof of Proposition[1.5.15 Let E = F[B] and let T' be the maximal tamely ramified extension of F
in F. It is a tame parameter field of the endo-class ©. The simple character 8 gives ¥, the endo-class
of the interior T'/F-lift of ©, as we introduced in Let o be defined as in Lemma and let
¢ be defined as in Proposition [I.5.17] By abuse of notation, we define

v My (T) = My (Mi(F)) = Mo (F)
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with each block defined by the original ¢. First we consider 7(z) = eo(tz~1)e™! for any x € G with
e = I, or diag(u(e), ..., t(€), t(€)), where € € Ty*\Ng/q, (T*). The determinant of the latter matrix is

N7,/ (€)"t. Since
NTO/FO : TOX — FOX

is a homomorphism which maps Ny /7, (T*) to Ng, g, (F7), it leads to a group homomorphism

NTD/FO : TOX/NT/TO(TX) - FOX/NF/FO(FX)
between two groups of order 2. We state and proof the following lemma in general:

Lemma 1.5.18. Let F, Fy be defined as before. Let Lo/ Fy be a finite extension such that L = LoF is
a field with [L : Lol = 2 and Fy = Lo N F. Then the group homomorphism

NLO/FO L(>)< — 1*—’0><

induces an isomorphism
NLO/FO : LS/NL/LO(LX) - FOX/NF/FO(FX)

of groups of order 2.

Proof. We first consider the case where L/ Fy is abelian. If on the contrary the induced homomorphism
is not an isomorphism, then we get Ny /p (Ly ) C Npy g (F*) which means that F is contained in Lo
by Local Class Field Theory ( [Ser79], Chapter 14, Theorem 1), which is absurd.

When Lo/ Fy is Galois, we may write Fy = LY C ... € L§ = Lo, such that Lé“/L% is abelian for
i=0,..,7 — 1 (|Ser79], Chapter 4, Proposition 7). We write L = L{F. Thus it is easy to show that
L'/ L} is quadratic, L} = Lfﬁ'l N L' and Lé‘HLi = Lt for i = 0,...,r — 1. Using the abelian case,

NL@“/L@ : L6+1X/NLi+1/Lg+l(Li+1X) — Ly /Npijri (L)

is an isomorphism for ¢ = 0,1, ...,r — 1. Composing them together, we finish the proof.
When Lo/ Fj is separable, we write L{, as the normal closure of Ly over Fy. Thus L{, contains Lg
and L{/Fy is a finite Galois extension. We write L' = L{F'. Using the Galois case,

Npsyry o Lot /Npypy (L) = Fy /Npyg (F)
is an isomorphism. Since N/ p, (Lg) € Npg/ry (L),

Nio/m ¢ L(;(/NL/LO(LX) - FOX/NF/FO(FX)

is also an isomorphism.
In the characteristic p case in general, we write L for the maximal separable subextension of Fj
sep

contained in Lo, thus Lo/Ly™ is purely inseparable. Thus Np /pser(z) = 2P for any z € L.

Since p # 2 and L /Np/1o(L*) is of order 2, we deduce that
NLO/L(S)EP : L(>)</NL/L0(LX) — LSer/NLsep/LSEP(Lser)
is an isomorphism, where L*% := LL{*". So we come back to the separable case which finishes the

proof.
O
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Using Lemma for Lo = Ty, the homomorphism above is actually an isomorphism. Since n/t
is odd and e € Ty"\Npq, (T), we have det(e) = N, /5, ()" € F{'\Np/p, (F*). So indeed these two
involutions represent all the two G-classes of hermitian matrices. Thus using Lemma [1.5.8, we may
from now on assume 7 to be the two unitary involutions we mentioned above. Furthermore, ¢(7")*
normalized by 7 from the exact construction of 7 and Proposition where we regard T as an
F-subalgebra of M,, ,(T') given by the diagonal embedding.

Since T and ¢(T') are isomorphic as F-subalgebras contained in M, (F'), by the Skolem-Noether
theorem, there exists g € G such that «(T) = T9. Thus, if we write [d/, 3] = [a9, 59], 8’ = 69 and
E’' = F[f'], then #' € © such that its tame parameter field equals ¢(T). Since 7 normalizes ((T")*, we
deduce that 6 o7 and 6! have the same parameter field +(T). If we write ¥’ as the endo-class of the
interior +(T")/F-lift corresponding to €', and if we choose o/ = t|r oo L|;(%F), then we have U = ¥’

Let C" = M,,/4(¢(T')) denote the centralizer of +(T') in M, (F'). For c € M,, 4(T), we have

is

7((e) = eo("u(c) e = e(*ula(e) e = el ("eu(e)) e = 7' (ule)),

where we denote by tc the transpose on C' = M, ;(u(T)) and 7/(¢') = e(a/(*e'd~1))e™! for any
¢ € C™ . Thus 7/, the restriction of 7 to C"*, is the unitary involution 71 on C"* = GL,, ;;(+(T')) with
respect to the Galois involution o/ € Gal(¢(T)/F). The intersection ¢’ = a’ N C’ gives rise to a simple
stratum [¢/, 8]. The restriction of 6’ to H!(¢/, 8'), denoted by 6’ () is a simple character associated
to this simple stratum with endo-class W’. Since E’/.(T) is totally wildly ramified, using Proposition
with G, 0, ©, o and 7 replaced by C'*, QZ(T), U’ o and 7’ respectively, there exists ¢ € C'*

such that 7/(¢“) = ¢¢ and HZfIT) ot = (HZ‘E,T))_I.
By the injectivity of a — anNC’ between sets of hereditary orders as mentioned in §1.3.3] we know
that a” := o’° is 7-stable. Moreover if we write §” = 6, then from our construction of 7 and the

definition of +(T")/ F-lift,

(0" 0 T)ury = 0" o Tl (e rioy) = 0" 0 Tl msy) = buiry © 7

and

(0" Dury =)

are equal. Since the interior «(T")/F-lift §” — HZ%T) is injective between sets of simple characters as

mentioned in §1.3.3] the simple character " satisfies the property §” o7 = 6”71,
]

1.5.4 The general case

In this subsection, we finish the proof of Lemma and Theorem [1.5.5} First of all, we recall the
following result similar to that appearing in the paper of Stevens:

Proposition 1.5.19 ( [Ste01|, Theorem 6.3). Let [a, 5] be a simple stratum in M, (F') with o1(a) = a.
Suppose that there exists a simple character § € C(a, ) such that H'(a, 3) is o1-stable and Qoo = 6.
Then there exists a simple stratum [a,~y] such that 8 € C(a,7) and o1(y) = 7.

Proof. The original proof of [Ste01|, Theorem 6.3 can be modified a little bit as follows, thus can
be used in our case without difficulty. For any x € M,,(F'), we use —o1(x) to replace T; we use o1
to replace o; for [a, ] a simple stratum, we say that it is oq-invariant if o1(a) = a, and o1(8) = 8
and we use this concept to replace the concept skew simple stratum in the original proof. With these
replacements, the original proof can be used directly.

O
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We choose [ag, o] as a maximal simple stratum in My(F') and 6y € C(ag, 5o) such that 6y € ©. By
Proposition there are a maximal simple stratum [ag, 5y] and a simple character 6, € C(ay, 5;)
which is GLg4(F')-conjugate to 6y such that:

(1) the order af) is 7i-stable;

(2) the group H'(al, B}) is Ti-stable and 6 o 7 = 6 *;

Furthermore, using Proposition we may assume that:

(3) o1(8)) = B4,

We embed My (F') diagonally into the F-algebra M, (F'). This gives an F-algebra homomorphism
J o F[B)] — M, (F). Write 8 = /(8)) = B, ® ... ® 5, and E' = F[3']. The centralizer B’ of E’ in
M,,(F') is naturally identified with M,,,(E"). We regard o as an involution on E’ extending o and we
write Ej = E''. Let b’ be a maximal standard hereditary order in B’ which may be identified with
M, (0g), and let @ = M,,(aj)) be the unique hereditary order of M,,(F') normalized by E’* such that
o' N B’ =b'. Then we have [@/, 5] in M,,(F) as a simple stratum which satisfies the requirement of
Lemma finishing its proof.

Now we focus on the proof of Theorem By Lemma [1.5.8] we may change 7 up to G-action
on its corresponding hermitian matrix which doesn’t change the content of the theorem. So if € is in
the same G-class as I,,, we may simply choose 7 = 71, where 71(z) = o(tz~!) for any € G. If not,
we fix € € B~ \Ngr g (E"™). Regarding € as an element in My(F), we have det(€) = N/ (€). Since

NE(’)/FO : ESX — FOX

is a homomorphism which maps NE//E{)(E’X) to Np/ g, (F*), by Lemma with Ly = Ej), it leads
to an isomorphism
NE(’)/FO : E(/)X/NE//E(I)(E/X) — FOX/NF/FO(FX)

of the two groups of order 2. Thus we have Ng /g (¢) € Fy'\Np/g,(F¥). If E'/E; is unramified,
we write e = diag(e, ...,€). We deduce that det(e) = Np /(€)™ € Fy \Np/p, (F), which is because
Fy /Np/g,(F*) is a group of order 2, and m is odd from the condition of the theorem. If E'/Ej is
ramified, we may further assume that € € 0:36' We choose € = diag(ly, ..., I4,€) and we have det(e) =
Ng /R (€) € Fy'\Np/p,(F*). For both two cases, 7. is a unitary involution whose corresponding
hermitian matrix is not in the same G-class as I,,. So from now on, we only consider the three unitary
involutions above. From our assumption of 7, the restriction of 7 on GL,,(E’) is also a unitary
involution 7" = 71 or 7. with e = diag(1,...,1,¢€). In particular, since € is an element in E’, we know
that ¢ commutes with elements in E’ and we have 7(8') = /7L

Since aj is 71-stable and b’ is 7/-stable, from our assumption of 7 we deduce that a’ is 7-stable, or
by definition eaq(a’)e~! = d’. Since o1(8’) = B/, by direct calculation we have

L -1 1 1
(1 (o, B) = H (o (&), 0 (8) e = H (on(al) BT = B ) = (&),
Let M be the standard Levi subgroup of G isomorphic to GLg(F) X ... x GL4(F'), let P be the standard
parabolic subgroup of G generated by M and upper triangular matrices, and let N be its unipotent
radical. Let N~ be the unipotent radical of the parabolic subgroup opposite to P with respect to M.
By [SS08], Théoreme 2.17, we have
HYd,8) = (H'(d,8 )N N") - (H'(«, )N M) - (H'(d',8') N N), (1.5.6)
HYd, 8N M = H'(a), B}) x ... x H (afy, Bf). (1.5.7)
Let ' € C(d’, 8') be the transfer of 6. By loc. cit., the character ¢’ is trivial on H'(a/, ) N N~ and
H'(a/,8") N N, and the restriction of 6 on H'(a’, 8') N M equals 6) ® ... ® 6. We have

0" o Tl (w gynn- =0 o Tl g grynN = 9/_1|H1(a’ﬁ')ﬂN— = 9,_1|H1(a/,5’)ﬂN =1
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and
0 ol gy =0pom @ @00 =0 @ .. @05 =0 g

for 7 = 71 or 7. with ¢ = diag(e, ..., €) or diag(1,...,1,€), since ¢ € F[3}]* normalizes 6. Thus by

equation (|1.5.6), we have ' o7 = ¢/~

Remark 1.5.20. From the proof of Theorem[1.5.5, we observe that if T is chosen as one of the three
unitary involutions mentioned in the proof, then we may choose the same simple stratum and simple
character which satisfy the conclusion of the theorem.

Remark 1.5.21. We give a counter-example to show that the condition in Theorem|1.5.9is necessary.
Let n = 2, F/Fy unramified, © is trivial and ¢ = diag(1,wr,). Thend =1, m=n=2, E=F and
Ey = Fy. If the theorem is true, then a = Ma(op)? for some g € GLa(F) and 7(a) = a. By direct
calculation o('g=1)e= g™ normalizes Ma(or), which means that o('g=1)e g™t € F*GLa(op). It is

impossible since det(o('g~1)e g™") € wr Np g, (F*), while det(F*GLy(0p)) C Np/g, (F).

1.6 The distinguished type theorem

Let 7 be a cuspidal representation of G such that 77 = 7. From the statements and proofs of Theorem
[[5.2] [[.5.3] and [1.5.5] we may assume the following conditions as a remark of section 5:

Remark 1.6.1. (1) For 7 = 71, there exist a simple stratum [a, 3] and a simple character 6 € C(a, 3)
contained in 7 such that T(a) = a, 7(H(a,B)) = HY(a,B), o7 = 07! and 7(8) = B!, where
11(2) := o(tx™t) for any x € GL,(F);

(2) For T = 11, there exists a simple type (J,\) containing 6 and contained in 7 such that T(J) = J
and AT =2 AV;

(3) o1 is an involution on E = F[f], whose restriction to F equals o. So by abuse of notation,
we identify o with oy. Let Ey = E°. We assume further in this section that if E/Ey is
unramified, then m is odcﬁ.;

(4) Write 7(x) = eo(tz1)e™t for any x € G such that: when E/Ey is unramified, we assume
e = I, or diag(wg, ...,wg) € GLy(F) — GLpn(F) = GL,(F); when E/Ey is ramified, we assume
e = I or diag(l,...,1,¢) € GLy(E) = GLn(F) with € € 0 \Ng/p,(0). By Remark |1.5.20‘ we
assume further that for these three unitary involutions, condition (1) and (2) are also satisfied. From
now on until the end of this section, we assume ¢ to be one of these three hermitian
matrices and 7 to be one of these three corresponding involutions.

(5) the element (B has the block diagonal form:

B = diag(fo, ---, Bo) € M (Mg(F)) = Mp(F)

for some By € My(F'), where d is the degree of 5 over F and n = md. The centralizer B of E in
M,,(F) is identified with My, (E). If we regard T as the restriction of the original involution to B>,
then it is a unitary involution with respect to B* = GLy,(E), E/Ey and o € Gal(E/Ey);

(6) the order b = anN B is the standard mazimal order My, (0g) of My, (E). Thus if we write ag as
the hereditary order of My(F') normalized by E, then a is identified with My, (ag);

(7) wg is a uniformizer of E such that:

(wp) wE if B is unramified over Egy;
o(wg) =
b —wg if B is ramified over Ey.

4 Although this condition seems a little bit annoying, finally in We may find out that this condition is automatically
satisfied for m a o-invariant supercuspidal representation.
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Now we state the main theorem of this section:

Theorem 1.6.2 (distinguished type theorem). For m a o-invariant cuspidal representation, it is G-
distinguished if and only if it contains a T-selfdual simple type (J,A) such that Homjngr (A, 1) # 0.

Remark 1.6.3. Since every hermitian matriz is equivalent to one of the hermitian matrices mentioned
i Remark . (4) up to G-action, and the property of distinction is invariant up to equivalence
of unitary groups, the theorem works for every unitary involution, although we only consider those
occurring in loc. cit.

Choose (J,A) as in Remark using the Mackey formula and the Frobenius reciprocity, we
have

HOH’IGT (71'7 1) =~ H HOII]JQ(‘]GT (Ag) 1)7
g

where g ranges over a set of representatives of (J,GT)-double cosets in G. So 7 is G"-distinguished if
and only if there exists g as a representative of a (J, G™)-double coset such that Hom yong- (A9, 1) # 0.
We will study such g and will show that (J9, A9) is actually 7-selfdual. This will finish the proof of
this theorem.

1.6.1 Double cosets contributing to the distinction of 6
First we have the following proposition:
Proposition 1.6.4. For g € G, the character 69 is trivial on H'YYNG™ if and only if T(g)g~* € JB*J.

Proof. We only need to use the same proof of [Séc19], Proposition 6.6, with o replaced by 7.
O

As a result, since Homjongr(A9,1) # 0 implies that Homgigng-(09,1) # 0, using Proposition

1.6.4| we have v := 7(g)g~! € JB*J.
Y

1.6.2 The double coset lemma
The next step is to prove the following double coset lemma:
Lemma 1.6.5. Let g € G. Then v = 1(g)g~' € JB*J if and only if g € JBXG".

Proof. If g € JB*G", one verifies immediately that v € JB*J. Conversely, suppose that v € JB*J,
first we need the following lemma:

Lemma 1.6.6. There exists an element b € B* such that v € JbJ and br(b) = 1.

Proof. Since B*NJ = b* is a maximal compact subgroup of B*, using the Cartan decomposition over
B* = GL,,(E), we write v = zcy with z,y € J and ¢ = diag(@wy Iin,, ..., @y I, ), where a; > ... > a,
as integers and my + ... + m, = m.

If E/Ey is unramified, then by definition ¢* = ¢. So if we choose b = ce™!, then be(b*)"le~! =
c(c*)~! =1, that is, br(b) = 1.

If E/Ey is ramified, since 7(7)y = 1, we know that zcy = ey*c*r*e~! which is equivalent to
(y* ) le lze = c*a*e ly~l. Let z = a*e~!ly~! € J, then we have z*c = c*z. We regard z and c as
matrices in M,,(Mg(F)). Denote by 209) € M, (Mg(F)) the block matrix in z which is at the same
place as w(g I;,; in c. Since z*c = ¢*z, by direct calculation

(Y = (-1)% w2 for j=1,..,r (1.6.1)
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By considering the following embedding

M, (Ma(F)) =M (Mq(F))
h n—>diag(0m1d, . Omj_1d7 h, Omj+1d7 ceey Ode),
we may regard M, q(F) as a subalgebra of M,4(F') which we denote by AU where Opn,d Tepresents

the zero matrix of size m;d x m;d. We write a) = an AW, By abuse of notation, we identify the
element [y ® ... ® [y, which consists of m; copies of By and is contained in M, (M4(F)), with f.

j
By [SS08|, Théoreme 2.17, since z € J(a, 3), we get 29 € J(aU), B) for j = 1,...,7. By loc. cit., if we
denote by
M = GLmld(F) X ... X GLmrd(F)

the Levi subgroup of G corresponding to the partition n = mid + ... + m,d, then
MnJ=JaY, B)x..xJa" g

and
Mt =YW, 8) x ... x JH(a®, g).

Thus we get diag(z(l), ey z(’")) € M N J. And further we have
MAJ/MnJ = @D, 8)/7 D, 8) x ... x J(@™,8)/J (a"), 8) 2 GLyp, (1) % ... x GLp, (1).
Since (-)* fixes M N J and M N J!, we know that (-)* induces a map

MO J/MNOJ 2 GLy, (1) X ... X GLpy, (1) — GLpp, (1) X ... x GLyy,, (1) 2 M N J/M N JY
(20, ., 20)) — (ED)*, .. (20)%),

where [ is the residue field of F and Ey, and z() € J(a¥), g)/J (a¥), B) = GL, (1) is the image of
()
2V).

We show that for any ¢ such that 2 1 a;, we have 2 | m;. Consider j = ¢ in equation (1.6.1]), we get
(z20)* = —whizW0em, %, Since J/J' 2 U(b)/U'(b) on which EX acts trivially by conjugation, we get
20) = @iz = —(200)* = —t2(). Since there exists no anti-symmetric invertible matrix of odd
dimension, we must have 2|m;. Now for a; = (aj, m;), define

a; w%[mj if 2|aj;
ngjmj/Q if 21 a;.

0 Tins /2
R 0
m; /2
J-J double coset as c. Let b = e, we get br(b) = 1.

and ¢ = diag(w@w}y, ..., @y ), where J, /5 := < > . We have ¢ = ¢* and ¢ is in the same

O

Now we write v = 2’bx with z,2” € J and b € B* as in Lemma Replacing g by 7(z') g
does not change the double coset JgG™ but changes v into bz7(z’). So from now on, we will assume
that

v=bx, br(b)=1, x €J, bisof the form in the proof of Lemma [I.6.6 (1.6.2)

Write K for the group J Nb~1Jb. Since 7(b) = b~! and J is 7-stable, we have z € K. We have
the following corollary of Lemma [1.6.6
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Corollary 1.6.7. The map 0y : k +— b= 17(k)b is an involution on K.

Now for aj > ... > a, as in the proof of Lemma [1.6.6, and M = GLy,,4(F) X ... x GLy, 4(F) C G,
we write P for the standard parabolic subgroup of G generated by M and upper triangular matrices.
We write N and N~ for the unipotent radicals of P and its opposite parabolic subgroup respectively.
By definition of b, it normalizes M and we have

K=(KNN")-(KNnM)-(KNN).
For V= KN B*X =UNb 'Ub as a subgroup of BX, similarly we have
V=WVnN)- (VM) - (VQAN),

where U = U(b) and U! = J' N BX = UY(b). By definition, V is also fixed by dp.
Lemma 1.6.8. The subset

K'=(KNN7)-(J'NnM)-(KNN)
is a 0p-stable normal pro-p-subgroup of K, and we have K = VK.

Proof. The proof is the same as that in [Séc19], Lemma 6.10.

Lemma 1.6.9. Let y € K such that yoy(y) = 1, then there are k € K and v € V' such that:
(1) the element v is in GLp,, (0g) X ... X GLy,, (0g) € B* such that vdy(v) = 1;
(2) one has &y(k)yk™! € vK!.

Proof. Let VI =V N K. We have
Vi=(VAN") - (U'nM)-(VAN).
Thus we have canonical dp-equivariant group isomorphisms
K/K'=v/vi=(WUunM)/ (U nM). (1.6.3)

Since B* N M = GLj,, (E) X ... x GLyy,, (E), the right side of (1.6.3)) identifies with M = GL,,, (1) x
... X GLyy,, (1), where I denotes the residue field of E. As in the proof of Lemma we may write
e~ = diag(wi 1, ..., Y ¢;) with ¢; € GLy,; (o). Moreover, the involution dj acts on M by

(g1, - g8) = (@ to(tgr Ve, e ol e,

where we denote by ¢; the image of ¢; in GLy,;(I). We denote by (g1,...,9,) the image of y in
M = GLy,, (I) X ... x GLy,,.(1).

When E/Ej is unramified, we denote by lg the residue field of Ey. So l/lg is quadratic and the
restriction of o to I is the non-trivial involution in Gal(l/lg). Since (b~1e)* = ¢(b*) te~te = 7(b)e =

b~le, we get * =¢;. If y&y(y) = 1, then we get (¢jg;)* = g;¢j = ¢;9;. We need the following lemma:

Lemma 1.6.10 ( [KL90|, Proposition 2.3.1). For z = x* in GLs(l), there exists A € GLs(l) such that
AxA* = 1.

Using Lemma [1.6.10, we choose k;j € GLy,(0g) such that its image k; in GLyy,, () satisfies
(Fj*)_lﬁjgjfj_l = Ip,. Choose k = diag(ki,....k,) and v = diag(vi,...,v,) = diag(c; ', ...,¢; 1),
we get 0 (k)yk™' € vV and 6y (v)v = diag(c; *cfercyt, ... ¢ cte e t) = 1.

When E/Ej is ramified, the restriction of o on [ is trivial. Since (b~le)* = b~le, we get c; =
(—1)%¢; and '¢; = (—1)%¢;. We need the following two lemmas:
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Lemma 1.6.11 ( [KL90|, Proposition 2.5.4). For x = ‘x in GLs(l), there exists A € GLs(l) such
that Ax'A is either I, or &5 = diag(1, ..., 1,€), where € € I*\I1*2 with 1*? denoting the group of square
elements of 1.

Lemma 1.6.12 ( |[KL90], Proposition 2.4.1). For z = —'z in GLs(l) and s even, there exists A €
GLs(1) such that Ax'A = J .

When a; is even, using Lemma we may choose kj € GLy;(0g) such that its image ki in
GLiy, (1) satisfies that ('k;)~'cjg;k;  equals either I, or &, where we choose &,,,, = diag(1, ...,1,¢)
€ GLy, (0p) such that its image &, in GLy,, (1) is diag(1,...,1,€) as in Lemma Let v; be cj*1
or cj_lem ; in the two cases respectively.

When a; is odd mj is even from the proof of Lemma [I.6.6] Using Lemma we may choose
kj € GLy,(0p) such that its image k; in GLy, (1) satisfies (tFj)*lﬁjngj_l = Jm,,,- We choose

1 3/2
v; = C; ij/Q.
Choose k = diag(k, ..., k) and v = diag(vy, ..., v,), we know that

Sp(k)yk~t € oV!

and

Sp(v)v = diag(c; (v]) Lervr, s 6 () Tlewy) = 1

by direct calculation in the two cases respectively. So no matter E/FEy is ramified or not, we finish
the proof.
O

Now we finish the proof of Lemma Applying Lemma tox givesus k€ K andv € V,
such that bur(bv) = 1 and &,(k)zk~! € vK!. Thus we have 7(k)yk~! € buK!. Therefore replacing g
by kg and b by bv, we assume that v can be written as:

y=br, br(b)=1, z€K', b€ wyGLp, (05) X ... x @Y% GLy, (0r). (1.6.4)

Furthermore, we have dy(z)x = 1.
Since K is a §-stable pro-p-group and p is odd, the first cohomology set of &, on K is trivial. Thus
x = 0p(y)y~ ! for some y € K, hence v = 7(y)by~'. Consider the determinant of this equation, we
have det(b) € Np/p, (F*). If we denote by detp the determinant function defined on B* = GL,,(E),
then we have det(b) = Ng, p(detp(b)). Using Lemma for L = E, we get detp(b) € Ng/g, (E™)
and detp(e'b) € detp(e™!)Npg g, (E*). Since 7(b)b = 1, we have (¢7'b)* = ¢ 'b. Using Proposition
there exists h € B* such that e~ 1b = (h*)~'e~'h~!. So we have b = 7(h)h~!. Thus g € yhG™ C
JB*GT, which finishes the proof of Lemma m
O

1.6.3 Distinction of the Heisenberg representation

Now let 1 be the Heisenberg representation of J' associated to #. We have the following result similar
to [Sécl9], Proposition 6.12. by replacing o with 7:

Proposition 1.6.13. Given g € G, we have:

1 ifge JB*GT,

dimrHom +(n9,1) =
R aner (1) {0 otherwise.
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Proof. 1t is useful to recall the detail of the proof of this proposition, which will be used in the next

subsection. We write §(x) := v~ !7(x)y for any z € G which is an involution on G. And for any

subgroup H C G, we have H N G™ = (H N G?)9.

When g ¢ JBXGT, restricting 79 to H'9 and using Proposition and Lemma [1.6.5] we
know that the dimension equals 0. When g € JB*G7, we need to prove that Hom jigng-(n9,1) =
Hom j1qs(n, 1) is of dimension 1. We state the following general proposition which works for a general
involution on G:

Proposition 1.6.14. Let § be an involution on G such that (H') = HY and 0 0§ = 0=, where
~v € B* such that §(y)y = 1. Then we have

dimpHom j1qs(n,1) = 1.

Since Proposition in our special case implies Proposition [1.6.13] we only need to focus on
the proof of this proposition. We only need to prove that the space

HomJlﬂG5 (n(Jl;H1)1/27 1) =~ HomJlﬂG5 (Indilll (9)7 1)

is of dimension (J' : H')!/2. First we prove the following lemmas which will also be used in the next
subsection:

Lemma 1.6.15. For H a subgroup of G such that 6(H) = HY with 6 and v as in Proposition|1.6.1/
we have

HNG=H"NG*=HNHNG.

Proof. We have HNG? = 6(H N G%) = 6(H) N §(G?) = HY N GY which proves the lemma.
O

Lemma 1.6.16. Let 6 and «y be as in Proposition then we have the following isomorphisms of
finite dimensional representations:
1 1 1
(1) Ind}p 0]y = @Hl\Jl/JlﬁJh Indf{ﬂ;{]fﬂ;

Jh ~ Jingly .
(2) Indﬂlwm‘Jlmle = @Hl’Y\Jl’Y/JlmJl’Y IndJmHhm,

Jt ~ JING? 9.
(3) ndp 6| pipgs = @ gy nnny @i oy nnes MdyiAGso;

Jh ~ JInage
(4) Indleev‘leﬂGé = @le\le/Jlnjlv @JlmHlv\Jlmle/lemcé Indlemgég-

Proof. We only prove (1) and (3), since the proofs of (2) and (4) are similar to the proofs of (1) and
(3) respectively.
For (1), using the Mackey formula, we have

J1 ~ JinJy T
IndH19|J1mJ1y = @ Indlen(Jlth/)e
seHN\J1/JInJ1
~ 1 1~
= @ Ind}gl%‘{]py@.
HW\J'/JinJ

The last step is because = € J! normalizes H' and 6.
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For (3), using the Mackey formula again, we have

Jt ~ Jing
Ind}0pne = @ WdfiH50]paes
HW\JL/JinJ
~ JING?S Y
~ D D Ind{pepyunings)?

Hl\Jl/JlmJl'y yeHlmJI'y\JlmJl'y/JlﬁG’d

~ D D Ind?2%0.

HW\JL/JINJY™ HINnJIN\JINJ Y /JINGS

The last step is because y € J' N JY normalizes H' N JY and 0, and H'NJYNJ' NG = H' NG
by Lemma [1.6.15}(2) for H = J'. So we finish the proof.
O

Lemma 1.6.17. Let § and v be as in Proposition[1.6.1J), then we have:

(1) [HN\J Y/ J 0 JY| - [ H 0 JNT nJY /T NG| = (J': HYY?,

(2) [HN\JY /TP gV T 0 HONI N JY /T NGO = (JW : H7)Y2,

(3) (JU: HYY2 = (JY : HMY2 = (J'nG° : H' N &9).
Proof. For (3), we refer to [Séc19] subsection 6.3 for a proof, by noting that all the results and proofs
from Lemma 6.14 to the end of subsection 6.3 in ibid. can be generalized to a general involution §

of G, with 7 in loc. cit. replaced by § in our settings. For (1), since J! normalizes H! and J' N J7
normalizes H' N J'7, we have

left hand side of (1) =(J' : HY{(J' nJY)) - (J*nJY - (H n J7)(J' N G?))
(J'HY (S0 H N )T

PNV H NI (NG H N T NGO
(J':HY-(J'NG H NG

:(Jl ZH1)1/2,

where we use Lemma [1.6.15for H = J'7 and (3) in the last two equations. So we finish the proof of
(1), and the proof of (2) is similar.
O

Combining Lemma [1.6.16(3) with Lemma [1.6.17(1)(3), we have

dimpHom jings (Ind:0,1) = dimg @D P Hom j1,6s (Ind 1526, 1)
HWJL/JInJY™ HInJN\JINJ Y /JiNGS

= (J': HYY2dimzHom 105 (0] gracss 1)
(e HY),
For the last step, since 7 intertwines §~1 and since § o § = 6717, we know that @ is trivial on

{ys(y)ly € H' N H'}.

This set equals H' N G? since the the first cohomology group of 6~ !-action on H' N HY is trivial.
Thus 6| 1~s s a trivial character. So we finish the proof.
O
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1.6.4 Distinction of extensions of the Heisenberg representation

Let k be an irreducible representation of J extending 7. There is a unique irreducible representation
p of J, which is trivial on J! satisfying A = k ® p. First we have the following lemma:

Lemma 1.6.18. Let g € JB*G".
(1) There is a unique character x of J9 N GT trivial on J*9 N G" such that

Hom j1gn- (77, 1) = Hom gongr (K9, x1).
(2) The canonical linear map
Hom jigngr (77, 1) @ Hom gong (p?, x) = Hom jang- (A9, 1).
18 an isomorphism.

Proof. The proof is the same as that in [Séc19], Lemma 6.20.
O

For g € JB*G", we have 7(g) € 7(JB*G") = JB*G", which means that we may consider the
similar thing for 7(g) as for g in Lemma |1.6.18, Thus, there exists a unique character x’ of J79) NG~
trivial on J'7(9) N G7 such that

Hom j1+(g) g (179, 1) = Hom (o) (679, X' 71).

Moreover, we know that 7(J) = J, 7(J) = J, 7(J') = J! and 7(H') = H', thus using Lemmam
and Lemma we have JINGT =J O NG =JING" =JWNG, JY9YNG =J7@NGT
and HY N G™ = H79 N G™. As a result, x and Y’ are characters defined on the same group
JING™ = J9 NG7. A natural idea is to compare them. For the rest of this subsection, we focus
on the proof of the following proposition:

Proposition 1.6.19. For y and x' defined above as characters of J9 N G™ = J™9 N G", we have
x=x"

We write 6(z) = v~ r(z)y for any z € G with v = 7(g)g~!. From §1.3.1, we have vy € Ig(n) =
I(k%), where k° = k|;. Moreover we have

dimR(Homva(/@Ov, ’{O)) = dimg(Hom jin 1+ (07, 1)) = 1.

Using Lemma [1.6.15] we have J'NG% = J'7 NG as a subgroup of J'NJY and H'NG® = HYNGY.
We claim the following proposition which works for general + and ¢:

Proposition 1.6.20. Let § and v be as in Proposition then for a non-zero homomorphism
© € Hom ji 1+ (n7,n) = Hom jn v (k°7, K°), it naturally induces an R-vector space isomorphism.:

f@ : Hom j14s (7, 1) — Hom jiyqqe (777; 1>7
A = Aoy

First we show that how does Proposition |[1.6.20[imply Proposition|1.6.19] Using Proposition [1.6.13
for g and 7(g) respectively, we have dimgpHom jigng-(79,1) = dimgpHom ;i) e (n"9),1) = 1. By
Proposition |[1.6.20] we deduce that

fo : Hom jigngr (97, 1) — Hom jir(9) e (777(9)7 1),
A= Aoy,
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is bijective. If we choose
0# A € Homjisng- (n%1) and 0 X := £,(\) = Ao € Hom yirgr (79, 1),
then for any v in the representation space of n and any z € J9 N G™ = J™9 NG, we have

X' (2) 7N (v) = X (k779 (2)v) (by Proposition [1.6.18] (1))
(k079 (z)v)) (by definition of \')
(v) (since ¢ € Hom g, o) (K779, £09))

)
z) T\ (p(v)) (by Proposition [1.6.18] (1))
)N (v)  (by definition of \').

Since v and z € JING™ = JTWNGT are arbitrary, we have X' j7@nar = X|J9ne- which is Proposition
1.6.19

So we only need to focus on the proof of Proposition First of all, we need the following
important lemma:

Lemma 1.6.21. Let § and ~ be as in Proposition [1.6.14], then there exist an R[J' N JY]-module
homomorphism

(b (Jl Hl 1/2 (Jl Hl 1/2

| Ay = IndHMQ ljingy — IndHlelemJM = | 1Ay

and a linear form Lo € Hom j1qs (77(‘]1:H1)1/2, 1), such that
0% Loo® € Hom s (7 7H Y 1),

Proof. We prove this lemma by §1V1ng a direct construction of ¢ and Lo First we choose our Lo We
choose Ao € Hom ;15 (Ind HlmG51 1) 2 R with the isomorphism glven by the Frobenius reciprocity,

such that its corresponding image in R equals 1. Then we choose Lo = (Mo, ..., Ao) as a element in

JinGs ~ L. p1y1/2
@ @ HOHIJIQGJ (IHdHl%GG(;l 1) = HOHIJlmGzS (T](J ) s 1),
HW\JY/JInJY HingW\JinJYr /JiNGS

where the isomorphism is determined by Lemmall.6.16}(3), and by Lemma/|l.6.17the number of copies
equals (J': HY)/2,
Now we focus on the construction of ®. We define
fo(g) {97(91)9(92) if g=gig2€ (JINHY)(H NJ)
o\g) =

. 1.6.5
0 if geJinJY\(JLnHY)(H N JW) (1.6:5)

as a continuous function defined on J'NJ with values in R. Since (J'NHY)N(H'NJY) = H'nHY
and 07 =0 on H' N HY, we know that fy is well-defined.

We want to verify that fy € Ind}];l%”(]]lgﬁ and fy € Indﬁgﬁ;m. Since J! normalizes H! and JY
normalizes H'7, by direct calculation we deduce that J' N J' normalizes J' N H'Y and H'NJY. In
particular, we have (JINHY)(HNJY) = (H'NJY)(J*NHYY). Moreover, since J! and JY normalize
6 and 67 respectively, we deduce that (J* N HY)(H'NJY) = (H'nJY)(J' N HY) normalizes 6 and
07.

Forgi e JINHY, gb e HHnJYW and g € J1NJY if g ¢ (J' N HY)(H! N JY), then we have
919,959 ¢ (J' O HY)(H' 0 J'7), thus

fo(gr9) = fo(ghg) = 0;
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if g =g192 € (J' N HY)(H' N JY), we have

fo(grg) = 607(41)07(g1)0(g2) = 67 (g1) fo(9)

and
fol959) = folghg195 " ghg2) = 67 (ghgrgs ")0(g5)0(g2) = 0(g5)607 (g1)6(g2) = 0(gh) fo(9)-

Considering these facts, we have fy € Indﬁf}{ﬁﬂ and fy € Indﬁgljﬁ7 07.

We consider J'N.J7-action on fy given by the right translation and we let {fy) be the R[J* N .J]-
subspace of both Indﬁgl‘];gm and Ind{;l%‘{,lfﬂ generated by fo. We choose Vj, to be a R[Jl N JM]—
invariant subspace of Indﬁg‘gﬂ,m such that Indﬁg‘ggm = (fo) @ Vy,-

We define an R[J' N J'7]-module homomorphism

Ind’ 07,07 — Ind (7,70
such that ®1(fy) = fo and @1]y; = 0. And we define
(I) N @ I djlmilll’y’ye’y — @ I dHlm{]ll’y'yg
HWA\JY/JinJ 1 HW\J1/JinJ Y
given by ® = diag(®4,0,...,0) € My, (HomR[JmJn]} (Indﬁgg;m, Indgl%{;;ﬁ)), where the coordinates
are indexed by Ny := |[HY\JY /J*nJY| = |[HN\J!/J*NJY|. In particular, we let the first coordinate

correspond to the trivial double cosets H(J!' N JY) and H(J' N J17) respectively. As a result, ®
gives an R[J! N JY]-module homomorphism. By Lemma [1.6.16| we have

77(J1 HY)Y2 o ~ Tnd” 16‘J10J1’Y ) @ Indﬁ%{}fﬂ (1.6.6)
HI\JL/JinJ
and 1.p1y1/2 1 InJt
DY 2 1 0| P Ind, "7, 0. (1.6.7)
HW\JY /JinJYy

JL. Hl 1/2
n

With these two isomorphisms, we may regard ¢ as a homomorphism from | jiAs1y to

1. 11/2
77(J H |J10J1W

Finally, we study fo o ®. First we calculate

nJ JinJg
I dJ1mH1A,9 ’JIQG(S — IndHlﬂjl"re‘JlﬂGa

We have the following isomorphism

Indﬁl%{]llfe‘ﬂﬁc“s = @ Ind}];%%;a (1.6.8)
HInJWMW\JINJY /JINGS
By definition of ®; and (1.6.5),(1.6.8), ®1(fo|j1nqs) = fol jings equals
5
(Lpingss o Lpins, 0, ..., 0) € P Ind}1G51, (1.6.9)
HInJW\JINJY /JINGS

where the coordinates are indexed by the double coset H'NJ"\J'NJ /J'NG?, and those coordinates
which equal the characteristic function 1145 are exactly indexed by the subset H! N J7\(J! N
HY(J'nHY)/J'nG°.
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We define v = (fo| 14,0, ..., 0) as an element in both

JinJ
@ IndJ1 NHY 07 ‘ JinGs
HWJY/JinJgy

and

JinJgty
@ IndH1nJ179|J1mG6,
HIv\JW/JinJgly

where the first coordinate corresponds to the trivial double cosets H!(J! N J17) and H(J' N JY)
respectively as in our definition of ®. Thus we have

(Lo o ®)(vo) = Lo((®1(fol yings): 0, -, 0)) = Lo((fol yings, 0, -, 0))
= |H' nJN\H N TYI N HY) /TP NG A1 giags) # 0,

where we use the definition of Ly and 1} for the last equation. Thus we get Lyo® # 0 which
finishes the proof.
O

We also need the following lemma:

Lemma 1.6.22. We keep the same notations as in Proposition|1.6.2() and we fix
0# X\, € Hom jincs(n,1) and 0# X\j € Hom jiqge (07, 1).

Then:
(1) For any L € Hom ;15 (17<J1:H1)1/2, 1), there exists an R[J* N JY]-homomorphism

. Jl.g11/2
Pr:pl P g =l

such that L = Ay o Pr;

(2) For any L € Hom‘pmGa(77'Y(‘]1:Hl)1/2

,1), there exists an R[J' N JYV]-homomorphism

1.771\1/2
s | papy — 777(‘] ) Wetavett
such that \j = Lo s.

Proof. The proof is just a simple application of linear algebra. We write N = (J! : H')Y/2. For (1), we

JI:HI)I/Q\Jme — | jingiv as the projection with respect to the i-th coordinate. Since

{]1:1_11)1/27 1)

define pr; : 7'
Aj © PIy,...,\h o pry are linearly independent, and dimpgHom jinqs (1 = N as an R-vector
e / / (JL:HY)/?
space by Proposition|1.6.13 Aj o pry,...,Aj o pry generate Hom ji~qgs (7' ,1). So we may choose
Pr to be a linear combination of pr; which proves (1). The proof of (2) is similar.
0

Now we finish the proof of Proposition [1.6.20, Using Lemma [1.6.22{ (1) we choose Pr such that
Ly = X\ o Pr, where Ly is defined as in the statement of Lemma |1.6.21} Using Lemma [1.6.21] there

exists ® such that ITO o® # 0. Using Lemma |1.6.22(2) we choose s such that Loo®os = \j # 0. We
define ¢/ = Pro ® o s and we have the following commutative diagram

1. 1 1/2 @ 1. 1 1/2
VDR g gD

'
| pagr ——————=1nl 11y
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By definition we have \joy' = AjoPro®os = A # 0, which means that ¢’ # 0. Since Hom ji 15 (7, 7)
is of dimension 1, we deduce that ¢ equals ¢’ multiplying with a non-zero scalar, which means that
Xy o ¢ # 0. Since Hom j1qs(n,1) and Hom j145s(n?7, 1) are of dimension 1, we know that f, is an
R-vector space isomorphism which proves Proposition [1.6.20

1.6.5 Existence of a 7-selfdual extension of 7

Now our aim is to choose a simple k as an extension of 7. Specifically, under the condition of Remark
we show that we may assume k to be 7-selfdual, which means that kK™ = V. First of all, we
have the following lemma whose proof is the same as that in [Séc19], Lemma 5.21:

Lemma 1.6.23. There exists a unique character p of J trivial on J' such that K™ = ku. It satisfies

the identity ot = L.
Now we are going to prove the following important proposition:

Proposition 1.6.24. When char(R) = 0, there exists a character ¢ of J trivial on J' such that

= ¢(poT). Moreover for any R, we may choose k as an extension of n such that K™ = k.

Proof. First we consider the case where char(R) = 0. we need the following elementary lemma:

Lemma 1.6.25. Assume char(R) = 0. For N odd and A € GLy(R) such that A%>" = cIy for s € N
and ¢ € R*, we have Tr(A) # 0.

Proof. s = 0 is trivial, so from now on we assume s > 1. Let (o5 be a primitive 2°-th root of 1 in R
and let ¢'/2° be a 25-th root of ¢ in R, then we get Tr(A) = /2" SN | ¢l with n,; € {0,1,2,...,25 —1}.
We know that P(z) = 22" + 1 is the minimal polynomial of (s in Q[z]. If Tr(A) = 0, then for
Q(z) = SN 2™, we have Q(Cas) = 0. As a result, P(z)|Q(z) in Q[z] thus in Z[z] by the Gauss
lemma. However, the sum of all the coefficients of P(x) is even and the sum of all the coefficients of
Q(x) equals N which is odd. We get a contradiction. So Tr(A) # 0.

O

Come back to our proof. We choose & as any extension of 7, thus as in Lemma [1.6.23] there exists

TV ~v

¢ as a character of J such that k™" = ku. If E/Ey is unramified, we let
7i:GLy(l) =2 J/J' — R*

be the character whose inflation is u|;. There exists a character ¢ : I* — R* such that 1 = ¢ o det.
Since moT = 1, we get (poo)p = 1, or equivalently go]lg = 1, where lj is the residue field of Fy, and o
acts on I as the Frobenius map corresponding to lg. Let @) be the cardinality of Iy, then the cardinality
of 1 is Q2. If we fix (; a generator of %, then ClQH is a generator of l;. So we have 0(¢)9t = 1.
Choose « : I* — R* as a character such that

O‘(Clm)Qfl =¢(g) ™ for m € Z.
Since )
a(@)? =) =1,

«a is well-defined as a character of 1*. Moreover, we get ¢ = a(aoo)~!. Choose ¢° : J — R* as the
inflation of o det, we get u|; = ¢°(¢° o 7).

Since wg and J generate J, to choose ¢ as a character of J extending ¢V, it suffices to show that
u(wg) = 1. Since u = po 7, we get

wwr) = u(r(wg)) = p(we) ™", thus p(we) € {1,-1}.
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Let e be the ramification index of E/F, and let w$, = agwp for a certain ag € oy,. We have

wg(Q_l) = aOQ_lwg_l with a(?_l €l+ppC Hl(a, B).

We write e(Q — 1) = 2°u for 2{ v and s € N. For A = k(w},), we have
A% = k(ag @R ) = 0(ag (R,

where we use the fact that the restriction of x to H* equals N-copies of 6 Wlth N = g}J L. gYHy/2,
and wy is the central character of k. Using Lemma 1 6.25( with A and ¢ = §( ao w,Q wp ), we get
Tr(k(wh)) # 0. Since K™ = Kkp, considering the trace of both sides at w,, we get

Tr(k(wp)) = Tr(k(@g)) m(@E),

thus p(w}) = 1. Since u is odd and p(wg) equals either 1 or —1, we get p(wg) = 1 which finishes
the proof of this case.

If E/Ey is ramified, first we show that p|;x = 1, where we consider the embedding I* < E*. Let
Q@ be the cardinality of I = ly and let (; be a generator of 1*, then we want to show that u(¢;) = 1.
Write @ — 1 = 2°u with 24 u and use Lemma [1.6.25| with A = k(") and ¢ = 1, we get Tr(k(¢")) # 0.

Since K™V = ku, we get

Tr(k(¢")) = Tr(w(G") (")
after considering the trace of the isomorphism. Thus u({') = 1. Since u(¢;) equals either 1 or —1
which can be proved as the former case and v is odd, we get u(¢;) = 1. Thus u|; = 1.
To finish the definition of ¢ : J — R* such that u = ¢(¢ o 7), we only need to verify the equation

wwe) = ¢(@we)(r(we)) = d(we)¢(—we)) " = ¢(—1)"".

Since we have already showed that u(—1) = 1, using the relation u = por, we get u(w%) = pu(—w%) =
wwe)u(r(we)) ™! = 1, so we deduce that p(wg) equals either 1 or —1. Choose ¢(—1) = u(wg) which
is well defined, we finish the definition of ¢ such that u = ¢(¢po 7). Let k' = k¢, then k' is 7' selfdual.

Now we suppose R = [F;. Let 0 be the lift of 6 to Q; given by the canonical embedding Fl — @X,
then 6 is a simple character and for =01, There i is a 7-selfdual representation K of J extending the
Heisenberg representation 7j of J! corresponding to 0. Moreover we can further choose k such that the
central character of K is integral. To do this, first we choose k? as a representation of J extending 7.
We extend k© to a representation of F'*.J. This requires us to choose a quasi-character @ : F* — @X
extending w—. We choose w such that it is integral. If we further extend this representation to K
as a representation of J = E*J, then K is also integral. From the proof of characteristic 0 case, we
may further assume kK™ = Kk without losing the property that x is integral. By [MS14b|, 2.11, the
reduction of & to [F;, denoted by k, is thus a 7-selfdual representation of J extending 7.

For char(R) = [ > 0 in general, we fix ¢ : F; < R an embedding. For 6 a simple character over R
as before which is of finite image, there exists a simple character 6y over F; corresponding to the same
simple stratum [a, 3], such that 6 = ¢ 06y and Oy o7 = 6 1. Let 1y be the Heisenberg representation
of 6y and choose kg to be a 7-selfdual extension of 7y by the former case. Then Kk = kg @, R is what
we want.

O]

1.6.6 Proof of Theorem [1.6.2

Using Proposition |1.6.24] we may assume that k is 7-selfdual. From its pEof, when R = T}, we assume
further that  is the reduction of a 7-selfdual representation Kk of J over Q;, and when char(R) =1 > 0
in general, we assume k to be realized as a [Fj-representation via a certain field embedding F; — R.
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Proposition 1.6.26. The character x defined by Lemma|1.6.18 (1) is quadratic when restricting to
Jg ﬂGT, that 7;8, X2|ngGT = 1

Proof. First we assume that char(R) = 0. We have the following isomorphisms

Hom ji-(9)n (™9, 1) = Hom jigngr (09, 1)

= HomngGT

i)

(w7
=~ Hom jongr (X, K,gv> (by the duality of contragredient)
=~ Hom jong-(k9Y,x) (since char(R) = 0)
=~ Homjongr (k9 o7, x 0 T)

>~ Homyonar (™Y)™9, x o 7)

= HomJT(gmGT(nT(g), xoT) (since k is T-selfdual).

Using Proposition and the uniqueness of x’ in the loc. cit., we have y o7 = x~!. Since Y is
defined on JY9 N G™ which is 7-invariant, we have x o7 = x. Thus x> = x(xo7) = 1.

If R = F;, we denote by & a 7-selfdual Q;-lift of & and we denote by X the character defined by
Lemma ( ) with respect to K and 7], Where 7 is a J' N GT-distinguished Q;-lift of 7. Using this
proposmon for Q;- representatlons we get X2 = 1. From the uniqueness of y, we know that ¥ is a
Qi-lift of x. As a result, we get x? = 1.

If char(R) = I > 0 in general, from the assumption of K mentioned at the beginning of this
subsection, via a field embedding F; < R, we may realize all the representations mentioned in this
proposition as representations over F;, so we finish the proof by using the former case.

]
As in the proof of Lemma we assume g € B> and
y=bx, br(b)=1, z€K' b€ wlyGLn, (0p)X ... x @HGLy, (0p). (1.6.10)

There exists a unique standard hereditary order b,, C b such that
U (b)) = (UNSUY)U = (UNUMUTY,

where we define 6(y) = v~ '7(y)y for any y € G as an involution on G. First we have the following
lemma whose proof is the same as that in [Sécl9|, Lemma 6.22, inspired by [HMO8§|, Proposition 5.20:

Lemma 1.6.27. We have U'(b,,) = (U (b,,) N G°)U.
Now we state and prove the following important theorem:
Theorem 1.6.28. Let g € G and suppose that Hom jsngr (A9, 1) is non-zero. Then 7(g)g~! € J.

Proof. 1t is enough to show that » = 1 in (|1.6.10)). If not, b,, by definition is a proper suborder of b.
Furthermore, U (b,,) := U'(b,,)/U" is a non-trivial unipotent subgroup of U/U' = GL,,(I). Using
Lemma [1.6.18](2), we have

-1
Hom jrqs(p, x? ) = Homgong-(p?, x) # 0.

Restricting to U (b,,) N G?, we have

1

Homy1(p,,)nge (P, X7 ) # 0. (1.6.11)
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Using Lemma we have the isomorphism
(U (b)) NGHUT U = UY(b,,) /U

We denote by p the cuspidal representation of U°/U! = GL,,(l) whose inflation is p|;0, and x9 ' the
character of U!(b,,) whose inflation is ngl. So if we consider the equation (1.6.11)) modulo U!, then
we get

Homg (P, x9 ") # 0.
Since X971 | jnge is quadratic and Ul(b,,) is a p-group with p # 2, we get x9~' = 1, thus
sy (7 1) £ 0,

which contradicts the fact that p is cuspidal. So we finish the proof.

Hom:———+——

O

Proof of Theorem[1.6.2 If there exists a 7-selfdual simple type (J, A) in 7 such that Homjngr (A, 1) is
non-zero, then 7 is G"-distinguished. Conversely, there exists g € G such that Hom jong- (A9, 1) # 0.
Using Theorem [1.6.28 we conclude that (J9,A9) is a 7-selfdual simple type.

O

Finally we state the following corollary of Theorem [1.6.28| as the end of this section:

Corollary 1.6.29. Under the assumption of Theorem we have g € JGT or g € Jg1G", where
the latter case exists only if m is even, and g1 € B* is fixed such that

(gn)gi! = weln if E/Ey is unramified.
TG = @EIm /2 if E/Ey is ramified.

As a result,
Homg- (7, 1) =2 Homjngr (A, 1) @ Hom o ngr (A9, 1).

Proof. Recall that we have already assumed that g € B*. Since 7(g9)g~' € J N B* = E*Xb*, by
changing ¢g up to multiplying an element in £ which doesn’t change the double coset it represents,
we may assume (g*) le7lg™! € b* or wgbX, where ¢ equals I,,, for E/Ey unramified®| and ¢ equals
Iy, or diag(1,...,1,¢) with e € o \Np/g,(0g) for E/Ey ramified. Using Proposition we may
1 _.—

1 1

change ¢~ up to multiplying an element in b* on the right, thus we may write (¢*) "¢ 'g™" = w§,
where w% is defined as in Thus we get detp(w)/detp(e ™) € Ng, g, (EX).

If (¢*)"'e71g™! € b, from the definition and the uniqueness of w% in Proposition we get
wh = €. We may further change ¢~ ! up to multiplying an element in b* on the right, such that
(g¥)"te7tg™! = &1, Thus we get 7(g) = e(g*)"'e~! = g, which means that g € G”.

If (¢*)~te~lg~! € wrb>, by considering the determinant we deduce that det((g*) e ~1g~!) € EX
is of even order with respect to the discrete valuation of E. Since the determinant of elements in
wrb” is of order m, we know that m is even. Thus from the definition and the uniqueness of w
in Proposition we get @ = wpe when E/Ey is unramified and w$, = wgJy, /2 when E/Ej is
ramified. For the former case, we have ¢ = I,,,. Using Proposition we may choose g € B*
such that (g{)_lgfl = wpl, = (¢*)"'g~!. Thus g € g1G". For the latter case, considering the
determinant we must have detp(e) € Ng g (E*), thus ¢ = I,,. Using Proposition we may
choose g1 € B* such that (g}‘)_lgl_1 = wpdpe = (¢*)"tg~!, thus g € ¢1G™.

O

°It is also possible in the unramified case that ¢ = diag(wg, ..., wr). However ¢ € E* which commutes with B>,
thus this case can be combined into the case where € = I,,.
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1.7 The supercuspidal unramified case

In this section, we study the distinction of o-invariant supercuspidal representations of GG in the case
where E/Ej is unramified.

1.7.1 The finite field case

In this subsection, we assume [ /lj to be a quadratic extension of finite fields with characteristic p # 2.
Let |lo] = Q, then we have |I] = Q2. Let o be the non-trivial involution in Gal(l/ly). For m a positive
integer, we first consider the o-invariant supercuspidal representation of GLy,(I).

Lemma 1.7.1. (1) If there exists a o-invariant supercuspidal representation of GLy, (1), then m is
odd.
(2) When char(R) = 0, the converse of (1) is true.

Proof. Let t be an extension of degree m over I. We identify t* with a maximal torus of GL,,(I). By a
Gal(t/l)-regular (or regular for short) character £ : t* — R*, we mean £ # ¢ for any i = 1,...,m—1.
By Green |Greb5| when char(R) = 0 and James |[Jam86] when char(R) =1 > 0 is relatively prime to
p, there is a surjective map

¢ 7
between regular characters of t* and isomorphism classes of supercuspidal representations of GL,, (1),
whose fibers are Gal(t/l)-orbits. Thus, for p a supercuspidal representation of GL,,(l), we choose £

as a regular character of t* such that p = p¢.
The representation p is o-invariant if and only if

ngi =¢9 for a certain i € {1,...,m}.

Applying this equality twice gives us the equality §Q4i_2 = £. The regularity assumption on £ implies
that 2m divides 4i — 2. Since 1 <7 < m, we get m = 2¢ — 1 as an odd number.

Conversely, for m = 2i — 1 and char(R) = 0, we pick a character £ of t* of order @™ — 1. Thus we
have fQQi = §Qm+1 = ¢9 and € is regular. Thus the corresponding P¢ is a o-invariant supercuspidal
representation.

O]

Let H =U,,(1/lp) := Uy, (L) be the unitary subgroup of GL,,(l) corresponding to the hermitian
matrix I,,,. We have the following lemma:

Lemma 1.7.2. Suppose that m = 2¢ — 1 with i > 1, and let p be a supercuspidal representation of
GL,(1). The following assertions are equivalent:

(1) The representation p is o-invariant;

(2) The representation p is H-distinguished;

(3) The R-vector space Homp(p, 1) has dimension 1.

Proof. When R has characteristic 0, this is [Gow84], Theorem 2.1, Theorem 2.4. Suppose now that
R = F,. First we prove that (1) is equivalent to (2).

For p a supercuspidal representation of GL,, (1), we denote by P5 the projective envelope of 5 as a
74|GL;,(1)]-module, where Z; is the ring of integers of Q;. Using [Vig96|, chapitre I1I, Théoreme 2.9
and [Ser77|, Proposition 42, we have:

(1) P ®Z7]F7 is the projective envelope of p as a F;[GL,,(1)]-module, which is indecomposable of
finite length, with each irreducible component isomorphic to p;
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(2) If we Writiﬁ% =F; ®Z@ as the Q-lift of P5, then vaﬁ = @5, where 7 in the direct sum are
supercuspidal as Q;-lifts of p of multiplicity 1.
Using the result above, we have

Homp (p, 1) # 0; <= Homg (GLn l)]( 0, F1[H\GL,,(1)]) # 0;
<= Homg;qr, (P ©7 Iy, Fy[H\GL, (1)]) # 0;
<= Homg, ;. l)](Pp,Zl [H\GL,,(1)]) # 0;

= Homg ., @ Py, Q[H\GLn, (1)) # 0;
<= There exists p as above such that Hom@[GLm(l)](ﬁ,@[H\GLm(l)]) # 0;

<= There exists p as above such that 50 =D

— p’ =p.
For the former equivalences, they are of the similar reason to in the proof of Theorem |1 For the
second last equivalence we use the result for characteristic 0 case. For the last equlvalence, we use the
construction of supercuspidal representation given by Green and James in Lemma Since it is
always possible to lift a o-invariant regular character over F; to a o-invariant regular character over
Qy, it is always possible to find a o-invariant Q;-lift 5 for a o-invariant supercuspidal representation p.
Since (3) implies (2) by definition, we only need to prove (2) implies (3). We sum up the proof
occurring in [Séc19], Lemma 2.19. We have the following F;[GL,,()]-module decomposition

FI[H\GLn(1)] = Vz & V',

where V5 is composed of irreducible components isomorphic to p, and V'’ has no irreducible component
1somorph10 to p. First we verify that Endg (l)]( ) is commutative. By |[Gow84|, Theorem 2.1, the

convolution algebra Z;[H\GL,,(l)/H] is commutative. Modulo | we deduce that
F[H\GL,,(1)/H] & Endg 61, 1) (F;[H\GL,,(1)]) = Endgar,, @ (Va) @ EndeLm(l)](V')

is commutative, thus Endgqy, ;y(V3) is commutative.
If we write P P;, then there exists a nilpotent endomorphism N € EndE(P) such that

EndF—l[GLm(l)}(P) F;[N]. And there exist r > 1 and nq, ..., n, positive integers such that

T
V= 5 P/N™P.
i=1
Since EndE[GLm(l)](Vﬁ) is commutative, we have r = 1 and V; = P/N™ P. Thus

HOmH (ﬁ, 1) = HomGLm(l) (p’ Vp) = HomGLm(l) (57 P/an P) ~ E

Now for char(R) = [ > 0 in general, there exists an equivalence of categories between represen-
tations of GL,,(l) over F;, and representations of GL,,(I) over R, which is given by tensor product
Po > P @, R for py a representation of GLy,(l) over F;. Thus we may use the former result to finish
the proof.

[

Remark 1.7.3. We give an example of a o-invariant cuspidal non supercuspidal representation of
GL,, (1) over F; which is not distinguished by H. Assumem = 2 and | # 2 such that 1|Q*+1. Let B be
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the subgroup of GLa(l) consisting of upper triangular matrices. For IndgLQ(l)l, it is a representation of
length 3, with each component of dimension 1,Q? —1,1. Denote by p the representation of dimension

Q? — 1 as the subquotient of IndgL2(l)1. It is thus cuspidal (not supercuspidal) and o-invariant. Let

7 be a Q;-lift of p which is an irreducible cuspidal representation. We write 5\H =V®..0V, its
decomposition of irreducible components. Since |H| = Q(Q+1)(Q?—1) is prime to l, reduction modulo
[ preserves irreducibility. So p|g decomposes as W1 @ ... ® W, where the irreducible representation W;
is the reduction of V; modulo | for each i = 1,...,r. Suppose that p is distinguished. Then W; = F; for
some i. Thus V; is a character which must be trivial. It implies that% 1s distinguished. It is impossible
by Lemma and Lemma[1.7.3, since m = 2 is even.

Finally, we need the following finite group version of Proposition

t‘—l)

Proposition 1.7.4. For p an irreducible representation of GLy, (1), we have p¥ = p( , where

p(th 2= p(tz™Y) for any x € GL,,(1).

Proof. By definition, the Brauer characters of p¥ and p(*-~1) are the same. Thus we finish the proof.
O

1.7.2 Distinction criterion in the unramified case

Let 7 be a o-invariant supercuspidal representation of G. In this subsection we want to prove Theorem
and Theorem in the case where E/Ej is unramified. Combining with Theorem we
only need to show that 7 is distinguished by any unitary subgroup to finish the proof of Theorem
Since changing 7 up to a G-action doesn’t change the content of the theorem, we only need to
consider two special unitary involutions as representatives of G-orbits of hermitian matrices mentioned
in Remark To ensure that, first we prove the following lemma:

Lemma 1.7.5. For any o-invariant supercuspidal representation m with E/Ey unramified, m is odd.

Proof. We consider 7 = 71, where 71(z) = o(*z™!) for any z € G. We follow the settings of Remark
1.6.1] For (J,A) a simple type as in Remark [1.6.1](2), we may write A = k ® p as before. Using
Proposition we may further assume K7V = k. Since A and k are 7-selfdual, we deduce that p
is 7-selfdual. Let p be the supercuspidal representation of GL,,(I) = J/J! whose inflation equals p| s,
then p7" = p when regarding 7 as a unitary involution of GL,,(l). Using Proposition we have
poo =p. Using Lemma [1.7.1] we conclude that m is odd.

O

With the aid of Lemma we may assume as in Remark(4) that 7(z) = e (tz~1)e! for
any « € G with ¢ equalling I,, or diag(wg, ..., wg), representing the two classes of unitary involutions.
For (J,A) a simple type as in Remark(Q), we may write A = Kk ® p as before. Using Proposition
we may further assume k™V = k. Using Lemma with g = 1, there exists a quadratic
character x : J NG — R* such that

dimpHom yrgr (K, x 1) = 1

and
Hom g~ (A, 1) = Homjng-(k, x ) @& Hom g (p, X)-

We want to show that xy = 1. First we need the following lemma:

Lemma 1.7.6. The character x can be extended to a character X' of J.
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Proof. Using Lemma we have J N G™ = JNG". Write X as the character of Uy, (l/lp) =
JNGT/J'NG™ whose inflation equals . Since it is well-known that the derived subgroup of U,,(I/l)
is SU,(1/1) == {g € Up(1/lp)|det(g) = 1} (see [Cam00], Theorem 5.4 and Theorem 5.5), there exists ¢
as a quadratic character of det(Up,(I/lo)) = {z € I*|zo(z) = 29F! = 1}, such that ¥ = dodet|y,, 1/1,)-
We extend ¢ to a character of I* and we write X’ = ¢ o det which is a character of GL,,(I) extending
X. Write x’° as the inflation of X’ with respect to the isomorphism GL,,(1) & J/J'. Finally we choose

X' as a character of J extending x"° by choosing x/(wg) # 0 randomly. By construction, x’|jnar = X.
]

Proposition 1.7.7. (1) When char(R) = 0, for any X’ extending x we have x'(x' o7) = 1.
(2) Furthermore, for any R we have x = 1.

Proof. First we consider char(R) = 0. Since m is odd, Lemma implies that GL,,(I) possesses
a o-invariant supercuspidal representation p’. Using Proposition we get HTV =~ /. We denote
by p’ a representation of J trivial on J' such that its restriction to .J is the inflation of p’. Since
o(wp) = wp, we have p/(7(wp)) = p'(wp)~! which means that p’ is 7-selfdual. By Lemma [1.7.2] it
is also distinguished.

Let A’ denote the T-selfdual simple type k ® p’. The natural isomorphism

Homng- (A, x ™) 2 Homyner (K, x ) ®g Homgngr(p/, 1)

shows that A’ is x~!-distinguished.

By Lemma there exists a character ' extending y. The representation A” = A’Y’ is thus
a distinguished simple type. Let 7" be the supercuspidal representation of G' compactly induced by
(J,A”). Tt is distinguished, thus 7-selfdual by Theorem and Proposition [L.5.6] Since A” and
A'™V = A"\'=1(x'~! o 7) are both contained in 7, it follows that x/(x’ o 7) is trivial.

We write ¥ = ¢ o det with the same notation as in the proof of Lemma Since x/(x' o7) =1,
we get ¢p(poo) ! = 51762 = 1. Choose (; as a primitive root of I, we know that ClQ_l generates the
group det(U,,,(1/ly)) = {z € IX|zo(z) = 29! = 1}. Since a(Cle) = 1, we deduce that ¢|qeq(u,, (/1))
is trivial, which means that  is trivial. Thus y as the inflation of ¥ is also trivial.

Now we consider R = IF;. As already mentioned in the proof of Proposition if we denote by
% the Q-lift of k and if we denote by X the character defined by Lemma (1) with respect to K
and 7, then we know that ¥ is a Q;-lift of x. By using the characteristic 0 case we already proved, we
get Y = 1 which implies that x = 1.

When R =1 > 0 in general, we just follow the same logic as in Proposition to finish the

proof.
O

Remark 1.7.8. In fact in Proposition we proved that when m is odd and E/Ey is unramified,
any T-selfdual k constructed in Proposition as an extension of a J'NGT -distinguished Heisenberg
representation n is J N G -distinguished.

Now we come back to the proof of our main theorem. We have
Hom jngr (A, 1) & Homjngr(k, 1) @ g Homyngr(p, 1),

where Hom jrgr (K, 1) is of dimension 1, and Hom jngr(p, 1) = Homy,,(1/1,)(p, 1) is also of dimension
1 by Lemma Lemma and Proposition So Homjngr(A, 1) is of dimension 1, which
implies that 7 is G"-distinguished. Thus we finish the proof of Theoremwhen E/Ej is unramified.
Using Corollary and the fact that m is odd, we deduce that Homg- (7, 1) is of dimension 1,
which finishes the proof of Theorem when E/FEj is unramified.
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1.8 The supercuspidal ramified case

In this section, we study the distinction of o-invariant supercuspidal representations of GG in the case
where E/Ej is ramified. This finishes the proof of our main theorem.

1.8.1 The finite field case

Let 1 be a finite field of characteristic p # 2 and let |I| = Q. For m a positive integer, we denote by
G the reductive group GL,, over I. Thus by definition, G(I) = GL,,(l). For € a matrix in G(I) such
that 'z = g, the automorphism defined by 7(z) = gtz ~'g~! for any z € GL,,(l) gives an involution
on GL,, (1), which induces an involution on G. Thus G7 is the orthogonal group corresponding to
7, which is a reductive group over I, and G”(I) = GL,,(I)” which is a subgroup of GL,,(l). In this
subsection, for p a supercuspidal representation of GL,, () and X a character of GL,,(I)7, we state the
result mentioned in [HL12] which gives a criterion for p distinguished by .

First of all, we assume R = @Q;. We recall a little bit of Deligne-Lusztig theory (see [DL76]).
Let T be an elliptic maximal I-torus in G, where elliptic means that T(l) = ¢t* and t/l is the field
extension of degree m. Let £ be a regular character of T(l), where regularity means the same as in
the construction of Green and James in subsection 7.1. Using [DL76|, Theorem 8.3, there is a virtual
character Rt ¢ as the character of a cuspidal representation of GLy,(1). Moreover if we fix T, we know
that £ — Rt ¢ gives a bijection from the set of Galois orbits of regular characters of T to the set of
cuspidal representations of GL,,(I). So we may choose £ such that Tr(p) = Rt¢. Moreover, using
IDL76], Theorem 4.2, we get Ry ¢(—1) = dim(p)é(—1) with dim(p) = (Q — 1)(Q* — 1)...(Q™ ! —1).
So if we denote by ws the central character of p, we get wz(—1) = £(—1).

Under the same settings, we have the following proposition due to Hakim and Lansky ( [HL12],
Proposition 6.7):

Proposition 1.8.1. For 7, p, T and & above, we have:

Lifwp(=1) = &(=1) = X(=1),

dimp(Homg-) (0, X)) =
R( ar@ (P, X) {O otherwise.

Now we consider the I-modular case and assume char(R) =1 > 0.

Proposition 1.8.2. For 7 above and p a supercuspidal representation of GL,,(l) over R, the space
Homgr,,, )= (5, X) # 0 if and only if ws(—1) = X(—1). Moreover if the condition is satisfied, then we
have dimg(Homgy, , 1y~ (9, X)) = 1.

Proof. First we assume R = F;. We use the similar proof to that in Lemma Let H = GL,, ()"
with other notations unchanged. We choose X as a character of H lifting x, which is defined over Z;
or (Q; by abuse of notation. For S = Z;, Q;, we define

SIH\GLy, (D)5 := {f|f : GLin(1) = S, f(hg) = X(h)f(g) for any h € H,g € GL(1)}.

Especially we have

- G m ~

QI[H\GLy (1))z = Indgy Y%
as a representation of GL,,(l) over Q;, and we have Z;[H \GLy (D)5 as a free Z;-module. If we further
define

then we have o o
Zy[H\GLi (1)]5 @7, i = Fi[H\GLn (V)]
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and o -
Zi[H\GLin (1) ]z @7 Qi = Q[H\GLi (1) 5.
We deduce that

Homp (p,X) # 0; <= Homgqr, (7, Fi[H\GLy(1)]5) # 0;
= Homg; 1) (5 @7 F;, F;[H\GL,,,(1)]5) # 0;
= Homg qp,, 0y (Fp ,Z[H\GL ())z) # 0;
= Homg, ¢, . (Ppa Qi[H\GL, (1 ) # 0
<= There exists p lifting p such that Homg; 1, 1] (5,@[H\GLm(l)]§) # 0;
<= There exists p lifting p such that wﬁ(—l) =x(-1);
> wp(=1) =X(=1).
The former equivalences are of the same reason as in the proof of Lemma[I.7.2] and we use Proposition
for the second last equivalence. For the last equivalence, the “=" direction is trivial. For

the other direction, when [ # 2, we choose 7 to be any supercuspidal Q-lift of p. Thus we have
w;( 1) = wp(—1) = X(—1) = X(—1). When [ = 2, using the construction of Green and James, for &

a regular character over F; corresponding to p, we may always ﬁnd a Q-lift f which is regular and
satisfies £ ( 1) = X( 1). Thus the supercuspidal representation 7 corresponding to f as a lift of p
satisfies w%( 1) = X(—1). So we finish the proof of the first part.

To calculate the dimension, as in the proof of Lemma if we write

F[H\GL,,()x = Vz &V,

where V7 is composed of irreducible components isomorphic to p, and V'’ has no irreducible component
isomorphic to p, then we only need to show that EndE[GLm (l)](Vﬁ) is commutative. We consider the

following Z;[GLy, (1)]-module decomposition
Zi[H\GLy())z = Vz0 V7,

where V5 p Oz Q= @~ p with the direct sum ranging over all the irreducible representations 5 over Q;

occurring in P counting the multiplicity, and V’ denotes a Z;[GLy,(1)]-complement of Vp, such that

v Rz Q; contains no irreducible component of 7. Using Proposition [1.8.1, we know that % ®Z@

is multiplicity free, which means that Endg, W[CLom (1] (/Vvﬁ ®z, Q) is commutative. Since the canonical
embedding from Z;[H\GLy, (1 )]z to Q[H\GL,, (1 )z induces the following ring monomorphism

Endz i, o) (ZiH\GLin(D)]5) < Endggr,,, @) (QIH\GLn (1)]y)
given by tensoring Q;, which leads to the ring monomorphism
Endz iy, ) (Vo) = Endger,, ) (Vs 9z Q).

thus Endz o, o) (/V;) is also commutative.
The modulo [ map from Z;[H\GLy, (1 )z to F;[H\GL,, (1)} induces the following ring epimorphism

Endzqr, o) (ZiH\GLn()]z) = Endgy gy, o (FH\GL (D),
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which leads to the ring epimorphism

Since Endz; 1, o) (f/;) is C(?mmutative, we know that Endg iy, 4y(V5) is also commutative. Thus we
may use the same proof as in Lemma to show that

dimg (Homgr,, 1)~ (P, X)) = 1.

Finally for char(R) = > 0 in general, we follow the corresponding proof in Lemma[1.7.2]
O

Remark 1.8.3. For G"(l) an orthogonal group with m > 2, it is well-known that its derived group is
always a subgroup of GTO(1) of index 2 (see [Cam00], Proposition 6.5) , which means that there exists
a character of GT(l) which isn’t trivial on G™(l). It means that we cannot expect X to be trivial on
G™(1) in general. However, for those X occurring in the next subsection, it is highly possible that X
is trivial on G™°(l). For ezample, [HL13], Proposition 6.4 gives an evidence in the case where T is
tame supercuspidal. However, I don’t know how to prove it.

0 L2

Now we assume that m is even. We write Jm/2 = ( I 0
~im/2

> and we denote by

Sp,, (1) = {x € GL,,(1)] ta:Jm/zx = Jm/2}
the symplectic subgroup of GL,,(I).
Proposition 1.8.4. For p a cuspidal representation of GLn (1), we have Homg, )(p,1) = 0.

Proof. Using [Kly84], Corollary 1.4. whose proof also works for the [-modular case, we know that an
irreducible generic representation cannot be distinguished by a symplectic subgroup. Since a cuspidal
representation is generic, we finish the proof.

O

1.8.2 Distinction criterion in the ramified case

Still let m be a o-invariant supercuspidal representation of G. In this subsection we prove Theorem
and Theorem in the case where F/Ej is ramified. Using Theorem we only need
to show that 7 is distinguished by any unitary subgroup to finish the proof of Theorem We
may change 7 up to a G-action which doesn’t change the property of distinction. Thus using Remark
1.6.1}(4), we may assume 7(z) = eo(‘x~1)e™! for any x € G, where € equals I,, or diag(ly, ..., I4, €)
with € € OEO\NE /B,(0F), representing the two classes of unitary involutions. We denote by & the
image of € in GL,, ().

For (J,A) a simple type in Remark (2)7 we write A =2 k ® p. Using Proposition we
may further assume k™ = k. Using Lemma with g = 1, there exists a quadratic character
X :JNG™ — R* such that

dimpHom g (K, x 1) = 1 (1.8.1)

and
Hom g~ (A, 1) 2 Homjng-(k, x ) @& Homjng-(p, X)- (1.8.2)

If we denote by w, the central character of k defined on F*, using (1.8.1)), we get w, = x~! as
characters of F* N (J NG7). In particular, wy(—1) = x~!(—1). Since k™ = k, we get wx 0T = wi .
In particular we have

"JR(WF)_1 = wi(7(wF)) = Wn(wF)_lwn(_l)_1>
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where we use the fact that o(wr) = —wp. Thus we get we(—1) = x(—1) = 1.

Since A and k are T-selfdual, p is 7-selfdual. Using the same proof as that for k, we get w,(—1) = 1.
Let p be the supercuspidal representation of GLy, (1) = J/J' whose inflation equals p|; and let X be
the character of

G ()=JnG /] nG™

whose inflation equals y, where 7 naturally induces an orthogonal involution on G with respect to €
with the notation in subsection [L.8.1] By definition and Lemma [1.4.2] we get

Hom g (p, x) = Homg- () (9, X)-

Since ws(—1) = X(—1) = 1, using Proposition and Proposition the space above is non-zero.
Thus by ([1.8.2]) we have
Homjngr (A, 1) # 0

which means that 7 is distinguished by G7, finishing the proof of Theorem Moreover using
Proposition Proposition (1.8.1) and (1.8.2), we get

dimRHomeGT (A, ].) =1.

Now if m is even and £ = I,,, we also need to study the space Hom jo1ngr (A9, 1), where g1 is
defined in Corollary [1.6.29) such that T(gl)gfl = wpJpy2 € B*. Using Lemma [1.6.18) there exists a
quadratic character x1 : J9* N G™ — R* such that

dimRHomngGT(ngl,Xl_l) =1. (1.8.3)

and
Hom jo1 ngr (A9, 1) = Hom yo1 ngr (K9, Xl_l) ®pr Hom jo1 g (p9%, x1)- (1.8.4)

-1
So we only need to study the space Hom joingr(p%, x1) = Hom ;. s, (P, x]' ), where

Sg. () = (1(91)g1 ) ' (@)(7(91) 91 ") = (@E o) "' T(@)@E T2

for any = € G as an involution on G.
Let p be the supercuspidal representation of GLy,(l) = J/J' whose inflation equals p|; and let

—1
x“fl be the character of
Spm(l) = J NGO [T N GO
-1

whose inflation equals Xﬁ'l , then we get

1 1

Hom ; sy, (P, X1 ) = Homsy, (2, x7' ) = Homsy, )(p,1),

where the last equation is because of the well-known fact that Sp,,(l) equals its derived group (

1
|Cam00], Lemma 4.8), thus x}" |sp,, (1) is trivial. Using Proposition [1.8.4} we get Homg, ()(p,1) = 0.
Thus Hom yo1 ngr (A9, 1) = 0.
Using Corollary [1.6.29] we get

dimgHomgr (7, 1) = dimgpHom jngr (A, 1) + dimgHom joi ngr (A9, 1) = 1,

which finishes the proof of Theorem when E/Ej is ramified.
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Remark 1.8.5. From the proof above, we may find out that when E/Ey is ramified, for the two
T-selfdual simple types mentioned in Corollary it is always the simple type (J,\) which con-
tributes to the distinction, and (J9, A9') never contributes to the distinction.

Remark 1.8.6. In general, if we weaken the condition for the representation w such that it is only
cuspidal, and if we still assume that it is o-invariant such that E/Eq is totally ramified, then the
argument above still works and we have

Homg- (777 1) = Homg- ) (ﬁa y)

as R-vector space, where G7(l) is an orthogonal subgroup of GLy, (1), p is a cuspidal representation
of GLy,(1) and X is a quadratic character of G™ (1) such that ws(—1) = X(—1). Furthermore we may
prove that this space is non-zero. When char(R) = 0 it has been proved and when char(R) =1 >0
we assume R = F; without loss of generality. Using the argument of Pmposition we may find
a cuspidal representation p of GLy(1) as a Qi-lift of  and X as a quadratic character of GT(1) as a
Qq-lift of X, such that wﬁ(—l) =%(=1). Then by Proposition@ we get HomGT(l)(ﬁ, X) # 0 and thus
Homg- (1) (p, X) # 0. Thus even for a o-invariant cuspidal representation m as above, it is distinguished
by a given unitary subgroup, however in this case we don’t know the multiplicity one result.

1.8.3 Proof of Theorem [0.2.3

Let 7 be a o-invariant supercuspidal representation of G over F;. For 7 a unitary involution, by
Theorem [0.2.1) 7 is distinguished by G7. From the proof of Theorem there exists 7 as a
distinguished integral o-invariant supercuspidal representation of G over Q; which lifts 7. So we finish
the proof of Theorem [0.2.3

1.9 Generalization of Theorem 1.4.1

In this section, we generalize Theorem [[.4.1] to the irreducible generic representations, while in the
meantime we also give another proof of the original theorem which is purely local. Precisely, we prove
the following theorem:

Theorem 1.9.1. Let w be an irreducible generic representation of G over R. If w is distinguished by
G7, then m is o-invariant.

1.9.1 The finite analogue

To begin with, we first study the finite analogue of the theorem:

Proposition 1.9.2. Letl/ly be a quadratic extension of finite fields of characteristic p and let p be an
irreducible generic representation of G = GLy, (1) over R. If p is distinguished by the unitary subgroup
H of G, then it is o-invariant.

Proof. When char(R) = 0, the proposition was proved by Gow [Gow84| for any irreducible represen-
tations. So we only consider the [-modular case and without loss of generality we assume R = F;. We
write P; for the projective envelope of p as a Z;[G]-module. Thus Pﬁ@ZTE is a projective F;[G]-module,
and moreover

Homg; 77(p, 1) =Homg; g (7, F1[H\G]) # 0
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implies that
Homflm (Fp Sz F;, Fi[H\G]) # 0.
From the property of projective envelope, equivalently we have
and thus there exists p as an irreducible constituent of P; ®ZT@ such that
Hom@@ (0, Q[H\G]) # 0.

By [Ser77], §14.5, §15.4, p is a constituent of 7;(p). Since p is H-distinguished, it is o-invariant and so is
7(p). We choose p1, ..., pi. to be cuspidal representations of G over Q, such that p is a subrepresentation
of the parabolic induction p; X ... x pg. We write p; = r(p;) as cuspidal representations of G over
F;, then all the irreducible constituents of r;(p) are subquotients of p1 X ... X pg, and in particular
so is p. Since p is generic (or non-degenerate), by [Vig96|, II1.1.10, it is the unique non-degenerate
subquotient contained in py X ... X pg, thus it is the unique non-degenerate constituent in r;(p). Thus
it is o-invariant.

O

1.9.2 The cuspidal case

In this subsection, we first prove the case where 7 is cuspidal. We choose (J,A) to be a simple type
of 7, then by the Frobenius reciprocity and the Mackey formula, there exists g € G such that

Hom jong- (A9, 1) # 0. (1.9.1)

Let H! be the corresponding subgroup of J, let # be the simple character of H' contained in A and
let 7 be the Heisenberg representation of f. Restricting (1.9.1) to H'9 N G™ we get 09| gigngr = 1.
Following the proof of |[Séc19], Lemma 6.5, we have

(0 o T)T(g)|T(ng)mng = 99 (¢] T|T(H1g)mng = (99)_1’T(ng)ﬂng, (192)

or in other words, § o 7 intertwines with —!. Using the Intertwining Theorem (cf. [BH13|), 6 o 7 and
6~! are endo-equivalent, which, from the argument of Lemma m is equivalent to ©7 = O, where
© denotes the endo-class of 6.
We let 7 be the unitary involution corresponding to I,,, which in particular satisfies the condition
of Theorem Since ©7 = ©, by loc. cit., we may choose a simple stratum [a, 5] and 6 € H'(a, 3)
with 6" € ©, such that
n(B)=pF"", m(a)=a and @ orm =61

Up to G-conjugacy, we may and will assume that J = J(a,3) and ¢ = 6. We write E = F[f]
and B = M,,(E) as the centralizer of E in M,,(F'). Using Proposition we write A = Kk ®@ p
with k an extension of the Heisenberg representation n such that k™ = k. Let € be an hermitian
matrix such that 7(z) = eo(tz 1)e ! = 7 ()¢ ' for any & € G. For a fixed g € G, we define

v=e"11(9)g " = 11(9)e tg~! and by direct calcualtion we have 7{(y) = .

Proposition 1.9.3. Let g € G such that Hom jyongr(A9,1) # 0.

(1) Changing g up to another representative in the same J-G7 double coset, we may assume
v € BX;

(2) The dimension dimgpHom jigng-(n9,1) = 1;
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(3) There is a unique quadratic character x of J9 N GT trivial on J*9 N G", such that
Hom jignc- (77, 1) = Hom yongr (K9, x 1) = R.

Moreover
Hom jong- (A?,1) = Hom jorgr (K7, x 1) @ Hom gong- (07, X);

(4) The element vy € J, thus under the assumption of (1) v € B*NJ = EXb*.

Proof. We sketch the proof which follows from that of Theorem (actually the same theorem
if 7 = 7). Using (]1.9.2') and the fact that 7(HY) = 7 (HY)e 'm0 = H* '70) and (§ o 7)™@ =
(@or) 7@ = (9=1)= 79 we have

—1 _ _
(95 T(g)) 1]H1€—1T(g)mH1g = (9 ° T)T(g)‘r(ng)mng =690 T‘T(ng)mng = (99) 1|H15—1T(g)mH1g7

which means that v intertwines 6, or in other words v € JB*J. The following lemma follows from
the same proof of Lemma [1.6.5] once we replace the v there with our v here and 7 there with 7.

Lemma 1.9.4. There existy € J = J(a,5) and b € B>, such that v = 11 (y)by.

Thus we change g by y~'g and then the corresponding v = b € B*, which proves (1). For (2), we

denote

1

5(z) = (r(9)g ) 'r(@)7(9)g7 =7 'n(x)y foranyz € G

as an involution on G, then by definition we have
Homg- <77ga 1) = I—IOHIG"S (777 1)a

and
¥6(y) = i)y = 1
Moreover, by direct calculation we have

S(H') = (r(9)g ") TH' '7(g)g™" = H' and fod=(67")" "W = (97').

So using Proposition |1.6.14] we finish the proof of (2).
Using (2) and the same argument of Proposition |1.6.18 we get the statement (3), except the part
x being quadratic. To finish that part, since

mi(ri(g)e e Hrlg)e ™) = gem(g) !t = (ru(g)e g ) =471 € BX,

we may replace g with e !7(g) = 71(g)e™! in the statement (3) to get a unique character x' of
Je 79 N GT trivial on J1¢'79) N GT. Moreover, using the facts 7(J) = J° , 7(J) = J° , 7(J}) =
J " and 7(H') = H'*"' and Lemma it is easy to show that

JING =J° TONGT =J9NG =J T@WnGT (1.9.3)

As a result, x and X’ are characters defined on the same group J9NG™ = J =7'7(9) N G™. We have the
following lemma similar to Proposition [L.6.19

Lemma 1.9.5. We have x = x'.
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Proof. We write & for the involution defined as above. By §1.3.2) we have v € Ig(n) = Ig(x°) and
dimpg (Hom jnj~ (%7, k°)) = dimp(Hom j14 1+ (7, 1)) = 1,

where k° = k|;. By direct calculation, we have J' N G® = J N G? as a subgroup of J' N .J' and

H'NG°® = HNGY. Using statement (2) for g and e~ '7(g) respectively, we get
dimpHom jiyngr (79, 1) = dimgHom 1.1, (F 79, 1) = L.

By Proposition [1.6.20} for 0 # ¢ € Hom jiq14(17, 1) = Hom 1, 1.1 (nF ') ), the map

-1
fL‘O : Hom‘ﬂgmGT (ng’ 1) — HomJ1€717<g)mGT (775 T(g)7 1),
A — Aoy,

is bijectiveﬂ If we choose
0# X € Homjigngr(n9,1) and 0# N := f,(A\) =Xop € HomJlgflf(g)mGT(175717(9), 1),
then for any v in the representation space of n and any z € J9NGT = JT9) 0 G7, we have

¥ ()N (v) = )\/(5067 9 (z)v) (by the statement (3))

= Ap(k% "9 (z)v))  (by definition of \)

= A% (2)p(v))  (since ¢ € Hom -1, (5 7@, £09))
= x(2) "\ (p(v)) (by the statement (3))

= x(x) "N (v) (by definition of ).

Since v and z € JING™ = J° 79 N G7 are arbitrary, we have X'l je-tr@)ngr = Xlsongr. Combining
with (|1.9.3]) we finish the proof of the lemma.
O

To prove that x is quadratic, we first assume that char(R) = 0. We have the following isomorphisms

—1
Homjlflr(gmaf(na T(g)a 1) = Hom jigngr (17, 1)

)

=~ Hom jongr (X, mgv) (by the duality of contragredient)

= HOHIJg NG™

\

OT,XOT)

(w7
(
=~ Hom jonagr (K9Y, X)
=~ Hom jongr (kY
(

%HomngGT (K,VOTI) 17_( )7Xo7')

= Hom “ir(e), xoT) (since Kk is 7i-selfdual).

Jelr@ngr (K
Using the above lemma and the uniqueness of X/, we have y o7 = x~'. Since x is defined on
J9ING™ = J9N G7 which is 7-invariant, we have y o 7 = x, thus x> = x(x o7) = 1. When
char(R) = [ > 0 the same argument in Proposition can be used directly.

Finally using (3) and the distinction of the simple type, we have Hom jong-(p9, x) # 0. Then the
proof of (4) are the same of that in subsection once we replace v there with our « here.
O

®Noting that J'Y N G™ = J' N G° and JETT@ A GT = g NG, thus Hom jigngr(n?,1) = Hom jines(n,1) and
S
Hom j1.~17 () g- (07 7, 1) = Hom iy s (17, 1)
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Corollary 1.9.6. For g € G such that Homjong-(A9,1) # 0, we may choose g up to changing the
representative in the J-G7 double coset, such that

S Im or wgly if E/Ey is unramified;
T Ly or diag(l,....1,€) or w@gJy) if E/Ey is ramified,

as an element in GLy,(E) = B* < G, where € € o, \Ng/p,(0p)

Proof. We have proved that v = 71(g)e '¢g~! € BX NJ = EXb*. Changing g up to multiplying by
an element in E* which doesn’t change the double coset it represents, we may assume vy € b* or
wgb*. Using Proposition and changing g up to multiplying by an element in b* on the left, we
may assume that v = w®%, and from the uniqueness we must have w$ = I, or wgl,, when E/Ej is
unramified, and wf = I, or diag(1,...,1,¢€) or wpJy, /o when E/Ej is totally ramified.

O

Thus for g € G as above, we get

-1

-1
Hom jrgs(p, x? ) = Homjngs(p, x? ) = Homgongr(p?, x) # 0.

Write H = JNG?/J' N G? for the subgroup of G = GL,,(1) = J/J', which, from the expression of
in Corollary [1.9.6] is either a unitary subgroup, or an orthogonal subgroup, or a symplectic subgroup
of G. Thus we have

Homg (7, ') # 0,
where 7 is a cuspidal representation of G whose inflation is p|; and X’ is a quadratic character of H
whose inflation is x9 | jnqs-

When H is unitary which also means that E/FEj is unramified, by Lemma (or more precisely
its argument) x’ can be extended to a quadratic character of G. Thus ﬁ?_l as a cuspidal representation
of G is distinguished by H, and thus it is o-invariant by Proposition Since p is odd, as a quadratic
character ) is o-invariant. Thus p is also o-invariant, or by Proposition p™t = pY. Thus both k
and p are 7y-selfdual, which means that A and 7 are 71-selfdual. By Proposition[L.5.6] 7 is o-invariant.

When H is orthogonal which also means that E/FEy is totally ramified, comparing the central
character as in §1.8.2| we have p(—1I,,) = id. Thus p™|; = p(*-71)|; = p|; by Proposition and
p(ti(wg)) = p(—wg) = p(wg), which means that p is 7-selfdual, finishing the proof as above.

Finally by Proposition and the fact that Sp,, (1) equals its derived subgroup, the case where
H is symplectic never occurs, which ends the proof of Theorem when 7 is cuspidal.

1.9.3 The discrete series case

In the following two subsections we use the result in [FLO12] and our cuspidal result to finish the
proof of Theorem Since the characteristic 0 case has been proved in ibid, Theorem 6.1, we only
consider the case where char(R) = [ > 0. In this subsection we assume that 7 is a discrete series
representation, of which we give the definition below.

For p a cuspidal representation of GL, (F'), we denote by f(p) the number of unramified characters
x such that px = p and we write ¢(p) = ¢/(?). We denote by o(p) the smallest positive integer such
that [ divides q(p)° — 1. We let e(p) be the smallest integer €’ such that 1+ q(p) + ... + q(p)¢ *
is divided by I. Thus we always have e(p) > o(p) and the equality holds if and only if o(p) # 1. We
write A, o) for the segment {pv®, pr**1, wory p°}, where v(-) = |det())|p, a,b € Zand k =b—a+ 1
is a positive integer. When k is smaller than e(p), the normalized parabolic induction

pr® x prtt x Lox pr
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has a unique non-degenerate irreducible quotient ( [MS14a|, Lemma 7.14, Proposition 7.21.(3), Ex-
ample 8.2.), which we denote by

St(Ap,[a,b])~

We call it a discrete series representation.

Remark 1.9.7. Noting that in our definition a discrete series representation is always non-degenerate.
One may also regard [MS14al, Définition 7.5.(2) as another possible definition for discrete series
representations, which is a larger category than ours and includes degenerate representations.

Proposition 1.9.8. If kn' = n and m = St(A,44) as above is distinguished by G7, then both
St(Ap [a) and p are o-invariant.

Proof. Since 7 is distinguished by G7, the parabolic induction pr®x pr®t1x...x pr? is also distinguished
by G". By [FLO12|, Lemma 6.10. (note that their argument also works for l-modular case), for
M = GL(F) x ... x GL,/(F) as a Levi subgroup of G and for each i € {0,1, ...,k — 1}, either there
exists a unitary involution 7/ of GL,/(F) such that prot is distinguished by GL,/(F)™, or pv®t? is
isomorphic to pr®t? for another i’ € {0,1,....k—1}.

If for a certain i the first situation occurs, then using the theorem for the cuspidal case pv* and p
are o-invariant EI, then pr® x pr®t! x ... x pv® and 7 are o-invariant which finishes the proof. Thus we
assume that for each i we are in the second situation, and in particular we choose i to be the smallest
integer in {0, 1, ...,k — 1} such that p7v® = pr+i,

If i = 0, we finish the proof as above. In particular if ¢(p) equals 1 modulo I, we have pr = p which

means that pv® = prtt = pr? included in the i = 0 case. So we assume that ¢ > 0 and [ doesn’t

divide ¢(p) — 1 indicating o(p) = e(p). We have pro+?i = p719% = % and thus o(p) divides 2i. Since
i <k < e(p) = o(p) from our assumption, we have 2i = e(p) > k. Then p7rati=l = ppati=l4i and
since p?v®t~1 is isomorphic to pya“‘j/ for a certain j' € {0,1,....,k — 1}, we know that 2 — 1 — j', as
an integer between 2 — k and 2i — 1 = e(p) — 1, is divided by e(p), thus 2¢ — 1 = j” which implies that
2i — 1<k —1, or 2i <k, contradictory! Thus we finish the proof.

O]

1.9.4 The generic case

Finally we assume that 7 is generic and distinguished by G7. Using |[MS14a], Théoreme 9.10, for
i =1,...,r there exist n;, k; € N and a;,b; € Z satisfying niky + ... + n.k, = n and b; — a; + 1 = k;,
and p; cuspidal representations of GL,, (F) satisfying k; < e(p;), such that

T St(Apl,[a1,b1]) X ... X St(Apn[ambr])’

where for i1 # i9, the corresponding segments A piy ol iy and A piylaiy biy] BT€ DO linked (lié in French)
in the sense of ibid, Définition 7.3. We write Ay, ..., A, for those segments for short. For A;+...+ A, as
a multisegment, we define its support to be Y, Z;’; a; PiV’ as a multiset of cuspidal representations.

Lemma 1.9.9. For each i there exist segments A;1, ..., Aij, with A; and Az +...4Ayj, having the same
support, such that for each corresponding representation St(A;j), either it is distinguished by a unitary
subgroup, or there ezist i’ € {1,...,r}, j" € {1,..., jy} such that Aj;, = A;; and St(Ayjr)7 = St(Ay;).

Proof. The proof of the lemma is indicated in [FLO12], §6.2. By the geometric lemma, the restriction
mlar = St(A,, [a1,61]) X -+ X St(A,, [a,,5,]) G 18 Written as a finite filtration of G"-invariant subspaces.
Since 7 is distinguished by G7, there exists at least one subquotient in the filtration contributing to the

"As an unramified character v is always o-invariant.
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distinction. Thus by Lemma 6.4. of loc. cit., for M = GLy,, (F') X ... X GLy,, . (F') as a Levi subgroup
of G, there exists a Levi subgroup L of M, such that the Jacquet module Jg ar(St(A,, [a,,01]) ®
.. ® St(A,, [arp,]) as a representation of L is distinguished by a unitary subgroup of L. Using
[MS14a], Proposition 7.16. to calculate the Jacquet module, we deduce that Jp, 11 (St(A,, (4, ,]) @ @
St(A,, [a,p,])) must be of the form

St(AH) ®...Q St(Aljl) ® St(Agl) ® ... St(A2j2> ®...Q St(ATl) ® ... St(Arjr)y

where Aji,...,A;;, form a partition of A;. Finally by [FLO12|, (6.5), each corresponding representation
St(Ay;) is either distinguished by a unitary subgroup, or there exist ¢ € {1,...,7}, 5/ € {1,...,75¢#}
such that St(Ay ;)7 = St(A;j). By considering the cuspidal support the latter case also implies that
Af = Aij.

O

Lemma 1.9.10. For any multiset s of cuspidal representations, the multisegment Ay + ... + A, such
that

e its support is §;
e its elements are not linked;

o k; <e(p;) for each i
s unique, if it exists.

Proof. We choose p to be a cuspidal representation contained in s. We let k£ be the largest integer,
such that there exist a,b € Z with pv®, pr®*t! ... pv® in s and k = b — a + 1. From the non-linked
condition, k < e(p) and the multisegment contains a segment with A pJab] @ its subsegment, thus it
contains A, 1, 3 since k is the largest. Thus we finish the proof by eliminating A, , 5 and by induction

on the cardinality of s.
O

For A; as one segment given as above, if there exists one A;; as in the lemma such that St(A;;) is
distinguished by a unitary subgroup, by Proposition both p; and St(A;) are o-invariant.

Now we consider those A; such that p¢ is not isomorphic to p;. First we assume that p¢ is not
isomorphic to p; twisted by any power of v. We let A, , ..., A;, be those segments such that each p;,
is isomorphic to p; twisted by a certain power of v, correspondingly let Az/ , .- Ay be those segments
such that each pi, is isomorphic to pf twisted by a power of v. Thus using Lemma every A7 . j
equals a certain AZ;/ jo- Thus A? + ...+ A7 and AZI + ...+ Alsl have the same Support and are equal
to each other by Lemma Thus A equals a certain A; with ¢ € {1,...,7} and p¢ is isomorphic
to py twisted by a power of v.

Now we assume that p¢ is isomorphic to p; twisted by a certain power of v. As above we let
Aj,, ..., A;, be those segments such that each p;, is isomorphic to p; twisted by a power of v, still
using Lemma every A7 equals a certain A;, ;. Thus A7 + ...+ A7 and A; + ... + A, have
the same support and are equal to each other by Lemma Thus AY equals a certain Ay with
i e{l,..,r}.

Thus we have proved that for each A; there exists ¢ such that A7 = A; (it is possible that ¢/ = i),
where ¢ and i’ range over {1,...,7}, thus

77 2 St(A]) x ... x St(A7) = St(A1) X ... X St(A,) = 7,
which finishes the proof.

Remark 1.9.11. In general it should be interesting to know whether Theorem [1.9.1] and Proposition
are true or not for general irreducible [-modular representations.
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1.10 ‘“/-modular” base change lift and applications

In this section, we study a “I-modular” version of cyclic base change lift via [-modular local Langlands
correspondence developed by Vignéras. Here we use quotation mark to indicate that our map is not
always compatible with the cyclic base change lift over Q; if we consider the usual modulo [ map 7,
instead we need to replace r; by another modified modulo | map J; whose definition will be given later.
As an application, we will study all the o-invariant cuspidal representations of G = GL,,(F) over [,
having a Q;-lift as a o-invariant cuspidal representation of G.

1.10.1 [-modular local Langlands correspondence

We briefly recall the l-modular local Langlands correspondence developed by Vignéras [Vig01|. Let F
be a non-archimedean locally compact field and let R be Q; or F;. We write Wy for the Weil group of
F'. By representations of Wg over R, say Weil representations, we mean semisimple finite dimensional
smooth representations. By a Weil-Deligne representation over R we mean a pair (o, V), where g is a
Weil representation of Wr and N is a nilpotent linear transformation defined on the space of g, such
that

vp(w)o(w)N = No(w)

for any w € Wp, where vp is given by the exact sequence

0—Ip Wp—2 750

whose evaluation at the arithmetic Frobenius map is 1. We denote by Repr(Wr) and Repr(W D) the
equivalence classes of Weil representations and Weil-Deligne representations, by Irrg(Wp) the equiva-
lence classes of irreducible Weil representations, by Irrgr(Wp(n)) the equivalence classes of irreducible
Weil representations of dimension n, by Irrgp(GL,,(F')) the equivalence classes of smooth irreducible
representations of GL,,(F'), by Repr(W Dr(n)) the equivalence classes of Weil-Deligne representations
with the dimension of the corresponding Weil representation equaling n and by Scuspp(GL,(F)) the
equivalence classes of irreducible supercuspidal representations of GL,(F) over R. We identify Q;
with C via an algebraic isomorphism,

Theorem 1.10.1 (Laumon-Rapoport-Stuhler, Harris-Taylor, Henniart, Scholze, Vignéras [LRS93|,
[HTO01], [Hen00], [Sch13|, [Vig01]). (1) The local Langlands correspondence is defined as a bijection

LLCpg : Scuspr(GL,(F)) — IrrrRWr(n))

determined by certain desiderata.

(2) When R = Qq, the map LLC@ can be extended to irreducible representations, which is a
bijection

LLCg; : Irrg(GLn(F)) — Repg (W Dr(n))

determined by certain desiderata;

(3) LLCE s compatible with LLC@, saying that for any ™ as an integral supercuspidal represen-
tation of GL,(F) over Q; with the supercuspidal support of its modulo | reduction r(%) denoted by
{m1,....ms} as a multiset, LLCg (%) is also integral and &;_LLCx(m;) = r/(LLCg (7))

Remark 1.10.2. Our consideration of LLC@ and LLCE depends on the choice of the isomorphism

Q; = C. Actually it only depends on the choice of a certain square oot of q in Q; for q denoting the
cardinality of the residue field of F' (cf. [Dat07], §2.2).
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Recall that we have defined v = |det(:)|r as a character of GL,(F) for any n. By abuse of
notations we also regard v as a character of Wp defined by v(w) = ¢ vF) for any w € Wp. By
a (super)cuspidal segment of GL,(F'), we mean a multiset A, 45 = {pv®, pvott . v} with a < b
integers and p a (super)cuspidal representation of GL,(F) such that n'(b — a + 1) = n. Similarly
by a segment of Wr(n), we mean a multiset A, 5 = {0V, ool . o} with a < b integers and
0 € Irrr(Wr) such that dim(p)(b—a+ 1) = n. In both cases we call n the length of the segment, and
without imposing on the restriction on the length we call A, [, 3 a (super)cuspidal segment of GL(F),
and A, 5 a segment of Wr. A multisegment of GL(F) (resp. Wr) means a multiset composed of
cuspidal segments of GL(F') (resp. segments of Wy), whose length equals the sum of that of each
segment. We denote by Mulr(GL,,(F")) the set of multisegments of GL(F') of length n composed of
supercuspidal segments and by Mulgp(Wr(n)) the set of multisegments of Wg of length n. The
following proposition extend the local Langlands correspondence above to multisegments, whose proof
is direct.

Proposition 1.10.3. For each n the local Langlands correspondence as above extends to a bijection
LLCgr : Mulg(GL,(F)) — Mulgr(Wg(n)),

given by the relation
LLCR(A, ja]) = ALLC(p),[a,b]
for any a,b and p € Scuspr(GL, (F)), and

LLCR(Al + ...+ AT) = LLCR(Al) + ...+ LLCgr(A,)
for A; segments of GL(F).
We consider Mul(%llt(GLn (£7)) as the subset of Mulg, (GLy(F)) with each supercuspidal constituent
integral, and for any n we define

o Mul}@f(GLn(F)) — Mulg(GLy(F))

such that

T1(A5 b)) = Z Apfa)
pESC(11(p))

for any a,b and p € Scusplnt(GLn/(F)) with SC(r;(p)) denoting the supercuspidal support of r;(p),

and
(AL + o+ A) =1(A) + - Fr(A)

for A; integral segments of GL(F) over Q;. Similarly we consider Mulg(WF(n)) as the subset of
Mulg (Wr(n)) with each irreducible constituent integral, and for any n we define

r MULIQTIT(WF(R)) — Mulg(Wr(n))

DNga) = Y Dofayy

ocr ()

such that

for any a,b and g € Irrlnt(WF(n’)), and

Tl(Al + ...+ Ar) = 7"l(Al) + ...+ TI(AT)

for A; integral segments of Wr over Q.
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Corollary 1.10.4. LLC@ maps integral multisegments to integral multisegments and we have the
following commutative diagram

Int LLC@ Int
Mulg” (GL,(F)) —= Mulg Wr(n))

LLCy

Mulg(GLy, (F)) — Mulg(Wr(n))

Proof. The first part is obvious and the second part follows from Theorem [1.10.1}(3).
O

Fix ¥p :0p — lea non-trivial character and extend it to a character ¥p : F' — R* by extension
of scalar. For U, the standard unipotent subgroup of GL,,(F') and A = (A; > A2 > ... > \;) a partition
of n, we define a character of U,

Ya(u) = TZJF(Z Uiit1),

where the sum ranges over i # A\, A1 + Xo,...,A\1 + Ao + ... + X\s. We have a total order A\ > )\ for
partitions A = (A1 > A2 > ... > Xg) and X = (A} > Xy, > ... > X)) of n, saying that either A = X, or
there exists k € {1,2,..., s} such that

A =N, =Xy o A1 =MN_y, and A 4.+ A >N 4+ M

For m a smooth representation of GL,,(F) of finite length over R, we write A, for the largest partition
A such that

HomR[Un} (7'[', w)\) 75 O,

called the derivative sequence of w. The dimension of the above R-vector space equals exactly the
number of irreducible subquotients of 7 having the same derivative sequence. In particular, if the space
is of dimension 1 as an R-vector space, we may associate to m with its unique irreducible subquotient
7/ such that A\; = A/, that is, amongst all the subquotients of 7, the subquotient 7’ is unique having
the highest derivative sequence.

For A = A, (45 with p a cuspidal representation of GL,/(F), when R = Q; we define Z(A) to
be the subrepresentation of pr® x ... x pv® which is unique up to ismorphism, such that its Jacquet
module corresponding to the Levi subgroup GL,/(F) x ... x GL,/(F) equals pv® @ ... ® pv*. When
R = T, the above construction doesn’t work due to the lack of uniqueness, but we have the following
lemma:

Lemma 1.10.5 ( [Dat12|, Proposition 2.2.3). For p a cuspidal representation of GL,/ (F), there exists
an integral supercuspidal representation p of GL, (F') such that p = ri(p). Moreover the representation
T1(Z(Af [a,p)) 18 irreducible and independent of the choice of p.

Using this lemma we define Z(A) := r{(Z(Ajq4)) for R = F;. Moreover for m = Aj 4 ...+ A, as
a multisegment of GL,,(F"), the R-vector space

HOHlR[Un](Z(Al) X ..o X Z(AT)711}>‘Z(A1)X...><Z(AT))

is of dimension 1, and

Z(m) = Z(Ay, .., A)

is defined to be the unique subquotient of Z(A1) x ... x Z(A;) such that Aza,)x..xz(A,) = Az(m)
(cf. [Dat12], §2.2.5). We have the following classification theorem for Irrp(GLy,(F)).
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Proposition 1.10.6. We have the bijection

Zr : Mulg(GL,,(F)) — Irrr(GL, (F))
m— Z(m).

Moreover when R = Q it maps integral multisegments to integral representations and vice versa.

Proof. The first part follows from [Vig98] Théoreme, V.12. For the second part since the Jacquet
functor and the parabolic induction maintain the property of being integral, and the subrepresentation
of an integral representation is also integral ( [MS14a], §1.2), we know that an irreducible representation
is integral if and only if all the representations in its cuspidal support are integral, which finishes the
proof.

O

Corollary 1.10.7. For 7 an irreducible integral representation of GLy,(F) over Q;, we have Az = Ari(7)
and Homgy, | (ri(7), 1/1)\Tl(7~r)) = T, thus we may define a map

Jp - it (GLn (F)) — Trr (GLy (F))

T Jl(%)

with Ji(7) denoting the unique irreducible subquotient of 7i(7) such that Az = X j,z). Moreover J; is
surjective and we have the commutative diagram

Zi
Mull™ (GL,, (F)) — = Iirl2Y(GL, (F))

|, )

Mulg(GLy (F)) — > it (GLo (F))

Proof. The first part follows from the fact that U, is a pro-p-group and p # [. The surjectivity
of J; follows from [Vig98], V.9.2. Now we prove the commutativity of the diagram. We choose
m=A;+..+A, € Mul}anlt(GLn(F)) and we write 7 = Z(m) which is an irreducible representation.
By definition J;(7) equals the unique subquotient of r;(Z(A1)) X ... x ri(Z(A,)) having the highest
derivative sequence. By definition r;(Z(A;)) = Z(A;) for each i, where for A; = Ap, 1, 5,], We write
Aj = Ay, (a0, s a segment over Fy with p; = ry(p;) cuspidal (but not necessarily supercusidal) over
F;. Then J;(7) is the unique subquotient of Z (A1) x Z(A3) x ... x Z(A,) having the highest derivative
sequence, which by definition equals Z(3_;_; A;). Finally using [MS14a], Théoréme 9.36, we have
Z(>°r_1 A;) = Z(ri(m)) which finishes the proof.

O

For (9, N) € Repg (W Dp(n)), we call it integral if ¢ is integral and IV is realized from an element

in EndZ—l(M ) by extension of scalar with M denoting one Z;-lattice corresponding to g, and we define
ri(o, N) := (r;(0),r(N)). For Weil-Deligne represenations, we have the following classification theorem
whose proof is clear by definition and the utilization of Jordan normal form.

Proposition 1.10.8. We have a bijection

Gr : Mulp(Wg(n)) — Repr(WDpg(n))
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determined by the relations

0 I,y 0 ... 0
0 Iy :
Gr(Dg [ap) = (QV“@QV““@---@@VI’, ST )
0 Iy
0 0

for any a, b and ¢ € Irrr(Wg(n')), and
Gr(A1+ ...+ Ar) == Gr(A1) © ... DGR(A,)

for A; segments of IrrgWr). Moreover if R = Q it maps integral multisegments to integral repre-
sentations and vice versa.

Corollary 1.10.9. We have the following commutative diagram:

gi
MUl (Wi (n)) —> RepZ (W Dp(n))

9%,

Mulg(Wr(n)) —— Repg, (W Dp(n))

Proof. By definition we only need to study a single segment, which is direct.
O

Finally we define the so-called Zelevinsky correspondence which is analogous to the local Langlands
correspondence and was indicated by Zelevinsky [Zel80]. We define the map

Zelp : Irrp(GL,(F)) — Repr(WDp)
as the composition of Z5', LLCg and G which is a bijection. More precisely, for 7 = Z(m) with
m € Mulr(GL,(F)), we define Zelg(m) = Gr(LLCgr(m)). In particular restricting to supercuspidal
representations, the Zelevinsky correspondence coincides with the Langlands correspondence. We end
this subsection with the -modular property of Zelevinsky correspondence.

Proposition 1.10.10. We have the following commutative diagram

Zelg-
Irr}QTIT(GLn(F)) % Rep%(WDF)

Ji i l"'l
Zel=

Irrg (GLn (F)) _ Repz, (W Dr)

Proof. We only need to combine the above three commutative diagrams together.
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1.10.2 [-modular base change lift

In this subsection, we make use of the Zelevinsky correspondence defined above to construct a I-
modular version of cyclic base change lift. To that end, we assume F/Fj to be a cyclic extension
of degree r of non-archimedean locally compact fields of residue characteristic p # [. We fix ¢ €
Gal(F/Fp) a generator and wg/p, a character of Fy¢ with kernel Np /Fo (F*) which is usually identified
with a character of GL,,(Fp) by composing with the determinant map. We write vy = |det(:)|r, as a
character of GL,,(Fp), which is also regarded as a character of Wg, by abuse of notations. And for
segments of GL(Fp) (resp. GL(F)) and W, (resp. W), they are related to the character vy (resp.
v). We fix an algebraic isomorphism Q; = C to identify this two fields. For py € Scuspg;, (GLy (Fo)),
let ¢(po) be the cardinality of the set of isomorphism classes C(po) := {pow}. / rlk €L}/ =. Tt is easy
to see that c(pp) divides r.

We also recall the Langlands classification, which says that for any 7y as an irreducible represen-
tation of GL, (Fp) over Q, there exists a multisegment mg = A{ + ... + A% such that 7y = L(my),
where L(mg) denotes the unique irreducible quotient of St(AY) x ... x St(A) if mg is rearranged such
that AY does not precede A? for i < j (see for example [MS13|, Théoreme 1.4).

Theorem 1.10.11. The base change lift

BCyg; : Irrg (GLn (Fp)) — Irr(‘(’jl_inv(GLn(F))

satisfies and is determined by the following properties:

e For po € Scuspg,(GLy(Fy)), the integer r/c(po) divides n'. And moreover there exists p €
Scusp@(GLn/c(ﬁo)/T(F)) such that ﬁ”i = p if and only if i is divided by r/c(po), and for any
a < b integers,

- /(o)
BC@(St(AﬁO,[a,b])) = St(Aﬁ,[a,b]) X St(Aﬁ,[a,b]) X ... X St(Aﬁ[a’b}) 7o 1. (1.10.1)

Conversely let ¢ be a positive integer dividing r with r/c dividingn'. For p € Scusp@(GLn/c/r(F))
such that ﬁ"i = pif and only if i is divided by r /c, there exists py satisfying (1.10.1]) and c¢(po) = ¢,

and moreover

— o or/e= ~
BC@I(S‘E(A@[a,b}) X S6(Ag10)7 X o X St(Ap ) ) = {St(Az w120 € C(Po)}-

e The base change lift is compatible with the Langlands quotient. That is, for 1y = L(mg) as above,
we have
BCq,(L(mo)) = L(BCg,(mo)),

where for any segment Ay, 1,y as above we define

BCq(A%0fat) = Bpfay) + Bprfap) + o+ Byrreor-1

as a multisegment of GL(F), and for any multisegment mg = AY + ... + A we define

k
BCg:(mo) := Y BCH(AY).

=1

In addition, it maps integral representations to integral representations.
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Proof. All the properties are listed in [AC89)|, chapter 1, section 6 and [HL11], chapter 2, except the fi-
nal one. Since base change lift transfers the information of central characters, it maps integral supercus-
pidal representations to integral supercuspidal representations More precisely for py a supercuspidal

representation of GL, (Fp) and BC@(,HO) =pxp?..xp° por/ePo)= , we have wy, = H;’i%(ﬁo)—l w oNr/m,

where w5, and Wi denote the central character of py and ﬁ"i respectively. Thus wg, is integral if and
only if w; is integral, which means that pp is integral if and only if p is integral by [Vig96|, 11.4.12,
confirming the assertion above. Finally using the first two properties listed in the theorem it maps

integral irreducible representations to integral irreducible representations.
O

Remark 1.10.12. Our consideration of base change lift over Q; still depends on the choice of the
isomorphism Q; = C, or more precisely the choice of a certain square root of ¢ in Q; for q denoting
the cardinality of the residue field of Fy. This is unlike the Jacquet-Langlands correspondence over Q;
which doesn’t depend on the embedding since there the local Langlands correspondences (for GL,(F)
and its inner form) are over the same base field, thus once we consider their composition and change
the embedding, the changes of two local Langlands correspondences (as signs) compensate with each
other. However for base change lift since the base fields (and in particular the cardinalities of residue
fields) are mot the same, this kind of cancelation doesn’t happen in general (for example F/Fy is
unramified and quadratic).

One important property and motivation for the consideration of cyclic base change lift is that it
satisfies the local Langlands functoriality. For (9, N) € Repr(W Dp,), since Wg can be regarded as
an open subgroup of Wr,, we define the restrictio

Resg/r, : Repr(W Dp,) — Repr(W Dr)
(0, N) — ((elwy)**, N)

Proposition 1.10.13. We have the following commutative diagram:

LLC@
Irr@(GLn (Fy)) — Rep@(I/VDFO )

BCQli lRESF/FO
LLCQl

Irrg (GLn (F)) —— Repg, (W Dp)

Proof. The proof follows from the fact that the base change lift, the restriction Resp/p, and the
local Langlands correspondence transfer the information of L-factors and e-factors, which determines
the irreducible representations of general linear groups or Weil-Deligne representations. See [AC8Y),
Proposition 6.9, [HL11], I1.3.5 and [HTO01].

O

In addition, the restriction is compatible with the modulo [ reduction, whose proof is direct:

Proposition 1.10.14. We have the following commutative diagram:

eSF/Fg

Replnt(WDFO)) —= Repg(WDp)

nl in
Resp/r,

Repg; (WD) " Repg (W Dr))

8The superscript “ss” denotes the semi-simplification.
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For the future use, we need the functoriality with respect to the Zelevinsky correspondence. First
we recall the Zelevinsky involution ( [Zel80|, section 9), which is an involution between multisegments

Tye1 - Mulg(GLy(F)) — Mulg(GLy (F))

whose combinatorial definition is given by Moeglin-Waldspurger [MW&86[, leading to an involution
between irreducible representations (still called the Zelevinsky involution)

Tz : It (GL (F)) — Irrg, (GLn (F))
determined by the relation
Tza(Z(m)) = Z(Tze1(m))
for any multisegment m over Q;. Zelevinsky further conjectured that
LLCg; o Tze1 = Zelg;
which is known (For example see [MS13|, Proposition A.7).

Proposition 1.10.15. We have the following commutative diagram:

ZelQT
Irrg-(GLy (Fo)) — Repg (W Dr,)

BCQli \LRGSF/FO
Zels-

T
Irrg-(GLn (F)) — Repg (W Dp)

Proof. By proposition and the result mentioned above, we only need to prove that the base
change lift is compatible with the Zelevinsky involution, that is, for any 7o € Irrg,(GLy(F)) we have

BCq; (Tze1(70)) = T7e(BCq;(70)). Using Theorem [1.10.11} we have
BCg, (L(mo)) = L(m)
for m = BCg,(mp). Moreover we have

Lemma 1.10.16. TZel(m) = BC@(TZel(mo)).

Proof. Using the algorithm given by Moeglin-Waldspurger in [MW86|, we only need to consider
the case where the elements in the support of mg belong to {pofli € Z}. We may write m =
my + ... + M, /o5, Where m; is the multisegment having the same combinatorial structure as mp, but

with por4) in each segment replaced by 501;1]/]-. Since the algorithm is independence of the supercus-
pidal representations in each segment but only the combinatorial structure, once we replace my with

Tyze1(mp), each m; is replaced with Tye(m;), which proves the lemma.
]

By definition and [MS13], Proposition A.7, we have
Tzer(L(mo)) = L(Tzer(mo)) = Z(mo) and  Tze(L(m)) = L(Tzea(m)) = Z(m).
Thus combining them together we have
T7e(BCq;(m0)) = Tzet(BC (L(mo)) = Tzer(L(m)) = Z(m)
and

BCq, (Tze1(m0)) = BCq (Tze1(L(mo))) = BCq (L(Tze1(mo))) = L(BCq (Tzer(mo))) = L(Tze1(m))
= Z(m).
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Finally we may give our definition of I-modular base change lift. We consider the following diagram

Resr/p,

Replnt(WDF()) Replnt(WDF)

Ier 2 (GLy (Fp)) Sy (F))

n| (IT) Jll (V) = J{Jl

(I11) |

BCs ,
Irrg; (CLo(F) - - - = InZ= ™ (GLy (F))
Zelﬂ
Zelﬂ (IV) \
Repg, (W Dp,) - Repg, (W DF)
0

The diagram (I) is commutative by Proposition[I.10.15|and the diagram (II) and (III) are commutative
by Propsition In the diagram (IV) since ZelE is bijective, we may define the map BCJFT to
make the diagram commutative. In this case from the commutativity of (I), (II), (III), (IV) and the
outer diagram via Proposition by diagram chasing the inner diagram (V) is also commutative.
To sum up, we have proved the following theorem:

Theorem 1.10.17. We may define the [-modular cyclic base change lift
BC; : Irrg(GLy (Fp)) — Irr%i“"(GLn(F))

which satisfies and is determined by the following commutative diagram

BC
Irr 2 (GLy (F)) — ' gﬂ TG, (F))

1

JZJ( lJz
BCx—

I (GLy (Fp)) = I (GLy (F))

Remark 1.10.18. Similarly we have a finite version of l-modular base change lift. Let 1/ly be an
extension of finite fields of characteristic p of degree r, then we may define the l-modular cyclic base
change lift .

beg, « Irrg, (GLn (L)) — Irr%mv(GLn(l))

which satisfies and is determined by the following commutative diagram

be~—

It (GLy (1)) ) frZ= ™ (GL (1))

JLJ( lJl
bc—

Irrt(GLo (o)) — = g™ (GL (1))

where beg- denotes the Shintani base change lift as a bijection (cf. [Shi76]) and J; is defined in the
same manner as in the p-adic case.

To apply the above method, we use the Shintani base change lift and also its further development
(for example [SZ05], Corollary 5.7.) in place of the theory of local base change lift of Arthur-Clozel,
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and we use the classification theorem of Green ( [Gre55], over Q;) and Dipper-James ( [DJ86], over
;) of finite linear groups in place of the classification theorem for irreducible representations of p-adic
linear groups and also the local Langlands correspondence. In this case the group @nF;n plays the
role of the Weil group. Then we may simply imitate our proof above, for which we omit the detail.

1.10.3 Application

In this subsection, we assume that F/Fj is quadratic of residue characteristic p # 2. We are going
to classify all the o-invariant cuspidal representations m of GL,,(F') over F; coming from the modulo [
reduction of a certain o-invariant integral cuspidal representation 7 of GL,(F) over Q.

Proposition 1.10.19 ( [MS14a], section 6). For m a cuspidal representation of GL,(F) over T,
there exists a supercuspidal representation p of GLy, i, (F) over F, with k being 1 or e(p)l® for s a

non-negative integer, such thaﬂ 7= Z(p, pvy...,pv*1).

Proposition 1.10.20. For py an integral cuspidal representation of GL,(Fy) over Q; such that
p = BC@(ﬁO) is cuspidal, p is l-supercuspidal if and only if py is l-supercuspidal, where being -
supercuspidal means that the modulo | reduction is supercuspidal.

Proof. If po is not l-supercuspidal, then r(po) is written as Z(po, ..., ,001/(’)“071) with pg supercuspidal
for ko > 1. Let p} be a Q-lift of pg, then by Theorem [1.10.17 we get

r1(p) = BCR,(r1(p0)) = BCx (Ju(Z (5, - Pove” 1)) = J(BCq (Z (5, - Pove” 1))

which is not supercuspidal by Theorem [1.10.11| and direct calculation. Now we focus on the other
direction, that is, we assume pg to be [-supercuspidal and we prove that p is [-supercuspidal. We need
the following lemma whose proof is a simple corollary of [Dat12], §2.2.4.

Lemma 1.10.21. If 1 doesn’t divide q(p) — 1, then p is l-supercuspidal.

We first study the I # 2 case. For p = r(p), using the fuctoriality of the local Langlands corre-
spondence k = e(p)l® equals the number of irreducible constituents of

ri(LLCq(p)) = Resp/ g, (r(LLCq;(p0))),

where rl(LLC@(ﬁo)) is irreducible since 7;(pp) is supercuspidal. Since [Wg, : Wr| = 2, we know
that k is smaller than 2. If k = 1, then by definition p is I-supercuspidal. Otherwise we must have
k = o(p) = e(p) = 2 since | # 2. Thus [ doesn’t divide ¢(p) — 1 = ¢(p) — 1, meaning that p is
[-supercuspidal by the above lemma.

We sketch the proof of the | = 2 case using the explicit base change lift, which we refer to chapter
3, section 1, section 5 and section 6 for more information. Let Fy be the a parameter field of pg, let
d = [Ep : Fyl, let ' = m'd, let Iy be the residue field of Ey and let ¢ty be the unramified extension of
degree m’ over ly. Since p is also cuspidal, E = Ey ®p, F' is quadratic over Ej as a parameter field of
p- Let I be the residue field of E and let t = ¢y ®;, l. Then there exists a Gal(to/lp)-regular character
& of t; over Q; characterizing the “level 0 part” of py (more precisely up to twisting a quadratic
character) via the theory of Green. From our assumption py is l-supercuspidal, or equivalently the
modulo ! reduction of &, as a character of t; over F; is also Gal(to/lp)-regular. If E/Ej is unramified,
then both 1/ly and t/ty are quadratic. Using Theorem § = &o o Ny, is a Gal(t/l)-regular

character of t* over Q; characterizing the “level 0 part” of p. Moreover by direct verification the

9Here each pv’ is regarded as a segment and Z(-) is defined in §1.10.1l In [MS14a] the notation St(p,k) was used
instead which is the isomorphic to the representation Z(p, pv, ..., vk ).
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modulo ! reduction of ¢ is Gal(t/l)-regular. If E/Ej is totally ramified, then I = ly and t = ¢o. Still
using Theorem &= 5(2) is a Gal(to/lp)-regular character of ¢} over Q; characterizing the “level 0
part” of p. Since [ = 2 and the modulo [ reduction of &y is Gal(¢g/lp)-regular, the modulo [ reduction
of £ is also Gal(tg/ly)-regular. Thus in both cases p is [-supercuspidal.

O

Lemma 1.10.22. For p a o-invariant supercuspidal representation of GL,(F) over [y, there exists
a supercuspidal representation py of GLy(Fo) over Fy such that BCg(po) = p. Furthermore, e(po) is
independent of the choice of pg.

Proof. Using Theoremwe choose p to be a o-invariant integral cuspidal representation of GL,,(F')
over Q; such that r;(p) = p. Then by Theorem we choose py to be an integral cuspidal
representation of GL,,(Fp) over Q; such that BCg, (po) = p. If we write po = ry(po) which is cuspidal,
by definition we have BCE(pO) = p. Using Proposition @ po must be supercuspidal. Finally,
by |[BHO3|, Theorem A, and the fact that modulo ! reduction maintains the endo-class, the endo-class
of p equals the unique F/Fy-lift of that of pg. Thus the endo-class of py is independent of the choice
of pp, and so is e(pg) (cf. [IMS14a], §5.2).

O]

Lemma 1.10.23. Let mo = Z(po, .-, poygofl) be a cuspidal representation of GLy,(F) over F; with po
supercuspidal, let Ty be the tame parameter field of o and po, let mo be a Qp-lift of my, and let py be
a Q;-lift of po. Assume that T =Ty ®@p, F' is quadratic over Ty.

o If T/Ty is unramified, then BC@(%O) being cuspidal implies that BC@(ﬁo) is cuspidal, and the
converse is true if and only if ko is odd.

o If T/Ty is totally ramified and I # 2, and if pp can be chosen such that BC@(ﬁo) is cuspidal,
then BCg; (o) is cuspidal.

o IfT/Ty is totally ramified and | = 2, then BC@(ﬁo) is cuspidal, and BC@(TTO) is cuspidal if and
only ko =1, or ko =2 and q(po) + 1 is divided by 4.

Proof. If T'/Ty is unramified, using Proposition BC@(%O) is cuspidal if and only if n/[Ty : Fo)
is odd (noting that p # 2). Similarly BCg;(po) Is cuspidal if and only if n/ko[To : Fo] is odd. Thus
the first claim is proved.

Now we assume that T'/Tj is totally ramified. Let Ey be a parameter field of both 7y and py, let
d = [Ey : Fp|, let m = n/d which is a positive integer divided by ko, let Iy be the residue field of
Ey, let ty/lp be an extension of degree m and let t(/ly be its subextension of degree m/ky. Recall
that there exists a character & of t; over Q; which is Gal(to/lp)-regular, characterizing the “level 0
part” of 7o, and moreover by loc. cit. BCg (7o) is cuspidal if and only if €2 is also Gal(tg/lp)-regular.
Similarly, there exists a character & of t;* over Q; which is Gal(t(/l)-regular, charactering the “level
0 part” of pg, and moreover BCg;(po) is cuspidal if and only if €2 is also Gal(t)/lp)-regular. Finally
the modulo [ reduction of & is Gal(t}/l)-regular as a character over F; and the modulo ! reduction
of & coincides with that of &) o Niost; (see [DJ86] section 3).

Let s be the maximal integer such that * divides the cardinality of ;. We write & = (f(l)oNto/tg)'fi,
where & is a character of ¢ of order a power of [ to be determined, such that the order of & is divided
by 1%, and let & be a character of tJ of order {*. If [ # 2 and &7 is Gal(t)/lo)-regular, we havﬂ
lo[¢f] = t,. Thus

Lo[65] = Lol(€h © Neyjur ), 671 = £ €7,

"Here &7 is identified with a root of unity in the algebraic closure of 1y of the same order (where the choice of
identification is not important), and thus 1o[¢(?] /1o is a field extension.




THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY 109

and similarly since &y is Gal(to/lp)-regular, we have

to = lo[¢o] = tg[&1]-

Since [ is odd and & is of order a power of I, we must have t)[¢?] = ¢[£1], meaning that &2 is
Gal(to/lp)-regular and BCq (7o) is cuspidal. If I = 2, it is easy to see that lo[{y] = lof 12]. Since &) is
Gal(to/lp)-regular, £ is Gal(tg/lp)-regular, meaning that BCg; (po) is cuspidal. Similarly we have

to = 1oléo] = th[&] and  o[&]] = (&)

Let Qo be the cardinality of ¢{, and recall that kg = [ty : ¢{]. An elementary argument shows that
there exists & as above, such that the corresponding £; satisfies t)[¢7] = t4[¢1], if and only if kg = 1,
or kg =2 and 41 Qo — 1. Noting that ¢(pg) = Qo, we finish the proof.

O

Theorem 1.10.24. Let m be a o-invariant cuspidal representation of GL,(F), let T be the tame
parameter field of m and let Ty be the tame parameter ﬁelﬂ of any supercuspidal representation of
GL,(Fy) over F; whose base change is m. Write m = Z(p, pv..., pv*~1) as in Proposition . for
p a supercuspidal representation of GLy, /,(F).

(1) Let p be o-invariant and let py be any supercuspidal representation of GLn/k(Fo) such that

BCE(,O()) = p, then m has a o-invariant Q;-lift if and only if
e k=1, ork>1 ande(py) = e(p) in the case where | # 2;
e k=1 in the case where l =2 and T /Ty is unramified;
e k=1, ork=2and q(p)+1 is divided by 4 in the case where | =2 and T /Ty is totally ramified.

(2) If p is not o-invariant, then © doesn’t have a o-invariant Q;-lift if T /Ty is unramified, and
conversely T always has a o-invariant Qq-lift if T /Ty is totally ramified;

Proof. First we prove (1). To begin with we consider the case [ # 2. We assume that m = r;(7) for
7 an integral o-invariant cuspidal representation of GL,,(F) over Q;, and we write 7 = BC@(%) for
7o an integral cuspidal representation of GL, (Fp) over Q;. We define my = r;(7p) which is a cuspidal
representation of GL,,(Fy) over F;. By Proposition we write mo = Z(p(, P10, -+ pgygo_l) with
pp supercuspidal.

If T/Ty is unramified, by Lemma we choose pp to be an integral cuspidal representation
of GL,, /5, (Fo) lifting pp, such that p = BC@(ﬁO) is an integral cuspidal representation of GL,, , (F).

Thus J;(Z(po, povo, "'>50V(])€O_1)) = Z(py, Po10, ~--7PBV§°_1). Using Theorem [1.10.17| and the fact that
BC@(Z(ﬁO’ ) ﬁoy(])g()il)) = Z(ﬁa "'75”16071)7 for Pl = Tl(ﬁ) we have

Z(p7 “'7pyk_1) =T = Tl(%) = JZ(Z(ﬁv "'7ﬁyk0_1)) = Z(plv ---vPIVkO_l).

By Proposition p' is supercuspidal, thus we must have kg = k and we may assume p = p/
without loss of generality (when ko = k = 1 it is automatic). And since BCg(p) = p' we may also
assume py = p; without loss of generality. Thus if kg # 1, since 7 is cuspidal and p is supercuspidal,
there exists a non-negative integer s such that e(pg)l*® = ko = k = e(p)l®. Since both e(pg) and e(p)
are either equal to [ or prime to [, we must have s = sg and e(p) = e(pp). If T/Tp is totally ramified,
the condition e(p) = e(pg) is automatic by direct calculation.

"By [BHO3|, T/Ty is a quadratic extension.
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Conversely we show that the condition listed above is also sufficient. If k = 1, using Theorem [0.2.3
there exists a o-invariant integral cuspidal representation p of GL,(F) over Q; such that r;(p) = p.
If £ > 1 and there exists a supercuspidal representation py of GL,, /k(Fo) such that BCE(,O()) =p

and e(po) = e(p), then Z(po, ..., pory ™) is a cuspidal representation of GL,(Fp) over F; which we
denote by m. In particular when T/Tj is unramified we have q(p) = q(po)?, thus e(pg) = e(p)
implies that o(pg) = [ is odd, meaning that ko = e(po)l® is odd. Choose py to be a Q-lift of py and
write p = BC@(ﬁO), then we have J;(p) = p which is supercuspidal. Considering the supercuspidal
support we know that p must be cuspidal. By Lemma [I.10.23] we choose 7 to be an integral cuspidal
representation of GL,,(Fpy) over Q lifting 7o, such that 7 := BCg, (7o) is cuspidal. By Theorem
we have r(T) = 7.

Now we let [ = 2. For 7 having a o-invariant Q;-lift, we define 7, 7, mo and pf, as in the [ # 2
case. When T'/Tj unramified, since ky is either 1 or even, using Lemmawe have kg = 1, saying
that r;(mo) = p{,. Using Proposition we must have k = 1. When T'/Tj is totally ramified, by
Lemma we have kg = 1, or ko = 2 and ¢(pf,) + 1 is divided by 4. Using Proposition
and similar argument to the [ # 2 case we have k = ko and ¢(p;) = q(p). Conversely, if k = 1,
using Theorem 7 = p has a Q-lift which is o-invariant. If k = 2, T'/Ty is totally ramified and
q(po) +1=q(p)+1 is not divided by 4, let Ty be an integral cuspidal representation of GLy,(Fp) over
Qq, such that (7o) = Z(po, poro). By Lemma 1.10.23| T = BC@(%O) is cuspidal. Thus by Theorem
we have (%) = Z(p, pv) = m, finishing the proof of (1).

Finally we prove (2). Comparing the supercuspidal support, we must have o(p) is even and
p° = pv°P)/2 In particular we have | # 2. When T /Ty is unramified if we assume on the contrary
that there exists a o-invariant Q-lift of 7, then using the same argument as (1), there exists a o-
invariant supercuspidal representation p’ of GL,, Jko (F), such that

Z(p, N =1 =2, ..., pv ).

Since both p and p’ are supercuspidal, & = ko and p is isomorphic to p’ twisted by a power of v,
which must be o-invariant, contradictory! When T/Ty is totally ramified, we let p be a Q-lift of p
as a cuspidal representation of GL,,,(F'). Then p is not isomorphic to p. Using Theorem
there exists pp as a supercuspidal representation of GLy,, ,(Fp) over Qy, such that BCg, (po) = p x p°.
We write pg = ri(po) as a cuspidal represenation of GLyy, /i (Fp). Using the same proof as the in first
paragraph of Proposition po is supercuspidal. Since by definition q(pg) = q(p)?, we have
20(po) = o(p), thus k/2 = o(po)l* and Z(po, ..., pov*/?) is cuspidal.

Lemma 1.10.25. We may choose Ty to be a Q;-lift of Z(po, ...,pgl/k/2) as a cuspidal representation
of GLn(Fp), such that @ = BCq, (7o) is cuspial.

Proof. For ly, ty introduced as in the proof of Lemma and for & as a Gal(tg/ly)-regular
character of ¢; characterizing the “level 0 part” of 7y, using Proposition 7 is cuspidal if
and only if &2 is Gal(to/lo)-regular. Let s’ be the maximal positive integer such that I¢" divides the
cardinality of ¢}, then it is elementary to prove that for ¢’ as a [5'-th primitive root of unity, lo[¢'] = to.
Thus if we choose &1 to be a character of ¢ of order a power of [, such that the order of £¢; is divided
by [¥', then we have

to = lo[6o&1] = lo[(€0€1)?).
Replacing &y by &p&1, the corresponding 7 is cuspidal.

For such 7y and 7, by Theorem [1.10.17| we get r;(7) = m, which finishes the proof.
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Combining with [KM20], Theorem 3.4 and Theorem for R = Q;, we have

Corollary 1.10.26. For 7 a cuspidal representation of G over F; having a o-invariant Q;-lift, that

is, satisfying the corresponding condition of Theorem [I.10.2], it is distinguished by G for any T as a
unitary involution.

Remark 1.10.27. When T/Ty is totally ramified, Remark indicates that all the o-invariant
cuspidal representations are distinguished, which is stronger that the corollary above. When T /Ty is
unramified, it is interesting to know if the condition of being distinguished in the corollary is necessary
or not, which is beyond the scope of the author.
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Chapter 2

Problem of distinction related to
orthogonal subgroups of GL,(F)

2.1 Notation

2.1.1 General notation

Let F' be a non-archimedean locally compact field of residue characteristic p # 2. We write op, pp,
k for its ring of integers, the corresponding maximal ideal and its residue field respectively. We fix
Yp : F — C* an additive character which is trivial on pp but not on op.

Fix n a positive integer. We write G = GL,,(F') as a locally profinite group. By representations of
G and its closed subgroups, we always mean complex smooth representations. For a closed subgroup
H of G, an element g € G and a representation 7 of H, we write HY := {g~'hg|h € H} as a subgroup
of G, and 79 : g + m(ghg™!) as its representation. We write 7" for the contragredient of 7. Given
7 a continuous involution of G, we write 77 for the representation m o 7 of 7(H). We say that 7 is
r-selfdual if 7(H) = H and 77 = 7V.

Given 7 a representation of H and p a representation of G™ N H, we say that 7 is u-distinguished
if Homgrg(m, 1) # 0, where G™ denotes the subgroup of G consisting of the elements fixed by 7. In
particular, if p is the trivial character, we simply call 7 G™ N H-distinguished.

2.1.2 A brief recall of the simple type theory

In this subsection, we follow the introduction of the simple type theory given in chapter 1, section 3
summarizing results of [BK93|, [BH96|, [BH14b|. Since it seems redundant to repeat the same words
again, we simply recall the necessary notation.

We write [a, 8] for a simple stratum in M,,(F'), where a is a hereditary order in M,,(F') and S is an
element in GL,,(F') such that

(1) the F-algebra E = F[f] is a field, where [E : F] = d and n = md for a positive integer m;

(2) E* normalizes a*.

We write B for the centralizer of £ in M, (F') identifying with M,,(E), and b = a N B for the
hereditary order in B. We denote by p, (resp. pp) the Jacobson radical of a (resp. b), and U'(a)
(resp. U'(b)) the compact open pro-p-subgroup 1 + py (resp. 1+ pp) of GL,(F) (resp. BX).

Associated to [a, 3], there are compact open subgroups

H'(a,8) € J'(a,8) C J(a, )

of a*, and there is a finite set C(a, 3) of characters of H'(a, 3), depending on the choice of ¢x, called
simple characters. We denote by J(a, 8) the subgroup of G generated by J(a, 8) and the normalizer of

113
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6> in B* which is compact modulo the centre F*. We write J, J, J*, H' for short for J(a, 8), J(a, 3),
JY(a, B), H'(a, B) respectively if a and 3 are clear to us. When b is a maximal order in B, we call the
simple stratum [a, §] and the simple characters in C(a, ) mazimal. In this case b* /1 + py = GL,, (1),
where [ is the residue field of E.

We denote by (J,A) an extended mazimal simple type (we always write simple type for short)
in GL,(F'), which means that there are a maximal simple stratum [a, 8] in M,,(F') and a maximal
simple character 6 € C(a, ) such that J(a,8) = J and 6 is contained in the restriction of A to
H'(a,3). We write n for the Heisenberg representation associated to 6. For any representation
of J extending 7, there is, up to isomorphism, a unique irreducible representation p of J such that
A = k® p, and moreover p|; is the inflation of a supercuspidal representation of .J/J! = GL,,(I). For
7 a supercuspidal representation of G, there exists a unique G-conjugacy class of simple type (J,A)
such that m %c—IndgA, the compact induction of A.

For [a, 8] a simple stratum in M,,(F') and [, 5'] a simple stratum in M, (F) with n,n’ > 1, and
for a given F-algebra isomorphism ¢ : F[3] — F[3'] such that ¢(8) = ', we denote by

t  Ca, ) —» C(d, B)
the corresponding transfer map. We use capital Greek letter © to denote the endo-class of a simple
character 8 and ©, to denote the endo-class of m, a supercuspidal representation of G. We write
d = [F|[B] : F] for the degree of ©® which does not depend on the choice of [a, 5] and 6, but only on ©
itself.

Let © be as above and let T be its tame parameter field with respect to E/F, that is, the maximal
tamely ramified subextension of E over F. Noting that 1" only depends on © up to F-isomorphism,
so it is also called the tame parameter field of ©. Let C = M,/ (T) denote the centralizer of T' in
M, (F), where t = [T : F|]. The intersection ¢ = a N C' is an order in C, which gives rise to a simple
stratum [c, B]. The restriction of § to H'(c,3), denoted by 07 and called the interior T/F-lift of 0, is
a simple character associated to the simple stratum [c, §]. If we change our choice of simple stratum
[a, 8] but fix T' < M,,(F) unchanged, then the map

a—~ancC

is injective from the set of hereditary orders in M,,(F') normalized by T to the set of hereditary orders
in C (see [BH96|, section 2). For [a, 51], [a, 2] two simple strata, and 6; € C(a, 1), 62 € C(a, f2) two
simple characters, such that #; and 65 have the same tame parameter field T, if

C(C, 51) = C(C,,BQ) and (91)T = (HQ)T,

then we have
C(Cl, ﬁl) = C(Cl, 52) and 01 = 92

(see [BHI6|, Theorem 7.10, Theorem 7.15). In particular, when 51 = f2 = 3, the interior 7'/ F-lift is
injective from C(a, 3) to C(c, ).

2.2 Symmetric matrices and orthogonal involutions
In this section, we recall some basic but important results about symmetric matrices and orthogonal

involutions. Let E be a non-archimedean locally compact field of residue characteristic p # 2, let wg
be a uniformizer of E and let m be a fixed positive integer.
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2.2.1 Orbits of symmetric matrices, orthogonal involutions and orthogonal groups

Let S denote the set of the symmetric matrices in GL,(E), that is
S = {e € GL,(E)|’e = ¢}.

Especially, if we write

0 O 0 1
0 1 0
Im = e M,,(E),
0 1 0
1 0 0 0

then it is an element in S.
We consider GL,,(E)-action on S as follows:

e-g:='geg, g€ CLL(E), e€S.

We say that two elements in S are similar if they are in the same GL,,(E)-orbit. For ¢ € S, we denote
by discg(e) its discriminant, saying the image of det(¢) in EX/E*? which is a group isomorphic to
7./27, x Z./27.. We denote by

Hasseg(e) = HHilE(ai,aj) e{1,-1}

i<j
its Hasse invariant, where diag(ay, ..., a,,) denotes a diagonal matrix similar to ¢, and

1, if az? + by? = 1 has a solution (z,y) € E x E;

Hilg(a,b) =
p(a,b) {—1, otherwise.
denotes the Hilbert symbol for a,b € E*. Noting that the definition of Hasseg(¢) doesn’t depend on
the choice of diag(a, ..., a,,) similar to € (see [O’M71], 63.13). When E is clear to us, we simply write
disc, Hil and Hasse instead.

The following proposition characterizes all the GL,,(E)-orbits in S.

Proposition 2.2.1 ( [O’'M71], Theorem 63.20). (1) When m = 1, there are four GL,(E)-orbits in
S represented by elements in EX /E*?;

(2) When m > 2, any two GLy,(E)-orbits in S are different if and only if their discriminants or
Hasse invariants are different. Moreover,

o When m > 3 there are eight GLy,(E)-orbits;

o Whenm =2, any e € S with disc(e) = —1 satisfies Hasse(e) = 1, and there are seven GL,(E)-
orbits.

We may also consider the GL,,(0g)-orbits of S. We consider o« = (e, ..., ) of certain triples
a; = (a;,m4,€), such that a; > ... > a, is a decreasing sequence of integers, and myq,...,m, are

n [Hak13] Hakim used i < j instead of i < j in the product for the definition, however in the proof of various propo-
sitions (for example, Proposition 6.6. of ibid.) he indeed used the second definition (¢ < j). This little inconsideration
of course doesn’t affect his results and proofs.
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positive integers such that m; + ... + m, = m, and €y, ..., ¢, are either 1 or ¢y, where ¢y € 03\0;;2 is
fixed. For each o = (v, ..., ;) as above, we introduce a symmetric matrix

wp=wy O.. 0wy,

where
wyy = wpdiag(l, ..., 1,¢) € GLy,, (E).

The following proposition studies all the GL,,(0g)-orbits.

Proposition 2.2.2 ( [O’'MT71], §92). Each GLy,(0g)-orbit in S contains exactly one representative of
the form w$, defined as above.

Now for € € § a given symmetric matrix, we denote by

-1t

Te(z) :=e a7 le  for any x € GL,,(E)

the orthogonal involution corresponding to . The group GL,,(E) acts on the set of orthogonal
involutions by

G Te = Teg = Tigeg
Given €1, €9, it is elementary to see that 7., = 7., if and only if 1 E* = e2E*. Thus we build up
a bijection between §/E* and the set of orthogonal involutions, which is given by e E* +— 7.. The
following proposition studies the GL,,(E)-orbits of S/E*, thus classifies all the GL,,(E)-orbits of
orthogonal involutions.

Proposition 2.2.3. (1) When m = 1, there is one GL,,(E)-orbit in S/E*;

(2) When m > 3 is odd, there are two GLy,(E)-orbits in S/E*. A representative in each orbit
can be chosen to have any given discriminant, and two representatives with the same discriminant
represent different orbits if and only if they have different Hasse invariants;

(3) When m = 2, there are four GLy,(E)-orbits in S/E* determined by the discriminants;

(4) When m > 4 is even, the discriminant leads to a map from (S/E*)/GLy(E) to E*/E*?
which is surjective. The fiber corresponding to (—l)m(m_l)/2, the discriminant of Jp,, is composed
of two orbits distinguished exactly by the Hasse invariant, and the other three fibers are composed of
exactly one orbit.

Proof. The proof is a refinement of Proposition For more detail, see |[O’M71], §63.

For 7 = 7. an orthogonal involution, we denote by
GLn(E)" :={z € GL(E)|7(x) =z}
the orthogonal group corresponding to 7.

Lemma 2.2.4. Let 11 and 1o be two orthogonal involutions such that GL,,(E)™ = GL,,(E)™, then
71 =T2. As a result, T — GL,(E)7 gives a bijection between GLy,(E)-orbits of orthogonal involutions
and the set of GL,,(E)-conjugacy classes of orthogonal subgroups of GL,(E).

Proof. For a proof, see |[Hak13|, Lemma 2.7.
]

Combining Proposition and Lemma we get all the possible GL,,(E)-conjugacy classes
of orthogonal groups.
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Proposition 2.2.5. (1) When m = 1, there is only one orthogonal group {1,—1};

(2) When m > 3 is odd, there are two GL,,(E)-conjugacy classes of orthogonal groups, the one
corresponding to the symmetric matriz Jy, is split, and the other one is not quasisplit;

(8) When m = 2, there are four GL,,(E)-conjugacy classes of orthogonal groups, the one corre-
sponding to the symmetric matriz J,, is split, and the other three are quasisplit but not split;

(4) When m > 4 is even, there are five GLy,(E)-conjugacy classes of orthogonal groups. The one
corresponding to the symmetric matrix J,, is split, and the one whose corresponding symmetric matrix
is in the same fiber as Jy, but not similar to Jy,, as mentioned in Proposition[2.2.3, is not quasisplit,
and the other three orthogonal groups are quasisplit but not split.

2.2.2 7-split embedding

Now for F,, a field extension of degree m over F and € € S, we say that an FE-algebra embedding
t: Ep — My, (E) is e-symmetric if its image consists of e-symmetric matrices, or in other words,

e (x)e = u(z) for any x € Ey,.

For 7 = 7. an orthogonal involution, we say that F,, is 7-split if there exists an embedding ¢ as above
such that it is e-symmetric, or equivalently for any z € E,S, we have 7(¢(z)) = «(z)~!. In particular, we
get 7(E))) = E). We have the following important proposition which gives all the possible symmetric
matrices via a given symmetric embedding:

Proposition 2.2.6. Let 7 = 7., be a given orthogonal involution with g € S and let

Lot Em — M (E)
be an gg-symmetric embedding. Then any symmetric matriz € in S such that there exists

t: Ep — My (E)
as an e-symmetric embedding is similar to an element in eoto(E)).
Proof. We follow the proof of [Hak13|, Proposition 4.3. For ¢ € S and corresponding ¢ satisfying our
condition, by the Skolem-Noether theorem, there exists g € GL,,(FE) such that

Uz) =g~ uo(2)g
for any « € E\. Then we have

o(to(x)) = wo(w) ™" and  7(u(2)) = e(x) 7,

thus
1

7(9) " te requo(z) reg ter(g) = T(9) M (wo(z))T(g) = L(x) Tt =g~

which means that

ey 'er(9)g " =eg g eg™!
commutes with any to(z) € o(E)). Thus e, tg leg™! € It (B) (L0 (Em))\{0} = w(E,y;), which
means that € is similar to an element in egeo(E)Y).

O
In particular, we call an E-algebra embedding
t: Ep — My, (E),

J-symmetric if it is Jp,-symmetric, omitting the size of matrices. The following proposition ensures
the existence of J-symmetric embedding when F,,/FE is tamely ramified.
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Proposition 2.2.7. When E,,/E is tamely ramified, there ezists a J-symmetric embedding ¢.

Proof. See for example [HL12|, Proposition 5.15 or [Hak13|, §4.2.
O

Remark 2.2.8. We don’t know whether Pmposition is true or not when E,,/E is not necessarily
tamely ramified.

2.2.3 Calculation of Hilbert symbol and Hasse invariant in certain cases

In this subsection, we display elementary results for calculating Hilbert symbol and Hasse invariant.
Lemma 2.2.9 ( [HL12|, Lemma 5.9). Ife € GLy,(0g) NS, then Hasse(e) = 1.

Lemma 2.2.10. Let A € M,,,(E) and B € M,,,(E) be two symmetric matrices, then
A 0 .
Hasse 0o BT Hasse(A) - Hasse(B) - Hil(det(A), det(B)).

Proof. We assume that A is similar to diag(as, ...,a,,) and B is similar to diag(bs, ..., bs,), thus by
definition

ni,n2
Hasse <61 g) = Hasse(diag(a1, ..., G, , b1, ..., bn,)) = Hasse(A) - Hasse(B) H Hil(a;, b;)
ij=1
= Hasse(A) - Hasse(B) - Hil(det(A), det(B)).

O]

Corollary 2.2.11. Let A; € M,,,(E) be symmetric matrices for i =1, ...,k such that for any 1 <i <
J <k, we have Hil(det(A;),det(A;)) = 1. Then

k
Hasse(diag(Aq, ..., Ax)) = HHasse(AZ-).
i=1

Proof. We use Lemma [2.2.10] for k£ — 1 times to finish the proof.
O

Lemma 2.2.12. For ¢, ¢y € 0}, and wg a uniformizer of E, we denote by U the residue field of E,
and €1, €3 the image of €1, €x in l respectively, then:

(1)
1 if —a/g el

—1 otherwise.

Hil(wpger, wges) = {

(2)
1 ife el*?,

—1 otherwise.

Hil(ey, wpes) = {

Proof. For (1) we notice that
Hil(wger, wrez) = 1

if and only if
7% + €a/€1 — wEC2/61 = 0 has a solution for Z € o, and C € og.
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Since if the equation wre1 X? + wreY? = 1 has a solution, comparing the order we must have
X1 Y™! € pp and X/Y € 05. Thus we can change the variables Z = X/Y and C = wElY_l.
Using the Hensel lemma for the polynomial P(Z) = Z2 + e3/e; — wgC?/e; and the fact that p # 2,
the condition above is true if and only if

7’ = —& /e has a solution for Z € 1%,

which is equivalent to —€7/& € 1*2. Thus we finish the proof of (1), and the proof of (2) is similar.
O

Remark 2.2.13. In the latter sections, we mainly consider two cases: E = F or E/F is a field
extension of degree d given by a certain simple stratum related to a given supercuspidal representation.
In the former case, we have m = n; In the latter case, we have m such that n = md with d = [E : F).
Moreover, we will simply write det, disc and Hasse for short when E = F'.

From now on until the end of this section, we assume E to be a tamely ramified extension of
degree d = ef over F', where f denotes its residue class degree and e denotes its ramification index.
Using Proposition we fix a J-symmetric embedding E < My(F). We fix ey € 05\ox” and wg
a uniformizer of E, such that EX/E*? = {1,€y,@wg, cowr}. By Section 3 of [Hak13], we have three
different cases:

Proposition 2.2.14. (1) Ng,p(E*)F*?/F*? = {1} if and only if E contains three quadratic subez-
tensions over F, and exactly one of them is unramified. Thus both e and f are even;

(2) Ng,p(EX)F*2/F*? is of order 2 if and only if E contains exactly one quadratic subextension
over F'. Thus either e or f is even;

(3) Ng/p(EX)F*?/F*2 = F* |F*? if and only if E contains no quadratic subextension over F.
Thus d = ef is odd.

For case (1), we have the following lemma:

Lemma 2.2.15. IfNE/F(EX)FXQ/FX2 = {1}, then we may further choose the uniformizer wg of E,
such that
Hasse(Jywg) =1 and Hasse(Jgwgey) = —1,

where Jywg and Jywgey are symmetric matrices in GLg(F).

Proof. We may use [Hak13], Proposition 6.6 directly.

For case (2), first we assume that f is odd and e is even. We have:
Lemma 2.2.16. For f odd and e even, we have Hasse(Jywg) # Hasse(Jywgep).

Proof. We use the proof of [Hakl13], Proposition 6.6 directly, except that right now f is odd instead
of being even. Our question reduces to calculate the following term

Hasse(diag(u1, ..., up, miwp, ..., uswp)) (with uy,...,ur € 03)

in the case where H{Zl u; € F*2 or €, F*? respectively with ¢}, € 0;\0;2 fixed, and to show that they
are different. From the calculation in loc. cit., we have

f
Hasse(diag(u1, ..., uf, u1@p, ..., uywr)) = (H Hil(u;, wp))? ! - Hil(wp, wp) 172
i=1
/
= Hil(H u;, wr) - Hil(wp, wp)/ D/
i=1
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Thus by Lemma [2.2.12}(2), when Hzle u; € F*? or €, F*? respectively, the corresponding terms are
different.
]

Corollary 2.2.17. Under the assumption of Lemma the Hasse invariants
Hasse(diag(Jywg, ..., Jawg, Jgwg)) and Hasse(diag(Jywg, ..., Jywg, Jawrep))
are different, where the two matrices are in My, (Mg(F')) = Mynq(F).

Proof. We write
A= diag(deE, ey deE) S Mm_l(Md(F)) = M(m—l)d(F)v

then using Lemma [2.2.10] we have
Hasse(diag(Jywg, ..., Jywg, Jgwg)) = Hasse(A) - Hasse(Jywg) - Hil(det(A), det(Jywg))
and
Hasse(diag(Jywg, ..., Jawg, Jgwgeo)) = Hasse(A) - Hasse(Jgwgeo) - Hil(det(A), det(JqwEeop))-
Thus using Lemma [2.2.16], we only need to show that
Hil(det(A),det(Jywg)) = Hil(det(A), det(Jgwgeo)),

which follows from the fact that det(eg) = Ng,p(eo) € F' *2 when e is even.
O

Now we assume that e is odd. First we consider the case where f is even. In this case, Ng,p (€0) ¢
F*2. We choose @}; to be another uniformizer of E such that Ng,p(w}) € F*2.

Lemma 2.2.18. If e and m are odd and if f is even, then
Hasse(diag(Jywp, ... Jawg, Jgwg)) = 1

and
Hasse(diag(deEeo, ...deEEO, delEeo)) = —1,

where the two matrices are in My, (Mg(F)) = My,q(F).

Proof. To begin with, we state and proof the following general lemma which is useful not only in this
proof, but in the latter sections.

Lemma 2.2.19. Let E/L be a finite extension of non-archimedean locally compact fields of residue
characteristic p # 2 with odd degree, and let

LX/L><2 — EX/E><2

be the homomorphism induced by the canonical embedding L — FE, then the homomorphism above
induces two isomorphisms

L*/L*?2 =2 EX/E*? and o} [of* = o} /ox.
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Proof. The embedding L — F leads to the following embedding:
L*/E*2N L* < E*/E*2.

First we have L*?2 C EX2 N L*. And for # € EX2N L%, let * = y? with y € EX. Thus L[y] is a
subextension of E over L which is of degree 1 or 2. Since [E : L] is odd, we must have L[y] = L and
y € L. So x € L*?, which means that E*? N L* = L*? since z is arbitrary. Thus the homomorphism
in the lemma is injective, which is an isomorphism since [E* : EX?] = [L* : L*?] = 4.

Moreover, since |0} /o72| = |05 /05| = 2, the isomorphism above also leads to an isomorphism

of o} = o} /o

O

Come back to the original proof. We write L for the maximal unramified subextension of E over
F,then [L: F]= fand [E : L] = e. Since e is odd, by Lemma [2.2.19| we have an isomorphism

o /o? = o} o},

Since the result doesn’t depend on the choice of wg, @ and € as representatives in E*|E*2,
we may assume that @ = oy is a uniformizer in L, and @’ = w/ is a uniformizer in L such
that Ny /p(w)) € F*2, and € € 05\oy?. From the construction of the J-symmetric embedding in
Proposition [2.2.7] (see the proof of [Hak13], Proposition 6.6 for more details), we may write

deE = diag(J(e_l)f, waL) and de/E = diag(Je(f_l), wa/L)

and
Jawpey = diag(J(e—1)pe0, Jywreo) and Jywpeg = diag(Je(—1)€o, Jroo€o).

Since det(Je_1)y) € oy, and since det(diag(Jywy, ..., Jywr, Jywy)) is of even order in F*, using

Lemma and Corollary we get
Hasse(diag(Jywg, ..., Jawg, Jawy)) = Hasse(diag(Jfwy, ..., Jrwr, Jr@r)), (2.2.1)
where the matrix in the Hasse of the right hand side is of size fm. Similarly we have
Hasse(diag(JywEeo, -.., Jawreo, Jawgeo)) = Hasse(diag(Jrwreo, ..., Jrwreo, J o)), (2.2.2)

where the matrix in the Hasse of the right hand side is also of size fm. Since L/F' is unramified, we
may write @y, = wpv and @) = wpv’ with v,v’ € 07, thus the term in (2.2.1)) equals

Hasse(diag(Jvwp, ..., Jpvwp, Jpu'wp)), (2.2.3)
and the term in (2.2.2)) equals

Hasse(diag(Jfveowp, ..., Jpveowp, J v’ egmwr)). (2.2.4)

Since f is even, det(Jywr) and det(Jpv'wp) are of even order in F'*, thus by Lemma [2.2.11} (2.2.3))
equals

Hasse(J o)™ ! - Hasse(Jv'wr) = Hasse(Jpv'wp)
and similarly (2.2.4]) equals

Hasse(Jpvegmwp)™ ! - Hasse(J v epwwr) = Hasse(J v egmr).
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We assume that Jyv' is similar to diag(1, ..., 1, u1) and Jgv'eq is similar to diag(1, ..., 1, up) with uy, ug €

05, then (2.2.3) equals

Hasse(diag(wp, ..., wp, wpuy)),

and (2.2.4) equals

Hasse(diag(wp, ..., wp, wpug)).
By direct calculation, we get
det(Jp'@r) = (~1/ DN, () € (—1)fU-D/2px2

and
det(Jpv'eowr) = (—1)f(f_l)/2NL/F(60w'L) € (-1)/U=DANL  p(eg) F*2,

where N/ p(€o) € 0:\o x>,
If -1 € F*? or if —1 ¢ F*2 and 4|f, then det(J;v') € 05 and det(Jpv'eg) € 0f\ox?. We may
assume u; = 1 and us € 0}5\0?2, where in the latter case we may further assume us = —1. So by

Lemma [2.2.12} (1), when —1 € F*2 we have
Hasse(diag(wp, ..., wp, wruy)) = 1

and
Hasse(diag(wp, ..., wp, wpug)) = (—=1)/ 71 = —1.

When —1 ¢ F*? and 4|f, we have
Hasse(diag(wp, ..., wp, wpuy)) = (—1)f(f_1)/2 =1,

and
Hasse(diag(wr, ..., wr, —wr)) = (=1)V"DE=2/2 = 1

If -1 ¢ F*2 and 41 f, then det(J;v') € 05\o5? and det(Jpv'ep) € 052, We may assume ug = —1
and us = 1 and we have

Hasse(diag(wp, ..., wp, —wp)) = (=1)V"DU=2/2 =1

and
Hasse(diag(wp, ..., wp, wr)) = (—1)f(f*1)/2 =-1.

Thus we finish the proof.

Finally, we drop the assumption that f is even.
Lemma 2.2.20. If e is odd, m is even and one of the three cases happens:
o 2|d;
e 21d and 4|m;
e 24d, 41tm and —1 € F*2,

then Hasse(diag(Jywg, ..., Jgwg, Jgwreo)) = —1, where the matriz in Hasse is in My,q(F).
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Proof. We write L for the maximal unramified extension of F' contained in E, thus [L : F| = f and
[E : L] = e. Since e is odd, by Lemma [2.2.19| we get

oo} = o} [0},

Since the result doesn’t depend on the choice of wg and €y as representatives in E*/E*? we may

choose wg as a uniformizer of E such that @w$, = wy, is a uniformizer in L, and ¢ € oz\ozz. As in
Lemma [2:2.18 we may write

deE == diag(J(e_l)f, waL) and deEEO == diag(Je(f_l)eg, waLeo).
Thus by Corollary [2.2.11] and the fact that m is even, we get
Hasse(diag(JqwE, ..., Jawk, Jawre)) = Hasse(diag(Jywy, ..., Jywr, Jrwreo)), (2.2.5)

where the last term in the Hasse is a matrix of size fm. Since L/F is unramified, we may write
wy, = wpv with v € 0%, thus the term in 1) equals

Hasse(diag(Jfvwp, ..., Jpvwr, Jpvwrep)).

If we assume that Jyv is similar to diag(1,...,1,u1), and Jyveg is similar to diag(1,...,1,uz), then we
get ug/uy € 0;\0;2. Moreover we get

Hasse(diag(Jyvwr, ..., Jyvwr, Jrvwre)) = Hasse(diag (L, s—1)@r, v1@F, ..., u1@F, U2@F)), (2.2.6)

where the last diagonal matrix in Hasse is of size fm.
If —1 € F*2, we may choose either u; = 1 and uy = €}, or u; = €, and uz = 1 with €}, € 0;\0;2.

Thus in the former case, by Lemma [2.2.12{ (1) the (2.2.6) equals
Hasse(diag(Inf—1wr, wrep)) = (—1)™ 1 = —1,

and in the latter case, by Lemma [2.2.12}(1) the (2.2.6)) equals

Hasse(diag(lmf—m—‘rleaImfleeé))) - (_1)(mf—m+1)(m—1) = —1.

If —1 ¢ F*?, we may assume €j, = —1, uj equals 1 or —1 and uz = —uy, and for the two cases
using Lemma [2.2.12|(1) the (2.2.6)) equals
Hasse(diag({ fm—1@wF, —wF)) = (=1)UIm=Dlm=2)/2 — _3

or

Hasse(diag((;_1ym 1107, —Im-10p)) = (—1)mUm=D2=(=0miDm=1) —

where in both cases we use the fact that 4|fm and 2|m, thus we finish the proof.

Finally we have the following lemma which completes Lemma [2.2.20
Lemma 2.2.21. Ifd is odd, m is even not divided by 4 and —1 ¢ F*2, then
Hasse(diag(Jywg, ..., Jywg, Jgwg)) = —1,
where the matriz is in My,q(F).
Proof. We may follow the same proof as Lemma [2.2.20] which finally shows that
Hasse(diag(JqwE, ..., Jywg, Jgwg)) = Hasse( fpwr).

Since —1 ¢ F*2, by Lemma [2.2.12](1) the latter term equals (—1)/™(/™=1/2 which is —1 since under
our assumption fm =2 (mod 4). Thus we finish the proof.
0
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2.3 r7-selfdual type theorem

Let 7 be a supercuspidal representation of G. Let 7 = 7. be the orthogonal involution corresponding
to a symmetric matrix e, such that for H = G7 as the orthogonal group corresponding to 7, it satisfies
the condition 2 of Theorem with respect to . For a an op-subalgebra of M,,(F), we define

which is an op-subalgebra of M,,(F). We say that a is 7-stable if 7(a) = a. For any g € G, it is easy
to show that 7(a9) = 7(a)7().
In this section, we follow the strategy in chapter 1, section 5 to prove the following theorem:

Theorem 2.3.1. For 7 and T as above, there exists a mazximal simple stratum [a, 3] and a simple
character 6 € C(a, 8) contained in 7, such that

(1) 7(a) = a and 7(H'(a,B)) = H'(a, B);

(2)0or =0"1;

(3) T(8) =pB"".

As a corollary of Theorem [2.3.1] we have the following 7-selfdual type theorem.

Theorem 2.3.2. For m and T as above, there exists a T-selfdual simple type (J,A) that compactly
induces .

Proof. We only need to follow the proof of Theorem [1.5.3] with Theorem replaced by Theorem
231
O

Now we state the following general theorem which implies Theorem [2.3.1

Theorem 2.3.3. Let [a,(] be a mazimal simple stratum in M, (F'), let T be the mazimal tamely
ramified subextension of E/F, let T, be the unramified extension of degree m over T and let 6 € C(a, 3)
be a simple character. Let T be an orthogonal involution of G such that H = G7 satisfies the condition 2
of Theorem[0.3.1 Then there ezist a maximal simple stratum [/, B'] in M,,(F) and a simple character
0’ € C(d',B") such that

(1) 7() = o and (H'(,8)) = H'(d, 3);

(2) 0" and 0 are in the same endo-class and §' o7 = 0'~1;

(3) 7(B") =B

For 7 given as in Theorem if we choose [a, 5] to be a maximal simple stratum and 6 € C(a, 3)
to be a simple character contained in 7, then Theorem [2.3.3|implies Theorem [2.3.1} So from now on,
we focus on the proof of Theorem We write £ = F[f], d = [E : F] and m = n/d. In the
following subsections, we gradually consider the following three cases: E/F is maximal and totally
wildly ramified, E//F is maximal and the general case.

To begin with, we state the following lemmas which will be useful in our future proof.

Lemma 2.3.4. Let [a, 3] be a mazimal simple stratum in M, (F) and let @ € C(a,3), then for T as
an orthogonal involution on G, the simple characters o 7 and 8~ are in the same endo-class. In
particular, if T(a) = a, then 0 o T is conjugate to 0~ by an element in U(a).

Proof. We follow the same proof of Lemma [1.5.7] with ¢ in loc. cit. replaced by the trivial action.
O
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Lemma 2.3.5. Let 7 = 7. be the orthogonal involution on G corresponding to a symmetric matriz €,
let [a, 8] be a mazximal simple stratum in M, (F) and let 0 € C(a, 3) be a simple character, such that

r(@)=a, Oor=0""1 (and7(B)=p"1).

Then for T = 1.1 as the orthogonal involution on G corresponding to the symmetric matriz &' = tgeg,
we have

(@) =a?, o7 =)' (and 7'(87) = (BI)7).

Proof. Same proof as Lemma [1.5.8
O

Lemma 2.3.6. Let [a, 8] be a mazimal simple stratum in My, (F') and let 0 € C(a, 3) such that T(a) = a,
T(H'Y(a,B)) = H'(a,8) and 0ot = 7. Then there exists a simple stratum [a,~] such that 6 € C(a, )
and T(y) =y L.

Proof. For 7 = 7. with respect to a symmetric matrix €, we define

1

o.(z) ;= ttxe for any x € M,,(F)

as an anti-involution on M,,(F). Then we may use the same argument in Proposition |1.5.19] with o
in loc. cit. replaced by oc, and the original proof in [Ste01|], Theorem 6.3 works.
O]

2.3.1 The maximal and totally wildly ramified case
In this subsection, we prove the following special case of Theorem [2.3.3

Proposition 2.3.7. Let [a, 5] be a simple stratum in M,,(F) and let 8 € C(a, 3) be a simple character,
where n = d and E/F is totally wildly ramified. Then for T = 11, the orthogonal involution on
G, there exist a simple stratum [d', 8] and a simple character 8’ € C(d',3") such that (a/,0") is G-
conjugate to (a,0) with the property 7(a') = a’ and 0’ o7 = 0'~1. Moreover, we may further assume
that o C Mn(OF)

Proof. We explain how the proof of Proposition [1.5.9| could be used directly in our case. First up to
G-conjugacy, we may assume a to be the standard minimal order of M,,(F). We have the following
lemma corresponding to Lemma [1.5.11

Lemma 2.3.8. There exist g1 € GL,(0F) and ay, ..., an € 05 such that

0 0 .. 0

0 as 0
T(g)g; ' = A=

0 Ap—-1 - . 0

an 0 ... 0 0

Moreover, if we define o’ := a9, then we have 7(a") = a”.

Proof. We choose a1 = ... = a(y_1)/2 = A(n43)/2 = ... = an = 1, and a(,11)/2 equals 1 or —1 to make
sure that det(A) = 1. Since the op-lattice of rank n equipped with a quadratic form corresponding
to A is unimodular in the sense of [O’M71], §92, by §92:1 in loc. cit., there exists g1 € GLy(0F) such
that ‘g; ! ‘N L'— A, or equivalently 7(91)91 L'~ A. Then we may use the same proof as that in Lemma

1.5.11| to obtain 7(a”) = a”.
O
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By Lemma we may choose g1 € GL;,(0p) such that a” = af' is 7-invariant. Let M = o0y x ... x

0y be the subgroup of GL,(0p) via diagonal embedding, let M” = M9 and U = U9 := U'(a)9".

Then using directly the proof of Proposition [1.5.9, with all the Galois involution in loc. cit. replaced

by the trivial action, there exists € M"U" such that for a’ = a”* = 9% and ' = 9%, we have

7(a/) =’ and 0" o 7 = 1. Moreover since g1x € gt M"U" = MU'g; C GL,(0oF) and a C M, (oF),
we get @/ = a9'" C M, (oF).

O

2.3.2 The maximal case

In this subsection, we further use the result proved in §2.3.1| to consider the following special case of
Theorem [2.3.3

Proposition 2.3.9. Let [a, 5] be a simple stratum in M, (F') and let 0 € C(a, 3) be a simple character
with n = d. Then for an orthogonal involution T = 7. which is G-conjugate to 7y, , there exist a simple
stratum [, 5'] and a simple character 8" € C(a, 5') such that (¢/,0") is G-conjugate to (a,8) with the
property 7(a/) =d’, 0 o7 =01 and 7(B') = B'7L.

Remark 2.3.10. If we assume E/F to be totally wildly ramified, then by direct calculation and Lemma

[2:2.9, we have

det(I,) = det(Jy,) or det(—J,) and Hasse(l,) = Hasse(J,) = Hasse(—J,) = 1.

Thus I, is G-conjugate to Jy or —Jp, which means that 71, is G-conjugate to 7z, . Choosing € = I,
Proposition [2.3.9 implies Proposition [2.5.7

Remark 2.3.11. Since 7, represents the split orthogonal group, it satisfies the condition of Theorem
[2:3.3, which justifies that Proposition[2.3.9 is indeed a special case of Theorem [2.3.3

Proof. We write n = t(n/t) with t = [T : F| and n/t a power of p as an odd number, where 7T is the
maximal tamely ramified subextension of E over F. We define

Jinje = diag(Jy, ..., Jt)
as a matrix in M,, ,(M¢(F)) = M, (F). Using Lemma we have
Hasse(J; /) = Hasse(J,,) = Hasse(—J,,) = 1.
Moreover by direct calculation we have
det(Jy ) = det(Jp) or det(—Jy).

Thus using Proposition Jtnyt 1s similar to J, or —J,. Thus 7, , is G-conjugate to 7, and 7..
By Proposition we may replace £ by multiplying an element in F'* to make sure that ¢ is similar
to Ji ¢ Thus using Lemma [2.3.5 we only need to consider the case where e = J; ;4 and 7 = A
So from now on we assume € = J; , ;.

Using Proposition we may choose

L T < My(F)

to be an F-algebra embedding which is Ji-symmetric. By abuse of notation, we consider the following
embedding
v My p(T7) = My i (M (F')) = M (F)
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given by mapping each entry 7' to the corresponding M,(F') via the original ¢. If we regard T as an
F-subalgebra of M,, ;(T') given by the diagonal embedding, then +(T")* is fixed by 7. By the Skolem-
Noether theorem, we may choose g € G such that «(T') = T9. Thus using [a9, 39] and 69 to replace
[a, 5] and 0, we may suppose ¢(T") to be the maximal tamely ramified extension with respect to FE/F.
Thus we identify 7" with ¢(T") and omit ¢.

Let C' = M,,;(T') denote the centralizer of T"in M,,(F') and let tc denote the transpose on C. For
¢ = (¢ij)ij € GLy, ;. (T'), we have

7(6) = (T e Iinse) ™ = (I eid)ig) ™ = ((eja)ig) ™ = et = 7(c)

where we use the fact that ¢ is Ji-symmetric and we write 7/(x) = ©z~! for any z € C*. Thus 7/
as the restriction of 7 to C* is the orthogonal involution 77, eoonC * = GLy/(T). As mentioned
in the intersection ¢ = a N C gives rise to a simple stratum |[c, 5] and the restriction of 6 to
H 1( c, ﬁ), denoted by Or, is the interior T'/F-lift of #. Since E/T is totally wildly ramified, using
Proposition with G, 6 and 7 replaced by C*, 6 and 7’ respectively, there exists ¢ € C* such
that 7/(c¢) = ¢ and 05 o 7/ = (0%)~!. As a corollary, we also have 7/(H!(c¢, 8°)) = H'(c¢, 8°) and
C(et, ) = C(e. 7 (5).

By the injectivity of a — a N C between sets of hereditary orders mentioned in = ais
T-stable. Moreover if we write 8 = 6¢ and 7" = T, then from our construction of 7 and the deﬁnition
of T'/F-lift, we know that

(9/ o T)T/ = 0, o T|H1(cc,ﬁc) = 0, O7J|H1(CC,BC) = ‘9&"/ (¢] 7',

and
(elfl)Tl — HIT—/l

are equal. Thus by the last paragraph of §2.1.2] the simple character ¢’ satisfies the property 6’ o 7 =
0/—1
Finally using Lemma m 6| with € = J; /¢, we may choose B" in the simple stratum such that
0 e C(a,p") and 7( thus we finish the proof.
O

Before we prove the general case, we state and prove the following important lemma which studies
the set eE’* consisting of symmetric matrices, where E' = F[f’] with 8’ chosen as in Proposition
2.0.9

Lemma 2.3.12. We may choose [/, '] and 0' € C(a, B') satisfying the conclusion of Proposition[2.3.9
and T as a tame parameter field of ', and we may fiz v : T < My(F) as a J-symmetric embedding
given by Pmposz’tz’on such that for any x € E', there exists vy € T such that ex is similar to
diag(Jee(xy), ...y Jet(zy)).

Proof. First we assume € = J; 4/, We recall that in the proof of Proposltlon first we obtain a
simple stratum [a’, 5] and a simple character ' € C(d/, 3), such that 7(a’) = o and 0 or =61 then
we use Lemma [2.3.6)to get 4. In this case we have 6’ € C(d/, 3) NC(o/, #), thus J'(d/, B) = J1(«, 5
as the maximal pro-p-subgroup of the normalizer of §. Moreover from our construction of [, 5], for T
the maximal tamely ramified subextension of F/F with E = F[f] and for ¢ : T < M;(F') the chosen
J-symmetric embedding, we have

T = {diag(v(w1), ..., t(x1)) € Mgy (My(F)) = Ma(F)|z; € T}.

Thus we get
* = {diag(Jie(xt), ..., Jie(xr)) € Mgy (My(F)) = Mg(F)|zy € T™}.
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We write T for the maximal tamely ramified subextension of F’/F with E' = F[3']. By Lemma
2.2.19|with £ = E' and L = T’, the embedding 77 < E’ induces an isomorphism

T/X/T/X2 [ E/X/E/XQ.

Thus for any = € E’¥, there exists y € E'* such that zy? € T'. Thus

ex = 'y te(zy?)y !,

where we use the fact that e~''y~'e = y~!. Thus every element in eE’* is similar to an element in

eT"*. Thus to finish the proof, we only need to show that any element in e7"* is similar to an element
in eT™.

Using [BH14b|, Proposition 2.6, there exists j € J!(a’, 3) = J(a/, ') such that 77 = T7. For any
x € T*, we have j~lzj € T". Thus we get 7(z) = = and 7(j ~'zj) = (7 '2j) !, which implies that

kxk™' = r(z7!) = =z,

where k :=7(j)j 7t € CnJNd, B) = J(¢/, B) C UL(¢') with C = Zy, () (T) = Mg (T). Moreover we
have
i twj = (ej e Newj = 'r(j)exj = i kexj,

So we only need to show that ‘kex is similar to ex.

We denote by 7/ the restriction of 7 to C*, thus by definition 7/(c) = '¢c~! for any ¢ € C*, where
tc denotes the transpose on C. Since 7(k)k = 1, we have 7/(k)k = 1, or equivalently ‘“k = k. Since
detc(k) € 1+ pr € T*? and Hasser(k) = 1 by Proposition and Lemma by Proposition
there exists m € C* such that

temm = 'k or equivalently 7(m) 'm = 7(k)7},

where we denote by detc the determinant with respect to C = Mg/(T) and by Hasser the Hasse
invariant with respect to T'. Thus

thex = er(k) ' = er(m) " 'ma = 'mema = ‘mexm,
which means that ‘kex is similar to 2. So we finish the proof when e = J; 4 /t-
For the general case, since 7. and 7, , ), are G-conjugate, we may choose € up to multiplying an

element in F'*, such that ¢ = th,:’d/tg with a certain g € G. We assume that [a’, '] and 6’ satisfy
this lemma for 7 =7, , ,. We choose [a”, 8] :== [a'9, 9], 0" = #'9, and by Lemma we have

7_€(a//) _ Cl//7 0// oT. = 0//—1 and 7'5(,8//) _ 5//—1.

Moreover we have
eE"™ = tgjt,d/thIXg = tg(Jt,d/tE/X)gv

which means that each element in e £”* is similar to an element in J; 4, E". Thus [a", 3"], 0" satisfy
the condition of the lemma when 7 = 7..
O

Remark 2.3.13. From the proof we may further observe that when & = Jy q/4, tf we identify T' with
the maximal tamely ramified subextension of E' over F via an F-embedding, then x and x; are in the
same class of T*/T*? = E'* |E'*? given by Lemma for E=FE and L=T.
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Finally we state and prove the following corollary, saying the results for calculating Hasse invariant
in §2.2.3| can be generalized to the case where E/F' is not necessarily tamely ramified, once E is well-
chosen.

Corollary 2.3.14. For ¢ = Jy and [0/, '], 0 constructed in Lemma the results in Lemma
Lemma Corollary Lemma Lemma [2.2.20, Lemma |2.2.21] hold for E =
E'.

Proof. Since all the proofs are similar, we only prove Lemma [2.2.20| as an example.

First of all when d is even, by direct calculation and Lemma @ we have det(J; 4/¢) = det(Ja)
and Hasse(J; 4/¢) = Hasse(Jg) = 1. Thus J; 4/ is similar to Jg. Using this fact and Remark we
deduce that when € = Jg, we may assume x and z; in the result of Lemma to be in the same
class of E'*/E™?2 = T* /T*2 where we identify 7" with the maximal tamely ramified subextension
of E' over F via an embedding. In particular, when z = wg is a uniformizer of E’, we may assume
x; = wr to be a uniformizer of T in the same class as that of wgr, and when x = wgeg with ¢y an
element in 0, \07, we may also assume z; = wre), with €, an element in 0\0*. Thus using Lemma
2332 for x = wp and z = wrreg, we have

Hasse(diag(Jywgr, ..., Jgwpr, Jgwg€o))
= Hasse(diag(diag(Jiwor, ..., Jyoor), ..., diag(Jywor, ..., Jywor), diag(Jrwre), ..., Jywore)))
= Hasse(diag(diag(Jiwor, .., Jiwwr, Jyworey), ..., diag(Jywor, ..., yor, Jiwrep)))
= Hasse(diag(Jywr, ..., Jywor, thTea))”/t
= Hasse(diag(Jywor, ..., Jywor, Jyoreg)),

where the matrix in the third line is the direct sum of n/t¢ copies of diag(Jiwr, ..., Jywor, Jiwre)) €
M (F), and for the fourth line we use the fact that det(diag(Jiwor, ..., Jiwr, Jiwre])) is of even order
in F* and Corollary and for the final line we use the fact that n/t is odd. Thus we may use
the tamely ramified case to finish the proof.

When d is odd, if det(J; 4/;) = det(Jq) we can still follow the proof above verbatim. If det(J; q/¢) =
det(—Jy), we deduce that J; 4, is similar to —Jg. Thus following the above proof, when » = wg
(resp. wgrep) we may choose x; = —wr (resp. —wre), where wgy, wr, €, €, are defined as above.
Thus for w/, = —wr as a uniformizer of T" and using the same calculation, we have

Hasse(diag(Jywp:, ..., Jawpg:, Jawg €o)) = Hasse(diag(Jywo7y, ..., i, Jyworey))-

And still we use the tamely ramified case to finish the proof.

2.3.3 The general case

In this subsection, we finish the proof of Theorem [2.3.3] For [a, 3] and 6 € C(a,3) given as in the
theorem, we choose 5y € M4(F') such that there exists an F-algebra isomorphism F'[5y] — F[3] which
maps [y to 5. Let ap be the unique hereditary order of My(F') normalized by By. Thus [ag, Bo] is
a simple stratum of My(F') and we let 6y = tfﬁo(ﬁ) be the transfer of § as a simple character with
respect to [ag, So]. Using Proposition for 7, the involution on GLg(F'), there exist a simple
stratum [ay,, 3] and a simple character 6], € C(a(, () such that (a, 6;) is GL4(F)-conjugate to (ag, 6p)
with the following property:

(1) 71,(ah) = oy and 75, (H* (ah B5)) = H (e, B5):

(2) 6y o1y, =65
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(3) TJd(/Bé) - (/)_1;

(4) Corollary holds.

Now we embed M, (F') diagonally in M,,(F"), which gives an F-algebra homomorphism ¢/ : F[f] <
M, (F). We write 8 = /(5}) = By ® ... ® 5, and E' = F[f']. The centralizer of E’ in M,,(F’), denoted
by B’, is naturally identified with M,,(E"). Let b’ be a maximal standard hereditary order in B’ which
may be identified with M,, (0g/), and let @’ be the unique hereditary order in M,,(F') normalized by E'*
such that a’NB’ = b’. Then we obtain a simple stratum [a’, 3'] in M,,(F). Let ¢/ = tfgﬁl(%) € C(ag, 5))
be the transfer of 6.

We denote by 7" the maximal tamely ramified subextension of E'/F and we denote by T}, an
unramified extension of degree m over 7. We denote by E/ = T, E’' an unramified extension of
degree m over E’. Since E'/T" and E), /T, are totally wildly ramified, it is easy to check that

NT//F(T/X)FX2/FX2 — NE//F(E,X)FX2/FX2 (231)
and
Ny yp(T ) F7?/F*? = Ng, jp(Ep ) F*?/F*2. (2.3.2)

The latter group is a subgroup of the former one, and both of them are subgroups of F'*/F*2, which
is a group of order four.

We consider the following special orthogonal involutions 7 = 7. such that

Case (i) If Npy p(T))F*2/F*? = F*/F*? then ¢ = Jyp = diag(Jy, ..., Jg) € My (Mg(F)) =
M, (F);

Case (ii) If Ny /5 (T, ) F*2/F*? is a subgroup of F* /F*? of order two, we consider the following
two cases:

(ii.a) If 2|m, then € equals Jg,, or diag(Jq, ...Jq, J4€), where € € 05,;

(ii.b) If 2t m, then € equals Jy ,, or diag(Jge, ..., Jg€), where € € E'*;

Case (iii) If NTT/H/F(T/?f)FXQ/F><2 = {1}, then ¢ equals Jg,, or diag(Jywgr, ..., Jgwgr€), where
€ € 0y, and wpy is a certain uniformizer of E’. We distinguish the following two cases:

(ifi.2) Nyvp (T77)[F*2 = {1};

(iii.b) N/ p(T")F>*?/F*? is not trivial.

We want to check that for [d/, 8], 8’ and 7 = 7. given as above, the conditions (1), (2) and (3)
in Theorem are satisfied. For each ¢ above, we may write € = Jy,,a-6p/, where a. € E’™ and
epr = diag(1,...,1,€) € GLy,(E") with € € o3,. Thus for = (45);; € GLy,(E'), we have

7(2) = (Jamaep) ™ ' ((i5)ij) Jamacer) ™ = (epraz '((J;  ajida)ij)acep) ™
/

= (e az ((zji)ig)acem) ' = (e ("a)ep) ™ =7 (2), (2.3.3)

where we write ‘&’ for the transpose on GL,,(E’) and 7/ := 7. ., for the orthogonal involution defined on
GL,,(E") corresponding to £/, and we use the fact that the embedding E' < My (F) is J4-symmetric
and a. commutes with elements in GL,,(E’). Thus we proved that the restriction of 7 to GLy,(E’)
equals 7" as an orthogonal involution on GL,,(E’). In particular, since € is an element in E’, we know
that ez commutes with elements in E’ and we have 7(38') = 8'~!. Thus condition (3) is verified.

Since b’ is a maximal standard hereditary order in B’ which may be identified with M,,(0g), it
is 7/-stable. Thus from our assumption of 7 and construction of a’, we deduce that a’ is 7-stable. By
definition H'(a’, 8’) is T-stable, which means that condition (1) is verified.

Let M be the standard Levi subgroup of G isomorphic to GL4(F) X ... x GLg(F). Let P be the
standard parabolic subgroup of G generated by M and upper triangular matrices, and let N be its
unipotent radical. Let N~ be the unipotent radical of the parabolic subgroup opposite to P with
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respect to M. By [SS08], Théoréme 2.17, we have
HY(d,8) = HYd,)NN) - (H o, 8)n M) - (H («,5)NN), (2.3.4)
HY(d, 8N M = H'(ap, B) x ... x H(ap, Bf)- (2.3.5)

By loc. cit., the character ¢’ is trivial on H'(a/, )N N~ and H'(a’, ') N N, and the restriction of ¢’
to H(a', 8") N M equals 6, ® ... ® 0. We have

0 o7l pyov- =0 o Tl gy =0 m@syon- =0 i w,syon = 1.
Moreover since 7 = 7. with
e = diag(Jy, ..., Jg) or diag(Jye, ..., Jqe) or diag(Jy, ..., Jq, Jg€) or diag(Jywpr, ..., Jgwpr, Jagwg€),
and since € and wp normalize 6, we have
0 o T\ pyom = 05071, ® .. @007, =00 ® .05 =0 1w sou-

Thus by equation , we have § o 7 = #'~!, which is the condition (2). Thus for those special
orthogonal involutions, we finish the proof.

Finally we show that for a given orthogonal involution 7 and the corresponding orthogonal group
H = G7 satisfying the condition of Theorem [2.3.3] 7 is conjugate to one of the orthogonal involutions
mentioned in Case (i), (ii) or (iii). We consider them separately.

Case (i) By definition,

NE;H/F(E;;;)FXQ/FXQ = I\IT,',L/F(T/T;()FXZ/FX2 = FX/FX2 (2.3.6)

then using Proposition [2.2.14] for E = T}, we deduce that [T}, : F] is odd, thus n = [E/ : F] is odd.
By Lemma [2.2.9] we have

Hasse(J,,) = Hasse(—J,,) = Hasse(Jg,m) = 1.

And moreover

det(Jgm) = det(J,) or det(Jy,) = det(—J,).

So by Proposition [2.2.1} Jq ., is similar to J, or —Jp,, which means that 7, and 7, are in the same
G-orbit.
Case (ii) By Lemma we have

Hasse(J,,) = Hasse(Jg,n) = 1.
(ii.a) Since T),,/T" is unramified and m is even, we get
1\IT;,L/F(T7/nX)FX2/FX2 = 1\IT//1~“(0§/)FX2/1[7X2 = NT;,L/F(Uﬂl)FXQ/FXQ-
Thus using equation and we know that
Npy, (g VF2/F*? = Ny yp(0f, JF*?/F** = Npiyp(05 ) F*? /F** = N p(03, ) F*2 | F*?

is a subgroup of F*/F*?2 of order two. Thus there exists ey € 0y, such that the image of Ng//p(eo)
in Ng/p(0j,)F>?/F*2 is nontrivial. From now on we fix one such .
(ii.a.1) If either of the three cases is true:
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o 2|d;
e 2td and 4|m;
e 2fd,4fmand —1 € F*2,

then by direct calculation we get
1 = disc(Jgm) = disc(Jy).

Thus by Proposition .21} Jy,, is in the same G-orbit as J,, representing the G-conjugacy class of
split orthogonal group. Moreover, we have

det(Jyg, ..., Jq, Jd€0> = NE'//F(GO)

which is non-trivial in F*/F*2. Thus by Proposition and Proposition we know that
Te corresponds to the G-conjugacy class of orthogonal groups mentioned in Theorem [2.3.3] which is
quasisplit but not split.

(ii.a.2) If 21 d, 4t m and —1 ¢ F*2, we get

Ny p(T ) F* 2/ F*2 = {1, -1},
By direct calculation we get
det(diag(Jd, ey I, —Jd>) = det(J,) = —1

and
det(dem) =1.

Thus if we further choose e = —1 and ¢ = diag(Jy, ..., Jq, —Jq), then by Proposition and Propo-
sition 7. and 7, . correspond to the two G-conjugacy classes of orthogonal groups respectively
mentioned in Theorem [2.3.3] where the former class is split, and the latter class is quasisplit but not
split.

(ii.b) Since m is odd, we deduce that

NTT,n/F(TT/’i()FXQ/FX2 — NT//F(T/X)FXQ/FX2 — NE‘//F(E/X)FX2/FX2

and d is even by Proposition with E = T’. We fix € € N/ /p(E™) whose image in F*/F*? is
non-trivial. By direct calculation we get

det(Jyg,) = (—1)mHd=0/2 — (_1)ymd(n=1)/2 — det(.J,).

Thus by Proposition Jq,m is in the same G-orbit as J,, representing the G-conjugacy class of
split orthogonal group. Moreover, we have

det(Jge, ..., Jae) = Ngi/p(€)™

which is non-trivial in F*/F*2. Thus by Proposition and Proposition T correspond to
the G-conjugacy class of orthogonal groups mentioned in Theorem [2.3.3] which is quasisplit but not
split.

Case (iii) First of all since

Ny /(B ) F*? [F*? = Ngy p (T F*2 [ F*? = {1},
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by Proposition [2.2.14| with £ = T, we know that 4[[T) : F|. Thus 4|[E}, : F] = n. By direct

calculation, we have

det(Jg,m) = det(J,) = 1.

Moreover, by Lemma [2.2.9| we get
Hasse(Jq,,) = Hasse(J,,) = 1.

Thus by Proposition Ja,m is in the same G-orbit as J,, representing the G-conjugacy class of
split orthogonal group. Thus we only need to show that for ¢ = diag(Jywgr, ..., Jgwgr€) with wg and
€ € 0, well-chosen, T = 7. corresponds to the non-quasisplit orthogonal group. By direct calculation,
we have

det(e) = (—1)"“V2Np p(wp) "N p(€) = N p(wp) " Ng e (e).
(iii.a) Since
NE//F(EIX)FXQ/FX2 — NT//F(T/X)FX2/FX2 — {1}’

det(e) is trivial as an element in F'*/F*2, Thus we only need to choose € such that Hasse(g) = —1.
By Lemma [2.2.15| and Corollary [2.3.14] we may choose wgs and €y such that Hasse(Jywg/) = 1 and
Hasse(Jywpr€p) = —1. Then using Corollary[2.2.11|and the fact that det(Jywwp), det(Jywpren) € F*2,
we get

Hasse(e) = Hasse(Jywg )™ 'Hasse(Jywgeo) = —1.

(iii.b) Since Np/ /g (E"™)F*2/F*? is not trivial and N, /p(E)F*2/F*? s trivial, m is even and
there exists a uniformizer w% of F' such that

NE//F(E’X)FXQ/F“ = {1, ok}

Thus
det(e) = NE//F(WE/)mNE//F(G) = NE’/F(E) (HlOd FXQ).

Since N/ /p(€) € 05 NNpy/p(E'), its image in F* /F*? is trivial, that is, disc(¢) = 1. So as in (iii.a),

we only need to show that Hasse(e) = —1. Fix €y € 05, \0j7, by Corollary and Corollary [2.3.14
we may choose € equals 1 or €, such that

Hasse(e) = Hasse(diag(Jy@wpr, ..., Jgwpr, Jyowge)) = —1.

So we finish the discussion for (iii.b).

Thus for H = G7 given as an orthogonal group in Theorem with 7 = 7., we have shown
that 7 is G-conjugate to one of the special orthogonal involutions mentioned in Case (i), (ii) or (iii).
Furthermore, we may change ¢ up to multiplying by an element in E’* such that ¢ is similar to one
of the special symmetric matrices mentioned in Case (i), (ii) or (iii). Using Lemma and the
special cases proved, we end the proof of Theorem [2.3.3]

Remark 2.3.15. In the proof of Theorem |2.53.5, we actually showed that for T as an involution in
Case (i), (ii) or (iii), the choices of [, B'] and 0’ are the same. Moreover, E = E' = F[f'] satisfies
Corollary [2.53.14).
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2.4 Distinguished type theorem and the orbits of distinguished type

Let 7 be a supercuspidal representation of GG, let T be a tame parameter field of 7 and let T}, be the
unramified extension of degree m over T', where n = md is determined by 7 as before. From Theorem
2.3.1) Theorem [2.3.2] Theorem and Remark there exist a simple stratum [a, /5], a simple
character 6 € C(a, ) attached to 7 and a simple type (J,A) containing 6 and compactly inducing =
such that

(1) 7o(a) = a and 7o(H'(a, 8)) = H'(a, B);

(2) 0oy =01

(3) 0(B) = B

(4) 7o(J) = J and A™ = AY;

(5) Lemma Lemma Corollary Lemma Lemma Lemma
hold for E = F[f].

Here we assume 79 = 7,, where ¢ is a symmetric matrix in M, (F') as follows:

Case (i) If Ny, /p(T,%)F*2/F** = F*/F*2 then €9 = Jym.

Case (ii) If Np,, /p(T;%)F*?/F*? is a subgroup of F*/F*? of order two, we consider the following
two cases:

(ii.a) If 2|m, then gy equals Jy,, or diag(Jy, ... 4, Ja€o), Where g € 05\0 57

(ii.b) If 2 { m, then gy equals Jg,, or diag(Jge, ..., Jg€), where € is chosen to be either a uniformizer
in E or an element in 05\0x?, such that Ng/r(e) € N, p(T) — F*2.

Case (iii) If N, /p(T5)F>*?/F*? = {1}, we consider the following two cases:

(iii.a) If NT/F(TX)FXQ/FX2 = {1}, then ¢y equals Jy,, or diag(Jywg, ..., JyqwEg, Jiwgep), where
€0 € 05\05? and wpg is a uniformizer of E chosen by Lemma such that Hasse(Jywg) = 1 and
Hasse(Jywgeg) = —1;

(iii.b) If Ny p(T™)F*2/F*? is not trivial, then ey equals Jyn, or diag(Jywg, ..., Jywg, Jaweeo)
where € € 0, and wg is a certain uniformizer of E, such that Hasse(diag(Jqwg, ..., Jygwg, Jawgeo)) =
—1.

Thus in different cases, G™ represents all possible G-conjugacy classes of orthogonal groups men-
tioned in Theorem [2.3.3| respectively.

From now on until the end of this section, we fix g, [a, 5], @ and (J, A) as above. By if we
restrict 79 to B* = GL;,(E), it becomes an orthogonal involution 7., with respect to E, where eop
equals I,, or diag(1,...,1,¢0) with €g € 0\0}%. We fix e a symmetric matrix in GL,(F) and 7 = 7.
an orthogonal involution on G. We write u = ¢, e, then by direct calculation we get

7(z) =u 'r(z)u for any z € G

and

utp(u) = 8616861 tepte ey = 1. (2.4.1)

We write v = ur(g)g~!. We first state the following main theorem of this section:

Theorem 2.4.1. For 7 a supercuspidal representation and G™ an orthogonal group of G, the repre-
sentation m is distinguished by G if and only if there exists a T-selfdual simple type (J,A) of ™ such
that HOIHJQGT (A, 1) # 0.

The “if” part of this theorem is obvious, so we only need to prove the “only if” part of this theorem.
We assume 7 to be distinguished by G” and we choose (J,A) to be 7y-selfdual as above. By direct
calculation, we get

T(HY) = o(HYHY = H™, "= (@™)"= (9~ and 7(8) = (871", (2.4.2)
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and
7(J) =79(J)* =J* and AT = (AT)* = AV (2.4.3)

Using the Mackey formula and the Frobenius reciprocity, we have
0 # Homgr (m, 1) = H Hom jongr (A9, 1).
geJ\G/G™

The main step is to prove the following important theorem:
Theorem 2.4.2. For g € G such that Hom jongr(A9,1) # 0, we have v = ur(g)g~' € J.

Thus for the simple type (J9, A9), we get
T(J9) = 1o(J) 9 = g9 = J9 and (A9)T = (AT)%T(9) = (AV)19 = (A9)Y,

where we use the fact that v € J normalizes J and A. Thus (J9, AY) is what we want, which finishes
the “only if” part of Theorem So from now on, we focus on the proof of Theorem [2.4.2

2.4.1 Double cosets contributing to the distinction of 6

In this subsection, we prove the following proposition:
Proposition 2.4.3. For g € G, the character 09 is trivial on H'9 N G" if and only if v € JB*J.

Proof. We follow the proof of [Séc19], Lemma 6.5. We choose 7, x and H in loc. cit. to be our 7, 0
and H' respectively. We use the assumptions 7(H') = H'* and § o 7 = §71* to replace the original
assumptions 7(H) = H and y o7 = x~! respectively. And we use v = ur(g)g~! to replace 7(g)g~! in
loc. cit. Finally we notice that + intertwines 6 if and only if v € JB*J. With the replacements and
remarks mentioned above, the original proof can be used directly.

O]
As a result, for g € G such that Hom jsngr(A9,1) # 0, restricting to H'Y we get 09| iongr = 1, or
equivalently v € JB*J.
2.4.2 The double coset lemma

In this section we prove the following double coset lemma:

Lemma 2.4.4. Let g € G and let v = ut(g)g~! € JB*J. Then by changing g with another repre-
sentative in JgG”, we may assume vy € B*.

Remark 2.4.5. By direct calculation, we get

v=ur(9)g " =5 g g™t = o(g)ug”!, (2.4.4)

and
T0(y)7 = gro(w)o(9) ' 1o(9)ug " = gro(u)ug~" =1. (2.4.5)

Since 19(J) = J, if we change g with a new representative of JgG7, the new ~y belongs to the same
J-J double coset represented by the original 7y, that is, the property v € JB*J doesn’t depend on the
choice of g in the J-G™ double coset.

Proof. First of all, we need the following lemma:
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Lemma 2.4.6. There ezists b € B* such that v € JbJ and 19(b)b = 1.

Proof. Since b* is a maximal order of B*, using the Cartan decomposition for B* = GL,,(F), we
may assume v = xcy such that z,y € J and

c = diag(@wy Iy, .y @i I, ) (2.4.6)

where a; > ... > a, as integers and mj + ... + m, = m. By definition of ¢g, the restriction of 9 to B*
is also an orthogonal involution 7 defined by

70(2) = egp 2" teop  for any z € BX,
where ' represents the transpose on GL,,(FE). If we write b = ceog, then by definition we get
/ “1tp —1tp_—1 —1tp —1 -1
T0(b)b = To(ccop)ceor = eop Fe PeypEoECceor = g TC CEoE = Eqpfor = 1.

So the choice of b satisfies our conditions.
O

Now we write v = z’bx with x,2’ € J, b = cegg € B> and c as in . Replacing g by 7o(2') g
does not change the double coset JgG™ but changes 7 into bz7y(z’). So we may and will assume that
v = bx with z € J.

Write K for the group J N J°. Since 79(b) = b~! and 79(J) = J, using we have x € J and
brb™t = b~ = 19(y H7o(b) = 7o(27!) € J, thus € K. Moreover, we have the following corollary

of Lemma 2.4.6

Corollary 2.4.7. The map &, : k — b~ 179(k)b is an involution on K.

Fora; >..>a,and m;y + ...+ m, =m asin , and M = GLy,,q4(F) x ... Xx GLy,,,.4(F) C G,
let P be the standard parabolic subgroup of G generated by M and upper triangular matrices. Let
N and N~ be the unipotent radicals of P and its opposite parabolic subgroup with respect to M. By
definition, b normalizes M and we have

K=(KNN")-(KNnM)-(KNN).
We have similar properties for the subgroup V.= K N B* = U Nb~'Ub of B*:
V=WVnN)- (VM) - (VQAN),

where U = U(b) and U = J' N B* = U'(b). By definition, V is also fixed by 4.

Lemma 2.4.8. The subset
K'=(KNN7)-(J'NnM)-(KNN)

is a Oy-stable normal pro-p-subgroup of K, and we have K = VK.
Proof. The proof is the same as that in [Séc19], Lemma 6.10.
Lemma 2.4.9. For x € K satisfying x©6,(y) = 1, there exist k € K and v € V' such that

(1) the element v is in GLy,, (0g) X ... X GLy,, (0g) € B> satisfying vdy(v) = 1;
(2) 6p(k)xk™t € vK1.
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Proof. We may follow the same proof as Lemma by replacing o and * in loc. cit. with trivial
map and ‘. Noting that in instead of considering the three cases separately by using Lemma
Lemma and Lemma in loc. cit., there is only one case to consider in our lemma and we
only need to use Lemma [I.6.11] in loc. cit. to finish the proof.

O

We finish the proof of Lemma Applying Lemma [2.4.9] gives us k € K and v € V such that
buro(bv) = 1 and §y(k)xk~! € vK'. Thus we have 7o(k)yk~! € buK'. Therefore, replacing g by kg
and b by bv, we may assume that v is written as

y=br, bro(b)=1, z€K' b€ @HGLy, (0p)X ... x @Y GLy, (0p). (2.4.7)

Furthermore, we have dy(z)x = 1.

Since K is a §-stable pro-p-group and p is odd, the first cohomology set of &, in K is trivial.
Thus = &(y)y ! for some y € K, hence using we have v = 79(g)ug™t = 10(y)by 1. As a
result, if we further use y~'g to replace g, we get v = b € B>, which finishes the proof of Lemma

244
O

Remark 2.4.10. Noting that in [Séc19] and the corresponding double coset lemma says that
v € JB*J if and only if g € JBXG™. However in our case if we assume € = eg and v = 7(g)g~ ! €
JB*J, then it is possible that g is not in JB*G". We will discuss this new phenomenon and calculate
all the possible J-GT cosets in .

2.4.3 Distinction of the Heisenberg representation

Let n be the Heisenberg representation of J! associated to 6, we have the following result as in [Séc19],
Proposition 6.12 and Proposition |1.6.13

Proposition 2.4.11. Given g € G, we have

1 ify=ur(g)g~t € JB*J,

dimcHomgr(n9,1) =
€ Gr (%, 1) {0 otherwise.

Proof. First we restrict n9 to H'9 which is isomorphic to #9(/ BHVZ Using Proposition when
~v ¢ JB*J, the dimension equals 0.
When « € JB*J, by Lemma we may further assume v € B*. We denote

8(x) = (r(9)g~ ) 'r(x)7(9)g™" forzeG
as an involution on G, then by definition and (2.4.5) we have

HomGT (nga 1) = HomG’5 (777 1)a

and
¥6(7) =1y o)y = 1. (2.4.8)
Moreover, using (2.4.2)) we have
S(HYY = (1(9)g™ H) ' HY™r(g)g™ = HY and 6o = (971)@9s " = (g=1). (2.4.9)

So using Proposition [1.6.14] we finish the proof.
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2.4.4 Distinction of the extension of a Heisenberg representation

Let k be an irreducible representation of J extending 7, then there exists a unique representation p of
J trivial on J! up to isomorphism, such that A = k® p. First of all we have the following proposition:

Proposition 2.4.12. Let g € G such that v € JB*J.
(1) There is a unique character x of J9 N GT trivial on J9 N G™ such that

HomJlgﬁGT (77g7 1) = Hom jongr (K’g’ X_l)'
(2) The canonical linear map
Hom jigng- (77, 1) ® Hom gong (p?, x) — Homjongr (A9, 1).

s an tsomorphism.

Proof. With the aid of Proposition [2.4.11] the proof is the same as that in [Séc19], Lemma 6.20.
O

For g € G such that v = ur(g)g~! = 70(9)ug™" € JB*J, using ur(g) = 79(g9)u to replace g, we

have
7o(r0(g)u)u(ro(g)u) ™ = gu'mo(9) ™! = (ro(g)ug™") "t € JB*J,

which means that we may consider u7(g) instead of g in Proposition|2.4.12] Thus there exists a unique
character x’ of J*7(9) N G™ trivial on J'7(9) N G7 such that

HomeT(g)mGT(n“T(g), 1) = Hom jur(g)n (nm(g), X h.

Moreover, we know that 7(J) = J%, 7(J) = J*, 7(J') = J' and 7(H') = H'“, thus as in Lemma
and Lemma [1.6.15], it is easy to show that

JING =Jv9NG =JING =J79nGT (2.4.10)
As a result, y and \/ are characters defined on the same group J9 N G™ = J*(9) 0 G7.

Proposition 2.4.13. For x and X' defined above as characters of J9 N G™ = J*9) N G™, we have
/
X=X-

Proof. We write 6(z) = (1(g)g~ 1) *r(z)7(g)g " for any z € G. Using the basic results in simple type
theory, we have v = ur(g)g~! € Ig(n) = Ig(x"), where k° = k|; and Ig(n) (resp. Ig(k")) denotes
the intertwining set of n (resp. x°). Moreover we have

dim(c(HOHlJva (/ﬁ;ofy, HO)) = dim@ (Homﬂm]m (777, 17)) =1.

By direct calculation, we have J'NG? = J1YNG? as a subgroup of J'NJY and H'NG° = HIYNGY.
Using Proposition [1.6.20] for our v and §, we have:

Proposition 2.4.14. For a non-zero homomorphism ¢ € Hom jin 1y (n7,n) = Hom oz (K97, £0), it
naturally induces a C-vector space isomorphism

f@ : HOHIJlmG(S (77, 1) — HomJl'ymG5 (n’Y’ 1)7
A = Ao
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Now we use Proposition [2.4.14] to finish the proof of Proposition [2.4.13] Using Proposition [2.4.11
for g and ut(g) respectively, we have

dimcHom jigner (79, 1) = dimeHom j1ur) e (1%79),1) = 1.
By Proposition [2.4.14] for 0 # ¢ € Hom jin 15 (17, 1) = Hom jign j1ur(e) (79, 7%79),

fo s Hom jigngr (97, 1) — Hom jrur(g)nr (n“T(g), 1),
A = Aoy,

is bijective. If we choose
0# A € Hompuyngr (1) and  0# N = fo(A) = Ao @ € Hom jrurmngr (079, 1),
then for any v in the representation space of n and any = € J9 N G™ = J*79) N G7, we have

¥ (@) 7N () = N (%79 (z)v) (by Proposition [2.4.12] (1))

= Mo(k" 9 (2)0)) (by definition of ")
CA(2)p(v))  (since p € Hom jyr yurin (8279, 509))
= x(2) A\ (p(v)) (by Proposition [2.4.12] (1))

= x(2)" N (v) (by definition of \').

Since v and x € J9 N GT = J*79) N G™ are arbitrary, we have X’| jur()ngr = X|JsnG7, which finishes
the proof with the aid of ([2.4.10)).

2.4.5 Existence of a 7-selfdual extension of 7

Proposition 2.4.15. There is & as an extension of ) such that K™V = k.

Proof. We refer to Proposition for a proof. Noting that the restriction of 79 to GL,,(l) becomes
an orthogonal involution with respect to the symmetric matrix g0 € GL, (1), where ggp represents
the image of egg in GL,,,(1) = GLy,(0g)/(1 + My (pE)), thus if we replace o and 7 in the loc. cit. by
the trivial action and 79, then the same proof in the case where E/Ey is ramified in loc. cit. works

for our proposition.
O

From now on until the end of this section we fix k as in Proposition We have the following
corollary:

Corollary 2.4.16. The character x defined by Lemma|2.4.13.(1) is quadratic, that is, x* = 1.

Proof. We have the following isomorphisms

Hom j1ur(9)ncr (n“T(g), 1) =2 Hom jigng- (17, 1)
= HOInngGT

)

= Hom jong (X, ngv) (by the duality of contragredient)

\

oT,XOT)

(7
(
= Hom ysna (K7, X)
= Hom jongr (kY
(

=~ HOIl’ngmGr ( TO\/)UT(Q X (e} 7')

= Hom jur(g) o (K79, x 0 7)  (since & is mo-selfdual).
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Using Proposition [2.4.13| and the uniqueness of X/, we have x o7 = x~'. Since y is defined on
J9NGT™ = J9NG" which is T-invariant, we have y o 7 = x, thus x? = x(xo7) = 1.
O

2.4.6 Proof of Theorem [2.4.2]

In this subsection, we finish the proof of Theorem For g € G given as in loc. cit., by Lemma
[2:44 and Cartan decomposition, we may replace g by another representative in the same J-G7 double
coset, such that

v :=ur(9)g" € WHGLy, (05) X ... x @Y GLy,, (08), (2.4.11)

where a;, m; are defined as in Lemma [2.4.6f Thus there exists a unique standard hereditary order
b,,, C b such that

UNb,,) = (UNSUYYYU = (UnUMU!,

where we define U = U(b), U' = U'(b) and §(x) = (7(g9)g ") "t7(z)7(g9)g* for any x € G as an
involution on G. First we have the following lemma whose proof is the same as that in [Sécl9,
Lemma 6.22, inspired by [HMO8|, Proposition 5.20:

Lemma 2.4.17. We have U'(b,,) = (U'(b,,) N GO)U™.
To finish the proof, it is enough to show that » = 1 in (2.4.11)). If not, we know that b,, by

definition is a proper suborder of b. Furthermore, U!(b,,) := U'(b,,)/U" is a non-trivial unipotent
subgroup of U/U"' = GL,,(1). Using Proposition [2.4.12/(2), we have

Hom jrqs(p, x? ) = Homgongr(p?, x) # 0.

Restricting to U (b,,) N G, we have

1

Homgi(p,,)nge (P, X7 ) # 0. (2.4.12)
Using Lemma we have the isomorphism
(UYb,,) NGHU /U =2 UY(b,,) /U
We denote by 7 the cuspidal representation of U°/U! 2 GL,, (1) whose inflation is p|yo, and x9~" the

character of U'(b,,) whose inflation is Xg_l. We consider the equation (2.4.12) modulo U' and we
have

Homgr (o, x97") # 0.
Since X9 ' | ;s is quadratic and U (b,,) is a p-group with p # 2, we get 9’ |m =1, thus
Hom17(57 1) 7é 0

Ut(bm)

which contradicts to the fact that p is supercuspidal. So we finish the proof.
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2.4.7 Double cosets contributing to the distinction of 7

In this subsection, we assume € = ¢y and 7 = 79. We want to study all the possible J-G™ double
cosets contributing to the distinction of w. Precisely, we want to study those g € G such that

HOInngGr (Ag, 1) 75 0.

By Lemma, we may change g with another representative in JgG7 to assume that v = 7(g)g~! €
B*. Moreover, by Theorem we get v € J. As a result, we have

v € JnNB* = EXb*. (2.4.13)

First by changing g up to multiplying an element in E* on the left, which doesn’t change the double
coset JgGT, we may assume 7y € b* or wgb*. Since JAB* = b* = GL,,,(0g), using Propositionm
we may change ¢g up to multiplying an element in b* on the left, which doesn’t change the double
coset JgG7, such that

v = I, or diag(1,...,1,€) or diag(wg, ..., wg, wg) or diag(wg, ..., wg, WEE). (2.4.14)

By definition, we have
Ng/p(detp(y)) = det(y) € F*2, (2.4.15)

where detp denotes the determinant on B* = GL,,(F). By studying different cases separately, we
will give out all the possible double cosets of g satisfying the condition ([2.4.14).
Case (i) If Np, p(T,%)F*?/F** = F*/F*?, then

Ng/p: EX/E*? — F*/F*?

is bijective. Thus shows that detg(y) = 1 (mod E*?). Thus from and the fact that
m is odd, we get v = 1, which means that ¢ € G”. Thus in this case there is only one double coset
JG.

Case (ii) If Np, p(T7%)F*?/F*? is a subgroup of F*/F*2 of order two, we consider the following
two cases:

(ii.a) If 2|m, then from the same argument in we have Ng /p(E)E*?/E*? = {1,€}, where
€0 € 05\05? as above. And moreover the ramification index of E/F is odd and Ng/r(e0) ¢ F*2. Using

(2.4.14) and (2.4.15)), v equals I,,, or diag(wg, ..., wg).

(ii.a.1) We assume one of the three cases is true:
e 2|d;

e 2td and 4|m;

e 2fd,4fmand —1 € F*2

If e = Jy,, and gop = I, then in the case where v = 7(g)g~* = I, we have g € G”. In the case
where v = diag(wg, ..., wg), using Proposition and the fact that

detp(diag(wg, ..., wg)) = wh € EX* and Hasseg(diag(wg, ..., wg)) = 1,

there exists g € B> such that T(gl)gfl = diag(wpg, ..., wg), where we denote by Hasser the Hasse
invariant for the symmetric matrices in B* = GL,,(£) and we use Lemma [2.2.12| to calculate the
Hasse invariant. Thus we have g € Jg1G". So there are two possible double cosets JGT and Jg1G".
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If e = diag(Jyg, ..., Jq, Jyeo) and gop = diag(l,...,1,¢y) with ¢ € 02\0}32, then in the case where
~v = I, we have g € G”. In the case where v = diag(wg, ..., wg), by direct calculation we get

tg~ diag(Ja, ..., Ja, Jaco)g~" = diag(Jywp, ..., Jawg, Jawpeo).

Using Lemma @l we obtain Hasse(!g~'diag(Jy, ..., Ja, Jaco)g~!) = 1. However by Lemma
and Corollary @, we have Hasse(diag(Jywg, ..., Jowg, Jgwgey)) = —1, thus there doesn’t exist
any g € G such that v = diag(wg, ..., wg, wg), so there is only one possible double coset JGT.
(ii.a.2) If 21d, 4t m and —1 ¢ F*2, then we may choose ¢y = —1 € 0}\0>.
If ¢ = diag(Jy, ..., Jg, —J4) and egp = diag(1,...,1, —1), then in the case where v = 7(g)g~! = I,n,
we have g € G". In the case where v = diag(wg, ..., wg), using Proposition and the fact that
(by Lemma for example)

detp(diag(wg, ..., —wEg)) = —wh € E*? and Hassep(diag(wg, ..., —wg)) = 1,

there exists g1 € B* such that ‘g 'eopg;! = diag(wg,...,—wg), or in other words 7(g1)g;" =
diag(wg, ...,wg,wg). Thus we have g € Jg1G™. So there are two possible double cosets JGT and
ng G".

If ¢ = Jim and eop = Iy, then in the case where v = I,,,, we have g € G7. In the case where
~ = diag(wg, ..., wg), by direct calculation we get

tg_ldiag(Jd, ey Jd, Jd)g_1 = diag(Jywg, ..., Jgwg, JawE).

Using Lemmawe get Hasse(‘g~'diag(Jy, ..., Jg, Ja)g~') = 1. Using Lemma and Corollary
we have Hasse(diag(Jywg, ..., Jygwg, Jgwg)) = —1, thus there doesn’t exist any ¢ as above such
that v = diag(wg, ..., wg, wg), so there is only one possible double coset JG.

(ii.b) If 2 { m, then € equals Jg,, or diag(Jge, ..., Jge), where e € E*. In this case we have
Ng,. /p(E5)F*?/F*? = Ng,p(E*)F*?/F*? and 2|d. Furthermore by Proposition |2.2.14L either the
ramification index or the residue class degree of E/F is odd. We further consider the following two
cases:

(ii.b.1) If the ramification index of E/F is odd, then € = ¢y € 05\oy” such that Ng,p(eo) ¢ F*2.
By (2.4.14) and (2.4.15), we deduce that v equals I,,, or diag(wg, ..., wg, @w}), where @'y equals wg
or wreg such that Ng, p(w}) € F*2.

If ¢ = Jgm, we have g € G7 in the case where v = I,,,. In the case where v = diag(wg, ..., wg, @w}),

using Lemma Lemma [2.2.18] and Corollary we have

det(Jy mdiag(wg, ..., wg, @g)) € det(Jd,m)FX2 and Hasse(Jy diag(wg, ..., wp, @g)) = 1,
thus by Proposition there exists g1 € G such that
Lo Jamar | = Jamdiag(@E, ..., wE, @g) = Jam7,
or in other words T(gl)gl_l =~. Thus g € g1G". So we get two double cosets JGT and Jg1G".

Remark 2.4.18. Since detp(diag(wg,...,wp, @) = whww ¢ EX2, it is impossible to choose
g1 € B* such that 7(g91)g1 = 7. Thus J1G7 is disjoint with JB*GT. Similar phenomena also occur
in (i4.b.2) and (iii) below.

If ¢ = diag(Jge€o, ..., Ja€o), we get g € G7 in the case where v = [,,. In the case where v =
diag(wg, ..., wg, wp), by direct calculation we have

tg~diag(Jyeo, ... Jgeo, Jgeo) gt = diag(Jywgeo, ... Jqmwreo, Jyweo). (2.4.16)
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By Lemma [2.2.9] we get

Hasse( tgfldiag(Jdeg, ...Jg€o, Jdeo)gfl) =1

And by Lemma [2.2.18 and Corollary [2.3.14] we obtain Hasse(diag(Jqwge€o, ... Jawgeo, Jawrzen)) = —1,
thus the condition (2.4.16)) is never satisfied. Thus there is only one possible double coset JG.

(ii.b.2) If the residue class degree of E/F is odd, then € = wg as a uniformizer of E such that
Ng/p(wp) ¢ F*2. By (2.4.14) and (2.4.15), we get Ng,p(detp(y)) € F*2, thus detp(y) equals 1 or
€0, which means that v equals I, or diag(1,...,1,¢€p).

If e = Jgm, we have g € G” in the case where v = I,,,. In the case where v = diag(1,...,1, ),
using Lemma [2.2.9) we have

det(Jymdiag(1, ..., 1,¢)) € det(Jgm)F*? and Hasse(Jy,,diag(l, ..., 1,¢€)) = Hasse(Jgm) = 1,
thus by Proposition [2.2.1] there exists g1 € G such that

tgfljd,mgfl = ‘]d,mdia‘g(]-a MR 17 60)7

or equivalently T(gl)gfl =+. Thus g € g1G7. So we get two double cosets JG™ and Jg1G".
If ¢ = diag(Jywg, ..., Jgwg), we get g € G7 in the case where v = I[,,. In the case where
~v = diag(1,...,1,€), by direct calculation we have

tg_ldiag(deE, o JigmE, deE)g_l = diag(Jywg, ...Jgwg, JywEe), (2.4.17)

However by Corollary [2.2.17 and Corollary this condition is never satisfied. Thus there is only
one possible double coset JGT.

Case (iii) If Ny, /p(T%)F>*?/F*? = {1}, we consider the following two cases:

(iii.a) If Ng/p(EX)F*?/F*? = {1}, then € equals Jym, or diag(Jywg, ..., Jywpeo), where ¢ €
05\05? and wp is a uniformizer of E satisfying Lemma with B/ = E.

If e = Jgm, by we have

1

tg_lemg_ = Jgm or diag(Jy, ..., Jq, Jaeo) or diag(Jygwg, ..., Jawg, JiwE)

or diag(Jywg, ..., Jgwpg, Jgwgeo) (2.4.18)

Since the determinants of both sides of (2.4.18)) are in F*2  and by Lemma Lemma [2.2.15
and Corollary we have

Hasse(Jqm,m) = Hasse(diag(Jy, ..., J4, Ja€o)) = Hasse(diag(JywE, ..., Jywg, Jywg)) = 1,

and
Hasse(diag(Jqwg, ..., Jawg, Jawee)) = —1,

then by Proposition there exist go = 1, g1 and go which satisfy equation (2.4.18) with the first
three terms on the right separately. Furthermore, equation ([2.4.18)) with the last term on the right is
never satisfied. Thus there are exactly three double cosets JG7, Jg1G™ and Jg2G".

If ¢ = diag(Jywg, ..., Jgwpeo), then by (2.4.14]) we have

tg=leg™! = eI, or ediag(l, ...,1,¢) or ediag(wg, ..., wg, wE)

or ediag(wg, ..., wg, WEe) (2.4.19)
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Since the determinants of both sides of (2.4.19) are in F*?, and by Lemma Lemma [2.2.15
and Corollary we have

Hasse(ediag(1, ..., 1, €y)) = Hasse(ediag(wg, ..., wg, wg))
= Hasse(ediag(wg, ..., wg, wge)) = 1,

and
Hasse(e) = —1.

Then equation is never satisfied with the last three terms on the right, and gy = 1 satisfies
with the first term on the right. Thus there is only one double coset JG.

(iii.b) If Ng,p(E*)F*?/F*? is not trivial, then ¢ equals Jg,, or diag(Jywg, ..., Jawgeo), where
€0 € 0 and wg is a uniformizer of E. Using the similar proof as (iii.a), with Lemma replaced
by Corollary we can show that if ¢ = Jg,,, there are three double cosets JgoG™, Jg1G™ and
Jg2G™, where go = 1, g1 and go are defined such that 7(g;)g; 1 equal three of the four terms on the
right side of equation . If ¢ = diag(Jywg, ..., Jgwgeo), then there is only one double coset
JGT.

We sum up the main result of this subsection as the following proposition:

Proposition 2.4.19. Case (i) When Ny, /p(T,%)F*?/F*% = F*/F*2  the only double coset con-
tributing to the distinction is JgoG™, where we write go = 1 here and after to normalize the notation;

Case (ii) When NTm/F(T%)FXZ/FX2 is a subgroup of F*/F*? of order 2, if G™ is quasisplit
but not split, then the only double coset contributing to the distinction is JgoG™; If G™ is split,
then there are two different double cosets JgoG™ and Jg1G™ contributing to the distinction, where
To(g1)g;7 ' € BX;

Case (iit) When NTm/F(TTfZ)FXZ/FX2 = {1}, if G™ is not quasisplit, then the only double coset
contributing to the distinction is JgoG™; If G™ 1is split, then there are three different double cosets
JgoG™, Jg1G™ and JgoG™ contributing to the distinction, where To(gl)gfl,To(gg)ggl € B*.

Remark 2.4.20. The above proposition doesn’t guarantee that each of the double coset corresponds
to a distinguished space, and it says nothing about the dimension. However in the next section we will
find out that each double coset indeed contributes to the distinction and the corresponding dimension
s one respectively.

Remark 2.4.21. We may also give out all the maximal simple characters contained in 7w that are
To-selfdual. Let 0 be a fivred mazimal simple character such that 6 o 79 = 0=, Any other mazimal
simple characters contained in ™ can be written as 09 with g € G. Thus 09 is Tg-selfdual if and only
if v =10(9)g~" normalizes 0, that is, v € J. Thus from the above argument, g is in the same J-G™
double coset as one of the g; in Proposition|2.4.19. Thus one has a one-to-one correspondence between
J-G™ double cosets in loc. cit. and G™-orbits of T9-selfdual mazximal characters contained in .

2.5 Proof of the main theorems

In this section, we finish the proof of our main theorem. Let 7 be a given supercuspidal representation
of G and let T be a given orthogonal involution on G. First of all, if 7 is distinguished by G7, then
we restrict m to F* N GT = {1, —1} which is contained in the centre of G and we get w,(—1) = 1.
So wx(—1) =1 is indeed a necessary condition for 7 to be distinguished by G7. So from now on we
assume further that « satisfies this condition.
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2.5.1 The finite field case

Let I be a finite field of characteristic p # 2 and let I be a fixed algebraic closure of I. We denote by
Fr € Gal(l/l) the arithmetic Frobenius map, then we have HY" := H(I)!" = H(l) for any algebraic
group H over I. For m > 1, let G = GL,, be the reductive group over I. Let 7 be an orthogonal
involution of G over I, which means that the symmetric matrix corresponding to 7 is of coefficients
in . Thus 7 commutes with F'r and G” denotes the corresponding orthogonal subgroup of G as a
reductive group over .

For S a maximal torus of G over I, we write S = SN G”. We say that S is 7-stable if 7(S) = S.
Furthermore, we say that S is 7-split if 7(x) = ! for any € S(I). We denote by T the set
of maximal tori S of G, such that there exists a Borel subgroup B of G over | with the property
S = BN 7(B). By |[Vus74], Proposition 5, the G™-action on 7 given by conjugation is transitive.
Since this G™-action maintains the 7-split property, and since 7 contains a 7-split toru&ﬂ, T consists
of 7-split tori.

As in [Lus90|, section 2, for S a 7-stable maximal torus of G over I, we may define a character

s (ST — {#1}.

given by
es(t) = (_1)rankz(ZG((ST)°))+rankz(ZG((ST)")HZG(t)")

)

where (-)° denotes the connected component of an algebraic group, Zg(-) denotes the centralizer of
an element or an algebraic group in G and rank;(-) denotes the rank of an algebraic group over . For
T a maximal torus of G over I, we define

Zr = {g € G(l)|g~ Ty is T-stable}

as a variety over I, and we denote by = F " = Zp N G its l-points. By definition, it consists of
T (G™)!" double cosets. For \ a character of TF™ and ¥ a character of (GT)", we define

E%’/\,X {g € 2L INE) = x(g Hg)e g11g(9” 'tg) for any t € T(I) such that g~ 'tg € ((T9)7)I"}.

It is a subset of Z4" which also consists of TY"-(G™)" double cosets.

We choose I/l to be a finite extension of degree m and we fix an embedding Iy, — My (1). We
assume T to be elliptic, which means that T(l) = 1¥,. By [HM99], Lemma 2, HT " consists of a single
TI7-(GT)I" double coset. Moreover, from its proof we know that for g € Z47, we have g~ 'Tg € T,
thus g~ 'Tg is 7-split.

For any p as a supercuspidal representation of G(I), by [DL76] we may associate it to a virtual
character Rt ) as the trace of p, where A is a non-singular character of TF7 that is, '™ # A for any
i=1,...,m—1.1If

Homgr)(p, X) # 0,

then by [HL12|, Theorem 3.11, we get = HT "\x 7 0, which means that = =5 Ny = EL7 consists of a single
TF"-(GT)F" double coset. Thus for h € :’IE‘TA,X we know that h=1Th is 7-split, Whlch also means that
h=11,,h is T-split. Thus we have proved the following proposition:

Proposition 2.5.1. For p a supercuspidal representation of G(l) and X a character of G™(l), if

Homg- 1) (p,X) # 0,

then there exists a T-split embedding l,,, — M, (1) , where l,,/1 is the field extension of degree m.

If 7 = 7= corresponds to the diagonal symmetric matric Z = diag(1, ..., 1,€) with € equalling 1 or €& € 1*\1*?, then
So defined as the diagonal maximal torus is 7-split which is contained in 7.
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2.5.2 Orthogonal groups contributing to the distinction of 7

In this subsection, we first assume that H = G7 satisfies the condition of Theorem [0.3.1} From the
proof of Theorem [2.3.3] G is conjugate to G™ with 79 = 7., defined as in the beginning of §2.4] Since
the property of distinction doesn’t depend on the choice of the representative of a G-conjugacy class,
we may suppose T = Tg.

We choose a 7-selfdual simple type (J,A) of 7 as in then using the Mackey formula and the
Frobenius reciprocity we get

Homgr(m,1) = H Hom jsng- (A9, 1).
geJ\G/G™
In we studied all the possible double cosets that contribute to the distinction. By Proposition
2.4.19] we have
HOI'HGT (7'(', ].) = @HOH’IJ}MQGT (Agi, 1),
9i
where g; runs over a finite set of representatives, depending on Case (i), Case (ii) or Case (iii) of
loc. cit.
Moreover, we may write
=K p,

where by Proposition [2.4.15| we assume k™ = k, thus we also have p™ = p. By Proposition [2.4.12
we get

dimcHom joingr (k7 Xi_l) =1 (2.5.1)
and

Hom joingr (Agia 1) = Hom joingr ('ﬂgia X;l) ® Hom joingr (Pgi, Xi)v
where y; is a quadratic character of J% N G7. Thus to finish the proof for 7 = 73, we only need to
calculate
dimcHom jo;ng- (P, Xi)-

We define §;(x) = ~; '7(x)y; for any 2 € G with v; = 7(g;)g; *, then by the exact definition of 7 and
8;, the restriction of §; to GL,,(1) = J/J' is an orthogonal involution, and we denote by GL,,(1)% the
corresponding orthogonal group. So we have

1 —
Hom yoingr (p%, xi) = Hom s, (p, X5 ) = Homgy, s (P, X7 ),

—1
where 5 and X7 denote the representations of J/J' and J N G%/J' N G% whose inflations equal

—1 —1
p := pl; and X;% respectively. Using (2.5.1) we get we(—1) = f" (—1)7!, where w, denotes the

—1
central character of . By [HL12|, Proposition 6.7, Homgy, s (P, xJ* ) is non-zero and of dimension
—1

1 if and only if wy(—1) = x¥* (—1), or equivalently

wp(=1) =X (=1), (2.5.2)

where w; and w, denote the central character of p and p respectively. If we denote by wy and w; the
central character of A and 7 respectively, then we get

—1

wr(—1) = wa(—1) = we(~Dwp(—1) = X7 (1) wp(-1), (2.5.3)

—
Combining (2.5.2)) with (2.5.3), HomGLm(l)ai (p, Xfi ) is non-zero and of dimension 1 if and only if
wr(—1) = 1. Thus we proved the “if” part of Theorem and Theorem [0.3.3]
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2.5.3 Other orthogonal groups

In this subsection, we finish the proof of Theorem by showing that if 7 is distinguished, then
the corresponding orthogonal group must satisfy the condition of loc. cit.

Let 7(x) = e 1tz7le for + € G as an orthogonal involution and let GT be the corresponding
orthogonal group. We assume that g = Jg,, and we write 79 = 7.,. We choose [a, 5], 6 and (J, A) as
in

If 7 is distinguished by G7, then by Theorem Theorem [2.4.2) and Lemma [2.4.4] there exists
g € G with v = ur(g9)g~! € J N B* = EXb*, such that (J9,A9) is a simple type of 7 satisfying

7(J9) =J9, (A9 =AY and Homgr(AY,1) # 0.

Moreover from Proposition [2.4.12] if we write A = Kk ® p, then there exists a character x of J9 N GT
trivial on J'9 N G™ such that

0 # Hom jongr (A9, 1) = Hom jongr (Y, X_l) ® Hom jonar (P, X),
where Hom yong- (K9, x 1) is of dimension 1. Thus we get

Hom jongr (Pga X) = HomJgnGT(Pga X) # 0.

If we define
5(z) = (t(9)g ") 'r(2)r(9)g™ =~ ey e gy for any x € G

as an orthogonal involution of GG, then we have
J=46(J), JL=6(JY, JINGT = (JNG%)Y and JYNGT = (JL NGo)9.

By definition for € B>, we have 6(z) = v~ 122~ 17, where 'Z denotes the transpose with respect to
B = M,,(E). Since v € EXb*, the restriction of § induces an orthogonal involution on GL, (1) = J/J*.
Thus we have

Homgy,, 4ys (5, 9 ") = Hom s (p, X! ) = Homorgr (p?, x) = Homgonar (p%, x) # 0,
where 7 and x9~' denote the representations of J/J! and JNG®/J' NG? whose inflations equal p and
9 respectively.

By Proposition there exists l,,,/l as a field extension of degree m and an embedding I, —
M,,, (1) such that I,,, is §-split. Using this embedding, 1, can be regarded as a J-split subgroup of .J.
We denote by E,, = E[l] the maximal unramified extension of degree m over E which is a d-split,
thus FEj, is a 7-split which is F-isomorphic to E,,. In other words, there exists an F-embedding
t: Ep — M, (F) which is 7-split. We have proved Proposition m

Using the results in we know that 7 is distinguished by G"/», thus we may in particular
consider the argument above for ¢ = J,, and we deduce that E,, is 77 -split, that is, the condition of
the following lemma is satisfied.

Lemma 2.5.2 ( [Hak13], Lemma 6.4). Assume that there exists a J-symmetric embedding E,, —
M,,(F'). Then for Yg, jp = E)J(EX2F*) and OFm the set of EX -orbits of orthogonal involutions T
such that E,, is T-split, the map

BB /F : YE, k= OFm

which sends the coset of x € E, to the orbit of Tj,4 is a bijection.
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In particular we have 77, ,7 € OFm. Since E,,/T}, is totally wildly ramified, as in Lemma it
is easy to see that EX/E 2F* = T /T2F*, and we denote by Y71, /F the corresponding cardinality.
Thus by |[Hak13|, Lemma 6.2, y7. | sr — 1 equals the number of quadratic extensions of F' contained in
T, Furthermore by |[Hak13|, Lemma 3.8 we have

1 Case (i),
YT, /F = 4 2 Case (ii),
4 Case (iii).

Thus in Case (i), we have |OFm| = 1, which means that OFm consists of the EX-orbit represented by
the split involution 7, , thus G7 is split. In Case (ii), we have |O¥m| = 2. And by direct calculation,

det(Jo By ) F7?/F*? = (=1)"" VN (B F? 72 = (1" DNy () F*? P2,

which is of order 2. Thus OFm consists of two EX-orbits, one of which is split, and the other is
quasisplit but not split with the determinants of its corresponding symmetric matrices contained in
(—1)”("*1)/2NTM/F(THX1)sz\(—l)”("*l)/zFXQ. Thus G7 is either split or quasisplit that satisfies the
condition of Theorem In Case (iii),

det(Jo By P2 /7% = (=1)" DN, p(EX)F?/F** = {1}.

Thus by Proposition G is either split or non-quasisplit. Combining these three cases together,
we have shown that G™ must satisfy the condition of Theorem which finishes the “only if” part
of Theorem [0.3.11



Chapter 3

Explicit base change lift and
automorphic induction for
supercuspidal representations

3.1 General notations

For F' a non-archimedean locally compact field of residue characteristic p, we denote by o its ring
of integers, by pr the maximal ideal, by kr its residual field, by pr the group of roots of unity of
order relatively prime to p in F*, by | - | the corresponding discrete absolute value and by vg the
corresponding discrete valuation. We leave the notations Ar and Cr to stand for a certain F-algebra
isomorphic to M,,, (F') with the positive integer m to be specified, whose exact definitions will be given
later according to the context, and we denote by detr the determinant map and by Tra, or Tre,
the trace map. We leave the notation Gp to stand for A} or Cj according to the context. For
E/F a finite extension of non-archimedean locally compact fields, we denote by f(E/F) its residue
class degree and by e(E/F') its ramification index, and by Ng,p and Trg/p the norm and trace map
respectively. Later without further mention, any finite separable extension E/F' should be regarded
as subextension in a fixed algebraic separable closure F'/F. We denote by Wy the Weil group of F
and by Wpg the Weil group of E as a subgroup of Wg.

We regard GL,,(F') as a locally profinite group endowed with p-adic topology. By representations
of a locally profinite group we always mean smooth complex representations, and by characters we
mean one dimensional smooth representations with complex values. We will use ¥ “check” to denote
the contragredient of a smooth representation. For a character of F'*, it is called unramified if its
restriction to o is trivial, and called tamely ramified if its restriction to 1+ pp is trivial.

We fix a prime number p and a non-archimedean locally compact field Fy of residue characteristic
p, we fix once and for all an algebraic separable closure Fy/Fp, and we write |kg| = ¢q. We fix a
character ¢, : Fy — C* of level 0, saying that it is trivial on pg, but not on op,. For any F/Fj as a
finite separable tamely ramified extension, we choose ¢ = ¥, o Trp g, which is a character of F' of
level 0.

For G a group and ¥ a subgroup of the group of automorphisms of G, we define the semi-direct
product G x ¥ as a group via the relations

(gvg) ' (9/70/) = (gU(g/), UOJ)
for any ¢g,¢' € G and 0,0’ € X.

149



150 3.2. PRELIMINARIES FOR THE SIMPLE TYPE THEORY

3.2 Preliminaries for the simple type theory

In this section, we briefly recall the simple type theory built up by Bushnell and Kutzko, and further
developed by Bushnell and Henniart in a series of articles. Our main reference will be [BK93], [BH96]
and [BH14b].

3.2.1 Simple strata and simple characters

Let F' be a non-archimedean locally compact field of residue characteristic p and let A = Ap = M, (F)
for n > 1 fixed. We consider a simple stratum [a,mg,0, 5] in A defined as in [BK93]|, section 1, where
a is a hereditary in A, and S is an element in A* satisfying Ba = p, * for mg a positive integer, such
that £ := F[f] is a field normalizing a. Since mg is uniquely determined by a and 3, we abbreviate
the above notation to [a, 5]. We denote by B the centralizer of E in A and we write b = a N B which
is a hereditary order in B. We say that [a, 3] is maximal if b is a maximal order in B. In particular
for F'/E a finite extension with [E’ : F| = n, we choose an F-algebra embedding E’ — A whose
restriction to E is identity. Thus, the ideal chain of E’ gives rise to a hereditary order in A, denoted by
ap(E'), and [ap(E"), 8] is a simple stratum in A which is maximal if and only if E'/F is unramified.
Associated with [a, 3], there is a chain of open compact subgroups (see [BK93|, section 3)

H'(a,8) € J'(a,8) C J(a, )

of a*, where J(a,) = b*J'(a,3). We denote by J(a,[3) the subgroup of A* generated by .J(a,/3)
and the normalizer of b* in B*, which is compact modulo F*. We may write H'(a,3) = 1+ b'(a,3)
and J'(a,8) = 1+j'(a, B) for b'(a, ) and j'(a, 3) sub-op-lattices of p,.

We attach to [a, 8] a finite set of characters of H!(a, 3) as in [BK93], §3.2, denoted by C(a, 3,9 )
and called simple characters, and we simply write C(a, 5) by omitting ¥r. We use small Greek letter
0 (with additional superscripts and subscripts) to denote a simple character.

Given a simple stratum [a, 5] and a simple character 6 of H'(a, (), the normalizer of 6 equals
J(a, ), whose unique maximal compact subgroup equals J(a, ). The unique maximal normal pro-
p-subgroup of J(a, 3) equals J!(a, ). Thus even if we change our choice of simple stratum [a, 3], the
chain of subgroups

H'(a,$) € J'(a,8) C J(a,8) C J(a,5)

is only determined by . In particular, [a, 8] is maximal if and only if J(a, 8)/J (a,8) = GL,(kE),
which only depends on #. Thus we say that # is maximal if for one maximal simple stratum [a, 5] we
have 0 € C(a, f).

We explain our convention for the “null” case for a simple stratum [a, ]. In this case conventionally
we write 3 =0, E=F, A= B,a=band H'(a,) = J'(a,3) = 1 +ps. Moreover, the set C(a, 3) is a
singleton consisting of the trivial character of H!(a, 3). Later on our discussion will also include this
case.

3.2.2 Endo-class and interior tame lifting

For [a, ] a simple stratum in M, (F) and [o’, ] a simple stratum in M, (F), where we identify S
with an element in both M, (F) and M, (F') via certain F-algebra embeddings, we have a bijection

(see |[BK93], §3.6.)

s .

tew : Cla,8) — C(d, B)
called the transfer map. Now let [a1,81] and [ag, f2] be simple strata in M, (F) and M,, (F') re-
spectively. We say that a simple character 6; € C(a1, 51) is endo-equivalent to another simple char-

acter 0o € C(ag, f2), if there exist simple strata [a/, 31] and [d/, B3] in M,,/(F) and simple characters
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07 € C(d/, B1) and 6 € C(d', B2), such that 0, = tfia,(ei) for i = 1,2, and 0] is GL,,(F)-conjugate to 65.
This definition does not depend on the choice of n’, [, 51], [@, B2] and the embeddings, which indeed
gives an equivalence relation on the set of all the simple characters (see [BH96|, section 8). We use
the capital Greek letter © (with superscripts and subscripts) to denote the corresponding equivalence
class, called endo-class, of a certain simple character. We use £(F’) to denote the set of endo-classes
of F. For a simple stratum [a, 5] and a simple character 6 in the endo-class O, we say that 6 realizes
© and E = F[f] is a parameter field of ©. Such a parameter field is not unique, however its degree
d = [E : F] and its maximal tamely ramified subextension 7'/F up to F-isomorphism are uniquely
determined by ©. We call d the degree of © and T'/F the tame parameter field of ©.

Now we consider the interior tame lifting (see [BH96|, section 7). Given a simple stratum [a, 5] in
A, let L/F be a tamely ramified subextension in A such that L[] is a subfield of A normalizing a. We
denote by Ay the centralizer of L in A, and we write a; = aN A for the hereditary order in Ay. Thus
[ar, B] is a simple stratum in Aj, and we have H!(ay, 8) = A} N H(a, 8), J'(ar, B) = AF N JY(a, B),
J(ar,B8) = A7 nJ(a,B) and J(ar, 3) = Af NJ(a,3). Moreover, given a simple character § € C(a, §),
we know that 6, := 0|14, ) is a simple character in C(ar,3). We call such ¢, the interior L/F-lift
of 6.

In general, given a tamely ramified extension L/F, there exists a surjection (see [BH14b|, §2.3)

with finite fibers. For © € £(F), the elements in the finite set zZ}F(G) are called the L/F-lifts of ©.
To find out all the fibers, we choose a simple stratum [a, 5] and a simple character 6 € C(a, 3) realizing
©. We have an F-algebra isomorphism F[5] ®p L = Hle L;, where L; are fields over L. Then there

is a canonical bijection

Li — @i,

such that L; is a parameter field of ©;. In particular, if 67 is the interior L/F-lift of #, then the
endo-class of 0y, is a L/F-lift of that of 6.

Finally we state and proof two technical lemmas to end this subsection.

Lemma 3.2.1. Let [a, 3] be a simple stratum in A, let L/F be a tamely ramified subextension in A
such that L[] is a field normalizing a, and let L' be a subfield of L over F. Then for § € C(a,3), we
have (HL’)L = 0L-

Proof. By definition, we have 01 = 0|g1(q,,,3) and 0, = 0|g1(a, ). Since Af is also the centralizer of
L in Ay, considering the tamely ramified extension L/L’ we have a;, = (ap/)z, [ar, 8] = [(ar/) 1, B,
H'Yar,8) = Af N H(ay,, B) and 6, = 01| f1 (ay,8), Which finishes the proof.

O

Lemma 3.2.2. Let [a, 3] and [a, 3] be two mazimal simple strata in M, (F') and M, (F) respectively
and let L/ F be a tamely ramified subextension in both M,,(F') and M, (F'), such that L[B] is a subfield of
M,,(F') and M, (F) normalizing both a and a. Then for any 6 € C(a, 3), we have (tf’a(Q))L = th,EL(QL)
as a simple character in C(ar, 3).

Proof. We write E/ = L[] as a field containing E and normalizing both a and a, and we write
t=[L:F]and s=[E': F]. We need to show that the following diagram is commutative:
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B
Claz, B) —*+C(ar, B) (3.2.1)

Hl(aL,B)T TlHl(HL,B)

C(Cl, B) ?C(a’ ﬁ)

a,a

First we assume that n = n/, thus both a and @ are hereditary orders in M,,(F). By [BK93|, Theorem
3.6.1, 6 := tf’a(ﬂ) is the unique simple character in C(a, 3) such that 0|1 (4 gyt @,8) = 0l (0,8)0H @,8)-
By definition, [az, 3] and [ap, 8] are simple strata in M,, (L), and 6, and 0, are the interior L/F-lifts

of 0 and 6 respectively, and moreover

0L (0,80 @1,8) = O1GL, (LA (@80 @8) = OlGL,, «(D)NH (0,801 3,8)

= 0Ll H1 (ap,B)NH G1,8)0

thus 6, = th (01), which finishes the proof of the case n = n/'.

aL
Now we consider the case n’ = nk for k a positive integer. By |[BK93|, §1.2, since E’ normalizes
a, there exist an E’-vector space V of dimension n/s and an ops-lattice chain £ = {L;} in V, such
that Endp(V) = M, (F) induces EndgF (£) = a, where EndgF (L) denotes the ring of endomorphisms

of £ as in loc. cit. We write V. =V & ... ® V of k-copies and L=L®..®Lof k-copies as a

or-lattice chain of V, and we have EndgF (L) = d given by the isomorphism Endp(V) = M, (F),
which is naturally induced by Endg (V') = M,,(F) given above. We further assume EndgF (£) =4d. To
simplify the notation, we write

G =GLp(V") and M =GLp(V) x ... x GLp(V)
of k-copies which is actually a Levi subgroup of G. Thus by [BK93|, Proposition 7.1.19, we have
HY(a,8)NM = H'(a,8) x ... x H'(a, B)

of k-copies and for 6 := tf ~(0) we have

§|H1(E,B)ﬂM = 9 ® ® 6

Similarly we may consider interior L/F-lifts. From our construction, a; = EndgL (£) and ar, =

EndgL (Z) are hereditary orders in Endy (V) and EndL(f}), and [ar, 8] and [ar, 5] are corresponding
simple strata respectively. We write

Gp=GLL(V) and My =GLL(V) x ... x GL.(V)

as a Levi subgroup of G, and if we denote by 8y and §L the interior L/F-lifts of # and 7] respectively,
by definition we have

0Ll Gy e, = Olm @ sy, = 0l @pncL (v) @ - @ 0lgiasyncL, (v) = 00 ® .. ® 0.

Using [BK93|, Proposition 7.1.19 again, we must have 6, = th aL(GL).
Finally we consider the general case. We choose a simple stratum [a’, 5] in M,,,,/ /s(F"), such that a
is determined by the og-lattice chain as the direct sum of n’/s-copies of the lattice chain corresponding
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to a. Similarly we choose a simple stratum [a’, 5] in M,,,,/ /5(F'), such that @’ is determined by the op/-
lattice chain as the direct sum of n/s-copies of the lattice chain corresponding to a. Thus the following
two diagrams are commutative:

e 0
Claz. )% c(a). 5) C(ar, f) =+ C (. )
|H1(uL,ﬂ)T THl(a’L,B) Hl(HL,/B)T T'Hl(E’L,ﬁ)
(@, §) —5—=C(d, ) C(@, ) ——~C(@, §)

a,a’ a,a’

Since both [, 3] and [d’, 8] are simple strata in M,,,,//(F), using the previous case the following
diagram is commutative:
/8

! =l

C(ay, B) L (@, B)

Hl(a’L,B)T T'Hlﬁ’uﬂ)

C(Cl/, /8) T> C(alv 6)

ol a’

Combining these three diagrams together we get (3.2.1)), which finishes the proof. O

3.2.3 Full Heisenberg representation

Let [a, 5] be a simple stratum in A and let § € C(a, ) be a simple character. We denote by 1(0)
the set of elements of A* which intertwine . There exists a unique irreducible representation 7 of
JY(a, B) containing 6, called the Heisenberg representation of . We further consider a representation
k of J(a, ) as a extension of 7. Such a representation is called a full Heisenberg representation of 6 if
every element in 7(#) also intertwines k, whose existence is guaranteed by [BH14b], §3.2. In particular
K := K| j(q,3) is a so-called B-extension.

3.2.4 Extended maximal simple type and supercuspidal representation

We fix a maximal simple stratum [a,3] and a simple character § € C(a,) with E = F[8], we
let T be the maximal tamely ramified subextension of E over F, and we write d = [E : F] and
n = md. We consider an ezstended mazimal simple typeEl (J,A) of 0 in the sense of [BK93|, section
6, such that J = J(a,3) and A is a representation of J whose restriction to H'(a, ) is a multiple
of . We write T () for the set of isomorphism classes of representations A of J, such that (J,A)
is an extended maximal simple type of §. We denote by 7., (F) the set of isomorphism classes of
representations p of EXGLy,(0g) trivial on 1 + M,,(pE), buch that plar,, (o) 15 the inflation of a
supercuspidal representation of GL,,(kg) = GLy,(0g)/(1 + My, (pg)). Via the natural isomorphism
J/Jt =2 EXGLpy(0g)/(1 + My (pr)), we will also regard elements in 7,,(E) as representations of J
trivial on J! = J!(a, ) without further mention.

We denote by © the endo-class of § and by AY (F, ©) the set of isomorphism classes of supercuspidal
representations of GL;,qeg(0)(F) Whose endo-class is ©.

Proposition 3.2.3 ( [BH14b|, §3.6, [BK93|, §6.2, §8.4.). (1) Given any full Heisenberg representation
K of 0, we have the following bijection

Tm(E) — T(0), p—Kk®p.

'Later we will always write simple type for short.
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(2) We have the following bijection
T(0) — A2 (F,0), A+ ind§A,
where ind§ represents the compact induction.

Finally, we denote by X;(7},) (resp. Xi(E,,)) the set of tamely ramified characters of T (resp.
E)) endowed with a A-action, where T}, (resp. Ep,) is the unramified extension of degree m over T’
(resp. E) and A = Gal(E,,/E) = Gal(T,,,/T). Since E,,/T,, is wildly ramified, it is easy to see that

Xi(Tin) — X1(Em), &§r—E&p:=§oNg, 1, (3.2.2)

is a bijection. We say that & is A-regular if &€ is not equal to & for any non-trivial 6 € A and
we have a similar definition for £ to be A-regular. We write X1 (T},)2 7" (X1(FE,,)27"8) for the
set of A-regular tamely ramified characters of T,% (resp. E)¢), then it is easy to see that
induces a bijection between these two sets. We write A\ X1(T},)27"8 (resp. A\X1(E,,)>7™8) for the
corresponding quotient with respect to the A-action.

Proposition 3.2.4 ( [BH14b|, §3.5, Proposition). (1) For &g € X1(E;,)2 78, there exists a unique
representation pg, € Tm(E) such that

tr(pe,, ) (2¢) = (—1)"€p(2) Y £L(Q)

dEA

for any z € E* and any A-regular element ¢ € pg,,;
(2) The representation pe,, depends only on the A-orbit of g, which induces the following bijection

A\X1(Eq)27"% — T(E), €5 — pey;
(8) Combining (2) with (3.2.9), we have the following bijection
A\X((T;,)2 78 — Tou(E), €+ pey, (3.2.3)

and we write pg 1= pg, for short.
As a corollary of the above two propositions, we have:

Corollary 3.2.5. If m = 1, then for k a fized full Heisenberg representation of 0 and any simple type A
containing 0, there exists a unique tamely ramified character § of T,; =T, such that A = k-(§oNg/7),
where § o N7 is regarded as a character of J via the canonical isomorphism J/JV = EX/(1+pE).

Finally for 7 a supercuspidal representation of GL, (F') containing 6 and k a [-extension of 6, the
finite dimensional vecter space Hom 1 (x, ) is endowed with a J/J!-action given by

g- f _77( ) fo’k':( )7 g€ J, fEHOHlJl(K],T(),

thus is realized as a representation of GL,,(kg) = J/J' denoted by K, (r), which is necessarily
irreducible and supercuspidal (cf. [SZ99]). If we choose a full Heisenberg representation k extending
k, then we get a A-regular character &g of E; which is trivial on 1+ pg,, by the propositions above.
In particular we get a Gal(kg,, /kg)-regular character & of ky, ~whose inflation equals &g 0% via the

isomorphism kp = op /(1+pg, ). It is easily seen that the cuspidal representation of GL,(kg)
related to & via Green’s theory |Greb5| and K, (7) coincide.
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3.3 Symplectic signs

In this section, we sum up basic results corresponding to symplectic signs, which are useful when
comparing the trace of two (full) Heisenberg representations. The main reference will be [BF83],
IBH10].

Fix p a prime number and let I" be a finite cyclic group of order relatively prime to p. We call
(V, h) a symplectic F,[[']-module if

(1) V is a finite Fp,[I']-module;

(2) h is a non-degenerate, alternating, bilinear form V' x V' — [, such that h(yv1,yv2) = h(v1,v2)
for any vi,vp € V and v € I.

For two symplectic Fp[I']-modules (Vi, k1) and (Va, ha), we may consider their direct sum (V; @
Va, h1 @ hy) which is also a symplectic Fp[I']-module, where

(h1 ® ha)((v1,v2), (v, 05)) := hi(vi,vy) - ha(vz,vg),  (v1,v2), (v),vh) € Vi & Va.

Usually we omit the corresponding symplectic form and write Vi, Vo and V = V; & V5 instead.
In general, every F,[I'l-module can be written as direct sum of indecomposable F,[I']-modules, and
indecomposable F,[I']-modules are classified into two basic types.

Given a symplectic Fp[I']-module V', we may define a sign t(V) € {£1} and a quadratic character
t+(V) : T — {£1}. Here it is unnecessary to recall the exact definition, which the interested readers
may find in [BH10]. We recall the following useful properties instead:

Proposition 3.3.1. (1) If V = Vi & Vs as symplectic F,[T|-modules, then tL(V) = t%(V1) - t%(Va) and
tp(V) = th (Vi) - 1(Va);

(2) For any v as a generator of T, the sign tp(V) := t%(V) - t5(V)(v) doesn’t depend on the choice
of ;

(3) For ¥ a subgroup of I acting trivially on V and y a generator of T', we have t2(V) = tIQ/E(V)
and (V) (7) = t15(V)(7);
. (4) Flor A a subgroup of I such that VA = VT and & a generator of A, we have t%(V) - tL(V)(5) =
tA(V) - tA(V)(9).

Proof. Properties (1)(2)(3) follow from direct definition, property (4) is [BH10|, Proposition 5.
O

We call t2(V), tL(V) and tp(V) in the proposition symplectic signs, although t5(V) is indeed a
quadratic character. Now we focus on concrete examples. Let A = M, (F), let [a, 8] be a maximal
simple stratum in A and let § € C(a,3). For g1, g2 € J'(a,3), the pairing

(g1,92) = 0(g19297 '95 ")

induces a non-degenerate alternating bilinear form
Jl(av 5)/H1(a7 B) X Jl(aa 5)/H1(a’ ﬁ) — va

which endows V = J(a,3)/H"(a, 3) with a finite dimensional symplectic space structure ( [BK93],
Theorem 3.4.1). Moreover if we write g1 = 1+x and go = 1+ for z,y € j'(a, 3), then G(glgggl_lggl) =
Yr(Tra(B(zy — yz))) ( [BHO5¢], 6.1.1 Proposition). In other words, the symplectic structure on
V= JYa,B8)/H (a,5) =j'(a, B)/b'(a,3) can also be given by

(x,y) = Yp(Tra(B(xy — yx))). (3.3.1)
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Now we denote by E,, the maximal unramified extension of degree m over E = F[f] and we fix
an E-embedding E;, < B such that op, is contained in GLy,(0g), where n = md and B = M,,(E).
Let T}, be the maximal tamely ramified subextension of E,, over F. As a result, E) is contained in
J(a,) and thus normalizes H'(a, 3), J'(a,3), V and #. For any uniformizer wp of F, the quotient
EX /(wp) acts on V via conjugacy, which maintains the symplectic structure. Thus for any I' as a
cyclic subgroup of E /(wp), we may endow V with a [F,[I'] symplectic module structure.

Example 3.3.2. (1) For pr,, being regarded as a subgroup of E/(wp), we endow V with Fy[pur, ]
symplectic module structure and we have symplectic signs en(pr,,) = t?wm V), ek(pr,) = t}LTm (V)
and e€p(pr,,) = tu, (V);

(2) Let wr be a uniformizer of T and T,,, such that wp = w;(Tm/F)C for ¢ a root of unity in
T*. Thus the subgroup of E)/(wF), generated by wr and denoted by (wr)/(wr), is cyclic of order
relatively prime to p. Then we endow V with IF,[(wwr) /(wr)] symplectic module structure and we have
symplectic signs ex(wr) = t?wﬂ/(wF)(V)’ (o) = t%wﬂ/(wF)(V) and €p(wr) = i)/ (wpy (V)5

(3) Under the notation of (2) if we further assume ¢ = 1, then we actually have (wr)/{wr) =
T*/F*oy = TJL/FXO;m. In this particular case, we use e%/F, E%F/F and e/ to denote the symplectic

signs € (wr), €h(wr) and ep(wr) instead respectively, which are independent of the choice of wr.

Moreover, for L/F as a subextension of T,,/F, we write Ay for the centralizer of L in A and
a7, = A Na as a hereditary order in A,. Thus [ar, 3] is a simple stratum in Ay, and 01, = 0|14, g)
is the interior 7'/ F-lift of §. Thus Vy, = J(ar, 8)/H'(ar, ) is a Fp[['1] symplectic module, where the
symplectic structure is given by 07, and I'f, is a cyclic subgroup of E) /(wr) with wy, a uniformizer of
L.

Example 3.3.3. (1) We have symplectic signs €} (pr,,) = t?LTm(VL)’ et (pr,) = t}LTm (VL) and
er(pr,) = tus, (VL)

(2) For wr a uniformizer of T and T,, such that wy = w;(Tm/L)CL for (1, a root of unity in
T*, we have symplectic signs €1 (wr) = t?wT>/<wL>(VL)’ el (wr) = t%mewL)(VL) and er(wr) =

teor) /() (VL)

(3) If we further assume (r, = 1, we may use eOT/L, elT/L and €71, to denote the symplectic signs
eOL(wT), ei(wT) and er,(wor) respectively instead, which are independent of the choice of wr.
Remark 3.3.4. As indicated in (BH14Y|, section 5, the symplectic signs in the above examples are
independent of the choice of the simple stratum [a, 3] and the embedding E,, — B, but only depend
on 0 and thus only depend on the endo-class of 0, since any such two maximal simple characters in
the same endo-class are conjugate.

3.4 Cyclic base change and automorphic induction

In this section, we recall the definition and basic properties of cyclic base change and automorphic
induction.

3.4.1 Cyclic base change

In this subsection, we sum up the results in [AC89|, [HL11] to give a brief introduction of cyclic base
change. Let F//F' be a finite cyclic extension of non-archimedean locally compact fields of degree r,
let ¥ = Gal(F/F’) and fix ¢ € ¥ a generator. For 7 an irreducible representation of GL,(F), it is
called o-invariant if 77 = 7, or equivalently there exists an intertwining operator I, such that I = id
and m(o(g)) o I, = I, ow(g) for any g € GL,(F). Once I, is chosen, we may also regard 7 as an
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irreducible representation of G x X defined by 7(g,0) = 7(g) o I, acting on the same representation
space. For my an irreducible representation of GL, (F"), we call w the Shintani base change lift of m,
if there exist I, as above and a non-zero complex number ¢(I,) depending on I, such that

tr(m)(g,0) = c(Ls) - tr(mo)(g0)

for any g € GLy(F) such that go := Np/p(g) = go(g)...0""(g) is a semisimple regular element in
GL,,(F"), where tr(m) and tr(my) denote the Harish-Chandra characters. We remark that such m,
once exists, is uniquely determined by 7. We denote by Irr(GL,(F")) the set of equivalence classes
of irreducible representations of GL,(F') and by Irr? ™ (GL, (F)) the set of equivalence classes of
irreducible representations of GL,,(F') that are o-invariant.

Theorem 3.4.1 ( [AC89], chapter I, section 6, [HL11|, chapter IT). We have the map
BCp/pr : Irt(GLy (F')) — Irr” ™ (GLy (F))
o — T

such that my is essentially tempered if and only if ™ is essentially tempered. In this case 7 is the
Shintani base change lift of o, and their central characters wy, and wy satisfy the relation

wr(2) = Wy (NF/F/(Z))
for any z € F*;

In particular, we are interested in the supercuspidal case. We fix wp,/p/ a character of F* whose
kernel is N /g (F).

Proposition 3.4.2 ( [AC89], chapter I, section 6, [HL11|, chapter II). (1) For my a supercuspidal
representation of GLy,(F"), let ¢(mo) be the cardinality of the set of isomorphism classes

C(mp) := {Wgw’;;/FJk SVAYE=

dividing r. Then r/c(my) divides n and there exists a supercuspidal representation 7 of GLnC(ﬂO)/r(F)

such that ©'° = 7' if and only if r/ce(my) divides i, and
BCppi(mo) =7 x @7 x ... X o/ (3.4.1)

(2) Conversely for ¢ a positive integer dividing v such that r/c divides n, and for ©’ as a supercus-

pidal representation of GLy,c/.(F), such that 77" = 7' if and only if r/c divides i, there exists T as a
supercuspidal representation of GL,(F") satisfying , ¢(mp) = ¢ and

BC;}F,(W’ X7 x o x 77T = {xh|xl € C(mo)}

Remark 3.4.3. Since we may decompose F/F' into a sequence of subextensions F' C Fy C ... C F, =
F, such that Fi11/F; and Fy/F" are cyclic of a prime degree, in practice we only need to focus on two
special cases in the proposition above: either c(mo) = r or c(mo) = 1. In the former case BCp/p (o)
is a supercuspidal representation of GLy,(F'), and in the latter case it equals the parabolic induction
7 X 7% x . x 7" with 7 a supercuspidal representation of GL,, . (F).

3.4.2 Cyclic automorphic induction

In this subsection, we sum up the results in [HH95|, [HL10|, [BH10], [HL11] to give a brief introduction
of cyclic automorphic induction.
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3.4.2.1

Let K/F be a finite cyclic extension of non-archimedean locally compact fields of degree [. We fix
a certain F-algebra embedding K < M, (F) to identify K with an F-subalgebra of M, (F'), thus
GL,,/(K) is regarded as the centralizer of K in GL,(F). Moreover, we fix the following data:

(1) a generator og of ¥y = Gal(K/F);

(2) a character s p of F* with kernel Ny p(K™);

(3) an element ¢; € K* such that og(e;) = (—1)"=D/le,.

We call such a triple (00, >k, ;) a transfer system for K/F in relative dimension n/I.

For g, ¢’ two elements in GL,,//(K) with eigenvalues g1, ..., g,/ and g’l,...,gq’1 /I in an algebraic

closure of K, we define
n/l
vr(9,9) = [] (9 - d)) € K,

1,j=1

and moreover for g a semisimple regular element in GL,, /;(K), we define

Agie(a) = ] tryeloile), o4(9))-

0<i<j<i—1

By definition, we have elﬁK/F(g), KK/F(g)2 € F*. We further define

Ak/il9) = [Brsr(9)? 17 det(g) 17,
A% p(9) = #x/r(eilk/r(9)),
Or/r(9) = A%{/F(g)/A}{/F(g)'

These definitions, depending on the embedding and the choice of transfer factors, will be the starting
point of the cyclic automorphic induction.

3.4.2.2

Let 7 be an irreducible representation of GL,,(F') such that msy p = 7, where we identify s /p with
»podetr as a character of GL,,(F"). Equivalently, there exists a s p-intertwining operator ® such
that

o (m(g)xk/r(g) =7m(g) 0P, g€ GL,(F),

which determines ® up to a scalar. We define the sy p-trace of m as a distribution of the space of
smooth compactly supported functions on GL,, (F'):

I () s f s (@ o n(f)), f € C(GLa(F)),

which can also be realized as a locally constant function defined on the set of semisimple regular
elements of GL,(F). Similarly for 7 as an irreducible representation of GL,, /;(K), we have the ordinary
trace

tr(7) : f = tr(7(f)), e CF(GL,,(K))

which can be realized as a locally constant function defined on the set of semisimple regular elements
of GLn/l(K). We call such 7 a s p-lift of 7, if a certain relation between s p-trace of m and the
trace of 7 is satisfied for all semisimple regular elements of GLg (K'), which we shall not recall here
(see [HH95|, §3.11). Since such a relation, if exists, uniquely determines 7, in this case we also call 7
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the automorphic induction of 7 and we write m = A, (7). In particular, for any elliptic elements g
in GL,(K), the above omitted relation is easy to describe and can be written as follows:

-1
(/7 (1) (g) = O i) - olr, ®) 3 tx(r) (0(9), (3.4.2)
1=0

where ¢(7, ®) is a non-zero complex number independent of g. For supercuspidal representations, we
sum up the following result:

Proposition 3.4.4 ( [BHO5c|, §1.2.). (1) When 7 is supercuspidal satisfying wsg/p = , there exists

a supercuspidal representation T such that AK/F(T) = 7. Each 7 is So-reqular, saying that 7°0 is not
isomorphic to T fori=1,2,....,1 — 1, and its Yg-orbit is uniquely determined by .

(2) Conversely, for any supercuspidal representation T that is Xo-regular, its automorphic induction
7= Ak p(T) is well defined and supercuspidal satisfying Ty p = T.

(3) For (1) and (2), is enough to determine m via the ¥g-orbit of T, and vice versa.

3.4.2.3

We further assume that 7 = Ag/p(7) is generic. We let (U,?) be a Whittaker pair, where U is
the unipotent radical of a Borel subgroup of GL,(F), and 9 is a nondegenerate character of U.
Being generic means that the vector space Homy (7, 4) is of dimension 1, thus we choose A to be a
non-zero vector in this space. Since the restriction of »x/p to U is trivial, we have Homy (m,9) =
Homy (1s¢x /5, 0).

For ® an intertwining operator as before, Ao ® is another non-zero vector in Hom (mseg /F> ), thus
is proportional to \. We may change ® up to a scalar such that A o ® = X\ and we denote by ®(m, )
this special intertwining operator. We write ¢’/¥(9) = ¢(r, ®(r,9)) for the constant determined by
(3-4.2)), which is independent of 7 and 7 by the main result of [HL10].

In particular, for 1 an additive character of F' of level 0, we may consider the special Whittaker
pair (Up,¥y), where Uy is the unipotent radical of the upper triangular Borel subgroup, and ¥y (u) :=
Y i) for uw = (uy;) € Up. In this case we write cff/F(w) = cK/F(9,) for the corresponding
constant. We may also compare two different constants with respect to two Whittaker pairs: for any
g9 € GL(F) such that (U,9) = (Ug,9;,), we have (see [HL10], §3.3.)

W) = se p(detre(9) ™ - en /T (0), (3.4.3)

where U := g~1Upg and ﬁfb(u) = 9y (gug™!) for any u € UJ.

3.4.2.4

We further assume 7 to be supercuspidal and 7 = A, (7). Let [a, f] be a maximal simple stratum in
M,,(F') and let 0 be a simple character contained in w. Let E,, be an unramified extension of E = F[f]
of degree m such that E normalizes a, where n = md and d = [E : F|. We further choose K/F to be
a cyclic subextension of E,,/F of degree [. We choose (J(a,3),A) to be an extended maximal simple
type containing 6 and compactly inducing .

We fix V' a vector space of dimension n over F' and an isomorphism Endg (V) = M, (F). By an
F-flag F of V, we mean a sequence

{=WCWnchc.cV,=V

where V; is a subspace of V of dimension ¢ for ¢ = 1,2,...,n. Considering the stabilizer, we get a
unipotent subgroup Ur of GL, (F'). We have the following Uniform Induction Theorem:
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Theorem 3.4.5. (1) There exists a Whittaker pair (U,9) of GL,(F'), unique up to J(a, 3)-conjugacy,
such that Al y gynu contains 9|y gnu- As a result,
° <I>fr = ®(m,9) is a »xg,p-intertwining operator which acts trivially on the f-isotypic subspace of
the representation space of w;
° is satisfied for all T supercuspidal with m = Ay p(T) supercuspidal containing 0, and all
elliptic elements g € GL,,;)(K), where ® = Y. We set cg(/F = c(1,®Y) for later use.
(2) There exist an F-flag F, the corresponding unipotent subgroup U = Ur and a nondegenerate
character 9 of U, such that
Olunm a,8) = VNunm (a,8)-
(3) When E/F is of degree n, the Whittaker pair in (2) satisfies the result in (1).

Proof. (1) follows from [BH14b|, §1.3, §1.5, and (2) follows from [PS0§|, Theorem 3.3. To prove (3),
since U is a pro-p-group and J(a, 3) = E*J!(a,3), we have

UndJd(a,f)=UnJ(a,B)=UnJ(a,p).

Thus we only need to prove
Homyn 1 (a,5)(n,7) # 0

for n the Heisenberg representation of #. Since we have

1 7l 12 Jl(a,
77GB(J (0,8):H"(a,8))"/? ~y IndHl((aaZBﬁ))g’

we only need to prove that

J(a,
Homyn /1 (q,5(Ind Hf(“afg)e, 9) #0

or by the Mackey formula and the Frobenius reciprocity

&y Homgsnp1(a,5)(6,9) # 0,
H(a,8)\J(a,8)/UNJ(a,8)

which follows from (2).

3.4.3 Functorial property

One of the most important motivations for the base change and automorphic induction above is that
they satisfy the functoriality of local Langlands correspondence for general linear groups. Let K/F
be a finite separable extension of non-archimedean locally compact fields. We denote by Wpg the Weil
group with respect to F' and Wy the Weil group with respect to K identifying with a subgroup of
Wr. For n a positive integer, we denote by A%(F) (resp. A%(K)) the set of isomorphism classes
of supercuspidal representations of GL, (F) (resp. GL,(K)), and by G2(F) (resp. GY(K)) the set of
isomorphism classes of irreducible representations of Wg (resp. Wi) of dimension n. Then we have
the following local Langlands correspondence.

Theorem 3.4.6 ( |[LRS93|, [HT01], [Hen00], [Sch13]). For F' a non-archimedean locally compact field,
the local Langlands correspondence is a bijectio

LLCp : G2(F) — A%(F)

satisfying certain desiderata.

2We notice that the definition of LLCr here is actually the inverse of that considered in the introduction. This minor
modification is more compatible with the notations in the results of Bushnell-Henniart.



THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY 161

For p € G)(F) and m, = LLCp(p) € A)(F), we let Resg p(p) := plwy = p1 @ ... ® pi, where
pi € GY.(K) for i = 1,..,k with ny + ... + nj, = n. Then m,, := LLCk(p;) is a supercuspidal
representation of GL,,(K). The following proposition is known as the functoriality for the base
change map:

Proposition 3.4.7 ( [AC89], chapter I, section 6, [HL11|, chapter II). (1) The parabolic induction
Tpy X oo X Ty, is an irreducible representation of GL,, (K), which we denote by BCr,p());
(2) When K/F is cyclic, the definition of BCk p(m,) coincide with that in §3.4.1]

Similarly for p' € G)(K) and 7w,y = LLCk (') € A)(K), we let Indg/p(p) := Ind%}"}p’ =p|®...0
Pl where pf € GO, (F) for i = 1,...,k with n} + ... + n}, = n|Wr/Wk|. Then m, = LLCp(p}) is a
supercuspidal representation of GL,,(F"). The following proposition is known as the functoriality for
the automorphic induction:

Proposition 3.4.8 ( [HH95|). (1) The parabolic induction ©
tation of GLy, . ywyc|(F), which we denote by A p(my);
(2) When K/F is cyclic, the definition of Ag p(m,) coincides with that in .

X X Ty s an irreducible represen-

P P

Proposition 3.4.9. Let K/F and F/F' be finite separable extensions of non-archimedean locally
compact fields.
(1) For mp € AY(F') such that BCy p/ (wpr) is supercuspidal, we have

BCK/F’ () = BCK/F(BCF/F' (mF));

(2) For mi € A)(K) such that A p/(n) is supercuspidal, we have

AK/F’ (Tr) = AF/F'(AK/F(TFK));

(3) If moreover K' is a subfield of K over F' such that K'F = K and K' N F = F', and if
T € A)(K') such that Ak p(BCk /(1)) is supercuspidal, then

Ar/rBCryrr(T7)) = BCp/p (Agr (7))

Proof. It follows from the equalities Resg,/rr = Resg/p o Resp/pr, Indg pr = Indp/pr o Indg/p and
IndK/F o RGSK/K/ = ResF/F/ o IndK//F/.
O

3.5 Basic classification

Let F'/Fy be a tamely ramified cyclic extension of non-archimedean locally compact fields of degree r
of residue characteristic p. We fix wg,/ g, a primitive character of the cyclic group Fy/Np /Fo (F*), and
by abuse of notation we identify it with a character of GL,(Fy) by composing with the determinant
map. We write ¥ = Gal(F'/Fp) and we fix 0 € ¥ a generator.

For mp a supercuspidal representation of GL,(Fj), we denote by 7 the base change of 7y as an
irreducible representation of GL,,(F). Our aim is to give an explicit construction of 7 via 7y using
the simple type theory. As mentioned in Remark [3.4.3] essentially we only need to focus on two
cases: either 7 is supercuspidal, or 7 is the parabolic induction of r supercuspidal representations of
GLn/r(F )

Let [ag, 5] be a maximal simple stratum in M, (Fp) and let Ey = Fy[5]. We write d = [Ep : Fp]
and n = md. We write Ey,, for the unramified extension of degree m over Ey, we fix an embedding
Eo m — M, (Fp) whose restriction to Ej is identity, and we define Ag, := Endp,(Eom) = M, (Fp) as
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the endomorphism ring of F-vector space Ey, and G, = A;O = GL,,(Fp). Thus up to G ,-conjugacy,
we may and will assume ay = ap, (Eo,m). We choose 0y € C(ag, 5) to be a simple character contained
in 7y, we denote by 7y the Heisenberg representations of 6y, and we choose kg to be a full Heisenberg
representation extending 79. Thus there is a unique representation pg of J(ag, 3) trivial on J'(ag, 8)
up to isomorphsim, such that Ag = kg ® po compactly induces 7y. Here py| J(ag,8) 18 the inflation of a

~

supercuspidal representation pg of GL,(kg,) = J(ao, 8)/J* (a0, B).

3.5.1 Supercuspidal case

In this subsection we assume 7 to be supercuspidal. We first restate the following corollary of Propo-
sition 13.4.2

Proposition 3.5.1. 7 is supercuspidal if and only if ﬂow%/FO Zmg foranyi=1,2,....,7r — 1.
Since my = iﬂd?g)oﬂ)f\o, fori=1,...,7 — 1 we have

WOW%‘/FO % My — Aowfgv/FO % A() <~ pow%/FO 2z Po (351)

Thus in particular we have
WF/F0|J(uoﬂ) - WF/FO|NE0/F0(E0X)"LNE0/F0(0§0) #1, i=1.,r-1 (3.5.2)
Since N, /r, (Eg )" NEgy /1, (05,) € Ngy/m, (Ey ), finally we have

w}’/FO‘NEO/FO(EOX) #1, i=1,..,r—1 (3.5.3)

Proposition 3.5.2. is true if and only if for any non-trivial subextension F'/Fy of F/Fy, the
field F' is not isomorphic to any subfield of Ey over Fy. Thus E = F[B] = F ®p, Ey is a field and
E/Ey is of degree r.

Proof. 1) is true if and only if Np,, 7, (Eg) is not contained in the kernel of w% /Ry for each 4, thus

Ngo/m (Ey) € Npryg, (F'*) for any F'/Fy as a non-trivial subextension of F/Fy. By the local class
field theory, it is equivalent to the fact that each F’ is not isomorphic to a subfield of Ej.
O

We write Ty (resp. T') for the maximal tamely ramified extension of Ey (resp. E) over Fy (resp.
F), and eg (resp. e) for the ramification index and fy (resp. f) for the residue class degree of T/ Fy
(resp. T/F'), and we have d = [Ey : Fy] = [E : F].

Proposition 3.5.3. implies that:
o [f F/Fy is unramified, then (r,mfo) =1 and E/Ey is unramified;
o [f F/Fy and E/Ey are totally ramified, then (r,e(Ey/Fp)) = 1;
o [f F/Fy is totally ramified and E/Ey is unramified, then rleq and (r,m) = 1.
Proof. We first consider the case where r is a prime number. By , we know that
Ngo/r (B )" Ny (05,) € Npyg,(FX), (3.5.4)

which implies that
N1 (T5) "Ny 7, (07,) € Ny, (7). (3.5.5)
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Choose wp, to be a uniformizer of Fy and wg, to be a uniformizer of Tp, such that w%’) = wr,(r, for
a certain (7, € pr,. Thus for F| denoting the maximal unramified subextension of Ty over Fy, the
element () := Npy/p, (Cry) is in pp, and we have Np/p (wr,) = w{%%. Moreover

N5y (T5)™Nay 11, (07,) = (@5 G )Ny 1y (0F,) = (@50 GV REC (1 + PRy )-

If F/Fy is unramified, we have
Ny (FX) = (@)%

Thus (3.5.5) is equivalent to (r,mfy) = 1, and moreover T/Ty and E/Ej are unramified. If F'/Fy
is totally and tamely ramified, we have (r,p) = 1. Choose wp to be a uniformizer of F' such that
wh = wp,o for a certain () € k:IX,O, and we have

Nr/ry (F*) = (@R Co)NF/r, (0) = (@R, Co)kep, (1 +Pry)-
To ensure , either of the conditions is true:
o (r,e0) = 1;
o rleo and G§(G0) 7 ¢ Ky,

In the first case T'/Ty is totally ramified, since r divides the ramification index of T'/Ty. Thus E/Ej
is also totally ramified. In the second case we must have (r,m) = 1. Moreover X" = wp, (7, has a
solution in Tp and X" = wg,(p has a solution in F', so we have

T = Ty[X]/(X" — wry o) = To[X]/ (X" — Colrl).

As a result T'/T is unramified, thus E/Ejy is also unramified.
In general, we choose F’/Fy to be a subextension of F/Fj of prime degree and we write E' = F'E.
Then the proposition follows if we consider all such F’ using the previous result.
O

Remark 3.5.4. As already indicated in the proof, if F'/Fy is of prime degree, then the proposition clas-
sifies all the possibilities. In general, we may consider extensions Fy C Fy C Fo C F and Fy = EgFy
and Ey = EgFy, such that Fy/Fy is unramified, Fy/Fy is totally ramified and Ea/FE; is unramified,
and both F/F> and E/Ey are totally ramified. So essentially we only need to study the three cases
listed in the proposition.

Corollary 3.5.5. In the first and second cases of Proposition|3.5.5, we have e = ey and f = fy.

Now we assume that F//Fy and E/Ej are totally ramified.

Lemma 3.5.6. implies that pol j(a,,8) ‘w%/FO Z Pols(ao,p) fori=1,2,...,7r —1.

Proof. We choose wg to be a uniformizer of E. Since E/Ey is totally ramified, wg, = Ng /g, (@g)
is a uniformizer of Eyp. Thus by definition detg,(wpg,) € Np/ g, (F*), meaning that wp) g, (wg,) = 1.
Since J(ag, 8) = (wg,)J (ag, 5), we finish the proof.

O

Since F/Fy is tamely ramified, wp/p, is trivial on 1+ pg,. We denote by w the character of kgo
whose inflation equals wp/p, o NEo/Fo’ogo' Moreover, since wg,p, © detFo‘GLm(oEO) = wr/R © NEy /Ry ©
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det g, |GLm(0E0)7 we know that wr/ g, o detr| 7(q,,5) i the inflation of wo dety,, . By abuse of notation,
we identify w with w o dety By and we have

po - w' % po (3.5.6)

fori=1,2,...,r—1.

By definition kg, ,, is the field of degree m over kg,. We write & for a Gal(kg,,,/kE,)-regular
character of kgo _ corresponding to po via the theory of Green [Greb55|. Thus 1) implies that for
any k € {0,1,2,....,m — 1} and any i € {1,2,....7 — 1},

X k
o~ (WoNky i) 7 & (3.5.7)

where () denotes the cardinality of kg, .
Lemma 3.5.7. The character w o NkEO [k, of k:go s of order r.

~

Proof. By definition and direct calculation, if we write w’ for the character of kp = op /1 + pr,
whose inflation equals WF/Fo’o;()v then w o NkEo,m/’“Eo = (W' o NkEo,m/kFO)e(EO/FO)‘ By definition w’
has kernel k;", thus it is a character of order r. Using the fact that (r,e(Ey/Fp)) = 1, the character
(W' o NkEoym/k?FO)e(EO/FO) is also of order 7.

O

Corollary 3.5.8. The character £ := & of kgo is Gal(kg, ,, /kE,)-regular, thus it corresponds to a
supercuspidal representation of GLy,(kg,)-

Proof. We assume on the contrary that there exists k € {1,...,m — 1} such that £Qk = ¢, which
also means that §6Qk = &) As a result, f(?k quals &o multiplying by a character of k:go’m of order
dividing r, which is of the form (w o NkE0,7n [k, )” by Lemma contradicting to 1) Thus € is

Gal(kg,,,,/kE,)-regular.
O

3.5.2 Non-supercuspidal case

Now we consider the following non-supercuspidal case, where there exists 7’ as a supercuspidal repre-
sentation of GL,, ,.(F') such that

/ / 1o =1
T X7 x ... xa?

Since 7’ is o-regular, by [BH03|, (5.1.2), we have Ap/p (7') = 7 and AT (m) = {n', 77, ...,71"““1},

where Ap g, denotes the automorphic induction. Fi
By Proposition |3.4.2] we have
POWF/F, = PO (3.5.8)
Restricting to J(ag, ), we have
pow = po, (3.5.9)

where pg and w are defined as in the last subsection.

We focus on two special cases: either F' is isomorphic to a subfield of Ejy, or any non-trivial
subextension F'/Fy of F/Fy is not isomorphic to a subfield of Ey. In particular if 7 is a prime number,
then either of the two cases happens.

For the former case, by [BHO03|, Theorem B, the endo-class of 7’ is one of the F/Fp-lifts of the
endo-class of mg, which is of degree d/r. We say that g is the interior automorphic induction of 7'.
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For the latter case, E := Ey ®p, I is a field of degree r over Ey. Thus o can also be regarded as
a generator of Gal(E/Ey). Still by [BHO3|, Theorem B, the endo-class of 7’ is the unique F/Fp-lift of
the endo-class of my which is of degree d. As a corollary we have d|(n/r), or equivalently r|m. We say
that mg is the exterior automorphic induction of ', which we study more precisely.

Proposition 3.5.9. For F/Fy unramified, the field extension E/Ey is also unramified, and we have
(r, fo) = 1.

Proof. Since F' is not isomorphic to a subfield of Ey, we must have (r, fo) = 1. Thus r divides the
residue class degree of E/Ey, which means that E/Ey is also unramified.
O

Proposition 3.5.10. For F'/Fy totally ramified, (r,eq) = 1 if and only if E/Ey is totally ramified,
and rleg if and only if E/Eq is unramified.

Proof. 1f (r,ep) = 1, then r divides the ramification index of E/Ey, which means that E/Ey is totally
ramified. If r|ep, we may choose wp, as a uniformizer of Fy and {7, € pr,, such that X" = wg,(p,
has a solution in Ey. Moreover, we may choose wr to be a uniformizer of F' such that @}y = @wg,(o,
where (o € kg, . Thus B = Eo[X]/(X" — wp,(o) = Eo[X]/(X" — COC;Ol), which implies that F/Ey is
unramified.

For the other direction of the first equivalence if r is a prime number the proof is finished. In
general we consider a certain subextension F'/Fy of F/Fy of degree | as a prime number. If E/E

is totally ramified, then (I,ep) = 1 from the prime case. Since F'/F, is arbitrary we must have
(r,eg) = 1. To finish the second equivalence if E/FEy is unramified, since r divides the ramification
index of Ey/Fp, we must have r|eq. O

Proposition 3.5.11. For F/Fy and E/Ey totally ramified and for & a regular character of k:EOm
corresponding to po, the character § is not Gal(kg, ,, /kE,)-regular.

Proof. By 1) we have {yw = 582k for a certain k € {1,...,m — 1}. Since w is a character of order

1)

r, we have §S(Q Y = 1, meaning that & is not Gal(kg, ,,/kE,)-regular.

O]

3.5.3 A brief summary

The following corollary gives a partial criterion for 7 being supercuspidal, whose proof is the com-

bination of Proposition Corollary 3.5.8] Proposition Proposition [3.5.10] and Proposition
B5T1

Corollary 3.5.12. For my and m = BCg/p,(m0) as above such that E = Ey ®p, F' is a field of degree
r over F,

o if F/Fy is unramified, or if F/Fy is totally ramified but FE/Ey is unramifed, then 7 is supercus-
pidal if and only if (r,m) = 1. Moreover for the F/Fy unramified case we have (r, fo) = 1;

e if both F/Fy and E/Ey are totally ramified, then (r,eq) = 1. In this case 7 is supercuspidal if
and only if § is Gal(kg, ,, /kg,)-reqular.

Remark 3.5.13. In the corollary, it is possible in the F/Fy totally ramified and E/Ey unramified
case that r is NOT relatively prime to fy. For example we choose r = 2 and we assume F/Fy to be
totally ramified. And we may choose my such that ey = fo = 2, Ey = Ty and Ey/Fy is not cyclic.
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Using the basic argument in the local class field theory, there exists a unique quadratic subextension
of degree 2 of Eo/Fy which is unramified. In this case E = Ey ®@p, F' must be a field, otherwise F is
isomorphic to a subfield of Ey which is impossible. And E/Ey must be unramified since rleg. However
r = fo = 2.

Finally when r is a prime number, our discussion above is actually exhaustive. Precisely we have
the following proposition:

Proposition 3.5.14. Assume r prime and let mo be a supercuspidal representation of GLy,(Fp).

1. If F is isomorphic to a subfield of Ey, then my is the interior automorphic induction of a super-
cuspidal representation of GL,, ,.(F).

2. If F' is not isomorphic to a subfield of Ey, then E = F ®p, Ey 1s a field and moreover

o if F'/Fy is unramified, then E/Ey is unramified and (r, fo) = 1. If F/Fy is totally ramified
and E/Ey is unramified, then rley. Moreover for these two cases (r,m) = 1 if and only
if BCp g, (mo) is supercuspidal, otherwise r divides m and mo is the exterior automorphic
induction of a supercuspidal representation of GLy, /,.(F).

e if both F/Fy and E/Ey are totally ramified, then BCg/ g, (7o) is supercuspidal if and only
if & is a Gal(kg, ,, /kE,)-reqular character of kgo _, otherwise r divides m and mo is the
exterior automorphic induction of a supercuspidal representation of GL,,.(F). Moreover

(r,eq) = 1.

3.6 Statement of the main theorems

In this section we state the main theorems providing an explicit construction of tamely ramifed cyclic
base change and automorphic inductions, whose proof will be given in Let F/Fy, 7o, m, [ao, 5],
00, Mo, Eo, Eo.m, To be as in the last section and let 7p ,,, be the maximal tamely ramified subextension
of Eo, over Fy, and let 07, be the interior Tp /Fo-lift of 6. We fix a uniformizer wg, of Fy. We
denote by Cr, , (wr,) the subgroup of Ty, containing wg,, such that COr, ,, (wr,) X Ug, = Tg', is
bijective. By [BH14b|, §5.6, Lemma 2, we refine our choice of the full Heisenberg repreéentation Ko
extending 79 such that

Cry.,.(wr,) C Ker(det(ko)) and wpg, € Ker(ko). (3.6.1)

Thus we get pg as the unique representation of J(ag, 3) trivial on J!(ag, 3) up to isomorphism, such
that Ag = kg ® pg compactly induces mg. Moreover by , there exists a Ag-regular tamely
ramified character & of Tofm unique up to Ag-action such that pg = pg,, where Ag = Gal(T,,/Tp).
We denote by kg the restriction of kg to J(ag, 3) as a S-extension of 6.

3.6.1 Base change in supercuspidal case

First we assume 7 to be supercuspidal. Using the results in §3.5) F = F ®p, Ey = F[f] is a field
of degree r over Ey, and E,, = F ®p, Eom is a field of degree r over Fy,,, and we define T' = To F'
and T, = To,mF. We write KFO = Endp,(Ep) = My, (Fp) for the endomorphism ring of E,, as
an F-vector space and we denote by ap = ag,(E),) the hereditary order in EFO given by the ideal
chain of E,,, which gives a simple stratum [ag, ] in EFO. We write 50 for the simple character of
H(ap, B) as the transfer of 6. Since F/Fy is tamely ramified, we may consider the interior F'/Fy-lift
of 50 as follows: First let Ap be the centralizer of F' in ZFO, which is isomorphic to M, (F). We
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write a := ap N Ap, which by definition is identified with ap(E,,) as a hereditary order in Ap. Thus
we get a simple stratum [a, 8] in Ap, and for Gp := A}, we have H'(a,8) = H'(ap, 8) N GF and
0, = 50] H1(a,8) S€TVing as the interior F'/ Fp-lift of 50. As a result, the endo-class of 6, is the F'/ Fy-lift of
the endo-class of 0. Using [BHO3|, Theorem A, the supercuspidal representation 7 of G contains 0y,
The Galois action o € Gal(F/Fy) = Gal(E/Ey) naturally induces an action on Ap, and by definition
a and H'(a, B) are o-invariant, o(3) = 8 and 8,00 = 0, (see [BHI6], §11.3, Remark). We sum up the
discussion above as the following proposition:

Proposition 3.6.1. For m a supercuspidal representation of GL,(F) as the base change of a super-
cuspidal representation of GL,,(Fy), there are a simple stratum [a, 5] in M,,(F") and a simple character
0 € C(a,p), such that:

(1) o(a) = a and o(H'(a,5)) = H'(a, B);

(2)0oc=0;

(3) o(B) = B

We denote by n, the Heisenberg representation of 6, then 7, o o = 1. For wp a uniformizer of
F, we denote by Cr, (wr) the subgroup of T} containing wr such that Cr,, (wrp) x Uy, — T,% is a
bijection, where T,,, is the maximal tamely ramified subextension of E,, over F. In the next section,
we will first choose wp, and then describe a unique way to construct a o-invariant full Heisenberg
representation K, extending n, such that

Cr,, (wr) C Ker(det(kp)) and wp € Ker(kp). (3.6.2)

Right now we just assume the existence of such .

By Proposition there is a unique o-invariant representation pj, of J(a, 3) trivial on J!(a, )
up to isomorphism, such that Ay = kp ® p compactly induces 7. And by , we may choose &,
to be a A-regular tamely ramified character of 7}, unique up to A-action, such that p, = p¢,, where
A = Gal(T;,,/T) = Gal(Thm/To) = Ap. One interesting question is to compare &y with &, which
equivalently gives a direct construction of an extended maximal simple type of 7 via that of 7.

Theorem 3.6.2. (1) There exists a tamely ramified character b(bg;/FO of T, depending only on the

endo-class of 0 .., such that &, - b¢£;/FO

(2) b¢5/FO| o is a quadratic character.

and & o Nr, /1, ,, are in the same A-orbit.

0

F/F

Using (2), there exists a quadratic character E/Fo

of op trivial on 1 + pp such that upy/
Ng,./B = b¢£; /F 0|0; o Ng,./7,,- The supercuspidal representation Ky,(mo) of GLy(kg,) is given
by the regular character &, of kgo whose inflation equals (§y o Np, /TOm)\ole . Moreover for
) ’ ’ 0,m
F/Fy

Kb = Kply(a,p) and Ky = Ky - (bpy, o detp), the supercuspidal representation Ky (7) is given by
the regular character & of k;, whose inflation equals (bgog)/ FooN Em/E) - (& oNg, /7,)],x , and by
m Em

e(E/Eo)

definition & and (& o Nk, /ks, ) are in the same Gal(kg,, /kE,,)-orbit. In particular:

Corollary 3.6.3. For [ag, ], [a,5], 0o, O as above such that E/Ey is unramified, there exist a [3-
extension ko of 6y and a (-extension k) of Oy such that

Ky (BCpypy(m0)) = BCky ks, (Ko (m0))

for any my supercuspidal containing 6y whose base change BCpp, (mo) is also supercuspidal, where
BCkE/kEO denotes the Shintani base change given in [Shi76|.
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3.6.2 Interior automorphic induction

In this subsection, we assume that F' is isomorphic to a subfield of Ej over Fjy and we identify F' with
a subfield of Ej via a certain Fp-embedding. We denote by Cr the centralizer of F' in Ap, and we
identify GL,, /T(F ) Witkﬂ Gr = C}. Thus there exists a supercuspidal representation 7’ of G such

that A/ p, (7') = m. By [BHO03], Theorem A, the endo-classes of 7'°" run over all the F/Fy-lifts of
that of §y when ¢ = 0,1,....,r — 1. Changing 7’ by its twist with a certain o’ if necessary, we further
assume that the endo-class of 7’ is that of the interior F/Fy-lift of 6.

By definition ¢ = ag N CF is a hereditary order and [c, f] is a simple stratum in Cr. We also have
H'(c,8) = H'(ag, 3)NGF and 6§, := 90|H1(c”3) serving as the interior F'/Fy-lift of 6y. Thus 7’ contains
0,. We denote by 7, the Heisenberg representation of 8,. In the next section, we will construct a full
Heisenberg representation k, extending 7,, which in particular satisfies

Cry..(wr) C Ker(det(k,)) and wr € Ker(ka), (3.6.3)

where wr will be chosen later as a uniformizer of F'. Thus there exists p, as a representation of J (¢, 3)
trivial on J!(c, 3) unique up to isomorphism, such that A, = kK, ® p, compactly induces n’. Here
J(c,8)/J (¢, B) = J(ag, B)/J (a0, B) = EJ GLy (08, ), and in this sense we identify the representations
of J(c,3) trivial on J'(c, ) with the representations of J(ag, 3) trivial on J'(ag, 3). We choose &, to
be a Ag-regular tamely ramified character of TO>,<m corresponding to p, via . We denote by kg
the restriction of Kk, to J(c, 3).

Theorem 3.6.4. (1) There exists a tamely ramified character a(béz/FO of Tofm depending only on the

endo-class of 0r, ., such that &, - agbgo/FO and &y are in the same Ag-orbit.

(2) The restriction a¢g)/F0|a;0 is quadratic. Thus there exists a quadratic character a(péz)/FO of

OEO trivial on 1+ pg, determined by a¢£:)/F° oNgy,./E = ad)é:)/FO o NEo,m/To,m|ogO , and moreover

Ky (') is isomorphic to Ky,(mo) as a supercuspidal representation of GLy,(kg,), where ki 1= kg -
F/Fy

(acpeo odetg,).

Remark 3.6.5. In the theorem we may also consider all the representations of the form 7'° . What
we need to do is to replace the original Fy-embedding F — Ey with its composition with o'. Thus the
notations Cr, ¢, H'(c, 8), J'(c, 8), J(c, B) and Ag remain unchanged, but we replace 04, Mg, Ka, Pa;
Ag and €, with 09, 0", kS, po , NS and €2 respectively to obtain the corresponding theorem.

3.6.3 Exterior automorphic induction

We now consider exterior automorphic induction in this subsection. More precisely, we assume that
any non-trivial subextension of F' over Fjy is not isomorphic to any subfield of Ej, and there exists
a supercuspidal representation 7’ of GL,,.(F) such that Ap/p (7') = 7. In this case we write
E = Ey®p, F = F[B] as a field extension of degree r over Ey. We further consider the following two
cases:

3.6.3.1

Suppose that F/FEj is unramified. Since r divides m, we identify E with the subfield of Ej ,, which is
unramified of degree r over Ey. Since F'/Fj is tamely ramified, for Cr the centralizer of F' in Ap,, and

*Indeed GFr may represent Ay (for the base change case) or C (for the automorphic induction case) by abuse of
notations, however since we are in different situations, we hope this abbreviation won’t cause any trouble.
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¢ = apNCFr, we know that [c, 3] is a simple stratum in Cr. Moreover we have H' (¢, 8) = H'(ag, 3)NCr
and 0, = 0ol (e gy as the interior F/Fy-lift of 6. Using [BHO3], Theorem B, 7’ as a supercuspidal
representation of G = GL,,/,.(F) contains 0,.

We denote by T,,,/, the unramified extension of degree m/r over T' which is contained in Ej y,
thus by definition 7}, /. = Tom. For wp a uniformizer of F, we define Cr,, I (wp) as before. In the
next section we will first specify wp, and then give a direct construction of a full Heisenberg extension
Kq of J(c, B) extending 7, which satisfies

wp € Ker(k,) and Cf, , (wr) C Ker(det(kq)), (3.6.4)

and we denote by r, the restriction of k, to J(c,3). Corresponding to 7', we define p, and &, as in
the interior case, but here A = Gal(7,,,/,/T) is a subgroup of Ay.

Theorem 3.6.6. (1) There exists a tamely ramified character a(bg)/FO of Tofm depending only on the

e

endo-class of 0r, ,,, such that &, - and &y are in the same Ag-orbit.

(2) The restriction a(;ﬁg)/FO\ox is quadratic.
TO,m

F/F

Thus there exists a quadratic character qpy, B/Fo

of of trivial on 1+ pp determined by .y
NEo /B = a¢£; /Fo Nzo.m /T07m|020 . In this case the supercuspidal representation K, (mg) is given

by the regular character & of k:EOm whose inflation equals (& o NEq .. /TO,m)’ 0% and for k] =
B 0,m

Ka - ( agpg(‘)/ Fo s det E), the supercuspidal representation K, (') is given by the regular character &, of

X . . X X
kEm/r whose inflation equals (&, ONEm/r/Tm/r) |0§m/T, thus &y and &, as characters of kEO,m = kEm/r are

in the same Gal(kg, ,, /kg,)-orbit. Moreover, we may also change ' above by 7 withi=0,1,...,r—1.
Then for different i the corresponding 7/°" are inequivalent, thus the corresponding &, are in different
A-orbits, and the corresponding &, are in different Gal(kg, I /kp)-orbits. As a result when i varies,
£o ranges over exactly all the Gal(kg,, , /kp)-orbits which are contained in the Gal(kg, ,, /kEg,)-orbit
of &y. In other words, we have proved:

Corollary 3.6.7. The parabolic induction Ky (7') x Ky (7'7) x ... X Ky (77" is isomorphic to the
Shintani base change of Ky, (mo) related to kg /kg, .

3.6.3.2

When E/Ej is totally ramified, we write E,,, = Ey,, ®pg, E for the unramified extension of degree m

over E' and E,, . for its subextension of degree m/r over E. We denote by GFO = Endg, (Ey, ;) the
endomorphism ring of Fo-vector space Ej, /.. Then ¢q := ag,(E,,/,) is a hereditary order and [co, A] is

a simple stratum in épo. We define 56 = t'f O’?O(Ho) the transfer of 6y as a simple character of H' (o, B).

We write Cr = M,,,.(F) for the centralizer of F' in 5’F0. Since F/Fy is tamely ramified, ¢ = ¢y N Cp
is a hereditary order in C, and [c, 4] is a simple stratum in Cr, and H!(c, 8) = H'(¢p, ) N Cr and
0 = Op|111(c 5) is the interior F/Fo-lift.

Using |[BH03|, Theorem B, the supercuspidal representation 7’ of G contains 6,. We denote
by T,/ the unramified extension of degree m/r over T' which is contained in E,, /. and we define
Cr, I (wr) as before. In the next section, we will specify our choice of wp and will construct a
full Heisenberg extension k, of J(c,3) extending 7, which satisfies . Corresponding to 7/,
we define k4, p, and &, as in the E/Ey unramified case, but here A = Gal(T,,,./T). We write
A= Gal(Tm/T) = Gal(To’m/To) = Ao.
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Theorem 3.6.8. (1) There exists a tamely ramified character a(;ﬁg)/FO of T} depending only on the

endo-class of 0, ,,, such that (&, o NTm/Tm/,-) . a¢£;/F°

(2) The restriction agf)g)/FO\

and & o Np, /7, ,, are in the same A'-orbit.

x 15 quadratic. Thus there exists a quadratic character a(pg)/Fo of o5,

or,
trivial on 1+ pg determined by agog)/FO oNg,. /B = a(;ﬁé:)/FO o NEm/Tm|g§ , such that for K, (n') the

supercuspidal representation of GLy,,,(kg) given by a regular character 5’7? and Ky, (mo) the supercusp-
idal representation of GLy,(kg,) given by a reqular character &y, the characters & and f’oNkEO /B,

are in the same Gal(kg, ,,/kE,)-orbit, where kj, := kK - (awg(;/Fo odetp).

3.6.4 Dbase change in non-supercuspidal case

Finally we finish the discussion for base change. We assume that there exists a supercuspidal repre-
sentation ' of GL,,/,(F') such that 7 = BCp/p,(m0) = ' x 7'7 x ... X 7' Since 7' is o-regular,
by [BHO03]|, (5.1.2), we have Ap/p,(7') = m and A;}FO (7) = {«', 7", ..., 7" '}. Thus the result in the
last two subsections are enough to study .

We give a “base change” version of Corollary to end this section. We assume E/Ej to be
unramified of degree r and we write F' @ g, Eom = H:Zl E;, where each E; is isomorphic to Ep ,,. We
denote by ay the hereditary order over Fy defined by the ideal chain {[];_, ple‘Jk € Z}, thus [ap, f] is
a simple stratum in XFO = Endp, (F ®Fp, Eom) = My (Fp). Just as in the first paragraph of
we define 50, Ap, a, [a,5] and 6 := §0|H1(u,,6’)‘ Moreover the flag

E1CE1®FE,C..CEO..0FE =FQr Eom

gives a parabolic subgroup P, of A; with the corresponding Levi subgroup denoted by M; and unipo-
tent radical denoted by U,. We write a; = ap(E;) for the hereditary order and [a;, 5] the corresponding
simple stratum in Ag; := Endp(E;), thus by definition M, = A% x ... x A% . We have

H'(a,8) "My, = H' (a1, ) x ... x H'(a,, )

and
ab‘Hl(ab’mme = 91 ® ... 97’7

where 6; is the corresponding simple character of H'(a;, 3). By identifying each E; with Ep,, we
identify Ap; with Cp, [a;, 5] with [c, 5] and 6; with 6, respectively. Via this identification, we further
denote by 7; the Heisenberg representation and «; the 3-extension corresponding to 7, and &, respec-
tively, and we regard ' asa supercuspidal representation of Ay ,. We denote by 7, the Heisenberg
extension of 0, and we may choose x; to be a S-extension extendiﬂg My, such that

GLm(kg)

K, 0 Indp! = Tnd o (Kp, ®...0 Ky,),

as functors from the category of finite length smooth representations of M, to that of GL, (1), where
P, is the corresponding parabolic subgroup of GL,,(kg) (see [MS14b|, section 5 for more details), thus
in particular we have

Ky (! X o x w77 = Ko (1) % Ky (777) X o K (777 ).
By Corollary [3.6.7] we finally have
r—1
Kﬁb(ﬂ/ X ... Xﬂ'/U ) :BCkE/kEO(KKB(ﬂ—O))'

We record this result as the following corollary:
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Corollary 3.6.9. For n = md with m divisible by r and [ag, 8], [a, ], 0o, Oy as above, there exist a
B-extension kg of 8y and a B-extension Ky of Oy, such that

Ko BCp/ry(m0)) = BChp ke, (Ko (0))

for any supercuspidal representation my of GL,(Fy) containing 6.

3.7 A precise construction of the full Heisenberg representation

In the previous section, we stated several results related to the base change lift and automorphic
induction. More precisely, for F'/Fy a cyclic tamely ramified extension of degree r, we considered
mo as a supercuspidal representation of GL,(Fp) such that either its base change BCp/p (7o) as
a representation of GL,(F) is supercuspidal, or there exists a supercuspidal representation 7' of
GL,, . (F) such that Ap g (7') = mo. We fixed a simple stratum [ag, 8] and a character 6y related to
m, and we fixed a certain full Heisenberg representation kg of 6y, which gives a unique representation
po and the corresponding Ag-regular orbit represented by &g. In the base change case, we constructed
a o-invariant simple stratum [a, 5] and a o-invariant simple character 6y related to 7 via that of 7. In
this section, we will give an explicit construction of a g-invariant full Heisenberg representation k; of
0p. Similarly in the automorphic induction case, we constructed a simple stratum [c, ] and a simple
character 6, related to 7 via that of my. Still in this section, we will give an explicit construction of a
full Heisenberg representation &, of 6,.

3.7.1 Several results of Bushnell-Henniart

In this subsection, we recall and reformulate several known results in a series of articles of Bushnell-
Henniart.

3.7.1.1

First of all, we recall the result related to the base change in the wild case. Let [ag, 5], [a, 8], o,
be as in §3.6.1) and we assume further that n = d = p® for a certain s € N and Ey/Fy is totally

G
wildly ramified. By definition, 7, := ind J(Fc?o 8
uniformizer wg, of Fy and we choose wr to be a uniformizer of F' such that Np/p (wr) € (wr,) 15, -
By Corollary 3.5.12} 7’ := BCp/p, () is a supercuspidal representation of Gr.

)0 is a supercuspidal representation of Gg,. We fix a

Theorem 3.7.1 ( [BH96|, Proposition 14.10, [BH99|, Theorem 1.8, Proposition 1.8.). (1) There is a
unique o-invariant full Heisenberg representation Ky of 6y such that ' = imdg(l”;l 5)Kb;

(2) When either v or vg,(8) = —mg is relatively prime to p, the full Heisenberg representation Ky
can be constructed explicitly.

Corollary 3.7.2. For wp a uniformizer of F' and wpg, a uniformizer of Fy such that Np/p, (wp) €
(wr, ) UF,, the map br/r, : ko — Kp is a bijection between full Heisenberg representations of 6y and
that of 0 satisfying respectively

(wr,)pr, C Ker(kog) and (wp)pr C Ker(kp) (3.7.1)

Proof. By Theoremwe have wy, 0N g, = Wk, With wk, and w,, denoting the central characters,
thus

Np/p((wr)pr) C Ker(kg) if and only if  (wp)pr C Ker(ky).
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Since Np/p, ((wr)pr) C (Wr) F,, the map bp)p must be surjective. Moreover, by [BH14b|, §5.6.,
Lemma 2, both sets of the full Heisenberg representations satisfying the condition of the statement
are of cardinality p*, thus bp/p, is actually a bijection.

O

Let kg and Ky be two full Heisenberg representations satisfying Theoremﬂ(l) and (3.7.1)). For
any supercuspidal representation mp of G, containing 6y, by Corollary there exists a unique
tamely ramified character & of Fj‘, such that my = indgg)m 5)(H0 (&0 o Ngy/m,)). We write 7 =
BCp/p,(mo) which is a supercuspidal representation of G containing 6. Still by loc. cit. there exists
a unique tamely ramified character &, of F'*, such that 7 = ind?{uﬁ)(ﬁb (&poNg/r)). Here §goNg, /g,

and &, o Ng/p are regarded as characters of J(ag, ) and J(a, 3) respectively via the isomorphisms
J(ao, B)/J (a0, B) = Eg /1 + pg, and J(a,3)/J (a,8) = EX/1 +pg.
Proposition 3.7.3. We have §, = &y o Np/g, in the setting above.

Proof. Comparing the central character of my and 7 and using Theorem we get £ = (§0oNp/g,)",
which means that &, and £ oNp/p, coincide on (1+pp)F™". To finish the proof, we only need to show
that & (wr) = & (Np/p (@wr)). We fix a uniformizer wp of E such that @y € wr(l + pr). We fix
an integer k and we choose hg € J'(ag, 3) such that h{, := Ng/ g, (k) ho is an elliptic element in G,
and moreover tr(m()(hy) # 0 (Using, for example, [BH14b], §9.5, Linear Independence Lemma). Since
it is easy to see that detr,(hy) € Np g, (F*), we may choose h' to be an element in F[hy]* C GF
such that the norm Npp/my ) (h) = R'a(h)...oc""1(h') equals hj. By direct calculation we have
vF(detF(h’)) =k.

Since Ky is o-invariant, we may choose a certain extension to regard k; as a representation of
J(a, 3) x X, which naturally extends 7’ as a representation of Gg x X via compact induction. Similarly
since &, is a o-invariant character, we realize k; - (§, o Ng/p) as a representation of J(a, ) x X and 7
as a representation of Gg x X. Using the trace formula for the cyclic base change, we have

tr(7') (W, 0) = ¢ tr(mp) (ho)  and  tr(m) (R, 0) = c - tx(mo) (ho),
where ¢’ and ¢ are non-zero constants depending on the choice of the extension above.

Lemma 3.7.4. We have

tr(m0) () = tr(mo) (o) - o(Npymy (@) and  te(m)(R, o) = te()(H, o) - & ().

Proof. For the first equation, using the Mackey formulaﬁ we have

tr(m) (ho) = > tr(r0) (g5 hogo)
90€J (a0,8)\GFy
95 hhgo€d (ag,B)

and
tr(mo)(ho) = > tr(k0) (g5 hogo) - (€0 © Ny m) (95 hogo)

go€J (a0,8)\GF,
9o "higo€J (a0,5)

Since det s, (g 'higo) = detr, (hy), it is easy to see that the images of g5 'hjgo € J(ag,3) and Ry in
J(ag, B)/J (a0, ) = EJ /(1 + pg,) are identical. Thus

(€00 Ngy /1) (95 ' hog0) = (€0 © Ny /i) (1) = €o(N gy (w5)),

“Note that there are only finite many non-zero terms in the sum of the right hand side, see for example [BH11],
Lemma 1.2.
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finishing the first equation. For the second equation, we have

t(@)(Wo)= Y tr(k)(g ' Walg).0)
9 (0,8)\Gr,
g~ Wo(g)ed(a,)

and

tr(m)(R', o) = > tr(kp) (9~ W'o(g),0) - (& o Ng/p) (9~ ho(g))
geJ(avﬂ)\GFy
g~ 'h'o(g)ed (a,p)

Since &, is o-invariant, there exists a character &) of Fy* such that & = &) o Np/ . For g € G such
that g~ 'h'o(g) € J(a,8) and Np g, (h) := W' (h')...c" " (h'), we have

(& oNg/p)(g ' h'o(9)) = (€6 °Ngy k) (97 Neygy (h)g) = (€6 0 Ny 1) Npymy (1) = (& 0 Ny p) (),
where the equation in the middle follows from the fact that dety(g~!N r/R,(R)g) = detr(Np/ g (1)),
and thus ¢~ 'Np/p (h')g and Np g (1) are identical in J(a,8)/J*(a, 8) = E* /(1 + pg). Thus

(& o Ng/p)(g *Ha(g)) = (& o Np/p)(K) = & (=),

finishing the proof of the second equation.

Using this lemma and the above equations, we get

0 # ¢ - tr(mg) () - &n(wh) = ¢~ tr(mh) (hp) - &0 (Npymy ()

Since k is arbitrary, we must have ¢ = ¢’ and &(wr) = &(Np/p,(@wr)), finishing the proof of the
proposition.
]

3.7.1.2

Now we consider unramified automorphic induction. Let [ag, 5] and 6y be as before, let Ky be the
maximal unramified subextension of Ey ,, over Fy. We denote by A, the centralizer of Ky in A, and
we write Gg, = AIX(O, thus ag, = ap N Ak, is a hereditary order, and [ag,, (] is a simple stratum in
Ak, Moreover H'(ar,,3) = H'(ap,3) N Gk, and Ok, = Gg\Hl(GKOﬁ) is the interior Ko/ Fo-lift of 6.
We fix a uniformizer wp, as in and we choose a full Heisenberg k( representation of 8y satisfying

(3.6.1). The group E; J'(ag, B)/{wr,) has a unique pro-p-subgroup, and we denote by ,J (ao, 8)(wr,)
its inverse image in J(ag, 3). We have ,J (ak,, 8)(wr,) = pJ (a0, 8)(wr,) N Gk, which is a subgroup

of '](aKOHB) = J(aOHB) N GKO'

Proposition 3.7.5 ( [BH14b|, §5.6, Lemma 3, Lemma 4 and Proposition). There ezists a unique
Ag-invariant full Heisenberg representation ki, of J(ax,,B) of 0k, satisfying

Cry(@r,) C Ker(det(kk,)) and wr, € Ker(kg,), (3.7.2)
such that for any h € pJ(ak,,B)(wr,) and any (o € pi, which is Gal(Ko/Fy)-regular,

tr(k,)(h) = e, (i) - €k, (i) (Go) - tr (o) (oh).

(cf. Example Moreover the map I%O/Fo P Ko — KK, gien above induces a bijection from the
set of full Heisenberg extensions of 0y satisfying to the set of full Heisenberg extensions of Ok,
satisfying .
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Using [BH14b|, §9.1, Proposition, the following unramified automorphic induction is bijective:
AKO/FO : Ao\.A(l)(Ko, @KO)Ao—reg — .Ag.b(Fo, @0),

where O, denotes the endo-class of O, and Ag\AY(Ky, Ox,)>°"" denotes the Ag-orbits of A-
regular representations in A?(K 0, OK,). Thus we may choose 7, to be a supercuspidal representation
of Gk, containing 0, such that 7o = Ak, /r (Tk,). Let (J(ak,,B), AKk,) be an extended maximal
simple type compactly inducing 7g,. By Corollary there exists a unique tamely ramified char-
acter £, of TOm, such that Ak, = K1, - (§xo © Ny, /To.m)-

Theorem 3.7.6 ( [BH14b|, §9.1, Unramified Induction Theorem, §10.7, Corollary). There ezists a

Ao-fived tamely ramified character py, Ko/Fo

Example (3.5.2 -)

() By = bz, )

(2) ,u(,oo/ (wr) = %Ko 7 (@TR)" n([Ko:Fol=1)/2 — (1) [Bom:Kol([Ko:Fo]=1) "yyhere Ko/ 15 @ primitive
character of Fy* /[Ny, /p (Kq);

(3) For wr, a uniformizer of Ty lying in Cr,(wpg,) and Ly = Fy[wr,],

of T, Om uniquely determined by the following equations (cf.

Ko/F, :
MQOO/ O(WTO)[EO'TO] =d- €Ko (wT()) " €F, (wTo) : E%O (“’To,m) : 6%0 (I'I’TO,m)7
whe,r,e d/ — %KO/FO (wFO)n([KotFo}*l)[EotTo]ﬁ — (_1)[E0’m:K0}([KOZFO]*:[)[EO:TO}.
More importantly for any & and €k, as above, &y is Ag-conjugate to Ex, - ,uéio/FO
Remark 3.7.7. In the original statement of [BH14Y|, §10.7, Corollary, the sign d’ is not explicitly
given, which is actually a simple corollary of ibid., Transfer Lemma (Using the exact value of d given
in the last paragraph of its proof), (10.4.9), (10.5.1) and (10.6.3).

3.7.1.3

Finally we consider the automorphic induction in the maximal totally ramified case, that is, we assume
that n = d and Ey/Fj is totally ramified. Thus we have m = 1, Ey = Ey,, and Ty = Tp . Let Arg,
be the centralizer of Ty in Ap, and let G, = A:,Xb. Similarly we define ar,, [az,, 8], H'(ar,, 3) and
9T0 = QO‘Hl(ﬂTO B)s where 9T0 is the To/Fo—lift of 90.

Proposition 3.7.8 ( [BH14b|, §5.3, Proposition, §5.6, Lemma 2). For kg a full Heisenberg represen-
tation of J(ag,3) of 0o, there exists a unique full Heisenberg representation kr, of J(ar,, ) of Or,,
such that (cf. Ezample[3.5.2)

tr(k) () = eny/m, - tr(ko)(2)

for any x € J(ag,, ) such that vy, (detp, (x)) is relatively prime to t = [Ty : Fy|. The map l%/FO
Ko — K7, given above is a bijection between full Heisenberg representations of 6y and that of Or,.
Moreover,

Cr,(wr,) C Ker(det(ko)) and wg, € Ker(ko)

if and only if
Cr,(wr,) C Ker(k,).

Remark 3.7.9. In the mazimal totally ramified case, by definition (J(ag, ), ko) is actually an ex-
tended maximal simple type containing 0y, and every extended mazximal simple type containing 0y is
of this form. Similarly, (J(ar,, ), k1,) ranges over all the extended mazximal simple type containing
01, when K1, ranges over all the full Heisenberg representations of 0, .
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Since Tp/Fy is not always cyclic (not even Galois), we cannot use the construction of Henniart-
Herb [HH95| to define the automorphic induction Az /g, However in §4.3. we gave the definition
from the Galois side instead. We denote by Wg, the Weil group of Fy and by Wr, the Weil group
of Tp regarded as a subgroup of Wg,. Since Tp/Fp is tamely ramified, we denote by Pr, = Pr, the
wild inertia subgroup of Wg, (resp. Wr,) and we denote by 7/5F0 = 73To the set of equivalence classes
of smooth irreducible representations of Pr, = Pr,, which naturally endows with a W, (resp. Wr,)-
action. By |[BH14b|, §6.1, Ramification Theorem, there exists a unique a € 73T0 such that W, -a = «
and the following bijection is induced from the ordinary local Langlands correspondence:

LLCTO : g?(Tﬂv Ck) — A(lj(TOa ®T0)7

where G)(Tp, o) denotes the set of irreducible representations of Wy, whose restriction to Pr, contains
o with multiplicity 1. Since « can be naturally regarded as an element in 73F0, thus as an orbit
in WFo\ﬁFo» by ibid., §6.1, Ramification Theorem and §6.2, Proposition, the following bijection is
induced from the ordinary local Langlands correspondence:

LLCFO : g?(F(],OZ) — .A?(Fo, @0),

where GY(Fp, ) denotes the set of irreducible representations of Wy, whose restriction to P, overlaps
with the orbit a € Wg, \Pr, with multiplicity 1. By ibid., §6.3, Tame Parameter Theorem and §1.5,
Proposition, we have the following bijection:

IndTo/Fo : Q?(TO, a) — g?(Fo, a).
Combining these together, the automorphic induction Ar, /p, leads to a bijection
ATO/FO : A?(T(J? @TO) — A(I)(Foa @0)7

such that the following diagram is commutative:

LC
G0(Th, @) == AY(Th, O1,)
IndTo/Fol lATo/Fo
LLCk
GV (Fy, ) = AY(Fy, ©p)

We fix k¢ as a full Heisenberg representation of 6y and we let k7, be the full Heisenberg representation
of O, given by Proposition Let my be a supercuspidal representation of G, containing 6y, or
in other words, mo € AY(Fp, ©p). By Corollary there exists a unique tamely ramified character
&y of Tj such that

. .G N
lndJ(I?O’ﬁ)(HO . (50 o NEO/TO)) = 7.

We choose m7;, to be the supercuspidal representation of G, containing 07, such that Az /g (71,) = 7o.
Still by Corollary there exists a unique tamely ramified character &7, of T, such that

. .G N
ind (g, 5 (K1 - (€ © Ny/m,)) = 7y

Proposition 3.7.10 ( [BH14b], §8.2, Corollary). There exists a unique tamely ramified character

NZ,E/FO of Ty depending only on the endo-class of O, such that & = &, ',ueTg/FO.
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We further let Ly be a subfield of Ty over Fy, let Ar, be the centralizer of Ly in Ag, and let
Gr, = Azo. We define ar,, [ar,,3], H'(ar,,) and 0, = 90|H1(C‘L07ﬁ) in the similar way. By
definition 07, = 0] H (ary,B) and by Proposition with Fy replaced by Lg, there exists a full
Heisenberg k1, of 0r,, such that

tr(kry ) (2) = ery/r, - (K, ) (2)

for any = € J(ag,, ) such that vy, (dety,(z)) is relatively prime to [Ty : Lo]. Thus we have the
following corollary of Proposition [3.7.§

Corollary 3.7.11. For kg as a full Heisenberg representation of J(ag, 3) containing 6y, there exists
a unique Heisenberg representation K, of J(ar,,3) containing 0r,, such that

€ry/Lo " T (KLy) (%) = €qy/p, - tr(K0)(7)

for all x € J(ag,, B) such that vy, (detr,(x)) is relative to [Ty : Fy|, and the map aZO/FO DKo K,
given above is a bijection between full Heisenberg representations containing 6y and those containing
01, Moreover for wr, a uniformizer of Ly such that Cr,(wr,) = Cr,(wL,),

Cr,(wr,) C Ker(det(ko)) and wg, € Ker(ko)

if and only if
Cr,(wr,) C Ker(det(kr,)) and wr, € Ker(kg,).

With Fj replaced by Lo, we similarly consider the bijection A/, : ATy, 01,) — A (Lo, OL,).
Using Propositionwe have A, /ry = ALy /F°AT, /1, @ a bijection from ATy, ©1,) to A (Fp, Op).
We denote by 7, the supercuspidal representation of G, containing 01, such that Ay, (77,) = 0.
Thus we also have Ag /r,(77,) = 7L, By Corollary there exists a unique tamely ramified char-
acter €1, of T, such that

. .G N
lndJ(LaoLovﬁ)(nLo +(€ro © NEO/TO)) =TLo-

/Lo of
0
Ty¢. When Lo/ Fy is cyclic of degree I, we fix a related transfer system (oo, 51, /r,, €1), and we consider

Using Proposition [3.7.10| with Fj replaced by Lo, we may define a tamely ramified character ,ugg

AL()/Fov Aio/Fo’ A%U/Fo and 5L0/F0 as in §342

Proposition 3.7.12. For Lo/Fy cyclic and of prime degree 1, there exists a unique tamely ramified
character XQLOO/FO of Ty such that

xﬁOO/F° (detr, (ho)) = eny L, - €1/ 'CgLOO/FO 01,/ (ho) (3.7.3)

for all hg € J(ar,, B) with vy, (dety, (ho)) relatively prime to n, where chO/FO

Theorem [3.4.5. Moreover we have

1s the constant occurring

€ = €L, 'XgOO/FO and MZ):;)/FO _ MgESLO 'XgOO/FO-
Proof. This proposition is morally [BH14b|, §8.9, Corollary, except that in loc. cit. they assume [ to
be the largest prime divisor of |T'g|, where Ty = Aut(7y/Fp). We explain how this assumption can be
weakened to our settings.
As indicated in ibid., §8.6, for any v € 'y we may choose g, contained in the normalizer of T, in
G R, such that g’ l2g, = 27 for every z € Ty and det(g,) equals 1 or —1. Thus

Y %LO/FO(det(gfy))
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is a character of I'g of order dividing 2. By definition, s is trivial except when
=2, ¢g=3(mod4) and [Ty: Fy] =|To| =2 (mod 4). (3.7.4)

Using the same argument of ibid. (8.7.3), we may prove that

€T/ Fo Z X@O/ *(detry (hy)) - tr(mry ) (hg) - 2(v) = eny L, - / - 0r4/F (ho) Z tr(mr, ) (hy)
Y€l ~v€lo

for any elliptic hg € J(ag,, 5) such that vy, (detr, (ho)) is relatively prime to n. When the condition
3.7.4) fails, as in ibid. §8.7. we deduce that XLO/FO(detTO(hO)) = Xgo/Fo (detp, (hy)), and xj 0/FO|MT0
and s are trivial. When the condition holds 210 ) Fo (— 1) = —1 and s is a character of order 2.
By ibid. §8.8, Lemma 1 and Lemma 2, we deduce that XHO/FO |ur, is of order 2 and XgOO/FO(detTO(hO)) =

Xgo/ %(detr, (hy)) - 3¢(7). Thus in both cases we have

€Ty/Fo 'XeLOO/FO(detTo(ho)) > tr(rr)(BY) = enyyr, - / 810/my (o) D tr(mry ) (1))

v€lo velo
Thus for those hg satisfying > tr(7r,)(hg) # 0, we have
Lo/F L
XeO/ *(detr, (ho)) = €ry/F, ~ €10/L0 ° / - 0r,/r (ho)- (3.7.5)

Finally for any hj, € J(ag,, ) with vp, (detr,(ho)) relatively prime to n, by ibid. §8.1. Corol-
lary we may choose ho € J(ar,, 3) elliptic, such that »° tr(mr,)(hy) # 0 and vy, (detyy (ko)) =
vy, (detqy, (hy)). Using ibid., §8.5 Transfer Lemma, the last paragraph of §8.7 and §8.8 Lemma 1, we
have

L L
8101 (h0)/ 810 /1, (1) = x5! ™ (detry (ho)) /x5! ™ (detr ().
Combining with (3.7.5) we have

XgO/FO (detTo (hé])) = €Ty /Fo " €To/Lo L / 6L0/F0 (hO)

which finishes the proof.
O

Corollary 3.7.13. When 1 is odd, for p # 2 the character Xgoo/FO defined above is trivial, and for

Lo/Fy LO/FO( EOZTO]) -1
0

= 2, the character x,, is unramified such that x

Proof. First we have the following lemma:

Lemma 3.7.14. Forl odd, wg, a uniformizer of Ey such that w%o/wFo € 14+ pg, and a an integer
relatively prime to p, the value &r, /p, (w%o) is independent of a.

Proof. Let E\/Fy be a Galois extension containing Ep and all the n-th roots of unity. Using the
calculation in [BHO5a|, Lemma 4.5, we may prove that

N a an(l—1 2l
Ary/r (@) = Fo( ) € 1T ug,

where II is the product of certain differences of two different n-th roots of unity as an element in Ej
independent of a, whose exact expression is not important here, € is a sign and ug € 1 + p E)- Thus

e; - IT-ug is an element in F'*. By definition A}Lo/Fo (w,) =1 and

a an(l— l
A%O/FO (WEO) = Lo/ Fo (WFO( DA €) - %Lo/Fo(el 10 - ug).
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Since wr, € Ny, (1) and 1 is odd, sep, /5, (w%(l*l)/m -€) = s,k (€) = 1. Moreover since s/,

is tamely ramified, s /g, (e - I1 - up) is independent of ug, and thus independent of a. Thus

Oro/r(@E,) = 1o m (€1 - 1L - up)

is independent of a.
O

As a by-product of the proof of Proposition [3.7.12[, the character xgo(’/ Fo i unramified when 1 is

odd. If p # 2, we choose h1 = wg, and hy = w%o, then using the above lemma and Proposition|3.7.12

we obtain XOLOO/ Fo(detTO(hghfl)) = 1, meaning that XQLOO/ o is trivial on a uniformizer of Ty, thus it is

trivial. For p = 2 and [Ey : Ty] = 2%, the case s = 0 is trivial. And for s > 1, we choose h_; = wEOl

and h; = wp,, thus using the same argument we get xﬁg’/ Fo (detr,(h1h~1)) = 1, which implies that

Lo/ F{
o P (w?) = 1.

O
When [ = 2 correspondingly we have:
Corollary 3.7.15. For |l = 2, the character XgOO/FOIMTO is of order 2.
Proof. Tt follows from [BH14b|, §8.8, Lemma 1.
[

/

Corollary 3.7.16. For the character ,ueTg Fo of Ty in Proposition |3.7.1(}, its restriction to pr, is

quadratic.

Proof. We may choose a sequence of field extensions Fy C Fy C ... C Fy, C Tp, such that F;/F;_; is
cyclic and of prime order, and Aut(7y/Fy,) = {1}. Thus by Proposition [3.7.12

k

To/Fo _  To/Fy F;/F;_1
Hoo = Hog, 'HXeFH

)

=1

where 0, := 6y and 0, denotes the interior F;/Fp-lift of 6y. By |[BH14b|, §8.3, Remark, MGTE: B i

unramified, and combining with Corollary and Corollary we finish the proof.
O

3.7.2 Construction in the interior automorphic induction case

In this subsection, we follow the same setting as §3.6.2] We give an exact construction of the full
Heisenberg representation k.

3.7.2.1

When F/Fy is unramified, F' is also a subfield of Ky and Ty. We choose wr = wp, to be a uniformizer
of F. We denote by A, the centralizer of Ky in Ap, and we write ax, = a9 N Ag, as a hereditary
order in Ag,, thus [ak,, 3] is a simple stratum in Ag,. Moreover H'(ar,,3) = H'(ag, ) N Gk,
and O, = 0| H'(aky,0) is the interior Ko/ Fp-lift of §y. Using Proposition there exists a unique
Ap-invariant full Heisenberg representation kg, of O, such that l%o /Fy (ko) = KK,. Moreover Ak,
is also the centralizer of Ky in Cp. By definition, ax, = ¢N Ak,, H'(ak,, ) = H'(c, 8) N Gk, and
0K, is the interior Ko/ F-lift of 6,. Thus replacing Fy by F' in Proposition there exists a unique



THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY 179

K, as a full Heisenberg extension of 6,, such that l”;fo / r(ka) = KK,. This gives the construction of K,

in the unramified case. For ease of reference, we write a}‘f/ £y S R0 = Ka for the above correspondence

which is a bijection between those k¢ satisfying (3.6.1)) and those &, satisfying (3.6.3)).

KK, Ko
0| o

Ka l}?;)/FO F

a’IfJ/'FOT r

Ko F()

3.7.2.2

When F/Fj is totally ramified, we choose wp to be any uniformizer of F', such that wl,/wg, is in
pr, and in particular Cry . (wr,) = Cry ., (wr). We denote by K the maximal unramified subfield of
To,m over F, thus K/Kj is a totally tamely ramified extension of degree . As in the previous case,
we define ay,, [ax,, 8], H (ak,, ) and Ok,. Similarly we write Cx for the centralizer of K in Cr and
we write ¢ = ¢ N Ck, thus [ck, 3] is a simple stratum in Cg. Moreover H (¢, 3) = H'(¢, 8) N Gk
and O = 6a|H1(cK,ﬁ) is the interior K/F-lift of 6,. By definition we also have g = 6K0|H1(c;<,,8)’
which means that 0 is the interior K/Ky-lift of Ox,. By Proposition as above, there exists a
unique Ag-invariant full Heisenberg representation kg, of 6, such that l“KTO IFy (ko) = KK,, which in
particular satisfies (3.7.2)). Since Ey,, = Ko[B] is a totally ramified extension of degree n/[Ky : Fp]
over Ko, by Corollary with Ly = K and Fy = Ky, there exists a full Heisenberg extension kg
of J(c¢k, B) containing 5 such that a?{’/KO(RKO) = K, and in particular we have

Cr,.,.(wr) C Ker(det(kg)) and wr € Ker(kg). (3.7.6)

Using Proposition for [y = F and Ky = K, there exists a unique full Heisenberg representation
Kkq Of 0, satisfying equation 1) such that l%/ r(ka) = K. This gives the contruction of K, in the

totally ramified case. For ease of reference, we write a?ﬁ Ry K0 Ka for the above correspondence,
which is actually in accordance with the notation in Corollary |3.7.11l Such a? /o is a bijection between

those kg satisfying (3.6.1) and those k, satisfying (3.6.3).

at’r‘

K/K
KK -%OK,KO K r Ko
(llf(r/p)_li Tl}%/FO mf‘ ‘mfo
Kg T Ko F r FO
ar/ R

3.7.2.3

In general, we let Fy/Fy be the maximal unramified subextension of F'/Fy. We choose wr, = wg,

as a uniformizer of F; and Fj, and wp as a uniformizer of F' such that wEZFl]/wFO is in pwp. Thus

combining the above two cases together, we obtain ap/p, = a’;f P © Q% /R, A5 bijection between
those kg of 6y satisfying (3.6.1)) and those K, of 6, satisfying (3.6.3))

3.7.3 Construction in the supercuspidal base change case

In this subsection, we follow the same setting as §3.6.1] Our aim is to construct the full Heisenberg
extension K of J(a, 3) of 6.
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Lemma 3.7.17. We may choose wr as a uniformizer of F', and wr, and wr as uniformizers of Tp
and T respectively satisfying wr, € pr,(wr,), @r € pr{wr) and Ny /g, (wr) € pr, (o) -

Proof. We consider a sequence of field extensions Fy C Fy C F» C F, such that for E1 = F1Ey
and FEy = FyFEy, both E1/Ey and F}/Fy are unramified, Fy/F; is unramified and F»/F} is totally
ramified, and both E/FEs and F/F; are totally ramified. We write T} = F1Ty and Ty = FyTy and we
have eg = e(Ty/Fy) = e(T1/F1), and e = e(Ta/Fy) = e(T/F) = eo/[F» : Fi].

Using Hensel lemma, we choose w7, to be a uniformizer of Tj such that wpg, = w%?) (1, for a certain

(1, € M1y, and wp, to be a uniformizer of F» such that wpr, = wgz:Fl]CFQ for a certain (p, € pp,, and

finally wr, to be a uniformizer of 75 such that wp, = w%Q (r, for a certain (7, € pp,. By definition,

(o, /o1,)% = (13, /CRy Cj[ﬂ};z:Fl] which is a root of unity in pr,, thus wy, /wr, must be a root of unity
in p7, which we denote by C{FQ Still using Hensel lemma, we choose wg to be a uniformizer of F' such

that wp, = wE:FQ]CF for a certain (¢ € pr, and wr to be a uniformizer of T" such that wpr = w1

for a certain {7 € pp. Thus by definition, (wg:F2]/sz)e = CTQ/CFCYLF:FQ] which is a root of unity in

pr. Thus wgf 2l /wr, must be a root of unity in pr = pg, which we denote by (/.. By definition we
get wr, € pr,(wrn,), wr € pr{wr), and moreover

Fyo:F(
N1 (wr) = Ng, 1, (N1, (wr)) = N, 7y (0,$7) = NTQ/TO(C%C/TQ)W[TOQ o e wr, (o)

O]

We choose wr, wr, and wr as in the above lemma. For K the maximal unramified subextension
of Egm over Fy, let Ak,, ak,, [ax,, 8], H'(ak,,3) and 0k, be as in the last subsection. Using
Proposition |3.7 .5| there exists a full Heisenberg representation kg, = I, / FO(K,()) of Ok, satisfying

(3.7.2)). For the simple stratum [ag,, ] and simple character fx,, we are in the totally ramified
maximal case, that is, Eo ., = Ko[f3] is totally ramified over Ko of degree n/[Ky : Fy]. Let A, ,, be the
centralizer of Tp , in Ap, and let ag, ,, = ax,NAr, . Thus [ag, ., 8] is a simple stratum in Ag, ,, and
H'(ar,,,,8) = H'(ak,, B)NGx, .. Moreover since Tp ,, /Ky is tamely ramified, 6z, , = 9K0|H1(QTO 8)
is the interior T, /Ko-lift of Of,. Using Proposition for Ty = Tp,m and Fy = Ko, there exists a
unique full Heisenberg representation kg, = l% /Ko (ki) of O, ,, satisfying

HTO,m <wT0> = CTO,"L (wFO) C Ker(RTOJn) (377)
The composition of the two maps given above

Lur lt'r
Ko/Fo To,m /Ko
I

Kot KK, KTo,m

is a bijection between those k¢ satisfying (3.6.1) and those k1, ,, satisfying (3.7.7).
The above argument also works for [a, 5] and 6,. Let Ax be the centralizer of K in Ap. We

similarly define ag, [arx, 3], H'(ax, ) and 0k = 0| ax,3)- For any full Heisenberg representation
Ky of J(a,B) of 6, satisfying (3.6.2)), by Proposition with Fy = F and Ky = K, there exists a
unique full Heisenberg representation Ky = l“KT/ 7 (Ky) of O, which satisfies . For [ag, 8] and Ok,
we are also in the totally ramified maximal case. We similarly define Ar, , ar,, [ar,,, 3], H'(ar,,, )
and 07, = HK\Hl(aTm ,8)- Thus by Proposition with Fy = K and Ty = T}, there exists a unique
full Heisenberg representation Ky, = lf_,fm / i (kK) of 07, satisfying

KT, <7DT> =Cr, (wF) C Ker(szm). (3.7.8)



THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY 181

The composition of the two maps given above

Jur ltr
K/F Tm /K
Kp KKt RrT

m

(3.7.9)

is a bijection between those Ky satisfying (3.6.1) and those k7, satisfying (3.7.8). To connect the two
sides, we need the following lemma:

Lemma 3.7.18. We have 01,, = (01,,,)s, where (01, ,,) is the simple character in C(ar,,,3) con-
structed by the procedure in §3.6.1. In particular, the endo-class of Or,, is the Ty, /Tom-lift of that of
01, ., -

Proof. We write Ap, = Endp,(E,) and dy = ag,(En) as a hereditary order in Ag,. From the
construction, we have

_ _ ((4B
01,, = (O)1,,, = ((t,, 5,(00))F)T,,-
Using Lemma for the tamely ramified field extensions T, /F/Fy and T,,/To m/Fo, we have

Or,, = ((Itfo;c;0 (00))F)T,, = (tfmao(@o))Tm = ((t - (00)) 10, )Ton-

a0, do
On the other hand, we write gTo,m = Endr, ,,(En) and ar,,, = ag, . (Ey) as a hereditary order in
At .- From the construction, we have

Orp)e = (2~ (01,,))7,.-

aTO,m ’uTO,m

Using Lemma for F = Fy, L = Tym, a = ap and a = dp, combining with the fact that
(aO)TO,m = aTO,m and (EO)TO,m = ETO,m ’ we get

£ (O75,) = (£ 2. (00))75,,n-

0'TO,’m ’aTO,m

Combining these equations together, we finally get (61, ,,)» = 0,

m*

O

Remark 3.7.19. To sum up, we actually proved that each block in the following diagram is commu-

tative:
B

t7 " ‘ 1
Clap, ) —— 2"~ (@, B) —"—~C(a, )
H1<aT0,m,B>i |H1<ETO,m,B>JJ |H1<uTm,5>i
C(uTO7m7ﬂ) ﬁc(f&ToﬁmMB) |H1( 5 C(aTmHB)
ar,,

aTO,m’aTO,m

Combining this lemma with Theorem for the extension T}, /T m, we choose K7, to be the
unique full Heisenberg extension extending 07, , such that

.Gy . Gr,,
BCTm/To,m (1ndJ(£T07m75)(""To,m)) = lndJ(q;Tmﬁ) (K'/Tm)’

By Corollary such k7, satisfies (3.7.8). Thus by (3.7.9) we get the corresponding full Heisenberg
representation ky of 6, which satisfies (3.6.2)). The map kg — K; given above is a bijection between
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those ko satisfying (3.6.1)) and those ky, satisfying (3.6.2)), which we denote by bp/p, for ease of

reference.
bTm/TO,m

r
KT, = KTy m T TO,m
("Trm/x)*ll Tl%%,m/KO e E
KK KK, K Ky
(luKT/F)il\L Tl%/FO mf ‘ ‘mfo
Ky <—Kg F " FO
F/Fo

3.7.4 Construction in the exterior automorphic induction case

In this subsection, we follow the same setting as §3.6.3] We will construct the full Heisenberg extension
Kq in the exterior automorphic induction case.

3.7.4.1

First we consider the case where E/Ejy is unramified and we follow the setting of We write K
for the maximal unramified subfield of Tj ,,, over Fy and we denote by A, the centralizer of Ky in Ag,.
As before we define ag,, [ax,, 3], H'(ak,,3) and Ok, = 60|H1(af<0,6)' Similarly we write K for the
maximal unramified subfield of T}, . over F. Thus K is a subfield of K by noting that Tom = Ty, /r,
and in particular Ky = K if and only if F//Fy is unramified. Regarding K/Fj as a tamely ramified
subextension of Tp,,/Fy, we may denote by Ax the centralizer of K in Ap and we may similarly
define ag, [ar, ], H'(ak, ) and Ok = 00| 11 (age,8)- Thus by definition Or,|p1 (a5 = Ox, meaning
that O is the interior K /Ky-lift of O, .

On the other hand, we denote by Cg the centralizer of K in Cr. Thus ¢x = ¢g NCk is a
hereditary order, and [cx, 5] is a simple stratum in Ck. By direct definition, we actually have Ax =
CK = EndK(E07m), g = Cg = ClK(E07m). Using Lemma we have 9[{ = aa‘Hl(cK,,B) as the
K/ F-interior lift of 6,.

We choose wp to be a uniformizer of F, such that w;(F/ Fo) Jwr, is in pp. In particular we
have Cry ., (wr,) = Cr,,, (@wrF). For kg a full Heisenberg representation of 6y satisfying , by
Proposition there exists a full Heisenberg representation rr, = lj / Fo(no) of Ok, satisfying
. Then using Corollarywith Fy = Kgand Ly = K, we get a full Heisenberg representation
KK = atlg/KO (KK,) of Ok satisfying

Cr,,,, (wr) C Ker(det(kg)) and wp € Ker(kk). (3.7.10)

Finally using Proposition again, there exists a full Heisenberg representation &, = (l“KT/ F)_1 (KK)
satisfying (3.6.4). Thus we obtain a bijection from those k¢ satisfying (3.6.1]) to those K, satisfying

(D which is denoted by ea}?) Py

tr

KK f/fo
REK <70K/KO K K()
(qu(r/p)fli TVIL(:)/FO mf/r ‘mfo
T
K eaT KQ F— FO
F/F,

3.7.4.2

Then we consider the case where both E/Ey and F'/Fj are totally ramified. Using Lemma|3.7.17|(which
also works for our settings here), we choose wp as a uniformizer of F', and wr, and wr as uniformizers
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of Ty and T respectively satisfying wr, € prn (wn,), wr € pr{wr) and Npq (wr) € pr, (wr,). Let
K\ be the maximal unramified subfield of Tj ,, over Fy and let K be the maximal unramified subfield
of T,/ over F. Then for K' = K Ky as a subfield of Ey,, both K'/Kq and K'/K are cyclic extensions
of degree r. The former is totally ramified, and the latter is unramified.

Let [ag, 3], 0o be given as before. Still we write Ak, for the centralizer of Ky in Ap,, and we
define ar,, [arx,, 3], H'(ak,, ) and Ok, = 90|H1(QK0’5) as before. We write Ag, = Endg,(E,,) and

Ak, = ax,(Ep) its hereditary order. Thus [dg,, ] is a simple stratum in Ag, and we denote by
gKO the tranfer of §, which is a simple character of H'(ag,, 3). Furthermore we write Ag for the
centralizer of K’ in A K, and agr = ag, N Ak for its hereditary order. Thus [ag-, 3] is a simple stratum
in Ag» and H'(ag+,3) = H'(ag,, B) N Ggr. Moreover gKO‘Hl(a/”B) is the interior K’/Ky-lift of O, .

On the other hand, let Cp, ¢, [c, 5], 0, be defined as in §3.6.3|in the case where E/Ej is totally
ramified. We write C for the centralizer of K in Cr and we may similarly define ¢k, [cx, 8], H (¢x, B)
and Ox = Ou|p1(c,c ). We write Cy = Endg (Fy,) and ¢ = ag(FEy,,) its hereditary order. Let O
be the transfer of 5 which is a simple character of H!(¢f,3). Furthermore we write Cy for the
centralizer of K’ in éK and ¢ = ¢x N Ok for its hereditary order. By definition we actually have
Cxr = Agr = Endg/(Ey,), cxr = agr = ag/(Ep) and [cgr, f] = [agr, 5] as a simple stratum in Ag.
Then 6| H1(c;r,8) 1S @ simple character which is the interior K'/K-lift of Ok .

Lemma 3.7.20. We have 5K0|H1(aK/,B) = 5K‘H1(cK/,B); which we denote by Ok as a simple character
Ole(aK’wB) = HI(CK’aﬂ)'

Proof. From the construction, we have

Orolm (0 8) = thO,aKO (Oro)| 1 (aper,8) = (thO,aKO (Or0)) K-

Using Lemma for F = Fy, L = Ko, a = ag and a = ap := ag,(E,,), and noting that (ao)x, = ax,
and (ap)x, = 0K, = ax,(En), we get

Recall that ¢o := ag,(Ey,/r) is a hereditary order in 5’F0 := Endg, (E,,/,). Using the transitivity of
the transfer map, we have

B B __ 4B —. 0

t~07»&0 (tuofo (00)) - tﬂoﬁo (90> =: o
as a simple character in C(dp, ). Using Lemma for the tamely ramified extensions K'/Ky/Fj
and K'/K/Fy, we get

((B0) o) i = (B0) i = ((B0) i) .

Combining these equations together we get

Ok mr1 (ayor ) = (B2 = (00))K) 7

0,40

where by definition 9~6 = tf .7, (00) is a simple character in C(co, ). We use Lemma [3.2.2| for another

time with F' = Fy, L = K, a = ¢y and ap, and noting that by definition (¢p)x = cx = aK(Em/r) and
(a0)x =tk = ag(Emy), we get

thus N
Okol mri (e ) = (17 = ((t2 ~ (00))K))xc-

[9:¢15¢ ao0,¢0
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On the other hand, by definition we have

Ok | egerp) = (8 2 (0) ) = (8 (0 = (00)) ) k) -

Using Lemma with the tamely ramified extensions K/F/Fy, we get

(t = (00))i = ((t = (60))F)
which finally shows that N N
9K0|H1(aK/,ﬁ) = 9K|H1(ch,ﬁ)'
O

Remark 3.7.21. In the above proof, we actually showed that each block in the following diagram is
commutative:

B
Cla0,B) e, 8) — D (e, ) KD (e, )
) b ) b
B B
tﬁ 0,80 ‘ CKHICK
7~ o~ 1 T 3
i agey ) o C(ao, B) e Clek, B)
y l'HHHKO,m | ilHl(cKuB)
AR 0K - Hl(cp.r,8)
C(aKmB) #>C(af(o75) = C(CK’76)

Given kg a full Heisenberg representation of 6y satisfying , by Proposition we obtain
a Ag-invariant full Heisenberg representation K, = Iy /Fy (ko), where Ag = Gal(Tp,/To). Then
using for the unramified extension K’/Kj, we obtain a full Heisenberg representation kg =
by K, (KK,) of 0. In particuler, such K satisfies

Cr, (wr) C Ker(det(kgs)) and wp € Ker(kg) (3.7.11)

We use §3.7.3| again for the unramified extension K’/K to get a unique full Heisenberg representation
of O, such that by /x (ki) = K. Finally using Proposition for the unramified extension K/F,
there exists a unique full Heisenberg representation &, of 6, satisfying 1) such that l}*(’"/ p(Ka) = KK
We denote by ea?ﬁ/ r, the above map from those full Heisenberg representations g satisfying l)
to those full Heisenberg representations k, satisfying (3.6.3]). From the construction it is a bijection.

KK/ IM} KK, K’ . K()
(bK//Krll r
KK Yy mo K mfo
(l%/p)*li mf/r
Kg DT Ko F " FO
F/Fy

Remark 3.7.22. In defining a%FO, a’;f/Fo, ar/ry; br/ry, ea,}fl}po and eaif/FO, we always precise the
uniformizers wr, and wr at the beginning, however the definitions of those maps do not rely on our
choice of the uniformizers. It is because those maps are combinations of the bijections between the
full Heisenberg representations considered in Theorem[3.7.1], Proposition[3.7.5 and Proposition[3.7.8,
whose definitions are independent of the choice of the uniformizers.
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3.8 Proof of the main theorems

In this section, we prove the results mentioned in section [3.6

3.8.1 Interior automorphic induction

We follow the setting of §3.6.2] and §3.7.2] and we will prove Theorem

3.8.1.1

When F/F, is unramified, by §3.7.1.2] we choose 7k, to be a supercuspidal representation of Gk,

containing O, such that Ay, p(7x,) = 7. Since Ap/p, 0 Ag,/p = Ak, R, by Proposition (2),
we also have Ay, /p, (Tk,) = 0. Moreover by Corollary there exists a unique Ag-regular tamely

ramified character €k, of Ti,, such that

K, = deé&O,ﬁ)(’ﬁKo ~(€xp © NEO,m/To,m)).

Using Theorem [3.7.6| for Ko/Fy and Ky/F, both & - (uéZO/FO)*l and &, - (/LQKGO/F)*1 are in the same

Ag-orbit as €x,. Thus

F/F Ko/F\— Ko/ F
e A

as a tamely ramified character of T, satisfies the condition (1) of the theorem.

3.8.1.2

When F/Fj is totally ramified, we choose 7, to be a supercuspidal representation of G, such that
Ak, /7 (TK,) = o Since K/Kj is totally ramified, by §3.7.1.3| we choose 7 to be a supercuspidal
representation of Gk containing 0k, such that Agx, (7k) = Tk,. Since

m0 = Agy/m (Ak /Ko (TK)) = Ak /ry (TK) = Apypy (AR /F(TK))

by Proposition .(2), Ag/r(TK) equals 77" for a certain i. Moreover, the endo-class of Ag/p(TK)
must be that of 0,, thus we have Ag/p(7x) = 7'. By Corollary there exist unique tamely
ramified characters g, and §x of T(fm7 such that respectively

~Y 3 G ~
Ty = ind (0 p(wKo - (€ro 0 Ngg o my,,) and mg = md?{ﬁK g (ki (€x o Ngy L my,)-

Using Theorem for Ko/Fy and K/F, we deduce that & (resp. &,) is in the same Ag-orbit as

€k, - ,ugio/FO (resp. &k - uéi/F). Moreover by Proposition [3.7.10| for Ty /Ko and Ty /K, we have

Tom/Ko s Tom K-
€Ko:€K'M92’0/ * (g, )1, Thus

F/F, K/F\_ To,m/K\— To.m/Ko  Ko/F
L T I I R T

as a tamely ramified character of Ty, satisfies the condition (1) of the theorem.

3.8.1.3

In general, we consider the extensions F'/F;/Fy, such that F;/Fpy is unramified, and F/Fj is totally
ramified. In this case, the character
F/Fy F/F Fy/Fy

a¢90 = aﬁbgFl : aﬁbgo

satisfies the statement (1), where 6p, denotes the interior Fj/Fy-lift of 9. Moreover the statement

(2) follows from Theorem and Corollary [3.7.16
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3.8.2 Base change in supercuspidal case

We follow the setting of §3.6.1] and §3.7.3] and we will prove Theorem [3.6.2] By §3.7.1.2] and §3.7.1.3]
we choose 7k, to be a Agp-regular supercuspidal representation of Gk, containing 6, such that

Ak, /r (TK,) = mo, and then 77, . to be a supercuspidal representation of G, ,,, containing 7, ,, such
that Ag, ko (T10,,) = Tk,, Where Ag k., is defined as in since Ty /Ko is not necessarily
cyclic. We write 77, = BCr, /7, (71,,,) for the base change of 7, ,, which is a supercuspidal
representation of Gr,, by Corollary and we write mx = Ag, /k(7r,,) for the automorphic
induction of 77, defined as in as a representation of G . Using Proposition m(?)), we have
7 = BCk/k,(TK,) which is supercuspidal by Corollary Still using Proposition (3) we
have m = Ak /p(7K).

Now it is not difficult to study the relation between &y and &,. By Corollary we choose &k,
and £k to be the unique tamely ramified characters of Tofm and 7% respectively, such that

md

TK Jaxey 8) o+ (60 © N 7y ,)  and - e = ind(J;(’flKﬂ)(HK - (€x o Ng,/1,.))-

Ko

And similarly we choose &7y, and &7,, to be the unique tamely ramified characters of Tofm and T)%
respectively such that

TrTO,m 1ndJ(aT0 m ,B) (K"TO m (ETO,m ° NEO,m/TO,m)) and Tl = lndJ(aT B) (K’Tm : (ETm o NEm/Tm))

Thus by Theorem [3.7.6, &y equals &k, - ,ug?/ Fo up to a Ag-action and &, equals £ - ug(/ F up to a
A-action. Moreover by Proposition [3.7.10, £k, = &1y, - ugf(m/KO and £ = &1, - 1 Tm/ . Finally by

Proposition 3 &1, © N1, /13,0 = €75, Combining these together, if we write

F/Fo _ , K/F Tm/K Ko/Fo  Tom/K
by = 1y, - hgr )T (g O'Meio ) o Nz, /T

then & - b¢,9/ ® and & oNp /To. are in the same A-orbit, finishing the proof of statement (1) in this
case. The statement (2) follows from Theorem and Corollarym

3.8.3 Exterior automorphic induction

Finally we follow the setting of §3.6.3]and §3.7.4] and we will prove Theorem and Theorem [3.6.8

3.8.3.1

First we consider the case where E/Fy is unramified. Let mx be a supercuspidal representation
of Gk containing 0 such that Ax p(rx) = 7', Let g, = Ag/k,(Tx) which is a supercuspidal
representation of G, containing r, by Proposition and [BHO3|, Theorem B. By Proposition
3.4.9{(2), we have

To = AF/FO (AK/F(WK)) = AKO/FO(AK/KO (mK)) = AKo/Fo (TKo)-

By Corollary we choose €k, (resp. €x) to be a tamely ramified character of Tofm =T*, such

m/r
that

TK, md ( 5)(14;(0 (€k, © NEo,m/To,m>) (resp. mx = ind?{i}(,ﬁ)(ﬁ:;{ (€ o NEm/r/Tm/r)))'

By Theorem [3.7.6| for Ko/Fy and K/F, we have a tamely ramified character ] Ko/Fo (resp. ufa/ Fy of
K/F

Toom = Tr>r<L/r such that &g, - ugoo/ ® (vesp. & -y’ ) and &p (vesp. &,) are in the same Ay (resp.
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K/Ko

brc, and

A)-orbit. Furthermore using Theorem |3.6.4] for Fy = Ky and F' = K, the characters £k - ¢
&K, are in the same Ag-orbit. Thus if we define

F/F K/F\_— K/K Ko/ Ft
a¢90/ = (Nea/ ) i a¢9K/0 ° 'MQOO/ 0

as a tamely ramified character of T, Ofm, we conclude that &, - 4 50/ Fo and &y are in the same Ag-orbit.

Finally using Theorem [3.7.6] and Corollary we finish the proof of Theorem [3.6.6]

3.8.3.2

Then we assume that both F/Fy and E/Ey are totally ramified and we will prove Theorem [3.6.8
By & we choose 7k to be a supercuspidal representation of Gx = Cj containing #x such
that Ag/p(nx) = ©'. By Corollary mxr = BCgr/i(mK) is a supercuspidal representation of
Ggr = Cj, = Aj, containing .

Lemma 3.8.1. There exists a supercuspidal representation 7, of Gk, containing O,, such that
AKO/FO(TFKO) = T and BCK//KO(T('KO) = TK'.

Proof. We consider the equation

Ar/ (A p(Ark(Ti1))) = Ak ry (Akr 1o (Ti))

which follows from [BHO3|, Lemma 6.2.(2). We choose »g/x, as a character of K; whose kernel is
Ngr/ro (K"™), and g /i as a character of K whose kernel is N/ /g (K'), and s, the character
of Fy satistying »p/p, o Nk, /r, = »#k'/k, Whose kernel is Np g (F*). Using ibid., Theorem B and
(5.1.2), there exists a supercuspidal representation 7} of G, containing f,, such that

/ / / r—1
AK’/KO(T‘-K’) =Tgy X TRy XK'/Kog X - X TR, %K’/Ko'

Let 7 == Ag, /R, (7T/K0) which is a supercuspidal representation of Gg,, thus by ibid. (5.1.1) and the
fact that automorphic induction commutes with parabolic induction for generic representations (see
for example [HH95|, section 5), we get

! / / r—1
Arcoyro (ARt o (T1)) = T X 0+ 3¢5y X oo X TG - 7R/ Fy

as an irreducible representation of Gg,. On the other hand using [BHO3| again, we have
AK’/K(WK’) =TTK X TK * XK' K X oo X TR %;(T}K’

thus
Agy Ak 1k (i) = Apypy (A p(Agr k (TR7))) = mo X TG,
where w9 = Ap/p, (Ax/p(TK)) from the construction and 7§ := Ap/p (A p(TK - K7/ X oo X TK
P . Since the factorization of an irreducible generic representation as parabolic induction o
%o /i) Since the factorization of an irreducibl i tati bolic induction of
discrete series representations is unique, we get my = 7, - %}; /Fo for a certain ¢ € {0,1,...,7 — 1}. Let
TR, 1= 7r’KO : %%’/Ko be as a supercuspidal representation of G, then Ay, g (7K,) = 7. Finally

by [BHO3|, (5.1.2) and (5.1.3), we have BCg /g, (7k,) = Tr-
O
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Choose 7g, as in the lemma. By Corollary we choose €k, (resp. €k ) to be the unique
tamely unramified character of TOX’m (vesp. T /r) such that

". G ~ 4G
TKo = md,]g(;(o,ﬁ)(’iKo (€r © NEo,m/To,m)) (resp. T = md_](fK”B)(ﬂK (ko NEm/T/Tm/T)))

and we choose &5 to be the unique tamely unramified character of 7,% such that

e G
T Zind ;g (Kie - (§x 0N, 1,,.))-
. . Ko/FO K/F X X
Using Theorem (3.7.6] we have a tamely ramified character i, (vesp. py,' ) of Ty, (vesp. T /T)

such that &y (resp. &,) and &g, - ugzo/FO (resp. &k - ,u are in the same Ag (resp. A)-orbit. Since

mx = BCgr/k,(mK,) = BCk//k(7K), by Theorem there exists a tamely ramified character

K'/K K'/K K'/K K'/K
bgbaKé ? (resp. queK/ ) of T.% such that &k - b%xé ? (resp. €k - b¢aK/ ) equals £k, o N7, /7, . (resp.

&k o N, 7, ). Thus if we write

/F)

F/F K/F _ K'JK~_ K'/K Ko/F
a%o/ 0. (/‘aa/ ONTm/Tm/T) 1. (b¢9K/ ) 1, b%xé 0. ('“000/ h) ONTm/To,m)

as a tamely ramified character of 7,7, then ({4 o N7, /7, ) a(ﬁg)/ o and & °Nr,, /13, are in the same

A" = Gal(T,,/T)-orbit, finishing the proof of Theorem (1), and the statement (2) follows from
Theorem and Corollary [3.7.16

3.9 Calculation of bqbg)/ " in the F /Fy unramified case

In the previous section, we proved the main theorems of However, it should be more interesting
to calculate the corresponding characters, which in practice gives the explicit construction of base
change and automorphic inductio In this section, we focus on the calculation of b(ﬁgo/ Fo when F/Fy
is unramified.

The motivation for concentrating on this special case is two-fold. On the one hand, the values of
this character are expected to be simple, since the symplectic signs in the definition compensate with
each others, which is not the case when F'/Fj is not unramified or when we consider the automorphic
induction instead of base change, and which can also be expected from the known results of Bushnell-
Henniart in the essentially tame case [BHO05a], [BHO5b], [BH10]. On the other hand, this special
case is quite useful. For example, it will help us to update the values of the character related to the
Comparison Theorem in [BH14b|, or more concretely the character M;F:,)/ Foin Proposition [3.7.10, which
will be explained in the next section. Here comes the main theorem:

Theorem 3.9.1. When F/Fy is unramified, the character b¢§0/Fo in Theorem |3.6.9 is unramified,

and moreover b(ﬁgo/FO (w’%:)) = (=)D “where t = [Tom = Ko| and [Ey : Ty] = p°.

Remark 3.9.2. In particular when Ey/Fy is totally and tamely ramified, we return to the known
result [BHO5Y|], Corollary 2.3.

From now on until the end of this section, we will follow the settings of §3.6.1] §3.7.3] and §3.8.2]
and we always assume that F'/Fj is unramified.

5More precisely, we still need to admit the explicit construction of the full Heisenberg representation &4 in Theorem
[B71] as a black box. Or in other words, we assume that the explicit construction of base change map in the totally
wildly ramified case is fully understood.
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3.9.1 Reduction to the maximal totally ramified case

In this subsection, we will show that Theorem can be reduced to the maximal and totally ramified
case.

3.9.1.1
Proposition 3.9.3. MéZO/FO o Nz, /Ty = ,ugi/F as tamely ramified characters of T, where Mézo/Fo
and ,ugi/F are defined as in Theorem|3.7.6,

Proof. We use the exact formula of the two characters given in Theorem |3.7.6] By Proposition [3.5.3
r is relatively prime to mfy, thus by definition K/Kj is unramified of degree r, and [K : F| = [Kj :
Fy] = mfo. Moreover since [Ey, : F| = [Eom, : Fo] = n, we have [E,, : K| = [Epp, : Ko]. Thus

Iug(O/FO(wFO) _ (_1)[E0,m:K0}([K0:FO]—1) — (_1)[EmK]([KF]—1) _ ,ug(/F(wFo)
0 b
and

he 1= (_1)[E0,m:K0]([K02F0}*1)P5 — (_1>[Em:K}([K:F]71)pS _. dﬁy

If r is odd, then
(_1)T[Eo,m:Ko]([Ko:Fo]fl) _ (_1)[Em:K}([K:F]71)

and
(_1)T[E0,m:Ko}([KU:FO]—I)pS _ (_1) [Em:K]([K:F]-1)p® )

If r is even, then [K : Fy] = [K : F] is odd and thus
(_1)T[Eo,m:Ko}([K0:Fo]—1) _ (_1)[Em:K]([K:F}—1) -1

and
(_1)T’[E07m:K0]([K():F0]—1)ps — (_1>[Em:K]([K:F]—1)pS — 1

Therefore we have

Ko/F Ko/F r— JIF "
IUHOO/ O(NTm/To,m(wFO)):'U%O/ O(YDFO) :,Ugb/ (YDFO) and d’ :( }70) .

To finish the proof, it is enough to prove the following proposition:

Proposition 3.9.4. (1) ep(pur,,) = €f (W1y,,) © N1\ 1y, 08 quadratic characters of pr,,;

(2) €p(pr,,) = € (0ry )" and €] (pr,,) = €7 (p,,,)", where Lo = Folwr,] for wr, a uniformizer
of Ty lying in Cr,(wr,) and L = Flwr,];

(3) EF(wTo) = €Ry (wTO)T and 6L(wTo) = €Lo (wTO)T'

Recall that all the symplectic signs in this proposition have been defined in Example and
B:3:3] Once this proposition is proved, we further have

Ko/ F K/F
'LLGQO/ 0 o NTm/TO,m|y’Tm = /’Leb/ ‘HTm
and
Ko/ F s K/F s
/’LQOO/ O<NTm/TO,m (wTO)p ) = ’LLab/ (wg—b)’

finishing the proof of Proposition [3.9.3
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3.9.1.2

Thus we only need to prove Proposition We refer to §3.2.1] for the definition of j'(a, 8), ' (a0, ),
bl(a, ), b(ap, B) in the lemma below.

Lemma 3.9.5 ( [BH96|, Proposition 11.14). We have the isomorphisms i(a, 3) = il(ap, 3) ®op, OF,
h'(a,8) = b' (a0, B) @y, 0F andj'(a,B)/b'(a,B) =j' (a0, 8)/b" (a0, B) Ry, k-

We choose {v1,...,,} to be a basis of o as a op,-lattice, such that Trp, g (vivy) = §;; for 1 <
i,j < r, where d;; equals 1 for i = j or 0 otherwise, which is possible for unramified extension F'/Fj.
Thus using the above lemma we have

Ya,8) = Pi'(a0, B) @op, vi and  b( @h (a0, ) @ag, vi (3.9.1)
=1

as op,-modules. Moreover, for any x;,z; € i' (a0, 8), we have

Yr(Trap (B((zi @vi) - (77 @ v)) = (2 @ v)) - (1 @ v;)))) =
Vo (Trag, (B(zir; @ Trpyp, (viv;) — 2521 @ Trpy g (0504)))) = 0ij - Yy (Trag, (Blwiz; — wj2:))-

Combining with we proved that:

Lemma 3.9.6. gives an isomorphism of symplectic spaces over F,:
T
i'(a,8)/0'(a, 8) = EPi' (a0, 8)/b (a0, B) @, Vi (3.9.2)
i=1

where the right hand side is the orthogonal direct sum of j*(ao, 3)/b'(ag, B) Qo Vi identifying with
it(ao, 8)/b (a0, B) as symplectic spaces via x @ v; — .

We study a finite cyclic group I' acting on both sides of (3.9.2)). First we consider I' = (wr,)/(wp,),
where wr, is a uniformizer of Ty lying in Cr,(wp,) and the action on the left hand side is given by
conjugation. We regard j(ag, 3)/b'(ag, 5) @k, vi as a symplectic F,[I'l-module with the I'-action
giving by conjugation on the first coordinate of the tensor product, which is naturally isomorphic to
the symplectic F,[I']-module j! (ag, 3) /b (ag, ). We define the I'-action on the right hand side of
by acting on each summand j'(ag, 8) /b (ag, B) ®k, Vi together. Thus comparing the symplectic signs
of both sides, we get er(wr,) = €, (wr,)", finishing the proof of the first statement of Proposition
3.0.4.(3).

We fix (o a given generator of pr,,, and ¢ a generator of pr,, such that N, 7, (¢) = Co.

Lemma 3.9.7. For (' € purp = ki a generator, o := (o @ ¢’ being regarded as an element in
ur, = ki via the isomorphism kr, Qkp, kr = kr,, satisfies o = ¢* for an odd u.

m

Proof. Recall that q is the cardinality of kg,. Since (y is a generator of pr, ., its order is exactly
g™fo — 1. Similarly the order of ¢’ is ¢" — 1, and thus the order of zq is the least common divisor of
¢ —1 and ¢" — 1, denoted by [¢"™fo — 1,¢" — 1]. To finish the proof, we only need to show that
[¢™/° —1,¢" —1] and ¢™fo" — 1 have the same maximal divisor as a power of 2, which is an easy exercise
by noting that (mfo,r) = 1.

O
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Now we let I' = (x¢) be as a subgroup of pug, for zp as in the lemma above, and we consider its
action on . Still on the left hand side the I'-action is given by conjugation, and on the right hand
side it is given by I' conjugation on each summand j'(ag, 3)/h* (a0, 3) ®kp, Vi together. Comparing
the symplectic signs we have:

12" (a, 8) Htr (a0, 8)/b" (a0, B) @k, v:) (3.9.3)

and

t(" (a, B) Htr (a0, 8)/H" (a0, B) ®k, vi) (3.9.4)
Since (g is a generator of k:TO 1t is easily seen that

krlzo] = kp(Co] = kr,, = kr[(§] = kplxg),

which implies that for T := (z2) as a subgroup of T,

(' (a,8)/8" (@, BN = (' (a, 8) /b (a, 8))" = (' (a, B) /b (a, B)) 17
Thus by Proposition (4) and the equation zg = (* with u being odd, we get

tp(' (0, 8)/b' (o, 8)) - t1(* (0, 8) /0 (a, B)) (w0) = €r(b1,) - €p(b1,)(20) = €p(pir,,) - € (1, ) (C)

and

t2(' (a,8) /0" (a, 8)) - t1(i' (a, 8) /0" (a, 8)) (25) =t (" (a, ) /0" (0, 8)) - 1 (" (0, 8) /b (a, 8)) (x5)
= EF(NTm) : GF(IJ'Tm)(xO) = EF(HTm) ) EF(HTm)(CQ),

which imply that

tr(' (0, 8)/b'(a, 8)) = ep(pr,) and t('(a, 8)/b' (a, 8))(z0) = ek (pr,,)(C)- (3.9.5)

Moreover Z := (:UL“TO ml) = <1®C/|”T07m|> as a subgroup of I acts trivially on j*(ag, 3)/b*(ao, 3) @k, Vi-

And by definition, the symplectic F,[I'/Z]-module j'(ag, 3)/b (a0, ) ®kp, vi is identified with the
symplectic Fp[pr, ,,]-module i*(ag, B)/b'(ag, B) via the group isomorphism I'/Z — M1y To = Co-

Thus by Proposition (3), we have

t2(G" (a0, 8) /0" (a0, B) @y, vi) = €, (B3,
t1(3" (a0, 8)/0" (a0, B) @k, vi)(w0) = €f, (B13,,,) (C0)- (3.9.6)

Combining (3.9.3), (3.9.4)), (3.9.5), (3.9.6]) together, we have

er(bt,) = e (um,,)" and  ep(pr,)(C) = ek (b1,,.) (G0).

So the first part of Proposition (2) is proved, and noting that ( generates pr, and () =
Nz, /7. (€), We further have

6}7'(I'I’TM) - (E:IL:‘Q (I’I’TO,m> 0 NTm/TO,m)T'

When r is odd, we have

6}7‘(I’LTm) = (6};‘0 (/“LTO,m) © NTm/TO,m)T = 6}7‘0 (HTO,W) © NTm/TO,m'
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When 7 is even, ep(pr, ) = (€ (#015,,) © Npyoymyp.)" = 1 and [k, : kg = [Ko : Fo] is relatively
prime to r which is odd. Thus |pr,,,/pr | = kg, /kg | is odd. Using Propositionm(?)), we have

€ (T3, (€0) = th g (00, 8)/8" (00, 8)) (G0) = 1.

implying that

G}v(MTm) = 6%70(HT0,m) o NTm/TOM =1.
Thus Proposition (1) is proved no matter r is odd or even. Finally, for all the symplectic signs
with respect to Ly and L, we use Lo, lar,, ], 0., L, [ar, 5],0r to replace Fy,[ag, 5], 00, F,[a, 3],0s
respectively and the rest of the statements in Proposition [3.9.4] can be proved using the same argument
as above.

3.9.1.3

We finish this subsection by explaining that to deal with Theorem |3.9.1] we only need to deal with the
maximal and totally ramified case. We consider mx,, mx exactly as in §3.8.2| and the corresponding

character bgbé;/KO. Thus from the construction of bgbe/KO and bgbg;/ o there and Proposition [3.9.3 we
0 0
have
F/Fy _ , K/Fy—1 K/Ko Ko/Fo _  K/Ko
b¢90 = (Nab ) b¢aK0 ) (“90 o NTm/To,m) = b¢¢9KO .

So we only need to consider 7y, and mx = BCg/k,(TK,) instead. Then Ko[3] = Ep, is totally
ramified over Ky, thus we reduce the theorem to the maximal and totally ramified case.

3.9.2 A special case of Theorem [3.9.1

From the argument of the previous subsection, from now on until the end of this section we may
and will assume that m = 1 and Ey/Fj is totally ramified in the statement of Theorem
In this subsection, we expect the following result is true:

Conjecture 3.9.8. If F/Fy is unramified, t = [Ty : Fo| is odd and (r,t) = 1, then b(bgo/FO is a trivial
character of T*.

However due to the incompleteness of a key step which we will explain later, we could only prove
the following special case:

Proposition 3.9.9. If F/Fy is unramifed, t = [Ty : Fo] is odd and (r,t) = 1, then bqbg;/FO is an

unramified character of T, and moreover bqﬁg;/Fo (w§2) =1, where p* = [Ey : Tp].

3.9.2.1

We first recall our notations in §3.7.0]and §3.8.2/in the maximal and totally ramified case. Let 0 and 6,
be the simple characters contained in w9 and 7 respectively as before, let 67, be the interior Tp/Fo-lift
of 6y and let O be the interior 7'/ F-lift of 6. For ko a full Heisenberg representation of 6y satisfying
3.6.1]), we use Proposition [3.7.8| to construct the full Heisenberg representation k7, = lél; /Fo (ko) of

01,- And then we use Theorem [3.7.1]to construct the full Heisenberg representation k1 = by 7 (kT ) of
O7. Finally using Proposition again we get the full Heisenberg representation x; = (lgf/ F)_l(K)T)
of 0. In particular, kK, and kK7 are o-invariant.

To calculate bgbg)/ FO, we only need to choose a special supercuspidal representation my. Thus in

. . .G .
particular we assume my = ind J(FC?O )k, or in other words, we assume &y = 1. Thus by Theorem [3.6.2
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we have m = indgfa 6)/42 with K}, == Kp-( bqﬁg)/ FO)_I, where by abuse of notations we identify bgbg;/ Fo with

the corresponding character of J(a, 3)/J*(a, 3) as in Corollary|3.2.5. We write 77, := indg(TfT gyRT, as
0 b

a supercuspidal representation of G, = A;O and 7y = indg(TuT, gykT as a supercuspidal representation
of Gr = A7, so we further have BCr, (71,) = np. For J(ao, ), J(az,, B), J(a, 3), J(ar, ), we will
write Jg,, Jr,, Jp, Jr for short respectively. Similar abbreviation for groups as J }170 and Hfl,ﬂ0 works
without further mention.

By construction the central characters of Ky and K are trivial, thus the central character of mg is
trivial. Using the formula for the central characters of base change, the central character of 7 is also
trivial. From the construction in the maximal case, every extended maximal simple type containing
0, and having trivial central character equals k; twisted by a character of Jp/F XJ}, which is a cyclic
group of order dividing n (see for example [BK93|, Proposition 6.1.2). Thus:

Proposition 3.9.10. bgi)é:)/FO 1s an unramified character of order dividing n.

3.9.2.2

Since K is o-invariant, we fix a representation K, of Jp x ¥ such that Kp|j, = Kp, where ¥ =
Gal(F/Fy). We have the following proposition as a generalization of Proposition [3.7.8|

Proposition 3.9.11. There exists a representation K of Jp X X extending kr, such that

tr(%T)(ga Ui) = 6T/F : tr(E’b)(.gh O'i)
(cf. Ezample[3.3.9) for all g € Jr such that (vr(detr(g)),t) =1 and all integers i.

Proof. We follow exactly the same proof of [BH14b|, §5.3, Proposition. We write ,Jr = ,Jr(wr,)
for the subgroup of Jp such that ,Jr/(wpg,) is the Sylow pro-p-subgroup of Jr/(wp,), and we write
pJr = pJpNJr. Since Cp(wpg,) C F* C Ker(ky), we may view Ky, as the inflation of a representation
of Cr(wr,)/Cr(wr,) X (pJr/(wr,) ¥ X). The group Cr(wr,)/Cr(wr,) = T /o7 F* is of order t,
which is relatively prime to the order of ,Jr/(wr,) % X, thus using the Glauberman correspondence,
we get a representation Kr of ,Jr/(wp,) x ¥ such that

tr(ky)(x,0") = € tr(Ry) (C - (z,0Y))

for any € ,J7r/(wF,), any integer ¢ and any generator ¢ of Cr(wr,)/Cr(wr,). Moreover if we restrict
both sides to ,Jr/(wp,) x {1}, we come back to the trace formula in loc. cit., which implies that
Kr|,0; = k1| ,0; and € = ep/p. We extend Kr trivially to a representation of Cr(wg,)/Cr(wr,) X
(pJr/(wr,) x X) and inflate it to a representation of Cr(wg,) - (pJr/{(wr) X ) = Jr x X, still
denoted by k7. This representation satisfies the condition of the proposition.

O

Since bgbé:)/ Fo is o-invariant and has been identified with a character of J r/ J}p as we explained

before, it extends to a character of Jp x X whose restriction to ¥ is trivial. Thus K} := K- <b¢50 /F0)71
is a representation of Jr x 3 extending k. Let ™ = indif ;ZE Ky, be a representation of Gp x ¥ and

let 7p = ind%?;g KT be a representation of G x X. Thus 7 extends m and 7 extends 7.

3.9.2.3

We denote by Ny (resp. Np) the normalizer of Ty (resp. T) in G, (resp. Gr), and we write I'g =
Aut(Ty/Fo) (resp. I' = Aut(T'/F)). Thus by definition we have I'g = Np, /Gr, (resp. I' = Np/Gr).
The following conjecture is expected to be true in general, although we cannot give a proof.
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Conjecture 3.9.12. Let a be an integer relatively prime to t. There exists an elliptic regular element
ho € Jr, such that

o vp,(detr, (ho)) = vr, (dety, (ho)) = a;

o Fylhol/Fo is totally ramified with To/ Fy its mazimal tamely ramified subextension;

e tr(mo)(ho) = €1,/ Dorery tr(mr, )(h]) #0  (cf. Example .

Instead we will use and prove the following special case:

Proposition 3.9.13. If moreover a is either relatively prime to n, or it is divisible by p®, then the
conjecture above is true.

Proof. When a is relatively prime to n, it is derived from [BH14b|, §8.1. When a = a'p® for an integer
a’, we explain how the similar idea works. Using the principal theorem (which is due to Howe [How77|
when char(Fp) = 0) of |[BHL10|, for any elliptic element h{, € G, sufficiently close to 1, the trace
tr(mo)(hg) is a non-zero constant C'. We choose one such hy, such that Fy[hg]/Fp is totally ramified
of degree n and h{, € J'(a,3), which is possible since J!(a,3) is open. We write hy = w%;h’o as an
element in Jrz,. By definition T} is contained in the centralizer of Fylho|, which is Fy[ho] itself, thus
Fylho]/Fy is a totally ramified field extension of degree n with T/Fp its maximal tamely ramified
subextension, and vy, (detr, (ho)) = a'p® = a. Moreover

€T/ Fo Z tr(ﬂ-To)(hg) =€y /Fy ” - |F0‘ 7& 0,
v€Tlo

and we only need to show that it equals tr(m)(ho). This follows from |[BH14b|, §8.1, Proposition,
whose proof can be adapted here, since in loc. cit. the condition (n,a) = 1 is only needed to prove
Lemma 1 there, which is actually our second condition for hg in our proposition and has been verified.

O

We choose b to be an integer relatively prime to ¢, such that a = br satisfies the condition of
Proposition [3.9.13) We fix hg € J7;, in loc. cit., thus detg,(ho) € Np/p (F) since F)/Fy is unramified
of degree r. Using [AC89], Lemma 1.4, there exists h € G such that Ng/ g (h) = Ng/q, (h) = ho.

Proposition 3.9.14. For h € Gt such that N g, (h) = ho, we have
~ _ F/Fo -1 ~ o
(%) (h, 0) = eqyp - vy, (detr(h) ™ > tr(Fr)(h7, 0),
~v€lo
where Ty is naturally identified with a subgroup of I' = Aut(T/F).
Proof. Using the Mackey formula, we have

tr(m)(h, o) = > tr(Ry) (9~ ho(g), o).

9€Gr/Jr,g~tho(9)eJF

For g 'ho(g) € Jr, we further have NF/FO(g_lha(g)) =g thog € Jp.

Lemma 3.9.15. For g € Gp such that " hog € Jr, there exists y € Np such that yJp = gJr N N,
thus vy (t) := y 'ty for any t € T is an element in I'. Moreover if g~ 'ho(g) € Jp, we further have
Yy € Ip.
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Proof. As indicated in the proof of [BH14b], §8.1, Lemma 2, we may use ibid. §2.6, Conjugacy Lemma
and §5.5, Lemma to choose y € gJp such that y~'hoy € Jp. By definition, T is contained in the
centralizer of y~hoy in Ag, which is F[y~'hgy]. Thus both yTy~! and T are contained in F[hg] and
tamely ramified over F, implying that y~'Ty = T and y € Ny and proving the first statement.
Since h € Gr, the conjugation by y~lo(y) restricting to T equals the conjugation by y~tho(y)
restricting to 7', which gives an action in I'. Since y~tho(y) € Jp = EXJ}, where EX is commutative
with T and J} is a pro-p-group with p relatively prime to |T|, the above two conjugations restricting
to T give the trivial action in I". Thus
_ (-1 -1, —1 _ -1 -1

v=(y oy) ty oy =coyooc oy, (z) (3.9.7)
for all x € T' by direct calculation. In particular, if we consider wr, as a uniformizer of Ty such that
w% = wp, is a uniformizer of Fy, then v, (wr,) = (wr, for a certain ¢ € pp. Choose x = wr, in
(3.9.7), we get o(¢)¢ " twr, = wr,, which means that ( € pg,. Since Ty = Fy|wr,], the restriction of
vy to Ty is in 'y = Aut(7Ty/Fp) which finishes the proof.

O

Using this lemma and Proposition [3.9.11] we further have

tr(m)(h, 0) = > tr(Ry)(y ™~ ho(y), o)

yENT /I,y ho(y)edT

=> > tr(Ry) (g~ ho(g), 0)

v€lo geGr/Jr,g~ tha(g9)edr

=Y > er/r - (v8p, (et (g™ 0 (9))) ! - tr(Rr) (g7 W00 (g), 0)

v€lo geGr/Jr,9g~thYo(g)edr

Lemma 3.9.16. For g € Gp such that g-*hYa(g) € Jr, we have b(ﬁg)/FO(detT(gflh'VJ(g))) =
v0g,  (detr (7).

Proof. First we have Np, g (g7 'h7o(g)) = g_lNT/TO(hV)g € Jr, as a result it is easy to see that
N7z, (g7'ha(g)) = N7/, (R7) (mod J1). We write b7 = w%og (mod J}) for k € N and ¢ € pg, thus
by direct calculation we have N7z, (h7) = Ng/ g, (w%OC) (mod J}.). Similarly if we write g 'ho(g) =
@ ¢' (mod J}) for k' € N and (' € pup, then we have Ny, (97 h70(g)) = N g, (wh ¢') (mod J}).

As a result, we must have k¥ = &’ and N, g, (¢) = Ng,g,(¢’). Since b(b(l;;/Fo is unramified, we have

v, (detr (g™ 10 (9))) = 405 " (Niyr(h, () = 40 (Niyr(,0)) = o6, (detr ().
O
Lemma 3.9.17. We have (b¢£/F°)7 = bcb(];;/FO as characters of T* for any v € T.
Proof. Since the action v maps a certain uniformizer wr to its multiplication with a certain root of
unity, we finish the proof by using the fact that bgbé:)/ o is unramified.

O]

Using these two lemmas and the Mackey formula again, we finish the calculation:
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tx(7)(h,0) = ez/p - (b, " (detr(h)) ™ > > tr(Rr) (9~ ha(g), 0)

v€lo geGr/Jr,9g~thYo(g)edr

= eryr - (s (detr(h) ™Y tr(7r) (A7, 0)
v€lo

3.9.24

We choose hg and h as before. For mg and 7 = BCp g, (m0), using the trace formula of base change,
there exists a non-zero constant ¢ independent of the choice of hy and h, such that

tr(7)(h, o) = ¢ - tr(mo) (ho). (3.9.8)

Similarly for 77, and 7p = BCrp /g, (71;,), using the trace formula of base change there exists a non-zero
constant ¢/, independent of the choice of hy and h, such that

tr(7r)(h,o) = ¢ - tr(rr,) (ho).
For v € o C T', using h} and h" to replace hy and h respectively, we further have:

tr(7r)(hY,0) = ¢ - tr(mg ) (hy)- (3.9.9)

Combining Proposition [3.9.13] Proposition [3.9.14f (3.9.8), (3.9.9) together, we get:

¢ eqyp, - (7o) (ho) = exyp - vy, (det(h)) ™1+ ¢ - tx(mo) (ho),
which implies that
vy " (detr(h)) = er/p - enymy ¢ ¢ (3.9.10)

where vp(detr(h)) = vp(detp(h)) = b is relatively prime to ¢. Since t is odd, for b = p® and b = 2p°,
which in particular guarantee the condition of Proposition [3.9.13|for a, there exist h = hy and h = ho
respectively such that (3.9.10) is satisfied. As a result we get

WL/ o (detr(ha/ha) =1 with  vr(dety(ha/h1)) = p°,

concluding that bd)g)/ Fo (wé’;) = 1 and finishing the proof of Proposition [3.9.9

Remark 3.9.18. If Conjecture[3.9.19 is proved, we may use it to replace Proposition[3.9.13, and then
we may choose b =1 and 2 in the argument instead to prove Conjecture[3.9.8 with the same proof.

Remark 3.9.19. Moreover the assumption t being odd in Conjecture [3.9.8 Proposition [3.9.9 can be
dropped. When t is even, which implies that r is odd since (r,t) = 1, using Proposition . (3) we
have er p = €1, /p,- Moreover we may use the Whittaker model to regularize our choice of Ky and ™
to make sure that c =1 (see [AC89], §1.2.). Then we can show that Kr and Tr are also “reqularized”
by the Whittaker model as extensions of kp and wp respectively, meaning that ¢ = 1. Thus the right
hand side of is 1, and the introduction of ho is avoided whose existence relies on the fact that
(2,t) = 1.
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3.9.3 A reductive procedure when I'; is non-trivial

In this subsection, we consider the case where I'g = Aut(7y/Fp) is non-trivial. We fix a prime number
[ dividing |Tg|. We choose Ly to be the unique cyclic subextension of Ty of degree [ over Fj and we

write L = LoF which is a subfield of T" of degree [ over F'. We write 01, for the interior Lg/Fy-lift of
fp. We want to compare bqﬁé:)/ Bo with b QLL/ Lo More concretely, we will prove the following proposition,
0

which permits us to reduce the degree t = [Ty : Fy] to t/l = [T : Lo] by replacing Fy with L.

Proposition 3.9.20. (;SF/FO -( gZ)L/LD) is an unramified character of T, and moreover
Lo
W (@) - (sl (o)) = (~1)r D=,

3.9.3.1

We choose 77, and 7r as in §3.8.2| (here Ty = 1o, and T' = T},,). We choose 7, to be the supercuspidal
representaion 7, = Aq 1, (71,) of Gr, := Azo, where Ar, is the centralizer of Lo in Ag,. Thus 7,
contains 6r,,. Using Proposition [3.4.9/(3) and Corollary [3.5.12

7 = BCprp(mL,) = A7)

is a supercuspidal representation of G, := A}, where Ay is the centralizer of L in Ap. Again using

Proposition (3), we have
™= BCryp(ALy/ry (TLy)) = ALyp(TL).
We write 0, for the interior L/F-lift of 8. From the exact formula in §3.8.2] we have

T()/Fo

F/F T/F L/L T/L\— To/L
o8 = (g, ) (g o Ngyry) and gl = (g ) (g™ 0 Nay ).
Using Proposition [3.7.12] we finally have
F/Fy L/Lo L/Fy-1 Lo/ Fo
Qb - ( ¢ ) = (ng ) (Xeo © NT/T0)7 (3.9.11)

where for Lo/Fy we fix a transfer system (0o, 3¢1,/p,,€1) and for L/F we fix the transfer system
(00, 7217, €1), With o a generator of Gal(L/F) = Gal(Lo/Fv), and s p := »5/p, © Np/p, and

e; € L such that og(e;) = (—1)=D/! Moreover X, Lo/To and ng/F are determined by the formula
B7.3).

3.9.3.2

We fix a regular elliptic element hg € Jg, such that vy, (dety, (ho)) = 1. We want to show that
Xo! " (detr(ho)) = (x5 ™ (det, (o))" - (~1)T D=0/ (3.9.12)
Combining this equation with , we have
b, (@) - (o5 (1)) ™ = v, " (detr(ho)) - (o) (detr(h))) ™ = (—1) D=/,

finishing the proof of Proposition [3.9.20} So we focus on the proof of (3.9.12]).
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3.9.3.3
Using (3.7.3), we have

L/F L/F

Xo! ¥ (detr(ho)) = eryr, - eryr - c5! " - 81 (ho)

and Lo/F
Lo/ Fi 0 F
XGOO/ O(detTO(h())) = €Ty/Lo * €Tu/Fo '0900/ o Lo/ o(hO)‘

Using Proposition (3) (also with F' and Fy replaced by L and L), we have
6T/L:6TT0/L0 and €T/F:€rT0/FO'
By direct calculation we have (cf. §3.4.2))
AL/F(hO) = KLO/FO(hO) and elzL/F(h()) = elzLo/Fo(ho) S FOX.

Since |- [F = |- [, we get AlL/F(ho) = AlLO/FO(hO)r. And since »p g = 1, /R, © Np/p,, by direct
calculation we get

A7 p(ho) = sepyr(eSnyr(ho)) = sy /m (Npymy (@A Ly i, (o)) = AL g (o).

Thus finally

81/ (ho) = AF (ko) /AL jp(ho) = A% /5 (ho)" /ALy 5,y (ho)” = 814/m, (ho)"-

Thus to finish the proof, we only need to show that cgb/F = (=1)r=DU=1n/l., (cgoo/Fo)"

3.9.3.4

>~

For a given Fy-algebra isomorphism Ag, = Endg, (Ep) and the induced isomorphism Ap = FQp, AR, =
Endp(F ®p, Eo) = Endp(F), we consider the flag

F Oz%gvlgVQg_...gVn:Eo

of the Fy-vector space Ey, also being regarded as a flag of the F-vector space E by extension of scalars,
and then we get the corresponding unipotent subgroup U (Fp) of G g, and the unipotent subgroup U (F)
of Gr. Moreover by Theorem [3.4.5(2), there exists a non-degenerate character g of U(Fp), such that
(U(Fp),vo) is a Whittaker pair of G, satisfying

00| 11 (a0,8)nU (Fo) = Vol 11 (a0,8)nU (Fo)-

By extension of scalars we get a Whittaker pair (U(F'),9) of Gp. To be more precise, the character
9 is realized as follows: The norm map induces the following group homomorphism

NF/Fo cU(F)/Uger(F)) — U(Fp)/Uder (F0),
where Uger denotes the derived subgroup of U, thus
V(u) = 190(NF/F0 (u))

for any u € U(F'), where u and N /g (u) should be regarded as in U(F')/Uger(F') and U(Fp)/Uger(Fo)
respectively. Then by definition and [BH96|, Theorem 12.6. the following condition is satisfied:

Ol 1 (0,80 (F) = VN1 (0,8)n0 (F)-
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By Theorem (3), we have

cgb/F = cL/F(QS‘) and chO/FO — clo/Fo (9o).

Moreover, we choose a certain element gy € G, such that (U(Fp),vy) = (Uo(Fo)go,ﬁiOF ), where
0

Uo(Fp) is the upper triangular unipotent radical of Gp,. Here go can be realized as the base change
matrix, which is invariant up to extension of scalar. In other words, we also have (U(F),?v) =
(UO(F)gO,ﬁbeF), where Uy(F) is the upper triangular unipotent radical of Gg. By 1} we have

/o) = el o () - (s (et (90)))

and
MEW) = el F(wr) - (epyp(detr(90)) ™" = en/F (V) - (3210/m, (deti, (90)7) !
Thus we actually proved that

/T (Lo Foyr — GLIF () feko/ o (g ),

0

so we only need to calculate the latter term.

Finally we also point out that this ratio is independent of the choice of the embedding Ly —
Ap,, since by the Skolem-Noether Theorem, any two embeddings are conjugate by a certain ¢’ €
GF,. Thus when we change one embedding to the other, the above ratio varies by multiplying
#ro R (detr, (9')" /2 r(detp(g’)) = 1 ( [HL10|, §3.3.) and remains unchanged. Similarly using
ibid. §3.2. this ratio is also independent of the choice of the transfer system (oo, s, /5, €1)-

3.9.3.5

We first calculate ¢/ F(wp) / cLo/Fo (¥F,)" in a special case. We temporarily assume Ey = Lo and
E = L. In this case the supercuspidal representation 7y and 7 are essentially tame, saying that Ey/Fp
and E/F are tamely ramified. Moreover, 7y, (resp. mr,) are I'p-regular (resp. I'-regular) characters of
Gr, = Ly (resp. G, = L*) for 'y = Gal(Lo/Fp) (resp. T' = Gal(L/F)). Moreover 77, = 7z, N/,

Using [BHO5b] Corollary 2.3, we get bqbéz/FO (wr,) = (—1)=DU=D with wy, a uniformizer of Ty

and b¢L/ Lo s trivial (noting that in the essentially tame case, our character b(ﬁF/ Fo coincides with
€LO 0o

the character v in loc. cit.). If we choose the transfer system for Lo/Fp and L/F to be (00, 21, /5., €])
and (og, »7, /P> e;) respectively, where o, s, /Fo» ¥L/F are as before, and e) is an element in L] such
that oo(e)) = (—1)"!. Thus using the previous argument, we have

(~1)r=D0=D = b¢g/F° (WTO)/WgL/fO(wTO) = cf/F(LZJF)/clLO/FO(wFO)T (3.9.13)

0

3.9.3.6

Finally we come back to the general case. We let &1, be a TI'g-regular character of L, thus 7, =
Ar, /7, (€L,) is a supercuspidal representation of Autg,(Lo) = GL;(Fp). Since the automorphic induc-
tion maintains the parabolic induction, for 7y := £, X ... X €1, as a generic representation of G, =
GL,1(Lo), the automorphic induction Ay ,p(70) is exactly the parabolic induction 7 := 7y X ... X 7

~

as a generic representation of G, = GL,,(Fp). For 79 and 7y, using [HL10|, Proposition 3.7, we have

i) = G- ()", (3.9.14)

where (o = 7z, /5, (s0) and o := (—1)r/A=DU=D/4 . (eh)n/l [e; is an element in Fy.
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Correspondingly, we consider the L/F-side and we have

cEE(yp) = ¢- ClL/F(wF)"/l, (3.9.15)
where ¢ = 37, /p(s0). Since
¢ =spr(s0) = #14/7,(50)" = (0,

using (3.9.13), (3.9.14)), (3.9.15)), we finally have

/T (p) [0/ P (g, )" = (~1) DI,

finishing the proof of Proposition [3.9.20] We note the following interesting by-product as a corollary
for ease of reference:

Corollary 3.9.21. Let F, Fy be as before, let Lo/Fy be a cyclic totally ramified extension of degree
l and let L = FLy. For n divisible by |, we fiz an Fy-embedding Ly — M, (Fy) which induces an F -
embedding L — M,,(F') by extension of scalars, which respectively induces an embedding GLy, ;;(Lo) <
GLy(Fo) and an embedding GL,, ;;(L) — GL,(F') by taking the centralizer, and we fix a transfer system
(00, %14/, €1) for Lo/ Fo and the transfer system (00, 51, e1) for L) F with s /g o Np/g, = 21/,
then we have

en! T () [ero T (Yr,)" = (1) DU

3.9.4 The end of the proof

Finally we finish the proof of Theorem m As before we assume that m = 1 and Ey/Fp is totally
ramified.

We initiate by induction on t = [Ty : Fy]. When ¢ = 1 we are in the wildly ramified case, and by
definition bqﬁﬁ! "0 is trivial. We assume the theorem is true for [Ty : Fo] smaller than ¢, and we will
prove the theorem for [Ty : Fy] =t > 1.

3.9.4.1

First we assume that I’y is non-trivial. We choose a prime number [ dividing |Tg|, we let Ly/Fy be

the unique cyclic subsection of Ty over Fp of degree | and we let L = F'Lyg. We define 7z, and 7z,
as before. Since [Ty : Lo] = t/l < t, using the induction hypothesis the unramified character b(bgL/ Lo
0
satisfies
L/Lo

by, (wﬁ) = (—1)#/=Dr=D)

Combining with Proposition |3.9.20} the unramified character bgf)g)/ Fo satisfies

F/F 3 —1)(r— S(r—1)(I-1)n
b¢90/ O(Wg‘o) = (_1)(t/l Dr=+p*(r—1)(=1) /l-
If p® is odd we have

(_1)(t/l—l)(r—1)+p5(r—1)(l—1)n/l _ (_1)(t/l—1)(r—1)+(r—1)(l—1)t/l _ (_1)(7"—1)(15—1)

and if p® is even both ¢t — 1 and ¢/l — 1 are even, thus

(_1)(t/lfl)(rfl)%*Ps(T*l)(lfl)n/l _ (_1)(r71)(t71) =1,

which finishes the proof.
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3.9.4.2

Now we assume that I'¢ is trivial, then ¢ = [Tj : Fp] is odd. We choose [ to be the minimal prime divisor
of t. We let F{/Fy be the unramified extension of degree | — 1, and we let F’/F; be the unramified
extension of degree r, such that F’/F is unramified of degree [ — 1. We further write Tj) = Ty F{, and
T =TF'.

T —"——T)
-1 -1 -1 -1
F——F T——1T

We consider the base change lifts for unramified extensions F'/F, F/Fy, F'/F}, F}/Fy and F'/F.
Using the exact construction in we have:

¢F JFo _ ¢9 AN ¢F°/ ® o Npvyp) = bfﬁgb/F (o " o Npo ),

where 07 denotes the simple character constructed in §3.6.1| (6, in loc. cit.) with F replaced by Fg.

Since [ is minimal, [ — 1 is relatively prime to ¢. Thus using Proposition [3.9.9| we have b¢§:/ F(wf}o) =

¢F°/FO( ps) =1, and we obtain

F'/F! S s
b‘f’epf/ () = 405 (Npoyr (el ). (3.9.16)

Since [ divides ¢'~! — 1, Wthh also means that [ divides || for I'y = Aut(T}/F{), we may use the
above result to show that b%F, (wgf)) = (=1)t=D=Dn/t — 1 (since t — 1 is even). By (3.9.16) we
0

b (e, ) =1
F/Fo

have 3¢,/
Since bPp, IS an unramified character of order dividing n = p®t, where t is relatively prime to

[ — 1, we finally have b¢50/ Fo(ng)) = 1 which finishes the proof.
Remark 3.9.22. In geneml our method here is not enough to give a full characterization of vPaq /FO, or

equivalently to calculate b<b90 *(wr,). Indeed in the above argument, it is possible that | —1 is divisible

by p° for a certain s'. Thus even if we have proved Conjecture and have got the equation

b¢F /R — ¢P;/F° o Nyv

’

in place of (3.9.16]), it only provides information of b(bg;/Fo evaluating at wgz instead of wr, itself.

3.10 Contribution to the calculation of the character ,ue To/Fo

In this section as before we let 6y be a simple character of degree d with respect to a simple stratum
[ag, B] in M,,(Fp), let Oz, be the interior Ty/ Fy-lift of 6y. We further assume that n = d and Ey/Fj is

totally ramified. Our aim is to update the information of the character ugo/ % given by Proposition

0L which is closely related to the explicit Langlands correspondence in the totally ramified casdf]
however not well understood from the GL,, side, see [BH14b|, §8.9. for a brief summary.

SReducing from the general case to the totally ramified case is fully understood, which is Theoremm
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. G . . .
To do that, we choose myg = ind Jfo Ko as a supercuspidal representation of G, and we write
0

7, = ind J;(;) (Kt - (ugg/ FO)*l) which is the supercuspidal representation of Gy, = GLys(Tp) satisfying

Aqy/r(71,) = o, Where kg is a full Heisenberg representation of 0y satisfying (3.6.1)), and k7, is a
full Heisenberg representation of 6r,, which is uniquely determined by Proposition
Later we will focus on the case where ¢ is odd. Indeed, in general we choose a sequence of field

extensions
FoCF C...CF.CTo

such that F;/F;_; is cyclic of prime degree, and Aut(Ty/F}) is trivial. For 6y the simple character
contained in my as before, let 6, be the interior F;/Fy-lift of 6. Thus using Proposition [3.7.12] we
get
/F, /F, k F;/F,
To/Fo _  To/Fy i/ Fi—1
Faq — Mg, HX9Fi_1 )
i=1

Fi/Fi—1
OF;_y
always having a simple expression, which can be regarded as “known”. As a result, essentially we only

HTI(;:FI“, whence [Ty : F] is odd.

Those characters x are completely characterized by the formula given in loc. cit., albeit not

need to study the character y

3.10.1 Evaluating at =,

Comparing the central character of my and 77,, we have

1 =Wg, = det(LLC}Ol (m0)) = det(IndTO/FO(LLC}O1 (713)))
= (dTo/Fo)t ’ det(LLCi)l (ﬂ-To))

To/ Fi 3 —
= (dTo/FO)t . wﬂ'TD’FOX == (dTO/Fo)t : ((/’LQ(;)/ 0)p ‘FOX) 17

or to sum up
To/Fo\p®
(g | e = (dryym,)',

where dr /i, denotes the character det(Indy,, FoleO) of Fj*, and from the first line to the second line
we use [BHO6|, Proposition 29.2. If ¢ is odd, dr,/p, is exactly the unramified quadratic character with
the value on a uniformizer equalling to the Jacobi symbol (). As a result,

Proposition 3.10.1. When t is odd, M;F(‘))/FO is an unramified character of Fy* order 2n.

Moreover we have the following proposition:

Proposition 3.10.2. When t is odd, we have MZS/FO (wZ}Z) = (9).

Proof. We prove this proposition by induction on t. We first consider the case where I'y = Aut(7y/Fp)
is non-trivial. We choose [ to be a prime divisor of |I'g| and we let Lo/ Fy be the cyclic subextension of

To/ Fy of degree I. As before we have ,ugg/ Fo XQLOO/ Fo '/,ngé Lo and using Corollary [3.7.13| we know that
xﬁo‘]/ Fo (w%s)) = 1. Thus using the induction hypothesis for Ty /Lo, we get ,ung/ Fo (wé’;) = /LGTL/ Lo gf)) =
0

(ti/l) = (), since I|¢ — 1 and thus () = 1.

Now we assume that I'g is trivial. We let [ be the minimal prime divisor of . We choose F/Fj to
be an unramified extension of degree [ — 1 and we write T" = T F which is a totally tamely ramified
extension of degree t over F. We write mp = BCyp/q,(71,) as a supercuspidal representation of G
and m = BCp/p, (7o) as a supercuspidal representation of G'r. Thus using Propsitionm(?)) we have
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Aq/p(mr) = . Using Theorem and the exact definition of the corresponding character, we get

ng/FO = (,ug;/F)_l . (MTO/FO o Np/q,). Since (I — 1,¢) = 1 and ¢ is odd, by Proposition |3.9.9| we have

bng/FO( S) =1, thus :“9/ (w%)) = ug(?/ O(NT/TO(wT ). Since I|¢~! — 1 which also means that I||T|

for I' = Aut(T/F"), using the previous case we know that TIF P’y = (42 , which also means that
,LL To t

ug:?/FO (wg,éo_l)ps) = (4)"=1. Since (p, O/Fo)p is a character of order 2t and [ — 1 is relatively prime to ¢,

we must have M@O/ O(wTo)2 = (4)%. Finally since ,ueo/ (ot ) = /LGT(?/FO(W%Z) = (%) = (4)", we have

To/ F{ S
uel (k) = (9).
]

3.10.2 Epsilon factors

For 7 (resp. 7 ) a supercuspidal representation of Gp, (resp. Gr,), we denote by e(mp) :=
(7, 1/2,%r,) (vesp. e(ny,) = e(ny,,1/2,%1,)) the corresponding epsilon factors evaluating at 1/2.

Lemma 3.10.3. We have
e(mo) = e(mny) - Mgy /-

where Apy /gy = A/, (VR,) denotes the Langlands constant.

Proof. 1t follows from [BHO06|, (30.4.2) and the fact that the local Langlands correspondence maintains
epsilon factors.
U

Now we define 77, = md (K,TO) then

Lemma 3.10.4 ( [BH99], Theorem 1.4.). e(ny, ) - g " (N, 7, (8)) = e(rm).

We write mg = —vg, (), which by definition is a positive integer. Thus vr,(Ng, 7, (8)) = —mg.
Combining with the above two lemmas, we get

gl ()™ = () - My 1y /(o) = (%) +e(m,)/2(mo), (3.10.1)

where we use the fact that ¢ is odd and |[BHO5b], Lemma 1.5.(2) for the last equation.

3.10.3 A more detailed discussion for supercuspidal representations of Carayol
type

In this subsection we assume that ¢ is odd and mg is relatively prime to p and we call the supercuspidal

representation mg with one corresponding simple stratum satisfying the latter condition of Carayol type.
To/Fo

In this case Proposition [3.10.2 and (3.10.1) together give a full characterization of Koy - However
the right hand side of equation (3.10.1)) is quite vague, thus we will provide more detalls.

We denote by Zy,, (B) (resp. 2y, () the group of fixed points of 5 (with 8 acting by conjugation)
in Vg, == J(ag, 8)/H (0o, B) (vesp. Vr, := J(ar,,8)/H(ar,, 3)) and we define Vag, =V o Tra,

(resp. Yay, =m0 Tray ).

Proposition 3.10.5. We assume that Ey # Tp.

o When mg is odd, we have

e(mo) = tr(kg)(B) - Y, (B)/| Zvy, (BO)?  and  e(wy) = tr(ri)(B) - Yag, (8)/1Zvr, (B2,
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e When mg is even, there exist hg € 1+ paoﬁ/ and hy € 1+ Par, mps /2 , such that

tr(k) (Bho) # 0 and tr(k,)(3hh) # 0,

and for any such ho, h{,, we have

£(m0) = tr(k) (Bho) - g, (Bh0) /| 2y, (8)[/2

and

e(ny,) = te(w, ) (BhY) - Yag, (BhG) /| Zvr, (B)]/2.

Proof. The case where mg is odd follows directly from [BH99|, §6.1, Lemma 2 and §6.3, Proposition
1. The case where mg is even follows from ibid. §6.1, Lemma 2 and §6.3, Proposition 2, and we only
need to prove that the condition of §6.3, Proposition 2 is satisfied. For [ag,mg, mg — 1,a] a simple
stratum equivalent to [ag, mg, mg — 1, ], we need to prove that Fyla]/Fy is not tamely ramified.
By [BK93|, Theorem 2.4.1, we know that e(Fy[a|/Fp) divides e(FEy/Fy) and f(Fy[a]/Fy) = 1, and
moreover vp(q](@)/e(Fola ]/Fo) = vg,(B)/e(Eo/Fo) = —mg/e(Ey/Fy), thus e(Fpla]/Fp) is divisible
by p®, otherwise p divides mg, contradictory! Thus Fy|a]/Fp is not tamely ramified since Ey # Ty and
s > 1. For [ag,,mg, mg — 1, '] a simple stratum equivalent to [az,, mg, mg — 1, 3], similarly we prove
that Tp[a']/To is not tamely ramified, verifying the condition of §6.3, Proposition 2.

O

Corollary 3.10.6. Let k be an integer such that kp® — mg is relatively prime to t.

e When mg is odd, then

1Zu, (B2 ()8
20, B () (B

m q
g P (o yme = (2.

B,
t )

e When mg is even, then for ho and hy as in the proposition,

2, (D)2 tr(s) Bk, oz, (BD)
Zvn, (B2 () (Bho)  Gag, (Bho)

To/F m q
iy " ()™ = ()

Proof. We only prove the second case, whence the first case is similar and simpler. By construction
we know that 1a., (Bhy) = s (Bhy). Since wr, € Cr,(wr,) C Ker(ky,), we have wy, (Bhy) =
K, (ﬁhowT ). Since v, (detr, (ﬁhowTO)) = kp® — mg is relatively prime to t, using Proposition
with ko and k7, replaced by kg and Ky, we get tr(ky, )(6hg) = tr(mo)(ﬁhow%) Thus the proof

follows from (3.10.1)) and the above proposition.
O

Unfortunately the author doesn’t know how to proceed to simplify the result in the corollary. For
example, the right hand side of the two equations should be a 2n-th root of unity, which seems not
clear from the expression itself. Instead we consider the following special case to end our discussion.

Corollary 3.10.7. If mg is relatively prime to n, then ,ueo/ o) = (1).
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Proof. We may choose k = 0, and hg = h{, if mg is even, then we get

’ZVFO (ﬁ)‘l/Q

TO/FO( . )
‘ZVTO (6) ’1/2

q
M@o wTO)mﬂ = (E)

. To/ F . .
Since M(;S / °(wor,)™# is a root of unity, we must have

To/ Ft m
|2y, (B)Y2 = |2y, (B2 and  p1y ™ (o, )™

Combining with Proposition [3.10.2| we finish the proof.
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