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Thèse

soumise à
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Abstract

The interactions between the areas of mobile networking and drone robotics are currently
attracting significant attention from both the robotics and the telecommunications
engineering communities. The key scenarios where such interactions manifest themselves
include the so-called flying base station or flying radio access network (FRAN) on the
one hand, and the drone as a flying terminal on the other hand.

The use of drones and unmanned aerial vehicles (UAV) as FRAN nodes is rapidly
emerging as a powerful tool to complement traditional fixed terrestrial deployments. The
advantage of using UAVs will be particularly felt in those use cases where being able to
quickly deploy a network where and when it matters is critical. However, the success of
so-called FRANs hinges on the ability of the UAVs to place themselves spatially in an
efficient and autonomous manner.

Having this in mind, the first part of this thesis aims to investigate current works
and technologies of UAV-assisted wireless communications and develops novel methods
for both the placement and trajectory design of a UAV as a flying RAN in the wireless
networks for both mobile broadband coverage scenarios and IoT data harvesting scenarios.
We highlight how the exploitation of city 3D maps can bring about substantial benefits
for the reliable self-placement of flying radios. A suite of methods are presented that
lie at the cross-road between machine learning and traditional communication theoretic
network design.

Regardless of the placement or trajectory design, all the algorithms operate on the
basis of an array of side-information such as node GPS location, the 3D map of the
city, and terrain-dependent propagation parameters allowing the prediction of radio
signal strengths. While such data may be collected via the network beforehand allowing
placement or the trajectory to be optimized before the actual UAV flight, part or all of
the information may also have to be discovered or learned by the UAV. In this regard, a
part of this thesis is devoted to discussing how to learn and estimate such information
just from the UAV-borne measurements.

Assuming the availability of safe cellular connectivity beyond visual line of sight,
UAVs are becoming appealing solutions for a wide range of applications in the areas
of transportation, goods delivery, and system monitoring. All these use cases pertain
to the UAV as an aerial terminal scenario, the availability of a reliable radio link is
essential to make sure the drone can be guided effectively towards completion of its
mission. The main challenge however in these domains is the design of trajectories
which indeed can guarantee reliable and seamless cellular connectivity all along the path
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while allowing the completion of the UAV mission which is today a lacking feature of
existing technologies. Therefore, in the second part of this thesis, we propose a novel
approach for optimal trajectory design between a pre-determined initial location and
a given destination point by leveraging on a coverage map. The coverage map can be
obtained with a combination of a 3D map of the environment and radio propagation
models. We establish a graph theory-based framework to evaluate the feasibility of the
problem and obtain a high-quality approximate solution to the optimal UAV trajectory
design problem.

Lastly, we come back to the FRAN scenario and discuss the experimental verification
of the placement algorithm of a UAV relay in LTE networks and we present the design of
the Rebot (Relay Robot) prototype. The Rebot functions both as an outdoor LTE relay
between ground users and a fixed base station, as well as an autonomous robot capable
of positioning itself at a throughput maximizing location.
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Les interactions entre les domaines des réseaux mobiles et de la robotique des drones
attirent actuellement l’attention des communautés de la robotique et de l’ingénierie des
télécommunications. Les principaux scénarios dans lesquels ces interactions se manifestent
comprennent la station de base volante ou le réseau d’accès radio volant (FRAN), d’une
part, et le drone en tant que terminal volant, d’autre part.

L’utilisation de drones et de véhicules aériens sans pilote (UAV) comme nœuds FRAN
est en train de devenir rapidement un outil puissant pour compléter les déploiements
terrestres fixes traditionnels. L’avantage de l’utilisation des drones se fera particulièrement
sentir dans les cas où il est essentiel de pouvoir déployer rapidement un réseau là où
et quand cela est nécessaire. Toutefois, le succès des FRAN dépend de la capacité des
drones à se placer dans l’espace de manière efficace et autonome.

Dans cette optique, la première partie de cette thèse vise à étudier les travaux et les
technologies actuelles des communications sans fil assistées par des drones et à développer
de nouvelles méthodes pour le placement et la conception de la trajectoire d’un drone en
tant que RAN volant dans les réseaux sans fil pour les scénarios de couverture mobile à
large bande et de collecte de données de l’IdO. Nous soulignons comment l’exploitation des
cartes 3D des villes peut apporter des avantages substantiels pour l’autopositionnement
fiable des radios volantes. Une série de méthodes sont présentées, qui se situent à la
croisée des chemins entre l’apprentissage machine et la conception théorique traditionnelle
des réseaux de communication.

Quel que soit le placement ou la conception de la trajectoire, tous les algorithmes
fonctionnent sur la base d’un ensemble d’informations complémentaires telles que la
localisation GPS du nœud, la carte 3D de la ville et les paramètres de propagation
dépendant du terrain, ce qui permet de prédire la puissance des signaux radio. Ces
données peuvent être collectées au préalable via le réseau, ce qui permet d’optimiser le
placement ou la trajectoire avant le vol du drone, Une partie ou la totalité des informations
peut également devoir être découverte ou apprise par l’UAV. À cet égard, une partie
de cette thèse est consacrée à la discussion sur la façon d’apprendre et d’estimer ces
informations uniquement à partir des mesures effectuées par le drone.

En supposant la disponibilité d’une connectivité cellulaire sûre au-delà de la ligne de
vue, les drones deviennent des solutions attrayantes pour un large éventail d’applications
dans les domaines du transport, de la livraison de marchandises et de la surveillance des
systèmes. Tous ces cas d’utilisation concernent le drone en tant que scénario de terminal
aérien, la disponibilité d’une liaison radio fiable est essentielle pour s’assurer que le drone
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peut être guidé efficacement vers l’accomplissement de sa mission. Toutefois, le principal
défi dans ces domaines est la conception de trajectoires qui peuvent effectivement garantir
une connectivité cellulaire fiable et sans faille tout au long du trajet tout en permettant
l’achèvement de la mission du drone, qui est aujourd’hui une caractéristique manquante
des technologies existantes. C’est pourquoi, dans la deuxième partie de cette thèse, nous
proposons une nouvelle approche pour la conception de trajectoires optimales entre un
emplacement initial prédéterminé et un point de destination donné en s’appuyant sur
une carte de couverture. La carte de couverture peut être obtenue en combinant une
carte 3D de l’environnement et des modèles de propagation radio. Nous établissons un
cadre basé sur la théorie des graphes pour évaluer la faisabilité du problème et obtenir
une solution approximative de haute qualité au problème de conception optimale de la
trajectoire des drones.

Finalement, nous revenons sur le scénario FRAN et discutons de la vérification
expérimentale de l’algorithme de placement d’un relais de drone dans les réseaux LTE et
nous présentons la conception du prototype Rebot (Relay Robot). Le Rebot fonctionne
à la fois comme un relais LTE extérieur entre les utilisateurs au sol et une station de
base fixe, ainsi que comme un robot autonome capable de se positionner à un endroit
maximisant le débit.
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Chapter 1

Introduction

Unmanned aerial vehicles (UAVs), also known as drones, have gained significant attention
over the past few years, owing to their autonomy, flexibility, and a broad range of
application domains. Historically, UAVs were largely used in military applications for
remote surveillance and armed attacks, to reduce the casualties and the pilot losses.
The latest advances in UAVs manufacturing and their reducing cost have made possible
the various use of UAVs in civilian and commercial applications. Indeed, UAVs have
been considered as enablers of numerous applications that include military, surveillance
and monitoring, telecommunications, traffic control, rescue operations, package delivery,
etc. During the past years the U.S. federal aviation administration (FAA) released the
operational rules for regular civilian use of micro aerial vehicles and they have employed
the UAVs for different purpose incorporating the beyond visual line of sight (BVLoS)
flights, patrolling, night time surveillance, package delivery, etc. [1; 2]. The UAV industry
growth is potentially enormous and with increasing efforts from governments facilitating
regulatory framework [3; 4], UAV market is projected to reach $63.6 billion by 2025 [5],
and also the further growth of global UAV industry is encouraged in the coming new
years. Overall, the UAVs have emerged as a promising technology that can provide new
jobs and prolific business opportunities.

Depending on the applications, the UAVs can be put into different categories. There
are many types of UAVs in accordance with the different criteria such as flying time,
payload, endurance, flying altitude, etc. In general, UAVs can be categorized based on
the flying altitude into high altitude platforms (HAPs) and low altitude platforms (LAPs).
HAPs fly in an altitude range above 17 Km, while LAPs can fly at lower altitudes in a
range of tens of meters up to a few kilometers. In general, LAPs are faster and more
maneuverable than the HAPs [6; 7].

In terms of the wing configuration, fixed-wing and rotary-wing UAVs are two main
types of UAVs which are largely used. Fixed-wings UAVs are capable of higher maximum
flying speed and can carry heavier payloads for longer distances in comparison with the
rotary-wing UAVs and they need to move forward in order to remain aloft. On the
contrary, rotary-wing UAVs, such as multi-rotors, are able to take off and land vertically
and can hover over a given area [8]. For this, selecting an appropriate type of the UAVs
to efficiently accomplish their missions is crucial.
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A critical aspect of the UAV technology is the reliability and performance of wireless
communications to/from the UAV. The UAVs need to communicate and exchange the
safety essential information with different parties such as the nearby aerial vehicles, remote
pilot, etc. to ensure a safe and reliable flight operation. This type of communication
is known as control and non-payload communication. Depending on the mission of the
UAV, it may need to transmit and receive high-quality areal images, real-time videos, and
relaying data packets between the ground nodes and BSs or the terrestrial infrastructures.
This type of communication is considered as payload communications.

To satisfy both payload and non-payload types of communications for the UAVs
viewed as aerial users or terminals, suitable communication equipment and technologies
are required for a seamless and a high throughput connectivity which realizes a reliable
wireless communications for both air-to-air (i.e. between the UAVs during their missions)
and air-to-ground (i.e. between the UAVs and the ground BSs or the ground nodes)
links. To this end, different communication technologies can be employed incorporating
communication through direct links, satellites, cellular, and ad-hoc networks. To ensure
a seamless and reliable connectivity a hybrid network can used in which each UAV is
equipped with more than one of the aforementioned technologies.

On the other hand, latest advances in wireless communication and robotics in building
the miniature communication equipment have made it possible to mount compact and
lightweight BSs and relays on UAVs which can be used to assist the terrestrial wireless
communications to improve the quality of the service provided to the ground users and
increase the overall performance of the network. This sort of exploitation of the UAVs to
help the network, as FRANs or flying BSs, is termed UAV-aided wireless communications
in this thesis.

In this study, we discuss the different aspects of integrating UAVs into wireless commu-
nications. In general, we split our discussion into two categories, namely UAVs as an aerial
user, and UAV-aided wireless communications. In the following section, we further elabo-
rate on the different applications of the UAVs in wireless communications, motivations,
and challenges. In particular challenges related to the autonomous placement/trajectory
of such UAVs in mobile communication network dependent scenarios.

1.1 Background and Motivations

The exploitation of drones/UAVs within future wireless cellular communication networks
has recently gained significant attention. Several scenarios have been articulated in the
literature. In this study, we refer to these possible scenarios as flying base station or
flying radio access network (FRAN), and the Drone-as-a Terminal (DaaT).

The DaaT scenario is concerned with the exploitation and adaptation of wireless
networks to serve as a carrier mechanism for UAV control commands and possible video
feeds. It also includes designing a trajectory for the drones such that it always stays
connected to the terrestrial infrastructures while flying, which has use cases range from
transportation, surveillance, to goods delivery where the seamless connectivity matters
[9; 10]. Generally speaking, the exploitation of the UAVs as aerial terminals is termed
as the cellular-connected UAVs [11; 12]. The problem of designing a mission trajectory
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which saves flying energy while guaranteeing reliable connectivity to the local cellular
network is addressed in part of this thesis (Chapter 7).

Figure 1.1 – Illustration of some promising FRANs use cases: Drone as a relay in LTE
networks, and drone as a base station for IoT data harvesting.

In contrast, the FRAN or flying BS frameworks view the UAV as an integral piece of
the radio access network (RAN) infrastructure, as shown in Fig. 1.1. The UAV acts as a
flying base station (BS) which can, for example, harvest data sent from ground nodes or
sensors, or as a flying relay towards a ground fixed BS in case the application’s latency
requirements necessitate the data to be transmitted in real-time to the core network (e.g.
internet access by ground users). In general, this sorts of applications of the UAVs to aid
the wireless networks is termed as the UAV-assisted wireless communications. The most
promising feature of FRANs is to allow a flexible deployment of radio resources when and
where they are most needed. Use cases range from disaster recovery scenarios, servicing
of temporary cultural/sporting events, road traffic assistance, hot-spots coverage, and
(Internet-of-Things) IoT data harvesting (smart city, agriculture, etc.) [6; 13]. While
research challenges dealing with the practical evaluation and realization of UAV-aided
system gains abound, the problem of determining how to best (self-)position the flying
radios remains a critical and fascinating issue [14] which forms the core of this thesis.

Generally speaking, the placement problem and the path planning, respectively, refers
to determining a location and a path for a UAV-mounted radio so as to best serve the
data needs by one or more ground nodes. The placement and the trajectory design
algorithms must be adaptive to context parameters, such as the user locations, the traffic
distribution, the per-node quality of service (QoS) requirements, and the propagation
conditions. Ideally, the algorithms operate in an autonomous fashion (i.e. replacing
the human pilot) either onboard the drone or in a ground-based computing unit that is
connected to the drone.
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From an algorithmic perspective, it is important to distinguish between the (i) static
placement problem from (ii) path planning. Static placement involves finding a single 3D
location for the UAV, from where it will provide connectivity to not-too-distant ground
nodes. While the solution may be updated when large-scale system parameters vary
such as traffic or ground user location distributions, the UAV location is otherwise stable
and can benefit from energy-saving mechanisms, such as onboard inflation-based devices
[15] or the ability to exploit nearby resting spots [16]. In many scenarios, however, there
is interest in flying along a path pattern cycle that brings the UAV closer in turn to
each ground node, as this can be shown to significantly improve average throughput
over a static deployment [17]. Note that apart from link throughput considerations,
advanced path optimization methods may also take into account specific kinematics
energy consumption models, obstacle avoidance mechanisms, as well as realistic robot
dynamics (maximum speed and acceleration/deceleration) leading to a potentially complex
mixed communication-robotics optimization framework. While this complex problem has
been addressed in some of the literature [17; 18], we are not emphasizing such aspect
in this thesis and focus on the sole interaction between the trajectory design and the
communication models, while simplifying the mechanical robotics aspects. In Fig. 1.2,
Different self-placement problems (including the static placement and the trajectory
design) regarding the UAV communications, which are also addressed in this thesis, are
listed.

Figure 1.2 – Different self-placement problems in the context of UAV communications.

1.1.1 Role Played by Node Localization

In the context of the FRAN, where the UAV has a communication service mission to
complete with respect to ground users/nodes, a fundamental piece of side-information
lies in the knowledge (or not) of the ground node locations. The immediate solution to
localize a node is to use the Global Positioning System (GPS), while it is readily available
to localize the UAV itself, may not be viable or functioning to localize the ground nodes
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at all times. This is because low-cost node may simply not be equipped with a GPS
module or due to the fact that the functionality of the GPS is limited to environments
where the nodes can maintain line of sight to satellites. For instance, the GPS sometimes
fails in dense urban cities, in the indoor scenarios, and in the harsh environments due to
the presence of the blocking objects (i.e. tall buildings) and the signal degradation. For
this, network-based radio localization is a research area which has attracted increasing
interest and different approaches have been developed during the past years to decrease
the dependency of solutions on the sole GPS approach. In this thesis we are interested in
investigating how UAV can play a new positive role into this matter.

In a typical network, there are two types of nodes, namely anchors and users. Anchors
have perfectly known its positions, which can be stationary or mobile nodes like flying
BSs or relays, whereas users often have unknown locations (and need to be estimated).
Network’s nodes localization can follow a two step approach (i) distance measurement
between the nodes in the network and (ii) the nodes localization based on the inter-
nodes distances. Based on the distance measurement techniques employed, localization
algorithms can be categorized into range-based localization algorithms and range-free
localization approaches. In Chapter 5, different aspects of node localization in wireless
networks are discussed in greater detail.

1.2 Aims and Objectives

This study aims to investigate placement and trajectory design problems for both the
UAV-aided communication network scenario (aka flying RAN, flying BS, flying relay)
and the cellular-aided UAV scenario (aka flying terminal problem).

The premium offered by the FRAN over its conventional fixed counterpart essentially
lies in the ability to bring the RAN closer to the user or generally to increase link quality.
As a result, the role played by statistical channel models in the placement and trajectory
design solutions is critical. The assumption of line-of-sight (LoS) channels or the use
of simple statistical blocking models (i.e. modeling the LoS probability) has proved
an excellent way to derive early insights into the problem and to allow for closed-form
average performance analysis [7]. Unfortunately, the simplistic or probabilistic nature of
such approaches limits our ability to guarantee performance in an actual on-field UAV
deployment. For example, a statistically optimized placement algorithm might suggest a
UAV location that one eventually discovers to be severely affected by a local blockage in
practice (e.g. unforeseen presence of a tall building) forcing the robot to some sub-optimal
path recomputing.

Hence the first chapters of this study are devoted to developing methods allowing to
go around the simplistic LoS channel model issue for the sake of in-field UAV deployments.
The thesis overall raises the reader’s attention onto the role played by the exploitation of
suitable maps. By maps, we here refer to a geographically indexed data set which can be
used to better predict the actual channel conditions for any specific pair of UAV and
ground node locations. Several types of inter-related maps can be considered, including
throughput maps, radio (link strength) maps, and physical 3D maps. In this dissertation,
we specifically consider the exploitation of the 3D map. In Chapter 3, we give an overview
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of the UAV placement approaches for the drone relay and drone BS settings and then
we introduce map-based UAV placement and trajectory design methods. The channel
models, possibly derived from 3D maps, are first described. While 3D maps are rich
in information, they are also difficult to exploit directly in a placement and trajectory
optimization problem because of the highly irregular behavior of radio blockage, especially
in urban environments. As a key contribution of this thesis, we derive placement methods
(both static and path-based) which build on map data while going around the apparent
quasi non-differentiable nature of the problem.

An essential component of the aforementioned scenarios and applications is the
knowledge of the user locations and of the model characteristics of the radio channels,
which usually are not available upon UAV take-off. For this, we also investigate the
problem of exploiting the UAV flight so as to learn the radio channels and localizing
the ground nodes from the radio measurements themselves. In general, the performance
of any learning process highly depends on the training data set, which in this case is
collected radio measurements from the ground nodes. To this end, we further devise an
optimized trajectory for the UAV by capitalizing on the 3D map to intelligently collect
measurements from the ground nodes in order to improve the performance of learning
and the localization.

As another important side-information, several of the proposed algorithms operate on
the basis of a city 3D map where the UAV is deployed. However, this information also
may not be available and we highlight the potential of again exploiting the UAV mission
flight so as to estimate the 3D buildings map from UAV-borne measurements. Hence,
flying a drone merely for constructing a map would be costly, we propose an algorithm
to construct the 3D map of the city (as a by-product) from only the radio measurements
while the drone is accomplishing its communication service (or other) mission and flying
over the network.

Turning to the context of the flying radio terminal, a tremendous increase in the
use of the UAVs for the different applications such as transportation, goods delivery,
system monitoring, etc. has been observed during the past few years. The enabling of
such applications requires safe and seamless connectivity between the fixed infrastructure
in the ground and the UAVs. As mentioned before, a key challenge in this area lies
in the design of trajectories which, while allowing the completion of the UAV mission,
can guarantee reliable cellular connectivity all along the path. Akin to the problem of
trajectory design for the flying BS case, previous approaches in the flying terminal domain
have also considered simplistic propagation model assumptions (e.g. LoS based) or more
advanced models but with computationally demanding optimized solutions [9; 19; 10; 20].
In this study, we also propose a novel approach for trajectory design between a starting
location and a given destination such that getting a reliable QoS from the cellular network
all along the path.

Finally, we discuss practical prototype realizations carried as part of this PhD work
in our drone lab. In particular, we designed a flying radio prototype, so-called Rebot
(Relay Robot), which comprises UAVs equipped with long-term evolution (LTE) base
station which can provide an end-to-end LTE connectivity between ground users and the
core network. It also functions as an autonomous robot capable of positioning itself at a
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throughput maximizing location. Up to our knowledge, this was among the very first
such prototypes worldwide of this kind.

1.3 Research Methodology and Assumptions

In order to solve the UAV placement problems in UAV-aided wireless communication,
various approaches are here studied. In this thesis, we specifically focus on how to
efficiently exploit the knowledge of a 3D map of the environment to guarantee the
performance predicted by the proposed algorithms.

First, we study the problem of UAV placement and the communication trajectory
design to maximize the performance of the network in terms of the worst user throughout.
The critical components for the UAV placement and the trajectory design are the radio
channel parameters of the environment where the UAV is deployed and the location
awareness of the nodes in the network. During the communication phase, we assume that
these pieces of information are available, while they often have to be estimated from the
UAV-borne measurements.

To deal with this problem, we also formulate the problem of learning the channel
parameters from a set of measurements which has been collected by the UAV while
following an arbitrary trajectory over the network. To minimize the error of the esti-
mated channel parameters we then optimize the UAV learning trajectory for collecting
measurements. Note that, we are treating the learning and the communication phases
that are separated in time. This allows us to obtain optimal trajectories for both phases
independently, i.e., if one is only interested in learning or communication scenario this
solution serves the purpose.

To learn the channel parameters we assume that the locations of the ground nodes
are known while may not be true in most of the cases. For this, in a separate chapter of
this thesis, we study the problem of node localization in wireless networks by capitalizing
on the city 3D map information. Similarly, a node in the network can be localized
from UAV-borne radio measurement. Note that, to localize a node the radio channel
parameters need to be known, hence the UAV requires not only to localize the users but
also to learn the channel at the same time. Similar to channel learning, we first address
the node localization from a given set of measurements when the UAV follows an arbitrary
trajectory and then we optimize the UAV trajectory for the further improvement in the
localization accuracy.

All the aforementioned algorithms build on the availability of the city 3D map while
in some cases the map information may not available or costly to access. To cope with
this problem, we propose a method to construct a 3D model of a city just by exploiting
the radio measurements collected by the UAV from the outdoor ground nodes, whose
locations are known, in the city.

We finally investigate the problem of cellular-enabled UAV communication. A novel
approach will be proposed to design the shortest trajectory for a UAV to guarantee a
seamless connection to the infrastructure on the grounds (i.e. ground BS) all along the
UAV path while allowing the completion of the UAV mission. To this end, the trajectory
design algorithm leveraging a coverage map that can be obtained with a combination of
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3D map of the environment, radio propagation models, and the locations of the ground
BSs.

In table 1.1, we summarized all the key assumptions and information which are
required for each algorithm proposed in this thesis.

Algorithm
Information

3D map Nodes locations Channel parameters

Placement
and

trajectory design
X X X

Channel learning X X ×
Node localization X × ×

City map reconstruction × X ×
Cellular-enabled UAV

trajectory design
X X X

Table 1.1 – The left most columns indicates the optimization and learning problems
pursued in this thesis. The required information and key assumptions for each algorithm
is clarified in the other columns.

1.4 Outline of the Thesis

We partition our discussion into two main applications of UAV-assisted wireless networks,
and cellular-connected UAVs, where the UAV is viewed as an integral piece of the RAN
infrastructure or as an aerial user terminal, respectively. Note that, the majority of the
thesis contributions are obtained in the first scenario, i.e UAV assisted wireless networks.
Moreover, we investigate the problem of network localization using radio measurements.
Specifically, we highlight how the exploitation of the 3D map which can bring about
substantial benefits for the reliable placement and trajectory design of flying radios, and
a precise node localization.

An outline of the dissertation along with a brief summary of the contributions of each
chapter is provided below. The overall taxonomy of tackled problems is highlighted in
Fig. 1.3.

Chapter 2 - System Models

In this chapter, we aim to discuss the essential concepts pertained to UAV commu-
nication which are useful for research in different frameworks of UAV communications
platforms. We specifically talk about the channel model, performance metrics, mathemat-
ical formulation for performance optimization via the placement and devising a trajectory
for the UAV, and the different aspects of the UAV-aided node localization in wireless
networks.
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wireless networks
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Chapter 3:
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Figure 1.3 – The overall taxonomy of tackled problems in this thesis.

Chapter 3 - Map-based Placement and Trajectory Design in UAV-aided Wire-
less Networks

Several new and fascinating issues arise from the study of flying BSs in a wireless
network. These can be broadly categorized into placement and trajectory design problems.
While placement problem deals with finding flexible yet static locations of the UAV BSs,
trajectory design involves finding UAV trajectories. When it comes to placement or
trajectory design problems, most existing solutions rely on simplified channel attenuation
models which are based on either (deterministically guaranteed) LoS links, or predictive
models for the probability of occurrence of a LoS link. Most of the previous approaches
lack actual performance guarantees for either placement or trajectory design algorithms
when used in a real-life navigation scenario. In order to circumvent this problem, we
propose a solution by embedding of actual 3D city map data in the UAV placement and
the trajectory design via a map compression method which lets us resort the problem to
convex optimization arguments.

Part of the work in this chapter has resulted in the following publications:

• Esrafilian, Omid, Rajeev Gangula, and David Gesbert. ”UAV-relay Placement
with Unknown User Locations and Channel Parameters.” In 2018 52nd Asilomar
Conference on Signals, Systems, and Computers.

• Esrafilian, Omid, Rajeev Gangula, and David Gesbert. ”Learning to communicate
in UAV-aided wireless networks: Map-based approaches.” IEEE Internet of Things
Journal 6, no. 2 (2018): 1791-1802.

9



Chapter 1. Introduction

Chapter 4 - Active Learning for Channel Estimation: Map-based approaches

One of the common assumptions in previous works regarding UAV communications
is that the radio channel model parameters are assumed to be known for the optimal
UAV placement or the UAV trajectory design. However, in reality, these parameters
need to be learned based on the measurements collected from the ground users. In this
chapter, we only focus on learning the radio channel parameters. We formulate and solve
a learning trajectory optimization problem in order to minimize the estimation error of
the channel model parameters. The devised trajectory allows the UAV to exploit the
map and quickly learn the propagation parameters within a limited flying time.

The results presented in this chapter have been published in the following publication

• Esrafilian, Omid, Rajeev Gangula, and David Gesbert. ”Learning to communicate
in UAV-aided wireless networks: Map-based approaches.” IEEE Internet of Things
Journal 6, no. 2 (2018): 1791-1802.

Chapter 5 - UAV-aided Radio Node Localization

Regardless of the placement or trajectory design for the UAV, the algorithms usually
operate on the basis of an array of information including the ground nodes location
information. Using the GPS to obtain the location of the nodes is not a viable solution
all the time due to the GPS signals degradation or blockage effect of the obstacles in the
environment. To address this problem in this chapter, we formulate the problem of user
localization by processing the received signal strength indicator (RSSI) measurements
which are collected by a UAV while capitalizing on 3D map data of the city. Since the
localization highly depends on the knowledge of the radio channels between the users
and the UAV, thus the UAV needs not only to localize the users but also to learn the
channels at the same time. Moreover, we formulate a novel resource-constrained UAV
trajectory optimization problem for the further improvement of the localization accuracy.

Parts of results presented in this chapter have been published in the following
publications

• Esrafilian, Omid, Rajeev Gangula, and David Gesbert. ”UAV-relay Placement
with Unknown User Locations and Channel Parameters.” In 2018 52nd Asilomar
Conference on Signals, Systems, and Computers.

And the following publication will be submitted soon:

• Esrafilian, Omid, Rajeev Gangula, and David Gesbert. ”Simultaneous Learning and
Path Planning (SLAP) in UAV-Aided Wireless Communications”, To be submitted.

Chapter 6 - 3D City Map Reconstruction from UAV-based Radio Measure-
ments

The essential assumption in the previous chapters is the awareness of the 3D map
of the areas where the UAV is deployed. Traditionally, 3D city map reconstruction
uses photogrammetry techniques which need high-resolution stereo images and extensive
processing capability. Since the UAV can fly over the city and make measurements from

10
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the ground users, in this chapter we aim to propose a novel algorithm to reconstruct 3D
city maps by hinging on the radio measurements. The proposed approach relies on the
unique ability for a UAV-to-ground communication system to detect and classify LoS vs.
non-line-of-sight (NLoS) channels towards ground users using machine learning tools.

The work presented in this chapter was resulted in the following publication:

• Esrafilian, Omid, and David Gesbert. ”3D city map reconstruction from UAV-
based radio measurements.” In 2017 IEEE Global Communications Conference
(GLOBECOM).

Chapter 7 - UAV Trajectory Design Under Cellular Connectivity Constraints

In this chapter, we investigated the problem of UAV trajectory design under cellular
connectivity constraints. A key challenge in this problem lies in the design of trajectories
between pre-determined starting and destination locations which, while allowing the
completion of the UAV mission, can guarantee reliable cellular connectivity all along the
path. We proposed a novel approach that strikes a trade-off between performance (i.e.
path length reduction) and complexity by exploiting the 3D map of the environment and
employing the graph theory. We established a graph theory-based framework to first
evaluated the feasibility of the problem and then to obtain a high-quality approximate
solution to the UAV trajectory design problem.

The results presented in this chapter was submitted for publication:

• Esrafilian, Omid, Rajeev Gangula, and David Gesbert. ”3D-Map Assisted UAV Tra-
jectory Design Under Cellular Connectivity Constraints.” 2020 IEEE international
conference on communications (ICC).

Chapter 8 - Experimental Studies

In this chapter we evaluate the performance of the proposed placement algorithm for
a UAV relay in LTE networks through the experimental verification, and we will also
discuss practical prototype realizations.

The results presented in this chapter was submitted for publication:

• Gangula, Rajeev, Esrafilian, Omid, et al. ”Flying rebots: First results on an
autonomous UAV-based LTE relay using open airinterface.” 2018 IEEE 19th In-
ternational Workshop on Signal Processing Advances in Wireless Communications
(SPAWC).

Chapter 9- Conclusion

This chapter concludes the dissertation.

Other research contributions

Some of the works performed during this Ph.D. thesis which has not been included in
this dissertation due to space limitation have been published in the following:
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• Esrafilian, Omid, and David Gesbert. ”Simultaneous user association and placement
in multi-uav enabled wireless networks.” In WSA 2018; 22nd International ITG
Workshop on Smart Antennas.

• Chen, Junting, Omid Esrafilian, David Gesbert, and Urbashi Mitra. ”Efficient
algorithms for air-to-ground channel reconstruction in UAV-aided communications.”
In 2017 IEEE Globecom Workshops (GC Wkshps).

• Gangula, Rajeev, Paul de Kerret, Omid Esrafilian, and David Gesbert. ”Trajectory
optimization for mobile access point.” In 2017 51st Asilomar Conference on Signals,
Systems, and Computers.
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Chapter 2

System Model

2.1 Introduction

In this chapter, we aim to present the essential concepts pertaining to UAV communication
which are useful for research in different frameworks of UAVs serving as aerial terminals
or communication platforms. We specifically talk about the channel model, performance
metrics, and mathematical formulation for performance optimization via devising a
trajectory for the UAV.

Note that in this thesis, we consider a low altitude UAV (when compared with e.g.
balloons) which is flying over an urban area consisting of a number of city buildings.
There are K static ground nodes which are randomly scattered over the city, and
uk = [xk, yk, zk]T ∈ R3, k ∈ [1, K] represents the k-th user’s location. The location of the
UAV at time t is denoted by v(t) = [x(t), y(t), z(t)]T ∈ R3. We assume that the drone is
equipped with a GPS receiver, hence v(t) is known at any time.

2.2 Channel Models

UAV communications mainly involve three types of links, namely the ground BS-UAV link,
the UAV-ground terminal link, and the UAV-UAV link. As the communication between
UAVs which are flying high enough with moderate inter-UAVs distance typically occurs
in clear airspace, the UAV-UAV channel is usually characterized by the simple free-space
path loss model [21; 22]. Therefore, we rather focus on the Air-to-ground terminal (and
vice-versa) channel model. In general, the existing channel models for the extensively
studied terrestrial communication systems can be applied to UAV communications.
However, as UAV systems involve transmitters and/or receivers with altitude much higher
than those in conventional terrestrial systems, customized mathematical models have
been developed to more accurately characterize the unique propagation environment for
UAV communications at a different altitude. Significant efforts have been devoted to
the channel measurements and modeling for UAV communications, where some recent
surveys on them can be found in e.g., [23; 24; 25]. In this section, we provide an overview
of the UAV channel model to facilitate the performance analysis of UAV communication
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systems.

2.2.1 Segmented Channel Model

The quality of channel models lies in their ability to correctly predict power attenuation
as a function of distance, frequency, as well as to characterize seemingly random blockage.
While some models encompass multipath fading, the placement optimization time scale
is usually much longer than the fast fading coherence time, hence fast fading can be
averaged out in the first approximation. A simple received signal strength indicator
(RSSI) model then ensues [26; 27]:

γs =
βs
dαs

ξs , s ∈ {1, · · · , S}, (2.1)

where s is a class index, αs is a path loss exponent, βs is a channel gain offset, and
ξs is a random variable that captures additional non-predictable behavior (log-normal
shadowing, additional noise sources, etc.), and d is the distance between the receiver
and the transmitter. The model in (2.1) is often referred to as segmented, with s called
the segment value, reflecting the degree of link’s obstruction and its strong dependence
on local terrain scenario. A simplified analysis may consider a single segment (S = 1),
e.g free space propagation or LoS everywhere. The next most popular scenario just
distinguishes between S = 2 segments, with s ∈ {LoS,NLoS} links. In a deterministic
segmented channel model, the segment value s is directly predicted from a 3D terrain
map or possibly from UAV radio measurements. For example regarding the LoS/NLoS
classification of a link, we can leverage the knowledge of a 3D city map [28]. Based on
such map, we can predict LoS (un)availability on any given links from a trivial geometry
argument: For a given UAV position, the BS is considered in LoS to the UAV if the
straight line passing through the UAV’s and the ground node’s position lies higher than
any buildings in between. The channel gain in dB can be written as

gs = ßs − αsϕ(d) + ηs, (2.2)

where gs = 10 log10 γs, ßs = 10 log10 βs, ϕ(d) = 10 log10 (d), ηs = 10 log10 ξs, and ηs is
modeled as a Gaussian random variable with N (0, σ2

s).
For a greater reality match, one may increase the number S of segments to account for

meaningful intermediate degrees of obstruction such as concrete building vs. wood-walled
structure vs. foliage, etc. [29]. Of course, expanding the segment values means added
complexity as well as a greater noise sensitivity when doing model classification on the
basis of real link strength measurements. Note that in reality, the segment value can be
considered stable while the UAV is flying over some limited neighborhood, while sharply
transitioning to another value as the UAV goes over a street corner or flies behind a
large building. A piece-wise quasi-static behavior of s is typically assumed for segmented
channel models. In fig. 2.1, an illustration of the segmented channel model by considering
two ground users in a given city is shown. The status of each ground node-UAV link is
determined by leveraging the 3D map of the city.

It is noteworthy that channel measurements and modeling for UAV communications
are still ongoing research. Incorporating various issues into the channel modeling would
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Figure 2.1 – Two-segment modeling for Air-to-ground channels in a given city.

be beneficial for the precise performance analysis and the practical design of the UAV
communication systems. For example, analyzing the effects of UAV mobility patterns
and the blades rotation on the channel, the multiple input multiple output (MIMO) and
massive MIMO channel modeling [30; 31], the millimeter wave UAV channel modeling
[32], etc. Such aspects remain however beyond the scope of this thesis.

2.2.2 Probabilistic Link Attenuation Models

As mentioned in the previous section, in a deterministic segmented channel model, the
segment value s is directly predicted from a 3D terrain map or possibly from UAV radio
measurements. However, in the absence of maps, probabilistic segmented models can
be employed, whereby the segment value is simply governed by a likelihood parameter
[15; 33]. The two-segment case (S = 2), has been particularly used in the literature to
date as it naturally lends itself to closed-form tractability. In this case, a given link l
between a ground node and the UAV is simply classified as LoS or NLoS where the LoS
probability pLoS(l) follows a parametric model. A popular model is as follows [15]:

pLoS(l) =
1

1 + exp (−aθl + b)
, (2.3)

where θl denotes the elevation angle between the horizontal plane and the axis between
the drone and the ground node. Finally, {a, b} are the model coefficients which are
specific for the city that the UAV is deployed and can be learned via a fitting method
using labeled training data points, for instance using prior radio measurements or a
terrain map. In order to infer the average link gain, a weighted average of γs over random
value s, accounting for the segmented probability, can be carried out as follows:

Λ(l) =
∑

s∈{LoS,NLoS}

γsps(l), (2.4)
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where pNLoS(l) = 1−pLoS(l). While they lend themselves to closed form mean gain analysis
and give useful insights in the role played by certain system design parameters, global
probabilistic models such as (2.4) are difficult to rely on by themselves in real-life robotic
placement problems. The main issue is that such approaches can’t guarantee an actual
communication link’s quality at a probabilistically-optimized UAV location. Instead, it is
essential to exploit local information relevant to the actual terrain surrounding the UAV.
There are several ways to infer such information in practice, be it from 3D terrain data
or radio measurements from the scene of interest as we detail in Section 3.2.3.

2.3 Communication Performance Metric

Regarding the UAV communications, similar performance metrics can be used as the
conventional terrestrial communications such as link signal-to-interference-plus-noise ratio
(SINR), outage (or coverage) probability, communication throughput, etc. Moreover, in
certain scenarios, more practical metrics such as mission completion time [34; 35] or the
energy consumption [36] may be of interest. In the following, we elaborate on some of
the performance metrics in the context of UAV communications.

2.3.1 SINR

Let’s assume a UAV carrying radio equipment and a set of K ground nodes. For the
communication link between the UAV at time t and the k-th ground node, when the
UAV is transmitting, the SINR at the receiver can be expressed as

ρk(v(t)) =
P γ(uk)∑

i∈[1,K]\k Ii + σ2
, (2.5)

where P is the UAV transmission power, γ(uk) is the desired received signal power at
k-th ground node, Ii denotes the interference from the ground node i, and σ2 is the noise
power at the receiver.

When the UAV is receiving information from the k-th ground user, its SINR is given
by

ρk(v(t)) =
Pk γ(uk)∑

i∈[1,K]\k Ĩi + σ2
, (2.6)

where Pk is the k-th ground node transmission power, and Ĩi is the interference from the
ground node i received at the UAV.

It is worth mentioning that, for the air-ground link when the UAV is transmitting, by
changing the UAV location its own link SINR is just affected only through the desired
signal power; while in the case with a UAV receiver, it has an effects on the link SINR in
a more complicated manner, through both the desired signal and undesired interference
powers from other ground nodes.

In a special case, when there is no interference, the SINR is equivalent to signal-
to-noise ratio (SNR). the SNR at the receiver when the UAV is transmitting is given
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by

ρk(v(t)) =
P γ(uk)

σ2
, (2.7)

and when the UAV is receiving information from the k-th ground user, its SNR equals to

ρk(v(t)) =
Pk γ(uk)

σ2
. (2.8)

Note that, in this thesis we assume that there is no interference between the nodes in the
network by virtue of the orthogonal channel access. For this, hereafter we just use the
term SNR.

2.3.2 Outage

Assuming that the UAV flies along a certain trajectory where its location at any time t is
given by v(t), 0 ≤ t ≤ T , where T is the mission completion time. The outage is defined
as the amount of time where the SNR for the link between the UAV and the k-th ground
node falls below a minimum SNR threshold ρmin, mathematically speaking:

Tout =

∫ T

t=0
I{ρk(v(t)) < ρmin} dt, (2.9)

where ρk(v(t)) denotes the SNR of the link between the UAV at time t and the k-th
ground node, and I{A} is an indicator function returning value 1 if A is true. In Chapter
7, a trajectory is designed in order to satisfy the outage constraint ρk(v(t)) ≥ ρmin all
along the path while minimizing the flying time.

The outage can also be written in terms of probability. Since the SNR generally varies
in both space and time and thus can be modeled as a random variable. For a minimum
SNR threshold ρmin, the outage for the link between the UAV and the k-th ground node
is given by

Pout(uk) = min
0≤t≤T

Pr(ρk(v(t)) < ρmin). (2.10)

Note that for a given UAV locations, the outage probability needs to take into considera-
tion the randomness in both time (i.e. the shadowing effect) as well as space (the link
LoS/NLoS probabilities).

2.3.3 UAV Energy Consumption

One of the critical issues of UAV communications is the limited onboard UAVs energy.
For this, the energy efficiency of UAV communications is of the essence [36; 17; 37]. If
we assume that the UAV flies with a constant speed, then the overall mission time (or
the trajectory length) can be considered using a simplified mechanical robotic model to
be equivalent (proportional) to energy consumption. For instance in an intelligent data
harvesting scenario by the UAV from ground sensors, we will seek to collect data from
the ground level sensors within the minimum flying time.
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2.3.4 Communication Throughput

Within the UAV mission time T , the instantaneous achievable rate (in a single user case)
for the link between the k-th ground node and the UAV at time t is as follows

Rk(t) = log2(1 + ρk(v(t))). (2.11)

The average achievable communication throughput over the random channel shadowing
effect is thus given by

R̂k(t) = E[log2(1 + ρk(v(t)))]. (2.12)

Then the average communication throughput of the link between the k-th node and the
UAV can be written as

Rk = E

[∫ T

0
Rk(t) dt

]
=

∫ T

0
R̂k(t) dt. (2.13)

The communication throughput in a multi-user case and assuming a time-division multiple
access (TDMA) scheme is discussed in Chapter 3.

2.4 Trajectory Design in UAV-aided Wireless Networks

The key advantage of using UAVs in wireless communication lies in the high mobility and
fast deployment of the UAVs which can bring significant gains to the performance of the
network besides the traditional communication designs such as scheduling and resource
allocation. For the performance optimization of the UAV communication systems, the
generic mathematical problem can be considered as follows [13]

max
v(t),A(t)

U(v(t),A(t)) (2.14a)

s.t. fi(v(t)), i ∈ [1, I1], (2.14b)

gi(A(t)), i ∈ [1, I2], (2.14c)

hi(v(t),A(t)), i ∈ [1, I3], (2.14d)

where A(t) is a set of variables pertaining to the all communication relevant design over
the time, such as scheduling, transmit power control, etc., and U(., .) denotes the desired
utility function to be maximized and depending on the application can be any of the
metrics introduced in the previous section. fi(.) represents the constraints related to the
UAV trajectory at any time t, gi(.) captures all the communication related constraints,
and hi(., .) involves both UAV trajectory and communication variables such as the SNR
constrained which is a function of the UAV location and the communication parameters.
Note that problem (2.14) is recast as a static placement problem if the UAV location is
independent of the time t which is a special case of the trajectory design problem, in
other words v(t) = v, ∀t.

The UAV trajectory constraints can depend on the type of the UAV, the application,
the mission requirement, etc. In the following we refer to some of the common UAV
trajectory constraints:
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• Altitude range: In practice, a maximum and a minimum flying altitude need to
be considered for the UAV. Typically, the maximum flying altitude is limited by
the regulation depending on the flying area, and the minimum altitude is chosen to
avoid the collision with the obstacles (i.e. in a city the minimum altitude can be
set as the height of the tallest building in the city).

• Initial/destination locations: In most of the cases, it’s required that the UAV
starts from an initial point and terminates in a pre-determined destination location.
Thus, the initial and destination location constraints can be expressed as

v(0) = vI, v(T ) = vF, (2.15)

where vI,vF are the initial and the destination locations, respectively.

• Maximum velocity: Depending on the type of the UAV, the maximum velocity
can be different:

v̇(t) ≤ vmax. (2.16)

Note that, for the fixed-wing UAVs a minimum velocity needs to be considered as
well.

More constraints, depending on the application, can be listed down such as maximum
acceleration, obstacle and collision avoidance, safe flying area, etc. which is out of the
scope of this dissertation. The problem of trajectory design and the UAV placement with
specific constraints will be discussed in details in Chapter 3.

2.5 Cellular-connected UAV Trajectory Design

The enabling of safe cellular controlled UAVs beyond visual line of sight is expected
to open important future opportunities in different domains. A key challenge in this
area lies in the design of trajectories which, while allowing the completion of the UAV
mission, can guarantee reliable cellular connectivity all along the path. In general, the
problem of designing a trajectory for the UAV under cellular connectivity constraints
can be formulated as follows:

max
v(t),A(t)

U(v(t)) (2.17a)

s.t. fi(v(t)), i ∈ [1, I1], (2.17b)

gi(A(t)), i ∈ [1, I2], (2.17c)

hi(v(t),A(t)), i ∈ [1, I3], (2.17d)

where A(t) is a set of variables pertaining to the all communication relevant designs over
the time, and U(.) is the desired utility function to be maximized. In the context of
cellular-connected UAV trajectory design, the utility function is mainly the UAV energy
consumption (or equivalently the flying time if the UAV movies with a constant velocity
over the time). fi(.) represents the constraints related to the UAV trajectory at any
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time t and can be any of the constraints listed in the previous section. gi(.) contains
all the communication related constraints. One of the common communication related
constraints is the minimum SNR constraint which is as follows:

min
0≤t≤T

max
k∈[1,K]

ρk(v(t)) ≥ ρmin, (2.18)

where ρk(v(t)) denotes the SNR of the link between the UAV at time t and the k-th
ground BS. Constraint (2.18) implies that the minimum SNR obtained by the UAV
during the mission needs to be greater than or equal to the threshold ρmin. Constraints
hi(., .) involves both UAV trajectory and communication variables. In Chapter 7, the
problem of trajectory design for a UAV under cellular connectivity constraint is discussed
in details.
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Chapter 3

Map-based Placement and
Trajectory Design in UAV-aided
Wireless Networks

3.1 Introduction

The use of UAVs as FRANs in future wireless communication networks is currently
gaining significant attention for its ability to yield ultra-flexible deployments, in use
cases ranging from disaster recovery scenarios, coverage of flash-crowd events, and data
harvesting in IoT applications [6; 38; 39].

Several new and fascinating issues arise from the study of flying RANs in a wireless
networks. These can be broadly categorized into placement and path planning problems.
While placement problem deals with finding flexible yet static locations of the UAV BSs,
path planning involves finding UAV trajectories. In both cases the aim is to optimize
metrics like throughput, network coverage, energy efficiency, etc., [15; 40; 41; 42; 43; 44;
45; 46; 47; 48; 17].

When it comes to placement or trajectory design problems, most existing solutions
rely on simplified channel attenuation models which are based on either (deterministically
guaranteed) LoS links [43; 44; 45; 46; 17; 48; 47], or predictive models for the probability
of occurrence of a LoS link [41; 42; 15; 40; 49]. In the latter approach, a global statistical
model predicts the LoS availability as a function of, e.g., UAV altitude and distance
to the user. The advantage of the global statistical LoS model lies in its simplicity for
system analysis. However, it lacks actual performance guarantees for either placement or
trajectory design algorithms when used in a real-life navigation scenario. The key reason
for this is that, the local terrain topology may sharply differ from the predictions drawn
from statistical features. In order to circumvent this problem, the embedding of actual
3D city map data in the UAV placement algorithms has been recently proposed [43; 42].
Map-based approaches help providing a reliable prediction of LoS availability for any
pair of UAV and ground node locations, hence lead to improved performance guarantees.
However, the gain comes at the expense of computational and memory costs related
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to processing of the map data. So far, map-based approaches have been investigated
mainly for static UAV placement [43; 44; 42]. In many scenarios, including IoT data
harvesting, there is an interest in flying along a path that brings the UAV-mounted BS
closer to each and every ground node. However, to the best of our knowledge, none of
the previous works have considered the crucial advantage of exploiting 3D map data in
communication-oriented UAV trajectory design.

This chapter investigates the problem of optimal placement and trajectory design
of a UAV in wireless networks. In the first part, we focus on the problem of the UAV
trajectory design in an intelligent data harvesting scenario in which a UAV-mounted
flying BS is providing data communication services to a number of radio nodes spread
over the ground. The trajectory optimization is then combined with a node scheduling
algorithm to maximize the worst average throughput among the ground nodes.

The second part of this chapter is devoted to studying the problem of optimal
placement of a UAV which provides communication services by acting as a flying wireless
relay between a fixed BS and ground users. The proposed approach builds on the
knowledge of the terrain topology where the network is deployed and aims at finding the
optimal position of the UAV that maximizes the throughput in the max-min sense.

3.2 Optimal Trajectory Design for an Intelligent Data Har-
vesting

A wireless communication system where a UAV-mounted flying BS serving K static
ground level nodes (IoT sensors, radio terminals, etc.) in an urban area is considered.
The k-th ground node, k ∈ [1,K], is located at uk = [xk, yk]

T ∈ R2. By no means the
ground level node assumption is restrictive, the proposed algorithms in this work can in
principle be applied to a scenario where the nodes are located in 3D. The UAV’s mission
consists of a communication phase of duration T . We assume that the propagation
parameters of the environment have been learned beforehand by collecting the radio
measurements from the ground users (for more details see Chapter 4). These parameters
are then used to optimally serve the ground nodes. The time-varying coordinate of the
UAV/drone is denoted by v(t) = [x(t), y(t), z(t)]T ∈ R3, 0 ≤ t ≤ T , where z(t) represents
the altitude of the drone.

For the ease of exposition, we assume that the time period T is discretized into N
equal-time slots. The time slots are chosen sufficiently small such that the UAV’s location,
velocity, and channel gains can be considered to remain constant in one slot. Hence, the
UAV’s position v(t) is approximated by a sequence

v[n] = [x[n], y[n], z[n]]T, n ∈ [1, N ]. (3.1)

We assume that the ground nodes and the drone are equipped with GPS receivers, hence
the coordinates uk,∀k and v[n], n ∈ [1, N ] are known.
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3.2.1 Communication System Model

We assume that the ground nodes are served by the drone in a TDMA manner. Let qk[n]
denote the scheduling variable, then the TDMA constraints can be written as

K∑
k=1

qk[n] ≤ 1 , n ∈ [1, N ], (3.2)

qk[n] ∈ {0, 1} , n ∈ [1, N ], k ∈ [1,K], (3.3)

where qk[n] = 1 indicates that the node k is scheduled in time slot n. For the scheduled
node, the average throughput is given by

Ck[n] = E log2

(
1 +

Pγk[n]

σ2

)
, (3.4)

where γk[n], according to (2.1), is the channel gain between the k-th node and the UAV
at time step n, P denotes the up-link transmission power of the ground node, and the
additive white Gaussian noise power at the receiver is denoted by σ2. Hence, the average
achievable throughput of the k-th ground node over the course of the communication
trajectory is given by

Ck =
1

N

N∑
n=1

qk[n]Ck[n]. (3.5)

3.2.2 Joint Scheduling and Trajectory Optimization

We consider the problem of efficient data harvesting where data originates from ground
nodes and efficiency is meant in a max-min sense across the nodes. The problem
of maximizing the minimum average throughput among all ground nodes by jointly
optimizing node scheduling and UAV’s trajectory can be formulated as

max
X ,z,Q

min
k∈[1,K]

Ck (3.6a)

s.t. ‖v[n]− v[n− 1]‖ ≤ ρmax, n ∈ [2, N ], (3.6b)

v[1] = v[N ], (3.6c)

hmin ≤ z[n] ≤ hmax, n ∈ [2, N ] (3.6d)

(3.2), (3.3), (3.6e)

where Q = {qk[n], ∀n, ∀k} is the set of scheduling variables, and X = {(x[n], y[n]), ∀n}
denotes the discretized trajectory set of length N in 2D. We assume that the drone flies
at a fixed altitude z[n] = z, ∀n. The maximum speed constraint of the UAV is reflected
in (3.6b), where ρmax = vmaxT/N , and vmax is the maximum speed of the UAV. (3.6c)
implies a possible loop trajectory constraint1. (3.6d) implies that the drone always flies
above all the city’s buildings, where hmin is the height of the tallest building in the city,
and below altitude hmax.

Problem (3.6) is challenging to solve due to the following issues:

1This is by no means a restriction, the starting and the terminal points of the trajectory can be any
arbitrary locations.
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• The scheduling variables qk[n] are binary and include integer constraints.

• The objective function (3.6a) is a non-convex with respect to the drone trajectory
variables.

• Since the 3D city map, node locations, and UAV location at time n are known,
then in theory the LoS or NLoS status of the link can be finely predicted and,
hence, the link gain γk[n] can be computed from (2.1) up to the random shadowing.
Unfortunately, such a direct exploitation of the rich raw map data leads to a highly
non-differentiable problem in (3.6).

We overcome these difficulties by approximation using the same framework as [46] by
employing the block-coordinate descent [50] and sequential convex programming [51]
techniques. However, the key difference is that we optimize the drone’s altitude, and
also exploit the 3D city map by introducing a statistical map compression approach that
enables us to take into account the LoS and NLoS predictions.

3.2.3 LoS Probability Model Using Map Compression

Statistical map compression approach relies on converting 3D map data to build a reliable
node location dependent LoS probability model. The LoS probability for the link between
the drone located at altitude z and the k-th ground node in the n-th time slot is given by

pk[n] =
1

1 + exp(−akθk[n] + bk)
, (3.7)

where θk[n] = arctan(z/rk[n]) denotes the elevation angle and rk[n] is the ground projected
distance between the drone and the k-th node located at uk in the time slot n, and
{ak, bk} are the model coefficients.

The LoS probability model coefficients {ak, bk} are learned (i.e. by utilizing logistic
regression method[52]) by using a training data set formed by a set of tentative UAV
locations around the k-th ground node along with the true LoS/NLoS label obtained
from the 3D map. Interestingly, the model in (3.7) can be seen as a localized extension
of the classical (global) LoS probability model used in [15; 40]. The key difference lies in
the fact that, a local LoS probability model will give performance guarantees which a
global model cannot.

Using (3.7), the average channel gain of the link between the drone and the k-th
ground node in the n-th time slot is

E[γk[n]] =

(
(dk[n])(A−1)αLoS −B
1 + exp(−akθk + bk)

+B

)
βLoS

(dk[n])αNLoS
, (3.8)

where B = βNLoS
βLoS

, A = αNLoS
αLoS

≥ 1, and dk[n] =
√
z2 + (rk[n])2 is the distance between

the k-th ground node and the drone. The details of the proof are given in Appendix A.1.
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3.2.4 Proposed Solution for Communication Trajectory Optimization

In this section, we first approximate the original optimization problem in (3.6) to a
map-compressed problem and then present an iterative algorithm using block coordinate
descent for solving it. Using (3.8) and Jensen’s inequality [53], the average throughput
upper-bound then can be written as

Cup
k =

1

N

N∑
n=1

qk[n]Cup
k [n] , k ∈ [1,K], (3.9)

where

Cup
k [n] = log2

(
1 +

P E[γk[n]]

σ2

)
. (3.10)

We then approximate the original problem in (3.6) into the following map-compressed
problem:

max
X ,z,Q,µ

µ (3.11a)

s.t. Cup
k ≥ µ , ∀k, (3.11b)

0 ≤ qk[n] ≤ 1 , ∀k, ∀n, (3.11c)

(3.6b), (3.6c), (3.6d), (3.2), (3.11d)

where the constraints in (3.11c) represent the relaxation of the binary scheduling variable
into continuous variables. Moreover, map compression allows us to circumvent the
non-differentiability aspect of the original problem (3.6) by compressing the 3D map
information into a probabilistic LoS model. However, (3.11) is still difficult to solve since
it is a joint scheduling and path planning problem and is not convex. To make this
problem more tractable, we split it up into three optimization sub-problems and then
classically iterate between them to converge to a final solution. Note that, the iteration
index of the proposed algorithm is denoted by “j”.

Scheduling

For a given UAV planar trajectory X and altitude z, the ground node scheduling can be
optimized as

max
Q,µ

µ (3.12a)

s.t. Cup
k ≥ µ , ∀k, (3.12b)

(3.2), (3.11c).

This problem is a standard Linear Program (LP) and can be solved by using any
optimization tools such as CVX [54].
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Optimal Horizontal UAV Trajectory

For a given scheduling decision Q, and drone’s altitude z, we now aim to find the optimal
planar trajectory by solving

max
X , µ

µ (3.13a)

s.t. Cup
k ≥ µ , ∀k, (3.13b)

(3.6b), (3.6c). (3.13c)

The optimization problem (3.13) is not convex, since the constraint (3.13b) is neither
convex nor concave. In general, there is no efficient method to obtain the optimal solution.
Therefore, we adopt sequential convex programming technique for solving (3.13). To this
end, the following results are helpful.

Lemma 3.2.1. The function h(x, y) , log (1 + f (x) g (y)) is convex if ĥ(x, y) , log (f (x) g (y))
is convex and f(x) > 0, and g(y) > 0.

Proof. See Appendix A.2.

Proposition 3.2.1. For any constant τ, λ > 0, the function

c(x, y, d) , log

(
1 +

[
(

1

1 + x
)(

1

y
) + τ

]
1

dλ

)
is convex.

Proof. See Appendix A.3.

By defining the auxiliary variables fk[n], wk[n], lk[n], and θk[n], we can rewrite (3.13)
as follows

max
V,X ,µ

µ (3.14a)

s.t.
1

N

N∑
n=1

ck (fk[n], wk[n], lk[n]) ≥ µ , ∀k, (3.14b)

wk[n] =
((
z2 + lk[n]

)(A−1)αLoS/2 −B
)−1

, ∀k, ∀n, (3.14c)

fk[n] = exp (−akθk[n] + bk) , ∀k, ∀n, (3.14d)

lk[n] = (rk[n])2 , ∀k, ∀n, (3.14e)

θk[n] = arctan
(
z/
√
lk[n]

)
, ∀k, ∀n, (3.14f)

fk[n], wk[n], lk[n], θk[n] ≥ 0 , ∀k, ∀n, (3.14g)

(3.6b), (3.6c), (3.14h)

where V = {fk[n], wk[n], lk[n], θk[n] | ∀k, ∀n} consists of all the auxiliary variables and

ck (fk[n], wk[n], lk[n]) ,

26



Chapter 3. Map-based Placement and Trajectory Design in UAV-aided Wireless
Networks

log2

(
1 +

(
1

wk[n](1 + fk[n])
+B

)
P βLoS

σ2 (z2 + lk[n])αNLoS/2

)
. (3.15)

Using Proposition 3.2.1, it can be easily seen that (3.15) is a convex function of variables
fk[n], wk[n], and lk[n]. In constraint (3.14c), wk[n] can be convex or concave function
depending on the value of B. However, in our case it is always convex since z ≥ hmin, in a

realistic scenario
(
z2 + lk[n]

)(A−1)αLoS/2 � B. Moreover, all constraints (3.14d) to (3.14f)
comprise convex functions. In order to solve problem (3.14), we utilize the sequential
convex programming technique which solves instead the local linear approximation of
the original problem. To form the local linear approximation, we use the given variables
X j , zj in the j-th iteration of the algorithm to convert the above problem to a standard
convex form. For the ease of exposition, we use ck[n] instead of ck (fk[n], wk[n], lk[n]).
First, let’s start with constraint (3.14b), since any convex functions can be lower-bounded
by its first order Taylor expansion, then we can write

1

N

N∑
n=1

qk[n]ck[n] ≥ 1

N

N∑
n=1

qk[n]c̃k[n] ≥ µhp,

where c̃k[n] is an affine function and equals to the local first order Taylor expansion of
ck[n] and µhp is a lower bound of µ. Similarly, we can convert (3.14c) to (3.14f) into the
standard convex form by replacing them with their first order Taylor expansion. We can
approximate problem (3.14) as follows

max
V,X ,µhp

µhp (3.16a)

s.t.
1

N

N∑
n=1

qk[n]c̃k[n] ≥ µhp , ∀k, (3.16b)

fk[n] ≥ f̃k[n] , ∀k, ∀n, (3.16c)

wk[n] ≥ w̃k[n] , ∀k, ∀n, (3.16d)

lk[n] ≥ l̃k[n] , ∀k, ∀n, (3.16e)

θk[n] ≥ θ̃k[n] , ∀k, ∀n, (3.16f)

(3.14g), (3.6b), (3.6c), (3.16g)

where the superscript “ ˜ ” denotes the local first order Taylor expansion. Now, we have
a standard convex problem which can be solved by any convex optimization tools like
CVX2. We denote the generated trajectory by solving (3.16) as X j+1.

Optimal UAV Altitude

Now we proceed to optimize the UAV altitude for a given horizontal UAV trajectory X
and scheduling decision Q. Similar to the preceding section, first we introduce auxiliary
variables h, mk[n], and ok[n] consisting of convex functions as follows

mk[n] = exp (−ak arctan (z/rk[n]) + bk) , ∀k, ∀n,
2Note that to minimize the approximation error, a tight local Taylor approximation is needed.
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ok[n] =
((
h+ (rk[n])2

)(A−1)αLoS/2 −B
)−1

, ∀k, ∀n,

h = z2.

Akin to the last section, we find the UAV altitude by using the sequential convex
programming with given local point zj in the j-th iteration and the generated horizontal
trajectory X j+1 in the last section. Finally, the UAV altitude is optimized as follows

max
W,z, µalt

µalt (3.17a)

s.t.
1

N

N∑
n=1

qk[n] c̃k[n] ≥ µalt , ∀k, (3.17b)

mk[n] ≥ m̃k[n] , ∀k, ∀n, (3.17c)

ok[n] ≥ õk[n] , ∀k, ∀n, (3.17d)

h ≥ h̃, (3.17e)

mk[n], ok[n], h > 0, ∀k, ∀n, (3.17f)

(3.6d), (3.17g)

where c̃k[n] is the first order Taylor expansion of ck (mk[n], ok[n], h) which is a convex
function and is defined similar to (3.15), and W = {mk[n], ok[n], h | ∀k, ∀n} comprises
all the auxiliary variables. The superscript “ ˜ ” denotes the local first order Taylor
expansion, and µalt is a lower bound of µ. We denote the drone altitude which is obtained
by solving (3.17) as zj+1 to be used in the next iteration.

3.2.5 Iterative Algorithm

According to the preceding analysis, now we propose an iterative algorithm to solve the
original optimization problem (3.6) by applying the block-coordinate descent method [50].
As mentioned earlier, we split up our problem into three phases (or blocks) of ground
node scheduling, drone horizontal trajectory design, and flying altitude optimization over
variables {Q,X , z}. In each iteration, we update just one set of variables at a time, rather
than updating all the variables together, by fixing the other two sets of variables. Then,
the output of each phase is used as an input for the next step. The rigorous description
of this algorithm is summarized in Algorithm 3.2.1.

3.2.6 Proof of Convergence

In this section we prove the convergence of Algorithm 3.2.1 in a similar manner of [46]. To
this end, in the j-th iteration we denote the µ(Qj ,X j , zj), µhp(Qj ,X j , zj), µalt(Qj ,X j , zj)
as the optimal objective values of problems (3.12), (3.16), and (3.17) , respectively. From
step (2) of Algorithm 3.2.1 for the given solution Qj+1, we have

µ(Qj ,X j , zj) ≤ µ(Qj+1,X j , zj),
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Algorithm 3.2.1 Iterative algorithm for solving optimization problem (3.6).

1. Initialize all variables
{
Qj ,X j , zj

}
, j = 1.

2. Find the optimal solution of the scheduling problem (3.12) for given
{
X j , zj

}
.

Denote the optimal solution as Qj+1.

3. Generate the optimal communication trajectory in horizontal plane (X j+1) by
solving (3.16) with given variables

{
Qj+1,X j , zj

}
.

4. Solving optimization problem (3.17) given variables
{
Qj+1,X j+1, zj

}
and denote

the solution as zj+1.

5. Update j := j + 1.

6. Go to step 2 and repeat until the convergence (i.e. until observing a small increase
in objective value).

since the optimal solution of problem (3.12) is obtained. Moreover, we can write

µ(Qj+1,X j , zj) (a)
= µhp(Qj+1,X j , zj)
(b)

≤ µhp(Qj+1,X j+1, zj)

(c)

≤ µ(Qj+1,X j+1, zj).

Step (a) holds due to µhp(Qj+1,X j , zj) being a tight local first order Taylor approximation
of problem (3.14) at the local points. Step (b) is true, since we can find the optimal
solution of problem (3.16) with the given variables {Qj+1,X j , zj}, and (c) holds because
µhp(Qj+1,X j+1, zj) is the lower bound of the objective value µ(Qj+1,X j+1, zj). Then,
by proceeding to step (4) of Algorithm 3.2.1 and given variables {Qj+1,X j+1, zj}, we
obtain

µ(Qj+1,X j+1, zj)
(d)
= µalt(Qj+1,X j+1, zj)

(e)

≤ µalt(Qj+1,X j+1, zj+1)

(f)

≤ µ(Qj+1,X j+1, zj+1).

Step (d) is true since the local first order Taylor approximation in (3.17) is tight for the
given local variables {Qj+1,X j+1, zj}. (e) holds since, the optimization problem (3.17)
can be optimally solved, and (f) is true due to µalt(Qj+1,X j+1, zj+1) is a lower bound
of the objective value µ(Qj+1,X j+1, zj+1). Finally, we have

µ(Qj ,X j , zj) ≤ µ(Qj+1,X j+1, zj+1).
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Which indicates that the objective value of Algorithm 3.2.1 after each iteration is non-
decreasing and since it is upper bounded by a finite value, so the convergence of Algorithm
3.2.1 is guaranteed.

3.2.7 Trajectory Initializing

In this section, we propose a simple strategy to initialize the drone trajectory to be
optimized later on by the introduced Algorithm 3.2.1. The initial trajectory is in form of
a circle which is centered at ctrj = (xtrj, ytrj) and the radius rtrj which is given by

rtrj =
Lmax

2π
,

where Lmax = T · vmax. To determine the ctrj, we use the notion of the (weighted) center
of gravity of the ground nodes [42]. Moreover, the flying altitude is initialized at hmax.
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3.3 Optimal UAV Relay Placement in LTE Networks

In this section, we consider a scenario where a UAV is acting as a relay between a fixed
BS and ground users in an urban area consists of a number of city buildings. There are
K static ground level users randomly scattered over the city, and uk = [xk, yk]

T ∈ R2.
denotes the k-th user location. We assume that the 3D map of the city and the location
of the users are known. The location of the UAV is denoted by v = [x, y, z]T ∈ R3. Note
that the placement problem can be considered as a special case of the trajectory design
problem when v(t) = v, ∀ t. We denote the location of the BS as xb = [xb, yb, zb]

T ∈ R3,
which is also known.

Similar to section 3.2.3, for a link between a drone located at altitude z and the k-th
user, the LoS probability is modeled by:

pk =
1

1 + exp (−ak θk + bk)
, (3.18)

where θk = arctan(z/rk) denotes the elevation angle and rk is the ground projected
distance between the drone and the k-th user located at uk, and {ak, bk} are the model
coefficients.

Using (3.18), the average channel gain between the k-th user and the drone can be
written as follows:

E [γk] = pkγLoS,k + (1− pk)γNLoS,k

=

(
d

(A−1)αLoS

k −B
1 + exp(−akθk + bk)

+B

)
βLoS

dαNLoS
k

, (3.19)

where γk, according to (2.1), is the channel gain between the k-th user and the drone,

B = βNLoS
βLoS

, A = αNLoS
αLoS

≥ 1, and dk =
√
z2 + r2

k is the distance between the k-th user and

the drone.

3.3.1 Communication Model

The UAV serves only one user among the K users at a time by acting as a relay. We
assume that a decode-and-forward type of relay protocol is used. If the UAV is serving
k-th user, the achievable throughput on the UAV-user link can be upper-bounded by

Cup
k = log2

(
1 +

Pd E [γk]

σ2

)
. (3.20)

It’s also assumed that the UAV is connected to the BS at all times and the throughput
of the BS-UAV link is upper-bounded by

Cup
b = log2

(
1 +

Pb E [γb]

σ2

)
, (3.21)

where Pd, Pb are the downlink transmit powers of the UAV and BS, respectively. The
additive white Gaussian noise at the receivers is denoted by σ2. γb is the BS-UAV channel
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gain. E [γb] is computed by averaging over the LoS component as the UAV is always
connected to the BS with a LoS link at all times.

Since we assume decode-and-forward type of relaying, using the above bounds, the
achievable throughput for the k-th user can be approximated as

Ck = min(Cup
k , Cup

b ). (3.22)

3.3.2 UAV Placement Optimization

Since only one user can be served by the UAV at any time, in order to provide a
performance guarantee to the connected user, we aim to find the UAV position which
maximizes the minimum achievable rate of all the users. Using the upper-bound in (3.22),
the placement problem can be formulated as

max
v

min
k∈[1,K]

Ck (3.23a)

s.t. hmin ≤ z ≤ hmax, (3.23b)

The problem shown in (3.23) is non-convex, hence hard to solve. To solve (3.23),
similar to Section 3.2, we propose an iterative algorithm by employing the block-coordinate
descent to split it up into two sub-problems and then we utilize the sequential convex
programming technique to solve each sub-problem. The algorithm then iterates between
two phases to converge to a final solution. Note that, we use the notion of the center of
gravity of ground users to initialize the drone position. Moreover, the flying altitude is
initialized at hmax. The convergence of the algorithm can be established along similar
lines to the one provided in Section 3.2.6.

Planar Optimal UAV Placement

For a given drone’s altitude z, the UAV position in the horizontal plane can be optimized
by solving

max
x,y

min
k∈[1,K]

Ck. (3.24)

This problem is not convex and to solve this problem first we introduce auxiliary variables
fk, wk, lk, lb, and θk. We then rewrite (3.24) as follows

max
V,x,y,µ

µ (3.25a)

s.t. ck (fk, wk, lk) ≥ µ , ∀k, (3.25b)

cb (lb) ≥ µ (3.25c)

wk =
((
z2 + lk

)(A−1)αLoS/2 −B
)−1

, ∀k, (3.25d)

fk = exp (−akθk + bk) , ∀k, (3.25e)

lk = r2
k , ∀k, (3.25f)
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lb = x2 + y2 (3.25g)

θk = arctan
(
z/
√
lk

)
, ∀k (3.25h)

fk, wk, lk, θk, lb ≥ 0 , ∀k, (3.25i)

where

ck (fk, wk, lk) ,

log2

(
1 +

(
1

wk(1 + fk)
+B

)
P βLoS

σ2 (z2 + lk)
αNLoS/2

)
, (3.26)

and

cb (lb) = log2

1 +
Pb βLoS

σ2
(

(z − zb)2 + lb

)αLoS/2

 .

It can be shown that ck (fk, wk, lk) , cb (lb) are convex and also all the constraints (3.25d)
to (3.25h) comprise convex functions, however (3.25) in general is not convex optimization
problem and it can be solved similar to the approach introduced in Section 3.2.4 by
applying the sequential convex programming.

UAV Altitude Optimization

Now we proceed to optimize the UAV altitude for a given horizontal UAV position (x, y).
The UAV altitude is optimized as follow

max
z

min
k∈[1,K]

Ck. (3.27)

This problem is not convex and is solved in a similar manner as the last section by intro-
ducing same auxiliary variables and then applying the sequential convex programming.

3.4 Numerical Results

We consider a dense urban Manhattan-like area of size 600×600 square meters, consisting
of a regular street and buildings. The height of the building is Rayleigh distributed
within the range of 5 to 40 meters [15]. The average building height is 14 m. Propagation
parameters are chosen as αLoS = 2.27, αNLoS = 3.64, ßLoS = −30 dB, ßNLoS = −40 dB
according to an urban micro scenario in [55]. The variances of the shadowing component
in LoS and NLoS scenarios are σ2

LoS = 2 and σ2
NLoS = 5, respectively. The transmission

power for ground nodes is chosen as P = Pd = 30 dBm, and for the BS’s transmission
power is Pb = 36 dBm, and the noise power at the receiver is -80 dBm. The UAV has a
maximum speed of vmax = 10 m/s.

We first start by evaluating the performance of the communication trajectory de-
sign algorithm. Since the communication trajectory design depends on the local LoS
probability model, we first need to learn the probability model coefficients in (3.7). For
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Figure 3.1 – Global LoS probability compared with the local LoS probability learned
form the 3D map for three ground nodes.
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Figure 3.2 – Optimal drone trajectory and ground node scheduling for different flight
times. As the flight time increases, the UAV gets closer to individual ground nodes.
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Figure 3.3 – (a) Throughput performance versus iteration and (b) drone altitude evolution
versus iteration.

this, we employed the logistic regression method on the training data set obtained by
randomly sampling around each ground node. The labeling is done with the true LoS
status obtained from the 3D city map. Fig. 3.1 shows the obtained LoS probabilities for
K = 3 ground nodes whose locations are shown in Fig. 3.2. We also plot the global LoS
probability which is computed from the characteristics of the 3D map according to [15].
It is clear that the local probabilities have the sharper transitions and thus provide more
information per ground node (i.e. if the node is surrounded by the tall buildings or is in
a large open area), while the global probability can be considered as the average of the
local LoS probability of the nodes in different locations.

In Fig. 3.2, we show the generated trajectory over the city buildings for different
flight times (T ). It is clear that by increasing T , the UAV exploits the flight time to
improve the ground node link quality by enlarging the trajectory and moving towards
the ground nodes. It is crucial to note that the generated trajectory is closer to the
ground nodes which has the lower LoS probability (i.e. the ground nodes who are close
to buildings or surrounded by tall skyscrapers). In Fig. 3.2, the drone tries to get closer
to the ground nodes 1 and 2 since they are close to the buildings which mostly block the
LoS link to the drone. Moreover, we illustrated the result of the ground node scheduling
during the trajectory with different markers which are assigned to each node. Namely
triangles, squares, and circles pertain, respectively, to ground nodes 1 to 3. For example,
square markers shown on the trajectory indicate that the drone is serving the ground
node 1 at that time.

We then outline the convergence behavior of Algorithm 3.2.1 by assuming K = 3 and
T = 90 s. The drone altitude and worst ground node throughput versus iteration are
shown in Fig.3.3. As we expected, the worst ground node throughput in each iteration
improves and finally converges to a finite value.

In Fig. 3.4, the performance of the proposed map-based algorithm in comparison
with two other approaches, which are briefly explained below, versus the flight time by
considering K = 6 ground nodes is shown.
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Figure 3.4 – Performance of the map-based algorithm in comparison with the probabilistic
approach and the deterministic Algorithm for 6 ground nodes versus increasing the flight
time.

• Probabilistic algorithm

In the probabilistic approach, we consider the same trajectory design algorithm
as proposed in this chapter with the difference that for a link between the drone
located at altitude z and the k-th ground node, the LoS probability at the time
step n is given by

pk[n] =
1

1 + exp (−a θk[n] + b)
,

where parameters {a, b} are computed according to [15] and based on the charac-
teristics of the 3D map. In other words, we use a global LoS probability model.

• Deterministic algorithm

In the deterministic algorithm, an optimal trajectory is generated based on the
method introduced in [46] which considers a single deterministic LoS channel model
for the link between the drone and the ground nodes. In order to have a fair
comparison, we modified this method by using an average path-loss instead of the
pure LoS channel model. the channel parameters pertaining to the average path-
loss model are learned by fitting one channel model for the whole measurements
gathered from both LoS and NLoS ground nodes.

In general, the map-based algorithm outperforms the other approaches which is expected
since in the proposed algorithm we utilize more information through the 3D map.

In Fig. 3.5 a performance comparison of the proposed map-based algorithm and the
probabilistic approach under a fixed flight time by increasing the average buildings height
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Figure 3.5 – Performance comparison of the map-based Algorithm and the probabilistic
approach versus the average building height for a fixed flight time.

is illustrated. The map-based algorithm provides a better services to the ground nodes.
For both algorithms by increasing the buildings height, the performance degraded since
it is more likely that the link between the ground nodes and the drone over the course of
the trajectory being NLoS.

In Fig. 3.6, the top view of the city and the optimal position of the UAV calculated
by using the map-based placement algorithm for an example of 3 static ground nodes is
shown. The BS is located at xb = [0, 0, 50]T meters. The optimal altitude for the UAV is
270 meters. it is worth mentioning that, the optimal position of the UAV is closer to
the ground node which is experiencing the worse channel condition (which in this case is
user 2). In other words, the UAV tries to favor the worst node in the network.

3.5 Conclusion

This chapter considered the problem of trajectory design for a UAV BS that is providing
communication services for a number of ground nodes in the context of an IoT data
harvesting scenario. We have developed throughput-optimized trajectories such that the
amount of data collected from each of the ground nodes is maximized. We have proposed
an iterative algorithm that leverages the knowledge of the 3D city map via a novel
map-compression method and uses the block coordinate descent and sequential convex
programming techniques. It is also shown that the proposed algorithm is guaranteed
to converge to at least a locally optimal solution. Moreover, we discussed the problem
of optimal placement for a UAV relay in a LTE network which is a special case of the
trajectory design problem.
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nodes using the Map-based placement. The optimal altitude is 270 meters.
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Chapter 4

Active Learning for Channel
Estimation: Map-based
approaches

4.1 Introduction

A common assumption in the study of UAV communications is that the channel model
parameters are assumed to be known when designing the UAV trajectory or finding the
UAV optimal location. However, in reality, these parameters need to be learned based on
the measurements collected from the ground users. As a result, an important question
arises: What is an efficient way of collecting radio measurements by the UAV from the
ground users in order to estimate the channel model parameters?

In this chapter, we formulate and solve a learning trajectory optimization problem in
order to minimize the estimation error of the channel model parameters while capitalizing
on 3D map data. The devised trajectory allows the UAV to exploit the map and quickly
learn the propagation parameters.

We consider a wireless communication system where a UAV-mounted flying BS
serving K static ground level nodes (IoT sensors, radio terminals, etc.) in an urban
area. The location of the k-th ground node is assumed to be known and is denoted
by uk = [xk, yk, 0]T ∈ R3, k ∈ [1,K]. The UAV’s mission during learning the channel
parameters is of duration T . For the ease of exposition, we assume that the time period
T is discretized into N equal-time slots. Hence, the UAV’s position v(t) is approximated
by a sequence

v[n] = [x[n], y[n], z[n]]T, n ∈ [1, N ]. (4.1)

The UAV locations is also assumed to be known at any time slots.

4.2 UAV Kinematic Model

During the mission, drone’s position evolves according to
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v[n+ 1] = v[n] +

 cos (φ[n]) cos (ψ[n])
sin (φ[n]) cos (ψ[n])

sin (ψ[n])

 ρ[n] , (4.2a)

hmin ≤z[n] ≤ hmax, ∀n ∈ [1, N − 1], (4.2b)

where in the n-th time slot, 0 ≤ ρ[n] ≤ ρmax represents the distance traveled by the
drone, 0 ≤ φ[n] ≤ 2π and −π

2 ≤ ψ[n] ≤ π
2 represent the heading and elevation angles,

respectively. The maximum distance traveled in a time slot is denoted by ρmax and it
depends on the UAV maximum velocity. The constraint (4.2b) reflects the fact that the
drone always flies at an altitude higher than hmin and lower than hmax, with hmin being
the height of the tallest building in the city.

4.3 Learning Trajectory Design

In this section, our goal is to find a UAV trajectory, over which the channel measurements
are collected from the ground nodes, that results in the minimum estimation error of the
channel model parameters. While the problem of learning the channel parameters from a
pre-determined measurement data set has been addressed in the prior literature [27; 56],
the novelty of our work lies in the concept of optimizing the flight trajectory itself so
as to accelerate the learning process. The channel measurement collection and learning
process are described next.

4.3.1 Measurement Collection and Channel Learning

The measurement harvesting is performed over a UAV trajectory that starts at a base
position vI ∈ R3 and ends at a terminal position vF ∈ R3. Mathematically,

v[1] = vI, v[N ] = vF. (4.3)

The base position is typically the take-off base for the UAV while vF can be selected
in different ways, including vF = vI (loop). In the n-th time interval, n ∈ [1, N ], the
measurements collected from the ground nodes can be written as

gs,n =
[
gs,1, gs,2, · · · , gs,δs,n

]T
,

where gs,i, as defined in (2.2), is the channel gain (in dB scale) of the i-th measurement,
i ∈ [1, δs,n], and δs,n is the number of measurements obtained for the propagation segment
group s ∈ {LoS,NLoS}. For the LoS/NLoS classification of the measurements, we
leverage the knowledge of a 3D city map [28]. Based on such map, we can predict LoS
(un)availability on any given UAV-ground nodes link from a trivial geometry argument:
For a given UAV position, the ground node is considered in LoS to the UAV if the straight
line passing through the UAV’s and the ground node’s position lies higher than any
buildings in between.

Using (2.2), the i-th measurement can be modeled as

gs,i = aT
s,iωs + ηs,i, (4.4)

40



Chapter 4. Active Learning for Channel Estimation: Map-based approaches

where as,i = [−ϕ(di), 1]T with di being the distance between the drone and ground node
in the i-th measurement, ωs = [αs, ßs]

T is the vector of channel parameters, and ηs,i
denotes the shadowing component in the i-th measurement. The measurements collected
in the n-th interval can now be written as

gs,n = As,nωs + ηs,n, (4.5)

where As,n =
[
as,1, · · · ,as,δs,n

]T
, ηs,n = [ηs,1, · · · , ηs,δs,n ]T. Finally, we stack up the

measurements gathered by the drone up to time step n as

ḡs,n = Ās,nωs + η̄s,n, (4.6)

where

ḡs,n =
[
gT
s,1, · · · ,gT

s,n

]T
,

Ās,n =
[
AT
s,1, · · · ,AT

s,n

]T
,

η̄s,n =
[
ηT
s,1, · · · ,ηT

s,n

]T
.

Assuming that the measurements collected over a trajectory are independent, the
maximum likelihood estimation (MLE) of ωs, s ∈ {LoS,NLoS} based on the measurements
collected up to time step n is given by [27; 28]

ω̂s,n =
(
ĀT
s,n Ās,n

)−1
ĀT
s,n ḡs,n. (4.7)

By substituting (4.6) in (4.7), we obtain

ω̂s,n − ωs =
(
ĀT
s,n Ās,n

)−1
ĀT
s,nη̄s,n. (4.8)

Since ω̂s,n is unbiased, the mean squared error (MSE) of the estimated parameters can
be obtained as [52]

E ‖ω̂s,n − ωs‖2 = tr [Cov {ω̂s,n}]

= σ2
s tr
[(

ĀT
s,n Ās,n

)−1
]
. (4.9)

Let

es[n] , tr
[(

ĀT
s,n Ās,n

)−1
]
,

and assuming that σ2
NLoS = κ · σ2

LoS, κ ≥ 1 [55], the total estimation error in both
propagation segments is given by∑

s

E ‖ω̂s,n − ωs‖2 = σ2
LoS (eLoS[N ] + κ eNLoS[N ]) . (4.10)

Note that a full rank Ās,n is assumed in calculating the error for both LoS and NLoS
categories over the course of the trajectory. If there are not enough measurements in
a particular segment by the end of the trajectory, the estimation error is assigned as
infinity in that segment.
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4.3.2 Optimization Problem

The optimal learning trajectory that minimizes the estimation error can be formulated as

min
Φ,Ψ,R

eLoS[N ] + κ eNLoS[N ] (4.11a)

s.t. (4.2), (4.3) (4.11b)

where Φ,Ψ, and R are defined as

Φ = {0 ≤ φ[n] < 2π, n ∈ [1, N − 1]} ,

Ψ =
{
−π

2
≤ ψ[n] ≤ π

2
, n ∈ [1, N − 1]

}
,

R = {0 ≤ ρ[n] ≤ ρmax, n ∈ [1, N − 1]} .

As the estimation error depends on the matrix Ās,N which has a very complicated
expression in terms of φ[n], ψ[n], and ρ[n], it is hard to obtain an analytical solution for
problem (4.11) in general. Therefor, we tackle (4.11) by discretizing the optimization
variables and then employing dynamic programming (DP) [57] to find the solution. To
apply DP, the estimation error es[N ] needs to be rewritten as follows

es[N ] = tr

([ Ās,N−1

As,N

]T [
Ās,N−1

As,N

])−1


(a)
= es[N − 1]− rs[N ]

(b)
= es[1]−

N∑
n=2

rs[n], (4.12)

where we denote rs[n] as the amount of improvement in the estimate within time slot n,
and it is given by

rs[n] = tr
[
Hs,n AT

s,n

(
I + As,n Hs,n AT

s,n

)−1
As,n Hs,n

]
, (4.13)

Hs,n ,
(
ĀT
s,n−1 Ās,n−1

)−1
, I is the identity matrix, (a) follows from the matrix inversion

lemma, and (b) follows from the recursive relation. Now (4.11) can be reformulated as

min
Φ,Ψ,R

N∑
n=1

ẽLoS[n] + κ ẽNLoS[n] (4.14a)

s.t. (4.2), (4.3) (4.14b)

where

ẽs[n] =

{
es[1] n = 1

−rs[n] n ∈ [2, N ]
.
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Figure 4.1 – A fragment of the 3D path graph, arbitrary base position vI, and terminal
position vF .

4.3.3 Dynamic Programming

To solve (4.14) by DP, we constraint (and thus approximate) the possible drone locations
and the optimization variables to a limited alphabet and then use Bellman’s recursion to
compute the optimal discrete trajectory. We start by introducing some notations.
Let v[n], n ∈ [1, N ] denotes the states and π[n] = [φ[n], ψ[n], ρ[n]]T represents the input
action at time n ∈ [1, N − 1] such that

φ[n] ∈
{

0,
π

4
,
π

2
,
3π

4
, π,

5π

4
,
3π

2
,
7π

4

}
,

ψ[n] ∈
{
−π

2
,−π

4
, 0,

π

4
,
π

2

}
,

ρ[n] ∈
{

0, ah, av, ah
√

2,
√
a2
h + a2

v,
√

2a2
h + a2

v

}
, (4.15)

where ah and av denote the discretization unit used in discretizing the city map into a
3D grid (hereafter termed as path graph) of admissible drone locations. Depending on
the action π[n] in v[n], the state v[n + 1] can be computed by using (4.2) and (4.15).
In Fig. 4.1, a part of the path graph, arbitrary base position vI, and terminal position
vF are illustrated. The vertices and the edges of the path graph can, respectively, be
interpreted as the admissible states and input actions in each time slot.

In order not to exceed the flight time constraint T , N can be selected as 1

N =

⌊
T

Te

⌋
,

where b.c denotes the floor function and Te =

√
2a2h+a2v
vmax

is the minimum required time for
taking the longest edge between two adjacent vertices in the path graph while the drone
moves with maximum speed vmax.

DP in a forward manner is now used to solve for (4.14) by taking into account the
finite alphabet constraint (4.15). Thus, by reformulating (4.14a) we can associate with

1Note that this is a conservative choice. In practice, N could be slightly higher given the UAV may
use some of the short edges.
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our problem the performance index

Ji(v[i]) = Ω(v[1]) +
i∑

n=2

L[n], (4.16)

where [2, i] is the time interval of interest and L[n] = ẽLoS[n] + κ ẽNLoS[n]. Ω(v[1]) stands
for the initial cost and given by

Ω(v[1]) =

{
L[1] v[1] = vI

∞ otherwise
.

According to Bellman’s equation, the optimal cost up to time n+ 1 is equal to

J∗n+1(v[n+ 1]) = min
π[n]
{L[n+ 1] + J∗n(v[n])} , n ∈ [1, N − 1], (4.17a)

J∗1 (v[1]) = Ω(v[1]), (4.17b)

where π[n] is the input action vector. Thus, the optimal input action π∗[n] at time n is
the one that achieves the minimum in (4.17a). Finally, the optimal policy (trajectory)
can be found by solving (4.17) for all n ∈ [1, N − 1] and by choosing v[N ] = vF. Note
that the number of computations required to find the optimal trajectory is given by [57]

V ·Π ·N,

where V is the number of admissible states (i.e. the number of vertices in the path graph),
and Π is the number of quantized admissible input actions.

Note that the error L[n] only depends on the UAV location through its distance from
the ground users and the LoS/NLoS status. Since we have the knowledge of the 3D
map and the ground nodes’ locations, (4.17) can be solved offline without collecting any
measurements. Once the optimal trajectory is calculated, UAV follows this trajectory to
collect the measurements and then estimates the channel parameters.

4.4 Numerical Results

We consider a dense urban Manhattan-like area of size 600×600 square meters, consisting
of a regular street and buildings. The height of the building is Rayleigh distributed within
the range of 5 to 40 meters [15]. The average building height is 14 m. True propagation
parameters are chosen as αLoS = 2.27, αNLoS = 3.64, ßLoS = −30 dB, ßNLoS = −40 dB
according to an urban micro scenario in [55]. The variances of the shadowing component
in LoS and NLoS scenarios are σ2

LoS = 2 and σ2
NLoS = 5, respectively. The UAV has a

maximum speed of vmax = 10 m/s.
An illustration of the optimal learning trajectory is presented in Fig. 4.2 for K = 3

ground nodes. In this scenario, the UAV flies from the base position vI = [0, 0, 50]T

meters towards the terminal location vF = [300, 300, 50]T meters under the flight time
constraint T = 100 s. To discretize the search space over the city for creating the 3D path

44



Chapter 4. Active Learning for Channel Estimation: Map-based approaches

(a)

0 100 200 300 400 500 600

X-Axis [m]

0

100

200

300

400

500

600

Y
-A

x
is

 [
m

]

5

10

15

20

25

30

35

40

B
u

il
d

in
g

 H
e

ig
h

t 
[m

]

Node 1

Node 2

Node 3

(b)

0 200 400 600 800 1000

Flown Distance over Trajectory [m]

50

55

60

65

70

T
ra

je
c

to
ry

 E
le

v
a

ti
o

n
 [

m
]

Figure 4.2 – (a) Top view of the optimal learning trajectory using proposed algorithm.
(b) The UAV elevation along the trajectory.

graph, we chose ah = 100 m and av = 20 m as defined in Section 4.3.3. It is interesting
to note that, the trajectory experiences a wide array of altitudes there by improving the
learning performance of both LoS and NLoS segments. For the ease of exhibition, we
plotted the generated trajectory in two different figures. Fig. 4.2-a shows the top view of
the generated trajectory while the elevation of the trajectory as a function of the flown
distance is depicted in Fig. 4.2-b.

In Fig. 4.3 the performance of the optimal trajectory in terms of the MSE of the
learned channel parameters (αs, ßs; s = {LoS,NLoS}) is shown as a function of the
number of ground nodes. The duration of the learning phase T = 100 s. We perform
Monte-Carlo simulations over random user locations. We also compare the performance
of the optimal trajectory with that of randomly generated arbitrary trajectories. For a
given realization, arbitrary trajectory of duration T is generated. It is clear that, the
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Figure 4.3 – Comparison of the MSE for different learning trajectories.

channel can be learned more precisely by taking the optimized learning trajectory. Also,
the learning error is reduced when the number of ground nodes increases, since the chance
of obtaining measurement from both LoS and NLoS segments increases.

4.5 Conclusion

In this chapter, we investigated the problem of learning trajectory optimization for a
UAV BS which is serving a set of ground nodes in order to minimize the estimation error
of the channel model parameters. To solve this problem we proposed an algorithm to
design the learning trajectory using the active learning and by leveraging the 3D map of
the environment. The devised trajectory allows the UAV to exploit the map and quickly
learn the propagation parameters.
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Chapter 5

UAV-aided Radio Node
Localization

One of the critical components in UAV communication systems is the location awareness
of the nodes in wireless networks. When there is no provision for nodes communicating
their GPS coordinates or when the GPS accuracy is limited in challenging environments
such as indoors or dense urban cities, network localization becomes a challenging problem
which has attracted significant interest during the past few years [58; 59].

In a typical network, there are two types of nodes, namely anchors and users. As
elements of the network infrastructure, anchors have perfectly known positions, which
can be stationary or time-varying like in the case of flying BSs or relays, whereas users
often have unknown locations (and need to be estimated). Network node localization can
follow a two step approach (i) distance estimation between the nodes in the network and
(ii) node localization based on inter-node distances. Based on the distance estimation
techniques employed, localization algorithms can be categorized into range-based localiza-
tion algorithms and range-free localization approaches. In the range-based localization,
the distances between user nodes are estimated by exploiting some physical properties
of communication signals (e.g. the relation between the distance and received signal
strength), while the range-free localization algorithms estimate a user coordinate using
connectivity information between users without ranging information (i.e. no time, angle
or power information is used). As an example for the range-free localization, as a rough
estimation, the location of a node can be determined as the center of gravity of all the
anchor nodes which it can connect to (e.g. if the user is within the coverage area of the
anchor node) [60].

When it comes to range-based localization algorithms, different methods can be
utilized to measure the distance between the nodes such as RSSI, time of arrival (ToA),
time difference of arrival (TDoA), and angle of arrival (AoA). The RSSI information
infers the distance between the agent nodes and the anchor nodes from the fact that
the attenuation of the radio signal increases as the distance between the receiver and
transmitter increases. In ToA, the timing information or the propagation time of the
communication signal is used to measure the distance between user nodes and the anchor
node. The distance between two nodes is calculated using the TDoA, and the AoA
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methods use the angle at which signals are received at the anchor nodes in some reference
frame.

Among all the aforementioned methods, localization using RSSI measurements offers
an attractive solution for practical purposes as the RSSI measurements are easy to obtain
in many wireless networks and are inexpensive unlike the timing-based methods which
require tight synchronization and calibration of the transceivers [61; 62; 63].

The problem of network localization based on RSSI measurements obtained by static
anchor nodes and unknown propagation pathloss model parameters has been studied in
many papers, an early contribution to the problem was [64]. However, the authors in [64]
use a pathloss model that does not differentiate between LoS and NLoS conditions. Since
we are interested in using a flying UAV as a mobile anchor to localize the ground users
in an urban environment, the air-to-ground propagation models between the UAV and
ground users will much benefit from a segmented pathloss model where the propagation
condition are allowed to switch between LoS and NLoS depending on the UAV location
[7; 27]. The authors in [65] extended the work of [64] to a segmented pathloss model
which is suited to urban environments having LoS and NLoS conditions. They model the
collected RSSI measurements as a mixture of two Gaussian distributions with weights
representing the probability of the measurement obtained from the LoS or NLoS segment.
The problem of joint user localization and pathloss parameter estimation is then solved
by an iterative algorithm using the expectation maximization (EM) criterion. Note that
[64] and [65] do not use any side information in the form of 3D building maps. Hence a
statistical path loss model that exploits probabilities of being in LoS or NLoS modes has
to be used, as in [65]. If a 3D city map containing the building structure information is
given as extra information to the localization problem, then the LoS/NLoS classification
task of a measurement can be improved as we observe in this thesis. Indeed, it has been
observed in [66] that building map-aware statistical models for RSSI measurements in an
indoor environment for localization leads to a better performance than the map-unaware
methods.

Instead of using different static anchor nodes, a mobile anchor equipped with a GPS
device in the form of a UAV can be utilized to collect the radio measurements from nodes
at different geographical locations. While some amount of research has been done on
the problem of ground-based mobile anchor node assisted localization techniques [61],
using UAVs as aerial anchors to localize the ground users has also gained interest. The
advantage of UAV anchors is the flexibility in moving in 3D, hence gaining the ability to
favorably impact fading statistics by increasing the probability of LoS conditions which
are known to be beneficial for achieving better localization performance [67; 68].

Using UAV anchors for network localization offers another degree of freedom in terms
of their trajectory, which can be optimized for accelerated learning of the node locations.
In [69; 70] a simple trajectory is generated by taking the effect of the NLoS links between
the anchor nodes and the users into consideration. The authors in [71] focused on the
experimental exploration of static trajectories applied to the localization of wireless
nodes using UAVs. They investigated two types of trajectories called Triangle and Circle,
and showed that the Triangle is better suited for their unique indoor-outdoor setting.
In [72; 73; 74] the problem of trajectory design of multiple flying anchors (UAVs) for
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RSSI-based node localization is investigated. Authors in [72; 73; 74] assumed that the
UAVs fly high enough so that they can establish LoS links to any nodes in the network
at all times, and the effect of NLoS measurements is ignored in the localization process
which is not very realistic for mid-altitude UAVs. In [75], the trajectories for multiple
UAVs are designed using the ToA estimate.

In this chapter, we focus on the range-based localization by using the RSSI measure-
ments collected by a flying anchor. This is up to our knowledge the first work dealing
with UAV-based user localization which also optimizes the flight trajectory under a fixed
mission time while exploiting a realistic segmented channel model fed from a 3D map.
Specifically, our contributions are as follows:

• We formulate and solve the problem of joint map-based channel learning and user
localization from the RSSI measurements collected from the users in both LoS
and NLoS conditions by the UAV. The LoS and NLoS classification information is
derived by confronting location estimates with the 3D map information.

• We propose an on-line algorithm to design an optimized trajectory for the UAV
to improve the performance of the localization and channel learning under a given
mission duration. The intuition behind it is that not all measurement points in the
network are equally worthy so as to bring information about node location. An
optimized trajectory will minimize flying time while making sure the collected data
is as informative as possible.

5.1 System Model

We consider a scenario where a UAV-mounted access point is connected to K ground
level users in an urban area consisting of a number of city buildings. The users are
scattered all over the city and uk = [xk, yk]

T ∈ R2, k ∈ [1,K] denotes the k-th user’s
location which is not known. The user locations are considered static for the sake of
derivation of the algorithm, yet in practice, adaptive/iterative versions of the proposed
methods are possible to obtain that will track moving users. The UAV’s mission is of the
duration T , during which, the aim of the UAV is to estimate the unknown user locations
by collecting radio measurements from them. A two-segment channel model (LoS/NLoS)
is used as introduced in Section 2.2.1. Note that, in this chapter, we assume the channel
model parameters are unknown at the initial stage of the algorithm. Importantly, a 3D
map of the city is assumed to be available.

For ease of exposition, we assume that the time period [0, T ] is divided into N equal
length intervals of duration δ = T/N , indexed by n = 1, . . . , N . The value of δ is chosen
to be sufficiently small such that UAV’s location, velocity, and heading angles can be
considered constant in one interval. In the n-th interval the UAV/drone position is
denoted by v[n] = [x[n], y[n], z[n]]T ∈ R3. We assume that the drone is equipped with a
GPS receiver, hence v[n] is known. Moreover during the mission, the UAV’s position
evolves according to the UAV model mentioned in Section 4.2.
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5.2 User Localization and Channel Model Learning

In this section, we propose a map based algorithm to simultaneously localize users
and learn the channel model’s pathloss parameters by employing the particle swarm
optimization (PSO) technique. The motivations to use a PSO-based approach are exposed
in more details in the next section. The measurement collection process and then the
estimation problem are described next. Note that in the initial description stage, we
assume the UAV describes an arbitrary trajectory of given length. The trajectory is
optimized in the later sections of this chapter. The knowledge of the 3D map of the
environment plays a crucial role in the estimation process. Note that in this chapter, we
assume the values of the shadowing effect covariance pertaining to both LoS and NLoS
segments (σ2

s , s ∈ {LoS,NLoS}) are known.
Let an arbitrary trajectory be taken by the UAV during the mission such that it flies

over N different locations denoted by {v[1], . . . ,v[n]}. In each of these locations, the
UAV collects the radio measurements form all K users (in total K ·N measurements).
Let gn,k represent the RSSI measurement (in dB scale) obtained from the k-th user by
the UAV in the n-th interval. Using (2.2), gn,k is modeled as

gn,k = wn,k hn,k,LoS + (1− wn,k)hn,k,NLoS (5.1)

where ωn,k ∈ {0, 1} is the classifier binary variable (yet unknown) which indicates if
a measurement falls into the LoS or NLoS category, and hn,k,s is a model for a RSSI
measurement collected form user k at the n-th time step which belongs to the segment
s ∈ {LoS,NLoS} and is defined as

hn,k,s = λn(θs,uk) + ηn,k,s. (5.2)

where θs = [αs, ßs]
T, s ∈ {LoS,NLoS}, and

λn(θs,uk) = ßs − αsϕn(uk), (5.3)

ϕn(uk) = 10 log10(dn(uk)), and dn(uk) = ‖uk − v[n]‖ being the distance between the
k-th user and the UAV in its n-th location. ηn,k,s represents a random shadowing
component with zero-mean Gaussian distribution with variance σ2

s . We assume that
NLoS measurements have a higher shadowing affect (σNLoS ≥ σLoS) [55].

Assuming that collected measurements conditioned on channel parameters 1 and user
positions are i.i.d, then the MLE of θs,uk leads to minimizing the sum squared error
(SSE),

SSE =
K∑
k=1

N∑
n=1

ωn,k |gn,k − λn(θLoS,uk)|2 + (1− ωn,k) |gn,k − λn(θNLoS,uk)|2 . (5.4)

The optimal channel parameters and user location estimates that minimize the SSE in
(5.4) can be formulated as

min
ωn,k,θs,uk

SSE. (5.5)

1This amounts to assuming the shadowing coefficients are independent over successive UAV locations,
which is a classical simplifying assumption, see for e.g. [27]
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As the estimation error in (5.4) comprises the classifier binary variables ωn,k and
λn(θs,uk) is a non-linear function of the parameter uk, in general it is challenging to
solve the simultaneous classification, localization and channel learning problem (5.5). To
tackle this problem, the PSO technique is used, aided with the exploitation of the 3D
map of the environment. PSO is a computational technique which iteratively explores the
search space of a given problem to find the settings or parameters required to maximize
a particular objective. PSO works by simultaneously maintaining several candidate
solutions in the search space, hence helping to prevent from getting stuck in the local
minima which often arises in non-convex optimization. No matter the complexity of the
objective function, PSO is found from experience to often find a good solution in such
problems [76; 77]. In the following sections, we first briefly explain the PSO algorithm
and then we propose a solution to efficiently solve problem (5.5).

5.2.1 PSO Techniques

PSO is a computational method that optimizes a problem by iteratively trying to improve
a candidate solution with regard to a given measure of quality so called fitness value.
PSO solves a problem by first generating a population of random candidate solutions,
called particles, and moving these particles around in the search-space based on a simple
mathematical formulae capturing each particle’s position and velocity, as described below.
During each iteration, each candidate solution is evaluated by the objective function,
determining the fitness of that solution.

We consider a set of particles C = {cj ∈ RD, j = 1, · · · , C}, where D is the dimension
of each particle. Each particle has the same dimension as unknown parameters to be
estimated. The fitness and the velocity of each particle need to be stored. Additionally,
each particle remembers the best fitness value it has achieved so far during the operation
of the algorithm, referred to as the individual best fitness, as well as the candidate solution
that achieved this fitness, referred to as the individual best candidate solution. Finally,
the PSO algorithm maintains the best fitness value achieved among all particles in the
population, called the global best fitness, as well as the candidate solution that achieved
this fitness, called the global best candidate solution.

The velocity of each particle in the swarm is updated using the following equation:

ċ
(i+1)
j = ν ċ

(i)
j + ε1r1(cb

j − c
(i)
j ) + ε2r2(c∗ − c

(i)
j ), (5.6)

where c
(i)
j , ċ

(i)
j are the j-th particle’s position and its velocity at the i-th iteration of

PSO, respectively. cb
j is the individual best candidate solution for particle j at iteration

i, and c∗ is the the swarm’s global best candidate solution. The parameters ν, ε1, ε2

are user-supplied coefficients. ν is an inertial coefficient which can either dampen the
particle’s inertia or accelerate the particle in its original direction. ε1 is called the
cognitive coefficient which affects the size of the step the particle takes toward its
individual best candidate solution, and ε2 is the social coefficient which modulates the
step the particle takes toward the global best candidate solution so far. The values
r1, r2 (0 ≤ r1 ≤ 1, 0 ≤ r2 ≤ 1) are random values regenerated from a uniform distribution
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for each velocity update. Once the velocity for each particle is calculated, each particle’s
position is updated by applying the new velocity to the particle’s previous position:

c
(i+1)
j = c

(i)
j + ċ

(i+1)
j . (5.7)

This process is repeated until some stopping condition is met (e.g. a preset number of
iterations of the PSO algorithm, a predefined target fitness value). Since, PSO algorithm
works by jointly maintaining several candidate solutions in the search area, hence it is
less likely to be trapped into a local minimum compared to the gradient-based optimizer.
Due to the fact that problem (5.5) is highly non-linear, PSO is highly suitable in our
case.

As mentioned earlier, each particle has the same dimension as the unknown vectors,
which in our case, are the channel parameters for both LoS and NLoS segments, the
classification variables, and the user locations. Then, each particle is consisting of the
following elements

cj = [w1,1, · · · , wN,K ,uT
1 , · · · ,uT

K ,θ
T
LoS,θ

T
NLoS]T ∈ R(KN+2K+4),∀j (5.8)

where KN stands for the classification variables, 2K indicates the users’ locations in two
dimensions, to this is added four unknown variables which are αs, ßs, s ∈ {LoS,NLoS}.
Hence in general, solving (5.5) even with a PSO approach will be challenging due to the
high dimensionality of the problem.

To deal with this problem, we propose to use the following trick. Assume a 3D map
of the environment is available as side information. This map helps to directly relate the
user location to the propagation classification variables, hence the latter variables can be
removed from the particle. This dramatically reduces the complexity of the problem by
compacting the dimension of particles to cj ∈ R2K as follows

cj = [uT
1 , · · · ,uT

K ]T ∈ R2K , ∀j (5.9)

More specifically, propagation segment classification variables can be directly inferred
from the user and UAV locations from a trivial geometry argument: For a given UAV
position, the user is considered in LoS to the UAV if the straight line passing through
the UAV’s and the user position lies higher than any buildings in between. In turn,
having classified each measurement into LoS or NLoS, then the channel parameters can
be learned easily as well from the measurements by resorting to a standard least square
(LS) technique (see Section 4.3.1). As a result, the channel parameters estimates also
need not be included into the particles. In the following, we first consider the single user
case and then we proceed to the multi-user scenario.

We denote the individual best fitness values by zj , j ∈ [1, C], and the global best
fitness value by z∗. both individual best fitness and global best fitness values are
initialized by a positive large number (e.g. +∞).

5.2.2 Single User Case

In a single user case (K = 1), each particle has a dimension of cj := u1 ∈ R2 (i.e. each
particle is a potential candidate for the user location). Therefore, the SSE for a given
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particle, which is an estimate of the user location, is given by:

SSE(c
(i)
j ) =

∑
s∈{LoS,NLoS}

∑
n∈Ms,1,j

∣∣∣gn,1 − λn(θs, c
(i)
j )
∣∣∣2 , (5.10)

where c
(i)
j is the j-th particle at the i-th iteration of the PSO algorithm, and Ms,1,j is

a set of time indices of measurements collected from user 1 which are at segment s by
assuming that the user 1 location is same as particle j. To form Ms,1,j , a 3D map of
the city is utilized. For example, measurement gn,1 is considered LoS, if the straight

line passing through c
(i)
j and the drone location v[n] lies higher than any buildings in

between.

Having formed Ms,1,j , for the given particle c
(i)
j , (5.10) can be minimized just by

optimizing over the channel parameters θs as follows

SSE∗(c
(i)
j ) := min

θLoS,θNLoS

SSE(c
(i)
j ). (5.11)

(5.11) is an LS problem and can be easily solved (see Section 4.3.1). We indicate the

channel parameters found by solving (5.11) for the given particle c
(i)
j as θ̂s,j . We denote

the index of the best particle minimizing (5.10) as

j∗ := arg min
j∈[1,C]

SSE∗(c
(i)
j ). (5.12)

Consequently, the individual best fitness and global best fitness values are updated as
follows

zj := min
(

SSE∗(c
(i)
j ), zj

)
, j ∈ [1, C],

z∗ := min
(
SSE∗(cij∗), z∗

)
.

(5.13)

cb
j , c
∗ are also updated accordingly. In addition, We denote the learned channel parameters

corresponding to c∗ by θ∗LoS,θ
∗
NLoS. The PSO algorithm then proceeds to the next iteration

by updating the particles. We assume that the PSO terminates after I iterations.

In accordance with (5.13), z∗ is non-increasing at each iteration, therefore the original
problem (5.5) can be upper-bounded as:

SSE∗ ≤ z∗, (5.14)

where SSE∗ is the global minimum value of (5.5). By assuming a large number of particles,
SSE∗ can be approximated by the upper-bound as follows

SSE∗ ≈ z∗. (5.15)

Finally, c∗, θ∗LoS,θ
∗
NLoS are considered as the user location and channel parameters

estimates, respectively, for problem (5.5).
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5.2.3 Multi User Case

Now we proceed to the multi user case. Solving problem (5.5) with PSO algorithm
for more than 1 user, even by exploiting the 3D map information, is challenging, since
for any possible combination of particles, an LS problem need to be solved for finding
channel parameters estimates, which is computationally complex (i.e. the complexity of
the problem exponentially increases with the number of users). To tackle the complexity,
we employ a block coordinate descent technique which tries to solve the original problem
iteratively and at each iteration, only one set of variables is updated (while fixing all
the other variables), rather than updating all the variables together. More precisely, at
each iteration we fix all users location estimates except one, and we solve problem (5.5)
for that particular user. At the same time, at each iteration, the channel parameters
are also estimated. Note that, at each iteration of the algorithm, the problem becomes
a single user case which has been addressed earlier. In this manner, the complexity of
the algorithm linearly increases with the number of users. The proof of convergence and
more details of the iterative algorithm is provided in Appendix B.1.

5.3 Trajectory Design for Accelerated Learning

When it comes to the user localization using a mobile anchor, one of the fundamental
issues is how to optimally gather measurement from the users, i.e. measurements that
are maximally informative about the parameters that we seek to estimate over the UAV
mission time. In control and learning, such optimization framework is often termed as
optimal design of experiments [78; 79]. The relevance of this problem to our localization
scenario can be understood as follows: The measurements collected from NLoS links
usually lead to a degradation of the localization accuracy due to the higher shadowing
effect of the NLoS channel. However, designing a trajectory for the drone to establish
LoS links to all users at all times is not a viable solution because there may not exist a
continuous trajectory which fulfills this constraints and because of the limited mission
time. Therefore, having an autonomous trajectory design algorithm that strikes a
balance between collecting LoS measurements from the users and the mission time is
of the essence here. As an approach to this problem, we investigate the problem of
trajectory optimization of a UAV that somehow minimizes the user localization error.
Our approach relies on the notion of Fisher information matrix (FIM) [80; 81]. This
matrix helps measure the degree of dependence of observed random measurements on
the user locations, hence it can provide information on the best accuracy with which
such location can be estimated, for any given trajectory. Our goal is to exploit structural
properties of the FIM so as to design an optimal policy for the drone to collect the best
possible measurements from users. In the following, we first elaborate on the FIM and
its properties and then optimize the UAV’s trajectory.
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5.3.1 Fisher Information Matrix

For a set of RSSI measurements obtained from segment s ∈ {LoS,NLoS}, the FIM of
the measurements with respect to the variables we seek to estimate is given by

Fs = E

[
∂Ls
∂φs

∂Ls
∂φs

T]
, (5.16)

where φs = [αs, ßs, x1, y1, · · · , xK , yK ]T. Ls is the likelihood of the measurements collected
from segment s and is defined as

Ls =
N∑
n=1

∑
k∈Kn,s

log fn,k,s, (5.17)

where fn,k,s is the probability density function (PDF) of the n-th measurement from user
k in segment s, and Kn,s is a set of user indices that are in segment s at time step n.
Then the FIM for all measurements in segment s ∈ {LoS,NLoS} up to time step N is
given by

FN,s =
N∑
n=1

∑
k∈Kn,s

Hn,k,s

= FN−1,s +
∑

k∈Kn,s

HN,k,s,

(5.18)

where Hn,k,s is derived in Appendix B.2. Note that, (5.18) implies that the FIM is
cumulative over the time.

5.3.2 Cramér-Rao Bound Analysis

According to the Cramér-Rao bound (CRB) [82], the MSE of the estimated parameters
φ̂s is lower bounded by

MSE(φ̂s) ≥ tr(F−1
N,s). (5.19)

Considering the cumulative property of FN,s, we can write

F−1
N,s =

FN−1,s +
∑

k∈Kn,s

HN,k,s

−1

(a)
= F−1

N−1,s −RN,s

(b)
= F−1

1,s −
N∑
n=2

Rn,s,

(5.20)

where (a) follows from the matrix inversion lemma, and (b) follows from the recursive
relation. We denote Rn,s as the improvement in the estimate within time slot n and is
given by

Rn,s = F−1
n−1,s

 ∑
k∈Kn,s

H−1
n,k,s + F−1

n−1,s

−1

F−1
n−1,s. (5.21)
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5.3.3 Trajectory Optimization

We are interested to find a trajectory for the drone under a total flight time constraint
which starts from the base point vI and ends up at the terminal point vF and which
minimizes the estimation error of parameters φs as follows

min
χ

MSE(φ̂LoS) + MSE(φ̂NLoS) (5.22a)

s.t. TF ≤ T, (5.22b)

v[1] = vI, v[N ] = vF, (5.22c)

where χ = {v[n], n ∈ [1, N ]} denotes the discretized trajectory set in 3D, and MSE(φ̂s)
is the MSE of the estimated parameters φ̂s, s ∈ {LoS,NLoS}. The drone’s flying time is
denoted by TF and starts when the drone leaves the base position vI. By assuming a
constant velocity for the drone as vmax, then TF is given by

TF =
1

vmax

∑
n∈[2,N ]

‖v[n]− v[n− 1]‖. (5.23)

Problem (5.22) is challenging to solve since obtaining a closed form expression for
MSE(φ̂s), s ∈ {LoS,NLoS} is not easy. Therefore, instead of solving (5.22), we find a
trajectory to minimize the CRB. We can then write

min
χ

tr(F−1
N,LoS + F−1

N,NLoS) (5.24a)

s.t. (5.22b), (5.22c). (5.24b)

By substituting (5.20) in (5.24a) we obtain

min
χ

N∑
n=1

eLoS[n] + eNLoS[n] (5.25a)

s.t.
1

vmax

∑
n∈[2,N ]

‖v[n]− v[n− 1]‖ ≤ T, (5.25b)

(5.22c), (5.25c)

where

es[n] =

{
tr(F−1

1,s), n = 1

−tr(Rn,s), n ∈ [2, N ].
(5.26)

As es[n] has a complicated expression in terms of the drone location, it is hard to obtain
an analytical solution for problem (5.25). To tackle this problem, dynamic programming
[57] can be applied by discretizing the search space comprising discrete states (i.e. each
state is a feasible discrete location in the 3D space where the drone can travel to).

Note that FN,s highly depends on the channel parameters and user locations. Since the
true values of these parameters are not available, then the estimate of channel parameters
and user locations can be used to compute FN,s. In this case, (5.25) becomes as an online
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learning and trajectory design problem in which the UAV seeks to intelligently collect
measurements from users in order to improve the performance of the estimation. Since,
the performance of the learning highly depends on the collected measurements, therefore,
the UAV needs to actively optimize its trajectory over the time to maximize the learning
performance. In this manner, after obtaining new measurements, unknown parameter
estimates are updated, and accordingly, a new trajectory is generated. For example, in
the first time step (n = 1), for the lack of sufficient collected measurements from users,
channel parameters and user locations estimates are initialized randomly. Then, FN,s is
computed based on the initial values and a trajectory is designed by solving (5.25). After
that, the UAV collects new measurements by following the devised trajectory in the next
time step (n = 2). Having collected new measurements, user location estimates, channel
parameters, and the matrix FN,s are updated. Consequently, a new trajectory has to
be generated by taking into account the UAV flying time constraint. This procedure
is repeated until the UAV reaches the terminal point. Mathematically speaking, the
trajectory design problem in the n-th time step can be reformulated as follows

min
χn:N

tr(F̂−1
N,n,LoS + F̂−1

N,n,NLoS) (5.27a)

s.t. v[n] = xn, v[N ] = vF, (5.27b)

(5.25b), (5.27c)

where χn:N = {v[i], i ∈ [n,N ]}, and F̂N,n,s is the estimation of FN,s given the learned
channel parameters and user location estimates up to time step n, and

xn =

{
vI, n = 1

v[n], n > 1.
(5.28)

Then similar to (5.24), a dynamic program can be applied to generate the trajectory at
each time step. Note that the number of computations needed to find the trajectory
equals to

V2N(N − 1)

2
, (5.29)

where V is the number of discrete states in the search space. Since we are interested to
find a 3D trajectory, V is not small. Consequently, finding the optimal trajectory is not
directly feasible from problem (5.27). To deal with this problem, in the following we
elaborate on a low-complexity greedy algorithm to find a sub-optimal trajectory.

5.3.4 Greedy Trajectory Design

As mentioned in the last section, at each time step the trajectory needs to be updated
after collecting new measurements. In other words, it is sufficient to just determine where
the drone needs to go in the next time step, instead of designing the entire trajectory at
each step. To this end, we propose a greedy trajectory optimization. In this approach,
the trajectory is designed locally and piece by piece. At each time step, the UAV seeks
to find the best location for the next step to go and collect measurements that can
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potentially offer the maximum improvement in channel parameters and user location
estimates. The greedy trajectory optimization can be formulated as follows

min
v[n+1]

tr(F̂−1
n+1,n,LoS + F̂−1

n+1,n,NLoS) (5.30a)

s.t.
1

vmax

∑
i∈[2,n+1]

‖v[i]− v[i− 1]‖ ≤ T, (5.30b)

(5.22c), (5.30c)

where n is the current time step. By using (5.20), problem (5.30) is equivalent to the
following problem

max
v[n+1]

tr(R̂n+1,n,LoS + R̂n+1,n,NLoS) (5.31a)

s.t. (5.30b).(5.22c), (5.31b)

where R̂n+1,n,s is the estimation of Rn+1,s given learned channel parameters and user
location estimates up to time step n. Problem (5.31) implies that the best drone position
in the next time step is the one that maximizes the improvement in the estimation
(equivalently minimizing the estimation error) while guaranteeing that the drone will end
up in the terminal point at the end of the mission (time step N). Thus, to solve (5.31)
we can associate with our problem the following performance index

L(v[n]) =

{
tr(R̂n+1,n,LoS + R̂n+1,n,NLoS), ‖v[n]−vF‖

vmax
≤ T −

∑n
i=2 Ti

−∞, otherwise
, n ≥ 2, (5.32)

where

Ti =
1

vmax
‖v[i]− v[i− 1]‖. (5.33)

The definition in (5.32) imposes the drone to reach the terminal point vF within the total
flying time constraint T . Finally, we can reformulate (5.31) as follows

max
v[n+1]

L(v[n+ 1]) (5.34a)

s.t. v[1] = vI. (5.34b)

Assuming that the drone’s position evolves at each time step according to:

v[n+ 1] = v[n] +

 cos (φ[n]) cos (ψ[n])
sin (φ[n]) cos (ψ[n])

sin (ψ[n])

 ρ[n] , (5.35a)

hmin ≤z[n] ≤ hmax, ∀n ∈ [1, N − 1], (5.35b)

where φ[n], ψ[n], ρ[n] are defined in Section 4.2, the next optimal drone position is given
by

v∗[n+ 1] := arg max
φ[n],ψ[n],ρ[n]

L(v[n]),

s.t. (5.35), (5.34b).
(5.36)
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r

V[n]

Figure 5.1 – An example of the possible actions in the greedy trajectory design at the
n-th time step. To find the best position for the drone in the next time step all the eight
drone’s adjacent positions at time step n need to be evaluated.

To solve problem (5.36), we initialize n = 1 and the drone starts flying from base
point v[1] = vI. Then, to find the best drone position in the next time step (v[n+ 1], n ∈
[1, N − 1]), we discretize the search space around the current drone location and we
calculate (5.32) for all adjacent points. Then the neighbor point with the maximum
value is chosen as the drone location in the next step. If the value of all the adjacent
point are calculated as infinity, then the drone moves towards the terminal location vF

by ‖v[n]−vF‖
N−n meters, where n is the current time step.

In Fig. 5.1, an example of the greedy trajectory design at the n-th time step is shown.
In this example, the set of feasible drone positions comprises eight adjacent points of
current drone location by selecting the input actions as follows

φ[n] ∈
{

0,
π

4
,
π

2
,
3π

4
, π,

5π

4
,
3π

2
,
7π

4

}
,

ψ[n] = 0,

ρ[n] ∈ {r} , (5.37)

where r denotes the discretization unit. To find the best position for the drone, in the
next time step, all eight drone’s adjacent positions at time step n need to be evaluated.

5.4 Numerical Results

In this section, we provide numerical results to show the performance of the proposed
algorithms. We consider a dense urban city neighborhood of size 600×600m2, comprising
buildings and regular streets. The height of the buildings is Rayleigh distributed in the
range of 5 to 40m [7]. Different propagation parameters . During the simulations, in both
the cases of random and optimized trajectories, the drone starts flying from the starting
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point vI = [0, 0, 50]T meters and ends up at the terminal points vF = [300, 300, 50]T

meters.

In Fig.5.2-a, we compare the performance for the localization algorithm proposed
in this chapter with [83] and [65] over random Monte-Carlo iterations. The difference
between existing methods [83] and [65] compared to our method is as follows: In both
studies, a set of arbitrary RSSI measurements is used for the purpose of user localization
and channel estimation (no trajectory optimization is considered) by assuming a two-
segment radio channel model without exploiting the 3D map information. In [65], an
EM algorithm is utilized for RSSI measurements classification task and estimating the
radio channel parameters and user locations, while in [83], an unsupervised learning
method is introduced to jointly classify the RSSI measurements and learn the channel
model parameters and localize users. The root mean square error (RMSE) of the user
localization for the proposed map-based algorithm, for a random trajectory, is shown
by the blue solid-line marked with squares, and the map-based localization error when
the drone follows the optimal trajectory is shown by the red dashed line marked with
triangles. The result of the algorithm introduced in [65] for UAV random trajectories
is depicted by the red dashed-dotted-line marked with squares. The blue dashed line
marked with circles represents the localization accuracy for [83] when the UAV takes a
random trajectory. To have a fair comparison, a set of random trajectories was generated
and then used for all algorithms. For further comparison, we also proposed an algorithm
to generate an optimized trajectory for the localization method in [83] by using the
global LoS probability [15]. In this approach, we consider the same trajectory design
algorithm as proposed in Section 5.3.4 with the difference that instead of using the 3D
map information, we assign a LoS probability for each user. Then the LoS probability of
a link between k-th user and the drone at time step n is given by

pk[n] =
1

1 + exp (−a θk[n] + b)
, (5.38)

where θk[n] = arctan(z[n]/rk[n]) denotes the elevation angle and rk[n] is the ground
projected distance between the drone and the k-th node located at uk in the time slot
n. Parameters {a, b} are the model coefficients which are computed according to [15]
and based on the characteristics of the city. We then assume that the k-th user is in
LoS condition to the drone at time step n if its LoS probability is greater than 0.5. The
localization RMSE pertaining to this method is shown by the red solid-line marked with
circles. It is clear that the map-based methods (both for the random and the optimized
trajectories) outperform the other approaches.

In Fig. 5.2-b, the cumulative distribution function (CDF) vs. localization RMSE for
different approaches in a single user scenario is shown. For all approaches, the drone
takes the optimal trajectory with a length of 1000 meters. It shows that using the 3D
map can bring substantial gains to the localization accuracy.

In Fig. 5.3, we investigate the effect of increasing the number of users on the
performance of the map-based localization algorithm while the drone takes a random
trajectory with a fixed length of 900 meters for different Monte-Carlo iterations. It is
observed that the estimation error improves by increasing the number of users despite
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the fact that by increasing the number of users the number of unknown parameters also
increases. This is because by increasing the number of users the number of gathered
measurements linearly increases while the unknown parameters regarding learning the
channel are fixed. Consequently, the algorithm can learn the channel faster and more
accurate which improves the localization performance as well.

An example of the optimized trajectory generated according to Section 5.3.4 is shown,
from a top view, in Fig. 5.4-a. The altitude of the drone along the trajectory is illustrated
in Fig. 5.4-b.

5.5 Conclusion

In this chapter, we considered an instance of the UAV-aided wireless network consisting
of ground users which are randomly scattered in a city. The goal of the UAV is to
estimate the user locations from the collected RSSI measurements by capitalizing on the
3D map information of the city. Moreover, we proposed an online algorithm to design an
optimized trajectory for the UAV to improve the performance of the localization and
channel learning under a given mission duration. The simulations show a considerable
gain brought by exploiting the 3D map in the performance of the node localization.
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Figure 5.2 – (a) RMSE of user localization. (b) CDF of user localization for a fixed
trajectory length.
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Figure 5.3 – User localization error by increasing the number of users for the map-based
algorithm while the UAV follows arbitrary trajectories with a fixed length of 900 meters.
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(a)

(b)

Figure 5.4 – (a) Top view of the generated trajectory using the sub-optimal approach.
(b) Drone altitude along the trajectory.
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Chapter 6

3D City Map Reconstruction
from Radio Measurements

6.1 Introduction

While existing work on the use of UAV in radio access networks has focused on the
problem of optimal UAV positioning [44; 84], and radio capacity maximization [85] or
radio map predictions [27; 86], its potential interest as a tool to reconstruct 3D city
maps, from the radio measurements it can make, has so far been completely overlooked.
Hence this chapter constitutes a first attempt at it. Note that another motivation for
reconstructing 3D maps using a drone lies in the fact that the 3D map itself can be
exploited as a tool to enhance the solution to optimally positioning the very same drone
in networking applications [56], as discussed in previous chapters.

The proposed principle of reconstructing building shapes and locations from radio
measurements bears some intuitive analogy with the problem of reconstructing the shape
of an object that is exposed under a series of light sources from the shadow images
created from the object. Some major differences are to be noted however. In our context,
the light/shade classification is replaced with a notion of LoS/NLoS classification for the
radio channel. However, a major challenge lies in the fact that the LoS/NLoS data is
not readily available from the measurement data itself. Or rather this information must
somehow be inferred from the measurements via a learning algorithm which is proposed
in the chapter. Secondly, the reconstruction of the very rich topology information of a
city with hundreds of building is much more difficult than that of most common objects.
Luckily, this problem is compensated by (i) the fact that the UAV can be tuned to
record channel measurement from a very large number of ground user locations within a
short time span, and (ii) the UAV positions can be modified and cumulated to offer a
rich data set for learning, and ultimately giving an accurate description of the ground
terrain. It should be noted that the notion of using signal strength measurements for
characterizing the shape of a building is not new in itself. In [87] the authors propose
the use of satellite-based GPS measurement to enhance 3D maps. However, the use of
satellite is not as flexible as that of drones as their path cannot be optimized. Also in
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Figure 6.1 – Top view of the city building map and outdoor ground user locations which
are shown by circles.

[88], authors propose the use of two drones to infer the inner structure of a building.

In summary, our contributions in this chapter are as follows:

• We propose a first attempt for reconstructing a whole 3D city map based on radio
measurements made from a low altitude UAV with RSSI sensing capability. The
RSSI levels are gathered at each selected UAV location from a large set of static
outdoor ground users in a time-division multiplexing mode (TDM).

• The approach consists of two phases. In phase 1, machine learning tools are applied
to learn the propagation parameters from the RSSI measurements from a target
group of ground users. The learned parameters are in turn exploited to classify
outdoor users in either LoS or NLoS categories. A technique is proposed to optimize
the selection of the target user group. In phase 2, the LoS/NLoS classified data is
exploited to yield a reconstructed city map via the low-complexity resolution of a
large set of inequality equations. Note that, this chapter tackles the case of hard
LoS/NLoS classification. The scenario of soft (probabilistic) LoS classification is
studied in [27].

• Finally, the reconstruction quality reveals the notion of an optimal UAV altitude
which is predicted analytically using an abstracted city model.
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6.2 System Model

We consider an urban area randomly uniformly scattered with a (possibly large) set of K
ground level users carrying radio transmitting equipment. All the users of interest are
assumed to be outdoor users and surrounded by a number of city buildings as illustrated in
Fig. 6.1. Note that, indoor users could potentially be exploited to improve reconstruction
although this aspect is left for follow-up work. The city takes the shape of a square with
length L. The true city map is drawn according to a random model where streets follow
a Manhattan-like regular grid and building heights follow a bounded random distribution
(see details in Section 6.5). The width of each building is random uniform with average
W. The main street width is set to V (some lanes can be smaller). An UAV flies over the
city, following a prescribed arbitrary trajectory, in order to measure the signal strength
from the K ground level users (while possibly providing connectivity services) which have
GPS-tracked positions denoted by uk = [xk, yk]

T ∈ R2, k ∈ [1,K]. Over the course of its
trajectory, the UAV collects K ·N scalar RSSI measurements where N is the number of
UAV locations at which multi-user measurements are made. The 3D n-th UAV location
is denoted by v[n] = [x[n], y[n], hd]

T ∈ R3, n ∈ [1, N ] where hd is a fixed selected flying
altitude (see Section 6.5).

6.3 LoS vs. NLoS Classification

Similar to detecting “shade” vs. “light” in an image, we propose to determine and exploit
the LoS vs. NLoS status of any drone-user link. To this end, we adapt classical Support
Vector Machine (SVM)–based machine learning methods to classify the users in LoS and
NLoS categories from each UAV position v[n], n ∈ [1, N ]. In turn, maximum likelihood
estimator will be employed to find the parameters of each LoS and NLoS channel model.
Note that classification requires a labeled training data set which is not available in
our setting, hence some unsupervised learning is required. However, in order to reduce
complexity, we propose to apply unsupervised learning (in the form of K-means clustering)
over a selected target group of users rather than on the entire network. Our simulations
suggest that a satisfactory performance for channel parameter estimation can be reached
this way. An approach for optimizing the selection of the target user group is later
proposed.

6.3.1 Target User Clustering

We consider a fixed UAV location1 v and a target sub-group of users, defined by the area
located in a ring centered at the UAV with radius R and a width ∆R. The value of ∆R
can be adjusted to control the target population size. The target user group is selected as
a (narrow) ring in order to maximize distinguishability between LoS and NLoS effects on
RSSI, while abstracting out the distance effect on path loss. In turn, the target users are
clustered into LoS and NLoS categories based on the measured RSSI using a standard
K-means approach [89].

1v can coincide with v[1] or be a default location such as the center of the network.
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6.3.2 Optimization of Target User Group

Since the clustered target users will serve as labeled training data to classify the rest of
the network users, it is essential that maximum LoS/NLoS distinguishability is achieved
on the target group. The following method is proposed for selecting the ring radius R.

Let δLoS(R) and δNLoS(R) be the number of users in LoS and NLoS categories after
clustering. Also let ḡLoS(R), ḡNLoS(R) be the average RSSI measured (in dB scale)
over the users in the LoS and NLoS clusters respectively. The following criterion J(R)
attempts to strike a trade-off between the distinguishability between the RSSI of LoS
and NLoS channels which is typically seen at larger distances, and the balance in LoS vs.
NLoS population sizes which is observed from the UAV at closer distances. Indeed for a
fixed UAV altitude, the users located at a greater distance from the UAV will all tend
into the NLoS category. The criterion is selected as:

J(R) =

(
min (δLoS(R), δNLoS(R))

δLoS(R) + δNLoS(R)
|ḡLoS(R)− ḡNLoS(R)|

)−1

. (6.1)

Inverse of J(R) can be interpreted as an approximation of the average RSSI difference
between LoS and NLoS users in the target group. The appropriate R can be found by
optimizing the following expression using a discretized line search:

R∗ = arg min
R
J(R). (6.2)

6.3.3 Radio Propagation Parameter Learning

Considering the clustered RSSI measurements, which are generated from section 6.3.1,
we now want to estimate the propagation parameters for each of the LoS and NLoS
scenarios. Considering dk the distance of the k-th user in the target group from the UAV,
then according to (2.2) the RSSI measurement for target user k with LoS/NLoS status s
is given by

gk,s = ßs − αsϕ(dk) + ηs. (6.3)

The distribution of RSSI conditioned on status s can be written as

p(gk,s|dk;θs) =
1√

2πσ2
s

exp

{
−

(gk,s − ßs + αsϕ(dk))
2

2σ2
s

}
, (6.4)

where θs = [αs, ßs, σs]
T. Therefore, assuming the estimated LoS/NLoS labels are perfect,

the likelihood function of parameters θs for each cluster is denoted by

L(θs) = p(gs|d;θs) =
∏
k∈Ks

p(gk,s|dk;θs), (6.5)

where Ks is a set of indices of users that falls into segment s. Then the MLE [90] can be
obtained from solving the following optimization problem

max
θs

∏
k∈Ks

p(gk,s|dk;θs), (6.6)

68



Chapter 6. 3D City Map Reconstruction from Radio Measurements

or equivalently instead maximizing the log likelihood `(θs)

`(θs) =
∑
k∈Ks

log p(gk,s|dk;θs). (6.7)

This function can be maximized by differentiating with respect to θs and setting to zero
(more details can be found in [27]).

6.3.4 User Classification

Equipped with estimates of the propagation parameters, we proceed with classifying the
remaining network users into LoS or NLoS categories. Several methods can be resorted to.
In this chapter, we use the SVM classifier for the sake of good performance, robustness
and ease of implementation [91].

Considering the clustered RSSI observations obtained from Section 6.3.1 as train-
ing data set T (fj , tj | j ∈ [1, δLoS(R) + δNLoS(R)]) where fj is the input feature and tj
corresponds to a LoS/NLoS label for the j-th user in the target group. We define fj as

fj = ‖gj − ĝj,LoS‖2, tj =

{
1 LoS
−1 NLoS

, (6.8)

where gj denotes measured RSSI and ĝj,LoS is the predicted RSSI under a LoS channel
hypothesis. Now armed with defined training data set T , a SVM machine learning
algorithm is designed to classify the users. We define

t(f) = sign(ωTψ(f) + ω0), (6.9)

where ψ(f) is the predetermined input feature mapping function and (ω, ω0) are pa-
rameters learned from the training data. As feature mapping function, the radial basis
function (RBF) is classically selected [92]. We apply (6.9) for every network user to find
its LoS/NLoS label.

Note that the above algorithm treats each user independently. As a way to save on
complexity or improve robustness it is possible to exploit the natural correlation in the
LoS/NLoS status for users that are closely located. This can be easily implemented by
discretizing the map into small grid squares (few meters) and assigning all users in the
same grid squares to a unique status (e.g. determined from majority rule).

6.4 3D City Map Reconstruction

In order to carry out the map reconstruction, we discretize the city and represent it
in the form of a grid map where each grid element consists of 2D coordinates and a
height indicator which will serve as an estimate of the height for any building located
as these coordinates. The height indicator of the all grids are initialized equal to the
maximum possible building height hmax, and then iteratively refined using LoS status
information. The i-th element of the grid for the reconstructed map is denoted by âi =
[xa,i, ya,i, ẑa,i]

T ∈ R3 where ẑa,i denotes the building height estimate at ground coordinates
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Figure 6.2 – Building map reconstruction: Example with 3 RSSI measurements. The first
and third users were successfully labeled as LoS, while the second was correctly labeled
NLoS. As a result any building between the drone and user 1 (resp. user 3) must lie
below line 1 (resp. below line 3).

(xa,i, ya,i). In contrast, the true map’s grid is defined as ai = [xa,i, ya,i, za,i]
T ∈ R3 . Note

that by construction za,i ≥ 0, ẑa,i ≥ 0 and za,i = 0 points to a street location.

In our approach we iteratively solve for ẑa,i for all i, by working out the sequence
of inequalities implied by the existence of labels set to LoS pertaining to users that are
informative of the i-th grid. As an illustration, let us take the example of k-th user at
location uk and the n-th UAV location v[n] = [x[n], y[n], hd]

T. The equation of the 3D
line which passes through these two points is given by

L :
x− x[n]

xk − x[n]
=

y − y[n]

yk − y[n]
=
z − hd
−hd

. (6.10)

Let Â = {â1, â2, · · · , ân} be defined as the set of grids which lie on projection of the
line L onto X-Y plane. Assuming this user-drone link has a LoS label, we can write a set
of inequalities for all âi as follows:

ẑa,i ≤
(xa,i − x[n]) (−hd)

xk − x[n]
+ hd ; i ∈ [1, |Â|], (6.11)

where |Â| denotes the cardinality of Â. The value in the right side of (6.11) corresponds
to the z value of line L in the center of i-th grid (xa,i, ya,i). To put it differently, all the
buildings along the line L must lie below it as illustrated in Fig. 6.2. After accounting

for inequality (6.11), ẑa,i is updated with min
(
ẑa,i,

(xa,i−x[n])(−hd)
xk−x[n] + hd

)
. Moreover, we
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assume that all the buildings in the city are taller than a min value hmin, therefore
the grids with final height estimates lower than hmin are set to zero and considered
as street locations. Inequalities (6.11) are solved for all given pairs of users and UAV
locations where measurements are gathered. The rigorous description of this algorithm is
summarized in Algorithm 6.4.1.

Clearly the map reconstruction performance highly depends on the trajectory X =
{v[1], · · · ,v[N ]} followed by the UAV to produce a rich enough measurement data set.
The problem of optimizing for the UAV path is omitted and studied in future works. In
this chapter a simple yet reasonable path planning is considered (see Section 6.5).

6.4.1 Optimum UAV Altitude

Although it is clear from intuition that the selection of a particular UAV altitude hd
impacts the map reconstruction performance, the derivation of an exact optimum is bound
to be difficult, depending on many system parameters. Nevertheless our studies reveal
two major factors in driving reconstruction performance. First an overly low flight height
yields an excess in the number of NLoS reported measurements. Such measurements are
less informative about the city topology than LoS reportings because they characterize
the existence of some building somewhere crossing the line of sight but without a mention
of where. In contrast, flying higher will cause more LoS reportings. Flying too high on
the other hand will cause a gross overestimation of building heights (ẑa,i = hmax, ∀i). In
this section we build a small analytical deterministic model which captures these key
effects so as to provide a guideline to design hd. We consider a simplified one-dimensional
city model with a continuum of outdoor users and where all the buildings are of equal
length W , the inter building space of V and the city map side of L. All buildings are set
to a height equals to that of the average in the true city Hav, yet assumed unknown here.
We consider a single UAV location with height hd. When modeling the reconstruction
error it is assumed that the building height is unknown but only the upper bound hmax

is known. After processing the LoS-based inequalities, the reconstruction error can be
written as shown below.

Proposition 6.4.1. The reconstruction error after accounting for LoS-based inequalities
is as follows

ErT (hd) =

(⌊
L

W + V

⌋
−M

)
(hmax −Hav) +

M∑
i=1

∣∣∣∣W (hd −Hav)

2i (W + V )

∣∣∣∣ , (6.12)

where M =
⌊
V (hd−Hav)
Hav(W+V )

⌋
.

Proof. See Appendix C.

A suitable UAV altitude hd is found via the following line search

min
hd

ErT (hd)

s.t Q ≥ 0
, (6.13)
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Algorithm 6.4.1 Pseudocode for map reconstruction

1. Initialize the height of all grids to hmax

2. For n ∈ [1, N ] then

3. For k ∈ [1,K] then

4. If uk is LoS then

5. L ← 3D line passes through points (v[n],uk)

6. LPrj ← Projection of L on the ground

7. Ân ← The grids which lie on the line LPrj

8. For i ∈ [1, |Ân|] then

9. hi =
(xa,i−x[n])(−hd)

xk−x[n] + hd

10. ẑa,i := min (ẑa,i, hi)

11. If ẑa,i < hmin then

12. ẑa,i = 0

13. End if

14. End

15. End if

16. End

17. End
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Figure 6.3 – Determining the best radius of the ring-like area for K-means algorithm
using proposed criterion. Solid line denotes the classification error for each radius and
dashed line is the corresponding criterion, predicting the same minimum.

where Q =
⌊

L
W+V

⌋
−M .

6.5 Numerical Results

We consider a dense urban Manhattan-like 1 km by 1 km area consisting of a regular
street grid and buildings with uniform random height in the range of hmin = 5 to
hmax = 40 meters. The width of each building is random uniform with average W = 80
meters and the main street width is set to V = 60 meters. The outdoor users are
spread uniformly randomly as in Fig. 6.1. For reconstruction purposes, the map
is discretized over a grid with 5 meters granularity. The UAV test trajectory is a
square with length 800 meters, centered at the center of the map. N = 32 set of
measurements are reported (every 100 meters). Propagation parameters are chosen as
αLoS = 2.27, αNLoS = 3.64, ßLoS = −30 dB, ßNLoS = −40 dB generalized from typical
fixed BS WINNER II [93]. Finally we select σ2

LoS = 2 and σ2
NLoS = 5.

To further improve reconstruction performance, a map smoothing procedure is used,
whose goal is to filter out unrealistic height variations among closely located points on
the grid.

We first test the target group selection optimization method of Section 6.3. Results
are shown in Fig. 6.3 which confirms the classification error to be minimized at the ring
radius predicted by our algorithm.

In Fig. 6.4 the classification result using K-means for users in the target area is
depicted. The users are almost fully distinguishable, note that the signals with higher
RSSI are LoS users. Then using SVM classifier all users (K = 1584) are classified with
99.9% precision which indicates a good performance of the classifier for our purpose.

Next, we are interested in optimal flying altitude and run the optimization in (6.13)

73



Chapter 6. 3D City Map Reconstruction from Radio Measurements

Figure 6.4 – K-means result for measured RSSI for users in target area and estimated
RSSI for them using MLE.

Figure 6.5 – Reconstruction normalised mean square error (NMSE) for both smoothed
and rough map versus different UAV elevations.
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to find a best altitude at 70 meters. The prediction is tested in Fig. 6.5 which shows the
reconstruction error for a range of UAV altitudes, also predicting an optimum near 70
meters.

Fig. 6.6 shows an instance of reconstructed map after smoothing for the considered
flight path with fixed altitude hd = 70 meters. Note that, for the regions where there is
no user reportings, the building estimated heights are set to the average building height
by default.

Finally, the impact of user density is tested in Fig. 6.7 showing the improvement
trend as the number of users (hence RSSI reportings) increase.

6.6 Conclusion

This chapter considered the problem of 3D city map reconstruction by exploitation of
UAV-bound radio measurements. The proposed approach relies on the unique ability for
a UAV-to-ground communication systems to detect and classify LoS vs. NLoS channels
towards ground users using machine learning tools. The optimal height for the UAV
is found using an analytical model which shows excellent predictive behavior. The
present algorithm assumes perfect LoS/NLoS classification. In the case classification
error statistics are available, robust approaches based on Bayesian estimation can be
developed which are reported in companion work.
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(a)

(b)

Figure 6.6 – (a) Side view of the 3D city map. The city map is discretized over small grid
squares of length of 5 meters. (b) Reconstructed map after refinement and smoothing
with NMSE equals to 0.35.
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Figure 6.7 – Map reconstruction error versus increasing the number of users.
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Chapter 7

UAV Trajectory Design Under
Cellular Connectivity Constraints

7.1 Introduction

Cellular connected UAVs that can operate safely in beyond visual line of sight conditions
are expected to open important future opportunities in the areas of transportation, goods
delivery, and system monitoring. Ensuring ultra-reliable and low latency links between
UAVs and their ground control stations plays a pivotal role in making these businesses
a reality as many of the above mentioned application scenarios require UAVs to be
autonomous or semi autonomous. Integrating UAVs into ubiquitous existing or future
cellular networks as user terminals and connecting them with base stations offers simple
and cost-effective solution to the UAV connectivity problem [11].

In spite of the promising results demonstrating the feasibility of supporting UAVs
in current cellular networks, several new challenges have been highlighted in supporting
aerial users in current cellular networks, which are otherwise developed for terrestrial
users [94; 95; 96]. In particular, interference and abrupt changes in signal strength
(compared to terrestrial users) have been observed in aerial users as the BS antennas are
typically tilted a little downwards (intended for terrestrial users), thus making the aerial
users experience side lobes.

However, the inherent advantage offered by UAVs in terms of 3D mobility can be
exploited to efficiently design UAV paths to avoid the outage areas and exploit good
channel conditions while not deviating too much away from the trajectories planned for
original tasks. Motivated by this, several recent works have considered the problem of
communication-aware trajectory design for cellular connected UAVs [9; 19; 10; 97; 98; 20].
Specifically, the problem of finding an optimal path in the sense of a shortest path between
a departing point and a given destination such that the UAV consistently gets a reliable
connection from the cellular network has been considered in [9; 19; 10; 97; 98]. The works
in [9; 97] have considered the problem of finding the shortest path under cellular coverage
constraints assuming that the UAV terminal experience LoS channels from the BSs at
all times independent of UAV and BS locations. Convex optimization and graph based
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approaches are used to optimize the trajectory. However, the chosen radio propagation
model is not applicable in urban environments, where it is shown that air-to-ground
channels exhibit switching from LoS and NLoS conditions depending on the UAV and BS
locations, where NLoS conditions are caused by signal blockage, reflection and diffraction
caused by city buildings [99; 7].

To overcome the drawback arising from using simple LoS channel models in urban
environments, the works in [19; 10] have utilized a radio map of the environment that
carries very fine grain information about the channel gains from all BSs in the trajectory
optimization. While [19] considers only the altitude optimization of UAV, [10] optimizes
trajectory in 2D while considering a fixed altitude. Both these works depend on dis-
cretizing the radio map of the overall flight region into finer grids and then use graph
based algorithms to find the shortest path from the initial location to the destination.
The complexity and performance trade-off of the shortest path algorithm depend on the
number of nodes in the constructed graph, which in turns depend on the grid resolution
used in discretizing the radio map. Note that the radio maps are not available on fly but
need to be estimated offline by collecting lots of radio measurements from users in that
environment [27].

Another approach to obtain realistic trajectories in complex urban environments is to
use learning approaches which are model free [20; 98]. However, the drawback of such
techniques is that they require a relatively high number of learning episodes to obtain
the desired results.

In this chapter, we consider the problem of finding the shortest path between a starting
location and a given destination such that a constant altitude flying UAV consistently
gets a reliable QoS from the cellular network. Some of the key contributions are as
follows:

• Instead of considering radio map which contains rich information channel gains
but not easy to model analytically, and generally is not available for any arbitrary
areas, we use the 3D map of the city along with a segmented pathloss model to
construct coverage maps which serve as a high-quality approximation to the radio
maps while having an analytical structure.

• Making use of the convexity of sub-regions within the coverage map, we prove that
the optimal trajectory has a piecewise linear structure.

• By leveraging this optimal structure, we propose a low-complexity graph based
shortest path algorithm that doesn’t require discretizing the entire coverage map.

7.2 System Model

We consider a cellular connected UAV that flies over an urban area consisting of a number
of city buildings for a duration of time T . The position of UAV at time t ∈ [0, T ] is
denoted by v(t) = [x(t), y(t), hd]

T ∈ R3, where h denotes the altitude of the UAV. For
simplicity, the altitude of the UAV is set to a fixed value which is determined by the tallest
building in the city to avoid the collision. We assume that the UAV is equipped with a
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GPS receiver, hence v(t) is known. The UAV is presumed to fly from a pre-determined
initial position vI at time t = 0 and has to reach to a terminal location vF by the end of
the mission duration. The UAV flies at a constant speed of, hence the UAV’s trajectory
v(t), t ∈ [0, T ] can solely be determined by the path it takes. During the mission, the
UAV needs to be remained connected to one of the K outdoor static BSs which are
randomly scattered with uniform distribution over the city. The k-th BS, k ∈ [1,K],
is located at uk = [xk, yk, hg]

T ∈ R3 , where hg stands for the height of the BS and is
assumed to be the same for all BSs 1. Moreover, we denote ûk = [xk, yk, hd]

T, k ∈ [1,K]
as the projections of the k-th BS locations on the 2D plane with the same altitude as the
UAV.

7.2.1 Communication Model

We consider a cellular down-link scenario where the time varying SNR at the UAV from
the k-th BS is given by

ρk(v(t)) =
Pbγk,s(t)

σ2
, 0 ≤ t ≤ T, (7.1)

where Pb is the transmission power of the BS, γk,s(t) is the channel gain between the
k-th BS and the UAV flying at location v(t), σ2 represents the noise power, and finally
s ∈ {LoS,NLoS} emphasizes the strong dependence of the propagation conditions in LoS
or NLoS scenarios[27]. The channel gain between the UAV and the k-th BS is modeled
as [27; 44]

γk,s(t) =
βs

dk(t)αs
, (7.2)

where αs is a path loss exponent, βs is a channel gain offset, and

dk(t) = ‖v(t)− uk‖

represents the distance between the k-th BS and the UAV. Regarding the LoS/NLoS
classification of the UAV-BS links, we leverage the knowledge of a 3D city map.

7.2.2 Problem Formulation

We are interested to find the shortest trajectory for the UAV between a predefined
starting point vI and a terminal point vF, while satisfying the minimum SNR ρ̄ during
the mission

min
0≤t≤T

max
k∈[1,K]

ρk(v(t)) ≥ ρ̄. (7.3)

Since the UAV moves with a constant velocity, the trajectory optimization can be
formulated as follows

min
T,{v(t),0≤t≤T}

T (7.4a)

1By no means this is a restriction and the results presented in this chapter can be easily extended to
the case with different BS heights.
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Figure 7.1 – Coverage area of a given BS and the sectors.

s.t. (7.3), (7.4b)

v(0) = vI, v(T ) = vF. (7.4c)

This problem is not convex since the SNR in the constraint (7.3) is a non-differentiable
and non-smooth function with respect to the UAV position due to the binary classification
variable s ∈ {LoS, NLoS}, therefore this function is neither convex nor concave. Moreover,
it is a functional optimization, hence, it is challenging to solve (7.4) optimally in general.

In the following, with some analysis we show that the optimal trajectory has some
structures which can be exploited to make problem (7.4) more tractable. To this end,
following results and definitions are helpful.

Definition 7.2.1. Coverage area: The coverage area of the BS is defined as a set of
points with the same altitude as the UAV in which the SNR of the UAV-BS link will
remain greater than or equal to ρ̄. The coverage area of the k-th BS, k ∈ [1, K] is defined
as

Ak = {v = [x, y, hd]
T ∈ R3 | ρk(v) ≥ ρ̄}. (7.5)

Using the SNR expression in (7.1), the set of points [x, y] that belong to set Ak can
be written as

(x− xk)2 + (y − xk)2 ≤ ds, (7.6)
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where ds ,
(
Pbβs
σ2ρ̄

) 2
αs − (hg −hd)2. The radius ds therefore depends on whether the point

v is in LoS or NLoS with respect to the BS, which in turn depends upon the building
distribution around that BS. Based on (7.6) and the 3D map, without loss of generality,
the coverage areas Ak can be divided into Mk sectors

Ak = {ak,1 ∪ · · · ∪ ak,Mk
}, (7.7)

where each ak,i is a convex shape which is a segment of a circle between two angles θk,i
and θk,i+1 with a radius of rk,i. The radius rk,i depends on the building distribution and
(7.6). For better understanding, an illustration of such coverage area of a BS is given in
Fig.7.1 and in Fig. 7.2. For instance, regarding the coverage area depicted in Fig.7.1 for
a given BS, we can write Ak = {ak,1 ∪ ak,2 ∪ ak,3 ∪ ak,4}.

Definition 7.2.2. Coverage border: The coverage border is the perimeter of a coverage
area of a given BS. The coverage border of the k-th BS, k ∈ [1,K] is denoted Bk.

Definition 7.2.3. Common areas and common borders: The common area between
k-th and j-th BSs, k, j ∈ [1,K], k 6= j represents the overlap regions of their coverage
areas, i.e.,

Cj,k = Ck,j = {Ak ∩ Aj} . (7.8)

The borders of the common areas Cj,k is defined as the common borders which we denote
by Dj,k.

In Fig. 7.2, an example of the coverage areas, coverage borders, common areas, and
common borders of two BSs is illustrated. The coverage area of each BS is depicted with
a highlighted surfaces and the coverage borders are shown with solid black lines.

Proposition 7.2.1. Problem (7.4) is equivalent to the following problem:

min
N,V

∑
n∈[1,N−1]

‖vn − vn+1‖2 (7.9a)

s.t. ρ(vn,vn+1) ≥ ρ̄ , n ∈ [1, N − 1], (7.9b)

v1 = vI, vN = vF, (7.9c)

where
ρ(x,y) = min

0≤λ≤1
max
k∈[1,K]

ρk (λx + (1− λ)y) , (7.10)

and V = (vn)Nn=1 is the sequence of UAV trajectory points in R3 such that any two
consecutive points are connected with a straight line.

Proof. See Appendix D.1.

Then to solve (7.9), we just need to optimize over a limited number of optimization
variables, however this problem is still difficult to solve since constraint (7.9b) is neither
convex nor concave. In what comes next, we develop a graph theory-based solution to
this problem. First, we check the feasibility of problem (7.9) by proposing a graph theory
based approach in a similar manner to the one proposed in [9]. We then derive a method
to find a sub-optimal and efficient solution to problem (7.9).
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Figure 7.2 – Top view of the city, the BSs positions, coverage area of each BS, and the
common area. The UAV flies at 50m and the BSs are on the ground level.

7.3 Feasibility Check

In this section, we investigate the feasibility of problem (7.9) by leveraging the graph
theory approach. A trajectory sequence V = (vn)Nn=1 is a feasible solution to problem (7.9)
if constraints (7.9b) is satisfied. In general, obtaining a feasible solution to problem (7.9)
is not trivial, since the coverage area of BSs have non-convex shapes and the exhaustive
search inherently cannot be avoided. For further simplification, we uniformly discretize
the coverage border of each BS, which was defined in Definition 7.2.2, into Q samples.
The discretized coverage border of the k-th BS, k ∈ [1,K] is denoted by B̂k, |B̂k| = Q.
We then define D̂k,j as a set of discrete points on the common boarders between k-th
and j-th BSs, k, j ∈ [1,K], k 6= j which is given by

D̂k,j =
{
Dk,j ∩ B̂k

}
∪
{
Dk,j ∩ B̂j

}
, (7.11)
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where Dk,j was defined in Definition 7.2.3. We now propose a method to check the
feasibility of the original problem by leveraging graph theory approaches. Let’s denote
an undirected graph by G = (N , E). We define N as a set of graph’s nodes which is
given by N = {vI ∪ U ∪ D ∪ vF}, where U = {ûk, k ∈ [1,K]} is a set comprising the
projections of the BSs locations, and D is defined as

D =
⋃

k,j∈[1,K],k 6=j

D̂k,j . (7.12)

The set of graph’s edges is denoted by E which is given by

E = {(ûk,vI)|vI ∈ Ak, k ∈ [1,K]}
∪ {(ûk,xk,j)| ∀xk,j ∈ D̂k,j , k, j ∈ [1,K], k 6= j}
∪ {(ûk,vF)|vF ∈ Ak, k ∈ [1,K]}.

(7.13)

We also assign a weight value to each edge of the graph corresponding to its length.
Note that, the edge (vI, ûk) exists if the starting point vI lies in the coverage area of the
k-th BS. Moreover, (ûk,xk,j) represents an edge between the k-th BS and all the points
(xk,j) in the discretized coverage borders with its neighbour BS j.

Proposition 7.3.1. All the edges defined in (7.13) satisfy the constraint (7.9b).

Proof. See Appendix D.2.

Since all edges of graphG satisfy SNR feasibility constraint, the trajectory optimization
problem (7.9) is feasible if we can find a path from starting node vI to the terminal node
vF in graph G. To this end, we employ the Dijkstra [100] algorithm with the worst-case
complexity of O(|E|+ |N | log |N |) which obtains a shortest path between vI and vF. We
denote such a solution as the base trajectory Vb = (vbn)Nn=1. Note that, if the algorithm
cannot find a path between vI and vF, problem (7.9) is infeasible.

The base trajectory starts from the initial point vI and it goes on top of the closest
BS to the vI. The UAV then tries to reach to the terminal point by visiting the minimum
number of the BSs. From one BS to another one the UAV crosses over a point inside the
discretized common border of the two BSs.

An illustration of the base trajectory between the starting point and the terminal
point is shown in Fig. 7.2. For ease of exhibition we consider merely two BSs. It can be
seen that, the base trajectory starts from vI and heads towards the closest BS, which is
BS1 here, and then it goes to the neighbour BS by passing over common borders between
BSs. Finally, the trajectory terminates by going from BS2 in a straight line towards vF.

We denote the BSs which are sequentially visited by the base trajectory as:

Ub = (ûk) | ûk ∈ Vb. (7.14)

We also define an index set Ib = (Ib,1, · · · , Ib,K′ ), where Ib,j is the BS’s index of the j-th

element in Ub, and K
′

= |Ub|. As an example, let’s assume that the base trajectory visits
the sequence of the BSs Ub = (û1, û3, û4, û7), then the index set Ib is given by

Ib = (1, 3, 4, 7). (7.15)
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As it is shown in Fig. 7.2, the base trajectory is not an efficient solution since the
trajectory needs to fly over the BSs to reach to the terminal point. In the next section,
we propose a method to improve the base trajectory.

7.4 Trajectory Optimization

In this section we aim to find a sub-optimal and high-quality approximate solution to
(7.9) by improving the base trajectory. As mentioned earlier, the base trajectory is not
an efficient solution since it requires to visit the BSs to get to the terminal location. For
example in Fig. 7.2, the optimal trajectory is a straight line from vI to vF. To tackle
this problem, in this section we aim to improve the base trajectory obtained in Section
7.3 by employing the graph theory methods.

We then construct an undirected graph G = (N , E). For ease of exposition we use
the same notations as Section 7.3. The nodes of the graph is defined as follows

N = {vI ∪ Ub ∪ Db ∪ vF}, (7.16)

where Db ⊂ D which is defined as

Db =

 ⋃
j∈[1,K′−1]

B̂Ib,j ,Ib,j+1

 . (7.17)

The edges of the graph are given by

E = {(vI, ûIb,1)}
∪ {(vI,x1,2)|L(vI,x1,2) ∈ AIb,1 ,∀x1,2 ∈ B̂Ib,1,Ib,2}
∪ {(xk−1,k,xk,k+1)|L(xk−1,k,xk,k+1) ∈ AIb,k ,

∀xk−1,k ∈ B̂Ib,k−1,Ib,k ,∀xk,k+1 ∈ B̂Ib,k,Ib,k+1
, k ∈ [2,K

′
− 1]}

∪ {(ûk,xk,j)| ∀xk,j ∈ B̂Ib,k,Ib,j , k, j ∈ [1,K
′
], k 6= j}

∪ {(vF,xK′−1,K′ )|L(vF,xK′−1,K′ ) ∈ AIb,K′ ,

∀xK′−1,K′ ∈ B̂Ib,K′−1
,I

b,K
′ }

∪ {(vF, ûI
b,K
′ )},

(7.18)

where L(x,y) is a line segment between two points x,y which is defined as follows:

L(x,y) = {λx + (1− λ)y, ∀λ, 0 ≤ λ ≤ 1} . (7.19)

We also assign a weight value to each edge of the graph corresponding to its length. All
the edges (vI, ûIb,1), (ûk,xk,j), (vF, ûI

b,K
′ ) are defined in a similar manner to (7.13), and

similar to Proposition 7.3.1, it can be shown that constraint (7.9b) is always satisfied for
any of these edges. (vI,x1,2) is the edge between initial location vI and any points inside
the discretized common borders of Ib,1-th and the Ib,2-th BS, and it exists if this edge lies
inside AIb,1 . The edge (vF,xK′−1,K′ ) is also defined similarly. The edge (xk−1,k,xk,k+1)
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represents an edge between all the points in the discretized common borders of the
Ib,k-th BS and it’s neighbor BSs Ib,k−1, Ib,k+1. Edge (xk−1,k,xk,k+1) ∈ E , if the line
L(xk−1,k,xk,k+1) lies inside AIb,k , which can be efficiently checked by the following result.

Lemma 7.4.1. Let x,y ∈ Ak, to determine if the line L(x,y) is inside coverage area
Ak, only a limited number of points along L(x,y) need to be evaluated.

Proof. See Appendix D.3.

Having constructed graph G using Lemma 7.4.1, since any edges of the graph is
covered by at least one BS, then constraint (7.9b) will always be satisfied if the UAV
moves along any edges of the graph. So, problem (7.9) is cast as finding a shortest path
between vI,vF in graph G. Similar to Section 7.3, we use the Dijkstra algorithm to find
the shortest trajectory.

7.5 Numerical Results

We consider a dense urban Manhattan-like area of size 2× 2 km2, consisting of a regular
street grid and buildings. The building heights are Rayleigh distributed within the
range of 5 to 70 (m) [7]. Propagation parameters for the UAV-BS links are selected as
αLoS = 2.2, αNLoS = 2.8, βLoS = 10−4, and βNLoS = 10−4 according to an urban micro
scenario in [101]. The UAV’s path originates at vI = (300, 300, 80) m and terminates at
vF = (1500, 1500, 80) m.

The cellular network consists of K = 25 BSs which are randomly scattered over the
city. All the BSs have the same height hg = 20 m and we assume that the UAV flies with
the fixed altitude hd = 80 m. Fig. 7.3 illustrates BSs and the coverage map where the
highlighted regions represent areas where the minimum SNR constraint (7.3) is satisfied.

The base trajectory and the optimized trajectory described in Sections 7.3 and 7.4 are
shown in Fig. 7.3. We have compared our method to the other graph based approaches
proposed in [10] where the whole map within the flying area needs to be quantified
into grids. We consider the quantization unit to be 10 × 10 m2 which results in total
∆2 = 4 × 104 number of nodes in the graph. It can be seen from Fig. 7.3 that our
method provides the best solution in terms of the path length. The base trajectory has
the maximum length among all the solutions as it is forced to visit BSs along its way to
the destination.

In Fig. 7.4, we evaluate the performance of the different approaches in terms of the
outage over 1000 Monte-Carlo simulations with different BS locations. The outage is
defined as the amount of time the SNR constraint in (7.3) is not satisfied while following
the devised trajectory. The outage of the straight trajectory between the starting and
the terminal points is illustrated as well. It can be seen that constraint (7.3) is always
guaranteed when the UAV moves along our proposed trajectories while there is no hard
guarantee for the other approaches. In general, our graph-based trajectory performs
better than the other methods.

Finally, we compare the complexity of our proposed algorithms. Our approach which
requires only discretizing the coverage border of each BS into Q samples (ref Sec. 7.3)
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Figure 7.3 – Top view of the city, BS locations, the generated trajectories and its lengths
for different algorithms. The coverage area of each BS is highlighted with green color.

which are later used as nodes in the graph. An upper bound on the complexity of
our graph-based algorithm is given by O(|Ub|2Q2 +KQ logKQ). It is shown that the
complexity of the optimal algorithm introduced in [10] is given by O

(
K∆2 + ∆2 log ∆

)
,

where ∆ relates to the quantization of the map. In this simulation we assumed grid size
to be 10× 10 m2 which resulted in total ∆2 = 4× 104 number of nodes. It is clear that
the complexity of our proposed algorithms are considerably less than the method in [10],
since Q� ∆. Moreover, the complexity of our algorithm just increases with the number
of BSs rather then the size of the flying area, since Q does not change by increasing the
size of the flying area.

7.6 Conclusion

This chapter investigated the problem of UAV trajectory design under cellular connectivity
constraint to minimize its trajectory length between a pre-determined initial location and
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Figure 7.4 – Outage versus the trajectory length for different algorithms.

a given destination point in an urban environment. We proposed a novel approach to
trajectory design that strikes a trade-off between performance (i.e. path length reduction)
and complexity by exploiting the 3D map of the environment and employing the graph
theory. We established a graph theory based framework to first evaluate the feasibility
of the problem and then to obtain a high-quality approximate solution to the UAV
trajectory design problem. The performance of the proposed solutions was validated with
a set of Monte-Carlo simulations.
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Chapter 8

Experimental Studies

8.1 Introduction

In this chapter, we introduce the design of the ”Rebot” (Relaying Robot) as a FRAN for
future wireless networks. Depending on the application, FRANs may use HAPs or LAPs
to deploy the aerial BSs. Several substantive projects have looked into the aspects of
providing broadband wireless access using HAPs [102],[103]. Well known examples from
industry are, project loon from Google where balloons are used as an HAP [104], and
Facebook’s project [105] where long-endurance solar plane is used as an HAP. Typical
altitude of these platforms are between 18 and 25 kilometers. Moreover, project loon
claims to provide LTE connectivity to the users on the ground with connection speeds of
up to 10 Mbps using their balloon relay network [104]. The advantages of using HAPs
include wider coverage area, longer endurance and hence long time connectivity, which
makes them suitable for applications such as providing connectivity in rural and remote
areas where network infrastructure is not available.

On the other hand, FRANs based on LAPs, such as small commercial UAVs are
in general faster to deploy and configure, and have lower implementation cost than
the HAPs. This makes them suitable for applications like on-demand wireless services,
providing temporary connectivity in unpredicted events, etc. Moreover, since UAVs fly
at low-altitude they can contribute in maintaining short range LoS links to ground users
which can lead to significant increase in the throughputs.

Few works have considered using micro UAVs to deploy or carry aerial BSs to provide
LTE connectivity. In [106], Nokia Bell Labs demonstrated a UAV based delivery of
a Nokia’s small cell to a desired location [106]. The carried small cell is self powered
and has a wireless backhaul. However, in this scenario UAV is only used as a means
to carry the small cell to a stationary landing spot, akin to UAV based goods delivery
systems. In a blog post by Nokia [107], telecommunications operator EE and Nokia have
used a UAV-mounted tiny BS to provide LTE services in rural areas of Scotland. They
used a satellite based backhaul link which connects the UAV-mounted BS to the core
network of EE. Operator AT&T used a UAV that carries a small BS which also provides
LTE services [108]. However, the UAV-mounted BS is tethered to the ground by a fiber
optic and power cable. Again, a satellite based backhaul solution was used. Finally, the
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ABSOLUTE project consortium has designed and analyzed a hybrid system architecture
based on LTE and satellite based connectivity using Helikite platforms [109].

To the best of our knowledge, most prior work designing the UAV based FRANs
hinges on the simplifying assumption that the UAV serves as a carrier and the BS as a
communication payload, and their functionalities are mostly kept decoupled. However, a
joint design of robotic and communication capabilities would substantially enhance the
overall performance of FRANs, affecting the communication throughput by the optimal
placement or trajectory design [44; 15; 110; 40; 41; 111; 48; 45; 47]. Towards this end,
in this chapter we introduce the concept of Rebot: It not only functions as a LTE
relay between the ground user and a fixed BS, but also acts as an autonomous robot by
positioning itself based on suitable radio measurements, so as to maximize the throughput
offered to the ground user. Note that the first results revealed in this chapter consider
the case of a single ground user, while an extension to many users is currently ongoing.
Key ingredients of this chapter are:

• The design of a UAV mounted LTE relay which provides end-to-end LTE connec-
tivity between a ground user and the core network.

• The relay solution that is embedded on the UAV is based on OpenAirInterface
(OAI) BS or eNB1 [112], which is an open-source software.

• The interaction between the UAV’s flight controller and a placement algorithm which
exploits the radio channel measurements (provided by OAI eNB’s) to autonomously
place the UAV-relay so as to maximize the throughput of the user.

8.2 System Design

We consider the design of a UAV that acts as a relay between the user and a fixed eNB
as shown in Figure 8.1. The UAV is used to boost the LTE connectivity to the user. The
equipment, tools and the software used for designing this system are described next.

8.2.1 UAV Design

Since the experiment requires the interaction between the UAV or drone and the embedded
OAI eNB, we needed a fully customized drone to enable us sending control commands to
the drone and reading drone information like instantaneous drone location. For this, we
have designed a customized drone by considering the required flight time and maximum
payload. To build the drone we used an off-the-shelf Quad-Rotor carbon body frame
with diameter of 60 cm, DJI propulsion system and PIXHAWK 2 flight controller which
is an open-source flight controller and allows us to manipulate the drone by the output of
autonomous placement algorithm based on the radio measurements obtained from OAI
eNBs. Note that the overall weight of the drone without considering the communication
parts is about 2 kg. To control and fly the drone manually (in emergency cases) we use a

1In this chapter we use several acronyms from 3GPP-LTE terminology without explicitly stating them.
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Figure 8.1 – UAV-based LTE relaying system.
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Figure 8.2 – Custom-built UAV.

Futaba T8J radio controller (RC) which is an 8 channel radio controller and works in the
2.4 GHz frequency ISM band. Different parts of the drone are shown in Figure 8.2.

8.2.2 OAI eNBs

There are in total two OAI eNBs used in this setup, one used as a fixed eNB on the ground
and another is mounted on the UAV which is used as a relay. The OAI’s eNB software
is compliant with 3GPP LTE standards, and runs on a commodity x86 based Linux
computing equipment. Both eNBs are configured to run in TDD mode in LTE frequency
band 38 where EURECOM has the license to transmit. The UAV to ground user link
and the backhaul link between UAV and the fixed eNB use orthogonal 5 MHz bandwidth
channels within band 38. We use USRP platform [113] along with a custom designed
power amplifier by EURECOM as the RF front end. The maximum transmission power
of the eNB is 23 dBm.

The choice of UAV’s eNB configuration has a direct impact on the design of the
UAV. Higher bandwidth configurations requires generally higher computing power which
will limit the flying time of the UAV. Hence, there is an interesting trade off between
complexity, throughput, weight and the power consumption of the eNB solution that is
mounted on the UAV.

8.2.3 Autonomous Placement

The autonomous placement software allows the UAV to position itself to maximize the
throughput to the ground user. This requires communication between the placement
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Figure 8.3 – UAV placement algorithm.

algorithm and the flight controller. The optimal UAV position is updated according
to the instantaneous user location and then is sent to the UAV flight controller by the
placement algorithm. The block-diagram of the autonomous placement algorithm is
depicted in Figure 8.3.

Generally, these algorithms depend on wireless channel parameters that vary slowly
with time such as pathloss or shadowing. In some scenarios, the wireless channel parame-
ters are estimated beforehand in an offline fashion and then given to the algorithm, whereas
in some others the UAV has to learn them on the fly by making radio measurements.
Our system design allows us to implement both types of algorithms.

The placement algorithm can be implemented in an on-board computer along with
OAI eNB/relay on the UAV or at a ground station. If the algorithm is computed at
a ground station, the new coordinate is sent to the UAV by using the backhaul link
between the fixed eNB and the UAV. Learning wireless channel parameters on the fly by
making radio measurements is a computationally expensive task. In such scenarios, it
is therefore favorable to implement the algorithm at a ground station where computing
cost and power consumption is not an issue as opposed to on the UAV.

For the experiment presented in this work, we use a placement algorithm which has
access to the channel parameters that are estimated beforehand in an offline fashion. The
algorithm is described in the next section.

8.3 UAV Placement

The autonomous placement algorithm relies on the fact that information regarding the
3D map of the environment, and the wireless channel parameters is known in advance.
The 3D map can be obtained from either photogrammetry or radio based reconstruction
approaches (see Chapter 6), while the wireless channel parameters needs to be estimated.
The channel model and the method for estimating the parameters involved are explained
next.

95



Chapter 8. Experimental Studies

8.3.1 Channel Parameter Estimation

We use the same channel model for both UAV-eNB and UAV-user links as described in
Section 2.2.1. To learn the channel parameters, a set of measurements was collected by the
UAV from the ground nodes. The measurements are labeled as LoS or NLoS by leveraging
the 3D map information of the environment. having classified each measurement into
LoS or NLoS, then the channel parameters can be learned easily from the measurements
by resorting to a standard LS technique (see Section 4.3.1). The estimated parameters
along with the 3D map are then used in the placement algorithm.

8.3.2 Placement Algorithm

The aim of the UAV placement algorithm is to find the optimal UAV position that
maximizes the downlink throughput of the ground user. However, the throughput in
a LTE system depends not only on channel gains but on many parameters such as
scheduling, modulation and coding, etc., which makes the problem intractable. Therefore
we resort to an approximation where we try to find a UAV position that maximizes the
minimum of the average channel gains of the UAV-user and UAV-eNB links. This serves
as a good approximation as we use a decode-and-forward type of relay protocol on the
UAV, and the transmission powers of the UAV and the fixed eNB are kept same in our
system. Note that the placement algorithm depends on the channel gains which are
defined according to (2.1), hence, we consider channel parameters that vary slowly with
time. This assumption is justifiable as the time scale of UAV mobility is much larger
than the fast fading channel variations. Before presenting the details of the algorithm,
we introduce some notations.

The downlink channel gains for the UAV-User and eNB-UAV links are denoted by γu
and γb, respectively. The user’s coordinate is denoted by u while that of the fixed eNB is
denoted by xb. We assume that the UAV can fly over a selective search area in 3D which
is denoted by C. The altitude of this search area is restricted to be in between hmin and
hmax with the value of hmin is greater than the heights of all the buildings where the
experiment is conducted. The UAV placement algorithm then solves

max
v∈C

min {E [γu] ,E [γb]} , (8.1)

where v represents the coordinate of the UAV and the expectation is taken over the
shadowing coefficient which has a zero-mean Gaussian distribution. From now we use
the optimal UAV position in the sense of (8.1). While the ground eNB’s coordinates
are fixed, the coordinates of the user and the UAV are obtained using GPS receivers
which are embedded in both devices. The placement problem (8.1) can be solved similar
to the approach explained in Section 3.3 by exploiting the 3D map which contains the
information regarding LoS/NLoS nature of the channels, and the coordinates u,v and
xb.
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Figure 8.4 – Outdoor experiment setup with only fixed eNB.

8.4 Experimental Results

We conducted our experiments in EURECOM’s premises. The ground user has a
commercial Moto G(3rd gen) mobile handset. The fixed eNB’s antenna is mounted on a
mast situated on the top of a building block, while the user is located on the ground. Both
the fixed eNB and the UAV are equipped with a single vertically polarized dipole antenna.
The user is typically obstructed by the building, hence, always in NLoS with respect to
the fixed eNB. The experimental setup is shown in Figures 8.4 and 8.5. When using
UAV as a relay, its position is obtained using the UAV placement algorithm described in
Section 8.3. For applying the algorithm, we first need to estimate the channel parameters
based on the measurements that are collected in the environment where the experiment
is conducted.

Since the pathloss parameters have strong dependence on the LoS or NLoS nature
of the channel, we make measurements in both scenarios. Figures 8.6 and 8.7 show the
channel gains as a function of distance between the transmitter and the receiver in LoS
and NLoS scenarios, respectively. The channel gains are obtained from the measured
reference signal received power (RSRP) values. The corresponding best-fit path loss
parameters can be obtained as described in Section 8.3.1, and they are given in Table 8.1.
Note that the channel model presented here does not correspond to a general wireless
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Figure 8.5 – Outdoor experiment setup with UAV relay.
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Parameter LoS NLoS

α 2.34 3.75

ß -58 -51.2

Table 8.1 – Pathloss parameters.
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Figure 8.6 – Channel measurements for LoS scenario.

channel and it is highly dependent on our system setup. To get accurate wireless channel
models, in addition to the distance one needs to take into account the height of the
transmitter, its antenna orientation and gain, etc. The model presented here can only
be used in this specific scenario. Study of general channel model for UAVs is itself an
interesting problem [23], which is out the of scope of this thesis.

The estimated parameters are then fed to the algorithm which predicts the optimal
location for the UAV. In Figure 8.8, we compare the downlink throughput of the user
in scenarios shown in Figures 8.4 and 8.5, respectively. The downlink throughput is
measured using the iperf application, which generates UDP traffic from the core network
to the user. If the user moves to a new location, the position of the UAV is updated
according to the placement algorithm. This is demonstrated in our recent demo [114].
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Figure 8.7 – Channel measurements for NLoS scenario.
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Figure 8.8 – Instance of throughput comparison at a given user location.
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8.5 Conclusion and Discussion

In this chapter, we have illustrated the design of a custom-built UAV relay based on OAI,
and then presented experimental results related to throughput improvement offered to
a ground user by using this relay. Although, these are initial results based on a single
user and single UAV scenario, we believe that this experiment is an initial step towards
building more advanced UAV-based LTE relay networks. We have used an autonomous
placement algorithm which updates the UAV position in real time based on the user
location, 3D map of the environment and a wireless channel model. The output of the
placement algorithm often results in a UAV position where it has LoS links to the user
and the fixed eNB.

While experimenting with this UAV relay prototype, we have faced some interesting
issues both in the system design and algorithm development, which we intend to address
in our future works. They are presented below.

8.5.1 Design Improvement

In the current prototype we have used a vertically polarised dipole antenna for the UAV
relay. However, the choice of the antenna and how to optimally mount it on the UAV
is not considered in the design. It is well known that the radiation pattern and the
polarization losses depends on the orientation of the antenna, and also a conducting
surface near the antenna (carbon frame in the case of UAV) might change its radiation
pattern. Knowing the antenna pattern and the possible polarization losses is essential in
coming up with channel models based on the measurements done by this UAV.

8.5.2 Channel Models

Although the UAV placement algorithm used in this chapter can be adapted to any
channel model, further work is needed to analyze the UAV-user and UAV-eNB links. The
channel measurements and the model fitting should take into account the impact of UAV
height, its antenna orientation with respect to the receiver or transmitter i.e., UAV yaw
angle etc., for example as done in [115].
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Chapter 9

Conclusion

The focus of this thesis was on the investigation of the current works and technologies of
the UAV related communications systems and develops novel methods for both placement
and trajectory design of a UAV as a flying radio by capitalizing on the city 3D map
information.

In the first part of this dissertation, we discussed the different aspects of trajectory
design and placement of UAV-assisted wireless networks by exploiting a 3D map of the
city. While 3D maps are rich in information, hence difficult to be used directly in UAV
placement and path planning because of the highly irregular behavior of radio blockage,
especially in urban environments. To solve this issue, we introduced a map compression
technique which relies on converting map data to build a reliable node location dependent
LoS probability model which allows us to tackle the problem with standard optimization
tools. The trajectory optimization was then combined with a node scheduling algorithm.
The advantages of the map compression method are illustrated in the context of intelligent
IoT data harvesting. Furthermore, we discussed the problem of optimal placement for a
UAV relay in LTE networks which is a special case of the trajectory design problem.

We also investigated the problem of learning the channel parameters and localizing
the ground nodes from the UAV-borne measurement by leveraging the 3D map of the
city. For the further improvement of the channel parameters estimation and the node
localization accuracy, we devised a trajectory for the UAV to intelligently collect radio
measurements from the ground nodes. Moreover, an algorithm was proposed to construct
the 3D map of the city (as a by-product) from only radio measurements collected by the
UAV while the UAV is accomplishing its mission and flying over the network.

The second part of this thesis focuses on UAV trajectory design under cellular
connectivity constraints. A key challenge of this problem lies in the design of trajectory
which, while allowing the completion of the UAV mission, can guarantee reliable cellular
connectivity all along the path. We proposed a novel approach for trajectory design using
a coverage map that can be obtained with a combination of a 3D map of the environment
and radio propagation models. Leveraging on the convexity of sub-regions within the
coverage map, we proposed a low-complexity graph-based algorithm which has been
shown to achieve quasi-optimal performance at a fraction of the computational cost of
known optimal methods.
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Finally, we discussed practical prototype realizations. We introduced the design of
the ”Rebot” (Relaying Robot) for future wireless networks, which comprises a customized
integrated UAV relay and its communication layer based on OpenAirInterface to provide
an end-to-end LTE connectivity between ground users and the core network. It also
functions as an autonomous robot capable of positioning itself in real-time at a throughput
maximizing location.

Despite extensive studies on UAV-based wireless communications, there exist many
outstanding issues in this regard which have been overlooked. Key open problems in
the context of UAV communication systems lie in different areas such as accurate radio
channel modeling for UAV communications, active trajectory design, cooperative learning,
interference management, etc. For instance, while a substantial number of studies have
been conducted relating to the UAV trajectory design in wireless networks, there are still
several open issues including obstacle aware and collision-free path planning, resource-
constrained trajectory optimization by taking into account the UAV dynamics model, etc.
Another important aspect of UAV communications is decentralized learning and control
of a fleet of UAVs for cooperative task completion in scenarios in which using more than
one UAV is required (e.g. accommodating huge flash crowds, search and rescue in a large
scale, etc.).
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Chapter 3 Appendices

A.1 The derivation of the average channel gain

The average channel gain of the link between the drone and the k-th ground node in the
n-th time slot is given by

E[γk[n]] = pk[n]γk,LoS[n] + (1− pk[n])γk,NLoS[n], (A.1)

where pk[n] denotes the LoS probability, γk,LoS[n] and γk,NLoS[n], respectively, denote the
channel gain in LoS and NLoS propagation segments. Expanding (A.1) we have

E[γk[n]]
(a)
= pk[n]

βLoS

(dk[n])αLoS
+ (1− pk[n])

βNLoS

(dk[n])αNLoS

(b)
=

(
(dk[n])(A−1)αLoS −B
1 + exp (−akθk + bk)

+B

)
βLoS

(dk[n])αNLoS
, (A.2)

where step (a) holds by substituting the values of γk,LoS[n] and γk,NLoS[n] form (2.1) into

(A.1), and (b) is obtained by substituing (3.7), where B = βNLoS
βLoS

, A = αNLoS
αLoS

≥ 1, and

dk[n] =
√
z2 + r2

k[n] is the distance between the k-th ground node and the drone. Note

that, in order to ease the notation, the average random shadowing is assumed absorbed
into βs in (A.2) i.e., βs , βsexp(σ

2
s/2) , s ∈ {LoS,NLoS}.

A.2 Proof of Lemma 3.2.1

By proving that the Hessian of the function h , h(x, y), is a positive semi-definite (PSD)
matrix, we prove the convexity of h. We start by considering the Hessian of function
ĥ , ĥ(x, y)

∇2ĥ =

 fxxf−f2x
f2

0

0
gyyg−g2y

g2

 ≥ 0, (A.3)
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where f , f(x), g , g(x), fx , ∂f
∂x , gy ,

∂g
∂y , fxx , ∂2f

∂x2
, and gyy ,

∂2g
∂y2

. Since ĥ is convex,

∇2ĥ is PSD and has non-negative diagonal elements. Hence, for f > 0, g > 0,

fxx ≥
f2
x

f
, gyy ≥

g2
y

g
. (A.4)

Also, it can easily be deduced that

fxxg ≥ 0, gyyf ≥ 0. (A.5)

The hessian of h , h(x, y) is given by

∇2h =

 g2(fxxf−f2x)+fxxg

(1+fg)2
fxgy

(1+fg)2

fxgy
(1+fg)2

f2(gyyg−g2y)+gyyf

(1+fg)2

 .
If det(∇2h) ≥ 0 and tr(∇2h) ≥ 0, then ∇2h is PSD [116]. Let us rewrite ∇2h as a
summation of two matrices ∇2h = M1 + M2, where

M1 =

 g2(fxxf−f2x)
(1+fg)2

0

0
f2(gyyg−g2y)

(1+fg)2

 ,
M2 =

 fxxg

(1+fg)2
fxgy

(1+fg)2

fxgy
(1+fg)2

gyyf

(1+fg)2

 .
Since det(∇2h) is a 2× 2 matrix, we can write it as [117],

det(∇2h) = det(M1) + det(M2) + tr(M†
1M2),

where M†
1 is the adjugate of M1. From (A.3), it can easily be shown that det(M1) ≥ 0.

Also, using (A.4) we can see that

det(M2) = (1 + fg)−2 [(fxxf) (gyyg)− f2
xg

2
y

]
≥ 0.

Finally, from (A.3) and (A.5), we have

tr(M†
1M2) = f2

(
gyyg − g2

y

)
fxxg + g2

(
fxxf − f2

x

)
gyyf

≥ 0.

Therefore, we can conclude that det(∇2h) ≥ 0. It remains to prove that tr
(
∇2h

)
≥ 0.

Using (A.3) and (A.5), we can see that the diagonal elements of ∇2h are positive and
hence the tr

(
∇2h

)
≥ 0. Consequently, we can see ∇2h is PSD, which concludes the

proof.
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A.3 Proof of Proposition 3.2.1

Let f(x) = 1
1+x , g(y) = 1

y , h(d) = 1/dλ and q(x, y) = f(x)g(y) + τ, τ ≥ 0. For positive

f , f(x) and g , g(y), since log(f g) is strictly convex, using Lemma 3.2.1, we can infer
that log (q(x, y)) is also strictly convex. Finally, from the above arguments we can easily
see that the function

ĉ(x, y, d) = log (q(x, y)h(d)) , k ≥ 0

is also strictly convex.
The Hessian of ĉ(x, y, d) is given by

∇2ĉ =


(qxxq−q2x)

q2
(qxyq−qxqy)

q2
0

(qyxq−qxqy)
q2

(qyyq−q2y)
q2

0

0 0
(hddh−h2d)

h2

 , (A.6)

where q , q(x, y) and h , h(d). qx, qxy stand for the partial derivative of q and are

defined as qx = ∂q
∂x , qyx = qxy = ∂2q

∂x∂y . qxx, qyy, hd, hdd also are defined similarly. Since

∇2ĉ is a positive definite (PD) and symmetric matrix, it has positive diagonal elements.
Hence,

qxx >
q2
x

q
> 0. (A.7)

Since h > 0, from (A.7) we have

h qxx > 0. (A.8)

Moreover, since log (f g) is strictly convex, we can write

fxxf > f2
x , gyyg > g2

y . (A.9)

Using the above results, we now prove that the function
c(x, y, d) = log (1 + q(x, y)h(d))

is convex. The Hessian of c , c(x, y, d) is

∇2c =
1

(1 + q h)2 (P + Q) ,

where

P = (q h)2∇2ĉ,

Q =

 qxxh qxyh qxhd
qyxh qyyh qyhd
qxhd qyhd q hdd

 .
Matrix P is PD since ∇2ĉ is PD and q, h > 0. In order to show that the Hessian matrix
∇2c is PD, we need to prove that Q is PD as the sum of two PD matrices is PD. According
to [118], if all upper left n × n determinants of a symmetric matrix are positive, the
matrix is PD. Matrix Q is symmetric, since qxy and qyx are equal to fx gy.
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We start from the upper left 1× 1 determinants of Q which equals to qxxh. It follows
from (A.8), that qxxh > 0. Now, we proceed to show that the determinant of upper left
2× 2 matrix of Q is positive. So, we can write

det (Q2×2)

h2
=
(
qxx qyy − q2

xy

)
(A.10)

(a)
= (fxxf)(gxxg)− f2

xg
2
y (A.11)

(b)
> 0, (A.12)

where Q2×2 denotes the upper left 2 × 2 matrix of Q, (a) is obtained by substituting
qxx = fxxg, qyy = gyyf, qxy = fx gy in (A.10) and step (b) follows from (A.9). Then, we
compute

det (Q) = h2
d (hm) + hddh (h q p) ,

where m = 2qxyqxqy − qxxq2
y − qyyq2

x, p = qxxqyy − q2
xy. From (A.9), it can be shown that

m < 0. From the convexity of ĉ(x, y, d) , by computing the determinant of upper left
2× 2 matrix of ∇2ĉ and performing some algebraic reductions we obtain

m+ q p > 0

⇒ h q p > −hm > 0. (A.13)

Also, since log (h) is strictly convex, we can write

hddh > h2
d. (A.14)

Therefore, according to (A.13), (A.14), it can be seen that det (Q) > 0. Since all upper
left n× n determinants of Q are positive, we conclude that the matrix Q is PD. Hence,
∇2c is also PD.
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B.1 Proof of convergence for multi-user localization

As mentioned earlier, for the multi-user case we use the block coordinate descent method
which is an iterative algorithm. In each iteration we fix all the user location estimates
except one. Therefore, in each iteration of this algorithm the problem is recast as a single
user case. For ease of exposition we merely assume one iteration for the PSO algorithm
I = 1. For this, to avoid notation overload, we drop the superscript indicating the PSO
algorithm iteration for each particle.

Assuming we are at q-th iteration of the block coordinate descent, for the first user it
can be written

SSE
∗(q)
1 := min

j∈[1,C]
SSE∗1(cj),

u∗1 := arg min
cj∈C

SSE∗1(cj),
(B.1)

where SSE
∗(q)
1 is the minimum cost at iteration q and is solved just for the first user, and

u∗1 is the corresponding user location estimate. SSE∗1(cj) is defined as follows

SSE∗1(cj) = min
θLoS,θNLoS

SSE1(cj), (B.2)

where SSE1(cj) is the cost function for particle j by fixing all the users’ location except
the first user which equals to

SSE1(cj) =
∑

s∈{LoS,NLoS}

∑
n∈Ms,1,j

∣∣∣gn,1 − λn(θs, c
(i)
j )
∣∣∣2 +

K∑
k=2

∑
s∈{LoS,NLoS}

∑
n∈M̂s,k

|gn,k − λn(θs,u
∗
k)|

2 ,

(B.3)

where u∗k is the k-th user location estimate available from the last iteration (q − 1).

M̂s,k is a set of time indices of measurements collected from user k which are at segment
s. In general, SSEk(cj) has the following form
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SSEk(cj) =
∑

s∈{LoS,NLoS}

∑
n∈Ms,k,j

∣∣∣gn,k − λn(θs, c
(i)
j )
∣∣∣2 +

K∑
m=1,m 6=k

∑
s∈{LoS,NLoS}

∑
n∈M̂s,m

|gn,m − λn(θs,u
∗
m)|2 ,

(B.4)

Now by having estimated the first user location, we then proceed to find the second user
position as follows

SSE
∗(q)
2 := min

j∈[1,C]
SSE∗2(cj), (B.5)

and u∗2 is computed similar to (B.1). It can be written now

SSE
∗(q)
1

(a)

≥ SSE
∗(q)
2 . (B.6)

Inequality (B.6) holds since the PSO algorithm guarantees improvement in the cost
function. In a similar manner, for all the users it can be shown that

SSE
∗(q)
1 ≥ SSE

∗(q)
2 ≥ SSE

∗(q)
3 ≥ · · · ≥ SSE

∗(q)
K . (B.7)

Then by proceeding to the next iteration (q + 1) we have

SSE
∗(q)
1 ≥ SSE

∗(q+1)
1 . (B.8)

And due to the fact that the SSE is lower bounded by zero then the convergence is
proved.

B.2 Derivation of FIM

Following from (5.2), each measurement hn,k,s is modeled as a Gaussian random variable
with N (µn,k,s, σ

2
s) where µn,k,s = ßs − αs log10 ‖v[n] − uk‖2. Then the PDF of each

measurement equals to

fn,k,s =
1√

2πσ2
s

exp

(
−

(hn,k,s − µn,k,s)2

2σ2

)
(B.9)

Now we compute the derivative of likelihood as follows

∂Ls
∂φs

=

N∑
n=1

∑
k∈Kn,s

∂ log fn,k,s
∂φs

(B.10)
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where

∂ log fn,k,s
∂φs

=
1

σ2
s


−2 log10 ‖v[n]− uk‖

1
−αs(xk−x[n])
|v[n]−uk‖2 log 10
−αs(yk−y[n])
|v[n]−uk‖2 log 10

 (hn,k,s − µn,k,s)

,


`αn,k,s

1
`xn,k,s
`yn,k,s

 .
(B.11)

Then the FIM is given by

FN,s =E

[
∂Ls
∂φs

∂Ls
∂φs

T]
=

N∑
n=1

∑
k∈Kn,s

Hn,k,s, (B.12)

where

Hn,k,s =


(`αn,k,s)

2 `αn,k,s `αn,k,s`
x
n,k,s `αn,k,s`

y
n,k,s

(`αn,k,s) 1 `xn,k,s `yn,k,s
`xn,k,s`

α
n,k,s `xn,k,s (`xn,k,s)

2 `xn,k,s`
y
n,k,s

`yn,k,s`
α
n,k,s `yn,k,s `yn,k,s`

x
n,k,s (`yn,k,s)

2

 . (B.13)

Note that, to calculate (B.12) the following results are useful

E[hn,k,s] = µn,k,s, E
[
(hn,k,s − µn,k,s)2

]
= σ2

s . (B.14)
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The estimate of the map
reconstruction error

Figure C.1 – One dimensional simplified deterministic city model.

First note that for easy exposition we only exploit LoS users and we find the optimal
height based on geometric approach. Referring to the illustration shown in Fig. C.1, we
consider the subset of buildings for which there exists a LoS user whose line connecting to

the UAV is tangent to the right top corner of the building. We denote by M =
⌊
V (hd−Hav)
Hav(W+V )

⌋
the number of such buildings which is derived from the position of farthest LoS tangent
user from the UAV (u2 in Fig. C.1). For the i-th such building, a height estimate can be
obtained given by
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ẑa,i =
2xa,iHav +W (hd −Hav)

2xa,i
, (C.1)

where xa,i = i (W + V ) is the position of the i-th building. We denote the height
estimation error of the i-th building by ei = |ẑa,i −Hav|. Then, The summed error over
all estimated buildings is given by

Er (hd) =

M∑
i=1

ei =

M∑
i=1

|ẑa,i −Hav| . (C.2)

Note that buildings for which there is no tangent user cannot be directly estimated
and are assigned the maximum height. Let us denote Q the number of such buildings,
given by

Q =

⌊
L

W + V

⌋
−M. (C.3)

The total error over all buildings is now given by

ErT (hd) =Q (Hmax −Hav) +
M∑
i=1

|ẑa,i −Hav|

=

(⌊
L

W + V

⌋
−M

)
(Hmax −Hav) +

M∑
i=1

∣∣∣∣W (hd −Hav)

2i (W + V )

∣∣∣∣ .
(C.4)
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D.1 Proof of Proposition 7.2.1

Let v∗(t), 0 ≤ t ≤ T be the optimal trajectory which traverses the k-th BS’s coverage area
Ak. Without loss generality, let us assume that within coverage area Ak the trajectory
traverses the n-th sector. We denote the intersections of v∗(t) with the boarders of sector
ak,n as points vk,n,vk,n+1. For instance in Fig. 7.1, the optimal trajectory intersects the
border of the sector ak,1 in points vk,1,vk,2. Since vk,n,vk,n+1 both are inside ak,n and
each sector has a convex shape, then the straight line connecting vk,n,vk,n+1 also lies
inside ak,n, mathematically we can write

λvk,n + (1− λ)vk,n+1 ∈ ak,n., ∀λ, 0 ≤ λ ≤ 1. (D.1)

This implies that the constraint (7.3) is satisfied for any points on the straight line
between vk,n,vk,n+1. Since, our objective is to minimize the travel time (or equivalently
the length of the trajectory), then the optimal trajectory between vk,n,vk,n+1 is the
straight line. Note that (D.1) can equivalently be written as

ρ(vk,n,vk,n+1) ≥ ρ̄. (D.2)

Consequently without loss of optimality, the optimal trajectory can be represented as a
sequence of the points such that any two consecutive points are connected with a straight
line

V = (vn)Nn=1 | ρ(vn,vn+1) ≥ ρ̄, n ∈ [1, N − 1]. (D.3)

Hence, problem (7.4) is equivalent to (7.9).

D.2 Proof of Proposition 7.3.1

Without loss of generality consider k-th BS having an coverage area Ak. By definition, we
can see that ûk,xk,j , k 6= j lie inside Ak. Since the coverage area Ak can be represented
by a union convex non-overlapping sectors as defined in (7.7), by construction, there
always exits a straight line path connecting ûk and xk,j which always lies inside the
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coverage region Ak. Therefore all edges (ûk,xk,j), k 6= j satisfy the coverage constraint.
Since, we assume that initial and terminal points of the UAV are always in the coverage
area of at least one BS, it can be easily see that edges of the form (vI, ûk) and (ûk,vF)
also satisfy the constraint in (7.9b).

D.3 Proof of Lemma 7.4.1

Let’s assume that the line L(x,y) sequentially traverses some sectors in Ak, denoted by
(ak,1, . . . , ak,N ′ ) with starting location x ∈ ak,1 and ending location y ∈ ak,N ′ . The set of
intersections of the line with the boundaries of the sectors is denoted by a sequence of
the points (xj)

J
j=1.

Since all the sectors are convex, it can be shown that if {xj ,xj+1}, j ∈ [1, J ] belong
to a same sector then the line L(xj ,xj+1) lies inside Ak. Therefore, to check if the line
L(x,y) is inside the coverage area, it is enough to evaluate a limited number of points.
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Résumé [Français]

L’utilisation de drones et de véhicules aériens sans pilote (UAV) en tant que nuds de
réseau d’accès radio (RAN) volants devient rapidement un outil puissant pour compléter
les déploiements terrestres fixes traditionnels. L’avantage d’utiliser des UAVs se fera
particulièrement sentir dans les cas d’utilisation où il est essentiel de pouvoir déployer
rapidement un réseau où et quand cela est important. Cependant, le succès des RAN dits
volants dépend de la capacité des drones à se positionner spatialement de manière efficace
et autonome. Dans cette optique, cette thèse vise à étudier les travaux et technologies
actuels des communications sans fil assistées par UAVs et développe de nouvelles méthodes
pour le placement et la conception de trajectoire d’un UAV en tant que RAN volant dans
le réseau sans fil.

l’avantage du RAN volant par rapport à sa contrepartie fixe conventionnelle réside
essentiellement dans la capacité à rapprocher le RAN de l’utilisateur ou généralement à
augmenter la qualité de la liaison. Par conséquent, le rôle joué par les modèles de canaux
statistiques dans les solutions de placement et de conception de trajectoire est essentiel.

L’hypothèse de canaux en visibilité directe (LoS) ou l’utilisation de modèles de blocage
statistique simples (c’est-à-dire la modélisation de la probabilité LoS) s’est avérée un
excellent moyen de tirer un aperçu précoce du problème et de permettre une analyse
des performances moyennes sous forme fermée. Malheureusement, la nature simpliste
ou probabiliste de ces approches limite notre capacité à garantir les performances dans
un déploiement réel d’UAV sur le terrain. Par exemple, un algorithme de placement
statistiquement optimisé pourrait suggérer un emplacement d’UAV que l’on découvre
finalement être gravement affecté par le blocage local dans la pratique (par exemple, la
présence imprévue d’un immeuble de grande hauteur) forçant le robot à un recalcul de
chemin sous-optimal.

Cette étude est consacrée au développement de méthodes permettant de contourner
ces inconvénients pour les déploiements d’UAV sur le terrain. Nous attirons l’attention du
lecteur sur le rôle joué par l’exploitation de cartes adaptées. Par cartes, nous nous référons
ici à un ensemble de données indexées géographiquement qui peuvent être utilisées pour
mieux prédire les conditions réelles des canaux pour toute paire spécifique d’UAV et
d’emplacements de nuds au sol. Plusieurs types de cartes interdépendantes peuvent être
envisagées, y compris les cartes de débit, les cartes radio (force de liaison) et les cartes 3D
physiques. Dans cette thèse, nous considérons l’exploitation de la carte 3D. Nous donnons
un aperçu des approches de placement d’UAV pour les paramètres Drone-as-a-Relay
(DaaR) et Drone-as-a-Base station (DaaB), puis nous introduisons des méthodes de
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Figure 9.1 – Illustration de quelques cas d’utilisation de RAN volants prometteurs:
Drone-en-tant-que-relais pour la connectivité des utilisateurs au sol (DaaR), Drone-en-
tant-que-station-de-base pour la collecte de données IoT (DaaB).

placement et de conception de trajectoire d’UAV basées sur une carte. Les modèles de
canaux, éventuellement dérivés de cartes 3D, sont d’abord décrits. Tandis que les cartes
3D sont riches en informations, elles sont également difficiles à exploiter directement dans
un problème de placement et d’optimisation de trajectoire en raison du comportement
très irrégulier du blocage radio, notamment en environnements urbain. Nous dérivons
des méthodes de placement (à la fois statiques et basé sur la trajectoire) qui s’appuient
sur des données cartographiques en faisant le tour de la nature apparemment quasi non
différenciable du problème.

Les composants essentiels des scénarios et applications susmentionnés sont la connais-
sance des emplacements des utilisateurs et des caractéristiques des canaux radio, qui ne
sont généralement pas disponibles. Pour cela, nous enquêtons également le problème de
l’apprentissage des canaux radio et localisation des nuds au sol à partir des mesures radio.
En général, les performances de tout processus d’apprentissage dépendent fortement de
l’ensemble de données d’apprentissage, qui dans ce cas est des mesures radio collecté des
nuds au sol. À cette fin, nous avons pour devise une trajectoire optimisée pour l’UAV en
capitalisant sur la carte 3D pour collecter intelligemment les mesures depuis nuds au sol
afin d’augmenter les performances d’apprentissage et de localisation.

Les algorithmes proposés fonctionnent sur la base de la ville 3D où l’UAV est déployé.
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Cependant, ces informations peuvent ne pas être disponibles et doivent souvent être
estimées à partir de mesures transmises par l’UAV drone. Étant donné que piloter un
drone simplement pour construire une carte est souvent coûteux, nous proposons un
algorithme pour construire la carte 3D de la ville comme sous-produit uniquement à
partir de la mesure radio pendant que le drone accomplit sa mission et survole le réseau.

D’autre part, l’énorme augmentation de l’utilisation des UAVs pour les différentes
applications telles que le transport, la livraison de marchandises, surveillance du système,
etc. a été observée au cours des dernières années. L’habilitation de ces applications
nécessite une connectivité sûre et transparente entre les infrastructures fixes au sol et
UAVs. Un défi majeur dans ce domaine réside dans la conception de trajectoires qui,
tout en permettant l’achèvement de la mission UAV, peut garantir une connectivité
cellulaire fiable tout au long du chemin. Les approches précédentes dans ce domaine ont
considéré la propagation simpliste des hypothèses de modèle (par exemple, basées sur la
ligne de visée) ou des modèles plus avancés, mais avec des solutions optimisées exigeantes
en calcul. Dans cette étude, nous proposons également une nouvelle approche pour la
conception de trajectoires entre un emplacement de départ et une destination donnée de
telle sorte que l’obtention d’une qualité fiable de service (QoS) du réseau cellulaire tout
au long du trajet.

Enfin, nous discutons des réalisations de prototypes pratiques. Nous concevons un
prototype radio volant, appelé Rebot (Relay Robot), qui comprend des UAVs équipé d’un
relais LTE qui peut fournir une connectivité LTE de bout en bout entre les utilisateurs
au sol et le réseau central. Il fonctionne également comme un robot autonome capable de
se positionner à un emplacement maximisant le débit.

Les paragraphes suivants donnent un apercu des contributions principales des différents
chapitre de la thèse.
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Contribution 1 (Chapitre 3)- Emplacement basé sur la carte et concep-
tion de trajectoire dans les réseaux sans fil assistés par UAV

Plusieurs questions nouvelles et fascinantes découlent de l’étude des BS volants dans
un réseau sans fil. Ceux-ci peuvent être largement classés en problèmes de placement et
de conception de la trajectoire. Alors que le problème de placement concerne la recherche
d’emplacements flexibles mais statiques des BS d’UAV, la conception de trajectoire im-
plique la recherche de trajectoires d’UAV. En ce qui concerne les problèmes de placement
ou de conception de trajectoire, la plupart des solutions existantes reposent sur des
modèles d’atténuation de canal simplifiés qui sont basés sur des liaisons LoS (garanties de
manière déterministe) ou sur des modèles prédictifs pour la probabilité d’occurrence d’une
liaison LoS. La plupart des approches précédentes manquent de garanties de performances
réelles pour les algorithmes de placement ou de conception de trajectoire lorsqu’ils sont
utilisés dans un scénario de navigation réel. Afin de contourner ce problème, dans ce
chapitre, nous proposons une solution en incorporant des données réelles de la carte de la
ville 3D dans le placement de l’UAV et la conception de la trajectoire via une méthode
de compression de carte qui nous permet de recourir au problème pour des arguments
d’optimisation convexes. Un exemple de la trajectoire obtenue sous l’approche de compres-
sion de carte pour un paramètre IoT avec 3 nuds au sol est illustré sur la figure 9.2. Sur la
figure 9.3, les performances de l’algorithme basé sur la carte proposé en comparaison avec
deux autres approches par rapport au temps de vol en considérant 6 nuds au sol est montré.

Une partie des travaux de ce chapitre a donné lieu aux publications suivantes:

• Esrafilian, Omid, Rajeev Gangula, and David Gesbert. ”UAV-relay Placement
with Unknown User Locations and Channel Parameters.” In 2018 52nd Asilomar
Conference on Signals, Systems, and Computers.

• Esrafilian, Omid, Rajeev Gangula, and David Gesbert. ”Learning to communicate
in UAV-aided wireless networks: Map-based approaches.” IEEE Internet of Things
Journal 6, no. 2 (2018): 1791-1802.
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Figure 9.2 – Exemple de conception de trajectoire pour la collecte de données IoT (3
capteurs Cas).

Contribution 2 (Chapitre 4)- Apprentissage actif pour l’estimation des
canaux : approche basée sur des cartes

L’une des hypothèses courantes dans les travaux précédents concernant les communi-
cations UAV, est que les paramètres du modèle de canal radio sont supposés être connus
pour le placement optimal des UAVs ou la conception de la trajectoire des UAV. Cepen-
dant, en réalité, ces paramètres doivent être appris sur la base des mesures recueillies
auprès des utilisateurs du sol. Dans ce chapitre, nous nous concentrons uniquement sur
l’apprentissage des paramètres des canaux radio. Nous formulons et résolvons un prob-
lème d’optimisation de trajectoire d’apprentissage afin de minimiser l’erreur d’estimation
des paramètres du modèle de canal. La trajectoire imaginée permet à l’UAV d’exploiter
la carte et d’apprendre rapidement les paramètres de propagation dans un temps de vol
limité. Sur la figure 9.4, un exemple de la trajectoire d’UAV conçue en utilisant notre
algorithme proposé pour apprendre de manière optimale les canaux radio est montré.
Sur la figure 9.5, les performances de la trajectoire optimale en termes de de l’erreur
quadratique moyenne (MSE) des paramètres de canal appris sont représentées en fonction
du nombre de nuds au sol.

Les résultats présentés dans cette section ont été publiés dans la publication suivante

• Esrafilian, Omid, Rajeev Gangula, and David Gesbert. ”Learning to communicate
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Figure 9.3 – Performances de l’algorithme basé sur la carte pour les appris et les vrais
paramètres de canal en comparaison avec d’autres algorithmes pour 6 nuds au sol par
rapport à l’augmentation du temps de vol.
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Figure 9.4 – (a) Vue de dessus de la trajectoire d’apprentissage optimale en utilisant
l’algorithme proposé. (b) L’élévation de l’UAV le long de la trajectoire.
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Figure 9.5 – Comparaison de l’erreur quadratique moyenne (MSE) pour différentes
trajectoires d’apprentissage.

in UAV-aided wireless networks: Map-based approaches.” IEEE Internet of Things
Journal 6, no. 2 (2018): 1791-1802.
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Contribution 3 (Chapitre 5) - Localisation des nuds dans les réseaux
sans fil

Indépendamment du placement ou de la conception de la trajectoire pour l’UAV,
les algorithmes fonctionnent généralement sur la base d’un tableau d’informations com-
prenant les informations de localisation des nuds au sol. L’utilisation du GPS pour obtenir
l’emplacement des nuds n’est pas une solution viable à tout moment en raison de la
dégradation des signaux GPS ou de l’effet de blocage des obstacles dans l’environnement.
Pour résoudre ce problème dans ce chapitre, nous formulons le problème de la localisation
des utilisateurs en traitant les mesures de l’indicateur de force du signal reçu (RSSI)
qui sont collectées par un UAV tout en capitalisant sur les données cartographiques
3D de la ville. Étant donné que la localisation dépend fortement de la connaissance
des canaux radio entre les utilisateurs et le UAV, le UAV doit non seulement localiser
les utilisateurs mais également apprendre les canaux en même temps. De plus, nous
formulons un nouveau problème d’optimisation de trajectoire d’UAV contraint par les
ressources pour améliorer encore la précision de localisation. Sur la figure 9.6, la sortie de
l’algorithme de localisation de base de carte proposé pour un scénario comprenant 3 nuds
au sol tandis que l’UAV suit la trajectoire optimale est représentée. Dans la figure 9.7,
nous comparons les performances de l’algorithme de localisation pour le cas d’utilisateur
unique proposé dans ce chapitre avec d’autres approches introduites dans [65; 83].

Certaines parties des résultats présentés dans cette section ont été publiées dans les
publications suivantes

• Esrafilian, Omid, Rajeev Gangula, and David Gesbert. ”UAV-relay Placement
with Unknown User Locations and Channel Parameters.” In 2018 52nd Asilomar
Conference on Signals, Systems, and Computers.

Et la publication suivante sera soumise prochainement:

• Esrafilian, Omid, Rajeev Gangula, and David Gesbert. ”Simultaneous Learning and
Path Planning (SLAP) in UAV-Aided Wireless Communications”, To be submitted.

127



Appendix D. Chapter 7 Appendices

(a)

(b)

Figure 9.6 – (a) Vue de dessus de la trajectoire générée en utilisant l’approche sous-
optimale. (b) Altitude du drone le long de la trajectoire.
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cas de l’utilisateur unique.
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Contribution 4 (Chapter 6) - Reconstruction of the 3D city map from
radio measurements based on UAVs

L’hypothèse essentielle dans les chapitres précédents est la connaissance de la carte
3D des zones où l’UAV est déployé. Traditionnellement, la reconstruction de plans de
ville en 3D utilise des techniques de photogrammétrie qui nécessitent des images stéréo
haute résolution et une capacité de traitement étendue. Étant donné que l’UAV peut
survoler la ville et effectuer des mesures à partir des utilisateurs au sol, dans ce chapitre,
nous visons à proposer un nouvel algorithme pour reconstruire des plans de ville 3D en
articulant les mesures radio. L’approche proposée repose sur la capacité unique d’un
système de communication UAV-sol à détecter et à classer les canaux LoS par rapport
aux canaux sans visibilité directe (NLoS) vers les utilisateurs au sol à l’aide d’outils
d’apprentissage de la machine. figure 9.8 montre un exemple de carte reconstruite tandis
que l’UAV suit une trajectoire carrée centrée au centre de la ville avec une longueur de
800 mètres et une altitude fixe de 70 mètres. Pour reconstruire la carte 3D de la ville,
l’UAV prend des mesures auprès de 1584 utilisateurs au sol extérieurs qui sont dispersés
au hasard dans la ville.

Les travaux présentés dans ce chapitre ont donné lieu à la publication suivante :

• Esrafilian, Omid, and David Gesbert. ”3D city map reconstruction from UAV-
based radio measurements.” In 2017 IEEE Global Communications Conference
(GLOBECOM).
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(a)

(b)

Figure 9.8 – (a) Vue latérale du plan de ville 3D. (b) Carte reconstruite avec NMSE égale
à 0,35.
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Contribution 5 (Chapitre 7) - Conception de trajectoire de drone as-
sistée par carte 3D sous contraintes de connectivité cellulaire

Dans ce chapitre, nous avons étudié le problème de la conception de trajectoires
d’UAV sous contrainte de connectivité cellulaire. Un défi clé de ce problème réside dans
la conception de trajectoires entre un départ prédéterminé et une destination qui, tout
en permettant l’achèvement de la mission d’UAV, peuvent garantir une connectivité
cellulaire fiable tout au long du trajet. La mission UAV, peut garantir une connectivité
cellulaire fiable tout au long du chemin. Nous avons proposé une nouvelle approche qui
établit un compromis entre les performances (c’est-à-dire la réduction de la longueur du
trajet) et la complexité en exploitant la carte 3D de l’environnement et en utilisant la
théorie des graphes. Nous avons établi un cadre basé sur la théorie des graphes pour
évaluer d’abord la faisabilité du problème, puis pour obtenir une solution approximative
de haute qualité au problème de conception de trajectoire d’UAV. La figure 9.9 illustre
25 BS et la carte de couverture où les régions en surbrillance représentent les zones où la
contrainte SNR minimale est satisfaite. Nous vérifions d’abord la faisabilité du problème
en trouvant la trajectoire de base entre les emplacements de départ et de destination.
Nous optimisons ensuite la trajectoire de base pour trouver une meilleure solution. Nous
avons également comparé notre méthode aux autres approches basées sur des graphiques.
Sur la figure 9.10, nous évaluons les performances des différentes approches en termes de
panne sur 1000 simulations sur Monte-Carlo avec différents emplacements BS.

Les résultats présentés dans ce chapitre ont été soumis pour publication :

• Esrafilian, Omid, Rajeev Gangula, and David Gesbert. ”3D-Map Assisted UAV
Trajectory Design Under Cellular Connectivity Constraints.” Submitted In 2020
IEEE international conference on communications (ICC).
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Contribution 6 (Chapitre 8) - Vérification expérimentale

Dans ce chapitre, nous évaluons les performances des algorithmes proposés à travers
la vérification expérimentale, et nous discuterons également des réalisations de prototypes
pratiques. Ce chapitre présente le prototype du concept dit Rebot (Relay Robot). Le
Rebot fonctionne à la fois comme un relais LTE extérieur entre les utilisateurs au sol
et un BS fixe, ainsi que comme un robot autonome capable de se positionner à un
emplacement maximisant le débit. Dans [4], un enregistrement vidéo de l’expérience sur
le campus d’EURECOM est également capturé, illustrant à la fois l’avantage de débit,
l’auto-placement axé sur l’apprentissage automatique et les capacités de suivi du Rebot.
Différentes parties du prototype Rebot sont illustrées à la figure 9.11.

Figure 9.11 – coupure en fonction de la longueur de la trajectoire pour différents algo-
rithmes.

Les résultats présentés dans ce chapitre ont été soumis pour publication:

• Gangula, Rajeev, Esrafilian, Omid, et al. ”Flying rebots: First results on an
autonomous UAV-based LTE relay using open airinterface.” 2018 IEEE 19th In-
ternational Workshop on Signal Processing Advances in Wireless Communications
(SPAWC).
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