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An important goal of cognitive neurosciences is to understand the functional organization of the brain. It heavily relies on Functional Magnetic Resonance Imaging (fMRI), a powerful tool to investigate the link between brain function and anatomical structures at a high spatialresolution. Functional inter-individual variability is a major obstacle limiting functional brain mapping precision and generalizability of results obtained in neuroimaging studies. This variability, observed across subjects performing the same task, goes far beyond anatomical variability in brain shape and size. In this work, we focus on a class of methods designed to address functional variability, namely functional alignment. These methods match subjects neural signals based on their functional similarity.

In a first part, we review standard functional brain mapping paradigms and techniques, as well as the challenges induced by functional variability. We additionally review existing functional alignment methods and related work, and discuss the current limitations of these approaches. In a second part, we develop a new functional alignment method, based on optimal transport-a mathematical theory interested in matching probability distributions while taking their geometry into account. Functional alignment methods are local, which means that many local alignments need to be aggregated to compose whole-brain alignments. Moreover, these methods derive pairwise matching and call for a "functional template", a common functional representation to which all subjects of a study can be aligned. To overcome limitations of existing solutions, we additionally introduce a new aggregation scheme as well as a principled template design procedure. In a third part, we turn to empirical validation of alignment performance. Indeed, these methods are seldom used in applied studies, and it is unclear to what extent they can address functional variability in typical cognitive studies. We investigate their performance to improve generalization of predictive models to new subjects. In this inter-subject decoding set-up, spanning four different datasets, we show that alignment methods hold real potential to recover an important share of prediction accuracy lost due to inter-subject variability.

S Y N T H È S E E N F R A N Ç A I S

Un objectif important des neurosciences cognitives est de comprendre l'organisation fonctionnelle du cerveau. Pour cela, elles s'appuient sur l'Imagerie par Résonance Magnétique fonctionnelle (IRMf), un outil puissant pour étudier le lien entre les fonctions cérébrales et les structures anatomiques sous-jacentes à une haute résolution spatiale. La variabilité fonctionnelle interindividuelle est un obstacle majeur qui limite la précision de la cartographie fonctionnelle du cerveau et la généralisation des résultats obtenus par les études d'imagerie cérébrale. Cette variabilité importante, observable entre des sujets effectuant la même tâche cognitive, va bien au-delà des variations de taille et de forme des structures anatomiques. Elle crée des variations importantes dans la localisation, l'intensité et la géométrie des activations fonctionnelles. Dans cette thèse, nous nous intéressons à un ensemble de méthodes conçues pour traiter la variabilité fonctionnelle : l'alignement fonctionnel. Ces méthodes mettent en correspondances les signaux cérébraux de différents sujets sur la base de leur similarité fonctionnelle.

Dans un premier temps, nous présentons les concepts et les techniques usuels pour la cartographie fonctionnelle cérébrale, ainsi que les difficultés induites par la variabilité fonctionnelle. Nous passons également en revue les méthodes d'alignement fonctionnel existantes. Ces méthodes cherchent des transformations mettant en correspondances les pixels volumiques(voxels) des images d'un individu avec ceux d'un autre en fonction de la similarité leurs profils d'activité à travers différentes images. L'hyperalignment, méthode historique d'alignement fonctionnel, cherche une transformation orthogonale permettant de maximiser cette similarité. Une seconde méthode répandue est le Shared Response Model (SRM) qui trouve une décomposition des données de chaque sujet en une base orthogonale individuelle (des cartes spatiales orthogonales représentant divers modes d'activation du cerveau) et des décours temporels partagés à travers les sujets pour chacune des cartes de cette base. Nous passons également en revue les nombreuses méthodes proposées dans la littérature pour réaliser des alignements fonctionnels et soulignons les questions méthodologiques qui freinent leur utilisation dans la recherche en sciences cognitives.

Dans une deuxième partie, nous proposons une nouvelle méthode d'alignement fonctionnel, basée sur le transport optimal -une théorie mathématique qui s'intéresse à la mise en correspondance de distributions de probabilité prenant en compte leur géométrie. Cet algorithme permet de trouver un alignement parcimonieux qui transporte les voxels d'un sujet à l'autre en minimisant la dissimilarité induite par ce transport. Ce plan de transport préserve la spécificité fonctionnelle des signaux après l'alignement.

Les méthodes d'alignement fonctionnel sont définies localement. Pour construire des alignements à l'échelle du cerveau entier, nous proposons un algorithme d'alignement par parcelle qui concatène de nombreux alignements appris sur des parcelles locales adjacentes mais disjointes. Par ailleurs, ces mises en correspondances sont définies entre deux sujets. Il est nécessaire, pour aligner plusieurs sujets, de recourir à un "modèle fonctionnel de groupe" : une représentation commune sur laquelle tous les sujets peuvent être alignés. Nous proposons un algorithme de minimisation pour inférer un optimum local de ce modèle fonctionnel, conjointement avec les alignements de chaque sujet vers cet espace. Nous évaluons la performance de ces méthodes en utilisant des tâches de prédiction de nouvelles images.

La troisième partie de ce travail est consacrée à une validation expérimentale approfondie de ces méthodes. En effet, l'alignement est rarement utilisé dans des études applicatives et sa capacité à compenser la variabilité fonctionnelle en pratique est peu documentée. Nous évaluons sa capacité à améliorer la généralisation de modèles prédictifs à de nouveaux sujets. Dans cette configuration-dite de "décodage inter-sujet"appliquée à quatre jeux de données, nous montrons que les méthodes d'alignement ont le potentiel de compenser une part importante des effets de la variabilité interindividuelle, dans une grande variété de situations. Cette étude comparative nous permet également de tirer de nombreuses conclusions méthodologiques. Nous montrons par exemple la performance significative du Transport Optimal et du Shared Response Model pour réaliser des alignements ainsi que l'efficacité de l'alignement par parcelle pour pouvoir réaliser des alignements à l'échelle du cerveau entier. Nous avons publié des implémentations open-source optimisées de chaque méthode proposée lors de cette thèse.
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vi C O N T E N T S

A key stake for brain mapping is to ensure generalizability and consistency of these results, despite the strong inter-subject variability that is observed in functional images. This functional variability stems both from imaging limitations (low signal-to-noise ratio, small sample size) and from natural brain variation across individuals. Although standard fMRI preprocessing includes an anatomical registration stepensuring the correspondence of individual brain structures to a template brain-there remains a high degree of variability in observed functional data, which undermines attempts at precise brain mapping. Variability is a key hurdle for population comparison, which explains why fMRI imaging is seldom used in clinical settings. In general, it remains hard to relate our general knowledge on brain function to a specific patient through imaging.

In this thesis, we focus on a class of methods specifically targeting inter-subject functional variability, functional alignment, which take advantage of the rich individual characterization brought by intensive individual scanning experiments to learn data-driven mappings between individual functional responses. We propose a new method, based on optimal transport, that enhances alignment performance as well as methodological developments to improve efficiency and usability of this framework. We especially focus on assessing potential benefits of alignment for cognitive research studies and present a thorough methodological benchmark. We release open-source implementations of all the methods introduced. This work opens the door to a broader adoption of functional alignment as a common fMRI analysis step, which will hopefully help progress towards more accurate brain mapping. In this chapter, we outline the structure of this manuscript.

.

. .

An introduction to brain mapping and functional alignment

In the first part, we introduce concepts and techniques underlying functional brain mapping and functional alignment. We give a quick account of functional Magnetic Resonance Imaging principles and standard approach to acquisition and analysis of fMRI data. We present common paradigms of brain function investigation and recent evolutions towards deep characterization of individual functional organization. We proceed with an introduction of seminal functional alignment methods, such as Hyperalignment and Shared Response Modelling. We frame alignment in the broader machine learning literature and review related approaches for fMRI. Finally, we put these works in context to highlight roadblocks hindering a broad dissemination of alignment methods.

. .

Alignment methodological developments

In the second part, we introduce several methodological developments targeted at improving alignment performance and efficiency. We bridge the key idea of alignment-improving correspondence of activation patterns across individuals-with Optimal Transport: an acclaimed mathematical theory which studies matching of probability distributions. We also introduce novel schemes to derive whole-brain matchings from local alignments and to estimate a functional template: a well-suited functional representation to which several subjects can be aligned. We evaluate those contributions using several datasets comprising rich individual data.

. .

Empirical benchmark

In the third part, we focus on assessing the benefits to be expected from alignment in standard functional imaging studies. To do so, we focus on inter-subject decoding, a predictive modelling technique yielding a principled way to measure how much inter-subject variability can be compensated for using functional alignment while preserving signal specificity for later analysis. This evaluation compares five alignment methods on four datasets comprising five decoding tasks. We additionally discuss several common methodological and implementation choices. This study confirms that the best alignment methods are able to recover more than half of decoding accuracy usually lost due to inter-subject variability.

. . Conclusion

In the conclusion, we summarize our contributions and the main outcomes of our empirical benchmark. We also describe the challenges we faced during this thesis, as well as current limitations and future perspectives for this line of work. Additionally, we recapitulate the alignment open-source implementations produced when performing this work, and additional projects conducted during this thesis.

.

To get a broad overview of functional brain mapping concepts and techniques, one should start with chapter 2. A reader especially interested in understanding functional alignment intuitions and its benefits should focus first on chapters 3 and 6. In contrast, chapters 4 and 5 are especially focused on introducing an original mathematical framework for alignment and outlining challenges and directions for building a functional template. Section 6.5 may be skipped at first read, as it is detailing additional analyses which support benchmark conclusions summarized in Section 6.4.

.

Contributions developed in Chapters 4 & 5 were partly published in a conference paper [START_REF] Bazeille | Local Optimal Transport for Functional Brain Template Estimation[END_REF]. Work detailed in Chapter 6 is a journal article (Bazeille et al., under review) currently under review at Neuroimage. Additional collaborations detailed in Chapter 7 gave rise to several conference and journal articles [START_REF] Janati | Group level MEG/EEG source imaging via optimal transport: minimum Wasserstein estimates[END_REF][START_REF] Janati | Debiased sinkhorn barycenters[END_REF]Torre et al., in preparation). Bazeille, Thomas, Elizabeth Dupre, Hugo Richard, Jean-Baptiste Poline, and Bertrand Thirion (under review). "An empirical evaluation of functional alignment using inter-subject decoding." In: url: https: //www.biorxiv.org/content/10.1101/2020.12.07.415000v2. [START_REF] Bazeille | Local Optimal Transport for Functional Brain Template Estimation[END_REF]. "Local Optimal Transport for Functional Brain Template Estimation." In: International Conference on Information Processing in Medical Imaging. Springer, pp. 237-248. Janati, Hicham, Thomas [START_REF] Janati | Group level MEG/EEG source imaging via optimal transport: minimum Wasserstein estimates[END_REF]. "Group level MEG/EEG source imaging via optimal transport: minimum Wasserstein estimates." In: International Conference on Information Processing in Medical Imaging. Springer, pp. 743-754.

Part I

C O N T E X T

F U N C T I O N A L B R A I N M A P P I N G

This chapter provides an introduction to functional brain mapping. Section 2.1 provides a short technical background on Magnetic Resonance Imaging (MRI) and common methodologies used in human brain function imaging. Section 2.2 introduces central paradigms underlying brain mapping studies. Section 2.3 gives an account of functional variability, one of the main challenges of functional MRI (fMRI) studies today, and explains its consequences on modern brain mapping.

.

. . MRI principle

Magnetic Resonance Imaging (MRI) is a non-invasive imaging technique that produces images of organs and their physiological processes. For anatomical purposes, it uses variations in magnetic susceptibility of different molecules to contrast tissues of different composition. In most applications, the signals exploited are the radiofrequency signal emitted by the synchronized spinning of nuclei, most commonly hydrogen nuclei (i.e., protons) which generate transverse magnetization.

These protons exhibit different response to a magnetic field, depending on the environment they are embedded in, e.g., different tissues have different relaxation times. As a first step, nuclei are aligned using a constant and intense static magnetic field. Additional gradient fields (or gradients) are then applied to encode spatial position of voxels. Gradients are small linear spatial variations of magnetic field in x, y, z that are used to produce spatial resolution.

Finally, a radiofrequency pulse is emitted to tilt the nuclei magnetization in the plane perpendicular to the intense static field. When this pulse ends, the spin of hydrogen nuclei relax to their equilibrium states. This relaxation occurs with certain characteristic time constants. The relaxation signal (i.e., spinning of the transverse magnetization) is measured with receptive coils. The response emitted by nuclei contained in each volumic pixel (or voxel) can then be disentangled, knowing precisely the local field that they were subject to. For each voxel, the measure retained is the observed relaxation time. Radiofrequency pulses can be emitted at different timings in so-called sequences. A given sequence produces a particular contrast, for which various type of tissues will have a dominant influence (e.g., T1-weighted for structural MRI, T2-weighted for functional MRI, diffusion-weighted (Le [START_REF] Bihan | Diffusion tensor imaging: concepts and applications[END_REF] and many more). For structural MRI, this process enables to create images that characterize local magnetic susceptibility and hence tissue composition, at a millimeter scale.

. . Functional MRI

While structural MRI can be used to image anatomical structures of the brain in a static fashion, many applications of MRI actually focus on the dynamical processes ongoing in the brain and how they relate to behavior. It has been known for a long time that an important correlate of brain activity is blood flow [START_REF] Pauling | The magnetic properties and structure of hemoglobin, oxyhemoglobin and carbonmonoxyhemoglobin[END_REF]. Neurons that activate are depleted of oxygen and glucose, which are important primitives of adenosine triphosphate (ATP), a crucial molecule used to produce energy necessary for their biological functions [START_REF] Vergara | The energy homeostasis principle: neuronal energy regulation drives local network dynamics generating behavior[END_REF]. Local brain activation is thus followed by an inflow of oxygenated blood, replenishing these cells and displacing deoxygenated blood away. This phenomenon is called the neurovascular coupling.

It was later discovered that oxygenated and deoxygenated blood carry different magnetic susceptibilities, and thus react differently when placed in a magnetic field. Seiji Ogawa and colleagues reckoned in 1990 [START_REF] Ogawa | Brain magnetic resonance imaging with contrast dependent on blood oxygenation[END_REF]) that this change in the Blood Oxygenation Level Dependent (BOLD) signal could be used to measure a correlate of brain activity through MRI: the hemodynamic response. This HR shows an increase in BOLD signal, lagging a few seconds behind the neural activation itself, followed by a rapid decrease and a slight undershoot of BOLD signal once the equilibrium blood flow is restored. Although HR can vary with respect to physiological and local effects, it is generally modelled with one common Haemodynamic Response Function (HRF) across brain locations and subjects. The "canonical HRF" [START_REF] Friston | Event-related fMRI: characterizing differential responses[END_REF], most commonly used, is depicted in Figure 2.1. When recording BOLD signal evolution during experimental paradigms, local neural activations can thus be deduced by a deconvolution with this HRF.

Nowadays, functional Magnetic Resonance Imaging (fMRI) is a ubiquitous tool to investigate brain function in cognitive science research. For human whole-brain imaging, the most common spatial resolution is 2-3 mm, progressing toward submillimeter resolution [START_REF] Goense | fMRI at high spatial resolution: implications for BOLD-models[END_REF]. A key characteristic of fMRI images is their acquisition cost, which eventually limits data availability. Many challenges faced in this field, including those targeted in this thesis, would be largely mitigated by massive datasets. Unfortunately, such datasets are still rare and will remain so in the foreseeable future. Another important fMRI limitation is time resolution. Due to the sluggishness of hemodynamic coupling and its timing variability, the time precision that is usually claimed is of the order of one 1 or 2 seconds per image, which limits the span of observable brain processes to rather slow ones [START_REF] Glover | Overview of functional magnetic resonance imaging[END_REF]. Other limitations include the fact that fMRI images have a low signal-to-noise ratio (SNR) [START_REF] Welvaert | On the definition of signalto-noise ratio and contrast-to-noise ratio for fMRI data[END_REF], are subject to artifacts and are not quantitative per se, as the magnetic effects derived from the BOLD signal are hard to relate to a precise quantity of neural activation [START_REF] Pike | Quantitative functional MRI: concepts, issues and future challenges[END_REF]. All these limitations introduce the need for robust processing of images in order to draw statistical conclusions. Since fMRI preprocessing pipelines are often complex and depend on the context (see Figure 2.2), we will especially focus on introducing crucial processing steps.

. .

Structural preprocessing

Cognitive studies using fMRI often include an additional structural MRI session to image brain structures and tissue types (gray and white matter). These are first used to restrict studies to brain tissues. Skullstripping procedures are often used to produce a mask of brain tissues, discarding surrounding regions. Some studies apply an additional tissue segmentation step to distinguish gray matter from white matter and cerebrospinal fluid. It is then possible to refine image masks and restrict studies to gray matter tissues, since BOLD activity is restricted to those regions.

Human brain structures differ in shape in size across individuals. For instance, brain volume or surface can vary almost twofold among typically developing humans of the same age [START_REF] Giedd | Child psychiatry branch of the National Institute of Mental Health longitudinal structural magnetic resonance imaging study of human brain development[END_REF]. Despite this irreducible anatomical variability, Matching brain structures of various individuals to a common space is thus an important preprocessing step, called spatial normalization [START_REF] Friston | Spatial registration and normalization of images[END_REF]. This normalization step consists in registering brain images, maximizing their correspondence to a given template while allowing only smooth deformations. This registration is most often inferred using structural images, and hence often denoted as anatomical registration. Estimated registrations can then be applied to other images (e.g., BOLD) acquired for a given subject once those have been rigidly aligned to the structural image used for estimation. Registration techniques usually search for invertible diffeomorphisms between the source and target images, symmetric with respect to these source and target images, and guided by a similarity measure to be chosen among several alternatives. Some datasets used in further experiments, notably Individual Brain Charting dataset, were registered using SPM software, which relies on a unified step of probabilistic segmentation and diffeomorphic registration using geodesic shooting (Ashburner andFriston, 2005, 2011). Others datasets, used in Chapter 6, were preprocessed using the fMRIprep package. Under the hood, this pipeline relies on another popular registration method (used in Chapter 4 experiments): Symmetric Image Normalization (SyN) [START_REF] Avants | Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain[END_REF]. SyN maximizes the cross-correlation within the space of diffeomorphic maps through solving symmetric Euler-Lagrange equations. Other notable registration methods include extensions of Demons algorithm [START_REF] Thirion | Image matching as a diffusion process: an analogy with Maxwell's demons[END_REF]) (e.g., Spherical Demons for surfacebased registration from [START_REF] Yeo | Spherical demons: fast diffeomorphic landmark-free surface registration[END_REF], and Large Deformation Diffeomorphic Metric Matching [START_REF] Beg | Computing large deformation metric mappings via geodesic flows of diffeomorphisms[END_REF]. This registration process makes it possible to project various subject brain structures to a reference image. A common reference space is the Montreal Neurological Institute (MNI) template [START_REF] Mazziotta | A Probabilistic Atlas of the Human Brain: Theory and Rationale for Its Development: The International Consortium for Brain Mapping (ICBM)[END_REF], deemed as a good common representation obtained from 152 subjects, and routinely used in group studies. While obviously discarding some subject-specific information, this well-established process enables to map reasonably well information acquired in different subjects and to ease subsequent statistical processing.

. . BOLD signal preprocessing

As a product of a complex acquisition process, the fMRI signal is plagued with multiple sources of noise. These range from experimental and instrumental noise to physiological and movement artifacts. To try to separate those nuisances from the signal induced by neural activity, several denoising techniques are routinely used as preprocessing steps. We don't intend here to be exhaustive about noise sources and available denoising techniques, but instead to give a brief account of commonly used pipelines (Caballero-Gaudes and Reynolds, 2017).

-Motion, and head-motion in particular, create artifactual magnetic effects that confound the signal of interest [START_REF] Friston | Movement-related effects in fMRI time-series[END_REF]. To eliminate this nuisance, preprocessing steps usually include the calculation of a rigid-body transform from BOLD images to a reference frame. These 6 motion parameters estimated for each time step (along three translation directions and three rotation axes) can then be included as confounding regressors in later modelling.

MRI images are subject to spatial and intensity distortion due to magnetic field inhomogeneities created by scanner imperfections, as well as spurious fields (including the magnetization of the subject itself). These distortions are most pronounced in the phase-encoding direction (i.e., the direc-tion chosen to apply one specific gradient called the phase-encoding gradient). A common method to correct for those distortions is thus to acquire protocols twice with opposite phase-encoding polarities, which display opposite distortion patterns, and average those [START_REF] Holland | Efficient correction of inhomogeneous static magnetic field-induced distortion in Echo Planar Imaging[END_REF]. Some MRI acquisition sequences also make it possible to either measure directly the magnetic field (and its homogeneities) or deduce them from successive scans and use this model of magnetic field to compensate for induced distortions [START_REF] Hutton | Image distortion correction in fMRI: a quantitative evaluation[END_REF].

Ongoing physiological processes, such as cardiac pulsing and respiration, are additional sources of signal fluctuation. Primary effects of these two processes give rise to a relatively lowfrequency signal, which can sometimes be cut off using high-pass filtering. When it is not possible or for the sake of removing other artifacts, data-driven denoising methods are used. Principal Component Analysis and Independent Component Analysis [START_REF] Sui | An ICA-based method for the identification of optimal FMRI features and components using combined group-discriminative techniques[END_REF] are two ubiquitous techniques to separate noise artifacts from other signal components [START_REF] Behzadi | A component based noise correction method (CompCor) for BOLD and perfusion based fMRI[END_REF].

Final steps of the preprocessing include temporal filtering, confounders regression, detrending and spatial smoothing. Spatial smoothing, using a Gaussian Kernel characterized by its full-width-athalf-maximum (fwhm), is commonly used to remove part of uncorrelated noise and improve SNR. It also helps improve similarity of brain images across subjects, at the cost of spatial resolution (see Section 2.3.2).

.

. .

Task-based protocols

In task-based fMRI, a sequence of stimuli is presented to a subject following a carefully monitored design while their brain activity is recorded. This experimental protocol entails a controlled priming of various functional processes that can be used to analyze neural activity observed during the experiment. While several types of task-based protocols are used depending on the brain function they study, they all share common principles. Protocols usually rely on sensory stimuli, often visual or auditory, to trigger a behavioral change of interest. A response, not necessary of interest, is asked from the subject at regular intervals in order to ensure their active participation in the protocol.

As the stimulus processing can be a factor confounding observed brain activity, trials of interest are intertwined with the presentation of some control stimuli. The effect of interest will thus be the difference of signal acquired in a trial of interest versus a control condition (BOLD 

Design matrix

* + =

BOLD signal

Beta coefficients noise contrast), effectively subtracting a part of the MRI signal unrelated to the cognitive process of interest. Two main kinds of statistical analysis are performed on task-based fMRI. Statistical Parametric Mapping (SPM) [START_REF] Penny | Statistical parametric mapping: the analysis of functional brain images[END_REF]) is a voxelbased approach, employing classical inference to identify functionally specialized brain responses to the presented stimuli. It commonly relies on General Linear models (2.2.2). Conversely, decoding (2.2.3) approaches try to predict stimuli from brain signals. Models supporting those predictions are multivariate: they search for patterns of activations across several voxels relevant to discriminate between possible stimuli.

. .

General Linear Models

As mentioned in Section 2.1.2, images acquired using BOLD mechanism are only a proxy for neural activity through the neurovascular audio visual coupling. To deduce brain signals from them, one has to model this coupling using a hemodynamic response function (HRF). As an experimental protocol is a sequence of events, several hemodynamic responses can thus overlap. The routine linear assumption states that successive brain responses sum up. To recover the neural signals imputable to a particular event specified by the experimental protocol, one can thus apply a linear convolution between a "block" function representing the event from its onset time for its duration with the chosen HRF. General Linear Model (GLM) is a generalization of linear regression applied to disentangle effect size imputable to different regressors. They are applied in a univariate fashion, i.e., for each voxel independently. The regressors considered can represent single events defined in the protocol, groups of events or a variety of confounding factors (including drifts of various orders accounting for low-frequency noise in the signal). All information available about the p regressors is included in a design matrix, as displayed in Figure 2.3. Formally the GLM model solves Equation 2.1 where y ∈ p is the signal for one voxel across p scans, X ∈ R p,r , the design matrix and , the noise assumed Gaussian, and independent identically distributed (i.i.d.).

y = Xβ + (2.1)
Ordinary Least Squares (OLS) can then be used to solve Equation 2.1 and find β, the vector of regressors' coefficients as exemplified in Figure 2.3. In practice, the i.i.d noise assumption is not fulfilled since noise display auto-correlation [START_REF] Monti | Statistical analysis of fMRI time-series: a critical review of the GLM approach[END_REF]. Equation 2.1 is thus routinely solved using an Auto-Regressive model of order 1 (AR(1)).

After fitting these models for all voxels, we can assemble all coefficients estimated for a given regressor in a statistical parametric map, representing the activations linked to this particular regressor. These coefficients maps are often z-scored and the output results are called Z-maps as displayed in Figure 2 maps that display activations specific to an experimental condition of interest with respect to a control condition, as displayed in Figure 2.5. Statistical tests are then often conduced on those maps, to derive thresholds that guarantee the statistical significance of observed activations. Several thousands of tests are conducted independently (one per voxel), but the chance that a false positive will arise among all those test is not controlled by their uncorrected p -values. Thresholds thus often involve compensating for the multiple comparison problem [START_REF] Alberton | Multiple testing correction over contrasts for brain imaging[END_REF]. Statistical parametric mapping is a ubiquitous neuroimaging analysis technique. It has been used to produce most of the currently available results linking brain regions to various functional processes.

. . Decoding

Conversely to GLM-based analysis, Multivariate Pattern Analysis (MVPA) or decoding [START_REF] Haxby | Distributed and overlapping representations of faces and objects in ventral temporal cortex[END_REF][START_REF] Kamitani | Decoding the visual and subjective contents of the human brain[END_REF][START_REF] Haynes | Decoding mental states from brain activity in humans[END_REF][START_REF] Naselaris | Encoding and decoding in fMRI[END_REF]) is an analysis technique aimed at predicting, from observed brain activity, the stimuli that caused it (or another varying experimental parameter). To make this prediction, it combines information from many voxels (i.e., it is a multivariate method). The labels to predict are derived from the experimental protocol (e.g., events, groups of events). To relate those labels to the relevant activation maps, input data are usually preprocessed and deconvolved, possibly through fitting a GLM. A machine learning model is then trained to predict, from these statistical maps, the right label [START_REF] Haynes | A primer on pattern-based approaches to fMRI: principles, pitfalls, and perspectives[END_REF]. In a simple classification setting, where we try to predict labels y ∈ R among two possible value encoded as 1 and -1 from n images x i ∈ R, a simple model is the linear Support Vector Machine (SVM). This model searches for a hyperplane w that best separate points with label 1 from points with label -1, solving Equation 2.2.

min w,b w 2 F s.t. y i (w x i -b) 1 (2.2)
The relevance of the model is measured by its prediction accuracy. This performance is judged in comparison with chance level: the accuracy achieved with random predictions. If model accuracy is significantly higher than chance level, it can be concluded that activation signals contain some information that discriminates across possible labels, i.e., neural processes that support those activations can be meaningfully differentiated based on signal carried by the studied regions. As with any machine learning model, it is important to prevent models from overfitting by using independent data to train the model and test its performance. This practice-most often implemented in cross-validation loops-is especially important when working with neuroimaging data, plagued with a multitude of confounders that can artificially improve model accuracy. It has been shown that crossvalidation should be leaving out at least a complete acquisition session, as it would otherwise be prone to optimistic scoring due to session effects [START_REF] Varoquaux | Assessing and tuning brain decoders: cross-validation, caveats, and guidelines[END_REF]. In neuroscience studies, decoding models performance is often compared across regions to establish which regions hold signal discriminative for given conditions, and is hence most involved in the functional processes probed by those conditions. Additionally, the underlying multi-voxel patterns supporting successful predictions are often reported as candidate neural correlates supporting the functional processes probed. Sparsity inducing models are thus often favored since they provide interpretable "weight-maps" [START_REF] Gramfort | Identifying predictive regions from fMRI with TV-L1 prior[END_REF][START_REF] Grosenick | Interpretable whole-brain prediction analysis with GraphNet[END_REF][START_REF] Wu | Dependent relevance determination for smooth and structured sparse regression[END_REF]. On another note, decoding models can both be learned for one subject (intra-subject) or across multiple subjects (inter-subject). We argue later on in this manuscript (6.1) that inter-subject decoding performance can be used as a loose measure of functional variability.

.

Decoding generates models that are able to predict labels on unseen data. Through crossvalidation, they are judged against the variability of the studied samples and can thus be said to be generalizable [START_REF] Haynes | A primer on pattern-based approaches to fMRI: principles, pitfalls, and perspectives[END_REF]. Nonetheless, models achieving good decoding performance (e.g Hoyos-Idrobo et al., 2018) come with weak statistical guarantees. It is possible to resort to bootstrapping to ensure that an accuracy difference across models is significantly better than chance. However, assessing the statistical significance of multivariate voxel patterns that support prediction remains an active research area [START_REF] Chevalier | Decoding with confidence: Statistical control on decoder maps[END_REF][START_REF] Schrouff | Localizing and comparing weight maps generated from linear kernel machine learning models[END_REF]Schrouff et al., , 2018b)). By contrast, statistical tests as carried out using GLMs enable massively univariate statistical inference but as such, they are prone to multiple comparison bias [START_REF] Thirion | Analysis of a large fMRI cohort: Statistical and methodological issues for group analyses[END_REF] and do not characterize the global multivariate structure of activations, nor out-of-sample generalizability. Overall, those two techniques provide complementary ways to investigate brain function [START_REF] Gilron | What's in a pattern? Examining the type of signal multivariate analysis uncovers at the group level[END_REF].

. .

Resting State

While task-based protocols are often used to study specialized functional processes, resting-state fMRI is a very popular alternative paradigm designed to measure spontaneous brain activity. In this type of protocol, the subject is not instructed to perform any specific task. Low-frequency functional activity is observed nevertheless, which can be related to brain processes identified through task-based paradigms. While the absence of protocol make these data easy to acquire and to compare across studies, it also makes it harder to separate signal from artifacts and only limited inferences can be made on the functional networks involved. Common analysis techniques of resting state data rely on measuring activity correlations between various brain regions. These regions can be either pre-defined in the case of seed-based connectivity, or defined in a data-driven fashion, e.g., using Independent Component Analysis [START_REF] Varoquaux | A group model for stable multi-subject ICA on fMRI datasets[END_REF]. When viewing the brain as a graph, where each brain region is connected, directly or not, with others, these correlations measure how inter-related brain regions are. They can be assembled in a functional connectome, a graph encompassing functional connections between various parts of the brain at a given resolution. This family of analysis, called functional connectivity, is often used to segregate brain regions in networks that are tightly related in order to perform some functional processes. Since this "modality" is not selective of specific brain processes, it is often viewed as a "cheap" yet substantial way to characterize individual brain organization.

. . Naturalistic

Naturalistic protocols are those that present rich, multimodal, dynamic stimuli to trigger a perceptual and cognitive experience representative of human ecological state [START_REF] Sonkusare | Naturalistic stimuli in neuroscience: critically acclaimed[END_REF].

They are often opposed to task-based paradigms that involve tightly controlled sequences of sparse, artificial and decontextualized stimuli [START_REF] Nastase | Keep it real: rethinking the primacy of experimental control in cognitive neuroscience[END_REF]. They can be employed in order to study complex cognition patterns, obscured by traditional task-based paradigms, such as sustained attentional engagement, context processing, social interaction and dynamical aspects of cognition. More generally, they allow imaging brain activity which better matches daily state. They have been shown to create intense and highly consistent brain activations [START_REF] Hasson | Intersubject synchronization of cortical activity during natural vision[END_REF] across subjects, which is why some studies advocate that they could be a practical way to roughly characterize cognition in a single scanning session. Compared to resting state, these paradigms naturally ensure a greater subject involvement, less head-motion artifacts and overall a more controlled brain activity. Most common naturalistic protocols include movie watching and audio clip listening, but a growing number of studies use varied stimuli such as gambling or video games [START_REF] Bellec | Bridging the gap between perception and action: the case for neuroimaging, AI and video games[END_REF].

In terms of analysis, these paradigms retain a "weak supervision" from task-based protocols which makes it possible, after labelling, to use general linear modelling (e.g., [START_REF] Bartels | Natural vision reveals regional specialization to local motion and to contrastinvariant, global flow in the human brain[END_REF]Logothetis, 2008 or Huth et al., 2012) as well as decoding of events of interest [START_REF] Mandelkow | Linear discriminant analysis achieves high classification accuracy for the BOLD fMRI response to naturalistic movie stimuli[END_REF]. As an alternative to labelling, it is also possible to rely on data-driven event-modelling [START_REF] Baldassano | Discovering event structure in continuous narrative perception and memory[END_REF]. It is of course also possible to treat these protocols as unlabeled, and to apply resting state analysis techniques. Finally, intersubject correlation [START_REF] Nastase | Measuring shared responses across subjects using intersubject correlation[END_REF] of brain signals is increasingly used on those datasets to characterize shared responses across subjects, as well as variability in cortical areas.

. Most studies using the techniques introduced in Section 2.2 are pursuing two main goals. The first one is concerned with fundamental knowledge: understand brain function organization and its link to cortical anatomy, also called functional brain mapping. The second one is application-driven: find reliable bio-markers that help with diagnosis or monitoring of psychiatric or neurological conditions and brain diseases. These two kinds of links between brain and mind have historically relied on searching for universal brain processes across individuals (Section 2.3.1).

However, even data from large cohorts display a high degree of inter-subject functional variability, undermining attempts to uncover reliable structure-function coupling and derived bio-markers (Section 2.3.2). Originally modelled as noise, this variability actually holds significant signal to relate brain models across individuals. To further study idiosyncratic functional organization and how it can be related across subjects, deep phenotyping studies focus on comprehensively mapping brain function for a low number of subjects, and shed a new light on variability (Section 2.3.3).

. . Population imaging

Numerous studies have used the techniques presented previously to link brain regions to various functional processes. They both investigate the neural correlates of specific functional processes (e.g., high-level language functions Fedorenko, Behr, and Kanwisher, 2011, attentional effects on working memory selectivity, [START_REF] Majerus | The dorsal attention network reflects both encoding load and top-down control during working memory[END_REF] and models accounting for the underlying computations of complex abilities, such as confidence weighting in an inference process [START_REF] Meyniel | Brain networks for confidence weighting and hierarchical inference during probabilistic learning[END_REF]. These studies often operate under the hypothesis of a tight structure-function coupling, which means that brain functional processes can be ascribed to a specific set of regions responsible for various subprocesses. This hypothesis implicitly guarantees the generalizability of results: if the right regions are found responsible for some functional process in a group of subjects, these regions should display the same functional specificity in the wider population. This type of study has significantly advanced our understanding of core brain function organization principles, and has helped identify population-average effects especially related to large-scale functional networks. Despite this wealth of results, a key stake for the neuroimaging community is to ensure the coherence and generalizability of those results and their extension to even more precise functional characterization.

Small sample size, low signal-to-noise ratio (SNR) and methodological variability are often cited as key challenges [START_REF] Thirion | Analysis of a large fMRI cohort: Statistical and methodological issues for group analyses[END_REF][START_REF] Button | Power failure: why small sample size undermines the reliability of neuroscience[END_REF][START_REF] Pajula | How many is enough? Effect of sample size in inter-subject correlation analysis of fMRI[END_REF][START_REF] Turner | Small sample sizes reduce the replicability of task-based fMRI studies[END_REF] that undermine the advance of brain function understanding and its applications. Low SNR also implies that small quantities of per-subject images are not sufficient to yield precise characterization of the studied brain functions. Most traditional studies results have thus limited generalizability on their own and call for meta-analysis in order to build more robust knowledge. To overcome this challenge, many researchers chose to include more subjects in their studies. Among those, several large scale studies have been undertaken to acquire images from a very high number of subjects with fixed protocols, often focused on resting-state MRI [START_REF] Madan | Scan Once, Analyse Many: Using large open-access neuroimaging datasets to understand the brain[END_REF].

Among those, some studies are primarily designed to analyze the brain correlates of individual characteristics (e.g., age, sex, genetics, sociodemographic factors), or neurological patient condition. As an extension of the UK Biobank medical prospective study, more than forty thousand subjects resting data have already been released, together with genetic data, cognitive measures, psychiatric assessment and a breadth of other health data. The Cam-CAN project uses epidemiological, cognitive, and neuroimaging data to investigate effects of aging on the brain and its impact on cognition. Its imaging data is mostly composed of rest and movie-watching data for more than six hundred subjects.

Alternatively, some studies are especially concerned with improving our understanding of brain function: its general organization and development, its relation to brain network structure or differences across individuals. The most famous one, the Human Connectome Project (HCP) is a large-scale effort to comprehensively chart neuronal connections. Interested in studying both general patterns and variability in the connectome (see 2.2.4) of this large cohort, it contains resting state and task fMRI data for nearly one thousand subjects.

The Adolescent Brain Cognitive Development (ABCD) dataset [START_REF] Casey | The adolescent brain cognitive development (ABCD) study: imaging acquisition across 21 sites[END_REF] is another large-scale initiative aimed at longitudinally imaging ten thousand adolescents every two years over the course of 10 years. It relies mostly on task-based fMRI to investigate brain development, with a special focus on functional processes previously linked with addiction.

Beyond those exceptional initiatives, data-sharing platform have also made it possible to assemble large collections of raw (Poldrack et al., 2013a) and processed [START_REF] Gorgolewski | NeuroVault.org: a web based repository for collecting and sharing unthresholded statistical maps of the human brain[END_REF] data covering many functional processes and many subjects. The accumulation of available datasets and derived studies significantly advanced our general understanding of brain function; it notably enabled largescale atlasing [START_REF] Glasser | A multi-modal parcellation of human cerebral cortex[END_REF][START_REF] Rubin | Generalized correspondence-LDA models (GC-LDA) for identifying functional regions in the brain[END_REF][START_REF] Schaefer | Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic Functional Connectivity MRI[END_REF][START_REF] Varoquaux | Atlases of cognition with large-scale human brain mapping[END_REF][START_REF] Dadi | Fine-grain atlases of functional modes for fMRI analysis[END_REF] and general decoding attempts [START_REF] Koyejo | Decoding cognitive processes from functional MRI[END_REF][START_REF] Mensch | Learning neural representations of human cognition across many fMRI studies[END_REF], moving forward with the comprehension of general brain organization.

For several decades, studies have accumulated evidence on the link between specific brain regions activities and pathologies (e.g., anterior cingulate cortex abnormal activations and depression, [START_REF] Mayberg | Reciprocal limbiccortical function and negative mood: converging PET findings in depression and normal sadness[END_REF], or more generally health related outcomes (such as risk aversion and the striatum and amygdala [START_REF] Tom | The neural basis of loss aversion in decisionmaking under risk[END_REF]. But the fuzziness of the structure-function coupling makes those measures unreliable for clinical use on individuals. To go beyond those limitations, an increasingly popular strategy is to resort to predictive modelling techniques, such as decoding, introduced previously. These techniques identify activation patterns across several voxels that help predicting accurately a given variable of interest such as a psychiatric condition (e.g., Alzheimer's Disease, [START_REF] Davatzikos | Longitudinal progression of Alzheimer's-like patterns of atrophy in normal older adults: the SPARE-AD index[END_REF], or a brain disorders (e.g., consciousness disorders, [START_REF] Demertzi | Intrinsic functional connectivity differentiates minimally conscious from unresponsive patients[END_REF]. In a population context, a key challenge is to find reliable biomarkers that can help in the prognosis, diagnosis and therapeutic monitoring of patients. These biomarkers must additionally be easy to acquire, share and replicate in a variety of contexts and clinical settings [START_REF] Woo | Building better biomarkers: brain models in translational neuroimaging[END_REF].

. . Inter-subject functional variability

While population imaging approaches help pinpoint central tendencies across large cohorts, they have also outlined a high level of deviation around this average. Some regions' variability makes it hard to draw conclusions at the population level. As an example, the HCP study investigators highlighted a high degree of functional variability across individuals despite applying a tailored areal surface-based registration scheme guided by several modalities, including fMRI [START_REF] Glasser | A multi-modal parcellation of human cerebral cortex[END_REF]. They especially described a region termed "area 55b" that they identify as part of the language network in the inferior portion of both the left and right dorsal premotor cortex. This functionally defined area displays a striking degree of variability in location and shape, in fact a substantial minority of subjects show a topological organization that cannot be matched with the most common organization. This high variability is still observed across large cohorts and thus cannot be attributed to a small sample effect.

Beyond spatial variations, another strong source of variability is the variation of activation magnitude recorded for a task across subjects, and sometimes across sessions [START_REF] Smith | Variability in fMRI: A re-examination of inter-session differences[END_REF]. As already mentioned, fMRI activation is only a partial measure of underlying neural activity and doesn't allow quantitative comparison. In its worse case, this activation level variability can lead to some subjects not showing any reliable signal at all for some contrasts. More generally, it undermines activations comparison across subjects.

In traditional studies, a common way to handle variability, which is mostly local, is to apply some Gaussian spatial smoothing to subjects' data. While this technique effectively improves image SNR, it also blurs activation patterns and prevents precise mapping. Even without smoothing, the geometrical effect of averaging many activations patterns in the same neighborhood but not overlapping will create smooth activations "blobs". Overall, brain mapping precision is strongly capped by the spatial scale of functional variability, which is roughly at the cm scale but widely different across cortex locations.

Beyond blurring activation patterns geometry, variability also makes it harder to reconcile functional features across subjects and to build a representative group model of functional organization [START_REF] Stelzer | Deficient approaches to human neuroimaging[END_REF][START_REF] Wang | Quantitative assessment of interindividual variability in fMRI-based human brain atlas[END_REF]. While group average can be coarsely similar to individual data, it has been shown that group models don't account for several topological features that are well-characterized at the individual level [START_REF] Heun | Interindividual variation of cerebral activation during encoding and retrieval of words[END_REF][START_REF] Seghier | Variability of fMRI activation during a phonological and semantic language task in healthy subjects[END_REF][START_REF] Laumann | Functional system and areal organization of a highly sampled individual human brain[END_REF]. Brain mapping of high-level cognitive functions, a very active area of research, commonly displays such problems, and a large portion of the prefrontal lobe is still ill-characterized, largely due to its strong level of functional variability. [START_REF] Barch | Function in the human connectome: task-fMRI and individual differences in behavior[END_REF], display a strong level of variability as well as qualitative difference between individual and group activations. For example, all visual contrasts (i.e., all but 2-back vs 0-back) probe distinct well-known visual processes [START_REF] Haxby | Distributed and overlapping representations of faces and objects in ventral temporal cortex[END_REF]. However, resulting activations are inconsistent across subjects both in terms of intensity, location, and geometry despite the fact the visual cortex, is one of the most stable regions of the brain. We can also observe that the group-level conjunction maps derived from those activation displays a qualitatively different topography, compared with individual images.

Variability can also obscure some fundamental functional organization principles, such as multifunctionality of brain regions. There are ongoing debates among neuroscientists to determine whether several brain regions selectively engage in specific high-level function or if they are fundamentally multifunctional. In Fedorenko, Behr, and Kanwisher, 2011 a detailed account was given of several regions showing language selectivity but often cited as engaging in other processes as well. For most of these regions, the authors conclude that they are, indeed, very selective for language tasks but close to regions involved in different processes. Even though they are distinct at an individual level, these regions can however be overlapping after group averaging.

With respect to translational biomarkers, inter-subject variability limits the spatial scale at which we can search for patterns and ultimately caps the performance of predictive models on subjects whose activations differ from the average.

In some cases, variability can be extreme, for example due to a pathology with important consequences on structural and functional organization [START_REF] Blank | Can neuroimaging help aphasia researchers? Addressing generalizability, variability, and interpretability[END_REF]. Our work did not address this aspect, which leads to very specific methodological cases, although the methods that we present could help in those cases to derive matching from functional measurements.

? From the point of view of traditional fMRI studies, it is hard to find a criterion to distinguish "variability of interest" from sheer noise. Intuitively, it should be defined as functional patterns or signal structure that is stable for an individual (as opposed to intra-subject variability) without generalizing across subjects. However, making such a distinction is possible only with a precise and reliable individual characterization of several subjects. While deep phenotyping (2.3.3) fMRI studies have recently emerged, such a characterization remains out of reach. Our goal here is not to give an exhaustive account of these endeavors, that are still exploratory, but rather to give a sense of the complex and mixed nature of the observed "functional variability".

We can first conceptualize it as a remainder of anatomical variability that couldn't be perfectly handled through spatial normalization (Thirion et al., 2006a). As discussed in Section 2.1.3, a typical workflow for group studies includes an anatomical registration step to compensate for brain structures differences across subjects. The transforms estimated on structural images are then used on rigidly coregistered BOLD images to bring them to a common template space. While this standard procedure is a best effort attempt at handling brain structure difference in size and shapes, perfect correspondence cannot be achieved. Functional variability can thus partly be caused by anatomical variability, and be influenced as well by the normalization process [START_REF] Eickhoff | Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: A random-effects approach based on empirical estimates of spatial uncertainty[END_REF]. The main structural and physiological parameters found to be correlated with this variability are: gray matter density, cortical thickness, morphological anatomy, cortical layers, white matter tracts and myelination [START_REF] Seghier | Interpreting and utilising intersubject variability in brain function[END_REF].

Letting alone anatomical variability, the brain is a plastic object which is thus subject to constant reorganization, and shaped by prior genetic and developmental constraints [START_REF] Paus | How environment and genes shape the adolescent brain[END_REF], as well as daily environment. Functional variability in the motor cortex between athletes and general population is indeed not surprising. Even though principles underlying this kind of reorganization are still an active research area [START_REF] Sampaio-Baptista | Motor skill learning induces changes in white matter microstructure and myelination[END_REF], it is self-evident that brain function also depends on cognitive abilities that are not homogeneous in a healthy population. Although many studies attempted to find important physiological [START_REF] Saygin | Connectivity precedes function in the development of the visual word form area[END_REF], and genetic [START_REF] Thompson | ENIGMA and the individual: Predicting factors that affect the brain in 35 countries worldwide[END_REF] correlates of variability, one would need an extensive individual phenotyping, composed of many interacting factors, to hope model variability.

More formally, inter-subject variability can be described as intrinsic, strategic, or contextual [START_REF] Seghier | Interpreting and utilising intersubject variability in brain function[END_REF]. Intrinsic variability stems from inherent factors fixed on a long time-scale (e.g., language lateralization which is linked to genetic factors). Strategic variability refers to the use of different cognitive strategies to solve the same problem [START_REF] Miller | Individual differences in cognitive style and strategy predict similarities in the patterns of brain activity between individuals[END_REF] and is related to learning. Contextual variability is more spurious and includes subject experimental performance, driven by many factors, including their familiarity with the scanning environment or their mood states.

On top of subject specific factors, it is hard to disentangle idiosyncratic patterns of signal from contextually induced variations. Experimenters, tooling, overall experimental context and data processing account for an additional source of confounding "noise", and it is complex to distinguish a "site-effect" [START_REF] Brown | Multisite reliability of cognitive BOLD data[END_REF] from other sources of inter-subject variation. To be fair, a perfect individual characterization is quite unrealistic, since fMRI studies show an important amount of inter-trial [START_REF] Coste | Ongoing brain activity fluctuations directly account for intertrial and indirectly for intersubject variability in Stroop task performance[END_REF] and inter-session [START_REF] Bennett | How reliable are the results from functional magnetic resonance imaging?[END_REF] variability for any given subject. The low-level of overall fMRI reliability [START_REF] Elliott | What is the test-retest reliability of common task-functional MRI measures? New empirical evidence and a meta-analysis[END_REF] is another major obstacle limiting the translational use of fMRI.

? As presented previously, variability designates a complex phenomenon, is hardly distinguishable from noise, encompasses many distinct effects and seems overall impossible to model. The most promising view so far is to focus instead on idiosyncratic-specifically individual-functional organization [START_REF] Dubois | Building a science of individual differences from fMRI[END_REF][START_REF] Mahowald | Reliable individuallevel neural markers of high-level language processing: A necessary precursor for relating neural variability to behavioral and genetic variability[END_REF]. Finding reliable individual level functional markers could indeed yield insights on how those relate across individuals. Our work builds on this view to learn how to compensate variability, in a model-free fashion. To be realistic, this approach calls for important amounts of per-subject data, that are the only way to differentiate between stable individual functional patterns from noise. 

. . Deep Phenotyping

In the last decade, awareness of variability has progressively grown in the neuroimaging community, making it a core characteristic of brain and its derived signals (not only inter-subject variability, but also intrasubject, [START_REF] Salehi | There is no single functional atlas even for a single individual: Functional parcel definitions change with task[END_REF]. With the influence of precision medicine concepts, deep phenotyping [START_REF] Robinson | Deep phenotyping for precision medicine[END_REF] imaging studies have expanded with a common focus on acquiring an important amount of data on a few subjects to extensively describe their idiosyncratic brain function organization [START_REF] Naselaris | Extensive sampling for complete models of individual brains[END_REF]. In sharp contrast with the common wisdom that sampling more individuals is desirable, these studies have stemmed from the conviction that because of the strong inter-subject variability, sampling many individuals introduces an unmanageable amount of variance in observations that would rather obscure precise brain function understanding. They thus chose to extensively sample experimental conditions instead to precisely characterize brain response to numerous and complex stimuli (see Figure 2.7).

Poldrack et al. investigated long-term brain dynamics of one subject, and their link to physiological processes. To do so, they focused on resting-state fMRI acquisitions repeated for 100 scanning sessions over the course of 18 months [START_REF] Poldrack | Long-term neural and physiological phenotyping of a single human[END_REF]. The StudyForrest initiative extensively scanned 10 subjects in a multi-modal fashion. It notably includes both naturalistic and task protocols, primarily focusing on auditory stimuli processing [START_REF] Hanke | A studyforrest extension, simultaneous fMRI and eye gaze recordings during prolonged natural stimulation[END_REF][START_REF] Hanke | A high-resolution 7-Tesla fMRI dataset from complex natural stimulation with an audio movie[END_REF][START_REF] Hanke | Highresolution 7-Tesla fMRI data on the perception of musical genres-an extension to the studyforrest dataset[END_REF]. The BOLD5000 study focused on characterizing the visual system of four subjects. Each of them was scanned for 20 hours, and overall was presented 5000 different images from classical computer vision datasets: SUN, COCO, and ImageNet [START_REF] Chang | BOLD5000, a public fMRI dataset while viewing 5000 visual images[END_REF]. Courtois Neuromod is an ongoing neural modelling project aimed at training artificial neural networks using extensive individual brain activity data. Six subjects are scanned, with a target of 500 hours of functional data recording per subject. These scans mostly cover movie-watching protocols, as well as a few functional localizers and HCP task-based protocols.

Other datasets have been acquired to give precise individual account of subjects function across a wider range of cognitive tasks. The Midnight scanning club (MSC) dataset includes twelve hours of recording for ten subjects [START_REF] Gordon | Precision functional mapping of individual human brains[END_REF]. Half the scans images resting state activity while the other half covered three protocols probing motor activity, incidental memory as well as visual and verbal discrimination. The ARCHI database [START_REF] Pinel | The functional database of the ARCHI project: Potential and perspectives[END_REF] developed four functional localizers acquired for 78 individuals. These localizers total 29 experimental conditions associated with language, arithmetic, social reasoning and visuomotor representations. Finally, the Individual Brain Charting (IBC) dataset [START_REF] Pinho | Individual Brain Charting dataset extension, second release of high-resolution fMRI data for cognitive mapping[END_REF][START_REF] Pinho | Individual Brain Charting, a high-resolution fMRI dataset for cognitive mapping[END_REF]) is an ongoing acquisition initiative of 12 participants performing numerous task protocols (already 19 protocols including those of ARCHI, HCP) as well as rest and movie watching data.

These initiatives, accumulating a large set of functional contrasts, look promising to establish a finer-grained functional atlas, and individual signatures for various functional processes. Local individual activation seems quite consistent across contrasts, which might lead to developing reliable brain measures. An interesting illustration of individual variation captured by these characterizations is provided by [START_REF] Pinho | Subject-specific segregation of functional territories based on deep phenotyping[END_REF], who focus on comparing functional topographies across subjects. To do so, they aggregate individual data over 12 different tasks covering several psychological domains and make a common decomposition of 13 individuals data, using sparse dictionary learning [START_REF] Abraham | Extracting brain regions from rest fMRI with total-variation constrained dictionary learning[END_REF]. This yields a set of 20 common functional components (labelled according to the contrast mainly contributing to each component) and individual spatial maps for each component, displayed in Figure 2.8. While coarsely stable, this decomposition display a high level of local organization variability. Beyond some especially stable regions, this variability hampers the ability to derive representative group spatial maps. Compared with individual topographies, those group topographies (in top-right red square) show a qualitatively different geometry and have a hard time representing well some components and characterizing some brain regions. More generally, this points to important differences between individual organization and group estimates reported in traditional studies. On a more positive note, the thoroughness of these individual characterizations also make it possible to derive functional correspondences across subjects to handle variability and progress towards precision brain atlasing.

Functional variability, described in Section 2.3.2, is central to the study of brain activity across individuals. Still, when imaging a cohort of healthy patients, this variability is rather considered as an obstacle, hampering the understanding of functional brain organization principles. Section 3.1 introduces functional alignment, a family of methods proposed to compensate for this imperfect voxel-correspondence across subjects by finding matchings that maximize functional similarity across subjects. In this section, we discuss in detail Hyperalignment [START_REF] Haxby | A common, high-dimensional model of the representational space in human ventral temporal cortex[END_REF], together with current challenges and extensions. We also describe the closely related Shared Response Model. Section 3.2 takes a step back so as to frame functional alignment in the broader machine learning literature and discuss commonalities with work performing some kind of feature alignment. In Section 3.3, we turn a critical eye on this sub-field, given that the proposed methods are still seldom applied in real use-cases to handle variability. This gives context and motivations for our contributions presented in the following chapters.

. . .

Improving functional correspondence across subjects

A core challenge for cognitive neuroscience is to find similarity across neural diversity [START_REF] Churchland | Conceptual similarity across sensory and neural diversity: the Fodor/Lepore challenge answered[END_REF]; that is, to find shared or similar neural processes supporting the diversity of individual cognitive experience. Anatomical variability and limited structure-function correspondence across cortex [START_REF] Paquola | Microstructural and functional gradients are increasingly dissociated in transmodal cortices[END_REF][START_REF] Rodriguez-Vazquez | Gradients of structure-function tethering across neocortex[END_REF]) make this goal challenging [START_REF] Rademacher | Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology[END_REF]Thirion et al., 2006b). Even after state-of-the-art anatomical normalization to a standard space, we still observe differences in individual-level functional activation patterns that hinder cross-subject comparisons [START_REF] Langs | Functional Geometry Alignment and Localization of Brain Areas[END_REF][START_REF] Sabuncu | Function-based intersubject alignment of human cortical anatomy[END_REF]. With standard processing pipelines, it is therefore difficult to disentangle whether individuals are engaging in idiosyncratic cognitive experience or if they are engaging in shared functional states that are differently encoded in the supporting cortical anatomy. Variability additionally hampers attempts at precise functional brain mapping and discovery of reliable translational bio-markers (see Section 2.3).

A note on terminology

Although this class of methods is broadly referred to as both functional alignment methods and hyperalignment methods, we adopt the term functional alignment methods to better distinguish from the specific Procrustes-based hyperalignment implementation in use in the literature.

Functional alignment is an increasingly popular family of methods for fMRI analysis which aims at handling inter-subject variability. Alignment methods derive matchings across subjects' functional data that can be applied in order to improve similarity of their voxels functional activations. Alignment can either be learned after anatomical registration or replace it entirely. This conceptual shift from anatomybased to functionally-driven mapping has opened new avenues for exploring neural similarity and diversity. In particular, by aligning activation patterns in a high-dimensional functional space (i.e., where each dimension corresponds to a voxel), we can discover shared representations that show similar trajectories in functional space but rely on unique combinations of voxels across subjects.

As a general framework, illustrated in Figure 3.1, functional alignment can be seen as the search for a transform R that maps a source functional dataset A s ∈ R p×n to a target dataset A t ∈ R p×n under some given constraints (R ∈ R) in order to minimize their dissimilarity (Equation 3.1). When R is linear, it can be interpreted as a mixing of source voxels signals in order to reconstruct target signals.

argmin R∈R R(A s ) -A t 2 F (3.1)
To learn R, most methods rely on the fact that both A s and A t were acquired using the same experimental protocol-either taskbased or naturalistic-ensuring a time synchronization between their n frames. From the initial introduction of hyperalignment in [START_REF] Haxby | A common, high-dimensional model of the representational space in human ventral temporal cortex[END_REF], detailed in section 3.1.2), the range of associated methods has grown to include Shared Response Modelling (SRM, Chen et al., 2015 described in section 3.1.5), Optimal Transport alignment (our contribution, introduced in Chapter 4) and many more, reviewed in section 3.2.

For simplicity, we focus here on the context of healthy human imaging, and will mostly use deep phenotyping datasets (2.3.3) as their rich individual characterization will help us to estimate mappings and test them. We additionally make the hypothesis that anatomical alignment (2.1.3) has been performed across subjects. This means subjects data were brought to a common reference geometry based on anatomical features and their images comprise the same number of voxels p. Although we will not consider it in this thesis, some methods cited, including Optimal Transport alignment, could be applied without any prior anatomical alignment, which makes them suitable for other use-cases such as functional alignment across different species [START_REF] Mantini | Interspecies activity correlations reveal functional correspondence between monkey and human brain areas[END_REF][START_REF] Xu | Cross-species functional alignment reveals evolutionary hierarchy within the connectome[END_REF]. 

Target Subject

. . Hyperalignment

While seminal work introduced functional alignment as a diffeomorphic registration refinement, guided using functional similarity [START_REF] Sabuncu | Function-based intersubject alignment of human cortical anatomy[END_REF], see section 3.2.2), [START_REF] Haxby | A common, high-dimensional model of the representational space in human ventral temporal cortex[END_REF] proposed to search for matchings exclusively aimed at compensating for functional variability without any anatomical constraint. It is worth noting this is a radical change of perspective. Instead of refining the structure correspondence across subjects-in the hope the structure-function coupling will ensure a functional correspondence-this means turning away from local structural information, to focus only on its functional characterization. Following the intuitions behind multivariate pattern analysis [START_REF] Haxby | Distributed and overlapping representations of faces and objects in ventral temporal cortex[END_REF], functional signals acquired during a protocol can be seen as a cloud of points in high-dimension, where each dimension is a functional time-point (with a specific stimulation content) and each point is a voxel thus characterized by its activations at each time-point (see Figure 3.2). In this view, alignment can be described as the task of matching those entire point clouds, where each voxel can be mapped to several others that have most similar activation profiles. To solve this matching problem, Haxby et al. proposed to use Procrustes, an established shape matching method [START_REF] Goodall | Procrustes methods in the statistical analysis of shape[END_REF][START_REF] Gower | Procrustes problems[END_REF]. This method yields an orthogonal transform R ∈ R p×p solving:

argmin R=σQ,Q T Q=Id RA s -A t 2 F , σ ∈ R + , Q ∈ R p×p (3.2)
Equation 3.2 is solvable in closed form using the Singular Value Decomposition (SVD) of A A s : (U, ˚, V) = SVD(A t A s ):

R * = σQ where (σ, Q) = tr(˚) A s 2 F , UV
As the best orthogonal matching, this transform can be seen as a rotation matrix mixing signals of voxels in A s to reconstruct the signal of voxels in A t as well as possible. In their original work, Haxby et al. argued that the orthogonality of the transform aimed at preserving the "representational geometry", meaning the geometry of the point-cloud in this high-dimensional space.

Hyperalignment is a conceptually appealing way to circumvent the ubiquitous variability problem. However, its introduction brought up two main constraints to handle in order to make it applicable to interesting research set-ups: how to handle high-dimensionality of images and the potentially large number of subjects to align.

. . High-dimensionality alignment

Compared to usual registrations, ignoring diffeomorphic constraints gives alignment complete spatial freedom to find matchings that best improve functional similarity. However, it also creates a tension on the spatial scale at which such matchings should be sought for. As seen in Section 2.3.2, inter-subject variability is most striking at a local scale, which is why Hyperalignment was introduced in a well-defined sub-region [START_REF] Haxby | A common, high-dimensional model of the representational space in human ventral temporal cortex[END_REF]. Moreover, searching for alignment in local regions acts as a form of regularization: considering local inter-subject variability rather than global changes such as large-scale functional reorganization.

Applying the above model directly to full brain would suffer from several issues: i) it may create some non-local correspondences (e.g., cross-hemisphere swap) that are not neuroanatomically plausible; ii) it is computationally heavy if not intractable: most matching algorithms applied to two images of p voxels, will at least have a complexity of O(p 2 ); iii) it would likely lead to overfitting: to estimate well a p × p matrix, one needs a high number of samples n, up to p 2 , whereas in the typical study n p.

A proposed solution was to aggregate many local alignments to compose a full-brain matching, while keeping the benefits of local alignment in terms of regularization. To do so, Guntupalli and colleagues [START_REF] Guntupalli | A computational model of shared fine-scale structure in the human connectome[END_REF][START_REF] Guntupalli | A Model of Representational Spaces in Human Cortex[END_REF], proposed to use the searchlight scheme [START_REF] Kriegeskorte | Information-based functional brain mapping[END_REF], popular in brain imaging.

In this procedure, the cortex is divided into a set of small overlapping spheres of radius r covering the brain. A local transform can then be learned in each sphere, and the full alignment is obtained by averaging across overlapping transforms. Although this procedure derives local correspondences, it is computationally costly. One needs at least p r 3 balls to ensure that all voxels are covered (and usually way more are used to ensure balls overlap). Importantly, the aggregated transform produced is no longer guaranteed to bear the type of regularity (e.g., orthogonality, isometry, or diffeomorphicity) enforced during the local neighborhood fit.

-

As an alternative handling of the complexity entailed by hyperalignment on large regions, Chen et al. proposed instead to do a shared dimensionality reduction across subjects prior to performing alignment [START_REF] Chen | Joint SVD-Hyperalignment for multi-subject FMRI data alignment[END_REF]. They suggested joint-SVD to decompose all subjects data in a common basis and in a second step performing Hyperalignment on this lower number of features. This opened the way for the use of lower rank factor models to represent data across subjects, such as the Shared Response Model detailed below.

. . Aligning many subjects

Pairwise matchings between two datasets, such as Procrustes, are usually hard to extend to more than two subjects and thus not suited to group studies (which above all else want to find a common representation for all subjects). In fact, to learn the matchings between all pairs of S subjects, one would need to perform S 2 alignment steps, which is computationally prohibitive in many situations. Moreover, when trying to pull information from all subjects in a common space, it is challenging to find a unique model capturing properly the specific features of each subject. Group averaged data would seem like a fine candidate to use as such a common space, but its topography shows important qualitative difference compared to individual data, which would deter alignment goals. In their original paper, Haxby and colleagues thus proposed an iterative heuristic to build a group "template" suitable for alignment [START_REF] Haxby | A common, high-dimensional model of the representational space in human ventral temporal cortex[END_REF].

In this procedure, a subject is arbitrarily drawn as a reference. In a first pass, subjects are taken one by one, aligned to the current reference and this aligned data is averaged with the previous reference to update it. In a second pass, all subjects are aligned to this temporary "common space", and their aligned data are all averaged together to serve as a final "template" space.

This method suffers from several drawbacks. First, it receives nonequivalent contributions from various subjects to the common group model, which is thus strongly dependent on the order in which subjects were aggregated [START_REF] Al-Wasity | Hyperalignment of motor cortical areas based on motor imagery during action observation[END_REF]. Moreover, it does not follow any clear criterion of optimization, and is thus hard to trust or deem significant. It is merely an intermediate computational step. The complexity of finding better characteristics for potential templates will be detailed in Section 5.2.Another solution to this kind of problem was instead to search for common latent factors across subjects and map their full data in this low-rank basis. This approach was introduced as Shared Response Model.

. . Shared Response Model

The Shared Response Model (SRM), introduced in Chen et al., 2015, is a latent factor model that extracts a common response from different subjects exposed to the same stimuli and subject-specific spatial components. In practice, this shared response corresponds to the activity of a fixed number of components (or "super-voxels") summarizing common activity across subjects. It is jointly estimated with subject-specific "spatial basis" that project the full number of voxels to these supervoxels, in an orthogonal fashion. In its deterministic version, SRM estimates a common shared response S ∈ R k×n and a per-subject orthogonal basis W i ∈ R p×k from subject-level alignment data A i , solving Equation 3.3. n is the number of time points, p is the number of voxels, and k is a hyper-parameter indexing the dimensionality.

min

W 1 ,...,W n ,S i ||A i -W i S|| 2 F ∀i, W i W i = I k (3.3)
SRM decomposes the signal of many subjects in a common basis, with the same orthogonality constraint as Procrustes. It mostly differs from Procrustes analysis in that it provides a decomposition of all subjects' activity at once, rather than being performed pairwise. This decomposition is low-rank, which is also a way of addressing highdimensionality. This makes it an effective solution, especially given recent computational improvement [START_REF] Richard | Fast shared response model for fMRI data[END_REF]. However, SRM is only effective if the number of components k is large enough to capture all distinct components in the signal.

For full-brain data decomposition, it thus provides limited resolution topographies, since the low number of estimable components is limited by the smaller number n of training samples compared to the number p of voxels. This implicit dimension reduction induces a loss of information compared to using original data. In an ROI, by contrast, we have an increased ratio of n/p which ensures both (1) more stable estimations thanks to increased number of samples ( 2) that we do not lose relevant information when projecting voxel signal to the shared response (n/p must be greater than 1 to ensure full-rank decomposition).

. . .

Machine learning framing: feature alignment

Trying to minimize differences between different subjects' dataset can be described as a transfer learning problem where each subject is a different domain. More specifically, the primary goal of alignment is to relate datasets of subjects going through the same task, hence it is part of the sub-field of domain-adaptation [START_REF] Farahani | A Brief Review of Domain Adaptation[END_REF]. Domain adaptation algorithms (e.g Schoenauer-Sebag et al., 2019) usually postulate a fixed feature space X, from which each domain data x s , x t are drawn, most commonly with a covariate shift, meaning the marginal probabilities of their distributions differ :

p s (x) = p t (x)
The inter-subject decoding problem, a classification setting used as a validation task in Chapter 6, can typically be considered as a domain adaptation problem.

Functional alignment addresses the same kind of discrepancy, but as a mismatch between domains feature spaces X s and X t . This situation is not common in the transfer learning literature, where it appears for some specific computer vision generalization tasks, natural language translation problems for low-data language [START_REF] Alaux | Unsupervised hyperalignment for multilingual word embeddings[END_REF], to compare information encoded in various neural networks trained in the same way [START_REF] Lu | Shared representational geometry across neural networks[END_REF], or in general machine learning to match embeddings with slightly different dimensions under the names hyperalignment, feature representation transfer [START_REF] Kaboli | A review of transfer learning algorithms[END_REF] or feature alignment [START_REF] Chen | Progressive feature alignment for unsupervised domain adaptation[END_REF]. In the most general case, there is neither the same number of features in both spaces nor known common anchor points to relate them. In functional alignment, we rely on common synchronized protocols probing those feature spaces in the same way as supervised data to learn this mapping. Each synchronized timeframe gives one more dimension which characterizes both features sets in parallel. Each feature is characterized by a vector of p coordinates, and the set of features to match for X and Y can be seen as distributions (or point clouds) in this p-dimensional space.

When working with anatomically-aligned fMRI data, common spatial coordinates are also available to relate both feature sets. While most alignment methods explicitly ignore them, diffeomorphic alignment (3.2.2) use them to impose a strong regularity on the matching. Working on local neighborhoods as proposed in Searchlight alignment (3.1.3) is also a way of using this spatial information as a regularizer.

. . A review of functional alignment methods

Although various algorithms have been proposed to solve these problems, most linear solutions revolve around a few already evoked ideas. Among the most common are Procrustes and the closely related Canonical Correlation Analysis (CCA) [START_REF] Hardoon | Canonical correlation analysis: An overview with application to learning methods[END_REF]. Equations 3.4 & 3.5 display closely matched formulations of both problem (in their generalized formulation). For each dataset, Procrustes yields an orthogonal basis that forms linear combinations of voxels responses, yielding response features shared across datasets. On the other hand, CCA seeks one set of orthonormal vectors per dataset such that those vectors are maximally correlated across datasets [START_REF] Xu | Regularized hyperalignment of multiset fMRI data[END_REF].

min R s ,R t A s R s -A t R t 2 F s.t. R k R k = Id (3.4) min R s ,R t A s R s -A t R t 2 F s.t. R k A k A k R k = Id (3.5)
In fMRI, this line of work mostly led to the aforementioned Shared Response Model (which is quite similar to a probabilistic CCA, [START_REF] Bach | A probabilistic interpretation of canonical correlation analysis[END_REF][START_REF] Chen | A Reduced-Dimension fMRI Shared Response Model[END_REF]) with the notable exception of Bilenko and Gallant, 2016 introducing a regularized and kernelized version of CCA. This line of work had recent developments, with the introduction of new multi-view algorithms [START_REF] Richard | Modeling shared responses in neuroimaging studies through multiview ica[END_REF]Xu, Yousefnezhad, and Zhang, 2018b), replacing the PCA underlying Shared Response Model with other techniques such as Independent Component Analysis (ICA) [START_REF] Hyvärinen | Independent component analysis: algorithms and applications[END_REF].

-

Attempts to find non-linear matchings across feature spaces mostly tried to solve the Procrustes problem after suitable non-linear embeddings of each subject data. Kernel Hyperalignment [START_REF] Lorbert | Kernel hyperalignment[END_REF] was proposed as a way to improve scalability and open the possibility to use additional features on top of images to learn alignment. The main underlying idea is to search for alignment in a kernel space (see Equation 3.6). This approach remained however limited by the need to choose an arbitrary kernel and the lack of criterion to evaluate such kernels.

argmin R T R=Id Rφ(A s ) -φ(A t ) 2 F (3.6)
In [START_REF] Langs | Decoupling function and anatomy in atlases of functional connectivity patterns: language mapping in tumor patients[END_REF], the authors proposed to go even further in terms of decoupling of functional and anatomical space. This seems particularly meaningful in contexts in which structure/function coupling is not guaranteed across subjects. They state that each subject's high-dimensional fMRI data is lying on its own manifold, that can be well approximated by low-dimensional geometries and matched accordingly. To leverage this assumption, they proposed to learn an embedding from the correlations of fMRI time courses. To find these subject-specific low-dimensional spaces, they use diffusion maps [START_REF] Coifman | Diffusion maps[END_REF] on functional connectivity to derive 300dimensional embeddings. They also introduce ways to aggregate these embeddings into a common "atlas" in which all subject can be compared. While this technique leverages an interesting view of data, the embedding process used is not invertible, which breaks the overall invertibility of alignment. Moreover, embedding separately the time-dimension of subjects signals destroys time-synchronization and temporal labelling of data. It is thus mainly restricted to resting-state data.

In another original formulation [START_REF] Wu | Brain kernel: a new spatial covariance function for fMRI data[END_REF] proposed to learn a d-dimensional non-linear embedding of anatomical coordinates of voxels based on functional similarity, modelled through Gaussian processes. They argue that the constraints applied to design this embedding space ensure that neural activity changes smoothly as a function of locations in embedding space, and subsequently make a compressed representation matrix of full-brain covariance matrix. However, this non-linear embedding process is non-invertible and performed independently across subjects, which are important limitations to include it in a functional alignment framework.

The small amount of available fMRI data makes it unrealistic to solve this problem using heavily parametrized alignment models without overfitting. For completeness, it should be noted that if it wasn't for this constraint, Auto-Encoders [START_REF] Liu | A generative modeling approach for interpreting population-level variability in brain structure[END_REF][START_REF] Wang | On deep multi-view representation learning[END_REF], Generative Adversarial Networks, Deep CCA [START_REF] Benton | Deep generalized canonical correlation analysis[END_REF], and in general networks specifically trained to remove subjectspecific information (e.g., including a gradient reversal layer [START_REF] Ganin | Domain-adversarial training of neural networks[END_REF]) would be promising directions to explore. However, works that tried to apply those in fMRI are seldom [START_REF] Chen | A Convolutional Autoencoder for Multi-Subject fMRI Data Aggregation[END_REF][START_REF] Yousefnezhad | Deep Hyperalignment[END_REF] and do not translate to typical study context.

In a seminal work, Sabuncu et al. [START_REF] Sabuncu | Function-based intersubject alignment of human cortical anatomy[END_REF] introduced the idea of treating functional variability as a residual of an imperfect anatomical registration. Building on this view, they proposed to introduce a second fine-tuning step where this diffeomorphic transform would be refined using functional data. Following this idea, several contributions pushed the idea to perform functional alignment as a diffeomorphic registration improving functional similarity. They mostly adapted existing diffeomorphic anatomical registration algorithms to guide them using various functional derivatives. Spatial patterns of functional response [START_REF] Conroy | Inter-subject alignment of human cortical anatomy using functional connectivity[END_REF], functional connectivity patterns [START_REF] Jiang | Groupwise spatial normalization of fMRI data based on multirange functional connectivity patterns[END_REF], functional connectivity low-dimensionnal embeddings from Langs et al., 2014 described previously, multi-modal features [START_REF] Robinson | Multimodal surface matching with higher-order smoothness constraints[END_REF], [START_REF] Nenning | Diffeomorphic functional brain surface alignment: Functional demons[END_REF], or even raw functional images [START_REF] Dohmatob | Intersubject registration of functional images: do we need anatomical images?[END_REF] were proposed to guide registration. This means that the dissimilarity minimized by such algorithms is partly, or even entirely, based on those functional derivatives across subjects instead of being calculated on anatomical structures.

By design, these transforms are far more constrained than the ones described previously. They target precision improvement over preexisting anatomical alignment, or provide more information to guide registration. In fact, enforcing diffeomorphicity in the anatomical space is implicitly imposing a very strong spatial regularization (at least through initialization) on the spectrum of possible "functionally guided" transforms. By contrast, other alignment approaches posit a strong level of local variability that cannot be compensated adequately with those restrictions.

. . Beyond alignment classical set-up

-Another alternative to functional alignment can be envisioned from [START_REF] Tavor | Task-free MRI predicts individual differences in brain activity during task performance[END_REF] Alignments are usually learned as source-target mappings on dedicated alignment data: A s , A t . Commonly, they are later applied on unrelated data, that we denote D s . Another possibility is to learn a A to D mapping within-subjects. In their paper, Tavor and colleagues show that while individual activity patterns in each task may appear idiosyncratic, correspondences learned across different tasks using a general linear model display less inter-subject variability than individual activity maps. For example, this means that it is possible to predict idiosyncratic features of a subject activity performing an object recognition task from its moviewatching data derived features, or to infer its task-based activations from resting-state. This provides an interesting twist on the typical functional alignment workflow: while most methods learn alignments within a single task and across subjects, we can instead learn withinsubject correlations across tasks. The structure of learned task-specific correlations should then hold in new, unseen subjects.

Figure 3.3 illustrates how we can learn the local-level correlation structure between two independent tasks A s ∈ R p×n , D s ∈ R p×d within a single source subject. We denote the mapping between these tasks, as R intra , to distinguish it from mappings that are learned between pairs of subjects. First, we divide both tasks' data into parcels (e.g., using a high-resolution functional atlas). On a local parcel i, each voxel is considered a sample, and we train R intra i ∈ R p i ×d through Ridge regression [START_REF] Hoerl | Ridge regression: Biased estimation for nonorthogonal problems[END_REF]:

R intra i = argmin R i ||A s i R i -D s i || 2 F + α||R i || 2 F (3.7)
The hyperparameter α can easily be chosen with nested crossvalidation. After repeating this procedure for several source subjects, we can then use the averaged of those learned correlation structures R intra to estimate new data for target subject as Dt = A t R intra .

-As stated previously, sample synchronization is usually necessary to supervise the feature matching process in fMRI. However, when such a constraint is not fulfilled, other methods have been suggested to put datasets in correspondence. In [START_REF] Guntupalli | A computational model of shared fine-scale structure in the human connectome[END_REF], the authors propose to use instead coarse features stability across datasets as a way to recreate supervision to refine their matching. To do so, they cluster features into k previously known hierarchical regions and average signal for each of these clusters. Then, the correlation of local signals with these stable "averaged signals", which is known as functional connectivity in neuroscience, yields a vector of length k that can then be taken as a descriptor of these features. From there, all alignment methods cited previously can be applied (e.g., Shared Response Model Nastase et al., 2020), extending alignment to cases without common synchronized protocol across subjects, and in particular to resting state acquisitions.

We will not cover these techniques further in this thesis, as we will restrain ourselves to the case where we have common time-synchronized protocols across datasets (usually subjects). In these cases, adding supplementary connectivity features do not improve matching compared to regular methods introduced in Section 3.1 [START_REF] Busch | Hybrid Hyperalignment: A single high-dimensional model of shared information embedded in cortical patterns of response and functional connectivity[END_REF].

Representational Similarity Analysis (RSA) [START_REF] Kriegeskorte | Representational similarity analysis-connecting the branches of systems neuroscience[END_REF] is an alternative method which circumvents functional variability problems. Complementary to statistical parametric mapping (2.2.2) and decoding (2.2.3), it is used to study how multivariate activity patterns vary across a set of stimuli in selected regions-of-interest (ROIs). Whereas decoding is looking to discriminate across stimuli through separating the high-dimensional space of activation patterns, RSA measures the distance across patterns as vectors in this space [START_REF] Haxby | Decoding neural representational spaces using multivariate pattern analysis[END_REF]. In a ROI, the dissimilarity (e.g., correlation, euclidean distance. . . ) between activations patterns elicited by each pair of stimuli are assembled in a Representational Distance Matrix (RDM). Distances between RDMs of various ROIs can also be calcu-lated, producing second-level RDMs that can be used to investigate how response differences across stimuli are emphasized or weakened in the set of ROI.

To compare first-level RDMs, voxel-level correspondence is unnecessary, which alleviates the effects of functional variability on this kind of analysis when performed across subjects. Put differently, it creates derived representations that are invariant to any orthogonal transformation applied to voxels. However, this is a consequence of the fact that this approach treat functional topography as unimportant, and do not provide any spatial model of common effects nor idiosyncrasies [START_REF] Haxby | Hyperalignment: Modeling shared information encoded in idiosyncratic cortical topographies[END_REF]. We thus didn't further include RSA in this study, since it does not help to improve functional similarity across subjects.

. . .

Open questions

Since its introduction until today, hyperalignment or functional alignment is often cited as a promising avenue to handle variability, improve brain modelling and ease translational research tasks such as biomarkers discovery [START_REF] Dubois | Building a science of individual differences from fMRI[END_REF][START_REF] Poldrack | Precision neuroscience: Dense sampling of individual brains[END_REF][START_REF] Woo | Building better biomarkers: brain models in translational neuroimaging[END_REF][START_REF] Gratton | Functional brain networks are dominated by stable group and individual factors, not cognitive or daily variation[END_REF][START_REF] Chiba | Current status of neurofeedback for post-traumatic stress disorder: a systematic review and the possibility of decoded neurofeedback[END_REF][START_REF] Finn | Idiosynchrony: From shared responses to individual differences during naturalistic neuroimaging[END_REF][START_REF] Hamilton | The revolution will not be controlled: natural stimuli in speech neuroscience[END_REF]. However, we have no choice but to note that in this decade, studies devoted to suggest possible methodological variations around alignment outnumbered by far studies actually applying it to investigate other research questions (for a review, see [START_REF] Haxby | Hyperalignment: Modeling shared information encoded in idiosyncratic cortical topographies[END_REF].

Alignment has often been presented as a conceptually intriguing idea, which it is, but in this thesis, we mostly consider it as a pragmatic way to handle data scarcity and imperfection in order to improve fMRI studies generalizability. In this view, important questions remain weakly addressed in functional alignment literature, which can explain why it has not yet lived up to its potential:

• First and maybe most importantly, alignment use-cases are loosely defined, and it is unclear which method is suited for each application. It is subsequently hard for researchers to understand which method would be beneficial for their own use-cases.

• Following on the previous point, there is a lack of benchmarks comparing methods against one another, which yields a divided literature in which one has a hard time comparing methods.

• Moreover, methodological validation commonly solely relied on similarity metrics, which are hard to relate to broader use-cases.

This also prevents potential users to understand which gains can be expected from alignment.

• Crucial practical questions on how to reliably handle highdimensional data, and datasets containing many subjects, are not completely answered in the literature.

• Alignment is a complex technique which could lead to doubledipping if used improperly, hence the lack of well-documented and computationally efficient implementations will deter any users that would have wanted to use it.

. . Our work

Our early work focused on introducing optimal transport as a reliable alignment method, which had the potential to improve distribution matching calculation. In doing so, we also proposed a new aggregation scheme as well as a template design method introduced in Chapters 4 & 5. While doing this, we realized many of the aforementioned shortcomings. Our subsequent work aimed at addressing those. We identified two major research scenarios to which alignment could be beneficial: (i) improving group studies inference power and generalizability, (ii) improving signal transfer across subjects and datasets for more powerful decoding. As our priority was to evaluate functional alignment potential in applied settings, we mostly focused on the latter direction, which provided us with a solid paradigm for an empirical benchmark (see Chapter 6). We also tried to clarify stakes and metrics of functional template creation and although no formal contribution has stemmed from this work yet, we give a quick account of our endeavors in Section 5.3.

Part II

A L I G N M E N T M E T H O D O L O G I C A L D E V E L O P M E N T S A L I G N M E N T
In this part, we bridge the key idea of functional alignment-finding the best matching to improve correspondence of activation patterns across individuals-with Optimal Transport (OT): a mathematical theory that had a very rapid development in the last two decades and is especially wellsuited to estimating such matchings (Section 4.1). Without any regularization, optimal transport yields a sparse orthogonal mapping with a strong regularity resulting from mass conservation constraints. The key idea of this contribution, developed in Section 4.2, is that this regularity is well-suited to find matchings bridging signals geometry across subjects. The derived transport plans are invertible and preserve the structure of individual topography after deformation (especially compared to smoother Procrustes solutions).

Additionally, the entropic smoothing procedure used to regularize optimal transport also contributes to the efficient estimation of brain mappings. As we implement this method as a local alignment procedure, Section 4.3 introduces an additional piecewise aggregation scheme to combine non-overlapping matching derived on many parcels. Section 4.4 describes an experimental evaluation of this method on rich multi-subject, multi-contrasts datasets. This chapter is based on work from [START_REF] Bazeille | Local Optimal Transport for Functional Brain Template Estimation[END_REF] .

Searching for a mapping between two groups of voxels without taking their anatomical coordinates into account can be described as the search for a matching between two independent and unordered sets.

In such case, the proper metric to consider is functional similarity between features belonging to each set. We can then consider various mathematical frameworks to derive optimal matching.

. .

Assignment problem

The most classical related problem, known as the assignment problem, was introduced by Monge [START_REF] Monge | Mémoire sur la théorie des déblais et des remblais[END_REF]. In this formulation, the two sets contain the same number of elements, and each element from one set can be related to any element from the other set through a cost function C : X s × X t → R. In our case, a natural cost function could be a measure of dissimilarity between features. The assignment problem is then to link elements from both sets in a one-to-one fashion in order to minimize the overall cost of this assignment (defined as the sum of chosen pairs costs). Formally, we search for a bijection f : X s → X t which minimizes

x s ∈X s C(x s , f(x s )).
A well-known solution to this problem is the Hungarian algorithm [START_REF] Munkres | Algorithms for the assignment and transportation problems[END_REF], which iteratively refine the overall matching by focusing at each step on minimally dissimilar pairs of elements.

To put this in context, searching for alignment as an optimal assignment means looking for the permutation of voxels maximizing functional similarity to another subject. Of note, a permutation is an orthogonal matrix, hence it is part of the space over which Procrustes minimizes its cost function. However, mappings obtained in such a restricted class meet strong constraints, in particular in terms of sparsity. While enforcing a one-to-one voxel correspondence seems somewhat unrealistic when dealing with inter-subject variability, it is an interesting baseline.

. . Transportation problem

The assignment problem is in fact a special case of the broader transportation problem. As presented in the previous section, assignment aim is to find a bijective pairing between two sets, i.e., each source element can be matched to only one target element. On the other hand, transport is concerned by matching two measures (i.e., histograms of unit norm) supported by those sets in a n-to-n fashion. In this more general formulation [START_REF] Kantorovitch | On the translocation of masses[END_REF], admissible couplings are probabilistic, i.e., they can split the mass of a source location towards several target locations.
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Cost matrix A classical example of a transportation problem is the one said of "mines and factories", depicted in Figure 4.1, in which p mines (the source support) produce each a quantity a i for i ∈ [1, p] of a given resource. This resource is consumed by q factories (the target support) where each factory consumes b j resources for j ∈ [1, q]. Both histograms to match are normalized: the mass of resource produced and consumed are equal and thus considered summing to one, such that

i a i = j b j = 1.
To transport a quantity x of resource from a mine i to a factory j takes a cost c ij (x) depending on the distance between the mine and the factory. The transportation problem itself is to find the coupling R that transports the entire resource's mass from mines to factories at a minimal overall cost (which is the sum of all costs of effective transportation). This coupling is admissible only if it enforces the mass conservation constraint, which means that the quantity of resource displaced from a mine i must sum to exactly a i and the amount of resource displaced to a factory j must sum to b j .

More formally, let us denote two unit-norm histograms a ∈ X s , b ∈ X t as the source and target histograms to match supported by both sets. As opposed to the assignment problem, the disjunction between histograms to match and their supports mean that both supports need not have the same cardinality. We'll denote card(X s ) = p and card(X t ) = q. We also define C ∈ R p×q + a cost matrix relating both supports through the cost function C : X s × X t → R + . The objective is to a find the coupling R ∈ R p×q + which transports a to b at a minimal cost. This cost can be written as the element-wise product between R and C or simply i,j R i,j C i,j .

To be admissible, a coupling must respect mass conservation problems. The transportation problem is thus a constrained minimization problem that search for the optimal transport plan R * solving Equation 4.1:

argmin R i,j R i,j C i,j s.t.   j R i,j   i = 1 p , i R i,j j = 1 q (4.1)
Notably, this transport plan can match a source element to several targets by dividing its mass, and can also be interpreted as a probabilistic matching between source and target histograms. In this basic formulation, the transportation problem is convex and thus yields a unique solution. The overall transportation cost enticed by this plan is called the Wasserstein distance:

W C (a, b) = i,j R * i,j C i,j .
Given two sets related by a cost function, the Wasserstein distance can be seen as a natural geometrical distance to compare probability distributions. In our work, we are mostly interested in finding the optimal transport plan which can be interpreted as an optimal matching between subjects data (our detailed methodology, including additional regularization of this minimization, is described in Section 4.2).

Let us define a set of S histograms living on the same support: (x s ) S s=1 ∈ X. When X is equipped with a distance d, a common problem is to derive their barycenter t (also called Fréchet-mean for distance d) solving Equation 4.2.

argmin t∈X S s=1 d(x s , t) (4.2)
When d is the 2 -norm, the barycenter comes back to the euclidean mean, and for the 1 -norm the barycenter becomes the median. While Equation 4.2 can be difficult to solve for a generic distance, it is a convex problem when using the Wasserstein distance [START_REF] Peyré | Computational Optimal Transport[END_REF]. It is possible to derive a barycenter where each x s comes with a different cost matrix C s . However, in the typical eulerian set-up, all cost matrices are the same and define a single Wasserstein distance W such that the Wasserstein barycenter t minimizes Equation 4.3. Using entropic regularization, this minimization can also be solved efficiently using Sinkhorn algorithm.

argmin t∈X S s=1 W(x s , t) (4.3)
When trying to apply optimal transport to real world noisy data, the mass conservation hypothesis is rarely fulfilled. Thus, a common extension of the aforementioned problem is the one of "unbalanced" optimal transport, which relaxes the mass conservation constraints using a divergence D. The transport plan marginals are allowed to be only approximations of a and b, as penalized through D. A parameter τ is introduced to control how much mass variations are penalized compared to transportation cost [START_REF] Peyré | Computational Optimal Transport[END_REF]. Equation 4.1 can then be generalized as Equation 4.4:

argmin R i,j R i,j C i,j + τD(R1, a) + τD(R 1, b) (4.4)
Where R1 denotes R 1 the right and left marginals of the coupling, respectively denoted in Equation 4.1 as j R i,j i and i R i,j j

A usual divergence to use in this context is the Kullback-Leibler divergence. Efficient algorithms to estimate unbalanced Wasserstein barycenters can also be derived [START_REF] Benamou | Iterative Bregman projections for regularized transportation problems[END_REF][START_REF] Chizat | Scaling algorithms for unbalanced optimal transport problems[END_REF][START_REF] Janati | Debiased sinkhorn barycenters[END_REF].

.

In [START_REF] Gramfort | Fast Optimal Transport Averaging of Neuroimaging Data[END_REF], the authors proposed to apply optimal transport to match brain signals across subjects in order to build group averages better accounting for variability. In this model, the authors define signals as the histograms to match and the spatial distance between each signal location as the cost of displacement. The key idea here is, for one contrast, to match similar quantity of activations even when they display a slight spatial shift, and calculate a Wasserstein barycenter of subjects' activations. They illustrate this method both on fMRI data and in the context of the MEG inverse problem. This nicely fits the intuition that activation foci should be moved conservatively to match individuals, which makes it quite alike diffeomorphic alignment.

When considered as a potential tool for functional alignment, this approach suffer from several limitations. First, it is calculated for each timeframe separately, which means that, when applied to several images or contrasts, the underlying voxel displacement induced on each frame will be unrelated. Hence, it lacks consistency and generalizability for practical applications. Pragmatically, we must also note that fMRI signals are not measures: they are not entirely positive nor normalized across subjects. This introduces the need to resort to unbalanced optimal transport and additional computational heuristics and introduce additional hyperparameters which are hard to set. More fundamentally, this kind of matching does not convey functional similarity across subjects, but merely tries to match sparse blobs of brain activity.

We chose to apply optimal transport in another way, building on functional alignment intuitions. Instead of searching for an explicit matching between observed signals, we searched for the underlying matching between voxels as characterized by their functional similarity. We thus defined the sets of voxels to match directly as our measures and defined a cost matrix conveying functional dissimilarity across voxels.

Let p ∈ N, we denote [p] the set of integers from 1 to p. Let A i ∈ R p , δ A i will denote the Dirac mass at location i. Given a brain region comprising p voxels, we consider the d-dimensional signals observed in these voxels {A 1 , ..., A p }. Here, these d-dimensional signals correspond to d activation maps observed in a given subject. We denote by A the p × d matrix obtained by concatenating those vectors. F denotes Frobenius norm, and tr(.) the trace operator.

-Let us consider the set A s of functional signals in a given source subject s. Following the intuitions of [START_REF] Langs | Learning an Atlas of a Cognitive Process in Its Functional Geometry[END_REF], the p vectors A s 1 , ..., A s p together make up a measure µ s lying on a latent manifold F s embedded in R p . The discrete measure µ s with positive weights w s > 0 and support A s 1 , ..., A s p ∈ F s is defined as

µ s = p i=1 w s i δ A s i . Note that in the present framework w s = [ 1 p ... 1 p ].
The difference between two measures µ s = p i=1 w s i δ A s i and µ t = q i=1 w t i δ A t i , reflects the differences between individuals s and t. However, for s = t, the support of the F s and F t manifolds are distinct in general: two subjects do not exhibit the same set of responses, due to intrinsically different brain organization. Directly computing Kullback-Leibler divergence between µ s and µ t is useless, as noncoincident support leads to infinite values; fixing this mismatch by smoothing induces a loss of information. By contrast, the Wasserstein distance between µ s and µ t is well-defined [START_REF] Peyré | Computational Optimal Transport[END_REF].

In this framework, distance evaluation is tightly linked to functional alignment, as it is formulated as the task of finding an optimal coupling

R * A s 1 , ..., A s p → A t 1 , ..., A t q , R ∈ R p×q + .
Enforcing signal conservation and optimality of the alignment cost C(A s , A t ) yields:

R * = min R i,j R i,j C(A s , A t ) i,j s.t.   j R i,j   i = w s i and i R i,j j = w t j (4.5)
To use the discrepancy of functional features as a cost function, we define:

∀i, j ∈ [p] × [q], C(A s , A t ) i,j = A s i -A t j 2 2
and couple the input measures µ s and µ t , where all voxels have a constant weight, respectively 1/p and 1/q. If both subjects functional data share a common number of voxels (i.e., p = q), and we search for a deterministic coupling, this falls back to the assignment problem(4.1.1).

. We define the entropy of a coupling as and use it as a regularization function in Equation 4.5, which becomes :

h(R) = - i,j R i,j (log(R i,j ) -1) Subject 8 . . . . . .
R * = min R i,j R i,j C(A s , A t ) i,j -h(R) s.t.   j R i,j   i = 1 p , i R i,j j = 1 q (4.6)
The entropic term makes the objective function -strongly convex, hence leading to a unique optimal solution for a given . Besides making computation of transport faster using Sinkhorn algorithm (Cuturi, 2013), this entropic regularization also acts as a smoothing of the solution.

.

Most alignment methods perform well in a local setting, and optimal transport is no exception. Computational cost becomes prohibitive for tens of thousands of voxels, and searching for such high-dimensional matching introduces the need for more samples than available and deters the idea of picking a strongly regularized transformation. As introduced in Section 3.1.3, Searchlight was proposed as an aggregation procedure to circumvent this problem. It consists in searching for local alignments on overlapping local neighborhoods and in summing these transforms to recompose a full-brain alignment. However, it is computationally very costly and the aggregate transform lacks the regularity enforced locally. Enforcing sparsity of local transforms using optimal transport to later average them into a dense global one would make little sense.

To overcome this limitation, we propose an alternative aggregation scheme: piecewise alignment. In a first step, we do a functional clustering of data to find local non-overlapping clusters c 1 , • • • , c K of voxels with common activity patterns (those parcels could alternatively be derived from a functional atlas). In each of these clusters, we find the optimal alignment transform and concatenate these local transforms to recover a full-brain transform with the desired regularities. Formally, the optimal alignment transform to align two subjects x s train and subject x t train on the training session is obtained by solving the problem in

each cluster c ∈ {c 1 , • • • , c K }: R * [c] = R * (A s train [c], A t train [c]) (4.7)
On the test session A t test is predicted using A s test by:

∀c ∈ {c 1 , • • • , c K }A t test [c] = R [c]A s test [c] (4.8) 
This returns a full-brain transformation matrix with the desired regularities, but could theoretically induce boundary effects in the alignment recovered. In Chapter 6 we compare Piecewise Alignment with Searchlight Alignment and show its efficiency. In terms of parcellation, several algorithms perform well for functional clustering. Moreover, our later work show that the parcellation method chosen and its resolution (or working with a functional atlas instead) doesn't have much impact on the quality of the alignment learned (see Section 6.5.3).

.

To benchmark these methods and assess their prediction accuracy, we ran experiments on two datasets, where individual data were previously registered in MNI-space following standard procedure (SPM12 software called though Nipype for IBC, HCP pipeline for HCP). The "Individual Brain Charting" (IBC) [START_REF] Pinho | Individual Brain Charting, a high-resolution fMRI dataset for cognitive mapping[END_REF] contains scans of the same 13 participants for a wide variety of cognitive tasks. The data were acquired using a 3T scanner (acquisition resolution of 1.5mm resampled at 3mm after spatial normalization). We worked directly on activation maps: for a given functional contrast, they yield an activation statistic at each voxel. We learn alignment between subjects between d = 53 contrasts derived from data acquired 2), it is applied on additional source subject data to predict corresponding maps of target subject. These predicted maps are compared against corresponding left-out target data.

Source

Learn Alignment

with antero-posterior (AP) EPI phase encoding; to assess the quality of our predictions, we also use 53 contrasts acquired in separate sessions using the same experimental paradigms with posterior-anterior (PA) EPI phase encoding. Note that the resulting AP/PA distortions were estimated and corrected with FSL's topup software prior to image pre-processing.

Human Connectome Project (HCP, 2.3.1, Van Essen et al., 2013) is a collection of neuroimaging and behavioral data on 1,200 normal young adults, aged 22-35. For our experiment, we focused on 20 randomly chosen subjects. For each, we used the d = 25 statistical maps available in both left-to-right (LR) and right-to-left (RL) phase encoding, resampled at 3mm after spatial normalization. We learn alignment between subjects using LR images and assess prediction on RL acquisitions.

In pairwise prediction, we first learn the optimal alignment operator between a source and a target subject on training data. We then use this alignment and supplementary images of the source subject to predict additional data of the target subject and score this prediction against the true target subject images using a prediction metric (see Figure 4.3).

We use this straightforward set-up on IBC and HCP datasets to compare prediction performance of several alignment methods (detailed below) and applied on a parcellation of the brain: (i) Scaled-Orthogonal Transform, (ii) Ridge Regression, (iii) Optimal Permutation, (iv) Optimal Transport with entropic smoothing. We compare these to two baselines, the identity transform (that predicts the target subject as the source subject data), and a multi-purpose state-of-the-art diffeomorphic medical image registration algorithm: symmetric image normalization (SyN) [START_REF] Avants | Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain[END_REF].

In a second experiment, we study the influence of the amount of entropic regularization used in OT loss on both datasets. Obviously, some pairs of subjects have more similar functional data than others. To make our evaluation process robust to this variability, we tested every method on the same set of 20 pairs of subjects chosen randomly in each dataset.

Here we give a few details about our implementation of methods present in this benchmark. (i) Scaled-Orthogonal Transform (reimplementation of hyperalignment, 3.1.2) solves the scaled Procrustes problem and yields an orthogonal transform. (ii) Ridge Regression [START_REF] Hoerl | Ridge regression: Biased estimation for nonorthogonal problems[END_REF], further relaxes this orthogonality constraint, and simply look for a linear coupling R with a small norm. For computational efficiency, we consider here 2 norm penalization, yielding min

R A t -RA s 2 F + λ 2 R 2 2
. Using such a model, the alignment problem boils down to a ridge regression also solvable in closed form:

R * = A t A s (A s A s + λI d ) -1
(iii) Optimal Permutation search for a permutation of voxel improving functional similarity (4.1.1) (iv) Optimal Transport with entropic regularization (4.2). Notably, in our experimental case where p = q, permutations and every coupling acceptable in strict optimal transport sense (Equation 4.5) are part of the broader class of orthogonal transforms, however their stronger regularization could help to preserve signal structure better than Procrustes solution. By contrast, entropic regularization (Equation 4.6) yields a non-orthogonal solution in general.

In this study, we applied all alignment on whole-brain data, using piecewise alignment with Hierarchical K-means parcellation algorithm. Hierarchical K-means (HK-means) is a recursive K-means method aimed at efficiently deriving well-balanced clusterings. For a target number of k regions, HK-means performs a first clustering into √ k pieces, and each of them is clustered in turn into √ k parts. We include SyN, as an additional diffeomorphic baseline in this study. SyN yields a diffeomorphic mapping maximizing Mattes mutual information between local regions. Since it works only for scalar images, it was applied only on the principal components of the training set of images. Our implementation relies on Nilearn for data handling, open-source solvers (Scikit-learn, POT for Sinkhorn, antspy for SyN).

To measure the quality of our prediction RA s , against the ground truth A t at the voxel level, we defined η 2 , the normalized reconstruction error, as:

η 2 (A t , R, A s ) = 1 - n i=1 (A t i -R i A s i ) 2 n i=1 A t 2 i ,
A η 2 value of 0 means that the quality of the prediction is equivalent to predicting 0 along all the dimensions. A perfect prediction yields a value of 1. To focus on the prediction improvement that can be made through alignment-independently of the preexisting distance between data to align-we assess performance quantitatively using a reconstruction ratio R η 2 . This ratio is also defined at voxel level and is superior to 0 if the voxel is predicted better by aligned data than by raw data.

R η 2 (A t , R, A s ) = 1 - n i=1 (A t i -R i A s ) 2 n i=1 (A t i -A s i ) 2 = 1 - 1 -η 2 (A t , R, A s ) 1 -η 2 id (A t , Id, A s )
Figure 4.4 shows that functional alignment methods generally improve prediction quality from one subject to another with respect to the identity, though not uniformly over the cortex. Sensory and motor regions typically obtain high scores, showing the stability of the signals across subjects in these areas; by contrast, other regions obtain low scores overall. Syn offers no improvement of prediction scores, nor does the optimal permutation of voxels. This means that a strict one-to-one mapping of voxels is not suitable for functional alignment. For the three other methods, we clearly see different behavior between regions with high signal-to-noise ratio (SNR) and regions with lower SNR. Figure 4.5 (a-b) report the compared distributions of predictions ratios R η 2 on IBC and HCP datasets and are consistent with previous observations. Ridge and OT outperform all other methods on IBC dataset, whereas Scaled Orthogonal and Ridge perform slightly better on HCP dataset. In this chapter, we introduced a new alignment method based on Optimal Transport, as published in [START_REF] Bazeille | Local Optimal Transport for Functional Brain Template Estimation[END_REF] Defining functional dissimilarity as a cost function, we propose to search for optimal transport plan of voxels. We derive those matchings on local non-overlapping parcels and use them to recompose a whole-brain transformation. We validate its performance of this method on two datasets. Although potentially more conservative than some less regularized solvers, it is also a mean to better preserve signal specificity for later analysis. A limitation of this method is that it is a pairwise matching of subjects. In Chapter 5, we develop potential ways to estimate good common representations to which all subjects could be aligned. In Chapter 6, we assess the performance of both Optimal Transport alignment and the Piecewise alignment scheme to improve inter-subject decoding.

In Chapter 4, we have introduced a new technique to derive a pairwise matching: a transform mapping one subject to another. In section 3.1.4, we have also motivated the need for a common representation space to build an efficient framework to transfer signal across many subjects and introduced state-of-the-art methods. Beyond this computational aim, an overarching goal of alignment is also to help uncover more reliable group-and even population-brain function organization principles. In this view, our ability to draw improved group statistical inference hinges on the quality of the common representation chosen for individual data. In Section 5.1, we outline the challenges of finding a suitable template to do so and the limits of currently available approaches. In Section 5.2, we introduce an alternative iterative templating scheme and assess its relevance [START_REF] Bazeille | Local Optimal Transport for Functional Brain Template Estimation[END_REF]. Finally, Section 5.3 details our further attempts at improving template-related metrics and using optimal transport to build an adequate template.

. -

For a long time, brain imaging studies have been infused with the concept of a stereotaxic space, a standardized brain representation (in terms of orientation and spatial coordinates) to ease combination and comparison of data and results from several subjects and studies [START_REF] Evans | Brain templates and atlases[END_REF]. Among several options, the standard space has turned out to be a combination of (i) a well-defined 3D stereotaxic coordinate space, usually a representative 3D structural MRI called a "template" (or tissue probability maps for segmentation-based approaches) (ii) a class of mappings to put brains "native" space in correspondence to that template space. While both components of this mapping can vary depending on the precise use-case, the most common spatial normalization procedures map diffeomorphically each subject structural MRI to the MNI152 template (see Section 2.1.3).

Functional alignment can be thought to be part of an additional normalization process guided by functional data. Pairwise alignment methods (as reviewed in Section 3.2 or introduced in Chapter 4), with their pairwise formulation, can be seen as the mapping class. However, this procedure commonly lacks an appropriate standard functional space (or functional "template") to which subjects brain activations could be well-represented after functional alignment. When designing such a template, one faces two related challenges:

• enable good functional matching without including idiosyncratic features

• create a high-SNR representation of group effects, with a sharp functional topographic organization.

Since these characteristics are hard to measure, a common solution is instead to use similarity after functional alignment to the template space as a sole measure of its optimization and validation. Although this is a necessary constraint, it is not enough to ensure meaningfulness of the derived representation. In Section 5.3, we discuss alternative metrics that could be used for this purpose.

Beyond the Euclidean mean of subjects images, which does not create a suitable topographic organization to represent individual data [START_REF] Laumann | Functional system and areal organization of a highly sampled individual human brain[END_REF], two main template estimation procedures have been proposed in the literature: greedy bagging of hyperaligned data (3.1. 4, Haxby et al., 2011) and the latent factor approach to template from the Shared Response Model (3.1.5, [START_REF] Chen | A Reduced-Dimension fMRI Shared Response Model[END_REF]. While these are pragmatic solutions, they reduce the template to an intermediate variable of the alignment procedure, almost like a nuisance parameter. The templates proposed by these methods are actually never shown nor validated in the studies that introduce them.

The hyperalignment templating method [START_REF] Haxby | A common, high-dimensional model of the representational space in human ventral temporal cortex[END_REF]) yields a full-brain template that could be a candidate representation summarizing group activations at each frame after alignment. However, as an unbalanced algorithm where subjects contribute unequally to the final group representation, the derived template (and its performance to transfer signal across subjects) depends heavily on the order in which subjects were considered [START_REF] Al-Wasity | Hyperalignment of motor cortical areas based on motor imagery during action observation[END_REF]. Put differently, it does not follow any clear definition or criterion of optimization. Moreover, it is implemented on whole-brain using the searchlight scheme, which will cause its spatial organization to be smoother than individual data.

On the other hand, shared response modelling is a procedure jointly decomposing subjects data on a common basis in a balanced way. This low-dimensional basis can be thought of as a template. However, drawing statistical group inferences in this basis would make little sense and has not been carried out so far.

Importantly, these templates display a strong spatial indeterminacy, since applying any additional orthogonal transform to templates and their inverse to mappings would yield equally valid alignment schemes. Put differently, there are an infinity of templates solving the basic optimization problem. Since functional alignment does not enforce any anatomical regularity, spatial activations observed on most of those valid templates would be meaningless.

. In order to try to overcome those constraints, our article [START_REF] Bazeille | Local Optimal Transport for Functional Brain Template Estimation[END_REF] introduced a new general-purpose iterative procedure to derive a principled template and alignments using any pairwise method. This method progressively refines a template through alternate minimization for a given class of functional alignment. It can be applied together with an aggregation scheme to derive whole-brain templates, here piecewise alignment (4.3). Reusing image-based statistics introduced in Section 4.4, we show that this new template-based alignment method helps increase similarity across subjects while being better principled than methods previously available in the literature.

. .

Template generation procedure

Pairwise correspondences do not scale well with many individuals. A template measure T is needed, which can be obtained by solving

min T,R 1 ...R n n s=1 R s (T) -X s 2 (5.1)
for the chosen loss . (Wasserstein or Frobenius). We solve it through alternate minimization iterating over :

• a R-step of independent alignment of the current template to every sample, thus estimating R i , i = 1..n

• a T -step where T is regressed to minimize jointly its distance to the samples.

min

R s R s (T) -X s 2 , ∀s ∈ [n] R-step min T n s=1 R s (T) -X s 2 T -step
Note that, for all norms considered here, the T -step results in a quadratic problem solved by conjugate gradient. Crucially, Equation 5.1 is only element-wise convex. Starting from a fixed initialization, alternate minimization will thus recover a unique minimum, but without any guarantee that it is a global minimum. Moreover, template and alignments still suffer from a strong spatial indeterminacy, since their defining criterion is invariant to orthogonal transforms. As initialization, we set all alignment operators to the identity, thus the first 2 and the first template is the sample mean. In practice, we run 4 iterations of the alternate minimization, as we found that was sufficient for convergence.

. . Experimental validation

In Section 4.4, we introduced a benchmarking experiment to compare Optimal Transport alignment to other algorithms. In this section we reused the same set-up and metrics to assess template-based alignment performance using (i) Scaled-Orthogonal Transform, (ii) Ridge Regression, (iii) Optimal Permutation, (iv) Optimal Transport with entropic smoothing, all applied in a piecewise fashion.

To evaluate template-based prediction accuracy, we split the IBC dataset randomly into two folds of 7 and 6 subjects. We estimated a template from the train subjects using all AP and PA contrasts (AP and PA contrasts are the same contrasts derived from two independent acquisition repeating the same protocol while varying the phaseencoding direction, as detailed in 4.4). We then learned an alignment operator between each of the test subjects and the template using AP contrasts and try to predict their PA contrasts that we scored using predictions metrics, as illustrated in Figure 5.1. We compare the results of the same methods quantitatively in terms of prediction loss. In a second experiment, we infer a template on which we learn alignment for all subjects using AP data. We then apply these alignments to left out PA data to bring all our subject in a common space. In this common space, we run a one sample-test and compare the group effects detected by each method, for specific conditions. 

. . Validation results

In Figure 5.2 left panel, we can observe that prediction accuracy is strongly improved by the use of a learned template in most brain regions, which establishes that functional alignment performs well to estimate cross-subject correspondences and identify a latent brain activity template. It also shows that our template estimation procedure manages to capture some inter-subject variability when mapping individual data. However, it must be noted that, compared to the performance achieved by pairwise alignment (reported in Figure 4.5), template-alignment gains are lower. This is possibly a consequence of the performance lost to the sub-optimality of this group representation to represent each subject data. Figure 5.2 right panel shows that, despite the fact that templates derived using Scaled Orthogonal, Ridge and Optimal transport are equally accurate at predicting new subject data overall, they do so in dissimilar ways. Ridge regression tends to predict 0 in regions with low-SNR. This strong smoothing effect comes at the expense of providing predictions that are not very precise for high-SNR regions. On the contrary, Optimal Transport makes large mistakes in low-SNR regions but predicts high-SNR regions more accurately. This behavior is desirable in a template-building procedure since it better preserves specificity and structure of functional signals.

This difference between both methods is also visible in Figure 5.3. The two sets of maps show the efficiency of alignment methods to bring all subjects in a common space, especially for Optimal Transport and Ridge. The former identifies localized zones of interest across aligned subjects, that suit well previous neuroanatomic findings for the given conditions. On the contrary, Ridge tends to predict strong group effects in numerous large regions that do not seem specific to the studied contrast. This means that Ridge rely on a very smooth common representation where each template voxel activations are a mix of numerous voxels. This smoothing behavior -not preserving spatial specificity of activations in order to maximize overall similarity-can be well-suited for some kinds of applications, such as aligning several datasets in a common space to learn better decoding, for example. However, when aiming at the creation of an interpretable template, Optimal Transport seems to better preserve valuable information on the specificity of activation patterns for a given condition.

We finally consider a realistic use case, where test data would be functionally aligned in view of a group study (one-sample t-test). We present the ensuing group-level brain maps, projected on the cortical surface, in Figure 5.3, for 2 contrasts. The Match contrast is derived from the HCP Relational protocol [START_REF] Barch | Function in the human connectome: task-fMRI and individual differences in behavior[END_REF], focusing on a visual comparison task on artificial textures. For this contrast, we show that both Ridge and optimal transport recover regions in the anterior and posterior segments of the superior temporal sulcus that would not be detected using standard approaches, or scale-orthogonal functional alignment. The 0-back place contrast is derived from an acquisition using HCP Working Memory protocol [START_REF] Barch | Function in the human connectome: task-fMRI and individual differences in behavior[END_REF]. Inspired from the visual n-back task, this contrast is a matching task on place images. For these contrasts, OT-and Ridge-based alignment recover regions in the temporo-occipital junction and inferior parietal sulcus that would not be detected using standard approaches, nor by scaledorthogonal functional alignment. In particular, place sensitive regions of the ventral and dorsal visual cortex seem to have been successfully recovered by the functional alignment approach.

. . .

Better metrics to assess template significance

The problem of evaluating a template is hard, since it is a problem of creating an abstract object accounting for several datasets. Obviously, there exists no such thing as a perfect template or a ground truth to which we could compare the object that we create. A reasonable idea, explored before, is thus to resort to a well-principled design process, i.e., minimizing a certain objective criterion. However, here we want to focus on giving an interpretable model of group activations and validate how well it accounts for individual models after alignment.

In order to do so, we need to define some external validation criteria.

A first solution to try to judge the external validity of such an object is to take some stable functional characteristics, (e.g., those derived using a very large cohort of subjects) and take those as a ground truth, hoping that the large sample size used will yield a reasonable representation. However, this "ground-truth" is also plagued with inter-subject variability and its spatial topography will probably bear some artifactual patterns because of this variability, (e.g., smoothness, functional overlap. . . )

Another solution is to reflect on interpretable criterions of generalizability of this template to represent unseen subjects. Building on the idea of judging voxels by their functional similarity (e.g., used in Section 4.2), it seems reasonable to compare voxel signals in the sense of the l2-distance. A well-defined template, the empirical mean of training subjects images, can be derived when using this distance at the image level. However, as extensively described in Section 2.3.2, intersubject variability undermines anatomical correspondences across subjects and l2-distance between anatomically aligned voxels is thus a very biased metric. Instead, we propose to define a comparable metric L which includes a spatial tolerance for misalignment. For a given voxel i of an unseen subject data X, we would thus measure template T dissimilarity to this voxel as the minimal dissimilarity for any voxels contained in the ball of radius r, B i (r) around i. In order to make this metric more robust to extreme use-cases where the template is especially designed to overfit this constraint, we add a symmetrical term where each voxel in the template must also be reasonably similar to data. L is a distance, is equal to the euclidean distance when r = 0 and grows more tolerant spatially when r increases. It could also be used to measure the amount of inter-subject spatial variability.

L(X, T, r) = 1 √ 2 ( i∈[0,...,n] min j∈B i (r) ||X i -T j || 2 + i∈[0,...,n] min j∈B i (r) ||T i -X j || 2 ) 1/2
. .

Deriving better templates using Wasserstein barycenters.

The template procedure introduced in Section 3.1.4 relies heavily on a good initialization and is still subject to spatial indeterminacy. As noticed in Section 4.1, Wasserstein Barycenters are a promising avenue to craft geometrically-informed distances to define the template. However, several problems limit the out-of-the-box use of Wasserstein Barycenters to generalize Optimal Transport alignment presented in Section 4.2:

• To properly model pairwise functional alignment as a transport problem, we used a cost matrix depending on both histograms to match. However, this breaks the convexity of the Wasserstein Barycenter formulation, since the cost matrix (and hence the Wasserstein distance) used to compare histograms depends on the template. Put differently, the cost to relate a template and histograms would change at each template iteration, which would hamper convergence.

• Keeping only a function-based cost matrix will always entice a spatial indeterminacy on the template.

To overcome those limits, we tried to use spatial Wasserstein barycenters (in Gramfort, Peyré, and Cuturi, 2015 fashion) to find a better initialization for our iterative algorithm, which would allow starting from a spatially regularized template and refine its functional similarity with subjects. As discussed already, this comes with its own load of practical problems.

-

As pointed out in Chapter 4, activations obtained in fMRI images are not measures, hence optimal transport cannot be applied directly on the signals in its classical formulation. For one thing, activation histograms contain both a positive and negative part (for deactivations) whereas optimal transport is well-defined only on positive histograms. As deactivations and activations have different meaning, a sensible heuristic to solve the positivity issue is to separate the positive and negative part of the histograms, and calculate separately transport plans. We proceeded with this heuristic, although it could induce other problems, such as the overlap of activations and deactivations barycenters.

Another hurdle is that histograms are non-normalized, i.e., subjects display different overall quantity of activations (both positive and negative). As already cited, it is possible to use unbalanced optimal transport [START_REF] Gramfort | Fast Optimal Transport Averaging of Neuroimaging Data[END_REF] to relax this constraint, as described in Section 4.1. However, the main problem of this approach is the introduction of an additional hyperparameter τ to penalize mass discrepancy against transportation accuracy. This parameter, related to variability, is very hard to set in practice.

We thus opted for a straight forward alternative to restore normalization across histograms, namely histogram equalization, sometimes applied in structural MRI preprocessing [START_REF] Sun | Histogram-based normalization technique on human brain magnetic resonance images from different acquisitions[END_REF]. In this step, denoted Norm(X), we focus on a contrast and treat images as activation histograms (i.e., spatial coordinates of voxels are ignored). After sorting every subjects' histograms, we replace activation value of voxels at a given rank by their average across subjects. Derived normalized histograms respect the individual signal patterns, while activation and deactivation quantity are matched.

-When trying to derive Wasserstein barycenters on volumic images of activation using a cost matrix based on voxels pairwise spatial distance, we quickly observed geometrical artifacts. In the 3D grid geometry implied by the volumic representation, this spatial cost matrix is biased towards the center of the considered region. Voxels in the middle of this region are closer on average to the rest of voxels, especially than those on the edges of the region. By design, transportation to central voxels will thus entice a lower cost and be favored by any algorithm searching to minimize spatial displacement of activations. Implementing this process using an aggregation approach wouldn't solve this problem (e.g., barycenters after parcellation would be biased towards the centers of parcels containing activations).

To overcome this artifactual behavior, it is possible to work instead on surfacic representations of data in each hemisphere. This is known to be a relevant spatial representation of the cortex, where the cortical surface is roughly homeomorphic to a sphere, and well-suited for intersubject registration [START_REF] Robinson | Multimodal surface matching with higher-order smoothness constraints[END_REF]. Using this representation coupled with its natural distance between vertices (distance on the mesh), the overall distances better any two vertices from the mesh become way better balanced. [START_REF] Barch | Function in the human connectome: task-fMRI and individual differences in behavior[END_REF] for a variable number of HCP subjects (x-axis). Individual contrasts were resampled in fsaverage5 surface representation (10000 vertices per hemisphere). Balanced Wasserstein barycenter was calculated on the full-hemisphere histograms after histogram normalization, using a spatial cost matrix pairwise linear distance on the mesh. Activation and deactivation barycenters were calculated separately and summed.

To test this procedure, we used the HCP dataset, focusing on the "faces-shapes" contrast from HCP Emotional protocol [START_REF] Barch | Function in the human connectome: task-fMRI and individual differences in behavior[END_REF], which is a visual matching task of either faces displaying emotions or geometrical shapes. With the wealth of subjects available in this cohort (more than 700), we took a variable number n ∈ {7, 39, 78, 156, 392} to build a template and kept a reasonable 300-subjects independent validation set. To avoid geometrical artifacts that would be induced by discontinuities introduced through a parcellation, we had to match entire hemisphere histograms in one transport plan. To make computation tractable despite quadratic complexity of optimal transport, we had to resort to use low-resolution surfacic representations (fsaverage5, 10000 vertices per hemisphere).

We define X, the concatenation of subjects surfacic activation maps X i where ∀i ∈ [1, n], X i ∈ R p with p the number of vertices. We performed histogram normalization (described previously) to derive X = Norm(X). We separate X in a negative part Xand a positive part X+ such that X+ + X-= X. After Norm operation, all columns have equal sum, both positive and negative, so we can normalize them. We denote these sums s + = p j=1

X+ ij and s -= p j=1
Xij . Additionally, we define a spatial cost matrix C ∈ R p×p , relating all vertices through their pairwise linear distance on the fsaverage5 mesh used. We then calculate independently the templates t + and t -∈ R p as balanced Wasserstein Barycenters that solve Equation 4.3 for cost C and histogram sets Xs -and X+ s + . We recompose our final barycenter after rescaling as t = s -t -+ s + t + . We assessed the quality of template as a representation of unseen subjects using loss L(t, X left-out ), introduced in the previous section.

We implemented balanced Wasserstein barycenters, with an entropic regularization parameter as small as numerically possible, = 0.006. For implementation, we rely on the efficient, GPU-enabled, Sinkhorn solver for barycenters [START_REF] Janati | Debiased sinkhorn barycenters[END_REF] from https: //ott-jax.readthedocs.io/en/latest/ Figure 5.4 displays the Euclidean and Wasserstein barycenters obtained using a various number of subjects for the HCP "facesshapes" contrast. As we can see, the functional topographies are very similar and varying similarly with the growing number of subjects used. We confirmed this by an evaluation of those barycenters compared to left-out subjects using the L loss. This showed no meaningful difference between both barycenters in their ability to represent well topography of left-out subjects.

This lack of improvement is related to the dimensionality of the barycenter to estimate, which is way higher than the number of samples available to do so. Moreover, the very low-resolution of representations deters the purpose of alignment, which aims at handling local variability in functional topographies. Overall, the main obstacles hampering the geometrical matching of signals are the geometrical effects induced when working on local parcels, in tension with the estimation difficulties on whole-brain signals.

In this chapter, we have discussed challenges and methods to derive a functional template, a common functional representation to which individual data can be aligned. Besides being a computational object enabling signal transfer, templates should ideally display a sharp and representative functional topography to enable improved group inference. However, it is hard to control their topographical characteristics, and they are subject to a strong spatial indeterminacy. We introduced a well-principled templating scheme, published in Bazeille et al., 2019, relying on an alternate template minimization and alignment refinement and validated its performance in two experiments. Although this procedure is not sufficient to ensure all desirable properties previously cited, we discussed new metrics to assess those characteristics and potential refinements based on Wasserstein barycenters.

A collection of methods have been proposed for functional alignment (3). However, these methods are seldom used in brain mapping studies. For a given application, it remains unclear how to choose among them, which implementations to use and how much gain can be expected. In this thorough empirical validation, we assess whether alignment can help handle variability in typical research set-ups (Bazeille et al., under review).

As developed in Section 6.1, we consider performance to include both (1) improving inter-subject similarity while retaining individual signal structure and (2) computational efficiency, as the latter is an important consideration for scientists who may not have access to specialized hardware. Section 6.2 develops the inter-subject decoding framework we use to measure alignment performance through a downstream predictive task. Using this pairwise framework, we assess five alignment methods on several publicly accessible fMRI datasets. Beyond Procrustes and Optimal transport, we included an original extension of Shared Response Model: Piecewise SRM, as well as a new Intra-subject alignment method.

Section 6.3 develop the results of this benchmark. Notably, we: (1) establish that functional alignment improves decoding accuracy above anatomical-only alignment, (2) investigate the impact of common methodological choices such as whether alignment is learned in subregions across the whole brain or in a pre-defined region-of-interest (ROI), and (3) compare the impact of specific alignment methods in whole-brain and ROI-based settings. We then provide a qualitative comparison of the transformations learned by each method to "open the black box" and provide insights into how potential accuracy gains are achieved. Finally, we discuss the availability, usability and scalability of current implementations for each of the methods considered.

Section 6.4 summarizes our findings and put them in context with the literature. Section 6.5 details supplementary analyses assessing the impact of additional methodological choices on alignment performance. It can be skipped at first read, as its main results are summarized in the previous section. For all alignment methods considered here, technically up-to-date and efficient implementations to reproduce these results are provided at https://github.com/neurodatascience/fmralign-benchmark.

. . .

Image-based statistics

A key question is how to objectively measure the performance of functional alignment. One approach, used in Chapters 4 & 5, is to consider alignment as a reconstruction problem, where we aim to learn a functional alignment transformation which allow imputing missing images in a target subject using data from source subjects. These functionally aligned maps can then be compared with heldout ground-truth maps from the target subject. We can quantify this comparison using image-based statistics such as the correlation of voxel activity profiles across tasks [START_REF] Guntupalli | A Model of Representational Spaces in Human Cortex[END_REF][START_REF] Jiahui | Predicting individual face-selective topography using naturalistic stimuli[END_REF], spatial correlation or Dice coefficient between estimated and held-out brain maps [START_REF] Langs | Decoupling function and anatomy in atlases of functional connectivity patterns: language mapping in tumor patients[END_REF] or other metrics such as reconstruction ratio introduced in Section 4.4.

However, these image-based statistics are sensitive to low-level image characteristics (e.g., smoothness, scaling), and their values can therefore reflect trivial image processing effects (such as the smoothness introduced by resampling routines) rather than meaningful activity patterns.

. .

Quantifying alignment accuracy in a predictive framework

Rather than using image-based statistics, an alternative approach is to test functional alignment accuracy in a predictive framework. Prior works adopting this framework has used tests such as time-segment matching from held-out naturalistic data (e.g., [START_REF] Chen | A Reduced-Dimension fMRI Shared Response Model[END_REF][START_REF] Guntupalli | A Model of Representational Spaces in Human Cortex[END_REF]. However, because time-segment matching relies on the same stimulus class to train and test the alignment, it is unclear whether the learned functional transformations extend to other, unrelated tasks-particularly tasks with low inter-subject correlation [START_REF] Nastase | Measuring shared responses across subjects using intersubject correlation[END_REF]. We are therefore specifically interested in predictive frameworks that probe model validity by measuring accuracy on held-out data from a different stimulus class, with or without functional alignment.

. . Inter-subject decoding

Inter-subject decoding (2.2.3) is a well-known problem in the literature aimed at uncovering generalizable neural coding principles. Specifically, in inter-subject decoding we learn a predictive model on a set of subjects and then test that model on held-out subjects, measuring the extent to which learned representations generalize across individuals. In an information-mapping framework (Kriegeskorte and Diedrichsen, 2019), decoding allows us to assess the mutual information between task conditions. Functional alignment, therefore, should facilitate information-mapping by increasing the similarity of condition-specific representations across subjects, thus improving their decoding.

Although the link between mutual information and decoding accuracy is non-trivial [START_REF] Olivetti | Testing for Information with Brain Decoding[END_REF], we consider that measuring alignment with decoding accuracy on unseen subjects better fulfills neuroscientists' expectations of intersubject alignment in two main ways. First, decoding accuracy provides a more interpretable assessment of performance than other measures such as mutual information estimates. Second, decoding accuracy on a held-out sample provides insight into the external validity and therefore generalizability of derived neural coding principles. Compared to image-based measures, decoding accuracy is thus a more rigorous measure of whether functional alignment improves the similarity of brain signals across subjects while also preserving their structure and usability for broader research use cases. In this work, we therefore quantify functional alignment accuracy by assessing improvements in inter-subject decoding when using functional alignment over and above anatomical alignment. That is, the field-standard approach of normalizing subjects to a standardized anatomical template using diffeomorphic registrations, as implemented in, e.g., fMRIprep [START_REF] Esteban | fMRIPrep: a robust preprocessing pipeline for functional MRI[END_REF].

. -

. .

Experimental procedure

For each dataset considered (6.2.5), we calculated the inter-subject decoding accuracy for anatomical-only alignment and for each of the five considered functional alignment methods. To calculate intersubject decoding accuracy, we took the trial-or condition-specific beta maps generated for each dataset (see Section 6.2.5 for full details on beta-map generation) and fit a linear SVM (2.2.3). In order to ensure fair comparisons of decoding accuracy across experiments, we chose a classifier with no feature selection and default model regularization (C = 1.0). Classifiers were implemented in Scikit-learn [START_REF] Pedregosa | Scikit-learn: Machine Learning in Python[END_REF], and decoding accuracy was assessed using a leave-one-subject-out cross-validation scheme. That is, the linear SVM was trained to classify condition labels on all-but-one subject and the resulting trained classifier was used without retraining on the held-out subject, providing an accuracy score for that cross-validation fold.

For each dataset, we first calculated the inter-subject decoding accuracy using anatomical alignment. This served as a baseline accuracy against which we could compare each functional alignment method. Using alignment data, functional alignment transformations were then learned for each pairwise method, where the left-out subject for that cross-validation fold was the target subject for functional alignment. Inter-subject decoding accuracy was then re-calculated after applying functional alignment transformations to the decoding beta maps.

In the special case of SRM-which calculates an alignment from all provided subjects in a single decomposition-we withheld the left-out subject from the shared response estimation step to avoid data leakage. The projection of the left-out subject is learned from previously estimated shared space. Then, the learned projections are applied to the decoding data and decoding is performed on the projected data.

For each cross-validation fold, we report the inter-subject decoding accuracy of a given functional alignment method after subtracting the baseline, anatomical-only accuracy for that same fold. An overview of the experimental procedures is provided in Figure 6.1.

. .

Benchmarked methods

To align the entire cortex across subjects, two main frameworks have been proposed: searchlight (3.1.3) and piecewise (4.3). Each of these frameworks In this illustration, transformations are derived for the blue, green, and red areas separately. Note that the piecewise alignment does not include a green area, as this corresponds to a searchlight overlapping both the red and blue areas. For non-overlapping parcels, these transformations are stacked into a larger orthogonal matrix. For the overlapping searchlight, these transformations are aggregated, with overlapping values averaged. Note that the final transformation for the searchlight alignment is no longer orthogonal in this example.

use functional alignment methods to learn local transformations and aggregate them into a single large-scale alignment; however, searchlight aggregates overlapping transforms where piecewise acts on segregated transforms, as illustrated in Figure 6.2.

In the literature to date, searchlight and piecewise aggregation schemes have both been used in conjunction with Generalized Procrustes Analysis, under the names Searchlight hyperalignment (3.1.3, [START_REF] Guntupalli | A Model of Representational Spaces in Human Cortex[END_REF] and scaled orthogonal alignment (4.4, Bazeille et al., 2019), respectively. We therefore include both searchlight Procrustes and piecewise Procrustes in our benchmark. Every other method is regularized at the whole-brain level of analysis through piecewise alignment.

As piecewise alignment is learned within a parcellation, an important question is: which brain atlas should be used for piecewise alignment? In Section 6.5.3, we compare results from the Schaefer et al., 2018 atlases to those from parcellations derived directly on the alignment data. By default, the results presented below are derived with the 300 ROI parcellation of the Schaefer atlas, unless noted otherwise. In the case of searchlight Procrustes, we selected searchlight parameters to match those used in [START_REF] Guntupalli | A Model of Representational Spaces in Human Cortex[END_REF] as implemented in PyMVPA [START_REF] Hanke | PyMVPA: A python toolbox for multivariate pattern analysis of fMRI data[END_REF].

In this study, we specifically focus on pairwise alignments wherein subjects are directly aligned to a target subject's functional activations. Although templatebased approaches are an important area of research (as developed in Chapter 5), the question of how best to generate the reference template is distinct from determining the best alignment method and beyond the scope of the current work.

As we use inter-subject decoding to compare functional alignment methods, we only consider methods that meet the following two criteria. First, the alignment transformations should be learned on activations evoked during temporally synchronized (i.e., co-occuring) task data, or on contrasts matched across individuals. Second, the learned transformations must be invertible or quasi-invertible linear mappings and applicable as-is on unseen data with a different task structure. These two criteria exclude several methods introduced in Section 3.2, such as regularized canonical correlation analysis (rCCA; [START_REF] Bilenko | Pyrcca: Regularized Kernel Canonical Correlation Analysis in Python and Its Applications to Neuroimaging[END_REF], gradient hyperalignment (Xu, Yousefnezhad, and Zhang, 2018a), connectivity hyperalignment [START_REF] Guntupalli | A computational model of shared fine-scale structure in the human connectome[END_REF], and methods based on Laplacian embeddings [START_REF] Langs | Decoupling function and anatomy in atlases of functional connectivity patterns: language mapping in tumor patients[END_REF].

In our whole-brain benchmark, we consider five different alignment methods: searchlight Procrustes (3.1.2; [START_REF] Guntupalli | A Model of Representational Spaces in Human Cortex[END_REF][START_REF] Haxby | A common, high-dimensional model of the representational space in human ventral temporal cortex[END_REF], piecewise Procrustes, piecewise Optimal Transport (4.2;[START_REF] Bazeille | Local Optimal Transport for Functional Brain Template Estimation[END_REF], piecewise Shared Response Modelling (SRM; 3.1.5; [START_REF] Chen | A Reduced-Dimension fMRI Shared Response Model[END_REF], and intra-subject correlations across tasks [START_REF] Tavor | Task-free MRI predicts individual differences in brain activity during task performance[END_REF], here referred to as "intra-subject alignment" (3.2.3).

For Optimal Transport, the level of sparsity is controlled by , a user-supplied hyper-parameter, which we set to 0.1 throughout our experiments. For our implementation, we rely on the fmralign package. Optimal transport transformations are calculated in a piecewise fashion, following [START_REF] Bazeille | Local Optimal Transport for Functional Brain Template Estimation[END_REF] For Intra-subject alignment (3.2.3) we observed in preliminaries observations that-unlike other piecewise techniques (see Section 6.5.3)-the decoding accuracy strictly improved with the number of parcels used, so we used the highest resolution atlas available. Thus, divide alignment and decoding data into 1000 parcels using the highest-resolution Schaefer atlas [START_REF] Schaefer | Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic Functional Connectivity MRI[END_REF] and train models to predict decoding data from alignment data on each parcel. After repeating this procedure for all source subjects, we then use R intra to estimate decoding data for target subject as Dtarget = A target R intra . As with other functional alignment methods, we can evaluate the quality of our estimation using an inter-subject decoding framework For Shared Response modelling, we specifically use the FastSRM implementation proposed by [START_REF] Richard | Fast shared response model for fMRI data[END_REF] and available in the BrainIAK library (RRID: SCR_01 4824), that approximates this calculation with an emphasis on improved computational performance. For full details on the computational advantages of FastSRM, we direct the reader to their work.

In order to align our SRM implementation with the other considered alignment algorithms, we introduce a new piecewise SRM method to aggregate SRM transformations across the whole brain. Thus, within each parcel or across an a priori ROI, SRM decomposes the signal of many subjects in a common basis, with the same orthogonality constraint as Procrustes.Given the strong dependency of SRM performance on the selected hyper-parameter k, this parameter requires additional experimenter consideration. For piecewise SRM, we perform a grid search to select the relevant Schaefer parcellation resolution and number of components k (see Section 6.5.4). From these results, we chose to use Schaefer atlas 700 and run one SRM on each parcel searching for 50 components-or equal to the number of voxels if less than 50 voxels are in a given parcel. For ROI-based analyses, we set k to 50 components as in our piecewise analyses and matching the original SRM benchmarks provided in Chen et al., 2015.

. . Main experiments

Experiment 1 uses the experimental procedure described previously to assess accuracy gains provided by alignment methods with respect to anatomical alignment when applied to whole-brain images. We benchmarked the five methods described in Section 6.2.2: piecewise Procrustes, searchlight Procrustes, piecewise Optimal Transport, piecewise SRM, and intra-subject alignment, with relevant hyperparameters selected as described previously. Results of this benchmark, comprising five tasks from four datasets, are presented in Section 6.3.1. For each method, we also assessed its computation time relative to piecewise Procrustes alignment. Piecewise Procrustes provides a reasonable computational baseline as it is the only considered alignment method that does not include a hyperparameter and therefore shows a stable computation time across experiments. We estimate the noise ceiling for this task as within-subject decoding accuracy. Within-subject decoding was calculated separately for each subject as the average leave-one-session-out decoding accuracy. We can then directly compare this accuracy value to the inter-subject decoding accuracy when that subject is the target-that is, the left-out-subject. The difference between within-and anatomical inter-subject decoding accuracies, then, is a good approximation of the decoding accuracy lost due to inter-subject variability; therefore, it provides a range of possible accuracy gains that can be expected from functional realignment.

We then conducted Experiment 2 to understand how whole-brain results compare to ROI-based analyses. Specifically, we replicated Experiment 1 within selected ROIs, such that local alignment methods were applied directly without any aggregation scheme. ROIs were chosen based on a priori expectations of each decoding task (see Section 6.2.5 for details for each dataset). Results from Experiment 2 are shown in Section 6.3.2.

Experiment 3 tackles the notoriously hard problem of understanding how each of the considered methods align subjects by examining qualitatively their impact on activity patterns across individuals. To "open the black-box," we reused IBC dataset full-brain alignments learned in Experiment 1. Specifically, we consider the transformation to sub-04's activity pattern from all other subjects' functional data. With these transformations, we align two contrasts from the IBC dataset: Rapid Serial Visual Presentation of words (RSVP language task) and sound listening. Finally, we run a group conjunction analysis [START_REF] Heller | Conjunction group analysis: An alternative to mixed/random effect analysis[END_REF] on these aligned contrasts and visualize the results. This statistical analysis, more sensitive than its random effect equivalent on small samples, allows one to infer that every subject activated in the region with a proportion γ showing the effect considered. Here we use γ = 0.25 to recover all regions selectively activated by at least a few subjects, and we show in Section 6.3.3 how this group functional topography is modified by alignment.

. .

Control analyses

In addition to our three main experiments, we ran three additional control analyses on the IBC dataset. First, we assess the impact of the brain parcellation and its resolution on piecewise alignment by comparing whole-brain decoding accuracy for IBC tasks using piecewise Procrustes across both data-driven and pre-defined parcellations (Section 6.5.3). As piecewise SRM displays an interaction between parcellation resolution and SRM's hyperparameter k, we ran a grid search for this algorithm to determine its optimal parameters (Section 6.5.4).

Second, we calculated inter-subject decoding performance after applying Gaussian smoothing kernels of several widths on both IBC dataset decoding tasks (Section 6.5.5). Gaussian smoothing is an interesting baseline, as it is commonly used to facilitate inter-subject comparisons by smoothing over residual variance in functional mappings. In a third control experiment, we assessed the impact of whether data is represented on the surface or the volume and resolution on decoding accuracy in the IBC Rapid-Serial-Visual-Presentation (RSVP) language task (Section 6.5.6).

. .

Datasets and preprocessing

In order to assess the performance of each functional alignment method in a range of applications, we searched for publicly accessible datasets that included both a task suitable to learn the alignment . Table 6.1: Datasets used to benchmark alignment methods. The four datasets used in this benchmark, where each dataset consists of S subjects. We note the alignment data used for each dataset and p the number of timeframes it comprises. These datasets show the range of possible task structures which work for alignment-from static images for BOLD5000, to statistical contrast maps for IBC, to complex audio or audio-visual movies for Forrest and Courtois Neuromod. A full listing of included 53 contrast maps for IBC is included in Section 6.5.7. We also include the decoding task(s) used for each dataset. Each subject's decoding task data comprises d images evenly divided across the listed stimulus categories (except for BOLD5000 categories that are unbalanced). Of note, IBC dataset has two independent decoding tasks, bringing the total number of decoding tasks to five.

(e.g., naturalistic or localizer protocols) and an independent decoding task on which we could evaluate functional alignment performance.

After discarding datasets where we could not obtain above-chance accuracy levels for within-subject decoding, we retained four datasets: BOLD5000 [START_REF] Chang | BOLD5000, a public fMRI dataset while viewing 5000 visual images[END_REF], Courtois NeuroMod [START_REF] Boyle | The Courtois project on neuronal modelling: 2020 data release[END_REF], Individual Brain Charting (IBC; [START_REF] Pinho | Individual Brain Charting, a high-resolution fMRI dataset for cognitive mapping[END_REF], and Study Forrest [START_REF] Hanke | A studyforrest extension, simultaneous fMRI and eye gaze recordings during prolonged natural stimulation[END_REF]. For the IBC dataset, we included both a language (RSVP language) and auditory (Sounds dataset) decoding task, yielding a total of five decoding tasks that probe visual, auditory, and language systems. For a complete description of the alignment and decoding data included in each experiment, please see Table 6.1. BOLD5000, StudyForrest and Courtois NeuroMod were preprocessed with fMRIprep [START_REF] Esteban | fMRIPrep: a robust preprocessing pipeline for functional MRI[END_REF], while IBC data were preprocessed using an SPM-based pipeline as described in [START_REF] Pinho | Individual Brain Charting, a high-resolution fMRI dataset for cognitive mapping[END_REF] A complete description of the fMRIprep preprocessing procedures is available in the appendix (Section 6.5.8). Preprocessed data were then masked using a gray matter mask, detrended, and standardized using Nilearn [START_REF] Abraham | Machine learning for neuroimaging with scikit-learn[END_REF]. To reduce the computational cost of functional alignment, we downsampled all in-cluded datasets to 3mm resolution. Both alignment and decoding task data were then additionally smoothed with a 5mm Gaussian kernel. A general linear model (GLM) was fit to each decoding task run to derive trial-specific beta maps (or condition-specific beta maps for the Courtois Neuromod and IBC Sounds tasks), which were carried forward for inter-subject decoding.

As described in Section 6.2.3, Experiment 2 uses pre-defined regions of interest (ROIs). We selected large, task-relevant ROIs to ensure that sufficient signal was available when decoding. A large visual region, extracted from the Yeo7 [START_REF] Buckner | The organization of the human cerebellum estimated by intrinsic functional connectivity[END_REF] atlas, was used for the visual tasks in BOLD5000 and Courtois NeuroMod. For Forrest and IBC Sounds-which are auditory tasks-we took the Neuroquery [START_REF] Dockès | NeuroQuery, comprehensive meta-analysis of human brain mapping[END_REF] predicted response to the term "auditory". We then compared this predicted response with the BASC (Bootstrap Analysis of Stable Clusters) atlas (at scale 36; [START_REF] Bellec | Multi-level bootstrap analysis of stable clusters in resting-state fMRI[END_REF] and took the parcel most overlapping with the predicted response; namely, parcel 25. For IBC RSVP, which is a reading task, we extracted the BASC (at scale 20) atlas components most overlapping with MSDL (Multi-Subject Dictionary Learning; [START_REF] Varoquaux | Multi-subject dictionary learning to segment an atlas of brain spontaneous activity[END_REF] atlas parcels labeled as left superior temporal sulcus, Broca and left temporo-parietal junction: namely, the 8 and 18 BASC components. We then kept only the largest connected component. All included ROIs are displayed in Figure 6.5.

. .

Software used and released

With the exception of Courtois Neuromod, all other included datasets are available on OpenNeuro [START_REF] Poldrack | Toward open sharing of task-based fMRI data: the OpenfMRI project[END_REF] under the following identifiers: ds000113 (Study Forrest), ds001499 (BOLD5000), and ds002685 (IBC). Courtois Neuromod 2020-alpha2 release will be available under a data usage agreement as outlined on https: //docs.cneuromod.ca.

Our pipeline entirely relies on open-source Python software, particularly the SciPy stack [START_REF] Virtanen | SciPy 1.0: fundamental algorithms for scientific computing in Python[END_REF]. All included methods are implemented in fmralign or accessed through their original, open source implementations, as described in Section 6.2.2. To ease replication and extension of the presented results, we have created the fmralign-benchmark repository under https://github.com/ neurodatascience/fmralign-benchmark. This repository provides an implementation of the procedures adopted in these experiments, building on fmralign and previously cited tools.

-5% -2% 0% 2% 5% 10% In the left panel, we show decoding accuracy improvement for each of the considered functional alignment methods at the whole-brain level of analysis. Each dot represents a single subject, and subjects are colored according to their decoding task. To aggregate results across datasets, we show accuracy scores after subtracting inter-subject decoding accuracy for the same leave-one-subject-out cross-validation fold with anatomical-only alignment. In the right panel, we show the computational time for each of the considered methods. All computation times are depicted as relative to piecewise Procrustes. For both panels, each box plot describes the distribution of values across datasets, where the green line indicates the median. We see that piecewise Procrustes, Optimal Transport, and intra-subject alignment consistently improve decoding accuracy across datasets. We also see that piecewise Optimal Transport is 10 times slower, and searchlight Procrustes is more than 30 times slower than piecewise Procrustes. . . .

Functional alignment improves inter-subject decoding

The left panel of Figure 6.3 displays absolute decoding accuracy change brought by each functional alignment method relative to anatomical alignment on whole-brain images. As every method is trained and tested on the same cross-validation folds, we report the fold-by-fold performance change. The right panel displays each method's relative computation time compared to piecewise Procrustes alignment. For each panel, each point displayed is the result for one leave-one-subjectout cross validation fold, and each color corresponds to one of the five decoding tasks. Note that these timings are based on available implementationsfmralign for piecewise alignment methods, pymvpa2 for searchlight, and BrainIAK for SRM-and are therefore subject to change as implementations improve. Nonetheless, these estimates provide insight into the current state-of-the-art.

-Overall, we can conclude that most functional alignment methods consistently improve decoding accuracy, with gains from 2-5% over baseline. This trend is relatively consistent across datasets and target subjects. Thus, alignment methods manage to reliably reduce individual signal variability while preserving task-relevant information in a variety of conditions. Although we see that there is noticeable variance in performance across data sets, these methods on average show significant effects on inter-subject decoding accuracies. As reported in Table 6.2, baseline accuracy is around 20% above chance on average. In this setting, the observed 5% average improvement across datasets is a substantial increase in performance.

In order to provide further context on these results, we also estimated the noise ceiling for inter-subject decoding. Figure 6.4 reports that across datasets, the leave-one-session-out (i.e., within-subject) decoding accuracy for the target subject is on average 8.5% higher than the corresponding leave-one-subject-out (i.e., inter-subject) decoding accuracy after anatomical alignment for the same target subject. Thus, we expect that functional alignment methods will achieve at most an 8.5% increase in inter-subject decoding accuracy over anatomical alignment. In this light, we can see that the best functional alignment method recovers more than half of the decoding accuracy lost to intersubject variability. Additional control analyses suggest that this effect cannot be explained by smoothing (Section 6.5.5). We further find that the presented results are largely insensitive both to whether the data is represented on the cortical surface or in volumetric space, and to the parcellation resolution used (see Section 6.5.6).

-Procrustes alignment results in better inter-subject decoding accuracies when performed in a piecewise as compared to a searchlight approach. Specifically, searchlight shows lower decoding accuracies on average, suggesting that its internal averaging destroys part of the signal structure recovered by Procrustes. With respect to computational cost, we can see that searchlight Procrustes is 25 times slower on average than piecewise Procrustes. These results suggest that piecewise alignment is a better choice when calculating functional alignment transformations on full-brain data. Moreover, Section 6.5.3 shows that gains to expect from piecewise alignment are largely insensitive to the resolution and type of parcellation used; i.e., taken from an atlas or learned directly from subject data.

The two best performing methods also use a piecewise aggregation scheme. Specifically, Piecewise SRM and Optimal Transport yield the highest decoding scores with a slightly lower standard deviation in accuracy scores than Procrustes. Piecewise SRM is faster to train than piecewise Procrustes for a fixed set of hyperparameters; however, identifying the ideal hyperparameters for a new dataset requires a computationally costly grid-search. Our results (see Section 6.5.4)
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Within -Inter-subject Decoding tasks Neuromod Forrest IBC Sounds IBC RSVP Figure 6.4: Within-subject minus inter-subject decoding accuracy. We show the difference between the average leave-one-session-out within-subject decoding accuracy and anatomically-aligned leave-one-subjectout inter-subject decoding accuracy, when that target subject is left-out. Thus, each dot corresponds to a single subject, and the dot's color indicates the decoding task. Of note, BOLD5000 was dropped as it did not have independent folds, and therefore could not be used for within-subject cross-validation. The box plot describes the distribution of differences, where the green line represents the median value. We argue this difference approximates the effects of inter-individual variability, and so the best average accuracy improvement we can hope for using functional alignment is around 9%.

suggest that, in general, a large number of components k and a highresolution parcellation are likely to give reasonable performance across datasets.

The second best performing method, Optimal Transport, gives nontrivial accuracy gains in most configurations and only rarely decreases decoding accuracy, likely because of the stronger constraints that it imposes. However, this extra-performance comes at a computational cost: it is on average 7 times slower than Procrustes. For data sets without sufficient data or computational power to perform a hyper-parameter grid search for piecewise SRM, we suggest that Optimal Transport offers robust decoding performance with little hyper-parameter tuning. It remains, however, more computationally costly than the reference implementation of piecewise Procrustes.

-

The intra-subject alignment approach differs from other considered functional alignment methods in that it learns mappings between the alignment data and decoding task data, with the assumption that these mappings can be generalized across subjects. Our results support this assumption, although this method yields gains half as large as the best performing alignment method and comes with a significant computational cost. Part of this cost can be accounted for by the increase in the number of parcels that are used to preserve signal specificity. Nonetheless, using task-specific mappings as a functional alignment method suggests that future work on refining related methods may be a promising direction of research.

. .

Whole-brain alignment outperforms ROI-based alignment

The left panel of Figure 6.5 displays the performance of each functional alignment method relative to anatomical alignment within task-relevant ROIs. The right panel displays each method's relative computation time compared to piecewise Procrustes alignment. When visually compared to Figure 6.3, ROI-based decoding accuracies appear to be slightly lower than whole-brain decoding accuracies for most of the considered methods. We directly compare ROI-based and whole-brain alignment in a supplementary analysis, depicted in Figure 6.7, confirming that ROI-based decoding accuracies are in fact lower on average for the datasets considered in this work. Our results support previous work from the inter-subject decoding literature [START_REF] Chang | A Sensitive and Specific Neural Signature for Picture-Induced Negative Affect[END_REF]Schrouff et al., 2018a) and suggest that full-brain piecewise alignment yields the best overall decoding pipeline, though we note that this conclusion may change depending on the exact research context.

Overall, we find that the best performing methods bring a 3-5% improvement in decoding accuracy at the ROI level of analysis. Specifically, Optimal Transport is on average the best performing method, with a median accuracy increase of 5% within task-relevant ROIs.

Here, we see that baseline decoding accuracy is less than 10 % above chance in all datasets (except for Courtois Neuromod; see Table 6.3 for exact accuracy values). Thus, the 5% accuracy increase brought by Optimal Transport represents a strong effect. SRM yields the second-best performance within ROIs, showing reasonable decoding accuracy gains on most datasets. It shows more variance across datasets, however, than the other considered methods. In particular, SRM decreases inter-subject decoding accuracy on the visual ROI for Courtois Neuromod, with accuracy values dropping by approximately -20% compared to anatomical alignment (see Table 6.3). Performance was not significantly improved by using a higher number (up to 600) of components, highlighting the unique difficulty in identifying well-suited hyper-parameters for SRM. Interestingly, Procrustes shows substantially lower performance on average in the ROI compared to the whole-brain level of analysis, largely due to its sensitivity to high-variance voxels.

Computationally, we see that SRM is the fastest method and runs roughly 3 times faster than Procrustes, while Optimal Transport remains 10 times slower than Procrustes. We also note that-on averageintra-subject alignment does not show increased inter-subject decoding accuracy within task-relevant ROIs. We suspect that this is likely because when restricting the learned relationship between data types (e.g., movie-watching to classification task data) to a single ROI, the low number of predicted features precludes the identification of stable multivariate patterns that can transfer across subjects. . .

Qualitative display of learned alignments

Understanding the effects of high-dimensional transformations-such as those used in functional alignment-is non-trivial. To aid in this process, we "open the black box" by functionally aligning a group of subjects to an individual target subject's functional space and depict the resulting maps in Figure 6.6. Here, we reuse whole-brain alignments learned in Experiment 1. We also display the ground-truth individual activation maps in panel A, in order to better highlight how each method affects the signal distribution. As a reminder, the contrast data displayed here was not used to learn alignments, so it means that alignment learned on various task data, not specifically related to language nor audition, carried enough information for fine-grain registration of these networks. We can see that overall, functional alignment methods enhance group-level contrasts compared to anatomical-only alignment; i.e., activation maps are more similar across functionally-aligned subjects. This result is not at the expense of signal specificity, since the aligned group topographies are still sharp. From the comparison between panels A and B, we can also conclude that alignment methods bring group topography much closer to the targeted subject topography across many contrasts. Nonetheless, we can still observe that there seems to be a trade-off between sharpness of activation (low smoothness of image, due to low variance across aligned subjects) with Optimal Transport, and accuracy of their location compared to the target ones (low bias introduced by the matching) with searchlight Procrustes.

. In this work, we have proposed a new procedure to measure the information recovered through functional alignment using inter-subject decoding, and we subsequently used this framework to benchmark five functional alignment methods on five distinct decoding tasks across four publicly available datasets. In general, we find that functional alignment improves inter-subject decoding accuracy in both whole-brain and ROI settings. These results, combined with our qualitative visualization of the effects of functional alignment on signal structure, suggest that functional alignment improves inter-subject correspondence while matching signal to realistic functional topographies. This finding extends and supports conclusions from earlier work [START_REF] Güçlü | Deep Neural Networks Reveal a Gradient in the Complexity of Neural Representations across the Ventral Stream[END_REF][START_REF] Guntupalli | A Model of Representational Spaces in Human Cortex[END_REF].

At a whole-brain scale, the best performing methods are piecewise SRM, piecewise Optimal Transport, and piecewise Procrustes which each bring 5% improvement over this baseline on average. As the baseline inter-subject decoding accuracy is roughly 20% above chance across datasets (Table 6.2), this 5% increase represents a substantial improvement. We also note that this represents recovering more than half of the accuracy lost to inter-subject variability. The considered functional alignment methods also improve decoding performance when applied without an aggregation scheme (i.e., piecewise or searchlight aggregation) within task-relevant ROIs. Here, Optimal Transport and SRM bring 5% and 3% improvement in inter-subject decoding accuracy, respectively, over a baseline accuracy which is on average 10-15% above chance across datasets (Table 6.3). From our control analyses, we observe that these increases in decoding accuracy were reliably greater than the effect of Gaussian smoothing (see section 6.5.5). In a minimalistic replication, this effect seems to hold for both volumetric and surface data and at different parcellation resolutions (see section 6.5.6; cf. [START_REF] Oosterhof | A comparison of volume-based and surfacebased multi-voxel pattern analysis[END_REF].

Our benchmark also brings new evidence that the latent correspondences that can be learned between different tasks display less interindividual variability than the task-specific activation maps [START_REF] Tavor | Task-free MRI predicts individual differences in brain activity during task performance[END_REF]. Experiment 1 indeed showed that such correspondences could even be used at a whole-brain scale to transfer signals across subjects to solve an inter-subject decoding problem, which is-to the best of our knowledge-an original experimental result. By releasing efficient and accessible implementations of these methods in the Here, we only show contrast maps from a sub-region of the temporal lobe containing contrast-relevant information. Note that this sub-region differs slightly between the Sounds and RSVP task. (B) Visualization of a group conjunction analysis of all IBC subjects after alignment to the target subject for each of the considered methods. We used a γ value of 0.25 in the conjunction analysis, which corresponds to at least 25% of the IBC sample showing activation in this temporal region after alignment. For ease of comparison, the color bar for each contrast and method was scaled to show the full range of values (i.e., the color bar spans different intervals across methods and contrasts) and so is not included here. All displayed maps were thresholded at 1/3 of their maximum value. We see that functional alignment yields stronger contrasts overall when compared to anatomical alignment. Piecewise Procrustes and piecewise Optimal Transport yield less smooth representations, better preserving signal specificity.

fmralign package, we hope to facilitate future cognitive neuroscience research using functional alignment methods.

. . Combining local alignment models

Across datasets, we find that the spatial framework of alignment and decoding significantly affects subsequent performance. Notably, piecewise Procrustes outperforms searchlight Procrustes, both in terms of accuracy and computational performance. The methodological difference between these aggregation schemes is whether alignment transformations are learned within overlapping neighborhoods (as in searchlight Procrustes) or not (as in piecewise Procrustes). Searchlight alignment suffers in that the overlap between searchlights requires multiple computations for a given and the aggregated transformation is no longer guaranteed to reflect properties of the original transforms, e.g., orthogonality. Although piecewise alignment may theoretically introduce discontinuities at parcel boundaries, in our results we do not find evidence of this effect and indeed find that piecewise aggregation overall benefits decoding performance. Importantly, we found that the improved performance of piecewise Procrustes was largely insensitive to parcel size and definition (see Figure 6.8).

. . Evaluating alignment performance with decoding

We use inter-subject decoding to quantify the amount of mutual information recovered by functional alignment methods. In general, identifying publicly available datasets with tasks appropriate for both inter-subject decoding and functional alignment remains a challenge. We had difficulties in achieving sufficient baseline accuracy levels in these and other datasets, and we therefore chose not to include them in the present study. This suggests that the amount of signal discriminating complex experimental conditions is not strong enough to find inter-subject patterns robust to variability in many publicly available datasets, likely due to limited sample sizes and unoptimized experimental designs. We hope that broader recognition of the benefits of using inter-subject decoding to uncover neural coding principles across subjects-using functional alignment if necessary-will encourage investigators to collect and share more datasets supporting this type of analysis. Greater data availability will encourage robust, principled comparisons of alignment methods and foster progress in the field.

. . Study limitations and future directions

Although our study provides a broad evaluation of the performance of several functional alignment methods, there are several dimensions which we hope future work will better address. Notably, we did not thoroughly investigate how alignment performance is impacted by image resolution and whether data are represented on the surface or the volume. Using volumetric images downsampled to a standard resolution of 3mm isotropic enabled us to make fair comparisons across datasets at a reasonable computational cost. We also show in Section 6.5.6 that results from piecewise Procrustes alignment on the IBC dataset hold in a higher resolution, surface-based setting. Nonetheless, other functional alignment methods might show different patterns of performance in this setting or at different resolution levels. Moreover, applying these methods on high-resolution images is an exciting perspective to better understand how brain function details vary across subjects. To progress in this direction, a stronger focus on developing computationally efficient methods will be needed. The use of high-resolution parcellations-combined with more efficient implementations of piecewise Optimal Transport or a piecewise Shared Response Model-seem to be particularly promising directions.

We have not examined either the impact of alignment data on the learned transformations and whether this impact varies across cortex. That is, we could further ask whether certain kinds of stimuli may produce more accurate functional alignments for specialized functional regions. In general, the surveyed functional alignment methods view each subject alignment image as a sample, and the resulting transformation is trained to match corresponding samples across subjects. If some training images lack stable signal in a given ROI, functional alignment methods are unlikely to learn meaningful transformations in this region. Finally, this benchmark largely focussed on pairwise alignment models. Template-based models-beyond latent factor models as SRM-are an important area of research to further improve the usability of functional alignment methods, particularly in research settings comprising many subjects. In future work, we intend to address the above questions to learn more about when functional alignment methods are most appropriate.

. . .

Absolute decoding accuracy of various methods

Tables 6. ical registration by various alignment methods. This "per dataset view" highlight that gains brought by best methods are substantial improvement over baseline, especially when compared to chance.

. . Whole-brain decoding provides better accuracy than ROIbased decoding

In Figure 6.7, we compare ROI-based and whole-brain inter-subject decoding accuracy improvements for piecewise Procrustes alignment above anatomical-only alignment. We see that whole-brain alignment generally shows higher inter-subject decoding improvements compared to ROI-based alignment. As mentioned in the main text, this result supports previous work from the inter-subject decoding literature [START_REF] Chang | A Sensitive and Specific Neural Signature for Picture-Induced Negative Affect[END_REF]Schrouff et al., 2018a), and it suggests that full-brain piecewise alignment yields the best overall decoding pipeline. . .

Parcellation has limited impact on decoding accuracy

To assess the impact of the parcellation used on piecewise alignment results, we compared decoding accuracy gains while varying the parcellation kind and resolution. First, we consider the multi-resolution [START_REF] Schaefer | Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic Functional Connectivity MRI[END_REF] atlas, which was learned through a gradient weighted Markov random field method on resting state data from 1489 subjects. We compare this a priori parcellation to two parcellations learned directly on the subject's alignment data after 5mm fwhm Gaussian smoothing: K-means or Hierarchical K-means. All these parcellations were taken at ten resolutions from 100 to 1000 parcels.

As hierarchical K-means may be less familiar to readers, we briefly describe it in more detail here. This method is a variant of K-means, aimed specifically at obtaining more balanced parcels. To identify k parcels, we first apply K-means to cluster the voxels in √ k big clusters. Each of these "big clusters" is then clustered again in √ k to obtain a total of k smaller, well-balanced parcels. In this experiment, K-means and Hierarchical K-means implementations used are respectively from scikit-learn and fmralign, and fitted as part of fmralign alignment functions on the source subject data. We consider the impact of parcellation type (the a priori Schaefer atlas or learned directly on the data with k-means or hierarchical k-means) and resolution (from 100 to 1000 parcels). Results are shown for the IBC RSVP and IBC Sounds decoding tasks. Each line represents the average accuracy improvement for piecewise Procrustes over standard, anatomical-only alignment, and the confidence band represents the range of accuracy improvements seen across all IBC subjects. Accuracy improvements are calculated by subtracting anatomical-only inter-subject decoding accuracy scores for the same leave-one-subject-out cross-validation fold. We see that parcellation type and resolution show limited impact on accuracy gains.

We plot piecewise Procrustes accuracy improvements for these three parcellation methods and ten resolutions in Figure 6.8. Here, we only show the IBC Sounds and IBC RSVP decoding tasks to ease in interpretation. Overall, we observe on these two tasks that the type and resolution of parcellation used does not have a strong impact on accuracy improvements above anatomical-only alignment. We therefore suggest that piecewise alignment can be used with confidence that the parcellation choice won't strongly impact its results.

. .

Grid-search of Piecewise SRM hyperparameters

As a piecewise implementation of SRM is a novel contribution from this work, we had no prior knowledge on how to properly set hyperparameters from this method (clustering type and resolution as well as the number of components to set for each local SRM).

For the type of clustering, we limited ourselves to a pre-computed parcellation (the Schaefer atlas) available at various resolutions. This is based on the intuitions acquired on Procrustes (see Section 6.5.3) that the parcellation type was not of utmost importance to decoding results. We ran a cross-validation on the two remaining parameters. We used Schaefer atlas at resolution: [100,300,500,700] while our number of We considered a grid of 4 parcellations (Schaefer atlas at resolution 100, 300, 500 and 700) and 4 different values of k (number of SRM components) for each model fitted on a parcel. We ran our inter-subject decoding pipeline on four inter-subject decoding task (in columns, among those used in the main benchmark). We report here the decoding accuracy improvement over anatomical baseline across datasets for each set of parameter (in line). Although we didn't have the computational means to run an extensive grid-search, we can already conclude that high-resolution parcellations (and thus more fitted local SRMs) yield a higher decoding gain as long as they come with enough component. Decoding accuracy is also positively linked with K, probably up to a plateau that we did not clearly reach with our limited grid. For the main benchmark, we retained the last line model (K = 50, Schaefer 700).

components ranged from [5,25,35,50]. Figure 6.9 present the results of this cross-validation, that led us to chose Schaefer atlas 700 and 50 components as hyperparameters for our main experiments. For six smoothing kernels fwhm, we show inter-subject decoding accuracy scores after subtracting anatomical-only inter-subject decoding accuracy for the same leave-one-subject-out cross-validation fold.

. . Functional alignment is not merely smoothing

Each dot represents a single subject, and subjects are colored according to their decoding task. We also show differences in decoding accuracy scores for the reference functional alignment method piecewise Procrustes, again as compared to anatomical-only alignment. Box plots describe the distribution of values for a smoothing kernel or an alignment method, and the green line indicates the median. We see that Gaussian smoothing does not show the same pattern of decoding accuracy differences as the reference functional alignment method.

seem to smooth the signal across voxels, but instead preserve the signal specificity while matching its geometry with the target subject functional topography. Specifically, we compared decoding gains from six different Gaussian smoothing kernels to those obtained through the reference method piecewise Procrustes alignment. The results displayed in Figure 6.10 clearly support previous findings [START_REF] Guntupalli | A Model of Representational Spaces in Human Cortex[END_REF] that smoothing does not improve inter-subject decoding performance-and therefore recover mutual information-in the same way that functional alignment.

. .

Impact of the data representation and resolution

Oosterhof et al., 2011 argued that functional alignment benefits from working with a representation of the fMRI signal on the cortical surface [START_REF] Coalson | The impact of traditional neuroimaging methods on the spatial localization of cortical areas[END_REF]. Relatedly, we would also expect that the resolution of the data representation-whether in the surface or the volume-will impact the quality of the alignment learned.

To assess the dependence of our 3mm volumetric results presented in the main text on sampling parameters, we replicated our inter- For the IBC RSVP task, we compare piecewise Procrustes decoding accuracy scores to anatomical-only alignment. Each dot represents an IBC subject, where their difference score is calculated by subtracting the inter-subject decoding accuracy for anatomical-only alignment from the piecewise Procrustes alignment accuracy score for the same leave-one-subject-out cross-validation fold; i.e., where they are the left-out subject. We compare these difference scores, as calculated using data in the volume (3mm resolution), to data on the high-resolution cortical surface (fsaverage7). Box plots describe the distribution of values for a data representation, and the green line indicates the median. We see that the high-resolution surface representation yields a moderate gain of decoding accuracy, compared to 3mm isotropic volumetric representation.

subject decoding framework with the IBC RSVP language task data on a high-resolution cortical surface representation(fsaverage7)(obtained through freesurfer surfacic projection of full-resolution raw images in their respective subject space, later on mapped to the common surfacic template). This surface mesh includes 168k cortical nodes per hemisphere, which we divided into 350 parcels per hemisphere using Schaefer atlas at scale 700.

We provide results for the inter-subject decoding accuracy gains seen with the reference functional alignment method of piecewise Procrustes over standard, anatomical-only alignment. We had to limit to this setting because (i) replicating this analysis on every dataset would represent an important amount of processing work, and (ii) working on other methods than piecewise Procrustes on this very large data is computationally prohibitive.

The results displayed in Figure 6.11 show that although decoding gains are a little higher using high-resolution surface-based representation, they remain in the same range as the volume-based representation. This shows that a 10-fold higher resolution can help match more precisely topographies across subjects (and reduce the decoding variance as a consequence), but no important marginal gains can be expected from it. In the end, the signal available for use is bounded by the same rough limitations: test-retest reliability in each subject.

. . IBC alignment data explained

In this work, 53 contrasts were pulled together are used as alignment for IBC dataset. The contrasts are common to all subjects and taken from both HCP and ARCHI protocol. To know more, please visit the relevant IBC documentation.

. . fMRIprep preprocessing

Results included in this manuscript come from preprocessing performed using fMRIprep [START_REF] Esteban | fMRIPrep: a robust preprocessing pipeline for functional MRI[END_REF], which is based on Nipype 1.5.0 [START_REF] Gorgolewski | Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python[END_REF].

The T1-weighted (T1w) image was corrected for intensity non-uniformity (INU) with N4BiasFieldCorrection [START_REF] Tustison | N4ITK: improved N3 bias correction[END_REF], distributed with ANTs 2.2.0 (Avants et al., 2008, RRID:SCR_004757), and used as T1wreference throughout the workflow. The T1w-reference was then skullstripped with a Nipype implementation of the antsBrainExtraction.sh workflow (from ANTs), using OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w using fast (FSL 5.0.9, RRID:SCR_002823, [START_REF] Zhang | Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm[END_REF]. Volume-based spatial normalization to one standard space (MNI152NLin2009cAsym) was performed through nonlinear registration with antsRegistration (ANTs 2.2.0), using brain-extracted versions of both T1w reference and the T1w template. The following template was selected for spatial normalization: ICBM 152 Nonlinear Asymmetrical template version 2009c (Fonov et al., 2009, RRID:SCR_008796;TemplateFlow ID: MNI152NLin2009cAsym).

For each subject's BOLD runs (across all tasks and sessions), the following preprocessing was performed. First, a reference volume and its skull-stripped version were generated by aligning and averaging 1 single-band references (SBRefs). A B0-nonuniformity map (or fieldmap) was estimated based on two (or more) echo-planar imaging (EPI) references with opposing phase-encoding directions, with 3dQwarp Cox and Hyde, 1997 (AFNI 20160207). Based on the estimated susceptibility distortion, a corrected EPI (echo-planar imaging) reference was calculated for a more accurate co-registration with the anatomical reference. The BOLD reference was then co-registered to the T1w reference using bbregister (FreeSurfer) which implements boundary-based registration [START_REF] Greve | Accurate and robust brain image alignment using boundary-based registration[END_REF]. Co-registration was configured with six degrees of freedom.

Head-motion parameters with respect to the BOLD reference (transformation matrices, and six corresponding rotation and translation parameters) are estimated before any spatio-temporal filtering using mcflirt (FSL 5.0.9, Jenkinson et al., 2002).

First, a reference volume and its skull-stripped version were generated using a custom methodology of fMRIprep. The BOLD time-series (including slice-timing correction when applied) were resampled onto their original, native space by applying a single, composite transform to correct for head-motion and susceptibility distortions. These resampled BOLD time-series will be referred to as preprocessed BOLD in original space, or just preprocessed BOLD. The BOLD time-series were resampled into standard space, generating a preprocessed BOLD run in MNI152NLin2009cAsym space. First, a reference volume and its skull-stripped version were generated using a custom methodology of fMRIprep.

All resamplings can be performed with a single interpolation step by composing all the pertinent transformations (i.e., head-motion transform matrices, susceptibility distortion correction when available, and co-registrations to anatomical and output spaces). Gridded (volumetric) resamplings were performed using antsApplyTransforms (ANTs), configured with Lanczos interpolation to minimize the smoothing effects of other kernels [START_REF] Lanczos | Evaluation of Noisy Data[END_REF].

Many internal operations of fMRIprep use Nilearn 0.6.2 (Abraham et al., 2014b, RRID:SCR_001362), mostly within the functional processing workflow. For more details of the pipeline, see the section corresponding to workflows in fMRIprep's documentation.

The above boilerplate text was automatically generated by fMRIprep with the express intention that users should copy and paste this text into their manuscripts unchanged. It is released under the CC0 license.

In this thesis, we have proposed a new local functional alignment method using Optimal Transport and a new Piecewise aggregation scheme to perform whole-brain alignment. Combined with the templating method we proposed, this enables to perform functional alignment at common resolution on a group of subjects to reduce intersubject variability. We also introduced a Piecewise Shared Response Model which is another instance of the functional alignment concept using aggregated latent factor models and compared it with an original Intra-subject alignment scheme. We produced a rigorous and thorough benchmark of several alignment methods using inter-subject decoding on five decoding tasks from four datasets. This allowed us to measure the ability of alignment methods to transfer signal across subjects while preserving signal specificity in a range of cognitive tasks considered in the field. This benchmark enables us to conclude that several alignment methods indeed hold the potential to handle inter-subject variability. The alignment methods compared were able to recover more than half of decoding accuracy lost to variability. We hope that this benchmark will help neuroscientists to get a clearer account of available alignment methods performance to be expectedand their running cost-as well as methodological choices to be made. Hopefully, this will help disseminate alignment that indeed could be a useful analysis step in many studies to strengthen group statistical conclusions, help in precise brain-mapping endeavors and ultimately benefit translational research. We especially focused on releasing efficient and well-documented open-source implementations of these ideas, as we believe this is key to foster their broader use.

The biggest challenge we encountered during this thesis is data availability and disparity. While we feel lucky to have been able to investigate this topic (intensively relying on datasets that were acquired just prior or during this thesis work) we want to point that the scarceness of such resources and their design were important constraints to design and realize our experiments. Many interesting ideas will remain impossible to test and use in this field until bigger deep phenotyping datasets become available. Similarly, a significant portion of this thesis work was spent on screening and analyzing numerous datasets in order to find the rare appropriate ones for our experiments. We 94 acknowledge this is a common problem in fMRI studies and one that is hard to solve. Additionally, fMRI data are heavy and alignment is a data-driven process relying on in-depth individual characterization and thus requires a significant amount of computation, let alone running those methods thousands of time for benchmarking purposes. We were lucky to benefit from INRIA's and Parietal's important computing resources and parallel computing and software expertise, which helped alleviate this problem.

A second important challenge during this thesis was the conceptual inconsistency observed in the literature pertaining to variability and ways to handle it. As a matter which is hard to study and model, several related conceptual frameworks coexisted without being related or compared in any meaningful ways. As a consequence, several dozens of methodological advances have been proposed without being properly compared with each other. Alignment methods were introduced with metrics and baselines focused on algorithmic validation, and the overall foundations for methodological developments in this field are unsteady. This constrained our work to focus heavily on empirical validation, as a necessary foundation for later well-motivated developments.

Although Chapter 6 provides a comprehensive benchmark of several functional alignment methods, there are several dimensions which we hope future work will better address to improve our understanding of those methods. Notably, we did not thoroughly investigate how alignment performance is impacted by image resolution and whether data are represented on the surface or the volume. Using volumetric images downsampled to a standard resolution of 3mm isotropic enabled us to make fair comparisons across datasets at a reasonable computational cost. We also show in Section 6.5.6 that results from piecewise Procrustes alignment on the IBC dataset hold in a higher resolution, surface-based setting. Nonetheless, other functional alignment methods might show different patterns of performance in this setting or at different resolution levels. Moreover, applying these methods on high-resolution images is an exciting perspective to better understand how brain function details vary across subjects. To progress in this direction, a stronger focus on developing computationally efficient methods will be needed. The use of high-resolution parcellations-combined with efficient implementations of piecewise Optimal Transport or a piecewise Shared Response Model-seem to be particularly promising directions.

We have not examined either the impact of alignment data on the learned transformations or whether this impact varies across cortex. That is, we could further ask whether certain kinds of stimuli may produce more accurate functional alignments for specialized functional regions. In general, the surveyed functional alignment methods view each subject alignment image as a sample, and the resulting transformation is trained to match corresponding samples across subjects. If some training images lack stable signal in a given Region of Interest (ROI), functional alignment methods are unlikely to learn meaningful transformations in this region. To improve our usability of alignment techniques, we ought to better understand the impact of alignment data used. More generally, our alignment proves that parcels can be characterized reasonably well by a certain number of functional dimensions, and understanding which dimensions are relevant for each parcel is an exciting brain mapping endeavor.

-

While we have shown that intersubject variability could be handled in a given dataset context, an important question to get closer to translational purposes is whether they can also help to link subjects that were not imaged in exactly the same context. Or to put it differently, how can matching based on functional characterization help deal with site-effect on top of inter-individual variability. Our benchmarking paradigm based on inter-subject decoding could be extended to address this kind of question. A compelling first step towards generalizability would be to integrate information from one deep-phenotyping dataset with another. If learned models are to be generalizable to broader subsets of the population, they should first generalize to another, similarly-sampled cohort. An important limitation is that it is especially rare to have synchronized alignment data in common across different datasets. We are thus currently exploring options to learn alignment over various cohorts of subjects by bridging some functional characterization data.

-

Latent factor models such as SRM provide an interesting way to map individual topographies inside a common group framework. Importantly, they enable to transfer information across subjects. But, beyond this pragmatic view of a common intermediate representation for computational purposes and learning, it remains an important goal to derive some group model with statistical significance that would embody the general population, or a chosen homogenous sub-group functional organization principles precisely. Although our attempts did not solve this problem yet, this is an important future direction for brain imaging statistical analysis.

During this thesis, we also explored several ideas that did not improve results.

. . Kernel Truncation for high-dimensional optimal transport

To go beyond the piecewise aggregation of local optimal transport alignments, we tried to apply kernel-truncation [START_REF] Schmitzer | Stabilized sparse scaling algorithms for entropy regularized transport problems[END_REF], in order to build a multi-scale optimal transport implementation [START_REF] Feydy | Fast and scalable optimal transport for brain tractograms[END_REF]. This method derives a coarse, low-resolution matching of histograms in a first step and then iteratively focuses on higherresolution low potential regions (regions where cost is below a given level) to try to refine the matching where it can be improved. In theory, this would enable to recover optimal whole-brain alignment across subjects at a reasonable computational cost while getting rid of potential discontinuity effects introduced by parcellation techniques. In practice, the numerical stability of this method entails a complex fine-tuning in order to reach the precision of matching required in our use-case, and we did not manage to show increased metrics using those alignments.

. . Wasserstein barycenter to build templates informed by signal geometry

As developed in Section 5.3 we tried to use Wasserstein Barycenters to improve initialization of our iterative templating scheme, by taking subjects' signals geometry into account. However, we did not manage yet to extend our use of signal dissimilarity to build a transport cost matrix-that proved very successful for pairwise alignments-to a group setting, nor to apply spatial transport in a convincing way.

. .

Hyperalignment for MEG data

In a joint work with Hugo Richard, we tried to use comparable techniques to improve Magnetoencephalography (MEG) decoding using functional alignment methods. Although the spatial resolution is much lower, which defeats part of alignment's purpose, we wanted to see if combining sensors signals across subjects would help in finding better decoding patterns. We tried to learn alignment. Although we tried several state-of-the-art methods on this problem, they didn't bring improvement.

ability to design code and infrastructure for efficient scientific collaboration. This was also a fun and collaborative way to explore a scientific problem at the edge of many core topics: machine learning, statistics, cognition, and the brain. I also took part in the analysis of several fMRI datasets. Two of those analysis were included in publications: one for Individual Brain Charting fourth dataset extension (Torre et al., in preparation), and one for an extension of Optimal Transport an additional group penalization [START_REF] Janati | Group level MEG/EEG source imaging via optimal transport: minimum Wasserstein estimates[END_REF][START_REF] Janati | Debiased sinkhorn barycenters[END_REF].

Titre : Estimation de modèle après des alignements arbitraires : application à l'imagerie médicale Mots clés : Imagerie médicale, Cartographie cérébrale, Transport optimal, Estimation statistique Résumé : Un objectif important des neurosciences cognitives est de comprendre l'organisation fonctionnelle du cerveau. Pour cela, elles s'appuient sur l'Imagerie par Résonance Magnétique fonctionnelle (IRMf), un outil puissant pour étudier le lien entre les fonctions cérébrales et les structures anatomiques sous-jacentes à une haute résolution spatiale. La variabilité fonctionnelle interindividuelle est un obstacle majeur qui limite la précision de la cartographie fonctionnelle du cerveau et la généralisation des résultats obtenus par les études d'imagerie cérébrale. Cette variabilité importante, observable entre des sujets effectuant la même tâche cognitive, va bien au-delà des variations de taille et de forme des structures anatomiques. Dans cette thèse, nous nous intéresserons à un ensemble de méthodes conçues pour traiter la variabilité fonctionnelle : l'alignement fonctionnel. Ces méthodes mettent en correspondances les signaux cérébraux de différents sujets sur la base de leur similarité fonctionnelle.

Dans un premier temps, nous présenterons les concepts et les techniques usuels pour la cartographie fonctionnelle cérébrale, ainsi que les difficultés induites par la variabilité fonctionnelle. Nous passerons également en revue les méthodes d'alignement fonctionnel existantes. Dans une deuxième partie, nous proposerons une nouvelle méthode d'alignement fonc-tionnel, basée sur le transport optimal-une théorie mathématique qui s'intéresse à la mise en correspondance de distributions de probabilité prenant en compte leur géométrie. Par ailleurs, les méthodes d'alignement fonctionnel sont appliquées localement, et de nombreux alignements locaux doivent être agrégés pour construire des alignements à l'échelle du cerveau entier. De plus, ces mises en correspondances sont définies entre deux sujets et il est nécessaire, pour aligner plusieurs sujets, de recourir à un « modèle fonctionnel de groupe » : une représentation commune sur laquelle tous les sujets peuvent être alignés. Cependant, les solutions proposées dans la littérature présentent de nombreux inconvénients et nous proposerons donc une méthode alternative d'agrégation ainsi qu'un algorithme pour concevoir des modèles de groupe. La troisième partie sera consacrée à une validation expérimentale approfondie de ces méthodes. En effet, l'alignement est rarement utilisé dans des études applicatives et sa capacité à compenser la variabilité fonctionnelle en pratique est peu documentée. Nous évaluerons sa capacité à améliorer la généralisation de modèles prédictifs à de nouveaux sujets. Dans cette configuration-dite de « décodage intersujet »-appliquée à quatre jeux de données, nous montrerons que les méthodes d'alignement ont le potentiel de compenser une part importante de la variabilité interindividuelle.

Title: Template estimation for arbitrary alignments: application to brain imaging Keywords: Medical Imaging, Statistics, Brain Mapping, Optimal transport, Estimation Abstract: An important goal of cognitive neurosciences is to understand the functional organization of the brain. It heavily relies on Functional Magnetic Resonance Imaging (fMRI), a powerful tool to investigate the link between brain function and anatomical structures at a high spatial-resolution. Functional inter-individual variability is a major obstacle limiting functional brain mapping precision and generalizability of results obtained in neuroimaging studies. This variability, observed across subjects performing the same task, goes far beyond anatomical variability in brain shape and size. In this work, we focus on a class of methods designed to address functional variability, namely functional alignment. These methods match subjects neural signals based on their functional similarity.

In a first part, we review standard functional brain mapping paradigms and techniques, as well as the challenges induced by functional variability. We additionally review existing functional alignment methods and related work, and discuss the current limitations of these approaches. In a second part, we develop a new functional alignment method, based on optimal transport-a mathematical theory interested in matching probability distributions while taking their geometry into account. Functional alignment methods are local, which means that many local alignments need to be aggregated to compose whole-brain alignments. Moreover, these methods derive pairwise matching and call for a "functional template", a common functional representation to which all subjects of a study can be aligned. To overcome limitations of existing solutions, we additionally introduce a new aggregation scheme as well as a principled template design procedure. In a third part, we turn to empirical validation of alignment performance. Indeed, these methods are seldom used in applied studies, and it is unclear to what extent they can address functional variability in typical cognitive studies. We investigate their performance to improve generalization of predictive models to new subjects. In this inter-subject decoding set-up, spanning four different datasets, we show that alignment methods hold real potential to recover an important share of prediction accuracy lost due to inter-subject variability.
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Figure 2 . 1 :

 21 Figure 2.1: Canonical Hemodynamic Response Modelling Function Friston et al., 1998. This linear combination of two Gamma functions was introduced in SPM software and is the default model of HRF.

Figure 2 . 2 :

 22 Figure 2.2: Illustrative fMRI preprocessing steps: the fMRIprep normalized pipeline. fMRI studies typically include additional structural MRI acquisition. Anatomical preprocessing(2.1.3, left side) is performed on anatomical image(s) and notably include skull-stripping, brain-tissue segmentation and spatial normalization to a given template. Functional preprocessing(2.1.4, right side) is performed on BOLD images and can notably include co-registration, mask estimation, optional registration to template space reusing normalization learned anatomical images, head-motion estimation, field inhomogeneities correction, signal cleaning.Figure replicated from fMRIprep (Esteban et al., 2019) documentation

  Figure 2.2: Illustrative fMRI preprocessing steps: the fMRIprep normalized pipeline. fMRI studies typically include additional structural MRI acquisition. Anatomical preprocessing(2.1.3, left side) is performed on anatomical image(s) and notably include skull-stripping, brain-tissue segmentation and spatial normalization to a given template. Functional preprocessing(2.1.4, right side) is performed on BOLD images and can notably include co-registration, mask estimation, optional registration to template space reusing normalization learned anatomical images, head-motion estimation, field inhomogeneities correction, signal cleaning.Figure replicated from fMRIprep (Esteban et al., 2019) documentation
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 23 Figure 2.3: General linear modelling of a task-based protocol. A design matrix is derived from regressors of interest, potential confounds (here motion confounds) as well as drift terms. For each voxel separately, a linear regression (Equation 2.1) then estimates β, the coefficients of each regressor. * denotes the matrixvector product. Figure inspired from Nilearn documentation.
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 24 Figure 2.4: Example general modelling output: Base conditions z-maps for a single subject analysis.The design matrix displayed in Figure2.3 was used to fit a GLM. Thresholded z-maps outline brain regions involved in the sensory process used. Inspired from Nilearn documentation using data from[START_REF] Pinel | Fast reproducible identification and large-scale databasing of individual functional cognitive networks[END_REF] 
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 425 Figure 2.5: Example general modelling output: Contrast z-maps for a single subject analysis. Derived using design matrix displayed in Figure 2.3. Contrasted effects of interest between several conditions outline functional process ascription. "left-right press" contrasts left and right button press events, "audio-visual" contrasts trials using audio versus video instructions. "horizontal-vertical" contrasts horizontal and vertical checkerboards trials. Inspired from Nilearn documentation using data from Pinel et al., 2007.
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 26 Figure 2.6: Individual contrast maps for 13 IBC subjects and group conjunction map. For each individual, the map is an overlaid view of 5 binarized contrast-maps derived from the HCP Working Memory task. Each contrast displays fixed effects of the corresponding label (see right) using an FDR-corrected threshold q = 0.05. The group-level conjunction map of these individual maps is shown inside the orange frame. All maps correspond to the slice x = 40 mm in the sagittal view. Courtesy of Pinho et al., 2021.

Figure 2 .

 2 Figure 2.6 illustrates variability commonly observed in fMRI studies, by comparing binarized contrast maps across 13 subjects from the Individual Brain Charting dataset (IBC). All contrasts, derived from a visual n-back task (HCP Working Memory Protocol,[START_REF] Barch | Function in the human connectome: task-fMRI and individual differences in behavior[END_REF], display a strong level of variability as well as qualitative difference between individual and group activations. For example, all visual contrasts (i.e., all but 2-back vs 0-back) probe distinct well-known visual processes[START_REF] Haxby | Distributed and overlapping representations of faces and objects in ventral temporal cortex[END_REF]. However, resulting activations are inconsistent across subjects both in terms of intensity, location, and geometry despite the fact the visual cortex, is one of the most stable regions of the brain. We can also observe that the group-level conjunction maps derived from those activation displays a qualitatively different topography, compared with individual images.

Figure 2 . 7 :

 27 Figure 2.7: Trade-offs between number of participants and amount of data per participant in selected large scale fMRI datasets. Inspired from Naselaris, Allen, and Kay, 2021.
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 28 Figure 2.8: Dictionary of 20 cognitive components summarizing 13 individual topographies in fsaverage space.(Top left/right) Labeling of left/right hemispheric cortical regions, according to the strongest dictionary loading in that region. The top-right brain maps outlined in red of each image display a median map obtained at group level, that is, a label is assigned to a component if, at least, half of the participants have that label at that location. (Bottom) The 20 cognitive components are labeled according to the contrast z-map that gets the maximum loading for that component. Overall, this figure illustrates the consistency of some components, while it outlines local and large-scale differences across the IBC participants. Courtesy of[START_REF] Pinho | Subject-specific segregation of functional territories based on deep phenotyping[END_REF] 
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 32 Figure 3.2: Schematic of alignment as a matching task in a high-dimensional space. A voxel is characterized with a series of images, each with a specific functional content. Activation patterns are represented as matrices of activation vectors. The goal of alignment is to improve correspondence between those patterns-the similarity of matrices-through a transform mapping together voxels with similar characterizations. Source: Haxby et al., 2020

  Figure 3.3: Intra-subject alignment.Using intra-subject alignment to learn piecewise correlations between a single subject's alignment and decoding task data. As with other piecewise methods, this mapping is learned separately for all parcels i . . . j of the chosen parcellation.For each parcel, we use cross-validated Ridge regression to learn the mapping between the two task conditions-alignment data A and independent decoding task data D-for this source subject. For the i-th parcel, we denote this mapping as the matrix R i . We then aggregate these piecewise predictions into a single, whole-brain prediction D. During training, this prediction can be directly compared to the ground-truth decoding data, D. At test time, we would have access to the target subject's alignment data A but not their decoding task data, D.
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 41 Figure 4.1: Mines and Factories problem. Resources must be transported from mines to factories at a minimal overall cost. The cost to transport a quantity of resource between histograms a and b is defined by a cost matrix C.

Figure 4 . 2 :

 42 Figure 4.2: Piecewise alignment methodology. In a first step, a parcellation is derived using functional clustering or a functional atlas. Local alignments are learned between subjects on each parcel. The wholebrain alignment is recomposed as a block-diagonal aggregation of local alignments.
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 43 Figure 4.3: Pairwise prediction of target subject from aligned source subject. In step (1), alignment between source and target subjects is learned on alignment data. During step (2), it is applied on additional source subject data to predict corresponding maps of target subject. These predicted maps are compared against corresponding left-out target data.

  Figure 4.4 shows that functional alignment methods generally improve prediction quality from one subject to another with respect to the identity, though not uniformly over the cortex. Sensory and motor regions typically obtain high scores, showing the stability of the signals across subjects in these areas; by contrast, other regions obtain low scores overall. Syn offers no improvement of prediction scores, nor does the optimal permutation of voxels. This means that a strict one-to-one mapping of voxels is not suitable for functional alignment. For the three other methods, we clearly see different behavior between regions with high signal-to-noise ratio (SNR) and regions with lower SNR. Figure4.5 (a-b) report the compared distributions of predictions ratios R η 2 on IBC and HCP datasets and are consistent with previous observations. Ridge and OT outperform all other methods on IBC dataset, whereas Scaled Orthogonal and Ridge perform slightly better on HCP dataset.Figure 4.5 (c) shows that entropic regularization strongly improves prediction scores up to an inflexion point.
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 44 Figure 4.4: Qualitative display of pairwise alignment methods prediction accuracy. Prediction accuracy is measured through normalized reconstruction error η 2 (A t , R, A s ) of target subject 9 using alignment with subject 15 (IBC dataset, z=-17 mm). A η 2 value of 0 means that the quality of the prediction is equivalent to predicting 0 along all the dimensions.
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 45 Figure 4.5: Quantitative assessment of pairwise alignment methods prediction accuracy.: Accuracy is measured using reconstruction ratio R η 2 , which is superior to 0 if the voxel is predicted better by aligned data than by raw data. The two left panels display R η 2 distribution across voxels when aligning 20 pairs of subject from IBC (left) and HCP (middle). (right) panel display effect of Optimal Transport entropic regularization parameter on averaged R η 2 for IBC dataset.

  Figure 5.1: Template-based prediction of left-out subject data. In step (1), a template representing all available contrasts of source subjects is learned during 4 iterations of alternate minimization. In step (2), pairwise matchings are derived from the template towards each target subject using common alignment data. In step (3), those alignments are applied to additional template data to predict corresponding maps of target subject. Predicted maps are compared against corresponding left-out target data.
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 52 Figure 5.2: Template-based prediction performance.(left) Quantitative assessment of prediction accuracy for 6 left-out subjects of IBC dataset, measured using reconstruction ratio R η 2 , i.e. gain from alignment over prediction from group average. Performance is weaker than pairwise alignment accuracy (Figure4.5) (right) Qualitative display of missing data prediction accuracy (IBC-subject 11, z=-17mm). Accuracy is measured through normalized reconstruction error η 2 (A t , R, A s ). A η 2 value of 0 means that the quality of the prediction is equivalent to predicting 0 along all the dimensions. Overall, prediction performance seems lower but more consistent than observed in pairwise prediction (Figure4.4).

Figure 5

 5 Figure 5.3: Z-scored group maps after alignment : 1 sample test of subjects data brought in common template space. All 13 IBC subjects maps were used to design a template and derive pairwise alignments of subjects toward this representation. Template and pairwise alignments were learned through various alignment methods. Identity corresponds to the euclidean mean. Displayed contrasts are (A) Match (hcp-relational protocol) (B) 0 back place(hcpwm protocol)
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 54 Figure 5.4: Wasserstein barycenter compared to euclidean mean of individual contrasts. Barycenters of "faces-shapes" contrast from HCP Emotional protocol[START_REF] Barch | Function in the human connectome: task-fMRI and individual differences in behavior[END_REF] for a variable number of HCP subjects (x-axis). Individual contrasts were resampled in fsaverage5 surface representation (10000 vertices per hemisphere). Balanced Wasserstein barycenter was calculated on the full-hemisphere histograms after histogram normalization, using a spatial cost matrix pairwise linear distance on the mesh. Activation and deactivation barycenters were calculated separately and summed.
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 61 Figure 6.1: Analysis pipeline. (A) First-level general linear models are fit for each subject to derive trial-or condition-specific beta-maps for each session. (B) These beta maps and their matching condition labels are used to train a linear SVM on the training set of subjects. (C) The trained classifier is applied to a held-out test subject, and accuracy is assessed by comparing the predicted and actual condition labels. (D) On a separate task, we compare subject-level activation patterns as trajectories in the high-dimensional voxel space. This allows us to learn functional alignment transformations that maximize the similarity of these high-dimensional spaces. (E) These voxel-wise transformations are applied on the decoding beta maps, and a new linear SVM is trained to predict condition labels. This trained classifier can then be applied to the held-out test subject and decoding accuracy assessed as in (C).
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 62 Figure 6.2: Comparing piecewise and searchlight alignment.In this illustration, transformations are derived for the blue, green, and red areas separately. Note that the piecewise alignment does not include a green area, as this corresponds to a searchlight overlapping both the red and blue areas. For non-overlapping parcels, these transformations are stacked into a larger orthogonal matrix. For the overlapping searchlight, these transformations are aggregated, with overlapping values averaged. Note that the final transformation for the searchlight alignment is no longer orthogonal in this example.
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 63 Figure 6.3: Decoding accuracy improvement and computation time after whole-brain functional alignment.In the left panel, we show decoding accuracy improvement for each of the considered functional alignment methods at the whole-brain level of analysis. Each dot represents a single subject, and subjects are colored according to their decoding task. To aggregate results across datasets, we show accuracy scores after subtracting inter-subject decoding accuracy for the same leave-one-subject-out cross-validation fold with anatomical-only alignment. In the right panel, we show the computational time for each of the considered methods. All computation times are depicted as relative to piecewise Procrustes. For both panels, each box plot describes the distribution of values across datasets, where the green line indicates the median. We see that piecewise Procrustes, Optimal Transport, and intra-subject alignment consistently improve decoding accuracy across datasets. We also see that piecewise Optimal Transport is 10 times slower, and searchlight Procrustes is more than 30 times slower than piecewise Procrustes.

Figure 6 . 5 :

 65 Figure 6.5: Decoding accuracy improvement and computation time after ROI-based functional alignment.In the left panel, we show decoding accuracy for each of the considered local functional alignment methods at the ROI level of analysis. The ROIs used for each dataset are displayed on the far right. Each dot represents a single subject, and subjects are colored according to their decoding task. Rather than raw values, we show accuracy scores after subtracting inter-subject decoding accuracy for the same leave-onesubject-out cross-validation fold with anatomical-only alignment. Note that all methods are applied without aggregation, so only the method name is given. In the right panel, we show the computational time for each of the considered methods. All computation times are depicted as relative to piecewise Procrustes. For both panels, each box plot describes the distribution of values, where the green line indicates the median.

  Figure 6.6: Comparison of alignment methods' geometrical effects. (A) Activation patterns for the Target (IBC sub-04) for two contrasts from the IBC Sounds task (Speech > Silence, Voice > Silence) and IBC RSVP task (Sentence > Word, Word > Consonants).Here, we only show contrast maps from a sub-region of the temporal lobe containing contrast-relevant information. Note that this sub-region differs slightly between the Sounds and RSVP task. (B) Visualization of a group conjunction analysis of all IBC subjects after alignment to the target subject for each of the considered methods. We used a γ value of 0.25 in the conjunction analysis, which corresponds to at least 25% of the IBC sample showing activation in this temporal region after alignment. For ease of comparison, the color bar for each contrast and method was scaled to show the full range of values (i.e., the color bar spans different intervals across methods and contrasts) and so is not included here. All displayed maps were thresholded at 1/3 of their maximum value. We see that functional alignment yields stronger contrasts overall when compared to anatomical alignment. Piecewise Procrustes and piecewise Optimal Transport yield less smooth representations, better preserving signal specificity.
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 67 Figure 6.7: Comparing ROI and whole-brain decoding accuracy after piecewise Procrustes alignment.The ROIs used for each dataset are displayed on the lower panel. In the upper panel, we show the distribution of differences in decoding accuracy scores between ROI-based and whole-brain piecewise Procrustes alignment. Each dot represents a single subject, and subjects are colored according to their decoding task. Each difference score is calculated by subtracting the inter-subject decoding accuracy for whole-brain piecewise Procrustes alignment from the ROI-based piecewise Procrustes alignment accuracy score-for the same leave-one-subject-out cross-validation fold. The box plot thus describes the distribution of differences, where the green line represents the median value. We see that decoding accuracy is lower when performed within ROIs than when performed on the whole-brain data.
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 68 Figure6.8: Effect of parcellation type and resolution on Piecewise Procrustes decoding accuracy improvement over anatomical alignment. We consider the impact of parcellation type (the a priori Schaefer atlas or learned directly on the data with k-means or hierarchical k-means) and resolution (from 100 to 1000 parcels). Results are shown for the IBC RSVP and IBC Sounds decoding tasks. Each line represents the average accuracy improvement for piecewise Procrustes over standard, anatomical-only alignment, and the confidence band represents the range of accuracy improvements seen across all IBC subjects. Accuracy improvements are calculated by subtracting anatomical-only inter-subject decoding accuracy scores for the same leave-one-subject-out cross-validation fold. We see that parcellation type and resolution show limited impact on accuracy gains.
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 69 Figure 6.9: Grid search of Piecewise SRM hyperparameters impact on decoding accuracy across datasets.We considered a grid of 4 parcellations (Schaefer atlas at resolution 100, 300, 500 and 700) and 4 different values of k (number of SRM components) for each model fitted on a parcel. We ran our inter-subject decoding pipeline on four inter-subject decoding task (in columns, among those used in the main benchmark). We report here the decoding accuracy improvement over anatomical baseline across datasets for each set of parameter (in line). Although we didn't have the computational means to run an extensive grid-search, we can already conclude that high-resolution parcellations (and thus more fitted local SRMs) yield a higher decoding gain as long as they come with enough component. Decoding accuracy is also positively linked with K, probably up to a plateau that we did not clearly reach with our limited grid. For the main benchmark, we retained the last line model (K = 50, Schaefer 700).
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 611 Figure 6.11: Comparing piecewise Procrustes accuracy improvements across volumetric and surface representations.For the IBC RSVP task, we compare piecewise Procrustes decoding accuracy scores to anatomical-only alignment. Each dot represents an IBC subject, where their difference score is calculated by subtracting the inter-subject decoding accuracy for anatomical-only alignment from the piecewise Procrustes alignment accuracy score for the same leave-one-subject-out cross-validation fold; i.e., where they are the left-out subject. We compare these difference scores, as calculated using data in the volume (3mm resolution), to data on the high-resolution cortical surface (fsaverage7). Box plots describe the distribution of values for a data representation, and the green line indicates the median. We see that the high-resolution surface representation yields a moderate gain of decoding accuracy, compared to 3mm isotropic volumetric representation.

Table 6 .2: Full-brain benchmark absolute decoding accuracy (%).

 6 2 and 6.3 report absolute decoding accuracies for Experiment 1 and Experiment 2, to bring a different view of results presented in Figures 6.3 and 6.5, as relative improvements brought over anatom-Another view of Experiment 1 results. Complementary display to Figure 6.3.

	Methods/Dataset	IBC RSVP IBC Sounds	Forrest	BOLD5000 Neuromod
	Chance	16.7		16.7		20	25.5	12.5
	Anatomical	38.2 ± 4.1	32.7 ±4.8	31.4 ± 4.7 33.3 ± 2.9	54.1 ± 6.7
	Intra-subject	39.6 ± 3.1	36.4 ± 8.6	31.9 ± 5.4 34.9 ± 2.8	55.6 ± 7.7
	Searchlight Procrustes	39.0 ± 5.1	32.6 ± 6.5	33.6 ± 6.1 35.2 ± 2.0	65.5 ± 6.6
	Piecewise Procrustes	42.0 ± 4.7	36.6 ± 5.5	33.8 ± 6.4 36.4 ± 1.8	67.4 ± 10.6
	Piecewise Optimal Transport	43.5 ± 5.5	38.0 ± 9.5	33.8 ± 5.6 36.6 ± 2.1	65.3 ± 9.1
	Piecewise Shared Response Model 42.4 ± 4.0	37.0 ± 6.8	33.7 ± 7.2 39.6 ±	66.2 ± 7.0
	Methods/Dataset	IBC RSVP IBC Sounds	Forrest	BOLD5000 Neuromod
	Chance	16.7		16.7		20	25.5	12.5
	Anatomical	22.3 ± 3.3	26.9 ± 6.9	28.6 ± 6.0 33.5 ± 3.3	50.2 ± 5.3
	Intra-subject	22.0 ± 1.7	25.6 ± 2.7	27.5 ± 3.2 38.0 ± 2.6	51.4 ± 10.2
	Procrustes	31.0 ± 4.3	32.7 ± 8.3	30.1 ± 7.0 30.1 ± 2.2	46.5 ± 7.8
	Optimal Transport	24.9 ± 2.5	29.9 ± 5.4	28.9 ± 2.2 39.7 ± 2.7	64.4 ± 8.9
	Shared Response Model 30.4 ± 4.4	30.9 ± 6.3	34.3 ± 5.2 40.9 ± 3.6	32.6 ± 5.5

Table 6.3: ROI benchmark absolute decoding accuracy (%) Another view of Experiment 2 results. Complementary display to Figure 6.5.

10: Decoding accuracy does not improve after Gaussian smoothing over anatomical align- ment.

  

	Decoding accuracy improvement
	Smoothing 15mm Smoothing 10mm Smoothing 05mm Piecewise Procrustes	Decoding tasks Neuromod BOLD5000 Forrest IBC Sounds IBC RSVP
	Smoothing 20mm	
	Smoothing 25mm	
	Smoothing 30mm	
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	Figure 6.	
	Gaussian smoothing is a common preprocessing step in neuroimaging
	group studies, which reconciles dissimilar subject-level signals by
	smoothing over inter-individual variability. Our qualitative results
	(Section 6.3.3) show that best performing alignment methods do not

  In order, they are labelled: audio left button press, audio right button press, video left button press, video right button press, horizontal checkerboard, vertical checkerboard, audio sentence, video sentence, audio computation, video computation, saccades, rotation hand, rotation side, object grasp, object orientation, mechanistic audio, mechanistic video, triangle mental, triangle random, false belief audio, false belief video, speech sound, non speech sound, face gender, face control, face trusty, expression intention, expression gender, expression control, shape, face, punishment, reward, left hand, right hand, left foot, right foot, tongue, cue, story, math, relational, match, mental, random, 0back body, 2back body, 0back face, 2back face, 0back tools, 2back tools, 0back place, 2back place.
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Software contributions

We leave after this thesis several reference implementations for the state-of-the art methods that we proposed and benchmarked, including those of Piecewise Procrustes, Piecewise Optimal Transport and Piecewise Shared Response Model. Those implementations are packaged in the fmralign module: https://github.com/ Parietal-INRIA/fmralign, with an emphasis on performance and documentation to improve ease-of-use. With these tools, any neuroscientist using Python ecosystem tools can easily input images from his or her subjects and get back their aligned subjects with a Scikit-learn API. We hope these contributions will foster functional alignment adoption. We also released additional alignment tutorials in https://github.com/neurodatascience/fmralign-tutorials.

To evaluate methodological contributions, we also designed a benchmark, for which we try to open-source as many components as possible to ease replication and further benchmarking endeavors. We make code available as well as data derivatives for the IBC dataset in the https://github.com/neurodatascience/fmralign-benchmark module.

Besides contributions directly related to my thesis work, I contributed to the Nilearn package: https://github.com/nilearn/ nilearn during my entire PhD. Nilearn is a widely used Python package for statistical analysis and predictive modelling of neuroimaging data. I primarily contributed to the "Decoding" module of this package, as well as to improving its documentation and friendliness for new contributors. I also took part in the organization of several teaching and coding events for Nilearn. Additionally, I was briefly involved in the maintenance of pypreprocess https://github.com/neurospin/pypreprocess.

. . Other projects

During my PhD, I also got interested in various fMRI related projects. To develop my machine learning skills on related subjects, I led a team of fellow PhD students from INRIA Parietal team in a Kaggle challenge participation (https://www.kaggle.com/ c/trends-assessment-prediction). This competition was aimed at improving translational use of resting state fMRI data in order to predict variables of clinical interest, including age. In our final solution, we used Riemannian geometry as well as state-of-the-art estimators and hierarchical schemes to predict those targets from our source data, which ranked us in the top 2% contenders of this challenge.

Besides machine learning, this project helped me improve a lot my