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A B S T R A C T

An important goal of cognitive neurosciences is to understand the
functional organization of the brain. It heavily relies on Functional
Magnetic Resonance Imaging (fMRI), a powerful tool to investigate the
link between brain function and anatomical structures at a high spatial-
resolution. Functional inter-individual variability is a major obstacle
limiting functional brain mapping precision and generalizability of
results obtained in neuroimaging studies. This variability, observed
across subjects performing the same task, goes far beyond anatomical
variability in brain shape and size. In this work, we focus on a class of
methods designed to address functional variability, namely functional
alignment. These methods match subjects neural signals based on their
functional similarity.

In a first part, we review standard functional brain mapping
paradigms and techniques, as well as the challenges induced by func-
tional variability. We additionally review existing functional alignment
methods and related work, and discuss the current limitations of these
approaches. In a second part, we develop a new functional alignment
method, based on optimal transport—a mathematical theory interested
in matching probability distributions while taking their geometry into
account. Functional alignment methods are local, which means that
many local alignments need to be aggregated to compose whole-brain
alignments. Moreover, these methods derive pairwise matching and
call for a “functional template”, a common functional representation to
which all subjects of a study can be aligned. To overcome limitations
of existing solutions, we additionally introduce a new aggregation
scheme as well as a principled template design procedure. In a third
part, we turn to empirical validation of alignment performance. In-
deed, these methods are seldom used in applied studies, and it is
unclear to what extent they can address functional variability in typ-
ical cognitive studies. We investigate their performance to improve
generalization of predictive models to new subjects. In this inter-subject
decoding set-up, spanning four different datasets, we show that align-
ment methods hold real potential to recover an important share of
prediction accuracy lost due to inter-subject variability.
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S Y N T H È S E E N F R A N Ç A I S

Un objectif important des neurosciences cognitives est de comprendre
l’organisation fonctionnelle du cerveau. Pour cela, elles s’appuient sur
l’Imagerie par Résonance Magnétique fonctionnelle (IRMf), un outil
puissant pour étudier le lien entre les fonctions cérébrales et les struc-
tures anatomiques sous-jacentes à une haute résolution spatiale. La
variabilité fonctionnelle interindividuelle est un obstacle majeur qui limite
la précision de la cartographie fonctionnelle du cerveau et la générali-
sation des résultats obtenus par les études d’imagerie cérébrale. Cette
variabilité importante, observable entre des sujets effectuant la même
tâche cognitive, va bien au-delà des variations de taille et de forme
des structures anatomiques. Elle crée des variations importantes dans
la localisation, l’intensité et la géométrie des activations fonctionnelles.
Dans cette thèse, nous nous intéressons à un ensemble de méthodes
conçues pour traiter la variabilité fonctionnelle : l’alignement fonctionnel.
Ces méthodes mettent en correspondances les signaux cérébraux de
différents sujets sur la base de leur similarité fonctionnelle.

Dans un premier temps, nous présentons les concepts et les tech-
niques usuels pour la cartographie fonctionnelle cérébrale, ainsi que
les difficultés induites par la variabilité fonctionnelle. Nous passons
également en revue les méthodes d’alignement fonctionnel existantes.
Ces méthodes cherchent des transformations mettant en correspon-
dances les pixels volumiques(voxels) des images d’un individu avec
ceux d’un autre en fonction de la similarité leurs profils d’activité
à travers différentes images. L’hyperalignment, méthode historique
d’alignement fonctionnel, cherche une transformation orthogonale per-
mettant de maximiser cette similarité. Une seconde méthode répandue
est le Shared Response Model (SRM) qui trouve une décomposition
des données de chaque sujet en une base orthogonale individuelle (des
cartes spatiales orthogonales représentant divers modes d’activation du
cerveau) et des décours temporels partagés à travers les sujets pour
chacune des cartes de cette base. Nous passons également en revue les
nombreuses méthodes proposées dans la littérature pour réaliser des
alignements fonctionnels et soulignons les questions méthodologiques
qui freinent leur utilisation dans la recherche en sciences cognitives.

Dans une deuxième partie, nous proposons une nouvelle méthode
d’alignement fonctionnel, basée sur le transport optimal - une théorie
mathématique qui s’intéresse à la mise en correspondance de distribu-
tions de probabilité prenant en compte leur géométrie. Cet algorithme
permet de trouver un alignement parcimonieux qui transporte les
voxels d’un sujet à l’autre en minimisant la dissimilarité induite par
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ce transport. Ce plan de transport préserve la spécificité fonctionnelle
des signaux après l’alignement.

Les méthodes d’alignement fonctionnel sont définies localement.
Pour construire des alignements à l’échelle du cerveau entier, nous
proposons un algorithme d’alignement par parcelle qui concatène de
nombreux alignements appris sur des parcelles locales adjacentes mais
disjointes. Par ailleurs, ces mises en correspondances sont définies
entre deux sujets. Il est nécessaire, pour aligner plusieurs sujets, de
recourir à un "modèle fonctionnel de groupe" : une représentation com-
mune sur laquelle tous les sujets peuvent être alignés. Nous proposons
un algorithme de minimisation pour inférer un optimum local de ce
modèle fonctionnel, conjointement avec les alignements de chaque
sujet vers cet espace. Nous évaluons la performance de ces méthodes
en utilisant des tâches de prédiction de nouvelles images.

La troisième partie de ce travail est consacrée à une validation ex-
périmentale approfondie de ces méthodes. En effet, l’alignement est
rarement utilisé dans des études applicatives et sa capacité à com-
penser la variabilité fonctionnelle en pratique est peu documentée.
Nous évaluons sa capacité à améliorer la généralisation de modèles
prédictifs à de nouveaux sujets. Dans cette configuration— dite de
"décodage inter-sujet"— appliquée à quatre jeux de données, nous mon-
trons que les méthodes d’alignement ont le potentiel de compenser
une part importante des effets de la variabilité interindividuelle, dans
une grande variété de situations. Cette étude comparative nous per-
met également de tirer de nombreuses conclusions méthodologiques.
Nous montrons par exemple la performance significative du Transport
Optimal et du Shared Response Model pour réaliser des alignements
ainsi que l’efficacité de l’alignement par parcelle pour pouvoir réaliser
des alignements à l’échelle du cerveau entier. Nous avons publié des
implémentations open-source optimisées de chaque méthode proposée
lors de cette thèse.
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1 O V E R V I E W

Functional Magnetic Resonance Imaging (fMRI) is a non-invasive
functional brain imaging technique with a millimeter-order spatial
resolution. Over the last decades, it has played a pivotal role in func-
tional brain mapping: the investigation of brain function organization
principles. Thousands of studies using fMRI are published every year,
with focuses ranging from understanding general brain organization
and how it varies, to identifying patterns of brain activity supporting
specialized functional processes.

A key stake for brain mapping is to ensure generalizability and
consistency of these results, despite the strong inter-subject variability
that is observed in functional images. This functional variability stems
both from imaging limitations (low signal-to-noise ratio, small sample
size) and from natural brain variation across individuals. Although
standard fMRI preprocessing includes an anatomical registration step—
ensuring the correspondence of individual brain structures to a tem-
plate brain—there remains a high degree of variability in observed
functional data, which undermines attempts at precise brain mapping.
Variability is a key hurdle for population comparison, which explains
why fMRI imaging is seldom used in clinical settings. In general, it
remains hard to relate our general knowledge on brain function to a
specific patient through imaging.

In this thesis, we focus on a class of methods specifically targeting
inter-subject functional variability, functional alignment, which take
advantage of the rich individual characterization brought by inten-
sive individual scanning experiments to learn data-driven mappings
between individual functional responses. We propose a new method,
based on optimal transport, that enhances alignment performance as
well as methodological developments to improve efficiency and us-
ability of this framework. We especially focus on assessing potential
benefits of alignment for cognitive research studies and present a
thorough methodological benchmark. We release open-source imple-
mentations of all the methods introduced. This work opens the door
to a broader adoption of functional alignment as a common fMRI
analysis step, which will hopefully help progress towards more accu-
rate brain mapping. In this chapter, we outline the structure of this
manuscript.
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1.1 organization of this manuscript 2

1.1 organization of this manuscript

1.1.1 An introduction to brain mapping and functional alignment

In the first part, we introduce concepts and techniques underlying
functional brain mapping and functional alignment. We give a quick
account of functional Magnetic Resonance Imaging principles and stan-
dard approach to acquisition and analysis of fMRI data. We present
common paradigms of brain function investigation and recent evolu-
tions towards deep characterization of individual functional organiza-
tion. We proceed with an introduction of seminal functional alignment
methods, such as Hyperalignment and Shared Response Modelling. We
frame alignment in the broader machine learning literature and review
related approaches for fMRI. Finally, we put these works in context to
highlight roadblocks hindering a broad dissemination of alignment
methods.

1.1.2 Alignment methodological developments

In the second part, we introduce several methodological develop-
ments targeted at improving alignment performance and efficiency.
We bridge the key idea of alignment—improving correspondence of
activation patterns across individuals—with Optimal Transport: an
acclaimed mathematical theory which studies matching of probability
distributions. We also introduce novel schemes to derive whole-brain
matchings from local alignments and to estimate a functional template:
a well-suited functional representation to which several subjects can
be aligned. We evaluate those contributions using several datasets
comprising rich individual data.

1.1.3 Empirical benchmark

In the third part, we focus on assessing the benefits to be expected from
alignment in standard functional imaging studies. To do so, we focus
on inter-subject decoding, a predictive modelling technique yielding a
principled way to measure how much inter-subject variability can be
compensated for using functional alignment while preserving signal
specificity for later analysis. This evaluation compares five alignment
methods on four datasets comprising five decoding tasks. We addi-
tionally discuss several common methodological and implementation
choices. This study confirms that the best alignment methods are able
to recover more than half of decoding accuracy usually lost due to
inter-subject variability.



1.2 a note on chapter ordering 3

1.1.4 Conclusion

In the conclusion, we summarize our contributions and the main
outcomes of our empirical benchmark. We also describe the challenges
we faced during this thesis, as well as current limitations and future
perspectives for this line of work. Additionally, we recapitulate the
alignment open-source implementations produced when performing
this work, and additional projects conducted during this thesis.

1.2 a note on chapter ordering

To get a broad overview of functional brain mapping concepts and
techniques, one should start with chapter 2. A reader especially inter-
ested in understanding functional alignment intuitions and its benefits
should focus first on chapters 3 and 6. In contrast, chapters 4 and 5 are
especially focused on introducing an original mathematical framework
for alignment and outlining challenges and directions for building a
functional template. Section 6.5 may be skipped at first read, as it is
detailing additional analyses which support benchmark conclusions
summarized in Section 6.4.

1.3 related publications

Contributions developed in Chapters 4 & 5 were partly published in
a conference paper (Bazeille et al., 2019). Work detailed in Chapter 6 is
a journal article (Bazeille et al., under review) currently under review
at Neuroimage. Additional collaborations detailed in Chapter 7 gave
rise to several conference and journal articles (Janati et al., 2019, 2020;
Torre et al., in preparation).

Bazeille, Thomas, Elizabeth Dupre, Hugo Richard, Jean-Baptiste Poline,
and Bertrand Thirion (under review). “An empirical evaluation of
functional alignment using inter-subject decoding.” In: url: https:
//www.biorxiv.org/content/10.1101/2020.12.07.415000v2.

Bazeille, Thomas, Hugo Richard, Hicham Janati, and Bertrand Thirion
(2019). “Local Optimal Transport for Functional Brain Template
Estimation.” In: International Conference on Information Processing in
Medical Imaging. Springer, pp. 237–248.

Janati, Hicham, Thomas Bazeille, Bertrand Thirion, Marco Cuturi,
and Alexandre Gramfort (2019). “Group level MEG/EEG source
imaging via optimal transport: minimum Wasserstein estimates.” In:
International Conference on Information Processing in Medical Imaging.
Springer, pp. 743–754.

https://www.biorxiv.org/content/10.1101/2020.12.07.415000v2
https://www.biorxiv.org/content/10.1101/2020.12.07.415000v2
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Janati, Hicham, Thomas Bazeille, Bertrand Thirion, Marco Cuturi,
and Alexandre Gramfort (2020). “Multi-subject MEG/EEG source
imaging with sparse multi-task regression.” In: NeuroImage 220,
p. 116847.

Torre, Juan Jesús, Ana Luísa Pinho, Swetha Shankar, Alexis Amadon,
Mani Saignavongs, Marcela Perrone-Bertolotti, Thomas Bazeille,
Elvis Dohmatob, Isabelle Denghien, Chantal Ginisty, Séverine
Becuwe-Desmidt, Séverine Roger, Yann Lecomte, Valérie Berland,
Laurence Laurier, Véronique Joly-Testault, Gaelle Mediouni-Cloarec,
Christine Doublé, Bernadette Martins, Jean-Philippe Lachaux,
Patrick Bisset, Ayse Zeynep Enkavi, Ian Eisenberg, Russel Poldrack,
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fMRI data for cognitive mapping.”
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C O N T E X T



2 F U N C T I O N A L B R A I N M A P P I N G

This chapter provides an introduction to functional brain mapping. Section
2.1 provides a short technical background on Magnetic Resonance Imaging
(MRI) and common methodologies used in human brain function imaging.
Section 2.2 introduces central paradigms underlying brain mapping studies.
Section 2.3 gives an account of functional variability, one of the main chal-
lenges of functional MRI (fMRI) studies today, and explains its consequences
on modern brain mapping.

2.1 brain imaging using mri

2.1.1 MRI principle

Magnetic Resonance Imaging (MRI) is a non-invasive imaging tech-
nique that produces images of organs and their physiological pro-
cesses. For anatomical purposes, it uses variations in magnetic suscep-
tibility of different molecules to contrast tissues of different composi-
tion. In most applications, the signals exploited are the radiofrequency
signal emitted by the synchronized spinning of nuclei, most commonly
hydrogen nuclei (i.e., protons) which generate transverse magnetiza-
tion.

These protons exhibit different response to a magnetic field, depend-
ing on the environment they are embedded in, e.g., different tissues
have different relaxation times. As a first step, nuclei are aligned using
a constant and intense static magnetic field. Additional gradient fields
(or gradients) are then applied to encode spatial position of voxels.
Gradients are small linear spatial variations of magnetic field in x, y, z
that are used to produce spatial resolution.

Finally, a radiofrequency pulse is emitted to tilt the nuclei magneti-
zation in the plane perpendicular to the intense static field. When this
pulse ends, the spin of hydrogen nuclei relax to their equilibrium states.
This relaxation occurs with certain characteristic time constants. The
relaxation signal (i.e., spinning of the transverse magnetization) is mea-
sured with receptive coils. The response emitted by nuclei contained
in each volumic pixel (or voxel) can then be disentangled, knowing
precisely the local field that they were subject to. For each voxel, the
measure retained is the observed relaxation time. Radiofrequency
pulses can be emitted at different timings in so-called sequences. A
given sequence produces a particular contrast, for which various type
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2.1 brain imaging using mri 7

of tissues will have a dominant influence (e.g., T1-weighted for struc-
tural MRI, T2-weighted for functional MRI, diffusion-weighted (Le
Bihan et al., 2001) and many more). For structural MRI, this process
enables to create images that characterize local magnetic susceptibility
and hence tissue composition, at a millimeter scale.

2.1.2 Functional MRI

While structural MRI can be used to image anatomical structures of the
brain in a static fashion, many applications of MRI actually focus on
the dynamical processes ongoing in the brain and how they relate to
behavior. It has been known for a long time that an important correlate
of brain activity is blood flow (Pauling and Coryell, 1936). Neurons
that activate are depleted of oxygen and glucose, which are important
primitives of adenosine triphosphate (ATP), a crucial molecule used
to produce energy necessary for their biological functions (Vergara
et al., 2019). Local brain activation is thus followed by an inflow of oxy-
genated blood, replenishing these cells and displacing deoxygenated
blood away. This phenomenon is called the neurovascular coupling.

It was later discovered that oxygenated and deoxygenated blood
carry different magnetic susceptibilities, and thus react differently
when placed in a magnetic field. Seiji Ogawa and colleagues reckoned
in 1990 (Ogawa et al., 1990) that this change in the Blood Oxygenation
Level Dependent (BOLD) signal could be used to measure a correlate
of brain activity through MRI: the hemodynamic response. This HR
shows an increase in BOLD signal, lagging a few seconds behind the
neural activation itself, followed by a rapid decrease and a slight un-
dershoot of BOLD signal once the equilibrium blood flow is restored.
Although HR can vary with respect to physiological and local effects,
it is generally modelled with one common Haemodynamic Response
Function (HRF) across brain locations and subjects. The “canonical
HRF” (Friston et al., 1998), most commonly used, is depicted in Fig-
ure 2.1. When recording BOLD signal evolution during experimental
paradigms, local neural activations can thus be deduced by a decon-
volution with this HRF.

capacities and limitations Nowadays, functional Magnetic Res-
onance Imaging (fMRI) is a ubiquitous tool to investigate brain function
in cognitive science research. For human whole-brain imaging, the
most common spatial resolution is 2-3 mm, progressing toward sub-
millimeter resolution (Goense, Bohraus, and Logothetis, 2016). A key
characteristic of fMRI images is their acquisition cost, which eventually
limits data availability. Many challenges faced in this field, including
those targeted in this thesis, would be largely mitigated by massive
datasets. Unfortunately, such datasets are still rare and will remain so
in the foreseeable future.
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Figure 2.1: Canonical Hemodynamic Response Modelling Function Friston et al., 1998. This linear com-
bination of two Gamma functions was introduced in SPM software and is the default model of HRF.

Another important fMRI limitation is time resolution. Due to the
sluggishness of hemodynamic coupling and its timing variability, the
time precision that is usually claimed is of the order of one 1 or 2

seconds per image, which limits the span of observable brain processes
to rather slow ones (Glover, 2011). Other limitations include the fact
that fMRI images have a low signal-to-noise ratio (SNR) (Welvaert and
Rosseel, 2013), are subject to artifacts and are not quantitative per
se, as the magnetic effects derived from the BOLD signal are hard to
relate to a precise quantity of neural activation (Pike, 2012). All these
limitations introduce the need for robust processing of images in order
to draw statistical conclusions. Since fMRI preprocessing pipelines are
often complex and depend on the context (see Figure 2.2), we will
especially focus on introducing crucial processing steps.

2.1.3 Structural preprocessing

Cognitive studies using fMRI often include an additional structural
MRI session to image brain structures and tissue types (gray and white
matter). These are first used to restrict studies to brain tissues. Skull-
stripping procedures are often used to produce a mask of brain tissues,
discarding surrounding regions. Some studies apply an additional
tissue segmentation step to distinguish gray matter from white matter
and cerebrospinal fluid. It is then possible to refine image masks and
restrict studies to gray matter tissues, since BOLD activity is restricted
to those regions.

anatomical registration Human brain structures differ in shape
in size across individuals. For instance, brain volume or surface can
vary almost twofold among typically developing humans of the same
age (Giedd et al., 2015). Despite this irreducible anatomical variability,
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Figure 2.2: Illustrative fMRI preprocessing steps: the fMRIprep normalized pipeline. fMRI studies
typically include additional structural MRI acquisition. Anatomical preprocessing(2.1.3, left side) is performed
on anatomical image(s) and notably include skull-stripping, brain-tissue segmentation and spatial normalization
to a given template. Functional preprocessing(2.1.4, right side) is performed on BOLD images and can notably
include co-registration, mask estimation, optional registration to template space reusing normalization learned
anatomical images, head-motion estimation, field inhomogeneities correction, signal cleaning. Figure replicated from
fMRIprep (Esteban et al., 2019) documentation

cognitive studies are often interested in general features of cognition.
Matching brain structures of various individuals to a common space
is thus an important preprocessing step, called spatial normalization
(Friston et al., 1995). This normalization step consists in registering
brain images, maximizing their correspondence to a given template
while allowing only smooth deformations. This registration is most
often inferred using structural images, and hence often denoted as
anatomical registration. Estimated registrations can then be applied to
other images (e.g., BOLD) acquired for a given subject once those
have been rigidly aligned to the structural image used for estimation.
Registration techniques usually search for invertible diffeomorphisms
between the source and target images, symmetric with respect to these
source and target images, and guided by a similarity measure to be
chosen among several alternatives. Some datasets used in further ex-
periments, notably Individual Brain Charting dataset, were registered
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using SPM software, which relies on a unified step of probabilistic
segmentation and diffeomorphic registration using geodesic shooting
(Ashburner and Friston, 2005, 2011). Others datasets, used in Chapter
6, were preprocessed using the fMRIprep package. Under the hood, this
pipeline relies on another popular registration method (used in Chap-
ter 4 experiments): Symmetric Image Normalization (SyN) (Avants
et al., 2008). SyN maximizes the cross-correlation within the space
of diffeomorphic maps through solving symmetric Euler-Lagrange
equations. Other notable registration methods include extensions of
Demons algorithm (Thirion, 1998) (e.g., Spherical Demons for surface-
based registration from Yeo et al., 2009), and Large Deformation
Diffeomorphic Metric Matching (Beg et al., 2005). This registration
process makes it possible to project various subject brain structures
to a reference image. A common reference space is the Montreal Neu-
rological Institute (MNI) template (Mazziotta et al., 1995), deemed
as a good common representation obtained from 152 subjects, and
routinely used in group studies. While obviously discarding some
subject-specific information, this well-established process enables to
map reasonably well information acquired in different subjects and to
ease subsequent statistical processing.

2.1.4 BOLD signal preprocessing

As a product of a complex acquisition process, the fMRI signal is
plagued with multiple sources of noise. These range from experimental
and instrumental noise to physiological and movement artifacts. To try
to separate those nuisances from the signal induced by neural activity,
several denoising techniques are routinely used as preprocessing
steps. We don’t intend here to be exhaustive about noise sources
and available denoising techniques, but instead to give a brief account
of commonly used pipelines (Caballero-Gaudes and Reynolds, 2017).

head-motion estimation Motion, and head-motion in particular,
create artifactual magnetic effects that confound the signal of interest
(Friston et al., 1996). To eliminate this nuisance, preprocessing steps
usually include the calculation of a rigid-body transform from BOLD
images to a reference frame. These 6 motion parameters estimated
for each time step (along three translation directions and three rota-
tion axes) can then be included as confounding regressors in later
modelling.

phase encoding and field inhomogeneities MRI images are
subject to spatial and intensity distortion due to magnetic field inhomo-
geneities created by scanner imperfections, as well as spurious fields
(including the magnetization of the subject itself). These distortions
are most pronounced in the phase-encoding direction (i.e., the direc-
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tion chosen to apply one specific gradient called the phase-encoding
gradient). A common method to correct for those distortions is thus
to acquire protocols twice with opposite phase-encoding polarities,
which display opposite distortion patterns, and average those (Hol-
land, Kuperman, and Dale, 2010). Some MRI acquisition sequences
also make it possible to either measure directly the magnetic field
(and its homogeneities) or deduce them from successive scans and use
this model of magnetic field to compensate for induced distortions
(Hutton et al., 2002).

signal cleaning Ongoing physiological processes, such as cardiac
pulsing and respiration, are additional sources of signal fluctuation.
Primary effects of these two processes give rise to a relatively low-
frequency signal, which can sometimes be cut off using high-pass
filtering. When it is not possible or for the sake of removing other arti-
facts, data-driven denoising methods are used. Principal Component
Analysis and Independent Component Analysis (Sui et al., 2009) are
two ubiquitous techniques to separate noise artifacts from other signal
components (Behzadi et al., 2007).

Final steps of the preprocessing include temporal filtering, con-
founders regression, detrending and spatial smoothing. Spatial
smoothing, using a Gaussian Kernel characterized by its full-width-at-
half-maximum (fwhm), is commonly used to remove part of uncorre-
lated noise and improve SNR. It also helps improve similarity of brain
images across subjects, at the cost of spatial resolution (see Section
2.3.2).

2.2 investigating brain activity with fmri

2.2.1 Task-based protocols

In task-based fMRI, a sequence of stimuli is presented to a subject
following a carefully monitored design while their brain activity is
recorded. This experimental protocol entails a controlled priming of
various functional processes that can be used to analyze neural activity
observed during the experiment. While several types of task-based
protocols are used depending on the brain function they study, they
all share common principles. Protocols usually rely on sensory stimuli,
often visual or auditory, to trigger a behavioral change of interest. A
response, not necessary of interest, is asked from the subject at regular
intervals in order to ensure their active participation in the protocol.
As the stimulus processing can be a factor confounding observed brain
activity, trials of interest are intertwined with the presentation of some
control stimuli. The effect of interest will thus be the difference of
signal acquired in a trial of interest versus a control condition (BOLD
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Figure 2.3: General linear modelling of a task-based protocol. A design matrix is derived from regressors
of interest, potential confounds (here motion confounds) as well as drift terms. For each voxel separately, a
linear regression (Equation 2.1) then estimates β, the coefficients of each regressor. ∗ denotes the matrix-
vector product. Figure inspired from Nilearn documentation.

contrast), effectively subtracting a part of the MRI signal unrelated to
the cognitive process of interest.

Two main kinds of statistical analysis are performed on task-based
fMRI. Statistical Parametric Mapping (SPM) (Penny et al., 2011) is a voxel-
based approach, employing classical inference to identify functionally
specialized brain responses to the presented stimuli. It commonly
relies on General Linear models (2.2.2). Conversely, decoding (2.2.3)
approaches try to predict stimuli from brain signals. Models supporting
those predictions are multivariate: they search for patterns of activa-
tions across several voxels relevant to discriminate between possible
stimuli.

2.2.2 General Linear Models

As mentioned in Section 2.1.2, images acquired using BOLD mecha-
nism are only a proxy for neural activity through the neurovascular
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audio visual 

Figure 2.4: Example general modelling output: Base conditions z-maps for a single subject analysis.
The design matrix displayed in Figure 2.3 was used to fit a GLM. Thresholded z-maps outline brain regions
involved in the sensory process used. Inspired from Nilearn documentation using data from Pinel et al.,
2007.

coupling. To deduce brain signals from them, one has to model this
coupling using a hemodynamic response function (HRF). As an ex-
perimental protocol is a sequence of events, several hemodynamic
responses can thus overlap. The routine linear assumption states that
successive brain responses sum up. To recover the neural signals im-
putable to a particular event specified by the experimental protocol,
one can thus apply a linear convolution between a "block" function
representing the event from its onset time for its duration with the
chosen HRF.

General Linear Model (GLM) is a generalization of linear regression
applied to disentangle effect size imputable to different regressors.
They are applied in a univariate fashion, i.e., for each voxel indepen-
dently. The regressors considered can represent single events defined
in the protocol, groups of events or a variety of confounding factors
(including drifts of various orders accounting for low-frequency noise
in the signal). All information available about the p regressors is in-
cluded in a design matrix, as displayed in Figure 2.3. Formally the GLM
model solves Equation 2.1 where y ∈ p is the signal for one voxel
across p scans, X ∈ Rp,r, the design matrix and ε, the noise assumed
Gaussian, and independent identically distributed (i.i.d.).

y = Xβ+ ε (2.1)

Ordinary Least Squares (OLS) can then be used to solve Equation
2.1 and find β, the vector of regressors’ coefficients as exemplified
in Figure 2.3. In practice, the i.i.d noise assumption is not fulfilled
since noise display auto-correlation (Monti, 2011). Equation 2.1 is thus
routinely solved using an Auto-Regressive model of order 1 (AR(1)).

After fitting these models for all voxels, we can assemble all coeffi-
cients estimated for a given regressor in a statistical parametric map,
representing the activations linked to this particular regressor. These
coefficients maps are often z-scored and the output results are called
Z-maps as displayed in Figure 2.4. Alternatively, we can make contrast
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Figure 2.5: Example general modelling output: Contrast z-maps for a single subject analysis. Derived
using design matrix displayed in Figure 2.3. Contrasted effects of interest between several conditions outline
functional process ascription. “left-right press” contrasts left and right button press events, “audio-visual”
contrasts trials using audio versus video instructions. “horizontal-vertical” contrasts horizontal and vertical
checkerboards trials. Inspired from Nilearn documentation using data from Pinel et al., 2007.

maps that display activations specific to an experimental condition of
interest with respect to a control condition, as displayed in Figure
2.5. Statistical tests are then often conduced on those maps, to derive
thresholds that guarantee the statistical significance of observed acti-
vations. Several thousands of tests are conducted independently (one
per voxel), but the chance that a false positive will arise among all
those test is not controlled by their uncorrected p− values. Thresh-
olds thus often involve compensating for the multiple comparison
problem (Alberton et al., 2020). Statistical parametric mapping is a
ubiquitous neuroimaging analysis technique. It has been used to pro-
duce most of the currently available results linking brain regions to
various functional processes.

2.2.3 Decoding

Conversely to GLM-based analysis, Multivariate Pattern Analysis
(MVPA) or decoding (Haxby et al., 2001; Kamitani and Tong, 2005;
Haynes and Rees, 2006; Naselaris et al., 2011) is an analysis tech-
nique aimed at predicting, from observed brain activity, the stimuli
that caused it (or another varying experimental parameter). To make
this prediction, it combines information from many voxels (i.e., it is
a multivariate method). The labels to predict are derived from the
experimental protocol (e.g., events, groups of events). To relate those
labels to the relevant activation maps, input data are usually prepro-
cessed and deconvolved, possibly through fitting a GLM. A machine
learning model is then trained to predict, from these statistical maps,
the right label (Haynes, 2015). In a simple classification setting, where
we try to predict labels y ∈ R among two possible value encoded as 1
and −1 from n images xi ∈ R, a simple model is the linear Support
Vector Machine (SVM). This model searches for a hyperplane w that
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best separate points with label 1 from points with label −1, solving
Equation 2.2.

min
w,b

‖w‖2F

s.t. yi(wᵀxi − b) > 1
(2.2)

The relevance of the model is measured by its prediction accuracy.
This performance is judged in comparison with chance level: the accu-
racy achieved with random predictions. If model accuracy is signif-
icantly higher than chance level, it can be concluded that activation
signals contain some information that discriminates across possible
labels, i.e., neural processes that support those activations can be
meaningfully differentiated based on signal carried by the studied re-
gions. As with any machine learning model, it is important to prevent
models from overfitting by using independent data to train the model
and test its performance. This practice—most often implemented in
cross-validation loops— is especially important when working with
neuroimaging data, plagued with a multitude of confounders that
can artificially improve model accuracy. It has been shown that cross-
validation should be leaving out at least a complete acquisition session,
as it would otherwise be prone to optimistic scoring due to session
effects (Varoquaux et al., 2017). In neuroscience studies, decoding
models performance is often compared across regions to establish
which regions hold signal discriminative for given conditions, and
is hence most involved in the functional processes probed by those
conditions. Additionally, the underlying multi-voxel patterns sup-
porting successful predictions are often reported as candidate neural
correlates supporting the functional processes probed. Sparsity induc-
ing models are thus often favored since they provide interpretable
“weight-maps” (Gramfort, Thirion, and Varoquaux, 2013; Grosenick
et al., 2013; Wu, Koyejo, and Pillow, 2019). On another note, decoding
models can both be learned for one subject (intra-subject) or across
multiple subjects (inter-subject). We argue later on in this manuscript
(6.1) that inter-subject decoding performance can be used as a loose
measure of functional variability.

decoding vs. general linear models Decoding generates mod-
els that are able to predict labels on unseen data. Through cross-
validation, they are judged against the variability of the studied sam-
ples and can thus be said to be generalizable (Haynes, 2015). Nonethe-
less, models achieving good decoding performance (e.g Hoyos-Idrobo
et al., 2018) come with weak statistical guarantees. It is possible to
resort to bootstrapping to ensure that an accuracy difference across
models is significantly better than chance. However, assessing the
statistical significance of multivariate voxel patterns that support pre-
diction remains an active research area (Chevalier et al., 2021; Schrouff
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et al., 2013, 2018b). By contrast, statistical tests as carried out using
GLMs enable massively univariate statistical inference but as such,
they are prone to multiple comparison bias (Thirion et al., 2007) and
do not characterize the global multivariate structure of activations, nor
out-of-sample generalizability. Overall, those two techniques provide
complementary ways to investigate brain function (Gilron et al., 2017).

2.2.4 Resting State

While task-based protocols are often used to study specialized func-
tional processes, resting-state fMRI is a very popular alternative
paradigm designed to measure spontaneous brain activity. In this
type of protocol, the subject is not instructed to perform any spe-
cific task. Low-frequency functional activity is observed nevertheless,
which can be related to brain processes identified through task-based
paradigms. While the absence of protocol make these data easy to
acquire and to compare across studies, it also makes it harder to sepa-
rate signal from artifacts and only limited inferences can be made on
the functional networks involved.

Common analysis techniques of resting state data rely on measuring
activity correlations between various brain regions. These regions can
be either pre-defined in the case of seed-based connectivity, or defined
in a data-driven fashion, e.g., using Independent Component Analysis
(Varoquaux et al., 2010). When viewing the brain as a graph, where
each brain region is connected, directly or not, with others, these
correlations measure how inter-related brain regions are. They can be
assembled in a functional connectome, a graph encompassing functional
connections between various parts of the brain at a given resolution.
This family of analysis, called functional connectivity, is often used to
segregate brain regions in networks that are tightly related in order
to perform some functional processes. Since this “modality” is not
selective of specific brain processes, it is often viewed as a “cheap” yet
substantial way to characterize individual brain organization.

2.2.5 Naturalistic

Naturalistic protocols are those that present rich, multimodal, dynamic
stimuli to trigger a perceptual and cognitive experience representative
of human ecological state (Sonkusare, Breakspear, and Guo, 2019).
They are often opposed to task-based paradigms that involve tightly
controlled sequences of sparse, artificial and decontextualized stimuli
(Nastase, Goldstein, and Hasson, 2020). They can be employed in
order to study complex cognition patterns, obscured by traditional
task-based paradigms, such as sustained attentional engagement, con-
text processing, social interaction and dynamical aspects of cognition.
More generally, they allow imaging brain activity which better matches
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daily state. They have been shown to create intense and highly con-
sistent brain activations (Hasson et al., 2004) across subjects, which
is why some studies advocate that they could be a practical way to
roughly characterize cognition in a single scanning session. Compared
to resting state, these paradigms naturally ensure a greater subject
involvement, less head-motion artifacts and overall a more controlled
brain activity. Most common naturalistic protocols include movie
watching and audio clip listening, but a growing number of studies
use varied stimuli such as gambling or video games (Bellec and Boyle,
2019).

In terms of analysis, these paradigms retain a “weak supervision”
from task-based protocols which makes it possible, after labelling,
to use general linear modelling (e.g., Bartels, Zeki, and Logothetis,
2008 or Huth et al., 2012) as well as decoding of events of interest
(Mandelkow, Zwart, and Duyn, 2016). As an alternative to labelling,
it is also possible to rely on data-driven event-modelling (Baldassano
et al., 2017). It is of course also possible to treat these protocols as
unlabeled, and to apply resting state analysis techniques. Finally, inter-
subject correlation (Nastase et al., 2019) of brain signals is increasingly
used on those datasets to characterize shared responses across subjects,
as well as variability in cortical areas.

2.3 functional variability

Most studies using the techniques introduced in Section 2.2 are pur-
suing two main goals. The first one is concerned with fundamental
knowledge: understand brain function organization and its link to
cortical anatomy, also called functional brain mapping. The second
one is application-driven: find reliable bio-markers that help with
diagnosis or monitoring of psychiatric or neurological conditions and
brain diseases. These two kinds of links between brain and mind have
historically relied on searching for universal brain processes across
individuals (Section 2.3.1).

However, even data from large cohorts display a high degree of
inter-subject functional variability, undermining attempts to uncover
reliable structure-function coupling and derived bio-markers (Section
2.3.2). Originally modelled as noise, this variability actually holds
significant signal to relate brain models across individuals. To further
study idiosyncratic functional organization and how it can be related
across subjects, deep phenotyping studies focus on comprehensively
mapping brain function for a low number of subjects, and shed a new
light on variability (Section 2.3.3).
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2.3.1 Population imaging

Numerous studies have used the techniques presented previously
to link brain regions to various functional processes. They both in-
vestigate the neural correlates of specific functional processes (e.g.,
high-level language functions Fedorenko, Behr, and Kanwisher, 2011,
attentional effects on working memory selectivity, Majerus et al., 2018)
and models accounting for the underlying computations of complex
abilities, such as confidence weighting in an inference process (Meyniel
and Dehaene, 2017). These studies often operate under the hypoth-
esis of a tight structure-function coupling, which means that brain
functional processes can be ascribed to a specific set of regions respon-
sible for various subprocesses. This hypothesis implicitly guarantees
the generalizability of results: if the right regions are found responsi-
ble for some functional process in a group of subjects, these regions
should display the same functional specificity in the wider population.
This type of study has significantly advanced our understanding of
core brain function organization principles, and has helped identify
population-average effects especially related to large-scale functional
networks. Despite this wealth of results, a key stake for the neu-
roimaging community is to ensure the coherence and generalizability
of those results and their extension to even more precise functional
characterization.

Small sample size, low signal-to-noise ratio (SNR) and methodolog-
ical variability are often cited as key challenges (Thirion et al., 2007;
Button et al., 2013; Pajula and Tohka, 2016; Turner et al., 2018) that
undermine the advance of brain function understanding and its ap-
plications. Low SNR also implies that small quantities of per-subject
images are not sufficient to yield precise characterization of the studied
brain functions. Most traditional studies results have thus limited gen-
eralizability on their own and call for meta-analysis in order to build
more robust knowledge. To overcome this challenge, many researchers
chose to include more subjects in their studies. Among those, several
large scale studies have been undertaken to acquire images from a
very high number of subjects with fixed protocols, often focused on
resting-state MRI (Madan, 2021).

Among those, some studies are primarily designed to analyze the
brain correlates of individual characteristics (e.g., age, sex, genetics,
sociodemographic factors), or neurological patient condition. As an
extension of the UK Biobank medical prospective study, more than
forty thousand subjects resting data have already been released, to-
gether with genetic data, cognitive measures, psychiatric assessment
and a breadth of other health data. The Cam-CAN project uses epi-
demiological, cognitive, and neuroimaging data to investigate effects
of aging on the brain and its impact on cognition. Its imaging data is
mostly composed of rest and movie-watching data for more than six
hundred subjects.
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Alternatively, some studies are especially concerned with improv-
ing our understanding of brain function: its general organization and
development, its relation to brain network structure or differences
across individuals. The most famous one, the Human Connectome
Project (HCP) is a large-scale effort to comprehensively chart neuronal
connections. Interested in studying both general patterns and variabil-
ity in the connectome (see 2.2.4) of this large cohort, it contains resting
state and task fMRI data for nearly one thousand subjects.

The Adolescent Brain Cognitive Development (ABCD) dataset
(Casey et al., 2018) is another large-scale initiative aimed at longi-
tudinally imaging ten thousand adolescents every two years over the
course of 10 years. It relies mostly on task-based fMRI to investi-
gate brain development, with a special focus on functional processes
previously linked with addiction.

Beyond those exceptional initiatives, data-sharing platform have
also made it possible to assemble large collections of raw (Poldrack
et al., 2013a) and processed (Gorgolewski et al., 2015) data covering
many functional processes and many subjects. The accumulation of
available datasets and derived studies significantly advanced our
general understanding of brain function; it notably enabled large-
scale atlasing (Glasser et al., 2016; Rubin et al., 2016; Schaefer et al.,
2018; Varoquaux et al., 2018; Dadi et al., 2020) and general decoding
attempts (Koyejo and Poldrack, 2013; Mensch et al., 2017), moving
forward with the comprehension of general brain organization.

translational research For several decades, studies have accu-
mulated evidence on the link between specific brain regions activities
and pathologies (e.g., anterior cingulate cortex abnormal activations
and depression, Mayberg et al., 1999), or more generally health re-
lated outcomes (such as risk aversion and the striatum and amygdala
Tom et al., 2007). But the fuzziness of the structure-function coupling
makes those measures unreliable for clinical use on individuals. To go
beyond those limitations, an increasingly popular strategy is to resort
to predictive modelling techniques, such as decoding, introduced pre-
viously. These techniques identify activation patterns across several
voxels that help predicting accurately a given variable of interest such
as a psychiatric condition (e.g., Alzheimer’s Disease, Davatzikos et al.,
2009), or a brain disorders (e.g., consciousness disorders, Demertzi
et al., 2015). In a population context, a key challenge is to find reliable
biomarkers that can help in the prognosis, diagnosis and therapeutic
monitoring of patients. These biomarkers must additionally be easy
to acquire, share and replicate in a variety of contexts and clinical
settings (Woo et al., 2017).
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2.3.2 Inter-subject functional variability

observed variability and its effects While population imag-
ing approaches help pinpoint central tendencies across large cohorts,
they have also outlined a high level of deviation around this aver-
age. Some regions’ variability makes it hard to draw conclusions at
the population level. As an example, the HCP study investigators
highlighted a high degree of functional variability across individuals
despite applying a tailored areal surface-based registration scheme
guided by several modalities, including fMRI (Glasser et al., 2016).
They especially described a region termed “area 55b” that they iden-
tify as part of the language network in the inferior portion of both the
left and right dorsal premotor cortex. This functionally defined area
displays a striking degree of variability in location and shape, in fact a
substantial minority of subjects show a topological organization that
cannot be matched with the most common organization. This high
variability is still observed across large cohorts and thus cannot be
attributed to a small sample effect.

Beyond spatial variations, another strong source of variability is
the variation of activation magnitude recorded for a task across sub-
jects, and sometimes across sessions (Smith et al., 2005). As already
mentioned, fMRI activation is only a partial measure of underlying
neural activity and doesn’t allow quantitative comparison. In its worse
case, this activation level variability can lead to some subjects not
showing any reliable signal at all for some contrasts. More generally,
it undermines activations comparison across subjects.

In traditional studies, a common way to handle variability, which
is mostly local, is to apply some Gaussian spatial smoothing to sub-
jects’ data. While this technique effectively improves image SNR, it
also blurs activation patterns and prevents precise mapping. Even
without smoothing, the geometrical effect of averaging many activa-
tions patterns in the same neighborhood but not overlapping will
create smooth activations “blobs”. Overall, brain mapping precision is
strongly capped by the spatial scale of functional variability, which is
roughly at the cm scale but widely different across cortex locations.

Beyond blurring activation patterns geometry, variability also makes
it harder to reconcile functional features across subjects and to build
a representative group model of functional organization (Stelzer et
al., 2014; Wang et al., 2021). While group average can be coarsely
similar to individual data, it has been shown that group models don’t
account for several topological features that are well-characterized at
the individual level (Heun et al., 2000; Seghier et al., 2004; Laumann
et al., 2015). Brain mapping of high-level cognitive functions, a very
active area of research, commonly displays such problems, and a large
portion of the prefrontal lobe is still ill-characterized, largely due to
its strong level of functional variability.



2.3 functional variability 21

Figure 2.6: Individual contrast maps for 13 IBC subjects and group conjunction map. For each individual,
the map is an overlaid view of 5 binarized contrast-maps derived from the HCP Working Memory task.
Each contrast displays fixed effects of the corresponding label (see right) using an FDR-corrected threshold
q = 0.05. The group-level conjunction map of these individual maps is shown inside the orange frame. All
maps correspond to the slice x = 40 mm in the sagittal view. Courtesy of Pinho et al., 2021.

Figure 2.6 illustrates variability commonly observed in fMRI studies,
by comparing binarized contrast maps across 13 subjects from the
Individual Brain Charting dataset (IBC). All contrasts, derived from a
visual n-back task (HCP Working Memory Protocol, Barch et al., 2013),
display a strong level of variability as well as qualitative difference
between individual and group activations. For example, all visual
contrasts (i.e., all but 2-back vs 0-back) probe distinct well-known vi-
sual processes (Haxby et al., 2001). However, resulting activations are
inconsistent across subjects both in terms of intensity, location, and
geometry despite the fact the visual cortex, is one of the most stable
regions of the brain. We can also observe that the group-level con-
junction maps derived from those activation displays a qualitatively
different topography, compared with individual images.

Variability can also obscure some fundamental functional organiza-
tion principles, such as multifunctionality of brain regions. There are
ongoing debates among neuroscientists to determine whether several
brain regions selectively engage in specific high-level function or if
they are fundamentally multifunctional. In Fedorenko, Behr, and Kan-
wisher, 2011 a detailed account was given of several regions showing
language selectivity but often cited as engaging in other processes as
well. For most of these regions, the authors conclude that they are,
indeed, very selective for language tasks but close to regions involved
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in different processes. Even though they are distinct at an individual
level, these regions can however be overlapping after group averaging.

With respect to translational biomarkers, inter-subject variability
limits the spatial scale at which we can search for patterns and ulti-
mately caps the performance of predictive models on subjects whose
activations differ from the average.

In some cases, variability can be extreme, for example due to a
pathology with important consequences on structural and functional
organization (Blank, Kiran, and Fedorenko, 2017). Our work did not
address this aspect, which leads to very specific methodological cases,
although the methods that we present could help in those cases to
derive matching from functional measurements.

what is functional variability? From the point of view of tra-
ditional fMRI studies, it is hard to find a criterion to distinguish
“variability of interest” from sheer noise. Intuitively, it should be de-
fined as functional patterns or signal structure that is stable for an
individual (as opposed to intra-subject variability) without general-
izing across subjects. However, making such a distinction is possible
only with a precise and reliable individual characterization of several
subjects. While deep phenotyping (2.3.3) fMRI studies have recently
emerged, such a characterization remains out of reach. Our goal here
is not to give an exhaustive account of these endeavors, that are still
exploratory, but rather to give a sense of the complex and mixed
nature of the observed “functional variability”.

We can first conceptualize it as a remainder of anatomical variabil-
ity that couldn’t be perfectly handled through spatial normalization
(Thirion et al., 2006a). As discussed in Section 2.1.3, a typical workflow
for group studies includes an anatomical registration step to compen-
sate for brain structures differences across subjects. The transforms
estimated on structural images are then used on rigidly coregistered
BOLD images to bring them to a common template space. While
this standard procedure is a best effort attempt at handling brain
structure difference in size and shapes, perfect correspondence can-
not be achieved. Functional variability can thus partly be caused by
anatomical variability, and be influenced as well by the normalization
process (Eickhoff et al., 2009). The main structural and physiological
parameters found to be correlated with this variability are: gray mat-
ter density, cortical thickness, morphological anatomy, cortical layers,
white matter tracts and myelination (Seghier and Price, 2018).

Letting alone anatomical variability, the brain is a plastic object
which is thus subject to constant reorganization, and shaped by prior
genetic and developmental constraints (Paus, 2013), as well as daily
environment. Functional variability in the motor cortex between ath-
letes and general population is indeed not surprising. Even though
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principles underlying this kind of reorganization are still an active re-
search area (Sampaio-Baptista et al., 2013), it is self-evident that brain
function also depends on cognitive abilities that are not homogeneous
in a healthy population. Although many studies attempted to find
important physiological (Saygin et al., 2016), and genetic (Thompson
et al., 2017) correlates of variability, one would need an extensive indi-
vidual phenotyping, composed of many interacting factors, to hope
model variability.

More formally, inter-subject variability can be described as intrinsic,
strategic, or contextual (Seghier and Price, 2018). Intrinsic variability
stems from inherent factors fixed on a long time-scale (e.g., language
lateralization which is linked to genetic factors). Strategic variability
refers to the use of different cognitive strategies to solve the same
problem (Miller et al., 2012) and is related to learning. Contextual
variability is more spurious and includes subject experimental perfor-
mance, driven by many factors, including their familiarity with the
scanning environment or their mood states.

On top of subject specific factors, it is hard to disentangle idiosyn-
cratic patterns of signal from contextually induced variations. Exper-
imenters, tooling, overall experimental context and data processing
account for an additional source of confounding “noise”, and it is
complex to distinguish a “site-effect” (Brown et al., 2011) from other
sources of inter-subject variation. To be fair, a perfect individual char-
acterization is quite unrealistic, since fMRI studies show an important
amount of inter-trial (Coste et al., 2011) and inter-session (Bennett and
Miller, 2010) variability for any given subject. The low-level of overall
fMRI reliability (Elliott et al., 2020) is another major obstacle limiting
the translational use of fMRI.

how to handle variability? As presented previously, variabil-
ity designates a complex phenomenon, is hardly distinguishable
from noise, encompasses many distinct effects and seems overall
impossible to model. The most promising view so far is to focus
instead on idiosyncratic—specifically individual—functional organi-
zation (Dubois and Adolphs, 2016; Mahowald and Fedorenko, 2016).
Finding reliable individual level functional markers could indeed
yield insights on how those relate across individuals. Our work builds
on this view to learn how to compensate variability, in a model-free
fashion. To be realistic, this approach calls for important amounts of
per-subject data, that are the only way to differentiate between stable
individual functional patterns from noise.
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Figure 2.7: Trade-offs between number of participants and amount of data per participant in selected
large scale fMRI datasets. Inspired from Naselaris, Allen, and Kay, 2021.

2.3.3 Deep Phenotyping

In the last decade, awareness of variability has progressively grown in
the neuroimaging community, making it a core characteristic of brain
and its derived signals (not only inter-subject variability, but also intra-
subject, Salehi et al., 2020). With the influence of precision medicine
concepts, deep phenotyping (Robinson, 2012) imaging studies have
expanded with a common focus on acquiring an important amount
of data on a few subjects to extensively describe their idiosyncratic
brain function organization (Naselaris, Allen, and Kay, 2021). In sharp
contrast with the common wisdom that sampling more individuals is
desirable, these studies have stemmed from the conviction that because
of the strong inter-subject variability, sampling many individuals
introduces an unmanageable amount of variance in observations that
would rather obscure precise brain function understanding. They
thus chose to extensively sample experimental conditions instead
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to precisely characterize brain response to numerous and complex
stimuli (see Figure 2.7).

Poldrack et al. investigated long-term brain dynamics of one subject,
and their link to physiological processes. To do so, they focused on
resting-state fMRI acquisitions repeated for 100 scanning sessions
over the course of 18 months (Poldrack et al., 2015). The StudyForrest
initiative extensively scanned 10 subjects in a multi-modal fashion.
It notably includes both naturalistic and task protocols, primarily
focusing on auditory stimuli processing (Hanke et al., 2016, 2014, 2015).
The BOLD5000 study focused on characterizing the visual system of
four subjects. Each of them was scanned for 20 hours, and overall
was presented 5000 different images from classical computer vision
datasets: SUN, COCO, and ImageNet (Chang et al., 2019). Courtois
Neuromod is an ongoing neural modelling project aimed at training
artificial neural networks using extensive individual brain activity
data. Six subjects are scanned, with a target of 500 hours of functional
data recording per subject. These scans mostly cover movie-watching
protocols, as well as a few functional localizers and HCP task-based
protocols.

Other datasets have been acquired to give precise individual account
of subjects function across a wider range of cognitive tasks. The Mid-
night scanning club (MSC) dataset includes twelve hours of recording
for ten subjects (Gordon et al., 2017). Half the scans images resting
state activity while the other half covered three protocols probing
motor activity, incidental memory as well as visual and verbal dis-
crimination. The ARCHI database (Pinel et al., 2019) developed four
functional localizers acquired for 78 individuals. These localizers total
29 experimental conditions associated with language, arithmetic, so-
cial reasoning and visuomotor representations. Finally, the Individual
Brain Charting (IBC) dataset (Pinho et al., 2020, 2018) is an ongoing
acquisition initiative of 12 participants performing numerous task
protocols (already 19 protocols including those of ARCHI, HCP) as
well as rest and movie watching data.

These initiatives, accumulating a large set of functional contrasts,
look promising to establish a finer-grained functional atlas, and indi-
vidual signatures for various functional processes. Local individual
activation seems quite consistent across contrasts, which might lead
to developing reliable brain measures. An interesting illustration of
individual variation captured by these characterizations is provided
by Pinho et al., 2021, who focus on comparing functional topogra-
phies across subjects. To do so, they aggregate individual data over
12 different tasks covering several psychological domains and make
a common decomposition of 13 individuals data, using sparse dictio-
nary learning (Abraham et al., 2013). This yields a set of 20 common
functional components (labelled according to the contrast mainly con-
tributing to each component) and individual spatial maps for each
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Figure 2.8: Dictionary of 20 cognitive components summarizing 13 individual topographies in fsaverage
space. (Top left/right) Labeling of left/right hemispheric cortical regions, according to the strongest
dictionary loading in that region. The top-right brain maps outlined in red of each image display a median
map obtained at group level, that is, a label is assigned to a component if, at least, half of the participants
have that label at that location. (Bottom) The 20 cognitive components are labeled according to the contrast
z-map that gets the maximum loading for that component. Overall, this figure illustrates the consistency of
some components, while it outlines local and large-scale differences across the IBC participants. Courtesy
of Pinho et al., 2021.

component, displayed in Figure 2.8. While coarsely stable, this decom-
position display a high level of local organization variability. Beyond
some especially stable regions, this variability hampers the ability to
derive representative group spatial maps. Compared with individual
topographies, those group topographies (in top-right red square) show
a qualitatively different geometry and have a hard time representing
well some components and characterizing some brain regions. More
generally, this points to important differences between individual or-
ganization and group estimates reported in traditional studies. On a
more positive note, the thoroughness of these individual character-
izations also make it possible to derive functional correspondences
across subjects to handle variability and progress towards precision
brain atlasing.



3 F U N C T I O N A L A L I G N M E N T

Functional variability, described in Section 2.3.2, is central to the study of
brain activity across individuals. Still, when imaging a cohort of healthy
patients, this variability is rather considered as an obstacle, hampering the
understanding of functional brain organization principles. Section 3.1 intro-
duces functional alignment, a family of methods proposed to compensate
for this imperfect voxel-correspondence across subjects by finding matchings
that maximize functional similarity across subjects. In this section, we
discuss in detail Hyperalignment (Haxby et al., 2011), together with cur-
rent challenges and extensions. We also describe the closely related Shared
Response Model. Section 3.2 takes a step back so as to frame functional
alignment in the broader machine learning literature and discuss common-
alities with work performing some kind of feature alignment. In Section
3.3, we turn a critical eye on this sub-field, given that the proposed methods
are still seldom applied in real use-cases to handle variability. This gives
context and motivations for our contributions presented in the following
chapters.

3.1 introduction to functional alignment

3.1.1 Improving functional correspondence across subjects

A core challenge for cognitive neuroscience is to find similarity across
neural diversity (Churchland, 1998); that is, to find shared or simi-
lar neural processes supporting the diversity of individual cognitive
experience. Anatomical variability and limited structure-function cor-
respondence across cortex (Paquola et al., 2019; Rodriguez-Vazquez et
al., 2019) make this goal challenging (Rademacher et al., 1993; Thirion
et al., 2006b). Even after state-of-the-art anatomical normalization to a
standard space, we still observe differences in individual-level func-
tional activation patterns that hinder cross-subject comparisons (Langs
et al., 2010; Sabuncu et al., 2010). With standard processing pipelines,
it is therefore difficult to disentangle whether individuals are engag-
ing in idiosyncratic cognitive experience or if they are engaging in
shared functional states that are differently encoded in the supporting
cortical anatomy. Variability additionally hampers attempts at pre-
cise functional brain mapping and discovery of reliable translational
bio-markers (see Section 2.3).

27
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A note on terminology

Although this class of methods is broadly referred to as both functional alignment methods and
hyperalignment methods, we adopt the term functional alignment methods to better distinguish from
the specific Procrustes-based hyperalignment implementation in use in the literature.

Functional alignment is an increasingly popular family of methods
for fMRI analysis which aims at handling inter-subject variability.
Alignment methods derive matchings across subjects’ functional data
that can be applied in order to improve similarity of their voxels func-
tional activations. Alignment can either be learned after anatomical
registration or replace it entirely. This conceptual shift from anatomy-
based to functionally-driven mapping has opened new avenues for
exploring neural similarity and diversity. In particular, by aligning
activation patterns in a high-dimensional functional space (i.e., where
each dimension corresponds to a voxel), we can discover shared repre-
sentations that show similar trajectories in functional space but rely
on unique combinations of voxels across subjects.

As a general framework, illustrated in Figure 3.1, functional align-
ment can be seen as the search for a transform R that maps a source
functional dataset As ∈ Rp×n to a target dataset At ∈ Rp×n under
some given constraints (R ∈ R) in order to minimize their dissimilarity
(Equation 3.1). When R is linear, it can be interpreted as a mixing of
source voxels signals in order to reconstruct target signals.

argmin
R∈R

‖R(As) − At‖2F (3.1)

To learn R, most methods rely on the fact that both As and At

were acquired using the same experimental protocol—either task-
based or naturalistic—ensuring a time synchronization between their
n frames. From the initial introduction of hyperalignment in (Haxby
et al., 2011, detailed in section 3.1.2), the range of associated methods
has grown to include Shared Response Modelling (SRM, Chen et al.,
2015 described in section 3.1.5), Optimal Transport alignment (our
contribution, introduced in Chapter 4) and many more, reviewed in
section 3.2.

scope definition For simplicity, we focus here on the context
of healthy human imaging, and will mostly use deep phenotyping
datasets (2.3.3) as their rich individual characterization will help us to
estimate mappings and test them. We additionally make the hypothe-
sis that anatomical alignment (2.1.3) has been performed across subjects.
This means subjects data were brought to a common reference geome-
try based on anatomical features and their images comprise the same
number of voxels p. Although we will not consider it in this thesis,
some methods cited, including Optimal Transport alignment, could
be applied without any prior anatomical alignment, which makes
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them suitable for other use-cases such as functional alignment across
different species (Mantini et al., 2012; Xu et al., 2020).

Target SubjectSource Subject

Alignment

Decoding
Task Data

Data Functional
alignment

Intra-subject
alignment

Model training

Model prediction

Predicted

Asource

Dsource

Atarget

Dtarget
^

Figure 3.1: Principle of functional alignment The basic goal of pairwise functional align-
ment is to learn correspondence between data drawn from two subjects: from a source
subject to a target subject, using their synchronized alignment data A. Each subject of-
ten comes with additional data to be aligned, denoted D. Red arrows describe functional
alignment methods where correspondence is learned from Asource to Atarget, while blue
arrows describes intra-subject alignment (3.2.3) where we learn correlation structure from
Asource to Dsource. Solid arrows indicate a transformation learned during training. Dashed
arrows indicate when the previously learned transformation is applied in prediction to
estimate D̂target.

3.1.2 Hyperalignment

While seminal work introduced functional alignment as a diffeo-
morphic registration refinement, guided using functional similarity
(Sabuncu et al., 2010, see section 3.2.2), Haxby et al., 2011 proposed to
search for matchings exclusively aimed at compensating for functional
variability without any anatomical constraint. It is worth noting this
is a radical change of perspective. Instead of refining the structure
correspondence across subjects—in the hope the structure-function
coupling will ensure a functional correspondence—this means turning
away from local structural information, to focus only on its functional
characterization. Following the intuitions behind multivariate pattern
analysis (Haxby et al., 2001), functional signals acquired during a
protocol can be seen as a cloud of points in high-dimension, where
each dimension is a functional time-point (with a specific stimulation
content) and each point is a voxel thus characterized by its activations
at each time-point (see Figure 3.2). In this view, alignment can be
described as the task of matching those entire point clouds, where
each voxel can be mapped to several others that have most similar
activation profiles.
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Figure 3.2: Schematic of alignment as a matching task in a high-dimensional space. A
voxel is characterized with a series of images, each with a specific functional content.
Activation patterns are represented as matrices of activation vectors. The goal of alignment
is to improve correspondence between those patterns—the similarity of matrices—through a
transform mapping together voxels with similar characterizations. Source: Haxby et al., 2020

To solve this matching problem, Haxby et al. proposed to use Pro-
crustes, an established shape matching method (Goodall, 1991; Gower,
Dijksterhuis, et al., 2004). This method yields an orthogonal transform
R ∈ Rp×p solving:

argmin
R=σQ,QTQ=Id

‖RAs − At‖2F, σ ∈ R+, Q ∈ Rp×p (3.2)

Equation 3.2 is solvable in closed form using the Singular Value
Decomposition (SVD) of AᵀAsᵀ: (U, ˚, V) = SVD(AtAsᵀ):

R∗ = σQ where (σ, Q) =

(
tr(˚)
‖As‖2F

, UV
)

As the best orthogonal matching, this transform can be seen as a
rotation matrix mixing signals of voxels in As to reconstruct the signal
of voxels in At as well as possible. In their original work, Haxby et al.
argued that the orthogonality of the transform aimed at preserving the
“representational geometry”, meaning the geometry of the point-cloud
in this high-dimensional space.

Hyperalignment is a conceptually appealing way to circumvent
the ubiquitous variability problem. However, its introduction brought
up two main constraints to handle in order to make it applicable to
interesting research set-ups: how to handle high-dimensionality of
images and the potentially large number of subjects to align.
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3.1.3 High-dimensionality alignment

Compared to usual registrations, ignoring diffeomorphic constraints
gives alignment complete spatial freedom to find matchings that best
improve functional similarity. However, it also creates a tension on
the spatial scale at which such matchings should be sought for. As
seen in Section 2.3.2, inter-subject variability is most striking at a local
scale, which is why Hyperalignment was introduced in a well-defined
sub-region (Haxby et al., 2011). Moreover, searching for alignment
in local regions acts as a form of regularization: considering local
inter-subject variability rather than global changes such as large-scale
functional reorganization.

Applying the above model directly to full brain would suffer from
several issues: i) it may create some non-local correspondences (e.g.,
cross-hemisphere swap) that are not neuroanatomically plausible; ii) it
is computationally heavy if not intractable: most matching algorithms
applied to two images of p voxels, will at least have a complexity of
O(p2); iii) it would likely lead to overfitting: to estimate well a p× p
matrix, one needs a high number of samples n, up to p2, whereas in
the typical study n� p.

searchlight hyperalignment A proposed solution was to ag-
gregate many local alignments to compose a full-brain matching, while
keeping the benefits of local alignment in terms of regularization. To
do so, Guntupalli and colleagues (Guntupalli, Feilong, and Haxby,
2018; Guntupalli et al., 2016), proposed to use the searchlight scheme
(Kriegeskorte, Goebel, and Bandettini, 2006), popular in brain imaging.

In this procedure, the cortex is divided into a set of small overlap-
ping spheres of radius r covering the brain. A local transform can
then be learned in each sphere, and the full alignment is obtained
by averaging across overlapping transforms. Although this procedure
derives local correspondences, it is computationally costly. One needs
at least p

r3
balls to ensure that all voxels are covered (and usually way

more are used to ensure balls overlap). Importantly, the aggregated
transform produced is no longer guaranteed to bear the type of reg-
ularity (e.g., orthogonality, isometry, or diffeomorphicity) enforced
during the local neighborhood fit.

low-rank transforms As an alternative handling of the complex-
ity entailed by hyperalignment on large regions, Chen et al. proposed
instead to do a shared dimensionality reduction across subjects prior
to performing alignment (Chen et al., 2014). They suggested joint-SVD
to decompose all subjects data in a common basis and in a second step
performing Hyperalignment on this lower number of features. This
opened the way for the use of lower rank factor models to represent
data across subjects, such as the Shared Response Model detailed
below.
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3.1.4 Aligning many subjects

Pairwise matchings between two datasets, such as Procrustes, are
usually hard to extend to more than two subjects and thus not suited
to group studies (which above all else want to find a common repre-
sentation for all subjects). In fact, to learn the matchings between all
pairs of S subjects, one would need to perform S2 alignment steps,
which is computationally prohibitive in many situations. Moreover,
when trying to pull information from all subjects in a common space,
it is challenging to find a unique model capturing properly the spe-
cific features of each subject. Group averaged data would seem like
a fine candidate to use as such a common space, but its topography
shows important qualitative difference compared to individual data,
which would deter alignment goals. In their original paper, Haxby
and colleagues thus proposed an iterative heuristic to build a group
“template” suitable for alignment (Haxby et al., 2011).

In this procedure, a subject is arbitrarily drawn as a reference.
In a first pass, subjects are taken one by one, aligned to the current
reference and this aligned data is averaged with the previous reference
to update it. In a second pass, all subjects are aligned to this temporary
“common space”, and their aligned data are all averaged together to
serve as a final “template” space.

This method suffers from several drawbacks. First, it receives non-
equivalent contributions from various subjects to the common group
model, which is thus strongly dependent on the order in which sub-
jects were aggregated (Al-Wasity et al., 2020). Moreover, it does not
follow any clear criterion of optimization, and is thus hard to trust or
deem significant. It is merely an intermediate computational step. The
complexity of finding better characteristics for potential templates will
be detailed in Section 5.2.Another solution to this kind of problem was
instead to search for common latent factors across subjects and map
their full data in this low-rank basis. This approach was introduced as
Shared Response Model.

3.1.5 Shared Response Model

The Shared Response Model (SRM), introduced in Chen et al., 2015, is
a latent factor model that extracts a common response from different
subjects exposed to the same stimuli and subject-specific spatial com-
ponents. In practice, this shared response corresponds to the activity of
a fixed number of components (or “super-voxels”) summarizing com-
mon activity across subjects. It is jointly estimated with subject-specific
“spatial basis” that project the full number of voxels to these super-
voxels, in an orthogonal fashion. In its deterministic version, SRM
estimates a common shared response S ∈ Rk×n and a per-subject
orthogonal basis Wi ∈ Rp×k from subject-level alignment data Ai,
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solving Equation 3.3. n is the number of time points, p is the number
of voxels, and k is a hyper-parameter indexing the dimensionality.

min
W1,...,Wn,S

∑
i

||Ai − WiS||2F

∀i, WiᵀWi = Ik (3.3)

SRM decomposes the signal of many subjects in a common basis,
with the same orthogonality constraint as Procrustes. It mostly differs
from Procrustes analysis in that it provides a decomposition of all
subjects’ activity at once, rather than being performed pairwise. This
decomposition is low-rank, which is also a way of addressing high-
dimensionality. This makes it an effective solution, especially given
recent computational improvement (Richard et al., 2019). However,
SRM is only effective if the number of components k is large enough
to capture all distinct components in the signal.

For full-brain data decomposition, it thus provides limited resolu-
tion topographies, since the low number of estimable components is
limited by the smaller number n of training samples compared to
the number p of voxels. This implicit dimension reduction induces
a loss of information compared to using original data. In an ROI, by
contrast, we have an increased ratio of n/p which ensures both (1)
more stable estimations thanks to increased number of samples (2)
that we do not lose relevant information when projecting voxel signal
to the shared response (n/p must be greater than 1 to ensure full-rank
decomposition).

3.2 related approaches

3.2.1 Machine learning framing: feature alignment

Trying to minimize differences between different subjects’ dataset can
be described as a transfer learning problem where each subject is a
different domain. More specifically, the primary goal of alignment is
to relate datasets of subjects going through the same task, hence it
is part of the sub-field of domain-adaptation (Farahani et al., 2020).
Domain adaptation algorithms (e.g Schoenauer-Sebag et al., 2019)
usually postulate a fixed feature space X, from which each domain
data xs, xt are drawn, most commonly with a covariate shift, meaning
the marginal probabilities of their distributions differ :

ps(x) 6= pt(x)

The inter-subject decoding problem, a classification setting used as a
validation task in Chapter 6, can typically be considered as a domain
adaptation problem.
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Functional alignment addresses the same kind of discrepancy, but as
a mismatch between domains feature spaces Xs and Xt. This situation
is not common in the transfer learning literature, where it appears
for some specific computer vision generalization tasks, natural lan-
guage translation problems for low-data language (Alaux et al., 2018),
to compare information encoded in various neural networks trained
in the same way (Lu et al., 2018), or in general machine learning
to match embeddings with slightly different dimensions under the
names hyperalignment, feature representation transfer (Kaboli, 2017) or
feature alignment (Chen et al., 2019). In the most general case, there
is neither the same number of features in both spaces nor known
common anchor points to relate them. In functional alignment, we
rely on common synchronized protocols probing those feature spaces
in the same way as supervised data to learn this mapping. Each syn-
chronized timeframe gives one more dimension which characterizes
both features sets in parallel. Each feature is characterized by a vector
of p coordinates, and the set of features to match for X and Y can be
seen as distributions (or point clouds) in this p-dimensional space.

When working with anatomically-aligned fMRI data, common spa-
tial coordinates are also available to relate both feature sets. While
most alignment methods explicitly ignore them, diffeomorphic align-
ment (3.2.2) use them to impose a strong regularity on the matching.
Working on local neighborhoods as proposed in Searchlight alignment
(3.1.3) is also a way of using this spatial information as a regularizer.

3.2.2 A review of functional alignment methods

linear alignment Although various algorithms have been pro-
posed to solve these problems, most linear solutions revolve around a
few already evoked ideas. Among the most common are Procrustes
and the closely related Canonical Correlation Analysis (CCA) (Hardoon,
Szedmak, and Shawe-Taylor, 2004). Equations 3.4 & 3.5 display
closely matched formulations of both problem (in their generalized
formulation). For each dataset, Procrustes yields an orthogonal basis
that forms linear combinations of voxels responses, yielding response
features shared across datasets. On the other hand, CCA seeks one
set of orthonormal vectors per dataset such that those vectors are
maximally correlated across datasets (Xu et al., 2012).

min
Rs,Rt
‖AsRs − AtRt‖2F

s.t. Rk
ᵀRk = Id (3.4)
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min
Rs,Rt
‖AsRs − AtRt‖2F

s.t. Rk
ᵀAkᵀAkRk = Id (3.5)

In fMRI, this line of work mostly led to the aforementioned Shared
Response Model (which is quite similar to a probabilistic CCA, (Bach
and Jordan, 2005; Chen et al., 2015)) with the notable exception of
Bilenko and Gallant, 2016 introducing a regularized and kernelized
version of CCA. This line of work had recent developments, with
the introduction of new multi-view algorithms (Richard et al., 2020;
Xu, Yousefnezhad, and Zhang, 2018b), replacing the PCA underlying
Shared Response Model with other techniques such as Independent
Component Analysis (ICA) (Hyvärinen and Oja, 2000).

non-linear alignment Attempts to find non-linear matchings
across feature spaces mostly tried to solve the Procrustes problem
after suitable non-linear embeddings of each subject data. Kernel
Hyperalignment (Lorbert and Ramadge, 2012) was proposed as a
way to improve scalability and open the possibility to use additional
features on top of images to learn alignment. The main underlying
idea is to search for alignment in a kernel space (see Equation 3.6).
This approach remained however limited by the need to choose an
arbitrary kernel and the lack of criterion to evaluate such kernels.

argmin
RTR=Id

‖Rφ(As) −φ(At)‖2F (3.6)

In Langs et al., 2014, the authors proposed to go even further in
terms of decoupling of functional and anatomical space. This seems
particularly meaningful in contexts in which structure/function cou-
pling is not guaranteed across subjects. They state that each subject’s
high-dimensional fMRI data is lying on its own manifold, that can
be well approximated by low-dimensional geometries and matched
accordingly. To leverage this assumption, they proposed to learn
an embedding from the correlations of fMRI time courses. To find
these subject-specific low-dimensional spaces, they use diffusion maps
(Coifman and Lafon, 2006) on functional connectivity to derive 300-
dimensional embeddings. They also introduce ways to aggregate these
embeddings into a common “atlas” in which all subject can be com-
pared. While this technique leverages an interesting view of data,
the embedding process used is not invertible, which breaks the over-
all invertibility of alignment. Moreover, embedding separately the
time-dimension of subjects signals destroys time-synchronization and
temporal labelling of data. It is thus mainly restricted to resting-state
data.
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In another original formulation (Wu et al., 2021) proposed to learn
a d-dimensional non-linear embedding of anatomical coordinates of
voxels based on functional similarity, modelled through Gaussian
processes. They argue that the constraints applied to design this em-
bedding space ensure that neural activity changes smoothly as a
function of locations in embedding space, and subsequently make
a compressed representation matrix of full-brain covariance matrix.
However, this non-linear embedding process is non-invertible and per-
formed independently across subjects, which are important limitations
to include it in a functional alignment framework.

The small amount of available fMRI data makes it unrealistic to
solve this problem using heavily parametrized alignment models
without overfitting. For completeness, it should be noted that if it
wasn’t for this constraint, Auto-Encoders (Liu et al., 2020; Wang et al.,
2015), Generative Adversarial Networks, Deep CCA (Benton et al.,
2017), and in general networks specifically trained to remove subject-
specific information (e.g., including a gradient reversal layer (Ganin
et al., 2016)) would be promising directions to explore. However,
works that tried to apply those in fMRI are seldom (Chen et al., 2016;
Yousefnezhad and Zhang, 2017) and do not translate to typical study
context.

diffeomorphic alignment In a seminal work, Sabuncu et al.
(Sabuncu et al., 2010) introduced the idea of treating functional vari-
ability as a residual of an imperfect anatomical registration. Building
on this view, they proposed to introduce a second fine-tuning step
where this diffeomorphic transform would be refined using functional
data. Following this idea, several contributions pushed the idea to
perform functional alignment as a diffeomorphic registration improv-
ing functional similarity. They mostly adapted existing diffeomorphic
anatomical registration algorithms to guide them using various func-
tional derivatives. Spatial patterns of functional response (Conroy
et al., 2013), functional connectivity patterns (Jiang et al., 2013), func-
tional connectivity low-dimensionnal embeddings from Langs et al.,
2014 described previously, multi-modal features (Robinson et al., 2018),
(Nenning et al., 2017), or even raw functional images (Dohmatob, Varo-
quaux, and Thirion, 2018) were proposed to guide registration. This
means that the dissimilarity minimized by such algorithms is partly,
or even entirely, based on those functional derivatives across subjects
instead of being calculated on anatomical structures.

By design, these transforms are far more constrained than the ones
described previously. They target precision improvement over preex-
isting anatomical alignment, or provide more information to guide
registration. In fact, enforcing diffeomorphicity in the anatomical
space is implicitly imposing a very strong spatial regularization (at
least through initialization) on the spectrum of possible “functionally
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guided” transforms. By contrast, other alignment approaches posit a
strong level of local variability that cannot be compensated adequately
with those restrictions.

3.2.3 Beyond alignment classical set-up

intra-subject alignment Another alternative to functional align-
ment can be envisioned from Tavor et al., 2016. Alignments are usually
learned as source-target mappings on dedicated alignment data: As, At.
Commonly, they are later applied on unrelated data, that we denote
Ds. Another possibility is to learn a A to D mapping within-subjects.
In their paper, Tavor and colleagues show that while individual activ-
ity patterns in each task may appear idiosyncratic, correspondences
learned across different tasks using a general linear model display less
inter-subject variability than individual activity maps. For example,
this means that it is possible to predict idiosyncratic features of a
subject activity performing an object recognition task from its movie-
watching data derived features, or to infer its task-based activations
from resting-state. This provides an interesting twist on the typical
functional alignment workflow: while most methods learn alignments
within a single task and across subjects, we can instead learn within-
subject correlations across tasks. The structure of learned task-specific
correlations should then hold in new, unseen subjects.

Figure 3.3 illustrates how we can learn the local-level correlation
structure between two independent tasks As ∈ Rp×n, Ds ∈ Rp×d

within a single source subject. We denote the mapping between these
tasks, as Rintra, to distinguish it from mappings that are learned
between pairs of subjects. First, we divide both tasks’ data into parcels
(e.g., using a high-resolution functional atlas). On a local parcel i, each
voxel is considered a sample, and we train Rintrai ∈ Rpi×d through
Ridge regression (Hoerl and Kennard, 1970):

Rintrai = argmin
Ri

||AsiRi − Dsi ||
2
F +α||Ri||

2
F (3.7)

The hyperparameter α can easily be chosen with nested cross-
validation. After repeating this procedure for several source subjects,
we can then use the averaged of those learned correlation structures
Rintra to estimate new data for target subject as D̂t = AtRintra.

connectivity-based alignment As stated previously, sample
synchronization is usually necessary to supervise the feature matching
process in fMRI. However, when such a constraint is not fulfilled, other
methods have been suggested to put datasets in correspondence. In
(Guntupalli, Feilong, and Haxby, 2018), the authors propose to use
instead coarse features stability across datasets as a way to recreate
supervision to refine their matching. To do so, they cluster features
into k previously known hierarchical regions and average signal for
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Figure 3.3: Intra-subject alignment. Using intra-subject alignment to learn piecewise corre-
lations between a single subject’s alignment and decoding task data. As with other piecewise
methods, this mapping is learned separately for all parcels i . . . j of the chosen parcellation.
For each parcel, we use cross-validated Ridge regression to learn the mapping between the
two task conditions—alignment data A and independent decoding task data D—for this
source subject. For the i-th parcel, we denote this mapping as the matrix Ri. We then aggre-
gate these piecewise predictions into a single, whole-brain prediction D̂. During training,
this prediction can be directly compared to the ground-truth decoding data, D. At test time,
we would have access to the target subject’s alignment data A but not their decoding task
data, D.

each of these clusters. Then, the correlation of local signals with these
stable “averaged signals”, which is known as functional connectivity in
neuroscience, yields a vector of length k that can then be taken as a
descriptor of these features. From there, all alignment methods cited
previously can be applied (e.g., Shared Response Model Nastase et al.,
2020), extending alignment to cases without common synchronized
protocol across subjects, and in particular to resting state acquisitions.

We will not cover these techniques further in this thesis, as we will re-
strain ourselves to the case where we have common time-synchronized
protocols across datasets (usually subjects). In these cases, adding sup-
plementary connectivity features do not improve matching compared
to regular methods introduced in Section 3.1 (Busch et al., 2021).

representational similarity analysis Representational Simi-
larity Analysis (RSA) (Kriegeskorte, Mur, and Bandettini, 2008) is an
alternative method which circumvents functional variability problems.
Complementary to statistical parametric mapping (2.2.2) and decod-
ing (2.2.3), it is used to study how multivariate activity patterns vary
across a set of stimuli in selected regions-of-interest (ROIs). Whereas
decoding is looking to discriminate across stimuli through separating
the high-dimensional space of activation patterns, RSA measures the
distance across patterns as vectors in this space (Haxby, Connolly,
and Guntupalli, 2014). In a ROI, the dissimilarity (e.g., correlation,
euclidean distance. . . ) between activations patterns elicited by each
pair of stimuli are assembled in a Representational Distance Matrix
(RDM). Distances between RDMs of various ROIs can also be calcu-
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lated, producing second-level RDMs that can be used to investigate
how response differences across stimuli are emphasized or weakened
in the set of ROI.

To compare first-level RDMs, voxel-level correspondence is unneces-
sary, which alleviates the effects of functional variability on this kind
of analysis when performed across subjects. Put differently, it creates
derived representations that are invariant to any orthogonal transfor-
mation applied to voxels. However, this is a consequence of the fact
that this approach treat functional topography as unimportant, and do
not provide any spatial model of common effects nor idiosyncrasies
(Haxby et al., 2020). We thus didn’t further include RSA in this study,
since it does not help to improve functional similarity across subjects.

3.3 critical literature review

3.3.1 Open questions

Since its introduction until today, hyperalignment or functional align-
ment is often cited as a promising avenue to handle variability, improve
brain modelling and ease translational research tasks such as biomark-
ers discovery (Dubois and Adolphs, 2016; Poldrack, 2017; Woo et al.,
2017; Gratton et al., 2018; Chiba et al., 2019; Finn et al., 2020; Hamilton
and Huth, 2020). However, we have no choice but to note that in this
decade, studies devoted to suggest possible methodological variations
around alignment outnumbered by far studies actually applying it
to investigate other research questions (for a review, see Haxby et al.,
2020).

Alignment has often been presented as a conceptually intriguing
idea, which it is, but in this thesis, we mostly consider it as a pragmatic
way to handle data scarcity and imperfection in order to improve
fMRI studies generalizability. In this view, important questions remain
weakly addressed in functional alignment literature, which can explain
why it has not yet lived up to its potential:

• First and maybe most importantly, alignment use-cases are
loosely defined, and it is unclear which method is suited for each
application. It is subsequently hard for researchers to understand
which method would be beneficial for their own use-cases.

• Following on the previous point, there is a lack of benchmarks
comparing methods against one another, which yields a divided
literature in which one has a hard time comparing methods.

• Moreover, methodological validation commonly solely relied on
similarity metrics, which are hard to relate to broader use-cases.
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This also prevents potential users to understand which gains can
be expected from alignment.

• Crucial practical questions on how to reliably handle high-
dimensional data, and datasets containing many subjects, are
not completely answered in the literature.

• Alignment is a complex technique which could lead to double-
dipping if used improperly, hence the lack of well-documented
and computationally efficient implementations will deter any
users that would have wanted to use it.

3.3.2 Our work

Our early work focused on introducing optimal transport as a reliable
alignment method, which had the potential to improve distribution
matching calculation. In doing so, we also proposed a new aggregation
scheme as well as a template design method introduced in Chapters
4 & 5. While doing this, we realized many of the aforementioned
shortcomings. Our subsequent work aimed at addressing those. We
identified two major research scenarios to which alignment could be
beneficial: (i) improving group studies inference power and general-
izability, (ii) improving signal transfer across subjects and datasets
for more powerful decoding. As our priority was to evaluate func-
tional alignment potential in applied settings, we mostly focused on
the latter direction, which provided us with a solid paradigm for an
empirical benchmark (see Chapter 6). We also tried to clarify stakes
and metrics of functional template creation and although no formal
contribution has stemmed from this work yet, we give a quick account
of our endeavors in Section 5.3.
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4 LO C A L O P T I M A L T R A N S P O R T
A L I G N M E N T

In this part, we bridge the key idea of functional alignment—finding the
best matching to improve correspondence of activation patterns across
individuals—with Optimal Transport (OT): a mathematical theory that
had a very rapid development in the last two decades and is especially well-
suited to estimating such matchings (Section 4.1). Without any regulariza-
tion, optimal transport yields a sparse orthogonal mapping with a strong
regularity resulting from mass conservation constraints. The key idea of this
contribution, developed in Section 4.2, is that this regularity is well-suited
to find matchings bridging signals geometry across subjects. The derived
transport plans are invertible and preserve the structure of individual topogra-
phy after deformation (especially compared to smoother Procrustes solutions).
Additionally, the entropic smoothing procedure used to regularize optimal
transport also contributes to the efficient estimation of brain mappings. As we
implement this method as a local alignment procedure, Section 4.3 introduces
an additional piecewise aggregation scheme to combine non-overlapping
matching derived on many parcels. Section 4.4 describes an experimental
evaluation of this method on rich multi-subject, multi-contrasts datasets. This
chapter is based on work from Bazeille et al., 2019.

4.1 a primer on optimal transport

Searching for a mapping between two groups of voxels without taking
their anatomical coordinates into account can be described as the
search for a matching between two independent and unordered sets.
In such case, the proper metric to consider is functional similarity
between features belonging to each set. We can then consider various
mathematical frameworks to derive optimal matching.

4.1.1 Assignment problem

The most classical related problem, known as the assignment problem,
was introduced by Monge (Monge, 1781). In this formulation, the two
sets contain the same number of elements, and each element from one
set can be related to any element from the other set through a cost
function C : Xs×Xt → R. In our case, a natural cost function could be
a measure of dissimilarity between features. The assignment problem
is then to link elements from both sets in a one-to-one fashion in order

42
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to minimize the overall cost of this assignment (defined as the sum
of chosen pairs costs). Formally, we search for a bijection f : Xs → Xt

which minimizes
∑

xs∈Xs
C(xs, f(xs)). A well-known solution to this

problem is the Hungarian algorithm (Munkres, 1957), which iteratively
refine the overall matching by focusing at each step on minimally
dissimilar pairs of elements.

To put this in context, searching for alignment as an optimal as-
signment means looking for the permutation of voxels maximizing
functional similarity to another subject. Of note, a permutation is an
orthogonal matrix, hence it is part of the space over which Procrustes
minimizes its cost function. However, mappings obtained in such
a restricted class meet strong constraints, in particular in terms of
sparsity. While enforcing a one-to-one voxel correspondence seems
somewhat unrealistic when dealing with inter-subject variability, it is
an interesting baseline.

4.1.2 Transportation problem

The assignment problem is in fact a special case of the broader trans-
portation problem. As presented in the previous section, assignment
aim is to find a bijective pairing between two sets, i.e., each source
element can be matched to only one target element. On the other hand,
transport is concerned by matching two measures (i.e., histograms of
unit norm) supported by those sets in a n-to-n fashion. In this more
general formulation (Kantorovitch, 1958), admissible couplings are
probabilistic, i.e., they can split the mass of a source location towards
several target locations.
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Figure 4.1: Mines and Factories problem. Resources must be transported from mines to
factories at a minimal overall cost. The cost to transport a quantity of resource between
histograms a and b is defined by a cost matrix C.
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of mines and factories A classical example of a transportation
problem is the one said of “mines and factories”, depicted in Figure
4.1, in which p mines (the source support) produce each a quantity
ai for i ∈ [1,p] of a given resource. This resource is consumed by q
factories (the target support) where each factory consumes bj resources
for j ∈ [1,q]. Both histograms to match are normalized: the mass of
resource produced and consumed are equal and thus considered
summing to one, such that

∑
i

ai =
∑
j

bj = 1.

To transport a quantity x of resource from a mine i to a factory j
takes a cost cij(x) depending on the distance between the mine and
the factory. The transportation problem itself is to find the coupling
R that transports the entire resource’s mass from mines to factories
at a minimal overall cost (which is the sum of all costs of effective
transportation). This coupling is admissible only if it enforces the mass
conservation constraint, which means that the quantity of resource
displaced from a mine i must sum to exactly ai and the amount of
resource displaced to a factory j must sum to bj.

optimal transport More formally, let us denote two unit-norm
histograms a ∈ Xs, b ∈ Xt as the source and target histograms to
match supported by both sets. As opposed to the assignment problem,
the disjunction between histograms to match and their supports mean
that both supports need not have the same cardinality. We’ll denote
card(Xs) = p and card(Xt) = q. We also define C ∈ R

p×q
+ a cost

matrix relating both supports through the cost function C : Xs×Xt →
R+. The objective is to a find the coupling R ∈ R

p×q
+ which transports

a to b at a minimal cost. This cost can be written as the element-wise
product between R and C or simply

∑
i,j

Ri,jCi,j.

To be admissible, a coupling must respect mass conservation prob-
lems. The transportation problem is thus a constrained minimization
problem that search for the optimal transport plan R∗ solving Equation
4.1:

argmin
R

∑
i,j

Ri,jCi,j

s.t.

∑
j

Ri,j


i

=
1

p
,

(∑
i

Ri,j

)
j

=
1

q
(4.1)

Notably, this transport plan can match a source element to several
targets by dividing its mass, and can also be interpreted as a proba-
bilistic matching between source and target histograms. In this basic
formulation, the transportation problem is convex and thus yields a
unique solution. The overall transportation cost enticed by this plan is
called the Wasserstein distance: WC(a, b) =

∑
i,j

R∗i,jCi,j.
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Given two sets related by a cost function, the Wasserstein distance
can be seen as a natural geometrical distance to compare probability
distributions. In our work, we are mostly interested in finding the
optimal transport plan which can be interpreted as an optimal matching
between subjects data (our detailed methodology, including additional
regularization of this minimization, is described in Section 4.2).

wasserstein barycenters Let us define a set of S histograms
living on the same support: (xs)Ss=1 ∈ X. When X is equipped with
a distance d, a common problem is to derive their barycenter t (also
called Fréchet-mean for distance d) solving Equation 4.2.

argmin
t∈X

S∑
s=1

d(xs, t) (4.2)

When d is the `2-norm, the barycenter comes back to the euclidean
mean, and for the `1-norm the barycenter becomes the median. While
Equation 4.2 can be difficult to solve for a generic distance, it is a
convex problem when using the Wasserstein distance (Peyré and
Cuturi, 2018). It is possible to derive a barycenter where each xs comes
with a different cost matrix Cs. However, in the typical eulerian set-up,
all cost matrices are the same and define a single Wasserstein distance
W such that the Wasserstein barycenter t minimizes Equation 4.3.
Using entropic regularization, this minimization can also be solved
efficiently using Sinkhorn algorithm.

argmin
t∈X

S∑
s=1

W(xs, t) (4.3)

unbalanced optimal transport When trying to apply optimal
transport to real world noisy data, the mass conservation hypothesis
is rarely fulfilled. Thus, a common extension of the aforementioned
problem is the one of “unbalanced” optimal transport, which relaxes
the mass conservation constraints using a divergence D. The transport
plan marginals are allowed to be only approximations of a and b, as
penalized through D. A parameter τ is introduced to control how
much mass variations are penalized compared to transportation cost
(Peyré and Cuturi, 2018). Equation 4.1 can then be generalized as
Equation 4.4:

argmin
R

∑
i,j

Ri,jCi,j + τD(R1, a) + τD(R ᵀ 1, b) (4.4)

Where R1 denotes R ᵀ 1 the right and left marginals of the coupling,
respectively denoted in Equation 4.1 as

(∑
jRi,j

)
i

and
(∑

iRi,j
)
j
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A usual divergence to use in this context is the Kullback-Leibler
divergence. Efficient algorithms to estimate unbalanced Wasserstein
barycenters can also be derived (Benamou et al., 2015; Chizat et al.,
2018; Janati, Cuturi, and Gramfort, 2020).

4.2 optimal transport alignment

previous work In Gramfort, Peyré, and Cuturi, 2015, the authors
proposed to apply optimal transport to match brain signals across
subjects in order to build group averages better accounting for vari-
ability. In this model, the authors define signals as the histograms to
match and the spatial distance between each signal location as the
cost of displacement. The key idea here is, for one contrast, to match
similar quantity of activations even when they display a slight spatial
shift, and calculate a Wasserstein barycenter of subjects’ activations.
They illustrate this method both on fMRI data and in the context of the
MEG inverse problem. This nicely fits the intuition that activation foci
should be moved conservatively to match individuals, which makes it
quite alike diffeomorphic alignment.

When considered as a potential tool for functional alignment, this
approach suffer from several limitations. First, it is calculated for
each timeframe separately, which means that, when applied to several
images or contrasts, the underlying voxel displacement induced on
each frame will be unrelated. Hence, it lacks consistency and gen-
eralizability for practical applications. Pragmatically, we must also
note that fMRI signals are not measures: they are not entirely positive
nor normalized across subjects. This introduces the need to resort to
unbalanced optimal transport and additional computational heuris-
tics and introduce additional hyperparameters which are hard to set.
More fundamentally, this kind of matching does not convey functional
similarity across subjects, but merely tries to match sparse blobs of
brain activity.

our approach We chose to apply optimal transport in another way,
building on functional alignment intuitions. Instead of searching for
an explicit matching between observed signals, we searched for the un-
derlying matching between voxels as characterized by their functional
similarity. We thus defined the sets of voxels to match directly as our
measures and defined a cost matrix conveying functional dissimilarity
across voxels.

notations Let p ∈ N, we denote [p] the set of integers from 1 to
p. Let Ai ∈ Rp, δAi will denote the Dirac mass at location i. Given
a brain region comprising p voxels, we consider the d-dimensional
signals observed in these voxels {A1, ..., Ap}. Here, these d-dimensional
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signals correspond to d activation maps observed in a given subject.
We denote by A the p× d matrix obtained by concatenating those
vectors. ‖‖F denotes Frobenius norm, and tr(.) the trace operator.

correspondences from an optimal transport geometry per-
spective Let us consider the set As of functional signals in a given
source subject s. Following the intuitions of Langs et al., 2011, the
p vectors

{
As1, ..., Asp

}
together make up a measure µs lying on a

latent manifold Fs embedded in Rp. The discrete measure µs with
positive weights ws > 0 and support

{
As1, ..., Asp

}
∈ Fs is defined as

µs =
∑p
i=1wsiδAsi . Note that in the present framework ws = [ 1p ... 1p ].

The difference between two measures µs =
∑p
i=1wsiδAsi and

µt =
∑q
i=1wtiδAti

, reflects the differences between individuals s and
t. However, for s 6= t, the support of the Fs and Ft manifolds are dis-
tinct in general: two subjects do not exhibit the same set of responses,
due to intrinsically different brain organization. Directly computing
Kullback-Leibler divergence between µs and µt is useless, as non-
coincident support leads to infinite values; fixing this mismatch by
smoothing induces a loss of information. By contrast, the Wasserstein
distance between µs and µt is well-defined (Peyré and Cuturi, 2018).

In this framework, distance evaluation is tightly linked to functional
alignment, as it is formulated as the task of finding an optimal cou-
pling R∗

{
As1, ..., Asp

}
→
{

At1, ..., Atq
}

, R ∈ R
p×q
+ . Enforcing signal

conservation and optimality of the alignment cost C(As, At) yields:

R∗ = min
R

∑
i,j

Ri,jC(As, At)i,j

s.t.

∑
j

Ri,j


i

= wsi and

(∑
i

Ri,j

)
j

= wtj (4.5)

To use the discrepancy of functional features as a cost function, we
define:

∀i, j ∈ [p]× [q], C(As, At)i,j = ‖Asi − Atj‖22

and couple the input measures µs and µt, where all voxels have a
constant weight, respectively 1/p and 1/q. If both subjects functional
data share a common number of voxels (i.e., p = q), and we search
for a deterministic coupling, this falls back to the assignment prob-
lem(4.1.1).

entropic regularization. We define the entropy of a coupling
as

h(R) = −
∑
i,j

Ri,j(log(Ri,j) − 1)
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Figure 4.2: Piecewise alignment methodology. In a first step, a parcellation is derived using functional
clustering or a functional atlas. Local alignments are learned between subjects on each parcel. The whole-
brain alignment is recomposed as a block-diagonal aggregation of local alignments.

and use it as a regularization function in Equation 4.5, which becomes
:

R∗ = min
R

∑
i,j

Ri,jC(As, At)i,j − εh(R)

s.t.

∑
j

Ri,j


i

=
1

p
,

(∑
i

Ri,j

)
j

=
1

q
(4.6)

The entropic term makes the objective function ε-strongly convex,
hence leading to a unique optimal solution for a given ε. Besides
making computation of transport faster using Sinkhorn algorithm
(Cuturi, 2013), this entropic regularization also acts as a smoothing of
the solution.

4.3 piecewise alignment

Most alignment methods perform well in a local setting, and optimal
transport is no exception. Computational cost becomes prohibitive for
tens of thousands of voxels, and searching for such high-dimensional
matching introduces the need for more samples than available and
deters the idea of picking a strongly regularized transformation. As
introduced in Section 3.1.3, Searchlight was proposed as an aggregation
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procedure to circumvent this problem. It consists in searching for local
alignments on overlapping local neighborhoods and in summing
these transforms to recompose a full-brain alignment. However, it is
computationally very costly and the aggregate transform lacks the
regularity enforced locally. Enforcing sparsity of local transforms using
optimal transport to later average them into a dense global one would
make little sense.

To overcome this limitation, we propose an alternative aggregation
scheme: piecewise alignment. In a first step, we do a functional clustering
of data to find local non-overlapping clusters c1, · · · , cK of voxels with
common activity patterns (those parcels could alternatively be derived
from a functional atlas). In each of these clusters, we find the optimal
alignment transform and concatenate these local transforms to recover
a full-brain transform with the desired regularities. Formally, the
optimal alignment transform to align two subjects xstrain and subject
xttrain on the training session is obtained by solving the problem in
each cluster c ∈ {c1, · · · , cK}:

R∗[c] = R∗(As
train[c], At

train[c]) (4.7)

On the test session At
test is predicted using As

test by:

∀c ∈ {c1, · · · , cK}At
test[c] = R?[c]As

test[c] (4.8)

This returns a full-brain transformation matrix with the desired
regularities, but could theoretically induce boundary effects in the
alignment recovered. In Chapter 6 we compare Piecewise Alignment
with Searchlight Alignment and show its efficiency. In terms of par-
cellation, several algorithms perform well for functional clustering.
Moreover, our later work show that the parcellation method chosen
and its resolution (or working with a functional atlas instead) doesn’t
have much impact on the quality of the alignment learned (see Section
6.5.3).

4.4 experimental validation

datasets To benchmark these methods and assess their prediction
accuracy, we ran experiments on two datasets, where individual data
were previously registered in MNI-space following standard proce-
dure (SPM12 software called though Nipype for IBC, HCP pipeline
for HCP). The “Individual Brain Charting” (IBC) (Pinho et al., 2018)
contains scans of the same 13 participants for a wide variety of cog-
nitive tasks. The data were acquired using a 3T scanner (acquisition
resolution of 1.5mm resampled at 3mm after spatial normalization).
We worked directly on activation maps: for a given functional contrast,
they yield an activation statistic at each voxel. We learn alignment
between subjects between d = 53 contrasts derived from data acquired
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Source Learn Alignment Target1

2 Prediction
Contrasts

Figure 4.3: Pairwise prediction of target subject from aligned source subject. In step (1),
alignment between source and target subjects is learned on alignment data. During step (2), it
is applied on additional source subject data to predict corresponding maps of target subject.
These predicted maps are compared against corresponding left-out target data.

with antero-posterior (AP) EPI phase encoding; to assess the quality of
our predictions, we also use 53 contrasts acquired in separate sessions
using the same experimental paradigms with posterior-anterior (PA)
EPI phase encoding. Note that the resulting AP/PA distortions were
estimated and corrected with FSL’s topup software prior to image
pre-processing.

Human Connectome Project (HCP, 2.3.1, Van Essen et al., 2013) is
a collection of neuroimaging and behavioral data on 1,200 normal
young adults, aged 22-35. For our experiment, we focused on 20

randomly chosen subjects. For each, we used the d = 25 statistical
maps available in both left-to-right (LR) and right-to-left (RL) phase
encoding, resampled at 3mm after spatial normalization. We learn
alignment between subjects using LR images and assess prediction on
RL acquisitions.

pairwise alignment benchmarks In pairwise prediction, we
first learn the optimal alignment operator between a source and a
target subject on training data. We then use this alignment and supple-
mentary images of the source subject to predict additional data of the
target subject and score this prediction against the true target subject
images using a prediction metric (see Figure 4.3).

We use this straightforward set-up on IBC and HCP datasets to
compare prediction performance of several alignment methods (de-
tailed below) and applied on a parcellation of the brain: (i) Scaled-
Orthogonal Transform, (ii) Ridge Regression, (iii) Optimal Permuta-
tion, (iv) Optimal Transport with entropic smoothing. We compare
these to two baselines, the identity transform (that predicts the target
subject as the source subject data), and a multi-purpose state-of-the-art
diffeomorphic medical image registration algorithm: symmetric image
normalization (SyN)(Avants et al., 2008).
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In a second experiment, we study the influence of the amount of
entropic regularization used in OT loss on both datasets. Obviously,
some pairs of subjects have more similar functional data than others.
To make our evaluation process robust to this variability, we tested
every method on the same set of 20 pairs of subjects chosen randomly
in each dataset.

implementation details Here we give a few details about our
implementation of methods present in this benchmark. (i) Scaled-
Orthogonal Transform (reimplementation of hyperalignment, 3.1.2)
solves the scaled Procrustes problem and yields an orthogonal trans-
form. (ii) Ridge Regression (Hoerl and Kennard, 1970), further relaxes
this orthogonality constraint, and simply look for a linear coupling R
with a small norm. For computational efficiency, we consider here `2
norm penalization, yielding min

R
‖At − RAs‖2F +

λ
2‖R‖

2
2. Using such a

model, the alignment problem boils down to a ridge regression also
solvable in closed form:

R∗ = AtAsᵀ(AsᵀAs + λId)
−1

(iii) Optimal Permutation search for a permutation of voxel improv-
ing functional similarity (4.1.1) (iv) Optimal Transport with entropic
regularization (4.2). Notably, in our experimental case where p = q,
permutations and every coupling acceptable in strict optimal transport
sense (Equation 4.5) are part of the broader class of orthogonal trans-
forms, however their stronger regularization could help to preserve
signal structure better than Procrustes solution. By contrast, entropic
regularization (Equation 4.6) yields a non-orthogonal solution in gen-
eral.

In this study, we applied all alignment on whole-brain data, using
piecewise alignment with Hierarchical K-means parcellation algorithm.
Hierarchical K-means (HK-means) is a recursive K-means method
aimed at efficiently deriving well-balanced clusterings. For a target
number of k regions, HK-means performs a first clustering into

√
k

pieces, and each of them is clustered in turn into
√
k parts.

We include SyN, as an additional diffeomorphic baseline in this
study. SyN yields a diffeomorphic mapping maximizing Mattes mu-
tual information between local regions. Since it works only for scalar
images, it was applied only on the principal components of the train-
ing set of images. Our implementation relies on Nilearn for data
handling, open-source solvers (Scikit-learn, POT for Sinkhorn, antspy
for SyN).
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prediction metrics To measure the quality of our prediction
RAs, against the ground truth At at the voxel level, we defined η2, the
normalized reconstruction error, as:

η2?(A
t, R, As) = 1−

∑n
i=1(A

t
i − RiAs

i)
2∑n

i=1At2
i

,

A η2 value of 0 means that the quality of the prediction is equivalent
to predicting 0 along all the dimensions. A perfect prediction yields
a value of 1. To focus on the prediction improvement that can be
made through alignment—independently of the preexisting distance
between data to align—we assess performance quantitatively using a
reconstruction ratio Rη2 . This ratio is also defined at voxel level and is
superior to 0 if the voxel is predicted better by aligned data than by
raw data.

Rη2?(A
t, R, As) = 1−

∑n
i=1(A

t
i − RiAs)2∑n

i=1(At
i − As

i)2
= 1−

1− η2?(At, R, As)

1− η2id(At, Id, As)

results Figure 4.4 shows that functional alignment methods gen-
erally improve prediction quality from one subject to another with
respect to the identity, though not uniformly over the cortex. Sensory
and motor regions typically obtain high scores, showing the stability
of the signals across subjects in these areas; by contrast, other regions
obtain low scores overall. Syn offers no improvement of prediction
scores, nor does the optimal permutation of voxels. This means that
a strict one-to-one mapping of voxels is not suitable for functional
alignment. For the three other methods, we clearly see different behav-
ior between regions with high signal-to-noise ratio (SNR) and regions
with lower SNR. Figure 4.5 (a-b) report the compared distributions
of predictions ratios Rη2 on IBC and HCP datasets and are consistent
with previous observations. Ridge and OT outperform all other meth-
ods on IBC dataset, whereas Scaled Orthogonal and Ridge perform
slightly better on HCP dataset. Figure 4.5 (c) shows that entropic
regularization strongly improves prediction scores up to an inflexion
point.



4.4 experimental validation 53

L R

z=-17

L R

z=-17

L R

z=-17

L R

z=-17

L R

z=-17

L R

z=-17

0.4

0.2

0.0

0.2

0.4

2

 Identity  Scaled Orthogonal  Ridge

 SyN (ANTs)  Permutation  Optimal Transport

Figure 4.4: Qualitative display of pairwise alignment methods prediction accuracy. Pre-
diction accuracy is measured through normalized reconstruction error η2(At, R, As) of target
subject 9 using alignment with subject 15 (IBC dataset, z=-17 mm). A η2 value of 0 means
that the quality of the prediction is equivalent to predicting 0 along all the dimensions.
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Figure 4.5: Quantitative assessment of pairwise alignment methods prediction accuracy.: Accuracy is
measured using reconstruction ratio Rη2 , which is superior to 0 if the voxel is predicted better by aligned
data than by raw data. The two left panels display Rη2 distribution across voxels when aligning 20 pairs
of subject from IBC (left) and HCP (middle). (right) panel display effect of Optimal Transport entropic
regularization parameter on averaged Rη2 for IBC dataset.

discussion

In this chapter, we introduced a new alignment method based on
Optimal Transport, as published in Bazeille et al., 2019. Defining
functional dissimilarity as a cost function, we propose to search for
optimal transport plan of voxels. We derive those matchings on local
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non-overlapping parcels and use them to recompose a whole-brain
transformation. We validate its performance of this method on two
datasets. Although potentially more conservative than some less regu-
larized solvers, it is also a mean to better preserve signal specificity
for later analysis. A limitation of this method is that it is a pairwise
matching of subjects. In Chapter 5, we develop potential ways to es-
timate good common representations to which all subjects could be
aligned. In Chapter 6, we assess the performance of both Optimal
Transport alignment and the Piecewise alignment scheme to improve
inter-subject decoding.



5 A L I G N M E N T TO A T E M P L AT E

In Chapter 4, we have introduced a new technique to derive a pairwise match-
ing: a transform mapping one subject to another. In section 3.1.4, we have
also motivated the need for a common representation space to build an
efficient framework to transfer signal across many subjects and introduced
state-of-the-art methods. Beyond this computational aim, an overarching
goal of alignment is also to help uncover more reliable group—and even
population—brain function organization principles. In this view, our ability
to draw improved group statistical inference hinges on the quality of the
common representation chosen for individual data. In Section 5.1, we out-
line the challenges of finding a suitable template to do so and the limits of
currently available approaches. In Section 5.2, we introduce an alternative
iterative templating scheme and assess its relevance (Bazeille et al., 2019).
Finally, Section 5.3 details our further attempts at improving template-related
metrics and using optimal transport to build an adequate template.

5.1 challenges of functional template de-
sign

For a long time, brain imaging studies have been infused with the
concept of a stereotaxic space, a standardized brain representation
(in terms of orientation and spatial coordinates) to ease combination
and comparison of data and results from several subjects and studies
(Evans et al., 2012). Among several options, the standard space has
turned out to be a combination of (i) a well-defined 3D stereotaxic
coordinate space, usually a representative 3D structural MRI called
a “template” (or tissue probability maps for segmentation-based ap-
proaches) (ii) a class of mappings to put brains “native” space in
correspondence to that template space. While both components of this
mapping can vary depending on the precise use-case, the most com-
mon spatial normalization procedures map diffeomorphically each
subject structural MRI to the MNI152 template (see Section 2.1.3).

Functional alignment can be thought to be part of an additional
normalization process guided by functional data. Pairwise alignment
methods (as reviewed in Section 3.2 or introduced in Chapter 4), with
their pairwise formulation, can be seen as the mapping class. However,
this procedure commonly lacks an appropriate standard functional
space (or functional “template”) to which subjects brain activations
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could be well-represented after functional alignment. When designing
such a template, one faces two related challenges:

• enable good functional matching without including idiosyncratic
features

• create a high-SNR representation of group effects, with a sharp
functional topographic organization.

Since these characteristics are hard to measure, a common solution
is instead to use similarity after functional alignment to the template
space as a sole measure of its optimization and validation. Although
this is a necessary constraint, it is not enough to ensure meaningfulness
of the derived representation. In Section 5.3, we discuss alternative
metrics that could be used for this purpose.

related work Beyond the Euclidean mean of subjects images,
which does not create a suitable topographic organization to represent
individual data (Laumann et al., 2015), two main template estimation
procedures have been proposed in the literature: greedy bagging of
hyperaligned data (3.1.4, Haxby et al., 2011) and the latent factor ap-
proach to template from the Shared Response Model (3.1.5, Chen et al.,
2015). While these are pragmatic solutions, they reduce the template
to an intermediate variable of the alignment procedure, almost like
a nuisance parameter. The templates proposed by these methods are
actually never shown nor validated in the studies that introduce them.

The hyperalignment templating method (Haxby et al., 2011) yields
a full-brain template that could be a candidate representation summa-
rizing group activations at each frame after alignment. However, as
an unbalanced algorithm where subjects contribute unequally to the
final group representation, the derived template (and its performance
to transfer signal across subjects) depends heavily on the order in
which subjects were considered (Al-Wasity et al., 2020). Put differently,
it does not follow any clear definition or criterion of optimization.
Moreover, it is implemented on whole-brain using the searchlight
scheme, which will cause its spatial organization to be smoother than
individual data.

On the other hand, shared response modelling is a procedure jointly
decomposing subjects data on a common basis in a balanced way.
This low-dimensional basis can be thought of as a template. However,
drawing statistical group inferences in this basis would make little
sense and has not been carried out so far.

Importantly, these templates display a strong spatial indetermi-
nacy, since applying any additional orthogonal transform to templates
and their inverse to mappings would yield equally valid alignment
schemes. Put differently, there are an infinity of templates solving
the basic optimization problem. Since functional alignment does not
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enforce any anatomical regularity, spatial activations observed on most
of those valid templates would be meaningless.

5.2 iterative template generation

In order to try to overcome those constraints, our article (Bazeille et al.,
2019) introduced a new general-purpose iterative procedure to derive
a principled template and alignments using any pairwise method.
This method progressively refines a template through alternate mini-
mization for a given class of functional alignment. It can be applied
together with an aggregation scheme to derive whole-brain templates,
here piecewise alignment (4.3). Reusing image-based statistics intro-
duced in Section 4.4, we show that this new template-based alignment
method helps increase similarity across subjects while being better
principled than methods previously available in the literature.

5.2.1 Template generation procedure

Pairwise correspondences do not scale well with many individuals. A
template measure T is needed, which can be obtained by solving

min
T,R1...Rn

n∑
s=1

‖Rs(T) − Xs‖2? (5.1)

for the chosen loss ‖.‖? (Wasserstein or Frobenius). We solve it through
alternate minimization iterating over :

• a R-step of independent alignment of the current template to
every sample, thus estimating Ri, i = 1..n

• a T -step where T is regressed to minimize jointly its distance to
the samples.

min
Rs
‖Rs(T) − Xs‖2? ,∀s ∈ [n] R-step

min
T

n∑
s=1

‖Rs(T) − Xs‖2? T -step

Note that, for all norms considered here, the T -step results in a
quadratic problem solved by conjugate gradient. Crucially, Equation
5.1 is only element-wise convex. Starting from a fixed initialization,
alternate minimization will thus recover a unique minimum, but with-
out any guarantee that it is a global minimum. Moreover, template
and alignments still suffer from a strong spatial indeterminacy, since
their defining criterion is invariant to orthogonal transforms. As ini-
tialization, we set all alignment operators to the identity, thus the first
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Figure 5.1: Template-based prediction of left-out subject data. In step (1), a template
representing all available contrasts of source subjects is learned during 4 iterations of alternate
minimization. In step (2), pairwise matchings are derived from the template towards each
target subject using common alignment data. In step (3), those alignments are applied to
additional template data to predict corresponding maps of target subject. Predicted maps are
compared against corresponding left-out target data.

T-step is min
T

∑n
s=1 ‖T − Xs‖22 and the first template is the sample

mean. In practice, we run 4 iterations of the alternate minimization, as
we found that was sufficient for convergence.

5.2.2 Experimental validation

In Section 4.4, we introduced a benchmarking experiment to compare
Optimal Transport alignment to other algorithms. In this section we
reused the same set-up and metrics to assess template-based align-
ment performance using (i) Scaled-Orthogonal Transform, (ii) Ridge
Regression, (iii) Optimal Permutation, (iv) Optimal Transport with
entropic smoothing, all applied in a piecewise fashion.

To evaluate template-based prediction accuracy, we split the IBC
dataset randomly into two folds of 7 and 6 subjects. We estimated a
template from the train subjects using all AP and PA contrasts (AP and
PA contrasts are the same contrasts derived from two independent
acquisition repeating the same protocol while varying the phase-
encoding direction, as detailed in 4.4). We then learned an alignment
operator between each of the test subjects and the template using AP
contrasts and try to predict their PA contrasts that we scored using
predictions metrics, as illustrated in Figure 5.1. We compare the results
of the same methods quantitatively in terms of prediction loss. In a
second experiment, we infer a template on which we learn alignment
for all subjects using AP data. We then apply these alignments to
left out PA data to bring all our subject in a common space. In this
common space, we run a one sample-test and compare the group
effects detected by each method, for specific conditions.
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Figure 5.2: Template-based prediction performance. (left) Quantitative assessment of prediction accuracy
for 6 left-out subjects of IBC dataset, measured using reconstruction ratio Rη2 , i.e. gain from alignment over
prediction from group average. Performance is weaker than pairwise alignment accuracy (Figure 4.5) (right)
Qualitative display of missing data prediction accuracy (IBC-subject 11, z=-17mm). Accuracy is measured
through normalized reconstruction error η2(At, R, As). A η2 value of 0 means that the quality of the prediction
is equivalent to predicting 0 along all the dimensions. Overall, prediction performance seems lower but
more consistent than observed in pairwise prediction (Figure 4.4).

5.2.3 Validation results

In Figure 5.2 left panel, we can observe that prediction accuracy is
strongly improved by the use of a learned template in most brain
regions, which establishes that functional alignment performs well
to estimate cross-subject correspondences and identify a latent brain
activity template. It also shows that our template estimation procedure
manages to capture some inter-subject variability when mapping
individual data. However, it must be noted that, compared to the
performance achieved by pairwise alignment (reported in Figure 4.5),
template-alignment gains are lower. This is possibly a consequence of
the performance lost to the sub-optimality of this group representation
to represent each subject data.

Figure 5.2 right panel shows that, despite the fact that templates
derived using Scaled Orthogonal, Ridge and Optimal transport are
equally accurate at predicting new subject data overall, they do so
in dissimilar ways. Ridge regression tends to predict 0 in regions
with low-SNR. This strong smoothing effect comes at the expense of
providing predictions that are not very precise for high-SNR regions.
On the contrary, Optimal Transport makes large mistakes in low-SNR
regions but predicts high-SNR regions more accurately. This behavior
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Figure 5.3: Z-scored group maps after alignment : 1 sample test of subjects data brought
in common template space. All 13 IBC subjects maps were used to design a template and
derive pairwise alignments of subjects toward this representation. Template and pairwise
alignments were learned through various alignment methods. Identity corresponds to the
euclidean mean. Displayed contrasts are (A) Match (hcp-relational protocol) (B) 0 back place(hcp-
wm protocol)

is desirable in a template-building procedure since it better preserves
specificity and structure of functional signals.

This difference between both methods is also visible in Figure 5.3.
The two sets of maps show the efficiency of alignment methods to
bring all subjects in a common space, especially for Optimal Transport
and Ridge. The former identifies localized zones of interest across
aligned subjects, that suit well previous neuroanatomic findings for
the given conditions. On the contrary, Ridge tends to predict strong
group effects in numerous large regions that do not seem specific to the
studied contrast. This means that Ridge rely on a very smooth common
representation where each template voxel activations are a mix of
numerous voxels. This smoothing behavior —not preserving spatial
specificity of activations in order to maximize overall similarity—can
be well-suited for some kinds of applications, such as aligning several
datasets in a common space to learn better decoding, for example.
However, when aiming at the creation of an interpretable template,
Optimal Transport seems to better preserve valuable information on
the specificity of activation patterns for a given condition.

We finally consider a realistic use case, where test data would be
functionally aligned in view of a group study (one-sample t-test). We
present the ensuing group-level brain maps, projected on the cortical
surface, in Figure 5.3, for 2 contrasts. The Match contrast is derived
from the HCP Relational protocol (Barch et al., 2013), focusing on a
visual comparison task on artificial textures. For this contrast, we show
that both Ridge and optimal transport recover regions in the anterior
and posterior segments of the superior temporal sulcus that would not



5.3 further work on template design 61

be detected using standard approaches, or scale-orthogonal functional
alignment. The 0-back place contrast is derived from an acquisition
using HCP Working Memory protocol (Barch et al., 2013). Inspired
from the visual n-back task, this contrast is a matching task on place
images. For these contrasts, OT- and Ridge-based alignment recover
regions in the temporo-occipital junction and inferior parietal sulcus
that would not be detected using standard approaches, nor by scaled-
orthogonal functional alignment. In particular, place sensitive regions
of the ventral and dorsal visual cortex seem to have been successfully
recovered by the functional alignment approach.

5.3 further work on template design

5.3.1 Better metrics to assess template significance

The problem of evaluating a template is hard, since it is a problem of
creating an abstract object accounting for several datasets. Obviously,
there exists no such thing as a perfect template or a ground truth to
which we could compare the object that we create. A reasonable idea,
explored before, is thus to resort to a well-principled design process,
i.e., minimizing a certain objective criterion. However, here we want
to focus on giving an interpretable model of group activations and
validate how well it accounts for individual models after alignment.
In order to do so, we need to define some external validation criteria.

A first solution to try to judge the external validity of such an object
is to take some stable functional characteristics, (e.g., those derived
using a very large cohort of subjects) and take those as a ground
truth, hoping that the large sample size used will yield a reasonable
representation. However, this “ground-truth” is also plagued with
inter-subject variability and its spatial topography will probably bear
some artifactual patterns because of this variability, (e.g., smoothness,
functional overlap. . . )

Another solution is to reflect on interpretable criterions of general-
izability of this template to represent unseen subjects. Building on the
idea of judging voxels by their functional similarity (e.g., used in Sec-
tion 4.2), it seems reasonable to compare voxel signals in the sense of
the l2-distance. A well-defined template, the empirical mean of train-
ing subjects images, can be derived when using this distance at the
image level. However, as extensively described in Section 2.3.2, inter-
subject variability undermines anatomical correspondences across
subjects and l2-distance between anatomically aligned voxels is thus a
very biased metric. Instead, we propose to define a comparable metric
L which includes a spatial tolerance for misalignment. For a given
voxel i of an unseen subject data X, we would thus measure template
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T dissimilarity to this voxel as the minimal dissimilarity for any voxels
contained in the ball of radius r, Bi(r) around i. In order to make
this metric more robust to extreme use-cases where the template is
especially designed to overfit this constraint, we add a symmetrical
term where each voxel in the template must also be reasonably similar
to data. L is a distance, is equal to the euclidean distance when r = 0
and grows more tolerant spatially when r increases. It could also be
used to measure the amount of inter-subject spatial variability.

L(X, T, r) = 1√
2
(
∑

i∈[0,...,n]

min
j∈Bi(r)

||Xi −Tj||
2+

∑
i∈[0,...,n]

min
j∈Bi(r)

||Ti −Xj||
2)1/2

5.3.2 Deriving better templates using Wasserstein barycenters.

The template procedure introduced in Section 3.1.4 relies heavily on
a good initialization and is still subject to spatial indeterminacy. As
noticed in Section 4.1, Wasserstein Barycenters are a promising av-
enue to craft geometrically-informed distances to define the template.
However, several problems limit the out-of-the-box use of Wasserstein
Barycenters to generalize Optimal Transport alignment presented in
Section 4.2:

• To properly model pairwise functional alignment as a transport
problem, we used a cost matrix depending on both histograms
to match. However, this breaks the convexity of the Wasserstein
Barycenter formulation, since the cost matrix (and hence the
Wasserstein distance) used to compare histograms depends on
the template. Put differently, the cost to relate a template and his-
tograms would change at each template iteration, which would
hamper convergence.

• Keeping only a function-based cost matrix will always entice a
spatial indeterminacy on the template.

To overcome those limits, we tried to use spatial Wasserstein barycen-
ters (in Gramfort, Peyré, and Cuturi, 2015 fashion) to find a better
initialization for our iterative algorithm, which would allow starting
from a spatially regularized template and refine its functional similar-
ity with subjects. As discussed already, this comes with its own load
of practical problems.

non-positivity of activations As pointed out in Chapter 4, ac-
tivations obtained in fMRI images are not measures, hence optimal
transport cannot be applied directly on the signals in its classical
formulation. For one thing, activation histograms contain both a posi-
tive and negative part (for deactivations) whereas optimal transport
is well-defined only on positive histograms. As deactivations and
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activations have different meaning, a sensible heuristic to solve the
positivity issue is to separate the positive and negative part of the
histograms, and calculate separately transport plans. We proceeded
with this heuristic, although it could induce other problems, such as
the overlap of activations and deactivations barycenters.

activation values are not normalized Another hurdle is that
histograms are non-normalized, i.e., subjects display different overall
quantity of activations (both positive and negative). As already cited,
it is possible to use unbalanced optimal transport (Gramfort, Peyré,
and Cuturi, 2015) to relax this constraint, as described in Section 4.1.
However, the main problem of this approach is the introduction of
an additional hyperparameter τ to penalize mass discrepancy against
transportation accuracy. This parameter, related to variability, is very
hard to set in practice.

We thus opted for a straight forward alternative to restore normal-
ization across histograms, namely histogram equalization, sometimes
applied in structural MRI preprocessing (Sun et al., 2015). In this
step, denoted Norm(X), we focus on a contrast and treat images as
activation histograms (i.e., spatial coordinates of voxels are ignored).
After sorting every subjects’ histograms, we replace activation value
of voxels at a given rank by their average across subjects. Derived
normalized histograms respect the individual signal patterns, while
activation and deactivation quantity are matched.

geometrical bias of spatial barycenters in volumic repre-
sentation When trying to derive Wasserstein barycenters on volu-
mic images of activation using a cost matrix based on voxels pairwise
spatial distance, we quickly observed geometrical artifacts. In the 3D
grid geometry implied by the volumic representation, this spatial cost
matrix is biased towards the center of the considered region. Voxels in
the middle of this region are closer on average to the rest of voxels,
especially than those on the edges of the region. By design, trans-
portation to central voxels will thus entice a lower cost and be favored
by any algorithm searching to minimize spatial displacement of ac-
tivations. Implementing this process using an aggregation approach
wouldn’t solve this problem (e.g., barycenters after parcellation would
be biased towards the centers of parcels containing activations).

To overcome this artifactual behavior, it is possible to work instead
on surfacic representations of data in each hemisphere. This is known
to be a relevant spatial representation of the cortex, where the cortical
surface is roughly homeomorphic to a sphere, and well-suited for inter-
subject registration (Robinson et al., 2018). Using this representation
coupled with its natural distance between vertices (distance on the
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mesh), the overall distances better any two vertices from the mesh
become way better balanced.

7

Euclidean
Mean

39 78 156 392

Wasserstein
Barycenter

Figure 5.4: Wasserstein barycenter compared to euclidean mean of individual contrasts. Barycenters of
“faces-shapes” contrast from HCP Emotional protocol (Barch et al., 2013) for a variable number of HCP
subjects (x-axis). Individual contrasts were resampled in fsaverage5 surface representation (10000 vertices
per hemisphere). Balanced Wasserstein barycenter was calculated on the full-hemisphere histograms after
histogram normalization, using a spatial cost matrix pairwise linear distance on the mesh. Activation and
deactivation barycenters were calculated separately and summed.

experimental test To test this procedure, we used the HCP
dataset, focusing on the “faces-shapes” contrast from HCP Emotional
protocol (Barch et al., 2013), which is a visual matching task of either
faces displaying emotions or geometrical shapes. With the wealth of
subjects available in this cohort (more than 700), we took a variable
number n ∈ {7, 39, 78, 156, 392} to build a template and kept a reason-
able 300-subjects independent validation set. To avoid geometrical
artifacts that would be induced by discontinuities introduced through
a parcellation, we had to match entire hemisphere histograms in one
transport plan. To make computation tractable despite quadratic com-
plexity of optimal transport, we had to resort to use low-resolution
surfacic representations (fsaverage5, 10000 vertices per hemisphere).

We define X, the concatenation of subjects surfacic activation maps
Xi where ∀i ∈ [1,n], Xi ∈ Rp with p the number of vertices. We
performed histogram normalization (described previously) to derive
X̄ = Norm(X). We separate X̄ in a negative part X̄− and a positive
part X̄+ such that X̄+ + X̄− = X̄. After Norm operation, all columns
have equal sum, both positive and negative, so we can normalize
them. We denote these sums s+ =

∑p
j=1 X̄+

ij and s− =
∑p
j=1 X̄−

ij.
Additionally, we define a spatial cost matrix C ∈ Rp×p, relating all
vertices through their pairwise linear distance on the fsaverage5
mesh used. We then calculate independently the templates t+ and
t− ∈ Rp as balanced Wasserstein Barycenters that solve Equation
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4.3 for cost C and histogram sets
X̄−

s−
and

X̄+

s+
. We recompose our

final barycenter after rescaling as t = s−t− + s+t+. We assessed the
quality of template as a representation of unseen subjects using loss
L(t, Xleft−out), introduced in the previous section.

We implemented balanced Wasserstein barycenters, with an entropic
regularization parameter as small as numerically possible, ε = 0.006.
For implementation, we rely on the efficient, GPU-enabled, Sinkhorn
solver for barycenters (Janati, Cuturi, and Gramfort, 2020) from https:

//ott-jax.readthedocs.io/en/latest/

results Figure 5.4 displays the Euclidean and Wasserstein barycen-
ters obtained using a various number of subjects for the HCP “faces-
shapes” contrast. As we can see, the functional topographies are very
similar and varying similarly with the growing number of subjects
used. We confirmed this by an evaluation of those barycenters com-
pared to left-out subjects using the L loss. This showed no meaningful
difference between both barycenters in their ability to represent well
topography of left-out subjects.

This lack of improvement is related to the dimensionality of the
barycenter to estimate, which is way higher than the number of sam-
ples available to do so. Moreover, the very low-resolution of repre-
sentations deters the purpose of alignment, which aims at handling
local variability in functional topographies. Overall, the main obstacles
hampering the geometrical matching of signals are the geometrical
effects induced when working on local parcels, in tension with the
estimation difficulties on whole-brain signals.

discussion

In this chapter, we have discussed challenges and methods to derive
a functional template, a common functional representation to which
individual data can be aligned. Besides being a computational object
enabling signal transfer, templates should ideally display a sharp and
representative functional topography to enable improved group infer-
ence. However, it is hard to control their topographical characteristics,
and they are subject to a strong spatial indeterminacy. We introduced
a well-principled templating scheme, published in Bazeille et al., 2019,
relying on an alternate template minimization and alignment refine-
ment and validated its performance in two experiments. Although this
procedure is not sufficient to ensure all desirable properties previously
cited, we discussed new metrics to assess those characteristics and
potential refinements based on Wasserstein barycenters.

https://ott-jax.readthedocs.io/en/latest/
https://ott-jax.readthedocs.io/en/latest/
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6 E M P I R I C A L B E N C H M A R K O F
F U N C T I O N A L A L I G N M E N T

A collection of methods have been proposed for functional alignment (3).
However, these methods are seldom used in brain mapping studies. For a
given application, it remains unclear how to choose among them, which
implementations to use and how much gain can be expected. In this thorough
empirical validation, we assess whether alignment can help handle variability
in typical research set-ups (Bazeille et al., under review).

As developed in Section 6.1, we consider performance to include both (1)
improving inter-subject similarity while retaining individual signal structure
and (2) computational efficiency, as the latter is an important consideration
for scientists who may not have access to specialized hardware. Section
6.2 develops the inter-subject decoding framework we use to measure
alignment performance through a downstream predictive task. Using this
pairwise framework, we assess five alignment methods on several publicly
accessible fMRI datasets. Beyond Procrustes and Optimal transport, we
included an original extension of Shared Response Model: Piecewise SRM,
as well as a new Intra-subject alignment method.

Section 6.3 develop the results of this benchmark. Notably, we: (1) establish
that functional alignment improves decoding accuracy above anatomical-only
alignment, (2) investigate the impact of common methodological choices such
as whether alignment is learned in subregions across the whole brain or in a
pre-defined region-of-interest (ROI), and (3) compare the impact of specific
alignment methods in whole-brain and ROI-based settings. We then provide
a qualitative comparison of the transformations learned by each method to
“open the black box” and provide insights into how potential accuracy gains
are achieved. Finally, we discuss the availability, usability and scalability of
current implementations for each of the methods considered.

Section 6.4 summarizes our findings and put them in context with the
literature. Section 6.5 details supplementary analyses assessing the impact
of additional methodological choices on alignment performance. It can be
skipped at first read, as its main results are summarized in the previous
section. For all alignment methods considered here, technically up-to-date
and efficient implementations to reproduce these results are provided at
https://github.com/neurodatascience/fmralign-benchmark.
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6.1 quantifying the accuracy of alignment

6.1.1 Image-based statistics

A key question is how to objectively measure the performance of
functional alignment. One approach, used in Chapters 4 & 5, is to
consider alignment as a reconstruction problem, where we aim to
learn a functional alignment transformation which allow imputing
missing images in a target subject using data from source subjects.
These functionally aligned maps can then be compared with held-
out ground-truth maps from the target subject. We can quantify this
comparison using image-based statistics such as the correlation of
voxel activity profiles across tasks (Guntupalli et al., 2016; Jiahui et
al., 2020), spatial correlation or Dice coefficient between estimated
and held-out brain maps (Langs et al., 2014) or other metrics such as
reconstruction ratio introduced in Section 4.4.

However, these image-based statistics are sensitive to low-level im-
age characteristics (e.g., smoothness, scaling), and their values can
therefore reflect trivial image processing effects (such as the smooth-
ness introduced by resampling routines) rather than meaningful activ-
ity patterns.

6.1.2 Quantifying alignment accuracy in a predictive framework

Rather than using image-based statistics, an alternative approach is to
test functional alignment accuracy in a predictive framework. Prior
works adopting this framework has used tests such as time-segment
matching from held-out naturalistic data (e.g., Chen et al., 2015; Gun-
tupalli et al., 2016). However, because time-segment matching relies
on the same stimulus class to train and test the alignment, it is un-
clear whether the learned functional transformations extend to other,
unrelated tasks—particularly tasks with low inter-subject correlation
(Nastase et al., 2019). We are therefore specifically interested in pre-
dictive frameworks that probe model validity by measuring accuracy
on held-out data from a different stimulus class, with or without
functional alignment.

6.1.3 Inter-subject decoding

Inter-subject decoding (2.2.3) is a well-known problem in the liter-
ature aimed at uncovering generalizable neural coding principles.
Specifically, in inter-subject decoding we learn a predictive model
on a set of subjects and then test that model on held-out subjects,
measuring the extent to which learned representations generalize
across individuals. In an information-mapping framework (Kriegesko-
rte and Diedrichsen, 2019), decoding allows us to assess the mutual
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information between task conditions. Functional alignment, therefore,
should facilitate information-mapping by increasing the similarity of
condition-specific representations across subjects, thus improving their
decoding.

Although the link between mutual information and decoding ac-
curacy is non-trivial (Olivetti, Veeramachaneni, and Avesani, 2011),
we consider that measuring alignment with decoding accuracy on
unseen subjects better fulfills neuroscientists’ expectations of inter-
subject alignment in two main ways. First, decoding accuracy provides
a more interpretable assessment of performance than other measures
such as mutual information estimates. Second, decoding accuracy on
a held-out sample provides insight into the external validity and there-
fore generalizability of derived neural coding principles. Compared
to image-based measures, decoding accuracy is thus a more rigorous
measure of whether functional alignment improves the similarity of
brain signals across subjects while also preserving their structure and
usability for broader research use cases. In this work, we therefore
quantify functional alignment accuracy by assessing improvements
in inter-subject decoding when using functional alignment over and
above anatomical alignment. That is, the field-standard approach of
normalizing subjects to a standardized anatomical template using dif-
feomorphic registrations, as implemented in, e.g., fMRIprep (Esteban
et al., 2019).

6.2 inter-subject decoding benchmark

6.2.1 Experimental procedure

For each dataset considered (6.2.5), we calculated the inter-subject
decoding accuracy for anatomical-only alignment and for each of
the five considered functional alignment methods. To calculate inter-
subject decoding accuracy, we took the trial- or condition-specific
beta maps generated for each dataset (see Section 6.2.5 for full details
on beta-map generation) and fit a linear SVM (2.2.3). In order to
ensure fair comparisons of decoding accuracy across experiments,
we chose a classifier with no feature selection and default model
regularization (C = 1.0). Classifiers were implemented in Scikit-learn
(Pedregosa et al., 2011), and decoding accuracy was assessed using a
leave-one-subject-out cross-validation scheme. That is, the linear SVM
was trained to classify condition labels on all-but-one subject and the
resulting trained classifier was used without retraining on the held-out
subject, providing an accuracy score for that cross-validation fold.

For each dataset, we first calculated the inter-subject decoding accu-
racy using anatomical alignment. This served as a baseline accuracy
against which we could compare each functional alignment method.
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Figure 6.1: Analysis pipeline. (A) First-level general linear models are fit for each subject to derive trial- or
condition-specific beta-maps for each session. (B) These beta maps and their matching condition labels are
used to train a linear SVM on the training set of subjects. (C) The trained classifier is applied to a held-out
test subject, and accuracy is assessed by comparing the predicted and actual condition labels. (D) On a
separate task, we compare subject-level activation patterns as trajectories in the high-dimensional voxel
space. This allows us to learn functional alignment transformations that maximize the similarity of these
high-dimensional spaces. (E) These voxel-wise transformations are applied on the decoding beta maps, and
a new linear SVM is trained to predict condition labels. This trained classifier can then be applied to the
held-out test subject and decoding accuracy assessed as in (C).

Using alignment data, functional alignment transformations were then
learned for each pairwise method, where the left-out subject for that
cross-validation fold was the target subject for functional alignment.
Inter-subject decoding accuracy was then re-calculated after applying
functional alignment transformations to the decoding beta maps.

In the special case of SRM—which calculates an alignment from all
provided subjects in a single decomposition—we withheld the left-out
subject from the shared response estimation step to avoid data leak-
age. The projection of the left-out subject is learned from previously
estimated shared space. Then, the learned projections are applied to
the decoding data and decoding is performed on the projected data.

For each cross-validation fold, we report the inter-subject decoding
accuracy of a given functional alignment method after subtracting the
baseline, anatomical-only accuracy for that same fold. An overview of
the experimental procedures is provided in Figure 6.1.

6.2.2 Benchmarked methods

aggregation schemes used in this benchmark To align the
entire cortex across subjects, two main frameworks have been pro-
posed: searchlight (3.1.3) and piecewise (4.3). Each of these frameworks
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Figure 6.2: Comparing piecewise and searchlight alignment. In this illustration, transformations are
derived for the blue, green, and red areas separately. Note that the piecewise alignment does not include a
green area, as this corresponds to a searchlight overlapping both the red and blue areas. For non-overlapping
parcels, these transformations are stacked into a larger orthogonal matrix. For the overlapping searchlight,
these transformations are aggregated, with overlapping values averaged. Note that the final transformation
for the searchlight alignment is no longer orthogonal in this example.

use functional alignment methods to learn local transformations and
aggregate them into a single large-scale alignment; however, search-
light aggregates overlapping transforms where piecewise acts on seg-
regated transforms, as illustrated in Figure 6.2.

In the literature to date, searchlight and piecewise aggregation
schemes have both been used in conjunction with Generalized Pro-
crustes Analysis, under the names Searchlight hyperalignment (3.1.3,
Guntupalli et al., 2016) and scaled orthogonal alignment (4.4, Bazeille
et al., 2019), respectively. We therefore include both searchlight Pro-
crustes and piecewise Procrustes in our benchmark. Every other
method is regularized at the whole-brain level of analysis through
piecewise alignment.

As piecewise alignment is learned within a parcellation, an im-
portant question is: which brain atlas should be used for piecewise
alignment? In Section 6.5.3, we compare results from the Schaefer et al.,
2018 atlases to those from parcellations derived directly on the align-
ment data. By default, the results presented below are derived with
the 300 ROI parcellation of the Schaefer atlas, unless noted otherwise.
In the case of searchlight Procrustes, we selected searchlight parame-
ters to match those used in Guntupalli et al., 2016 as implemented in
PyMVPA (Hanke et al., 2009).

methods included in this benchmark In this study, we specif-
ically focus on pairwise alignments wherein subjects are directly
aligned to a target subject’s functional activations. Although template-
based approaches are an important area of research (as developed in
Chapter 5), the question of how best to generate the reference template
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is distinct from determining the best alignment method and beyond
the scope of the current work.

As we use inter-subject decoding to compare functional alignment
methods, we only consider methods that meet the following two
criteria. First, the alignment transformations should be learned on acti-
vations evoked during temporally synchronized (i.e., co-occuring) task
data, or on contrasts matched across individuals. Second, the learned
transformations must be invertible or quasi-invertible linear mappings
and applicable as-is on unseen data with a different task structure.
These two criteria exclude several methods introduced in Section 3.2,
such as regularized canonical correlation analysis (rCCA; Bilenko
and Gallant, 2016), gradient hyperalignment (Xu, Yousefnezhad, and
Zhang, 2018a), connectivity hyperalignment (Guntupalli, Feilong, and
Haxby, 2018), and methods based on Laplacian embeddings (Langs
et al., 2014).

In our whole-brain benchmark, we consider five different alignment
methods: searchlight Procrustes (3.1.2; Guntupalli et al., 2016; Haxby
et al., 2011), piecewise Procrustes, piecewise Optimal Transport (4.2;
Bazeille et al., 2019), piecewise Shared Response Modelling (SRM;
3.1.5; Chen et al., 2015), and intra-subject correlations across tasks
(Tavor et al., 2016), here referred to as “intra-subject alignment” (3.2.3).

implementation details For Optimal Transport, the level of spar-
sity is controlled by ε, a user-supplied hyper-parameter, which we
set to 0.1 throughout our experiments. For our implementation, we
rely on the fmralign package. Optimal transport transformations are
calculated in a piecewise fashion, following Bazeille et al., 2019.

For Intra-subject alignment (3.2.3) we observed in preliminaries
observations that—unlike other piecewise techniques (see Section
6.5.3)—the decoding accuracy strictly improved with the number
of parcels used, so we used the highest resolution atlas available.
Thus, divide alignment and decoding data into 1000 parcels using
the highest-resolution Schaefer atlas (Schaefer et al., 2018) and train
models to predict decoding data from alignment data on each parcel.
After repeating this procedure for all source subjects, we then use
Rintra to estimate decoding data for target subject as D̂target =

AtargetRintra. As with other functional alignment methods, we can
evaluate the quality of our estimation using an inter-subject decoding
framework

piecewise shared response model For Shared Response mod-
elling, we specifically use the FastSRM implementation proposed
by Richard et al., 2019 and available in the BrainIAK library (RRID:
SCR_01 4824), that approximates this calculation with an emphasis on
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improved computational performance. For full details on the compu-
tational advantages of FastSRM, we direct the reader to their work.

In order to align our SRM implementation with the other con-
sidered alignment algorithms, we introduce a new piecewise SRM
method to aggregate SRM transformations across the whole brain.
Thus, within each parcel or across an a priori ROI, SRM decomposes
the signal of many subjects in a common basis, with the same or-
thogonality constraint as Procrustes.Given the strong dependency of
SRM performance on the selected hyper-parameter k, this parameter
requires additional experimenter consideration. For piecewise SRM,
we perform a grid search to select the relevant Schaefer parcellation
resolution and number of components k (see Section 6.5.4). From these
results, we chose to use Schaefer atlas 700 and run one SRM on each
parcel searching for 50 components—or equal to the number of voxels
if less than 50 voxels are in a given parcel. For ROI-based analyses, we
set k to 50 components as in our piecewise analyses and matching the
original SRM benchmarks provided in Chen et al., 2015.

6.2.3 Main experiments

Experiment 1 uses the experimental procedure described previously to
assess accuracy gains provided by alignment methods with respect
to anatomical alignment when applied to whole-brain images. We
benchmarked the five methods described in Section 6.2.2: piecewise
Procrustes, searchlight Procrustes, piecewise Optimal Transport, piece-
wise SRM, and intra-subject alignment, with relevant hyperparameters
selected as described previously. Results of this benchmark, compris-
ing five tasks from four datasets, are presented in Section 6.3.1. For
each method, we also assessed its computation time relative to piece-
wise Procrustes alignment. Piecewise Procrustes provides a reasonable
computational baseline as it is the only considered alignment method
that does not include a hyperparameter and therefore shows a stable
computation time across experiments.

We estimate the noise ceiling for this task as within-subject decoding
accuracy. Within-subject decoding was calculated separately for each
subject as the average leave-one-session-out decoding accuracy. We can
then directly compare this accuracy value to the inter-subject decoding
accuracy when that subject is the target—that is, the left-out—subject.
The difference between within- and anatomical inter-subject decoding
accuracies, then, is a good approximation of the decoding accuracy lost
due to inter-subject variability; therefore, it provides a range of possible
accuracy gains that can be expected from functional realignment.

We then conducted Experiment 2 to understand how whole-brain
results compare to ROI-based analyses. Specifically, we replicated
Experiment 1 within selected ROIs, such that local alignment methods
were applied directly without any aggregation scheme. ROIs were
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chosen based on a priori expectations of each decoding task (see Section
6.2.5 for details for each dataset). Results from Experiment 2 are shown
in Section 6.3.2.

Experiment 3 tackles the notoriously hard problem of understanding
how each of the considered methods align subjects by examining
qualitatively their impact on activity patterns across individuals. To
“open the black-box,” we reused IBC dataset full-brain alignments
learned in Experiment 1. Specifically, we consider the transformation to
sub-04’s activity pattern from all other subjects’ functional data. With
these transformations, we align two contrasts from the IBC dataset:
Rapid Serial Visual Presentation of words (RSVP language task) and
sound listening. Finally, we run a group conjunction analysis (Heller
et al., 2007) on these aligned contrasts and visualize the results. This
statistical analysis, more sensitive than its random effect equivalent
on small samples, allows one to infer that every subject activated in
the region with a proportion γ showing the effect considered. Here
we use γ = 0.25 to recover all regions selectively activated by at least a
few subjects, and we show in Section 6.3.3 how this group functional
topography is modified by alignment.

6.2.4 Control analyses

In addition to our three main experiments, we ran three additional
control analyses on the IBC dataset. First, we assess the impact of
the brain parcellation and its resolution on piecewise alignment by
comparing whole-brain decoding accuracy for IBC tasks using piece-
wise Procrustes across both data-driven and pre-defined parcellations
(Section 6.5.3). As piecewise SRM displays an interaction between
parcellation resolution and SRM’s hyperparameter k, we ran a grid
search for this algorithm to determine its optimal parameters (Section
6.5.4).

Second, we calculated inter-subject decoding performance after ap-
plying Gaussian smoothing kernels of several widths on both IBC
dataset decoding tasks (Section 6.5.5). Gaussian smoothing is an in-
teresting baseline, as it is commonly used to facilitate inter-subject
comparisons by smoothing over residual variance in functional map-
pings. In a third control experiment, we assessed the impact of whether
data is represented on the surface or the volume and resolution on
decoding accuracy in the IBC Rapid-Serial-Visual-Presentation (RSVP)
language task (Section 6.5.6).

6.2.5 Datasets and preprocessing

In order to assess the performance of each functional alignment
method in a range of applications, we searched for publicly accessible
datasets that included both a task suitable to learn the alignment
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Dataset S Alignment data p Decoding
task

Decoding categories d

Individual
Brain

Charting

10 Contrast maps from
HCP and ARCHI

task batteries

53 RSVP
Language

Words, Non-Words,
Consonants, Sentences,

Jabberwocky

360

Sounds
dataset

Voice, Nature, Animal,
Music, Speech, Tools

72

BOLD5000 4 COCO, ImageNet,
and Scenes images

300 Imagenet
images
content

Plant, Animal, Food, Artifact 350

Forrest 10 Forrest Gump
audio-movie

listening

1600 Music genre Country, Metal, Ambient,
Symphonic, Rock

200

Courtois
Neuromod

6 Life movie watching 2008 Visual
n-back

condition

Body 0-back, Body 2-back,
Face 0-back, Face 2-back,

Place 0-back, Place 2-back,
Tools 0-back, Tools 2-back

72

Table 6.1: Datasets used to benchmark alignment methods. The four datasets used in this benchmark, where each
dataset consists of S subjects. We note the alignment data used for each dataset and p the number of timeframes
it comprises. These datasets show the range of possible task structures which work for alignment—from static
images for BOLD5000, to statistical contrast maps for IBC, to complex audio or audio-visual movies for Forrest
and Courtois Neuromod. A full listing of included 53 contrast maps for IBC is included in Section 6.5.7. We also
include the decoding task(s) used for each dataset. Each subject’s decoding task data comprises d images evenly
divided across the listed stimulus categories (except for BOLD5000 categories that are unbalanced). Of note, IBC
dataset has two independent decoding tasks, bringing the total number of decoding tasks to five.

(e.g., naturalistic or localizer protocols) and an independent decoding
task on which we could evaluate functional alignment performance.
After discarding datasets where we could not obtain above-chance
accuracy levels for within-subject decoding, we retained four datasets:
BOLD5000 (Chang et al., 2019), Courtois NeuroMod (Boyle et al.,
2020), Individual Brain Charting (IBC; Pinho et al., 2018), and Study
Forrest (Hanke et al., 2016). For the IBC dataset, we included both a
language (RSVP language) and auditory (Sounds dataset) decoding
task, yielding a total of five decoding tasks that probe visual, auditory,
and language systems. For a complete description of the alignment
and decoding data included in each experiment, please see Table 6.1.

BOLD5000, StudyForrest and Courtois NeuroMod were prepro-
cessed with fMRIprep (Esteban et al., 2019), while IBC data were
preprocessed using an SPM-based pipeline as described in Pinho
et al., 2018. A complete description of the fMRIprep preprocessing
procedures is available in the appendix (Section 6.5.8). Preprocessed
data were then masked using a gray matter mask, detrended, and
standardized using Nilearn (Abraham et al., 2014a). To reduce the
computational cost of functional alignment, we downsampled all in-
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cluded datasets to 3mm resolution. Both alignment and decoding task
data were then additionally smoothed with a 5mm Gaussian kernel.
A general linear model (GLM) was fit to each decoding task run to
derive trial-specific beta maps (or condition-specific beta maps for
the Courtois Neuromod and IBC Sounds tasks), which were carried
forward for inter-subject decoding.

As described in Section 6.2.3, Experiment 2 uses pre-defined regions
of interest (ROIs). We selected large, task-relevant ROIs to ensure that
sufficient signal was available when decoding. A large visual region,
extracted from the Yeo7 (Buckner et al., 2011) atlas, was used for the vi-
sual tasks in BOLD5000 and Courtois NeuroMod. For Forrest and IBC
Sounds—which are auditory tasks—we took the Neuroquery (Dockès
et al., 2020) predicted response to the term “auditory”. We then com-
pared this predicted response with the BASC (Bootstrap Analysis of
Stable Clusters) atlas (at scale 36; Bellec et al., 2010) and took the parcel
most overlapping with the predicted response; namely, parcel 25. For
IBC RSVP, which is a reading task, we extracted the BASC (at scale
20) atlas components most overlapping with MSDL (Multi-Subject
Dictionary Learning; Varoquaux et al., 2011) atlas parcels labeled as
left superior temporal sulcus, Broca and left temporo-parietal junction:
namely, the 8 and 18 BASC components. We then kept only the largest
connected component. All included ROIs are displayed in Figure 6.5.

6.2.6 Software used and released

With the exception of Courtois Neuromod, all other included datasets
are available on OpenNeuro (Poldrack et al., 2013b) under the fol-
lowing identifiers: ds000113 (Study Forrest), ds001499 (BOLD5000),
and ds002685 (IBC). Courtois Neuromod 2020-alpha2 release will
be available under a data usage agreement as outlined on https:

//docs.cneuromod.ca.
Our pipeline entirely relies on open-source Python software, par-

ticularly the SciPy stack (Virtanen et al., 2020). All included meth-
ods are implemented in fmralign or accessed through their origi-
nal, open source implementations, as described in Section 6.2.2. To
ease replication and extension of the presented results, we have cre-
ated the fmralign-benchmark repository under https://github.com/
neurodatascience/fmralign-benchmark. This repository provides an
implementation of the procedures adopted in these experiments, build-
ing on fmralign and previously cited tools.

https://docs.cneuromod.ca
https://docs.cneuromod.ca
https://github.com/neurodatascience/fmralign-benchmark
https://github.com/neurodatascience/fmralign-benchmark
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Figure 6.3: Decoding accuracy improvement and computation time after whole-brain functional align-
ment. In the left panel, we show decoding accuracy improvement for each of the considered functional
alignment methods at the whole-brain level of analysis. Each dot represents a single subject, and subjects are
colored according to their decoding task. To aggregate results across datasets, we show accuracy scores after
subtracting inter-subject decoding accuracy for the same leave-one-subject-out cross-validation fold with
anatomical-only alignment. In the right panel, we show the computational time for each of the considered
methods. All computation times are depicted as relative to piecewise Procrustes. For both panels, each box
plot describes the distribution of values across datasets, where the green line indicates the median. We see
that piecewise Procrustes, Optimal Transport, and intra-subject alignment consistently improve decoding
accuracy across datasets. We also see that piecewise Optimal Transport is 10 times slower, and searchlight
Procrustes is more than 30 times slower than piecewise Procrustes.

6.3 empirical validation of alignment

6.3.1 Functional alignment improves inter-subject decoding

The left panel of Figure 6.3 displays absolute decoding accuracy change
brought by each functional alignment method relative to anatomical
alignment on whole-brain images. As every method is trained and
tested on the same cross-validation folds, we report the fold-by-fold
performance change. The right panel displays each method’s relative
computation time compared to piecewise Procrustes alignment. For
each panel, each point displayed is the result for one leave-one-subject-
out cross validation fold, and each color corresponds to one of the
five decoding tasks. Note that these timings are based on available im-
plementations — fmralign for piecewise alignment methods, pymvpa2
for searchlight, and BrainIAK for SRM— and are therefore subject
to change as implementations improve. Nonetheless, these estimates
provide insight into the current state-of-the-art.

alignment substantially improves inter-subject decoding
accuracy Overall, we can conclude that most functional alignment
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methods consistently improve decoding accuracy, with gains from
2-5% over baseline. This trend is relatively consistent across datasets
and target subjects. Thus, alignment methods manage to reliably
reduce individual signal variability while preserving task-relevant
information in a variety of conditions. Although we see that there is
noticeable variance in performance across data sets, these methods on
average show significant effects on inter-subject decoding accuracies.
As reported in Table 6.2, baseline accuracy is around 20% above chance
on average. In this setting, the observed 5% average improvement
across datasets is a substantial increase in performance.

In order to provide further context on these results, we also esti-
mated the noise ceiling for inter-subject decoding. Figure 6.4 reports
that across datasets, the leave-one-session-out (i.e., within-subject) de-
coding accuracy for the target subject is on average 8.5% higher than
the corresponding leave-one-subject-out (i.e., inter-subject) decoding
accuracy after anatomical alignment for the same target subject. Thus,
we expect that functional alignment methods will achieve at most
an 8.5% increase in inter-subject decoding accuracy over anatomical
alignment. In this light, we can see that the best functional alignment
method recovers more than half of the decoding accuracy lost to inter-
subject variability. Additional control analyses suggest that this effect
cannot be explained by smoothing (Section 6.5.5). We further find that
the presented results are largely insensitive both to whether the data
is represented on the cortical surface or in volumetric space, and to
the parcellation resolution used (see Section 6.5.6).

piecewise methods show computational and accuracy advan-
tages Procrustes alignment results in better inter-subject decoding
accuracies when performed in a piecewise as compared to a searchlight
approach. Specifically, searchlight shows lower decoding accuracies on
average, suggesting that its internal averaging destroys part of the sig-
nal structure recovered by Procrustes. With respect to computational
cost, we can see that searchlight Procrustes is 25 times slower on aver-
age than piecewise Procrustes. These results suggest that piecewise
alignment is a better choice when calculating functional alignment
transformations on full-brain data. Moreover, Section 6.5.3 shows that
gains to expect from piecewise alignment are largely insensitive to the
resolution and type of parcellation used; i.e., taken from an atlas or
learned directly from subject data.

The two best performing methods also use a piecewise aggregation
scheme. Specifically, Piecewise SRM and Optimal Transport yield the
highest decoding scores with a slightly lower standard deviation in
accuracy scores than Procrustes. Piecewise SRM is faster to train than
piecewise Procrustes for a fixed set of hyperparameters; however,
identifying the ideal hyperparameters for a new dataset requires a
computationally costly grid-search. Our results (see Section 6.5.4)
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Figure 6.4: Within-subject minus inter-subject decoding accuracy. We show the difference between the
average leave-one-session-out within-subject decoding accuracy and anatomically-aligned leave-one-subject-
out inter-subject decoding accuracy, when that target subject is left-out. Thus, each dot corresponds to a
single subject, and the dot’s color indicates the decoding task. Of note, BOLD5000 was dropped as it did
not have independent folds, and therefore could not be used for within-subject cross-validation. The box
plot describes the distribution of differences, where the green line represents the median value. We argue
this difference approximates the effects of inter-individual variability, and so the best average accuracy
improvement we can hope for using functional alignment is around 9%.

suggest that, in general, a large number of components k and a high-
resolution parcellation are likely to give reasonable performance across
datasets.

The second best performing method, Optimal Transport, gives non-
trivial accuracy gains in most configurations and only rarely decreases
decoding accuracy, likely because of the stronger constraints that it im-
poses. However, this extra-performance comes at a computational cost:
it is on average 7 times slower than Procrustes. For data sets without
sufficient data or computational power to perform a hyper-parameter
grid search for piecewise SRM, we suggest that Optimal Transport of-
fers robust decoding performance with little hyper-parameter tuning.
It remains, however, more computationally costly than the reference
implementation of piecewise Procrustes.

task-specific mappings can be learned within subjects
The intra-subject alignment approach differs from other considered
functional alignment methods in that it learns mappings between the
alignment data and decoding task data, with the assumption that these
mappings can be generalized across subjects. Our results support this
assumption, although this method yields gains half as large as the
best performing alignment method and comes with a significant com-
putational cost. Part of this cost can be accounted for by the increase
in the number of parcels that are used to preserve signal specificity.
Nonetheless, using task-specific mappings as a functional alignment
method suggests that future work on refining related methods may be
a promising direction of research.

6.3.2 Whole-brain alignment outperforms ROI-based alignment

The left panel of Figure 6.5 displays the performance of each func-
tional alignment method relative to anatomical alignment within
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task-relevant ROIs. The right panel displays each method’s relative
computation time compared to piecewise Procrustes alignment. When
visually compared to Figure 6.3, ROI-based decoding accuracies ap-
pear to be slightly lower than whole-brain decoding accuracies for
most of the considered methods. We directly compare ROI-based and
whole-brain alignment in a supplementary analysis, depicted in Figure
6.7, confirming that ROI-based decoding accuracies are in fact lower
on average for the datasets considered in this work. Our results sup-
port previous work from the inter-subject decoding literature (Chang
et al., 2015; Schrouff et al., 2018a) and suggest that full-brain piecewise
alignment yields the best overall decoding pipeline, though we note
that this conclusion may change depending on the exact research
context.

optimal transport and srm show high roi performance
Overall, we find that the best performing methods bring a 3-5% im-
provement in decoding accuracy at the ROI level of analysis. Specif-
ically, Optimal Transport is on average the best performing method,
with a median accuracy increase of 5% within task-relevant ROIs.
Here, we see that baseline decoding accuracy is less than 10 % above
chance in all datasets (except for Courtois Neuromod; see Table 6.3
for exact accuracy values). Thus, the 5% accuracy increase brought by
Optimal Transport represents a strong effect.

SRM yields the second-best performance within ROIs, showing
reasonable decoding accuracy gains on most datasets. It shows more
variance across datasets, however, than the other considered methods.
In particular, SRM decreases inter-subject decoding accuracy on the
visual ROI for Courtois Neuromod, with accuracy values dropping
by approximately -20% compared to anatomical alignment (see Table
6.3). Performance was not significantly improved by using a higher
number (up to 600) of components, highlighting the unique difficulty
in identifying well-suited hyper-parameters for SRM. Interestingly,
Procrustes shows substantially lower performance on average in the
ROI compared to the whole-brain level of analysis, largely due to its
sensitivity to high-variance voxels.

Computationally, we see that SRM is the fastest method and runs
roughly 3 times faster than Procrustes, while Optimal Transport re-
mains 10 times slower than Procrustes. We also note that—on average—
intra-subject alignment does not show increased inter-subject decoding
accuracy within task-relevant ROIs. We suspect that this is likely be-
cause when restricting the learned relationship between data types
(e.g., movie-watching to classification task data) to a single ROI, the
low number of predicted features precludes the identification of stable
multivariate patterns that can transfer across subjects.
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Figure 6.5: Decoding accuracy improvement and computation time after ROI-based functional align-
ment. In the left panel, we show decoding accuracy for each of the considered local functional alignment
methods at the ROI level of analysis. The ROIs used for each dataset are displayed on the far right. Each
dot represents a single subject, and subjects are colored according to their decoding task. Rather than raw
values, we show accuracy scores after subtracting inter-subject decoding accuracy for the same leave-one-
subject-out cross-validation fold with anatomical-only alignment. Note that all methods are applied without
aggregation, so only the method name is given. In the right panel, we show the computational time for each
of the considered methods. All computation times are depicted as relative to piecewise Procrustes. For both
panels, each box plot describes the distribution of values, where the green line indicates the median.

6.3.3 Qualitative display of learned alignments

Understanding the effects of high-dimensional transformations—such
as those used in functional alignment—is non-trivial. To aid in this
process, we “open the black box” by functionally aligning a group
of subjects to an individual target subject’s functional space and de-
pict the resulting maps in Figure 6.6. Here, we reuse whole-brain
alignments learned in Experiment 1. We also display the ground-truth
individual activation maps in panel A, in order to better highlight how
each method affects the signal distribution. As a reminder, the contrast
data displayed here was not used to learn alignments, so it means
that alignment learned on various task data, not specifically related
to language nor audition, carried enough information for fine-grain
registration of these networks.

We can see that overall, functional alignment methods enhance
group-level contrasts compared to anatomical-only alignment; i.e.,
activation maps are more similar across functionally-aligned subjects.
This result is not at the expense of signal specificity, since the aligned
group topographies are still sharp. From the comparison between pan-
els A and B, we can also conclude that alignment methods bring group
topography much closer to the targeted subject topography across
many contrasts. Nonetheless, we can still observe that there seems
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to be a trade-off between sharpness of activation (low smoothness
of image, due to low variance across aligned subjects) with Optimal
Transport, and accuracy of their location compared to the target ones
(low bias introduced by the matching) with searchlight Procrustes.

6.4 discussion

In this work, we have proposed a new procedure to measure the in-
formation recovered through functional alignment using inter-subject
decoding, and we subsequently used this framework to benchmark
five functional alignment methods on five distinct decoding tasks
across four publicly available datasets. In general, we find that func-
tional alignment improves inter-subject decoding accuracy in both
whole-brain and ROI settings. These results, combined with our qual-
itative visualization of the effects of functional alignment on signal
structure, suggest that functional alignment improves inter-subject
correspondence while matching signal to realistic functional topogra-
phies. This finding extends and supports conclusions from earlier
work (Güçlü and Gerven, 2015; Guntupalli et al., 2016).

At a whole-brain scale, the best performing methods are piecewise
SRM, piecewise Optimal Transport, and piecewise Procrustes which
each bring 5% improvement over this baseline on average. As the
baseline inter-subject decoding accuracy is roughly 20% above chance
across datasets (Table 6.2), this 5% increase represents a substantial
improvement. We also note that this represents recovering more than
half of the accuracy lost to inter-subject variability. The considered
functional alignment methods also improve decoding performance
when applied without an aggregation scheme (i.e., piecewise or search-
light aggregation) within task-relevant ROIs. Here, Optimal Transport
and SRM bring 5% and 3% improvement in inter-subject decoding
accuracy, respectively, over a baseline accuracy which is on average
10-15% above chance across datasets (Table 6.3). From our control
analyses, we observe that these increases in decoding accuracy were
reliably greater than the effect of Gaussian smoothing (see section
6.5.5). In a minimalistic replication, this effect seems to hold for both
volumetric and surface data and at different parcellation resolutions
(see section 6.5.6; cf. Oosterhof et al., 2011).

Our benchmark also brings new evidence that the latent correspon-
dences that can be learned between different tasks display less inter-
individual variability than the task-specific activation maps (Tavor
et al., 2016). Experiment 1 indeed showed that such correspondences
could even be used at a whole-brain scale to transfer signals across
subjects to solve an inter-subject decoding problem, which is—to the
best of our knowledge—an original experimental result. By releas-
ing efficient and accessible implementations of these methods in the
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Figure 6.6: Comparison of alignment methods’ geometrical effects. (A) Activation patterns for the Target
subject (IBC sub-04) for two contrasts from the IBC Sounds task (Speech > Silence, Voice > Silence) and IBC
RSVP task (Sentence > Word, Word > Consonants). Here, we only show contrast maps from a sub-region
of the temporal lobe containing contrast-relevant information. Note that this sub-region differs slightly
between the Sounds and RSVP task. (B) Visualization of a group conjunction analysis of all IBC subjects
after alignment to the target subject for each of the considered methods. We used a γ value of 0.25 in
the conjunction analysis, which corresponds to at least 25% of the IBC sample showing activation in this
temporal region after alignment. For ease of comparison, the color bar for each contrast and method was
scaled to show the full range of values (i.e., the color bar spans different intervals across methods and
contrasts) and so is not included here. All displayed maps were thresholded at 1/3 of their maximum value.
We see that functional alignment yields stronger contrasts overall when compared to anatomical alignment.
Piecewise Procrustes and piecewise Optimal Transport yield less smooth representations, better preserving
signal specificity.

fmralign package, we hope to facilitate future cognitive neuroscience
research using functional alignment methods.
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6.4.1 Combining local alignment models

Across datasets, we find that the spatial framework of alignment
and decoding significantly affects subsequent performance. Notably,
piecewise Procrustes outperforms searchlight Procrustes, both in terms
of accuracy and computational performance. The methodological
difference between these aggregation schemes is whether alignment
transformations are learned within overlapping neighborhoods (as in
searchlight Procrustes) or not (as in piecewise Procrustes). Searchlight
alignment suffers in that the overlap between searchlights requires
multiple computations for a given neighborhood, and the aggregated
transformation is no longer guaranteed to reflect properties of the
original transforms, e.g., orthogonality. Although piecewise alignment
may theoretically introduce discontinuities at parcel boundaries, in
our results we do not find evidence of this effect and indeed find
that piecewise aggregation overall benefits decoding performance.
Importantly, we found that the improved performance of piecewise
Procrustes was largely insensitive to parcel size and definition (see
Figure 6.8).

6.4.2 Evaluating alignment performance with decoding

We use inter-subject decoding to quantify the amount of mutual in-
formation recovered by functional alignment methods. In general,
identifying publicly available datasets with tasks appropriate for both
inter-subject decoding and functional alignment remains a challenge.
Beyond the four datasets included in these results, we investigated
several other publicly available datasets such as the Neuroimaging
Analysis Replication and Prediction Study (NARPS; Botvinik-Nezer
et al., 2020),the Healthy Brain Network Serial Scanning Initiative
(HBN-SSI; O’Connor et al., 2017), the interTVA dataset (Aglieri et al.,
2019, available as OpenNeuro ds001771) and the Dual Mechanisms of
Cognitive Control Project (DMCC, Braver et al., 2020).

We had difficulties in achieving sufficient baseline accuracy levels
in these and other datasets, and we therefore chose not to include
them in the present study. This suggests that the amount of signal
discriminating complex experimental conditions is not strong enough
to find inter-subject patterns robust to variability in many publicly
available datasets, likely due to limited sample sizes and unoptimized
experimental designs. We hope that broader recognition of the benefits
of using inter-subject decoding to uncover neural coding principles
across subjects—using functional alignment if necessary—will encour-
age investigators to collect and share more datasets supporting this
type of analysis. Greater data availability will encourage robust, prin-
cipled comparisons of alignment methods and foster progress in the
field.
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6.4.3 Study limitations and future directions

Although our study provides a broad evaluation of the performance
of several functional alignment methods, there are several dimensions
which we hope future work will better address. Notably, we did not
thoroughly investigate how alignment performance is impacted by
image resolution and whether data are represented on the surface or
the volume. Using volumetric images downsampled to a standard
resolution of 3mm isotropic enabled us to make fair comparisons
across datasets at a reasonable computational cost. We also show
in Section 6.5.6 that results from piecewise Procrustes alignment on
the IBC dataset hold in a higher resolution, surface-based setting.
Nonetheless, other functional alignment methods might show different
patterns of performance in this setting or at different resolution levels.
Moreover, applying these methods on high-resolution images is an
exciting perspective to better understand how brain function details
vary across subjects. To progress in this direction, a stronger focus
on developing computationally efficient methods will be needed. The
use of high-resolution parcellations—combined with more efficient
implementations of piecewise Optimal Transport or a piecewise Shared
Response Model—seem to be particularly promising directions.

We have not examined either the impact of alignment data on the
learned transformations and whether this impact varies across cortex.
That is, we could further ask whether certain kinds of stimuli may pro-
duce more accurate functional alignments for specialized functional
regions. In general, the surveyed functional alignment methods view
each subject alignment image as a sample, and the resulting trans-
formation is trained to match corresponding samples across subjects.
If some training images lack stable signal in a given ROI, functional
alignment methods are unlikely to learn meaningful transformations
in this region. Finally, this benchmark largely focussed on pairwise
alignment models. Template-based models—beyond latent factor mod-
els as SRM—are an important area of research to further improve the
usability of functional alignment methods, particularly in research set-
tings comprising many subjects. In future work, we intend to address
the above questions to learn more about when functional alignment
methods are most appropriate.

6.5 additional analysis

6.5.1 Absolute decoding accuracy of various methods

Tables 6.2 and 6.3 report absolute decoding accuracies for Experiment
1 and Experiment 2, to bring a different view of results presented in
Figures 6.3 and 6.5, as relative improvements brought over anatom-
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Methods/Dataset IBC RSVP IBC Sounds Forrest BOLD5000 Neuromod

Chance 16.7 16.7 20 25.5 12.5

Anatomical 38.2 ± 4.1 32.7 ±4.8 31.4 ± 4.7 33.3 ± 2.9 54.1 ± 6.7

Intra-subject 39.6 ± 3.1 36.4 ± 8.6 31.9 ± 5.4 34.9 ± 2.8 55.6 ± 7.7

Searchlight Procrustes 39.0 ± 5.1 32.6 ± 6.5 33.6 ± 6.1 35.2 ± 2.0 65.5 ± 6.6

Piecewise Procrustes 42.0 ± 4.7 36.6 ± 5.5 33.8 ± 6.4 36.4 ± 1.8 67.4 ± 10.6

Piecewise Optimal Transport 43.5 ± 5.5 38.0 ± 9.5 33.8 ± 5.6 36.6 ± 2.1 65.3 ± 9.1

Piecewise Shared Response Model 42.4 ± 4.0 37.0 ± 6.8 33.7 ± 7.2 39.6 ± 2.9 66.2 ± 7.0

Table 6.2: Full-brain benchmark absolute decoding accuracy (%). Another
view of Experiment 1 results. Complementary display to Figure 6.3.

Methods/Dataset IBC RSVP IBC Sounds Forrest BOLD5000 Neuromod

Chance 16.7 16.7 20 25.5 12.5

Anatomical 22.3 ± 3.3 26.9 ± 6.9 28.6 ± 6.0 33.5 ± 3.3 50.2 ± 5.3

Intra-subject 22.0 ± 1.7 25.6 ± 2.7 27.5 ± 3.2 38.0 ± 2.6 51.4 ± 10.2

Procrustes 31.0 ± 4.3 32.7 ± 8.3 30.1 ± 7.0 30.1 ± 2.2 46.5 ± 7.8

Optimal Transport 24.9 ± 2.5 29.9 ± 5.4 28.9 ± 2.2 39.7 ± 2.7 64.4 ± 8.9

Shared Response Model 30.4 ± 4.4 30.9 ± 6.3 34.3 ± 5.2 40.9 ± 3.6 32.6 ± 5.5

Table 6.3: ROI benchmark absolute decoding accuracy (%) Another view
of Experiment 2 results. Complementary display to Figure 6.5.

ical registration by various alignment methods. This “per dataset
view” highlight that gains brought by best methods are substantial
improvement over baseline, especially when compared to chance.

6.5.2 Whole-brain decoding provides better accuracy than ROI-
based decoding

In Figure 6.7, we compare ROI-based and whole-brain inter-subject
decoding accuracy improvements for piecewise Procrustes alignment
above anatomical-only alignment. We see that whole-brain alignment
generally shows higher inter-subject decoding improvements com-
pared to ROI-based alignment. As mentioned in the main text, this
result supports previous work from the inter-subject decoding lit-
erature (Chang et al., 2015; Schrouff et al., 2018a), and it suggests
that full-brain piecewise alignment yields the best overall decoding
pipeline.
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Figure 6.7: Comparing ROI and whole-brain decoding accuracy after piecewise Procrustes alignment.
The ROIs used for each dataset are displayed on the lower panel. In the upper panel, we show the distribution
of differences in decoding accuracy scores between ROI-based and whole-brain piecewise Procrustes
alignment. Each dot represents a single subject, and subjects are colored according to their decoding task.
Each difference score is calculated by subtracting the inter-subject decoding accuracy for whole-brain
piecewise Procrustes alignment from the ROI-based piecewise Procrustes alignment accuracy score—for the
same leave-one-subject-out cross-validation fold. The box plot thus describes the distribution of differences,
where the green line represents the median value. We see that decoding accuracy is lower when performed
within ROIs than when performed on the whole-brain data.

6.5.3 Parcellation has limited impact on decoding accuracy

To assess the impact of the parcellation used on piecewise alignment
results, we compared decoding accuracy gains while varying the par-
cellation kind and resolution. First, we consider the multi-resolution
(Schaefer et al., 2018) atlas, which was learned through a gradient
weighted Markov random field method on resting state data from
1489 subjects. We compare this a priori parcellation to two parcella-
tions learned directly on the subject’s alignment data after 5mm fwhm
Gaussian smoothing: K-means or Hierarchical K-means. All these
parcellations were taken at ten resolutions from 100 to 1000 parcels.

As hierarchical K-means may be less familiar to readers, we briefly
describe it in more detail here. This method is a variant of K-means,
aimed specifically at obtaining more balanced parcels. To identify k
parcels, we first apply K-means to cluster the voxels in

√
k big clusters.

Each of these “big clusters” is then clustered again in
√
k to obtain a

total of k smaller, well-balanced parcels. In this experiment, K-means
and Hierarchical K-means implementations used are respectively from
scikit-learn and fmralign, and fitted as part of fmralign alignment
functions on the source subject data.
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Figure 6.8: Effect of parcellation type and resolution on Piecewise Procrustes decoding accuracy im-
provement over anatomical alignment. We consider the impact of parcellation type (the a priori Schaefer
atlas or learned directly on the data with k-means or hierarchical k-means) and resolution (from 100 to
1000 parcels). Results are shown for the IBC RSVP and IBC Sounds decoding tasks. Each line represents the
average accuracy improvement for piecewise Procrustes over standard, anatomical-only alignment, and
the confidence band represents the range of accuracy improvements seen across all IBC subjects. Accuracy
improvements are calculated by subtracting anatomical-only inter-subject decoding accuracy scores for the
same leave-one-subject-out cross-validation fold. We see that parcellation type and resolution show limited
impact on accuracy gains.

We plot piecewise Procrustes accuracy improvements for these three
parcellation methods and ten resolutions in Figure 6.8. Here, we only
show the IBC Sounds and IBC RSVP decoding tasks to ease in inter-
pretation. Overall, we observe on these two tasks that the type and
resolution of parcellation used does not have a strong impact on ac-
curacy improvements above anatomical-only alignment. We therefore
suggest that piecewise alignment can be used with confidence that the
parcellation choice won’t strongly impact its results.

6.5.4 Grid-search of Piecewise SRM hyperparameters

As a piecewise implementation of SRM is a novel contribution from
this work, we had no prior knowledge on how to properly set hyper-
parameters from this method (clustering type and resolution as well
as the number of components to set for each local SRM).

For the type of clustering, we limited ourselves to a pre-computed
parcellation (the Schaefer atlas) available at various resolutions. This is
based on the intuitions acquired on Procrustes (see Section 6.5.3) that
the parcellation type was not of utmost importance to decoding results.
We ran a cross-validation on the two remaining parameters. We used
Schaefer atlas at resolution: [100,300,500,700] while our number of
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Figure 6.9: Grid search of Piecewise SRM hyperparameters impact on decoding accuracy across datasets.
We considered a grid of 4 parcellations (Schaefer atlas at resolution 100, 300, 500 and 700) and 4 different
values of k (number of SRM components) for each model fitted on a parcel. We ran our inter-subject decoding
pipeline on four inter-subject decoding task (in columns, among those used in the main benchmark). We
report here the decoding accuracy improvement over anatomical baseline across datasets for each set of
parameter (in line). Although we didn’t have the computational means to run an extensive grid-search,
we can already conclude that high-resolution parcellations (and thus more fitted local SRMs) yield a
higher decoding gain as long as they come with enough component. Decoding accuracy is also positively
linked with K, probably up to a plateau that we did not clearly reach with our limited grid. For the main
benchmark, we retained the last line model (K = 50, Schaefer 700).

components ranged from [5,25,35,50]. Figure 6.9 present the results
of this cross-validation, that led us to chose Schaefer atlas 700 and 50

components as hyperparameters for our main experiments.

6.5.5 Functional alignment is not merely smoothing

Gaussian smoothing is a common preprocessing step in neuroimaging
group studies, which reconciles dissimilar subject-level signals by
smoothing over inter-individual variability. Our qualitative results
(Section 6.3.3) show that best performing alignment methods do not
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Figure 6.10: Decoding accuracy does not improve after Gaussian smoothing over anatomical align-
ment. For six smoothing kernels fwhm, we show inter-subject decoding accuracy scores after subtracting
anatomical-only inter-subject decoding accuracy for the same leave-one-subject-out cross-validation fold.
Each dot represents a single subject, and subjects are colored according to their decoding task. We also
show differences in decoding accuracy scores for the reference functional alignment method piecewise
Procrustes, again as compared to anatomical-only alignment. Box plots describe the distribution of values
for a smoothing kernel or an alignment method, and the green line indicates the median. We see that
Gaussian smoothing does not show the same pattern of decoding accuracy differences as the reference
functional alignment method.

seem to smooth the signal across voxels, but instead preserve the
signal specificity while matching its geometry with the target subject
functional topography. Specifically, we compared decoding gains from
six different Gaussian smoothing kernels to those obtained through
the reference method piecewise Procrustes alignment.

The results displayed in Figure 6.10 clearly support previous
findings (Guntupalli et al., 2016) that smoothing does not improve
inter-subject decoding performance—and therefore recover mutual
information—in the same way that functional alignment.

6.5.6 Impact of the data representation and resolution

Oosterhof et al., 2011 argued that functional alignment benefits from
working with a representation of the fMRI signal on the cortical
surface (Coalson, Van Essen, and Glasser, 2018). Relatedly, we would
also expect that the resolution of the data representation—whether in
the surface or the volume—will impact the quality of the alignment
learned.

To assess the dependence of our 3mm volumetric results presented
in the main text on sampling parameters, we replicated our inter-
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Figure 6.11: Comparing piecewise Procrustes accuracy improvements across volumetric and surface
data representations. For the IBC RSVP task, we compare piecewise Procrustes decoding accuracy scores
to anatomical-only alignment. Each dot represents an IBC subject, where their difference score is calculated
by subtracting the inter-subject decoding accuracy for anatomical-only alignment from the piecewise
Procrustes alignment accuracy score for the same leave-one-subject-out cross-validation fold; i.e., where they
are the left-out subject. We compare these difference scores, as calculated using data in the volume (3mm
resolution), to data on the high-resolution cortical surface (fsaverage7). Box plots describe the distribution of
values for a data representation, and the green line indicates the median. We see that the high-resolution
surface representation yields a moderate gain of decoding accuracy, compared to 3mm isotropic volumetric
representation.

subject decoding framework with the IBC RSVP language task data on
a high-resolution cortical surface representation(fsaverage7)(obtained
through freesurfer surfacic projection of full-resolution raw images
in their respective subject space, later on mapped to the common
surfacic template). This surface mesh includes 168k cortical nodes per
hemisphere, which we divided into 350 parcels per hemisphere using
Schaefer atlas at scale 700.

We provide results for the inter-subject decoding accuracy gains
seen with the reference functional alignment method of piecewise
Procrustes over standard, anatomical-only alignment. We had to limit
to this setting because (i) replicating this analysis on every dataset
would represent an important amount of processing work, and (ii)
working on other methods than piecewise Procrustes on this very
large data is computationally prohibitive.

The results displayed in Figure 6.11 show that although decoding
gains are a little higher using high-resolution surface-based represen-
tation, they remain in the same range as the volume-based represen-
tation. This shows that a 10-fold higher resolution can help match
more precisely topographies across subjects (and reduce the decoding
variance as a consequence), but no important marginal gains can be
expected from it. In the end, the signal available for use is bounded
by the same rough limitations: test-retest reliability in each subject.

6.5.7 IBC alignment data explained

In this work, 53 contrasts were pulled together are used as alignment
for IBC dataset. The contrasts are common to all subjects and taken
from both HCP and ARCHI protocol. In order, they are labelled: audio
left button press, audio right button press, video left button press, video
right button press, horizontal checkerboard, vertical checkerboard, audio
sentence, video sentence, audio computation, video computation, saccades,
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rotation hand, rotation side, object grasp, object orientation, mechanistic
audio, mechanistic video, triangle mental, triangle random, false belief audio,
false belief video, speech sound, non speech sound, face gender, face control,
face trusty, expression intention, expression gender, expression control, shape,
face, punishment, reward, left hand, right hand, left foot, right foot, tongue,
cue, story, math, relational, match, mental, random, 0back body, 2back body,
0back face, 2back face, 0back tools, 2back tools, 0back place, 2back place.

To know more, please visit the relevant IBC documentation.

6.5.8 fMRIprep preprocessing

Results included in this manuscript come from preprocessing per-
formed using fMRIprep (Esteban et al., 2019), which is based on Nipype
1.5.0 (Gorgolewski et al., 2011).

anatomical data preprocessing The T1-weighted (T1w) im-
age was corrected for intensity non-uniformity (INU) with
N4BiasFieldCorrection (Tustison et al., 2010), distributed with ANTs
2.2.0 (Avants et al., 2008, RRID:SCR_004757), and used as T1w-
reference throughout the workflow. The T1w-reference was then skull-
stripped with a Nipype implementation of the antsBrainExtraction.sh
workflow (from ANTs), using OASIS30ANTs as target template. Brain
tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM)
and gray-matter (GM) was performed on the brain-extracted T1w
using fast (FSL 5.0.9, RRID:SCR_002823, Zhang, Brady, and Smith,
2001). Volume-based spatial normalization to one standard space
(MNI152NLin2009cAsym) was performed through nonlinear registra-
tion with antsRegistration (ANTs 2.2.0), using brain-extracted versions
of both T1w reference and the T1w template. The following template
was selected for spatial normalization: ICBM 152 Nonlinear Asym-
metrical template version 2009c (Fonov et al., 2009, RRID:SCR_008796;
TemplateFlow ID: MNI152NLin2009cAsym).

functional data preprocessing For each subject’s BOLD runs
(across all tasks and sessions), the following preprocessing was per-
formed. First, a reference volume and its skull-stripped version
were generated by aligning and averaging 1 single-band references
(SBRefs). A B0-nonuniformity map (or fieldmap) was estimated based
on two (or more) echo-planar imaging (EPI) references with opposing
phase-encoding directions, with 3dQwarp Cox and Hyde, 1997 (AFNI
20160207). Based on the estimated susceptibility distortion, a corrected
EPI (echo-planar imaging) reference was calculated for a more accurate
co-registration with the anatomical reference. The BOLD reference was
then co-registered to the T1w reference using bbregister (FreeSurfer)
which implements boundary-based registration (Greve and Fischl,
2009). Co-registration was configured with six degrees of freedom.

https://project.inria.fr/IBC/data/


6.5 additional analysis 93

Head-motion parameters with respect to the BOLD reference (trans-
formation matrices, and six corresponding rotation and translation
parameters) are estimated before any spatio-temporal filtering using
mcflirt (FSL 5.0.9, Jenkinson et al., 2002).

First, a reference volume and its skull-stripped version were gener-
ated using a custom methodology of fMRIprep. The BOLD time-series
(including slice-timing correction when applied) were resampled onto
their original, native space by applying a single, composite transform
to correct for head-motion and susceptibility distortions. These re-
sampled BOLD time-series will be referred to as preprocessed BOLD
in original space, or just preprocessed BOLD. The BOLD time-series
were resampled into standard space, generating a preprocessed BOLD
run in MNI152NLin2009cAsym space. First, a reference volume and its
skull-stripped version were generated using a custom methodology of
fMRIprep.

All resamplings can be performed with a single interpolation step by
composing all the pertinent transformations (i.e., head-motion trans-
form matrices, susceptibility distortion correction when available, and
co-registrations to anatomical and output spaces). Gridded (volumet-
ric) resamplings were performed using antsApplyTransforms (ANTs),
configured with Lanczos interpolation to minimize the smoothing
effects of other kernels (Lanczos, 1964).

Many internal operations of fMRIprep use Nilearn 0.6.2 (Abraham
et al., 2014b, RRID:SCR_001362), mostly within the functional pro-
cessing workflow. For more details of the pipeline, see the section
corresponding to workflows in fMRIprep’s documentation.

copyright waiver The above boilerplate text was automatically
generated by fMRIprep with the express intention that users should
copy and paste this text into their manuscripts unchanged. It is released
under the CC0 license.

https://fmriprep.readthedocs.io/en/latest/workflows.html
https://fmriprep.readthedocs.io/en/latest/workflows.html
https://creativecommons.org/publicdomain/zero/1.0/


7 C O N C L U S I O N

In this thesis, we have proposed a new local functional alignment
method using Optimal Transport and a new Piecewise aggregation
scheme to perform whole-brain alignment. Combined with the tem-
plating method we proposed, this enables to perform functional align-
ment at common resolution on a group of subjects to reduce inter-
subject variability. We also introduced a Piecewise Shared Response
Model which is another instance of the functional alignment concept
using aggregated latent factor models and compared it with an orig-
inal Intra-subject alignment scheme. We produced a rigorous and
thorough benchmark of several alignment methods using inter-subject
decoding on five decoding tasks from four datasets. This allowed us
to measure the ability of alignment methods to transfer signal across
subjects while preserving signal specificity in a range of cognitive
tasks considered in the field. This benchmark enables us to conclude
that several alignment methods indeed hold the potential to handle
inter-subject variability. The alignment methods compared were able
to recover more than half of decoding accuracy lost to variability. We
hope that this benchmark will help neuroscientists to get a clearer
account of available alignment methods performance to be expected—
and their running cost—as well as methodological choices to be made.
Hopefully, this will help disseminate alignment that indeed could be
a useful analysis step in many studies to strengthen group statistical
conclusions, help in precise brain-mapping endeavors and ultimately
benefit translational research. We especially focused on releasing ef-
ficient and well-documented open-source implementations of these
ideas, as we believe this is key to foster their broader use.

practical challenges

The biggest challenge we encountered during this thesis is data avail-
ability and disparity. While we feel lucky to have been able to investi-
gate this topic (intensively relying on datasets that were acquired just
prior or during this thesis work) we want to point that the scarceness
of such resources and their design were important constraints to de-
sign and realize our experiments. Many interesting ideas will remain
impossible to test and use in this field until bigger deep phenotyping
datasets become available. Similarly, a significant portion of this the-
sis work was spent on screening and analyzing numerous datasets
in order to find the rare appropriate ones for our experiments. We

94
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acknowledge this is a common problem in fMRI studies and one that
is hard to solve. Additionally, fMRI data are heavy and alignment is a
data-driven process relying on in-depth individual characterization
and thus requires a significant amount of computation, let alone run-
ning those methods thousands of time for benchmarking purposes. We
were lucky to benefit from INRIA’s and Parietal’s important comput-
ing resources and parallel computing and software expertise, which
helped alleviate this problem.

A second important challenge during this thesis was the conceptual
inconsistency observed in the literature pertaining to variability and
ways to handle it. As a matter which is hard to study and model,
several related conceptual frameworks coexisted without being re-
lated or compared in any meaningful ways. As a consequence, several
dozens of methodological advances have been proposed without being
properly compared with each other. Alignment methods were intro-
duced with metrics and baselines focused on algorithmic validation,
and the overall foundations for methodological developments in this
field are unsteady. This constrained our work to focus heavily on em-
pirical validation, as a necessary foundation for later well-motivated
developments.

future directions

high resolution Although Chapter 6 provides a comprehensive
benchmark of several functional alignment methods, there are several
dimensions which we hope future work will better address to improve
our understanding of those methods. Notably, we did not thoroughly
investigate how alignment performance is impacted by image resolu-
tion and whether data are represented on the surface or the volume.
Using volumetric images downsampled to a standard resolution of
3mm isotropic enabled us to make fair comparisons across datasets at
a reasonable computational cost. We also show in Section 6.5.6 that re-
sults from piecewise Procrustes alignment on the IBC dataset hold in a
higher resolution, surface-based setting. Nonetheless, other functional
alignment methods might show different patterns of performance
in this setting or at different resolution levels. Moreover, applying
these methods on high-resolution images is an exciting perspective to
better understand how brain function details vary across subjects. To
progress in this direction, a stronger focus on developing computa-
tionally efficient methods will be needed. The use of high-resolution
parcellations— combined with efficient implementations of piecewise
Optimal Transport or a piecewise Shared Response Model—seem to
be particularly promising directions.
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functional characterization of brain regions We have not
examined either the impact of alignment data on the learned trans-
formations or whether this impact varies across cortex. That is, we
could further ask whether certain kinds of stimuli may produce more
accurate functional alignments for specialized functional regions. In
general, the surveyed functional alignment methods view each sub-
ject alignment image as a sample, and the resulting transformation
is trained to match corresponding samples across subjects. If some
training images lack stable signal in a given Region of Interest (ROI),
functional alignment methods are unlikely to learn meaningful trans-
formations in this region. To improve our usability of alignment tech-
niques, we ought to better understand the impact of alignment data
used. More generally, our alignment proves that parcels can be charac-
terized reasonably well by a certain number of functional dimensions,
and understanding which dimensions are relevant for each parcel is
an exciting brain mapping endeavor.

inter-dataset alignment While we have shown that inter-
subject variability could be handled in a given dataset context, an
important question to get closer to translational purposes is whether
they can also help to link subjects that were not imaged in exactly
the same context. Or to put it differently, how can matching based
on functional characterization help deal with site-effect on top of
inter-individual variability. Our benchmarking paradigm based on
inter-subject decoding could be extended to address this kind of ques-
tion. A compelling first step towards generalizability would be to inte-
grate information from one deep-phenotyping dataset with another.
If learned models are to be generalizable to broader subsets of the
population, they should first generalize to another, similarly-sampled
cohort. An important limitation is that it is especially rare to have
synchronized alignment data in common across different datasets. We
are thus currently exploring options to learn alignment over various
cohorts of subjects by bridging some functional characterization data.

template-based models Latent factor models such as SRM pro-
vide an interesting way to map individual topographies inside a
common group framework. Importantly, they enable to transfer infor-
mation across subjects. But, beyond this pragmatic view of a common
intermediate representation for computational purposes and learn-
ing, it remains an important goal to derive some group model with
statistical significance that would embody the general population, or
a chosen homogenous sub-group functional organization principles
precisely. Although our attempts did not solve this problem yet, this
is an important future direction for brain imaging statistical analysis.
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what did not work

During this thesis, we also explored several ideas that did not improve
results.

7.0.1 Kernel Truncation for high-dimensional optimal transport

To go beyond the piecewise aggregation of local optimal transport
alignments, we tried to apply kernel-truncation (Schmitzer, 2019), in
order to build a multi-scale optimal transport implementation (Feydy
et al., 2019). This method derives a coarse, low-resolution matching
of histograms in a first step and then iteratively focuses on higher-
resolution low potential regions (regions where cost is below a given
level) to try to refine the matching where it can be improved. In
theory, this would enable to recover optimal whole-brain alignment
across subjects at a reasonable computational cost while getting rid of
potential discontinuity effects introduced by parcellation techniques.
In practice, the numerical stability of this method entails a complex
fine-tuning in order to reach the precision of matching required in
our use-case, and we did not manage to show increased metrics using
those alignments.

7.0.2 Wasserstein barycenter to build templates informed by sig-
nal geometry

As developed in Section 5.3 we tried to use Wasserstein Barycenters to
improve initialization of our iterative templating scheme, by taking
subjects’ signals geometry into account. However, we did not manage
yet to extend our use of signal dissimilarity to build a transport cost
matrix—that proved very successful for pairwise alignments— to a
group setting, nor to apply spatial transport in a convincing way.

7.0.3 Hyperalignment for MEG data

In a joint work with Hugo Richard, we tried to use comparable tech-
niques to improve Magnetoencephalography (MEG) decoding using
functional alignment methods. Although the spatial resolution is much
lower, which defeats part of alignment’s purpose, we wanted to see if
combining sensors signals across subjects would help in finding better
decoding patterns. We tried to learn alignment. Although we tried
several state-of-the-art methods on this problem, they didn’t bring
improvement.
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resources created during this thesis

7.0.4 Software contributions

We leave after this thesis several reference implementations for the
state-of-the art methods that we proposed and benchmarked, in-
cluding those of Piecewise Procrustes, Piecewise Optimal Trans-
port and Piecewise Shared Response Model. Those implementa-
tions are packaged in the fmralign module: https://github.com/

Parietal-INRIA/fmralign, with an emphasis on performance and
documentation to improve ease-of-use. With these tools, any neu-
roscientist using Python ecosystem tools can easily input images
from his or her subjects and get back their aligned subjects with a
Scikit-learn API. We hope these contributions will foster functional
alignment adoption. We also released additional alignment tutorials
in https://github.com/neurodatascience/fmralign-tutorials.

To evaluate methodological contributions, we also designed a bench-
mark, for which we try to open-source as many components as pos-
sible to ease replication and further benchmarking endeavors. We
make code available as well as data derivatives for the IBC dataset
in the https://github.com/neurodatascience/fmralign-benchmark

module.
Besides contributions directly related to my thesis work, I

contributed to the Nilearn package: https://github.com/nilearn/

nilearn during my entire PhD. Nilearn is a widely used Python
package for statistical analysis and predictive modelling of neu-
roimaging data. I primarily contributed to the “Decoding” mod-
ule of this package, as well as to improving its documentation
and friendliness for new contributors. I also took part in the or-
ganization of several teaching and coding events for Nilearn. Ad-
ditionally, I was briefly involved in the maintenance of pypreprocess
https://github.com/neurospin/pypreprocess.

7.0.5 Other projects

During my PhD, I also got interested in various fMRI related
projects. To develop my machine learning skills on related sub-
jects, I led a team of fellow PhD students from INRIA Parietal
team in a Kaggle challenge participation (https://www.kaggle.com/
c/trends-assessment-prediction). This competition was aimed at
improving translational use of resting state fMRI data in order to pre-
dict variables of clinical interest, including age. In our final solution,
we used Riemannian geometry as well as state-of-the-art estimators
and hierarchical schemes to predict those targets from our source
data, which ranked us in the top 2% contenders of this challenge.
Besides machine learning, this project helped me improve a lot my

https://github.com/Parietal-INRIA/fmralign
https://github.com/Parietal-INRIA/fmralign
https://github.com/neurodatascience/fmralign-tutorials
https://github.com/neurodatascience/fmralign-benchmark
https://github.com/nilearn/nilearn
https://github.com/nilearn/nilearn
https://github.com/neurospin/pypreprocess
https://www.kaggle.com/c/trends-assessment-prediction
https://www.kaggle.com/c/trends-assessment-prediction
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ability to design code and infrastructure for efficient scientific collabo-
ration. This was also a fun and collaborative way to explore a scientific
problem at the edge of many core topics: machine learning, statistics,
cognition, and the brain.

I also took part in the analysis of several fMRI datasets. Two of
those analysis were included in publications: one for Individual Brain
Charting fourth dataset extension (Torre et al., in preparation), and
one for an extension of Optimal Transport with an additional group
penalization (Janati et al., 2019, 2020).
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Titre : Estimation de modèle après des alignements arbitraires : application à l’imagerie médicale
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Résumé : Un objectif important des neuro-
sciences cognitives est de comprendre l’organisation
fonctionnelle du cerveau. Pour cela, elles s’appuient
sur l’Imagerie par Résonance Magnétique fonction-
nelle (IRMf), un outil puissant pour étudier le
lien entre les fonctions cérébrales et les structures
anatomiques sous-jacentes à une haute résolution spa-
tiale. La variabilité fonctionnelle interindividuelle est
un obstacle majeur qui limite la précision de la car-
tographie fonctionnelle du cerveau et la généralisa-
tion des résultats obtenus par les études d’imagerie
cérébrale. Cette variabilité importante, observable
entre des sujets effectuant la même tâche cognitive,
va bien au-delà des variations de taille et de forme des
structures anatomiques. Dans cette thèse, nous nous
intéresserons à un ensemble de méthodes conçues pour
traiter la variabilité fonctionnelle : l’alignement fonc-
tionnel. Ces méthodes mettent en correspondances
les signaux cérébraux de différents sujets sur la base
de leur similarité fonctionnelle.

Dans un premier temps, nous présenterons les
concepts et les techniques usuels pour la cartogra-
phie fonctionnelle cérébrale, ainsi que les difficultés in-
duites par la variabilité fonctionnelle. Nous passerons
également en revue les méthodes d’alignement fonc-
tionnel existantes. Dans une deuxième partie, nous
proposerons une nouvelle méthode d’alignement fonc-

tionnel, basée sur le transport optimal—une théorie
mathématique qui s’intéresse à la mise en corre-
spondance de distributions de probabilité prenant
en compte leur géométrie. Par ailleurs, les méth-
odes d’alignement fonctionnel sont appliquées locale-
ment, et de nombreux alignements locaux doivent être
agrégés pour construire des alignements à l’échelle du
cerveau entier. De plus, ces mises en correspondances
sont définies entre deux sujets et il est nécessaire, pour
aligner plusieurs sujets, de recourir à un « modèle
fonctionnel de groupe » : une représentation com-
mune sur laquelle tous les sujets peuvent être alignés.
Cependant, les solutions proposées dans la littérature
présentent de nombreux inconvénients et nous pro-
poserons donc une méthode alternative d’agrégation
ainsi qu’un algorithme pour concevoir des modèles de
groupe. La troisième partie sera consacrée à une val-
idation expérimentale approfondie de ces méthodes.
En effet, l’alignement est rarement utilisé dans des
études applicatives et sa capacité à compenser la vari-
abilité fonctionnelle en pratique est peu documentée.
Nous évaluerons sa capacité à améliorer la général-
isation de modèles prédictifs à de nouveaux sujets.
Dans cette configuration—dite de « décodage inter-
sujet »—appliquée à quatre jeux de données, nous
montrerons que les méthodes d’alignement ont le po-
tentiel de compenser une part importante de la vari-
abilité interindividuelle.

Title: Template estimation for arbitrary alignments: application to brain imaging

Keywords: Medical Imaging, Statistics, Brain Mapping, Optimal transport, Estimation
Abstract: An important goal of cognitive neuro-
sciences is to understand the functional organization
of the brain. It heavily relies on Functional Magnetic
Resonance Imaging (fMRI), a powerful tool to inves-
tigate the link between brain function and anatomi-
cal structures at a high spatial-resolution. Functional
inter-individual variability is a major obstacle limiting
functional brain mapping precision and generalizabil-
ity of results obtained in neuroimaging studies. This
variability, observed across subjects performing the
same task, goes far beyond anatomical variability in
brain shape and size. In this work, we focus on a class
of methods designed to address functional variability,
namely functional alignment. These methods match
subjects neural signals based on their functional sim-
ilarity.

In a first part, we review standard functional
brain mapping paradigms and techniques, as well
as the challenges induced by functional variability.
We additionally review existing functional alignment
methods and related work, and discuss the current
limitations of these approaches. In a second part, we

develop a new functional alignment method, based
on optimal transport—a mathematical theory inter-
ested in matching probability distributions while tak-
ing their geometry into account. Functional align-
ment methods are local, which means that many lo-
cal alignments need to be aggregated to compose
whole-brain alignments. Moreover, these methods de-
rive pairwise matching and call for a “functional tem-
plate”, a common functional representation to which
all subjects of a study can be aligned. To overcome
limitations of existing solutions, we additionally intro-
duce a new aggregation scheme as well as a principled
template design procedure. In a third part, we turn
to empirical validation of alignment performance. In-
deed, these methods are seldom used in applied stud-
ies, and it is unclear to what extent they can address
functional variability in typical cognitive studies. We
investigate their performance to improve generaliza-
tion of predictive models to new subjects. In this
inter-subject decoding set-up, spanning four different
datasets, we show that alignment methods hold real
potential to recover an important share of prediction
accuracy lost due to inter-subject variability.
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