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Abstract

In this thesis we couple the projected augmented wave formulation of den-

sity functional theory with the Boltzmann transport equation for phonons

to study the thermal transport in semiconductors. In particular, a recently

developed Green’s functions formalism is used to compute the phonon-

defect scattering rates through evaluation of the T -matrix and application

of the optical theorem. This methodology is explained and applied to

study extrinsic dopants in boron arsenide (BAs) and p-type half-Heusler

compounds (HHs).

BAs is a novel material with promising electronic and thermal manage-

ment applications in virtue of its high room-temperature thermal conduc-

tivity (κ), while p-type HHs have induced a large interest in the scientific

community in the recent years in virtue of their promising thermoelectric

applications in medium temperature range.

In the case of boron arsenide we study a set of stable impurities that possess

a dual nature of acceptors and donors, depending on which atom they sub-

stitute, and we assess how neutral and ionised dopants differently scatter

phonons and reduce the thermal conductivity. We also extend our for-

mulation to account for effects induced by the thermodynamics of defect

formation and we evaluate how κ is reduced by a mixing of charged and

neutral acceptors and donors.

In the case of half-Heuslers we study the role of the complete perturba-

tion induced by substitutional defects on the lattice with respect to simpler

models, andwe give an explanation of the numerical results in term of pris-

tine compound properties, namely electron and phonon projected density

of states. Finally, we find a simple analytical model that fit the ab initio
conductivity curves with few percent of errors.
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Résumé

Dans cette thèse, nous couplons la formulation "projected augmentedwave"

de la théorie fonctionnelle de densité avec l’équation de transport de Boltz-

mann pour les phonons pour étudier le transport thermique dans les semi-

conducteurs. En particulier, un formalisme basé sur les fonctions de Green

récemment développé est utilisé pour calculer les taux de diffusion des

phonons par les défauts par l’évaluation de la matrice T et l’application

du théorème optique. Cette méthodologie est expliquée et appliquée afin

d’étudier les dopants extrinsèques dans l’arséniure de bore (BAs) et les

composés demi-Heusler de type p (HHs).

BAs est un nouveau matériau avec des applications de gestion électronique

et thermique prometteuses en raison de sa conductivité thermique (κ) à

température ambiante élevée, tandis que les HHs de type p ont suscité un

grand intérêt dans la communauté scientifique ces dernières années pour

à leurs applications thermoélectriques prometteuses dans une plage de

températures moyennes (entre 500 and 800
◦
C).

Dans le cas de l’arséniure de bore, nous étudions un ensemble d’impuretés

stables qui possèdent une double nature d’accepteurs et de donneurs, selon

l’atome qu’elles remplacent, et nous évaluons comment les dopants neutres

et ionisés dispersent différemment les phonons et réduisent la conductivité

thermique. Nous étendons également notre formulation pour tenir compte

des effets induits par la thermodynamique de la formation des défauts et

nous évaluons comment κ est réduit par un mélange d’accepteurs et de

donneurs chargés et neutres.

Dans le cas des demi-Heuslers, nous étudions le rôle de la perturbation

complète induite par des défauts de substitution sur le réseau par rapport

à des modèles plus simples, et nous donnons une explication des résultats

numériques á partir des propriétés du composé pur, à savoir les densités

d’états électroniques et phononiques projetées sur les différentes orbitales

atomiques. Enfin, nous proposons un modèle analytique simple qui cor-

respond aux courbes de conductivité ab initio avec un faible pourcentage

d’erreur.
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1

Introduction

Twas brillig, and the slithy

toves Did gyre and gimble in

the wabe; All mimsy were the

borogoves, And the mome

raths outgrabe.

Lewis Carroll

All over the last decades there has been a steady trend overminiaturisation of electronic

components with the aim of increasing the number of transistors per unit surface and

to achieve better device performances. This trend is summarised by the Moore’s law,

which predicts a yearly doubling of the number of transistors that can be cast in a

surface. This has proven to be remarkably accurate in the last fifty years. However,

miniaturisation comes at a price. As an electric current flows through a (microscopic)

device, it also generates heat due to the scattering between electrons and the lattice.

This heat can hamper the current and even damage the component itself if it is not

rapidly dissipated. Thus, the search for materials capable of achieving the latter

task has become particularly vivid in the last few years. Heat dissipation has been

recognised as one of the major hurdles in trying to keep up with the maintenance of

the Moore’s law in the future. Furthermore, along with the quest for green sources

of energy, there has been a search for materials that allow for the efficient conversion

of dissipated heat into electricity, with the goal of improving the energy efficiency of

devices.
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1. Introduction

The transport of heat in semiconductors poses a challenge to many fields, such as the

improvement of LEDdevices, development of batteries andmicro and nanoelectronics.

Dopingplays apivotal role as itmust be tuned to achieve requireddevice performances.

While the thermal properties of pristine materials have been widely studied in the last

century with great success, only in recent years has computational power permitted

careful calculations of defect properties with an ab initio level of accuracy. It is clear

that a deeper understanding of the interplay between defect thermodynamics, crystal

growth and transport is needed not just for the technological applications but also in

the search for novel materials that could outperform currently used semiconductors.

A thorough understanding of the internal mechanisms behind thermal transport has

proven to be of high relevance in order to drive society towards a greener future and

better performances of electronic devices.

The objective of this thesis is to model how extrinsic dopants affect the thermal con-

ductivity of semiconductors from first principles from a coupled density functional

theory - Boltzmann transport equation perspective. The reasons behind this choice en-

sue from a quest of both accuracy of the calculations - something that can be achieved

only if the inner quantum mechanical nature of crystals is taken into account - while

at the same time testing and exploring methods that can prove useful to speed up the

search for better performingmaterials for technological applications. A first modelling

bottleneck is the determination of the set of impurities that can be added into a pristine

crystal. In this case, first principles calculations help to identify specific kind of dopants

and concentrations at a given temperature. Then the scattering between heat carrier

(only phonons in the present work) and impurities has to be evaluated for different

concentrations and temperatures. The thermal conductivity, labelled as κ , is the final

descriptor for the evaluation of the thermal performances of a material and how they

are influenced by defects.

The thesis is organised in the following way: chapter 2 gives a survey of density

functional theory and lattice dynamics as well, introducing the concept of phonons as

main heat carriers in non-degenerate semiconductors and insulators and digging out

the main features of defect thermodynamics. Chapter 3 presents the theory behind

2



thermal transport in crystalline solids in details, deriving expressions for the thermal

conductivity within the linear response and Boltzmann equation formalism. We will

study the main mechanisms that affect phonons with particular emphasis on point

defects as scattering centers. Chapters 4 and 5 present a survey on the recent research

about the thermal properties of boron arsenide along with the results obtained during

the development of this thesis. Finally, chapters 6 and 7 will show, respectively, an

introduction and results for a set of half-Heusler ternary compounds with promising

thermoelectric properties. Chapter 8 will highlights the conclusions for this work.
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First principles phonon theory

2.1 Symmetries in crystals

2.1.1 Basic lattice properties

A 3D crystal is described by an infinite set of points in space, the so called "crystal

lattice". The position of these points can be reconstructed by the discrete span of three

basis vector. Given the basis, each point of the lattice can be uniquely identified by

a linear combination of these vectors and the application of the translation symmetry

over a discrete group manifold. The lattice vectors, here defined as ~a1, ~a2, ~a3, define a

parallelepiped containing a single point of the lattice, and thus identifiable as primitive

unit cell: thence, any point defined by

~Vn1,n2,n3 = n1~a1 +n2~a2 +n3~a3 ≡~VN , (2.1)

with ni integers belongs to the crystal, which can be clearly presented as the repetition

in space of the primitive cell. Let’s consider now a generic L2-integrable function, f (~r),

that possess the same symmetry of the lattice and let’s write it as Fourier series:

f (~r) = ∑
k

fkei~Qk·~r. (2.2)
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2.1. Symmetries in crystals

It is straightforward to notice that, for the function to fulfill the equality f (~r) = f (~r+~VN),

a condition on the
~Qk has to be imposed, specifically

~Qk ·~VN = 2πN (2.3)

with N integer. The
~Qk vectors that satisfy such condition possess the same periodicity

of the original lattice and are defined in Fourier space. They form what is called

"reciprocal lattice". Whereby in reciprocal space it is possible to define a transformed

function that is invariant under translations and periodic.

We can use eq. 2.3 to construct the reciprocal lattice in a similar fashion as for the direct

one. Given the direct lattice unit-cell volume, V =~a1 · (~a2∧~a3), to satisfy eq. 2.3 we can

define

~bi ≡
2π

V
~a j∧~ak. (2.4)

Thus, in the Fourier space the three vectors
~b1, ~b2 and

~b3 define a point of the recip-

rocal lattice and a unit cell in Reciprocal space, the latter being conventionally named

"Brillouin zone" (BZ); as in the direct lattice, a span of the basis vector with integer

coefficients allows to reach every point of the transformed lattice. Having functions

periodic in reciprocal space is clearly helpful for the calculations, as it permits to focus

on the BZ only, as for the other regions they can be reached by translations.

As for the unit cell types, there are several ways the lattice vector can orient and thus

several possible geometries. As far we are concerned in this thesis, we are going

to study zincblende materials, such that the three lattice vectors are taken equal in

modulus and forming an orthogonal triad and such that the basis is constituted by two

atoms in the unit cell. A choice of the lattice vector for this structure in the monatomic

case is as follows:

~a1 = (−1,0,1)
a
2
, (2.5)
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2. First principles phonon theory

~a2 = (0,1,1)
a
2
, (2.6)

~a3 = (−1,1,0)
a
2
, (2.7)

a being the lattice constant of the material under consideration. By mean of eq. 2.4 the

basis vector in reciprocal space are

~b1 = (−1,−1,1)
2π

a
, (2.8)

~b2 = (1,1,1)
2π

a
, (2.9)

~b3 = (−1,1,−1)
2π

a
, (2.10)

which correspond to a body-centered cubic lattice. It is also customary to identify the

center of the Brillouin zone (0,0,0) as Γ - point.

2.1.2 Bloch’s theorem, electron bands and energy gap

Let’s consider a crystal (lattice vectors~a1,~a2,~a3) in a periodic potential V, such that:

V (~x0)≡V (~x0 +~R), (2.11)

with ~R≡ nx~a1+ny~a2+nz~a3≡~n ·~a, and nx,ny,nz integers. Wewill shownow that thewave-

function in a material where the translation symmetry holds must have the following

form:

ψ(~r) = ei~k~ru(~r), (2.12)
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2.1. Symmetries in crystals

where u(~r) = u(~r+~R) has the same periodicity of the lattice and the wave-vector
~k is

generated by the reciprocal basis. This is the Bloch’s theorem.

It is clear that theHamiltonian is invariantunder the translationoperator T̂~a (~x−→~x+~R):

[T̂ , Ĥ] = 0. (2.13)

Thus, either operator can be diagonalised with the same basis. We can also note that

T~aψ(~r) = t~aψ(~r) = ψ(~r+~R), (2.14)

T~bT~aψ(~r) = t~bt~aψ(~r) = ψ(~r+~a+~b) = T
~a+~bψ(~r) = t

~a+~bψ(~r), (2.15)

meaning that t~a = eik~n·~a
, with

~k real vector generated by the reciprocal basis of the

crystal. If we define now a function u(~r) = e−i~k~rψ(~r), we can easily see that it must

have the periodicity of the lattice and this completes our proof. Let’s consider now a

periodic single particle Hamiltonian:

− h̄2
∇2

2m
ψ +V ψ = Eψ. (2.16)

Because of the translation symmetry and the Bloch’s theorem, the potential can be

re-written as V (~r) = ∑~GV~Gei~G·~r
and the wavefunction as ψ(~r) = ∑~G ψ~Gei(~G+~k)·~r

, with
~G

belonging to the reciprocal lattice, meaning that

(
h̄2k2

2m
−E

)
ψ~G +∑

~G

V~Gψ~G−~k = 0, (2.17)

where the approximation ∇2u(~r)� k2u(~r) has been used. Even considering the V → 0

limit, the solution of the previous equation cannot be the free-electron model one,

namely ∼ ei~k·~r
, as the latter and clearly neglects the periodicity of the lattice and the
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2. First principles phonon theory

degeneracy at the edges of the BZ. Therefore, we shall include a certain number of

Fourier coefficients - let’s say n - which characterise the state. This n - index is the

"band index", and labels the Bloch’ state along with
~k. In presence of a weak but non-

zero periodic potential∼V0 cos
(
~G ·~r

)
, first order perturbation theory straightforwardly

shows how the degeneracy is removed and an energy-gap is created, that is E+,− =

h̄2k2/2m±V0. Considering the spin degeneracy, for an N - electron system (in the BZ)

we can accommodate them from the lowest energy state to the highest according to

the Pauli’s exclusion principle. These considerations are of paramount importance to

predict whether a material has insulating or metallic properties. In absence of strong

electronic correlations, the crystal possesses metallic properties if the bandwith higher

energy is only partially unoccupied. If that band is fully occupied, then the system is

an insulator or a semiconductor, and energies of the order of Egap are required to excite

its electrons.

2.2 Density functional theory

The accurate modeling of the ground state properties of materials requires the use of

the principles of quantum mechanics (QM) and the solution of the time-independent

Schrödinger equation

−∑
i

h̄2

2mi
∇

2
ψ +V ψ = Eψ. (2.18)

However, due to the exponential-like scaling of the Hilbert space for the ground state

search, finding the exact QM solution is practically unfeasible even for systems with

relatively few atoms. This has produced a plethora of methods to cope with the

numerical hurdles and approximately but realistically find the quantum properties

of a system in its ground state. We can shortly mention the Hartree-Fock method,

tight-binding and variational approaches or Monte Carlo based techniques. It can be

proven, however, that we don’t need the exact ground state wave-function ψ to model

the ground state properties of a material: we just need the single particle density

function ρ . This is the basis for what is called density functional theory (DFT): we will
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2.2. Density functional theory

now highlight the basic theorems behind DFT that make it, at least in principle, an

exact ground state theory. We can consider a system defined by

Ĥ = Ĥ0 +V̂ext , (2.19)

where Ĥ0 includes the contribution fromkinetic energies and inter-particle interactions,

while V̂ext represents an external potential. By considering Ĥ0 fixed, it is clear that the

ground state wave-function and thus all the system properties, single particle density

included, are a functional of the external potential. At the core of DFT lies the fact that

there is a 1:1 correspondence between the external potential (by a constant factor) and

ρ . To prove it, we will follow the standard argument of Kohn and Hohenberg [15].

Let us assume we have two external potentials, V̂1 and V̂2 s.t. their difference is not a

constant but s.t. they lead to the same single particle density. We can now make the

following associations:

• V̂i −→ {ψi,Ei};

• V̂1 −→ ρ ←− V̂2;

That is, we assume the two potentials, i.e. two different ground states, may produce

the same electronic density. For each case we can use the variational theorem:

E1 < 〈ψ2| Ĥ1 |ψ2〉= E2 + 〈ψ2|V̂1−V̂2 |ψ2〉= E2 +
∫

ρ2(~r)[V1(~r)−V2(~r)]d3r, (2.20)

E2 < 〈ψ1| Ĥ2 |ψ1〉= E1−〈ψ1|V̂1−V̂2 |ψ1〉= E1−
∫

ρ1(~r)[V1(~r)−V2(~r)]d3r. (2.21)

If we now take ρ1 = ρ2, we obtain E1 +E2 < E1 +E2 which completes our proof. Up to

a constant factor the external potential is consequently fully determined by the single

particle density and therefore the knowledge of ρ can in principle be used to infer all
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2. First principles phonon theory

the ground state properties of the system, with the true ground state density function

being the one that minimises the density functional energy. We can split the total

energy of the system as a sum of kinetic and potential terms:

E[ρ] = T [ρ]+EH [ρ]+Exc[ρ]+
∫

vext(~r)ρ(~r)d3r ≡ F [ρ]+
∫

vext(~r)ρ(~r)d3r, (2.22)

where the external potential contribution is separated from the internal part, dubbed

F , which constitutes a universal functional. The elements T , EH and Exc are the kinetic,

Hartree and exchange-correlation (XC) energies respectively. A standard expression is

known for the Hartree term, of Coulombic origin:

vH(~r, [ρ]) =
∫

d3r′
ρ(~r′)

|~r−~r′|
≡ δEH [ρ]

δρ
. (2.23)

However, an exact expression for the kinetic and exchange-correlation functionals T [ρ]

and Exc[ρ] respect to the density is unknown. Within the called orbital-free density

functional approach [16] explicit expressions of T with respect to the electronic density

can be derived. This approach resembles closely the Thomas-Fermi model [17], a

density-based theory for interacting many-body electron systems that predates DFT.

We will explore in more details the strategy devised by Kohn and Sham [18]. To

estimate T consists into splitting ρ into single particle contributions {φα}1..N , with α

shorthand for
~k,n (wave-vector and band index, respectively); this way and considering

the α-state occupancy fα we can define density and kinetic operator as:

ρ(~r) = ∑
α

fα |φα(~r)|2 (2.24)

and

T [ρ] =− h̄2

2m ∑
α

fα

∫
φ
∗
α(~r)∇

2
φα(~r)d3r, (2.25)
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2.2. Density functional theory

where fα is either 1 or 0 depending on whether the α state is occupied or not. Finally

by minimising the energy functional we get, for each of the N degrees of freedom in

our system, the so called Kohn-Sham (KS) equations:

− h̄2

2m
φα + v[ρ]φα = εαφα (2.26)

∀α ∈ {1...N}where

v[ρ] = vext + vH(~r, [ρ])+ vxc(~r, [ρ]). (2.27)

Eq. 2.26 are non linear with respect to the Kohn-Sham eigenvectors and they have to

be solved self-consistently. The numerical procedure generally involves the expansion

of the KS eigenstates with respect to a known basis. The choice of this basis includes

plane waves, although it is possible to use more localised states like Gaussians, Slater

or hydrogen atom basis. Due to the requirement of orthogonality between different

wavefunctions, the behaviour of the states close to the nuclei is usually characterised

by strong oscillations, which require a considerable number of basis set coefficients

in order to be properly described. Often to speed up the calculations it is preferable

to continuously smoothen the description of the states near the core (within a certain

cutoff) while retaining their true behaviour out of the core region. Moreover, since

inner states are mostly localised, they do not play a relevant role in typical solid

state and chemical phenomena and therefore can be treated within a "frozen core"

approximation, which means they can be computed for isolated atoms and transferred

to crystals and molecules. This is the basic philosophy behind pseudopotential theory

(PT) [19], with the internal electrons absorbed into the ionic potential so that it is

possible to construct smooth valence (pseudo)wavefunctions.

We also mention the projector augmented wave method (PAW), conceptually similar

to PT and in the context of plane waves [20]. Since this is going to be the approach

used in our calculations, it is worth giving it a short introduction. PAW introduces a

linear operator τ̂ such that:
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2. First principles phonon theory

|φα〉 ≡ τ̂
∣∣φ̃α

〉
, (2.28)

where |φα〉 is the all-electron one-particle KS wavefunction and

∣∣φ̃α

〉
is a pseudo-state

that has a smoother behaviour near the atom nuclei. The original and the pseudo

wavefunctions differ only in a region close to the atomic nucleus and this prompts to

define:

τ̂ = 1̂+∑
R

τ̂R, (2.29)

with τ̂R vanishing out of a sphere near the nuclei and defined by the radius R. If we

expand

∣∣φ̃α

〉
as a linear combination with respect to a pseudo-basis

∣∣θ̃i
〉
we can write:

τ̂ = 1̂+∑
i
(|θi〉−

∣∣θ̃i
〉
)〈pi| , (2.30)

where |θi〉 ≡ τ̂
∣∣θ̃i
〉
are the all electron wavefunctions for an isolated atom and |pi〉

are "projector functions" orthonormal to the

∣∣θ̃i
〉
pseudostates. Then operators can

be written in terms of this representation that preserve the all-electron eigenvalue

spectrum [21], and again, the frozen core approximation is usually employed. It should

benoted that the computational cost of solving theKSequations for a systemofN∼ 1023
,

typical for a solid, is still obviously too high. Nevertheless, in a crystalline material

the periodicity comes in help: we can enormously reduce the number of degrees of

freedom by considering only those belonging to the first Brillouin zone. We are left

with the problem of evaluating Exc. Although DFT is in principle an exact theory, the

reliability of its prediction is intertwined with the accuracy of the chosen exchange-

correlation functional. This term has been introduced as an improvement of the single

particle approximation - previously used to define the Hartree and kinetic part of

the KS equations - which neglects the effect of particle exchange and the many-body

correlations present in the real systems. An electronic propriety that, for example, is

subtly sensitive to the choice of the XC functional is the band gap, whose determination
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2.2. Density functional theory

is pivotal for the understanding of several physical properties - like the dielectric

functions, refraction indices and doping to mention a few - where the physics is largely

dominated by the electronic behaviour around the Fermi surface. Functionals that

make use of the LDA [22] or GGA [23] approximations often fail to properly represent

the many-body electronic correlations inside a material, while other methodologies

like hybrid functionals [24], the random phase approximation [25, 26, 27, 28] and other

Green’s function based techniques like the Hedin equations and GW [29, 30] perform

better while still preserving the single particle nature of the KS equations, although

with a higher numerical cost.

Finally, the stability of the Fermi surface is of paramount importance to get the iterative

solution of the Kohn-Sham equations properly converged. This turns to be of extreme

importance when studying metals, where the close proximity of the occupied bands

respect to the unoccupied ones prompts the use of fractional "smeared" occupations

for the KS - states even at zero temperature [31, 32, 33].

2.2.1 Born-Oppenheimer approximation and ion dynamics

In a solid the degrees of freedom are typically electrons and nuclei. Since the latter

are much heavier than the former, they usually also present a much slower dynamics.

When this is the case, the complexity of the calculations can be reduced by separating

the electronic from the nuclear contribution. Once we fix the atomic coordinates, we

can solve the electronic problem alone, and use the electronic energy as a field for the

ion dynamics. Thus, we define a total wave-function:

Ψ̃Ne(~R j,~ri) =
M

∑
q=1

Ψq(~R j)χq(~R j,~ri), (2.31)

where {~R j} j and {~ri}i represent ionic and electronic coordinates, respectively. The

electronic part is found by solving

Ĥeχq(~R j,~ri) = Eq(~Ri)χq(~R j,~ri) (2.32)
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2. First principles phonon theory

and finally, the electronic energy surface Eq (typically the ground state) is inserted into

the nuclei Hamiltonian:

[ĤN(~R j)+ Êq(~Ri)]Ψq(~R j) = EtotΨq(~R j). (2.33)

The nuclear Hamiltonian is generally not diagonal with respect to the electronic states,

mainly because of the ~R j-dependence of the latter (vibrionic couplings): being able

to safely neglect the off-diagonal elements is what is called Born-Oppenheimer (BO)

approximation [34]. If the ion dynamics is slow, the electronic wavefunctions evolve

adiabatically in the nuclei potentials, so that the |~∇~Ri
χq|-terms are small. Since the

off-diagonal elements of the nuclear Hamiltonian 〈χs| ĤN
∣∣χq
〉
are proportional to (Eq−

Es)
−1
, the separation (non-crossing) between different energy surfaces Eq and Es is

a necessary condition for the BO approximation to hold. The Born-Oppenheimer

evolution of a system can be studied by solving eq. 2.32 first in the field of the ions and

then updating the atomic positions with eq. 2.33. Then, the electronic calculations can

be repeated with the updated nuclei positions.

Considering that the relevant thermodynamic, mechanical, and transport properties

of solids are mostly insensitive to nuclear quantum mechanical and vibrionic effects,

the computational burden can be further lowered by assuming classical motion for the

atoms in the electronic potential energy surface. In the context of DFT, this is translated

into considering the total energy in a crystal as:

Etot = ENN +TN +Eee +Te +UNe, (2.34)

where ENN (Eee) is the nucleus-nucleus (electron-electron) interaction, TN (Te) is the

nuclei (electrons) kinetic energy and UNe represents the ion-electron potential. The

total density of the system at the DFT level can be written as:
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2.2. Density functional theory

ρtot(~R,~r) = ρe(~R,~r)+ρN(~R,~r) = ρe(~R,~r)+
Nion

∑
i

Ziδ (~R−~Ri). (2.35)

The KS equations can be solved for the electronic part only andwithUNe as the external

potential. Once the solution of the electronic problem is known, the density itself can

be used to determine the forces on which the nuclei dynamics depend. To get the QM

force due to the atom-j displacement, the Hellman-Feynman theorem [35] is employed:

~Fj =−〈ψ| ~∇ jĤ |ψ〉− ~∇ jENN =−
∫

ρ(~r)
∂vext

∂~R j
d3r− ~∇ jENN , (2.36)

and the ionpositions canbeupdated consequentlywithNewton’s second law: ~R j(t)−→
~R j(t +dt) = ~R j(t)+~Fj(t)dt. Then the KS equations must be solved for the new atomic

positions and so on, to get the full classical dynamics. As the classical dynamics from

first principles is generally a primary tool to extract the thermodynamical properties

of a system assuming the ergodic hypothesis, it can be necessary to speed it up to get

a thorough sampling of the phase space. A method developed for this purpose is the

Car-Parrinellomolecular dynamics [36], which assumes an adiabatic coupling between

electronic andatomicdegrees of freedom. Therefore, a classical Lagrangian candefined

for the electrons that follow adiabatically the ionic motion. Another frequently used

approach is themetadynamics [37], which in short introduces a fictitious potential that

is used to fill deep minima of the free energy so to explore a larger region of phase

space than with the true dynamics at the same simulation length conditions.

In this thesis we are going to study systems where the BO approximation holds.

However, neglecting the vibrionic coupling - i.e. the variation of the KS wavefunctions

with respect to changes in the ion positions - is not advisable in those systems where

there is crossing betweendifferent potential energy surfaces or, for instance, in presence

of Kohn anomalies [38]. Therefore several theoretical tools have been designed to

"diabatically" couple different energy surfaces. Wemention thediabatic transformation

of the ion Hamiltonian developed by Smith [39] and, in the semiclassical dynamics
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2. First principles phonon theory

context, the surface hopping method [40, 41] among the tools developed to study what

nowadays is a very active field of research.

2.3 Lattice dynamics

2.3.1 Phonons

The total potential energyV for an N-atoms crystal withM atoms in the unit cell can be

expanded in a Taylor series. Close to the minimum energy configuration the leading

order of V is quadratic in the ion displacements:

V ({ui}i) =V0 +
1
2 ∑

i, j
uiΦi, ju j, (2.37)

where the index i is a shorthand for (~R,τ,α), that is unit cell point, label for the position

of the atom inside the unit cell (~rτ ) and cartesian direction, respectively. The term ui

represents the displacement of the i
th
degree of freedom w.r.t. the minimum energy

position and Φi, j are the second derivatives of the energy w.r.t. the displacements or

interatomic force constants (IFCs) evaluated in the equilibrium configuration. Lastly,

the V0 term represents the energy for the non-displaced configuration; it is irrelevant

for the following calculations and it can be taken to be zero. To solve this system

classically, we take the equations of motions:

miüi =−∑
j

Φi, ju j. (2.38)

To proceed further, we will resort to normal mode analysis. Let’s assume that we can

write ui(t) = Aτ,αeiωt
: in this way, eq. 2.38 can be rewritten as

mτω
2Aτα = ∑

R′,τ ′,β
Φ

R′,τ ′,β
R,τ,α Aτ ′,β , (2.39)
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2.3. Lattice dynamics

where we have resorted to the full index notation. We recognise also that the atomic

positions can bewritten as ~Rτ ≡ ~R+~rτ ≡ ~R(τ). Let’s define Aτ,α(~q) = ei~q·~Rτ ετ,α(~q), where

~q belongs to the first Brillouin zone, and sτ,α(~q)≡ ετ,α(~q)
√

mτ . This rewriting leads to

ω
2sτ,α(~q) = ∑

R′,τ ′,β

1
√

mτmτ ′
Φ

R′,τ ′,β
R,τ,α ei~q·[~R′(τ ′)−~R(τ)]sτ ′,β (~q). (2.40)

Now we can exploit the invariance under translation of the IFCs to set ~R ≡~0 - which

fixes the unit cell - and thus define the "dynamical matrix" of the system:

Dτ ′β
τα (~q)≡ 1

√
mτmτ ′

∑
R′

Φ
R′,τ ′,β
0,τ,α ei~q·[~R′(τ ′)−~0(τ)], (2.41)

which leads to

∑
τ ′,β

Dτ ′β
τα (~q)sτ ′,β (~q) = ω

2sτ,α(~q). (2.42)

Thus, the original N-atoms (3N degrees of freedom) problem has been mapped into a

systemwith only 3M degrees of freedom as result of the translation symmetry: solving

it means solving an eigenvalue equation in the form of eq. 2.42, to get a spectrum of

the form {ω2
b,~q,~sb,~q}~q,b where b denotes the branch index stemming from the M-atomic

character of the unit cell. We can write the displacements as:

~uR(τ)(t) =
1√

Nmτ
∑
~q,b

ei(~q·~R(τ)−ω~q,bt)~s~q,bQb(~q), (2.43)

with the eigenstates assumed to be normalised and Qb(~q) being the amplitude of the

oscillations. Therefore we can have a complete description of the dynamics in terms

of collective atomic vibrations. We can also understand the appearance of three soft

modes (ωb,~q→ 0) in the~q→ 0 limit as result of the invariance of the IFCswith respect to

global translations in space. To get further understanding we restrict ourselves to the

simple case of a 1D diatomic chain of atoms of masses m1 and m2 and lattice constant
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2. First principles phonon theory

a in presence of nearest neighbours interactions only, labelled as C. The two branches

of the system have the following expression:

ω
2
~q,± =

C
m1m2

[
m1 +m2±

√
m2

1 +m2
2 +2m1m2 cos(qa)

]
. (2.44)

In the long-wavelength limit the − (+) solution is proportional to q (constant), i.e. it

has constant (zero) group velocity. The − branch corresponds to the acoustic modes,

as they are associated to the propagation of sound in a crystal, with the unit cell atoms

moving in phase. The + case to the optical modes, the name coming from the two

atoms oscillating out-of phase in the small~q limit. This may originate an electric dipole

if the atoms possess opposite charges, thence generating an electromagnetic field. In

real materials the EM frequency associated with optical phonons generally belongs to

the infrared spectrum.

So far we have analysed the problem only from a classical point of view, but we will

see now that the quantum extension is easy to derive in the normal modes framework.

Since we can expand the atomic displacements and momenta with respect to normal

modes like in eq. 2.44, it be seen that in the phonon representation the kinetic and

quadratic potential parts of the energy are equal and can be cast as:

K =V =
1
2 ∑

b,~q
ω

2
~q,b|Qb(~q)|2. (2.45)

Therefore the total energy is:

E = ∑
b,~q

ω
2
~q,b|Qb(~q)|2. (2.46)

It can be noticed how we have reduced our original problem to a set of independent

harmonic oscillators. We can now think of the crystal as a "perfect gas" made of

collective oscillating normal modes. Let’s apply the canonical quantization, namely:
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2.3. Lattice dynamics

ui, p j −→ ûi, p̂ j (2.47)

and

{ui, p j}P.B. = δi, j −→
[ûi, p̂ j]

ih̄
= δi, j. (2.48)

Given eq. 2.44 it is clear to satisfy theHeisenberguncertainty relation thenowquantized

amplitude Q̂b(~q)and its adjoint Q̂†
b(~q)must in turn satisfy [Q̂b(~q), Q̂

†
b(~q)]= h̄δ

~q,~q′δb,b′/ω~q,b.

If we define the operators â~q,b and â†
~q,b so that [âb(~q), â

†
b(~q)] = δ

~q,~q′δb,b′ , we have:

â~q,b =

√
h̄

ω~q,b
Q̂~q,b (2.49)

and

â†
~q,b =

√
h̄

ω~q,b
Q̂†
~q,b. (2.50)

We can exploit the properties of the commutator to rewrite the quantized Hamiltonian

as

Ĥ = ∑
b~q

h̄ωb~q

(
â†

b,~qâb,~q +
1
2

)
, (2.51)

which possesses the form of a sum over different quantized harmonic oscillators at

different frequencies. The hereby defined â†
b,~q and âb,~q are the bosonic creation and

annihilation operators. We also identify â†
b,~qâb,~q as the (~q,b) - number operator n̂b,~q

which is clearly a constant of motion.

So the quantum behaviour of the system can be defined in terms of creation and

destruction of bosons, here named phonons, with respect to a vacuum state |0〉. That

is, we identify with |n〉~q,b a (Fock) state that labels the presence of n bosons in the
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2. First principles phonon theory

(~q,b) - mode each one with with energy h̄ωb,~q. Since they depend on the wavevector

~q their existence is obviously related to existence of a Brillouin zone, hence they are

also dubbed "quasiparticles". Phonons are themodes of the displacement field and the

quanta of atomic vibrations. We can write the second-quantized atomic displacements

as:

û~Ri,τ,α
(t) =

√
h̄

2Nu.c.Mτ
∑
b,~q

sb,α(~q)√
ωb,~q

ei~q~Ri
[
e−iωb,~qt âb,~q + eiωb,~qt â†

b,−~q
]
, (2.52)

where Nu.c. is the number of unit cells. Therefore, the ground state at T = 0 K is

associated with zero phonons in virtue of the third principle of thermodynamics. We

can also understand that every physical phenomenon that involves lattice vibrations is

associatedwith phonons. Thiswill be useful whenwe introduce the physics of thermal

transport in non metallic crystals. We can also observe that any non-harmonic term

in the original DFT Energy expression that has been previously omitted, can in fact

play the role of a perturbation in the system. This perturbation is accountable for the

thermalisation of the system, since it makes the number operators n̂b,~q a non conserved

quantity, and of heat transport as well. Finally, the non-conservation of the phonons

number beyond the harmonic theory makes the canonical ensemble an ideal choice to

study the finite temperature thermodynamics.

So far we have studied the harmonic system at zero temperature. It is possible to

describe the phonons at finite temperature in the canonical ensemble formalism. Let

the partition function be

Z ≡ Tr[e−β Ĥ ] = ∏
λ

[1− e−β h̄ωλ ]−1
(2.53)

with β ≡ (kBT )−1
and λ as shorthand for (b,~q). From the partition function we can

derive the energy functionals and all the thermodynamical properties. The free energy

reads
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2.3. Lattice dynamics

F(V,T ) =−kBT ln(Z) =−kBT ∑
λ

ln[1− e−β h̄ωλ ]−1 = kBT
∫

dωD(ω)ln[1− e−β h̄ω ], (2.54)

where the introduced D(ω) is the phonon density of states (phDOS), that is the number

of states within ε and ε +δε divided byV δε . The phDOS is a regular-behaved function

except for the Van-Hove singularities, i.e. those points in the BZ where the dispersion

has gradient equal to zero [42]. The entropy, heat capacity at constant volume and

temperaturedependentmodeoccupationnumbers for thephonongas are, respectively:

S =−
(

∂F
∂T

)
V
=−kB

∫
dωD(ω)

{
ln[1− e−β h̄ω ]− β h̄ω

eβ h̄ω −1

}
, (2.55)

CV = T
(

∂S
∂T

)
V
= kB

∫
dωD(ω)(β h̄ω)2 eβ h̄ω

(eβ h̄ω −1)2 (2.56)

and

n0
λ
= Tr[e−β Ĥ n̂λ ] =

1
eβ h̄ωλ −1

. (2.57)

We canobserve that n0
λ
→ 0 forT→ 0 and n0

λ
→ β−1

forT→∞. Although themeanvalue

of the displacement field in eq. 2.52 is clearly zero at every temperature with respect to

the phonon Fock basis, we can compute the thermal mean square displacement as

〈ûi,τ,α(t)ûi,τ,α(t)†〉= h̄
2Nu.c.Mτ

∑
λ

|sb,α(~q)|2

ωb,~q
(2n0

λ
+1). (2.58)

In case we assume linear phonon dispersion - which is a reasonable choice in the long

wavelength limit for acoustic modes - the previous expressions turn to be solvable in

closed form. The heat capacity specifically recovers the Dulong and Petit behaviour

CV ∼ 3NkB at high temperature and shows a trend ∼ (T/TD)
3
close to T = 0 K (Debye

model), where TD is the Debye temperature defined by kBTD = h̄ωD, the latter being the
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2. First principles phonon theory

Debye frequency which acts as an integration cutoff for the calculation of thermody-

namic quantities.

2.4 Inter-atomic force constants

A realistic study of crystals through harmonic lattice dynamics is obviously tangled

with a thorough evaluation of the IFCs introduced in eq. 2.37 and 2.38. Here we will

briefly review the main two methods currently employed to get the force constants

with ab initio accuracy, namely, the frozen-phonon (FP) method and density functional

perturbation theory (DFPT). We will also show some of the most recently developed

approaches to cope with either low-symmetry systems or in presence of large anhar-

monic effects that force us to go beyond the harmonic theory.

2.4.1 Real space method

In the FP approach [43, 44, 45, 46], the core objects that we aim to compute are the

DFT inter-atomic forces through Hellmann-Feynman theorem, previously introduced

in eq. 2.36. The calculation of these forces involves the electronic density only and not

its derivatives with respect to atomic displacements. This method is real-space based,

and it is, generally, highly sensitive to the system size. This means that large supercells

involving typically ≥ 100 atoms must be considered in order to obtain numerically

accurate results. The central idea of the method is to evaluate the force acting on

atom-i in the minimum non-displaced energy configuration (|~Feq.
i | ≤ ε with ε choosen

to be small) and for the structure with selected atomic displacements (~F
′
i ). Once these

forces are known, the IFCs can be evaluated numerically as

IFCs(i, j)
α,β ≈−

F
′
iβ −Feq.

iβ

∆ jα
≈−

F
′
iβ

∆ jα
, (2.59)

where ∆ jα is the displacement from equilibrium of atom-j along the cartesian direction

α . Once the IFCs are known, it is possible to evaluate the Dynamical Matrix at all ~q

and so the phonon properties. Crystal symmetries, where present, can be employed
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2.4. Inter-atomic force constants

in order to reduce the computational burden of the method, thence reducing the

number of displaced structures that we need to consider. Clearly, this method can be

easily extended to compute higher order Force Constants, at the price of increasing the

computational cost. If the forces can be considered as short-ranged, it is reasonable

to introduce some cutoff beyond which the IFCs are automatically set to zero, thereby

reducing the number of atomic displacements to be considered. A clear drawback of

this approach is the requirement of supercells larger in size than themaximumdistance

that allows interactions between atoms, which can be problematic in presence of long

range forces [47, 48, 49].

2.4.2 Perturbation theory

In the DFPT method [50, 51, 52, 53] we evaluate the dynamical matrix directly and

without passing from the Hellmann-Feynman forces. This can be done by evaluating

analytically the derivatives of the forces (see eq. 2.36) at the equilibrium low-energy

state

Φi, j = ~∇i 〈ψ| ~∇ jĤ |ψ〉+ ~∇i ~∇ jENN , (2.60)

with the electronic contribution given by

~∇i 〈ψ| ~∇ jĤ |ψ〉=
∫ [

ρ(~r)
∂ 2vext

∂~Ri∂~R j
+

∂ρ(~r)
∂~Ri

∂vext

∂~R j

]
d3r. (2.61)

We can see that the knowledge of the first-order variation in the density is required.

The latter can be considered as a product of the lattice displacement, to be considered

as a perturbation δv[δρ] of the Hamiltonian. Thus, if we rely on the first order time

independent perturbation theory, we get

[εα − Ĥ] |δφα〉= δv[ρ] |φα〉 , (2.62)
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2. First principles phonon theory

δφα(~r) = ∑
β 6=α

〈
φβ

∣∣δv[δρ] |φα〉
εα − εβ

φβ (~r) (2.63)

and

δρ(~r) = ∑
β 6=α

( fα − fβ )

〈
φβ

∣∣δv[δρ] |φα〉
εα − εβ

φ
∗
α(~r)φβ (~r), (2.64)

where φα , φβ are non-interacting Kohn-Sham states, fα , fβ are the single particle

occupation numbers previously defined in eq. 2.24 and α , β represent wave vector

and band index. Clearly eq. 2.64 must be solved self-consistently, starting from the

non-displaced ground state Kohn-Sham eigenvectors and eigenvalues, since the per-

turbation depends on δρ itself. Given a crystal, instead of considering single atom

displacements like in the FP method, we can make use of the periodicity of the

system and assume that all the atoms are displaced from equilibrium according to

uτ,α ≡ Rτ,α −R0
τ,α = Aτ,αei~q·~Ri,0 +A∗τ,αe−i~q·~Ri,0

.

So, by working in reciprocal space only we can obtain the dynamical matrix directly at

a given phonon wave-vector~q:

Dτ ′β
τα (~q) =

1√
MτMτ ′

δ
~q
τ,αδ

−~q
τ ′,β E, (2.65)

where δ
~q
τ,α ≡ ∂/∂Aτ,α and δ

~−q
τ,α ≡ ∂/∂A∗τ,α . This method has the advantage that we

can work directly with the unit cell, thus reducing the computational cost. However,

since we can only evaluate the dynamical matrix one wave-vector at the time, to get

the full phonon dispersion it is common to compute D on a grid, and then get the real

space IFCs through smooth Fourier interpolation. Finally we remind that the original

DFPT scheme has been developed for insulators, with integer occupancy factors. The

extension to the fractional fα , fβ to study metals was introduced in [54], within a plane

wave framework.
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2.4. Inter-atomic force constants

2.4.3 Stochastic and data-driven methods

Heretofore we have been focusing our attention exclusively on the second-order IFCs

in the case of periodic lattices. However, it is possible to use the aforementioned

methods also to evaluate higher order inter-atomic force constants and second-order

IFCs for systems where the translation symmetry is broken by disorder or impurities.

These calculations are pivotal if we need to go beyond lattice dynamics and consider

non-harmonic effects. In these cases the minimal required number of displacements is

much larger than for the Harmonic Theory and thus often numerically unfeasible for

both the frozen-phonon and DFPT methods: furthermore we need to resort to large

supercells, especiallywhilst having impurities, in order to avoid numerical artifacts due

to the periodic images of the defects under periodic boundary conditions. Therefore

some strategies have been adopted in the past few years to overcome these issues. We

will review some of them, specifically compressed sensing [55], neural network - based

approaches [56] and phonon renormalization techniques.

For those materials that present low symmetries, either because of defects or because

of the presence of a considerably high number of atoms in the unit cell, a way to

speed up the calculations could be the stochastic sampling of interatomic forces and

displacements, to be then fitted to a low-order polynomial. Expanding the force acting

on atom-i along the direction α gives

Fiα({uiα}1..N) =−∑
j,β

Φ
i j
αβ

u jβ −
1
2 ∑

j,β
∑
k,γ

Φ
i jk
αβγ

u jβ ukγ +O(u3), (2.66)

which is linear in the IFCs. We can recast the previous equation in a more compact

form [55]:

F ≡M(uiα)ã, (2.67)

where F comprises the set of interatomic forces, M(uiα) is the sensing matrix that
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2. First principles phonon theory

depends on the atomic displacements with constraints imposed by symmetry trans-

formations, and ã is a vector containing a set of independent parameters which are

related to the force constants by linear transformations. If we sample a supercell Nc

times and collect the forces { fm}m and corresponding displacements {um}m, m= 1, ..,Nc,

we can extract the IFCs by minimising the following ordinary least squares (OLS) loss

function:

L (Φ) = ∑
m=1..Nc

[ fm− (M(uiα)ã)m]
2. (2.68)

The OLS method solves an overdetermined systems that requires a number of forces

larger than the number of parameters. However the short range nature of the inter-

atomic interactions implies that most of the IFCs are zero. Indeed, we can recognise

that although the number of degrees of freedom in eq. 2.66 scales like O(N
n
) - with

N being the number of atomic sites and n the order for the truncation of the expan-

sion - the number of independent parameters of the model is much smaller because

of symmetries and constraints imposed by conservation laws. Furthermore, among

the independent parameters many of them are negligibly small if we consider the de-

cay of the interaction with distance and the order of the expansion. This fact can be

exploited as it makes possible to resort to compressed sensing techniques [57, 58, 6],

which would require a smaller set of linear equations to retain statistical accuracy and

therefore the sampling of less configurations with respect to the OLS method, thus

save computational resources.

Since the number of free parameters can be very large, usually eq. 2.66 is truncated

at the lowest orders and by imposing some distance cutoff. The approach devised by

Eriksson et al. [55] considers also the clustering of sites to represent the symmetries of

IFCs. Clusters are categorised based on the number of sites they include, so to have

singlets, doublets and n-body interactions. The IFCs expansion is therefore truncated

also at the cluster size level. If we assume that many or most of the IFCs are zero, we

can mitigate the overfitting problems by including l1- or l2- norms of the solution in

the loss functions:
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2.4. Inter-atomic force constants

L (Φ)−→L ′(Φ) = L (Φ)+α|Φ|+β ||Φ||2, (2.69)

where α = 0 corresponds to a Ridge regression (l1 norm) and β = 0 (l2 norm) to the

least absolute shrinkage and selection operator method (LASSO). Either method has

the purpose of sending many of the IFCs to zero during the minimisation of the loss

function, thus reinforcing the transferability of the result. The regularisation of the

OLS is required as the solution is sparse and often contains noise factors stemming,

from instance, from the cluster truncation. Cross validation techniques can assess the

validity of a solution. Several non-LASSO methods can be used to regularise the OLS,

like Bayesian ridge regression or recursive feature elimination to mention a few. This

approach allows in principle the construction of a "force constant potential" that, after

training, can predict the IFCs for several supercell structures.

2.4.4 Classical force fields and neural networks

A problem concerning quantum-based methods is the practical inability to study sys-

tems comprising more than a few hundreds of atoms in a reasonable time. This

problem is reflected into the calculation of the potential energy surface, which is a fun-

damental quantity to predict mechanical, thermal and thermodynamical properties

in materials. So it can be advisable to use classical force fields with carefully chosen

parameters instead of a QM based formulation. These have the obvious advantage to

be analytical functions of the atomic coordinates, hence making the full calculations

of the ion dynamics much faster. However, the determination of suitable functional

forms and correct parameters is hindered by the - often - complex energy landscape

of the system, which makes finding optimal force fields an arduous task, usually with

a poor level of transferability. Recent developments in the theory of neural networks

(NN) [56, 5] are paving the way for a change in that sense. A NN - layer takes this

general form:

y(~x;~wl;~θ) = ∑
i=1..M

qiσ(~wi ·~x+θi), (2.70)
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where σ is the neuron activation function, M is the number of neurons in the layer,

~x is the input vector and ~W and θ are the neuron weights and bias, respectively. As

a consequence of Cibenko’s theorem [59], with proper choices of the activation func-

tion a neural network can represent any function with compact support, given proper

values to the neurons’ weights: it this way, building a "good" classical force field just

requires data (atomic configurations and corresponding energies and forces) but not

careful choices of the functional form. Clearly being a data-driven method likewise

the aforementioned kernel ridge/LASSO, crystal symmetries whenever present have

to be reinforced in order to reduce the amount of data we have to feed the NNwith and

increase the accuracy. The procedure adopted by Behler and Parrinello (BP) consists

into mapping the atomic coordinates onto descriptors - also named "symmetry func-

tions" - that automatically fulfill the crystal symmetries, see Fig. 2.2. These symmetry

functions are used to give a representation for the local environment surrounding an

atom and act as an input for a set of atomic neural networks. The BP scheme defines

the total energy of the system as a sum over atomic contributions:

E = ∑
i

ENN
i , (2.71)

where the term ENN
i is the energy associated with the environment surrounding the

i-atom. This environment can be defined at the symmetry function level with a prop-

erly chosen cutoff function. The parameters of the NNs are then fitted to DFT (or other

methods) data, thus enabling for accurate reconstructions of the PES. Several strate-

gies have been developed to improve the description of the potential energy surface

and interatomic forces for a vast genre of systems, including semiconductors, metals,

molecular systems and so on, with the goal of exploring thermodynamic and transport

properties. We recommend the reader the review of Behler [60] on this topic. In the

context of the evaluation of interatomic force constants, in fig. 2.2 we show a phonon

band structure test calculation performed with a neural network model for Ga4P4. We

remark that the individual atomic terms in eq. 2.71 can be constructed to represent the

energy of a local environment rather than a specific lattice configuration. Therefore,
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2.4. Inter-atomic force constants

Figure 2.1: Phonon band structure of cubic Ga4P4 obtained via Phonopy code [1, 2]

(frozen-honon approach) and neural network force field from [3, 4]. BZ symmetry

points are X, Γ and L.

this approach makes possible to study the properties of embedded systems like, for

example, lattice vacancies [3]) and interfaces between different structural phases [4],

provided that the chemical composition used to train the network is preserved.

2.4.5 Phonon renormalization

The harmonic lattice dynamics clearly neglects non-harmonic effects or treats them

in a perturbation fashion. However while representing a good approximation for the

zero temperature close-to-equilibrium physics, it fails to properly represent the full ion

dynamicswhere the non harmonic terms in the energy expansion cannot be considered

small. These anharmonic terms drive phenomena like thermal expansion or structural

phase transitions at finite temperature, and have been proven to be important for

thermal transport as well. To cope with these effects theoretical tools like the quasi-

harmonic approximation [61] were developed at first. Nevertheless, they are often
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Figure 2.2: Neural network scheme from [5]. Atomic coordinates are mapped onto

a set of functions that preserve the true symmetries of the systems with the goal to

produce a set of atomic energies.

insufficient for their quantitative description. A way to circumvent these issues is the

molecular dynamics (MD), where Newton’s equation of motion are solved for the ions

and ergodicity is assumed in order to extract statistical mechanical properties, at the

price of neglecting the quantum character of lattice vibrations and effects related to

the zero-point vibrations. To keep including the latter and at the same time retain

the conceptual simplicity and analytical properties of the harmonic model, several

renormalization techniques have been concocted in a way that an implicit temperature

dependence is acquired by carefully modified IFCs or frequencies. A primer for the

study of phonon renormalization can be found in [62]. A short list of these methods

include the self-consistent phonon theory (SCPH) [63], self-consistent ab-initio lattice

dynamics (SCAILD) [64], temperature dependent effective potential (TDEP) [65] and

the stochastic self-consistent harmonic approximation (SSCHA) [66].

These methods assume strategies to modify either the force constants or the phonon

frequencies in away that the non-harmonic terms are implicitly captured, thus deriving

renormalized interactions that can be eventually described with ordinary perturbation

theory. As an example we follow the work of Tadano and Tsuneyuki in the context of

SCPH [6] we can define the crystal Hamiltonian as

Ĥ = Ĥ0 +V̂3 +V̂4 +O(V̂5), (2.72)
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where Ĥ0 includes the ordinary harmonic model and the subsequent potentials can-

not be properly evaluated by mean of perturbation theory. The first order diagram

associated with the self energy for the quartic term V4 is:

Σ
4
~q, j j′(iωm) =−

1
2 ∑

q1

h̄
4ωq1
√

ω~q, j′ω~q, j
Φ(~q, j;−~q, j′;q1;−q1)[1+2n(ωq1)], (2.73)

where q≡ (~q, j), Φ(~q, j;~q, j′;q1;−q1) is the quartic anharmonicity in the reciprocal basis

representation and n(ωq) is the equilibrium Bose-Einstein distribution. The Dyson

equation for the system Green’s function (GF) reads

Ĝ−1(ω) = Ĝ0
−1
(ω)− Σ̂(ω) (2.74)

with the non-interacting GF given by Gλ ,λ ′,0(ω) ≡ −2ωλ δλ ,λ ′/(ω
2−ω2

λ
). Clearly the

interacting GF has poles corresponding to the quasi-particle excitation where the non-

harmonic terms are included. Therefore, it is straightforward that eq. 2.74 can be recast

as

Det[ω2−V̂λ (ω)] = 0 (2.75)

with Vλ ,λ ′(ω) ≡ ω2
λ

δλ ,λ ′ −Σλ ,λ ′(ω)
√

4ωλ ωλ ′ , and then solved self-consistently. If we

assume Σ4
to be diagonal in the polarisation index j, then eq. 2.75 can be simplified

and turns to be Ω2
q = ω2

q +2ΩqIq[Ωq], with Iq defined as:

Iq[Ωq] =
1
2 ∑

q1

h̄
4Ωq1Ωq

Φ(q;−q;q1;−q1)[1+2n(Ωq1)]. (2.76)

The approach devised by Tadano andTsuneyuki then uses the cubic anharmonicity in a

perturbation fashion to assess the phonon lifetimes for the frequencies and polarisation

vectors extracted from eq. 2.75. In particular the SCPH method is combined with the

LASSO approach to extract the IFCs at high order mentioned in section 2.4.3.
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Figure 2.3: First order and second order diagrams for the quartic and cubic phonon

self energies respectively reported from [6].

Another self consistent approach, namely the SCAILDmethod, that involves themodi-

fication of IFCs directly instead of the frequencies, can be summarised by the following

steps. If we want to evaluate the IFCs at finite temperature T, we need to sample the

inter-atomic forces and configurations at that T. As the DFT energy is normally eval-

uated at zero temperature, this means we should fit the configurations-forces data set

to a low order polynomial. We can make use the quadratic nature of the Hamiltonian

which implies a Gaussian shaped distribution function for the displacements. The not

normalised distribution function for the interatomic displacements is

ρ̂ph({ui}i;T ) = exp

−1
2 ∑
~R,~R′

∑
τ,τ ′

∑
α,β

û~R′,τ ′β B
~R′τ ′β
~R,τα

û~R,τα

, (2.77)

where B = 〈û~R,τ,α(t)û~R′,τ ′,β (t)
†〉−1

is the inverse of the mean square displacement ma-

trix. We can use ρ̂ph({ui}i;T ) to sample the configuration space of a system at finite

temperature. The originally proposed SCAILD algorithm [64] assumed the classical

high-T limit for the phonon distributions. Here we will explain in short the quantum

version (QSCAILD) [67] that can be summarised by the following steps:

• Evaluate the small-displacements IFCs and corresponding phonon eigenvalues

and eigenvectors;

• Use the small-displacements eigenvalues and eigenvectors to evaluate the dis-

placements distribution ρph,0(T ) at a finite and fixed temperature T, and use that

distribution to generate random atomic displacements in the unit/supercell;
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• Evaluate the DFT inter-atomic forces corresponding to those displacements and

fit them to a linear model to extract the IFCs;

• Extract new eigenvalues and eigenvectors from the new IFCs and use them to

build a new displacement distribution ρph,1(T ). Iterate until |ρph,n+1−ρph,n| � ε .

Once thedisplacementdistribution is converged, the corresponding renormalized force

constants can be used to extract temperature dependent phonon properties.

2.5 Lattice impurities

In this section we are going to define and introduce the concept of lattice impurity [68].

An impurity is anything that can break the discrete symmetry of translation in a crystal.

It can be an external atom introduced during the growing process of the crystal, like a

substitutional or an interstitial defect, or it can be an intrinsic impurity like a vacancy,

namely the removal of a regular atom, or an antisite. A short and non-comprehensive

list of impurities includes:

• Vacancies, namely the complete breaking of the bonds and removal of an atom

in the system;

• Interstitials, that is atoms that are added to the system in positions that are not

reachable through lattice translations;

• Substitutionals, that is external atoms that replace host atoms in the crystal struc-

ture at regular positions;

• Antisites, which are swaps in the ordering of the atoms in the lattice, for non

monatomic compounds. If for instance we have a binary system with atom A

lying at the center of the unit cell and atom B at one corner, an antisite would

reverse the A and B positions;

• Non point-like impurities, i.e. extended defects, include grain boundaries, dislo-

cations and stacking faults;
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2. First principles phonon theory

Even if we have an ideal crystal growth, such that no external impurities have been

introduced in the system, intrinsic impurities should be considered [69]. Indeed, let’s

take the case of a vacancy: the vacancy formation energy Evac required to completely

break the bonds surrounding an atom in the crystal is obviously finite. So, the Gibbs

free energy corresponding to a N - atom configuration where Nvac - vacancies are

present is

G = NvacEvac−T (S
conf.

+S
vib.

). (2.78)

The configurational entropy is given by

S
conf.

= kBln

(
N!

(N−Nvac)!(Nvac)!

)
(2.79)

and it is the largest contribution to the entropy at low temperatures, so that any other

source of entropy (like the vibrational contribution S
vib.

) can be usually neglected [70].

If we use the Stirling’s approximation, ln(x!)≈ xln(x)−x, we straightforwardly see that,

at equilibrium,

dG
dNvac

= 0 =⇒ Nvac

N
=

1
1+ eEvac/kBT

≈ e−Evac/kBT
(2.80)

when Evac� kBT . The formation energy being finite, there is a non-zero concentration

of vacancies at any temperature 6= 0. Therefore, we can argue that - even in ideal crystal

growth conditions - we cannot avoid considering impurities as their presence in the

material is contemplated by thermodynamics.

Defect formation energies are of paramount importance to study defect stability and

diffusion processes, but only in recent years their calculation has been made possible.

Here we will inspect in details the supercell approach, while for the other techniques

we send the reader to the review of Freysoldt et al. [70]. In the supercell method

we generate a supercell out of the unit cell of a certain material. Once we have
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2.5. Lattice impurities

computed the energy of the pristine system, we cast an impurity inside it. Naively

one could expect the formation energy of the defect to be given by the difference

between the energy of the doped structure and the pure one. However, several errors

are introduced within this methodology that requires the application of correction

terms. In the case of charged defects, the periodic boundary conditions allow for

the presence of a ∼ 1/r Coulomb-like interaction between a dopant and its periodic

image, which is as strong as the supercell is small. Since we are usually interested

in the study of the low-concentration limit, this interaction - hereafter named Makov-

Payne term or EMP [71] - has to be removed from the computation of the total energy

of the doped structure. Furthermore, the Kohn-Sham eigenvalues and eigenstates

depend on the cell-averaged electrostatic potential, whose zero value is affected by the

addition of impurities: therefore, the need to align the potentials in order to have a

common zero for the energies [72]. Finally, common DFT functionals like LDA or GGA

- albeit of fast numerical evaluation - present an electronic band structure that is often

inconsistent with measurements and thus require a correction ∆Egap to the electronic

gap of the pristine system. This term can be obtained either empirically or with the

aid of more thorough methods, like for example GW, hybrid functionals and modified

pseudopotentials [73]. Altogether, the three correction termsmust be summed, leading

to

Ecorr = EPA +EMP +∆Egap, (2.81)

where the potential alignment term is defined by the difference of the averaged

electrostatic potential energies between doped and pristine supercell, namely EPA =

q[Vq,de f −Vpr.], and the Makov - Payne multipole correction EMP is defined by

EMP =
q2αM

2εL
+

2πqQ
3εL3 +O(L−5). (2.82)

Here q is the charge of the defect, ε is the static dielectric constant which screens the

Coulombpotential inside the crystal, αM is theMadelung constant, Q is the quadrupole
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2. First principles phonon theory

moment and L3
is the volume of the supercell. The Makov - Payne term is smaller

when the system size is large. Concerning ∆Egap, a common strategy for its assessment

consists into evaluating the corrections to the VBM and CBM energies - namely ∆εV BM

and ∆εCBM - and then take ∆Egap = q∆εV BM, with the further assumption that the Fermi

level of the doped system can range within the corrected gap. Finally, considering also

Ecorr, the formation energy for a defect Dq of charge q is:

∆E f orm.[Dq;εF ] = EDq−Eprist.+Ecorr +∑
i

ni(µ
0
i +∆µi)+qεF , (2.83)

where EDq (Eprist.) is the DFT-computed energy for the defect-laden (pristine) system,

εF is the Fermi level, µ0
i is the chemical potential for the i-specie in a reference stable

configuration (e.g. O2 for air oxygen or S8 for solid sulphur, usually evaluated at

ambient pressure and temperature), and∆µi takes into account the synthesis conditions

and the exchange of atoms between the bulk crystal and the reservoirs. Here we adopt

the convention ni ≥ 0 (ni ≤ 0) when atoms are removed from (added to) the crystal.

In case charged impurities are considered, we must also include the energy cost for

adding/removing an electron, here represented by the Fermi level (which plays the

role of chemical potential for the electrons). Several constraintsmust be imposed on the

chemical potentials ∆µi in order to keep the crystal structure stable and avoid possible

competing phases. For example, if we have a binary crystal AB with heat of formation

∆HAB, we shall impose

∆µA +∆µB = 2∆HAB (2.84)

along with ∆µA ≤ 0 and ∆µB ≤ 0 so that A and B do not precipitate to their reference

phases. If A and B can form a competing phase AaBb with a, b 6= 1, we have to set a

further bound on the chemical potential, that is

a∆µA +b∆µB ≤ (a+b)∆HAaBb. (2.85)

36



2.5. Lattice impurities

If for example we dope Si with P, along with ∆µSi ≤ 0 we need to consider ∆µSi+∆µP ≤

2∆HSiP and ∆µSi +2∆µP ≤ 3∆HSiP2 in order to avoid both the formation of SiP and SiP2.

It shall be noticed that the reference chemical potential for a specie in the pure phase

depends on pressure (p) and temperature (T) [70]. While these dependencies can

generally be neglected for solid phases without loss of accuracy, they are important

for elements in the gaseous state. Thus, we can resort to the parametrized Shomate

equation [74] to evaluate the p-T dependent chemical potential for species in the gas

reference phase.

Charged impurities affect the position of the Fermi level in semiconductors by intro-

ducing energy levels inside the gap and can either shift it towards the VBM or the CBM

depending on their acceptor/donor nature. The total charge in the system given by

the amount of holes p minus the amount of negative carriers n must be zero, either in

the pristine system and the presence of doping, at all temperatures. Thence, we have

p(εF ,T )−n(εF ,T ) = N−A −N+
D , (2.86)

where N−A and N+
D are the concentration of ionised acceptors and donors in the system.

Hole and electron concentrations can be expressed as

p(εF ,T ) =
∫

ε
VBM

−∞

D(ε)(1− f (ε;εF ,T ))dε (2.87)

and

n(εF ,T ) =
∫

∞

ε
CBM

D(ε) f (ε;εF ,T )dε, (2.88)

where D(ε) is the electron/holes density of states (eDOS, pDOS) and

f (ε;EF ,T ) =
1

exp((ε− εF)/(kBT ))+1
(2.89)
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2. First principles phonon theory

is the Fermi-Dirac distribution. A useful approximation can bemade in order to obtain

an analytical expression for p and n. If we fit the electronic DOS near the VBM/CBM

with a parabolic band model and we consider |εF − εCV M/V BM| � kBT , we can obtain

p(εF ,T ) = 2

(
2πm∗hkBT

h2

)3/2

e−
εF−εV BM

kBT
(2.90)

and

n(εF ,T ) = 2

(
2πm∗ekBT

h2

)3/2

e−
εCBM−εF

kBT , (2.91)

with the spin degeneracy factor taken into account. The parameters m∗h and m∗e are the

effective masses for holes and electrons respectively, and can be fitted for example to

the DFT density of states or the band structure near the VBM/CBM. In the further case

shallow impurities - that is dopantswhich energy levels lie very close to theVBM/CBM

and thus are easy to ionise - are considered, the effective masses can be estimated with

an hydrogenicmassmodel [75, 76, 68]. In presence of external dopants and considering

eq. 2.80, the charge neutrality is given by

p(εF ,T )−n(εF ,T )−∑
Dq

e−∆E f orm.[Dq;εF ]/kBT +∆Nde f = 0, (2.92)

where ∆Nde f accounts for defects that are introduced in non-equilibrium conditions

between the crystal and the reservoirs. The relation between impurity concentration,

temperature and Fermi level drives electronic and atomic diffusion processes inside

the crystal when an external field is set on. Whenever there is a concentration gradient

~∇C, a flux of particles ~J arises according to Fick’s law [77]:

~J =−D~∇C, (2.93)
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2.5. Lattice impurities

where D is the diffusion coefficient. If we include the local conservation of particles

and assume a delta-like behaviour for the concentration at time t = 0, namelyC(~x,0) =

δ (~x−~x0), we can prove that

C(~x, t) =
( 1

2πDt

)3/2
exp
(

~x2

2Dt

)
. (2.94)

We can classify thediffusionprocesses by evaluating theα - exponent of 〈~x2〉/t ∼ tα
. The

α = 0 case correspond to normal diffusion while α > 0(< 0) to the super(sub)diffusive

case.

The presence of vacancies can activate diffusion processes even in a solid crystal, as

the space freed by the removed atoms can be occupied by their neighbours. This can

favour the inclusion of substitutional impurities if an external reservoir is coupled to

the system. Similarly, also interstitials are free to diffuse due to their reduced size.

Specifically, the rate R at which impurities can flow in a crystal is intimately related to

both the activation free energy ∆Gv
m - that is the energy barrier an atom needs to cross in

order to occupy a neighbour vacant site - and the vacancy formation energy ∆Gvac [69].

Indeed, the diffusion rate can be considered as proportional to the product between

the probabilities of vacancy formation and activation barrier crossing. We can take an

Arrhenius law R ≡ 1/τ ∝ exp(−(∆Gv
m +∆Gvac)/kBT ), where τ is the time required for

the system to reach stationary conditions. Given the variance of the diffusion process

〈~x2(τ)〉 = 6Dτ - with

√
〈~x2(τ)〉 approximated by the (average) lattice constant a - we

straightforwardly obtain that:

D = D0 exp
(
−∆Gv

m +∆Gvac

kBT

)
, (2.95)

where D0 is a material-dependent constant. The last equations unveil the role played

by formation energies into the vacancy-driven diffusion process inside crystals. We

should note that a similar equation holds in the case of interstitials, with the important

difference that we do not need to consider the vacancy formation energies at all in this

case as they always have room to diffuse once they are in the system.
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2. First principles phonon theory

Figure 2.4: Free energy as a function of distance for a vacancywith∆Gv
m as the activation

energy barrier.

2.6 Chapter overview

In this chapterwehave introduced basic concepts in solid state physics like the Brilluoin

zone (BZ) and the Bloch’s theorem. We have given an overview on density functional

theory (DFT) and the Born-Oppenheimer approximation used to solve the electronic

problem in crystals with first principles accuracy and to effectively decouple the ions

and electronsmotions. We have shown the concept of normalmodes of lattice vibration

and their quantum counterpart - i.e. phonons - and the methods that can be used

to extract their properties from DFT calculations. In the end we have presented the

thermodynamics of defects, showing how to compute ab initio their formation energies.

We have introduced the concept of electronic charge neutralitywhichwill be important

to justify part of our results on doped boron arsenide in chapter 5. In the next chapter,

we explain the theory of thermal transport within the linear response and Boltzmann

equation theories and we derive the expressions for the phonon scattering rates and

thermal conductivity that have been used throughout this thesis.
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Theory of thermal transport

Letus suppose thatwe couple a semiconducting crystal to two thermal baths atdifferent

temperatures T1 and T2. Thermodynamics predicts that a heat flow from the hotter to

the colder end of the crystalwill be established in order to reinstate thermal equilibrium

and a temperature gradient will form. This basic phenomenon of thermal conduction

is mathematically expressed by means of the Fourier’s law:

~J =−κ~∇T, (3.1)

where κ ≥ 0 is the crystal thermal conductivity and ~J is the heat per unit time that

crosses a unit surface in the material. As soon as a thermal gradient is formed,

the amount of heat that traverses the crystal along a particular direction is given by

κ . Therefore, to predict and understand the thermal properties of a material it is

of paramount importance to model its thermal conductivity. In a crystal the main

carriers of heat are phonons and electrons. If we exclude metals from our analysis we

can consider the heat flux mainly as being a phonon flow, with a smaller electronic

contribution only in the case of highly doped semiconductors. Starting from the

relation

δQ =CdT, (3.2)

where δQ is the heat exchanged between the crystal and the reservoir andC is the heat
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3. Theory of thermal transport

capacity, we can infer the following relationship:

κ ∼Cv〈l〉, (3.3)

where v and 〈l〉 are respectively the velocity and the "mean free path" (MFP) of the

carriers, i.e. the average distance a phonon or electron can run through before being

scattered by the lattice or by impurities. Although eq. 3.3 is too simple to be of actual

use for accurate predictions, it clearly shows that a large heat capacity, carrier velocity

and MFPs are required to reach a high κ . Thus, scattering mechanisms should be

minimised to achieve the last requirement and in the case of phonons as carriers, stiff

bonds and small atomic masses (in the monatomic lattice case) should be preferred in

order to get high carrier velocities. Analogously, high electron velocity can be achieved

for small effective masses in the case of metals.

In this chapter we highlight several techniques that permit the calculation of κ starting

from first principles, with particular reference to the case of phonon transport. At

first we delve into linear response theory and explain the Onsager relations. Then

we study several scattering mechanisms that can influence the phonon MFP and the

conductivity with a look to both modern theory and historical perspective. Particular

attention is devoted to scattering processes induced by impurities, being the main

core of this thesis. Finally we derive the Boltzmann equation in low-field conditions,

explaining strategies to achieve its numerical solution.

3.1 Linear response theory

Let us assume we want to compute transport properties in a macroscopic system,

for temperatures well above the Debye temperature TD so that quantum effects can

be effectively neglected: the size of the system, combined with a non-equilibrium

framework, usually prevents us from applying equilibrium statistical mechanics, since

concepts like thermodynamic pressure and temperature are ill defined. Therefore,

many approaches have been developed to treat transport properties in the case of small
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3.1. Linear response theory

deviations from equilibrium: linear response theory (LRT) is one of these methods as

it allows us to study how external effects influence physical properties of systems at

the lowest order in perturbation theory. One of the goals of LRT is to have the system

response to a small external perturbation fully computed by statistical mechanics, thus

avoiding the non-equilibrium framework.

3.1.1 Onsager and classical Green-Kubo relations

Establishing a heat flow inside a material requires the presence of a temperature gradi-

ent. Thus, we may ask how to study space-dependent thermal fields within a thermo-

dynamic framework, where T is a uniquely defined ensemble property. A simple and

insightful approach could be to partition our system into sub-ensembles inside which

local equilibrium and thermodynamics still hold. We should also take the size of these

sub-ensembles to be much smaller than the system volume to ensure the applicability

of a field based description. Assuming that this can be done we can obtain a descrip-

tion of a macroscopic system - under local equilibrium conditions - by using extensive

thermodynamic variables that can be expressed as integrals over space of well defined

densities:

Ai[V ] =
1
V

∫
ai(~r)d3r, (3.4)

where Ai is a generic extensive variable and ai is its associated position-dependent

density. Local equilibrium ensures a local conservation law for these densities:

∂ai(~r, t)
∂ t

=−~∇ ·~Ji(~r, t). (3.5)

It comes natural to ask ourselves what the relationship between macroscopic fluxes of

these variables and driving external forces may be. First of all we need a definition

for these driving forces. Starting from the first law of thermodynamics we know that,

at fixed volume, the following relationship among entropy density, internal energy

density and mass density holds:
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ds =
1
T

du− µ

T
dρ, (3.6)

where 1/T and µ/T are intensive variables, T is the thermodynamic temperature

and µ is the chemical potential. If we consider that microscopic processes could be

irreversible, the local conservation law for entropy would be

∂ s(~r, t)
∂ t

+~∇ ·~Js(~r, t) =

(
∂ s(~r, t)

∂ t

)
irr.

, (3.7)

where the r.h.s. term accounts for irreversible processes that lead to a local violation

of the entropy conservation. If we assume we have both a temperature and a density

gradients
~∇T and

~∇ρ - with |δT |<< T and |δρ|<< ρ - the systemwill experience both

energy and matter fluxes ~Ju and ~Jρ , according to eq. 3.1 and Fick’s law [77] introduced

in the previous chapter:

~Jρ =−D~∇ρ, (3.8)

where D is the material diffusion coefficient. We can also re-write Fourier and Fick’s

laws as ~Ju = −kT 2~∇(1/T ) and ~Jρ = D∗~∇(−µ/T ), where D∗ depends on the thermody-

namic state variables, but not on their space gradients and timederivative. In particular

the second equation holds in a linear approximation as the chemical potential increases

monotonicallyw.r.t. themass densitywhen T is kept fixed. Furthermore either a gradi-

ent in the chemical potential or temperature can produce a gradient in density. Clearly

the thermal and diffusion coefficients do not depend on the gradients as both equa-

tions 3.1and 3.8 hold in a linear approximation. We identify these two gradients as the

aforementioned thermodynamic forces. Therefore we can immediately see a connec-

tion between fluxes of extensive variables and variation of intensive properties, with

the latter being the driving fields. We also stress that Fourier and Fick’s laws in this

context hold in a local sense.

If we take into account heat and mass transport as coupled problems, we can write
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~Ju = B11~∇(1/T )+B12~∇(−µ/T )≡∑
j

B1 j~∇Φ j (3.9)

and

~Jρ = B21~∇(1/T )+B22(−µ/T )≡∑
j

B2 j~∇Φ j. (3.10)

We can now use the first law of thermodynamics in form of eq. 3.6 to write the entropy

flux as

~Js =
1
T
~Ju−

µ

T
~Jρ , (3.11)

and if we consider the local conservation laws for energy and mass densities, it is

straightforward to prove that

(
∂ s(~r, t)

∂ t

)
irr.

= ∑
i, j=1,2

Bi j~∇Φi ·~∇Φ j. (3.12)

The matrix containing the transport coefficients Bi j clearly has to be positive definite

to satisfy the second law of thermodynamics. The aforementioned argument can be

easily generalised in presence of every gradient of intensive thermodynamic variables.

If we take both space and time Fourier transform of eq. 3.5 and assume that the time

derivative of the densities can be expressed as a linear combination of densities ("weak"

deviation), this leads to:

~Ji(~q,ω) = i
~q
q2 ∑

j
Λ

i j(~q,ω)a j(~q,ω), (3.13)

and since we assume local equilibrium, we also need to take the Lambda to vanish in

the long-wavelength limit, i.e. Λi j(~q→ 0,ω)→ 0. Therefore it is reasonable to write
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the Lambda matrix expression as q2λ i j
in the static ω → 0 limit, meaning that the

macroscopic flux of the i
th
variable can be defined as

~Ji[V ] = ∑
j

λ
i j~∇A j[V ]. (3.14)

As before, for each extensive variable Ai we can define an intensive variable xi ≡ ∂S/∂Ai

and a susceptibility χ i j ≡ (1/V )(∂Ai/∂x j). If we define the i
th
-thermodynamic force ~Fi

as the integral over space of the gradient of the intensive variable (density), normalized

with the system volume, we can obtain:

~Ji = ∑
k
(∑

j
λi jχ

jk)~Fk = ∑
k

Lik~Fk. (3.15)

That is, the thermodynamic macroscopic response of a system is given by some coef-

ficients and by "forces" derived from gradients of intensive variables. We recognise

these coefficients to be the matrix elements Bi j previously identified in the specific case

of coupled heat and mass transport. Near equilibrium we can assume a quadratic

relation between entropy and extensive variables

S({Ai}i) =−
1
2 ∑

i, j
αi, j(Ai−Ai,eq)(A j−A j,eq) (3.16)

with αi j being positive definite, and we can also assume that at the microscopic level

the time reversal symmetry (TRS) holds true, namely 〈Ai(t)A j(t +τ)〉= 〈A j(t)Ai(t +τ)〉.

The probability density for the macroscopic variables f ∼ exp(S/kB) is clearly Gaussian

and this prompts us to derive the following relation:

〈Aix j〉=−kBδi j. (3.17)

Using eq. 3.17 along with a linear evolution for the extensive variables - Ȧi = ∑ j Li jx j -

(see eq. 3.13) and themicroscopic TRS leads to the Onsager reciprocal relations [78, 79]:
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Li j = L ji. (3.18)

We can also note that as long as the evolution of the Ais is linear in the intrinsic

variables and eq. 3.17 andmicroscopic TRS are valid, the Onsager matrix is even. Thus

it is not explicitly required to have a quadratic entropy although it is a reasonable

choice close to equilibrium, which is the regime usually probed by linear response

theory. An extension of the Onsager relation to vector and tensor quantities has been

given by [80, 81].

We now give a formulation of the thermal transport coefficients in terms of microscop-

ically defined variables, following the argument of [82]. Let us consider a classical

N-body system, such that the Hamiltonian H0 can be written in the kinetic + potential

energy form. We can add a small one-particle external perturbation coupledwith some

intensive variable density ai of the system, i.e.

Vext(Γ, t) = ∑
i

∫
vi(~r, t)ai(~r,Γ)d3r, (3.19)

where Γ ≡ {~Pi,~Ri} denotes the many-body phase space state and i runs over atomic

indices. To understand how a physical observable B(Γ) changes because of the pertur-

bation we need to compute δB = B(Vext)−B0. Expanding B(Vext) in powers of Vext and

taking only the first order term give us

δB =−β

∫
e−βH0(Γ)B(Γ)Vext(Γ, t)dΓ = ∑

i

∫ (∫
e−βH0(Γ)B(Γ)ai(Γ,~r)dΓ

)
vi(~r, t)d3r.

(3.20)

Local conservation law for the i-density and a little integral manipulation allow us to

get the Green-Kubo (GK) [83, 84, 85] formula:

δB(~r, t) =−β ∑
i,α

∫ [∫ t

−∞

〈B(Γt)Ji
α(Γt ′)〉0dt ′

]
∂αvi(~r′, t ′)d3r′, (3.21)
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where 〈〉0 indicates a thermal average over H0. Assuming δB(~r, t) = Jh
γ (~r, t), the ex-

pression of the heat flux density can be straightforwardly derived. Integration of the

flux density over space, space-time homogeneity and the t→ ∞ limit give us again an

Onsager-like relation where thermodynamic forces are substituted by derivatives of

the vis terms. The TRS symmetry of the correlation functions ensures the validity of

the reciprocal relation Li j = L ji:

~F i(Γt ′) =
1

V T

∫
~∇vi(~r, t ′)d3r, (3.22)

~Ji(Γ) =
1
V

∫
~Ji(~r, t)d3r, (3.23)

Li j =
V
kB

∫
∞

−∞

〈~Ji(Γt)⊗ ~J j(Γ0)〉0dt, (3.24)

and

⇒ ~Jα = ∑
γ

Lαγ
~Fγ . (3.25)

Clearly the previously introduced Onsager coefficients Li j describe the linear response

of the system due to external forces. At this point it should be noted that the hereto

defined linear theory is valid when both the unperturbed Hamiltonian and the exter-

nal driving field can be defined at the microscopic level. As temperature has only a

statistical ensemble definition, we need some "trick" in order to apply the linear re-

sponse theory to the heat transport problem. Let’s assume that our system, initially

at equilibrium, is now in contact with some heat reservoirs such that a temperature

field T (~r) = Teq−δT (~r) (with δT << Teq) arises. Again, we stress that local equilibrium

means that each sub-ensemble of our system is characterized by a certain T (~r) although

the deviation from Teq is small enough to be treated in a perturbation fashion. The

canonical ensemble density takes the form:
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e−βH(Γ) −→ e−
∫

β (~r)e(Γ,~r)d3r, (3.26)

where e(~r,Γ) is the energy density and β (~r) = β (1+ δT (~r)/T +O(1/T 2)). If we take

only the first order in 1/T and we put the β -expression inside the density expression

we obtain ρ(Γ) ∝ exp{−β (H +V )}, with V (Γ) ≡
∫

e(Γ,~r)δT (~r)d3r/T . Having the tem-

perature variation as driving field we can apply the GK formula and get the Fourier’s

law, with

κi j =
Li j

T 2 ≥ 0. (3.27)

3.1.2 Heat flux

The computation of the thermal conductivity requires an expression for the heat flux

with respect to phase space coordinates. This can be achieved by performing the space

integration of the local energy conservation. As the integration by part leads to the

evaluation of the flux at the boundary of the system - where it is generally non-zero

because of the periodic boundary conditions - we can evaluate the conservation law

in the Fourier space, perform a Taylor expansion at finite wavelength (taking only the

first order in ~q) and finally take the infinite volume limit [82]. Assuming to take the

form ∑n en(Γ)δ (~r−~Rn) for the energy density with en = ~P2
n /2mn +Vn, an expression for

the heat flux is finally derived:

~J =
1
V ∑

n
en~vn +∑

n
σn~vn ≡ ~Jc + ~Jv, (3.28)

where σn is the individual-n atom stress tensor. The "c" part of the flux (so called "con-

vective") ismostly related to thermal transport through themotionof the atomic/molecular

constituents of the system and it is relevant for fluids, while the "v" part ("virial") is

related to lattice vibrations. It can be noticed that in the case of solids the convective

part is many orders of magnitude smaller than the virial part, so that it can be sent to

zero without loss of accuracy.
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3. Theory of thermal transport

We stress that this definition of heat flux assumes a well defined partition of the energy

density into individual atomic components. This assumption can hold for classical

systems but does not stand rigorously from a DFT perspective. Furthermore the

relationship between heat flux and thermal conductivity is not unique. Indeed, if we

define two energy densities e(~r, t) and ẽ(~r, t) so that:

e(~r, t)− ẽ(~r, t) = ~∇ ·~p(~r, t), (3.29)

where ~p is a bounded vector field and ~P(t)≡
∫
~p(~r, t)d3r/V , we get

~̃J(t) = ~J(t)+ ~̇P(t), (3.30)

that is, the two macroscopic fluxes differ by the total time derivative of a bounded vec-

tor. It can be proven that the two representations give different heat auto-correlation

functions but the same thermal transport coefficients. This means they are physically

equivalent, i.e. they belong to the same gauge. This has profound implication on the

theory of thermal transport as it implies that the GK heat flux is gauge dependent

(i.e. non-physical), though the measurable thermal conductivity clearly is not. This

phenomenon is akin to the reason why the macroscopic polarisation in dielectric crys-

tals is ill defined [86] and it can be exploited to provide a formulation for the energy

density in the DFT framework [82]. Finally, and in spite of the previous discussion

about the non-uniqueness of ~J, we stress that the expression for the virial term ~Jv is

anyway always well defined in DFT and thus can be used for crystalline solids where

the convective contribution is negligible [87].

Albeit being well defined, several problems can arise during the numerical evaluations

of thermal coefficients with the GK theory: first of all, in crystalline solids the short-

range nature of interactions and the strength of anharmonic effects at high temperature

lead to large self-correlation times, of the order of nanoseconds, thus preventing an
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3.1. Linear response theory

extensive use of ab initio techniques - like molecular dynamics - to probe the phase

space. Moreover, the numerical evaluation is highly sensitive to either the finite size

of the simulated system and to the initial condition of the MD simulation and requires

careful volume convergence tests and averages over different initial conditions.

For all practical purpose the numerical evaluation of the thermal conductivity via GK

involves computing the heat current auto-correlation function (HCAF), a task that is

performed via integration over finite molecular dynamics (MD) simulations:

Cαβ (τ) =
1

TMD− τ

∫ TMD−τ

0
~Jα(t + τ)⊗ ~Jβ (t)dt, (3.31)

where TMD is the length of the MD simulation. Hence it can be expected that when τ

approaches TMD this would lead to a rather poor evaluation of the HCAF. Since we can

expect Cαβ (τ) −→ 0 after a certain value of τ , we can impose a cutoff τc to regularise

the solution. In practice using TMD ∼ 10τc is generally required to obtain a reliable

convergence of the conductivity w.r.t. the simulation length and before it starts being

overcome by numerical noise:

kαβ =
V

kBT 2

∫
τc

0
Cαβ (τ)dτ. (3.32)

Several strategies to mitigate the HCAF errors have been devised in the recent years

to find τc rigorously. We mention the work of Chen et al. [88] who proposed a double

exponential fitting of the autocorrelation function for crystalline Si and Ge and a

criterion for the cutoff time, which is identified as the moment when the HCAF error

andmean are equal. The double exponential is phenomenologically justified as it takes

into account the large span in the magnitude of phonon relaxation times.

A more recent approach summarised in [82] makes use of the Gaussian nature of the

equilibrium heat flux in diffusive processes and applies statistical information based

criteria on the so called signal "cepstral" coefficients (discrete Fourier transform of

the log - "periodograms", i.e. the spectral coefficients). This has been proven useful
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3. Theory of thermal transport

to reduce the error and the computational cost of the simulations in several liquid

systems.

While theprevious analysis focuses on the application of equilibriummethods - namely

equilibrium molecular dynamics (EMD)- the (classical) evaluation of the thermal con-

ductivity in a crystal can also be computed with non-equilibrium tools like the non-

equilibrium molecular dynamics (NEMD) [89] where either an energy flux or a tem-

perature gradient is artificially imposed onto the crystal and then the conductivity can

be evaluated as κ = |~J|/|~∇T |. Applications of this method can be found in [90, 91]

where it has been used to study the effect of impurities in Si nanostructures and to

extract the conductivity of MgO. A comparison between NEMD and EMD has been

recently performed by [92].

We finally remind that the GK and other MD based approaches can be applied even

in the case of systems where the translation symmetry is broken, as in glasses or

disordered materials. Clearly the numerical and statistical errors are much more

negligible within the harmonic theory where the quantum mechanical nature of the

heat carriers can be evaluated and analytical expressions can easily be derived. This

has prompted the solution of the Green-Kubo formula for disordered systems within

the harmonic approximation as a model of thermal transport in disordered materials.

Pioneering works on this topic can be found in [93, 94].

3.2 Boltzmann transport equation

If we consider a classical N-particle system in presence of conservative forces, the

conservation of the phase-space volume leads to the conservation of the system dis-

tribution function ρ({~Ri}i=1..N ,{~Pi}i=1..N , t), a result known as Liouville’s theorem [95].

The main achievement of this theorem is the description of how the distribution func-

tion of the system evolves in phase space: if we consider a finite volume dΓ≡ dN pdNr

the explicit variation ∂ρ/∂ t is given by the flux of trajectories that flow continuously

and smoothly in and out Γ. Since ρ is a function of 6N degrees of freedom in 3D

we seek a description of our system in terms of a single particle distribution f (~p,~r, t).
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3.2. Boltzmann transport equation

Intuitively, f is not expected to be a conserved quantity when inter-particle interactions

are present: indeed, the latter may create or destroy single particle states discontinu-

ously and non-smoothly via scattering mechanisms, thus acting like a source or sink

for degrees of freedom. Given that

N =
∫

d3P1...d3PN

∫
d3R1...d3RNρ({~Ri}i=1..N ,{~Pi}i=1..N , t), (3.33)

it is natural to define f by integrating ρ over all degrees of freedomminus one, namely

f (~P,~R, t)≡
∫

d3P1...d3PN−1

∫
d3R1...d3RN−1ρ({~Ri}i=1..N ,{~Pi}i=1..N , t), (3.34)

meaning that

N =
∫

d3P
∫

d3R f (~P,~R, t). (3.35)

Clearly the total number of degrees of freedom N is a conserved quantity, thus the

total variation of f w.r.t. time has to be zero. If we consider a two-body interacting

Hamiltonian:

H = ∑
i

~P2
i

2mi
+

1
2 ∑

i, j
V (~Ri,~R j) (3.36)

we can write

d f (~P1,~R1, t)
dt

=
∫

d3P2...d3PN

∫
d3R2...d3RN

[
∂ρ

∂ t
+

∂ρ

∂R1
Ṙ1 +

∂ρ

∂P1
Ṗ1

]
≡ 0. (3.37)

If now we rearrange the previous equation by splitting the contribution of particle-1

from the contributions of the remaining degrees of freedom, we obtain the classical

Boltzmann transport equation (BTE) for the distribution f :
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3. Theory of thermal transport

0 =
∂ f
∂ t

+

[
∂ f
∂R1

Ṙ1 +
∂ f
∂P1

Ṗ1

]
1

+

[∫
d3P2

∫
d3R2

∂V
∂~R1

∂ f2

∂P1

]
2,..,N

(3.38)

or

∂ f
∂ t

+

[
∂ f
∂R1

Ṙ1 +
∂ f
∂P1

Ṗ1

]
1

≡ I
coll

[ f2], (3.39)

where the subscripts 1,2,...N in eq. 3.38 label the degrees of freedom, f2 is the two-

body distribution function and where the term on the r.h.s. of eq. 3.39 is the "collision

integral" which involves a two-body distribution function and is due to interactions

between a particle and its environment. We also clarify that on the l.h.s. no degrees

of freedom other than particle - 1 appears. We can prove that the BTE is the lowest

order equation of the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy [95]

as it involves only the single and two-body density function. Solving the BTE thus

means deriving the collision integral in the first place, which requires the knowledge

of f2. Although an equation similar to the BTE can be derived for f2 via BBGKY, the

recursive appearance of three-, four-, n-body distribution functions imply the need

to cut the expansion at some order. For any practical purpose some approximation

has to be done to f2 at the BTE level. A reasonable approximation introduced by

Ehrenfest through the name Stosszahlansatz (molecular chaos hypothesis) would be

to consider the velocities of the particles to be uncorrelated and position independent,

thus leading to a factorisation of the two-particle distribution function into the product

of two 1-particle distributions, namely

f ∗2 (~P1,~R1,~P2,~R2, t)≈ f (~P1,~R1, t) f (~P2,~R1, t)≈ f ∗2 (~P1,~R1,~P2, t). (3.40)

The collision integral describing the summation over all the four-particle scattering

would turn into
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3.2. Boltzmann transport equation

I
coll

[ f2] =
∫

d3P1

∫
d3P′

∫
d3P′1

∫
d3R[ f ∗2 (~P′,~R,~P′1, t)− f ∗2 (~P,~R,~P1, t)]W~P+~P1→~P′+~P′1

,

(3.41)

where W is the rate for a scattering process between two particles of momenta ~P and

~P1 resulting into two particles with momenta
~P′ and ~P′1. Thereby the evolution of f is

dependent on collisions that can increase the number of particles in a given state - thus

driving the distribution out-of Equilibrium - or can decrease it. We shall also note that

despite having a reversible microscopic dynamics, the Molecular Chaos assumption

introduces some non-reversibility in the description of the system ensuing fromhaving

both short-ranged interactions and non-correlated velocities. In fact, eq. 3.41 means

that the distribution is independent with respect to its past history, i.e. it follows a

Markovian dynamics. The presence of scattering processeswhich decrease the number

of particles in a given state in fact ensure that the system will equilibrate to a thermal

distribution with maximum entropy, according to Boltzmann’s H-theorem. Given the

molecular chaos approximation, the simplest way to evaluate the collision integral

would be to consider only the (net) decrease of the population in a certain state, thus

replacing I
coll

with

I
coll

[ f2] =−
f − f0

τ
, (3.42)

where f0 is the single particle distribution in equilibrium conditions. This is the so

called relaxation time approximation (RTA). It allows a faster solution of the BTE

assuming that the relaxation time τ is known. As the relaxation of the distribution is

exponential, this approximation generally does not account for the re-distribution of

degrees of freedom during scattering but only for the events that tend to reinstate the

equilibrium in the system.

We finally remind that the present formalism is not bounded to treat phonon-mediated

heat transport only but also electronic transport and general collision mechanisms.

An application of the BTE aimed at finding the electronic transport coefficients like
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the electric conductivity, Seebeck coefficient and the electronic contribution to heat

transport can be found in refs. [96, 97] where a derivation involving the Onsager

reciprocal relations previously introduced does apply.

The previous analysis was meant to be for a classical system. Thus it is natural to

extend it to the quantum mechanical case and specifically to obtain a description for

an interacting phonon gas, which is our case of interest. In presence of an arbitrary

perturbation V̂ switched on at time t = 0 the equation of motion for the density matrix

in the Dirac picture leads to:

(
∂nλ

∂ t

)
sc.

= Tr

[
∂ ρ̂

∂ t
n̂λ

]
. (3.43)

Let’s expand the density matrix in the Dirac picture up to the second order:

ih̄ρ̂(t) = ρ̂0 +
∫ t

0
dt ′[V̂ (t ′), ρ̂0]+

∫ t

0
dt ′
∫ t ′

0
dt ′′[V̂ (t ′), [V̂ (t ′′), ρ̂(t ′′)]], (3.44)

where ρ0 ≡ exp
(
−β Ĥ

)
is the equilibrium thermal density matrix. If we cast eq. 3.44

inside eq. 3.43 and we make the semi-classical assumption that the off-diagonal terms

in the density matrix - so called "coherences" - can be neglected, we finally obtain

(
∂nλ

∂ t

)
sc.

= ∑
{γ}

[W{γ}→λ n{γ}−Wλ→{γ}nλ ], (3.45)

where ({γ},n{γ}) is a shorthand for the states and populations λ is involved through

some scattering mechanism and the W - terms are the scattering probabilities per unit

time between non-interacting states. These can be computed according to the Fermi’s

golden rule (FGR):

Wa→b ≡
dP(|a〉 → |b〉)

dt
=

2π

h̄
| 〈b|V̂ |a〉 |2δ (Ea−Eb). (3.46)
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3.2. Boltzmann transport equation

We also point out that the nλ - terms in eq. 3.45 are non-equilibrium distributions.

What is left to discuss now are the specific mechanisms that can affect the modes in a

phonon gas. In a semiconductor the main intrinsic scattering effects that can influence

the MFPs of phonons are due to the higher order terms in the atomic energy series

expansion. Beside these, in a real semiconductor we should also consider that the

translation symmetry of the pristine crystal is explicitly broken by the presence of

isotopes in their natural concentrations and impurities, either wanted or accidentally

inserted during the growth process. Also, scattering from boundaries and interfaces

may turn out to be important if the system size is very small (sub-micrometric size),

given that τ
−1
bound.

∝ L−1
. Moreover, while the electron-phonon interaction can generally

be neglected in non-metals - since the phonon energies are much smaller than Egap,

they cannot excite the electronic states at the Fermi surface - it has been shown to be

relevant in the case of ultra-doped (degenerate) semiconductors [98].

Thereby the effective Hamiltonian for a perturbed phonon gas can be re-written as

Ĥ = Ĥ0 + Ĥ3 + Ĥ4 + Ĥiso+ Ĥ
def

+ Ĥ
eph

+ Ĥ
b
≡ Ĥ0 +V̂tot, (3.47)

where Ĥ3 + Ĥ4 is the contribution from the third and fourth order terms in the se-

ries expansion of the pristine system energy, Ĥiso+ Ĥ
def

encloses the effect of isotopes

and other defects, Ĥ
eph

is the electron-phonon interaction and Ĥ
b
gives the scattering

from boundaries. Generally the anharmonic perturbations are much weaker than the

quadratic leading order contribution Ĥ0, thus a treatment within first order perturba-

tion theory is allowed. An exception may occur in the case of impurities as the ensuing

effect on the lattice dynamics is generally strong enough to require higher order calcu-

lations. To compute the scattering rates for each term except the impurities we will use

the FGR, since it permits to retain the quantum mechanical nature of phonons. In the

case of defects, we will exploit classical scattering theory along with a Green’s function

formalism [99, 100].

If we consider a phonon mode λ ≡ (b,~q) we can ask ourselves how scattering mecha-
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3. Theory of thermal transport

nisms can affect its population. In other words we seek to compute

(
∂nλ

∂ t

)
sc.

=

(
∂nλ

∂ t

)
incr.

−

(
∂nλ

∂ t

)
decr.

≡ ∑
processes

Γ(λ |processes), (3.48)

where Γ encodes all possible scattering mechanisms that the mode λ can experience.

Another simplifying assumption that we will make consists in evaluating separately

the contribution from each perturbation instead of usingVtot directly. This approxima-

tion, known as Matthiessen’s rule, is generally acceptable assuming that the coupling

between different perturbations is negligible. It can be also proven with variational

methods that the Matthiessen’s rule provides a lower bound for the lattice thermal

conductivity [101].

3.2.1 Three-phonon scattering

Let’s first study the case where V̂ ≡ Ĥ3. By using the relation between atomic displace-

ments and phonon creation and annihilation operators - equation 2.52 - we can write

the third order contribution to the ion energy in the reciprocal space basis as

Ĥ3 = ∑
λ1,λ2,λ3

Aλ1,λ2,λ3(âλ1 + â†
−λ1

)(âλ2 + â†
−λ2

)(âλ3 + â†
−λ3

), (3.49)

with

Aλ1,λ2,λ3 ≡
1
6

(
h̄

2N

)3/2

∑
i, j,k,τ,τ ′,τ ′′

∑
x1,x2,x3

Ψx1,x2,x3√
MτMτ ′Mτ ′′

sλ1
τ,x1sλ2

τ ′,x2
sλ3

τ ′′,x3√
ωλ1ωλ2ωλ3

ei(~q1·~Ri+~q2·~R j+~q3·~Rk)
(3.50)

and

Aλ1,λ2,λ3 ≡
N
6

(
h̄

2N

)3/2

Φλ1,λ2,λ3, (3.51)
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where i, j and k are points in the direct lattice and τ , τ ′ and τ ′′ label the atomic positions

inside theunit-cell. TheN - factor in eq. 3.51 comes from the translation symmetry of the

crystal. The convention −λ ≡ (b,−~q) has been adopted. Among all possible processes

we consider only those that conserve the energy. The symmetry under translation of

the third order IFCs ensures also the conservation of the crystal momentum up to a

(reciprocal) lattice vector
~Q:

~q1 +~q2 +~q3 = ~Q. (3.52)

The case
~Q = 0 (

~Q 6= 0) identifies the so called Normal (Umklapp) processes, meaning

that the (quasi)momentum is conserved modulo
~Q. The form of eq. 3.49 clearly shows

that two general types of processes can emerge, that is the creation of one phonon

and annihilation of two or the absorption of one phonon and the creation of two. If

we consider three modes λ , λ ′ and λ ′′, the possible interactions are summarised in

Tab. 3.1. Our purpose now is to understand how the population of a certain mode λ is

affected by Ĥ3. If we consider all the scattering processes a phonon state can go through

and sum over the λ ′ and λ ′′ modes that satisfy energy and momentum conservation,

eq. 3.45 can be recast into the following expression:

∂nλ

∂ t
= ∑

λ ′,λ ′′
{Γ(λ ′→ λ +λ

′′)+Γ(λ ′+λ
′′→ λ )−Γ(λ → λ

′+λ
′′)−Γ(λ +λ

′′→ λ
′)},

(3.53)

with

Γ(λ ′→ λ +λ
′′) = nλ ′Wλ ′→λ+λ ′′ , (3.54)

Γ(λ ′+λ
′′→ λ ) = (nλ ′+nλ ′′)Wλ ′+λ ′′→λ , (3.55)
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Emission(λ ) Absorption(λ )

Emission(λ ′′) λ ′ −→ λ +λ ′′ λ −→ λ ′+λ ′′

Absorption(λ ′′) λ ′+λ ′′ −→ λ λ +λ ′′ −→ λ ′

Table 3.1: Schematics of the possible Ĥ3 vertices.

Figure 3.1: Vertex of the three-phonon processes depicted in 3.1, including absorption

and emission of a λ state.

Γ(λ → λ
′+λ

′′) = nλWλ→λ ′+λ ′′ (3.56)

and

Γ(λ +λ
′′→ λ

′) = (nλ +nλ ′′)Wλ+λ ′′→λ ′, (3.57)

where additive (subtractive) contributions for creation (annihilation) ofλ states are con-

sidered and where each amplitude Γ consists of a product between the corresponding

scattering probability per unit time for an individual process and the total population

for the incoming states. If we focus on the specific case where two phonons λ ′ and λ ′′

are absorbed and a phonon λ is emitted, we are looking for a transitionwhere the initial

(Fock) state is |a〉 ≡ |nλ ,nλ ′,nλ ′′〉 and the final state is |b〉 ≡ |nλ +1,nλ ′−1,nλ ′′−1〉. Since
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3.2. Boltzmann transport equation

the tensor elements Aλ1,λ2,λ3 of the perturbation are symmetric under index exchange,

we have six equivalent ways to describe the transition. Thus we can write

〈b| Ĥ3 |a〉= 6

√
(nλ +1)nλ ′nλ ′′√

ωλ ωλ ′ωλ ′′
A−λ ,λ ′,λ ′′ (3.58)

and finally, the FGR:

Wa→b =
π h̄2

4N
(nλ +1)nλ ′nλ ′′

ωλ ωλ ′ωλ ′′
|Φ−λ ,λ ′,λ ′′ |2δ (h̄ωλ − h̄ωλ ′− h̄ωλ ′′). (3.59)

Similar expressions can be computed for the remaining three types of scattering pro-

cesses. By looking at tab. 3.1 and fig. 3.1 we can also understand that for each process

λ ′ −→ λ + λ ′′ there is another process λ + λ ′′ −→ λ ′, which can be seen as its time

reversal. A similar relationship holds for λ −→ λ ′+λ ′′ and λ ′+λ ′′ −→ λ scattering

mechanisms. Thus we aim at evaluating the following non-equilibrium amplitudes

∆1
λ ,λ ′,λ ′′ ≡ Γ(λ ′+λ ′′→ λ )−Γ(λ → λ ′+λ ′′) and ∆2

λ ,λ ′,λ ′′ ≡ Γ(λ ′→ λ +λ ′′)−Γ(λ +λ ′′→

λ ′). Since in equilibrium conditions we expect them to be zero in virtue of the princi-

ple of detailed balance, if we switch on a small temperature gradient - and assume a

non-equilibrium phonon distribution linear in
~∇T - we can approximate

∆
1
λ ,λ ′,λ ′′ ≈ (nλ ′+nλ ′′−nλ )W

0
λ→λ ′+λ ′′ , (3.60)

∆
2
λ ,λ ′,λ ′′ ≈−(nλ +nλ ′′−nλ ′)W

0
λ+λ ′′→λ ′, (3.61)

where the 0-superscript in the scattering rates means the equilibrium distribution is

used. Therefore we can write

(
∂nλ

∂ t

)
sc.

= ∑
λ ′,λ ′′

[
1
2
(nλ ′+nλ ′′−nλ )W

0
λ→λ ′+λ ′′− (nλ +nλ ′′−nλ ′)W

0
λ+λ ′′→λ ′

]
, (3.62)
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Figure 3.2: Four-phonons vertex and second order three phonons diagram.

where the 1/2 factor in (∂nλ/∂ t)1 has been added to avoid double counting, due to

the interchangeability of λ ′ and λ ′′ states. The newly introduced expressions allow the

calculation of the rate of the phonon population in terms of equilibrium quantities and

scattering rates. We can proceed analogously for the remaining perturbations.

3.2.2 Four-phonon scattering

In a crystalline solid well below the melting temperature it is commonly assumed that

higher order (beyond the third) terms in the ion energy expansion can be neglected.

Despite this being truthful for most materials, it has been proven wrong - even at

relatively low temperature - in those cases where the contribution of three-phonon

scattering is relatively weak [102], thus magnifying the effect of other mechanisms.

The scattering between four phonons at lowest order receives contributions from two

terms. On one hand it can be treated by considering the fourth order IFCs within

the FGR, with the interaction treated at the vertex level in the Feynman diagrams.

On the other hand it can be calculated with the third order IFCs within second order

perturbation theory, see fig. 3.2. The reciprocal space representation of Ĥ4 is:

Ĥ4 = ∑
λ1,λ2,λ3,λ4

Aλ1,λ2,λ3,λ4(âλ1 + â†
−λ1

)(âλ2 + â†
−λ2

)(âλ3 + â†
−λ3

)(âλ4 + â†
−λ4

). (3.63)

We will not delve into an explicit derivation of contribution of the four-phonon scat-

tering processes into the BTE, although a good reference can be found in [103] where
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Figure 3.3: Scattering of a phonon λ into a λ ′ due to isotopes or other impurities. The

total energy is conserved but the quasimomentum is not.

both the self-consistent and single mode RTA are presented and in [104]. It suffices to

say that τ
−1
λ ;4 ∼ T 2ω4

, meaning that the importance of the four-phonon vertex increases

at high temperatures and frequencies.

3.2.3 Isotope and point-defect scattering

Scattering of phonons by impurities stems from two kinds of perturbations to the

crystal Hamitonian: through a change in the mass, which prompts a variation in the

kinetic energy, and through a local variation of the interatomic bonds near the defect

site. Normally in a crystal even in absence of external defects the translation symmetry

is broken at the kinetic level by the random concentration of mass impurities, due to

the presence of isotopes. Indeed we can write

K̂′ = ∑
iτα

P̂2
iτα

2miτ
= ∑

iτα

P̂2
iτα

2m0τ

+∑
iτα

P̂2
iτα

2miτ

(
m0τ −miτ

m0τ

)
≡ K̂0 +∆K̂, (3.64)

where the subscript 0 indicates terms that fulfill the translation symmetry. For every

type of atom - τ in the unit cell we can take m0τ ≡ ∑ j m jτ f jτ , with f jτ being the natural

concentration of the isotope - j. The latter is a parameter that cannot be inferred

from calculations, rather its value should be determined from the natural occurrence

of isotopes. The perturbation herein defined is quadratic with respect to the phonon

creation and annihilation operators, therefore energy conservation allows for elastic

processes where a given mode λ is scattered into a mode λ ′ with different wavevector
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but same energy, see fig. 3.3. Following the work of Tamura [105, 106], if we apply the

FGR with V̂ ≡ ∆K̂ we get

W iso

λ ,λ ′ =
π

2
ω

2
λ

nλ (nλ ′+1)∑
τ

g(τ)|~sτλ ·~sτλ ′|2δ (ωλ −ωλ ′), (3.65)

where the randomness of the distribution of the isotopes has been taken into account.

The introduced parameter g accounts for the isotope distribution, namely

g(τ) = ∑
j

f jτ

(
1−

m jτ

m0τ

)2

. (3.66)

For example, the value of g in the case of As is 1.97×10−4
. Thus, the phonon population

rate due to isotopes only is

(
∂nλ

∂ t

)
iso.

= ∑
λ ′

W iso,0
λ ,λ ′ [nλ ′−nλ ], (3.67)

where again the superscript 0 means that the Bose-Einstein distribution is employed

and where the first order relation W iso,0
λ ,λ ′ = W iso,0

λ ′,λ is used. It is worth to consider that

eq. 3.67 can be treated within a single mode RTA formalism as it can be proven that

the term ∑λ ′W
iso,0
λ ,λ ′ nλ ′ is constrained to vanish because of symmetry properties [107].

In particular it vanishes as ωλ and |~sτλ ·~sτλ ′| are invariant under inversion while ~q is

obviously not. Thus using a relaxation time is a well suited and rigorous approach in

this case.

Since isotopes involve only a mass perturbation, the kinetic part alone is affected.

However, more general impurities involve the making and breaking of inter-atomic

bonds. Therefore, a bond perturbation encoded by a change in the IFCs should be

included in these cases. As the latter may be non-perturbative, an all-order treatment

is required, which can be achieved through the theory of Green’s functions.
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The classical linear equation of motion for a supercell with an impurity in a harmonic

potential is:

(
m jτ ′∂

2
t + ∑

i,τ,α
Φ
′ j,τ ′mβ

i,τ,α

)
u j,τ ′,β (t) = 0, (3.68)

which can be written in a matrix form

(
M′ω2−Φ

′
)
~u = 0, (3.69)

where M′ (M) and Φ′ (Φ) are the mass and second order ICFs matrices for the doped

(pristine) system. If we define the matrix perturbations VM and VK , i.e. mass and IFCs

perturbations as

V i j,αβ

M (ωλ )≡−ω
2
λ

M′i−M j

M j
δi jδαβ (3.70)

and

V i j,αβ

K ≡ Φ′i j,αβ −Φi j,αβ√
MiM j

(3.71)

with V ≡VM +VK , we can rewrite Eq. 3.69 as

[ω2I−M−1/2
ΦM1/2−V ]~u′ = 0. (3.72)

The solution of [ω2I −M−1/2ΦM1/2]~u′ = 0 is the usual harmonic one but with the

dynamical matrix extended to the whole crystal. The resolvent for the unperturbed

system is the bare harmonic retarded Green’s function G+
0 defined by

〈iα|G+
0 (ω

2) | jβ 〉 ≡∑
λ

〈iα|λ 〉〈λ | jβ 〉
(
ω

2−ω
2
λ
+ i0+

)−1
. (3.73)
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Figure 3.4: Feynman diagrams for the T -matrix and interacting Green’s function. In

presence of impurities or disorder the T -matrix plays the role of the self-energy in

many body systems.

Once we have the resolvent in the V = 0 - case we can make use of the Lippmann-

Schwinger equation to find the retarded defective system T -matrix and Green’s func-

tion G+
:

T+ = (1−V G+
0 )
−1V, (3.74)

G+ = G+
0 +G+

0 T+G+
0 , (3.75)

where the perturbation is included at all orders. The Feynmandiagram representations

for the T -matrix and total Green’s function are given in fig. 3.4. Cutting the expansion

at the second order defines the Born approximation, namely T+ ≈ V +V G+
0 V . It is

possible to extract the relaxation time from the optical theorem [108] to obtain

1
τλ ,def

=−Vuc

ωλ

Im〈λ |T+ |λ 〉 , (3.76)
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where Vuc is the unit cell volume. We stress that the λ -states have been extended to

the whole supercell. The formulation introduced insofar allows us to cast an arbitrary

impurity distribution inside the perturbationV . However, this can be proven to be nu-

merically unfeasible with first principles calculations, where the employed supercells

contain a few hundred atoms at most. If we consider

V = ∑
j

Vj, (3.77)

where j indicates an individual impurity site, the expression for the T -matrix turns

into

T+ = (1−V G+
0 )
−1V = ∑

j
Vj +

(
∑

i
Vi

)
G+

0

(
∑
k

Vk

)
+O(V 3). (3.78)

Here, off-diagonal terms connecting defects at two different sites appear. If we neglect

this correlation by assuming that ViG+
0 Vi�ViG+

0 Vj for every j 6= i, we can write

T+ ≡∑
i

χiT+
i , (3.79)

where χi is the concentration of type - i impurity and

1
τλ ,def

=−χ
Vuc

ωλ

Im〈λ |T+ |λ 〉 (3.80)

if a single kind of dopant is considered. In this thesis we will use this approach. We

can try to understand the limitations that this approximation presents by evaluating

in a qualitative way the ViG+
0 Vj - term. We follow the argument proposed by Mott

and Massey [109, 110] in the case of a two - mass defect in a crystal. It can be proven

that the off-diagonal terms become relevant if the amplitude of the scattered state at a

neighboring defect is large, i.e. if

√
σ/R ≥ 1 where σ is the cross-section and R is the

distance between the two defect centers. This relation can be rewritten as 1/|~q| ≥ R or
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λ ≥ R, where λ is the wavelength, if we consider the optical theorem. In this case the

inter-site correlations can be safely neglected for most of the modes with the possible

exception of long - wavelengths phonons, if we consider only dilute impurity con-

centrations. Furthermore at non-cryogenic temperatures the ~q→ 0 modes generally

account for a small fraction of the transported heat in a crystal as shorter wavelengths

have a non - negligible contribution to the material heat capacity. Although we are

mainly interested in studying the thermal conductivity of semiconductors in the low-

doping limit by mean of the independent defect approximation, it is worth to mention

that several theoretical treatments have been developed in order to overcome its lim-

itations, as neglecting the correlation between defects can lead to strong inaccuracies

in strongly-doped, disordered and alloy systems at low temperature. A list of these

methods includes the virtual crystal approximation (VCA), the coherent potential ap-

proximation (CPA) [111, 110] and the application of special quasirandom structures

(SQSs) [112] to study the effect of force constant disorder in semiconductor alloys [113].

3.2.4 Electron-phonon scattering

Electron-phonon coupling can be one of the most relevant interactions in solids, es-

pecially in the case of metals. Although in weakly doped semiconductors it can be

neglected, this is not the case when the doping concentration exceeds a value of ∼

10
20

cm
−3

[98]. Since the masses of ions M are much larger than the electron mass

me, it is possible to write the ion-electron Hamiltonian in power series for me/M. The

lowest order corresponds to the Born-Oppenheimer Approximation, which assumes

a partial decoupling between ionic and electronic degrees of freedom. The first order

of the expansion, instead, gives the vertex of the electron-phonon interaction: as the

atoms are displaced out of their equilibrium positions, this triggers a change δV in the

potential felt by the electrons. This allows transitions between different Bloch states, i.e.〈
ψn~k

∣∣δV
∣∣ψm~k′

〉
. If we assume a linear relation between δV and the ion displacements

we can write

δV =~u · ε−1(~∇V )eq., (3.81)
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where the gradient is evaluated in the minimum energy equilibrium configuration,

~u is the ion displacement and ε here is the dielectric matrix. The latter serves the

purpose of screening the interaction inside a crystal. References about the Thomas-

Fermi and Lindhard (RPA) screening can be found in [114]. Since δV is the source

of electron-phonon interaction, hereafter we will evaluate it in its second quantization

form:

Ĥeph = ∑
~k,n,m

∑
σ

∑
λ

g
~k,m
~k+~q,n

(λ )ĉ†
~k+~q,nσ

ĉ~k,mσ
(âλ + â†

−λ
), (3.82)

where σ represents the electron spin and λ is a short for the phonon wavevector~q and

polarisation b as always. The operators ĉ and ĉ†
are the fermionic annihilation and

creation operators such that {ĉ~kσ
, ĉ†

~k′σ ′
} = δ~k~k′δσσ ′ , {ĉ~kσ

, ĉ~k′σ ′} = 0 and {ĉ†
~kσ

, ĉ†
~k′σ ′
} = 0.

The matrix elements g are the electron-phonon couplings:

g
~k,n
~k+~q,m

(λ ) = ∑
α,b

Aλ
α,b

〈
ψm,~k+~q,σ

∣∣∣δ~q
bα

V
∣∣∣ψn,~k,σ

〉
, (3.83)

where α is the Cartesian direction and the A - elements relate the atomic displacements

to the phonon creation and annihilation operators in eq. 2.52. These g - couplings

describe the transition betweendifferent electronic states triggered by a lattice vibration

λ . We can use the herein defined Ĥeph alongwith a single-particle electronHamiltonian

Ĥe = ∑n~kσ
ε~k,nĉ†

~k,n,σ
ĉ~k,n,σ to write

Ĥ = Ĥ0 + Ĥe + Ĥeph. (3.84)

This is the Frölich Hamiltonian [115] with the electronic bands treated as stationary

solutions in a perfect periodic lattice. It is possible to include at the DFT level the effects

of the electron-electron Coulomb interaction inside the energy terms ε~k,n. Whereas the

electrons are mostly influenced by lattice vibrations near the Fermi level, phonon fre-

quencies on the other hand experience strong renormalization due to screening effects.
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Figure 3.5: Electron-phonon bubble diagram with virtual electron-hole pairs created

inside the loop.

Thereby it is reasonable to start the description of their mutual interaction from a bare-

electron point of view. time-dependent perturbation theory can be used to include the

effect of electrons on the phonon states in a Green’s function perspective. As we are

mainly interested in modeling the phonon relaxation time due to electron scattering,

the phonon self-energy Π at the lowest order in the Matsubara representation is:

Πλ (iωn) =
1

N~k
∑
~k,~k′
|g~q~k,~k′|

2 f (ε~k)− f (ε~k′)
iωn + ε~k− ε~k′

, (3.85)

where f is the Fermi-Dirac distribution andwhere theMatsubara summation has been

performed. The Feynman diagram representation of the self-energy is depicted in

fig. 3.5. We can derive the phonon relaxation time as τ
−1
λ

= −2Im{Πλ (ωλ )}, which

requires the analytic continuation iωn→ ω +δη :

τ
−1
λ

=
2π

N~k
∑
~k,~k′
|g~q~k,~k′|

2[ f (ε~k)− f (ε~k′)]δ (ωn + ε~k− ε~k′). (3.86)

This equation only allows for a single mode RTA treatment of the phonon Boltzmann

equation and it can be further simplified if we take the low-T limit or double delta ap-
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proximation [116], so that f (ε~k)− f (ε~k′)−→− f ′(ε~k)ω~q. More sophisticated treatments

that include the possibility of mode re-population can be found in [117]. The ab initio

evaluation of eq. 3.86 is generally cumbersome, especially in the case of complex unit

cells, thus it is customary to make simplifying assumptions in order to reduce the

computational burden, like fitting first principles calculations to deformation potential

models [118, 119]. These quantify how the electronic bands are affected by lattice

displacements through the perturbative evaluation of a Hamiltonian of the type [120]:

Ĥd
i j = ∑

α,β=1...3
Dαβ

i j εαβ , (3.87)

where Dαβ

i j is the deformation potential operator (second rank tensor) and εαβ is the

strain tensor. Under simplifying assumptions on the electronic and phononic dis-

persions, using a deformation potential of the form Daq (Do) for acoustic (optical)

branches in the long-wavelength limit leads to an analytical expression for the relax-

ation times [98]. In the end we mention a recent theoretical development that consists

into finding aWannier functions representation of the Bloch states, so that it is possible

to interpolate them to a tight reciprocal space mesh [13]. This in turn improves the nu-

merical accuracy of the relaxation times and transport coefficients from first principles

and without resorting to deformation potential models.

3.2.5 Boundary scattering, size-related effects and interfaces

In finite size systems an additional scattering term appears, as phonons interact with

the boundaries and are reflected by them. The corresponding scattering rates can be

modelled as [121]:

τ
−1
λ ;bound. =

vλ

L
(1− pλ ), (3.88)

where L is the length of the crystal and pλ is the so called "specularity parameter":
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pλ = exp
[
−16π

3
η

2q2]
(3.89)

which takes the value of one for a perfectly smooth surface (corresponding to a specular

reflection) and the value of zero in the case of a completely rough surface, correspond-

ing to totally diffusive scattering. The latter case is also known as "Casimir limit" [122].

In eq. 3.89 an empirical parameter η - to be fitted to first principles calculations or

experimental data - has also been introduced. The presence of this additional term is

particularly important at low-temperature: indeed, it dominates the phonon physics

in the T−→0 limit as the remaining scattering processes vanish, leading to a scaling of

the transport coefficients with L [123]. Furthermore, it is generally important in low-

dimensional systems (2D crystals like graphene) and nanostructures, since its presence

is often the solemechanism that can lead to a finitemean free path for long-wavelength

acoustic modes.

Boundary scattering can be used to design the phonon-related transport properties

in nanostructures, as they are dependent on the system geometry. Indeed, it was

observed that the introduction of a serpentine structures in Si nanowires decreases

the thermal conductance by 40% below 5 K [124]. In ref. [125] a T -matrix based first

principles formulation which included the effect of the boundaries at the harmonic

level has been proposed to study the surface roughness of silicon nanowires, showing

that the conductivity can take lower values than those obtainable from the application

of the Casimir limit (pλ ≡ 0).

It has also been shown that the scattering from boundaries, along with the intrinsic

three-phonon interactions and disorder, marks the difference between alloys and single

crystals cross-plane heat conduction. In particular, the presence of Rayleigh scattering

in alloys leads to a quasiballistic behaviour for the cross-plane conductivity κcross ∼

L2−α
[126], where 1 < α < 2 is the Lévy exponent [127]. The specific value of α is

determinedby thedominant scatteringmechanism (τ−1∼ωn
, n>3=⇒α ≡ 1+3/n). On

the other hand, single crystals have a logarithmic scaling [126] with respect to the size.

Another interplay betweenboundary, intrinsic anddisorder-related scattering has been
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theoretically evaluated in Mg2SixSn1−x nanowires [128]. Since alloying reduces the

number of phonons with high mean free path with respect to the parent compounds,

this can explain the differences in the ballistic-to-diffusive crossover between pure

Mg2Si / Mg2Sn and their alloys.

Size effects in phonon transport have been highlighted in carbon nanotubes, where it

was proven that they leads to a power law scaling of the conductivity with respect of

the nanotube length, namely κ ∼ L
1/3

[129]. This power law was also predicted to

saturate, for a length of 10 µm at 300 K, to an approximate value of∼ 4000 W·K−1·m−1

if the three-phonon scattering is included beyond the first order only in perturbation

theory.

Regarding isotope-enriched boron nitride nanotubes, it has been suggested [130] that a

finite size may lead to the Anderson localisation for phonons. However, the possibility

of using thermal transport measurement to observe it was disproved by theoretical

calculations [131]. Indeed, in the 0 K - 50 K temperature range the transport is ballis-

tic, with a size-independent transmission function, while for higher temperatures an

eventual localisation regime should coexist with the diffusive scattering induced by

anharmonicities. Rather, a reduction of the conductivity is better explained in terms of

phonon-isotope scattering [132]. Nevertheless, in more recent times Anderson locali-

sation detection at the thermal transport level has found some positive confirmation in

theoretical calculations on aperiodic Si/Ge superlattices [133] - where it was predicted

to quench the conductivity to a value of 1.3 W·K−1·m−1
at room temperature (reduc-

tion of 98%), with a non-monotonic trend of κ as a function of the system size - and

in experiments on GaAs/AlAs superlattices with embedded ErAs nanodots, where a

maximum in the size-dependent conductivity has been detected at 30 K [134].

In the case of interfaces between materials, the description of the "surface roughness" -

namely, how coherent are the scattering and propagation of phonons - is a major mod-

ellinghurdle. Theneed tofindhow the transmission functionof phonons behaves at the

interfaces fromfirst principles has prompted the development of the acousticmismatch

model (AMM) [135] and of the diffusivemismatchmodel (DMM) [136, 137]. TheAMM
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assumes a coherent transport regimewith themodes behaving at the boundary accord-

ing to the Snell’s law, and is generallymore accurate at low temperatures. TheDMMon

the other hand takes the phonon propagation to be completely diffusive, and performs

better at high T ( > 30 K according to measurements by Swartz and Pohl [136]). None

of these these approaches can reliably model the thermal transport at the interface in

thewhole low-T / high-T crossover, and the acoustic (diffusive)mismatchmodel rather

constitutes an upper (lower) bound for the conductance. Improving these two models

is possible by mean of molecular dynamics calculations, which, however, completely

neglect the quantum effects for phonons. Other methods involving the use of atomistic

Green’s function techniques (AGF) have been suggested [138, 139]. Although harmonic

models are usually employed to study interfaces and nanostructures within AGF, ex-

tensions that include anharmonic effects [140] via Keldysh formalism [141] have been

developed. The inclusion of anharmonicities in the modelling of interfaces has also

been proposed by [142] in the so called "anharmonic inelastic model" (AIM), which

shows an improvement with respect to the DMM for Pb/diamond and Au/diamond

interfaces since the temperature dependence of the phonons populations is taken into

account. Finally, we mention the development of Monte Carlo methods [143] to study

from first principles the boundary scattering in thin film and interfaces under the

DMM, including also the elastic mode conversions. This approach has been combined

with AGF techniques to study the thermal transport at GaN/AlN graded interfaces

[144].

3.2.6 Phonon Boltzmann equation and thermal conductivity

Once the scattering rates have been evaluated, we can use them to solve the Boltzmann

equation for phonons. If we assume that a thermal gradient
~∇T is switched on and a

stationary state is obtained,there is a balance between the collision and diffusion terms

of the BTE where the latter can be written as

(
∂nλ

∂ t

)
diff.

=~vλ ·~∇T

∂n0
λ

∂T
. (3.90)
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We have assumed that the thermal gradient is coupled with the spatial dependence

of the distribution function in low - field condition. Specifically we have taken nλ ≈

n0
λ
+ ~Fλ ·~∇T with the gradient appearing only linearly in the equation, so that any

higher order term in
~∇T can be neglected. With this assumption the BTE is linearised,

if we include three-phonons and impurity-mediated two-phonons interactions in the

collision part we obtain:

Bλ
~Fλ =~vλ

∂n0
λ

∂T
+ ∑

λ ′,λ ′′

[
1
2
(~Fλ ′+~Fλ ′′)W

0
λ ,λ ′+λ ′′+(~Fλ ′−~Fλ ′′)W

0
λ+λ ′′,λ ′

]
, (3.91)

with

Bλ ≡ ∑
λ ′,λ ′′

[
1
2

W 0
λ ,λ ′+λ ′′+W 0

λ+λ ′′,λ ′

]
+∑

λ ′
W iso,0

λ ,λ ′ +
1

τλ ,def
. (3.92)

Other scattering mechanisms can be included in a similar way. We can notice that only

the three-phononmediated interaction is considered beyond the RTA, while scattering

from impurities and isotopes only contribute to decrease the population of the modes.

The solution of eq. 3.91 can be found self-consistently starting from the RTA solution,

namely

~Fλ ,0 ≡~vλ

∂n0
λ

∂T

1
Bλ

. (3.93)

A different formulation based on the variational method instead has been proposed

by [145]. Once the solution of the BTE is known, the thermal transport coefficients

can be evaluated. The heat flux carried by a phonon population in non-equilibrium

stationary condition is

~J =
1

Vuc
∑
λ

h̄ωλ~vλ nλ =
1

Vuc
∑
λ

h̄ωλ~vλ (~Fλ ·~∇T), (3.94)
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Figure 3.6: Thermal conductivity of silicon as a function of temperature, theoretical

vs experimental results. Continuous line: self consistent calculation according to

eq. 3.95 and 3.96 carried out with the almaBTE software. Stars: measurements with 5%

uncertainty taken from ref. [7].

where the term containing the equilibrium distributions vanishes as ~vλ = −~v−λ . We

can therefore identify the phonon contribution to the thermal conductivity as

κ
αβ =

kB

Vuc
∑
λ

( h̄ωλ

kBT

)2
n0

λ
(n0

λ
+1)vα

λ
Lβ

λ
, (3.95)

where we have defined an effective directional mean free path Lβ

λ
from

Fβ

λ
≡ Fβ

λ ,0 +∆[Fβ

λ
]≡−

∂n0
λ

∂T
Lβ

λ
. (3.96)

The nomenclature "effective" derives from the full solution of the BTE which assumes

a non - exponential relaxation of the phonon populations. The lattice thermal con-

ductivity as a function of temperature in the example case of pure silicon is plotted in

figure 3.6. The ab initio theoretical calculation - involving three- and isotope mediated

phonon scattering only - is in good agreement with the measured values reported

by Glassbrenner and Slack [7], particularly at low temperature (where the contribu-
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tions from other mechanisms - above all, four- and electron- phonon - can be safely

neglected).

The present formalism does not allow us to distinguish explicitly between Normal and

Umklapp processes and thus to define an RTA in the sense that inelastic processes are

explicitly considered. Nevertheless it can be intuitively understood that when the U -

processes dominate, the true solution of eq. 3.91 will not differ much from the single

mode RTA case where phonons tend to relax exponentially. The iterative procedure

couples different phonon modes together, whereby the magnitude of |~Fλ − ~Fλ ,0| tells

us how much different phonon modes interact while evolving towards equilibrium.

If the transport is dominated by long - wavelength phonons, most of the processes

these phonons undergo are Normal as the outgoing states from a scattering event are

unlikely to exit the Brillouin zone. These processes contribute to keep the phonon gas

adrift and in the stationary non-equilibrium state, with a distribution that behaves like

n~q(ω; µ) = [exp(β (h̄ω−~µ ·~q))−1]−1, (3.97)

where ~µ is the total crystal quasimomentum of the distribution associated with the

drift velocity of the flow and linear in the thermal gradient. But as long as the iterative

procedure continues, more and more states with higher ~q will be formed to have, in

the end, Umklapp processes that will equilibrate the system. It can be seen that in the

limit where the U processes vanish, the thermal conductivity diverges. Indeed, this

is equivalent to inducing a finite heat flux response for a distribution of the form of

eq. 3.97, despite having a zero thermal gradient.

Despite being out of the scope of this thesis, we can mention that before the advent

of first principles based calculations it was common strategy to employ the relaxation

time approximation to evaluate the thermal conductivity with analytical formulae for

the scattering rates. Common relaxation times include the Callawaymodel [146]which

assumes a linear phonon dispersion ω~q = v|~q| and a deviation from equilibrium that

is proportional to −τT~v · ~∇T , with τT ≡ τc(1+ a/τN). The definition of τc includes the
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separate contribution from Normal and Umklapp processes, i.e. τ−1
c = τ

−1
N + τ

−1
U . This

model further separates the conductivity into two contribution κ1 and κ2 where:

κ1 ≡
k4

B

2π2h̄3v

∫ TD/T

0
dx

x4ex

(ex−1)2 τc, (3.98)

κ2 ≡
ak4

B

2π2h̄3v

∫ TD/T

0
dx

x4ex

(ex−1)2
τc

τN
(3.99)

and

a≡

[∫ TD/T

0
dx

x4ex

(ex−1)2
τc

τN

]/[∫ TD/T

0
dx

x4ex

(ex−1)2
1

τN

(
1− τc

τN

)]
. (3.100)

If no Umklapp scattering is present we can easily see that both a and κ diverge as ex-

pected. Theanalytical formulas for the relaxation times take τ
−1
U =Aω2T 3 exp(−TD/bT )+

c/L and τ
−1
N = Bω2T 3

where A, B and b are parameters to be determined experimen-

tally and where c/L represents the boundary scattering (c is the speed of sound and

L the size of the system). A complete discussion about improved versions of the Call-

away model can be found in Refs. [147, 148]. Finally, we mention that in more recent

times the linearity of the BTE has led to the development of the so called "relaxon the-

ory" [101] where the collision operator is diagonalised and the thermal conductivity

can be written in terms of "relaxons", i.e. linear combinations of phonon modes that,

by construction, relax exponentially towards equilibrium. The latter methodology

has proven particularly useful to study transport in low - dimensional materials, and

concerning hydrodynamic thermal transport properties like phonon second sound,

Poiseuille flow and thermal viscosity [149]. Since for the latter the transport is domi-

nated by Normal processes, it is clearly impossible to study them with accuracy from

a single mode RTA perspective.
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3.3 Measuring the thermal conductivity

In this section we review the main methods devised to measure the thermal transport

coefficients in bulk materials. Thermal conductivity measurement techniques in ma-

terials can generally be categorised as static or steady-state and dynamics. For more

detailed information the reader can look at the review of Zhao et al. [150].

3.3.1 Steady-state methods

In steady-state measurements a temperature difference ∆T = Th−Tc is established at

the boundaries of a system of width d and section S and then left unchanged. Then the

ensuing heat flux ~J ≡ Q̇~n/S crossing the material surface is measuredwith temperature

sensors, with the thermal conductivity given by κ = Q̇d/S∆T. This method is well

suited for systems with rectangular or cylindrical geometries. It is important to notice

that several sources of errors may hamper the correct evaluation of the conductivity.

One of them is the precise evaluation of ∆T: this is usually performed by means of

thermocouples with an experimental associated error that can be smaller than 1 %.

The most important hurdle concerning the measurement of κ with the steady-state

approach is related to the evaluation of Q̇. Indeed, the measured value of Q̇ not only

includes the heat flux generated by the established temperature difference but also a

contribution from dissipative mechanisms like parasitic currents or convection flows

and loss of heat even by conduction itself as the system keeps interacting with the

surrounding environment. Also, a source of error could be the thermocouples them-

selves, as heat could potentially flow through them, thus perturbing the measurement.

Moreover a substantial contribution to the heat flux can be generated by radiation

related mechanisms, especially when the operating temperature of a sample is above

∼ 1000 K. Thus, the extra-contributions to Q̇ not directly related to ∆T have to be eval-

uated and subtracted to properly assess the value of the thermal conductivity. While

the contribution from parasitic currents should be controlled to be less than 2% of the

total flux, convection/radiation phenomena can be reduced if the sample is put in a

shielded vacuum chamber. To minimise the effect of the thermocouples, low thermal
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conductivity and small diameter wires are preferred. We finally mention the compar-

ative methods where two samples of different composition are cast in series and the

thermal conductivity of one of them can be extracted if the other material conductivity

is known.

3.3.2 Frequency/time domain methods

Steady-state methods present drawbacks like the aforementioned ones concerning the

correct evaluation of Q̇. Furthermore, a sample could take a relatively long time to

reach a stationary state to begin with. Therefore several methods that involve the

evaluation of a time-dependent ∆T have been developed. Wewill review some of these

approaches.

The pulsed power technique developed by Maldonado [151] involves an ac electric

current passed through the heat source (T = Th), while the temperature of the heat

sink Tc changes slowly. A time-dependent difference ∆T (t) = Th(t)− Tc is therefore

established and can be measured with a calibrated gold-ferrochrome thermocouple.

Thus, the heat flow must satisfy the non-linear equation

Q̇ =C(Th)
dTh

dt
= R(Th)I2(t)−κ

(
Th +Tc

2

)
∆T (t), (3.101)

where C, R and κ are the heat capacity, electrical resistance (at the source) and thermal

conductance of the sample. If we can assume ∆T (t) to be small, Th can be replaced by Tc

(considered a constant) in the C, R and κ expressions: this turns the previous equation

linear and easier to solve. By knowing or measuring the value of the heat capacity

and resistance at the sink temperature and the ac current, the thermal conductivity can

be extracted from the solution of the linearised eq. 3.101 and from the thermocouple

measurements of ∆T . Maldonado [151] reports a measurement error smaller than 3%.

Another time domain approach is the hot wire method [150]. In this case, a metallic

wire (usually Ta or Pt) is embedded inside a sample with cylindrical geometry and a

constant electric bias is applied, so that the heat generated via Joule effect sets off a
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3.3. Measuring the thermal conductivity

time-dependent thermal field. The heat flow is considered to be radial with respect

to the linear source, whose diameter has to be much smaller than the sample size and

where the conductivity is assumed to be isotropic. Also, if it is assumed that the wire

length is infinite so that boundary effects can be neglected, then κ can be extracted by

measurements of the temperature at different times performed at the external surface

of the sample. This method can attain a high precision, i.e. with an error lower than

1-2 % and is usually employed for low thermal conductivity materials.

Other time domain methods worth mentioning are the transient plane source (TPS)

where the thermal response is induced by inserting a metal strip (or a disk) be-

tween two sample slabs to then let a current flow through [152] and the laser flash

method [153, 154] where an optical stimulus is used instead. The latter method is

deemed to be particularly apt to reduce the error induced by interface resistance be-

tween samples. Both techniques extract the thermal conductivity byfitting thermalpro-

files to analyticalmodelswhich extract the thermaldiffusivityα . Inparticular, indepen-

dent measurements of the specific heat are required to extract κ from the knowledge of

α in the case of the laserflashmethod. Ofparticular importance are also the 3-ω method

introduced by Cahill et al. [155, 156] and thermoreflectance techniques [157, 158] in

both time [159] and frequency domains [160] (time domain/frequency domain ther-

moreflectance or TDTR/FDTR) which have been developed in the context of thin films

measurements but also applied for bulk materials.

In the 3-ω approach a film is positioned between a substrate (usually Silicon or Sap-

phire) and a metallic strip. Then an ac current flows through the strip which acts both

like a heater and a thermal sensor. The resulting detectable voltage includes a term

proportional to cos(3ωt +φ) - where ω is the frequency of the driving ac current and

φ is a phase - and contains the information pertaining to the film thermal transport

coefficients. Temperature profile models are fitted to the thermal sensor data to extract

the in-plane and cross-plane thermal conductivities. This method usually assumes

isotropic thermal coefficients or the alignment between the Cartesian axes of film, strip

and substrate - althoughaversion that overcome this limitationhas beenproposed [161]

- and has the advantage to reduce heat loss by radiation with an experimental error
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less than 2%, although the need of strip micro-fabrication can be challenging.

In the TDTR/FDTR techniques the samples are coated with a metallic thin film. A

pump laser beam is then used to heat the film and a probe beam to detect its reflectance

coefficient which contains the information about the sample thermal properties. More

specifically the TDTR method measures the temperature decay as a function of the

delay δ t between the pump and the probe signal while in the FDTR the delay is

fixed and the response with respect to a change in the pump modulation frequency

is measured. A photodiode is used to collect the data from the probe signal. The

thermoreflectance response at modulation ω0 can be expressed by:

Z(ω0,δ t) =Vin + iVout = β̃∆s ∑
n

h(n∆+δ t)e−iω0(nT0+δ t), (3.102)

where ω0 is the pump modulation frequency and Vin (Vout) is the in - (out - of) phase

TR signal. The function h(t) is the unity impulse response ∆ ≡ 2π/ωs is the time

interval between two pulses (at frequency ωs) and β̃ is a quantity that depend on the

power of both the pump and the probe lasers, on the reflectivity at both pump and

probe wavelengths and on the gain of photodetect. If we take the Fourier transform of

eq. 3.102 the quantity h̃(ω0+ lωs) can be interpreted as the thermoreflectance response

of the system when heated by a (continuous) Gaussian beam modulated at frequency

(ω0 + lωs). The latter contains information about the thermal conductivity which can

can be extracted by fitting the thermoreflectance response phase tan−1(Vin/Vout) to a

model [162]. Following [163], in a typical experiment a pump laser heats a surface with

an angle-independent intensity field p0(r)∼ Aexp
(
−2r2/w2

0
)
, which induces a thermal

response θ(r) in the sample. The latter can be evaluated by means of a probe beam

with intensity p1(r)∼ exp
(
−2r2/w2

1
)
. Specifically, the probe laser measures an average

temperature variation ∆T = E[θ(r)] over the p1 distribution. Thus we can write:

∆T = 2πA
∫

∞

0
kG(k;κ,α)eπ2k2(w2

0+w2
1)/2dk, (3.103)

where G(k;κ,α) = κ(q2+(2πk)2)−1/2
is theHankel transform of the solution of the heat

82



3.4. Chapter overview

conduction equation in cylindrical coordinates for a semi-infinite plane - heated by a

periodic and point-like source of unit power and angular frequency ω - and q2 ≡ iω/α .

In the frequencydomain, the individual components of the response arepickedupwith

a lock-in amplifier. If we define the quantities S(m)≡ ∆T (mωs +ω0)+∆T (mωs−ω0) and

D(m)≡ ∆T (mωs−ω0)−∆T (mωs +ω0) with m integer [164], we can write the variation

of the reflectivity as:

∆R(t) =
dR
dT

(
∑
m

S(m)eimωst +∑
m

D(m)eimωst

)
=

R
√

2
V Q

Vf (t), (3.104)

where Q is the quality factor of the resonant circuit, V is the average voltage output of

the detector and Vf (t) is the (complex) rms voltage measured by the lock-in amplifier.

The phase of the measured signal can be extracted from

Vin(t)
Vout(t)

= i
∑m S(m)eimωst

∑m D(m)eimωst
. (3.105)

3.4 Chapter overview

Summarising this chapter, we have derived the Onsager reciprocal relations for trans-

port coefficients and the Green-Kubo (GK) formula for thermal conductivitywithin the

linear response theory formalism, discussing the hurdles for its numerical implemen-

tation, and we have given an introduction to the Boltzmann transport equation (BTE).

Then we have explained the details about the most relevant phonon scattering mech-

anisms in the contest of thermal transport. Finally, we have obtained the expression

of the lattice conductivity with respect to the linearised BTE. We have concluded with

a summary on the most relevant methods to extract the value of κ from experimental

measurements. This chapter marks the end of our discussion about the theoretical

methods employed during this thesis. In the next chapter we are going to present

recent development on pristine and intrinsically doped boron arsenide transport prop-

erties, to then show our results concerning the effect of impurities on the BAs thermal

conductivity in chapter 5.
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Introduction to boron arsenide

High thermal conductivity materials are of paramount importance for thermal man-

agement applications in electronic devices, especially in case of an increased power

density.

Boron arsenide (BAs) is a binary semiconductor with a cubic zincblend fcc structure

(space group F43m), a reported lattice constant of 4.78 Å and the experimentally

reported (indirect) electronic band gap is (1.8) 1.5 eV. First principles calculations

also show that the n and p - types mobilities of BAs are respectively 1400 and 2110

cm
2/(V ·s) [165], a result that stems from polar scattering suppression and reduction of

inter-valley transition mediated by large-wavevector optical phonons [165], the latter

being related to its large phonon acoustic-optical (a-o) band gap.

Although the first attempts to synthesise BAs date back to the 1950’s, only in recent

years have high quality crystals been produced [166]. If the first measurements of the

defect laden BAs room temperature thermal conductivity reported values around ∼

200 W ·K−1
m
−1

[167], high purity crystals present a value near∼ 1300 W ·K−1
m
−1
, i.e.

one order of magnitude larger [168, 169, 170] and in agreement with several ab initio

calculations [171, 102, 170].

Thus, the thermal conductivity of BAs is comparable with the one of diamond and this

make it a promising candidate for thermal management and electronic applications

along with its high n and p mobility. The comparison between old and new κ at room

temperature raises two questions:
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4.1. Phonon band structure and pristine conductivity

• Why is the pristine κ of BAs so high?

• How is κ affected by impurities?

Related to the first question, the failure of the Slack’s model [172] in the case of high

quality crystals can be attributed to how phonon scattering is treated. This strongly

depends on the large mass mismatch between boron and arsenic and has profound

consequences upon heat transport, as we will see in the following section. Related

to the second question, we would like to understand what kind of mechanisms make

difficult to achieve high values of the thermal conductivity and how defects, either

intrinsic or extrinsic, affect the thermal transport coefficient.

In this chapter we review the recent findings about the behaviour of the pristine BAs κ

and then summarise previous results about the effects induced by intrinsic defects on

phonon thermal transport. We reserve the analysis about relevant extrinsic dopants -

one of the main results of this thesis - to the next chapter. Since the main contribution

to the boron arsenide conductivity comes from phonons, for the rest of this and the

next chapter we refer to it as κ
ph
. Finally, we recommend to the reader the work of

Kang et al. [166] for a general overview of the experimentally measured electronic,

optical, thermodynamical and mechanical properties of pristine boron arsenide.

4.1 Phonon band structure and pristine conductivity

Theoretical calculations and experiments have identified a set of rules that an insulator

or semiconductor needs to follow in order to have a large thermal conductivity. These

rules can be summarised into the effective model developed by Slack [172]:

κ
ph

= A
〈Ma〉θ 3δ

γ2n2/3T
, (4.1)

where 〈Ma〉 is the average atomicmass inside the unit cell, δ 3
is the volume per number

of atoms, θ is the Debye temperature, γ is the averaged Grüneisen parameter and n is

the number of atoms in the unit cell. The value of A depends on γ and is roughly of the
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4. Introduction to boron arsenide

Figure 4.1: Phonon band structure obtained through application of the VASP [8, 9, 10]

and Phonopy [1, 2] packages. The bunching of acoustic frequencies is noticeable at the

K point.

order of ∼ 10
−8
. Slack’s Model is very instructive as it clearly shows that to have high

values of κ
ph

at a given temperature we need few atoms per unit cell, small Grüneisen

parameter, large volume per atom and high Debye temperature. From a first principles

perspective small γ and n means weak anharmonicities and few channels for scattering

events at the same time. Also, high θ and δ imply stiff bonds and light atoms.

In boron arsenide the phonon spectrum presents a large acoustic-optical band gap

and acoustic phonon bunching - namely, the grouping of different frequencies near

a certain wavevector - as a consequence of the large mismatch between the B and As

masses, see figures 4.1 and 4.2. This has profound influence on the thermal properties.

Having a large a-o gap reduces the contribution from high frequency optical modes

to the heat transport (as they are exponentially suppressed by the heat capacity) and

more importantly it decreases their importance in suppressing the acoustic phonons

lifetimes. To prove the latter, we can define the scattering phase space for the three-

phonon anharmonicity as [173]:
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4.1. Phonon band structure and pristine conductivity

Figure 4.2: Total and projected phonon density of states obtained through application

of the VASP [8, 9, 10] and Phonopy [1, 2] packages. In the acoustic range As dominates

the phDOS behaviour in virtue of its much larger mass.

P3 =
2

3Ω
∑
b

∫
d3q
[1

2
D−

λ
+D+

λ

]
=

1
Ω

∑
b

∫
d3qD+

λ
, (4.2)

with

D±
λ
≡ ∑

b′,b′′

∫
d3q′δ (ωb,~q±ωb′,~q′−ωb′′,~q±~q′−~G), (4.3)

where Ω = n jVBZ
is a normalisation factor, with n j being the number of branches

with Brillouin zone volume V
BZ

. The herein defined P3 measures the number of

channels available for scattering according to the energy conservation principle. We

also recognise that the expressions for D±
λ
contribute to define (∂nλ/∂ t)sc., see eq. 3.62.

Clearly having a small scattering phase space does increase the thermal conductivity as

there are less states phonons can scatter into via third order anharmonic processes. This

has been explored in [173] where a negative correlation between κ
ph

and P3 has been

found for several binary compounds through an adiabatic bond charge model of the

dispersion relations. In BAs in particular the a+a←→ o and the a+o←→ o processes

are prevented and largely reduced, respectively, with the transport dominated by
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a+ a←→ a events instead. This can be further understood in terms of the simple

Debye-Eistein model. If we take take the dispersions to be linear isotropic (ωac,~q ≡ v|~q|)

and constant (ωopt,~q = ωo) for acoustic and optical modes respectively and with a cutoff

for integration qD, we obtain:

P3[a+a←→ o] =
9

ωo

[
2ω0

5qDv
− ω2

o
(qDv)2 +

2ω3
o

3(qDv)3 −
ω6

o

30(qDv)6

]
. (4.4)

In a realistic situation ωo represents the highest optical frequency. Taking (ω ′o,v
′) =

β (ω0,v), we can see that P3 −→ P3/β . In a binary compound it can be easily noticed

that the scaling factor β grows with the mass ratio between the two elements of the

unit cell and this explains the role played by the mismatch between As and B masses

in leading to low three-phonon scattering rates. Furthermore the bunching of acoustic

phonons prevents them from decaying into other acoustic phonons by anharmonic N

and U processes due to a general theorem that states that modes cannot scatter into

other states with higher phase velocity [174].

Scattering from isotopes is also reduced: in a binary semiconductor, the fact that

the square norm of a phonon state grows with the atomic mass makes the boron

contribution to the phonon-isotope interaction much smaller than for the arsenic.

Moreover As appears to be isotopically pure.

The iterative solution of the BTE for BAs also shows that most of the three-phonon

processes are not resistive, i.e. they increase the thermal conductivity. These consid-

erations also hint that other interactions where U-processes are dominant might play

a relevant role into establishing the experimentally measured value of the BAs κ
ph
. If

we consider three-phonon and phonon-isotope interaction only, the calculated room

temperature thermal conductivity of BAs is about∼ 2500W ·K−1 ·m−1
which is almost

twice the experimentally reported value as shown in fig. 4.3 and previously computed

in ref. [171].

It has therefore been suggested that other mechanisms may reduce the conductivity

further. Of particular relevance are the four-phonons scattering processes, for reasons
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4.1. Phonon band structure and pristine conductivity

Figure 4.3: Thermal conductivity as a function of temperature, RTA and full iterative

solution. Only three-phonon and phonon-isotope scattering are considered.

that can be summarised as follows. First of all their importance is expected to in-

crease at medium and high temperature, since the corresponding rates w4 grows as T
2

(w4/w3 ∼ T). Furthermore, the conductivity of several materials like diamond, silicon

and germanium present a decrease of 30% at 1000K which has been attributed to the

four-phonon rates [103]. This reduction is even larger in the case of Lennard-Jones

argon (60% at 80 K). In the particular case of optical phonons, high order (n≥ 4) scat-

tering events can dominate the suppression of the heat carrier lifetimes even at low - T

as also suggested by normal mode analysis.

We need to stress that although the four-phonon processes can be important, their

relevance is mostly related to the vertices constructed with the fourth anharmonicity

of the energy expansion. Although the second-order three-phonon events possess the

same order of magnitude as the four-phonon, they are generally forbidden by energy

and momentum conservation as either the ingoing and outgoing states must belong

to the K - mesh. Since N(3;2nd)/N(4;1st)∼ 10−3−10−5
, we can generally neglect these

second order processes.

In the particular case of boron arsenide, calculations performed by Feng et al. [102]

and experiments from Tian et al. [170] have proven that four-phonon scattering is of
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paramount importance as it reduces the conductivity from∼ 2500W ·K−1 ·m−1
to about

the experimentally observed value. Feng et al. performed their calculations under the

single mode RTA assumption, where the four-phonon events are dominated by inner

interband Umklapp scattering while the three-phonon processes are dominated by

intraband Normal scattering. Also, in BAs the optical phonons lifetimes are reduced

by 60 % at 1000 K when fourth order anharmonicity is included. The reason behind

the importance of the four-phonons events is largely due to the small third-order

scattering phase space. Indeed, while the aforementioned large a-o band gap and

phonon bunching strongly restrict the number of available states that phonons can

scatter into through the three-phonons vertex, these restrictions do not occur at the

four-phonons level. For example at 21 THz we have N(3ph)/N(4ph) ∼ 20/107
. This

behaviour is generally expected for binary semiconductors and insulators where a

large difference between the masses of the constituent atoms is present. A thorough

analysis that shows when this is the case has been performed by Ravichandran and

Broido [175] where the importance of selection rules has been highlighted.

It has also been shown that the interplay between three- and four-phonons scattering

processes is also responsible for the non-monotonic pressure dependence of the BAs

thermal conductivity [176]. If only the third order anharmonicity is included we have

dκ
ph
/dP < 0 in boron arsenide [177]. This result stems from the large mAs/mB ratio,

which in turn is responsible for the de-bunching of the acoustic phonons at high

pressure (different frequencies increase differently with pressure) and consequently of

the increase of the (dominant) aaa scattering phase space, something that per se cannot

be predicted with the Slack’s model. When the fourth anharmonicity is included

the aaoo and aaao processes weaken for pressures lower than 50 GPa, thus leading

to dκ
ph
/dP > 0, while at pressure higher than 50 GPa the behaviour is dominated

by the three-phonon aaa scattering which decreases the conductivity. A temperature

dependent maximum of κ(P) is observed in BAs.

The lattice thermal conductivity of cubic BAs can be evaluated efficiently with the

methodology introduced in the previous chapter, see Eq. 3.95:

90



4.2. Intrinsic defects

κ
ph

=
1
3

Tr
[
κ

αβ

]
=

kB

Ωs
∑
λ

(
h̄ωλ

kBT

)2

n0
λ
(n0

λ
+1)vλ Lλ , (4.5)

with

Lλ ≡ τ
0
λ
(vλ +∆λ [Fλ ]) (4.6)

and

τ
0
λ
=

[
1

τ
3ph

λ

+
1

τ
4ph

λ

+
1

τ iso
λ

+
1

τdef
λ

]−1

, (4.7)

where three-, four-, anddefect-mediated two-phonon scatteringprocesses [178, 103] are

considered. Three-phonon scattering is included in the self-consistent part ∆λ , while

the remaining processes are present only in the expression of τλ (single mode relax-

ation time approximation or SMRTA). We repeat that the third order anharmonicity is

dominated by Normal processes while the four-phonons involve mostly Umklapp pro-

cesses [102]. The anharmonic three- and four-phonon scattering rates can be evaluated

from first principles by computing the third and fourth-order force constants [103, 102]

while to evaluate the phonon-isotope and phonon-substitutional interactions we use

the formulation introduced in the previous chapters, refs. [106] and [99, 100] respec-

tively, along with a distribution of uncorrelated substitutional defects.

4.2 Intrinsic defects

Obtaining high quality BAs crystals is not a simple task due to impurities that hinder

the thermal transport in samples, We can ask what kind of defects are present in boron

arsenide and how they affect its thermal conductivity. In recent years the role played

by several intrinsic impurities have been explored [167, 179, 180]. Here we will review

the literature concerning vacancies and antisites.
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4.2.1 Vacancies and antisites

Ab initio calculations highlighting the role of vacancies in reducing the thermal con-

ductivity of boron arsenide have been reported by Protik et al. [181]. One peculiarity

that sets vacancies apart from other point defects is the nature of their associated

perturbation. Previous models [182, 183] treated the scattering from vacancies at the

Born approximation level and with the corresponding perturbation split in mass and

bond parts. In particular, the last term was split in two contributions. The first one

was the difference - treated at the harmonic lattice level - between the energies of the

defect-laden and the pristine systems, with the supercell taken as in the non defective

case. The lack of methods - at that time - to reliably compute the interatomic force con-

stants was overcome with the virial theorem, so that this term could be reformulated

as a kinetic energy difference. The second contribution was due to lattice relaxation,

parametrised empirically and assumed to be small. These approximations resulted

in a vacancy perturbation containing only a mass part. However, realistic calcula-

tions without empirical parameters have proven that this cannot be done in the case

of BAs [181]. In particular it has been observed that a careful treatment of vacancies

requires the consideration of the induced bond perturbation VK only (VM ≡ 0), since

the detached atom does not contribute to thermal transport [184]. This can be proven

mathematically if we consider the classical equation of motion for a vacancy:

miüi =−∑
j

K̃i ju j =−∑
j

K0
i ju j−∑

j
(K̃i j−K0

i j)u j. (4.8)

We assume that the vacancy is in site-0 so that m0ü0 = K̃0, j = 0 ∀ j meaning that all the

linkages have been removed. The matrices K̃i j(K0
i j) are the IFCs for the defect laden

(pristine) system. Thus the perturbation near the removed atom is ∼ K0
i j meaning

that a low-order perturbation theory is unsuited to study this kind of defects. In

particular for the case of BAs the complete T -matrix approach has to be used as

the Born approximation underestimates (overestimates) the scattering rates at low

(high) frequencies, hence leading to incorrect predictions of the effects on the thermal

conductivity for concentrations higher than 0.01 %. Finally it can be seen that the
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previously mentioned RK mass model devised by Klemens and Ratsifaritana strongly

overestimates (underestimates) the impact of As (B) vacancies because of its unrealistic

ω2
behaviour, because the effect of lattice relaxation around the removed atom is

neglected and because the mass difference between arsenic and boron results in a

much larger projection of the (average) phonon eigenvector components on the former

than on the latter [185].

Concerning antisites, experiments and first principles calculations [180] have delved

into their role in suppressing the BAs thermal conductivity. Aberration-corrected scan-

ning transmission electron microscopy has shown an increased (decreased) intensity

in the B (As) concentration in samples, which suggests the presence of As
B
and B

As
an-

tisites in appreciable concentrations. This analysis has been supported and deepened

by first principles calculations proving that the formation energy for antisite pairs (∼ 2

eV) is much smaller than for vacancies or single antisites in p-doping conditions. This

suggests that pairs As
B
-B

As
may be present in high concentrations: from STEM analy-

sis the defect concentration has been estimated to be ∼ 6.6·1020
cm
−3
. The calculated

thermal conductivity in presence of this concentration of correlated antisites is about

100 W ·K−1 ·m−1
at room temperature, much lower than the pristine value but also

sensibly lower than the defected conductivity value reported in ref. [167].
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Substitutional impurities in boron arsenide

1 The role played by intrinsic defects has been summarised in the previous chapter

where it has been highlighted that κ
ph

may be reduced by one order of magnitude at

typical doping concentrations. Harnessing the high p- and n- mobilities of a boron

arsenide for electronic applications requires doping it with external impurities. Since

this may have a detrimental effect on the thermal properties of the material itself,

extrinsic dopants with possibly a low impact on BAs κ
ph

should be identified.

At the present date there is no comprehensive study about the effect of external sub-

stitution atoms, although many defects in their neutral and charged state have been

explored with reference to their stability and energy of formation [187, 188]. Im-

purities belonging to the column IV of the periodic table are interesting because of

their relatively low formation energies and because they can behave either as donors

or as acceptors, depending on whether they replace As or B. In particular, the high

p-dopability of BAs has been recently studied [188, 189].

First principles calculations, photoluminescence and electron paramagnetic resonance

experiments have been used to study if dopants like C and Si, when behaving as

acceptors, might affect the BAs-conductivity. These elements might be present as

impurities in boron precursor powders and boride based compounds. Here we show

howeachdopant in group IV (C, Si, andGe), in its neutral and charged forms, affects the

thermal conductivity of BAs. This unveils a general trend, where neutral defects reduce

1
The content of this chapter has also been addressed in ref. [186].
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5.1. VM - scattering

Figure 5.1: Acoustic phonon-impurity scattering rates vs phonon frequency, including

only the mass effect contribution. The doping concentration is fixed at 3.26 · 1018
cm
−3
.

the thermal conductivity more strongly than charged ones. We offer an interpretation

in terms of the change in orbital occupation between the original and substituted

system. We also highlight the initially counter-intuitive fact that, even for substitutions

involving a large mass-difference value, the mass-difference scattering can be small.

Finally, we show that in BAs excessive doping beyond the Fermi level pinning point

activates phonon-donor scattering events, which can either slow down the decrease

of thermal conductivity or cause it to plummet, depending on the type of impurity.

This should be considered in future applications of BAs. Remarkably, we find that

phonon scattering by C
B
and Ge

As
dopants is exceptionally weak. As a result, high

BAs κ
ph

values can be achieved even for high defect densities. This makes C
B
and Ge

As

impurities ideal n-type and p-type dopants respectively.

5.1 VM - scattering

Phonon transport in BAs is peculiar in the sense that it is dominated by phonons in a

narrow window of frequencies between 4-8 THz. This is due to several features in BAs

including a large frequency gap between acoustic and optic phonons, a narrow optic

phonon bandwidth, a bunching together of acoustic phonon branches and exception-
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5. Substitutional impurities in boron arsenide

C Si Ge

B 0.1 1.6 5.7

As 0.8 0.6 0.03

Table 5.1: Absolute mass difference for the three impurity atoms (C, Si and Ge) nor-

malized by the host atom mass (B or As).

ally weak four-phonon scattering. This combination of features gives rise to unusually

large contributions to κ
ph

from acoustic phonons in this particular range [171, 170]. Let

us first look at the scattering produced by the mass difference, eq. 3.70. The absolute

mass difference normalized by the host atom mass is shown in table 5.1. Ge
As

and

C
B
substitutions correspond to the smallest mass differences, since Ge and As and C

and B are contiguous in the periodic table. For the rest of the substitutions the mass

difference is large.

In contrast with the case of single-species compounds, themagnitudes of the scattering

rates in fig. 5.1 do not follow amonotonic behaviorwith respect to the normalizedmass

difference: in binary compounds with a large mass ratio of the constituent atoms, like

BAs, almost all acoustic phononmodes throughout theBrillouin zone involvedominant

motion of the heavy As atoms, while the light B atoms remain relatively stationary. As

a result, mass defects placed on the heavy atom sites lead to strong phonon scattering

while those placed on the light atom site become almost invisible to phonons and

provide only weak scattering [185]. An approximated analytical expression for the

mass-difference scattering rate in large mass-ratio binary compounds was given by

Lindsay et al. [185], and experimentally verified by Chen et al. [190].

5.2 VK - scattering

Figure 5.2 shows the VK - only (eq. 3.71) scattering rates at the concentration of 3.26

· 1018
cm
−3
. The frequency range between 4 and 8 THz is highlighted with dashed

vertical bars. The plots show that (i) the phonon scattering rates are consistently larger

for bond distortions involving C, Si and Ge impurities in their neutral states compared
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5.2. VK - scattering

Figure 5.2: Acoustic phonon-impurity scattering rates in BAs including only the bond

distortions to isolate differences between neutral and charged dopants. Red (blue)

points are for charged (neutral) impurities. Dashed vertical lines at 4 THz and 8

THz identify the main frequency region where phonons contribute to the thermal

conductivity of pristine BAs. Impurity density is 3.26 · 1018
cm
−3
.

with those in their charged states, and (ii) Si
As
, Ge

As
and C

B
dopants lead to noticeably

weaker bond defect scattering than do C
As
, Si

B
and Ge

B
. Since Ge and C also result in

weak small mass differences when replacing host atoms As and B, the plots confirm

the unusually weak total phonon-defect scattering rates for Ge
As

and C
B
dopants.

To assess the importance ofVK and better summarise the phonon-defect scattering rates

results we find useful to define and evaluate the following descriptor for both charged

and neutral states:

D
def;K ≡

1
N ∑

λ

τ
−1
λ ;K[θ(ωλ −ω1)−θ(ωλ −ω2)], (5.1)

where N is the number of~q - points per branch in the reciprocal space grid, ω
1
and ω2

are 4 and 8 THz, respectively, θ is the Heaviside step-function and τ
−1
λ ;K is the phonon-

defect scattering rate evaluated by including the VK perturbation only. In Eq. 5.1 we

consider an impurity concentration of one defect per unit cell, as using a more dilute
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5. Substitutional impurities in boron arsenide

Figure 5.3: VK - descriptor for charged and neutral rates.

valuewould only scale D
def;K by a χ factor. The evaluated descriptor is shown in fig. 5.3

for dopants in the neutral and charged states.

We find that phonon scattering by neutral defects is generally stronger than that by

charged defects. We can possibly attribute this general phenomenon to the fact that

the ionised charged states more closely resemble the electronic structure of the original

host: when an atom in column IV replaces an As (B) atom, it tends to get charged by

accepting (donating) an extra electron, thus becoming iso-electronic with the original

atom it has substituted. If the impurity remains neutral, however, the extra hole

(electron) present at the defect site is responsible for bond perturbations on the crystal

structure that do not take place when dealing with ionised states. This effect is most

noticeable in Ge
As
, C

B
and Si

As
, as shown in fig. 5.3. These three impurities also have

weaker bond-defect scattering than do Ge
B
, Si

B
and C

As
.

5.3 Total scattering

InFigures 5.4-5.9we report thephonon-defect scattering rates at concentration1018
cm
−3

for C, Si andGe-dopedBAs (either acceptors anddonors). We evaluate the contribution

of the total and bond perturbation alone for both neutral and charged states.
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5.3. Total scattering

Figure 5.4: Acoustic phonon-defect scattering rates vs phonon frequency at 3.26 · 1018

cm
−3
, Ge

B
case.

In theGe
B
case, see fig. 5.4, theVK - rates are slightly smaller (larger) than those resulting

fromVM at low (medium) frequency. The combined effect of the two perturbation gives

an overall scattering that reaches 10
−2

ps
−1

in the medium ω-range. We note, also,

a non monotonic behaviour of τ
−1
V as a function of the frequency. The C

As
bond

perturbation also produces phonon-defect scattering that can be compared with the

mass-only effect, as we can see in figure 5.5. The rates behave monotonically with

respect to frequency and the maximum value is slightly smaller than for Ge
B
.

For the Si impurity (acceptor) in fig. 5.6, as in the carbon replacing arsenic case, the

rates monotonically increase with the frequencies. However, they generally present a

different behaviour with respect to the previous dopants. A large mass perturbation

is here accompanied by a small change in the local bonds in either neutral or charged

states and this is reflected on the interaction with phonons. VM and VK differ by about

two orders of magnitude in the charged case. On the other hand a strong effect on

the IFCs can be inferred from the donor Si rates in figure 5.7, where the impact of

VK is particularly noticeable in the medium frequency range. Like for the Ge-donor

substitution, also in this case the trend with respect to ω is not monotonic.

Finally in figs. 5.8 and 5.9 we present the phonon-defect scattering rates upon donor-C
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5. Substitutional impurities in boron arsenide

Figure 5.5: Acoustic phonon-defect scattering rates vs phonon frequency at 3.26 · 1018

cm
−3
, C

As
case.

Figure 5.6: Acoustic phonon-defect scattering rates vs phonon frequency at 3.26 · 1018

cm
−3
, Si

As
case.
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5.4. Frequency shift

Figure 5.7: Acoustic phonon-defect scattering rates vs phonon frequency at 3.26 · 1018

cm
−3
, Si

B
case.

and acceptor Ge substitutions respectively. In both cases the very weak effect of VM is

overcome by a much larger contribution from the IFCs variation such that total and

pure VK cases are not distinguishable. The global effect is anyway much smaller than

for the remaining dopants with the maximum of τ
−1
λ ,def being∼ 10

−3
ps
−1

in both cases

and with C
+1
B

producing a slightly bigger impact than Ge
−1
As
. As seen in the Ge and

Si substituting boron cases, the rates produced by C-donor are not monotonic with

respect to the phonon frequencies as opposite to those from the Ge-acceptor.

5.4 Frequency shift

Point defects are a source of scattering and affect the lifetimes of phonons, but they can

also potentially lead to a frequency renormalization. The shift induced by impurities

is generally not considered in the weak doping limit, although it is expected to play

a major role when considering the formation of alloys. To quantify the shift in the

phonon frequencies we consider, in terms of the retarded Green’s function G+
0 of the

the pristine system [110]:
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5. Substitutional impurities in boron arsenide

Figure 5.8: Acoustic phonon-defect scattering rates vs phonon frequency at 3.26 · 1018

cm
−3
, C

B
case.

Figure 5.9: Acoustic phonon-defect scattering rates vs phonon frequency at 3.26 · 1018

cm
−3
, Ge

As
case.
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5.4. Frequency shift

Figure 5.10: Frequency shifts normalised by the pristine BAs phonon frequencies and

multiplied by a factor 100 for a concentration of 4.0 · 1021
cm
−3

in the case of neutral

C
As

and Ge
B
.

Ω
2
λ
= ω

2
λ
+χ Re

[
〈λ |T+ |λ 〉

〈λ |1+G+
0 T+ |λ 〉

]
, (5.2)

which stems from the Dyson equation V = G−1
0 −G−1

where G is the Green’s function

for the defective system, G+
0 is the retarded pristine Green’s function, T+

is the retarded

T -matrix and Ωλ are the renormalized frequencies. We assume that Ω2
λ
scales linearly

with the impurity concentration, in line with the dilute defect approximation adopted

to compute the phonon-defect scattering rates. We evaluate the quantity (Ωλ −ωλ ) ·

100 ·ω−1
λ

, namely the percentage of how frequencies are shifted in virtue of doping,

in fig. 5.10 and in the case of of neutral C
As

and Ge
B
at the concentration of 4.0 · 1021

cm
−3
, with the latter impurities presenting the strongest mass and bond perturbation.

It is found that even at such large concentration the shift amounts to less than 1% of

the frequencies and thus can be safely neglected.
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5. Substitutional impurities in boron arsenide

5.5 Thermal conductivity

Figure 5.11 shows plots of the BAs thermal conductivity at room temperature (300 K)

as a function of doping concentration for each of the six impurities considered. Solid

lines correspond to the neutral impurity cases, while dotted lines are for the charged

defects. At low concentrations, all curves merge to the pristine thermal conductivity

value of around κ
ph

= 1200W ·m−1 ·K−1
, where only three- and four-phonon scattering

occurs [170, 171, 102]. With increasing impurity concentration, the behaviour of the

thermal conductivity clearly reflects the behaviour of the phonon-defect scattering

rates: at a given dopant density, the reduction of κ
ph

is larger for impurities in their

neutral states comparedwith those in their charged states. Coloredhorizontal arrows in

fig. 5.11 indicate the differences between charged and neutral impurity concentrations

that produce a 50% reduction in the BAs κ
ph
. The consistently larger densities achieved

for each of the charged impurities compared with their neutral counterparts highlight

the weaker scattering of phonons for impurities in their charged states. The C
As

and

Ge
B
defects suppress the thermal conductivity the most, with a 50% reduction to ∼

600W ·m−1 ·K−1
at a defect concentration of∼ 1019

cm
−3
; Si

As
closely follows, because

its large mass variance dominates over the otherwise weak bond defect scattering.

Since Si and C are known contaminants in BAs growth [188], the present finding that

they strongly reduce the BAs κ
ph

motivates synthesis approaches that minimize their

presence, if maximum thermal conductivity is desired. Interestingly, Si
B
does provide

quite a large reduction of κ
ph

in both the neutral and charged cases despite having

relatively weak low frequency mass defect scattering rates, because the scattering

inducedby the bondperturbation is quite highbetween 4 and8THz, similar to bothC
As

andGe
B
. This effect clearly cannot be captured by a puremass defect perturbation. The

opposite holds for Ge
As
: it gives the smallest reduction to the BAs thermal conductivity

for both charged and neutral cases, where phonon-impurity scattering rates are about

an order of magnitude smaller than those for the C
As

substitution in the critical 4-8

THz range.

In the C
As
, Ge

B
and Si

As
cases, see figs. 5.13, 5.12 and 5.14, the mass variance hides the

effect produced by the structural relaxation and by the change in the local bonds to such
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5.6. Effect of compensation

Figure 5.11: Lattice thermal conductivity of BAs vs doping concentration at 300 K.

Solid lines: neutral impurities. Dotted lines: charged impurities.

degree that the difference between neutral and charged states cannot be appreciated at

the κ
ph
-level, especially in the Si

As
case where the bond perturbation is already weak.

Instead, the effect of VK plays a much more relevant role when the mass variance is

weak, that is in the Si
B
, C

B
and Ge

As
cases as also reported in figures 5.15, 5.16 and 5.17.

In particular, in the latter two it constitutes the largest component of the perturbation

and the difference between neutral and charged states is more marked. Moreover, for

the Si
B
substitution, relatively weak rates at low frequency (∼< 4 THz) in the charged

case are compensated by a much stronger perturbation at high frequency.

5.6 Effect of compensation

In fig. 5.11, each curve corresponds to the reduction of the BAs thermal conductivity

assuming that the density of a particular impurity can be varied independently. We

now consider a more complex behavior that might occur if the BAs growth process

were governed by equilibrium thermodynamics. For lowdensities of the three dopants

D=C, Si, Ge, the calculated formation energies for the charged acceptors, Si
−1
As

, Ge
−1
As

and C
−1
As

, are much lower than those for charged donors [188, 187] so these impurities

will form first. As the doping density increases and the Fermi level, ε
F
, shifts towards
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5. Substitutional impurities in boron arsenide

Figure 5.12: Ge
B
doped thermal conductivity as a function of concentration at T = 300

K.

Figure 5.13: C
As

doped thermal conductivity as a function of concentration at T = 300

K.
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5.6. Effect of compensation

Figure 5.14: Si
As

doped thermal conductivity as a function of concentration at T = 300

K.

Figure 5.15: Si
B
doped thermal conductivity as a function of concentration at T = 300

K.
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5. Substitutional impurities in boron arsenide

Figure 5.16: C
B
doped thermal conductivity as a function of concentration at T = 300

K.

Figure 5.17: Ge
As

doped thermal conductivity as a function of concentration at T =

300 K.
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5.6. Effect of compensation

the valence band edge, the D-acceptor formation energies increase while D-donor for-

mation energies decrease thereby increasing the probability of D-donor formation. At

the crossing point of the acceptor and donor formation energies, acceptors and donors

form with equal probability and ε
F
becomes pinned. Thus, equilibrium growth ther-

modynamicsmandates that beyond a certain concentration, addingmore D-impurities

will form not only D-acceptors but also compensating D-donors. In addition, tempera-

ture dependent mixtures of charged and neutral acceptors coexist because of the finite

acceptor ionization energy. Therefore, understanding how donor compensation and

the differences between neutral and charged defect scattering rates could shape the

κ(χ) profile should be considered.

To model the effect of compensation we combine the effects of the neutral and ionised

acceptors and of the donors to a single rates expression using Matthiessen’s rule.

To estimate the concentrations of charged and neutral impurities and compensating

donors formed during growth, we impose the charge neutrality condition (previously

defined in equation 2.86):

p−n = N−
A
−N+

D
, (5.3)

where p, n, N−
A
andN+

D
are, respectively, the hole, electron, ionised acceptor and ionised

donor concentrations. We take the following pinning ε∗
F
-values (in eV) for As-rich (B-

rich) conditions: C: 0.4 (0.15), Si: 0.15 (-0.05), Ge: 0.25 (0.0) [187]. From equations 2.87

and 2.88, the standard expressions for p and n are:

p(µ,T )≡
∫

ε
VBM

−∞

Dh(ε)(1− f (ε;ε
F
,T ))dε (5.4)

and

n(µ,T )≡
∫

∞

ε
CBM

De(ε) f (ε;ε
F
,T )dε, (5.5)
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5. Substitutional impurities in boron arsenide

where Dh(ε) and De(ε) are the hole and electron density of states (DOS), ε
VBM

and

ε
CBM

are the valence band maximum and conduction band minimum, ε
F
is the Fermi

level and f (ε;ε
F
,T ) is the equilibrium Fermi-Dirac distribution. A simple isotropic

parabolic band model can be employed to evaluate the hole- and electron- DOS near

the gap:

Dh(ε) =
1

2π2

(
2m∗h
h̄2

)3/2
√

ε
VBM
− ε, (5.6)

De(ε) =
1

2π2

(
2m∗e
h̄2

)3/2
√

ε− ε
CBM

. (5.7)

We take averaged effective masses m∗h ∼ 0.56 and m∗e ∼ 0.4 [188]. Now, given the

acceptor and donor electronic levels ε
A
and ε

D
we consider

N−
A
=

N
A

1+4 · exp((ε
A
− ε

F
)/kBT )

≡ f
A
·N

A
(5.8)

and

N+
D
=

N
D

1+2 · exp((ε
F
− ε

D
)/kBT )

≡ f
D
·N

D
(5.9)

along with N
A
+N

D
= χ , where χ is the total concentration of impurities, and we

define g ≡ N
D
/N

A
. The value of fD can be safely assumed to be equal to one, since

(ε
D
−ε

F
)� kBT for all the considered doping range. Therefore we have N

A
= χ/(1+g)

and N+
D
' N

D
= gχ/(1+g).

The definition of g is of paramount importance for the determination of the frac-

tion of donors and acceptors. Here we have assumed that impurities are incorpo-

rated into BAs at growth - temperature T
growth

= 1163 K [170] and that diffusion

processes are negligible, which results in fixed N
A

and N
D

when the temperature

is lowered. To do this, we have first solved Eq. 5.3 by taking g at T
growth

with
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5.6. Effect of compensation

N+
D
/N−

A
= exp

[
−(E

D
−E

A
)/(kBT

growth
)
]
, where EA and ED are respectively the forma-

tion energies for the charged acceptor and charged donor state taken from [187]. The

expression for g stems from the Gibbs free energy for the doped system, where the

contribution from vibrational entropy has been neglected. The ensuing and fixed val-

ues of N
A
(T

growth
) and N

D
(T

growth
) have been utilised for each value of χ to evaluate fA

at T = 300 K.

Figure 5.18: Charged and neutral acceptor and donor concentrations as a functions of

the total concentration of impurities at 300 K, Ge-doping case.

The presence of three doping "regimes" can be noticed in the Ge case in fig. 5.18. For

χ < 1018
cm
−3

most of the defects are charged acceptors while for χ > 1019
cm
−3

both

donors and acceptors (charged state) increase linearly with the total concentration.

We note also a χ-window in the 1018− 1019
cm
−3

range where Ge is present in large

amounts as a neutral acceptor. If figure 5.19 we report the hole concentration with

and without considering the compensation by donor impurities, in the stable As-rich

growth conditions. It can be noted that the maximum hole doping is achieved in the

case of Si impurities (p > 1018
cm
−3
), with the Ge case closely following. In the case

of C defects the maximum of the hole concentration stabilises near 10
17

cm
−3
, i.e. one

order of magnitude smaller, in virtue of its larger ionisation energy with respect to Si

and Ge.
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5. Substitutional impurities in boron arsenide

Figure 5.19: Hole concentration in As-rich conditions for Si, Ge and C impurities at 300

K. Continuous (dashed) lines include (neglect) the presence of donor compensation

effects.

Figure 5.20: Lattice thermal conductivity of BAs vs impurity concentration at 300 K.

Dotted lines: Ge
−1
As and C

0
As curves have been included from fig. 5.11 for comparison.

Continuous lines: scattering from charged acceptors, neutral acceptors and charged

donors has been included according to equation 5.10.

Finally, if we define the shorthand Vuc Im〈T+
DEF
〉λ/ωλ ≡ B

DEF

λ
for each type and state of

defect, we have:
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5.7. Discussion

1
τdef

λ ,tot(χ)
= N−A B

ch.,acc.

λ
+N0

AB
ne.,acc.

λ
+N+

DB
ch.,don.

λ
. (5.10)

In light of the generally different magnitudes of the phonon-defect scattering rates for

As and B substitutions, casting eq. 5.10 in the κ
ph

expression induces relevant changes.

In the case of Ge doping, at lower densities Ge
−1
As

defects reduce κ
ph

only slightly.

But once Ge
+1
B

starts to form, κ
ph

will decrease more rapidly due to the much larger

scattering rates of the latter. The opposite behavior occurs for C doping since C
−1
As

scatters phonons more strongly than C
+1
B
.

By including the scattering rates for charged and neutral acceptors and the compen-

sating donors at the temperature of 300 K we have calculated the BAs κ
ph

vs. impurity

concentration curves in fig. 5.20. Solid lines show the Ge doping and C-doping cases

for B-rich and As-rich growth conditions. The change of dependence in the case of Ge

doping is particularly evident. When grown in B-rich conditions, BAs could in prin-

ciple be p-doped with Ge to nearly 10
19

cm
−3
, without much decrease in the thermal

conductivity, with somewhat smaller but still high κ
ph

values achieved for the As-rich

case. Beyond this doping level, the thermal conductivity would decrease more rapidly

comparedwith the Ge
−1
As

- only case, with detrimental consequences for device heating.

We note that As-rich conditions are known to be more favorable for growth, whereas

growth of B-rich BAs can be hampered by formation of the subarsenide phase B6As

[188].

5.7 Discussion

With increasing Si, Ge and C impurity densities, free hole densities first increase,

then saturate and finally decrease due to compensation from electrons ionized from

increasingly large concentrations of donor atoms, as shown in fig. 5.19. Maximum

hole densities of 2.0 · 1018 cm
-3
, 1.0 · 1018 cm

-3
, and 1.5 · 1017 cm

-3
are obtained for

Si, Ge and C, respectively. The lower value for C results primarily from its larger

acceptor ionization of 0.09 eV compared with the corresponding value of 0.03 eV for

both Ge and Si, as calculated from first principles [187]. These results are for impurity
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5. Substitutional impurities in boron arsenide

formation energies for the As-rich growth conditions expected to apply in current

BAs synthesis. Ignoring donor compensation gives similar results for Si and Ge up to

impurity densities of around 10
19

cm
-3
. These finding suggest that there is not much

gain in hole density for impurity concentrations much above a few times 10
18

cm
-3
,

especially when high thermal conductivity is desired.

For the experimentally achievable As-rich growth, Ge doping shows a clear advantage

over C and Si doping as donor compensation starts to be important only at concentra-

tions approaching 1019
cm
−3
. More broadly, for all three dopants, the BAs κ

ph
exceeds

600 W · m-1 · K-1
even at high dopant densities, thus retaining values far above those

of common semiconductors such as Si (140 W ·m-1 · K-1
) and GaAs (45 W ·m-1 · K-1

).

This could be a great advantage in applications where efficient heat dissipation is cru-

cial. Furthermore, the results in fig. 5.20 suggest a complementary experimental way

to determine if compensation doping is occurring by directly measuring the thermal

conductivity. Further calculations and experiments may be envisaged in this way, to

evaluate the effect of compensation on the thermal transport properties in semiconduc-

tors. Finally, we note that while charged C
B
substitutions in the absence of C

As
would

give only minimal reduction of the BAs κ
ph

up to high densities, use of C as an n-type

dopant would be hindered by the largeC
B
formation and ionization energies [187, 188].

In conclusion, we have evaluated the thermal conductivity reduction induced by dop-

ing BAs with C, Si and Ge. Ge
As

and C
B
substitutions give exceptionally small re-

ductions to the BAs thermal conductivity even at high densities. However, the large

formation and ionization energies of C
B
donors hinder their utility as n-type dopants

and motivates a search for other candidates. Both Si and Ge achieve reasonably high

hole densitieswhile retaining high BAs thermal conductivity. Importantly, even at high

impurity densities the BAs κ
ph

significantly exceeds those of common semiconductors,

highlighting its potential as a next-generation self-cooling functional material. An

observable drop (enhancement) in thermal conductivity with respect to the charged

D-acceptor case is predicted and explained upon Ge(C)-doping if we consider com-

pensating donor scattering centers and the temperature/doping dependence for the

acceptor activation. This imposes practical limitations to be considered when design-
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ing BAs - based devices. It also suggests a direct alternative way to experimentally

determine if a sample suffers from compensation doping. Finally, we have compu-

tationally identified a general phenomenon whereby charged impurities isoelectronic

with the substituted species scatter phonons noticeably more weakly than their cor-

responding neutral counterparts. This phenomenon deserves further investigation in

other systems with thermodynamically stable neutral impurities.

5.7.1 Computational details

Weused the VASP [8, 9, 10] DFT code employing the PAW [20, 191] pseudopotentials in

the PBE [192, 193] approximation for the phonon calculations. First, the second order

force constants (IFC2) are calculated for a relaxed 5× 5× 5 (250 atom) supercell with

and without a substitution defect, using the small displacement method. Helper code

Phonopy [1, 2] is used to create the supercells with small displacements, and to read

off force constants following DFT calculations. To calculate VK , we first proceeded by

taking the difference between the IFC2s of the pristine and the defective system.

Whereas our procedure is implemented in real space, to reduce the computational

workload we consider the local nature of the bond perturbation and we choose two

cutoffs, namely rcut and Rcut. Here rcut represents the maximum interaction distance

between a pair of atoms, where both of them belong to the sphere of radius Rcut and

centered at the defect site. After convergence tests we have chosen the "pair-" and

the "neighbour list-" cutoffs as 0.6 nm and 0.8 nm. Once these values are defined, it

is necessary to reinforce the acoustic sum rule: this is done by projecting away the

degrees of freedom corresponding to rigid translations [194]. Despite the insulating

nature of BAs, we can observe that the character of the state when introducing neutral

impurities is metallic. In this case we must use a certain care when evaluating the

interatomic forces and force constants: if the VASP smearing parameters were chosen

to be as for insulators, this would lead to long range interactions and thus absence of

convergence for the phonon-defect scattering rates w.r.t. the cutoffs. In this work we

used the default VASP smearing parameters (ISMEAR= 1, SIGMA= 0.2), comparing

with volume-relaxation and spin-relaxation (non-collinear) calculations as well and
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5. Substitutional impurities in boron arsenide

finding that the latter do not affect rates and thermal conductivity. A converged value

for rcut and Rcut was found in all the calculations.

The scattering T -matrix is then calculated using V =VK +VM and the Green’s function

using our home-grown code [195, 184, 196, 194, 197]. Once the T -matrix is known, the

phonon-substitution defect scattering rates are calculated for various defect concen-

trations. To calculate the three-phonon scattering rates, we use the thirdorder_vasp.py

code [128] in conjunction with VASP and almaBTE [143]. The calculation of the four-

phonon scattering rates is rather expensive and it has been performed with the code

developed by prof. Ravichandran [104]. This program is currently set to work only

with the Quantum Espresso [198] suite. We interpolated these scattering rates on the

wave vector mesh used in the current study from a previously published calculation

[170]. The phonon-substitution defect scattering rates are combined with the three-

and four-phonon, and phonon-isotope scattering rates at the relaxation time approxi-

mation level using Matthiesen’s rule inside the almaBTE code. AlmaBTE finds the full

solution of the linearised phonon BTE, and outputs the thermal conductivity κ
ph
. A

converged 28× 28× 28 transport wave vector mesh is used to solve the phonon BTE,

whilst the Green’s function is evaluated on a 16×16×16 grid.
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Introduction to half-Heusler compounds

In presence of a thermal gradient, some compounds, called "thermoelectrics", can

develop a significant electric potential. A closed circuit comprising two thermoelectric

materials with different Seebeck coefficients can generate an electric current under

a temperature difference between the two junctions [121], and the efficiency of this

conversion is directly related to the value of the thermoelectric figures of merit [199].

For a single material, the figure of merit is defined as

zT =
S2σT

κ
, (6.1)

where S is the Seebeck coefficient, σ is the electrical conductivity and κ = κ
el
+ κ

ph

is the thermal conductivity, split into electronic and phononic contribution. The zT

factor defines the maximumworking efficiency of a thermoelectric device, latter being

defined as:

η =
Th−Tc

Th

√
1+ZT −1√

1+ZT +Tc/Th
, (6.2)

where Th and Tc are the hot and cold end of the device respectively. Maximising the zT

requires materials with a high power factor S2σ - which can be achieved by searching

for compounds with high Seebeck coefficients - and a low thermal conductivity.

The thermoelectric efficiency varies with temperature. Therefore different materials
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6. Introduction to half-Heusler compounds

are suitable for zT optimisation depending on the operating T [200]. For example, in

the range between room temperature and 200 °C, Te-B compounds reach zT ∼ 1.5,

while above 800 °C this value is reached by Si-Ge alloys. Heat sources like industrial

waste heat and car exhaust range between 500 and 800 °C. Thus, to convert them into

electricity it is better to seek for materials that optimize zT in this range. Thence lead

chalcogenides like PbTe and PbSe, skutterudites and half-Heuslers (HHs) are the most

promising compounds studied so far. All the mentioned systems reach zT values

ranging between 1.1 and 1.5 in the aforementioned temperature range, however lead

based materials are known to be either toxic and with poor mechanical strength and

skutterudites are characterised by a low stability and presence of rare-earth elements

with limited supply which increase the costs.

If we consider the HHs instead, we can find that although reaching an efficiency

slightly lower than the previously mentioned materials (zT ∼ 1 between 500 and 800

°C for both n and p type doping) their thermo-mechanical properties are well suited

for applications and the impact on the environment is much lower. These factors make

them of large interest in the quest of thermoelectric materials for practical applications.

The chemical composition of half-Heuslers comprises three elements A, B and X with

1:1:1 stoichiometry. The two atoms A and B are in equivalent positions and form

a rocksalt sublattice AB. The element X is in the inequivalent position and forms a

zincblend structure AX alongwith element A [201]. B can either be a transition, a noble

or a rare-earth element, X can be a transition or noblemetal (d-type electronic structure)

and A is the main group element (p-type configuration). The global structure is of the

face-centered-cubic type and the space group is F43m. The hybridization between d-

states is generally strong between elements B and X and is responsible for the electronic

band gap [202, 203, 204, 200]. Moreover the valence electron count sums up to either

8 or 18, see [205, 206, 207], for those stable HHs compounds with optimal zT factor

at intermediate temperatures. The stability ensuing from these elecron counts comes

from the unfilled anti-bonding states [208]. The spd and atomic decomposed electronic

DOS (eDOS) is shown in Figs. 6.1-6.7 for a set of stable p−type HHs [208], namely

VFeSb, TaFeSb, NbFeSb, TaCoSn, NbCoSn, HfCoSb and ZrCoSb. In particular the d-
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Figure 6.1: Supercell electron density of states for VFeSb. The spd orbital (atomic)

decomposition is on the left (right) side.

Figure 6.2: Supercell electron density of states for TaFeSb. The spd orbital (atomic)

decomposition is on the left (right) side.

character of these materials near the Fermi level can be appreciated and it is noticeable

that the p element of the structure, either Sb or Sn, does give a little contribution to

the eDOS while most of the spectral weight near the valence band maximum can be

attributed to either cobalt of iron.

Previous experimental [12, 209] and theoretical publications on half-Heusler com-

pounds have mainly focused on the electronic components of the zT formula, with

a particular interest in the power factor S2σ , the analysis of the correlation between

bonding properties and the carriersmobilities [210], and the treatment of the electronic

relaxation times [211], which requires going beyond the constant relaxation time ap-
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6. Introduction to half-Heusler compounds

Figure 6.3: Supercell electron density of states for NbFeSb. The spd orbital (atomic)

decomposition is on the left (right) side.

Figure 6.4: Supercell electron density of states for TaCoSn. The spd orbital (atomic)

decomposition is on the left (right) side.

Figure 6.5: Supercell electron density of states for NbCoSn. The spd orbital (atomic)

decomposition is on the left (right) side.
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Figure 6.6: Supercell electron density of states for HfCoSb. The spd orbital (atomic)

decomposition is on the left (right) side.

Figure 6.7: Supercell electron density of states for ZrCoSb. The spd orbital (atomic)

decomposition is on the left (right) side.

proximation often employed in the case of simplemetals. In particular Zhou et al. have

pointed out that the Seebeck optimisation through electronic band structure engineer-

ing - which usually happens for low σ materials - is possible in the case of HHs even

though these materials possess a non-small electrical conductivity, and they proved

that symmetry-protected interactions between orbitals are likely to be responsible for

this. Specifically the electron-acoustic phonon coupling is largely reduced because of

the presence of electronic states with strong non-bonding character which decrease the

acoustic deformation potential. These states stem from atomic orbitals belonging to

different symmetry group representations and thus are forbidden to interact.
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6. Introduction to half-Heusler compounds

Figure 6.8: Phonon density of states, VFeSb case.

To extract κ
el
the Wiedemann-Franz law is usually employed. However the effect of

phonons on heat transport is generally less known, with the calculation of their contri-

bution to the thermal conductivity often relegated to simple or semi-empirical models,

partially due to the computationally demanding task of finding accurate relaxation

times for charge and heat carriers. Since a low thermal conductivity is required to

maximise the thermoelectric ZT factor, it is of paramount importance to be able to

reduce κ
ph

along with maximising the electronic power factor σS2
. This optimization

can be achieved by nanostructuring and/or doping. Concerning the lattice conductiv-

ity, a computational screening of compounds with optimal phonon trasport properties

has been made by [206], who employed machine-learning based techniques (random

forests) to find and study a set of 75 mechanically and thermodynamically stable HHs

from the AFLOWLIB.org database [212]. A set of descriptors - including atomistic,

structural, electronic and thermodynamic properties - was employed to study the ther-

mal properties of these compounds. An inverse correlation between conductivity and

average Pauli electronegativity and atomic radii of the atoms in equivalent positions

has been found. Also, κ
ph

is positively correlated with the Pettifor scale [213].

In Figs. 8-14 we present the phonon total and atomic projected density of states for

the aforementioned set of half-Heuslers. As a general rule we realise that the spectral
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Figure 6.9: Phonon density of States, TaFeSb case.

Figure 6.10: Phonon density of states, NbFeSb case.
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6. Introduction to half-Heusler compounds

Figure 6.11: Phonon density of states, NbCoSn case.

Figure 6.12: Phonon density of states, TaCoSn case.
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Figure 6.13: Phonon density of states, HfCoSb case.

Figure 6.14: Phonon density of states, ZrCoSb case.
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6. Introduction to half-Heusler compounds

weights of cobalt and iron is generally weak at low frequencies and present a peak in

the optical range. This fact is due to the smaller masses of Co and Fe w.r.t. the other

atoms in the HHs unit cell.

The lattice contribution to the thermal conductivity in a crystal with cubic symmetry

reads:

κ
ph

=
kB

Ωs
∑
λ

(
h̄ωλ

kBT

)2

n0
λ
(n0

λ
+1)vλ Fλ , (6.3)

where λ represents the wavevector and branch (~q,b), ωλ and vλ are the phonon fre-

quency and group velocity respectively and n0
λ
is the equilibrium Bose Einstein dis-

tribution. The quantity Fλ ≡ τλ (vλ +∆λ [Fλ ]) represents an effective mean free path

that includes a coupling between phonon states [178], with τλ being the phonon re-

laxation time and ∆λ a functional of Fλ itself. In case Umklapp processes dominate

the scattering, we can neglect the coupling between modes and work under the sin-

gle mode relaxation time approximation (SMRTA) by taking ∆λ ≡ 0 as explained in

subsection 3.2.6 of chapter 3. The relaxation time can be computed by inverting the

total scattering rate for a phonon mode, which in turn can be computed by applying

Matthiessen’s rule to the main scattering processes. Here we consider anharmonic

three-phonon and two-phonon interactions, where the latter comprise both the contri-

bution from isotopes of the elements of the pristine compounds and from substitutional

impurities. Therefore we have:

1
τλ

=
1

τ
3ph

λ

+
1

τ iso
λ

+
1

τdef
λ

. (6.4)

The importance of the phonon-defect scattering for substitutional impurities can be

expected to be due to two different main mechanisms, namely the strength of the

perturbation induced by the dopant and the spectral weight of the replaced atom. We

will see these effects in action in the next chapter.

126



7

Substitutional impurities in half-Heusler
compounds

1 Half-Heusler semiconductors have been studied throughout the years as promising

thermoelectric materials but relatively little work has been done to understand how

the introduced impurities would affect the lattice part of the thermal conductivity.

Past works on doped and alloyed half-Heusler compounds [12, 209], used simplified

phonon-defect scattering models for the computation of κ
ph
. Several of these works

considered only themass difference between host and substituted atoms [215] as source

of phonon scattering, others included the defect-induced change in the local chemistry

at the empirical model level [216, 217, 218], or did not consider at all the role played

by impurities [210]. Therefore, a proper understanding of how dopants affect κ
ph

in

these materials - considering the perturbation induced by changes in bonds and force

constants - is still lacking.

A first step to optimise thermoelectric properties is to identify the most suitable mate-

rials. A recent high-throughput study identified a stable set of charged dopants that

allow for p-dopability in several promising half-Heusler compounds [208]. Here we

use theoretical methods to study the effects of this set of defects in their charged states

on the lattice thermal conductivities of VFeSb, TaFeSb, NbFeSb, TaCoSn, NbCoSn, Zr-

CoSb and HfCoSb. Although it is generally assumed that the amount of κ
ph

reduction

is correlated with the normalized mass difference between host and defect atoms, we

show that this is not generally true when the substituted atom is a transition metal.

1
The content of the present chapter is also available in ref. [214].
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7. Substitutional impurities in half-Heusler compounds

Instead, we identify a strong effect due to the local bond perturbation induced by

dopants. This effect must be taken into account in order to get an accurate description

of phonon thermal transport as a function of the impurity concentration. We explain

how bonds are affected by impurities in terms of the electronic structure of the pristine

compounds. We also compare our results with recent measurements and finally we

present an empirical model of the lattice thermal conductivity as a function of tem-

perature and concentration for the considered set of defects and containing the overall

effects of change of mass and bonds.

7.1 Classification of the compounds and the

considered substitutions

Here we consider compounds with electron count = 18. Possible ways of constructing

these compounds are sketched in fig. 7.1. The half-Heusler structure comprises three

species in the 1:1:1 stoichiometry. The two geometrically equivalent sites are labelled

as A and A’, and the inequivalent one is labeled as B. Following ref. [208], we consider

compounds involving periodic table columns 8 or 9 for the B site, 4 or 5 for the A site,

and IV or V for the A’ site. Species on sites A and B are transition metals, but the one

on A’ is not. Thus we can define three groups of compounds, in terms of the columns

involved: 4-9-V, 5-9-IV, and 5-8-V.

Figure 7.1: Ways of combining the species to construct the 18 electron count compounds

considered.
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7.2. Phonon-defect scattering

Substitution scheme Cases

34-9-V Sc
(Zr,Hf)

-Co-Sb

45−

 9-IV

8-V

(Ti,Zr,Hf)
(V, Nb, Ta)

−

 Fe-Sb

Co-Sn

5-78-V (Nb, Ta)-Mn
Fe
-Sb

4-9

5-8

− IV
V

(Zr, Hf)-Co

(V, Nb, Ta)-Fe

−Sn
Sb

Table 7.1: Stable substitution schemes considered.

Figure 7.2: VM perturbation scattering rates at χ = 1018
cm
−3

for VFeSb.

For each of these groups, p-doping substitutions can in principle be carried out on

either of the sites, replacing a species by another one from the column on its left

hand side. The possibilities that yielded stable substitutions in ref. [208] are shown in

table 7.1.

7.2 Phonon-defect scattering

In figs. 7.12-7.6 we report the mass perturbation induced scattering rates for each

impurity in the set with a concentration of 1018
cm
−3
. The observed behaviour can be

straightforwardly explained in terms of ∆M/M0, see table 7.2. In the case of VFeSb,
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7. Substitutional impurities in half-Heusler compounds

Figure 7.3: VM perturbation scattering rates at χ = 1018
cm
−3

for NbFeSb.

Figure 7.4: VM perturbation scattering rates at χ = 1018
cm
−3

for TaFeSb.

Ti
−1
V

Ti
−1
Nb

Ti
−1
Ta

Hf
−1
V

Hf
−1
Nb

Hf
−1
Ta

Zr
−1
Nb

Zr
−1
Ta

Sc
−1
Hf

Sc
−1
Zr

Sn
−1
Sb

Mn
−1
Fe

∆M
M0

0.06 0.48 0.74 2.50 0.92 0.01 0.02 0.496 0.75 0.50 0.025 0.016

Table 7.2: Absolute mass difference normalized by the host atom mass for each substi-

tution impurity.
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7.2. Phonon-defect scattering

Figure 7.5: VM perturbation scattering rates at χ = 1018
cm
−3

for TaCoSn and NbCoSn.

Figure 7.6: VM perturbation scattering rates at χ = 1018
cm
−3

for HfCoSb and ZrCoSb.
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7. Substitutional impurities in half-Heusler compounds

we note a stark contrast between the effect produced by the hafnium substitution

with respect to titanium. Similarly, in figs. 7.3 and 7.4 the rates span several order of

magnitude, ranging from∼ 10
−15

- 10
−11

ps
−1

for Sn andMndopants to∼ 10
−3
ps
−1

for

Hf and Ti. Similar orders of magnitude are seen for the TaCoSn and NbCoSn dopants,

see fig. 7.5, with the Zr and Hf
Ta

dopants producing little phonon scattering due to the

small (normalised) mass difference. Finally, for ZrCoSb and HfCoSb the weak rates

produced by Sn are contrasted by the much larger effect induced by scandium. For the

whole set of defects, the rates span the range of magnitude∼ 10
−15

- 10
−3

ps
−1
, namely

from the tin dopant in NbFeSb to the Hf substitution in VFeSb. This analysis does not

include the effect of VK , that is the change of bonds and the lattice relaxation around

the impurity site induced by point defects. To better assess the importance of the bond

perturbation and the magnitude of the scattering rates for each dopant and material

we can use a descriptor defined as follows (in analogy with what we have done for the

VK-induced effect in BAs, see eq. 5.1):

D
def;V ≡

1
N ∑

λ

τ
−1
λ ;V , (7.1)

where N is the number of ~q - points in the reciprocal space grid, τλ ;V is the relaxation

time computed with either the bond VK , mass VM or total V = VM +VK perturbation.

This descriptor aims at giving a scalar and temperature-independent representation of

the magnitude of the scattering mechanisms for each of the considered dopants and

materials. In tab. 5.1 we show the value of normalised mass variance for each defect

and material.

The values of this descriptor in the case of VFeSb are reported in fig. 7.7. The mass

perturbation from the two considered impurities clearly follows the mass variances

trend, with a much stronger contribution from the Hf
−1
V substitution. We note that

most of the defect-induced perturbation is attributable to a change in the local bonds

in the case of the Ti
−1
V

impurity where the mass part of the perturbation is negligibly

small. The contribution from VK is particularly relevant for the Hf
−1
V

defect, although

in this case the effect coming from the force constants difference is present along with
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7.2. Phonon-defect scattering

Figure 7.7: Descriptor for VFeSb dopants. The blue, orange and green columns indicate

respectively the total, mass only and bond only induced-scattering rates.

Figure 7.8: Descriptor for TaFeSb dopants. The blue, orange and green columns

indicate respectively the total, mass only and bond only induced-scattering rates.
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7. Substitutional impurities in half-Heusler compounds

Figure 7.9: Descriptor for NbFeSb dopants. The blue, orange and green columns

indicate respectively the total, mass only and bond only induced-scattering rates.

Figure 7.10: Descriptor for TaCoSn and NbCoSn dopants. The blue, orange and green

columns indicate respectively the total, mass only and bond only induced-scattering

rates.
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7.2. Phonon-defect scattering

Figure 7.11: Descriptor for ZrCoSb and HfCoSb dopants. The blue, orange and green

columns indicate respectively the total, mass only and bond only induced-scattering

rates.

a much larger mass substitution that for Ti. We also recognise that D
def;V < D

def;VK in

the case of the hafnium substitution.

In figures 7.8 and 7.9 we show the values of the descriptor for the dopants of TaFeSb

and NbFeSb respectively. The mass perturbation is negligibly small in the Sn
−1
Sb
, Mn

−1
Fe

and Hf
−1
Ta

(Zr
−1
Nb

) cases, following the periodic table. If we evaluate the effect from VK

we can also see that phonons are still weakly scattered by the Sn
−1
Sb

substitution. The

phonon-defect interaction is visibly much stronger when the dopants are Ti and Zr or

even Hf and Mn. Combined with a large mass perturbation, the strongest scattering

comes from Ti
−1
Ta

and Zr
−1
Ta

for TaFeSb and Hf
−1
Nb

and Ti
−1
Nb

for NbFeSb. A similar

phenomenon is found in the cases of NbCoSn and TaCoSn dopants in fig. 7.10 with

the Hf
−1
Nb

confirmed to give the strongest scattering, this also being due to the large

associatedVM. A surprisingly large bondperturbation in theTi
−1
Nb

andZr
−1
Nb

substitution

cases is also observed. We would also like to note, in both NbFeSb and NbCoSn, that

themass descriptor for the Ti
Nb

impurity is larger than forHf
Nb

, despiteHf beingmuch

heavier than Ti. This can be attributed to the larger rates induced by Ti atmedium-high

frequencies, see figs. 7.3 and 7.5. We finally point out that, in both TaFeSb, NbFeSb and
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7. Substitutional impurities in half-Heusler compounds

NbCoSn, doping with titanium leads to an overall phonon scattering from impurities

lower than what we could obtain by adding up the separate contributions from the

mass and force constants perturbations alone, similarly to what we have previously

observed in VFeSb (Hf substitution). We will explore this phenomenon in the next

sections. If we now evaluate the last compound of each set, i.e. HfCoSb and ZrCoSb,

we find in both cases that doping with Sn produces a rather small scattering, either of

mass or bond origin, while the strongest impact is due to Sc substitution which leads

to both a strong VM and VK terms.

Thus, as a general trend,wefind that the Sn
−1
Sb

substitution is responsible for a veryweak

phonon-defect interaction, while stronger effects can be expected for the remaining

dopants. In particular, the Hf
−1
Nb

and Sc
−1
Hf

impurities are the sources for the strongest

scattering effects among all the dopants in the set, by virtue of a combined effect of

both large mass variance and strong bond perturbation. Of particular interest are the

substitutions involving transition metals, specifically in the Zr
−1
Nb

, Hf
−1
Ta

and Ti
−1
V

cases.

It is common to assume that both mass and bond-induced perturbations are small for

substitutional defects when the impurity and host atoms are adjacent in the periodic

table. This is what happens in the Sn substitution case, but not when transition metal

elements are considered, except for Mn.

We can give a simple qualitative explanation for the observed trend in terms of the

electronic structure of the parent compounds. Asmentioned in chapter 6, half-Heuslers

have a strong d-orbital character near the electronic band gap, as a consequence of

containing block-d elements. On the other hand the p-contribution to the density

of states, coming mostly from elements like Sn and Sb, is much smaller close to the

gap [202, 203, 204, 200].This has been confirmed by our eDOS calculations, see figs. 6.1-

6.7. Therefore, the substitution of Sb is expected to affect the electronic properties, and

thus forces and IFCs, much less than the substitution of a transition metal element. We

also note that despite possessing a strong electronic DOS contribution, the replacement

of Fe with Mn is among the weakest bond scatterers. Unlike the other cases, the Mn

substitution takes place on the B-site. Thus one cannot fairly compare its effectwith that

of the other transition metal substitutions. The small scattering rates of the Mn
−1
Fe

case
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7.3. Thermal conductivity

VFeSb NbFeSb NbCoSn TaFeSb TaCoSn HfCoSb ZrCoSb

κ
ph,0 (W·K−1·m−1

) 15.6 22.6 16.3 15.9 16.8 21.8 21.9

Table 7.3: Thermal conductivity of the pristine compounds at 300 K.

may also be partly the result of the small phonon local density of states on the Fe atom

in the lower frequency range (see figs. 6.8-6.14). On the other hand, non-iron/cobalt

atoms tend to present a bigger local phDOS at middle/low frequencies as results of

having larger masses in general, which magnify the importance of the perturbation

generated by their substitution.

7.3 Thermal conductivity

The pristine thermal conductivity κ
ph,0 at 300 K is shown in tab. 7.3 for the seven

half-Heusler compounds. This section presents the dependence of κ
ph
/κ

ph,0 on the

impurity concentration at the temperature of 300 K for all the considered materials

and defects. In figures 7.12-7.16 we report the conductivity normalised by its pristine

value in the cases of VFeSb, TaFeSb, NbFeSb, TaCoSn, NbCoSn, ZrCoSb and HfCoSb

upon doping. All defects are considered in their charged acceptor state, and dashed

lines indicate the use of the mass perturbation only, while solid lines correspond to

the total perturbation V = VK +VM case. The conductivity curves partly reflect the

trend observed for the descriptor. In general we find that Sn and Mn do not affect

the thermal conductivity by much, lowering it by only a 20% at concentrations ∼ 10
21

cm
−3
. On the other hand, the conductivity of HfCoSb and ZrCoSb are reduced by as

much as 40-50% at the same concentration upon Sc doping. A similarly large reduction

is observed in the case of NbCoSn when Nb is substituted by Hf or TaFeSb when Ta is

substituted by Ti or Zr. The largest reduction at χ ∼ 10
21

cm
−3

is observed for VFeSb

and NbFeSb when V or Nb are substituted by Hf, where the conductivity presents a

decrease of∼ 60% of its pristine value. These results can be understood in terms of the

large phonon-defect scattering rates shown in figs. 7.7 and 7.9.

The difference between total and mass contributions to the conductivity decrease is
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7. Substitutional impurities in half-Heusler compounds

Figure 7.12: Thermal conductivity of VFeSb upon Ti and Hf doping. Continuous

(dashed) lines correspond to total (mass only) perturbation.

Figure 7.13: Thermal conductivity of TaFeSb upon Ti, Hf, Zr, Mn and Sn doping.

Continuous (dashed) lines correspond to total (mass only) perturbation.
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7.3. Thermal conductivity

Figure 7.14: Thermal conductivity of NbFeSb upon Ti, Hf, Zr, Mn and Sn doping.

Continuous (dashed) lines correspond to total (mass only) perturbation.

Figure 7.15: Thermal conductivity of TaCoSn and NbCoSn upon Hf, Ti and Zr doping.

Continuous (dashed) lines correspond to total (mass only) perturbation.
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7. Substitutional impurities in half-Heusler compounds

Figure 7.16: Thermal conductivity of HfCoSb and ZrCoSb upon Sc and Sn doping.

Continuous (dashed) lines correspond to total (mass only) perturbation.

feeble when VM is large. This can be seen in the cases of Hf
−1
V
, Ti
−1
Ta
, Zr

−1
Ta
, Hf

−1
Nb

, Ti
−1
Nb

and Sc substitutionals. On the other hand the effect of VK is much more noticeable in

those transition metals substitutions where the impurity replaces its adjacent atom in

the periodic table, namely Ti
−1
V
, Zr

−1
Nb

and Hf
−1
Ta
.

The value of κ
ph

is in general correlated with the normalized mass difference between

the impurity and the substituted atom, but there are some exceptions. This is noticeable

in the Ti
−1
V
, Zr

−1
Nb

and Hf
−1
Ta

cases, which have a relevant impact on the thermal conduc-

tivity of VFeSb, NbFeSb/NbCoSn and TaFeSb/TaCoSn respectively, despite presenting

a very weak mass perturbation and having similar atomic radii to the atom they sub-

stitute. Furthermore, the correlation with ∆M/M0 does not exclude the possibility of a

correlation with the change in the local chemistry represented by VK , which is the case

of several V, Nb, Ta, Hf and Zr substitutionals, as also seen in figures 7.7-7.11.

7.3.1 Comparison with experimental data

Figure 7.17 compares our calculations for the Sn
−1
Sb

doped ZrCoSb with the thermal

conductivity measurements at 300 K reported in ref. [11] for the same material. The

point defect perturbation induced by tin overestimates the phonon contribution to
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7.3. Thermal conductivity

Figure 7.17: Thermal conductivity as a function of the concentration for Sn
−1
Sb

doped

ZrCoSb at 300 K. Continuous line: total defect perturbation. Stars: experimental

measurements from ref. [11].

Figure 7.18: Thermal conductivity as a function of the concentration for (Zr,Hf)
−1
Nb

dopedNbFeSb at 300K.Continuous line: total defect perturbation. Stars: experimental

measurements from ref. [12].
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7. Substitutional impurities in half-Heusler compounds

κ with respect to the experimental results. This is in agreement with the analysis

reported in [11], which attributes the strong reduction of the conductivity as induced

by Co/4d Frenkel pairs (FP), not included in the present study. Here 4d indicates the

4d(
3
4 ,

3
4 ,

3
4 ) Wyckoff position, which site is unoccupied in pristine HHs. With A/4d we

mean that an atom of type A (cobalt, in this case) creates a FP by leaving its original

location to occupy a neighbouring 4d site. Such large reduction due to Frenkel defects

might also happen in other half-Heusler compounds having cobalt/iron at the B site

and being doped with Sn, since the migration of Co atoms seems to be bolstered

by the presence of tin as result of charge compensation effects that happen upon p-

type doping [11]. Similarly, the formation of Fe/4d Frenkel pairs may plummet the

conductivity in HHs containing iron at the B site with respect to the effect of the

perturbation induced by replacing antimony with tin. In ref. [214] we also mention a

different analysis which highlights the possibility that uncorrelated cobalt vacancies

and interstitials may form in ZrCoSb (since they are energetically more favoured than

Frenkel pairs) and possibly in other half-Heuslers (eventually with Fe replacing Co).

Since phonons are considerably scattered by interstitials and vacancies, their inclusion

in the calculations of κ
ph

leads to a good agreement with the experiments in the case

of ZrCoSb.

In figure 7.18we show the calculated room-temperature κ
ph

forNb
1-x

AxFeSb (A= Ti or

Hf) as a function of the concentration of defects (including both themass and force con-

stants induced perturbations) in comparison with the measurements in ref. [12]. The

lower values of the experimental measurement has been suggested to come from addi-

tional boundary and electron-phonon scattering contributions [12, 215], not included

in the present ab initio calculation. On the other hand, we need to stress again that as

a result of having orbitals in different symmetry group representations, the electron-

acoustic phonon couplings are small in HH compounds [210]. This analysis was also

corroborated by ref. [11] which found the scattering from carriers to be negligible. To

clarify the role of the phonon-hole interaction from a thermal transport perspective,

we have computed from first principles the self-energies (eq. 3.85) corresponding to a

weakly- and ultra-doped sample in the case of NbFeSb, for which we have evaluated
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7.3. Thermal conductivity

Figure 7.19: Thermal conductivity as a function of the concentration for (Hf,Ti,Zr)
−1
Nb

andSn
−1
Sb

dopedNbFeSb at 300K. Purple diamondandblack curve include thepresence

of phonon-hole scattering computed through the EPW package [13, 14]. For simplicity,

for each curve including the phonon-hole interaction a unique value of the Fermi

level was considered (in the middle of the gap and at the VBM for the undoped and

ultradoped cases respectively).

the lattice thermal conductivity as a function of the doping concentration. The scat-

tering from carriers has been included as well in the tin substitution case, see fig. 7.19.

The result confirms that the inclusion of the phonon-hole interaction is insufficient to

match the experimental results, since it leads to a much poorer decrease of κ
ph

with

respect to the Hf, Zr and Ti dopants. This prompts the consideration of other factors

to explain the strong reduction of the conductivity upon Hf and Zr doping, like the

aforementioned Fe/4d Frenkel pairs or the presence of uncorrelated iron vacancies

and interstitials.

7.3.2 Matthiessen’s rule and interference effects

By inspecting figs. 7.7, 7.8 and 7.10 for hafnium-doped VFeSb and titanium-doped

TaFeSb, NbFeSb and NbCoSn we realised that - in certain cases - the total scattering

of phonons by impurities does not correspond to the sum of the VM-only and VK-

only rates. With this purpose, it is worth stressing that T+[V ] 6= T+[VM]+T+[VK], i.e.
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7. Substitutional impurities in half-Heusler compounds

the Mathiessen’s rule does not apply to the mass and force constants perturbations

induced by the defects. To assess the deviation of the true scattering rates eq. 3.80 from

a Mathiessen-like formulation we ought to compute

(
1

τ
ph-def

λ

)
VM

=−χ
Vuc

ωλ

Im〈λ |T+[VM] |λ 〉 , (7.2)

(
1

τ
ph-def

λ

)
VK

=−χ
Vuc

ωλ

Im〈λ |T+[VK] |λ 〉 (7.3)

and

τ̃
−1
λ ;ph-def ≡ τ

−1
λ ;ph-def[VM]+ τ

−1
λ ;ph-def[VK]. (7.4)

Since at the second-order the T -matrix can be written as V +V G+
0 V and τ

−1
λ ;ph-def as

−χVuc ∑λ ′ | 〈λ |V |λ ′〉 |2δ (ω2
λ
−ω2

λ ′), with

| 〈λ |V |λ 〉 |2 ≡ |Vλ ,λ ′|2 = |VM;λ ,λ ′|2 + |VK;λ ,λ ′|2 +2Re
{

V ∗M;λ ,λVK;λ ,λ

}
, (7.5)

this prompts us to identify the deviations from the Mathiessen’s rule as due to in-

terference effects between mass and bond induced perturbations. In figures 7.20-7.24

we show - for all the HHs and corresponding dopants - the phonon-defect scatter-

ing descriptor D
def;V ≡ 1

N ∑λ τ
−1
λ ;V along with D̃

def
≡ D

def;VM +D
def;VK - representing the

Matthiessen’s rule - which excludes interference effects between mass and force con-

stants perturbations. We can notice strong differences between D and D̃ for the follow-

ing substitution Hf
−1
V
, Ti
−1
Ta
, Ti
−1
Nb

(in both NbFeSb and NbCoSn), Sc
−1
Zr

and Sc
−1
Hf
. In all

the previous cases we have D < D̃, a sign that the interference terms tend to partially

cancel out the effect produced by VM and VK alone.

Given the presence of destructive interference between the contributions from VM and

VK to the scattering rates descriptor in several impurities among those that scatter
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7.3. Thermal conductivity

Figure 7.20: Phonon-defect scattering rates descriptor for VFeSb dopants. The blue

(orange) columns are for a model that includes (neglects) the mass-force constants

interference effects.

Figure 7.21: Phonon-defect scattering rates descriptor for TaFeSb dopants. The blue

(orange) columns are for a model that includes (neglects) the mass-force constants

interference effects.
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7. Substitutional impurities in half-Heusler compounds

Figure 7.22: Phonon-defect scattering rates descriptor for NbFeSb dopants. The blue

(orange) columns are for a model that includes (neglects) the mass-force constants

interference effects.

Figure 7.23: Phonon-defect scattering rates descriptor for NbCoSn and TaCoSn

dopants. The blue (orange) columns are for a model that includes (neglects) the

mass-force constants interference effects.
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7.3. Thermal conductivity

Figure 7.24: Phonon-defect scattering rates descriptor for ZrCoSb andHfCoSbdopants.

The blue (orange) columns are for a model that includes (neglects) the mass-force

constants interference effects.

phonon the most, it is instructive to see how the previous thermal conductivity results

differ from a model that (incorrectly) neglects the interference term between bond

and mass perturbations. In fig. 7.25 we notice that decoupling the mass and bond

contributions to the phonon-impurity rates can lower κ
ph

a 10% more than the correct

formulation of τ
−1
λ ,ph-def. The effect of this overestimation is particularly visible when

the dopant is titanium.

7.3.3 Empirical model for κph

It is possible to analytically approximate the thermal conductivity as a function of

temperature and doping concentration, including not only the mass perturbation but

also the influence of dopants on the local bonds. To do so, we customise an empir-

ical version of the model developed by Klemens [183]. This model assumes a linear

phonon dispersion, high temperature limit and analytical expressions for Umklapp

and defect induced scattering rates, thus it is unsuitable for a realistic calculation of the

conductivity, and it does not include the phonon-defect interaction beyond the Born

approximation level. Therefore we define the following empirical equation:
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7. Substitutional impurities in half-Heusler compounds

Figure 7.25: Thermal conductivity ratio for the "non Mathiessen" compounds. Contin-

uous lines correspond to phonon-defect scattering rates modelled according to Eq. 3.80

with while dashed lines to the Matthiessen’s rule applied to VM and VK .

κ
ph
(χ,T ) = κ

bulk
(300K)

(
300K

T

)
·

arctan[
√

f (χ,T )]√
f (χ,T )

, (7.6)

with

f (χ,T ) = α

(
300K

T

)
(χVuc)

β . (7.7)

Table 7.4 lists the parametersα and β fitted for each compound and defect in the 300 K -

400 K temperature range. The small non-linearity with respect to the concentration has

been included to better fit the high doping limit, although the β exponents are tightly

clustered around β0 ≡ 1. As this model involves both the contributions from VM and

VK , which has proven to be important for several of the considered impurities, it can

be used to estimate the phonon contribution to thermal transport in half-Heuslers and

properly evaluate the thermoelectric efficiency. A comparison between the proposed

analytical formula and the first principles calculations is shown in fig. 7.26 for the cases

of Hf
−1
V
, Ti
−1
Ta
, Hf

−1
Nb

(both in NbFeSb and NbCoSn) and Sc
−1
Hf
, which are the impurities

with the steepest κ
ph
/κ

ph,0 ratio in our set.
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7.3. Thermal conductivity

α β

VFeSb, Hf
−1
V

116.444 0.946

VFeSb, Ti
−1
V

34.749 0.975

TaFeSb, Hf
−1
Ta

8.0567 0.895

TaFeSb, Ti
−1
Ta

55.414 0.930

TaFeSb, Zr
−1
Ta

40.428 0.894

TaFeSb, Mn
−1
Fe

4.305 0.864

TaFeSb, Sn
−1
Sb

3.490 0.936

NbFeSb, Hf
−1
Nb

137.689 1.065

NbFeSb, Ti
−1
Nb

27.681 0.999

NbFeSb, Zr
−1
Nb

15.306 0.930

NbFeSb, Mn
−1
Fe

4.456 0.939

NbFeSb, Sn
−1
Sb

4.761 0.969

TaCoSn, Hf
−1
Ta

11.765 0.975

NbCoSn, Hf
−1
Nb

107.918 1.068

NbCoSn, Ti
−1
Nb

24.936 0.979

NbCoSn, Zr
−1
Nb

14.114 0.922

HfCoSb, Sc
−1
Hf

85.389 0.977

HfCoSb, Sn
−1
Sb

3.974 0.928

ZrCoSb, Sc
−1
Zr

40.473 1.013

ZrCoSb, Sn
−1
Sb

5.321 0.978

Table 7.4: Parameters for the empirical model.
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7. Substitutional impurities in half-Heusler compounds

Figure 7.26: Continous lines: analytical model (Eq. 7.6). Star markers: ab initio data.

The temperature is 300 K.

7.4 Discussion

We have computed the total scattering rates induced by substitutional impurities,

considering the contributions from both the local change of mass VM and of the bonds

force constants VK , for a selected group of half-Heusler compounds and their dopants.

Aside from the magnitude of VM, which can be inferred from table 5.1, the general

finding is that the substitutions of transitionmetals produce amuch largerVK compared

with the substitution of non-d-block elements, like Sb by Sn. This thus shows that if

an element is replaced by an adjacent atom in the periodic table, the change in the

local chemistry is not necessarily small. Amongst the transition metal substitutions,

the one of Mn by Fe yields the smallest scattering rates. This could be attributed to

the small vibrational density of states on the Fe atom in the acoustic frequency range

of the studied compounds. The scattering probability by Fe substituting impurities

is roughly proportional to this density of states, therefore being weak for the acoustic

branches.

We have given a simple explanation for the observed behaviour, arguing that the strong

d-orbital character of the considered compounds makes the electronic structure and

IFCs much more sensible to impurities when the substituted atom is the one with the
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7.4. Discussion

d-character and/or when the host atom has a large phonon DOS weight. We have

also computed ab initio the effect of phonon-defect scattering upon the concentration

behaviour of the thermal conductivity for our set of materials and impurities, finding

that κ
ph

is much more reduced when transition metal elements are involved. In

particular, the dopants that affect the thermal transport the most are Hf (replacing V

and Nb in VFeSb, NbFeSb and NbCoSn), Sc (substituting Hf in HfCoSb), and Ti (for Ta

in TaFeSb) with reductions ranging from 40 to 50% in the 10
20
-10

21
cm
−3

concentration

range.

We stress that we have only evaluated the effect of the perturbation induced by substi-

tutional defects along with the intrinsic three-phonon and phonon-isotope scattering.

However, othermechanisms to further reduce the thermal conductivity of half-Heusler

compounds - like the electron-phonon interaction and boundary scattering [12, 215],

or the formation of Frenkel defects [11] - have been suggested in past works. Our calcu-

lations on NbFeSb along with previous results [210] seem to imply that the scattering

of acoustic phonons from holes and negative carriers is largely impaired and does not

contribute to a substantial reduction of the lattice conductivity in these materials. On

the other hand, Frenkel pairs provide much more scattering to phonons, although the

formation of uncorrelated vacancies and interstitials is more favoured energetically

and leads to a better agreement with the experiments at least in the case of ZrCoSb.

Finally, we have fitted the thermal conductivity curves to an analytical two-parameter

model thatmaybe employedwhen evaluatingκ
ph

at different temperatures anddoping

concentrations, and which could provide an easy way to study the impact of defects

and phonon transport on the thermoelectric efficiency of HHs. The present findings

show the general importance of both the impurity-induced mass and force constants

perturbations upon thermal transport properties, and showcase general trends about

the impact of the bond perturbation upon scattering of phonons. These results may be

useful in the design of doped half-Heusler compounds for thermoelectric applications.
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7. Substitutional impurities in half-Heusler compounds

7.4.1 Computational details

The phonon calculations have been performedwith the VASP [8, 9, 10] DFT code using

the plane-augmented wave (PAW) [20, 191] formalism under the generalized gradient

approximation (GGA) in the PBE [192, 193] parameterization. We have computed the

second order force constants (IFC2) for all pristine and defect-laden systems in the

case of a relaxed 4×4×4 (192 atom) supercell using the small displacement method.

The supercells and the atomic displacements are created with the help of the code

Phonopy [2, 1], which is also employed to evaluate the force constants following DFT

calculations. To calculate VK , we first proceeded by taking the difference between the

IFC2s of the pristine and the defect-laden system. Then we introduce the cutoffs Rcut

and rcut to account for the finite size of the perturbation as explained in subsection 5.7.1

of chapter 5. We have selected rcut and Rcut to be 0.6-0.8 nm for all the considered

dopants after convergence tests. The scattering T -matrix is then calculated using

V =VK +VM and the pristine retardedGreen’s function is evaluated using the analytical

tetrahedron method and a 16x16x16 grid. To calculate the three-phonon scattering

rates, we use the thirdorder_vasp.py code [128] in conjunction with VASP and almaBTE

[143]. The phonon-substitution defect scattering rates are combined with the three-

phonon and phonon-isotope scattering rates at the relaxation time approximation level

using Matthiesen’s rule inside the almaBTE code. We used a converged 28× 28× 28

transport wave vector mesh to solve the phonon BTE. The validity of the SMRTA in

the case of the pristine systems was tested by solving eq. 6.3 also in the ∆λ 6= 0 case. A

good agreement between the relaxation time approximation and the full self-consistent

solution was found for all the considered pristine materials in the considered 300 K -

400 K temperature range, with |κSMRTA

ph
−κ iter.

ph
|/κ iter.

ph
≤ 6%.
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Conclusions

In the development of this thesis we have delved into the theory of phonon thermal

transport and its dependence upon defect substitution. We have focused our attention

on boron arsenide, a promising candidate for thermal management in electronics, and

on a set of half-Heuslers materials that could potentially serve as converters of waste

heat into electricity in a useful 500 - 800 °C range.

In the particular case of BAs we have studied group IV elements as dopants in virtue of

their thermodynamical stability, defect formation energy and their dual acceptor and

donor nature which could be exploited given the high n and p mobility of BAs. We

have performed our calculations concerning C, Si and Ge doping in either neutral and

charged states [187, 188] and in their donor and acceptor configuration depending on

whether they substitute B or As.

We have found a rich phenomenology that can be summarised as follow. First of all

the scattering induced by the change of mass does not follow the ∆M/M0 trend, a fact

that can be explained in terms of the large mass mismatch between boron and arsenic

masses. Secondly, we have found that neutral impurities present a much larger bond

perturbation than the charged ones near the defect site and in the critical 4-8 THz

frequency range for heat transport in BAs, a fact that can be qualitatively be attributed

to a smaller change in the local electronic structure in presence of free carriers and

with respect to the pristine system. This can be observed both by looking at suitably

defined descriptors and at the thermal conductivity as a function of the impurity
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8. Conclusions

concentration. Dopants like Ge
As

and C
B
appear to be apt for electronic applications

as they only weakly affect the conductivity even at high concentrations > 1019
cm
−3
.

In particular C
B
is a potential candidate for n doping, although its higher formation

energy with respect to its acceptor counterpart C
As

makes its growth to be unsuitable

under equilibrium conditions. On the other hand defects like Si
As
, Si

B
, C

As
and Ge

B

present a large effect on κ
ph

even at low concentrations, with the conductivity reduced

to half its pristine value at χ ∼ 1019
cm
−3
. Practically, all of them with the exception

of Si
As

are associated to both a large bond perturbation and a large mass perturbation.

Our calculations support recent analysis [188] that suggested the presence of Si and

C defects in the BAs precursors as the possible cause of its poor thermal transport

properties in non-high quality crystals.

Wehave taken a step further in our analysis by studying the role of the thermodynamics

of defect formation on the behaviour of κ
ph

and considering not only the stable charged

acceptors at low doping but also the effect of neutral acceptors and compensating

donors that start to appear as χ is increased. To model the effect of the compensation

on conductivity we have combined the Matthiessen’s rule and the charge neutrality

conditions into a unique formulation that presents dependence on the concentration

of dopants and temperature as well. In the particular case of Ge doping, the weak

dependence of the conductivity w.r.t. the concentration is replaced with a much

sharper trend when both the neutral Ge
As

acceptors and charged Ge
B
donors - whose

impact is stronger - kick in as the Fermi level approaches the pinning point and the

acceptor level at χ ≥∼ 1019
cm
−3
. In the case of C doping the observed behaviour is

opposite, with the strong dependence on χ induced by the presence of C
As

smoothened

by C
B
. These effects should be considered in the design of future boron arsenide based

electronic devices. We also expect the phenomenology here encountered to be present

in several more compounds, in particular for what concerns the transition between

charged and neutral defect states, an effect that has been largely ignored in previous

works on the lattice κ
ph

of semiconductors and insulators. Furthermore, conductivity

measurements may be appropriate for detecting the onset of compensation and be a

valid alternative to Hall probes to extract the value and type of substitution defects in
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samples.

In the case of the half-Heuslers (HHs) we have studied the set of p−type compounds

and corresponding acceptors found bymeans of high-throughput calculations in [208].

Again, we have evaluated the scattering rates induced by substitution impurities, and

descriptors have been introduced to better understand their effect on the conductivity.

Finally we have shown how the various dopants in the defect-laden structures affect

κ
ph

with respect to its pristine value at room temperature and depending on the

concentrations.

For all the considered materials we have found a strong d-orbital character near the

electronic band gap, a fact that is perfectly consistent with the presence of transition

metals in the HHs stoichiometry. We have observed a bond perturbation that is

generally much stronger when the substituted atom belongs to the d-orbital group and

weaker when it has p-character. Also, the importance of the phonon-defect scattering

rates depends on the spectral weight (phDOS) of the substituted atom. Indeed, the

phDOS tends to be smaller (larger) for light (heavy) elements in the range of acoustic

frequencies. In the set of the materials and dopants that we have studied, the defect-

induced scattering rates span two order of magnitude, whereby the poor decrease of

the conductivity upon Sn doping is contrasted by the strong effect induced in VFeSb

when vanadium is substituted by hafnium.

For several defects we have observed that the kinetic and potential perturbations, when

treated separately with the Matthiessen’s rule, overestimate the lowering of κ
ph

as the

concentration increases. This should be considered when fitting defect models to data

for assessing the value of the ZT factor in doped compounds. Finally we have fitted ab

initio calculations to an analytical model of the conductivity for bulk half-Heuslers that

contains the effects of both mass and local bond perturbations. This model could be a

valuable tool for thermoelectric efficiency evaluation in presence of defects, especially

when the main scope of a calculation is related to the electronic part of ZT.

Concluding, this work shows the importance of first principles calculations to unveil

how substitution impurities affect the lattice thermal transport in semiconductors.
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8. Conclusions

The formulation herein introduced allows to probe the effects of dopants beyond the

mass approximation and with good accuracy. In both the boron arsenide and half-

Heuslers cases we have identified new trends and proposed candidates for doping

that optimise thermal or thermoelectric properties. In the particular case of BAs we

have been able to couple the thermal transport problem with the thermodynamics

of defects, an approach that has been largely ignored in past works and that may be

valuable in future studies and technological applications related to this material. In

the case of half-Heuslers we have seen which defects give the larger reduction of the

conductivity as a function of the concentration and we have observed a trend in the

bondperturbation that is intimately relatedwith the electronic andphononic structures

of the parent compounds. We expect these results to be useful in the assessment of

the role of substitution point defects on thermal transport properties for both high

and low κ
ph

semiconductors, to shed light on the role of impurity thermodynamics

on phonon transport and to give an understanding about the origin and nature of the

defect induced bond perturbations and their effect on the thermal conductivity for

semiconductors.
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