
HAL Id: tel-03452120
https://theses.hal.science/tel-03452120v1
Submitted on 26 Nov 2021 (v1), last revised 16 Aug 2023 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

End-to-End Deep Learning and Subgroup discovery
approaches to learn from metagenomics data

Maxence Queyrel

To cite this version:
Maxence Queyrel. End-to-End Deep Learning and Subgroup discovery approaches to learn from
metagenomics data. Artificial Intelligence [cs.AI]. Sorbonne University, 2021. English. �NNT : �.
�tel-03452120v1�

https://theses.hal.science/tel-03452120v1
https://hal.archives-ouvertes.fr


SORBONNE UNIVERSITÉ

Doctoral School: EDITE de Paris (ED130)
Speciality: Computer Science

Machine learning in bioinformatics

End-to-End Deep Learning and Subgroup
discovery approaches to learn from

metagenomics data

Maxence Queyrel

Reviewers Jean-Philippe Vert, University Professor, Google Brain,
Mines Paris-Tech
Edoardo Pasolli, University Professor, Dipartimento di Agraria
University di Napoli

Examiners Alessandra Carbone, University Professor, Sorbonne University
Blaise Hanczar, University Professor, IBISC, Paris-Saclay University

Supervisor Edi Prifti, Researcher Director, IRD UMMISCO, Sorbonne University

Directors Jean-Daniel Zucker, Researcher Director, IRD UMMISCO,
Sorbonne University
Alexandre Templier, Chairman, Quinten

Co-director Karine Clément, University Professor, NUTRIOMICSS,
Sorbonne University

October 13 2021



Maxence QUEYREL

End-to-End Deep Learning and Subgroup discovery approaches to learn from metagenomics

data

Computer Science, Machine learning in bioinformatics

Reviewers: Jean-Philippe Vert and Edoardo Pasolli

Examinors: Alessandra Carbone and Blaise Hanczar

Supervisor: Edi Prifti

Director: Jean-Daniel Zucker and Alexandre Templier

Co-Director: Karine Clément

SORBONNE UNIVERSITÉ

Doctoral School: EDITE de Paris (ED130)

Research Institute: IRD / ICAN

Department/Laboratory: UMMISCO

4 Place Jussieu, 75005 Paris V

Date of defense: October 13 2021



Acknowledgment

This thesis took place within the framework of a CIFRE between the laboratory
UMMISCO (IRD and Sobonne University) and the company Quinten (Paris France).
Without the support and collaboration of some people, this thesis could not have
been completed. Thus, I would like to thank all those who have contributed in any
way to the progress of my work.

I had the chance to be supervised and directed by four exceptional people, gifted
with great intelligence, kindness and benevolence, thanks to whom I was able to
develop myself and complete this thesis in the best conditions. I would like to express
my deepest gratitude to my thesis director Jean-Daniel Zucker, to my co-director
Karine Clément and to my supervisor Edi Prifti for their precious help and their
numerous advices since the elaboration of the thesis subject until the end of my
PhD. I would also like to thank my thesis director at Quinten, Alexandre Templier,
who trusted me and accepted to support my PhD and for its involvement in this
adventure.

I am deeply grateful to Professors Jean-Philippe Vert and Edoardo Pasolli for having
accepted to be the reviewers of my work. My warm thanks are also addressed to
Professors Alessandra Carbone and Blaise Hanczar who agreed to examine this work
and to participate in the thesis jury.

I thank Sorbonne University for allowing me to teach computer science subjects, for
providing me with computational resources to run my programs and for offering me
enriching trainings throughout my thesis. I also thank UMMISCO and Quinten for
their welcome in their different teams and for the availability of their infrastructures.
I would like to thank my professors at Sorbonne University who gave me a taste for
computer science in my Bachelor’s degree and for data science in my Master’s degree.
I particularly underline the work of the directors of the Master DAC Ludovic Denoyer
and Bernd Amann, who proposed rich, relevant and interesting teachings, giving me
the desire to continue in the field of Data Science and Machine Learning.

I would like to express my gratitude to my colleagues and friends at UMMISCO
and Quinten for their indispensable help in the completion of my thesis. I thank
Minh Dao Quang for his explanations on the use of Spark and his time spent on the
development of a computational infrastructure in the laboratory. I thank Eugeni

iii



Belda, Paul Deveau and Ari Ugarte for their explanations on bioinformatics and
metagenomic analysis. I thank Cyril Esnault, May-Line Gadonna and Pauline Guilmin
for their collaboration on the subgroup discovery approach. Finally, I also thank
Mathilde Berthelot, Christelle Pezzucchi and Asya Grechka who helped me during
the writing/proofreading of my thesis.

iv



Abstract
Thesis title: End-to-End Deep Learning and Subgroup discovery approaches to learn
from metagenomics data

Key words: Metagenomics, deep learning, embeddings, point-of-care processing,
subgroup discovery, precision medicine, phenotype prediction

Over the past decade, technological advances have made high-speed, high-resolution
sequencing of genetic material possible at ever lower cost (from millions to one
hundred dollars). In this context, the human microbiome has demonstrated its
great capacity to stratify and classify various human diseases, and is increasingly
considered as our second "genome". As a "super-integrator" of patient status, the
gut microbiota is set to play a key role in precision medicine. Omics biomarkers
identification has become a major goal of metagenomics processing, as it allows
to understand the microbial diversities that induce the patient stratification. There
remain many challenges associated with mainstream metagenomics pipelines that
are both time consuming and not stand-alone. This prevents metagenomics to be
used as "point-of-care" solutions especially in resource-limited or remote locations.
Indeed, state-of-the-art approach to learning from metagenomics data still relies on
tedious and computationally heavy projections of the sequence data against very
large genomic reference catalogs. In this thesis, we address this issue by training
deep neural networks directly from raw sequencing data building an embedding of
metagenomes called Metagenome2Vec. It supports learning models that perform
accurate and fast stand-alone classification. Learning DNA embeddings is achieved
with a reference catalog of metagenomic species used as input of a metagenome
simulator. We also explore subgroup discovery algorithms that we adapt to build a
classifier with a reject option which then delegates samples, not belonging to any
subgroup, to a supervised algorithm. This approach leverages the strengths of both
subgroup discovery and classification concepts creating an explainable stratification
of the patients groups. Several data sets are used in the experiments to discriminate
patients based on different diseases (colorectal cancer, cirrhosis, diabetes, obesity)
from the NCBI public repository. We have also developed different models using
a simulator of metagenomic reads corresponding to binary class disease states in
order to perform an intrinsic and extrinsic evaluation of the different learning steps
of our algorithm. Intrinsic evaluation was performed primarily in the metagenome
embedding creation part to verify that the learned embeddings were consistent with
the DNA chain distance scores. The extrinsic evaluation validated that the algorithms
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correctly addressed the stratification problem and that the subgroup discovery part
generates robust and credible metagenomic signatures. These evaluations show
that our two methods reach high performance comparable to the state-of-the-art
approaches, while being respectively stand-alone and interpretable. They are a
proof-of-concept that pave the way for future "point-of-care" precision medicine
based on metagenomics.

vi



Résumé
Titre de la thèse: Approches basées sur les réseau de neurones et la découverte
de sous-groupes pour l’apprentissage machine à partir à partir de données mé-
tagénomiques

Mots-clés: Métagénomique, apprentissage machine, apprentissage profond, décou-
verte de sous-groupes, médecine de précision, prédiction de phénotype

Au cours de la dernière décennie, l’avancée technologique a rendu possible le
séquençage à grande vitesse et à haute résolution du matériel génétique à un coût
toujours plus faible (de plusieurs millions à une centaine de dollars). Dans ce
contexte, le microbiome humain a démontré sa capacité à stratifier et à classer
diverses maladies humaines, et est de plus en plus considéré comme notre deuxième
"génome". En tant que "super-intégrateur" du statut du patient, le microbiote intesti-
nal est appelé à jouer un rôle clé dans la médecine de précision. L’identification
de biomarqueurs omiques est devenue un objectif majeur en métagénomique, car
elle permet de comprendre les diversités microbiennes qui induisent la stratification
des patients. Il reste de nombreux défis associés aux pipelines de métagénomique
courants, qui prennent du temps et ne sont pas autonomes. Cela empêche l’util-
isation de la métagénomique comme solution "point-of-care", en particulier dans
les régions éloignées ou avec des ressources limitées. En effet, l’état de l’art de
l’apprentissage à partir de données métagénomiques repose sur des projections
fastidieuses et lourdes en termes de calcul des données de séquence par rapport à de
très grands catalogues génomiques de référence. Dans cette thèse, nous abordons
ce problème en formant des réseaux neuronaux profonds directement à partir de
données de séquençage brutes, en construisant un encastrement de métagénomes
appelé Metagenome2Vec. Il définit des modèles d’apprentissage qui effectuent une
classification autonome précise et rapide. L’apprentissage des encastrements d’ADN
est réalisé à l’aide d’un catalogue de référence d’espèces métagénomiques utilisé
comme entrée d’un simulateur de métagénome. Nous explorons également des
algorithmes de découverte de sous-groupes que nous adaptons pour construire un
classifieur avec une option de rejet qui délègue ensuite les échantillons n’appar-
tenant à aucun sous-groupe à un algorithme supervisé. Cette approche exploite
les forces des concepts de découverte de sous-groupes et de classification, créant
ainsi une stratification explicable des groupes de patients. Plusieurs ensembles de
données sont utilisés dans les expériences pour discriminer les patients en fonc-
tion de différentes maladies (cancer colorectal, cirrhose, diabète, obésité) à partir
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du répertoire public NCBI. Nous avons également développé différents modèles
en utilisant un simulateur de lectures métagénomiques correspondant à des états
pathologiques de classe binaire afin d’effectuer une évaluation intrinsèque et ex-
trinsèque des différentes étapes d’apprentissage de notre algorithme. L’évaluation
intrinsèque a été réalisée principalement dans la partie de création d’encastrements
de métagénomes afin de vérifier que les encastrements appris étaient cohérents
avec les scores de distance des chaînes d’ADN. L’évaluation extrinsèque a permis de
valider que les algorithmes abordent correctement le problème de la stratification et
que la partie de découverte des sous-groupes génère des signatures métagénomiques
robustes et crédibles. Ces évaluations montrent que nos deux méthodes atteignent
des performances élevées comparables aux approches de l’état de l’art, tout en étant
respectivement autonomes et interprétables. Elles constituent une preuve de concept
qui ouvre la voie à une future médecine de précision "point-of-care" basée sur la
métagénomique.
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Introduction 1
1.1 Background and rationale

1.1.1 Context

Our vision of the human being seen as an entity in itself has evolved to leave
room for a more global vision where the ecosystems that we shelter are taken into
account. The term “holobiont” is used to define this concept and characterizes a host
(a person, an animal, a plant...) with all the microorganisms living inside. Indeed,
the role of the microbiome for its host is so important for physiology, psychology,
health that it is relevant to considered them together [Ber+20]. Health practitioners
are increasingly using diagnostics based on new accessible “big data” such as clinical,
environmental, “omics” (genomics, transcriptomics, radiomics, etc.), including
so-called metagenomic data, which is the quantifying of the metagenome, a “super-
integrator” of patient’s environment and lifestyle impacting its condition. This health
care is part of the field of precision medicine which is opposed to the “one-size-fit-all”
vision where all patients receive the same adapted treatments (e.g., dosage) and
improving the health of 4-25 % of the population [Pet18]. Precision medicine
favors the discovery of specific characteristics and treatment personalization for each
individual or subgroup of individuals. The integration of “big data” for diagnoses in
precision medicine represents a major challenge in terms of analytical complexity
and large computing volumetry. Data science and artificial intelligence play an
important role in this field and are subject to active research to address these
challenges.

This thesis is the result of the collaboration between two laboratories (UMMISCO
(Unité de Modélisation Mathématique et Informatique des Systèmes Complexes) and
Nutriomics) and a data science company (Quinten). UMMISCO is an international
mixed lab developing computer and mathematical modeling methods for “complex
system”. Nutriomics concentrates its research on the gut microbiota, intestine, adi-
pose tissue remodeling and systems’ biology with systemic approaches and “big data”
integration. Finally, Quinten is a consulting company that has built up an analyt-
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ical knowledge applied to health on various subjects and with different partners,
integrating care and precision medicine solutions in real-world set up.

Our researches focus on the manipulation and analysis of metagenomic data aiming
at a “point-of-care” processing and phenotypic signatures identification of medical
interest related to cardiometabolic diseases. “Point-of-care” is a medical laboratory
diagnostic intended to be performed in close proximity to the patient and get results
in real time like a few hours and not many days, a challenge for current metagenomic
workflow.

1.1.2 Exploring microbial environments with metagenomics

1.1.2.1. An overview of the microbiota

Microbiota is a term to define the set of microorganisms (bacteria, viruses, fungi,
yeasts) living in a specific environment called microbiome. These microorganisms
are present almost everywhere in our bodies, interacting with each other and
with their environment. For a long time, these microorganisms were suspected
of being responsible for diseases causing epidemics or even pandemics, but it is
only since the end of the 19th century with the arrival of the microscope that this
relationship has been demonstrated. More recently, some studies revealed that
these microorganisms have also a curative power to treat human diseases [Cha+20].
This leads to the analysis of the functionality and impact of microorganisms on the
human phenotype.

It is estimated that there are about one to two times as many microbial cells in
the human body as there are human cells [SM16]. Furthermore, the microbiome
is constituted by several million non redundant genes compared to “only” about
23,000 for the human genome. The genome is the entire genetic material of an
organism while genes are regions of genomes that encode for macro molecules
called proteins with a wide range of functions in the body. The microbiome was
later shown to play a crucial role not only in the environmental ecosystems but
also in relation with the host they inhabit. That is why with these characteristics,
Zhao [Zha10] states that humans have two genomes, their own and one of their
microbiota made up of microorganisms acquired from the environment. When the
human gut microbiome is altered (it is the largest reservoir of bacteria that inhabits
them and can reach several kilograms), it often results in impaired human health.
Indeed, recent research has demonstrated the strong relationship between these
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microorganisms and complex and chronic human diseases such as diabetes, cirrhosis,
autism, obesity or cancer [Lia+18; Wir+19].

The microorganisms inside an ecosystem can form inter-member organizations,
sometimes referred to as “guilds”, and create localized interactions that influence
their ecosystem [Wu+21]. It is thus essential to analyze the composition and the
interactions of microbiota members when we study them. Metagenomics man-
ages these objectives and refers to the set of methods supporting microbiota by
sequencing and analyzing DNA of several individuals of different species in the same
environment. Although in theory the metagenomics can be used for all kinds of
organisms, it is mostly used to explore the structure of microbial communities living
in a given ecosystem.

Over the past decade, technological advances have made high-speed, high-resolution
sequencing of genetic material possible at ever lower cost1, from millions to one
hundred dollars Wetterstrand [Wet20]. Such improvements have allowed a whole
field - that of metagenomics - to develop and maturing very quickly with large public
repositories increasing the standardized dataset [OC15; GMM16; Mar17].

1.1.3 Metagenomics in precision medicine

In modern medicine, targeting certain patient populations that would benefit from
a particular treatment is becoming an important goal [LCZ19; Kor18]. Precision
medicine is defined as the tailoring of medical treatments to the characteristics of
individuals, classifying them into sub-populations that differ in their response to a
disease or their response to a treatment. Precision medicine therefore aims to create
models based on the analysis of data characterizing patients. The objective is to
propose more effective therapeutic solutions by acting specifically on the potential
causes of the disease. Since it has come to the forefront of patient treatment, person-
alized data such as electronic medical records or DNA sequencing have proliferated,
enabling the development of many techniques and treatments [GP18].

Metagenomics has become a major area of research in precision medicine [Job18]
and is of great interest in personalized treatments mainly for two reasons: Mi-
crobiomes define characteristics specific to each individual at the same level as
their own genetic material, and recently, sequencing data has increased exponen-
tially, as explained in section 1.1.2.1. That is why metagenomic analysis is rapidly
moving from research to clinical laboratories to attempt to counter both infectious

1The decay far exceeds Moor’s empirical law which states that the information power doubles every
two years.
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[CM19] or chronic [NF18] diseases and to guide patients on special diets and other
interventions modifying their intestinal flora [Lee+21].

1.1.4 Overview of different sequencing technologies

Metagenomic data collection is performed using Next-generation high-throughput
DNA sequencing technologies (NGS) allowing to sequence the DNA of any organism
providing precise biological information. These methods are parallelized, millions
of reactions take place at the same time in flow cells that contain fiber optic wells
which generate millions of sequence reads in a short time (see Figure 1.1). Reads are
short sequences, generally between 50 to several thousands, of base pair Adenine
(A), Cytosine (C), Guanine (G) and Thymine (T), also called called nucleotides, and
are stored in standardized files in fastq format.

Fig. 1.1.: Example of illumina sequencing from the intestine: stools (representing the
microbiome) are collected, the DNA of the microorganisms is then extracted to be
passed in an illumina NGS which will sequence this DNA and save it in fastq files.

1.1.4.1. Illumina Technologies

The most used NGS technology is illumina [Hua+12] (about 56% of the market)
and the data manipulated during this thesis mainly come from this technology. Illu-
mina allows identifying simultaneously the DNA bases when they are incorporated
in the nucleotide chain. Each base emits a unique fluorescence signal when added to
the strand being synthesized and it determines the DNA sequence. The technology
has a low insertion/deletion error rate, but the size of the fragments does not exceed
three hundred base pairs which induces a very high number of sequenced fragments
adding more difficulties for assembling the fragments into contigs. (see Figure 1.2
for more details). However, these technologies are not portable, do not produce real
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time data and need important preparation steps. All these aspects are limitations
restricting the possibilities of metagenomic sequencing analysis and usages.

Fig. 1.2.: Illustration of the Illumina sequencing. The genomic DNA is cut in small fragments
of ' 200basepair where adapters are attached to create sequencing libraries.
The libraries are flowed on a solid surface where the fragments bind and then
are amplified using clonal amplification and Polymerase Chain Reaction (PCR)
methods to generate clusters. This results in around one million copies of each
sample on the flowcell surface before to be sequenced by synthesis producing the
DNA reads. Image credit: [Bro12]
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1.1.4.2. Oxford Nanopore Technologies (ONT, third generation)

The so-called third generation sequencing technologies has been developed by
Oxford Nanopore Technologies Ltd [Jai+16] and allows the acquisition of long reads
from 104 to 106 base pairs. The technology does not need PCR amplification or
chemical labeling of the sample to sequence molecule of DNA or RNA (see Figure
1.3 for more details). Long reads can overlap long repeats of DNA fragments and
thus contigs orientation are less ambiguous, which is essential for de novo genome
assembly. However, third generation sequencing technologies currently have a high
error rate because they do not use a cyclic method (addition of the nucleotides in a
cyclic way one by one, always in the same order and successively). Indeed, the DNA
molecule is decrypted in real time by a high frequency detection method. In our
experiments we did not use public data acquired by ONT, however we simulated
metagenomic data with the CAMISIM software [Fri+19] combined with NanoSim
[Yan+17] to evaluate if our approaches could also be effective on these data (see
section 2.2.2). We are interested in manipulating such data because these are
the sequencing technologies that could be used most in the future in a precision
medicine context. Furthermore, these are in line with our approach which consists
in designing a “point-of-care” solution especially especially in resource-limited or
remote locations.

Fig. 1.3.: Illustration of the Nanopore sequencing. The motor protein passes the nucleic
acid molecules (DNA or RNA strand) through the nanoscale pore provided by the
reader protein. This causes current fluctuations in the membrane whose signal is
converted with the corresponding nucleic acid sequence. Image credit: [HCR21]
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1.1.5 Bioinformatics workflows to analyze metagenomic data

The development of metagenomic sequencing came along with the rapid develop-
ment of bioinformatics workflows, which ultimately yield quantitative measurements
of biological objects such as genes, species, genera and other taxonomic levels, func-
tional pathways, etc in the form of relative abundance tables [Kun+08; NP16;
Wen+17; Qui+17]. Several steps are required to obtain such count tables and all
of them rely on assumptions that affect the final outcome. The complex bioinfor-
matics workflow starts by reading the fastq files and use quality scores to filter out
nucleotides as well as reads that do not pass the defined confidence criteria. Next,
the reads can be aligned onto the host genome or assembled to form longer se-
quences called contigs while removing redundant one. Finally, the resulting reads are
grouped together (binned) using different techniques, including alignment with ref-
erence gene/genome catalogs or through other approaches based on k-mer similarity
or co-abundance clustering [Met+14b; QC19]. A condensed view of the workflow is
illustrated on Figure 1.4. After these bioinformatics processing steps, analysis results
in several types of applications such as pathogenicity prediction, biomarker discovery,
species interaction analysis, classification / clustering, phylogeny reconstruction,
epidemiology, clinical interpretation or epidemiology [Qui+17]. For phenotypic or
pathoneginc prediction, a taxa abundance table is extracted from the metagenomic
workflow and is then handled by state-of-the-art classifier models (SVM, Random
Forest, Penalized Logistic Regression, etc . . . ) for further statistical analyses. This
section highlights the main stages of the bioinformatic workflow and their different
characteristics.
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Fig. 1.4.: Schema of a Bioinformatics workflow processing metagenomic data. After a
microbiota has been sequenced by NGS, the fastq files are cleaned, then all the
reads are assembled into contigs, forming bigger sequences that are mapped on
reference catalog and then binned to individual genome to recover the number of
taxa present in the initial microbiome.

1.1.5.1. The importance of reference catalogs

The National Center for Biotechnology information (NCBI) lists a large number
of genomes representing about 10% of living species. We are therefore far from
covering all microbial genomes, which prevents us from classifying all their genes
to constitute the pangenome, describing the full range of genes of each species. To
circumvent the availability of genomes, thanks to NGS, the MetaHIT consortium was
able to build over the last few years a catalog (integrated gene catalog (IGC)) of 9.9
million non-redundant genes from shotgun sequencing of fecal samples organized
in “metagenomic species” (MGS) [Met+14a]. This is called de novo sequencing, a
reference-free technique to discover and reconstitute gene repertories of microbial
species. The method sequences novel genome without reference sequence for
alignment by assembling reads as contigs [Met+14b; Pla+19]. A recent study has
unified more than 200k reference genomes from the human gut microbiome to
create the Unified Human Gastointestinal Protein (UHGP) catalog. Unlike IGC, this
catalog provides links between genes and their genome necessary for taxonomic
classification, establishing genetic relationships and inferring complete functional
pathways on a genomic basis [Alm+21]. These catalogs of genomes or genes are
references that allow bioinformatics pipelines to perform assembly or alignment tasks
to quantify the microorganisms in the microbiota. Thus, most of the downstream
analyses depend on the catalog choice.
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1.1.5.2. Preprocessing and sequences alignments to compute abundance
tables

The bioinformatic workflow composed of different stages is assembled to analyze
metagenomic data. This is called quantitative metagenomics and it aims to measure
biological objects from sequences to build abundance tables (Figure 1.5). Assigning
MGS to each read or contig, called the binning process, is one of the main objectives
and one of the most challenging of metagenomic analysis. Preprocessing of the
metagenomic data is performed on the raw fastq files output from the sequencer.
A cleaning stage removes reads that are too short, have a low-quality score or
come from human. Next, two distinct methods can be applied: read-based or and
assembly-based [Har+19].

Read-based uses the close-reference strategy that consists in clustering the reads
against a reference catalog (collection of sequences) [Met+14b], if a read cannot be
mapped it is excluded from downstream analyses. Read-based strategy is fast but it
ignores sequences that are not in the catalog databases.

Assembly-based method uses the de novo strategy (seen in section 1.1.5.1). The
reads are compared to each other to assemble them into contigs to form a consensus
sequence that can be annotated on a database or represent an unknown species. In
that way all reads are clustered, but the calculation time is increased. Reference-free
methods often are interested in the use of k-mer count [PPV19; Aud+17]. These
methods measure statistical information about the sequences by projecting them
into a k-mer feature space, which allows us to compute distances between sequences
to find the most similar pairs. [Zie+19].
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Fig. 1.5.: An example of an abundance table where two metagenomes have different
numbers of species. For yellow DNA, both have an absolute abundance equal to
four, but the relative abundances in percentage are different: 50% for the former
versus 66.6% for the latter. Relative abundance is expressed as a percentage and
thus provides the proportion of one species to the others.

1.1.5.3. Data analysis from metagenomic data

Metagenomics revolutionized the analysis of microbial ecology. Many challenges
emerge from this field, notably due to the complexity and large volume of data. From
the sequencing of genetic material, through data processing, to the different possible
analyses mentioned in section 1.1.5, many methods have been developed to reduce
the computation time, increase the reliability of the analyses, improve the results
or even answer new problems [PGB20]. In this section we explain the different
possible metagenomic applications in terms of data sequencing and objectives to
situate the orientation of the thesis.

Sequencing methods There are two main sequencing methods in metagenomics
to extract information about microorganisms (see Figure 1.6).

• Amplicon sequencing: It sequences the rRNA or ribosomal DNA of organisms.
It consists in sequencing a unique gene and not the whole genome. This
gene must be common to several species while presenting sufficiently variable
regions to discriminate a species. It can be the 16S rRNA gene for bacteria /
archaea or 18S rRNA gene for eukaryotes.
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• Shotgun sequencing: It sequences full genomes (i.e. all genes present) of the
microorganisms in the environment with high-throughput sequencers.

Shotgun sequencing is thus more precise than amplicon sequencing because it does
not focus on a specific gene allowing for example to describe the global functioning of
the microbiota. Nevertheless, this makes the algorithms for processing the data more
complicated because there must be an additional step of assembling the genomes.
The data manipulated during this thesis are from shotgun sequencing.

Fig. 1.6.: Shotgun vs 16S sequencing: 16S rRNA sequencing will focus on the sequencing
of a single part of the genome common to each species. As a result, the reads
will align to the same location on the genome part. For the shotgun method the
whole genome is considered which will produce reads that can represent any part
of the genome.

Objectives We can distinguish two objectives in metagenomics. The sequence-based
metagenomics which determines the provenance of a sequence, and answers the
question “from which taxon does the sequence originate ?”. This gives an estimate of
the proportion of microorganisms in the environment. The other is the function-based
metagenomics which measures the expression of genes and answers the question
“what are the functions of the genes ?”. The goal is here to understand how bacterial
communities interact and what are their roles in the environment. In this thesis, we
focus on the first objective by exploiting metagenomic composition to address the
problem of phenotypic classification.
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1.1.6 Classification models in metagenomics

1.1.6.1. Machine Learning on metagenomic data from gut microbiota

The huge computational steps for preprocessing several terabytes of metagenomics
data (for most datasets) produce taxonomic abundance tables. The rows and the
columns represent N samples (patients, environments, ...) and D features (species,
genus, ...) respectively with the distinction of having D >> N . This is due to the
fact that, even today, few samples (a few hundred) are available per dataset, making
their processing a computer challenge. Several studies applied statistical analyses
on these abundance tables as biomarker discovery, species interaction clustering or
patient classification [Qui+17]. Biomarker discovery is an important challenge in
medicine because this has the goal to yield meaningful biological information. In
the case of metagenomics, biomarker discovery solves the problem of finding which
microorganisms are likely to explain the difference between certain samples.

Segata et al. [Seg+11] proposed a method named LefSe (for linear discriminant
analysis (LDA) effect size) applied to high-dimensional data for biomarker discovery
to identify genomic features that distinguish sample classes. Some recent methods
based on microbial ecosystem interactions address this problem. Prifti et al. [Pri+20]
proposed the Predomics approach, a family of classification algorithms which uncover
and explore biomarkers and are a simplification of linear models to be even more
interpretable. Another approach, called GutBalance, [YZG21] uses discriminative
balance analysis (DBA) method in order to select distal balances of pairs and
trios of bacteria. Other studies have focused on supervised learning by comparing
several state-of-the-art algorithms to assess the strength of microbiome-phenotype
associations by evaluating the generalization of disease-predictive models across
cohorts [EDF15; Pas+16; OZ20]. Thomas et al. [Tho+19] also analyzed, through
several studies gathering 969 fecal metagenomes, the reproducibility of metagenomic
biomarkers potentially linked to colorectal cancer with random effect models on
the microbial richness and diversity. Harris et al. [Har+19] were interested in the
results obtained by classifiers on quantitative metagenomic data constructed from
the different approaches cited above namely read-based taxonomy profiling and
assembly-based method. They found that there was not a large difference between
the two approaches, the random forest model achieving the best results in both cases.
Moreover, some R packages have been created like MegaR [Dhu+21] to propose
a pipeline of metagenomic phenotype classification including model fine tuning,
data processing, multiple machine learning (ML) techniques, model validation, and
sample classification.
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Finally, rather than using quantitative metagenomics, algorithms have been devel-
oped to manipulate k-mers directly from fastq files which has the benefice to be
a reference-free method. K-mers are composed of k nucleotides and refer to all
sub-sequences from a read obtained by DNA sequencing. The possible amount of
k-mers given a read of length L is L−k+1, and the possible number of combinations
is equal to 4k (since there are 4 distinct nucleotides). K-mers count tables used as
input of classifiers are created using specific optimization like Bayes classifier to
filter and remove non-relevant k-mers [Lor+20; Ngu+].

One of the major difficulties often underestimated is the composition of the quanti-
tative metagenomic data. Indeed, the number of sequences generated (sequencing
depth) by NGS is not the same and varies from one sample or study to another.
When the biological objects included in the samples are counted, it should not
be restricted to an absolute count because it would not be representative of the
real composition. A normalization step must therefore be applied and consist of
dividing each abundance by the total number of taxonomic units, resulting in a table
of relative abundance (see Figure 1.5). These data are defined as “compositional
data” that mathematically represent points on a simplex. They provide relative
information with quantitative descriptions of a set. The relative abundance, namely
the percentage of total abundance, restrict the data to a sample space with the con-
straints of having the sum of each characteristic always equal to 1 and having their
values included in the interval [0, 1]. These constraints require specific mathematical
transformations to avoid misinterpretations or irreproducible analyses [YZG21].
The data processing often used are log-ratio transformations and refer to Additive
Log-Ratio (ALR), Centered Log-Ratio (CLR) and Isometric Log-Ratio (ILR). The
choice of the method is defined by the desired interpretation:

• ALR: Isomorphic2 but not isometric3. Transforms the original D features to
D − 1 features space.
Formula:

alr(x) = [ln x1
xD

, ln
x2
xD

, ..., ln
xD−1
xD

]

• CLR: Both isometric and isomorphic. It removes the value-range restriction,
but it does not remove the sum constraint. It does not change the dimension
of the basis as the ALR or ILR making it easier to train interpretable models
Formula:

clr(x) = [ln x1
g(x) , ln

x2
g(x) , ..., ln

xD−1
g(x)

2Isomorphic: meaning that the mapping between the simplex and the new basis is preserved
3Isometric: meaning that the distances in the simplex are equivalent to the distances of the new

transformed values
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Where g(x) is the geometric mean of x.

• ILR: Isomorphic and isometric. It is often the most suitable transformation that
manage the issue of sum and range value constraints because it is associated
with orthonormal bases in the simplex. Nevetheless, as ALR it transforms the
original D features to D − 1 features space.
Formula:

ilr(x) = clr(x) ·Ψ′

ΨΨ′ = ID−1

Where Ψ is a (D − 1, D)-matrix whose rows are clr(ei) and e1, e2, ..., eD−1 is a
generic orthonormal basis of the simplex SD.

As ILR transformations are difficult to interpret, recent studies have defined a method
called balance [QE20; YZG21], which is the log-ratio of the geometric means of two
non-overlapping groups of features defined by a sequential binary partition (SBP).
In that way, balances are more interpretable than common log-ratio transformations.
Metagenomic compositionality is also managed by Friedman and Alm [FA12] to
create a clustering graph network interaction of species. They proposed a robust
approximation method called SparCC to derive the correlation matrix based on a
rough estimate of the variance of the ratio-log of species.

1.1.6.2. Difficulties and weaknesses

There are some limitations to manipulating metagenomic data for downstream
analysis:

• Bioinformatics workflows depend on different softwares, which are not typi-
cally designed to work together in the most efficient way.

• The catalogs processed for alignment may change from study to study, resulting
in some bias in the analysis.

• Many parameters and thresholds must be set, often arbitrarily, which affects
the final result.

• Two to Four hours of computation on a cluster with 9 nodes containing 56
cores CPU and 256GB of RAM are required to predict the class of one sample
[Uga+19] which is not compatible with “point-of-care” treatment.
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• Metagenomic models are trained to find biomarkers or to perform a specific
classification task but rarely at the same time which do not provide inter-
pretable results. When state-of-the-art metagenomic methods manage this
problem [Pri+20; YZG21], they create a global stratification with a unique
model and do not provide a localized / personalized stratification per patient,
an important concept for precision medicine.

All these difficulties are the area of improvement that we have addressed during this
thesis. The proposed solutions are discussed first in section 1.2 and then detailed in
the other chapters.

1.2 Research problem and contributions

1.2.1 Objectives

In this thesis, we focus on analyzing metagenomes to develop predictive and explain-
able models for a stratification at the phenotypic level. We aim to take the respective
strengths of interpretable and black box models, and adapt them to the context of
metagenomic analysis for precision medicine. The methods we have developed to
address the different problems reported in section 1.1.6.2 are detailed in this section
and summarized below:

• An end-to-end deep learning (DL) approach learns a compact representation of
metagenomes by taking raw DNA sequences directly from NGS. The interest is
to use metagenomics as a “point-of-care” solution especially in resource-limited
or remote locations without the need to send the data for heavy processing to
bioinformatics platforms.

• A subgroup discovery (SD) algorithm built as a classifier with a reject option.
It delegates samples, not belonging to any subgroup, to a supervised algo-
rithm. This leverages the strengths of the discovery and subgroup classification
concepts by creating an explainable stratification of patient groups.

Machine learning (ML) approaches, and in particular deep learning, are more
and more common in the field of metagenomics whatever the application. To
improve their performance, ML models have seen their complexity increase over
time. However, it is known that, in statistical learning, the complexity of the
algorithms makes the interpretation of predictions difficult to explain [CPC19]. In
many fields such as medicine, the transparency and confidence of the results often
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are needed. Explicability brings a certain insight on the decision of the algorithm by
limiting the potential bias that is often not obvious to detect and that is learned by a
program on a dataset [Gil+19]. It enhances the fairness of the algorithm and the
prediction. Medicine is a field where explainability plays a major role because errors
can be serious for the health of patients and not being able to understand what the
model indicates is a serious issue.

1.2.2 Deep learning based approach and point of care

DL has become very popular in the past decades thanks to the improvement of
computer components, especially GPU cards that allow to greatly accelerate the
speed of calculations. DL is currently the state of the art in almost all domains,
especially with complex data such as text, image, video and sound [Alo+19]. More
recently, several studies have used deep learning for bioinformatics applications
and achieved excellent results such as in drug discovery [ZLX20], medical image
classification [Ges+19] and even electrocardiogram diagnosis [Rib+20]. One of
the strengths of DL is that it can learn complex object representations, known as
embeddings, without extensive feature engineering. Embeddings are a mapping
of discrete, categorical or continuous variables to a vector of continuous numbers.
It encodes the meaning of an object in a learned vector space, making possible
mathematical operations between objects such as comparing their distance or com-
bining them in a certain way. Metagenomic data also have a complex structure that
requires transformations to be learned by ML algorithms. Adaptations of existing
DL models in Natural Language Processing (NLP) for metagenomics have rapidly
emerged making DL a promising approach to process metagenomic data [Min+17;
Wol+18; Roj+19; MV19; Lia+20; Geo+20].

One weakness of DL models is their complexity which tends to considerably reduce
their interpretability. Black box models need post-hoc methods to bring interpretabil-
ity to the result [Mol21]. These methods differ in purpose, they can be global to
explain the whole model or local to explain an individual prediction. There are
several recent techniques that have been developed to address this issue like Inter-
pretable Local Surrogates, Occlusion Analysis, Gradient-based techniques, Layer-Wise
Relevance Propagation [Sam+20]. Koras et al. [Kor+21] proposed a tailored inter-
pretability method assigning a biological meaning to the individual dimensions of
the hidden space in a problem of drug sensitivity prediction for cancer. Another ap-
proach is to add an attention mechanism to train neural networks [LPM15; BCB16]
which helps the model to select and concentrate only on the most interesting fea-
tures. Attention can be used to identify information that models find important like
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a region in an image or a word in a sentence. However, all of these approaches have
limitations because they are only an approximation of interpretation.

1.2.2.1. Similarities and differences between DNA sequences and Natural
Language Processing

Raw data from NGS are not structured data and must be converted to a suitable
format (e.g. tabular) to solve problems related to metagenomics by applying ma-
chine learning algorithms. This is the case of bioinfomatics workflows described in
the section 1.1.5 which produce taxa abundance tables. To reduce the complexity of
the conversion, a strategy can consist in using a DL model trained on this type of data
which automatically learns an adapted representation. In fact, DL has been declined
in different structures specific to certain use cases such as recurrent neural networks
(RNN) for sequence, text and audio analysis or convolution neural networks (CNN)
for image analysis. In recent years, distributed representations of words in a vector
space have been increasingly used in NLP to improve the performance of learning
algorithms [Mik+13]. These representations are embeddings, characterizing words
in a numerical vector space capturing semantic and lexical information learned with
contexts of words. These vectors can thus be used in many applications like senti-
ment analysis [Maa+11], translation [Qi+18] or even speech recognition [BH14],
outperforming standard word count representation. To go further, considering the
concept of word embeddings, it is possible in NLP to build representations of sen-
tences or documents with different techniques [KW14; SVL14; HCK16; Dev+18].
In metagenomics, DNA sequences can be embedded in an identical way with some
preprocessing [Ng17; MV19; Jou+16]. A DNA sequence is composed of four nu-
cleotides A, C, G and T. Therefore, it can be similar to a natural language sentence
with the difference that it is based on a shorter alphabet. However, it is necessary to
take into consideration other distinctions between metagenomes and NLP data. DNA
sequences do not have an explicit concept of words delimited by spaces between
letters. DNA sub-strings k-mers are generally considered. Furthermore, NGS makes
“massively parallel sequencing” to numerically convert several DNA fragments into
short reads. Thus, metagenomic data is composed of several sequences without any
information about the order; a drastic change from textual data in which sentences
and paragraphs should be read in a successive manner. The Figure 1.7 makes an
analogy between NLP and metagenomics.
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Fig. 1.7.: Analogy between Metagenomics and Natural Language Processing. A
metagenome is composed of several copies of genomes, which can be similar to a
book full of plagia in which there are several sentences of different books. As a
sentence is composed of words and is a part of a book, we can match this with a
read cut into k-mers corresponding to part of a genome.

1.2.2.2. Our approach: Metagenome2Vec

In this thesis, we bypass the classical bioinformatics workflow and instead aim
to directly classify metagenomic samples from raw sequence data in an end-to-end
process [Que+21]. Moreover, the resulting trained DNN can even automatically
discover important biological concepts responsible for the classification. Using such a
framework can solve the bottleneck of data insufficiency present in classical methods.
Moreover, real-time results could be given with our proposed framework, especially
with the improvement of NGS technology such as Nanopore.

Method: The core of our approach lies on the integration of different types of
embeddings that encode the metagenomic sequences. We divide this pipeline
into four main stages and assign a name to each of them for more clarity. The
first one, kmer2vec, consists of a transformation of k-mers into embeddings. The
second, read2vec, refers to reads projection into embeddings. kmer2vec and read2vec
act as NLP models that transform words and sentences into vectors. The third,
read2genome, classifies reads into bacterial genomes from which they most likely
originated. The goal of this step is to estimate the abundance of taxa present in
the metagenomes, thus allowing embeddings of reads from the same class to be
grouped together in order to amplify their information. The fourth and last step,
Metagenome2Vec, begins by transforming the metagenomes into robust multiple
instance representations using read2vec and read2genome and drastically reduces the
initial dimensional complexity. Finally, two DL models are implemented to handle
multiple instances is trained on the transformed metagenomes’ vector space. One
architecture is a Variational Auto-Encoder [KW14] to encode all the information
in a single vector. The second DL model, called deepSets [Zah+17], is trained to
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classify the labels of the metagenomes from the classes to be discriminated. The
entire pipeline and concepts are detailed in chapter 3.

Results: Metagenome2Vec achieves good results by exceeding the state of the art on
several datasets and on various evaluation metrics. The abundance of metagenomic
species calculated by the deep learning model is often sufficient to get the best
scores without the final use of embeddings. On the other hand, it turned out that
on a dataset of simulated Nanopore reads, it was better to use the embeddings to
maximize our scores. Finally, the best option is to combine the calculated species
abundance with the learned read embeddings, which allows us to keep the best
scores no matter which approach performs better initially.

Metagenome2Vec is a black box algorithm based on deep learning. Despite its good
performances and its ability to make “point-of-care” processing with an inference
time about 1 hours per sample with 24-48 CPUs, it does not provide a relevant
understanding of the predictions. The next section illustrates a second method
studied, based on the subgroup discovery, to alleviate the interpretability problem
and be in line with precision medicine.

1.2.3 Building interepretable signatures based on Subgroup
Discovery

1.2.3.1. Introduction of subgroup analysis

Searching for subgroups of items with properties that differentiate them from
others is a very general task in data analysis that refers to subgroup identification.
There are a large number of methods for finding these subgroups that have been
developed in different areas of research. Depending on the field of application, the
algorithms considered differ in particular on the metrics used to qualify the groups of
interest. The field of medicine is one with the most application for subgroups search.
Indeed, the considerable heterogeneity in disease manifestation and response to
treatment remains a major challenge in medicine. Understanding what drives such
differences is critical to adjust treatment strategies, guide drug development, and
gain insights into disease progression. A literature in ecology emphasizes the fact
that several causes can lead to the same effect [Moo01]. This is illustrated by the
notion of the “Karenine effect” [ZMV17], where several individual profiles with
different characteristics can exist for the same phenotype.
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Symbolic approaches are a field of machine learning that deals with the inductive
learning of symbolic descriptions such as rules, decision trees or logical represen-
tations. [FGL14]. The two main branches from this category of algorithms are
subgroup discovery and classification rules learning. A rule covers a subgroup of
samples in the database that it characterizes by a certain value of the variable of
interest. Subgroup discovery algorithms, on the first hand, create individual rules
which are sub-signatures of the dataset describing the properties of individual groups
specific to a target class. Classification rule learning algorithms, on the other hand,
create a combination of rules covering the entire data set assigning a prediction to
each example [NLW09; Val+17b]. SD is therefore more selective, it keeps only the
rules that meet certain degrees of robustness and that are statistically credible. In
the field of subgroup discovery there are two families of approaches: the first is
Subgroup Identification (SI) and the second is Knowledge Discovery in Databases
(KDD). SI is more specific to medical data analysis because the generation of sub-
groups is driven by both treatment arms and the outcome, while KDD is linked with
data mining culture.

1.2.3.2. Subgroup Discovery

SD defines a category of models that provides interpretable patterns unlike well-
known state-of-the art-ML algorithms (e.g., SVM, Random Forest or also Neural
Networks) returning black box patterns [Imp12]. SD performs analyses where the
goal is to capture knowledge through the data and not to make the model itself
the source of knowledge. Although interpretability can be designed in black box
models, notably by looking at the importance of the variables returned by the model
or the weights learned, this does not decrease the complexity of the model. Molnar
[Mol21] states that two kinds of interpretability methods have to be distinguished:
intrinsic and post-hoc. SD is related with intrinsic interpretability because it has
a simple structure naturally understandable, whereas post-hoc interpretability is
related to black box models as they need interpretation methods after the training
stage.

In bioinformatics, several studies aim to discover patterns based on interpretable
models. This is the case of microarrays where the models seek to explain the
expression level of a large number of genes simultaneously at a given time and in
a given state compared to a reference sample [Li+03; NLW09]. As metagenomics
collects the genetic material specific to each individual, which differs from other
sources of data like gender, age or biomedical measures that could be similar
from one patient to another, it thus supports precision medicine allowing to create
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individualized treatments for each patient. SD is designed to create predictions that
can be interpreted via simple formulas that enable to have leverage on the different
characteristics present in these formulas. For precision medicine in metagenomics,
SD could help decision making by providing results defining metagenomic profiles
related to certain phenotypes, i.e. the impact of the bacterial balance regulating the
microbiota on the phenotype.

At Quinten, the culture of subgroup analysis is present because to meet the need
for transparency of results so that decision-making by domain experts remains
possible and efficient. In this way, an algorithm called Q-Finder4 [Esn+20] has been
developed to generate statistically credible subgroups to answer clinical questions
in particular. We used this algorithm as a basis for our research to improve it and
develop a more appropriate approach to metagenomics.

1.2.3.3. Q-Finder

Two main parts of SD algorithms are defined as: Rule refinements, the rules
exploration phase, and rule selection, the step keeping or removing rules. In many
SD algorithms both parts have the same heuristics but more recent approaches
have used different ones [SJF14; Val+17b]. Q-Finder is in the case where different
heuristics are driving the results, it combines an exhaustive search (rule refinements),
with a cascade of filters (rule selection) based on metrics assessing key credibility
criteria, including relative risk reduction assessment, adjustment on confounding
factors, individual feature’s contribution to the subgroup’s effect, interaction tests
and adjustment tests (multiple testing). This allows Q-Finder to directly target and
assess subgroups on recommended credibility criteria.
A preliminary work was to place and benchmark Q-Finder with other algorithms in
rules learning literature. As Q-Finder is constructed to perform both SI and KDD
analysis, it has been compared accordingly to other algorithms on the database of
the International Diabetes Management Practice Study (IDMPS). The goal was to
better understand the drivers of improved glycemic control and rate of episodes of
hypoglycemia in type 2 diabetics patients. We compared Q-Finder with state-of-the-
art approaches APRIORI-SD [KL07] and CN2-SD [Lav+04] for KDD algorithms, and
Virtual-Twins [FTR11] and SIDES [LD14] for SI algorithms. The results demonstrate
its ability to identify and support a short list of highly credible and diverse data-
driven subgroups for both KDD and SI tasks.

4Proprietary algorithm of Quinten company
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1.2.3.4. Adapting subgroup discovery to interpretable metagenomic model
for dysbiosis classification

Recent studies have shown that altering the microbiome is a strong way to cure
metabolic disease and recover a healthy profile. Indeed, treatments are going to rid
of immune suppression and drug therapy to promote manipulation of the intestinal
flora instead. These treatments could refer to dietary changes, specific microbial
manipulation and fecal microbiota transplantation [Sco+15]. There are many
variations between the microbiomes of individuals that need to be better understood
[Ain20]. For these reasons, we have taken the direction in this thesis to address the
problem of interpretable prediction of metagenomic data.

By constructing a signature as a set of combinations of sub-signatures characterizing
different subgroups of patients, the technique allows a double classification: one of
the pathologies and one of the subgroups to which a patient belongs. Using a credible
subgroup discovery algorithm, allows an identification of different classification
sub-signatures, each classifying subgroups of individuals and each using a different
subset of metagenomic taxa. This makes it possible to account for the known
multiple natures of the causes of metagenomic dysbiosis and to offer a personalized
explanation. Consequently, it prospects for targeted treatments while maintaining
classification performance at the level of the state of the art.

Method: The algorithm we proposed, named Q-Classifier, is a combination of
subgroup discovery and supervised classifications approaches. It is therefore an
interpretable method which is distinguished by three key points:

• The signature is interpretable and personalized. Indeed, the signature (i.e.
the description of the metagenomic signature) is not represented as a sub-
signature, a regression formula, or a decision tree. Instead the signature is
represented by a set of rules (sub-signatures) for different groups of individuals.
This approach allows an explanation of the classification decision that is not
only interpretable but also “personalized” because it is different for each group
of individuals. A patient can correspond to all or part of the sub-signatures.

• A different statistical measure of credibility for each signature rule is provided
indicating a level of confidence in its applicability (e.g. Odd-ratio or F1-score
and p-value).

• When an individual cannot be correctly classified, it is then rejected and
delegated to be classified by a state-of-the-art algorithm.
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Then, these characteristics describe the algorithm as a reject and cascade classifier.
Cascading is a multi-step system in which only observations not classified by the first
classifier are delegated to a second classifier [HB16a]. The section 4.3 of chapter 4
details how the algorithm work.

Results: The Q-Classifier proves that it is capable of achieving state-of-the-art
approaches on real-world datasets, but when the data is preprocessed with a CLR
transformation, it achieves even higher results. The percentage of samples rejected
by the subgroup discovery step depends on the database and ranges from 20% to
77%. It is often related to the prediction scores, the higher the scores, the lower
the rejection rate. We were also able to verify with the simulated datasets that
the algorithm was able to recover the artificially created metagenomic abundance
profiles. The Q-Classifier has also been trained on the abundance tables output from
Metagenome2Vec and obtained promising results slightly below the ones obtained on
the abundance tables calculated by the MetaPhlAn2 algorithm from the Pasolli et al.
[Pas+16] study.

1.2.4 Scientific mediation
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• Cyril Esnault, May-Line Gadonna, Maxence Queyrel, Alexandre Templier, and
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Management Practice Study”. Frontiers in Artificial Intelligence, Dec 2020. doi:
10.3389/frai.2020.559927

• Maxence Queyrel, Edi Prifti, Alexandre Templier, and Jean-Daniel Zucker.
“Towards End-To-End Disease Prediction From Raw Metagenomic Data”. In-
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Experimental methods and
design

2
Our thesis work led to the creation of algorithms seen in the previous chapter

(Section 1.2): end-to-end processing with deep learning (chapter 3) and inter-
pretable prediction with subgroup discovery (chapter 4). To carry out the study of
the different approaches, we have determined several experimental settings. All
methods were tested on several datasets with different software. This chapter sum-
marizes the characteristics of the datasets and tools used during the thesis. First,
real-world metagenomic dataset are described, then the strategies and objectives of
the metagenomic simulations are specified, next the IDMPS database is introduced
and finally frameworks and technologies used to develop and execute the algorithms
are detailed.

2.1 Survey of existing metagenomics datasets

Existing metagenomic datasets generated by Illumina shotgun sequencers are used
in several studies [EDF15; Tho+19; Pas+16; Pri+20]. These datasets represent
a basis for comparing our different methods with the state of the art. They are
accessible from NCBI website1 which repertories open-source studies. The datasets
span four diseases associated with gut microbiota metagenomic data: colorectal
cancer [Zel+14], liver cirrhosis [Qin+14], obesity [Met+13] and type 2 diabetes
[Qin12]. The table below summarized the four main public datasets manipulated in
this thesis:

Dataset name Disease Control subjects Case subjects Control-to-Case Size2 Reference

Colorectal Colorectal Cancer 733 48 60.3% ∼ 480Go [Zel+14]

Cirrhosis Liver Cirrhosis 114 118 49.1% ∼ 1.1To [Qin+14]

Obesity Obesity 89 164 35.2% ∼ 1.3To [Met+13]

T2D Type 2 diabetes 174 170 50.6% ∼ 1To [Qin12]

Tab. 2.1.: Information about the four real-world metagenomic datasets

1www.ncbi.nlm.nih.gov
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Dataset name Disease Control subjects Case subjects Control-to-Case Size

Colorectal Colorectal Cancer 73 48 60.3% ∼ 480Go
Cirrhosis Liver Cirrhosis 114 118 49.1% ∼ 1.1To
Obesity Obesity 89 164 35.2% ∼ 1.3To

T2D Type 2 diabetes 174 170 50.6% ∼ 1To
Tab. 2.2.: Information about the four real-world metagenomic datasets

In order to combine the main research directions of the thesis and to facilitate their
comparison, these datasets are used in the experiments related to both deep learning
and subgroup discovery algorithms. The datasets’ raw data, i.e the reads obtained
by NGS technologies, are the input of the deep learning workflow Metagenome2Vec
(chapter 3), whereas the input of subgroup the discovery algorithm Q-Classifier
(chapter 4) is the species abundance tables obtained with the MetaPhlAn2 algorithm
[Tru+15] from the work of Pasolli et al. [Pas+16].

2.2 Simulating metagenomic datasets

The simulation of metagenomic data makes it possible to get rid of sequencing
machines (leading in a gain of time, cost, etc...) in order to create artificial samples.
It has several advantages such as:

– Defining the number of samples and their size.

– Determining all the genomes present in the ecosystem.

– Assigning the class, i.e. the genome, of each generated read.

– defining the prevalence of genomes per sample.

In our experiments, the metagenomic data simulations are used in two ways:

– To generate a set of reads to learn embeddings or train a classifier to a certain
taxonomic level

– To generate metagenomic samples from specifically defined abundances pro-
files, resulting in a dataset with artificial control and case samples to train and
evaluate our models on a prediction task.

2Datasets have a massive size considering they only have few hundreds of patients. Metagenomes
are composed of ∼ 80 million reads, each one composed of ∼ 90 nucleotides.

315 patients had an adenoma; this is a benign tumor, so they have been labeled as control cases as in
Pasolli et al. [Pas+16].
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The simulation process needs reference genomes to work as it takes random DNA
fragments from genome sequences. To select these genomes, DNA sequences from a
catalog of 9,879,896 genes [Met+14a] have been projected onto reference genomes
database available on NCBI. Then, the most abundant genomes have been retained
to compose a set of 506 different genomes representing 235 species, 79 genera and
37 families. These genomes are given as input of the CAMISIM software [Fri+19] to
simulate Illumina reads or Nanopore reads when it is combined with the NanoSim
software [Yan+17].

2.2.1 Datasets used to train embeddings and taxa classifier

The simulated dataset to train the embeddings and the taxon classifier must consist
of a supervised metagenomic read dataset that the model will learn to classify. To
deal with the problem of unbalanced classes leading the model to learn more of
the majority classes, we need to ensure that the simulated dataset has a uniform
distribution of taxa. This parameterization can differ from one software to another.
Indeed, CAMISIM and NanoSim take a file of genome abundances as configuration
but manage it differently. CAMISIM takes as input the size of the genome in addition
to its abundance. Thus, to generate an abundance equally proportionate between
genomes we must use the following formulas to calculate the abundance given as
input to CAMISIM:

Ag = 1
Lg

AGg = Ag∑|G|
i Ai

, g ∈ G
(2.1)

Where G is the set of genomes, Lg is the base pair length of the genome g and AGg
stands for the equally balanced abundance between genomes for the genome g. For
NanoSim, AGg is just defined as a uniform distribution from the number of genomes
like AGg = 1

|G| .

We have outlined the case where the classifier is trained to the strain level. However,
if the model is trained to another taxonomic level, such as species, the formula
to calculate the abundance of species should be modified accordingly. Indeed, if
genomes come from the same species, the simulation will produce more reads for
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that species than one where only one genome comes from it. The formulas used to
avoid a species appears too often or not often enough are defined by:

Ls =
|Gs|∑
i

Li ; L_norms = Ls∑|S|
i Li

, s ∈ S

Ag = 1
L_norms × (Lg/Ls)

; Ag = Ag∑|Gs|
i Ai

ASg = Ag∑|G|
i Ai

(2.2)

Where S is the ensemble of species, Gs is the ensemble of genomes for the species s,
Ls is the base pair length of the species s and ASg stands for the abundance equally
balanced between genomes at the species level for the genome g.
3.5M and 1.5M Illumina reads with an average of 150 base pairs have been simulated
for the train and validation set respectively, corresponding to a depth of coverage
(mapping depth) of 27% over all the genomes. For Nanopore data, a total of
735K training data and 315K validation data with a base pair average of 2590
have been generated, corresponding to a mapping depth of 100% over all the
genomes. The initial given abundance was calculated with the formulas 2.2 to
be equally proportionate at the species level. Indeed, the model is trained at the
species level rather than the genome level because genomes of the same species are
close enough to have the same prediction and it is easier to train the model with a
smaller number of classes. An almost equal number of sequences for each species
is not representative of real metagenomes where abundance follows exponential
distributions. Nevertheless, in the case of read classification modeling, this prevents
the classifier from focusing and predicting the predominant classes while learning a
more robust embedding. These simulated data have the advantage over real NGS
data of providing information on the origin of a sequence, allowing the training of
a supervised algorithm and test its performance in estimating abundance profiles
resulting from the classification of reads on taxa.

2.2.2 Datasets to learn the disease prediction tasks

The simulated metagenomic dataset, used to train the sample group stratification
models, must define several taxonomic abundance profiles characterizing the dif-
ferent individuals. Thus, these profiles must be close and distant within the same
group to allow the algorithm to classify them together without it being too trivial.
Artificially created abundance tables allow us to simulate metagenomic reads for
each sample to evaluate the algorithms against known profiles [FA12].
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Different strategies to simulated abundance profiles: Some studies are working
on discovering interaction between pairs of microbial taxa with metabolic network
models [FA12; LB13] or with Lotka-Volterra model [SPW16]. These methods provide
information on the correlation of taxa allowing a better control on the credibility
of the metagenomic profiles created. Weiss et al. [Wei+16] have detailed several
methods for metagenomes simulation such as Null model, Ecological, Lotka-Volterra
and Time Series. Lotka-Volterra models are a system of differential equations and
Time Series is based on time series equation between taxa. The null model creates
abundance from an initial null distribution with different strategies like drawing
samples with Dirichlet distribution without sum-constrained (raw abundance) or
with sum-constrained (relative abundance) and reducing or increasing species
diversity. Finally, the Ecological method is based on linear relationships between taxa
abundance where, mutually or independently, abundance may increase or decrease
with the absence or presence of certain taxa. For our experiments, the simulations
have been done using both null model and ecological strategies.

2.2.2.1. Null model

This approach is used to generate two datasets, one with Illumina generator named
Null Model Illumina, and the other with the Nanopore generator named Null Model
Nanopore.

The Null Model Illumina dataset is created to allow the learning of the end-to-end
deep learning model and to test its efficiency to find the bacterial species that have
an impact on the classes of the samples. To create this dataset, an artificial disease
is simulated based on known bacterial genomes and abundance profiles which
significantly vary in abundance between two groups (namely control vs case). The
control case samples are simulated with the same abundance of species, so the
number of reads is almost the same for each species. In contrast, the samples from
case patients have an abundance arbitrarily set to 3 times more important for five
species that imply the disease. In total, 200 profiles were simulated with an average
number of reads per sample of about 164k representing a total of 10GB.

The Null Model Nanopore dataset is created to evaluate Metagenome2Vec and Q-
Classifier models on Nanopore reads from known species abundances. We choose to
draw the initial abundance distribution from the cirrhosis data set [Qin+14]. In this
data, some variations in metagenomic abundances between individuals are known
in the literature to cause cirrhosis. It allows us to more easily evaluate the models
training in terms of classification and explicability. For each sample in the dataset, 3

2.2 Simulating metagenomic datasets 29



artificial samples are created by adding Gaussian noise to the original abundance of
each species present. This generates a dataset 3 times larger than initially to train
the models, while limiting the possible similarity between samples created from the
same profile. Due to the compositional nature of the relative abundance, the added
Gaussian noise is in accordance with equation 2.3 to meet the data constraints:
retrieve values between [0., 1.] with a sum equal to 1 for each sample.

xi = logit(ai) = log( ai
1− ai

), ai ∈ [0., 1.]

x′i = xi + εi

a′i = sigmoid(x′i) = 1
1 + exp(−x′i)

(2.3)

Where ai is the initial abundance and a′i is the result with the added Gaussian noise.
The Logit function is used to unconstrain the abundance and the Sigmoid function is
used to retrieve the original constraint. We must control the added noise so that it
is:

• Not too low: resulting in an overfitting because the simulated data are too
close to the initial data

• Not too High: producing simulated data too far from reality, preventing the
models from successfully learning a correct stratification.

To check these characteristics, the distance between the abundance of each profile
is calculated to analyze how close or far apart they are (Figure 2.1). The Aitchison
distance is used because it is better suited for compositional data and is defined
by:

A = E(clr(x), clr(y))

Where A is the Aitchison distance, E the Euclidean distance (E =
√∑n

i=1(xi − yi)2),
x and y are two vectors of relative abundance and clr is the centered log-ratio
transformation explained in section 1.1.6.
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(a) Noise = 0.5 (b) Noise = 5.0

(c) Noise = 2.5

Fig. 2.1.: Cluster map of the Aitchison distance between the relative abundances of 3 initial
control profiles (HD), 3 initial case profiles (LD) and their 3 noisy simulated
samples. The underscore followed by a number is used to designate a simulated
profile.
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The figure shows that the noise is too low when it is equal to 0.5 because the clusters
between a profile and those generated from it have too close Aitchison distances.
When the noise is equal to 5., it is too high because a cluster appears between the
initial profiles, whether they are control or case, implying that even with respect to
the class, the simulated profiles are even more distant. Considering these details, a
noise = 2.5 seems to be a good compromise to balance the Gaussian noise applied
on the initial profiles.

It is also important to check whether the abundance of species that differ most from
the two classes, control and cirrhosis, in the original data set are still different when
simulated samples were added (see Figure 2.2).

(a) Initial dataset (b) Dataset of simulated profiles added with a noise equal to 2.5

Fig. 2.2.: Box plot of the species abundance distribution for the control and cirrhosis group.
The ten species plotted have obtained the highest value on the Mann-Whitney
test meaning that the distributions of the two groups are the most distant.

The distribution of abundance in the two datasets is quite similar, which implies
that noise has not deterred the initial assumptions about species. After the different
checks, the noise is set to 2.5 and considering the 232 initial examples, the total
of profiles in the final database is equal to 928. The average number of reads by
sample is around 28k and represent a total of 29Go.
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In addition to the Null Model strategy for metagenomic simulation, the Ecological
process has also been tested in our experiments.

2.2.2.2. Ecological

The Ecological simulation process has a holistic view that allows us to generate
profiles and to know interactions between species (Ecological Nanopore dataset). It
is suitable for evaluating models on biomarker discovery in addition to stratification.
The simulation strategy here is to randomly take a single control sample from
the cirrhosis dataset [Qin+14] and change its abundance 500 times to create 500
control (resp. case) samples. We do not know, from the literature, a number of
relevant profiles for this type of simulation. That is why, we arbitrarily chose to
create two control (resp. case) profiles, in which there are two species associated
with an altering factor of abundance characterizing each new profile. The altering
factors are defined in such a way that the abundance of other species is not or not
significantly modified. This is a way of preserving the initial value of abundance
because, as this is compositional data, changing some values will also alter others.
This is preferable to be avoided for biomarker discovery assessment. Each sample
randomly takes 1 or 2 profiles with a probability of 0.5, the abundance of the species
included in the profiles is then modified with a predefined factor, finally a Gaussian
noise is applied as in the null model strategy to be sure that the profiles are all
different. There are 1000 created profiles with an average number of reads equal to
28k by sample representing a total of 31Go.

The characteristics of the 3 simulated datasets used for disease prediction tasks
(sections 3.4 and 4.3.4.2) are summarized in the following table:

Dataset name Simulation method Control subjects Case subjects Control-to-Case Size

Null Model Illumina Null model 100 100 50.0% ∼ 10Go
Null Model Nanopore Null model 456 492 48.1% ∼ 29Go
Ecological Nanopore Ecological 500 500 50.0% ∼ 31Go

Tab. 2.3.: Information about the three simulated metagenomic datasets

We have detailed the different real and simulated metagenomic datasets used during
the thesis. However, we manipulate another dataset, called IDMPS, a clinical
study on diabetes. It is useful in our research for the subgroup discovery part. Its
description and use in our experiments are detailed in the next section.
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2.3 Introduction of the IDMPS database

The International Diabetes Management Practice Study (IDMPS) database is used
during the experiments to benchmark the Q-Finder algorithms against state-of-the-
art subgroup discovery algorithms. The dataset is not related to metagenomic data,
so its task is mainly focused to evaluate the results of the interpretable models in
chapter 4.

IDMPS is an ongoing international, observational registry conducted in waves
across multiple international centers in developing countries since 2005. Each
wave consists of a yearly 2-weeks fact-finding survey, which aims to document in a
standardized manner: practice environments, care processes, habits, lifestyle and
disease control of patients with diabetes under real world conditions. It has recently
led to new findings related to the sub optimal glycemic control in individuals with
type 2 diabetes in developing countries and the need to improve organization of
care [Asc+20]. Observational registries for patients suffering such conditions are
pivotal in understanding disease management. In 2017, an estimated 425 million
people were afflicted by diabetes worldwide, with Type 2 Diabetes Mellitus (T2DM)
accounting for approximately 90% of cases. By 2030, diabetics should represent
7.7% of the adult population, or 439 million people; and 629 million people by 2045
[CMZ12; SSZ10; Ogu+17]. The two most recent waves to date of IDMPS (wave 6
[2013-2014] and wave 7 [2016-2017]) were selected for the following experiments,
including data from 24 countries from Africa, Middle East, India, Pakistan, Russia
and Ukraine. Only data from patients having T2DM and taking either a Basal insulin,
a combination of Basal and Prandial insulin or a Premixed insulin were included.

2.4 Code implementation

2.4.1 State-of-the-art classifiers

The Scikit-Learn 0.23.2 package is used to train state-of-the-art classifiers such
as Support Vector Machine (SVM), Random Forest (RF), AdaBoost (AB) or Gradient
Boosting (GB). Parameters search algorithms to optimize models comes also for this
package.
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2.4.2 End-to-end deep learning for disease classification from
metagenomic data

The full pipeline of the end-to-end deep learning disease classification is developed
to preprocess DNA reads from fastq files and to train k-mers embeddings, reads
embeddings, classifier of reads into taxa and classifier of metagenomes into disease.
The source code is available in a Git directory at the following link https://github.
com/MaxenceQueyrel/metagenome2vec. The algorithms and frameworks used for
experiments are summarized below:

Data preprocessing Given the amount of data we decided to take advantage of
the Spark 3.0.2 Python Framework [Zah+12] running on distributed clusters to
manage memory and make parallel computing on CPU for all data processing. We
use YARN (UMMISCO cluster), Torque (UMMISCO and MeSu cluster) or SLURM
(Julio-Curie cluster) as cluster managers to change the resources allocated for each of
our experiments. The deep learning models are always trained on GPU computing.

Machine learning We use PySpark 3.0.2 to train the word2vec algorithm. GloVe and
FastText algorithms are directly downloaded from GitHub, written in C and C++
respectively. For state-of-the-art classifier models, refer to section 2.4.1. Finally, the
neural network architectures are implemented with PyTorch 1.7.1 [Pas+19] using
GPU computation. We detail the packages and algorithms used for each sub part of
the metagenome2vec workflow:

• kmer2vec:

– word2vec, from PySpark 3.0.2.

– GloVe, version 1.2 from GitHub written in C.

– FastText, version 9.2 from GitHub written in C++.

• read2vec:

– FastText mean embeddings aggregation.

– Language model transformers, trained with Pytorch 1.7.1.

– FastDNA, from GitHub written in C++.

• read2genome:

2.4 Code implementation 35

https://github.com/MaxenceQueyrel/metagenome2vec
https://github.com/MaxenceQueyrel/metagenome2vec


– Multiple Layers Perceptron on top of read embeddings, H2O sparkling
water 3.32.

– FastDNA, from GitHub written in C++.

• metagenome2vec:

– SVM, RF, GB and AB (section 2.4.1) for classification benchmark on
metagenome2vec vectorial representation and Bag of K-mers (BoK) repre-
sentation.

– DeepSets and Variational Auto Encoder (VAE) models are design with
Pytorch 1.7.1. Model’s hyper parameters optimization is computed with
Ax 0.1.20 package for Bandit and Bayesian search algorithms combined
with ray-tune 1.3.0 package for resources allocation and parallelization.

2.4.3 Generate statistically credible subgroups for interpretable
metagenomic signature

• The Q-Finder algorithm is designed in C++ with an API called by a python
package. The whole workflow is built on Dataiku V8 by decomposing each
part of the algorithm into different Python 3 modules in order to have a better
flexibility of implementation (to filter the rules for example). The code is
parallelized on a local cluster with Mesos as cluster manager.

• The Q-Classifier algorithm uses the Q-Finder’s rules generation and follows the
same logic of Python modules implemented on Dataiku. The state-of-the-art
classifiers trained in this part are SVM, RF, GB and AB (section 2.4.1)

2.5 Conclusion

As described, several datasets with different schemes are used to learn and evaluate
our models. Moreover, the numerous packages, technologies and heterogeneous
computational resources led to an important work of code adaptability in order to
aggregate all these elements between them. The implementation of the algorithms is
obviously an essential point of this thesis but handling the large volume of data to be
adapted according to the clusters and algorithms was often a more time consuming
and complex aspect although less at the center of our research.
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End-to-end deep learning for
disease classification from
metagenomic data

3

One critical task, when using microbiome data in a precision medicine context, is
to discriminate diseased patients from healthy or within different severity groups
[Job18]. In this thesis, we want to solve this problem without depending on external
resources (e.g. gene catalogs) during the prediction phase and we would like our
method to be both faster and at least as efficient as the state-of-the-art. Deep learning
is best suited to create useful and reusable representations on complex data such as
images, texts, time series, etc, as such it is potentially a good approach to deal with
metagenomic data. We were interested in various methods to successfully project
metagenomes into a latent space characteristic with a discriminative power. This
chapter details how metagenomic data are represented mathematically and how they
relate to natural language processing (NLP). It also highlights the state-of-the-art
models related to the creation of embeddings in metagenomic. Finally, the methods
proposed in this thesis are explained and detailed through different experiments
and results.

3.1 The representation of metagenomic data

Representing Metagenomes To mathematically represent the different concepts of
our approach, let D = (xm, ym)Mm=1 = {X,Y } denote a set of M metagenomes and
the associated labels Y ∈ {0, 1}M . A metagenome xm is composed of Rm � 106

DNA reads. A DNA read sr, r ∈ {0..Rm} is a sequence of length Lr ∈ 50 ∼ 200
for Illumina or Lr ∈ 104 ∼ 106 for Nanopore technology. The reads are formed by
several nucleotides in the vocabulary A = {A, T,C,G}, so sr ∈ ALr .

Representing reads In NLP, there are explicit word and sentence delimiters. On the
contrary, in the case of DNA reads there is no explicit information to systematically
delimit sub-sequences. Moreover, it is difficult to know the location of a read in
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genomes because the DNA were fragmented prior to sequencing and the location of
the reads is lost after sequencing. To transform the reads onto something similar
to words, a possible approach may be to simply split the sequences into k-mers
[MV19; Wol+18; Min+17; Lia+20]. Various size of k can be considered depending
on the task. Padding between k-mers is equal to one because k-mers refers to all
sub-sequences of length k. For example, if we have a sequence of seven bases
“AATCCGA” and if k = 3, then after splitting we do not only obtain the k-mers “AAT”
and “CCG” but also “ATC”, “TCC” and “CGA”.

Building k-mers, reads and metagenome embeddings Similar to the NLP applica-
tions, using vector representations of k-mers can overcome some limitations to treat
reads as discrete atomic sequences of nucleotides. Similarly, vector representation
of reads and metagenomes can be envisioned to go beyond their simple encoding
representations [Wol+18]. In our work, we focus on learning metagenome embed-
dings that could both reduce the data dimensions and also support computationally
efficient predictive models from embedded raw metagenomes. As Metagenomes are
composed of reads and reads are composed of k-mers, it is natural to consider a
multilevel embeddings approach. This is the reason why, in section 3.3, we intro-
duce and detail three main stages of data transformation: Kmer2Vec, Read2Vec and
Metagenome2Vec to compute respectively vector representations of k-mers, reads
and metagenomes.

3.2 State of the art

Several recent DL methods have been adapted to support the analysis of genomic
or metagenomic data for different tasks. The differences between these studies are
the representation of DNA sequences, the types of algorithms and obviously the final
objective. The Figure 3.1 summarizes the different metagenomic embeddings models
in relation to our approach Metagenome2Vec. There is already a large literature
related to DL approaches based on examples represented as DNA sequences in the
context of genomics or metagenomics studies. For information, genomic data focus
on the genetic material of an individual, whereas metagenomic data concern several
individuals in the same environment. As a result, the sequence alignment process is
relatively easier on genomic data than on metagenomic data. That’s why, these DL
methods typically operate directly on raw metagenomic sequences and operate on
aligned genomics sequences.
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Fig. 3.1.: Workflow of metagenomic data projected into low-dimensional representation
with embedding learning algorithms along with SOTA approaches. The blue color
represents the input data, the grey color represents different internal modules
of the pipeline and the red color the prediction task performed. The dotted line
is only a part of the Metagenome2Vec algorithm. Algorithms written (including
Metagenome2Vec) are linked with their corresponding task. We can see that
Read2Vec is a module for both phenotype and read classification. If the abstraction
is at the read level, results are handled to classify reads for taxonomic profiling. If
the abstraction is at the metagenome level, prediction could be used for phenotype
classification

3.2.1 Machine learning models from nucleotide one hot encoding

It is well-known that recurrent neural networks (RNN) as well as convolutional
neural networks (CNN) both work well on sequential data [CCC16; You+18]. That
is why, Genomic studies have used both architectures on DNA sequences. One
classical genomic task is to analyze chromatin accessibility. It involves finding some
regions of the genome that are accessible for cellular machines involved in gene
expression while others are compactly wrapped and remain inaccessible. Methods
exist to measure the accessibility of chromatin related to gene expression, but it
is expensive and time consuming. Different works have shown that RNN or CNN
on DNA sequences can capture relevant patterns and outperform state-of-the-art
methods in chromatin accessibility prediction for instance (DanQ - [QX16], DeepSEA
- [ZT15] or Basset - [KSR16]). A benchmark of these approaches was introduced by
Hildick-Smith and Bahtchevanov [HB16b].

In metagenomics, some studies focus on the hierarchical taxonomy structure and
are facing a multi-class classification problem. This is the case of GeNet [Roj+19],
a DL model based on CNN and ResNet architecture [He+15]. Authors have used
a one-hot encoding of the input nucleotides and their position in the read. The

3.2 State of the art 39



loss function is computed at each taxonomy level and the prediction at any level is
forwarded to the next one adjusting the decision of the classifier.
However, all these algorithms keep the initial representation of DNA and simply one-
hot encode the four nucleotide bases {A, C, G, T}. In other words, most algorithms
operate on a 4× Lr matrix where Lr is the sequence length. This representation is
quite basic and does not consider the similarities between k-mers. This is comparable
to representing a sentence as a set of letters rather than a set of words.

3.2.2 Machine learning models from DNA embeddings

An emerging idea have been to no longer work only with single nucleotides but
with k-mers. Considering such subsequences, it makes it possible to train models
that create vector representations and capture relationships between each k-mers.
Research in NLP has seen a major development on low-dimensional representation
of words. These methods regularly outperform the simple version of bag of words
by projecting words into a vector representation that accurately captures syntactic
and semantic word relationships. Recently, based on this concept, there have been
some approaches considering k-mers embeddings. In the work of Ng [Ng17], k-mer
embeddings are computed with a word2vec algorithm. A relationship is highlighted
between the arithmetic operation on word2vec vectors and the corresponding con-
catenation of k-mers. Similarly, in the Min et al. [Min+17] study, where the goal is
to classify chromatin accessibility (as explained in the previous section), the GloVe
[PSM14] is used to create k-mer embeddings before training the final neural network.
Experiments have shown that results are better when the sequence is transformed
into k-mer embeddings. Nevertheless, Min et al. [Min+17] set the k-mer size to 6
without discussing other configurations that could have demonstrated the overall
importance of this parameter.

There have been also several attempts to learn ML models directly from raw metage-
nomic data (see Figure 3.1). Most of them address the task of predicting the origin
of reads (called taxonomic profiling) at a certain taxonomy level or to perform
phenotype classification. Metagenomic data is a set composed of millions of reads,
so it requires transformations into a suitable representation before training predic-
tion models. It is possible to get a lower representation of metagenomes at the
k-mer / sequence level for taxonomic prediction and at the sample (metagenome)
level for phenotype prediction. To assign taxonomic information to each read, the
authors of FastDNA algorithm [MV19] have demonstrated that their approach using
embeddings of k-mers achieves performances comparable to the state-of-the-art. In
the first step of their approach, they define the length k of the k-mers that describe
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the DNA sequences. Then they run the FastText algorithm [Jou+16] to learn low-
dimensional embeddings (dimension from 10 up to 1000). All k-mers in a sequence
are replaced by their corresponding vector and summed to get an embedding of
the read they belong to. Then this new vector is passed to a linear classifier, which
computes the softmax function and minimizes the cross-entropy loss by gradient
descent. The k-mer embeddings are directly learned from the read classification
considering the result of the loss function. The authors demonstrated that significant
prediction results appear with a k-mer size greater than 9 nucleotides, especially for
values equal to 13 or 14. With a similar objective, Liang et al. [Lia+20] propose
DeepMicrobes, a neural network with an architecture composed of an embedding
of k-mers, a bidirectional LSTM, and a self-attention layer to predict the species or
the genus of a read. In their experiments, k-mers of size k=12, lead to their best
results.

In the work of Woloszynek et al. [Wol+18], the objective is to add, in addition to
taxonomic profiling, a method to retrieve the source environment of a metagenome
(phenotype prediction). A Skip-gram word2vec algorithm [Mik+13] is trained for
k-mers embeddings and a SIF algorithm [ALM17] is used to create reads and samples
embeddings. They demonstrate the usefulness of such an approach for clustering and
classification tasks. Moreover, they show that such embeddings allow to train models
using larger k-mers (k greater than 9), which is not possible when relying on simpler
representation such as one-hot encoding because their size grows exponentially
grows with k.

We have seen that k-mers play an important role in the transformation of metage-
nomic data into embeddings. They are the representation in a latent space of the
k-mers dictionary and can be used to build read or metagenome embeddings. Since
metagenomic data are composed of multiple reads, other studies have sought to
manipulate these data using Multiple Instance Learning (MIL) models [WZ00] where
a class label is assigned to a bag of instances.

3.2.3 Learning from multiple-instance representation of reads

A quite different approach named RegMIL [RR18] uses MIL in order to assign
disease to each sample. Unlike methods described above, RegMIL does not train
a model on raw data but first begins by performing sequence assembly, binning
and clustering contigs. K-mers are counted and normalized for each sequence in
clusters. A neural network regression model is then trained to compute a score
corresponding to the association between k-mers and the disease. Finally, a random
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forest classifier is trained on top of this representation to compute phenotype
prediction. META2 [Geo+20] is another algorithm using MIL. The model, based
on GeNet or DeepMicrobes with an additional MIL pooling layer, is trained to predict
the distribution of the reads set for each taxon. The MIL layer increases the model’s
prediction scores and the authors suggest that this improvement is due to the model’s
exploitation of the species co-occurrence matrix.

Our Metagenome2Vec method is mainly oriented towards the aspects of creation of
embeddings from raw metagenomic data as well as on the learning of MIL model.

3.3 Metagenome2Vec: a novel approach to learn
metagenomes embeddings

We introduce Metagenome2Vec, a method to transform shotgun metagenomic
data into a suitable embedding representation for downstream task such as disease
classification. Metagenome2Vec is trained from raw DNA sequences through several
specific steps: metagenome embeddings are built from embeddings of reads them-
selves built from k-mers embeddings. We highlighted state-of-the-art algorithms that
learn embeddings of k-mers and reads. Our proposed approach is implemented with
two different MIL architectures:

– M2V-MIL-DS: A MIL model based on DeepSets model [Zah+17] trained with a
prediction loss directly for classification.

– M2V-MIL-VAE: A MIL model based on Variational Auto-Encoder (VAE)1 [KW14]
using a reconstruction loss to construct metagenome embeddings.

The global architecture of both models is summarized in Figure 3.2a and all blocks
of the pipeline are explained below.

1We chose to implement a VAE because this model is capable of learning smooth latent state
representations of the data compared to conventional auto-encoders that simply learn an encoding
to reproduce the input.
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(a) Metagenome2Vec architecture

(b) DeepSets (c) Variational Auto-Encoder

Fig. 3.2.: Raw metagenomic data is the input of Metagenome2Vec. (a) All DNA sequences are
embedded by Kmer2Vec and Read2Vec algorithms (Figure 3.4 and 3.8) resulting
in a bag of read embeddings. (b) Then, Read2Genome (Figure 3.10) uses these
embeddings to assign a cluster, corresponding to a genome id, for all reads. (c)
Embeddings of reads in the same cluster are aggregated by summing their values.
It results in a multiple instance dataset where a bag of embeddings represents one
metagenome. (d) At the end, a neural network model (figures 3.2b and 3.2c) fed
with multiple instance data is trained to compute metagenome representation.

3.3.1 kmer2vec: learning k-mers embeddings

3.3.1.1. Description

DNA sequences are split into several k-mers before learning k-mers embeddings.
The context of a k-mer corresponds to both the preceding and the following k-mers.
The context can consist of several k-mers; this parameter is called the window size
and tuned to the number of surrounding context k-mers desired. After learning, all
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k-mers are indexed in the embeddings matrix. Figure 3.3 illustrates this process and
Figure 3.4 shows metrics to evaluate the learning.

Fig. 3.3.: Left side represents a read cut into k-mers of length 3 with a window size of 2 and
a padding size of 1. Right side corresponds to an embedding matrix of dimension
300 learnt with k-mers vocabulary of size 4k = 43 = 64.

Fig. 3.4.: The preprocessing step is to transform genomes sequences into k-mers with
a specific k size. On the figure k=3 because k-mers are composed of three
nucleotides. Then, k-mers are passed to the FastText skip-gram model learning to
retrieve surroundings k-mers context.

An extrinsic evaluation on a benchmark of the different kmer2vec algorithms leads
to statistically significant (p-value < 0.05) better performance of FastText (figure
and Table 3.1). That is why we mainly used FastText for k-mers embeddings so we
described the concept and usage of this algorithm on DNA sequences.
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kmer2vec
Average precision

train / test

FastText 0.60 / 0.49

word2vec 0.56 / 0.43

GloVe 0.57 / 0.46

Average precision scores Dispersion of the scores.
FT=FastText, GV=GloVe, WV=word2vec.

Tab. 3.1.: Extrinsic evaluation of kmer2vec algorithm with k = 6 on a Read2Genome task
(section 3.3.3): classification of reads into 10 species (122k reads on train and
validation) from a simulated dataset with balanced species abundances. K-mer
embeddings are averaged and fed to a multiple layer perceptron classifier trained
with 20 k-fold cross validation.

We described the three algorithms used in our experiments word2vec, FastText and
GloVe:

word2vec This is the well-known model popularized by Google by Mikolov et al.
[Mik+13]. It is a shallow two-layer neural network auto-encoder. We opted for
the skip-gram version of the model. So, the neural network based on a similar
architecture has been trained to predict the most obvious surrounding context for
each k-mers. The prediction is based on the softmax function that gives the posterior
distribution of k-mers:

p(c|k) = exp(s(k, c))∑|K|
ci=1 exp(s(k, ci))

s(k, c) = vTc vk

With k the current k-mer, K the vocabulary of k-mers, c the context k-mer, v
represents a vector, s(w, c) denotes the scoring function between a word vector w
and a context vector c.

FastText Published by Facebook [Jou+16; Boj+16], this algorithm brings the
concept of subword information based on character n-grams. In fact, FastText works
like the skip-gram word2vec model but with a different scoring function. In word2vec
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a dot product is done between the current word vector and its context word vectors.
Here, the dot product is computed between all corresponding characters from min-
n-gram to max-n-gram (two hyper parameters). For example, if we consider a k-mer
“ATACCA”, min-n-gram=3 and max-n-gram=6, the n-grams are {ATA, TAC, ACC, CCA,
ATAC, TACC, ACCA, ATACC, TACCA, ATACCA}. A k-mer is finally represented as the
sum of the vector representations of its n-grams. The scoring function is re-written
as follows:

s(k, c) =
∑
g∈Gk

zTg vc

Where Gk is the set of character n-grams of the k-mer k, z is a vector representation
of all character n-grams and v is a k-mer vector. This method allows a reliable
representation to be learnt even for rare k-mers. It can be useful since we don’t
know the true size of each k-mer and where they are separated.

GloVe : Proposed by Standford researchers [PSM14], it computes a matrix fac-
torization of the co-occurrence matrix. It aims to minimize the following cost
function:

V∑
i=1

V∑
j=1

f(Xij)(vTki
vkj

+ bki
+ bkj

− log(Xij))2

f(x) =
{

(x/xmax)α if(x < xmax)
1 otherwise

Where Xij is the co-occurrence between the current k-mer ki and the context k-mer
kj . v and b are respectively the vector and the bias of the k-mers. f adds a weight
determined by the corresponding co-occurrence value and a distribution in terms of
α. It prevents giving high values to common k-mer pairs with the threshold xmax.

We have seen that these three word embeddings algorithms could be easily adapted
to DNA sequences by replacing words by k-mers. Any state-of-the-art word embed-
ding algorithms could be potentially included in our architecture to be tested beside
the three that we tested.

3.3.1.2. Analysis: k-mer embeddings intrinsic evaluation

K-mer embeddings are trained in a self-supervised manner where the algorithm
tries to predict the surrounding k-mers regarding the current one. The three main
adjustable hyper parameters in these algorithms are the size of the embeddings
(dimensionality complexity), the k-mer size (smaller or bigger pieces of DNA) and the
window size (more or less surrounding words). It creates a large parameters space
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that influences severity points like the vocabulary size, the embeddings learning, the
processing time and more globally the final representation. Increasing the value of k
leads to an increase of the volume of the dictionary and the learning time inevitably
becomes longer for any algorithm (Figure 3.5 and Table 3.2).

Fig. 3.5.: Execution time depending on k. FastText trained 5 times on 15 cpus for each k on
a small dataset (30k genes)

FastText word2vec GloVe

k = 3 ' 20m ' 1h ' 10m
k = 6 ' 3h ' 5h ' 1h
k = 9 ' 2d ' 2d ' 1.5d

Tab. 3.2.: Execution time of FastText, word2vec and GloVe depending on k size, trained on a
dataset of 5M genes. The other hyper parameters for each algorithm are set by
considering those recommended. Models are multi-threaded over 50 cpus.

Analyzing k-mers vectors and finding best hyper parameters are done by intrinsic
evaluation of the embeddings. The intrinsic evaluation is an important test that
could help to identify whether the algorithms learned good DNA embeddings.
Unfortunately, this task is not obvious depending on the DNA sequences. There
is not a lot of information about the vocabulary compared to natural language
where we assume that the vectors of two words like synonyms have a high similarity.
Several intrinsic evaluation methods for NLP word embeddings are enumerated in
Bakarov [Bak18] (such as “word semantic similarity”, “word analogy” or “synonyme
detection”) but none of them can be used with DNA because they rely on text-specific
concepts. To overcome the fact that these methods are not available to evaluate
the DNA embeddings, distance between k-mer chains is taken into account. Ng
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[Ng17] measures the relation between the cosine similarity of two vectors with their
corresponding k-mers Needleman-Wunch score [NW70]. In Min et al. [Min+17],
authors prefer to compute the relation between the cosine similarity and the Edit
distance. Both Edit distance and Needleman-Wunsch scores are computed on k-mer
chains and compared to the cosine similarity of their embeddings. Figure 3.6a and
3.6b confirm that the distance between k-mers and between their embeddings do
correlate. Unfortunately, these methods are only feasible when k is not too high,
generally less than or equal to 6. Indeed, when k increases, so does the number of
k-mers in vocabulary, which makes the calculation of distances much too long.

(a) Correlation between Edit distance of k-mers
and cosine similarity of k-mers embeddings

(b) Correlation between Needleman-Wunsch
score of k-mers and cosine similarity of k-
mers embeddings

Fig. 3.6.: Each violin plot shows mean, median and the extreme values at a specific score. A
smaller Edit distance and a higher Needleman-Wunsch score implies that k-mers
are more similar. A higher cosine similarity implies that vectors are more co-linear.
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Fig. 3.7.: Each point is the projection into a 2D space with the t-SNE algorithm of genome
embeddings from the FastDNA model. Points similarly colored have the same
family.

We have seen different algorithms allowing to create k-mer embeddings by projecting
them into a latent space. Since the reads are composed of several k-mers, we are
now interested in creating read embeddings.

3.3.2 read2vec: learning read embeddings

3.3.2.1. Description

It has been shown that the algorithms constructing word embeddings give good
results for representing short sentences by simple arithmetic operations on word vec-
tors [Mik+13; PSM14; Jou+16]. Nevertheless, more sophisticated approaches for
sentence embeddings have been developed and obtan even better results. Sequence-
to-sequence models [SVL14] for instance, use a first network called the encoder to
encode the sentence information. And a second one, called decoder decodes the
sentence information for a specific task such as a translation where the authors
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have demonstrated great performance. The hidden layers of the encoder represent
the sentence embeddings. Skip-thought [Kir+15] vectorizes sentences with this
approach, learning to generate surrounding sentences. To gain computation time
compared to skip-thought, Hill et al. [HCK16] have proposed fastSent, an additive
log-linear sentence model using a bag of words embedding to represent sentences.
SDAE [HCK16], uses a LSTM encoder-decoder to reconstruct noisy sentences (words
are removed or switched places according to a probability). More recently, BERT
model [Dev+18] trains an encoder with a self-attention mechanism [LPM15], called
transformer, to learn contextual relations between words to retrieve masked words
or predict the next sentence. DNA sequences can be transformed into embeddings
using previous algorithms in the same way as sentences are.

Conneau et al. [Con+17] proposed a supervised neural network named InferSent
based on two parts. The network begins with an encoder creating sentence vectors.
Then the deep representation passes into a natural language inference 2 classifier
predicting one of the three NLI labels. Some other approaches developed are training-
free models. For example, SIF algorithm [ALM17] embeds sentences by summing
its pre-trained word embeddings weighted with the reverse document frequency.
Then they subtract from the sentence embedding the first principal component of
the matrix. p-mean [Rüc+18] also demonstrated good results by averaging and
concatenating power means of the embeddings. The Table 3.3 resumes specificities
of these algorithms.

Sentence embedding Supervised Ordered sentences training-free

Skip-Thought [Kir+15] - X -

FastSent [HCK16] - X -

BERT [Dev+18] - - -

SDAE [HCK16] - - -

InferSent [Con+17] X - -

SIF [ALM17] - - X
Tab. 3.3.: Sentence embedding algorithms and their specificities

In our experiments, three algorithms were integrated in the workflow:

• FastText (see section 3.3.1 for more details) sentence embeddings as imple-
mented in the package

2Natural language inference is the task of determining whether a “hypothesis” is true (entailment),
false (contradiction), or undetermined (neutral) given a “premise”

50 Chapter 3 End-to-end deep learning for disease classification from metage-
nomic data



• FastDNA sequence embeddings extracted after the model were trained to
classify taxonomy reads at the species level

• Transformer, A sequence-to-sequence base transformer applied on language
modeling task 3.

Each of these algorithms respects two properties: (i) being efficient enough to
process the millions of sequences per metagenome (a non-blocking point in theory
but important for implementation), and (ii) not involving sentence order in the
prediction task. Figure 3.8 gives an example of Read2Vec with a transformer.

Fig. 3.8.: Read2Vec architecture with a Transformer. Sequences, cut into k-mers, pass into a
transformer sequence-to-sequence language model. A first layer converts k-mers
to their embeddings learnt in Kmer2Vec (Figure 3.4). The encoder creates the
read embeddings with two blocks composed by a multi-head attention and a feed
forward neural network. The decoder tries to predict the next k-mers from the
source sequence passing the read embeddings in a fully connected layer before
computing the softmax to get a probability for each k-mers. When k is relatively
big, this last layer is quite intensive to compute because its complexity grows
linearly with the size of the vocabulary. Thus, the adaptive softmax proposed by
Grave et al. [Gra+17] is used instead of softmax to be more efficient without
reducing performance.

3.3.2.2. Analysis: Read embeddings intrinsic evaluation

Embeddings at the read level cannot benefit from analysis (correlation between
Edit distance or Needleman-Wunsch score and k-mers embeddings) in section 3.3.1.2
because reads’ length are a lot bigger than k-mers. Nevertheless, as a genome catalog
has been used to train the read embeddings, genomes can be projected in this new
vector space. We would expect that species from the same genus or with a similar
genetic material are more closely related to each other in the embedding space.
We have thus set up two methods to quantify this phenomenon. One is to project

3Language modeling algorithms determine the probability distribution for the likelihood of a given
word (or a sequence of words), to follow a sequence of words
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and visualize genome embeddings using the t-SNE algorithm. Results on Figure
3.9 highlight that some clusters are formed of genomes from the same family. The
other method is to compute a Mantel test and compare the correlation between two
distance matrices of genomes. The first is the cosine similarity between genome
embeddings, the second is the Mash distance which is a genome distance estimation
using the MinHash algorithm between genome DNA4. A high value in the mantel test
implies that cosine similarity of the embeddings is correlated with the mash distance
of DNA, then it gives a good indicator on the relevance of the representation learnt
by the model. Models are tuned and results are reported in Table 3.4.

Fig. 3.9.: Each point is the projection into a 2D space with t-SNE algorithm of genome
embeddings from FastDNA model. Points similarly colored have the same family.

4It is computed using the GitLab from the study of Criscuolo [Cri19] implementation.
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Method Mantel Test

FastText k=3,dim=300 0.50

FastText k=6,dim=300 0.54

FastText k=9,dim=300 0.56

FastText k=13,dim=100 0.61

Transformer k=3,dim=300 0.52

Transformer k=6,dim=300 0.56

Transformer k=9,dim=300 0.59

FastDNA k=13,dim=100 0.64
Tab. 3.4.: Mantel Test scores between Mash distance and genome embeddings. Parameters

k and dim refer to k-mer size and embeddings dimension respectively. Best value
is obtained for FastDNA

FastDNA has the highest scores in this analysis. Transformer has better results
than FastText for similar k. However, transformer could not benefit from learning
with a bigger k due to the complexity and the memory footprint of the model
increasing exponentially with the size of the vocabulary. This is a blocking factor
because it is shown that increasing k leads to higher scores on the Mantel test. After
analyzing the vector embeddings with intrinsic evaluation, it is not yet possible to
assert if the embedding representation obtained by the algorithms performs well on
specific tasks. Extrinsic evaluation is used over all the representations to determine
which approach is best suited. An extrinsic evaluation of the embedding is based
on the results of its use for a specific purpose. In both steps Read2Genome and
Metagenome2Vec, DNA embeddings are handled to perform read classification and
disease classification respectively. Thus, extrinsic evaluation is also computed on
the different learnt embeddings by analyzing prediction results reported in section
3.3.3.2 for Read2Genome and 3.4.2 for Metagenome2Vec.

3.3.3 read2genome: reads classification

3.3.3.1. Description

A metagenome is composed of millions of reads which represent portion of
DNA genomes. Quantitative metagenomics focus on retrieving the origin of each
read with bioinformatics tools. Several studies combining metagenomics and deep
learning also aim at projecting raw sequences to classify them into a taxonomic level
(section 3.2.2). We would like to take advantage of the putative origin of the reads
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to construct metagenome representation. Read2Genome then acts as a clustering
process producing bag of reads with genome similarity. To address the question of
predicting the genome to whom a read most probably belongs, we have relied on
two methods in our experiments. Firstly, FastDNA [MV19] that learns embeddings
and classification with an end-to-end supervised model. Secondly, a Multi-Layer
Perceptron (MLP) classifier that takes as inputs the read embeddings learnt by
self-supervised training with Read2Vec. Figure 3.10 summarized the Read2Genome
architecture.

Fig. 3.10.: A catalog of complete genomes is used by the CAMISIM software [Fri+19] to
simulate metagenomic data with a specific taxonomic profile (abundance of
species). The resulting dataset is a set of reads associated with the identifier
of the genome from which they originate. Reads are embedded by Read2Vec
(Figure 3.8) before being passed into Read2Genome trained to retrieve their
source genome.

To calculate a metagenome embedding, we started with a basic method averaging
all the embeddings of k-mers present in a metagenome (vectorial representation in
section 3.3.4.1) like embeddings of sentences are built by averaging embedding
of words. But this representation is too “brutal” and too much information is lost
to give conclusive results, in our experiments, in terms of phenotypic stratification
of patients. Therefore, we searched for in a method that allows both, using the
predicted classes (taxa) of reads, to group the embeddings of reads of the same
predicted class sharing common concepts and to estimate an abundance table of a
metagenome.

3.3.3.2. Analysis: Read embeddings extrinsic evaluation on a read
classification task

As shown in Figure 3.10 and in section 2.2.1, the datasets used in the experiments
are composed of simulated metagenomes. The simulation allows to represent the
NGS sequencing data while keeping the label of the reads allowing the training
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of supervised models. The evaluation of Read2Genome is done with both types of
sequencing technology Illumina and Nanopore.

Given a read, we ensure that the Read2Genome model returns probabilities associated
with the prediction that it belongs to a genome. In This way, we can set a threshold
to reject uncertain classifications. As there is a extremely high number of sequences
by metagenome (often greater than 10M), rejecting uncertain predictions improves
the precision of the model without impacting clusters of reads. Liang et al. [Lia+20]
also uses a reject threshold determined manually in DeepMicrobes. The metric for
controlling the reject is the “rejection rate” calculated by dividing the number of
rejected reads by the total number of reads.

We compare the results of FastDNA and Transformer+MLP models on Illumina
datasets trained over 10 of the 235 species in the dataset (Only 10 species have been
selected to allow rapid learning). As FastDNA obtains the best scores on 10 species,
we trained the model on the whole 235 species with parameters recommended by
Menegaux and Vert [MV19] which are set to 13 for k-mer size, 100 for embedding
dimension and 30 for the number of epochs. We computed and plotted the accuracy,
precision, recall, f1-score and rejected rate in accordance with the rejected threshold
(see Figure 3.11). The threshold axis corresponds to the minimum probability of the
class predicted by the model so that the read is not rejected. Metrics’ formulas are
recalled below:

Accuracy = TP+TN
N , P recision = 1

C

C∑
i

TPi
TPi+FPi

, Recall = 1
C

C∑
i

TPi
TPi+FNi

F1-Score = 2× precision×recall
precision+recall , RejectedRate = R

N

With N = # of samples, C = # of classes, R = # of rejected samples, TP =
True Positive, TN = True Negative, FP = False Positive, FN = False Negative
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(a) FastDNA on 10 species (b) Seq2Seq+MLP on 10 species

(c) FastDNA on 235 species

Fig. 3.11.: Scores obtained by Illumina reads classification into species from the 1.59M
simulated reads of the validation dataset. The higher the threshold, the better
the accuracy and the lower the recall.

These curves give information on the impact of the prediction rejection threshold
allowing to adapt it according to the expected rejection percentage and classification
score. We tested fastDNA algorithm on the simulated Nanopore reads to compare
the result with longer read in the task of binning (Figure 3.12)
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Fig. 3.12.: Scores obtained by Nanopore reads classification into species with FastDNA from
the 315K simulated reads of the validation dataset. The higher the threshold,
the better the accuracy and the lower the recall.

We can note that, on Nanopore simulated dataset, increasing the threshold will
induce a non-negligible growth of the rejection rate which can be problematic if too
many reads are not retained. We manually select good trade-off between accuracy
and rejection rate for the following experiments. Read2Genome models trained
from Illumina reads have a rejection threshold set to 0.2, while those trained from
Nanopore data have no defined rejection threshold (it is equal to zero).

3.3.4 metagenome2vec: learning metagenome embeddings

The following step is to create metagenome embeddings using read embeddings
or a set of reads embeddings. We propose to consider two different approaches
in building metagenome embeddings: (i) the vectorial representation as baseline
and (ii) the MIL representation as our reference method. The notations in the next
sections are in accordance with those introduced in section 3.1.
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3.3.4.1. metagenome2vec: Vectorial representation

Once a low-dimensional representation of the reads is available, all reads from a
given metagenome are transformed into embeddings. In this representation, called
M2V-VR, they are all summed together, resulting into a single instance embedding
for one metagenome. A representation of metagenome can be computed as shown
in the equation 3.1:

Φ(xm) =
∑
s∈xm

ω(s) ,m ∈M, ω :

xm → E

s 7→ ω(s)
(3.1)

With ω the Read2Vec transformation, xm the ensemble of reads in the metagenome
m and E the dimension of the embeddings.

The vectorial or tabular representation is the one used by most ML algorithms. It
relies on a more abstract representation than the multiple instances representation.
Indeed, all the information of an entire metagenome, its millions of reads related
to hundreds of different genomes, is summarized into a unique vector in the latent
embeddings space.

In addition to the classification evaluation, we calculated and evaluated a clustering
based on the embedding representation. For this clustering, m1 metagenomes are
selected and m2 < m1 others are cut in 10 sub parts. Each metagenome, or part
of the metagenome, is represented by one vector. An agglomerative clustering is
trained on these embeddings to compute a cluster map and show visualize between
clusters (Figure 3.13). Results show logically that embeddings from portions of the
same metagenome are closer to each other. They also indicate that metagenomes of
the same class are more likely to be found in the same cluster.
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Fig. 3.13.: Cluster map computed on the Colorectal Dataset with the Metagenome2Vec
vectorial representation. Blue ids and red ids refer to healthy patients and
sick patients respectively. Underscores on ids followed by a digit correspond to
partitions of the same metagenome. On the map, the darker the color, the more
similar the metagenomes.

3.3.4.2. metagenome2vec: Multiple instance learning representation

Metagenomic data can be thought of as a set that contains millions of reads
representing one sample (Figure 1.7). The size of a set can vary depending on
the sequencing technology and there is no specific order between reads within a
set. Learning from such bags of reads correspond to a Multiple-Instance Learning
problem that deals with an objective function that is invariant to permutation and
operates on non-finite dimensional vectors [Zah+17]. In this thesis, we implement
deep learning algorithms from the work of Zaheer et al. [Zah+17] named DeepSets
with an extension of the multiple instance layer including an attention mechanism
from Ilse et al. [ITW18] and a Variational Auto-Encoder [KW14] (see Figure 3.14

3.3 Metagenome2Vec: a novel approach to learn metagenomes
embeddings

59



and appendix A.1 for more details about DeepSets and Figure 3.15 for the VAE). The
attention mechanism assigns a weight for each instance to determine which one in
the set helped to predict the label. As the metagenomes are represented as a bag
of genome embeddings, it is interesting to integrate such an aggregation operation
to determine the taxa that play a bigger role in the prediction. On the other hand,
the VAE is more adapted to the construction of vector representation because it
learns to reconstruct the training data and not to classify them directly. As a result,
the model’s weights can be reused for other datasets without having to be learnt
again.

Instead of aggregating all the computed read embeddings to form one vector, the
first idea is to keep this representation to save all information. Unfortunately, one
metagenome is composed of potentially millions of reads. Thus, a bag with all these
reads is far too large to fit in memory for further processing by the ML algorithms.
We advocate another approach, consisting of first training a classifier (Read2Genome)
to predict the genomes from which the DNA sequences may have originated. Rather
than summing all read embeddings as in the previous method, it is possible to sum
embeddings of reads belonging to the same taxonomic levels, namely species or
genus. As a result, each metagenome is represented by a set of taxa embeddings.

Ψ(xm) = [Φ(c1),Φ(c2), ...,Φ(cn)] , c1..n ∈ C(xm) (3.2)

Where C is the Read2Genome function clustering reads of a metagenome into n

clusters, thus cn is a group of reads, xm the ensemble of reads in the metagenome
m and cn ⊂ xm.
As reads are fragments of DNA from several genomes, grouping them into clusters
projected onto the embedding vector space could bring specific information for each
metagenome.
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Fig. 3.14.: M2V-MIL-DS: DeepSets neural network architecture with attention as MIL layer
[Zah+17; ITW18]. The input is a set of genome cluster embeddings and the
output is the phenotype prediction.

Fig. 3.15.: M2V-MIL-VAE: A variational auto-encoder where the encoder takes as input the
bag of taxa embeddings that is passed to fully connected (FC) layers to reduce
the dimensionality of the embeddings. Then, all embeddings in the bag are con-
catenated before being passed again to FC layers encoding a distribution over the
latent space with µ (mean) and σ (variance) vectors. Next, a reparametrization
step allows to back propagate the sampling gradient error by defining the final
embeddings with the following formula: z = h(x) + g(x), Z ∼ N (0, I). Where
h(x) computes σ, g(x) computes µ and N represents the normal distribution.
Finally, the decoder takes the embeddings and applies transposed operations to
decompose the condensed representation trying to find the original bag of taxon
embeddings. The condensed representation (in yellow) is fed to a classification
model for learning disease prediction. This last step can be accomplished by fine-
tuning in order to relearn the model weights based on a specific classification
task.

3.3 Metagenome2Vec: a novel approach to learn metagenomes
embeddings
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3.4 Experiments and Results

We devised several experiments to test the efficacy and the efficiency of our novel
Metagenome2Vec algorithm to classify metagenomes onto classes of diseases with
which the hosts are associated. The performance of Metagenome2Vec w.r.t. the
state-of-the-art was tested on four benchmark disease classification tasks (section
2.1) as well as a simulated dataset (section 2.2.2)). Moreover, to understand the
source of power of the Metagenome2Vec algorithm, we also tested the intrinsic quality
of the learnt embeddings and the ability to assign a read to the right taxa. The next
sections are organized as follows: 3.4.1 provides information on reference methods
and 3.4.2 highlights evaluation methods and metrics for disease prediction.

3.4.1 Reference Methods compared to metagenome2Vec

To our knowledge there is no other study applying machine learning directly
on raw metagenomic data to predict disease. In general, disease classification
with metagenomic data is done with standard pipeline using species-level relative
abundances and presence of strain-specific markers [Pas+16]. On top of these
bioinformatic processes, ML algorithms like SVM, Random Forest or Elastic Net are
trained to make predictions. More recently, Oh and Zhang [OZ20] have proposed to
highlight the use of auto-encoder models on such metagenomic abundance tables.
Results are reported in Table 3.5 and are used in this paper as part of the state-of-
the-art benchmark.

3.4.2 Results of the Disease prediction tasks

The computing resources used for the experiments are between 1 up to 6 nodes
with 24CPUs each and 1 up to 2 GPUs NVIDIA Tesla P100 or NVIDIA Quadro
K5200. All experiments are done by limiting the number of reads to ten million; the
training time can take 2 to 5 days and there are many parameters to test for both
structuring and machine learning. The inference execution time is about 1 hour for a
metagenomic sample. The datasets are composed of only hundreds of samples so to
tune the hyper parameters and avoid overfitting we apply a nested cross validation.
In that way, 20% of the data form the test set, the 80% remaining are used to
Metagenome2Vec form a 10-fold cross validation to tune hyper parameters with 20%
of the data as validation set. The whole operation is repeated 10 times with different
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train and test sets. The tuning is driven by accuracy score. AUC, precision, recall
and F1 score are also computed.

DL models, for the Metagenome2Vec MIL representation, are trained with the follow-
ing techniques to prevent the neural networks to overfit:

– Drop out: remove randomly picked weights in order to force the model to
re-train some of its parameters.

– Scheduler decay learning: decrease the learning rate to make a better conver-
gence.

– L2 penalty: add penalty to the loss function to ensure better generalization.

Methods MetaML [Pas+16] and DeepMicro [OZ20] are the reference methods.
Bag of K-mers (BoK) method is related to Bag of Word (BoW) and has been
computed with three different values of k equal to 3, 6 and 95. Thus, BoK rep-
resents a metagenome as a vector by counting all the occurrences of its k-mers
without using embeddings, this is the baseline to confirm embeddings usefulness.
M2V-VR is Metagenome2Vec vectorial representation, M2V-Abundance represents
the species abundance table computed by the Read2Genome stage and M2V-MIL
is “Metagenome2Vec multiple instance learning representation”. Read2Vec and
Read2Genome are trained by the FastDNA [MV19] algorithm with a k-mer size
equal to 14 and an embeddings dimension equal to 50 (recommended by authors).
M2V-MIL-DS and M2V-MIL-VAE models use DeepSets and VAE deep learning architec-
ture respectively; they are trained and evaluated on the MIL representation. Models
used for BoK, M2V-VR and M2V-Abundance methods are tuned with random search
using 100 different sets of parameters. M2V-MIL-DS and M2V-MIL-VAE are tuned
with approaches more adapted for model composed by a lot of hyper parameters like
neural network. Thus, Bayesian optimization is applied for continuous parameters
and bandit optimization for discrete parameters.

Datasets

• Illumina: 4 real world datasets named Colorectal, Cirrhosis, Obesity and T2D
that refer to Table 2.2 are benchmarked with all previous methods. The Null
Model Illumina from Table 2.3 is used to evaluate DeepSets efficiency and
interpretability.

5It cannot be computed with a higher value of k due to the number of distinct k-mers in the vocabulary
that becomes too large.
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• Nanopore: Both Null Model Nanopore and Ecological Nanopore from Table 2.3
are benchmarked to evaluate the efficiency of Metagenome2Vec on Nanopore
data.

Results The tables 3.5 and 3.6 summarize our results. Accuracy, F1-score, Preci-
sion, Recall and AUC are the computed metrics. The standard deviation is calculated
for the accuracy score and written with the symbol ±. All the scores are the best of
all the experiments

Method Metrics Colorectal Cirrhosis Obesity T2D Null Model Illumina

MetaML

Accuracy
0.81
±0.068

0.88
±0.043

0.64
±0.028

0.66
±0.052

-

precision 0.82 0.89 0.54 0.67 -
recall 0.81 0.88 0.64 0.66 -

F1-score 0.79 0.88 0.54 0.66 -
AUC 0.87 0.95 0.66 0.74 -

DeepMicro AUC 0.81 0.94 0.66 0.76 -

BoK
k=3 / k=6 / k=9

Accuracy
0.64
±0.061

/
0.69
±0.055

/
0.65
±0.071

0.67
±0.077

/
0.73
±0.062

/
0.75
±0.043

0.64
±0.028

/
0.65
±0.032

/
0.65
±0.035

0.58
±0.047

/
0.61
±0.076

/
0.62
±0.071

0.61
±0.032

/
0.66
±0.040

/
0.63
±0.057

precision 0.81 / 0.88 / 0.84 0.66 / 0.76 / 0.77 0.64 / 0.65 / 0.65 0.57 / 0.59 / 0.61 0.61 / 0.66 / 0.71
recall 0.57 / 0.61 / 0.60 0.77 / 0.69 / 0.74 0.96 / 0.95 / 0.95 0.53 / 0.58 / 0.58 0.56 / 0.62 / 0.55

F1-score 0.55 / 0.59 / 0.56 0.70 / 0.72 / 0.74 0.77 / 0.78 / 0.78 0.55 / 0.58 / 0.61 0.59 / 0.64 / 0.65
AUC 0.66 / 0.73 / 0.67 0.71 / 0.77 / 0.77 0.53 / 0.53 / 0.54 0.61 / 0.63 / 0.65 0.65 / 0.69 / 0.67

M2V-VR

Accuracy
0.72

(0.058)
0.79

(0.044)
0.65
±0.008

0.66
±0.050

0.85
±0.047

precision 0.77 0.78 0.65 0.70 0.87
recall 0.64 0.67 0.89 0.56 0.81

F1-score 0.69 0.70 0.79 0.60 0.84
AUC 0.79 0.81 0.66 0.70 0.85

M2V-MIL-DS

Accuracy
0.81
±0.065

0.82
±0.056

0.66
±0.022

0.68
±0.059

0.92
±0.070

precision 0.78 0.83 0.66 0.68 0.94
recall 0.76 0.84 0.89 0.63 0.91

F1-score 0.76 0.83 0.79 0.65 0.92
AUC 0.81 0.83 0.62 0.71 0.92

M2V-MIL-VAE

Accuracy
0.81
±0.063

0.85
±0.049

0.74
±0.036

0.76
±0.055

-

precision 0.80 0.84 0.77 0.73 -
recall 0.70 0.80 0.84 0.75 -

F1-score 0.74 0.81 0.83 0.74 -
AUC 0.78 0.84 0.68 0.78 -

M2V-Abundance

Accuracy
0.82
±0.096

0.90
±0.052

0.71
±0.036

0.80
±0.046

-

precision 0.80 0.92 0.74 0.78 -
recall 0.74 0.89 0.85 0.82 -

F1-score 0.75 0.90 0.79 0.80 -
AUC 0.82 0.94 0.63 0.83 -

Tab. 3.5.: Classification metrics of four real-world datasets (Colorectal, Cirrhosis, Obesity,
T2D) and one simulated dataset (Null Model Illumina). Results are reported for
two reference methods (MetaML and DeepMicro) that use species-level relative
abundances and presence of strain-specific markers. BoK, M2V-VR, M2V-MIL-DS,
M2V-MIL-VAE and M2V-Abundance are our methods tested in this experiments.
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Method Metrics Null Model Nanopore Ecological Nanopore

M2V-VR

Accuracy
0.80
±0.029

0.51
±0.030

precision 0.85 0.51
recall 0.75 0.49

F1-score 0.79 0.50
AUC 0.87 0.51

M2V-MIL-VAE

Accuracy
0.93
±0.027

0.67
±0.22

precision 0.94 0.67
recall 0.93 0.64

F1-score 0.94 0.66
AUC 0.97 0.66

M2V-Abundance

Accuracy
0.90
±0.022

0.71
±0.032

precision 0.90 0.69
recall 0.91 0.75

F1-score 0.90 0.72
AUC 0.95 0.76

Tab. 3.6.: Classification metrics of two simulated dataset (Null Model Nanopore and Eco-
logical Nanopore). M2V-VR, M2V-MIL-VAE and M2V-Abundance are our methods
tested in these experiments.

In Table 3.5, the BoK baseline obtains better results when k = 6 or k = 9 without a
significant difference among them. Scores are lower than other methods, as expected,
but still leads quite good results for a simple, training-free representation. Our results
demonstrate that adding embeddings abstraction increases the performance and
that the MIL representation yields better results.

The M2V-MIL-VAE architecture, compared to M2V-MIL-DS, leads to better results
while allowing the metagenome to be represented as a single compact embeddings
vector. This representation is compared to the one from M2V-VR and M2V-Abundance
by visualizing their projection of the Null Model Nanopore dataset in a 2D space with
the UMAP algorithm [MHM20] (see Figure 3.18). Nevertheless, M2V-MIL-DS, with
an attention mechanism, adds score to genomes that could be useful to retrieve the
genomes playing a role in the classification or not. We experimented this with the
Null Model Illumina dataset. As explained in section 2.2.2, the artificial disease was
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created by altering the abundance of 5 genomes compared to the abundance in the
control cases. We extract, for each well-ranked positive (artificial disease) sample,
the five main genomes that had the greatest impact on the outcome, resulting in
a total of 12 distinct genomes. Among them, two of the five genomes invoking
disease (altered abundance) were predicted at the species level at 18% and 14.5%
on all well-ranked positive samples. The 12 genomes (from the top-5) are similar at
the genus level with four of the genomes to be found. This shows the descriptive
accuracy of the models.

Compared to our approaches, MetaML [Pas+16] conserves the highest precision,
recall, F1-score and AUC on the Colorectal dataset but with a lower accuracy and
gets lower classification scores for all metrics on the 3 other datasets. Moreover, we
recall that the raw metagenomic data must be converted to an abundance table by a
bioinformatics workflow before being fed to MetaML.

In Table 3.5 and 3.6, M2V-Abundance performs best in 3 of the 4 real word datasets
and in 1 of the 2 simulated datasets, while M2V-MIL VAE gets the highest scores on
the remaining datasets. It shows that the sole information of the species abundance
computed by FastDNA is sufficient in most of the cases. We tested the combination of
both representations, M2V-MIL-VAE and M2V-Abundance, to analyze the new results
obtained reported in Figure 3.16a and Figure 3.16b for real-world and simulated
datasets respectively.
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(a) Real-World Dataset (b) Simulated datasets

Fig. 3.16.: Box plot of the 20-fold cross validation accuracy scores. VAE, Abundance and
VAE + abundance refers respectively to the 3 model representations M2V-MIL-
VAE, M2V-Abundance and their combination.

Figure 3.16 illustrates the combination of the embeddings computed from M2V-
MIL-VAE and the species abundance from M2V-Abundance (computed by FastDNA)
produces results that are are comparable to the best scores among the two models.
We deduce this combination is the best way using to predict metagenomic disease
on the datasets used in our experiments (see Figure 3.17).
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Fig. 3.17.: Our best model tested on the benchmark. It is a combination of the metagenome
representations of M2V-MIL-VAE and M2V-Abundance (FastDNA) passed to a
SOTA classifier to make disease prediction.

(a) M2V-VR (b) M2V-Abundance

(c) M2V-MIL-VAE without tuning (d) M2V-MIL-VAE

Fig. 3.18.: UMAP 2-D projection of the embeddings created by four different models on the
Null model Nanopore test set.
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The visualization of Figure 3.18 highlights the difference between the four embed-
dings representations. The vectorial representation is a drastic compression of all
embeddings computed by metagenomes and create two distinct compact clusters.
Control and case samples are mixed in the clusters making it difficult to classify
them correctly. The projection of the species abundance representation and the M2V-
MIL-VAE embeddings without tuning are quite similar. It forms a more dispersed
point cloud with more obvious separation between classes. The Last embeddings
from M2V-MIL-VAE tuned has the clearest separation between classes.

3.5 Conclusion

In this chapter, we discussed the use of deep learning approaches to analyze
metagenomic data. Bioinformatic pipelines require huge reference catalogs of genes
and important computational resources to infer the results. With deep learning, only
the training stage requires such resources, while the prediction stage is based on
weights learned from neural networks. This results in time savings (from several to
about one hour per sample) and a reduction in the amount of data for the inference
process. These features allow the diagnosis to follow a point-of-care treatment.

The developed DL model, called Metagenome2Vec, is composed of four steps es-
tablished in this order: Kmer2Vec (learns k-mer embeddings), Read2Vec (learns
read embeddings), Read2Genome (learns read classification) and Metagenome2Vec
(learns metagenome embeddings and classification). To build this workflow, we have
explored different architectures each one with its specificities. For Kmer2Vec and
Read2Vec, we used models originally designed to compute word embeddings such as
FastText, word2vec and GloVe or sentence embeddings such as Sequence-to-Sequence
Transformers, that we adapted to DNA. The embeddings computed by these methods
are then used with state-of-the-art classifiers for the Read2Genome step. We also
analyzed the FastDNA model, an adaptation of FastText that gathers the three steps
Kmer2Vec, Read2Vec and Read2Genome directly trained on the reads binning task.
The Read2Genome part needs simulated data to train the supervised models because
it gives the class information of the reads, which is not the case for reads from
NGS technologies. The decomposition of our model into several stages allows us to
calculate intrinsic evaluations to determine the most suitable methods. According to
our analysis, FastDNA obtained the best performances on the intrinsic evaluations of
read embeddings and on the extrinsic evaluations of reads classification. Finally, in
the last step, several reads embeddings are processed with MIL models. Two MIL
architectures were tested, the first one is M2V-MIL-DS based on DeepSets model to
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directly predict diseases from the data with an attention mechanism allowing the
model to retrieve the taxa that may be involved in the stratification. The second
one is M2V-MIL-VAE, an adaptation of a Variational Autoencoder for MIL, creating
a metagenome embedding as a single vector that is then passed to state-of-the-art
classifiers trained to predict sample class.

Four real-world datasets, one Illumina simulated dataset and two Nanopore sim-
ulated datasets are used in our experiments. Metagenome2Vec achieved similar or
better performances than the stat-of-the-art models such as MetaML or DeepMicro.
We showed that metagenome embedding representations capture concepts rele-
vant to the classifier to predict the class of a sample. Nevertheless, the species
abundance computed at the Read2Vec stage (with FastDNA) is mainly the most im-
portant information for classification while being more understandable. Finally, after
downstream experiments, we determined that our best model is the one derived
from the combination of metagenome embeddings learnt by M2V-MIL-VAE and the
FastDNA predicted species abundances reaching the best scores on all real-world
and simulated datasets used in our experiments.

One of the main weaknesses of Metagenome2Vec is related to the interpretability
of its predictions because our approach relies on black-box models. This is why
in the next chapter we are interested in solutions based on subgroup analysis, a
method capable of stratifying samples in a personalized way with understandable
predictions.
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Generate statistically credible
subgroups for interpretable
metagenomic signature

4

One of the goals of this thesis was to define an interpretable and personalized
stratification method to enhance the interest of precision medicine in metagenomics.
Identifying metagenomic signatures is becoming increasingly important in preci-
sion medicine. The family of subgroup discovery (SD) algorithms is particularly
interesting because it meets both criteria of interpretability and personalization.
To address the interpretability/accuracy trade off, we propose a hybrid approach,
called Q-Classifier, based on a cascade classifier combining a first step of SD (for
interpretability) and then a supervised model (for accuracy). With this approach,
different interpretable signatures stratify the maximum possible number of patients
while those remaining are defined by a default non-interpretable signature. To
construct this model, we first focused on the Q-Finder, a SD algorithm developed
by Quinten. A first step was to formalize and structure it. An overhaul of the
algorithm was done to determine its place in the rule learning literature, to detail
its functioning with its advantages / disadvantages and to benchmark it against the
state of the art. This allowed to make a publication on the algorithm [Esn+20] and
to have a better theoretical basis to adapt it into a metagenomic classifier that can
be directly integrated into the pipeline described in the chapter 3. This chapter is
composed first by an introduction of the SD and its application in clinical research
(Section 4.1), next, the functioning of the Q-Finder as well as experiments and
results are described (Section 4.2)1, finally the SD application to the metagenomics
with Q-Classifier is discussed (Section 4.3).

1These two sections are largely inspired by the Q-Finder article.
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4.1 Introduction

4.1.1 Subgroup analysis in clinical research

Randomized Clinical Trials (RCTs) aim to test predefined hypotheses and answer
specific questions in the context of clinical drug development. Essentially designed
to demonstrate treatment efficacy and safety in a given indication using a limited
number of patients with homogeneous characteristics, RCTs are performed in heavily
controlled experimental conditions in order to maximize chances to obtain results
with sufficient statistical power throughout successive trials. RCTs are the gold
standard for evaluating treatment outcomes, although real life studies can reveal
mismatches between efficacy and effectiveness [Sat+14]. Conversely, Real-World
(RW) Data (electronic medical records, claims data, registries), are mainly generated
for administrative purposes, going beyond what is normally collected in clinical trial
programs, and represents important sources of information for healthcare decision
makers.

In both RCT and RW studies, subgroup analysis (SA) is used to test local effects, for
instance to account for the heterogeneity in the response to treatment. Particularly
in RCT, SA “has become a fundamental step in the assessment of evidence from
confirmatory (Phase III) clinical trials, where conclusions for the overall study
population might not hold” [Tan+16]. SA include both confirmatory analyses,
whose purpose is to confirm predefined hypotheses, and exploratory ones, which
aim to generate new knowledge and are exploratory in nature [Lip+16]. When
considering a set of patients included in a database, a subgroup of patients is any
subset characterized by its extension (all the patients in the subset, e.g. Patient’s ID in
{“12345”, “45678”}) and its intension (a description that characterizes the patients
in the subset: e.g. “All the adult women”). In SA, a typical type of subgroups of
interest are those whose extension corresponds to patients who respond differently
to a new treatment [Zha+18]. A formal definition of subgroups can be found in
[Lip+16].
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Fig. 4.1.: A classification of SA tasks distinguishing the confirmatory analyses (left) from
the exploratory ones (right).

A key issue in SA in general is to assess and report its results [Rot05]. In clinical
trials, this assessment is critical and depends on the precise purpose of the study.
There are different ways to distinguish the purpose of using SA in clinical research.
A first distinction relates to the general purpose of the analysis that can be either
aimed at studying treatment efficacy or safety, on either a priori defined groups or
a posteriori groups. This dichotomous classification is depicted in Figure 4.1. In
the literature, pre-hoc analysis is most-often called confirmatory analysis whereas
post-hoc analysis is called exploratory analysis [Lip+16].

More recently Lipkovich et al. [Lip+16] have refined this classification into four
different tasks:

(A) Confirmatory subgroup analysis: refers to statistical analysis mainly aimed
at testing a medical hypothesis under optimal setting in the absence of con-
founding factors while strongly controlling the type 1 error rate (using the
Family-Wise Error Rate) in Phase III clinical trials with a small number of
prespecified subgroups.

(B) Exploratory subgroup evaluation: refers to statistical analysis aimed at
weakly controlling the type 1 error rate (using the False Discovery Rate)
of a relatively small number of prespecified subgroups that focuses mostly on
“treatment-by-covariate interactions and consistency assessments”.

(C) Post-hoc subgroup evaluation: refers to non-data-driven statistical post-hoc
assessments of the treatment effect across small sets of subgroups that include
responses to regulatory inquiries, analysis of safety issues, post-marketing
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activities in Phase IV trials, and assessment of heterogeneity in multi-regional
studies.

(D) Subgroup discovery: refers to statistical methods aimed at selecting most
promising subgroups with enhanced efficacy or desirable safety from a large
pool of candidate subgroups. These post-hoc methods employ data mining/-
machine learning algorithms to help inform the design of future trials.

We propose a decision tree to represent this second classification where the criteria
to distinguish pre-hoc analysis is the strength of type 1 error control (strong or
weak respectively) while for post-hoc analysis the explicit use of the collected data
(hypothesis-driven or data-driven) is considered (see Figure 4.2).

Fig. 4.2.: Hierarchical tree representing the two layers classification of SA tasks and criteria
used.

The sequel of this paper is concerned with exploratory analysis that are based on
Data Mining approaches and known as SD. SD has been used in a large number
of applications in the medical field and data analysis of randomized clinical trials
[Sun+14].

4.1.2 Subgroup discovery: two cultures

Two cultures related to subgroup discovery can be distinguished in the literature.
The first one is deeply rooted in medical data analysis, biostatistics and more specifi-
cally in the context of drug discovery where both treatments arms and the outcome
are key to the analysis. In this domain-specific context [Lip+18; Lip+16], that
includes either or both candidate covariates and treatment-by-covariate interactions,
SD algorithms search either for:
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• a global modeling across the entire covariate space (e.g. Virtual Twins [FTR11],
penalized logistic regression, FindIt [IR13], Interaction Trees [Su+09] which
extends CART to include treatment-by-covariate interactions, . . . ).

• a local modeling that focuses on identifying specific regions with desirable
characteristic (e.g. SIDES [LD14], PRIM [PW10], TSDT [BSR14], . . . ).

• a global modeling across the entire covariate space (e.g. Virtual Twins [FTR11],
penalized logistic regression, FindIt [IR13], Interaction Trees [Su+09] which
extends CART to include treatment-by-covariate interactions, . . . ).

• a local modeling that focuses on identifying specific regions with desirable
characteristic (e.g. SIDES [LD14], PRIM [PW10], TSDT [BSR14], . . . ).

The second culture of SD is rooted in the Data Mining and KDD community and
applies to any kind of data. The related fields include association rules, set mining,
contrast sets, emerging patterns all relating to the notion of descriptive induction
[FGL12].

Although both cultures share common requirements and issues, their vocabulary
differs and are practically mutually exclusive in the SD literature. We propose a
hierarchical tree representing both cultures and their main associated algorithms
(see Figure 4.3). Since the Q-Finder approach we propose in this paper inherits from
both cultures, it is worthwhile giving an account of both of them.

Fig. 4.3.: Hierarchical tree representing the SD approaches in both biomedical data anal-
ysis and data mining cultures. The references under the boxes correspond to
representative algorithms of each kind.
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In the first culture, where SD is also often referred to as SI [Bal+18; Che+17;
DL14; HY18; Lip+16; Lip+17; Xu+15; Zha+18], there is a key distinction between
prognostic factors (supporting identification of patients with a good or poor out-
come regardless of the treatment assignment) and predictive factors (supporting
identification of patients’ response to the treatment) [AS00].

In this culture, SD algorithms2 can be distinguished depending on whether they
search for prognostic and/or predictive factors: the ones that can only look for
predictive factors (Quint [DDM16], SIDES, Virtual Twins, Interaction trees, . . . ),
the ones that only look for prognostic factors (PRIM, CART [HKH18], . . . ), and
the ones that can look for both prognostic and predictive factors (STIMA [DCV10],
MOB [ZHH08], . . . ). The key measures to assess the quality of the SD results in this
culture are p-value, type 1 errors, False-Discovery Rate [Lip+18; Lip+16].

In the second culture, SD is not associated with a specific sector such as clinical
research. On the contrary, SD is defined as “given a population of individuals
and a property of those individuals that we are interested in, [the finding of]
population subgroups that are statistically the ‘most interesting’, e.g., are as large as
possible and have the most unusual statistical (distributional) characteristics with
respect to the property of interest” [FGL12]. More generally, SD “is a type of data
mining technique that supports the identification of interesting and comprehensible
associations in databases, confirming hypotheses and exploring new ones” [Atz15].
These associations are in the form of a set of rules represented as Subgroup −→ Target,
where Target is the property of interest (e.g. Hypoglycemia = Y es) and Subgroup
is a conjunction of attribute-selector-value triplets (e.g. Age > 18 & Sex = F ).
SD belongs to the wider domain of Association Rule mining — this explains why
many algorithms bear a name formed from an association rule algorithm and an
SD extension — and differs from classical supervised learning as the goal is not to
find rules that best predict the target value of unknown observations but rather best
support describing groups of observations that when satisfying the condition of a
rule also satisfy the target [FGL12].

In this second culture the SD process consists in three main phases: candidate
subgroup generation, subgroups evaluation and ranking [Hel16], and subgroups
pruning (e.g. top-k pruning). The key issues being more related to the algorithmic
search for subgroups than their evaluation. This includes the search strategy (be
it beam [SD, CN2-SD, Double-Beam-SD], exhaustive [APRIORI-SD, Merge-SD] or
genetic [SD-IGA, SGBA-SD]), stopping criterion (minsup, minconf, maxsteps, etc.)

2We focus here on subgroup discovery algorithms which, unlike classification algorithms, meet the
objective of discovering interesting population subgroups rather than maximizing the accuracy of
the classification of the induced set of rules [Lav+04].
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[Val+17a], pruning technique (constraint, minimum support or coverage) and
quality measures (confidence, support, usualness [CN2-SD, APRIORI-SD], etc.).

Recent theoretical and empirical analyses have elucidated different types of methods
to select algorithms suitable for specific domains of application [Hel16]. Applying
such algorithms to SA requires considering the outcome as the variable of inter-
est. Nevertheless, the treatment is not explicitly considered as a special variable
and dozens of quality measures exist (number of rules, number of variables, sup-
port, confidence, precision, interest, novelty, significance, false positive, specificity,
unusualness (WRAcc), etc.) [Her+10].

We will refer to Subgroup Discovery in the context of clinical Subgroup Identification
as SI-SD and to Subgroup Discovery in the context of Knowledge Discovery in
Database as KDD-SD and compare them with the Q-Finder approach. There is an
extensive literature comparing algorithms belonging to each culture independently
(e.g. [Doo+13; Zha+18; LCZ19]) but, to our knowledge, they are not compared
when they come from two different cultures.

4.1.3 Limits of current SD algorithms for clinical research

4.1.3.1. Lack of statistical power and hypothesis generation

As stated by Burke et al. [Bur+15] “the limitations of subgroup analysis are
well established —false positives due to multiple comparisons, false negatives due
to inadequate power, and limited ability to inform individual treatment decisions
because patients have multiple characteristics that vary simultaneously”. Controlling
such errors is a problem: a survey on clinical industry practices and challenges in SD
quoted the lack of statistical power to test multiple subgroups as a major challenge
[MLD15]. Consequently, SI-SD algorithms often fail to detect any “statistically
significant” subgroups.

To control for multiple testing errors SI-SD algorithms often rely on approaches
that drastically restrict the number of explored candidate subgroups at the expense
of hypotheses generation, usually by using recursive partitioning [Doo+13]. Re-
cursive partitioning approaches could miss emerging synergistic effects, defined
as subgroups associated to the outcome, whose individual effects (related to each
attribute-selector-value triplet) are independent from the outcome [HHZ10]. As
such, individual effects combinations would not be selected in tree nodes. Equally,
recursive partitioning may also miss optimal combinations of attribute-selector-value
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triplets, as an optimal selector-value for a given attribute is only defined with re-
lation to previously defined attribute-selector-value triplets3 [HHZ10]. Therefore,
subgroups in output are defined by a combination of variables for which thresholds
are not necessarily the optimal ones (with respect to the metrics of interest to be
optimized). Furthermore, search space restriction strategies favor the detection of
the strongest signals in the dataset, that are often already known and/or redundant
from each other

Finally, pure beam search strategies could miss relevant subgroups as they try to
optimize the joint, i.e. global, accuracy of all leaves, that is a tree with the most
heterogeneous leaves. Consequently, when limiting the complexity (i.e. subgroups
length), we can miss interesting local structures in favor of the global picture4 (see
section A.1.1 in supplementary materials that shows an example where beam search
strategy using a decision tree misses relevant subgroups).

On the contrary, KDD-SD approaches support the exploration of much wider search
spaces at the expense of accuracy, as they do not in general control for type 1 errors
(be it strong or weak).

4.1.3.2. Insufficient credibility and acceptance of subgroups

The “Achille’s heel” of SD is the question of credibility of its results. Several
meta-analyses have demonstrated that discovered subgroups rarely lead to expected
results and have proposed criteria to assess the credibility of findings [Rot05]. Such
credibility metrics are key to support confidence in subgroups and their acceptance
by regulatory agencies and publication journals. Several credibility metrics have
been provided and recommended [Rot05; Sun+10; Dij+09] such as the type of
measures of association (relative risk, odds-ratio, . . . ), correction for confounders,
correction for multiple testing, as well as treatment-covariate interaction tests.

SI-SD approaches use credibility metrics suited to clinical analyses. However, most of
them only provide and consider in their exploration a limited number of credibility
metrics (e.g. hypothesis testing p-value), compared to what is recommended in the
literature. Moreover, such metrics are rarely consensual. Equally, the subgroups’

3Let’s assume that a recursive partitioning algorithm has defined BMI > 25 as the optimal attribute-
selector-value triplet on an objective function to be optimized for patients with Age > 18 (the latter
being the first triplet to be identified by the algorithm). One can assume that better selector-values
could have been obtained for this combination of attributes, to generate the optimal combination
of these attributes on the objective function (e.g. Age > 21 & BMI > 20).

4Further explanation here: http://www.realkd.org/subgroup-discovery/the-power-of-saying-i-dont-
know-an-introduction-to-subgroup-discovery-and-local-modeling/
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generation process (that defines optimal attribute-selector-value triplets combina-
tion) mostly relies on the optimization of a limited number of criteria and is thus not
directly driven by all credibility metrics that will be used for the clinical assessment
of the subgroups at the end.

On the other hand, KDD-SD can provide a considerable range of credibility metrics
as there is no consensus about which quality measures to use [Her+10], such as
WRAcc, Lift, Conviction, Mutual information [Hah+11]. However, these metrics are
seldom used in clinical analyses, hindering their use in the medical field.

Another issue hindering the adoption of SD approaches lies in the comprehensibility
of the algorithm itself. This often-underestimated issue is an obstacle for convinc-
ing clinical teams and regulatory agencies of the relevance and reliability of SD
approaches.

4.2 Q-Finder ’s pipeline to increase credible findings
generation

In this section we present an approach that aims at combining some of the advan-
tages of both SI-SD and KDD-SD cultures, while dealing with limitations observed in
current SD algorithms (see section 4.1.3). To this end, we introduce Q-Finder, which
relies on a four-steps approach (summarized in Figure 4.4): exhaustive subgroup
candidates generation, candidate subgroups assessment on a set of credibility met-
rics, selection of a limited number of most promising subgroups that are then tested
during the final step. This approach has been applied in several therapeutic areas,
with published examples available [Alv+20; Mor+20; Iba+19; Zho+19; Zho+18;
Rol+18; Dum+18; Gas+17; Dum+16; Ada+16; Amr+15; Eve+14; Nab+12].
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Fig. 4.4.: Q-Finder works in 4 main stages: an exhaustive generation of candidate subgroups,
a ranking of candidate subgroups via an evaluation of their empirical credibility,
a selection of the best candidates (taking into account the redundancy between
subgroups) then an assessment of subgroups’ credibility on one or more test
datasets

4.2.1 Basic definitions: patterns, predictive and prognostic rules

Numerous formalizations of KDD-SD have been given in the literature. We will
briefly introduce some basic definitions of database, individuals, basic patterns,
complex patterns, subgroup complexity and subgroup description related to the ones
introduced by Atzmueller [Atz15]. A database is formally defined as D = (I, A), a
set I of N individuals and a set A of K attributes. We will only distinguish nominal
and numerical attributes. For nominal attributes, a basic pattern (ai = vi,j) is a
Boolean function that is true if the value of attribute ai ∈ A is equal to vi,j in the
domain of ai for a given individual of I. For a numerical attribute (be it real or
integer) ai, both basic patterns (ai ≥ vi,j ) and (ai ≤ vi,j) can be defined for each
value vi,j in the domain of ai. The associated Boolean function is defined similarly.
The set of all basic patterns is denoted by Σ.

A conjunctive language is classically considered to describe subgroups. An associa-
tion rule (X → Y ) is composed of a complex pattern (also called itemset) X and a
basic pattern Y , where X is called antecedent (or left-hand-side (LHS) or Subgroup)
and Y the consequent (or right-hand-side (RHS) or Target). A complex pattern CP
is described by a set of basic patterns CP = {BP1, . . . , BPk, . . . BPC}, BPk ∈ Σ. It
is logically interpreted as a conjunction of basic patterns. In other words, a complex
pattern CP represents the body of a rule BP1 ∧ ... ∧ BPC . In Q-Finder, its length
C corresponds to the complexity of the associated rule. The set of observations
covered by a complex pattern CP is called the extension of the subgroup, i.e. the
individuals for which CP is true {x ∈ I; CP is true for x}. In this formalism, the
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set of all possible association rules is included in the powerset of Σ although many
subsets are not considered because their extension is by construction empty (e.g.
ai ≥ vi,j ∧ ai ≤ vi,k when vi,j > vi,k). Moreover, this set of all subgroups can be
partially ordered in a lattice structure [Gan93]. We will not rely on such lattice
structure because the length of subgroups (i.e. their complexity) is sufficient to
partially order the set of generated candidates in subsets5.

In SI-SD, many databases include information about treatment distinguishing differ-
ent individuals grouped in arms. This notion is critical to distinguish two types of
rules. The prognostic rules are not related to a treatment effect on a given outcome,
unlike the predictive rules.

These two main types of rules can be summarized as follows:

Prognostic rule: SUBGROUP→ TARGET

Predictive rule: SUBGROUP where TREATMENT→ TARGET

4.2.2 Preprocessing and Candidate Subgroups generation in
Q-Finder

In Q-Finder, to control the size of the set of basic patterns |Σ|, all numerical
attributes are systematically discretized in bins. A hyperparameter #Bins sets the
maximum number of values vi,j of any numeric attribute ai (default value: 10).
If this number is above #Bins, the attribute ai is quantized using a discretization
method DiscretizationMethod (see algorithm 25 line 8). Different methods exist
for quantization, the default one being equal-frequency binning. In the same way,
the number of distinct values for a given nominal attribute might be bounded by the
hyperparameter #Cats (default value6: ∞). If the number of modalities is above
this threshold, a reduction method ReductionMethod may be used (by default: use
the (#Cats− 1) most frequent values of ai and a create a value “other” for all the
remaining ones). Let us call Kc the number of nominal attributes and Kb the number
of numerical attributes. After this preprocessing step the number of basic patterns
|Σ| is bounded and we have the relation: |Σ| ≤ 2 ∗Kb ∗#Bins+Kc ∗#Cats.

Given a set of basic patterns Σ, we call “candidate generation” the search procedure
that generates the subgroups (i.e. complex patterns conjunction of basic ones).

5A methodology to further order the subgroups is introduced in section 4.2.3.2
6In this way, no reduction is done by default.
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The number of complex patterns of complexity C is bounded by the number of C-
combination of Σ (i.e. the binomial coefficient

(|Σ|
C

)
). There is extensive literature in

KDD-SD on the type of exploration of these complex patterns [FGL12]. Experiments
have shown that the exhaustive search-based methods perform better than other
methods which prune the search before evaluation [Hel16]. This is particularly
true when the problem size is reasonable (i.e. a few thousand individuals) which
is mostly the case in SD. The Q-Finder candidate generation is straightforward; it
outputs a subset of all C-combinations of Σ (with C ∈ [[1;Cmax]]) as described below
in Algorithm 25.

Algorithm 1: Basic patterns and candidate subgroup generation of complexity
≤ Cmax
input :#Bins: sets the maximum number of values vi,j of any numeric attribute

#Cats: Bounds the number of distinct values for a given nominal attribute
Cmax: maximum complexity of generated subgroups
ReductionMethod: by default, uses the (#Cats− 1) most frequent values of ai and creates

a value “other” for all the remaining ones
DiscretizationMethod: Method to quantize ai

output :G the set of generated candidate subgroups of length ≤ Cmax

// Set of basic patterns
1 Σ = {}
2 for each nominal attribute ai do
3 if #valueof(ai) > #Cats then
4 Reduce the number of values of ai to #Cats using ReductionMethod

5 end

6 end
7 for each vi,j do
8 Σ = Σ ∪ {(ai = vi,j)}
9 end

10 for each numerical attribute ai do
11 if #valueof(ai) > #Bins then
12 Discretize the values of ai in #Bins using DiscretizationMethod

13 end

14 end
15 for each vi,j do
16 Σ = Σ ∪ {(ai ≥ vi,j), (ai ≤ vi,j)}
17 end

// # Set of generated subgroups
18 G = {}
19 for each combination s of 1 to Cmax elements of Σ do
20 if one attribute ai appears twice or more in s or if the extension of s is empty by construction then
21 skip
22 else
23 G = G ∪ {s}
24 end

25 end

In practice the Q-Finder algorithm not only supports constructing left-bounded
and right-bounded intervals but also supports bounded intervals depending on the
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number of basic patterns (one or two) associated to a given numerical attribute. If
bounded intervals are considered, step 13 of the algorithm becomes “If one attribute
ai appears twice or more in s with the same selector or if the extension of s is empty
by construction then skip”.

4.2.3 Empirical credibility of subgroups

Q-Finder’s candidates generation step may potentially produce a very large number
of subgroups. Because of its exhaustive strategy, it produces a number of subgroups
which grows exponentially with complexity. Dealing with a massive exploration of
database is the challenge of any KDD-SD algorithm be it exhaustive or heuristic, as
the number of computed statistical tests may induce a high risk of false positives,
that needs to be mitigated.

Q-Finder addresses this challenge by only selecting a subset of candidate subgroups
and testing them on independent data, to assess the replicability of the results while
controlling the number of tests (and thus the type 1 error). This strategy requires to
address two issues:

• a way of evaluating the empirical credibility of subgroups, in order to rank
them from most to least promising

• a top-k selection strategy, in order to select a set of subgroups that seem most
credible and will be tested on an independent dataset.

4.2.3.1. Credibility metrics

The notion of credibility often appears in the literature on subgroup analysis
[Bur+15; Sch+16; Sun+10; SBJ12; Dij+09] described according to different
criteria. In particular Oxman and Guyatt [OG92] detail seven existing criteria to
help clinicians assess the credibility of putative subgroup effects on a continuum
from “highly plausible” to “extremely unlikely”. Sun et al. [Sun+10] suggest four
additional credibility criteria and re-structure a checklist of items addressing study
design, analysis, and context. In the present context, credibility is related to a
sequence of a priori ordered statistical metrics that are progressively increasing the
confidence (credibility) of a given subgroup. The seven criteria described below
are aligned with the clinical domain endpoints [Sun+10; Dij+09]. Using these
criteria when selecting the top-ranked subgroups ought to both promote the finding
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of credible subgroups and facilitate their acceptance by clinicians, agencies and
publication journals.

Drawing from this literature, continuous metrics to measure subgroups’ credibility
are used in Q-Finder. ). Several credibility criteria are defined, each composed of
both a continuous metric and a minimum or maximum threshold (which may be
modified by the user):

1. Coverage criterion: The coverage metric is defined by the ratio between
the subgroup’s size and the dataset’s size. This allows to only consider the
subgroups that correspond to large enough groups of patients to be clinically
relevant. It can be compared to defining a minimum SUPPORT of the antecedent
of a rule in the KDD-SD literature. Default minimum threshold for coverage is
10%.

2. Effect size criterion: As recommended by both Sun et al. [Sun+10] and
Dijkman et al. [Dij+09], Q-Finder’s exploration relies by default on rela-
tive risk reductions, which differ according to the probability distribution of
the outcome (ODDS-RATIOS for discrete or negative binomial distributions,
RISK-RATIOS for normal or Poisson distributions, HAZARD RATIOS for survival
analysis). Those metrics allow to quantify the strength of the association
between the antecedent (the subgroup) and consequent (the target) of the
rule. Relative risk reductions remain, in most situations, constant across vary-
ing baseline risks, in comparison to absolute risk reductions. In the KDD-SD
literature, this continuous metric is usually the CONFIDENCE (i.e. how often
the target is true among the individuals that satisfy the subgroups).

The effect size metric may vary depending on whether one is looking for
predictive or prognostic factors. When searching for prognostic factors, Q-
Finder only considers the effect size measuring the subgroup’s effect (default
minimum threshold for effect size is 1.2). When searching for predictive factors,
Q-Finder considers simultaneously two effect sizes: the treatment effect within
the subgroup and the differential treatment effect, defined as the difference in
treatment effect for patients inside the subgroup versus outside the subgroup.
When generating predictive factors, one can consider the differential treatment
effect on its own, or in combination with the treatment effect within the subgroup.
The latter case allows to identify subgroups in which the treatment effect is
both positive and stronger than outside the subgroup (default thresholds are
1.0 for the treatment effect within the subgroup and 1.2 for the differential
treatment effect).
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3. Effect significance criterion: the association between each subgroup and the
target is assessed using a nullity test from a generalized linear model. For the
identification of predictive factors, an interaction test is performed to assess
between-subgroup treatment effect interactions as recommended by Dijkman
et al. [Dij+09]. A threshold (typically 5%) is used to define when the p-value
related to each effect size metric is considered significant.

4. Basic patterns contributions criteria: Basic patterns contributions to the
subgroup’s global effect are evaluated through two sub-criteria: the absolute
contribution of each basic pattern and the contributions ratio between basic
patterns.

The absolute contribution of a basic pattern is defined by the improvement in
effect when this basic pattern is present, compared to the subgroup’s effect
when this basic pattern is absent. Each basic pattern contribution should
be above a defined threshold (by default 0.2, 0 and 0.2 respectively for the
subgroup’s effect, the treatment effect within the subgroup and the differential
treatment effect), thus ensuring that each increase in subgroup’s complexity
goes along with some gain in effect and therefore in interest.

The contributions ratio between basic patterns is the ratio between the max-
imum absolute contribution and the minimum absolute contribution. A max-
imum threshold (by default 5 for the subgroup’s effect or the differential
treatment effect) is set for this criterion, thus ensuring that basic patterns’
contributions to the subgroup’s effect are not too unbalanced. Indeed, if a
basic pattern bears only a small portion of the global subgroup’s effect, then
the global effect’s increase is not worth the complexity’s increase due to this
pattern’s addition.

5. Effect size criterion corrected for confounders: the strength of the asso-
ciation is assessed through relative risk reductions (as in criterion 2) while
correcting for confounding factors using a generalized linear model. Added co-
variates are known confounding factors of the outcome, which are susceptible
to be unbalanced between patients within and without each subgroup, as well
as between treatment arms for predictive factors identification tasks [Sun+10;
Dij+09]. As for criterion 2, adjusted relative risks ought to be above a given
threshold (same as for criterion 2).

6. Effect significance criterion corrected for confounders: as for the effect
significance criterion (criterion 3) and using the same model as in criterion 5,
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a threshold (typically 5%) is used to define when the p-value related to each
effect size metric corrected for confounders is considered significant.

7. Effect adjusted significance criterion corrected for confounders: the p-
value computed in criterion 6 is adjusted to account for multiple testing,
as recommended by Dijkman et al. [Dij+09]. This procedure relies on a
Bonferroni or a Benjamini-Hochberg correction to control for type 1 errors. As
for criterion 6, a threshold is used to determine whether the p-value remains
significant after multiple testing correction (typically 5%)

These seven credibility metrics are at the core of Q-Finder. However, they can be
further extended by other measures of interest to better fit each research question.

4.2.3.2. Aggregation rules and subgroups ranking

Aggregation rules are defined to discriminate subgroups according to a set of
criteria and therefore to help select the most interesting and/or promising ones for
each research question. This is a key concept of Q-Finder, as the goal is to select a
set of “top” subgroups before testing them on an independent dataset, whether they
pass all credibility criteria. In practice, ranking subgroups into aggregation ranks is
helpful when no subgroup passes all credibility criteria, and we need to investigate
lower aggregation ranks to select the most promising subgroups. This approach
contrasts with most SI-SD algorithms, where outputs are only subgroups passing all
predefined indicators, hindering the generation of hypotheses if these are difficult to
achieve.

To this end, a set of credibility criteria is parameterized by the user, depending on
the desired properties of the searched subgroups (see section 4.2.3.1). Q-Finder
computes each metric for each of the candidate subgroups of complexity C ≤ Cmax
and verifies if the associated thresholds are met. A vector of Boolean can thus be
associated to each subgroup depending on which thresholds are met, and are used
to order the candidate subgroups, according to prespecified aggregation rules.

By default, Q-Finder prioritizes subgroups that meet the following credibility crite-
ria: subgroups with a minimal value of coverage (coverage criterion), defined by
basic patterns that sufficiently contribute to the subgroup’s effect (basic patterns
contribution criteria), with a minimal level of effect size adjusted for confounding
factors7 (effect size criterion corrected for confounders) and adjusted p-values

7Looking for subgroups with a predefined minimal effect size is aligned with recent recommendations
from the American Statistical Association [WSL19]: “Thoughtful research includes careful consid-
eration of the definition of a meaningful effect size. As a researcher you should communicate this
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for multiple testing below a given level of risk (effect adjusted significance cri-
terion corrected for confounders). Please note that the above-mentioned effect
could either be the subgroup’s effect size (for prognostic factors) or the treatment
effect within the subgroup and/or the differential treatment effect (for predictive
factors). Aggregation rules are the following (from least to most stringent):

• Rank 1: subgroups that satisfy the coverage criterion

• Rank 2: subgroups of rank 1 that also satisfy the effect size criterion

• Rank 3: subgroups of rank 2 that also satisfy the basic patterns contribution
criteria

• Rank 4: subgroups of rank 3 that also satisfy the effect significance criterion

• Rank 5: subgroups of rank 3 or 4 that also satisfy the effect criterion corrected
for confounders

• Rank 6: subgroups of rank 5 that also satisfy the effect significance criterion
corrected for confounders

• Rank 7: subgroups of rank 6 that also satisfy the effect adjusted significance
criterion corrected for confounders

One can notice that subgroups with an odds-ratio adjusted for confounders but
not significant (rank 5) are ranked before subgroups with significant odds-ratios
(not adjusted for confounders, rank 4) for hypotheses generation. This ranking
is consistent with favoring adjusted odds-ratios with a lack of statistical power
to potential biased estimates. As well as the possibility of adjusting the list of
parameters, the order of priority between parameters can also be changed to take
into account different priorities.

In addition, a continuous criterion is chosen to sort subgroups of the same aggre-
gation rank. Classically, the criterion called Effect significance criterion corrected for
confounders is preferred. This is consistent with recommendations by Sun et al.
[Sun+10] that state that the smaller the p-value, the more credible the subgroup
becomes. In case of a tie, additional criteria can be used to determine the final

up front, before data are collected and analyzed. Then it is just too late as it is easy to justify the
observed results after the fact and to over-interpret trivial effect sizes as significant. Many authors
in this special issue argue that consideration of the effect size and its ‘scientific meaningfulness’ is
essential for reliable inference (e.g., [Blu+18]; [Bet19]).”
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ranking, such as the effect size criterion corrected for confounders, to favor subgroups
with stronger effect sizes. This ranking procedure is summarized in algorithm 15.

Algorithm 2: Ranking candidate subgroups
input :G: the list of candidate subgroups of length ≤ Cmax

mc: a continuous credibility metric (e.g. a p-value)
M : the list of credibility criteria (e.g. [(p-value < 5%), (OR > 1)])
AggregrationRules: Set of criteria to discriminate subgroups

output :Granked: The list of subgroups of G sorted according to Ranks
// Sort G according to mc

1 Gsorted = sort(G, mc)
// Create a vector of |G| zeros to store ranks of each si ∈ G

2 Ranks = rep(0, |G|)
3 for si in G do

// vector representing the subgroup’s credibility

4 cred = [ ]
5 for mj in M do
6 if si passes credibility criteria mj then
7 cred[j] = 1
8 else
9 cred[j] = 0

10 end

11 end

12 end
/* Integer part of the rank of si is the aggregation rank given by

AggregationRules applied to cred */

13 bRanks[i]c = AggregationRules(cred)
// Fractional part of the rank of si is the index of si in Gsorted

14 {Ranks[i]} = index(si, Gsorted)
15 Granked: = sort(G, Ranks)

4.2.4 Q-Finder subgroups diversity and top-k selection

4.2.4.1. Subgroups diversity

Q-Finder performs a subgroups top-k selection to be tested on an independent
dataset. One of the known issues in KDD-SD of top-k mining algorithms is that
they are prone to output redundant subgroups as each subgroup is considered
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individually. Several authors including Leeuwen and Knobbe [LK12] have argued
to search for subgroups that offer a high diversity: diverse subgroup set discovery.
Therefore, the goal is to take into account the fact that many subgroups might be
redundant either extensionally (their basic patterns are very similar) or intentionally
(the objects covered by the subgroup are similar). A general approach to address this
issue is to define a redundancy measure. It can for example consider the number of
common attributes between two subgroups, or the percentage of common examples
covered by two different subgroups. The last requires more computation but results
in a better diversification of subgroups as it considers possible correlations between
variables.

Q-Finder proposes a definition of intentional redundancy between basic patterns,
where two basic patterns (attribute-selector-value triplets, respectively a1 − s1 − v1

and a2 − s2 − v2) are considered redundant if:

• a1 = a2

• AND:

– For nominal attributes: v1 = v2

– For numerical attributes:

* s1 = s2

* OR considering s1 as "≤" and s2 as "≥", v1 ≥ v2

Based on the basic patterns redundancy definition, two subgroups are called redun-
dant if Cmin basic patterns are redundant between them; Cmin being the minimum
complexity of the two subgroups.

4.2.4.2. Selection of top-k subgroups to be tested

Different strategies exist to identify an optimal top-k selection of non-redundant
subgroups [XBM06], based on subgroups’ intensions, extensions, or both. In addition
to those existing strategies, Q-Finder proposes its own approach based on subgroups’
intensions (see Algorithm 30) to determine an optimal set of k non-redundant
subgroups Sk from the ranked set of generated subgroups Granked (output from
Algorithm 15).

The best candidate subgroup is iteratively selected using 2 continuous metrics:
mc from Algorithm 15 and another continuous metric. This top-k algorithm was
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originally designed using a p-value metric8 for mc and an effect size9 for the second
metric10. For the sake of clarity, we will describe this algorithm using those 2
metrics:

• Subgroups should be selected from less complex to most complex (favoring
less complex subgroups)

• When two subgroups of equal complexity are redundant, only the one associ-
ated with the best p-value should be retained.

• When two subgroups of different complexities are redundant

– The most complex subgroup of the two is discarded iff its chosen effect
size metric is lower than the less complex one.

– The less complex subgroup of the two is discarded iff both its chosen
p-value and effect size metric are respectively higher and lower than the
more complex one11

8P-value credibility metric can be chosen from metrics 3, 6 or 7 presented in 4.2.3.1
9Effect size credibility metric can be chosen from metrics 2 or 5 presented in 4.2.3.1

10The user can adapt this algorithm using any relevant continuous metrics’ couple
11Note that instead of discarding the less complex subgroup of the two, one might want to keep both.

The algorithm will need to be revised accordingly.
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This top-k selection process based on these principles is detailed in Algorithm 30.

Algorithm 3: Q-Finder’s iterative top-k selection based on subgroups’ intensions
input :k: maximum number of selected subgroups

Granked: set of ranked generated subgroups, with complexities ranging from Cmin to Cmax

δES : minimum delta to consider that a subgroup has a higher effect size12

output :Sk: top-k best candidate subgroups
/* split Granked by subgroup complexity (Gsplit[1] corresponds to complexity 1,

Gsplit[2] to complexity 2, ...) */
1 Gsplit = splitByComplexity(Granked)

// Initialize Sk, the set of top candidate subgroups
2 Sk = {}
3 for c = Cmin to Cmax do

// g : candidate subgroup
4 for g in Gsplit[c] do
5 if p-value(g) > max(p-values(Sk) and size(Sk) == k then
6 continue to next c
7 end

// s : subgroup in the top-k
8 for s in Sk do
9 if redundant(g, s) then

10 if complexity(g) == complexity(s) then
11 continue to next g
12 end
13 if complexity(g) > complexity(s) then
14 if EffectSize(g) ≤ EffectSize(s) + δES then
15 continue to next g
16 end

17 end

18 end

19 end
20 for s in Sk do
21 if redundant(g, s) and complexity(g) > complexity(s) and EffectSize(g) > EffectSize(s) + δES

and p-value(g) < p-value(s) then
22 Sk = Sk\{s}
23 end

24 end
25 Sk = Sk ∪ {g}
26 while size(Sk) > k do
27 Sk = Sk\{subgroup from Sk with the highest p-value}
28 end

29 end

30 end

The result of this step is a set of most promising non-redundant subgroups, that has
a maximum size of k.

12Above that delta value, the increase in effect size is worth enough to justify an increase in complexity.
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4.2.5 Possible addition of clinical expertise

Clinical input can be used to overrule algorithm’s preference during top-k selection,
by removing candidate subgroups from Granked (the set of candidate subgroups cf.
Algorithm 30) or force the addition of a subgroup into Sk (the set of best candidates
cf. Algorithm 30). More generally, clinical experts can directly select top-k relevant
subgroups among the most credible ones. This stage, that is sometimes referred to as
Interactive Machine Learning [Hol16], is aligned with the American Statistical Associ-
ation recommendations that encourage researchers for seeking experts judgement
in any statistical analysis, including for evaluating the importance and the strength
of empirical evidence [WSL19]. By integrating experts into Q-Finder’s process for
subgroups selection, one allows the consideration of non-measurable properties,
such as the novelty, interest or applicability of the proposed subgroups13.

4.2.6 Subgroups’ generalization credibility

In Q-Finder the final step consists in computing the credibility metrics of the top-k
subgroups on the testing set, in order to assess their generalization credibility, that
is subgroups consistency across databases [Sun+10; Dij+09]. However, contrary
to the candidate subgroups generation phase previously performed, the number
of tested subgroups in this phase is well-controlled (as recommended in Sun et al.
[Sun+10] and Dijkman et al. [Dij+09]), as it is limited by the parameter k. This
allows a better control of the type 1 error that was more difficult to achieve until
then. For that purpose, Q-Finder performs a correction for multiple testing during
computation of the significance metrics, to account for the number of subgroups
tested on independent data (default: Benjamini-Hochberg procedure). top-k sub-
groups satisfying the credibility criteria on the test dataset are considered highly
credible.

4.2.7 Experiments and Results

This section is dedicated to compare Q-Finder with representative algorithms for
predictive or prognostic SD. First, the IDMPS database on which experiments were
run is described. Then, the research questions are stated and both a prognostic and

13Wasserstein et al. [WSL19] argue to be open in study designs and analyses: “One might say that
subjectivity is not a problem; it is part of the solution.”
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a predictive task are described. Lastly, four different methods and their results are
given and compared with Q-Finder.

4.2.7.1. Research questions

Prognostic factors identification One of the main goals of the IDMPS initiative is
to evaluate patient’s disease management. To do so, a key outcome in diabetes is
the blood level of glycated hemoglobin (HbA1c). High HbA1c is a risk factor for
micro- and macrovascular complications of diabetes [Wij+17]. Patients with T2DM
who reduce their HbA1c level of 1% are 19% less likely to suffer cataracts, 16% less
likely to suffer heart failure and 43% less likely to suffer amputation or death due to
peripheral vascular disease [AAH19; SKP10].

Given the importance of HbA1c control for diabetic patients, we deemed interesting
to focus our prognostic factors detection on patients meeting the recommended
HbA1c threshold. This recommended threshold varies depending on several factors,
such as age or history of vascular complications. For most T2DM patients, this
threshold is set at 7%, which is how we define glycemic control for TD2M patients.
Our research question can then be formulated as follows: “What are the prognostic
factors of glycemic control in TD2M patients?”. We consider the following variables
as confounding factors: Patient’s age [Ma+16], Gender [Ma+16], BMI [Can+18],
Level of education [Tsh+12] and Time since diabetes diagnosis [Jua+12]. Consid-
ering the geographical heterogeneity in IDMPS, we added the continent where the
data was collected.

This experiment included 1857 patients from IDMPS wave 6 and 2330 patients from
IDMPS wave 7, with 63 variables considered as candidate prognostic factors. In
wave 6, 17.7% of patients were under the 7% HbA1c threshold, versus 18.8% in
wave 7.

Predictive factors identification Another key outcome in diabetes management is
the occurrence of hypoglycemia events, which is one of the main complications
linked to diabetes. Hypoglycemia symptoms include dizziness, sweating, shakiness;
but can also lead to unconsciousness or death in severe cases. Previous studies have
shown the impact of insulin treatments on the incidence of hypoglycemia, including
comparing premixed insulin analogues to basal insulin analogues (with or without
prandial insulin). In some cases, hypoglycemia rates were found to be slightly higher
in patients population treated with premixed insulin analogues [Pet+18].
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We focused our predictive factors detection on hypoglycemia risk in the past 3
months under premixed insulin versus basal insulin (alone or in combination with
prandial insulin).

Our research question can then be formulated as follows: “What are the subgroups
in which the treatment effect (premixed insulin versus basal insulin with or without
prandial insulin) on the risk of hypoglycemia in the past 3 months is both positive
and higher than outside the subgroups?” Illustrative example: “The risk ratio in
experiencing hypoglycemia under premixed insulin versus basal insulin (with or
without prandial insulin) is greater on male patients than on female patients”.

This experiment included 2006 patients from IDMPS wave 6 and 2505 patients from
IDMPS wave 7, with 62 variables considered as candidate predictive factors. In
wave 6, 32.4% of patients were taking Premixed insulin with a hypoglycemia rate of
32.2%, versus 25.6% for basal insulin regimen. In wave 7, 39.0% of patients were
taking Premixed insulin with a hypoglycemia rate of 33.1%, versus 28.3% for basal
insulin regimen.

4.2.7.2. Analytical strategies

An objective of this paper is to compare the Q-Finder algorithm to state-of-the-art
approaches for clinical SD in both SI-SD and KDD-SD. There are a vast number of
approaches in both domains, we chose two state-of-the art methods from KDD-SD
to address the prognostic factors research, and two methods from SI-SD to address
the predictive factors research. Among SI-SD methods, we chose SIDES (Subgroup
Identification Differential Effect Search method) and Virtual Twins. The first one
is arguably the most well-known local recursive methods while Virtual Twins is a
recognized method, representative of global modelling approaches. In the domain
of KDD-SD methods, we chose APRIORI-SD and CN2-SD which are well-known
representative of respectively exhaustive and heuristic approaches to SD.

While these four methods do cover the spectrum of SD and identification methods,
both SIDES and Virtual Twins are well adapted to predictive tasks, APRIORI-SD
and CN2-SD can only address prognostic tasks. Since Q-Finder can address both
tasks, it is compared with the two methods that are adapted to each of the two
tasks described in section 4.2.7.1. For all the analyses, IDMPS wave 6 were used as
the discovery dataset and IDMPS wave 7 as the test dataset. To allow comparison
of results, only the top-10 subgroups of each algorithm are considered without
any human intervention during the selection. Finally, default parameters of each
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algorithm were selected, except shared parameters which we kept as similar as
possible.

Exploring prognostic subgroups For each of the three approaches to identify prog-
nostic subgroups (CN2-SD, APRIORI-SD, and Q-Finder) we detail the version and
main parameters.

CN2-SD14: A beam search algorithm adapted from association rule learning CN2
to SD. It introduces a weighted covering method, where examples covered by a
subgroup are not removed from the training set, but their weights are decreased.
This allows examples to appear in several subgroups and cover groups with more
diversity. The version used is the one found in Orange 3.23.1. The default parameters
are: WRAcc as the optimization metric, beam_width = 20 (the bigger the beam,
the more combinations are tested), max_rule_length = 3 (parameter representing
the maximum complexity of a subgroup15) and min_covered_examples = 10%
(minimum coverage of a subgroup16).

APRIORI-SD17: An exhaustive search algorithm adapted from association rule learn-
ing APRIORI to SD. Compared to APRIORI it only considers subgroups that contain
the target variable in the right-hand side. Like CN2-SD, it also uses the weighted
covering method. The Python package pysubgroup version 0.6.1 [LB18] is used,
with the following parameters: WRAcc as the optimisation metric, maxdepth = 3
15 and result_set_size_coverage = 10% 16.

Q-Finder prognostic mode: The version used is 5.4 with Cmax = 3, #Bins = 10
and #Cats =∞ (see section 4.2.2). Only left-bounded and right-bounded intervals
are considered. The thresholds for credibility criteria are the default values presented
in section 4.2.3.1 : minimum coverage = 10%, minimum basic pattern absolute

contribution = 0.2, maximum basic pattern contribution ratio = 5, minimum
effect size = 1.2 (with or without correction for confounders), and maximum

effectś significance threshold = 0.05 (with or without correction for confounders).
Multiple testing correction is addressed using Bonferroni correction in the discovery
dataset and Benjamini-Hochberg procedure in the test dataset. For the ranking steps,
aggregation rules are the ones presented in section 4.2.3.2, mc being the p-value
for subgroup’s effect when corrected for confounders. The default top-k selection is
performed with the odds-ratio corrected for confounders as the second metric and
δES = 0.2 (see section 4.2.4.2).
14https://pypi.org/project/Orange3/
15This corresponds to Q-Finder’s maximum complexity parameter
16This corresponds to Q-Finder’s minimum threshold for the coverage criterion
17https://github.com/flemmerich/pysubgroup
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Exploring predictive subgroups For each of the three approaches to identify pre-
dictive subgroups (Virtual Twins, SIDES and Q-Finder) we detail the version and
main parameters.

Virtual Twins18: Following the vignette’s recommendation from the R package
aVirtualTwins version 1.0.1, missing values were a priori imputed on the discovery
dataset using rfImpute() from the randomForest package version 4.6.14. For this
step and each of the following, the seed was set to 42. After the imputation, Virtual
Twin’s first step consisted in using randomForest() from the randomForest package
(version 4.6.14) with ntree = 500 and threshold = 0.5 (threshold above which the
treatment effect is considered significant for a patient). The second step consisted
in performing a classification tree with maxdepth = 3 (maximum depth of the
classification tree15). Only the leaves for which the predicted outcome was the target
were considered as outputted subgroups.

SIDES19: The version considered is 1.14 from the SIDES R package. The parameters
considered are: M = 5 (maximum number of best promising subgroups selected
at each step of the algorithm), alpha = 0.05 (overall type 1 error rate, which is
compared with p-values corrected for multiple testing using a resampling-based
method to protect the overall type 1 error rate), S = 200 (minimum subgroup
size desired, set at 10% of the discovery dataset16), L = 3 (maximum depth of
the tree15), D = 0 (minimum difference between the treatment and the control
arm), gamma = 1 (relative improvement parameter), num_crit = 1 (splitting
criterion used: maximizing the differential effect between the two child subgroups),
H = 1 (i.e. no random split of the discovery dataset), ord.bin = 10 (number of
classes continuous covariates are discretized into20). As SIDES is a non-deterministic
algorithm, the seed was set to 42.

Q-Finder predictive mode: The version used is 5.4 with Cmax = 3, #Bins= 10 and
#Cats =∞ (see section 4.2.2). Only left-bounded and right-bounded intervals are
considered. The thresholds21 for credibility criteria are the default values presented
in section 4.2.3.1 : minimum coverage = 10%, minimum basic pattern absolute

contribution = (0, 0.2), maximum basic pattern contribution ratio = (∞, 5),
minimum effect size = (1, 1.2) (with or without correction for confounders),
and maximum effectś significance threshold = (0.05, 0.05) (with or without cor-
rection for confounders). Multiple testing correction is addressed using Bonferroni

18https://cran.r-project.org/web/packages/aVirtualTwins/vignettes/full-example.html
19https://cran.r-project.org/web/packages/SIDES/index.html
20This corresponds to Q-Finder’s #Bins parameter
21In predictive mode the user indicates 2 thresholds instead of 1 for some criteria, with relation to

the treatment effect within the subgroup (first value) and the differential treatment effect (second
value)

96 Chapter 4 Generate statistically credible subgroups for interpretable metage-
nomic signature



correction in the discovery dataset and Benjamini-Hochberg procedure in the test
dataset. For the ranking steps, aggregation rules are the ones presented in section
4.2.3.2, mc being the p-value for differential treatment effect when corrected for
confounders. Nevertheless, they are additional intermediate ranks to account for
criteria with 2 thresholds (one for treatment effect within the subgroup, the other
for differential treatment effect):

• Rank i: threshold met for treatment effect within the subgroup only

• Rank i+1: threshold met for differential treatment effect only

• Rank i+2: threshold met for both treatment effect within the subgroup and
differential treatment effect

The default top-k selection is performed with the odds-ratio for differential treatment
effect corrected for confounders as the second metric and δES = 0.2 (see section
4.2.4.2).

4.2.7.3. Results: Prognostic factors identification

Q-Finder results on the prognostic task: Q-Finder generated 203 subgroups satisfy-
ing all the credibility criteria. Among the top-10 subgroups selected while accounting
for diversity, 2 are of complexity 1, none are of complexity 2 and 8 are of complexity
3. The results are presented below in Table 4.1 along with the main metrics of
interest computed on both the discovery and the test datasets. The two first-ranked
subgroups S1 and S2 are both of complexity 1 and state that patients whose last
postprandial glucose (PPG) level was below 172.0 mg/dl (resp. whose last fasting
blood glucose (FBG) level was below 129.6 mg/dl) do have a better glycemic control
than the others. Both subgroups are very close to the glycemic control targets
established by the American Diabetes Association (resp. 180 mg/dl for PPG and 130
mg/dl for FBG [Ame17]). The coverage (or support) of the first subgroup S1 is 30%
of the discovery dataset, its adjusted odds-ratio is 4.8 ([3.5; 6.5]) and its p-value
is 1.81E − 23 on the discovery dataset. All selected subgroups were successfully
reapplied on the test dataset, with odds-ratios corrected for confounders above 1.81
and p-values below 0.05 when adjusted for multiple testing by Benjamini-Hochberg
procedure. It is worth noticing that all the subgroups were significant using the
more conservative Bonferroni correction in the discovery dataset.
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Tab. 4.1.: Q-Finder results on the detection of prognostic factors describing patients with
better glycemic control

Subgroup
Ranking*

Subgroup description
Coverage

Discovery / Test

Adjusted
odds-ratios

(IC95%)
Discovery**

p-value
Discovery

Adjusted
p-value

Discovery***

Adjusted
odds-ratios

(IC95%)
Test**

p-value
Test

Adjusted
p-value
Test***

S1 Last postprandial glucose measurement (mg/dL) ≤ 172.0 30% / 27% 4.78 [3.5; 6.5] 1.81E-23 1.15E-18 4.28 [3.2; 5.7] 2.09E-24 1.04E-23
S2 Last fasting blood glucose measurement (mg/dL) ≤ 129.6 38% / 36% 3.60 [2.8; 4.7] 9.86E-21 6.28E-16 5.06 [4.0; 6.5] 9.82E-37 9.82E-36

S3
Follow healthy diet and exercise plan = Yes AND
Device used for insulin: Vials and syringes = No AND
Cumulated # of individual therapies taken by the patient ≤ 3

14% / 16% 2.57 [1.9; 3.5] 7.08E-9 4.50E-4 2.50 [1.9; 3.3] 1.78E-11 3.84E-11

S4
Follow healthy diet and exercise plan = Yes AND
Device used for insulin: Vials and syringes = No AND
# of different cardiovascular treatments ≤ 2

22% / 17% 2.26 [1.7; 3.0] 9.96E-9 6.34E-4 2.36 [1.8; 3.0] 5.24E-11 7.48E-11

S5
Follow healthy diet and exercise plan = Yes AND
# of OGLD ≤ 1 AND
Type of health insurance = Public

16% / 24% 2.47 [1.8; 3.4] 1.05E-8 6.69E-4 2.44 [1.9; 3.1] 2.20E-13 7.33E-13

S6
Follow healthy diet and exercise plan = Yes AND
Covered by a health insurance = Yes AND
# of different cardiovascular treatments ≤ 2

17% / 11% 2.34 [1.7; 3.1] 1.28E-8 8.15E-4 1.81 [1.3; 2.5] 1.42E-4 1.58E-4

S7
Follow healthy diet and exercise plan = Yes AND
Covered by a health insurance = Yes AND
Cumulated # of individual therapies taken by the patient ≤ 4

17% / 16% 2.33 [1.7; 3.1] 1.30E-8 8.27E-4 2.44 [1.9; 3.2] 1.92E-11 3.84E-11

S8
Follow healthy diet and exercise plan = Yes AND
Times seen by a diabetologist in the past 3 months = 0 AND
Cumulated # of individual therapies taken by the patient ≤ 4

16% / 17% 2.43 [1.8; 3.3] 1.85E-8 1.18E-3 2.25 [1.7; 3.0] 5.46E-9 6.82E-9

S9
Follow healthy diet and exercise plan = Yes AND
Covered by a health insurance = Yes AND
Treated for other form of dyslipidemia = Yes

22% / 19% 2.33 [1.7; 3.2] 1.94E-7 1.24E-2 2.64 [2.0; 3.5] 4.87E-11 7.48E-11

S10
Follow healthy diet and exercise plan = Yes AND
Covered by a health insurance = Yes AND
Received biguanides = No

12% / 8% 2.40 [1.7; 3.3] 2.66E-7 1.70E-2 1.86 [1.3; 2.6] 3.07E-4 3.07E-4

* Subgroup ranking is based on p-values on discovery dataset
** Odds-ratios are adjusted for confounding factors through multiple regression model
*** Adjusted p-values for multiple testing are based on a Bonferroni correction (resp. Benjamini-Hochberg
procedure) on the discovery dataset (resp. on the test dataset)

Results for CN2-SD and APRIORI-SD: Results for both CN2-SD and APRIORI-SD
are given below. For CN2-SD, no subgroups were outputted using the default
parameters, described in 4.2.7.2. For APRIORI-SD, 186 subgroups were outputted.
Among the top-10 subgroups based on the WRAcc measure, 1 is of complexity 1, 2
are of complexity 2 and 7 are of complexity 3. The complexity 1 subgroup (S4 in
Table 4.2) is defined by a last postprandial glucose measurement below 144 mg/dl
(WRAcc on discovery dataset: 0.0329). All complexity 2 and 3 subgroups, except
S10, are also defined by this basic pattern, combined with other patterns such as
Receives GLP−1 analogues = No or Self−monitoring testing performed at bed
time = No. The results are presented below in Table 4.2 with the WRAcc measure,
both on the discovery and the test datasets:
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Tab. 4.2.: APRIORI-SD results on the detection of prognostic factors describing patients
with better glycemic control

Subgroup
Ranking*

Subgroup description
WRAcc

Discovery
WRAcc

Test

S1
Last postprandial glucose measurement (mg/dL) ≤ 144 AND
Self-monitoring testing performed at bed time = No

3.30E-2 2.52E-2

S2
Last postprandial glucose measurement (mg/dL) ≤ 144 AND
Self-monitoring testing performed at bed time = No AND
# of sorts of required hospitalization (macro/microvascular, hypo) = 0

3.30E-2 2.47E-2

S3
Last postprandial glucose measurement (mg/dL) ≤ 144 AND
# of sorts of required hospitalization (macro/microvascular, hypo) = 0

3.29E-2 2.82E-2

S4 Last postprandial glucose measurement (mg/dL) ≤ 144 3.29E-2 2.91E-2

S5
Last postprandial glucose measurement (mg/dL) ≤ 144 AND
Self-monitoring testing performed at bed time = No AND
Receives GLP-1 analogues = No

3.28E-2 2.38E-2

S6
Last postprandial glucose measurement (mg/dL) ≤ 144 AND
Receives amylin agonist = No AND
Receives GLP-1 analogues = No

3.27E-2 2.77E-2

S7
Last postprandial glucose measurement (mg/dL) ≤ 144 AND
Receives GLP-1 analogues = No AND
# of sorts of required hospitalization (macro/microvascular, hypo) = 0

3.27E-2 2.68E-2

S8
Last postprandial glucose measurement (mg/dL) ≤ 144 AND
Receives GLP-1 analogues = Yes

3.27E-2 2.77E-2

S9
Last postprandial glucose measurement (mg/dL) ≤ 144 AND
Self-monitoring testing performed at bed time = No AND
Receives amylin agonist = No

3.27E-2 2.46E-2

S10
Follow healthy diet and exercise plan = Yes AND
Receives more than 2 OGLD = No AND
Patient living in = Urban area

3.08E-2 3.43E-2

* Subgroup ranking is based on WRAcc measure in discovery dataset.

4.2.7.4. Results: Predictive factors identification

Q-Finder results on the predictive task: Q-Finder generated 2775 subgroups in the
discovery dataset that pass all the criteria of credibility on the predictive task. Among
the top-10 subgroups selected while accounting for diversity, all are of complexity
3 except one. The results are presented below in Table 4.3 with main criteria of
interest computed on both the discovery and the test datasets.

Subgroup S2 states that patients who use a disposable pen, don’t smoke and are
not heavily treated for diabetes, have a higher risk than the others in experiencing
hypoglycemia under Premixed insulin than under Basal insulin (coverage = 25%,
adjusted odds-ratio for differential treatment effect = 3.31 [2.0 ; 5.6], p-value =
7.13E-6).

The seven first selected subgroups were successfully reapplied on the test dataset,
with adjusted odds-ratios related to differential treatment effect above 1.86. In-
deed, these subgroups have a p-value below 0.05 adjusted for multiple testing
using Benjamini-Hochberg procedure, even though no subgroups were “statistically
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significant” after Bonferroni correction in the discovery dataset. It is worth noticing
that all subgroups have adjusted odds-ratios above 1.0 in the test dataset.

Tab. 4.3.: Q-Finder results on the detection of predictive factors describing patients with a
higher risk than the others in experiencing hypoglycemia under Premixed insulin
than under Basal insulin (with or without Prandial insulin).

Subgroup
Ranking*

Subgroup description
Coverage

Discovery / Test

Adjusted
odds-ratios

for differential
treatment effect

(IC95%)
Discovery**

p-value for
differential

treatment effect
Discovery

Adjusted
odds-ratios

for differential
treatment effect

(IC95%)
Test**

p-value
for differential

treatment effect
Test

Adjusted
p-value

for differential
treatment effect

Test***

S1
Statins for dyslipidemia = Yes AND
Device used for insulin: Vials and syringes = No AND
Total # of anti-diabetics agents ≤ 1

28% / 31% 3.04 [1.9; 5.0] 7.02E-6 2.12 [1.4; 3.2] 2.36E-4 1.18E-3

S2
Device used for insulin: Disposable pen = Yes AND
Smoking habits = Never AND
Total # of anti-diabetics agents ≤ 1

25% / 26% 3.31 [2.0; 5.6] 7.13E-6 1.93 [1.3; 2.9] 2.04E-3 4.28E-3

S3
Total # of anti-diabetics agents ≤ 1 AND
# of different devices used by the patient ≥ 1

48% / 61% 2.71 [1.8; 4.2] 9.55E-6 2.59 [1.7; 4.0] 1.92E-5 1.92E-4

S4
Treated for other form of dyslipidemia = Yes AND
Times seen by a diabetologist in the past 3 months ≤ 1 AND
Device used for insulin: Vials and syringes = No

33% / 38% 3.55 [2.0; 6.3] 1.26E-5 1.93 [1.2; 3.0] 5.02E-3 7.17E-3

S5
Receives oral glycaemic lowering drugs = Yes AND
Times seen by a diabetologist in the past 3 months = 0 AND
Device used for insulin: Vials and syringes = No

29% / 34% 2.98 [1.8; 4.9] 2.40E-5 1.86 [1.2; 2.8] 2.14E-3 4.28E-3

S6
Statins for dyslipidemia = Yes AND
Total # of anti-diabetics agents ≤ 1 AND
Age at diagnosis (year) ≤ 56

30% / 33% 2.74 [1.7; 4.4] 2.64E-5 2.04 [1.4; 3.0] 4.08E-4 1.34E-3

S7
Treated for other form of dyslipidemia = Yes AND
Times seen by a diabetologist in the past 3 months ≤ 1 AND
# of different devices used by the patient ≥ 1

33% / 44% 3.37 [1.9; 6.0] 2.79E-5 2.05 [1.2; 3.4] 4.58E-3 7.17E-3

S8
Statins for dyslepidemia = Yes AND
Device used for insulin: Vials and syringes = No AND
HDL serum cholesterol (mg/dL) ≤ 58.0

27% / 30% 3.22 [1.9; 5.6] 2.82E-5 1.05 [0.7; 1.7] 8.21E-1 8.21E-1

S9
Statins for dyslipidemia = Yes AND
Visits diabetes websites = No AND
Duration of insulin therapy (year) ≥ 4

34% / 32% 2.59 [1.7; 4.1] 3.12E-5 1.14 [0.8; 1.7] 5.09E-1 5.65E-1

S10
Other form of dyslipidemia = Yes AND
Visits diabetes websites = No AND
Duration of insulin therapy (year) ≥ 4

40% / 37% 2.56 [1.6; 4.0] 3.22E-5 1.25 [0.9; 1.8] 2.48E-1 3.10E-1

* Subgroup ranking is based on p-value for differential treatment effect on discovery dataset
** Odds-ratios are adjusted for confounding factors through multiple regression model
*** Adjusted p-values for multiple testing are based on a Benjamini-Hochberg procedure on the test dataset

Results for SIDES and Virtual Twins on the predictive task: Results for both SIDES
and Virtual Twins are given below. For SIDES, no subgroups were outputted using
the default parameters, described in section 4.2.7.2. For Virtual Twins, only three
subgroups were obtained, 1 of complexity 2 and 2 of complexity 3. The results are
presented below in Table 4.4 with the metrics that are outputted from the algorithm,
both on the discovery and the test datasets. All subgroups are defined by a same
attribute, the “number of different lipid-lowering agents for dyslipidemia”.
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Tab. 4.4.: Virtual Twins results on the detection of predictive factors describing patients
with a higher risk than the others in experiencing hypoglycemia under Premixed
insulin than under Basal insulin (with or without Prandial insulin).

Subgroup
Ranking*

Subgroup description
Treatment
event rate

Discovery / Test

Control
event rate

Discovery / Test

Treatment
sample size

Discovery / Test

Control
sample size

Discovery / Test

Risk Ratio
Discovery / Test

S1
# of OGLD ≥ 2 AND
# of different lipid-lowering agents for dyslipidemia ≥ 1

33% / 34% 16% / 26% 72 / 408 340 / 755 2.06 / 1.36

S2
# of OGLD ≤ 2 AND
Duration of insulin therapy (year) ≥ 3 AND
# of different lipid-lowering agents for dyslipidemia ≥ 1

38% / 39% 29% / 32% 238 / 339 432 / 433 1.31 / 1.21

S3
Receives oral glycaemic lowering drugs = Yes AND
Total serum triglycerides (mg/dL) ≥ 169.7 AND
# of different lipid-lowering agents for dyslipidemia = 0

24% / 33% 23% / 27% 57 / 9 110 / 18 1.08 / 1.20

* Subgroup ranking is based on risk ratios in discovery dataset
In the discovery dataset, risk ratios were computed after missing values imputation. In the test dataset,
risk ratios were computed on the original dataset.

4.3 Applications to metagenomics for phenotype status
prediction

The subgroup analysis described above with the Q-Finder has demonstrated its
advantages in terms of interpretability and statistical robustness on an observational
study problem. SD does not try to cover the entire database regarding prediction,
which prevents this approach from being used as a classification algorithm. There-
fore, personalized prediction can only be done on patients who are in subgroups. It is
necessary to reformulate the algorithm so that it can be used to classify metagenomic
data based on taxa abundance. We want to combine the individual stratification as-
pect to the explicability of the model predictions. This section details the Q-Classifier,
a SD algorithm adapted to classification task. First, the concepts of the algorithm are
introduced, then the redesigned statistical metrics and optimization are described,
next the rejection and delegation operations are discussed, and finally, the results
obtained on several datasets are presented.

4.3.1 Overview and concepts of the Q-Classifier

The Q-Classifier is a multi-class supervised learning algorithm that generates
statistically credible subgroups to discriminate examples in different classes. It
combines subgroup analysis with supervised learning because some examples have
an interpretable prediction when they can be predicted by rules, while the more
complex ones are predicted by a state-of-the-art supervised algorithm (SVM, Random
Forest, etc ...). In this sense, it can be seen as a reject and cascade classifier.
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The algorithm is in line with precision medicine because it may create different
interpretations adapted for each individuals as they may respond differently to a
given pathology. Moreover, no example is excluded from the prediction as it is the
case for other SD algorithms. This makes it possible to have total coverage and
not to reduce the classification scores. Therefore, it is necessary that generation
and aggregation of rules must be computed on all classes, representing controls
and cases in our metagenomic datasets. The rules generation is done with the
Q-Finder, while the rules refinement keeps the same scheme (credibility metrics and
subgroup ranking) but the steps have been modified for the classification task and
are described in the next section 4.3.2. It should be noted that, in section 4.1.2,
two types of SD analysis have been defined, namely SI and KDD, handled by the
algorithm Q-Finder. Since we are in a case where there is no treatment arm on the
analyzed metagenomic data, only the KDD part of the Q-Finder is useful for building
the model.

Two data preprocessing options could be included in the algorithm. First, a dimen-
sionality reduction operation to limit the number of rules generated by the Q-Finder,
which reduces runtime and improves statistical power when adjusting the p-value
with the Bonferroni correction. Indeed, one of the weaknesses of the Q-Finder, and
thus of the Q-Classifier, is its high complexity which is equal toO(G×(F×(M×D)C).
Where C is the rule complexity, F is the aggregation rules complexity, G is the number
of groups (e.g., control / case), D is the number of variables and M is the maximum
of modalities per variable. In practice, the recursive feature elimination with a
SVM model is fitted to perform the features reduction. The second processing step
is related to the nature of the compositional data and can be done by a log-ratio
transformation. As explained in section 1.1.6, the only log-ratio transformation that
does not alter the dimensionality, which is necessary to retain the variable names
and produce an interpretable prediction, is the centered log-ratio transformation
(CLR). The Q-Classifier algorithm is summarized in Figure 4.5 from metagenomic
sequencing to the training and the final prediction.
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Fig. 4.5.: Q-Classifier overview: The algorithm takes as input the calculated metagenomic
abundance data and starts by preprocessing according to the selected parameters
(such as CLR transformation). The training phase is composed by one step of
statistically credible subgroups generation followed by state-of-the-art classifier
training. At the end, the algorithm consists of a set of rules and a state-of-the-art
classifier cascaded during the classification step.

4.3.2 Statistical metrics and optimal union

Statistical metrics The main modification of the metrics is to evaluate the subgroup
classification scores rather than the confidence score (risk ratio). The list below
enumerates the new credibility criteria and thresholds used to filter subgroups in
the Q-Classifier model:

1. Coverage criterion: Same as in section 4.2.3.1, but the default minimum
threshold is now 20% to prevent overfitting as the metagenomic datasets are
after small (few hundreds of samples).

2. F1-score criterion: A more relevant classification score than accuracy on
unbalanced data that combines precision and recall metrics so that they have
equal relative contributions. The formula is defined by 2×TP

2×TP+FN+FP with
TP as true positive, FN as false negative and FP as false positive. The default
lower threshold for this criterion is set to 0.5.

3. Basic pattern contribution criterion: Similar to the one described in section
4.2.3.1 but defined to control the F1-score contribution of the basic patterns.
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Default thresholds are arbitrarily set to be greater than 0.03 for the absolute
contribution and lower than 1.05 for the contribution ratio.

4. Effect significance criterion: This criterion is replaced by the hypergeometric
p-value which is computed as the sum of the mass probability functions of
the hypergeometric law in the interval [TP, TP + FP ]. This discrete law is
chosen because it is well adapted to the analysis of the confusion matrix from
a prediction model. The default threshold value is still defined to at most 5%

5. Effect adjusted significance criterion: The Bonferroni correction is applied
to control the type 1 errors. The hypergeometric p-value is multiplicated by
the number of generated subgroups and the threshold remains 5%.

The aggregation rules is similar to the one in section 4.2.3.2 but in the Q-Classifier
the criteria defined above are used:

• Rank 1: subgroups that satisfy the coverage criterion

• Rank 2: subgroups of rank 1 that also satisfy the F1-score criterion

• Rank 3: subgroups of rank 2 that also satisfy the basic patterns contribution
criterion

• Rank 4: subgroups of rank 3 that also satisfy the significance criterion

• Rank 5: subgroups of rank 4 that also satisfy the effect adjusted significance
criterion

Optimal union This approach, whose pseudo-code is written in the algorithm 4,
consists in creating a set of the best subgroups, from the set of all subgroups having
passed the rank 5, which maximizes a predefined metric (in our case the F1 score).
The optimal union differs from the top-k selection algorithm (section 4.2.4.2) used
in Q-Finder algorithm which increases the diversity of the basic patterns.

The optimal_union (algorithm 4) is initialized with the subgroup that has the best
score according to the chosen metric. It then performs two steps called “forward”
and “backward”. The “forward” phase searches for the rules which, once added,
improve the score of the union the most. If no improvement can be made by the
“forward” phase, then the algorithm ends. Otherwise, the “backward” phase is
executed after the addition of the new rule to check if, on the contrary, removing a
rule (except the one with the best score) would improve the score of the union. Any
rule that has been added to the optimal union is no longer considered afterwards
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Algorithm 4: optimal_union: From the subgroups that pass the rank 5 of the cred-
ibility criteria, takes those that maximize a specific metric (metric_to_maximize)
input :Gmetric: Set of subgroups with computed metrics

metric_to_maximize: Metric maximized in optimal union
nb_rules_max: (Default=10) Number maximum of rules in the optimal union
threshold: (Default=0.001): Minimum gain when adding a rule in the optimal union

output :Gopti: Set, optimal union of subgroups in Gmetric

1 Gopti = {}
2 score_prev_forward = -inf
3 forward_done = False
4 while not forward_done do

// Case where Gopti is higher than k we stop
5 if Gopti ≥ nb_rules_max then
6 break
7 end

/* Forward: Compute scores for each rule in the set if they are added in
the optimal union (Gopti) */

8 scores = [ ]
9 for rule in Gmetric do

10 scores.append(metric_to_maximize(Gopti U {rule}))
11 end

// best_score return the best score in scores
12 score_forward = best_score(scores)
13 if score_forward - score_prev_forward < threshold then
14 forward_done = True
15 else

// best_rule return the rule with the best score in scores
16 Gopti.append(best_rule(scores))
17 score_prev_forward = score_forward

/* Backward: Compute scores for each rule in the optimal union (Gopti)
if they are removed from it */

18 backward_done = False
19 while not backward_done do
20 backward_done = True

// There is at least 3 rules
21 if length(Gopti) > 2 then

/* Do not look at the first rule (index 0) to ensure not removing
the best rule */

22 scores = [ ]
23 for rule in Gopti[1:] do
24 scores.append(metric_to_maximize(Gopti \ {rule}))
25 end
26 score_backward = best_score(scores)
27 if score_backward > score_forward then
28 Gopti.remove(best_rule(scores))
29 backward_done = False
30 end
31 end
32 end
33 end
34 end
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even if it has been removed by a backward phase. We iterate the process from the
forward phase until the algorithm ends (i.e., no rule improves the optimal union).

4.3.3 Rejection and delegation concepts to adapt SD for prediction

To combine SD and supervised learning, the Q-Classifier does not make a majority
vote between models or an average of the probability prediction, but it forms a
cascading prediction that follows these principles:

a. All samples present in at least one subgroup or in several subgroups with the
same class are stratified by the SD approach with an interpretable prediction.

b. All samples not assigned to any subgroups or in several subgroups with different
classes are rejected and delegated to a classifier.

In the training step, the state-of-the-art classifier uses the entire training set. However,
the algorithm adds a higher weight to the samples rejected in the SD stage (case
b) in order to reinforce its learning on the most difficult examples to classify. The
weights are arbitrary set to 3 times higher compared to accepted samples (case a).
In the classification step, samples in case a are only predicted by the SD approach
and are excluded from the classifier prediction, while samples in case b are first
attempted to be predicted by the SD approach and then rejected for delegation to
the state-of-the-art classifier. The training and classification steps are summarized in
figures 4.6 and 4.7 respectively, and in algorithms 5 and 6 respectively.
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Fig. 4.6.: Q-Classifier training stage: An optional feature selection is first processed, then
statistically credible subgroups on all classes (control and case) are generated.
Optimal unions of metagenomic sub-signatures for each class are computed and
gathered. Finally, a SOTA classifier is trained by adding more weight to the data
that has been rejected.

Fig. 4.7.: Q-Classifier classification stage: samples which are not rejected by the rule set
have therefore an interpretable prediction while the rejected ones are predicted
by a fitted SOTA classifier.

4.3.4 Benchmark on real-world and simulated metagenomic data

The four real-world and the two simulated datasets used during the experiments
of the Q-Classifier are detailed in sections 2.1 and 2.2 respectively. Each result is
calculated by 10-fold cross-validation with 80% in train and 20% in test. The length
of the rules (complexity) of the Q-Classifier is set to 2 and the default parameters are
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Algorithm 5: Q-Classifier training stage
input :X: Matrix, train data

y: Vector, train label
algo_subgroup: Algo, to generate subgroups
algo_metrics: Algo, to compute some metrics over subgroups
SOTA: Algo, a SOTA classifier
metric_to_maximize: Metric maximized in optimal union
feature_reduction: Algo, to keep only best features
transformation: Algo, to process raw data (e.g: CLR)
weight_reject: Float, weight on rejected to train SOTA

output :Gopti: Dictionary, optimal union of subgroups for each class
SOTA: Algo, a fitted SOTA classifier

1 if feature_reduction then
2 X = recursive_feature_elimination(X)
3 end
4 if transformation then
5 X = tranformation(X, min_feature)
6 end
7 G = algo_subgroup(X) // Set of generated subgroups

8 Gopti = dict()
// Compute subgroup metrics for each class

9 for class in unique(y) do
10 Gmetric = algo_metrics(X, class, G)
11 Gopti[class] = optimal_union(Gmetric, metric_to_maximize)
12 end

// predict: function that assigns subgroups to samples

13 Xsubgroup_pred, Xreject = predict(X, Gopti)
// Add more weights on rejected samples

14 weights = []
15 for x in X do
16 if x in Xsubgroup_pred then
17 weights.append(1)
18 else
19 weights.append(weight_reject)
20 end
21 end
22 SOTA.fit(X, y, weigths)
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Algorithm 6: Q-Classifier classification stage
input :X: Matrix, test data processed in the same way as train data

Gopti: Dictionary, optimal union of subgroups for each class
SOTA: Algo, a fitted SOTA classifier

output :Xpred: Matrix, the X matrix with a prediction for each sample
// Xsubgroup_pred contains samples with interpretable prediction

// Xreject contains samples that have been rejected

1 Xsubgroup_pred, Xreject = predict(X, Gopti)
// Use only the rejected samples for the prediction

2 Xsota_pred = SOTA.predict(Xreject)
// The final prediction is the concatenation of both prediction from rules and

SOTA

3 Xpred = concatenate(Xsubgroup_pred, Xsota_pred)

used for its rule refinement part (see section 4.3.2), while a random search is per-
formed to tune the parameters of the SOTA classifiers (SVM, Random Forst, Gradient
Boosting and Ada Boost) and the one with the best scores is selected. Feature selec-
tion is performed by recursive feature elimination trained by 3-fold cross-validation
with a minimum of 40 features kept. MetaML [Pas+16] and Predomics [Pri+20] are
the reference methods. Four of our approaches are experimented on all datasets,
the Q-Classifier is trained either on the MetaPhlAn2 species abundance data from the
Pasolli et al. [Pas+16] study or on those from the FastDNA [MV19], transformed or
not by CLR. The reference methods are the same as in the section 3.4.2. Results on
real-world and simulated datasets are summarized in Table 4.5 and 4.6 respectively.
The initial rejected rate (IRR) term defines, in the tables, the percentage of rejected
and delegated samples (case b in section 4.3.3) by the Q-Classifier. Accuracy, F1-
score, Precision and Recall are the computed metrics. The standard deviation is
calculated for the accuracy score and written with the symbol ±.
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4.3.4.1. Analysis of the results of the real-world datasets

Method Metrics Colorectal Cirrhosis Obesity T2D

MetaML

Accuracy
0.81
±0.068

0.88
±0.043

0.64
±0.028

0.66
±0.052

Precision 0.82 0.89 0.54 0.67
Recall 0.81 0.88 0.64 0.66

F1-score 0.79 0.88 0.54 0.66

Predomics Accuracy -
0.84
±0.035

0.66
±0.035

0.68
±0.030

Q-Classifier MetaPhlAn2

Accuracy
0.57
±0.074

0.88
±0.046

0.62
±0.010

0.65
±0.062

Precision 0.61 0.95 0.66 0.64
Recall 0.8 0.81 0.84 0.67

F1-score 0.69 0.87 0.74 0.65
IRR 0.62 0.17 0.87 0.76

Q-Classifier MetaPhlAn2 CLR

Accuracy
0.85
±0.047

0.94
±0.049

0.79
±0.033

0.81
±0.053

Precision 0.84 0.97 0.81 0.80
Recall 0.93 0.91 0.89 0.80

F1-score 0.88 0.94 0.85 0.80
IRR 0.54 0.20 0.76 0.77

Q-Classifier FastDNA

Accuracy
0.70
±0.049

0.81
±0.036

0.64
±0.048

0.68
±0.084

Precision 0.61 0.79 0.67 0.64
Recall 0.56 0.88 0.87 0.74

F1-score 0.58 0.83 0.76 0.68
IRR 0.63 0.73 0.8 0.70

Q-Classifier FastDNA CLR

Accuracy
0.75
±0.075

0.86
±0.023

0.71
±0.076

0.81
±0.023

Precision 0.66 0.88 0.76 0.79
Recall 0.67 0.88 0.84 0.82

F1-score 0.66 0.88 0.79 0.80
IRR 0.61 0.28 0.8 0.54

Tab. 4.5.: Classification results on four real-world benchmark datasets (Table 2.2). Results
are reported for two reference methods (MetaML and Predomics). Q-Classifier
with MetaPhlAn2 or FastDNA abundance and with CLR transformation of not are
our methods tested in this experiments.

Classification performances for disease prediction frommetagenomic sample abun-
dance: The best approach is the Q-Classifier on MetaPhlAn2 data with CLR trans-
formation reaching higher scores for almost all metrics in real-world datasets. The
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CLR transformation systematically improves the scores either from MetaPhlAn2 or
from FastDNA abundances. We can notice that the deep learning approach FastDNA
combined with the Q-Classifier gets comparable results to the MetaPhlAn2 structuring
without CLR transformation, and slightly lower scores using CLR transformation
excepted on the T2D dataset where they are equivalent. The IRR value varies from
one method and dataset to another ranging from 17% to 87%. We note that the IRR
remains quite high and thus the samples predicted by a SOTA classifier represent
more than half of the colorectal dataset and more than three quarters of the obesity
and T2D datasets. This represents a weakness of the algorithm because a majority
of samples do not have interpretable predictions. To strengthen the understanding
of the predictions made by the SOTA classifiers, one method (not tested in our
experiments) could be to use an interpretability tool such as the Shapley values
[LL17] which give the contribution of features to the prediction of a sample relative
to the average prediction of the dataset.

Metagenomics signatures as rules On the Cirrhosis dataset using a CLR trans-
formation, Q-Classifier generated 1287 rules on the training set (80% of the 232
subjects) which passed the 5 criteria, 1130 are of complexity 1 and 157 are of
complexity 2. The optimal union reduces this set of rules by taking only 5 rules of
complexity 1. These rules are listed below (RCO (resp. RCA) refers to the rules of
the control (resp. case) samples) with their metrics computed on the validation set
(47 subjects: 23 controls and 24 cases) and adjusted for multiplicity (FDR) :

RCA1 If Veillonella Unclassified ≥ 4.42, then class is Case with coverage = 53%,
F1-score = 0.94 and p-value = 1.23× 10−9

RCA2 If Streptococcus Parasanguinis≥ 4.92, then class is Case with coverage = 26%,
F1-score = 0.67 and p-value = 5.18× 10−5

RCA3 If Streptococcus Anginosus ≥ 3.13, then class is Case with coverage = 26%,
F1-score = 0.67 and p-value = 5.18× 10−5

RCO1 If Veillonella Unclassified ≤ 5.40, then class is Control with coverage = 55%,
F1-score = 0.90 and p-value = 3.93× 10−8

RCO2 If Veillonella Dispar ≤ 1.67, then class is Control with coverage = 38%,
F1-score = 0.78 and p-value = 1.53× 10−5

Each of these rules represent a metagenomic signature of either case or control
samples. When a patient is not covered by any rule it is delegated to a default
classifier as explained above. Compared to the interpretable model provided by
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predomics from the study of Prifti et al. [Pri+20], there are 3 species in common:
Veillonella Unclassified, Streptococcus Anginosus and Veillonella Dispar. Although
predomics models are formula (sums, difference or ratio) of abundance, the fact
that both predomics and Q-Classifier share critical bacterial species proves a level of
consistency as some of these bacterial species are known to be related to the disease
(here cirrhosis). Figure 4.8 provides a Venn diagram visualization of the disjunction
and union of the subgroups described above.
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(a) Case samples on training set. (b) Case samples on validation set.

(c) Control samples on training set. (d) Control samples on validation set.

Fig. 4.8.: Venn diagram of the subgroups in the optimal union of the Cirrhosis dataset. Each
circle corresponds to a subgroup characterized by a rule. The values inside the
circles correspond to the number of samples in the subgroups. When a value
lies between several circles, it represents the number of samples shared by the
corresponding subgroups. 161 (resp. 41) of the 186 (resp. 46) samples in the
training set (resp. validation set) are covered by the union, 74 (resp. 5) of them
are rejected and delegated.

The best rule for the control class and the case class are respectively “RCO1” and
“RCA1”. We notice that the subgroups associated with these rules have a high inter-
section with the other subgroups in the optimal union. This is even more important
on the validation set where sometimes one subgroup is completely included in an-
other. As the optimal union of the rules is computed on the training set, it is possible
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in validation to obtain these results. This visualization allows us to determine the
disjunction or union of the subgroups’ samples.

4.3.4.2. Analysis of the results of the simulated datasets

Method Metrics Null Model Nanopore Ecological Model Nanopore

Q-Classifier
Initial abundance

Accuracy
0.86
±0.017

0.82
±0.022

precision 0.89 0.84
recall 0.83 0.83

F1-score 0.86 0.81
IRR 0.38 0.57

Q-Classifier
Initial abundance CLR

Accuracy
0.83
±0.037

0.87
±0.012

precision 0.84 0.85
recall 0.83 0.90

F1-score 0.83 0.87
IRR 0.39 0.51

Q-Classifier FastDNA

Accuracy
0.84
±0.017

0.68
±0.020

precision 0.85 0.65
recall 0.86 0.75

F1-score 0.85 0.69
IRR 0.46 0.73

Q-Classifier FastDNA CLR

Accuracy
0.83
±0.038

0.66
±0.036

precision 0.85 0.64
recall 0.83 0.75

F1-score 0.84 0.69
IRR 0.37 0.75

Tab. 4.6.: Classification results on two simulated datasets (Table 2.3). The initial abun-
dances (the first two models) correspond to the simulated abundance tables
before being run through a simulator. The abundances computed by FastDNA
(The last two methods) are obtained after simulating the reads with the Nanosim
software [Yan+17] and predicting their class to recover the initial abundance.

Classification performance for classifying simulatedmetagenomic samples On the
Null Model Nanopore dataset (section 2.2.2.1), the scores are very close for each
approach but on Ecological Model Nanopore dataset (section 2.2.2.2) the Q-Classifier
with FastDNA does not reach the performance compared to the initial simulated
abundance tables. This is because this dataset was created by altering the abundance
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of some species guilds and during the simulation and binning this information was
not fully recovered which undeniably impacted the results.

The altered species abundances and the multiplicative factors are described below:

• Case samples:

– Profile 1: Streptococus vestibularis (0.51) and Akkermansia muciniphila
(31.06)

– Profile 2: Granulicatella adicens (38.27) and Bifidobacterium dentium
(0.51)

• Control samples:

– Profile 1: Prevotella timonensis (77.74) and Fusobacterium nucleatum
(0.50)

– Profile 2: Solobacterium moorei (7.15) and Turicibacter sanguinis (0.54)

We summarize in Table 4.7 the number of different taxa retrieved by the model’s
rules at the species and genus level. We can observe that all rules of the Q-Classifier
on initial abundance with CLR retrieve a species that has been altered by one of the
specific profiles. It also generates a rule of complexity 2 that reconstruct a complete
profile. Regarding other methods, few species and genomes are retrieved and only
rules of complexity passed all the credibility criteria of the algorithm. We deduce that
for the ecological simulation (e.g., with a holistic vision), the CLR transformation
seems to be very well adapted to create relevant rules. However, after the simulation
of the reads, the combination of Q-Classifier and FastDNA still has difficulties in
finding the patient profiles in this specific simulated dataset, which may explain the
difference in results between the approaches. Rules generated by the Q-Classifier on
initial abundance with CLR are written bellow:

RCA1 If Prevotella Timonensis ≤ 1.78, then class is Case with coverage = 66%,
F1-score = 0.66 and p-value = 2.96× 10−3

RCA2 If Fusobacterium Nucleatum ≥ 2.28, then class is Case with coverage = 53%,
F1-score = 0.69 and p-value = 2.55× 10−7

RCO1 If Fusobacterium Nucleatum ≤ 2.28 and Prevotella Timonensis ≥ −1.41,
then class is Control with coverage = 37%, F1-score = 0.74 and p-value =
1.36× 10−16

RCO2 If Solobacterium Moorei ≥ −1.32, then class is Control with coverage =
41%, F1-score = 0.52 and p-value = 5.68× 10−2
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we can notice that the rule with the best F1-score and p-value is the one of complexity
2 which is relevant to the way the simulated profiles are created. The appendix
provides all the box plots showing the differences between the classification scores
obtained by the SOTA classifiers alone, the Q-Classifier without SOTA, and the
cascaded combination of the two algorithms.

Method # Species # Genus # Species by rule # Genus by rule class Rule’s complexity

Q-Classifier
Initial abundance

0 1

0 1 Control 2
0 1 Control 1
0 1 Case 1
0 0 Case 0

Q-Classifier
Initial abundance CLR

5 5

1 1 Control 1
1 1 Control 1
2 2 Case 2
1 1 Case 1

Q-Classifier FastDNA 1 1

0 0 Control 1
0 1 Control 1
0 1 Control 1
1 1 Case 1
0 1 Case 1
0 1 Case 1

Q-Classifier FastDNA CLR 0 2

0 1 Control 1
0 0 Control 1
0 0 Control 1
0 1 Case 1
0 1 Case 1
0 1 Case 1
0 1 Case 1

Tab. 4.7.: Number of taxa retrieved by species and genus for each model

4.4 Conclusion

In this chapter, we studied a category of interpretable models in the perspective of
using them in precision medicine in the field of metagenomics. Q-Finder algorithm
is a subgroup discovery method belonging to the KDD and SI family. We have
improved its rule generation step that allows the algorithm to create statistically
credible subgroups. It has been benchmarked against state-of-the-art algorithms
like APRIORI-SD, CN2-SD, Virtual Twins or SIDES and has had better performances
on rule metrics and statistical significance. We have ended its use in the context
of metagenomic data. The Q-Finder was transformed and adapted to a classifier
model called Q-Classifier to create personalized and interpretable stratification on
metagenomic data. The Q-Classifier algorithm is formed as a cascading classifier of
state-of-the-art subgroup discovery and classifier models. We are also interested in
considering the compositional characteristic of the data, which may be neglected in
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some studies, by applying a CLR transformation that allows to preserve the structure
of the data necessary for the interpretability. This preprocessing step effectively
improved the results obtained in the experiments. On the 4 real-world datasets,
the Q-Classifier reached comparable or superior performances to the state-of-the-
art while bringing more interpretability for samples classified by rules. Moreover,
two simulated datasets have been used to confirm the ability of the algorithm to
build relevant subgroups on Null Model and Ecological metagenomic simulation
approach. Nevertheless, the Q-Classifier approach is not fully interpretable as in
some cases it delegates the classification to a SOTA classifier. As such it represents
a trade off between accuracy and interpretability in learning from metagenomic
data. One perspective is to test interpretable tools, such as the Shapley values
[LL17], to analyze the contribution of the features for the prediction of the SOTA
classifiers. Finally, during our experiments, the Q-Classifier algorithm was tested
by providing as input the abundances generated by the deep learning algorithm
FastDNA and obtained promising results although slightly worse than those obtained
by the software MetaPhlAn2. This means that the Q-Classifier method could be used
in an end-to-end way without having to use gene catalogs.
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Conclusion and perspectives 5
5.1 Summary of contributions

Advances in sequencing technologies over the past two decades, allowing for high-
throughput, scalable and rapid sequencing, have made it possible to generate large
quantities of omics data. This has accelerated the developpment of many Disciplines,
including genomics, transcriptomics, proteomics and metagenomics. This thesis
focused on metagenomics, a field to study the composition and interactions of
taxa present in a given environment. Many studies have developed metagenomic
bioinformatic techniques to process the large volume of data to better determine the
presence of different taxa, their relationships in the same ecosystem and their impact
on human phenotype/disease. Machine learning algorithms have produced valuable
results in such applications, but several problems remain to be solved. Indeed,
existing methods rely on complex workflows composed of distinct steps (fastq file
cleaning, sequence assembly, sequence alignment and sequence classification) that
rely on assumptions impacting the final outcome. This makes these workflows
difficult to reuse from one study to another. Some do not meet the criteria of
"point-of-care" processing due to the computational time and resources required to
infer the results. Others are based on black box models that do not offer sufficient
interpretability, restricting their use in the context of precision medicine that favors
explicability. In this work we made two main contributions that address these two
issues.

End-to-end deep learning from raw metagenomic data We focus on the use of deep
learning algorithms to develop our approach named Metagenome2Vec. It aims at cre-
ating a more suitable condensed representation, called embedding, of metagenomes
from their raw DNA sequences in order to be used to classify the phenotype (in our
case a disease) of the samples. Once the weights of the neural networks are learned,
the model has “stored” the information necessary to perform a downstream task
(prediction, clustering, ...). The use of external resources, such as gene or genome
catalogs, is no longer necessary for inference as it is the case with standard metage-
nomics workflows [PGB20]. Our approach may therefore emerge as a solution to
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point-of-care processing in metagenomics, as results are obtained in about one hour
with 24-48 CPUs for one sample.

We determine different experiments to carry out the validation of Metagenome2Vec.
The significance of Metagenome2Vec is evaluated with intrinsic and extrinsic evalua-
tions to control the learning of the model. When bad results are obtained during the
first tests, then the training of the algorithm can be stopped to save time. Indeed, the
metagenomic data being voluminous (several terabytes), the DL model having mil-
lions of weights to train and several hyperparameters to optimize, the learning time
is computationally intensive (variable between 1 and 5 days depending on the com-
puting resources and the defined parameters). Next, we benchmark Metagenome2Vec
versus the state-of-the-art algorithms that use bioinformatics pipelines to build abun-
dance tables [Pas+16; OZ20]. Our best model is defined by training supervised
state-of-the-art algorithms (such as SVM, Random Forest, Gradient Boosting, ...)
on the concatenation of metagenome representations learned by M2V-Abundance
and M2V-MIL-VAE. The first representation corresponds to the species abundances
computed by the Read2Genome part of the pipeline with the FastDNA algorithm
and the second is an embedding learned by a Variational Auto-Encoder on multiple
instances of metagenome embeddings. The results demonstrate the interest of the
creation of DNA embeddings as well as the multiple instance learning which allowed
to obtain performances equivalent or superior to the state-of-the-art approaches on
the 4 Illumina real-world data sets. Finally, we verify that our approach performs
well on simulated data from the 3rd generation Nanopore sequencer and thus that
the model is able to learn from long reads.

Subgroup discovery for credible metagenomic signature Subgroup discovery algo-
rithms provide interpretable results naturally using simple formulas or equations,
without the need for post-hoc interpretation as in black box models. This is an
interesting solution for precision medicine, as it delivers actionable information and
can be useful in metagenomics, such as for fecal transplantation. A first work consists
in exploring the Q-Finder algorithm developed by Quinten in order to enhance the
statistical credibility of its subgroups and benchmark it in the subgroup analysis lit-
erature. Then, we modify its functioning to create an algorithm, named Q-Classifier,
for metagenome classification. It is a hybrid model returning, for a set of samples,
an interpretable prediction with subgroup discovery approach and classifying the
remaining samples with a supervised algorithm. Trained on taxon abundance tables,
Q-Classifier is able to generate rules explaining which taxa may possibly play a role
in the prediction. We also consider the compositional nature of the abundance tables,
applying specific log-ratio transformation such as CLR. Experiments highlight the
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predictive and interpretability power of the model, especially when using the CLR
transformation. The Q-Classifier obtains its best performances in disease prediction
from metagenomic data when it is trained on species abundance table computed
by MetaPhlAn2 outperforming the state-of-the-art methods. The algorithm is also
able to retrieve the species involved in the phenotypic class defined in the simulated
dataset, showing its strength in learning credible subgroups. Moreover, Q-Classifier is
tested with the species abundance tables from our previous end-to-end deep learning
approach and the results, although slightly inferior, remain really promising.

5.2 Methodological assessment

The bibliographic survey in this thesis represented a significant part of the work
because various fields of analysis were studied, such as metagenomics, subgroup
analysis, deep learning, natural language processing or multiple instance learning.
Another difficulty was to find an association between the two main types of machine
learning algorithms studied, i.e Deep Learning and Subgroup Discovery, which have
very different objectives.

All the proposed methods have been tested on various datasets with few examples,
which does not allow for a unique train / validation / test split. We know that
learning on these small bases can lead to overfitting phenomena especially when
complex models are trained, and many statistical tests are performed. We have
therefore carried out a large number of experiments, using cross-validation methods,
to address this issue and allow the models to better generalize the data. Clearly,
much experimentation (such as testing on other datasets) remains to be done to
better account for the robustness of our approach.

An important point that we did not necessarily put forward at the beginning is that
of simulation. Gradually, we saw its interest in training models and we sought to
better understand the use of simulators. We found it relevant to establish simulation
strategies to create metagenomic datasets. Indeeed, this allowed us to evaluate the
performance of our models in classification and interpretability on different types of
sequencing such as Illumina or Nanopore.

Finally, the development of our methods was hampered by resource requirements
that were sometimes difficult to acquire. Indeed, the computing power required in
CPU and GPU for data preprocessing and algorithm learning led to the use of several
clusters (UMMISCO (local), MeSu (UPMC), Jolio-Curie (TGCC)). A significant
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adaptation time of the code was essential to be able to deploy the models on each
environment at our disposal.

5.3 Perspectives for future works

We summarize some areas of our proposed methods.

Deep learning models have demonstrated their learning power mainly on large
datasets. In the field of metagenomics, the number of samples is only a few hundred
while the total data is several terabytes. The models are complex, and it is difficult,
with few samples, to fit them efficiently. To manage this issue, we can consider
two approaches. Firstly, metagenomic data simulation software could be used with
different simulation strategies acting as data augmentation techniques to train and
improve our models. Secondly, there are families of neural networks designed to
achieve good performances on small datasets, such as the siamese network [KZS15].
Future work includes exploring their use in classification or clustering of metagenome
samples.

We used the FastDNA algorithm for the Read2Genome part but newer approaches
could be considered in the pipeline, such as Brume [MV20], which handle larger k-
mers. Moreover, the development of transformers, state-of-the-art models in natural
language processing, could be an interesting architecture to be trained on DNA
sequences although to our knowledge they have not yet obtained interesting results
in this field.

Metagenome2Vec as promising results on raw Nanopore metagenomic data generated
by simulators. However, it has not yet been tested on real Nanopore data sets. This
is a valuable evaluation that need to be made as Nanopore sequencing represents the
3rd most used NGS technologies. In addition, this technology sequences reads in real
time and could therefore be combined with streaming processing, in particular with
the Spark Streaming framework [Zah+13], thus better enabling a “point-of-care”
solution.

Due to the many variables contained in the metagenomic abundance tables, the
subgroup discovery algorithms are trained on a large search space. Q-Classifier is
impacted by this aspect and we have limited the complexity of the rules to 2 while
the phenotype could be induced by more complex species interaction features. We
plan to work on a rule generation process with a heuristic, such as beam search
(like the one in predomics [Pri+20]), to reduce the search space and the number of
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generated rules impacting statistical results. An interesting investigation would be
to test our interpretable approach in concrete studies with fecal transplantation and
analyze the changes involved.

As shown in a recent review on detection and prognosis of coronavirus (COVID-19)
diseases [AIX+21], none of the machine learning models identified from 2,212
studies have clinical potential due to methodological flaws, including insufficient
external validation. We recognize the importance of a robust validation process to
ensure reproducibility and use of machine learning methodologies in the clinical
domain. Thus, we plan to deploy our approaches in two nationally funded projects
to achieve more reliable results and hopefully wider use of our methodology.
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3.2 Raw metagenomic data is the input of Metagenome2Vec. (a) All DNA
sequences are embedded by Kmer2Vec and Read2Vec algorithms (Fig-
ure 3.4 and 3.8) resulting in a bag of read embeddings. (b) Then,
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genome embeddings from the FastDNA model. Points similarly colored
have the same family. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
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3.10 A catalog of complete genomes is used by the CAMISIM software
[Fri+19] to simulate metagenomic data with a specific taxonomic
profile (abundance of species). The resulting dataset is a set of reads
associated with the identifier of the genome from which they originate.
Reads are embedded by Read2Vec (Figure 3.8) before being passed into
Read2Genome trained to retrieve their source genome. . . . . . . . . . 54
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Appendix A
A.1 Multiple instance learning

Zaheer et al. [Zah+17] defined a function invariant to permutation and place it in a
neural network named DeepSets. The model is separated into 3 steps. A first neural
network Phi projects each instance of the bags into a lower representation. A MIL
layer (aggregation operation) invariant to permutation aggregates all instance in a
bag. Finally, a last neural network operates on a single instance (aggregated by the
preceding step) to compute prediction.

Mathematically Zaheer et al. [Zah+17] defined a property and proved a theorem:

• Invariance to permutation can be formulate like this:

f(x1, ..., xm) = f(xσ(1), ..., xσ(m))

With m the number of elements in the bag and σ any permutation.

• Theorem: A function S(X) operating on a set X can be a valid scoring function
i.e it is permutation invariant to the elements in X, if and only if it can be
decomposed in the forme ρ(

∑
x∈X φ(x))

The last theorem gives a structure for the neural network: φ the first neural network,∑
x∈X the aggregation function and ρ the last neural network for classification. The

sum operation is trivially invariant to permutation, but we can also define other
function like mean or max pooling. Those aggregation functions are quite basic since
they are not learned by the network. That’s why Ilse et al. [ITW18] have recently
proposed a new method to parameterize all transformations. They defined a new
function based on an attention mechanism [LPM15]. The proposed MIL pooling
is:

z =
|H|∑
k=1

akhk

ak = softmax(wT tanh(V hTk ))
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Where w ∈ Rn and V ∈ Rn×m are parameters and H = h1, ..., hk is a bag of k
genomes embeddings. To be invariant to permutation the weights’ sum must be
equal to one.

A.1.1 Beam search strategy using decision tree versus exhaustive
algorithm

Fig. A.1.: beam search strategy using decision tree versus SD algorithm

A well-chosen example with a categorical target variable (700 empty circles =
“No” and 700 filled circles = “Yes”) and two numeric description variables. On the
left-side, colored areas show decision surface of a three level deep decision tree
(green areas related to the “Yes” target, blue area to the “No” target). 4 subgroups
are identified:

• Variable 1 < 0.015 (1st split): 76% of Yes, representing 3% of the population

• Variable 1 ≥ 0.99 (2nd split): 69% of Yes, representing 2% of the population

• Variable 1 ≥ 0.015 and < 0.99 & Variable 2 < 0.45 (3rd split): 52% of Yes,
representing 41% of the population

• Variable 1 ≥ 0.015 and < 0.99 & Variable 2 ≥ 0.45 (3rd split) ≥ 54% of No,
representing 54% of the population

The 2 last subgroups are of low accuracy in comparison to the target distribution
(50%/50% of Yes/No), while the 2 firsts are of low density (less than or equal to
3%). The decision tree did not manage in finding the two subgroups we can easily
see with our bare eyes on the right-side (one in the lower center and one in the
upper center of the data space), defined as:
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• Variable 1 ≥ 0.8 & variable 2 ≥ 0.4 and ≤ 0.6: 91% of No, representing 13%
of the population (164 “No” versus 17 "Yes")

• Variable 1 ≤ 0.2 & variable 2 ≥ 0.4 and ≤ 0.6: 92% of Yes, representing 13%
of the population (14 "No" versus 166 "Yes").

Both subgroups have higher accuracies than any subgroup from the decision tree.
Driven both by a recursive partitioning process and by the interest of overall per-
formance, the decision tree did not capture these regions. For more details, Mario
Boley1 further explores this topic.

A.2 Comparision of Q-Classifier with or without
cascaded combination of state-of-the-art classifiers

The following box plots aim to analyze, on all studied datasets, the results of the
Q-Classifier and state-of-the-art classifiers approaches separately and combined in
a cascading way. The mean rejection rate is plotted and represents the average
rejection rate of all 10 cross-validations. The scores of the Q-Classifier come from
the accepted samples while the scores of the SOTA classifiers come from the rejected
samples and those of the cascade combination concern all samples.

1http://www.realkd.org/subgroup-discovery/the-power-of-saying-i-dont-know-an-introduction-to-
subgroup-discovery-and-local-modeling/

A.2 Comparision of Q-Classifier with or without cascaded
combination of state-of-the-art classifiers
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Fig. A.2.: Q-Classifier MetaPhiAn2

Fig. A.3.: Q-Classifier MetaPhiAn2 CLR
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Fig. A.4.: Q-Classifier FastDNA

Fig. A.5.: Q-Classifier FastDNA CLR

A.2 Comparision of Q-Classifier with or without cascaded
combination of state-of-the-art classifiers
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Fig. A.6.: Q-Classifier initial abun-
dance

Fig. A.7.: Q-Classifier initial abun-
dance CLR
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Fig. A.8.: Q-Classifier FastDNA Fig. A.9.: Q-Classifier FastDNA CLR

We can see that on most of the datasets, the Q-Classifier’s scores are equivalent to the
SOTA scores for the examples defined by one or more generated rules. The cascaded
combination of the model does not reduce the classification results and seem to be a
good compromise between the interpretable prediction of Q-Classifier and the black
box prediction of the SOTA classifiers.

A.2 Comparision of Q-Classifier with or without cascaded
combination of state-of-the-art classifiers
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Glossary

Contig Continuous sequences generated by the alignment of overlapping fragment
sequences.. 4

Extrinsic Evaluation An evaluation that focuses on the performance of the finale
application.. 44

Intrinsic Evaluation A simple and quick evaluation that focuses on a specific sub
task to control the learning of the algorithm.. 47

K-mer Are all substrings of length k contained in a sequence.. 7

Pangenome The pangenome describes the full range of genes in a species.. 8

PCR Polymerase chain reaction, a technique to create copies of a specific DNA
region.. 5, 143

Read A sequence of a DNA fragment.. 4

Taxon (plural taxa), it is an entity grouping all living organisms having in common
certain well-defined characteristics. The term taxon is used in phylogenetic
classification to group living beings according to various criteria.. 11
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