Obtenir De

Docteur Le Grade De

Universite De L'

Montpellier De

De L'universite De Montpellier

Sous La

Florent Masseglia

Nadine Hilgert

Bénédicte Fontez

Professeur Christophe Biernacki

Sandra Bringay

THÈSE POUR OBTENIR LE GRADE

Keywords: Massively Distributed Clustering via Dirichlet Process Mixture, Dirichlet Process Mixture Model, Clustering, Parallelism, Gaussian random process, Reproducing Kernel Hilbert Space v

ring Distribué via mélange de processus de Dirichlet), une version parallélisée, qui permet le clustering de millions de points de données, ce qui représente un vrai défi. Nos expérimentations, tant sur des données synthétiques que réelles, illustrent la performance de notre approche. Comparativement, l'algorithme centralisé ne passe pas à l'échelle. Son temps de réponse est de plus de 7 heures sur des données de 100K points, quand notre approche prend moins de 30 secondes.

Dans un deuxième temps, nous nous intéressons au problème de dimensionnalité de données qui devient un défi important avec les obstacles numériques et théoriques dans ce cas. Nous proposons HD4C (Clustering de Dirichlet Distribué pour des Données de Haute Dimension), une solution de clustering parallèle qui s'adresse à la dimensionnalité par deux moyens. Premièrement, elle s'adapte à des données massives en exploitant les architectures distribuées. Deuxièmement, elle effectue le clustering de données de haute dimension telles que les séries temporelles (en fonction du temps), les données hyperspectrales (en fonction de la longueur d'onde), etc. Nous avons réalisé des expériences exhaustives sur des jeux de données synthétiques et réels pour confirmer l'efficacité de notre solution.

Titre en français

Clustering Massivement Distribué via Mélange de Processus de Dirichlet

Mots-clés

• Modèle de mélange de processus de Dirichlet • Classification non supervisée • Parallélisme • Processus aléatoire gaussien • Espace de Hilbert à noyau reproduisant

Résumé

La classification non supervisée (ou clustering) a pour objectif d'identifier des classes pertinentes dans les données. elle est largement utilisée dans de nombreuses applications telles que le marketing, la reconnaissance de patterns, l'analyse de données et le traitement d'images. Déterminer le nombre optimal de clusters dans un ensemble de données est un défi fondamental qui a ouvert de nombreuses directions de recherche. De multiples méthodes sont alors proposées pour résoudre ce problème.

Le Mélange de Processus de Dirichlet (DPM) est utilisé pour le clustering car il permet de définir automatiquement le nombre de classes, mais les temps de calculs qu'il implique sont généralement trop importants, nuisant à son adoption et rendant inefficaces ses versions centralisées.

Dans cette thèse, nous visons le problème de la parallélisation du mélange de processus de Dirichlet pour améliorer ces performances en exploitant des environnements massivement distribués. En effet, d'après la littérature, l'algorithme de DPM distribué fait appel à de nombreux problèmes tels que : l'équilibre de charge entre les noeuds de calcul, les coûts de communication, et le plein bénéfice de propriétés du DPM.

Dans cette thèse, nous proposons deux nouvelles approches pour le clustering parallèle via DPM. Tout d'abord, nous proposons DC-DPM (Cluste-

Introduction

La classification non supervisée ou le clustering est la tâche de regrouper un ensemble d'objets de telle sorte que les objets d'un même groupe, appelé cluster, soient plus similaires les uns aux autres qu'à ceux des autres groupes. C'est une tâche principale de data mining, et une technique classique en analyse statistique des données, utilisée dans de nombreux domaines avec des applications au marketing [START_REF] Alamsyah | Monte carlo simulation and clustering for customer segmentation in business organization[END_REF][START_REF] Verroios | Client clustering for hiring modeling in work marketplaces[END_REF], sécurité [START_REF] Hodge | A survey of outlier detection methodologies[END_REF], analyse de texte (document) [START_REF] Teh | Hierarchical dirichlet processes[END_REF], ou des sciences comme la biologie [START_REF] Gao | New robust clustering model for identifying cancer genome landscapes[END_REF], l'astronomie [START_REF] Ordovás-Pascual | A fast version of the kmeans classification algorithm for astronomical applications[END_REF], et bien d'autres.

Un des principaux défis, pour le clustering, est le fait que le nombre de clusters n'est généralement pas connu a priori. C'est la caractéristique essentielle des problèmes d'apprentissage non supervisé. Cependant, il existe des solutions pour effectuer du clustering, malgré le nombre inconnu de clusters : viii Résumé Étendu 1. Définir un certain nombre d'exécutions de clustering, avec une valeur variable de K, et sélectionner celle qui minimise un critère de qualité d'ajustement. Il peut s'agir d'un risque quadratique ou de l'erreur quadratique moyenne résiduelle de prédiction (RMSEP) [START_REF] James | An introduction to statistical learning[END_REF]. Cette approche nécessite l'implémentation d'un algorithme de validation croisée [START_REF] James | An introduction to statistical learning[END_REF]. Dans ce cas, l'approche de clustering peut être un modèle de mélange avec un algorithme d'Espérance-Maximisation (EM) [START_REF] Arthur P Dempster | Maximum likelihood from incomplete data via the em algorithm[END_REF], ou K-means [START_REF] James | An introduction to statistical learning[END_REF], par exemple.

2. Faire un clustering hiérarchique puis couper l'arbre à une profondeur donnée, généralement décidée par l'utilisateur final. Différentes approches avec des avantages et des inconvénients existent, voir [START_REF] James | An introduction to statistical learning[END_REF].

3. Utiliser un Mélange de Processus de Dirichlet (DPM) qui détecte automatiquement le nombre de clusters [START_REF] Michael | Estimating normal means with a dirichlet process prior[END_REF].

Dans cette thèse, nous nous concentrons sur l'approche DPM parce qu'elle permet d'estimer le nombre de clusters et d'assigner les observations aux clusters, dans le même processus. Ces propriétés de DPM en font une solution très intéressante pour de nombreux cas d'utilisation.

Cependant, le DPM est très coûteux en temps. Par conséquent, plusieurs tentatives ont été faites pour le rendre distribué [START_REF] Lovell | Parallel markov chain monte carlo for dirichlet process mixtures[END_REF][START_REF] Williamson | Parallel markov chain monte carlo for nonparametric mixture models[END_REF][START_REF] Wang | Scalable estimation of dirichlet process mixture models on distributed data[END_REF]. Tout en étant efficacement distribuées, ces approches souffrent généralement de problèmes de convergence (distribution déséquilibrée des données sur les noeuds de calcul) [START_REF] Lovell | Parallel markov chain monte carlo for dirichlet process mixtures[END_REF][START_REF] Williamson | Parallel markov chain monte carlo for nonparametric mixture models[END_REF][START_REF] Gal | Pitfalls in the use of parallel inference for the dirichlet process[END_REF] ou ne bénéficient pas pleinement des propriétés de DPM [START_REF] Wang | Scalable estimation of dirichlet process mixture models on distributed data[END_REF]. De plus, rendre le DPM parallèle n'est pas simple car il doit comparer les probabilités d'assigner chaque donnée à l'ensemble des clusters existants, un nombre de fois très répété. Cela affecte les performances globales de l'approche en parallèle, parce que comparer toutes les données à tous les clusters appellerait un nombre élevé de communications et rendrait le processus impraticable. ix

État de l'art

Processus de Dirichlet

Un processus de Dirichlet (DP) est un processus stochastique utilisé dans les modèles bayésiens non paramétriques de données. Il s'agit d'une distribution de probabilités sur des distributions, c'est-à-dire que chaque tirage d'un processus de Dirichlet est lui-même une distribution.

Un DP génère une distribution de probabilité G. On observe un échantillon θ 1 , . . . , θ N à partir de G.

θ n | G iid ∼ G , n = 1, . . . , N G ∼ DP (α, G 0) G θ n N FIGURE 1 -Echantillonnage de θ n , n = 1, . . . , N .
où G est par construction une distribution de probabilité discrète [START_REF] Sethuraman | A constructive definition of dirichlet priors[END_REF] : Les poids π k sont construits en utilisant la représentation des bâtons cassés (Stick-Breaking), où :

G(θ n) = ∞ k=1 π k δ φ k (θ n) avec π k la
v 1 , . . . , v k ∼ Beta(1, α) π k (v) = v k k-1 i=1 (1 -v i).
Cette séquence de nombres π k (v) suit une distribution appelée Stick-Breaking, et on note π ∼ GEM (α), elle tire son nom des noms de leurs auteurs Griffiths, Engen et McCloskey [START_REF] Pitman | Combinatorial stochastic processes[END_REF].

α accorde indirectement la fonction de masse pour k N , le nombre de valeurs uniques (φ i) dans un échantillon de taille N [START_REF] Antoniak | Mixtures of dirichlet processes with applications to bayesian nonparametric problems[END_REF].

p(k N) = |S N,k N | N ! α k N Γ(α) Γ(α + N) , (1)
où |S N,k N | est le nombre de Stirling de première espèce non signé.

Mélange de Processus de Dirichlet

Avec un Mélange de Processus de Dirichlet (DPM) nous observons l'échantillon y 1 , . . . , y N d'un mélange de distributions F (θ n). Le mélange est contrôlé par un DP sur les paramètres θ n .

xi Dans un cadre bayésien, l'estimation de θ n se fait sur la distribution a posteriori : P (θ 1 , . . . , θ N | y 1 , . . . , y N). A la place de cette représentation, un autre paramétrage est utilisé pour accélérer le calcul de la distribution a posteriori: P (φ c 1 , . . . , φ c N | y 1 , . . . , y N), où θ n = φ cn , c n est le label du cluster de l'observation n, et φ cn est la valeur unique de θ n appartenants au même cluster.

y n ∼ F (θ n) , n = 1, . . . , N θ n ∼ G G ∼ DP (α, G 0) α π c n G 0 φ k y n N K N

Processus du Restaurant Chinois

Le Processus du Restaurant Chinois (CRP) [START_REF] David | Exchangeability and related topics[END_REF] est une métaphore utilisée pour voir le clustering de DPM de manière plus explicite. Dans cette métaphore, nous considérons un restaurant chinois avec un nombre infini de tables, chacune d'entre elles pouvant accueillir un nombre infini de clients servis avec le même plat. Le premier client entre dans le restaurant et s'assoit à la première table (c 1 = 1) et commande un plat φ 1 . Le deuxième client entre et décide soit de s'asseoir avec le premier client (c 2 = 1) et commande xii Résumé Étendu le même plat φ 1 , soit de s'asseoir seul à une nouvelle table(c 2 = 2) et commande un nouveau plat φ 2 . En général, le n + 1 er client rejoint une table k déjà occupée avec une probabilité proportionnelle au nombre n k de clients déjà assis là, ou s'assoit à une nouvelle table avec une probabilité proportionnelle à α. En identifiant les clients avec y 1 , . . . , y n et les tables comme des clusters, après que n clients se soient assis, les tables définissent un clustering de y 1 , . . . , y n .

Echantillonnage de Gibbs

L'utilisation des modèles de mélange de processus de Dirichlet est devenue réalisable sur le plan de calcul avec le développement des méthodes de chaînes de Markov pour l'échantillonnage à partir de la distribution a posteriori des paramètres des distributions de composants et/ou des associations des composants du mélange avec les observations [START_REF] Radford | Markov chain sampling methods for dirichlet process mixture models[END_REF]. L'algorithme de Gibbs [START_REF] Gelman | Bayesian Data Analysis[END_REF] échantillonne les labels de clusters c 1 , . . . , c N et ensuite les paramètres de clusters (ici φ c , pour tous les c ∈ {1, . . . , K} où K forme le nombre de valeurs de labels au lieu de θ 1 , . . . , θ N).

Plusieurs versions de l'échantillonnage de Gibbs (Gibbs Sampling) sont proposées par Neal dans [START_REF] Radford | Markov chain sampling methods for dirichlet process mixture models[END_REF] pour simuler des valeurs à partir de distribution a posteriori. Le principe est de répéter les boucles suivantes au moins jusqu'à la convergence vers la distribution a posteriori :

1. Affectation d'observations aux clusters, pour n = 1, . . . , N

• Retirez l'observation y n de son cluster. Vérifier si le cluster est vide, si oui alors supprimer le cluster et φ cn de la liste {φ} de toutes les valeurs possibles.

• Tirez c n de : • Si c forme un nouveau cluster, tirer φ c de P (φ

| y n) ∝ F (y n | φ)G 0 (φ)
2. Mise à jour de{φ},

• tirer φ c de la distribution postérieure du cluster c, P (φ | {y} c) (qui est proportionnelle au produit de la G 0 antérieure et de la probabilité que toutes les observations soient affectées au cluster c).

Lorsque les distributions F et G 0 sont conjuguées, φ peut être intégré à partir de l'échantillonneur de Gibbs qui devient efficace en temps de calculs (pas besoin de mettre à jour {φ}). Alors :

P (c n = c | {c j } j =n , y n , {φ}) ∝    #(c) N -1+α F (y n | φ)dP (φ | {y} c) cluster existant α N -1+α F (y n | φ)dG 0 (φ) nouveau cluster

Clustering de DPM dans des environnements massivement distribués

Bien que le mélange de processus de Dirichlet ait l'avantage de découvrir automatiquement le nombre de clusters et d'assigner les données aux clusters dans le même processus, il souffre de temps de réponse prohibitifs, ce qui nuit à l'adoption de ses approches centralisées. Une solution prometteuse consiste à exploiter les systèmes distribués, tels que MapReduce [13] ou Spark [START_REF] Zaharia | Spark: Cluster computing with working sets[END_REF], pour passer à l'échelle sur des données massives. xiv Résumé Étendu L'inférence pour les modèles qui utilisent le processus de Dirichlet peut être faite en utilisant les techniques de Monte Carlo par chaînes de Markov dans lesquelles une chaîne de Markov est construite pour tirer des échantillons à partir de la distribution a posteriori. Ces techniques sont bien connues pour leur longue durée de fonctionnement puisque le parcours de la chaîne devrait en théorie converger vers sa distribution stationnaire avant que les échantillons produits puissent être utilisés. Le processus de convergence est souvent lent car il dépend des propriétés de mélange de l'échantillonneur alors que le temps prolongé de burn-in et la variance illimitée empêchent d'exécuter simultanément plusieurs chaînes indépendantes de manière naïve [START_REF] Gal | Pitfalls in the use of parallel inference for the dirichlet process[END_REF].

Ainsi, de nombreuses solutions distribuées ont été proposées au fil des ans. Lovell et al. [START_REF] Lovell | Parallel markov chain monte carlo for dirichlet process mixtures[END_REF][START_REF] Lovell | Clustercluster: parallel markov chain monte carlo for dirichlet process mixtures[END_REF] et Williamson et al. [86] ont suggéré une paramétrisation alternative pour le processus de Dirichlet afin d'en déduire une inférence MCMC parallèle non-approximative. Ces approches sont critiquées par Gal et Ghahramani dans [START_REF] Gal | Pitfalls in the use of parallel inference for the dirichlet process[END_REF]. Ces derniers ont montré que les approches proposées sont irréalisables en raison d'une distribution extrêmement déséquilibrée des données. Ils donnent des orientations pour les recherches futures comme le développement d'une meilleure inférence parallèle approximative.

L'idée principale, lorsque les données sont distribuées, est d'effectuer un DPM dans chaque worker (unité de calcul dans la distribution). Il s'agit ensuite de partager l'information entre les workers, et de synchroniser et de mettre à jour, au niveau du master, les clusters provenant des workers. Pour la synchronisation, le défi principal est le problème d'identification et de commutation des labels de clusters. Dans ce contexte, nous pouvons utiliser un algorithme de relabeling comme par exemple celui proposé par Stephens [START_REF] Jasra | Markov chain monte carlo methods and the label switching problem in bayesian mixture modeling[END_REF][START_REF] Stephens | Dealing with label switching in mixture models[END_REF] pour les modèles de mélange. Pour l'allocation de Dirichlet latente (LDA) parallèle et le processus de Dirichlet hiérarchique (HDP), Newman et al. [START_REF] Newman | Distributed algorithms for topic models[END_REF] ont suggéré de mesurer la distance entre les clusters et ont ensuite proposé un greedy matching.

Wang et Lin [START_REF] Wang | Scalable estimation of dirichlet process mixture models on distributed data[END_REF] ont fait une revue détaillée de la littérature et des avan-xv cées récentes sur ce sujet avant de donner une nouvelle proposition. Ils ont proposé d'utiliser une classification hiérarchique par étapes au niveau du master avec une demi chance de division ou de fusion à chaque étape. Ils ont commencé avec un modèle complet en considérant tous les clusters de tous les workers comme différentes composantes du modèle. Leur algorithme utilise le facteur de Bayes standard [START_REF] Robert | Bayes factors[END_REF] pour comparer les modèles imbriqués et choisir la meilleure division ou fusion. Comme la dimension du modèle est variable, ils ont implémenté un algorithme de saut réversible [START_REF] Peter | Reversible jump markov chain monte carlo computation and bayesian model determination[END_REF]. En conclusion, au niveau du master, les algorithmes proposés divergent d'un classifieur de DPM et ne sont pas des estimations évolutives d'un DPM. De plus, Wang et Lin [START_REF] Wang | Scalable estimation of dirichlet process mixture models on distributed data[END_REF] ont utilisé une valeur fixe pour le paramètre d'échelle (α) dans leur implémentation du DPM au niveau des workers. Le nombre final de clusters est lié à cette valeur (voir l'équation 1). Des auteurs comme Miller et Harrison [START_REF] Jeffrey | A simple example of dirichlet process mixture inconsistency for the number of components[END_REF][START_REF] Jeffrey | Inconsistency of pitman-yor process mixtures for the number of components[END_REF] ont démontré l'inconsistance pour le nombre de composantes d'un modèle DPM avec une valeur fixe de α. Si le nombre de composantes identifiées au niveau des workers est sous-estimé, alors le nombre de clusters au niveau du master pourrait être sous-estimé. L'inverse augmentera considérablement le temps d'exécution au niveau du master. De plus, pour [START_REF] Wang | Scalable estimation of dirichlet process mixture models on distributed data[END_REF], ce temps de parcours dépend du taux d'acceptation du déplacement (division ou fusion) du saut réversible.

Dans notre travail, nous suggérons de s'en tenir autant que possible à un algorithme DPM, même au niveau du master, pour être proche des bonnes propriétés d'un classifieur DPM, malgré le fait que les données sont distribuées. Nous suggérons également une modification du modèle DPM pour partager l'information entre les workers. De cette façon, nous espérons améliorer notre classification (meilleure estimation) et supprimer la commutation de labels. Enfin, nous ne fixons pas la valeur de α mais nous permettons une estimation différente pour chaque worker afin d'ajouter de la flexibilité à notre modèle. De plus, [START_REF] Wang | Scalable estimation of dirichlet process mixture models on distributed data[END_REF] est limité à des cas spécifiques où le bruit dans les observations suit la distribution conjuguée de la distribution des centres de clusters. Par exemple, un bruit gaussien impose une distribution gaussienne des centres. Par conséquent, cette méthode ne convient pas aux centres ayant xvi Résumé Étendu uniquement des valeurs positives. Notre but est de travailler sur n'importe quelle donnée, même avec des centres exclusivement positifs.

Contributions

L'objectif de cette thèse est de proposer des approches parallèles de DPM qui exploitent pleinement les architectures parallèles pour de meilleures performances et offrent des résultats significatifs. Notre but principal est de maintenir la consistance des clusters entre les noeuds workers, et entre les noeuds workers et master en ce qui concerne les propriétés DPM. Nos contributions principales sont les suivantes :

Modèle de mélange de processus de Dirichlet rendu efficace grâce à la distribution massive

Dans ce travail [START_REF] Meguelati | Dirichlet process mixture models made scalable and effec-Bibliography tive by means of massive distribution[END_REF], nous proposons DC-DPM (Clustering Distribué via Mélange de Processus de Dirichlet), un algorithme distribué de DPM qui permet à chaque noeud d'avoir une vue sur les résultats locaux de tous les autres noeuds, tout en évitant les échanges exhaustifs de données. La nouveauté principale de notre travail est de proposer un modèle et son estimation au niveau du master en exploitant les statistiques suffisantes des workers, dans une approche conforme au DPM. Notre solution tire parti de la puissance de calcul des systèmes distribués en utilisant des frameworks parallèles tels que MapReduce [13] ou Spark [START_REF] Zaharia | Spark: Cluster computing with working sets[END_REF]. Notre solution DC-DPM distribue le Processus de Dirichlet en identifiant les clusters locaux sur les workers et en synchronisant ces clusters sur le master. Ces clusters sont ensuite communiqués comme base entre les workers pour une consistance locale de clustering. Nous modifions le Processus de Dirichlet pour prendre en compte cette base dans chaque worker. En itérant ce processus, nous recherchons la consistance globale du DPM dans un environnement distribué. Nos expériences, utilisant des jeux de données réels et synthétiques, illus-xvii trent à la fois la grande efficacité et la scalabilité linéaire de notre approche. Nous constatons des gains significatifs en termes de temps de réponse, par rapport aux approches centralisées de DPM, avec des temps de traitement de quelques minutes, contre plusieurs jours dans le cas centralisé.

Clustering de données de haute dimensionnalité par modèle de processus de Dirichlet distribué

Dans ce travail [START_REF] Meguelati | High Dimensional Data Clustering by means of Distributed Dirichlet Process Mixture Models[END_REF][START_REF] Meguelati | Massively Distributed Clustering via Dirichlet Process Mixture[END_REF], nous proposons HD4C (Clustering de Dirichlet Distribué pour des Données de Haute Dimension), une nouvelle approche de clustering parallèle adaptée aux données de haute dimension et basée sur notre première contribution DC-DPM. En fait, DC-DPM est une solution proposée à ce problème lorsque les données sont multivariées. Dans le cas de données ou de signaux à haute dimension (dimension infinie), le calcul matriciel n'est plus possible (pas d'inverse de matrices par exemple, pas de produit matriciel). Il faut remplacer un produit matriciel par un produit interne dans un espace de fonctions adéquat et trouver la mesure adéquate. Ce produit interne est obligatoire pour calculer la vraisemblance et la distribution a posteriori. Pour ce faire, HD4C utilise les propriétés des espaces de Hilbert à noyau reproduisant (RKHS) (utilisées par exemple dans l'approche SVM "machine à vecteurs de support") qui sont très populaires dans l'apprentissage automatique grâce au « théorème du représentant qui a simplifié un problème empirique de minimisation du risque à dimension infinie en un problème à dimension finie où la solution est incluse dans le span linéaire de la fonction du noyau évaluée aux points d'apprentissage » [START_REF] Øyvind Mikalsen | Time series cluster kernel for learning similarities between multivariate time series with missing data[END_REF]. Nous supposons que la variable aléatoire d'intérêt prend ses valeurs dans un espace de dimension infinie. Par conséquent, les données à haute dimension seront considérées comme des trajectoires d'un processus aléatoire. Notre travail se concentre sur le processus aléatoire gaussien pour « sa capacité à éviter les hypothèses paramétriques simples et à intégrer beaucoup de structures » [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF]

List of Tables

Introduction 1.1 Context

Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group called a cluster are more similar to each other than to those in other groups. It is a main task of data mining, and a common technique for statistical data analysis, used in many fields with applications to marketing [START_REF] Alamsyah | Monte carlo simulation and clustering for customer segmentation in business organization[END_REF][START_REF] Verroios | Client clustering for hiring modeling in work marketplaces[END_REF], security [START_REF] Hodge | A survey of outlier detection methodologies[END_REF], text (document) analysis [START_REF] Teh | Hierarchical dirichlet processes[END_REF], or sciences like biology [START_REF] Gao | New robust clustering model for identifying cancer genome landscapes[END_REF], astronomy [START_REF] Ordovás-Pascual | A fast version of the kmeans classification algorithm for astronomical applications[END_REF], and many more.

One of the main challenges, for clustering, is the fact that the number of clusters is typically not a priori known. That is basically the characteristic of unsupervised learning problems. However, there are some solutions that can be used to help performing cluster analysis, despite the unknown tackled number of clusters :

1. Setting a number of clustering runs, with varying value of K, and selecting the one that minimizes a goodness of fit criteria. It may be a quadratic risk or the Residual Mean Squared Error of Prediction (RMSEP) [START_REF] James | An introduction to statistical learning[END_REF]. This approach needs the implementation of a crossvalidation algorithm [START_REF] James | An introduction to statistical learning[END_REF]. The clustering approach in this case, may be a mixture model with an Expectation-Maximization (EM) algorithm [START_REF] Arthur P Dempster | Maximum likelihood from incomplete data via the em algorithm[END_REF], or K-means [START_REF] James | An introduction to statistical learning[END_REF], for instance.

2. Making a hierarchical clustering and then cut off the tree at a given depth, usually decided by the end-user. Different approaches for pruning with advantages and drawbacks exist, see [START_REF] James | An introduction to statistical learning[END_REF].

3. Using a Dirichlet Process Mixture (DPM) which automatically detects the number of clusters [START_REF] Michael | Estimating normal means with a dirichlet process prior[END_REF].

In this thesis, we focus on the DPM approach since it allows estimating the number of clusters and assigning observations to clusters, in the same process. Furthermore, its implementation is quite straightforward in a Bayesian framework. Such properties of DPM make it a very appealing solution for many use-cases. However, DPM is highly time consuming. Consequently, several attempts have been made to make it distributed [START_REF] Lovell | Parallel markov chain monte carlo for dirichlet process mixtures[END_REF][START_REF] Williamson | Parallel markov chain monte carlo for nonparametric mixture models[END_REF][START_REF] Wang | Scalable estimation of dirichlet process mixture models on distributed data[END_REF]. However, while being effectively distributed, these approaches usually suffer from convergence issues (imbalanced data distribution on computing nodes) [START_REF] Lovell | Parallel markov chain monte carlo for dirichlet process mixtures[END_REF][START_REF] Williamson | Parallel markov chain monte carlo for nonparametric mixture models[END_REF][START_REF] Gal | Pitfalls in the use of parallel inference for the dirichlet process[END_REF] or do not fully benefit from DPM properties [START_REF] Wang | Scalable estimation of dirichlet process mixture models on distributed data[END_REF] (see our discussion in Section 3.2). Furthermore, making DPM parallel is not straightforward since it must compare each record to the set of existing clusters, a highly repeated number of times. That impairs the global performances of the approach in parallel, since comparing all the records to all the clusters would call for a high number of communications and make the process impracticable.

Contributions

The objective of this thesis is to propose parallel DPM approaches that fully exploit parallel architectures for better performances and offer meaningful results. Our main goal is to keep consistency of clusters among worker 1.2. Contributions 3 nodes, and between the worker and the master nodes with regards to DPM properties. Our main contributions are as follows:

• Dirichlet Process Mixture Models made Scalable and Effective by means of Massive Distribution. In this work [START_REF] Meguelati | Dirichlet process mixture models made scalable and effec-Bibliography tive by means of massive distribution[END_REF], we propose DC-DPM (Distributed Clustering via Dirichlet Process Mixtures), a distributed DPM algorithm that allows each node to have a view on the local results of all the other nodes, while avoiding exhaustive data exchanges. The main novelty of our work is to propose a model and its estimation at the master level by exploiting the sufficient statistics from the workers, in a DPM compliant approach. Our solution takes advantage of the computing power of distributed systems by using parallel frameworks such as MapReduce [13] or Spark [START_REF] Zaharia | Spark: Cluster computing with working sets[END_REF]. Our DC-DPM solution distributes the Dirichlet Process by identifying local clusters on the workers and synchronizing these clusters on the master. These clusters are then communicated as a basis among workers for local clustering consistency. We modify the Dirichlet Process to consider this basis in each worker. By iterating this process we seek global consistency of DPM in a distributed environment. Our experiments, using real and synthetic datasets, illustrate both the high efficiency and linear scalability of our approach. We report significant gains in response time, compared to centralized DPM approaches, with processing times of a few minutes, compared to several days in the centralized case.

• High Dimensional Data Clustering by means of Distributed Dirichlet Process Mixture Models. In this work [START_REF] Meguelati | High Dimensional Data Clustering by means of Distributed Dirichlet Process Mixture Models[END_REF][START_REF] Meguelati | Massively Distributed Clustering via Dirichlet Process Mixture[END_REF], we propose HD4C (High Dimensional Data Distributed Dirichlet Clustering), a novel parallel clustering approach adapted for high dimensional data and based on our first contribution DC-DPM. Actually, DC-DPM is a solution proposed to this issue when data is multivariate. In the case of high dimensional data or signals (infinite dimension), matrix computation is no more feasible (no inverse matrix for example, no matrix product). We need to replace a matrix product by an inner product in an adequate space of functions and to find the adequate measure. This inner product is mandatory to compute the likelihood and the posterior. To do that, HD4C uses the properties of the Reproducible Kernel Hilbert Spaces (RKHS) (used for example in the Support Vector Machine approach) that are very popular in machine learning thanks to « the representer theorem which simplified an infinite dimensional empirical risk minimization problem into a finite dimensional problem where the solution is included in the linear span of the kernel function evaluated at the training points » [START_REF] Øyvind Mikalsen | Time series cluster kernel for learning similarities between multivariate time series with missing data[END_REF]. We assume that the random variable of interest takes its values in a space of infinite dimension. Therefore, high dimensional data will be seen as trajectories of a random process. Our work focuses on Gaussian random process because of « its ability to avoid simple parametric assumptions and still build in a lot of structure » [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF]. In addition many calculations are facilitated in the Gaussian framework. In our approach, we define data as an autocorrelated Gaussian process called Ornstein-Uhlenbeck (OU) and we use the same algorithm as in DC-DPM. We evaluate our proposal using real and synthetic datasets and the results confirm the high performance of our approach.

Publications

The results of this thesis have been presented in the following papers:

Thesis Organisation

This thesis is divided into tow main contribution chapters preceded by a chapter introducing the necessary background.

In chapter 2, we review the state of the art. It is divided into three main sections: In section 2.2, we give a general overview of the main clustering techniques in the centralized environment. In particular, we deal with four methods: Hierarchical clustering, K-means, Density-Based clustering and Model-based clustering. Section 2.3 introduces the Dirichlet Process Mixture Models (DPMM), it details some notions of Dirichlet process and discusses the Gibbs Sampling algorithm that allows performing DPM clustering. The section 2.4 will be dedicated to introduce multiple parallel processing frameworks and some existing distributed clustering solutions.

Chapter 3 is devoted to studying and solving the problem of the prohibitive response times that impairs the adoption of DPM clustering and makes centralized approaches inefficient. This chapter starts with the motivation and overview of the proposal in section 3.2. In section 3.3, we propose our algorithm DC-DPM and we thoroughly explain its clustering principle. In section 3.4, we validate our proposal through different experiments using real-world and synthetic datasets. Eventually, in section 3.5, we conclude our work.

In chapter 4, we deal with the problem of high dimensionality. In section 4.2 we present the context and give an overview of our work. The necessary background of Reproducible Kernel Hilbert Spaces (RKHS) is stated in section 4.3. In section 4.4, we propose HD4C, our distributed solution for high dimensional data clustering. In section 4.5, we evaluate our approach by carrying out various experiments on real-world and synthetic datasets. Finally, we summarize our work in section 4.6

This thesis ends with a concluding chapter (chapter 5) that summarizes our contributions and points out future research directions in this field.

II

State of the Art

Clustering

Objectives and Interests

Clustering is a data mining technique intensively used for data analytics, with applications many fields as mentioned in the introduction. In biology, for example, clustering may be applied to Image processing (Magnetic Resonance Imaging (MRI) [START_REF] Adelino | A dirichlet process mixture model for brain mri tissue classification[END_REF]), detection of population structure-Genetic diversity [START_REF] Pritchard | Inference of population structure using multilocus genotype data[END_REF] and even in dynamic systems [START_REF] Fox | Nonparametric bayesian learning of switching linear dynamical systems[END_REF].

Clustering is also used for identification in the new challenge of high throughput plant phenotyping [START_REF] Singh | Machine learning for high-throughput stress phenotyping in plants[END_REF], a research field with the purpose of crop improvement in response to present and future demographic and climate scenarios. In this case, data to be considered include data on plants and crop images, like the one illustrated by Figure 2.1, showing a view of a Durum crop. Automatic identification, from such images, of leaves, soil, and distinguishing plants from foreground, are of high value for experts since they provide the fundamental information used for popular supervised methods in the domain [START_REF] Singh | Machine learning for high-throughput stress phenotyping in plants[END_REF][START_REF] Ma | Machine learning for big data analytics in plants[END_REF].

Common Techniques

Classical clustering techniques can be separated into six categories: partitioning, hierarchical, density-based, grid-based, model based and multistep methods [START_REF] Aghabozorgi | Timeseries clustering-a decade review[END_REF]. In the following, we describe the most popular algorithms: hierarchical clustering [START_REF] Kaufman | Finding groups in data: an introduction to cluster analysis[END_REF], k-means [46], density based clustering [START_REF] Kriegel | Density-based clustering[END_REF], and model-based clustering [START_REF] Shavlik | Readings in machine learning[END_REF].

Hierarchical clustering

Hierarchical clustering [START_REF] Richard | A review of classification[END_REF][START_REF] Kaufman | Finding groups in data: an introduction to cluster analysis[END_REF] is one of the oldest clustering methods, but it is still well-established.These methods create a tree of clusters from the given data represented in the form of a dendrogram (see figure 2.2) , at the bottom of the hierarchy is the thinnest partition, with only one observation per class, while at the top of the hierarchy is the coarsest partition for which all observations are in the same class.

We distinguish two different versions of this algorithm: a bottom-up approach, called Hierarchical Agglomerative Clustering (HAC), and a topdown procedure, named Divise Hierarchical Clustering (DHC). The first one (HAC) is used more frequently [START_REF] Hansen | Cluster analysis and mathematical programming[END_REF], it initially assigns each data instance to its own cluster and successively merges clusters until the reach of one class regrouping all data. The second algorithm (DHC) starts with one initial cluster containing all elements and proceeds by successively splitting the clusters in two until each element has its own cluster. In both cases, hierarchical clustering requires the ability to calculate, at each step, a distance between classes, called a link, based on a measure of dissimilarity between observations. Once these distances have been chosen, the principle of hierarchical bottomup clustering is simple. A partition of n classes each containing a single observation is formed. The algorithm begins by calculating the dissimilarity matrix, where the element d ij is the distance between the observations Y i and Y j . The algorithm then forms a class by aggregating the two closest observations. The distance between this new class and the other classes is determined by the link. This process is then repeated until only one class is obtained. A similar algorithmic method is applied in the case of a hierarchical top-down clustering.

Hierarchical clustering has several benefits . The first one is that the hierarchy can be cut at any level to create a different partitioning of the collection. Second, the hierarchy can be used to navigate the data and it is useful to visualise the inherent structure of the dataset. Further, Hierarchical clustering is a good method to evaluate the performance of distance measure between data instances and being able to choose distances according to the nature of the data. On the other side, it is easy to verify that a hierarchical clustering is very sensitive to this choice. In addition, hierarchical clustering algorithms do not scale for large data sizes, due to their high complexity, and if we want to add an observation to the dataset to be classified, it is necessary to repeat the algorithm from the beginning. Some contributions are proposed to perform an approximation of the hierarchical clustering that improves time and space complexity, in order to be able to scale to large datasets [START_REF] Cochez | Twister tries: Approximate hierarchical agglomerative clustering for average distance in linear time[END_REF].

K-means

Initially proposed in 1957 by Lloyd [42], then adopted in 1967 by Mac-Queen [46], the K-means algorithm is an iterative method that, whatever the initial configuration, converges towards a solution. It consists in grouping the observations by minimizing the distance between each observation and the centre of its cluster, called the centroid.

Given a number of K clusters, the first step is to randomly select K centroids. Then, each observation is assigned to the centroid to which it is closest in terms of Euclidean distance. Each centroid is then recalculated using the data assigned to it. These steps are repeated until a convergence criteria is reached. In practice, the algorithm is repeated until the assignments of observations to clusters no longer change (see figure 2.3).

The K-means algorithm is easy to implement and runs quickly, making it a very popular unsupervised classification algorithm. However, it requires the number of clusters K to be specified in advance, which is considered as one of the most difficult problems to solve in data clustering, that's why many approaches are introduced to tackle this drawback [START_REF] Debatty | Determining the k in k-means with mapreduce[END_REF]. Finally, the

Density-based clustering

Density-based clustering methods assume that clusters appear as dense regions in a metric space. These methods search for highly dense regions in the dataset and consider them as separate clusters. A relatively well-known density-based clustering algorithm called Density Based Spatial Clustering of Applications with Noise (DBSCAN) was introduced by Ester et al. [START_REF] Ester | A density-based algorithm for discovering clusters in large spatial databases with noise[END_REF], which assumes that clusters appear in concentrated regions and is designed to find clusters of arbitrary shape. An interesting property of this algorithm is that it inherently copes with noise in the dataset, by declaring dense regions as clusters and regions of low-density as noise. This approach requires the user to define two parameters: a minimum distance d and a minimum number of neighbours n. Correspondingly a point p requires at least n neighbours in the radius of d in order to form a cluster. DBSCAN is not only useful as a pure clustering algorithm but also for the detection of noise. Unfortunately it does not perform well on sets of varying density and in high-dimensional space where the data is often sparse [START_REF] Bs Everitt | Cluster analysis[END_REF].

Model-based clustering

Model-based clustering attempts to recover the original model from a set of data. This approach assumes a model for each cluster a parametric distri-bution, and finds the best fit of data to that model [START_REF] Aghabozorgi | Timeseries clustering-a decade review[END_REF]. In detail, it presumes that there are some fixed centroids, chosen at random, and then some individual noise is added to them with a probability distribution. The model that is recovered from the generated data defines clusters [START_REF] Shavlik | Readings in machine learning[END_REF].

An example of this kind of clustering is the Gaussian mixture model [START_REF] Pearson | Contributions to the mathematical theory of evolution[END_REF] which represents a composite distribution whereby points are drawn from one of k Gaussian sub-distributions, each with its own probability.

In general, model-based clustering has two drawbacks: first, it needs to set parameters and it is based on user assumptions which may be false and consequently the result clusters would be inaccurate. Second, it has a slow processing time on large datasets [START_REF] Aghabozorgi | Timeseries clustering-a decade review[END_REF].

Dirichlet Process Mixture Models

One of the main difficulties, for clustering, is the fact that we don't know, in advance, the number of clusters to be discovered. In order to help performing cluster analysis, despite the unknown tackled number of clusters, statistics advocate for some solutions as mentioned in the introduction. In this thesis, we focus on the DPM approach as it has the advantage of detecting the number of clusters automatically and assigning observations to clusters, in the same process.

In this section, we give the necessary background on Dirichlet Process Mixture Models illustrated by an example comes from a biology use-case.

Dirichlet Process

A Dirichlet Process (DP) is a stochastic process used in Bayesian nonparametric models of data. It is a probability distribution over distributions, i.e. each draw from a Dirichlet process is itself a distribution. In our usecase, a distribution over the image pixels could be "plant" with probability Chapter 2. State of the Art p 1 , and "not plant" with probability p 2 , with the property that p 1 + p 2 = 1. A DP generates a probability distribution G (figure 2.5). We observe a sample θ 1 , . . . , θ N from G. In our use-case, each θ n is the vector of possible pixel color values.

θ n | G iid ∼ G , n = 1, . . . , N G ∼ DP (α, G 0) G θ n N Figure 2.5 -Sampling of θ n , n = 1, . . . , N .
The probability G is by construction a discrete probability distribution [START_REF] Sethuraman | A constructive definition of dirichlet priors[END_REF]:

G(θ n) = ∞ k=1 π k δ φ k (θ n),
where π k is the probability of having value φ k and δ is the symbol for the Dirac delta function.

Therefore, observed variables θ n have a non null probability of having the same value φ k and this allows for clustering. In our use-case of a plant image (figure 2.1), "plant" pixel parameter θ n will have the same color value φ k expressing the green value. Clustering is very sensitive to the DP parameters given by the end user. G 0 is a continuous probability distribution from which the (φ k) k∈N are initially drawn. In our use-case, G 0 gives the color probability of all possible clusters in the image. α is a scale parameter (α > 0) which tunes the probability weights π k .

φ 1 , . . . , φ k , . . . ∼ G 0
The weights π k are constructed using the Stick-Breaking representation of Figure 2.7, where:

v 1 , . . . , v k ∼ Beta(1, α) π k (v) = v k k-1 i=1 (1 -v i)
This sequence of numbers π k (v) follows a distribution called Stick-Breaking, and we note π ∼ GEM (α), it takes its name from the names of their authors Griffiths, Engen and McCloskey [START_REF] Pitman | Combinatorial stochastic processes[END_REF].

α tunes indirectly the probability mass function for k N , the number of unique values (namely φ i) in a sample of size N [START_REF] Antoniak | Mixtures of dirichlet processes with applications to bayesian nonparametric problems[END_REF]. Figure 2.8 shows the important role of the concentration parameter α, where two samples are performed from a DP with the same base distribution and different concentration parameters. The larger the α, the smaller the variance, and the DP will concentrate more of its mass around the mean.

p(k N) = |S N,k N | N ! α k N Γ(α) Γ(α + N) (2.1)

Dirichlet Process Mixture

With a Dirichlet Process Mixture we observe the sample y 1 , . . . , y N from a mixture of distributions F (θ n). In our use-case, we assume that colors are observed with a noise distributed according to F . The mixture is controlled by a DP on the parameters θ n . In a Bayesian framework, the estimation of θ n is done on the posterior: P (θ 1 , . . . , θ N | y 1 , . . . , y N). Instead of this representation, another parameterization is used to speed up computation of the posterior:

y n ∼ F (θ n) , n = 1, . . . , N θ n ∼ G G ∼ DP (α, G 0) α π c n G 0 φ k y n N K N
P (φ c 1 , . . . , φ c N | y 1 , . . . , y N)
Where θ n = φ cn , c n is the cluster label of observation n, and φ cn is the unique value of the θ n belonging to the same cluster.

Chinese Restaurant Process

The Chinese Restaurant Process (CRP) [START_REF] David | Exchangeability and related topics[END_REF] is a metaphor used in order to see the DPM clustering more explicitly. In this metaphor, we consider a Chinese restaurant with an infinite number of tables, each of which can seat an infinite number of customers served the same dish. The first customer enters the restaurant and sits at the first table (c 1 = 1) and orders a dish φ 1 . The second customer enters and decides either to sit with the first customer (c 2 = 1) and orders the same dish φ 1 , or by himself at a new table(c 2 = 2) and orders a new dish φ 2 . In general, the n + 1 st customer either joins an already occupied table k with probability proportional to the number n k of customers already sitting there, or sits at a new table with a probability proportional to α. Identifying customers with y 1 , . . . , y n and tables as clusters, after n customers have sat down, the tables define a clustering of y 1 , . . . , y n .

Gibbs Sampling

Use of Dirichlet process mixture models has become computationally feasible with the development of Markov chain methods for sampling from the posterior distribution of the parameters of the component distributions and/or the associations of mixture components with observations [START_REF] Radford | Markov chain sampling methods for dirichlet process mixture models[END_REF]. The Gibbs algorithm [START_REF] Gelman | Bayesian Data Analysis[END_REF] samples the cluster labels c 1 , . . . , c N and next the cluster parameters (here φ c , for all c ∈ {1, . . . , K} where K designs the number of cluster label values instead of θ 1 , . . . , θ N).

Several versions of Gibbs sampling are proposed by Neal in [START_REF] Radford | Markov chain sampling methods for dirichlet process mixture models[END_REF] to simulate values from the posterior. The principle is to repeat the following loops at least until convergence to the posterior:

1. Cluster assignment, for n = 1, . . . , N

• Remove observation y n from its cluster. Check if the cluster is empty, if yes then remove the cluster and φ cn from the list {φ} of all possible values.

• Draw c n from:

P (c n = c | {c j } j =n , y n , {φ}) ∝    #(c) N -1+α F (y n | φ c) existing cluster α N -1+α F (y n | φ)dG 0 (φ) new cluster
Where #(c) designs the number of observations assigned to cluster c (after removing observation y n from the sample).

• If c designs a new cluster, draw

φ c from P (φ | y n) ∝ F (y n | φ)G 0 (φ)
2. Update of {φ},

• draw φ c from the posterior distribution of cluster c, P (φ | {y} c) (which is proportional to the product of the prior G 0 and the likelihood of all observations assigned to cluster c).

When distribution F and G 0 are conjugates, φ can be integrated out from the Gibbs sampling which becomes time-efficient (no need to update {φ}). Then: 20 Chapter 2. State of the Art

P (c n = c | {c j } j =n , y n , {φ}) ∝    #(c) N -1+α F (y n | φ)dP (φ | {y} c) existing cluster α N -1+α F (y n | φ)dG 0 (φ) new cluster

Massively Distributed DPM Clustering

Although Dirichlet Process Mixture has the advantage of discovering the number of clusters automatically and assigning data to clusters in the same process, it suffers from the prohibitive response times, which impairs the adoption of its centralized approaches. A promising solution is to exploit parallel frameworks, such as MapReduce [13] or Spark [START_REF] Zaharia | Spark: Cluster computing with working sets[END_REF], to gracefully scale to large datasets.

In this section, we first introduce multiple parallel processing frameworks widely used in big data, and then present some parallel clustering solutions.

Parallel Frameworks

Recently, more and more parallel processing techniques and frameworks are coming out, and they are implemented and used in many areas, such as government, healthcare, bank, weather, transportation, social media, and education. In the following, we present the most popular frameworks : MapReduce[13] and Spark [START_REF] Zaharia | Spark: Cluster computing with working sets[END_REF].

MapReduce

MapReduce is one of the most popular solutions for big data processing [START_REF] Bizer | The meaningful use of big data: four perspectives-four challenges[END_REF], in particular due to its automatic management of parallel execution in computing clusters. Initially proposed in [13], it was popularized The idea behind MapReduce is simple and elegant, each job is executed in two main phases. In the first phase, the Map function is used to accept the input data which is generally in the form of file or directory and is stored in the Hadoop Distributed File System (HDFS) [START_REF] Shafer | The hadoop distributed filesystem: Balancing portability and performance[END_REF], and produce a set of intermediate results (key, value), and then send the results to reduce function. In the second phase, reduce function will accept the results and merge them together to output file.

In order to execute a MapReduce job, we need a master node that coordinates the job execution and some worker nodes to execute the map and reduce tasks. Figure 2.11 shows the MapReduce programming workflow. The user submit a MapReduce job to the master node. Input data are portioned into multiple data splits. Each split is processed by a map task in a given worker node which writes on its disc (local write). And then, results of all map tasks will be redistributed and shuffled, in this process each key The authors of MapReduce introduce an example that counts occurrences of every word from large datasets [13]. The map function emits each word plus an associated count of occurrences. Then, the reduce function sums together all counts emitted for a particular word (see figure 2.12).

MapReduce contains a lot of pitfalls like for example, when dealing with an algorithm or an application that applies to iterative jobs, every MapReduce job has to reload the data from disk. This causes massive delay [START_REF] Zaharia | Spark: Cluster computing with working sets[END_REF] and implies that those algorithms or applications cannot efficiently run using MapReduce.

Spark

Apache Spark [START_REF] Zaharia | Spark: Cluster computing with working sets[END_REF] is an open-source computing cluster framework that was initially developed by a research group from University of California, Berkeley, to deal with the problems that can not be handled by MapReduce. Spark introduces multi-stage in-memory primitives that overcome disk bottlenecks and provide performance up to 100 times faster for certain applications (see figure 2.13). In addition, Spark extends the MapReduce model to efficiently support more types of computations, including interactive queries and stream processing. Spark is implemented in Scala [START_REF] Odersky | Programming in scala[END_REF], a statically typed high-level programming language for the Java Virtual Machine (JVM).

The main feature of Spark is its distributed memory abstraction, called Resilient Distributed Datasets (RDD) [START_REF] Zaharia | Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing[END_REF] and parallel operations used to handle it. Resilient Distributed Dataset is a read-only collection of objects partitioned across a set of machines that can be rebuilt if a partition is lost. Spark lets programmers construct RDDs in four ways:

• From a file system, such as Hadoop Distributed File System.

• By parallelizing a Scala collection.

• By transforming an existing RDD.

• By changing the persistence of an existing RDD.

Two types of parallel operations can be performed on RDDs: transformations and actions. Transformations are operations on RDDs that return a new RDD, such as map and filter. Actions are operations that return a result to the driver program or write it to storage, and kick off a computation, such as reduce or count [START_REF] Karau | Learning spark: lightning-fast big data analysis[END_REF].

In distributed mode, Spark uses a master/slave architecture with one central coordinator and many distributed workers as shown in figure 2.14. The central coordinator is called the driver, it communicates with a potentially large number of distributed workers called executors. The driver runs in its own Java process and each executor is a separate Java process. A driver and its executors are together termed a Spark application.

A Spark application is launched on a set of machines using an external service called a cluster manager. Spark is packaged with a built-in cluster manager called the Standalone cluster manager. It also works with Hadoop YARN and Apache Mesos, two popular open source cluster managers [START_REF] Karau | Learning spark: lightning-fast big data analysis[END_REF].

Parallel Clustering

We set this thesis in the context of parallel clustering. Previous works for distributed algorithms of unsupervised clustering already exist. Ene et al. [START_REF] Ene | Fast clustering using mapreduce[END_REF] gave a MapReduce algorithms for the k-center and k-median prob-lems. Both algorithms use Iterative-Sample as a sub-procedure to get a substantially smaller subset of points that represents all of the points well. To achieve this, they perform an iterative-Sample. However these algorithms require the number of clusters k to be specified in advance, which is considered as one of the most difficult problems to solve in data clustering.

In [START_REF] Huang | Melody-join: Efficient earth mover's distance similarity joins using mapreduce[END_REF] an efficient Earth Mover's Distance similarity joins using MapReduce is proposed. The similarity join retrieves all the pairs of objects from two datasets such that the similarity between the two objects in every pair is beyond a certain threshold. The similarity measure has a large influence on the effectiveness of the operation. The Earth Mover's Distance (EMD) is an attractive measure for applications such as probabilistic data mining. However, It has the problem of complexity ; in their experiments, the EMD's computation time was about 25000 times of the euclidean distance's on the same histograms. Huang et al. [START_REF] Huang | Melody-join: Efficient earth mover's distance similarity joins using mapreduce[END_REF] used MapReduce to tackle this problem. Debatty et al. [START_REF] Debatty | Determining the k in k-means with mapreduce[END_REF] proposed a MapReduce implementation of G-means [START_REF] Hamerly | Learning the k in k-means. In Advances in neural information processing systems[END_REF] which is an iterative algorithm that uses Anderson Darling test to verify if a subset of data follows a Gaussian distribution, it starts with a small number of clusters and increases the number of centers, to estimate k with a computation cost that is proportional to k, but this algorithm overestimates the number of clusters, thus it requires a post-processing step to merge clusters.

Parallel Clustering with DPM

Inference for models that use the Dirichlet process can be done using Markov chain Monte Carlo techniques in which a Markov chain is constructed to draw samples from the posterior. These techniques are well known for their long running time since the walk along the chain should in theory converge to its stationary distribution before the samples produced can be used. The convergence process is often slow as it depends on the mixing properties of the sampler while prolonged burn-in time and unbounded variance inhibit running multiple independent chains concur-Chapter 2. State of the Art rently in a naive way [START_REF] Gal | Pitfalls in the use of parallel inference for the dirichlet process[END_REF].

Thus, many approximate distributed samplers have been suggested over the years [START_REF] Lovell | Parallel markov chain monte carlo for dirichlet process mixtures[END_REF][START_REF] Williamson | Parallel markov chain monte carlo for nonparametric mixture models[END_REF][START_REF] Wang | Scalable estimation of dirichlet process mixture models on distributed data[END_REF]. However, in practice, these approaches usually suffer from convergence issues (imbalanced data distribution on computing nodes) [START_REF] Lovell | Parallel markov chain monte carlo for dirichlet process mixtures[END_REF][START_REF] Williamson | Parallel markov chain monte carlo for nonparametric mixture models[END_REF][START_REF] Gal | Pitfalls in the use of parallel inference for the dirichlet process[END_REF] or do not fully benefit from DPM properties [START_REF] Wang | Scalable estimation of dirichlet process mixture models on distributed data[END_REF] (see our discussion in Section 3.2).

Conclusion

In this chapter, we have discussed the state of the art about different categories of clustering focusing on Dirichlet Process Mixtures. The main limitation is the prohibitive response time.

In this thesis, we carry out extensive theoretical and practical studies and propose a parallel DPM approach that fully exploits parallel architectures for better performances and offers meaningful results. Our main contribution is to keep consistency of clusters among worker nodes, and between the worker and the master nodes with regards to DPM properties.

In the next chapter, we will discuss the problem of DPM Clustering in a distributed environment. Then, we will introduce DC-DPM, our parallel solution.

III

Dirichlet Process Mixture Models made Scalable and Effective by means of Massive Distribution

Introduction

Clustering with accurate results have became a topic of high interest. Dirichlet Process Mixture (DPM) is a model used for clustering with the advantage of discovering the number of clusters automatically and converging to the actual clusters in the data. However DPM is highly time consuming. In this chapter, we propose DC-DPM [START_REF] Meguelati | Dirichlet process mixture models made scalable and effec-Bibliography tive by means of massive distribution[END_REF][START_REF] Meguelati | Massively distributed dirichlet process mixture models[END_REF][START_REF] Meguelati | Dirichlet process mixture models made scalable and effective by meansof massive distribution[END_REF], a parallel clustering solution that gracefully scales to millions of data points while remaining DPM compliant, which is the challenge of distributing this process. This chapter is organized as follows. In Section 3.2 we present the context and give an overview of our work. In Section 3.3, we describe the details of our distributed solution for clustering by means of Dirichlet Process Mixture. Section 3.4 reports the results of our experimental evaluation to verify Chapter 3. Dirichlet Process Mixture Models made Scalable and Effective by means of Massive Distribution the efficiency and effectiveness of our approach, and Section 3.5 concludes.

Motivation and Overview of the Proposal

In the past few years, advances in hardware and software technologies have made it possible to the users of information systems to produce large amounts of data. With such complex and massive datasets, we need to improve the performance of data mining techniques, such as clustering.

In this thesis, we focused on algorithms inspired by the DPM. Lovell et al. [START_REF] Lovell | Parallel markov chain monte carlo for dirichlet process mixtures[END_REF][START_REF] Lovell | Clustercluster: parallel markov chain monte carlo for dirichlet process mixtures[END_REF] and Williamson et al. [START_REF] Williamson | Parallel markov chain monte carlo for nonparametric mixture models[END_REF] has suggested an alternative parametrisation for the Dirichlet process in order to derive non-approximate parallel MCMC inference for it, these approaches are criticized by Gal and Ghahramani in [START_REF] Gal | Pitfalls in the use of parallel inference for the dirichlet process[END_REF]. This latter showed that the approaches suggested are impractical due to an extremely imbalanced distribution of the data, and gave directions for future research like the development of better approximate parallel inference.

The main idea when data is distributed is to perform a DPM in each worker. The issues are then to share information between workers, and to synchronize and update clusters arising from workers at the master level. For synchronization, the main challenge is a problem of identification and of label switching of clusters. In this context we can use a relabelling algorithm like for example the one proposed by Stephens [START_REF] Jasra | Markov chain monte carlo methods and the label switching problem in bayesian mixture modeling[END_REF][START_REF] Stephens | Dealing with label switching in mixture models[END_REF] for mixture models. For parallel Latent Dirichlet Allocation (LDA) and Hierarchical Dirichlet Process (HDP), Newman et al. [START_REF] Newman | Distributed algorithms for topic models[END_REF] suggested to measure distance between clusters and then proposed a greedy matching.

Wang and Lin [START_REF] Wang | Scalable estimation of dirichlet process mixture models on distributed data[END_REF] gave a detailed review of literature and recent advanced in this topic before giving a new proposal. They proposed to use a stepwise hierarchical classification at the master level with half chance for split or merge at each step. They began with a full model considering all clusters from all workers as different components of the model. Their algorithm uses the standard Bayes Factor [START_REF] Robert | Bayes factors[END_REF] to compare nested models and 3.3. DC-DPM: Distributed Clustering via DPM 29 choose the best split or merge. Since the model dimension is varying, they have implemented a reversible jump algorithm [START_REF] Peter | Reversible jump markov chain monte carlo computation and bayesian model determination[END_REF]. In conclusion, at the master level, the proposed algorithms diverge from a DPM-classifier and are not a scalable estimations of a DPM. Moreover, Wang and Lin [START_REF] Wang | Scalable estimation of dirichlet process mixture models on distributed data[END_REF] used a fixed value for the scale parameter (α) in their implementation of the DPM at the workers level. The number of final clusters is related to this value (see equation 2.1). Authors like Miller and Harrison [START_REF] Jeffrey | A simple example of dirichlet process mixture inconsistency for the number of components[END_REF][START_REF] Jeffrey | Inconsistency of pitman-yor process mixtures for the number of components[END_REF] have demonstrated the inconsistency for the number of components of a DPM model with fixed α value. If the number of components identified at the worker level is underestimated, then the number of clusters at the master level might be underestimated. The reverse will increase considerably the running time at the master level. In addition, for [START_REF] Wang | Scalable estimation of dirichlet process mixture models on distributed data[END_REF] this running time depends on the acceptance rate of the move (split or merge) of the reversible jump.

In this work, we suggest to keep to a DPM algorithm as much as possible, even at the master level, to be close to the good properties of a DPMclassifier, despite the fact that data is distributed. We also suggest a modification of the DPM model to share information among workers. In this way we expect to improve our clustering (better estimation) and suppress label switching. Finally, we do not fix a value to α but allow a different estimation in each worker to add flexibility to our model. Furthermore [START_REF] Wang | Scalable estimation of dirichlet process mixture models on distributed data[END_REF] is restricted to specific cases where noise in the observations follows the conjugate distribution of the cluster centers distribution. For example, a Gaussian noise imposes a Gaussian distribution of the centers. Therefore, this method is not suited for centers having positive values only. Our goal is to work on any data, even with exclusively positive centers.

DC-DPM: Distributed Clustering via DPM

In this section, we present a novel parallel clustering approach called DC-DPM (Distributed Clustering via Dirichlet Process Mixtures), adapted Chapter 3. Dirichlet Process Mixture Models made Scalable and Effective by means of Massive Distribution for independent data. Parallelization calls for particular attention to two main issues. The first one is the load balance between computing nodes.

In our approach we distribute data evenly across the different nodes, and there is no data exchange between nodes during the processing. The second issue is the cost of communications. In order to be efficient, nodes send and receive as few information as possible by performing many iterations of Gibbs Sampling independently in each worker before synchronizing the global state at the master level and only communicating sufficient statistics between workers and master. The challenge of using sufficient statistics, in a distributed environment, is to remain in the DPM approach at all steps, including the synchronization between the worker and master nodes. The novelty of our approach is to approximate the DPM model even at the master level when local data is replaced by sufficient statistics between iterations.

Architecture and Distributed Algorithm

Data is evenly distributed on the computing nodes when the process starts. This is a mere, sequential, distribution, that splits the dataset into equal sized partitions. the DPM. It is done with a Gibbs sampling conditionally on the sufficient statistics instead of the whole dataset/individual observations. Our second proposition is a construction of a shared prior distribution updated at the master level and send to the workers' DPM. This distribution reflects the information/results collected from all workers and synchronized at the master.

The general workflow of our DC-DPM approach is illustrated by

Therefore we replace the Chinese Restaurant Process by a Food Courts Process illustrated in Figure 3.2. Observations (or clients) are distributed on different workers (courts) has a probability of being assigned to a cluster (table) proportional to the size of the cluster and to the likelihood (accordance between table dish and client taste) taking into consideration the information sent by the master about clusters in the other workers (Display of information about the occupancy of the tables in the others courts). Each cluster (dish/table) with at least one data (client) still exists in all workers (courts).

The interactions between the master and the worker nodes are detailed below describing tasks excuted at each level.

Worker Level

This level handles the innovation parts of DPM (detection of new clusters) and the individual cluster assignment in each worker. The updates of the cluster labels in worker j depend on sample size proportions of the distributed data:

P (c n,j = c | c =n,j , y n,j , {φ}) ∝    #(c) j N j -1+α F (y n,j , φ c), c = 1, . . . , K α N j -1+α F (y n,j , φ)dG 0 (φ) new
As the clusters are not known at the beginning, we cannot ensure that the sample size proportions of each cluster will be respected in each worker. If the data were uniformly distributed, each cluster would have only, in average, the same weight/proportion in all workers. Therefore we added a modification of the update : is instantiated, it is instantiated from G 0 by choosing an atom in G 0 with probability given by its weight b. Using the fact that the sequence of stickbreaking weights is a size-biased permutation of the weights in a draw from a DP [START_REF] Pitman | Random discrete distributions invariant under size-biased permutation[END_REF], the weight b corresponding to the chosen atom in G 0 will have the same distribution as the first stick-breaking weight, that is, beta(1, γ) [START_REF] Teh | Hierarchical dirichlet processes[END_REF]. Now, the scale parameter α j can be viewed as a tuning parameter between local (worker) and global (master) proportions. Following [START_REF] Michael | Bayesian density estimation and inference using mixtures[END_REF] we use an inverse gamma prior to infer this parameter. This modification of the update implies a slightly modified DPM in each worker j :

P (c n,j = c | c =n,j) ∝    #(c) j +α j wc N j -1+α j F (y n,j , φ c), c = 1, . . . , K α j wu N j -1+α j
y n,j ∼ F (θ n,j) θ n,j ∼ G j G j ∼ DP (α j , G) α j ∼ IG(a, b) G = K c=1 w c δ φc + w u G 0 , with w u + K c=1 w c = 1

Master Level

This level handles the final individual assignment in the master node and therefore the final common number of clusters K. The master gets from each worker the following input : sample size of cluster k in worker j (n j,k), cluster parameter values-sufficient statistics, individual predictive value (traditionally/usually the cluster mean value in the worker: ŷn,j = ȳj,c n,j =k).

At the master level, the observations are assigned by clusters. A cluster corresponds to a set of individuals belonging to the same cluster of the same worker. Each cluster has a representative or individual predictive value which is used to perform the end of the Gibbs sampling at the master level:

P (c n,j = c | c =n,j) ∝    #(c) N -#(c j ,k)+γ F (ŷ n,j , φ c), c = 1, . . . , K γ N -#(c j ,k)+γ F (ŷ n,j , φ)dG 0 (φ) new
Working at an individual level implies a slow Gibbs sampling with poor mixing [START_REF] Gonzalez | Parallel gibbs sampling: From colored fields to thin junction trees[END_REF]. So, we suggest an update by clusters. In this view, we denote z j,k the master label of the cluster k in worker j. To take into account the worker information ({φ workerj k }), we replace the prior predictive distribution (F (y n,j , φ)dG 0 (φ)) by a posterior predictive distribution. Eventually, we use the cluster mean value (ȳ j,k) as an individual predictive value:

P (z j,k = c | z =j,k) ∝    #(c) N -#(c j ,k)1+γ F (ȳ j,k , φ c), c = 1, . . . , K γ N -#(c j ,k)+γ F (ȳ j,k , φ)dG(φ | φ workerj k)
The labels {c n,j } of all the observations y n,j in the cluster k of worker j are then assigned to the master label z j,k .

Next, the cluster parameters ({φ c } c=1,...,K) are updated from the posterior computed on the whole dataset. We assume that we don't need all the data but only sufficient statistics from all clusters from all workers to compute the posterior. This assumption is straightforward for many distributions, as the exponential family [START_REF]Exponential Family[END_REF].

At the master, we use also an inverse gamma prior to infer the scale parameter γ as at the worker level.

Last, the synchronization of the workers is done through the definition of G using the updated parameters ({φ c } c=1,...,K) and with weights drawn from a Dirichlet distribution Dir(n 1 , . . . , n K , γ). The end user parameters of this Dirichlet distribution are updated at the master level from the whole dataset. The size n k is the sum of all observations having label k at the end of the master Gibbs sampling.

(w 1 , . . . , w K , w u) ∼ Dir(n 1 , . . . , n K , γ) γ ∼ IG(c, d)
By doing so, we do not have to consider label switching. Clusters are explicitly defined at the master level and parameter values are not updated in the worker. At the worker level, only innovation (creation of new clusters) is implemented. This is summarized by Algorithm 2.

for each (j, k) do Draw z j,k from P (z j,k = c | {c} =j,k , ȳj,k , {φ}, γ) ∝    #(c) N -#(c j ,k)+γ F (ȳ j,k , φ c), c = 1, . . . , K γ N -#(c j ,k)+γ F (ȳ j,k , φ)dG(φ | φ workerj k)
Update of φ and (w 1 , . . . , w K , w u)

The Exponential Distribution Family

The likelihood for one observation y i from the Exponential family is:

F (y i | η) = h(y i)exp η T ψ(y i) -a(η)
where • η is the vector of the natural parameters and is a function of φ.

• ψ(y i) are sufficient statistics • a(η) is the Log-normalizing factor or Log-partition, it can be expressed as a function of φ : a(η(φ))

• h(y i) is the base measure and the likelihood for all the observations is

F (y 1 , . . . , y n | η) = N i=1 h(y i) exp η T N i=1 ψ(y i) -N a(η)
Among all the distributions included in the Exponential Family, we implemented the Normal case for the experiments: F (. | φ c) = N (φ c , Σ 1). This choice corresponds to the simple linear model y n = φ c + ε n and ε n is Normally distributed N (0, Σ 1).

In this case, the sample mean of cluster c, namely ȳc is a sufficient statistic and the posterior distribution can be conditioned only on its value:

P (φ | {y n } cn=c) = P (φ | ȳc) ∝ F (ȳ c | φ)G 0 (φ)
When G 0 is not a conjugate prior (e.g., a normal distribution), the posterior distribution is not a usual one but a value from this posterior can be simulated with a Metropolis Hasting (MH) [32] within Gibbs algorithm.

When variances are known and G 0 is a conjugate prior (normal distribution N (m, Σ 1)), there is no use of MH algorithm. The posterior is a normal distribution

N (φ post c = Σ (#(c) Σ -1 2 ȳc + Σ -1 1 m), Σ post c) where Σ post c = (#(c) Σ -1 2 +Σ -1 1) -1 . The predictive posterior is a normal distribution N (φ post c , Σ 2 + Σ post c
). In our context, Σ post c was considered negligible and the mean value φ post c was replaced by an individual drawn from the posterior.

Performance Evaluation

The parallel experimental evaluation was conducted on a cluster of 32 machines, each operated by Linux, with 64 Gigabytes of main memory, Intel Xeon CPU with 8 cores and 250 Gigabytes hard disk. The project is written in Scala on top of Apache Spark [START_REF] Zaharia | Spark: Cluster computing with working sets[END_REF]. Spark is deployed on top of Hadoop Distributed File System (HDFS) [START_REF] Shafer | The hadoop distributed filesystem: Balancing portability and performance[END_REF] in order to efficiently read input data, as well as to store final results, and thus to overcome the bottleneck of centralized data storing. The intermediate results are stored in a distributed memory instead of stable storage (Disk) and make the system faster. The centralized approach is an implementation DPM in Scala, and was executed on a single machine with the same characteristics.

The distributed algorithm we proposed is an approximation of a classic DPM, we will compare its properties to a centralized DPM implementation, on synthetic data and also in our use-case for digital agronomy. The first step of our process is a distributed K-means that sets the initial state (usually we set K to be one tenth of the dataset size).

Reproducibility : All our experiments are fully reproducible. We make our code and data available at https://github.com/khadidjaM/DC-DPM In the rest of this section, we describe the datasets in Section 3.4.1 and our evaluation criteria in Section 3.4.2. Then, in Section3.4.3, we measure the performances, in response time, of our approach compared to the centralized approach and also by reporting its scalability and speed-up. We evaluate the clusters obtained by DC-DPM in the case of real and synthetic dataset in Section 3.4.4 and Section 3.4.5 discusses the results and interest of our work in a real use-case of agronomy.

Datasets

We carried out our experiments on a real world and a synthetic dataset.

Our synthetic data are generated using a two-steps principle. In the first step we generate cluster centers according to a multivariate normal distribution with the same variance σ 2 1 for all dimensions. In the second step, we generate the data corresponding to each center, by using a multivariate normal distribution parameterized on the center with the same variance σ 2 2 for all dimensions. We generated a first batch of 5 datasets having size 20K, 40, 60, 80K and 100K with σ 2 1 = 1000 and σ 2 2 = 1. They represent 10 clusters. We generated a second batch of 5 datasets having size 2M, 4M, 6M, 8M and 10M with σ 2 1 = 100000 and σ 2 2 = 10. They represent 100 clusters. This type of generator is widely used in statistics, where methods are evaluated first on synthetic data before being applied on real data.

Our real data correspond to the use-case of the figure 2.1 described in Section 2.2.1. The image used to test our algorithm was in RGB format. After pre-processing it contains 1,081,200 data points, described by a vector of 3 values (red, green and blue) belonging to [0, 1].

Clustering Evaluation Criteria

There are two cases for evaluating the results of a clustering algorithm. Either there is a ground truth available, or there is not. In the case of an available ground truth, there are measures allowing to compare the clustering results to the reference, such as ARI, described below, for instance. This is usually exploited for experiments when one wants to check performances in a controlled environment, on synthetic data or labelled real data. In the case where there is no ground-truth (which is the usual case, because we don't know what should be discovered in real world applications of a clustering algorithm) the results may be evaluated by means of relative measures, like RSS, described below, for instance.

In our experiments, we chose the following three criteria:

• The Adjusted Rand Index (ARI), see [START_REF] Nguyen | Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance[END_REF]: it is the corrected-for-chance version of the Rand Index [70], which is a function that measures the similarity between two data clustering results, for example between means of Massive Distribution the ground truth class assignments (if known) and the clustering algorithm assignments. ARI values are in the range [-1,1] with a best value of 1.

• The residual sum of squares (RSS): it is a measure of how well the centroids (means) represent the members of their clusters. It is the squared distance of each data from its centroid summed over all vectors. In the univariate case, the RSS value divided by the number of observations gives the value of the Mean Squared Error (MSE), an estimator of the residual variance. In multivariate dataset with independent variables, the RSS value divided by the number of observations gives an estimator of the sum of the variable variances. This sum represents its lower bound and also the best value to be observed in the clustering of synthetic data. To simplify, we give in the following the result of the RSS value divided by the number of data N and the variance. Therefore the lower bound is known and should be equal to the number of variables (for example 2 for our synthetic data).

• K, the number of discovered clusters.

Response Time

In this section we measure the clustering time in DC-DPM and compare it to the centralized approach. Figure 3.4 reports the response times of DC-DPM and the centralized approach on our synthetic data, limited to 100K data points. Actually, the centralized approach does not scale and would take several days for larger datasets. The results reported by Figure 3.4 are in logarithmic scale. The clustering time increases with the number of data points for all approaches. This time is much lower in the case of DC-DPM, than the centralized approach. On 8 machines (64 cores) and for a dataset of 100K data points, DC-DPM performs the clustering in 24 seconds, while the centralized approach needs more than 7 hours on a single machine. Response time (minutes) of the centralized and the distributed DPM approaches as a function of dataset size. The distributed approach is run on a cluster of 8 nodes. With 20K to 100K data points from the synthetic dataset. The centralized approach needs more than 7 hours and our distributed approach needs 24 seconds However, the response times of our approach are very fast (a few minutes) and do not consider the time it takes for Spark to load-up, before running DC-DPM. The slight difference between an optimal speed-up and the results reported in Figure 3.7 are due to that loading time.

Clustering Evaluation

In the following experiments, we evaluate the clustering performance of DC-DPM and compare it to the centralized approach. Table 3.1 reports the ARI value computed between the clustering obtained and the ground truth, the RSS value divided by the number of data N and variance (σ 2 2), and the number of clusters of DC-DPM and of the centralized approach on our synthetic data. DC-DPM performs as well as the centralized approach, there is a small gap in RSS values which is negligible compared to the gained time. Table 3.2 reports an extended view on the ARI value, and the RSS value divided by the number of data N and by the variance (σ 2

2), and number of clusters number for DC-DPM, with increasing dataset size (up to 10 million data points). The performance keeps showing the maximum possible accuracy, even with a large number of data points. ters. Figure 3.9 shows the performance of our approach with almost perfect results where the discovered clusters are the same as the actual ones from the data. This is confirmed by Table 3.2, line 2.

Use-case

Phenotyping and precision agriculture use more and more information from sensors and drones, like aerial images, leading to the emerging domain of digital agriculture (see for example http://ec.europa.eu/research/ participants/portal/desktop/en/opportunities/h2020/topics/ dt-rur-12-2018.html). An important challenge, in this context, is to be able to distinguish clusters of plants: status (normal, hydric stress, dis- 2). Clustering is used to detect structures in the data (genetic, population, status) before processing. This group detection allows reducing data dimension and bias in further prediction analysis. DC-DPM was compared to the centralized DPM on a part of the RGB image. The results were quite similar as shown in figure 3.12.

There are very powerful supervised methods for classifying structures or features present in images [START_REF] Singh | Machine learning for high-throughput stress phenotyping in plants[END_REF], such as deep learning methods for example. Our unsupervised DPM clustering approach to image processing does not compete with these methods. On the contrary, it can be seen as a complementary method that facilitates the image labelling step of the learning dataset, a step that is always challenging and necessary in supervised classification.

Conclusion

We proposed DC-DPM, a novel and efficient parallel solution to perform clustering via DPM on millions of data points. We evaluated the performance of our solution over real world and synthetic datasets. The experimental results illustrate the excellent performance of DC-DPM (e.g., a clustering time of less than 30 seconds for 100K data points, while the centralized algorithm needs several hours). The results also illustrate the high performance of our approach with results that are comparable to the ones of the centralized version. Overall, the experimental results show that by using our parallel techniques, the clustering of very large volumes of data can now be done in small execution times, which are impossible to achieve using the centralized DPM approach.

In the following chapter, we will open a fundamental research track which is clustering on high dimensional data like, e.g. time series.

IV

High Dimensional Data Clustering by means of Distributed Dirichlet

Process Mixture Models

Introduction

Clustering may be used for identification in the new challenge of digital agriculture, where large amounts of complex data are collected: for example in herd monitoring, animal activity is monitored using a collar-mounted accelerometer, as illustrated in figure 4.1.

Unfortunately, in this case of high dimensional data, DPM relies on matrix computations. These computations are no more feasible by the several distributed approaches presented in the previous chapter (see the discussion in Section 4.2).

In this chapter, we propose HD4C (High Dimensional Data Distributed Finally, the conclusion is in Section 4.6.

4.2. Motivation and Overview of the Proposal 51

Motivation and Overview of the Proposal

There is a significant research on clustering of big high dimensional data. Some efforts have focused on making the similarity measures faster, like, e.g., Zhu et al. [START_REF] Zhu | A novel approximation to dynamic time warping allows anytime clustering of massive time series datasets[END_REF] who introduced a novel data-adaptive approximation to DTW which can be quickly computed. Other studies suggest to make the main clustering algorithms scalable by means of massive distribution.

In this thesis, we focus on algorithms inspired by the DPM. DC-DPM is a solution proposed to this issue when data is multivariate. In the case of high dimensional data or signals (infinite dimension), matrix computation is no more feasible (no inverse for example, no matrix product). The definition of densities with respect to the usual Lebesgue measure is not available anymore. Therefore a new metric/measure must be found in order to compute a likelihood.

A first attempt to work with this kind of data is to reduce their dimensionality, by sub sampling the observations or projecting them into sub spaces like the one defined by a truncated basis of B-splines [START_REF] Abraham | Unsupervised curve clustering using b-splines[END_REF] or a truncated basis of kernel principal component analysis [START_REF] Fauvel | Kernel principal component analysis for the classification of hyperspectral remote sensing data over urban areas[END_REF]. Multivariate analysis, like SVM, k-means or DC-DPM, can then be applied.

A better approach is to continue working in infinite dimension to keep all information on the data. To compute a distributed DPM for high dimensional data or signals, we need to replace a matrix product by an inner product in an adequate space of functions and to find the adequate measure to compute the likelihood and the posterior. To do that, we used the properties of the Reproducible Kernel Hilbert Spaces (RKHS), as in [START_REF] Juery | Classification bayésienne non supervisée de données fonctionnelles[END_REF]. RKHS (used for example in the Support Vector Machine approach) are very popular in machine learning thanks to "the representer theorem which simplified an infinite dimensional empirical risk minimization problem into a finite dimensional problem where the solution is included in the linear span of the kernel function evaluated at the training points" [START_REF] Øyvind Mikalsen | Time series cluster kernel for learning similarities between multivariate time series with missing data[END_REF].

Our goal is to propose a parallel DPM approach for high dimensional Process Mixture Models data clustering based on the DC-DPM algorithm [START_REF] Meguelati | Dirichlet process mixture models made scalable and effec-Bibliography tive by means of massive distribution[END_REF].

RKHS of Gaussian Process and DPM

We assume that the random variable of interest takes its values in a space of infinite dimension. Therefore, high dimensional data will be seen as trajectories of a random process Y : Y = (Y (t)) t∈[0,T] , where t stands for the general index of the Y function, t can be for example a time index in case of time series or a wavelength index in case of spectrum. In order to guarantee the existence of necessary conditional probabilities in the DPM algorithm, we will assume that the trajectories belong to the space of the integrable square functions (L 2 ([0, T])) on [0, T] (from [START_REF] Richard | Real analysis and probability. wadsworth & brooks[END_REF]). Our work focuses on Gaussian random process because most of the random process can be approximated by a Gaussian process. In addition many calculations are facilitated in the Gaussian framework. For example, [START_REF] Seeger | Gaussian processes for machine learning[END_REF] stated that using Gaussian process for machine learning "turn out to be much more accurate than for parametric models of equal flexibility (such as multilayer perceptrons)".

A Gaussian process GP (m, K) is entirely defined by its mean function m(t) and its covariance function K(s, t), for all t, s ∈ [0, T]. The main idea behind the clustering with Gaussian Process is to use results from signal processing where the data is the sum of two Gaussian processes, namely a signal (a trajectory m i issued from a GP (m 0 , K 0)) and a noise (ε i issued from a GP (0, K)):

Y i = m i + ε i .
We assume that the signal is smoother than the noise in order to be able to detect it. To extract the signals and cluster them, we use the following DPM:

Y i | m i , K ∼ GP (m i , K) , i = 1, . . . , N m i ∼ G G | m 0 , K 0 ∼ DP (α, GP (m 0 , K 0))

RKHS of Gaussian Process and DPM

53

DPM will create clusters of m i where for all observations in cluster c, m i = φ c . To run the DPM with algorithm 8 from Neal [START_REF] Radford | Markov chain sampling methods for dirichlet process mixture models[END_REF][START_REF] Meguelati | Dirichlet process mixture models made scalable and effec-Bibliography tive by means of massive distribution[END_REF], we need to define a posterior distribution GP (m * , K *) for φ c and the likelihood process dGP (m i , K)/dGP (0, K) for Y i . From [START_REF] Seeger | Gaussian processes for machine learning[END_REF], the Reproducing Kernel Hilbert Space with reproducing kernel K, denoted H K "will turn out to contain expected values of m i conditioned on a finite amount of information, thus the posterior mean function m * we are interested in".

Moreover, there exists a duality between a Gaussian process GP (m, K) and H K . H K is a space of real functions defined on [0, T] which verifies the following property: ∀t ∈ [0, T], ∀f ∈ H K , f (t) = (f, K(., t)) K , where (., .) K is the inner product of H K . From [START_REF] Parzen | Regression analysis of continuous parameter time series[END_REF], we define the random variable (Y, f) K like a stochastic integral. The properties of H K allow to define the likelihood process [START_REF] Parzen | Statistical inference on time series by hilbert space methods, i[END_REF][START_REF] Parzen | Probability density functionals and reproducing kernel hilbert spaces[END_REF]:

(Y, K(, t)) K = Y (t) (4.1) f, g ∈ H K , (f, g) K = E[(Y, f) K (Y, g) K] (4.2)
m i ∈ H K , dGP (m i , K) dGP (0, K) (Y i) = e (Y i ,m i) K -1 2 (m i ,m i) K (4.3)
To ensure that m i ∈ H K , we must choose carefully the covariance function K 0 , because the differentiability of m i up to a given order (and therefore the smoothness of m i) can be controlled via the covariance function.

Finally, following [START_REF] Michael | The signal-noise problem-a solution for the case that signal and noise are gaussian and independent[END_REF][START_REF] Aad W Van Der Vaart | Reproducing kernel hilbert spaces of gaussian priors[END_REF][START_REF] Juery | Classification bayésienne non supervisée de données fonctionnelles[END_REF], the posterior distribution for the signal of a cluster c is a Gaussian process, namely

φ c | (Y i) c i =c ∼ GP (m * , K *) with: m * (t) = m 0 (t) + (K 0 (., t), (Ȳc -m 0)) K/nc+K 0 (4.4) K * (s, t) = K 0 (s, t) -(K 0 (., s), K 0 (., t)) K/nc+K 0 (4.5)
where the covariance functions K and K 0 are weakly continuous functions on [0, T] × [0, T]; n c and Ȳc are respectively the number of observations and the mean function Ȳc =

lim L→∞ t f (L) K (L) -1 g (L) = (f, g) K lim L→∞ t Y (L) i K (L) -1 g (L) = (Y i , g) K
where (t l) l=1...L is dense in [0, T] and f (L) = (f (t 1), . . . , f (t L)), g (L) = (g(t 1), . . . , g(t L)) and K (L) is a L × L matrix whose elements are K(t l , t j) for 1 ≤ l, j ≤ L. Oya et al. [START_REF] Oya | Numerical evaluation of reproducing kernel hilbert space inner products[END_REF] proposed a generalised numerical approach to estimate the inner product in H k . In our approach (Section IV), we use a known analytical form for the inner product, which avoids matrix product or inversion and thus allows to escape the curse of dimensionality.

HD4C : High Dimensional Data Distributed

Dirichlet Clustering

Working in infinite dimension (functional data) allows to use information on the trajectories but also on their derivatives, which may reveal key information for the data clustering (see [START_REF] Coffey | Analyzing time-course microarray data using functional data analysis-a review[END_REF]). Indeed an Hilbert space (like the RKHS) is a space of integrable square functions (L 2 ([0, T])) on [0, T], it is a special case of a Sobolev space. It means that a RKHS is a vector space of functions equipped with a norm that is a combination of L p -norms of the function itself and its derivatives up to a given order. The given order is conditioned by the differentiability of the trajectories and therefore by the covariance function K of the random process Y .

In our experiments, we defined Y i | θ i = m i , K as an autocorrelated Gaussian process called Ornstein-Uhlenbeck (OU) whose covariance function is defined as follows:

K(s, t) = σ 2 2 β e -β|s-t| , (4.6)
where σ and β are two positive real.

4.4. HD4C : High Dimensional Data Distributed Dirichlet Clustering 55 Therefore, from [START_REF] Berlinet | Reproducing kernel Hilbert spaces in probability and statistics[END_REF], H K is a space of differentiable functions in [0, T] with the scalar product (defining the norm):

(f, g) K = 1 σ 2 T 0 f (t)g (t) + β 2 f (t)g(t) dt + β σ 2 f (0)g(0) + f (T)g(T) . (4.7)
To ensure that m i ∈ H K , we used the prior G = GP (m 0 , K 0), where

K 0 (s, t) = σ 2 0 2 β 0 e -β 0 (s-t) 2 .
This covariance gives very smooth trajectories (infinitely differentiable).

Other choice of covariance functions are possible for non smooth observations (like a Wiener process). Defining the covariance function K on the observations is equivalent to defining the kernel covariance K of the RKHS H K . Defining a kernel K requires defining an inner product in H K , which is equivalent to defining a metric, a distance between two observations d(i, j) = (m i -m j , m i -m j) K . This led us to use a Sobolev metric for high dimensional Gaussian data (ie a distance between trajectories and their derivatives for OU Gaussian data) instead of the usual euclidean distance T 0 (m i (t) -m j (t)) 2 dt or the Mahalanobis distance for multivariate Gaussian data.

Implementing this algorithm requires:

• The set of indexes used for computing the integrals in the inner product equation (4.7); for example in time series, it could be the observation time steps or not.

• An interpolation of the observations (if needed) to simplify the computation of the inner product. This interpolation can be used to adapt the observations to the covariance function K.

• Computation of the densities at the master and at the worker level, Our synthetic data are generated using a two-steps principle. In the first step we generate four cluster centers according to the following polynomials :

                     s 1 (t) = 0.11t 3 -0.16t 2 + 0.55t s 2 (t) = -0.75t 4 + 1.49t 3 -0.91t 2 + 0.17t s 3 (t) = 3.91t 5 -9.77t 4 + 0.854t 3 -3.05t 2 + 0.37t s 4 (t) = -20.09t 6 + 60.26t 5 -68.22t 4 + 36t 3 -8.71t 2 + 0.76t
In the second step, we generate the data corresponding to each center, by using a Gaussian process of mean s i and a covariance given by an Ornstein-Uhlenbeckh process parametrized by β = 10 and σ = 2.5 . We generated independently a batch of 5 datasets having size 200K, 400, 600, 800K and 1M time series of 100 points, the latter dataset is about 2 Gigabytes. Figures 4.2 The first real world dataset corresponds to more than five thousands accelerometer time series which have been measured by sensor on 13 sheep (as in figure 4.1). Each time series is made of 500 observation times and has been visually assigned to one of six activities (STANDING-GRAZING, STANDING-EATING BRUSH, STANDING-RUMINATING, WALKING, RUN-NING, STANDING-IMMOBILE). Accelerometers captured 3-axial acceleration at a constant rate of 100Hz. The sensor signals were pre-processed and for each activity of interest, sampled in fixed-width of 5 seconds (500 values / a time series). Each of the three axial acceleration gives a different information for the zoologist, so HD4C clustering was performed by axis (horizontals (x and y) and vertical (z)). The objective was to discover the underlying structures of each axis and then to link these structures to sheep activities. Figures 4.4

Clustering Evaluation Criteria

In our experiments, we chose the following criteria already described in the previous chapter (see section 3.4.2) for evaluating the results of our clustering approach HD4C.

1. The Adjusted Rand Index (ARI).

2. K, the number of discovered clusters.

Response Time

In this section we measure the clustering time in HD4C. Figure 4.7 reports the response times on our synthetic data, HD4C is run on a computing cluster of 16 nodes. The clustering time increases with the number of data, our approach benefits from linear scalability with the dataset size. For a dataset of 200K data points, HD4C performs the clustering in about 12 minutes, while a centralized approach does not scale and cannot execute on such dataset size, it needs several days on a single machine. 4.9 and 4.10 illustrate the parallel speed-up of our approach on 200K time series from the synthetic dataset, on accelerometers data from the first real world dataset, and on spectrum from the second real dataset. The results show optimal or near optimal gain. On the accelerometers dataset there is not a big difference between 8 and 16 nodes because this dataset is not big, and distributing it on 8 or 16 nodes is super fast at workers level while the synchronisation at the master level takes almost the same time, an other reason is that the computing nodes do not have the same performances and some of them finish and wait the other nodes that are slower.

Clustering Evaluation

In the following experiments, we evaluate the clustering performance of HD4C and compare it to the K-means approach. tained and the ground truth, the estimated values of parameters σ and β, and the number of clusters, obtained with HD4C on our synthetic data while increasing the dataset size. The HD4C is run on a cluster of 16 nodes. HD4C performs well, the ARI values are almost equal to 1 (best value), the number of discovered clusters is equal to the real number of clusters, the estimated values of σ and β are close to the parameters used for simulating the data. Note also that the estimated ratio as a function of the number of clusters, it is run on two nodes (16 workers). The K-means approach does not reach the best value 1, the peak of these values is 0.90 but with 9 clusters which is not the real number in the ground truth, while with the real number of clusters (4 clusters) the ARI value is 0.79.

K-means suffers from the convergence to a local minimum which may produce "wrong" results, as illustrated for example in table 4.2. This table shows the results of K-means performed on 600K time series of the synthetic dataset with the right number of clusters (4 clusters, each containing 150K data) and run on 16 nodes. Each line of table 4.2 represents one cluster obtained by K-means and reports the number of data obtained in each cluster: the cluster 2 obtained by K-means regroups the two real clusters 1 and 3 , while the real cluster 2 is divided between clusters 1 and 3 discovered by K-means.

By comparison, when applying HD4C on the same dataset, the right number of clusters is discovered and all the data except a few ones are affected to the true clusters, as presented in table 4.3.

Repeating the clustering on accelerometers data many times by HD4C

Conclusion

We proposed HD4C, a novel and efficient parallel solution to perform clustering via DPM on large amount of infinite dimensional data. These infinite dimensional data include lengthy time series or spectral data for example. We evaluated the performance of our solution over real world and synthetic datasets. The experimental results illustrate the high performance of HD4C with results that are comparable to K-means, one of the most commonly used clustering algorithms. Overall, the experimental results show that by using our parallel techniques, the DPM clustering of very large volumes of high dimensional data can now be done, which is impossible to achieve using the multivariate DPM approach.

V Conclusion

This thesis was carried out in the context of parallel clustering in massively distributed environments. We have focused on the Dirichlet Process Mixture (DPM) clustering since it enables the discovery of clusters number automatically and the attribution of data to clusters in the same process.

Our aim was to improve and accelerate the DPM algorithm which suffers from the high computational costs that impairs the benefit of its advantages.

In this chapter, we summarize and discuss the main contributions made in this thesis. Then we give some research directions for future work.

Contributions

This thesis included the following main contributions related to clustering via Dirichlet process mixture in massively distributed environments.

Dirichlet Process Mixture Models made Scalable and

Effective by means of Massive Distribution

In this contribution, our main challenge was the parallelization of Dirichlet Process Mixture (DPM) clustering algorithm since it must calculate for each data, the probability of assigning it to each cluster, a highly repeated number of times, that requires a global view of all dataset and all existing clusters in different nodes. Such parallelization calls for particular attention to three main issues: i) the load balance between computing nodes, ii) the cost of communication, iii) the full benefit from DPM properties. To this end, we proposed in this thesis DC-DPM (Distributed Clustering via Dirichlet Process Mixtures), our solution for DPM clustering that can be performed on millions of data points while remaining DPM compliant. We have extensively evaluated our algorithm using very large real-world and synthetic datasets, the results confirm the high performance in comparison with the centralized version. Overall, the experimental results show that by using our parallel techniques, the clustering of very large volumes of data can now be made in small execution times, which is impossible to achieve using the centralized DPM approach.

High Dimensional Data Clustering by means of Distributed Dirichlet Process Mixture Models

In this contribution, we opened a fundamental research track which is clustering of high dimensional data such as time series (as a function of time) or hyperspectral data (as a function of wavelength). In fact, DC-DPM solution is dedicated to multivariate data clustering, it needs to perform some matrix computations like inverse matrix and matrix product for example. These computations are no more feasible in the case of high dimensional data. An existing solution is the dimensionality reduction, but this 5.2. Directions for Future Work 71 technique may lead to data loss, or we may not know how many principal component to keep in practice. Thus our main challenge was to adapt the DPM clustering algorithm to high dimensional data by keeping all information on the data in order to avoid dimensionality reduction drawbacks and to keep all the properties of the DPM. For this reason, we proposed HD4C (High Dimensional Data Distributed Dirichlet Clustering), an efficient parallel approach for DPM clustering on large amount of infinite dimensional data. We evaluated effectiveness and the capabilities of HD4C algorithm by carrying out extensive various experiments over real-world and synthetic datasets. The results have shown an outstanding performance of our parallel technique, it enables the DPM clustering of high dimensional data, which is impossible to achieve using the multivariate DPM approach.

Directions for Future Work

The results achieved in this thesis keep the door open for several possible extensions and improvements. First, our contributions could be enriched with extensions to more general data types and use cases. Second, in order to accelerate the running time, we could consider implementations using GPU (Graphics Processing Unit) computing. In the following, we develop these directions of research.

• Generalizing HD4C: As mentioned previously, our work focuses on Gaussian random Process, data are defined as an autocorrelated process called Ornstein-Uhlenbeck for which the covariance function is defined. We could envisage the addition of a hierarchy that allows taking into account different data covariates, where each data is associated with a functional covariate. It is therefore a question of constructing a functional linear model in which both data and its covariate are functions.

Let's remember that the implementation of the DPM algorithm requires: i) the numerical calculation of densities. ii) the simulation according to the posterior distribution of each cluster parameter knowing its assigned data. Both requirements imply the calculation of the scalar product of a stochastic process. We could propose a new generalized numerical version to evaluate the scalar product, as in [START_REF] Oya | Numerical evaluation of reproducing kernel hilbert space inner products[END_REF].

Then the same algorithm as HD4C could be used for implementation.

• Extending to multidimensional data: Several exciting new technologies have been developed in different fields such as digital agriculture, earth science, electric industry, biomedical and life sciences, producing a huge amounts of multidimensional data. In general, such datasets consists of different measured variables (dimensions) which can contribute to a single observation, like for example accelerometer data described in section 4.5.1. A good perspective is to adapt our work to deal with such datasets.

• Implementing DPM with non conjugate prior: In the DC-DPM approach, we have implemented DPM clustering algorithm when the prior is conjugated (Normal Distribution), the posterior expectation then can be estimated simply. Other distributions are not conjugated, such as log-normal distribution that is important in the description of natural phenomena for example in biology, medicine, chemistry and finance. In this case, sampling from the posterior will usually be hard.

According to Neal [START_REF] Radford | Markov chain sampling methods for dirichlet process mixture models[END_REF], the best way of handling non-conjugate priors is by using Metropolis-Hasting algorithm [32] to update the cluster labels using the conditional prior as the proposal distribution.

• Using GPU computing: Since GPU computing becomes more and more practical and popular, we may benefit of GPU parallel processing capabilities to improve the DPM clustering. A Graphics Processing Unit is a specialized electronic circuit designed to rapidly manipulate and alter memory to accelerate processing. It is originally made 5.2. Directions for Future Work 73 to handle computation only for computer graphics. In the last few years, parallel GPU computing [START_REF] Sanders | CUDA by example: an introduction to general-purpose GPU programming[END_REF] has begun making computational inroads against the CPU, and it has found its way into several fields outside the image rendering and processing such as data analytics. A GPU program comprises two parts: a host part that runs on the CPU and one or more kernels that are run by thousands of threads in parallel on the GPU. Typically, the CPU portion of the program is used to set up the parameters and data for the computation, while the kernel portion performs the actual computation. This architecture allows implementing our contributions affecting workers tasks to threads in GPU and master tasks to CPU.

 probabilité d'avoir la valeur φ k et δ est le symbole de la fonction delta de Dirac. Par conséquent, les variables observées θ n ont une probabilité non nulle d'avoir la même valeur φ k et cela permet de faire du clustering. Le clustering est très sensible aux paramètres DP donnés par l'utilisateur final. G 0 est x Résumé Étendu une distribution de probabilité continue à partir de laquelle les (φ k) k∈N sont initialement tirés : φ 1 , . . . , φ k , . . . ∼ G 0 α est un paramètre d'échelle (α > 0) qui ajuste les poids de probabilité π k .

FIGURE 2 -

 2 FIGURE 2 -Graphe acyclique dirigé du DPM basé sur le Processus du Restaurant Chinois (CRP)

xiiiPN

 (c n = c | {c j } j =n , y n , {φ}) ∝ -1+α F (y n | φ c) cluster existant α N -1+α F (y n | φ)dG 0 (φ) nouveau clusteroù #(c) forme le nombre d'observations affectées au cluster c (après avoir retiré l'observation y n de l'échantillon).

3. 1

 1 ARI, RSS divided by the number of data N and the variance (σ2 2), and number of Clusters obtained with the centralized DPM and with DC-DPM, on increasing dataset size. The DC-DPM is run on a cluster of 8 nodes. 3.2 ARI, RSS divided by the number of data N and by the variance σ 2 2 , and number of clusters for DC-DPM on increasing dataset size. DC-DPM is run on a cluster of 16 machines. . . . 4.1 Clustering evaluation criteria obtained with HD4C (synthetic data). 4.2 Example of K-means convergence to a local minimum. 4.3 Number of data obtained by HD4C in each cluster compared to the ground truth. 4.4 Clustering evaluation criteria obtained with HD4C and Kmeans on real datasets. .

2. 1

 1 IntroductionClustering, or cluster analysis, is the task of grouping similar data into the same cluster and separating dissimilar data in different clusters. In this chapter, we introduce the basics and the necessary background of this thesis. First, we present some objectives, interests and common techniques of clustering. In particular, we introduce the Dirichlet Process Mixture Models (DPMM) by describing the notion of Dirichlet Process and discussing the algorithm of Gibbs Samplig which performs the clustering by DPM.Second, we investigate and detail multiple parallel processing frameworks and the existing distributed clustering algorithms focusing on parallel DPM solutions.

Figure 2 . 1 -

 21 Figure 2.1 -Durum in an experimental field. RGB image.

Figure 2 . 2 -

 22 Figure 2.2 -Hierarchical Clustering dendrogram example

Figure 2 . 3 -

 23 Figure 2.3 -K-means Clustering example

Figure 2 . 4 -

 24 Figure 2.4 -K-means converges to a local minimum

Figure 2 .

 2 Figure 2.6 gives an example of a DP distributed G with a base distribution G 0 and a concentration parameter α equal to 10, where G 0 is a Gaussian

Figure 2 . 6 -

 26 Figure 2.6 -Dirichlet Process Sample with Gaussian base distribution

Figure 2 . 7 -Figure 2 . 8 -

 2728 Figure 2.7 -Stick-Breaking illustration

Figure 2 . 9 -

 29 Figure 2.9 -Directed Acyclic Graph of the Dirichlet Process Mixture (DPM) based on the Chinese Restaurant Process (CRP)

Figure 2 . 10 -

 210 Figure 2.10 -Chinese Restaurant Process

Figure 2 . 11 -

 211 Figure 2.11 -MapReduce architecture

Figure 2 . 12 -

 212 Figure 2.12 -The overall MapReduce word count process

Figure 2 .

 2 Figure 2.13 -Spark Vs Hadoop/MapReduce

Figure 2 .

 2 Figure 2.14 -Spark Architecture

 Figure 3.1. It consists in 4 steps: 1. Identify local new clusters in the workers 2. Compute and send sufficient statistics and cluster sizes from each worker to the master 3. Synchronize and estimate cluster labels from sufficient statistics 4. Send updated cluster parameters and cluster sizes from master to workers Our first proposition concerns the synchronization and estimation of

Figure 3 . 1 -

 31 Figure 3.1 -Diagram/workflow of the DC -DPM

Chapter 3 .

 3 Dirichlet Process Mixture Models made Scalable and Effective by means of Massive Distribution

Figure 3 . 2 -

 32 Figure 3.2 -Food courts process

F

 (y n,j , φ)dG 0 (φ) new 3.3. DC-DPM: Distributed Clustering via DPM 33 were the weight w c is the proportion of observations from cluster c evaluated on the whole dataset and w u the proportion of non affected observations (awaiting the creation, innovation, discover of their real clusters). Therefore, these parameters are updated at the master level during the synchronization.When a new cluster is created, we draw b ∼ beta(1, γ) and set w new c = bw u and w new u = (1 -b)w u . We can understand b as follows : When a new cluster

Algorithm 1

 1 summarizes the DPM at the worker level. means of Massive Distribution Algorithm 1 DPM at worker level for each data y n do Draw c n,j from P (c n,j = c | {c l,j } l =n , y n,j , {φ}, {w}, α j) ∝    #(c)+α j wc N j -1+α j F (y n,j , φ c), c = 1, . . . , K α j wu N j -1+α j F (y n,j , φ)dG 0 (φ) new Update of α j Draw φ c for new clusters

3. 3 .

 3 DC-DPM: Distributed Clustering via DPM 35

Chapter 3 .

 3 Dirichlet Process Mixture Models made Scalable and Effective by means of Massive Distribution Algorithm 2 DPM at master level

 Figure 3.3 illustrates the basic architecture of DC-DPM in Spark.

Chapter 3 .

 3 Dirichlet Process Mixture Models made Scalable and Effective by means of Massive Distribution

Figure 3 . 3 -

 33 Figure 3.3 -Architecture of DC-DPM in Spark

Figure 3 . 4 -

 34 Figure 3.4 -Logarithmic scale.Response time (minutes) of the centralized and the distributed DPM approaches as a function of dataset size. The distributed approach is run on a cluster of 8 nodes. With 20K to 100K data points from the synthetic dataset. The centralized approach needs more than 7 hours and our distributed approach needs 24 seconds

Figure 3 .

 3 Figure 3.5 reports an extended view on the clustering time, only for DC-DPM, and with a dataset having up to 10 million data points. The running time increases with the number of data points. Let us note that the centralized approach does not scale and cannot execute on such dataset size. DC-DPM enjoys linear scalability with the dataset size.

Figures 3 .

 3 Figures 3.6 and 3.7 illustrate the parallel speed-up of our approach on the synthetic dataset and on the dataset obtained after preprocessing the image of our use-case. The results show optimal or near optimal gain. In Figure 3.7 we observe that the response time for 2 nodes is more than twice the response time for 4 nodes. That is unexpected when measuring a speed-up.

Chapter 3 .Figure 3 . 5 -Figure 3 . 6 -

 33536 Figure 3.5 -Response time (minutes) of DC-DPM as a function of dataset size. DC-DPM is run on a cluster of 16 machines. With 10 million data points from the synthetic dataset.

Figure 3 . 7 -

 37 Figure 3.7 -Clustering time as a function of the number of computing nodes on the image of our use-case. DC-DPM has an optimal speed-up. The image represents more than 1 million data points.

Figure 3 .

 3 Figure 3.8 gives a visual representation of our 4M data points synthetic dataset. Each cluster is assigned a color. Our goal is to retrieve these clus-

Figure 3 . 8 -

 38 Figure 3.8 -Visual representation of our synthetic dataset with 4 millions data points on 100 clusters. Each cluster is assigned a different color.

Figure 3 . 9 -

 39 Figure 3.9 -Visual representation of the results obtained by our approach on the data of Figure 3.8, with 16 nodes. Each cluster is assigned a different color.

Figure 3 . 10 -

 310 Figure 3.10 -Clustering of the Durum image in the experimental field. RGB image with σ 2 = 0.01, resulting in 3 clusters.

Figure 3 . 11 -

 311 Figure 3.11 -Clustering of the Durum image in the experimental field. RGB Image with σ 2 2 = 0.0025.

Figure 3 . 12 -

 312 Figure 3.12 -Clustering of a part of the Durum image in the experimental field. RGB Image with DC-DPM (top, 12 clusters) and centralized DPM (bottom, 17 clusters), σ 2 2 = 0.0025. The impact of σ 2 on the number of clusters varies for centralized and distributed approaches and may be adjusted by the end-user.

Figure 4 . 1 -

 41 Figure 4.1 -An accelerometer mounted on a sheep's collar.

 and 4.3 give a visual representation of our synthetic dataset. Each cluster is assigned a color and represented by 10 time series. This type of generator is widely used in statistics, where methods are evaluated first on synthetic data before being applied on real data.

60 Chapter 4 .Figure 4 . 2 -

 60442 Figure 4.2 -Visual representation of the synthetic dataset clusters.

Figure 4 . 3 -

 43 Figure 4.3 -Visual representation of the synthetic dataset with separated clusters.

Figure 4 . 4 -

 44 Figure 4.4 -One axis visual representation of labeled accelerometers data

Figure 4 . 5 -Figure 4 . 6 -

 4546 Figure 4.5 -Separated clusters of one axis accelerometers data

Figure 4 . 7 -

 47 Figure 4.7 -Response time (minutes) of HD4C as a function of the dataset size.

Figures 4. 8

 8 Figures 4.8,[START_REF] Alamsyah | Monte carlo simulation and clustering for customer segmentation in business organization[END_REF].9 and 4.10 illustrate the parallel speed-up of our approach on 200K time series from the synthetic dataset, on accelerometers data from the first real world dataset, and on spectrum from the second real dataset. The results show optimal or near optimal gain. On the accelerometers dataset there is not a big difference between 8 and 16 nodes because this dataset is not big, and distributing it on 8 or 16 nodes is super fast at workers level while the synchronisation at the master level takes almost the same time, an other reason is that the computing nodes do not have the same performances and some of them finish and wait the other nodes that are slower.

 Figures 4.8,[START_REF] Alamsyah | Monte carlo simulation and clustering for customer segmentation in business organization[END_REF].9 and 4.10 illustrate the parallel speed-up of our approach on 200K time series from the synthetic dataset, on accelerometers data from the first real world dataset, and on spectrum from the second real dataset. The results show optimal or near optimal gain. On the accelerometers dataset there is not a big difference between 8 and 16 nodes because this dataset is not big, and distributing it on 8 or 16 nodes is super fast at workers level while the synchronisation at the master level takes almost the same time, an other reason is that the computing nodes do not have the same performances and some of them finish and wait the other nodes that are slower.

Chapter 4 .Figure 4 . 8 -Figure 4 . 9 -

 44849 Figure 4.8 -Clustering time as a function of the number of computing nodes on the synthetic data.

Table 4 .Figure 4 . 10 -

 4410 Figure 4.10 -Clustering time as a function of the number of computing nodes on the spectral data.

σ2 2 β

 2 converges to the true simulated ratio σ 2 2β , which corresponds to the variance on the diagonal of K in (4.6).

Figure 4 . 66 Chapter 4 . 1 -Figure 4 . 11 -

 46641411 Figure 4.11 reports the Adjusted Rand Index values obtained by performing K-means approach on 200K time series from the synthetic dataset

2 State of the Art 2

 . De plus, de nombreux calculs sont facilités dans le cadre gaussien. Dans notre approche, nous définissons les données comme un processus gaussien autocorrélé appelé Ornstein-Uhlenbeck (OU) et nous xviii Résumé Étendu utilisons le même algorithme que dans DC-DPM. Nous évaluons notre proposition en utilisant des jeux de données réels et synthétiques et les résultats confirment la haute performance de notre approche. Thesis Organisation .1 Introduction . Dirichlet Process Mixture Models 13 2.3.1 Dirichlet Process . 13 Conclusion .

	xxii	xix Contents
	Organisation de la thèse Cette thèse est divisée en deux grands chapitres de contribution précé-2.3 2.3.2 Dirichlet Process Mixture 17
	dés d'un chapitre présentant le contexte nécessaire. 2.3.3 Gibbs Sampling . 18
	Publications Dans le chapitre 2, nous faisons le point sur l'état de l'art. Il est divisé 2.4 Massively Distributed DPM Clustering 20
	en trois sections principales : Dans la section 2.2, nous donnons un aperçu
	• Khadidja Meguelati, Bénédicte Fontez, Nadine Hilgert, Florent Mas-général des techniques principales de clustering dans l'environnement cen-2.4.1 Parallel Frameworks . 20
	seglia. Dirichlet Process Mixture Models made Scalable and Effective tralisé. En particulier, nous présentons quatre méthodes : le clustering hié-
	by means of Massive Distribution. ACM/SIGAPP SAC: Symposium rarchique, K-means, le clustering basé sur la densité et le clustering basé sur 2.4.2 Parallel Clustering . 24
	on Applied Computing, Apr 2019, Limassol, Cyprus. le modèle. La section 2.3 présente les modèles de mélange de processus de 2.5
	Dirichlet (DPMM), elle détaille quelques notions de processus de Dirichlet
	et discute l'algorithme de Gibbs sampling qui permet d'effectuer un cluste-
	ring de DPM. La section 2.4 sera dédiée à l'introduction de quelques envi-
	ronnements distribués et de quelques solutions parallèles existante pour le
	clustering.	
	Le chapitre 3 est consacré à l'étude et à la résolution du problème des 1 Introduction
	temps prohibitifs de réponse qui nuit à l'adoption du clustering par DPM et rend inefficaces ses approches centralisées. Ce chapitre commence par la 1.1 Context .
	motivation et l'aperçu de la contribution dans la section 3.2. Dans la sec-1.2 Contributions .
	tion 3.3, nous proposons notre algorithme DC-DPM et nous expliquons en
	détail son principe. Dans la section 3.4, nous validons notre proposition à 1.3 Publications .
	• Khadidja Meguelati, Bénédicte Fontez, Nadine Hilgert, Florent Masse-glia, Isabelle Sanchez. Massively Distributed Clustering via Dirichlet travers différentes expérimentations en utilisant des données réelles et syn-thétiques. Finalement, dans la section 3.5, nous concluons notre travail. Dans le chapitre 4, nous traitons le problème de la haute dimensionna-lité. Dans la section 4.2, nous présentons le contexte et donnons un aperçu de notre travail. Le contexte nécessaire des espaces de Hilbert à noyau re-produisant (RKHS) est indiqué dans la section 4.3. Dans la section 4.4, nous proposons HD4C, notre solution distribuée pour le clustering de données 1.4 2.2 Clustering .
	Process Mixture. ECML PKDD: European Conference on Machine Lear-de haute dimension. Dans la section 4.5, nous évaluons notre approche en 2.2.1 Objectives and Interests
	ning and Principles and Practice of Knowledge Discovery in Data-réalisant diverses expérimentations sur des données réelles et synthétiques.
	bases, Sep 2020, Ghent, Belgium. Enfin, nous résumons nos travaux dans la section 4.6 2.2.2 Common Techniques .	

• Khadidja Meguelati, Bénédicte Fontez, Nadine Hilgert, Florent Masseglia. Massively Distributed Dirichlet Process Mixture Models. IN-FORSID: INFormatique des ORganisations et Systèmes d'Information et de Décision, Jun 2019, Université Paris-Dauphine, France. • Khadidja Meguelati, Bénédicte Fontez, Nadine Hilgert, Florent Masseglia. Dirichlet Process Mixture Models made Scalable and Effective by means of Massive Distribution. BDA (Bases de Données Avancées): Conférence sur la Gestion de Données -Principes, Technologies et Applications, Oct 2019, Lyon, France. • Khadidja Meguelati, Bénédicte Fontez, Nadine Hilgert, Florent Masseglia. High Dimensional Data Clustering by means of Distributed Dirichlet Process Mixture Models. IEEE International Conference on Big Data (IEEE BigData), Dec 2019, Los-Angeles, United States.

26 3 Dirichlet Process Mixture Models made Scalable and Effective by means of Massive Distribution 27

 Conclusion .

	Contents	xxiii
	3.5	
		3.1 Introduction . 27
		3.2 Motivation and Overview of the Proposal 28
		3.3 DC-DPM: Distributed Clustering via DPM 29
		3.3.1 Architecture and Distributed Algorithm 30
		3.3.2 The Exponential Distribution Family 36
		3.4 Performance Evaluation . 37
		3.4.1 Datasets . 38
		3.4.2 Clustering Evaluation Criteria 39
		3.4.3 Response Time . 40
		3.4.4 Clustering Evaluation 43
		3.4.5 Use-case . 44

48 4 High Dimensional Data Clustering by means of Distributed Dirich- let Process Mixture Models 49

	xxvi List of Figures xxviii	List of Figures xxvii List of Figures
	2.12 The overall MapReduce word count process 3.9 Visual representation of the results obtained by our approach 4.10 Clustering time as a function of the number of computing
	on the data of Figure 3.8, with 16 nodes. Each cluster is as-nodes on the spectral data. 65
	2.13 Spark Vs Hadoop/MapReduce signed a different color. 45 4.11 ARI values of K-means as a function of the number of clusters. 66
	2.14 Spark Architecture . 3.10 Clustering of the Durum image in the experimental field. RGB
	4.1 Introduction . 49 4.2 Motivation and Overview of the Proposal 51 image with σ 2 = 0.01, resulting in 3 clusters. 47 List of Figures 3.1 Diagram/workflow of the DC -DPM 3.11 Clustering of the Durum image in the experimental field. RGB
	4.3 RKHS of Gaussian Process and DPM 52 3.2 Food courts process . Image with σ 2 2 = 0.0025. 47
	3.12 Clustering of a part of the Durum image in the experimental 4.4 HD4C : High Dimensional Data Distributed Dirichlet Clus-1 Echantillonnage de θ n , n = 1, . . . , N ix 3.3 Architecture of DC-DPM in Spark field. RGB Image with DC-DPM (top, 12 clusters) and cen-tering . 54 4.5 Performance Evaluation . 58 2 tralized DPM (bottom, 17 clusters), σ 2 2 = 0.0025. The impact Graphe acyclique dirigé du DPM basé sur le Processus du 3.4 Logarithmic scale. Response time (minutes) of the centralized of σ 2 on the number of clusters varies for centralized and dis-Restaurant Chinois (CRP) . xi and the distributed DPM approaches as a function of dataset tributed approaches and may be adjusted by the end-user. . . 48
	4.5.1 Datasets . 58 size. The distributed approach is run on a cluster of 8 nodes.
	4.5.2 Clustering Evaluation Criteria 62 2.1 Durum in an experimental field. RGB image. With 20K to 100K data points from the synthetic dataset. The centralized approach needs more than 7 hours and our dis-4.1 An accelerometer mounted on a sheep's collar. 50
	4.5.3 Response Time . 63 2.2 Hierarchical Clustering dendrogram example tributed approach needs 24 seconds 4.2 Visual representation of the synthetic dataset clusters. 60
	4.5.4 Clustering Evaluation 64 2.3 K-means Clustering example 3.5 Response time (minutes) of DC-DPM as a function of dataset 4.3 Visual representation of the synthetic dataset with separated
	4.6 Conclusion . 68 million data points from the synthetic dataset. 2.4 K-means converges to a local minimum size. DC-DPM is run on a cluster of 16 machines. With 10 clusters. 60
	2.5 Sampling of θ n , n = 1, . . . , N . 4.4 One axis visual representation of labeled accelerometers data . 61
	5 Conclusion 3.6 Clustering time as a function of the number of computing 69
	2.6 Dirichlet Process Sample with Gaussian base distribution . . . nodes on synthetic data. DC-DPM has a near optimal speed-4.5 Separated clusters of one axis accelerometers data 61
	5.1 Contributions . 69 up. With 2M data points from the synthetic dataset. 4.6 Visual representation of the spectral dataset 62 2.7 Stick-Breaking illustration . 5.1.1 Dirichlet Process Mixture Models made Scalable and Effective by means of Massive Distribution 70 5.1.2 High Dimensional Data Clustering by means of Dis-tributed Dirichlet Process Mixture Models 70 2.8 Concentration parameter's role in DP 3.7 Clustering time as a function of the number of computing 4.7 Response time (minutes) of HD4C as a function of the dataset nodes on the image of our use-case. DC-DPM has an opti-size. 63 mal speed-up. The image represents more than 1 million data 2.9 Directed Acyclic Graph of the Dirichlet Process Mixture (DPM) based on the Chinese Restaurant Process (CRP) points. 4.8 Clustering time as a function of the number of computing
	2.10 Chinese Restaurant Process . 3.8 Visual representation of our synthetic dataset with 4 millions 5.2 Directions for Future Work . 71 nodes on the synthetic data. 64
	data points on 100 clusters. Each cluster is assigned a differ-4.9 Clustering time as a function of the number of computing
	2.11 MapReduce architecture . ent color. nodes on the accelerometers data. 64

 Thesis Organisation • Khadidja Meguelati, Bénédicte Fontez, Nadine Hilgert, Florent Masseglia. Dirichlet Process Mixture Models made Scalable and Effective by means of Massive Distribution. BDA (Bases de Données Avancées): Conférence sur la Gestion de Données -Principes, Technologies et Applications, Oct 2019, Lyon, France. • Khadidja Meguelati, Bénédicte Fontez, Nadine Hilgert, Florent Masseglia. High Dimensional Data Clustering by means of Distributed Dirichlet Process Mixture Models. IEEE International Conference on Big Data (IEEE BigData), Dec 2019, Los-Angeles, United States.

• Khadidja Meguelati, Bénédicte Fontez, Nadine Hilgert, Florent Masseglia. Dirichlet Process Mixture Models made Scalable and Effective by means of Massive Distribution. ACM/SIGAPP SAC: Symposium on Applied Computing, Apr 2019, Limassol, Cyprus. • Khadidja Meguelati, Bénédicte Fontez, Nadine Hilgert, Florent Masseglia. Massively Distributed Dirichlet Process Mixture Models. INFORSID: INFormatique des ORganisations et Systèmes d'Information et de Décision, Jun 2019, Université Paris-Dauphine, France. 1.4. • Khadidja Meguelati, Bénédicte Fontez, Nadine Hilgert, Florent Masseglia, Isabelle Sanchez. Massively Distributed Clustering via Dirichlet Process Mixture. ECML PKDD: European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, Sep 2020, Ghent, Belgium.

Table 3 . 1 -

 31 ARI, RSS divided by the number of data N and the variance (σ 2 2), and number of Clusters obtained with the centralized DPM and with DC-DPM, on increasing dataset size. The DC-DPM is run on a cluster of 8 nodes.

	Centralized DPM		DC-DPM
	ARI	RSS N ×σ 2 2	Clusters ARI	RSS N ×σ 2 2	Clusters
	20K 1.00 2.01	10	1.00 2.04	10
	40K 1.00 2.00	10	1.00 2.03	10
	60K 1.00 2.00	10	1.00 2.02	10
	80K 1.00 2.00	10	1.00 2.01	10
	100K 1.00 2.00	10	1.00 2.02	10

Table 3 . 2 -

 32 ARI, RSS divided by the number of data N and by the variance σ 2 2 , and number of clusters for DC-DPM on increasing dataset size. DC-DPM is run on a cluster of 16 machines.

	ARI RSS/(N*σ 2 2) Clusters
	2M 1.00	2.00	102
	4M 1.00	2.00	100
	6M 1.00	2.00	100
	8M 1.00	2.02	99
	10M 1.00	2.10	101

Table 4 . 1 -

 41 Clustering evaluation criteria obtained with HD4C (synthetic data).

	ARI	σ	β	σ2 /2 β Clusters
	200K 1.00 2.57 10.59 0.31	4
	400K 1.00 2.13 7.25	0.31	4
	600K 0.99 2.15 7.44	0.31	4
	800K 1.00 2.28 8.30	0.31	4
	1M 0.99 2.13 7.25	0.31	4

Table 4 . 4 -

 44 Clustering evaluation criteria obtained with HD4C and K-means on real datasets.

			HD4C	K-means
		ARI Clusters	ARI
	Accelerometers 0.50	8	0.11
	Spectrums	0.34	9	0.32

Chapter 4. High Dimensional Data Clustering by means of Distributed Dirichlet Process Mixture Models from equation (4.3). This requires estimating the hyperparameters β and σ. To avoid overly complex modelling, we have chosen to fix them empirically. As the Y i curves are generated from Gaussian processes with covariance function K in (4.6), the parameters β and σ were determined from the empirical estimation of the intra-class variancecovariance matrix of the curves discretized in a few points.

We provide below more specific details:

Worker level

In the Gaussian process framework, the likelihood process is defined with respect to the Gaussian measure from GP (0, K). Using [START_REF] Parzen | Probability density functionals and reproducing kernel hilbert spaces[END_REF] we have

As the density of the predictive prior cannot be expressed with respect to the same Gaussian measure (GP (0, K)) than the likelihood, we approximated the integral in the MCMC algorithm, as suggested in algorithm 8 of [START_REF] Radford | Markov chain sampling methods for dirichlet process mixture models[END_REF], by drawing m realisations of φ c .

To improve the variety of new candidate values of φ new c , we modified the original algorithm according to the following: φ new c (t) = m 0 (t) + ζ(t), where ζ(t) is a trajectory simulated from GP (m 0 , K) and m 0 (t) is randomly simulated from a truncated polynomial basis (the basis order is also randomly chosen).

Following [START_REF] Michael | Bayesian density estimation and inference using mixtures[END_REF], we used an inverse Gamma prior to infer the parameter α j .

The following algorithm 3 summarizes the worker level.

where the weight w c is the proportion of observations from cluster c evaluated on the whole dataset and w u the proportion of non affected observations (awaiting the creation, innovation, discover of their real clusters), with

Therefore, these parameters are updated at the master level during the synchronization.

Master level

Instead of drawing new values φ new c

, the proposed algorithm reuses the center values of the clusters received from the workers, namely φ

The approximation of φ is updated by computing the posterior mean in each cluster, equation (4.4), to which we add a noise drawn from a GP (0, K/n c).

Following [START_REF] Meguelati | Dirichlet process mixture models made scalable and effec-Bibliography tive by means of massive distribution[END_REF], we use a Dirichlet prior to infer (w 1 , . . . , w K , w u).

The master lever is outlined in algorithm 4.

Algorithm 4 DPM at master level for each cluster k from worker j do Draw cluster label z j,k from

Update of φ and (w 1 , . . . , w K , w u)

Performance Evaluation

The parallel experimental evaluation was conducted on a computing cluster of 32 machines, each operated by Linux, with 64 Gigabytes of main memory, Intel Xeon CPU with 8 cores and 250 Gigabytes hard disk. The project is written in Scala on top of Apache Spark [START_REF] Zaharia | Spark: Cluster computing with working sets[END_REF] withe the same architecture as DC-DPM illustrated in figure 3.3.

We compared our approach to K-means, which is one of the most commonly used clustering algorithms. We used an implementation available at Spark's machine learning library (MLlib) [START_REF] Meng | Mllib: Machine learning in apache spark[END_REF].

The first step of HD4C is a distributed K-means that sets the initial state (usually we set K to be one tenth of the dataset size).

Reproducibility : All our experiments are fully reproducible. We make our code and data available at https://github.com/khadidjaM/HD4C.

In the rest of this section, we describe the datasets in Section 4.5.1 and our evaluation criteria in Section 4.5.2. Then, in Section 4.5.3, we measure the performances, in response time, of our approach by reporting its scalability and speed-up. We evaluate the clusters obtained by HD4C in the case of real and synthetic dataset in Section 4.5.4.

Datasets

We carried out our experiments on two real world datasets and many synthetic datasets. 4.4 also represents the ARI values obtained with the real world datasets both for HD4C and K-means. K-means was processed with the number of clusters found by HD4C. Each time we repeat the HD4C clustering we find a number close to the number of labels given by the experts.