N

N

Massively Distributed Clustering via Dirichlet Process
Mixture
Khadidja Meguelati

» To cite this version:

Khadidja Meguelati. Massively Distributed Clustering via Dirichlet Process Mixture. Electronics.
Université Montpellier, 2020. English. NNT : 2020MONTS034 . tel-03454296

HAL Id: tel-03454296
https://theses.hal.science/tel-03454296

Submitted on 29 Nov 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-03454296
https://hal.archives-ouvertes.fr

THESE POUR OBTENIR LE GRADE DE DOCTEUR
DE L'UNIVERSITE DE MONTPELLIER

En Informatique

Ecole doctorale : Information, Structures, Systémes

Unité de recherche LIRMM, UMR 5506

Clustering Massivement Distribuée via Mélange
de Processus de Dirichlet

Présentée par Khadidja Meguelati
Le 13/03/2020

Sous la direction de Florent Masseglia, Nadine Hilgert
et Bénédicte Fontez

Devant le jury composé de

Christophe Biernacki, Professeur, INRIA, Université Lillel Rapporteur

Mustapha Lebbah, MCF HDR, Université Sorbonne Paris Nord, LIPN Rapporteur

Sandra Bringay, Professeur, LIRMM, Université Montpellier 3 Examinatrice

Pierre Pudlo, Professeur, Université Aix Marseille, I2M Examinateur

Nadine Hilgert, DR INRAE, UMR MISTEA, Montpellier Co-directrice

Florent Masseglia, DR INRIA, LIRMM, Université Montpellier Co-directeur

Bénédicte Fontez, MCF Montpellier SupAgro, UMR MISTEA Invitée (Co-encadrante)

UNIVERSITE
DE MONTPELLIER

Résumé

La classification non supervisée (ou clustering) a pour objectif d’iden-
tifier des classes pertinentes dans les données. elle est largement utilisée
dans de nombreuses applications telles que le marketing, la reconnaissance
de patterns, ’analyse de données et le traitement d’images. Déterminer le
nombre optimal de clusters dans un ensemble de données est un défi fon-
damental qui a ouvert de nombreuses directions de recherche. De multiples

méthodes sont alors proposées pour résoudre ce probleme.

Le Mélange de Processus de Dirichlet (DPM) est utilisé pour le clustering
car il permet de définir automatiquement le nombre de classes, mais les
temps de calculs qu’il implique sont généralement trop importants, nuisant
a son adoption et rendant inefficaces ses versions centralisées.

Dans cette these, nous visons le probleme de la parallélisation du mé-
lange de processus de Dirichlet pour améliorer ces performances en exploi-
tant des environnements massivement distribués. En effet, d’aprés la litté-
rature, ’algorithme de DPM distribué fait appel a de nombreux problemes
tels que : I’équilibre de charge entre les noeuds de calcul, les cofits de com-

munication, et le plein bénéfice de propriétés du DPM.

Dans cette thése, nous proposons deux nouvelles approches pour le clus-
tering parallele via DPM. Tout d’abord, nous proposons DC-DPM (Cluste-

ii Résumé

ring Distribué via mélange de processus de Dirichlet), une version paralléli-
sée, qui permet le clustering de millions de points de données, ce qui repré-
sente un vrai défi. Nos expérimentations, tant sur des données synthétiques
que réelles, illustrent la performance de notre approche. Comparativement,
I'algorithme centralisé ne passe pas a 1’échelle. Son temps de réponse est
de plus de 7 heures sur des données de 100K points, quand notre approche
prend moins de 30 secondes.

Dans un deuxieme temps, nous nous intéressons au probléme de dimen-
sionnalité de données qui devient un défi important avec les obstacles nu-
mériques et théoriques dans ce cas. Nous proposons HD4C (Clustering de
Dirichlet Distribué pour des Données de Haute Dimension), une solution
de clustering paralléle qui s’adresse a la dimensionnalité par deux moyens.
Premiérement, elle s’adapte a des données massives en exploitant les archi-
tectures distribuées. Deuxiemement, elle effectue le clustering de données
de haute dimension telles que les séries temporelles (en fonction du temps),
les données hyperspectrales (en fonction de la longueur d’onde), etc. Nous
avons réalisé des expériences exhaustives sur des jeux de données synthé-

tiques et réels pour confirmer 1'efficacité de notre solution.

Titre en francais

Clustering Massivement Distribué via Mélange de Processus de Dirichlet

Mots-clés

* Modeéle de mélange de processus de Dirichlet

Classification non supervisée

Parallélisme

* Processus aléatoire gaussien

Espace de Hilbert a noyau reproduisant

Abstract

Clustering with accurate results has become a topic of high interest, it is
broadly used in many applications such as market research, pattern recogni-
tion, data analysis, and image processing. Determining the optimal number
of clusters in a dataset is a fundamental issue that opened many directions

for research. Multiple methods are then proposed to tackle this bottleneck.

Dirichlet Process Mixture (DPM) is a model used for clustering with the
advantage of discovering the number of clusters automatically and offering
nice properties like, e.g., its potential convergence to the actual clusters in
the data. These advantages come at the price of prohibitive response times,
which impairs its adoption and makes centralized DPM approaches ineffi-

cient.

In this thesis, we focus on the problem of parallelizing Dirichlet process
mixture to improve performances by exploiting massively distributed envi-
ronments. Indeed, from the literature, distributing DPM algorithm calls for
many issues such as: load balance between computing nodes, communica-
tion costs, and the full benefit from DPM properties.

In this thesis, we propose two novel approaches for parallel DPM clus-
tering. First, we propose DC-DPM (Distributed Clustering via Dirichlet
Process Mixture), a parallel clustering solution that enables clustering of

iv Abstract

millions of data points while remaining DPM compliant. Our experiments,
on both synthetic and real world data, illustrate the high performance of
our approach on millions of data points. The centralized algorithm does
not scale and has its limit on 100K data points, where it needs more than 7

hours. In this case, our approach needs less than 30 seconds.

The second problem we address in this thesis is the high dimensionality
of data. In this case, it becomes an important challenge with numerical and
theoretical pitfalls. We propose HD4C (High Dimensional Data Distributed
Dirichlet Clustering), a distributed clustering solution that addresses the
curse of dimensionality by two means. First it gracefully scales to massive
datasets by distributed computing. Second, it performs clustering of high
dimensional data such as time series (as a function of time), hyperspectral
data (as a function of wavelength) etc. Exhaustive experiments are carried
out over synthetic and real world datasets to confirm the efficiency of our

solution.

Title in English

Massively Distributed Clustering via Dirichlet Process Mixture

Keywords

Dirichlet Process Mixture Model

Clustering

Parallelism

¢ Gaussian random process

Reproducing Kernel Hilbert Space

Equipes de Recherche

Zenith Team, Inria & LIRMM

Laboratoire

LIRMM - Laboratoire d'Informatique, Robotique et Micro-électronique de Mont-
pellier

Adresse

Université Montpellier

Batiment 5

CC05018

Campus St Priest - 860 rue St Priest
34095 Montpellier cedex 5
FRANCE

GAMMA, UMR MISTEA, INRAE & Montpellier SupAgro

Laboratoire

UMR MISTEA - Mathématiques, Informatique et STatistique pour I'Environnement

et I’Agronomie

Adresse

INRAE, Montpellier SupAgro
UMR MISTEA

2, place Pierre Viala

34060 Montpellier Cedex 2
FRANCE

Résumé Ftendu

Introduction

La classification non supervisée ou le clustering est la tache de regrou-
per un ensemble d’objets de telle sorte que les objets d'un méme groupe,
appelé cluster, soient plus similaires les uns aux autres qu’a ceux des autres
groupes. C’est une tache principale de data mining, et une technique clas-
sique en analyse statistique des données, utilisée dans de nombreux do-
maines avec des applications au marketing [4, 82], sécurité [33], analyse de
texte (document) [80], ou des sciences comme la biologie [26], I’astronomie

[59], et bien d’autres.

Un des principaux défis, pour le clustering, est le fait que le nombre de
clusters n’est généralement pas connu a priori. C’est la caractéristique es-
sentielle des problémes d’apprentissage non supervisé. Cependant, il existe
des solutions pour effectuer du clustering, malgré le nombre inconnu de

clusters :

viii Résumé Etendu

1. Définir un certain nombre d’exécutions de clustering, avec une valeur
variable de K, et sélectionner celle qui minimise un critere de qua-
lité d’ajustement. Il peut s’agir d'un risque quadratique ou de I’erreur
quadratique moyenne résiduelle de prédiction (RMSEP) [35]. Cette ap-
proche nécessite I'implémentation d"un algorithme de validation croi-
sée [35]. Dans ce cas, I'approche de clustering peut étre un modéle de
mélange avec un algorithme d’Espérance-Maximisation (EM) [15], ou

K-means [35], par exemple.

2. Faire un clustering hiérarchique puis couper 1’arbre a une profondeur
donnée, généralement décidée par 1'utilisateur final. Différentes ap-

proches avec des avantages et des inconvénients existent, voir [35].

3. Utiliser un Mélange de Processus de Dirichlet (DPM) qui détecte au-
tomatiquement le nombre de clusters [19].

Dans cette these, nous nous concentrons sur ’approche DPM parce qu’elle
permet d’estimer le nombre de clusters et d’assigner les observations aux
clusters, dans le méme processus. Ces propriétés de DPM en font une solu-

tion tres intéressante pour de nombreux cas d’utilisation.

Cependant, le DPM est tres coliteux en temps. Par conséquent, plusieurs
tentatives ont été faites pour le rendre distribué [43, 86, 84]. Tout en étant ef-
ficacement distribuées, ces approches souffrent généralement de problemes
de convergence (distribution déséquilibrée des données sur les nceuds de
calcul) [43, 86, 25] ou ne bénéficient pas pleinement des propriétés de DPM
[84]. De plus, rendre le DPM paralléle n’est pas simple car il doit compa-
rer les probabilités d’assigner chaque donnée a I’ensemble des clusters exis-
tants, un nombre de fois tres répété. Cela affecte les performances globales
de I'approche en parallele, parce que comparer toutes les données a tous
les clusters appellerait un nombre élevé de communications et rendrait le

processus impraticable.

iX

Etat de I’art

Processus de Dirichlet

Un processus de Dirichlet (DP) est un processus stochastique utilisé dans
les modeles bayésiens non paramétriques de données. Il s’agit d"une distri-
bution de probabilités sur des distributions, c’est-a-dire que chaque tirage

d’un processus de Dirichlet est lui-méme une distribution.

Un DP géneére une distribution de probabilité G. On observe un échan-

tillon 0, ...,0y a partir de G.

0,|G “ G,n=1,...,N
G ~ DP(O[,G())

O—+®

FIGURE 1 - Echantillonnage de 6,,,n = 1,..., N.

ol G est par construction une distribution de probabilité discrete[74] :

mmzﬁm%%>

avec ; la probabilité d’avoir la valeur ¢y, et 0 est le symbole de la fonc-

tion delta de Dirac.

Par conséquent, les variables observées 6,, ont une probabilité non nulle
d’avoir la méme valeur ¢, et cela permet de faire du clustering. Le cluste-

ring est tres sensible aux parametres DP donnés par 'utilisateur final. G, est

X Résumé Etendu

une distribution de probabilité continue a partir de laquelle les (¢)xen sont

initialement tirés :

¢17"'7¢k7-”NG0

a est un parametre d’échelle (o > 0) qui ajuste les poids de probabilité 7.
Les poids 7, sont construits en utilisant la représentation des batons cassés

(Stick-Breaking), ot :

Vi, ..., 0 ~ Beta(l,a)

(V) = v f[lu —).

Cette séquence de nombres 7, (v) suit une distribution appelée Stick-
Breaking, et on note 7 ~ GEM(a), elle tire son nom des noms de leurs
auteurs Griffiths, Engen et McCloskey [67].

a accorde indirectement la fonction de masse pour ky, le nombre de va-

leurs uniques (¢;) dans un échantillon de taille N [6].

()

_ Niahy Y
plkn) = [Snvay| N'a Ta+ V)

1)

ol |Sy | est le nombre de Stirling de premiere espéce non signé.

Mélange de Processus de Dirichlet

Avec un Mélange de Processus de Dirichlet (DPM) nous observons ’échan-
tillonyy, . .., yny d'un mélange de distributions F'(6,,). Le mélange est controlé

par un DP sur les parametres 6,,.

xi

AN

N

FIGURE 2 - Graphe acyclique dirigé du DPM basé sur le Processus du Restaurant
Chinois (CRP)

Dans un cadre bayésien, I'estimation de 6,, se fait sur la distribution a
posteriori : P(6:,...,0n | y1,...,yn). A la place de cette représentation, un
autre paramétrage est utilisé pour accélérer le calcul de la distribution a

posteriori:
P(¢C17"'7¢CN | yla"'7yN)7

ou 0, = ¢.,, ¢, est le label du cluster de 'observation n, et ¢., est la valeur
unique de 0,, appartenants au méme cluster.

Processus du Restaurant Chinois

Le Processus du Restaurant Chinois (CRP) [5] est une métaphore utilisée
pour voir le clustering de DPM de maniere plus explicite. Dans cette mé-
taphore, nous considérons un restaurant chinois avec un nombre infini de
tables, chacune d’entre elles pouvant accueillir un nombre infini de clients
servis avec le méme plat. Le premier client entre dans le restaurant et s’as-
soit a la premiere table (c; = 1) et commande un plat ¢,. Le deuxieme client

entre et décide soit de s’asseoir avec le premier client (c; = 1) et commande

xii Résumé Etendu

le méme plat ¢, soit de s’asseoir seul a une nouvelle table(c; = 2) et com-
mande un nouveau plat ¢,. En général, le n + 1°" client rejoint une table k
déja occupée avec une probabilité proportionnelle au nombre n;, de clients
déja assis la, ou s’assoit a une nouvelle table avec une probabilité propor-
tionnelle a a. En identifiant les clients avec y1,...,y, et les tables comme
des clusters, apres que n clients se soient assis, les tables définissent un clus-

tering de y1, ..., Yn.

Echantillonnage de Gibbs

L'utilisation des modeles de mélange de processus de Dirichlet est deve-
nue réalisable sur le plan de calcul avec le développement des méthodes de
chaines de Markov pour 1'échantillonnage a partir de la distribution a pos-
teriori des parametres des distributions de composants et/ou des associa-

tions des composants du mélange avec les observations [56]. L'algorithme

de Gibbs [27] échantillonne les labels de clusters ¢y, ..., cy et ensuite les
parametres de clusters (ici ¢., pour tous les ¢ € {1,..., K} ou K forme le
nombre de valeurs de labels au lieu de 64, ..., 0y).

Plusieurs versions de 1’échantillonnage de Gibbs (Gibbs Sampling) sont
proposées par Neal dans [56] pour simuler des valeurs a partir de distribu-
tion a posteriori. Le principe est de répéter les boucles suivantes au moins

jusqu’a la convergence vers la distribution a posteriori :

1. Affectation d’observations aux clusters, pourn =1,..., N

e Retirez 1'observation ¥, de son cluster. Vérifier si le cluster est
vide, si oui alors supprimer le cluster et ¢., de la liste {¢} de
toutes les valeurs possibles.

e Tirez ¢, de:

xiil

P (en = c|{¢}zn Yo {0})

Nﬂ?aF (Un | ¢c) cluster existant
v=i7a J F'(Yn | 9)dGo(¢) nouveau cluster

ol #(c) forme le nombre d’observations affectées au cluster ¢

(apres avoir retiré I'observation y,, de I’échantillon).

e Si ¢ forme un nouveau cluster, tirer ¢. de P(¢ | y,) x F(y, |

$)Go(9)

2. Mise a jour de{¢},

e tirer ¢. de la distribution postérieure du cluster ¢, P(¢ | {y}.)
(qui est proportionnelle au produit de la G, antérieure et de la
probabilité que toutes les observations soient affectées au cluster

c).

Lorsque les distributions F' et G sont conjuguées, ¢ peut étre intégré a
partir de I’échantillonneur de Gibbs qui devient efficace en temps de calculs

(pas besoin de mettre a jour {¢}). Alors :

P (cn=c|{ci}tjzns Yn: {0}) x

{ Nﬂia [F(yn | #)dP(¢ | {y}.) cluster existant

voia J F(n | 9)dGo(0) nouveau cluster

Clustering de DPM dans des environnements massivement

distribués

Bien que le mélange de processus de Dirichlet ait I’avantage de décou-
vrir automatiquement le nombre de clusters et d’assigner les données aux
clusters dans le méme processus, il souffre de temps de réponse prohibitifs,
ce qui nuit a I'adoption de ses approches centralisées. Une solution promet-
teuse consiste a exploiter les systemes distribués, tels que MapReduce [13]

ou Spark [88], pour passer a 1’échelle sur des données massives.

xiv Résumé Etendu

L’'inférence pour les modeles qui utilisent le processus de Dirichlet peut
étre faite en utilisant les techniques de Monte Carlo par chaines de Mar-
kov dans lesquelles une chaine de Markov est construite pour tirer des
échantillons a partir de la distribution a posteriori. Ces techniques sont bien
connues pour leur longue durée de fonctionnement puisque le parcours de
la chaine devrait en théorie converger vers sa distribution stationnaire avant
que les échantillons produits puissent étre utilisés. Le processus de conver-
gence est souvent lent car il dépend des propriétés de mélange de "échan-
tillonneur alors que le temps prolongé de burn-in et la variance illimitée
empéchent d’exécuter simultanément plusieurs chaines indépendantes de

manieére naive [25].

Ainsi, de nombreuses solutions distribuées ont été proposées au fil des
ans. Lovell et al. [43, 44] et Williamson et al. [86] ont suggéré une paramé-
trisation alternative pour le processus de Dirichlet afin d’en déduire une in-
térence MCMC parallele non-approximative. Ces approches sont critiquées
par Gal et Ghahramani dans [25]. Ces derniers ont montré que les approches
proposées sont irréalisables en raison d'une distribution extrémement dés-
équilibrée des données. Ils donnent des orientations pour les recherches fu-
tures comme le développement d"une meilleure inférence parallele approxi-

mative.

L’idée principale, lorsque les données sont distribuées, est d’effectuer
un DPM dans chaque worker (unité de calcul dans la distribution). Il s’agit
ensuite de partager I'information entre les workers, et de synchroniser et de
mettre a jour, au niveau du master, les clusters provenant des workers. Pour
la synchronisation, le défi principal est le probleme d’identification et de
commutation des labels de clusters. Dans ce contexte, nous pouvons utiliser
un algorithme de relabeling comme par exemple celui proposé par Stephens
[36, 79] pour les modeles de mélange. Pour l'allocation de Dirichlet latente
(LDA) parallele et le processus de Dirichlet hiérarchique (HDP), Newman
et al. [57] ont suggéré de mesurer la distance entre les clusters et ont ensuite
proposé un greedy matching.

Wang et Lin [84] ont fait une revue détaillée de la littérature et des avan-

XV

cées récentes sur ce sujet avant de donner une nouvelle proposition. Ils ont
proposé d’utiliser une classification hiérarchique par étapes au niveau du
master avec une demi chance de division ou de fusion a chaque étape. IIs
ont commencé avec un modéle complet en considérant tous les clusters de
tous les workers comme différentes composantes du modeéle. Leur algo-
rithme utilise le facteur de Bayes standard [39] pour comparer les modéles
imbriqués et choisir la meilleure division ou fusion. Comme la dimension
du modele est variable, ils ont implémenté un algorithme de saut réver-
sible [29]. En conclusion, au niveau du master, les algorithmes proposés di-
vergent d'un classifieur de DPM et ne sont pas des estimations évolutives
d’un DPM. De plus, Wang et Lin [84] ont utilisé une valeur fixe pour le
parametre d’échelle («) dans leur implémentation du DPM au niveau des
workers. Le nombre final de clusters est lié & cette valeur (voir I'équation 1).
Des auteurs comme Miller et Harrison [54, 55] ont démontré 1'inconsistance
pour le nombre de composantes d'un modéle DPM avec une valeur fixe
de . Si le nombre de composantes identifiées au niveau des workers est
sous-estimé, alors le nombre de clusters au niveau du master pourrait étre
sous-estimé. L'inverse augmentera considérablement le temps d’exécution
au niveau du master. De plus, pour [84], ce temps de parcours dépend du

taux d’acceptation du déplacement (division ou fusion) du saut réversible.

Dans notre travail, nous suggérons de s’en tenir autant que possible a un
algorithme DPM, méme au niveau du master, pour étre proche des bonnes
propriétés d"un classifieur DPM, malgré le fait que les données sont distri-
buées. Nous suggérons également une modification du modele DPM pour
partager I'information entre les workers. De cette facon, nous espérons amé-
liorer notre classification (meilleure estimation) et supprimer la commuta-
tion de labels. Enfin, nous ne fixons pas la valeur de o mais nous permettons
une estimation différente pour chaque worker afin d’ajouter de la flexibilité

a notre modele.

De plus, [84] est limité a des cas spécifiques ot le bruit dans les obser-
vations suit la distribution conjuguée de la distribution des centres de clus-
ters. Par exemple, un bruit gaussien impose une distribution gaussienne des

centres. Par conséquent, cette méthode ne convient pas aux centres ayant

Xvi Résumé Etendu

uniquement des valeurs positives. Notre but est de travailler sur n'importe

quelle donnée, méme avec des centres exclusivement positifs.

Contributions

L’objectif de cette these est de proposer des approches paralleles de DPM
qui exploitent pleinement les architectures paralléles pour de meilleures
performances et offrent des résultats significatifs. Notre but principal est
de maintenir la consistance des clusters entre les noeuds workers, et entre
les noeuds workers et master en ce qui concerne les propriétés DPM. Nos
contributions principales sont les suivantes :

Modeéle de mélange de processus de Dirichlet rendu efficace

grace a la distribution massive

Dans ce travail [48], nous proposons DC-DPM (Clustering Distribué via
Mélange de Processus de Dirichlet), un algorithme distribué de DPM qui
permet a chaque nceud d’avoir une vue sur les résultats locaux de tous les
autres nceuds, tout en évitant les échanges exhaustifs de données. La nou-
veauté principale de notre travail est de proposer un modele et son esti-
mation au niveau du master en exploitant les statistiques suffisantes des
workers, dans une approche conforme au DPM. Notre solution tire parti de
la puissance de calcul des systemes distribués en utilisant des frameworks
paralleles tels que MapReduce [13] ou Spark [88]. Notre solution DC-DPM
distribue le Processus de Dirichlet en identifiant les clusters locaux sur les
workers et en synchronisant ces clusters sur le master. Ces clusters sont en-
suite communiqués comme base entre les workers pour une consistance lo-
cale de clustering. Nous modifions le Processus de Dirichlet pour prendre
en compte cette base dans chaque worker. En itérant ce processus, nous re-
cherchons la consistance globale du DPM dans un environnement distribué.

Nos expériences, utilisant des jeux de données réels et synthétiques, illus-

Xvii

trent a la fois la grande efficacité et la scalabilité linéaire de notre approche.
Nous constatons des gains significatifs en termes de temps de réponse, par
rapport aux approches centralisées de DPM, avec des temps de traitement
de quelques minutes, contre plusieurs jours dans le cas centralisé.

Clustering de données de haute dimensionnalité par modele

de processus de Dirichlet distribué

Dans ce travail [49, 51], nous proposons HD4C (Clustering de Dirichlet
Distribué pour des Données de Haute Dimension), une nouvelle approche
de clustering paralléle adaptée aux données de haute dimension et basée
sur notre premiere contribution DC-DPM. En fait, DC-DPM est une solu-
tion proposée a ce probleme lorsque les données sont multivariées. Dans
le cas de données ou de signaux a haute dimension (dimension infinie), le
calcul matriciel n’est plus possible (pas d'inverse de matrices par exemple,
pas de produit matriciel). Il faut remplacer un produit matriciel par un pro-
duit interne dans un espace de fonctions adéquat et trouver la mesure adé-
quate. Ce produit interne est obligatoire pour calculer la vraisemblance et
la distribution a posteriori. Pour ce faire, HD4C utilise les propriétés des es-
paces de Hilbert a noyau reproduisant (RKHS) (utilisées par exemple dans
I'approche SVM "machine a vecteurs de support") qui sont trés populaires
dans l'apprentissage automatique grace au « théoréme du représentant qui
a simplifié un probleme empirique de minimisation du risque a dimension
infinie en un probleme a dimension finie ot la solution est incluse dans le
span linéaire de la fonction du noyau évaluée aux points d’apprentissage »
[53]. Nous supposons que la variable aléatoire d’intérét prend ses valeurs
dans un espace de dimension infinie. Par conséquent, les données a haute
dimension seront considérées comme des trajectoires d"un processus aléa-
toire. Notre travail se concentre sur le processus aléatoire gaussien pour « sa
capacité a éviter les hypotheses paramétriques simples et a intégrer beau-
coup de structures » [71]. De plus, de nombreux calculs sont facilités dans le
cadre gaussien. Dans notre approche, nous définissons les données comme

un processus gaussien autocorrélé appelé Ornstein-Uhlenbeck (OU) et nous

Xviii Résumé Etendu

utilisons le méme algorithme que dans DC-DPM. Nous évaluons notre pro-
position en utilisant des jeux de données réels et synthétiques et les résultats

confirment la haute performance de notre approche.

Publications

¢ Khadidja Meguelati, Bénédicte Fontez, Nadine Hilgert, Florent Mas-
seglia. Dirichlet Process Mixture Models made Scalable and Effective
by means of Massive Distribution. ACM/SIGAPP SAC: Symposium
on Applied Computing, Apr 2019, Limassol, Cyprus.

¢ Khadidja Meguelati, Bénédicte Fontez, Nadine Hilgert, Florent Mas-
seglia. Massively Distributed Dirichlet Process Mixture Models. IN-
FORSID: INFormatique des ORganisations et Systemes d’'Information
et de Décision, Jun 2019, Université Paris-Dauphine, France.

¢ Khadidja Meguelati, Bénédicte Fontez, Nadine Hilgert, Florent Mas-
seglia. Dirichlet Process Mixture Models made Scalable and Effective
by means of Massive Distribution. BDA (Bases de Données Avancées):
Conférence sur la Gestion de Données - Principes, Technologies et Ap-
plications, Oct 2019, Lyon, France.

¢ Khadidja Meguelati, Bénédicte Fontez, Nadine Hilgert, Florent Masse-
glia. High Dimensional Data Clustering by means of Distributed Di-
richlet Process Mixture Models. IEEE International Conference on Big
Data (IEEE BigData), Dec 2019, Los-Angeles, United States.

¢ Khadidja Meguelati, Bénédicte Fontez, Nadine Hilgert, Florent Masse-
glia, Isabelle Sanchez. Massively Distributed Clustering via Dirichlet
Process Mixture. ECML PKDD: European Conference on Machine Lear-
ning and Principles and Practice of Knowledge Discovery in Data-
bases, Sep 2020, Ghent, Belgium.

XiX

Organisation de la these

Cette these est divisée en deux grands chapitres de contribution précé-

dés d"un chapitre présentant le contexte nécessaire.

Dans le chapitre 2, nous faisons le point sur l'état de Iart. Il est divisé
en trois sections principales : Dans la section 2.2, nous donnons un apergu
général des techniques principales de clustering dans ’environnement cen-
tralisé. En particulier, nous présentons quatre méthodes : le clustering hié-
rarchique, K-means, le clustering basé sur la densité et le clustering basé sur
le modele. La section 2.3 présente les modeles de mélange de processus de
Dirichlet (DPMM), elle détaille quelques notions de processus de Dirichlet
et discute I'algorithme de Gibbs sampling qui permet d’effectuer un cluste-
ring de DPM. La section 2.4 sera dédiée a l'introduction de quelques envi-
ronnements distribués et de quelques solutions paralleles existante pour le

clustering.

Le chapitre 3 est consacré a I'étude et a la résolution du probleme des
temps prohibitifs de réponse qui nuit a ’adoption du clustering par DPM
et rend inefficaces ses approches centralisées. Ce chapitre commence par la
motivation et 'apercu de la contribution dans la section 3.2. Dans la sec-
tion 3.3, nous proposons notre algorithme DC-DPM et nous expliquons en
détail son principe. Dans la section 3.4, nous validons notre proposition a
travers différentes expérimentations en utilisant des données réelles et syn-

thétiques. Finalement, dans la section 3.5, nous concluons notre travail.

Dans le chapitre 4, nous traitons le probleme de la haute dimensionna-
lité. Dans la section 4.2, nous présentons le contexte et donnons un apergu
de notre travail. Le contexte nécessaire des espaces de Hilbert a noyau re-
produisant (RKHS) est indiqué dans la section 4.3. Dans la section 4.4, nous
proposons HD4C, notre solution distribuée pour le clustering de données
de haute dimension. Dans la section 4.5, nous évaluons notre approche en
réalisant diverses expérimentations sur des données réelles et synthétiques.

Enfin, nous résumons nos travaux dans la section 4.6

XX Résumé Etendu

Cette these se termine par un chapitre de conclusion (chapitre 5) qui ré-
sume nos contributions et indique des orientations futures de la recherche

dans ce domaine.

Contents

Résumé i
Abstract iii
Résumé Etendu vii
1 Introduction 1
1.1 Context o e e 1

1.2 Contributions 2

1.3 Publications 4

14 Thesis Organisation 5

2 State of the Art 7
21 Introduction e 7
22 Clustering 8
221 Objectives and Interests 8

222 Common Techniques 9

XXii Contents

2.3 Dirichlet Process Mixture Models 13
2.3.1 Dirichlet Process 13
2.3.2 Dirichlet Process Mixture 17
233 GibbsSampling Lo L 18
2.4 Massively Distributed DPM Clustering 20
241 Parallel Frameworks 20
242 Parallel Clustering 24
25 Conclusion 26

3 Dirichlet Process Mixture Models made Scalable and Effective by

means of Massive Distribution 27
3.1 Introduction 27
3.2 Motivation and Overview of the Proposal 28
3.3 DC-DPM: Distributed Clustering viaDPM 29
3.3.1 Architecture and Distributed Algorithm 30
3.3.2 The Exponential Distribution Family 36
34 Performance Evaluation 37
341 Datasetso L 38
3.42 Clustering Evaluation Criteria 39
343 ResponseTime 40
3.44 Clustering Evaluation 43

345 Use-case o o v v i i i e 44

Contents xxiii

35 Conclusion 0 48

4 High Dimensional Data Clustering by means of Distributed Dirich-

let Process Mixture Models 49
41 Introduction 49
42 Motivation and Overview of the Proposal 51
4.3 RKHS of Gaussian Processand DPM 52

4.4 HDAC : High Dimensional Data Distributed Dirichlet Clus-

tering 54

45 Performance Evaluation 58
451 Datasets o 58

452 Clustering Evaluation Criteria 62

453 ResponseTime 63

454 Clustering Evaluation 64

46 Conclusion o o ool 68

5 Conclusion 69
51 Contributions 69

5.1.1 Dirichlet Process Mixture Models made Scalable and
Effective by means of Massive Distribution 70

5.1.2 High Dimensional Data Clustering by means of Dis-
tributed Dirichlet Process Mixture Models 70

5.2 Directions for Future Work 71

List of Figures

1 Echantillonnage de 0,,n=1,...,N. ix
2 Graphe acyclique dirigé du DPM basé sur le Processus du
Restaurant Chinois (CRP) xi
2.1 Durum in an experimental field. RGB image. 8
2.2 Hierarchical Clustering dendrogram example 10
2.3 K-means Clusteringexample 11
2.4 K-means converges to a local minimum 12
25 Samplingoff,,n=1,...,N.. 14
2.6 Dirichlet Process Sample with Gaussian base distribution . . . 15
2.7 Stick-Breaking illustration 16
2.8 Concentration parameter’sroleinDP 16
2.9 Directed Acyclic Graph of the Dirichlet Process Mixture (DPM)
based on the Chinese Restaurant Process (CRP) 17
2.10 Chinese Restaurant Process 18

2.11 MapReduce architecture 21

XXVi List of Figures

2.12 The overall MapReduce word count process 22
2.13 Spark Vs Hadoop/MapReduce 23
2.14 Spark Architecture o oL 24
3.1 Diagram/workflow of the DC-DPM 31
3.2 Foodcourtsprocess 32
3.3 Architecture of DC-DPMin Spark 38

3.4 Logarithmic scale. Response time (minutes) of the centralized
and the distributed DPM approaches as a function of dataset
size. The distributed approach is run on a cluster of 8 nodes.
With 20K to 100K data points from the synthetic dataset. The
centralized approach needs more than 7 hours and our dis-
tributed approach needs 24 seconds 41

3.5 Response time (minutes) of DC-DPM as a function of dataset
size. DC-DPM is run on a cluster of 16 machines. With 10
million data points from the synthetic dataset. 42

3.6 Clustering time as a function of the number of computing
nodes on synthetic data. DC-DPM has a near optimal speed-
up. With 2M data points from the synthetic dataset. 42

3.7 Clustering time as a function of the number of computing
nodes on the image of our use-case. DC-DPM has an opti-
mal speed-up. The image represents more than 1 million data
points. 43

3.8 Visual representation of our synthetic dataset with 4 millions
data points on 100 clusters. Each cluster is assigned a differ-
entcolor. 45

List of Figures XxVvii

3.9 Visual representation of the results obtained by our approach
on the data of Figure 3.8, with 16 nodes. Each cluster is as-
signed a differentcolor. 45

3.10 Clustering of the Durum image in the experimental field. RGB
image with o = 0.01, resulting in 3 clusters. 47

3.11 Clustering of the Durum image in the experimental field. RGB
Imagewith o3 =0.0025. 47

3.12 Clustering of a part of the Durum image in the experimental
field. RGB Image with DC-DPM (top, 12 clusters) and cen-
tralized DPM (bottom, 17 clusters), o3 = 0.0025. The impact

of o2 on the number of clusters varies for centralized and dis-

tributed approaches and may be adjusted by the end-user. . . 48
4.1 An accelerometer mounted on a sheep’scollar. 50
4.2 Visual representation of the synthetic dataset clusters. 60

4.3 Visual representation of the synthetic dataset with separated
clusters. 60

4.4 One axis visual representation of labeled accelerometers data. 61
4.5 Separated clusters of one axis accelerometersdata 61
4.6 Visual representation of the spectral dataset 62

4.7 Response time (minutes) of HD4C as a function of the dataset

4.8 Clustering time as a function of the number of computing

nodes on the syntheticdata. 64

49 Clustering time as a function of the number of computing

nodes on the accelerometersdata. 64

xxviii List of Figures

4.10 Clustering time as a function of the number of computing
nodes on the spectraldata. 65

4.11 ARI values of K-means as a function of the number of clusters. 66

List of Tables

3.1 ARI, RSS divided by the number of data N and the variance
(03), and number of Clusters obtained with the centralized
DPM and with DC-DPM, on increasing dataset size. The DC-
DPMisrunonaclusterof 8nodes. 44

3.2 ARI, RSS divided by the number of data N and by the vari-
ance o2, and number of clusters for DC-DPM on increasing

dataset size. DC-DPM is run on a cluster of 16 machines. . . . 44

4.1 Clustering evaluation criteria obtained with HD4C (synthetic
data). 65

4.2 Example of K-means convergence to a local minimum. 67

4.3 Number of data obtained by HD4C in each cluster compared
tothegroundtruth. 67

44 Clustering evaluation criteria obtained with HD4C and K-

meansonrealdatasets. 68

Introduction

1.1 Context

Cluster analysis or clustering is the task of grouping a set of objects in
such a way that objects in the same group called a cluster are more similar to
each other than to those in other groups. It is a main task of data mining, and
a common technique for statistical data analysis, used in many fields with
applications to marketing [4, 82], security [33], text (document) analysis [80],
or sciences like biology [26], astronomy [59], and many more.

One of the main challenges, for clustering, is the fact that the number
of clusters is typically not a priori known. That is basically the characteris-
tic of unsupervised learning problems. However, there are some solutions
that can be used to help performing cluster analysis, despite the unknown
tackled number of clusters :

1. Setting a number of clustering runs, with varying value of K, and se-
lecting the one that minimizes a goodness of fit criteria. It may be

a quadratic risk or the Residual Mean Squared Error of Prediction

2 Chapter 1. Introduction

(RMSEP) [35]. This approach needs the implementation of a cross-
validation algorithm [35]. The clustering approach in this case, may be
a mixture model with an Expectation-Maximization (EM) algorithm

[15], or K-means [35], for instance.

2. Making a hierarchical clustering and then cut off the tree at a given
depth, usually decided by the end-user. Different approaches for prun-
ing with advantages and drawbacks exist, see [35].

3. Using a Dirichlet Process Mixture (DPM) which automatically detects
the number of clusters [19].

In this thesis, we focus on the DPM approach since it allows estimat-
ing the number of clusters and assigning observations to clusters, in the
same process. Furthermore, its implementation is quite straightforward in
a Bayesian framework. Such properties of DPM make it a very appealing

solution for many use-cases.

However, DPM is highly time consuming. Consequently, several at-
tempts have been made to make it distributed [43, 86, 84]. However, while
being effectively distributed, these approaches usually suffer from conver-
gence issues (imbalanced data distribution on computing nodes) [43, 86, 25]
or do not fully benefit from DPM properties [84] (see our discussion in Sec-
tion 3.2). Furthermore, making DPM parallel is not straightforward since it
must compare each record to the set of existing clusters, a highly repeated
number of times. That impairs the global performances of the approach in
parallel, since comparing all the records to all the clusters would call for a
high number of communications and make the process impracticable.

1.2 Contributions

The objective of this thesis is to propose parallel DPM approaches that
fully exploit parallel architectures for better performances and offer mean-

ingful results. Our main goal is to keep consistency of clusters among worker

1.2. Contributions 3

nodes, and between the worker and the master nodes with regards to DPM

properties. Our main contributions are as follows:

¢ Dirichlet Process Mixture Models made Scalable and Effective by
means of Massive Distribution. In this work [48], we propose DC-
DPM (Distributed Clustering via Dirichlet Process Mixtures), a dis-
tributed DPM algorithm that allows each node to have a view on the
local results of all the other nodes, while avoiding exhaustive data ex-
changes. The main novelty of our work is to propose a model and
its estimation at the master level by exploiting the sufficient statis-
tics from the workers, in a DPM compliant approach. Our solution
takes advantage of the computing power of distributed systems by
using parallel frameworks such as MapReduce [13] or Spark [88]. Our
DC-DPM solution distributes the Dirichlet Process by identifying local
clusters on the workers and synchronizing these clusters on the mas-
ter. These clusters are then communicated as a basis among workers
for local clustering consistency. We modify the Dirichlet Process to
consider this basis in each worker. By iterating this process we seek
global consistency of DPM in a distributed environment. Our experi-
ments, using real and synthetic datasets, illustrate both the high effi-
ciency and linear scalability of our approach. We report significant
gains in response time, compared to centralized DPM approaches,
with processing times of a few minutes, compared to several days in
the centralized case.

* High Dimensional Data Clustering by means of Distributed Dirich-
let Process Mixture Models. In this work [49, 51], we propose HD4C
(High Dimensional Data Distributed Dirichlet Clustering), a novel par-
allel clustering approach adapted for high dimensional data and based
on our first contribution DC-DPM. Actually, DC-DPM is a solution
proposed to this issue when data is multivariate. In the case of high
dimensional data or signals (infinite dimension), matrix computation
is no more feasible (no inverse matrix for example, no matrix prod-
uct). We need to replace a matrix product by an inner product in an

adequate space of functions and to find the adequate measure. This

4 Chapter 1. Introduction

inner product is mandatory to compute the likelihood and the poste-
rior. To do that, HD4C uses the properties of the Reproducible Ker-
nel Hilbert Spaces (RKHS) (used for example in the Support Vector
Machine approach) that are very popular in machine learning thanks
to « the representer theorem which simplified an infinite dimensional
empirical risk minimization problem into a finite dimensional prob-
lem where the solution is included in the linear span of the kernel
function evaluated at the training points » [53]. We assume that the
random variable of interest takes its values in a space of infinite di-
mension. Therefore, high dimensional data will be seen as trajectories
of a random process. Our work focuses on Gaussian random process
because of « its ability to avoid simple parametric assumptions and
still build in a lot of structure » [71]. In addition many calculations
are facilitated in the Gaussian framework. In our approach, we define
data as an autocorrelated Gaussian process called Ornstein-Uhlenbeck
(OU) and we use the same algorithm as in DC-DPM. We evaluate our
proposal using real and synthetic datasets and the results confirm the

high performance of our approach.

1.3 Publications

The results of this thesis have been presented in the following papers:

¢ Khadidja Meguelati, Bénédicte Fontez, Nadine Hilgert, Florent Masseglia.
Dirichlet Process Mixture Models made Scalable and Effective by means
of Massive Distribution. ACM/SIGAPP SAC: Symposium on Applied
Computing, Apr 2019, Limassol, Cyprus.

¢ Khadidja Meguelati, Bénédicte Fontez, Nadine Hilgert, Florent Masseglia.
Massively Distributed Dirichlet Process Mixture Models. INFORSID:
INFormatique des ORganisations et Systéemes d'Information et de Dé-

cision, Jun 2019, Université Paris-Dauphine, France.

1.4. Thesis Organisation 5

¢ Khadidja Meguelati, Bénédicte Fontez, Nadine Hilgert, Florent Masseglia.
Dirichlet Process Mixture Models made Scalable and Effective by means
of Massive Distribution. BDA (Bases de Données Avancées): Con-
térence sur la Gestion de Données - Principes, Technologies et Appli-

cations, Oct 2019, Lyon, France.

¢ Khadidja Meguelati, Bénédicte Fontez, Nadine Hilgert, Florent Masseglia.
High Dimensional Data Clustering by means of Distributed Dirichlet
Process Mixture Models. IEEE International Conference on Big Data
(IEEE BigData), Dec 2019, Los-Angeles, United States.

¢ Khadidja Meguelati, Bénédicte Fontez, Nadine Hilgert, Florent Masseglia,
Isabelle Sanchez. Massively Distributed Clustering via Dirichlet Pro-
cess Mixture. ECML PKDD: European Conference on Machine Learn-
ing and Principles and Practice of Knowledge Discovery in Databases,
Sep 2020, Ghent, Belgium.

1.4 Thesis Organisation

This thesis is divided into tow main contribution chapters preceded by

a chapter introducing the necessary background.

In chapter 2, we review the state of the art. It is divided into three main
sections: In section 2.2, we give a general overview of the main cluster-
ing techniques in the centralized environment. In particular, we deal with
four methods: Hierarchical clustering, K-means, Density-Based clustering
and Model-based clustering. Section 2.3 introduces the Dirichlet Process
Mixture Models (DPMM)), it details some notions of Dirichlet process and
discusses the Gibbs Sampling algorithm that allows performing DPM clus-
tering. The section 2.4 will be dedicated to introduce multiple parallel pro-

cessing frameworks and some existing distributed clustering solutions.

Chapter 3 is devoted to studying and solving the problem of the pro-

hibitive response times that impairs the adoption of DPM clustering and

6 Chapter 1. Introduction

makes centralized approaches inefficient. This chapter starts with the mo-
tivation and overview of the proposal in section 3.2. In section 3.3, we pro-
pose our algorithm DC-DPM and we thoroughly explain its clustering prin-
ciple. In section 3.4, we validate our proposal through different experiments
using real-world and synthetic datasets. Eventually, in section 3.5, we con-
clude our work.

In chapter 4, we deal with the problem of high dimensionality. In sec-
tion 4.2 we present the context and give an overview of our work. The nec-
essary background of Reproducible Kernel Hilbert Spaces (RKHS) is stated
in section 4.3. In section 4.4, we propose HD4C, our distributed solution for
high dimensional data clustering. In section 4.5, we evaluate our approach
by carrying out various experiments on real-world and synthetic datasets.

Finally, we summarize our work in section 4.6

This thesis ends with a concluding chapter (chapter 5) that summarizes

our contributions and points out future research directions in this field.

11

State of the Art

2.1 Introduction

Clustering, or cluster analysis, is the task of grouping similar data into
the same cluster and separating dissimilar data in different clusters. In this
chapter, we introduce the basics and the necessary background of this the-
sis. First, we present some objectives, interests and common techniques of
clustering. In particular, we introduce the Dirichlet Process Mixture Models
(DPMM) by describing the notion of Dirichlet Process and discussing the

algorithm of Gibbs Samplig which performs the clustering by DPM.

Second, we investigate and detail multiple parallel processing frame-
works and the existing distributed clustering algorithms focusing on paral-

lel DPM solutions.

8 Chapter 2. State of the Art

Figure 2.1 - Durum in an experimental field. RGB image.
2.2 Clustering

2.2.1 Objectives and Interests

Clustering is a data mining technique intensively used for data analyt-
ics, with applications many fields as mentioned in the introduction. In biol-
ogy, for example, clustering may be applied to Image processing (Magnetic
Resonance Imaging (MRI) [12]), detection of population structure-Genetic
diversity [69] and even in dynamic systems [24].

Clustering is also used for identification in the new challenge of high
throughput plant phenotyping [77], a research field with the purpose of
crop improvement in response to present and future demographic and cli-
mate scenarios. In this case, data to be considered include data on plants
and crop images, like the one illustrated by Figure 2.1, showing a view of
a Durum crop. Automatic identification, from such images, of leaves, soil,
and distinguishing plants from foreground, are of high value for experts
since they provide the fundamental information used for popular super-
vised methods in the domain [77, 45].

2.2. Clustering 9

2.2.2 Common Techniques

Classical clustering techniques can be separated into six categories: par-
titioning, hierarchical, density-based, grid-based, model based and multi-
step methods [3]. In the following, we describe the most popular algo-
rithms: hierarchical clustering [40], k-means [46], density based clustering
[41], and model-based clustering [76].

Hierarchical clustering

Hierarchical clustering [11, 40] is one of the oldest clustering methods,
but it is still well-established.These methods create a tree of clusters from the
given data represented in the form of a dendrogram (see figure 2.2) , at the
bottom of the hierarchy is the thinnest partition, with only one observation
per class, while at the top of the hierarchy is the coarsest partition for which
all observations are in the same class.

We distinguish two different versions of this algorithm: a bottom-up ap-
proach, called Hierarchical Agglomerative Clustering (HAC), and a top-
down procedure, named Divise Hierarchical Clustering (DHC). The first
one (HAC) is used more frequently [31], it initially assigns each data in-
stance to its own cluster and successively merges clusters until the reach of
one class regrouping all data. The second algorithm (DHC) starts with one
initial cluster containing all elements and proceeds by successively splitting
the clusters in two until each element has its own cluster. In both cases, hi-
erarchical clustering requires the ability to calculate, at each step, a distance
between classes, called a link, based on a measure of dissimilarity between
observations.

Once these distances have been chosen, the principle of hierarchical bottom-
up clustering is simple. A partition of n classes each containing a single ob-
servation is formed. The algorithm begins by calculating the dissimilarity
matrix, where the element d;; is the distance between the observations Y;
and Y, . The algorithm then forms a class by aggregating the two closest

10 Chapter 2. State of the Art

Figure 2.2 — Hierarchical Clustering dendrogram example

observations. The distance between this new class and the other classes is
determined by the link. This process is then repeated until only one class is
obtained. A similar algorithmic method is applied in the case of a hierarchi-

cal top-down clustering.

Hierarchical clustering has several benefits . The first one is that the hi-
erarchy can be cut at any level to create a different partitioning of the collec-
tion. Second, the hierarchy can be used to navigate the data and it is useful
to visualise the inherent structure of the dataset. Further, Hierarchical clus-
tering is a good method to evaluate the performance of distance measure
between data instances and being able to choose distances according to the
nature of the data. On the other side, it is easy to verify that a hierarchical
clustering is very sensitive to this choice. In addition, hierarchical cluster-
ing algorithms do not scale for large data sizes, due to their high complexity,
and if we want to add an observation to the dataset to be classified, it is nec-
essary to repeat the algorithm from the beginning. Some contributions are
proposed to perform an approximation of the hierarchical clustering that
improves time and space complexity, in order to be able to scale to large
datasets [9].

2.2. Clustering 11

B
® % " e »
igh :
® e S X

n. s
(a) ()]

L] L] L]

3o = s o
. .w" = s _g:' . e x|

i il C

(d) (e} (£)

Figure 2.3 — K-means Clustering example

K-means

Initially proposed in 1957 by Lloyd [42], then adopted in 1967 by Mac-
Queen [46], the K-means algorithm is an iterative method that, whatever the
initial configuration, converges towards a solution. It consists in grouping
the observations by minimizing the distance between each observation and

the centre of its cluster, called the centroid.

Given a number of K clusters, the first step is to randomly select K cen-
troids. Then, each observation is assigned to the centroid to which it is clos-
est in terms of Euclidean distance. Each centroid is then recalculated using
the data assigned to it. These steps are repeated until a convergence criteria
is reached. In practice, the algorithm is repeated until the assignments of
observations to clusters no longer change (see figure 2.3).

The K-means algorithm is easy to implement and runs quickly, making it
a very popular unsupervised classification algorithm. However, it requires
the number of clusters K to be specified in advance, which is considered
as one of the most difficult problems to solve in data clustering, that’s why
many approaches are introduced to tackle this drawback [14]. Finally, the

12 Chapter 2. State of the Art

°
e
e

Q)
®

Figure 2.4 — K-means converges to a local minimum

K-means algorithm converges to a local minimum as shown in figure 2.4,

and can find wrong clusters when they are nested within each other.

Density-based clustering

Density-based clustering methods assume that clusters appear as dense
regions in a metric space. These methods search for highly dense regions in
the dataset and consider them as separate clusters. A relatively well-known
density-based clustering algorithm called Density Based Spatial Clustering
of Applications with Noise (DBSCAN) was introduced by Ester et al. [21],
which assumes that clusters appear in concentrated regions and is designed
to find clusters of arbitrary shape. An interesting property of this algorithm
is that it inherently copes with noise in the dataset, by declaring dense re-
gions as clusters and regions of low-density as noise. This approach re-
quires the user to define two parameters: a minimum distance d and a min-
imum number of neighbours n. Correspondingly a point p requires at least
n neighbours in the radius of d in order to form a cluster.

DBSCAN is not only useful as a pure clustering algorithm but also for the
detection of noise. Unfortunately it does not perform well on sets of varying

density and in high-dimensional space where the data is often sparse [22].

Model-based clustering

Model-based clustering attempts to recover the original model from a set
of data. This approach assumes a model for each cluster a parametric distri-

2.3. Dirichlet Process Mixture Models 13

bution, and finds the best fit of data to that model[3]. In detail, it presumes
that there are some fixed centroids, chosen at random, and then some indi-
vidual noise is added to them with a probability distribution. The model

that is recovered from the generated data defines clusters [76].

An example of this kind of clustering is the Gaussian mixture model [65]
which represents a composite distribution whereby points are drawn from
one of k Gaussian sub-distributions, each with its own probability.

In general, model-based clustering has two drawbacks: first, it needs to
set parameters and it is based on user assumptions which may be false and
consequently the result clusters would be inaccurate. Second, it has a slow
processing time on large datasets [3].

2.3 Dirichlet Process Mixture Models

One of the main difficulties, for clustering, is the fact that we don’t know,
in advance, the number of clusters to be discovered. In order to help per-
forming cluster analysis, despite the unknown tackled number of clusters,
statistics advocate for some solutions as mentioned in the introduction. In
this thesis, we focus on the DPM approach as it has the advantage of de-
tecting the number of clusters automatically and assigning observations to
clusters, in the same process.

In this section, we give the necessary background on Dirichlet Process
Mixture Models illustrated by an example comes from a biology use-case.

2.3.1 Dirichlet Process

A Dirichlet Process (DP) is a stochastic process used in Bayesian non-
parametric models of data. It is a probability distribution over distributions,
i.e. each draw from a Dirichlet process is itself a distribution. In our use-

case, a distribution over the image pixels could be "plant" with probability

14 Chapter 2. State of the Art

p1, and "not plant" with probability p,, with the property that p; +p, = 1. A
DP generates a probability distribution G (figure 2.5). We observe a sample
01,...,0n from G. In our use-case, each 6, is the vector of possible pixel

color values.

0,|G © G,n=1,...,N
G ~ DP(O&,G())

O—+®

Figure 2.5 — Sampling of §,,,n =1,..., N.

The probability G is by construction a discrete probability distribution
[74]:

G(en) = i 7Tk’5¢k (071)7

where 7, is the probability of having value ¢, and 4 is the symbol for the
Dirac delta function.

Therefore, observed variables 6,, have a non null probability of having
the same value ¢, and this allows for clustering. In our use-case of a plant
image (figure 2.1), "plant" pixel parameter 6, will have the same color value
o1, expressing the green value. Clustering is very sensitive to the DP param-
eters given by the end user. G is a continuous probability distribution from
which the (¢x)ren are initially drawn. In our use-case, G, gives the color

probability of all possible clusters in the image.

¢1,,¢k,NGO

Figure 2.6 gives an example of a DP distributed G with a base distribu-
tion G, and a concentration parameter o equal to 10, where G| is a Gaussian

2.3. Dirichlet Process Mixture Models 15

040 Dirichlet Process Prior Sample with N(0,1) Base Measure: alpha = 10

0.35
0.30
0.25

0.20

Figure 2.6 — Dirichlet Process Sample with Gaussian base distribution

distribution with zero mean and a variance equal to 1.

« is a scale parameter (o > 0) which tunes the probability weights ;.
The weights 7, are constructed using the Stick-Breaking representation of
Figure 2.7, where:

v1,...,0s ~ Beta(l,a)

V) = v 111(1)

This sequence of numbers 7, (v) follows a distribution called Stick-Breaking,
and we note 7 ~ GEM («), it takes its name from the names of their authors
Griffiths, Engen and McCloskey [67].

a tunes indirectly the probability mass function for ky, the number of

unique values (namely ¢;) in a sample of size NV [6].

['(a)

= laky -\
p(k’N) |SN,kN| Nla F(a—f— N)

(2.1)

16

Chapter 2. State of the Art

500 -

400 -

300 -

A stick with unit length

Sticking-breaking for DP
vy~Beta(l, a)

=W ——
va~Beta(l, a)
T, = v (1l =w) —

vi~Beta(l,a)
—

k=1
My = Vg 1—[(1 =)
i=1

Figure 2.7 — Stick-Breaking illustration

~ DP(1.0, N(0, 1)) | ‘ Yy) - DP(50.0, N(0, 1)) |

60 -

72E|— -
o |, .||||I l||.| INIAAAAI, ||||. T
-1 1] 1 2

3

Figure 2.8 — Concentration parameter’s role in DP

where |Sy x| is the unsigned Stirling number of the first kind.

Figure 2.8 shows the important role of the concentration parameter «,

where two samples are performed from a DP with the same base distri-

bution and different concentration parameters. The larger the «, the smaller

the variance, and the DP will concentrate more of its mass around the mean.

2.3. Dirichlet Process Mixture Models 17

2.3.2 Dirichlet Process Mixture

With a Dirichlet Process Mixture we observe the sample v, ..., yx from
a mixture of distributions F'(6,,). In our use-case, we assume that colors are
observed with a noise distributed according to F'. The mixture is controlled

by a DP on the parameters 6,,.

O—O—O—8®

Figure 2.9 — Directed Acyclic Graph of the Dirichlet Process Mixture (DPM) based
on the Chinese Restaurant Process (CRP)

In a Bayesian framework, the estimation of 6, is done on the posterior:
P(0:1,...,0n5 | y1,...,yn). Instead of this representation, another parameter-
ization is used to speed up computation of the posterior:

P(¢eys- s Gen | Y15 yn)

Where 6,, = ¢.,,, ¢, is the cluster label of observation n, and ¢,, is the unique

value of the 0,, belonging to the same cluster.

18 Chapter 2. State of the Art

3 1 2 _a
6+a 6+a 6+a 6+a
Ly i 4 d L'
1
Y5 Y3 2 4 6
N

7

Figure 2.10 — Chinese Restaurant Process
Chinese Restaurant Process

The Chinese Restaurant Process (CRP) [5] is a metaphor used in order
to see the DPM clustering more explicitly. In this metaphor, we consider a
Chinese restaurant with an infinite number of tables, each of which can seat
an infinite number of customers served the same dish. The first customer
enters the restaurant and sits at the first table (¢; = 1) and orders a dish ¢;.
The second customer enters and decides either to sit with the first customer
(c2 = 1) and orders the same dish ¢, or by himself at a new table(cy = 2)
and orders a new dish ¢,. In general, the n + 1% customer either joins an
already occupied table k with probability proportional to the number n;, of
customers already sitting there, or sits at a new table with a probability pro-
portional to a. Identifying customers with ¥, ..., ¥, and tables as clusters,
after n customers have sat down, the tables define a clustering of v, . .., Y.

2.3.3 Gibbs Sampling

Use of Dirichlet process mixture models has become computationally
feasible with the development of Markov chain methods for sampling from
the posterior distribution of the parameters of the component distributions

and/or the associations of mixture components with observations [56]. The

2.3. Dirichlet Process Mixture Models 19

Gibbs algorithm [27] samples the cluster labels ¢4, . .., ¢y and next the clus-
ter parameters (here ¢., forall c € {1, ..., K} where K designs the number
of cluster label values instead of 61, ..., 0y).

Several versions of Gibbs sampling are proposed by Neal in [56] to simu-
late values from the posterior. The principle is to repeat the following loops
at least until convergence to the posterior:

1. Cluster assignment, forn =1,..., N

e Remove observation y, from its cluster. Check if the cluster is
empty, if yes then remove the cluster and ¢., from the list {¢} of

all possible values.

e Draw ¢, from:

P (cn=c|{cj}jzn yn. {0}) x

ﬁaF (Yn | @) existing cluster
v-iza J F(yn | 9)dGo(¢) new cluster

Where #(c) designs the number of observations assigned to clus-

ter c (after removing observation y,, from the sample).

e If ¢ designs a new cluster, draw ¢, from P(¢ | y,) < F(y, |

$)Go(9)

2. Update of {¢},

e draw ¢, from the posterior distribution of cluster ¢, P(¢ | {y}.)
(which is proportional to the product of the prior G, and the like-
lihood of all observations assigned to cluster c).

When distribution F' and G are conjugates, ¢ can be integrated out from
the Gibbs sampling which becomes time-efficient (no need to update {¢}).
Then:

20 Chapter 2. State of the Art

P (cn = c|{cj}isns Yn, {9}) x
{ Nﬂia JF(yn | 9)dP(¢ | {y}.) existing cluster

S— [F(yn | 9)dGo(¢) new cluster

N—-14«

2.4 Massively Distributed DPM Clustering

Although Dirichlet Process Mixture has the advantage of discovering the
number of clusters automatically and assigning data to clusters in the same
process, it suffers from the prohibitive response times, which impairs the
adoption of its centralized approaches. A promising solution is to exploit
parallel frameworks, such as MapReduce [13] or Spark [88], to gracefully
scale to large datasets.

In this section, we first introduce multiple parallel processing frame-
works widely used in big data, and then present some parallel clustering

solutions.

2.4.1 Parallel Frameworks

Recently, more and more parallel processing techniques and frameworks
are coming out, and they are implemented and used in many areas, such as
government, healthcare, bank, weather, transportation, social media, and
education. In the following, we present the most popular frameworks :
MapReduce[13] and Spark[88].

MapReduce

MapReduce is one of the most popular solutions for big data process-
ing [8], in particular due to its automatic management of parallel execu-

tion in computing clusters. Initially proposed in [13], it was popularized

2.4. Massively Distributed DPM Clustering 21

assign map _-- @ -~. assign reduce
- .~
e ‘\‘
.

~
\

.
\
]
v
[\
J A}

local write !
Worker g
write
d output
rea @ file
Split
Sl G —
Split
Split 1 e
Split
B == @) remote
Input file hea Output
Intermediate files
Map files Reduce
\ phase / \ phase J

Figure 2.11 - MapReduce architecture

by Hadoop [85], an open source implementation. There are two functions
in MapReduce program: map function and reduce function. Both map and

reduce functions are written by user.

The idea behind MapReduce is simple and elegant, each job is executed
in two main phases. In the first phase, the Map function is used to accept the
input data which is generally in the form of file or directory and is stored in
the Hadoop Distributed File System (HDFS) [75], and produce a set of in-
termediate results (key, value), and then send the results to reduce function.
In the second phase, reduce function will accept the results and merge them
together to output file.

In order to execute a MapReduce job, we need a master node that coor-
dinates the job execution and some worker nodes to execute the map and
reduce tasks. Figure 2.11 shows the MapReduce programming workflow.
The user submit a MapReduce job to the master node. Input data are por-
tioned into multiple data splits. Each split is processed by a map task in a
given worker node which writes on its disc (local write). And then, results

of all map tasks will be redistributed and shuffled, in this process each key

22 Chapter 2. State of the Art

Input Splitting Mapping Shuffling Reducing Final Result

Baar, 2

Daar, 1 T
Daar Bear Rivan Baar, 1
Rivear, 1

' ! Car, 1
/-" N Car, 1 Car, 3 o
- \ Car, 1

¥ . -

Dear Baar Rivar Car, 1 ’-*A’ H-""--,L Bear, 2
Car Car Rivar Car Car Rivar Car, 1 \ AN /i Car, 3
Daar Car Baar Rivar,1 \, ll,-' \ /’ Daar, 2

™ I — oA 7| River,2
H\‘“--_ I.’"If \}\/K\\ Duar, 1
e [N) Deert Deer, 2
& Iy o ,
Dear, 1 VN Y
Daar Car Baar Car, 1 N /
Baar,1 PR ’
Rivar, 1 P
River 1

Figure 2.12 — The overall MapReduce word count process

will be associated with its list of values. Those shuffled results are sent to

reduce function through processing and stored into the result file.

The authors of MapReduce introduce an example that counts occurrences
of every word from large datasets [13]. The map function emits each word
plus an associated count of occurrences. Then, the reduce function sums
together all counts emitted for a particular word (see figure 2.12).

MapReduce contains a lot of pitfalls like for example, when dealing with
an algorithm or an application that applies to iterative jobs, every MapRe-
duce job has to reload the data from disk. This causes massive delay [88]
and implies that those algorithms or applications cannot efficiently run us-
ing MapReduce.

Spark

Apache Spark [88] is an open-source computing cluster framework that
was initially developed by a research group from University of California,
Berkeley, to deal with the problems that can not be handled by MapRe-
duce. Spark introduces multi-stage in-memory primitives that overcome
disk bottlenecks and provide performance up to 100 times faster for certain
applications (see figure 2.13). In addition, Spark extends the MapReduce

2.4. Massively Distributed DPM Clustering 23

Iteration in Hadoop:

ten’l» ge‘“» ‘eﬂ\b tgtﬂb ‘eﬂ‘p gz“"b
e ST° 5Y° e 5Y° ER y® o 5Y°
fie A e # file 3 fe; # e) e’ 5
ed Wi P Wi pr. writ
¢ —> LECELRE —> _ m —>\ —> EEUtIKY —> —>
Input . B Read/write - i
e.g., from HD, interm

FS)

Iteration in Spark:

e s‘é‘emb
L
= o — > e — -
; i

Input 3 In-memory computations, no need to read/write to disk
from HDFS

Figure 2.13 — Spark Vs Hadoop/MapReduce

model to efficiently support more types of computations, including interac-
tive queries and stream processing. Spark is implemented in Scala [58], a
statically typed high-level programming language for the Java Virtual Ma-
chine (JVM).

The main feature of Spark is its distributed memory abstraction, called
Resilient Distributed Datasets (RDD) [87] and parallel operations used to
handle it. Resilient Distributed Dataset is a read-only collection of objects
partitioned across a set of machines that can be rebuilt if a partition is lost.
Spark lets programmers construct RDDs in four ways:

From a file system, such as Hadoop Distributed File System.

By parallelizing a Scala collection.

By transforming an existing RDD.

By changing the persistence of an existing RDD.

Two types of parallel operations can be performed on RDDs: transfor-
mations and actions. Transformations are operations on RDDs that return a

new RDD, such as map and filter. Actions are operations that return a result

24 Chapter 2. State of the Art

Worker

SparkContext Cluster Manager

Figure 2.14 — Spark Architecture

to the driver program or write it to storage, and kick off a computation, such
as reduce or count [38].

In distributed mode, Spark uses a master/slave architecture with one
central coordinator and many distributed workers as shown in figure 2.14.
The central coordinator is called the driver, it communicates with a poten-
tially large number of distributed workers called executors. The driver runs
in its own Java process and each executor is a separate Java process. A

driver and its executors are together termed a Spark application.

A Spark application is launched on a set of machines using an external
service called a cluster manager. Spark is packaged with a built-in cluster
manager called the Standalone cluster manager. It also works with Hadoop

YARN and Apache Mesos, two popular open source cluster managers [38].

2.4.2 Parallel Clustering

We set this thesis in the context of parallel clustering. Previous works
for distributed algorithms of unsupervised clustering already exist. Ene et
al. [18] gave a MapReduce algorithms for the k-center and k-median prob-

2.4. Massively Distributed DPM Clustering 25

lems. Both algorithms use Iterative-Sample as a sub-procedure to get a sub-
stantially smaller subset of points that represents all of the points well. To
achieve this, they perform an iterative-Sample. However these algorithms
require the number of clusters £ to be specified in advance, which is consid-

ered as one of the most difficult problems to solve in data clustering.

In [34] an efficient Earth Mover’s Distance similarity joins using MapRe-
duce is proposed. The similarity join retrieves all the pairs of objects from
two datasets such that the similarity between the two objects in every pair
is beyond a certain threshold. The similarity measure has a large influence
on the effectiveness of the operation. The Earth Mover’s Distance (EMD)
is an attractive measure for applications such as probabilistic data mining.
However, It has the problem of complexity ; in their experiments, the EMD’s
computation time was about 25000 times of the euclidean distance’s on the
same histograms. Huang et al. [34] used MapReduce to tackle this problem.

Debatty et al. [14] proposed a MapReduce implementation of G-means
[30] which is an iterative algorithm that uses Anderson Darling test to ver-
ify if a subset of data follows a Gaussian distribution, it starts with a small
number of clusters and increases the number of centers, to estimate k with a
computation cost that is proportional to £, but this algorithm overestimates
the number of clusters, thus it requires a post-processing step to merge clus-

ters.

Parallel Clustering with DPM

Inference for models that use the Dirichlet process can be done using
Markov chain Monte Carlo techniques in which a Markov chain is con-
structed to draw samples from the posterior. These techniques are well
known for their long running time since the walk along the chain should
in theory converge to its stationary distribution before the samples pro-
duced can be used. The convergence process is often slow as it depends
on the mixing properties of the sampler while prolonged burn-in time and

unbounded variance inhibit running multiple independent chains concur-

26 Chapter 2. State of the Art

rently in a naive way [25].

Thus, many approximate distributed samplers have been suggested over
the years [43, 86, 84]. However, in practice, these approaches usually suf-
fer from convergence issues (imbalanced data distribution on computing
nodes) [43, 86, 25] or do not fully benefit from DPM properties [84] (see our
discussion in Section 3.2).

2.5 Conclusion

In this chapter, we have discussed the state of the art about different
categories of clustering focusing on Dirichlet Process Mixtures. The main
limitation is the prohibitive response time.

In this thesis, we carry out extensive theoretical and practical studies and
propose a parallel DPM approach that fully exploits parallel architectures
for better performances and offers meaningful results. Our main contribu-
tion is to keep consistency of clusters among worker nodes, and between

the worker and the master nodes with regards to DPM properties.

In the next chapter, we will discuss the problem of DPM Clustering in
a distributed environment. Then, we will introduce DC-DPM, our parallel
solution.

111

Dirichlet Process Mixture Models
made Scalable and Effective by

means of Massive Distribution

3.1 Introduction

Clustering with accurate results have became a topic of high interest.
Dirichlet Process Mixture (DPM) is a model used for clustering with the ad-
vantage of discovering the number of clusters automatically and converging
to the actual clusters in the data. However DPM is highly time consuming.
In this chapter, we propose DC-DPM [48, 50, 47], a parallel clustering solu-
tion that gracefully scales to millions of data points while remaining DPM
compliant, which is the challenge of distributing this process.

This chapter is organized as follows. In Section 3.2 we present the con-
text and give an overview of our work. In Section 3.3, we describe the details
of our distributed solution for clustering by means of Dirichlet Process Mix-

ture. Section 3.4 reports the results of our experimental evaluation to verify

Chapter 3. Dirichlet Process Mixture Models made Scalable and Effective by
28 means of Massive Distribution

the efficiency and effectiveness of our approach, and Section 3.5 concludes.

3.2 Motivation and Overview of the Proposal

In the past few years, advances in hardware and software technologies
have made it possible to the users of information systems to produce large
amounts of data. With such complex and massive datasets, we need to im-

prove the performance of data mining techniques, such as clustering.

In this thesis, we focused on algorithms inspired by the DPM. Lovell et
al. [43,44] and Williamson et al. [86] has suggested an alternative parametri-
sation for the Dirichlet process in order to derive non-approximate parallel
MCMC inference for it, these approaches are criticized by Gal and Ghahra-
mani in [25]. This latter showed that the approaches suggested are impracti-
cal due to an extremely imbalanced distribution of the data, and gave direc-
tions for future research like the development of better approximate parallel
inference.

The main idea when data is distributed is to perform a DPM in each
worker. The issues are then to share information between workers, and to
synchronize and update clusters arising from workers at the master level.
For synchronization, the main challenge is a problem of identification and
of label switching of clusters. In this context we can use a relabelling algo-
rithm like for example the one proposed by Stephens [36, 79] for mixture
models. For parallel Latent Dirichlet Allocation (LDA) and Hierarchical
Dirichlet Process (HDP), Newman et al. [57] suggested to measure distance

between clusters and then proposed a greedy matching.

Wang and Lin [84] gave a detailed review of literature and recent ad-
vanced in this topic before giving a new proposal. They proposed to use a
stepwise hierarchical classification at the master level with half chance for
split or merge at each step. They began with a full model considering all
clusters from all workers as different components of the model. Their al-

gorithm uses the standard Bayes Factor [39] to compare nested models and

3.3. DC-DPM: Distributed Clustering via DPM 29

choose the best split or merge. Since the model dimension is varying, they
have implemented a reversible jump algorithm [29]. In conclusion, at the
master level, the proposed algorithms diverge from a DPM-classifier and
are not a scalable estimations of a DPM. Moreover, Wang and Lin [84] used
a fixed value for the scale parameter () in their implementation of the DPM
at the workers level. The number of final clusters is related to this value (see
equation 2.1). Authors like Miller and Harrison [54, 55] have demonstrated
the inconsistency for the number of components of a DPM model with fixed
a value. If the number of components identified at the worker level is un-
derestimated, then the number of clusters at the master level might be un-
derestimated. The reverse will increase considerably the running time at the
master level. In addition, for [84] this running time depends on the accep-

tance rate of the move (split or merge) of the reversible jump.

In this work, we suggest to keep to a DPM algorithm as much as possi-
ble, even at the master level, to be close to the good properties of a DPM-
classifier, despite the fact that data is distributed. We also suggest a modifi-
cation of the DPM model to share information among workers. In this way
we expect to improve our clustering (better estimation) and suppress label
switching. Finally, we do not fix a value to o but allow a different estimation

in each worker to add flexibility to our model.

Furthermore [84] is restricted to specific cases where noise in the obser-
vations follows the conjugate distribution of the cluster centers distribution.
For example, a Gaussian noise imposes a Gaussian distribution of the cen-
ters. Therefore, this method is not suited for centers having positive values
only. Our goal is to work on any data, even with exclusively positive cen-
ters.

3.3 DC-DPM: Distributed Clustering via DPM

In this section, we present a novel parallel clustering approach called
DC-DPM (Distributed Clustering via Dirichlet Process Mixtures), adapted

Chapter 3. Dirichlet Process Mixture Models made Scalable and Effective by
30 means of Massive Distribution

for independent data. Parallelization calls for particular attention to two
main issues. The first one is the load balance between computing nodes.
In our approach we distribute data evenly across the different nodes, and
there is no data exchange between nodes during the processing. The sec-
ond issue is the cost of communications. In order to be efficient, nodes send
and receive as few information as possible by performing many iterations
of Gibbs Sampling independently in each worker before synchronizing the
global state at the master level and only communicating sufficient statistics
between workers and master. The challenge of using sufficient statistics, in
a distributed environment, is to remain in the DPM approach at all steps,
including the synchronization between the worker and master nodes. The
novelty of our approach is to approximate the DPM model even at the mas-
ter level when local data is replaced by sufficient statistics between itera-

tions.

3.3.1 Architecture and Distributed Algorithm

Data is evenly distributed on the computing nodes when the process
starts. This is a mere, sequential, distribution, that splits the dataset into
equal sized partitions.

The general workflow of our DC-DPM approach is illustrated by Fig-

ure 3.1. It consists in 4 steps:

1. Identify local new clusters in the workers

2. Compute and send sufficient statistics and cluster sizes from each worker
to the master

3. Synchronize and estimate cluster labels from sufficient statistics

4. Send updated cluster parameters and cluster sizes from master to work-

ers

Our first proposition concerns the synchronization and estimation of

3.3. DC-DPM: Distributed Clustering via DPM 31

Master
Synchronization, Estimation

<
$
S

Suffigient Statistics Worker M

L

Local New Clusters —— ———Local New Clusters
a4 Ay

Worker 1

Figure 3.1 — Diagram/workflow of the DC - DPM

the DPM. It is done with a Gibbs sampling conditionally on the sufficient
statistics instead of the whole dataset/individual observations. Our sec-
ond proposition is a construction of a shared prior distribution updated at
the master level and send to the workers” DPM. This distribution reflects
the information/results collected from all workers and synchronized at the

master.

Therefore we replace the Chinese Restaurant Process by a Food Courts
Process illustrated in Figure 3.2. Observations (or clients) are distributed
on different workers (courts) has a probability of being assigned to a clus-
ter (table) proportional to the size of the cluster and to the likelihood (ac-
cordance between table dish and client taste) taking into consideration the
information sent by the master about clusters in the other workers (Display
of information about the occupancy of the tables in the others courts). Each
cluster (dish/table) with at least one data (client) still exists in all workers

(courts).

The interactions between the master and the worker nodes are detailed

below describing tasks excuted at each level.

Chapter 3. Dirichlet Process Mixture Models made Scalable and Effective by

32

means of Massive Distribution

Court 1
Dressed table ! New table
) N
W|_t _a ® ® :
.existing... '
® ® []
e _eo © i

Display of information about the
occupancy of the tablesin the others

Display of informationabout the
occupancy of the tablesin the others
courts

Court 2

New table

Display of information about the
occupancy of the tablesin the others
courts

Dressed table Menu

with all

Translation between example terms
and algorithm terms

courts

Menu
with all
.existing...

Dressed table New table

e o]
9. 00

Each dish/table
with at least
one client still
existsin all

A menu = The space of all existing
clusters’ parameters

Atable = A cluster
A dish =The parameters of a cluster
courts A client = An observation

A court = A worker

Display = Information sent by the
Court 3 master

@ ®

Figure 3.2 — Food courts process

Worker Level

This level handles the innovation parts of DPM (detection of new clus-
ters) and the individual cluster assignment in each worker. The updates
of the cluster labels in worker j depend on sample size proportions of the
distributed data:

Py, 00), c=1,..., K

Nj—1+4+a

P(C”v‘ =c ’ Ctn,jyr Yn,js {¢}) X
’ o vra F(yg, 6)dGo(6) new

As the clusters are not known at the beginning, we cannot ensure that the
sample size proportions of each cluster will be respected in each worker.
If the data were uniformly distributed, each cluster would have only, in
average, the same weight/proportion in all workers. Therefore we added a
modification of the update :

#(c)jtajwe
%F(yn,jﬂbc)a CcC = 1,...,K

P(CTM'ZC'C#TM')O(o w
! ! ¥ 2ira; | F(Yn, 9)dGo(¢) new

3.3. DC-DPM: Distributed Clustering via DPM 33

were the weight w, is the proportion of observations from cluster c eval-
uated on the whole dataset and w, the proportion of non affected obser-
vations (awaiting the creation, innovation, discover of their real clusters).
Therefore, these parameters are updated at the master level during the syn-

chronization.

When a new cluster is created, we draw b ~ beta(1,~) and set w?** = bw,

new

and w!*" = (1 — b)w,. We can understand b as follows : When a new cluster
is instantiated, it is instantiated from G, by choosing an atom in G, with
probability given by its weight b. Using the fact that the sequence of stick-
breaking weights is a size-biased permutation of the weights in a draw from
a DP [66], the weight b corresponding to the chosen atom in G, will have the

same distribution as the first stick-breaking weight, that is, beta(1,) [80].

Now, the scale parameter «; can be viewed as a tuning parameter be-
tween local (worker) and global (master) proportions. Following [20] we

use an inverse gamma prior to infer this parameter.

This modification of the update implies a slightly modified DPM in each
worker j :

Ynj ~ F(Ony)
Ong ~ G

G, ~ DP(ay,G)
a; ~ IG(a,b)

K
G = ch(5¢c+qu0,

c=1
K
with w,, +ch =1

c=1

Algorithm 1 summarizes the DPM at the worker level.

Chapter 3. Dirichlet Process Mixture Models made Scalable and Effective by
34 means of Massive Distribution

Algorithm 1 DPM at worker level

for each data y,, do
Draw ¢, ; from P(c, ; = ¢ | {c1; }igns Ynjs {0}, {w}, o)

%F<yn,ja¢6)ac = 17 s 7K
o [Py, 5, 6)dGo(6) new

Update of ¢
Draw ¢, for new clusters

Master Level

This level handles the final individual assignment in the master node
and therefore the final common number of clusters K. The master gets
from each worker the following input : sample size of cluster k in worker
J (njx), cluster parameter values-sufficient statistics, individual predictive

value (traditionally/usually the cluster mean value in the worker: ¢, ; =

gj’cn,]’:k)'

At the master level, the observations are assigned by clusters. A cluster
corresponds to a set of individuals belonging to the same cluster of the same
worker. Each cluster has a representative or individual predictive value
which is used to perform the end of the Gibbs sampling at the master level:

&F An . c C = 1 . K
P(CnJ = C | Csﬁn,j) X N_#(i/j,k)—l—'y (y ia ¢), , ,
e | Fng, 0)dGo() new

Working at an individual level implies a slow Gibbs sampling with poor
mixing [28]. So, we suggest an update by clusters. In this view, we denote
2z the master label of the cluster k in worker j. To take into account the
worker information ({¢y°*“7}), we replace the prior predictive distribution
(f F(yny, ¢)dGo(¢)) by a posterior predictive distribution. Eventually, we
use the cluster mean value (y; ;) as an individual predictive value:

3.3. DC-DPM: Distributed Clustering via DPM 35

&F(—, _

(e y7k,¢c),0—1,...,K

P(zjp=c|zgip) o #(Wj’k)lﬂ " workerj
N—#(c; bty fF(yj,k7¢)dG(¢ | o,)

The labels {c, ;} of all the observations y, ; in the cluster k& of worker j

are then assigned to the master label z; .

Next, the cluster parameters ({¢. }.—1.. i) are updated from the posterior

computed on the whole dataset. We assume that we don’t need all the data
but only sufficient statistics from all clusters from all workers to compute
the posterior. This assumption is straightforward for many distributions, as

the exponential family [1].

At the master, we use also an inverse gamma prior to infer the scale

parameter v as at the worker level.

Last, the synchronization of the workers is done through the definition

of G using the updated parameters ({¢.}.—1, x) and with weights drawn

from a Dirichlet distribution Dir(n4,...,nk, 7). The end user parameters of
this Dirichlet distribution are updated at the master level from the whole
dataset. The size n,, is the sum of all observations having label & at the end

of the master Gibbs sampling.

(w1, ..., W, wy,) ~ Dir(ng,...,ng,7)

v ~ 1G(c,d)

By doing so, we do not have to consider label switching. Clusters are ex-
plicitly defined at the master level and parameter values are not updated in
the worker. At the worker level, only innovation (creation of new clusters)

is implemented. This is summarized by Algorithm 2.

Chapter 3. Dirichlet Process Mixture Models made Scalable and Effective by
36 means of Massive Distribution

Algorithm 2 DPM at master level

for each (4, k) do
Draw z;; from P(z;), = ¢ | {¢}2in, Uik, {0}, 7) X

#(c _ B
Wj?ka(yj,b (bc)? C = 1, R ,I(l; |
v w s | F @i 0)dG (o | 67)

Update of ¢ and (wy, ..., wg, w,)

3.3.2 The Exponential Distribution Family

The likelihood for one observation y; from the Exponential family is:

Flyi | n) = h(y:)exp (n" () — a(n))

where

1 is the vector of the natural parameters and is a function of ¢.

e (y;) are sufficient statistics

a(n) is the Log-normalizing factor or Log-partition, it can be expressed
as a function of ¢ : a(n(¢))

* h(y;) is the base measure

and the likelihood for all the observations is

Fyr, .. yn | m) = <ﬁl h(%)) exp<nT (f:li/}(yi))
- Na(n))

Among all the distributions included in the Exponential Family, we im-
plemented the Normal case for the experiments: F(. | ¢.) = N(¢., X1). This
choice corresponds to the simple linear model y,, = ¢. + ¢, and ¢, is Nor-
mally distributed N (0, ¥;).

3.4. Performance Evaluation 37

In this case, the sample mean of cluster ¢, namely . is a sufficient statistic

and the posterior distribution can be conditioned only on its value:

When G is not a conjugate prior (e.g., a normal distribution), the pos-
terior distribution is not a usual one but a value from this posterior can be
simulated with a Metropolis Hasting (MH) [32] within Gibbs algorithm.

When variances are known and Gy is a conjugate prior (normal dis-
tribution N(m, %)), there is no use of MH algorithm. The posterior is a
normal distribution N (g2 = X (#(c) 59, + X7 m), $rost) where Ypost =
(#(c) B3 +X71) 7. The predictive posterior is a normal distribution N (¢, $y+
¥rost) In our context, 3*°* was considered negligible and the mean value

¢r**" was replaced by an individual drawn from the posterior.

3.4 Performance Evaluation

The parallel experimental evaluation was conducted on a cluster of 32
machines, each operated by Linux, with 64 Gigabytes of main memory, Intel
Xeon CPU with 8 cores and 250 Gigabytes hard disk. The project is written
in Scala on top of Apache Spark [88]. Spark is deployed on top of Hadoop
Distributed File System (HDEFS) [75] in order to efficiently read input data,
as well as to store final results, and thus to overcome the bottleneck of cen-
tralized data storing. The intermediate results are stored in a distributed
memory instead of stable storage (Disk) and make the system faster. Fig-
ure 3.3 illustrates the basic architecture of DC-DPM in Spark.

The centralized approach is an implementation DPM in Scala, and was

executed on a single machine with the same characteristics.

The distributed algorithm we proposed is an approximation of a classic

DPM, we will compare its properties to a centralized DPM implementation,

Chapter 3. Dirichlet Process Mixture Models made Scalable and Effective by

38 means of Massive Distribution
Iteration 1 [teration n
I dentiie CompL.Jting 3 Synchr?nizipg ! identying CompnlJtmg 3 Synchnlmm‘ng Firal data
I sufficient |1 and estimating i sufficient |\ and estimating ;
| local clusters L I 1 | local clusters . I assignments
! statistics || global clusters | statistics || global clusters
i

Hors! | [Partition Partition | |! i Partition } Partition | 3 (Partition | | write
read | ” il { 1 ! il 'l 1 l A1 resuls

L
|

/1| [Partition | Partition | ||
[k - ‘
Sl e i }

T /
/ o i il
Dataon (¥ Distributed ||\ |

Disk Memory }

T, \
Partition h
r -
o 2 .
A

7

= \ ,
\(Fariion) |
Co‘lect updated M| rartion r =
l N
RDD

(Partition }_, Partition | |}

A ‘ Output on
, Disk

N

—— read

ll Panlatmn ‘ I Partition i collect updated | NI Partlldtmn il { Parl:lon
P — B | parameters | | ————
|| RoD RO |: {| RoD D

\
' v

A

parameters

Figure 3.3 — Architecture of DC-DPM in Spark

on synthetic data and also in our use-case for digital agronomy. The first
step of our process is a distributed K-means that sets the initial state (usually
we set K to be one tenth of the dataset size).

Reproducibility : All our experiments are fully reproducible. We make
our code and data availableat https://github.com/khadidjaM/DC—-DPM

In the rest of this section, we describe the datasets in Section 3.4.1 and
our evaluation criteria in Section 3.4.2. Then, in Section3.4.3, we measure
the performances, in response time, of our approach compared to the cen-
tralized approach and also by reporting its scalability and speed-up. We
evaluate the clusters obtained by DC-DPM in the case of real and synthetic
dataset in Section 3.4.4 and Section 3.4.5 discusses the results and interest of

our work in a real use-case of agronomy.

3.4.1 Datasets

We carried out our experiments on a real world and a synthetic dataset.

Our synthetic data are generated using a two-steps principle. In the first

https://github.com/khadidjaM/DC-DPM

3.4. Performance Evaluation 39

step we generate cluster centers according to a multivariate normal distri-
bution with the same variance 0% for all dimensions. In the second step,
we generate the data corresponding to each center, by using a multivariate
normal distribution parameterized on the center with the same variance o3
for all dimensions. We generated a first batch of 5 datasets having size 20K,
40, 60, 80K and 100K with o} = 1000 and o3 = 1. They represent 10 clusters.
We generated a second batch of 5 datasets having size 2M, 4M, 6M, 8M and
10M with o = 100000 and ¢ = 10. They represent 100 clusters. This type
of generator is widely used in statistics, where methods are evaluated first

on synthetic data before being applied on real data.

Our real data correspond to the use-case of the figure 2.1 described in
Section 2.2.1. The image used to test our algorithm was in RGB format.
After pre-processing it contains 1,081,200 data points, described by a vector
of 3 values (red, green and blue) belonging to [0, 1].

3.4.2 Clustering Evaluation Criteria

There are two cases for evaluating the results of a clustering algorithm.
Either there is a ground truth available, or there is not. In the case of an
available ground truth, there are measures allowing to compare the clus-
tering results to the reference, such as ARI, described below, for instance.
This is usually exploited for experiments when one wants to check perfor-
mances in a controlled environment, on synthetic data or labelled real data.
In the case where there is no ground-truth (which is the usual case, because
we don’t know what should be discovered in real world applications of
a clustering algorithm) the results may be evaluated by means of relative
measures, like RSS, described below, for instance.

In our experiments, we chose the following three criteria:
¢ The Adjusted Rand Index (ARI), see [83]: it is the corrected-for-chance

version of the Rand Index [70], which is a function that measures the

similarity between two data clustering results, for example between

Chapter 3. Dirichlet Process Mixture Models made Scalable and Effective by
40 means of Massive Distribution

the ground truth class assignments (if known) and the clustering algo-
rithm assignments. ARI values are in the range [-1,1] with a best value
of 1.

* The residual sum of squares (RSS): it is a measure of how well the
centroids (means) represent the members of their clusters. It is the
squared distance of each data from its centroid summed over all vec-
tors. In the univariate case, the RSS value divided by the number of
observations gives the value of the Mean Squared Error (MSE), an es-
timator of the residual variance. In multivariate dataset with indepen-
dent variables, the RSS value divided by the number of observations
gives an estimator of the sum of the variable variances. This sum rep-
resents its lower bound and also the best value to be observed in the
clustering of synthetic data. To simplify, we give in the following the
result of the RSS value divided by the number of data N and the vari-
ance. Therefore the lower bound is known and should be equal to the
number of variables (for example 2 for our synthetic data).

¢ K, the number of discovered clusters.

3.4.3 Response Time

In this section we measure the clustering time in DC-DPM and compare
it to the centralized approach. Figure 3.4 reports the response times of DC-
DPM and the centralized approach on our synthetic data, limited to 100K
data points. Actually, the centralized approach does not scale and would
take several days for larger datasets. The results reported by Figure 3.4 are
in logarithmic scale. The clustering time increases with the number of data
points for all approaches. This time is much lower in the case of DC-DPM,
than the centralized approach. On 8 machines (64 cores) and for a dataset
of 100K data points, DC-DPM performs the clustering in 24 seconds, while

the centralized approach needs more than 7 hours on a single machine.

3.4. Performance Evaluation 41

DC-DPM —&—

1000 ¢ centralized DPM -+ 7

_ 100 | . 7
E

Oé) 10 | § 7
=

| l

0.1 ‘ ‘ ‘ ‘

20K 40K 60K 80K 100K
Number of data

Figure 3.4 — Logarithmic scale. Response time (minutes) of the centralized and the
distributed DPM approaches as a function of dataset size. The distributed approach
is run on a cluster of 8 nodes. With 20K to 100K data points from the synthetic
dataset. The centralized approach needs more than 7 hours and our distributed
approach needs 24 seconds

Figure 3.5 reports an extended view on the clustering time, only for DC-
DPM, and with a dataset having up to 10 million data points. The running
time increases with the number of data points. Let us note that the cen-
tralized approach does not scale and cannot execute on such dataset size.

DC-DPM enjoys linear scalability with the dataset size.

Figures 3.6 and 3.7 illustrate the parallel speed-up of our approach on the
synthetic dataset and on the dataset obtained after preprocessing the image
of our use-case. The results show optimal or near optimal gain. In Fig-
ure 3.7 we observe that the response time for 2 nodes is more than twice the
response time for 4 nodes. That is unexpected when measuring a speed-up.
However, the response times of our approach are very fast (a few minutes)
and do not consider the time it takes for Spark to load-up, before running
DC-DPM. The slight difference between an optimal speed-up and the re-

sults reported in Figure 3.7 are due to that loading time.

Chapter 3. Dirichlet Process Mixture Models made Scalable and Effective by
42 means of Massive Distribution

DC-DPM —=—

200 | 1
= 150 1
E
£ 100 | 1
£

50 | 1

0

2M aM 6M M 10M
Number of data

Figure 3.5 — Response time (minutes) of DC-DPM as a function of dataset size.
DC-DPM is run on a cluster of 16 machines. With 10 million data points from the
synthetic dataset.

DC-DPM —&—
250 | :
200 | :
G}
E 150}]
Q
=
= 100 |]
50 | :

8 16

Number of nodes

o}
N

Figure 3.6 — Clustering time as a function of the number of computing nodes on
synthetic data. DC-DPM has a near optimal speed-up. With 2M data points from
the synthetic dataset.

3.4. Performance Evaluation 43

'DC-DPM —=—

40
35 ¢
30 ¢
25 ¢
20 ¢
I5
10

Time (min)

2 4 8 16
Number of nodes

Figure 3.7 — Clustering time as a function of the number of computing nodes on the
image of our use-case. DC-DPM has an optimal speed-up. The image represents
more than 1 million data points.

3.4.4 Clustering Evaluation

In the following experiments, we evaluate the clustering performance of
DC-DPM and compare it to the centralized approach.

Table 3.1 reports the ARI value computed between the clustering ob-
tained and the ground truth, the RSS value divided by the number of data
N and variance (03), and the number of clusters of DC-DPM and of the cen-
tralized approach on our synthetic data. DC-DPM performs as well as the
centralized approach, there is a small gap in RSS values which is negligible
compared to the gained time.

Table 3.2 reports an extended view on the ARI value, and the RSS value
divided by the number of data N and by the variance (¢3), and number of
clusters number for DC-DPM, with increasing dataset size (up to 10 mil-
lion data points). The performance keeps showing the maximum possible

accuracy, even with a large number of data points.

Figure 3.8 gives a visual representation of our 4M data points synthetic

dataset. Each cluster is assigned a color. Our goal is to retrieve these clus-

Chapter 3. Dirichlet Process Mixture Models made Scalable and Effective by
44 means of Massive Distribution

Table 3.1 — ARI, RSS divided by the number of data N and the variance (a%), and
number of Clusters obtained with the centralized DPM and with DC-DPM, on in-
creasing dataset size. The DC-DPM is run on a cluster of 8 nodes.

Centralized DPM DC-DPM
ARI NRXSEQ Clusters | ARI NRfiQ Clusters
2 2

20K | 1.00 | 2.01 10 1.00 | 2.04 10
40K | 1.00 | 2.00 10 1.00 | 2.03 10
60K | 1.00 | 2.00 10 1.00 | 2.02 10
80K | 1.00 | 2.00 10 1.00 | 2.01 10
100K | 1.00 | 2.00 10 1.00 | 2.02 10

Table 3.2 - ARI, RSS divided by the number of data N and by the variance o3, and
number of clusters for DC-DPM on increasing dataset size. DC-DPM is run on a
cluster of 16 machines.

ARI | RSS/(N*03) | Clusters
2M | 1.00 2.00 102
4M | 1.00 2.00 100
6M | 1.00 2.00 100
8M | 1.00 2.02 99
10M | 1.00 2.10 101

ters. Figure 3.9 shows the performance of our approach with almost perfect
results where the discovered clusters are the same as the actual ones from
the data. This is confirmed by Table 3.2, line 2.

3.4.5 Use-case

Phenotyping and precision agriculture use more and more information
from sensors and drones, like aerial images, leading to the emerging domain
of digital agriculture (see for example http://ec.europa.eu/research/
participants/portal/desktop/en/opportunities/h2020/topics/
dt-rur-12-2018.html). An important challenge, in this context, is to

be able to distinguish clusters of plants: status (normal, hydric stress, dis-

http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/dt-rur-12-2018.html
http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/dt-rur-12-2018.html
http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/dt-rur-12-2018.html

3.4. Performance Evaluation 45

Ground Truth
800
.
400 | ¢ o vl o
% ‘e ¢ ; . .
0 ‘. :00: ﬁ'.". ‘9
) ™M
* » - '.“ ‘... » » *
-400 + * ‘,'. . ® *
-800 | | | |
-800 -400 0 400 800

Figure 3.8 — Visual representation of our synthetic dataset with 4 millions data
points on 100 clusters. Each cluster is assigned a different color.

DC-DPM
800
A
400 ¢t 3 ."' ..’ L
e * @ & o *
..": t’
0 ‘. o e, :"3 ‘.:
M . 2 -* *
400 | » o .
*
+*
-800 | .. | |
-800 -400 0 400 800

Figure 3.9 — Visual representation of the results obtained by our approach on the
data of Figure 3.8, with 16 nodes. Each cluster is assigned a different color.

Chapter 3. Dirichlet Process Mixture Models made Scalable and Effective by
46 means of Massive Distribution

ease,...) or species for example. Clustering, applied to images, is a key in
this domain.

We want to discover clusters in the image presented in Section 2.1 (fig-
ure 2.1) and transformed as described in Section 4.5.1. We set 07 = 1 because
our data is in the range of [0, 1]. For both parameter values of o3 = 0.01 and
o3 = 0.0025, the clusters are extracted in approximately 3 minutes with DC-
DPM running in parallel on 16 computing nodes. This is confirmed by Fig-
ure 3.7. The centralized approach does not scale on this data and we could

not obtain results.

The number of clusters depends on the value of the variance error. A
value of o3 = 0.01 gave a rough clustering with only K = 3 clusters. Those
clusters identified the brightness in the RGB image (see figure 3.10). A lower
value of o3 = 0.0025 gave a clustering with k£ = 12 clusters, which is enough
to reconstruct the image (see figure 3.11). Depending on the aim of the clus-
tering, different types of wavelength or data must be used for identification.
The accuracy of the clustering (number of clusters) relies on the variance
value (03). Clustering is used to detect structures in the data (genetic, popu-
lation, status) before processing. This group detection allows reducing data

dimension and bias in further prediction analysis.

DC-DPM was compared to the centralized DPM on a part of the RGB

image. The results were quite similar as shown in figure 3.12.

There are very powerful supervised methods for classifying structures
or features present in images [78], such as deep learning methods for ex-
ample. Our unsupervised DPM clustering approach to image processing
does not compete with these methods. On the contrary, it can be seen as a
complementary method that facilitates the image labelling step of the learn-
ing dataset, a step that is always challenging and necessary in supervised

classification.

3.4. Performance Evaluation 47

Figure 3.10 — Clustering of the Durum image in the experimental field. RGB image
with o2 = 0.01, resulting in 3 clusters.

Figure 3.11 - Clustering of the Durum image in the experimental field. RGB Image
with 03 = 0.0025.

Chapter 3. Dirichlet Process Mixture Models made Scalable and Effective by
48 means of Massive Distribution

Figure 3.12 - Clustering of a part of the Durum image in the experimental field.
RGB Image with DC-DPM (top, 12 clusters) and centralized DPM (bottom, 17 clus-
ters), 03 = 0.0025. The impact of o on the number of clusters varies for centralized
and distributed approaches and may be adjusted by the end-user.

3.5 Conclusion

We proposed DC-DPM, a novel and efficient parallel solution to per-
form clustering via DPM on millions of data points. We evaluated the per-
formance of our solution over real world and synthetic datasets. The ex-
perimental results illustrate the excellent performance of DC-DPM (e.g., a
clustering time of less than 30 seconds for 100K data points, while the cen-
tralized algorithm needs several hours). The results also illustrate the high
performance of our approach with results that are comparable to the ones
of the centralized version. Overall, the experimental results show that by
using our parallel techniques, the clustering of very large volumes of data
can now be done in small execution times, which are impossible to achieve

using the centralized DPM approach.

In the following chapter, we will open a fundamental research track
which is clustering on high dimensional data like, e.g. time series.

IV

High Dimensional Data Clustering
by means of Distributed Dirichlet
Process Mixture Models

4,1 Introduction

Clustering may be used for identification in the new challenge of digital
agriculture, where large amounts of complex data are collected: for example
in herd monitoring, animal activity is monitored using a collar-mounted

accelerometer, as illustrated in figure 4.1.

Unfortunately, in this case of high dimensional data, DPM relies on ma-
trix computations. These computations are no more feasible by the several
distributed approaches presented in the previous chapter (see the discus-

sion in Section 4.2).

In this chapter, we propose HD4C (High Dimensional Data Distributed

Chapter 4. High Dimensional Data Clustering by means of Distributed Dirichlet
50 Process Mixture Models

Figure 4.1 — An accelerometer mounted on a sheep’s collar.

Dirichlet Clustering) [49, 51], a novel parallel clustering approach adapted
for high dimensional data, based on a distributed algorithm for Dirichlet
Process Mixture. HD4C takes advantage of the properties of Reproducible
Kernel Hilbert Spaces (RKHS) to allow clustering on the whole data (the
whole signal or curve or time series) [37]. Other approaches that use fea-
ture selection and/or dimensionality reduction (like PCA or SVM) are often

inappropriate because clusters generally lie in different subspaces [68].

This chapter is organized as follows. In Section 4.2, we give the motiva-
tion and overview of our work. The necessary background of Reproducible
Kernel Hilbert Spaces (RKHS) is stated in section 4.3. Our distributed so-
lution for high dimensional data clustering by means of Dirichlet Process
Mixture is detailed in Section 4.4. The efficiency and effectiveness of our
approach are illustrated in Section 4.5 through an experimental evaluation.

Finally, the conclusion is in Section 4.6.

4.2. Motivation and Overview of the Proposal 51

4.2 Motivation and Overview of the Proposal

There is a significant research on clustering of big high dimensional data.
Some efforts have focused on making the similarity measures faster, like,
e.., Zhu et al. [89] who introduced a novel data-adaptive approximation to
DTW which can be quickly computed. Other studies suggest to make the

main clustering algorithms scalable by means of massive distribution.

In this thesis, we focus on algorithms inspired by the DPM. DC-DPM is a
solution proposed to this issue when data is multivariate. In the case of high
dimensional data or signals (infinite dimension), matrix computation is no
more feasible (no inverse for example, no matrix product). The definition of
densities with respect to the usual Lebesgue measure is not available any-

more. Therefore a new metric/measure must be found in order to compute
a likelihood.

A first attempt to work with this kind of data is to reduce their dimen-
sionality, by sub sampling the observations or projecting them into sub spaces
like the one defined by a truncated basis of B-splines [2] or a truncated ba-
sis of kernel principal component analysis [23]. Multivariate analysis, like
SVM, k-means or DC-DPM, can then be applied.

A better approach is to continue working in infinite dimension to keep
all information on the data. To compute a distributed DPM for high di-
mensional data or signals, we need to replace a matrix product by an inner
product in an adequate space of functions and to find the adequate mea-
sure to compute the likelihood and the posterior. To do that, we used the
properties of the Reproducible Kernel Hilbert Spaces (RKHS), as in [37].

RKHS (used for example in the Support Vector Machine approach) are
very popular in machine learning thanks to "the representer theorem which
simplified an infinite dimensional empirical risk minimization problem into
a finite dimensional problem where the solution is included in the linear

span of the kernel function evaluated at the training points" [53].

Our goal is to propose a parallel DPM approach for high dimensional

Chapter 4. High Dimensional Data Clustering by means of Distributed Dirichlet
52 Process Mixture Models

data clustering based on the DC-DPM algorithm [48].

4.3 RKHS of Gaussian Process and DPM

We assume that the random variable of interest takes its values in a space
of infinite dimension. Therefore, high dimensional data will be seen as tra-
jectories of a random process Y: Y = (Y (t)).c(0,r1, where ¢ stands for the gen-
eral index of the Y function, ¢ can be for example a time index in case of time
series or a wavelength index in case of spectrum. In order to guarantee the
existence of necessary conditional probabilities in the DPM algorithm, we
will assume that the trajectories belong to the space of the integrable square
functions (L?([0,T])) on [0, 7] (from [17]). Our work focuses on Gaussian
random process because most of the random process can be approximated
by a Gaussian process. In addition many calculations are facilitated in the
Gaussian framework. For example, [73] stated that using Gaussian process
for machine learning "turn out to be much more accurate than for paramet-

ric models of equal flexibility (such as multilayer perceptrons)".

A Gaussian process GP(m, K) is entirely defined by its mean function
m(t) and its covariance function K (s,t), for all ¢,s € [0,7]. The main idea
behind the clustering with Gaussian Process is to use results from signal
processing where the data is the sum of two Gaussian processes, namely a
signal (a trajectory m; issued from a GP(my, Kj)) and a noise (¢; issued from
a GP(0, K)):

Y, =m; +¢;.

We assume that the signal is smoother than the noise in order to be able
to detect it. To extract the signals and cluster them, we use the following
DPM:

K|mZ,K ~ GP(mI,K),Z:]_,7N

G | mo,KO ~ DP(O./, GP<m0aK0))

4.3. RKHS of Gaussian Process and DPM 53

DPM will create clusters of m; where for all observations in cluster ¢,
m; = ¢.. To run the DPM with algorithm 8 from Neal [56, 48], we need to
define a posterior distribution GP(m*, K*) for ¢. and the likelihood process
dGP(m;, K)/dGP(0, K) for Y;. From [73], the Reproducing Kernel Hilbert
Space with reproducing kernel K, denoted Hj "will turn out to contain ex-
pected values of m; conditioned on a finite amount of information, thus the

posterior mean function m* we are interested in".

Moreover, there exists a duality between a Gaussian process GP(m, K)
and Hg. Hy is a space of real functions defined on [0, 7] which verifies the
following property: Vt € [0,7],Vf € Hg, f(t) = (f, K(.,t))x, where (.,.)k is
the inner product of Hx. From [62], we define the random variable (Y, f)x
like a stochastic integral. The properties of H allow to define the likelihood
process [63, 64]:

(Y. K(,t))k =Y (t) (4.1)
f.9€ Hy, (f,9)x = E[(Y, f)x (Y, 9)k] (4.2)
m; € Hg, W(Y;) - e(Yi,mi)K—%(mi,mi)K (43)

To ensure that m; € Hy, we must choose carefully the covariance function
K, because the differentiability of m; up to a given order (and therefore the

smoothness of m;) can be controlled via the covariance function.

Finally, following [16, 81, 37], the posterior distribution for the signal of
a cluster c is a Gaussian process, namely ¢, | (Y;)q=c ~ GP(m*, K*) with:

m*(t) = mo(t) + (Ko(.,t), (Yo = 1m0)) k/ne+ ko (4.4)
K* Svt) = K()(Svt) - (KO('v‘S)?KO(‘at))K/nc-f—Ko (4.5)

where the covariance functions K and K, are weakly continuous functions
on [0, 7] x [0,T]; n. and Y, are respectively the number of observations and

the mean function (Yc = ni D eimc Yi) in cluster c.

When K is non singular and weakly continuous, usual matrix approxi-

Chapter 4. High Dimensional Data Clustering by means of Distributed Dirichlet
54 Process Mixture Models

mations of the inner product results from [63]:

. —1

Jim FORE T = (f g)k
. —1
Jim VOROTGE = (v, g

where (t),_, 1 is dense in [0,7] and f) = (f(tY),..., f(t")), ¢ =
(g(tY),...,g(t")) and K¥ is a L x L matrix whose elements are K (t',t/)
for1 <1[,5 < L. Oyaetal. [61] proposed a generalised numerical approach
to estimate the inner product in Hy. In our approach (Section IV), we use a
known analytical form for the inner product, which avoids matrix product
or inversion and thus allows to escape the curse of dimensionality.

4.4 HDA4C : High Dimensional Data Distributed
Dirichlet Clustering

Working in infinite dimension (functional data) allows to use informa-
tion on the trajectories but also on their derivatives, which may reveal key
information for the data clustering (see [10]). Indeed an Hilbert space (like
the RKHS) is a space of integrable square functions (L*([0,7])) on [0, 7], it
is a special case of a Sobolev space. It means that a RKHS is a vector space
of functions equipped with a norm that is a combination of LP-norms of the
function itself and its derivatives up to a given order. The given order is
conditioned by the differentiability of the trajectories and therefore by the
covariance function K of the random process Y.

In our experiments, we defined Y; | §; = m;, K as an autocorrelated
Gaussian process called Ornstein-Uhlenbeck (OU) whose covariance func-
tion is defined as follows:

K(s,t) = U—Qe_ﬁls_t‘ 4.6
(5.8) = g5, ®6)

where o and /3 are two positive real.

4.4. HD4C : High Dimensional Data Distributed Dirichlet Clustering 55

Therefore, from [7], H is a space of differentiable functions in [0, 7’| with

the scalar product (defining the norm):

o?Jo

T(f@¢w+ﬂ%uma0ﬁ

B

4.7)
+ % (7090) + 10am),

To ensure that m; € Hg, we used the prior G = GP(my, K,), where

08 —Bo(s—t)2
KO(S,t) = 27606 .

This covariance gives very smooth trajectories (infinitely differentiable).

Other choice of covariance functions are possible for non smooth ob-
servations (like a Wiener process). Defining the covariance function K on
the observations is equivalent to defining the kernel covariance K of the
RKHS Hg. Defining a kernel K requires defining an inner product in Hy,
which is equivalent to defining a metric, a distance between two observa-
tions d(i, j) = (m; — m;, m; — m;)k. This led us to use a Sobolev metric for
high dimensional Gaussian data (ie a distance between trajectories and their
derivatives for OU Gaussian data) instead of the usual euclidean distance
Jo (my(t) — m;(t))?dt or the Mahalanobis distance for multivariate Gaussian
data.

Implementing this algorithm requires:
¢ The set of indexes used for computing the integrals in the inner prod-

uct equation (4.7); for example in time series, it could be the observa-

tion time steps or not.

¢ An interpolation of the observations (if needed) to simplify the com-
putation of the inner product. This interpolation can be used to adapt
the observations to the covariance function K.

¢ Computation of the densities at the master and at the worker level,

Chapter 4. High Dimensional Data Clustering by means of Distributed Dirichlet
56 Process Mixture Models

from equation (4.3). This requires estimating the hyperparameters
and 0. To avoid overly complex modelling, we have chosen to fix
them empirically. As the Y; curves are generated from Gaussian pro-
cesses with covariance function K in (4.6), the parameters 5 and o were
determined from the empirical estimation of the intra-class variance-

covariance matrix of the curves discretized in a few points.

We provide below more specific details:

Worker level

In the Gaussian process framework, the likelihood process is defined

with respect to the Gaussian measure from GP(0, K). Using [64] we have

F(fy“ ¢C> o e(yiﬁﬁc)K*% (¢C>¢C)K .

As the density of the predictive prior cannot be expressed with respect
to the same Gaussian measure (G'P(0, K)) than the likelihood, we approxi-
mated the integral in the MCMC algorithm, as suggested in algorithm 8 of

[56], by drawing m realisations of ¢..

To improve the variety of new candidate values of ¢“", we modified the
original algorithm according to the following: ¢ (t) = mg(t) 4+ ((t), where
((t) is a trajectory simulated from G P(mg, K) and my(t) is randomly sim-
ulated from a truncated polynomial basis (the basis order is also randomly

chosen).

Following [20], we used an inverse Gamma prior to infer the parameter

Q.
The following algorithm 3 summarizes the worker level.

where the weight w, is the proportion of observations from cluster c eval-
uated on the whole dataset and w,, the proportion of non affected observa-

tions (awaiting the creation, innovation, discover of their real clusters), with

4.4. HD4C : High Dimensional Data Distributed Dirichlet Clustering 57

Algorithm 3 DPM at worker j

for each data y; do
Draw m values ¢/
Draw individual cluster label ¢; from

P(c; = c | {aihizi vis {0}, {w}, aj)

{ #(C)+aj We e(yiv(ﬁc)K_% (¢57¢C)K’ c =]_’ . 70

N]-—H—aj
L_0iWu_ o(ydt) k=3 (6280 c=1m

E N]'—l-‘raj

Update of ¢

W, + 25:1 w. = 1. Therefore, these parameters are updated at the master

level during the synchronization.

Master level

Instead of drawing new values ¢*, the proposed algorithm reuses the

worker;

center values of the clusters received from the workers, namely ¢,

The approximation of ¢ is updated by computing the posterior mean in
each cluster, equation (4.4), to which we add a noise drawn from a GP(0, K/n.).

Following [48], we use a Dirichlet prior to infer (wy, ..., wk, w,).

The master lever is outlined in algorithm 4.

Algorithm 4 DPM at master level

for each cluster & from worker j do
Draw cluster label z; ;, from

P(zjp = c| {chzjm Ui, {0}, 7)

{ &6(?%,/9#)0)1(7% ((z)cvd)C)K, Cc = 1’ . ’C

N—#(cj k)+7 . ‘ o
46(%7’“’ ;;vor erJ)K_% (¢2/0r erj z,or erj)K
N—#(cj k) +v

Update of ¢ and (wy, ..., wx, w,)

Chapter 4. High Dimensional Data Clustering by means of Distributed Dirichlet
58 Process Mixture Models

4.5 Performance Evaluation

The parallel experimental evaluation was conducted on a computing
cluster of 32 machines, each operated by Linux, with 64 Gigabytes of main
memory, Intel Xeon CPU with 8 cores and 250 Gigabytes hard disk. The
project is written in Scala on top of Apache Spark [88] withe the same archi-

tecture as DC-DPM illustrated in figure 3.3.

We compared our approach to K-means, which is one of the most com-
monly used clustering algorithms. We used an implementation available at

Spark’s machine learning library (MLIib) [52].

The first step of HDAC is a distributed K-means that sets the initial state

(usually we set K to be one tenth of the dataset size).

Reproducibility : All our experiments are fully reproducible. We make

our code and data availableat ht tps://github.com/khadidjaM/HDA4C.

In the rest of this section, we describe the datasets in Section 4.5.1 and our
evaluation criteria in Section 4.5.2. Then, in Section 4.5.3, we measure the
performances, in response time, of our approach by reporting its scalability
and speed-up. We evaluate the clusters obtained by HD4C in the case of

real and synthetic dataset in Section 4.5.4.

4.5.1 Datasets

We carried out our experiments on two real world datasets and many

synthetic datasets.

https://github.com/khadidjaM/HD4C

4.5. Performance Evaluation 59

Our synthetic data are generated using a two-steps principle. In the first

step we generate four cluster centers according to the following polynomi-

als :
s1(t) = 0.11#3 — 0.16t> + 0.55¢
so(t) = —0.75t% + 1.49t% — 0.91¢% + 0.17¢
s3(t) = 3.91#° — 9.77t* + 0.854¢3 — 3.05¢% + 0.37¢
s4(t) = —20.09¢° + 60.26t° — 68.22¢* + 36t
—8.71¢% + 0.76¢

In the second step, we generate the data corresponding to each center, by
using a Gaussian process of mean s; and a covariance given by an Ornstein-
Uhlenbeckh process parametrized by § = 10 and o = 2.5 . We generated
independently a batch of 5 datasets having size 200K, 400, 600, 800K and 1M
time series of 100 points, the latter dataset is about 2 Gigabytes. Figures 4.2
and 4.3 give a visual representation of our synthetic dataset. Each cluster is
assigned a color and represented by 10 time series. This type of generator
is widely used in statistics, where methods are evaluated first on synthetic
data before being applied on real data.

The first real world dataset corresponds to more than five thousands ac-
celerometer time series which have been measured by sensor on 13 sheep
(as in figure 4.1). Each time series is made of 500 observation times and
has been visually assigned to one of six activities (STANDING-GRAZING,
STANDING-EATING BRUSH, STANDING-RUMINATING, WALKING, RUN-
NING, STANDING-IMMOBILE). Accelerometers captured 3-axial acceler-
ation at a constant rate of 100Hz. The sensor signals were pre-processed
and for each activity of interest, sampled in fixed-width of 5 seconds (500
values / a time series). Each of the three axial acceleration gives a differ-
ent information for the zoologist, so HD4C clustering was performed by
axis (horizontals (x and y) and vertical (z)). The objective was to discover
the underlying structures of each axis and then to link these structures to
sheep activities. Figures 4.4 and 4.5 represent one axis of the accelerometers
dataset. Each label of activity is assigned a color and represented by 5 time

series.

The second real dataset corresponds to more than 4K spectrum of 680

Chapter 4. High Dimensional Data Clustering by means of Distributed Dirichlet
60 Process Mixture Models

_4 | | | | | | | | |
0 10 20 30 40 50 60 70 8 90 100

Figure 4.2 — Visual representation of the synthetic dataset clusters.

Cluster 1 Cluster 2

Cluster 3 Cluster 4

4 w
0 50 100 0 50 100

Figure 4.3 — Visual representation of the synthetic dataset with separated clusters.

4.5. Performance Evaluation

61

4 ‘

0 50

100

150 200

250

300

350 400 450

500

Figure 4.4 — One axis visual representation of labeled accelerometers data

STANDING-GRAZING

0

250

500

STANDING-RUMINATING

STANDING-EATING BRUSH
4
0 L
4 ‘

0 250 500

WALKING

4
0 L ,
4 ‘

0 250 500

STANDING-IMMOBILE

250

500

Figure 4.5 — Separated clusters of one axis accelerometers data

Chapter 4. High Dimensional Data Clustering by means of Distributed Dirichlet
62 Process Mixture Models

dimensions representing a protein rate measured on 10 different products:
rapeseed (CLZ), corn gluten (CNG), sun flower seed (SFG), grass silage
(EHH), full fat soya (FFS), wheat (FRG), sun flower seed (SFG), animal feed
(ANF), soya meal (TTS), maize (PEE), milk powder and whey (MPW). Fig-
ure 4.6 gives a visual representation of the spectral data. Each product is
assigned a color and represented by 50 spectrum.

35
3
23 Lz ——
CNG ——
2 EHH
FFS ——
FRG
L5 s
ANF ——
1 TTS
PEE
0.5 | MPW
0
-0.5 ! ! ! ! ! !

0 100 200 300 400 500 600 700

Figure 4.6 — Visual representation of the spectral dataset

4.5.2 Clustering Evaluation Criteria

In our experiments, we chose the following criteria already described
in the previous chapter (see section 3.4.2) for evaluating the results of our
clustering approach HD4C.

1. The Adjusted Rand Index (ARI).

2. K, the number of discovered clusters.

4.5. Performance Evaluation 63

4.5.3 Response Time

In this section we measure the clustering time in HD4C. Figure 4.7 re-
ports the response times on our synthetic data, HD4C is run on a comput-
ing cluster of 16 nodes. The clustering time increases with the number of
data, our approach benefits from linear scalability with the dataset size. For
a dataset of 200K data points, HD4C performs the clustering in about 12
minutes, while a centralized approach does not scale and cannot execute on

such dataset size, it needs several days on a single machine.

70

HD4C —A—
60 .
50 .
s 40| |
E
0]
£ 30} ,
20 R
10 | 1
0 L L L L L
200K 400K 600K 800K M

number of data

Figure 4.7 — Response time (minutes) of HD4C as a function of the dataset size.

Figures 4.8, 4.9 and 4.10 illustrate the parallel speed-up of our approach
on 200K time series from the synthetic dataset, on accelerometers data from
the first real world dataset, and on spectrum from the second real dataset.
The results show optimal or near optimal gain. On the accelerometers dataset
there is not a big difference between 8 and 16 nodes because this dataset is
not big, and distributing it on 8 or 16 nodes is super fast at workers level
while the synchronisation at the master level takes almost the same time,
an other reason is that the computing nodes do not have the same perfor-

mances and some of them finish and wait the other nodes that are slower.

Chapter 4. High Dimensional Data Clustering by means of Distributed Dirichlet

64 Process Mixture Models
50
40 |
2 301
E
g
=20 ¢
10 |
0 L L L L
2 4 8 16

number of nodes

Figure 4.8 — Clustering time as a function of the number of computing nodes on the
synthetic data.

n HD4C —A—
12 t

10 |

time (min)

[\
N
oo
—
N

number of nodes

Figure 4.9 — Clustering time as a function of the number of computing nodes on the
accelerometers data.

4.5.4 Clustering Evaluation

In the following experiments, we evaluate the clustering performance of

HDA4C and compare it to the K-means approach.

Table 4.1 reports the ARI value computed between the clustering ob-

4.5. Performance Evaluation 65

60

HD4C —&—
50 |
40
)
é 30 L
o
E
20 |
10
0 L L L L
2 4 8 16

number of nodes

Figure 4.10 — Clustering time as a function of the number of computing nodes on
the spectral data.

tained and the ground truth, the estimated values of parameters 5 and B,
and the number of clusters, obtained with HD4C on our synthetic data
while increasing the dataset size. The HD4C is run on a cluster of 16 nodes.
HDA4C performs well, the ARI values are almost equal to 1 (best value), the
number of discovered clusters is equal to the real number of clusters, the
estimated values of 4 and 3 are close to the parameters used for simulating
the data. Note also that the estimated ratio & converges to the true simu-

26
lated ratio 25, which corresponds to the variance on the diagonal of K in

287
(4.6).

Table 4.1 — Clustering evaluation criteria obtained with HD4C (synthetic data).

ARI | & B | 62/25 | Clusters
200K | 1.00 | 2,57 | 10.59 | 0.31 4
400K | 1.00 | 213 | 7.25 | 0.31
600K | 0.99 | 215 | 744 | 0.31
800K | 1.00 | 2.28 | 8.30 | 0.31
IM | 099 | 213 | 725 | 0.31

4
4
4
4

Figure 4.11 reports the Adjusted Rand Index values obtained by per-

forming K-means approach on 200K time series from the synthetic dataset

Chapter 4. High Dimensional Data Clustering by means of Distributed Dirichlet

66 Process Mixture Models
1 :
se . Kmeans ---¢--
o ’l' L) r‘\ .
!] : \I M. .\‘/n\. .
O RV
Pt i RN
L .
lll‘ \o ,\.
& 0l v ve i N
< no N
" ')
it
05 | N
_] L L 1 L L L L L L
0 5 100 15 20 25 30 35 40

number of clusters

Figure 4.11 — ARI values of K-means as a function of the number of clusters.

as a function of the number of clusters, it is run on two nodes (16 workers).
The K-means approach does not reach the best value 1, the peak of these
values is 0.90 but with 9 clusters which is not the real number in the ground
truth, while with the real number of clusters (4 clusters) the ARI value is
0.79.

K-means suffers from the convergence to a local minimum which may
produce "wrong" results, as illustrated for example in table 4.2. This table
shows the results of K-means performed on 600K time series of the synthetic
dataset with the right number of clusters (4 clusters, each containing 150K
data) and run on 16 nodes. Each line of table 4.2 represents one cluster ob-
tained by K-means and reports the number of data obtained in each cluster:
the cluster 2 obtained by K-means regroups the two real clusters 1 and 3,
while the real cluster 2 is divided between clusters 1 and 3 discovered by
K-means.

By comparison, when applying HD4C on the same dataset, the right
number of clusters is discovered and all the data except a few ones are af-

fected to the true clusters, as presented in table 4.3.

Repeating the clustering on accelerometers data many times by HD4C

4.5. Performance Evaluation 67

Table 4.2 — Example of K-means convergence to a local minimum.

Ground truth
1 2 3 4
1 0 75945 0 0
2 | 150000 0 150000 0
3 0 74055 0 0
4 0 0 0 150000

Ground truth
1 2 3 4
1 0 149989 0 0
2 | 150000 0 1 0
3 0 11 149999 0
4 0 0 0 150000

Table 4.3 — Number of data obtained by HD4C in each cluster compared to the
ground truth.

and K-means, we obtained the ARI values showed on table 4.4. Our ap-
proach performs better than the K-means approach, the average value ob-
tained by HD4C is 0.50 which is a good value regarding the shapes of data in
clusters: STANDING-GRAZING, STANDING-EATING BRUSH, STANDING-
RUMINATING, WALKING. The true labels have been visually assigned by
experts, by observing the three axes at the same time. It is difficult to la-
bel them by only analysing one axis at a time (see figure 4.5). HD4C is not

intended to cluster multidimensional time series.

Table 4.4 also represents the ARI values obtained with the real world
datasets both for HD4C and K-means. K-means was processed with the
number of clusters found by HD4C. Each time we repeat the HD4C cluster-

ing we find a number close to the number of labels given by the experts.

Chapter 4. High Dimensional Data Clustering by means of Distributed Dirichlet
68 Process Mixture Models

Table 4.4 — Clustering evaluation criteria obtained with HD4C and K-means on real
datasets.

HD4C K-means
ARI | Clusters ARI
Accelerometers | 0.50 8 0.11
Spectrums 0.34 9 0.32

4.6 Conclusion

We proposed HD4C, a novel and efficient parallel solution to perform
clustering via DPM on large amount of infinite dimensional data. These
infinite dimensional data include lengthy time series or spectral data for ex-
ample. We evaluated the performance of our solution over real world and
synthetic datasets. The experimental results illustrate the high performance
of HD4C with results that are comparable to K-means, one of the most com-
monly used clustering algorithms. Overall, the experimental results show
that by using our parallel techniques, the DPM clustering of very large vol-
umes of high dimensional data can now be done, which is impossible to

achieve using the multivariate DPM approach.

\Y%

Conclusion

This thesis was carried out in the context of parallel clustering in mas-
sively distributed environments. We have focused on the Dirichlet Process
Mixture (DPM) clustering since it enables the discovery of clusters number
automatically and the attribution of data to clusters in the same process.
Our aim was to improve and accelerate the DPM algorithm which suffers

from the high computational costs that impairs the benefit of its advantages.

In this chapter, we summarize and discuss the main contributions made

in this thesis. Then we give some research directions for future work.

5.1 Contributions

This thesis included the following main contributions related to cluster-

ing via Dirichlet process mixture in massively distributed environments.

70 Chapter 5. Conclusion

5.1.1 Dirichlet Process Mixture Models made Scalable and

Effective by means of Massive Distribution

In this contribution, our main challenge was the parallelization of Dirich-
let Process Mixture (DPM) clustering algorithm since it must calculate for
each data, the probability of assigning it to each cluster, a highly repeated
number of times, that requires a global view of all dataset and all existing
clusters in different nodes. Such parallelization calls for particular attention
to three main issues: i) the load balance between computing nodes, ii) the
cost of communication, iii) the full benefit from DPM properties. To this end,
we proposed in this thesis DC-DPM (Distributed Clustering via Dirichlet
Process Mixtures), our solution for DPM clustering that can be performed
on millions of data points while remaining DPM compliant. We have exten-
sively evaluated our algorithm using very large real-world and synthetic
datasets, the results confirm the high performance in comparison with the
centralized version. Overall, the experimental results show that by using
our parallel techniques, the clustering of very large volumes of data can
now be made in small execution times, which is impossible to achieve using

the centralized DPM approach.

5.1.2 High Dimensional Data Clustering by means of Dis-
tributed Dirichlet Process Mixture Models

In this contribution, we opened a fundamental research track which is
clustering of high dimensional data such as time series (as a function of
time) or hyperspectral data (as a function of wavelength). In fact, DC-DPM
solution is dedicated to multivariate data clustering, it needs to perform
some matrix computations like inverse matrix and matrix product for ex-
ample. These computations are no more feasible in the case of high dimen-

sional data. An existing solution is the dimensionality reduction, but this

5.2. Directions for Future Work 71

technique may lead to data loss, or we may not know how many principal
component to keep in practice. Thus our main challenge was to adapt the
DPM clustering algorithm to high dimensional data by keeping all informa-
tion on the data in order to avoid dimensionality reduction drawbacks and
to keep all the properties of the DPM. For this reason, we proposed HD4C
(High Dimensional Data Distributed Dirichlet Clustering), an efficient par-
allel approach for DPM clustering on large amount of infinite dimensional
data. We evaluated effectiveness and the capabilities of HD4C algorithm by
carrying out extensive various experiments over real-world and synthetic
datasets. The results have shown an outstanding performance of our paral-
lel technique, it enables the DPM clustering of high dimensional data, which

is impossible to achieve using the multivariate DPM approach.

5.2 Directions for Future Work

The results achieved in this thesis keep the door open for several possible
extensions and improvements. First, our contributions could be enriched
with extensions to more general data types and use cases. Second, in order
to accelerate the running time, we could consider implementations using
GPU (Graphics Processing Unit) computing. In the following, we develop

these directions of research.

* Generalizing HD4C: As mentioned previously, our work focuses on
Gaussian random Process, data are defined as an autocorrelated pro-
cess called Ornstein-Uhlenbeck for which the covariance function is
defined. We could envisage the addition of a hierarchy that allows
taking into account different data covariates, where each data is as-
sociated with a functional covariate. It is therefore a question of con-
structing a functional linear model in which both data and its covariate

are functions.

72

Chapter 5. Conclusion

Let’s remember that the implementation of the DPM algorithm re-
quires: i) the numerical calculation of densities. ii) the simulation ac-
cording to the posterior distribution of each cluster parameter know-
ing its assigned data. Both requirements imply the calculation of the
scalar product of a stochastic process. We could propose a new gen-
eralized numerical version to evaluate the scalar product, as in [60].

Then the same algorithm as HD4C could be used for implementation.

Extending to multidimensional data: Several exciting new technolo-
gies have been developed in different fields such as digital agriculture,
earth science, electric industry, biomedical and life sciences, producing
a huge amounts of multidimensional data. In general, such datasets
consists of different measured variables (dimensions) which can con-
tribute to a single observation, like for example accelerometer data
described in section 4.5.1. A good perspective is to adapt our work to

deal with such datasets.

Implementing DPM with non conjugate prior: In the DC-DPM ap-
proach, we have implemented DPM clustering algorithm when the
prior is conjugated (Normal Distribution), the posterior expectation
then can be estimated simply. Other distributions are not conjugated,
such as log-normal distribution that is important in the description of
natural phenomena for example in biology, medicine, chemistry and
finance. In this case, sampling from the posterior will usually be hard.
According to Neal [56], the best way of handling non-conjugate priors
is by using Metropolis-Hasting algorithm [32] to update the cluster

labels using the conditional prior as the proposal distribution.

Using GPU computing: Since GPU computing becomes more and
more practical and popular, we may benefit of GPU parallel process-
ing capabilities to improve the DPM clustering. A Graphics Process-
ing Unit is a specialized electronic circuit designed to rapidly manip-

ulate and alter memory to accelerate processing. It is originally made

5.2. Directions for Future Work 73

to handle computation only for computer graphics. In the last few
years, parallel GPU computing [72] has begun making computational
inroads against the CPU, and it has found its way into several fields
outside the image rendering and processing such as data analytics. A
GPU program comprises two parts: a host part that runs on the CPU
and one or more kernels that are run by thousands of threads in par-
allel on the GPU. Typically, the CPU portion of the program is used
to set up the parameters and data for the computation, while the ker-
nel portion performs the actual computation. This architecture allows
implementing our contributions affecting workers tasks to threads in
GPU and master tasks to CPU.

Bibliography

[1]
2]

[5]

[6]

[7]

8]

Exponential Family, chapter 18, pages 93-97. Wiley-Blackwell, 2010. 35

C. Abraham, P. A. Cornillon, E. Matzner-Leber, and N. Molinari. Unsu-
pervised curve clustering using b-splines. Scandinavian Journal of Statis-
tics, 30(3):581-595, 2003. 51

Saeed Aghabozorgi, Ali Seyed Shirkhorshidi, and Teh Ying Wah. Time-
series clustering—a decade review. Information Systems, 53:16-38, 2015.
9,13

A. Alamsyah and B. Nurriz. Monte carlo simulation and clustering
for customer segmentation in business organization. In 2017 3rd Inter-
national Conference on Science and Technology - Computer (ICST), pages
104-109, July 2017. vii, 1

David J Aldous. Exchangeability and related topics. In Ecole d’Eté de
Probabilités de Saint-Flour XIII—1983, pages 1-198. Springer, 1985. xi, 18

Charles E. Antoniak. Mixtures of dirichlet processes with applications
to bayesian nonparametric problems. Ann. Statist., 2(6):1152-1174, 11
1974. x, 15

Alain Berlinet and Christine Thomas-Agnan. Reproducing kernel Hilbert
spaces in probability and statistics. Springer Science & Business Media,
2011. 55

Christian Bizer, Peter Boncz, Michael L Brodie, and Orri Erling. The
meaningful use of big data: four perspectives—four challenges. ACM
Sigmod Record, 40(4):56-60, 2012. 20

76 Bibliography

[9] Michael Cochez and Hao Mou. Twister tries: Approximate hierarchical
agglomerative clustering for average distance in linear time. In Proceed-
ings of the 2015 ACM SIGMOD international conference on Management of
data, pages 505-517. ACM, 2015. 10

[10] Norma Coffey and John Hinde. Analyzing time-course microarray
data using functional data analysis-a review. Statistical Applications in
Genetics and Molecular Biology, 10(1), 2011. 54

[11] Richard M Cormack. A review of classification. Journal of the Royal
Statistical Society: Series A (General), 134(3):321-353, 1971. 9

[12] Adelino R. Ferreira da Silva. A dirichlet process mixture model for
brain mri tissue classification. Medical Image Analysis, 11(2):169 — 182,
2007. 8

[13] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data pro-
cessing on large clusters. Communications of the ACM, 51(1):107-113,
2008. xiii, xvi, 3, 20, 22

[14] Thibault Debatty, Pietro Michiardi, Wim Mees, and Olivier Thonnard.
Determining the k in k-means with mapreduce. 2014. 11, 25

[15] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum
likelihood from incomplete data via the em algorithm. Journal of the
royal statistical society. Series B (methodological), pages 1-38, 1977. viii, 2

[16] Michael F Driscoll. The signal-noise problem—a solution for the case
that signal and noise are gaussian and independent. Journal of Applied
Probability, 12(1):183-187, 1975. 53

[17] Richard M Dudley. Real analysis and probability. wadsworth & brooks.
Cole, Pacific Groves, California, 1989. 52

[18] Alina Ene, Sungjin Im, and Benjamin Moseley. Fast clustering using
mapreduce. In Proceedings of the 17th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, pages 681-689. ACM, 2011.
24

Bibliography 77

[19] Michael D Escobar. Estimating normal means with a dirichlet pro-
cess prior. Journal of the American Statistical Association, 89(425):268-277,
1994. viii, 2

[20] Michael D Escobar and Mike West. Bayesian density estimation and
inference using mixtures. Journal of the american statistical association,
90(430):577-588, 1995. 33, 56

[21] Martin Ester, Hans-Peter Kriegel, Jorg Sander, Xiaowei Xu, et al.
A density-based algorithm for discovering clusters in large spatial
databases with noise. In Kdd, volume 96, pages 226-231, 1996. 12

[22] BS Everitt, S Landau, M Leese, and D Stahl. Cluster analysis, wiley.
Chichester, UK, 2011. 12

[23] Mathieu Fauvel, Jocelyn Chanussot, and Jén Atli Benediktsson. Ker-
nel principal component analysis for the classification of hyperspectral
remote sensing data over urban areas. EURASIP]. Adv. Signal Process,
2009:11:1-11:14, January 2009. 51

[24] Emily Fox, Erik B. Sudderth, Michael I. Jordan, and Alan S. Willsky.
Nonparametric bayesian learning of switching linear dynamical sys-
tems. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors,
Advances in Neural Information Processing Systems 21, pages 457-464.
Curran Associates, Inc., 2009. 8

[25] Yarin Gal and Zoubin Ghahramani. Pitfalls in the use of parallel in-
terence for the dirichlet process. In Proceedings of the 31st International
Conference on Machine Learning (ICML-14), pages 208-216, 2014. viii,
Xiv, 2, 26, 28

[26] H. Gao, X. Wang, and H. Huang. New robust clustering model for
identifying cancer genome landscapes. In 2016 IEEE 16th International
Conference on Data Mining (ICDM), pages 151-160, Dec 2016. vii, 1

[27] Andrew Gelman, John B. Carlin, Hal S. Stern, and Donald B. Rubin.
Bayesian Data Analysis. Chapman and Hall/CRC, 2nd ed. edition, 2004.
xii, 19

78 Bibliography

[28] Joseph Gonzalez, Yucheng Low, Arthur Gretton, and Carlos Guestrin.
Parallel gibbs sampling: From colored fields to thin junction trees. In
Proceedings of the Fourteenth International Conference on Artificial Intelli-
gence and Statistics, pages 324-332,2011. 34

[29] Peter] Green. Reversible jump markov chain monte carlo computation
and bayesian model determination. Biometrika, 82(4):711-732, 1995. xv,
29

[30] Greg Hamerly and Charles Elkan. Learning the k in k-means. In Ad-

vances in neural information processing systems, pages 281-288, 2004. 25

[31] Pierre Hansen and Brigitte Jaumard. Cluster analysis and mathemati-
cal programming. Mathematical programming, 79(1-3):191-215, 1997. 9

[32] W Keith Hastings. Monte carlo sampling methods using markov
chains and their applications. 1970. 37, 72

[33] Victoria Hodge and Jim Austin. A survey of outlier detection method-
ologies. Artificial Intelligence Review, 22(2):85-126, Oct 2004. vii, 1

[34] Jin Huang, Rui Zhang, Rajkumar Buyya, and Jian Chen. Melody-join:
Efficient earth mover’s distance similarity joins using mapreduce. In
2014 IEEE 30th International Conference on Data Engineering, pages 808—
819. IEEE, 2014. 25

[35] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An

introduction to statistical learning, volume 112. Springer, 2013. viii, 2

[36] Ajay Jasra, Chris C Holmes, and David A Stephens. Markov chain
monte carlo methods and the label switching problem in bayesian mix-
ture modeling. Statistical Science, pages 50-67, 2005. xiv, 28

[37] Damien Juery, Christophe Abraham, and Bénédicte Fontez. Classifica-
tion bayésienne non supervisée de données fonctionnelles. Journal de
la Société Frangaise de Statistique, 155(2):185-201, 2014. 50, 51, 53

[38] Holden Karau, Andy Konwinski, Patrick Wendell, and Matei Zaharia.
Learning spark: lightning-fast big data analysis. " O’Reilly Media, Inc.",
2015. 24

Bibliography 79

[39] Robert E Kass and Adrian E Raftery. Bayes factors. Journal of the ameri-
can statistical association, 90(430):773-795, 1995. xv, 28

[40] Leonard Kaufman and Peter] Rousseeuw. Finding groups in data: an

introduction to cluster analysis, volume 344. John Wiley & Sons, 2009. 9

[41] Hans-Peter Kriegel, Peer Kroger, Jorg Sander, and Arthur Zimek.
Density-based clustering. Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery, 1(3):231-240, 2011. 9

[42] SP Lloyd. Least square quantization in pcm. bell telephone laborato-
ries paper. published in journal much later: Lloyd, sp: Least squares
quantization in pecm. IEEE Trans. Inform. Theor.(1957/1982),18,1957. 11

[43] Dan Lovell, Ryan P Adams, and VK Mansingka. Parallel markov chain
monte carlo for dirichlet process mixtures. In Workshop on Big Learning,
NIPS, 2012. viii, xiv, 2, 26, 28

[44] Dan Lovell, Jonathan Malmaud, Ryan P Adams, and Vikash K Mans-
inghka. Clustercluster: parallel markov chain monte carlo for dirichlet
process mixtures. arXiv preprint arXiv:1304.2302, 2013. xiv, 28

[45] Chuang Ma, Hao Helen Zhang, and Xiangfeng Wang. Machine learn-
ing for big data analytics in plants. Trends in Plant Science, 19(12):798—
808, 12 2014. 8

[46] James MacQueen et al. Some methods for classification and analysis
of multivariate observations. In Proceedings of the fifth Berkeley sympo-
sium on mathematical statistics and probability, volume 1, pages 281-297.
Oakland, CA, USA, 1967. 9, 11

[47] Khadidja Meguelati, Fontez Benedicte, Nadine Hilgert, and Florent
Masseglia. Dirichlet process mixture models made scalable and effec-
tive by meansof massive distribution. In Gestion de données - principes,
technologies et applications (BDA), October 2019. 27

[48] Khadidja Meguelati, Bénédicte Fontez, Nadine Hilgert, and Florent

Masseglia. Dirichlet process mixture models made scalable and effec-

80

Bibliography

[49]

[50]

[51]

[52]

[53]

[54]

[55]

tive by means of massive distribution. In SAC: Symposium on Applied
Computing, Limassol, Cyprus, April 2019. xvi, 3, 27, 52, 53, 57

Khadidja Meguelati, Bénédicte Fontez, Nadine Hilgert, and Florent
Masseglia. High Dimensional Data Clustering by means of Distributed
Dirichlet Process Mixture Models. In IEEE International Conference on
Big Data (IEEE BigData), Los-Angeles, United States, December 2019.
xvii, 3, 50

Khadidja Meguelati, Benedicte Fontez, Nadine Hilgert, and Florent
Masseglia. Massively distributed dirichlet process mixture models. In
Actes du XXXVIleme Congres INFORSID, Paris, France, June 11-14, 2019,
pages 221-222,2019. 27

Khadidja Meguelati, Bénédicte Fontez, Nadine Hilgert, Florent
Masseglia, and Isabelle Sanchez. Massively Distributed Clustering via
Dirichlet Process Mixture. In European Conference on Machine Learning
and Principles and Practice of Knowledge Discovery in Databases (ECML
PKDD), Ghent, Belgium, September 2020. xvii, 3, 50

Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram
Venkataraman, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde,
Sean Owen, et al. Mllib: Machine learning in apache spark. The Journal
of Machine Learning Research, 17(1):1235-1241, 2016. 58

Karl @yvind Mikalsen, Filippo Maria Bianchi, Cristina Soguero-Ruiz,
and Robert Jenssen. Time series cluster kernel for learning similarities
between multivariate time series with missing data. Pattern Recogni-
tion, 76:569-581, 2018. xvii, 4, 51

Jetfrey W Miller and Matthew T Harrison. A simple example of dirich-
let process mixture inconsistency for the number of components. In
Advances in neural information processing systems, pages 199-206, 2013.
xv, 29

Jeffrey W Miller and Matthew T Harrison. Inconsistency of pitman-yor
process mixtures for the number of components. The Journal of Machine
Learning Research, 15(1):3333-3370, 2014. xv, 29

Bibliography 81

[56] Radford M Neal. Markov chain sampling methods for dirichlet process
mixture models. Journal of computational and graphical statistics, 9(2):249-
265, 2000. xii, 18, 19, 53, 56, 72

[57] David Newman, Arthur Asuncion, Padhraic Smyth, and Max Welling.
Distributed algorithms for topic models. Journal of Machine Learning
Research, 10(Aug):1801-1828, 2009. xiv, 28

[68] Martin Odersky, Lex Spoon, and Bill Venners. Programming in scala.
Artima Inc, 2008. 23

[59] Ordovas-Pascual, I. and Sanchez Almeida, J. A fast version of the k-
means classification algorithm for astronomical applications. Astron-
omy & Astrophysics, 565:A53, 2014. vii, 1

[60] Antonia Oya, Jestis Navarro-Moreno, and Juan Carlos Ruiz-Molina.
Numerical evaluation of reproducing kernel hilbert space inner prod-
ucts. IEEE Transactions on signal processing, 57(3):1227-1233, 2008. 72

[61] Antonia Oya, Jestis Navarro-Moreno, and Juan Carlos Ruiz-Molina.
Numerical evaluation of reproducing kernel hilbert space inner prod-
ucts. IEEE Transactions on signal processing, 57(3):1227-1233, 2009. 54

[62] E.Parzen. Regression analysis of continuous parameter time series. In
Int. ISPASS, 2010. 53

[63] Emanuel Parzen. Statistical inference on time series by hilbert space
methods, i. Technical report, STANFORD UNIV CA APPLIED MATH-
EMATICS AND STATISTICS LABS, 1959. 53, 54

[64] Emanuel Parzen. Probability density functionals and reproducing ker-
nel hilbert spaces. In Proceedings of the Symposium on Time Series Analy-
sis, volume 196, pages 155-169. Wiley, New York, 1963. 53, 56

[65] Karl Pearson. Contributions to the mathematical theory of evolution.
Philosophical Transactions of the Royal Society of London. A, 185:71-110,
1894. 13

82 Bibliography

[66] Jim Pitman. Random discrete distributions invariant under size-biased
permutation. Advances in Applied Probability, 28(2):525-539, 1996. 33

[67] Jim Pitman et al. Combinatorial stochastic processes. Technical report,
Technical Report 621, Dept. Statistics, UC Berkeley, 2002. Lecture notes
for...,2002. x, 15

[68] Saurabh Prasad and Lori Mann Bruce. Limitations of principal compo-
nents analysis for hyperspectral target recognition. IEEE Geoscience and
Remote Sensing Letters, 5(4):625-629, 2008. 50

[69] Jonathan K. Pritchard, Matthew Stephens, and Peter Donnelly. Infer-
ence of population structure using multilocus genotype data. Genetics,
155(2):945-959, 2000. 8

[70] WM. Rand. Objective criteria for the evaluation of clustering methods.
Journal of the American Statistical Association, 66(336):846-850, 1971. 39

[71] C.E. Rasmussen and C.K.I. Williams. Gaussian Processes for Machine

Learning. Massachusetts Institute of Technology, 2006. xvii, 4

[72] Jason Sanders and Edward Kandrot. CUDA by example: an introduc-
tion to general-purpose GPU programming. Addison-Wesley Professional,
2010. 73

[73] MATTHIAS SEEGER. Gaussian processes for machine learning. Inter-
national Journal of Neural Systems, 14(02):69-106, 2004. PMID: 15112367.
52,53

[74] Jayaram Sethuraman. A constructive definition of dirichlet priors. Sta-
tistica sinica, pages 639-650, 1994. ix, 14

[75] Jetfrey Shafer, Scott Rixner, and Alan L Cox. The hadoop distributed
filesystem: Balancing portability and performance. In 2010 IEEE In-
ternational Symposium on Performance Analysis of Systems & Software (1S-
PASS), pages 122-133. IEEE, 2010. 21, 37

[76] Jude W Shavlik, Thomas Dietterich, and Thomas Glen Dietterich. Read-

ings in machine learning. Morgan Kaufmann, 1990. 9, 13

Bibliography 83

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

Arti Singh, Baskar Ganapathysubramanian, Asheesh Kumar Singh,
and Soumik Sarkar. Machine learning for high-throughput stress phe-
notyping in plants. Trends in Plant Science, 21(2):110-124, 2016. 8

Arti Singh, Baskar Ganapathysubramanian, Asheesh Kumar Singh,
and Soumik Sarkar. Machine learning for high-throughput stress phe-
notyping in plants. Trends in plant science, 21(2):110-124, 2016. 46

Matthew Stephens. Dealing with label switching in mixture models.
Journal of the Royal Statistical Society: Series B (Statistical Methodology),
62(4):795-809, 2000. xiv, 28

Yee Whye Teh, Michael I Jordan, Matthew] Beal, and David M Blei.
Hierarchical dirichlet processes. Journal of the American Statistical Asso-
ciation, 101(476):1566-1581, 2006. vii, 1, 33

Aad W van der Vaart,] Harry van Zanten, et al. Reproducing kernel
hilbert spaces of gaussian priors. In Pushing the limits of contemporary
statistics: contributions in honor of Jayanta K. Ghosh, pages 200-222. Insti-
tute of Mathematical Statistics, 2008. 53

Vasilis Verroios, Panagiotis Papadimitriou, Ramesh Johari, and Hector
Garcia-Molina. Client clustering for hiring modeling in work market-
places. In Proceedings of the 21th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’15, pages 2187-2196,
New York, NY, USA, 2015. ACM. vii, 1

Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information the-
oretic measures for clusterings comparison: Variants, properties, nor-
malization and correction for chance. J. Mach. Learn. Res., 11:2837-2854,
December 2010. 39

Ruohui Wang and Dahua Lin. Scalable estimation of dirichlet process
mixture models on distributed data. arXiv preprint arXiv:1709.06304,
2017. viii, xiv, xv, 2, 26, 28, 29

Tom White. Hadoop: The definitive guide. " O’Reilly Media, Inc.", 2012.
21

84

Bibliography

[86]

[88]

[89]

Sinead Williamson, Avinava Dubey, and Eric Xing. Parallel markov
chain monte carlo for nonparametric mixture models. In International
Conference on Machine Learning, pages 98-106, 2013. viii, xiv, 2, 26, 28

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauley, Michael] Franklin, Scott Shenker, and
Ion Stoica. Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing. In Proceedings of the 9th USENIX
conference on Networked Systems Design and Implementation, pages 2-2.
USENIX Association, 2012. 23

Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott
Shenker, and Ion Stoica. Spark: Cluster computing with working sets.
HotCloud, 10(10-10):95, 2010. xiii, xvi, 3, 20, 22, 37, 58

Qiang Zhu, Gustavo Batista, Thanawin Rakthanmanon, and Eamonn
Keogh. A novel approximation to dynamic time warping allows any-
time clustering of massive time series datasets. In Proceedings of the 2012
SIAM international conference on data mining, pages 999-1010. SIAM,
2012. 51

	Résumé
	Abstract
	Résumé Étendu
	Introduction
	Context
	Contributions
	Publications
	Thesis Organisation

	State of the Art
	Introduction
	Clustering
	Objectives and Interests
	Common Techniques

	Dirichlet Process Mixture Models
	Dirichlet Process
	Dirichlet Process Mixture
	Gibbs Sampling

	Massively Distributed DPM Clustering
	Parallel Frameworks
	Parallel Clustering

	Conclusion

	Dirichlet Process Mixture Models made Scalable and Effective by means of Massive Distribution
	Introduction
	Motivation and Overview of the Proposal
	DC-DPM: Distributed Clustering via DPM
	Architecture and Distributed Algorithm
	The Exponential Distribution Family

	Performance Evaluation
	Datasets
	Clustering Evaluation Criteria
	Response Time
	Clustering Evaluation
	Use-case

	Conclusion

	High Dimensional Data Clustering by means of Distributed Dirichlet Process Mixture Models
	Introduction
	Motivation and Overview of the Proposal
	RKHS of Gaussian Process and DPM
	HD4C : High Dimensional Data Distributed Dirichlet Clustering
	Performance Evaluation
	Datasets
	Clustering Evaluation Criteria
	Response Time
	Clustering Evaluation

	Conclusion

	Conclusion
	Contributions
	Dirichlet Process Mixture Models made Scalable and Effective by means of Massive Distribution
	High Dimensional Data Clustering by means of Distributed Dirichlet Process Mixture Models

	Directions for Future Work

