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Abstract:
In recent years, artificial intelligence and more
particularly neural networks have played a major
role in our technological societies. Nevertheless,
neural networks still remain emulated by traditional
computers, resulting in challenging problems such
as parallelization, energy efficiency and potentially
speed. A change of paradigm is desirable but
implementing neural networks in hardware is a non-
trivial challenge. One promising avenue is optical
neural networks, potentially avoiding parallelization
bottlenecks. We experimentally implemented the
first system where nodes and connections are
implemented in parallel hardware, and we exploit
our novel system for unique experiments. The
electro-optical neural network is composed of up to
961 neurons. Connections between neurons are
implemented in fully parallel by optical diffraction,
offering highly advantageous scalability. The
network’s architecture is based on the principle
of reservoir computing, therefore the number of

readout weights to be trained is simply the
nodes number. The trainable output layer is
realized by a digital micro-mirror device, which,
once trained, has the advantage of being fully
parallel, passive, and therefore without bandwidth
limitation and energy consumption. Using a Greedy
evolutionary learning, we find that the learning
excellently converges. Furthermore, it appears to
possess a conveniently convex-like cost-function and
demonstrates exceptional scalability of the learning
effort with system size. Finally, the fundamental
bases of an all-optical neural network have been
studied. Neurons will be implemented in an array of
quantum dots micropillar lasers optically coupled. An
in-depth study of the optical pumping of micropillar
lasers, ultimately allowing a highly scalable system,
has revealed a pumping efficiency high enough
to realistically operate around a hundred neurons
simultaneously.

Titre : Réseaux de neurones spatiaux récurrents : de l’électro-optique au tout-optique

Mots-clés : Réseaux de neurones optiques, micropiliers laser à quantum dots, pompage optique

Résumé :
Depuis les années 2010, l’intelligence artificielle
et plus particulièrement les réseaux de neurones
jouent un rôle important dans nos sociétés.
Cependant, les réseaux neuronaux sont émulés par
ordinateurs, entraînant des problèmes complexes
tels que la parallélisation, l’efficacité énergétique
et potentiellement la vitesse des systèmes. Un
changement de paradigme est alors souhaitable,
toutefois la mise en œuvre de réseaux de neurones
hardware reste un réel défi. Les réseaux neuronaux
optiques constituent une piste très prometteuse,
permettant potentiellement de résoudre la difficulté
de la parallélisation. Nous avons expérimentalement
conçu le premier réseau spatial où les neurones et
les connexions sont matériellement et parallèlement
réalisés, nous permettant ainsi d’effectuer des
expériences singulières. Ce réseau électro-optique
est composé de 961 neurones et leurs connexions
neuronales réalisées par diffraction optique offrent
au système une grande capacité d’évolution.

L’architecture du réseau est basée sur le concept de
reservoir computing, l’apprentissage consiste alors
à optimiser uniquement les poids des connexions
de sortie. La couche de sortie, réalisée par un
dispositif à micro-miroir numérique, présente, une
fois entraînée, les avantages, d’être totalement
parallèle, passive, sans limitation de bande passante
et par conséquent non-consommatrice d’énergie. En
utilisant une version optimisée d’un apprentissage
évolutif, nous avons constaté que celui-ci converge
parfaitement et son temps d’entraînement est
linéaire avec la taille du réseau. Enfin, les principes
fondamentaux d’un réseau de neurones tout optique
ont été étudiés. Les neurones sont réalisés grâce
à une matrice de micropiliers laser à quantum dots.
Une étude quantitative de leur pompage optique,
offrant à terme une grande capacité d’évolution au
réseau, a révélé une efficacité suffisante pour faire
fonctionner de manière réaliste une centaine de
neurones simultanément.





"Aucun problème ne peut être résolu
sans changer le niveau de conscience
qui l’a engendré."

Albert Einstein (1879-1955)

"Tout le chemin de la vie, c’est de
passer de l’ignorance à la
connaissance, de l’obscurité à la
lumière, de l’inaccompli à l’accompli, de
l’inconscience à la conscience, de la
peur à l’amour."

Frédéric Lenoir (né en 1962)
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ACRONYMS AND ABBREVIATIONS LIST

AND: Logical AND function.

ANN: Analogue Neural Network.

BS: Beam Splitter.

CO2: Carbon dioxide.

CPU: Central Processing Unit.

DET: Detector.

DMD: Digital Micro-mirror Device.

DOE: Diffractive Optical Element.

ESN: Echo State Network.

FALSE: Logical FALSE function.

GPU: Graphics Processing Unit.

GRU: Gated Recurrent Unit.

LED: Light-Emitting Diode.

LP: Long Pass.

LSM: Liquid State Machine.

LSTM: Long Short-Term Memory.

Mag: Magnification.

MO: Microscope Objective.

NA: Numerical Aperture.

ND: Neutral Density.

NMSE: Normalized Mean Squared
Error.

NOT: Logical NOT function.

Ops: Operations per second.

OR: Logical OR function.

OSA: Optical Spectrum Analyser.

PBS: Polarizing Beam Splitter.

QD: Quantum Dot.

QDML: Quantum Dots Micropillar
Laser.

QDMLA: Quantum Dots Micropillar
Lasers Array.

ReLU: Rectified Linear Unit.

RNN: Recurrent Neural Network.

SLM: Spatial Light Modulator.

SNR: Signal to Noise Ratio.

SP: Short Pass.

TPU: Tensor Processing Unit.

TRUE: Logical TRUE function.

USD: United States Dollar.

XOR: Logical XOR function.
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INTRODUCTION

For a few years now, artificial neural networks have deeply penetrated our societies, and
artificial intelligence has been used in sciences, transport, finance, games, medicine,
agriculture, security, media, management, insurance or engineering [1]. Neural networks
have even revolutionized human-machine interaction thanks to speech and hand-writing
recognition [2, 3]. However, while studies of the first neural networks began over 70
years ago [4], and theoretical concepts were mostly known since the late 1980s, it is
only recently that a sharp acceleration of applications has been observed [5]. In addition
to advances in research, this success is the result of two important stages which are
closely linked to neural networks. One is the democratization of digital information during
the first decade of the 21st century and the advent of social networks which, thanks to
human work [6, 7], enabled labelling gigantic databases used to train neural networks.
The other is the rise of affordable high performance computing, the medium on which
neural networks are mainly emulated. The AlphaGo algorithm’s [8] Go game victory
against Lee Sedol in 2016 [9] was a major milestone which demonstrated to the world the
exceptional advance of neural network research. To reach such a level of expertise in a
game renowned for its complexity due to the extraordinarily high number of combinations
[10], the algorithm had to train with tens of thousands of games led by expert players, then
play millions of games against itself. The training of such neural networks is therefore
often carried out using the computing power of data centers.

However, the classical electronic computer is conceptually far from the true topology of
neural networks. While the computing power of neural networks is the result of mas-
sive and parallel connectivity between neurons, current computers are based on the von
Neumann architecture, and operate mostly in series. The size of current transistors is
already close to physical limits [11], their number per processor and therefore the com-
puting power increases only with great difficulty [12]. Since fifteen years computing power
advances are mainly the result of the increase of the number of processors used [12] and
new hardware aimed at improving the parallelization of electronics [13]. One of the main
challenges for future hardware artificial neural networks is therefore to achieve highly
parallel connectivity.

While electronic computing begins to reach its limits, we will see in Chapter 1 that opti-
cal computing research begins to offer serious avenues for future generations of neural
networks. Indeed, unlike the electron, the photon has no electrical charge, i.e. does not
suffer from capacitive and inductive energy dissipation. These intrinsic characteristics of
light are already used in telecommunications, where information is optically encoded and
exchanged within a single communication channel, such as an optical fiber, with record
data rates [14]. The possibility for optically modulated information to be exchanged tem-
porally and spatially in parallel with minimum of crosstalk allows a strong parallelization
of the neuron network’s connectivity.

Our research goal is to create neural networks with certain similarities to the inspiration
from biological neural networks. The basic principle is to use physical phenomena to
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2 INTRODUCTION

avoid emulating a neural network on a computer, but to instead build a physical system
that is intrinsically the neural network. It is through this return to physical processes that
we leave the digital world and move to an analogue system, arguably as is the case in
a brain. To best pursue these ideals and realize neural networks with parallel connectiv-
ity, we use optics as means of information propagation. Our neural networks are based
on the concept of reservoir computing which is a subclass of recurrent neural networks.
This computational framework is well suited for classification tasks and for the process-
ing of temporal information [15]. From a practical point of view, the reservoir computing
architecture is simple, which greatly helps to implement it optically.

We will present in Chapter 2 a complete spatial electro-optical recurrent neural network
[16]. Its theoretical support, its realization, its adjustment, its learning and its testing will
be presented throughout. Neurons are electro-optical, however the entire neural network
was designed from the start to serve as a prototype of a more advanced yet equally
more delicate system, closer to the previously defined goals, which will be presented in
Chapter 4. The spatial distribution of neurons allows increasing the network size without
reducing the system bandwidth. The neural network’s connectivity is realized through
optical diffraction which allows real parallelization and high scalability [17]. The output
layer is also implemented using a matrix of digital micro-mirrors, allowing programming of
fully parallelized readout weight. The learning algorithm is designed to be an integral part
of the neural network, it is not remote learning but operates in real time.

We will discuss in Chapter 3 the features of our hardware embodied neural network. Due
to its analogue nature, it is prone to noise. We will study the different noise sources, their
specific characteristics and their impact on the system. In particular, we will measure the
consistency of our neural network, i.e. its ability to similarly process identical information
despite the presence of noise. Learning will be investigated in detail, including its con-
vergence and the major role of noise. The results obtained will be derived from general
principles which have to be taken into account in all analogue neural networks. Finally,
we measured the learning duration which is found to grow linearly with the number of
artificial neurons, allowing significant scalability of our neural networks.

We will present in Chapter 4 the foundation of an all-optical neural network. By replac-
ing electro-optical neurons with optical elements, the system presented in Chapter 2 will
then become fully optical. The fundamental concepts, the architecture and the neurons
coupling, however, will remain the same. Artificial neurons will be an array of quantum
dots micropillar lasers [18]. In order to promote a scalable system, semiconductor lasers
are optically pumped. Indeed, to create a neural network where each artificial neuron
is independent, electrical pumping would require an electrical connection for each laser,
which then becomes an extremely difficult challenge for a large-scale system. We will
study in depth the optical pumping according to two different mechanisms. In addition to
obtaining a pumping efficiency high enough to create a future network of a hundred op-
tical neurons, our quantitative study characterizes laser internal pumping mechanisms in
detail and allows us to propose modifications to the lasers promising an energy efficiency
improvement between one or two orders of magnitude.

Finally, we will conclude by a summary of the research presented throughout this
manuscript. By continuing with our fundamental guidelines and relying on the results
obtained, we will propose perspectives targeted in particular to improve the electro-optic
neural network but also the next steps necessary to realize the all-optical neural network.



1
ARTIFICIAL NEURAL NETWORKS

Artificial intelligence was initiated by classical philosophers, already Gottfried Wilhelm
Leibniz conceived his calculus ratiocinator, a philosophical system that tried to describe
the human thought process as the mechanical manipulation of symbols. Turing’s ma-
chine and Church’s lambda-calculus suggested that any form of mathematical reasoning
could be mechanized [19–21]. This reflection materialized with the invention of the pro-
grammable computer in the 1940s [22].

The traditional computer is based on a von Neumann architecture. Schematically de-
scribed in Fig. 1.1(a), the processing unit which performs the operations is physically
separated from the system’s memory. The processing unit contains both, the data and
the computer program. This type of computer follows a finite series of operations previ-
ously defined in order to solve a given problem. In such a context, one generally speaks
of the program as an algorithm. As illustrated in Fig. 1.1(b), the programmer completely
designs the possible scenarios that the program needs to perform, in other words the
entire problem and its solution have to be known. Once programmed, the computer is
then an automaton of formidable efficiency.

However many problems cannot be formulated in this form for the simple reason that the
way to obtain the required solution is unknown. Another strategy has been developed
with expert systems [23]. The principle is no longer to impose a previously defined list
of operations on the computer, but to define database and a rule-based system [24].
Solutions will then emerge on their own, without previous definition. This type of system
has been effective in formal areas where the rules are explicit enough to be programmed
in the inference engine.

Nevertheless, these two approaches are experiencing almost insurmountable challenges
in the face of problems which seem trivial to us humans, such as pattern recognition,
understanding a language, making a prediction from obscure data. There is no logical
sequence of instructions to address these problems. Establishing rules is complicated
because they are either too general for a highly specific problem, or too specific and it
could approximately take as many rules as there are situations. The traditional computing
therefore reaches its limits in the face of problems that are difficult to translate in terms of
logical operations.

While traditional computers are very effective in certain situations, their failure to tackle
problems that are easily solved by humans rightly suggests that they are powerful ma-
chines, but they lack intelligence. Besides, let’s go back for a moment to the origin of the
word "intelligence". It originates from the Latin "intelligentia" which means "faculty of per-
ceiving, understanding, intelligence". This term is derived from the Greek "intellĕgĕre" (to
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4 CHAPTER 1. ARTIFICIAL NEURAL NETWORKS

discern, understand) composed of the prefix "inter" (between) and the verb "lĕgĕre" (to
pick, choose, read). Etymologically, intelligence consists in making a choice, a selection.
However, a traditional computer just follows instructions or general rules previously de-
fined. Its logic is therefore deductive, i.e. going from a general affirmation to a particular
conclusion. Human beings seem to be good at inductive reasoning. The principle is to
seek general laws from the observation of particular facts, potentially on a probabilistic
basis [25]. This ability to generalize allows learning by example. Thus, the recognition of
a shape or the prediction of a series of patterns are easy tasks for the human being.

(d)

Output

Processor

Control
Unit

Arithmetic
Logic Unit

Acumulator

Input

Memory

(b)(a)

(c)

Figure 1.1: (a) Schematic of the von Neumann architecture on which most current com-
puters are based. By sequentially using a pre-established and finite sequence of unam-
biguous instructions stored in memory, the algorithm shown in panel (b) solves a prob-
lem. Panel (c) schematically illustrates a neural network architecture composed of neu-
rons massively interconnected. By optimizing their synaptic weights, the system learns to
solve a problem, thereby minimizing the error represented in an error-landscape panel (d).

Taking inspiration from biology, a new type of system emerged. Illustrated in Fig. 1.1(c),
its principle is to schematically reproduce a neural network (NN) using a large number of
elementary nonlinear functions, called neurons, and to link them together. By adjusting
the connections between artificial neurons, it is then possible to solve non-trivial tasks by
optimizing connections weights to minimize its error. The system therefore is guided by
the topology of an error-landscape, illustrated schematically in Fig. 1.1(d).

During this chapter we will introduce the concept of dynamical systems followed by an
overview of different types of neural networks. We will then specify the concept of reser-
voir computing which is the architecture at the heart of the following chapters. Finally, we
will discuss a paradigm shift in the implementation of neural networks. We will study the
advantages of building such computing architectures in hardware, once again drawing
inspiration from some of a biological neural network’s fundamental aspects.
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1.1/ INTRODUCTION TO DYNAMICAL SYSTEMS

The study of dynamical systems is a very broad field of research, covering many disci-
plines such as mathematics, physics [26, 27], chemistry, biology [28] and even economics
[29] and engineering [30]. Since many neural networks are governed by the temporal ex-
change of information, they can also be studied and described from a dynamical point of
view [31, 32]. We will limit ourselves here to a small introduction to the field, giving the
reader some guidelines. For a much more in-depth study, in particular about the nonlinear
dynamics, we refer you to the book Nonlinear dynamics and chaos by Steven H. Strogatz
[33] or to the excellent non-fiction book Chaos: Making A New Science by James Gleick
[34].

A dynamic system is a system in which a function describes the evolution of itself. It can
be the evolution of a chemical reaction over time, the movement of planets in the solar
system or the evolution of a computer’s memory under the action of a computer program.
A dynamic system has two important properties:

• Causality: the future of a dynamic system depends only on present or past phe-
nomena.

• Determinism: for a given present initial state, there will correspond at each subse-
quent instant a single future state.

We distinguish continuous time dynamic systems (described by differential equations)
from discrete time dynamic systems (described by maps). In the case of neural networks,
we are generally more interested in the second type. A discrete dynamic system is gen-
erally (but not necessarily) defined by a bijection Φ : Γ→ Γ of the phase space Γ on itself.
A phase space is an abstract space whose coordinates are the dynamic variables of the
system under study and where all possible states of the system are represented.

The bijection operates as follows: given an initial condition x0 of the system’s state, the
first and second next states are

x1 = Φ(x0), (1.1)

then
x2 = Φ(x1)

= Φ(Φ(x0))

= (Φ ◦ Φ)(x0)

= Φ2(x0).

(1.2)

By continuity, the n-th state is given by

xn = Φ(xn−1)

= Φn(x0).
(1.3)

To go back in time, simply reverse the function, which is always possible for a bijection.
This feature is widely used for learning neural networks. The best approximation function
is directly related to the inverse of the correct response to a given input.

We distinguish linear dynamic systems from nonlinear dynamic systems. In the case
of a linear system, the sum of two solutions is also a solution (superposition principle).
The solutions of a linear equation form a vector space, which allows the use of linear
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algebra and considerably simplifies the analysis. Due to the nonlinearity, the analysis of
nonlinear dynamical systems is generally more difficult, and it is often in this context that
the artificial neural networks take place. However, the nonlinearity gives the opportunity
to neurons to potentially be general approximators.

1.2/ OVERVIEW OF ARTIFICIAL NEURAL NETWORKS

1.2.1/ ARTIFICIAL NEURON

An artificial neuron is a mathematical and computational representation of a biological
neuron. The first model was proposed by Warren McCulloch and Walter Pitts in 1943
[35]. As illustrated in Fig. 1.2(a), the formal neuron generally has several xn inputs and
one y output which correspond respectively to the dendrites and to the axon starting
points of the biological neuron, which certainly is much more complex than the simple
mathematical abstraction as illustrated in panel (b). The excitatory and inhibitory actions
of biological synapses are represented by numerical coefficients Wn associated with the
inputs.

∑ f( ).

(a) (b)

Dentrite

Dendritic branches

Mitochondrion

Endoplasmic
Reticulum

Nucleus

Cell body
Axon Telodendria

Synaptic terminals
Axon
hillock

Golgi apparatus

x1

x2

x3

W1

W2

W3

y

Figure 1.2: Diagram of neurons. (a) An artificial neuron performing a nonlinear transfor-
mation f (·) of the sum of the inputs weighted xn by the synaptic weights Wn. This mathe-
matical representation is a simplified model of biological neurons, illustrated in panel (b).
https://en.wikipedia.org/wiki/Neuron

The artificial neuron is the elementary unit of artificial neural network in which it is as-
sociated with fellow neurons to calculate arbitrarily complex functions, used for various
applications in artificial intelligence. Mathematically, the artificial neuron is a function with
several variables and real values. In its simplest version, it calculates the weighted sum
of the inputs received, then applies to this value an activation function generally nonlinear
f (·). The final value obtained is the output of the neuron. Originally for the McCulloch and
Pitts neuron [35], an activation function is the Heaviside function H(·). The output of the
neuron is therefore

y = H(
m∑

j=1

W jx j −W0) , (1.4)

with W0 the activation threshold of the neuron. If the sum
∑m

j=1 W jx j is larger than W0 then
the output is 1, otherwise it is zero.

Such an artificial neuron can calculate logical functions. Considering the case of a neuron
with two inputs x1 and x2 provided with weights W1 and W2 both positive. The output is
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then y = H(W1x1 + W2x2 − W0). Simplify further by fixing x1 = x2 = 1 and we define the
symbol & as the logical AND function. By choosing the value of the activation threshold
W0, it is then possible to calculate all the logic function summarized in Table 1.1.

Functions Conditions
OR 0 < W0 < W1 & W2

AND W1 & W2 < W0
TRUE W0 < 0
FALSE W1 & W2 < W0

x1 identity 0 < W2 < W0 < W1
x2 identity 0 < W1 < W0 < W2

Table 1.1: Summary of computable logical functions with an artificial neuron having two
inputs x1 = x2 = 1 weighted respectively by W1, W2 and a Heaviside function as activation
function. The symbol & is the logical AND function.

The development of artificial neural networks has led to the development of other activa-
tion functions. The motivation is not necessarily to get closer to the biological neurons
but to improve the performance of the network, reduce the number of neurons or facilitate
learning. The activation functions are chosen according to their characteristics, the main
ones are as follows:

Non-linearity: When a function is non-linear, a 2-layer neural network can be con-
sidered as a universal function approximator [36].

Anywhere differentiable: This property allows you to create optimizations based
on gradients [37].

Monotonic: When the function is monotonic, the error surface associated with a
monolayer model is always as convex [38].

Density at 0 ( f (x ≈ 0) ≈ 0): These functions allow to quickly learn by initializing
weights randomly. If the function does not converge to identity at 0, then special
care must be taken during the initialization of the weights [39].

Commonly used functions are the sigmoid function, the hyperbolic tangent or the rectified
linear unit (ReLU). We will replace the notion of a neuron by the name nonlinear node or
simply node of a network.

1.2.2/ FEEDFORWARD NEURAL NETWORKS

A feedforward neural networks is an artificial neural network where the connections be-
tween the nodes propagate only from the input to the output. The first architecture, named
perceptron, was introduced by Frank Rosenblatt in 1957 [40]. The perceptron is an artifi-
cial neuron which is equipped with a learning rule to automatically optimize the synaptic
weights in order to solve a linearly separable problem.

Neural networks subsequently became more complex, becoming multi-layered percep-
trons. Such systems typically have multiple inputs and outputs which are in general linear
functions. Located between these linear in and output layers are the layers comprising
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nonlinear nodes, often referred to as hidden layers. Hidden layers are composed of a
variable number of nonlinear nodes, and if a neural network contains several hidden lay-
ers then one typically refers to a deep neural network [5]. It is important to remember
that the nodes are always connected in a feedforward way. Each node in one layer has
directed connections to the nodes of the subsequent layer. Connectivity between nodes
can be full, in which case each node is connected to all nodes of the next layer [41]. The
scheme in Fig. 1.3 depicts a deep neural networks with two inputs and one output. Three
layers of four nodes compose the hidden layer.

Hidden layers
Input
layer

Output
layer

Figure 1.3: Graph representation of a feedforward neural networks with two inputs and
one output. The hidden layer is composed of three layers of four nonlinear nodes.

Such an architecture featuring nonlinear nodes can now solve all logical functions. Let
us take again the XOR function example which is not monotonic. A classical way to
implement an XOR function is its decomposition into more basic logical function. We
have A⊕ B = (A + B) AB = AB + AB, where + and ⊕ are the logical OR and XOR functions,
respectively. Since a single node can solve the functions AND, OR, TRUE and FALSE,
the combination of several nodes can then solve the XOR problem.

Neural network’s and comparable systems, however, address such problems in a different
manner: their many nonlinear nodes create a high dimensional representation of the orig-
inal problem. The XOR function can be seen as a 2D problem. As shown in Fig. 1.4(a),
the XOR function cannot be linearly solved, i.e. separate the solution from the remainder
by a single line. However the nonlinear functions of the nodes in the hidden layer can
increase the dimension of the problem. Already for passing from 2D to 3D (see panel (b))
allows one to identify a possible plane, therefore a linear function, which discriminates the
XOR’s two possible solutions. In this illustration the horizontal plane is the original input
data, which the additional third dimension would be provided by one or the superposition
of several nonlinear nodes of the neural network.

This textbook example illustrates one of the main functions of a neural network. Nonlin-
earities make it possible to increase the dimension of the original input data inside the
representation space of the neural network’s nodes, before being separated by a hyper-
plane. Feedforward neural networks are therefore very efficient at categorizing data.

Other types of NNs exist inside the group of feedforward neural networks, in particular
convolutional networks, which are very efficient in image processing [42]. Their nodes of
a layer are the convolution of a certain number of nodes of the preceding layer.
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Figure 1.4: Different representation of the logical XOR function problem. (a) The solution
is not linearly separate. (b) The XOR problem is extended to a third dimension in which
it is now linearly solvable: the red points are above the plane drawn in gray, the black
points below. Neural networks with nonlinear nodes can be interpreted in as extremely
large dimensionality increasing systems.

1.2.3/ RECURRENT NEURAL NETWORKS

Recurrent neural networks (RNNs) have the particularity of having at least one cyclic
connection. Historically two major types of architecture exist: Elman’s [43] and Jordan’s
[44] RNNs. Presented respectively in Fig. 1.5(a) and (b), the first connects the output
and the input of the hidden layer, the second connects the output of the network to the
input of the hidden layer. This characteristic creates feedback with a certain delay which
corresponds to memory within the system. It can be shown that such networks featuring
memory are equivalent to a Turing machine [45].

Input

Hidden

Output

(b)

Input

Output

Hidden

(a)

Figure 1.5: Architecture of Elman and Jordan RNN represented in panel (a) and (b),
respectively. The output of the hidden nodes or of the neural networks modify the inputs
of the nodes via the recurrent connections in blue.

There are multiple variations of RNN architectures, but let’s take the simplest as an ex-
ample: a single hidden recurrent layer h composed of one nonlinear node with a self-
feedback [46]. It is architecturally speaking possible to temporally unfold this network to
obtain several layers constituting a single node. As illustrated in Fig. 1.6, the layer h(n)
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processes the information x(n) at each time n but taking into account the past treatment
h(n − 1). The higher the feedback strength β, the more memory the system has and will
depend on older and older events. If the feedback strength is unity or higher, the neural
network unfolded is infinite and develops chaotic behaviors.

x

y

β h

xn-1

y(n-1) y(n) y(n+1)

x(n) x(n+1)

β β β β
h(n-1) h(n) h(n+1)

Unfold

Figure 1.6: Diagram of a RNN. The hidden recurrent layer h(n) is composed of a single
node connecting its output to its input with a feedback strength β. On the right, the
temporally unfolded version of the structure. The result at time n depends on the input
information x(n) but also on the previous results.

RNNs can then use their internal state (memory) to process variable length sequences of
inputs [1]. This memory makes RNNs particularly effective in solving temporal problems
such as automatic recognition of speech [47, 48] or the future prediction of a sequential
information [49].

1.2.4/ LEARNING

Learning in neural networks consists in optimizing the connection weights between nodes
to solve a given task with minimum error. The learning is inductive, i.e. it is supposed to
generalize a characteristic from particular examples. Two general types of learning exist,
supervised or unsupervised.

In the first case, labelled data, i.e. known data, is sent to the neural network. The principle
is to minimize the error between the network output and the correct response. The learn-
ing can be translated as a function with multiple parameters. Represented graphically by
an error-landscape as illustrated in Fig. 1.7, the training consists in finding the optimal set
of parameters, i.e. finding an error minimum. Optimization techniques based on gradient
descent are typically employed. The principle is to iteratively take steps proportional to
the negative of the gradient of the error function at the current point. One of the major dif-
ficulties is to find the global minimum and not to get stuck in a local minimum, in particular
with a large error.

A method now widely used for its effective results is called backpropagation [50]. This
method consists in minimizing the error gradient for each node in a neural network, from
the last layer to the first. One of the problems in particular with the deep neural net-
works [51] or RNNs [52] is the vanishing gradient problem [53]. When the gradient of the
error is very small, propagation to an earlier layer is compromised. New architectures
such as Long Short-Term Memory (LSTM) [54] or Gated Recurrent Unit (GRU) [55] were
subsequently developed to work around this problem.
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One of the drawbacks of supervised learning is that the examples must be known. As
training usually requires a large number of iterations, large databases must be created
for which the right results is labelled for a sufficiently large number of examples.

Parameter

E
rr
o
r

Minimum

Figure 1.7: One-dimensional error-landscape. To find a local minimum of a function using
gradient descent, we take steps proportional to the negative of the gradient of the function
at the current point.

Unsupervised learning refers to the case where data is not labelled. It is therefore a mat-
ter of discovering the structures underlying this unlabelled data. Many algorithms exist
based on different methods such as principal component, cluster analysis or anomaly
detection. One of the first techniques used is the so called Hebb’s rule [56]. This the-
ory is used both as a hypothesis in neuroscience and as a concept in neural networks.
This rule suggests that when two neurons are excited together, they create or reinforce
the connection between them. To prevent the connection weight from becoming infinite,
the method was subsequently modified [57]. However, since the data is not labelled, it
is impossible for the algorithm to calculate a success score with certainty. In general,
systems based on unsupervised learning allow more complex tasks to be performed than
supervised learning systems, but they can also be more unpredictable.

An important problem in system optimization and learning is overfitting. Since learning
is inductive, it is essential that the result remains generally valid for the entire class of
the particular problem, and not only for the input examples. During a supervised learning
process, the system will increasingly optimize system parameters in order to maximally
reduce the error. However, care must be taken that the system is not too specialized in
the data series used. An overfitted model is a statistical model that contains more pa-
rameters than can be justified by the data [58]. The black line in Fig. 1.8 is a general
model which differentiates the red and blue data. The green line is an overfitted model,
its error for this particular case is extremely low but it loses its general characteristics. To
limit this problem, it is necessary to use an adequate number of nodes and hidden lay-
ers. However, these parameters are difficult to determine in advance. Several pragmatic
techniques exist. The best known is cross validation. This method consists of separating
the data into two categories. The learning is performed on the first data, called learning
data, then the system is tested with the other data called testing data. Typically test and
training data are reshuffled, until the entire data has once served as test and training
data. The error obtained during learning must never be lower than the result during the
test. Otherwise it means that the ability to generalize characteristics is lost.
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Figure 1.8: While the black line represents a general model to differen-
tiate between red and blue data, the green line is an overfitted model.
https://en.wikipedia.org/wiki/Overfitting.

1.3/ RESERVOIR COMPUTING

Reservoir computing is a unified computing concept that has emerged from several in-
dependent RNN concepts, in particular the Echo State Networks (ESNs) [59] and Liquid
State Machines (LSMs) [60]. Reservoir computing is above all well suited to the process-
ing of temporal or sequential information [15].

1.3.1/ ARCHITECTURE

As illustrated in Fig. 1.9, the architecture of a reservoir computer is composed of three
parts. The first is the input layer, the second the recurrent hidden layer is called reservoir
and finally an output layer.

The input layer is used to distribute information inside the reservoir. Input connections can
be random but always remain constant in time. The reservoir is a network of nonlinear
nodes connected to each other. The connectivity can be random, total or partial, but
also remains constant in time. Such a reservoir projects the input information into a large
dimensional space. Importantly, the dimensions of a dynamical system can be seen as
the number of its initial condition. These depend on the number of nodes in the reservoir.
The output layer, called readout, performs a linear transformation of the reservoir state.

The main feature of reservoir computing is that the input and reservoir weights remain
constant throughout the computation. The learning will be performed by optimizing only
the output weights. While in a conventional RNN the number of weights involved in the
learning process increases nonlinearly with the network’s size, in reservoir computing
this increases linearly with the number of nodes. In comparison, this simplicity of training
makes it possible to drastically reduce the cost of computing training, which is a major
advantage of reservoir computing [61] .
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Figure 1.9: Reservoir computing architecture. The input layer injects information into the
reservoir, which expands the dimensionality of the input’s representation. The weights of
input layer and reservoir can be random but stay constant in time. The readout weights
are optimize to best approximate the required output and hence computation.

1.3.2/ OPERATING PRINCIPLE

The reservoir computing model uses a reservoir based on a discrete-time n RNN. The
input layer composed of Q linear nodes denoted q = 1, 2, · · · ,Q ∈ N, receives the input
information defined by the vector u. The input signal is injected inside the reservoir thanks
to the injection matrix Winj composed of Q rows and N columns, with N the number of
nodes of the reservoir. Each node i of the reservoir receives at each instant n the input
signal W inj

q,i uq(n).

The weights of the reservoir are defined by the coupling matrix WR of dimension N×N. In
the case where the output of the network is not reconnected to the system, the temporal
evolution of the neuronal state x within the reservoir is then

x(n + 1) = f
(
Winju(n + 1) + WRx(n)

)
, (1.5)

where the function f(·) represents an element-wise activation function.

Equation 1.5 represents a non-autonomous dynamical system forced by the input signal
u(n). The output yout of the reservoir is a linear combination of the state of the reservoir
as

yout(n + 1) = Wout · x(n + 1), (1.6)

where Wout is the readout matrix of dimension N.

Only the readout weights are optimized during learning. By knowing the desired output
of the system and by calculating the state of the reservoir, we therefore obtain

Wout = yout(n + 1)
(
x(n + 1)

)−1 (1.7)

for all n in the training data. Learning is therefore a linear matrix inversion problem, which
is convex and hence admits a unique optimal solution [62]. Remember that the reservoir
is unchanged during learning which optimizes the system to solve a specific problem. It is
therefore possible to train several outputs to solve several problems simultaneously with
a single reservoir.
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1.3.3/ RESERVOIR PROPERTIES

The role of the reservoir is to map the sequential input information into a large space so
that the output can linearly approximate the desired result. The reservoir must also have
the following properties:

Separation property: Separation property is the capacity of the reservoir to distin-
guish two neighboring internal states from two different input information.

Approximation property: Approximation property is the capacity to distinguish and
transform different internal states in order to approximate any function [60].

Fading-memory property: The recurrences within the reservoir give memory ca-
pacity to the system. However, the system must be able to return to a steady state
in the presence of no external input. This means that the system memory is linked
to the transient state of the network dynamics [63]. This property therefore implies
that the reservoir must have a finite memory in order to process the information
locally.

1.4/ NEURAL NETWORK IMPLEMENTATIONS

We discussed in the introduction some limitations of traditional computing. Thus, neural
networks have emerged and are now effective in solving problems previously known to
be difficult. However, the bio inspiration has mainly focused on the software aspect, the
majority of neural networks are emulated on traditional computers. In this part we will
explore the physical implementation of neural network systems by mimicking once again
the advantageous characteristics found in biology.

1.4.1/ HUMAN BRAIN AS BENCHMARK

The human brain is able to solve complex and varied problems, has short and very long
term memories and is able to make choices depending on the situation. The biological
brain, while widely studied, is far from having exposed all its mysteries [64]. Neverthe-
less let us examine some main physical characteristics which we can use as humble
inspiration for concepts.

On average the human brain weighs 1.3 kg and has a volume of 1200 cm3 [65]. It is com-
posed of around 170 billion cells, of which 86 billion are neurons [66]. Each neuron can
form between five and sixty thousand synapses [67]. The nerve impulse which propagate
with 1 m/s can be accelerated to 100 m/s in the presence of myelin around the axons. The
thickness of the cerebral cortex is between 1 and 4.5 mm and its surface area is around
2000 cm2 [68]. In order to find space inside the human skull, the cortex is folded by fur-
rows or fissures, sinuous and of varying depth. Neurons are connected by physical con-
nections, fast, very largely parallelized and their functioning is autonomous, not clocked.
Neurons are arranged in 2D while their connections evolve in a three-dimensional space.
In addition, to optimize space, the connections have a fractal architecture [69]. The white
matter of the brain (mainly composed of myelinated axons) makes up about half of the
total brain volume [70]. The connections linking neurons to each other and thus creating
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an information exchange network, therefore seem to occupy a very important part in the
functioning of the brain. Measurements in a small cube of brain tissue revealed a storage
capacity of about 4.7 bits of information per synapse [71], suggesting memory on the or-
der of 1015 bytes at the whole brain scale. The brain represents about 20 % of the energy
consumption of the human body [72], or about 25 W, which makes the system extremely
efficient.

Figure 1.10: Volume reconstruction of a complete adult fly brain [73]. Neighboring neu-
rons were marked with identical color.

1.4.2/ DIGITAL NEURAL NETWORK: REVOLUTION AND LIMITATIONS

Neural networks are now performing tasks that were only a dream ten years earlier. Their
shape detection performance is equivalent to that of a human, images are described
automatically [74], the translation of foreign languages has also been automatized [75],
there are early beginnings of autonomous cars [76], the computer surpasses humans
in many games such as the game of go, chess, shogi [77] but also games with hidden
information like poker [78] or Starcraft II [79]. However, this revolution is not only the
result of recent advances in neural networks. The constitution of large databases were
also decisive for the learning phases. But more importantly, neural networks are mostly
implemented on traditional computers. The major advances are based in part on other
computer technology and electronics. Indeed, research in computer science, now over
seventy years old, allowed developments which massively democratized this technology.
The standardization of manufacturing processes in particular by CMOS technology, the
accumulated know-how and the growing number of people working in this sector have
made it possible to produce extremely high-performance systems. It is therefore in part
the mastery of computer science that allowed the field of neural networking to make a leap
forward. However, the improvement of the current neural networks accuracy depends on
the availability of exceptionally large computational resources that require equally great
power consumption. As illustrated in Fig. 1.11, neural networks training in data centers is
expensive, requires a lot of energy and has a large carbon footprint.

To understand this, let’s go back to the von Neumann architecture, which is still widely
used in computing and far from an artificial neural network’s (see Figures 1.1(a) and
1.10). Computation is performed synchronously and the communications between mem-
ory and the Central Processing Unit (CPU) are mainly in series. This limiting factor has
been fully understood and the parallelization of calculations is now taken into account
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Figure 1.11: Estimated cost in terms of CO2 emissions (lbs) and cloud compute cost
(USD) for training neural networks models. Power and carbon footprint are omitted for
TPUs due to lack of public data [80].

through the multiplication of CPU cores or the use of Graphics Processing Unit (GPU)
as well as moving memory closer to the processor. Recent research aimed at optimizing
the parallelization of digital calculations is working on new hardware chips, such as the
development of a Tensor Processing Unit (TPU) [13], which is an artificial intelligence
accelerator application-specific integrated circuit.

Nevertheless, intrinsic constraints to electronics limit the development of neural networks.
It is now accepted that the semiconductor industry is abandoning the pursuit of Moore’s
Law [11]. In 2020 the semiconductor industry will undertake the transition to the 5 nm
manufacturing process, notably based on Fin Field-Effect Transistor and Gate-All-Around
Field-Effect Transistor technologies which are non-planar transistors. Even though the
number of transistors continues to increase, as indicated by the orange data in Fig. 1.12,
the physical limits of computation based on the current architectures are apparently
reached, see blue green and red data in the same Figure. The computing power in-
crease over the past fifteen years is mainly due to the increase in the number of cores in
processors (black data).
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Figure 1.12: 42 years of microprocessor trend data [12].
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
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The development of a large connectivity between electronic artificial neurons faces an
intrinsic problem of electrical connections. The manufacture of semiconductors is mainly
based on thin film deposits, and even though multilayer strategies have appeared, the
overall architecture remains mostly planar. In addition, the electrical connections cannot
cross each other or be too close in order not to lose or alter the information. Therefore,
increasing the number of electrical connections necessarily implies reducing the diameter
and increasing the length of the wires. However, the flow of information (bits/s) along an
electrical connection is limited by the aspect ratio of the wire, i.e. the ratio between its
section and its length [81]. This characteristic is therefore a strong physical limitation to a
significant increase in the number of electrical connections. The article entitled "Design
challenges of technology scaling" concluded already in 1999 that the theory of scaling
in processors, whether it be of power, density or performance, was going to be stopped
by the consumption and dissipation of energy [82]. The analysis is completed in [83]
and depicted in Fig. 1.13 which shows that the number of connections in a processor
decreases exponentially with the increase in their length. Indeed, the heat dissipation of
a electrical wire increases with its length [83], therefore at constant energy dissipation,
the increase in the number of connections can only be achieved by reducing their length.
The exponential trend visible in Fig. 1.13 clearly shows that achieving parallelized con-
nectivity of an electronic neural network requires extremely short connections, which is in
contradiction with a planar architecture and wires that cannot cross each other.

Figure 1.13: Number of interconnections of seven processors according to the connection
length [83].

The physical limit for scaling the connections is the fundamental constraint which pre-
vents the massive parallelization of an electronic system. By studying a large number of
machine learning accelerators in Fig. 1.14, it appears that the power consumed increases
linearly with the number of operations per second (Ops) [84]. On average, an emulated
neural networks compute 1 TeraOps/W, and the most powerful NNs running on data cen-
ter system can currently consume up to 10 KW. Most importantly, even the most recent
electronic artificial neural network special purpose chips do not overcome this limitation.
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Figure 1.14: Peak performance as function of power of publicly announced artificial intel-
ligence accelerators and processors [84].

1.4.3/ ANALOGUE NEURAL NETWORK: A PARADIGM SHIFT

Since the intrinsic characteristics of digital computing are far from the architecture ob-
served in biological neural networks, research has turned to alternative hardware imple-
mentations. As the weights’ variation in an analogue neural network (ANN) is not trivial
to be realized in hardware, the concept of reservoir computing is widely used. Neural
networks have appeared in very different fields, whether with analogue electronic circuits
[85, 86], in Field-Programmable Gate Array (FPGA) [87], with memristors [88], in spin-
tronic [89] and optics [90–92]. The principle of the Liquid State Machine has even been
physically implemented by calculating with a water bucket [93]. A large review of the field
can be found in [94].

The principle of physical neural networks is to use physical phenomena to calculate. By
changing the paradigm, the idea is to create networks of nodes which have intrinsic char-
acteristics tending towards those of an ANN. However, work on this topic is very recent
and faces many challenges. The technologies used are not yet mature or even remain
at the state of research. Using analogue phenomena ultimately results in ANN-circuits
exhibiting noise and drifts, which are a priori not beneficial for computation. Studying
this impact is therefore essential to understand the underlying mechanisms and poten-
tially how to take advantage of them. Moreover, if the reservoir is entirely analogue, the
learning rule for reservoir computing is no longer applicable because it requires knowl-
edge of the entire reservoir state at all times during the learning period. Measuring that
state would be to fall back into the pitfalls of digital computing, requiring a consequent
instrumentation which can quickly become predominant compared to the network itself.
Therefore, it will be necessary to design novel types of learning. Many challenges are still
to be overcome, and current research is still in proof of concepts or demonstrators, results
comparable to the performance of digitally emulated neural networks remain scarce.
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1.4.4/ OPTICAL HARDWARE COMPUTING

Widely used in the telecommunications field, information can be encoded with light. The
large-scale commercialization of optical fibers and semiconductor lasers has revolution-
ized long-distance information transport. The many types of existing light modulation for
information encoding (amplitude, frequency, phase, polarization, spatial) have made it
possible to increase the communication data rate, recently reaching 178 Tbit/s [14]. In
addition, optics have long been a solution considered for working with electronics [95],
in particular to address interconnection problems whether inside digital processors [96]
or on electronic chips [97] . Indeed, light has an intrinsic characteristic which radically
differentiates it from electronics. The photon is a boson, therefore it is not subject to the
Pauli exclusion principle. Roughly summarized, this means that the photons can be at the
same time in the same place. Furthermore, a photon has no electric charge, hence does
not suffer from capacitive and inductive energy dissipation. This fundamentally changes
the transport of information due to the ability of communication channels to be able to
cross or even be superimposed, strongly enabling parallelization. In addition to its high
speed, optics or optoelectronics can perform calculations and communications at very
low energies (∼10 fJ/bit), which is approaching a competitive level when compared to
electronics [98, 99].

As light has great advantages for the transport of information, optics therefore seems an
excellent candidate for the implementation of a neural network where connections are
a fundamentally important part of the system. Since the beginning of the 2010s, many
scientific publications relating to this field emerged, a recent review can be found in [94,
100]. Optics is even considered through the manipulation of single photons or entangled
photons for the implementation of quantum neural networks [101, 102]. Still, with the
idea to roughly mimic biology, optical neural spikes are achievable, for example using
excitable semiconductor lasers. The biological neurons features such excitability, total
and partial refractory periods, which are properties recently reproduced in semiconductor
lasers [103–105].

Figure 1.15: Principles of a RC based on delay system. A nonlinear delayed feedback
dynamics emulating virtual nodes which are connected via time multiplexing [106].



20 CHAPTER 1. ARTIFICIAL NEURAL NETWORKS

The field of hardware neural networks has made a major advance with the use of delay
systems. As illustrated by Fig. 1.15, the principle is to create a network with a single
physical nonlinear node but mix the information using time multiplexing, thus producing
coupling between a large number of virtual nodes [85]. The implementation of delay sys-
tems in optoelectronics is now well mastered and gives excellent results with for example
the classification of a million words per second [106]. However, this type of network is
difficult to scale since increasing the number of nodes means increasing the delay and
therefore reducing the global data rate of the system.

A spatio-temporal architecture, where nodes are spatially distributed, avoids this draw-
back. Such a parallel reservoir computing architecture was proposed in 2008 [107],
then enhanced in 2011 [90], and it potentially offers fundamentally improved computation
speed and low power consumption. The optical reservoir, whose architecture is illustrated
in Fig. 1.16, was composed of 4 × 4 semiconductor optical amplifiers (SOAs) assembled
in a array. Each nonlinear node is connected to a maximum of four neighbors in a swirl
configuration.

Based on similar spatio-temporal topologies, other parallel optical reservoir were inves-
tigated. A building blocks for an all-optical high-speed reservoir-computing composed of
6 × 6 micro-ring resonators array was numerically demonstrated [91]. An experimental
demonstration of cascaded array of 56 programmable Mach–Zehnder interferometers in
a silicon photonic integrated circuit was successfully performed [108]. A passive inte-
grated photonic reservoir computing platform based on low multimodal loss Y-junctions
has been designed to be CMOS compatible [109]. However, a planar architecture makes
it difficult to connect a large neural network, the scalability of 2D systems is therefore
delicate.

Figure 1.16: Spatio-temporal neural network architecture with a 2D topology [90].

Another family of ANNs with photonic nodes is based on free-space optics. As illustrated
in Fig. 1.17, the first implementation of a Hopfield network (RNN with discrete time) in
optics dates back to 1985 [110] where information was processed spatially [111, 112].
The main idea is to build artificial neurons on a surface and couple them by optical con-
nections which takes place in the third dimension, which is the propagation direction of
the photons [113]. Information can be transported without significant crosstalk in overlap-
ping optical beams, the connections between the nodes are realized by a spatiotemporal
optical feedback. Intrinsically this architecture then presents a high potential scalability.
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Figure 1.17: Schematic illustration of a Hopfield network implemented electro-optically
and all-optically in (a) and (b), respectively [111].

Several recent works use optical diffraction to create an ANNs connections. The imple-
mentation of this new architecture was introduced with diffractive coupling of an 8 × 8
semiconductor lasers array [113]. Another system using diffraction grating and Fourier
imaging was designed to connect micro-ring resonators [114]. The scalability of this cou-
pling technique is promising for realizing large neural networks [17]. Thus, a network
using optical diffraction to couple 900 nodes created via a spatial light modulator (SLM),
and a digital micro-mirrors device (DMD) to implement the readout weights has recently
been realized [16]. Diffraction is a technique that allows interconnecting many types of
photonic artificial neurons, in particular semiconductor lasers which have high potential
to create an ultra-fast system with low energy consumption [115].

Keeping the advantage of optical coupling leveraging all three dimensions, other methods
of connections have been realized. In particular, neural network using speckle imaging
technique [116, 117] and random connection matrix consisting of a scattering media also
show a high scalability [118, 119]. A recent and promising 3D coupling technique is based
on optical waveguides 3D printed with a fractal architecture [120]. Such structures are
scalable and high density integration of optical interconnect based on photonic waveg-
uides.

1.5/ SUMMARY

We have introduced and discussed during this chapter the basics of neural networks,
starting with an introduction of dynamic systems since it is a fundamental feature of these
systems. We have defined the role of artificial neurons and then described different types
of network architecture. Feedforward neural networks are now widely used, their learning
is well mastered in particular thanks to the error gradient backpropagation technique.
RNNs are more complex. It is possible to topologically unfold these networks in time,
and, we then observed that nodes process the present information taking into account
past situations. This property corresponds to memory, which makes RNNs efficient to
process sequential information.

Neural network training generally consists in modifying the network’s connection weights
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in order to optimize the projection of the data in a large dimension space and to optimize
the linear separation allowing to classify the information. Such learning can be unsu-
pervised, i.e. it is based on structure recognition in the data. In the case of supervised
learning, the network’s weights are optimized to reduce the error between the neural net-
work result and the input data which is previously known for a typically large number of
examples. The result of the neural network should be a generalization of the training
data, and if its computation is too specifically optimized for the training data we speak of
overfitting.

Current neural networks are mainly computer emulated. Thus, neural networks deployed
within our societies are based on nowadays highly developed tools of software and the
maturity of the semiconductor industry. Nevertheless, the intrinsic architecture of tradi-
tional computers is very far from the one of ANNs. Since the miniaturization of compo-
nents has practically reached its physical limits, the issue has turned to parallelization to
further increase the computing power. However, the integration of electronic circuits is
performed by surface deposits, thus the electrical connections between transistors are
also mostly in 2D and can neither cross nor be too close. In addition, we have seen that
the maximum flow of information in an electrical connection is limited by its aspect ra-
tio. As a consequence, the implementation of fully parallel and integrated electronic ANN
processors is currently facing major challenges.

We discussed a paradigm shift by raising the issue of hardware computing. This devel-
opment has been strongly advanced thanks to the concept of reservoir computing. The
architecture is based on RNN but learning only consists in optimizing the output weights.
In addition to the highly simplifying learning, the concept leaves the possibility of using
many types of reservoir. The reservoir can therefore be analogue and exploit the features
of physical phenomena.

Finally, we have seen that light is an exceptional vector of information. Since connections
are an important part of neural networks, optics is an excellent candidate for their imple-
mentation. More specifically, we introduce the idea of a size scalable and parallel ANN
architecture based on the advantageous properties of optics. The main idea is to create
optical artificial neurons on a 2D surface but to connect them optically in the third dimen-
sion. In practice, the information from all nodes can be transported by non-interacting,
hence parallel, optical beams and coupling can be implemented physically by exploiting
the diffraction of light. This strategy will then be implemented for the design of an electro-
optical neural network presented in chapter 2 and will also be the architecture targeting
for the construction of an all-optical network whose fundamental steps will be presented
in chapter 4.



2
ELECTRO-OPTICAL RECURRENT

NEURAL NETWORKS

Inspired by the reservoir computing concept illustrated in Fig. 1.9 of the previous chapter,
we create a recurrent neural network where internal and readout connections as well as
nodes are realized in hardware. Once the system has been trained, all connections are
passive and due to the intrinsic characteristics of the optics they are fully parallel.

It is generally difficult to separate the role of hardware from the software part of such a
neural network since the two are merged, one interacting with the other. Therefore, for in-
creasing the clarity of our discussion this chapter will be divided into two parts. In the first
part, we will discuss how to build such an electro-optical neural network and characterize
the components constituting the system. We will first study the photonic neurons, then
the recurrent connections. The method of coupling based on diffraction forms a principle
element of this network and will therefore be investigated in detail, particularly with regard
to the limits of this technique [17]. Finally, we will show how the network readout has been
implemented physically.

The second part concerns then the dynamics of the neural network. The network archi-
tecture and the physical phenomena used are ultimately the result of a process aimed
at processing information using the reservoir computing concept. We will describe the
temporal evolution of the network’s state and study the impact of the feedback strength
within the reservoir.

A learning algorithm well suited for a hardware implementation will be presented in the
third part. Learning is a major challenge in a complete hardware implemented neural. In
addition, a strategy to mitigate the unipolarity of optical intensity will be presented. The
learning ability of the system will be tested with a complex time-series prediction task:
one-step-ahead prediction of a chaotic Mackey-Glass sequence.

2.1/ NEURAL NETWORKS: ENGINEERING PERSPECTIVE

Since the neural network is an electro-optical experiment, in this part we will characterize
the system with a focus on engineering. The experiment will first be introduced as the
entire setup, then each component constituting the neural network will be described in
detail.

23
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2.1.1/ EXPERIMENTAL SCHEME

Figure 2.1 schematically describes the photonic neural network. The pixels of the spatial
light modulator (SLM) are illuminated by a plane wave coming from a laser s-polarized
(661.2 nm). The pixels are used to physically implement the network nodes, the illumi-
nating light provides the maximum signal amplitude of each pixel’s nonlinear response.
The light is reflected by the SLM and the optical beam’s p-polarization passes through the
polarizing beam splitter (PBS), realizing a cos2 non-linearity in the transmitted intensity.
Thus, these illuminated SLM pixels combined with the nonlinearity due to the PBS create
the nonlinear nodes and hence defines the neural network states x(n) at integer time n.
The light then passes through a diffractive optical element (DOE) twice due to reflection
by a mirror. The DOE establishes the recurrent connections using diffractive side-orders,
creating the connection matrix WDOE. After the double pass through the quarter wave
plate, the PBS directs the entire signal towards the camera, where each pixel of the SLM
is imaged. The image recorded is used to drive the SLM by electronic feedback imple-
mented via the control computer.

Taking advantage of the RC concept, we restrict learning to the modification of the read-
out weights. We build the readout system using the polarization-filtering of the PBS,
whose reflection constitutes the polarization orthogonal to the network state. According
to cos2 Θ + sin2 Θ = 1, this signal contains the same amount of information as the network
state. The readout connections are created by imaging the network’s orthogonal state
onto the digital micro-mirror device (DMD). The DMD’s mirrors can be configured in two
positions with an angle of ±12◦ from normal. A photodiode, which is positioned such that
it only detects the optical field of mirrors oriented at +12◦, provides the network’s output
yout(n).

The input layer is not yet implemented in hardware but is currently realized digitally based
on the control computer. Input information u(n) is injected into the system according to
constant random connections W inj.

2.1.2/ NONLINEAR NEURONS SUBSTRATE

The nodes’ hardware substrate is a SLM (Hamamatsu X13267-01) whose pixels give a
physical and spatial entity to nodes. The neural network is composed of 2025 nodes
(45 × 45 pixels) for its characterization and 961 (31 × 31 pixels) during its operation. The
pixel pitch is pSLM = 12.5 µm, the total size of the network on the SLM’s surface is a square
of 0.316 mm2 or 0.150 mm2 for 45 × 45 or 31 × 31 nodes, respectively.

Pixels i of the SLM are illuminated by a plane wave |E0
i |

2. To achieve this, the colimated
diode laser (Thorlabs LP660 SF20, λ = 662.1 nm), aligned to s-polarization by pad-
dle polarization controllers (Thorlabs FPC030) is focused in the back focal plane of the
microscope objective MO1 (Nikon CFI Plan Achro 10x) by the lens L1 (Thorlabs AC254-
200-AB-ML). As illustrated in Fig.2.2(a), the pixels of the SLM receive an illumination with
a Gaussian profile due to the spatial mode of the single mode fiber-coupled laser. To
obtain non-linearity the SLM has to be in intensity modulation configuration. For this, the
laser is linearly polarized and the optical beam is reflected by the PBS towards the SLM.
The half-wave plate is adjusted such that the linear polarization of the incident beam is at
45 degrees from the ordinary and extraordinary axis of the SLM. The extraordinary axis of
the pixels is modulated by a voltage resulting in a refractive index modification controlled
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Figure 2.1: Photonic implementation of a spatio-temporal neural network with 961 nodes.
An optical plane-wave illuminates the spatial light modulator (SLM), the neural network
states are encoded by the SLM pixels. They are imaged on the camera, passing through
the polarizing beam splitter (PBS) and the diffracting optical element (DOE) creating non-
linearity and recurrent coupling between network states. The information detected by the
camera is used to drive the SLM. We image the nodes on a micro-mirrors array (DMD),
which allows to select pixels imaged onto the detector and hence implements Boolean
readout weights.

by the gray scale value (GS) of the SLM state vector xSLM ∈ {0,1,....,255}. This modulation
introduces a phase-shift of the optical field along the extraordinary axis, which results in
a rotation of the polarization angle of the reflected light. Therefore, the optical beam re-
flected by SLM pixel i is linearly polarized with a specific angle depending on xSLM

i . The
resulting optical field of pixel i after polarization filtering by the PBS is then

Ei = E0
i cos

( 2π
KSLM

· (xSLM
i + ϕ0

i )
)
, (2.1)

where KSLM = 244.6±1.6 is the conversion between pixel gray scale and polarization angle
in radians, and ϕ0

i = 11.1 ± 1.1 the gray scale offset which is a device related constant.
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These two parameters have been characterized and their uncertainty is the standard
deviation over all measured SLM pixels.
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Figure 2.2: (a) Gaussien illumination of the SLM pixels. The amplitude in gray scale (GS)
is encoded on 8-bits. (b) Averaging of twenty measurements of the nonlinearity of the
2025 nonlinear nodes which composed the network. For the low amplitude detected by
the camera, we can clearly see a phase shift.

Figure 2.2(b) illustrates the intensity modulation of each pixel, thus realizing the non-
linearity of the nodes. For nodes with a low maximal intensity, the maximum modulation
is slightly shifted. The intensity difference between pixels is the consequence of the illu-
mination by a Gaussian profile. The low intensities of a Gaussian beam are by definition
at the borders of the Gaussian. Focusing the laser in MO1 back focal plane, the wave-
front can no longer be approximated by a plane wave (paraxial approximation) beyond a
radius. The half-wave plate adjusted for a plane-wave, i.e. the Gaussian beam center, is
no longer precisely set for the pixels at the edges of the illuminated SLM surface. The
polarization angle of the incident beam is therefore slightly different for low intensities.

2.1.3/ RECURRENT NEURAL NETWORKS

To obtain a recurrent neural networks, the nonlinear nodes must be self-coupled through
feedback. Since the control of nodes is electronic, their optical information must be digi-
tally converted using a camera (Thorlabs DCC1545M)). SLM and the camera are in the
focal plane of MO1 and MO3 (Nikon CFI Plan Fluor 4x), respectively. However, the cam-
era is not placed behind the PBS, otherwise an inverted image would be formed (2 f
imaging). To reverse the image, a mirror is placed in the focal plane of MO2 (identical to
MO1), which results in a 4f imaging configuration. A quarter-wave plate is added on the
optical path between the PBS and the mirror, transforming the linear polarization of the
incident beam into circular polarization. When the beam returns, the polarization is again
transformed into linear polarization, but at 90 degrees from the incident beam. Therefore,
the light reflected by the mirror is fully reflected by the PBS towards the camera. This
4f-system is not essential for this electro-optic neural network since the image of SLM
could be digitally inverted. However, this configuration is relevant for the self-coupling in
an all-optical neural network, which requires self-imaging and hence a 4f configuration.

The camera adjustment is a critical step of the optical alignment. The camera is posi-
tioned on a tilting micrometric platform (Thorlabs PY003/M) in a way that its axes are
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aligned with those of the SLM. Using a non-trivial intensity modulation pattern displayed
on the SLM, the area of interest of the camera is specified and the orientation of the
camera is mechanically adjusted with a precision exceeding 4 µrad. In the absence of
recurrent connections between the nonlinear nodes, the signal recorded on the camera
is then

xC
j = α|E j|

2, (2.2)

where xC ∈ {0, 1, ...,GS max = 255} is the 8-bit camera-state. To use the full dynamic range
of the camera and avoid over-exposure, the optical intensity |E|2 is converted by α =

ND·GS max/Isat, where Isat is the saturation intensity of the camera and ND the transmission
efficiency of the optical path including added neutral density filters.

Due to an optical imaging magnification (Mag = 2.5), and different pixel pitch of SLM
(pSLM = 12.5 µm) and camera (pC = 5.2 µm), the number of pixels in the area of interest
is not the same between the camera and the SLM. Camera-state xC is therefore linearly
rescaled in size to match the number of active SLM pixels, resulting in x̃C. Each active
pixel i of the SLM is therefore imaged on a group of pixels i of the camera, and the nor-
malized and re-scaled camera-state x̃C

i = α |Ei|
2 drives the SLM’s state vector xSLM. This

self-coupling is measured and represented in Fig. 2.3, where the pixels of the SLM are all
turned off (xSLM = 55) and sequentially a single pixel’s intensity is turned on (xSLM = 125)
and the image is recorded by the camera. The resulting camera images are reshaped
into single-column vectors, and the individual images for each pixel "switched on" is ap-
pended to an array. The result is a diagonal appear, proof that each node is self-coupled.
The low visibility of the diagonal is due to a single pixel width, and the variation of the
intensity detected by the camera is the consequence of the Gaussian illumination.
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Figure 2.3: Recurrent neural network self-coupling. Each pixel of the SLM is linked to a
single pixels array of the camera. The three right insets are zooms into smaller regions.
The intensity is normalized but is identical for the four panels.
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2.1.4/ PHOTONIC NETWORK CONNECTIVITY

Following the principle of reservoir computing [15], the coupling between nonlinear nodes
can be random but needs to remain constant in topological terms over time. The neural
connectivity obtained by using the diffraction property of light perfectly meets this condi-
tion. The idea is to locally connect each nonlinear node to its neighbours by adding a
DOE (HOLOOR MS-443-650-Y-X) to the optical path.

2.1.4.1/ DIFFRACTIVE COUPLING

Our DOE is comparable to an optical transmission grating with a phase-modulation along
the x and y-axis. Such a DOE divides a single spatially coherent beam into several beams
by diffraction. In our case, the DOE splits the incident optical beam into nine, each with
the original beam except for its power and angle of propagation. The different diffractive
orders separated by angle ϕdiff are imaged onto the camera with a distance ddiff between
them. The DOE is located in the collimated space of our imaging system, and we can
treat the system as infinite diffraction by considering only plane waves. The diffractive
angle ϕdiff

i,m for diffractive order m of pixel i can be obtained by the grating equation

sin
(
ϕdiff

i,m

)
= sin

(
ϕim

i

)
+ m

λ

pDOE , (2.3)

where ϕim
i = arctan

(
i · pSLM/ f1

)
is the incident angle of the collimated beam reflected from

pixel i, pDOE = 1006.55 µm the grating pitch of the DOE and λ the wavelength of the
illuminating laser. Figure 2.4(a) illustrates the coupling mechanism by diffractive imaging
for the simpler case of a 2f imaging system. Importantly, the working principle is identical
for 4f imaging. For pixels (nodes) i and i + 1 the DOE creates three orders of diffraction in
this planar projection. In order to obtain a spatial superposition of their optical fields, which
is the mechanism we use for creating coupling, the propagation angle of the diffracted
orders must be identical. The criteria for coupling between the diffractive order m = −1 of
emitter i = 0 and order m = 0 of emitter i = 1 is then given by

ϕdiff
0,−1 = ϕim

1 . (2.4)

The angles can be written as

ϕdiff
0,1 = arcsin

(
λ

pDOE

)
= arctan

(
ddiff

f2

)
, ϕim

1 = arctan
(

pSLM

f1

)
. (2.5)

The parameter λ, pSLM and pDOE should therefore be optimized to satisfy Eq. (2.4). How-
ever, it is clear that these parameters are only exact for coupling the particular pixels
selected for optimising Eq. (2.5), usually the SLM’s center pixels. For pairs of transmitters
located far from the optimal position, the overlap between neighboring pixels is degraded
due to the different trigonometric relationships given by Eq. (2.5).

According to our experimental parameters, we obtain ddiff = 33.105 µm. Comparing to the
pixel pitch after imaging, the distance between diffractive orders has an absolute error
∆ = |Mag · pcam − ddiff| = 1.85 µm and a relative error δ = ∆/Mag · pcam = 5.6 · 10−2. This
mismatch represents a compromise between performance and the use of products off
the shelf such as the laser, the SLM and the DOE.
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Figure 2.4: (a) 2D schematic illustration of coupling of the SLM pixels i by a diffractive
process. Two pixels are imaged via a 2f system including a DOE creating three orders
of diffraction. f1 and f2 are the focal distance of lenses L1 and L2, respectively. ϕdiff

is the angle between diffraction orders and ϕim is the angle between the principle rays
of neihboring emitters. If both angles are equal, the distance between diffractive orders
in the image plane ddiff is identical to the distance between neihboring emitters pS LM

considering the magnification : ddiff = f1 pSLM/ f2. (b) Illustration of (only along the vertical
axis) the diffraction of an optical beam during its double passage through the DOE. The
image of the SLM and the camera are both experimental data measured before and after
the DOE, respectively.

Returning to the experiment, the optical beam passes a second time through the DOE
after being reflected by the mirror, therefore, as schematically illustrated in Fig. 2.4(b),
the diffraction orders are again diffracted. Ultimately, this DOE double-pass transforms
the beam of each pixel of the SLM into 25 beams propagating at a discrete set of angles.
Each pixel is directly connected to all its close neighbours within a coupling radius of two
pixels. The signal recorded by the camera is then

x̃C
i = α

∣∣∣∣∣ N∑
j

WDOE
i, j E j

∣∣∣∣∣2, (2.6)

where WDOE is the coupling matrix and N the total number of nonlinear nodes. In the
same way as explained for Fig. 2.3, except that the DOE is introduced into the beam
path, we measure qualitatively the coupling matrix. As illustrated by Fig. 2.5, now there is
not only a single diagonal of a single pixel width as previously, but five lines of five pixels
width. As before the real 45 × 45 2D matrices are unfolded into a 2025 × 1 vector in 1D
in order to obtain a representation of Fig. 2.5 in 2D. Each pixel of the SLM is therefore
coupled to 24 of its close neighbours and itself. As better visible in the right insets,
the width of the diagonals corresponds to the coupling along the vertical axis between
the nodes. The vertical distance of 45 pixels between the diagonals is the result of the
transformation of the 45 × 45 matrix into a 2025 × 1 vector, but actually corresponds to
the coupling of neighboring pixels along the horizontal axis. The coupling of neighboring
pixels along the vertical axis is for its part illustrated by diagonals five pixels wide.
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Figure 2.5: Recurrent neural network’s coupling matrix WDOE established by the DOE.
Each pixels of the SLM is coupled to its close neighbours. Due to the unfolding of 2D
matrices of pixels into 1D vectors, the width of the diagonals corresponds to the coupling
of nodes along the vertical axis, the vertical distance between the diagonals corresponds
to the coupling along the horizontal axis. The three right insets are zooms into smaller
regions. The intensity is normalized but is identical for the four panels.

2.1.4.2/ COUPLING STRENGTH

Studying the insets on the right in Fig. 2.5, we can see a strong variation in local con-
nectivity strength. This is the result of the spatial distribution of the pixels of the SLM.
The different positions of the pixels lead to collimated beams with different propagation
angles, thus illuminating a slightly different area of the DOE. Therefore, the distribution
intensity between the diffractive orders varies. This phenomenon, intrinsically linked to
the coupling method, gives heterogeneous connectivity to the neural network, which is
beneficial for computation according to the reservoir computing concept [15].

We continue to study in detail the profile of the coupling strength. During the first pas-
sage of the optical beam through the DOE, the pattern produced is a 3 × 3 configuration
of diffractive orders. The cumulative intensity of the diffracted orders represents approxi-
mately 70% (72% according to the manufacturer) of the entire optical intensity. We could
then approximate this coupling strength distribution as the result of a convolution of a
single delta peak with a 2D-step function which has the value 1 for each of its 3× 3 inputs
and zero otherwise. This convolution results in the same 2D step function. The second
path through DOE could be viewed as the self-convolution of the 3 × 3 step function. The
result is a 2D pyramidal intensity distribution with 5x5 non-zero entries.

Figure 2.6 presents the averaged coupling properties obtained from our neural network.
To achieve this, we use the data measured by the camera during the characterization
presented in Fig. 2.5. We select an area of 9×9 pixels centered around the activated SLM
pixel i, hence the subarray center is the position of the zero diffractive order. Subarrays
are normalized to unity and are consequently summed together, and, the image obtained



2.1. NEURAL NETWORKS: ENGINEERING PERSPECTIVE 31

-4 -2 0 2 4
Distance

-4

-2

0

2

4

D
is

ta
n
ce

0

0.25

0.5

0.75

1

C
o
u
p

lin
g

 s
tr

e
n
g

th
 (

n
o
rm

)

(a)

-4 -2 0 2 4
Distance

0

0.25

0.5

0.75

1

C
o
u
p

lin
g

 s
tr

e
n
g

th
 (

n
o
rm

)

Horizontal
Vertical
Convolution

(b)

Figure 2.6: (a) Normalized, average coupling strength against coupling distance. The
dominating coupling term corresponds to self-coupling. (b) Horizontal and vertical profiles
through the center position of panel (a). The triangle topology obtained is the result of
double passing the DOE. The black line is the theoretical result of the self-convolutions of
3 × 3 step function.

is shown in Fig. 2.6(a). As expected, the coupling strength at the center, corresponding
to the position of the non-diffracting order after the double-pass through the DOE, is the
strongest. Figure 2.6(b) corresponds to the vertical profile (blue stars) and horizontal
profile-cuts (red circle) through the central position of the panel (a). Despite a slight
asymmetry, the experimental result matches well with the pyramid coupling profile of the
model (black line). We notice that, for a coupling radius larger than two, the experimentally
measured coupling strength is not strictly zero. This is attributed to the non-negligible
contribution of the higher diffraction orders of the DOE, which can be clearly observed in
Fig. 2.4(b).

2.1.4.3/ NETWORK SIZE LIMITATION

It is essential to estimate the maximum number of nonlinear nodes that can be coupled
by diffraction and also to understand the limits of this method.

Coupling is based on two interdependent parts. The first is diffraction by the DOE, the
second is imaging. There is a fundamental difference in trigonometric relationships be-
tween diffraction angle ϕdiff in Eq. (2.5) which involves according to a sine function, and
angle ϕim due to imaging, which depends on a tangent function. These two angles are
similar within the limits of the paraxial approximation, i.e. for small angles. Due to its
importance a full characterization of the deviation away from the coupling condition was
performed [17]. Only a summary presenting the major results of this study will be pre-
sented in this thesis.

The experimental setup illustrated in Fig. 2.4(a) uses, a single mode optical fiber (Thor-
labs TW670R5A2) to emulates different positions of the SLM pixels. The fiber is placed
on a micrometric xy-stage (Thorlabs ST1XY-S/M) and is imaged on a camera (IDS
USB 3µEye LE). A first microscope objective (Nikon Plan N, NA = 0.25 MAG = 10) colli-
mates the fiber’s output which is then imaged by a second microscope objective (Nikon
N4X-PF, NA = 0.13, MAG = 4) onto the camera. The distance between the two objectives
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is less than 50 mm and the DOE is placed approximately in the middle. For each posi-
tion of the optical fiber along the horizontal or vertical axis, the image of the camera is
recorded. The image is then fitted by nine Gaussian profiles.

(a) (b)1st order all orders

µ

Figure 2.7: (a) Mismatch between the first diffractive order and nominal position according
to the position of the emitter along the horizontal axis. Experimental results (stars) are
excellently agreed with the numerical results (circle). The analytical solution (dashed line)
is calculated according to grating equation. (b) As is (a) but for all diffractive orders, along
horizontal and vertical axis. The sharp increase of the mismatch beyond 1 mm results
from the vignetting of the beam.

Figure 2.7(a) illustrates on a double-logarithmic scale the experimental difference (stars)
between the nominal position and the real position of diffractive order m = −1. Below a
fiber displacement radius of 1 mm, the positioning error is below 0.1 µm. By taking a
typical distance of 10 µm between photonic emitters in for discrete array [16, 121], cou-
pling is therefore possible for more than 30,000 nodes. Nevertheless, the error increases
sharply for coupling positions located by more than 1mm away from the system’s center.
In this outer region, the experimental data diverge strongly from the analytical solution
calculated from Eq. (2.3). However, by calculating the numerical solution (circle) based
on an optical propagation by angular spectrum method without paraxial approximations
[17], the result is in excellent agreement with the experimental measurements. By exam-
ining the limiting factor beyond a radius of 1 mm, we realize that the limit is ultimately the
entrance pupil of the second microscope objective, which creates a vignetting effect. This
information is important because it shows that the main limitation of the coupling is not
intrinsic to the concept of diffraction but to the imaging system. Figure 2.7(b) shows the
coupling error for all diffraction orders. First, the error obtained confirms the limit obtained
for the first order. Second, the low detection noise of the camera allows a very precise fit
which brings an experimental resolution below 40 nm.

In addition to an excellent agreement between the positions of the diffraction orders, Fig-
ure 2.8 illustrates the width of the diffractive orders (stars) and the theoretical diffraction
limit as a function of the position of the emitter. For a position less than one millimeter
from the center, i.e. avoiding vignetting, the imaging system remains diffractive-limited.
Results are slightly better than the diffraction limit, which is due to the uncertainty of the
fiber’s NA, which creates an uncertainty of the diameter of the collimated beam.



2.1. NEURAL NETWORKS: ENGINEERING PERSPECTIVE 33

[

[ µ

Figure 2.8: Width of the diffractive orders image according to the emitter position. Within
an area of one millimeter in radius, the imaging system remains diffraction limited.

For the current electro-optic neural network, having a pixel pitch of the SLM of 12.5 µm,
the diffraction coupling technique allows a connectivity between more than 20,000 nonlin-
ear nodes. Importantly, the number of photonic nodes depends on the area, and therefore
is proportional to the square of the radius. In addition, the DOE is a passive element, and
an increase in the number of nodes has no influence on the cost of their connectivity,
whether in terms of energy, size or time. Consequently this coupling technique has an
excellent scalability if the vignetting challenge can successfully be addressed.

The optical path through the neural network could be reduced using a more compact
mechanical layout in order to reduce the effect of vignetting. In addition, the microscope
objectives of the imaging system can be changed, in particular M03 which could have
a numerical aperture of 0.5. These modifications increase the vignetting-free imaging
radius, but the SLM itself could also be changed to one with a smaller pixel pitch (Holoeye,
GAEA-2, pSLM = 4 µm). These technical improvements would then increase the number
of connected nodes beyond several million.

2.1.5/ READOUT WEIGHTS

The weights assigned to each nonlinear node allowing the learning of the network are
implemented without modifying the connections of the reservoir. For that purpose we use
the PBS as the output-port of the reservoir. An additional BS allows SLM illumination
and readout. The BS has a 50/50 splitting ratio in order to maximize the output power.
A lens (Thorlabs AC254-400-B) images the pixels of the SLM on the surface of a DMD
(DLi4120 XGA). A DMD is a micro-opto-electro-mechanical system composed in our case
of a 1024x768 micro-mirrors array, having a mirror pitch of 13.68 µm. Each micro-mirror
has two possible orientations, at ± 12◦ from the normal. Only the -12◦ degree orientation
reflects the SLM light towards the detector and contributes to the output signal. Conse-
quently, the physically implemented readout weights are strictly Boolean.

The imaging system between the SLM pixels and the DMD micro-mirrors has a magnifi-
cation of 20. Considering the pitch of the SLM and the DMD, the image of a single pixel of
the SLM on the DMD is a rectangular area with a size approximately equivalent to 18× 18
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micro-mirrors. The DMD is mounted on a rotating stage (Thorlabs CRM1L/M) allowing
precise alignment between the SLM and DMD axis. The area of interest of the DMD is
then carefully defined using an alignment camera (IDS USB 3µEye LE) to visualize the
DMD reflection in the +12◦ degree direction. A first pixel pattern and its complementary
is displayed on the SLM and the DMD, respectively. This allows to precisely identify the
area of our reservoir’s nodes on the DMD, to define its orientation and its size. Variation
of the DMD pattern to the nearest pixel allows alignment accuracy of less than 2 mrad.
Subsequently, 18 × 18 micro-mirrors modulate the detected power of a single pixel of the
SLM, and in the following they are always addressed as one "super-pixel".

The micro-mirrors which compose the DMD make the device periodic and therefore the
reflected light is diffracted. Using the grating equation in reflection with a mirror pitch of
13.68 µm, the difference of angle propagation between the specular order and the first
diffractive order is approximately 50 mrad. Therefore, the optical beam after the DMD
is intentionally not collimated. Thus, after a light propagation of 20 cm, the diffractive
orders are spatially separated by a centimeter. Spatial filtering is then applied in order to
physically reject the diffracted orders. In addition, this increases the signal to noise ratio
by minimizing the detection of stray light. Finally, the detector (DET, Thorlabs PM100A,
S150C) is placed behind a lens that collects the signal coming from the micro-mirrors
turned towards its direction.

Figure 2.9 is a photography of the DMD’s micro-mirrors. In the center, the white and black
square is the area of interest which constitutes the output weights. Each white pixels in
the image, corresponding to the value 1 in the weight vector WDMD, are oriented -12◦

towards the output detector.

Figure 2.9: Image of a random 31 × 31 matrix WDMD on the digital micro-mirrors device.
Each white or black pixel is an array of 18 × 18 DMD pixels. Only the white super-pixels
are turned towards the output detector.

This spatial implementation of the output weights does not require temporal modulation as
it is the case for example for reservoir implementations in delay systems [122]. Indeed,
after learning to solve a specific task, the configuration of the DMD obtained is then
passive. The readout weights are passive mirrors and therefore do not limit the bandwidth
of information processing. In addition, the allocation of the weights is fully parallel, and
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therefore the number of nodes in the network does not impact the speed of applying
WDMD. The Boolean character of the readout weights could be modified to a gray level if
necessary. For this, each 18 × 18 super-pixel could be subdivided into several sub-areas,
then giving a fraction of weight to each. The main constraint is to have a system sensitive
enough to measure the variations on then finer scale.

2.2/ NEURAL NETWORKS: DYNAMICAL SYSTEMS

Now that we have described each part of the optical recurrent neural network and ex-
plained the physical implementation of the fundamental blocks, namely the non-linear
nodes serving as neurons, their self-coupling and their connections to each other, as
well as the assignment of the readout weights allowing learning, we will consider this
experiment as a dynamical system. Indeed, the feedback from the camera to the SLM
pixels implements an echo property. This can create dynamics that can take very different
forms, ranging from damping to a chaotic regime depending essentially on the feedback
strength.

2.2.1/ INPUT LAYER

The input layer is not yet implemented in hardware, but the external information is injected
into the neural network via the SLM by a computer (see Fig. 2.1).

External information is a discrete sequence u(n) normalized between 0 and 1. This vector
is multiplied by an injection matrix Winj consisting of elements randomly distributed be-
tween 0 and 1. This injection matrix remains fixed for all experiments in this thesis. At
each discrete time step n, this matrix distributes the scalar input information u(n) to each
active pixel of the SLM. The size of the injection matrix depends therefore on the number
of nodes in the network, typically 45×45 = 2025 or 31×31 = 961. The external information
injection is then

input(n + 1) = γWinju(n + 1) , (2.7)

where γ is the injection strength which is optimized for each task.

2.2.2/ RESERVOIR

In order to study the dynamical aspect, we have to add a temporal context to the descrip-
tion of the experiment. Illustrated in Fig. 2.1, the camera-state x̃C is recorded by a control
computer which also controls the SLM-state xSLM via a Matlab program. Therefore, the
reservoir forms a single unit where the camera and the SLM are linked, the first serving
of input for the second. To close the loop, the state of the camera is multiplied by the
feedback gain β, to which external information and a phase offset matrix θ are added.
The result is sent to the SLM as

xSLM(n + 1) = β x̃C(n) + γWinju(n + 1) + θ . (2.8)

We can then define the reservoir-state x which is the result of the nonlinearity f(·) of the
nodes

x(n + 1) = f(xSLM(n + 1)) . (2.9)



36 CHAPTER 2. ELECTRO-OPTICAL RECURRENT NEURAL NETWORKS

We notice that the reservoir-state is physically located just after the PBS which gives the
nonlinear function to the system. In other words, the reservoir-state is never measured
experimentally. Equations (2.8) and (2.9) have the same structure as in the classical
concept of reservoir computing [15]. The only difference comes from the electro-optic
nature of the neural network. The reservoir state is defined according to the optical field
while the update is according to the optical intensity. Indeed, as shown in Eq. (2.6) which
defines the camera-state, the camera records the square of the optical field.

The evolution of the reservoir dynamics is therefore described by a coupled Ikeda map
[123] according to

xi(n + 1) = α|E0
i |

2 cos2
[
β · α

∣∣∣∣∣ N∑
j

WDOE
i, j E j(n + 1)

∣∣∣∣∣2 + γW inj
i u(n + 1) + θi

]
. (2.10)

The overall update rate of the entire system is only 3 Hz. This low rate is currently
limited by the Matlab script controlling the SLM, a programming language closer to the
machine code would greatly accelerate the system. Indeed, the SLM currently used has
a maximum frame rate of 50 Hz, which corresponds to the true limiting physical factor.

Despite the apparent complexity of Eq. (2.10), the only matrix multiplication provided by
the control computer is the injection matrix. All other operations are performed optically,
fully in parallel. The whole point of the hardware implementation of a neural network is
that most of the computational operations, if not all, are done through physical phenom-
ena. Simulating Eq. (2.10) by a computer may seem trivial but by looking more closely we
realize that the reservoir-state of node i at time n+1 depends on the reservoir-state at time
n of all the nodes in the network. Coupling between nodes is equivalent to matrix multipli-
cation, for a computer with serial operation the problem scales with N2. Coupling between
nonlinear nodes, which is the intrinsic heart of a neural network, is therefore the major
source of computational load in serial emulations of neural networks. While interconnec-
tivity is easily implemented with the parallel DOE’s, its computer simulation is complex in
terms of time and storage space for large numbers of nonlinear nodes [119, 124].

2.2.3/ READOUT LAYER

As explained in sections 2.1.1 and 2.1.5, the output of the system contains as much
information as the reservoir but is modulated by the weight vector WDMD. The output of
the system is therefore

yout(k) ∝
∣∣∣∣∣ N∑

i

WDMD
i (k) · [E0

i − Ei(n + 1)]
∣∣∣∣∣2

∝

∣∣∣∣∣ N∑
i

WDMD
i (k) · xi(n + 1)

∣∣∣∣∣2,
(2.11)

where k is the current learning iteration. Expressed as a vector in Eq. (2.11), WDMD

corresponds in the experiment to a binary square matrix as illustrated in Fig. 2.9.
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2.2.4/ BIFURCATION DIAGRAMS

With the evolution of the reservoir dynamics being established, we now turn to dynamics
and its variation as a function of the feedback gain. It has been observed many times in
dynamical systems and in particular in optics [123, 125–127] that a small gain variation
can drastically modify dynamics behavior, and one then typically speaks of a "bifurcation".
A tool for studying dynamic systems is the bifurcation diagram. It highlights potentially
stable states of a dynamical system as a function of a parameter variation and indicates
qualitative changes in the dynamical state of a system.

Figure 2.10 shows four bifurcation diagram examples for reservoir node (23,12) recorded
for a network of N = 45 × 45 = 2025 nodes. No information was injected (γ = 0) and the
phase offset are fixed. The starting reservoir state is initialized in such a way that the re-
sult of the nonlinear function is minimum (xSLM(1) = 66). In order to statistically measure
the state of the system, we let the dynamics evolve for two thousand iterations. However,
reservoir state x is not directly measured. Thanks to a careful nonlinear function char-
acterization for each pixel as illustrated in Fig. 2.2(b), it is however possible to transform
the state xSLM(n) into reservoir state x(n) with Eq. (2.9). The two thousand values of x
are compiled into a histogram which translates the state probability in gray scale (color-
bar). We scan the feedback gain ranging from 0.1 to 5 with a step of 0.1 in the graphs
presented Fig. 2.10.
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Isolated Ikeda maps, θ = 96 Coupled Ikeda maps, θ = 96

Figure 2.10: Four exemplary bifurcation diagrams for node (23,12). For panels (a) and (c),
data was obtained without DOE in the network. For panels (b) and (d), the presence of
the DOE excludes direct measurement of the reservoir state. This one is derived thanks
to the nonlinear function previously experimentally characterized for all nodes. Panels (a)
and (b) are measured with a phase offset θ = 96, for panels (c) and (d) θ = 63.
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The data of panels (a) and (c) are obtained without the DOE, therefore for a self coupled
Ikeda map. The data of panels (b) and (d) are obtained with the DOE included in the
optical path, and we can observe the strong impact of WDOE on the node’s dynamics.
Panels (a) and (c) were measured for θ = 63 and panels (b) and (d) for θ = 96, where
θ = 63 is located around the first minimum of the nonlinear function, θ = 96 is located in
the middle of the linear part of the cosine function (see Fig. 2.2(b)).

We see that this change in θ has little impact on the general dynamics of the uncoupled
reservoir. On the other hand, when there is coupling between the nodes, the change is
significant (panel (b) and (d)).

For uncoupled Ikeda maps (panel (a) and (c)), there is a stable solution for low value of
the feedback gain. As soon as β > 0.2, the system enters chaotic dynamics. Note in
panel (c) that a small stability window is observable for β ≈ 0.8. For β > 2, the system
again stabilized due to the saturation of the nonlinear function. For this particular node,
its argument xSLM(n + 1) exceeds 255 for β > 2, which results in an artificial restriction.
This limitation at 255 causes a stabilization of the node dynamics at f (βx) = 255.

An important feature of coupling matrix WDOE is its ability to increase the steady state
of the system. Indeed, by adding the DOE, the slight coupling asymmetry observed in
Fig. 2.6 and the higher diffraction orders observed in Fig. 2.4(b) induce inhomogeneity in
the coupling topology which is found in Fig. 2.5. As asymmetric coupling can accumulate
stronger for some nodes than for others, some nodes have a coupling strength larger than
the majority of the network. To avoid saturating the camera, the attenuation of the optical
beam by ND filters was therefore increased by 60%. Consequently, the saturation of the
SLM is pushed back for beta values greater than 2.5.

In the chaotic regime of the coupled system (panel (b) and (d)), the probability distribu-
tion is no longer continuous but certain amplitudes of the available range of 8-bit gray
scale range have a greater probability. This is attributed to the inevitable noise when we
characterized the nonlinear function (see Fig. 2.2(b)). This function used to derive the
reservoir state by approximating the combined action of SLM and PBS, is therefore not
smooth. The averaging of multiple measurements of the nonlinear function reduces this
effect, while fitting the nonlinear function would remove it entirely

2.3/ PHOTONIC LEARNING

Learning strategies are an important component of neural networks. Most studied and
used algorithms such as "gradient descent" or "error back propagation" are methods re-
quiring the knowledge of all nodes states [15], of the connection weights or potentially
even their gradients [5]. With a hardware network, knowledge and control of these values
are far from trivial, in particular if the system is based on analogue phenomena. When
the number of nodes is large the instrumentation allowing the required measurements
can quickly become predominant compared to the network itself. Such learning methods
are inconsistent with the idea of efficient hardware-based neural networks.

Returning to the concept of reservoir computing presented in section 1.3, learning op-
timizes readout weights matrix Wout which, once multiplied onto the reservoir state, will
ideally give the desired output result. This class of learning is called "supervised" due to
the knowledge of examples of desired results, also being called training target yT . The
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most efficient method to obtain a reservoir’s readout weight matrix is matrix inversion.
Without taking into account that the matrix inversion computing time increases at least in
O(n2 log(n)) [128] with n × n the matrix size, this method can only be performed on a com-
puter. Furthermore, we do not wish to (i) measure the network’s state, and (ii) Eq. (2.11)
is nonlinear, making matrix-inversion impossible. Targeting an all-in-one neural network,
we would like to implement an online learning.

Learning must therefore be able to run with little computing power, ideally on a simple
electronic circuit. To overcome slow parameter drifts, the learning process must be in real
time, allowing a continuously maintain good performance over the long term. In addition,
the noise level of our analogue system also has to be taken into account. Therefore we
implement local learning based only to the evolution of the system performances.

2.3.1/ EVOLUTIONARY LEARNING

The operating principle of evolutionary learning [129] is to optimize the DMD’s configu-
ration by measuring the impact of DMD mirrors’ modifications onto computing error ε(k).
The objective is then to modify WDMD(k) during k = 1, 2, ...,K learning epochs in such a
way that output yout(K, n + 1) best approximates training target yT (n + 1) [16].

In the first learning iteration (k = 1), the N readout weights WDMD(1) ∈ Z{0, 1} are randomly
initialized, the first output signal yout(1) is measured and error ε(1) is determined. For the
next (k = 2, ...,K) learning iteration, the Boolean learning algorithm can be divided into
three conceptual sections:

MARKOVIAN MUTATION

Wselect(k) = rand(N), (2.12)

l(k) = max
(
Wselect(k)

)
, (2.13)

WDMD
l(k) (k + 1) = ¬WDMD

l(k) (k). (2.14)

The vector rand(N) is composed of N random elements, independently and identically
distributed between 0 and 1. The function max(·) returns the largest entry’s position l(k) of
Wselect(k). This selected position determines the Boolean readout weight WDMD

l(k) (k) to be
mutated through the logical inversion operator ¬(·), i.e. the NOT operator.

Equations (2.13) and (2.14) indicate that only one readout weight is mutated at each
learning epoch. According to Eq. (2.12), the readout weight matrix evolution follows a
"Markovian process", in other words mutations depend only on the present and knowl-
edge of the past has no impact. By definition vector l is then a discrete-time Markov
chain.

ERROR AND REWARDS SIGNAL

ε(k) =
1
T

T∑
n=1

[
yT (n + 1) − ỹout(k, n + 1)

]2
, (2.15)
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r(k) =

1 if ∆ε(k) < 0
0 if ∆ε(k) ≥ 0

, (2.16)

εmin(k) =
[
1 − r(k)

]
ε(k − 1) + r(k)ε(k), (2.17)

kmin =
[
1 − r(k)

]
kmin + r(k)k. (2.18)

In order to compare the training target yT having values between 0 and 1, the output yout

is normalized. We subtracted its mean and divided it by its standard deviation, resulting
in signal ỹout. For each learning epoch, mean square error ε(k) is then obtained from a
sequence of T data points according to Eq. (2.15). In Eq. (2.16), ∆ε(k) = ε(k) − ε(k − 1)
is the error variation induce by the weight modification. Reward r(k) determines then
if the system’s performance has improved compared to the previous learning epoch. If
r(k) = 1, the minimum error εmin(k) and the best learning epoch kmin are updated following
Eqs. (2.17) and (2.18).

DESCENT ACTION

WDMD
l(k) (k) = r(k) ·WDMD

l(k) (k) +
[
1 − r(k)

]
WDMD

l(k) (k − 1). (2.19)

Based on reward r(k), the current configuration of the DMD is modified according to
Eq. (2.19). The new DMD configuration is kept if its performance has been improved
by the current modification. Otherwise the DMD returns to its previous configuration.

Technically, the exploration strategy is a stochastic gradient descent where the Eqs. (2.16)
and (2.19) reinforce modifications which were found beneficial. The learning algorithm
is currently executed from the computer control via Matlab for convenience. However,
to avoid using a computer, the algorithm could be embedded in a microcontroller with
the following instructions which summarize the learning routine: choose a DMD pixel
to modify, measure the neural network output, compare its value with the previous one
in function of the target, and according to the result, keep modification or return to the
previous DMD configuration.

2.3.2/ GREEDY LEARNING

In order to increase the algorithm’s efficiency, the exploration of the error landscape
is favoured, generating therefore a "greedy learning". Compared with the Markovian
learning algorithm, only the section concerning the mutation is slightly modified. Equa-
tion (2.12) is transformed and a fourth step is added to the routine. The new version of
the mutation is the following:

Wselect(k) = rand(N) ·Wbias, (2.20)

l(k) = max
(
Wselect(k)

)
, (2.21)

WDMD
l(k) (k + 1) = ¬WDMD

l(k) (k), (2.22)

Wbias =
1
N

+ Wbias, Wbias
l(k) = 0. (2.23)
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The matrix Wbias ∈ [0, 1] in Eq. (2.20) is randomly initialized at k = 2 with entries uniformly
distributed between 0 and 1. To favour the exploration of untested weights, see Eq. (2.23),
the entries of Wbias are increased by 1

N at each epoch, and, crucially, its entry at position
l(k) is set to zero. Once the selection-bias for a modified weight is reset to 0, it increases
linearly until approaching unity N learning iterations after. A recently optimized weight is
therefore statistically less likely to be quickly reselected. In simulation and in experiment,
the greedy mutation shows a faster learning convergence, which we attribute to a better
efficiency to explore the relevant dimensions of WDMD.

2.4/ TESTING

2.4.1/ BENCHMARK TASK

Our learning routine described in section 2.3 can be applied to optimize a neural network
to solve a variety of computational classes. Indeed, according to Eq. (2.15), learning is
ultimately a least square optimization. Due to the relevance of recurrent neural networks
for dynamical signal processing, we explore one-step-ahead prediction of a chaotic se-
quence. All the results presented are obtained from prediction of the chaotic Mackey-
Glass sequence [130], which is a common benchmark test for the evaluation of such
systems [15, 131, 132].

In general terms, the system settings are as follows:
Parameters of Mackey-Glass sequence are identical to [16], using an integration step size
of 0.1. Two hundred points of the chaotic sequence are used as injected training signal
u(n + 1). Since the task is a forecast, the target signal yT (n + 1) is therefore u(n + 2). The
first thirty values of the output are removed due to their transient nature, the mean of the
remainder is subtracted, then normalized by its standard deviation, resulting in signal ỹout

as mentioned section 2.3.1.

2.4.2/ MITIGATION OF UNIPOLAR SYSTEMS LIMITATION

In general, the state of artificial neurons uses real numbers, node states or connection
weights can therefore be positive or negative. However, our system faces a challenge
which was already presented during the first realization of an optical neural network [110].
Signals in the system is always positive and the readout or internal connections between
nodes are only constructive. The illumination of the SLM has a positive intensity, the
polarization filtering realizing the nonlinear function has only a positive effect, as well as
the internal coupling by diffraction and the binary readout weights. Finally, the optical
detectors are sensitive only to the modulus square of the electric field.

The only possibility of obtaining a difference operation in an optical system is to cre-
ate destructive interferences. An interferometer requires an optical path precision of the
wavelength’s order, under these conditions the temperature and the mechanical vibra-
tions must be controlled with precision. Consequently, to avoid having a complex system
which is hypersensitive to all external parameters, this choice was not retained.

The system functionality is then significantly limited by this unipolarity. Indeed, the mul-
tiplication of a negative weight allows not only to perform a subtraction between nodes,
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but also to modify the symmetry of the node’s nonlinear transformation. A first assess-
ment based on the prediction of a chaotic Mackey-Glass sequence shows that the neural
network has limited performance.

We then implemented a strategy to mitigate the unipolarity of the system by taking ad-
vantage of the periodic cos2(·) nonlinearity. We distribute phase offset matrix θ randomly
around two values. After testing different combinations, the optimal performance is ob-
tained for the first value θ0 = 42 =̂ 0.17π slightly before the first minimum of the nonlinear
function and the second value θ0 + ∆θ = 106 =̂ 0.43π close to the next maximum (see
Fig. 2.11(a)). Finally, in order to diversify the phase offset of each SLM pixel we assign
to θ0 not directly a constant value but a randomly Gaussian distribution G(·) in the vicinity
of θ0 optimum value. As illustrated in Fig. 2.11(b), µ nodes have a phase offset θi = G(θ0)
and then have a response featuring a positive slope, 1 − µ nodes a negative slope with
a phase offset θi = G(θ0) + ∆θ. Using the positive and negative slopes of the nonlinear
function breaks the reservoir state symmetry to a certain extent.

(a) (b)

(c) (d)

Figure 2.11: (a) Nonlinear function example of a node (red stars). According to a prob-
ability µ, the phase offset of each node is distributed around the first minimum of the
nonlinearity and the following maximum (blue stars). (b) Spatial distribution example of
the phase offset within the network nodes. (c) Learning curves for different probabilities
µ, using γ = 0.25 and β = 0.2. (d) Results of the best performance for each probability
µ of data panel (c). The phase offset distribution of the nodes around the two operat-
ing points breaks the symmetry of the nodes response and has a strong impact on the
system performance.

In Figure 2.11(c) we see the influence of the probability µ in the learning of a chaotic
Mackey-Glass sequence prediction. The blue, red, yellow and purple learning curves
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were obtained for β = 0.2, γ = 0.25 and probability-ratios µ = [0.25, 0.35, 0.45, 0.5], respec-
tively. The best performance of each learning is reported in Fig. 2.11(d). We observe that
the symmetry breaking of the node response has a strong impact on the performance of
the system. The best ratio between the two operating points is obtained for µ = 0.45. It is
important to note that changing µ from 0.25 to 0.45 reduces the system’s prediction error by
almost 50%. This strong improvement demonstrates to the effectiveness of this method.
Consequently, the absence of negative weights in the readout layer and in the internal
connectivity can be partially compensated for by using of a nonlinear function having a
positive as well as negative slope. Since many optical neural networks are subject to
unipolarity, this result is highly significant for neural networks hardware implementation.

2.4.3/ PERFORMANCE

The results of the neural network which will be presented in this section and have already
been published in [16], were obtained with the optimized parameters β = 0.4, γ = 0.25,
θ0 = 42 =̂ 0.34π, θ0 + ∆θ0 = 106 =̂ 0.86π, µ = 0.45. The number of nodes is N = 961, the
training sample has a size of 200 steps.

Figure 2.12(a) shows the convergence of a learning curve where the prediction error (blue
line) is efficiently reduced until convergence at ε = 0.013. After learning, the prediction
performance is tested on a sequence of 4500 consecutive data points which are indepen-
dent of the training dataset. The result is illustrated by the red line on the same panel.
With a slightly higher error than training, the prediction test passed successfully. This
result demonstrates that the neural network is capable of extracting and synthesizing the
general properties of a chaotic signal coming from a restricted sample during its learning
phase. More details regarding this performance can be seen in Fig. 2.12(b) which shows
700 data points of the chaotic Mackey-Glass sequence used to test the neural network
prediction. The reservoir output power is represented along the left vertical axis (blue
line), while the normalized target signal is on the right vertical axis (red dots). The differ-
ence between the two signals is difficult to see, the prediction error ε (yellow dashed line)
remains small throughout the test.
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Figure 2.12: (a) Learning curve (blue line) and testing error (red line) at optimal param-
eters (β = 0.8, γ = 0.4 and µ = 0.45). (b) Reservoir output power (blue line) predicting a
chaotic Mackey-Glass sequence (red dots). The prediction error is given by the yellow
dashed data.
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In order to compare the performances obtained with other systems [131, 132], the injected
signal is down-sampled by a factor 3 to be in similar conditions. In comparison with the
reservoir computing system based on a semiconductor laser [131] and with the system
based on a Mach-Zehnder modulator [132], the prediction error of our system under these
conditions (ε = 0.042) was larger by factors 2.2 and 6.5, respectively. Nevertheless, this
result must be interpreted taking into account the difference of hardware implementation
level of these three neural networks. Indeed, the readout weights of the two other systems
were applied digitally in an off-line procedure using weights with double precision. In [132]
authors identify that computational performance is strongly impacted by the digitalization
resolution. This result then suggests that the error of our system can be significantly
reduced by increasing the resolution of the readout weights.

2.5/ SUMMARY

In this chapter, we have presented a first demonstrator of an optical reservoir computer
in which many vector matrix products were optically realized fully in parallel. All stages
presenting a strategic interest or a technological challenge have been successfully imple-
mented in hardware. The physical output layer and the idea of a learning algorithm that
can be implemented in hardware are the first steps towards a true autonomous neural net-
work. The entire system has been characterized and each element has been discussed
in detail throughout this chapter.

In summary, the nodes are the SLM pixels, thus electro-optical. Their cosine analogue
nonlinearity comes from polarization filtering performed by a PBS. Interconnectivity be-
tween nonlinear nodes is achieved by optical diffraction. This analogue and parallel pro-
cess currently creates a coupling between a thousand nodes and has demonstrated its
scalability, allowing a coupling of hundreds of thousands of nodes. The evolution of the
reservoir dynamics is described by a coupled Ikeda map where all the matrix products
except the information injection are realized in parallel by physical processes. The net-
work readout is also fully implemented in hardware via a digital micro-mirrors array which
creates Boolean weights. In order to demonstrate the autonomy of such a neural net-
work, online learning has been implemented. This scheme acts in real time acting in real
time, can fundamentally be implemented by low level on-board electronics. The algorithm
concept is simple and its ability to efficiently explore an error landscape according to a
scheme called "greedy learning" makes learning faster. The problem of unipolarity which
affects many optical neural networks has been partially mitigated by modifying the sym-
metry of the nonlinear response of the nodes. Splitting the phase offset matrix around
two operating points makes it possible to use the two slopes of the nonlinear function and
to significantly increase the performance of the system. Once this neural network and its
learning algorithm have been completed, the ability of the system to predict a step ahead
of a chaotic Mackey-Glass sequence has been tested. Learning is really effective since
the system is able to generalize its learning to an unknown sequence, the prediction er-
ror then being around 1%. This value, similar to the best performance during learning,
attests to the non overfitting.

This experiment highlights all the interest of an analogue system, taking advantage of a
massive parallelization enabled by optics. The nonlinear nodes are arranged on a 2D sur-
face but the coupling takes place according to the third dimension. The classic problem
related to the interconnectivity infrastructure size growing faster than the increase in the
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nodes number, thus limiting it, disappears with this paradigm shift. Indeed, by the intrinsic
nature of light, all the networks information can be contained in the system’s optical sig-
nals along the third dimension without mixing. These characteristics allow a great energy
and time efficiency, and a transition to neural networks of much larger scale.





3
FEATURES OF A HARDWARE

EMBODIED OPTICAL RECURRENT
NEURAL NETWORKS

Unlike a digital system, where discretization by thresholding practically eliminates noise
and its propagation, the electro-optical hardware neural network presented in the previous
chapter is inherently noisy. Indeed, all analogue processes are subject to noise. The main
elements of the network like the nonlinear nodes, the coupling and the readout weights
are all analogue, they therefore do not stop the propagation of noise and on the contrary
modulate it, even could amplify it. Noise is therefore an intrinsic part of ANNs. Since
we are fundamentally unable to remove it, it is essential to study and to understand the
impact of noise on the characteristics and performances of the system.

On one hand, noise has advantages, it is for example artificially added in reservoir com-
puting simulations in order to avoid overfitting [133]. Noise adds a universality charac-
teristic linked to the generalization property of reservoir computing. This characteristic
could even be essential to adapt to the "real world" which itself is subjected to constant
perturbations. The example of the biological brain shows us its exceptional efficiency in
information processing while neuronal activity is noisy. [134]. Therefore, such a neural
network seems very resilient to noise.

However, we will see in this chapter that perturbations have a real impact on the neural
network itself. In the first part, we will give a quick overview of noise sources inside our
electro-optical neural network and their characteristics. Then we will focus on the noise
impact on the system’s dynamics and study the resilience of the reservoir’s response.
Finally, a detailed investigation on learning under noise [135] will be presented, in which
many characteristics emerge but each new answer appears to lead to more questions.

3.1/ NOISE INVESTIGATION

In this section we will first present experimental observations, then a first model will be
proposed. We will discuss specific characteristics of the system that will allow us to better
understand the impact of noise on the neural network’s dynamics and its interaction with
learning, which will be discussed in the following sections.

47
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3.1.1/ NOISE DISTRIBUTION

We will focus in this part on noise sources inside the reservoir. For this characterization,
no input information is injected into the network, so injection strength γ in Eq. (2.7) is
set to zero. In addition, the evaluation is performed with and without coupling between
nonlinear nodes. As a passive element, the DOE does not add noise to the system, but it
can modify its distribution.

Since the impact of noise is intrinsically linked to the level of the signal, we will use the
signal to noise ratio (SNR) defined as

SNR(x̃C
i ) =

mean(x̃C
i )

std(x̃C
i )

, (3.1)

where mean(·) and std(·) are the average and the standard deviation of the signal x̃C
i for

pixel i of the camera. Remember that in the absence of DOE the camera directly records
the reservoir state x, whereas we no longer have access to it in the presence of DOE in
the experiment.
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Figure 3.1: Spatial distribution of the signal to noise ratio (SNR). (a) and (c) are measured
for a phase offset θ = 63, while θ = 126 for (b) and (d). We observe that in the absence of
coupling between nodes (panels (a) and (b)) the SNR distribution is close to the Gaussian
intensity illumination of the SLM, while in the presence of the DOE in the experiment
(panels (c) and (d)), the SNR becomes heterogeneous, forming clusters.

Figure 3.1 shows the spatial SNR distribution in several configurations, in particular for
values of phase offset θ discussed in 2.4.2. The characterization was performed over
approximately sixty hours with a reservoir time scale of a few Hertz, resulting in 60,000
data points per pixel. On panels (a) and (c) the phase offset is θ = 63, on panels (b) and
(d) θ = 126. These two values represent the parts of the nonlinear function which are
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used in order to mitigate the unipolarity of our system as explained in section 2.4.2. For
this characterization all the SLM pixels have the same phase offset, i.e. µ = 1. Panels (a)
and (b) are the result of the experiment without DOE, panels (c) and (d) with it.

As the illumination intensity of the SLM is Gaussian, the maximum intensity is in the center
of the network. We therefore find this spatial distribution in configurations without the
DOE. In panel (a), the maximum of SNR is 20 but decreases rapidly when approaching
the edges of the network. The phase offset of 126 for panel (b) corresponds to a much
higher light intensity in the reservoir, the SNR then increases by more than a factor of 3.
In this configuration the signal of nearly all nodes has a high SNR. The introduction of the
DOE into the reservoir changes the spatial distribution of noise. The coupling between
the nodes distributes the light non-uniformly, and the signal amplitude for some nodes
exceeds significantly the one of the remaining nodes. Consequently, we have to add
additional neutral density filters in the experiment to avoid saturating the camera, further
reducing the SNR of the nodes already having a low light intensity. We therefore find for
the corresponding data shown in panel (c) a much greater heterogeneity, with clusters
of nodes having a large SNR surrounded by much more noisy signals. In panel (d), the
spatial distribution is even less uniform: a large part of the nodes have a relatively low
SNR while clusters, with a wider spatial distribution, reach very high values. Finally, even
though the DOE reorganizes the spatial distribution of the SNR, it still remains a function
of a pixel’s signal amplitude.

(a) (b)

(d)(c)

Figure 3.2: SNR as a function of the average intensity of each node. For (a) and (c) the
phase offset is θ = 63, for (b) and (d) θ = 126. Without the DOE, panels (a) and (b), the
SNR is distributed along the x-axis while in (c) and (d) coupling pushes the SNR of the
majority of the nodes towards the bottom of the distribution. In (a), (c) and the zoom in
the inset of (d) we observe SNR oscillations for low average intensities, consequence of
the digitization of the analogue signal by the camera.
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Data in Fig. 3.2 were obtained from the same measurements previously discussed, but
the SNR is represented as a function of the average intensity of each node. The different
panels correspond to the same conditions as in Fig. 3.1. We observe that the SNR non-
linearly increases with the average node intensity mean(x). Without the DOE (panels (a)
and (b)) the distribution is relatively well balanced, a large number of nodes having a SNR
at the top of the distribution. The presence of the DOE (panels (c) and (d)) reduces the
SNR of the majority of nodes at the start of the distribution, however, for some nodes the
SNR is significantly increased.

Another interesting feature is the oscillations at the start of the distribution which can be
observed in panels (a), (c) and in the zoom inset of (d). We observe that the maximum of
the peaks corresponds to signal amplitudes where the average value is an integer. When
the average intensity is between two integers, the digital camera rounds the analogue
value to the nearest integer. Between two integers a small perturbation by noise can
therefore lead to a significantly larger signal modification and an SNR oscillation with
unity as its period. This variation causes a very significant variation in the SNR mostly for
small average signal amplitudes, and these are stronger for low signal average intensities,
panel (b) therefore does not present this feature. Importantly, this behaviour is not an
artefact but an intrinsic feature of digitization if present in ANNs and must therefore be
taken into account.

3.1.2/ CHARACTERIZATION AND SNR MODELLING

Several types of noise have to be considered, and their implications on the signal may
be different. Noise sources are intrinsic to the system, such as the quantization noise
or intensity noise of the laser. A second category is external noise, such as stray-light,
temperature variations, mechanical vibrations. These perturbations can cause noise but
mostly lead to long-term drifts. Finally, as we have seen in Fig. 3.2, there is digitization
noise during analogue to digital conversion.

All these noises manifest themselves in different ways. The contribution of noise can be
additive or multiplicative to the signal. Additive noise amplitude DA is added to the noise-
less signal s̃, hence the noisy signal s becomes s = s̃ + DA. In the case of multiplicative
noise amplitude, the noiseless signal is multiplied by the multiplicative noise DM, the noisy
signal then becomes s = s̃ · DM.

Figure 3.3 schematically illustrates the evolution of the SNR according to the influence of
different types of noise. For additive noise in panel (a), the SNR evolves linearly with the
mean of the signal, whereas for a multiplicative noise in panel (b), the SNR is constant.
Indeed, according to Eq. 3.1 the SNR of the additive case increases linearly with the
average growth since the standard deviation remains constant. In the multiplicative case,
the average and standard deviation of the noise both increase linearly, therefore the SNR
remains constant. Panel (c) is the characteristic of a mixed noise, the additive character
dominates for a small signal amplitude signal, then the multiplicative aspect takes over for
a larger signal amplitude. The SNR measurements illustrated in Fig. 3.2 present a curved
trajectory, proof of the presence of mixed noise in the neural network. In order to identify
the origin of this property, we characterized all components of the network individually,
and identified the camera as the source of additive and multiplicative noise.

The nodes of the network are spatially distributed, and it is important to identify whether
noise is different for each node or, on the contrary, if a single source of noise is common to
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Figure 3.3: Signal to noise ratio characteristic according to the mean of the signal for an
additive noise (panel (a)), a multiplicative noise (panel (b)) and a mixed noise (panel (c)).

all nodes. The former is uncorrelated and the latter is correlated noise. For that purpose
we calculated the normalized cross-correlation Φi, j between the SLM pixels according to

Φi, j =
mean

(
x̂i(t) · x̂ j(t)

)√
mean

(
x̂2

i (t)
)
·mean

(
x̂2

j (t)
) , (3.2)

where x̂ = xi(t) −mean
(
xi(t)

)
is the deviation from the mean value.

Figure 3.4 illustrates the cross-correlation between noise of one node (red pixel) and the
rest of the network. We observe a weak correlation when the pixel considered is close to
the network edge (panels (a) and (c)) while correlation is strong for a pixel in the center
(panel (b)). This indicates correlated multiplicative noise. We initially suspected the laser
to be the source of this type of noise as amplitude fluctuations would be correlated across
all SLM pixels and would result in multiplicative noise. However, the characterization of
the laser falsified this hypothesis, as its SNR is larger than one thousand, which therefore
is negligible compared to the measurements reported in Fig 3.1.

We additionally found that camera noise is uncorrelated, which therefore leaves the SLM
as source of correlated noise. Unlike uncorrelated noise which can be suppressed by
averaging a large number of node states, for example via the network’s connectivity [136],
correlated noise cannot easily be mitigated this way and hence potentially is an important
factor for the performance of hardware neural networks.
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Figure 3.4: Correlation between SLM induced noise of each pixel and that of red pixel
(20,5), (20,25) and (20,40) for panels (a) (b) and (c), respectively. The strong variation of
the correlation indicates the presence of a multiplicative correlated noise.
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Without the DOE and without input information, the reservoir state x measured directly by
the camera is

x = x̃ + N̂(x̃), (3.3)

where the noiseless reservoir state x̃ = α|E0|2 cos2 [
βα|E|2 + θ

]
is perturbed by the noise

operator N̂(·). We can then decompose the noisy signal into the noiseless signal and the
different sources of Gaussian white noise experimentally observed [136]. The camera
is the source of an additive and multiplicative noise of amplitude DC

A and DC
M, respec-

tively. The SLM is the source of a correlated multiplicative noise of amplitude DSLM
M,C . The

reservoir state can therefore be written according to

x = x̃ · (1 + DC
M)(1 + DSLM

M,C ) + DC
A . (3.4)

Since the amplitude of additive noise is attributed only to the camera, obtaining DC
A is

straightforward simply by recording a series of camera images. However, the amplitude
of the multiplicative noise comes from both, the camera and the SLM. By calculating the
SNR illustrated in Fig. 3.5, Eq. (3.4) excellently matches (black line) the experimental
data (red dots) measured for θ = 126. From this fit, we obtained DC

M = 5 · 10−5 and
DSLM

M,C = 1.1 · 10−4, and DC
A = 0.11.
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Figure 3.5: SNR against the node’s average intensity for a reservoir without the DOE,
without input information and for a phase offset θ = 126. Red points are experimental
results, the black line is fit via Eq. (3.4).

This experimental characterization allowed us to identify the different noise sources and
in particular their different characteristics. The derived Eq. (3.4) excellently describes
noise’s impact for different amplitudes of the nodes’ states. In addition, these experimen-
tal results serve as targets and validations for theoretical research [136].

3.2/ CONSISTENCY OF THE DYNAMICAL RESPONSE

In the previous part, we gave an overview of the noise present in the reservoir and studied
the resulting steady state characteristics. In this section we will focus on its impact on
system dynamics by measuring the consistency of the reservoir’s response.
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Let us recall the reservoir properties defined in section 1.3.3. Two closely related pieces
of input information should lead to two similar reservoir responses, and two sets of input
information belonging to a different class should result in different responses. However,
in an analogue hardware neural network, these two properties are put to the test. In-
deed, the presence of noise could result in similar reservoir dynamics for two different
classes of input information, or, on the contrary move two similar examples of input infor-
mation apart. An essential issue for information processing is that a system computing
the same information twice gives a sufficiently similar response answer and we speak of
a consistent response. This notion was introduced by Uchida [137] in 2004 in the context
of nonlinear dynamical systems as: "consistency is defined as the reproducibility of re-
sponse waveforms in a nonlinear dynamical system driven repeatedly by a signal, starting
from different initial conditions of the system". Mathematically, the consistency C between
two states x1 and x2 is defined as

C =
corr

(
x1 −mean(x1) , x2 −mean(x2)

)
std(x1) · std(x2)

, (3.5)

where corr(·, ·) is the cross-correlation function.

For our characterization we use a network of N = 45×45 = 2025 nodes, feedback strength
γ = 0.8 and phase offset is θ = 63 with µ = 1. We inject into the reservoir the value
u(n) at each iteration n, with the input information vector u made up of 500 random data
points, identically and independently distributed between 0 and 1. The evolution of the
dynamics of each node is measured by the camera at each iteration. The entire process is
repeated a hundred times, always using the same input vector u. Camera state x̃C(i, n, r)
is therefore a three-dimensional matrix, with the node number i going from 1 to N, the
iteration n ranging from 1 to 500 and the repetition r ranging from 1 to 100. As we want to
measure the consistency of the reservoir state x, we calculate it in post-processing from
x̃C using the nonlinear function characterized experimentally for each node.

In order to study the impact of short-term noise but also the impact of the system’s long-
term drifts, we studied the consistency on two time scales. Short term consistency CST is
calculated with two consecutive repetitions with r and r+1, while the long term consistency
CLT is always calculated between the first r = 1 and the current repetition r:

CST(i, r) =

corr
(
x(i, r) −mean

(
x(i, r)

)
, x(i, r + 1) −mean

(
x(i, r + 1)

))
std

(
x(i, r)

)
· std

(
x(i, r + 1)

) , (3.6)

CLT(i, r) =

corr
(
x(i, 1) −mean

(
x(i, 1)

)
, x(i, r) −mean

(
x(i, r)

))
std

(
x(i, 1)

)
· std

(
x(i, r)

) . (3.7)

The spatial distributions of short and long term consistency averaged over all repetitions
are shown in Fig. 3.6. The color scale encoding consistency is set from 0.8 to 1 in order
to better highlight variations. We can observe that the high values of consistency are
aggregated in the center, implying the distribution of illumination intensity as the cause.
However, the distribution is not uniform, some nodes at the edge of the network have
a high consistency while very close to the center the consistency can locally be very
low. Nevertheless, a very large number of nodes have a high consistency, proof that
the hardware neural network maintains the consistency property required for reservoirs
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despite the presence of noise. Unlike the short term consistency shown in panel (a), the
long term consistency in panel (b) is on average slightly lower. However, the distribution
remains similar and consistency does not significantly degrade over the more than forty
hours during our measurements.
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Figure 3.6: Spatial distribution of the short and long term consistency averaged accord-
ing to 100 repetitions in panel (a) and (b), respectively. Although consistency is generally
higher in the reservoir’s center, we can observe some clusters outside and very low con-
sistency values in the middle.

Although on average the consistency, both short and long term, is high among the nodes
in the center of the network, it is interesting to examine its variation during repetitions.
In Fig. 3.7 four different qualitative behaviors are presented for neighboring nodes, with
the nodes’ row and column coordinates (23,27), (22,27), (22,26), (21,27) represented on
the panels (a), (b), (c) and (d), respectively. This shows that these characteristics do not
necessarily belong to distinct spatial regions.

We notice that for panel (a) the short-term (blue line) and long-term (red line) consistency
are very high, practically identical, with low fluctuations and remain constant throughout
the experiments duration. This evolution is typical for nodes with high consistency. For
panel (b), the average consistency value is slightly lower, however there is a consider-
able drop in consistency during one repetition. This type of instability is observed for
other nodes and can occur at any time. Such singular behavior therefore seems to be
the result of a disturbance very localized in space and time, which suggests noise as
the underlying cause. The behavior seen in panel (c) is uncommon for the investigated
conditions. While short term consistency remains high and constant, it decreases in the
long term. However, this decrease is not constant, we observe a plateau followed by an
increase. This variation could raise problems for the processing at different times of two
identical tasks. Panel (d) is the more common behavior of nodes with relatively low con-
sistency. Finally, we also find nodes with erratic alternations of very large and very low
values over variable periods. As explained in section 2.4, the learning algorithm is based
on a comparison of several hundred output measurements. If the consistency of a node
evaluated in a particular learning epoch is erratic, its selection by the readout does not
change the performance of the system.

The spatial distribution presented in Fig. 3.6 shows that there is on average a higher
consistency where illumination is strongest. However, it is important to investigate a
potential direct link between consistency and the input weight of each node. Indeed,the
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Figure 3.7: Four typical evolutions of short (blue line) and long (red line) term consistency
shown with four representative nodes. In panel (a) both lines are constant and have
small fluctuations, while in panel (b) a short perturbation happens. In panel (c) exhibits
a slow drift, the short term consistency stay constant while the long term consistency
decreases. The erratic noisy evolution shown in panel (d) is typical for nodes which have
low consistency.

Winj

Figure 3.8: Long term consistency of all the nodes in function of their injection strength
W inj. There is no clear relationship between both quantities, which means that we can
use the entire injection weight range without restriction.
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constant injection matrix W inj directly influences the reservoir state of each node. Thanks
to Fig. 3.8 which represents the consistency according to the injection weights, we can
reject a potential link between these two quantities. It is interesting to see that on average
consistency tends to be either high or low, regardless of W inj. Furthermore, short and
long term consistency are both limited to below 0.96, and it would be interesting to vary
the noise level to potentially observe a quantitative change in the limit.

Our experiments show that short or long term consistency can be high, in particular at
the center of the network where illumination is strongest. This indicates that the neural
network can process information with limited penalization by ambient noise. Finally, the
input weight has no influence on the consistency, which is important since it allows to use
the full range of the physically possible injection matrix entries.

3.3/ LEARNING UNDER NOISE-PERTURBATIONS

Important criteria of a learning algorithm are convergence speed and the final error. How-
ever, in an analogue hardware system, reproducibility and robustness to noise also play
an important role. In this section we will first describe the overall specificities of learn-
ing, then study the impact of noise on the network’s output reproducibility, investigate the
system topology and finally by measuring the scalability of the learning algorithm.

The learning task remains one-step prediction of the chaotic Mackey-Glass sequence.
Two hundred points of the chaotic sequence are used as injected training signal u(n + 1),
and parameters have been optimized to β = 0.8, γ = 0.25, θ0 = 55 =̂ 0.44π, θ0 + ∆θ0 =

119 =̂ 0.95π, µ = 0.45. Using the results of noise and consistency studies, we keep the
network at N = 31 × 31 = 961 nodes to have a balance between the size of the system
and a high SNR as well as consistency. Finally, the testing error is determined with an
independent set of 9000 data-points unused in the training sequence.

We previously discussed learning in a space of N + 1 dimensions, called the error land-
scape. The position within this topology is given by the N-entries of the system’s output
weights WDMD(k), while the landscape’s height along dimension N + 1 is given by the sys-
tem’s error ε(k). The reward r(k) drives the configuration from WDMD(1) to a local minima
at WDMD(kmin) of error value εmin. According to our algorithm, learning varies the position
in the error landscape by steps of one. We will refer to one complete learning process for
k : 1→ kmin as a minimizer.

3.3.1/ GENERAL AND LOCAL FEATURES OF CONVERGENCE

As noise is intrinsic to the system, we measure a statistical series of learning in order
to determine average characteristics. We wish to study the algorithm’s exploration of the
error landscape, and to achieve this, the initial random position WDMD(1) is identical for
each minimizer. The results of different minimizers (gray curves) are shown in Fig. 3.9,
their average is represented by the red crosses. Panel (a) and (b) illustrate 20 greedy
minimizers and 14 Markovian minimizers, respectively.

All minimizers differ since the exploration sequence is random for each repetition, yet they
all converge towards a low error; none gets stuck in a local minima with bad performance.
This first result is very significant because, unlike traditional reservoir computing which
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ensures the convexity of the linear readout weight regression [62], the nonlinearity of
the optical detector at the network’s output does not preserve this property. The error
landscape can therefore not be assumed convex, yet measurements in Fig. 3.9 show that
on a macroscopic scale there still appears a smooth topology. The final performances
are highly reproducible, both in terms of value and speed of convergence. For the greedy
exploration in Fig. 3.9(a), we obtained error εmin = (14.2 ± 2.9) · 10−3 after kmin = 973.6 ±
63.7 learning epochs. Markovian exploration shown in Fig. 3.9(b) arrives in average at a
slightly smaller error εmin = (13.4 ± 1.9) · 10−3 but after a longer learning duration kmin =

1856.5 ± 175.1 [135]. No correlation between the error at the beginning ε(1) and the final
performance ε(kmin) was found. The testing error, shown by the green line in Fig. 3.9,
excellently matches its training error, i.e. 15.2·10−3 and 16.6·10−3 for greedy and Markovian
exploration, respectively. This result once again excludes over fitting.

(b)(a)

Figure 3.9: Learning performance for greedy and Markovian explorations in (a) and (b),
respectively. Red crosses are the average of individual minimizers (gray data). The
testing error illustrated by the green line is lower than the average of optimized training
error, thus excluding overfitting. The excellent agreement between the fit (blue data) and
the average dependency suggests an exponential convergence for greedy learning.

Let us now focus on the learning convergence. Although each minimizer is different, they
statistically follow a relatively systematic trajectory. The blue curve in Fig. 3.9 is an ex-
ponential fit of the minimizers’ average (red crosses). For greedy exploration (panel (a)),
the fit (y = 0.315e−0.006 + 0.02) matches excellently with our data, therefore convergence
is on average an exponential decay. This characteristic seems to be less the case for
Markovian exploration (panel (b)), where we find a certain discrepancy between the data
and exponential decay.
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In order to better illustrate the local topology of the error landscape, five minimizers of
greedy exploration are shown in Fig. 3.10(a). Zooming in on the first 300 learning epochs
highlights the different topological exploration of each minimizer. The blue curve seems
to follow a quite smooth descent with a slight slope, while the yellow is much steeper. The
other minimizers descend rather in steps, and we even observe sudden jumps.

(a) (b)

Figure 3.10: (a) Detailed zoom showing a selection of five exemplary learning curves dis-
played in Fig. 3.9. These curves reveal different learning-trajectories though the complex
error landscape. (b) Measures of the prediction error’s temporal evolution for two fixed
yet different DMD configurations. Blue data is obtained for the DMD configuration after
150 learning epochs, red after 961. Averages are respectively (13.85 ± 0.22) · 10−2 and
(12.9 ± 0.3) · 10−3.

Figure 3.10 (b) depicts the temporal stability of the network’s output for constant read-
out matrices obtained after 150 (blue curve) and 961 (red curve) learning epochs. The
readout weights alternates between WDMD(150) and WDMD(961) to simultaneously mea-
sure network output’s stability for both weight configurations under similar conditions. We
observe that both curves undergo a small drift over long time scales. Nevertheless, for
optimized readout weights WDMD(961), the prediction drifts only by 1.5% relative to the
minimum error after 12 hours of characterization and by 10% after 24 hours. The error
variation ultimately remains within the training error standard deviation range, the system
is therefore quite robust to long term drifts.

Most importantly, we find that the impact of noise changes during the different stages of
the learning process. Indeed, the standard deviation of the performance after 150 and
961 learning epochs decreases sharply from 4.4 · 10−3 to 0.6 · 10−3 respectively for an
error average ranging from 138.5 · 10−3 to 12.9 · 10−3. The topology of the error landscape
explains this result: the closer we get to a minimum the more shallow becomes the land-
scape’s slope. The same level of system noise therefore disturbs the prediction less and
less. The variations of errors during the different minimizers depicted in panel (a) are
therefore mostly not related to noise but are the topological consequence of the various
error landscape explorations.
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Remaining with the study the learning convergence, we calculate the effective error gra-
dient. Thus, at each learning epoch we determine the change of local error relative to the
previous lowest error according to ε̇(k) = ε(k)−ε(kmin). We define ε̇+ and ε̇− which contains
all ε̇ which are positive and negative, respectively. Then we calculate the average of all ε̇+

and ε̇− obtained at each epoch k for each minimizer, see red and blue data respectively in
Fig. 3.11. Therefore, blue data corresponds to a error reduction and red to an increase.

(a) (b)

(c)

σn

Figure 3.11: (a) Average of positive (red) and negative (blue) error gradients of the mini-
mizers displayed in Fig. 3.9(a). Black curves are two different exponential fits (b) Zooms
of the two curves around the epoch k = 950. The beginning of the blue zone corresponds
to the average epoch where the minimizers are trapped in a minimum. Regarding the
blue curve, we notice that on average most of the values in this region are in the noise
level (green zone). On the other hand, due to the mutation algorithm, the red curve is
structured according to a growing exponential. (c) Statistical repetition of greedy muta-
tion sequence. The epoch at which a l(k) was selected for a first time is stored in set lfirst,
the epoch of its second selection in lsecond. The initial mutation sequence is repeated after
k > N, as illustrated by the clear linear correlation between lfirst and lsecond.

Figure 3.11(a) depicts on a global scale the average distribution of positive and negative
gradients for greedy exploration. As the convergence of the greedy algorithm is on av-
erage exponential, its derivative follows this law as well, which matches our finding for
the positive gradient curve (red curve). However, we observe that this is not the case for
the negative gradient (blue curve). Finally, the red curve in addition indicates that positive
gradients show a qualitative change when the system is close to optimal performance. As
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clearly visible from data shown in panel (b) which is a zoom of panel (a), the increase of
the red curve starts just before the 974th learning epoch (blue region). This iteration cor-
responds statistically to the moment when the minimizers reach their minimum. Learning
is composed of two parts: first an optimization during which the error and its gradient
decrease, and after reaching an error minimum the system remains trapped and the neg-
ative gradients are in the noise level (green zone). Note that does not provide a complete
prove of our system being trapped in a local minima, since this would require to retest the
960 nearest neighboring position. Nevertheless, by measuring multiple minimizers of up
to 1500 learning epochs, we never observed the error decrease below the first minimum
reached at around k ≈ 974. The learning algorithm is therefore not noise limited since the
red curve does not drop below the noise level shown in green, it is simply limited by the
topology of the error landscape.

Another interesting feature emerges from Fig. 3.11(b) when on average minimizers are
trapped in minima: the red curve exhibits a highly systematic increase, well described by
an exponential law (black line). This means that, on average, gradients according to the
error landscape’s dimensions tested, follow a structure. Indeed, due to the learning rule
Eq. (2.23), the probability of one readout weight to be modified again increase linearly in
1/N. Therefore, after N epochs the selection of the position l(k) statistically repeats the
selection sequence carried out during the optimization.

Figure 3.11(c) excellently illustrates this repetition. By statistically repeating the mutation
sequence, i.e. the selection of the dimension to be explored, the epoch at which a node l
is selected a second time is displayed in function of the epoch of its first selection. The
linearity of the average distribution plotted in blue demonstrates the statistical reiteration
of a readout weight every N epochs. Its standard deviation of 27.3 plotted in red, shows
the consistent pattern in this behaviour. Therefore, once trapped in a minimum, minimizer
on average explorers the landscape according to the same sequence which lead to this
particular minima. Unlike during k → kmin, for k > kmin we find that positive gradients
increase according to ¯̇ε = 1.8 ·10−3(1−e−1.8·10−3k)+7 ·10−4. Consequently, after optimization
the dimensions which have contributed to greatly reduce the error at the beginning of the
learning process, degrade the system performance the least after arriving at the minima.

3.3.2/ ERROR LANDSCAPE TOPOLOGY AROUND THE MINIMA

We have seen that the error landscape appears macroscopically convex but is in fact
composed of many local minima of comparable error. As full characterization of the error
landscape is physically impossible due to its size (2961 ' 2·10289), we focus on the topology
where the error is lowest. We first turn to probing the error evolution around an error
landscape minimum. The result is displayed in the Fig. 3.12 where the blue line is the
average of twenty random walks (gray curves), which start from the same minima and
walk away with a step size of changing 10 WDMD weights at a time. These measurements
are parallelized in order to minimize long-term drifts inducing artefacts between different
random walks, and we find that the error monotonously increases when departing from a
minima along a random trajectory.

Let us now explorer the error’s evolution between two minima Ma and Mb. We opti-
mized readout weights via two minimizers starting at different random positions WDMD,a(1)
and WDMD,b(1), which arrived at two distinct local minima Ma = WDMD,a(kmin,a) and
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Figure 3.12: Error topology around a minimum for random walks. In gray, twenty random
walks starting from the same minima, in blue their average. The inset is a zoom close to
the minimum.

Mb = WDMD,b(kmin,b). Once there, we determined the list of m weights where Mb differs
from Ma. The list is randomly arranged in sequence l ∈ [l(1), l(2), . . . , l(m−1), l(m)] accord-
ing to which we invert the corresponding weights WDMD,a

l(k) (k) and WDMD,b
l(k) (k) for k ∈ [1,m].

Importantly, this mutation is always kept and no optimization based on reward r(k) is
taking place. Starting from Ma (Mb), this results in a random path Pa : Ma −→ Mb

(Pb : Mb −→ Ma) of length m. We denote by WDMD,Pa(m) (WDMD,Pb(m)) the DMD con-
figuration along the path Pa (Pb). It should be noted that the two walks are not identical,
as shown in Fig. 3.13(a), but symmetrically follow in inverted trajectory.

The results of this experiment are depicted in Fig. 3.13(b). Red and blue are the errors for
Pa and Pb, respectively Minima Ma and Mb are depicted by the green and purple crosses,
respectively. The standard deviation of noise σnoise is shown in gray. By calculating the
error gradients ε̇a(m) = εa(m) − εa(m − 1) and ε̇b(m) = εb(m) − εb(m − 1) between two steps
m, we find that on average 41% of the variations are below the noise level. Importantly,
it is clear that the error variation during the walk exceeds the level of noise. The error
landscape is not flat between both minima and along these two particular paths, yet in
comparison to the inset in Fig. 3.12, the error constantly remains low. These results are
a first experimental indication that minima are linked by saddles [138, 139]. Following
an error gradient would then be an optimization strategy to find a lower minima, as for
example Mc (orange cross) which is 23% lower than Ma and 12% lower than Mb.

We repeat the same experiment between seven different minima found in parallel. One
random path and its symmetry is probed in parallel between each minima. This leads to
42 walks between minima. Figure 3.14 shows in gray the moving average of the paths
with a window of ten steps. The red line is the paths average in one direction, the blue
line the average on the other, and the red and blue areas are their standard deviations,
respectively. Error values during this experiment are higher than all previous ones. We
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Figure 3.13: (a) Diagram of the error landscape, the curves represent the iso-error lines.
This graph illustrates the characterization of the error landscape by going from one min-
imum to another. The red and blue arrows explicit the symmetry of the two paths, thus
making it possible to explore the independence of the readout weights of the system. The
passing through M3 shows that there are lower local minimums but not attainable by the
learning algorithm when the DMD configuration is trapped in another local minimum. (b)
Green and purple crosses are the error of two DMD optimized configurations, respectively
in Ma and Mb. The two configurations have m different read weights which are flipped one
by one until their position is completely reversed.. The red and the blue curves are the
error measured during this transformation. In gray is the standard deviation of the noise
during this process.

attribute this constant bias to the fact that this was the first measurement after a complete
realignment of the experiment. However this does not modify the following results since
we are interested in the relative, not absolute behavior of error ε.

On average, the error landscape between the different minima appears rather flat. While
we probe only 42 of the 42 · 2425 possible connections, their randomization provides sta-
tistical information. Whereas the characterization of an undirected random walk starting
from a minima results in a significantly and monotonously increasing error, the error be-
tween minima always remains low. No significant error maximum separating two minima
along any of the random connections was observed, and minima seem therefore to be
connected.

The evolution of the error along a path connecting two minima exceeds the system’s
noise. We also found that many readout weights did not imply a variation in error greater
than noise. This suggests a closer look into the role and relevance of individual weights:
how many weights induce a systematic contribution to convergence, and whether their
gradients depend on the sequence of previous mutations. In order to avoid the drifts po-
tentially present within the long time characterization presented in Fig. 3.14, we will use
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Figure 3.14: Error landscape topology between minima. The 42 gray curves are the error
measurements of 21 random paths and their symmetrical between 7 different minima.
The red line (area) is the average (standard deviation) of the error of the paths in one
direction, in blue for their symmetrical. The 42 different walks, of more than 400 steps, do
not see their error increase significantly.

the data of Fig. 3.13(b) which were obtained during a shorter time window. By studying
the error gradients ε̇a(m) and ε̇b(m) respectively along Pa and Pb, we probe a fundamen-
tal characteristic of the error landscape, which is the dependence or independence of
the readout weights, which is a measure related to orthogonality between the different
dimension.

At each iteration m the positions WDMD,Pa(m) and WDMD,Pb(m) change along the same di-
mension, however with inverted direction. Therefore, the difference between ε̇a(m) and
ε̇b(m) depends on the configuration of the other WDMD dimensions To estimate this inde-
pendence, we calculate

S (m) = |ε̇a(m) − ε̇b(m)| −
1
2
σn. (3.8)

For a negative S (m) the difference between modifying the same weight at m, but in the
context of the different WDMD configurations, is below the noise level. Hence, this di-
mension of the error landscape is potentially linearly independent from the others. This
necessary criterion is not sufficient since a test of all linear combinations is required to
prove linear independence. However, for a positive S (m) the same modification imper-
atively depends on the other weight configurations. It is therefore a sufficient criteria to
show that a particular weight is linearly dependent on the rest of the readout weights.

Figure 3.15 shows the impact of modifying entries of WDMD in the (ε̇b(m) - ε̇a(m)) plane.
Data inside the gray circle with diameter σn do not contain exploitable information, and
these correspond to 11% of the total measurements. The anti-diagonal in red symboli-
cally represents linear independence. Regardless of the position in the error landscape,
changing a linearly independent Boolean readout weight will cause an error gradient op-
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posed to the opposite modification. The green zone of width σn corresponds to S < 0, and
all weights contained inside this region are potentially independent, which are 30% of the
430 readout weights tested. The remaining 59% are outside of the green or gray zone,
therefore they are linearly dependent [135]. We observe that the distribution in Fig. 3.15
does not show a distinctive structure, in particular along the red line. This suggests that
the majority of dimensions could be linearly dependent.
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Figure 3.15: Error gradient (blue dots) for all readout weights encountered along paths
Pa and Pb between minima Ma and Mb. The red anti-diagonal represents the linearly
independent dimensions. The green zone depict the noise level around this line. Within
this green zone, the dimensions tested are possibly independent, while outside they are
linearly dependent. Inside the circle of diameter σn no conclusion can be drawn due to
the system’s noise.

These results are in agreement with previous results which show that learning seems to
take place in the context of previously optimized weights, for example see Fig. 3.11(a,b).
Moreover, the error landscape does not have 2961 orthogonal dimensions and accurate
characterization of the system’s dimensionality is unrealistic at the current stage.

3.3.3/ NOISE SENSITIVITY

The overall similarity of the minimizers indicates that the topology of the error landscape
seems to have no local minimums with a large error. All the optimization paths arrive at
different local minima with comparable errors. Despite similar performances, the correla-
tion between the optimal DMD configurations of different minimizers are negligible. The
separation between two Boolean readout configurations WDMD,a(ka) and WDMD,b(kb) can
be determined by their Hamming distance:

H(ka, kb) =

N∑
i

∣∣∣∣∣WDMD,a
i (ka) −WDMD,b

i (kb)
∣∣∣∣∣. (3.9)
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For the 20 different minimizers measured in Fig. 3.9(a), we obtain 20(20 − 1)/2 = 190 dis-
tances between their respective minima. The normalized histogram of inter-minima dis-
tances and a fit by a Gaussian is shown in Fig. 3.16. The distribution is centered around
a distance of 419 with a half width at 1/e of 14 [135]. This result shows a very specific and
unusual error landscape: local minima appear not to be irregularly distributed, nor located
in a particular region. Indeed, the minima are on average all separated by a Hamming
distance of 419. Not presented here, we also find that Markovian exploration results in a
similar distribution.

380 400 420 440 460

P
ro

b
a
b
ili

ty

0

0.05

0.1

0.15

0.2

0.25

Distance H(kmin)

Figure 3.16: Probability distribution of the Hamming distances between the twenty minima
of the minimizers displayed in Fig. 3.9(a). Red curve is a Gaussian fit with a mean of 419
and a standard deviation of 29.

While these results appear to indicate an almost arbitrary configuration of WDMD, we are
able to demonstrate the opposite. We repeatedly inverted 419 randomly selected weights
of several WDMD(kmin), and determined their error ε. We found that the error significantly
increases from 8.3 · 10−3 to between 0.17 and 0.44. This clearly shows that minima are not
arranged on a regular grid with a spacing of 419.

To further investigate this phenomena, we reduce the number of uncertainties during
learning. We therefore measure three minimizer paths starting at identical position
WDMD(1) in parallel. One of the three minimizers acts as a "master" and defines mu-
tation sequence l(k), k ∈ [1 · · ·K], which the other two minimizers follow as "slaves". The
sequence in which the error landscape’s dimensions are tested is therefore identical for
all three, but their own rewards r(k) are independently computed via the error of each min-
imizer. Keeping in mind the potentially systematic error of a slow experimental parameter
drift, we measure the three minimizers in parallel. The result of this experiment for greedy
exploration are plotted in Fig. 3.17(a). The three solid lines are the minimizer’s errors on
a semi-logarithmic scale, the blue line corresponds to the master, the red and the green
lines to the slaves. Panel (b) shows the result between one master (blue line) and a single
slave (red line) for a Markovian exploration. The error of the different minimizers have an
exceptionally high average correlation of 99.4% and 99.72% for greedy and Markovian
exploration, respectively.
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Figure 3.17: (a) In solid lines, three minimizers having a greedy exploration and starting
from identical position are measured in parallel. At each learning epoch, the two slaves
(red and green lines) test the mutation lk determined by the master (blue line). Crucially,
reward r(k) of each minimizer is independent. The crossed-circles depict the Hamming
distance’s evolution between the minimizers. (b) Identical experiment for a Markovian
exploration between one master (blue line) and a single slave (blue line). The green
curve is the evolution of the Hamming distance.

Despite this high degree of agreement, the individual WDMD configurations diverge during
the optimization. The evolution of the Hamming distance H(k) between minimizers is plot-
ted on the right y-axis in Fig. 3.17. On panel (a), the red and green crossed-circles are the
Hamming distance between the slaves and the master, the yellow is the distance between
both slaves, the separation is linear throughout the learning process. For Markovian ex-
ploration on panel (b), the Hamming distance evolution between master and slave (green
line) is not linear. Without noise the rewards r(k) of the minimizers would be identical
and they should therefore follow the same trajectory from WDMD(1) to the same minimum
WDMD(kmin). The Hamming distance between the master and the slave would therefore
be zero.

In order to understand the non-zero evolution of the Hamming distance measured, we
therefore have to consider the impact of noise and learning upon the system’s error ε(k)
[135]. The response of error ε(k) to a modification in the system’s output ∆yout(k) is

∆ε(k) = ε̇(k) · ∆yout(k), (3.10)

where ε̇ = dε/dyout is the error gradient and ∆yout(k) is the mean modification of output
yout(k, n + 1) within a certain window, which during training contains 170 sample points.

Several general considerations are relevant at this stage. Due to the SLM’s illumination
by a collimated Gaussian beam, the amplitudes of all network nodes x̃i are Gaussian dis-
tributed. Randomly changing one readout weight therefore results in ∆yout(k) according
to a normalized Gaussian distribution with a width of ∆yout,learn(k) = σl(k). The noise of all
elements in our opto-electronic neural network, and their accumulated impact upon yout(k)
is excellently approximated by Gaussian white noise with a width of ∆yout,noise(k) = σn(k)
[136]. The large number of minimizer measured shows that readout weights WDMD re-
main evenly distributed between zeros and ones for all k. Following the reservoir com-
puting concept, the learning does only modify readout connections. It neither modifies x̃i

nor the system’s noise, which are then both independent of learning. We can therefore
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assume that modifications to yout induced by learning and noise remain constant for all k,
hence σl(k) = σl and σn(k) = σn.

Noise (σn) and learning (σl) modify both the system’s error according to Eq. (3.10). This
identical relationship for the two phenomena is of general importance. Convergence dur-
ing learning is characterized by ε(k) and ε̇(k), and both depend on the particular compu-
tational tasks. Due to the same constant ε̇(k), the ratio between the error’s susceptibility
towards σn and σl remains constant. This in turn imposes the same constant relative
susceptibility of reward r(k) towards σn and σl. Thereby, neither ε̇(k) nor ε(k) modify the
interaction between noise and learning upon the system’s weights. The following discus-
sion, results and observations are therefore fully general and independent of task and
learning algorithm - as long as these do not change amplitudes σn and σl. Noise and
weight modifications are therefore independent actors, whose action upon learning is
somehow competitive.

The objective of modifying a readout weight is to probe the error landscape’s gradient.
However, this action is contaminated with noise which can potentially be greater than the
systematic gradient in the opposite direction. In this case, the sign of ∆ε(k) change, which
results in an inversion of the reward r(k). We call C, resulting on the relative amplitudes
of σn and σl, the constant probability of such a modification occurring.

The increasing separation between two identical minimizers is generated by this prob-
ability C. Two scenarios are then possible. The first situation is a reward r(k) different
between the two minimizers. This happens if one reward is the result of its system-
atic value while the second is inverted by noise. The probability that this situation oc-
curs is C(1 − C) + (1 − C)C = 2C(1 − C). The second situation is two identical rewards,
which can either be the consequence of the systematic results of the two minimizers,
or rewards are both inverted by noise. The combined probability of this second case is
(1 − C)2 + C2 = 1 − 2C(1 − C). The first situation leads to H(k + 1) , H(k), the second to
H(k + 1) = H(k), and the Hamming distance’s rate equation is

∆H(k + 1) = ρid(k) · 2C(1 −C) − ρop(k) · 2C(1 −C), (3.11)

where ρid(k) and ρop(k) are the probability of finding both minimizers’ weights l(k) to be
identical or opposite, respectively. Using ρid(k) = 1 − ρop(k), the evolution of the Hamming
distance is

H(k + 1) = H(k) + C̃(1 − 2ρop(k)), (3.12)

and then the Hamming distance’s gradient is

∆H(k + 1) = C̃(1 − 2ρop(k)), (3.13)

where C̃ = 2C(1 −C).

For Markovian exploration, the mutation is fully random (see Eq. (2.12)), the probability of
a weight to be selected is identical at every k. Thus, the Hamming distance at the previous
epoch k determines the probability of two weights being opposite in their configuration:
ρop(k) = H(k)/N. For greedy learning, the bias term in Eq. (2.20) makes it improbable
to repeat the same weight for an interval specified by k = k′ + aN, k′ ∈ [1,N], with non-
negative integer a. The probability of both minimizers to be configured opposite for all k′

and a specific a is therefore their Hamming distance at the end of the previous interval:
ρop(k) = H(aN)/N, which results in constant slopes ∆H(a) for each k′.

Figure 3.18(a) shows the evolution of Hamming distance H(k/N) for optimizations starting
at the same position WDMD(1), hence we have H(1) = 0. The red and blue lines are the
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Figure 3.18: (a) Evolution of average Hamming distance with learning epoch k normal-
ized by the network’s Size N. Random mutation (blue line) leads to a smooth saturation
function behaviour, while greedy mutation (red line) results in linear intervals of length N.
Black dashed line and black solid line are respectively their analytical solutions. (b) The
same characteristics are found for two minimizers starting in different positions separated
by a distance H(1) > 0.

average Hamming distance computed from 20 minimizers, respectively from a greedy
and Markovian exploration. The analytical solutions are drawn in solid black line and in
black dashed line for greedy and random mutations, respectively. An excellent agreement
between the experimental data and the analysis is obtained for a parameter C̃ = 0.53
identical to the two situations. It is noteworthy that we always arrive at H(k)|k→∞ = N/2,
regardless of the algorithm [135]. Curiously, the value of the parameter C̃ leads to a
complex constant C, resulting in an overshoot for the greedy mutation.

Figure 3.18(b) shows in red and blue line experimental results with a starting separation
of H(1) = 105 and H(1) = 210, respectively for a greedy and a Markovian exploration. The
analytical solutions are again the solid black line and the solid dotted line. Now the two
minimizers start from different positions, the Hamming distance’s evolution starts with a
separation H(1) > 0 and its slope are less steep. Despite the differences between the
analytical solutions and the experimental data, one can note that even without averaging,
the overall evolution is well described.
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In conclusion, the Hamming distance’s evolution, described in Eq. (3.12), is therefore
governed by constant C̃ which is due to noise, and by how the learning algorithm picks
weight WDMD

l(k) (k) from a population with a certain ρop(k). It is important to remember that
neither error nor gradient play a role in this evolution.

3.4/ LEARNING ALGORITHM SCALABILITY

As motivated in the previous chapter, one of the main arguments supporting optical neu-
ral network is related to the massive parallelization of network connections. In such a
network, one could greatly increase the nodes number without reducing the speed of the
system. Nevertheless, a network undergoes a learning phase where each connection is
trained, and for the scalability for neural network hardware the learning time is an essen-
tial characteristic. The reservoir computing concept has the advantage of only training the
output weights, which already reduces the required epochs for achieving convergence.
We therefore study the scaling behaviour when optimizing our Boolean readout layer.

Figure 3.19: Scaling of the required time to convergence for networks of different sizes.
Red (blue) data were obtained for greedy (Markovian) learning. We find that learning
almost perfectly scales linearly with a polynomial coefficient of 0.96 (0.94). Orange data
are testing errors, which continue to decrease.

We measure the learning duration kmin across networks of sizes spanning nearly three
orders of magnitude, ranging from 4 to 961 nodes. Results [140] of the greedy and
Markovian algorithm are respectively the red and blue circles in the double log-plot of
Fig. 3.19. The red and blue dashed lines are linear fit, and we find that kmin for greedy
and Markovian learning scales with kmin = 1.41 · N0.96 and kmin = 3.55 · N0.94, respectively.
In both cases learning therefore scales almost perfectly linearly with the nodes number,
however the greedy mutation improves the training by a factor of 2.5. The orange data
are the testing error on 9000 previously unseen data points. The testing error continues
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to reduce for each increase in network size, showing that even for the largest network we
have not yet reached the limit of over fitting.

On a final note, let us mention that recent results in theoretical computer science also
have an interesting say in our study. Seminal work of Wegener and Witt [141], [142] has
paved the way around complexity analysis for simple randomized evolutionary algorithms
based on local search. Despite the simplicity of the models, mostly restricting the anal-
ysis to Markovian dynamics in the configuration space, a host of theoretical lower and
upper bounds are available in the recent literature [143], [144], [145] and these bounds
provide interesting benchmarks with which to compare our empirical findings. An inter-
esting result in this sense is theorem 9.4 from [143], which can be summarized as follows:
the optimisation time of the Markovian evolutionary algorithm where each bit has uniform
probability of being selected (i.e. memoryless dynamics) for maximizing any function on
{0, 1}N with unique global maximizer has as lower bound N log(N). Note that the asymptote
when N � 1 of this lower bound is N. The main conclusion that can be therefore drawn
from this theoretical bound is that our two evolutionary learning algorithms, when the
nodes number is large, accurately match the best possible completion time for any binary
optimisation problem using a simple Markovian evolutionary hill-climbing type method.

3.5/ SUMMARY

In this chapter we have studied the characteristics of our hardware neural network.

We first presented a study of the noise present in the reservoir. An important result is the
presence of a relatively high SNR following a spatial distribution clustered by the action of
the DOE. We have also characterized the different sources of noise in the system which
were found to be additive, multiplicative, correlated or uncorrelated noise. This study
began with an experimental characterization serving us as a target, with a bottom-up
approach, by modelling the interactions and characteristics of noises. One of the objec-
tives was to improve the SNR distribution, typically by shifting the operating point along
the nonlinear function. We presented a first analytical model reproducing excellently our
experimental observations. Numerical models now allow to understand the character-
istics of noise, how it propagates and thus test hypotheses. Recent work [136] shows
that uncorrelated noise tends to be strongly suppressed when the number of nodes is
large enough. These fundamental results can be generalized for other types of neural
networks.

Moreover, the system is realized with off-the-shelf components. Although optical experi-
ments are known to be sensitive, our neural network has demonstrated great stability and
to be resilient to noise. For example, a single adjustment of the hyper parameters was
sufficient for nine months of night and day measurements. This stability is mainly due to
the optical cage system used but also to the control and stability of the laser temperature
and the meticulous experimental adjustments.

We then studied the noise impact on the dynamic response of the system. We measured
the nodes consistency, i.e. their ability respond similarly to the same input. Whether short
or long term, consistency is high for many nodes, in particular in the network’s center. We
have observed the presence of rare cases of long term drifts in consistency, and nodes
with very low consistency, mainly at the network periphery. Crucially, we have shown that
consistency is not correlated with the injection matrix, there is therefore no restriction to
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use the full range of injection values. The upper bound of consistency is 0.96, but we
were unable to identify the cause of this limitation below the noise and digitization level.

A very broad characterization of learning under noise has been also presented. We have
found that error convergence due to learning is exponentially decreasing. An important
point is the macroscopic convexity of the error landscape, learning never got stuck at
low performance. However, the error landscape has multiple local minimums, but all
minima we have found had an comparably low error. On first sight their spatial configu-
ration seems to follow a very particular periodic arrangement, but we have been able to
demonstrate that this is a consequence of the noise during optimization. Our analytical
model matches excellently with the experimental results for both, greedy and Morkovian
learning.

The Hamming distance between the readout weights of two systems always converges
to N/2, and no particular preference for any groups of nodes was found. Therefore, even
for entirely identical networks, the configurations of the readout weights will never be the
same [146]. This result can probably be extended to non-Boolean case and to weights
between layers of analogue deep neural network. The field of learning implemented in
physical and therefore noisy substrates is still at the beginning [16, 108, 122], and the
confirmation of our findings in other material systems would prove the generality of our
result. Finally, the human brain is a very noisy network [134], which suggests that our
findings may also have interesting implications for the field of theoretical neuroscience.

We have seen that a large part of the readout weights are linearly dependent. What
this means in practical terms is that each modification of a weight has to be interpreted
in the context of all previous modifications. Optimization of an output weight therefore
encodes the history of the changes in the reward during the previous learning periods,
including those which were wrongly assigned due to noise. From an application’s point of
view, a direct consequence is the potential difficulty to transfer or exchange the optimized
configurations between two ANNs.

We characterized the topology between several minima, the error landscape always
seems to remain at low error values. However, this region is not flat and configurations
with better performance can be found. No barrier appears to separate local minima, which
suggests that the minima are probably related to each other. An optimization strategy
based on a gradient would then become interesting to find lower minima in this particular
region.

Finally, we measured the scalability of our two optimization algorithms. Across network
sizes of three orders of magnitude, the optimization time scales linear with the number
of nodes. This result is of great importance because it indicates the scalability of our
learning algorithm to very large networks optimizations.





4
MULTI-LASER RECURRENT NEURAL

NETWORKS: OVERCOMING THE
ENGINEERING CHALLENGE

We described in chapter 2 an electro-optical neural network, and we studied its ar-
chitecture and its different characteristics. The spatial light modulator, realizing the
electro-optical nodes of the system, is a technology which limits the speed of the system
to a few tens or hundreds of Hertz.

Designing an all-optical neural network is a paradigm shift that could fundamentally
change the field of machine learning. Optics can potentially allow massive paralleliza-
tion and the computational bandwidth limiting factor will then be the speed of light or the
response time of the photonic artificial neuron. The characteristic time of such a neural
network can readily reach several Gigahertz [147]. A large-scale, parallelized system
operating at this timescale will then have low energy per operation and a high power
efficiency [99].

In this chapter, we will see the consequences of the transition from electro-optical non-
linear nodes to optical nonlinear nodes and will study the key points of realizing such a
system. This technological change will therefore be first treated as an engineering chal-
lenge including an in-depth characterization of its optical nodes.

The overall architecture of the system will first be presented, then we will describe the
structure of the quantum dots micropillar lasers (QDMLs) [18] which will be the nonlinear
nodes of the network. The characteristics necessary to achieve an array of coupled
lasers acting as nonlinear nodes of a recurrent neural network will be discussed. We will
show why the wavelength homogeneity of the QDMLs is essential. Engineering solutions
regarding mechanical mounting and cryogenic solutions will also be discussed.

Still wishing that the neural network could evolve into a much larger system, QDML’s
population inversion is performed by optical pumping to avoid the scalability problem of
electrical connections that cannot intersect. The pump laser characteristics will be anal-
ysed and the design and implementation of a laser for pumping the QDMLs’ wetting layer,
which was constructed from scratch, will be presented in appendix B. We will then investi-
gate a quantitative study of the QDMLs pumping enabling to select between two different
optical pumping approaches and to optimize the experimental parameters. In addition,

73
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this characterization will give us access to the efficiency limitation of current QDMLs and
will therefore allow us to suggest improvements to the next QDMLs design. Finally, a first
simultaneous pumping of 9 QDMLs will be performed.

4.1/ OPTICAL NEURAL NETWORKS: OVERVIEW

Our goal is to implement a partially scalable all-optical neural network. To achieve this,
we will use a similar concept as the neural network presented in chapter 2 and modify the
nonlinear nodes to be fully optical.

Our choice of QDMLs was made for several reasons. QDMLs are semiconductor lasers,
their response time is dominated by the carrier’s relaxation oscillation frequency which
can be of the order of 10 Gigahertz [147]. As an artificial neuron, a semiconductor laser
has numerous sources of non-linearity such as the laser threshold, gain saturation or
amplitude-phase coupling due to Henry’s alpha factor [148]. Moreover, QDMLs pumping
can be done optically, which allows a high scalability by using a single diffracted pump
beam to operate a large number of QDMLs. Using the same principle, input information
can be injected all optically [149]. However, QDMLs do not operate at room temperature,
and the sample should be cooled to below 150 K, which complicates the neural network
design from an engineering point of view.

Shown in purple in the experimental scheme of Fig. 4.1, 20 × 20 QDMLs are arranged
in an array and form the set of nonlinear nodes of the system. The network’s recurrent
connections can be optically implemented via feedback of the laser emission back into
the QDMLs using a diffractively multiplexed external cavity [17, 113]. The reservoir,
shown in gray, is then composed of an QDMLs array and an external cavity produced
by a 4f imaging system of magnification 1 with two identical microscope objectives MOS

and MOF (Olympus, LMPLN Plan Achro 10x) having fMOS = fMOF = 18 mm as focal
length. The network nodes connectivity, visible in red, is provided by a 3 × 3 DOE. As
explained in detail in section 2.1.4, the diffraction angle of the DOE and the pitch of the
QDMLs array are adjusted in such a way that the feedback of a QDML emission, after
passing the 3 × 3 DOE twice, is injected into itself and its twenty-four near neighbors
[16, 113]. The input/output of the reservoir can be realized through a beam splitter. The
QDMLs power source is optical, the population inversion is achieved by a pump laser.
In order to pump multiple QDMLs simultaneously, the laser beam is separated into N
diffraction orders, with N the number of lasers pumped. By adjusting the diffraction angle
according to the QDMLs array pitch, each order is focused on a different micropillar. The
information laser, displayed in green, can use the same concept to inject information into
the neural network. The information laser having the same wavelength as the QDMLs is
separated from the pump laser by a dichroic mirror. The readout of the network can be
implemented identically to that of the electro-optical network presented in section 2.1.5.
The readout layer shown in blue in Fig. 4.1 is therefore based on a DMD which will select
the nodes which will be detected. A spectral filter can be added in order to remove any
residue from the pump laser.
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Figure 4.1: Photonic spatio-temporal neural network. A laser array attached to piezomo-
tors inside a cryostat, forms the nonlinear nodes of the network. They are powered by a
pump laser which, once diffracted, is focused on numerous QDML. A identical technique
can be used to inject information into the nodes. The feedback of the QDMLs emission
can be implemented by an external cavity. The nodes interconnectivity is achieved by
diffraction, each QDML is coupled to its neighbors in addition to itself. The readout layer
can optically be implemented through a DMD which selects the nodes to be detected.

4.2/ LASER NEURONS

The nonlinear nodes that we use are semiconductor QDMLs. The samples used during
this work were produced by the research group at the Technical University of Berlin (TUB)
led by Prof. Stephan Reitzenstein in the framework of the Volkswagen Foundation Neu-
roQNet project [121]. A detailed overview of this technology can be found here [150]. In
this section we will detail the structure of the QDMLs and in particular the characteristics
required to build our optical neural network.

4.2.1/ QUANTUM DOT MICROPILLAR LASERS

The QDML is a vertical-cavity surface-emitting laser (VCSEL). The fabrication is per-
formed by successive growth and etching steps.

The first stage is the epitaxial growth of the sample on a GaAs substrate using metal-
organic chemical vapor deposition (MOCVD). Schematically illustrated in Fig. 4.2(a), the
sample consists of a central one-λ thick GaAs resonant cavity (LLC = 279 nm) sandwiched
between a lower and an upper distributed Bragg reflector (DBR) acting as mirrors. In order
to ensure sufficient gain for lasing operation, the intra-cavity gain medium is composed of
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three separate layers of self-assembled InAs Quantum Dots (QDs). The three QD layers
are fabricated via the growth controlled monoatomic layers of InAs on top of GaAs. This
thin film is called wetting layer (WL). Beyond a critical thickness, growth continues through
nucleation and coalescence of islands, which form the QDs [151].

Our layers of self-assembled QDs are formed with a density of about 1010 cm−2. The inset
of Fig. 4.2(b) shows scanning electron microscopy (SEM) micro-graph of the QDs where
we can observe their random spatial arrangement. Considering an average diameter of
the micropillars of 4 µm, the gain medium is composed of several thousand QDs. QD
s-states provide optical gain by light-matter interaction with the fundamental cavity mode.
However, due to the QD’s inhomogeneous broadening, only a small part, typically 10%,
aligns with the cavity’s resonance and can hence contribute to laser emission [152, 153].

The lower and upper DBR are respectively composed of 27 and 23 λ/4-thick
Al90Ga10As / GaAs mirror pairs. Once sample growth is complete, the micropillars are
nanoprocessed by high-resolution electron beam lithography in combination with reactive-
ion etching [18]. Targeting lasing at 980 nm, the thickness of the laser cavity measures
approximately 280 nm and that of the lower and upper DBRs 3.71 µm and 3.43 µm, re-
spectively. A SEM micrograph of our QDMLs is shown in Fig. 4.2(c). The mirror pairs of
the DBRs and the resonant cavity are clearly visible, and the lower DBR remains partially
buried. More information about this particular sample can be found in [18].

Substrat

GaAs

Al0.9Ga0.1As

Lower DBR
27 pairs

Upper DBR
23 pairs
3431 nm

InAs
WLs

~4 µm
(a) (b) (c)

Laser cavity
LLC = 279 nm

Figure 4.2: (a) Schematic illustration of QDML where the three WLs are represented in
red. (b,c) QDML images obtained by scanning electron microscope (SEM). (b) Micropil-
lar laser from [152] where we can observe the resonant cavity sandwiched between a
lower and an upper distributed Bragg reflectors in the inset and the QDs in its zoom. (c)
Micropillar laser example that we use for the optical neural network [18]

4.2.2/ QUANTUM DOTS MICROPILLAR LASERS ARRAYS

The objective is to fabricated QDML arrays (QDMLA) to obtain a large number of nonlin-
ear nodes. The QDMLA must have two fundamental characteristics: a regular spacing of
the micropillars [17, 113] and homogeneity of the laser emission [131].

The QDMLA’s pitch must be adjusted to use a 3 × 3 DOE to couple the lasers. We
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made the choice to buy a commercial DOE and adjust the distance between the QDML
accordingly. As shown by the grating formula in Eq. (2.3), the diffraction angle varies with
the wavelength, therefore we have characterized the DOE according to this criterion. We
have used three lasers with 840.9 nm, 916 nm and 975.5 nm wavelength, which was
measured with a Yokogawa AQ6370D optical spectrum analyser (OSA). The laser beam
diffracted by the DOE was focused on a camera with a pixel pitch of 2.2 µm with a lens of
fcharac = 100 mm focal length. In combination with the pixel pitch, this focal length allows
determining the diffraction angle with 22 µrad resolution. Each diffraction spot is fitted
by a 2D Gaussian function, enabling determining the position of diffractive orders with
precision larger than the pixel pitch of the camera. The distances measured between the
diffracted orders are multiplied by the ratio fMOS/ fcharac to obtain the physical distances ∆X
and ∆Y between diffractive orders for the QDMLA setup.

Results are shown in Fig. 4.3 where ∆X (red crosses) and ∆Y (blue circles) are linearly
fitted by the red and blue curves, respectively. The QDMLs emit at 980 nm, ∆X(980 nm)
= 8.41 µm and ∆Y(980 nm) = 8.33 µm, the micropillars pitch will be averaged at 8.37 µm.
In addition, this experimental characterization using a laser injected into a singlemode
fiber (Thorlabs SM800-5.6-125) collimated with a lens of 35 mm focal length allowed us
to determine the width at half maximum FWHM(980 nm) = 4.2 ± 0.1 µm of the diffraction
orders imaged the QDMLA. This width is compatible with the mode field area of the
QDMLs emission.

Figure 4.3: Calibration of the DOE 3x3 in function of the wavelength. ∆X (red crosses) and
∆X (blue circles) are the vertical and horizontal distance between the diffractive orders on
the QDMLA. Red and blue curves are the linear fit of ∆X and ∆Y which result respectively
in ∆X f it = 9.21 · 10−3λ − 0.614 µm and ∆Y f it = 8.47 · 10−3λ + 0.036 µm with λ in nanometer.

We would like to create a reservoir, and hence the emission of QDMLs will be reinjected
into the neighboring micropillars to establish the required recurrent network connections.
In addition, in the future information will need to be injected into the network via an ex-
ternal injection laser. However, to obtain injection locking, the power of the injected laser
increases with the frequency difference squared of the two oscillators [154]. It is therefore
essential to obtain a very homogeneous QDMLA if one wishes to have sufficient power to
drive a large number of micropillars. The locking range is the frequency detuning range
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between an injection laser and a slave laser over which phase, and hence frequency of
the slave lasers is identical to the injection laser. Achieving such injection locking is es-
sential for neural network and reservoir computing with semiconductor lasers [131, 149].
The locking range ∆νlocking is defined as

∆νlocking ∝ keff

√
1 + α2

√
Pinj

Ppillar
, (4.1)

where keff is the effective injection ratio, α the linewidth enhancement factor [148], Ppillar
the output power of the QDML and Pinj the injection laser power. In the case of edge
emitters where the reflectivity of the surface is quite low, keff is the inverse of the laser
cavity round trip time [155–157]. Regarding the QDMLs, typical values are α ≈ 3 [158]
and keff ≈ 10 Ghz is related to the photon lifetime [154, 159].

(Pinj / Ppillar)
1/2

Figure 4.4: Locking range according to the injection strength ratio. Black dots are the ex-
perimental characterization, the blue line is a theoretical fit and extrapolation until 50 GHz
which corresponds to the range required for locking the entire QDMLA [18].

An experimental characterization of injection locking lasers in our sample was performed
by our collaborators at TUB [18]. The results are presented in Fig. 4.4, where the locking
range is represented as a function of the square root of the ratio of the injection power
and the pillar power. The experimental data (black dots) have been fitted and extrapolated
up to a locking range of 50 GHz, which is comparable to the one of our QDMLA [18]. To
obtain this range, the injection power has to be approximately thirty times higher than the
output power of the QDML. Considering an output power Ppillar = 1 µW per QDML and an
array comprising 900 lasers, the information injection laser should deliver 27 mW on the
sample. This power can realistically to be attainable in spite of elements along the optical
path such as beamsplitters or the diffractive element causing losses.

A frequency variation of 50 GHz at 980 nm corresponds to a variation of 0.16 nm. The
thickness of the QDML’s cavity is (λ±0.16)/nGaAs = 280±0.05 nm, with nGaAs ' 3.5 the GaAs
refractive index. Considering the GaAs lattice constant is 0.565 nm [160], the precision
of the resonant cavity length should be higher than a mono-atomic layer, therefore not
physically achievable. However, there is a relationship between the diameter of the mi-
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cropillar and the wavelength [161, 162]. The nanostructuring of micropillars can therefore
potentially mitigate for inhomogeneities during the materials growth [121, 163]. Figure 4.5
shows the result of this technique applied to a sample of 900 micropillars which have a
central wavelength of 1002.8 nm. 850 micropillars (94.44%) have an optical frequency
variation of less than 50 Ghz with a standard deviation of 0.132 nm. A SEM micrograph of
a QDMLA at 980 nm center wavelength is shown in Fig. 4.6. The spacing between the mi-
cropillars is 8.37 µm. Each QDML has its own particular diameter in order to homogenize
the array’s wavelength.
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Figure 4.5: Wavelength characterization by TUB of a QDMLA optimized for a emission
wavelength around 1 µm. The average wavelength of 850 out of the 900 QDML is 1002.8±
0.066 nm, i.e. almost 95% have a laser frequency detuning lower than 50 GHz.

Figure 4.6: SEM image of 900 QDMLs lasing at 980 nm [121]. The array’s pitch is 8.37 µm
and each micropillar diameter is optimized for wavelength homogeneity.
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4.2.3/ CRYOGENIC COOLING AND MECHANICAL STABILITY

The QDMLA were optimized to operate at 77 K, the temperature of liquid nitrogen. Such
cooling is necessary to reduce non-radiative losses by thermal escape [18], and the en-
semble of QDs’ gain profile was adjusted to spectrally match with the optical mode at
this temperature. The sample placed in the chamber of a liquid nitrogen cryostat (Oxford
Instrument, OptistatDN-V). To obtain thermal insulation to the room temperature of the
exterior, and to avoid condensation of water and other gases present in the atmosphere,
a secondary vacuum (' 10−5 mbar) is created in the chamber.

In order to ensure the precision required for optical pumping of the micropillar lasers,
the sample is mounted on three Attocube piezomotors stages, two to compensate for a
potential sample inclination (ANGt101 and ANGp101) and a third (ANPz102) for trans-
lation of 5 mm range to adjust the sample’s position relative to MOS ’s focal plane. The
copper sample holder includes a photodiode which measures the pump laser power in
transmission of the sample and a thermistor to measure the local temperature.

The cryostat’s nitrogen tank is located at the top of the cryostat chamber, and initially
the piezomotors stack and the sample holder were directly suspended vertically from the
cold finger. The latter is a 300 mm long copper rod submerged in the liquid nitrogen
tank, whose extremity ends in the cryostat vacuum chamber. This standard configuration
resulted in two major problems. The first is low thermal conduction of the piezomotors,
the second is a strong mechanical instability of the sample. By imaging the QDMLA, we
observe erratic movements of a micrometer scale every few seconds. We attribute this
instability of the cold finger. The latter and the stack of piezomotors act comparable to a
cantilever of 300 mm in length. A small angular cold finger instability inside the nitrogen
tank is therefore amplified at the sample location. In this configuration, controlled optical
experiments were rendered impossible due to these mechanical instabilities.

The strategy to solve this problem was to mechanically decouple the cold finger from the
sample, see Fig. 4.7. To achieve this we build a non conductive mechanical support, a
plastic (PVC) tube 150 mm high. Its lower part is supported by the bottom of the vacuum
chamber and only this lower section is in contact with the vacuum chamber walls which
are nearly at room temperature. At the top of the tube, an in-house fabricated manual
XY translation stage was added. The piezomotors stack and the sample holder were
suspended from this XY stage and inside the plastic tube. The thermal conduction is
performed by an assembly of flexible copper foils which connect the cold finger to the
copper translation stage, and then to the sample holder.

However, this layout is subject to strong constraints which are notably linked to the cryo-
stat chamber diameter. Apart from its base, the plastic tube must not touch the chamber
wall to avoid additional thermal links to the warm cryostat walls. To ensure enough space
for the piezomotors and for lateral displacements of one millimeter of the sample while
maintaining sufficient mechanical rigidity, the wall of the plastic tube is 2.15 mm thick
and features four openings to let the corners of the piezomotors pass. Only a 0.55 mm
clearance is left between the vacuum chamber walls and the outside plastic tube. This
vacuum distance is sufficient to be thermally low-conductive and the plastic tube length
and its low thermal conductivity theoretically provide thermal insulation of the sample from
the outside.

The internal diameter of the tube measures 31.75 mm and the width of the piezomotors
is 24 mm. By deducting the maximum lateral movements of the sample, there remain
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Figure 4.7: Mechanical decoupling of the sample from the cold finger. The objective
microscope MOS is located inside the vacuum chamber to reduce optical aberrations.
The thermal bridges performed by flexible copper foils connecting the cold finger to the
XY stage, then from this to the sample holder, are not shown for clarity. The drawing on
the right is a sectional view where is shown the sample, a photodiode and a thermistor.

2.9 mm to allow ten electrical connections to pass for the photodiode, the thermistor
and the three piezomotors and a thermal bridge made of flexible copper foils to cool the
sample. An additional difficulty is that the sample must be able to move vertically along the
optical axis in 5 mm range. The thermal and electrical connections must then be designed
for the Z piezomotor in the extended position. However, in the contracted position, the
connections have no other choice than to take up space radially, and the maximum lateral
distance between a stretched and loose wire increases with its length (more details in
appendix A). Faced with these constraints, the thermal bridge in form of a double helix of
ten copper foils, each foils 0.09 mm thick, was realized. In this configuration, the maximal
lateral space decreases with the number of turns around the piezomotors stack. However,
the length of the thermal bridge also increases with the number of turns, thus reducing
the heat flow. In our experimental situation, we choose a single turn as a compromise.

Illustrated in Fig. 4.8, we then performed experimental measurements of the temperature
during the cooling of the cryostat. Several configurations were tested, from the empty
chamber to the complete sample holder mount. Each element has been introduced step
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Figure 4.8: Temperature characterizations during the cryostat cooling. The blue and red
lines are the temperature of the cold finger. The green line represents the extremity of the
first copper foils. When connected to the XY stage, the temperature above and below this
part is cyan and black lines, respectively. Finally, the magenta line is the sample holder
temperature when all the elements are present in the chamber.

by step in order to characterize their own impact. Two thermistors were first calibrated in
contact with the cold finger at 77 K (blue lines). Then we added the first copper foils. One
of the thermistors remained in place (red line) and the other is placed at the extremity
of foils (green line) where the temperature reaches ∼ 90 K. We then connected the foils
to the XY stage mounted on the plastic tube. The characterization is repeated with one
thermistor above the XY stage (cyan line) and the second below (black line). Noteworthy,
below the XY stage it takes ten times longer for the reaching thermal equilibrium. This
delay is the result of the stages relatively large mass, and we find the bottom of the stage
to be at ∼ 100 K. We then see an eight degree temperature difference between the upper
and lower sides of the XY stage. Finally, we placed the piezomotors and the second foils,
we measured the temperature directly in contact with the sample holder (magenta line).
The final temperature stabilizes at 130 K after twelve hours. We note that this tempera-
ture obtained is significantly higher than our theoretical calculations. A first explanation
is the highly confined space, which makes it difficult to install the thermal bridge between
the cold finger and the XY stage and to ensure maximum thermal conductivity an im-
provement in the contact surfaces is one possible solution. The second explanation is
linked to potential heat loss between the XY stage and the sample holder. Given the
limited spaces, it is likely that contact between the plastic tube and the cryostat vacuum
chamber has occurred, thus creating a thermal bridge to the outside.

Figure 4.9 is a characterization from the group at TU Berlin of the QDML’s lasing threshold
at different temperatures. The experimental data (black squares) well matches a linear
dependency (red line). For the sample operated at 130 K instead of 77 K, the efficiency of
QDML is reduced by 38%. The temperature which is obtained experimentally is therefore
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not optimal but is sufficient for the operation of the QDML and the first optical tests.
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Figure 4.9: Characterization from the group at TU Berlin of the QDML laser threshold
as a function of their temperature. The experimental data (black squares) follow a linear
dependence. We estimate the laser threshold at 130 K and deduce a loss of QDMLs
efficiency around 38% in comparison with an optimal operation at 77 K.

4.3/ OPTICAL PUMPING

Pumping of a QDML can be performed electrically or optically. In the first case, two elec-
tronic contacts at the top and the bottom of the QDML are deposited during fabrication.
Furthermore, DBRs have to be doped with donors and acceptors to allow electrons and
holes to reach the gain material, where upon relaxation into the QDs they form excitons
that enable optical amplification via stimulated emission. This technique is well controlled,
efficient and practical due to the control of the laser by off-the-shelf electronic power sup-
plies. However, the application of this technique to a QDMLA comprising a large number
of QDMLs becomes complicated. In the case of a neural network, each laser has to
be individually addressed, one wire per laser therefore has to be realized without any
of the wires crossing in the same plane [115]. This quickly becomes a circuitry prob-
lem and the space dedicated to connections becomes predominant. As our motivation is
creating a demonstrator of a large-scale optical neural network, optical pumping is con-
sidered. In this configuration, no electrodes are needed. A pump laser of an energy
higher (wavelength shorter) than the QDML lasing transition is focused onto the QDML,
creating excitons which provide the required population inversion.

Pumping depends on many parameters which are challenging to independently deter-
mine experimentally. In this first part, we will introduce the most important contributions
to the overall processes. The diagram in Fig. 4.10 summarizes the different interactions
present during the optical pumping of QDMLs. In order to be consistent with the laser
rate equations [164] the arrows in Fig. 4.10 represent rate, i.e. a number per time unit.

Only a fraction κ of the pump photons is absorbed by the gain medium. The rest is
either reflected or absorbed by the DBR, or passes through the QDML without interaction.
Absorbed pump photons create electron-hole pairs called excitons ne. These excitons can
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Figure 4.10: Flowcharts of QDMLs optical pumping representing the different processes
and their effects. Arrows represent a rate, i.e. a number per time unit.

recombine in several ways. Not radiatively with phonon radiation at rate Rnr resulting in
heating. Another recombination is radiative through spontaneous emission with a rate
Rsp. A certain fraction β of the spontaneous emission photons is captured in the QDML’s
lasing mode. Factor β corresponds to the spontaneous emission coupling ratio [165].
Here, we limit ourselves to the single mode case. The captured photons nl resonate in
the laser cavity and induce stimulated emission and absorption with rate R21 and R12,
respectively. Stimulated absorption regenerates the excitons at the lasing level, which is
depleted by stimulated emission. A fraction of lasing mode photons stay in the cavity, a
fraction η leaves the QDML due to outcoupling and another part is absorbed by the DBR.

4.3.1/ PUMP ABSORPTION

Figure 4.11 describes the processes inside the semiconductor sample relevant for optical
pumping of QDMLs. Figure 4.11(a) illustrates the bandgap energies quantum states at
different positions inside the QDML as well as photon energies of the different pump
concepts. When pumping around 912 nm, the pump photon energy creates excitons only
inside the three wetting layers. The situation is different for pumping with wavelengths
shorter than 830 nm, where GaAs of laser cavity and in the DBR is absorbing pump
photons.

The pump first passes the top DBR where transmission T DBR(λ) depends of the DBR
reflectivity RDBR(λ) and the DBR absorption ADBR(λ). Since we do not have direct access
to the transmission, we can measure the DBR reflection as a function of the wavelength
as shown in Fig. 4.12. The DBR absorption ADBR(λ) = 1 − e−α

DBR(λ,T )Leff

can be calculated
by absorption coefficient αDBR(λ,T ) and the effective absorption length Leff. By neglecting
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Figure 4.11: Schematic illustration of the relevant mechanisms for optically pumping
QDMLs. Panel (a) gives the energies of wetting layer and bulk GaAs pump lasers, bulk
material bandgaps and the WL and QD transitions. Panel (b) and (c) illustrate the pump
intensity as pump photons traverse the sample, and the resulting useful exciton creation
efficiency for bulk GaAs and WL pumping, respectively. The left (right) y-axis in (b) and
(c) give the local pump intensities (pump-photon to pump exciton conversion ratio).

other possible losses, the transmission of the top DBR is

T DBR(λ) = [1 − RDBR(λ)]e−α
DBR(λ,T )Leff

. (4.2)

The transmitted photons arrive in the laser cavity and are converted into an exciton
through absorption of the gain medium according to

Ag(λ) = 1 − e−α
g(λ,T )Lg(λ) , (4.3)

where αg(λ,T ) and Lg(λ) are the absorption coefficient and length of the optically pumped
medium creating gain, respectively. The result is an absorbed pump power

Pabs
pump = κ(λ)Ppump , (4.4)

with κ(λ) = T DBR(λ)Ag(λ) as the absorption efficiency.
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Figure 4.12: DBR reflection spectrum measured with a supercontinuum. Pumping wave-
lengths for the wetting layers (WL) and GaAs are indicated by the red dashed or the
dotted lines, respectively.

Pumping the optical transition of the bulk in GaAs (see Fig. 4.11(b)), which corresponds
to a continuum of states with transition energies higher than its bandgap at 1.494 eV
(831 nm) at 130 K [166, 167]. We investigate the GaAs bulk pumping with three wave-
lengths, λ = 786 nm (Thorlabs FPL785S-250), λ = 730 nm (Roithner LaserTechnik
HL7302MG), λ = 660 nm (Thorlabs LP660-SF20). Optically pumping in this range has
an undesired side effect: the GaAs layers of the upper DBR have a strong absorption
by creating excitons which consequently results in losses. Indeed, the quantum tun-
neling of these excitons towards the QDs is strongly suppressed by the energy-barrier
of the Al0.9Ga0.1As layers, and therefore not contributing to the lasing process. Pump
energies used are below the Al0.9Ga0.1As bandgap at 2.06 eV (600 nm), hence this ma-
terial is transparent for all optical pumps in explored in this thesis. The effective ab-
sorption length Leff = 1603 nm corresponds to the 23 GaAs layers thickness. Using the
data of reference [168], which we extrapolated to 130 K according to reference [169],
we calculated the absorption coefficients of GaAs αDBR(786 nm, 130 K) = 1.248 µm−1,
αDBR(730 nm, 130 K) = 1.532 µm−1 and αDBR(660 nm, 130 K) = 2.615 µm−1. Furthermore,
the DBR reflection at these three wavelength plotted in dotted lines in Fig. 4.12 cannot be
neglected. Combining DBR reflection and absorption, we obtained T DBR(786 nm) = 0.114,
T DBR(730 nm) = 0.074 and T DBR(660 nm) = 0.014 [170]. Regarding exciton creation, the
entire laser cavity absorbs pump photons, which in the end can relax into the QDs due to
carrier diffusion ranges on the order of 10 µm [171]. The length and the absorption coeffi-
cient of the gain medium are then Lg(λ) = LLC = 279 nm and αg(λ) = αDBR(λ), respectively.
The absorption efficiency κ was calculated for different pumping wavelengths for the eight
QDMLs characterized (details will be provided in Sec. 4.3.5). The large length of the gain
medium compensates for the low DBR transmission, and we get as absorption efficiency
κGaAs(786 nm) = 3.43 ·10−2, κGaAs(730 nm) = 2.64 ·10−2 and κGaAs(660 nm) = 0.71 ·10−2 [170].
The average of the eight absorption efficiency κGaAs, represented by the black line and
the uncertainty by the red area in Fig. 4.13(a), shows a strong dependence on the pump
wavelength. The highest absorption efficiency κGaAs is then for pump laser with photons
energy a little lower than the GaAs band gap [169]. The pump absorption efficiency varies
by approximately a factor of 30 between a wavelength of 600 nm and 800 nm.
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Figure 4.13: Wavelength dependence of the absorption efficiency κ of the gain medium for
eight different QDMLs. The average of κGaAs is represented in panel (a) by the black line
and its uncertainty by the red area. The stars represent the three pumping wavelength
used. The result κWL for the WL pumping is shown in panel (b).

In Fig. 4.11(c) we consider the attenuation and absorption of pump photons as well as
exciton creation for pumping at the energy of the wetting layer. Directly pumping the WL
transition is attractive in principle for several reasons. Firstly, the high-energy excitons
created by the pump are in direct vicinity to the QDs, suggesting a high probability that
these excitons are captured by the QDs and will hence efficiently populate their s-states.
Secondly, the WLs transition wavelength is approximately 912 nm, which is below the
bandgap energy of the DBR materials and no pump photons are lost due to absorption by
the top DBR. The DBR transmission can therefore be simplified in T DBR(λ) = 1 − RDBR(λ).
And, finally, this transition is located inside a DBR transmission window, hence minimizing
back reflection of the optical pump by the top DBR.
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Figure 4.14: DBR transmission window around 912 nm measured with a supercontinuum.

Figure 4.14 shows an exemplary QDML reflection spectrum within the range of the DBR’s
reflection minimum at the WL’s transition, where we a minimum RDBR(912.3) = 0.025,
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hence a transmission of T DBR(912.3) = 0.975. However, these positive effects have to
compete with the small absorption of pump photons by the wetting layers. Combined,
the three WLs are only Lg ≈ 1.8 nm thin [160], which, with an absorption coefficient of
αg(912, 130 K) = 3.4 µm−1 [172]. The consequence of this very thin absorbing layers
for gain is a low absorption efficiency with a maximum κWL(912) ≈ 6 · 10−3 [170]. The
wavelength dependence of κWL is shown in Fig. 4.13(b).

4.3.2/ OPTICAL PUMPING THEORY

The parameters of general pumping described in Fig. 4.10, in particular the rate linking
pump excitons to lasing level photons is difficult to be experimentally determined indepen-
dently or directly. For this reason we use a simplified model, illustrated by the flowchart
Fig. 4.15, and introduce parameter δ. Exciton conversion efficiency δ is the fraction of
excitons which ultimately contribute to the lasing transition.

Ppump

abs
Ppump

Excitons ne

Plaser

Laser photons

κ

hυp

hυl

vgαM

δ and β

Intracavity photons nl

Figure 4.15: Flowcharts of a QDMLs optical pumping simplified model by introducing δ,
which is the exciton conversion efficiency into a photon. Arrows represent a flow, i.e. a
number per time unit.

Starting from a laser-rate equation description [164], the connection between pump and
lasing-mode photons in the cavity nl is given by

Pabs
pump =

hνlγ

βδ
·

[ nl

1 + nl
(1 + ξ)(1 + βnl) − ξβnl

]
, (4.5)

with h the Planck constant, νl the laser frequency and ξ = n0β/γτsp which depends on the
cavity decay rate γ, the transparency carrier number n0 and the spontaneous emission
lifetime τsp [152, 165, 173]. Parameter ξ can be interpreted as the photon number in
the lasing mode at transparency n0. Equations (4.4) and (4.5) link the number of lasing
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photons nl to the pump power Ppump via material characteristic κ and fundamental laser
parameters γ, β and δ. Finally, the QDML’s output power Plaser is given by

Plaser = vgαMhνl · nl , (4.6)

with the group velocity vg and the DBR’s outcoupling losses αM calculated via

αM =
1

LLC
log

( 1√
RDBR(λl)

)
. (4.7)

The laser cavity length is LLC = 279 nm and the top DBR reflectivity at the laser wave-
length RDBR(λl) = 0.9957 calculated based on the number of DBR mirror pairs and their
refractive index.

4.3.3/ FREE PARAMETER DETERMINATION

The QDML input-output dependency given by Eq. (4.5) describes the characteristic s-
shaped curve on a double-log scale. Below threshold, i.e. nl � 1, spontaneous emission
dominates and Eq. (4.5) becomes linear in nl:

Pabs
pump(λ) ≈

hνlγ

βδ

[
1 + (1 − β)ξ

]
nl. (4.8)

For the case of β � 1, this leads to Pabs
pump(λ) ∝ (n0/δ)nl. Above threshold, i.e. 1 � nL,

similar arguments with no assumption regarding β result in Pabs
pump(λ) ∝ (1/δ)nl. The input-

output curve’s slope below and above threshold therefore depend on δ while n0 modifies
the ratio between both, and β is sensitive on the nonlinearity at the lasing transition. The
different operating regimes of Eq. (4.5), i.e. below, around and above threshold therefore
allow determining n0, β and δ, given that κ(λ), γ and τsp are known.

Here, we use τsp = 1 ns and the QDML’s quality factor Q = 1.5 · 104 reported in reference
[18] for identical QDMLs to determine γ = (2πνl)/Q. As explain in detail in Sec. 4.3.1,
pump absorption efficiency κ(λ) was calculated using material absorption, RDBR(λ) and
QDML dimensions. β depends on the QDML cavity-geometry and the spectral overlap
between QD-emission and the lasing mode [174], δ on the exciton relaxation channels.
Our QDMLA is spectrally highly uniform [18], hence with similar QD-emission and lasing
wavelength conditions. A similar local temperature, assuming local heating induced by
Ppump is comparable to the same pumping conditions, should therefore result in compara-
ble β for all QDMLs. However, taking into account the high difference of pump absorption
between the WL and bulk GaAs pumping, resulting in a local heating difference, β should
be different for these two pumping mechanisms. Exciton relaxation is a property of gain
material and pump process, and hence δ should mostly depend on the quantum transition
driven by the pump laser.

When fitting Eq. (4.5) to our output curves measured at varying conditions we use the
dispersion of fit parameters as validation of our hypotheses. We therefore study the im-
pact of having n0, β and δ as free fit parameter of each laser, wavelength or only pumping
mechanisms. We pay particular attention to unexpected wavelength dependencies of fit
parameters, as this would indicate a shortcoming of our closed-form fitting routine.
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4.3.4/ PUMP LASERS

The role of the pump laser is to supply energy to the QDMLs. If it is desired to simulta-
neously pump a large number of QDMLs, the overall pump efficiency must be optimized.
This issue is crucial if we want to limit the required pump laser power to a realistic amount
(typically < 1 W in continuous wave).

In order to optimize the pumping efficiency, a parameter to be controlled is the spatial
profile of the pump laser’s focal spot on top of the QDMLs. For a maximum efficiency
the overlap integral between the spatial mode of pump laser and QDML has to be unity
- ideally. The diameter of the QDML used (∼4 µm) makes the lasers to emit in a single
mode spatial profile for the confined mode [175]. The pump laser must be singlemode and
the imaging system must be adjusted such that the pump spot mode diameter matches
the QDML’s mode.

The optical pumping efficiency is also determined by the absorption efficiency κ of the
QDML gain medium and the exciton conversion efficiency δ. We have introduced two
different optical pumping mechanisms. Regarding the bulk GaAs pumping, since the
continuum of states absorbs all wavelengths below its bandgap. The only specific criteria
for the pump laser is its spatial singlemode character. We can therefore use a commercial
continuous wave semiconductor laser. On the contrary, WL pumping is around 912 nm
and the DBR transmission window illustrated in Fig. 4.14 is narrow. Furthermore, the op-
timum pumping wavelength depends on details of the fabrication process and the thermal
environment of the QDMLS, and hence, a pump laser tunable over several nanometers
is required for this experiment. The realization of this pump laser particularly constructed
for this task is detailed in appendix B.

4.3.5/ EXPERIMENTAL SETUP

We characterize the QDMLs’ efficiency by measuring input-output curves with continu-
ous wave pump laser. As illustrated in Fig. 4.16, we use a half wave-plate and a po-
larizer to accurately control the intensity of the pump laser on top of the QDMLs. The
pump laser is detected by a bulk powermeter placed after a short-pass filter (SP, Thor-
labs FESH0900) which suppresses the QDMLs laser intensity by more than 50 dB. The
QDML emission is measured in a similar way after three consecutive long-pass filters
(LP, Thorlabs FELH0950), which remove crosstalk from the pump-laser by suppressing
its photons by 15 orders of magnitude. The recordings of both detectors are carefully
post-processed in order to account for the transmission coefficients of each component
inside the respective beam paths into account in order to obtain the pump and emission
intensity at the top of each QDML.

We characterize in great detail a total of eight QDMLs located in different regions of the ar-
ray. We target the extraction of quantitative values, which is significantly more challenging
than obtaining simply qualitative dependencies. We therefore have to pay great attention
to the calibration of all involved components and to the creation of reference systems. A
particular challenge is that we vary the pump wavelength by as much as 250 nm, and any
chromatic aberrations and modifications of pump spot diameters have to be compensated
for. For this reason we have implemented strict and reproducible alignment criteria which
results in equivalent experimental conditions for the different pump wavelengths.

First, we use a reference laser at 980 nm (Thorlabs BL976-SAG300), the same wave-
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Figure 4.16: Experimental QDMLs scheme. The laser at 980 nm is used to adjust the
MOS focal distance relative to the QDMLs, for which the 90:10 output port acts as confocal
reference (Ref. 1) The pump laser with a shorter wavelength is decolimated in order to
maximize coupling into the reference fiber (Ref. 2) and therefore focusing on the top of
the QDML.

length as the QDML emission. Before being injected into the experiment’s free-space
path, this laser passes through a 90:10 four-port fiber-splitter (Thorlabs TW1064R2A2A).
The 90% output port is connected to the experiment via collimation optics, who we care-
fully align using a mirror placed inside the optical path directly following the collimation
section. The mirror angle, the distance of the collimation lens (Throlabs AC254-030-B-
ML) relative to the singlemode fiber output and the fiber’s (x, y)-position are optimized in a
such way that the feedback collected by the fiber is maximized, for which we use the 10%
output-port of the fiber-splitter in backwards direction. This collimates the 980 nm beam
based on a highly sensitive confocal measurement, and we created reference 1 (Ref. 1).
Second, we proceed from there and reproduce the QDML injection optics outside the
cryostat using the identical microscope objective (MOR) and emulate optical injection into
QDMLs with a singlemode optical fiber (Thorlabs 780HP) connected to a power-meter.
Alignment of MOR and the singlemode fiber is optimized to maximize the collection effi-
ciency of Ref. 1 into this single-mode fiber, hence to conditions precisely matching the
QDMLs’ emission wavelength. This creates reference 2 (Ref. 2). The third step is adjust-
ing the sample’s position inside the cryostat. For that, we again use Ref. 1 and ensure
that its focal spot is formed on top of a QDML, which was achieved by optimizing the
sample’s z-position such that the back reflection into the 10% output port of Ref. 1 is
optimized. This creates alignment condition which again leverages confocal detection for
high sensitivity, and two piezo-motors (θ, ϕ) control the parallel alignment, while the third
motor controls the distance of the sample relative to the focal plane of the MOS at 980 nm,
respectively. And as the fourth and final step, we align each of the different pump lasers
by maximizing their power injected into Ref. 2. Compensate for the small wavelength in-
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Wavelength (nm) 912 786 730 660
MO transmission 0.9 0.86 0.85 0.77

Injection coefficients - 0.59 0.57 0.64

Table 4.1: Summarize of the MO transmission and the injection coefficients through the
reference single mode fiber depending on the wavelength.

duced shifts in focal distance of MOS by slightly decolimating the pump. This procedure
ensures that each pump’s focal spot is precisely located on the top of the QDMLs. Only
after these four steps we can be certain that the pump laser will always be focused in the
same plane, regardless of the particular pump wavelength.

For calibration purposes we determine the injection coefficient of each pump laser into
Ref. 2. The injection coefficient is determined by the convolution between the mode field
areas of the fiber and focused incident pump laser. MO transmission values as well as
the collection efficiencies at our pump wavelengths are given in table 4.1. Noteworthy, we
obtain highly reproducible collection efficiencies which have a deviation of only 7%, which
is excellent considering that we measured across 250 nm. This reproducibility ensures
that each pump laser’s spot on the QDMLA will be aligned to close to identical conditions.

The structure of the DBR was spectrally characterized using a supercontinuum source
from 600 nm to 1000 nm (see Fig. 4.12). In order to probe the micropillars structure in
the identical configuration as used for the pumping, the broadband laser is coupled into a
singlemode fiber connected to a 50:50 four port fiber-splitter. The supercontinnum is col-
limated in free space and focused onto the QDMLs. The backreflection was collected by
the same fiber and was measured by the OSA. The spectra were normalized by the feed-
back of the supercontinuum reflected off a mirror instead of the QDMLs, hence providing
a calibration of the inherent losses of the setup.

4.3.6/ RESULTS

We first study a QDML emission for a constant pump power. The optical spectrum, see
Fig 4.17(a), is measured by the OSA through collection by a confocal system. Main mode
emission is at 979.105 nm. When the pump power is high enough, higher order modes
start to appear with significantly lower powers (-16 dB and - 26dB for the second and
third modes). Figure 4.17(b) shows the sample illuminated by LED (Thorlabs M1050L2)
and the laser emission of a QDML, the pump laser being suppressed for image acquisi-
tion by a camera (IDS uEye UI-3482LE). We find that the emission of QDML is spatially
singlemode.

BULK GAAS PUMPING

By selecting the wide GaAs pumping range from 660 nm to 786 nm, we test the validity
of our approach for a variety of absorption coefficients. Starting with the pump at 786 nm,
40 input-output curves have been measured on the same eight QDMLs. An example of
an input-output curve is shown in Fig. 4.18(a) where the photon number in the cavity nl

is plotted as a function of the pump power (red squares), the fit corresponding to Eq. 4.5
and its uncertainty are plotted as red and yellow lines, respectively. We obtain an average
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Figure 4.17: (a) Optical spectrum of a QDML. (b) Image of the QDMLA illuminated by
LED where one micropillar is optically pumped beyond its lasing threshold. The pump
laser was suppressed for the image acquisition. The inset is the QDML emission without
illumination.

lasing threshold of Ipump ≈ 2 mW. However, for shorter pump wavelengths the GaAs
absorption increase and consequently the absorption by the top DBR increases. This
causes an increase of non-radiative decay which locally heats the QDMLs. That induces a
relative shift between wavelength and gain profile which causes a reduction in the optical
gain [164, 176] in an effect known as thermal roll-over. For 730 nm and 660 nm pumping,
this effect is so strong that it prohibits the QDMLs from crossing the lasing threshold. A
comparison between the three different GaAs pump wavelengths is given in Fig. 4.18(b).
The gray dots are the collective data of 40 input-output curves obtained for λP = 786 nm.
The blue, red and green data correspond to below threshold emission for pumping at
786 nm, 730 nm and 660 nm, respectively. Here, we used a more sensitive photodetector
in order to obtain a higher signal to noise ratio at the nW power-levels below threshold.

We fit experimental data with Eq. (4.5) for 786 nm pumping using κGaAs(786 nm) = 3.34 ·
10−2. As explained in Sec.4.3.3, n0 depends on the pumping and the QDML structure, we
therefore used an independent parameter nGaAs

0 (786 nm) per QDML. However, we set one
global δGaAs(786 nm) and βGaAs(786 nm) to fitting all QDMLs at this particular wavelength.
The parameters obtained from the 40 fits are δGaAs(786 nm) = 1.91 · 10−2 ± 0.01 · 10−2,
βGaAs(786 nm) = 2.24 · 10−2 ± 0.03 · 10−2 and nGaAs

0 (786 nm) = 2913 ± 70 [170]. β and δ

are determined with an uncertainty in the % range, and n0 has a comparable standard
deviation across the eight lasers. The β factor is within the range commonly determined in
other experiments, and we find a very low exciton conversion efficiency δ. Only a couple
of percent of excitons created by the pump end up in a QD transition contributing to lasing.

For λ ≤ 730 nm our QDMLs do not lase, yet data recorded below threshold allows us
to confirm our findings. Based on the calculated κGaAs(λ) we rescale the input-output
curves for all GaAs pump wavelengths and show the resulting data in Fig. 4.18(b). By
following the arguments presented in Sec.4.3.3, we now define n0 as a laser parameter
independent of the GaAs pump wavelength. Regarding βGaAs(λ) we assume a negligi-
ble heating effect between the three GaAs pumping wavelengths, in particular below the
lasing threshold, which leads us to keep the parameter constant. Finally, although we
would expect essentially identical exciton conversion efficiencies since the three pumping
levels are linked through efficient intra-band relaxation, we set δGaAs to be independent
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Figure 4.18: GaAs pumping results. (a) Input-output curve from one QDML pumped at
786 nm (red squares) is fitted (red line and its uncertainty in yellow) by the Eq. (4.5). All
the input-output curves at 786 nm (gray dots) are plotted in panels (b) and (c) where the
measurements below threshold for 786 nm, 730 nm and 660 nm pumping are plotted in
blue, red and green dots. (c) Rescaling to the absorbed pump power. The superimposi-
tion of the curves shows that the main impact of the GaAs pumping wavelength is related
to the absorption efficiency κGaAs(λ).

of the QDMLs, yet a free parameter for all three pump wavelengths. From the linear
fitting of the experimental curves depicted in Fig. 4.18(b) via Eq. (4.8), we obtain a av-
eraged nGaAs

0 = 3496 ± 254 and δGaAs(786 nm) = 2.4 · 10−2, δGaAs(730 nm) = 1.8 · 10−2 and
δGaAs(660 nm) = 3 · 10−2 [170]. The fits are plotted in Fig. 4.18(b) with the same color as
their respective data points, the uncertainty is represented by the lighter lines. Crucially,
the very small variations in δGaAs mean that the calculated κ(λ) accounts for the QDMLA
wavelength dependence when pumping GaAs. On a loglog-scale efficiency variations for
pumping at different wavelengths result in an offset between the curves, therefore pump-
ing at 730 nm and 660 nm are respectively 43% and 74% less efficient than pumping at
786 nm. Plotting the data as a function of the pump power absorbed by the gain medium
in Fig. 4.18(c), we find that the three curves are practically superimposed. It can there-
fore be deduced that the difference in pumping efficiency resulting from the wavelength
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is mainly due to the change in the GaAs absorption coefficient; internal exciton relaxation
and photon capture processes remain essential independent of the pump wavelength.

In order to increase the global efficiency, we tried a GaAs pumping from the side. Instead
of focusing the pump laser on the top of the DBR, we readjusted the focus 3.5 µm deeper,
at the beginning of the laser cavity. The idea is to minimize the absorption of DBR thanks
to the part of the pump beam which does not suffer losses by avoiding DBR from the
side. Ultimately the results for the three wavelengths showed no significant improvement
(+0.61% for pumping at 786 nm), if not a degradation (-1.08% and -5.0% for 730 nm and
660 nm, respectively).

WETTING LAYER PUMPING

We characterized pumping in the range from 905 nm to 922 nm, which spans the DBR
reflection minimum indicated by the dashed line in Fig. 4.12 and detailed in Fig. 4.14. Cru-
cially, for a sample temperature of ∼ 130 K we expect the WL’s transition within this range.
A typical input-output curve obtained at the DBR’s transmission maximum at 912.3 nm
is given in Fig. 4.19(a). The photon number in the cavity nl is plotted as a function of
the pump power (blue squares) with its fit (blue curve) and uncertainty (cyan curve). We
obtain a lasing threshold of around 10 mW.

We recorded a total of 114 input-output curves for the eight identical QDMLs. According
to our previous line of argument explain in Sec. 4.3.3, we defined a single βWL and δWL

for fitting all data. Parameter nWL
0 was initially free for each input-output series since it de-

pends on the QDML’s characteristics and on the pumping configuration itself. We found
that the parameter nWL

0 strongly depends on the pump wavelength. This dependence is
shown in Fig. 4.20(a) where normalized nWL

0 are averaged by a moving filter of width 12
(black squares). Our approach already takes DBR reflection into account, and the result-
ing shape and width (full width at half maximum of 14.8 meV compared to ∼10 meV in
[177]) suggest that the variation is in fact related the WL’s absorption spectrum. We have
therefore fit (blue line) Fig. 4.20(a) by a polynomial and have incorporated it’s normalized
version into the absorption efficiency κWL. Results of κWL before (blue dots) and after
(black squares) this post-treatment are shown in Fig. 4.20(b). Since the WL’s absorption
spectrum is now taking into account by κWL, we can assign a unique nWL

0 per QDML,
and no longer for each input-output curves. After filtering, we fit the remaining 102 input-
output curves and obtained: δWL = 7, 35 · 10−3 ± 0.07 · 10−3, βWL = 9.7 · 10−2 ± 0.2 · 10−2 and
nWL

0 = 627 ± 151 [170].

Figure 4.19(b) plots all input-output curves (gray dots). The blue, green and red curves
are three examples of the same QDML for three different pumping wavelengths (λb =

921.3 nm, λg = 915.5 nm and λr = 911.8 nm, respectively), which results in three different
absorption efficiency κWL(λb) = 3.1 · 10−3, κWL(λg) = 5 · 10−3 and κWL(λr) = 5.5 · 10−3, re-
spectively [170]. We see in Fig. 4.19(b) an increase in pumping efficiency as a function of
absorption efficiency, and in general the three curves are spaced far apart. In Fig. 4.19(c)
we plot the same data according to the number of pump photons absorbed by the WL,
and in this case the blue, green and red curves are superimposed. The contrast between
panels (b) and (c) shows that when including the derived rescaling according to the DBR’s
transmission and the WL’s absorption spectra the input-output curves are correctly renor-
malized. This confirms the validity of our approach and the wavelength independence of
δWL and βWL.



96 MULTI-LASER RECURRENT NEURAL NETWORKS

(b)

Ppump (mW)

(c)

Ppump (mW)
abs

(a)

Ppump (mW)

In
tr

a
ca

v
it

y
 p

h
o
to

n
 

n
u
m

b
e
r 

n
l

In
tr

a
ca

v
it

y
 p

h
o
to

n
 n

u
m

b
e
r 

n
l

Figure 4.19: WL pumping results. (a) The input-output curve from one micropillar (blue
squares) is fitted (blue line and its uncertainty in cyan) by the Eq. (4.5) where the WL
spectral profile takes into account in the absorption efficiency. All the input-output curves
(gray dots) are plotted in panel (b) and (c). The fact that the three curves are super-
imposed only in panel (c) indicates that absorption efficiency κ is related to the pump
wavelength while β and δ are independent from it.

PUMPING COMPARISON AND DISCUSSION

We have characterized with great detail the input-output curves of eight QDMLs for two
different pumping mechanisms. We find that the exciton conversion efficiency is over 2.6
times higher for pumping bulk GaAs than for WLs. Due to the direct contact between
WLs and QDs, initially we intuitively expected an opposite ratio, and this result surprised
us. However, excitons in the GaAs matrix can relax into the WL and the QDs, and this
combined recombination channels could be the reason for δGaAs > δWL. We also find that
despite its lower efficiency, WL pumping presents a significant advantage with respect to
the laser’s spontaneous emission confinement factor (βWL ≈ 0.1) compared to pumping
into the bulk GaAs (βGaAs ≈ 0.02).

Regarding the global pumping efficiency of QDMLs, we obtain a lasing threshold of
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Figure 4.20: (a) Wavelength distribution of nWL
0 (black squares) for the WL pumping and

its polynomial fit (blue line) This is the consequence of our model not incorporating the
WL’s absorption spectrum. (b) Pump absorption κWL for WL pumping before to take into
account the WL’s extracted absorption spectra (blue dots) and after (black squares).

∼10 mW for WL pumping at the maximum DBR transmission. This value is too high
for optical pumping of a large number of QDMLs. However, we find that the changing ma-
terial’s absorption coefficient has a major influence on the QDMLs’ performance: when
pumping at 786 nm, we obtain a lasing threshold of ∼2 mW, i.e. a performance 5 times
higher than WL pumping. Thereby, it should be possible to pump a hundred QDMLs
with a commercial semiconductor laser, but further optimization of efficiency would be
desirable.

At some stage we attempted to increase the absorption efficiency κ by focusing the pump
laser waist at the top of the GaAs cavity in order to minimize the impact of DBR absorp-
tion by partially pumping the QDMLs through their side walls. Regarding GaAs pumping,
the associated results showed no significant improvement or even a slight degradation.
However, the margin of these modifications were too small to arrive at a conclusion. Ulti-
mately, the highest WL pumping efficiency occurs when the pump beam waist is focused
on the top of the QDMLs.

Our results identify two major challenges for increasing the optical pumping efficiency.
When pumping the monolayer thin absorption medium of the WL unavoidably results in
a very low pump absorption efficiency. We therefore find that WL pumping will always be
limited to below 1% power efficiency. Similar, the bulk GaAs pumping efficiency is cur-
rently limited to a couple percent due to absorption by the top DBR. However, this effect
can be highly mitigated by designing a top DBR comprising of materials with a bandgap
higher than the one of the QDML’s cavity. An ambitious strategy is to slightly modify the
DBR composition, in particular the GaAs layers. By changing these to Al0.1Ga0.9As, the
bandgap increases by 125 meV, to approximately 751.6 nm (760.4 nm) for 77 K (130 K).
The GaAs refractive index would decrease by 5.4 · 10−2, and as a consequence DBR re-
flectivity at 980 nm would only decrease from 99.57% to 99.12%. Following such a strat-
egy the absorption efficiency will increase by a factor of 7.4, thus exceeding 20%, which
leads to a lasing threshold of 270 µW. We also find that the exciton conversion efficiency
κ stays low. The non-radiative decay of the excitons could then be mitigated. We pro-
pose to passivate QDMLs [178, 179] in order to reduce the defects located at the QDML’s
etched sidewalls which contribute to losses. For example, GaAs passivation by nitridation
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allows reducing the surface state density by a factor of 6 and the effect is stable over time
[180]. Such improvements using established techniques therefore promise a significant
improvement of QDML’s conversion efficiency by one to two orders of magnitude.

4.4/ QDMLA PUMPING

Optically pumping a large number of QDMLs simultaneously is not trivial. Uniformly illu-
minating a large area with the pump laser is not an option. All energy deposited between
the micropillars, corresponding to the majority of the sample’s surface (' 82% in our
case), would not contribute to optical pumping. Even worse, it will contribute and hence
increase parasitic sample heating. We will therefore diffract the pump laser such that
each diffraction order is precisely focused on a different QDML [113].

In order to increase the flexibility of the system, the diffraction pattern for creating multiple
pump spots in parallel is not created with a passive element (DOE) but using a SLM (San-
tec SLM-200) in reflection. The pattern can then be adjusted to the particular QDMLA.
Several constraints must be taken into account, which can lead to difficulties in building
the architecture of the optical system presented in Fig. 4.16. Since we want to pump a
large number of QDMLs at the same time, the fewest optical elements should be used,
in order to maintain the highest pump power at the sample. The incidence angle of the
laser on the SLM must be close to normal (93 degrees in our experiment) to maximize
the SLM’s efficiency and use a fiber polarization controller removes reflection losses of
waveplates when adjusting to the required polarization (p-polar for phase modulation by
the SLM). In addition, the diffraction orders having an angle in comparison to the zero or-
der, the distance between the SLM and the microscope objective is restricted to 208 mm
in order to avoid beam clipping by the MOS clear aperture of 11.32 mm [17].
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Figure 4.21: Example of the diffraction grating used to create a 3x3 optical pattern. Three
parameters must be adjusted such that the diffracted orders are superimposed on the
QDMLs. Once the phase modulation amplitude, grating orientation, and spatial period
are properly adjusted, the pattern is then extended to all pixels in the SLM.

We start with a phase mask with a periodic structure creating a 3×3 diffraction pattern as
in [16, 113], and to move to masks creating N × N in the future. An example of the phase
mask for a 3 × 3 diffraction pattern is shown in Fig. 4.21, which is identical to the DOE in
section 2.1.4.
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Figure 4.22: Laser emission images of micropillars optically pumped. The pump laser is
spectrally suppressed. (a) The pump laser is not diffracted and pumps a single micropillar.
Then the diffraction grating with optimized parameters is displayed on the SLM, a 3x3
optical pattern simultaneously pumps nine QDMLs. (b) The spatial period of the grating
is adjusted in such a way that the diffraction orders are superimposed on the neighboring
micropillars of the specular order. (c), (d), (e) and (f), these spatial periods are divided by
two, three, four and five, respectively.

The phase modulation amplitude of the binary phase mask must be adjusted to obtain
an uniform optical power between the different diffractive orders. In addition, the phase
mask’s orientation and the spatial period must be adjusted such that the diffractive orders
are superimposed on top of the individual QDMLs. The emissions of a 3 × 3 array of opti-
cally pumped QMPLs are shown in Fig. 4.22. In panel (a) the pump laser is not diffracted,
only one QMPL is pumped. The optimized phase mask is then displayed by the SLM, and
in panel (b) the emission of the optically pumped 3 × 3 QDMLs is shown. By modifying
the spatial period of the phase mask, we can readily adjust the distance between the
different diffractively created pump spots. As a consequence, we can selectively pump
3 × 3 QDMLs with different separation between the lasers, see Fig. 4.22(c-f). The laser
emission presented in panels (c), (d), (e) and (f) are obtained for a pitch between the
diffracted pump spots equivalent to 2, 3, 4 and 5 times the QDMLA pitch, respectively.
We find that even with an optimized phase modulation, the intensity of the laser emission
is not uniform. QDMLs in the diffracted pattern corners receive more pumping intensity
than those located on the horizontal or vertical diffraction axis. Nevertheless, the intensity
of the non-diffracted order is not predominant, and the emission of the central QDML in
Fig. 4.22(b) represents only 12% of the 9 QDML emission.

The orientation and the diffraction grating period is studied in more detail in Fig. 4.23.
The laser emission of all nine pumped QMPLs is integrated on one detector for different
values of the two parameters.
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Figure 4.23: Characterization of phase mask parameters for creating a 3 × 3 pump spot
array. Nine QDMLs are pumped simultaneously and their combined power is detected.
(a) The spatial period is characterized for optimal pattern orientation. The blue curve
corresponds to a pumping nine neighboring QDMLs (x = 1). The spatial period of the
phase mask is divided by x = 4 and x = 8 for the red and blue curves, respectively. (b)
The spatial period corresponding to the blue curve is now set to 295 pixels, then divided
by 4 and 8 for the red and green curves, respectively. The optimal orientation for all three
measurements excellently matches.

When we study the phase mask’s period such as in Fig. 4.23(a), the phase mask’s ro-
tation was previously optimized. A first measurement is performed with a spatial period
ranging from 250 to 350 SLM pixels (blue curves). We observe that the laser emission
of the nine QDMLs increases to a maximum which corresponds to the configuration of
Fig. 4.22(b). In order to increase the sensitivity of the characterization, two further mea-
surements were performed. The spatial period of the network is divided by x = 4 (red
curves) to increase the impact of its relative variation. This is reflected in the measure-
ments by a thinner emission peak of the red curve. A space period of the phase mask
results in a larger separation between the individual pump spots of the 3 × 3 pattern,
and the red curve corresponds to Fig. 4.22(e) where the QDMLs distant by 4 times the
QDMLA pitch from the central micropillar are pumped. The green curve is obtained by
dividing the grating spatial period by x = 8, further increasing the relative variation of the
period. The consequence is the appearance of two peaks on each side of the central
peak at a distance of ≈ 5 pixels, these correspond to the laser emission of radial neigh-
boring QMPLs. In other words, this phase mask has sufficient resolution to distinguish
the diffraction angle necessary to pump the 7th (right peak) from the 8th (central peak)
and 9th (left peak) QDML starting from the central micropillar. This technique applied to
this SLM would therefore have the physical possibility of pumping at least 361 QDMLs.
The optimal spatial period of the phase mask is close to 295 pixels, i.e. 2.36 mm with
an SLM pixel pitch of 8 µm, around four periods can therefore be displayed on the SLM
(1920x1200 pixels). In order to satisfy the diffraction principle and obtain the desired in-
terferences, the diameter of the pump laser beam should be at least equal to one period
but ideally larger.

The orientation characterization of the phase mask is presented in Fig. 4.23(b), the phase
mask’s period was set to the optimum 295 pixels. The different colors represent the same
configurations as in panel (a), i.e. the spatial period of the blue data is 295 pixels, those of
the red and green data are divided by four and eight, respectively. In order to superimpose



4.4. QDMLA PUMPING 101

the diffractive orders of the pump beam on the 9 QDMLs, proper angular orientation of
the diffracted pattern is crucial. We then measured the 9 collective QDMLs emission
for a phase mask orientation between 30 and 70 degrees. The three results (blue, red
and green squares) and their Gaussian fit (blue, red and green lines, respectively) match
excellently. As expected, the best sensitivity to rotation is obtained by the blue curve. We
obtain an optimal angle of 49.18 ± 0.08 degrees with 95% confidence bounds.
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Figure 4.24: Phase mask optimized displayed across the entire SLM screen

The resulting, optimized phase mask is therefore, oriented 49.2 degrees clockwise and
with a period of 295 pixels as illustrated in Fig.4.24. Based on this configuration, we will
now characterize the laser emission of nine QDMLs optically pumped simultaneously. We
use pumping the central micropillar without using the phase mask as a reference. The
input-output curve is shown in Fig. 4.25(a) where the laser emission power of the central
QDML is represented as a function of the pump power. We then load the phase mask
on the SLM and measure the input-output relationship of the nine QDMLs on the same
powermeter. The blue curves in Fig. 4.25(b) illustrate the result obtained. The same
experiment was performed again by dividing the spatial period of the diffraction grating by
seven, thus increasing the spacing between the diffraction orders by the same amount.
The result obtained is plotted in red in the same figure. We observe in Fig. 4.25(b) that
for a pump power nine times higher than panel (a), the emission of the nine QDMLs is
only 4 to 5 times higher. Therefore, we only lose about 50% of pumping efficiency during
the 3 × 3 optical pumping. One reason might be a reduced homogeneity between the
diffraction orders of the pump laser.

The homogeneity between the individual diffractive orders is further reduced by creating
from the same principle a 5×5 diffraction pattern (see Fig. 4.26). The concept of optically
pumping the QDMLs should therefore be further developed to diffractively create N × N
pump spots. Such diffractive beam splitters have already been obtained experimentally
with excellent homogeneity [181–184], which shows that such a strategy is feasible.
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Figure 4.25: Efficiency characterization of the simultaneous optical pumping of nine
QDMLs. The global emission power of all micropillar pumped is plotted according to
the pump power. Panel (a), reference for a single pumped QDML. Panel (b), the pump
laser is diffracted. The blue curve corresponds to a spatial period of the phase mask of
295 pixels, the red to a period divided by seven, hence 42 pixels.
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Figure 4.26: (a) Diffraction grating based on the phase profile shown in Fig. 4.21. The
added spatial frequencies create the 5x5 diffraction pattern shown in panel (b). We can
then observe the inhomogeneity between the diffraction orders produced by this method.
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4.5/ SUMMARY

In this chapter we have discussed the basic building blocks that will be used to build a
spatial optical recurrent neural network. The objective is to design a demonstrator that
can be generalized for a large-scale neural network. To achieve this we use the neural
network architecture described in chapter 2 by replacing the electro-optic nodes with
QDMLs. The diffractive nodes coupling method, the readout layer and the learning will be
similar, hence we will be able to profit from the experience obtained with these methods
based on the other setups.

Nevertheless, the realization of an all-optical network remains a significant engineering
challenge. In this chapter we have studied several technological issues, the current limit-
ing factors, and described the different engineering strategies deployed to face the difficul-
ties linked to the experimental reality. First of all, we use a QDMLA with a very high quality
factor, and the wavelength homogeneity required for optical injection locking results in a
strong technological challenge during fabrication. Additionally, we were confronted with
unexpected mechanical instabilities when cryogenically cooling the sample. The solution
put in place required engineering work, from a mechanical, cryogenic and vacuum point
of view. The result obtained certainly still provides significant amount for improvement,
as, the sample is stabilized but its temperature is 130 K instead of 77 K. A change of cryo-
stat will ultimately be desired to gain ease of use and in particular to potentially reduce
the lasing threshold of QDMLs by 38% when additionally lowering its temperature. Nev-
ertheless, this compromise allowed us to continue our initial investigations and to develop
the procedures for preparing the sample, handling the now complex and very confined
vacuum chamber, cooling and aligning the QDMLA.

We were able to perform a detailed pumping characterization of eight QDMLs from an
array with homogenized emission wavelengths. We have studied pumping either WL or
the bulk GaAs. The DBR effects and the gain medium absorption were taken into ac-
count and careful calibration enabled us to characterize internal transfer mechanisms of
the QDMLs. This allowed us to compare pumping mechanisms over several hundred
nanometers in wavelength and to extract a quantitative description. Considering the free
parameters one can determine using a simple rate-equation description of QDMLs, we
measured the QDML’s spontaneous emission confinement factor β, the exciton conver-
sion efficiency δ and the number of excitons at transparency n0. We lend significant
robustness to our results by fitting a large number of QDMLs at a variety of pumping
conditions. The number of carriers at transparency n0 was individually optimized for each
data or laser, while β and δ were kept uniform for a particular laser or pumping condition.
For the correct global description of optical pumping, n0 showed no dependency of the
particular pumping wavelength, and we achieved this for describing GaAs and WL pump-
ing alike. Using the bulk GaAs pumping, the global efficiency is currently high enough to
optically pump simultaneously approximately one hundred QDMLs. Our characterization
allowed us to understand two limiting factors and we proposed two improvements which
would increase the pump absorption efficiency κ and the exciton conversion efficiency δ.
Under these conditions, the global pumping efficiency would be increased by one or two
orders of magnitude.

Simultaneous optical pumping up to 9 QDMLs was performed. The strategy adopted
was to use a diffraction pattern already known from the electro-optical experiment. A first
characterization of a 3×3 pattern has been carried out, which constitutes a first part of the
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demonstrator. By adding spatial frequencies to the diffraction pattern, we can therefore
increase the number of diffraction orders. However, this method turned out not to be
applicable for a large number of diffractive orders due to insufficient power homogeneity.
This work could be continued using a phase retrieval algorithm that will seek the optimal
phase mask to generate the desired diffraction pattern [185–187].



CONCLUSION AND PERSPECTIVES

CONCLUSION

We saw in Chapter 1 the important role of neural networks in performing tasks that are
simple for a human but extremely challenging to translate into traditional computer lan-
guage. Computers are extremely efficient at executing a pre-established sequence of
commands, i.e. an algorithm, which must be entirely and without ambiguity designed
by the programmer. For example, pattern recognition was not long ago still extremely
difficult for a computer due to the need of interpreting its general characteristics, a task
difficult to formalize. On the contrary, the learning of neural networks is generally induc-
tive. They are composed of a large number of neurons which are highly interconnected.
By adjusting the connections during their optimization referred to as learning, the neural
network is able to generalize characteristics from examples. The computational power
of a neural network comes partly from the number of neurons but also from the number
of interconnections. The human brain, capable of generalizing an unknown rule only on
the basis of few examples, has approximately 80 billion neurons [66] which each have
between five and sixty thousand connections [67]. One of the fundamental issues in the
design of artificial neural networks is therefore their number of nonlinear nodes and their
massive and parallel connections.

Artificial neural networks have recently emerged as a viable approach to tackle major
challenges [77, 188] based on an increase in the computational power of computers.
However von Neumann architecture, which is the concept on which computing is still
largely based, is very different of the characteristics observable in biological neural net-
works, most importantly their massive parallel connectivity. This contradiction could po-
tentially be ignored if the computing power continued to increase strongly. However, due
to the current sizes of the components of state of the art integrated circuits the margin
for further reduction is limited [11]. The heat dissipation further constraints an excessive
density of integrated circuits and limits the clock frequencies of CPUs [82]. In addition, an
increase in the components number by increasing the surface area of the processors is a
difficult challenge. Indeed, the connectivity is constrained both by the intrinsic character-
istics of electronics and its manufacturing processes. Electronic architectures still remain
mostly planar and electrical connections cannot cross each other. In addition, the infor-
mation flow of an electrical connection depends on the ratio between its diameter and its
length [81]. In view of these constraints, the design of massive and parallel connectivity
between artificial electronic neurons is an important challenge. Because of these difficul-
ties, computing may not continue to accelerate sufficiently to meet the needs of neural
networks [84]. Training the best performing systems requires a large amount of energy
and already necessitates data centers[80].

A paradigm shift currently emerges to address these challenges by implementing neural
networks in optics [85, 92, 107]. Light is well known for its high capacity for information
transport [14], more specifically because optical communication channels can cross or
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even overlap in space, thus allowing strong parallelization. Light is therefore suitable for
creating the high connectivity [113] which is essential for a neural network’s functioning. In
addition, to allow scalability of systems, a 3D architecture where optical nonlinear nodes
are arranged on a surface and their interconnections are realized by optical diffraction
along the light propagation is a promising integration strategy [189].

We studied in chapter 2 an electro-optical neural network [16] based on the reservoir
computing concept [15]. Each part of the system has been studied in detail, in particular
the realization of artificial neurons by the combination of the SLM pixels and a polarizing
filter, and the network’s recurrent internal connections made by diffraction. Such optical
coupling between the nodes of the spatially distributed network gives high scalability to
the system since this technique could physically achieve a million connections [17]. The
readout layer is implemented using a DMD, allowing programming of fully parallelized
Boolean readout weights. The neural network being electro-optical, therefore analogue,
the learning algorithm is designed to operate without knowledge of all node states in order
to avoid an auxiliary information processing system. The algorithm is therefore based
on evolutionary learning [16], comparing the current error with the previous one, which
makes it simple and realistically implementable on a low complexity support hardware.
Importantly, the idea was to create an autonomous demonstrator, learning is performed
therefore in real time.

Despite the drawbacks of an electro-optical implementation, whether the necessity to use
a computer to control the electro-optical nodes, or the low computational speed of the
system, this approach gives a scientific advantage. Indeed, the parameters are easily
adjustable and reservoir states measurable, which turns this experience into a white box.
Using this access we studied in chapter 3 the different noise sources and in particular
the impact of additive or multiplicative noise on the SNR [136]. The system is resilient to
noise and has high consistency. A long study of learning under noise has also been per-
formed [135]. Although the error landscape has multiple local minima, we find that these
have a similar error. Learning never got stuck in a local minima with low performance.
We have shown that the configuration of the readout weights to solve a task is the result
of an optimization in the context of noise. The training result is therefore specific to each
situation. As the algorithm operates in real time, it is possible to continue optimization in
order to strengthen the neural network’s resilience to noise. In addition to the paralleliza-
tion of the couplings and the readout layer, we have shown that the learning time of our
algorithm scales linear with the number of network nodes.

While keeping the same architecture and therefore its strengths, in Chapter 4 we laid the
foundations to make an all-optical neural network. Nonlinear nodes are now implemented
by a QDMLA [18]. This node substrate change has multiple consequences, both on its
future performance and on its experimental implementation. The bandwidth of the system
will be of the GHz order, with limitations either due to the optical cavity roundtrip time, or
the QDMLs’s characteristic time scale. In addition, optical pumping of the QDMLs array,
although still under study, allows scalability by avoiding the connection problems that elec-
tric pumping faces. Homogenization of the QDMLA’s emission wavelength was carried
out, maximizing the potential coupling strength of the lasers [18]. We have performed a
quantitative study of optical pumping by exploring pumping either the samples WL or the
bulk GaAs of the laser cavity. Despite the absorption of the top DBR, bulk GaAs pumping
is more efficient than WL pumping. The quantitative results have helped to understand
the internal mechanisms of QDMLs and we propose two structural improvements to in-
crease the pumping efficiency by one to two orders of magnitude. Counting in the positive
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effect of further decreasing the sample’s temperature, the QDML threshold could be low-
ered to between 10 and 100 µW. This low pump power is essential for the design of a
large optical neural network.

PERSPECTIVES

Regarding the electro-optical neural network, this version is only at its first stage, new
modifications are already ready to be implemented. The Gaussian illumination of the
SLM will be modified to give way to flat illumination thanks to a Köhler integrator imple-
mentation. This new illumination will notably allow to increase the SNR by best exploiting
the dynamic range of the camera. The implementation of the input layer is also planned,
the architecture and its realization have already been considered. A laser will be injected
into a multimode fiber whose output facet will be imaged on the screen of the camera.
Some commercial fibers offer rectangular cores, the superposition of its image with the
image of the SLM on the camera will allow to all-optical injection information into the sys-
tem. The random but constant injection matrix will be directly produced by the coupling
between the modes of the optical fiber [118, 190]. Making the system more compact, in
particular the distances between the microscopes objectives, would significantly reduce
the problem of beam vignetting and therefore strongly increase the number of nodes in
the network. Abandoning the use of commercial mounts and manufacturing a tailor-made
global mount, would both optimize the network geometry and would add additional optical
stability and precision.

To take advantage of the noise source investigation that discovered the presence of corre-
lated noise, it would be interesting to work on noise reduction. Indeed, unlike uncorrelated
noises which have a zero overall average, the correlation leads to a non-zero mean. One
approach could be to subtract the mean of the noise that is continuously measured at an
additional neural network output.

A new PhD student is starting to work on modification of system use in order to obtain
spike neural network. This work will bring the system even closer to biological networks,
and will open new doors for research.

From a machine learning point of view, there is still a need to diversify the learning tasks.
With regard to pattern recognition, a strategy recently implemented is the creation of
spatial clusters within the phase offset matrix. This break in spatial symmetry of the state
of the reservoir should increase performance.

This last point was not a priority, in particular due to the low speed of the system, but
now a change of SLM is underway. The new fast SLM allows acceleration of the system
by a factor 100. This new paradigm will revolutionize the study of this neural network.
A current learning curve takes a full day, with the new system few minutes will only be
required. This may seem trivial but for the study of the system, the exploration of learning,
the understanding of all the factors involved, such as the role of noise, the study funda-
mentally requires robust statistics. While current exploration require weeks or months of
measurements, a few hours or days will then be necessary. This improvement will even
allow to explore certain characteristics of the system which until now were not possible.
This simple characteristic time change can therefore result in a leap in understanding
neural networks.
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About the exploration of the error landscape, a further study of the topology would be
relevant. Thanks to the frequency increase of the system it would now be possible to
map the error landscape according to 18 dimensions. Even if it may seem small mapping
in comparison to this gigantic dimension space, this will allow a better understanding of
the topology and thereby refine the learning algorithm when the system error is close to
local minimums.

Regarding to the all-optical neural network, the first need is to continue implementing a
diffraction grating on SLM to obtain the desired diffraction patterns. The implementation
of an optical feedback will allow to study QDML dynamics, then the addition of a DOE will
allow coupling between the lasers. The information input will be carried out by injection
locking via a tunable laser and the homogenizing work of the QDMLs frequency will
simplify this step. The readout layer and the learning algorithm can be directly imported
from the electro-optical experiment.

I would particularly like to conclude by bouncing back on the vision of Herbert Jaeger
[191] who emphasizes that wanting to calculate like a brain means not to simulate a neu-
ral network but, on the contrary, to physically embody "computing" inspired by the brain.
If we therefore want to take neuromorphic hardware seriously, this means going beyond
the comparison with traditional computing and taking into account a certain number of
real phenomena. The first is that the calculation then becomes physical. The system
is therefore analogue and subject to noise, to stochastic phenomena, then the question
of consistency arises. Drifts or system aging must also be taken into account. It would
even be interesting to study the system adaptation in response to the failure of a com-
ponent. The neural network performance is intrinsically linked in its connections number,
it is therefore important to be concerned about their parallelization in order to obtain a
scalable system. A large analogue neural network has as a corollary a certain unobserv-
ability. To maximize the efficiency of the system, all states are no longer measurable.
Besides, probing a low energy state could disturb it. More importantly, unlike electrical
computing where the clock requires high power consumption [83], the dynamics within
biological neural networks are not clocked globally or locally. To further mimic biology
and save energy, systems should therefore be based on continuous time. Even if these
perspectives are the fruit of an in-depth vision of hardware neural networks, the research
presented in this manuscript falls, less ambitiously, in this line and already take up several
challenges.
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A
CRYOSTAT VACUUM CHAMBER:

COPPER FOILS

In order to achieve the thermal transfer between the cold finger of the cryostat and the
sample, we have made two thermal bridges in serial using copper foils. Our thermal
bridges are an assembly of about fifteen thin (0.02 mm) superimposed copper foils, com-
bining mechanical flexibility with thermal conductivity. The first thermal bridge going from
the cold finger above the translation micrometer stage is fixed. The second connects the
underside of this part of the sample, therefore the thermal bridge must have enough de-
grees of freedom for the sample to be mobile, in particular longitudinally with a maximum
displacement ∆ = 5 mm.
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Figure A.1: Schematic illustration of the piezomotors and copper foils (red line) providing
a thermal bridge ensuring the heat transfer between the sample and the cold source.
Panel (a), piezomotor in unfolded position, the copper foil is then stretched to the maxi-
mum. Panel (b), piezomotor in folded position, the copper foils are then deflected laterally.

As illustrated in Fig. A.1(a), when the piezomotor is in the unfolded position, the stacking
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of motors has a height H = 55 mm. The copper foil must then measure at least the
length L = H. When the piezomotor is folded up, the stacking of motors has a height
H−Delta = 50 mm. The copper foil always measures the same length and must therefore
bend laterally. The constraint is to obtain a lateral displacement x less than 3 mm in
order that the copper foil does not touch the plastic tube which surrounds it and create an
unwanted thermal bridge.

Let us calculate the maximum deflection which takes place for the situation presented in
Fig. A.1(b).
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(A.1)

We note that the deflection x increases with the foil length L. Considering our situation,
we get x = 11.5 mm, which is far too large.

An obvious solution to the problem is then to fold the copper foil into an accordion, but
due to the small size the realization is difficult and folding a thin foil risks causing me-
chanical stress points which are conducive to damage. As illustrated in Fig. A.2(a), we
then realized an alternative which consists in winding the foil around the piezomotors in
the unfolded position. The propeller has a diameter d0 = 28 mm. When the piezomotor
contracts, shown in Fig. A.2(b), the diameter of the propeller becomes d1 > d0 but the pro-
peller also compresses on itself. Figure A.2(c) is a diagram of the two situations when the
propeller is unfolded, N is the number of turns of the propeller around the piezomotors.
The length of the foil L remains the same in both configurations, we then obtain

L2 = H2 + (Nπd0)2

L2 = (H − ∆)2 + (Nπd1)2 (A.2)

By identifying the two equations of the Eq. A.2, we can derive the number of turns N
according to the other parameters

(Nπd1)2 − (Nπd0)2 = H2 − (H − ∆)2

N2 =
H2 − (H − ∆)2

π2(d2
1 − d2

0)

N =
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H2 − (H − ∆)2

π2(d2
1 − d2
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(A.3)

By setting d1 = 31 mm the maximum diameter, it is then necessary to make at least 0.55
turns. This solution is then realistic. The diameter d1 according to the other parameters
is
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d1 =

√
H2 − (H − ∆)2

N2π2 + d2
0 .

(A.4)

To ensure a safety margin, we then choose to perform an entire turn, i.e. N = 1. In the
configuration of the folded piezo motor, the diameter of the propeller is then d1 = 29 mm.
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Figure A.2: Schematic illustration of the copper foil (red line) wound around the piezomo-
tors. In unfolded position, panel (a), the diameter of the propeller is d0. In the folded
position, panel (b), the helix compresses and its diameter d1 widens, i.e. d1 < d0. When
the propeller formed by the copper foil is unfolded in panel (c), the diameter d1 then clearly
depends on the number of turns N of the propeller.



114 CRYOSTAT VACUUM CHAMBER: COPPER FOILS

Figure A.3: Sample ready to be installed in the vacuum chamber of the cryostat. The
piezomotors and the thermistor are electrically connected, a double propeller of copper
foils is realized in order to establish a thermal transfer to the sample. The piezomotors
are mounted on a translation micrometer stage which is itself fixed to an insulating plastic
tube providing support to the assembly. To achieve good thermal transfer of the sample,
the copper foils must under no circumstances be in contact with the plastic tube.



B
TUNABLE PUMP LASER

The total design of the device, including the external laser cavity, its amplification and its
injection into a single-mode optical fiber is shown in Fig. B.9.

B.1/ EXTERNAL CAVITY LASER

The tunable pump laser was produced from a CW semiconductor laser at 915 nm and
nominal power 300 mW (Thorlabs M9-915-0300). The objective is to create an external
laser cavity in order to obtain a single-mode laser with a fine spectral width, stabilized and
tunable in wavelength over several nanometers.

A laser is a light oscillator amplified by a gain medium. The wavelengths are defined
by the length of the laser cavity where several longitudinal modes meet the criteria for
resonance. An infinity of modes exists but only a part is amplified by the gain medium
which depends on the wavelength. Adding an external cavity laser makes it possible
to add an additional resonance criterion, the longitudinal modes must satisfy both the
internal and external laser cavity. This results in spectral thinning, by finely adjusting
the dimension of the external cavity, it is then possible to obtain a single-mode laser
longitudinally. Such feedback within a laser can cause significant instabilities [192] but
on the contrary if the feedback force is high enough (greater than 10 %) the feedback
stabilizes the optical mode [193, 194].

To successfully tune the laser wavelength, many techniques exist [195], in our case we
use a diffraction grating to create the external laser cavity [196]. More precisely, the
grating used (Thorlabs GR13-1210) is a blaze grating in Littrow configuration, the angle
of the diffraction order is confused with the incidence angle [197]. The laser is collimated
with an aspherical lens and around 90% of the power is reinjected inside the laser via the
first order of the diffraction grating. The diffraction angle being related to the wavelength
by the grating formula (see Eq. (2.3), a variation of the grating angle amounts to changing
the angle of incidence, therefore the wavelength. Thus, varying the angle of the grating
is one way to tune the wavelength of the laser [198]. However, in this configuration the
angle of the non-diffracted order also varies with the orientation of the grating [199], which
makes it difficult to use the laser output. We have therefore installed a mechanism which
modifies the orientation of the mirror to return simultaneously to the grating [200] in a
such way that the angle variation turns into a very slight translation of the output beam.
This mechanism is visible in Fig. B.1 where the optical network and the deflection mirror
are fixed on the same support whose angle can be adjusted.
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Lens

Laser

Grating

Piezo
motor

Piezomotor housing

Mirror

Tip-tilt mount

Figure B.1: External cavity laser. The grating in Littrow configuration is attached to a
tip/tilt/Z piezomotor mounted inside a tube fixed to a tip-tilt mount. The output mirror
reflecting the output of the external cavity is attached to the same mount too. Changing
the orientation of the grating results in a slight translation of the beam reflected by the
mirror.

One method to align the optical feedback inside the laser is calling laser threshold reduc-
tion. To achieve this, the intensity of the pump current is increased very gradually until
the gain of the laser amplifies the main mode. The principle is to maximize the output of
the laser for a fixed current by modifying the orientation of the grating and the position
of the lens. Care must be taken to ensure that the laser always remains collimated. In
order to obtain the highest sensitivity during this adjustment, the current must be reduced
more and more in order that the laser always remains close to the stimulated emission
threshold. This method was performed and as indicated by the difference between the L-I
curves with (red squares) and without (blue circles) feedback in Fig. B.2, almost 90% of
the laser power is reinjected. The inset is a zoom near the laser threshold which shows
its reduction of approximately 10% in the feedback case.

The laser spectrum is shown in Fig. B.3. The resolution of the spectrum analyzer (Yoko-
gawa AQ6370D) is 20 pm. The side mode suppression ratio is 50 dB and the FWHM,
limited by the spectrometer resolution, is 37 pm. The central wavelength can be varied
from 905 nm to 923 nm, however the gain being centered at 915 nm, it is in this region
that the highest optical power is obtained.

B.2/ AMPLIFICATION

The pump laser is then amplified through a semiconductor optical amplifier (SOA). The
device that we use (Dilas, TA-090-2000) can amplify a laser seed between 10 and 30 mW
around 915 nm to 2000 mW. The SOA input is a ridge of 4 µm wide and 1.4 µm thick
mounted on a 7 × 6.4 × 4.3 mm frame drilled with a 2.2 mm diameter hole to hold it in
position. The aspect ratio of the input ridge is very close to that of the semiconductor
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Figure B.2: L-I curves of the laser with (blue circles) and without (red squares) feed-
back. The inset is a zoom where we can observe the laser threshold reduction when the
feedback is optimized.
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Figure B.3: Spectrum of the external cavity laser output. We can observe a side mode
suppression ration of 50 dB and the full width at half maximum is 37 pm.

junction of the laser, their spatial position are therefore adjusted to optimize the injection
of the laser into the amplifier.
As shown in Fig. B.4, a completely homemade mount was built in order that the SOA can
be integrated into the optical cage system. Several characteristics are required for the
mount. It must be thin enough to be able to get close the collimating lenses on either
side of the device. The amplifier must be controlled in current but also in temperature.
A thermistor is added in a copper block which ensures the heat transfer of the SOA.
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5 mm

Figure B.4: Conception of the amplifier mount compatible with the optical cage system.
The upper left panel shows the global view where the whole device is packed in a teflon
box. The lens must be close enough and be movable to inject light inside the amplifier.
In upper right panel, we can distinguish the amplifier in yellow. Through the radiator in
transparency, we can see the Peltier module which performs the thermal exchange. To
improve the efficiency and reach high current control (4 A), the radiator is cool down
thank to air flow which comes to the pneumatic connection visible to the right. In the
bottom panel, the view au the amplifier mount through the lens. The amplifier input with
a width and thickness of 4 and 1.4 µm respectively, is not visible.
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The copper part is connected to a Peltier module (Thorlabs TEC3-6) connected to a
radiator. However, the heat dissipation is not sufficient, an airflow is then injected inside
the radiator. In addition, the SOA must be electrically isolated from the cage system to
avoid a short circuit, protect the semiconductor from an electrical contact, and avoid a
loss of current (4 A). The SOA and its copper heat exchanger are therefore mounted
inside a teflon box. The current and the temperature are regulated by PID controller.

SOA

L1 L3 L6

Fiber

L2
cyl

L4
cyl

L5
cyl

(b)

θy = 45°

1.4 µm

Fast axis
(a)

LT = 3.6 mm

θx = 11°

d

Slow axis 256 µm

SOA'
d

Figure B.5: Panel (a) is a schematic representation of the SOA. While on the fast axis,
the divergence of the output is 45 degrees, this one of the fast axis is only 11 degrees. In
addition, the output is very astigmatic with a position deviation of more than a millimeter
between the source points along the two axes. Panel (b) is the optical scheme of the
output collimation. The principle is to use one lens and one cylindrical lens to image the
SOA output in the same plane SOA’ which can be collimated for both axis by the lens L3.
The slow axis beam can be extended by a cylindrical telescope and finally the beam can
be injected into the optical fiber.

Injecting the laser into the amplifier is difficult because there is no intermediate stage. The
protocol followed consists of a rigorous scanning of the surface after focusing the laser
on it. When the injection is performed, the device is very robust to potential mechanical
perturbations. The collimation of the SOA output is delicate too. The amplifier is a 1.4 µm
thick semiconductor junction. The operating principle is identical to that of a semiconduc-
tor laser but without a resonant cavity. To increase the relaxation effect of the carriers by
stimulated emission, the interaction length is 3.6 mm. But to avoid decreasing the power
density while keeping an adiabatic transition to maintain a singlemode profile, the guide
gradually widens in the form of tap, going from 4 to 256 µm wide. In order to avoid an
excessively high power density, the guide gradually widens in the shape of a cone while
maintaining the single-mode profile thanks to an adiabatic transition, ranging from 4 to
256 µm in width. The taper shape eliminates the phenomenon of filament propagation,
beam quality degradation, in particular due to the phenomenon of spectral or spatial hole
burning. The output of the amplifier shown schematically in Fig. B.5(a) is a ridge 1.4 µm
thick and 256 µm wide. The divergence of the output beam is then very different along the
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two axes, called the fast axis and the slow axis, respectively 45 and 11 degrees. In addi-
tion, the device is highly astigmatic. The source point for the slow axis is inside the taper
at a distance d from its output. This astigmatism distance d can be calculated according
to

d ≈
LT

nT
≈ 1.2 mm , (B.1)

where LT is the taper length and nT its effective refractive index.
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Figure B.6: Spatial mode profile of the pump laser beam after the SOA collimation.

The collimation of the amplifier output and its injection into an optical fiber uses six lenses
[201]. Figure B.5(b) schematically illustrates the method used, where the blue and red
rays respectively illustrate the fast and slow axis. The principle is to image the amplifier
output in the SOA’ plane in order to cancel the astigmatism effect. To achieve this, a first
lens L1 is adjusted to collimate the fast axis and focus the slow axis in the SOA’ plane. An
Lcyl

2 cylindrical lens is used to focus only the fast axis in the SOA’ plane. The SOA’ plane
is then the amplifier output image and can be collimated by the lens L3. The difference
in spatial width along the axes can be compensated by a telescope formed from Lcyl

4 and
Lcyl

5 to widen only the slow axis. A sixth lens L6 makes it possible to image the SOA’ plane
and therefore the amplifier output in the optical fiber. Figure B.6 is an image of the spatial
profile of the amplified and collimated laser beam.

B.3/ SPATIAL FILTERING

The pump laser must be spatially filtered in order to be singlemode and thus increase the
optical pumping efficiency of QDMLs. To achieve this, the pump laser is injected into a
singlemode fiber. However the power density is too high for a standard fiber, therfore we
are using a large mode area fiber (Thorlabs LMA-25). This fiber is a hexagonal photonic
crystal which creates an effective core having a diameter at 1/e2 of 20.7 ± 2 µm. The fiber
is cleaved with a ruby blade and polished at an 8 degree angle to avoid reflections. We
use quick connectors (Thorlabs BFT1 and B30270C) to maintain the fiber because the
glue used in standard fiber connections does not support the power density.
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Figure B.7: Image of the large mode area fiber. We can see the periodic structure creating
a photonic crystal which confines the mode in the center.

The great width of the mode confined in the fiber goes hand in hand with a small numerical
aperture, NA(915 nm) = 0.03, i.e. a divergence of 3.4 degrees. The incidence angle of
the pump laser beam is critical to maximize its injection. Thus, the fiber is fixed on a five
axis mount, constituted by three translations and two rotations. Due to the low numerical
aperture of the fiber, the difficulty in carefully collimating the amplified pump beam and
the difference in spatial profile between the pump laser and the optical mode supported
by the fiber, the efficiency of injection is only 20%.

Figure B.7 shows an image of the output of the fiber. One can observe the photonic
crystal with a width of 125 µm and the confined mode at the center. The fiber mode
is shown in Fig. B.8(a) where we can see its hexagonal profile. The full width at half
maximum of the measured mode is 28.3 µm. Fig. B.8(b) shows the 2D-Gaussian fit of the
mode fiber, the overlap integral between the two functions is 47%.
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Figure B.8: Panel (a) is the spatial mode of the large mode area fiber. We can see its
hexagonal shape, its full width at half maximum is 28.3 µm. Panel (b) is a 2D-Gaussian
fit of the fiber mode, the overlap integral between the two functions is 47%.
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RÉSUMÉ EN FRANÇAIS

Ces dernières années, l’intelligence artificielle s’est largement diffusée dans nos so-
ciétés numériques. Plus particulièrement, les réseaux de neurones artificiels sont util-
isés dans de nombreux domaines tels que les sciences, les transports, la finance, les
jeux, la médecine, l’agriculture, la sécurité, les médias, la gestion, l’assurance ou encore
l’ingénierie [1]. Les réseaux de neurones ont même révolutionné l’interaction Homme-
machine grâce à la reconnaissance vocale et manuscrite [2, 3]. Cependant, si les études
des premiers réseaux de neurones ont commencé il y a plus de 70 ans [4], et que les
concepts théoriques étaient déjà connus depuis la fin des années 1980, ce n’est que
récemment qu’une prodigieuse accélération des applications a vu le jour avec notam-
ment l’apparition du deep learning [5]. En plus des avancées de la recherche dans le
domaine, le récent succès des réseaux de neurones peut aussi être expliqué par les
progrès de l’informatique. La démocratisation du numérique au cours du XXIe siècle, no-
tamment avec l’avènement des réseaux sociaux [6, 7], a permis de stocker et labelliser
de gigantesques bases de données utilisées pour entraîner les réseaux de neurones.
De plus, la montée en puissance des ordinateurs a permis d’émuler numériquement de
larges réseaux de neurones. La victoire au jeu de Go de l’algorithme AlphaGo [8] contre
Lee Sedol en 2016 [9] a été un évènement majeur, rendant visible au monde entier les
avancées exceptionnelles réalisées dans le domaine des apprentissages automatiques.
Pour atteindre un tel niveau dans un jeu réputé pour son extrême complexité en raison
du nombre extraordinairement élevé de combinaisons [10], l’algorithme a dû s’entraîner
avec des dizaines de milliers de parties menées par des joueurs experts, puis jouer des
millions de fois contre lui-même. Ainsi, l’entraînement de tels réseaux de neurones est
réalisé en utilisant la puissance de calcul de data-centers.

Cependant, le fonctionnement d’un ordinateur est fondamentalement très éloigné de celui
des réseaux de neurones. Alors que la puissance de ces derniers provient d’une con-
nectivité neuronale massive et parallèle, les ordinateurs, basés sur l’architecture de von
Neumann, fonctionnent principalement en série. La taille des transistors actuels étant
déjà proche des limites physiques [11], leur nombre par processeur augmente difficile-
ment [12]. Depuis quinze ans, la progression de la puissance de calcul numérique est
principalement liée à l’augmentation du nombre de processeurs utilisés [12]. Cepen-
dant, l’évolution rapide des réseaux de neurones émulés par ordinateur, nécessitant un
grand nombre de connexions, requiert une puissance de calcul de plus en plus impor-
tante. Afin d’augmenter l’efficacité des réseaux de neurones numériques, des innova-
tions technologiques matérielles telles que la conception des Tensor Product Units (TPU)
améliorent partiellement la parallélisation en microélectronique [13]. L’un des principaux
défis des futurs réseaux de neurones artificiels est alors de parvenir à une connectivité
hautement parallélisée.

Alors que la technologie électronique des ordinateurs commence à atteindre ses lim-
ites [11, 12], nous montrons dans le Chapitre 1 que la recherche en optique offre des
pistes encourageantes pour les générations futures de calculateurs à base de réseaux
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de neurones [106]. En effet, contrairement à l’électron, le photon n’a pas de charge
électrique, ne souffre pas de dissipation d’énergie capacitive et inductive. Ces carac-
téristiques intrinsèques de la lumière sont déjà utilisées dans les télécommunications, où
les informations sont codées et échangées optiquement dans un seul canal de commu-
nication, comme une fibre optique, avec des débits record [14]. La possibilité pour les
informations optiquement modulées d’être échangées simultanément, avec un minimum
de bruits, permet une parallélisation de la connectivité des réseaux de neurones.

Notre objectif de recherche est de créer des réseaux de neurones inspirés par
l’architecture des réseaux de neurones biologiques. Le principe est d’utiliser des
phénomènes physiques pour éviter d’émuler les réseaux neuronaux sur ordinateur, et
ainsi de construire des systèmes physiques qui constituent intrinsèquement les réseaux
de neurones. Nous quittons alors le monde du tout numérique et revenons à des sys-
tèmes analogiques pour nous rapprocher des caractéristiques physiques du cerveau.
Pour poursuivre au mieux ces principes et réaliser des réseaux neuronaux avec une
connectivité parallélisée, nous utilisons la lumière comme vecteur de propagation de
l’information. Nos réseaux de neurones sont basés sur le concept de reservoir com-
puting [15] qui est une sous-catégorie de réseaux de neurones récurrents. L’architecture
du réseau est composée d’une couche de neurones d’entrée, d’une couche de neu-
rones récurrents, appelée réservoir, et d’une couche de sortie. Les neurones du réservoir
doivent avoir une caractéristique non linéaire. Les connexions neuronales de la couche
d’entrée et du réservoir peuvent être aléatoires et doivent être invariantes. Cette simplic-
ité d’architecture facilite fortement la réalisation d’un réseau de neurones optique. Cette
classe de réseau est spécialement bien adaptée pour résoudre des tâches de classifica-
tion et de traitement d’informations temporelles tel que la prédiction de série chaotique.
D’un point de vue pratique, l’apprentissage du réseau à résoudre un problème spéci-
fique consiste à ajuster uniquement les poids des connexions de sortie afin de minimiser
l’erreur du système.

Nous présentons dans le Chapitre 2 un réseau neuronal récurrent complet [16]. La
distribution spatiale des neurones permet d’augmenter la taille du réseau sans réduire
la bande passante du système. Son support théorique, sa réalisation, son algorithme
d’apprentissage et sa phase de tests y sont étudiés. Les neurones sont électro-optiques,
mais l’ensemble du réseau neuronal a été conçu pour servir de prototype à un sys-
tème tout optique, plus proche des objectifs précédemment définis, qui sera présenté
au Chapitre 4. La connectivité du réseau neuronal est réalisée par diffraction optique qui
permet une réelle parallélisation et offre une grande capacité d’évolution [17]. La couche
de sortie est réalisée grâce à une matrice de micro-miroirs, permettant une attribution
des poids de lecture entièrement parallélisée. L’algorithme d’apprentissage est conçu
pour faire partie intégrante du système et fonctionne en temps réel.

Nous discutons dans le Chapitre 3 des caractéristiques du réseau de neurones récur-
rent. Alors que le reservoir computing est souvent souligné pour son caractère boite
noire, la réalisation électro-optique du réseau neuronal nous permet de mesurer les
états internes du système, de le caractériser et de tester de nombreuses configura-
tions d’apprentissage. Ce système devient alors une expérience permettant d’étudier
de nombreux champs scientifiques. En raison du caractère analogique de l’optique, le
réseau de neurones est constamment soumis au bruit. Tout d’abord nous avons étudié
les différentes sources, leurs spécificités et leurs impacts sur le système [136]. En parti-
culier, nous avons mesuré la constance du réseau de neurones, c’est-à-dire sa capacité
à traiter de manière similaire des informations identiques malgré la présence de bruit.
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L’apprentissage a également été étudié en détail. Bien que la fonction d’erreur possède
de multiples minima locaux, ceux-ci présentent une erreur similaire. L’apprentissage con-
verge toujours et permet la prédiction d’un signal chaotique avec une erreur de l’ordre
du pourcent. Nous avons démontré que la configuration des poids de lecture pour ré-
soudre une tâche est le résultat d’une optimisation de la résilience au bruit au cours de
l’apprentissage [135]. Ainsi, l’entraînement est spécifique à chaque situation. Ces ré-
sultats obtenus découlent de principes généraux qui doivent être pris en compte dans
tous les réseaux de neurones analogiques, selon leur propre spécificité. Enfin, nous
avons mesuré la durée d’apprentissage qui se révèle être proportionnelle au nombre de
neurones, donnant au système une importante capacité d’évolution [140].

En remplaçant les neurones électro-optiques par des éléments optiques, le système de-
viendra alors un réseau neuronal entièrement optique. Les neurones artificiels seront
une matrice de micropiliers laser à quantum dots [18]. Les concepts fondamentaux,
l’architecture et le couplage par diffraction resteront cependant les mêmes. Nous avons
étudié dans le Chapitre 4 les bases d’un tel réseau qui fonctionnera non plus à quelques
Hertz, mais au Gigahertz. Le pompage optique simultané de plusieurs lasers semi-
conducteurs, bien que toujours à l’étude, permettra à terme de réaliser un réseau de
grande dimension. Nous avons caractérisé le pompage optique des micropiliers laser
selon deux mécanismes différents. En plus d’obtenir une efficacité de pompage suff-
isamment élevée pour créer un futur réseau d’une centaine de neurones optiques, notre
étude quantitative nous a permis de proposer des modifications aux micropiliers laser qui
améliorent leur efficacité énergétique d’un ou deux ordres de grandeur.

Enfin, nous concluons en présentant un résumé des recherches présentées tout au long
de ce manuscrit. En poursuivant selon nos lignes directrices et en nous appuyant sur
les résultats obtenus, nous proposons des perspectives visant notamment à améliorer le
réseau de neurones électro-optiques, mais aussi les prochaines étapes nécessaires à la
réalisation du réseau de neurones tout optique. À la fin de cette thèse, des annexes dé-
taillées présentent les aspects plus techniques des travaux présentés dans le Chapitre 4.
L’annexe A illustre la conception géométrique des feuilles de cuivre permettant à la fois
le refroidissement des micro-piliers laser tout en assurant un degré de liberté suffisant
pour déplacer l’échantillon au sein d’un cryostat. L’annexe B décrit le laser de pompe
accordable construit à l’aide d’une cavité laser externe via un réseau optique, amplifié
optiquement, puis filtré spatialement par une fibre optique monomode.
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