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General Introduction

General Introduction

Since the late 60’, the problem of modelling and control of flexible structures has re-
ceived a lot of attention [1]. At that time, the research was motivated by the employment
of large and light structures especially for space engineering applications. The large size
and reduced mass density materials have low natural frequencies associated to them[2].
Low natural frequency modes may interfere with the attitude manoeuvring control’s
bandwidth, degrading its dynamic behaviour. Solar panels as well as big antennas and
in general big appendices (see for example: the SMAP mission [3], the RADARSAT-2
mission [4] or the SMOS mission [5] in Figure 1) can be a source of flexible vibrations
for a satellite during the attitude manoeuvre [6].

Nowadays, thanks to the impressive technological evolution of the last 50 years,
flexible structures have found a large range of possible applications, for example in
industrial robotics. The performances of robot manipulators can be improved by to in-
creasing the payload-to-arms weight ratio diminishing the overall robot’s weight. In this
manner, it is possible to get a faster motion while keeping the same actuator. However,
a faster motion with lightweight arms leads to the appearance of flexible deformations,
that have to be attenuated if we do not want to decrease the performances [7]. More-
over, real robots frequently work on applications where they enter in contact with other
objects or with the external environment. This is the case for flexible space robots

(a) SMAP mission satellite. (b) RADARSAT-2 mission satellite.

(c) RADARSAT-2 mission satellite.

Figure 1: Space mission satellites pictures.
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General Introduction

for debris removal [8], or minimally invasive surgery devices that get in contact with
the patient’s body [9]. The transition between an unconstrained to a constrained state
excites the flexible proper modes of vibration of the structure and consequently, this
transition phase is crucial for the system’s stability. Along with flexible robots, wind
turbine towers can also encounter flexible deformation problems. Wind turbines are
large and heavy structures located in offshore or high altitude areas. These locations
offer stronger winds for the creation of electric energy, but at the same time can cause
the mechanical vibration of the tower, degrading this way the overall energy transfor-
mation performances [10, 11]. Besides, structural flexibility can also be encountered in
microscale applications including micro-electromechanical systems, micro-assembly,
biological systems etc. In these applications, compliant mechanisms can be preferred
to rigid ones because of their miniaturization capability and often simpler fabrication
and integration [12]. Possible examples of these class of systems are microgripper [13]
or parallel continuous robots for precise positioning [14]. To fully exploit the potential
advantages offered by lightweight flexible structures, one must derive a suitable control
action able to effectively suppress their vibrational behaviour.

Strongly motivated by the previously mentioned studies, this thesis deals with the
modelling and control of mechanisms that contain flexible deformable parts. Before
introducing the core subject of the thesis, we provide some general notions and termi-
nology about the tool that we use to study the modelling and control problem of flexible
structures: dynamical equations (or evolution equations). Similarly to scale models
[15], the study of dynamical equations is an engineering tool that allows predicting
the behaviour of a specific process, without having it at our disposal. The stability
analysis of a process modelled by dynamical equations studies its solutions’ asymp-
totic behaviour and therefore if they evolve according to some desired specifications.
Dynamical equations are differential equations that can be used to describe the time
evolution of the process. We consider the solution x = x(t) of the following general
class of differential equations

dx(t)
dt

= F(x(t)) (1)

with initial data
x(0) = x0. (2)

The variable x belongs to a Hilbert space H, while F is a mapping from H to itself and
is usually referred to as a vector field.
In the case where the variable x belongs to a n-dimensional Euclidean space X = Rn,
equation (1) consists of a set of Ordinary Differential Equations (ODE). In the case
where X is a space of functions mapping from an initial domain Ω to a Euclidean space
Rn, equation (1) consists of a set of Partial Differential Equations (PDE). In the case
where X consists of a union between a Euclidean space and a functional space, then (1)
is referred to as a mixed ODE-PDE (m-ODE-PDE). Since (1) is an autonomous system,
it is referred to as unforced state equation.
In case we add to equation (1) an input u(t) and an output y(t), the system can interact
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General Introduction

with the external environment, and we call it open systems

dx(t)
dt = F(x(t),u(t))

y(t) = h(x(t)).
(3)

The input and output u(t) and y(t) belong to the input and output Hilbert spaces U and
Y , respectively. Now the vector field F maps from H×U to X , and the function h maps
from X to Y and is referred to as output map. The control design consists in finding
the input u(t) such that the state x(t) behaves in a desired manner. The input u(t) can
be given as a direct function of time (feed-forward), as a function of the state (state
feed-back) or as a function of the output (output feed-back). Once the control law is
applied, the closed-loop system takes the form of equation (1), and we are interested in
the behaviour of the closed-loop system state x(t) when t→ ∞. Apart from linear-time
invariant ODE and few other exceptions, normally we do not have at our disposal the
explicit solution x(t). Therefore, system theory and the study of evolution equations
give us some tools to analyse the so-called asymptotic behaviour of the system, without
explicitly knowing the solution x(t).

Throughout the rest of the thesis, we try to answer the following general questions:

1. How can we obtain a dynamical model of a mechanism containing flexible parts?

2. How can we develop a control law able to move the mechanism with the desired
behaviour?

3. How can we simulate the obtained model of the system and the closed-loop be-
haviour with the proposed control laws?

4. What is the asymptotic behaviour of a flexible mechanism when it enters in colli-
sion with an external object?

A possible way of proceeding is finding different methodologies that are optimal to an-
swer all these questions separately. A certain methodology can be perfect to answer a
specific question, but at the same time inappropriate for another one. However, in this
thesis, we do not want to deal with these questions in a case-by-case manner. To answer
these questions in a unified way, we decided to make use of the port-Hamiltonian (pH)
framework. The pH framework is indeed dedicated to the modelling, analysis, design
and control of multi-physical dynamical systems. A comprehensive guide to pH sys-
tems and their applications can be found in [16]. From an appropriate choice of the
state variables together with the physical laws, a pH system provides a structure to the
vector field and the output mapping of the general open systems introduced in equation
(3), it gives advantages in the analysis while maintaining a general form that includes
a very wide range of physical processes [17]. In the last two decades, the pH system
theory has been extended from lumped parameter (ODE dynamical equations) systems
to distributed parameter (PDE dynamical equations) systems, starting with the theory
developed in [18]. At the current stage, there exists three different distributed pH (dpH)

3



General Introduction

formulations: the Stokes-Dirac structure formulation[18, 19], the jet-bundle formula-
tion [20] and the functional analytic pH (FApH) formulation. Between the different
distributed pH (dpH) formulations we decided to use the FApH approach that has its
roots in the seminal work [21], that has been extended in the PhD thesis [22, 23] and
in the monograph [24]. In these works, the differential equation (1) is restricted to be a
dpH linear equation in the abstract differential form

∂x
∂ t

(ξ , t) =
N

∑
k=0

Pk
∂ k

∂ξ k (H x)(ξ , t) (4)

with suitable boundary conditions. When the input u(t) and output y(t) are selected
among the boundary variables (and therefore they are acting at the boundaries of the
considered spatial domain), the system is called a boundary control system, and it is a
subclass of the general class of open systems (3). The energy of the systems described
by the dpH equation (4) is defined as E = 1

2〈x,H x〉 and the norm of the considered
state space X corresponds to the energy itself. The structure of the system together with
the considered norm allows concluding about well-posedness (existence, uniqueness
and smoothness of solutions) with a similar procedures used to show that the system is
passive with respect to its energy. Well-posedness and stabilization problems for dpH
systems have been studied in the case of static feedback [25], when they are connected
with a dynamic linear system [26, 27] or with some classes of dynamic non-linear sys-
tems [28].

The first task that we are asked to accomplish when we want to analyse a physi-
cal process, is associate to this process an evolution equation in the form of (3). This
procedure is normally referred to as modelling. Moving mechanisms usually contain
flexible and rigid parts, hence both distributed and lumped parameter phenomena are
present. The most common way of deriving equations of motion is through the use
of the Hamilton principle: roughly speaking, the dynamic equations are found com-
puting the partial derivatives of the Lagrangian (the difference between the kinetic and
potential energy). Since distributed phenomena are present in the considered system,
the Lagrangian depends on functions other than normal lumped states. A possibility is
to find an approximated version of the Lagrangian, where the distributed variables are
substituted by a set of lumped variables: the obtained model will be composed of only
ODE, [29, 30]. An alternative is to maintain the distributed parameter nature of the sys-
tem and obtain an m-ODE-PDE model [31], with the control input in the set of ODE.
Different research articles considered the pH formulation of flexible mechanisms; some
of them being simulation-oriented [32, 33], while some others control-oriented [34, 35].
Because of its passivity, the pH formulation of physical models helps in finding a control
law that steers the system’s solution to the desired equilibrium point.

The fundamental theory used to study systems’ asymptotic stability has been estab-
lished by the mathematician Alexandr M. Lyapunov in his famous doctoral thesis of
1892 The general problem of stability of motion. The theory has been applied to control
theory only in the 1930s for nonlinear finite dimensional systems [36], but nowadays it
became indispensable also for infinite dimensional systems as well as for discrete time
systems. Roughly speaking, Lyapunov stability theory is based on finding a positive def-
inite functional that is non-increasing along the system solutions. This theory is strictly
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General Introduction

related to passivity concepts; in fact the energy functional is frequently selected as Lya-
punov function candidate to prove the stability of a system. Besides, the FApH approach
uses passivity concepts as a starting point for studying the well-posedness of systems.
Hence, the FApH approach allows to create a bridge between abstract concepts like the
existence of solutions and Lyapunov’s stability of physical systems. A lot of research
papers deal with the stability analysis of flexible mechanisms modelled by m-ODE-PDE
systems on a case-by-case basis. To mention a few, in [37] is studied the stabilisation
problem of a satellite with flexible appendices; in [11] is proposed a control strategy to
stabilise the wind turbine tower’s vibrations, while in [38] different control laws are pro-
posed to stabilise the torsional vibrations of a drilling system. Since the subject is rather
technical, a lot of works in the literature focus on the study of simple m-ODE-PDE
mechanisms without a direct industrial application. In fact, several research articles
focus on the stabilization of the Euler-Bernoulli beam [39, 40, 41, 42, 43], of the Timo-
shenko beam [44, 45, 46] or of the wave equation [47, 48, 49, 50] with dynamic bound-
ary conditions. The idea underlying the use of the FApH approach is to understand and
unify the case-to-case results in a more abstract level, by using the intrinsic properties of
physical systems. For instance, in [51] the control by interconnection strategy has been
extended to m-PDE-ODE pH (m-pH) systems, while in [28] some stability conditions
are given for a pH system interconnected with a set of nonlinear ODE. In such way, a
given control strategy can be applied to a large range of practical applications without
the requirement of testing closed-loop stability at every change of the operating condi-
tions. A favourable condition for controlling m-pH systems is to have direct access to
the dpH boundary inputs. In this way, dissipation can be directly added in the boundary
conditions such to obtain exponential stability of the closed-loop system [27, 28]. How-
ever, the considered class of m-PDE-ODE models of flexible mechanisms have control
inputs only in the set of ODE. We call this issue integral obstacle.

Numerical simulations of closed-loop systems are essential when the stability result
does not provide any information about the rate of convergence to the equilibrium point.
Simulations of flexible mechanisms described by m-PDE-ODE dynamic equations re-
quire the PDE’s spatial discretization. The discretization procedure consists of finding
a set of ODE approximating the set of PDE. Among all the existing standard methods,
there is a particular class that allows to approximate a dpH with a finite dimensional pH
system. An exhaustive guide on discretization of dpH can be found in [52].

Considering the fourth general question, while there are many studies on the control
of flexible manipulators in impact scenario using finite dimensional models [53, 54, 55],
very few have discussed the collision issue using infinite-dimensional models [56]. A
finite dimensional analysis provides a good approximation of the flexible phenomena in
case of unconstrained conditions, but it can bring misleading results in the presence of
impacts, where a large bandwidth of frequencies are excited. The dynamical model of a
colliding flexible beam is expected to have instant changes in impact times. Therefore
the model combines behaviours that are typical of continuous-time dynamical systems
with behaviours that are typical of discrete-time dynamical systems. This definition
perfectly fits into the class of Hybrid dynamical systems. The stability, as well as the
control design theory of finite dimensional hybrid systems, have been extensively stud-
ied in the past 30 years, and a general introduction to this subject can be found in [57].
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On the other side, only a few results have been established for infinite dimensional
hybrid systems. In [58] are presented some general results on Lagrange, asymptotic
and exponential stability (in all their variations) for the class of hybrid infinite dimen-
sional systems, that do not require the determination of a Lyapunov function, as well as
results that do involve Lyapunov functions. In [59] some conditions for obtaining ex-
ponential stability are given for a subclass of hybrid systems, namely switched operator
systems. Other characterizations of exponentially stable switched operator equations
can be found in [60, 61].

In the following paragraph, we give an overview of the contents of the four chapters
that compose the thesis.

Before starting to deal with the main contributions of the thesis, we first recall in
Chapter I some concepts about system and operator theory together with the prerequi-
sites on dpH systems.

Chapter II is divided in two sections. In Section II.1 we propose a mathematically
rigorous procedure to derive the models for mechanisms with possible flexible compo-
nents, providing several examples from easy to more complex ones. The procedure is
based on the general Least Action Principle that, in the considered examples, leads to
m-ODE-PDE systems in a special boundary controlled m-pH format. Next, we analyse
the passivity with respect to the internal energy of the considered class of m-pH sys-
tems. In Section II.2 we detail how to obtain a finite dimensional approximation of the
Timoshenko beam equation and of the wave equation based on a structure preserving
finite element discretization introduced in [62]. The finite dimension approximation is
used throughout the thesis only for simulation purposes: all the successive analysis are
carried on the m-pH systems.

Chapter III is divided in two main sections. In Section III.1 we detail the needed
prerequisites on analysis of semilinear equations, i.e. the needed assumptions to obtain
existence and uniqueness of solution as well as Lyapunov stability theory for semilin-
ear equations. Next, we introduce a result that connects the concept of approximate
observability to the zero solution of a general linear operator with admissible constant
output. In the second Section III.2 we list four different possible control design meth-
ods applicable to the introduced class of boundary-controlled m-pH systems. Before
introducing the control laws we give some sufficient conditions to obtain an approxi-
mately observable dpH system. This, together with the latter theorem, allows to find
the largest invariant set and to conclude about stability for a class of m-pH systems in
closed-loop with different control laws. Therefore we show under which conditions the
m-pH systems are asymptotically stable in closed-loop with a classical PD and a non-
linear passive control law extracted from previous works [42, 63]. Next, we propose
two different control laws containing a so-called strong dissipation feedback: this term
allows to overcome the integral obstacle and to insert dissipation on the PDE boundary.
The first control law is used only to stabilize the system and leads to exponential stabil-
ity, while the second also allows to position the system in the desired configuration but
leads only to asymptotic stability. All the different control laws are clarified with the
help of applicative examples on the models derived in Section II.1 of Chapter II.
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General Introduction

Chapter IV is dedicated to the well-posedness and the stability analysis of a rotative
flexible beam that undergoes an external impact. We begin by introducing the prerequi-
sites on the analysis of switching infinite dimensional systems, including the extension
to distributed parameter systems of the Lyapunov stability theorem extracted from [64].
The presentation holds for a general class of operator systems, therefore in Section IV.2
we first analyse a rotating rigid beam in an impact scenario. In this manner, we intro-
duce all the ideas and procedures that are further investigated in Section IV.3, where we
study a flexible rotating beam entering in contact with the external environment.

The concluding Chapter V provides final remarks of this thesis and several interest-
ing perspectives on future works.
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been showed and the equilibrium position of the system in closed-loop with a
PD control law has been computed. Lyapunov stability has been assessed and
numerical simulation have been given to validate the obtained results.
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I.1. Prerequisites on functional analysis

I.1 PREREQUISITES ON FUNCTIONAL ANALYSIS

Preparing to the main part of this thesis we first recall some notions and results on
functional analysis and theory on PDE [65, 66]. Meanwhile we fix the notation that
will be used throughout this thesis. R and R+ denote the spaces of real and positive
real numbers, respectively. With N= {1,2, . . .} we denote the natural numbers starting
from 1, i.e. excluding 0. If we want to include 0 we write N0 = N

⋃
{0}. With Rn×m

we denote the set of n by m matrices with entries in R. We denote by σ(A) the set
of eigenvalues of the matrix A. We say that a symmetric matrix M is semi-positive (or
positive) and we denote it by M≥ 0 (M > 0) if all its eigenvalues are non-negative λ ≥ 0
(positive λ > 0) for λ ∈ σ(M). A matrix M1 is said to be greater equal (greater) than a
matrix M2, and it will be denoted by M1≥M2 (M1 >M2), if the matrix M1−M2 is semi-
positive (positive) definite. Unless stated otherwise, we consider the finite dimensional
space Rn equipped with the Euclidean norm

||x|| :=

√
n

∑
i=1
|xi|2, x =

x1
...

xn

 ∈ Rn (I.1)

and associated standard inner product

〈x1,x2〉Rn = xT
1 x2 =

n

∑
i=1

x1,ix2,i, x1,x2 ∈ Rn. (I.2)

Let [a,b] with a < b be an interval of R, the Lebesgue space Lp([a,b],Rn) is the family
of all the equivalence classes of Lp-integrable functions f : [a,b] 7→ Rn for which the
integral ∫ b

a
| f (ξ )|pdξ < ∞ (I.3)

with respect to the Lebesgue measure is finite. Two functions are said to be equivalent
if they coincide on [a,b]/N, where N is a set of Lebesgue measure zero. Note that the
space L2([a,b],Rn) equipped with the standard norm

||x||L2 :=

√∫ b

a
|x|2dξ , x =

x1
...

xn

 ∈ L2([a,b],Rn) (I.4)

is an Hilbert space. The inner product associated to the norm (I.4) is defined as

〈x1,x2〉L2 =
∫ b

a
xT

1 x2dξ . (I.5)

By C([a,b],Rn) we denote the space of continuous functions f : [a,b] 7→ Rn, while
by Cp([a,b],Rn) with p ∈ N the space for which the derivative dp f

dξ p exists and lies in
C([a,b],Rn). Also, we denote by H p([a,b],Rn) the standard Sobolev space of order

10



I.1. Prerequisites on functional analysis

m ∈ N, consisting of m times derivable functions f with square integrable derivatives
dm f
dξ m , equipped with the norm

||x||H p :=

√∫ b

a
|x|2 +

p

∑
i=1
| d

ix
dξ i |

2dξ (I.6)

and associated inner product

〈x1,x2〉H p =
∫ b

a
xT

1 x2 +
p

∑
i=1

dix1

dξ i

T dix2

dξ i dξ . (I.7)

Let W k,p([a,b],Rn) be the Sobolev space consisting of all functions f : [a,b] 7→ Rn

whose first k derivatives are functions in Lp. We say that a vector space X is compactly
embedded in Y , and we denote it by X ↪→Y if there exists an injective function f : X 7→Y
that is compact, i.e. every bounded sequence in X is mapped by f into a bounded
sequence in Y with a subsequence that is converging in the norm of Y . The Rellich-
Kondrachov Theorem establishes a compact embedding relation between the Sobolev
spaces W j,p([a,b],Rn) and W i,n([a,b],Rn). In particular W j,p([a,b],Rn) is compactly
embedded in W i,n([a,b],Rn) if j > i and j− 1

p > i− 1
n .

Remark 1. The embeddings H p([a,b],Rn) ↪→ L2([a,b],Rn) are compact for every p∈N.

If X and Y are real Banach spaces, L (X ,Y ) denotes the Banach space of all the lin-
ear and bounded operators f : X 7→Y . For X =Y we simply write L (X)=L (X ,X). We
denote by X a real Hilbert space, with inner product 〈·, ·〉X and norm || · ||X =

√
〈·, ·〉X .

In general, we denote with A : D(A)⊂ X 7→ Y a closed (not necessarily bounded) oper-
ator that maps from a subspace D(A) of X (the domain of A) to Y . We denote by ran(A)
(the range of A) the image of D(A) under A. For the case X = Y we say that λ ∈ C is
in the resolvent-set ρ(A) of A if (λ I−A)−1 exists and is a bounded linear operator on a
dense domain of X . For any λ ∈ ρ(A) the resolvent operator

R(λ ,A) := (λ I−A)−1 : X 7→ D(A). (I.8)

Definition I.1.1. Let A be a linear operator on a Hilbert space X . Assume that the
domain of A is dense in X . Then the adjoint operator A∗ : D(A∗) ⊂ X 7→ X of A is
defined as follows. The domain D(A∗) of A∗ consists of all y ∈ X such that there exists
a y∗ ∈ X satisfying

〈Ax,y〉= 〈x,y∗〉 for all x ∈ D(A). (I.9)

For each such y ∈ D(A∗) the adjoint operator A∗ is then defined in terms of y∗ by

A∗y = y∗. (I.10)

�

An operator A is said to be skew adjoint if A∗ = −A, while it is said self adjoint if
A∗ = A. In what follows we recall the semigroup theory in case of strongly continuous
semigroup on a Hilbert space, and for doing that we need the norm’s definition of a
linear bounded operator.
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I.1. Prerequisites on functional analysis

Definition I.1.2. Let T be a bounded linear operator from D(T )⊂ X to Y . We define its
norm ||T ||, by

||T ||= sup
x∈D(T ),

x 6=0

||T x||Y
||x||X

. (I.11)

�

Then, we can introduce the strongly continuous semigroup definition.

Definition I.1.3 (Strongly continuous semigroup). Let X be a Hilbert space. (T (t))t≥0
is called a Strongly continuous semigroup (or in short C0-semigroup) if the following
hold:

1. For all t ≥ 0, T (t) is a bounded linear operator on X , i.e. T (t) ∈L (X);

2. T (0) = I;

3. T (t + τ) = T (t)T (τ) for all t,τ ≥ 0;

4. For all x0 ∈ X , we have that ||T (t)x0− x0||X converges to zero, when t → 0, i.e.
t 7→ T (t) is strongly continuous at zero.

�

The semigroup concept is the generalization to abstract spaces of the exponential
solution eMt of a linear matrix differential equation dx

dt = Mx, therefore it shares many
properties with these exponentials. In the reminder of the manuscript we will also refer
to the time derivative of x with the symbols ∂x

∂ t and ẋ.

Theorem I.1.1. A strongly continuous semigroup (T (t))t≥0 on the Hilbert space X has
the following properties:

1. ||T (t)|| is bounded on every finite sub-interval of [0,∞);

2. The mapping t 7→ T (t) is strongly continuous on the interval [0,∞);

3. For all x ∈ X we have that 1
t

∫ t

0
T (s)xds→ x as t→ 0;

4. If w0 = inft>0(
1
t log ||T (t)||), then w0 = limt→∞(

1
t log||T (t)||)< ∞;

5. For every w > w0, there exists a constant Mw such that for every t ≥ 0 we have
||T (t)|| ≤Mwewt .

Proof. See Theorem 5.1.5 in [24].

In a similar way a matrix M can be associated to an exponential solution eMt we
define an operator A associated to a C0-semigroup (T (t))t≥0.
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I.1. Prerequisites on functional analysis

Definition I.1.4 (Infinitesimal generator). Let (T (t))t≥0 be a C0-semigroup on the Hilbert
space X. If the following limit exists

lim
t→0

T (t)x0− x0

t
, (I.12)

then we say that x0 is an element of the domain of A, shortly x0 ∈ D(A), and we define
Ax0 as

Ax0 = lim
t→0

T (t)x0− x0

t
. (I.13)

We call A the Infinitesimal generator of the strongly continuous semigroup (T (t))t≥0.�

From point 5 of Theorem I.1.1, we know that every C0-semigroup satisfies ||T (t)|| ≤
Mewt for some M and w. In the following definition we will introduce a subclass of C0-
semigroup operators satisfying the property ||T (t)|| ≤ 1.

Definition I.1.5. Let (T (t))t≥0 be a C0-semigroup on the Hilbert space X . Then the
semigroup (T (t))t≥0 is called a contraction semigroup, if ||T (t)|| ≤ 1 for every t ≥ 0.
�

Next we study the characterization of the infinitesimal generators of contraction C0-
semigroup. We first introduce the definition of dissipative operator.

Definition I.1.6. A linear operator A : D(A) ⊂ X 7→ X , where X is an Hilbert space, is
called dissipative, if

〈Ax,x〉 ≤ 0, x ∈ D(A). (I.14)

�

The following theorem gives a necessary and sufficient condition for an operator A
to generate a contraction C0-semigroup.

Theorem I.1.2 (Lumer-Phillips Theorem). Let A be a linear operator with domain
D(A) on a Hilbert space X. Then A is the infinitesimal generator of a contraction
C0-semigroup (T (t))t≥0 on X if and only if A is dissipative and ran(I−A) = X.

Proof. See Theorem 6.1.7 of [24].

Next we introduce some concepts on differentiation theory that will be useful for
computing the systems passivity property and for Lyapunov stability theory in Chapter
III. We start with the concept of Frechet derivative

Definition I.1.7 (Fréchet derivative). Consider the mapping f from the Banach space X
to the Banach space Y . Given x,h ∈ Xh 6= 0, if a linear bounded operator d f (x) exists
such that

lim
||h||X→0

|| f (x+h)− f (x)−d f (x)h||Y
||h||X

= 0, (I.15)

then f is Fréchet differentiable at x, and d f (x) is said to be the Fréchet derivative at x.�
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I.1. Prerequisites on functional analysis

Derivatives are usually computed to study the functions behaviour. In the case of
study of functionals (the case where Y corresponds to the real numbers R), the deriva-
tive’s zeros intuitively correspond to the points in which the functional does not change.
The next theorem makes the link between the minimums and the maximums of a func-
tional and its Fréchet derivative.

Theorem I.1.3. Let O be an open set of the Banach space X. If the mapping f : O 7→R
has a minimum or a maximum at x ∈ O, and d f (x) exists, then d f (x) = 0.

Proof. See Theorem A.5.32 of [65].

Lyapunov’s stability theory makes use of non-increasing functionals along solutions
of an evolution equation to conclude about the solutions’ asymptotic behaviour. To
properly define the functional’s time derivative, and to connect it with its non-increasing
property, we need the concept of Dini derivative.

Definition I.1.8. Let f be a continuous functional from [a,b) ⊂ R to R. The Dini
derivative of f is defined as

ḟ+(t) = limsup
h→0

f (t +h)− f (t)
h

. (I.16)

�

With the normal concept of derivative it does not hold in general that if a functional
f has a non-positive derivative, then f is non-increasing. A counter example of this
is the Cantor functional (see [67] page 144-145). Conversely, the Dini derivative al-
lows to establish a relation between the non-increasing property of a functional and its
derivative.

Lemma I.1.1. Assume that f : [a,b) 7→ R is continuous. The following are equivalent:

1. The functional f is non-increasing, i.e. f (t2)≤ f (t1) when t2 ≥ t1;

2. The Dini derivative of f is non-positive, i.e. ḟ+(t)≤ 0, t ∈ (a,b).

Proof. See Lemma A.5.44 of [65].

In most practical cases it is very hard to calculate the limit in (I.16), however func-
tionals used for Lyapunov stability theory are usually Fréchet differentiable. In these
cases, the Dini derivative can be computed making use of the Fréchet derivative. On
this purpose we cite Lemma 11.2.5 of [65], that allows to compute the time derivative
of a functional along the solutions of a semilinear equation.

Lemma I.1.2. Let X be an Hilbert space and consider the semilinear equation

ẋ(t) = Ax(t)+ f (x(t)), t ≥ 0, x(0) = x0 (I.17)
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I.1. Prerequisites on functional analysis

where A is the infinitesimal generator of the C0-semigroup (T (t))t≥0 on the space X,
and f : X 7→ X is locally Lipshitz continuous. Furthermore let g : X 7→ [0,∞) be a
continuous mapping. Then, if g is Fréchet differentiable, then for z0 ∈ D(A), g(x(t,z0))
is differentiable and

ġ+(x0) =
dg(x(t,x0))

dt

∣∣∣
t=0

= dg(x0)(Ax0 + f (x0)), (I.18)

where dg denotes the Fréchet derivative of g.

Proof. See Lemma 11.2.5 of [65].

We now introduce the concept of solution of the following semilinear equation

ẋ = Ax+ f (x) (I.19)

where x is the state variable belonging to the Hilbert space X , A is the generator of a
C0-semigroup on the space X and f : X 7→ X is a nonlinear mapping satisfying a Lip-
schitz continuity condition. For a complete discussion about existence and uniqueness
of solution of the above equation, we refer the reader to [65]. In the following we only
list the results that are employed in in Chapters III and IV. The definition of Lipschitz
continuity is crucial in determining the existence of solutions for equation (I.19).

Definition I.1.9. A mapping f from X to X is locally Lipschitz continuous if for every
r > 0 there exists an L(r) such that for all x1,x2 ∈ X satisfying ||x1||, ||x2|| ≤ r there
holds

|| f (x1)− f (x2)|| ≤ L(r)||x1− x2||. (I.20)

Furthermore, if L(r) can be chosen independently of r, the mapping f is called globally
Lipschitz continuous. �

This is a rather simple condition to check and if the considered nonlinear function
is obtained through the composition of simpler functions, it is easy to estimate if it is
globally or at least locally Lipschitz continuous. From an intuitive point of view, a Lip-
schitz continuous function can be bounded by a linear function. So it is easy to check
that linear and piecewise continuous linear functions are globally Lipschitz continu-
ous. Polynomial functions are in general locally Lipschitz continuous, but discontinu-
ous functions are not globally nor locally Lipschitz continuous.
Before stating the existence of solution theorem we clarify what do we mean by classical
solution of (I.19).

Definition I.1.10. The function x(t) is a classical solution of (I.19) on [0,τ) if x(t) ∈
C1([0,τ);X), x(t) ∈ D(A) for all t ∈ [0,τ) and x(t) satisfies (I.19) for all t ∈ [0,τ).
The function x(t) is a global classical solution if x(t) is a classical solution on [0,τ) for
every τ > 0. �
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This definition suggests that any possible C1([0,τ),X) function such that if differ-
entiated by time returns the right hand side of (I.19) can be called a classical solution.
Nevertheless, Lemma 5.1.2 of [65] clarifies that for any initial condition x0 ∈ D(A), the
classical solution x(t) of (I.19) is continuous and

x(t) = T (t)x0 +
∫ t

0
T (t− s) f (x(s))ds, t ∈ [0,τ]. (I.21)

This equation tells us that the solution’s behaviour is determined by the C0-semigroup
generated by the linear operator A. However, (I.21) can be defined for initial conditions
that do not necessarily belong to the domain of A, which naturally leads to the following
definition.

Definition I.1.11. If the function x(t) in (I.21) defines a continuous function, then it is
called the mild solution of (I.19). �

The definition of the mild solution is not an explicit formula, but another equation
in the unknown state x(t). Therefore, we do not know if a priori this solution exists. In
the following theorem, we define the conditions for the existence of a mild solution for
equation (I.19) and its relation with the classical solution.

Theorem I.1.4. Let A be the infinitesimal generator of the C0-semigroup T (t) on the
Hilbert space X and consider the following semilinear differential equation:

ẋ(t) = Ax(t)+ f (x(t)), t ≥ 0 x(0) = x0. (I.22)

If f : X 7→ X is locally Lipschitz continuous, then there exists a tmax > 0 such that the
differential equation (I.22) has a unique mild solution on [0, tmax) with the following
properties:

1. For 0 ≤ t < tmax the solution depends continuously on the initial condition, uni-
formly on any bounded interval [0,τ]⊂ [0, tmax).

2. If x0 ∈ D(A), then the mild solution is actually a classical solution on [0, tmax).

Moreover, if tmax < ∞, then
lim

t→tmax
||x(t)||= ∞. (I.23)

If the mapping f is globally Lipschitz continuous, then tmax = ∞.

Proof. See theorem 11.1.5 in [65].

In case of open systems, i.e systems able to interact with the environment or with
external systems, a very close concept to dissipative operator is the system’s passivity
notion. Consider the general nonlinear system

ẋ = f (x,u)
y = h(x,u) (I.24)
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where x is the state of the system and belong to an appropriate Hilbert space X , u ∈
U is the input belonging to the input Hilbert space U , y is the output of the system
belonging to the output Hilbert space Y and f : X ×U 7→ X , h : X ×U 7→ Y are the
vector field and the output mapping, respectively. Similarly for the case of semilinear
differential equations, a function x(t) is considered a classical solution of (I.24) if x(t)∈
C1([0,τ);X) and x(t) satisfies (I.24) for all t ∈ [0,τ). The function x(t) is a global
classical solution if it x(t) is a classical solution on [0,τ) for every τ > 0. We now
define the passivity concept for a general nonlinear system (I.24)

Definition I.1.12. Consider the functional E : X 7→ R depending on solutions x(t) of
system (I.24). The system (I.24) is said to be passive with respect to the storage function
E if

Ė+ ≤ yT u. (I.25)

The time derivative in the previous definition is the Dini derivative of Definition
I.1.8, and is intended as "along the solutions" of system (I.24).

I.2 INFINITE DIMENSIONAL PORT-HAMILTONIAN SYS-
TEMS

In this thesis we consider a special class of evolution equations, i.e. the class of 1-D
dpH systems

∂ z
∂ t

(ξ , t) = P1
∂

∂ξ
(H (ξ )z(ξ , t))+P0H (ξ )z(ξ , t) (I.26)

where P1 ∈ Rn×n is invertible and symmetric, P0 ∈ Rn×n is skew-symmetric and H ∈
C1([0,L];Rn×n), H (ξ ) is symmetric for all ξ ∈ [0,L] and mI ≤H (ξ ) ≤ MI for all
ξ ∈ [0,L] and some M,m > 0 independent of ξ . The symbol ∂ f

∂ξ
denotes the 1-D spatial

derivative of a function f , that in the reminder of the thesis will also be denoted with f ′.
In the following we will not write explicitly the space dependency of the parameters’
density matrix H , but it will be considered space varying if not differently mentioned.
We consider the operator

J z = P1
∂

∂ξ
(H z)+P0H z (I.27)

on the state space Z = L2([0,L],Rn) and with domain

D(J ) = {z ∈ Z |H z ∈ H1([0,L],Rn)}. (I.28)

The state space Z is equipped with the norm ||z||Z =
√
〈z,H z〉L2 associated with the

inner product 〈z1,z2〉Z = 〈z1,H z2〉L2 . The energy of the system (I.26) is defined as half
of the defined squared norm

E =
1
2
〈z,z〉Z =

1
2
〈z,H z〉L2. (I.29)
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Next, we add the possibility of the system of interacting with the external environ-
ment. In this thesis we consider that the distributed parameters systems interact with the
external world through the boundary of their spatial domain. Therefore we introduce
the boundary flow and effort defined as a parametrization of the boundary variables.

Definition I.2.1. Consider equation (I.26), then the boundary effort and boundary flow
are defined as [

f∂ (t)
e∂ (t)

]
=

1√
2

[
P1 −P1
I I

][
H z(L, t)
H z(0, t)

]
. (I.30)

�

The boundary input uz and output yz are selected as a linear combination of the above
defined boundary flow and effort. From a computational point of view, the boundary
flow and effort parametrization is crucial for relating the energy variation to the defined
input and output.

Theorem I.2.1. Let z be a classical solution of the pH system (I.26) with energy (I.29).
Then the following balance equation holds:

Ė+(t) = f∂ (t)
T e∂ (t). (I.31)

Proof. We first compute the Fréchet derivative of the energy (I.29) as the linear term on
h of the following difference

E(z+h)−E(z) = 1
2〈z+h,z+h〉Z− 1

2〈z,z〉Z
= 1

2〈z,z+h〉Z + 1
2〈h,z+h〉Z− 1

2〈z,z〉Z
= 1

2〈z,h〉Z +
1
2〈h,z〉Z +

1
2〈h,h〉Z

= 〈z,h〉Z + 1
2〈h,h〉Z.

(I.32)

Therefore, we obtain that dEh = 〈z,h〉Z . Next, we compute the Dini derivative of Defi-
nition I.1.8 using Lemma I.1.2 the energy definition (I.29) and the operator (I.27),

Ė+ = 〈z,J z〉Z
= 〈z,H J z〉L2

=
∫ L

0
(H z)(ξ , t)T P1

∂

∂ξ
(H z)(ξ , t)+(H z)(ξ , t)T P0(H z)(ξ , t)dξ .

(I.33)

Using the fact that P0 is skew-symmetric, we write the expression as

Ė+ =
∫ L

0
(H z)(ξ , t)T P1

∂

∂ξ
(H z)(ξ , t)dξ

= 1
2

∫ L

0

∂

∂ξ
[(H z)(ξ , t)T P1(H z)(ξ , t)]dξ

= 1
2 [(H z)(ξ , t)T P1(H z)(ξ , t)]L0

= 1
4 [(H z)(L, t)T (H z)(0, t)T ]

[
P1 I
−P1 I

][
0 I
I 0

][
P1 −P1
I I

][
(H z)(L, t)
(H z)(0, t)

]
.

(I.34)
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Finally, using the boundary effort and flow definition (I.30), we obtain

Ė+ = 1
2 [ f

T
∂

eT
∂
]

[
0 I
I 0

][
f∂

e∂

]
= f T

∂
e∂ .

(I.35)

Roughly speaking, the input imposes a certain time-varying value at the boundary,
the distributed state of the system evolves according to its describing PDE, an output
that depends on the boundary value of the state is returned. From an application point
of view, the input can be an actual actuation or can be the effect of some other external
dynamical systems on the PDE, while the output can be the measured variables on the
system or its effect on another external dynamical system. Throughout the rest of the
thesis, and according to what we present in the modelling Chapter II, we consider that
a part of the input are set equal to zero whereas the other part can be used for control.
The input are defined by an operator acting on the distributed parameter state. Thus, we
consider the following input operators:

B1(H z)(t) =WB,1

[
f∂ (t)
e∂ (t)

]
= uz(t)

B2(H z)(t) =WB,2

[
f∂ (t)
e∂ (t)

]
= 0.

(I.36)

The output operators are split accordingly:

C1(H z)(t) =WC,1

[
f∂ (t)
e∂ (t)

]
= yz(t)

C2(H z)(t) =WC,2

[
f∂ (t)
e∂ (t)

]
= ỹz(t),

(I.37)

such that WB,1,WC,1 ∈ Rm×2n and WB,2,WC,2 ∈ R(n−m)×2n. Note that the output yz(t)
is selected to be the power-conjugated of uz(t), and therefore they are of the same di-
mensions. We define the complete input and output operators as the composition of the
previously defined operators

B(H z) =
[
B1(H z)
B2(H z)

]
=

[
WB,1
WB,2

][
f∂

e∂

]
=WB

[
f∂

e∂

]
C (H z) =

[
C1(H z)
C2(H z)

]
=

[
WC,1
WC,2

][
f∂

e∂

]
=WC

[
f∂

e∂

]
.

(I.38)

We assume that for a 1-D dpH system, the following conditions holds.

Assumption 1.

1. The matrix
[

WB
WC

]
is invertible;
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I.2. Infinite dimensional port-Hamiltonian Systems

2. The matrices WB and WC are selected such that[
WBΣW T

B WBΣW T
C

WCΣW T
B WCΣW T

C

]
=

[
0 I
I 0

]
. (I.39)

It follows that the system

ż = P1
∂

∂ξ
(H z)+P0(H z) = J z

B1(H z) = uz
C1(H z) = yz

(I.40)

with domain
D(J ) =

{
z ∈ Z |H z ∈ H1([a,b],Rn),B2z = 0

}
(I.41)

is a boundary control system (see Theorem 11.3.2 [24]). This means that for uz ∈
C2([0,∞),Rm), uz(0) = B1H z(0) and H z(0) ∈ D(J ) the system (I.40)-(I.41) has
a unique classical solution as defined in Definition I.1.10. This class of boundary con-
trol systems endows a large variety of systems ranging from mechanical to electric and
diffusion processes all sharing the property of conserving the internal energy. In the
next proposition, the defined operator J is shown to be skew-adjoint in the defined
state space Z, a property that is related to conservation of energy.

Proposition I.2.1. Consider the operator (I.40) defined on the state space Z with ho-
mogeneous boundary conditions, i.e. Bz = 0. Then, the operator J is a skew-adjoint
operator, i.e. J =−J ∗ and D(J ) = D(J ∗).

Proof. See Theorem 2.24 of [22] considering the operator with homogeneous boundary
conditions.

In the following lemmas we show some properties of the operator J that will be
useful later, during the control law design phase.

Lemma I.2.1. Under Assumption 1, for the boundary control system (I.40)-(I.41) with
input and output defined in (I.36)-(I.37) with internal energy (I.29), the following prop-
erties hold:

i) Ė+(t) = uT
z yz;

ii) 〈J z,z〉Z = 〈z,J z〉Z = uT
z yz.

Proof. 1) By Theorem I.2.1, we have that

Ė+ = 1
2 [ f

T
∂

eT
∂
]

[
0 I
I 0

][
f∂

e∂

]
= 1

2 [B(H z)T C (H z)T ][W T
B W T

C ]−1Σ

[
WB
WC

]−1[
B(H z)
C (H z)

]
.

(I.42)
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Since for A and B invertible it holds A−T B−1A−1 = (ABAT )−1, using point 1 and 2 o
Assumption 1 we obtain that

Ė+ = 1
2 [B(H z)T C (H z)T ]

([
WB
WC

]
Σ[W T

B W T
C ]

)−1[
B(H z)
C (H z)

]
= 1

2 [B(H z)T C (H z)T ]Σ

[
B(H z)
C (H z)

]
= uT

z yz.

(I.43)

2) We notice that

〈J z,z〉Z = 〈J z,H z〉L2

=
∫ L

0

(
P1

∂

∂ξ
(H z)(ξ , t)

)T

H z(ξ , t)+(P0(H z)(ξ , t))T H z(ξ , t)dξ

=
∫ L

0

(
∂

∂ξ
(H z)(ξ , t)

)T

P1(H z)(ξ , t)− (H z)(ξ , t)T P0(H z)(ξ , t)dξ

=
∫ L

0

(
∂

∂ξ
(H z)(ξ , t)

)T

P1(H z)(ξ , t)dξ

= 1
2

∫ L

0

∂

∂ξ

(
(H z)(ξ , t)T P1(H z)(ξ , t)

)
dξ

(I.44)
and comparing it with what obtained in the proof of Theorem I.2.1, we can conclude
〈J z,z〉Z = 〈z,J z〉Z .

Lemma I.2.2. Under Assumption 1, the operator J defined in (I.40) with domain

D(J ) =
{

z ∈ Z |H z ∈ H1([a,b],Rn),Bz = 0
}

(I.45)

generates a contraction C0-semigroup in the space Z and has a compact resolvent.

Proof. See Theorem 2.28 in [22].

I.3 MIXED PORT-HAMILTONIAN SYSTEMS

In the previous section we introduced the class of 1-D dpH systems, while in this
section we present some basic results for a class of systems composed by the boundary
interconnection of a 1-D dpH system with a finite dimensional system. We refer to this
class of PDE-ODE systems as m-pH (mixed port-Hamiltonian) systems. In Chapter II
we show that some physical applications of flexible mechanisms can be cast in this class
of m-pH systems. Consider the finite dimensional linear system defined as{

v̇ = (J−R)Qv+ g̃uv +gu
y = gT Qv.

(I.46)

where v∈R2m is the finite dimensional state, uv is the vector of restoring efforts coming
from the dpH system, u corresponds to the vector containing the external control input
and y is its power conjugated output. Let J ∈ R2m×2m be a skew-adjoint matrix, let
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I.3. Mixed port-Hamiltonian Systems

R ∈ R2m×2m be semi-positive definite and self-adjoint RT = R ≥ 0, let Q positive defi-
nite and self-adjoint QT = Q > 0, and let g̃,g ∈ R2m×m. We underline that the defined
finite dimensional system is not a proper pH system (see the definition in [17]) because
there is no defined conjugated output to uv. This will lead to a non power-preserving
interconnection between the dpH system and the finite dimensional system. Therefore,
even though the nomenclature “m-pH” may seem incorrect, we think it remains appro-
priate because of the pH structure of both distributed and finite dimensional systems. As
depicted in Figure I.1, we interconnect the defined finite dimensional pH system (I.46)
with the boundary control system (I.40)-(I.41) with the following interconnection law

uz = y−Syz uv =−yz (I.47)

where S ∈ Rm×m is the direct feed-through matrix and is semi-positive definite S ≥ 0.
Let x = [z v]T be the total state with x ∈ X = L2([0,L],Rn)×R2m, then the m-pH system
is described by the following equations

ẋ(t) =
[

J 0
−g̃C1H (J−R)Q

]
x(t)+

[
0
g

]
u(t)

= Ax(t)+Bu(t)
y(t) = gT Qv

(I.48)

with domain of the operator A defined by

D(A) = {x ∈ X |H z ∈ H1([0,L],Rn),B1(H z) = gT Qv
−SC1(H z),B2(H z) = 0}. (I.49)

We highlight that in the considered class of systems, the external control input does
not have direct access on the boundary conditions of the distributed parameter system.
This property does not have to be seen as a limitation but rather a characteristic close to
reality (as it will be shown in the modelling example in Chapter II) that has to be taken
into consideration during the control law design. Next we generalise Lemma I.2.2, for
the case of m-pH systems.

v̇ = (J−R)Qv− g̃yz +gu
y = gT Qv

ż = J z
B1(H z) = uz
C1(H z) = yz

S

yz uz

u y

Figure I.1: Interconnection beetwen the dpH system and the finite dimensional system.
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Theorem I.3.1. If there exists an inner product with which the operator A : D(A)⊆X 7→
X

Ax =
[

J 0
−g̃C1H (J−R)Q

][
z
v

]
D(A) = {x ∈ X |H z ∈ H1([0,L],Rn),B1(H z) = gT Qv

−SC1(H z),B2(H z) = 0}

(I.50)

is dissipative 〈Ax,x〉X ≤ 0, and g, g̃,S are such that

gT Qg̃ > 0 or S > 0, (I.51)

then A generates a contraction C0-semigroup (T (t))t≥0 on X. Moreover, in this case the
operator A has a compact resolvent.

Proof. By the Lumer-Phillips Theorem we only have to show that ran(λ I−A) = X .
The range condition consists in finding for a certain λ > 0, (z,v) ∈ D(A) such that

λ

[
z
v

]
−A

[
z
v

]
=

[
fz
fv

]
,

[
fz
fv

]
∈ X . (I.52)

Writing the former equation in all its components
(λ I−J )z = fz
(λ I− (J−R)Q)v+ g̃C1(H z) = fv
B1(H z) = gT Qv−SC1(H z)
B2(H z) = 0

(I.53)

and taking into account that (λ I− (J−R)Q)−1 exists for λ > 0 since J = −JT and
R≥ 0, we solve v in the second equation and substitute it in the third one. The problem
becomes finding z such that H z ∈ H1([0,L],Rn) and

(λ I−J )z = fz
B1(H z)+(gT Q(λ I− (J−R)Q)−1g̃+S)C1(H z) = f̃v
B2(H z) = 0

(I.54)

where f̃v = gT Q(λ I− (J−R)Q)−1 fv. Next, we define

Y =

[
gT Q(λ I− (J−R)Q)−1g̃+S 0

0 0

]
such to rewrite the problem as{

(λ I−J )z = fz
(B+YC )(H z) = f̃ ′v

(I.55)

with f̃ ′v =
[

f̃v
0

]
. Using (I.30) and (I.38), we rewrite the second equation in (I.55) as

1√
2

[
I Y

][WB
WC

][
P1 −P1
I I

][
(H z)(a)
(H z)(b)

]
= f̃ ′ν . (I.56)
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Since [I Y ] is right invertible and since
[

WB
WC

]
and

[P1 −P1
I I

]
are invertible, we can find a

zp such that H zp ∈ H1([a,b],Rn) and (I.56) is satisfied for z = zp. We define the new
variable zn = z− zp to obtain{

(λ I−J )zn = fz− (λ I−J )zp
Bcl(H zn) = (B+YC )(H zn) = 0. (I.57)

From Theorem 3.3.6 of [23], the operator Jcl = J |D(Jcl) generates a contraction C0-
semigroup on Z if Jcl is dissipative, with D(Jcl) = {z ∈ Z |H z ∈H1([a,b],Rn), Bclz =
0}. For every zn ∈ D(Jcl), we take v = (λ I− (J−R)Q)−1g̃C1(H zn), so that

(B1 +SC1)(H zn)+gT Qv = 0
B2(H zn) = 0 (I.58)

and hence (zn,v) ∈ D(A). Finally, we use Lemma I.2.1 to write

〈Jclzn,zn〉Z = 〈J zn,zn〉Z
= 〈B1(H zn),C1(H zn)〉Rm

= 〈−(gT Q(λ I− (J−R)Q)−1g̃+S)C1(H zn),C1(H zn)〉Rm

≤ −〈gT Q(λ I− (J−R)Q)−1g̃C1(H zn),C1(H zn)〉Rm

−〈SC1(H zn),C1(H zn)〉Rm.

(I.59)

Using the assumption gT Qg̃ > 0 and for λ large enough, it is true that

〈Jclzn,zn〉Z ≤ 0. (I.60)

On the other hand, using the other assumption S > 0, for λ large enough and defining µ

the smallest eigenvalue of S it is true that

〈Jclzn,zn〉Z ≤
1
2

µ||C1(H zn)||−µ||C1(H zn)||< 0 (I.61)

and thus, for any of the two assumptions in (I.51), Jcl generates a contraction C0-
semigroup. Consequently, the resolvent operator (λ I−J )−1 exists, and the unique
solution of (I.57) is given by

zn = (λ I−J )−1( fz− (λ I−J )zp). (I.62)

Therefore the choice

z = zn + zp
v = (λ I− (J−R)Q)−1( fv + g̃C1(H z))

(I.63)

defines an element (z,v) ∈ D(A) for which the range condition is fulfilled, and from
the Lumer-Phillips’s theorem we conclude that the operator A generates a contraction
C0-semigroup in the state space X .
Next we show that the resolvent operator is compact, i.e. that maps bounded sequences
into bounded sequences with a convergent subsequence. We define the sequence

{wn}= (λ I−A)−1{xn} (I.64)
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with λ > 0 and {xn} a bounded sequence. The sequences are defined such that {wn}=
[{wn,1} {wn,2}]T ∈ H1([a,b],Rn)×R2m and {xn} = [{xn,1} {xn,2}]T ∈ X . By Assump-
tion 1 and Theorem III.2.9, A generates a contraction C0-semigroup in L2([a,b],Rn)×
R2m equipped with the weighted norm (III.119). Since A generates a bounded C0-
semigroup in X , from the Hille-Yoshida Theorem [65, Theorem 2.1.15] it follows that
||(λ I−A)−1||< C

cλ
. This implies that {wn} is bounded in X , i.e. ||wn,1||L2, ||wn,2||R2m <

∞. The Bolzano–Weierstrass Theorem implies that, since the sequence {wn,2} ∈ R2m

is bounded, it also has a converging subsequence in R2m. We compute the H1 norm of
wn,1

||wn,1||2H1 =

∣∣∣∣∣∣∣∣ ∂

∂ξ
wn,1

∣∣∣∣∣∣∣∣2
L2

+ ||wn,1||2L2
. (I.65)

Using the operator J definition and (I.64) we obtain

|| ∂

∂ξ
wn,1||2L2 = ||H −1P−1

1 J wn,1−H −1 ∂H
∂ξ

wn,1−H P−1
1 P0wn,1||2L2

≤ 2||H −1
(
H −1(P−1

1 λ −P1P0H − ∂H
∂ξ

)
wn,1||2L2

+2||H −1P−1
1 xn,1||2L2 < ∞.

(I.66)

thus, {wn,1} is a bounded sequence in H1 and from the Sobolev embedding Theorem,
{wn,1} has a converging subsequence in L2. Therefore, A has a compact resolvent.

Related results to the theorem that we just presented can be found in Theorem 5.8
in [22] or Theorem 5.1.1 in [23]. The proposed theorem differs from Theorem 5.8 in
[22] for two main reasons: first, we consider that part of the boundary input of the dpH
system can be homogeneous and second we consider a linear finite dimensional system
that has a specific structure but without assuming that all its poles have negative real
part. Then, it also differs from Theorem 5.1.1 in [23] because we consider the possibil-
ity that part of the boundary input can be set equal to zero.
In case g̃ = g the m-pH system become of the form depicted in Figure I.2, and of equa-
tions

ẋ(t) =
[

J 0
−gC1H (J−R)Q

][
z(t)
v(t)

]
+

[
0
g

]
u(t)

= Ax(t)+Bu(t)
y(t) = gT Qv

(I.67)

with domain of the operator A defined by

D(A) = {x ∈ X |H z ∈ H1([0,L],Rn),B1(H z) = gT Qv−SC1(H z),B2(H z) = 0}.
(I.68)

The dissipativity of A follows directly from Theorem I.2.1.

Corollary I.3.1. Under Assumption 1, the operator A : D(A)⊆ X 7→ X

Ax =
[

J 0
−gC1H (J−R)Q

][
z
v

]
D(A) = {x ∈ X |H z ∈ H1([0,L],Rn),B1(H z) = gT Qv

−SC1(H z),B2(H z) = 0}

(I.69)
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v̇ = (J−R)Qv−gyz +gu
y = gT Qv

ż = J z
B1(H z) = uz
C1(H z) = yz

S

yz uz

u y

Figure I.2: Interconnection beetwen the dpH system and the finite dimensional system.

generates a contraction C0-semigroup (T (t))t≥0 on X equipped with the energy norm

||x||X = 〈z,H z〉L2 + vT Qv. (I.70)

Moreover, the operator A has a compact resolvent

Proof. According to Lemma I.2.1 and Assumption 1, the dissipativity condition writes

〈Ax,x〉X = 〈J z,H z〉L2 +(−gC1(H z)+(J−R)Qv)T Qv
= C1(H z)T B1(H z)−C1(H z)gT Qv− (Qv)T RQv
= C1(H z)gT Qv−C1(H z)T SC1(H z)−C1(H z)gT Qv− (Qv)T RQv
= −C1(H z)T SC1(H z)− (Qv)T RQv≤ 0.

(I.71)
Then, since gT Qg > 0, according to Theorem I.3.1 we conclude that the operator A
generates a contraction C0-semigroup in X and has a compact resolvent.

Remark 2. When the input-output matrices g, g̃ are such that gT Qg̃ > 0, the direct feed-
through matrix S is not needed to be positive definite but only semi-positive definite.
This allows Theorem I.3.1 and Corollary I.3.1 to include the cases in which no direct
feed-through is present in the system when gT Qg̃ > 0, as well as the cases in which it is
present without any requirement on g, g̃.
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II.1. Modelling of m-pH mechanical systems

II.1 MODELLING OF M-PH MECHANICAL SYSTEMS

In this section we present how to derive the dynamical models for several different
mechanisms containing flexible parts, firstly introducing a general modelling procedure
and secondly writing the models as m-pH systems. Together with the model derivation,
we precisely state the assumed working conditions of the considered systems such to
define the range of validity of the derived models. Next, we show how to choose the
state variables such to be able to rewrite the system as a pH system. The models of the
considered class are composed by the interconnection of a 1-D distributed parameter
part with lumped parameter one, where the control action is applied to the lumped pa-
rameter one. As we will see in the following, this is what happens when we consider
flexible robots actuated by motors with an inertia that can not be neglected.
The models that we derive in this section are frequently encountered in the literature that
deals with the study of flexible structures using the operator formalism. At the begin-
ning of every example subsection, we list some possible applications that the proposed
m-pH model can fit.

II.1.1 General procedure

The starting point to derive the equations of motion of a system is defining the action
functional

A =
∫ t2

t1
{L+Wnc}dt (II.1)

i.e. the integral between two time instants t2 > t1 > 0 of the sum between the La-
grangian L and the work of non-conservative forces Wnc. The Lagrangian is defined
as the difference between the kinetic and potential energy L = T −P, while the work
of non-conservative forces Wnc includes the work done by the inputs and the friction
forces on the system. To derive the equations of motion of our systems we refer to
the general Principle of Least Action. This principle states that the true evolution of
a system minimizes the action functional. More precisely, the first order variation of
the action functional from the system’s true trajectories must be equal to zero. In the
case of lumped parameter systems, the Lagrangian depends on lumped generalized co-
ordinates and the first order variation of the action functional corresponds to the first
order term in its Taylor’s expansion. Therefore, it is necessary to compute the partial
derivatives with respect to the generalized coordinates of the Action functional. Since
we deal with distributed parameter systems defined on a 1-D spatial domain, the La-
grangian depends on distributed parameter variables, consequently, we cannot rely on
the same derivative concept used for lumped parameter systems, but we use the Fréchet
derivative introduced in Definition I.1.7 together with the characterization theorem of
minima and maxima (Theorem I.1.3).

Consider the vector of lumped q = [q1 q2 · · · qNq]
T and the vector of distributed

w = [w1 w2 · · · wNd ]
T generalized coordinates. The generalized coordinates describes

completely the system’s configuration along time, and are defined such that q(t) : R 7→
RNq and the wi = [wi,1 wi,2 · · · wi,nd,i]

T components are defined such that wi(ξi, t) :
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[0,Li] 7→ Rnd,i ×R, where [0,Li] ⊂ R+ are the 1 dimensional spatial domain inter-
vals. Note that the total number of distributed parameter generalized coordinates is
Nw = ∑

Nd
i=0 nd,i, therefore the generalized coordinates distributed vector is defined as

w : R× [0,L1]×·· ·× [0,LNd ] 7→ RNw . Let pi be the degree of the bigger spatial deriva-
tive present in the potential energy for the i-th generalized distributed coordinate, for
i = {1, . . . ,Nw}.
The Lagrangian is defined as the difference between the kinetic Ek and potential Ep
energy

L(q, q̇,w, ẇ,w′1, . . . ,w
(p1)
1 , . . . ,w′Nw

, . . . ,w(pNw)
Nw

) = Ek(q, q̇,w, ẇ)

−Ep(q,w,w′1, . . . ,w
(p1)
1 , . . . ,w′Nw

, . . . ,w(pNw)
Nw

),
(II.2)

where w′j ≡
∂w j
∂ξi

represent the spatial derivative of the w j j ∈ {1, . . . ,Nw} state with re-
spect to its own spatial variable ξi i∈ {1, . . . ,Nd}. The derivation of dissipative system’s
equations using the principle of least action is still a subject under research, because of
the difficulties in finding a good expression for the work of dissipative forces and on
generalizing the Principle of least action. For more details about this subject, we refer
to [68]. It is for this reason that in the following we will consider the work of not con-
servative forces as only composed by the work done by the inputs on the system.
We assume that the Action functional is Fréchet differentiable with respect to all the
functions that compose it, in the sense of Definition I.1.7. We denote with dαA the
Fréchet derivative of A with respect to the coordinate α and with hα the corresponding
variation function (that in the literature are usually referred to as virtual displacements).
We define the Action functional first order variation as

dAh = dqAhq +dq̇Ahq̇ +dwAhw +dẇAhẇ +dw′1
Ahw′1

+ . . .+d
w(p1)

1
Ah

w(p1)
1

+ . . .+dw′Nw
Ahw′Nw

+ . . .+d
w
(pNw )

Nw

Ah
w
(pNw )

Nw

(II.3)

for any variation function hq, hq̇, hw, hẇ, hw′i
, . . ., h

w(pi)
i

, i = {1, . . . ,Nw}.

Remark 3.

1. It is important to note that the functions hα are variations of the corresponding
generalized coordinates α , therefore all the constraints on the boundary values of
α should be respected also by hα .

2. Each variation function hα should belong to the same functions space as the cor-
responding generalized coordinate α .

3. As in item 1, the variational functions hα should correspond to the variation of
the corresponding generalized coordinates. α Therefore, to be consistent with
physics, the variation of the derivative (temporal or spatial) of a generalized co-
ordinate correspond to the derivative (temporal or spatial) of the variation of the
generalized coordinate:

hẇ =
∂

∂ t
hw, hw′ =

∂

∂ z
hw, . . . , hw( j) =

∂ j

∂ z j hw. (II.4)

29



II.1. Modelling of m-pH mechanical systems

Assuming that both the Lagrangian and the work of non-conservative forces are
Fréchet differentiable for all the functions, we can write

dAh =
∫ t2

t1
{dqLhq +dq̇Lhq̇ +dwLhw +dẇLhẇ +dw′1

Lhw′1
+ . . .+d

w(p1)
1

Lh
w(p1)

1

+ . . .+dw′Nw
Lhw′Nw

+ . . .+d
w
(pNw )

Nw

Lh
w
(pNw )

Nw

+dqWnchq}dt.
(II.5)

The principle of least action, together with Theorem I.1.3, states that the true evolution
of a system described by the action functional A, satisfies

dAh = 0, (II.6)

for any h, where according to the principle of least action, we assume hq(t1) = hq(t2) =
hw(t1) = hw(t2) = 0.

II.1.2 Examples

In what follows we show the modelling procedure to obtain the functional analytic
model of four different mechanical mechanisms, starting from the general principle of
least action stated in the previous section.

II.1.2.a Vibrating string with a tip mass

Several mechanical applications show wave propagation behaviours in their prin-
cipal dynamics. An example is an overhead crane, which is frequently employed in
industrial applications to move loads connected to it through a cable [47]. This type
of mechanism can also be used in offshore engineering applications where the precise
positioning of a load on the seabed is required [69]. Wave propagation’s dynamics are
also encountered in drilling systems, where the drill string is subjected to torsional dis-
tributed deformations and the bit has to be controlled to the desired speed [70]. In all
these applications, the actuator inertia is not negligible, therefore the input acts on dy-
namic boundary conditions.
In this subsection, we use the modelling procedure introduced earlier to derive the model
of a string with a tip mass, on which the previously mentioned examples can be cast.
We consider a lossless vibrating string with varying parameters clamped at one side and
a tip mass constrained to move in the vertical direction as depicted in Figure II.1.

m

w(ξ , t)
f (t)

ξ = 0 ξ = L

Figure II.1: Vibrating string with tip mass.

The system is considered without gravity: the string deformation evolves in a plane par-
allel to the ground. If gravity needs to be taken into account, its contribution has to be
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II.1. Modelling of m-pH mechanical systems

added to the potential energy and the model derivation procedure does not change. The
term ξ ∈ [0,L] represents the spatial coordinate, while w(t,ξ ) is the deformation of the
string at a point ξ and time t. Consider ρ(ξ ) and T (ξ ) the spatial depending density
and tension, respectively. The kinetic Ek and potential Ep energies of the system write

Ek(t) =
1
2

∫ L

0
ρ(ξ )

∂w
∂ t

(ξ , t)2dξ +
1
2

mẇ(0, t)2 Ep(t) =
1
2

∫ L

0
T (ξ )

∂w
∂ξ

(ξ , t)2dξ ,

(II.7)
where since the string is clamped at its right side, the deformation function w(ξ , t)
is constrained to be w(L, t) = 0. We consider a force input f (t) acting on the mass at
w(0, t). Since this input is the only non-conservative force, the work of non-conservative
forces writes Wnc = f (t)w(0, t). For this example we detail all the tedious Fréchet
derivative computations that, for seek of brevity, is skipped in all the next examples.
To be consistent with the notation of equation (II.5), we note that q = w(0, t), while
no new definition is needed for the distributed variable w(ξ , t). We first note that
dqL = dwL = dw(i) = 0 for i≥ 2. Then, to find dq̇L = dq̇Ek we begin by computing

Ek(q̇+hq̇, ẇ)−Ek(q̇, ẇ) = 1
2m(q̇+hq̇)

2− 1
2mq̇2

= mq̇hq̇ +
1
2mh2

q̇,
(II.8)

thus we obtain dq̇Lhq̇ = mq̇hq̇. To find dẇL = dẇEk, we compute

Ek(q̇, ẇ+hẇ)−Ek(q̇, ẇ) = 1
2

∫ L

0
ρ

(
∂w
∂ t

+hẇ

)2

−ρ
∂w
∂ t

2

dξ

=
∫ L

0
ρ

∂w
∂ t

hẇ +
1
2

ρh2
ẇdξ

(II.9)

thus we obtain dẇLhẇ =
∫ L

0
ρ

∂w
∂ t

hẇdξ . Finally, to find dw′Lhw′ = −dw′Phw′ we com-
pute

Ep(w′+hw′)−Ep(w′) = 1
2

∫ L

0
T
(

∂w
∂ξ

+hw′

)2

−T
∂w
∂ξ

2

dξ

=
∫ L

0
T

∂w
∂ξ

hw′+
1
2

T h2
w′dξ

(II.10)

such to obtain dw′Lhw′ = −
∫ L

0
T

∂w
∂ξ

hw′dξ . The Fréchet derivative of the work of the

noncoservative force writes dqWnchq = f (t)hq. Therefore, equation (II.6) for the vibrat-
ing string with a tip mass writes∫ t2

t1

{∫ L

0

(
ρ

∂w
∂ t

hẇ−T
∂w
∂ξ

hw′

)
dξ +mẇ(0, t)hq̇ + f hq

}
dt = 0∫ t2

t1

{∫ L

0

(
ρ

∂w
∂ t

∂

∂ t
(hw)−T

∂w
∂ξ

∂

∂ξ
(hw)

)
dξ +mẇ(0, t)

d
dt
(hq)+ f hq

}
dt = 0.

(II.11)

31



II.1. Modelling of m-pH mechanical systems

Using integration by parts, we obtain∫ L

0

[
ρ

∂w
∂ t

hw

]t2

t1
dξ +[mẇ(0, t)hq]

t2
t1 +

∫ t2

t1

{
−
[

T
∂w
∂ξ

hw

]L

0

+
∫ L

0

[
− ∂

∂ t

(
ρ

∂w
∂ t

)
+

∂

∂ξ

(
T

∂w
∂ξ

)]
hwdξ +( f (t)−mẅ(0, t))hq

}
dt = 0

(II.12)

and by the fact that the variation functions are null at t1 and t2 we obtain∫ t2

t1

{∫ L

0

[
− ∂

∂ t

(
ρ

∂w
∂ t

)
+

∂

∂ξ

(
T

∂ 2w
∂ξ

)]
hwdξ

−
[
T ∂w

∂ξ
hw

]L

0
+( f −mẅ(0, t))hq

}
dt = 0.

(II.13)

According to item 1 of Remark 3, to be consistent with the variables’ definition w(0, t)=
q, we have that hw(0, t) = hq(t).∫ t2

t1

{∫ L

0

[
− ∂

∂ t

(
ρ

∂w
∂ t

)
+

∂

∂ξ

(
T

∂w
∂ξ

)]
hwdξ

+ T (L)∂w
∂ξ

(L, t)hw(L, t)+
(

T (0)∂w
∂ξ

(0, t)−mẅ(0, t)+ f
)

hq

}
dt = 0.

(II.14)

According to item 1 of Remark 3, the boundary clamping condition at the ξ = L side
w(L, t) = 0 means that hw(L, t) = 0, and therefore the former equation transforms to∫ t2

t1

{∫ L

0

[
− ∂

∂ t

(
ρ

∂w
∂ t

)
+

∂

∂ξ

(
T

∂w
∂ξ

)]
hwdξ

++
(

T (0)∂w
∂ξ

(0, t)−mẅ(0, t)+ f
)

hq

}
dt = 0.

(II.15)

Since the variation functions hw,hq are different from zero, the only possibility of hav-
ing this equation satisfied is to set the expressions multiplying the variation functions
equal to zero. From the last two equations we can extract the dynamic equations of the
vibrating string with the tip mass, together with its boundary conditions

∂

∂ t

(
ρ(ξ )∂w

∂ t (ξ , t)
)
= ∂

∂ξ

(
T (ξ )∂w

∂ξ
(ξ , t)

)
mẅ(0, t) = T (0)∂w

∂ξ
(0, t)+ f (t)

w(L, t) = 0.

(II.16)

At this point we define the energy variable z = [z1 z2]
T and p

z1(ξ , t) = ρ(ξ )
∂w
∂ t

(ξ , t), z2(ξ , t) =
∂w
∂ξ

(ξ , t), p(t) = m
dw
dt

(0, t), (II.17)

and we define the input output operators for the string equation

B(H z) =
[
B1(H z)
B2(H z)

]
=

[
1

ρ(0)z1(0, t)
1

ρ(L)z1(L, t)

]
,

C (H z) =
[
C1(H z)
C2(H z)

]
=

[
−T (0)z2(0, t)
T (L)z2(L, t)

] (II.18)
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with energy density defined as

H (ξ ) =

[
1

ρ(ξ )
0

0 T (ξ )

]
. (II.19)

The input operators are selected to be the input velocities at both sides of the spatial
domain. This choice is motivated by the fact that we have to impose the clamping
boundary condition at the ξ = L side of the spatial domain, while the velocity at the
ξ = 0 side is imposed as a consequence of the mass dynamics. Then, equations (II.16)
with the new variable set writes

ż = P1
∂

∂ξ
(H z) = J z

ṗ =−C1(H z)+ f (t),
(II.20)

with matrix P1 defined as

P1 =

[
0 1
1 0

]
(II.21)

and domain of the J operator

D(J ) =
{

z ∈ L2([0,L],R2) | (H z) ∈ H1([0,L],R2),

B1(H z) = 1
m p, B2(H z) = 0

}
.

(II.22)

The energy of the vibrating string with a tip mass can be expressed as

E(z, p) =
1
2
〈z,H z〉L2 +

1
2m

p2. (II.23)

II.1.2.b Flexible rotating beam

In this subsection, we model a flexible beam clamped on a rotating hub. The ma-
jority of publications studying flexible rotating beams use the Euler-Bernoulli model
to describe the flexible dynamics [71, 39, 40]. In this section we use the Timoshenko
beam assumptions instead of the Euler-Bernoulli ones, obtaining a more detailed dy-
namic content in the models. In fact, the Euler Bernoulli model can be derived from the
Timoshenko beam one, imposing a zero shear deformation [72]. Therefore, the possi-
ble applications of the proposed model are the same as the ones implementing Euler-
Bernoulli equations. However, in this section we assume a slowly rotating operating
condition (assumptions at page 34) [73] to obtain a linear model. We refer to Section
V.2.1 for the study of the nonlinear model obtained without simplifying assumptions.
The proposed model can be used in a lot of different applications ranging from flexible
robotics [42, 44] to satellites with flexible appendices in attitude manoeuvring [63] or
structural vibrations of wind turbines [74] (considering a translating instead of a rotating
flexible beam with a slight change of boundary conditions).
We consider a frictionless flexible beam connected to a rotating hub as depicted in Fig-
ure II.2. The system is considered in absence of gravity: the flexible beam is rotating on
a plane parallel to the ground. The rotor angle θ(t) is a real function of time, while J rep-
resents the rotary inertia of the hub to which the beam is connected. The term ξ ∈ [0,L]
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identifies the spatial coordinate, while w(ξ , t) and φ(ξ , t) represents the deflection and
the relative rotation of a beam cross section in the rotating frame at position ξ and time
t, respectively. E(ξ ), I(ξ ) are the space depending Young’s modulus and moment of in-
ertia of the beam’s cross section, respectively. The beam’s cross section is assumed to be
rectangular, hence its inertia is defined to be I(ξ ) = Lw(ξ )

3Lt(ξ )
12 , where Lw(ξ ) and Lt(ξ )

are the width and the thickness of the beam, respectively. ρ(ξ ), Iρ(ξ ) are the space
dependent density and mass moment of inertia of the beam’s cross section, respectively.
The mass moment of inertia of the cross section is defined as Iρ(ξ ) = I(ξ )ρ(ξ ). K(ξ )
is defined as K(ξ ) = kG(ξ )A(ξ ), where k is a constant depending on the shape of the
cross section (k = 5/6 for rectangular cross sections), G(ξ ) is the Shear modulus and
A(ξ ) is the cross sectional area. Since the beam is clamped at the ξ = 0 side to the
rotating hub, we set the reference deformation

w(0, t) = φ(0, t) = 0. (II.24)

We write the kinetic energy of the rotating flexible beam as

Ek =
1
2

∫ L

0

{
ρ(ξ )v(ξ , t)T v(ξ , t)+ Iρ(ξ )r(ξ , t)2}dξ +

1
2

Jθ̇
2 (II.25)

where v(ξ , t) and r(ξ , t) represent the linear and angular velocity of the beam’s cross
section at position ξ and time t. To compute the linear velocity of every beam’s cross
section we begin by defining the position p(ξ , t) of every point of the beam with respect
to the fixed frame F0

p(ξ , t) =
[

ξ cos(θ)−w(ξ , t)sin(θ)
ξ sin(θ)+w(ξ , t)cos(θ)

]
. (II.26)

Differentiating by time we obtain the velocity of every beam’s cross section point,

v(ξ , t) =
d p
dt

(ξ , t) =
[
−ξ θ̇sin(θ)− ẇ(ξ , t)sin(θ)−w(ξ , t)θ̇ cos(θ)
ξ θ̇ cos(θ)+ ẇ(ξ , t)cos(θ)−w(ξ , t)θ̇ sin(θ)

]
(II.27)

and its square writes

v(ξ , t)T v(ξ , t) = (ξ θ̇(t)+ ẇ(ξ , t))2 +(w(ξ , t)θ̇(t))2. (II.28)

We make the following assumptions for the derivation of a linear model

J

w(ξ , t)

φ(ξ , t)

θ(t)

τ(t)

F0

Figure II.2: Rotating flexible Timoshenko’s beam.
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1. The deformation w(ξ , t) and the angular velocity θ̇(t) are small in such a way that
we can neglect the product w(ξ , t)θ̇(t)≈ 0.

2. The Timoshenko’s assumptions hold for the flexible deformations.

Therefore, the square of the linear velocity can be approximated with

v(ξ , t)T v(ξ , t) = (ξ θ̇(t)+ ẇ(ξ , t))2. (II.29)

We point out that this type of approximation is standard for the modelling procedure of
flexible rotating beams, see for example [31, 44].
The angular velocity of the cross sections along the beam in the fixed frame F0 is simply
the sum between the relative cross section and the hub’s angular velocity

r(ξ , t) = φ̇(ξ , t)+ θ̇(t). (II.30)

Therefore, the kinetic energy of the system under consideration can be approximated by

Ek =
1
2

∫ L

0

{
ρ(ξ )(ξ θ̇(t)+ ẇ(ξ , t))2 + Iρ(ξ )(φ̇(ξ , t)+ θ̇(t))2}dξ +

1
2

Jθ̇
2, (II.31)

the potential energy, without considering the gravity, follows directly from the Timo-
shenko assumptions for the beam’s flexibility [75]

Ep =
∫ L

0

{
K(ξ )(

∂w
∂ξ

(ξ , t)−φ(ξ , t))2 +EI(ξ )
∂φ

∂ξ
(ξ , t)2

}
dξ , (II.32)

while the work of non-conservative forces is only composed by the one done by the
input torque acting on the hub Wnc = τ(t)θ(t). Without expliciting the passages, we
compute

d
θ̇

Lh
θ̇
=

(∫ L

0

{
ρξ (ẇ+ξ θ̇)+ Iρ(φ̇ + θ̇)

}
dξ + Jθ̇

)
h

θ̇

dẇLhẇ =
∫ L

0
ρ(ẇ+ξ θ̇)hẇdξ

d
φ̇

Lh
φ̇
=

∫ L

0
Iρ(φ̇ + θ̇)h

φ̇
dξ

dφ Lhφ = +
∫ L

0
K
(

∂w
∂ξ
−φ

)
hφ dξ

dw′Lhw′ = −
∫ L

0
K
(

∂w
∂ξ
−φ

)
hw′dξ

dφ ′Lhφ ′ = −
∫ L

0
EI

∂φ

∂ξ
hφ ′dξ

dθWnchθ = τhθ .

(II.33)

Therefore, equation (II.6) for a rotating flexible beam connected to a rotating hub writes∫ t2

t1

{∫ L

0
ρ(ẇ+ξ θ̇)hẇ + Iρ(φ̇ + θ̇)h

φ̇
+K(

∂w
∂ξ
−φ)hφ −K(

∂w
∂ξ
−φ)hw′

−EI ∂φ

∂ξ
hφ ′dξ +

(∫ L

0
ρξ (ẇ+ξ θ̇)+ Iρ(φ̇ + θ̇)dξ + Jθ̇

)
h

θ̇
+ τhθ

}
dt = 0.

(II.34)
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Using integration by parts, the assumption of null variation in the initial and final time
together with h

φ̇
= ∂

∂ t hφ , hẇ = ∂

∂ t hw, hφ ′ =
∂

∂ξ
hφ and hw′ =

∂

∂ξ
hw, we obtain

∫ t2

t1

{∫ L

0

{[
∂

∂ξ
K(

∂w
∂ξ
−φ)− ∂

∂ t
ρ(ẇ+ξ θ̇)

]
hw +

[
K(

∂w
∂ξ
−φ)

+ − ∂

∂ t Iρ(φ̇ + θ̇)+ ∂

∂ξ
EI ∂φ

∂ξ

]
hφ

}
dξ −

[
K(∂w

∂ξ
−φ)hw

]L

0
−
[
EI ∂φ

∂ξ
hφ

]L

0

−
[

∂

∂ t

∫ L

0

{
ρξ (ẇ+ξ θ̇)+ Iρ(φ̇ + θ̇)

}
dξ +

d
dt

Jθ̇ − τ

]
hθ

}
dt = 0.

(II.35)
From which we can extract the following equations and boundary conditions

∂

∂ t

(
ρ(ẇ+ξ θ̇)

)
= ∂

∂ξ

(
K
(

∂w
∂ξ
−φ

))
∂

∂ t

(
Iρ(φ̇ + θ̇)

)
= ∂

∂ξ

(
EI ∂φ

∂ξ

)
+K(∂w

∂ξ
−φ)

d
dt

(
Jθ̇
)
=− ∂

∂ t

∫ L

0

{
ρξ (ẇ+ξ θ̇)+ Iρ(φ̇ + θ̇)

}
dξ + τ

K
(

∂w
∂ξ

(L, t)−φ(L, t)
)
= 0, EI ∂φ

∂ξ
(L, t) = 0.

(II.36)

Before defining the energy variables we rewrite the third of the latter set of equations,
substituting the two terms inside the integral with the first two of (II.36)

d
dt Jθ̇ = −

∫ L

0

{
ξ

∂

∂ t

(
ρ(ẇ+ξ θ̇)

)
+

∂

∂ t

(
Iρ(φ̇ + θ̇)

)}
dξ + τ

= −
∫ L

0

{
ξ

∂

∂ξ

(
K
(

∂w
∂ξ
−φ

))
+

∂

∂ξ

(
EI

∂φ

∂ξ

)
+K

(
∂w
∂ξ
−φ

)}
dξ + τ

= −
[
ξ K
(

∂w
∂ξ
−φ

)]L

0
−
∫ L

0

{
∂

∂ξ

(
EI

∂φ

∂ξ

)}
dξ + τ

= −
[
ξ K
(

∂w
∂ξ
−φ

)]L

0
−
[
EI ∂φ

∂ξ

]L

0
+ τ,

(II.37)
that using the boundary conditions in (II.36), transforms into

d
dt

Jθ̇ = EI
∂φ

∂ξ
(0, t)+ τ. (II.38)

Now, we can define the energy variables

z1 = ρ(ẇ+ξ θ̇) z2 = Iρ(φ̇ + θ̇) z3 =
∂w
∂ξ
−φ z4 =

∂φ

∂ξ
p = Jθ̇ (II.39)

and z = [z1 z2 z3 z4]
T as the state related to the flexible beam. We define the input output

operators such that

B(H z) =


1

Iρ (0)
z2(0, t)

1
ρ(0)z1(0, t)

K(L)z3(L, t)
EI(L)z4(L, t)

 C (H z) =


−EI(0)z4(0, t)
−K(0)z3(0, t)

1
ρ(L)z1(L, t)

1
Iρ (L)

z2(L, t)

 (II.40)
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and we split each of them in two different operators, such to obtain

B1(H z) = 1
Iρ (0)

z2(0, t) C1(H z) =−EI(0)z4(0, t)

B2(H z) =

 1
ρ(0)z1(0, t)

K(L)z3(L, t)
EI(L)z4(L, t)

 C2(H z) =

−K(0)z3(0, t)
1

ρ(L)z1(L, t)
1

Iρ (L)
z2(L, t)

 (II.41)

where

H (ξ ) =


ρ−1(ξ ) 0 0 0

0 I−1
ρ (ξ ) 0 0

0 0 K(ξ ) 0
0 0 0 EI(ξ )

 . (II.42)

Using the state variable definition (II.39) together with the original system’s boundary
conditions (II.24), we obtain

1
Iρ (0)

z2(0, t) = ẇ(0, t) = 0
1

ρ(0)z1(0, t) = φ̇(0, t)+ θ̇(t) = 1
J p.

(II.43)

Therefore, we are able to characterize the system’s boundary conditions : B1(H z) =
−1

J p, B2(H z) = 0. Finally, we can rewrite (II.36) with the modified third equation
(II.38) in the energy variables as a m-pH system

ż = P1
∂

∂ξ
(H z)+P0(H z) = J z

ṗ =−C1(H z)+ τ,
(II.44)

with matrices defined as

P1 =

[0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

]
P0 =

[0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

]
(II.45)

and domain of the J operator

D(J ) = {z ∈ L2([0,L],R4) | (H z) ∈ H1([0,L],R2),

B1(H z) = 1
J p, B2(H z) = 0}. (II.46)

The energy of the rotating flexible beam can be expressed as

E(z, p) =
1
2
〈z,H z〉L2 +

1
2J

p2. (II.47)

II.1.2.c Rotating translating flexible beam

Consider a rotating a translating flexible beam as depicted in Figure II.3.
The beam is assumed to move on a plane parallel to the ground, therefore gravity is
not considered. The variable and parameters are the same as the one introduced in the
previous Section II.1.2.b. Since the beam is also allowed to translate we consider m
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the mass of the hub, while s(t) is the hub’s linear displacement. The deformations are
considered null at the clamped side, i.e. the ξ = 0 side:

w(0, t) = φ(0, t) = 0. (II.48)

Similarly as before, the kinetic energy of the rotating-translating flexible beam takes the
form

Ek =
1
2

∫ L

0

{
ρ(ξ )v(ξ , t)T v(ξ , t)+ Iρ(ξ )r(ξ , t)2}dξ +

1
2

Jθ̇(t)2 +
1
2

mṡ(t)2, (II.49)

where v(ξ , t) and r(ξ , t) represent the linear and angular velocity of the beam’s cross
section at position ξ and time t. To compute the linear velocity, we define every cross
section beam’s position with respect to the fixed frame F0

p(ξ , t) =
[

ξ cos(θ)−w(ξ , t)sin(θ)
ξ sin(θ)+w(ξ , t)cos(θ)+ s(t)

]
. (II.50)

The velocity is obtained differentiating by time the former quantity

v(ξ , t) =
d p
dt

(ξ , t) =
[
−ξ θ̇sin(θ)− ẇ(ξ , t)sin(θ)−w(ξ , t)θ̇ cos(θ)

ξ θ̇ cos(θ)+ ẇ(ξ , t)cos(θ)−w(ξ , t)θ̇ sin(θ)+ ṡ(t)

]
. (II.51)

In this example, we make the following assumptions for the derivation of a linear model

1. The deformation w(ξ , t) and the angular velocity θ̇(t) are small in such a way that
we can neglect the product w(ξ , t)θ̇(t)≈ 0.

2. The control strategy is such that θ(t)≈ 0. We also assume that the initial condition
is near to zero θ(0)≈ 0, to be able to state that θ(t)≈ 0 ∀t > 0.

3. The Timoshenko’s assumptions hold for the flexible deformations.

Taking into consideration the previous assumptions, the square of the velocity v(ξ , t)
can be written as

v(ξ , t)T v(ξ , t) = (ẇ(ξ , t)+ξ θ̇(t)+ ṡ(t))2. (II.52)

F0

s(t) J

w(ξ , t)

φ(ξ , t)

θ(t)

m

f (t)

τ(t)

Figure II.3: Translating Rotating flexible Timoshenko’s beam.
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The angular velocity r(ξ , t) remains as in (II.30), thus the kinetic energy of the system
under consideration writes

Ek =
1
2

∫ L

0

{
ρ(ξ )(ẇ(ξ , t)+ξ θ̇(t)+ s(t))2 + Iρ(ξ )(φ̇(ξ , t)+ θ̇(t))2}dξ

+1
2Jθ̇ 2 + 1

2mṡ(t)2,
(II.53)

the potential energy, following directly from the Timoshenko’s assumptions, remains
equal to (II.32), while the work of the non-conservative forces has to take into account
the force other than the torque input Wnc = f (t)s(t)+ τ(t)θ(t). The necessary Fréchet
derivatives to find the equations of motions are obtained as follows

d
θ̇

Lh
θ̇
=

(∫ L

0

{
ρξ (ẇ+ξ θ̇ + ṡ)+ Iρ(φ̇ + θ̇)

}
dξ + Jθ̇

)
h

θ̇

dṡLhṡ =

(∫ L

0

{
ρ(ẇ+ξ θ̇ + ṡ)

}
dξ +mṡ

)
hṡ

dẇLhẇ =
∫ L

0
ρ(ẇ+ξ θ̇ + ṡ)hẇdξ

d
φ̇

Lh
φ̇
=
∫ L

0
Iρ(φ̇ + θ̇)h

φ̇
dξ

dφ Lhφ =
∫ L

0
K
(

∂w
∂ξ
−φ

)
hφ dξ

dw′Lhw′ =−
∫ L

0
K
(

∂w
∂ξ
−φ

)
hw′dξ

dφ ′Lhφ ′ =−
∫ L

0
EI

∂φ

∂ξ
hφ ′dξ

dθWnchθ = τhθ dsWnchs = τhs.

(II.54)

Hence, equation (II.6) for a rotating translating flexible beam writes∫ t2

t1

{∫ L

0

{
ρ(ẇ+ξ θ̇ + ṡ)hẇ + Iρ(φ̇ + θ̇)h

φ̇
+K

(
∂w
∂ξ
−φ

)
hφ

−K
(

∂w
∂ξ
−φ

)
hw′−EI ∂φ

∂ξ
hφ ′

}
dξ + τhθ

+

(∫ L

0

{
ρξ (ẇ+ξ θ̇ + ṡ)+ Iρ(φ̇ + θ̇)

}
dξ + Jθ̇

)
h

θ̇

+

(∫ L

0
ρ
(
ẇ+ξ θ̇ + ṡ

)
dξ +mṡ

)
hṡ + f hs

}
dt = 0.

(II.55)

After some very similar passages as the one did in the previous section, the equations
of motion together with the boundary conditions are found as follows

∂

∂ t

(
ρ(ẇ+ξ θ̇ + ṡ)

)
= ∂

∂ξ

(
K
(

∂w
∂ξ
−φ

))
∂

∂ t

(
Iρ(φ̇ + θ̇)

)
= ∂

∂ξ

(
EI ∂φ

∂ξ

)
+K

(
∂w
∂ξ
−φ

)
d
dt (mṡ) = K(0)

(
∂w
∂ξ

(0, t)−φ(0)
)
+ f

d
dt

(
Jθ̇
)
= EI(0)∂φ

∂ξ
(0, t)+ τ

K
(

∂w
∂ξ

(L, t)−φ(L, t)
)
= 0, EI ∂φ

∂ξ
(L, t) = 0.

(II.56)
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The energy variables are defined by

z1 = ρ(ẇ+ξ θ̇ + ṡ) z2 = Iρ(φ̇ + θ̇) z3 =
∂w
∂ξ
−φ z4 =

∂φ

∂ξ

p1 = mṡ p2 = Jθ̇
(II.57)

and z = [z1 z2 z3 z4]
T is the flexible beam’s state, and p = [p1 p2]

T is the state related to
the hub’s motion. The input output operators are defined as in (II.40), but in this case,
the input output operators are split as follows

B1(H z) =

[
1

ρ(0)z1(0, t)
1

Iρ (0)
z2(0, t))

]
C1(H z) =−

[
K(0)z3(0, t)
EI(0)z4(0, t)

]
B2(H z) =

[
K(L)z3(L, t)
EI(L)z4(L, t)

]
C2(H z) =

[
1

ρ(L)z1(L, t)
1

Iρ (L)
z2(L, t)

] (II.58)

where H (ξ ) is defined as in II.42. Equations of motion (II.56) in the energy variables
coordinates, transform into a m-pH system

ż = P1
∂

∂ξ
(H z)+P0(H z) = J z

ṗ =−C1(H z)+u(t),
(II.59)

with u(t) = [ f (t) τ(t)]T and P0, P1 defined as in (II.45). The domain of the J operator
is defined as

D(J ) = {z ∈ L2([0,L],R4) | z ∈ H1([0,L],R2),
B1(H z) = Qp, B2(H z) = 0} (II.60)

where Q = diag[m−1,J−1]. The energy of the overall mechanism can be expressed as:

E =
1
2
〈z,H z〉L2 +

1
2

pT Qp. (II.61)

II.1.2.d Double flexible manipulator

In this section we consider a double flexible-link manipulator as depicted in Fig-
ure II.4. A possible application of the model proposed in this section is a flexible
gripper as the one described in [45]. The system is composed by two flexible links
connected with actuated revolute joints, i.e. motors. The motor fixed to the ground has
only the shaft moving, while the other has both the stator and the shaft participating to
the motion.

θ1(t) and θ2(t) represent the absolute angular rotation of the first and second rotor,
respectively. With ξ1 ∈ [0,L1] and ξ2 ∈ [0,L2] we identify the spatial coordinates along
the beams. The deflection of the two beams with respect to their own axis ξ1 and ξ2, has
been denoted with w1(ξ1, t) and w2(ξ2, t), while with φ1(ξ1, t) and φ2(ξ2, t) have been
defined the relative (with respect to their own frame) rotation of the beam cross section.
The beams are supposed to have a constant rectangular cross section width Lw,i, thick-
ness Lt,i and area As,i = Lw,1Lt,i, i = {1,2}. All the physical parameters of the system
are positive real, and their meaning are given as follows: Ih,1, Ih,21, Ih,22, Ih,3,mh,2,mh,3
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II.1. Modelling of m-pH mechanical systems

represent respectively the rotary inertia of the shaft of the first motor, of the stator of the
second motor, of the shaft of the second motor and of the payload; mh,2,mh,3 represent
respectively the mass of the second motor and of the tip payload at the end of the second
link. The beam’s related parameters are defined as in section II.1.2.b for each flexible
link. In accordance with the previous examples, we perform the following assumptions
to obtain linear PDEs describing the beam’s deformation dynamics

1. The deformations w1(ξ1, t) and w2(ξ2, t) and the angular velocities θ̇1 and θ2 are
small in such a way that we can neglect the products w1(ξ1, t)θ̇1,w2(ξ2, t)θ̇2 ≈ 0.

2. The Timoshenko’s assumptions hold for the flexible deformation of each link.

The deformations of each beam are considered null at ξ1,ξ2 = 0 side:

w1(0, t) = w2(0, t) = φ1(0, t) = φ2(0, t) = 0. (II.62)

The kinetic energy Ek is composed by the one related to the distributed flexible parts
and the one related to the lumped parameter system, i.e.:

Ek =
1
2

∫ L1

0

{
ρ1(ξ1)v1(ξ1, t)T v1(ξ1, t)+ Iρ1(ξ1)r1(ξ1, t)2}dξ1

+1
2

∫ L2

0

{
ρ2(ξ2)v2(ξ2, t)T v2(ξ2, t)+ Iρ2(ξ2)r2(ξ2, t)2}dξ2

+1
2 Ih,1θ̇ 2

1 +
1
2 Ih,21rh,21(t)2 + 1

2mh,2vh,2(t)T vh,2(t)+ 1
2 Ih,22θ̇ 2

2
+1

2mh,3vh,3(t)T vh,3(t)+ 1
2 Ih,31rh,31(t)2

(II.63)

where v1(ξ1, t) and v2(ξ2, t) represent the linear velocities of the first and second beam,
respectively, while r1(ξ1, t) and r2(ξ2, t) represent the angular velocities of the first and
second beam, respectively. rh,21(t) = r1(L1, t) is the angular velocity of the stator of the
second hub; vh,2(t) = v1(L1, t) is the linear velocity of the second hub; vh,3(t) = v2(L2, t)
is the linear velocity of the end effector and rh,31(t)= r2(L2, t) its angular velocity. From
now on we shall not explicit the time and space dependency of the variables, unless it

Ih,1

w1(ξ1, t)

φ1(ξ1, t)

θ1(t)

Ih,22

Ih,21
mh,2

w2(ξ2, t)

φ2(ξ2, t) mh,3

Ih,31

θ2(t)

τ1(t)

τ2(t)

Figure II.4: Double flexible rotating Timoshenko’s beam manipulator.
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is not clear from the context. Similarly to Section II.1.2.b, and taking into account the
assumptions at page 41, we obtain the linear and angular velocities v1, r1 as follows

v1 =

[
−ξ1θ̇1sin(θ1)− ẇ1 sin(θ1)
ξ1θ̇1 cos(θ1)+ ẇ1 cos(θ1)

]
r1 = φ̇1 + θ̇1,

(II.64)

and consequently we obtain

vh,2 =

[
−L1θ̇1sin(θ1)− ẇ1(L1)sin(θ1)

L1θ̇1 cos(θ1)+ ẇ1 cos(θ1)

]
rh,21 = φ̇1(L1)+ θ̇1.

(II.65)

The position of every point of the second beam is expressed by

p2 =

[
L1 cos(θ1)−w1(L1)sin(θ1)+ξ2 cos(θ2)−w2 sin(θ2)
L1 sin(θ1)+w1(L1)cos(θ1)+ξ2 sin(θ2)+w2 cos(θ2)

]
, (II.66)

and differentiating with respect to time we obtain

v2 =
d p2

dt
=


L1 sin(θ1)θ̇1− ẇ1(L1)sin(θ1)−w1(L1)θ̇1 cos(θ1)
−ξ2θ̇2 sin(θ2)− ẇ2 sin(θ2)−w2θ̇2 cos(θ2)

L1 cos(θ1)θ̇1 + ẇ1(L1)cos(θ1)−w1(L1)θ̇1 sin(θ1)
+ξ2θ̇2 cos(θ2)+ ẇ2 cos(θ2)−w2θ̇2 sin(θ2)

 . (II.67)

Using the assumptions at page 41, the linear velocity of each point of the second beam
can be approximated as:

v2 ≈
[
−L1 sin(θ1)θ̇1− ẇ1(L1)sin(θ1)−ξ2θ̇2 sin(θ2)− ẇ2 sin(θ2)
L1 cos(θ1)θ̇1 + ẇ1(L1)cos(θ1)+ξ2θ̇2 cos(θ2)+ ẇ2 cos(θ2)

]
, (II.68)

while the angular velocity of every point of the second beam writes as

r2 = φ̇2 + θ̇2. (II.69)

From the last two quantities we can derive the linear and angular velocities of the end
effector

vh,3 =

[
−L1 sin(θ1)θ̇1− ẇ1(L1)sin(θ1)−L2θ̇2 sin(θ2)− ẇ2 sin(θ2)
L1 cos(θ1)θ̇1 + ẇ1(L1)cos(θ1)+L2θ̇2 cos(θ2)+ ẇ2 cos(θ2)

]
rh,31 = φ̇2(L2)+ θ̇2.

(II.70)
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Substituting equations (II.64)-(II.65) and (II.68)-(II.70) in (II.63), we obtain the kinetic
energy of the mechanism

Ek =
1
2

∫ L1

0

{
ρ1
(
ẇ1 +ξ1θ̇1

)2
+ Iρ1

(
φ̇1 + θ̇1

)2
}

dξ1 +
1
2

Ih,1θ̇
2
1

+1
2 Ih,21

(
φ̇(L1)+ θ̇1

)2
+ 1

2

(
mh,2 +m2 +mh,3

)(
ẇ1(L1)+L1θ̇1

)2

+1
2

∫ L2

0

{
ρ2
(
ẇ2 +ξ2θ̇2

)2
+ Iρ2

(
φ̇2 + θ̇2

)2
}

dξ2 +
1
2

Ih,22θ̇
2
2

1
2mh,3

(
ẇ2(L2)+L2θ̇2

)2
+mh,3 cos(θ2−θ1)

(
ẇ1(L1)+L1θ̇1

)
(ẇ2(L2)

+L2θ̇2
)
+
(
ẇ1(L1)+L1θ̇1

)
cos(θ2−θ1)

∫ L2

0

{
ρ2
(
ẇ2 +ξ2θ̇2

)}
dξ2

+1
2 Ih,31(φ̇2(L2)+ θ̇2)

2

(II.71)

with m2 =
∫ L2

0
ρ2dξ2. The potential energy follows directly from the Timoshenko’s

beam assumptions

Ep =
1
2

∫ L1

0

[
K1

(
∂w1

∂ξ1
−φ1

)2

+EI1

(
∂φ1

∂ξ1

)2
]

dξ1

+1
2

∫ L2

0

[
K2

(
∂w2

∂ξ2
−φ2

)2

+EI2

(
∂φ2

∂ξ2

)2
]

dξ2,

(II.72)

while the work of non-conservative forces, that also in this case corresponds to the
input torques, can be written as Wnc = τ1θ1 + τ2θ2. In the following we list the Fréchet
derivatives of the lagrangian L = Ek−Ep with respect to all the generalized variables
that compose them

d
θ̇1

Lh
θ̇1
=

(
Ih,1θ̇1 +

∫ L1

0

{
ρ1ξ1

(
ẇ1 +ξ1θ̇1

)
+ Iρ1

(
φ̇1 + θ̇1

)}
dξ1

+L1 cos(θ2−θ1)

[∫ L2

0
ρ2
(
ẇ2 +ξ2θ̇2

)
dξ2

+mh,3(ẇ2(L2)+L2θ̇2)
]
+ Ih,21

(
φ̇1(L1)+ θ̇1

)
+L1(m2 +mh,2 +mh,3)

(
ẇ1(L1)+L1θ̇1

))
h

θ̇1

d
θ̇2

Lh
θ̇2
=

(
Ih,22θ̇2 +

∫ L2

0

{
ρ2ξ2

(
ẇ2 +ξ2θ̇2

)
+ Iρ2

(
φ̇2 + θ̇2

)}
dξ2

+mh,3
(
ẇ2(L2)+L2θ̇2

)
+mh,3L2 cos(θ2−θ1)(ẇ1(L1, t)

+L1θ̇1
)
+ cos(θ2−θ1)

(
ẇ1(L1)+L1θ̇1

)∫ L2

0
ρ2ξ2dξ2

+1
2 Ih,31(φ̇2(L2)+ θ̇2)

)
h

θ̇2

dẇ1Lhẇ1 =
∫ L1

0
ρ1
(
ẇ1 +ξ1θ̇1

)
hẇ1dξ1

dẇ2Lhẇ2 =
∫ L2

0
ρ2
[(

ẇ2 +ξ2θ̇2
)
+ cos(θ2−θ1)

(
ẇ1(L1)+L1θ̇1

)]
hẇ2dξ2

d
φ̇1

Lh
φ̇1
=

∫ L1

0
Iρ1
(
φ̇1 + θ̇1

)
h

φ̇1
dξ1
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d
φ̇2

Lh
φ̇2
=

∫ L2

0
Iρ2
(
φ̇2 + θ̇2

)
h

φ̇2
dξ2

dφ1Lhφ1 =
∫ L1

0
K1

(
∂w1

∂ξ1
−φ1

)
hφ1dξ1

dφ2Lhφ2 =
∫ L2

0
K2

(
∂w2

∂ξ2
−φ2

)
hφ2dξ2

dθ1Lhθ1 =
[
mh,3 sin(θ2−θ1)

(
ẇ1(L1, t)+L1θ̇1

)(
ẇ2(L2, t)+L2θ̇2

)
+ sin(θ2−θ1)

(
ẇ1(L1, t)+L1θ̇1

)∫ L2

0

{
ρ2
(
ẇ2 +ξ2θ̇2

)}
dξ2

]
hθ1

dθ2Lhθ2 =
[
−mh,3 sin(θ2−θ1)

(
ẇ1(L1, t)+L1θ̇1

)(
ẇ2(L2, t)+L2θ̇2

)
− sin(θ2−θ1)

(
ẇ1(L1, t)+L1θ̇1

)∫ L2

0

{
ρ2
(
ẇ2 +ξ2θ̇2

)}
dξ2

]
hθ2

dw′1
Lhw′1

= −
∫ L1

0
K1

(
∂w1

∂ξ1
−φ1

)
hw′1

dξ1

dw′2
Lhw′2

= −
∫ L2

0
K2

(
∂w2

∂ξ2
−φ2

)
hw′2

dξ2

dφ ′1
Lhφ ′1

= −
∫ L1

0
EI1

∂φ1

∂ξ1
hφ ′1

dξ1

dφ ′2
Lhφ ′2

= −
∫ L2

0
EI2

∂φ2

∂ξ2
hφ ′2

dξ2

dẇ1(L1)Lhẇ1(L1) =
[
(mh,2 +m2 +mh,3)

(
ẇ1(L1)+L1θ̇1

)
+mh,3 cos(θ2−θ1)(ẇ2(L2)

+L2θ̇2
)
+ cos(θ2−θ1)

∫ L2

0

{
ρ2(ẇ2 +ξ2θ̇2)

}
dξ2

]
hẇ1(L1)

dẇ2(L2)Lhẇ2(L2) = mh,3
(
ẇ2(L2)+L2θ̇2

)
hẇ2(L2)

d
φ̇1(L1)

Lh
φ̇1(L1)

= Ih,21
(
φ̇(L1)+ θ̇1

)
h

φ̇1(L1)

d
φ̇2(L2)

Lh
φ̇2(L2)

= Ih,31
(
φ̇2(L2)+ θ̇2

)
h

φ̇2(L2)
.

We substitute the Fréchet derivative of the previous equation in equation (II.6), and after
applying integration by parts with respect to time and space as done in the previous
examples, we obtain the dynamic equations of the double flexible manipulator. In this
example we omit the tedious integration by parts procedure, and we directly show the
resulting equations.

The ordinary differential equation governing the dynamics of the Shaft of the first
motor θ1 writes

d
dt

(
Ih,1θ̇1

)
+ ∂

∂ t

∫ L1

0

{
ρ1ξ1

(
ẇ1 +ξ1θ̇1

)
+ Iρ1

(
φ̇1 + θ̇1

)}
dξ1

+ d
dt

(
L1
(
mh,2 +m2 +m3

)(
ẇ1(L1)+L1θ̇1

))
+ d

dt

(
Ih,21

(
φ̇1(L1)+ θ̇1

))
+ ∂

∂ t L1 cos(θ2−θ1)

(∫ L2

0

{
ρ2
(
ẇ2 +ξ2θ̇2

)}
dξ2 +mh,3

(
ẇ2(L2)+L2θ̇2

))
=(

ẇ1(L1)+L1θ̇1
)

sin(θ2−θ1)

(∫ L2

0

{
ρ2
(
ẇ2 +ξ2θ̇2

)}
dξ2

+mh,3
(
ẇ2(L2)+L2θ̇2

))
+ τ1− τ2,

(II.73)
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while the ordinary differential equation governing the dynamics of the Shaft of the sec-
ond motor θ2 is given as follows:

d
dt

(
Ih,21θ̇2

)
+ ∂

∂ t

∫ L2

0

{
ρ2ξ2

(
ẇ2 +ξ2θ̇2

)
+ Iρ2

(
φ̇2 + θ̇2

)
+ ∂

∂ t

(
ρ2ξ2

(
ẇ1(L1)+L1θ̇1

)
cos(θ2−θ1)

)}
dξ2 +

d
dt

(
Ih,3
(
φ̇2(L1)+L1θ̇1

))
d
dt

(
L2mh,3

((
ẇ2(L2)+L2θ̇2

)
+ cos(θ2−θ1)

(
+ẇ1(L1)+L1θ̇1

)))
= τ2− sin(θ2−θ1)

(
ẇ1(L1)+L1θ̇1

)∫ L2

0

{
ρ2
(
ẇ2 +ξ2θ̇2

)}
dξ2.

(II.74)

The set of PDE describing the absolute movement and the elastic deformations of
the first flexible beam writes:

∂

∂ t

(
ρ1
(
ẇ1 +ξ1θ̇1

))
= ∂

∂ξ1

(
K1

(
∂w1
∂ξ1
−φ1

))
∂

∂ t

(
Iρ1

(
φ̇1 + θ̇1

))
= ∂

∂ξ1

(
EI1

∂φ1
∂ξ1

)
+K1

(
∂w1
∂ξ1
−φ1

)
.

(II.75)

The two above PDE describe the translational and the rotational dynamics of every cross
section of the first beam, respectively. The first two associated boundary conditions
corresponds to the fixed deformation reference w(0, t) = φ(0, t) = 0, while the last two
are ODE describing the translational and rotational dynamics at the ξ1 = L1 beam’s side,
and they write as

K1

(
∂w1
∂ξ1

(L1)−φ(L1)
)
+ ∂

∂ t

∫ L2

0

{
cos(θ2−θ1)ρ2((ẇ2)+ξ2θ̇2)

}
dξ2

+ d
dt

(
mh,3

((
ẇ1(L1)+L1θ̇1

)
+ cos(θ2−θ1)

(
ẇ2(L2)+L2θ̇2

)))
+ d

dt

((
mh,2 +m2

)(
ẇ1(L1)+L1θ̇1

))
= 0,

(II.76)

EI1
∂φ1

∂ξ1
(L1)+ τ2 +

d
dt

Ih,21
(
θ̇1 + φ̇1(L1)

)
= 0. (II.77)

The set of PDE describing the absolute movement and the elastic deformation of the
second flexible beam writes

∂

∂ t

(
ρ2
(
ẇ2 +ξ2θ̇2

)
+ρ2

(
ẇ1(L1)+L1θ̇1

)
cos(θ2−θ1)

)
= ∂

∂ξ2

(
K2

(
∂w2
∂ξ2
−φ2

))
∂

∂ t

(
Iρ2

(
φ̇2 + θ̇2

))
= ∂

∂ξ2

(
EI2

∂φ2
∂ξ2

)
+K2

(
∂w2
∂ξ2
−φ2

)
(II.78)

with boundary conditions w2(0, t) = φ(0, t) = 0, and

K2

(
∂w2
∂ξ2

(L2, t)−φ(L2, t)
)
+ d

dt

(
mh,3

((
L2θ̇2 + ẇ2(L2)

)
+cos(θ2−θ1)

(
L1θ̇1 + ẇ1(L1)

)))
= 0

(II.79)

EI2
∂φ2

∂ξ2
(L2)+

∂

∂ t
Ih,31

(
θ̇2 + φ̇2(L2)

)
= 0. (II.80)
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II.1. Modelling of m-pH mechanical systems

The energy variables of the infinite dimensional systems (II.75) (II.78), are defined as

z1,1 = ρ1

(
∂w1
∂ t + z1θ̇1

) z2,1 = ρ2

((
∂w2
∂ t + z2θ̇2

)
+(

L1θ̇1 + ẇ1(L1)
)

cos(θ2−θ1)
)

z1,2 = Iρ

(
∂φ

∂ t + θ̇1

)
z2,2 = Iρ2

(
∂φ

∂ t + θ̇2

)
z1,3 =

∂w1
∂ z1
−φ1 z2,3 =

∂w2
∂ z2
−φ2

z1,4 =
∂φ1
∂ z z2,4 =

∂φ2
∂ z2

,

(II.81)

where z1 = [z1,1 z1,2 z1,3 z1,4]
T and z2 = [z2,1 z2,2 z2,3 z2,4]

T are the states of the first and
second flexible beam, respectively. The input output operators for both flexible beams
are defined as

B1,1(H1z1) =

 I−1
ρ z1,2(0)

ρ
−1
i z1,1(L)

I−1
ρ z1,2(L)

 C1,1(H1z1) =

−EI1z1,4(0)
K1z1,3(L)
EI1z1,4(L)


B1,2(H1z1) = ρ

−1
i z1,1(0) C1,2(H1z1) =−K1z1,3(0)

B2,1(H2z2) =


ρ
−1
i z1,1(0)

I−1
ρ z1,2(0)

ρ
−1
i z1,1(L)

I−1
ρ z1,2(L)

 C2,1(H2z2) =


−K1z1,3(0)
−EI1z1,4(0)

K1z1,3(L)
EI1z1,4(L)


(II.82)

where Hi(ξi) = diag[ρ−1
i (ξi) I−1

ρ,i (ξi) Ki(ξi) EIi(ξi)]. Equations (II.75) and (II.78) in the
new variables (II.81) transforms into two boundary control pH Systems

żi =
∂

∂ξi
P1(Hizi)+P0(Hizi) = Ji,bzi i = {1,2}

Bi,1zi = uz,i(t) Ci,1zi = yz,i(t)
Bi,2zi = 0

(II.83)

with matrices P0 and P1 defined as in (II.45). The energy of each flexible beam can be
expressed as

Eb,i =
1
2

∫ Li

0
zT

i Hizidξi =
∫ Li

0
Hb,idξi (II.84)

where Hb,i represent the energy densities.
The next step is to rewrite the obtained set ODE in the pH format thanks to an appro-
priate change of variables. Before doing so, we substitute the infinite dimension energy
variables (II.81) computed at z1 = L1 in the payload equations (II.79)-(II.80)

d
dt

(
mh,3

[(
ẇ2(L2)+L2θ̇2

)
+ cos(θ2−θ1)

(
ẇ1(L1)+L1θ̇1

)])
=−K2z2,3(L2), (II.85)

d
dt

Ih,3
(
φ̇2(L2)+ θ̇2

)
=−EIz2,4(L2). (II.86)
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II.1. Modelling of m-pH mechanical systems

After several developments, and using equation (II.85), the ODE describing the bound-
ary translational dynamics of the first beam (II.76) writes

d
dt

(
mI
(
ẇ1(L1)+L1θ̇1

))
=−K1z1,1(L1)+ cos(θ2−θ1)K2z2,1(0)(

θ̇2− θ̇1
)

sin(θ2−θ1)
∫ L2

0

{
ρ2
[(

ẇ2 +ξ2θ̇2
)
+ cos(θ2−θ1)

(
ẇ1(L1)+L1θ̇1

)]}
dξ2

+mh,3(θ̇2− θ̇1)sin(θ2−θ1)
[(

ẇ2(L2)+L2θ̇2
)
+ cos(θ2−θ1)

(
ẇ1(L1)+L1θ̇1

)]
.

(II.87)
The virtual mass term mI : R2 7→ R+ depends on the angle configuration of the manip-
ulator, and it is defined as follows:

mI(θ1,θ2) = mh,2 +
(
m2 +mh,3

)
sin2(θ2−θ1)> 0.

Similarly, substituting the infinite dimensional energy variables (II.81) in the boundary
rotational dynamics of equation (II.77) leads to

d
dt

Ih,21
(
φ̇1(L1)+ θ̇1

)
=−EI1z1,2(L1)− τ2.

Using (II.81), (II.83) and (II.87), (II.86), the dynamic equations of the two motors’ shaft
are derived from (II.73) and (II.74):

d
dt

(
Ih,1θ̇1

)
= EI1z1,2(0)+

∫ L2

0
ρ2
(
ẇ1(L1)+L1θ̇1

)
sin(θ2−θ1)

(
ẇ2 +ξ2θ̇2

)
dξ2

+mh,3
(
ẇ1(L1)+L1θ̇1

)
sin(θ2−θ1)

(
ẇ2(L2)+L2θ̇2

)
+ τ1

(II.88)
d
dt

(
Ih,21θ̇2

)
= EI2z2,4(0)−

∫ L2

0
ρ2
(
ẇ1(L1)+L1θ̇1

)
sin(θ2−θ1)

(
ẇ2 +ξ2θ̇2

)
dξ2

−mh,3
(
ẇ1(L1)+L1θ̇1

)
sin(θ2−θ1)

(
ẇ2(L2)+L2θ̇2

)
+ τ2.

(II.89)
To define the pH representation of the above boundary dynamics, the energy states

of the set of boundary dynamic equations (II.85)-(II.89) are defined as follows:

p1 = Ih,1θ̇1, p2 = mI
(
ẇ1(L1)+L1θ̇1

)
,

p3 = Ih,21
(
φ̇1(L1)+ θ̇1

)
, p4 = Ih,22θ̇2,

p5 = mh,3
[(

ẇ2(L2)+L2θ̇2
)

+ cos(θ2−θ1)
(
ẇ1(L1)+L1θ̇1

)] p6 = Ih,3
(
φ̇2(L2)+ θ̇2

)
q1 = θ1, q2 = θ2.

(II.90)

The state of the ODE set is defined as xr = [p1 p2 p3 p4 p5 p6 q1 q2]
T ∈ Xr. To write

the pH formulation of the ODE set, the boundary conditions terms insides the ODE
are considered as inputs, that are in turn related to the boundary outputs of the PDE.
Thus, the input of the finite dimensional system is divided in three vectors. The first
input vector collects the two torques applied in the first and second joints, the other
two input vectors are used for the interconnection with the first and second set of PDE,
respectively:

ur =

[
ur1
ur2

]
=

[
τ1
τ2

]
, u1 =

ur3
ur4
ur5

=

 EI1ε1,r(0)
K1ε1,t(L1)
EI1ε1,r(L1)

 , u2 =


ur6
ur7
ur8
ur9

=


K2ε2,t(0)
EI2ε2,r(0)
K2ε2,t(L2)
EI2ε2,r(L2)

 .
(II.91)
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II.1. Modelling of m-pH mechanical systems

The set of nonlinear ODE (II.85)-(II.89) can be written in the pH format as:
ẋr = Jr(xr,xb)dHxr +grur +g1u1 +g2(xr)u2
yr = gT

r dHxr

y1 = gT
1 dHxr

y2 = g2(xr)
T dHxr ,

(II.92)

where the skew-symmetric interconnection matrix Jr(xr,z2) =−Jr(xr,z2)
T is defined as

Jr =



0 α 0 0 0 0 −1 0
−α 0 0 α 0 0 0 0
0 0 0 0 0 0 0 0
0 −α 0 0 0 0 0 −1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0


, (II.93)

where the function α : R3×L2([0,L2],R1) 7→ R is given as:

α(q1,q2, p5,z2,1) = sin(q2−q1)

(∫ L2

0
z2,1dξ2 + p5

)
, (II.94)

while the input matrices are defined as

gr =



1 0
0 0
0 −1
0 1
0 0
0 0
0 0
0 0


, g1 =



1 0 0
0 −1 0
0 0 −1
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0


, g2 =



0 0 0 0
+cos(q2−q1) 0 0 0

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


. (II.95)

dHxr represents the vector composed of all the Fréchet derivatives with respect to all the
components of xr of the energy

Hr =
1
2

xT
r Qr(xr)xr, (II.96)

where Qr = diag
[
I−1
h,1 mI(q1,q2)

−1 I−1
h,21 I−1

h,22 m−1
h,3 I−1

h,3 0 0
]

is the energy matrix related
to the finite dimensional part. According to the states (II.81)-(II.90), and the input
output definitions (II.91)-(II.92), the interconnection relations between the boundary
control systems and the nonlinear set of ODE are defined as

uz,1 = y1 uz,2 = y2
u1 =−yz,1 u2 =−yz,2

(II.97)
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II.1. Modelling of m-pH mechanical systems

According to the latter interconnection relations, the global system can be represented
by the following equations

ż1 = P1
∂

∂ξ1
(H1z1)+P0(H1z1) = J1z1

ż2 = P1
∂

∂ξ2
(H2z2)+P0(H2z2) = J2z2

v̇ = JrdHv−g1C1,1(H1z1)−g2C2,1(H2z2)+gru

(II.98)

and the global energy of the double flexible manipulator can be written as

E =
1
2

∫ L1

0
zT

1 H1z1dξ1 +
1
2

∫ L2

0
zT

2 H2z2dξ2 +
1
2

xT
r Qr(xr)xr. (II.99)

The operators J1 and J2 in (II.98) are defined with domain

D(J1) = {z1 ∈ Z |H1z1 ∈ H1([0,L1],R4),B1,1(H1z1) = gT
1 dHv,B1,2(H1z1) = 0}

D(J2) = {z2 ∈ Z |H2z2 ∈ H1([0,L2],R4),B2,1(H2z2) = gT
2 dHv}.

(II.100)
It is worth to remark that differently form the previous models, where both the de-

scribing ODE and PDE were linear, the model of the double flexible manipulator derived
in this section has a nonlinear set of ODE. Moreover,. the boundary conditions of both
set of PDE depend nonlinearly from the finite dimensional states B1,1(H1z1) = gT

1 dHv,
B2,1(H2z2) = gT

2 dHv. This implies that nonlinearities are present in the domain of both
the PDE. The system described by equations (II.98)-(II.100) with homogeneous input
u = 0, can be written as a semilinear operator equation with state x = [zT

1 zT
2 vT ]T ∈ X =

Z×Z×R8

ẋ =

 J1 0 0
0 J2 0

−g1C1,1H1 −g2C2,1H2 0

x+

 0
0

JrdHv


= Ax+ f (x),

(II.101)

and domain

D(A) = {x ∈ X |H1z1,H2z2 ∈ H1,B1,1(H1z1) = gT
1 dHv,

B1,2(H1z1) = 0,B2,1(H2z2) = gT
2 dHv}.

(II.102)

The existence of solutions of this semilinear equations, in the sense of Definition I.1.10
is not investigated in this manuscript.

II.1.3 Passivity of general mixed pH systems

In this section we define a general dynamic system able to cope with all the previous
systems and we discuss about its passivity properties. The system’s passivity is a key
property in the control design and can help in defining a control law capable to guarantee
the closed-loop stability.
Let k the number of 1-D dpH boundary control systems

ż1 = P1
∂

∂ξ1
(H1z1)+P0(H1z1) = J̄1(H1z1) = J1z1

...
żk = P1

∂

∂ξk
(Hkzk)+P0(Hkzk) = J̄k(H zk) = Jkzk

(II.103)
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II.1. Modelling of m-pH mechanical systems

where zi ∈ L2([ai,bi],Rni) ∀i = {1,2, . . . ,k} are the associated states, and ξi ∈ [ai,bi] are
the spatial variables. Let Hi ∈ L∞([ai,bi],Rni×ni) such that Hi(ξi)

T = Hi(ξi), miI ≤
Hi ≤MiI for almost every ξi ∈ [ai,bi] and constants Mi > mi > 0 independent of ξi for
i = {1, . . . ,k}.
Remark 4. In this section we define the operator J̄k that is basically the same operator
as J but it does not include the energy density H :

J̄ z = P1
∂

∂ξ
z+P1z. (II.104)

with domain

D(J̄ ) =
{

z ∈ Z | z ∈ H1, B1(H z) = uz,B2(H z) = 0
}
. (II.105)

and boundary operators defined in (II.106). Note that J̄k is skew-adjoint and item 1
of Lemma I.2.1 holds in the L2 space equipped with the standard norm (and not in the
state space Z as for J ). We define this slightly different version of J to highlight the
general m-pH system relation with the Fréchet derivatives of its global energy.

Each boundary operator is compound by two different components, and is formu-
lated in the boundary effort and flow variables of Definition I.2.1

Bi(Hizi) =

[
Bi,1(Hizi)
Bi,2(Hizi)

]
=

[
WB1,i
WB2,i

][
f∂

e∂

]
Ci(Hizi) =

[
Ci,1(Hizi)
Ci,2(Hizi)

]
=

[
WC1,i
WC2,i

][
f∂

e∂

] (II.106)

where WB1,i,WC1,i ∈ Rmi×2ni and WB2,i,WC2,i ∈ R(ni−mi)×2ni are appropriate matrices
such that the following assumption holds through.

Assumption 2. The matrices WB =
[

WB1,i
WB2,i

]
are ni× 2ni full rank matrices for all i ∈

{1,2, . . . ,k}.

Then, we can define the input output operators related to each dpH boundary control
system as

uz,i = Bi,1(Hizi) 0 = Bi,2(Hizi)
yz,i = Ci,1(Hizi).

(II.107)

The energy related to each pH boundary control system is defined as

Ei =
1
2
〈zi,Hizi〉L2 =

1
2

∫ bi

ai

zT
i Hizidξi =

∫ bi

ai

Hidξi (II.108)

where Hi is the energy density of the i− th pH boundary control system. We denote
with dHi,zi the Fréchet derivative of the energy density Hi with respect to the state zi.

Corollary II.1.1. The Fréchet derivatives vector dHi,zi can be computed as

dHT
i,zi

= Hizi. (II.109)
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II.1. Modelling of m-pH mechanical systems

Proof. We start by computing

Hi(zi +hzi) =
1
2(zi +hzi)

T Hi(zi +hzi)

= 1
2zT

i Hizi +
1
2zT

i Hihzi +
1
2hT

zi
Hizi +

1
2hT

zi
Hihzi

= 1
2zT

i Hizi + zT
i Hihzi +

1
2hT

zi
Hihzi.

(II.110)

Then, from the Fréchet derivative’s Definition (I.1.7), we know that dHzi corresponds to
the first order coefficient in hzi of

Hi(zi +hzi)−Hi(zi) = zT
i Hihzi +

1
2

hT
zi
Hihzi, (II.111)

therefore we obtain (II.109).

Using equality (II.109), we rewrite the set of boundary control pH systems (II.103)
in the following form 

ż1 = P1
∂

∂ξ1
dHT

z1
+P0dHT

z1
= J̄1dHT

z1
...

żk = P1
∂

∂ξk
dHT

zk
+P0dHT

zk
= J̄kdHT

zk
.

(II.112)

Consider a nonlinear input-state-output finite dimensional pH system defined as

v̇ = J(z,v)dHT
v +gv(z,v)u+g1(z,v)uv,1 + · · ·+gk(z,v)uv,k

y = gv(z,v)T dHT
v

yv,1 = g1(z,v)T dHT
v

...
yv,k = gk(z,v)T dHT

v

(II.113)

where v ∈ Rnv is the finite dimensional state, z = [z1 · · ·zk]
T is the vector containing all

the infinite dimensional states, u ∈ Rmu is the vector of external inputs and ui ∈ Rmi

are the inputs used to interconnect the finite dimensional system with the infinite di-
mensional systems. J(z,v) = −J(z,v)T is the skew symmetric interconnection matrix,
gv(z,v) is a state dependent nv×mu input matrix and gi(z,v) are the nv×mi state depen-
dent input interconnection matrices. Hv represents the finite dimensional energy, while
dHv is its Fréchet derivative with respect to the finite dimensional state variable v. Let
the systems (II.112) and (II.113) be interconnected by the following power preserving
interconnections for i = {1, . . . ,k}

uv,i =−yz,i uz,i = yv,i. (II.114)

Then, the interconnected system can be written in the following form{
ẋ = J̄ dHT +g(z,v)u
y = g(z,v)T dHT (II.115)
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with state x = [z1 · · ·zk v]T ∈ X = L2([a1,b1],R
n1)×·· ·×L2([ak,bk],R

nk)×Rnv , oper-
ator J̄ , vector dH and input matrix g(z,v) defined as

J̄ =


J̄1 0 · · · 0 0
0 J̄2 · · · 0 0
...

... . . . ...
...

0 0 · · · J̄k 0
−g1(z,v)C1,1 −g2(z,v)C2,1 · · · −gk(z,v)Ck,1 J(z,v)



dHT =


dHT

1,z1
dHT

2,z2
...

dHT
k,zk

dHT
v

 g(z,v) =


0
0
...
0

gv(z,v)



(II.116)

with operator’s domain

D(J̄ ) =
{

x ∈ X |Hizi ∈ H1([ai,bi],Rni),Bi,1(Hizi) = gi(z,v)T dHT
v ,

Bi,2(Hizi) = 0 ∀i ∈ {1, . . . ,k}
}
.

(II.117)

Remark 5. We make the following observations regarding this system.

1. The defined operator J̄ is a nonlinear operator because it contains the state de-
pendent input matrices and interconnection matrix. Moreover, the nonlinearities
are present also at the boundaries of the spatial domains, as can be seen in the
domain Definition (II.117).

2. The vector dH is defined as the composition of different Fréchet derivatives, but is
not a Fréchet derivative itself. This because it is not possible to define a common
function H whose Fréchet derivative corresponds to the definition of dH.

We define the energy of the overall interconnected system

E =
k

∑
i=1

Ei +Hv (II.118)

and we assume that it is Fréchet differentiable.

Proposition II.1.1. Consider the system (II.115) with operator’s domain defined in
(II.117). Then, this system is passive with respect to the energy functional (II.118),
i.e.:

Ė+(x0) = yT u ∀x0 ∈ X . (II.119)

Proof. Consider the Dini time derivative of Definition I.1.8 evaluated in x0, that thanks
to Lemma I.1.2 we know that Ė+ = dE(J̄ dH+gu), where dE is the Fréchet derivative
of E. We start by explicit the Fréchet derivative of E

dE =
[
dET

z1
dET

z2
· · · dET

zk
dHT

v
]
, (II.120)
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where after some simple computations we can find that

dEzihzi =
∫ bi

ai

(Hizi)
T hzidξi ∀i ∈ {1,2, . . . ,k}. (II.121)

Then, we can compute

Ė+ = ∑
k
i=1

[∫ bi

ai

(Hizi)
T J̄i(Hizi)dξi−dHvgi(z,v)Ci(Hizi)

]
+dHv(J(z,v)dHv +gv(z,v)u)

(II.122)

that using Lemma I.2.1 (〈Hizi,J̄iH zi〉L2 = 〈zi,J zi〉X ) and the skew symmetry of
J(z,v), can be rewritten as

Ė+ = ∑
k
i=1

[
yT

z,iuz,i−Ci(Hizi)
T gi(z,v)T dHT

v

]
+ yT u

= ∑
k
i=1

[
yT

z,iuz,i− yT
z,iuz,i

]
+ yT u

= yT u.

(II.123)

Remark 6. All the previously presented mechanical models fit in the framework of sys-
tem (II.115)-(II.117). Therefore, all of them are passive with respect to their proper
global energy functional obtained by the sum between the energy associated to every
single infinite dimensional pH system and the energy associated to the interconnected
finite dimensional pH system.

II.2 DISCRETIZATION OF FLEXIBLE STRUCTURES

Numerical simulations of dynamical systems are used for mainly two reasons: com-
pare the numerical simulations to real system data such to verify the validity of a pro-
posed mathematical model and analyse the system time-behaviour when subjected to
initial conditions and/or external input. Even if the model’s validity is a fundamental
step in systems’ study with dynamical equations, it is not be discussed in this Thesis.
In Chapter III and IV, numerical simulations are used to extract additional information
about the system’s behaviour when they are not available from the theoretical results.
To be able to numerically simulate the system’s time responses, the first step is to ap-
proximate the (possibly) present PDE with a set of ODE. This procedure is normally
known as discretization. In the context of pH systems, several methods allow obtaining
a finite dimensional pH system as the discretization of a dpH system. In [76] the author
proposed a finite difference discretization scheme for dpH systems up to the 2 dimen-
sional case. A structure-preserving partitioned finite element method has been proposed
in [77] for the discretization of a 2D wave equation. In the following, we use the mixed
finite element method proposed in [62] to obtain the finite dimensional approximation
of the Timoshenko’s beam equations and of the wave equations in all the input-output
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configurations obtained in the previous examples. Always in [62], it has been shown
that the discretization error (i.e. the difference between the exact solution and the one
obtained trough simulation of the discretized equations) of the proposed discretization
scheme is of order 1/n2. This means that the larger the number of discretizing elements,
the smaller the error of the obtained simulations with respect to the exact solution.
Let consider the state space Z = L2([0,L],Rnq)×L2([0,L],Rnp) where np +nq = n, and
an element of the state space is denoted by z = [q p]T . We define the flow and effort
spaces as:

F = L2([0,L],Rnq)×L2([0,L],Rnp) E = H1([0,L],Rnq)×H1([0,L],Rnp) (II.124)

with elements belonging to these space defined by f = [ f q f p]T and e = [eq ep]T , re-
spectively. The energy associated to the 1-D dpH is defined as

E(t) =
1
2

∫ b

a
z(ξ , t)T H (ξ )z(ξ , t)dξ =

∫ b

a
Hz(ξ , t)dξ (II.125)

where H = diag(Hq,Hp) is the parameters’ density, and Hz = Hq +Hp the energy’s
density. The effort and flow variables are defined with respect to the state of the system
through the following constitutive relations

f q(ξ , t) = ∂q
∂ t (ξ , t) f p(ξ , t) = ∂ p

∂ t (ξ , t)
eq(ξ , t) = dHq,q(ξ , t) ep(ξ , t) = dHp,p(ξ , t)

(II.126)

that are equivalent to

f (ξ , t) =
∂ z
∂ t

(ξ , t) e(ξ , t) = dHz(ξ , t) (II.127)

where dHα,β stands for the Fréchet derivative of dHα with respect to the state β .

Definition II.2.1. We define the boundary flow fB and effort eB in the sense of [62] as
the ep and eq efforts computed at the boundaries of the spatial domain

fB =

[
fBa
fBb

]
=

[
ep(a, t)
ep(b, t)

]
=

[
dHp,p(a, t)
dHp,p(b, t)

]
eB =

[
eBa
eBb

]
=

[
eq(a, t)
eq(b, t)

]
=

[
dHq,q(a, t)
dHq,q(b, t)

]
.

(II.128)

�

Remark 7. In the remainder of this chapter, we refer to the boundary flow and effort as
the one defined in the sense of [62] in the previous Definition.

According to the effort and flow definition (II.127) and Corollary II.1.1, the 1-D
dpH equations in the flow and effort variables writes

f = P1
∂

∂ξ
e+P0e. (II.129)
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1 i−1 i i+1 nd

ż i
ab = · · ·

ξ

ba L0

ż i−1
ab = · · · ż i+1

ab = · · ·

Figure II.5: Representation of a 1D PDE discretization.

Let nd the number of discretizing element. In the following we first find the finite
dimensional model of a single discretized element, then we interconnect all the elements
to obtain the overall system as illustrated in Figure II.5. The flux f and the effort e are
approximated in an interval ξ ∈ [a,b], a < b, b−a = Ln−1

d , a,b ∈ [0,L] as follows:

f (ξ , t) = f z
ab(t)wab(ξ ) e(ξ , t) = ea(t)wa(ξ )+ eb(t)wb(ξ ), (II.130)

where the function f z
ab(t) = [ f p

ab(t) f q
ab(t)]

T , identifies the approximated flow variable
in the [a,b] interval, while

ea =

[
ep

a
eq

a

]
=

[
fBa
eBa

]
eb =

[
ep

b
eq

b

]
=

[
fBb
eBb

]
(II.131)

are the efforts computed at the [a,b] sides, that themselves correspond to the flow and
boundary efforts. According to Assumption 1 and 2 of [62], the base function wab(z)

should satisfy
∫ b

a
wab(z) = 1 , while wa(z), wb(z) should satisfy wa(a) = 1, wa(b) = 0,

wb(a) = 0 and wb(b) = 1. Hence, the base functions can be chosen as:

wa(ξ ) =− z
b−a +

b
b−a , wb(ξ ) =

z
b−a −

a
b−a , wab(ξ ) =

1
b−a . (II.132)

We define the effort state in the [a,b] interval as the mean value of the efforts at the [a,b]
boundaries:

ez
ab(t) =

1
2
(ea(t)+ eb(t)) (II.133)

where ez
ab(t) = [ep

ab(t) eq
ab(t)]

T . Substituting the flow and effort approximation (II.131)
and using the boundary effort and flow definitions (II.130) in equation (II.129) and
(II.133), it is possible to get the following relation for both the Timoshenko’s beam and
the wave equation

I 0 0 0
0 I W1 W2
0 0 M M
0 0 0 0


︸ ︷︷ ︸

W


f p
ab

f q
ab

fBa
fBb


︸ ︷︷ ︸

fab

+


0 0 F1 F2
0 0 0 0
I 0 0 0
0 I M M


︸ ︷︷ ︸

F


ep

ab
eq

ab
eBa
eBb


︸ ︷︷ ︸

eab

= 0 (II.134)
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where for the wave equation the matrices are defined as

W1 = 1 W2 =−1 F1 = 1 F2 =−1 M =−1
2
, (II.135)

while for the Timoshenko’s beam equation

W1 =

[
1 −b−a

2
0 1

]
W2 =

[
−1 −b−a

2
0 −1

]
F1 =

[
1 0
−b−a

2 1

]
F2 =

[
−1 0
−b−a

2 −1

]
M =

[
−1

2 0
0 −1

2

]
.

(II.136)

To write the explicit input state output equations of a single discretized model, it is
necessary to split the energy in nd components. To do so, we define the energy in the
[a,b] interval as

Eab =
∫ b

a
z(ξ , t)T H (ξ )z(ξ , t)dξ . (II.137)

As we did for the flow and effort variables, we approximate the state variables such that

z(ξ , t) = zab(t)wab(ξ ), (II.138)

with zab = [qT
ab pT

ab]
T . We substitute the approximated state variable and the base func-

tion’s definition in (II.137) to get

Eab =
∫ b

a
zab(t)T wab(ξ )

2H (ξ )zab(t)dξ

= zab(t)T
∫ b

a
wab(ξ )

2H (ξ )dξ zab(t)

= zab(t)T
∫ b

a

1
(b−a)2 H (ξ )dξ zab(t).

(II.139)

We define the energy matrix in the ξ ∈ [a,b] interval

Hab =
∫ b

a

1
(b−a)2 H (ξ )dξ , (II.140)

such to write the energy as Eab(t) = zab(t)T Habzab(t), where Hab = diag(Hq
ab,H

p
ab). We

now derive the constitutive relation of the single discretized element starting from the
ones of the original distributed parameter system (II.127). Substituting the flow approx-
imation of (II.130) and the state approximation (II.138) in the flow constitutive relation
of (II.127), we obtain

f z
ab(t) =

dzab

dt
(t). (II.141)

In a similar way, we substitute the effort approximation of (II.130) in the effort consti-
tutive relation of (II.127) to get

ea(t)wa(ξ )+ eb(t)wb(ξ ) = dHz(ξ , t), (II.142)
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that using the base function definition (II.132), the energy definition (II.125), Corollary
(II.1.1), the state approximation (II.138) and integrating over the [a,b] interval trans-
forms into

ea(t)
∫ b

a
− z

b−a
+

b
b−a

dξ + eb(t)
∫ b

a
+

z
b−a

− a
b−a

dξ =
∫ b

a

1
b−a

H (ξ )zab(t)dξ

b−a
2 (ea(t)+ eb(t)) =

∫ ∫ b

a

1
b−a

H (ξ )zab(t)dξ .

(II.143)
Finally, we use the effort state ez

ab definition (II.133) together with (II.140) in the the
former equation to obtain

ez
ab(t) = Habzab(t). (II.144)

We now define the input of a discretizing element such to impose the flow at the a-side
and the effort at the b-side of the element; consequently, the output is composed by the
effort at the a-side and the flow at the b-side:

uab =

[
uab,1
uab,2

]
=

[
− fBa
eBb

]
yab =

[
yab,1
yab,2

]
=

[
eBa
fBb

]
. (II.145)

Substituting the constitutive relations (II.141) and (II.144), together with the input out-
put definition (II.145) into equation (II.134), it is possible to obtain the following input-
state-output representation of a single element dynamics :

żab = JabHabzab +gabuab
yab = gab,1Habzab +Duab

(II.146)

with matrices defined as

Jab =

[
0 W2M−1

F1M−1 0

]
gab =

[
W1−W2 0

0 F1−F2

]
gab,1 =

[
−M−1 0

0 −M−1

]
D =

[
0 −I
I 0

]
.

(II.147)

Remark 8. Let define the space

D = { fab,eab ∈ R2n |W fab +Feab = 0}. (II.148)

According to [78], it is possible to prove that for both the Timoshenko’s beam and the
wave equations, D is a Dirac structure. This implies that the interconnection relation
(II.134) together with the consitutive relations (II.141) and (II.144) form a pH system
(see [78, 79]). Therefore we have the following properties for the matrices defined in
(II.147): Jab =−JT

ab, gab,1 = gT
ab, D =−DT . In particular, from now on, we consider

gab = gab,1 =

[
−M−1 0

0 −M−1

]
. (II.149)

According to the previous remark, the pH dynamic equations for an element that
takes as input the flow at the a-side and the effort at the b-side is defined by the following
equation:

żab = JabHabzab +gabuab
yab = gT

abHabzab +Duab.
(II.150)
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Interconnecting the nd elements in which the beam has been divided, we obtain a dis-
cretized beam model that takes as input the same as a single element: flow at the ξ = 0
side and effort at the ξ = L side. As we can see from the beam’s boundaries defined
in examples of Sections II.1.2.a and II.1.2.d, there exists distribute parameters models
that take as input the flow (velocity) at both sides of the beam. To obtain the discretized
model of the beam with this type of boundary conditions it is necessary to define a new
element that takes as input the flows at both sides of the [a,b] discretizing interval. This
element, which is referred to as elastic element, is then connected at the b-side of the
last interconnected element such to convert the right effort input into a flow input.
The elastic element is derived setting in (II.134) both p-flow and p-effort equal to zero
f p
ab = ep

ab = 0 
0 0 0
I W1 W2
0 M M
0 0 0


 f q

ab
fBa
fBb

+


0 F1 F2
0 0 0
0 0 0
I M M


eq

ab
eBa
eBb

= 0. (II.151)

We now define the input and output of the elastic element

ue
ab =

[
ue

ab,1
ue

ab,2

]
=

[
− fBa

fBb

]
ye

ab =

[
ye

ab,1
ye

ab,2

]
=

[
eBa
eBb

]
(II.152)

while its energy is defined as

Hab,e =
1
2

qT
abHq

abqab. (II.153)

Using the constitutive relations (II.141) and (II.144) together with the input output def-
inition (II.152) and corollary (II.1.1) in (II.151) we obtain the dynamic equations of the
elastic element

q̇ab = ge
abue

ab
ye

ab = ge
ab,1Hq

abqab
(II.154)

with matrices defined as

ge
ab =

[
−W1 W2

]
ge

ab,1 =

[
(F−1

2 F1− I)−1M−1

(F−1
1 F2− I)−1M−1

]
. (II.155)

Using the same considerations as in Remark 8, we obtain the dynamic equations of the
elastic element in the pH form

q̇ab = ge
abue

ab
ye

ab = (ge
ab)

T Hq
abqab.

(II.156)

Now that we derived the dynamic equations of the normal and elastic discretized ele-
ments, we define the following interconnection relations{

ui+1
ab,1 =−yi

ab,2

ui
ab,2 = yi+1

ab,1.
(II.157)
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Here we define the discretized model of the system with flow input at the ξ = 0 side and
effort input at the ξ = L side, that is obtained interconnecting nd elements (II.150) using
the interconnection relations (II.157). Since we are considering mechanical systems,
imposing a flow input at one side of the boundary domain physically means imposing
its velocity. Assuming the knowledge of the initial position of this boundary, imposing
its velocity is equivalent to imposing its position. For example, if we have to discretize
a Timoshenko beam clamped at one side of the spatial domain, the flow corresponding
to this side has do be imposed equal to zero. Similarly, an effort input corresponds
to a force. Therefore, if we have to simulate a Timoshenko beam with zero force and
momentum at one side of the spatial domain, the effort corresponding to this side has to
be set equal to zero.

Definition II.2.2 (Flow-effort input discretized system). Let zd ∈ Rn·nd the state com-
posed by the composition of the nd discretizing elements states

zd =



q1,ab
...

qnd ,ab
p1,ab

...
pnd ,ab


, (II.158)

then the dynamic equations of a discretized Timoshenko’s beam or wave equation with
flow input at the ξ = 0 side and effort input at the ξ = L side writes{

żd = J f eH f ezd +g f eu f e
y f e = gT

f eH f ex+D f eu f e
(II.159)

with matrices defined as

J f e =

[
0 S f e
−ST

f e 0

]
D f e =

[
0 (−1)nd

(−1)nd−1 0

]

S f e =


W2M−1 0 · · · 0
−M−2 W2M−1 · · · 0

...
... . . . ...

(−1)nd−1M−2 (−1)nd−2M−2 · · · W2M−1


(II.160)

g f e =



−M−1 0
...

...
(−1)nd M−1 0

0 (−1)nd M−1

...
...

0 −M−1


(II.161)

where J f e ∈ Rn·nd×n·nd , S f e ∈ R n
2 nd× n

2 nd , g f e ∈ Rn·nd×n, energy defined as

E =
1
2

zT
d H f ezd, H f e =

[
H f e,q 0

0 H f e,p

]
∈ Rn·nd×n·nd (II.162)
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and input output corresponding to

u f e =

[
fB0
eBL

]
=

[
Hp p(0, t)
Hqq(L, t)

]
y f e =

[
−eB0

fBL

]
=

[
−Hqq(0, t)
Hp p(L, t)

]
. (II.163)

�

Here we define the discretized model of the system with flow input at ξ = 0 and
ξ = L, that is obtained by interconnecting nd elements (II.150) and one last elastic
element (II.159) using the interconnection relations defined in (II.157).

Definition II.2.3 (Flow-Flow input discretized system). Let zd ∈Rn·nd+
n
2 the state com-

posed by the composition of all the discretizing elements states

zd =



q1,ab
...

qnd ,ab
qnd+1,ab

p1,ab
...

qnd ,ab


, (II.164)

then the dynamic equations of a discretized Timoshenko’s beam or wave equation with
flow input at the ξ = 0 side and effort input at the ξ = L side writes{

żd = J f f H f f zd +g f eu f f
y f f = gT

f f H f f x (II.165)

with matrices defined as

J f f =
[ 0 S f f

−ST
f f 0

]

S f f =


W2M−1 0 · · · 0
−M−2 W2M−1 · · · 0

...
... . . . ...

(−1)nd−1M−2 (−1)nd−2M−2 · · · W2M−1

(−1)ndW1M−1 (−1)nd−1W1M−1 · · · −W1M−1


(II.166)

g f f =



−M−1 0
...

...
(−1)nd M−1 0

(−1)nd+1W1M−1 W2
0 0
...

...
0 0


(II.167)

60



II.2. Discretization of flexible structures

where J f f ∈R(n·nd+
n
2)×(n·nd+

n
2), S f f ∈R

n
2 (nd+1)× n

2 nd , g f f ∈R(n·nd+
n
2)×n, energy defined

as

E =
1
2

zT
d H f f zd, H f f =

[
H f f ,q 0

0 H f f ,p

]
(II.168)

with H f f ,q ∈ R n
2 (nd+1)× n

2 (nd+1),H f f ,p ∈ R n
2 nd× n

2 nd , and input output corresponding to

u f f =

[
fB0
fBL

]
=

[
H f f ,p p(0, t)
H f f ,p p(L, t)

]
y f f =

[
−eB0
eBL

]
=

[
−H f f ,qq(0, t)
H f f ,qq(L, t)

]
. (II.169)

�
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II.3 SUMMARY

In this Chapter we have presented the modelling procedure for a flexible mechanism
containing deformable parts, such as strings or flexible beams. In Table II.1 we give
a small summary of what we have presented in this chapter. In particular, in Section
II.1.1 we have introduced an adaptation for flexible mechanisms of the Principle of
Least Action. In Section II.1.2 we have given some examples such to understand how to
use the Principle to extract the systems equations of motion starting from the knowledge

(1)

Determine the Lagrangian and the work of non-conservative forces of the
system:

a) The kinetic energy depends on the mechanism kinematic structure.

b) The potential energy depends on the assumptions made on the flexible
part(s).

(2) Calculate the Fréchet derivatives of the Lagrangian with respect to the vari-
ables that compose it.

(3)

a) Apply integration by parts such to obtain the variation functions with
respect to the same variable.

b) Extract the equations of motion and the boundary conditions.

(4)

Select the energy state variables such to express:

a) the PDE as a dpH system;

b) the ODE as a finite pH system;

c) the energy density as a quadratic form of the dpH’s state;

d) the lumped parameter energy as a quadratic form of the finite pH’s state.

(5) According to Section II.1.3, the obtained model is passive with respect to its
total energy.

(6)

Approximate the dpH system(s) with a finite dimensional pH system(s)

• If one side of the spatial domain is velocity controlled and the other one
is force controlled, use the discretization model of Definition II.2.2.

• If both sides of the spatial domain are velocity controller, use the dis-
cretization model of Definition II.2.3.

Table II.1: Algorithm for the FApH model derivation of a mechanism containing
flexible part(s).
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of the Lagrangian and the work of the non-conservative forces. Once the Lagrangian
and the work of non-conservative forces are determined for a given system (item (1)),
one can compute the Action functional and its derivatives with respect to the generalize
variables that compose it (item (2)). Then, integration by parts should be applied to the
Action’s Fréchet derivatives such to be able to extract the equations of motions and the
boundary conditions of the PDE (items (3)). In order to obtain a model in the pH format,
an appropriate state selection should be made, i.e. one should select the energy variables
(item (4)). According to Section II.1.3, the obtained model is passive with respect to its
total energy (item (5)). Finally, a discretization algorithm is presented in Section II.2,
i.e. we show how to obtain a set of ODE approximating the set of PDE present in the
model (item (6)).
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III.1. Preliminaries on analysis of semilinear equations

III.1 PRELIMINARIES ON ANALYSIS OF SEMILINEAR

EQUATIONS

Mechanisms that integrate flexible parts naturally suffer from vibrations caused by
flexible deformations. These type of undesired flexible phenomena can appear in differ-
ent areas ranging from spatial application [1], to micro-manipulations [13]. To suppress
the elastic vibrations, different technological solutions are possible. The first solution
is to select more rigid materials for the mechanism parts that we do not want to de-
form. Most of the time, rigid materials are heavier than elastic ones, and because of
the project specifications, this could not be a feasible solution. A second solution is to
use actuators directly on the deformable element, i.e. distributed in-domain actuators
(see for example [80] for piezoelectric or [81] for IPMC distributed actuators). This is
a very interesting and performing solution that will not be discussed in this manuscript.
Instead, we assume that the actuators that can deal with the flexible deformations are
the same as the ones used to move the mechanism, i.e. angular and/or linear motors. In
this chapter, we study how to integrate classical control actions with terms that include
information related to flexible deformations. This information is usually coming from
specific sensors such as strain gauge or laser sensors able to measure deformation as
well as strain or velocities of the elastic beams.
Before investigating the asymptotic behaviour, the first problem is to understand if the
closed-loop system is well-posed, in the sense that whether the modelling equations
does admit a unique solution that depends continuously on the initial conditions. This
first step, even if quite technical, is of crucial importance for a very simple reason: all
the subsequent stability analysis assumes the existence and uniqueness of the solution.
In other words, the stability analysis aims to find some solution’s properties even if the
solution is not known explicitly. But of course, a requirement is that this solution does
exist and is unique. To study this we need to introduce a few but keys concepts and
results that will be used in the remainder of this chapter and also in Chapter IV, where
we will study a flexible rotating beam in a collision scenario.

III.1.1 Stability theory for semilinear equations

We consider a semilinear operator equation of the form

ẋ = Ax+ f (x) (III.1)

where x is the state of the system and belongs to an Hilbert space X , A is a (not necessary
bounded) dense operator in X with domain D(A) that generates a C0-semigroup in X and
f (x) is a locally Lipschitz continuous nonlinear mapping f : X 7→ X .

Remark 9. Taking in consideration all the assumptions made on the semilinear equation
(III.1), according to Theorem I.1.4 in Section I.1, we can conclude that there exist a
unique local solution x(t) on [0, tmax) of (III.1) with the property that if tmax < ∞, then

lim
t→tmax

||x(t)||= ∞. (III.2)
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In case of a semilinear equation (III.1) with an unbounded operator A, the explicit
solution is often no available, nevertheless we are interested in its behaviour over time.
When controlling a system, the control objective consists in general to maintain its
trajectories around a certain equilibrium point, or better, that the distance between the
trajectories and the equilibrium point decreases along time. Next, we define what we
mean by equilibrium point for (III.1).

Definition III.1.1. The element xeq ∈ D(A) is an equilibrium point of (III.1) when
Axeq + f (xeq) = 0. �

In general, we do not have at our disposal explicit solutions, therefore we need to
define different stability concepts and the respective tools to check them, to study the
class of m-pH system considered in this manuscript. In case of linear finite dimensional
systems, all the stability definitions are equivalent, therefore only one concept of stabil-
ity is needed. In other words, if we know that the solution of a linear finite dimensional
system asymptotically converges to the equilibrium point, we know that it does so with
an exponential trend with respect to time. This is in general not true for infinite di-
mensional systems or even for nonlinear finite dimensional systems. This is why in the
following definitions we introduce different stability concepts.

Definition III.1.2. The equilibrium point xeq = 0 of (III.1) is said to be Lyapunov stable
if for every ε > 0 there exists a δ > 0 such that whenever ||x0|| ≤ δ the solution satisfies
||x(t)|| ≤ ε for all t ≥ 0.
The equilibrium point xeq = 0 is said to be asymptotically stable if for every x0 ∈ X the
corresponding solution ||x(t)|| → 0 as t→ ∞.
The equilibrium point xeq = 0 is said to be exponentially stable if for every x0 ∈ X there
exists a w > 0 such that ewt ||x(t)|| → 0 as t→ ∞. �

There exist (especially for linear distributed parameter systems) other stability con-
cepts as for example polynomial stability or weak stability, that allow to diversify even
more the asymptotic behaviour of solutions. In this thesis we will focus on the stability
concepts defined in the previous Definition III.1.2. We refer the interested reader to
[82].
Remark 10. For the class of considered semilinear equations (III.1), we can assume
without loss of generality that xeq = 0. Let xeq be an equilibrium position of (III.1), and
define the new state x̄(t) = x(t)−xeq. We obtain the equation in the new shifted variable

˙̄x(t) = Ax̄(t)+ f (x̄(t)+ xeq)+Axeq
= Ax̄(t)+ f̄ (x̄(t)) (III.3)

where f̄ (x̄(t)) = f (x̄(t)+ xeq)+Axeq. Next, it is possible to see that x̄eq = 0 and the
new equation is written in the same semilinear equation format. It is possible to prove
that x̄(t) is a solution of (III.3) if and only if x(t) is a solution of (III.1). Moreover, the
origin is an exponentially and asymptotically stable equilibrium point of (III.3) if and
only if xeq is an exponentially and asymptotically stable equilibrium point of (III.1)(see
exercise 11.7 in [65]). In the case of general semilinear differential equation with mul-
tiple equilibrium positions, the fact of translating the state with respect to a particular
equilibrium position allows to study the stability of that particular equilibrium position.
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Lyapunov stability theory is a basic tool to study the stability of a wide spectrum of
equations ranging from nonlinear to distributed parameter equations. Roughly speak-
ing, this theory relies on the existence of a semi-positive definite functional (a Lyapunov
functional), that needs to be non-increasing along the system’s trajectories. The non-
increasing condition of the Lyapunov functional is checked on the time derivative of
this functional along the trajectories generated by the considered equation. The time
derivative “along trajectories” is understood in the following manner: the time deriva-
tive of the Lyapunov functional in a point corresponds to the variation of the Lyapunov
functional related to the generated trajectories when this point corresponds to the initial
condition by the considered dynamic equations.
To define a Lyapunov functional we make use of the Dini derivative concept introduced
in Definition I.1.8, and Lemma I.1.1 (page 14) that links the time derivative’s sign to the
functional non-increasing behaviour.

Definition III.1.3. Suppose that, for every x0 ∈ X , the semilinear differential equation
(III.1) possesses a local mild solution x(t). A continuous functional V : X 7→ [0,∞), is a
Lyapunov functional for (III.1) on X if V (x(t,x0)) is Dini differentiable at t = 0 for all
x0 ∈ X and there holds

V̇+(x0) := limsup
t→0

V (x(t,x0))−V (x0)

t
≤ 0. (III.4)

�

Since in most practical cases, the limit (III.4) it is not easy to compute, we rely on
Lemma I.1.2 (page 14) to establish the relation between the Dini time derivative and the
Fréchet derivative. In fact, if V is Fréchet differentiable, then for z ∈ D(A), V (z(t,z0))
is Dini differentiable and

V̇+(x0) := dV (x0)(Ax0 + f (x0)) (III.5)

where dV is the Fréchet derivative of V . Therefore, we cite Theorem 11.2.4 from [65]
that allows to conclude about boundedness of solutions (Lyapunov stability), using the
concept of Lyapunov functional introduced in Definition III.1.3.

Theorem III.1.1. Let A be the infinitesimal generator of the C0-semigroup T (t) on the
Hilbert space X and let f : X 7→ X be locally Lipschitz continuous. If there exists a
Lyapunov functional V for the semilinear differential equation

ẋ(t) = Ax(t)+ f (x(t)), t ≥ 0, x(0) = x0 (III.6)

with the property that V (x)→ ∞ whenever ||x|| → ∞, then (III.6) has a bounded global
mild solution for all initial conditions x0 ∈ X. Moreover, if x0 ∈ D(A) then the solution
is a global classical solution.

To conclude about the other types of stability we need to ask a little bit more to
the Lyapunov functional and to its time derivative. First of all we need the Lyapunov
functional to be strictly increasing, then it is possible to prove that
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• if V̇+ ≤ −α(||x||) with α strictly increasing and such that α(0) = 0, then the
origin is an asymptotically stable equilibrium point.

• if V̇+ ≤ −κV with κ > 0, then the origin is an exponentially stable equilibrium
point.

Unfortunately, these types of inequalities are very difficult to obtain for a general
class of systems, and needs to be studied and found on a case by case basis (see for
example [74]). On the other hand, we will make use of another theorem that allows
concluding about asymptotic stability without asking the strictly negative definitiveness
of the Lyapunov functional’s time derivative, i.e. the LaSalle’s invariance principle.
To state the LaSalle’s invariance principle, we first have to introduce the concept of
invariant set and convergence to a set.

Definition III.1.4. For x0 ∈X suppose that (III.6) has a global mild solution x(t,x0); t ≥
0. A set W ∈ X is an invariant set with respect to (III.6) if for every x0 ∈W the solution
x(t,x0) is in W for all t ≥ 0. �

Definition III.1.5. Let S be a closed subset of the Hilbert space X and let {xn} be a
sequence in X . Then xn converges to S if the following holds

lim
n→∞

inf
s∈S
||xn− s||= 0. (III.7)

The continuous function g(t) converges to S when for every sequence tn with tn→ ∞,
the sequence g(tn) converges to S. �

We now define the concept of trajectory set, and what we mean by pre-compact
trajectories set.

Definition III.1.6. The trajectories set {x(t,x0) | t ≥ 0} is said to be pre-compact if its
closure {x(t,x0) | t ≥ 0} is compact.

We are now in position to state the LaSalle’s invariance principle, that gives the
conditions for which the solution x(t,x0) converges to a specific invariant set.

Theorem III.1.2 (LaSalle’s invariance principle). For x0 ∈ X suppose that (III.6) has
a global mild solution x(t,x0); t ≥ 0 and pre-compact trajectories set {x(t,x0) | t ≥ 0}.
Let V be a Lyapunov functional for (III.6) and define

S0 := {x ∈ X | V̇+(x) = 0}. (III.8)

Let S be the largest invariant subset of S0, then x(t;x0) converges to S as t→ ∞.

This theorem is very similar to its finite dimensional counterpart, but the only, and
indeed important, difference is the fact that the requirement on the pre-compactness of
the trajectories set is replaced with the one on boundedness of solutions. This is because
in case the state belongs to a finite dimensional space, boundedness of solutions directly
implies pre-compactness of the trajectories set (Heine-Borel or Bolzano-Weierstrass
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theorem). This direct implication is not true for infinite dimensional systems, see for
instance the not-asymptotically stable transport equation with non-compact trajectories
set but with Lyapunov function non-increasing along the system trajectories in [83].

Checking pre-compactness of the trajectories set or equivalently pre-compactness of
state trajectories) is usually one of the most difficult tasks on proving stability using the
LaSalle’s invariance principle. In the following Corollary we derive the conditions to
conclude about pre-compactness of trajectories generated by (III.6), as a trivial expan-
sion of Theorem 3 in [84].

Corollary III.1.1. Consider the semilinear differential equation (III.6) where A gener-
ates a bounded semigroup on X, and A has a compact resolvent.
Suppose that for a x0 ∈ X, the solution is such that f (x(t,x0)) ∈ Lp((0,∞);U) for some
p ∈ [1,∞), then the trajectories set {x(t,x0) | t ≥ 0} is bounded and pre-compact.

Proof. The result is obtained taking B = I in Theorem 3 of [84], and from the fact
that the identity operator is a bounded linear operator and therefore infinite-time Lp-
admissible for T (t) for all p ∈ [1,∞).

For more details about infinite-time admissibility of (especially unbounded) input
and output operators, we refer the interested reader to the comprehensive survey [85],
as well as the book [86].

Another possibility to conclude about asymptotic stability for semilinear equations
is the use of the combination of two results: the first one is due to Benchimol [87], while
the second to Oosteeven [88] (Lemma 2.1.3 and 2.2.6). All these results make use of the
approximate observability and controllability concepts for which we refer to Chapter 6
of [65]. To be able to define these concepts, consider the linear system Σ(A,B,C,D):

ẋ(t) = Ax(t)+Bu(t)
y =Cx(t)+Du(t) (III.9)

where A is the infinitesimal generator of a C0-semigroup T (t) on a Hilbert space X , B
is the input operator from the input space U to X , C is output operator from X to the
output space Y and D is the feed-through operator from U to Y .

Definition III.1.7.

(a) The system Σ(A,B,−,−) is approximately controllable on [0,τ] if given an arbitrary
ε > 0 it is possible to steer from the origin to within a distance ε from all points in
the state space at time τ , i.e., if

rank
(∫ t

0
T (t− τ)Bu(τ)dτ

)
= X . (III.10)

(b) The system Σ(A,−,C,−) is approximately observable on [0,τ] (for some finite τ >
0) if knowledge of the output in L2([0,τ],Y ) determines the initial state uniquely,
i.e.

ker(CT (t)x0) = {0}, (III.11)

or equivalently that
CT (t)x0 = 0 in [0,τ)⇒ z = 0. (III.12)
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Now we can introduce the two joint Oosteven’s lemmas, making use of the approxi-
mate observability and controllability concepts, that allow to conclude about asymptotic
stability for semilinear equations.

Theorem III.1.3. Let X ,U be Hilbert spaces, B ∈ L (U,X) and A the infinitesimal
generator of a contraction C0-semigroup. Assume that A has a compact resolvent, and
that the state linear system

ẋ = Ax+Bu
y = B∗x (III.13)

is approximately observable or approximately controllable on infinite time. Then

• for all κ > 0, the operator A− κBB∗ generates an asymptotically stable semi-
group T−κBB∗(t), i.e. limt→∞ ||T−κBB∗(t)x0||= 0;

• the closed-loop system Σ(A− κBB∗,B,B∗,0) is input stable, meaning that for
u ∈ L2((0,∞);U) and k < ∞

||
∫

∞

0
T−κBB∗(s)Bu(s)ds||2 ≤ k||u||2L2((0,∞);U); (III.14)

• for all u ∈ L2((0,∞);U) we have∫ t

0
T−κBB∗(t− s)Bu(s)ds→ 0 as t→ ∞. (III.15)

Theorems (III.1.2) and (III.1.3) both allow to conclude about asymptotic stability.
Between the different formulations of the LaSalle’s invariance principle, we decided to
use the one for the semilinear operator equations of the form (III.6). Another formu-
lation, considering a more general class of equations, can be found in [89]. While the
LaSalle’s invariance principle potentially allows determining asymptotic stability for a
larger class of system, the Oosteveen’s theorem is restricted to semilinear equations in
the form of (III.13). An important advantage of Theorem III.1.3 is that, differently form
the LaSalle’s invariance principle, pre-compactness of trajectories set does not have to
be checked. Nevertheless, approximate observability or approximate controllability are
needed to know that the state trajectories converge to the origin. We now introduce the
concept of admissible output operator [90]

Definition III.1.8. Consider the linear system Σ(A,−,C,−). The operator C : X 7→Y is
called an admissible observation operator for T (t) if the estimate∫

τ

0
||CT (t)x0||2dt ≤ k(τ)||x0||2 (III.16)

holds for every τ > 0 and for every x0 ∈ D(A).

If C ∈L (X ,Y ) then obviously it is admissible. In the following theorem, we make
the connection between the approximate observability concept and the fact that the only
solution of a homogeneous boundary control problem with constant output and zero as
the only equilibrium position is the zero solution.
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Lemma III.1.1. For the linear system Σ(A,−,C,−)the following statements are equiv-
alent

1. If y(t) is constant, then x0 = 0.

2. Σ(A,−,C,−) is approximately observable and its only equilibrium point is the
origin.

Proof. 1)⇒ 2) Let x0 be such that the output y(t) of Σ(A,−,C,−) is identically zero.
By 1) we see that x0 = 0, and thus Σ(A,−,C,−) is approximately observable.
Let xeq be an equilibrium solution, then 0 = Axeq, and the corresponding output (corre-
sponding to x(t)≡ xeq) is y(t) =Cxeq. This is constant, and so by 1) xeq = 0.
2)⇒ 1) Let y(t) be a constant output of Σ(A,C) and let x(t) be the corresponding state
trajectories. Define y∆(t) := y(t + t1)− y(t) = 0, t1 > 0. The corresponding state trajec-
tories is x∆(t) = x(t + t1)− x(t). By approximate observability we have that x∆(0) = 0.
Thus x(t1)− x(0) = 0. Since t1 was arbitrary, we have that x(t)≡ x(0), and thus x(0) is
an equilibrium solution. By assumption we conclude that x(0) = x0 = 0.

This lemma will be applied to the infinite dimensional part of the obtained closed-
loop system in order to find the large invariant subspace of the space for which the
Lyapunov functional’s derivative is zero.

III.2 CONTROL DESIGN FOR A M-PH CLASS OF SYS-
TEMS

In this section we would like to design different stabilizing control laws for a class of
m-pH systems. Let z ∈ L2([0,L],Rn), p ∈Rm and consider the following m-pH system,
as depicted in Figure III.1 [

ż
ṗ

]
=

[
P1

∂

∂ξ
(H z)+P0(H z)
−yz +u

]
y = M−1 p uz = y

(III.17)

where H ∈ C1([0,L];Rn×n), H (ξ ) is self adjoint for all ξ ∈ [0,L] and cI ≤H (ξ ) ≤
CI for all ξ ∈ [0,L] and some C,c > 0 independent of ξ , P1 ∈ Rn×n is invertible and
self adjoint, P0 ∈ Rn×n is skew adjoint, and with input output operators of the infinite
dimensional part defined as

uz = B1(H z) =WB,1

[
f∂

e∂

]
B2(H z) =WB,2

[
f∂

e∂

]
yz = C1(H z) =WC,1

[
f∂

e∂

]
C2(H z) =WC,2

[
f∂

e∂

] (III.18)

such that rank(WB,1) = rank(WC,1) = m, and rank(WB,2) = rank(WC,2) = n−m and
[

f∂
e∂

]
defined in Definition I.2.1 (page 18). Note that the output yz(t) has the same dimension
as the input uz(t). We define the complete input and output operators as the composition
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ṗ =−yz +u
y = M−1 p

ż = J z
B1(H z) = uz
C1(H z) = yz

yz uz

u y

Figure III.1: Considered class of m-pH systems.

of the previously defined operators

B(H z) =
[
B1(H z)
B2(H z)

]
=

[
WB,1
WB,2

][
f∂

e∂

]
=WB

[
f∂

e∂

]
C (H z) =

[
C1(H z)
C2(H z)

]
=

[
WC,1
WC,2

][
f∂

e∂

]
=WC

[
f∂

e∂

] (III.19)

with boundary flow and effort defined in Definition I.2.1.

Remark 11. The output operator C (H z) is a point evaluation of the state z(ξ , t), there-
fore it is a bounded operator from the state space Z to the output space Rn, hence an
admissible observation operator according to Definition (III.1.8).

We now recall the conditions for the m-pH system (III.17)-(III.19) of Assumption 1
in Chapter I, that will be assumed throughout the rest of this chapter:

1. The matrix
[

WB
WC

]
is invertible;

2. WB and WC are such that [
WBΣW T

B WBΣW T
C

WCΣW T
B WCΣW T

C

]
=
[

0 I
I 0

]
. (III.20)

Note that the class of system defined by (III.17)-(III.19) corresponds to the one obtained
by the physical examples of section II.1.2.a-II.1.2.c in Chapter II. In the following we
propose different control laws and we analyse the closed-loop stability when applied to
the aforementioned class of systems.
In Lemma III.1.1 we have shown the relation between the approximate observability
property and the fact that a system admits zero as only solution. In the following theo-
rem we give the conditions to obtain approximate observability for the class of 1-D dpH
systems present in (III.17)-(III.19).

Theorem III.2.1. Consider the equation

ż = P1
∂

∂ξ
(H z)+P0(H z) = J z (III.21)
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and boundary input/output operators (III.18)-(III.19), with homogeneous boundary con-
ditions B(H z) = 0. Assume that the input/output of the system are chosen such that

||H z(0, t)||2 ≤ ||uz(t)||2 + ||yz(t)||2
or

||H z(L, t)||2 ≤ ||uz(t)||2 + ||yz(t)||2
(III.22)

then the system is approximately observable with respect to the yz = C1(H z) output.

Proof. By Proposition I.2.1 we know that J is a skew-adjoint, therefore its eigenvalues
belong to the imaginary axis. Operator (III.21) generates a unitary group if and only
if it is a skew-adjoint operator (see Theorem 2.32 in [89]) and by Theorem I.2.2 its
resolvent is compact, then we know by Theorem A.4.19 [65], that its eigenvectors forms
an orthonormal basis. Since an orthonormal basis is a special case of a Riesz-Basis,
operator (III.21) is a Riesz-spectral operator. Consequently, using theorem 6.3.6 of [65],
to check that the system is approximately observable we have to show that there exists
no eigenvector in the kernel of C1. To show this, assume by contradiction that there
exists an eigenvector v such that C1v= 0. We now consider the first inequality of (III.22)
to hold. Using the homogeneous boundary conditions together with yz = C1v = 0 in
the first inequality of (III.22), we obtain H z(0, t) = 0. We integrate both side of the
eigenvalue problem’s equation (obtained imposing z = v(ξ )eiwt in (III.21), where v is
the eigenvector and iw the corresponding eigenvalue)

iwv(ξ ) = P1
∂

∂ξ
(H v)(ξ )+P0(H v)(ξ ) (III.23)

to obtain

iw
∫ s

0
v(ξ )dξ = P1

∫ s

0

∂

∂ξ
(H v)(ξ )dξ +

∫ s

0
P0(H v)(ξ )dξ∫ s

0
(wH −1(ξ )−P0)(H v)(ξ )dξ = P1[(H v)(s)− (H v)(0)]∫ s

0
(wH −1−P0)H v(ξ )dξ = P1(H v)(s)

(III.24)
With P1 being full rank, the former equation is equivalent to

(H v)(s) = P−1
1

∫ s

0
g(ξ )(H v)(ξ )dξ , (III.25)

with g(ξ ) = (iwH −1(ξ )−P0). From the former equation we get

||(H v)(s)|| ≤ ||P−1
1 ||

∫ s

0
||g(ξ )H v(ξ )||dξ

≤ ||P−1
1 ||

∫ s

0
||g(ξ )|| · ||H v(ξ )||dξ

≤ K
∫ s

0
||H v(ξ )||dξ
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since both P−1
1 and ||g(ξ )|| are bounded from above. Using the integral form of the

Gronwall’s Lemma we obtain that

||(H v)(s)|| ≤ 0, (III.26)

that implies (H v)(s) ≡ 0, which since H (ξ ) ≥ mI with m > 0 implies v(s) ≡ 0, that
is a contradiction to the fact that v is an eigenvector. If the second inequality of (III.22)
holds instead of the first one, we obtain H z(L, t) = 0. Therefore, we integrate (III.23)
from s to L such that

iw
∫ L

s
v(ξ )dξ = P1

∫ L

s

∂

∂ξ
(H v)(ξ )dξ +

∫ L

s
P0(H v)(ξ )dξ . (III.27)

The rest of the proof follows in a similar manner as before.

An immediate consequence is that a 1-D dpH system with a sufficient number of
inputs and constant boundary output admits zero as only solution if the origin is its only
equilibrium point.

Corollary III.2.1. Consider the dpH system (III.21) with boundary input/output and
operators defined in (III.18)-(III.19). Assume that the input/output of the system are se-
lected such to fulfil (III.22), then if yz(t) is constant and the origin is the only equilibrium
point, then z(t)≡ 0 for all t ≥ 0.

Proof. It is a direct consequence of Lemma III.1.1 and Theorem III.2.1.

In the following, we will present different control laws applicable to the considered
class of m-pH systems. At the end of each subsection, we present an application of the
proposed control law for the models derived in Chapter II. The examples are endowed
with numerical simulations that have been performed using Matlab®.

III.2.1 Proportional Derivative control of a m-pH system

In this section, we consider the stabilization of a m-pH system with a PD control law.
This corresponds to the classical feedback used to place the mechanism in the desired
configuration, and in the following sections will be embody with other terms that deal
with the faster stabilization of the flexible deformation. We define the new variable q as
the time integral of the momenta p multiplying the inverse of the mass matrix

q(t) =
∫ t

0
M−1 p(τ)dτ. (III.28)

Since the quantity M−1 p physically corresponds to a velocity, its time integral corre-
sponds to a position configuration in case the modelled system corresponds to a me-
chanical mechanism. We define the PD control control law

u =−Kq−RpM−1 p (III.29)
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ṗ =−yz−Rp p−Kq
q̇ = M−1 p
y = M−1 p

ż = J z
B1(H z) = uz
C1(H z) = yz

yz uz

y

Figure III.2: m-pH system in closed-loop with a PD control law.

where the control matrices K,Rp ∈ Rm×m are diagonal and positive definite, i.e. K =
diag[k1 k2 . . . km]> 0 and Rp = diag[rp,1 rp,2 . . . rp,m]> 0. This control law falls in the
category of output feedback: the output of the considered system (III.17), is integrated
to obtain the state q, and a linear composition of the states p and q is re-injected as
feedback. Then the closed-loop system depicted in Figure III.2, with extended state
x =

[ z
p
q

]
, can be written as a linear operator equation

ẋ = Ax =

 P1
∂

∂ξ
(H z)+P0(H z)

−C1(H z)−Kq−RpM−1 p
M−1 p


y =Cx = M−1 p

(III.30)

with state space X = L2([0,L],Rn)×R2m, operator domain

D(A) = {x ∈ X |H z ∈ H1([0,L],Rn),B1(H z) = M−1 p,B2(H z) = 0}, (III.31)

and boundary operator defined as in (III.18). We define the inner product

〈x1,x2〉X = 〈z1,H z2〉L2 + pT M−1 p+qT Kq (III.32)

such that to equip the state space with the associated norm ||x||X =
√
〈x,x〉X . We now

show that the closed-loop operator A generates a C0-semigroup of contractions in the
space X .

Theorem III.2.2. Under Assumption 1, the closed-loop operator A (III.30)-(III.31) gen-
erates a contraction C0-semigroup in the space X and has a compact resolvent.

Proof. We notice that system (III.30)-(III.31) can be rewritten in the same form as equa-
tion (I.69) in Corollary I.3.1 defining

J =

[
0 −I
I 0

]
R =

[
−Rp 0

0 0

]
Q =

[
M−1 0

0 K

]
g =

[
I
0

]
S = 0. (III.33)

Therefore, according to Corollary I.3.1 we can conclude that the operator A generates a
contraction C0-semigroup in the state space X and has a compact resolvent.

75



III.2. Control design for a m-pH class of systems

In the following theorem we employ two different methods to prove the asymptotic
stability of the origin of the closed-loop operator: one using the LaSalle’s invariance
principle, while the other using the Oosteven’s Theorem.

Theorem III.2.3. Consider the system (III.30)-(III.31). Assume that the distributed
parameter part of the system with homegeneous boundary conditions is approximately
observable with respect to the output yz, and zeq = 0 is its only equilibrium point. Then,
under Assumption 1 the equilibrium point xeq = 0 of (III.30) is asymptotically stable.

Proof. (With LaSalle’s invariance principle). Since the resolvent of A is compact by
Theorem I.3.1 and the nonlinearity is identically zero, we trivially obtain that the non-
linearity is p-integrable in infinite time, therefore the trajectories set is pre-compact in
X by Corollary III.1.1. Define the following candidate Lyapunov functional

V =
1
2
〈x,x〉, (III.34)

computing the time derivative according to (III.5) and using Theorem I.2.1 and Assump-
tion 1, we obtain

V̇+(x) = 〈z,J z〉L2 + pT M−1(−C1(H z)−Kq−RpM−1 p)+qT K(M−1 p)
= −(M−1 p)T Rp(M−1 p)≤ 0.

(III.35)
We now want to find the Largest invariant set of {x ∈ X | V̇+(x) = 0}, that since M,Rp >
0, is equivalent to the set {x ∈ X | p = 0}. Therefore, we replace p = 0 in (III.30) to
obtain {

ż = P1
∂

∂ξ
(H z)+P0(H z)

yz = C1(H z) =−Kq
(III.36)

with boundary conditions B1(H z) = B2(H z) = 0, and constant q. Hence, the prob-
lem of finding the largest invariant set consists in finding the solution of (III.36). Be-
cause of Lemma III.1.1, since (III.36) is approximately observable by assumption, its
only solution is z = 0. Then, the largest invariant set consists of the set containing only
the origin. Finally by the LaSalle’s invariant principle we can conclude that the origin
is asymptotically stable.

Proof. (With Oostveen’s Theorem). Firstly, we note that approximate observability of
system (III.30) follows directly from approximate observability of its distributed pa-
rameter part. Next, we define

B =

0
I
0

 B∗ =
[
0 I 0

]
κ = RpM−1. (III.37)

where B∗ is the adjoint of B. Hence, we define the weighted input-output matrices
as B̃ = B

√
κ and B̃∗ =

√
κB∗. Then, the closed-loop system (III.30) can be rewritten

as ẋ = Ã+ κB̃B̃∗. The operator Ã is the same as the operator A, but without dissipa-
tion, therefore under Assumption 1 Ã generates a contraction C0-semigroup and has a
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Table III.1: Simulation parameters; PD controller example

Name Variable Value
Beam’s Length L 1 m
Beam’s Width Lw 0.1 m

Beam’s Thickness Lt 0.02 m
Density ρ 1.9 kg

m
Young’s modulus E 8×108 N

m2

Bulk’s modulus K 1.7×109 N
m2

Hub’s inertia J 1 kg ·m2

compact resolvent (see Theorem III.2.2 with Rp = 0). Then by the Oosteven’s The-
orem III.1.3, we can conclude that the origin is an asymptotically stable equilibrium
point.

Example 1 (Rotating flexible beam with PD controller). We consider a rotating flexible
beam in closed-loop with a PD control law (III.30), with matrices and operators defined
in Section II.1.2.b of Chapter II. We consider the control problem of stabilising a rotat-
ing flexible beam in a desired orientation q = qeq, p = 0 and zero deformation z = 0.
Defining q̃ = q− qeq we retrieve the closed-loop formulation given in (III.30). There-
fore we study, without loss of generality, the origin stabilization problem as depicted in
Figure III.3. The physical parameters are listed in Table III.1, where the ones related to
the flexible beam refers to a Polyethylene HDPE material. According to [73], we know
that the model of a rotating flexible beam (II.44)-(II.46) is approximately controllable
with respect to the input τ for time t large enough. Approximate controllability with
respect to an input map B implies approximate observability with respect to its dual
output y = B∗x defined in (III.30) (see Lemma 6.2.14 of [65]). Approximate observabil-
ity of (II.44)-(II.46) with respect to y implies approximate observability of the infinite
dimensional part with respect to yz. Then, it remains to show that the origin is the only

J

w(ξ , t)

φ(ξ , t)

θ(t)u(t)

Desired equilibrium position

Figure III.3: Rotating flexible beam with origin equilibrium point.
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Figure III.4: Beam’s deformation along time with PD control action.

equilibrium position of the distributed parameter part

∂

∂ξ
Kz3(ξ , t) = 0

∂

∂ξ
EIz4(ξ , t)+Kz3(ξ , t) = 0

∂

∂ξ

1
ρ

z1(ξ , t)− 1
Iρ

z2(ξ , t) = 0
∂

∂ξ

1
Iρ

z2(ξ , t) = 0

(III.38)

with homogeneous boundary conditions 1
ρ

z1(0, t)= 1
Iρ

z2(0, t)=Kz3(L, t)=EIz4(L, t)=
0. The first and last equations with the respective boundary conditions return Kz3(ξ , t)=
1
Iρ

z2(ξ , t) = 0, that since K(ξ ), 1
Iρ
(ξ )> 0 for all ξ ∈ [0,L] implies z3(ξ , t) = z2(ξ , t) = 0.

Then, from the second and third equations we can also conclude z1(ξ , t) = z4(ξ , t) = 0,
and therefore zeq = 0. Using Proposition III.2.3 we can conclude that xeq = 0 is an
asymptotically stable equilibrium point of (III.30) with matrices defined in Section
II.1.2.b of Chapter II.
To perform numerical simulations, we spatially discretize the infinite dimensional part

of the system with the discretization method illustrated in in Section II.2 of Chapter II
(page 53). The finite dimensional approximation of the closed-loop operator (III.30)-
(III.31) writesżd

ṗ
q̇

=

 J f e ḡ f e 0
−ḡT

f e 0 −1
0 1 0

−
0 0 0

0 rp 0
0 0 0

H f e 0 0
0 J−1 0
0 0 k1

zd
p
q

 (III.39)

with zd ∈ R4nd and nd = 50 the number of discretizing elements. The matrix J f e is
defined in (II.160), ḡ f e is the vector corresponding to the 2nd column of g f e defined in
(II.161) and H f e in (II.162). The control parameters are selected such that k1 = 500 and
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Figure III.5: Hub’s angle along time with PD control action.

rp = 100. In Figure III.4 and III.5 are shown the beam deformation along time, and the
hub’s angle trajectories along time, respectively. The considered initial conditions are
taken such that z0 = 0, p0 = 0, q0 = 0.5. In Figure III.6 we show the applied control
law, highlighting the frequency content with a focus between second 1 and 2.
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Figure III.6: Applied PD control law along time.

Remark 12. The model in [73] considers a flexible beam connected to the rotating in-
ertia at a distance r from the center of rotation. In this thesis we implicitly assumed
that the flexible beam is connected at the motor’s rotor center of rotation. Therefore,
the condition to ensure approximate controllability (page 447 of [73]) is automatically
guaranteed. In case of real implementation, this condition must be carefully checked to
avoid the incapability of observing some particular vibration mode.
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III.2.2 Nonlinear passive control of a m-pH system

To be more effective in damping the vibration caused by flexibility, we want to add
some information coming from the flexible deformation to the control action. In this
section, we use the control law that has been proposed in [91] for the considered class
of m-pH systems. In this work, the authors concluded about Lyapunov stability for a ro-
tating flexible beam embodying the Euler-Bernoulli equations. In [42], a generalization
of the same control law has been shown to asymptotically stabilize the same infinite di-
mensional model of the rotating flexible beam. In this section we study the same control
law in closed-loop with the m-pH systems (III.17), for which we first conclude about
well-posedness and then about asymptotic stability. We Consider a nonlinear control
system given by the following equations{

ẋc =−RcQcxc +Λ(z)uc
yc = ΛT (z)Qcxc

(III.40)

where xc ∈ Rm is the state vector, Qc = QT
c > 0 the energy matrix, Rc = RT

c > 0 the
dissipation matrix. Λ(z) = diag([λ1(z) · · ·λm(z)]) is the input-output matrix, composed
by linear functions λi : Z 7→ R. The functions can represent, among others, the mea-
surement of a boundary variable as well as a deformation at some point of the spatial
domain: both can be represented as a linear function of the distributed parameter state.
Therefore, the functions λi(z) could represent a sensor’s measurement. Their definition
as general functions of the distributed parameter state has been employed to let open the
possibility of finding a function that allows better performances in closed-loop. Con-
sequently, since the control law depends on the total state, it can be classed as state
feedback.

The dynamic controller introduced in (III.40) is passive with respect to its internal
energy Ec =

1
2xT

c Qcxc. In fact,

Ėc+ = xT
c Qc(−RcQcxc +Λ(z)uc)

= −(Qcxc)
T Rc(Qcxc)+(ΛT (z)Qcxc)

T uc
≤ yT

c uc.
(III.41)

We connect the controller input to the system’s output uc = y, and we define the follow-
ing control law

u =−Kq−RpM−1 p− yc (III.42)

where the variable q is defined such that q̇ = M−1 p. The control matrices K,Rp ∈
Rm×m are diagonal and positive definite, i.e. Kq = diag[kq,1 kq,2 . . . kq,m] and Kp =

diag[kp,1 kp,2 . . . kp,m]. We define the variable v =
[ p

q
xc

]
and the closed-loop system

obtained by applying (III.42) to system (III.17), as shown in Figure III.7, can be defined
by a set of semi-linear equations

ẋ =

[
∂

∂ξ
P1(H z)+P0(H z)

−gC1(H z)+(J−R)Qv

]
+

[
0 0
g g̃

][
−Λ(z)g̃T Qv
Λ(z)gT Qv

]
= Ax+ f (x),

(III.43)
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ṗ =−Rp p−Kq+u
q̇ = M−1 p
y = M−1 p

ż = J z
B1(H z) = uz
C1(H z) = yz

yz uz

y

ẋc = RcQcxc−Λ(z)uc
yc = ΛT (z)Qcxc

ucyc

u

Figure III.7: m-pH system in closed-loop with a non-linear passive control law.

with state x = [ z
v ] ∈ X = L2([a,b],Rn)×R3m, and finite dimensional matrices

J =

0 −I 0
I 0 0
0 0 0

 R=

Rp 0 0
0 0 0
0 0 Rc

 Q=

M−1 0 0
0 K
0 0 Qc

 g=

I
0
0

 g̃=

0
0
I


(III.44)

and inner product on the state space defined as

〈x1,x2〉X = 〈z1,H z2〉L2 + vT
1 Qv2. (III.45)

The linear operator in (III.43) is defined with domain

D(A) =
{

x ∈ X | z ∈ H1([a,b],Rn,B1(H z) = gT Qv,B2(H z) = 0
}
. (III.46)

In the following theorem we show that the operator A generates a contraction C0-
semigroup in the defined state space X .

Theorem III.2.4. Under Assumption 1 the operator A with domain D(A) generates a
contraction C0-semigroup in the space X and has a compact resolvent.

Proof. Since the operator A in (III.43) with domain (III.46) is in the same format as
system (I.69) in Corollary I.3.1, according to Corollary I.3.1 we can conclude that the
operator A generates a contraction C0-semigroup in the state space X and has a compact
resolvent.

We are now in position to conclude about the existence of a unique bounded solution
of the closed-loop system (III.43).

Theorem III.2.5. Under Assumption 1, system (III.43) with operator domain D(A)
(III.46) possesses for every initial condition x0 ∈X a unique mild solution that is bounded.
Furthermore, if x0 ∈ D(A) the solution is classical.
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Proof. The proof is divided in two parts: in the first part we show that the semilinear
equation (III.43) with operator domain D(A) (III.46) possesses a unique local mild so-
lution, while in the second part we conclude that this solution is global.
By Theorem I.1.4, for the existence of a local mild solution we have to show that the
function f (x) is locally Lipschitz continuous. The Lipschitz continuity of f (x) is equiv-
alent to the Lipschitz continuity of f1 = Λ(z)g̃T Qv and f2 = Λ(z)gT Qv. We start by the
Lipschitz continuity of f1(x)

|| f1(x2)− f1(x1)||= ||Λ(z1)g̃T Qv1−Λ(z2)g̃T Qv2||
= ||Λ(z1)g̃T Q(v1− v2)+(Λ(z1)−Λ(z2))g̃T Qv2||
≤ ||Λ(z1)g̃T Q(v1− v2)||+ ||(Λ(z1)−Λ(z2))g̃T Qv2||.

(III.47)

Assuming ||x1||, ||x2|| < r, from the linearity of Λ(z) we get ||Λ(z)|| ≤ MΛ||z||, and
therefore we obtain

|| f1(x2)− f1(x1)|| ≤MΛrλQ||v1− v2||+MΛ||z1− z2||λQ||v2|| (III.48)

where λQc is the biggest eigenvalue of Qc. Since ||v1−v2|| ≤ ||x2−x1|| and ||z2−z1|| ≤
||x2− x1||, we conclude

|| f1(x2)− f1(x1)|| ≤MΛλQcr||x2− x1||. (III.49)

The Lipschitz continuity of f2(x) follows from very similar arguments.
Next, because of Theorem III.1.1, we remain to show that there exists a functional V :
X 7→R+ such that V (0) = 0 and with time derivative V̇+(x)≤ 0, ∀x0 ∈D(A) and that the
nonlinearity f (x) is locally Lipschitz continuous. We begin by taking V (x) = 1

2〈x,x〉X
as candidate Lyapunov functional, and we use (III.5), Assumption 1 and Theorem I.2.1
to write its time derivative along the system’s solutions

V̇+(x) = dV (x)(Ax+B f (x))
= 〈z,J z〉Z + vT Q(−gC1(H z)+(J−R)Qv−gΛ(z)g̃Qv+ g̃Λ(z)gT Qv)
= uT

z yz− vT QgC1(H z)− vT QRQv− vT QgΛ(z)g̃T Qv+ vT Qg̃Λ(z)gT Qv
= uT

z yz−uT
z yz− (M−1 p)T Rp(M−1 p)− (Qcxc)

T Rc(Qcxc)
(III.50)

therefore we obtain

V̇+(x) =−(M−1 p)T Rp(M−1 p)− (Qcxc)
T Rc(Qcxc) (III.51)

and since Rp,Rc are semi-positive definite matrices, we can conclude that V̇+(x)≤ 0 and
therefore the closed-loop system (III.43) admits a unique bounded mild solution.

Before stating the Theorem about the asymptotic stability of the closed-loop system,
we need to show that the function f (x) is square integrable in infinite time along the
solutions of system (III.43).

Lemma III.2.1. Under Assumption 1, the function f (x) is square integrable in infinite
time along solutions of system (III.43).
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Proof. Starting from (III.51), we use Lemma 11.2.5 of [65] to obtain

V (x(t)) =V (x0)−
∫ t

0
(M−1 p(τ))T Rp(M−1 p(τ))−(Qcxc(τ))

T Rc(Qcxc(τ))dτ (III.52)

and since V (x) is bounded from below and M,Qc are strictly positive definite, the last
equation implies p,xc ∈ L2([0,∞],Rm). To show that f (x) is square integrable, we begin
by the function f1(x) = Λ(z)g̃T Qv:∫

∞

0
|| f1(x(t))||2dt =

∫
∞

0
||Λ(z(t))g̃T Qv(t)||2dt. (III.53)

Use the linearity of Λ(z), ||g̃|| = 1 and the boundedness of trajectories ||x(t)|| ≤ r, to
obtain ∫

∞

0
|| f1(x(t))||2dt ≤ M2

Λ
λ 2

Qc

∫
∞

0
||z(t)||2||xc(t)||2dt

≤ M2
Λ

r2λ 2
Qc

∫
∞

0
||xc(t)||2dt.

(III.54)

Since xc is square integrable on infinite time, it follows∫
∞

0
|| f1(x(t))||2dt ≤ ∞. (III.55)

To show the square integrability of f2(x) compute∫
∞

0
|| f2(x(t))||2dt =

∫
∞

0
||Λ(z)gT Qv||2dt. (III.56)

With some very similar arguments used for f1(x), we obtain∫
∞

0
|| f2(x(t))||2dt ≤M2

Λr2
∫

∞

0
||M−1 p||2dt (III.57)

and because of the square integrability of p we conclude that f2(x) is square integrable
in infinite time.

Finally, we show that if the closed-loop system has the origin as only equilibrium
point, then the origin is an asymptotically stable equilibrium point. As in the previous
section we show the result using two different but equivalent proofs, i.e. firstly with the
LaSalle’s invariance principle and secondly with Oostveen’s Theorem.

Theorem III.2.6. Consider the closed-loop system (III.43). Under Assumption 1, if
the distributed parameter part of the system with homogeneous boundary conditions is
approximately observable with respect to the output yz and zeq = 0 is its only equilibrium
point, then the origin is an asymptotically stable equilibrium.

Proof. (With LaSalle’s invariance principle). Since by Lemma III.2.1 we have that f (x)∈
L2([0,∞],R2m), and by Theorem III.2.4 the resolvent of operator A is compact, we can
conclude by Corollary III.1.1 that the trajectories set is pre-compact.
Consider the Lyapunov functional of Theorem III.2.5. We want to find the largest in-
variant set of {x ∈ X | V̇+(x) = 0}, that since M,Rp,Qc,Rc > 0, is equivalent to the set
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{x ∈ X | p,xc = 0} (see equation (III.51)). Therefore, we replace p,xc = 0 in (III.43) to
obtain {

ż = P1
∂

∂ξ
(H z)+P0(H z)

yz = C1(H z) =−Kq
(III.58)

with boundary conditions B1(H z) = B2(H z) = 0, and constant q. Hence, the prob-
lem of finding the largest invariant set consists on finding the solution of (III.58). Be-
cause of Lemma III.1.1, since (III.58) is approximately observable by assumption, its
only solution is z = 0. Then, the largest invariant set consists of the set containing only
the origin. Finally by the LaSalle’s invariant principle we can conclude that the origin
is asymptotically stable.

Proof. (With Oostveen’s Theorem). It is easy to see that approximate observability of
the infinite dimensional part implies approximate observability of system (III.43) with
respect to the output y = B∗x where

B∗ =
[

0 M−1 0
0 0 Qc

]
. (III.59)

Define the weighted input-output matrices as B̃ = B
√

κ and B̃∗ =
√

κB∗, with

κ =

[
Rp 0
0 Rc

]
> 0. (III.60)

Then, the closed-loop system (III.30) can be rewritten as ẋ = A′+ κB̃B̃∗. The opera-
tor A′ is the same as the operator A, but without dissipation, therefore A′ generates a
contraction C0-semigroup and has a compact resolvent by Corollary I.3.1 (see Theorem
III.2.4 with Rp,Rc = 0). Then by the Oosteven’s theorem III.1.3, we can conclude that
the origin is asymptotically stable.

Example 2 (Rotating flexible beam with non-linear passive controller). In this example
we consider the stabilisation problem of a rotating flexible beam, as depicted in Fig-
ure III.3 of Example 1, but in this case using the nonlinear passive control law studied
in this chapter. We refer to the model derived in Section II.1.2.b of Chapter II for the
rotating flexible beam. The rotating flexible beam model in closed-loop with the control
law (III.42) writes as a semi-linear operator equation (III.43) with domain (III.46). The
model’s physical parameters are listed in Table III.1. With the same arguments used
in Example 1, it is possible to show that the distributed parameter part of the consid-
ered system is approximately observable with respect to the output yz and that its only
equilibrium point is zeq = 0. Using Theorem III.2.6 we can conclude that xeq = 0 is
an asymptotically stable equilibrium point of (III.43) with matrices defined in Section
II.1.2.b of Chapter II.

In this example we select the function λ (z) of the nonlinear controller such that

λ (z) =
∫ L

0

{
z3(ξ , t)+

∫
ξ

0
z4(ζ , t)dζ

}
dξ . (III.61)
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Figure III.8: Beam’s deformation along time with passive non linear control action.

With this selection we impose the function λ (z) to be equal to the deformation at the
end of the beam w(L, t). To simulate the closed-loop system, we spatially discretize the
distributed parameter part of the system to obtain according to Section II.2 of Chapter
II

żd
ṗ
q̇
ẋc

=




J f e ḡ f e 0 0
−gT

f e 0 −1 0
0 1 0 0
0 0 0 0

−


0 0 0 0
0 rp 0 0
0 0 0 0
0 0 0 rc





H f e 0 0 0
0 J−1 0 0
0 0 k1 0
0 0 0 kc




z
p
q
xc


+


0

λd(zd)kcxc
0

−λd(zd)
J p


(III.62)

where λd corresponds to the discretized version of the λ function, zd ∈ R4nd is the dis-
cretized distributed parameter state where nd is the number of discretizing elements.
The matrix J f e is defined in (II.160), ḡ f e is the vector corresponding to the 2nd column
of g f e defined in (II.161) and H f e in (II.162). The control parameters are selected such
that k1 = 500, c = 100, kc = 3× 105 and rc = 3× 10−8. We selected on purpose the
parameters regarding the PD part of the control law equal to the ones selected in Ex-
ample 1 on the previous section, such to be able to compare the obtained results. In
Figure III.8 and III.9 are shown the beam deformation along time, and the hub’s angle
trajectories along time, respectively. Compared to the results obtained in Example 1,
we can observe that the overall deformation is reduced and converge faster to the origin.
The considered initial conditions are taken such that zb = 0, p = 0, q = 0.5. In Figure
III.10 we show the applied control law, highlighting the frequency content with a focus
between second 1 and 2. We can observe that the control input in Figure III.10 has a
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Figure III.9: Hub’s angle along time with passive nonlinear control action.

0 1 2 3 4 5
t (sec)

-250

-200

-150

-100

-50

0

50

u
(N

m
)

1 1.2 1.4 1.61.8 2
-10
0
10

Figure III.10: Applied passive non linear control law along time.

frequency content similar to the control input obtained with the system in closed-loop
with a PD control law. Therefore we can conclude that the nonlinear passive control law
shown in this Section is feasible, in terms of actuator response velocity, as a PD control
law.

III.2.3 Strong dissipation control of a m-pH system

It has been proven that linear operator equations of the form

ẋ = Ax+Bu x(0) = x0
y =Cx (III.63)
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with A generator of a bounded group (i.e. supt∈R ||T (t)||< ∞) on a infinite dimensional
state space X , and input matrix B ∈L (Rn,X), are not exponentially stabilizable with
classical bounded linear feedback u = −Fx with F ∈ L (X ,Rn)(see in Lemma 8.4.1
of [65]). The systems represented by equation (III.17) can be written in the form of
(III.63). This is therefore a subclass of the previously defined class of systems, and
hence not exponentially stabilizable with classical bounded linear feedback. In this
section we propose an (unbounded) linear feedback that allows to exponentially stabilize
the considered class of system:

u(t) =−RpM−1 p−RpM−1KpC1(H z)−Kp
d
dt
(C1(H z)) (III.64)

where Rp = diag([rp,1 . . . rp,m])∈Rm×m, Kp = diag([kp,1 . . . kp,m])∈Rm×m and the last
term is known in the literature of stabilization of mixed PDEs-ODEs systems as strong
dissipation feedback. The proposed linear feedback is unbounded because it contains a
time derivative of the state: even if the state is bounded, there is no a priori assurance
that also the control law is bounded.The control law (III.64) uses the output C1(H z) of
the distributed parameter part together with the standard output y=M−1 p of the system.
Since all the variables needed to the application of the control law can be obtained
through the use of sensors, we can class the control law (III.64) as output feedback.
This type of control law has also been used in the stabilization of flexible beams, and
it is normally referred to as strain rate feedback [92]. In case of application on moving
flexible beams, this control input can be computed calculating an approximated and
filtrated version of the time derivative of the strain measurement as explained in [41].
Applying the control law (III.64) to system (III.17), we obtain the closed-loop system
depicted in Figure III.11 of equations{

ż = P1
∂

∂ξ
(H z)+P0(H z)

ṗ =−C1(H z)−RpM−1(p+KpC1(H z))−Kp
d
dt (C1(H z)).

(III.65)

ż = J z
B1(H z) = uz
C1(H z) = yz

yz uz

y

Kp
d
dtRpM−1Kp

ṗ =−(RpM−1Kp + I)yz

−RpM−1 p−Kp
d
dt yz

y = M−1 p

Figure III.11: m-pH system in closed-loop with a strong feedback control law.
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To analyse the resulting closed-loop system we perform the change of variable η =
p+KpC1(H z). Therefore, we define x = [ z

η ] ∈ X = L2([a,b],Rn)×R2m such to write
the system as a linear operator equation

ẋ = Ax =

[
P1

∂

∂ζ
(H z)+P0(H z)

−C1(H z)−RpM−1η

]
(III.66)

with domain defined as

D(A) =
{

x ∈ X | z ∈ H1([a,b],Rn),
B1(H z) = M−1(η−KpC1(H z)),B2(H z) = 0

}
.

(III.67)

We define the inner product

〈x1,x2〉X = 〈z1,H z2〉L2 +η
T
1 M−1

η2 (III.68)

and we equip the state space X with the associated norm ||x|| =
√
〈x,x〉X . Since the

made change of variables is bounded and invertible, studying the stability of (III.66) is
equivalent to studying the stability of (III.65).
To conclude about exponential stability of the closed-loop system (III.66)-(III.67), through-
out this section we assume the following assumption on the number of actuated inputs
for the infinite dimensional part.

Assumption 3. The m input/output of the system are chosen such that

||H z(0, t)||2 ≤ ||uz(t)||2 + ||yz(t)||2
or

||H z(L, t)||2 ≤ ||uz(t)||2 + ||yz(t)||2.
(III.69)

In practice, these inequalities require that we have all the boundary controls at least
at one side of the spatial domain. We want to remark that these inequalities are the same
required also in Theorem III.2.1, to conclude about approximate observability of a 1-D
dpH system. Moreover, these same inequalities are required in [28] in order to have a
1-D dpH system that is exponentially stabilizable.

We start by showing that the closed-loop operator generates a contraction C0-semigroup
in the defined state space X .

Theorem III.2.7. Under Assumption 1, system (III.66) with domain defined by (III.67)
generates a contraction C0-semigroup in the state space X and has a compact resolvent.

Proof. Thanks to Theorem I.3.1 we only have to show that the operator A with domain
D(A) is dissipative in the norm associated to the state space X . Therefore, knowing that
yz = C1(H z), we compute

〈Ax,x〉= 〈J z,z〉Z +(−C1(H z)−RpM−1η)T M−1η

= yT
z uz−C1(H z)T M−1η− (M−1η)T Rp(M−1η)

= yT
z M−1(η−Kpyz)− yT

z M−1η− (M−1η)T Rp(M−1η)
= −yT

z KpM−1yz− (M−1η)T Rp(M−1η)≤ 0.

(III.70)

This shows that the operator A is dissipative in X and therefore that generates a contrac-
tion C0-semigroup in X and has a compact resolvent.
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In the following lemmas we show some inequalities that will be necessary for the
exponential stability proof of the closed-loop operator.

Lemma III.2.2. Let x(ζ , t) be a solution generated by (III.66)-(III.67). Under Assump-
tion 3 there exists a constant α > 0 such that the state trajectories satisfies

α
(
||H z(0, t)||2 + ||η ||2

)
≤ yT

z KpM−1yz +(M−1η)T Rp(M−1η)
or

α
(
||H z(L, t)||2 + ||η ||2)

)
≤ yT

z KpM−1yz +(M−1η)T Rp(M−1η).
(III.71)

Proof. Use equation (III.69) and (III.67) to write

||H z(0, t)||2 + ||η(t)||2 ≤ ||uz||2 + ||yz||2 + ||η ||2
= ||M−1(η +Kpyz)||2 + yT

z yz +ηT M−1η
(III.72)

that since we are considering the norm associated to the inner product (III.68)

||H z(0, t)||2 + ||η(t)||2 ≤ (η +Kpyz)
T M−2(η +Kpyz)+ yT

z yz
+ηT M−1η

= yT
z (K

2
pM−2 + I)yz +ηT (M−2 +M−1)η

+2ηM−2Kpyz.

(III.73)

Then, we use the inequality

2ηM−2Kpyz ≤ yT
z K2

pM−2yz +η
T M−2

η (III.74)

together with the fact that M and Kp are diagonal matrices, to write

||H z(0, t)||2 + ||η(t)||2 ≤ yT
z (2K2

pM−2 + I)yz +ηT (2M−2 +M−1)η

= yT
z Kp(2KpM−1 +K−1

p M)M−1yz
+(M−1η)T RpR−1

p (2I +M))(M−1η)

≤ γ1yT
z KpM−1yz + γ2(M−1η)T Rp(M−1η)

≤ max{γ1,γ2}(yT
z KpM−1yz +(M−1η)T Rp(M−1η))

(III.75)
where γ1 and γ2 are the biggest eigenvalues of 2KpM−1 + K−1

p M and R−1
p (2I + M),

respectively. Finally define

α =
1

max{γ1,γ2}
(III.76)

such that equation (III.71) follows.

Lemma III.2.3. Let x(ζ , t) be a solution generated by the closed-loop system (III.66) -
(III.67), then under Assumption 1 and 3 the functional

V (x) =
1
2
〈x,x〉X =

1
2

∫ L

0
z(ξ , t)T H z(ξ , t)dξ +

1
2

η
T M−1

η (III.77)

is a Lyapunov functional and satisfies for t > 2γL, where γ is such that P−1
1 + γH (ξ )

and −P−1
1 + γH (ξ ) are positive definite,

c1(t)V (x(t))≤
∫ t

0
||H z(0,τ)||2dτ +

∫ t

0
||η(τ)||2dτ (III.78)
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where c1(t) =
2(t−2γL)

β1
, β1 = max{L,1} or

c2(t)V (x(t))≤
∫ t

0
||H z(L,τ)||2dτ +

∫ t

0
||η(τ)||2dτ (III.79)

where c2(t)=
2(t−2γL)

β2
, β2 =max{LeκL,1} and κ is such that H (ξ )PT

0 P−1
1 +P−1

1 P0H (ξ )+
∂H
∂ξ

(ξ )≤ κH (ξ ).

Proof. We define the function F : [0,L] 7→ R by

F(ξ ) =
∫ t−γξ

γξ

zT (ξ ,τ)H (ξ )z(ξ ,τ)dτ, ξ ∈ [0,L], (III.80)

where we assume that γ > 0 and t > 2γL. Differentiating the function F with respect to
ξ gives

dF
dξ

(ξ ) =
∫ t−γξ

γξ

zT (ξ ,τ)
∂

∂ξ
(H (ξ )z(ξ ,τ))dτ

+
∫ t−γξ

γξ

(
∂

∂ξ
z(ξ ,τ)

)T

H (ξ )z(ξ ,τ)dτ

−γzT (ξ , t− γξ )H (ξ )z(ξ , t− γξ )− γzT (ξ ,γξ )H (ξ )z(ξ ,γξ ).

(III.81)

After some similar passages as in the proof of Lemma 9.1.2 in [24] we get

dF
dξ

(ξ ) = −
∫ t−γξ

γξ

zT (ξ ,τ)

(
H (ξ )PT

0 P−1
1 +P−1

1 P0H (ξ )+
∂H

∂ξ
(ξ )

)
z(ξ ,τ)dτ

−zT (ξ , t− γξ )
(
−P−1

1 + γH (ξ )
)

z(ξ , t− γξ )

−zT (ξ ,γξ )
(
P−1

1 + γH (ξ )
)

z(ξ ,γξ ).
(III.82)

Now we select γ large enough, such that P−1
1 + γH and −P−1

1 + γH are positive defi-
nite, such to obtain

dF
dξ

(ξ )≤−
∫ t−γξ

γξ

zT (ξ ,τ)

(
H (ξ )PT

0 P−1
1 +P−1

1 P0H (ξ )+
∂H

∂ξ
(ξ )

)
z(ξ ,τ)dτ.

(III.83)
Since P1 and P0 are constant matrices and ∂H

∂ξ
(ξ ) is bounded, there exists a constant

κ > 0 such that for all ξ ∈ [0,L] we have

H (ξ )PT
0 P−1

1 +P−1
1 P0H (ξ )+

∂H

∂ξ
(ξ )≥ κ1H (ξ ) (III.84)

and therefore we obtain

dF
dξ

(ξ )≤−κ

∫ t−γξ

γξ

zT (ξ ,τ)H (ξ )z(ξ ,τ)dτ =−κ1F(ξ ). (III.85)

The former inequality implies

F(ξ )≤ e−κξ F(0) for ξ ∈ [0,L], (III.86)
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that in turn means F(ξ ) ≤ F(0). In order to obtain the second inequality (III.79) we
select

F(ξ ) =
∫

τ−γ(L−ξ )

γ(L−ξ )
z(ξ , t)T H z(ξ , t)dt. (III.87)

instead of (III.80) and following the same passages as in Lemma 9.1.2 of [24], it is
possible to obtain that F(ξ )≤ eκLF(0) where κ is such that

H (ξ )PT
0 P−1

1 +P−1
1 P0H (ξ )+

∂H

∂ξ
(ξ )≤ κH (ξ ). (III.88)

We now compute the time derivative of (III.77) using equation (III.5), Assumption
1 and the A dissipativity

V̇+(x) = 〈x,Ax〉X ≤ 0. (III.89)

Therefore, the functional V is a Lyapunov functional. For the rest of the proof we
proceed similarly to the proof of Lemma 4.1 in [27].
Using the fact that the Lyapunov functional (III.77) is non-increasing along the system’s
trajectories, it holds ∫ t−γL

γL
V (x(τ))dτ ≥ V (x(t− γL))

∫ t−γL

γL
1dτ

= (t−2γL)V (x(t− γL)).
(III.90)

We use again the non-increasing property of the Lyapunov functional to write

2(t−2γL)V (x(t))
≤ 2(t−2γL)V (x(t− γL))

≤ 2
∫ t−γL

γL
V (x(τ))dτ

=
∫ L

0

∫ t−γL

γL
zT (ξ ,τ)H z(ξ ,τ)dτdξ +

∫ t−γL

γL
||η(τ)||2dτ

≤
∫ L

0

∫ t−γξ

γξ

zT (ξ ,τ)H z(ξ ,τ)dτdξ +
∫ t

0
||η(τ)||2dτ

(III.91)

where, for the last inequality, we have increased the integration time. Use definition
(III.80) and increase once again the integration interval of the second term to obtain

2(t−2γL)V (x(t))≤
∫ L

0
F(ξ )dξ +

∫ t

0
||η(τ)||2dτ

≤ LF(0)+
∫ t

0
||η(τ)||2dτ

= L
∫ t

0
z(0,τ)T H z(0,τ)dτ +

∫ t

0
||η(τ)||2dτ

≤ β

(∫ t

0
||H z(0,τ)||2dτ +

∫ t

0
||η(τ)||2dτ

)
(III.92)

where β = max{L,1}. Hence, we obtain

2(t−2γL)
β

V (x(t))≤
∫ t

0
||H z(0,τ)||2dτ +

∫ t

0
||η(τ)||2dτ (III.93)
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that shows inequality (III.78) with c(τ) = 2(t−2γL)
β

. The other inequality is obtained
using F(ξ )≤ F(L)eκL instead of F(ξ )≤ F(0) in (III.92)

2(t−2γL)V (x(t))≤
∫ L

0
F(ξ )dξ +

∫ t

0
||η(τ)||2dτ

≤ LF(0)eκL +
∫ t

0
||η(τ)||2dτ

= LeκL
∫ t

0
z(0,τ)T H z(0,τ)dτ +

∫ t

0
||η(τ)||2dτ

≤ β2

(∫ t

0
||H z(0,τ)||2dτ +

∫ t

0
||η(τ)||2dτ

)
(III.94)

where β2 = max{LeκL,1}.

Now we are in position to state the theorem on exponential stability of the origin of
the closed-loop operator.

Theorem III.2.8. Under Assumption 1 and Assumption 3, the origin of the closed-loop
system described by equations (III.66)-(III.67) is exponentially stable.

Proof. We use equations (III.70) and (III.89) to obtain

V̇+(x) =−yT
z KpM−1yz− (M−1

η)T R(M−1
η). (III.95)

We use inequality (III.71) in the above equation

V̇+(x)≤−α
(
||H z(0, t)||2 + ||η ||2

)
(III.96)

and integrating in time between 0 and t both sides of the above equation and using
inequality (III.78), we obtain

V (x(t))−V (x(0))≤ −α

(∫ t

0
||H z(0,τ)||2dτ +

∫ t

0
||η(τ)||dτ

)
≤ −αc(t)V (x(t))

(III.97)

which implies,

V (x(t))≤ 1
1+αc(t)

V (x(0)). (III.98)

It is possible to see that the Lyapunov functional V is equivalent to the square norm of
the state, hence the above equation implies

||x(t)||2 ≤ 1
1+αc(t)

||x(0)||2. (III.99)

Let T (t) be the semigroup generated by the operator A. From the latter equation we
obtain for all x0 ∈ X

||T (t)x0||2 ≤
1

1+αc(t)
||x0||2 (III.100)
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Table III.2: Simulation parameters; strong dissipation example

Name Variable Value
String’s Length L 1 m

Density ρ 1 kg
m

Tension T 1
Tip’s mass m 1 kg

that is equivalent to

||T (t)||2 ≤ 1
1+αc(t)

. (III.101)

Since c(t) is a positive function such that c(t)→ ∞ for t → ∞, there exists a t∗ > 0
such that ||T (t)||< 1 for all t > t∗. Consequently w0 = inft>0

(1
t log ||T (t)||

)
< 0 and by

Theorem I.1.1 we can conclude that there exist constants Mw > 0 and w < 0 such that
||T (t)|| ≤Mwewt for all t ≥ 0.

Remark 13. The previous theorem states that the norm of the state ||x(t)|| can be bounded
by an exponential, i.e.

||x(t)|| ≤Mwewt ||x0|| (III.102)

with w < 0 and in general Mw ≤ 0. The constant Mw is not a priori known and is in
general strictly greater than zero.

In the following example we show how to apply the strong dissipation feedback
control law to an applicative example, and how it is possible to compute the exponential
bound of the system’s state norm along time.

Example 3 (Vibrating string with tip mass and Strong dissipation control). We study
the control problem of the stabilisation of a clamped string with tip mass on the other
side using a force applied on the tip mass. For this problem we use the model derived
in Section II.1.2.a of Chapter II. The control objective is to stabilise the system in the
zero state p = 0, z = 0, as depicted in Figure III.12. Consider the closed-loop operator
(III.66)-(III.67) with matrices and input-output operators corresponding to the vibrating
string with a tip mass introduced in Section II.1.2.a of Chapter II. The considered phys-
ical parameters are listed in Table III.2, while the control parameters are selected such
that kp = 0.7, rp = 5. We notice that

||H z(0, t)||2 = || 1
ρ(0)z1(0, t)||2 + ||T (0)z2(0, t)||2

= ||uz(t)||2 + ||yz(t)||2
(III.103)

m

w(ξ , t)
f (t)

Desired
equilibrium

Figure III.12: String with a tip mass with origin equilibrium point.
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1-0.2
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Figure III.13: String deformation along time.

and therefore, according to Theorem III.2.8, the origin of the string equation with a tip
mass (II.20) in closed-loop with a strong dissipation feedback (III.64) is exponentially
stable.
Therefore, we can compute all the parameters necessary to find the exponential bound
of the state’s norm. In particular, according to Lemma III.2.3 we can compute that for a
wave equation with varying parameters

γ > max
ξ∈[0,L]

√
ρ(ξ )

T (ξ )
. (III.104)

Then, γ1 = 2kpm−2 + kp−1 γ2 = r−1
p (2m−1 +m). Considering the control and the sys-

tem’s parameters in Table III.2, we find

γ = 1 β = 1 γ1 = 2.83 γ2 = 0.60 (III.105)

and consequently α = 0.35.

Using the methodology introduced in Section II.2 of Chapter II, the spatial dis-
cretization of the distributed parameter part of the system writes[

żd
η̇

]
=

([
J f f ḡ f f
−ḡ f f 0

]
−
[

0 0
0 rp

])[
H f f 0

0 m−1

][
zd
η

]
(III.106)

where zd ∈ R2nd is the distributed parameter state with nd the number of discretizing
elements. The matrix J f f is defined in (II.166), while ḡ f f is the vector corresponding
to the 1st column of g f f defined in (II.167) and H f f in (II.168). The initial conditions
are set as following z1(ξ ,0) = 0, z2(ξ ,0) = sin(2π

ξ

L )− ξ + 1, η = 0. In Figure III.13
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(a) Lyapunov functional evolution along time.
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Exponential bound

(b) State’s norm bounded by an exponential.

Figure III.14: Lyapunov functional and state’s norm.

and III.14a are shown the string deformation and the Energy behaviour along time,
respectively. In Figure III.14b we plot the state’s norm together with the exponential
bound assured by Theorem III.2.8. As highlighted in Remark 13, the system’s norm
is bounded by an exponential ||x(t)|| ≤Mwew0t ||x0|| for t ≥ 0. The exponential bound
has been computed as w0 = inft>0

(1
t log ||T (t)||

)
through Matlab® numerical methods,

using the C0-semigroup norm defined in (III.101), and it results to be equal to w0 =
−0.1099. It is worth to remark that the exponential bound in Figure III.14b has been
plotted fixing the parameter Mw = 1.03, that has been decided only after the state’s norm
decay was obtained. This to say that in case the parameter Mw is needed for any set of
initial conditions, a more sharper analysis has to be carried.

The control law introduced in this section allows to stabilize the variables z and
p without any control on the position of the tip mass. If the control objective is to
stabilize the system in a desired position, we are forced to add in the control law a term
proportional to the position, that will be investigated in the next section.

III.2.4 Strong dissipation plus position control of a m-pH system

In this section we add to the control law (III.64) the term corresponding to a position
control proportional to the state variable q defined in (III.28). The variable q, in case of
control of mechanical mechanisms, corresponds to a position configuration. Adding this
variable in the control-loop means that the controller will be able to steer the mechanism
to a desired configuration, as it was the case for the PD control in Section III.2.1 and the
nonlinear passive controller in Section III.2.2. In this purpose, we propose the following
control law

u =−RpM−1 p−Kq+(I−RpM−1Kp)C1(H z)−Kp
d
dt
(C1(H z)), (III.107)

where Rp = diag([rp,1 . . . rp,m]), K = diag([k1 . . . km]), Kp = diag([kp,1 . . . kp,m]) ∈
Rm×m, where rp,i, ki, kp,i > 0 for i ∈ {1, . . . ,m}. A very similar control law has been
obtained in [93] using a baskstepping control design. From an intuitive point of view,
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the first two terms corresponds to a PD controller, the last term corresponds to a strong
dissipation feedback, while the third term modifies the gain of the restoring force, re-
lating it to the dissipation matrix Rp and the strong dissipation matrix Kp. For the same
reasons explained in the the previous Section III.2.3, we can consider the control law
(III.107) as an output feedback. The closed-loop system obtained by applying (III.107)
to (III.17) is depicted in Figure III.15 and writes{

ż = P1
∂

∂ξ
(H z)+P0(H z)

ẋ f = (J−R)Qx f −g1RpM−1KpC1(H z)−g1Kp
d
dt (C1(H z)),

(III.108)

where the finite dimensional state is x f = [ p
q ], and the matrices are defined as

J =

[
0 −I
I 0

]
R =

[
Rp 0
0 0

]
Q =

[
M−1 0

0 K

]
g1 =

[
I
0

]
. (III.109)

To analyse the obtained closed-loop system we perform the change of variables η =
p+KpC1z, such to rewrite the system as{

ż = P1
∂

∂ξ
(H z)+P0(H z)

v̇ = (J−R)Qv+g2M−1KpC1(H z),
(III.110)

where, g2 =
[

0
I

]
and v =

[
η
q
]
∈ R2m. This system can be written as a linear operator

equation of the form

ẋ = Ax =

[
P1

∂

∂ξ
(H z)+P0(H z)

−g2M−1KpC1(H z)+(J−R)Qv

]
(III.111)

with domain defined as

D(A) =
{

x ∈ L2([a,b],Rn)×R2m |H z ∈ H1([a,b],Rn),
B1(H z) = M−1(η−KpC1z),B2(H z) = 0

} (III.112)

ṗ =−RpM−1 p−Kq+u
q̇ = M−1 p
y = M−1 p

ż = J z
B1(H z) = uz
C1(H z) = yz

uz

y

yz

Kp
d
dtRpM−1Kp

u

Figure III.15: m-pH system in closed-loop with a strong dissipation feedback plus
position control law.
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and state defined as x =
[

z
v

]
. The closed-loop operator is defined as the non-power pre-

serving interconnection between an infinite and a finite dimensional linear pH systems.
Since the interconnection is not power preserving, it is not possible to show the contrac-
tion C0-semigroup generation in L2([a,b],Rn)×R2m equipped with the energy norm, as
in classical interconnected m-pH systems [22]. Hence, in the next theorem we show that
the closed-loop operator generates a contraction C0-semigroup in L2([a,b],Rn)×R2m

equipped with a special (energy-like) weighted norm.

Theorem III.2.9. Under Assumption 1, there exists a weighted L2([a,b],Rn)×R2m

space such that the closed-loop operator (III.111) with domain defined by (III.112)
generates a contraction C0-semigroup on this space, provided that r2

i ≥ miki for all
i ∈ {1, . . . ,m}. Moreover the operator A has a compact resolvent.

Proof. Using Theorem I.3.1, we only have to show that there exists a space on which
the operator A is dissipative. We define a new space Γ = L2([a,b],Rn)×R2m with inner
product

〈x1,x2〉Γ = 〈z1,z2〉Z + vT
1 Mvv2 (III.113)

where

Mv =

[
K−1M−1RpK−1

p K−1
p

K−1
p 2KMR−1

p K−1
p

]
=

[
A11 A12
A21 A22

]
. (III.114)

To check the positive definitiveness of Mv we use the Schur complements. In fact, since
all the matrices in (III.114) are strictly positive definite, A22 and A11−A12A−1

22 A21 are
strictly positive definite matrices, from which it follows the positive definitiveness of
Mv. We now check the dissipativity of the operator A in the new space Γ, considering
Lemma I.2.1 and taking into account that C1z = yz,

〈Ax,x〉Γ = 〈J z,z〉Z +((J−R)Qv−g2M−1Kpyz)
T Mvv

= uT
z yz−ηT K−1M−2R2

pK−1
p η−2ηT M−1RpK−1

p q+ηT K−1
p M−1η

−qT KpKq+2qT KR−1
p K−1

p η−ηT M−1yz−2qT KR−1
p yz

= −yzKpM−1yz−ηT K−1M−2R2
pK−1

p η−2ηT M−1RpK−1
p q

+ηT K−1
p M−1η−qT KpKq+2qT KR−1

p K−1
p η−2qT KR−1

p yz.
(III.115)

Since all the matrices are diagonal, the previous inequality can be rewritten as

〈Ax,x〉Γ = −yzKpM−1yz−ηT (K−1M−2R2
pK−1

p −K−1
p M−1)η

2ηT (M−1RpK−1
p −KR−1

p K−1
p )q−2qT KR−1

p yz−qT K−1
p Kq

= −yzKpM−1yz−ηT K−1M−2R2
pK−1

p (I−KMR−2
p )η

2ηT K−1
p RpM−1(I−KMR−2

p )q−2qT KR−1
p yz−qT K−1

p Kq.

(III.116)
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We define Λ = KMR−2
p and we rewrite the former equality as

〈Ax,x〉Γ = −yzKpM−1yz−2qT KR−1
p yz−qT (K−1

p K−M−1K−1
p (I−Λ)ΛR2

p))q
−(Λ− 1

2 η +RpΛ
1
2 q)T M−1K−1

p (I−Λ)(Λ−
1
2 η +RpΛ

1
2 q)

= −yzKpM−1yz−2qT KR−1
p yz−qT K2MR−2

p K−1
p q

−(Λ− 1
2 η +RpΛ

1
2 q)T M−1K−1

p (I−Λ)(Λ−
1
2 η +RpΛ

1
2 q)

= −(K
1
2
p yz +KMR−1

p K
− 1

2
p q)T M−1(K

1
2
p yz +KMR−1

p K
− 1

2
p q)

−(Λ− 1
2 η +RpΛ

1
2 q)T M−1K−1

p (I−Λ)(Λ−
1
2 η +RpΛ

1
2 q).

(III.117)
The assumption that r2

i > miki for all i ∈ {1, . . . ,m} implies that the matrix (I −Λ)
is strictly positive definite. Therefore we obtain that 〈Ax,x〉Γ ≤ 0, and by means of
Theorem I.3.1 we can conclude that the operator A generates a contraction C0-semigroup
in the space Γ and has a compact resolvent.

It is well known that if an operator is the infinitesimal generator of a C0-semigroup in
a space equipped with a certain norm, then it generates a C0-semigroup in all the spaces
equipped with equivalent norms. In the next corollary we show that the norm defined
through (III.113) is equivalent to the standard norm in L2([a,b],Rn)×R2m. Hence,
this directly implies that the closed-loop operator (III.111)-(III.112) generates a C0-
semigroup in L2([a,b],Rn)×R2m equipped with the standard norm.

Corollary III.2.2. Under Assumption 1, the closed-loop operator (III.111)-(III.112)
generates a C0-semigroup in L2([0,L],Rn)×R2m equipped with the standard norm

||x||=
√
〈z,z〉L2 + vT v. (III.118)

Proof. It is sufficient to show that the norm associated to the inner product (III.113)

||x||Γ =
√
〈z,H z〉L2 + vT Mvv, (III.119)

is equivalent to the standard norm, i.e. that there exist C > c ∈ R+ such that

c||x|| ≤ ||x||Γ ≤C||x||. (III.120)

The first inequality of (III.120) can be rewritten as

c
√
〈z,z〉L2 + vT v≤

√
〈z,H z〉L2 + vT Mvv, (III.121)

that is equivalent to

c2 (〈z,z〉L2 + vT v
)
≤ 〈z,H z〉L2 + vT Mvv. (III.122)

The last inequality is fulfilled if

〈z,(c2I−H )z〉 ≤ 0, vT (c2I−Mv)v≤ 0. (III.123)
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Since H and Mv are strictly positive definite, it exists a constant c ∈ R such that both
inequalities hold. The second inequality in (III.120) can be rewritten as√

〈z,H z〉L2 + vT Mvv≤C
√
〈z,z〉L2 + vT v, (III.124)

and it holds if
〈z,(H −C2I)z〉 ≤ 0, vT (Mv−C2I)v≤ 0. (III.125)

Since the entries of both H and Mv are always finite, it exists a C ∈ R such that both
these inequalities are fulfilled. We therefore conclude that (III.119) is equivalent to
the standard norm in L2([0,L],Rn)×R2m. As a consequence, since the closed-loop
operator (III.111)-(III.112) generates a contraction C0-semigroup in L2([0,L],Rn)×R2m

equipped with the norm (III.119), it also generates a C0-semigroup in the same space
equipped with the standard norm.

Since by Theorem III.2.9 the operator A generates a contraction C0-semigroup T (t)
in L2([0,L],Rn)×R2m equipped with the norm (III.119), we have that

||T (t)||Γ ≤ 1. (III.126)

Using (III.120), it is possible to obtain the bound of the C0-semigroup generated by the
operator A in L2([0,L],Rn)×R2m equipped with the standard norm (III.118)

||T (t)|| ≤ C
c
. (III.127)

The asymptotic stability of the system described by equation (III.111) - (III.112)
is equivalent to show the asymptotic stability of system (III.110). To show asymp-
totic stability we consider the state space X = L2([a,b],Rn)×R2m with inner product
〈x1,x2〉X = 〈z1,z2〉L2 + vT

1 v2 and associated norm (III.118). We now prove that with the
proper choice of control parameters the closed-loop system is asymptotically stable.

Theorem III.2.10. Consider the closed-loop system (III.111)-(III.112). Assume that
the distributed parameter part of the system with homogeneous boundary conditions is
approximately observable with respect to the output yz and zeq = 0 is its only equilibrium
point. Under Assumption 1, if the control gains kp,i,ri,ki with i = {1, ..,m} are chosen
such that

r2
i > 2miki, kp,i > 0 (III.128)

then the origin xeq = 0 is an asymptotically stable equilibrium.

Proof. We define the candidate Lyapunov functional

V (x) =
1
2
〈x,x〉Γ (III.129)

with inner-product defined in (III.113). The time derivative of the Lyapunov functional
can be computed as

V̇+(x) = 〈x,Ax〉Γ
= 〈z,J z〉Z + vT Mv((J−R)Qv−g2M−1Kpyz)

(III.130)
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that, because of Lemma I.2.1 and equations (III.115)-(III.117), can be rewritten as

V̇+(x) = 〈J z,z〉Z +((J−R)Qv−g2M−1Kpyz)
T Mvv

= −(K
1
2
p yz +KMR−1

p K
− 1

2
p q)T M−1(K

1
2
p yz +KMR−1

p K
− 1

2
p q)

−(Λ− 1
2 η +RpΛ

1
2 q)T M−1K−1

p (I−Λ)(Λ−
1
2 η +RpΛ

1
2 q)

(III.131)

where Λ = KMR−2
p . To use the LaSalle’s invariance principle, we show that the largest

invariant subset S of S0 = {x0 ∈ X | V̇ (x) = 0} consists of only the origin of the state
space. To do so, we characterize the set for which the Lyapunov functional’s time
derivative is equal to zero:

S0 =
{

x0 ∈ X | η =−KMR−1
p q,yz =−KMR−1

p K−1
p q
}

=
{

x0 ∈ X | η =−KMR−1
p q,yz = K−1

p η
}
.

(III.132)

Then, substitute the former relations in the closed-loop dynamic (III.111)-(III.112) to
obtain 

ż = J z
η̇ = 0
q̇ = 0

(III.133)

with domain
D(J ) =

{
x ∈ X |z ∈ H1([a,b],Rn),B(H z) = 0

}
, (III.134)

C2z(H z)(ξ , t) = ỹ(t), and the other part of the output

C1z(H z)(ξ , t) = yz(t) =−KMR−1
p K−1

p q(t). (III.135)

System (III.133) implies that η and q must be constant along time, i.e. η(t) = η∗

q(t) = q∗. Hence, x0 ∈ E should verify

ż(t) = J z(t)
B(H z) = 0 C1(H z) =−KMR−1

p K−1
p q∗. (III.136)

Using the approximate observability of the infinite dimensional part of system together
with Lemma III.1.1, we know that the only solution of (III.136) is z = 0, which in turn
implies yz = 0 and consequently q∗ = η∗ = 0 using the relations in (III.132). Thus
the largest invariant set S ⊂ S0 corresponds to S = {0}. Since by Theorem I.3.1 we
know that the resolvent of A is compact , we apply Corollary III.1.1 to obtain that the
trajectories set is pre-compact in the space X . Then we can conclude by the LaSalle’s
invariance principle that the solution converges asymptotically to the origin.

Example 4 (Rotating translating flexible beam with strong dissipation plus position con-
trol). Consider the operator (III.111)-(III.112) corresponding to the translating rotating
flexible beam model of Section II.1.2.c in Chapter II in closed-loop with the control law
(III.107). The control objective consists on stabilising the system in the zero state z = 0,
p = q = 0, as depicted in Figure III.16. The considered physical parameters are listed
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s(t)
J

w(ξ , t)

φ(ξ , t)

θ(t)

m

f (t)

τ(t)

Figure III.16: Rotating translating beam with desired equilibrium point.
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(a) PD control action.
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(b) PD plus strong dissipation control action.

Figure III.17: Beam’s Deformation plus displacement along time.

in Table III.1, together with the hub’s mass m = 1 kg. We begin by computing

||H z(0, t)||2 = || 1
ρ(0)z1(0, t)||2 + || 1

Iρ (0)
z2(0, t)||2 + ||K(0)z3(0, t)||2

+||EI(0)z4(0, t)||2
= ||uz||2 + ||yz||2

(III.137)

that because of Theorem III.2.1, implies that the distributed parameter part of the system
is approximately observable. For the same arguments as in Examples 1 it is possible to
show that zeq = 0 is the only equilibrium position of the distributed parameter part of
the system. We select the control parameters in a way that the inequalities in (III.128)
are respected: rp,1 = rp,2 = 50, k1 = k2 = 500, kp,1 = kp,2 = 2. Then, to perform the
numerical simulation, we apply the discretization procedure introduced in Section II.2
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of Chapter II to obtainżd
η̇

q̇

=

 J f e ḡ f e 0
0 0 −I

−M−1Kpḡ f e I 0

−
0 0 0

0 Rp 0
0 0 0

H f e 0 0
0 M−1 0
0 0 K

zd
η

q


(III.138)

where zd ∈R4nd is the discretized distributed parameter state where nd = 20 is the num-
ber of discretizing elements. The matrix J f e is defined in (II.160), ḡ f e corresponds to
the first and second column of g f e defined in (II.161) and H f e is defined in (II.162).
The initial conditions are set to be z0 = 0, p = 0, q0 =

[
1
0
]
. Figure III.17 compares the

displacement plus deformation behaviour along time in case the system is controlled
with a PD or with a PD plus strong dissipation control action, respectively. We can
appreciate that in case of a strong dissipation control law, the vibration are suppressed
much faster than with a PD control law. Figure III.18 shows the closed-loop energy
evolution in case PD control and PD plus strong dissipation control. We can observe
that the closed-loop energy in case of application of PD plus strong dissipation control
is not decreasing along the system’s trajectories. This is the reason why it can not be
used as Lyapunov functional to show the asymptotic stability of the closed-loop system.
We remark that in this example we stabilize the system to the origin, but if we want
to stabilize it around a different configuration s∗,θ ∗, it suffices to define a translated
position variable q =

[
s−s∗
θ−θ∗

]
.
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Figure III.18: closed-loop energy evolution in time.
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III.3 SUMMARY

In this section we have first introduced the tools, based on Lyapunov Theory, for
analysing the stability of semilinear equations. Then, we have defined the class of m-
pH systems for which control laws are designed in the reminder of the chapter. This
class of systems is general enough to include three out of the four model examples
shown in Chapter II. In the main part of the Chapter we design four different control
law for the stabilization of the defined m-pH system. In Table III.3 we briefly resume
the characteristics of the control laws studied in this chapter.

Control law Well-posedness Asymptotic sta-
bility

Exponential sta-
bility

Proportional
Derivative (PD)

√ √

PD + nonlinear pas-
sive

√ √

Strong Dissipation
√ √ √

Strong Dissipation +
position control

√ √

Table III.3: Summary of the results obtained for the proposed control laws.
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IV.1. Preliminaries on stability of switched systems

IV.1 PRELIMINARIES ON STABILITY OF SWITCHED SYS-
TEMS

A lot of critical tasks in robotics involve the contact between the manipulator and
an external object or the environment, as space robots for debris removal [8], as well
as minimally invasive surgery systems that make contact inside the patient body [9]. In
this chapter, we propose a procedure that allows defining a well-posed closed-loop im-
pact model for which we can conclude about its solution’s asymptotic behaviour. With
“impact” we mean the situation in which a robot (or in general a moving inertia) is
first moving freely and then enters in contact with an external object. The impact sce-
nario is studied for a rotating beam that is, on a first instance, considered rigid and then
flexible. In the case of a rigid beam, the model can be written as a finite dimensional
system, while in the case of a flexible beam its model should be of distributed parameter
type. In both cases, the dynamical model of a colliding beam is expected to have instant
changes in impact times. Therefore the model combines behaviours that are typical
of continuous-time dynamical systems with behaviours that are typical of discrete-time
dynamical systems. This definition perfectly fits into the class of Hybrid dynamical
systems [57]. In this section, we provide the necessary background concerning dynam-
ical systems determined by switching operator equations, in a way that both finite and
infinite dimensional systems can be studied with the same approach. Another general
framework for the study of discontinuous dynamical infinite dimensional systems has
been proposed in [58], where Lyapunov and non-Lyapunov methods are employed to
study the asymptotic behaviour of such systems. In the specific case of robots under-
going to impact with the external environment, a lot of efforts have been devoted to the
rigid links’ case [53, 54, 55], while very few have discussed the collision issue using
infinite dimensional models [56].
Consider the general operator equation

ẋ(t) = f (x(t),m), (IV.1)

where x ∈ X is the continuous state and belongs to an appropriate Hilbert space, and
m∈M = {0, . . . ,N}⊂N0 is the discrete state. The couple defined as the composition of
the continuous and discrete state (x,m) is called hybrid state. If for each continuous state
x ∈ X , only one discrete state m ∈M is possible, then the system is called a switching
system. If in the same continuous state x ∈ X different discrete states are possible, then
the system is called an Hybrid system. Here, we consider switched systems, hence we
partition the continuous state space in N disjoint regions

Ω1 . . .ΩN ⊂ X (IV.2)

where Ωi
⋃
. . .
⋃

ΩN = X and Ωi
⋂

Ω j = /0, i 6= j .

The i− th (in order of activation) discrete state mi depends on the continuous state
x, i.e. mi = γ(x) where γ : X 7→M is the discrete transition function. Consider a family
of linear operators A= {Am, m ∈M} defined on a common domain D(Aκ) = D(Aγ) for
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κ,γ ∈M and a family of functions F= { fm, m∈M}. The considered switched operator
system is given by

ẋ(t) = Aγ(x)x(t)+ fγ(x)(x(t)). (IV.3)

We remark that the index of Aγ(x) corresponds to the discrete transition function’s value
in the continuous state x. In the remainder of the chapter we will drop the notation about
the index’s dependency on the state x. The continuous state evolution of (IV.3) can be
described as: starting at (x0,m0) at time t0, the continuous trajectory evolves according
to ẋ = Am0x+ fm0(x). Let us assume that at time t1, x reaches a value x1 that triggers a
discrete change from m0 to m1; then the process evolves according to ẋ = Am1x+ fm1(x).
Here, we consider hybrid systems with the continuous state that does not change during
switching and therefore the hybrid state (x,mi) becomes (x,m j). The changes of discrete
state happen at the so called switching sets

Di, j = {x ∈ X | m j = γ(x,mi)}. (IV.4)

We define a switching sequence anchored to a certain initial state

{Sn(x0)}= (m0, t0), (m1, t1), . . . ,(mn, tn), . . . . (IV.5)

The switching sequence along (IV.3) describes completely the trajectory of the system
according to the following rule: (mi, ti) means that the system evolves according to
ẋ(t) = Amix+ fmi(x) for ti≤ t ≤ ti+1. We can take projections of the switching sequence,
and they are defined as

Π1(Sn(x0)) = m0, m1, . . . ,mn, . . .
Π2(Sn(x0)) = t0, t1, . . . , tn, . . .

(IV.6)

We denote by S(x0)|m the endpoints of times for which the system m is active. Finally,
let E (T ) = t0, t2, t4, . . . denote the even sequence and O(T ) = t1, t3, t5, . . . the odd
sequence of T : t0, t1, t2, t3, . . .. We propose the equilibrium position definition given
in [58, page 1278].

Definition IV.1.1. An hybrid state (xeq,meq) is said to be an hybrid equilibrium of (IV.1)
if the trajectory generated by the initial condition (xeq,meq) is such that x(t) = xeq for
all t ≥ 0. �

The hybrid equilibrium points may be obtained by finding the states satisfying

Amx+ fm(x) = 0 ∀m ∈M. (IV.7)

All the continuous states satisfying (IV.7) are not hybrid equilibria because there may
be not possible hybrid states. For example one solution of (IV.7) (xeq,mi) may not be
possible, in the sense that xeq is not contained in the region of the state space that is
associated with the discrete state mi. Without loss of generality the origin is assumed to
be a continuous equilibrium of (IV.3) for which stability is investigated. In fact we can
always translate the state with respect to one equilibrium position of which we want to
investigate the stability. Therefore, since in general different semilinear equations have
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different equilibrium positions, only one semilinear equation will have one equilibrium
at the origin while all the other semilinear equations will have the equilibria different
from the origin.

Now, we can define a single candidate Lyapunov functional Vm for a certain system’s
dynamic Amx+ fm(x).

Definition IV.1.2. Suppose that, for every x0 ∈ X , the switched semilinear differential
equation (IV.3) possesses a local mild solution x(t).A continuous functional Vm : X 7→
[0,∞) is a Lyapunov functional for Amx+ fm(x) and the trajectory x(t) if:

• Vm(x(t)) is Dini differentiable;

• V̇m,+(x0) := limsupt→0
Vm(x(t,x0))−Vm(x0)

t ≤ 0 ∀x0 ∈Ωm. �

We introduce in the next Lemma an easy way to compute the Dini derivative. Note
that for a functional Vm to be considered as a Lyapunov functional for Amx, it is necessary
that V̇m,+(x0) is non positive only in the region Ωm, but V̇m,+(x0) can be computed in
the whole state space X .

Lemma IV.1.1. If the functional Vm is Fréchet differentiable, then for x0 ∈Ωκ

⋂
D(Aκ),

κ ∈M, Vm(x(t)) is differentiable for t = 0 and

V̇m,t(x0) =
dVm(x(t,x0))

dt

∣∣∣∣
t=0

= dVm(x0)(Aκx0 + fκ(x0)) (IV.8)

where dVm denotes the Fréchet derivative of Vm.

Proof. Divide the state space in the different subspaces Ωκ . Then, the time derivative
equality in each Ωκ is shown to hold as in Lemma 11.2.5 of [65].

In the previous lemma, we gave the formula for computing the time derivative of
the Lyapunov functional Vm in any subspace Ωκ . This means that it is possible to com-
pute the Lyapunov functional time derivative in its own region (m = κ) or in a different
region (m 6= κ), only substituting the vector field on which we want to compute a Lya-
punov functional Vm time derivative in a certain region. At this point we are in position
to state the bounded trajectory theorem for switched linear operator systems, that is
an adaptation of Theorem 2.3 in [64] for a general class of switching linear operator
systems.

Theorem IV.1.1. Let assume that there exists a unique local mild solution of (IV.3). If
there exist Lyapunov functionals Vm for every Amx+ fm(x) with the property that ∀x ∈
Ωm α(||x||)≤Vm(x)≤ β (||x||), where α,β : R+ 7→ R+ are such that α(0) = β (0) = 0
and

lim
||x||→∞

α(||x||) = lim
||x||→∞

β (||x||) = ∞, (IV.9)

that are non increasing in E (S(x0)|m) ∀m ∈ M, then (IV.3) is Lyapunov stable in the
sense of Definition III.1.2 and has a globally bounded mild solution for every initial
condition x0 ∈ X.
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Proof (for M = {0,1}). From the assumption of local mild solution’s existence, we
know that for any x0 there exists a tmax such that (IV.3) possess a mild solution on
[0, tmax) and tmax < ∞ only if ||x(t)|| diverges when t→ tmax.
Let ε > 0 be arbitrary. Let mm(α) = min{Vm(x0) | ||x0|| = α}. Pick rm < ε such that
∀x0 ∈ B(rm) = {x0 ∈ X | ||x0|| ≤ rm}, Vm(x0)< mm(ε) for all m ∈M. Let r = min(rm).
With this choice, if we select ||x0|| ≤ r, the evolution of the trajectory with either vector
field Amx+ fm(x) is such that ||x(t)|| ≤ ε ∀t ∈ [0, t0].
Now pick ρm < r such that ∀x0 ∈ B(ρm) = {x0 ∈ X | ||x0|| ≤ ρm}, Vm(x0) < mm(r) for
all m ∈M. Set ρ = min(ρm). Thus, if we choose ||x0||X ≤ ρ the trajectory’s evolution
with either vector field Amx+ fm(x) is such that ||x(t)|| ≤ r ∀t ∈ [0, t0].
Therefore, select ||x0||X ≤ ρ such that at the first transition at time t1 we have that
||x(t1)|| ≤ r and at the second transition at time t2 we have ||x(t2)|| ≤ ε . Then, because
of the “switching-in” condition

Vm(x(t2))≤Vm(x(t0))≤ r. (IV.10)

This procedure can be repeated to the infinite to conclude that for every ε there exists a
ρ > 0 such that whenever ||x0||< ρ , the solution satisfies

||x(t)|| ≤ ε ∀t ∈ R+. (IV.11)

Hence, the system (IV.3) is Lyapunov stable. Since the Lyapunov functions are bounded
from above and from below by functions α and β that fulfil α(0) = β (0) = 0 and
the limit (IV.9), since ε is arbitrary we can take it bigger to augment arbitrarily r and
consequently ρ . Therefore, we can bring ε to the infinite such to augment arbitrary
ρ and to allow any initial condition x0 ∈ X . Since the trajectory remains bounded the
solution does not diverge and then tmax = ∞, i.e. (IV.3) has global mild solution for all
x0 ∈ X .
The case in which M = {0,1, . . .N} can be shown creating N + 1 concentric balls and
proceeding the same way as the case in which M = {0,1} (note that in the case M =
{0,1} the first ball has radius ε , the second r, and the third ρ).

The non-increasing condition of Vm in E (S(x0)|m) concerns the value of each func-
tional Vm each time is “switched in”. It means that the value of Vm at switching points
should be smaller than that of the previous time it has become active or “switched in”.

IV.2 RIGID ROBOT ARM IMPACT

In this section we consider a rotating rigid beam that enters in contact with a com-
pliant surface as shown in Figure IV.1. The control objective is to enter and maintain
the contact with an external surface while, assuming the knowledge of the surface’s
stiffness, applying the desired contact force. Many studies have been devoted to investi-
gating the stability of this problem with the use of a range of possible control laws (see
for example [94, 95, 96] etc.). Therefore, the goal of this section is not to extend these
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Figure IV.1: Rotating rigid beam’s impact with the external environment.

studies, but rather to point out the problems in defining a well-posed closed-loop sys-
tem and in studying its asymptotic behaviour. Furthermore, the study of the rigid beam
case allows smoothing the transition to the flexible beam case that will be discussed in
Section IV.3.
If friction and gravity are neglected the equivalent mechanical system is that of a rotat-
ing inertia J moving under the action of a control torque input τ(t). To be consistent
with the next section, where we analyse a rotating flexible beam, we consider a link
composed by a rotating hub of rotating inertia J1, a rigid beam of mass mb and length
L and a load of mass m and rotating inertia J2. Therefore the equivalent inertia can
be computed as J = J1 +

1
3mbL2 +mL2 + J2. The continuous state is represented by

w = (θ̇ ,θ)∈R2, while the discrete state m∈M = {0,1} corresponds to the non-contact
(m = 0) and contact (m = 1) scenario. The discrete transitions are determined by the
function γ : R2 7→ {0,1}, shown in figure IV.2 and defined as

γ =

{
1 i f (θ , θ̇) ∈ {θ > 0}

⋃
{θ = 0, θ̇ ≥ 0}

0 Otherwise.
(IV.12)

For each w ∈ R2 only one m ∈ M is allowed, therefore the considered system is a
switching system and we can partition the state space in 2 disjoint regions

Ω1 = {(θ , θ̇) ∈ R2 | θ > 0}
⋃
{(θ , θ̇) ∈ R2 | θ = 0, θ̇ ≥ 0}

Ω0 = {(θ , θ̇) ∈ R2 | θ < 0}
⋃
{(θ , θ̇) ∈ R2 | θ = 0, θ̇ < 0}. (IV.13)

Note that the point (0,0) belongs to the contact region.
A common task between the rigid and the flexible beam’s impact modelling proce-

dure is to determine a suitable model of the impacting surface. A first approach is to
consider that the surface’s deformation is “sufficiently small” during the contact phases
so that it remains rigid in a global observation scale [97]. A second approach is to con-
sider a compliant surface, in case the surface’s deformations are “sufficiently big” in a
global observation scale [94]. In the remainder of the chapter, we consider a compli-
ant impacting surface. According to [98] the compliant surface can be considered as a
mass-less system composed of a spring and a damper with coefficients depending on
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Figure IV.2: Contact and non-contact subspace representations.

the surface’s deformation. In this work, the authors confirm with physical experiments
that the energy loss of a point mass undergoing to impact is proportional to the one dis-
sipated by a damper with a coefficient depending on the deformation of the impacting
surface. Therefore, the resulting impact dissipation force is time continuous during im-
pacts, a behaviour that is consistent with the continuous nature of physical quantities in
classical continuum mechanics. In line with the previous work on impact scenario (see
for example [95] and [94]), we consider a constant spring coefficient and a damping
coefficient depending linearly on the deformation. Assuming that ∆s corresponds to the
surface’s deformation, the impact force is given by

λ =−ki∆s− ci∆s∆̇s. (IV.14)

The equation of motion in contact and non-contact scenario writes

Jθ̈ = γ(θ , θ̇)Lλ + τ. (IV.15)

Since the surface’s deformation is proportional to the rotation angle ∆s = Lθ , we sub-
stitute the impact force (IV.14) in the former equation to obtain

Jθ̈ =−γ(θ , θ̇)(k̃iθ + c̃iθθ̇)+ τ (IV.16)

where k̃i = L2ki and c̃i = L3ci. We select a proportional derivative control input

τ =−k(θ −θ
o)− cθ̇ (IV.17)

where k, c > 0 are the control gains and the value θ o is selected such that to obtain the
desired contact force fd = ki∆sd = kiLθd (proportional to the desired surface deforma-
tion ∆sd)

θ
o =

k+ k̃i

Lkki
fd =

k+ k̃i

k
θd. (IV.18)
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IV.2. Rigid robot arm impact

We define the continuous state w = [θ̇ θ ], and we apply the control law (IV.17) to the
plant to obtain the semi-linear equation

ẇ =

[
− c

J θ̇ − k
J θ

θ̇

]
+

[
k
J θ o− γ(w)

J (k̃iθ + c̃iθθ̇)
0

]
= Aw+ f (w)

(IV.19)

for which we can define the following switching sets

D0,1 = {(θ , θ̇) ∈ R2| θ = 0, θ̇ ≥ 0}
D1,0 = {(θ , θ̇) ∈ R2| θ = 0, θ̇ < 0}. (IV.20)

IV.2.1 Existence and uniqueness of solutions

In this section we show that the defined semi-linear equation (IV.19) possesses a
unique solution. To do so, we rely on the results presented in Section I.1 of Chapter
I. We use these results instead of classical theory on Hybrid systems (see for example
[57]) such to unify this analysis with the flexible beam’s one, that will be presented in
the next section.

Lemma IV.2.1. The system defined by equations (IV.19) possesses for every initial con-
dition (θ0, θ̇0) ∈ R2 a unique continuous solution.

Proof. Equipping the space R2 with the norm ||w|| =
√

Jθ̇ 2 + kθ 2 one can see that
the operator A generates a contraction C0-semigroup in this space, and therefore a C0-
semigroup in R2 equipped with the standard norm. Hence, applying Theorem I.1.4
(page 16) we only have to show that the function f (w) is locally Lipschitz continuous.
Therefore we compute

|| f (w2)− f (w1)||= ||γ(w2)(−k̃iθ2− c̃iθ2θ̇2)− γ(w1)(−k̃iθ1− c̃iθ1θ̇1)||
≤ k̃i||γ(w1)θ1− γ(w2)θ2||+ c̃i||γ(w1)θ1θ̇1− γ(w2)θ2θ̇2||.

(IV.21)
The first term in the former inequality corresponds to the function

||γ(w1)θ1− γ(w2)θ2||=


0 i f γ(w1) = 0 and γ(w2) = 0
||θ1|| i f γ(w1) = 1 and γ(w2) = 0
||−θ2|| i f γ(w1) = 0 and γ(w2) = 1
||θ1−θ2|| i f γ(w1) = 1 and γ(w2) = 1

(IV.22)

from which we can deduce that

||γ(w1)θ1− γ(w2)θ2|| ≤ ||θ1−θ2|| ≤ ||w1−w2||= ||w2−w1|| (IV.23)

since:

• For γ(w1) = 0 and γ(w2) = 0 it is true that 0≤ ||θ1−θ2||.

• For γ(w1) = 1 and γ(w2) = 0 it is true that ||θ1|| ≤ ||θ1− θ2|| because we are
adding a number of the same sign of θ1.
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• For γ(w1) = 0 and γ(w2) = 1 it is true that ||−θ2|| ≤ ||θ1−θ2|| because we are
adding a number of the same sign of −θ2.

For the second term in inequality (IV.21) we compute

||γ(w1)θ1θ̇1− γ(w2)θ2θ̇2||= ||γ(w1)θ1θ̇1 + γ(w1)θ1θ̇2− γ(w1)θ1θ̇2− γ(w2)θ2θ̇2||
≤ ||γ(w1)θ1(θ̇1− θ̇2)||+ ||(γ(w1)θ1− γ(w2)θ2)θ̇2||
≤ ||θ1|| · ||(θ̇1− θ̇2)||+ ||θ̇2|| · ||(γ(w1)θ1− γ(w2)θ2)||

(IV.24)
that considering ||w1||, ||w2|| ≤ r and according to (IV.23) becomes

||γ(w1)θ1θ̇1− γ(w2)θ2θ̇2|| ≤ 2r||w2−w1||. (IV.25)

Therefore we can conclude that || f (w2)− f (w1)|| ≤ L(r)||w2−w1|| with L(r) = k̃i +
2c̃ir, that concludes the proof.

IV.2.2 Stability analysis

We now rewrite the closed-loop equation (IV.19) such to highlight the equilibrium
position of the contact and non-contact equations{

Jθ̈ =−k(θ −θ o)− cθ̇ i f γ = 0
Jθ̈ =−(k+ k̃i)(θ −θd)− (c+ c̃iθ)θ̇ i f γ = 1.

(IV.26)

We perform the change of variables x = [p q]T

q = θ −θd p = Jθ̇ (IV.27)

such that the discrete transition function γ in the new variables transforms into

γ =

{
1 i f x ∈ {q >−θd}

⋃
{q =−θd, p≥ 0}

0 Otherwise (IV.28)

with switching sets,
D0,1 = {x ∈ R2| q =−θd, p≥ 0}
D1,0 = {x ∈ R2| q =−θd, p < 0} (IV.29)

and regions,

Ω1 = {x ∈ R2 | q >−θd}
⋃
{x ∈ R2 | q =−θd, p≥ 0}

Ω0 = {x ∈ R2 | q <−θd}
⋃
{x ∈ R2 | q =−θd, p < 0}. (IV.30)

The closed-loop equation (IV.19) in the new variables (IV.27) writes as a switching
operator equation

ẋ(t) = Aγx(t)+ fγ(x(t)) (IV.31)

with

A0x =
[
−k(q−θ 0 +θd)− c

J p
p
J

]
f0 =

[
0
0

]
A1x =

[
−(k+ k̃i)q− c+c̃iθd

J p
p
J

]
f1 =

[
− c̃i

J qp
0

]
.

(IV.32)
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We notice that the equilibrium state of the first operator is xeq,0 =
[ 0

θ o−θd

]
while the

equilibrium state of the second is xeq,1 =
[

0
0

]
. According to Definition (IV.1.1), since

the system cannot be initialized in xeq,0 with active operator A0x, the only possible
hybrid equilibrium is (xeq,meq) = (xeq,1,1). In the next Theorem we show that xeq is a
Lyapunov stable equilibrium position for (IV.31).

Theorem IV.2.1. The system described by the switching semi-linear operator equation
(IV.31) with operators defined in (IV.32) and discrete transition function (IV.28) is Lya-
punov stable and has a globally bounded solution for every initial condition x0 ∈ R2.

Proof. We define the following non-negative Lyapunov functional candidates for each
of the system’s vector fields

V0 =
1
2J p2 + 1

2k(q−θ o +θd)
2

V1 =
1
2J p2 + 1

2(k+ k̃i)q2.
(IV.33)

We compute the time derivative along the respective vector field to obtain

V̇0,+(x) = dV0(A0x+ f0) =− c
J2 p2

V̇1,+(x) = dV1(A1x+ f1) =−c+c̃i(q+θd)
J2 p2 (IV.34)

Since the time derivatives are non-positive in the respective region of the state space,
the functional defined in (IV.33) are Lyapunov functionals of the respective vector field
according to Definition (IV.1.2). Let t0 be the initial time. Assume that the initial
condition is taken such that x0 ∈ Ω0. Then, the time series Π2({Sn(x̄0)}) has even
components E (Π2({Sn(x̄0)})) that correspond to the non-contact “switching-in” condi-
tions, while has odd components O(Π2({Sn(x̄0)})) that correspond to the contact ones.
Consider [ti−1, ti) the non-contact time intervals, while [ti, ti+1) a contact’s one with
i ∈ {1,3,5, . . .}. Because of the first equation in (IV.34) we have that

V0(x(ti−1))≥V0(x(ti)) V0(x(ti+1))≥V0(x(ti+2)) (IV.35)

that implies
1
2J p(ti−1)

2 ≥ 1
2J p(ti)2⇒ |p(ti−1)| ≥ |p(ti)|,

1
2J p(ti+1)

2 ≥ 1
2J p(ti+2)

2⇒ |p(ti+1)| ≥ |p(ti+2)|.
(IV.36)

We use the second equation in (IV.34) to obtain

V1(x(ti))≥V1(x(ti+1)) (IV.37)

that, similarly to before implies

|p(ti)| ≥ |p(ti+1)|. (IV.38)

Combining (IV.36) with (IV.38) we obtain

|p(ti−1)| ≥ |p(ti+1)| |p(ti)| ≥ |p(ti+2)| (IV.39)
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Table IV.1: Simulation parameters; rigid beam impact

Name Variable Value
Beam’s Length L 1 m
Beam’s mass mb 16 kg
Hub’s inertia J1 1 kg ·m2

Load’s mass m 1 kg
Load’s inertia J2 1 kg ·m2

that respectively implies

V0(x(ti−1))≥V0(x(ti+1)) V1(x(ti))≥V1(x(ti+2)) for i ∈ {1,3,5, . . .}. (IV.40)

The last inequalities show that the Lyapunov functionals are non-increasing in their
“switching-in” times. The case in which x0 ∈Ω1 can be developed in the same manner
as before, but with [ti−1, ti) and [ti+1, ti+2) corresponding to the contact time interval,
while [ti, ti+1) to the non-contact time interval for i ∈ {1,3,5, . . .}. According to The-
orem IV.1.1 we can conclude that the system is Lyapunov stable and that the solutions
are globally bounded for every x0 ∈ X .

IV.2.3 Numerical Simulations

In this section we numerically simulate the closed-loop system with a PD control law
of a rigid rotating link that enters in contact with the external environment, described by
equation (IV.19). The system’s parameters are listed in Table IV.1. The impact model
parameters are set as ki = 1000 and ci = 30. We select the control parameters such
that they are at least one order of magnitude smaller than the impact model parameters
k = 10, c = 3. In this way, we can clearly appreciate the change of dynamics due to the
impact with the external surface. Next, we set the control parameter θ o = 1 such that the
desired equilibrium position is in the contact set Ω1. From (IV.2), we can compute the
angle equilibrium θd = 0.0099 rad. The simulations are performed with Matlab® using
the “ode23t” time integration algorithm, while the initial conditions are set equal to
θ(0)=−1 rad and θ̇(0)= 0 rad/sec. Figure IV.3 shows the time evolution of the angle
θ(t). We remark that since the environment has a high stiffness coefficient (ki = 1000),
the angle’s change of direction occurs in a small period of time. We notice that the angle
converges to the desired equilibrium orientation θd , even though asymptotic stability has
not been shown in this study. Figure IV.4 shows in the first plot the Lyapunov functionals
(IV.33) along with solutions in the entire simulation time interval without considering
the activation and deactivation time periods. In the second plot, the two Lyapunov
functions are shown only in their respective activation time intervals. From this second
plot, it is possible to appreciate both the non-increasing behaviour of the Lyapunov
functionals in their respective activation time intervals, together with the respect of the
“Switching-in” condition.
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Figure IV.3: Angle evolution along time θ(t).
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Figure IV.4: Contact V1 and non-contact V0 Lyapunov functions behaviour along time
for a rigid rotating beam.
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IV.3 FLEXIBLE ROBOT ARM IMPACT

In this section we consider a system composed by a rotating flexible beam that en-
ters in contact with the external environment as depicted in Figure IV.5. According to

J1

w(ξ , t)

φ(ξ , t)

θ(t)

J2

m

Environment

ci∆ski

∆s = 0

Figure IV.5: Rotating flexible beam’s impact with the external environment.

the previous section the compliant surface is considered as a massless spring damper
system, and the impact force considering ∆s = Lθ +w(L, t) writes

λ =−ki(Lθ +w(L, t))− ci(Lθ +w(L, t))(Lθ̇ + ẇ(L, t)). (IV.41)

Note that the quantity Lθ +w(L, t) corresponds to the distance of the end-effector from
the external environment when is negative, and to the environment’s deformation when
it is positive. The elastic contribution of the impact force can be counted in the potential
energy, while the dissipation in the work of the non-conservative forces. Therefore the
kinetic Hk and potential energy Hp, using Timoshenko’s assumptions, write

Hk =
1
2J1θ̇ 2 + 1

2

∫ L

0

{
ρ

(
∂w
∂ t

+ξ θ̇

)2

+ Iρ

(
∂φ

∂ t
+ θ̇

)2
}

dξ

+1
2m(Lθ̇ + ẇ(L, t))2 + 1

2J2(θ̇ + φ̇(L, t))2

Hp =
1
2

∫ L

0

{
K
(

∂w
∂ξ
−φ

)2

+EI
(

∂φ

∂ξ

)2
}

dξ

+1
2kiγ(Lθ +w(L, t))(Lθ +w(L, t))2

(IV.42)

where γ is the discrete transition function and is defined as

γ =

{
0 i f (Lθ +w(L, t)< 0) or (Lθ +w(L, t) = 0) and (θ̇ + φ̇(L, t)< 0)
1 i f (Lθ +w(L, t)> 0) or (Lθ +w(L, t) = 0) and (θ̇ + φ̇(L, t)≥ 0)

(IV.43)

and the work of non-conservative forces’ Frechèt derivative equals

dWnch = τhθ − ciγ(Lθ +w(L, t))(Lθ̇ + ẇ(L, t))hLθ+w(L,t). (IV.44)
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Using a similar modelling procedure as in Chapter II, we define the energy variables

z1 = ρ(ẇ+ξ θ̇) z2 = Iρ(φ̇ + θ̇) z3 =
∂w
∂ξ
−φ z4 =

∂φ

∂ξ

p1 = J1θ̇ p2 = m(Lθ̇ + ẇ(L, t)) p3 = J2(θ̇ + φ̇(L, t))
q1 = θ q2 = Lθ +w(L, t) q3 = θ +φ(L, t)

(IV.45)

where z = [z1 z2 z3 z4]
T is the state related to the flexible beam, p = [p1 p2 p3]

T and
q= [q1 q2 q3]

T are the finite dimensional states related to the lumped inertias’ dynamics.
We define the input output operators of the infinite dimensional part of the system as

B1(H z) =WB,1

[
f∂

e∂

]
=

[
I−1
ρ z2(0,t)

ρ−1z1(L,t)
I−1
ρ z2(L,t)

]
= uz

B2(H z) =WB,2

[
f∂

e∂

]
= ρ−1z1(0, t)

C1(H z) = W̃C,1

[
f∂

e∂

]
=

[−EIz4(0,t)
Kz3(L,t)
EIz4(L,t)

]
= yz

C2(H z) = W̃C,2

[
f∂

e∂

]
=−Kz3(0, t)

(IV.46)

where WB =
[

WB,1
WB,2

]
and W̃ =

[
WC,1
WC,2

]
are such that:

1. The matrix
[

WB
WC

]
is invertible;

2. The matrices WB and WC are such that[
WBΣW T

B WBΣW T
C

WCΣW T
B WCΣW T

C

]
=

[
0 I
I 0

]
. (IV.47)

The total boundary input-output operators are defined as

B(H z) =
[
B1(H z)
B2(H z)

]
=WB

[
f∂

e∂

]
C (H z) =

[
C1(H z)
C2(H z)

]
=WC

[
f∂

e∂

]
.

(IV.48)

The equations in the new variables write

ż = P1
∂

∂ξ
(H z)+P0(H z)

ṗ =−C1(H z)+giγλ +gτ

q̇ = M−1 p
(IV.49)

where the matrices P1, P0, H are defined as in (II.42) and (II.45), while the remaining
matrices write

M =

J1 0 0
0 m 0
0 0 J2

 gi =

0
1
0

 g =

1
0
0

 . (IV.50)

117



IV.3. Flexible robot arm impact

We rewrite the discrete transition function γ as depending on the new state variables

γ(p,q) =
{

0 i f (p,q) ∈ {(p,q) ∈ R2 | q2 < 0}
⋃
{(p,q) ∈ R2 | q2 = 0, p2 < 0}

1 i f (p,q) ∈ {(p,q) ∈ R2 | q2 > 0}
⋃
{(p,q) ∈ R2 | q2 = 0, p2 ≥ 0}

(IV.51)
together with the impact function

λ =−kiq2−
ci

m
q2 p2. (IV.52)

With and abuse of notation, in the remainder we refer to the function γ(p,q) as γ(x). We
use the original boundary conditions (IV.46) together with the state variables definition
(IV.45) to derive that uz = M−1 p, while the remaining boundary input is set equal to
zero, i.e. B2(H z) = 0. In this study we analyse the flexible rotating link in closed-loop
with a PD controller

τ(t) =−k(θ(t)−θ
o)− cθ̇(t) (IV.53)

with k,c,θ o > 0. We are interested in this simple control law because the aim of this
section is not to obtain a certain desired performance of the closed-loop system, but
rather set up a analysis procedure that can be employed in case of different control laws
application.

Defining the new error state q̃1 = θ −θ o, we can write the closed-loop equations in
the following semi-linear operator form

ẋ =



P1
∂

∂ξ
(H z)+P0(H z)

+EIz4(0, t)− kq̃1− c
J1

p1

−Kz3(L, t)− kiq2
−EIz4(L, t)− kq3

1
J1

p1
1
m p2
1
J2

p3


+



0
0

kiγ(−x)q2− ci
mγ(x)q2 p2

kq3
0
0
0


= Ax+ f (x)

(IV.54)

where x = [zT pT q̃1 q2 q3]
T ∈ X = L2([0,L],R4)×R6 is the state of the system and the

domain of the linear operator A is defined as

D(A) =
{

x ∈ X |z ∈ H1([0,L],R4), B1(H z) = M−1 p,B2(H z) = 0
}
. (IV.55)

The inner product in the state space is defined for x1,x2 ∈ X as

〈x1,x2〉X = 〈z1,H z2〉L2 +
1
J1

p1,1 p1,2 +
1
m p2,1 p2,2 +

1
J2

p3,1 p3,2

+kq̃1,1q̃1,2 + kiq2,1q2,2 + kq3,1q3,2
(IV.56)

with associated norm ||x||X =
√
〈x,x〉X .
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IV.3.1 Existence of solution and hybrid equilibrium

In this section we study the existence and uniqueness of a local mild solution for the
defined semilinear equation (IV.54) modelling the flexible arm entering in contact with
an external environment. Even if in the nonlinear function f (x) is present the indicator
function modelling the change of dynamic due to contact, we exploit the assumption
that the damping coefficient depends on the deformation to be able to conclude that
the function f (x) is locally Lipschitz continuous. This property of the nonlinear func-
tion f (x) permits the use of Theorem I.1.4 to conclude about existence of a local mild
solution.

Theorem IV.3.1. System (IV.54) with operator domain defined in D(A) (IV.55) pos-
sesses for every initial condition x0 ∈ X a unique mild solution on [0, tmax), where if
tmax < ∞, then

lim
t→tmax

||x(t)||= ∞. (IV.57)

Furthermore, if x0 ∈ D(A) the solution is classical.

Proof. By Theorem I.1.4 (page 16) we have to show that the operator A generates a
contraction C0-semigroup and that the function f (x) is locally Lipschitz continuous.
By Theorem I.3.1, A generates a contraction C0-semigorup if it is dissipative on X .
Therefore, using Lemma I.2.1 together with the inner product definition (IV.56) we
compute

〈Ax,x〉X = 〈J z,H z〉L2− 1
J1
(+EIz4(0, t)− kq̃1− c

J1
p1)p1

+ 1
m(−Kz3(L, t)− kiq2)p2 +

1
J2
(−EIz4(L, t)− kq3)p3

+ k
J1

p1q̃1 +
ki
m p2q2 +

k
J2

p3q3

= yT
z uz− yT

z M−1 p− c
J1

p2
1

= − c
J1

p2
1 ≤ 0

(IV.58)

hence A generates a contraction C0-semigroup on X . We know show that the function
f (x) is localli Lipschitz continuous. First, we remark that the Lipschitz continuity of
f (x) is equivalent to the Lipschitz continuity of kiγ(−x)q2− ci

mγ(x)q2 p2. Therefore we
compute

|| f (x2)− f (x1)||= ||kiγ(−x2)q2,2− ci
mγ(x2)q2,2 p2,2− kiγ(−x1)q2,1

+ ci
mγ(x1)q2,1 p2,1||

≤ ki||γ(−x2)q2,2− γ(−x1)q2,1||
+ ci

m ||γ(x1)q2,1 p2,1− γ(x2)q2,2 p2,2||.

(IV.59)

The first term in the former inequality corresponds to

||γ(−x2)q2,2− γ(−x1)q2,1||=


0 i f γ(−x2) = 0 and γ(−x1) = 0
||q2,2|| i f γ(−x2) = 1 and γ(−x1) = 0
||−q2,1|| i f γ(−x2) = 0 and γ(−x1) = 1
||q2,2−q2,1|| i f γ(−x2) = 1 and γ(−x1) = 1

(IV.60)
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and therefore we can conclude that

||γ(−x2)q2,2− γ(−x1)q2,1|| ≤ ||q2,2−q2,1|| ≤ ||x2− x1|| (IV.61)

using the same arguments after equation (IV.23) in Lemma IV.2.1. The second term in
(IV.59) can be bounded by the following expression

||γ(x1)q2,1 p2,1− γ(x2)q2,2 p2,2||= ||γ(x1)q2,1 p2,1 + γ(x1)q2,1 p2,2
−γ(x1)q2,1 p2,2− γ(x2)q2,2 p2,2||

≤ ||γ(x1)q2,1(p2,1− p2,2)||
+||p2,2(γ(x1)q2,1− γ(x2)q2,2)||

≤ ||q2,1|| · ||p2,1− p2,2||+
||p2,2|| · ||γ(x1)q2,1− γ(x2)q2,2||

(IV.62)

that considering ||x1||, ||x2|| ≤ r and according to (IV.61) becomes

||γ(x1)q2,1 p2,1− γ(x2)q2,2 p2,2|| ≤ 2r||x2− x1||. (IV.63)

Therefore we can conclude that || f (x2)− f (x1)|| ≤ L(r)||x2−x1|| with L(r) = ki+2 cir
m .

Therefore, according to Theorem I.1.4, we obtain the statement of the theorem.

We are now interested in studying the hybrid equilibrium of the semilinear equation
(IV.54). We first note that the equilibrium position for the non contact condition corre-
sponds to a state that is in the contact region, thus it is not a possible hybrid state (note
that the equations in the non-contact region γ(x) = 0 results in a rotating flexible beam
with a rotating and translating inertia in the free side for which we refer to Example 1
in Section III.2 of Chapter III). Consequently we investigate the equilibrium position
for the equations in the contact region. Studying Ax+ f (x) = 0 with γ(x) = 1, in the
original coordinates with q1 = θ , qo

1 = θ o, results in equations

P1
∂

∂ξ
(H z)+P0(H z) = 0

EIz4(0, t)− k(q1−qo
1)−

c
J1

p1 = 0
−Kz3(L, t)− kiq2− ci

mq2 p2 = 0
EIz4(L, t) = 0
1
J1

p1 = 0
1
m p2 = 0
1
J2

p3 = 0

(IV.64)

with boundary conditions
1
ρ

z1(0, t) = 0 1
Iρ

z2(0, t) =
p1
J1

1
ρ

z1(L, t) =
p2
m

1
Iρ

z2(L, t) =
p3
J2
.

(IV.65)

Since J1,m,J2 > 0, we have that p1 = p2 = p3 = 0, and consequently the set of equations
transforms into 

P1
∂

∂ z(H z)+P0(H z) = 0
EIz4(0, t) = k(q1−qo

1)

Kz3(L, t) =−kiq2

EIz4(L, t) = 0

(IV.66)
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with homogeneous boundary conditions

1
ρ

z1(0, t) =
1
Iρ

z2(0, t) =
1
ρ

z1(L, t) =
1
Iρ

z2(L, t) = 0. (IV.67)

Take the first differential set of equations and write it in the extended form

∂

∂ξ
Kz3(ξ , t) = 0

∂

∂ξ
EIz4(ξ , t)+Kz3(ξ , t) = 0

∂

∂ξ

1
ρ

z1(ξ , t)− 1
Iρ

z2(ξ , t) = 0
∂

∂ξ

1
Iρ

z2(ξ , t) = 0

(IV.68)

with the same boundary conditions as before. The last two equations of (IV.68) with
boundary conditions (IV.67) result into z1(ξ , t) = z2(ξ , t) = 0. From the first equation
of (IV.68) and the boundary condition z3(L, t) =− ki

K q2 we obtain

z3(ξ , t) =−
ki

K
q2. (IV.69)

From the second equation of (IV.68) together with the first boundary condition in (IV.66)
we obtain

z4(ξ , t) = +
k

EI
(q1−qo

1)+
ki

EI
q2ξ . (IV.70)

Using z4(L, t) = 0 we obtain
Lkiq2 = k(qo

1−q1). (IV.71)

Now, from the state variable definition (IV.45) we compute

w(ξ , t) = +
∫

ξ

0

{
z3(ζ , t)+

∫
ζ

0
{z4(α, t)}dα

}
dζ

= −
∫

ξ

0

{
kiq2

K
+
∫

ζ

0

{
k(q1−qo

1)

EI
+

kiq2α

EI

}
dα

}
dζ

= −kiq2
K ξ − k(qo

1−q1)
2EI ξ 2 + kiq2

6EI ξ 3

(IV.72)

and because of (IV.71), we can write

w(ξ , t) =−kiq2

K
ξ − kiq2L

2EI
ξ

2 +
kiq2

6EI
ξ

3 (IV.73)

that computed at the ξ = L boundary gives

w(L, t) =−kiq2

k
L− kiq2

3EI
L3. (IV.74)

Using the q1 and q2 definitions of (IV.45), we know that

q2 = Lq1 +w(L, t) (IV.75)
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then, substitute the w(L, t) definition in the former equation to obtain

q2 = Aq1, A =
L

1+ ki

(
L
K + L3

3EI

) . (IV.76)

Defining B = k
kiLA+k and substituting the former equation in (IV.71) we get

q∗1 = Bqo
1, q∗2 = ABqo

1. (IV.77)

Then we are able to find the equilibrium positions for all the states as a function of the
control parameter qo

1

z∗3(ξ ) =−
kiA
K

Bqo
1 z∗4(ξ ) =

kiA
EI

B(ξ −L)qo
1. (IV.78)

We can now define the equilibrium vectors z∗= [0 0 z∗3 z∗4]
T , p∗= [0 0 0]T , q∗= [q∗1 q∗2 0]T .

The equilibrium state is defined as x∗=
[

z∗
p∗
q∗

]
, while the hybrid equilibrium write (x∗,1).

Hence, we define the new state as a shift of the state x with respect to the equilibrium
position

x̄ = x− x∗. (IV.79)

The equations in the new state can be rewritten as

˙̄z1(ξ , t) = ∂

∂ξ
K(z̄3(ξ , t)+ z∗3(ξ ))

˙̄z2(ξ , t) = ∂

∂ξ
EI(z̄4(ξ , t)+ z∗4(ξ ))+K(z̄3(ξ , t)+ z∗3(ξ ))

˙̄z3(ξ , t) = ∂

∂ξ

1
ρ

z̄1(ξ , t)− 1
Iρ

z̄2(ξ , t)
˙̄z4(ξ , t) = ∂

∂ξ

1
Iρ

z̄2(ξ , t)
˙̄p1(t) = +EI(z̄4(0, t)+ z∗4(0))− k(q̄1(t)+q∗1−qo

1)−
c
J1

p̄1(t)
˙̄p2(t) =−K(z̄3(L, t)+ z∗3(L))− kiγ(q̄2(t)+q∗2)(q̄2(t)+q∗2)
− ci

mγ(q̄2(t)+q∗2)(q̄2(t)+q∗2)p̄3(t)
˙̄p3(t) =−EI(z̄4(L, t)+ z∗4(L)).

(IV.80)

Using the equilibrium definitions (IV.78), the first two equations can be rewritten in the
classical form {

˙̄z1(ξ , t) = ∂

∂ξ
Kz̄3(ξ , t)

˙̄z2(ξ , t) = ∂

∂ξ
EIz̄4(ξ , t)+Kz̄3(ξ , t)

(IV.81)

allowing the pH representation for the infinite dimensional part of the system. Then,
we can define the closed-loop system as described by a semi-linear switched operator
equation

˙̄x = Aγ x̄+ fγ x̄ (IV.82)
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with non-contact and contact operators defined, respectively

A0x̄ =



P1
∂

∂ξ
(H z̄)+P0(H z̄)

EIz̄4(0, t)− kq̄1− c
J1

p̄1

−Kz̄3(L, t)+AkiBqo
1

−EIz̄4(L, t)
1
J1

p̄1
1
m p̄2
1
J2

p̄3


, (IV.83)

A1x̄+ f1(x̄) =



P1
∂

∂ξ
(H z̄)+P0(H z̄)

EIz̄4(0, t)− kq̄1− c
J1

p̄1

−Kz̄3(L, t)− kiq̄2
−EIz̄4(L, t)

1
J1

p̄1
1
m p̄2
1
J2

p̄3


+



0
0

− ci
m(q̄2 +q∗2)p̄2

0
0
0
0


(IV.84)

with domains

D(A1) = D(A2) =
{

x̄ ∈ X | z̄ ∈ H1([0,L],R4), B1(H z̄) = M−1 p̄,B2(H z̄) = 0
}
,

(IV.85)
switching sets

D0,1 = {x̄ ∈ X | q̄2 =−q∗2, p̄2 ≥ 0}
D1,0 = {x̄ ∈ X | q̄2 =−q∗2, p̄2 < 0}, (IV.86)

and non-contact and contact regions defined, respectively, as

Ω0 = {x̄ ∈ X | q̄2 <−q∗2}
⋃
{x̄ ∈ X | q̄2 =−q∗2, p̄2 < 0}

Ω1 = {x̄ ∈ X | q̄2 >−q∗2}
⋃
{x̄ ∈ X | q̄2 =−q∗2, p̄2 ≥ 0}. (IV.87)

The infinite dimensional inputs and outputs are defined through the boundary operators
defined in equation (IV.46)

uz̄ = B1(H z̄) yz̄ = C1(H z̄), (IV.88)

while the discrete transition function in the new variables writes

γ(x̄) =
{

0 i f x̄ ∈ {x̄ ∈ X | q̄2 <−q∗2}
⋃
{x̄ ∈ X | q̄2 =−q∗2, p̄2 < 0}

1 i f x̄ ∈ {x̄ ∈ X | q̄2 >−q∗2}
⋃
{x̄ ∈ X | q̄2 =−q∗2, p̄2 ≥ 0}. (IV.89)

Remark 14. The representation as a switched semilinear system (IV.83)-(IV.84) has
been obtained after a state translation (with respect to the equilibrium position) and
the substitution of the indicator values (1 or 0) in the corresponding subspace (contact
or non-contact) of the state space in the original semilinear equation (IV.54). Hence,
existence and uniqueness of solution of (IV.54) implies that the switched semilinear
system (IV.83)-(IV.84) has a unique mild and classical solution in the sense of Defini-
tions I.1.10 and I.1.11, respectively. Because of the Lipschitz continuity of the studied
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V

ContactNot-contact

Figure IV.6: Non-contact and contact energy functionals combination to obtain a single
candidate Lyapunov functional.

nonlinear function in (IV.54), we decided to use the solution concept of Definitions
I.1.10 and I.1.11, without introducing any additional concept for the switched system’s
solution.

Remark 15. Both the contact and non-contact operators are defined on a common do-
main D(A0) = D(A1) that is the same as the domain (IV.55) of the operator in the semi-
linear equation (IV.54). Therefore, since in Theorem IV.3.1 we concluded about exis-
tence of a unique classical solution of (IV.54)-(IV.55) where x(t)∈D(A) and C1([0, t),X)
for all t ≥ 0, it follows that x̄(t) ∈ D(A0) ∈ D(A1) for all t ≥ 0. Moreover, we have that
at any switching time t∗ we have that the solution is time differentiable because it is
obtained as a simple translation of the solution of (IV.54).

IV.3.2 Stability analysis

The model of the rotating flexible beam entering in impact with an external environ-
ment in closed-loop with a PD control law has been written as a semilinear differential
equation (IV.54). Since in Theorem IV.3.1 we have shown that (IV.54) possesses a
unique mild solution for all x0 ∈ X , one can in principle use the stability theory of Sec-
tion III.1.1 to conclude about its asymptotic behaviour. In this Chapter we decided to
approach this problem from the switching systems perspective for one principal reason:
consistently with the rest of the manuscript, we are interested in the use of energy func-
tionals as candidate Lyapunov functionals. The energy functionals for the considered
system are two: the energy in the non-contact scenario and the energy in the contact
scenario. A first possibility is to combine the two Energy functionals in a single one
as shown in Figure IV.6. This would lead to time differentiation problems during the
switching times, and would force to define a new concept of time derivative (different
from the Dini derivative of Definition I.1.8). Hence we decided to use Theorem IV.1.1,
that makes use of multiple Lyapunov functionals, to be able to use the non-contact en-
ergy during non-contact phases and the contact one during contact phases.
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Theorem IV.3.2. Consider the switched semilinear system (IV.82) with operators and
nonlinear functions defined in(IV.83)-(IV.84) and discrete transition function (IV.89)
with positive definite control parameters, i.e. k,c,qo

1 > 0. Then the system is Lyapunov
stable and has a globally bounded mild solution for every initial condition x̄0 ∈ X.

Proof. Since system (IV.82) corresponds to system (IV.54) with translated variables,
thanks to Theorem IV.3.1, we know that it admits an unique solution that exists until an
escape time tmax that is reached if and only if the solution diverges.
We define the following Lyapunov functional candidates for the non-contact and contact
vector field, respectively

V0 =
1
2

∫ L

0

(
1
ρ

z̄2
1 +

1
Iρ

z̄2
2 +K(z̄3 + z∗3)

2 +EI(z̄4 + z∗4)
2
)

dξ +
1

2J1
p̄2

1 +
1

2m
p̄2

2

+ 1
2J2

p̄2
3 +

1
2k(q̄1− (1−B)qo

1)
2

(IV.90)

V1 =
1
2
〈z̄,H z̄〉L2 +

1
2J1

p̄2
1 +

1
2m

p̄2
2 +

1
2J2

p̄2
3 +

1
2

kq̄2
1 +

1
2

kiq̄2
2. (IV.91)

To compute the time derivative of V0 along the system trajectories, we first put it in the
following form

V0 =
1
2
〈z̄,H z̄〉L2 +

1
2J1

p̄2
1 +

1
2m

p̄2
2 +

1
2J2

p̄2
3 +

1
2

k(q̄1− (1−B)qo
1)

2 +Wz (IV.92)

with

Wz =
1
2

∫ L

0

(
2Kz∗3z̄3 +Kz∗23 +2EIz∗4z̄4 +EIz∗24

)
dξ . (IV.93)

According to Remark 15, since x̄ ∈D(A0) = D(A1), we can compute the time derivative
of V0 and V1 according to Lemma IV.1.1 for all t ≥ 0, even during switching times. We
now compute the time derivative of V0 along the solutions in Ω0

V̇0,+(x̄) = dV0A0x̄
= 〈z̄,J z̄〉Z + 1

J1
p̄1(EIz̄4(0, t)− kq̄1− c

J1
p̄1)

+ 1
m p̄2(−Kz̄3(L, t)+AkiBqo

1)−
1
J2

p̄3EIz̄4(L, t)
+ k

J1
(q̄1− (1−B)qo

1)p̄1 +dWzA0x̄

, (IV.94)

where the last term can be computed as

dWzA0x̄ =
∫ L

0

(
Kz∗3

(
∂

∂ξ

1
ρ

z̄1−
1
Iρ

z̄2

)
+EIz∗4

∂

∂ξ

1
Iρ

z̄2

)
dξ

=
∫ L

0
−kiABqo

1

(
∂

∂ξ

1
ρ

z̄1−
1
Iρ

z̄2

)
+ kiABqo

1(ξ −L)
∂

∂ξ

1
Iρ

z̄2dξ

=
∫ L

0

(
kiABqo

1
∂

∂ξ

(
ξ

Iρ

z̄2

)
− kiABqo

1
∂

∂ξ

1
ρ

z̄1− kiABqo
1

∂

∂ξ

L
Iρ

z̄2

)
dξ

= kiABqo
1

[
ξ

Iρ
z̄2− 1

ρ
z̄1− L

Iρ
z̄2

]L

0

= kiABqo
1

(
− 1

ρ
z̄1(L, t)+ L

Iρ
z̄2(0, t)

)
.

(IV.95)
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We substitute the last expression in (IV.94), and using the state variables definition
(IV.79) as well as Theorem I.2.1 and definitions of uz,yz in (IV.88), we obtain

V̇0,+(x̄) = uT
z yz +

1
J1

p̄1(EIz̄4(0, t)− kq̄1− c
J1

p̄1)

+ 1
m p̄2(−Kz̄3(L, t)+AkiBqo

1)−
1
J2

p̄3EIz̄4(L, t)

+ k
J1
(q̄1− (1−B)qo

1)p̄1 + kiABqo
1

(
− 1

ρ
z̄1(L, t)+ L

Iρ
z̄2(0, t)

)
= B1(H z̄)T C1(H z̄)−B1(H z̄)T C1(H z̄)

+ 1
J1

p̄1

(
−kq̄1− c

J1
p̄1

)
+ 1

m p̄2AkiBqo
1 +

k
J1
(q̄1− (1−B)qo

1)p̄1

+kiABqo
1

(
− 1

ρ
z̄1(L, t)+ L

Iρ
z̄2(0, t)

)
.

(IV.96)

From the definition of B, we have k(1−B) = kiABL. After some simplifications, the
Lyapunov’s derivative writes

V̇0,+(x̄) = − c
J2

1
p̄2

1 +
kiABqo

1
m p̄2−

kiABqo
1L

J1
p̄1−

kiABqo
1

ρ
z̄1(L, t)+

kiABqo
1L

Iρ
z̄2(0, t)

= − c
J2

1
p̄2

1 ≤ 0.
(IV.97)

Since the contact operator (IV.84) and the contact Lyapunov function (IV.91) are in the
classical form, for x̄ ∈Ω1 we obtain

V̇1,+(x̄) =−
c
J2

1
p̄2

1−
ci(q̄2 +q∗2)

m
p̄2

2 (IV.98)

and since in Ω1 it holds that q̄2 ≥−q∗2, we have

V̇1,+(x̄)≤−
c
J2

1
p̄2

1. (IV.99)

Now we study the “switching in” behaviour of the two Lyapunov functionals V0 and
V1. Consider t0 to be the initial time. Assume that the initial condition x̄(0) = x̄0 is
taken such that x̄0 ∈ Ω0. Since the asymptotically stable equilibrium position of the
non-contact equations is in the Contact region (See the rotating flexible beam controlled
with a PD control law in Example 1 in Section III.2 of Chapter III), there is always
a contact phase after a non-contact one. Then, the time series Π2({Sn(x̄0)}) has even
components E (Π2({Sn(x̄0)})) that corresponds to the non-contact “switching-in” con-
ditions, while has odd components O(Π2({Sn(x̄0)})) that corresponds to the contact
ones. According to Theorem IV.1.1, it remains to show that V0(t) is non-increasing in
t ∈ E (Π2({Sn(x′0)})) and that V1(t) is non-increasing in t ∈ O(Π2({Sn(x′0)})). From
(IV.97) and (IV.99), we directly obtain that V0(ti) ≤ V0(ti−1) and V1(ti+1) ≤ V1(ti) for
i ∈ {1, 3, 5, . . .}.
Now we show that V1(ti+2) ≤ V1(ti+1). Note that the time interval [ti+1, ti+2), for
i ∈ {1, 3, 5, . . .} and the assumed initial condition, corresponds to a non-contact phase.
So, our aim is to study the behaviour of the contact Lyapunov functional at the beginning
and at the end of a non-contact phase. To do so, we first note that

V0 =V1 +Wz +Wq−
1
2

kiq̄2
2 (IV.100)
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where Wz is defined in (IV.93) and

Wq =
1
2

k(1−B)2qo2
1 − k(1−B)qo

1q̄1. (IV.101)

In light of (IV.100), inequality V0(ti+2)≤V0(ti+1) for i ∈ {1, 3, 5, . . .} can be rewritten
as

V1(ti+2)+Wz(ti+2)+Wq(ti+2)− 1
2kiq̄2

2(ti+2)≤ V1(ti+1)+Wz(ti+1)

+Wq(ti+1)− 1
2kiq̄2

2(ti+1)
(IV.102)

that since q̄2(t j−1) = q̄2(t j) for j ∈ N we obtain

V1(ti+2)+Wz(ti+2)+Wq(ti+2)≤V1(ti+1)+Wz(ti+1)+Wq(ti+1)
V1(ti+2)≤V1(ti+1)+Wz(ti+1)−Wz(ti+2)+Wq(ti+1)−Wq(ti+2).

(IV.103)

At this point we compute the time derivative of the quantity Wz +Wq along the non-
contact vector field A0x̄

d
dt (Wz +Wq) = dWzA0x̄+dWqA0x̄

= kiABqo
1

(
− 1

ρ
z̄1(L, t)+ L

Iρ
z̄2(0, t)

)
− k(1−B)qo

1
Iρ

z̄2(0, t)
(IV.104)

and since k(1−B) = kiABL, we obtain

d
dt
(Wz +Wq) =−

kiABqo
1

ρ
z̄1(L, t). (IV.105)

We compute∫ ti+2

t1+1

d
dt
(Wz +Wq)dt =Wz(ti+2)−Wz(ti+1)+Wq(ti+2)−Wq(ti+1) (IV.106)

that, using the z̄1 = z1 definition (IV.45) and the fact that at switching times q̄2(t) =
−q∗2⇒ Lθ(t)+w(L, t) = 0 for t ∈Π2({Sn(x̄0)}), n≥ 1, corresponds to∫ ti+2

t1+1

d
dt
(Wz +Wq)dt = −

∫ ti+2

t1+1

kiABqo
1

ρ
z̄1(L, t)dt

= −kiABqo
1

ρ

∫ ti+2

t1+1

Lθ̇(t)+ ẇ(L, t)dt

= −kiABqo
1

ρ
(Lθ(ti+2)+w(L, ti+2)−Lθ(ti+1)−w(L, ti+1))

= 0.
(IV.107)

From the last two equations we conclude that

Wz(ti+2)−Wz(ti+1)+Wq(ti+2)−Wq(ti+1) = 0 (IV.108)

that, from (IV.103), in turn implies

V1(ti+2)≤V1(ti+1)⇒V1(ti+2)≤V1(ti+1)≤V1(ti)⇒V1(ti+2)≤V1(ti) (IV.109)

127



IV.3. Flexible robot arm impact

for i ∈ {1, 3, 5, . . .}, that means that V1(t) is non increasing in t ∈ O(Π2({Sn(x̄0)})).
The next step is showing that V0(t) is non increasing in t ∈ E (Π2({Sn(x̄0)})). Using
relation (IV.100) together with the fact that V1(ti+1) ≤ V1(ti) for i ∈ {1, 3, 5, . . .} we
obtain

Vnc(ti+1)≤Vnc(ti)+Wz(ti+1)−Wz(ti)+Wq(ti+1)−Wq(ti) (IV.110)

and with the same procedure as before we obtain that Vnc(t) is non increasing in t ∈
E (Π2({Sn(x′0)})). The case in which x0 ∈ Ω1 can be developed in the same manner
but with [ti−1, ti) corresponding to the contact time interval, and [ti, ti+1) a non-contact
time interval for i ∈ {1, 3, 5, . . .}. According to Theorem IV.1.1 we can conclude that
the system is Lyapunov stable and has a globally bounded mild solution for every initial
condition x0 ∈ X .

IV.3.3 Numerical simulations

To perform the numerical simulations, a finite dimensional discretization of the in-
finite dimensional system has been considered. In particular, it has been used the dis-
tretization procedure described in Section II.2 of Chapter II, that allows to spatially
approximate the resulting linear PDE with a linear pH system of dimension depending
on the number of discretizing elements (in the shown simulations, the flexible beam
has been divided into 150 elements). In particular, since the flexible beam model has
velocity inputs at both sides of the spatial domain (see equation (IV.46)), its finite di-
mensional model corresponds to a Flow-Flow input discretized system introduced in
Definition II.2.3 with nd discretizing elements and state zd ∈ R4nd . Therefore the dis-
cretized version of the closed-loop system (IV.54) has a state defined by xd =

[ zd
p
q

]
, and

writesżd
ṗ
q̇

=

 J f f ḡ f f 0
−ḡT

f f 0 −I
0 I 0

−
0 0 0

0 Rp 0
0 0 0

H f f 0 0
0 M−1 0
0 0 K

zd
p
q

+
 0

g1
0

 fd

(IV.111)
with J f f defined in (II.166), ḡ f f defined as the 2nd-4th columns of matrix g f f defined in
(II.167) and

Rp =

− c
J1

0 0
0 0 0
0 0 0

 K =

k 0 0
0 0 0
0 0 0

 g1 =

0
1
0


fi =−kiγ(xd)q2− ci

mγ(xd)q2 p2.

(IV.112)

Where the impact’s model parameters are set equal to ki = 1000 and ci = 30. The
simulations have been made in the Matlab® environment using the “ode23t” time inte-
gration algorithm, and the set of parameters used for simulations are listed in Table IV.2.

As in the rigid robot arm simulations, we select the controller parameters at least of
one order of magnitude smaller than the impact model parameters k = 10, c = 3. In
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IV.3. Flexible robot arm impact

Table IV.2: Simulation parameters; flexible beam impact

Name Variable Value
Beam’s Length L 1 m
Beam’s Width Lw 0.1 m

Beam’s Thickness Lt 0.02 m
Density ρ 16 kg

m
Young’s modulus E 2×109 N

m2

Bulk’s modulus K 6.85×108 N
m2

Hub’s inertia J1 1 kg ·m2

Load’s mass m 1 kg
Load’s inertia J2 1 kg ·m2
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Figure IV.7: Hub’s angle evolution along time q1(t) and Load’s position evolution
along time q2(t).

this way, we can clearly appreciate the change of dynamics due to the impact with
the external surface. Next, we set the control parameter θ o = 1 such that the desired
equilibrium position is in the contact set Ω1. In accordance with Section IV.3.1, it
is possible to compute the equilibrium configuration of the system: q∗1 = 0.0424 rad,
q∗2 = 0.0096 m, ε∗t (ξ ) = −1.3981× 10−8 and εr(ξ ) = 0.0985(ξ −L). To perform nu-
merical simulations, the beam’s states as well as the finite dimensional momentum states
are initialized to zero xb(0,ξ ) = 0, p1(0) = p2(0) = p3(0). The initial hub’s angle has
been initialized to θ(0) = q1(0) = −1 rad, accordingly to the load’s initial position
q2(0) = Lθ(0)+w(0,L) =−1 m. Figure IV.7 shows the evolution in time of the hub’s
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angle and of the load position. It is important to note that the contact occurs when
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Figure IV.8: Contact V1 and non-contact V0 Lyapunov functions behaviour along time
for a flexible rotating beam.

q2(t)≥ 0, and in fact when it dynamically reaches this value, the q2 variable is rejected
back because of the spring force of the impact model. It is possible to appreciate that
both angles asymptotically stabilize to the computed equilibrium positions. Figure IV.8
shows firstly the Lyapunov functionals (IV.91)-(IV.92) behaviour along with the solu-
tion in the entire simulation time interval without distinguishing between the active or
non active time intervals, and secondly their behaviour during the respective activation
time intervals. It is possible to appreciate that both the selected Lyapunov functionals
are non-increasing in their activation phases and that the “Switching in” conditions are
met. The time scaling in the second image in Figure IV.8 comes from the important
values of ||q̄2|| and thus of the term 1

2kiq̄2
2 in the contact Lyapunov functional (IV.92)

during the non-contact time periods.

IV.4 SUMMARY

In this chapter, we have proposed a new framework for testing the Lyapunov sta-
bility of switching operator systems. Then, we derived the model of a rotating rigid
link that enters in contact with the external (soft) environment. Using the Theoretical
results presented at the beginning of the chapter, we show that the model of the rotating
flexible link in closed-loop with a PD control law is Lyapunov stable. Next, we derive
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IV.4. Summary

the infinite dimensional model of a rotating flexible link entering in contact with the ex-
ternal environment. We apply a proportional derivative control law and we re-write the
closed-loop model as a switching operator system. Finally, using the theoretical results
presented at the beginning of the chapter, we show that also the model of the flexible
rotating link is Lyapunov stable.
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V.1. Conclusions

V.1 CONCLUSIONS

This thesis studies the modelling, the control design and the stability analysis of
mechanisms including flexible parts. The port-Hamiltonian formulation has been used
to model the mechanism containing flexible parts. This framework provides powerful
analysis methods for proving well-posedness and allows the use of Lyapunov stability
theory for studying the systems asymptotic behaviour. We enlightened that energy is
crucial in all the different stages of the mechanisms’ analysis: equations of motion are
derived starting from the Lagrangian, control laws are designed using passivity concepts
very similar to the ones used to prove the existence and uniqueness of solutions. An-
other key point of this framework is that allows dealing with a class of systems instead
of studying a problem on a case-by-case basis. This working procedure allows under-
standing the underlying structure of mechanisms with flexible parts, and to conclude
about results exploitable on a wide range of different applications. Moreover, the Lya-
punov stability methods have been extended to conclude about stability in case of the
presence of a specific class of non-linearities.

This thesis is mainly intended to offer an alternative way to the case-by-case methodol-
ogy for studying flexible mechanisms, in such a way to exploit the similarities between
models and to conclude general results. Nevertheless, the study of a specific problem
allows to deeply understand a specific application and to get to conclusions that are
not possible to generalise. Therefore we hope that the proposed material can provide
different tools, procedures and a general understanding of ideas from which the reader
can draw for solving specific application problems. In the following, we list the main
contributions of this thesis.

1. In Chapter II, it has been described how to obtain a mixed ODE-PDE model for
different flexible mechanisms starting from the very general principle of least ac-
tion. We have seen how to write the models in the port-Hamiltonian framework:
the PDE were written as open distributed 1-D port-Hamiltonian systems inter-
acting at the boundary of the spatial domain with the ODE, rewritten as finite
dimensional port-Hamiltonian systems, describing the boundary dynamics. The
infinite and finite dimensional parts of these systems have been power preserv-
ing interconnected, and a general pH representation, enclosing all the different
examples, has been found. Next, this general representation has been shown to
be passive with respect to its internal energy. Furthermore, a structure preserving
mixed finite element discretization method has been employed to discretize the
1-D pH system with any type of boundary conditions.

2. In Chapter III we first recall some basic notions on well-posedness and stabil-
ity of semilinear operator equations. Then, we gave some necessary conditions
to conclude about approximate observability of 1-D distributed port-Hamiltonian
systems. This, together with another result linking approximate observability and
the zero solution in case of constant output, are shown to be the key ingredients
for proving asymptotic stability with the use of the La Salle invariance principle.
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Next, we have proposed four control laws for a class of m-pH systems. Three
of them can position the system in the desired equilibrium and asymptotically
stabilize the closed-loop system, while the other one can exponentially stabilise
the closed-loop (but not to position the system in the desired equilibrium). The
proposed asymptotically stabilising control laws are as follows: a classic Propor-
tional Derivative (PD) control, a PD control with a dynamic nonlinear term able
to reduce flexible vibrations, a PD control plus strong dissipative feedback that
can insert some boundary dissipation even if the control input does not directly
act on the boundary conditions but only on the ODE. The exponentially stabilis-
ing control corresponds to a derivative plus strong dissipative feedback control.
The well-posedness and stability results for each control law are accompanied by
an applicative example on a flexible mechanism and the related numerical simu-
lations.

3. In Chapter IV we have provided a framework to study the asymptotic behaviour
of switched semilinear equations based on the extension of a result valid for non-
linear finite dimensional systems. This framework is based on the existence of
multiple Lyapunov functionals and therefore fits perfectly with the used port-
Hamiltonian formulation. Next, this framework has been used to study the Lya-
punov stability of a rigid and flexible rotating beam that comes into contact with
an external surface. Numerical simulations for both the rigid and the flexible ro-
tating beam in the impact scenario have been provided to validate the theoretical
results.

V.2 RECOMMENDATIONS FOR FUTURE WORK

In the following we list some ideas for some possible extensions of the results pro-
posed in this thesis.

V.2.1 Nonlinear modelling of flexible mechanisms

In Chapter II, the models describing the flexible rotating and translating beams are
obtained assuming that w(ξ , t)θ̇ ≈ 0 (see Assumptions II.1.2.b and II.1.2.c, at pages 34
and 38, respectively). It would be desirable to obtain the exact model without neglect-
ing the former term, and to understand if the developed control laws in Chapter III still
stabilise the system. In the following we present some preliminary ideas regarding this
subject, applied on the rotating flexible beam.

Consider the kinetic energy of the rotating flexible beam in (II.25), with square
distributed linear velocity (II.28) and angular velocity (II.30). Therefore, the Lagrangian
writes

L = 1
2
∫ L

0 ρ(ξ )(ξ θ̇(t)+ ẇ(ξ , t))2 +(w(ξ , t)θ̇(t))2 + Iρ(ξ )(φ̇(ξ , t)+ θ̇(t))2dξ

+1
2Jθ̇ 2−

∫ L
0 K(ξ )(∂w

∂ξ
(ξ , t)−φ(ξ , t))2 +EI(ξ )∂φ

∂ξ
(ξ , t)2dξ .

(V.1)
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Similarly as done in Chapter (II) we can compute the Lagrangian Fréchet derivatives

d
θ̇

Lh
θ̇
= (

∫ L
0 ρξ (ẇ+ξ θ̇)+ρw2θ̇ + Iρ(φ̇ + θ̇)dξ + Jθ̇)h

θ̇

dẇLhẇ =
∫ L

0 ρ(ẇ+ξ θ̇)hẇdξ

dwLhw =
∫ L

0 ρwθ̇ 2dξ

d
φ̇

Lh
φ̇
=

∫ L
0 Iρ(φ̇ + θ̇)h

φ̇
dξ

dφ Lhφ = −
∫ L

0 K(∂w
∂ξ
−φ)hφ dξ

dw′Lhw′ = −
∫ L

0 K(∂w
∂ξ
−φ)hw′dξ

dφ ′Lhφ ′ = −
∫ L

0 EI ∂φ

∂ξ
hφ ′dξ

dθWnchθ = τhθ .

(V.2)

After integration by parts, equation (II.6) for a rotating flexible beam writes∫ t2
t1

∫ L
0

[
∂

∂ξ
K(∂w

∂ξ
−φ)+ρwθ̇ 2− ∂

∂ t ρ(ẇ+ξ θ̇)
]

hwdξ − [K(∂w
∂ξ
−φ)hw]

L
0

+
∫ L

0

[
K(∂w

∂ξ
−φ)+ ∂

∂ξ
(EI ∂φ

∂ξ
)− ∂

∂ t Iρ(φ̇ + θ̇)
]

hφ dξ − [EI ∂φ

∂ξ
hφ ]

L
0

−
(

∂

∂ t
∫ L

0 ρξ (ẇ+ξ θ̇)+ρw2θ̇ + Iρ(φ̇ + θ̇)dξ + d
dt Jθ̇ − τ

)
hθ dt = 0

(V.3)

from which we can extract the following equations and boundary conditions

∂

∂ t ρ(ẇ+ξ θ̇) = ∂

∂ξ
K(∂w

∂ξ
−φ)+ρwθ̇ 2

∂

∂ t Iρ(φ̇ + θ̇) = ∂

∂ξ
EI ∂φ

∂ξ
+K(∂w

∂ξ
−φ)

∂

∂ t

(∫ L
0 ρw2dξ θ̇ + Jθ̇

)
=− ∂

∂ t
∫ L

0 ρξ (ẇ+ξ θ̇)+ Iρ(φ̇ + θ̇)dξ + τ

K(∂w
∂ξ

(L, t)−φ(L, t)) = 0, EI ∂φ

∂ξ
(L, t) = 0.

(V.4)

Before defining the energy variables we rewrite the third of the latter set of equations,
substituting the two terms inside the integral with the first two of (V.4)

∂

∂ t

(∫ L
0 ρw2dξ θ̇ + Jθ̇

)
= −

∫ L
0 ξ

∂

∂ t ρ(ẇ+ξ θ̇)+ ∂

∂ t Iρ(φ̇ + θ̇)dξ + τ

= −
∫ L

0 ξ

[
∂

∂ξ
K(∂w

∂ξ
−φ)+ρwθ̇ 2

]
+ ∂

∂ξ
EI ∂φ

∂ξ

+K(∂w
∂ξ
−φ)−ξ ρwθ̇ 2dξ + τ

= −[ξ K(∂w
∂ξ
−φ)]L0−

∫ L
0

∂

∂ξ
EI ∂φ

∂ξ
dξ −

∫ L
0 ξ ρwθ̇ 2dξ + τ

= −[ξ K(∂w
∂ξ
−φ)]L0− [EI ∂φ

∂ξ
]L0−

∫ L
0 ξ ρwθ̇ 2dξ + τ,

(V.5)
that using the boundary conditions in (II.36), transforms into

∂

∂ t

(∫ L

0
ρw2dξ θ̇ + Jθ̇

)
= EI

∂φ

∂ξ
(0, t)−

∫ L

0
ξ ρwθ̇

2dξ + τ. (V.6)

Now, we can define the energy variables

z1 = ρ(ẇ+ξ θ̇) z2 = Iρ(φ̇ + θ̇) z3 =
∂w
∂ξ
−φ z4 =

∂φ

∂ξ

p = m(z)θ̇
(V.7)
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where m(z) is the “virtual mass” depending on the distributed parameter state and is
defined as

m(z) =
∫ L

0
ρw(z)2dξ + J (V.8)

and the deformation w can be expressed as linear function of the new variables

w(z) =
∫

ξ

0
z3 +

∫
ζ

0
z4dsdζ . (V.9)

We define the input-output operators as in (II.40) while the density energy matrix as in
(II.42). Then, we can rewrite (V.4) with the modified third equation (V.6) in the energy
variables

ż = P1
∂

∂ξ
(H z)+P0(H z)+ f (z, p) = J z+ f (z, p)

ṗ =−C1(H z)−
∫ L

0 ξ ρ
w(z)
m(z)2 p2dξ + τ,

(V.10)

with

P1 =

[0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

]
P0 =

[0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

]
f (z, p) =


ρ

w(z)
m(z)2 p2

0
0
0

 (V.11)

and domain of the J operator

D(J ) = {z ∈ L2([0,L],R4) | (H z) ∈ H1([0,L],R2),

B1(H z) = 1
m(z) p, B2(H z) = 0} (V.12)

where the input-output operators are defined as

B1(H z) = 1
Iρ (0)

z2(0, t) C1(H z) =−EI(0)z4(0, t)

B2(H z) =

 1
ρ(0)z1(0, t)

K(L)z3(L, t)
EI(L)z4(L, t)

 C2(H z) =

−K(0)z3(0, t)
1

ρ(L)z1(L, t)
1

Iρ (L)
z2(L, t)

 . (V.13)

Then, we define the total energy

E =
1
2
〈z,H z〉L2 +

1
2m(z)

p2. (V.14)
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Next we show that the system (V.10) is passive with respect to the input τ , output
y = 1

m(z) p and energy E. So, we compute the energy’s time derivative using the Dini
derivative concept introduced Definition I.1.8 together with Lemma I.1.2 (page 14)

Ė+ = 〈z,H (J z+ f (z, p))〉L2 +
1
2

d
dt (

1
m(z))p2 + 1

m(z) p(C1(H z)

−
∫ L

0 ξ ρ
w(z)
m(z)2 p2dξ + τ)

= 〈z,H J z)〉L2 + 〈z,H f (z, p)〉L2−
∫ L

0 ρ
w(z)
m(z)2 (

∫ ξ

0 ż3 +
∫ ζ

0 ż4dsdζ )p2dξ

+ 1
m(z) pC1(H z)− 1

m(z)

∫ L
0 ξ ρ

w(z)
m(z)2 p3dξ + yτ

= − 1
m(z) pC1(H z)+

∫ L
0 z1

w(z)
m(z)2 p2dξ −

∫ L
0 ρ

w(z)
m(z)2 (

∫ ξ

0
∂

∂ξ

1
ρ

z1− 1
Iρ

z2

+
∫ ζ

0
∂

∂ξ

1
Iρ

z2dsdζ )p2dξ + 1
m(z) pC1(H z)− 1

m(z)

∫ L
0 ξ ρ

w(z)
m(z)2 p3dξ + yτ

=
∫ L

0 z1
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(V.15)
Finally, since by the domain definition 1

ρ
z1(0) = 0 and 1

Iρ
z2(0) = 1

m(z) p we obtain

Ė+(t) = y(t)τ(t) (V.16)

that indeed shows that the defined system is passive with respect to its internal energy.
The system passivity is a good starting point for the analysis of a dynamical system.
Therefore, different possible questions rise to continue investigating this research line:

1. Is it possible to define a general system able to enclose all the flexible mecha-
nisms’ models when no approximation is made during the modelling procedure?

2. Is the defined model (V.10)-(V.12) well-posed when interconnected in closed-loop
with even a simple proportional derivative control law?

3. What would be the asymptotic behaviour of this type of system?

Already proving the well-posedness of the derived system would be a very difficult
challenge because of the presence of a nonlinear function in the PDE and in the domain
of the operator J .

V.2.2 Asymptotic stability of the flexible rotating beam in impact
scenario

A natural continuation of what we have presented in Chapter IV would be proving
the asymptotic stability of the PD controlled flexible rotating beam in impact scenario.
To do so, it would be first necessary to show that the solution of the controlled flexible
rotating beam possesses a finite number of switches in a finite interval of time (the op-
posite is known as Zeno behaviour). A possibility can be exploiting the continuity of
the infinite dimensional solution together with the fact that the equioibrium position is
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away from the Switching set, from which we can deduce the non-Zeno behaviour of the
state q2. Therefore, the asymptotic stability can be shown with a similar procedure as
the one used in [56].
Moreover, the asymptotic behaviour of the flexible beam in impact scenario should be
investigated in closed-loop with the different control laws proposed in Chapter III. Since
all the stability analysis have been done using Lyapunov stability theory, the possibility
of using the proposed Lyapunov functionals, with some slight modifications, in the sta-
bility proofs for the impact case should be investigated further.
This study on an application example can lead to the generalization to a class of semi-
linear switching port-Hamiltonian systems that can enclose a large set of flexible mech-
anisms that enter in contact with an external object.

V.2.3 Further investigation on 1-D distributed port-Hamiltonian
systems

As discussed in Chapter III, for obtaining approximate observability of the dis-
tributed port-Hamiltonian system, it is necessary to have control and observation on
all the boundary variables at least at one side of the spatial domain

||H z(0, t)||2 ≤ ||uz(t)||2 + ||yz(t)||2
or

||H z(L, t)||2 ≤ ||uz(t)||2 + ||yz(t)||2.
(V.17)

If the former condition is not verified, it is necessary to rely on specific results on the
consider distributed parameter equations (as it was the case in example 1 for the PD
controlled rotating Timoshenko beam). A possible extension can be trying to conclude
about approximate observability of distributed port-Hamiltonian systems weakening the
assumption of total control and observation at one side of the spatial domain. To con-
clude about approximate observability in case only part of the controls are available at
one side of the spatial domain (inequality (V.17) not verified), it maybe be necessary
to consider only a subclass of the class of distributed pH systems considered in this
manuscript putting further assumptions on the matrices that define the system

ż = P1
∂

∂ξ
(H z)+P0(H z). (V.18)

Although nonlinearity in the connected set of ODE has been considered in this thesis and
in a lot of different other works, a major challenge would be proving well-posedness and
eventually stability considering a class of nonlinearities also in the distributed parameter
equations. A motivation in this direction has been given in the previous Section V.2.1.
In that section we pointed out the possible nonlinearity structure that can appear from
the modelling of moving flexible structure, highlighting the passivity property that can
be key in showing the existence and uniqueness of solutions.

138



Bibliography

Bibliography

[1] W.S. Widnall G.E. Tutt. Effects of structural flexibility on spacecraft control sys-
tems. Technical Report N69-37030, National Aeronautics and Space Administra-
tion, NASA, 1969.

[2] M. Schoen, R. Hoover, S. Chinvorarat, and G. Schoen. System identification
and robust controller design using genetic algorithms for flexible space structures.
Journal of Dynamic Systems Measurement and Control-transactions of The Asme,
131:031003, 2009.

[3] D. Entekhabi, E. G. Njoku, P. E. O’Neill, K. H. Kellogg, W. T. Crow, W. N.
Edelstein, J. K. Entin, S. D. Goodman, T. J. Jackson, J. Johnson, J. Kimball, J. R.
Piepmeier, R. D. Koster, N. Martin, K. C. McDonald, M. Moghaddam, S. Moran,
R. Reichle, J. C. Shi, M. W. Spencer, S. W. Thurman, L. Tsang, and J. Van Zyl. The
soil moisture active passive (smap) mission. Proceedings of the IEEE, 98(5):704–
716, 2010.

[4] L. C. Morena, K. V. James, and J. Beck. An introduction to the radarsat-2 mission.
Canadian Journal of Remote Sensing, 30(3):221–234, 2004.

[5] Y. H. Kerr, P. Waldteufel, J. Wigneron, S. Delwart, F. Cabot, J. Boutin, M. Es-
corihuela, J. Font, N. Reul, C. Gruhier, S. E. Juglea, M. R. Drinkwater, A. Hahne,
M. Martín-Neira, and S. Mecklenburg. The smos mission: New tool for monitor-
ing key elements ofthe global water cycle. Proceedings of the IEEE, 98(5):666–
687, 2010.

[6] I. M. da Fonseca, D. A. Rade, L. C. S. Goes, and T. de Paula Sales. Attitude and
vibration control of a satellite containing flexible solar arrays by using reaction
wheels, and piezoelectric transducers as sensors and actuators. Acta Astronautica,
139:357 – 366, 2017.

[7] M. Benosman. Control of flexible manipulators: A survey. Robotica, 22:533–545,
2004.

[8] V. Dubanchet. Modélisation et contrôle d’un robot spatial flexible pour la capture
d’un débris en rotation. Ph.D thesis ISAE Toulouse, 2016.

[9] G. Dogangil, B. L. Davies, and F. Rodriguez y Baena. A review of medical robotics
for minimally invasive soft tissue surgery. Proceedings of the Institution of Me-
chanical Engineers, Part H: Journal of Engineering in Medicine, 224(5):653–679,
2010.

139



Bibliography

[10] S. Adhikari and S. Bhattacharya. Dynamic analysis of wind turbine towers on
flexible foundations. Shock and Vibration, 19:37–56, 2012.

[11] W. He and S. Ge. Vibration control of a nonuniform wind turbine tower via distur-
bance observer. IEEE/ASME Transactions on Mechatronics, 20:237–244, 2015.

[12] Z. Wu. Survey on recent designs of compliant micro-/nano-positioning stages.
Actuators, 7, 2018.

[13] M. Boudaoud, Y. Haddab, and Y. Le Gorrec. Modeling and optimal force control
of a nonlinear electrostatic microgripper. IEEE/ASME Transactions on Mecha-
tronics, 18(3):1130–1139, 2013.

[14] B. Mauzé, R. Dahmouche, G. J. Laurent, A. N. André, P. Rougeot, P. Sandoz,
and C. Clévy. Nanometer precision with a planar parallel continuum robot. IEEE
Robotics and Automation Letters, 5(3):3806–3813, 2020.

[15] S.D. Zwart. Scale modelling in engineering: Froude’s case. In Philosophy of
Technology and Engineering Sciences, Handbook of the Philosophy of Science,
pages 759–798. North-Holland, 2009.

[16] A. van der Schaft and D. Jeltsema. Port-Hamiltonian systems theory: an introduc-
tory overview. Foundations and Trends in Systems and Control, 1(2-3):173–378,
2014.

[17] V. Duindam, A. Macchelli, S. Stramigioli, and H. Bruyninckx eds. Modeling and
Control of Complex Physical Systems - The port-Hamiltonian Approach. Springer,
2009.

[18] A.J. van der Schaft and B.M. Maschke. Hamiltonian formulation of distributed-
parameter systems with boundary energy flow. Journal of Geometry and Physics,
42(1):166–194, 2002.

[19] A. Macchelli, A.J. van der Schaft, and C. Melchiorri. Port-Hamiltonian formula-
tion of infinite dimensional systems I.modeling. In Proceedings of the 43rd IEEE
Conference on Decision and Control, volume 4, pages 3762–3767, 2004.

[20] Markus Schöberl and Andreas Siuka. Jet bundle formulation of infinite-
dimensional port-hamiltonian systems using differential operators. Automatica,
50(2):607–613, 2014.

[21] Y. Le Gorrec, H.J. Zwart, and B. Maschke. Dirac structures and boundary control
systems associated with skew-symmetric differential operators. SIAM Journal on
Control and Optimization, 44(5):1864–1892, 2005.

[22] J. Villegas. A port-Hamiltonian approach to distributed parameter systems. Ph.D
thesis Universiteit Twente, 2007.

140



Bibliography

[23] B. Augner. Stabilisation of infinite-dimensional port-Hamiltonian systems via dis-
sipative boundary feedback. Ph.D thesis Bergische Universität Wuppertal, 2018.

[24] B. Jacob and H.J. Zwart. Linear port-Hamiltonian Systems on Infinite-dimensional
Spaces. Number 223 in Operator Theory: Advances and Applications. Springer
Verlag, 2012.

[25] J. A. Villegas, H.J. Zwart, Y. Le Gorrec, B. Maschke, and A. J. van der Schaft.
Stability and stabilization of a class of boundary control systems. In Proceedings
of the 44th IEEE Conference on Decision and Control, pages 3850–3855, 2005.

[26] B. Augner and B. Jacob. Stability and stabilization of infinite-dimensional linear
port-Hamiltonian systems. Evolution Equations and Control Theory, 3:207–229,
2014.

[27] H. Ramirez, Y. Le Gorrec, A. Macchelli, and H.J. Zwart. Exponential stabilization
of boundary controlled port-Hamiltonian systems with dynamic feedback. IEEE
Transactions on Automatic Control, 59(10):2849–2855, 2014.

[28] H. Ramirez, H.J. Zwart, and Y. Le Gorrec. Stabilization of infinite dimensional
port-Hamiltonian systems by nonlinear dynamic boundary control. Automatica,
85:61 – 69, 2017.

[29] A. DeLuca and B. Siciliano. Closed-form dynamic model of planar multi-
link lightweight robots. IEEE Transactions on Systems, Man, and Cybernetics,
21(4):826–839, 1991.

[30] J.A. Perez, D. Alazard, T. Loquen, C. Pittet, and C. Cumer. Flexible multi-
body system linear modeling for control using component modes synthesis and
double-port approach. Journal of Dynamical systems, Measurement and Control,
138(12):121004:1–16, 2016.

[31] J. Junkins and Y. Kim. Introduction to Dynamics and Control of Flexible Struc-
tures. Education Series. American Institute of Aeronautics and Astronautics, 1993.

[32] A. Macchelli, C. Melchiorri, and S. Stramigioli. Port-based modeling of a flexible
link. IEEE Transactions on Robotics, 23(4):650–660, 2007.

[33] A. Macchelli and C. Melchiorri. Port-based simulation of flexible multi-body sys-
tems. In Proceedings of the 17th IFAC World Congress, volume 41, pages 15672–
15677, 2008.

[34] M. Wang, A. Bestler, and P. Kotyczka. Modeling, discretization and motion con-
trol of a flexible beam in the port-Hamiltonian framework. IFAC-PapersOnLine,
50(1):6799–6806, 2017.

[35] A. Mattioni, Y. Wu, and Y. Le Gorrec. Infinite dimensional model of a double
flexible-link manipulator: The port-Hamiltonian approach. Applied Mathematical
Modelling, 83:59–75, 2020.

141



Bibliography

[36] P. C. Parks. A.M. Lyapunov’s stability theory - 100 years on. IMA Journal of
Mathematical Control and Information, 9(4):275–303, 1992.

[37] W. He and S. S. Ge. Dynamic modeling and vibration control of a flexible satellite.
IEEE Transactions on Aerospace and Electronic Systems, 51(2):1422–1431, 2015.

[38] R. Tucker and C. Wang. On the effective control of torsional vibrations in drilling
systems. Journal of Sound and Vibration, 224:101–122, 1999.

[39] Ö. Morgül. Orientation and stabilization of a flexible beam attached to a rigid
body: planar motion. IEEE Transactions on Automatic Control, 36(8):953–962,
1991.

[40] M.S. de Queiroz, D.M. Dawson, and F. Zhang. Boundary control of a rotating
flexible body-beam system. pages 812–817, 1997.

[41] M. S. de Queiroz, D. M. Dawson, M. Agarwal, and F. Zhang. Adaptive nonlinear
boundary control of a flexible link robot arm. IEEE Transactions on Robotics and
Automation, 15(4):779–787, 1999.

[42] Z.H. Luo and D.X. Feng. Nonlinear torque control of a single-link flexible robot.
Journal of Robotic Systems, 16(1):25–35, 1999.
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Résumé : L’objectif de cette thèse est
de fournir un cadre mathématique permet-
tant d’expliciter les modèles dynamiques d’une
classe de mécanismes flexibles, de concevoir
des lois de commandes adaptées et d’analyser
le comportement asymptotique en boucle fer-
mée qui en résulte. D’un point de vue mathé-
matique, les parties flexibles sont décrites par
des équations aux dérivées partielles (EDP),
alors que la dynamique des parties rigides est
décrite par des équations aux dérivées ordi-
naires (EDO). Par conséquent, le modèle global
est décrit par un ensemble mixte de EDO-
EDP (m-EDO-EDP), qui est etudié dans cette
thèse en utilisant l’approche hamiltonienne à
ports combinée à la théorie des semi-groupes.
Tout d’abord, nous définissons une procédure
rigoureuse basée sur le principe de moindre ac-
tion afin d’établir le modèle des mécanismes

avec d’éventuels composants flexibles, en four-
nissant plusieurs exemples illustratifs. Les par-
ties à paramètres distribués sont modélisées
comme des systèmes de contrôle frontière uni-
dimensionnels. Dans un second temps, dif-
férentes lois de commande stabilisantes sont
synthétisées sur une classe de systèmes m-
EDP-EDO linéaires. Les lois de commande
proposées permettent d’atteindre une stabilité
asymptotique ou exponentielle. Enfin, nous
nous intéressons au problème de contact entre
un bras rotatif et son environnement dans le cas
où le système en rotation est considéré comme
étant rigide ou flexible. Puisque ce système
présente des changements instantanés dans les
temps d’impact, nous étudions ce problème à
l’aide de la théorie de commutation appliquée à
des systèmes de dimensions infinie.

Title : Modelling and stability analysis of flexible robots: a distributed parameter port-
Hamiltonian approach
Keywords : Port Hamiltonian systems, Control design, Distributed parameter systems,
Modelling

Abstract : The objective of this thesis is
to provide a mathematical framework that al-
lows to explicit the dynamical model of a class
of flexible mechanisms, to design their con-
trol law and to analyze the resulting closed
loop asymptotic behaviour. From a mathe-
matical point of view, the flexible parts are
distributed parameter systems whose dynamics
are described by Partial Differential Equations
(PDE), while the dynamics of the rigid parts
are described by Ordinary Differential Equation
(ODE). Therefore, the total model is described
by a mixed set of ODE-PDE (m-PDE-ODE).
For studying these dynamic models, this thesis
uses the port-Hamiltonian framework combined
with the infinite-dimensional semigroup theory.
First, we define a rigorous procedure based
on the Least Action Principle for deriving the
model of mechanisms with possible flexible

components, providing several illustrative ex-
amples. The general class of nonlinear systems
enclosing all the proposed examples is shown
to be passive with respect to its mechanical en-
ergy. In this class of systems, the distributed pa-
rameter parts are modelled as one dimensional
boundary control systems. Second, we restrict
ourselves to a linear class of m-ODE-PDE sys-
tems for which we propose different control
laws. We show that the proposed control laws
allow achieving asymptotic or exponential sta-
bility. Finally, a rotating arm that enters in con-
tact with the external environment is studied in
case the link is considered as being both rigid
or flexible. Since this system exhibits instant
changes in the impact times, we study this prob-
lem with the help of switching theory applied to
infinite dimensional systems.
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