
HAL Id: tel-03455127
https://theses.hal.science/tel-03455127

Submitted on 29 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Network-wide intrusion detection through statistical
analysis of event logs : an interaction-centric approach

Corentin Larroche

To cite this version:
Corentin Larroche. Network-wide intrusion detection through statistical analysis of event logs : an
interaction-centric approach. Applications [stat.AP]. Institut Polytechnique de Paris, 2021. English.
�NNT : 2021IPPAT041�. �tel-03455127�

https://theses.hal.science/tel-03455127
https://hal.archives-ouvertes.fr

574

N
N

T
:2

02
1I

P
PA

T0
41 Network-Wide Intrusion Detection

through Statistical Analysis of Event
Logs: an Interaction-Centric Approach

Thèse de doctorat de l’Institut Polytechnique de Paris
préparée à Télécom Paris

École doctorale n◦574 Ecole Doctorale de Mathématiques Hadamard (EDMH)
Spécialité de doctorat : Mathématiques aux interfaces

Thèse présentée et soutenue à Palaiseau, le 25 octobre 2021, par

CORENTIN LARROCHE

Composition du Jury :

Éric Totel
Professeur, Télécom SudParis Président

Nick Heard
Professeur, Imperial College London Rapporteur

Fabrice Rossi
Professeur, Université Paris-Dauphine Rapporteur

Isabelle Chrisment
Professeure, Télécom Nancy Examinatrice

Stephan Clémençon
Professeur, Télécom Paris Directeur de thèse

Johan Mazel
Docteur, ANSSI Encadrant de thèse

Anaël Beaugnon
Docteure, Roche Invitée

iii

Remerciements

First of all, I would like to thank Nick Heard and Fabrice Rossi for the time
they have devoted to reviewing this thesis. I was truly honored to see the effort they
put in exploring the depths of my research work, and the discussions we had during
the defense were both pleasing and inspiring. Je remercie également Éric Totel et
Isabelle Chrisment d’avoir accepté de participer à mon jury de thèse, joignant ainsi leur
expertise sur les questions de sécurité numérique aux considérations mathématiques
et statistiques soulevées par les autres membres.

Mes remerciements suivants vont naturellement à Stephan Clémençon et Johan
Mazel pour leur encadrement tout au long de ce chemin sinueux mais tellement en-
richissant. Cette thèse fut pour moi l’occasion de découvrir un grand nombre de sujets,
et si j’en ai retiré une somme inestimable de connaissances nouvelles, c’est en grande
partie grâce à eux. Je les remercie sincèrement pour leur aide (tant scientifique que
logistique) et pour leur confiance. Je n’oublie pas non plus ce que la réussite de ce
projet doit à Anaël Beaugnon, de par son investissement dans le suivi de la thèse et
son regard toujours éclairé sur mes travaux, mais aussi parce qu’elle est à l’origine de
tout : le stage qu’elle m’a permis d’effectuer à l’ANSSI fut le début d’une longue et
belle aventure, et je lui en suis infiniment reconnaissant.

J’ai aussi une pensée pour les membres actuels et anciens de la SDO qui m’ont
fait bénéficier de leur immense savoir et de leurs intuitions sur le vaste sujet de la
détection d’intrusion. Géraud, Thibaut, Matthieu, Yohann, Aurélien, Marion, vous
avez chacun à votre façon contribué à l’orientation de mes recherches, et même si ce
n’est pas toujours évident, il y a bel et bien des traces de nos discussions dans les
développements plus ou moins éthérés qui composent ce manuscrit. Merci également
à ma hiérarchie à l’ANSSI, et notamment Pierre Chifflier, de m’avoir fait pleinement
confiance tout au long de cette thèse, me laissant explorer à ma guise toutes sortes
d’idées parfois un peu ésotériques.

Sur une note plus personnelle, je remercie chaleureusement ma famille et mes amis
pour leur soutien. Dans cette entreprise de longue haleine et non dénuée d’incertitudes
et autres angoisses, j’ai eu la chance d’être bien entouré et de pouvoir régulièrement
évacuer mes tracas dans la joie et la bonne humeur. Je vous prie respectueusement
de continuer à exister, et j’espère vivre encore bien des moments hors du temps avec
vous toutes et tous.

Enfin, j’adresse mes ultimes remerciements à Marie – pour tout, et notamment
d’avoir été à mes côtés dans les moments les plus durs. Achever cette thèse n’aura
assurément pas été facile, mais cela l’aurait été encore beaucoup moins sans toi, et si
je me réjouis d’avoir survécu à la tempête et de revenir enfin à une vie plus tranquille,
c’est en grande partie parce que tu es là pour la partager.

v

Contents

1 Introduction 1
1.1 Computer Network Monitoring and the Big Data Paradigm 1
1.2 Representing and Modelling Complex and Multi-Faceted Data 3

1.2.1 Building Abstract Representations for Complex Data 4
1.2.2 Statistical Modelling for Nonnumerical Data 5

1.3 Reliably Detecting Relevant Anomalies 7
1.3.1 Malicious Events Are Anomalous... 7
1.3.2 ...but Not All Anomalous Events Are Malicious 8

1.4 Contributions of this Thesis . 9

I Definitions and State of the Art 11

2 Events, Logs and Intrusions 13
2.1 Introduction . 13
2.2 A Generic Definition of Event Logs . 14

2.2.1 Multiplicity and Diversity of Existing Data Sources 14
2.2.2 Generically Defining Events as Polyadic Interactions 16
2.2.3 The Complex Nature of Event Logs and Resulting Challenges . 17

2.3 Intrusions from the Point of View of Event Logs 18
2.3.1 What Is an Intrusion? . 19
2.3.2 Formal Definition and Assumptions 20
2.3.3 Intrusion Detection as an Anomaly Detection Problem 23

2.4 A Practical Example: the LANL Dataset 24
2.4.1 Description . 24
2.4.2 Characteristics of Normal Activity 26
2.4.3 Characteristics of Malicious Activity 29

2.5 Conclusion . 31

3 A Taxonomy of Anomaly Detection Methods for Event Logs 33
3.1 Introduction . 33
3.2 Segmentation and Representation of the Data 35

3.2.1 Spatio-Temporal Segmentation 35
3.2.2 Representation through Mathematical Objects 36

3.3 Anomaly Detection and Underlying Generative Models 40
3.3.1 Combinatorial Aspect . 40
3.3.2 Temporal Aspect . 42
3.3.3 Heterogeneous Aspect . 44

3.4 Conclusion . 46

vi

II A Statistical Model for Event Logs 49

4 Anomaly Detection for Heterogeneous Polyadic Interactions 51
4.1 Introduction . 51
4.2 Statistical Modelling and Anomaly Detection for Combinatorial Data . 53

4.2.1 Generic Problem and Particular Cases 53
4.2.2 Statistical Models and Dimensionality Reduction 54
4.2.3 Anomaly Detection Methods for Polyadic Interactions 61
4.2.4 The Cadence Model – Description and Limitations 64
4.2.5 An Improved Conditional Anomaly Detection Algorithm 66

4.3 Modelling Heterogeneous Interactions as a Multi-Task Learning Problem 67
4.3.1 Extending the Framework to Heterogeneous Interactions 68
4.3.2 A Brief Introduction to Multi-Task Learning 69
4.3.3 Application – Modelling Heterogeneous Interactions 71

4.4 Experiments . 73
4.4.1 Experimental Setup . 73
4.4.2 Results and Discussion . 75

4.5 Conclusion . 78

5 Latent Space Modelling for Nonstationary Interaction Streams 81
5.1 Introduction . 81
5.2 Preliminaries . 82

5.2.1 Hidden Markov Models and Bayesian Filtering 83
5.2.2 Application to Interaction Streams: the Collaborative Kalman

Filter . 84
5.3 Handling the Nonstationarity of Event Logs 87

5.3.1 Two Main Sources of Nonstationarity 87
5.3.2 Adapting the Model through Recursive MAP Estimation 88
5.3.3 Putting It All Together – The Decades algorithm 90

5.4 Experiments . 91
5.4.1 Experimental Setup . 91
5.4.2 Results and Discussion . 92

5.5 Conclusion . 94

III From Noisy Anomalies to Reliable Alerts 97

6 Anomaly Score Denoising through Graph Signal Processing 99
6.1 Introduction . 99
6.2 Preliminaries . 100

6.2.1 Aggregating Binary Alerts: Clustering and Correlation 101
6.2.2 Building and Analyzing Event Graphs 102
6.2.3 Connections with Graph-Based Anomaly Score Denoising . . . 103

6.3 Building the Event Graph . 104
6.3.1 Goals and Constraints . 104
6.3.2 Entity-Event Graph and Event Similarity 104
6.3.3 From Event Logs to Event Graphs 106

6.4 Smoothing Signals on the Event Graph 107
6.4.1 Graph Signal Processing and the Heat Kernel 107
6.4.2 Message Passing and Weisfeiler-Lehman Schemes 108

6.5 Experiments . 109

vii

6.5.1 Experimental Setup . 109
6.5.2 Results and Discussion . 110

6.6 Conclusion . 116

7 Detecting Clusters of Anomalous Events 119
7.1 Introduction . 119
7.2 Cluster Detection, Scan Statistics and Alternatives 120

7.2.1 Problem Statement and Theoretical Results 120
7.2.2 Practical Detection Methods – Scan Statistics and Beyond . . . 122

7.3 Percolation Theory and Its Relevance to Cluster Detection 123
7.3.1 A Brief Introduction to Percolation Theory 123
7.3.2 Application to Cluster Detection: Theory and Practice 124

7.4 Two Percolation-Based Tests . 126
7.4.1 Looking for Deviations of the Percolation Process 126
7.4.2 Adding a Denoising Step – The Diffusion-Percolation Test . . . 128

7.5 Experiments on Synthetic Data . 128
7.5.1 Experimental Setup . 128
7.5.2 Results and Discussion . 129

7.6 Application to Event Graphs . 130
7.6.1 Experimental Setup . 131
7.6.2 Results and Discussion . 132

7.7 Conclusion . 133

8 Conclusion 135
8.1 Summary . 135
8.2 Perspectives . 136

A Résumé des contributions 139
A.1 Supervision des réseaux informatiques et données massives 139
A.2 Représentation et modélisation de données complexes et multi-facettes 142

A.2.1 Construction d’une représentation abstraite pour des données
complexes . 142

A.2.2 Modélisation statistique de données non-numériques 143
A.3 Détection robuste d’anomalies pertinentes 146

A.3.1 Les événements malveillants sont anormaux... 146
A.3.2 ...mais tous les événements anormaux ne sont pas malveillants . 147

A.4 Contributions de cette thèse . 148

ix

List of Figures

1.1 Event log processing pipeline and corresponding parts of the thesis. . . 10

2.1 Examples of events coming from different sources: a Windows authenti-
cation event (2.1a), a DNS request recorded by Zeek (2.1b) and NetFlow
records of a DNS exchange (2.1a). 15

2.2 Two events represented as polyadic interactions: a process creation (e1,
in orange) and a remote access to a file (e2, in blue). 17

2.3 A simple example of an intrusion. Red dashed lines symbolize events,
and the presence of the attacker’s picture next to a computer or a user
account means that this entity is under the attacker’s control. 21

2.4 Number of events of each type observed hourly in the LANL dataset. . 25
2.5 Distribution of the number of events involving a given entity for each

entity type. 26
2.6 Distribution of the number of events involving a given entity tuple for

each event type. 26
2.7 Number of new entities observed on each day in the LANL dataset,

aggregated for all entity types (2.7a) and by entity type (2.7b). 27
2.8 Jaccard index of the entity sets observed on two consecutive days, ag-

gregated for all entity types (2.8a) and by entity type (2.8b). 27
2.9 Number of new entity tuples observed on each day in the LANL dataset,

aggregated for all event types (2.9a) and by event type (2.9b). 28
2.10 Jaccard index of the entity tuple sets observed on two consecutive days,

aggregated for all event types (2.10a) and by event type (2.10b). . . . 28
2.11 Proportion of red team events for each day in the LANL dataset. . . . 29
2.12 Entity graph induced by the red team events from the LANL dataset.

Each node is an entity, and edges indicate co-occurrence of two entities
in a red team event. Nodes and edges are colored according to the date
of their first appearance in a red team event. 30

3.1 Perimeter of our literature review. 34
3.2 Processing pipeline associated with statistical intrusion detection in

event logs. 34
3.3 Illustration of the two main paradigms for handling combinatorial events:

given a set of events seen as interactions between entities (Figure 3.3a),
aggregation-based models (Figure 3.3b) consider each entity extent as
an independent actor whose behavior is described by the events involv-
ing it, while interaction-based models (Figure 3.3c) factor in high-order
relationships between entities. 41

3.4 Illustration of the four possible pairs of assumptions about the tempo-
ral dimension of the data. Observations, denoted X•, follow different
distributions D•, and arrows between observations indicate statistical
dependencies. 43

x

3.5 Illustration of the two approaches to modelling heterogeneous events:
given inputs X1, . . . , Xd representing d event types, the first approach
(Figure 3.5a) directly merges X1, . . . , Xd into a joint model M, while
the second one (Figure 3.5b) builds d specialized modelsM1, . . . ,Md,
then aggregates their outputs into a unique one. 45

3.6 Taxonomy of anomaly detection methods for event logs. 46

4.1 Graphical models for two matrix factorization algorithms: probabilistic
matrix factorization [Mnih and Salakhutdinov, 2007] (Figure 4.1a) and
hierarchical Poisson factorization [Gopalan et al., 2015] (Figure 4.1b). . 56

4.2 Graphical model for Poisson tensor factorization [Chi and Kolda, 2012]. 59
4.3 Illustration of the entity embedding-based model of Chen et al. [Chen

et al., 2016]. 63
4.4 Illustration of the Cadence model [Amin et al., 2019]. 65
4.5 Computation of the estimated conditional probability pθ(vCe+1:Ne |

e, v1:Ce) for an event (here, a process creation, with Ce = 1 andNe = 3).
The involved entities are a host H, a user U and a process P 69

4.6 Truncated ROC curves with 95% confidence intervals obtained on the
LANL dataset. 76

4.7 Weights {weij} learned by our model on the LANL dataset, using the
log-unigram noise distribution. Vertical labels stand for entities being
predicted, while horizontal labels indicate entities being used for the
prediction. For instance, when predicting the destination of a remote
authentication, the model relies mostly on the authentication type, fol-
lowed by the user. 77

4.8 Area under the truncated ROC curve with 95% confidence interval
for several values of the latent space dimension D and the number of
negative samples K. 78

5.1 Graphical model for a hidden Markov model. 83
5.2 Graphical model for the collaborative Kalman filter. 85
5.3 Temporal evolution of the 99th and 99.9th percentiles of the average

anomaly score distribution, without any retraining (Figure 5.3a) and
with a retraining step at the end of each day (Figure 5.3b). 93

5.4 Detection rate at daily investigation budget B with 95% confidence
interval for several values of the budget B and the regularization hy-
perparameters λ0 and λ1. 94

6.1 Event-wise anomaly scores as a graph-structured signal: each vertex
stands for an event, and its color represents its anomaly score (darker
vertices represent more anomalous events). The vertex at the center
of the graph is either a false positive (Figure 6.1a) or a false negative
(Figure 6.1b). 100

6.2 A bipartite entity-event graph (Figure 6.2a) and its unimodal projection
onto the event set (Figure 6.2b). Entities (resp. events) are denoted A
through E (resp. 1 through 6). Notice that the set of events involving
one given entity forms a clique in the unimodal projection. 106

xi

6.3 Effect of the two chosen denoising tools on a Gaussian graph-structured
signal, with several hyperparameter values. The underlying graph is a
two-dimensional square lattice. The values of the signal are indepen-
dent and follow a standard centered normal distribution, except at the
center of the lattice where the mean is µ = 2. 107

6.4 Characteristics of the event graph for each of the three selected days,
with several values of K. 111

6.5 Degree distribution of the event graph for each of the three selected
days, with several values of K. 111

6.6 Empirical probability density function of the pairwise similarity func-
tion for edges of the event graph. The distribution is computed over
the edges of all three considered event graphs for several values of K. . 112

6.7 Subgraph induced by the red team events for each selected day (with
K=50). 113

6.8 AUC@1% with 95% confidence interval computed on synthetic signals
for increasing values of the denoising hyperparameters λ and R, with
several values of the number of neighbors K and the signal strength µ.
Results for λ = 0 or R = 0 correspond to the absence of denoising. . . 115

6.9 AUC@1% with 95% confidence interval computed on real anomaly
scores for increasing values of the denoising hyperparameters λ and
R, with several values of the number of neighbors K. Results for λ = 0
or R = 0 correspond to the absence of denoising. 117

7.1 Evolution of the fraction of vertices in the largest connected component
as p varies from 0 to 1, under H0 and various alternatives, for three
kinds of graphs: a two-dimensional square lattice (left), an Erdős-Rényi
random graph (center) and a Barabási-Albert preferential attachment
graph (right). 126

7.2 Area under the ROC curve for each evaluated method, with different
combinations of values of i, δ and µ. Dashes indicate unavailable results
due to excessive computation times. 130

7.3 Mean computation time (in seconds) for each evaluated method. . . . 131
7.4 Red team activity detection – Results obtained with our procedures on

the LANL event graphs, with synthetic anomaly scores. 132

A.1 Chaîne de traitement des journaux d’événements et parties correspon-
dantes de la thèse. 150

xiii

List of Tables

2.1 Entity types defined in the LANL dataset, along with their arities in
the whole dataset and in red team events only. 24

2.2 Events in the LANL dataset: defined event types, ordered types and
meaning of the involved entities, and counts (total event count and
number of unique entity tuples). The entity types are user (U), host
(H), authentication type (T) and process (P). 25

3.1 Selected contributions on statistical intrusion detection in event logs,
grouped by type of entity extent and time window length used for seg-
mentation. Note that strictly speaking, using zero-length time windows
amounts to considering singletons regardless of the entity extent. The
difference between cells in this column lies more on the modelling side,
see Section 3.3. 37

3.2 Selected contributions on statistical intrusion detection in event logs,
grouped according to their implicit assumptions about the two aspects
of the temporal dimension: absolute (stationary or not) and relative
(dependent or not). 44

4.1 Number of entities of each type in the reduced LANL dataset. 74
4.2 Number of events of each type in the reduced LANL dataset. 74
4.3 Detection performance obtained on the LANL dataset. Our method

(denoted MTL) is evaluated with three different noise distributions:
unigram, log-unigram and power-unigram (with the exponent α = .75).
The best score for each metric is in bold. 76

5.1 Characterization of statistical models related to collaborative Kalman
filtering. 86

5.2 Descriptive statistics on entities appearing in the days 9–33 of the
LANL dataset (test set) and not in the first 8 days (training set). The
proportions are defined with respect to the corresponding totals in the
test set. 92

5.3 Performance of Decades on the days 9–33 of the LANL dataset, with
and without retraining at the end of each day. Each metric is reported
along with the corresponding 95% confidence interval, with the best
score in bold. 93

6.1 Number of authentication events in the three selected days of the LANL
dataset. 110

6.2 Maximum increase in AUC@1% obtained by each method on synthetic
signals for each day and each value of the signal strength µ, with 95%
confidence interval. The maximum is taken over all values of K, λ and
R. The score of the best-performing method for each setting is in bold. 114

xiv

6.3 Maximum increase (or minimum decrease) in AUC@1% obtained by
each method on real anomaly scores for each day, with 95% confidence
interval. The maximum is taken over all values of K, λ and R. The
score of the best- (or least badly-) performing method for each setting
is in bold. 116

7.1 Theoretical results on cluster detection: conditions of asymptotic sepa-
rability and inseparability in the minimax sense. The mean µS,n of the
signal under HS for an ambient graph with n vertices is normalized as
µS,n = µn|S|−1/2 so that the signal strength µn > 0 is independent of
the size of S. 122

7.2 Definition of the subsets of days from the LANL dataset based on the
proportion δ of red team events, and size of each subset. 131

xv

List of Publications

• Corentin Larroche, Johan Mazel, and Stephan Clémençon. Percolation-Based
Detection of Anomalous Subgraphs in Complex Networks. In Proceedings of the
Symposium on Intelligent Data Analysis (IDA), 2020.

• Corentin Larroche, Johan Mazel, and Stephan Clémençon. Recent Trends in
Statistical Analysis of Event Logs for Network-Wide Intrusion Detection. In
Proceedings of the Conference on Artificial Intelligence for Defense (CAID),
2020.

• Corentin Larroche, Johan Mazel, and Stephan Clémençon. Anomalous Cluster
Detection in Large Networks with Diffusion-Percolation Testing. In Proceed-
ings of the European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning (ESANN), 2021.

• Corentin Larroche, Johan Mazel, and Stephan Clémençon. Dynamically Mod-
elling Heterogeneous Higher-Order Interactions for Malicious Behavior Detec-
tion in Event Logs. Preprint, 2021.

xvii

List of Abbreviations

APT Advanced Persistent Threat
C&C Command & Control
DNS Domain Name System
IDS Intrusion Detection System
IP Internet Protocol
SIEM Security Information and Event Management
TTPs Tactics, Techniques and Procedures
VPN Virtual Private Network

AUC Area Under the Curve
ROC Receiver Operating Characteristic
DR Detection Rate
FPR False Positive Rate
TPR True Positive Rate
SNR Signal-to-Noise Ratio

CKF Collaborative Kalman Filtering
GSP Graph Signal Processing
HMM Hidden Markov Model
HPF Hierarchical Poisson Factorization
LOC Largest Open Cluster
MAP Maximum A Posteriori
MTL Multi-Task Learning
MRF Markov Random Field
NCE Noise Contrastive Estimation
NNG Nearest Neighbor Graph
PMF Probabilistic Matrix Factorization
SGD Stochastic Gradient Descent
SVD Singular Value Decomposition

xix

List of Symbols

Global notations
[n] Set of integers from 1 to n
x1:n Set of elements {x1, . . . , xn}
� Element-wise product of two vectors
⊗ Outer product of two vectors
A> Transpose of matrix A
P(·) Power set of a set
| · | Cardinal of a set
Y X Set of functions between sets X and Y
1{·} Indicator function of an event
P[·] Probability of an event
E[·] Expected value of a random variable
V[·] Variance of a scalar random variable
p(·) Probability density or mass function
N (µ, σ2) Univariate normal distribution with mean µ and variance σ2

N (µ,Σ) Multivariate normal distribution with mean µ and covariance matrix Σ

Notations of Part I
U Set of entities
L Number of entity types
W Set of all event types
H Set of all possible events
Ne Number of entities involved in a type e event
Ωe Tuple of entity types involved in a type e event
Ξ Class of event sets
φ Mapping from a class of event sets into a set of mathematical objects
θ Parameters of a model (usually treated as a vector)
Θ Parameter space of a model
ψθ Anomaly scoring function for mathematical objects
fθ Anomaly scoring function for event sets
F(S) Entity graph induced by the event set S

Notations of Part II
Λ Class of entity subsets
Y Output space
T Interaction function
J Loss function
Y User-item rating matrix
U User latent factor matrix
V Item latent factor matrix
D Number of latent attributes
Y Interaction tensor
G Graph or hypergraph

xx

g Embedding map
h Link prediction function
ω = v1:` Interaction between ` entities
κ Inner compatibility function
κ`θ Compatibility function for the `-th involved entity
κe,`θ Compatibility function for the `-th involved entity in a type e event
Q Noise distribution
Q` Noise distribution for the `-th involved entity
Qe` Noise distribution for the `-th involved entity in a type e event
K Number of negative samples per training sample
C Number of context entities
Ce Number of context entities for type e events
xv Embedding of entity v
xTv Embedding of entity v at time step T
βe Latent factor of event type e
τ e` Type of the `-th entity involved in a type e event
σe,` Uncertainty associated with predicting the `-th entity involved in a

type e event
pv`|e,v1:`−1;θ Mid-p-value associated with the `-th entity involved in a type e event,

computed with parameter set θ

Notations of Part III
G Event graph
V Set of events (vertices of the event graph)
E Edge set of the event graph
n Number of vertices of G
X Signal observed over the event graph (anomaly scores of the events)
A Weighted adjacency matrix of G
M Row-normalized weighted adjacency matrix
L Laplacian of G
H Bipartite entity-event graph
U Entity set
d(v) Degree of vertex v
N(v) Neighborhood of vertex v
S Pairwise event similarity function
τ Time constant of the similarity function
K Number of neighbors included in the nearest neighbor event graph
H(λ) Heat kernel with diffusion time λ
X(r) Signal after r rounds of message passing
R Number of message passing iterations
γ Proportion of red team events in the neighborhood of a red team event
Λ Set of potential clusters
δ Proportion of vertices in the anomalous cluster
µ Signal strength
F0 Null probability distribution
F1 Alternative probability distribution
C(p) Size of the largest connected component of G at occupation

probability p
G(p) Subgraph induced by the occupied vertices at threshold p

in the canonical coupling
C(p) Largest connected component of G(p)

xxi

Gk k-th element of the imbedded Markov chain of the process {G(p)}p∈[0,1]

Ck Largest connected component of Gk
G(τ) Subgraph induced by the vertices vk ∈ V such that Xk ≥ τ
Q(τ) Largest connected component of G(τ)
Hk Subgraph induced by the vertices corresponding to the k smallest

values of the signal
Qk Largest connected component of Hk
Kc Location of the phase transition; smallest index k such that the

expected value of Ck is above
√
n

TG(X) Test statistic for cluster detection in the signal X observed over G

1

Chapter 1

Introduction

1.1 Computer Network Monitoring and the Big Data Paradigm

What do Microsoft Windows Security Auditing, NetFlow and syslog have in common?
One possible answer could be the following: while none of them was originally designed
for network-wide intrusion detection through statistical methods, they all ended up
being used for this purpose.

The syslog protocol was developed in the 1980s to allow all sorts of devices in a
given computer network to report events to a central logging server [Gerhards et al.,
2009]. Its main purpose was to distinguish the program generating events from those
reporting and storing them, making it easier for developers to make their programs
send out relevant information about their execution. It was thus not specifically meant
to enable intrusion detection, nor was it designed to make events suited for statistical
modelling. However, modular and centralized logging is a key component of network-
wide security monitoring. Similarly, the NetFlow protocol was introduced in the
1990s to enable traffic monitoring at the network layer1 for purposes such as billing
and troubleshooting [Claise et al., 2004]. Even though its creators were probably
not pursuing this specific goal, large-scale statistical analysis of NetFlow data quickly
became a prominent research direction in the network security community [Lakhina
et al., 2004]. As for Windows Security Auditing, it first appeared in 1996 when the
notion of event source was introduced in Windows NT 4.0, allowing for a distinction
between security-related events (such as logons and changes to system files) and other
purposes of logging, such as troubleshooting. Just like NetFlow data, Windows event
logs were not originally designed for large-scale statistical modelling, but the wide
range of fine-grained information they contain eventually made them an enthralling
prey for an ever-growing data mining community.

In the words of Efron and Hastie, "[s]omething important changed in the world
of statistics in the new millenium" [Efron and Hastie, 2016]. A typical data analysis
problem used to be the clinical trial: given a specific question (to wit, does that drug
work as it is supposed to?), the statistician would formalize it in mathematical terms,
come up with a well-thought-out procedure to collect the exact amount of necessary
data as predicted by the theory, and finally use these observations to answer the
question at the desired confidence level. These were the days of scarce data and
limited computing power – Efron and Hastie again:

Before the computer age there was the calculator age, and before "big data" there
were small data sets, often a few hundred numbers or fewer, laboriously collected
by individual scientists working under restrictive experimental constraints.

1In the 7-layer Open Systems Interconnection model, the network layer is the third one. It handles
addressing and routing between different local networks. The Internet Protocol (IP) is a well-known
network layer protocol.

2 Chapter 1. Introduction

Needless to say, anomalous behavior detection through large-scale statistical mod-
elling of NetFlow records does not exactly fit in this landscape. Beyond the obvious
difference in data volumes, this approach can indeed be seen as the methodological
opposite of the clinical trial: data collection came first, and only afterwards did statis-
ticians start to wonder what they could do with this new information source. Hence
a natural question: how did the realm of statistics get turned upside down? Efron
and Hastie’s answer could come down to one word: computers. Also, letting them
elaborate a bit more:

[C]omputer-based technology allows scientists to collect enormous data sets, or-
ders of magnitude larger than those that classic statistical theory was designed
to deal with; huge data demands new methodology, and the demand is being met
by a burst of innovative computer-based statistical algorithms.

How computers enable statistical methodologies that could barely be fantasized in
the calculator age is rather straightforward. The mechanisms through which com-
puters provide statisticians with virtually infinite amounts of data, however, deserve
further attention. Indeed, rather than "computers", the key word here might well be
"digitalization".

Digitalization2 is here defined as the process of redesigning all sorts of activities
through the use of computers (or similar devices, such as smartphones). For instance,
using streaming services to listen to music instead of acquiring physical records is an
occurrence of digitalization, and buying CDs online rather than in a physical store
is another one. What matters here is this: as more and more activities and aspects
of everyday life start being mediated by computers, more and more data becomes
available about pretty much everything. Indeed, due to computers’ innate ability
to record everything happening to them, gathering data about any kind of activity
becomes trivial once it has been digitalized: no more costly experimental setups, no
more thorough pondering about what should be included in the data before collecting
them, all we may want to know is readily accessible. Of course, starting to produce all
sorts of records before figuring out how they could be used raises new issues [Jagadish
et al., 2014]: not just volume, but also heterogeneity, impractical data formats, errors
and missing values.

Computer event logs, such as Windows Security Auditing or NetFlow records
mentioned above, are yet a different brand of digitalization byproducts: even better
than computer-mediated activities, they relate the lives of computers themselves. Just
like any computer-age data source, they contain a fair amount of valuable information
concealed by their jaw-dropping volume and baroque format. It is thus somewhat
tempting to feed them to some of the latest statistical algorithms and see what comes
out – but to what end exactly?

It turns out that the answer to that question also comes from global and some-
times not-so-well-thought-out digitalization. Indeed, as more and more aspects of
our lives migrated to the Internet, they incidentally became vulnerable to the ever-
growing threat of cyberattacks. The worldwide spread of computer worms such as
ILOVEYOU [Knight, 2000] or Slammer [Moore et al., 2003] hinted towards the dis-
ruptive potential of nefarious use of computers, but it was only the beginning. Soon
enough, various threat actors started targeting equally diverse victims for all sorts of
reasons. Advanced intruders with suspected ties to nation states were caught stealing
intellectual property and other sensitive data from firms and governments [Mandiant,

2Not to be confused with digitization, which is the process of converting information into a digital
format – for instance, scanning a handwritten document.

1.2. Representing and Modelling Complex and Multi-Faceted Data 3

2013, FireEye, 2015], while others used their sophisticated skills for sabotage [Kerr
et al., 2010, Park and Walstrom, 2017] or financial gain [Trautman and Ormerod,
2018]. Criminals quickly found opportunities in cyberspace too, with data theft and
extortion operations ending up in gigantic leaks of private information [NCSC, 2017],
considerable financial losses [IBM, 2020] and, incidentally, deaths [Wetsman, 2020].

In the face of this swarming threat landscape, defenders have to step up their game.
Hardening their networks and systems so as to make them more difficult to breach is
a necessary, but not sufficient protection: with enough skills and determination, an
intruder can always find a way in. They must therefore be able to detect intrusions
as quickly as possible, ideally as soon as they happen. This is where event logs come
in handy: since they record everything going on within a protected network, they
should in particular contain traces of any ongoing malicious activity. Unfortunately,
they also contain overwhelming amounts of irrelevant information – so much of it that
more often than not, nobody actually bothers looking at them. As a consequence,
intruders can manage to stay undetected for a long time despite event logs providing
blatant evidence of their presence: 207 days on average according to IBM’s 2020 Cost
of a Data Breach Report [IBM, 2020].

This situation creates a need for more sophisticated event log analysis tools, and
statistical methods developed in the last few decades as a result of the growing avail-
ability of large and diverse datasets appear as obvious candidates. In a way, the
cycle is complete: after years of sparkling statistical innovation driven by ubiquitous,
digitalization-powered data collection, all these brand new tools are now needed to
alleviate some of the less desirable side effects of that very same digitalization. This
thesis is our modest contribution to this ongoing effort. Drawing inspiration from var-
ious research fields such as recommendation systems, bioinformatics, computer vision
or dynamical systems, it aims to build effective tools enabling malicious behavior de-
tection in event logs. This is no easy task, and it actually entails several subproblems
which are discussed in the following sections. First of all, feeding event logs to a sta-
tistical model is not as straightforward as it sounds: these data are in fact peculiarly
complex, as explained in Section 1.2. In addition, defining malicious behavior from a
data-centric point of view is also nontrivial, let alone detecting it. Statistical intrusion
detection methods typically circumvent this issue by resorting to anomaly detection,
as discussed in Section 1.3. Our contributions, summarized in Section 1.4, cover both
of these aspects.

1.2 Representing andModelling Complex andMulti-Faceted
Data

Two main challenges appear when trying to build a statistical model for event logs.
First, the complexity of the data makes it hard to come up with an appropriate
mathematical representation. Indeed, none of the usual mathematical objects studied
in statistics and data mining fully captures the multiple facets of event logs, which
we briefly present in Section 1.2.1. Secondly, once a suitable representation has been
designed, building an appropriate statistical model also takes some craft: as discussed
in Section 1.2.2, factoring in all the characteristics of the data requires an ad hoc
model, which also raises the need for adequate inference procedures.

4 Chapter 1. Introduction

1.2.1 Building Abstract Representations for Complex Data

The notion of event log considered in this thesis encompasses various real-world data
sources, including the Windows Security Auditing and NetFlow records mentioned
above. While differences exist between these practical instances, we focus on what
they have in common so as to make our contributions broadly applicable. In particular,
the main specificity of all the data sources we consider is that they do not naturally
fit in any usual mathematical framework.

Event logs are multi-faceted. Event logs are primarily combinatorial data, in that
each event is defined by a finite number of fields mostly containing discrete values:
user and host names, IP addresses, and so on. However, they are also intrinsically
heterogeneous: the contents of the fields, as well as events themselves, can be of
different types. In other words, a user is not equivalent to an IP address, and a
process creation event does not have the same meaning as a NetFlow record of a
communication between two hosts. Finally, each event is associated with a specific
timestamp, and the probability of observing a given event is not necessarily constant in
time: it may undergo seasonal variations as well as long-term drift. Besides, statistical
dependencies can be expected to exist between successive events: for instance, the
probability of a process creation event involving user U and host H should intuitively
be higher if U recently logged on to H. These two properties endow event logs with
a temporal dimension.

Although none of these three characteristics is new to the seasoned statistician,
observing all three of them simultaneously is less frequent. As a consequence, none
of the usual mathematical objects perfectly represents these multiple facets: matrices
and tensors can for instance appropriately encode combinatorial data, but consid-
ering events of multiple types containing a variable number of fields makes them
inadequate. Similarly, point processes and time series may well capture the temporal
aspect of event sequences, but cramming a combinatorial dimension into either of
these frameworks is nontrivial.

Two ways to bridge the gap. Since event logs are not adequately represented
by usual mathematical objects, existing statistical modelling tools cannot be used di-
rectly: the significant semantic gap between the data and the model must be bridged.
Most existing work circumvents this problem by adapting the data to the model, sim-
plifying them enough to make them fit into a standard theoretical framework [Yen
et al., 2013, Legg et al., 2015, Hu et al., 2017]. This leads to significant informa-
tion loss, in turn bounding the performance of the whole detection procedure: once
relevant aspects of the data have been erased, even the smartest algorithm will be
unable to recover them. Therefore, recent contributions have developed a more com-
prehensive approach, coming up with better suited models instead of oversimplifying
the data [Tuor et al., 2018, Amin et al., 2019, Leichtnam et al., 2020b]. In particular,
significant progress has been made towards adequately modelling the combinatorial
dimension of events. Building upon these recent advances, we propose an abstract
representation of event logs revolving around the notion of interaction.

An interaction-centric approach. The fundamental intuition underpinning this
thesis is that events should be seen as interactions between entities. In addition to em-
phasizing their combinatorial aspect, this description also suggests that events result
from intertwined individual behaviors. In other words, it relies on the entity-event
duality: past events help us infer the role and usual behavior of each entity (user,

1.2. Representing and Modelling Complex and Multi-Faceted Data 5

host, process, etc.), and future events can then be predicted using this knowledge.
What mainly motivates this approach is that malicious events are often rare interac-
tions. For instance, an intruder using stolen credentials to explore a breached network
should generate several unusual interactions between the corresponding user account,
a source host and various destination hosts. Focusing on interactions thus seems rele-
vant with respect to the task at hand, namely intrusion detection. However, it raises
some issues in terms of statistical modelling.

1.2.2 Statistical Modelling for Nonnumerical Data

Modelling interactions between entities at a large scale is a relatively recent topic in
statistics – one that typically gained traction with digitalization. Beyond the ques-
tions raised by the combinatorial nature of such data, we also need to include the
two additional characteristics we identified in the previous section, namely the het-
erogeneous and temporal aspects of event logs. This makes designing a suitable model
particularly tricky.

Modelling combinatorial data. Broadly speaking, a combinatorial random vari-
able is a discrete random variable defined over a combinatorial set, such as the power
set of a finite set [Bekkerman et al., 2006]. The main challenge arising when mod-
elling such variables stems from the high dimensionality of the sample space. Taking
an event log-related example, let U be a set of users, S be a set of source hosts and
D be a set of destination hosts. An authentication event can then be seen as a triple
T = (U, S,D) ∈ U ×S×D indicating that user U logged on to D from S. Suppose we
are trying to estimate the distribution of T from a set of n past events {(ui, si, di)}ni=1.
In a real-world computer network, each of the sets U , S and D can be expected to
contain thousands (if not tens of thousands) of elements, meaning that the number
of possible values of T ranges between 109 and 1012. Without any assumption on the
underlying probability distribution, the number of samples n must be huge for any
kind of inference to be reasonably reliable. Even worse, the size of the sample space
grows exponentially with the number of entities involved in the considered events,
which has no reason to be as small as three.

In order to build a reliable model for such data, some sort of dimensionality reduc-
tion must be performed. To that end, we resort to latent space modelling [Turnbull,
2020]. The key intuition behind this approach is that the propensity of a given en-
tity to interact with others depends on a small number d of latent attributes of that
entity. Coming back to the authentication example, let g : U ∪ S ∪ D → Rd be the
unknown function mapping each entity onto its attribute vector. A sensible model for
the random triple T can be defined as

∀(u, s, d) ∈ U × S ×D, P
[
T = (u, s, d)

]
= f

(
g(u), g(s), g(d)

)
, (1.1)

with f : Rd × Rd × Rd → [0, 1] some affinity function. Inferring the full distribution
of T then mostly consists in estimating the d latent attributes of each entity, leading
to d(|U| + |S| + |D|) parameters to learn – a steep decrease from the |U| · |S| · |D|
parameters associated with naive estimation of the probability mass function.

Latent space models have been proposed for various kinds of interaction data,
including some related to event logs and intrusion detection [Turcotte et al., 2016a,
Amin et al., 2019, Lee et al., 2021, Sanna Passino et al., 2020]. However, they mostly
focus on dyadic interactions, which is problematic when dealing with event logs: as
evidenced by the authentication example above, events cannot reasonably be assumed

6 Chapter 1. Introduction

to involve only two entities. Therefore, part of our work (presented in Chapter 4)
consists in designing a latent space model for polyadic interactions.

Dealing with heterogeneity. Another specificity of event logs in comparison with
other kinds of interactions is their heterogeneity, whose main practical manifestation
is the existence of several event types. This specificity should not be ignored when
designing a statistical model: as a typical example, just because user U is likely to log
on to server S does not mean that U is expected to modify system files on S. Therefore,
our latent space model must factor in the differences between event types. Reusing
the notations from Equation 1.1, it seems reasonable to do so by making the affinity
function f specific to one event type while reusing the same latent attribute map g
across all types. This intuition comes from the field of multi-task learning [Caruana,
1997]: simultaneously learning to perform several related prediction tasks has been
observed to yield better performance for each single task than learning to perform it
independently. A common interpretation of this phenomenon is that related tasks act
as an inductive bias. In other words, by looking for a model which performs well at
all tasks, multitask learning algorithms restrain the class of possible models for each
task, leading to more efficient learning. Coming back to event logs and latent space
models, looking for latent attributes that explain the behavior of an entity across all
event types can be expected to yield a more realistic model.

The main challenge in multi-task learning is to find the right balance between
different tasks. Indeed, jointly minimizing the error made by the model across several
tasks can be formulated as multi-objective optimization problem, which is signifi-
cantly more complex than the usual setting of single-task learning. For instance, a
given update to user U ’s latent attributes may lead to better predictions for U ’s au-
thentications, but worse ones for process creations involving U . What should we do
in such a situation? In order to answer that question and design a suitable learn-
ing procedure for our model, we draw inspiration from previous work on multi-task
learning [Kendall et al., 2018].

Adapting to nonstationary data streams. Finally, the temporal dimension of
event logs should be considered when building a statistical model. In particular, pat-
terns of interaction inside a monitored network can hardly be assumed to remain
constant over time: users take on new organizational roles or start working on new
projects, servers start hosting new applications, and so on. In addition, new enti-
ties frequently appear – user accounts for new employees or new computers, typically.
Therefore, a static model could quickly become obsolete in a real-world security moni-
toring setting. Fortunately, latent space modelling naturally extends to nonstationary
interaction streams.

Indeed, since the probability of a given interaction only depends on the latent at-
tributes of the involved entities, keeping the model up to date simply requires tracking
the evolution of these latent attributes. Reusing once again the notations of Equa-
tion 1.1, this amounts to replacing the map g with a sequence {gt}t≥0, where each
t ≥ 0 represents a time step. This makes sense from an event log-oriented perspective:
changes in the observed interaction patterns result from entity-related modifications,
such as the apparition of a new host in the network or a user changing their habits.

In terms of inference, a parallel can be made between using observed events to
track the evolution of the latent map g and the more generic framework of hidden
Markov models. Indeed, events happening between time steps t− 1 and t can be seen
as observations drawn from an emission distribution Qt, which depends on the current
latent map gt. Similarly, the sequence {gt}t≥0 can be seen as a latent Markov process

1.3. Reliably Detecting Relevant Anomalies 7

characterized by some transition kernel P . Inferring the current latent map gt given
events observed up to time step t then boils down to a filtering problem. We leverage
this parallel in Chapter 5 to design an updating procedure for our latent space model.

1.3 Reliably Detecting Relevant Anomalies

Building a statistical model for event logs is a first step towards making something
useful out of them. However, it does not directly enable intrusion detection: some
additional work is required to dig up malicious behavior using our model. The key
idea is that intrusion-related events should be anomalous and thus be given a low
predicted probability by the model, as explained in Section 1.3.1. However, unusual
events happen constantly in real-world computer networks. As a result, simply looking
for unlikely events yields more false positives than true detections, and Section 1.3.2
presents the improvements we propose to alleviate this issue.

1.3.1 Malicious Events Are Anomalous...

What makes intrusion detection remarkably challenging is that malicious behavior
cannot be generically and reliably characterized: the only common trait of all its
instances is that the legitimate administrator of the targeted network does not want
them to happen, and this is never explicitly written in the logs. This essentially
leaves defenders with two options: gathering explicit descriptions of as many specific
malicious actions as possible, or trying to come up with an indirect but more general
characterization. This second approach is the one taken in this thesis.

An indirect characterization. The set of events that could theoretically be trig-
gered by malicious behavior is both extremely large and complex. Consider for in-
stance an intruder trying to breach the targeted network by collecting credentials
through a phishing campaign. After completing this first step, the intruder would
typically log on to a Virtual Private Network (VPN) endpoint using the stolen cre-
dentials, then use these same credentials to move laterally into the internal network
and collect information. In terms of event logs, such behavior can be expected to
generate all kinds of remote authentication events: the stolen credentials can belong
to any user, and the source and destination hosts can also be any of the legitimate
nodes of the internal network. Besides, nothing specific sets malicious events apart
from benign ones: taken individually, each field of each intrusion-related event looks
perfectly legitimate. As mentioned above (and further discussed in Chapter 2), the
only characteristic we can reasonably expect malicious events to exhibit is that they
involve entities which do not usually interact. Therefore, instead of trying to describe
the set of possibly malicious remote authentication events, a more practical approach
consists in collecting the interaction patterns corresponding to usual legitimate be-
havior. Future events can then be considered suspicious if they do not match these
patterns. This approach is commonly referred to as anomaly detection.

Detecting combinatorial anomalies. While anomaly detection is a widely stud-
ied topic [Chandola et al., 2009], its application to combinatorial data raises specific
challenges. Indeed, an anomaly can intuitively be defined as a low-probability sam-
ple, and detecting anomalies then boils down to building a statistical model of past
normal data and using it to compute predicted probabilities of future samples. How-
ever, the joint probability distribution over a combinatorial sample space actually

8 Chapter 1. Introduction

provides limited information. For instance, suppose we observe a remote authenti-
cation (u, s, d) ∈ U × S × D with low predicted probability. There might actually
be several explanations for this low probability: u may be expected to log on to d,
but not from s. Another explanation could be that u is supposed to interact with
neither s nor d. Actually, any non-empty subset of entities involved in a given inter-
action could provide sufficient evidence to consider the whole interaction suspicious
from a security-oriented perspective. Combinatorial anomaly detection algorithms
should thus rely on a finer-grained description of the probability distribution. This
issue has been addressed in the data mining and machine learning literature [Das and
Schneider, 2007, Akoglu et al., 2012, Amin et al., 2019], and we build upon these past
contributions to design our event-wise anomaly detection algorithm in Chapter 4.

1.3.2 ...but Not All Anomalous Events Are Malicious

Assuming that intrusion-related events are anomalous, being able to detect anomalous
interactions between entities is a necessary condition for intrusion detection. It is,
however, not sufficient: many legitimate events are also anomalous from a statistical
point of view, and distinguishing them from actual malicious events requires further
work – as well as further assumptions.

Anomalies everywhere. Each time a regular employee misclicks and opens the
wrong network share in their graphical user interface, an anomalous event is gener-
ated. However, this is arguably not something the network administrator wants to be
notified about. More generally, many legitimate activities do not occur on a regular
basis – consider for instance software deployment or other administrative tasks. Due
to their irregular nature, these activities are likely to be considered anomalous by
statistical models. It is important to understand that this is not just an imperfection
of the model, which could be alleviated with more training data or better algorithms:
there is simply a significant part of human behavior that is unpredictable. Therefore,
detecting anomalous events is not enough: further processing steps are required to
avoid unacceptable false positive rates. In this thesis, these additional steps rely on
a fundamental assumption: intrusion-related events are not only anomalous, but also
connected to each other regarding the entities they involve.

Leveraging connections between events. Coming back to the phishing example
mentioned above, remote authentication events resulting from the exploration of the
network by the intruder should involve some shared entities. Indeed, each new lateral
movement should start from an already compromised host, and stolen user credentials
may also be used more than once. More generally, each action taken by an intruder can
be expected to involve some previously compromised entities, creating intersections
between the underlying events.

These relationships can typically be abstracted into a graph whose vertices rep-
resent events. An edge between two events then encodes some notion of similarity,
which should be appropriately defined so that intrusion-related events are mapped
onto a densely connected subgraph [Pei et al., 2016, Leichtnam et al., 2020a]. Having
built such an event graph, anomaly scores associated with events can be seen as a
noisy graph-structured signal. Rare but legitimate events should then correspond to
small peaks in this signal, while clusters of malicious events should appear as con-
sistently high plateaus. We derive two postprocessing methods from this intuition.
First of all, as discussed in Chapter 6, graph signal processing tools can be used to
denoise anomaly scores, smoothing out false positives while preserving the high scores

1.4. Contributions of this Thesis 9

of malicious events. Secondly, connected clusters of high-scoring events can be de-
tected before starting any manual investigation, helping analysts focus on the most
suspicious sections of the logs. Methods aiming to detect such clusters are presented
in Chapter 7.

1.4 Contributions of this Thesis

To sum up, this thesis addresses three challenges associated with statistical analysis
of event logs and intrusion detection: representing and modelling the data, effectively
detecting anomalous events and postprocessing anomaly scores to classify anomalies
as benign or malicious.

Main contributions. Our first contribution is a rigorous definition of intrusion de-
tection in event logs as well as a thorough classification of existing methodologies.
This formalization of the problem helps us identify the most important characteris-
tics of the data, and we build upon these insights to design an event-wise anomaly
detection algorithm relying on latent space modelling and multi-task learning. We
compare this algorithm with state-of-the-art baselines and obtain superior detection
performance on a real event log dataset. Our implementation of the proposed model
is openly available. Finally, we propose an event graph-based approach to anomaly
score postprocessing. Our methodology entails two aspects: we first experiment with
two graph signal processing tools in order to denoise event-wise anomaly scores using
the structure of the event graph. We then study the problem of cluster detection in
a graph, proposing two novel detection procedures and comparing them with exist-
ing methods on a synthetic benchmark dataset. These detection procedures are also
evaluated on real-world event graphs.

Evaluating detection methodologies. Assessing the relevance and usefulness of
our contributions is not a simple task. Indeed, the models and algorithms we propose
are tailored to a practical use case, making them poorly suited to theoretical analysis.
Besides, empirical evaluation is also complex: due to the vast diversity of real-world
computer networks and adversarial behaviors, results obtained on one single dataset
should be taken with a grain of salt. However, for lack of a better evaluation metric, we
assess the applicability and effectiveness of our algorithms on a real event log dataset
released by the Los Alamos National Laboratory, namely the "Comprehensive, Multi-
Source Cyber-Security Events" dataset [Kent, 2015a, Kent, 2015b]. What makes this
dataset especially interesting is that it contains labelled traces of a red team exercise
(i.e. an intrusion carried out by security experts in order to assess the network’s
security). Therefore, the ability of our algorithms to spot malicious activity can be
estimated using these labels. We describe the dataset in further detail in Chapter 2.

Thesis outline. The rest of this thesis is divided in three parts, each one cover-
ing one of our three main contributions: formalization and classification, event-wise
anomaly detection, and graph-based anomaly score postprocessing. Each one of these
topics can be seen as one step of a global event log processing pipeline, as illustrated
in Figure 1.1.

Part I first sets the stage by formally stating the problem we consider and dis-
cussing previous contributions. We define some basic notions in Chapter 2, such as
events, event logs and intrusions. Using these definitions, we propose a generic formu-
lation of intrusion detection in event logs and highlight some of the challenging aspects

10 Chapter 1. Introduction

NETFLOW

EVTX

IDS

Data
representation X1,...,Xn

Anomaly
detection

Heterogeneous
polyadic

interactions

Raw data

Y1,...,Yn

Event-wise
anomaly scores

Event graph
analysis !

Alerts

Part I Part II Part III

Figure 1.1: Event log processing pipeline and corresponding parts of the thesis.

of this problem. We then build upon our formalism to discuss and compare detection
algorithms found in the literature, introducing a taxonomy of existing approaches in
Chapter 3. This taxonomy emphasizes the representation choices and modelling as-
sumptions of each reviewed work, connecting them to the different facets of the data.
Some of the work presented in this part has been published at the Conference on
Artificial Intelligence for Defense (CAID 2020) [Larroche et al., 2020b].

Part II then presents our event-wise anomaly detection algorithm, as well as the
underlying statistical model and inference procedure. The aim of our algorithm is to
deal with the three main aspects of event logs, namely their combinatorial, heteroge-
neous and temporal facets. The first two aspects are addressed in Chapter 4, which
describes our latent space model for heterogeneous polyadic interactions. We also
discuss the corresponding learning algorithm, emphasizing the additional challenges
raised by the existence of several event types. Chapter 5 then factors in the temporal
aspect, leveraging the connections between latent space modelling and Bayesian fil-
tering to come up with a parameter updating procedure for our model. Parts of these
chapters have been published as a non-peer reviewed preprint [Larroche et al., 2021b].

Finally, Part III deals with event-wise anomaly score postprocessing using event
graphs. Chapter 6 describes our event graph construction procedure and presents
graph signal processing tools that can be used to denoise the scores. We then focus
on cluster detection in Chapter 7, generically defining this task as a combinatorial
hypothesis testing problem. To address the limited scalability of existing detection
methods, we propose two computationally efficient tests relying on percolation the-
ory. These tests are evaluated against previously published methods on a synthetic
benchmark dataset, and we provide a first assessment of their effectiveness on real-
world event graphs. Some of the contents of Chapter 7 have been published at the
Symposium on Intelligent Data Analysis (IDA 2020) [Larroche et al., 2020a] and at
the European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning (ESANN 2021) [Larroche et al., 2021a].

11

Part I

Definitions and State of the Art

13

Chapter 2

Events, Logs and Intrusions

Before proceeding with any technical development, a thorough and accurate
statement of the considered problem is in order. Some key concepts also
need to be properly defined, starting with the data we are investigating:
what exactly is an event, or an event log? This chapter deals with all these
preliminary questions, translating the initial problem into a more formal
one and connecting it with some useful mathematical concepts.

2.1 Introduction

It is fairly straightforward to provide an intuitive definition of intrusion detection
in event logs: given activity records of a given network in a given time frame, we
want to know whether malicious activity has occurred. However, designing statistical
methods addressing this problem requires a more formal and thorough definition,
which happens to be less obvious.

Starting with event logs themselves, two main challenges stand in the way of their
formal specification. First, the generic notion of event logs encompasses many real-
world data sources and formats, and unifying all of them into a unique formalism
is nontrivial. Secondly, most of these data sources were not primarily designed for
statistical modelling, but rather for manual inspection or basic analysis through simple
descriptive statistics. Therefore, they do not fit well into usual data representation
frameworks, such as Euclidean spaces or time series.

As for the problem of intrusion detection, although there seems to be nothing
complex about the concept of an intrusion, properly defining it in terms of traces left in
the data is not straightforward. This difficulty partly stems from the vast diversity of
offensive tactics, techniques and procedures (TTPs) and end goals of intruders, which
make it challenging to define generic characteristics that malicious activity should
exhibit. A more profound cause is that an intrusion, or more generally malicious
behavior, is mostly defined in terms of intention: from a data-centric perspective,
the difference between a legitimate administrator installing software on a computer
and an intruder using the administrator’s credentials to install malware on the same
computer is not obvious. Therefore, it does take some careful thinking to formally
characterize what we are trying to detect.

As a consequence of these challenges, some choices and assumptions need to be
made: the mathematical framework our models and algorithms rely upon cannot per-
fectly depict such complexity and diversity. In this thesis, however, we aim to keep
our focus as broad as possible, which leads us to privilege rather generic definitions
and weak assumptions. These are introduced and justified in the following sections.

14 Chapter 2. Events, Logs and Intrusions

We first present our definition of event logs, as well as the challenges it raises in terms
of statistical modelling, in Section 2.2. We then define the intrusion detection problem
and underline its connections with the field of anomaly detection in Section 2.3. Fi-
nally, Section 2.4 provides a concrete example of event log data through an extensive
description of the LANL dataset, which is consistently used for our experiments and
evaluations throughout this thesis.

2.2 A Generic Definition of Event Logs

Being the main focus of this thesis, event logs are quite logically the first concept we
aim to define in this chapter. We start with the most practical aspects by discussing
where event logs come from and what they look like in Section 2.2.1, then move on
to more formal considerations and provide some basic definitions in Section 2.2.2.
Finally, Section 2.2.3 states the definition of event logs underpinning our work and
exposes the main resulting challenges.

2.2.1 Multiplicity and Diversity of Existing Data Sources

Event logs can be obtained from various sources, each of which can be characterized
by two main elements: the type of activity being recorded, and the level of abstraction
at which this activity is described. As for the type of activity, a common distinction
can be made between system logs and network logs: while the former record inter-
nal actions on a given device, the latter focus on communications between devices.
Therefore, these two categories give different perspectives on the underlying activity:
system logs can describe anything happening on a given device with an arbitrary level
of detail, from authentications and process creations to file-related activity and oper-
ating system (OS) administration. Network logs, on the other hand, provide more of
an external perspective on these activities through communications which can either
be internal to the network or happen between an internal host and an external one.
Note that while some information about what happens on a given host can be inferred
from its network activity, entirely local actions are only captured by system logs.

Data sources from either category also differ in their level of abstraction. This
second distinction relates to the program creating the logs, which can have a more or
less high-level point of view on the actions being logged. In the case of system logs,
the two extremes are kernel-level auditing and application logs. OS event logs, such
as Linux system logs or Windows Event Logs, sit in between in terms of abstraction.
Similarly, network logs can be produced at different abstraction layers of the Open
Systems Interconnection (OSI) model: while traffic metadata providers such as Cisco’s
NetFlow [Claise et al., 2004] focus on the network layer, intrusion detection systems
(IDS) such as Zeek (formerly known as Bro [Paxson, 1999]) can log the contents of
the communications up to the application layer.

These distinctions lead to significant variations in the content and structure of
event logs coming from different sources, as evidenced by Figure 2.1. Note that
they are highly relevant from a security perspective: different data sources enable
observation of different kinds of activity, at different granularities. Therefore, some
sources are better suited to detecting a given kind of attack than others: for instance,
while network traffic metadata can be sufficient when looking for a data exfiltration,
ransomware deployment through encrypted communications may require fine-grained
logging on endpoints to be detected. In addition, all data sources are not equally
reliable when dealing with a malicious adversary. In particular, an intruder can fairly
easily tamper with the local logs on a given host after fully compromising it. Network

2.2. A Generic Definition of Event Logs 15

(a) Windows Event Logs (source: Microsoft).

{
 "ts": "2021-02-18T09:34:22.546324Z",
 "uid": "Conn_Identifier",
 "id.orig_h": "192.168.0.1",
 "id.orig_p": 49230,
 "id.resp_h": "192.168.0.0",
 "id.resp_p": 53,
 "proto": "udp",
 "trans_id": 15381,
 "query": "www.example.com",
 "qclass": 1,
 "qclass_name": "C_INTERNET",
 "qtype": 1,
 "qtype_name": "A",
 "AA": false,
 "TC": false,
 "RD": true,
 "RA": true,
 "Z": 0,
 "rejected": false
}

(b) Zeek DNS logs.

Date Duration Proto Src IP Addr:Port Dst IP Addr:Port Packets Bytes Flows
2021-02-18 09:34:22.546 0.000 UDP 192.168.0.1:49230 192.168.0.0:53 1 83 1
2021-02-18 09:34:22.553 0.000 UDP 192.168.0.0:53 192.168.0.1:49230 1 147 1

(c) NetFlow records.

Figure 2.1: Examples of events coming from different sources: a Windows authentica-
tion event (2.1a), a DNS request recorded by Zeek (2.1b) and NetFlow records of a DNS

exchange (2.1a).

logs, on the other hand, can record communications coming in and out of other devices
than the one generating them, which makes them somewhat more robust to the in-
truder’s actions. Security practitioners are thus inclined to emphasize the distinction
between event logs coming from different sources.

From a data science perspective, however, it is more interesting to find out what
all these data sources have in common. Indeed, we aim to make our methods applica-
ble in as many practical settings as possible, independently of the logging mechanisms
which may be set up. In addition, it is often interesting to gather knowledge from sev-
eral complementary data sources, which requires merging them in a global formalism.
Therefore, the first step of our work should be to build an abstract framework en-
compassing as many concrete data sources as possible. To the best of our knowledge,
existing work on event log analysis for intrusion detection relies on ad-hoc definitions
of the data, designing mathematical representations that are suited to the data sources
and statistical tools under consideration. In contrast, we seek to build a more generic

16 Chapter 2. Events, Logs and Intrusions

definition, from which we can then derive case-specific instances. This unifying ap-
proach allows us to motivate our statistical modelling choices, as well as to compare
existing approaches in a common framework.

2.2.2 Generically Defining Events as Polyadic Interactions

As mentioned above, designing a generic definition of an event requires finding some-
thing common to many different kinds of event logs. The underlying intuition of our
work is that this common characteristic lies in the relational nature of the data: in
other words, events are primarily interactions between entities. These entities are
typically user accounts, computers or files, and we consider events that involve several
of them: authentication of a given user on a given computer, network communication
between two hosts, and so on. Many data sources can be described this way, which
suggests that this relational aspect is indeed essential. As a side note, this is consistent
with the file formats used for event logs, which often have a relational or hierarchi-
cal nature: Comma-Separated Values (CSV), JavaScript Object Notation (JSON) or
Extensible Markup Language (XML), for instance, fall into these categories.

More formally, we define a computer network as a heterogeneous set of entities.
Letting L denote the number of existing entity types, we write U` for the set of type
` entities (for ` ∈ {1, . . . , L} := [L]), and U =

⋃L
`=1 U` for the whole entity set. Note

that the entity set might evolve over time (e.g. when new user accounts are created),
but this aspect is left aside for now. Before stating the definition of an event, we first
define the underlying notion of event type.

Definition 2.2.1 (Event type). An event type is a triple (e,Ne,Ωe) ∈ N×N∗× [L]Ne ,
where e is a unique index, Ne is the number of entities involved in a type e event and
Ωe is the tuple formed by the types of the entities involved in a type e event.

Two remarks can be made about this definition. First, it implicitly assumes that
all events of a given type involve the same number of entities, and that these entities
always have the same type. Note that this implies no loss of generality: since an
arbitrary number of event types can be defined, a type that could involve a variable
number of entities can simply be divided into as many subtypes as necessary. The
same goes for the involved entities’ types. Secondly, putting the involved entity types
in a specific order is a way to distinguish entities of the same type that play different
roles in an event. An event representing a network communication typically illustrates
the need for such a distinction: while the source and destination of the connection are
both hosts, they are not interchangeable with respect to the meaning of the event.

From now on, letW denote the set of event types. Each event type (e,Ne,Ωe) ∈ W
is simply referred to through its index e ∈ N unless otherwise specified. Harnessing
these concepts and notations, we now proceed with our definition of an event.

Definition 2.2.2 (Event). An event is a tuple (t, e, ω,Γ), where t ∈ R+ is a times-
tamp, e ∈ N is an event type, ω ∈

∏
`∈Ωe
U` is a tuple of involved entities, and Γ

represents some optional additional information.

This generic definition encompasses a wide variety of data sources, as we now
demonstrate through practical examples, illustrated in Figure 2.2.

Example 2.2.1 (Process creation). Assume that user usr@dom executes the program
cmd.exe from the graphical user interface on a Windows computer called wstn. Such
an action is recorded by Windows in the Security Auditing event logs, and it can also
be traced by other logging systems, such as Sysmon. These various data sources may

2.2. A Generic Definition of Event Logs 17

explorer.exe

cmd.exe

usr@dom srv

wstn

e1

file.txt

e2

Figure 2.2: Two events represented as polyadic interactions: a process creation (e1, in
orange) and a remote access to a file (e2, in blue).

define different fields to characterize the action, but the latter can be represented in a
generic way as a process creation event involving user usr@dom, computer wstn, parent
process explorer.exe and child process cmd.exe (as illustrated by event e1 in Fig-
ure 2.2), with additional information such as the full paths of the executables. Note,
however, that this representation is not unique: it depends not only on the amount of
information available through the data sources at hand, but also on deliberate design
choices. In particular, defining which fields of a given log line should be treated as
entities and which others merely contain additional information is nontrivial: such
choices should be guided by domain-specific knowledge on intrusion detection.

Example 2.2.2 (File access on a remote share). Let us now assume that user usr@dom,
logged in on computer wstn, remotely accesses a file called file.txt and located at
the root of the file share share hosted on server srv. This can be seen as an "open
file" event involving entities usr@dom, wstn, srv and \\srv\share\file.txt (as il-
lustrated by event e2 in Figure 2.2). Note, however, that different data sources can
provide different points of view: considering for instance NetFlow data, this action
would result in a TCP connection from wstn to srv on port 445. Windows authen-
tication logs, on the other hand, would depict it as a network authentication event
involving usr@dom, wstn and srv, with additional information such as the authenti-
cation package used or the process which requested the authentication. While these
examples demonstrate the flexibility of our proposed framework, they also emphasize
its abstract nature: in practice, real-world detection methodologies rely on simpler,
case-specific data representations.

From now on, we write H for the set of all possible events. Chapter 3 surveys
existing representation and modelling frameworks for event logs, emphasizing their
connections to our generic (and hopefully unifying) definition. For now, we use this
definition as a starting point to discuss the main challenges associated with statistical
modelling of event log data.

2.2.3 The Complex Nature of Event Logs and Resulting Challenges

Having formally defined what events are, the immediate next step consists in defining
the notion of event log. This definition is rather straightforward: an event log is
essentially a sequence of events.

Definition 2.2.3 (Event log). An event log is a sequence
{(
ti, ei, ωi,Γi

)}n
i=1

, where
n ∈ N∗ is the number of logged events and, for each i ∈ [n],

(
ti, ei, ωi,Γi

)
is one event,

ordered such that t1 ≤ . . . ≤ tn.

18 Chapter 2. Events, Logs and Intrusions

While there is nothing complex about the notion of event log as defined above,
coming up with a generative model for such an object is clearly an arduous task. One
of the main reasons for this is that event logs are multi-faceted data, mainly exhibiting
three important aspects:

Combinatorial. As stated above, events are here primarily defined as interactions
between entities, which endows them with a combinatorial nature. In other
words, the space of all possible events is essentially a Cartesian product of
finite sets. The main challenge resulting from this characteristic is commonly
referred to as the curse of dimensionality: since the size of the event space
grows exponentially with the number of involved entities, the number of actually
observed events in most available datasets quickly becomes much smaller than
the number of possible events. Therefore, modelling a probability distribution
over the event space requires structural assumptions in order to reduce the
effective dimension of the problem.

Heterogeneous. The existence of several entity and event types brings another layer
of complexity. Indeed, besides the aforementioned challenge of estimating a
probability distribution over the event space, the heterogeneity of events implies
that such estimation must be performed for each event type – intuitively, the
probability of a given user and a given computer being involved in the same event
is not necessarily identical for, say, an authentication and a process creation.
However, correlations may exist between these probabilities, and these should
be taken into account. In addition, various entity types playing different roles
in each event type further complexify the structure of the distribution.

Temporal. Finally, considering event logs instead of isolated events adds a temporal
dimension. This aspect can be divided into an absolute component and a relative
component: the former implies that the probability of a given event happening
varies in time, exhibiting both seasonal patterns and long-term trends. As for
the latter, it stems from the dependencies which may exist between certain
events. Consider for instance a high-level action yielding several events, such as
an administrator deploying software on a set of computers. From a probabilistic
point of view, it seems reasonable to assume that the i-th low-level event is not
independent from the previous ones.

While building statistical models for data exhibiting one of these characteristics is
a research topic in and of itself, considering all three of them at once is yet another kind
of problem. As a consequence, accurately modelling all of the information contained
in the logs can be considered especially challenging. However, remember that our goal
is not to model event logs just for the sake of it: statistical tools are only a means to
an end, namely detecting intrusions. Therefore, our search for a suitable model should
not be guided by its effectiveness at predicting benign events, but rather by its ability
to distinguish benign behaviors from malicious ones. In particular, identifying which
of the three aforementioned aspects are crucial and which others may be overlooked
is an important step in the process of building better statistical intrusion detection
methods. With this in mind, we devote the next section to formally defining intrusions,
with a specific focus on their specification in terms of event logs.

2.3 Intrusions from the Point of View of Event Logs

Having formally defined the concept of event logs, we now discuss the notion of in-
trusion detection. Similarly to the previous section, we start with the most concrete

2.3. Intrusions from the Point of View of Event Logs 19

aspects and incrementally raise the level of abstraction: Section 2.3.1 defines and for-
malizes the notion of intrusion from a cybersecurity perspective, then Section 2.3.2
introduces a more systematic definition of intrusion detection, along with some useful
assumptions. Finally, Section 2.3.3 presents the problem considered in this thesis,
emphasizing its similarity with the general concept of anomaly detection.

2.3.1 What Is an Intrusion?

In its most basic and intuitive form, the definition of an intrusion could be the fol-
lowing: someone who is not allowed inside a given perimeter somehow gets into it.
Focusing on the information security-related meaning of this notion, however, a few
more things can be said.

In this thesis, we mainly focus on sophisticated attacks, carried out by so-called
Advanced Persistent Threats (APTs [Tankard, 2011, Sood and Enbody, 2012]). Such
attacks are stealthy enough to avoid detection by traditional IDSs, which typically
rely on signatures (such as IP addresses of known malicious infrastructure or hashes
of known malware samples) or simple heuristics. Starting from outside the network,
APTs make their way inside of it in order to achieve some end goals, which often
consist in stealing some valuable information, but also extend to sabotage or extortion.
Between the initial breach and the final impact, a number of actions can be carried
out by the threat actor, each of which being an opportunity to detect the intrusion.

Several attempts have been made to formalize the steps of an advanced intrusion,
including Lockheed Martin’s well known Cyber Kill Chain [Hutchins et al., 2011]. In
this framework, seven steps are defined:

• Reconnaissance: while still outside of the targeted network, the attacker gathers
intelligence on it.

• Weaponization: knowing what kind of technologies are used inside the network,
the attacker crafts an easily deliverable piece of malware.

• Delivery: the attacker delivers malware to the targeted network (for instance as
an attachment to a phishing email).

• Exploitation: malicious code executes on an initial target system.

• Installation: a persistent backdoor is set up on the compromised computer.

• Command and control: a communication channel is created between the back-
door and the attacker’s infrastructure.

• Action: the attacker achieves their end goal.

As another example, the MITRE corporation’s ATT&CK framework [Strom et al.,
2018] defines 14 tactics1, each of which represents a potential step of an intrusion. It
is both more detailed and flexible than the Cyber Kill Chain, but the main elements
remain the same. Our work, however, relies on a somewhat simpler description: first
of all, the data sources we consider hardly allow us to observe preparatory phases such
as reconnaissance or weaponization. In addition, while some specific reconnaissance
techniques, such as network scans, may leave traces in event logs, they are not always
followed by an actual intrusion. Detecting them is thus less interesting than focusing

1Reconnaissance, resource development, initial access, execution, persistence, privilege escalation,
defense evasion, credential access, discovery, lateral movement, collection, command and control,
exfiltration, impact.

20 Chapter 2. Events, Logs and Intrusions

on subsequent steps. Therefore, we focus on what is commonly referred to as post-
compromise detection: we assume that the attacker has successfully breached the
network’s defenses and tries to reach some final objective. The actions they need
to take to that end are then simply decomposed as follows (see Figure 2.3 for an
illustration):

Initial compromise. The attacker establishes a foothold in the targeted network,
using techniques such as phishing, waterholing, vulnerability exploitation or
brute force attacks against exposed servers, etc. After completing this stage,
they can access at least one host inside the network. Note that from the system’s
point of view, the attacker appears as a regular user – the one whose credentials
were stolen, or the account that was used to run a vulnerable program which
the attacker exploited.

Persistence, command and control. After gaining initial access to a first host,
the attacker typically tries to make this access permanent. This implies cre-
ating a persistent backdoor (i.e. one that is automatically restarted when the
host reboots), for instance by registering a new service or scheduled task, or by
modifying an already existing one. A command and control (C&C) channel is
also established, which often relies on a beacon repeatedly initiating outbound
network communications from the compromised host to the attacker’s infras-
tructure, using any of a variety of techniques to make these communications
blend in with regular traffic.

Privilege escalation and lateral movement. The attacker’s point of entry into
the network is usually not their final target. Therefore, they need to propagate
to other hosts, which may for instance be hosting sensitive data or applications.
They might also need to take hold of other user accounts in order to elevate
their rights and privileges, since the initially compromised account often has
restricted access to critical resources. From the perspective of event logs, this
can be similar to repeated occurrences of the two previous stages in various
regions of the network.

Impact. Finally, the attacker accomplishes their end goal: exfiltration of sensitive
data, sabotage, ransomware deployment, etc. Note that this stage may happen
weeks, months or even years after the initial compromise, and it may itself last
for a while (e.g. in the case of espionage). Ideally, we would like to detect the
intrusion before this phase begins.

Using this first characterization of the activity to detect, we can now adopt a more
formal approach and define the problem in terms of data analysis.

2.3.2 Formal Definition and Assumptions

Starting from the data, intrusion detection can intuitively be defined as looking for
the events generated by the attacker in a larger set of logged events. This definition
can be formally phrased as follows.

Definition 2.3.1 (Intrusion detection: naive definition). Given an event log L, in-
trusion detection consists in finding a subset M ⊂ L reflecting malicious activity.

This definition, however, is not very useful as such. There are three main reasons
for this: first of all, the diversity of techniques that can be used by an attacker makes

2.3. Intrusions from the Point of View of Event Logs 21

excel.exe

cmd.exe

usr

adm

srvws-usr

sc.exe

(a) Initial compromise: a normal user opens a weaponized file (in this case, an Excel spread-
sheet), which launches a command prompt and starts executing code.

excel.exe

cmd.exe

usr

adm

srvws-usr

sc.exe

(b) Persistence, command and control: a new service is registered to create a persistent
backdoor, and a communication channel is established with the attacker’s infrastructure.

excel.exe

cmd.exe

usr

adm

srvws-usr

sc.exe

(c) Privilege escalation and lateral movement: the attacker uses stolen credentials to authen-
ticate as an administrator, then opens remote sessions on other computers.

Figure 2.3: A simple example of an intrusion. Red dashed lines symbolize events, and the
presence of the attacker’s picture next to a computer or a user account means that this entity

is under the attacker’s control.

22 Chapter 2. Events, Logs and Intrusions

it hard to come up with a both generic and accurate description of malicious activity.
Secondly, the same remark applies to the attacker’s end goal: for instance, exfiltrating
sensitive data does not generate the same kind of events as making critical systems
unavailable. Finally and more generally, an intrusion is primarily defined in terms
of intention and context: as far as event logs are concerned, there is not much of a
difference between malicious actions carried out by some intruder using compromised
credentials and a normal user doing the same things for legitimate reasons.

In order to circumvent these difficulties, the problem must be redefined through a
slightly different perspective: although characterizing malicious activity hardly seems
to be a realistic objective, separating malicious events from benign ones may still
be achievable through another approach. However, this implies better specifying the
problem, which we accomplish through three elementary assumptions. The first one
is rather trivial.

Assumption 1. Malicious event sets are distinguishable from benign ones.

In other words, we simply assume that detection is actually possible – if the setM
looks exactly like any other subset of L, then looking for it is obviously pointless. As
mentioned above, the actual challenge lies in exhibiting this difference: since explicitly
and generically describing malicious activity is excessively complex, detection methods
must rely on other approaches to separate malicious events from benign ones. To that
end, a slightly more significant assumption is made regarding the size ofM.

Assumption 2. Malicious events are scarce compared to benign ones.

This is a classic assumption in intrusion detection [Portnoy, 2000]. It can be seen as
a consequence of the threat model under consideration: since the intruder is supposed
to be as discreet as possible, traces of their actions should be much scarcer than the
numerous events generated by background activity. In conjunction with Assumption 1,
this suggests a close connection with the concept of anomaly detection: what we are
actually looking for is a small subset of a given set which "does not fit in". Our last
assumption provides a more accurate description of this anomalous subset.

Assumption 3. Malicious events are connected with each other with respect to the
entities they involve.

More formally, denoting M =
{(
ti, ei, ωi,Γi

)}m
i=1

, let F(M) = (VM, EM) be the
graph whose vertex set is defined as

VM =

m⋃
i=1

ωi,

and whose edge set EM is defined as follows: for (u, v) ∈ V2
M,

(u, v) ∈ EM ⇐⇒ ∃i ∈ [m], {u, v} ⊆ ωi.

Then Assumption 3 implies that F(M), which we call the entity graph induced by
M, is connected. From a cybersecurity perspective, this assumption means that the
attacker propagates to new entities from already compromised ones. Thus malicious
events should make up a connected graph of entities. Using this last assumption,
we can come up with a more specific formulation of the anomaly detection problem
considered in this thesis.

2.3. Intrusions from the Point of View of Event Logs 23

2.3.3 Intrusion Detection as an Anomaly Detection Problem

Building upon the notions and assumptions introduced in the previous section, we
can now design a more formal definition of the problem of intrusion detection in event
logs, centered around the concept of anomaly detection.

Definition 2.3.2 (Intrusion detection: formal definition). Given an event log L and
a maximum size ratio δ > 0, intrusion detection consists in finding a subset

M∈ arg min
S⊂L

p(S) subject to

{ |S|
|L| ≤ δ
F(S) is connected

,

where p denotes the probability mass function of benign event sets.

Note that the presence of a maximum size ratio δ results not only from Assump-
tion 2, but also from practical constraints: when actually monitoring the logs from
a real computer network, the number of events that can be investigated in a given
amount of time is limited. Therefore, solutions to the optimization problem whose
size exceeds this limit are of little interest.

One major issue remains: the distribution p is unknown, thus it must be replaced
with an adequate function which should be estimated based on the available data. In
anomaly detection, this typically boils down to building an anomaly scoring function
f(·), which indicates how anomalous a given instance is with respect to a training
dataset (as a convention, we consider that anomaly scoring functions give higher
scores to anomalous instances). We therefore break the problem into two: estimation
of an anomaly scoring function based on a training set of supposedly normal activity,
and detection of an anomalous subset in a test set using the scoring function. Note,
however, that defining the class of possible anomaly scoring functions requires further
thought. In particular, there is no obvious and widely used definition of the set over
which f should be defined: should it output one anomaly score for each possible
event, or, for instance, take a certain class of event sets as input? Taking this into
consideration, the two main problems treated in this thesis can be defined as follows.

Problem 1 – Learning an anomaly scoring function for event sets. Let T
be an event log representing supposedly benign historical activity. Problem 1 consists
in defining a class of event sets Ξ ⊂ P(H) (where P(·) denotes the power set of a set),
a class of scoring functions {fθ : Ξ → R; θ ∈ Θ} (with Θ ⊆ Rd), a training criterion
`T : Θ → R such that fθ∗ , with θ∗ ∈ arg minθ∈Θ `T (θ), is a good anomaly scoring
function, and an optimization procedure for `T .

Problem 2 – Detecting a connected subset of anomalous events. Let L
be an event log observed subsequently to T , and fθ̂ be an anomaly scoring function
obtained by solving Problem 1. Given a maximum size ratio δ > 0, Problem 2 consists
in finding a subset

M∈ arg max
S∈P(L)∩Ξ

fθ̂(S) subject to

{ |S|
|L| ≤ δ
F(S) is connected

.

Various examples of possible classes of event sets and scoring functions are given
in Chapter 3. Note that, similarly to our definition of event logs, this formulation of
the problem is meant to be generic: one of our goals is to unify existing contributions,
which often rely upon definitions of their own, into a cohesive formalism. To conclude

24 Chapter 2. Events, Logs and Intrusions

Table 2.1: Entity types defined in the LANL dataset, along with their arities in the whole
dataset and in red team events only.

Name Arity (all) Arity (malicious)

User 19 679 104
Computer 15 846 299
Auth. type 27 1
Process 24 742 0

this chapter, we study a real event log dataset and demonstrate the relevance of our
definitions and assumptions through this practical example.

2.4 A Practical Example: the LANL Dataset

This section provides an exploratory analysis of the "Comprehensive, Multi-Source
Cyber-Security Events" dataset [Kent, 2015a], which was released in 2015 by the Los
Alamos National Laboratory [Kent, 2015b]. After briefly describing the contents of
the dataset in Section 2.4.1, we discuss in further detail the structure of normal and
malicious activity in Sections 2.4.2 and 2.4.3, respectively. Through this study, we
aim to motivate the definitions and assumptions stated in previous sections.

2.4.1 Description

The LANL dataset includes several data sources: authentication and process-related
events extracted from Windows event logs, NetFlow records for internal network com-
munications and DNS logs. We focus on the first two categories, namely authentica-
tion and process management. More specifically, only logons and process creations
are considered, ignoring logoffs and process termination events, which seem less rel-
evant from an intrusion detection perspective. Using the formalism introduced in
Section 2.2.2, we define four entity types: user (actually a user account, defined by
a user name and a domain name), host, process (which actually refers to a process
name rather than one actual process running on a specific computer), and authentica-
tion type (which is defined as the conjunction of a logon type and an authentication
package). Using these entity types, three event types are then defined:

Local authentication. A user is authenticated locally on a given host. Three enti-
ties are involved: a user, a host and an authentication type.

Remote authentication. A user authenticates from a source host to a destination
host (distinct from the source). Four entities are involved: a user, a source host,
a destination host and an authentication type.

Process creation. A user starts a new process on a given host. Three entities are
involved: a user, a host and a process.

In addition to selecting these event types only, we filter out all events involving
computer accounts or built-in accounts (such as "LOCAL SYSTEM"). Note that this
is not always appropriate, since it is technically possible for an attacker to compromise
such an account. However, no such activity is reported in the LANL dataset, and this
preprocessing step allows us to significantly reduce its size, making it more amenable
to various computations.

2.4. A Practical Example: the LANL Dataset 25

Table 2.2: Events in the LANL dataset: defined event types, ordered types and meaning
of the involved entities, and counts (total event count and number of unique entity tuples).

The entity types are user (U), host (H), authentication type (T) and process (P).

Name Entity types Entity meanings Count (malicious)

Total Unique

Local auth.
Credentials used,

(U, H, T) host where logon 26 017 837 (0) 88 259 (0)
happens, auth. type

Remote auth.
Credentials used,

(U, H, H, T) source host, dest. 103 501 632 (702) 529 354 (433)
host, auth. type

Proc. start
User creating process,

(U, H, P) host where process is 34 986 891 (0) 877 444 (0)
created, process name

W
ed

12
pm

Sat
12

pm

Tue
12

pm

Fri
12

pm

M
on

12
pm

Thu
12

pm

Sun
12

pm

W
ed

12
pm

Sat
12

pm

Tue
12

pm

Fri
12

pm

M
on

12
pm

Thu
12

pm

Sun
12

pm

W
ed

12
pm

Sat
12

pm

Tue
12

pm

Fri
12

pm

M
on

12
pm

Thu
12

pm

0

1

2

N
u

m
b

er
of

ev
en

ts

×105

Local authentications Process creations Remote authentications

Figure 2.4: Number of events of each type observed hourly in the LANL dataset.

The logs cover 58 consecutive days. A red team exercise took place during this
period, meaning that a realistic intrusion was performed by security experts in order
to assess the level of security of the whole network. Authentications performed by the
red team are labelled, providing an example of intrusion to detect. Note that the red
team exercise probably also resulted in some process creation events, but no labels are
available for these. Despite this limitation, the LANL dataset remains an interesting
example of both benign and malicious activity recorded in a real computer network.
Therefore, studying its contents is a good way to get a first glimpse of the kind of
data we deal with in this thesis.

Starting with basic statistics about the entity and event types defined above,
Table 2.1 shows the number of distinct entities for each entity type, as well as the
number of entities involved in red team events. Note that the counts do not exactly
match those provided by the LANL: we obtain a greater number of users, which is
probably due to the fact that we treat (user, domain) pairs with the same user but a
different domain as separate users. As for computers and processes, considering only
a subset of all the events in the dataset results in smaller entity counts. Regarding
events, Table 2.2 shows event counts by type in the whole dataset, along with the
number of red team events. A more fine-grained analysis of the observed entities and
events is provided in the next two sections.

26 Chapter 2. Events, Logs and Intrusions

101 103 105 107

100

101

102

103

N
u

m
b

er
of

en
ti

ti
es

User

101 103 105 107

100

101

102

Host

101 103 105

Number of occurrences

100

101

102

103

104

N
u

m
b

er
of

en
ti

ti
es

Process

101 103 105 107

Number of occurrences

1

2

Authentication type

Figure 2.5: Distribution of the number of events involving a given entity for each entity
type.

101 103 105

Number of occurrences

100

101

102

103

104

N
u

m
b

er
of

tu
p

le
s

Local authentication

101 103 105

Number of occurrences

101

103

105

Remote authentication

101 103 105

Number of occurrences

101

103

105

Process creation

Figure 2.6: Distribution of the number of events involving a given entity tuple for each
event type.

2.4.2 Characteristics of Normal Activity

We first focus on normal activity – in other words, everything but the small set
of labelled red team events. An obvious observation comes first: normal activity
generates a considerable amount of events. Coming back to Table 2.2, the dataset
contains approximately 164M benign events, which gives a daily average of 2.83M
events in the absence of malicious activity. This volume is expected to vary in time,
which can indeed be observed in Figure 2.4: hourly event counts exhibit clear seasonal
variations corresponding to the days of the week as well as office hours within each
day. Interestingly, these seasonal variations are steeper for remote authentications and
process creations than for local authentications, which might suggest that a greater
proportion of the latter results from automated activities.

Going a bit deeper, we now examine the content of the events – more specifically,
the entities they involve. A simple question can be asked first: are some entities
observed more frequently than others? The answer is yes, as evidenced by Figure 2.5:
the number of entities involved in n events decreases following a power law pattern

2.4. A Practical Example: the LANL Dataset 27

0 10 20 30 40 50 60

Day

102

103

104

N
u

m
b

er
of

n
ew

en
ti

ti
es

(a) All types

102

104
User

102

104
Host

0 25 50

Day

101

102

103

Process

0 25 50

Day

100

101

Authentication type

(b) By type

Figure 2.7: Number of new entities observed on each day in the LANL dataset, aggregated
for all entity types (2.7a) and by entity type (2.7b).

0 10 20 30 40 50 60

Day

0.0

0.2

0.4

0.6

0.8

Ja
cc

ar
d

in
d

ex

(a) All types

0.0

0.5

User

0.0

0.5

Host

0 25 50

Day

0.0

0.2

0.4

Process

0 25 50

Day

0.0

0.5

1.0

Authentication type

(b) By type

Figure 2.8: Jaccard index of the entity sets observed on two consecutive days, aggregated
for all entity types (2.8a) and by entity type (2.8b).

as n increases. This phenomenon happens for each entity type, although it is less
evident for authentication types due to a very small entity set. It can be intuitively
understood considering the nature of the data: for instance, some computers, such as
domain controllers2, are expected to appear in more events than others. The same
goes for users: service accounts associated with very active services will generate more
events than accounts of employees whose tasks mostly involve no computer. Going
beyond unigram distributions, Figure 2.6 shows the same statistics for entity tuples
involved in events: the shape of the distribution also resembles a power law. This
is also understandable through domain-specific knowledge: some events, for instance
those related to automated network polling, are expected to occur a lot, making a
few entity tuples appear often. On the other hand, many occasional actions (typically
carried out by human users) will result in different entity tuples appearing in a small

2A domain controller is a server which handles user authentication in a computer network. It
typically stores information about user accounts and security policy. In particular, for most user
accounts, any request for authentication on a host inside the network must be validated by a domain
controller.

28 Chapter 2. Events, Logs and Intrusions

0 10 20 30 40 50 60

Day

104

105
N

u
m

b
er

of
n

ew
tu

p
le

s

(a) All types

102

103

104

Local authentication

103

104

Remote authentication

0 10 20 30 40 50 60

Day

103

104

105

Process creation

(b) By type

Figure 2.9: Number of new entity tuples observed on each day in the LANL dataset,
aggregated for all event types (2.9a) and by event type (2.9b).

0 10 20 30 40 50 60

Day

0.0

0.1

0.2

0.3

0.4

Ja
cc

ar
d

in
d

ex

(a) All types

0.0

0.5

Local authentication

0.0

0.5

Remote authentication

0 10 20 30 40 50 60

Day

0.0

0.2

Process creation

(b) By type

Figure 2.10: Jaccard index of the entity tuple sets observed on two consecutive days,
aggregated for all event types (2.10a) and by event type (2.10b).

number of events.
Another important aspect is the temporal dimension. In particular, the temporal

variability in the observed events must be taken into account. It can intuitively
be expected to be significant: activity in a computer includes an important human
component, which is intrinsically irregular. Moreover, computer networks evolve in
time: new user accounts are created, new computers are added to the network, etc.
As a consequence, the set of observed entities cannot be expected to remain constant,
as demonstrated by Figure 2.7: the number of yet unseen entities observed each day
is always greater than zero, and even after several weeks, it is still in the hundreds.
There is, however, a global downward trend, suggesting that most new entities were
actually there from the beginning, but had simply not been involved in any event in
the first days or weeks. As for short-term variability in the observed data, Figure 2.8
shows that the set of observed entities undergoes significant variations from one day
to the next: the Jaccard index between entity sets from consecutive days, defined
as the size of their intersection divided by that of their union, is rarely more than
80% (with important differences between event types). Seasonal patterns in this

2.4. A Practical Example: the LANL Dataset 29

0 10 20 30 40 50 60

Day

10−6

10−5

10−4
P

ro
p

or
ti

on
of

re
d

te
am

ev
en

ts

Figure 2.11: Proportion of red team events for each day in the LANL dataset.

metric suggest that most of the entities active on weekdays are inactive on weekends,
which intuitively makes sense. As evidenced by Figure 2.9 and Figure 2.10, these
observations also apply to the entity tuples observed on each given day, sustaining
our intuitive claims about the irregularity of normal activity.

In summary, exploratory analysis of benign events in the LANL dataset reveals
three characteristics of event logs: important volume, heavy-tailed distributions for
the occurrences of entities and entity tuples, and significant temporal variability. From
the perspective of statistical modelling and anomaly detection, none of this is good
news: large amounts of data imply that scalability may be an issue, while heavy-
tailed distributions are hardly suited to anomaly detection. Finally, the nonstationary
nature of the data generating process quickly makes any static model obsolete. We
can therefore expect anomaly detection in event logs to be a challenging problem.

2.4.3 Characteristics of Malicious Activity

The presence of labelled red team activity is the most interesting aspect of the LANL
dataset: even though, as explained in Section 2.3.2, the great diversity of intrusions
makes it difficult to define general characteristics from a single example, the presence
of supposedly realistic traces of malicious activity is a good opportunity to discuss the
relevance of the assumptions we made. The description of malicious activity presented
in this section thus revolves around these three assumptions.

Similarly to the previous section, we start with the most obvious observation: Ta-
ble 2.2 shows that malicious events are vastly outnumbered by benign ones, suggesting
that Assumption 2 (scarcity of malicious events) is justified. A more detailed picture
is obtained by considering the proportion of malicious events for each day, which is
displayed in Figure 2.11. This proportion never exceeds 0.01%, which is arguably
quite small. This claim should, however, be slightly attenuated: as mentioned ear-
lier, labelled red team events almost certainly account for only a subset of all events
triggered by the intrusion. Moreover, Figure 2.11 shows that red team events only
occur on weekdays, which is consistent with the fact that the intruders were actually
security experts working inside office hours. Such a property does not necessarily
hold in general, and an actual intrusion could obviously happen during a period of
low activity. Overall, though, it seems reasonable to assume that the event set we are
looking for is small.

Distinguishability (Assumption 1) is up next. One possible way to assess the
relevance of this assumption is to compute the proportion of malicious events that
also happen without being labelled malicious. In other words, for each malicious
event, we check for benign events of the same type, involving the same entities. This
search returns matches for approximately 11% of the labelled red team events (76

30 Chapter 2. Events, Logs and Intrusions

Figure 2.12: Entity graph induced by the red team events from the LANL dataset. Each
node is an entity, and edges indicate co-occurrence of two entities in a red team event. Nodes
and edges are colored according to the date of their first appearance in a red team event.

out of 702), meaning that almost nine malicious events out of ten never happen in
the absence of an intrusion. This tends to suggest that malicious events are indeed
distinguishable from benign ones based on the entities they involve. Therefore, trying
to separate them from the rest through anomaly detection might actually work. Keep
in mind, though, that a lot of rare events are also present in the benign event set (see
Figure 2.6), making it nontrivial to build this separation in practice.

Finally, in order to evaluate Assumption 3 (connectivity of the set of malicious
events), we build the induced entity graph of the red team events, which is displayed
in Figure 2.12. This graph is indeed connected, suggesting that Assumption 3 is
reasonable. The induced entity graph can also provide some insight on how the red
team propagated into the network. To that end, nodes and edges in Figure 2.12 are
colored according to the date of their first appearance in a red team event. Two
entities seem to stick out, namely those associated with the two high-degree nodes at
the center of the figure. The first one is an authentication type ("Network/NTLM"),
which was actually used in all of the red team events. More interestingly, the second
one is a computer ("C17693"), which was available early on to the red team and was
therefore used as a stepping stone to explore the rest of the network. In particular,
these two entities are the main bridge between the four time windows which were
defined to color the graph (note that these windows were delimited manually based
on the apparent clusters of red team activity, which can for instance be observed in
Figure 2.11).

2.5. Conclusion 31

2.5 Conclusion

We introduce a theoretical framework to represent event logs, as well as a formal
definition of intrusion detection based on event logs. In doing so, we primarily aim
to define abstract and generic notions, preserving the intrinsic complexity of the data
and making as weak assumptions as possible. Through this approach, we try to build
a unifying perspective, allowing us to formalize and compare previously published
methodologies. This literature review is the subject of Chapter 3.

The proposed framework relies on the central notion of event. We adopt an
interaction-centric approach, considering that events can be primarily defined as
polyadic interactions between entities. As a consequence, we treat events as com-
binatorial data, and we take two other aspects into consideration: first, since events
can be of different types, they are also heterogeneous in nature. Secondly, since event
logs are sequences of timestamped events, they have a temporal dimension. This
multi-faceted nature makes event logs peculiarly complex, hence a need for carefully
tailored statistical models.

These statistical models should be built with one specific goal in mind, namely
intrusion detection. The latter, though, is not easy to define in a formal and systematic
way: in particular, precisely characterizing what intrusion-related events look like
hardly seems possible. Therefore, our definition of the problem relies on the concept
of anomaly detection: instead of trying to describe the events we look for, we simply
assume that they stand out from the norm in some way. Intrusion detection then
consists in building an anomaly scoring function, which quantifies how anomalous a
given event set is, and using this function to look for a small and cohesive set of
anomalous events.

In order to both illustrate and discuss our theoretical framework, we finally study
a real event log dataset containing traces of a red team exercise. Besides validating our
assumptions about intrusion-related event sets, this exploratory analysis emphasizes
some of the challenges associated with our problem. The next chapters present our
approach to tackling these challenges.

33

Chapter 3

A Taxonomy of Anomaly
Detection Methods for Event Logs

Chapter 2 introduced some key definitions, formalizing the notions of
event, event log and intrusion detection. Using this minimal theoretical
framework, we can now review existing work on statistical intrusion detec-
tion based on event logs. This chapter outlines the main steps of existing
approaches, describing the processing pipeline leading from raw event logs
to prioritized pieces of higher-level information. These elementary steps
are used to build a taxonomy of previously published detection methodolo-
gies. While most existing surveys focus on the models and algorithms used
to detect anomalies, we put more emphasis on data representation and im-
plicit assumptions about the underlying data generating process, which we
consider more significant when designing a classification.

3.1 Introduction

Given the potential benefits in terms of security, one could expect anomaly detection
in event logs to be a rather active research topic. This intuition is indeed correct:
since its inception in the late 1980s, with seminal papers such as [Denning, 1987], the
field of statistical intrusion detection, including its event log-oriented subdomain, has
received a vast amount of contributions. The goal of this chapter is to review and
synthesize this literature, using the theoretical framework introduced in Chapter 2 to
develop a unified perspective.

The perimeter of our literature review is defined through four characteristics, as
schematically depicted in Figure 3.1: first of all, we only consider intrusion detection
based on event logs. In other words, only activity-centric methods are included: we
aim to directly analyze actions carried out inside the network, and therefore exclude
approaches relying on static artifacts related to (or resulting from) these actions. Such
artifacts include contents and metadata of documents and executables, memory dumps
of computers, etc. Secondly, we are primarily interested in analyzing event logs on a
global scale: contributions aiming to model the behavior of a single computer using
low-level event logs are excluded from our scope. As for detection methods, we focus
on statistical anomaly detection, which can itself be seen as the intersection of two
concepts: anomaly detection, as opposed to misuse detection, seeks to characterize
the benign rather than the malicious, defining the latter as "not known good" instead
of "known bad". In addition, we aim to build this characterization through statistical
modelling, excluding systems relying on expert-defined rules.

34 Chapter 3. A Taxonomy of Anomaly Detection Methods for Event Logs

Intrusion
detection Scale?

Data
type?

Tools?

Approach?

Misuse
detection

Anomaly
detection

Signatures

Statistical
modelling

Event logs
EVTX, NetFlow,

syslog...

Machine state
Memory dumps,

file system...

File contents
Executables,
documents...

Single
device

Enterprise
network

Figure 3.1: Perimeter of our literature review.

In Chapter 2, we formally defined anomaly detection in event logs through some
key elements, namely the anomaly scoring function fθ and the class of event sets Ξ
on which fθ is defined. In practice, these objects are parts of a global processing
pipeline, represented in Figure 3.2. The first step of this pipeline, which we call the
segmentation step, consists in defining the class Ξ: given an event log L, the goal
of the segmentation step is to extract meaningful subsets of events from L – that is,
subsets which can be deemed benign or malicious in a way that makes sense from a
security perspective. Distinguishing benign event sets from malicious ones is the role
of the anomaly scoring function fθ, whose construction itself entails two main steps.
First, the elements of Ξ must be transformed into simpler mathematical objects:
indeed, the complex and multi-faceted nature of event logs hinders direct application
of standard anomaly detection algorithms to event sets. A representation step is thus
needed to map elements of Ξ into another space X , which should be more suited to
statistical modelling and anomaly detection. The outcome of the representation step
can be formally defined as a map φ : Ξ → X . Finally, an anomaly scoring function
ψθ : X → R can be defined in what we call the modelling step. The desired function
fθ is then simply obtained as a composite function fθ = ψθ ◦ φ.

As a logical consequence of the considerable amount of existing contributions,
many surveys have also been published. However, they typically put more emphasis
on the models and algorithms used for anomaly detection – in other words, they
focus on the modelling step (see for instance [Patcha and Park, 2007, Garcia-Teodoro
et al., 2009, Tsai et al., 2009, Buczak and Guven, 2015]). In contrast, we consider

Event
log Segmentation Event

sets Representation Mathematical
objects

Definition of a
class of event

sets

Construction
of a mapping

Modelling

ψθ:X→ℝ

Anomaly
scores

Ξ ϕ:Ξ→X

Construction
of a scoring

function

Figure 3.2: Processing pipeline associated with statistical intrusion detection in event logs.

3.2. Segmentation and Representation of the Data 35

the segmentation and representation steps equally if not more important: indeed,
the effectiveness of any anomaly scoring function ψθ at detecting malicious behavior
heavily depends on the quality of the class Ξ and the map φ. If the segmentation
and representation steps do not actually map malicious event sets to low-density
regions of X , no anomaly scoring function will be able to retrieve them. In addition,
the modelling step does not simply consist in picking an anomaly detection algorithm:
how this algorithm is applied is also crucial, and it reflects implicit assumptions about
the underlying generative process from which the data are drawn.

Motivated by the often overlooked importance of segmentation, representation and
modelling assumptions, this chapter aims to build a taxonomy of existing methods
which revolves around these notions. To that end, we discuss the successive steps of
the processing pipeline one after the other: Section 3.2 deals with the segmentation
and representation steps. The modelling step and underlying assumptions regarding
the process generating the data are then discussed in Section 3.3, focusing on the
three main aspects of event logs: combinatorial, temporal and heterogeneous.

3.2 Segmentation and Representation of the Data

In their original, complex and multi-faceted form, event logs are hardly suited to
statistical modelling and anomaly detection. Therefore, the first half of the processing
pipeline aims to transform them into a collection of simpler mathematical objects.
This entails two main steps: in the segmentation step, described in Section 3.2.1,
an event log is divided into smaller event sets according to some domain knowledge-
based aggregation rules. These event sets are then mapped onto simple mathematical
objects in the representation step, which is discussed in Section 3.2.2.

3.2.1 Spatio-Temporal Segmentation

As mentioned in Section 2.3.3, the first step of the anomaly detection pipeline consists
in building a class of event sets Ξ over which the anomaly scoring function fθ can
be defined. In practice, these event sets are generally characterized through spatio-
temporal constraints: a typical event set of interest can for instance be defined by
gathering all events involving a given user inside a given time window. In other
words, defining a class Ξ implies two steps: delimiting relevant subsets of entities and
segmenting the time axis into a set of windows. This two-dimensional segmentation
was formalized by Memory et al. [Memory et al., 2013] through the notion of extent.
An extent is the conjunction of an entity or group of entities (entity extent) and a
time period (temporal extent), and it is the elementary information unit which can be
classified as normal or anomalous.

Regarding the entity extent, a simple and frequent choice is to consider singletons.
This idea can be traced back to early work on user profiling, which fundamentally
relies on the idea that the data generated by a user summarizes this user’s behavior.
Early work on statistical analysis of event logs for intrusion detection (such as, among
others, [Debar et al., 1992, Forrest et al., 1996, Lee et al., 1997]) focuses on this
individual behavior profiling approach. As an illustration, in a highly cited 1998
paper [Lee and Stolfo, 1998], Lee and Stolfo state that

[t]he elements central to intrusion detection are: resources to be protected in a
target system, i.e., user accounts, file systems, system kernels, etc; models that
characterize the "normal" or "legitimate" behavior of these resources; techniques
that compare the actual system activities with the established models, and iden-
tify those that are "abnormal" or "intrusive".

36 Chapter 3. A Taxonomy of Anomaly Detection Methods for Event Logs

Numerous contributions have kept following this approach since then, mostly focusing
on user behavior profiling [Eldardiry et al., 2013, Gavai et al., 2015, Legg et al.,
2015, Kent et al., 2015, Rashid et al., 2016, Turcotte et al., 2016b, Wu et al., 2016a, Hu
et al., 2017, Tuor et al., 2017, Liu et al., 2019, Powell, 2020] as well as its host-centric
counterpart [Yen et al., 2013, Gonçalves et al., 2015, Sexton et al., 2015, Bohara
et al., 2016, Veeramachaneni et al., 2016, Bohara et al., 2017, Hogan and Adams,
2018, Siddiqui et al., 2019].

However, there is no reason to limit the analysis to individual behaviors: consider-
ing sets of events involving a tuple of entities can yield more fine-grained insights. As
a typical example, studying the behavior of a user on a specific computer – in other
words, aggregating events by user-computer pair – can be considered more appropri-
ate than analyzing the user’s overall behavior: for instance, users are not necessarily
supposed to carry out the same actions on domain controllers as on their own work-
stations. More generally, using entity tuples as aggregation keys better reflects the
combinatorial nature of events, and it has been an increasingly frequent approach
in recent years [Neil et al., 2013a, Turcotte et al., 2014, Schon et al., 2017, Siadati
and Memon, 2017, Tang et al., 2017, Adilova et al., 2019, Garchery and Granitzer,
2019, Bowman et al., 2020, Sanna Passino et al., 2020]. Interestingly, it was already
suggested by Denning in her seminal 1987 paper [Denning, 1987]:

An activity profile characterizes the behavior of a given subject (or set of subjects)
with respect to a given object (or set thereof), thereby serving as a signature or
description of normal activity for its respective subject(s) and object(s).

As for the temporal extent, the most common practice is to divide the time axis
into disjoint fixed-length windows. The main question then lies in the choice of a suit-
able window length. Intuitively, setting either an excessively small or great length can
make malicious behavior detection harder: on the one hand, too short time windows
might not contain enough events to characterize ongoing activity. However, going
too far in the opposite direction might lead to malicious behavior occurring in only a
small part of the considered period of time, and getting drowned in normal behavior
as a consequence. As no a priori ideal trade-off exists, many possibilities have been
explored in the literature, from minutes to hours to days. The two particular cases of
null and infinite length, corresponding respectively to a single event1 and all available
events, can be found too. Table 3.1 contains references to some selected contributions
using several families of entity subsets and time window lengths.

Note that some contributions also use extents of variable temporal length. In
particular, when considering user-computer pairs, aggregating events by session is
common practice [Böse et al., 2017, Adilova et al., 2019, Garchery and Granitzer, 2019,
Yuan et al., 2019]. A more generic approach consists in defining temporal windows in
terms of number of events rather than time elapsed [Heymann and Le Grand, 2013].

3.2.2 Representation through Mathematical Objects

Defining a relevant class of event sets is a way to transform raw event logs into a set
of meaningful and comparable objects: instead of looking for "something unusual"
in the logs, asking (for instance) whether a given user’s behavior in a specific time
window is consistent with other windows of supposedly similar activity seems more

1This holds under the implicit assumption that two events involving a shared entity cannot happen
at the exact same time. Such an assumption is arguably invalid, and we do not use it when building
statistical models: its only purpose here is to simplify the discussion by making zero-length windows
equivalent to single events.

3.2. Segmentation and Representation of the Data 37

Table 3.1: Selected contributions on statistical intrusion detection in event logs, grouped
by type of entity extent and time window length used for segmentation. Note that strictly
speaking, using zero-length time windows amounts to considering singletons regardless of the
entity extent. The difference between cells in this column lies more on the modelling side, see

Section 3.3.

Entities
Length 0 (0, 1h] [4h, 1d] ∞

User

[Turcotte et al.,
2016b]

[Whitehouse
et al., 2016]

[Eldardiry et al.,
2013]

[Kent et al.,
2015]

[Garchery and
Granitzer, 2020]

[Legg et al.,
2015]

[Wu et al., 2016a]

[Hu et al., 2017] [Liu et al., 2019]

Host

[Bohara et al.,
2016]

[Yen et al., 2013]
[Bohara et al.,

2017]

- [Hogan and
Adams, 2018]

[Gonçalves et al.,
2015]

[Siddiqui et al.,
2019]

[Sexton et al.,
2015]

User-resource
pair -

[Sapegin et al.,
2015]

[Shashanka et al.,
2016]

[Turcotte et al.,
2016a]

[Gutflaish et al.,
2019]

[Sanna Passino
et al., 2020]

Host-host pair

[Liu et al., 2018b]
[Neil et al.,

2013a]
[Lee et al., 2021]

[Metelli and
Heard, 2019]

[Turcotte et al.,
2014]

-

[Price-Williams
and Heard, 2020]

[Schon et al.,
2017]

Higher-order
tuple - - -

[Siadati and
Memon, 2017]
[Amin et al.,

2019]

workable. However, meaningful event sets are still too complex to be fed to standard
anomaly detection algorithms: they must be abstracted into simpler mathematical
objects first.

More formally, actual anomaly scoring functions {ψθ : X → R; θ ∈ Θ} are defined
on specific spaces X , the most frequent case being X ⊆ Rd (with d ≥ 1). Therefore,
building an event log-oriented anomaly scoring function fθ : Ξ → R requires first
defining a map φ : Ξ→ X , and then picking an anomaly scoring function ψθ : X → R
such that fθ = ψθ ◦ φ. This representation step is both crucial and quite challenging.
Indeed, it implies finding the right tradeoff between making the data simple enough
so that it can be handled by anomaly detection algorithms, and preserving enough
information to ensure that detected anomalies remain meaningful from a security
perspective. There is no a priori ideal solution to this contradiction: finding a suitable
balance can only be done through an empirical approach.

Classical mathematical objects used to represent event logs can be decomposed
into three main categories: scalars and vectors, discrete sequences, and combinatorial
structures (graphs and hypergraphs). Note that in practice, the definition of the map

38 Chapter 3. A Taxonomy of Anomaly Detection Methods for Event Logs

φ applied to the logs depends on the data sources under consideration. In addition,
all data sources are not equally well suited to being represented through a given
mathematical object: while, for instance, network traffic metadata can naturally be
seen as a weighted and directed graph, commands executed on a given computer
more closely resemble a discrete sequence. More details and practical examples of
representation maps are given in the next paragraphs.

Scalars and vectors. The most practical mathematical objects in terms of anomaly
detection are scalars and vectors – more formally, elements of Rd with d ≥ 1, or subsets
thereof. Indeed, anomaly detection for such data has been widely studied in the
literature, both from a theoretical [Scott and Nowak, 2006] and practical [Chandola
et al., 2009] perspective. A widely used approach to translate event sets into such
objects is to build vectors of event counts [Gavai et al., 2015, Hu et al., 2017, Tuor
et al., 2017, Liu et al., 2018a, Siddiqui et al., 2019]: letting d denote the number of
event types, an event set S =

{(
ti, ei, ωi,Γi

)}n
i=1

is converted to a vector x ∈ Rd
whose k-th coordinate is xk =

∑n
i=1 1{ei=k}. An even simpler representation can

be obtained by dropping event types and taking the total number of events n as a
summary of S [Sapegin et al., 2015].

On the other hand, more complex methods can also be designed by leveraging
the entities involved in the events or the specificities of a given data source (in other
words, the additional information Γi of each event). For instance, the activity of
a user can be further aggregated by computer, yielding one event count vector per
computer. These vectors are then concatenated into one [Legg et al., 2015]. Alter-
natively, the number of computers visited by the user can be appended to the count
vector [Bhattacharjee et al., 2017]. Regarding the additional information Γi, a typical
example is the number of packets sent and received when considering network traf-
fic metadata. As these are already numerical data, they can easily be included in a
vectorial representation [Gonçalves et al., 2015, Shashanka et al., 2016].

Discrete sequences. Emphasis can alternatively be put on the order in which
events happen, representing the set as a temporally ordered discrete sequence. Al-
though slightly less common than numerical data, such objects have also been widely
studied in the statistics and data mining literature, including contributions on anomaly
detection (see [Chandola et al., 2010] for a survey). Sequential representations of
event logs can encompass more or less information. The simplest approach only
considers event types, transforming the aforementioned event set S into a sequence
(e1, . . . , en) [Rashid et al., 2016, Wu et al., 2016a, Adilova et al., 2019]. However, addi-
tional information can also be included, such as the time elapsed between consecutive
events [Yuan et al., 2019] or details about their content [Turcotte et al., 2016b, Du
et al., 2017, Tuor et al., 2018, Garchery and Granitzer, 2020].

Note that defining the notion of anomaly is not as straightforward for discrete
sequences as for numerical data. Indeed, while contributions on scalar or vectorial
representations of event sets simply define regions of Rd as anomalous, sequential rep-
resentations allow for different granularities: a single event can be deemed anomalous
with respect to previous ones, but decisions can also be made regarding a subsequence
of any length, or even the whole sequence. From an intrusion detection perspective,
none of these options stands out as obviously superior (similarly to the choice of a win-
dow length discussed in Section 3.2.1): while considering longer subsequences can lead
to more reliable decisions by taking more information into account, dividing the data
into smaller bits more effectively isolates malicious events, which can help detecting
them. Therefore, both options appear in the literature.

3.2. Segmentation and Representation of the Data 39

Graphs and hypergraphs. Finally, the combinatorial nature of event logs can be
leveraged by representing event sets as graphs or hypergraphs. These mathemati-
cal objects are particularly flexible and, as a consequence, several representation ap-
proaches relying on them have been proposed. The earliest ones focus on data sources
whose relational nature is most evident, namely remote authentications and network
connections. Kent et al. [Kent and Liebrock, 2013, Kent et al., 2015] introduced the
concept of authentication graph of a user, which is a directed graph whose nodes are
computers onto which a given user has authenticated in a given time window. An edge
from u to v then indicates that the user performed at least one remote authentication
from host u to host v. A closely related approach consists in building bipartite access
graphs, whose nodes are users and resources (including hosts), with each edge stand-
ing for a user accessing a resource [Chen and Malin, 2011, Heymann and Le Grand,
2013, Turcotte et al., 2016a, Moriano et al., 2017, Tang et al., 2017, Gutflaish et al.,
2019, Bowman et al., 2020, Sanna Passino et al., 2020]. Network traffic metadata can
also be intuitively thought of as a directed graph whose nodes are hosts, with edges
representing network communications [Neil et al., 2013a, Neil et al., 2013b, Turcotte
et al., 2014, Bohara et al., 2017, Lee et al., 2021].

More recently, however, several contributions have proposed more generic graph-
based representations of event logs [Liu et al., 2019, Leichtnam et al., 2020b]. They
rely on the combinatorial nature of events to build event graphs – in other words,
graphs whose vertices are events. Edges then represent similarity in terms of involved
entities or temporal proximity. The intuition underpinning these methods is that
malicious events should result in anomalous subgraphs in the event graph, which can
be detected through graph mining methods. Unlike authentication graphs or network
communication graphs, which can only encode dyadic relationships between entities,
event graphs make full use of the combinatorial dimension of events. Another way
to overcome this limitation is to represent event logs as hypergraphs or categorical
data [Siadati and Memon, 2017, Amin et al., 2019, Eren et al., 2020].

Similarly to discrete sequences, several kinds of anomalies can be defined when
considering graphs. At the coarsest scale, a whole graph can be characterized as
normal or anomalous, either based on some global structural properties [Kent and
Liebrock, 2013, Heymann and Le Grand, 2013, Kent et al., 2015, Moriano et al., 2017]
or on the probability given by a random graph model [Gutflaish et al., 2019]. How-
ever, finer-grained decisions can sometimes be considered more relevant: for instance,
looking for anomalous vertices can uncover compromised user credentials or malicious
insiders in user-resource access graphs [Chen and Malin, 2011, Turcotte et al., 2016a]
or anomalous events in event graphs [Liu et al., 2019]. The same applies to anomalous
edge detection, which has been used to look for malicious use of resources [Tang et al.,
2017, Bowman et al., 2020, Sanna Passino et al., 2020] or, more generally, for anoma-
lous associations in event graphs [Leichtnam et al., 2020b]. Finally, an intermediary
approach can also be found in the literature, with several contributions aiming to de-
tect anomalous subgraphs in network communication graphs [Neil et al., 2013a, Neil
et al., 2013b, Turcotte et al., 2014, Lee et al., 2021].

At the end of the representation step, an initial event log L has been transformed
into a collection of simple mathematical objects, which can be defined with a slight
abuse of notation as φ(L) = {φ(S); S ∈ P(L)∩Ξ}. This transformation relies on two
main elements: a class of event sets Ξ, which enables extraction of relevant subsets
of L, and a map φ : Ξ → X , which transforms these subsets into elements of a
more practical space X . The next step then consists in building a good anomaly
scoring function ψθ : X → R, where "good" here means that the composite function

40 Chapter 3. A Taxonomy of Anomaly Detection Methods for Event Logs

fθ = ψθ ◦φ returns higher values for malicious event sets. Existing approaches to this
modelling step are discussed in the next section.

3.3 Anomaly Detection and Underlying Generative Mod-
els

Once raw event logs have been abstracted into simple and usual mathematical ob-
jects, any of the numerous existing anomaly detection algorithms can be used to build
the anomaly scoring function ψθ. However, the chosen algorithm and, perhaps more
importantly, the way it is actually applied to the data are highly significant: indeed,
they carry implicit assumptions about the underlying generative model. These as-
sumptions pertain to each of the three main characteristics of event logs, and they
can essentially be understood in terms of statistical dependencies.

This section covers modelling choices associated with each of these three main
characteristics: first of all, Section 3.3.1 deals with the combinatorial aspect, high-
lighting the difference between aggregation-based models, which essentially treat en-
tity extents as mutually independent, and interaction-based models, which integrate
high-order relationships between them. The temporal aspect is then discussed in Sec-
tion 3.3.2, distinguishing its two components: nonstationarity of the data generating
process, and statistical dependencies between successive observations. Finally, Sec-
tion 3.3.3 reviews the two main paradigms for handling heterogeneous events, namely
jointly modelling events of all types and combining marginal models.

3.3.1 Combinatorial Aspect

Because of their combinatorial nature, event logs give rise to intricate association
patterns between entities. Beyond first-order associations (i.e. entities appearing in
the same event), higher-order relationships can be meaningful as well – for instance,
two users often accessing the same resources can be thought of as somehow connected,
even though they are not jointly involved in any event. However, taking these high-
order relationships into account leads to more complex models. In particular, such
relationship-oriented models are necessarily global: the behavior of a given entity
can no longer be considered self-contained and entirely characterized by the events
involving it. Complex models raise some reliability concerns, thus restricting the focus
to local, entity-centric models can arguably be considered a more realistic option.

These two options, which we respectively call interaction-based and aggregation-
based modelling, both appear in the literature. Simply put, aggregation-based models
see each entity as the sum of its actions, while interaction-based models define it as the
sum of its relations. This opposition is illustrated in Figure 3.3, and both paradigms
are discussed in more detail in the next paragraphs.

Divide and conquer – Aggregation-based models. Aggregation-based mod-
els mostly rely on comparison between supposedly independent and identically dis-
tributed instances. Coming back to the generic framework introduced by Memory et
al. [Memory et al., 2013], this approach can be generically thought of as comparing
an extent with a baseline. This baseline can consist of past activity of the same entity
extent (longitudinal baseline) or, conversely, of the activity of other (and presum-
ably similar) entity extents in the same temporal extent (cross-sectional baseline). A
combination of these two ideas can also be used, comparing an entity extent’s lat-
est activity with its own past activity and that of similar entity extents (simultaneous

3.3. Anomaly Detection and Underlying Generative Models 41

(a) Raw events

(b) Aggregation

(c) Interaction

Figure 3.3: Illustration of the two main paradigms for handling combinatorial events: given
a set of events seen as interactions between entities (Figure 3.3a), aggregation-based models
(Figure 3.3b) consider each entity extent as an independent actor whose behavior is described
by the events involving it, while interaction-based models (Figure 3.3c) factor in high-order

relationships between entities.

baseline). Using our own terminology, the baseline is the set of events used to build the
anomaly scoring function ψθ, which is then applied to the extent under consideration.

The aggregation-based approach has been widely used, in combination with all
kinds of extents and mathematical objects. Its most frequent (and perhaps sim-
plest) application is user behavior monitoring through anomaly detection in Euclidean
spaces. This methodology represents the behavior of each user in each temporal extent
through a fixed-size vector, then looks for anomalous behavior using classic anomaly
detection algorithms such as Isolation Forest [Liu et al., 2008], Local Outlier Fac-
tor [Breunig et al., 2000] or One Class Support Vector Machine [Schölkopf et al.,
2001], among others. The choice of the baseline is then one of the most important
aspects, and all possible kinds have been used: longitudinal [Legg et al., 2015, Hu
et al., 2017], cross-sectional [Eldardiry et al., 2013, Gavai et al., 2015, Aldairi et al.,
2019] and simultaneous [Bhattacharjee et al., 2017, Tuor et al., 2017, Chattopadhyay
et al., 2018, Haidar and Gaber, 2018, Liu et al., 2018a].

This methodology can easily be extended to different mathematical objects, such
as graphs [Kent and Liebrock, 2013, Kent et al., 2015, Liu et al., 2019, Powell, 2020]
or discrete sequences [Rashid et al., 2016, Wu et al., 2016a, Lu and Wong, 2019]. The
main difference is the anomaly detection algorithm used to classify extents, which
obviously depends on the type of mathematical object under consideration. The same
approach can also straightforwardly be applied to hosts instead of users [Yen et al.,
2013, Bohara et al., 2016, Bohara et al., 2017, Siddiqui et al., 2019] and, with no
major difference, to user-host [Shashanka et al., 2016, Böse et al., 2017, Adilova et al.,
2019] or host-host [Neil et al., 2013a, Neil et al., 2013b, Turcotte et al., 2014] pairs.
Note, however, that all types of entity extents are not equally well suited to detecting
a given kind of malicious behavior. In particular, using entity tuples as entity extents
makes rare associations between entities stand out more easily, which can for instance
be useful when looking for lateral movements.

All intertwined – Interaction-based models. Interaction-based modelling dif-
fers in a sometimes subtle way from aggregation-based modelling with entity tuples as
entity extents. To illustrate this difference, consider the following example: suppose
user U remotely authenticates for the very first time onto computer C. How can this
event be classified as benign or malicious? Aggregation-based methods could handle

42 Chapter 3. A Taxonomy of Anomaly Detection Methods for Event Logs

this case by computing how often new user-computer pairs start interacting, how of-
ten user U visits new computers or how often computer C is visited by new users.
In contrast, interaction-based methods rely on global models of how entities interact,
and would therefore ask whether users usually connecting to the same hosts as U also
visited C or, more generally, whether users similar to U are expected to authenticate
onto hosts similar to C.

To build such global models, interaction-based methods leverage concepts from
combinatorial statistics. These are reviewed more extensively in Chapter 4. A fre-
quently used technique is link prediction in graphs: by learning a classifier predicting
the existence of an edge between two given nodes, anomalous interactions between
entities can be detected. The classifier can rely either on explicit features of the
nodes [Leichtnam et al., 2020b] or latent features inferred from a training dataset of ex-
isting links, using techniques such as matrix factorization [Turcotte et al., 2016a, Tang
et al., 2017], graph embedding [Wei et al., 2019, Bowman et al., 2020] or other latent
space models [Lee et al., 2021, Metelli and Heard, 2019, Sanna Passino et al., 2020].
Similar techniques exist for polyadic interactions as well, which can also be modelled
using either explicit [Siadati and Memon, 2017] or inferred [Tuor et al., 2018, Amin
et al., 2019, Eren et al., 2020, Garchery and Granitzer, 2020] features describing in-
volved entities. Finally, more global metrics can be used to assess the normality of
an entire interaction graph. These can for instance be defined using global structural
characteristics [Heymann and Le Grand, 2013, Moriano et al., 2017], graph distances
with respect to some baseline [Aksoy et al., 2019] or the likelihood of a random graph
model [Gutflaish et al., 2019].

3.3.2 Temporal Aspect

As mentioned in Section 2.2.3, the temporal dimension of event logs can be divided into
an absolute component and a relative component. Regarding the absolute component,
modelling it amounts to taking into account the nonstationarity of the data generating
process. As for the relative component, it pertains to the existence of statistical
dependencies between successive observations.

More formally, suppose that an observation Xt is obtained at each time step t.
Then, assuming stationarity means that there is a single distribution D such that
Xt ∼ D for all t. Conversely, under the nonstationarity assumption, each observation
Xt follows a specific distribution Dt – note, however, that there may exist time steps
t 6= t′ such that Dt = Dt′ . As for dependence, we focus on first-order Markovian
dependencies, leading to the two following possibilities: independent observations,
i.e. Xt ⊥⊥ Xt′ for all t 6= t′, and dependent observations, i.e. Xt ⊥⊥ Xt′ | Xt−1 for
t′ /∈ {t − 1, t}. These two subdivisions lead to four possible pairs of assumptions,
illustrated in Figure 3.4. Note that these assumptions are usually implicit, but they
can be deduced from the detection procedure. In other words, how the anomaly scoring
function ψθ is built or whether it evolves over time, among other considerations, can
be interpreted in terms of temporal characteristics of the underlying data generating
process. The next paragraphs successively discuss the absolute and relative aspects,
and Table 3.2 lists some selected contributions, grouped according to their implicit
assumptions about the temporal dimension.

Absolute component – (Non)stationarity of the data generating process.
Coming back once again to [Memory et al., 2013], longitudinal baselines typically
carry the implicit assumption that the current behavior of an entity should not differ
too much from its past behavior, which can be understood as asserting stationarity of

3.3. Anomaly Detection and Underlying Generative Models 43

Xt-1 Xt Xt+1

D

(a) Stationary and independent

Xt-1 Xt Xt+1

DtDt-1 Dt+1

(b) Nonstationary and independent

Xt-1 Xt Xt+1

D

(c) Stationary and dependent

Xt-1 Xt Xt+1

DtDt-1 Dt+1

(d) Nonstationary and dependent

Figure 3.4: Illustration of the four possible pairs of assumptions about the temporal di-
mension of the data. Observations, denoted X•, follow different distributions D•, and arrows

between observations indicate statistical dependencies.

the underlying data generating process. Note that this assumption can be attenuated
by only including the most recent observations in the baseline [Legg et al., 2015,
Shashanka et al., 2016, Hu et al., 2017], thus implicitly considering the underlying
process as slowly evolving. In contrast, using a cross-sectional baseline entails no
need for stationarity.

More generally, the anomaly scoring function ψθ encodes some knowledge about
the underlying data distribution through its parameter vector θ, and handling non-
stationarity amounts to updating this parameter vector over time. This updating
procedure can consist in a complete re-estimation of θ based on the latest observa-
tions [Rashid et al., 2016, Tuor et al., 2018]. It can also be made more incremental,
for instance by asking a security expert to review the alerts returned by the model
and label them as true or false positives, then adapting the system to correctly predict
these labels [Veeramachaneni et al., 2016, Haidar and Gaber, 2018, Siddiqui et al.,
2019]. Another way to smoothly update the model is to use Bayesian filtering methods
to track the evolution of θ [Lee et al., 2021] (see Chapter 5 for a more detailed descrip-
tion of this approach). Nonparametric Bayesian methods can also be used to update
the model in a smooth and theoretically sound fashion [Heard and Rubin-Delanchy,
2016, Sanna Passino and Heard, 2019].

Finally, nonstationarity can be handled to some extent by directly modelling the
temporal variations of the distribution using some training dataset. Seasonal varia-
tions, which can be expected to occur in event logs, are a good candidate for this type
of approach [Turcotte et al., 2014, Sanna Passino et al., 2020]. A more generic model
can also be designed to predict the expected anomaly score at time step t based on
some temporal features [Gutflaish et al., 2019]. Note that these methods do implicitly
assume a longer-term stationarity of the data generating process – more specifically,
they assume that short-term variations remain similar over time.

44 Chapter 3. A Taxonomy of Anomaly Detection Methods for Event Logs

Table 3.2: Selected contributions on statistical intrusion detection in event logs, grouped
according to their implicit assumptions about the two aspects of the temporal dimension:

absolute (stationary or not) and relative (dependent or not).

Independent Dependent

Stationary

[Legg et al., 2015] [Neil et al., 2013a]
[Bohara et al., 2016] [Tuor et al., 2017]
[Bowman et al., 2020] [Yuan et al., 2019]

[Powell, 2020] [Garchery and Granitzer, 2020]

Nonstationary

[Yen et al., 2013] [Turcotte et al., 2014]
[Rashid et al., 2016] [Turcotte et al., 2016b]
[Lee et al., 2021] [Tuor et al., 2018]

[Siddiqui et al., 2019] [Aldairi et al., 2019]

Relative component – Mutual (in)dependence of successive observations.
First of all, it should be noted that statistical dependencies between successive ob-
servations are seldom considered. However, some contributions do incorporate them
through explicitly Markovian models [Neil et al., 2013a, Turcotte et al., 2014, Turcotte
et al., 2016b]. Others assume longer-term dependencies, typically by using recurrent
neural networks of various kinds [Tuor et al., 2017, Brown et al., 2018, Tuor et al.,
2018, Garchery and Granitzer, 2020]. Note that using such models does not neces-
sarily lead to taking into account the link between consecutive observations: several
contributions [Rashid et al., 2016, Wu et al., 2016a, Adilova et al., 2019, Lu and Wong,
2019] use Markovian models or recurrent neural networks to model each observation
Xt (represented by a discrete sequence), but still consider Xt+1 independent from Xt.
Such distinctions highlight the insufficience of model-centric taxonomies: depending
on the way it is actually applied to the data, a given algorithm can output entirely
different results and insights about them.

As a side note, a less traditional approach consists in reinjecting the anomaly score
given to an entity extent at time step t as an input to the anomaly scoring function
at time step t + 1 [Aldairi et al., 2019]. While this method is unusual and only lets
little information flow between successive time steps, it does effectively provide the
model with a notion of dependence between consecutive observations.

3.3.3 Heterogeneous Aspect

The last of the three considered characteristics is also the most frequently overlooked.
Indeed, many contributions focus on a single event type, thereby circumventing any
challenge related to heterogeneity. Some event types are better suited to this approach
than others: typically, remote authentications can be considered sufficient when look-
ing for traces of lateral movement [Siadati and Memon, 2017, Wei et al., 2019, Bowman
et al., 2020, Powell, 2020].

However, some detection methods do try to take advantage of the information
contained in events of several different types. This can be done through two main ap-
proaches, illustrated in Figure 3.5. The first one relies on specialized models handling
one event type each, and combines the outputs of these models into a single anomaly
score afterwards. Statistical dependencies between events of different types are then
essentially ignored, the only connection established between them being that an extent
is considered more suspicious if it is anomalous with respect to several event types.
In contrast, the second approach first merges events of all types belonging to each

3.3. Anomaly Detection and Underlying Generative Models 45

X1

X2

Xd

M

...

y

(a) Combine, then model

X1

X2

Xd

...

y1

y2

yd

Agg.

...

y

M1

M2

Md

...

(b) Model, then combine

Figure 3.5: Illustration of the two approaches to modelling heterogeneous events: given
inputs X1, . . . , Xd representing d event types, the first approach (Figure 3.5a) directly merges
X1, . . . , Xd into a joint model M, while the second one (Figure 3.5b) builds d specialized

modelsM1, . . . ,Md, then aggregates their outputs into a unique one.

extent, then builds a single model for them. This model can then leverage complex
relationships between event types.

The next paragraphs discuss these two approaches in further detail, providing
concrete examples of their implementation.

Merging outputs from specialized models. The main challenge when merging
outputs from specialized models is the choice of the dependence structure between
them. In its simplest form, this choice could be phrased as follows: should a very high
anomaly score for a single event type be considered more suspicious than moderately
high scores across all types? Answering this question mainly boils down to picking a
score aggregation function. While simple and generic choices such as the average exist
in the literature [Hogan and Adams, 2018, Liu et al., 2018a], more subtle methods can
also be used to obtain a different trade-off between the individual importance of each
score and the search for simultaneous anomalies across several types. In particular,
when anomaly scores are p-values, Fisher’s method [Fisher, 1925] can be used to
combine them [Turcotte et al., 2016a, Turcotte et al., 2016b].

These simple aggregation methods treat all event types as equivalent. From a
security perspective, though, all associations of event types are not necessarily similar:
some attack techniques might for instance trigger anomalies for a specific subset of
event types. Taking into account such specifities leads to more complex procedures,
which typically rely on predefined attack scenarios [Sexton et al., 2015, Liu et al.,
2018b].

Jointly modelling different event types. Events of different types bear different
meanings and contain different kinds of information, making it nontrivial to merge
them into a joint model. Some type-specific details typically have to be ignored in
the process, and how much of this type-specific information is accounted for by the
model is the main distinctive property of the various existing methods.

The simplest way to handle heterogeneous events is to only take their types into
account, discarding any further information. Some aforementioned methodologies
build upon this idea: modelling event count vectors, for instance, can be seen as
the simplest way to factor in statistical dependencies between event types [Gavai
et al., 2015, Hu et al., 2017, Tuor et al., 2017, Liu et al., 2018a, Siddiqui et al., 2019].
Moreover, representing extents as event type sequences [Rashid et al., 2016, Wu et al.,

46 Chapter 3. A Taxonomy of Anomaly Detection Methods for Event Logs

Anomaly
detection in
event logs

Representation

Modelling

Segmentation Scalars
and

vectors

Discrete
sequences

Graphs and
hypergraphs

Entity
extent

Temporal
extent

Fixed-length
window

Variable-length
window

Single
entity

Host

User
Entity
tuple

TemporalCombinatorial

Heterogeneous

Aggregation

Interaction

Combine
then

model

Model
then

combine

Relative

Absolute
Stationary

Nonstationary

Dependent

Independent

Figure 3.6: Taxonomy of anomaly detection methods for event logs.

2016a, Adilova et al., 2019] or event graphs [Liu et al., 2019] enables integration of
more subtle relationships in the modelling step.

Other contributions include further type-specific details in the mathematical rep-
resentations of the extents. They mostly rely on vectorial representations, defining
a set of domain-specific features pertaining to different event types: number of ex-
changed packets when considering network communications [Shashanka et al., 2016],
number of authentications of a specific type or with a specific authentication package
when working with authentication events [Bohara et al., 2016], number and duration
of accesses to each existing application and number of transitions between pairs of
applications when logging application usage [Garchery and Granitzer, 2019], and so
on. Including such detailed information allows anomaly detection models to identify
more complex behaviors whose traces are scattered across several event types.

3.4 Conclusion

We propose a taxonomy of existing anomaly detection methods for event logs. This
taxonomy, illustrated in Figure 3.6, relies on an elementary characterization of the
data processing pipeline associated with event log analysis. Three main steps are
identified, each of which can be thought of as defining a part of the final anomaly
scoring function fθ. First of all, the segmentation step consists in building the class
of event sets Ξ on which is fθ defined. In the representation step, a set X and a map
φ : Ξ→ X are then defined in order to transform event sets into simpler mathematical
objects. Finally, an anomaly scoring function ψθ : X → R is built in the modelling
step, yielding an event log-oriented anomaly scoring function fθ = ψθ ◦ φ. A simple
illustration of this pipeline can be found in Figure 3.2.

The choices made at each of these three steps can be leveraged to characterize
and classify existing methodologies. Although it cannot accurately describe all the
subtle specificities of every contribution, our simple abstraction of the processing

3.4. Conclusion 47

pipeline allows us to highlight some key differences in terms of assumptions made
about the underlying data generating process. This is enough to fulfill our goals,
namely describing existing methods in a unifying framework and identifying their
distinctive properties. However, extending and improving our framework in order to
make it more expressive might be an interesting lead for future work: in particular, it
could be a way to ease implementation of anomaly detection methods for event logs.

Having reviewed and analyzed some existing methods, we can now formulate some
of the ideas explored in the next chapters. The class of event sets we use is the set
of individual events, which do in fact carry enough information to enable statistical
modelling and anomaly detection, as we demonstrate in the rest of this thesis. We
choose to focus on interaction-based modelling, with two main motivations: first,
fully leveraging the combinatorial aspect of event logs seems important when building
intrusion detection algorithms. Indeed, as highlighted in Section 2.4.3, malicious
events tend to involve unusual combinations of entities, suggesting that interesting
anomalies should be defined from a combinatorial perspective. Secondly, this research
direction raises interesting challenges: accurately modelling polyadic interactions is
far from trivial. In addition, we choose to handle heterogeneity through a joint model
for all event types, which also requires some contemplation. These issues are covered
in Chapter 4.

As for the temporal dimension, we focus on handling the nonstationarity of the
data generating process, assuming mutual independence of all observations. The rea-
son for this is twofold: first, as stated above, malicious activity is expected to generate
anomalies from a combinatorial perspective, and the sequential dimension of events
seems less distinctive. In other words, since malicious events are already anomalous
in and of themselves, looking for unusual sequences of normal events might actually
be useless. Secondly, handling nonstationarity seems significantly more important: as
evidenced in Section 2.4.2, the contents of actual event logs exhibit strong temporal
variations. Therefore, a methodology which does not adequately address the need for
frequent model updates may be hardly applicable in practice. This updating problem
is discussed in Chapter 5.

49

Part II

A Statistical Model for Event Logs

51

Chapter 4

Anomaly Detection for
Heterogeneous Polyadic
Interactions

Exploration of real-world data as well as previous work on intrusion de-
tection both suggest that explicitly modelling the combinatorial aspect of
events is a promising avenue of research. In this chapter, we thus focus
on statistical modelling and anomaly detection for combinatorial data. We
first review some contributions focusing on homogeneous interactions (both
dyadic and polyadic), highlighting the connections existing between them
despite the multiplicity of mathematical objects they rely upon: graphs, hy-
pergraphs, matrices and tensors. One of the key challenges when dealing
with combinatorial data is the high dimensionality of the sample space,
and the concept of dimensionality reduction thus plays a central role in
this literature overview. We then factor in the existence of several event
types and propose an anomaly detection model for heterogeneous events,
as well as a heterogeneity-aware training procedure for this model. In par-
ticular, we use multi-task learning to optimally balance the importance of
the different event types in the training criterion. The effectiveness of our
method is demonstrated on the LANL dataset.

4.1 Introduction

An intruder using stolen credentials to open a remote desktop session from one host to
another, or to run some reconnaissance tool on a compromised workstation, is likely to
generate events involving unusual combinations of entities. More generally, many of
the malicious actions an intruder would perform inside a targeted network can be seen
as combinatorial anomalies: more than the number of generated events, the order in
which they happen or the temporal pattern they form, the involved entity tuples are
the main feature distinguishing malicious events from benign ones. This observation
motivates us to look towards combinatorial anomaly detection methods when trying
to detect malicious activity in event logs.

Detecting anomalies in combinatorial data is a challenging task due to the high
dimensionality of the sample space. Indeed, as a basic example, drawing p elements
from a set of size n yields np possibilities, thus naively estimating the probability
of each possible combination using a finite training set quickly becomes unrealistic

52 Chapter 4. Anomaly Detection for Heterogeneous Polyadic Interactions

as n and p grow large. This raises two important issues: first of all, estimating
the support of an unknown distribution over a combinatorial space requires either a
considerable amount of training samples or strong assumptions about the structure of
the distribution. Secondly, the low-density regions of the sample space contain most
of the possible combinations but, by definition, they should be the least represented in
the training set. Thus building a useful anomaly scoring function over these regions is
also difficult without additional assumptions. An intuitive translation of these issues
in the case of event logs is that only a small fraction of all possible entity tuples
is frequently observed, and that only a small fraction of all unlikely entity tuples is
likely to be observed as a result of an intrusion. Therefore, identifying malicious events
through anomaly detection is not an easy task.

An additional challenge comes from the heterogeneity of events. Indeed, we aim
to build a joint statistical model for all event types, which implies that some param-
eters of the model should be used to compute the probability of events of different
types. This can be problematic when training the model: the likelihood for all training
samples of one specific event type can be thought of as an independent training objec-
tive, and jointly optimizing the objectives associated with each type then becomes a
multi-objective optimization problem. One of the difficulties raised by multi-objective
optimization is the possibility of a conflict between training objectives: for instance,
a given parameter update might make the model better at predicting remote authen-
tications but worse at predicting process creations. Handling such situations requires
specific tools, some of which can be found in the field of multi-task learning.

Previous contributions on intrusion detection have explored the idea of treating
event logs as combinatorial data. Most of them represent events as dyadic interactions,
enabling the use of methods such as matrix factorization [Turcotte et al., 2016a, Tang
et al., 2017] or graph embedding [Wei et al., 2019, Bowman et al., 2020]. The polyadic
nature of events has also been taken into account in a few contributions, using for
instance pattern mining [Siadati and Memon, 2017], recurrent neural network-based
language modelling [Tuor et al., 2018], tensor decomposition [Eren et al., 2020] or
representation learning [Amin et al., 2019]. However, none of the proposed methods
properly handles joint modelling of heterogeneous events and the underlying multi-
objective optimization problem. Interestingly, these approaches often draw inspiration
from other fields of research, borrowing concepts and methods originally designed for
modelling and predicting future activity rather than detecting anomalies. In par-
ticular, the field of recommender systems [Jannach et al., 2010] has given rise to a
significant amount of research on statistical modelling of combinatorial data in the
last 20 years, and a parallel can easily be drawn between content recommendation
and user behavior monitoring in computer networks: while recommender systems try
to predict which items a given user is likely to consume, intrusion detection systems
aim to infer which resources a given user is supposed to access. Despite this similarity,
though, the end goals of these two kinds of systems significantly differ: recommender
systems aim to make relevant suggestions on average, whereas intrusion detection
systems should detect relevant anomalies. More generally, while useful ideas can be
drawn from existing work on modelling combinatorial data, the specificity of our use
case should be kept in mind.

In this chapter, we propose an anomaly detection model for heterogeneous polyadic
interactions. We use dimensionality reduction techniques and ideas from categorical
anomaly detection to tackle the issues induced by the high dimensionality of the
sample space. In addition, we use multi-task learning methods to handle the multiple
training objectives associated with different event types. The effectiveness of our
approach is demonstrated through experiments using the LANL dataset.

4.2. Statistical Modelling and Anomaly Detection for Combinatorial Data 53

The rest of the chapter is organized as follows. We first review existing statisti-
cal models and anomaly detection algorithms for combinatorial data in Section 4.2,
showing how some of these concepts can be leveraged to build a model for homoge-
neous events. Section 4.3 then generalizes this model to heterogeneous events, using
multi-task learning to adapt the training procedure accordingly. Finally, we evaluate
our proposed algorithm on the LANL dataset in Section 4.4, demonstrating increased
detection performance with respect to existing work.

4.2 Statistical Modelling and Anomaly Detection for Com-
binatorial Data

We start with a simplified formulation of our problem, namely the case where all
interactions are of the same type. A formal definition of the considered problem
is given in Section 4.2.1. This generic setting of homogeneous interactions between
entities happens to be a generalization of several specific problems, each of which
has received significant attention from the research community. We thus review some
relevant contributions to each of these specific cases, focusing on statistical modelling
in Section 4.2.2 and anomaly detection in Section 4.2.3. Among the models and
algorithms we discuss, one specific approach – namely the Cadence model [Amin
et al., 2019] – is especially relevant to anomalous event detection, and we thus present
it in further detail in Section 4.2.4. Finally, drawing inspiration from some identified
limitations of Cadence, we propose our own anomalous event detection methodology
in Section 4.2.5.

4.2.1 Generic Problem and Particular Cases

Consider a set U of m entities. We assume that the elements of U are numbered so
that we can write i ∈ U or i ∈ [m] indifferently to refer to entity i. Let Λ ⊆ P(U)
be a class of subsets of U and T : Λ → Y be an unknown function, which we call
the interaction function (with Y an output space). The generic problem we consider
consists in estimating T using a training set {(ei, yi)}ni=1, with (ei, yi) ∈ Λ × Y for
all i ∈ [n]: given a symmetric divergence function ∆ : YΛ × YΛ → R+, we seek an
estimator T̂ minimizing ∆(T̂ , T). Since the true interaction function T is unknown,
a surrogate objective must be used. This objective is typically defined through a loss
function J : Y × Y → R, which quantifies the error made by T̂ on a given training
sample1. The estimator T̂ is then found by solving

T̂ ∈ arg min
t∈YΛ

n∑
i=1

J
(
t(ei), yi

)
.

Note that depending upon the nature of the space Y, the function T can represent
different concepts: it can for instance be a probability mass function, which turns the
problem into estimation of an unknown distribution over Λ. It can also take ordinal
values representing the strength of interaction between given entities, or binary values
representing the existence (or absence) of each possible interaction. This generic
formulation thus encompasses several well-known problems, which we discuss below.

Example 4.2.1 (Collaborative filtering). Let U1 ⊂ U and U2 = U \ U1 be two com-
plementary subsets of U , and set Λ = U1 × U2. In practice, U1 (resp. U2) typically

1Note that the domain of J is not always Y × Y in the rest of this chapter, although its role
remains the same.

54 Chapter 4. Anomaly Detection for Heterogeneous Polyadic Interactions

represents a set of users (resp. items), and the function T tells how much a given user
likes a given item. The values taken by T can typically be integers between 0 and
R, corresponding to ratings given by users to items. Given a set of known ratings,
building the estimator T̂ amounts to predicting how each user would rate each item.

Note that Example 4.2.1 can be interpreted as predicting the labels of unobserved
edges in a labelled bipartite graph. A closely related problem is presented next.

Example 4.2.2 (Graph link prediction). Let Λ = (U × U) \ {(i, i); i ∈ U} be the set
of pairs of distinct entities. The symmetric function T : Λ → {0, 1} then defines a
graph whose vertex set is U , with an edge between i and j if and only if T (i, j) = 1.
Let E = {(i, j) ∈ Λ, T (i, j) = 1}. Given a subset F ⊂ E of observed edges, building
T̂ amounts to recovering the full graph.

These two examples focus on dyadic interactions. They can of course be extended
to the polyadic setting, as illustrated by the following example.

Example 4.2.3 (Categorical table modelling). Let L ∈ {2, . . . ,m} be an integer,
and let {U1, . . . ,UL} be a partition of U . Setting Λ =

∏L
`=1 U`, let T : Λ → [0, 1]

be such that
∑

e∈Λ T (e) = 1. Building the estimator T̂ from a set of observations
{(ei, Ni/n)}ni=1, where ei ∈ Λ is a tuple and Ni ∈ N is the number of occurrences of ei,
amounts to estimating an unknown probability distribution over Λ from N =

∑n
i=1Ni

independent draws with replacement.

These specific cases and their practical applications, among others, have motivated
extensive research on modelling combinatorial data. A brief overview of existing ideas
and concepts is given in the next section.

4.2.2 Statistical Models and Dimensionality Reduction

Although the models and algorithms proposed to solve the various instances of the
generic problem described above differ in some aspects, they all implement the idea
of dimensionality reduction. This is an expected consequence of one of our previous
statements, namely that dimensionality is the main challenge when dealing with com-
binatorial data. In this section, we discuss several of these models, highlighting some
connections between them as well as their existing applications in event log-based
intrusion detection. We start with the dyadic case, then move on to its polyadic
counterpart.

Dyadic case – Matrix factorization and graph embedding. Consider the
following problem: there are N users and M items, and each user has rated a small
proportion of the items (this proportion can vary across users). The ratings can
then be stored in a sparse matrix Y ∈ RN×M (where unobserved ratings are set to
0). Having observed this matrix, how can we predict the ratings associated with the
unobserved user-item pairs?

A common way to answer this question is to assume that ratings depend on latent
preferences of users and latent characteristics of items, both of which can be described
by low-dimensional vectors [Billsus et al., 1998]. The rating yij given by user i to item
j can then be modelled as the dot product of two low-dimensional vectors Ui and Vj ,
i.e. yij = U>i Vj . The complete (and only partially observed) rating matrix Y∗ can
then be factorized, yielding

Y∗ = UV>, U ∈ RN×D, V ∈ RM×D,

4.2. Statistical Modelling and Anomaly Detection for Combinatorial Data 55

where D � min(N,M) is the dimension of the latent space. Inferring the unobserved
ratings then amounts to estimating the latent factors using Y, then using the product
of the estimated latent factor matrices as an approximation of Y∗. In its simplest
form, this procedure can be formalized as finding

(Û, V̂) ∈ arg min
U∈RN×D
V∈RM×D

δ(UV>,Y), (4.1)

where δ : RN×M × RN×M → R+ is a divergence function. When δ is the Frobenius
norm of the difference, i.e.

δ(A,B) = ‖A−B‖2, (4.2)

the solution to this problem is obtained through the truncated singular value decom-
position (SVD) of Y as follows [Stewart, 1993]: let Us (resp. Vs) be the matrix whose
columns are the left-singular (resp. right-singular) vectors of Y in descending order
of the corresponding singular values. In addition, let Λ̃ be the N ×M rectangular
matrix whose D first diagonal coefficients are the D largest singular values of Y in
decreasing order, and whose other coefficients are set to zero. Then Ŷ = UsΛ̃V>s
solves Equation 4.1 with δ as defined in Equation 4.2.

However, making the divergence depend on the whole matrix Y is not necessarily
a good idea: as mentioned earlier, observed ratings actually account for a small mi-
nority of the coefficients yij . Therefore, using the SVD of Y gives a disproportionate
importance to unavailable information: the estimated latent factors are mostly fit to
set unobserved ratings to 0, leading to unaccurate predictions. To circumvent this
issue, the divergence function can be modified to depend only on observed ratings,
which makes the optimization problem slightly more challenging than computing the
SVD [Srebro and Jaakkola, 2003]. Another issue lies in the choice of the latent space
dimension K: indeed, setting K too low makes the model not expressive enough
and unable to fully capture the structure of the training data, while high values of
K may lead to overfitting and poor generalization. A common solution is to add a
regularization term to the objective function while using a large K.

Taking these two aspects into account, Mnih and Salakhutdinov proposed a dif-
ferent formulation of the problem, called Probabilistic Matrix Factorization (PMF).
Their approach [Mnih and Salakhutdinov, 2007] relies on solving

(Û, V̂) ∈ arg min
U∈RN×D
V∈RM×D

1

2

N∑
i=1

M∑
j=1

Iij

(
yij −UiV

>
j

)2
+
λU
2
‖U‖22 +

λV
2
‖V‖22, (4.3)

where Iij equals 1 if user i has rated item j and 0 otherwise, Ui (resp. Vj) is the
i-th (resp. j-th) line of U (resp. V) and λU , λV > 0 are hyperparameters. Solving
Equation 4.3 is actually equivalent to maximum a posteriori estimation under the
following model: the conditional distribution of each observed rating yij is defined as

p (yij | Ui,Vj) = N (UiV
>
j , σ

2),

withN (µ, σ2) denoting the normal distribution with mean µ and standard deviation σ,
and the prior distribution of each latent factor is an independent zero-mean spherical
Gaussian, leading to

p (Ui) = N (0, σ2
UI), p (Vj) = N (0, σ2

V I),

56 Chapter 4. Anomaly Detection for Heterogeneous Polyadic Interactions

Ui Vj

yij

i=1...N j=1...M

σ

σU σV

(a) Probabilistic matrix factor-
ization

Ui Vjyij

i=1...N j=1...M

a'

ξi ηj

b' c' d'

a c

(b) Hierarchical Poisson factorization

Figure 4.1: Graphical models for two matrix factorization algorithms: probabilistic matrix
factorization [Mnih and Salakhutdinov, 2007] (Figure 4.1a) and hierarchical Poisson factor-

ization [Gopalan et al., 2015] (Figure 4.1b).

where I is the identity matrix. The observation noise variance σ2 and prior variances
σ2
U , σ

2
V are related to the hyperparameters as follows: λU = σ2/σ2

U and λV = σ2/σ2
V .

See Figure 4.1a for a graphical model of PMF.
While this model is adapted to sparse rating matrices, it does not work well with

so-called implicit feedback – in other words, when the only available information is
whether user i has consumed item j or not. Indeed, in this case, using only observed
interactions to fit the model leads to trivial solutions: setting all user and item latent
factors to the same vector is enough to perfectly explain all implicit feedback. To avoid
such a collapse, one possible approach is to formulate the problem as an instance of
binary classification, fitting the model on both observed interactions and a subset of
unobserved ones. Alternatively, Gopalan et al. [Gopalan et al., 2015] proposed another
model, named Hierarchical Poisson Factorization (HPF). The main idea behind HPF
is to explicitly factor in the limited budget of each user: instead of treating unobserved
user-item interactions as implicit negative feedback, HPF relies on a generative process
in which each user is given a finite budget of items to consume and spends it on
their favorite items. This generative process, illustrated through a graphical model in
Figure 4.1b, is as follows (for a set of hyperparameters a, a′, b′, c, c′, d′ > 0):

• For each user i, sample activity ξi ∼ Gamma(a′, a′/b′), then for each d ∈ [D],
sample preference Uid ∼ Gamma(a, ξi).

• For each item j, sample popularity ηj ∼ Gamma(c′, c′/d′), then for each d ∈ [D],
sample attribute Vjd ∼ Gamma(c, ηj).

• For each user-item pair (i, j), sample feedback yij ∼ Poisson
(
UiV

>
j

)
.

In the case of implicit feedback, observed values are yij = 1 if user i has consumed item
j and 0 otherwise. The posterior distribution of the latent factors is then approximated
through a mean-field variational inference procedure [Wainwright and Jordan, 2008].
Turcotte et al. applied HPF to intrusion detection based on authentication and process
creation logs, using it to spot unlikely user-host and user-process associations [Turcotte
et al., 2016a]. Their work was then extended to include explicit entity attributes as
well as temporal dynamics [Sanna Passino et al., 2020].

4.2. Statistical Modelling and Anomaly Detection for Combinatorial Data 57

The successive improvements leading from SVD to PMF, then to HPF, exhibit a
global trend towards more sophisticated relationships between the latent features of
the entities and the observed interactions. Starting with a simple approximation of the
rating matrix through a rank-constrained matrix, subsequent contributions gradually
detached the generative model of the latent factors from the observations. Another
line of work went further down this path, namely the field of graph embedding.

Simply put, graph embedding consists in building a general purpose representation
of a graph’s nodes in RD. In other words, given a graph G = (V, E), where V (resp.
E) is the set of nodes (resp. edges) of G, embedding G in RD consists in defining a
map g : V → RD that is suited for various tasks, the most common ones being link
prediction and node classification or clustering. In particular, the problem of recom-
mendation with implicit feedback introduced above can be phrased as link prediction
in a bipartite graph. As such, it can be addressed through graph embedding followed
by the construction of a link prediction function h : RD×RD → [0, 1], which takes the
embeddings of two nodes as input and returns the probability of an edge connecting
these nodes. Regardless of the type of prediction function used, the relevance of the
predictions depends on the quality of the embedding map g.

Intuitively, one way to embed G in RD while preserving its structure is to ensure
that the distance between the embeddings of v1, v2 ∈ V is small if v1 is connected to
v2 in G and large otherwise. This idea underpins the concept of spectral embedding:
letting A denote the adjacency matrix of G, we would like to solve

ĝ ∈ arg min
g:V→RD

∑
i,j∈V

Aij ‖g(i)− g(j)‖22

subject to

{
∀i ∈ [D],

∑
v∈V g(v)i = 0

∀(i, j) ∈ [D]2,
∑

v∈V g(v)ig(v)j = 1{i=j}
,

where g(v)i denotes the i-th component of g(v). The first constraint makes the em-
bedding centered, while the second one prevents trivial solutions mapping all the
nodes to the same point. It turns out that the optimal solution to this optimiza-
tion problem can be constructed using the first D + 1 eigenvectors of the Laplacian
L = D −A (where D is the diagonal matrix whose diagonal is the vector d = A1),
hence the name "spectral embedding": letting v1, . . . ,vD+1 denote these eigenvec-
tors, the |V| ×D matrix of optimal node embeddings is [v2 · · · vD+1]. Modifying the
second constraint to

∀(i, j) ∈ [D]2,
∑
v∈V

dvg(v)ig(v)j = 1{i=j}

leads to a slightly different solution, commonly referred to as the Laplacian eigen-
map [Belkin and Niyogi, 2003].

Popular alternatives to spectral embedding methods have been introduced in the
2010s, relying on a parallel between nodes in a random walk and words in a sentence.
This approach was first introduced by Perozzi et al. under the name DeepWalk [Per-
ozzi et al., 2014]. In practice, DeepWalk involves two main steps: first, for each
node v ∈ V, a fixed number of random walks starting at v are sampled from G. A
skip-gram model [Mikolov et al., 2013] is then learned from these random walks, es-
sentially ensuring that for v1, v2 ∈ V, g(v1)>g(v2) is large if and only if v1 and v2

usually appear close to each other in random walks. DeepWalk inspired subsequent
contributions [Tang et al., 2015b, Tang et al., 2015a], one of the most influential ones
being node2vec [Grover and Leskovec, 2016]. Intuitively, the main way to improve

58 Chapter 4. Anomaly Detection for Heterogeneous Polyadic Interactions

upon DeepWalk is to come up with more sophisticated definitions of a node’s con-
text than simple, unbiased random walks. node2vec does so by proposing a biased
random walk algorithm which produces a better depiction of the local structure of G
around each node. It was used for intrusion detection based on authentication logs,
in combination with different anomaly detection approaches: Wei et al. proposed to
represent each user’s authentications through numeric features computed using the
embeddings of the hosts visited by this user, then to detect anomalous users using
these features [Wei et al., 2019]. A more traditional approach was suggested by Bow-
man et al., who use node embeddings to learn a link prediction function through
logistic regression [Bowman et al., 2020], leading to

h
(
g(v1), g(v2)

)
= σ

(
w>
(
g(v1)� g(v2)

))
,

where w ∈ RD is the parameter vector learned through logistic regression, � is the
element-wise product between two vectors, g and h are the fuctions introduced above
(namely the embedding map and the link prediction function), and σ is the sigmoid
function, defined by σ(x) =

(
1 + exp(−x)

)−1 for x ∈ R. Anomalous edges in the
user-host authentication graph can then be detected using h.

Despite their greater popularity, random-walk based embeddings were actually
shown to be closely related to matrix factorization and spectral embedding meth-
ods [Qiu et al., 2018], and the various existing sampling schemes can be interpreted
as indirect definitions of matrices to factorize. Therefore, recent research on graph
embedding has moved towards more complex models involving deep neural architec-
tures [Hamilton, 2020]. However, these methods have not yet been widely applied to
intrusion detection, thus we do not cover them here.

A few lessons can be learned from this first overview. First of all, the main intuition
underpinning dimensionality reduction for combinatorial data is that the propensity
of an entity to interact with others, as well as the intensity of these interactions,
depend on a small number of latent attributes associated with this entity. Therefore,
an interaction function T defined over a class of subsets Λ of a set U of m entities can
be approximated using O(mD) parameters, where D � m is the number of latent
attributes. This indeed significantly reduces the dimensionality of the problem, in
comparison with direct estimation of T for each of the O(m2) elements of the class Λ
in the dyadic case.

This latent factor-based approach accommodates the sparsity of actual observa-
tions (graphs or matrices in the dyadic case). However, this sparsity remains a chal-
lenge from a modelling perspective: indeed, fitting a model using a set of observed
interactions boils down to determining which of the unobserved interactions are likely
to happen in the future, which implies deciding how concentrated the probability
mass should be. The models presented above handle this decision in different ways:
through prior distributions in the case of PMF and HPF, or through the balance
between positive and negative samples when training a link prediction classifier, for
instance.

Finally, distinguishing the embedding of U in RD from the estimation of the in-
teraction function T can be a way to inject domain knowledge into the latent factors
of the entities. In particular, graph embedding algorithms aim to leverage some ex-
pected properties of real-world networks, such as homophily (i.e. the tendency of
nodes to be clustered in communities, with most edges connecting nodes from the
same community) or structural equivalence (i.e. the existence of nodes playing the
same structural role in the network without being connected). Using such properties

4.2. Statistical Modelling and Anomaly Detection for Combinatorial Data 59

iL=1...NL

y

θ(1)
d,i1

θ(2)
d,i2

θ(L)
d,iL

d=1...D

i1=1...N1

i1,...,iL

i2=1...N2

...

Figure 4.2: Graphical model for Poisson tensor factorization [Chi and Kolda, 2012].

can be an interesting way to go beyond the basic intuition that two entities which
usually interact with the same other entities will keep doing so in the future.

We now move on to the polyadic setting, in which similar ideas have been applied,
although with some adjustments and greater complexity.

Polyadic case – Tensor decomposition and hypergraph embedding. Simi-
larly to the way bipartite (e.g. user-item) interactions can be represented through a
rectangular matrix, fixed-size polyadic interactions involving L entities drawn from L
distinct sets U1, . . . ,UL can be represented through an L-way tensor Y. The coefficient
of Y at position (i1, . . . , iL) typically represents the number of observed interactions
between entities i1 ∈ U1, . . . , iL ∈ UL, or a binary indicator for the existence of at
least one such interaction. Pushing the analogy further, a tensor can be approxi-
mated through a combination of lower-dimensional latent factors [Kolda and Bader,
2009]. In particular, the tensor rank decomposition [Hitchcock, 1927], also referred
to as PARAFAC [Harshman, 1970] or CANDECOMP [Carroll and Chang, 1970], can
be seen as a generalization of SVD to tensors. It consists in approximating a given
tensor with a sum of D rank-one tensors, which can be formalized as finding(

λ̂,
{(

θ̂
(1)

d , . . . , θ̂
(L)

d

)}D
d=1

)
∈ arg min

λ∈RD
θ

(`)
d ∈S

N`−1

∥∥∥∥∥Y−
D∑
d=1

λdθ
(1)
d ⊗ . . .⊗ θ

(L)
d

∥∥∥∥∥
2

, (4.4)

where for ` ∈ [L], N` = |U`| is the number of entities in the `-th entity set (and also
the size of Y along the `-th dimension), SN`−1 denotes the unit sphere in RN` , λd
is the d-th element of λ and ⊗ denotes the outer product of two vectors. The i-th
coefficient of θ(`)

d can then be interpreted as the d-th latent attribute of the i-th entity
of type `, making tensor rank decomposition akin to embedding each entity in RD.

Unfortunately, the least squares criterion used in Equation 4.4 is poorly suited
to modelling sparse count data. Therefore, Chi and Kolda [Chi and Kolda, 2012]
proposed modelling each coefficient of Y with a Poisson distribution instead, yielding

yi1,...,iL ∼ Poisson

(
D∑
d=1

λd

L∏
`=1

θ
(`)
d,i`

)
,

where θ(`)
d,i`

is the i`-th element of θ(`)
d . The model, illustrated in Figure 4.2, can then be

fitted through maximum likelihood estimation. This approach was applied to intrusion
detection by Eren et al. [Eren et al., 2020], who represent a set of authentication

60 Chapter 4. Anomaly Detection for Heterogeneous Polyadic Interactions

events as a binary L-way tensor. Several representations are proposed, each of them
including a variable number of the following fields from each event: user, source host,
destination host, hour (0 through 23), day (Monday through Sunday) and status
(success or failure). The obtained tensor is then decomposed as described above, and
the learned distribution over the coefficients can be used to classify subsequent events
as normal or anomalous.

Tensors are a useful tool when analyzing interactions corresponding to a fixed
schema – in other words, when the class Λ of possible interactions can be written
as a Cartesian product of disjoint entity sets, i.e. Λ =

∏L
`=1 U`. However, they are

not adapted to more general classes: in particular, variable-length interactions cannot
be represented naturally through tensors. A more flexible mathematical object must
then be used, and hypergraphs appear as obvious candidates.

Simply put, a hypergraph is a generalization of a graph in which an edge (also
called hyperedge) can involve an arbitrary number of nodes. From now on, G = (V, E)
denotes a hypergraph, with V (resp. E) denoting its set of nodes (resp. hyperedges).
Using our formalism, considering hypergraphs amounts to setting Λ = P(U) \ {∅}.
In terms of dimensionality, this entails a steep increase from the O(m2) possible
edges in a graph to O(2m) possible hyperedges, making the need for dimensionality
reduction even greater. The existence of a fair amount of contributions on hypergraph
embedding thus comes as no surprise.

In the exact same manner as graph embedding, hypergraph embedding consists in
building a function g : V → RD which preserves useful information about the structure
of G. Some ideas introduced in the context of graph embedding have thus logically
been extended to hypergraphs. Starting with the idea of spectral embedding [Zhou
et al., 2006], an equivalent of the Laplacian for a hypergraph can be defined as

L = I−D−1/2
v HD−1

e H>D−1/2
v ,

where I is the identity matrix, Dv is the diagonal matrix of node degrees (where the
degree of v ∈ V is the number of hyperedges incident to v), De is the diagonal matrix
of hyperedge degrees (where the degree of ω ∈ E is the number of nodes in ω), and
H is the |V| × |E| incidence matrix of G, whose entry at position (v, ω) equals 1{v∈ω}.
The first D eigenvectors of L, denoted v1, . . . ,vD, can then be stacked to build the
node embedding matrix [v1 · · · vD].

Random walk-based hypergraph embedding methods have also been proposed.
Similarly to their graph-oriented counterparts, they rely on the skip-gram model, the
main difference lying in the definition of a random walk. Indeed, while an unbiased
random walk in a graph can be simply defined as repeatedly sampling a neighbor of the
current node uniformly at random and making it the new current node, this definition
cannot be straightforwardly extended to hypergraphs. In particular, all neighbors of
a given node v ∈ V should not necessarily be considered equal: some might share
several incident hyperedges with v, while others may be linked to v through smaller
(and thus potentially more significant) hyperedges.

A simple generalization of the notion of random walk to hypergraphs can be defined
through the following transition rule: starting at node v, we first sample a hyperedge
ω incident to v uniformly at random, then sample a node v′ ∈ ω uniformly at random.
Note that this is equivalent to an unbiased random walk on the star expansion of
G, which is the bipartite graph whose vertices are the nodes and hyperedges of G,
with an edge connecting each pair (v, ω) ∈ V × E such that v ∈ ω [Agarwal et al.,
2006]. Alternatively, each hyperedge ω can be replaced by a clique containing all
nodes involved in ω, yielding the clique expansion of G. The biased random walk

4.2. Statistical Modelling and Anomaly Detection for Combinatorial Data 61

algorithm introduced by Grover and Leskovec [Grover and Leskovec, 2016] can then
be run on the obtained graph to generate random walks [Huang et al., 2019a].

Using star or clique expansions to sample random walks entails the implicit as-
sumption that all pairs of nodes sampled from a hyperedge are equally strongly con-
nected, which is not necessarily true. In some real-world applications, a single vertex
v can indeed play an essential role in the existence of a hyperedge ω, meaning that the
other nodes v′ ∈ ω \ {v} would no longer be adjacent to each other if v was removed.
Huang et al. [Huang et al., 2019b] introduced the notion of indecomposability of hy-
peredges to describe such phenomena, along with a random walk sampling scheme
making use of this concept.

Finally, Gui et al. [Gui et al., 2016, Gui et al., 2017] proposed an embedding
algorithm also inspired by natural language processing and the skip-gram model,
but not relying on random walks: instead of maximizing the similarity between the
embeddings of nodes appearing in a fixed-length window extracted from a random
walk, they simply use hyperedges themselves as sets of nodes whose embeddings should
be similar. More specifically, given a hyperedge ω, its inner compatibility can be
defined as

κ(ω) =
∑
u,v∈ω
u6=v

g(u)>g(v).

The embedding map g can then be learned by ensuring that for each hyperedge ω ∈ E
and each node v ∈ ω, replacing v with another node v′ ∈ V such that (ω\{v})∪{v′} /∈ E
makes κ(ω) lower. This idea of inner compatibility of a polyadic interaction is also
useful for anomaly detection, as we show in the next sections.

4.2.3 Anomaly Detection Methods for Polyadic Interactions

Dimensionality reduction and link prediction can be considered sufficient tools when
trying to detect anomalous interactions in the dyadic case. Indeed, when only two
entities are involved in each interaction, the notion of anomaly is rather univocal:
entities u and v are either expected to interact or not. Similarly, there is a limited
number of counterfactual explanations: interpreting an anomalous interaction between
u and v amounts to asking with which other entities u (or v) was supposed to interact.
Therefore, estimating a probability distribution over all possible interactions yields a
reasonably good anomaly scoring function.

Things get significantly more complicated in the polyadic case. Considering an
intrusion detection-related example, suppose user U remotely opens a type T session
on host D from host S. Many different aspects of such an interaction might be
anomalous: user U could simply not be supposed to visit host D, or to establish
remote sessions from S. Going beyond pairwise associations, U might be expected
to connect from S to D, but not with a type T session: consider for instance simple
network logons, which can typically be triggered by fetching a file on a remote share,
versus remote interactive sessions, which provide a fully-fledged graphical interface
on the remote host. More generally, any of the 2L − 1 non-empty subsets of a set
of L entities involved in a polyadic interaction could theoretically provide enough
evidence to consider the whole interaction anomalous, independently of the rest of
the set. Therefore, relying on dimensionality reduction and a polyadic equivalent of
graph link prediction is not necessarily the best way to detect anomalous interactions
in this setting.

As a consequence, factoring in the multiple intricate couplings encompassed in
each single interaction is one of the main challenges in the polyadic setting. Most

62 Chapter 4. Anomaly Detection for Heterogeneous Polyadic Interactions

contributions addressing this issue focus on fixed-length interactions defined over the
Cartesian product Λ =

∏L
`=1 U`, with Ui ∩ Uj = ∅ for i 6= j. In this setting, looking

for anomalous associations implies studying the dependence structure of L categorical
random variables. Das and Schneider [Das and Schneider, 2007] proposed doing so
through direct estimation of conditional probabilities: given a tuple ω = (v1, . . . , vL)
and two disjoint index sets I,J ∈ P([L]), they define the anomaly score of ω according
to (I,J) as

rI,J (ω) =
p ({vi}i∈I , {vj}j∈J)

p ({vi}i∈I) p ({vj}j∈J)
=
p ({vi}i∈I | {vj}j∈J) p ({vj}j∈J | {vi}i∈I)

p ({vi}i∈I , {vj}j∈J)
,

with a low rI,J indicating an anomalous association between {vi}i∈I and {vj}j∈J .
Computing this score for all possible pairs of index sets (I,J) would be both expensive
and mostly useless, as one can expect most of these pairs to be uncorrelated in real-
world use cases. Coming back to the remote authentication example, the (user, type)
pair should probably be strongly correlated with the source host, as a given user can
be expected to always perform some specific activity from the same computer. On the
other hand, the correlation between the source and the destination should be much less
significant. Therefore, a rare association between a (user, type) pair and a source host
should be considered more anomalous than a rare association between a source and a
destination. In [Das and Schneider, 2007], the most significant (I,J) pairs are thus
extracted by computing the mutual information between candidate pairs on a training
dataset. The marginal and conditional probabilities involved in the computations are
also estimated on the training dataset through a Bayesian approach.

Aside from this explicitly probabilistic approach, Narita and Kitagawa [Narita and
Kitagawa, 2008] proposed a detection algorithm relying on association rule mining,
and Akoglu et al. [Akoglu et al., 2012] introduced an information-theoretic definition
of anomalous entity tuples, which relies on the description length using a code built
to efficiently encode normal tuples. While relying on different tools, both algorithms
apply the same general idea as [Das and Schneider, 2007]: they first look for significant
correlations between subsets of entities involved in normal interactions, then use these
correlations to build a simple description of the data (which can be seen as a kind
of dimensionality reduction). Finally, they label interactions which do not fit in this
simple description as anomalous. Coming back to the remote authentication example,
these methods would for instance find out that the source host can often be inferred
from the (user, type) pair. They would then build a list of usual (user, type, source)
tuples, then label observed tuples not appearing in this list as anomalous.

In parallel with these advances in anomalous pairing detection, some contribu-
tions also tried to directly estimate a joint probability distribution over the set of
possible interactions. Silva and Willett [Silva and Willett, 2008] proposed an anomaly
detection method for arbitrary hyperedges: they model the presence or absence of
each entity in a hyperedge as an independent Bernoulli random variable, effectively
reducing the dimensionality of the problem to make it linear in the number of entities.
Going beyond this very simple model, Chen et al. [Chen et al., 2016] apply a more
conventional hypergraph embedding approach, illustrated in Figure 4.3: they model
the probability of a fixed-length interaction ω = (v1, . . . , vL) ∈ Λ as

pθ(ω) =
exp

(
κθ(ω)

)∑
ω′∈Λ exp

(
κθ(ω′)

) , with κθ(ω) =
∑

1≤i<j≤L
wijg(vi)

>g(vj), (4.5)

where the parameter set θ contains the weights {wij}1≤i<j≤L and the embedding map

4.2. Statistical Modelling and Anomaly Detection for Combinatorial Data 63

v1

v2

vL

g

... ...

SoftmaxΣ pθ(v1:L)

Dot
product

Dot
product

Dot
product

w12

w1L

w2L

Figure 4.3: Illustration of the entity embedding-based model of Chen et al. [Chen et al.,
2016].

g :
⋃L
`=1 U` → RD. These parameters are learned by maximizing the log-likelihood of

the model over a training set of observed interactions T = {ω1, . . . , ωn}, defined as

L(θ; T) =
n∑
i=1

log pθ(ωi).

From a more machine learning-oriented perspective, this amounts to minimizing the
average value of a loss function defined for each sample as

Jθ(ω) = − log pθ(ω).

The obvious issue with this approach is the cost of computing the partition function
Zθ =

∑
ω′∈Λ exp

(
κθ(ω

′)
)
in Equation 4.5. Indeed, computing a sum over the whole

product space quickly becomes expensive as the number of entities grows large, and
having to perform this computation after each parameter update would make the
training of the model too costly. A well-known way to circumvent this issue is to use
Noise Contrastive Estimation (NCE [Gutmann and Hyvärinen, 2010]).

In short, the idea of NCE is to recast the estimation of a probability distribution
as a binary classification problem. Instead of directly maximizing the probability of
observed samples, NCE learns to distinguish them from so-called negative samples
drawn from a known noise distribution Q. The partition function Zθ can then be
treated as a parameter and learned along with the others. In [Chen et al., 2016], this
leads to

pθ(ω) = exp
(
κθ(ω) + c

)
,

with c = − logZθ the parameter replacing the partition function. The surrogate loss
function for each sample is then defined as

JNCE
θ (ω) = log σ

(
κθ(ω) + c− logKQ(ω)

)
+

K∑
k=1

log σ
(

logKQ(ω̃k)− κθ(ω̃k)− c
)
,

where K denotes the number of negative samples drawn for each positive sample,
ω̃k is the k-th negative sample and σ is the sigmoid function. The noise distribu-
tion Q is defined through the following generative process: given a positive sample
ω = (v1, . . . , vL), each negative sample ω̃ = (v1, . . . , v

′
j , . . . , vL) is obtained by drawing

an index j ∈ [L] uniformly at random, then sampling v′j ∈ Uj uniformly at random.

64 Chapter 4. Anomaly Detection for Heterogeneous Polyadic Interactions

Intuitively, NCE with this noise distribution learns parameters such that local modi-
fications of observed events decrease their inner compatibility κθ.

While the use of sophisticated dimensionality reduction tools makes Chen et al.’s
approach appealing, making the inner compatibility κθ(ω) depend on all pairs of enti-
ties involved in ω gives the model many degrees of freedom, which can be problematic
in the context of anomaly detection. Indeed, using such a complex compatibility func-
tion can make the model fit the noise in the training data, degrading the quality of
the resulting anomaly scores. In addition, designing a suitable noise distribution over
the whole product space Λ is nontrivial: generating negative samples by replacing
a single involved entity might be good enough, but many other – possibly better –
procedures could be imagined. Addressing these two issues is the motivation behind
the Cadence model, which we discuss in the next section.

4.2.4 The Cadence Model – Description and Limitations

The Cadence model [Amin et al., 2019] relies on conditional anomaly detection and
entity embedding methods to detect anomalous interactions in the product space Λ.
Interestingly, it was explicitly proposed as a malicious behavior detection algorithm
for event logs, making it all the more relevant to our work. It mainly differs from
the model proposed in [Chen et al., 2016] by focusing on conditional probabilities:
the product space Λ =

∏L
`=1 U` is factorized as the Cartesian product of a context

space C =
∏C
`=1 U` and an attribute space A =

∏L
`=C+1 U` (with C ∈ [L − 1]), and

the anomaly score of an interaction ω = (v1, . . . , vL) ∈ Λ is defined as the conditional
probability

p(vC+1:L | v1:C) =

L∏
`=C+1

p (v` | v1:`−1) , (4.6)

where vi:j equals {vi, . . . , vj} if i ≤ j and ∅ otherwise. Each of these conditional
probabilities is estimated through an entity embedding approach: two embedding
maps g, h :

⋃L
`=1 U` → RD are learned along with weights {wij}i,j such that

pθ(v` | v1:`−1) =
exp

(
κ`θ(v`; v1:`−1)

)∑
v′∈U` exp

(
κ`θ(v

′; v1:`−1)
) ,

with

κ`θ(v; v1:`−1) =

`−1∑
i=1

wi`g(vi)
>h(v),

approximates p(v` | v1:`−1) for all (v1, . . . , vL) ∈ Λ and ` ∈ {C + 1, . . . , L}. See
Figure 4.4 for an illustration of this model. Note that in contrast with [Chen et al.,
2016], Cadence associates two separate embeddings g(v) and h(v) with each en-
tity v: h(v) is used when v is being predicted while g(v) appears when v is used as
context to predict another entity. This separation is frequent in the word embedding
literature [Mikolov et al., 2013, Mnih and Kavukcuoglu, 2013].

Similarly to [Chen et al., 2016], the parameters of Cadence are learned through
NCE. However, a separate loss function is computed for each predicted entity inside
a given interaction, leading to

JNCE
θ (ω) =

L∑
`=C+1

JNCE
θ,` (v`; v1:`−1), (4.7)

4.2. Statistical Modelling and Anomaly Detection for Combinatorial Data 65

v1

vC

g...

Softmax

Π pθ(vC+1:L|v1:C)
Dot

product

wC+1,L

h

vC+1

vL

...

Σ

Σ SoftmaxDot
product

w1,C+1

w1L

wCL

wC,C+1

Figure 4.4: Illustration of the Cadence model [Amin et al., 2019].

with

JNCE
θ,` (v`; v1:`−1) = log σ

(
κ`θ(v`, ; v1:`−1)− logKQ`(v`)

)
+

K∑
k=1

log σ
(

logKQ`(ṽk)− κ`θ(ṽk; v1:`−1)
)
. (4.8)

Therefore, L−C distinct noise distributions QC+1, . . . , QL are used, each of which is
defined over a single entity set U`. Since the dimension of each entity set is reasonably
small, the unigram distribution can be used. This distribution gives each entity v ∈ U`
a probability proportional to its number of appearances in the training set, and it
is frequently used to learn word embeddings. Note that the partition function is
entirely omitted in Equation 4.8, which is a way to avoid learning a separate partition
function for each context tuple v1:`−1 (as should normally be the case with NCE). This
innovation was first introduced in the context of word embeddings by Mnih and Teh,
who found out that it actually did not degrade the performance of the model [Mnih
and Teh, 2012].

Cadence was shown to perform better than Chen et al.’s model at detecting
malicious authentications in the LANL dataset [Amin et al., 2019]. One of the main
explanations for this result is that the structure of Cadence’s anomaly scoring func-
tion is better suited to anomalous event detection: by computing the conditional
probability of vC+1:L given v1:C instead of the joint probability of v1:L, the attention
of the model is more focused on learning normal pairings – and thus more able to
spot anomalous ones. This can be seen as an adaptation of the ideas first introduced
by Das and Schneider [Das and Schneider, 2007]. In addition, the structure of Ca-
dence makes predictions fairly interpretable: coming back once again to the remote
authentication example, the model first asks whether the user U is supposed to open
sessions of type T . It then checks whether U is expected to open type T sessions from
host S. Finally, given U , T and S, Cadence evaluates how normal destination D is.
At each of these steps, counterfactual explanations can easily be built: for instance, if
D happens to receive a very low predicted probability, replacing it with a more likely
destination host can be expected to yield a normal event.

While its superior detection performance and interpretability make Cadence es-
pecially interesting, some aspects of the model can still be improved. First of all, it
cannot jointly model heterogeneous events, and neither does it handle nonstationary
event streams. These issues are addressed in Section 4.3 and Chapter 5, respectively.

66 Chapter 4. Anomaly Detection for Heterogeneous Polyadic Interactions

Even when considering homogeneous and identically distributed events, there remains
room for improvement: first, Cadence implicitly assumes that the entity sets U` are
disjoint. As a consequence, when considering events involving several entities of the
same type (such as remote authentications), an entity appearing in several events
with different roles (such as source and destination for a host) is treated as a set
of separate entities – one for each role. Therefore, the model cannot simultaneously
leverage different facets of an entity’s behavior. Moreover, using the full conditional
probability of vC+1:L given v1:C as anomaly score tends to conceal disparities between
the conditional distributions of each entity: in particular, when the entity sets U` have
significantly dissimilar sizes, probability mass should tend to be more concentrated
for smaller entity sets, leading to higher expected conditional probabilities. Finally,
while the unigram distribution is a rather classic choice of noise distribution, it is
not necessarily optimal, and other distributions could lead to better results. These
aspects are further discussed in the next section.

4.2.5 An Improved Conditional Anomaly Detection Algorithm

Still focusing on homogeneous events, we now describe our conditional anomaly de-
tection algorithm for polyadic interactions. This algorithm is largely inspired by
Cadence, and this section mostly emphasizes the aspects in which it differs. First of
all, the event space we consider corresponds to an event type (e,Ne,Ωe) as defined in
Definition 2.2.1: the class Λ is the product space

∏
`∈Ωe
U`. In particular, we do not

assume that entities involved in each event come from distinct sets: an entity type can
appear several times in the tuple Ωe. However, we assume that all entities involved
in an event are distinct from one another.

Letting U =
⋃
`∈Ωe
U` denote the whole entity set, we assign a unique embedding

xv ∈ RD to each entity v ∈ U . For ` ∈ {C + 1, Ne} (where C ∈ [Ne − 1] still denotes
the number of context entities), the `-th inner compatibility function is then defined
for all v ∈ U` as

κ`θ(v; v1:`−1) = 1{v/∈v1:`−1}

`−1∑
i=1

wi`x
>
v xvi , (4.9)

where the weights {wij}i,j are parameters of the model. The indicator function en-
codes the idea that each entity can appear at most once in an event. The other
difference between this inner compatibility and the one associated with Cadence
is the absence of a second embedding for each entity. This choice is motivated by
the same reason as the possibility of two entities of the same type appearing in an
event, namely that we aim to jointly model all available information about each en-
tity. Therefore, the same embedding should be used for every occurrence of the entity,
regardless of its position in the event or whether it is currently being predicted or used
to predict another entity. The conditional probability of vC+1:Ne given v1:C can then
be defined through Equation 4.6. The NCE loss is also identical to the one defined
in Equations 4.7 and 4.8, the only difference being the definition of the noise distri-
butions QC+1, . . . , QNe . Indeed, regardless of the type of distribution used, a slight
modification results from the impossibility of an entity appearing twice, namely

Q`(v | v1:`−1) = 1{v/∈v1:`−1}
γ`(v)∑

v′∈U`\v1:`−1
γ`(v′)

, (4.10)

where γ` : U` → R+ is any positive mass function. In the case of the unigram
distribution, we have γ`(v) = N`(v; T), with N`(v; T) the number of interactions
ω = (v1, . . . , vNe) in the training set T such that v` = v. However, this choice of

4.3. Modelling Heterogeneous Interactions as a Multi-Task Learning Problem 67

noise distribution is not necessarily optimal: in particular, the strongly unbalanced
distribution of entity occurrence counts (see Figure 2.5) may cause the unigram dis-
tribution to concentrate too much around a small set of entities. Other entities would
then almost never appear as negative samples, in turn degrading the accuracy of the
model. Therefore, we also experiment with two variants of the unigram distribution,
namely the log-unigram distribution, defined by γ`(v) = log

(
1 + N`(v; T)

)
, and the

power-unigram distribution, defined for α ∈ (0, 1) by γ`(v) = N`(v; T)α.
Once the model has been trained, an anomaly scoring function must be defined.

As mentioned above, Cadence directly uses the predicted probability

pθ(vC+1:Ne | v1:C) =

Ne∏
`=C+1

pθ(v` | v1:`−1)

as a measure of anomalousness, which tends to conceal disparities between the con-
ditional distributions pθ(v` | v1:`−1). To eliminate this drawback, we use discrete
mid-p-values [Lancaster, 1952] instead: given an interaction ω = (v1, . . . , vNe), the
mid-p-value associated with v` is defined for ` ∈ {C + 1, . . . , Ne} as

pv`|v1:`−1;θ =
1

2

{∑
v∈U`

1{pθ(v|v1:`−1)<pθ(v`|v1:`−1)}pθ(v | v1:`−1)

+
∑
v∈U`

1{pθ(v|v1:`−1)≤pθ(v`|v1:`−1)}pθ(v | v1:`−1)

}
.

Using p-values instead of probabilities allows us to actually measure how unexpected
the entity v` is with respect to v1:`−1: we consider v` anomalous if its predicted
probability pθ(v` | v1:`−1) is not only low, but also lower than the predicted probability
of most other candidate entities v ∈ U`. The use of mid-p-values instead of simple
p-values is motivated by the discrete nature of the distribution considered here: in
such settings, classic p-values are known to be conservative [Rubin-Delanchy et al.,
2018]. Having computed a mid-p-value for each predicted entity vC+1, . . . , vNe , we
then combine them into a unique anomaly score for the interaction ω,

ψθ(ω) = −
Ne∑

`=C+1

log pv`|v1:`−1;θ.

Note that this score is equal to half the test statistic associated with Fisher’s method
for combining independent p-values [Fisher, 1925]. The reason why we use this simple
definition of ψθ instead of computing the p-value provided by Fisher’s method is that
we are only interested in ranking interactions from the most to the least anomalous.
To that end, using the test statistic instead of the p-value is sufficient.

Having defined an anomaly detection algorithm for homogeneous events, we can
now extend it to the heterogeneous setting. This is the goal of the next section, which
mostly deals with the challenges arising when learning the model.

4.3 Modelling Heterogeneous Interactions as a Multi-Task
Learning Problem

Jointly modelling different event types implies modifying our anomaly detection al-
gorithm in several ways. First of all, the model must obviously be adapted, along

68 Chapter 4. Anomaly Detection for Heterogeneous Polyadic Interactions

with the underlying mathematical framework. These aspects are addressed in Sec-
tion 4.3.1. Secondly, these adjustments themselves raise new challenges when training
the model. In particular, using shared parameters to model the distribution of several
event types raises the issue of possibly conflicting training objectives associated with
each type. Dealing with such challenges is the aim of a field of research called multi-
task learning, which we briefly survey in Section 4.3.2. Finally, the application of a
multi-task learning approach to modelling heterogeneous interactions is discussed in
Section 4.3.3, which also summarizes our whole anomaly detection methodology for
heterogeneous events.

4.3.1 Extending the Framework to Heterogeneous Interactions

The interactions considered in Section 4.2.5 were described by a single event type
(e,Ne,Ωe). In contrast, we now consider E different event types {(e,Ne,Ωe)}Ee=1,
with Ωe = (τ e1 , . . . , τ

e
Ne

) for e ∈ [E]. The index τ e` denotes the type of the `-th entity
involved in a type e event, and each event can thus be written (e, ω), with e ∈ [E] and
ω = (v1, . . . , vNe) ∈

∏Ne
`=1 Uτe` . Detecting anomalous events then implies modelling

the conditional probability

p(vCe+1:Ne | e, v1:Ce) =

Ne∏
`=C+1

p(v` | e, v1:`−1),

where Ce ∈ [Ne−1] denotes the number of context entities for type e events. Building
upon the methodology introduced in Section 4.2.5, we model each of the conditional
probabilities p(v` | e, v1:`−1) through a type-specific inner compatibility function κe,`θ ,
similar to the one defined in Equation 4.9.

In order to build a joint model for several event types, a distinction must be made
between shared parameters and type-specific ones. The embeddings of the entities,
introduced in Section 4.2.5 and denoted {xv}v∈U , should intuitively fall into the first
category: the embedding of an entity is supposed to encode latent characteristics of
its usual behavior, and all event types should contribute to the definition of these
characteristics. On the other hand, the weights {wij}i,j from the inner compatibility
function defined in Equation 4.9 encode the significance of each pair of involved entities
in a given event, thus they should clearly be made type-specific. In addition, we define
type-specific latent factors {βe ∈ RD}1≤e≤E such that

κe,`θ (v; v1:`−1) = 1{v/∈v1:`−1}β
>
e

(
`−1∑
i=1

wei`xv � xvi

)
.

Intuitively, these type-specific latent factors allow the model to focus on some dimen-
sions of the latent space when predicting events of a specific type, so that two entities
can be likely to appear together in an event of one specific type and not the others. To
sum up, the parameters of the heterogeneous model are the shared entity embeddings
{xv}v∈U , as well as the type-specific weights {weij}i,j,e and latent factors {βe}1≤e≤E .
The respective roles of these parameters are illustrated in Figure 4.5.

Estimating these parameters from a training set T = {(ei, ωi)}ni=1 can still be
achieved through NCE, using the procedure described in Section 4.2.5 to define the
NCE loss for each event type. In particular, Ne − Ce noise distributions are defined
for each event type e, using either the unigram, log-unigram or power-unigram distri-
bution. Denoting JNCE,e

θ the NCE loss function for a type e event, the aggregate loss

4.3. Modelling Heterogeneous Interactions as a Multi-Task Learning Problem 69

.EXE

xH

xP

xU

β
w12

Π

Softmax

β
w23

w13

pθ(U,P|H)

Softmax

κθ
2(U;H)

κθ
3(P;H,U)

Figure 4.5: Computation of the estimated conditional probability pθ(vCe+1:Ne | e, v1:Ce) for
an event (here, a process creation, with Ce = 1 and Ne = 3). The involved entities are a host

H, a user U and a process P .

function for the training set T can be naively defined as

Jθ(T) =
1

n

∑
(e,ω)∈T

∑
e′∈[E]

1{e=e′}J
NCE,e
θ (ω).

However, this definition gives equal importance to all samples, regardless of their type.
There is no reason for this to be optimal: indeed, since the model uses some shared
parameters for all event types, a given parameter update could decrease the loss for
one type and increase it for another. In addition, some event types might be harder to
predict on average than others, leading to tendencially higher losses. Therefore, the
right balance between the loss functions corresponding to different event types should
be defined through a data-driven procedure. Designing such procedures is the main
goal of multi-task learning.

4.3.2 A Brief Introduction to Multi-Task Learning

Multi-task learning (MTL) was originally introduced as a way to improve general-
ization for machine learning algorithms by simultaneously leveraging information per-
taining to several related tasks [Caruana, 1997]. Intuitively, jointly learning to perform
several related tasks is a way to provide the model with a better inductive bias for
each task: in the words of Caruana, "[t]he multitask bias causes the inductive learner
to prefer hypotheses that explain more than one task". Transposing this to event log
modelling, MTL reshapes the loss function for the entity embeddings by favoring those
leading to accurate predictions across all event types.

In his overview of MTL for neural networks [Ruder, 2017], Ruder distinguishes two
main approaches to jointly learning multiple tasks, namely hard and soft parameter
sharing. While the former uses some shared parameters for all tasks (as well as
task-specific parameters), the latter defines a distinct model for each task, then adds
regularization terms to the training objective in order to encourage these models to
have similar parameters. Our work falls into the first category: the entity embeddings
are exactly the same for all event types. Therefore, we focus on hard parameter
sharing in the rest of this section.

Consider Z different tasks, each of which can be thought of as learning a map-
ping fz : X → Yz, where X is a shared input space and Yz is the output space
for task z. Each function fz is parameterized by a set of shared parameters θsh as
well as a set of task-specific parameters θz. In addition, Z task-specific loss functions

70 Chapter 4. Anomaly Detection for Heterogeneous Polyadic Interactions

J1, . . . , JZ are defined, which typically quantify the respective errors of f1, . . . , fZ

on a training dataset T =
{

(xi, y
1
i , . . . , y

z
i) ∈ X × Y1 × . . .× YZ

}n
i=1

. Jointly learn-
ing f1, . . . , fZ can then be seen as a multi-objective optimization problem. While
some MTL methodologies explicitly rely on multi-objective optimization concepts and
tools [Li et al., 2014, Sener and Koltun, 2018], most contributions aim to design an
aggregate loss function instead, thereby reverting to a single objective. This aggregate
loss function is typically a weighted sum, leading to

(
θ∗sh, θ∗1:Z

)
∈ arg min

(θsh,θ1:Z)

Z∑
z=1

αzJ
z(fz; T). (4.11)

The main question then lies in the definition of the weights {αz}Zz=1.
A common approach consists in setting uniform weights [Collobert and Weston,

2008, Huang et al., 2014, Sermanet et al., 2014]. However, as mentioned above, there
is no reason for this solution to be optimal. Therefore, data driven procedures have
also been proposed: Chen et al. [Chen et al., 2018] introduced a dynamic weighting
approach, which adaptively tunes α1, . . . , αZ so that the gradients of the rescaled
loss functions α1J

1, . . . , αZJ
Z roughly have the same magnitude. Intuitively, this

ensures that no single task dominates the others in terms of influence on the shared
parameters. Another approach was proposed by Kendall et al. [Kendall et al., 2018],
which we use to train our anomalous event detection model and thus describe in
further detail.

The main idea of [Kendall et al., 2018] is to give each task a weight inversely
proportional to its intrinsic uncertainty. The intuition behind this heuristic is that the
model should put less confidence in information obtained from intrinsically uncertain
tasks. Another intuitive interpretation could be that the loss function Jz should return
tendencially higher values if the corresponding input-output relationship is noisy, thus
dividing it by an estimate of the noise should rescale it appropriately. More formally,
we consider a classification setting, meaning that Yz = [Mz] for all z ∈ [Z], with Mz

the number of existing classes for task z. For each z ∈ [Z], the output yz associated
with input x ∈ X is then assumed to follow a Boltzmann distribution,

P[yz = m | gz(x), σz] ∝ exp

(
1

σ2
z

gz(x)m

)
, (4.12)

where gz : X → RMz computes the (unscaled) logit probabilities corresponding to the
Mz classes, gz(x)m is the m-th coordinate of gz(x) and σz > 0 is the intrinsic uncer-
tainty of task z. In other words, for a given function gz, the value of σz determines
how flat the distribution p

(
yz | gz(x), σz

)
is. The negative log-likelihood for a given

sample (x, y1, . . . , yZ) is then given by

NLL = − log p(y1, . . . , yZ | x, σ1:Z)

= −
Z∑
z=1

{
1

σ2
z

gz(x)yz − log

(
Mz∑
m=1

exp

(
1

σ2
z

gz(x)m

))}

=

Z∑
z=1

1

σ2
z

H
(
gz(x), yz

)
+

Z∑
z=1

log

∑Mz
m=1 exp

(
1
σ2
z
gz(x)m

)
(∑Mz

m=1 exp
(
gz(x)m

)) 1

σ2
z

,

(4.13)

4.3. Modelling Heterogeneous Interactions as a Multi-Task Learning Problem 71

where H
(
gz(x), yz

)
is the cross-entropy loss for the unscaled function gz, defined as

H
(
gz(x), yz

)
= − log

exp
(
gz(x)yz

)∑Mz
m=1 exp

(
gz(x)m

) .
A parallel appears between Equation 4.13 and Equation 4.11: the negative log-
likelihood derived from Equation 4.12 can actually be seen as a linear combination
of cross-entropy losses. This justifies using the inverse intrinsic uncertainties σ−1

z as
weights for the task-specific loss functions. Note that an additional term appears in
Equation 4.13,

R(x) =
Z∑
z=1

log

∑Mz
m=1 exp

(
1
σ2
z
gz(x)m

)
(∑Mz

m=1 exp (gz(x)m)
) 1

σ2
z

,

which Kendall et al. propose to replace with
∑Z

z=1 log σz. The underlying approxi-
mation is

1

σz

Mz∑
m=1

exp

(
1

σ2
z

gz(x)m

)
≈

(
Mz∑
m=1

exp (gz(x)m)

) 1

σ2
z

,

which is valid for σz in the neighborhood of 1.
We now come back to the original problem, namely learning a set of classifiers

{fz : X → [Mz]}1≤z≤Z using a training set T =
{

(xi, y
1
i , . . . , y

z
i)
}n
i=1

. Assuming that
each classifier is defined as

fz(x) = arg max
m∈[Mz]

gzθsh,θz(x)m,

with gz
θsh,θz

: X → RMz an auxiliary function, the aggregate loss can be defined as

J
(
f1:Z ; T

)
=

n∑
i=1

Z∑
z=1

{
1

σ2
z

H
(
gzθsh,θz(xi), y

z
i

)
+ log σz

}
. (4.14)

The task-related uncertainties σ1, . . . , σZ are not known a priori. Therefore, they
are treated as parameters of the model and learned along with θsh and θ1:Z . The
additional term log σz in Equation 4.14 can then be interpreted as a regularization
term preventing σz from going to infinity, which would lead task z to be entirely
ignored. By including this regularization term, the model is thus forced to effectively
learn all tasks.

This MTL methodology is both simple and well justified, which leads us to apply it
to our heterogeneous event model. Practical details are described in the next section.

4.3.3 Application – Modelling Heterogeneous Interactions

Learning entity embeddings {xv}v∈U as well as event type-specific latent factors
{βe}1≤e≤E and weights {weij}i,j,e through NCE can be seen as a multitask binary
classification problem: for each event type e, the NCE loss JNCE,e

θ is essentially a
sum of Ne − Ce binary cross-entropy losses, each of which can be thought of as a
task-specific loss function. Therefore, Kendall et al.’s methodology [Kendall et al.,
2018] can be applied by defining σe,` > 0 as the intrinsic uncertainty associated with
predicting the `-th entity involved in a type e event. The loss function for a type e

72 Chapter 4. Anomaly Detection for Heterogeneous Polyadic Interactions

event can then be redefined as

JMTL,e
θ (ω) =

Ne∑
`=Ce+1

{
1

σ2
e,`

JNCE,e
θ,` (ω) + log σe,`

}
.

In summary, our anomaly detection model for heterogeneous events is as follows.
Given an event (e, ω), with e ∈ [E] and ω = (v1, . . . , vNe) ∈

∏Ne
`=1 Uτe` , we model the

conditional probability p(vCe+1:Ne | e, v1:Ce) as

pθ(vCe+1:Ne | e, v1:Ce) =

Ne∏
`=Ce+1

pθ(v` | e, v1:`−1),

with each of the Ne − Ce factors defined as

pθ(v` | e, v1:`−1) =
exp

(
κe,`θ (v`; v1:`−1)

)
∑

v∈Uτe
`

exp
(
κe,`θ (v; v1:`−1)

) .
The inner compatibility function κe,`θ is given by

κe,`θ (v; v1:`−1) = 1{v/∈v1:`−1}β
>
e

(
`−1∑
i=1

wei`xv � xvi

)
,

and the parameters (entity embeddings {xv}v∈U , event type-specific latent factors
{βe}1≤e≤E and weights {weij}i,j,e) are learned by minimizing a loss function Jθ over
a training set T = {(ei, ωi)}ni=1. This loss function is defined using both NCE and
MTL: for each event (e, ω), the event-wise loss is given by

Jθ(e, ω) =

Ne∑
`=Ce+1

{
1

σ2
e,`

Jeθ,`(v`; v1:`−1) + log σe,`

}
,

with {σe,`}e,` a set of additional parameters of the model. Each entity-wise loss
function is defined as

Jeθ,`(v`; v1:`−1) = log σ
(
κe,`θ (v`; v1:`−1)− logKQe`(v` | v1:`−1)

)
+

K∑
k=1

log σ
(

logKQe`(ṽk | v1:`−1)− κe,`θ (ṽk; v1:`−1)
)
,

with K the number of negative samples, ṽk the k-th negative sample and Qe` a condi-
tional noise distribution of the form

Qe`(v | v1:`−1) = 1{v/∈v1:`−1}
γe` (v)∑

v′∈Uτe
`
\v1:`−1

γe` (v
′)

for all v ∈ Uτe` and v1:`−1 ∈
∏`−1
j=1 Uτej , with γe` : Uτe` → R+ some importance-

quantifying function. The global loss function

Jθ(T) =
1

n

n∑
i=1

Jθ(e
i, ωi)

4.4. Experiments 73

is minimized through stochastic gradient descent (SGD). More specifically, we use
the Adam algorithm [Kingma and Ba, 2015], which is a standard choice for complex
machine learning models with many parameters.

At the end of the training phase, an estimate θ̂ of the model’s parameters is
available and can be used to detect anomalous events. Given an event (e, ω), its
anomaly score is defined as

ψθ̂(e, ω) = −
Ne∑

`=Ce+1

log pv`|e,v1:`−1;θ̂,

where pv`|e,v1:`−1;θ̂ is the mid-p-value associated with the `-th involved entity,

pv`|e,v1:`−1;θ̂ =
1

2

{∑
v∈U`

1{pθ̂(v|e,v1:`−1)<pθ̂(v`|e,v1:`−1)}pθ̂(v | e, v1:`−1)

+
∑
v∈U`

1{pθ̂(v|e,v1:`−1)≤pθ̂(v`|e,v1:`−1)}pθ̂(v | e, v1:`−1)

}
.

Note that in order to make anomaly scores comparable across event types, we stan-
dardize them as follows: at the end of the training phase, the mean and standard
deviation of ψθ̂(e, ω) are estimated on the training set for each event type e ∈ [E].
The obtained estimates are denoted {(µ̂ψ,e, σ̂ψ,e)}1≤e≤E . The standardized anomaly
scoring function is then defined as

ψ̃θ̂(e, ω) =
ψθ̂(e, ω)− µ̂ψ,e

σ̂ψ,e
.

This anomaly detection methodology is empirically evaluated in the next section.

4.4 Experiments

Having defined our anomaly detection algorithm for heterogeneous events, we now
evaluate its ability to detect malicious activity in real-world data. Section 4.4.1 de-
scribes our experimental setup, including the training and test datasets, the other
algorithms used as baselines and the performance metrics. Results are then presented
and discussed in Section 4.4.2.

4.4.1 Experimental Setup

We implement our model in Python 3.9, mostly using PyTorch [Paszke et al., 2019].
Experiments are run on a Debian 10 machine with 128GB RAM and a Tesla V100
GPU. Some hyperparameters must be tuned manually, namely the latent space di-
mension D and the number of negative samples K. The best detection performance
is obtained for D = 64 and K = 10, and these values are thus used for all experiments
unless otherwise specified. Besides, the influence of these hyperparameters on the
effectiveness of the model is studied in further detail in Section 4.4.2.

As mentioned above, the Adam algorithm is used for training. We set the batch
size to 5 000 samples and the number of training epochs to 30. As for the learning
rate, we use the default value of 10−3.

74 Chapter 4. Anomaly Detection for Heterogeneous Polyadic Interactions

Table 4.1: Number of entities of each type in the reduced LANL dataset.

Name Arity (train) Arity (test) Arity (all)

Total Malicious Total Malicious Total Malicious

User 12 164 7 10 767 71 13 176 76
Host 12 264 27 11 943 234 13 090 255
Authentication type 23 1 21 1 24 1
Process 1566 0 1531 0 1593 0

Table 4.2: Number of events of each type in the reduced LANL dataset.

Event type #Total (#malicious)

Train Test

Local authentication 3 418 117 (0) 2 173 349 (0)
Remote authentication 13 198 597 (50) 8 310 963 (473)
Process creation 4 949 066 (0) 2 758 106 (0)

Dataset. The LANL dataset, described in Section 2.4, is used for our experiments.
The first 8 days are used for training, and the next 5 days make up the test set. The
preprocessing described in Section 2.4.1 (definition of the event types, exclusion of
some events) is also applied here. In addition, we replace process names appearing
less than 40 times in the whole dataset with a "Rare Process" token, as process names
involved in too few events cannot be modelled reliably. Entity and event counts for
this reduced dataset are given in Table 4.1 and Table 4.2, respectively.

The formal definition of the event types entails some modelling assumptions. In
particular, the order in which entities are predicted should be defined based on domain-
specific knowledge: intuitively, some entities are more informative than others. For
instance, knowing which user is involved in a given logon event presumably restrains
the number of hosts likely to appear in this event. In contrast, knowing only the
authentication type leaves more possibilities open. Using such rules of thumb, we sort
the involved entities for each event type as follows:

• Local authentication: user, authentication type, host.

• Remote authentication: user, authentication type, source host, destination host.

• Process creation: host, user, process name.

Besides, we set the number of context entities Ce to 1 for each event type. Note that
we did not experiment with other specifications of the event types for lack of time.
However, modifying the order of involved entities could maybe lead to better results,
and experimenting in this direction is thus an interesting lead for future work.

Baselines. We compare our algorithm with three previously published methods.
The first one is Cadence [Amin et al., 2019], which is a rather obvious choice since
our work is primarily inspired by this model. The language model of Tuor et al. [Tuor
et al., 2018] (referred to as W-BEM) is also included. W-BEM represents events
as discrete sequences of entities, then models them using Long Short-Term Memory
(LSTM [Hochreiter and Schmidhuber, 1997]) networks. The third baseline is the
graph-based model of Bowman et al. [Bowman et al., 2020], described in Section 4.2.2

4.4. Experiments 75

and hereafter referred to as GraphAI. Note that all three baselines focus on ho-
mogeneous events. Therefore, while we train our model on both authentication and
process creation events, other models are trained on authentications only (both local
and remote). The open-source implementation of W-BEM is used for the experiments.
We reimplemented GraphAI based on [Bowman et al., 2020] and further precisions
obtained from the authors. Finally, Cadence was implemented based only on [Amin
et al., 2019] since the authors did not respond to our requests for code. As for hy-
perparameters, we reuse those provided in the corresponding papers, except when
different values give better results.

Performance metrics. Two criteria are used to evaluate detection performance.
The first one is the Receiver Operating Characteristic (ROC) curve, which plots the
detection rate on the whole test dataset as a function of the false positive rate (FPR)
for varying detection thresholds. Due to the considerable volume of real-life event
streams, only the leftmost part of the ROC curve (FPR≤1%) is considered: with
millions of events generated daily, a 1% false positive rate already amounts to tens of
thousands of false positives to investigate every day. Therefore, detection thresholds
leading to a greater FPR can be considered irrelevant. The second metric is the
detection rate for a fixed daily budget B of investigated events, denoted DR-B. It
gives a more realistic view of what could actually be detected when monitoring activity
in an enterprise network. Note that since only authentications are labelled as benign
or malicious in the LANL dataset, these two criteria are always computed only for
authentication events from the test set.

Since all considered algorithms give non-deterministic results (mostly because of
random parameter initialization and stochastic optimization procedures), each of them
is run 20 times. We then report the mean and 95% confidence interval (obtained
through a nonparametric bootstrap procedure [Efron, 1987]) for each metric.

4.4.2 Results and Discussion

Besides comparing our methodology with previously published ones, our experiments
should help us make some choices: as mentioned above, the number of negative sam-
ples K and the latent space dimension D need to be tuned in order to maximize
detection performance. In addition, a type of noise distribution must be selected to
perform NCE. Training our model on real-world data also allows us to check whether
the obtained parameters seem plausible with respect to domain knowledge. All these
matters are discussed in the next paragraphs.

Influence of the noise distribution. We start with the choice of a noise distri-
bution for NCE. Recall that we consider distributions of the form given in Equa-
tion 4.10, defined through an importance-quantifying function γe` : U` → R+ for
each event type e ∈ [E] and predicted entity index ` ∈ {Ce + 1, . . . , Ne}. In our
experiments, we compare three noise distributions: the first one is the unigram dis-
tribution, defined through γe` (v) = N e

` (v; T), with N e
` (v; T) the number of events of

type e in the training set T whose `-th involved entity is v. In addition to this clas-
sic choice, we consider two variants: the log-unigram distribution, defined through
γe` (v) = log

(
1 + N e

` (v; T)
)
, and the power-unigram distribution, corresponding to

γe` (v) = N e
` (v; T)α, with α ∈ (0, 1). Here, we set α = 3

4 .
The results obtained with these three noise distributions are displayed in Fig-

ure 4.6a and Table 4.3. The log-unigram distribution globally outperforms the others,
with the unigram distribution performing the worst. This confirms that the unigram

76 Chapter 4. Anomaly Detection for Heterogeneous Polyadic Interactions

Table 4.3: Detection performance obtained on the LANL dataset. Our method (denoted
MTL) is evaluated with three different noise distributions: unigram, log-unigram and power-

unigram (with the exponent α = .75). The best score for each metric is in bold.

Method AUC@1% DR-1K DR-5K DR-10K DR-20K

MTL
Unigram .205±.034 .041±.021 .153±.029 .203±.035 .289±.044
Power-unigram .277±.094 .053±.023 .198±.057 .282±.072 .391±.095
Log-unigram .478±0.082 .081±.035 .331±.067 .481±.081 .640±.104

Cadence .291±.072 .093±.036 .218±.044 .276±.057 .344±.066
GraphAI .170±.017 .032±.009 .084±.016 .116±.016 .218±.027
W-BEM .016±.002 .004±.002 .009±.003 .016±.002 .025±.005

0.00 0.25 0.50 0.75 1.00
False positive rate 1e 2

0.00

0.25

0.50

0.75

1.00

De
te

ct
io

n
ra

te

Log-unigram
Power-unigram

Unigram

(a) Performance of our method with various
noise distributions (the exponent α = .75 is
used for the power-unigram distribution).

0.00 0.25 0.50 0.75 1.00
False positive rate 1e 2

0.00

0.25

0.50

0.75

1.00

De
te

ct
io

n
ra

te

MTL (log-unigram)
CADENCE

GRAPH-AI
W-BEM

(b) Comparison between our method (using
the log-unigram noise distribution) and the

three baseline algorithms.

Figure 4.6: Truncated ROC curves with 95% confidence intervals obtained on the LANL
dataset.

distribution, which appears as the default choice, is in fact not optimal for the prob-
lem under consideration. As mentioned in Section 4.2.5, this may be explained by its
strong unbalancedness when applied to event logs: since most entities rarely appear
in normal events, they also rarely appear as negative samples when using the unigram
distribution. Therefore, their embeddings are not as well trained as they are under a
more balanced noise distribution.

As the log-unigram distribution yields the best results, it is used in all experiments
from now on, unless otherwise specified.

Weights learned by the model. Having trained the model, it can be interesting to
investigate the obtained parameters and what they reveal about the training dataset.
In particular, the weights {weij} can be straightforwardly interpreted as a measure
of the correlation between pairs of involved entities: a high value of weij means that
the i-th entity involved in a type e event is highly significant in predicting the j-th
involved entity. Therefore, analyzing these weights can both help assess the relevance
of the model and reveal existing correlations in the LANL dataset.

4.4. Experiments 77

User Ty
pe

Ty
pe

Host

Local auth.

User Ty
pe
So

urc
e

Ty
pe

So
urc

e

Dest
.

Remote auth.

Host User

User

Pro
ces

s

Proc. creation

0.0

0.5

1.0 W
eight values

Figure 4.7: Weights {weij} learned by our model on the LANL dataset, using the log-unigram
noise distribution. Vertical labels stand for entities being predicted, while horizontal labels
indicate entities being used for the prediction. For instance, when predicting the destination
of a remote authentication, the model relies mostly on the authentication type, followed by

the user.

The average weights obtained after training are shown in Figure 4.7. While no
entity pair stands out in the case of local authentications, things are more contrasted
when considering remote authentications. In particular, one rather unexpected out-
come is that the destination of a remote authentication is mostly predicted through
its type, while little importance is given to the user and almost none to the source. A
possible explanation is that the authentication type is correlated with the functional
role of the destination host: for instance, most servers should be authenticated to us-
ing Kerberos, but some of them might only support NTLM. Similarly, remote desktop
sessions might be primarily used by help desk employees to connect to malfunction-
ing workstations, while servers might be administered using different tools. Finally,
the weights associated with process creations suggest that the process name (in other
words, the program being executed) is mostly correlated to the user creating the pro-
cess. This hints towards the fact that each user usually executes a limited number of
programs, which are related to the user’s role in the organization (e.g. administrative
support, information technology (IT) help desk, etc.).

Comparison with the baselines. We now evaluate the detection performance
of our methodology with respect to the three baselines introduced in Section 4.4.1.
Results are displayed in Figure 4.6b and Table 4.3. Our approach globally outperforms
competing algorithms, with significantly higher scores for all but one performance
metric, namely the detection rate for a daily investigation budget of 1 000 events.
Note that these scores remain rather low: for instance, investigating 10 000 events
each day is a considerable amount of work, and it only leads to a 48% detection rate
with our method. However, it should be kept in mind that the aim of our algorithm
is only to sort events so that the most suspicious ones rank close to the top, and
further processing steps should then be applied to obtain more exploitable results.
Such additional steps are discussed in Chapters 6 and 7.

As for competing methods’ performance, the best contender is Cadence, which
sustains our initial intuition: handling the combinatorial aspect of events through
dimensionality reduction and extraction of the most relevant pairs of involved entities
is a promising approach to malicious behavior detection in event logs. Next up is
GraphAI, which only models dyadic interactions instead of fully leveraging the com-
binatorics of events. This simplified description of events can thus be considered too
crude, once again backing up our hypothesis regarding the importance of factoring
in the complexity of the data. Finally, W-BEM performs surprisingly poorly, which
can be attributed to the inadequate data specification it relies upon. Indeed, the idea
behind W-BEM is to treat events as sentences, with each involved entity representing

78 Chapter 4. Anomaly Detection for Heterogeneous Polyadic Interactions

32 64 128 256
D

0.2

0.3

0.4

0.5

0.6

AU
C@

1%

(a) Influence of the latent space dimen-
sion D (with K = 10).

5 10 15 20 25
K

0.2

0.3

0.4

0.5

0.6

AU
C@

1%

(b) Influence of the number of negative
samples K (with D = 64).

Figure 4.8: Area under the truncated ROC curve with 95% confidence interval for several
values of the latent space dimension D and the number of negative samples K.

a word. However, this representation ignores the specific structure of event logs: the
number of involved entities as well as their types are fixed for each event type, making
the actual sample space much smaller than the set of all sequences of entities. In other
words, W-BEM gives strictly positive probability to many samples which are actually
not events and can thus never happen. This can be expected to make the model less
efficient at learning to predict actual events.

Sensitivity analysis. We conclude this section by looking into the impact of the
hyperparameters D and K on the detection performance of our algorithm. Several
values are tested: 32, 64, 128 and 256 for the latent space dimension D, and 5, 10, 15,
20 and 25 for the number of negative samples per training sample K. As mentioned
above, a grid search approach reveals that D = 64 andK = 10 yield the best detection
performance, quantified by the area under the truncated ROC curve. Figure 4.8 shows
the variations of this metric around this optimal point.

The latent space dimension D essentially controls the number of parameters of
the model. As a consequence, it should be tuned so as to avoid both underfitting and
overfitting. Both of these unwanted configurations can be observed in Figure 4.8a,
with the lowest and highest values of D both yielding inferior results. As for the
number of negative samples K, it relates to the trade-off between the quality of the
approximation of the log-likelihood gradient provided by NCE and the computational
cost of training. Figure 4.8b shows that increasing K beyond 10 does not make the
model better at detecting malicious events. Note that detection performance even
tends to decrease for high values of K, which may result from a kind of overfitting:
as K increases, the model more accurately fits the distribution of the training data.
This might lead it to assign higher anomaly scores to rare but benign events, in turn
yielding more false positives.

4.5 Conclusion

Building upon existing work on statistical modelling and anomaly detection for com-
binatorial data, we propose a new algorithm for anomaly detection in heterogeneous

4.5. Conclusion 79

event logs. We thereby address two of the three main characteristics of event logs
identified in Section 2.2.3, namely the combinatorial and heterogeneous aspects.

Regarding the combinatorial aspect, two main challenges stand out: the very high
dimensionality of the sample space and the many ways in which a given event can
be anomalous. The former is typically addressed through dimensionality reduction
techniques, building upon the intuition that the propensity of a given entity to interact
with others depends on a small number of latent attributes associated with this entity.
As for the latter, it can be dealt with by identifying a small number of relevant pairs of
subsets of entities involved in an interaction. What makes these pairs relevant is the
degree of correlation they exhibit: if a subset I of involved entities is usually sufficient
to predict another subset J , then looking for rare associations along the pair (I,J)
can be expected to yield relevant anomalies. To the best of our knowledge, the first
approach simultaneously implementing these two ideas is the Cadence model [Amin
et al., 2019]. Therefore, we build upon this model to design our own algorithm.

The main improvement we bring is the inclusion of multiple event types – in other
words, we also address the heterogeneity of event logs. While this entails no major
modification of the model itself, it raises new issues regarding the training procedure.
Indeed, using shared parameters to model several event types amounts to jointly
optimizing several functions of the same variables, namely the loss functions associated
with all types. This multi-objective optimization problem is commonly referred to as
multi-task learning, and it requires appropriately balancing the respective importance
of each training objective. To that end, we apply an uncertainty-based weighting
scheme proposed by Kendall et al. [Kendall et al., 2018].

Experiments on the LANL dataset show the effectiveness of our approach. In
particular, our methodology performs better than Cadence, demonstrating the use-
fulness of the improvements we propose. A more thorough investigation into the
respective impact of each of these improvements would be an interesting lead for fu-
ture work. However, it seems reasonable to presume that the integration of process
creations along with authentications into a joint model has a positive influence on
the detection performance, in accordance with previous work on multi-task learn-
ing [Caruana, 1997].

While the methodology introduced in this chapter addresses the combinatorial and
heterogeneous aspects of event logs, it entirely ignores the temporal one: all events
are assumed to be independently sampled from the same distribution. Chapter 5 ex-
tends our work to factor in the nonstationarity of real-world event streams. Another
important issue left aside in this chapter is the fact that malicious behavior is ex-
pected to generate not one, but several anomalous events, as stated in Section 2.3.2.
Therefore, computing event-wise anomaly scores is not enough: aggregating and cor-
relating anomalous events should help distinguish truly malicious actions from rare
but legitimate ones. This post-processing step is addressed in Chapters 6 and 7.

81

Chapter 5

Latent Space Modelling for
Nonstationary Interaction Streams

Behaviors and activities observed in a computer network are likely to vary
over time: from new hosts being added to the network to users taking on
new roles or projects, sources of unstability abound. As they reflect these
behaviors and activities, event logs exhibit temporal variations as well.
Taking this temporal component into account is crucial when designing
anomaly detection methods: as the underlying data distribution changes,
the model underpinning the anomaly scoring function must adapt to remain
relevant. Designing a sensible updating procedure for the model introduced
in the previous chapter is thus our main concern in this one. To that end,
we draw inspiration from existing work on Bayesian filtering, a generic
framework aiming to estimate the hidden state of a dynamical system us-
ing noisy measurements. The impact of dynamic updating is assessed em-
pirically, and the resulting anomaly detection methodology, which we call
Decades (dynamic, heterogeneous and combinatorial anomaly detection
in event streams), is one of the main contributions of this thesis. Our
implementation of Decades is openly available.

5.1 Introduction

The anomaly detection methodology described in Chapter 4 has no temporal dimen-
sion: it builds an entity embedding-based model of heterogeneous events using some
training set, then leverages this model to quantify the degree of anomalousness of all
subsequent events. However, as explained in Section 2.2.3 (and further demonstrated
in Section 2.4.2), event logs do exhibit a strong temporal component. This temporal
component can be divided into two aspects: nonstationarity of the data generating
process and statistical dependencies between successive observations. In this chapter,
we focus on the former.

Using a stationary model to detect anomalies in a nonstationary data stream raises
obvious reliability concerns: as time goes by, a continuously growing gap appears be-
tween the actual data distribution and its estimated counterpart. As a consequence,
the notion of anomaly encoded in the model becomes less and less relevant. This phe-
nomenon, commonly referred to as concept drift, has been taken into account by some
previous contributions on intrusion detection. As explained in Section 3.3.2, various
approaches have been proposed. The simplest one consists in frequently retraining the

82 Chapter 5. Latent Space Modelling for Nonstationary Interaction Streams

model from scratch using only the latest data, which is clearly not optimal: indeed,
the data generating process can be expected to evolve in a reasonably slow and smooth
fashion. In other words, activity patterns in a computer network are not supposed to
change too drastically overnight, thus data collected a few weeks or months ago may
still contain some useful information when assessing the normality of current activity.

In order to avoid entirely forgetting past information when updating the model,
we need a principled procedure allowing old observations to affect the model’s pa-
rameters to some extent. Such a procedure should appropriately tune the importance
of each observation based not only on how old, but also how reliable it is. Fortu-
nately, adequate tools and concepts already exist: in particular, recursive Bayesian
estimation [Bergman, 1999] (also known as Bayesian filtering [Särkkä, 2013]) deals
with estimating the state of a dynamical system using both noisy observations and a
model of the state’s evolution. In our case, the state is the set of entity embeddings and
each observation is the set of events happening inside a given time window. Updating
the model over time then amounts to estimating the trajectory of the embeddings
in the latent space given the observed events. Note that similar ideas have already
been applied to anomaly detection in host communication graphs [Lee et al., 2021].
In this context, numerous contributions on dynamic graph analysis can be leveraged,
including existing work on recommender systems. However, extending such methods
to heterogeneous polyadic interactions is nontrivial, as the indirect statistical depen-
dencies between entity embeddings are much more complex in that setting.

In this chapter, we refine the anomaly detection algorithm presented in Chapter 4
in order to factor in the nonstationarity of event logs. To that end, we draw inspiration
from the Bayesian filtering paradigm and design an updating procedure for the entity
embeddings, leaving the other parameters fixed. This procedure can be fine-tuned
through hyperparameters to achieve a satisfactory trade-off between remembering
past information and adapting to the latest observations. Experiments on the LANL
dataset give encouraging results regarding the ability of our procedure to alleviate
concept drift and decaying detection performance.

The rest of the chapter is structured as follows. We first review some useful
concepts pertaining to Bayesian filtering in Section 5.2, starting with the generic
framework of hidden Markov models and discussing some existing applications to
nonstationary interaction streams. Section 5.3 then presents the extension of our
anomaly detection algorithm with a temporal dimension, as well as our Bayesian
filtering-inspired updating procedure. Finally, we display and discuss our experimental
results in Section 5.4.

5.2 Preliminaries – From Hidden Markov Models to Col-
laborative Kalman Filters

This section briefly introduces some useful concepts related to latent space modelling
for interaction streams. We first explain the core principles of Bayesian filtering, as
well as the hidden Markov model framework it relies upon, in Section 5.2.1. Sec-
tion 5.2.2 then highlights one of the first popular Bayesian filtering approaches to
interaction stream modelling, namely the collaborative Kalman filter, and discusses
its relevance to our work.

5.2. Preliminaries 83

Xt-1

Yt-1

Xt

Yt

Xt+1

Yt+1

... ...

Figure 5.1: Graphical model for a hidden Markov model.

5.2.1 Hidden Markov Models and Bayesian Filtering

We start with a simple introduction to hidden Markov models (for a more formal and
thorough presentation, see for instance [Cappé et al., 2006]). Given two sample spaces
X and Y, let {(Xt, Yt) ∈ X × Y}t≥1 be a bivariate discrete-time stochastic process.
Then the pair (Xt, Yt) follows a hidden Markov model (HMM) if

(i) {Xt}t≥1 is a latent Markov process;

(ii) ∀t ≥ 1, ∀x1:t ∈ X t, P [Yt ∈ A | X1:t = x1:t] = P [Yt ∈ A | Xt = xt] , with A ⊂ Y
any measurable subset.

This definition is illustrated with a graphical model in Figure 5.1. The random vari-
ables {Xt}t≥1 are generally called hidden states, while their counterparts {Yt}t≥1 are
referred to as observations.

A common real-world problem to which HMMs are relevant is dynamic estimation
of the internal state of a system given a sequence of noisy measurements and prior
knowledge about the process describing the evolution of the state. In particular, the
concept of filtering refers to estimation of Xt at each time step t given the sequence
of observations Y1:t. The Bayesian formulation of this problem relies on a simple
recursion: the prior conditional distribution of Xt given Y1:t−1 can be obtained as

p(xt | y1:t−1) =

∫
xt−1∈X

p(xt | xt−1)p(xt−1 | y1:t−1) dxt−1. (5.1)

Assuming that the transition kernel p(· | xt−1) (or an estimate thereof) is known, this
distribution can be estimated by plugging in the posterior conditional distribution of
Xt−1 given Y1:t−1 obtained at time t − 1. The posterior distribution of Xt can then
be computed as

p(xt | y1:t) =
p(xt, yt, y1:t−1)

p(y1:t)

=
p(yt | xt, y1:t−1)p(xt | y1:t−1)

p(yt | y1:t−1)

=
p(yt | xt)p(xt | y1:t−1)

p(yt | y1:t−1)
.

The denominator in the last line,

p(yt | y1:t−1) =

∫
xt∈X

p(yt | xt)p(xt | y1:t−1) dxt,

84 Chapter 5. Latent Space Modelling for Nonstationary Interaction Streams

is constant with respect to Xt, leading to

p(xt | y1:t) ∝ p(yt | xt)p(xt | y1:t−1). (5.2)

Bayesian filtering relies on Equations 5.1 and 5.2 to recursively estimate the pos-
terior distribution of Xt at each time step t. A well-known instance of the Bayesian
filtering paradigm is the Kalman filter [Kalman, 1960]: setting X = RN and Y = RM ,
consider the process defined by

Xt = AXt−1 + Rηt,

Yt = BXt + Sνt

for all t ≥ 2. The two fixed matrices A ∈ RN×N and B ∈ RM×N are called the state
transition matrix and measurement transition matrix, respectively. The random-
ness comes from the two sequences of i.i.d. multivariate standard centered Gaussian
random variables

{
ηt ∈ RN

}
t≥2

and
{
νt ∈ RM

}
t≥2

, which are scaled through the
state noise covariance matrix R ∈ RN×N and measurement noise covariance matrix
S ∈ RM×M , respectively. In this setting, the state vector Xt is Gaussian for all t ≥ 1
(assuming that X1 is itself Gaussian), and its mean and covariance matrix can be
obtained in closed form. The popularity of the Kalman filter for modelling multivari-
ate dynamic systems motivated its extension to the slightly more complex setting of
latent space modelling for interaction streams, which we discuss in the next section.

5.2.2 Application to Interaction Streams: the Collaborative Kalman
Filter

Collaborative Kalman filtering finds its roots in the connection between probabilistic
matrix factorization (described in Section 4.2.2) and the Kalman filter. Indeed, the
rating yij given by user i to item j can be seen as a noisy measurement of the dot
product U>i Vj of the corresponding latent factors. Making these latent factors evolve
in time according to some linear Gaussian model leads to

Ui,t = AUUi,t−1 + RUη
U
i,t,

Vj,t = AV Vj,t−1 + RV η
V
j,t,

yij,t = U>i,tVj,t + νij,t,

with notations chosen so as to highlight the analogy. The corresponding graphical
model can be found in Figure 5.2.

An early version of the collaborative Kalman filter (CKF) was proposed by Lu
et al. [Lu et al., 2009]. This model, however, assumes that the item latent factor
matrix V is constant in time, allowing each user latent factor Ui,t to be estimated
through standard Kalman filtering (with the item latent factors playing the role of
the measurement transition matrix). In addition, it uses the identity matrix as state
transition matrix for all user latent factors. Note that this amounts to placing a
Brownian motion prior on the trajectory of Ui,t in the latent space. Sun et al. [Sun
et al., 2012, Sun et al., 2014] then proposed a slightly more complex model, allowing
the state transition matrix to differ from the identity. They learn a shared state
transition matrix A for all users, and still treat item latent factors as a constant shared
measurement transition matrix, enabling the use of Kalman filtering for inference.

5.2. Preliminaries 85

Ui,t-1

yij,t-1

i=1...N

j=1...M

Vj,t-1

Ui,t

yij,t

Vj,t

Ui,t+1

yij,t+1

Vj,t+1 ...

ηj,t-1
V ηj,t

V ηj,t+1
V

ηi,t-1
U ηi,t

U ηi,t+1
U

νij,t-1 νij,t νij,t+1

...

...

...

Figure 5.2: Graphical model for the collaborative Kalman filter.

To the best of our knowledge, the first fully dynamic model was introduced by
Gultekin and Paisley [Gultekin and Paisley, 2014]. In this model, all latent factors
are assumed to follow a normal distribution at each time step t, and the posterior
means and covariance matrices of the latent factors are jointly estimated whenever
new observed interactions are available. The state transition equations are

Ui,t = Ui,t∗i
+ α(t− t∗i)I,

Vj,t = Vj,t∗j
+ α(t− t∗j)I,

where t∗` denotes the timestamp of the latest interaction involving entity `, and α > 0
is a hyperparameter controlling the speed at which the latent factors are allowed to
change. Given a new interaction yij,t, the posterior distribution of the involved latent
factors can then be obtained through Bayesian filtering, yielding

p(Ui,t,Vj,t | yij,t) ∝

p(yij,t | Ui,t,Vj,t)×
∫
p(Ui,t | Ui,t∗i

)p(Ui,t∗i
) dUi,t∗i

×
∫
p(Vj,t | Vj,t∗j

)p(Vj,t∗j
) dVj,t∗j

,

with p(Ui,t∗i
) (resp. p(Vj,t∗j

)) denoting the posterior distribution of the latent factor
associated with user i (resp. item j) at time t∗i (resp. t∗j). However, in contrast with
the standard Kalman filter, this posterior is analytically intractable. In [Gultekin and
Paisley, 2014], it is thus approximated through mean-field variational inference [Wain-
wright and Jordan, 2008].

Various improvements were subsequently brought to this version of the CKF:
Chang et al. [Chang et al., 2017] factor in the apparition of new users (resp. items)
by initializing their latent factors to the mean of existing users’ (resp. existing items’)
latent factors. Some contributions also proposed to use different distributions than the
Gaussian in order to better represent implicit feedback: with an approach similar to
hierarchical Poisson factorization (see Section 4.2.2), Thac Do and Cao [Thac Do and
Cao, 2018] model latent factors through Gamma distributions and ratings yij,t through

86 Chapter 5. Latent Space Modelling for Nonstationary Interaction Streams

Table 5.1: Characterization of statistical models related to collaborative Kalman filtering.

Reference Distribution
(observations)

Distribution
(latent factors)

State transition
prior

[Lu et al.,
2009] Gaussian Gaussian (users),

Dirac (items)

Isotropic zero-mean ad-
ditive noise (users), no
change (items)

[Sun et al.,
2012] Gaussian Gaussian (users),

Dirac (items)

Linear transformation
+ isotropic zero-mean
additive noise (users),
no change (items)

[Sun et al.,
2014] Gaussian Gaussian (users),

Dirac (items)

Linear transformation
+ isotropic zero-mean
additive noise (users),
no change (items)

[Gultekin and
Paisley, 2014] Gaussian Gaussian Isotropic zero-mean ad-

ditive noise

[Chang et al.,
2017] Gaussian Gaussian Isotropic zero-mean ad-

ditive noise

[Thac Do and
Cao, 2018] Poisson Gamma Hierarchical model

[Liu et al.,
2018c] Bernoulli/logit Gaussian Anisotropic zero-mean

additive noise

[Song et al.,
2019] Gaussian Gaussian

Nonlinear transforma-
tion + anisotropic zero-
mean additive noise

[Lee et al.,
2021] Bernoulli/logit Gaussian Anisotropic zero-mean

additive noise

Poisson distributions. Alternatively, Liu et al. [Liu et al., 2018c] model implicit feed-
back through logistic regression, besides introducing more complex (non-isotropic)
priors for the trajectory of the latent factors. Finally, Song et al. [Song et al., 2019]
further refine the definition of these priors, using neural networks to compute the prior
mean and covariance matrix based on the previous posterior estimates.

The CKF and related models provide some insight on dynamic latent space mod-
elling for interaction streams. Although they focus on dyadic interactions, they can
thus be used as a source of inspiration. Three specific aspects are of particular inter-
est: the choice of distributions for the latent factors and observations, the definition
of the state transition priors and the trade-off between expressivity of the model and
tractability of the posterior distribution.

As for the first two aspects, the options explored in the literature are summarized
in Table 5.1. Note that we also include the model of Lee et al. [Lee et al., 2021], which
is explicitly designed for intrusion detection. While the most frequent approach re-
mains the use of Gaussian latent factors with Brownian motion priors (i.e. isotropic
zero-mean additive noise), a trend towards more sophisticated priors can be observed
in recent years. Intuitively, the underlying assumption behind such priors is that

5.3. Handling the Nonstationarity of Event Logs 87

the evolution of latent factors should follow some pattern. This assumption may be
valid for recommender systems, as user preferences as well as item popularities can
be expected to follow some typical trajectories. However, it seems less relevant when
modelling event logs: in particular, the amount of available training data can hardly
be expected to be sufficient with respect to the number of possible evolution patterns.
As an illustration, consider a movie recommendation system: such a system leverages
data from a considerable number of users, while the number of typical trajectories
(for instance, a user discovering a genre or director and starting to watch more re-
lated movies) is arguably limited. In contrast, the number of users in a computer
network is significantly lower, while the number of evolution patterns (for instance,
an employee being transferred to another department) is not. Therefore, trying to
learn deterministic patterns of long-term evolution in the context of computer net-
work monitoring hardly seems relevant. Note, however, that using anisotropic noise
as a prior can be considered more useful: indeed, some latent attributes of entities
can be expected to change faster than others.

Regarding the expressivity/tractability trade-off, the initial CKF relying on a sim-
ple enough model so that the posterior can be obtained in closed form has quickly been
replaced by more complex models. The most frequent approach is now to assume that
the posterior has to be approximated, which makes expressivity the main objective
when designing the model. Note, however, that posterior distributions still cannot be
made arbitrarily complex: in order for inference to remain accurate, some simplifying
assumptions must be made. In particular, the latent factors of the entities are always
assumed to be conditionally independent from one another given the observed inter-
actions, and often to have a diagonal covariance matrix. Under such assumptions, the
posterior is then typically approximated through mean-field variational inference.

With these insights in mind, we now come back to modelling event logs and present
our parameter updating procedure.

5.3 Handling the Nonstationarity of Event Logs

We first discuss in further detail the causes of real-world event logs’ nonstationary
nature in Section 5.3.1, distinguishing and formalizing two of them. Section 5.3.2
then presents the refinements brought to our model to factor in this nonstationarity, as
well as the updating procedure we use to adapt entity embeddings to observed events.
Finally, Section 5.3.3 summarizes the elements of our anomaly detection algorithm for
event streams as well as the associated operating procedure.

5.3.1 Two Main Sources of Nonstationarity

In Section 2.4.2, we exhibited some tangible consequences of nonstationarity in the
LANL dataset, namely the frequent appearance of previously unseen entities and
events1. These observations can be explained by two main factors. First of all, new
entities appear naturally in the everyday life of a computer network: user accounts
are created for new employees, new servers are set up, new software is deployed, and
so on. Secondly, existing entities can also change their behavior for legitimate reasons:
for instance, users can start working on new projects, and servers can start hosting
additional applications.

1Recall that an event (t, e, ω) is considered previously unseen if there exists no event (t′, e, ω) with
t′ < t in the available data.

88 Chapter 5. Latent Space Modelling for Nonstationary Interaction Streams

More formally, we divide the time axis into windows of fixed length ∆T > 0 and
write

LT =
{(
tk, ek, ωk

)}
(T−1)·∆T≤tk<T ·∆T

for the set of events observed in the T -th window (assuming that t = 0 corresponds
to the end of the initial training phase and the beginning of the detection phase). In
addition, instead of a unique entity set U =

⋃L
`=1 U` (where L still denotes the number

of existing entity types), we now consider a sequence{
UT =

L⋃
`=1

UT`

}
T≥0

,

where UT` denotes the set of type ` entities seen up to time step T . The set of new
entities of type ` observed in the T -th time window can then be defined as

ŨT` = UT` \ UT−1
` .

As no previous activity is available for these entities, assessing the normality of their
current activity is difficult. This is commonly referred to as the cold start problem in
the recommender systems literature [Schafer et al., 2007]. In our case, the practical
consequence of cold start is that a new entity v ∈ ŨT (where ŨT =

⋃L
`=1 ŨT`) has

no embedding xv when it is first observed. Therefore, the anomaly score of an event
involving v cannot be computed.

As for temporally evolving behaviors of known entities, it corresponds to the idea
of concept drift mentioned above: as time passes, the conditional distributions learned
during the training phase differ more and more from the true data generating process.
Therefore, the parameters of the model must be dynamically adjusted to reduce this
difference, which can be done through techniques presented in Section 5.2. Note
that we only address long-term drift, leaving seasonal variations aside. For models
including a seasonal component, see for instance [Turcotte et al., 2014, Price-Williams
et al., 2018, Sanna Passino et al., 2020].

Having defined the two subproblems we aim to address, we now proceed with the
definition of our updating procedure.

5.3.2 Adapting the Model through Recursive MAP Estimation

In order to make our model dynamic, we first replace the set of embeddings {xv}v∈U
with a sequence {{

xTv
}
v∈UT

}
T≥0

.

The first entity set U0 contains all entities seen during training, and for each entity
v ∈ U0, its initial embedding x0

v is learned through the training procedure described
in Section 4.3.3. The goal of the updating procedure is then to compute the new
embeddings

{
xTv
}
v∈UT given the old embeddings

{
xT−1
v

}
v∈UT−1 and the latest event

log LT , at each time step T ≥ 1.
First of all, an embedding xT−1

v must be assigned to each new entity v ∈ ŨT .
Following the approach of Chang et al. for dynamic recommender systems [Chang
et al., 2017], we initialize this new embedding to the average embedding of same-type

5.3. Handling the Nonstationarity of Event Logs 89

entities: letting τ denote the type of entity v, we set

xT−1
v =

1∣∣∣UT−1
τ

∣∣∣
∑

u∈UT−1
τ

xT−1
u .

In other words, in the absence of former activity, a new entity is assumed to behave
similarly to its peers. This initial embedding is used to compute the anomaly scores of
events involving v in LT . In addition, we use these events to fine-tune v’s embedding:
we place a Gaussian prior on xTv ,

xTv ∼ N
(
xT−1
v , σ2

0I
)
,

where σ0 > 0 is a hyperparameter. The embedding of v given LT can then be obtained
through maximum a posteriori (MAP) estimation. We proceed in a similar fashion
to update embeddings of previously seen entities: for each entity u ∈ UT−1, we define
the prior distribution of xTu as

xTu ∼ N
(
xT−1
u , σ2

1I
)
,

with σ1 > 0 a hyperparameter, and we infer the posterior mean of xTu through MAP
estimation. Note that strictly speaking, this is not Bayesian filtering: since we only
infer the posterior mean of each embedding instead of its whole posterior distribution,
prior distributions at each time step are not defined in a truly recursive manner. This
is done for the sake of simplicity, and our experiments show that this simple procedure
already helps alleviate concept drift. However, applying an actual Bayesian filtering
procedure would be an interesting lead for future work.

These priors can be integrated in our training procedure as follows. Letting XT

denote the set of entity embeddings at time step T , the posterior distribution of the
embeddings given LT is

pT
(
XT
)

= p
(
XT | LT ,XT−1

)
∝ p

(
{ωCe+1:Ne}(t,e,ω)∈LT | {(e, ω1:Ce)}(t,e,ω)∈LT ,X

T
)
p
(
XT | XT−1

)
=

∏
(t,e,ω)∈LT

p
(
ωCe+1:Ne | e, ω1:Ce ,X

T
) ∏
v∈ŨT

p
(
xTv | xT−1

v

) ∏
u∈UT−1

p
(
xTu | xT−1

u

)
,

where ω` denotes the `-th entity in ω. The training objective can then be derived by
taking the negative logarithm,

− log pT
(
XT
)

=−
∑

(t,e,ω)∈LT

log p
(
ωCe+1:Ne | e, ω1:Ce ,X

T
)

+
1

2σ2
0

∑
v∈ŨT

∥∥xTv − xT−1
v

∥∥2

2
+

1

2σ2
1

∑
u∈UT−1

∥∥xTu − xT−1
u

∥∥2

2
+ Z,

with Z a constant. This leads to the regularized loss function

JXT (LT) = − 1

|LT |
∑

(t,e,ω)∈LT

log p
(
ωCe+1:Ne | e, ω1:Ce ,X

T
)

+ λ0Rnew(T) + λ1Rold(T),

(5.3)

90 Chapter 5. Latent Space Modelling for Nonstationary Interaction Streams

with λ0 = 1
2σ2

0 |LT |
, λ1 = 1

2σ2
1 |LT |

and

Rnew(T) =
∑
v∈ŨT

∥∥xTv − xT−1
v

∥∥2

2
, Rold(T) =

∑
u∈UT−1

∥∥xTu − xT−1
u

∥∥2

2
.

The loss function defined in Equation 5.3 can be minimized through SGD: the gradient
of the first term is estimated as described in Section 4.3.3, and the regularization terms
can be straightforwardly differentiated. This yields the new embeddings XT . Note
that we do not update the other parameters of the model, as they are supposed to
reflect more static properties of the data generating process.

In order to fully specify the learning algorithm, a stopping criterion must be de-
fined. In the initial training phase described in Chapter 4, this stopping criterion
was specified as a number of training epochs, which is the standard approach in deep
learning. When retraining the model, however, we only fine-tune previously learned
parameters. Convergence can thus be expected to happen faster. As a consequence,
we define the stopping criterion in terms of variation of the total loss computed on a
small validation set: at the end of each training epoch, the relative difference between
the current validation loss and the previous one is computed. Retraining stops either
if this relative difference is smaller than a threshold ε > 0 or if a maximum number
of epochs Mep has been reached.

Once the embeddings have been updated, the distribution of the anomaly scoring
function ψθ̂T on the sample space may have changed. Therefore, its mean and standard
deviation are re-estimated for each event type on the set LT before scoring subsequent
events using the corresponding standardized anomaly scoring function ψ̃θ̂T .

5.3.3 Putting It All Together – The Decades algorithm

We conclude this section with a summary of our event-wise anomaly detection method-
ology, which we call Decades (dynamic, heterogeneous and combinatorial anomaly
detection in event streams). Its main steps are the following:

(i) Given a training set T , initial entity embeddings X0 are learned along with event
type-specific latent factors {βe}1≤e≤E and weights {weij}i,j,e using the procedure
described in Section 4.3.3. These initial parameters are denoted θ̂0.

(ii) At each time step T ≥ 1, a new event log LT is received. Previously unseen
entities observed in LT are assigned an initial embedding, as described in Sec-
tion 5.3.2. Each event (t, e, ω) ∈ LT is then scored using the standardized
anomaly scoring function ψ̃θ̂T−1 , and the most anomalous events are reviewed
by an expert. If malicious events are found, they are removed from LT to avoid
polluting the model during the retraining phase.

(iii) New embeddings XT are then learned through MAP estimation using events
from LT , yielding a new parameter set θ̂T and the corresponding standardized
anomaly scoring function ψ̃θ̂T .

This procedure is summarized in Algorithm 1. Note that it aims to reduce the
workload of human analysts rather than fully automate intrusion detection: as high-
lighted in Section 4.4.2, the output of our model remains quite noisy, with a lot of
legitimate events among the most anomalous ones. However, helping analysts focus
on a small fraction of all observed events is already interesting from an operational
perspective. The model updating procedure presented in this chapter is essentially

5.4. Experiments 91

Data: Event stream {(tk, ek, ωk)}k≥0, initial entity embeddings X0

Result: Sequence of anomaly scores {yk}k≥0

for time step T ≥ 1 do
LT ← {(tk, ek, ωk)}(T−1)·∆T≤tk<T ·∆T ;
/* analyze incoming events */
for (tk, ek, ωk) ∈ LT do

/* look for new entities */
for v ∈ ωk do

if v /∈ UT−1 then
τ ← Type(v);
xT−1
v ← 1

|UT−1
τ |

∑
u∈UT−1

τ
xT−1
u ;

end
end
yk = ComputeAnomalyScore(ωk, ek;XT−1);

end
remove malicious events from LT ;
/* update entity embeddings */
XT ← XT−1;
repeat

XT ← SgdEpoch(LT ,XT);
until convergence;

end
Algorithm 1: Analyzing a stream of events using the Decades algorithm.

meant to make that operational gain achievable in practice: if the only way to allevi-
ate cold start and concept drift was to frequently retrain the model from scratch, the
cost-benefit balance of our method would arguably be unfavorable. The usefulness of
frequent model updating is empirically demonstrated in the next section.

5.4 Experiments

While Section 4.4 aimed to justify some design choices of our model and compare
its performance with state-of-the-art baselines, this section only seeks to evaluate the
additional benefit of the updating procedure. To that end, we now consider the first
33 days of the LANL dataset in order to highlight the effect of time, as described in
Section 5.4.1. Our results, including the impact of the regularization hyperparameters
λ0 and λ1, are discussed in Section 5.4.2.

5.4.1 Experimental Setup

The implementation and hardware are the same as in Section 4.4. Our complete imple-
mentation of Decades, including the model presented in Chapter 4 and its updating
procedure described in this chapter, is available on GitHub2. As for hyperparameters,
we still set the latent space dimension D to 64 and the number of negative samples K
to 10. The initial training phase is also identical to the one described in Section 4.4.1.
The Adam algorithm is used for retraining as well, albeit with different hyperparame-
ters: since the training set and the modifications brought to the embeddings are both

2https://github.com/cl-anssi/DECADES

92 Chapter 5. Latent Space Modelling for Nonstationary Interaction Streams

Table 5.2: Descriptive statistics on entities appearing in the days 9–33 of the LANL dataset
(test set) and not in the first 8 days (training set). The proportions are defined with respect

to the corresponding totals in the test set.

Count
(malicious)

Proportion
(malicious)

Entities unseen
during training

User 4 217 (9) 27.9% (9%)
Host 2 431 (13) 16.9% (4.64%)
Process 6 038 (0) 79.6% (-)
Auth. type 4 (0) 14.8% (0%)

Events involving
unseen entities

Local auth. 56 031 (0) 0.51% (-)
Remote auth. 1 599 980 (53) 3.69% (8.14%)
Proc. creation 495 183 (0) 3.41% (-)

expected to be smaller, we set the batch size to 256 and the learning rate to 10−4.
The relative error threshold ε and maximum number of epochs Mep specifying the
stopping criterion are set to 10−2 and 25, respectively.

Dataset. In order to evaluate the impact of cold start and concept drift on detection
performance, as well as the effectiveness of our updating procedure at alleviating this
impact, we now use the first 33 days of the LANL dataset in our experiments. This
larger dataset encompasses all labelled malicious events. The first 8 days are still used
for initial training, and each of the next 25 days is treated as one time step T – in
other words, the window size ∆T is set to one day. The same preprocessing steps
as in Section 4.4.1 are performed, including the formal definition of each event type.
Relevant descriptive statistics regarding previously unseen entities in the test dataset
are given in Table 5.2.

Performance metrics. Since the class imbalance is even stronger in this larger
dataset than in Section 4.4, we no longer use the area under the truncated ROC
curve (AUC@1%) to evaluate detection performance. Indeed, most days of the test
set contain no malicious activity, thus the detection rate for a given daily investiga-
tion budget B (DR-B) is more relevant. We still report this metric along with 95%
confidence intervals obtained over 20 runs of our algorithm for each evaluated setting.
In addition, we track quantiles of the average distribution of anomaly scores over time
and compare them with the average scores of malicious events to obtain a more de-
tailed picture of temporal evolution. In what follows, Qπ denotes the π-th percentile
of the average distribution of anomaly scores in a given time window, meaning that
π% of the events observed within this time window have an average anomaly score
smaller than Qπ (where the average is computed over 20 runs of the algorithm). Note
that similarly to Section 4.4, all performance metrics are computed for authentication
events only since process creations are not labelled.

5.4.2 Results and Discussion

The best detection performance on the LANL dataset is obtained with regularization
coefficients λ0 = 10−4 and λ1 = 10. We first compare the results obtained with
these hyperparameter values to those obtained without retraining, then investigate
the influence of λ0 and λ1 on detection performance.

5.4. Experiments 93

Table 5.3: Performance of Decades on the days 9–33 of the LANL dataset, with and with-
out retraining at the end of each day. Each metric is reported along with the corresponding

95% confidence interval, with the best score in bold.

DR-1K DR-5K DR-10K DR-20K

Without retraining .050±.027 .198±.056 .321±.077 .460±.080
With retraining .047±.015 .206±.053 .334±.071 .475±.095

Th
u 1

2a
m

Su
n 1

2a
m

Wed
 12

am

Sa
t 1

2a
m

Tu
e 1

2a
m

Fri
 12

am

Mon
 12

am

Th
u 1

2a
m

Su
n 1

2a
m

0

10

20

Sc
or

es

Q99
Q99.9
Red team events

(a) Without retraining

Th
u 1

2a
m

Su
n 1

2a
m

Wed
 12

am

Sa
t 1

2a
m

Tu
e 1

2a
m

Fri
 12

am

Mon
 12

am

Th
u 1

2a
m

Su
n 1

2a
m

0

10

20

Sc
or

es

(b) With retraining

Figure 5.3: Temporal evolution of the 99th and 99.9th percentiles of the average anomaly
score distribution, without any retraining (Figure 5.3a) and with a retraining step at the end

of each day (Figure 5.3b).

Impact of frequent updating. The detection rate for an investigation budget B
is reported for several values of B in Table 5.3, allowing us to compare detection
performance with and without frequent parameter updates. While the difference is
small, retraining does seem to slightly improve the obtained results. In order to
investigate this difference in further detail, Figure 5.3 displays the temporal evolution
of two high-order percentiles of the anomaly score distribution (Q99 and Q99.9) along
with the average scores of red team events. Three main observations can be made:
first of all, while some red team events do stand out more when retraining is frequently
performed, there are also some days where retraining actually makes malicious events
rank lower. Secondly, malicious events are ranked fairly high even without retraining,
which can explain the limited performance gain obtained through frequent updates.
Note that this does not refute the importance of model updating in general: in a real-
world network monitoring setting, malicious events are not guaranteed to happen right
after the initial training phase. Therefore, a greater decrease in detection performance
can be expected in the absence of retraining. Finally, the two tracked percentiles tend
to increase in time with model updating, suggesting that the distribution of anomaly

94 Chapter 5. Latent Space Modelling for Nonstationary Interaction Streams

10 5 10 4 10 3 10 2

0

0.0

0.2

0.4

0.6

0.8

DR
-B

B=1K
B=5K

B=10K
B=20K

(a) Influence of the regularization
coefficient for new embeddings λ0

(with λ1 = 10).

10 1 1 10 102

1

0.0

0.2

0.4

0.6

0.8

DR
-B

(b) Influence of the regularization
coefficient for old embeddings λ1

(with λ0 = 10−4).

Figure 5.4: Detection rate at daily investigation budget B with 95% confidence interval for
several values of the budget B and the regularization hyperparameters λ0 and λ1.

scores becomes long-tailed. This is an undesirable side effect as it could lead to an
increased number of false positives, and it might result from overfitting. Further
investigation is needed to precisely understand this temporal drift.

Sensitivity analysis. Finally, we study the impact of the regularization hyperpa-
rameters λ0 and λ1 on detection performance. Figure 5.4 shows the evolution of the
detection rate at various investigation budgets B around what appears to be the op-
timal point, namely (λ0, λ1) = (10−4, 10). While variations are small and mostly not
significant, the regularization coefficient for old embeddings λ1 does seem to have a
greater influence than its counterpart λ0. In particular, detection performance starts
to drop when λ1 is small, suggesting that the model overfits recent observations and
forgets too much about older events. This emphasizes the importance of not putting
too much trust in the latest data, which motivates our work in this chapter.

5.5 Conclusion

We extend our event-wise anomaly detection algorithm introduced in Chapter 4 by
factoring in the nonstationarity of the underlying data generating process. To that
end, we draw inspiration from the Bayesian filtering paradigm, which is designed to
gradually incorporate information from noisy observations into a statistical model.
More specifically, we borrow from previous work on the collaborative Kalman filter,
which extends latent space modelling for dyadic interactions to the dynamic setting.

Our contribution is an anomaly detection methodology for heterogeneous event
streams, which we call Decades. This method includes a model updating procedure
handling both the apparition of new entities and the shifting behaviors of already
known ones. For the sake of simplicity, this procedure relies on maximum a posteriori
estimation at each time step rather than fully-fledged Bayesian filtering. Experiments
on the LANL dataset show that even with such a simple procedure, the loss in detec-
tion performance resulting from cold start and concept drift can be slightly alleviated.
This result is encouraging, and designing a more sophisticated updating procedure is
thus a promising research direction.

5.5. Conclusion 95

The most obvious improvement which could be brought to our procedure would be
to perform actual Bayesian filtering instead of MAP estimation. This would allow the
estimated uncertainty associated with each parameter to be passed on from one time
step to the next, potentially leading to a more reliable model. Further refinements
include better state transition priors. Indeed, our updating procedure implicitly as-
sumes that all entities are equally likely to change their behavior, which is arguably
a crude approximation. A first step could be to use separate regularization hyperpa-
rameters λ0 and λ1 for each entity type. However, this would make manual tuning of
each hyperparameter significantly more intensive, and a more sophisticated hyperpa-
rameter tuning procedure would thus be needed as well. Besides, allowing each latent
attribute of a given entity to change at its own rate through the use of anisotropic
state transition priors could also lead to better parameter updates.

Finally, some of the limitations identified in Section 4.5 still apply here. In par-
ticular, the detection performance of our methodology remains rather low, which can
be partially attributed to the fact that it detects anomalies at the event granularity
only. Considering each event separately from the others does not allow us to leverage
a key property of malicious activity, formalized in Assumption 3: events triggered by
an intrusion are connected to each other with respect to the entities they involve. It
seems reasonable to presume that making use of this assumption could help distin-
guish malicious events from rare but legitimate ones, and this hypothesis is further
explored in Chapters 6 and 7.

97

Part III

From Noisy Anomalies to Reliable
Alerts

99

Chapter 6

Anomaly Score Denoising through
Graph Signal Processing

The statistical model described in Chapters 4 and 5 enables ranking of
observed events according to their degree of anomalousness. However, ex-
periments show that this anomaly ranking can still be improved upon: even
though malicious events receive rather high anomaly scores, the number
of false positives remains unacceptable. A sensible way to make anomaly
scores more reliable is to leverage one of our assumptions on malicious
behavior: events resulting from an intrusion should involve some shared
entities. In this chapter, we introduce the concept of event graph and
propose to treat event-wise anomaly scores as a graph-structured signal.
Building upon this idea, we use graph signal processing tools to denoise the
anomaly scores produced by any event-wise anomaly detection method, tak-
ing advantage of the connectivity of malicious event subgraphs. The gain
in detection performance provided by this approach is evaluated on event
graphs extracted from the LANL dataset.

6.1 Introduction

The main reason why statistical intrusion detection methods for event logs almost al-
ways rely on anomaly detection is that viable alternatives do not abound. Indeed, as
explained in Section 2.3.2, the vast diversity of malicious TTPs and end goals as well
as the somewhat elusive definition of malicious events themselves make direct char-
acterization of intrusion-related activity a daunting task. While anomaly detection
methods circumvent these challenges through an indirect characterization of malicious
events, they also have their own drawbacks.

More specifically, our experiments in Chapters 4 and 5 show that anomaly detec-
tion algorithms for event logs exhibit a rather unfavorable detection rate/false positive
rate trade-off: detecting a significant proportion of malicious events comes at the cost
of numerous false positives. This low accuracy can be explained by two main causes:
first of all, anomaly detection algorithms are not perfect, meaning that they cannot
exactly fit the true distribution of the data. Secondly (and unfortunately), even a per-
fect anomaly detection algorithm would not achieve a perfect detection rate without
any false positive, as all anomalous events are not malicious – in fact, not even most
of them. Indeed, Assumptions 1 and 2 essentially ensure that all malicious events are
anomalous, but there is no reason for the converse to be true: legitimate behavior also
yields many unusual events.

100 Chapter 6. Anomaly Score Denoising through Graph Signal Processing

(a) False positive (b) False negative

Figure 6.1: Event-wise anomaly scores as a graph-structured signal: each vertex stands for
an event, and its color represents its anomaly score (darker vertices represent more anomalous
events). The vertex at the center of the graph is either a false positive (Figure 6.1a) or a false

negative (Figure 6.1b).

To alleviate this fundamental limitation of event-wise anomaly detection, we in-
troduced Assumption 3: anomalous events actually resulting from an intrusion should
involve some shared entities. Leveraging this assumption to produce better event-wise
anomaly scores is the goal of this chapter. To that end, we introduce the concept of
event graph, defined as a graph whose vertices are the events observed in a given time
window. Edges of an event graph should encode some notion of similarity so that
events generated by an intrusion form a densely connected subgraph. An adequately
defined event graph can then be used to eliminate both false positives and false neg-
atives associated with event-wise anomaly scoring, as illustrated in Figure 6.1. More
specifically, the main idea explored in this chapter is to treat event-wise anomaly
scores as a graph-structured signal. False positives can then be seen as noisy peaks
in this signal, while false negatives can be similarly attributed to negative noise com-
pensating an otherwise high "true" score, leading to an isolated low score. Both kinds
of errors can thus be eliminated by denoising the signal using graph signal processing
tools [Ortega et al., 2018]. Experiments on the LANL dataset show promising results
for this approach.

Note that the event-wise anomaly score postprocessing problem addressed here
bears a striking resemblance to a twenty-year-old research topic from the information
security community, namely IDS alert clustering and correlation [Debar and Wespi,
2001, Valdes and Skinner, 2001]. However, a fundamental difference is that IDS alerts
are binary predictions: the mere existence of an alert hints towards suspicious activity,
and alert management mostly aims to find root causes and reduce investigation time.
In contrast, the event graphs considered here contain a vast majority of benign events,
and our goal is to denoise fuzzy suspicions so as to make them more reliable.

The rest of the chapter is structured as follows. We first review relevant contri-
butions pertaining to IDS alert management and event graph analysis in Section 6.2,
highlighting their connections to our work. Section 6.3 then describes the construc-
tion of our event graphs, and Section 6.4 presents the graph signal processing tools
we propose to apply. Finally, the effectiveness of our approach is assessed through
experiments on the LANL dataset in Section 6.5.

6.2 Preliminaries – Alert Postprocessing and Event Graphs

The use of graph-related tools to reduce the analyst workload associated with intrusion
detection is nothing new. It traces back to several important concepts: the first one is

6.2. Preliminaries 101

IDS alert clustering and correlation, which we discuss in Section 6.2.1. More recently,
the idea of representing all events obtained by monitoring activity in a given perimeter
as an event graph has been gaining traction, and we thus cover it in Section 6.2.2.
Finally, Section 6.2.3 discusses the relevance of these two ideas to our work, as well
as some other related problems.

6.2.1 Aggregating Binary Alerts: Clustering and Correlation

Most contributions on IDS alert management focus on the following setting: suppose
that the traffic (both inbound and outbound) crossing the border of a given network
is analyzed by an IDS, resulting in a sequence of alerts O =

{
ak
}

1≤k≤n. Each alert
ak is described by a timestamp tk and m categorical attributes ak1, . . . , akm, such as
the alert type or the source and destination IP addresses and ports. The two main
intuitions behind alert postprocessing are the following. First of all, a given incident
(such as a port scan or distributed denial of service (DDoS) attack on a specific
server) can happen repeatedly, possibly originating from several distinct attackers.
Alerts pertaining to these occurrences should be merged to speed up investigation.
Secondly, one single incident can be expected to generate several alerts. For instance,
an intruder might first launch a port scan on a vulnerable server, then run an exploit
on this server and exfiltrate data from the network. Each of these steps may trigger
an IDS alert, all of which are received as separate events by the analyst but should
actually be investigated together. These two intuitions result in two main approaches
to alert aggregation: alert clustering and alert correlation.

As for alert clustering, the central idea is to define a measure of similarity between
alerts so that alerts resulting from similar incidents can be identified. Letting S denote
such a measure, alert clustering can intuitively be defined as building a partition A
of O into K subsets A1, . . . , AK such that S(ai,aj) is high if ai and aj belong to the
same subset and low otherwise. Each alert clustering method can then be character-
ized by two main elements, namely the similarity measure S and the procedure used
to build clusters. Early contributions simply defined similarity as a binary function,
each cluster then corresponding to an equivalence class [Cuppens, 2001, Debar and
Wespi, 2001, Perdisci et al., 2006]. This approach was quickly overridden by slightly
more sophisticated ones, which rely on various definitions of the similarity function: a
classic choice is to build S as a weighted sum of attribute-specific similarities, each of
which can be defined using domain knowledge [Valdes and Skinner, 2001, Lee et al.,
2006, Spathoulas and Katsikas, 2013, Shittu et al., 2014, Haas and Fischer, 2018].
More complex alternatives include defining S through the likelihood of a statistical
model [Hofmann and Sick, 2009] or using an expert-specified hierarchy of possible
values for each attribute, such that the distance between two alerts can be derived
from the position of each of their respective attributes in this hierarchy [Julisch, 2003].
Clusters can then be built through an agglomerative approach [Valdes and Skinner,
2001, Spathoulas and Katsikas, 2013] or by optimizing some global homogeneity mea-
sure [Julisch, 2003, Hofmann and Sick, 2009].

While alert clustering looks for a preferably small number of global patterns de-
scribing most elements of the alert set O, alert correlation aims to find finer-grained
relationships between alerts. This typically boils down to building directed acyclic
graphs (DAGs) of alerts, with a directed edge from ai to aj if ai precedes aj and both
alerts belong to the same incident. Identifying which alerts trace back to one given
incident is then the main challenge. The most basic approach consists in manually
defining correlation rules using the attributes of each alert [Cuppens and Miege, 2002].
For instance, ai and aj can be considered correlated if |ti − tj | is below a threshold

102 Chapter 6. Anomaly Score Denoising through Graph Signal Processing

and the same source and destination IP addresses appear in both alerts. A slightly
more generic definition of correlation rules can be obtained by specifying the prereq-
uisites and possible consequences of each alert type [Ning et al., 2002]: for instance,
a port scan can help the attacker discover vulnerable services, and exploiting such a
vulnerable service requires knowledge of its presence. Therefore, correlation rules can
automatically be generated between port scan alerts and exploit-related ones. Finally,
the next step in automating creation of correlation rules is entirely inferring them from
a training set. Several statistical tools have been used to that end, including Granger
causality [Qin and Lee, 2003] and diversely complex models for the conditional prob-
ability of observing a specific alert given the previous ones [Shittu et al., 2015, Lin
et al., 2018].

6.2.2 Building and Analyzing Event Graphs

The main goal of the tools discussed in the previous section is to reduce the amount
of work required to investigate a set of alerts. A natural extension could consist in
using similar methods to enrich alerts with further knowledge, or even to generate
them. This is the purpose of event graphs.

Instead of looking for similarities or correlations between security alerts only, event
graphs keep track of such relationships between all sorts of events, including benign
ones. Such graphs can typically be useful for forensic investigation: once a previously
undetected intrusion is exposed, exploring the neighborhood of a few known malicious
events can help uncover its early steps. This idea can be traced back to early work on
system object graphs, where events are interpreted as dependencies between system
objects and used to retrieve all entities compromised by an intruder [King and Chen,
2003, King et al., 2005]. As for event graphs, the main question is how to build them:
in other words, when should two events be connected by an edge?

Not unlike alert clustering and correlation, event graph construction started with a
mostly manual approach relying heavily on expert-defined rules [Pei et al., 2016, Liu
et al., 2019]. Such rules specify, for each selected pair of event types, which fields
of the two considered events should contain matching values. As a basic example,
an outbound network connection event e1 should be linked to an inbound network
connection event e2 if the source and destination hosts and ports are the same for e1

and e2, and the timestamps of e1 and e2 are close enough to each other. The obvious
limitation of such rules is that defining them is time-consuming. In addition, since they
are specific to the considered event types, new rules must be defined when considering
additional data sources. Therefore, slightly more generic approaches have also been
proposed, relying for instance on a notion of causality between events [Xosanavongsa
et al., 2019] or the presence of shared entities involved in several events [Leichtnam
et al., 2020a, Leichtnam et al., 2020b].

Having built the event graph, various tools can be used to extract relevant in-
formation from it. Anomalous events can be identified using node [Liu et al., 2019]
or edge [Leichtnam et al., 2020b] embedding methodologies. The neighborhood of
a suspicious event can also be retrieved in order to obtain some contextual infor-
mation [Xosanavongsa et al., 2019]. A slightly more sophisticated means to that
end is the use of community detection algorithms [Pei et al., 2016, Leichtnam et al.,
2020a] typically relying on modularity maximization [Newman, 2006]. Interestingly,
modularity-based community detection in event graphs relies on the same intuition as
our approach: malicious events should be clustered in densely connected subgraphs,
which are themselves sparsely connected to the rest of the event graph. However, we
harness this intuition in a different way: while previous work typically assumes that

6.2. Preliminaries 103

some events are known to be malicious and look for other events related to the same
intrusion, we leverage the modular structure of event graphs to make noisy anomaly
scores more reliable.

6.2.3 Connections with Graph-Based Anomaly Score Denoising

Beyond the aforementioned parallel between modularity-based community detection
and graph-structured signal smoothing, a few interesting ideas can be drawn from the
reviewed contributions. First of all, similarly to [Leichtnam et al., 2020a, Leichtnam
et al., 2020b], we would like to link events based on the entities they involve. How-
ever, while Leichtnam et al. do so by building a heterogeneous graph containing both
entities and events, we would rather include events only. In this regard, our approach
somewhat resembles alert clustering: edges of our event graphs should represent some
notion of similarity between events. To that end, building a pairwise similarity mea-
sure as a weighted sum of elementary functions [Valdes and Skinner, 2001, Lee et al.,
2006, Spathoulas and Katsikas, 2013, Shittu et al., 2014, Haas and Fischer, 2018] is an
interesting approach: intuitively, several factors should be taken into account, such as
temporal proximity or the presence of shared entities of different types. Appropriately
weighting the influence of each of these factors is then an important step in building
the similarity measure.

It should be noted, however, that none of the reviewed contributions addresses the
problem of noisy information (such as anomaly scores) associated with events or alerts.
Ideas relevant to this setting should thus be sought in other fields. Interestingly, similar
problems have been studied in the context of intrusion detection, albeit with different
kinds of graphs and scores. Working with host communication graphs, Sexton et al.
proposed a recursive p-value aggregation procedure to identify clusters of compromised
hosts based on some individual model of normal behavior for each host [Sexton et al.,
2013]. A slightly different approach was introduced by Oprea et al., who apply a belief
propagation method to bipartite host-domain graphs representing DNS logs in order
to iteratively identify compromised hosts [Oprea et al., 2015]. Their main intuition is
that domains looked up by a compromised host may be part of a C&C infrastructure,
while hosts looking up C&C domains are likely to be compromised. Finally, Roundy
et al. use random walks in bipartite host-alert graphs to identify low-severity alerts
frequently co-occurring with high-severity ones [Roundy et al., 2017]. This can also
be seen as a kind of suspicion propagation based on an underlying graph structure.

As a side note, the study of noisy graph-structured signals has also received some
attention in the bioinformatics community. More specifically, known protein-protein
and protein-DNA interactions can be used to build networks of genes. Measurements
of each gene’s expression change under a given perturbation can then be interpreted as
a noisy signal over an interaction network [Ideker et al., 2002]. Differentially expressed
genes tend to form connected subgraphs in the network, motivating the use of network
structure to make measurements more reliable [Chuang et al., 2007]. This approach
can typically be formalized using Markov random fields (MRFs) [Wei and Li, 2007]:
letting πv denote the latent state of gene v (differentially expressed or not) and Xv

denote its expression change, the joint probability of latent and observed random
variables can be modelled as

p ({Xv}v∈V , {πv}v∈V) =
∏
v∈V

p(Xv | πv)p
(
πv | {πu}u∈N(v)

)
,

where V is the set of genes and N(v) denotes the neighborhood of v in the gene
network. In other words, the change of expression of gene v depends only upon its

104 Chapter 6. Anomaly Score Denoising through Graph Signal Processing

latent state (differentially expressed or not), which itself depends on the latent states of
v’s neighbors. A straightforward parallel can be made with event graphs and anomaly
scores: the score of an event can be seen as a noisy measurement of its latent state
(benign or anomalous), which is positively correlated with the states of its neighbors.
The main challenge in MRF-based methods is posterior inference of the latent states,
which can for instance be done through Gibbs sampling [Sanguinetti et al., 2008] or
genetic algorithms [Klammer et al., 2010].

Having reviewed relevant contributions from various research fields, we can now
apply some of the interesting ideas we identified to our specific use case. The first
step, discussed in the next section, is to transform event logs into event graphs.

6.3 Building the Event Graph

We first summarize the desired properties of our event graphs in Section 6.3.1. Build-
ing upon this specification, we define a pairwise event similarity function in Sec-
tion 6.3.2 and use it to design our event graph construction procedure in Section 6.3.3.

6.3.1 Goals and Constraints

Let V = {v1, . . . , vn} be a set of vertices, with each vertex vk ∈ V corresponding to
an event (tk, ek, ωk) (where tk, ek and ωk are the timestamp, event type and set of
involved entities, respectively). Besides, for each k ∈ [n], let Xk ∈ R be a random
variable representing the anomaly score of the corresponding event. Our goal is to
build a graph G = (V, E) such that the random vector X = (Xk)1≤k≤n can be seen as
a graph-structured signal over G.

Broadly speaking, the main property G should exhibit is that malicious events
resulting from a given intrusion should form a densely connected cluster. More for-
mally, letting πk denote the latent state of vertex vk (benign if πk = 0 and malicious
if πk = 1), we would like πk to be positively correlated with the latent states of vk’s
neighbors. This is commonly referred to as homophily: a given vertex is more likely
to connect with other vertices having the same attributes. Assumption 3 suggests
that adding an edge between two events v1 and v2 if they involve some shared entities
should produce homophily. However, an entity appearing in at least one malicious
event can still be expected to be involved in a majority of benign events. In addition,
assuming that v1 and v2 are sampled uniformly at random from V, some entities are
more likely to appear in both events than others: for instance, due to their central role
in the network, domain controllers are involved in many unrelated events. Therefore,
the mere existence of a shared entity should not be considered sufficient.

Such spurious edges are all the more undesirable as the set of events V is typically
large: if the event graph represents one day’s worth of data, it can be expected to
contain millions of events. The density of G should thus be kept small to make
downstream computations tractable. More generally, time and space complexity are
the main constraints here: both building G and transforming X based on G’s structure
must remain computationally feasible.

6.3.2 Entity-Event Graph and Event Similarity

In order to leverage the existence of shared entities between events, we first build an
intermediary graph, namely the bipartite entity-event graph. This graph, denoted

6.3. Building the Event Graph 105

H = (U ,V, EH), has two disjoint set of vertices: the entity set U and the event set V.
The edge set EH is then straightforwardly defined as

EH = {(u, vk) ∈ U × V : u ∈ ωk} .

In words, an edge exists between entity u and event v if u is involved in v.
The entity-event graph is used to define a sensible pairwise similarity function

for events. Intuitively, two events should be considered similar if they involve several
shared entities, and if these entities are not involved in too many events. We formalize
this intuition through the notion of random walk: letting Υ : U ∪ V → U ∪ V denote
the unbiased random walk operator on H, which takes a vertex as input and returns
one of its neighbors sampled uniformly at random, it is clear that

∀(vi, vj) ∈ V2, P
[
Υ2(vi) = vj

]
=

1

d(vi)

∑
u∈N(vi)∩N(vj)

1

d(u)
,

where d(·) denotes the degree of a vertex and N(·) denotes its neighborhood. We then
define the (symmetric) entity-wise similarity of vi and vj as

S0(vi, vj) =
1

2
log

(
P
[
Υ2(vi) = vj

]
P
[
Υ2(vj) = vi

]
p2

min

)
,

where

pmin =
1(

maxu∈U d(u)
)(

maxv∈V d(v)
) ≤ min

(vi,vj)∈V2

N(vi)∩N(vj)6=∅

P
[
Υ2(vi) = vj

]
.

This definition allows us to assign low similarity scores to event pairs whose shared
entities only result from random intersections. However, it still lacks one crucial
element, namely the influence of time. Indeed, two events can naturally be thought
of as more loosely connected if several hours separate them, with respect to the same
events happening a few minutes apart from each other. Therefore, the final definition
of our pairwise similarity function is

S(vi, vj) = S0(vi, vj) exp

(
−|ti − tj |

τ

)
, (6.1)

with τ > 0 a hyperparameter.
If computation time and memory usage were no issues, turning H into an event

graph G could be done by simply taking the unimodal projection1 of H onto V, with
each edge weighted by the corresponding similarity. However, this is not a viable
option: as mentioned in Section 6.3.1, the density of G must be kept small, which
would not be the case when using the unimodal projection. Indeed, for each entity
u ∈ U , the set N(u) of events involving u becomes a clique in the unimodal projection.
The latter would thus have too many edges (see Figure 6.2 for an illustration). As
a consequence, only highly similar pairs of events should be connected in the event
graph. This selection process is discussed in the next section.

1The unimodal projection of a bipartite graph G = (U, V,E) onto one of its node sets (say U) is
the graph GU = (U,EU) where for each (u1, u2) ∈ U2, (u1, u2) ∈ EU if and only if u1 and u2 have a
common neighbor in G.

106 Chapter 6. Anomaly Score Denoising through Graph Signal Processing

A B C D E

1 2 3 4 5 6

(a) Bipartite entity-event graph

1

2

3

4

5

6

(b) Unimodal projection onto the event set

Figure 6.2: A bipartite entity-event graph (Figure 6.2a) and its unimodal projection onto
the event set (Figure 6.2b). Entities (resp. events) are denoted A through E (resp. 1
through 6). Notice that the set of events involving one given entity forms a clique in the

unimodal projection.

6.3.3 From Event Logs to Event Graphs

Having defined a pairwise similarity function for events, we now need a sensible cri-
terion to decide which event pairs are similar enough to be connected in the event
graph. Three possibilities typically come to mind: first, a similarity threshold ζ could
be fixed, so that (vi, vj) ∈ E if and only if S(vi, vj) ≥ ζ. Finding an adequate threshold
is nontrivial as the value of the similarity function has no direct interpretation. The
second idea thus consists in fixing ζ so that the density of G equals some desired value.
Finally, a third possibility is to define G as a K-nearest neighbor graph (K-NNG),
meaning that each event is connected to the K most similar others. This last option
is the one we implement here. This choice is once again motivated by computational
issues: defining a threshold ζ so that the resulting graph has a certain density requires
knowing the distribution of the similarity function. A naive approach – namely com-
puting all pairwise similarities – would have O(n2) space and time complexity, which
is obviously unacceptable. Note that a more sophisticated estimation method based
on subsampling could alleviate this issue, but this option is not explored here. In con-
trast, building a K-NNG only requires O(nK) memory and can easily be parallelized,
while straightforwardly bounding the density of G.

The event graph G = (V, E) is thus defined as the weighted K-NNG associated
with the similarity function S. Each edge (vi, vj) ∈ E is assigned a weight equal to
S(vi, vj). The transformation of an event log V = {v1, . . . , vn} into an event graph G
depends on two hyperparameters, namely the time constant τ > 0 and the number of
neighborsK ∈ [n]. The former can be coarsely tuned based on domain knowledge: the
intuitive meaning of τ is that the similarity of vi and vj is divided by approximately
2.72 when the difference between ti and tj becomes τ seconds larger. Therefore, τ
should be chosen large enough so that events resulting from a sequence of actions
performed by an intruder are less than τ seconds apart from each other. As for the
number of neighbors K, it is primarily chosen so as to make computations tractable.
Its influence on the structure of the event graph and the effectiveness of graph-based

6.4. Smoothing Signals on the Event Graph 107

Original = 1 = 5 = 10

(a) Heat kernel

Original R = 1 R = 2 R = 3

(b) Message passing

Figure 6.3: Effect of the two chosen denoising tools on a Gaussian graph-structured signal,
with several hyperparameter values. The underlying graph is a two-dimensional square lattice.
The values of the signal are independent and follow a standard centered normal distribution,

except at the center of the lattice where the mean is µ = 2.

anomaly score denoising methods is investigated in Section 6.5.

6.4 Smoothing Signals on the Event Graph

Once an event log and the corresponding anomaly scores have been turned into an
event graph and a graph-structured signal, respectively, various tools can be used for
anomaly score postprocessing. In this section, we describe two of them, namely the
heat kernel (Section 6.4.1) and a message passing scheme inspired by the Weisfeiler-
Lehman algorithm (Section 6.4.2). In what follows, G = (V, E) denotes an undirected,
weighted graph with n vertices and weighted adjacency matrix A, and X = (Xk)1≤k≤n
is a signal over the vertices of G.

6.4.1 Graph Signal Processing and the Heat Kernel

The first tool we propose to use comes from the field of graph signal processing (GSP).
The main goal of GSP is to extend concepts from classical signal processing to graph-
structured signals, including for instance frequencies and filters. For a thorough in-
troduction, see for instance [Shuman et al., 2013, Ortega et al., 2018].

More specifically, we consider signal denoising on a graph using the heat kernel.
This operator is defined as

H(λ) = e−λL (6.2)

for λ ≥ 0, where L denotes the Laplacian of the graph2. This definition finds its roots
in the following analogy: suppose that Xk(t) is the temperature at the k-th vertex at
time t, and that for each (i, j) ∈ [n]2, the coefficient of A at index (i, j) is positive

2Recall that the Laplacian of a graph is defined as L = D−A, where A is the adjacency matrix
of the graph and D is the diagonal matrix whose i-th coefficient is the degree of node i.

108 Chapter 6. Anomaly Score Denoising through Graph Signal Processing

and represents the conductivity of the corresponding edge. Then the heat equation

Ẋ(t) = −LX(t)

with initial condition X(0) = X is solved by X(t) = H(t)X for all t ≥ 0.
The heat kernel can thus be interpreted as a diffusion operator, with the parameter

λ standing for the diffusion time. In a more GSP-oriented perspective, the heat
kernel can be seen as a low-pass filter: letting λ1, . . . , λn denote the eigenvalues of the
Laplacian in ascending order3 and e1, . . . , en denote the corresponding eigenvectors,
the signal X can be decomposed as

X =

n∑
k=1

αkek,

with α1, . . . , αn some real coefficients. It follows that

H(λ)X =
n∑
k=1

e−λλkαkek.

In other words, the k-th component of X is scaled by a factor e−λλk . Since the
Laplacian is positive semi-definite [Chung, 1997], its eigenvalues are non-negative.
Therefore, the k-th scaling factor is a decreasing function of λk, meaning that the
components of X associated with large eigenvalues of the Laplacian are attenuated.
In practice, this makes the signal smoother, as illustrated in Figure 6.3a.

By smoothing the variations of X over G, the heat kernel removes isolated peaks,
which can also be understood as signal denoising. This is what makes it interesting
here: in a case such as those depicted in Figure 6.1, applying the heat kernel to the
signal would smooth out false positives and negatives. Note that it has been used for
that purpose in the context of gene expression analysis mentioned in Section 6.2.3 [Qiu
et al., 2010], which makes it all the more relevant to our problem.

From a computational point of view, the main difficulty lies in the matrix ex-
ponential in Equation 6.2. Instead of computing this exponential, Hammond et al.
proposed to directly approximate the matrix-vector product H(λ)X through a trun-
cated polynomial expansion [Hammond et al., 2011]. This approach takes advantage
of the sparsity of real-world graphs: the desired product is approximated through
repeated sparse matrix-vector multiplication, with a complexity of O(|E|+ n).

6.4.2 Message Passing and Weisfeiler-Lehman Schemes

The other approach we consider relies on a more local message passing process. It
somewhat borrows from the Weisfeiler-Lehman algorithm [Weisfeiler and Lehman,
1968], which was originally proposed as a graph isomorphism test but later inspired
many contributions in various graph-related research fields.

The Weisfeiler-Lehman algorithm works as follows: given two graphs G1 and G2

whose n vertices are assigned discrete labels, higher-order vertex labels are recursively
created by aggregating the current label of each vertex with those of its neighbors.
More formally, letting l(r)(v) denote the label of vertex v at step r (with l(0)(v) being

3Since the Laplacian is a real symmetric matrix, these eigenvalues are real. This also ensures that
the corresponding eigenvectors form a basis.

6.5. Experiments 109

the initially assigned label), its label at step r + 1 is

l(r+1)(v) =

{
l(r)(v),Sort

({
l(r)(u)

}
u∈N(v)

)}
,

where Sort denotes an appropriate sorting procedure ensuring that identical neigh-
borhoods lead to identical label multisets. At each step r ∈ [n], the sets of order r
labels corresponding to the vertices of G1 and G2 are compared; if they are different,
then G1 and G2 are not isomorphic. If no difference has been observed after n steps,
then the algorithm cannot tell whether the graphs are isomorphic.

It turns out that the general idea of recursively combining some value assigned
to each vertex with some function of the values assigned to its neighbors has numer-
ous applications in network data analysis. The most popular of these applications
include the construction of graph kernels [Shervashidze et al., 2011] – in other words,
generic pairwise similarity functions for graphs. Another well-known application of
this method is Kipf and Welling’s Graph Convolutional Network [Kipf and Welling,
2017]. This second example is somewhat related to our work, as Kipf and Welling draw
a parallel between their Weisfeiler-Lehman diffusion scheme and linear approximation
of spectral graph filters from the GSP world.

Our recursive message passing operator is simply defined as{
X(0) = X

∀r ∈ [R], X(r) = 1
2 (M + I) X(r−1)

,

whereR ≥ 1 is the total number of iterations, I is the identity matrix and M is the row-
normalized version of the weighted adjacency matrix A. As illustrated in Figure 6.3b,
this transformation also denoises the signal by making it smoother. However, it is
slightly less expensive than the heat kernel from a computational perspective: it only
requires R sparse matrix-vector multiplications, with R typically less than 5. In con-
trast, the number of multiplications performed by Hammond et al.’s algorithm [Ham-
mond et al., 2011] is typically a few dozens. Besides, the message passing approach
gives more accurate control over the range of information diffusion: when performing
R message passing steps, the value of the signal at vertex v cannot affect vertices
located more than R hops away from v. This is more easily interpretable than the
diffusion time λ associated with the heat kernel.

6.5 Experiments

In order to study the structure of the event graphs generated by the procedure de-
scribed in Section 6.3 and compare the effectiveness of the denoising operators in-
troduced in Section 6.4, we perform numerical experiments using three days of the
LANL dataset, as explained in Section 6.5.1. Our results are displayed and discussed
in Section 6.5.2.

6.5.1 Experimental Setup

All algorithms are implemented in Python 3.9, with some intensive parts translated
into C using Cython [Behnel et al., 2010]. Regarding the polynomial approximation of
the heat kernel, we use the implementation provided in the PyGSP library [Defferrard
et al., 2017]. Computations are run on a Debian 10 machine with 128GB RAM and
a 2.2GHz, 20-core CPU.

110 Chapter 6. Anomaly Score Denoising through Graph Signal Processing

Table 6.1: Number of authentication events in the three selected days of the LANL dataset.

Day
Total
number
of events

Number of
malicious
events

Proportion δ
of malicious
events

9 2 593 542 261 .010%
14 2 845 961 75 .0026%
15 2 560 926 25 .00098%

Event graphs. We focus on the authentication events from three days of the LANL
dataset, namely the 9th, 14th and 15th ones. These days are chosen because of the
number of red team events they contain, which is high, medium and low, respectively
(see Table 6.1 for a more detailed description). For each of these three days, we build
the event graph for four different values of the number of nearest neighbors K (50,
60, 70 and 80). As for the time constant τ , it is set to half an hour (1 800 seconds).

Synthetic signals. We first assess the effectiveness of our approach using syn-
thetic anomaly scores. These scores are generated as follows: for each event graph
Gd,K = (Vd, Ed,K) (corresponding to day d ∈ {9, 14, 15} and number of neighbors
K ∈ {50, 60, 70, 80}), we sample 100 signals X(1), . . . ,X(100). For each i ∈ [100] and
vk ∈ Vd, we independently sample X(i)

k ∼ N (µk, 1), with

µk =

{
µ > 0 if vk is a red team event,
0 otherwise.

This operation is repeated for three different values of µ, namely µ ∈ {1, 2, 3}.

Real anomaly scores. To get a more realistic picture, we also inject real anomaly
scores obtained using the Decades model (presented in Part II) into our event graphs.
The scores we use are those computed in Section 5.4 with regularization hyperparam-
eters λ0 = 10−4 and λ1 = 10. There are thus 20 signals for each of the selected days.
Note that we still use authentication events only.

Performance metric. The effectiveness of our approach is evaluated by computing
the variation of the area under the truncated ROC curve (AUC@1%) induced by
denoising the anomaly scores. This variation is computed separately for each day in
order to assess the impact of the number of malicious events.

6.5.2 Results and Discussion

The effectiveness of graph-based denoising at improving anomaly scores depends on
the structure of the underlying event graph, which we therefore investigate first. Our
results for both synthetic and real anomaly scores are presented next.

Characteristics of the event graphs. We start with a simple description of the
generated graphs, studying their density and its evolution as K varies. While defining
the event graph as a K-NNG ensures that its density is at most 2K/(n − 1), this
upper bound is not necessarily attained: since two given events can both be among
the K nearest neighbors of each other, some of the nK generated edges may be
duplicates. In addition, some events might have strictly positive similarity with less

6.5. Experiments 111

50 60 70 80
K

2.25

2.50

2.75

3.00

3.25

3.50

3.75

De
ns

ity
1e 5

Day 9
Day 14
Day 15

(a) Density of the event graph.

50 60 70 80
K

0.10

0.15

0.20

0.25

Day 9
Day 14
Day 15

(b) Average proportion γ of red team
events in the neighborhood of a red team

event.

Figure 6.4: Characteristics of the event graph for each of the three selected days, with
several values of K.

20 50 80 200
Degree

0

1

2

3

Nu
m

be
r o

f v
er

tic
es

1e5 Day 9

20 50 80 200
Degree

0

1

2

3

4
1e5 Day 14

20 50 80 200
Degree

0

1

2

3

1e5 Day 15
K=50
K=60
K=70
K=80

Figure 6.5: Degree distribution of the event graph for each of the three selected days, with
several values of K.

than K other events, again leading to missing edges. This loss in density with respect
to the theoretical upper bound can be observed in Figure 6.4a: for instance, the upper
bounds for K = 50 are 3.86 · 10−5, 3.51 · 10−5 and 3.90 · 10−5 for days 9, 14 and 15,
respectively. The actual densities are smaller by approximately one third. Besides,
they seem to grow linearly with K, suggesting that the proportion of missing edges
does not depend on K (at least when K is small).

The degree distribution is another interesting property of the generated graphs.
It can be expected to peak around K, but its global shape is less predictable: in
particular, the maximum degree of an event is hard to guess. Figure 6.5 shows that
degrees are actually quite concentrated aroundK, with extreme values not exceeding a
few hundreds. A possible explanation is the influence of time in the similarity function
from Equation 6.1: since pairwise similarity decreases exponentially with time, the
set of events having a given event vk among their K nearest neighbors is restricted to
a small time window around tk. As a consequence, vk’s degree cannot be arbitrarily
large (unless the time constant τ is sufficiently high).

In addition to their structure, the event graphs we build are characterized by the
weights associated with their edges. Figure 6.6 displays the aggregate distribution of
edge weights (i.e. pairwise similarities of adjacent vertices) for the three generated

112 Chapter 6. Anomaly Score Denoising through Graph Signal Processing

0 4 8 12 16
Pairwise similarity

0.00

0.25

0.50

0.75

1.00

1.25
De

ns
ity

 o
f e

dg
es

K=50

0 4 8 12 16
Pairwise similarity

K=60

0 4 8 12 16
Pairwise similarity

K=70

0 4 8 12 16
Pairwise similarity

K=80

Figure 6.6: Empirical probability density function of the pairwise similarity function for
edges of the event graph. The distribution is computed over the edges of all three considered

event graphs for several values of K.

graphs. Four peaks can be distinguished, which may correspond to the possible num-
bers of shared entities between two events: since we consider authentication events,
there are indeed at most four involved entities for each event (user, source, destination
and authentication type). Note that the shape of the distribution is essentially the
same regardless of the number of neighbors K. The only difference is that the first
peaks, corresponding to the clusters of edges with the lowest similarity, are higher for
greater values of K (which intuitively makes sense).

We now move on to one of the most important aspects, namely the structure of the
subgraphs induced by red team events. Recall that in order for our denoising approach
to actually increase detection performance, malicious events should be gathered in
densely connected clusters. To assess whether this is the case in the generated event
graphs, we compute the average proportion of red team events in the neighborhood
of a red team event (hereafter denoted γ) for each considered day. The results are
displayed in Figure 6.4b. The proportion γ appears to be positively correlated with
the overall proportion of malicious events (denoted δ and given in Table 6.1), which
is not much of a surprise. However, γ seems to decrease slower than a linear function
of δ, which is a desirable property: it implies that the malicious subgraph remains
dense even when there are few malicious events. More generally, red team events
exhibit significant homophily, with γ taking values orders of magnitude larger than δ.
We also observe that increasing the number of neighbors K beyond 50 leads to lower
values of γ. From the perspective of anomaly score denoising, this may have a negative
impact: each additional edge between a red team event and a benign one makes the
anomaly score of the red team event decrease more when smoothing scores over the
event graph. However, this might be made up for by a similar effect on false negatives:
assuming that such events are mostly connected to benign ones, letting them form
more edges makes denoising more efficient at decreasing their anomaly score.

A more detailed understanding of the structure of malicious event subgraphs can
be gained through direct visualization. We thus display the subgraph induced by all
red team events for each of the three considered days in Figure 6.7. Since the obtained
subgraphs are roughly similar for all four values of K, we only show those extracted
for K = 50. While each subgraph has several connected components, these connected
components are especially dense. Interestingly, their structure seems to reflect the
passage of time, which can be observed most clearly for day 9 (Figure 6.7a): the largest
connected component is structured as a sequence of dense communities, with each of
these communities being more loosely connected to the previous and next ones. Since
red team events are spread out between 9:30 and 23:00, each community can intuitively
be interpreted as a sequence of actions carried out over a short time window. Such

6.5. Experiments 113

(a) Day 9

(b) Day 15

(c) Day 14

Figure 6.7: Subgraph induced by the red team events for each selected day (with K=50).

114 Chapter 6. Anomaly Score Denoising through Graph Signal Processing

Table 6.2: Maximum increase in AUC@1% obtained by each method on synthetic signals
for each day and each value of the signal strength µ, with 95% confidence interval. The
maximum is taken over all values of K, λ and R. The score of the best-performing method

for each setting is in bold.

Method µ = 1 µ = 2 µ = 3

Day 9 Heat kernel .005±.004 .139±.006 .057±.009
Message passing .313±.010 .525±.012 .205±.024

Day 14 Heat kernel .002±.005 .044±.010 .020±.019
Message passing .132±.014 .369±.017 .123±.031

Day 15 Heat kernel .003±.003 .015±.013 .008±.029
Message passing .040±.012 .180±.026 .066±.042

patterns suggest that our event graph construction procedure successfully encodes
relevant information about the underlying event log.

Impact of denoising for synthetic scores. We now assess the impact of graph-
based denoising in terms of detection performance for synthetic anomaly scores. Start-
ing with an aggregate perspective, we compute the maximum increase in AUC@1%
obtained across all hyperparameter values for each day and each value of the signal
strength µ. In other words, for a given day-signal strength pair, we compute the
difference between the AUC@1% before and after denoising for each combination of
possible values of the number of neighbors K and the method-specific hyperparameter
(either the diffusion time λ or the number of message passing iterations R). The values
we consider are the following: K ∈ {50, 60, 70, 80}, λ ∈ {1, 5, 10} and R ∈ {1, 2, 3}.
Results are displayed in Table 6.2. The message passing approach consistently out-
performs the heat kernel, which might be explained by the difficulty of appropriately
tuning the hyperparameter λ: the values we picked are mostly arbitrary and might not
be optimal. Beyond this comparison, the results obtained through message passing
are encouraging: with an increase in AUC@1% of up to 0.52, graph-based denoising
appears as a potentially effective way to improve detection performance.

A more detailed perspective can be found in Figure 6.8, which displays the AUC@1%
for all hyperparameter combinations for both methods. Several trends can be ob-
served. First of all, increasing K leads to tendencially better performance, although
the gain is smaller for the message passing approach. This suggests that the afore-
mentioned decrease in the proportion γ of red team neighbors is indeed counteracted
by some other effect. However, the obtained performance increase is positively cor-
related with the proportion δ of red team events, which is itself correlated with γ.
The effectiveness of denoising thus does appear to depend on γ, which is a sensible
conclusion. As for the influence of the hyperparameters λ and R, they seem to have a
different optimal value for each day and signal strength. This is especially evident for
the message passing approach (Figure 6.8b): for each considered day, there appears
to be a maximum reachable value of the AUC@1% (around 0.8, 0.68 and 0.52 for
days 9, 14 and 15, respectively), which is attained for a smaller value of R when µ
becomes larger. This can be explained in terms of signal-to-noise ratio (SNR): as µ
grows, so does the SNR, and less denoising is thus needed to make red team events
distinguishable. The fact that the AUC@1% cannot reach a perfect score of one may
result from the presence of several connected components in the malicious subgraph:

6.5. Experiments 115

0.000

0.025

0.050

AU
C@

1%
 (

=1
)

K=50 K=60 K=70 K=80

0.0

0.2

0.4

AU
C@

1%
 (

=2
)

=0 =1 =5
=10

0.2

0.4

0.6

AU
C@

1%
 (

=3
)

=0 =1 =5
=10 =0 =1 =5

=10 =0 =1 =5
=10

Day 9 Day 14 Day 15

(a) Heat kernel

0.0

0.2

0.4

AU
C@

1%
 (

=1
)

K=50 K=60 K=70 K=80

0.1

0.3

0.5

0.7

0.9

AU
C@

1%
 (

=2
)

R=0
R=1

R=2
R=3

0.3

0.5

0.7

0.9

AU
C@

1%
 (

=3
)

R=0
R=1

R=2
R=3

R=0
R=1

R=2
R=3

R=0
R=1

R=2
R=3

Day 9 Day 14 Day 15

(b) Message passing

Figure 6.8: AUC@1% with 95% confidence interval computed on synthetic signals for in-
creasing values of the denoising hyperparameters λ and R, with several values of the number
of neighbors K and the signal strength µ. Results for λ = 0 or R = 0 correspond to the

absence of denoising.

116 Chapter 6. Anomaly Score Denoising through Graph Signal Processing

Table 6.3: Maximum increase (or minimum decrease) in AUC@1% obtained by each method
on real anomaly scores for each day, with 95% confidence interval. The maximum is taken
over all values of K, λ and R. The score of the best- (or least badly-) performing method for

each setting is in bold.

Method Day 9 Day 14 Day 15

Heat kernel .091±.044 -.043±.011 -.021±.011
Message passing .102±.046 -.086±.017 -.035±.015

even when all vertices in the largest component are at the top of the anomaly ranking,
smaller components have a lower SNR and thus cannot be detected as effectively.

Impact of denoising for real scores. Having investigated the impact of the two
denoising methods in various settings, we now study their effectiveness for actual
anomaly scores output by our event-wise anomaly detection algorithm. Once again,
we first compute the best performance obtained by each method across all hyperpa-
rameter values. The results are displayed in Table 6.3. They are significantly worse
than for synthetic scores: for days 14 and 15, denoising actually degrades detection
performance. However, day 9 (which has the highest proportion of red team events)
does allow for a slight increase, with the message passing approach performing best.

The most plausible explanation for these globally poor results is that false positives
are in fact not mutually independent. Indeed, some benign but unusual behaviors are
likely to generate clusters of statistically anomalous events. A typical example is an
administrator deploying software on several computers: such actions do not follow
any regular pattern, and they can generate many connected events (at least one for
each affected computer). The reason why increased detection performance can still be
obtained on day 9 could then be that the largest malicious cluster observed on that
day is significantly larger than benign clusters, allowing these false positives to be
smoothed out without affecting true red team events. A more in-depth investigation
into the evolution of the set of highest-ranking events when denoising the signal could
lead to further insight.

Finally, Figure 6.9 shows more detailed results. Besides the clear influence of the
proportion of red team events, the impact of the number of neighbors K also exhibits
similar trends as in the synthetic case. More specifically, increasing K still seems to
yield slightly better results, especially for the heat kernel.

6.6 Conclusion

We propose a GSP-inspired approach to event-wise anomaly score postprocessing. Our
main intuition is that anomaly scores can be seen as a noisy signal defined over an
event graph. The homophily of malicious events can then be leveraged to make these
scores more reliable: since localized peaks in the graph-structured signal are likely to
be false positives, smoothing them out can lead to better detection performance. In
practice, we use two denoising tools to perform this task: the heat kernel, which can be
seen as the GSP equivalent of a low-pass filter, and a message passing scheme inspired
by the Weisfeiler-Lehman algorithm. We also define an event graph construction
procedure relying on a pairwise event similarity function reflecting the presence of
shared entities in two events.

Experiments show that our approach can indeed increase detection performance in
some cases. However, it requires a relatively high number of malicious events to make

6.6. Conclusion 117

=0 =1 =5
=10

0.0

0.2

0.4

0.6

AU
C@

1%

K=50

=0 =1 =5
=10

K=60

=0 =1 =5
=10

K=70

=0 =1 =5
=10

K=80
Day 9 Day 14 Day 15

(a) Heat kernel

R=0
R=1

R=2
R=3

0.0

0.2

0.4

0.6

AU
C@

1%

K=50

R=0
R=1

R=2
R=3

K=60

R=0
R=1

R=2
R=3

K=70

R=0
R=1

R=2
R=3

K=80
Day 9 Day 14 Day 15

(b) Message passing

Figure 6.9: AUC@1% with 95% confidence interval computed on real anomaly scores for
increasing values of the denoising hyperparameters λ and R, with several values of the number

of neighbors K. Results for λ = 0 or R = 0 correspond to the absence of denoising.

up for the presence of benign clusters in real-world settings. While this limitation
may be partially alleviated by using better event-wise anomaly detection algorithms,
the fundamental challenge of malicious behavior detection remains: from the point
of view of event logs, many benign behaviors look an awful lot like malicious ones.
As a consequence, even though postprocessing algorithms can be useful, they can
never fully replace human reasoning and organizational procedures (such as notifying
security analysts when a large-scale administrative operation takes place).

Despite this somewhat insurmountable limitation, some improvements could be
brought to our approach, opening interesting research leads. First of all, our event
graph construction procedure and the similarity function it relies upon could probably
be refined. In particular, a more appropriate weighting scheme for the respective
contributions of involved entities to the overall similarity could be designed. Secondly,
hyperparameter setting is a tricky issue here: our experiments show that performance
gains are especially sensitive to the diffusion time λ and the number of message passing
iterations R, and picking the value that yields the best detection performance is
obviously not an option in a real-world network monitoring setting. It would thus be
interesting to design unsupervised criteria for hyperparameter tuning.

Finally, while the methodology described in this chapter aims to take advantage of
the presence of clusters of malicious events, it does not actually detect them. This can
be seen as a limitation: assuming that intrusions are characterized by the presence
of a large cluster of anomalous events, being able to know whether such a cluster
is present before starting any further investigation could spare some precious time.
Therefore, Chapter 7 addresses the generic problem of cluster detection in a network

118 Chapter 6. Anomaly Score Denoising through Graph Signal Processing

with node-related scalar observations.

119

Chapter 7

Detecting Clusters of Anomalous
Events: a Percolation-Based
Approach

The event graphs defined in the previous chapter allow us to harness
the assumption that malicious activity generates connected subgraphs of
anomalous events rather than isolated anomalies. In addition to making
event-wise anomaly scores more reliable, this connectivity can be leveraged
to predict the presence of malicious activity in a more global manner: in-
deed, while the presence of individually anomalous events can often result
from rare but legitimate behaviors, connected clusters of anomalous events
are more significant. The ability to detect such clusters is thus of particular
interest. As a consequence, we study the generic problem of cluster detec-
tion in networks with vertex-related scalar observations. Motivated by the
limited scalability of standard approaches to this problem, we build upon
previous contributions highlighting the connection between cluster detection
and percolation theory. We leverage this parallel to design two statistical
tests and demonstrate the computational efficiency and detection perfor-
mance of these tests on a synthetic benchmark dataset, as well as event
graphs extracted from the LANL dataset.

7.1 Introduction

Volume is the main obstacle preventing systematic analysis of event logs generated in
a computer network: with millions of events recorded every day, visualization, basic
heuristics and manual inspection are simply not enough, and advanced statistical
methods are needed to direct human analysts’ attention towards the most suspicious
sections of the event stream. In the previous chapters, we have been aiming to give
each event an individual anomaly score, which then allows the analyst to sort events in
descending order of anomalousness and only investigate the highest-ranking ones each
day. However, in a normal operation setting, one could expect to observe no intrusion
on most days. Therefore, investigating the same number of events each day clearly
seems suboptimal: ideally, being able to predict the presence of malicious activity
before starting to analyze the logs would significantly reduce the amount of human
effort necessary to monitor the event stream.

To perform such predictions, we make use of the event graphs introduced in the
previous chapter. Our intuition is as follows: since malicious activity is assumed to

120 Chapter 7. Detecting Clusters of Anomalous Events

generate connected subgraphs of anomalous events, detecting the existence of such
activity can be formalized as a case of cluster detection in a graph. The definition of
cluster detection considered here relates to the more general framework of structured
elevated mean detection: given a graph G with a real-valued signal observed over its
vertices, a cluster is defined as a connected subgraph S ⊂ G inside of which the values
taken by the signal are significantly higher than expected [Arias-Castro et al., 2011].
In other words, cluster detection is a hypothesis testing problem where the class of
alternatives has a combinatorial structure [Addario-Berry et al., 2010].

Numerous real-world applications have motivated extensive research on practical
cluster detection. These applications are often related to the field of spatial statistics
and include, for instance, disease outbreak detection [Kulldorff, 1997], object detection
in images [Langovoy and Wittich, 2013] or sensor network monitoring [Sharpnack
et al., 2013a]. The standard approach relies on scan statistics [Glaz et al., 2001]: given
a scoring function quantifying how significant a potential cluster is, the scan statistic
is defined as the maximum of this scoring function over the set of potential clusters. A
significant cluster can be expected to exist in the network if the scan statistic is above
an appropriate threshold. Computing this statistic then becomes the main challenge,
essentially reducing cluster detection to a combinatorial optimization problem.

Unfortunately, the main specificity of our use case – namely the considerable size
of the ambient graph – happens to make scan statistics essentially unusable. Indeed,
because of the computational cost of solving the underlying optimization problem,
scan statistics-based detection does not scale well. While several contributions have
sought to alleviate this issue through more efficient optimization methods (both ex-
act and approximate), we take an orthogonal path and explore an optimization-free
approach to cluster detection in a graph. This approach relies upon the following
intuition: when removing all nodes except those at which the signal takes its highest
values, the size of the largest remaining connected component should be small in the
absence of a cluster. On the other hand, when a cluster is present, most of its nodes
should remain in the thresholded graph, leading to a significantly larger connected
component. We derive two testing procedures from this idea, the second one differing
from the first through the adjunction of a denoising step analogous to the smoothing
methodology studied in Chapter 6.

The rest of this chapter is structured as follows. We formally define the problem of
cluster detection and review the main approaches to it in Section 7.2. Section 7.3 then
introduces some notions of percolation theory and highlights their relevance to cluster
detection. These notions are then used to define our cluster detection procedures in
Section 7.4. We finally evaluate these procedures on synthetic data in Section 7.5 and
on event graphs from the LANL dataset in Section 7.6.

7.2 Cluster Detection, Scan Statistics and Alternatives

We first formally define cluster detection as a hypothesis testing problem and re-
view some related theoretical results in Section 7.2.1, then discuss practical detection
methods and their limitations in Section 7.2.2.

7.2.1 Problem Statement and Theoretical Results

Let G = (V, E) be an undirected and connected graph, where V = {v1, . . . , vn} denotes
the set of vertices of G and E ⊂ V × V is its edge set. Let A ∈ {0, 1}n×n denote the
adjacency matrix of G and M = D−1A denote its row-normalized counterpart (where
D is the diagonal matrix whose k-th diagonal coefficient is the degree of vk). We

7.2. Cluster Detection, Scan Statistics and Alternatives 121

define Λ as the set of subsets of V whose induced subgraph in G is connected. For
each vertex vk ∈ V, let Xk be a real-valued random variable attached to vk. Similarly
to Chapter 6, the random vector X = (Xk)1≤k≤n can be seen as a signal observed
over the vertices of G. Consider the following hypothesis testing problem: letting F0

denote a probability distribution with zero mean and unit variance, the null hypothesis
is defined as H0 : Xk

iid∼ F0. In addition, for each S ∈ Λ,

HS : ∀vk ∈ V, Xk
ind∼

{
F1 if vk ∈ S
F0 otherwise

is one possible alternative, with F1 6= F0 a probability distribution such that

EX∼F1 [X] > 0.

The problem of cluster detection can then be formulated as

H0 vs. H1 =
⋃
S∈Λ

HS .

That is, we want to know whether there exists a connected subgraph of G inside of
which the observations Xk are drawn from an alternative distribution with elevated
mean. Note that we only care about detection, leaving the reconstruction of S aside.

The most frequent instance of this generic problem in the literature is the Gaussian
case, in which F0 is a standard centered normal distribution and F1 is a shifted version
of F0 with mean µ > 0. Even in this standard setting, deriving theoretical results on
detectability is highly nontrivial: a specific structure must be assumed for both the
ambient graph G and the possible subgraphs S to make the problem tractable. Under
such assumptions, asymptotic separability of H0 and H1 as n → ∞ can be stated in
the minimax sense: letting

γn(ξ) = P[ξ(X) = 1 | H0] + max
S∈Λ

P[ξ(X) = 0 | HS]

denote the worst-case risk of a given test ξ : Rn → {0, 1}, the minimax risk can be
defined as

γn = min
ξ
γn(ξ).

The null and alternative hypotheses are then said to be asymptotically inseparable if

lim
n→∞

γn = 1.

Conversely, a sequence of tests (ξn)n≥1 asymptotically separates H0 and H1 if

lim
n→∞

γn(ξn) = 0,

and the two hypotheses are separable if there exists such a sequence.
Several theoretical results on asymptotic separability of cluster detection problems

can be found in the literature. Table 7.1 summarizes some of these results. However,
while they provide valuable insights on the intrinsic difficulty of cluster detection, such
theoretical statements are of little help when designing practical detection procedures.
We thus adopt a more applied perspective in the next section.

122 Chapter 7. Detecting Clusters of Anomalous Events

Table 7.1: Theoretical results on cluster detection: conditions of asymptotic separability
and inseparability in the minimax sense. The mean µS,n of the signal under HS for an
ambient graph with n vertices is normalized as µS,n = µn|S|−1/2 so that the signal strength

µn > 0 is independent of the size of S.

Ref. Ambient
graph

Class of
possible
clusters

Separable if... Inseparable if...

[Arias-
Castro
et al.,
2005]

Line graph Segments µn =
√

2(1 + η) log n
(η > 0)

µn =
√

2(1− η) log n
(η > 0)

Square lat-
tice (dimen-
sion 2)

Disks,
segments,
rectangles,
ellipsoids

µn =
√

2(1 + η) log(n)2

(η > 0)
µn =

√
2(1− η) log(n)2

(η > 0)

Square lat-
tice (dimen-
sion d)

Rectangles µn =
√

2(1 + η) log(n)d

(η > 0)
µn =

√
2(1− η) log(n)d

(η > 0)

[Arias-
Castro
et al.,
2008]

Square lat-
tice (dimen-
sion 2)

Paths µS,n
√

log |S| → ∞ µS,n log |S|
√

log log |S| → 0

Binary tree Paths µS,n ≥
√

2 log 2 µS,n → 0

[Arias-
Castro
et al.,
2011]

Square lat-
tice (dimen-
sion d)

Band of
thickness
hn around
a path of
length `n

µn
√
hn/`n →∞ µn

√
hn/`n(log n)3/2 → 0

7.2.2 Practical Detection Methods – Scan Statistics and Beyond

Besides theoretical analysis, practical detection methods and real-world applications
have received significant attention in the literature. The most common approach
relies on scan statistics. Broadly speaking, this method consists in defining a scoring
function f : P(V)→ R, computing the test statistic

T = max
S∈Λ

f(S),

then rejecting H0 if T exceeds a given threshold. This amounts to finding the best
potential cluster S∗ in Λ, and then rejecting the null hypothesis if S∗ is significant
enough. Defining f requires some assumptions on the alternative distribution F1. For
instance, when F1 has a parametric form, f(S) can be defined as the likelihood ratio
between HS and H0. In the Gaussian case mentioned above, the scoring function fg

is classically defined as

fg(S) =
1√
|S|

∑
vk∈S

Xk. (7.1)

With no more prior knowledge about F1 than the elevated mean assumption, how-
ever, finding a suitable scoring function is nontrivial. Moreover, computing T implies
maximizing f over the combinatorial class Λ, which quickly becomes computationally
intensive as the ambient graph grows large. Therefore, most related work focuses on
making the computation of scan statistics more efficient. Ways to achieve this include
the following:

7.3. Percolation Theory and Its Relevance to Cluster Detection 123

Restriction of the class Λ. The easiest way to speed up the computation is to sim-
ply reduce the size of the search space by considering only a subset of Λ. Such
restriction can be based on domain-specific knowledge [Kulldorff, 1997, Priebe
et al., 2005, Kulldorff et al., 2006, Neil et al., 2013a] or more general heuris-
tics [Patil and Taillie, 2004].

Convex relaxation. Another classical approach to combinatorial optimization con-
sists in solving a convex relaxation of the problem, and then projecting the
solution back onto the original search space. This method was applied to scan
statistics [Qian et al., 2014, Qian and Saligrama, 2014, Aksoylar et al., 2017],
using elements of spectral graph theory [Chung, 1997] to find a relaxed form
of the connectivity constraint. Similar ideas were also used in a slightly differ-
ent context [Sharpnack et al., 2013a, Sharpnack et al., 2013b, Sharpnack et al.,
2015], where the class Λ consists of subgraphs with low cut size rather than
connected ones.

Algorithmic approaches. Finally, efficient optimization algorithms have been used
to find exact or approximate values for the scan statistic, including simulated
annealing [Duczmal and Assuncao, 2004, Duczmal et al., 2006], greedy algo-
rithms [Rozenshtein et al., 2014], primal-dual algorithms [Rozenshtein et al.,
2014], branch and bound algorithms [Speakman et al., 2015] and dynamic pro-
gramming algorithms [Wu et al., 2016b].

Despite the popularity of scan statistics, other ideas have also been considered in
the literature. We focus on one of these alternative approaches, namely the Largest
Open Cluster (LOC) test, which was first studied in the context of object detection in
images [Langovoy and Wittich, 2013, Langovoy et al., 2013]. The idea of this method
is to represent an image as a two-dimensional lattice, each node carrying a random
variable standing for the value of the associated pixel. Then, after deleting from the
lattice every vertex whose pixel value is lower than a suitable threshold, the largest
remaining connected component is expected to be small if there is no object in the
image. On the other hand, if an object is present, an unexpectedly large connected
component should remain in the thresholded lattice. The theory behind the LOC
test has since been extended to regular lattices of arbitrary dimension [Arias-Castro
and Grimmett, 2013], but to the best of our knowledge, the underlying idea of using
percolation theory to detect anomalous connected subgraphs has not yet been applied
to complex, arbitrary-shaped networks.

7.3 Percolation Theory and Its Relevance to Cluster De-
tection

Theoretical results underpinning the LOC test rely on percolation theory. More gener-
ally, some basic notions pertaining to this field are useful when defining and intuitively
justifying the detection procedures we propose. We thus briefly introduce the general
framework of percolation theory in Section 7.3.1, then more specifically highlight its
connections with cluster detection in Section 7.3.2.

7.3.1 A Brief Introduction to Percolation Theory

Broadly speaking, the goal of percolation theory is to study the connectivity of a
network when a given proportion of its elements are randomly deleted. The deleted

124 Chapter 7. Detecting Clusters of Anomalous Events

elements can be either vertices or edges, leading to the two closely related settings of
site and bond percolation, respectively. Since we are interested in vertex-related sig-
nals, we here focus on the former. Note, however, that similar developments could be
made about the link between bond percolation and cluster detection in edge-weighted
networks. Fore a more formal and detailed introduction, see for instance [Kesten,
1982, Grimmett, 1999, Chung et al., 2009].

Still considering an undirected and connected graph G = (V, E) with n vertices,
the main focus of percolation theory is the following problem. Let each vertex of G be
independently occupied uniformly at random with probability p or unoccupied with
probability 1 − p. In other words, each vertex v ∈ V is deleted along with all its
incident edges with probability 1−p. Then, letting C(p) denote the size of the largest
component of G at occupation probability p, what is the expected value of C(p) as n
becomes large? Extremal values of p yield obvious results: C(0) = 0 almost surely for
any n and for p = 1, G almost surely has a connected component with infinitely many
vertices as n goes to infinity. For intermediate values of p, however, there are two
possible regimes. If p is small enough, only small connected components are present
and C(p)/n converges in probability to 0. On the other hand, larger values of p lead
to the emergence of a giant connected component, which contains a constant fraction
of the vertices. The transition between the two regimes happens for a critical value
of p called the percolation threshold pc. Note that pc depends on the graph structure
and can be vanishingly small. Although this phase transition is only well-defined in
the limit of an infinite graph, a somewhat similar behavior can be observed in the
finite case [Callaway et al., 2000, Karrer et al., 2014].

While most existing work on percolation adopts a static point of view by studying
the distribution of C(p) for a fixed value of p, we are more interested in a dynamic
perspective. More specifically, we consider the canonical coupling defined as follows:
for each vertex v ∈ V, let Uv be an independent random variable following a uniform
distribution on [0, 1]. Then, for all p ∈ [0, 1], let G(p) be the subgraph induced by
the vertex set {v ∈ V : Uv ≤ p}, and let C(p) be the largest connected component
of G(p). This construction gives |C(p)| the same distribution as C(p) for all p ∈ [0, 1]
while ensuring that G(p) and |C(p)| are both increasing in p, meaning that

∀(p, q) ∈ [0, 1]2, p ≤ q =⇒ G(p) ⊆ G(q) and |C(p)| ≤ |C(q)|

for any realization of the random vector (Uv)v∈V . A tightly related process is obtained
by considering the imbedded Markov chain {Gk}0≤k≤n, where Gk is the subgraph in-
duced by the vertices associated with the k smallest random variables. Letting Ck
denote the largest connected component of Gk, {|Ck|}0≤k≤n can be seen as a dis-
cretized version of {|C(p)|}0≤p≤1. The two cluster detection procedures introduced in
Section 7.4 rely on these stochastic processes. In contrast, previous contributions on
percolation-based cluster detection focused on the static point of view, as explained
in the next section.

7.3.2 Application to Cluster Detection: Theory and Practice

A rather intuitive connection can be made between the concepts discussed in the
previous section and the problem of cluster detection. To the best of our knowledge,
this connection was first discussed by Langovoy and Wittich in the context of object
detection in a two-dimensional image [Langovoy and Wittich, 2013].

Their main idea is the following: let G be a two-dimensional lattice, and suppose
that the graph-structured signal X = (Xk)1≤k≤n represents noisy pixel values. The

7.3. Percolation Theory and Its Relevance to Cluster Detection 125

coordinates of X are assumed to be independent and identically distributed when no
object is present in the corresponding image. Given a threshold τ ∈ R, let G(τ) be
the subgraph induced by the vertex set {vk ∈ V : Xk ≥ τ}, and let Q(τ) be the
largest connected component of G(τ). Then, if no object is present, |Q(τ)| has the
same distribution as C(pτ) for some appropriately chosen pτ , namely

pτ = P[X1 ≥ τ | H0], (7.2)

with H0 denoting the null hypothesis (i.e. no object in the image)1. Therefore,
choosing a threshold τ such that pτ < pc ensures that |Q(τ)| is small under H0.
However, the threshold should also be chosen so that

P[Xk ≥ τ | vk belongs to an object] > pc,

ensuring that the presence of an object leads to the existence of a significant cluster in
G(τ). To be able to provide such a suitable threshold as well as theoretical guarantees
on the resulting test, Langovoy and Wittich assume that G is a triangular lattice and
that observations {Xk}1≤k≤n have a symmetric distribution.

The work of Langovoy and Wittich was then extended to a more generic set-
ting by Arias-Castro and Grimmett [Arias-Castro and Grimmett, 2013], who take
the d-dimensional square lattice as ambient graph. The cluster shapes considered
in [Arias-Castro and Grimmett, 2013] are hypercubes and self-avoiding paths of fixed
length. With these structural assumptions, the LOC test is studied for several choices
of threshold τ , with three different regimes: subcritical, supercritical and critical, cor-
responding to pτ smaller, greater and close to pc, respectively. The critical regime is
shown to be the most powerful one when detecting small clusters. In particular, the
LOC test with a near-critical threshold τ is nearly as powerful as the scan statistic
for path detection, but not for hypercube detection.

The static standpoint on percolation, which is adopted by the LOC test through
the choice of a single threshold τ , can be useful when focusing on theory. Indeed, as
mentioned above, most theoretical results on percolation are stated for a fixed occupa-
tion probability p. Therefore, leveraging such results to obtain theoretical guarantees
for percolation-based tests necessarily leads to considering a single threshold. How-
ever, our aim in this chapter is to come up with effective detection procedures for
real-world applications. To that end, studying the evolution of |Q(τ)| for an increas-
ing sequence of thresholds can be more practical. In particular, it exempts us from
looking for an optimal threshold τ , which is nontrivial when considering complex
networks whose structure is not known a priori.

A key observation is that the rationale behind the LOC test can be straightfor-
wardly extended to the dynamic perspective. Indeed, the LOC test fundamentally
relies on the fact that |Q(τ)| has the same distribution as |C(pτ)| under H0, and a dif-
ferent distribution under H1 (for a well-chosen threshold τ). Similarly, as long as the
observations {Xk}1≤k≤n are i.i.d. under H0, the stochastic processes {|Q(τ)|}τ∈R and
{|C(pτ)|}τ∈R have the same joint law under H0, but not under H1. The same observa-
tion applies to their discretized counterparts {|Qk|}0≤k≤n and {|Ck|}0≤k≤n. Therefore,
a statistical test for cluster detection can also be designed using entire sample paths
of these processes rather than marginal distributions for a single threshold τ .

As an illustration, Figure 7.1 shows the evolution of |C(p)| for p ∈ [0, 1], for
three types of graphs with increasingly complex structures: a two-dimensional square

1 Note that since the coordinates of X are i.i.d. under H0, any one of them could be used instead
of X1 in Equation 7.2.

126 Chapter 7. Detecting Clusters of Anomalous Events

0 0.5 1
p

0

0.5

1
C(

p)
/n

0 0.5 1
p

0 0.5 1
p

H0 (mean)
H0 (mean ± std)

= 0.01, = 1.5
= 0.01, = 3

= 0.05, = 1.5
= 0.05, = 3

= 0.1, = 1.5
= 0.1, = 3

Figure 7.1: Evolution of the fraction of vertices in the largest connected component as
p varies from 0 to 1, under H0 and various alternatives, for three kinds of graphs: a two-
dimensional square lattice (left), an Erdős-Rényi random graph (center) and a Barabási-

Albert preferential attachment graph (right).

lattice, an Erdős-Rényi random graph [Erdős and Rényi, 1960] and a Barabási-Albert
preferential attachment graph [Barabási and Albert, 1999]. For each model, a graph
with 1 024 vertices and approximately 2 000 edges is generated, and the mean and
standard deviation of |C(p)| for each value of p is estimated using 10 000 Monte Carlo
simulations. Then, for each graph, we generate a subgraph S containing a fraction δ
of the vertices, assign to each vertex vk an independent Gaussian random variable

Xk ∼ N
(
µ1{vk∈S}, 1

)
and compute the associated sample path of the stochastic process {|Q(τ)|}τ∈R. This
experiment is repeated 1 000 times for each graph, and the mean value of |Q(τ)|/n
is plotted as a function of the fraction of occupied vertices at threshold τ for sev-
eral values of δ and µ. The two regimes of the percolation process can be observed,
and the shape and location of the phase transition both clearly depend on the graph
model. While the separation between the two regimes is quite clear for the lattice
and the Erdős-Rényi graph, it is much blurrier for the Barabási-Albert model, which
yields more complex structures – most interestingly, heavy-tailed degree distributions.
Despite these disparities, the trajectory of {|Q(τ)|}τ∈R is clearly different in the pres-
ence of an injected cluster for the three types of graphs. More specifically, |Q(τ)| is
consistently higher under H1 before the phase transition, which underpins the two
detection procedures presented in the next section.

7.4 Two Percolation-Based Tests

We now introduce our cluster detection procedures. The first one, described in Sec-
tion 7.4.1, relies only on the trajectory of the process {|Q(τ)|}τ∈R. Building upon the
graph signal processing tools studied in Chapter 6, we then extend this procedure by
prepending a denoising step, as explained in Section 7.4.2.

7.4.1 Looking for Deviations of the Percolation Process

Our main detection procedure relies on the dynamic extension of the LOC test intro-
duced in Section 7.3.2. More specifically, given an observed signal X = (Xk)1≤k≤n,
let v(1), . . . , v(k) be the vertices of G sorted in descending order of their signal values,

7.4. Two Percolation-Based Tests 127

i.e. X(1) ≥ . . . ≥ X(n). Then, let Hk ⊆ G be the subgraph induced by v(1), . . . , v(k)

(for k ≥ 1), and let Qk denote its largest connected component. As mentioned above,
the size of Qk is expected to be larger under H1 for small values of k – namely, for k
smaller than a critical value Kc corresponding to the phase transition under H0.

In practice, a frequent heuristic for finite and arbitrary-shaped networks locates
the onset of the phase transition at the smallest occupation probability p0 such that
the expected value of C(p0) is greater than

√
n. Therefore, we set

Kc = min
{
k ≥ 2, E0 [|Qk|] ≥

√
n
}
, (7.3)

where E0[·] denotes the expected value under H0. Then the test statistic is

TG(X) =
1

n(Kc − 1)

Kc∑
k=2

|Qk| − E0 [|Qk|]
V0 [|Qk|]1/2

, (7.4)

where V0[·] denotes the variance under H0.
Two problems remain: first, the statistic TG(X) depends on a priori unknown

expected values and variances. Secondly, deciding whether to reject H0 based on
TG(X) requires a calibration step: how likely is the test statistic to be at least as high
under the null hypothesis? Both issues are addressed through simple Monte Carlo
simulations. Indeed, as explained in Section 7.3.2, assuming that the observations
{Xk}1≤k≤n are i.i.d. under H0 implies that {|Qk|}1≤k≤n follows the same joint law as
{|Ck|}1≤k≤n. Therefore, a set of B ≥ 1 sample paths{{∣∣∣Q(b)

k

∣∣∣}
1≤k≤n

}
1≤b≤B

can straightforwardly be obtained by uniformly sampling B random orderings of the
vertices, even when the null distribution F0 is unknown. We then compute estimates
for the unknown moments,

∀k ∈ {2, . . . , n}, µ̂k =
1

B

B∑
b=1

∣∣∣Q(b)
k

∣∣∣ and σ̂k =

√√√√ 1

B − 1

B∑
b=1

(∣∣∣Q(b)
k

∣∣∣− µ̂k)2
,

which are plugged into Equation 7.3 and Equation 7.4, leading to

K̂c = min
{
k ≥ 2, µ̂k ≥

√
n
}
, T̂G(X) =

1

n
(
K̂c − 1

) K̂c∑
k=2

|Qk| − µ̂k
σ̂k

.

The estimated test statistic is finally used to compute the empirical p-value

p̂ =
1

B

B∑
b=1

1{
T̂

(b)
G ≥T̂G(X)

}, where T̂ (b)
G =

1

n
(
K̂c − 1

) K̂c∑
k=2

∣∣∣Q(b)
k

∣∣∣− µ̂k
σ̂k

.

In terms of computational cost, the sequence Q1, . . . ,Qn (as well as the B ad-
ditional samples) can be obtained in O(n) operations using the Newman-Ziff algo-
rithm [Newman and Ziff, 2001]. Besides, the observations X1, . . . , Xn need to be
sorted beforehand, leading to O(n(B + log n)) overall complexity.

128 Chapter 7. Detecting Clusters of Anomalous Events

7.4.2 Adding a Denoising Step – The Diffusion-Percolation Test

In Chapter 6, we showed that the structure of event graphs could be leveraged to
denoise event-wise anomaly scores and make them more reliable. This idea also applies
to cluster detection: by smoothing the signal over G, one could expect to erase noisy
peaks while preserving true clusters. Such denoising may help make potential clusters
stand out, motivating us to propose a slightly more sophisticated detection procedure
using signal smoothing as a preprocessing step.

In practice, this denoising step relies on the message passing approach described
in Section 6.4.2: given an observed signal X, its smoothed counterpart is defined as

X̃ =
1

2
(M + I)X, (7.5)

where I denotes the n × n identity matrix. The message passing approach is mainly
chosen because of its relatively low computational cost, as explained in further detail
below. The sequence of largest connected component sizes |Q1|, . . . , |Qn| can then
be computed as in the previous section. However, generating samples from the null
distribution is not as simple anymore.

Indeed, since the smoothed observations X̃1, . . . , X̃n are no longer independent,
the denoising step breaks the equivalence between the two processes {|Qk|}1≤k≤n and
{|Ck|}1≤k≤n. Therefore, we now need to sample normal observations from F0, which
is still assumed to be unknown. To circumvent this issue, we resort to a bootstrap
procedure [Efron, 1979]: for each b ∈ [B], the signal X(b) is obtained by uniformly
sampling X(b)

1 , . . . , X
(b)
n with replacement from X1, . . . , Xn. It is then denoised us-

ing Equation 7.5, yielding a smoothed signal X̃(b) from which we derive a sequence
Q(b)

1 , . . . ,Q(b)
n of largest connected components. The rest of the procedure (compu-

tation of the unknown moments, the test statistic and the empirical p-value) is then
identical to the one described in the previous section.

As for complexity, Equation 7.5 can be computed in O(|E|) operations, and the
rest of the procedure (sorting and Newman-Ziff algorithm) still has O(n log n) com-
plexity. However, the whole computation (including sorting and denoising) must now
be performed B + 1 times, leading to O(B(n log n + |E|)) overall complexity. These
B + 1 iterations justify using the cheapest possible smoothing operator: more sophis-
ticated graph signal processing tools applied at each of these iterations would make
the computational cost of the whole procedure too high.

7.5 Experiments on Synthetic Data

Before evaluating our detection procedures on actual event graphs, we study them in
a more general setting. To that end, we generate a synthetic benchmark dataset and
compare our tests with previously published methods on this dataset, as explained in
Section 7.5.1. Our results are presented and discussed in Section 7.5.2.

7.5.1 Experimental Setup

Our procedures, which we call Percolation Only (PO) and Diffusion-Percolation (DP),
respectively, are implemented in Python 3.9. The most intensive parts (essentially the
Newman-Ziff algorithm) are translated into C using Cython. Computations are run
on a Debian 10 machine with 128GB RAM and a 2.2GHz, 20-core CPU.

7.5. Experiments on Synthetic Data 129

Dataset. The benchmark dataset is generated as follows: first, 50 random graphs
of various sizes are sampled using the Kronecker graph model [Leskovec et al., 2010].
More specifically, a single generator matrix Θ =[0.9 0.5; 0.5 0.3] is combined with 5
different numbers of Kronecker product iterations (i ∈ {10, 11, 12, 13, 14}) to generate
10 graphs for each value of i. Only the largest connected component of each graph is
kept, yielding a connected graph with approximately 2i vertices. Given two parameters
δ, µ > 0, we then generate 50 normal signals and 50 anomalous signals for each graph:
normal observations are independent standard centered Gaussians, while anomalous
signals have mean µ on a random connected subgraph containing a proportion δ of the
vertices. In summary, for each parameter triple (i, δ, µ), 1 000 signals are generated,
half of which contain an anomalous cluster.

Baselines. We compare our procedures with two baselines: the first one is the Upper
Level Set scan statistic (ULS [Patil and Taillie, 2004]), which is an approximation of
the scan statistic relying on a reduction of the search space. More specifically, ULS also
extracts the subgraphs Hk induced by the highest-scoring vertices. The approximated
scan statistic is then the maximum of the scoring function defined in Equation 7.1
over the set of connected components of all subgraphs Hk for k ∈ [n]. We implement
this method in Python using our Cython implementation of the Newman-Ziff algo-
rithm. We also include the adaptive Graph Fourier Scan Statistic (GFSS [Sharpnack
et al., 2015]), which approximates the scan statistic through the eigendecomposition
of the Laplacian. The open source Python implementation provided by the authors
is used for the experiments. Each test is calibrated using 1 000 simulations (for GFSS
and ULS, these simulations consist in recomputing the test statistic after randomly
permuting the observations assigned to the vertices).

Performance metrics. Two main criteria are used to evaluate the considered al-
gorithms: effectiveness and efficiency – in other words, the ability to detect clusters
and the computational cost of doing so. As for the first quality, the area under the
ROC curve is computed for each parameter triple (i, µ, δ), highlighting the influence
of these parameters on the difficulty of the detection problem. Regarding the second
one, we evaluate the running time of each algorithm as a function of the graph size,
quantified by the number of Kronecker product iterations i.

7.5.2 Results and Discussion

Figure 7.2 shows the area under the ROC curve for each evaluated method and pa-
rameter triple (i, µ, δ), and Figure 7.3 displays the mean computation time for each
method as a function of i.

Detection performance. DP and PO perform best overall, with DP doing slightly
better for low δ and high µ. This suggests that the diffusion step is especially useful
when looking for small but strong clusters. An intuitive explanation is that since PO
only leverages the values of the signal through their ranking, it undergoes some kind
of saturation. Indeed, assuming that a cluster S is present, what makes it detectable
through PO is that each vertex v ∈ S is associated with one of the highest observations
X1, . . . , Xn. As long as this condition is fulfilled, further increasing the signal strength
µ has no impact on the test statistic. In contrast, the diffusion step extends the cluster
to all vertices v′ /∈ S having at least one neighbor in S, which does increase the test
statistic. Note that this gain comes with a moderate loss in performance for low µ
and high δ. However, ULS tends to perform best in this setting anyway.

130 Chapter 7. Detecting Clusters of Anomalous Events

5e-
4

1e-
3

5e-
3

1e-
2

5e-
2

δ

50 50 50 50 50

50 50 50 50 50

51 53 58 67 75

52 58 72 86 94

61 79 96 100100

DP

i = 10

5e-
4

1e-
3

5e-
3

1e-
2

5e-
2

δ

48 48 48 48 48

48 48 48 48 48

50 52 57 65 74

51 59 68 82 93

59 80 95 100100

PO

5e-
4

1e-
3

5e-
3

1e-
2

5e-
2

δ

47 47 47 47 47

47 47 47 47 47

48 50 52 54 56

50 54 58 62 67

61 77 90 96 99

ULS

0.5 1
1.5 2

2.5

µ

5e-
4

1e-
3

5e-
3

1e-
2

5e-
2

δ

48 48 49 49 50

48 48 49 49 50

49 49 51 52 54

49 50 52 54 55

50 55 53 50 48

GFSS

47 47 47 47 47

47 47 47 47 47

48 54 65 79 91

51 61 79 93 99

62 86 98 100100

i = 11

48 48 48 48 48

48 48 48 48 48

49 54 63 76 89

52 61 76 90 98

65 87 99 100100

54 54 54 54 54

54 54 54 54 54

56 58 62 65 68

58 63 69 74 79

72 89 98 100100

0.5 1
1.5 2

2.5

µ

52 52 52 52 53

52 52 52 52 53

52 53 53 55 55

52 54 54 54 52

53 53 48 46 45

52 53 52 53 53

53 54 56 59 63

55 61 77 92 99

58 70 89 99 100

72 94 100100100

i = 12

50 50 50 50 50

51 52 53 57 61

53 59 73 88 97

56 68 85 97 100

72 94 100100100

51 51 51 51 51

51 52 53 53 54

54 57 61 66 69

57 64 71 78 83

77 94 99 100100

0.5 1
1.5 2

2.5

µ

51 52 52 52 53

52 52 53 53 54

52 52 53 53 53

52 53 52 50 49

53 50 46 45 45

51 51 52 54 59

51 52 56 66 78

54 63 81 97 100

56 73 93 100100

74 97 100100100

i = 13

50 51 51 54 58

51 52 56 63 76

54 64 78 95 100

57 74 92 100100

79 98 100100100

48 48 49 49 50

48 49 50 52 53

52 57 63 69 74

56 67 77 85 91

84 99 100100100

0.5 1
1.5 2

2.5

µ

- - - - -

- - - - -

- - - - -

- - - - -

- - - - -

48 49 53 61 73

48 51 59 74 90

52 67 89 99 100

56 78 97 100100

79 99 100100100

i = 14

48 49 52 58 68

48 50 56 69 85

52 66 85 98 100

57 77 95 100100

83 99 100100100

48 49 50 51 51

49 50 52 54 55

54 62 70 77 82

60 74 86 93 97

92 100100100100

0.5 1
1.5 2

2.5

µ

- - - - -

- - - - -

- - - - -

- - - - -

- - - - -

Figure 7.2: Area under the ROC curve for each evaluated method, with different combina-
tions of values of i, δ and µ. Dashes indicate unavailable results due to excessive computation

times.

As for the GFSS, its surprisingly low performance may be explained by the type
of clusters it was designed to detect. Indeed, the underlying assumption of the GFSS
is that clusters should have many internal edges and be loosely connected to the rest
of the network. While many real-world clusters do exhibit this property (in addition
to being connected), the random subgraphs generated for our experiments do not.

Computational cost. Regarding computation times, Figure 7.3 shows that our
procedures are both rather efficient, with an expected increase due to the denoising
step for DP. In particular, PO is comparable to ULS in terms of computational cost
while exhibiting significantly better detection performance.

As a side note, the significantly higher computation times of the GFSS should be
taken with a grain of salt since they mostly result from implementation choices. More
specifically, the open source implementation we used performs a full diagonalization
of the Laplacian of the ambient graph to compute the GFSS, which is typically done
through O(n3) complexity algorithms [Watkins, 2007]. This considerable overhead
could probably be avoided by using the graph signal processing tools introduced in
Section 6.4.1 [Hammond et al., 2011].

7.6 Application to Event Graphs

Having assessed the relevance of our detection procedures with respect to the state
of the art in a generic setting, we now evaluate their detection performance in our

7.6. Application to Event Graphs 131

10 11 12 13 14
i

100

102

104

C
om

pu
ta

ti
on

ti
m

e

DP PO ULS GFSS

Figure 7.3: Mean computation time (in seconds) for each evaluated method.

Table 7.2: Definition of the subsets of days from the LANL dataset based on the proportion
δ of red team events, and size of each subset.

Value of δ Number of days

δ = 0 40
δ ∈ (0, 5 · 10−6] 10
δ ∈ (5 · 10−6, 2 · 10−5] 5
δ ∈ (2 · 10−5, 1] 3

actual use case – namely malicious behavior detection in event graphs. Section 7.6.1
describes the experiment we carried out (to wit, injection of synthetic anomaly scores),
and our results are displayed and discussed in Section 7.6.2.

7.6.1 Experimental Setup

Our goal is to evaluate the feasibility of malicious event cluster detection in real-
world event graphs. To that end, we apply our detection procedures to synthetic
signals sampled over event graphs extracted from the LANL dataset.

Event graphs. We formulate cluster detection as a binary classification problem:
given all authentication events collected on a given day as well as the corresponding
anomaly scores, we aim to predict whether red team events happened on this day.
Therefore, we use the procedure defined in Section 6.3 to build the graph of authen-
tication events for each day of the LANL dataset. We set the number of neighbors K
to 50 and the time constant τ to half an hour. Among the 58 event graphs we obtain,
18 contain red team events. We denote δ the proportion of red team events for a given
day. In order to study the impact of δ on detection performance, we divide the set of
event graphs into four subsets, each of which corresponds to an interval for δ. More
details can be found in Table 7.2.

Generation of synthetic signals. For each day d, we sample 100 Gaussian signals
X

(1)
d , . . . ,X

(100)
d with a similar procedure as in Section 7.5.1. The main difference is

that the anomalous cluster S is now defined as the set of red team events. Note
that as shown in Section 6.5.2, it actually has several connected components for some
days. However, the intuition behind our tests extends to this setting as long as these
connected components are large enough and there are not too many of them. The
signal strength µ is set to 2.

Performance metrics. Since there are more days without red team events than
the opposite, we use the precision-recall curve to evaluate detection performance.
More specifically, for each i ∈ [100], we run our detection procedures on the signals

132 Chapter 7. Detecting Clusters of Anomalous Events

=0

0<
5

10
6

5
10

6 <
2

10
5

>2
10

5

0.0

0.2

0.4

0.6

0.8

1.0

p-
va

lu
es

PO

=0

0<
5

10
6

5
10

6 <
2

10
5

>2
10

5

DP

(a) p-value distribution for different values of the pro-
portion of red team events δ.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

PO (AUC=0.484±0.014)
DP (AUC=0.536±0.012)

(b) Average precision-recall
curve with 95% confidence
interval for each evaluated test.

Figure 7.4: Red team activity detection – Results obtained with our procedures on the
LANL event graphs, with synthetic anomaly scores.

{
X

(i)
d

}58

d=1
and compute the corresponding precision-recall curves. We then report

the average curves and AUCs along with 95% confidence intervals. In addition, we
investigate the overall p-value distribution for each of the four subsets defined in
Table 7.2. This gives us a finer-grained perspective on the influence of the proportion
of red team events.

7.6.2 Results and Discussion

Our results are displayed in Figure 7.4. Starting with the p-value distributions (Fig-
ure 7.4a), our procedures behave as expected: in the absence of red team events, the
empirical p-value follows a uniform distribution on [0, 1] as it is supposed to. More
interestingly, the distribution sensibly changes for δ > 5 · 10−6, and it is well concen-
trated and close to zero for δ > 2 ·10−5. This suggests that the detectability threshold
for µ = 2 is somewhere between these values of δ for both tests. This first result
means that detecting the presence of malicious activity through cluster detection in
the event graph might be possible: even for remarkably small values of δ, our tests
can predict the presence of red team events. This statement should obviously be nu-
anced: as evidenced in Section 6.5.2, applying graph-based postprocessing methods
to real anomaly scores can yield significantly worse results than in the synthetic case.
However, our results remain encouraging.

As a side note, DP seems to perform slightly better than PO for δ > 5 · 10−6.
Two main explanations can be considered: first, we observed in Section 7.5.2 that
DP tends to achieve better performance when looking for small clusters with strong
signals, which corresponds rather well to the task at hand here. Secondly, clusters
of malicious events are densely connected. This makes graph-based denoising more
effective at making them distinguishable, as evidenced in Section 6.5.2.

Finally, the precision-recall curve (Figure 7.4b) confirms our previous observations.
More specifically, both detection procedures perform fairly well at detecting days
containing red team events – or at least days containing enough of them. In addition,
DP globally outperforms PO, further demonstrating the usefulness of the denoising
step for the specific case of event graphs.

7.7. Conclusion 133

7.7 Conclusion

Motivated by the use case of malicious event cluster detection in event graphs, we
study practical approaches to the more general problem of cluster detection in a
network. The specificity of our application (in particular, the size of real-world event
graphs) makes traditional scan statistics-based methods hardly usable, leading us to
look for more scalable alternatives. The one we choose is the LOC test, which relies
on a parallel between cluster detection and percolation theory. By extending this
parallel to a dynamic perspective on percolation, we come up with a more practical
detection procedure. Moreover, we derive a second test by adding a denoising step to
the first one, reusing one of the graph-based denoising tools introduced in Chapter 6.
Experiments on a synthetic benchmark dataset show that our tests perform better
than other existing methods while keeping computation times reasonable.

We also provide a first assessment of the effectiveness of our tests at detecting
malicious activity in event graphs using noisy event-wise anomaly scores. Although we
have not experimented with real anomaly scores yet, our initial results are encouraging.
Indeed, even with a very low proportion of malicious events and a reasonably small
signal strength, our detection procedures successfully detect the presence of red team
activity in the LANL event graphs. Experimenting with different values of the signal
strength µ as well as real anomaly scores would be a natural lead for future work.

Other interesting directions include a systematic assessment of the detectability
of anomalous subgraphs having several connected components. More generally, char-
acterizing detectability using finer-grained notions than the size of the anomalous
cluster and the signal strength could be a fruitful direction. In particular, the struc-
ture of both the ambient graph and the anomalous cluster obviously have an impact
on detectability, and studying this impact (both from a theoretical and empirical per-
spective) could yield precious insights. Regarding the theoretical point of view, one of
the main challenges is that existing work on percolation theory mostly deals with the
static setting. Studying the sample paths obtained through the canonical coupling
described in Section 7.3.1 would be both a necessary preamble to theoretical analysis
of our tests and an interesting problem in and of itself.

135

Chapter 8

Conclusion

8.1 Summary

Intrusion detection in event logs could roughly be defined as looking for complex
anomalies in complex data. As a typical big data-era problem, it calls for carefully tai-
lored solutions, namely a mathematical representation framework, a statistical model
and a distinctive anomaly detection procedure. This thesis aims to address these three
aspects. Part I formally defines some essential notions and reviews previous work in
order to identify the key characteristics of statistical intrusion detection methods for
event logs. This systematic approach allows us to rationalize our statistical mod-
elling choices, leading to the Decades model presented in Part II. Making this model
reflect the multiple facets of event logs requires simultaneous use of concepts from var-
ious fields, and merging these concepts into a consistent framework is thus the main
challenge. Finally, while Decades shows competitive detection performance with re-
spect to the state of the art, its event-wise predictions do not take advantage of the
multi-step nature of malicious activity. Therefore, Part III deals with graph-based
postprocessing of event-wise anomaly scores. Using both novel and existing tools, we
leverage graph-structured representations of event logs to enhance noisy scores at the
event granularity and detect clusters of malicious activity.

Throughout this thesis, experiments on the LANL dataset allow us to evaluate
some of our hypotheses on event logs and intrusion-related event sets. We now sum-
marize the outcomes of these experiments.

Modelling the multiple facets of event logs. In Part I, we identify three main
characteristics of event logs: they are combinatorial, heterogeneous and temporal
data. Experiments with various detection algorithms on the LANL dataset yield
basic insights on the respective importance of each of these aspects.

First of all, comparing the static part of Decades with several baselines in Chap-
ter 4 puts the focus on the combinatorial and heterogeneous aspects. The key im-
portance of the former tends to be confirmed by our results: the best-performing
algorithms are those relying on the most accurate description of the combinatorics of
events. As for heterogeneity, the fact that Decades outperforms Cadence suggests
that factoring it in through a joint model for all event types leads to better results.
However, the exact cause of this difference in detection performance cannot be reliably
isolated based solely on our experiments.

Secondly, the experiments presented in Chapter 5 emphasize the temporal di-
mension of the data. The absence of significant impact of retraining on detection
performance is a somewhat interesting outcome: it suggests that despite the non-
stationarity of real-world event streams, the data generating process changes slowly
enough so that a static detection model can remain relevant for at least a few weeks.

136 Chapter 8. Conclusion

However, experiments on a longer time range would be needed to get a more accurate
picture of the adequate retraining frequency.

Reliably detecting malicious event sets. The existence of intersections between
the sets of involved entities corresponding to intrusion-related events, formalized in
Assumption 3, is an important specificity of intrusion detection. Indeed, leveraging
the peculiar structure of malicious event sets appears as a promising way to make
anomaly detection in event logs more reliable. Our experiments in Chapter 6 show
that building event graphs reflecting the presence of shared entities can successfully
transcribe these structures through the graph-theoretical notion of densely connected
cluster. However, we have not yet come up with a fully satisfactory characterization
of malicious clusters. In particular, the existence of legitimate activities generating
equally dense and suspicious clusters remains an important challenge.

8.2 Perspectives

We conclude this thesis by sketching what we think to be some of the most interesting
leads for future work.

Systematically characterizing intrusion detection workflows. The taxonomy
of statistical intrusion detection methods presented in Chapter 3 relies on a somewhat
basic description of the processing pipeline leading from event logs to security alerts.
Refining this description to formally define the basic blocks of intrusion detection
workflows for event logs could lead to a higher-level perspective on designing new sta-
tistical methodologies. This approach has a long history in the bioinformatics commu-
nity, with frameworks such as Taverna [Oinn et al., 2004] or Snakemake [Köster and
Rahmann, 2012] letting researchers easily reuse and recombine elements of previously
published data analysis pipelines. However, to the best of our knowledge, no such
framework exists for event log analysis. What comes closest is the anomaly detection
language of Memory et al. [Memory et al., 2013], but we are not aware of any widely
used implementation of their work.

Redesigning Decades in a more consistent fashion. As mentioned above, the
main challenge in building the Decades model was to merge concepts from different
fields in order to address the various facets of event logs. As a result, Decades
somewhat lacks consistency: the initial training algorithm has a rather frequentist
flavour, while the parameter updating procedure relies upon a Bayesian formulation.
We think it would be preferable to redesign the whole inference procedure with a
fully Bayesian approach, similarly to the work of Lee et al. for host communication
graphs [Lee et al., 2021]. Note that this might also require bringing some modifications
to the underlying model.

Making anomaly detection practical and explainable. Finally, one aspect we
mostly left aside throughout this thesis is the practical usability of our contributions
for security experts. This general problem encompasses several issues. The first
one pertains to human-machine interfaces and visualization: how can we efficiently
display the results of an algorithm such as Decades, or those of the cluster detection
tests described in Chapter 7? Moreover, how can we make these results explainable?
Regarding this second question, the notion of counterfactual explanation (which we
briefly mention in Chapter 4) may be a promising lead: while explaining what makes

8.2. Perspectives 137

a given event anomalous is not easy, building counterfactuals can be an effective way
to show how it differs from normal activity patterns. As for the construction of a
practical interface, the best solution may be to start from already existing software,
such as Security Information and Event Management (SIEM) systems. While our
work does not deal with these challenges, addressing them is no less important than
building accurate and reliable anomaly detection algorithms in the more general effort
of extracting actionable information from large-scale event logs.

139

Appendix A

Résumé des contributions

A.1 Supervision des réseaux informatiques et données mas-
sives

Quel est le point commun entre les journaux Security Auditing de Microsoft Windows,
NetFlow et syslog ? Une réponse possible pourrait être la suivante : bien qu’aucun
d’entre eux n’ait été initialement conçu pour la détection d’intrusion par l’application
à grande échelle d’outils statistiques, ils ont tous fini par être utilisés dans ce but.

Le protocole syslog a été développé dans les années 1980 pour permettre à toutes
sortes de terminaux au sein d’un réseau informatique de remonter des événements à un
serveur de journalisation central [Gerhards et al., 2009]. Son principal objectif était
de distinguer le programme générant les événements de ceux chargés de les remonter
et de les enregistrer, facilitant ainsi pour les développeurs l’intégration de fonctions de
journalisation dans leurs programmes. Il n’avait donc pas pour vocation de permettre
la détection d’intrusion, ni de garantir que les événements générés seraient adaptés à
la modélisation statistique. Cependant, une journalisation modulaire et centralisée est
un élément essentiel de la supervision de réseaux informatiques à grande échelle. De la
même manière, le protocole NetFlow fut introduit dans les années 1990 pour permettre
la supervision du trafic au niveau de la couche réseau1 pour des applications telles que
la facturation ou l’identification de dysfonctionnements [Claise et al., 2004]. Même si
ses créateurs n’avaient probablement pas cette fin à l’esprit, l’analyse statistique de
données NetFlow à grande échelle devint rapidement un axe de recherche important
dans le domaine de la sécurité des réseaux [Lakhina et al., 2004]. Enfin, le journal
Security Auditing de Windows apparut pour la première fois en 1996 lorsque la notion
de source des événements fut introduite dans Windows NT 4.0, rendant plus nette la
distinction entre les événements liés à la sécurité (tels que les ouvertures de sessions
ou les modifications de fichiers système) et d’autres fonctions de la journalisation,
comme l’identification de dysfonctionnements. Tout comme les données NetFlow,
les journaux d’événements Windows n’ont pas été initialement conçus pour l’analyse
statistique à grande échelle, mais la grande variété d’informations qu’ils contiennent
en a fait une proie de choix pour la communauté grandissante des data miners.

D’après Efron et Hastie, "quelque chose d’important a changé dans le monde des
statistiques en ce nouveau millénaire" [Efron and Hastie, 2016]2. Auparavant, un
problème typique d’analyse de données était l’essai clinique : étant donné une ques-
tion précise (à savoir, ce médicament produit-il les effets attendus ?), le statisticien
la formalisait en termes mathématiques, concevait une procédure méticuleuse pour
collecter précisément la quantité de données nécessaire selon la théorie, et utilisait

1 Dans le modèle Open Systems Interconnection à sept couches, la couche réseau est la troisième.
Elle gère l’adressage et le routage entre différents réseaux locaux. Le protocole Internet (IP) est un
célèbre protocole de couche réseau.

2Nous traduisons cette citation et les suivantes.

140 Appendix A. Résumé des contributions

finalement ces observations pour répondre à la question initiale avec le niveau de con-
fiance désiré. C’était l’époque de la rareté, tant des données que de la puissance de
calcul – Efron et Hastie de nouveau :

Avant l’ère de l’ordinateur, il y a eu celle de la calculatrice, et avant le big data,
il y avait de petits jeux de données, comportant souvent quelques centaines de
nombres ou moins, laborieusement collectés par des scientifiques travaillant seuls
et avec des contraintes expérimentales drastiques.

Il semble superflu de préciser que la détection de comportements anormaux par
l’analyse statistique à grande échelle de journaux NetFlow ne correspond pas tout
à fait à cette description. Au-delà de la différence évidente en matière de volumes
de données, cette approche ressemble en effet à l’exact opposé de l’essai clinique d’un
point de vue méthodologique : la collecte de données est ici la première étape, et c’est
seulement dans un second temps que des statisticiens ont commencé à réfléchir à ce
qu’ils pourraient bien faire de cette nouvelle source d’information. D’où une question
naturelle : comment le domaine de la statistique s’est-il retrouvé sens dessus dessous ?
La réponse d’Efron et Hastie pourrait se résumer en un mot : ordinateur. Ou, de
manière moins succincte :

La technologie informatique permet aux scientifiques de collecter d’immenses
jeux de données, d’une taille de plusieurs ordres de grandeur supérieure à celles
pour lesquelles la théorie statistique classique a été conçue ; les données mas-
sives requièrent de nouvelles méthodes, et ce besoin est satisfait par une vague
d’algorithmes statistiques innovants reposant sur le calcul par ordinateur.

Il est plutôt aisé de comprendre comment l’avènement des ordinateurs permet la
généralisation de méthodes que les statisticiens de l’ère de la règle à calcul ne pouvaient
pas même imaginer. La mécanique par laquelle les ordinateurs fournissent une quan-
tité quasiment infinie de données à analyser mérite cependant une étude plus poussée.
En effet, le terme approprié pourrait ici être "informatisation" plutôt qu’"ordinateur".

On définit ici l’informatisation comme une démarche globale consistant à remod-
eler toutes sortes d’activités par l’utilisation d’ordinateurs (ce dernier terme étant ici
à prendre dans son acception étendue, incluant notamment les ordiphones). Écouter
de la musique par le biais d’un service de streaming constitue ainsi un exemple
d’informatisation, au même titre que l’achat de disques sur Internet plutôt que chez
un disquaire. L’aspect important est ici le suivant : dès lors qu’un nombre croissant
d’activités et autres aspects de la vie quotidienne passent par la médiation d’outils
informatiques, de plus en plus de données liées à une variété toujours plus grande de
sujets deviennent disponibles. En effet, du fait de la capacité innée des ordinateurs à
enregistrer tout ce qui leur arrive, collecter des données sur n’importe quel phénomène
devient trivial une fois ce dernier informatisé : plus besoin de dispositifs expérimen-
taux coûteux ou d’intenses réflexions préalables concernant le choix des données à
collecter, toute l’information que l’on pourrait souhaiter avoir est déjà là. Naturelle-
ment, le fait d’enregistrer toutes sortes de données avant même de réfléchir à leurs
possibles usages soulève de nouveaux problèmes [Jagadish et al., 2014] : la volumétrie,
bien sûr, mais aussi l’hétérogénéité des données, leur format parfois peu pratique, et
l’omniprésence des erreurs et autres valeurs manquantes.

Les journaux d’événements informatiques, tels que les enregistrements Windows
Security Auditing ou NetFlow évoqués ci-dessus, appartiennent à une espèce partic-
ulière de coproduits de l’informatisation : encore mieux que des activités médiées par
ordinateur, ils décrivent la vie des ordinateurs eux-mêmes. Tout comme n’importe

A.1. Supervision des réseaux informatiques et données massives 141

quelle source de données de l’ère de l’informatique, ils contiennent une certaine quan-
tité d’informations précieuses, dissimulées par leur volume et leur format extravagants.
Il est donc tentant de leur appliquer quelque algorithme statistique récent et de voir
ce qui en ressort – mais dans quel but, au fait ?

Il se trouve que la réponse à cette question provient également d’une informatisa-
tion globale et pas toujours parfaitement réfléchie. En effet, la transhumance général-
isée vers Internet a eu pour effet secondaire d’exposer une part toujours croissante de
nos vies à la menace également croissante des cyberattaques. La diffusion mondiale
de vers informatiques comme ILOVEYOU [Knight, 2000] ou Slammer [Moore et al.,
2003] avait déjà laissé entrevoir le potentiel de déstabilisation d’un usage malveillant
de l’informatique, mais ce n’était que le début. Très vite, divers acteurs commencèrent
à cibler des victimes tout aussi diverses pour toute une variété de raisons. Des at-
taquants techniquement sophistiqués et soupçonnés d’agir pour le compte d’États
furent repérés en train de dérober de la propriété intellectuelle et d’autres données sen-
sibles à des entreprises et des gouvernements [Mandiant, 2013, FireEye, 2015], tandis
que d’autres mettaient leur savoir-faire au service d’actions de sabotage [Kerr et al.,
2010, Park andWalstrom, 2017] ou d’attaques motivées par des gains financiers [Traut-
man and Ormerod, 2018]. Les criminels trouvèrent également d’alléchantes opportu-
nités dans le cyberespace, avec pour conséquence des opérations de vol de données ou
d’extorsion menant à d’immenses fuites de données privées [NCSC, 2017], des pertes
financières colossales [IBM, 2020] et, par ricochet, des décès [Wetsman, 2020].

Face à une menace aussi remuante, les défenseurs des systèmes d’information n’ont
guère d’autre choix que d’accroître leurs capacités. Si le durcissement de leurs réseaux
et systèmes constitue une protection nécessaire, celle-ci ne saurait être suffisante : avec
suffisamment de savoir-faire et de détermination, un attaquant parviendra toujours à
contourner ces défenses. Il est donc indispensable de pouvoir détecter les intrusions le
plus vite possible, et idéalement dès leur commencement. Les journaux d’événements
semblent alors connaître leur moment de gloire : puisqu’ils enregistrent tout ce qui
se passe à l’intérieur du réseau supervisé, ils devraient en particulier contenir des
traces de toute forme d’activité malveillante. Hélas, ils contiennent aussi (et surtout)
une quantité écrasante d’informations sans intérêt – une telle quantité que dans bien
des situations, personne n’essaie réellement d’examiner le contenu des journaux. Par
conséquent, les intrus parviennent à éviter la détection pendant de longues périodes
malgré l’existence de signes indiscutables de leur présence dans les journaux : 207
jours en moyenne d’après l’édition 2020 de l’étude annuelle Cost of a Data Breach
réalisée par IBM [IBM, 2020].

Cette situation suscite un besoin d’outils plus sophistiqués pour l’analyse de jour-
naux d’événements, et les méthodes statistiques développées dans les dernières dé-
cennies en réponse à la disponibilité croissante de jeux de données volumineux et
diversifiés apparaissent comme des candidats idéaux. En un sens, la boucle est ainsi
bouclée : après des années d’effervescence durant lesquelles l’informatisation a démul-
tiplié les capacités de collecte et d’analyse de données, favorisant ainsi l’innovation
dans le domaine statistique, les fruits de cette innovation sont à présent mis à profit
pour combattre certains des effets secondaires indésirables de cette même informatisa-
tion. Cette thèse est notre modeste contribution à ce vaste effort. S’inspirant de divers
domaines de recherche tels que les systèmes de recommandation, la bioinformatique, la
vision par ordinateur ou encore les systèmes dynamiques, elle s’inscrit dans la volonté
de construire des outils efficaces pour la détection de comportements malveillants dans
les journaux d’événements. Cette tâche n’est assurément pas aisée, et elle recouvre
en réalité plusieurs sous-problèmes que nous présentons dans les sections suivantes.
Tout d’abord, appliquer un modèle statistique aux journaux d’événements est plus

142 Appendix A. Résumé des contributions

ardu qu’il n’y paraît : ces données sont en fait particulièrement complexes, ce que
nous illustrons dans la Section A.2. De plus, il n’est pas non plus évident de définir
un comportement malveillant du point de vue des données, sans même parler de le
détecter. Les méthodes statistiques pour la détection d’intrusion contournent typique-
ment ce problème en recourant à la détection d’anomalies, et ce lien est souligné dans
la Section A.3. Nos contributions, résumées dans la Section A.4, couvrent chacun de
ces deux aspects.

A.2 Représentation et modélisation de données complexes
et multi-facettes

Deux principaux défis compliquent la construction d’un modèle statistique pour les
journaux d’événements. Tout d’abord, la complexité des données rend délicat le choix
d’une représentation mathématique appropriée. En effet, aucun des objets mathé-
matiques usuellement étudiés en statistique et en analyse de données ne retranscrit
pleinement les multiples facettes des journaux d’événements, que nous présentons
brièvement dans la Section A.2.1. De plus, ayant conçu une représentation idoine,
la construction d’un modèle statistique adéquat demande également une réflexion
poussée : comme nous l’expliquons dans la Section A.2.2, prendre en compte toutes
les caractéristiques des données nécessite un modèle ad hoc, suscitant lui-même le
besoin d’une procédure d’inférence appropriée.

A.2.1 Construction d’une représentation abstraite pour des données
complexes

La notion de journal d’événement considérée dans cette thèse recouvre diverses sources
de données concrètes, parmi lesquelles on retrouve les journaux Windows Security Au-
diting et NetFlow évoqués ci-dessus. Bien que chacune de ces variantes possède ses
traits distinctifs, nous nous focalisons sur ce qu’elles ont en commun afin de ne pas
restreindre les cas d’application de nos contributions. En particulier, la principale spé-
cificité de toutes les sources de données que nous considérons est qu’elles ne s’insèrent
naturellement dans aucun formalisme mathématique usuel.

Les journaux d’événements sont multi-facettes. Les journaux d’événements
sont en premier lieu des données combinatoires, en ce que chaque événement est défini
par un nombre fini de champs contenant en majorité des valeurs discrètes : noms
d’utilisateurs et d’hôtes, adresses IP, etc. Cependant, ils sont aussi intrinsèquement
hétérogènes : les entités désignées par chacun de ces champs, de même que les événe-
ments eux-mêmes, peuvent être de différents types. En d’autres termes, un utilisateur
n’est pas équivalent à une adresse IP, et une création de processus n’a pas la même
signification qu’un enregistrement NetFlow d’une communication entre deux hôtes.
Enfin, chaque événement est horodaté, et la probabilité d’observer un certain événe-
ment n’est pas nécessairement constante dans le temps : elle peut en effet montrer
des variations saisonnières ou une évolution de plus long terme. De plus, on peut
s’attendre à des dépendances statistiques entre des événements successifs : par exem-
ple, la probabilité d’une création de processus impliquant l’utilisateur U et l’hôte H
devrait intuitivement être plus élevée si U a récemment ouvert une session sur H. Ces
deux propriétés dotent les journaux d’événements d’une dimension temporelle.

Bien qu’aucune de ces trois caractéristiques ne soit inconnue du statisticien ex-
périmenté, il est plus rare de les voir toutes trois réunies. En conséquence, aucun des

A.2. Représentation et modélisation de données complexes et multi-facettes 143

objets mathématiques habituellement étudiés ne représente parfaitement ces multiples
facettes : les matrices et les tenseurs peuvent par exemple traduire adéquatement des
données combinatoires, mais leur usage devient inadapté lorsque des événements de
différents types décrits par un nombre variable de champs sont considérés. De même,
les processus ponctuels et les séries temporelles peuvent restituer pleinement la dimen-
sion temporelle des séquences d’événements, mais inclure un caractère combinatoire
dans l’un ou l’autre de ces formalismes n’a rien d’immédiat.

Deux directions opposées. Puisque les journaux d’événements ne peuvent être
parfaitement représentés par les objets mathématiques usuels, les outils statistiques
existants ne peuvent pas être appliqués directement : l’important fossé sémantique
séparant les données du modèle doit être comblé. La majorité des travaux existants ré-
sout ce problème en adaptant les données au modèle, simplifiant suffisamment celles-ci
pour les rendre compatibles avec un cadre théorique classique [Yen et al., 2013, Legg
et al., 2015, Hu et al., 2017]. Cela induit une perte significative d’information, limitant
en fin de compte les performances de la procédure de détection dans son ensemble :
une fois les aspects importants des données effacés, même le plus sophistiqué des algo-
rithmes est incapable de les retrouver. Par conséquent, des contributions récentes ont
adopté une approche diamétralement opposée, proposant des modèles mieux adap-
tés plutôt que de simplifier à outrance les données [Tuor et al., 2018, Amin et al.,
2019, Leichtnam et al., 2020b]. En particulier, des avancées importantes ont été réal-
isées concernant la modélisation de la combinatoire des événements. Nous appuyant
sur ces percées récentes, nous proposons une représentation abstraite des journaux
d’événements tournant autour de la notion d’interaction.

Une approche centrée sur les interactions. L’intuition fondamentale qui sous-
tend cette thèse est que les événements devraient être considérés comme des interac-
tions entre entités. En plus de mettre en exergue leur caractère combinatoire, cette de-
scription suggère également que les événements résultent de l’intrication de comporte-
ments individuels. En d’autres termes, elle repose sur une dualité entité-événement :
les événements passés nous permettent d’inférer le rôle et le comportement habituel
de chaque entité (utilisateur, hôte, processus, etc.), et les événements futurs peuvent
alors être prédits en s’appuyant sur cette connaissance. La principale motivation de
cette approche réside dans le constat que les événements malveillants sont souvent
des interactions rares. Par exemple, un attaquant utilisant des identifiants volés pour
explorer un réseau compromis devrait générer plusieurs interactions inhabituelles en-
tre le compte utilisateur correspondant, un hôte source et diverses destinations. Il
semble donc pertinent de se focaliser sur les interactions dans le cadre de la détection
d’intrusion. Cependant, une telle approche soulève de nouvelles difficultés en matière
de modélisation statistique.

A.2.2 Modélisation statistique de données non-numériques

La modélisation à grande échelle d’interactions entre entités est un sujet relativement
récent en statistique – typiquement l’un de ceux dont la popularité a été accrue par
l’informatisation. Au-delà des problématiques liées à la nature combinatoire de telles
données, il faut également tenir compte des deux caractéristiques supplémentaires
identifiées dans la section précédente, c’est-à-dire les aspects hétérogène et temporel
des journaux d’événements. Cela rend particulièrement délicate la conception d’un
modèle adéquat.

144 Appendix A. Résumé des contributions

Modélisation de données combinatoires. D’une manière générale, une variable
aléatoire combinatoire est une variable aléatoire discrète dont les réalisations sont
issues d’un ensemble combinatoire, comme par exemple l’ensemble des parties d’un
ensemble fini [Bekkerman et al., 2006]. Le principal défi lié à la modélisation de telles
variables provient de la grande dimension de l’espace des observations. Un exemple
lié aux journaux d’événements peut être formulé comme suit : soit U un ensemble
d’utilisateurs, S un ensemble d’hôtes sources et D un ensemble d’hôtes destinations.
Un événement d’ouverture de session distante peut alors être vu comme un triplet
T = (U, S,D) ∈ U×S×D indiquant que l’utilisateur U s’est connecté depuis S versD.
On se donne ici pour but d’estimer la distribution de T à partir d’un ensemble de n
événements passés, noté {(ui, si, di)}ni=1. Dans un réseau informatique réel, chacun
des ensembles U , S et D peut typiquement contenir des milliers, voire des dizaines de
milliers d’éléments. Le nombre de valeurs possibles pour T est donc compris entre 109

et 1012. Sans hypothèse supplémentaire sur la distribution sous-jacente, le nombre
d’observations n doit ainsi être immense pour réaliser une quelconque inférence de
manière raisonnablement fiable. Pire encore, la taille de l’espace des observations croît
exponentiellement avec le nombre d’entités impliquées dans les événements considérés,
et ce dernier n’a aucune raison d’être limité à trois.

La construction d’un modèle fiable pour des données combinatoires passe donc
nécessairement par une forme de réduction dimensionnelle. Nous nous appuyons pour
cela sur le concept de modèle à espace d’états [Turnbull, 2020]. L’intuition essentielle
qui sous-tend cette approche est que la propension d’une entité donnée à interagir
avec les autres dépend d’un petit nombre d d’attributs latents de cette entité. En
considérant à nouveau l’exemple des ouvertures de session, soit g : U ∪ S ∪ D → Rd
la fonction inconnue associant à chaque entité son vecteur d’attributs. Un modèle
raisonnable pour le triplet aléatoire T peut alors être défini par

∀(u, s, d) ∈ U × S ×D, P
[
T = (u, s, d)

]
= f

(
g(u), g(s), g(d)

)
, (A.1)

avec f : Rd ×Rd ×Rd → [0, 1] une fonction d’affinité connue. L’inférence de la distri-
bution complète de T se ramène alors à l’estimation des d attributs latents de chaque
entité, soit d(|U|+ |S|+ |D|) paramètres à apprendre – une réduction significative par
rapport aux |U| · |S| · |D| paramètres correspondant à l’estimation naïve de la fonction
de masse de probabilité.

Des modèles à espace d’états ont été proposés pour diverses sortes d’interactions,
notamment certaines liées aux journaux d’événements et à la détection d’intrusion [Tur-
cotte et al., 2016a, Amin et al., 2019, Lee et al., 2021, Sanna Passino et al., 2020].
Cependant, ces contributions étudient principalement des interactions dyadiques, ce
qui s’avère insuffisant dans le cas des journaux d’événements : comme le montre
l’exemple des ouvertures de session mentionné ci-dessus, supposer que les événements
n’impliquent jamais plus de deux entités semble excessivement réducteur. Par con-
séquent, une partie de nos travaux (présentée dans le Chapitre 4) consiste en la con-
ception d’un modèle à espace d’états adapté aux interactions polyadiques.

Prise en compte de l’hétérogénéité. Un autre trait spécifique aux journaux
d’événements par rapport à d’autres types d’interactions est leur hétérogénéité, qui
se manifeste essentiellement par l’existence de plusieurs types d’événements. Cette
spécificité ne peut être ignorée dans la conception d’un modèle statistique : le fait
qu’un utilisateur U s’authentifie usuellement auprès d’un serveur S ne devrait ainsi
clairement pas mener à penser que U est censé modifier régulièrement des fichiers
système sur S. Par conséquent, notre modèle à espace d’états doit tenir compte des

A.2. Représentation et modélisation de données complexes et multi-facettes 145

différences entre types d’événements. En reprenant les notations de l’Équation A.1, il
semble raisonnable d’intégrer cette distinction en rendant la fonction d’affinité f spé-
cifique à un type d’événement, tout en réutilisant la même fonction de représentation
g pour tous les types. Cette intuition peut être rattachée au champ de l’apprentissage
multitâche [Caruana, 1997] : il a ainsi été montré que l’apprentissage simultané de
plusieurs tâches liées les unes aux autres donnait de meilleures performances que
l’apprentissage indépendant de chacune des tâches. Une interprétation répandue de
ce phénomène consiste à voir les tâches auxiliaires comme une source de biais induc-
tif. En d’autres termes, en cherchant un modèle performant pour toutes les tâches,
les algorithmes d’apprentissage multitâche restreignent la classe des modèles possibles
pour chacune des tâches, rendant ainsi l’apprentissage plus efficace. Appliqué aux
journaux d’événements et aux modèles à espace d’états, ce constat implique que la
recherche d’attributs latents expliquant le comportement d’une entité pour tous les
types d’événements est susceptible d’aboutir à un modèle plus réaliste.

Le principal défi de l’apprentissage multitâche consiste à trouver un équilibre
adéquat entre les différentes tâches. En effet, minimiser conjointement l’erreur com-
mise par le modèle pour chacune des tâches se ramène à un problème d’optimisation
multi-objectif, ce qui est significativement plus complexe que le problème usuel de
l’apprentissage d’une seule tâche. Par exemple, une certaine mise à jour des attributs
latents de l’utilisateur U pourrait mener à de meilleures prédictions pour les authen-
tifications effectuées par U tout en dégradant les prédictions liées aux créations de
processus impliquant U . Que faire dans une telle situation ? Afin de répondre à cette
question et de proposer une procédure d’apprentissage adaptée pour notre modèle,
nous nous inspirons de travaux antérieurs dans le domaine de l’apprentissage multi-
tâche [Kendall et al., 2018].

Adaptation à des flux de données non-stationnaires. Enfin, la dimension tem-
porelle des journaux d’événements doit être prise en compte dans la construction d’un
modèle statistique. En particulier, les modes d’interaction habituels dans un réseau
supervisé ne peuvent pas raisonnablement être supposés constants dans le temps : les
utilisateurs endossent de nouveaux rôles organisationnels ou commencent à travailler
sur de nouveaux projets, tandis que les serveurs se mettent à héberger de nouvelles
applications, et ainsi de suite. De plus, de nouvelles entités apparaissent fréquemment
(comptes utilisateurs pour des nouveaux venus ou nouvelles machines, par exemple).
Par conséquent, un modèle statique risque de devenir rapidement obsolète dans un
contexte réaliste de supervision de sécurité. Heureusement, les modèles à espace
d’états peuvent être naturellement étendus à la modélisation de flux d’interactions
non-stationnaires.

En effet, puisque la probabilité d’une interaction donnée ne dépend que des at-
tributs latents des entités impliquées, maintenir le modèle à jour ne requiert qu’un
suivi de l’évolution de ces attributs latents. En réutilisant encore une fois les nota-
tions de l’Équation A.1, cela revient à remplacer la fonction g par une suite {gt}t≥0,
où chaque indice t ≥ 0 représente un pas temporel. Cela peut se comprendre dans le
contexte des journaux d’événements : les changements dans la structure des interac-
tions observées résultent de modifications liées aux entités, comme l’apparition d’un
nouvel hôte dans le réseau ou un changement dans les habitudes d’un utilisateur.

Du point de vue de l’inférence, une analogie peut être tracée entre l’utilisation
d’événements observés pour suivre l’évolution de la fonction latente g et le cadre
théorique plus général des modèles de Markov cachés. En effet, les événements ob-
servés entre les pas temporels t − 1 et t peuvent être vus comme des échantillons
d’une loi d’émission Qt dépendant de la fonction de représentation gt. De même, la

146 Appendix A. Résumé des contributions

séquence {gt}t≥0 peut être vue comme un processus markovien latent caractérisé par
un noyau de transition P . L’inférence de la fonction de représentation gt à partir
des événements observés jusqu’à l’instant t se ramène alors à un problème de filtrage.
Nous nous appuyons sur ce parallèle dans le Chapitre 5 pour concevoir une procédure
de mise à jour de notre modèle à espace d’états.

A.3 Détection robuste d’anomalies pertinentes

La construction d’un modèle statistique pour les journaux d’événements est un pre-
mier pas vers leur exploitation à des fins de sécurité. Cependant, elle ne permet pas
directement la détection d’intrusion : des efforts supplémentaires sont nécessaires pour
repérer des comportements malveillants à l’aide de ce modèle. L’idée centrale est que
les événements découlant d’une intrusion devraient être anormaux et, par conséquent,
improbables d’après le modèle, comme expliqué dans la Section A.3.1. Cependant, de
nombreux événements inhabituels sont constamment observés dans un réseau infor-
matique réel. De ce fait, la simple recherche d’événements improbables génère plus de
faux positifs que de réelles détections, et la Section A.3.2 présente les améliorations
que nous proposons pour dépasser ce problème.

A.3.1 Les événements malveillants sont anormaux...

Si la détection d’intrusion est un problème remarquablement difficile, c’est parce que
les comportements malveillants ne peuvent être caractérisés d’une manière à la fois
générique et fiable : leur seul trait commun est que l’administrateur légitime du réseau
ciblé les considère comme indésirables, et cette propriété n’apparaît évidemment pas
explicitement dans les journaux. Seules deux approches sont donc envisageables :
compiler des descriptions explicites du plus grand nombre possible d’actions malveil-
lantes spécifiques, ou tenter de définir une caractérisation indirecte mais plus générale.
C’est dans cette seconde approche que s’inscrit cette thèse.

Une caractérisation indirecte. L’ensemble des événements qui pourraient théorique-
ment résulter d’un comportement malveillant est à la fois immense et complexe. Con-
sidérons par exemple un attaquant tentant de s’introduire dans le réseau ciblé en
collectant des identifiants par le biais d’une campagne de hameçonnage. Ayant passé
avec succès cette première étape, l’attaquant se connectera typiquement à un point
d’accès de réseau privé virtuel (VPN) avec les identifiants volés, puis il utilisera ces
mêmes identifiants pour se latéraliser au sein du réseau et collecter des informations.
Du point de vue des journaux d’événements, on peut attendre d’un tel comportement
qu’il génère toutes sortes d’authentifications distantes : les identifiants volés peuvent
appartenir à n’importe quel utilisateur, et les hôtes sources et destinations peuvent
également correspondre à n’importe quelle machine du réseau interne. De plus, aucune
spécificité ne distingue les événements malveillants des autres : pris indépendamment,
chaque champ de chaque événement lié à l’intrusion semble en tout point légitime.
Comme évoqué plus haut (et développé plus amplement dans le Chapitre 2), la seule
caractéristique que l’on peut raisonnablement s’attendre à trouver chez les événe-
ments malveillants est qu’ils impliquent des entités qui n’interagissent pas ensemble
d’habitude. Par conséquent, plutôt que d’essayer de décrire l’ensemble des authentifi-
cations distantes potentiellement malveillantes, une approche plus prosaïque consiste
à caractériser les motifs d’interaction correspondant aux comportements légitimes

A.3. Détection robuste d’anomalies pertinentes 147

habituels. Un événement futur peut alors être considéré comme suspect s’il ne corre-
spond pas à cette caractérisation. Cette approche est communément appelée détection
d’anomalies.

Détection d’anomalies combinatoires. Si la détection d’anomalies est un sujet
largement étudié [Chandola et al., 2009], son application à des données combinatoires
soulève des problématiques spécifiques. En effet, une anomalie se définit intuitivement
comme une observation de faible probabilité, et la détection de telles observations se
ramène ainsi à la construction d’un modèle statistique à partir de données normales,
puis au calcul d’une probabilité estimée pour chaque nouvelle observation à l’aide de
ce modèle. Cependant, une loi conjointe sur un espace combinatoire n’est en réalité
que peu informative. Supposons par exemple que l’on observe une authentification
distante (u, s, d) ∈ U×S×D avec une faible probabilité estimée. Plusieurs explications
peuvent en fait être avancées pour cette faible probabilité : u pourrait par exemple
être censé se connecter à d, mais pas depuis s. On peut également penser que u
n’est censé interagir ni avec s, ni avec d. Plus généralement, toute partie non-vide de
l’ensemble des entités impliquées dans une interaction donnée peut fournir une raison
suffisante pour considérer l’interaction tout entière comme suspecte du point de vue
de la sécurité. Les algorithmes de détection d’anomalies combinatoires doivent donc
reposer sur une description plus fine de la distribution. Ce problème a été abordé
dans la littérature liée à la fouille de données et à l’apprentissage statistique [Das and
Schneider, 2007, Akoglu et al., 2012, Amin et al., 2019], et nous nous inspirons de
ces contributions passées pour concevoir notre algorithme de détection d’événements
anormaux dans le Chapitre 4.

A.3.2 ...mais tous les événements anormaux ne sont pas malveillants

En supposant que les événements résultant d’une intrusion sont anormaux, être en
capacité de détecter des interactions anormales entre entités est une condition néces-
saire de la détection d’intrusion. Celle-ci n’est cependant pas suffisante : de nombreux
événements légitimes sont également anormaux au sens statistique, et distinguer ces
événements de ceux que l’on souhaite réellement détecter requiert un nouveau traite-
ment, ainsi que de nouvelles hypothèses.

Des anomalies partout. À chaque fois qu’un salarié quelconque clique au mauvais
endroit et ouvre le mauvais partage réseau dans son interface graphique, un événement
anormal est généré. Cependant, on se convaincra aisément que l’administrateur du
réseau ne souhaite pas recevoir de notification dans un tel cas. Plus généralement,
de nombreuses activités légitimes se produisent de manière irrégulière – on pensera
par exemple au déploiement d’applications ou à d’autres tâches administratives. Du
fait de cette irrégularité, ces activités seront probablement déclarées anormales par les
modèles statistiques. Il est important de comprendre qu’il ne s’agit pas là d’une simple
imperfection du modèle, que l’on pourrait pallier avec plus de données d’entraînement
ou de meilleurs algorithmes : il existe tout simplement un pan entier du comportement
humain qui ne se prête pas à la prédiction. Par conséquent, il n’est pas suffisant de
détecter des événements anormaux : des étapes de traitement supplémentaires doivent
être mises en place pour éviter un taux de faux positifs inacceptable. Dans cette thèse,
ces étapes supplémentaires reposent sur une hypothèse fondamentale : les événements
liés à une intrusion sont non seulement anormaux, mais aussi reliés les uns aux autres
par les entités qu’ils impliquent.

148 Appendix A. Résumé des contributions

Exploitation des liens entre événements. Revenons à l’exemple du hameçon-
nage introduit plus haut. Les événements d’authentification distante découlant de
l’exploration du réseau par l’attaquant devraient théoriquement impliquer certaines
entités communes : en effet, chaque nouveau mouvement latéral effectué par l’attaquant
doit partir d’un hôte déjà compromis, et des identifiants volés pourraient également
être utilisés plus d’une fois. Plus généralement, chaque action effectuée par un at-
taquant devrait impliquer au moins une entité préalablement compromise, ce qui
génère des intersections entre les événements sous-jacents.

Ces relations peuvent typiquement être résumées par un graphe dont les som-
mets représentent les événements. Une arête entre deux événements traduit alors une
forme de similarité, qui doit être définie de telle manière que les événements liés à
une intrusion forment un sous-graphe densément connecté [Pei et al., 2016, Leicht-
nam et al., 2020a]. Un tel graphe ayant été construit, les scores d’anormalité associés
aux événements peuvent être vus comme un signal bruité structuré en graphe. Les
événements rares mais légitimes devraient alors correspondre à des pics isolés dans
ce signal, tandis que les grappes d’événements anormaux devraient apparaître sous
la forme de plateaux hauts. Nous déduisons deux méthodes de post-traitement de
cette intuition. Tout d’abord, comme nous l’expliquons dans le Chapitre 6, des outils
de traitement de signal sur graphe peuvent être employés pour débruiter les scores
d’anormalité, effaçant les faux positifs tout en préservant les scores élevés des événe-
ments malveillants. Par ailleurs, les sous-graphes connexes d’événements anormaux
peuvent être détectés automatiquement avant de déclencher une quelconque investi-
gation manuelle, aidant ainsi les analystes à concentrer leurs efforts sur les parties les
plus suspectes des journaux. Des méthodes visant à détecter de tels sous-graphes sont
présentées dans le Chapitre 7.

A.4 Contributions de cette thèse

En résumé, cette thèse aborde trois défis liés à l’analyse statistique de journaux
d’événements et à la détection d’intrusion : la représentation et la modélisation
des données, la détection d’événements anormaux et le post-traitement de scores
d’anormalité dans le but de classer les anomalies comme bénignes ou malveillantes.

Principales contributions. Notre première contribution est une définition rigoureuse
de la détection d’intrusion dans les journaux d’événements ainsi qu’une classifica-
tion détaillée des méthodes existantes. Cette formalisation du problème nous permet
d’identifier les caractéristiques les plus importantes des données, et nous nous ap-
puyons sur cette connaissance pour concevoir un algorithme de détection d’événements
anormaux reposant sur la modélisation par espace d’états et l’apprentissage multi-
tâche. Nous comparons cet algorithme avec des approches concurrentes issues de la
littérature et obtenons de meilleures performances de détection sur un jeu de don-
nées réel. Notre implémentation du modèle proposé est publiquement accessible.
Enfin, nous proposons une approche reposant sur les graphes d’événements pour le
post-traitement de scores d’anormalité. Notre méthodologie comprend deux aspects :
nous expérimentons tout d’abord l’utilisation de deux outils de traitement de signal
sur graphe pour débruiter les scores d’anormalité en s’appuyant sur la structure du
graphe des événements. Nous étudions ensuite le problème de la détection de sous-
graphe anormal dans un graphe dont les sommets portent des observations scalaires.
Dans ce cadre, nous proposons deux nouvelles procédures de détection et les évaluons

A.4. Contributions de cette thèse 149

contre des méthodes existantes sur un jeu de données synthétique. Nos procédures
sont également appliquées à des graphes d’événements réels.

Sur l’évaluation des méthodes de détection. Il n’est pas simple d’évaluer la
pertinence et l’utilité de nos contributions. En effet, les modèles et algorithmes que
nous proposons sont conçus sur mesure pour un cas d’usage spécifique, ce qui les
rend peu adaptés à l’analyse théorique. De plus, l’évaluation empirique s’avère égale-
ment complexe : du fait de la grande diversité des réseaux informatiques et des com-
portements malveillants, les résultats obtenus sur un seul jeu de données ne donnent
qu’une vision partielle. Cependant, en l’absence d’un meilleur critère, nous évaluons
l’applicabilité et l’efficacité de nos algorithmes sur un jeu de données réel publié par
le Los Alamos National Laboratory, intitulé "Comprehensive, Multi-Source Cyber-
Security Events" [Kent, 2015a, Kent, 2015b]. L’intérêt de ce jeu de données réside en
grande partie dans la présence de traces annotées d’un test d’intrusion (autrement dit,
une intrusion réalisée par des experts en sécurité pour évaluer le niveau de sécurité
du réseau). Par conséquent, la capacité de nos algorithmes à détecter de l’activité
malveillante peut être estimée à l’aide de ces annotations. Nous décrivons le jeu de
données plus en détail dans le Chapitre 2.

Structure de la thèse. La suite de cette thèse est divisée en trois parties, cha-
cune d’entre elles détaillant l’une de nos trois principales contributions : formali-
sation et classification de la littérature, détection d’événements anormaux, et post-
traitement de scores d’anormalité à l’aide de graphes d’événements. Chacun de ces
sujets peut être associé à un maillon d’une chaîne globale de traitement des journaux
d’événements, illustrée par la Figure A.1.

La Partie I pose tout d’abord le décor en définissant formellement le problème
considéré et en passant en revue les travaux existants. Nous introduisons quelques
notions élémentaires dans le Chapitre 2, en particulier celles d’événement, de journal et
d’intrusion. En partant de ces définitions, nous proposons une formulation générique
de la détection d’intrusion dans des journaux d’événements et mettons en évidence
certaines des difficultés liées à ce problème. Nous nous appuyons ensuite sur ce for-
malisme pour décrire et comparer les algorithmes de détection publiés précédemment,
ce qui aboutit à une taxinomie des approches existantes dans le Chapitre 3. Cette
taxinomie met l’accent sur les choix de représentation ainsi que les hypothèses de
modélisation caractérisant chacun des travaux considérés, et nous relions ces choix et
hypothèses aux diverses facettes des données. Une partie des travaux présentés dans
cette partie a été publiée à la Conference on Artificial Intelligence for Defense (CAID
2020) [Larroche et al., 2020b].

La Partie II présente ensuite notre algorithme de détection d’événements anor-
maux, ainsi que le modèle statistique et la procédure d’inférence sous-jacents. Le
but de notre algorithme est de tenir compte des trois principaux aspects des jour-
naux d’événements, à savoir les dimensions combinatoire, hétérogène et temporelle.
Les deux premiers aspects sont traités dans le Chapitre 4, qui décrit notre mod-
èle à espace d’états pour les interactions polyadiques hétérogènes. Nous détaillons
également l’algorithme d’apprentissage associé, en mettant en évidence les défis sup-
plémentaires liés à l’existence de plusieurs types d’événements. Le Chapitre 5 ajoute
ensuite l’aspect temporel, tirant parti du parallèle entre les modèles à espace d’états
et le filtrage bayésien pour concevoir une procédure de mise à jour des paramètres de
notre modèle. Des parties de ces deux chapitres ont été prépubliées sans revue par les
pairs [Larroche et al., 2021b].

150 Appendix A. Résumé des contributions

NETFLOW

EVTX

IDS

Représentation
formelle

X1,...,Xn
Détection

d'anomalies

Interactions
polyadiques
hétérogènes

Données brutes

Y1,...,Yn

Scores d'anormalité
des événements

Analyse du graphe
des événements !

Alertes

Partie I Partie II Partie III

Figure A.1: Chaîne de traitement des journaux d’événements et parties correspondantes de
la thèse.

Enfin, la Partie III a pour thème le post-traitement de scores d’anormalité à l’aide
de graphes d’événements. Le Chapitre 6 décrit notre procédure de construction des
graphes d’événements et présente des outils de traitement de signal sur graphe pou-
vant être utilisés pour débruiter les scores. Nous étudions ensuite la détection de
sous-graphe anormal dans le Chapitre 7, cette tâche étant définie de manière générique
comme un test d’hypothèse combinatoire. Afin de pallier le coût élevé des méthodes
de détection existantes, nous proposons deux tests peu onéreux reposant sur la théorie
de la percolation. Ces tests sont évalués contre des méthodes précédemment publiées
sur un jeu de données synthétique, et nous proposons également une première esti-
mation de leur efficacité pour des graphes d’événements réels. Plusieurs parties du
contenu du Chapitre 7 ont été publiées au Symposium on Intelligent Data Analysis
(IDA 2020) [Larroche et al., 2020a] et au European Symposium on Artificial Neural
Networks, Computational Intelligence and Machine Learning (ESANN 2021) [Lar-
roche et al., 2021a].

151

Bibliography

[Addario-Berry et al., 2010] Addario-Berry, L., Broutin, N., Devroye, L., and Lugosi,
G. (2010). On combinatorial testing problems. Ann. Stat., 38(5).

[Adilova et al., 2019] Adilova, L., Natious, L., Chen, S., Thonnard, O., and Kamp,
M. (2019). System misuse detection via informed behavior clustering and modeling.
In DSN-W.

[Agarwal et al., 2006] Agarwal, S., Branson, K., and Belongie, S. (2006). Higher order
learning with graphs. In ICML.

[Akoglu et al., 2012] Akoglu, L., Tong, H., Vreeken, J., and Faloutsos, C. (2012). Fast
and reliable anomaly detection in categorical data. In CIKM.

[Aksoy et al., 2019] Aksoy, S. G., Nowak, K. E., Purvine, E., and Young, S. J. (2019).
Relative hausdorff distance for network analysis. Appl. Netw. Sci., 4(1):80.

[Aksoylar et al., 2017] Aksoylar, C., Orecchia, L., and Saligrama, V. (2017). Con-
nected subgraph detection with mirror descent on sdps. In ICML.

[Aldairi et al., 2019] Aldairi, M., Karimi, L., and Joshi, J. (2019). A trust aware
unsupervised learning approach for insider threat detection. In IRI.

[Amin et al., 2019] Amin, M. R., Garg, P., and Coskun, B. (2019). Cadence: Condi-
tional anomaly detection for events using noise-contrastive estimation. In AISec.

[Arias-Castro et al., 2011] Arias-Castro, E., Candes, E. J., and Durand, A. (2011).
Detection of an anomalous cluster in a network. Ann. Stat., 39(1).

[Arias-Castro et al., 2008] Arias-Castro, E., Candès, E. J., Helgason, H., Zeitouni,
O., et al. (2008). Searching for a trail of evidence in a maze. Ann. Stat., 36(4).

[Arias-Castro et al., 2005] Arias-Castro, E., Donoho, D. L., Huo, X., et al. (2005).
Near-optimal detection of geometric objects by fast multiscale methods. IEEE
Trans. Inf. Theory, 51(7).

[Arias-Castro and Grimmett, 2013] Arias-Castro, E. and Grimmett, G. R. (2013).
Cluster detection in networks using percolation. Bernoulli, 19(2).

[Barabási and Albert, 1999] Barabási, A.-L. and Albert, R. (1999). Emergence of
scaling in random networks. Science, 286(5439).

[Behnel et al., 2010] Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D. S.,
and Smith, K. (2010). Cython: The best of both worlds. Comput. Sci. Eng.,
13(2):31–39.

[Bekkerman et al., 2006] Bekkerman, R., Sahami, M., and Learned-Miller, E. (2006).
Combinatorial markov random fields. In ECML.

152 BIBLIOGRAPHY

[Belkin and Niyogi, 2003] Belkin, M. and Niyogi, P. (2003). Laplacian eigenmaps for
dimensionality reduction and data representation. Neural Comput., 15(6):1373–
1396.

[Bergman, 1999] Bergman, N. (1999). Recursive Bayesian estimation: Navigation and
tracking applications. PhD thesis, Linköping University.

[Bhattacharjee et al., 2017] Bhattacharjee, S. D., Yuan, J., Jiaqi, Z., and Tan, Y.-P.
(2017). Context-aware graph-based analysis for detecting anomalous activities. In
ICME.

[Billsus et al., 1998] Billsus, D., Pazzani, M. J., et al. (1998). Learning collaborative
information filters. In ICML.

[Bohara et al., 2017] Bohara, A., Noureddine, M. A., Fawaz, A., and Sanders, W. H.
(2017). An unsupervised multi-detector approach for identifying malicious lateral
movement. In SRDS.

[Bohara et al., 2016] Bohara, A., Thakore, U., and Sanders, W. H. (2016). Intrusion
detection in enterprise systems by combining and clustering diverse monitor data.
In HotSoS.

[Böse et al., 2017] Böse, B., Avasarala, B., Tirthapura, S., Chung, Y.-Y., and Steiner,
D. (2017). Detecting insider threats using radish: a system for real-time anomaly
detection in heterogeneous data streams. IEEE Syst. J., 11(2):471–482.

[Bowman et al., 2020] Bowman, B., Laprade, C., Ji, Y., and Huang, H. H. (2020).
Detecting lateral movement in enterprise computer networks with unsupervised
graph AI. In RAID.

[Breunig et al., 2000] Breunig, M. M., Kriegel, H.-P., Ng, R. T., and Sander, J. (2000).
Lof: identifying density-based local outliers. In SIGMOD.

[Brown et al., 2018] Brown, A., Tuor, A., Hutchinson, B., and Nichols, N. (2018). Re-
current neural network attention mechanisms for interpretable system log anomaly
detection. In MLCS.

[Buczak and Guven, 2015] Buczak, A. L. and Guven, E. (2015). A survey of data
mining and machine learning methods for cyber security intrusion detection. IEEE
Commun. Surveys Tuts., 18(2):1153–1176.

[Callaway et al., 2000] Callaway, D. S., Newman, M. E., Strogatz, S. H., and Watts,
D. J. (2000). Network robustness and fragility: Percolation on random graphs.
Phys. Rev. Lett., 85(25).

[Cappé et al., 2006] Cappé, O., Moulines, E., and Rydén, T. (2006). Inference in
hidden Markov models. Springer.

[Carroll and Chang, 1970] Carroll, J. D. and Chang, J.-J. (1970). Analysis of individ-
ual differences in multidimensional scaling via an n-way generalization of “eckart-
young” decomposition. Psychometrika, 35(3):283–319.

[Caruana, 1997] Caruana, R. (1997). Multitask learning. Mach. Learn., 28(1):41–75.

[Chandola et al., 2009] Chandola, V., Banerjee, A., and Kumar, V. (2009). Anomaly
detection: A survey. ACM Comput. Surv., 41(3):1–58.

BIBLIOGRAPHY 153

[Chandola et al., 2010] Chandola, V., Banerjee, A., and Kumar, V. (2010). Anomaly
detection for discrete sequences: A survey. IEEE Trans. Knowl. Data Eng.,
24(5):823–839.

[Chang et al., 2017] Chang, S., Zhang, Y., Tang, J., Yin, D., Chang, Y., Hasegawa-
Johnson, M. A., and Huang, T. S. (2017). Streaming recommender systems. In
WWW.

[Chattopadhyay et al., 2018] Chattopadhyay, P., Wang, L., and Tan, Y.-P. (2018).
Scenario-based insider threat detection from cyber activities. IEEE Trans. Comput.
Soc. Syst., 5(3):660–675.

[Chen et al., 2016] Chen, T., Tang, L.-A., Sun, Y., Chen, Z., and Zhang, K. (2016).
Entity embedding-based anomaly detection for heterogeneous categorical events. In
IJCAI.

[Chen and Malin, 2011] Chen, Y. and Malin, B. (2011). Detection of anomalous in-
siders in collaborative environments via relational analysis of access logs. In CO-
DASPY.

[Chen et al., 2018] Chen, Z., Badrinarayanan, V., Lee, C.-Y., and Rabinovich, A.
(2018). Gradnorm: Gradient normalization for adaptive loss balancing in deep
multitask networks. In ICML.

[Chi and Kolda, 2012] Chi, E. C. and Kolda, T. G. (2012). On tensors, sparsity, and
nonnegative factorizations. SIAM J. Matrix Anal. Appl., 33(4):1272–1299.

[Chuang et al., 2007] Chuang, H.-Y., Lee, E., Liu, Y.-T., Lee, D., and Ideker, T.
(2007). Network-based classification of breast cancer metastasis. Mol. Syst. Biol.,
3(1):140.

[Chung, 1997] Chung, F. (1997). Spectral graph theory. American Mathematical Soc.

[Chung et al., 2009] Chung, F., Horn, P., and Lu, L. (2009). Percolation in general
graphs. Internet Mathematics, 6(3).

[Claise et al., 2004] Claise, B., Sadasivan, G., Valluri, V., and Djernaes, M. (2004).
Cisco systems netflow services export version 9. Technical report, RFC 3954, Oc-
tober.

[Collobert and Weston, 2008] Collobert, R. and Weston, J. (2008). A unified architec-
ture for natural language processing: Deep neural networks with multitask learning.
In ICML.

[Cuppens, 2001] Cuppens, F. (2001). Managing alerts in a multi-intrusion detection
environment. In ACSAC.

[Cuppens and Miege, 2002] Cuppens, F. and Miege, A. (2002). Alert correlation in a
cooperative intrusion detection framework. In S&P.

[Das and Schneider, 2007] Das, K. and Schneider, J. (2007). Detecting anomalous
records in categorical datasets. In KDD.

[Debar et al., 1992] Debar, H., Becker, M., and Siboni, D. (1992). A neural network
component for an intrusion detection system. In S&P.

154 BIBLIOGRAPHY

[Debar and Wespi, 2001] Debar, H. and Wespi, A. (2001). Aggregation and correla-
tion of intrusion-detection alerts. In RAID.

[Defferrard et al., 2017] Defferrard, M., Martin, L., Pena, R., and Perraudin, N.
(2017). Pygsp: Graph signal processing in python.

[Denning, 1987] Denning, D. E. (1987). An intrusion detection model. IEEE Trans.
Software Eng., (2):222–232.

[Du et al., 2017] Du, M., Li, F., Zheng, G., and Srikumar, V. (2017). Deeplog:
Anomaly detection and diagnosis from system logs through deep learning. In CCS.

[Duczmal and Assuncao, 2004] Duczmal, L. and Assuncao, R. (2004). A simulated
annealing strategy for the detection of arbitrarily shaped spatial clusters. Comput.
Stat. Data Anal., 45(2).

[Duczmal et al., 2006] Duczmal, L., Kulldorff, M., and Huang, L. (2006). Evaluation
of spatial scan statistics for irregularly shaped clusters. J. Comput. Graph. Stat.,
15(2).

[Efron, 1979] Efron, B. (1979). Bootstrap methods: Another look at the jackknife.
Ann. Stat., 7(1):1–26.

[Efron, 1987] Efron, B. (1987). Better bootstrap confidence intervals. J. Am. Stat.
Assoc., 82(397):171–185.

[Efron and Hastie, 2016] Efron, B. and Hastie, T. (2016). Computer age statistical
inference, volume 5. Cambridge University Press.

[Eldardiry et al., 2013] Eldardiry, H., Bart, E., Liu, J., Hanley, J., Price, B., and
Brdiczka, O. (2013). Multi-domain information fusion for insider threat detection.
In S&P Workshops.

[Erdős and Rényi, 1960] Erdős, P. and Rényi, A. (1960). On the evolution of random
graphs. Publ. Math. Inst. Hungar. Acad. Sci, 5.

[Eren et al., 2020] Eren, M. E., Moore, J. S., and Alexandro, B. S. (2020). Multi-
dimensional anomalous entity detection via poisson tensor factorization. In ISI.

[FireEye, 2015] FireEye (2015). Apt30: The mechanics behind a decade long cyber
espionage operation. https://www.fireeye.com/blog/threat-research/2015/
04/apt_30_and_the_mecha.html.

[Fisher, 1925] Fisher, R. A. (1925). Statistical methods for research workers. Oliver
and Boyd.

[Forrest et al., 1996] Forrest, S., Hofmeyr, S. A., Somayaji, A., and Longstaff, T. A.
(1996). A sense of self for unix processes. In S&P.

[Garchery and Granitzer, 2019] Garchery, M. and Granitzer, M. (2019). Identifying
and clustering users for unsupervised intrusion detection in corporate audit sessions.
In ICCC.

[Garchery and Granitzer, 2020] Garchery, M. and Granitzer, M. (2020). Adsage:
Anomaly detection in sequences of attributed graph edges applied to insider threat
detection at fine-grained level. arXiv preprint arXiv:2007.06985.

https://www.fireeye.com/blog/threat-research/2015/04/apt_30_and_the_mecha.html
https://www.fireeye.com/blog/threat-research/2015/04/apt_30_and_the_mecha.html

BIBLIOGRAPHY 155

[Garcia-Teodoro et al., 2009] Garcia-Teodoro, P., Diaz-Verdejo, J., Maciá-Fernández,
G., and Vázquez, E. (2009). Anomaly-based network intrusion detection: Tech-
niques, systems and challenges. Comput. Secur., 28(1-2):18–28.

[Gavai et al., 2015] Gavai, G., Sricharan, K., Gunning, D., Rolleston, R., Hanley, J.,
and Singhal, M. (2015). Detecting insider threat from enterprise social and online
activity data. In MIST.

[Gerhards et al., 2009] Gerhards, R. et al. (2009). The syslog protocol. Technical
report, RFC 5424, March.

[Glaz et al., 2001] Glaz, J., Naus, J., and Wallenstein, S. (2001). Scan Statistics.
Springer.

[Gonçalves et al., 2015] Gonçalves, D., Bota, J., and Correia, M. (2015). Big data
analytics for detecting host misbehavior in large logs. In TrustCom.

[Gopalan et al., 2015] Gopalan, P., Hofman, J. M., and Blei, D. M. (2015). Scalable
recommendation with hierarchical poisson factorization. In UAI.

[Grimmett, 1999] Grimmett, G. R. (1999). Percolation. Springer.

[Grover and Leskovec, 2016] Grover, A. and Leskovec, J. (2016). node2vec: Scalable
feature learning for networks. In KDD.

[Gui et al., 2016] Gui, H., Liu, J., Tao, F., Jiang, M., Norick, B., and Han, J. (2016).
Large-scale embedding learning in heterogeneous event data. In ICDM.

[Gui et al., 2017] Gui, H., Liu, J., Tao, F., Jiang, M., Norick, B., Kaplan, L., and Han,
J. (2017). Embedding learning with events in heterogeneous information networks.
IEEE Trans. Knowl. Data Eng., 29(11):2428–2441.

[Gultekin and Paisley, 2014] Gultekin, S. and Paisley, J. (2014). A collaborative
kalman filter for time-evolving dyadic processes. In ICDM.

[Gutflaish et al., 2019] Gutflaish, E., Kontorovich, A., Sabato, S., Biller, O., and
Sofer, O. (2019). Temporal anomaly detection: calibrating the surprise. In AAAI.

[Gutmann and Hyvärinen, 2010] Gutmann, M. and Hyvärinen, A. (2010). Noise-
contrastive estimation: A new estimation principle for unnormalized statistical
models. In AISTATS.

[Haas and Fischer, 2018] Haas, S. and Fischer, M. (2018). Gac: graph-based alert
correlation for the detection of distributed multi-step attacks. In SAC.

[Haidar and Gaber, 2018] Haidar, D. and Gaber, M. M. (2018). Adaptive one-class
ensemble-based anomaly detection: an application to insider threats. In IJCNN.

[Hamilton, 2020] Hamilton, W. L. (2020). Graph representation learning. Synth. Lect.
Artif. Intell. Mach. Learn., 14(3):1–159.

[Hammond et al., 2011] Hammond, D. K., Vandergheynst, P., and Gribonval, R.
(2011). Wavelets on graphs via spectral graph theory. Appl. Comput. Harmon.
Anal., 30(2):129–150.

[Harshman, 1970] Harshman, R. A. (1970). Foundations of the parafac procedure:
Models and conditions for an" explanatory" multimodal factor analysis. UCLA
Working Papers in Phonetics, 16:1–84.

156 BIBLIOGRAPHY

[Heard and Rubin-Delanchy, 2016] Heard, N. and Rubin-Delanchy, P. (2016).
Network-wide anomaly detection via the dirichlet process. In ISI.

[Heymann and Le Grand, 2013] Heymann, S. and Le Grand, B. (2013). Monitoring
user-system interactions through graph-based intrinsic dynamics analysis. In RCIS.

[Hitchcock, 1927] Hitchcock, F. L. (1927). The expression of a tensor or a polyadic
as a sum of products. J. Math. Phys., 6(1-4):164–189.

[Hochreiter and Schmidhuber, 1997] Hochreiter, S. and Schmidhuber, J. (1997). Long
short-term memory. Neural Comput., 9(8):1735–1780.

[Hofmann and Sick, 2009] Hofmann, A. and Sick, B. (2009). Online intrusion alert
aggregation with generative data stream modeling. IEEE Trans. Dependable Secure
Comput., 8(2):282–294.

[Hogan and Adams, 2018] Hogan, J. and Adams, N. M. (2018). A study of data fusion
for predicting novel activity in enterprise cyber-security. In ISI.

[Hu et al., 2017] Hu, Q., Tang, B., and Lin, D. (2017). Anomalous user activity
detection in enterprise multi-source logs. In ICDM Workshops.

[Huang et al., 2019a] Huang, J., Chen, C., Ye, F., Wu, J., Zheng, Z., and Ling, G.
(2019a). Hyper2vec: Biased random walk for hyper-network embedding. In DAS-
FAA.

[Huang et al., 2019b] Huang, J., Liu, X., and Song, Y. (2019b). Hyper-path-based
representation learning for hyper-networks. In CIKM.

[Huang et al., 2014] Huang, W., Song, G., Hong, H., and Xie, K. (2014). Deep ar-
chitecture for traffic flow prediction: deep belief networks with multitask learning.
IEEE Trans. Intell. Transp. Syst., 15(5):2191–2201.

[Hutchins et al., 2011] Hutchins, E. M., Cloppert, M. J., Amin, R. M., et al. (2011).
Intelligence-driven computer network defense informed by analysis of adversary
campaigns and intrusion kill chains. Leading Issues in Information Warfare &
Security Research, 1(1):80.

[IBM, 2020] IBM (2020). Cost of a data breach report 2020. https:
//www.ibm.com/security/digital-assets/cost-data-breach-report/1Cost%
20of%20a%20Data%20Breach%20Report%202020.pdf.

[Ideker et al., 2002] Ideker, T., Ozier, O., Schwikowski, B., and Siegel, A. F. (2002).
Discovering regulatory and signalling circuits in molecular interaction networks.
Bioinformatics, 18(suppl_1):S233–S240.

[Jagadish et al., 2014] Jagadish, H. V., Gehrke, J., Labrinidis, A., Papakonstantinou,
Y., Patel, J. M., Ramakrishnan, R., and Shahabi, C. (2014). Big data and its
technical challenges. Commun. ACM, 57(7):86–94.

[Jannach et al., 2010] Jannach, D., Zanker, M., Felfernig, A., and Friedrich, G.
(2010). Recommender systems: an introduction. Cambridge University Press.

[Julisch, 2003] Julisch, K. (2003). Clustering intrusion detection alarms to support
root cause analysis. TISSEC, 6(4):443–471.

https://www.ibm.com/security/digital-assets/cost-data-breach-report/1Cost%20of%20a%20Data%20Breach%20Report%202020.pdf
https://www.ibm.com/security/digital-assets/cost-data-breach-report/1Cost%20of%20a%20Data%20Breach%20Report%202020.pdf
https://www.ibm.com/security/digital-assets/cost-data-breach-report/1Cost%20of%20a%20Data%20Breach%20Report%202020.pdf

BIBLIOGRAPHY 157

[Kalman, 1960] Kalman, R. E. (1960). A new approach to linear filtering and predic-
tion problems. J. Basic Eng., 82(1):35–45.

[Karrer et al., 2014] Karrer, B., Newman, M. E., and Zdeborová, L. (2014). Percola-
tion on sparse networks. Phys. Rev. Lett., 113(20).

[Kendall et al., 2018] Kendall, A., Gal, Y., and Cipolla, R. (2018). Multi-task learning
using uncertainty to weigh losses for scene geometry and semantics. In CVPR.

[Kent, 2015a] Kent, A. D. (2015a). Comprehensive, multi-source cyber-security
events. Los Alamos National Laboratory.

[Kent, 2015b] Kent, A. D. (2015b). Cybersecurity data sources for dynamic network
research. In Dynamic Networks in Cybersecurity. Imperial College Press.

[Kent and Liebrock, 2013] Kent, A. D. and Liebrock, L. M. (2013). Differentiating
user authentication graphs. In S&P Workshops.

[Kent et al., 2015] Kent, A. D., Liebrock, L. M., and Neil, J. C. (2015). Authen-
tication graphs: Analyzing user behavior within an enterprise network. Comput.
Secur., 48:150–166.

[Kerr et al., 2010] Kerr, P. K., Rollins, J., and Theohary, C. A. (2010). The stuxnet
computer worm: Harbinger of an emerging warfare capability. Congressional Re-
search Service Washington, DC.

[Kesten, 1982] Kesten, H. (1982). Percolation theory for mathematicians. Springer.

[King and Chen, 2003] King, S. T. and Chen, P. M. (2003). Backtracking intrusions.
In SOSP.

[King et al., 2005] King, S. T., Mao, Z. M., Lucchetti, D. G., and Chen, P. M. (2005).
Enriching intrusion alerts through multi-host causality. In NDSS.

[Kingma and Ba, 2015] Kingma, D. P. and Ba, J. (2015). Adam: A method for
stochastic optimization. In ICLR.

[Kipf and Welling, 2017] Kipf, T. N. and Welling, M. (2017). Semi-supervised classi-
fication with graph convolutional networks. In ICLR.

[Klammer et al., 2010] Klammer, M., Godl, K., Tebbe, A., and Schaab, C. (2010).
Identifying differentially regulated subnetworks from phosphoproteomic data. BMC
Bioinform., 11(1):351.

[Knight, 2000] Knight, P. (2000). Iloveyou: Viruses, paranoia, and the environment
of risk. Sociol. Rev., 48(2_suppl):17–30.

[Kolda and Bader, 2009] Kolda, T. G. and Bader, B. W. (2009). Tensor decomposi-
tions and applications. SIAM Rev., 51(3):455–500.

[Köster and Rahmann, 2012] Köster, J. and Rahmann, S. (2012). Snakemake—a scal-
able bioinformatics workflow engine. Bioinformatics, 28(19):2520–2522.

[Kulldorff, 1997] Kulldorff, M. (1997). A spatial scan statistic. Commun. Stat. Theory
Methods, 26(6).

[Kulldorff et al., 2006] Kulldorff, M., Huang, L., Pickle, L., and Duczmal, L. (2006).
An elliptic spatial scan statistic. Stat. Med., 25(22).

158 BIBLIOGRAPHY

[Lakhina et al., 2004] Lakhina, A., Crovella, M., and Diot, C. (2004). Characteriza-
tion of network-wide anomalies in traffic flows. In IMC.

[Lancaster, 1952] Lancaster, H. (1952). Statistical control of counting experiments.
Biometrika, 39(3/4):419–422.

[Langovoy et al., 2013] Langovoy, M., Habeck, M., and Schölkopf, B. (2013). Spatial
statistics, image analysis and percolation theory. arXiv preprint arXiv:1310.8574.

[Langovoy and Wittich, 2013] Langovoy, M. and Wittich, O. (2013). Robust non-
parametric detection of objects in noisy images. J. Nonparametr. Stat., 25(2).

[Larroche et al., 2020a] Larroche, C., Mazel, J., and Clémençon, S. (2020a).
Percolation-based detection of anomalous subgraphs in complex networks. In IDA.

[Larroche et al., 2020b] Larroche, C., Mazel, J., and Clémençon, S. (2020b). Recent
trends in statistical analysis of event logs for network-wide intrusion detection. In
CAID.

[Larroche et al., 2021a] Larroche, C., Mazel, J., and Clémençon, S. (2021a). Anoma-
lous cluster detection in large networks with diffusion-percolation testing. In
ESANN.

[Larroche et al., 2021b] Larroche, C., Mazel, J., and Clémençon, S. (2021b). Dy-
namically modelling heterogeneous higher-order interactions for malicious behavior
detection in event logs. arXiv preprint arXiv:2103.15708.

[Lee et al., 2006] Lee, S., Chung, B., Kim, H., Lee, Y., Park, C., and Yoon, H. (2006).
Real-time analysis of intrusion detection alerts via correlation. Comput. Secur.,
25(3):169–183.

[Lee et al., 2021] Lee, W., McCormick, T. H., Neil, J., Sodja, C., and Cui, Y. (2021).
Anomaly detection in large scale networks with latent space models. Technometrics,
(just-accepted):1–23.

[Lee and Stolfo, 1998] Lee, W. and Stolfo, S. (1998). Data mining approaches for
intrusion detection. In USENIX Security.

[Lee et al., 1997] Lee, W., Stolfo, S. J., and Chan, P. K. (1997). Learning patterns
from unix process execution traces for intrusion detection. In AAAI Workshops.

[Legg et al., 2015] Legg, P. A., Buckley, O., Goldsmith, M., and Creese, S. (2015).
Automated insider threat detection system using user and role-based profile assess-
ment. IEEE Syst. J., 11(2):503–512.

[Leichtnam et al., 2020a] Leichtnam, L., Totel, E., Prigent, N., and Mé, L. (2020a).
Forensic analysis of network attacks: Restructuring security events as graphs and
identifying strongly connected sub-graphs. In EuroS&P Workshops.

[Leichtnam et al., 2020b] Leichtnam, L., Totel, E., Prigent, N., and Mé, L. (2020b).
Sec2graph: Network attack detection based on novelty detection on graph struc-
tured data. In DIMVA.

[Leskovec et al., 2010] Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos, C., and
Ghahramani, Z. (2010). Kronecker graphs: An approach to modeling networks. J.
Mach. Learn. Res., 11(2).

BIBLIOGRAPHY 159

[Li et al., 2014] Li, C., Georgiopoulos, M., and Anagnostopoulos, G. C. (2014).
Pareto-path multitask multiple kernel learning. IEEE Trans. Neural Netw. Learn.
Syst., 26(1):51–61.

[Lin et al., 2018] Lin, Y., Chen, Z., Cao, C., Tang, L.-A., Zhang, K., Cheng, W., and
Li, Z. (2018). Collaborative alert ranking for anomaly detection. In CIKM.

[Liu et al., 2019] Liu, F., Wen, Y., Zhang, D., Jiang, X., Xing, X., and Meng, D.
(2019). Log2vec: A heterogeneous graph embedding based approach for detecting
cyber threats within enterprise. In CCS.

[Liu et al., 2008] Liu, F. T., Ting, K. M., and Zhou, Z.-H. (2008). Isolation forest. In
ICDM.

[Liu et al., 2018a] Liu, L., De Vel, O., Chen, C., Zhang, J., and Xiang, Y. (2018a).
Anomaly-based insider threat detection using deep autoencoders. In ICDM Work-
shops.

[Liu et al., 2018b] Liu, Q., Stokes, J. W., Mead, R., Burrell, T., Hellen, I., Lam-
bert, J., Marochko, A., and Cui, W. (2018b). Latte: Large-scale lateral movement
detection. In MILCOM.

[Liu et al., 2018c] Liu, Y., Zhao, L., Liu, G., Lu, X., Gao, P., Li, X.-L., and Jin, Z.
(2018c). Dynamic bayesian logistic matrix factorization for recommendation with
implicit feedback. In IJCAI.

[Lu and Wong, 2019] Lu, J. and Wong, R. K. (2019). Insider threat detection with
long short-term memory. In ACSW.

[Lu et al., 2009] Lu, Z., Agarwal, D., and Dhillon, I. S. (2009). A spatio-temporal
approach to collaborative filtering. In RecSys.

[Mandiant, 2013] Mandiant (2013). Apt1: Exposing one of china’s cyber espi-
onage units. https://www.fireeye.com/content/dam/fireeye-www/services/
pdfs/mandiant-apt1-report.pdf.

[Memory et al., 2013] Memory, A., Goldberg, H. G., and Senator, T. E. (2013).
Context-aware insider threat detection. In AAAI Workshops.

[Metelli and Heard, 2019] Metelli, S. and Heard, N. (2019). On bayesian new edge pre-
diction and anomaly detection in computer networks. Ann. Appl. Stat., 13(4):2586–
2610.

[Mikolov et al., 2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean, J.
(2013). Distributed representations of words and phrases and their compositionality.
In NeurIPS.

[Mnih and Kavukcuoglu, 2013] Mnih, A. and Kavukcuoglu, K. (2013). Learning word
embeddings efficiently with noise-contrastive estimation. In NeurIPS.

[Mnih and Salakhutdinov, 2007] Mnih, A. and Salakhutdinov, R. R. (2007). Proba-
bilistic matrix factorization. In NeurIPS.

[Mnih and Teh, 2012] Mnih, A. and Teh, Y. W. (2012). A fast and simple algorithm
for training neural probabilistic language models. In ICML.

https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf

160 BIBLIOGRAPHY

[Moore et al., 2003] Moore, D., Paxson, V., Savage, S., Shannon, C., Staniford, S.,
and Weaver, N. (2003). Inside the slammer worm. IEEE Secur. Priv., 1(4):33–39.

[Moriano et al., 2017] Moriano, P., Pendleton, J., Rich, S., and Camp, L. J. (2017).
Insider threat event detection in user-system interactions. In MIST.

[Narita and Kitagawa, 2008] Narita, K. and Kitagawa, H. (2008). Detecting outliers
in categorical record databases based on attribute associations. In APWeb.

[NCSC, 2017] NCSC (2017). Linkedin 2012 hack: what you need to know. https:
//www.ncsc.gov.uk/blog-post/linkedin-2012-hack-what-you-need-know.

[Neil et al., 2013a] Neil, J., Hash, C., Brugh, A., Fisk, M., and Storlie, C. B. (2013a).
Scan statistics for the online detection of locally anomalous subgraphs. Technomet-
rics, 55(4).

[Neil et al., 2013b] Neil, J., Uphoff, B., Hash, C., and Storlie, C. (2013b). Towards
improved detection of attackers in computer networks: New edges, fast updating,
and host agents. In ISRCS.

[Newman, 2006] Newman, M. E. (2006). Modularity and community structure in
networks. Proc. Natl. Acad. Sci. U.S.A., 103(23):8577–8582.

[Newman and Ziff, 2001] Newman, M. E. and Ziff, R. M. (2001). Fast monte carlo
algorithm for site or bond percolation. Phys. Rev. E, 64(1).

[Ning et al., 2002] Ning, P., Cui, Y., and Reeves, D. S. (2002). Constructing attack
scenarios through correlation of intrusion alerts. In CCS.

[Oinn et al., 2004] Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Green-
wood, M., Carver, T., Glover, K., Pocock, M. R., Wipat, A., et al. (2004). Taverna:
a tool for the composition and enactment of bioinformatics workflows. Bioinfor-
matics, 20(17):3045–3054.

[Oprea et al., 2015] Oprea, A., Li, Z., Yen, T.-F., Chin, S. H., and Alrwais, S. (2015).
Detection of early-stage enterprise infection by mining large-scale log data. In DSN.

[Ortega et al., 2018] Ortega, A., Frossard, P., Kovačević, J., Moura, J. M., and Van-
dergheynst, P. (2018). Graph signal processing: Overview, challenges, and applica-
tions. Proc. IEEE, 106(5):808–828.

[Park and Walstrom, 2017] Park, D. and Walstrom, M. (2017). Cy-
berattack on critical infrastructure: Russia and the ukrainian
power grid attacks. https://jsis.washington.edu/news/
cyberattack-critical-infrastructure-russia-ukrainian-power-grid-attacks/.

[Paszke et al., 2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al. (2019). Py-
torch: An imperative style, high-performance deep learning library. In NeurIPS.

[Patcha and Park, 2007] Patcha, A. and Park, J.-M. (2007). An overview of anomaly
detection techniques: Existing solutions and latest technological trends. Comput.
Netw., 51(12):3448–3470.

[Patil and Taillie, 2004] Patil, G. P. and Taillie, C. (2004). Upper level set scan statis-
tic for detecting arbitrarily shaped hotspots. Environ. Ecol. Stat., 11(2):183–197.

https://www.ncsc.gov.uk/blog-post/linkedin-2012-hack-what-you-need-know
https://www.ncsc.gov.uk/blog-post/linkedin-2012-hack-what-you-need-know
https://jsis.washington.edu/news/cyberattack-critical-infrastructure-russia-ukrainian-power-grid-attacks/
https://jsis.washington.edu/news/cyberattack-critical-infrastructure-russia-ukrainian-power-grid-attacks/

BIBLIOGRAPHY 161

[Paxson, 1999] Paxson, V. (1999). Bro: A system for detecting network intruders in
real-time. Comput. Netw., 31(23-24):2435–2463.

[Pei et al., 2016] Pei, K., Gu, Z., Saltaformaggio, B., Ma, S., Wang, F., Zhang, Z.,
Si, L., Zhang, X., and Xu, D. (2016). Hercule: Attack story reconstruction via
community discovery on correlated log graph. In ACSAC.

[Perdisci et al., 2006] Perdisci, R., Giacinto, G., and Roli, F. (2006). Alarm clustering
for intrusion detection systems in computer networks. Eng. Appl. Artif. Intell.,
19(4):429–438.

[Perozzi et al., 2014] Perozzi, B., Al-Rfou, R., and Skiena, S. (2014). Deepwalk: On-
line learning of social representations. In KDD.

[Portnoy, 2000] Portnoy, L. (2000). Intrusion detection with unlabeled data using clus-
tering. PhD thesis, Columbia University.

[Powell, 2020] Powell, B. A. (2020). Detecting malicious logins as graph anomalies.
J. Inf. Secur. Appl., 54:102557.

[Price-Williams and Heard, 2020] Price-Williams, M. and Heard, N. A. (2020). Non-
parametric self-exciting models for computer network traffic. Stat. Comput.,
30(2):209–220.

[Price-Williams et al., 2018] Price-Williams, M., Turcotte, M., and Heard, N. (2018).
Time of day anomaly detection. In EISIC.

[Priebe et al., 2005] Priebe, C. E., Conroy, J. M., Marchette, D. J., and Park, Y.
(2005). Scan statistics on enron graphs. Comput. Math. Organ. Theory, 11(3).

[Qian and Saligrama, 2014] Qian, J. and Saligrama, V. (2014). Efficient minimax
signal detection on graphs. In NeurIPS.

[Qian et al., 2014] Qian, J., Saligrama, V., and Chen, Y. (2014). Connected sub-graph
detection. In AISTATS.

[Qin and Lee, 2003] Qin, X. and Lee, W. (2003). Statistical causality analysis of
infosec alert data. In RAID.

[Qiu et al., 2018] Qiu, J., Dong, Y., Ma, H., Li, J., Wang, K., and Tang, J. (2018).
Network embedding as matrix factorization: Unifying deepwalk, line, pte, and
node2vec. In WSDM.

[Qiu et al., 2010] Qiu, Y.-Q., Zhang, S., Zhang, X.-S., and Chen, L. (2010). Detecting
disease associated modules and prioritizing active genes based on high throughput
data. BMC Bioinform., 11(1):26.

[Rashid et al., 2016] Rashid, T., Agrafiotis, I., and Nurse, J. R. (2016). A new take
on detecting insider threats: exploring the use of hidden markov models. In MIST.

[Roundy et al., 2017] Roundy, K. A., Tamersoy, A., Spertus, M., Hart, M., Kats, D.,
Dell’Amico, M., and Scott, R. (2017). Smoke detector: cross-product intrusion
detection with weak indicators. In ACSAC.

[Rozenshtein et al., 2014] Rozenshtein, P., Anagnostopoulos, A., Gionis, A., and
Tatti, N. (2014). Event detection in activity networks. In KDD.

162 BIBLIOGRAPHY

[Rubin-Delanchy et al., 2018] Rubin-Delanchy, P., Heard, N. A., and Lawson, D. J.
(2018). Meta-analysis of mid-p-values: some new results based on the convex order.
J. Am. Stat. Assoc.

[Ruder, 2017] Ruder, S. (2017). An overview of multi-task learning in deep neural
networks. arXiv preprint arXiv:1706.05098.

[Sanguinetti et al., 2008] Sanguinetti, G., Noirel, J., and Wright, P. C. (2008). Mmg:
a probabilistic tool to identify submodules of metabolic pathways. Bioinformatics,
24(8):1078–1084.

[Sanna Passino and Heard, 2019] Sanna Passino, F. and Heard, N. A. (2019). Mod-
elling dynamic network evolution as a pitman-yor process. Found. Data Sci.,
1(3):293.

[Sanna Passino et al., 2020] Sanna Passino, F., Turcotte, M. J., and Heard, N. A.
(2020). Graph link prediction in computer networks using poisson matrix factori-
sation. arXiv preprint arXiv:2001.09456.

[Sapegin et al., 2015] Sapegin, A., Amirkhanyan, A., Gawron, M., Cheng, F., and
Meinel, C. (2015). Poisson-based anomaly detection for identifying malicious user
behaviour. In MSPN.

[Särkkä, 2013] Särkkä, S. (2013). Bayesian filtering and smoothing. Number 3. Cam-
bridge University Press.

[Schafer et al., 2007] Schafer, J. B., Frankowski, D., Herlocker, J., and Sen, S. (2007).
Collaborative filtering recommender systems. In The adaptive web, pages 291–324.
Springer.

[Schölkopf et al., 2001] Schölkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J.,
and Williamson, R. C. (2001). Estimating the support of a high-dimensional dis-
tribution. Neural Comput., 13(7):1443–1471.

[Schon et al., 2017] Schon, C., Adams, N., and Evangelou, M. (2017). Clustering and
monitoring edge behaviour in enterprise network traffic. In ISI.

[Scott and Nowak, 2006] Scott, C. D. and Nowak, R. D. (2006). Learning minimum
volume sets. J. Mach. Learn. Res., 7:665–704.

[Sener and Koltun, 2018] Sener, O. and Koltun, V. (2018). Multi-task learning as
multi-objective optimization. In NeurIPS.

[Sermanet et al., 2014] Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R.,
and LeCun, Y. (2014). Overfeat: Integrated recognition, localization and detection
using convolutional networks. In ICLR.

[Sexton et al., 2015] Sexton, J., Storlie, C., and Neil, J. (2015). Attack chain detec-
tion. Stat. Anal. Data Min., 8(5-6):353–363.

[Sexton et al., 2013] Sexton, J., Storlie, C., Neil, J., and Kent, A. (2013). Intruder
detection based on graph structured hypothesis testing. In ISRCS.

[Sharpnack et al., 2015] Sharpnack, J., Rinaldo, A., and Singh, A. (2015). Detecting
anomalous activity on networks with the graph fourier scan statistic. IEEE Trans.
Signal Process., 64(2).

BIBLIOGRAPHY 163

[Sharpnack et al., 2013a] Sharpnack, J., Singh, A., and Rinaldo, A. (2013a). Change-
point detection over graphs with the spectral scan statistic. In AISTATS.

[Sharpnack et al., 2013b] Sharpnack, J. L., Krishnamurthy, A., and Singh, A.
(2013b). Near-optimal anomaly detection in graphs using lovasz extended scan
statistic. In NeurIPS.

[Shashanka et al., 2016] Shashanka, M., Shen, M.-Y., and Wang, J. (2016). User and
entity behavior analytics for enterprise security. In BigData.

[Shervashidze et al., 2011] Shervashidze, N., Schweitzer, P., Leeuwen, E. J. v.,
Mehlhorn, K., and Borgwardt, K. M. (2011). Weisfeiler-lehman graph kernels.
J. Mach. Learn. Res., 12(Sep):2539–2561.

[Shittu et al., 2014] Shittu, R., Healing, A., Ghanea-Hercock, R., Bloomfield, R., and
Muttukrishnan, R. (2014). Outmet: A new metric for prioritising intrusion alerts
using correlation and outlier analysis. In LCN.

[Shittu et al., 2015] Shittu, R., Healing, A., Ghanea-Hercock, R., Bloomfield, R., and
Rajarajan, M. (2015). Intrusion alert prioritisation and attack detection using
post-correlation analysis. Comput. Secur., 50:1–15.

[Shuman et al., 2013] Shuman, D. I., Narang, S. K., Frossard, P., Ortega, A., and
Vandergheynst, P. (2013). The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and other irregular domains.
IEEE Signal Process. Mag., 30(3):83–98.

[Siadati and Memon, 2017] Siadati, H. and Memon, N. (2017). Detecting structurally
anomalous logins within enterprise networks. In CCS.

[Siddiqui et al., 2019] Siddiqui, M. A., Stokes, J. W., Seifert, C., Argyle, E., McCann,
R., Neil, J., and Carroll, J. (2019). Detecting cyber attacks using anomaly detection
with explanations and expert feedback. In ICASSP.

[Silva and Willett, 2008] Silva, J. and Willett, R. (2008). Hypergraph-based anomaly
detection of high-dimensional co-occurrences. IEEE Trans. Pattern Anal. Mach.
Intell., pages 563–569.

[Song et al., 2019] Song, Q., Chang, S., and Hu, X. (2019). Coupled variational re-
current collaborative filtering. In KDD.

[Sood and Enbody, 2012] Sood, A. K. and Enbody, R. J. (2012). Targeted cyberat-
tacks: a superset of advanced persistent threats. IEEE Secur. Priv., 11(1):54–61.

[Spathoulas and Katsikas, 2013] Spathoulas, G. P. and Katsikas, S. K. (2013). En-
hancing ids performance through comprehensive alert post-processing. Comput.
Secur., 37:176–196.

[Speakman et al., 2015] Speakman, S., McFowland III, E., and Neill, D. B. (2015).
Scalable detection of anomalous patterns with connectivity constraints. J. Comput.
Graph. Stat., 24(4).

[Srebro and Jaakkola, 2003] Srebro, N. and Jaakkola, T. (2003). Weighted low-rank
approximations. In ICML.

[Stewart, 1993] Stewart, G. W. (1993). On the early history of the singular value
decomposition. SIAM Rev., 35(4):551–566.

164 BIBLIOGRAPHY

[Strom et al., 2018] Strom, B. E., Applebaum, A., Miller, D. P., Nickels, K. C., Pen-
nington, A. G., and Thomas, C. B. (2018). Mitre att&ck: Design and philosophy.
Technical report.

[Sun et al., 2014] Sun, J. Z., Parthasarathy, D., and Varshney, K. R. (2014). Col-
laborative kalman filtering for dynamic matrix factorization. IEEE Trans. Signal
Process., 62(14):3499–3509.

[Sun et al., 2012] Sun, J. Z., Varshney, K. R., and Subbian, K. (2012). Dynamic
matrix factorization: A state space approach. In ICASSP.

[Tang et al., 2017] Tang, B., Hu, Q., and Lin, D. (2017). Reducing false positives of
user-to-entity first-access alerts for user behavior analytics. In ICDM Workshops.

[Tang et al., 2015a] Tang, J., Qu, M., and Mei, Q. (2015a). Pte: Predictive text
embedding through large-scale heterogeneous text networks. In KDD.

[Tang et al., 2015b] Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., and Mei, Q.
(2015b). Line: Large-scale information network embedding. In WWW.

[Tankard, 2011] Tankard, C. (2011). Advanced persistent threats and how to monitor
and deter them. Netw. Secur., 2011(8):16–19.

[Thac Do and Cao, 2018] Thac Do, T. and Cao, L. (2018). Gamma-poisson dynamic
matrix factorization embedded with metadata influence. In NeurIPS.

[Trautman and Ormerod, 2018] Trautman, L. J. and Ormerod, P. C. (2018). Wan-
nacry, ransomware, and the emerging threat to corporations. Tenn. L. Rev., 86:503.

[Tsai et al., 2009] Tsai, C.-F., Hsu, Y.-F., Lin, C.-Y., and Lin, W.-Y. (2009). Intrusion
detection by machine learning: A review. Expert Syst. Appl., 36(10):11994–12000.

[Tuor et al., 2017] Tuor, A., Kaplan, S., Hutchinson, B., Nichols, N., and Robinson,
S. (2017). Deep learning for unsupervised insider threat detection in structured
cybersecurity data streams. In AAAI Workshops.

[Tuor et al., 2018] Tuor, A. R., Baerwolf, R., Knowles, N., Hutchinson, B., Nichols,
N., and Jasper, R. (2018). Recurrent neural network language models for open
vocabulary event-level cyber anomaly detection. In AAAI Workshops.

[Turcotte et al., 2014] Turcotte, M., Heard, N., and Neil, J. (2014). Detecting lo-
calised anomalous behaviour in a computer network. In IDA.

[Turcotte et al., 2016a] Turcotte, M., Moore, J., Heard, N., and McPhall, A. (2016a).
Poisson factorization for peer-based anomaly detection. In ISI.

[Turcotte et al., 2016b] Turcotte, M. J., Heard, N. A., and Kent, A. D. (2016b). Mod-
elling user behaviour in a network using computer event logs. In Dynamic Networks
and Cyber-Security, pages 67–87. World Scientific.

[Turnbull, 2020] Turnbull, K. R. (2020). Advancements in latent space network mod-
elling. PhD thesis, Lancaster University.

[Valdes and Skinner, 2001] Valdes, A. and Skinner, K. (2001). Probabilistic alert cor-
relation. In RAID.

BIBLIOGRAPHY 165

[Veeramachaneni et al., 2016] Veeramachaneni, K., Arnaldo, I., Korrapati, V.,
Bassias, C., and Li, K. (2016). ai2: training a big data machine to defend. In
BigDataSecurity.

[Wainwright and Jordan, 2008] Wainwright, M. J. and Jordan, M. I. (2008). Graphi-
cal models, exponential families, and variational inference. Now Publishers Inc.

[Watkins, 2007] Watkins, D. S. (2007). The matrix eigenvalue problem: GR and
Krylov subspace methods. SIAM.

[Wei et al., 2019] Wei, R., Cai, L., Yu, A., and Meng, D. (2019). Age: Authentication
graph embedding for detecting anomalous login activities. In ICICS.

[Wei and Li, 2007] Wei, Z. and Li, H. (2007). A markov random field model for
network-based analysis of genomic data. Bioinformatics, 23(12):1537–1544.

[Weisfeiler and Lehman, 1968] Weisfeiler, B. and Lehman, A. A. (1968). A reduc-
tion of a graph to a canonical form and an algebra arising during this reduction.
Nauchno-Technicheskaya Informatsiya, 2(9):12–16.

[Wetsman, 2020] Wetsman, N. (2020). Woman dies during a ransomware attack on a
german hospital. The Verge, https://www.theverge.com/2020/9/17/21443851/
death-ransomware-attack-hospital-germany-cybersecurity.

[Whitehouse et al., 2016] Whitehouse, M., Evangelou, M., and Adams, N. M. (2016).
Activity-based temporal anomaly detection in enterprise-cyber security. In ISI.

[Wu et al., 2016a] Wu, J.-S., Lee, Y.-J., Wei, T.-E., Hsieh, C.-H., and Lai, C.-M.
(2016a). Chainspot: mining service logs for cyber security threat detection. In
TrustCom.

[Wu et al., 2016b] Wu, N., Chen, F., Li, J., Zhou, B., and Ramakrishnan, N. (2016b).
Efficient nonparametric subgraph detection using tree shaped priors. In AAAI.

[Xosanavongsa et al., 2019] Xosanavongsa, C., Totel, E., and Bettan, O. (2019). Dis-
covering correlations: A formal definition of causal dependency among heteroge-
neous events. In EuroS&P.

[Yen et al., 2013] Yen, T.-F., Oprea, A., Onarlioglu, K., Leetham, T., Robertson,
W., Juels, A., and Kirda, E. (2013). Beehive: Large-scale log analysis for detecting
suspicious activity in enterprise networks. In ACSAC.

[Yuan et al., 2019] Yuan, S., Zheng, P., Wu, X., and Li, Q. (2019). Insider threat
detection via hierarchical neural temporal point processes. In BigData.

[Zhou et al., 2006] Zhou, D., Huang, J., and Schölkopf, B. (2006). Learning with
hypergraphs: Clustering, classification, and embedding. In NeurIPS.

https://www.theverge.com/2020/9/17/21443851/death-ransomware-attack-hospital-germany-cybersecurity
https://www.theverge.com/2020/9/17/21443851/death-ransomware-attack-hospital-germany-cybersecurity

Titre : Détection d’intrusion dans un réseau informatique par l’analyse statistique de journaux d’événements :
une approche centrée sur les interactions

Mots clés : Détection d’intrusion, Détection d’anomalies, Données massives, Analyse de réseaux

Résumé : Les journaux d’événements sont des
données structurées décrivant toutes sortes d’acti-
vités au sein d’un réseau informatique. En parti-
culier, les comportements malveillants adoptés par
d’éventuels attaquants sont susceptibles de laisser
une trace dans ces journaux, rendant ces derniers
utiles pour la supervision et la détection d’intrusion.
Cependant, le volume considérable des journaux
d’événements générés en production en rend l’ana-
lyse difficile. Cette problématique a suscité de nom-
breux travaux de recherche sur l’analyse statistique
de journaux d’événements pour la détection d’intru-
sion. Cette thèse étudie certaines des principales dif-
ficultés rendant actuellement peu aisé le déploiement
de telles approches.
Tout d’abord, il n’est pas évident de construire une
représentation abstraite des journaux d’événements :
ces données sont complexes et peuvent être
abordées sous de multiples perspectives, et il est
donc difficile d’en capturer tout le sens dans un ob-
jet mathématique simple. Nous choisissons une ap-
proche centrée sur la notion d’interaction, motivée
par l’idée que de nombreux événements malveillants
peuvent être vus comme des interactions inattendues

entre des entités (utilisateurs, hôtes, etc.). Tout en
préservant les informations les plus cruciales, cette
représentation rend cependant la modélisation sta-
tistique ardue. Nous proposons donc un modèle ad
hoc ainsi que la procédure d’inférence associée, en
nous inspirant de concepts tels que les modèles à
espace d’états, le filtrage bayésien et l’apprentissage
multitâche.
Une autre caractéristique des journaux d’événements
est qu’ils contiennent une large majorité
d’événements bénins, dont certains sont incongrus
bien que légitimes. Il n’est donc pas suffisant de
détecter des événements anormaux, et nous étudions
également la détection de clusters d’événements
potentiellement malveillants. Nous nous appuyons
pour cela sur la notion de graphe d’événements afin
de redéfinir les scores d’anormalité associés aux
événements comme un signal structuré en graphe.
Cela permet l’usage d’outils de traitement du signal
afin de débruiter les scores d’anormalité produits par
un modèle statistique. Enfin, nous proposons des
méthodes efficaces pour la détection de cluster anor-
mal dans un graphe de grande taille dont les sommets
portent des observations scalaires.

Title : Network-Wide Intrusion Detection through Statistical Analysis of Event Logs: an Interaction-Centric
Approach

Keywords : Intrusion Detection, Anomaly Detection, Big Data, Network Analysis

Abstract : Event logs are structured records of all
kinds of activities taking place in a computer network.
In particular, malicious actions taken by intruders are
likely to leave a trace in the logs, making this data
source useful for security monitoring and intrusion
detection. However, the considerable volume of real-
world event logs makes them difficult to analyze. This
limitation has motivated a fair amount of research on
malicious behavior detection through statistical me-
thods. This thesis addresses some of the challenges
that currently hinder the use of this approach in rea-
listic settings.
First of all, building an abstract representation of the
data is nontrivial: event logs are complex and multi-
faceted, making it difficult to capture all the relevant
information they contain in a simple mathematical ob-
ject. We take an interaction-centric approach to event
log representation, motivated by the intuition that ma-
licious events can often be seen as unexpected in-

teractions between entities (users, hosts, etc.). While
this representation preserves critical information, it
also makes statistical modelling difficult. We thus build
an ad hoc model and design a suitable inference
procedure, using elements of latent space modelling,
Bayesian filtering and multi-task learning.
Another key challenge in event log analysis is that be-
nign events account for a vast majority of the data,
including a lot of unusual albeit legitimate events. De-
tecting individually anomalous events is thus not en-
ough, and we also deal with spotting clusters of po-
tentially malicious events. To that end, we leverage
the concept of event graph and recast event-wise ano-
maly scores as a noisy graph-structured signal. This
allows us to use graph signal processing tools to im-
prove anomaly scores provided by statistical models.
Finally, we propose scalable methods for anomalous
cluster detection in node-valued signals defined over
large graphs.

Institut Polytechnique de Paris
91120 Palaiseau, France

	Introduction
	Computer Network Monitoring and the Big Data Paradigm
	Representing and Modelling Complex and Multi-Faceted Data
	Building Abstract Representations for Complex Data
	Statistical Modelling for Nonnumerical Data

	Reliably Detecting Relevant Anomalies
	Malicious Events Are Anomalous...
	...but Not All Anomalous Events Are Malicious

	Contributions of this Thesis

	I Definitions and State of the Art
	Events, Logs and Intrusions
	Introduction
	A Generic Definition of Event Logs
	Multiplicity and Diversity of Existing Data Sources
	Generically Defining Events as Polyadic Interactions
	The Complex Nature of Event Logs and Resulting Challenges

	Intrusions from the Point of View of Event Logs
	What Is an Intrusion?
	Formal Definition and Assumptions
	Intrusion Detection as an Anomaly Detection Problem

	A Practical Example: the LANL Dataset
	Description
	Characteristics of Normal Activity
	Characteristics of Malicious Activity

	Conclusion

	A Taxonomy of Anomaly Detection Methods for Event Logs
	Introduction
	Segmentation and Representation of the Data
	Spatio-Temporal Segmentation
	Representation through Mathematical Objects

	Anomaly Detection and Underlying Generative Models
	Combinatorial Aspect
	Temporal Aspect
	Heterogeneous Aspect

	Conclusion

	II A Statistical Model for Event Logs
	Anomaly Detection for Heterogeneous Polyadic Interactions
	Introduction
	Statistical Modelling and Anomaly Detection for Combinatorial Data
	Generic Problem and Particular Cases
	Statistical Models and Dimensionality Reduction
	Anomaly Detection Methods for Polyadic Interactions
	The Cadence Model – Description and Limitations
	An Improved Conditional Anomaly Detection Algorithm

	Modelling Heterogeneous Interactions as a Multi-Task Learning Problem
	Extending the Framework to Heterogeneous Interactions
	A Brief Introduction to Multi-Task Learning
	Application – Modelling Heterogeneous Interactions

	Experiments
	Experimental Setup
	Results and Discussion

	Conclusion

	Latent Space Modelling for Nonstationary Interaction Streams
	Introduction
	Preliminaries
	Hidden Markov Models and Bayesian Filtering
	Application to Interaction Streams: the Collaborative Kalman Filter

	Handling the Nonstationarity of Event Logs
	Two Main Sources of Nonstationarity
	Adapting the Model through Recursive MAP Estimation
	Putting It All Together – The Decades algorithm

	Experiments
	Experimental Setup
	Results and Discussion

	Conclusion

	III From Noisy Anomalies to Reliable Alerts
	Anomaly Score Denoising through Graph Signal Processing
	Introduction
	Preliminaries
	Aggregating Binary Alerts: Clustering and Correlation
	Building and Analyzing Event Graphs
	Connections with Graph-Based Anomaly Score Denoising

	Building the Event Graph
	Goals and Constraints
	Entity-Event Graph and Event Similarity
	From Event Logs to Event Graphs

	Smoothing Signals on the Event Graph
	Graph Signal Processing and the Heat Kernel
	Message Passing and Weisfeiler-Lehman Schemes

	Experiments
	Experimental Setup
	Results and Discussion

	Conclusion

	Detecting Clusters of Anomalous Events
	Introduction
	Cluster Detection, Scan Statistics and Alternatives
	Problem Statement and Theoretical Results
	Practical Detection Methods – Scan Statistics and Beyond

	Percolation Theory and Its Relevance to Cluster Detection
	A Brief Introduction to Percolation Theory
	Application to Cluster Detection: Theory and Practice

	Two Percolation-Based Tests
	Looking for Deviations of the Percolation Process
	Adding a Denoising Step – The Diffusion-Percolation Test

	Experiments on Synthetic Data
	Experimental Setup
	Results and Discussion

	Application to Event Graphs
	Experimental Setup
	Results and Discussion

	Conclusion

	Conclusion
	Summary
	Perspectives

	Résumé des contributions
	Supervision des réseaux informatiques et données massives
	Représentation et modélisation de données complexes et multi-facettes
	Construction d'une représentation abstraite pour des données complexes
	Modélisation statistique de données non-numériques

	Détection robuste d'anomalies pertinentes
	Les événements malveillants sont anormaux...
	...mais tous les événements anormaux ne sont pas malveillants

	Contributions de cette thèse

