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Deep mean-field modelling for successive bifurcations ex-
emplified for the fluidic pinball
Nan Deng
UME - DFA, IMSIA, ENSTA Paris - IP Paris
828, Boulevard des Maréchaux 91120 Palaiseau, France
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Abstract
Artificial intelligence becomes increasingly important in solving problems that are difficult
to handle with traditional mathematical methods. Reduced-order modelling (ROM) is no
exception. In this thesis, we pave the way to automatable ROM in flow dynamics using
first principles and machine learning techniques. The aim is to establish a benchmark
problem for the most important dynamical features of wake flows.

The chosen benchmark configuration is the two-dimensional incompressible wake flow
around the fluidic pinball, a cluster of parallel cylinders whose axis are located at the
vertices of an equilateral triangle pointing upstream. At low Reynolds numbers, this con-
figuration has a stable steady state satisfying the reflectional symmetry. With increasing
Reynolds numbers, it undergoes two supercritical bifurcations of Hopf and pitchfork types,
associated with the Bénard-von Kármán instability and a symmetry-breaking instability,
respectively. A secondary Hopf bifurcation leads to quasi-periodic asymmetric shedding,
before finally bifurcating into a chaotic regime. From numerical investigations of the peri-
odic regimes, the asymmetric periodic shedding is characterized by three steady solutions
and three limit cycles, which evidently poses a challenge to automated modelling.

Before modelling, a comprehensive understanding of the underlying mechanisms is
pursued, including linear stability analysis of steady solutions, Floquet analysis of periodic
solutions, and nonlinear analysis of asymptotic dynamics. These analyses, together with
the Galerkin method, are the starting point of our mean-field modelling strategy. A
five-dimensional least-order mean-field model is proposed, resolving the six invariant sets
induced by the first two successive bifurcations. In addition, we derive an aerodynamic
force model associated with the mean-field Galerkin model. Sparse calibration is applied
to balance the accuracy and complexity of the model. These efforts culminate in a sparse
human interpretable model for the flow dynamics and a predictive model for the unsteady
forces. The mean-field models proposed above provide a challenging benchmark example
for automatable ROM, combining data-driven modelling with physical constraints for a
better understanding of complex flow dynamics.

For quasi-periodic and chaotic regimes, we propose a hierarchical cluster-based net-
work modelling (HiCNM), adapting to more complex dynamics with multi-scale, multi-
frequency, multi-attractor behaviours. The only assumption about the model structure
is the mean-field assumption. The HiCNM enables identifying the transient and post-
transient dynamics between multiple invariant sets in a self-supervised manner and steps
towards automated ROM of complex dynamics.

Keywords: Mean-field modelling, stability analysis, bifurcation, Galerkin method, least-
order model, Galerkin force model, hierarchical cluster-based network model, automated
modelling, first principles, machine learning, fluidic pinball.

http://nandeng.me
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Modélisation en champ moyen de bifurcations succes-
sives, illustrée sur le pinball fluidique
Résumé
L’intelligence artificielle prend de plus en plus d’importance dans la résolution de prob-
lèmes difficiles à traiter avec les méthodes mathématiques traditionnelles. La modélisation
d’ordre réduit (ROM) ne fait pas exception. Dans cette thèse, nous ouvrons la voie à une
modélisation réduite automatisable en mécanique des fluides, à partir de principes pre-
miers et de techniques d’apprentissage automatique. L’objectif est d’établir un problème
de référence présentant les caractéristiques dynamiques principales des écoulements de
sillage.

La configuration de référence choisie est l’écoulement de sillage incompressible bidi-
mensionnel autour du “pinball fluidique”. Ce système est constitué d’un groupe de cylin-
dres parallèles dont les axes sont situés aux sommets d’un triangle équilatéral pointant
vers l’amont. À bas nombre de Reynolds, l’écoulement stationaire, symétrique par réflex-
ion miroir, est stable. Lorsque le nombre de Reynolds augmente, le système subit deux
bifurcations supercritiques de type Hopf et fourche, associées respectivement à l’instabilité
de Bénard-von Kármán et à une instabilité de brisure de symétrie. Une bifurcation de
Hopf secondaire conduit à un lâcher de tourbillons asymétrique quasi-périodique, avant
de bifurquer finalement vers un régime chaotique. Le régime périodique asymétrique
est caractérisé par trois solutions stables et trois cycles limites, ce qui pose un défi à la
modélisation automatique.

En prélude à la phase de modélisation, la compréhension des mécanismes sous-jacents
est menée par analyse de stabilité linéaire des solutions stationnaires, analyse de Floquet
des solutions périodiques et analyse non linéaire de la dynamique asymptotique. Ces
analyses, aux côtés de la méthode de Galerkin, constituent le point de départ de notre
stratégie de modélisation en champ moyen. Un modèle de champ moyen à cinq dimensions
reproduit les six ensembles invariants qui résultent des deux premières bifurcations. Nous
dérivons également un modèle de forces aérodynamiques à partir du modèle de Galerkin
en champ moyen. Une calibration parcimonieuse permet d’obtenir un modèle facilement
interprétable, équilibrant précision et complexité.

Pour les régimes quasi-périodiques et chaotiques, nous proposons un modèle de réseau
hiérarchique de clusters (HiCNM), capable de s’adapter à des dynamiques plus com-
plexes présentant un comportement multi-échelles, multi-fréquences et multi-attracteurs.
La seule hypothèse sur la structure du modèle est l’hypothèse de champ moyen. Le
HiCNM permet d’identifier les dynamiques transitoires et post-transitoires entre de mul-
tiples ensembles invariants d’une manière auto-supervisée, ce qui constitue une étape vers
la réduction de modèle automatisée des dynamiques complexes.

Mots clés: Modèle de champ moyen, stabilité, bifurcation, modèle de Galerkin, modèle
de réseau, modèle automatisé.
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The study of fluid flows can go back at least 2200 years ago to the days of ancient Greece,
when Archimedes formulated buoyancy force exerted on a body immersed in a fluid, which is
known now as the famous Archimedes’ principle. This is considered to be the first fundamental
law of physics to fluid mechanics. Less progress was made for nearly 1600 years after him until
Leonardo da Vinci started to study turbulence in the fifteenth century. In the next 200 years, the
research on fluid flows mainly stayed on observations and experiments of many other physicists.
In the late seventeenth century and the early eighteenth century, Isaac Newton formulated the
laws of motion in classical mechanics, and Daniel Bernoulli published Bernoulli’s principle, which
was further formulated by Leonhard Euler with Bernoulli’s equation. They estabished the basic of
fluid mechanics and the mathematical fluid dynamics. After that, more and more mathematicians
joined the study of inviscid flow, i.e. Jean le Rond d’Alembert, Joseph Louis Lagrange, Pierre-
Simon Laplace, Siméon Denis Poisson. In the nineteenth century, Claude-Louis Navier and George

1



Section

Gabriel Stokes used a set of partial differential equations to describe the motion of viscous fluid,
which express conservation of momentum and conservation of mass for Newtonian fluids in a
mathematical form, known as the Navier–Stokes equations. At this point, a precise mathematical
model has been estabished.

Solutions to the Navier–Stokes equations are critically important from theoretical studies to
engineering applications. However, the mathematical properties of its solutions are still challenging
in this century, which is known as the Navier–Stokes existence and smoothness problem – one of
the seven Millennium Prize problems in mathematics. Despite the simple mathematical form of
the Navier–Stokes equations and the clear observations in experiments, a complete understanding
of the turbulence is still missing. With the rapid development of computational science, we can
simulate fluid flows by solving the governing equations using numerical methods. However, it is
still difficult or computationally expensive to solve the Navier–Stokes equations directly, especially
for the turbulent flow. Instead of solving the Navier–Stokes equations directly – Direct numerical
simulation (DNS), various advancements have been focused on the turbulence models, including
the Reynolds-averaged Navier–Stokes (RANS), the Large eddy simulation (LES) and the hybrid
RANS-LES models. To be noted, experts are still needed to check whether the numerical solution
matches the experimental results, for a good consistency.

We can numerically investigate the flow dynamics by simulating the above-mentioned mathe-
matical models. However, the flow dynamics are characterized by high dimensionality and non-
linearity. The simulations and analyses of the flow system require a high computational cost,
especially for the systems with interactions between many different scales. Reduced-order mod-
elling (ROM) techniques have been introduced to reduce the computational cost and provides
low-dimensional and human-interpretable models for flow analysis, optimization, and control de-
sign.

In this thesis, we pave the way to automatable ROM in flow dynamics using first principles
and machine learning techniques. The aim is to establish a benchmark problem that shares the
most important dynamical features of wake flows. The chosen benchmark configuration is the
two-dimensional incompressible wake flow around the fluidic pinball, a cluster of three paral-
lel cylinders whose axis are located at the vertices of an equilateral triangle pointing upstream.
Multiple-cylinders structures are commonly found in engineering applications. The spatial orga-
nization and the size of cylinders have a significant influence on the wake flow. For the fluidic
pinball, despite the simplicity of the geometry, the wake flow can present rich flow dynamics due
to the wake interactions behind the cylinders. For example, at a low Reynolds number, the three
cylinders work as a single bluff-body, and we can find a von Kármán vortex street downstream. At
a higher Reynolds number, a base-bleeding jet appears between the back two cylinders. Keep in-
creasing Reynolds number, the length of the jet increases. The jet undergoes a symmetry-breaking
instability, with a permanent deflection of the base-bleeding jet up or down. Both the von Kármán
vortex street and the jet are typical fluid dynamics examples and have been well studied for their
transition from laminar to turbulent conditions. Bifurcation theory provides a very useful tool
for qualitative and quantitative analysis of the behavior of complex systems, where the dynamics
within systems have specific types of bifurcation. Generally, the periodic vortex shedding and
the symmetry breaking result from a Hopf bifurcation and a pitchfork bifurcation, respectively.
The pitchfork bifurcation originates locally in the near wake, while the von Kármán vortex street
originates in the wake of the three cylinders taken as a single obstacle. The coupling relations and
the interaction between these two instabilities highly depend on their spatial distribution.

The aim of the present research is to understand the transient and post-transient dynamics and
the interaction of these two fundamental instabilities, and to obtain human-interpretable reduced-
order models. The analysis of the linear and nonlinear dynamics is based on the linear stability
analysis of the Navier-Sokes equations and the nonlinear saturation in the asymptotic regimes.
Based on the physical understanding of the transition, we will introduce three kinds of reduced-
order modelling strategies, which improve the performance of the Galerkin method, the force-
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oriented modelling, and the cluster-based network modelling for the complex flow. The analytical
works can guarantee the resulting models for the ability to capture transient dynamics and human-
interpretation, but require considerable effort to understand the underlying mechanisms. However,
only a part of prior knowledge is needed for a gray-box model to balance the interpretation and
the cost of analytical works. The knowledge from the governing equation, the geometry, and
mean-field considerations can vastly improve the performance of the model. Because of the simple
geometry of the flow configuration and the generic bifurcations discussed in this work, the analysis
and modelling process can be applied to other flow systems with similar dynamics.

The introductory chapter is structured as follows. § 1.1 discusses the purpose of reduced-
order modelling and outlines the categories of modelling. § 1.2 introduces the flow configuration
benchmarked in this thesis. The transient and post-transient dynamics with multiple attractors
are briefly investigated. In § 1.3, the analytical works are introduced, including the linear stability
analysis of the Navier-Stokes solutions, the instabilities and bifurcations. In § 1.4, we discuss the
nonlinear saturation for the post-transient dynamics, and the mean-field deformation from the
effect of the Reynolds stress. § 1.5 introduces the three modelling strategies, corresponding to
the mean-field Galerkin model, the Galerkin force model and the cluster-based mean-field model,
respectively. § 1.6 provides an overall conclusion of the methodologies applied and the main
results obtained in this thesis, reiterates the motivation for mean-field modelling, and finishes with
an outline of the following chapters.

1.1 Reduced-order modelling

The complexity of the fluid flow comes from its high-dimensionality, non-linearity, and multi-scale
spatial and temporal behavior. When dealing with fluid flow problems, a massive amount of flow
detail information will be generated as the resolution increases. Obviously, it is extremly hard to
understand all these details of different scales, and the control optimization is impossible to be
applied. Despite the nearly infinite dimensionality of a natural flow, its dynamics can usually be
captured with projection onto a low-dimensional invariant manifold. Discussing and analyzing the
dynamics in this low-dimensional space makes it possible to build an approximate model for the
complex flow system. The purpose of reduced-order modelling is to obtain simplified, interpretable
models of fluid flow, which can provide a better understanding of the underlying mechanisms. Such
low-dimensional models are essential for flow dynamics prediction and effective control design.

The reduced-order modelling process for a flow system can be divided into two steps. It
usually begins with a modal decomposition to achieve dimensionality reduction. Several patterns,
or modes, featuring a typical behaviour in space or time are frequently enough to capture the
essential flow mechanisms. The modal analysis of these modes is common practice and can help us
understand complex flow dynamic (Taira et al., 2017). Numerous techniques have been developed
to extract those primary patterns, such as the proper orthogonal decomposition (POD) (Holmes
et al., 2012a; Berkooz et al., 1993), and dynamic mode decomposition (DMD) (Schmid, 2010;
Rowley et al., 2009; Mezić, 2013; Tu et al., 2014). As the POD modes are arranged according to
the energy but not in the order of the dynamical importance, some variants of POD techniques have
been developed for a better dynamics capture capability, such as the balanced proper orthogonal
decomposition (balanced POD) (Willcox & Peraire, 2002; Rowley, 2005; Ilak & Rowley, 2006),
and spectral proper orthogonal decomposition (SPOD) (Sieber et al., 2016; Towne et al., 2018;
Cavalieri et al., 2019; Lesshafft et al., 2019).

Based on the extracted modes, we still need a nonlinear model to describe the dynamics in
the low-dimensional space. Unlike the rapid development of modal decomposition or dimension-
ality reduction, nonlinear models depend on our understanding of nonlinear systems, and more
theories and techniques need to be developed. Based on the decomposition methods, the general
approaches are POD-Galerkin methods (Aubry et al., 1988; Iollo et al., 2000; Rowley et al., 2004)
and Koopman theory (Rowley et al., 2009; Schmid, 2010; Mezić, 2013). The Galerkin projection-
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based reduced-order model can provide a low-dimensional representation for complex flow, and
then an accurate dynamical model can be derived from first principles (Noack et al., 2003; Galletti
et al., 2004; Buffoni et al., 2006). Koopman theory uses an infinite-dimensional linear operator to
describe nonlinear dynamics, and DMD provides a finite-dimensional approximation to this Koop-
man operator. The modelling with DMD is purely data-driven and does not require any a priori
assumptions or knowledge of the underlying dynamics (Kutz et al., 2016).

For extreme events in fluid flows (Lesieur, 1987), POD and DMD cannot effectively capture the
intermittently occurring episodes due to the stochasticity. The low-order statistical modelling will
better serve the purpose to capture the relevant physics (Sapsis & Majda, 2013; Blonigan et al.,
2019; Sapsis, 2021).

In this thesis, we consider the flow governed by the non-dimensionalized incompressible Navier-
Stokes equations:

∂tu +∇ · u⊗ u =
1

Re
4u−∇p, ∇ · u = 0, (1.1)

where a full information of the flow state contains the velocity flow field u(x, t) and the pressure
field p(x, t), defined with q = (u, p). The existing states and their instabilities are generally a
function of control parameters. The only control parameter here is the Reynolds number Re =
U∞D/ν, where U∞ is the velocity in the far wake, D is the cylinder diameter, and ν is the kinematic
viscosity. The flow system can be rewritten as

∂tq = F (q, Re), (1.2)

where F is a nonlinear function for the original Navier-Stokes equations. As shown in figure 1.1, for
example, the cylinder flow q(x, t) shows different characteristics with increasing Reynolds number
Re, from the steady flow to the turbulent flow.

Figure 1.1: Cylinder flow with increasing Reynolds number Re, with characterized with multiple
spatial structures with different scales: (a) the streamlines around the cylinder at a very low Re,
(b) a circulation appears behind the cylinder, (c) periodic vortex shedding, known as the von
Kármán streets of vortices, (d) the turbulent region appears, but still with a regular alternating
motion, (e) the turbulent region reaches the cylinder, with a clear “turbulent boundary layer” and
losing periodicity. From Feynman et al. (2011).

For real flows, the instantaneous flow state q(x, t) is of infinite dimension in space, and varies
in time. By numerical simulation, the spatial structure of the instantaneous flow state is described
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on the nodes of the discretized mesh. The flow field information can be the velocity/pressure
field from the numerical simulation or the data measured from an experiment. By projecting
the dynamics onto a low-dimensional space, the spatio-temporal information of the flow field will
usually be separated into a finite number of spatial modes q̂i(x) with amplitudes ai(t). In this
case, the flow will be represented with a low-dimensional state vector a(t) = (a1, · · · , aN), where N
is the number of spatial modes (degrees of freedom) in the low-dimensional space. The dynamics
of this low-dimensional state vector a approximates the original Navier-Stokes equations, which
reads:

ȧ = f(a, Re), (1.3)

where f is an approximated nonlinear function of F approximated in low-dimensional space. Note
that f provides a complete description of the flow system F considering an infinite-dimensional
basis q̂i(x) , i = 1, · · · ,∞.

1.1.1 Why reduced-order modelling?

Analytical work in infinite dimensions is intractable since we cannot consider an infinite number of
patterns q̂i(x) at the same time. The nonlinearity and multi-scale problem in space and time make
the flow dynamics even more complicated. A reduced-order model (ROM) of the flow system will
be useful in understanding physical mechanisms, improving computational efficiency and designing
control laws. In many cases, the flow dynamics usually evolves on a low-dimensional attractor,
which can be charactrized with a finite number of elementary sturctures. These typical structures,
featuring certain spatial and temporal scales, offer the possibility of using reduced-order models
to reveal the underlying mechanisms hidden by the high-dimensionality.

Reduced-order models (ROMs) have many advantages:

1. Simplicity: A good feature extraction of dominant flow characteristics can promise the
simplicity of the resulting ROM. New dimensionality reduction techniques are rapidly devel-
oping, and there are still many opportunities to find the best set of modes.

2. Understanding: The low-dimensional representation of the original nonlinear dynamics
helps us to filter out the noise and unimportant terms and reveals the underlying mechanisms.
Linear and nonlinear dynamics can be interpreted in terms of several degrees of freedom.
Machine learning techniques provide new methods and opportunities to understand complex
dynamics from the data itself.

3. Analysis: The interaction between the elementary degrees of freedom provides a deep in-
sight into the nonlinear dynamics. The analytical works can figure out the fundamental
mechanisms and help us to understand the nonlinear transition.

4. Control: ROM can figure out the dominant dynamics which contribute to the efficient
design of linear and optimal control.

5. Prediction: A good approximation of nonlinear dynamics in low-dimensional subspaces
ensures fast dynamic prediction of impending transitions and enables early warning.

6. Speed up the computation: A surrogate model can explore the dynamics in the low-
dimensional space. The ROM is dynamically equivalent to the original system and can be
mapped into the high-dimensional data to speed up the simulation.

1.1.2 White box modelling vs black-box modelling

In this subsection, we briefly categorize the different kinds of modelling. We follow Wiener (1948)
and distinguish between white-box models (WBM), gray-box models (GBM), and black-box models
(BBM), as shown in figure 1.2
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Figure 1.2: Illustration of the concept of three kinds of modelling strategies. White-box model
(WBM) is a purely theoretical model, which has full knowledge of the flow system. Gray-box
models (GBM) combines a partial theoretical basis with data to complete the model. Black-box
models (BBM) is a statistical model without any prior knowledge of the system.

White box modelling

The Navier–Stokes equations provide a mathematical model of fluid mechanics, which can be
considered as a white-box model. The modelling process is also known as clear box modelling
because of having the full knowledge of the governing equations for the flow system. Complete
information of the flow state can be derived from this model but requires cumbersome computation.
As mentioned at the beginning of this chapter, numerous problems are still unsolved to handle
with this white-box model. Some weak form of the Navier–Stokes equations has been provided to
solve these problems, like RANS, LES, and some other turbulence models. They are still white-box
models, as all the assumptions come from the theoretical derivation. These models are expensive
to simulate numerically and therefore difficult to be used for control design, optimization, and
engineering applications.

In summary, the goal of white-box modelling is to find the "right" model mathematically and
physically. Therefore, the modelling process is analytical, emphasizing the cause and effect, the
mathematical form, and the physical principles. It requires the human knowledge of the Navier-
Stokes equations and the underlying mechanisms of the flow dynamics. The high requirements
of human experience and the expensive simulation cost make it hard to apply for industrial and
engineering applications.

Black box modelling

A black-box model comes from a purely data-driven modelling process, emphasizing the identifi-
cation, prediction ability, and modelling speed. The goal is to find an "accurate" model for the
system features, dynamics, and input-output relations. A good accuracy makes it even more useful
in industrial applications and medical diagnosis.

The accuracy usually comes from the sacrifice of interpretability. As an example of neural
network modelling, the internal functional relationships of multiple layers have a higher liberty
and greater complexity, making it difficult to be interpreted from a physical or mathematical
perspective. However, this complex neural network can build a robust model to achieve an accurate
mapping of inputs and outputs.

Analogously, according to the Koopman theory (Rowley et al., 2009; Schmid, 2010; Mezić,
2013), the nonlinear dynamics in a finite-dimensional space can be represented as a linear dynamics
in an infinite-dimensional space. The dynamic mode decomposition (DMD) provides a linear
representation of the data of a nonlinear system by an infinite-dimensional Koopman operator.
The resulting models have a good ability to capture the coherent features.
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Different from the above-mentioned approaches, the cluster-based reduced-order modelling
(CROM) provides a new way to describe the transient dynamics. The time-related snapshots
of the flow field are partitioned into clusters. Snapshots in the same cluster share similar char-
acteristics and are represented by the cluster centroid, which is usually defined as the average of
the snapshots in the cluster. The transient dynamics is described by the transitions between the
clusters. Kaiser et al. (2014) uses a cluster-based Markov model (CMM) to describe the transient
dynamics with probabilities. Nair et al. (2019) applied CMM to the nonlinear feedback flow con-
trol with an extension of the Markov chain, which emphasizes the non-trivial transitions between
clusters. The directed network (Newman, 2018) was introduced, where clusters are considered as
the nodes and transitions between clusters as the edges. Fernex et al. (2021) and Li et al. (2021)
further proposed the cluster-based network model (CNM) for the time-resolved data by introducing
the local interpolation between clusters with the determined transition times.

Grey box modelling

Compared to the white-box modelling and the black-box modelling, the grey box modelling can be
seen as a hybrid approach, using data-driven techniques to build reduced-order models based on
theoretical structures. For example, POD-Galerkin models approximate the full state by Galerkin
projection of the Navier-Stokes equations on the orthogonal basis of a low-dimensional state space.
The basis modes come from a data-driven POD process. The resulting Galerkin system of quadratic
ordinary differential equations describes the nonlinearity of the Navier-Stokes equations.

1.1.3 Opportunities for grey box modelling

In this thesis, we focus on the grey box modelling using flow data, first principles, and machine
learning techniques. The following three modelling methods have been successfully applied on the
fluidic pinball, which will be further discussed in section 1.5.

Least-order mean-field modelling with sparse Galerkin regression:
Least-order mean-field models are least-order approximations of the unsteady flow field, using

a minimum number of dominant modes for describing the fluctuating components and the mean-
field deformation. For the transient and post-transient dynamics of the fluidic pinball, two general
bifurcations in fluid mechanics are considered: one is the supercritical Hopf bifurcation, leading to
the periodic release of vortices in the wake, another one is the supercritical pitchfork bifurcation,
leading to the static symmetry-breaking of the unsteady fluid flow. An optimized subspace of five
degrees of freedom is chosen under mean-field considerations for these two bifurcations. The result-
ing Galerkin system is further simplified from the constraints of frequency balance and geometry
(the reflectional symmetry of the modes). This mean-field Galerkin framework provides a sparse
and simplified structure based on the analytical derivation.

For the modelling process, the nonlinearities should always satisfy the above constraints and
present a sparse form. Some coefficients of the model can be determined by the physical inspection
of the flow dynamics: the growth rate and angular frequency of the fluctuating modes are given by
the linear instability analysis of the base flow, the coefficient of the saturating term by the amplitude
of the solution in the asymptotic regime, etc. The coefficients of the remaining nonlinear terms
are identified by the SINDy algorithm (Brunton et al., 2016a). This nonlinear modelling process is
also known as the constrained sparse Galerkin regression (Loiseau & Brunton, 2018), with fitting
the nonlinear dynamics in a given quadratic form under additional constraints. This work also
shows that the cubic form can fit the dynamics better. However, there is no cubic nonlinearity in
the Navier-Seokes equations explicitly. Therefore, we do not know how to constraint the model and
cannot ensure that the identified model is physical. In Chapter 2, the least-order model successfully
describes the underlying mechanisms of dynamics. This indicates that the optimized model basis
and mean-field modelling framework are critical important for a robust Galerkin model.

The Galerkin force modelling with sparse Galerkin regression:
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Galerkin force modelling aims to present a force-related model in the Galerkin framework.
Generally, a Galerkin model is based on a linear decomposition of the velocity field. However, the
aerodynamic forces originates from both the viscous and pressure fields, where the pressure field is
a quadratic function of the velocity field from the pressure Poisson equation. This implies that the
force contribution of each velocity mode cannot be added independently. Under a velocity-based
Galerkin decomposition of the flow field, the body force can be derived as a constant-linear-
quadratic function of the mode amplitudes either from the integral of viscous and pressure forces
on the surface, or from the momentum balance of the Navier-Stokes equations. Moreover, the
geometrical symmetry of the modes promotes an additional sparsity in the force model.

An accurate pressure field reconstruction from the velocity field is numerically challenging
and expensive. The force contribution of each velocity mode in the Galerkin expansion can be
numerically determined by solving the pressure Poisson equation with the homogeneous Neumann
boundary conditions. As each mode carries its own contribution to the force balance, an accurate
reconstruction of the force dynamics requires many leading modes. The resulting projection-
based force model only provides the force contribution of each mode without any relevance for the
underlying dynamics. In Chapter 4, we exemplify the Galerkin force modelling for the unforced
fluidic pinball based on the least-order mean-field model. The nonlinear modelling of the force
dynamics is based on the elementary degrees of freedom associated with the instabilities undergone
by the flow, and is implemented with a sparse Galerkin regression. The unsteady force evolution of
the transient and post-transient dynamics can be successfully reproduced with only seven velocity
modes under the mean-field consideration. The sparse drag and lift force formulae indictes the
elementary drag- and lift-producing modes.

Hierarchical cluster-based network modelling:
The above two strategies are based on a low-dimensional approximation of the system, with the

nonlinear dynamics modelled in an optimal subspace. The cluster-based reduced-order modelling
(CROM) provides a new perspective to decribe the complex dynamics, by coarse-graining hundreds
of thousands time-resolved snapshots into a few number of centroids with clustering. This data-
driven modelling strategy can be fully automated by black-box modelling parametrized by the
number of clusters, and provides a statistical description of a high-dimensional flow system.

The Reynolds decomposition under mean-field considerations divides the flow field into a hierar-
chy of three components: a slowly-varying mean-flow field, coherent components and non-coherent
small scale fluctuations. Moreover, these three components have different frequency characteris-
tics. The hierarchical strategy can be easily applied to the data-driven modelling process, especially
for the transient flow dynamics from the onset of the instability to the saturated state. With a
clear frequency separation, the mean-flow distortion during the transient dynamics can be ac-
curately modelled based on the low-pass filtered data, removing the small scales and harmonic
components of the fluctuating dynamics. Therefore, CROM can be generalized for multi-scale and
multi-frequency dynamics by incorporating the hierarchical structure. The resulting hierarchical
cluster-based reduced-order model (HiCROM) is physically consistent with the Reynolds decom-
position, and able to identify transient and post-transient dynamics in a self-supervised manner.
The cluster distributions can be dynamically optimized according to the resolution of the transient
dynamics. In Chapter 5, we will apply HiCROM to the transient and post-transient dynamics
of the unforced fluidic pinball at three different Reynolds numbers, respectively associated with a
periodic, a quasi-periodic and a chaotic dynamics.

1.2 Challenges with multiple invariant sets

Reduced-order modelling most usually focuses on the post-transient dynamics evolving on the
attractor. The modelling of the transient and post-transient dynamics from the fixed point to the
asymptotic regime of the attractor needs more effort as it has to feature the mean-field distortion,
the local dynamics, and the nonlinear saturation. Even more challenging is to build a universal
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reduced-order model for multiple transient trajectories with multiple invariant sets. The flow
dynamics considered in this thesis involves several transient and post-transient regimes, three
fixed points, three limit cycles, two quasi-periodic attractors and a chaotic attractor, at three
different Reynolds numbers.

1.2.1 A benchmark configuration – the fluidic pinball

Fluid flow around a circular cylinder is one of the most famous fundamental fluid mechanics
problem, which has been well studied over decades. Compared to the single-cylinder, the multiple-
cylinders structures are more frequently used in industry, i.e. in heat exchangers, undersea pipelines,
battery pack assembly, etc. The configurations with multiple cylinders offer more possibilities for
different kinds of instabilities. The interaction between cylinder wakes produces more complex
flow dynamics.

In this work, we are concerned with the flow over a cluster of three parallel cylinders, which has
been experimentally studied in a context of heat transfer, fluid-structure interactions and multiple
frequencies interactions over the past few decades (Price & Paidoussis, 1984; Sayers, 1987; Lam &
Cheung, 1988; Tatsuno et al., 1998; Bansal & Yarusevych, 2017). Five different flow patterns have
been identified with varying the spacing ratios and Reynolds numbers by the numerical simulation
(Bao et al., 2010; Zheng et al., 2016; Gao et al., 2019; Chen et al., 2020).

Figure 1.3: Configuration of the fluidic pinball and dimensions of the simulated domain. A typical
field of vorticity is represented in color with [−1.5, 1.5]. The upstream velocity is denoted U∞.

For the fluidic pinball, three fixed cylinders of diameter D whose axes are located at the vertices
of an equilateral triangle of side 3D/2 are placed in the (x, y) plane and perpendicularly to this
plane. The gap distance between the cylinders is one radius R and the formed triangle points
upstream, as shown in figure 1.3. They are placed in a viscous incompressible uniform flow at
speed U∞. The cylinders can rotate at different speeds, which allows one to change the paths of
the incoming fluid just as flippers manipulate the ball of a conventional pinball machine. This
configuration is a great sandbox to test different flow control strategies and has been used for the
evaluation of flow controllers for multiple-input multiple-output(MIMO) control dynamics (Ishar
et al., 2019; Cornejo Maceda et al., 2021). In this study, all three cylinders remain static as we are
interested in the natural dynamics of the flow as the Reynolds number is increased. The unforced
fluidic pinball has already shown a surprisingly rich dynamics.

The flow is considered in the Cartesian coordinate system bounded in a rectangular domain
[−6, 20] × [−6, 6]. The origin of the Cartesian coordinate system is placed in the middle of the
back two cylinders. The computational domain is discretized on an unstructured grid. The pinball
configuration uses a grid with 4 225 triangles and 8 633 vertices. The boundary conditions comprise
a no-slip condition on the cylinders and a unit velocity in the far field:

Ur = 0 on the cylinders and U∞ = ex at infinity. (1.4)
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The far-field boundary conditions are exerted on the inflow, upper and lower boundaries, while the
outflow boundary is assumed to be stress-free, transparent for the outgoing fluid structures. To
test the grid dependency of the solution, we have compared the result of simulations with a refined
grid in Chapter 2. Both simulations prove grid independence and yield dynamically consistent
results.

The instantaneous flow field is calculated by two-dimensional direct numerical simulations
(DNS). The unsteady Navier-Stokes solver is based on fully implicit time integration and Finite-
Element Method discretization (Noack & Morzyński, 2017; Noack et al., 2003, 2016). The time
integration is third-order accurate while FEM discretization employs second-order Taylor-Hood
finite elements (Taylor & Hood, 1973). The solution is obtained iteratively, with the Newton-
Raphson type approach. The tangent matrix is updated on each iteration, and computations are
carried out until the residual is under a prescribed tolerance. The steady solution is obtained in a
similar Newton-Raphson iteration for the steady Navier-Stokes equations. For Re > 68, there exist
three unstable steady solutions, one characterized by a symmetric base-bleeding jet Us(x), and two
by a top or bottom deflected jet U±s (x). The choice of initial conditions in the iteration triggers
the convergence to one of the three steady solutions. The solver quickly converges to one of the
steady states, and a final near-zero residual confirms that this is indeed the steady flow solution
sought. Analogously, for the unsteady Navier-Stokes solver, the transient dynamics depends on the
initial condition. Some typical initial conditions are the unstable steady solutions Us(x), U±s (x).
It requires an initial perturbation to destabilize the flow from the given steady solution.

1.2.2 Transient and post-transient dynamics

The flow dynamics is divided into a transient regime, when starting close by an unstable solution,
either steady or periodic, and a post-transient regime, when evolving on the attractor. Due to
the successive bifurcations (see § 1.3.2) occurring in the flow system, the unforced fluidic pinball
possesses multiple invariant sets. In this subsection, the transient and post-transient dynamics
with multiple invariant sets will be described with the time evolution of the drag and lift forces
on the cylinders. The vorticity field of flow states explored during the transient dynamics will be
shown. In the end, we will present the 3D phase space with the force dynamics.

Flow states during the transient and post-transient dynamics

We apply DNS starting from the unstable steady symmetric solution us to the asymptotic regime,
for different values of the Reynolds number Re. Theoretically, the system should never leave
the initial state without perturbations as it is a fixed point of the system. In practice, numeri-
cal discretization errors make the solution imperfect. Despite an extremely long transient (several
hundreds of convective times), the trajectory of the system eventually escapes from Us and asymp-
totically reaches the attractor. The flow states explored during the transient and post-transient
dynamics are illustrated with the vorticity field in figure 1.4.

We notice that the reflectional symmetry in y proves to be an important part of this sce-
nario. For a velocity field u = (u, v), we define the y-reflection operator R via R(u, v)(x, y) ≡
(u,−v)(x,−y). For a symmetric field, u is even and v is odd in y. The spanwise vorticity ∂xv−∂yu
used to represent the flows in our visualizations, manifests y-reflection symmetry by being odd in
y.

The symmetric steady solution at different Reynolds numbers is always reflection-symmetric
with respect to y = 0, with RUs = Us. This solution undergoes a supercritical Hopf bifurcation
at Re1 ≈ 18 with a pair of y-antisymmetric eigenmodes, leading to cyclic vortex shedding in the
wake flow, see § 1.3.2 for detail. For the von Kármán vortex street formed at Re = 30, it has
the spatio-temporal symmetry uvk(t + T/2) = Ruvk(t) (Barkley, 2006). Moreover, its one-period
time-average satisfies the y-reflection symmetry. For this reason, we will call this limit cycle (or the
vortex shedding ) symmetric despite the fact that the instantaneous flows are not symmetric. We
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Re u(t1) u(t2) u(t3)

30 t1 = 0 t2 = 900 t3 = 1500

80 t1 = 0 t2 = 700 t3 = 1500

100 t1 = 0 t2 = 700 t3 = 1500

105 t1 = 0 t2 = 1200 t3 = 1500

130 t1 = 0 t2 = 500 t3 = 1500

Figure 1.4: Flow states during the transient dynamics at different values of the Reynolds numbers,
resulting from DNS starting with the corresponding symmetric steady solution. Three snapshots
were selected for their typical flow characteristics. Vorticity fields are plotted in color with the
range [−1.5, 1.5].

also notice that the destabilization starts from the far wake for the vortex shedding. The length
of the recirculation zone behind the cylinders will get shorter from the steady solution to the final
stable vortex street.

The system undergoes a supercritical pitchfork bifurcation at Re = 68, which breaks the
reflectional symmetry by deflecting the base-bleeding jet to the top or the bottom, see § 1.3.2
for detail. At Re = 80, the von Kármán vortex street preserves the spatio-temporal symmetry
until t ≈ 700, and the base-bleeding jet behind the back two cylinders is almost unaffected by the
development of the vortex shedding. However, this state is unstable, and the base-bleeding jet will
eventually deflect to the top or the bottom.

At Re = 100, the transient dynamics exhibits a reversed order. The base-bleeding jet deflects
first to the top, before the formation of the von Kármán vortex street. To be noted, the base-
bleeding jet will keep deflected to the top even in the fully developed vortex street. The von
Kármán vortex street is affected by the base-bleeding jet and slightly deflected downside. The
coupling relationship between them is still weak in this case.

At Re = 105, the transient dynamics is similar to Re = 100. However, the base-bleeding jet
will oscillate around the upwards deflected position at a lower frequency fJET and modulate the
vortex shedding in the near wake. The coupling relationship between them cannot be ignored
anymore.

At Re = 130, the vortex shedding comes out first. The initial symmetric von Kármán vortex
street characterized by a staggered arrangement is separated into two sub-streets of positive and
negative vorticity. The length of the recirculation zone is very short now, and the base-bleeding
will also oscillate and mix the two sub-streets up. The base-bleeding jet and the von Kármán
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vortex street are highly coupled and interact with each other.

Dynamics of the drag and lift forces

In figure 1.5 are represented the transient and post-transient dynamics of the lift CL and drag
CD coefficients from the unstable symmetric steady solution Us to the asymptotic regime, for
different values of the Reynolds number Re. The transient dynamics shown in figure 1.5 reveals
the following features:

– For Re = 30, the system stays in the vicinity of the unstable steady solution Us for an
extremely long time. An obvious transition is observed over the time range t ∈ [800, 1000].
CD increases quickly, and CL starts to oscillate around a vanishing mean value with an
increasing amplitude. The flow eventually goes into an asymptotic regime. In the vicinity of
the attractor, the oscillation frequency of CL is the same as the vortex shedding frequency
fVS, while CD oscillates at twice the frequency.

– For Re = 80, during the transient dynamics, one can see that CL starts oscillating around a
vanishing mean value before reaching its asymptotic non-zero mean value. Henceforth, the
symmetry of the mean flow is broken in a second step only, hundreds of convective time units
after the wake have started to oscillate. The lowest CD is associated with the symmetric
steady solution Us. The transient state, observed over the time range t ∈ [700, 800], has a
lower drag coefficient than that of the final regime. The amplitude of oscillation of CD is
very small, and the frequency is identical to the vortex shedding frequency fVS.

– For Re = 100, CL first reaches a non-zero value before it starts to oscillate, and CD decreases
to the lowest value before it increases to the highest value. From figure 1.4, we know the
symmetry breaking occurs first and the resulting state is the asymmetric steady solution
with base-bleeding jet deflected to the top. In the asymptotic regime, the amplitude of
oscillation of CD is very small, but CL oscillates with a much larger amplitude. Their
oscillation frequencies are identical to the vortex shedding frequency fVS. We notice that a
low frequency appears in the beginning of the saturation but quickly damps.

– For Re = 105 & 110, CD first reaches the lowest value, then oscillates with larger amplitude,
at the frequency of the jet modulation, which is one order of magnitude lower than the
frequency of the vortex shedding, fJET ≈ fVS/12. The oscillation at fVS also exists but with
a very small amplitude. CL first breaks the symmetry before it starts to oscillate at fVS and
is finally modulated by the frequency of the jet.

– For Re = 120, before entering into the fully chaotic regime, the initial part of the transient
dynamics of CD and CL indicates the flow first reaches the asymmetric steady solution with
base-bleeding jet deflected to the top. CL starts to oscillate around the non-zero mean value,
but will finally trapped into the chaotic regime with vanishing mean value.

– For Re = 130, CL starts to oscillate around zero, before entering into the chaotic regime
with vanishing mean value. This corresponds to the new kind of initial transient dynamics
preserving the symmetry observed in figure 1.4. CD begins to increase monotonically, but
soon shows a chaotic dynamics with a wider range of variation than Re = 120.

Force dynamics with different initial conditions

The transient and post-transient dynamics depend on the initial conditions. Except for Re = 30,
we apply DNS respectively with choosing one of the three steady solutions as the initial conditions.
We apply the reflectional symmetry operator to the trajectory issued from the symmetric steady
solution to obtain its mirror-conjugated trajectory. Four trajectories are plotted in an embedding
space of the drag coefficient CD(t), lift coefficient CL(t) and time-delayed lift coefficient CL(t− τ),
with τ = 2 units of time, as shown in figure 1.6.
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Re CD CL

30

80

100

105

110

120

130

Figure 1.5: Transient dynamics of the drag CD (left) and lift CL (right) coefficients for increasing
values of the Reynolds numbers, resulting from DNS starting with the corresponding symmetric
steady solution.
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Re = 30 Re = 80

Re = 100 Re = 105

Re = 120 Re = 130

Figure 1.6: Scenarios of transient and post-transient dynamics, based on the drag coefficient CD(t),
lift coefficient CL(t) and time-delayed lift coefficient CL(t − τ), resulting from the DNS starting
with the following unstable symmetric/asymmetric steady solutions at different Reynolds numbers:
the black curve from the symmetric steady solution us(×), the black dashed curve is its mirror-
conjugated trajectory, the red curve from the asymmetric steady solution u−s (•), and the blue
curve from the asymmetric steady solution u+

s (�).
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For a typical trajectory in the phase space, the dynamics is first linear in the neighbourhood
of the steady solution, and becomes progressively nonlinear as the amplitude of the perturbation
grows, until the asymptotic regime is reached on the attractor. Especially for the trajectories from
the symmetric steady solution at Re > 68 beyond the critical value of the pitchfork bifurcation,
they will first approach a transient state, for instance, an unstable limit cycle, like Re = 80, or the
unstable asymmetric steady solutions, like Re = 100, 105, 120, before entering into the permanent
state.

At Re = 30, there is only the von Kármán instability and only one trajectory from the fixed
point to the limit cycle. For 80 ≤ Re ≤ 105, there exist multiple trajectories from the three steady
solutions to the two attractors. For Re = 80, there exists three unstable fixed points, an unstable
limit cycle and two stable limit cycles. For Re = 100, the trajectories travel through three unstable
fixed points and two stable limit cycles. For Re = 105, the two stable limit cycles turn into two
attracting torus with quasi-periodic dynamics. For Re ≥ 120, The flow will inherit the symmetry
of the steady solutions before being trapped by the chaotic regime. The size of the chaotic area
in the phase space increases from Re = 120 to 130. We also note there is a random increase in
drag at Re = 130, while the chaotic dynamics of the drag coefficient is limited to a small range at
Re = 120.

Re = 120 Re = 125 Re = 130

Figure 1.7: Temporal evolution of the drag coefficient CD(t) in the chaotic regimes at different
values of the Reynolds number.

In figure 1.7, we observe a more apparent random increase at Re = 125, with a lower occurring
probability within the same simulating duration comparing to the case at Re = 130. The fluidic
pinball exhibits a stochastic character, involving the sudden transitions between chaotic and quasi-
periodic regimes, with no specific frequency associated with this seldom event (Sapsis, 2021).

In summary, the unforced fluidic pinball provides rich flow dynamics. We are concerned with
building a mean-field model at different Reynolds numbers, benchmarking the transient and post-
transient dynamics for three cases: with six invariant sets, with the quasi-periodic flow regime,
and with the chaotic flow state.

1.3 Linear stability analysis
In this section, we are interested in the dynamics of small perturbations in the vicinity of the base
flow, which can be a steady solution or a periodic solution of the Navier-Stokes equations. Under
this consideration, the time evolution of a tiny perturbation can be considered as a linear dynamics
in a finite transient time. The unsteady flow system in Eq. (1.1) has at least one steady solution
Qs = (Us, Ps), satisfying the steady Navier-Stokes equations

0 = −∇ · (Us ⊗Us) + ν4Us −∇Ps, (1.5a)
0 = ∇ ·Us. (1.5b)

The boundary conditions are the same as the unsteady Navier-Stokes equations (1.1). The New-
ton’s method, also known as the Newton–Raphson method, is used to solve the steady Navier-
Stokes equations. In the form of Eq. (1.2), F (Qs, Re) = 0 indicates that the steady solution is a
flow field depending on the Reynolds number. We note that an unstable steady solution can be
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numerically computed by solving the steady Navier-Stokes equations, but is difficult to obtain in
experiments or can only be observed transiently.

1.3.1 Linear stability of the base flow

To determine the stability of the base flow, one often employs the linear stability analysis, assuming
linear dynamics of small perturbations of the base flow. The linear stability analysis of the base flow
reveals the underlying mechanisms of the instability and predicts the early stages of the transient
dynamics.

Linear stability analysis for the steady solution

Around the steady state Qs(x), also known as the equilibrium of the governing equations, we
consider an infinitesimal perturbation q′(x, t):

q(x, t) = Qs(x) + q′(x, t). (1.6)

Substitute Eq. (1.6) into the unsteady Navier-Stokes equations (1.1), and neglect the nonlinear
term u′ ⊗ u′ with second-order smallness, the dynamics of the perturbation is governed by the
linearized Navier-Stokes equations:

∂tu
′ = −∇ · (u′ ⊗Us + Us ⊗ u′) + ν4u′ −∇p′, (1.7a)
0 = ∇ · u′, (1.7b)

with the homogeneous boundary conditions.
By definining the linearized Navier-Stokes operator around the steady solution Us as LUs and

the perturbation state vector q′ = (u′, p′), the linearized system can be written as:

∂tq
′ = LUsq

′. (1.8)

The modal analysis of stability leads to an eigenvalue problem (σ + iω) q̂ = LUs q̂, with per-
turbation in the form q′(x, t) = q̂(x)e(σ+iω)t, which reads

u′(x, t) = û(x)e(σ+iω)t (1.9a)
p′(x, t) = p̂(x)e(σ+iω)t. (1.9b)

To solve the eigenvalue problem, the simplest method is the power iteration method by repeatedly
performing LUs on an arbitrary initial perturbations q̂0. Multiple eigenvalues can be computed
by the Arnoldi method, or subspace iteration methods (Tuckerman & Barkley, 2000). We apply
subspace iteration to obtain the leading eigenvalues of LUs , which is performed on a Krylov sub-
space of dimension 9-20. A maximum number of 100 iterations is preset, and the iterations will
stop when the residual of the eigenvalue problem is less than 10−5 (Morzyński et al., 1999).

The real part of the eigenvalue σ, corresponding to the growth rate of the perturbation, indicates
the stability of the considered base flow Us. If all the σ are negative, the base flow is stable,
indicating that all the perturbations will decay to zero, otherwise, the base flow is unstable. As
the base flow depends on the Reynolds number, the eigenvalues will vary based on the Reynolds
number. Generally, a stable flow tends to become unstable with increasing Reynolds number, when
an eigenvalue crosses zero. The imaginary part ω determines the frequency of the instability at
onset, which is non-zero for a Hopf bifurcation (Strogatz et al., 1994).
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Floquet stability analysis for time periodic flow

For time-periodic flows, we consider a T -periodic solution Qp = (Up, Pp) of the unsteady Navier-
Stokes equations (1.1), satisfying

∂tUp = −∇ · (Up ⊗Up) + ν4Up −∇Pp, (1.10a)
0 = ∇ ·Up. (1.10b)

The boundary conditions are the same as the unsteady Navier-Stokes equations.
Similar to the linear stability analysis for the base flow Us, the Floquet stability problem deals

with a T -periodic base flow Up(x, t) = Up(x, t + T ) (Barkley & Henderson, 1996a; Schatz et al.,
1995). The linearized system around the T -periodic solution reads:

∂tq
′ = LUp(t)q

′ (1.11)

The linear operator LUp(t) is T -periodic because of the base flow Up(x, t). The solutions to
Eq. (1.11) are seeked as:

q′(x, t) = q̂(x, t)e(σ+iω)t, (1.12)

with the T -periodic Floquet modes q̂(x, t) and the corresponding Floquet exponents σ + iω. The
Floquet operator is defined as the time-integrated LUp(t), starting from a perturbation at t0 and
considering its evolution on the linearized system over one period T , which reads:

AF = exp

(ˆ t0+T

t0

LUp(t)dt

)
. (1.13)

The Floquet multipliers of AF can be written as λF = e(σ+iω)T , with the relation to the Floquet
exponents σ + iω = (lnλF )/T . The eigenproblem can be solved by the same methods as for the
linear stability analysis of the steady solution. In our case, at the critical value of the pitchfork
bifurcation, the dominant Floquet multiplier is of interest for the stability analysis of the periodic
solution preserving the symmetry. The resulting unstable eigenvector is associated with a real
eigenvalue and can be obtained by a simple power iteration method. Analogously, the T -periodic
solution is stable if the real part σ is negative for all the Floquet exponents, otherwise, the periodic
solution is unstable. The eigenvectors are the Floquet modes at instant t0, and one can integrate
Eq. (1.11) to obtain the periodic Floquet modes at other instants.

1.3.2 Instabilities and bifurcations

In this section, we briefly introduce the bifurcations detected from the linear stability analysis of
the steady solutions and from the Floquet analysis of the periodic solutions. Before the model
analysis of the eigenvectors, we first discuss the reflection symmetry properties existing in this flow
system, together with a relevant symmetry-based decomposition.

Z2-group with reflection symmetry

Since the flow configuration of the fluidic pinball has reflection symmetry (sometimes called mirror
symmetry) with respect to the x-axis, an important feature of the modal analysis is the reflection
symmetry properties of the modes. For a flow state q = (u, v, p), a symmetry-based decomposition
of the flow leads to a symmetric component qs = (us, vs, ps) ∈ U s with

us(x,−y) = us(x, y), vs(x,−y) = −vs(x, y), ps(x,−y) = ps(x, y), (1.14)

and an antisymmetric component qa = (ua, va, pa) ∈ Ua satisfying

ua(x,−y) = −ua(x, y), va(x,−y) = va(x, y), pa(x,−y) = −pa(x, y), (1.15)
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where U s and Ua are the set of symmetric and antisymmetric vector fields, respectively. Analo-
gously, we can derive the spanwise vorticity ω = ∂xv−∂yu with the following symmetry properties:

ωs(x,−y) = −ωs(x, y), ωa(x,−y) = ωa(x, y). (1.16)

In summary, for the symmetric field us, u, p are even and v, ω are odd in y, and opposite odd-even
rules for the antisymmetric field ua.

This symmetry-based decomposition can be applied to the instantaneous flow field with:

u(x, t) = us(x, t) + ua(x, t). (1.17)

When considering the modal interactions, for example the convective term, the group of symmetric
and antisymmetric vector fields (us,ua) is shown to form a Z2-group, which has the following
symmetry properties:

∇ · us ⊗ us, ∇ · ua ⊗ ua ∈ U s, (1.18a)
∇ · us ⊗ ua, ∇ · ua ⊗ us ∈ Ua. (1.18b)

We define a y-reflection operator R via R(u, v, p, ω)(x, y) ≡ (u,−v, p,−ω)(x,−y). Eigenvectors
obtained by linearizing about a reflection-symmetric state are necessarily either symmetric or
antisymmetric. A pitchfork bifurcation occurs, if the eigenvalue is real and the eigenvector is
antisymmetric, resulting in two symmetrically related asymmetric branches. If the eigenvalue is
real and the eigenvector symmetric, a transcritical bifurcation occurs. A Hopf bifurcation comes
along with a pair of complex conjugate eigenvalues. When the eigenvectors are antisymmetric, the
resulting limit cycle satisfies the spatio-temporal symmetry Ru(t) = u(t + T/2) (Barkley, 2006).
When the eigenvectors are symmetric, the limit cycle remains symmetric throughout Ru(t) = u(t).

Instabilities of the steady solutions

The linear stability analysis of the symmetric steady solutions Us at different Reynolds numbers
has been performed on a Krylov subspace of dimension 9 with 100 iterations. Two pairs of complex-
conjugated eigenvalues, and a real eigenvalue can be found with positive real parts with increasing
Reynolds numbers. The first pair of complex conjugated eigenvalues crosses the vertical axis
(σ = 0) when the Reynolds number is changing from 18 to 19, see figure 1.8(left). It is associated
with a Hopf bifurcation at Re1 = 18. The second pair of complex conjugated eigenvalues crosses
the vertical axis as the Reynolds number is changing from 64 to 65, see figure 1.8(middle). It is
associated with a Hopf bifurcation at Re2 = 64. The real eigenvalue becomes positive at Re3 = 68,
see figure 1.8(right) and is associated with a pitchfork bifurcation.

We plot the growth rate of the corresponding eigenmodes in figure 1.9 as functions of the
Reynolds number. We notice the first complex-conjugated pair has the largest growth rate for
Re ≤ 90, and the real eigenvalue has the largest growth rate for Re ≥ 95. For the two complex-
conjugated pairs, the first pair has a larger growth rate for Re ≤ 105. We recall that these growth
rates only indicate the linear dynamics in the neighbourhood of the steady solution Us. As the
instability develops, the linear dynamics no longer applies. The growth rate will decay to zero
when reaching saturation, and the frequency can be also changed by the nonlinear interaction. We
will discuss the nonlinear dynamics in the asymptotic regimes in the next section.

To discuss the eigenmodes associated with two of the three unstable steady solutions, we con-
sider the case at Re = 80. As a result of the pitchfork bifurcation, there exist three steady
solutions beyond Re3 ≈ 68: the symmetric steady solution Us, and two mirror-conjugated asym-
metric steady solutions U±s with the base-bleeding jet deflected up or down, like in figure 1.18
for Re = 100. They are unstable with respect to the periodic vortex shedding due to the Hopf
bifurcation beyond Re1 ≈ 18.

Figure 1.10(a) shows the eigenmodes associated with the two pairs of complex-conjugated
eigenvalues (mode A and mode B) and with the real eigenvalue (mode C) from the linear stability
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Re = 18 Re = 64 Re = 68

(a)

Re = 19 Re = 65 Re = 69

(b)

Figure 1.8: Eigenspectrum resulting from the linear stability analysis of the symmetric steady
solution Us. With increasing Re, the eigenvalues cross the imaginary axis, as illustrated with the
red points from (a) to (b). The first pair of complex-conjugated eigenvalues crosses the imaginary
axis at the critical value of the first Hopf bifurcation Re1 ≈ 18. The second pair of complex-
conjugated eigenvalues crosses the imaginary axis at the critical value of the second Hopf bifurcation
Re2 ≈ 64. The real eigenvalue crosses the imaginary axis at the critical value of the pitchfork
bifurcation Re3 ≈ 68.

analysis of the symmetric steady solution Us. As defined in Eq. (1.16), these three eigenmodes are
reflection-antisymmetric. Mode C concentrates in the near wake behind the back two cylinders,
which is associated with the symmetry-breaking instability of the base-bleeding jet. The super-
critical pitchfork bifurcation breaks the reflection symmetry by deflecting the base-bleeding jet up
or down. In contrast, Mode A and mode B originate in the far wake of the three cylinders, which
can be taken as a whole and approximated by a single obstacle. These two modes are associated
with the von Kármán instability of the vortex street.

These two pairs of complex-conjugated eigenvectors have very close angular frequencies. How-
ever, only one frequency can be observed in the asymptotic regime of a stable limit cycle for
Re ≤ 105. Mode B will quickly cancel out as mode A owns a larger growth rate. The far wake
region will be dominated by the development of mode A. At Re ≥ 110, mode B has a larger growth
rate. The initial transient dyanmics is different, as exemplified in figure 1.4. The symmetric von
Kármán vortex street at Re = 80, characterized by a staggered arrangement of the vortices, evolves
into two spatially well-separated sub-streets of positive and negative vorticity at Re = 130.

Considering the linear stability analysis of the asymmetric steady solution U−s , we can only
find two pairs of complex-conjugated eigenvalues, associated with mode A− and mode B−, as
shown in figure 1.10(b). Because the base flow U−s already breaks the reflection symmetry, all
the eigenmodes are slightly deformed and asymmetric. In addition, the symmetry breaking of the
base-bleeding jet leads to a larger growth rate for mode A and mode B.

Instabilities of the periodic solutions

The Floquet stability analysis integrates a small perturbation vector q over a given T -periodic
base flow with the linearized governing equations (1.11). The starting point is the computation of
the periodic solutions.
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Figure 1.9: Evolution of the real part of the corresponding eigenvalues of the symmetric steady
solutions us with the Reynolds number changing from 10 to 130. The red curve marked with
circles corresponds to the first pair of complex-conjugated eigenvalues, the blue dashed curve
marked with blocks corresponds to the second pair of complex-conjugated eigenvalues, and the
black curve marked with crosses corresponds to the real eigenvalue.

For the periodic regime, a stable vortex shedding state is easy to obtain from the asymptotic
state by direct numerical simulation. A large initial perturbation can accelerate the convergence to
the attracting set. In our case, an unstable periodic solution preserving the symmetry is transiently
observed in the DNS at Re = 80 starting close to the symmetric steady solution. Symmetry
breaking occurs in a second stage and leads to a stable asymmetric periodic solution. To stabilize
the symmetric periodic flow, we introduced a symmetric constraint on the base-bleeding jet. Details
can be found in appendix 2. In our case, we directly obtain the base flow as a series of continuous
snapshots from DNS by the same time interval. We note that a Fourier interpolation can be applied
to reproduce the base flow at each time step by using a limited number of Fourier modes.

As an example, at Re = 80, we perform the Floquet stability analysis for both the unstable
symmetric and the stable asymmetric periodic solutions, as detailed in Chapter 2. A simple
power iteration method on a single vector can be also applied as long as the unstable eigenvector is
unique and real. Here, we apply the block-Arnoldi method with random initial perturbation vectors
(Shaabani-Ardali et al., 2019), and compute the eigenvalues and eigenvectors in a high-dimensional
Krylov subspace of 200-600 basis vectors. The same leading Floquet mode can be found with above
mentioned methods, with a very close eigenvalue. Compared with the standard Arnoldi method,
this algorithm can compute 20 vectors at each iteration, improving the construction efficiency of
the Krylov subspace. The leading eigenvalue can converge after four iterations within a Krylov
subspace with 80 vectors. The resulting Floquet multipliers are shown in figure 1.11. All the
multipliers are inside of the unit circle for the stable asymmetric periodic solution, while only one
real multiplier larger than 1 is found for the unstable symmetric periodic solution.

The resulting eigenvectors are the Floquet modes at instant t0. We integrate Eq. (1.11) to
obtain the periodic Floquet mode associated with the unstable multiplier at other instants, as
shown in figure 1.12.

For quasi-periodic or chaotic regimes, stabilizing the flow on an unstable periodic solution is
much more difficult. As shown in figure 1.5, the new emerging frequency first appears at Re = 100,
but eventually dissipate and leads to a periodic solution. At Re = 105, this low-frequency does
not resolve, indicating a stable quasi-periodic solution. Close to the critical value of the secondary
Hopf bifurcation, there is a long transient regime of quasi-periodic dynamics before convergence to
the periodic solution, as shown in figure 1.13. The low-frequency modulation slowly decreases with
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Figure 1.10: Eigenspectrum (top) and real part of the eigenvectors (bottom) of the symmetric
steady solution Us (left), of the asymmetric steady solution U−s (right), both at Re = 80. The
red color and solid contours in the eigenvectors are positive values of the vorticity, blue color and
dashed contours are negative values.

time for 100 ≤ Re < 104, indicating that the transient quasi-periodic solution is only transient
and will become stable at Re ≥ 104.

We perform the Floquet analysis on one asymmetric limit cycle at Re = 100. The leading Flo-
quet multipliers form a complex-conjugate pair of eigenvalues close to the unit cycle, as illustrated
in figure 1.14(a). Based on the same periodic base-flow, we slightly increase the Reynolds number
to see the evolution of this pair of eigenvalues. Although it is not the exact periodic solution
for the Reynolds number under consideration, the Floquet analysis can however predict the most
dangerous modes. As shown in figures 1.14(b, c), the complex eigenvalues cross the unit cycle as
the Reynolds number changes from 105 to 110.

The associated eigenvectors are also complex conjugated. We consider the real part of the
eigenvector of the leading pair of complex-conjugate eigenvalues to determine the evolution of the

(a) (b)

Figure 1.11: Floquet multipliers for the (a) symmetric periodic solution and (b) asymmetric peri-
odic solutions at Re = 80. The red point indicates the leading Floquet multiplier associated with
the unstable eigenvectors breaking the symmetry.
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τ Qp(t0 + τ) q(t0 + τ)

0

T/4

T/2

3T/4

Figure 1.12: The T -periodic base flow Qp(t0 + τ) of the unstable symmetric periodic solution at
Re = 80, together with the real part of the unstable eigenvector q(t0 + τ) associated with the
leading Floquet multiplier of figure 1.11(a). The spatio-temporal symmetry u(t + T/2) = Ru(t)
implies that the next two instants are obtained by y-reflection and sign change (color reversal) of
these vorticity fields.

Re = 102 Re = 103 Re = 104

Figure 1.13: Transient dynamics of the drag CD coefficients for the Reynolds numbers close to the
critical value of the secondary Hopf bifurcation.

optimal perturbation on the periodic linear operator. We define the kinetic energy gain over a
period as

G(n) =
||eLUpnTq′0||2

||eLUp (n−1)Tq′0||2
, (1.19)

where the norm is the inner product of the velocity field indicating the kinetic energy of the
perturbation. The initial perturbation q′0 is optimal when considering the leading eigenmode from
the Floquet analysis. The evolution of the optimal energy gain, over an integer number of periods,
are illustrated in figure 1.15. A new period appears in the optimal gain with 11 periods of the
base-flow. As shown in figure 1.16, the spatial structure of the optimal perturbation at instant t0
will recover every 11 iterations with one periodic stepping on the base-flow. The vortex pairs are
fixed with the phase of the base flow at instant t0, but rotate with the new frequency.
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Re = 100 Re = 105 Re = 110

Figure 1.14: Evolution of the Floquet multipliers as the Reynolds number changes from 105 to 110,
with the base-flow from the asymmetric periodic solution at Re = 100. The red points indicate the
leading complex pair of the Floquet multipliers associated with the secondary Hopf bifurcation.

Figure 1.15: Evolution of the optimal energy gain over an integer number of periods of the asym-
metric periodic solution at Re = 100.

1.4 Weakly nonlinear analysis

The linear dynamics only involve a minimal neighbourhood of the steady solution, as the pertur-
bation u′ is tiny at the onset of the instability. As the perturbation develops, the nonlinear term
u′⊗u′ cannot be ignored, and will start to modify the base flow through the effect of the Reynolds
stress (u′ · ∇)u′. Considering the mean-field distortion from the steady solution Us to the mean
flow U , the original linear dynamics is no longer valid, and the nonlinear interactions will drive
the transient dynamics until saturation.

Figure 1.17 shows the transient and post-transient dynamics starting from the steady solution of
the cylinder flow. This oscillatory instability corresponds to a simple supercritical Hopf bifurcation,
where a pair of conjugated oscillatory modes is enough to describe the fluctuating components. The
nonlinear dynamics of this system can be projected into a three-dimensional space, and described
by the temporal evolution of two oscillatory modes a1, a2 and a shift mode a∆ associated with
the mean-field deformation. During the evolution from the fixed point to the limit cycle, the
conjugated oscillatory modes is constantly deformed and gets closer to the cylinder. The length of
the recirculation bubble decreases continuously from the steady solution to the mean flow in the
asymptotic regime. This deformation of the mean flow is the result of Reynolds stresses generated
by the fluctuating field (Barkley, 2006).

In the following subsections, we will discuss the nonlinear interaction during the transient and
post-transient dynamics.
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Figure 1.16: The real part of the unstable eigenvector q(t0 + τ) associated with the leading pair
of complex Floquet multipliers of figure 1.14(a). The eigenmode at instant t0 presents rotating
vortex pairs on a time scale of 11 base periods.

1.4.1 Symmetry breaking of the base flow

The supercritical pitchfork bifurcation at the critical value RePF ≈ 68 breaks the reflection sym-
metry of the base flow, the symmetric steady solution Us(x), by deflecting the base-bleeding jet
up or down. Two additional asymmetric steady solutions appear, namely U+

s (x) and U−s (x), as
shown in figure 1.18(right). Initialized with the three steady solutions at Re = 130, we gradually
decrease the Reynolds number and determine the steady solutions separately. The three steady
solutions converge to a unique solution at Re = 68, as shown with the lift coefficients of the steady
solutions in figure 1.18(left).

To obtain three steady solutions

In our case with a steady solver, it is straightforward to compute the symmetric steady solution
by solving the steady Navier-Stokes equations with a Newton-Raphson iteration method. One
can start with a low Reynolds number Re� RePF first to ensure fast convergence to a symmetric
steady solution, then use this steady solution as an initial condition to calculate the steady solution
at an higher Reynolds number.

At Reynolds number Re > RePF, the initial condition is critically important and decides which
steady solution the steady solver converges to. Theoretically, if we have three solutions with
different states of the base-bleeding jet, we can use them as the initial condition to obtain the
corresponding three steady solutions. However, an initial condition closer to the target steady
solution can ensure correct convergence. An option is to start with an asymmetric steady solution
at another Reynolds number. It will quickly converge to the asymmetric steady solution at the
given Reynolds number, sharing with the initial condition the same deflecting direction of the
base-bleeding jet.

Another option is to start with an approximate steady state at the same Reynolds number,
which is the closest solution to the target steady solution. We apply a numerical trick to obtain
the approximate steady state by applying the unsteady solver with an over-large time stepping
scale. When the time step is larger than the vortex shedding period, the coherent structure (the
vortex shedding) is quickly damped and the flow converges to an approximation of the steady state.
However, this artificially large time step will not affect the symmetry breaking of the base-bleeding
jet. Taking this approximate state from the unsteady solver as an initial condition for the steady
solver, an accurate asymmetric steady solution can be obtained. This method is still applicable
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Figure 1.17: Nonlinear saturation during the transient and post-transient dynamics of the cylinder
wake. On the left side: the streamline patterns of the steady solutions us(x) , the time-averaged
mean flow field u0(x) and a snapshot of the vortex shedding on the limit cycle u(x, t). A pair of
conjugated oscillatory modes are used to describe the local dynamics, which are varying along the
manifold a∆. From Tadmor et al. (2011).

for cases with no prior knowledge of solutions at other Reynolds numbers.

Pitchfork bifurcation and symmetry breaking

At Re > RePF, there exist three steady solutions satisfying the steady Navier-Stokes equations
(1.5). Considering the following decomposition for a simple pitchfork bifurcation:

U(x, t) = 〈U〉 (x, t) + u4(x, t), (1.20)

where u4(x, t) is the reflectional anti-symmetric component and 〈U〉 (x, t) the symmetric com-
ponent of the unsteady flow field. The pitchfork bifurcation breaks the symmetry of the flow
and results in two asymmetric branches of opposite anti-symmetric component: one solution with
U+ = 〈U〉 + u4, and another one with U− = 〈U〉 − u4. Hence, 〈U〉 can be seen as the phase
average of the two asymmetric solutions with 〈U〉 = (U+ + U−)/2.

Introducing a shift component u5(x, t) for the slowly-varying dynamics of the mean flow, we
can rewrite 〈U〉 (x, t) ≡ Us(x) + u5(x, t). We note that the subscripts of u4(x, t) and u5(x, t)
are consistent with the index used in the least-order mean-field model introduced in 2. However,
u4(x, t) and u5(x, t) represent here the time-resolved flow components instead of the spatial modes.

Introducing Eq. (1.20) into the Navier-Stokes equations (1.1), the equations can be separated
into the anti-symmetric part and the symmetric part:

∂tu4 = −(〈U〉 · ∇)u4 − (u4 · ∇) 〈U〉+ ν4u4 −∇p4, (1.21a)
(u4 · ∇)u4 = −(〈U〉 · ∇) 〈U〉+ ν4〈U〉 − ∇ 〈P 〉 , (1.21b)

subject to the incompressibility condition. The original boundary conditions apply to Us(x),
and u4(x, t), u5(x, t) satisfy the homogeneous boundary conditions. Substituting 〈U〉 (x, t) ≡
Us(x) + u5(x, t) into the symmetric part of Eq. (1.21), the mean-field distortion u5(x, t) and the
fluctuating component u4(x, t) must obey

(u4 · ∇)u4 = −(Us · ∇)u5 − (u5 · ∇)Us + ν4u5 −∇p5. (1.22)
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Figure 1.18: Lift coefficients at different Reynolds numbers (a) of the symmetric steady solutions
Us (black curve),the asymmetric steady solutionsU−s (blue curve), the asymmetric steady solutions
U+
s (red curve), exemplified with the vorticity field of U+

s , Us, U−s at Re = 100 from top to bottom
(b).

The nonlinear term (u4 · ∇)u4 corresponds to the Reynolds stress of the anti-symmetric part of
the perturbations.

When ∂tu4 = 0, the system reaches one of the two asymmetric steady solutions (u4 6= 0). The
nonlinear saturation yields:

(u5 · ∇)u4 + (u4 · ∇)u5 = −(Us · ∇)u4 − (u4 · ∇)Us + ν4u4 −∇p4. (1.23)

The right hand side of Eq. (1.23) can be written as LUsu4(x, t), which contributes to the linear
instability of the symmetric steady solution. In this case, the growth of u4(x, t) has been saturated
by the nonlinear interaction of u4(x, t) and u5(x, t) on the left-hand side.

1.4.2 Mean flow stability analysis

Strictly speaking, the time-averaged mean flow of a periodic state is not an exact solution of
the Navier-Stokes equations. It is a statistical solution only and cannot reveal the stability of
the physical system. The mean-field distortion is a direct consequence of the nonlinear saturation
process. For the periodic flow resulting from the Hopf bifurcation, like in figure 1.17, the mean-flow
field, initially merged with the steady solution, gets distorted due to the Reynolds stress associated
with the fluctuations during the transient and post-transient dynamics. The linear stability analysis
of the steady solution can only predict the instability at the onset of the instability. When the
dynamics has saturated, the mean flow becomes marginally stable, with the growth rate close
to zero. The frequency after nonlinear saturation is also different from that at the onset of the
instability. However, the nonlinear frequency could be correctly captured by the stability analysis
of the mean flow in the case of the cylinder wake (Barkley, 2006). Sipp & Lebedev (2007) further
apply mean flow stability analysis to both cylindrical and open cavity flows and demonstrate
that two precise conditions must be satisfied to obtain relevant and useful results. The theorical
conditions for the use and meaning of this method is also discussed in Beneddine et al. (2016) on
a turbulent backward facing step flow.

The Reynolds decomposition reads:

U(x, t) = U(x) + u′(x, t), (1.24)

with zero-mean fluctuating components u′ and the mean-flow U from time-averaging:

U(x) =
1

T

ˆ T

0

Up(x, t)dt. (1.25)
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Introducing Eq. (1.24) into Eq. (1.1) yields:

∂tu
′ = −(u′ · ∇)u′ − (U · ∇)u′ − (u′ · ∇)U − (U · ∇)U

+ν4U + ν4u′ −∇P −∇p′. (1.26a)
0 = ∇ · u′, (1.26b)

with the homogeneous boundary condition. Reynolds-averaged Navier-Stokes (RANS) equations
read:

(u′ · ∇)u′ = −(U · ∇)U + ν4U −∇P , (1.27)

which indicates the Reynolds stress changes the time-averaged mean flow. Introduce Eq. 1.27 into
Eq. 1.26:

∂tu
′ = −(U · ∇)u′ − (u′ · ∇)U + ν4u′ −∇p′−(u′ · ∇)u′ + (u′ · ∇)u′︸ ︷︷ ︸

f

. (1.28)

Only consider the first-order term and Eq. (1.28) writes

∂tq
′ = LUq

′, (1.29)

with LU the linearized Navier-Stokes operator around the time-averaged mean flow and the solution
in the form q′(x, t) = q̂(x)e(σ+iω)t.

The result owns a so-called RZIF property: the real part is zero, and the imaginary part is the
frequency of the limit cycle (Turton et al., 2015). For a stable limit cycle with angular frequency
ω, the flow field can be decomposed into the temporal Fourier decomposition:

U(x, t) = U(x) +
∑
n 6=0

une
inωt. (1.30)

with U > u±n, u±n ∼ O(εn) and u±n a complex conjugate pair of n-th order harmonic. In-
troducing Eq. (1.30) into Eq. (1.1), the nonlinear terms are divided into different frequencies
Ni =

∑
n6=0(un · ∇)u−n+i:

0 = −(U · ∇)U −N0 + ν4U −∇P , (1.31a)
iωu1 = −N1 + ν4u1 −∇p1, (1.31b)
i2ωu2 = −N2 + ν4u2 −∇p2, (1.31c)

· · · (1.31d)

The non-harmonic term N0 can be seen as the decomposition of the Reynolds stress from different
harmonic terms, which contributes to the mean-field distortion. For the first harmonic terms,
assuming:

−(U · ∇)u1 − (u1 · ∇)U � −(u2 · ∇)u−1 − (u−1 · ∇)u2, (1.32)

Eq.(1.31b) can be written as

iωu1 = −(U · ∇)u1 − (u1 · ∇)U + ν4u1 −∇p1, (1.33)

with intriguingly σ = 0 and ω the angular frequency of the limit cycle. This property is a direct
result of the harmonic balance (Dušek et al., 1994). From the same idea, Mantič-Lugo et al.
(2014) proposed the self-consistent model to predict the nonlinear saturation from Us to U for the
supercritical Hopf bifurcation of the cylinder flow. The leading eigenmode of the slowly varying
mean-flow field is proven to be able to predict the mean flow distortion. In the post-transient
regime, the mean flow U is marginally stable (σ = 0), and the leading eigenmode u1 and the
angular frequency ω are closely associated with the limit cycle after saturation. However, the
leading mode is not always sufficient to reproduce the nonlinear mean-field flow and frequency.
Bengana & Tuckerman (2021) discusses the validity of the self-consistent model and proves the
necessity of higher-order modes for a good approximation of the mean flow.
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1.5 Deep mean-field modelling

In physics and statistics, mean-field theory, also known as self-consistent field theory, is a simpli-
fication of studying high-dimensional stochastic system by statistical averaging. The study of the
mean flow can reveal some characteristics of the original system with a lower computational cost
and has been applied to a wide range of scientific disciplines. In fluid mechanics, the mean flow
usually refers to a time-averaged solution of the periodic flow, with the fluctuating components
vanishing. Unlike the steady solution, the mean flow can be obtained both numerically and exper-
imentally. The analysis of this solution has a broader range of application and may contribute to
a deeper understanding of nonlinear interaction during the transition.

As mentioned in the previous section § 1.4.2, the mean flow stability analysis can successfully
predict the nonlinear frequency of the saturated state. It turns out that the RZIF property is a
direct result of the nonlinear saturation of oscillatory instability. Mean-field considerations also
lead to the Reynolds decomposition of the flow field (1.34) and Reynolds-averaged Navier–Stokes
equations (1.27). The self-consistent model proposed in Mantič-Lugo et al. (2014) uses a sole
oscillatory mode to predict the nonlinear saturation dynamics of a supercritical Hopf bifurcation.

In this section, we will briefly discuss the flow under the mean-field consideration § 1.5.1, which
leads to two kinds of mean-field modelling (MFM) strategies in the next two subsections. In
§ 1.5.2, a cluster-based MFM is introduced by incorporating the Reynolds decomposition into the
cluster-based modelling. In § 1.5.3, we introduce the Galerkin framework under the mean-field
consideration, which leads to least-order mean-field models based on the instabilities undergone
by the system when increasing the Reynolds number. Based on the least-order mean-field model,
we can reproduce the unsteady force dynamics in § 1.5.4 with a sparse formula of the drag and
lift dynamics, simplified under the symmetry consideration for mean-field modelling, revealing the
modes involved in the production of drag and lift.

1.5.1 Mean-field ansatz

Under the mean-field consideration, the triple decomposition of the flow field is similar to Reynolds
& Hussain (1972)

u(x, t) = 〈u(x, t)〉T︸ ︷︷ ︸
ω�ωc

+ ũ(x, t)︸ ︷︷ ︸
ω∼ωc

+u′(x, t)︸ ︷︷ ︸
ω�ωc

, (1.34)

where the dominant angular frequency ωc is defined as the dominant peak in the Fourier spectrum
of the velocity field. Here, the velocity field is decomposed into a slowly-varying mean-flow field
〈u〉T , a coherent component on time-scales of order 2π/ωc, involving coherent structures ũ, and a
remaining (supposedly) non-coherent small scale fluctuations u′. This kind of decomposition can
also be found in the low-order Galerkin models of Tadmor et al. (2011) and in the weakly nonlinear
modelling of Rigas et al. (2017a).

The slowly-varying mean-flow field 〈u〉T can be defined as the average of the velocity field u
over one local period T ≈ 2π/ωc of the coherent structures,

〈u(x, t)〉T :=
1

T

t+T/2ˆ

t−T/2

dτ u(x, τ), (1.35)

which eliminates both the coherent contribution from ũ and the non-coherent contribution from
u′. Unlike the mean-flow field defined by the post-transient limit,

ū(x) = lim
T→∞

1

T

T̂

0

u(x, τ)dτ, (1.36)
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the finite-time averaged-flow field considered in this study owns a slowly varying dynamics. From
the mean-field theory of Stuart (1958), the slowly-varying mean-flow field evolves out of the steady
solution under the action of the Reynolds stress associated with the most unstable eigenmode(s).
The mean-flow field deformation u∆ is used to describe the difference between the slowly-varying
mean-flow field and the invariant steady solution us(x), which reads

〈u(x, t)〉T = us(x) + u∆(x, t). (1.37)

The mean-flow deformation comes from the effect of the Reynolds stresses of the coherent compo-
nent (ũ · ∇)ũ and of the non-coherent small scale fluctuations (u′ · ∇)u′.

The most simple mean-field model was proposed by Landau (1944) and Stuart (1958) for a
nonlinear oscillating dynamics in the cylinder flow, near the threshold of the supercritical Hopf
bifurcation. The weakly nonlinear evolution of the underlying instability can be modelled with the
Stuart-Landau equation, which reads:

dA

dt
= σA+ α |A|2A, (1.38)

where A is a complex quantity describing the fluctuation, for instance, the oscillation amplitude.
The complex growth rate σ can be determined from the linear instability analysis, and the Landau
constant α can be obtained from the asymptotic regimes with the nonlinear saturation characterised
by a stable limit cycle. The Stuart-Landau equation reveals deep insights into the coupling between
the fluctuations and the mean flow, e.g. the damping mechanism of unstable modes by Reynolds
stress. The Landau constant can also indicate the type of Hopf bifurcation, with negative values for
supercritical criticality and positive values for subcritical criticality. The Stuart-Landau equation
has been widely used for flows undergoing supercritical Hopf bifurcations, and even for more
complicated flows with multiple instabilities. Barkley et al. (2000) proposed Landau-like amplitude
equations to describe the complex transition process for the three-dimensional vortex shedding in
the wake of a circular cylinder. Fabre et al. (2008); Meliga et al. (2009); Rigas et al. (2017a)
derived similar equations based on symmetry arguments for the wake of axisymmetric bodies, for
instance, a sphere and a disk.

1.5.2 Hierarchical clutser-based framework

Automated reduced-order modelling is one of the most challenging and exciting directions for
complex nonlinear dynamics. The traditional modelling techniques, like Galerkin modelling, always
project the original system onto a low-dimentional subspace, and model an approximate dynamical
system with an optimal basis. The projection basis decides the closeness of the approximate
dynamics to the full dynamics. Data-driven modelling can liberate us from the issue of choosing the
projection basis, and provide us with novel and promising modelling strategies from mathematics,
data science, and statistical physics. Nowadays, machine learning can be seen as the most popular
multi-disciplinary scientific area. It has been applied to data analysis and automated modelling in
industry, transport, socio-economics, finance, biology and many other fields.

In this subsection, we briefly overview the machine learning techniques applied in our work:
clustering, Markov chain and network science. The critical point is the hierarchical modelling
strategy, which presents great consistency with the Reynolds decomposition and shows its great
potential for multi-scale and multi-frequency modelling.

Cluster-based reduced-order modelling

Clustering is one of the most popular unsupervised machine learning techniques, which can auto-
matically explore the natural groups (clusters) of the data in the feature space. The most common
k-means algorithm partitions the data into k clusters, and features each state with the nearest
centroid ck.
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For fluid flows, the data are usually sampled into time-resolved snapshots of the flow field
um(x) = u(x, tm), continuously sampled at times tm = m∆t, m = 1, . . . ,M , with the time step
∆t. The clustering algorithm will find the optimal locations of the K centroids, determined as
solutions of a minimisation problem of the within-cluster distances between the snapshots and
the related centroids, as described in section 5.3.1. The M snapshots will be partitioned into K
clusters according to the Euclidean distance to the nearest centroid in the state space. Snapshots
in the same cluster share the identical attributes featured by the cluster centroid. Thereby M
snapshots are kinematically compressed to K centroids with clustering. The clustering process is
unsupervised with only a sole control paremeter K.

The cluster-based reduced-order modelling (CROM) has been proposed by Kaiser et al. (2014)
and exemplified on the mixing layer and the Ahmed body wake. The flow data is partitioned into
10 clusters by the k-means++ algorithm, and the flow dynamics is described from a statistical
point of view with a cluster-based Markov model (CMM). CROM provides us with a novel mod-
elling strategy, liberating us from the issue of choosing low dimensional spaces for the traditional
projection methods.

Clutser-based Markov model and network model

The main difference between cluster-based Markov models (CMM) and cluster-based network mod-
els (CNM) is the cluster-based modelling process, while the kinematic compression with clustering
is identical. CMM concentrates on stochastic modelling, providing a probability description of the
state and the probability evolution over time. In contrast, CNM focuses on dynamical modelling,
which can achieve the flow dynamics reconstruction by the state propagation with a sequence of
visited clusters over time.

Clutser-based Markov model (CMM) provides a stochastic model to describe the transient
dynamics between clusters using a Markov chain. In probability theory and statistics, the Markov
property assumes the memoryless property of a stochastic process, which means that the current
state depends on the previous state only.

As the M snapshots have been divided into K clusters, they are labeled with a cluster index
km = k, k = 1, . . . , K. The total number of snapshots in Cj is nj, i, j = 1, . . . , K. There exist
M − 1 one-step transitions for M snapshots. By noting nij the number of snapshots departing
from Cj to Ci, the probability of transition from Cj to Ci is defined as Pij = nij/nj, and all the
possible transitions are identified with the cluster transition matrix P.

The state at time tm is described by a cluster probability vector pm = [pm1 , . . . , p
m
K ], with

probabilities pmk for the state in Ck. The time evolution of the cluster probability vector is a
Markov process, which can be described as

pm+1 = Ppm. (1.39)

Let p1 be the initial probability distribution at time t1, the cluster probability vector at time tm
is computed by the time-step iteration,

pm = Pm−1 p1. (1.40)

The CMM is the first CROM in the cluster-based framework, which results into a stochastic
model of probability distribution. Nair et al. (2019) applied an extended CMM to the nonlinear
feedback flow control of turbulent post-stall separated flows and introduced the directed network
(Newman, 2018) for the dynamical modelling. The Markov chain is considered as a random walk
on a directed network with the clusters being the nodes and the transitions between clusters
being the edges. The within-cluster transitions are ignored under this consideration. For the non-
trivial transitions between two different clusters, we re-define nj as the total number of departing
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snapshots from Cj, with nj =
K∑
i=1

(1− δij)nij. The transition probability can be represented by:

Pij =
(1− δij)nij

nj
, i, j = 1, · · · , K. (1.41)

This extended CMM eliminates the self-loops residing in clusters and focuses on the non-trivial
transitions, which significantly contributes to the transition dynamics.

Cluster-based network models (CNM), as proposed by Fernex et al. (2021) and Li et al.
(2021), further develop the extended CMM by using a direct transition matrix for the non-trivial
transitions, and a transition time matrix for the within-cluster transitions. The transition matrix
P still acts as a propagator in terms of probability, which predicts the evolution of the cluster
probability distributions over time. The residing time matrix T records the transition times for all
the possible transitions in P. In order to reproduce the transient dynamics for the original system,
a sequence of visited clusters over time [k0, k1, . . . , kN ] are needed to trigger the cluster transitions.
The transition times can be synthesized as

t̂n = t0 +
n∑
i=0

Tki+1ki , n = 0, . . . , N − 1. (1.42)

Linear interpolation between two clusters can be introduced for a uniform state propagation be-
tween two clusters, as in Fernex et al. (2021) and Li et al. (2021). The flow state is represented by
the nearest centroid without any additional assumption.

Hierarchical network model

Clustering is optimal for the spatial distributions of the centroids but not for the dynamics. The
classical CROM may face difficulties with multi-scale problems in transient and post-transient
dynamics because the clustering results are highly dependent on the spatial distances in the state
space. The critical enabler for applying CNM to the transient and post-transient dynamics is the
triple decomposition under the mean-field consideration, as in Eq. (1.34). By decomposing the
flow field into a hierarchy of components, we can systematically model the dynamics at different
scales.

A self-supervised hierarchical clustering is performed from top to bottom, which prioritizes the
modelling of global trends for the mean flow distortion, then refines the local dynamics with sub-
clusters, as described in § 5.3.2. Both the global trends and the local structure during the transition
can be well preserved by a fewer number of clusters in the hierarchical structure, which leads to
a better understanding of the physical mechanisms involved in the flow dynamics. In summary,
the hierarchical cluster-based reduced-order model (HiCROM) inherits the excellent recognition
performance of CROM and provides a generalized modelling strategy for complex dynamics with
multiple scales and frequencies.

The cluster-based hierarchical network model (HiCNM) presented in Chapter 5 is based on the
hierarchical Markov model of Fine et al. (1998), which introduces the hierarchical structure into
the standard Markov model for stochastic modelling. In a HiCNM, each state of the parent layer
will be considered separately and a new network model of its sub-states will be built in the child
layer.

1.5.3 Galerkin framework

The POD-Galerkin method is based on the Galerkin projection of the governing equations onto an
optimal low-dimensional basis, consisting of the spatial modes from the proper orthogonal decom-
position (POD). This method has a long history as a data-driven reduced-order modelling technique
and has been widely used for model reduction in fluid dynamics. However, the truncation errors,

31



Section 1.5. DEEP MEAN-FIELD MODELLING

stability, transient behavior and robustness for varying operating conditions are still challenging
for this method. The choice of the low-dimensional subspace is critically important and will decide
the representation of the flow dynamics. In this work, we use a least-order mean-field model to
represent the flow dynamics with the fewest number of degrees of freedom. The basic modes of
the low-dimensional space are chosen with the knowledge of the instabilities that the system has
undergone while increasing the Reynolds number. Based on an optimal low-dimensional basis, a
general Galerkin framework can be applied as following:

The Galerkin method is based on an inner product in the space of the square-integrable vector
fields L2(Ω) in the observation domain Ω. The standard inner product between two velocity fields
u(x) and v(x) reads:

(u,v)Ω :=

ˆ

Ω

dx u(x) · v(x). (1.43)

A traditional Galerkin approximation decompose the velocity field into a constant mode u0 and
a fluctuating contribution of N orthonormal expansion modes ui(x), i = 1, . . . , N with time-
dependent amplitudes ai(t).

u(x, t) = u0(x) +
N∑
i=1

ai(t)ui(x). (1.44)

Generally, the time-averaged flow u is chosen as the basic mode for a data set of the saturated
state near an attractor. However, when considering the transient and post-transient dynamics,
it is better to choose an exact solution, for instance, the steady solution Us of the Navier-Stokes
equations, corresponding to a fixed point of the Galerkin system in the following derivation. The
basic mode u0 is constant with a0 ≡ 1 (Rempfer & Fasel, 1994b). All the modes in the Galerkin
expansion (1.44) satisfy the incompressibility condition. For the boundary conditions, the basic
mode inherits the same boundary conditions for the original flow fields (1.4), the fluctuating modes
satisfy the homogeneous boundary condition. The orthonormality condition for the fluctuating
modes reads (ui,uj)Ω = δij, i, j ∈ {1, . . . , N}.

A Galerkin projection of the Navier-Stokes equation (1.1) onto the modes(1.44) leads to the
following linear-quadratic ordinary differential equations (ODE), known as the Galerkin system
(Fletcher, 1984),

d

dt
ai = ν

N∑
j=0

lνijaj +
N∑

j,k=0

qcijkajak +
N∑

j,k=0

qpijkajak, (1.45)

with coefficients

lνij = (ui,4uj)Ω , (1.46a)
qcijk = (ui,∇ · uj ⊗ uk)Ω , (1.46b)
qpijk = (ui,−∇pjk)Ω , (1.46c)

for the viscous, convective and pressure terms in the Navier-Stokes equations (1.1), respectively.
The pressure term vanishes for sufficiently large domains (Noack et al., 2005) and is neglected in
the following.

When the steady solution is taken as the basic mode u0 = Us with a0 ≡ 1, the projection
of the steady Navier-Stokes equation (1.5) onto the modes (1.44) leads to the constant relations
νlνi0 + qνi00 + qpi00 = 0. Exclude a0 ≡ 1 from the state vector, and a = 0 is a fixed point of the
following Galerkin system:

d

dt
ai =

N∑
j=1

lijaj +
N∑

j,k=1

qijkajak, (1.47)

where lij = νlνij + qcij0 + qci0j and qijk = qcijk for i, j, k ∈ {1, . . . , N}.
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Consider for illustration an oscillatory instability under mean-field considerations. The flow can
be decomposed into the coherent fluctuation ũ and the distorting mean-flow uD(x, t) = 〈u(x, t)〉T .
The mean-field deformation u∆ is well approximate by the difference between the distorted mean-
flow and the steady solution as uD(x, t) = Us(x) + u∆(x, t).

Consider the symmetry of those flow components. The steady solution, distorted mean-flow
and mean-field deformation can be expected to be symmetric while the dominant fluctuation is
anti-symmetric. Therefore, the anti-symmetric part of the Navier-Stokes equations drives the
dynamics of the fluctuation field:

∂tũ +∇ ·
[
uD ⊗ ũ + ũ⊗ uD

]
= ν4ũ−∇p̃. (1.48)

Analogously, the symmetric part describes the dynamics of the distorted mean-flow:

∂tu∆ +∇ · [Us ⊗ u∆ + u∆ ⊗Us + u∆ ⊗ u∆ + ũ⊗ ũ] = ν4u∆ −∇p∆ (1.49)

Next, consider ũ and u∆ as small perturbations around the fixed point Us. Let ũ ∈ O(ε) and
u∆ ∈ O(δ) where ε and δ are smallness parameters. Hence, u∆ ⊗ u∆ ∈ O(δ2) can be neglected in
comparison to the O(δ) terms Us⊗u∆, u∆⊗Us. We follow Stuart’s original idea to separate the
fluctuation ũ driven by the instability and the resulting mean-field deformation u∆ and arrive at
the unsteady linearized Reynolds equation,

∂tu∆ +∇ · [Us ⊗ u∆ + u∆ ⊗Us + 〈ũ⊗ ũ〉] = ν4u∆ −∇p∆. (1.50)

The mean-field deformation u∆, characterized by the scale δ, is seen to respond linearly to the
Reynolds stress force −∇ · 〈ũ⊗ ũ〉 scaling with ε2. Hence, δ ∝ ε2.

In a least-order mean-field model, the Galerkin approximation consists of a basic mode u0(x) =
Us(x), a pair of conjugated modes u1(x) , u2(x) for the oscillatory fluctuation, and a shift mode
u3(x) ∝ u∆(x) for the Reynolds-stress effect of the fluctuation on the mean-field deformation.
After projection onto the Navier-Stokes equations, it yields the mean-field Galerkin system with
harmonic balance on the oscillatory coefficients a1(t), a2(t) and the slowly varying coefficient a3(t).
Moreover, a slaving relation a3 ∝ (a2

1 + a2
2) leads to the mean-field manifold.

We notice that the Galerkin system has a sparse form under symmetry considerations, as
defined in subsection 1.3.2. For each d ai/dt, the linear-quadratic ordinary differential equation
has 5 linear terms and 15 quadratic terms. However, only half of them are preserved under
symmetry assumptions, as shown in figure 1.19.

The Galerkin system, directly derived from the Galerkin projection, cannot capture the tran-
sient and post-transient dynamics correctly. It introduces extremely long transients due to the
underestimated growth rate. Our strategy is to correct some of the system coefficients by the
knowledge provided by the linear stability analysis and the asymptotic dynamics. The remaining
coefficients of the nonlinear interaction terms are identified by a sparse regression algorithm. The
details can be found in Chapter 2.

1.5.4 Galerkin force model

In this work, we also provide systematic investigations and interpretations of the aerodynamic
forces in the Galerkin framework. Here is a brief overview of the motivation and the critical
derivation.

Considering a reduced-order model (ROM) that can achieve an accurate reconstruction of the
flow fields, a natural thought arises: can this ROM reproduce the instantaneous forces on the body?
Intuitively, the answer should be yes. One can calculate the body forces directly from the recon-
structed flow fields. Since the aerodynamic forces depend on the viscous and pressure forces on the
body, the prediction of the forces needs the ROM to reconstruct the velocity field and the pressure
field simultaneously. In general, a POD-Galerkin system only provides a reconstruction of the
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Figure 1.19: The active terms in the linear-quadratic ODE from the Galerkin projection. The
considered Galerkin system consists of five degrees of freedom at Re = 80, and the details can be
found in section 2.3.5. The positive coefficients are presented with filled circles and open circles
for the negative coefficients. Their size has been normalized to the largest coefficient for each d

dt
ai,

with i = 1, . . . , 5 in the subscript of LQ.

34



CHAPTER 1. INTRODUCTION

velocity field. The pressure field reconstruction is still challenging for both computation cost and
boundary issues. There are two different approaches to achieve the pressure reconstruction from
the velocity-based ROM. One is to decompose the pressure field in the same Galerkin expansion
as the velocity field, then assumes that the velocity expansion and pressure expansion share the
same temporal coefficients. Another one is to solve the pressure Poisson equation with suitable
boundary conditions; but this approach needs considerable effort to solve all the possible modal
interactions between every two modes.

The critical idea of both two approaches is to present the pressure force with the velocity-based
ROM. Obviously, the second approach has a theoretical basis, but is troublesome numerically.
From the same idea, Noca et al. (1999) proposed force equations in an incompressible flow without
the need to evaluate explicitly the pressure field and is only based on the knowledge of the velocity
field and its time derivative. Liang & Dong (2014) applied it to the velocity-based POD modes,
and derived a force expression in terms of the force associated with each individual POD mode
and the force associated with the interaction between the POD modes. It showed that the leading
six POD modes are enough to predict the drag force with 5% error.

POD modes are orthonormalized spatial structures and therefore their force contribution is
constant. The same is true for the forces from the interactions between every two POD modes.
Therefore, the body force can be derived as a constant-linear-quadratic function of the mode
amplitudes.

The lift and drag forces can be derived from the general Galerkin expansion 1.44 of the velocity
field u(x, t) as a constant-linear-quadratic function of the mode amplitudes ai(t). For an body
immersed in the flow domain Ω, the α-component F ν

α (α = x, y) of the viscous force vector F ν on
the boundary Γ is expressed by

F ν
α = F ν · eα = 2ν

˛

Γ

∑
β=x,y

Sα,β nβ dS , (1.51)

where n is the unit normal pointing outward the surface element dS, eα is the unit vector in the
α-direction and Sα,β = (∂αuβ + ∂βuα) /2 is the strain rate tensor with indices α, β = x, y.

The pressure force in the α-direction is expressed as

F p
α = F p · eα = −

˛

Γ

dS nαp. (1.52)

The drag and lift forces are defined as the projection on ex and ey of the pressure and viscous
forces exerted on the body

FD(t) = F p
x (t) + F ν

x (t), (1.53a)
FL(t) = F p

y (t) + F ν
y (t). (1.53b)

The velocity field u(x, t) is replaced by the Galerkin approximation (1.44). The viscous force
(1.51) can be re-written as

F ν
α =

N∑
j=0

qνα;jaj, (1.54)

where qνα;j can easily be derived from (1.51) with the corresponding Sα,β of the velocity mode uj,
with the form

qνα;j = 2ν

˛

Γ

∑
β=x,y,z

Sα,β(uj) nβ dS. (1.55)

Similarly, from the pressure Poisson equation

∇2p = ∇ · (−∇ · u⊗ u) = −
∑
α=x,y

∑
β=x,y

∂αuβ∂βuα, (1.56)
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the expression of the pressure field is derived as

p(x, t) =
N∑

j,k=0

pjk(x) aj(t) ak(t), (1.57)

with
∇2pjk = ∇ · (−∇ · uj ⊗ uk) = −

∑
α=x,y

∑
β=x,y

∂αuβ(uj) ∂βuα(uk). (1.58)

The homogeneous Neumann boundary conditions for partial pressure field pjk are needed to solve
the above Poisson equation (Noack et al., 2005). Integrating (1.52) with (1.57) shows that the
pressure force is a quadratic polynomial of the aj’s

F p
α =

N∑
j,k=0

qpα;jkajak, where qpα;jk = −
˛

Γ

dS nαpjk. (1.59)

The total force can be expressed as a constant-linear-quadratic expression in terms of the mode
coefficients

Fα = F ν
α + F p

α = cα +
N∑
j=1

lα;jaj +
N∑

j,k=1

qα;jkajak, (1.60)

where
cα = qνα;0 + qpα;00, lα;j = qνα;j + qpα;j0 + qpα;0j, qα;jk = qpα;jk. (1.61)

The drag and lift formula can be simplified under symmetry considerations and reveal the
modes that contribute to the draf and the lift Liang & Dong (2015). A second simplification
is performed with a sparse calibration of the remaining coefficients. The sparsity parameter λ
penalizes any non-vanishing term and yields sparse human-interpretable expressions for the force
model. The detailed work can be found in Chapter 4.

1.6 Structure of the thesis
This thesis aims to facilitate the automated reduced-order modelling for a sparse human-interpretable
model using first principles and machine learning techniques. More specifically, we focus on the
complex wake dynamics generally found in fluid mechanics and develop different strategies for
mean-field modelling. A key enabler for constructing a mean-field model is the mean-field assump-
tion, where slowly-varying mean-field deformations are due to the fluctuating field through the
Reynolds stress, resulting in a Reynolds-like decomposition. The mean-field models proposed in
this study provide a challenging benchmark example for automatable reduced-order modelling.

In this introductory chapter, we addressed the motivation of reduced-order modelling and
provided an overview of the principles and methodologies for the cluster-based and projection-
based mean-field modelling strategies:

(a) Cluster-based mean-field modelling : The clustering and modelling are performed based
on mean-field considerations. A hierarchical structure is incorporated from theoretical con-
siderations into the data-driven modelling. The clustering achieves a kinematic compression
of the input data, featured by statistical averages of the grouping data (centroids) in the
original data space. The data is labelled with a cluster index, which automatically groups
the states in the state space without approximation. The identified dynamics can preserve
the structure of the original system depending on the cluster distribution. The hierarchical
model can systematically identify the multi-scale dynamics, including the transitions between
different solutions, the bifurcating dynamics into different attractors, and the local structures
for the distorted mean flow in time.
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(b) Projection-based mean-field modelling : The original system is projected onto a linearly
independent low-dimensional subspace, and the nonlinear dynamics will be discussed in the
chosen subspace. The basis of the low-dimensional representation is essential for the approx-
imate dynamics, reflecting the stability, transient behaviour and robustness of the identified
model. The mean-field assumption leads to a constrained Galerkin system, where the degrees
of freedom are optimal with respect to the underlying instabilities in the system. The knowl-
edge from both the stability analysis and the saturated states makes it possible to determine
some coefficients of the mean-field model and increases the robustness of the sparse Galerkin
model by only identifying the remaining coefficients by a sparse regression.

(c) Projection-based force modelling : The force modelling is based on the projection of the
mathematical force expression onto a linearly independent low-dimensional subspace. It can
be generalized for any other Galerkin model without mean-field assumption. However, the
modal symmetry and slaving relations in a mean-field model can introduce additional sparsity
and improve the interpretability of the model, identified by sparse Galerkin regression.

All the above-mentioned modelling strategies are exemplified for the transient and post-transient
dynamics of the unforced fluidic pinball at different Reynolds numbers. The flow undergoes two
successive supercritical Hopf and pitchfork bifurcations, respectively associated with the von Kár-
mán instability of vortex shedding for Re > 18 and the symmetry-breaking instability of the
base-bleeding jet for Re > 68. The two projection-based modelling strategies are applied to
the dynamics between six exact Navier-Stokes solutions for the two successive bifurcations, at
68 < Re < 104. The cluster-based modelling can be much easier to apply as a self-supervised
data-driven method. We do not need to find an optimal basis of low-dimensional space for the
underlying instabilities. For 104 < Re < 115, a lower newly introduced frequency modulates the
oscillations of the base-bleeding jet around its deflected position in a quasi-periodic regime. At
Re > 115, the base-bleeding jet randomly switches up and down in a chaotic regime with more
complex nonlinear interaction. The cluster-based modelling strategy is applied to the transient
and post-transient dynamics of the fluidic pinball in three distinct dynamical regimes : a periodic
regime characterized by four unstable and two stable exact solutions of the Navier-Stokes equations
at Re = 80, a quasi-periodic regime at Re = 105 and a chaotic regime at Re = 130.

The remaining part of this thesis has been organised as follows:
In Chapter 2, the numerical plant of the fluidic pinball is introduced. The flow behaviours at

different Reynolds numbers are numerically investigated. The linear stability analysis of the steady
solutions and the Floquet stability analysis of the periodic solutions are performed for the verifica-
tion of the first two bifurcations. A mean-field Galerkin model can be derived for the primary Hopf
bifurcation and the secondary pitchfork bifurcation. The Galerkin system identification is based
on the sparse quadratic regression with physics-based constraints. The least-order model is only
five-dimensional but can reproduce the key features of the transient and post-transient behaviours
of the full dynamics.

In Chapter 3, we discuss the coinciding local bifurcations of the steady and periodic Navier-
Stokes solutions found in the fluidic pinball at Re > Re2. The coincidence of two local bifurcations
is intriguing since it is non-generic. Such a non-generic coincidence is modelled and explained.

In Chapter 4, we derive an aerodynamic force model associated with a Galerkin model for the
first two bifurcations of the fluidic pinball. The identification of the drag and lift formula is sim-
plified by exploiting the modal symmetry under mean-field considerations and sparse calibration.
Based on the least-order mean-field model, the basic Galerkin force models are derived for the su-
percritical Hopf bifurcation and for the supercritical pitchfork bifurcation. Next, the force models
include the coupling between the elementary modes associated with both bifurcations. The ad-
vantages of this methodology are discussed in comparison to the purely projection-based approach
and the POD-based regression model.

In Chapter 5, we propose a self-supervised hierarchical cluster-based reduced-order modelling
methodology for bifurcations and topology identification of complex dynamics. We start with the
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standard process of a cluster-based network model and introduce the hierarchical structure to en-
able the modelling of more complex transient dynamics. This methodology is a universal modelling
strategy to identify the transient and post-transient dynamics in a self-supervised manner. The
HiCNMs are successfully applied to the transient and post-transient dynamics of multiple trajec-
tories at three Reynolds numbers: for the case involving six exact solutions at Re = 80, for the
quasi-periodic case at Re = 105, and for the chaotic case at Re = 130, respectively. Moreover, it
promises to automate the identification and analysis of complex dynamics with multiple attractors
and multiple scales.

Chapter 6 concludes the results of this thesis and provides some perspectives for future work.
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We propose the first least-order Galerkin model of an incompressible flow undergoing two
successive supercritical bifurcations of Hopf and pitchfork type. A key enabler is a mean-field
consideration exploiting the symmetry of the mean flow and the asymmetry of the fluctuation.
These symmetries generalize mean-field theory, e.g. no assumption of slow growth-rate is needed.
The resulting 5-dimensional Galerkin model successfully describes the phenomenogram of the flu-
idic pinball, a two-dimensional wake flow around a cluster of three equidistantly spaced cylinders.
The corresponding transition scenario is shown to undergo two successive supercritical bifurca-
tions, namely a Hopf and a pitchfork bifurcations on the way to chaos. The generalized mean-field
Galerkin methodology may be employed to describe other transition scenarios.
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2.1 Introduction
This study advances mean-field modelling for successive symmetry breaking due to Hopf and
pitchfork bifurcations. The theoretical framework is applied to the transition of the flow around a
cluster of circular cylinders, termed the fluidic pinball for the possibility to control fluid particle
by cylinder rotation (Noack & Morzyński, 2017; Ishar et al., 2019).

Mean-field theory was pioneered by Landau (1944) and Stuart (1958) and is a singular triumph
of nonlinear reduced-order modelling in fluid mechanics. Already the most simple mean-field
model for the supercritical Hopf bifurcation reveals deep insights into the coupling between the
fluctuations and the mean flow, e.g. the damping mechanism of unstable modes by Reynolds stress.
In addition, Malkus (1956) principle of marginal stability for time-averaged flows, the square root
growth law of fluctuation level with increasing Reynolds number, the cubic damping term from a
linear-quadratic dynamics, the energetic explanation of this amplitude dynamics, and the slaving
principle leading to manifolds driven by ensemble-averaged Reynolds stress are easily derived.
Also, the idea of center manifold theory and the surprising success of linear parameter-varying
models are analytically illustrated. Historically, Landau was the first to derive the normal form of
the dynamics with Krylov-Bogoliubov approximation (an averaging method for spiral phase paths,
see e.g. Jordan & Smith, 1999) while Stuart could explain how the cubic damping term arises from
the distorted mean flow.

Mean-field models for a supercritical Hopf bifurcation with an unstable oscillatory eigenmode
have been applied and validated for numerous configurations. The onset of vortex shedding behind
a cylinder wake has been thoroughly investigated (Strykowski & Sreenivasan, 1990; Schumm et al.,
1994; Noack et al., 2003). Even high-Reynolds number turbulent wake flow can display a distinct
mean-field manifold and modeled by a noise-driven mean-field model (Bourgeois et al., 2013).

A supercritical pitchfork bifurcation similarly arises by an unstable eigenmode with a real
eigenvalue. The onset of convection rolls in the Rayleigh-Bénard problem is a famous example
(Zaitsev & Shliomis, 1971; Swift & Hohenberg, 1977; Cross & Hohenberg, 1993). The features
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of a pitchfork bifurcation are observed for the sidewise symmetry breaking of the time-averaged
Ahmed body wake (Grandemange et al., 2012, 2013; Cadot et al., 2015; Bonnavion & Cadot, 2018)
and more generally in three-dimensional wake flows (Mittal, 1999; Gumowski et al., 2008; Szaltys
et al., 2012; Grandemange et al., 2014; Rigas et al., 2014). In contrast, the drag crisis of circular
cylinder is associated with a subcritical bifurcation into two asymmetric sheddings with opposite
mean lift values (Schewe, 1983).

Not surprisingly, numerous generalizations of mean-field models have been proposed. Landau
(1944) and Hopf (1948) have conjectured that high-dimensional fully developed turbulence may be
explained by an increasingly rapid succession of Hopf bifurcations. This idea has been discarded as
unlikely (see, for instance, Landau & Lifshitz, 1987). The seminal paper by Ruelle & Takens (1971)
showed that turbulence does not arise as a successive superposition of oscillators, but irregular
chaotic behavior can already appear after few bifurcations. A second direction is the explanation
of nonlinear coupling between two incommensurable shedding frequencies (Luchtenburg et al.,
2009), also referred to as frequency crosstalk in the following. This amplitude coupling over the
mean flow has been termed quasi-laminar in Reynolds & Hussain (1972) pioneering theoretical
foundation of the triple decomposition. The advancements also include subcritical bifurcations
(Watson, 1960). More specifically, the case of a codimension two bifurcation, involving both a
pitchfork and a Hopf bifurcation, was addressed in Meliga et al. (2009), who derived the amplitude
equation based on the weakly nonlinear analysis of the wake of a disk. Fabre et al. (2008) derived
the same equation solely based on symmetry arguments for the wake of axisymmetric bodies. A
resolvent analysis follows mean-field considerations in decomposing the flow in a time-resolved
linear dynamics and a feedback-term with the quadratic nonlinearity (Gomez et al., 2016; Rigas
et al., 2017b).

Our study develops a generalized mean-field Galerkin model for the first two bifurcations of
the fluidic pinball with increasing Reynolds number. The primary supercritical bifurcation leads
to the periodic vortex shedding which is statistically symmetric. At higher Reynolds numbers, the
resulting limit cycle undergoes a pitchfork bifurcation into a stable, asymmetric, mirror-symmetric
pair of periodic solutions. This local bifurcation has a transverse effect resulting from the decou-
pling of these two bifurcations (see appendix 2.E), which simultaneously leads to an identical local
pitchfork bifurcation of the steady solution, into an unstable, asymmetric, mirror-symmetric pair
of steady solutions. The underlying dynamics is modeled with a small number of assumptions. The
key simplification results from exploiting the symmetry of the mean flow and the antisymmetry
of the fluctuation. The generalized mean-field Galerkin methodology can be expected to be useful
for describing other transition scenarios.

The manuscript is organized as follows. In § 2.2, the numerical plant is introduced and the
Reynolds-number dependent flow behavior described. This phenomenology drives the mean-field
modelling of the first two bifurcations in § 2.3. The resulting models for the Hopf and subsequent
pitchfork bifurcation are present in § 2.4 and § 2.5, respectively. § 2.6 summarizes the results and
outline future directions of research.

2.2 Flow configuration

In this section we describe the numerical toolkit and the flow features as the Reynolds number is
increased. The direct Navier-Stokes solver with MATLAB interfaces, used for the simulation, is
described in § 2.2.1. The fluidic pinball configuration and the flow features and route to chaos are
described in § 2.2.2 and § 2.2.3, respectively.

2.2.1 Direct Navier-Stokes solver

The unsteady Navier-Stokes solver is based on fully implicit time integration and Finite-Element
Method discretization (Noack & Morzyński, 2017; Noack et al., 2003, 2016). The time integra-
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(a) (b)

Figure 2.1: Computational grid for the fluidic pinball, with 8633 (a) and 54195 vertices (b).

(a) (b)

Figure 2.2: DNS computations on a grid with 8 633 nodes (a) and 54 195 nodes (b). Vorticity
depicted with color is [−1.5, 1.5], t = 200. The initial kick is provided by a rotation of all three
cylinders at t = 0.2, see text for details.

tion is third-order accurate while FEM discretization employs a second–order Taylor-Hood finite
elements (Taylor & Hood, 1973). The solution is obtained iteratively, with the Newton-Raphson
type approach. The tangent matrix is updated on each iteration and computations are carried
out until the residual is under a prescribed tolerance. The steady solution is obtained in a similar
Newton-Raphson iteration for the steady Navier-Stokes equations. The convergence to one of the
three steady solutions with different states of the base-bleeding jet is triggered by appropriate
“initial” conditions in the iteration, see appendix 2.A. The solver quickly converges to one of the
steady states and a final, near-zero residual confirms that this is indeed the steady flow solution
sought. The computational domain is discretized on an unstructured grid. Pinball configuration
uses a grid with 4225 triangles and 8633 vertices (see figure 2.1(a)). To test the grid dependency of
the solution we increased the number of triangles by nearly a factor 4 (26849 elements and 54195
nodes, see figure 2.1(b)). The flow patterns shown in figure 2.2 develop from a steady solution at
Re = 100 subjected to an instantaneous rotation of cylinders at T = 0.2. The upper cylinder ro-
tates counterclockwise, the lower one clockwise and the center cylinder also in a clockwise direction
— all with unit circumferential velocity, i.e. the velocity of oncoming flow U∞. This configuration
and boundary conditions result in a vortex shedding shown in figure 2.2 for the time instance
t = 200. Both simulations prove grid independence and yield dynamically consistent results (see
figure 2.2).

2.2.2 Pinball configuration

We refer to the configuration shown in figure 2.1 as the fluidic pinball as the rotation speeds allow
one to change the paths of the incoming fluid just as flippers manipulate the ball of a conventional
pinball machine. The fluidic pinball is a set of three equal circular cylinders with radius R placed
parallel to each other in a viscous incompressible uniform flow at speed U∞. The flow over a
cluster of three parallel cylinders has been experimentally studied involving heat transfer, fluid-
structure interactions and multiple frequencies interactions over the past few decades (Price &
Paidoussis, 1984; Sayers, 1987; Lam & Cheung, 1988; Tatsuno et al., 1998; Bansal & Yarusevych,
2017). For the fluidic pinball, the cylinders can rotate at different speeds creating a kaleidoscope
of vortical structures or variety of steady flow solutions. The configuration is used for evaluation of
flow controllers (Cornejo Maceda, 2017) as this problem is a challenging task for control methods
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Figure 2.3: Flow states at different values of the Reynolds number: the stable states are labeled
with a solid-line box and the unstable states with a dashed-line box. Steady solutions us(x) (on
the left side): three steady solutions us(x) (symmetric), u±s (x) (asymmetric), exist at Re = 80.
For Re = 30 and Re = 80, the steady solutions are unstable: the permanent regime u(x, t) =
u(x) + u′(x, t) is unsteady with mean flow field u(x). At Re = 80, the instantaneous flow field
u(x, t) = u(x) + u′(x, t), transiently explored when starting close to us(x), is unstable with
respect to either u±(x, t) = u±(x) + u′(x, t).

comprising several frequency crosstalk mechanisms (Noack & Morzyński, 2017). The centers of the
cylinders form an equilateral triangle with side length 3R, symmetrically positioned with respect
to the flow. The leftmost triangle vertex points upstream, while the rightmost side is orthogonal
to the oncoming flow. The origin of the Cartesian coordinate system is placed in the middle of
the top and bottom cylinder. The fluidic pinball computational domain, shown in figure 2.1 is
bounded by the rectangle [−6, 20]× [−6, 6].

Without forcing, the boundary conditions comprise a no-slip condition on the cylinders and a
unit velocity in the far field:

Ur = 0 on the cylinders and U∞ = ex at infinity. (2.1)

The far field boundary conditions are exerted on the inflow, upper and lower boundaries while the
outflow boundary is assumed to be a stress–free one, transparent for the outgoing fluid structures.
A typical initial condition is the unstable steady Navier-Stokes solution us(x).

In this study, all three cylinders remain static as we are interested in the natural dynamics of
the flow as the Reynolds number is increased.
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2.2.3 Flow features

The steady solution us, shown in figure 2.3 for different values of the Reynolds number Re, is
stable up to the critical value Re1 ≈ 18. This value corresponds to 5/2 × Re1 ≈ 45 with respect
to the actual body height 5R, which is consistent with the critical value of the Reynolds number
found for a single cylinder (Ding & Kawahara, 1999; Barkley, 2006). Beyond Re1, the steady
solution becomes unstable with respect to vortices periodically and alternately shed at the top
and bottom of the two right-most cylinders, following a Hopf bifurcation (instability of the fixed
point via a pair of complex-conjugated eigenvalues, see e.g. Strogatz et al. (1994)). In addition
to the resulting von Kármán street of vortices, the gap between the cylinders makes possible the
formation of a jet at the base of the two outer cylinders. The steady solution us, the mean flow u
and the instantaneous flow field u, are shown in figure 2.3, for Re = 30.

The flow passing between the two rearward cylinders, the base-bleeding flow, has a critical
impact on the successive bifurcations undergone by the system on the route to chaos. Indeed,
beyond a secondary critical value Re2 ≈ 68 of the Reynolds number, the system undergoes a
pitchfork bifurcation, which affects both the fixed point or the limit cycle, via a real eigenvalue,
see e.g. Strogatz et al. (1994). As a result, the symmetry of both the steady solution and the
mean flow is broken with respect to the symmetry plane defined by y = 0. This is illustrated by
the two mirror-conjugated steady solutions u±s and the two associated mean flows u±, shown in
figure 2.3 for Re = 80, where the base-bleeding jet appears deflected to either upward or downward
with respect to the symmetry plane. Note, however, that a symmetry-preserving mean flow (u in
figure 2.3 for Re = 80) still exists beyond the secondary bifurcation, so that three mean flows exist
beyond Re2: two of them, u±, are mirror-conjugated and break the symmetry, while the last one,
u preserves the symmetry. This bifurcation of the limit cycle is coincident with the bifurcation
of the fixed point, as three steady solutions can be found beyond Re2: u±s are mirror-conjugated
and break the symmetry, while the last one, us preserves the symmetry. Yet, all three of them are
unstable with respect to the cyclic shedding of von Kármán vortices, in which symmetry properties
of the steady solution are succeeded in the resulting mean flow. When the initial condition is close
to the symmetric steady solution us, the flow regime arrives after a long transient on a limit cycle
whose mean flow u is symmetric, as illustrated in figure 2.3 for Re = 80. However, the dynamics
of this limit cycle is only transient, indicating that it is not a stable state. After a new transient,
depending on the details of the initial condition, the flow regime eventually reaches one of the
two mirror-conjugated limit cycles (centered on either u±). When the initial condition already
breaks the symmetry of the flow configuration, the unstable “symmetry-centered” limit cycle is
not explored and the system reaches directly one of the two stable limit cycles. The transient
dynamics between these six typical states beyond Re2 illustrate a transverse action on the original
state space resulting from the new active symmetric breaking mode decoupling with the primary
Hopf bifurcation, as detailed in appendix 2.D. The new active degree of freedom introduced by
the pitchfork instability is responsible for the two simultaneous local pitchfork bifurcations, of
both the steady solution and the periodic solution, as shown in the appendices 2.B and 2.C. The
simultaneous bifurcation of the steady and periodic solution has also been observed for the cylinder
wake transition from stability analyses (Noack & Eckelmann, 1994a,b) and from 3D Navier-Stokes
simulations (Zhang et al., 1994). A further discussion about this non-generic situation is recorded
in appendix 2.E. Besides, the linear stability analysis (see appendix 2.B) and the Floquet stability
analysis (see appendix 2.C) around Re2 have been performed to prove these two simultaneous
bifurcations.

As a result, when the symmetry of vortex shedding is broken, the mean value CL (solid line) of
the pressure lift coefficient CL = 2FL/ρU

2, where FL is the total lift force from pressure, no longer
vanishes, as shown in figure 2.4. At the precision of our investigation, both the Hopf and pitchfork
bifurcations were found to be supercritical.

The fluctuation amplitude of the lift coefficient is minimum for Re ≈ 80 > Re2, as shown
in figure 2.4 (dashed curve). It starts to decrease around Re = 30, when the jet starts to grow
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at the base of the two outer cylinders. Henceforth, the growth of the base-bleeding jet, as the
Reynolds number is increased, seems to be fed with the energy of the fluctuations. Transfers of
energy between the dynamically dominant degrees of freedom will be made clear in § 2.3.

When the Reynolds number is further increased up to a critical value Re3 ≈ 104, a new
frequency rises in the power spectrum of the lift coefficient CL(t). This frequency is about one
order of magnitude smaller than the natural frequency of the vortex shedding, as illustrated in
figure 2.5(a) for Re = 105 and in the movie QP.MP4 of the additional materials (Deng et al.,
2020). The low and natural frequencies couple to generate combs of sharp peaks in the power
spectrum, while the background level depends on the length of the time series. The new frequency
is associated with modulations of the base-bleeding jet around its deflected position. A visual
inspection of both the time series and the phase portrait at Re = 105 indicates that the new
frequency also modulates the amplitude (figure 2.5(b)) of the main oscillator and thickens the
limit cycle associated with the main oscillator (figure 2.5(c)). All these features are typical of a
quasi-periodic dynamics, indicating that the system has most likely undergone a Neimark-Säcker
bifurcation, e.g. a secondary Hopf bifurcation, at Re = Re3, after which two mirror-conjugated
2-tori exist in the state space of the system.

At even larger values of the Reynolds number, Re ≥ Re4 ≈ 115, the main peak in the power
spectral density of the lift coefficient widens significantly, as shown in figure 2.6(a) for Re = 130.
In this new regime, the instantaneous flow field is characterized by random switches between an
upward or downward base-bleeding jet, see the movie CHAOS.MP4 in the additional materials
(Deng et al., 2020), and the mean flow u is symmetric, as shown in figure 2.4 for Re > 115. The
time series exhibits neither periodic nor quasi-periodic features anymore (see figure 2.6(b)) and the
phase portrait exhibits a much more complex dynamics (see figure 2.6(c)). The dynamical regime
henceforth exhibits many features of a chaotic regime, indicating that the system has most likely
followed the Ruelle-Takens-Newhouse route to chaos (Newhouse et al., 1978).

2.3 Low-dimensional modelling

We derive a mean-field Galerkin model for the primary and secondary bifurcations of the fluidic
pinball. First (§ 2.3.1), the Galerkin method is recapitulated as a very general approach to reduced-
order models. In § 2.3.2, the constitutive equations of the mean-field model are derived from a
minimal set of assumptions. Then, mean-field Galerkin models are derived for the Hopf bifurcation
(§ 2.3.3), the pitchfork bifurcation (§ 2.3.4) and the succession of both bifurcations (§ 2.3.5).

2.3.1 Galerkin method

The starting point is the non-dimensionalized incompressible Navier-Stokes equations:

∂tu +∇ · u⊗ u = ν4u−∇p, (2.2)

where ν = 1/Re. The velocity field satisfies the no-slip condition u = 0 on the cylinders, the free-
stream condition u = (1, 0) at the inflow, a no-slip condition at the top and bottom boundary and
the no-stress condition at the outflow. The steady solution us satisfies the steady Navier-Stokes
equations:

∇ · us ⊗ us = ν4us −∇ps. (2.3)

The Galerkin method is based on an inner product in the space of square-integrable vector
fields L2(Ω) in the observation domain Ω. The standard inner product between u(x) and v(x)
reads:

(u,v)Ω :=

ˆ

Ω

dx u(x) · v(x). (2.4)
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Figure 2.4: Bifurcation diagram based on the absolute value of the mean pressure lift coefficient
|CL| (circles + solid line) and its standard deviation (squares + dashed line). By symmetry,
each non-vanishing mean lift value is associated with a positive and negative sign for the two
attractors. The vertically distributed black dots that are visible for Re > Re3, are median values
cn = (Cn + Cn+1)/2 between successive local optima Cn = CL(tn) of CL(t), at a given Reynolds
number, where the tn are times at which ĊL(tn) = 0. Transition to unsteadiness occurs at Re1 ≈ 18
(Hopf bifurcation), the average symmetry is broken beyond Re2 ≈ 68 (pitchfork bifurcation), a
secondary (incommensurable) frequency rises in the power spectrum at Re3 ≈ 104 (Neimark-Säcker
bifurcation), and transition to chaos occurs at Re4 ≈ 115. Note that the symmetry is statistically
recovered in the chaotic regime (CL ≈ 0).
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Figure 2.5: Quasi-periodic dynamics at Re = 105 displayed by (a) the power spectral density on
time series of length Tdata = 400 (red curve), Tdata = 900 (black curve), (b) the time series and (c)
the phase portrait of the pressure lift coefficient CL.
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Figure 2.6: Chaotic dynamics at Re = 130 displayed by (a) the power spectral density on time
series of length Tdata = 400 (red curve), Tdata = 900 (black curve), (b) the time series and (c) the
phase portrait of the pressure lift coefficient CL.

A traditional Galerkin approximation with a basic mode u0, for instance, the steady solution and
N orthonormal expansion modes ui(x), i = 1, . . . , N with time-dependent amplitudes ai(t), reads:

u(x, t) = u0(x) +
N∑
i=1

ai(t)ui(x). (2.5)

Orthonormality implies:
(ui,uj)Ω = δij, i, j ∈ {1, . . . , N}. (2.6)

The projection of (2.5) on (2.2) leads to the linear-quadratic Galerkin system (Fletcher, 1984),

d

dt
ai = ν

N∑
j=0

lνijaj +
N∑

j,k=0

qcijkajak. (2.7)

Following Rempfer & Fasel (1994b), a0 = 1 is introduced. The coefficients lνij = (ui,4uj)Ω and
qcijk = (ui,∇ · uj ⊗ uk)Ω parametrize the viscous and convective Navier-Stokes terms. The pressure
term vanishes for sufficiently large domains and is neglected in the following.

In the following, the steady solution is taken as the basic mode u0 = us. This implies that
a = 0 is a fixed point of (2.7) and the constant term νlνi0 + qνi00 = 0 vanishes as the projection of
(2.3) onto the ith mode ui. In this case, (2.7) can be re-written as a linear-quadratic system of
ordinary differential equations :

d

dt
ai =

N∑
j=1

lijaj +
N∑

j,k=1

qijkajak, (2.8)

where lij = νlνij + qcij0 + qci0j and qijk = qcijk for i, j, k ∈ {1, . . . , N}.

2.3.2 Mean-field modelling

Mean-field modelling allows a dramatic simplification of a general Galerkin system (2.8) close to
bifurcations. In this section, we derive constitutive equations with a small number of more general
assumptions.

In the spirit of the Reynolds decomposition, the velocity field is decomposed into a slowly
varying distorted mean flow uD and fluctuation u′ with first-order (relaxational) or second-order
(oscillatory) dynamics:

u(x, t) = uD(x, t) + u′(x, t), uD(x, t) = us(x) + u∆(x, t) (2.9)
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Here, the mean-field deformation u∆ is the difference between the distorted mean flow and the
steady solution. For the oscillatory dynamics considered, the distorted mean flow can be defined
as an average over one local fluctuation period T denoted by 〈·〉. Thus,

uD(x, t) = 〈u(x, t)〉 :=
1

T

t+T/2ˆ

t−T/2

dτ u(x, τ). (2.10)

After the pitchfork bifurcation into two mirror-conjugated flows u+, u−, a symmetric distorted
mean flow is enforced via

uD(x, t) =
1

2
(〈u+(x, t)〉+ 〈u−(x, t)〉). (2.11)

We note that uD(x, t) is not the mean flow, which is defined by the post-transient limit

ū(x) = lim
T→∞

1

T

T̂

0

u(x, τ)dτ. (2.12)

The distorted mean flow coincides with mean flow for the post-transient phase before the pitch-
fork bifurcation. Technically, a harmonic fluctuation is assumed and this one period average is
computed as an average of all phases in [0, 2π]. The somewhat loaded term “distorted mean flow”
is directly adopted from the original publications of mean-field theory (Stuart, 1958). J.T. Stuart
considers this flow as “distorted” from the steady solution by the Reynolds stress associated with
the instability mode(s).

For a nominally symmetric cylindrical obstacle, the distorted mean flow can be expected to
be symmetric while the dominant fluctuation is antisymmetric. This leads to a symmetry-based
decomposition of the flow into a symmetric contribution us = (us, vs) ∈ U s with

us(x,−y) = us(x, y), vs(x,−y) = −vs(x, y) (2.13)

and an antisymmetric component ua = (ua, va) ∈ Ua satisfying

ua(x,−y) = −ua(x, y), va(x,−y) = va(x, y). (2.14)

Here, U s and Ua denote the set of symmetric and antisymmetric vector fields, respectively. The
resulting decomposition reads

u(x, t) = us(x, t) + ua(x, t). (2.15)

In the sequel, we will identify the distorted mean flow with the symmetric component and the
fluctuation with the antisymmetric one:

uD(x, t) = us(x, t), u′(x, t) = ua(x, t). (2.16)

This identification is justified for symmetry-breaking bifurcations with first- or second-order dy-
namics with neglected higher harmonics. For brevity, U s and Ua are introduced as symmetric and
antisymmetric subsets of L2(Ω).

The convective term is easily shown to have the following symmetry properties:

∇ · us ⊗ us ∈ U s, (2.17a)
∇ · ua ⊗ ua ∈ U s, (2.17b)
∇ · us ⊗ ua ∈ Ua, (2.17c)
∇ · ua ⊗ us ∈ Ua. (2.17d)

48



Chapter. 2 Low-order model for successive bifurcations

The antisymmetric component is derived starting with (2.2), subtracting the steady version of
(2.3) and exploiting the symmetry of uD, the antisymmetry of u′ as well as the symmetry relations
(2.17). The fluctuation dynamics reads:

∂tu
′ +∇ ·

[
uD ⊗ u′ + u′ ⊗ uD

]
= ν4u′ −∇p′. (2.18)

Analogously, the symmetric part describes the distorted mean flow dynamics:

∂tu∆ +∇ · [us ⊗ u∆ + u∆ ⊗ us + u∆ ⊗ u∆ + u′ ⊗ u′] = ν4u∆ −∇p∆ (2.19)

Note that this symmetric component of the Navier-Stokes equations has not yet been averaged and
the sum of Eqs. (2.3), (2.19) and (2.18) leads to the Navier-Stokes equations (2.2). To this point,
all equations are strict identities for the symmetric and antisymmetric part of the Navier-Stokes
dynamics.

Next, we follow mean-field arguments and consider u′ and u∆ as small perturbations around
the fixed point us. Let u′ ∈ O(ε) and u∆ ∈ O(δ) where ε and δ are smallness parameters. Hence,
u∆ ⊗ u∆ ∈ O(δ2) can be neglected in comparison to the O(δ) terms us ⊗ u∆, u∆ ⊗ us. We
follow Stuart’s original idea to separate between the fluctuation u′ driven by the instability and
the resulting mean-field deformation u∆ and arrive at the unsteady linearized Reynolds equation,

∂tu∆ +∇ · [us ⊗ u∆ + u∆ ⊗ us + 〈u′ ⊗ u′〉] = ν4u∆ −∇p∆. (2.20)

The mean-field deformation u∆ characterized by the scale δ is seen to respond linearly to the
Reynolds stress force −∇ · 〈u′ ⊗ u′〉 scaling with ε2. Hence, δ ∼ ε2.

Summarizing, Eqs. (2.18) and (2.20) are the constitutive equations of mean-field theory ex-
ploiting only symmetry and smallness of the mean-field deformation.

Close to the critical Reynolds number Rec, the temporal growth rate can be Taylor expanded
to σ = α(Re − Rec) and can be assumed to be small. In this case, ∂tu∆ ∈ O(σδ), i.e. the time
derivative of (2.20) can be neglected with respect to the other terms ∈ O(δ) = O(ε2). This leads
to the steady linearized Reynolds equation:

∇ · [us ⊗ u∆ + u∆ ⊗ us + 〈u′ ⊗ u′〉] = ν4u∆ −∇p∆. (2.21)

This equation is also true for the post-transient solution, e.g. the limit cycle of a Hopf bifurcation
or the asymmetric state of a pitchfork bifurcation. Often, the distorted mean flow uD quickly
responds to the Reynolds stress even far away from the bifurcation.

2.3.3 Supercritical Hopf bifurcation

At low Reynolds numbers, a symmetric stable steady solution us ∈ U s is observed. Periodic
vortex shedding sets in with the occurrence of an unstable oscillatory antisymmetric eigenmode at
Re ≥ Re1. The Reynolds-number dependent initial growth rate and frequency are denoted by σ1

and ω1, respectively. The real and imaginary parts of this eigenmode are u1 and u2, respectively,
both antisymmetric modes. In the following, these modes are assumed to be orthonormalized.

This oscillation generates a Reynolds stress, which changes the mean flow via (2.20). The mean
flow deformation is described by the symmetric shift mode u3 with unit norm. By symmetry,
the first two modes are orthogonal with respect to the shift mode. Thus, the modes form an
orthonormal basis. The resulting Galerkin expansion reads:

u(x, t) = us(x) + a1(t)u1(x) + a2(t)u2(x)︸ ︷︷ ︸
u′

+ a3(t)u3(x)︸ ︷︷ ︸
u∆

. (2.22)

Moreover, polar coordinates are introduced a1(t) = r(t) cos θ(t), a2(t) = r(t) sin θ(t), dθ/dt = ω(t)
where r and ω are assumed to be slowly varying functions of time.
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Substituting (2.22) in (2.18), projecting on ui, i = 1, 2 and applying the Krylov-Bogoliubov
(Jordan & Smith, 1999) averaging method yields:

da1/dt = σa1 − ωa2, σ = σ1 − βa3, (2.23a)
da2/dt = σa2 + ωa1, ω = ω1 + γa3. (2.23b)

Here, σ1, ω1, β > 0 for a supercritical Hopf bifurcation. We refer to Noack et al. (2003) for details.
Krylov-Bogoliubov averaging implies a harmonic balancing on the slowly varying amplitude

and frequency of oscillatory a1,2 and the slowly varying a3 dynamics. The corresponding original
theorem includes a convergence proof of this approximation for a second-order ordinary differential
equation for oscillations in the limit of small nonlinearity. We cannot perform this limit but justify
the operation on the a priori observation that quadratic Galerkin system terms qijk are typically two
orders of magnitude smaller than the dominant linear coefficients, i.e. describe a small nonlinearity.
A posteriori the operation is justified by the results, i.e. by obtaining amplitudes and frequencies
with up to a few percent error.

Substituting (2.22) in (2.21) replaces (2.25) by the mean-field manifold:

a3 = κ
(
a2

1 + a2
2

)
(2.24)

with derivable proportionality constant κ.
Alternatively, the mean-field manifold may be obtained from the Galerkin system. Substituting

(2.22) in (2.20) and projecting on u3 yields:

da3/dt = σ3a3 + β3

(
a2

1 + a2
2

)
, (2.25)

where σ3 < 0 and β3 > 0 are necessary for a globally stable limit cycle. Note that (2.25) can be
rewritten as:

da3/dt = σ3

[
a3 − κ

(
a2

1 + a2
2

)]
. (2.26)

Now, the slaving process which leads to the mean-field manifold of (2.24) can be appreciated from
the mean-field Galerkin system. If |σ3| � σ1, the timescale of slaving a3 to the fluctuation level
a2

1 + a2
2 is much smaller than the timescale of the transient and da3/dt can be set to zero.

Eqs. (2.23) and (2.24) yield the famous Landau equations with the cubic damping term:

dr/dt = σ1r − βκr3, dθ/dt = ω1 + γκr2. (2.27)

The Landau oscillator leads to a stable limit cycle with r◦ =
√
σ1/βκ, frequency ω◦ = ω1 + σ1γ/β

and shift-mode amplitude a◦3 = σ1/β. The three nonlinearity parameters β, γ and κ can be
uniquely derived from the limit cycle parameters r◦, ω◦, and a◦3. The growth rate σ3 needs to be
chosen sufficiently large, e.g. σ3 = −10σ1 to ensure slaving on the manifold.

Eqs. (2.23), (2.25) are the mean-field Galerkin system, while Eqs. (2.23), (2.24) characterize the
original mean-field model, i.e. the slaved Galerkin system. Near the Hopf bifurcation, when σ1(Re)
crosses the zero line at Re1, the growth rate is approximated by σ1 = α (Re−Re1) implying the
square-root law r◦ =

√
α/βκ

√
Re−Re1.

The Landau equation has been proposed by Landau (see, e.g. Landau & Lifshitz, 1987), derived
from the Navier-Stokes equation by Stuart (1958), generalized for Galerkin systems by Noack
et al. (2003), and validated in numerous simulations and experiments for cylinder wakes (Schumm
et al., 1994) and other soft onsets of oscillatory flows. We note that the proposed derivation from
symmetry considerations constrains the model to symmetric obstacles but liberates the mean-field
Galerkin model from typical assumptions, likes closeness to the Hopf bifurcation or the need for
frequency filtered Navier-Stokes equations.
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Table 2.1: Symmetries and hierarchy of equations.

2.3.4 Supercritical pitchfork bifurcation

Next, the symmetry-breaking pitchfork bifurcation of a steady symmetric Navier-Stokes equation
is considered. Now, mode u4 describes the antisymmetric instability with positive growth rate σ4.
The shift mode u5 prevents unbounded exponential growth. The corresponding Galerkin expansion
reads

u(x, t) = us(x) + a4(t)u4(x)︸ ︷︷ ︸
u′

+ a5(t)u5(x)︸ ︷︷ ︸
u∆

. (2.28)

Substituting (2.28) in Eqs. (2.18) and (2.20), and exploiting the symmetry of the modes, yields:

da4/dt = σ4a4 − β4a4a5, (2.29a)
da5/dt = σ5a5 + β5a

2
4. (2.29b)

Note that a linear a5 term and quadratic a4a4 and a5a5 terms in (2.29a) are ruled out by symmetry.
Similarly, a linear a4 term or a mixed quadratic term a4a5 in (2.29b) are prohibited by symmetry.
The quadratic a5a5 term is not consistent with the linearized Reynolds equation (2.20). The
pitchfork bifurcation can be considered as a Hopf bifurcation with ω = 0 and a single mode.
Replacing a1 by a4, a3 by a5 and setting a2 = 0 yields (2.29a) from (2.23) and (2.29b) from
(2.25)—modulo names of the coefficients.

Eqs. (2.29a), (2.29b) are the mean-field Galerkin system. Substituting (2.28) in (2.21) yields
the manifold:

a5 = κ5a
2
4, (2.30)

with κ5 = −β5/σ5. The asymmetric steady solutions read a±4 = ±
√
σ4/β4κ5, a5 = σ4/β4. The two

nonlinearity parameters κ4, β4 are readily determined from the two asymptotic values a4 and a5.
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The growth rate can be set in analogy to the previous model to σ5 = −10σ4 to ensure slaving on
the manifold.

From (2.29a) and (2.30), the famous unstable dynamics with cubic damping term is obtained:

da4/dt = σ4a4 − κ5β4a
3
4,

where κ5β4 > 0 for a supercritical bifurcation. Eqs. (2.29a), (2.29b) are the mean-field Galerkin
system.

Near the secondary pitchfork bifurcation, σ4 = α2 (Re−Re2) and a4 ∝
√
Re−Re2. The

parameters of the pitchfork Galerkin system can be derived from the eigenmode and the asymptotic
state in complete analogy to § 2.3.3. The growth rate σ5 = −10σ4 will ensure the slaving of (2.30).
We emphasize that this pitchfork model is derived primarily from symmetry considerations and
does not require closeness to the critical parameter.

2.3.5 Pitchfork bifurcation of periodic solution

In the final modelling effort, a low-dimensional model from a primary supercritical Hopf bifurcation
at Re = Re1 and a secondary supercritical pitchfork bifurcation at Re = Re2 > Re1 is derived
following the numerical observations of the fluidic pinball in § 2.2. For simplicity, closeness to the
secondary bifurcation is assumed. For the same reason, the mean-field Galerkin system shall still
describe the periodic solution. In this case, the generalized 5-mode mean-field expansion:

u(x, t) = us(x) +
5∑
i=1

ai(t)ui(x) (2.31)

describes the flow where a1, a2, a3 ∈ O(1) and a4 ∈ O(ε) and a5 ∈ O(δ), ε, δ being smallness
parameters associated with the pitchfork bifurcation. We project Eqs. (2.18) and (2.20) on (2.31).
The O(1) terms encapsulate the original Hopf model while the low-pass filtered O(ε, δ) terms yield
the original pitchfork system. This yields the following generalized mean-field system:

da1/dt = σa1 − ωa2, σ = σ1 − βa3 (2.32a)
da2/dt = σa2 + ωa1, ω = ω1 + γa3 (2.32b)
da3/dt = σ3a3 + β3

(
a2

1 + a2
2

)
(2.32c)

da4/dt = σ4a4 − β4a4a5 (2.32d)
da5/dt = σ5a5 + β5a

2
4 (2.32e)

The linear instability parameters σ1, ω1, σ4 are obtained from the corresponding global stability
analysis. Slaving is ensured with σ3 = −10σ1 and σ5 = −10σ4. The nonlinearity parameters
β, γ, β3, β4 and β5 are determined from the limit cycle parameters r◦, ω◦ and a◦3 and pitchfork
parameters a±4 and a±5 in the asymptotic regime.

As the amplitude of the pitchfork bifurcation grows, the smallness argument does not hold and
we get cross-terms, like σ = σ1 − βa3 − β15a5. We shall not pause to elaborate on the possible
generalizations now, but will return to the topic in the result section.

2.3.6 Sparse Galerkin model from mean-field considerations

The mean-field Galerkin system (2.32) with decoupled Hopf and pitchfork dynamics can, by con-
struction, only be expected to hold near the pitchfork bifurcation Re ≈ Re2. At higher Reynolds
numbers Re > Re2, cross-terms will appear, e.g., the growth rate σ may also depend on the
pitchfork-related shift mode amplitude a5. The most general Galerkin system (2.8) contains
5× 5 = 25 linear terms and 5× 5× 6/2 = 75 quadratic terms.
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The assumed symmetry of the modes excludes roughly half of these 100 coefficients. Let χi = 0
for symmetric mean flow modes ui, i = 3, 5 and χi = 1 for the antisymmetric fluctuation modes
ui, i = 1, 2, 4. The linear coefficients

lij = −ν (ui,4ui)Ω + (ui,∇ · us ⊗ uj)Ω + (ui,∇ · uj ⊗ us)Ω

can be shown to vanish if mod (χi + χj, 2) = 1. In other words, the coefficients lij vanish if
the modes ui and uj have opposite symmetries. This excludes 12 of the 25 linear coefficients.
Analogously, the quadratic coefficient qijk can be shown to vanish if χi 6= mod (χj + χk, 2).
In other words, the qijk vanishes if the symmetry of ui does not coincide with the symmetry
of quadratic term uj ⊗ uk. The quadratic term is symmetric if the modes uj and uk are both
symmetric or both antisymmetric and is antisymmetric if both modes have opposite symmetries.
In summary, qijk vanishes if one or three modes are antisymmetric.

An additional sparsity of the coefficients arises from the temporal dynamics. Modes ui, i =
1, 2 have oscillatory behaviour with angular frequency ω, while the other modes show first-order
dynamics, i.e., relaxation to asymptotic values. We apply the Krylov-Bogoliubov approximation
with oscillatory a1, a2 and slow a3, a4, a5 dynamics. Thus, for instance, l41a1 vanishes on a one-
period average and should not contribute to da4/dt. The linear coefficient l41 can hence be set to
zero. Taking the quadratic terms for example, a1a3 generates a first harmonic. Hence, q413a1a3

cannot contribute to da4/dt but q113a1a3 can contribute to the oscillatory behaviour of da1/dt.
Similarly, a1a2 generates a second harmonic, a1a2 = r cosωt × r sinωt = (1/2) r2 sin 2ωt does not
have a steady contribution, so q312 can be set to zero.

From symmetry and Krylov-Bogoliubov considerations, only 9 coefficients contribute to the
linear term: l11, l12, l21, l22, l33, l35, l44, l53, l55. Note that the oscillator equations contain the
2× 2 block, while the shift-mode equations i = 3, 5 have cross-terms and the pitchfork amplitude
dynamics i = 4 has no cross-terms. Similarly, only 16 quadratic coefficients survive. The first
8 coefficients q113, q115, q123, q125, q213, q215, q223, q225 are consistent with the Landau oscillator
but with cross-terms to the pitchfork-related shift-mode amplitude, i.e. σ = σ1 − βa3 − β15a5 and
ω = ω1 + γa3 + γ15a5, introducing β15 and γ15 as new coefficients. The first and second shift-mode
equations i = 3, 5 may contain six quadratic terms q311, q322, q344, q511, q522, q544 from the Reynolds
stresses. The amplification of the pitchfork dynamics is affected by the shift modes via q443, q445.

2.4 Primary flow regime

The primary flow regime covers the range of Reynolds numbers Re1 < Re < Re2. We consider the
flow and reduction of the dynamics at Re = 30, as a representative case. In § 2.4.1, a linear stability
analysis is done on the steady solution and the three degrees of freedom of the flow dynamics are
identified. In § 2.4.2, we propose a least-order model of the flow dynamics at Re = 30 and compare
its performance with respect to the full flow dynamics.

2.4.1 Eigenspectra of the steady solution

The steady solution becomes unstable beyond Re = Re1, as reported in § 2.2. A linear stability
analysis indicates that one pair of complex-conjugated eigenmodes have a positive growth rate on
the range Re1 < Re < Re2, as shown in figure 2.7 for Re = 30. These two leading eigenmodes are
associated with vortical structures shed downstream in the wake, at the angular frequency 1/2. As
the instability grows, the distorted mean flow uD = us+u∆ changes, as expected by Eq. (2.3) and
(2.19). The shift mode u3, involved in u∆ at Re = 30, is shown in figure 2.8(c). In the permanent
(time-periodic) flow regime, the distorted mean flow uD eventually matches the asymptotic mean
flow field u, and vortex shedding is well established with frequency 8.7× 10−2.
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Figure 2.7: (a) Eigenspectrum resulting from the linear stability analysis of the steady solution
us, together with (b) the first three leading eigenmodes, at Re = 30. Only the real part of the
complex eigenmodes is shown. Red color and solid contours are positive values of the vorticity,
blue color and dashed contours are negative values.

(a) (b)

(c)

Figure 2.8: First two leading POD modes u1,2 at Re = 30 (a) & (b) and shift mode u3 (c). Red
color and solid contours are positive values of the vorticity, blue color and dashed contours are
negative values.
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σ1 ω1 σ3 β γ κ

3.80× 10−2 5.00× 10−1 −10σ1 1.40× 10−2 1.70× 10−2 2.10× 10−1

Table 2.2: Coefficients of the reduced-order model (ROM) at Re = 30. See text for details.

2.4.2 Reduced-order model (ROM) of the primary flow regime

As introduced in § 2.3, the Galerkin ansatz for the Hopf bifurcation reads:

u(x, t) ≈ us(x) + a1(t)u1(x) + a2(t)u2(x) + a3(t)u3(x). (2.33)

The von Kármán modes u1,2 could be chosen as the real and imaginary part of the first eigenmode,
respectively. This choice would make sense to describe the transient dynamics close to the steady
solution. A better choice for describing the dynamics on the asymptotic limit cycle is to choose
u1,2 as the first two modes of a Proper Orthogonal Decomposition (POD) of the limit cycle data.
The first two POD modes actually contribute to almost 95% of the total fluctuating kinetic energy
at Re = 30 and are clearly associated with the von Kármán street of shed vortices, as shown in
figure 2.8 (a)&(b). For the construction of the ROM, POD modes u1,2 are preferred to the two
leading eigenmodes, because we demand an accurate representation of the asymptotic periodic
dynamics. Following Eq. (2.23)-(2.24), the dynamical system resulting from the Galerkin projection
of ansatz (2.33) on the Navier-Stokes equations, after Krylov-Bogoliubov simplifications, reads

da1/dt = σa1 − ωa2 (2.34)
da2/dt = σa2 + ωa1 (2.35)
da3/dt = σ3

(
a3 − κ(a2

1 + a2
2)
)
, (2.36)

with σ = σ1 − βa3 and ω = ω1 + γa3. The value of the coefficients at Re = 30 for the resulting
ROM are summarized in table 2.2. Note that all coefficients but γ and σ3 are fixed by either the
linear stability analysis or the asymptotic dynamics, see § 2.3. The coefficient σ3 can be chosen
arbitrarily large as a3 is slaved to a1, a2 (here we chose σ3 = −10σ1), while γ had to be calibrated
in order to better match the asymptotic angular frequency.

The dynamics of both the fluidic pinball (solid blue curve) and the ROM (dashed red curve)
are compared in the three-dimensional subspace spanned by a1, a2, a3, see the top of figure 2.9.
In figure 2.9 are also shown the individual time series of a1 to a3 for both the fluidic pinball and
the ROM (same representation). As expected from the POD modes u1,2, the dynamics on the
asymptotic (permanent) limit cycle is well described in amplitude r and angular frequency ω by
the ROM. Moreover, the ROM also captures the transient dynamics on the parabolic manifold
a3 ≡ κ(a2

1 +a2
2). Henceforth, although all coefficients but one are fixed, the Galerkin system (2.33)

is able to reproduce the most salient dynamical features of the flow in both the transient and the
permanent regimes.

2.5 Secondary flow regime
The secondary flow regime ranges over Re2 < Re < Re3. For illustration, we focus on the flow
at Re = 80, i.e. at a finite distance from the secondary bifurcation. In § 2.5.1 a linear stability
analysis of the resulting three steady solutions is performed. A least-order model is proposed and
discussed in § 2.5.2.

2.5.1 Eigenspectra of the steady solutions

As a result of the pitchfork bifurcation, there exist three steady solutions beyond Re2: the sym-
metric steady solution us, unstable to the periodic vortex shedding beyond Re1, and two mirror-
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Figure 2.9: Top figure: three-dimensional state space spanned by a1, a2, a3, at Re = 30. From
direct numerical simulations of the fluidic pinball (solid blue line) and from the mean-field reduced-
order model (dashed red line). The initial condition, identical in both systems, starts close to the
fixed point (steady solution) before evolving on the parabolic manifold a3 = κ(a2

1 + a2
2) toward the

asymptotic limit cycle. Bottom figure: corresponding time series for a1 to a3.
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Figure 2.10: Eigenspectrum (top) and real part of the eigenvectors (bottom) of the symmetry-
preserving steady solution us (left), of the symmetry-breaking steady solution u−s (right), both at
Re = 80. The red color and solid contours in the eigenvectors are positive values of the vorticity,
blue color and dashed contours are negative values.

conjugated asymmetric steady solutions u±s , also unstable to vortex shedding but only existing
beyond Re2, see figure 2.3.

The linear stability analysis of us reveals two pairs of complex-conjugated eigenmodes with
positive growth rate, and one eigenmode of zero frequency, see figure 2.10(a). The steady eigenmode
is antisymmetric and reflects the symmetry broken by the pitchfork bifurcation. It is clearly
associated with the base-bleeding jet, with all its energy concentrated in the near-field. The two
pairs of complex-conjugated eigenmodes are each associated with von Kármán streets of shed
vortices. Both pairs of complex eigenmodes are antisymmetric and have quite similar angular
frequencies. A closer view of the second pair of complex eigenmodes indicates that its growth rate
cancels when the real eigenmode crosses the zero axis. This indicates that the new oscillatory
mode is intimately connected to the symmetry breaking occurring at Re2. At Re > Re2, this gives
rise to the only stable limit cycle for the flow dynamics, while the limit cycle associated with the
leading pair of complex eigenmode has become unstable and can only be visited transiently in
time.

The linear stability analysis of u−s (resp. u+
s ) reveals two pairs of complex-conjugated eigen-

modes with positive growth rate, centered on an asymmetric mean flow, see figure 2.10(b). All
eigenmodes are asymmetric, a property inherited from the steady solution.

In the permanent regime, the mean flow field will inherit the symmetry of one of the three
(unstable) steady solutions, depending on the details of the initial perturbation.
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(a) (b)

Figure 2.11: Additional modes arising from the pitchfork bifurcation, at Re = 80, (a) mode u4, (b)
mode u5. Red color and solid contours are positive values of the vorticity, blue color and dashed
contours are negative values. See text for details about the computation of these two modes.

σ1 5.22× 10−2 β 1.31× 10−2

ω1 5.24× 10−1 γ 2.95× 10−2

σ3 −5.22× 10−1 β3 1.53× 10−1

σ4 2.72× 10−2 β4 2.45× 10−1

σ5 −2.72× 10−1 β5 2.14× 10−1

Table 2.3: Coefficients of the least reduced-order model (2.32) at Re = 80.

2.5.2 Reduced-order model in the secondary flow regime

As discussed in § 2.3, an ansatz of the flow state can now be written as:

u(x, t) ≈ us(x)︸ ︷︷ ︸+ a1(t)u1(x) + a2(t)u2(x)︸ ︷︷ ︸
leading POD modes at Re = 80

+ a3(t)u3(x)︸ ︷︷ ︸
shift mode

+ a4(t)u4(x) + a5(t)u5(x)︸ ︷︷ ︸
pitchfork degrees of freedom

(2.37)

It is worthwhile noticing that, in the frame of this ansatz, the two asymmetric steady solutions u±s
are related to the symmetric steady solution us via the additional antisymmetric mode u4:

u±s = us ± a4u4 + a5u5, (2.38)

where a4 and a5 are the time-averaged coefficients in the permanent regime. Consequently, u4 can
be easily computed as:

u4 ∝ (u+
s − u−s ), (2.39)

and further orthonormalized to u1, u2, u3 by a Gram-Schmidt procedure. The resulting mode u4 is
shown in figure 2.11(a). A comparison with the eigenmode associated with the real eigenvalue, in
figure 2.10(a), shows that the shift mode u4 is just the real eigenmode against which the symmetric
steady solution is unstable at Re = 80, as expected by the definition of mode u4.

In a similar way, the additional mode u5 can be constructed as:

u5 ∝ (u+
s + u−s )/2− us. (2.40)

Mode u5 is shown in figure 2.11(b) after orthonormalization.
Close to the pitchfork bifurcation, the resulting dynamical system is described by Eqs. (2.32).

At the threshold, the degrees of freedom a4, a5 associated with the pitchfork bifurcation are
expected to be fully uncoupled to the degrees of freedom a1, a2, a3 associated with the Hopf
bifurcation, and reciprocally, see § 2.3.3. In this case, an accurate linear and nonlinear dynamics
from a Galerkin projection relies on deformable modes from eigenmodes near the fixed point to
POD modes near the limit cycle (Loiseau et al., 2018a). We avoid this complication by model
identification from simulation data. The coefficients of the mean-field system (2.32) reported in
table 2.3 were identified from the linear stability analysis of the symmetric steady solution and the
asymptotic dynamics on the unstable symmetric preserving limit cycle and the stable symmetric-
breaking limit cycle (see § 2.3.3 to 2.3.5). The resulting ROM dynamics is compared to the flow
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Figure 2.12: Time evolution of coefficients a1 to a5 in the full flow dynamics (solid blue line) and
the ROM (dashed red line) without cross-terms and coefficients fixed by the linear stability analysis
and the asymptotic dynamics. The initial condition for both systems is the same.

dynamics in figure 2.12. Inspection of figure 2.12 shows that such a model, reduced to only five
degrees of freedom, is able to reproduce many features of the original dynamics: both the early
transient and asymptotic dynamics of a1 to a3 are well reproduced, as well as the large timescale
evolution of a4, a5. However, the growth of coefficients a1 to a3 appears to be faster for the ROM,
and a4, a5 also reach their asymptotic value significantly sooner than their values for the full
simulations of the fluidic pinball. In addition, the transient kick in a4, a5 is absent from the mean-
field system (2.32), as well as the transient and asymptotic oscillations of a4 and a5 visible in
figure 2.12, which would require coupling to a1 or a2, or both. All these features indicate that at
Reynolds number Re = 80, the Krylov-Bogoliubov assumption of pure harmonic behaviour with
slowly varying amplitude and frequency no longer holds.

As a consequence, cross-terms must be included in the ROM. The assumption of non-oscillatory
dynamics of the shift mode amplitude a3 and of the two pitchfork modes a4, a5 is relaxed to repro-
duce the oscillatory behaviour evidenced in figure 2.12. Following § 2.3.6, the model identification
process reads:

Step 1: Keep the five-dimensional linear-quadratic form of the dynamical system from the Galerkin
projection with 25 linear and 75 quadratic terms.

Step 2: Remove vanishing terms arising from the symmetry of the modes. Thus, only 13 linear
and 36 quadratic terms are left to be determined.

Step 3: Enforce the linear dynamics of the unstable Hopf and pitchfork eigenmodes from stability
analysis in the Galerkin system. This implies that the growth rate σ1 and frequency ω1

characterize the initial growth and angular frequency of a1, a2 and σ4 represents the linear
growth rate for a4.

Step 4: The slaving of the Reynolds-stress-induced modes u3 and u5 to the fluctuation level
is imposed by setting the damping rate 10 times larger than the growth rate of the
corresponding fluctuation: σ3 = −10σ1, σ5 = −10σ4. This strong damping rate quickly
forces the trajectory onto the mean-field manifold.
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Step 5: Enforce phase invariance for a1, a2 in the first two equations. This is implied by the
mean-field theory and is found to be a good approximation from numerical inspection.
Thus, the oscillatory dynamics of a1, a2 are governed by σ1, ω1, β, β15, γ, γ15, and β3.

Step 6: Impose the asymptotic dynamics of the unstable symmetric limit cycle by fixing β, γ,
and β3.

Step 7: Apply the SINDy algorithm (Brunton et al., 2016a) to the remaining unknown terms, i.e.
6 linear terms and 28 quadratic terms. This step alone typically fails to yield a physics-
based globally stable Galerkin system. This is not surprising in view of the necessary
and sufficient conditions for global boundedness of Galerkin systems by Schlegel & Noack
(2015). A Galerkin system identification with `1-norm penalization of the coefficients is
found to have a performance similar to SINDy for the chosen constraints.

Step 8: Two additional simplifying physics-based constraints are found to make the dynamic
system identified by SINDy robust for a large range of initial conditions. Enforcing
q145 = q245 = 0 avoids the initial oscillatory dynamics being influenced by the initial kick
of a5, and setting q344 = q434 = 0 leads to the right asymptotic transition of the pitchfork
bifurcation.

The resulting ROM reads:

da1/dt = a1(σ1 − β a3 − β15 a5)− a2(ω1 + γ a3 + γ15 a5) + l14 a4 + q134 a3a4, (2.41a)
da2/dt = a2(σ1 − β a3 − β15 a5) + a1(ω1 + γ a3 + γ15 a5) + l24 a4 + q234 a3a4, (2.41b)
da3/dt = σ3 a3 + β3 r

2 + l35 a5 + q314 a1a4 + q335 a3a5 + q355 a
2
5, (2.41c)

da4/dt = σ4 a4 − β4 a4a5 + a1(l41 + q413 a3 + q415 a5) + a2(l42 + q423 a3 + q425 a5), (2.41d)
da5/dt = σ5 a5 + β5 a

2
4 + l53 a3 + q514 a1a4 + q533 a

2
3 + q535 a3a5. (2.41e)

where r2 = a2
1+a2

2. The coefficients are summarized in table 2.4. The dynamics of the system (2.41)
(dashed red line) is compared to the full flow dynamics of the fluidic pinball (solid blue line) in
figure 2.13. Now the initial stage of the dynamics is much better reproduced, as well as the
asymptotic oscillations of a3, a4 and a5. Interestingly, the faster growth in a1 to a3, on the time-
range around 600, could not be completely corrected. It is worthwhile noticing that this range
of time also corresponds to oscillations in a4, which could not be reproduced by any cross-terms
compatible with the symmetries of the system. Noticing that a4 6= 0 on this range of time may also
question our choice for σ1 = 5.22× 10−2, which is the linear growth rate of the leading eigenmode
around the symmetric steady solution us. Indeed, although the initial condition is close to this
point, the large amplitude oscillations of a4 on the time range around 600 mean that the trajectory
transiently escapes the symmetric subspace not only along a3, but also along a4 and a5, before
coming back close to the a3 axis, on the time range from 700 to about 800. Therefore, it would
be reasonable here to keep all the coefficients of the model unconstrained, but the number of free
parameters is now too large for the identification process to be computationally tractable — for
instance, it provides positive σ3 when it must necessarily be strongly negative.

Model identification can be very challenging for a number of reasons. First, the conditions for
global boundedness of the attractor for the linear-quadratic Galerkin system are rather restric-
tive (Schlegel & Noack, 2015). Second, the Galerkin method assumes fixed expansion modes. Yet,
least-order models often have deformable modes changing with the fluctuation level (Tadmor et al.,
2011). The von Kármán vortex shedding metamorphosis from stability modes to POD modes may
serve as an example. These deformations may also affect the structure of the dynamical system.
Third, the Navier-Stokes dynamics may live on a strongly attracting manifold. This restriction of
the state space may make certain Galerkin system coefficients numerically unobservable, like σ3

and σ5 in our case. Despite these challenges, the model identified in table 2.4, as exemplified by
figure 2.13, constitutes a faithful least-order model for the fluidic pinball at Re = 80. Although

60



Chapter. 2 Low-order model for successive bifurcations

σ1 5.22× 10−2 β 1.31× 10−2 l14 2.93× 10−1 l24 −4.87× 10−1

ω1 5.24× 10−1 γ 2.95× 10−2 q134 −5.87× 10−2 q234 1.18× 10−1

σ3 −5.22× 10−1 β3 1.53× 10−1 l41 3.14× 10−2 l42 −5.14× 10−2

σ4 2.72× 10−2 β4 5.78× 10−2 q413 −7.56× 10−3 q423 1.28× 10−2

σ5 −2.72× 10−1 β5 1.91× 10−1 q415 2.99× 10−2 q425 1.71× 10−1

β15 −2.42× 10−2 l35 4.28 l53 2.89× 10−2

γ15 1.70× 10−2 q335 −1.11 q533 −7.22× 10−3

q355 −5.13× 10−1 q535 1.48× 10−2

q314 1.57× 10−2 q514 −9.44× 10−3

Table 2.4: Coefficients of the reduced-order model at Re = 80. See text for details.
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Figure 2.13: Performance of the ROM with cross-terms. Time evolution of coefficients a1 to a5 in
the full flow dynamics (solid blue line) and for the ROM (red dashed line). The initial condition
is the same for the ROM and the full flow dynamics.

the model is only five-dimensional, it can reproduce most of the key features, timescales, transient
and asymptotic behaviour of the full dynamics.

2.6 Conclusions and outlooks

Reduced-order models (ROM) serve a number of purposes. For instance, ROMs facilitate a deeper
understanding of the physical mechanisms at play in a flow configuration, by extracting the low-
dimensional manifold on which evolve the dynamics (Manneville, 2010). In that respect, the
linear stability analysis of the steady solution shows the nonlinear amplitude saturation mecha-
nism through the distorted mean flow. The difference between steady solution and the mean flow is
caused by the Reynolds stress, captured by the shift mode u∆, and affects the stability properties
(Noack et al., 2003; Barkley, 2006; Sipp & Lebedev, 2007; Turton et al., 2015). Deeper investi-
gations would certainly deserve to be carried out on the relation between the stability analysis of
fixed points, Floquet analysis of limit cycles and Lyapunov exponents of chaotic flow regimes. In
addition, because Hopf and pitchfork bifurcations are generic bifurcations in fluid flows, the nonlin-
ear dynamics identified in this study are expected to be extended and generalizable to other flows
exhibiting similar bifurcations. Last but not least, a ROM provides fast estimators for predicting
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the forward evolution of the system. Such estimators could be used for control purposes (Brunton
& Noack, 2015; Rowley & Dawson, 2017). All these considerations motivated the present study,
whose main results are summarized in § 2.6.1. Outlooks of this work are listed in § 2.6.2.

2.6.1 Concluding remarks and discussion

Flow configurations undergoing successive Hopf and pitchfork bifurcations are common in fluid
mechanics. This is, for instance, the case of three-dimensional wake flows such as spheres (Mittal,
1999; Gumowski et al., 2008; Szaltys et al., 2012; Grandemange et al., 2014) or bluff body wake
flows (Grandemange et al., 2012, 2013; Cadot et al., 2015; Bonnavion & Cadot, 2018; Rigas et al.,
2014). The drag crisis and stalled flows are also characterized by the pitchfork bifurcation of a
primarily Hopf-bifurcated flow, but the secondary transition is subcritical in this case.

In this study, we have considered the fluidic pinball on its way to chaos and have identified
least-order models of the flow dynamics in the primary Hopf-bifurcated and secondary pitchfork-
bifurcated flow regimes. Reduced-order modelling of Hopf bifurcations was already addressed in
Noack et al. (2003) for the cylinder wake flow, while Meliga et al. (2009) derived the amplitude
equation for a codimension two bifurcation (pitchfork and Hopf) based on a weakly nonlinear
analysis in the wake of a disk, and Fabre et al. (2008) derived the same equation solely based on
symmetry arguments, in the wake of axisymmetric bodies. In the present contribution, we could
demonstrate that the dynamics resulting from the successive Hopf and pitchfork bifurcation could
be well-captured by a five-dimensional model whose degrees of freedom couple through quadratic
non-linearities, as imposed by the Navier-Stokes equations.

For the fluidic pinball, the route to chaos is characterized by a primary supercritical Hopf
bifurcation at Re ≈ 18, followed by a secondary supercritical pitchfork bifurcation at Re ≈ 68.
The Hopf bifurcation corresponds to the destabilization of the steady solution with respect to
vortex shedding, while the pitchfork bifurcation occurs when the mean flow breaks the symmetry
with respect to the mirror-plane. The fluctuation amplitude of the von Kármán street is reduced,
over a finite range of the Reynolds number around Re2, when the base-bleeding jet is rising. This
means that energy is withdrawn from the fluctuations to feed the mean flow transformation. Before
the next transition occurs, the fluctuation amplitude starts to grow again, up to the largest value
of the Reynolds number considered in this work.

There is strong evidence that the next transition is a Neimark-Säcker bifurcation. The resulting
flow regime is most likely quasi-periodic over the range [Re3 , Re4]. In this regime, a new oscilla-
tory phenomenon takes place, characterized by slow oscillations of the base-bleeding jet. Three
additional degrees of freedom might be necessary to deal with the newly arising oscillator. The
flow dynamics eventually bifurcates into a chaotic regime, characterized by the random switching
of the base-bleeding jet between two symmetric deflected positions. The overall route to chaos is
summarized in the phenomenogram of figure 2.14.

The reduced-order models derived by Galerkin projections of the Navier-Stokes equations, based
on the symmetry of the individual degrees of freedom, under Krylov-Bogoliubov simplifications,
faithfully extract the manifolds on which the flow dynamics sets in. The ROM for the primary flow
regime is only three dimensional: two degrees of freedom are associated with the asymptotic stable
limit cycle resulting from the vortex shedding. The third degree of freedom is a mode slaved to the
two dominant modes and is mandatory for the description of the transient flow dynamics from the
unstable steady solution to the post-transient mean flow, as already demonstrated in Noack et al.
(2003). The least-order model in the secondary flow regime has only five degrees of freedom, three
of which are associated with the Hopf bifurcation, the two remaining degrees of freedom being
associated with the pitchfork bifurcation. In the phenomenogram of figure 2.14 are reported the
structure of both reduced-order models close to the Hopf and the pitchfork bifurcations. When
the two sets of degrees of freedom are fully uncoupled, some features of the flow dynamics are
well-reproduced (asymptotic mean behaviour, parabolic manifolds of the Hopf and pitchfork bi-
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furcations), but many details are missing. To reproduce most of the transient and asymptotic flow
features far from the bifurcation point, additional cross-terms have been included in the model,
which relaxes the steadiness constraint usually assumed for the shift modes.

2.6.2 Outlook

The current generalized mean-field model captures the Hopf bifurcation and subsequent pitchfork
bifurcation of the steady solution and limit cycles. The following onset of a quasi-periodic regime
with slow oscillations of the deflected base-bleeding jet might presumably be incorporated by an-
other Hopf bifurcation, leading to a 8-dimensional mean-field Galerkin model. The transition to
chaos is accompanied by a return to a statistically symmetric flow, i.e. the base-bleeding jet oscil-
lates around one asymmetric state before it stochastically switches to the other mirror-symmetric
one. This behaviour is reminiscent of the transition to chaos of a harmonically forced Duffing
oscillator. In the case of the fluidic pinball, the vortex shedding would constitute a forcing. Hence,
one may speculate that the transition to chaos may already be resolved by the 8-dimensional
Galerkin model in which the effect of vortex shedding on the jet oscillation becomes stronger with
an increasing Reynolds number.

An alternative direction is to increase the accuracy of the mean-field Galerkin model. While the
structure of the Galerkin system prevails for a large range of Reynolds numbers, the modes and all
Galerkin system coefficients change in a non-trivial manner, e.g., the growth-rate formula should
read σ = σ1(Re)− β(Re)a3. The transients can be expected to be much more accurately resolved
by the mean flow dependent modes, e.g. ui(Re, a3, a5, ~x), i = 1, 2 for the resolution of vortex
shedding (Loiseau et al., 2018a). More generally, the flow lives on a low-dimensional manifold
which includes mode deformations (Noack, 2016). Locally linear embedding (LLE) is a powerful
technique for identifying the dimension and a parameterization in an automatic manner (Roweis
& Saul, 2000). The normal form of the bifurcations can be expected to coincide with the dynamics
on the LLE feature coordinates.

A third direction follows an observation of Rempfer (1994) that Galerkin systems of many fluid
flows can be considered as nonlinearly coupled oscillators. For two incommensurable shedding
frequencies, this observation has been formalized in a generalized mean-field model by Noack
et al. (2008); Luchtenburg et al. (2009). Such multi-frequency models may be extended to resolve
broadband frequency dynamics taking, for instance, the most dominant DMD modes (Rowley
et al., 2009; Schmid, 2010). Strengths and weaknesses of techniques currently used for model
reduction are discussed in Taira et al. (2017). While mean-field consideration expressly ignores
non-trivial triadic interactions, their quantitative effect on the frequency crosstalk may still be
well approximated by the mean flow interaction terms. Such multi-frequency mean-field models
may eventually describe the effect of open-loop forcing on turbulence, see for instance the recent
thorough review by Jiménez (2018) on turbulent flow modelling.

A fourth direction aligned with the large success of machine learning / artificial intelligence
is the automated learning of state spaces, modes, and dynamical systems. For the latter, SINDy
provides an established elegant framework (Brunton et al., 2016a). The choice of the state spaces
might be facilitated by manifold learning from many solution snapshots (Gorban & Karlin, 2005).
The authors actively pursue all the mentioned directions.
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Figure 2.14: Phenomenogram. The route to chaos develops along the ReD-axis. On this route
are highlighted the least-order models identified at Re = 30 and Re = 80, where the manifolds
on which the dynamics take place are schematically drawn. The branches of the steady solution
and periodic solution are presented by the black and blue curves, with the solid/dashed curves for
the stable/unstable states. The degrees of freedom a1,a2 span the limit cycle subspace, a3 is the
axis of the parabolically-shaped manifold, while a4 is transversally associated with the pitchfork
bifurcation, together with a5 which slightly bend the surface to which the steady solutions u±s and
us belong. The gray-shaded shadows of the quasi-periodic and chaotic regimes are represented
for the sake of illustration. Gray-shaded inserts provide the least-reduced order models at the
threshold for both the Hopf and pitchfork bifurcations under the constraint of the Navier-Stokes
equations. Also shown at the top are the figure snapshots of the steady solutions, mean flow fields,
and instantaneous flow field, at either Re = 30 or Re = 80. The dotted arrows connect these
snapshots to the corresponding points in the phenomenogram. In addition, individual degrees of
freedom u1 to u5 are shown at the left. 64
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Figure 2.15: Pressure lift coefficient of steady solutions at different values of the Reynolds number
resulting from the steady Navier-Stokes solver starting with the steady solutions: us(x) (point +
black curve), u+

s (x) (star + red curve), and u−s (x) (square + blue line), at Re = 80. Three curves
overlap on the CL = 0 level as Re ≤ 68.
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2.A Asymmetric steady solutions

For a Reynolds number larger than the critical value of the pitchfork bifurcation Re2, we can obtain
two additional asymmetric steady solutions, one associated with the base-bleeding jet deflected
upward, the other downward. These two asymmetric steady solutions are obtained by the steady
Navier-Stokes solver initialized with a flow field (snapshot) with the same state of the base-bleeding
jet. From the two asymmetric vortex shedding, their corresponding asymmetric steady solutions
can be obtained by the following steps:

Step 1: Run the unsteady Navier-Stokes solver with a time scale larger than the vortex shed-
ding period, initialized from a snapshot of the asymmetric vortex shedding. The vortex
shedding will quickly vanish for this artificially large time scale and approach the corre-
sponding approximation of the steady state.

Step 2: Run the steady Navier-Stokes solver, restarted from this vortex shedding vanished solution
to further refine the steady state.

Initialized with the three steady solutions with different states of the base-bleeding jet at
Re = 80, the steady solutions for other Reynolds numbers can be obtained by the steady Navier-
Stokes solver. At Re = 68, all three steady solutions converge to a unique solution, which indicates
that the critical value of the pitchfork bifurcation of the steady solution is between 68 to 69, as
shown in figure 2.15 based on the pressure lift coefficient of the steady solutions.

2.B Linear stability analysis

The linear stability problem for a base flow (U(x), P (x)) with small perturbations (u′(x, t), p′(x, t))
is governed by the linearized Navier-Stokes equations, which read:

∂tu
′ + (U · ∇)u′ + (u′ · ∇)U = ν4u′ −∇p′, ∇ · u′ = 0 (2.42)
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Figure 2.16: Eigenspectrum resulting from the linear stability analysis of the symmetric steady
solution us. With increasing Re, (a) a complex-conjugated eigenvalue pair crosses the imaginary
axis at Re changing from 18 to 19, the critical value of the Hopf bifurcation Re1 ≈ 18, (b) a
real eigenvalue crosses the imaginary axis at Re changing from 68 to 69, the critical value of the
pitchfork bifurcation Re2 ≈ 68.

The assumption of small perturbation allows to linearize the equations, and we can separate the
time and space dependence as:

u′(x, t) = û(x)e(σ+iω)t, p′(x, t) = p̂(x)e(σ+iω)t (2.43)

By introducing the linear operator L(U ), all the terms except the time derivative term and the
continuity equation can be cast as L(U)u′, we can rewrite (2.42) as

∂tu
′ = L(U)u′ (2.44)

Introducing (2.43) into (2.44), the equations can be written as:

(σ + iω)û = L(U)û (2.45)

We use subspace iteration to solve this eigenvalue problem. A detailed review can be found in
Morzyński et al. (1999).

The global stability analysis of the steady solutions at different Reynolds numbers has been
performed on a Krylov subspace of dimension 9-20. This converges after 50-100 iterations. The
linear stability analysis of the symmetric steady solution us reveals a pair of conjugated eigenvalues
with positive real part first appearing as the Reynolds number is changing from 18 to 19, see
figure 2.23(a). A real eigenvalue becomes positive between Re = 68 and 69, see figure 2.23(b).
This confirms that a Hopf bifurcation occurs on the symmetric steady solution at Re1 ≈ 18, and
a pitchfork bifurcation at Re2 ≈ 68.

2.C Floquet stability analysis
Similar to the linear stability framework, the Floquet stability problem works with a T-periodic
base flow (U(x, t), P (x, t)). The linear operator now reads:

∂tu
′ = L(U(x, t))u′ (2.46)
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The linear operator L(U(x, t)) is T-periodic because of the base flow U (x, t). The solutions
to (2.46) are seeked as:

u′(x, t) = û(x, t)e(σ+iω)t, (2.47)

with the T-periodic Floquet modes û(x, t) and the corresponding Floquet exponents σ + iω. We
define the Floquet operator as the time-integrated L(U(x, t)) with the pre-stored periodic solutions
over one period (Barkley & Henderson, 1996a; Schatz et al., 1995), which reads:

AF = exp

(ˆ T

0

L(U(x, t))dt

)
. (2.48)

The method used to solve the eigenproblem is the same as the linear stability analysis. The Floquet
multipliers of AF can be written as λF = e(σ+iω)T . The considered periodic base flow is unstable if
there exists a Floquet multiplier with an absolute value greater than 1.

We performed the block-Arnoldi method to construct a high-dimensional Krylov subspace,
with itergrating the linear operator on a symmetry-constrained T-periodic base flow (Shaabani-
Ardali et al., 2019). The algorithm computes 20 vectors in parallel at each iteration, improving the
construction efficiency. Below the critical Reynolds number, the base-bleeding jet is approximately
steady and symmetric. This symmetry is also enforced at higher Reynolds numbers to compute
the unstable periodic solution. The constraint is imposed on the central line as:

v(0 ≤ x ≤ 1, |y| ≤ 5× 10−4) = 0 (2.49)

As Eq. (2.49) restricts the vertical velocity of the nodes, the symmetry-constrained periodic solution
is very close to the symmetry-preserving periodic solution. Normally, 6–15 iterations are enough
to get a converged leading eigenvalue, which means a Krylov subspace with 120–300 vectors,
initialized with a group of 20 random orthogonal vectors or a group of eigenvectors computed at
nearby Reynolds number with the periodic solution of the same symmetry. We do not attempt
to calculate a complete, converged spectrum of all the eigenvalues, as the leading eigenvalue is
associated with the instability of interest. The multipliers from the Floquet analysis around the
critical value of the pitchfork bifurcation Re2 are shown in figure 2.17. There always exists a stable

Re = 60 Re = 70 (c) Re = 80

Figure 2.17: Floquet multipliers for the symmetry-preserving periodic solution at Re = 60, 70,
and 80, together with the Floquet modes for the multipliers marked by red dots.

multiplier close to 1, which is related to the phase shift at each time step. The structure of this
phase-shifting eigenmode, for instance, the mode B (B+ for the asymmetry periodic solution), can
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(a) (b)

A

B

B+

Figure 2.18: Multipliers resulting from the Floquet analysis (top) and the leading modes (bottom)
of (a) the symmetry-preserving periodic solution, (b) the asymmetric periodic solution, both at
Re = 80. Only the real part of the complex eigenmodes is shown. Red color and solid contours
are positive values of the vorticity, blue color and dashed contours are negative values. Mode A
(unstable multiplier marked with red dot) is related to the symmetry breaking of the periodic
solution, and the modal energy is concentrated in the jet structure. Mode B or mode B+ (stable
multiplier close to the unit cycle) is marginally stable and comes from the phase shift at each time
step of integrating the linear operator on the periodic base flow.

be found in figure 2.18. When increasing Re, the leading real eigenvalue crosses the unit cycle at
(+1, 0) as Re changes from 69 to 70. The critical value of the pitchfork bifurcation is, therefore,
Re2 ≈ 69, identical to the critical value for the steady solution at the precision of the numerics.
Both of them have the same eigenmode. At Re = 80, the leading Floquet modes of both the
unstable symmetric periodic solution and the stable asymmetric periodic solutions are shown in
figure 2.18.

Overall, combined with the result of the linear stability analysis of the steady solutions, the
bifurcation scenario at low Reynolds numbers can be shown in figure 2.19. The linear stability
analysis of the steady solution and the periodic solution show a highly consistent result: the same
kind of bifurcation with nearly the same critical Reynolds number, and the same eigenmodes. Be-
sides, at Re = 80, the growth rates of the real eigenmode are very close: 0.0272 from the symmetric
steady solution, 0.0232 from the symmetric periodic solution. This similarity is understood as the
result of a transverse effect of the symmetric subspace.

2.D Transient dynamics from different steady solutions

In this section, we show in figure 2.20 some typical transient dynamics starting with the unstable
symmetric/asymmetric steady solutions at different Reynolds numbers, based on the pressure lift
coefficient CL(t) from the resulting force on the three cylinders. Combining CL(t) with the pressure
drag coefficient CD(t) and the time-delayed lift coefficient CL(t− τ) in which τ is a quarter period,
provides the phase portraits of figure 2.21. Three comparative numerical simulations are shown,
starting with the symmetric and the two mirror-conjugated asymmetric steady solutions at the
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Chapter. 2 Low-order model for successive bifurcations

Figure 2.19: Bifurcation scenario along the ReD-axis for the first two successive instabilities. The
black curve indicates the stable branch, and dashed black curve for the unstable branch, combined
with the linear/Floquet stability analysis results around the critical Reynolds number. The relevant
eigenvalues at the critical value of the bifurcation are marked with red dots. The stability of the
steady solutions us and u±s , and the periodic solutions presented by the mean flow field u and u±

are illustrated by a dot for the stable state, or a circle for the unstable state. The red arrows show
the possible transitions between them. The flow states in three stages are represented by the flow
fields at Re = 10, 30, 80.

69



Section 2.E. ON THE SIMULTANEOUS INSTABILITY OF THE FIXED POINT AND THE LIMIT CYCLE

same Re respectively. The mirror-conjugated initial conditions provide mirror-conjugated transient
dynamics.

Figure 2.20(a) shows the transient dynamics at the critical Reynolds number Re2, initialized
with the three steady solutions at Re = 75. The lift coefficient starts oscillating quickly, and
eventually reaches a unique oscillating state with zero mean value. This is consistent with the
Floquet analysis at Re = 68, where only one stable symmetry-centered limit cycle exists and any
other state will eventually converge to this stable state.

Figure 2.20(b) shows three different scenarios at Re = 75 depending on the initial condition:
from the symmetric steady solution us to the symmetry-centered limit cycle, from the symmetry-
centered limit cycle to the asymmetry-centered limit cycles, and from the asymmetric steady
solutions u±s to the asymmetry-centered limit cycles. Starting with the symmetric steady solution,
it will first reach the unstable symmetry-centered limit cycle, before asymptotically approaching
one of two stable asymmetry-centered limit cycles. However, starting with the asymmetric steady
solutions, it will directly reach the corresponding stable asymmetry-centered limit cycle. If the
initial perturbation introduced to the symmetric steady solution has a certain bias of symmetry,
a transition from the symmetric steady solution us to one of the two asymmetry-centered limit
cycles will occur.

As we keep increasing the Reynolds number up to Re = 100, there still exist six states, but the
transient scenario from the symmetric steady solution us is different. It will first reach one of two
unstable asymmetric steady solutions u±s , before asymptotically approaching the corresponding
asymmetry-centered limit cycle, as shown in figure 2.20(c).

All these transient dynamics mentioned above are highlighted with the red arrows in figure 2.19.
The phase portraits starting with different steady solutions, as shown in figure 2.21, reveal the

above-mentioned transient dynamics which is affected by the initial condition and the Reynolds
number. At the same time, it also reflects the global effect of the pitchfork bifurcation at Re2,
splitting the state space (see figure 2.21(a)) into a symmetric sub-space and two mirror-conjugated
asymmetric sub-spaces (see figure 2.21(b),(c)).

2.E On the simultaneous instability of the fixed point and
the limit cycle

In this section, we exemplify the transverse effect of the pitchfork bifurcation on a three-dimensional
dynamical system equivalent to the system of Eq. (2.32).

Dynamical system

The dynamical system reads:
ẋ = (µ− µ1 − (x2 + y2))x+ (ω0 + (x2 + y2))y
ẏ = (µ− µ1 − (x2 + y2))y − (ω0 + (x2 + y2))x
ż = (µ− µ2)z − z3

(2.50)

with µ1 = 1, µ2 = 2, ω0 = 1. This system undergoes a supercritical Hopf bifurcation in the (x, y)-
plane at µ = µ1 and a supercritical pitchfork bifurcation along the z-axis at µ = µ2. For µ > µ1,
the stable fixed point at (0, 0, 0) becomes unstable, and the limit cycle around (0, 0, 0) with radius
r =
√
µ− µ1 and angular frequency ω = ω0 + µ − µ1 is stable in the (x, y)-plane. Increasing µ

until µ > µ2, the fixed point undergoes a secondary instability, as well as the limit cycle. Three
unstable fixed points (0, 0, 0), (0, 0,±

√
µ− µ2), and three limit cycles around these fixed points

with radius r =
√
µ− µ1 and angular frequency ω = ω0 + µ− µ1 in the (x, y)-plane are found, as

shown in figure 2.22.
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Figure 2.20: Transient dynamics based on the pressure lift coefficient CL, resulting from the DNS
starting with three steady solutions at different Reynolds numbers: (a) Re = 68 starting with
three steady solutions at Re = 75, (b) Re = 75 starting with three steady solutions at Re = 75,
and (c) Re = 100 starting with three steady solutions at Re = 100. The black dashed curve starts
with the symmetric steady solution us, the red curve starts with u−s , and the blue curve starts
with u+

s .
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(a) (b)

(c)

Figure 2.21: Scenarios of transient dynamics, based on the pressure drag coefficient CD(t), pressure
lift coefficient CL(t) and time-delayed pressure lift coefficient CL(t − τ), from the three unstable
symmetric/asymmetric steady solutions of (a)Re = 75, (b)Re = 75 and (c)Re = 100, to their
asymptotic stable limit cycles at (a)Re = 68, (b)Re = 75 and (c)Re = 100: the black dashed curve
from the symmetric steady solution us(×), the red curve from the asymmetric steady solution
u−s (•), and the blue curve from the asymmetric steady solution u+

s (�).

Figure 2.22: Three-dimensional schematic diagram of µ = 3, with the transition from the perturbed
initial conditions on the unstable limit cycle z = 0 (the black cycle) to the corresponding stable limit
cycles z = ±

√
µ− µ2 (the blue and red cycles): the blue dashed curve from (−1,−1,−0.0001)(�),

the red dashed curve from (1, 1, 0.0001) (•).
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(a) (b) (c)

(d) (e)

Figure 2.23: Eigenspectrum resulting from the linear stability analysis of the steady solution q0
s at

different µ: (a)µ = 0.5, (b)1.0, (c)1.5, (d)2.0, (b)2.5.

Linear stability analysis

The ODE (2.50) can be writen as:

q̇ = F (q), q = (x, y, z) (2.51)

and we note qs is the steady state,that is, F (qs) = 0. Consider a small perturbation q′ around
the steady state qs by

q = qs + q′ (2.52)

We derived the linearized evolution equation:

q̇′ = DF (qs)q
′ (2.53)

where DF (qs) is the Jacobian matrix of the considered steady state qs.
The stability of this steady state is determined by the eigenvalues σ+iω of the Jacobian matrix.

The eigenspectrum of the fixed point q0
s = (0, 0, 0) is shown in figure 2.23. The growth rate and

angular frequency of the pair of conjugated eigenvalues are µ−µ1 and ω0 respectively. The growth
rate of the real eigenvalue is µ− µ2.

The eigenspectrum of the steady solution q±s = (0, 0,
√
µ− µ2) for µ > µ2 is shown in fig-

ure 2.24(right). The growth rate is µ− µ2 at the steady solution q0
s and −2(µ− µ2) at the steady

solution q±s .

Floquet stability analysis

Now, we consider the periodic solution qp(t) of the system of (2.50), which can be writen as:

qp(t+ T ) = qp(t), with q̇p(t) = F (qp(t)) (2.54)

Consider a small perturbation q′ around the periodic solution by

q(t) = qp(t) + q′(t) (2.55)

73



Section 2.E. ON THE SIMULTANEOUS INSTABILITY OF THE FIXED POINT AND THE LIMIT CYCLE

Figure 2.24: Eigenspectrum resulting from the linear stability analysis of the steady solutions
q0
s(left) and q±s (right), at µ = 2.5

(a) (b) (c)

Figure 2.25: Floquet stability analysis of the z = 0 periodic solutions at different µ = (a)1.95,
(b)2.0, and (c)2.05

The first variational form reads:

q̇′(t) = DF (qp(t))q
′(t) (2.56)

where DF (qp(t)) is the Jacobian matrix of the considered periodic solution qp(t), but now, the
linear equation has periodic coefficients.

The monodromy matrix can be written as:

Mmono = exp

(ˆ T

0

DF (qp(t))dt

)
(2.57)

or equivalently:

Mmono = exp

(
T

2π

ˆ 2π

0

DF (qp(θ))dθ

)
. (2.58)

The stability of this periodic solution is determined by the multipliers λ = exp((σF + iωF )/T ),
being the eigenvalues of the monodromy matrix. As shown in figure 2.25, the periodic solution q0

p:
(
√
µ− µ1 cos(θ),

√
µ− µ1 sin(θ), 0) for µ ≥ µ2 becomes unstable. A real multiplier λ crosses the

unit cycle at +1. The Floquet exponent of this real multiplier is µ− µ2, equal to the growth rate
at the fixed point q0

s .
The multipliers of the other two periodic solutions q±p : (

√
µ− µ1 cos(θ),

√
µ− µ1 sin(θ),±

√
µ− µ2)

is shown in figure 2.24(right). The Floquet exponent of the leading multiplier is −2(µ−µ2), equal
to the growth rate at the fixed point q±s .

As a consequence, if the additional degree of freedom z, introduced by the pitchfork bifurcation,
do not couple, at the onset of the bifurcation, to the primary degrees of freedom x, y associated with
the Hopf bifurcation (see § 2.3.5), then it is easy to understand that both the symmetric steady
solution (xs, ys, zs) ≡ (0, 0, 0) and the statistically symmetric periodic solution (xc(t + T ), yc(t +
T ), 0) = (xc(t), yc(t), 0), T being the period of the limit cycle, will both undergo an instability with
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Figure 2.26: Floquet stability analysis of the periodic solutions q0
p(left) and q±p (right), at µ = 2.05

respect to the symmetry breaking provoked by the pitchfork bifurcation (z 6= 0). This simultaneous
instability of both the symmetric fixed point and the statistically symmetric limit cycle looks like
an instability of the subspace (x, y) with respect to the transverse direction z, associated with the
active degree of freedom introduced by the pitchfork bifurcation.
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Generically, a local bifurcation only affects a single solution branch. However, branches that are
quite different may nonetheless share certain eigenvectors and eigenvalues, leading to coincident
bifurcations. For the fluidic pinball, two supercritical pitchfork bifurcations, of the equilibrium and
the periodic solutions, occur at nearly the same Reynolds number. The mechanism of this kind of
non-generic coincidence is modelled and explained.

3.1 Introduction
Vortex shedding, symmetry breaking, and self-sustained oscillations are very common in fluid flows
(Strykowski & Sreenivasan, 1990; Crawford & Knobloch, 1991; Rowley et al., 2002). In terms of
dynamical systems theory, vortex shedding in the wake of an obstacle usually results from a Hopf
bifurcation, either supercritical, as in the cylinder wake flow (Dušek et al., 1994; Noack et al.,
2003) and in the wake of axisymmetric bodies (Fabre et al., 2008), or subcritical, as in a stalling
wing (Dimitriadis & Li, 2009). Symmetry-breaking pitchfork bifurcations may also occur, again
either supercritical, as in bluff body wake flows (Grandemange et al., 2012), or subcritical, as in a
symmetric channel with an expanded and contracted section (Mizushima & Shiotani, 2001) and in
spherical Couette flow (Mamun & Tuckerman, 1995). Many shear flows at high Reynolds numbers
feature coherent structures similar to the patterns engendered by instabilities of the base flow at low
Reynolds numbers. For instance, the von Kármán streets of vortices found in the wake of cylinders
in cross-flow develop at Reynolds numbers as small as O(102), where the flow is laminar, while the
alley of vortices in the wake of islands in oceans are still observed for Reynolds numbers as large
as O(108), where the flow is fully turbulent. This is also true for the Kelvin-Helmholtz instability
(Smyth & Moum, 2012) and Taylor-Couette flow (Grossmann et al., 2016). New states may arise
via secondary instabilities of the base flow as the Reynolds number is increased. Examples are
the subcritical pitchfork bifurcation of turbulent vortex shedding (Schewe, 1983) and secondary
transitions of the cylinder wake (Zhang et al., 1995; Barkley & Henderson, 1996b).
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Generically, a local bifurcation only affects one solution branch (as its name implies) and cannot
affect the stability of other solution branches. Quite intriguingly however, a recent study of the
fluidic pinball configuration has shown that two local bifurcations occur almost simultaneously, i.e.
at nearly the same critical Reynolds number (Deng et al., 2020). Both are supercritical pitchfork
bifurcations; the first is that of the symmetric steady solution of the flow, while the second is that
of the limit cycle associated with the cyclic release of vortices in the wake of the cylinders. Since it
is non-generic, this coincidence should not have been observed in the wake flow, and the literature
on this coincidence is surprisingly sparse (Shearer, 1981).

In this Letter, we model and explain in detail the non-generic coincidence of these two local
pitchfork bifurcations in the fluidic pinball.

3.2 Flow configuration

The fluidic pinball configuration consists of three fixed cylinders of diameter D whose axes are
located at the vertices of an equilateral triangle of side 3D/2 in the (x, y) plane and which are
oriented perpendicularly to this plane. The domain is the rectangle [−6D, 20D]× [−6D, 6D]. One
vertex of the triangle points upstream and the midpoint of the back two cylinders is chosen as
the origin. The upstream flow, of uniform velocity U∞ at the inlet of the domain, is in the x
direction. A variety of flow patterns is found in this configuration as the Reynolds number and
spatial arrangement are varied (Bao et al., 2010; Zheng et al., 2016; Chen et al., 2020). We solve
the incompressible Navier-Stokes equations

∂tu +∇ · u⊗ u = ν∆u−∇p, (3.1)

using a second-order finite-element discretization method of the Taylor-Hood type (Taylor & Hood,
1973), on an unstructured grid of 4 225 triangles and 8 633 vertices and implicit third-order time
integration (Noack & Morzyński, 2017). The Reynolds number is defined by Re = U∞D/ν, where
ν is the kinematic viscosity of the fluid. A no-stress condition is applied at the outlet of the domain.

Reflection symmetry in y proves to be an important part of this scenario. For a velocity
field u = (u, v) we define the y-reflection operator R via R(u, v)(x, y) ≡ (u,−v)(x,−y). For a
symmetric field, u is even and v is odd in y. The spanwise vorticity ∂xv − ∂yu used to represent
the flows in our visualizations, manifests y-reflection symmetry by being odd in y. Eigenvectors
obtained by linearizing about a reflection-symmetric state are necessarily either symmetric or
antisymmetric. Antisymmetric eigenvectors are associated with pitchfork bifurcations that lead to
two symmetrically related asymmetric branches if they are real. If they are complex conjugate pairs,
they are associated with Hopf bifurcations that lead to limit cycles satisfying the spatio-temporal
symmetry Ru(t) = u(t + T/2). Symmetric real eigenvectors are associated with transcritical
bifurcations and complex conjugate eigenvectors are associated with Hopf bifurcations leading to
limit cycles that remain symmetric throughout: Ru(t) = u(t).

The bifurcation diagram is sketched in Fig. 3.1. For low Reynolds number, there is a unique
solution ub, called the base flow. Depicted in Fig. 3.2(a), it is steady and reflection-symmetric with
respect to y = 0. This solution undergoes a supercritical Hopf bifurcation at Re1 ≈ 18 to a pair
of y-antisymmetric eigenmodes, leading to cyclic vortex shedding in the wake flow. The resulting
T -periodic limit cycle, shown via the instantaneous visualization in Fig. 3.2(b), is the von Kármán
vortex street and has the spatio-temporal symmetry uvk(t+ T/2) = Ruvk(t) (Barkley, 2006). For
this reason, we will call this limit cycle symmetric, despite the fact that the instantaneous flows
are not symmetric.

At Re = ReSS
2 ≈ 68, the base flow undergoes another bifurcation, a supercritical pitchfork

that breaks reflection symmetry by deflecting the base-bleeding jet up or down. Two asymmetric
branches are generated: u+ with upwards deflection, shown in Fig. 3.2(c), and its y-reflection
u− = Ru+, with downwards deflection.
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Figure 3.1: Bifurcation diagram for the fluidic pinball. Solid curves indicate stable branches and
dashed curves indicate unstable branches. Bold curves indicate branches of periodic solutions
and thin curves indicate steady solutions. The symmetric and asymmetric periodic solutions are
presented by their time-averages ūvk and ū±vk. Vorticity fields are color-coded in the range [−1.5, 1.5]
from blue to red. The red arrows show the possible transitions between them. The critical Reynolds
numbers are detected with linear or Floquet stability analysis of the corresponding solutions.

Like the steady base flow, the periodic von Kármán vortex street uvk also undergoes a supercrit-
ical pitchfork bifurcation, also involving deflection of the base-bleeding jet, as shown in Fig. 3.2(d).
This bifurcation occurs at ReLC

2 ≈ ReSS
2 and leads to two limit cycles u±vk that we call asymmetric

because they lack the spatio-temporal symmetry. Before symmetry breaking, the vortex shedding
is initiated downstream after the stagnation point of the jet. After symmetry breaking, the vortex
shedding is initiated behind one of the back two cylinders, and the stagnation point disappears.

3.3 Stability analysis

In order to better understand this coincidence of ReLC
2 ≈ ReSS

2 , we conducted linear stability
analysis of the base flow. As shown in Fig. 3.3(a), a real eigenvalue has crossed the imaginary

(a) ub (b) uvk

(c) u+ (d) u+
vk

Figure 3.2: Vorticity fields in colour with [−1.5, 1.5] of the base flow ub, a snapshot of the von
Kármán vortex street uvk(t), at Re = 30 > Re1, the asymmetric steady solution u+ and a snapshot
of the asymmetric von Kármán vortex street u+

vk(t), , with the base-bleeding jet deflected to the
top, at Re = 80 > Re2, color-coded as in Fig. 3.1.
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(a) (b)

Figure 3.3: (a) Leading eigenvalues of the base flow and (b) leading Floquet multipliers of the von
Kármán vortex street, both at Re = 70.

(a) (b)

(c) (d)

(e)

Figure 3.4: (a, b) Deviation of the von Kármán vortex street from the base flow uvk(t) − ub at
two instants separated by T/4, (c, d) the corresponding Floquet modes, and (e) the eigenmode
with real eigenvalue of the base flow, at Re = 70. For (a-d), the spatio-temporal symmetry
u(t+T/2) = Ru(t) implies that the next two instants are obtained by y-reflection and sign change
(color reversal) of these vorticity fields. In (e), the spanwise vorticity is even in y, corresponding
to a flow which is antisymmetric with respect to y-reflection symmetry.

axis at ReSS
2 = 68 ± 1. We also performed Floquet analysis of the von Kármán vortex street.

Figure 3.3(b) shows that a Floquet multiplier crosses the unit circle at +1 and the critical value
determined is ReLC

2 = 69± 1, which is very close to ReSS
2 .

Figures 3.4(a), (b) show the deviation of the von Kármán vortex street from the base flow at
Re = 70 > Re2 at two instants separated by a quarter-period, together with the corresponding
Floquet modes in Fig. 3.4(c,d). Figure 3.4(e) is the eigenmode responsible for the pitchfork bi-
furcation of the base flow. These correspond to the positive real eigenvalue of Fig. 3.3(a) and the
Floquet multiplier crossing the unit circle at λ = +1 of Fig. 3.3(b). The spatial structures of these
modes resemble one another, indicating that the two pitchfork bifurcations are closely related and
correspond to the same physical mechanism, i.e. the base-bleeding jet which is dominant in the
near wake throughout the development of the von Kármán vortex street. The pitchfork bifurcations
originate locally within the three cylinders of the fluidic pinball mechanism, while the von Kármán
vortex street originates in the wake of the three cylinders taken as a whole and approximated by a
single obstacle. Figures 3.4(a), (b) show that the difference between the von Kármàn vortex street
and the base flow is nearly zero near the three cylinders, which makes it plausible that both flows
undergo the same local instability within the pinball mechanism.

The real eigenvalue of the base flow ub and the Floquet exponent of the von Kármán vortex
street uvk are plotted in Fig. 3.5 as functions of the Reynolds number. The fact that the curves
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Figure 3.5: Evolution of the real eigenvalue of the base flow ub (solid curve with crosses), and
the Floquet exponent of the von Kármán vortex street uvk (dashed curve with squares) with the
Reynolds number.

in Fig. 3.5 remain parallel confirms that the jet’s instability mechanism is independent of the
downstream flow. Both eigenvalues increase with Re, eventually causing both uvk and ub to
undergo symmetry-breaking pitchfork bifurcations at very close though distinct values of Re that
deviate the central jet upwards or downwards.

3.4 A simple model for the coincidence

We now write down a simple model for this phenomenon. Consider a system that undergoes
successively a supercritical Hopf bifurcation and, for a higher value of the control parameter µ,
a supercritical pitchfork bifurcation. In the fluidic pinball, µ is the Reynolds number Re. The
system involves three degrees of freedom, the two that are involved in the Hopf bifurcation, written
in polar form as reiθ and that involved in the pitchfork, z. The generic form of such a system
reads: 

ṙ = (µ− µ1 − r2 − χrz2)r

θ̇ = ω0 + r2 − χiz2

ż = (µ− µ2 − z2 − χzr2)z
. (3.2)

The basic state r = 0 = z undergoes a Hopf bifurcation at µ = µ1, leading to a limit cycle with
r =
√
µ− µ1, z = 0, and a pitchfork bifurcation at µ = µ2, leading to asymmetric steady states

with z = ±
√
µ− µ2. Solutions with r > 0 and z 6= 0, i.e. asymmetric limit cycles, exist for µ > µc

where

µc ≡ µ2 +
χz

1− χz
(µ2 − µ1). (3.3)

If χz = 0, then µc = µ2, i.e. the pitchforks of the limit cycle and of the basic state take place at
the same critical value, and if |χz| � 1, they occur almost simultaneously in µ. The non-generic
property of coincident bifurcations is a direct consequence of χz ≈ 0.

The eigenvalues of system (3.2) are easily calculated from its Jacobian. The basic state has
eigenvalues µ − µ1 and µ − µ2 in the r and z directions, respectively. The Floquet exponents of
the symmetric limit cycle are the eigenvalues of system (3.2) with θ removed, that are −2(µ− µ1)
and µ− µ2 − χz(µ− µ1). The second Floquet exponent will closely track eigenvalue µ− µ2 of the
basic state, as in Fig. 3.5, if |χz(µ− µ1)| remains small compared to µ2.
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u1 u2

u3 u4

u5

Figure 3.6: Elementary modes of the fluidic pinball at Re = 70. See text for details.

3.5 Least-order Galerkin model for the coincidence
We can derive system (3.2) from the corresponding least-order Galerkin model (Deng et al., 2020)
slaving the Reynolds-stress-related modes. As stated there, the dynamics for Re > Re2 requires
at least a 5th order Galerkin expansion. The ansatz for the velocity field reads:

u(x, t) = ub(x) +
5∑
i=1

ai(t)ui(x), (3.4)

where ub(x) is the symmetric base flow of the Navier-Stokes equations. The elementary modes
ui(x) are shown in Fig. 3.6. Details on the identification of the individual modes can be found in
(Deng et al., 2020).

The first two modes u1,2, associated with the vortex shedding, are taken to be the two leading
modes from Proper Orthogonal Decomposition (POD) in the permanent dynamical flow regime
(Taira et al., 2017). The shift mode u3 is the difference between the mean flow ūvk of the periodic
regime and the base flow ub (Noack et al., 2003). Mode u4 is given by u4 ∝ u+−u−. Analogously
to u3, mode u5 is the difference between the average (u++u−)/2 of the asymmetric steady solutions
and the base flow ub.

The degrees of freedom a1, a2, a4, are active, while a3 and a5 are slaved to a1, a2 and a4. In the
neighborhood of the second bifurcation threshold (Re ≈ Re2), the dynamical system reads:

da1/dt = σa1 − ωa2, σ = σ1 − βa3 + ξra5 (3.5a)
da2/dt = σa2 + ωa1, ω = ω1 + γa3 + ξia5 (3.5b)
da3/dt = σ3a3 + β3

(
a2

1 + a2
2

)
(3.5c)

da4/dt = σ4a4 − β4a4a5 + ξza4a3 (3.5d)
da5/dt = σ5a5 + β5a

2
4 (3.5e)

which is equivalent to the system (3.2) if σ3 � 0 and σ5 � 0. Indeed, if these conditions are
satisfied, the slaved modes a3 ∝ a2

1 + a2
2 and a5 ∝ a2

4 provide the cubic nonlinearities of Eq. (3.2)
with a1 + ia2 = reiθ and z ≡ a4. The coefficients of system (3.5) can be directly computed by a
Galerkin projection of the Navier-Stokes equations on the bifurcation modes u1...5. At Re = 70,
close to Re2, χz = 0.0168, confirming that it is small.

3.6 Discussion
To check the robustness of the coincidence, we changed the distance between the cylinders from
L/D = 1.5 to 1.4 and 1.6. The critical Reynolds numbers for the Hopf and pitchfork bifurcations,
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L/D Re1 ReSS
2 ReLC

2 χz
1.4 18 79 80 0.0099
1.5 18 68 69 0.0168
1.6 20 63 63 0.0186

Table 3.1: Critical Reynolds numbers for the two bifurcations and associated χz when the cylinder
gap is varied. For each gap, χz is determined from Galerkin projection close to the threshold at
Re = ReLC2 + 1.

together with the associated χz, are recorded in Table 3.1. In all three cases, the two pitchfork
bifurcations still closely coincide, confirming the robustness of this phenomenon with respect to a
change in one of the control parameters (here the cylinder gap).

For these cases, the three cylinders work as a single bluff body. The base-bleeding jet focuses on
the near flow, which breaks the symmetry but does not separate the bluff body wake. When L/D
is sufficiently large, however, the three cylinders no longer form one compact body. Two vortex
streets appear and compete with each other. A new mechanism then changes the flow dynamics
completely with varying gap distance; we refer interested readers to (Chen et al., 2020).

We argue that coincident bifurcations like that observed in the fluidic pinball at Re = Re2

should be observed in other flow configurations, and more generally in other nonlinear partial
differential equations, when competing and independent instability mechanisms are present.
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We propose an aerodynamic force model associated with a Galerkin model for the unforced
fluidic pinball, the two-dimensional flow around three equal cylinders with one radius distance to
each other. The starting point is a Galerkin model of a bluff-body flow. The force on this body
is derived as a constant-linear-quadratic function of the mode amplitudes from first principles
following the pioneering work of Noca (1997); Noca et al. (1999) and Liang & Dong (2014). The
force model is simplified for the mean-field model of the unforced fluidic pinball (Deng et al., 2020)
using symmetry properties and sparse calibration. The model is successfully applied to transient
and post-transient dynamics in different Reynolds number regimes: the periodic vortex shedding
after the Hopf-bifurcation and the asymmetric vortex shedding after the pitchfork bifurcation
comprising six different Navier-Stokes solutions. We foresee many applications of the Galerkin
force model for other bluff bodies and flow control.
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4.1 Introduction

The literature on aerodynamic forces on bodies associated with POD or any other Galerkin model
is surprisingly sparse. On the one hand, force computations are at the heart of engineering fluid
mechanics. On the other hand, systematic investigations and interpretations of the aerodynamic
force in the Galerkin framework are mostly missing. Considering POD as a linear decomposition
of the flow field realizations, Brunton & Rowley (2009) observed that

“While POD modes and the low order model allow for accurate reconstruction of the
flow field and preserve Lagrangian coherent structures, it is not clear that this model is
directly useful for reconstructing body forces quickly and accurately, since lift and drag
forces depend nonlinearly on the flow field, meaning that contributions from different
POD modes cannot be added independently.”

The pioneering early work of Noca (1997); Noca et al. (1999) reveals that the instantaneous
fluid dynamic forces on the body can be expressed with only the velocity fields and their derivatives.
Liang & Dong (2014) applied it to the velocity based POD modes, and derived a force expression
in terms of the force of each POD mode and the force from the interaction between the POD
modes. The Galerkin force model proposed in this work reveals that any force component is a
constant-linear-quadratic function of the mode amplitudes.

The starting point of our investigation is a working Galerkin model based on a low-dimensional
modal expansion of an incompressible viscous fluid flow around a stationary body. Intriguingly,
mean-field theory (Stuart, 1958, 1971) was the first foundation of many Galerkin models, build-
ing on weakly nonlinear generalizations of stability analyses. Mean-field theory delivered the first
derivation of the Landau model (see, e.g., Landau & Lifshitz, 1987) for super- and subcritical Hopf
bifurcations. The Landau model is experimentally supported for the onset of vortex shedding be-
hind the cylinder wake (Schumm et al., 1994; Zielinska & Wesfreid, 1995). Generalizations explain
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the cross-talk between different frequencies over the base flow (Luchtenburg et al., 2009; Shaabani-
Ardali et al., 2020), special cases of ‘quasi-laminar’ interactions foreshadowed by Reynolds &
Hussain (1972).

A few decades later, the pioneering wall turbulence POD model by Aubry et al. (1988) allows
employing snapshot data far a low-dimensional encapsulation of the Navier-Stokes dynamics. Since
then, numerous empirical reduced-order models have been proposed (Taira et al., 2017; Kunisch
& Volkwein, 2002; Bergmann et al., 2009; Ilak & Rowley, 2006; Rempfer, 2000; Rowley et al.,
2004). Control-oriented versions have been developed by Rowley & Dawson (2017); Barbagallo
et al. (2009); Bagheri et al. (2009a); Hinze & Volkwein (2005); Gerhard et al. (2003).

A working Galerkin model can predict the flow and thus the force. Theories for aerodynamic
forces have a rich history documented in virtually every fluid mechanics textbook (see, e.g., Panton,
1984). There are several force formulae for different cases. Potential flow theory for finite bodies
can only explain the force due to accelerations of the body and predicts vanishing drag (d’Alambert
paradox). The Zhukovsky formula derives the lift for the potential flow around streamlined cylin-
ders, while the drag computation is still excluded by the d’Alambert paradox. The lifting line
theory by Prandtl (1921) extends Zukovsky’s formula for finite wings and adds a drag estimate
from the created trailing edge vortices. Kirchhoff (1869) laid the first practical foundation for
bluff-body drag by allowing for a separation with infinitely thin shear layer. Until today, the drag
and lift forces of a body are inferred from the downstream velocity profile (Schlichting & Gersten,
2016). These are arguably the most common force theories.

In the Galerkin modelling literature, unsteady forces have been formulated as functions of
mode coefficients, like in Bergmann & Cordier (2008) and in Luchtenburg et al. (2009). The force
formulae are generally calibrated from the reconstructed flow field. Noca et al. (1999) offered an
expression of the unsteady forces on an immersed body in an incompressible flow, which only
requires the knowledge of the velocity field and its time derivative. Based on this idea, Liang &
Dong (2014) presented a velocity POD mode force survey method to measure the forces from POD
modes on a flat plate. It has shown that the force superposition of each mode of a full POD model
can accurately predict the instantaneous forces, and the leading six POD modes are enough to
predict the drag force with 5% error.

In this study, we focus on the unforced “fluidic pinball”, the flow around three equidistantly
placed cylinders in crossflow (Bansal & Yarusevych, 2017). Following Chen et al. (2020), the gap
distance between the cylinders is chosen one radius and the triangle formed by the centers of
three cylinders points upstream. This distance allows for an interesting ‘flip-flopping’ dynamics.
The advantage of the fluidic pinball is that already the two-dimensional laminar flow exhibits a
surprisingly rich dynamics which has recently been accurately modeled (Deng et al., 2020). As the
Reynolds number increases, the flow behaviour changes from a globally stable fixed dynamics to a
periodic symmetric vortex shedding after a Hopf bifurcation, to asymmetric vortex shedding after a
subsequent pitchfork bifurcation, followed by quasi-periodic and chaotic behavior. Intriguingly, the
post-pitchfork regime with three unstable steady solutions as well as two stable asymmetric limit
cycles and one unstable symmetric limit cycle is adequately described by a single five-dimensional
Galerkin model. Apparently, the force model for multiple transients of this pitchfork regime is
already a challenge.

In the present work, we propose a Galerkin force model for the transient dynamics of the
unforced fluidic pinball at different Reynolds numbers. We derive the unsteady forces from the
Navier-Stokes equations yielding a constant-linear-quadratic expression of the mode amplitudes of
the Galerkin expansion. The consistent form with Liang & Dong (2014) strengthens the theoretical
basis of the force expression. Any known symmetric property of the modes is usually considered
in the relative modal analysis (Rigas et al., 2014; Podvin et al., 2020), particularly advised for
symmetry-breaking instabilities of flows around a symmetric configuration (Fabre et al., 2008;
Borońska & Tuckerman, 2010). Since the fluidic pinball exhibits a mirror-symmetry, we further
investigate the force expression under the Z2-symmetry. The drag and lift contributions must come
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from the specific subsets of the constant-linear-quadratic polynomial functions, which is consistent
with the drag- and lift-producing modes identified in Liang & Dong (2015).

The manuscript is organized as follows. § 4.2 derives the aerodynamic force from a Galerkin
model. § 4.3 describes the simulation and Galerkin model of the fluidic pinball. In § 4.4, the force
model for the transition of a simple Hopf bifurcation and for the transition of a simple pitchfork
bifurcation are discussed. Next, the force model with the elementary modes of two successive
bifurcations for the multi-attractor case is investigated in § 4.5, together with a optimization
based on the correction of mean-field distortion. We summarize the results and outline future
directions of research in § 4.6.

4.2 Galerkin force model

In this section, the derivation of a Galerkin force model is described and discussed. Based on the
framework of a Galerkin expansion (§ 4.2.1), the drag and lift forces are expressed as constant-
linear-quadratic functions of the mode amplitudes in § 4.2.2. Alternatively, the forces can consis-
tently be derived from the momentum balance as elaborated in Appendix 4.A. The force model
can be further simplified under symmetry considerations in § 4.2.3.

4.2.1 The Galerkin framework

The fluid flow satisfies the non-dimensionalized incompressible Navier-Stokes equations

∂tu +∇ · u⊗ u = ν4u−∇p, (4.1)

where p and u are respectively the pressure and velocity flow fields, ν = 1/Re, with the Reynolds
number Re. Here, ∂t, ∇, 4, ⊗ and · respectively denote the partial derivative in time, the Nabla
and Laplace operator as well as the outer and inner tensor product. All the variables have been
non-dimensionalized, with the cylinder diameter D, the oncoming velocity U , the time scale D/U ,
and the density ρ of the fluid.

It is assumed that there exists at least one steady solution (us, ps), satisfying the steady Navier-
Stokes equations

∇ · us ⊗ us = ν4us −∇ps. (4.2)

For the Galerkin framework, the space of the square-integrable vector fields L2(Ω) is introduced
in the observation domain Ω. The associated inner product for two velocity fields u(x) and v(x)
reads

(u,v)Ω :=

ˆ

Ω

dx u(x) · v(x). (4.3)

The velocity field is decomposed in a basic mode u0 and a fluctuating contribution. The basic
mode may be the steady Navier-Stokes solution us or the time-averaged flow u. The fluctuation
is represented by a Galerkin approximation of N orthonormal space-dependent modes ui(x), i =
1, . . . , N , with time-dependent amplitudes ai(t):

u(x, t) =
N∑
i=0

ai(t)ui(x), (4.4)

where the basic mode u0 is associated with a0 ≡ 1 following Rempfer & Fasel (1994a). The
orthonormality condition reads (ui,uj)Ω = δij, i, j ∈ {1, . . . , N}.

The Galerkin expansion (4.4) satisfies the incompressibility condition and the boundary condi-
tions by construction. The evolution equation for the mode amplitudes ai is derived by a Galerkin
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projection of the Navier-Stokes equation (4.1) onto the modes ui:

d

dt
ai = ν

N∑
j=0

lνijaj +
N∑

j,k=0

qcijkajak +
N∑

j,k=0

qpijkajak, (4.5)

with the coefficients lνij = (ui,4uj)Ω, q
c
ijk = (ui,∇ · uj ⊗ uk)Ω and qpijk = (ui,−∇pjk)Ω for the

viscous, convective and pressure terms in the Navier-Stokes equations (4.1), respectively. Details
are provided by Noack et al. (2005). Thus, a linear-quadratic Galerkin system (Fletcher, 1984)
can be derived,

d

dt
ai = ν

N∑
j=0

lνij aj +
N∑

j,k=0

[
qcijk + qpijk

]
aj ak. (4.6)

4.2.2 Drag and lift forces on a body

Let Γ be the boundary of the body in the flow domain Ω and n the unit normal pointing outward
the surface element dS. The α-component F ν

α (α = x, y, z) of the viscous force vector F ν on the
boundary is expressed by

F ν
α = F ν · eα = 2ν

˛

Γ

∑
β=x,y,z

Sα,β nβ dS , (4.7)

where eα is the unit vector in α-direction and Sα,β = (∂αuβ + ∂βuα) /2 the strain rate tensor with
indices α, β = x, y, z.

Similarly, the α-component of the global pressure force, exerted on an immersed body, is defined
as

F p
α = F p · eα = −

˛

Γ

dS nαp. (4.8)

Without external forces, the viscous and pressure forces in Ω counter-balance the inertial terms
provided by the left-hand side of Eq. (4.1). The drag force is defined as the projection on ex of
the pressure and viscous forces exerted on the body

FD(t) = F p
x (t) + F ν

x (t). (4.9)

The lift force is similarly defined as the projection on ey of the resulting pressure and viscous forces
exerted on the body

FL(t) = F p
y (t) + F ν

y (t). (4.10)

The drag and lift coefficients read

CD(t) =
2FD(t)

ρU2
, CL(t) =

2FL(t)

ρU2
. (4.11)

Employing the Galerkin approximation (4.4), the viscous force (4.7) can be re-written as

F ν
α =

N∑
j=0

qνα;jaj, (4.12)

where qνα;j can easily be derived from (4.7) with the corresponding Sα,β of the velocity mode uj,
with the form

qνα;j = 2ν

˛

Γ

∑
β=x,y,z

Sα,β(uj) nβ dS. (4.13)

Note that the contribution of the viscous force is linear with respect to the mode amplitudes aj.
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Similarly, from the pressure Poisson equation

∇2p = ∇ · (−∇ · u⊗ u) = −
∑

α=x,y,z

∑
β=x,y,z

∂αuβ∂βuα, (4.14)

the expression of the pressure field is derived as

p(x, t) =
N∑

j,k=0

pjk(x) aj(t) ak(t), (4.15)

with
∇2pjk = ∇ · (−∇ · uj ⊗ uk) = −

∑
α=x,y,z

∑
β=x,y,z

∂αuβ(uj) ∂βuα(uk). (4.16)

The boundary conditions for partial pressures pjk are discussed by Noack et al. (2005). Integrating
(4.8) with (4.15) shows that the pressure force is a quadratic polynomial of the aj’s

F p
α =

N∑
j,k=0

qpα;jkajak, where qpα;jk = −
˛

Γ

dS nαpjk. (4.17)

Taking the steady solution as the basic mode u0 = us with a0 ≡ 1 implies that a with ai = δ0i

is a fixed point of Eq. (4.6) and the total force can be expressed as a constant-linear-quadratic
expression in terms of the mode coefficients

Fα = F ν
α + F p

α = cα +
N∑
j=1

lα;jaj +
N∑

j,k=1

qα;jkajak, (4.18)

where
cα = qνα;0 + qpα;00, lα;j = qνα;j + qpα;j0 + qpα;0j, qα;jk = qpα;jk. (4.19)

The force expression in Eq. (4.18) can be alternatively derived from the residual of the Navier-
Stokes equations in the flow domain Ω, as demonstrated in Appendix 4.A.

With constant ρ and U , the drag and lift coefficients in (4.11) can be rewritten in the form

CD = cx +
N∑
j=1

lx;jaj +
N∑

j,k=1

qx;jkajak, (4.20a)

CL = cy +
N∑
j=1

ly;jaj +
N∑

j,k=1

qy;jkajak. (4.20b)

A crucial step relies on the choice of the ui modes for the decomposition of Eq. (4.4). These
could be the POD modes, as usually considered in fluid flows. However, a better choice could
be to decompose the flow field on a basis of modes that are becoming active when the system is
undergoing a bifurcation. This choice of the so-called bifurcation modes will be investigated in
§ 4.3.3.

4.2.3 The Navier-Stokes equations under the Z2-symmetry

When the fluid flow configuration exhibits a mirror-symmetry, the Navier-Stokes equations (4.1)
possess at least one symmetric steady solution (us, ps), satisfying Eq. (4.2). The Z2-symmetry of
the velocity and pressure fields, with respect to the (x, z)-plane defined by y = 0, implies

us(x,−y, z) = us(x, y, z), vs(x,−y, z) = −vs(x, y, z),

ps(x,−y, z) = ps(x, y, z), (4.21a)
ua(x,−y, z) = −ua(x, y, z), va(x,−y, z) = va(x, y, z),

pa(x,−y, z) = −pa(x, y, z), (4.21b)
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where the symmetric components (us, vs, ps) ∈ U s and the antisymmetric components (ua, va, pa) ∈
Ua, U s and Ua being respectively the symmetric and antisymmetric subspaces of the system. Other
steady solutions can exist, which break the symmetry of the system. We will consider the symmetric
steady solution (us, ps) as the reference point of Eq. (4.1) in the Reynolds decomposition of the
flow field as Eq. (4.25).

The dynamics under consideration can include transient and post-transient regimes. Here, we
introduce the T -averaged flow fields ūT (x, t) as

ūT (x, t) =
1

T

ˆ t+T/2

t−T/2
u(x, τ) dτ, (4.22)

where T is a time-scale to be chosen. When the flow field is oscillating in time, an appropriate
choice for T is the period of the local oscillation. The mean flow field is further defined as

ū(x) = lim
T→∞

ūT (x, t) (4.23)

and only focuses on the post-transient limit.
When two mirror-conjugated attractors co-exist, it is convenient to introduce the ensemble-

averaged flow field ū•T (x, t) as

ū•T (x, t) =
1

2
(ū+

T (x, t) + ū−T (x, t)). (4.24)

where ū±T (x, t) are the T -averaged flow field on the way to each individual attractor. This defini-
tion could be readily extended to more than two conjugated attractors. As an ensemble average
on mirror-conjugated attracting sets, the ensemble-averaged flow field ū•T (x, t) belongs to the
symmetric subspace U s.

At this point, it is most convenient to introduce the Reynolds decomposition of the flow field,
in the form

u(x, t) = ū•T (x, t) + u′(x, t) = us(x) + u∆(x, t) + u′(x, t). (4.25)

where the mean-field deformation u∆(x, t) accounts for the distortion of the flow field from the
symmetric steady solution us(x) to the ensemble-averaged flow field ū•T (x, t) as

u∆(x, t) = ū•T (x, t)− us(x). (4.26)

The fluctuation flow field u′(x, t) has a vanishing time average, meaning that u(x, t) is centered
on ū•T (x, t). By construction, ū•T (x, t),u∆(x, t),us(x) belongs to the symmetric subspace U s and
u′(x, t) to the anti-symmetric subspace Ua. Thus, a symmetry-based decomposition of Eq. (4.1)
results into a symmetric and an anti-symmetric part, yielding

∂tu∆ +∇ · [us ⊗ u∆ + u∆ ⊗ us + u∆ ⊗ u∆ + u′ ⊗ u′] = ν4u∆ −∇p∆, (4.27a)
∂tu

′ +∇ · [ū•T ⊗ u′ + u′ ⊗ ū•T ] = ν4u′ −∇p′. (4.27b)

Integrating (4.27a) on the spatial domain Ω, both the left and right hand sides yield a time-
evolving force vector aligned on ey, while integrating (4.27b) yields a time-evolving force vector
aligned on ex. The former is the resulting lift force applying to the boundaries of the fluid domain,
while the latter is the drag force. Thus, the Z2-symmetry applied to equations (4.20a) and (4.20b)
yields

CD = C◦D +
N∑
j=1

[lx;jaj]︸ ︷︷ ︸
∈Us

+
N∑

j,k=1

[qx;jkajak]︸ ︷︷ ︸
∈Us

, (4.28a)

CL =
N∑
j=1

[ly;jaj]︸ ︷︷ ︸
∈Ua

+
N∑

j,k=1

[qy;jkajak]︸ ︷︷ ︸
∈Ua

, (4.28b)
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Figure 4.1: Configuration of the fluidic pinball and dimensions of the simulated domain. A typical
field of vorticity is represented in color with [−1.5, 1.5]. The upstream velocity is denoted U∞.

where C◦D is the drag coefficient of the symmetric steady solution.
The vanishing terms in (4.28) can be easily derived from the definition of qνα;j and q

p
α;jk in § 4.A

as:

lx;j = qνx;j + qpx;0j + qpx;j0 = 0, uj ∈ Ua, (4.29a)
ly;j = qνy;j + qpy;0j + qpy;j0 = 0, uj ∈ U s, (4.29b)
qx;jk = qpx;jk = 0, uj ⊗ uk ∈ Ua, (4.29c)
qy;jk = qpy;jk = 0, uj ⊗ uk ∈ U s. (4.29d)

As a result, the drag contribution must come from the symmetric subsets of the constant-linear-
quadratic polynomial functions, and from the antisymmetric subsets for the lift contribution.

4.3 Galerkin model of the fluidic pinball
The force model derived in § 4.2 is applied to a configuration of three equidistantly placed cylinders
in a cross-flow, known as the “fluidic pinball” configuration (Noack & Morzyński, 2017). The flow
configuration and the direct Navier-Stokes solver are described in § 4.3.1. As the Reynolds number
is increased, the flow undergoes two subsequent supercritical Hopf and pitchfork bifurcations. The
corresponding force dynamics at different Reynolds numbers are reported in § 4.3.2. The bifurcation
modes, newly introduced by Deng et al. (2020), are defined in § 4.3.3. They provide the orthogonal
basis for the Galerkin projection.

4.3.1 The fluidic pinball

The geometric configuration, shown in figure 4.1, consists of three fixed cylinders of unit diameter
D mounted on the vertices of an equilateral triangle of side length 3D/2 in the (x, y) plane. The
flow domain is bounded with a [−6,+20]× [−6,+6] box. The upstream flow, of uniform velocity
U∞ at the input of the domain, is transverse to the cylinder axis and aligned with the symmetry
axis of the cylinder cluster. All quantities will be non-dimensionalized with cylinder diameter D,
the velocity U∞, and the unit fluid density ρ. Considering the symmetry of this configuration, a
Cartesian coordinate system will be used in the following discussion, with its origin in the middle of
the rightmost two cylinders. In this study, no external force will be applied to these three cylinders.
A no-slip condition is applied on the cylinders and the velocity in the far wake is assumed to be
U∞. Here, the Reynolds number is defined as Re = U∞D/ν, where ν is the kinematic viscosity of
the fluid. A no-stress condition is applied at the output of the domain.

The resolution of the Navier-Stokes equations (4.1) is based on a second-order finite-element
discretization method of the Taylor-Hood type (Taylor & Hood, 1973), on an unstructured grid
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Figure 4.2: Lift coefficients at different Reynolds numbers (a) of the symmetric steady solutions
us(black curve),the asymmetric steady solutions u−s (blue curve), the asymmetric steady solutions
u+
s (red curve), exemplified with the vorticity field of u+

s , us, u−s at Re = 100 from top to bottom
(b).

of 4 225 triangles and 8 633 vertices, and an implicit integration of the third-order in time. The
instantaneous flow field is calculated with a Newton-Raphson iteration until the residual reaches
a tiny tolerance prescribed. This approach is also used to calculate the steady solution, which is
derived from the steady Navier-Stokes equations (4.2). The Direct Navier-Stokes solver used herein
has been validated in Noack et al. (2003) and Deng et al. (2020), with a detailed technical report
(Noack & Morzyński, 2017). The grid used for the simulations was shown to provide a consistent
flow dynamics, compared to a refined grid, see Deng et al. (2020).

4.3.2 Flow features and the corresponding force dynamics

Different from Deng et al. (2020), where the viscous contribution to the forces has been ignored,
the lift CL and drag CD coefficients are here calculated from the resulting force F of pressure and
viscous components exerted on the three cylinders.

The flow characteristics depend on the Reynolds number Re. Following the literature on
clusters of cylinders (Chen et al., 2020), the characteristic length scale is chosen to be the cylinder
diameter D and not the transverse width 5D/2 of the configuration. This width loses its dynamic
significance for large distances considered in other studies.

For Reynolds numbers Re < ReH ≈ 18, the symmetric steady solution us(x) was found to
be stable and is the only attractor of the system. A supercritical Hopf bifurcation occurs at
Re = ReH, associated with the cyclic release of counter-rotating vortices in the wake of the three
cylinders from the shear-layers that delimit the configuration, forming a von Kármán street of
vortices. The corresponding Reynolds number based on the transverse width of the fluidic pinball
is 45, i.e., is well-aligned with typical onsets of vortex shedding behind bluff bodies. For the
critical value Re = RePF ≈ 68, the system undergoes a supercritical pitchfork bifurcation. As a
result, two additional (unstable) steady solutions occur, namely u+

s (x) and u−s (x), which break
the reflectional symmetry of the configuration, as shown with the lift coefficients of the steady
solutions in figure 4.2. The mean-field inherits the asymmetry of the steady solutions, with the jet
between the two downstream cylinders being deflected upward or downward. As reported in Deng
et al. (2020), at Re = RePF, the statistically symmetric limit cycle, associated with the statistically
symmetric vortex shedding, becomes unstable with respect to two mirror-conjugated statistically
asymmetric limit cycles, associated with statistically asymmetric von Kármán streets of vortices.

Figure 4.3 shows the time evolution of the lift and drag coefficients at Re = 80, when the initial
condition is either the symmetric steady solution us (figure 4.3(a)) or the asymmetric steady
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Figure 4.3: Time evolution of the drag (left) and lift (right) coefficients, starting (a) from the
symmetric steady solution us, (b) from the asymmetric steady solution u+

s , at Re = 80.

solution u+
s (figure 4.3(b)). In both cases, the asymptotic regime is the same. However, when

starting from the symmetric steady solution in figure 4.3(a), a long-living plateau of the drag
coefficient is reached around time t ≈ 775, which corresponds to the transient exploration of the
unstable limit cycle, centered on the symmetric T-averaged flow field ū98(x, 775). Note that during
the transient dynamics from the steady solution to the unstable limit cycle, the drag coefficient
is monotonically increasing, before reaching the transient plateau. The drag coefficient is further
increasing when leaving the unstable limit cycle towards the asymptotically stable limit cycle, the
latter being centered on the asymmetric mean flow field ū+.

Figure 4.4 shows another representation of the transient dynamics for Re = 30, 80 and 100,
starting from different initial conditions in the plane (CL,∆CD), where ∆CD = CD − C◦D, C◦D
being the drag associated with the symmetric steady solution at the Reynolds number under con-
sideration. The black cross (×) stands for the symmetric steady solution us while the asymmetric
u+
s and u−s steady solutions are respectively represented by a red circle and a blue square, when

they exist, at Re = 80 and 100. As it can be observed in this figure, to the difference of what
happens at Re = 80, the transient dynamics from the symmetric steady solution at Re = 100 first
reaches one of the two asymmetric steady solutions, before evolving toward the stable attracting
limit cycle.

4.3.3 The bifurcation modes of the fluidic pinball

In the case of two subsequent supercritical Hopf and pitchfork bifurcations, Deng et al. (2020) have
shown that the reduced-order model must comprise 5 modes:

u(x, t) = us(x) +
5∑
j=1

aj(t)uj(x). (4.30)

Hence, in the decomposition of Eq. (4.4), the number of modes is restricted to N = 5. For dynamic
interpretability, the basic mode u0(x) is chosen to be symmetric steady solution us(x). The first
three modes u1,2,3(x) are associated with the Hopf bifurcation, the last two modes u4,5(x) with
the pitchfork bifurcation. We will refer to these modes as the irreducible bifurcation modes of the
system. Modes u3(x) and u5(x) are symmetric. The instability-related modes u1,2(x) and u4(x)
are anti-symmetric. Modes u1,2(x) span the subspace associated with the limit cycle of the Hopf
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Figure 4.4: Trajectories in the (CL,∆CD) plane, for Reynolds numbers Re = 30, 80 and 100,
starting, for the black trajectories, close to the symmetric steady solution us (×), for the red
trajectories close to the asymmetric steady solution u+

s (•), and for the blue trajectories close to
the asymmetric steady solution u−s (�). ∆CD = CD −C◦D, where C◦D is the drag coefficient of the
symmetric steady solution at the corresponding Reynolds number.

bifurcation, while u4(x) accounts for the symmetry breaking of the pitchfork bifurcation. In Deng
et al. (2020), modes u1,2(x) are provided by the first two dominant POD modes, while mode u4(x)
is defined as

u4(x) ∝ u+
s (x)− u−s (x), (4.31)

where u±s (x) are the two additional (asymmetric) steady solutions arising from the supercritical
pitchfork bifurcation. Mode u3(x) is slaved to u1,2(x) while u5(x) is slaved to u4(x). The
mode u3(x) is usually defined as the shift mode from us(x) to the asymptotic mean flow field,
u3(x) ∝ ū(x) − us(x), before being ortho-normalized to u1(x) and u2(x). Here, ū(x) will be
restricted to the symmetric mean flow field, associated with the statistically symmetric limit cycle,
whether this limit cycle is stable or unstable. Similarly to u4(x), mode u5(x) is defined as

u5(x) ∝ (u+
s (x) + u−s (x))− 2us(x), (4.32)

These two modes, together with modes u1,2,3, are shown is figure 4.5 after orthonormalization by
a Gram-Schmidt procedure, and the corresponding time-dependent amplitudes ai(t), i = 1, . . . , 5,
in the full-flow dynamics are shown in figure 4.6 when starting from either the symmetric steady
solution (figure 4.6a) or the asymmetric steady solution (figure 4.6b).
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Figure 4.5: Spatial structures of the modes u1(x), u2(x), u3(x) (top), u4(x), u5(x) (bottom),
of the velocity field associated with the five elementary degrees of freedom {a1(t)− a5(t)}, at
Re = 80.
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Figure 4.6: Mode amplitudes ai(t), i = 1, . . . , 5 in the full-flow dynamics starting (a) from the
symmetric steady solution us, (b) from the asymmetric steady solution u+

s , at Re = 80.
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4.4 Galerkin force model associated with the supercritical
Hopf and pitchfork bifurcation

As already mentioned, the fluidic pinball undergoes a supercritical Hopf bifurcation at Re = ReHP

and a subsequent supercritical pitchfork bifurcation at Re = RePF > ReHP. The Galerkin force
models are derived for the supercritical Hopf bifurcation in § 4.4.1 and for the supercritical pitchfork
bifurcation in § 4.4.2.

4.4.1 Force model associated with the supercritical Hopf bifurcation

The symmetric steady solution us ∈ U s is stable at low Reynolds numbers. At Re ≥ ReHP, it
undergoes a supercritical Hopf bifurcation. The resulting Galerkin expansion reads

u(x, t) = us(x) + a1(t) u1(x) + a2(t) u2(x)︸ ︷︷ ︸
u′

+ a3(t) u3(x)︸ ︷︷ ︸
u∆

, (4.33)

and the corresponding mean-field Galerkin system

da1/dt = σa1 − ωa2, (4.34a)
da2/dt = σa2 + ωa1, (4.34b)
da3/dt = σ3a3 + β3

(
a2

1 + a2
2

)
, (4.34c)

with σ = σ1 − βa3 and ω = ω1 + γa3, where σ1 and ω1 are the initial growth rate and frequency
depending on the Reynolds number. For a direct supercritical Hopf bifurcation, σ1, ω1, β > 0,
σ3 < 0 and β3 > 0. We refer to Deng et al. (2020) for details.

Introducing (4.33) in equations (4.7) and (4.8), the total force can be written as (4.18) with
N = 3 degrees of freedom. From symmetry considerations, as u1,2 ∈ Ua and u0,3 ∈ U s, the
coefficients lx;1, lx;2, qx;13, qx;23, ly;0, ly;3, qy;11, qy;12, qy;22, qy;33 are vanishing. Finally, the drag
formulae (4.28) simplify to

CD = C◦D + lx;3 a3 + qx;11 a
2
1 + qx;12 a1a2 + qx;22 a

2
2 + qx;33 a

2
3, (4.35a)

CL = ly;1 a1 + ly;2 a2 + qy;13 a1a3 + qy;23 a2a3. (4.35b)

Here again, C◦D is the drag coefficient associated with the symmetric steady solution The
unknown parameters in the force model can be identified by a least-squares approach, according to
the known force dynamics and the relevant mode amplitudes. However, for the mean-field Galerkin
system (4.34), the slaving relation between the degree of freedom a3 to the oscillating degrees of
freedom a1, a2 imposes an additional sparsity in the force model. We employ the SINDy (Sparse
Identification of Nonlinear Dynamics) algorithm (Brunton et al., 2016a) to arrive at simpler and
more interpretable models. A L1-regularization can be introduced in the LASSO (least absolute
shrinkage and selection operator) regression process. Another option in the SINDy algorithm is the
sequential thresholded least squares regression, which iteratively applies the least squares regression
and eliminates terms with weight smaller than a given threshold. Both regression algorithms benefit
from simplicity, only requiring one sparsity parameter λ. The optimal λ balances the accuracy
and complexity of the identified model. To evaluate the performance of the identified model, the
complexity is presented with the number of non-zero coefficients and the accuracy by the coefficient
of determination,denoted as the r2 score (Draper & Smith, 1998). A detailed review of this sparsity
parameter can be found in Loiseau & Brunton (2018). A recent extension of the SINDy algorithm
with physical constraints of energy-preserving quadratic nonlinearities successfully identifies the
sparse model, benefiting from the Galerkin projection of the Navier-Stokes equations (Loiseau
et al., 2018a).

The LASSO algorithm is applied to a scenario starting with the unstable symmetric steady
solution at Re = 30. The training data used for the sparse regression is provided by the force
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Figure 4.7: Transient dynamics from the unstable symmetric steady solution us (×) to the asymp-
totic limit cycle (statistically symmetric vortex shedding), at Re = 30, in the time-delayed embed-
ding space of the lift CL and drag CD coefficients, with τ = 2.

coefficients and the mode amplitudes from the DNS starting with the symmetric steady solution
to the final asymptotic regime. The resulting transient dynamics and the asymptotically attracting
limit cycle are shown in the three-dimensional space of the time-delayed coordinates of CL and CD
in figure 4.7.

The possible over-fitting terms, such as the slaving relation between a3 and a2
1, a

2
2, can be

suppressed with a larger L1-penalty parameter for the LASSO algorithm. The choice of the L1-
penalty parameter drives the sparsity of the identified model. A too small L1 will lead to a complex
model with few eliminated terms; on the contrary, a too-large L1 can jeopardize accuracy. Both
cases weaken the robustness of the identified model,and the same is observed for the sequential
thresholded least squares regression. The influence of the sparsity parameter λ and the comparison
of these two regression methods are presented in Appendix 4.B.

Gradually increasing the L1-penalty from 0 to nearly 1, the terms a1a2, a3, a2
2, a2

1 are eliminated
subsequently in the drag model, while a2

3 is always retained. The sparsity parameter λ, here the
L1-penalty, is chosen as the largest value without any known over-fitting term. Hence, according
to the order of elimination, a3 is the over-fitting term in the drag model due to the slaving relation
between a3 and a2

1, a
2
2. The details of this choice can be found in Appendix 4.B. Finally, the

identified force model reads

CD = 4.82440448 − 0.00037484 a2
1 − 0.00098337 a2

2 + 0.01777408 a2
3, (4.36a)

CL = 0.00867623 a1 + 0.01397362 a2 + 0.0166239 a1a3 − 0.01302317 a2a3. (4.36b)

The force model is highly accurate as corrobororated by the r2 scores of 0.9991 and 0.9942 for
the drag and lift formulae, respectively. As shown in figure 4.8, the dynamics of the force model
compares well with the real force transient dynamics, starting from the symmetric steady solution
at Re = 30.

In the drag model (4.36a), the coefficient of a3 is vanishing. Mode u3 actually contributes to
the increase of the drag through a2

3, as evidenced by the positive coefficient of the a2
3 term. This

is an interesting result, since the effect of the bifurcation mode u3 is to decrease the length of the
recirculation bubble in the T -averaged flow field ūT (x, t) ≈ us(x) + a3(t)u3(x), resulting in an
increase of the drag through the quadratic term a2

3. This quadratic dependency is also reported in
Loiseau et al. (2018a).
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Figure 4.8: Performance of the force model with the three elementary modes of the Hopf bifurca-
tion. Time evolution of the drag CD (a) and lift CL (b) coefficients, in the full flow dynamics (solid
black line) and for the force model (red dashed line), at Re = 30. Initial condition: symmetric
steady solution.

It is also worth noticing that a2
3 contributes to the mean value of CD while a2

1, a
2
2 accounts for

the instantaneous oscillations of CD, as CD oscillates at twice the vortex shedding frequency. For
CL, the oscillatory pair (a1, a2) fits well with the phase of the initial transient part, while the pair
(a1a3, a2a3) resolves the phase dependency of the post-transient part of the dynamics.

4.4.2 Force model associated with the supercritical pitchfork bifurcation

Next, we consider the supercritical pitchfork bifurcation, which breaks the symmetry of the sym-
metric steady solution us at Re ≥ RePF. In this case the antisymmetric mode u4 describes the
antisymmetric instability, which corresponds to an unstable eigenmode with a real eigenvalue. The
resulting Galerkin expansion reads

u(x, t) = us(x) + a4(t)u4(x)︸ ︷︷ ︸
u′

+ a5(t)u5(x)︸ ︷︷ ︸
u∆

, (4.37)

and the corresponding mean-field Galerkin system

da4/dt = σ4a4 − β4a4a5, (4.38a)
da5/dt = σ5a5 + β5a

2
4, (4.38b)

where σ4 is the positive initial growth rate, which depends on the Reynolds number. For a direct
supercritical pitchfork bifurcation, σ4, β4 > 0, σ5 < 0 and β5 > 0, see Deng et al. (2020) for details.

Substituting (4.37) in equations (4.7) and (4.8), with N = 2 in (4.18), and with u4 ∈ Ua and
us,u5 ∈ U s, the force model becomes

CD = C◦D + lx;5 a5 + qx;44 a
2
4 + qx;55 a

2
5, (4.39a)

CL = ly;4 a4 + qy;45 a4a5. (4.39b)

Five parameters, namely lx;0, lx;5, qx;44, qx;55, ly;4, qy;45 need to be identified.
In the fluidic pinball, the pitchfork bifurcation occurs after the primary Hopf bifurcation as

the Reynolds number is increased. However, the transient dynamics observed at Re = 100, when
starting close to the symmetric steady solution, first exhibits the static symmetry breaking, which
is typical of the pitchfork bifurcation, before developing the cyclic release of vortices, which is
characteristic of the Hopf bifurcation. The early stage of the transient dynamics, starting from
the symmetric steady solution and evolving toward one of the asymmetric steady solutions, is
shown in figure 4.9. The time evolutions of the lift CL(t) and drag CD(t) coefficients are shown in
figure 4.10.

Only the degrees of freedom associated with the pitchfork bifurcation are active in this early
stage of the transient dynamics, as also shown in figure 4.6(a). The degrees of freedom associated

99



Section 4.4. GALERKIN FORCE MODEL ASSOCIATED WITH THE SUPERCRITICAL HOPF AND PITCHFORK
BIFURCATION

-0.1 -0.05 0 0.05 0.1

3.57

3.58

3.59

Figure 4.9: Transient trajectories (solid and dashed lines) starting from two initial conditions close
to the symmetric steady solution, at Re = 100. Asymmetric steady solution u+

s (•), asymmetric
steady solution u−s (�).
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Figure 4.10: Performance of the force model with the two elementary modes of the pitchfork
bifurcation. Time evolution of the drag CD (a) and lift CL (b) coefficients in the full flow dynamics
(solid black line) and for the force model (red dashed line), at Re = 100. Initial condition:
symmetric steady solution.

with the Hopf bifurcation will only become active further in time during the transient dynamics,
which will be further discussed in § 4.5.4. Accordingly, a force model is derived for the transition
after a simple pitchfork bifurcation. The training data are the lift CL(t) and drag CD(t) coefficients
and the relevant mode amplitudes in Eq. (4.39) from the early to final stage of the transient
dynamics. The observed slaving of a5 in a2

4 may reduce the robustness of the identified model.
Gradually increasing the L1-penalty parameter in the LASSO regression, the optimized force model
reads

CD = 3.58248992 + 0.04367604 a5 − 0.08525184 a2
5, (4.40a)

CL = −0.13611053 a4 + 0.09194312 a4a5, (4.40b)

with r2 = 0.9949 for the drag model and r2 = 0.9992 for the lift model. The over-fitting term a2
4

has been eliminated in the sparse formula of the drag force. Note that the mode u5 contributes
to the drag through a5, while a2

5 acts in decreasing the drag, as indicated by the sign of their
associated coefficients in Eq. (4.40a).

Figure 4.10 compares the evolution of the drag and lift coefficients in the full flow dynamics
(solid black line) to their prediction by the force model (4.40) (red dashed curve), during the early
stage of the transient dynamics at Re = 100. The derived force model is well aligned with the
real force dynamics using only two active degrees of freedom of the pitchfork bifurcation in the
dynamics of the system.
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Figure 4.11: Trajectories in the time-delayed embedding space of the lift CL and drag CD coeffi-
cients, with τ = 2, at Re = 80. Black trajectories starting close to the symmetric steady solution
us (×); red trajectory starting close to the asymmetric steady solution u+

s (•), blue trajectory
starting close to the asymmetric steady solution u−s (�).

4.5 Galerkin force model for multiple invariant sets

We focus on the regime after the pitchfork bifurcation Re ≥ RePF = 68 and before the quasi-
periodic behaviour Re ≤ ReQP = 104. This flow has 6 invariant sets: 3 unstable fixed points, 2
stable asymmetric mirror-conjugated periodic orbits, and one meta-stable symmetric limit cycle.
§ 4.5.1 investigates the dynamics of the fluidic pinball at Re = 80, when the degrees of freedom
associated with the Hopf bifurcation are first activated before the degrees of freedom associated
with the pitchfork bifurcation. The predictive power of the force model is assessed in § 4.5.2. § 4.5.3
introduces two additional degrees of freedom in the force model, in order to take into account the
distortion of the shift mode when the attractor is reached. The robustness of the force model is
emphasized in § 4.5.4 by considering the flow dynamics at Re = 100, where the pitchfork degrees
of freedom are activated before the Hopf degrees of freedom during the transient dynamics.

4.5.1 Force model at Re = 80

At Re = 80, the system has already undergone a supercritical Hopf bifurcation and a supercritical
pitchfork bifurcation. The trajectories issued from us and u±s are shown in the time-delayed
embedding state space (CL(t), CL(t − τ), CD(t)) of figure 4.11. The force model will rely on five
degrees of freedom at minimum, namely the three degrees of freedom associated with the Hopf
bifurcation ai, i = 1, 2, 3 and the two degrees of freedom ai, i = 4, 5, associated with the pitchfork
bifurcation. As a generalization of (4.35) and (4.39), the force model reads

CD = C◦D +lx;3 a3 + qx;11 a
2
1 + qx;12 a1a2 + qx;22 a

2
2 + qx;33 a

2
3 (4.41a)

+lx;5 a5 + qx;44 a
2
4 + qx;55 a

2
5

+qx;14 a1a4 + qx;24 a2a4 + qx;35 a3a5,

CL = ly;1 a1 + ly;2 a2 + qy;13 a1a3 + qy;23 a2a3 (4.41b)
+ly;4 a4 + qy;45 a4a5

+qy;15 a1a5 + qy;25 a2a5 + qy;34 a3a4.
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Due to symmetry reasons, only 2 linear terms (a3, a5) and 9 quadratic terms (a2
1, a1a2, a1a4, a2

2,
a2a4, a2

3, a3a5, a2
4, a2

5) are left in Eq. (4.41b) for the drag coefficient. For the lift coefficient, only
3 linear terms, a1, a2, a4, and 6 quadratic terms, a1a3, a1a5, a2a3, a2a5, a3a4, a4a5, are left in
Eq. (4.41c). The training data is taken from the DNS starting from the three steady solutions,
with the real force dynamics, see the black curves in figure 4.12, and the relevant mode amplitudes,
see figure 4.6. The coefficients of the force models are identified by the sequential thresholded least-
squares regression with the optimal sparsity parameter λ. We note that the LASSO regression can
also be used here. See Appendix 4.B for the comparison of these two methods. The resulting force
model reads

CD = 3.77331204 + 0.05888312 a5 − 0.01115552 a2
1 − 0.01088109 a2

2

+0.01323449 a2
3 + 0.02949701 a3a5 − 0.25910470 a2

5, (4.42a)
CL = 0.00953160 a1 + 0.00720164 a2 − 0.10179203 a4

−0.00303677 a1a3 − 0.00197075 a2a3 − 0.00200840 a3a4

+0.05914386 a4a5. (4.42b)

The good accuracy of the identified drag model can be determined from the high r2 score of 0.9816.
The drag model of Eq. (4.42a) preserves both the basic forms of the drag model for the Hopf and
pitchfork bifurcations and the signs of the coefficients. This indicates that the identified model is
robust. The only remaining cross-term a3a5 provides the coupling relation between the degrees of
freedom associated with both bifurcations.

A robust sparse formula for the lift model is more difficult to derive, due to the oscillating
dynamics of the lift and the fact that a4 and a5 also oscillate at the fundamental frequency. With
respect to the basic lift model of two bifurcations, a balanced method is used here to solve the
difficulty of the identification. Starting with a large L1-penalty, the derived under-fitted system
can figure out the most elementary features of the dynamics, eliminating a1a5, a2a5, a4a5. This
is reasonable as a3 is about ten times larger than a5, which means that most of the mean-field
distortion comes from u3. However, if the L1-penalty is too large, the term a4a5 can disappear from
the lift model, making the resulting model non-consistent with Eq. (4.42b). In order to balance
sparsity and robustness, a4a5 needs to be reintroduced into the library. The sparse formula of the
lift model in Eq. (4.42b) is determined by least-squares regression, constraining the parameters of
a1a5, a2a5 to zero. The r2 score of the identified lift model is 0.9673.

The identified force dynamics in Eq. (4.42) (dashed red line) is compared to the real force dy-
namics (solid black line) at Re = 80 in figure 4.12. The force model based on the least-order model
can reproduce the main features of the real force dynamics. The drag model of Eq. (4.42a) shows
how the degrees of freedom of the Hopf (a2

1, a
2
2, a

2
3) and pitchfork (a5, a

2
5) bifurcations contribute

to the drag force, as well as the coupling between these degrees of freedom (a3a5). The lift model
of Eq. (4.42b) shows that the lift oscillations occur through the coupling of the oscillating degrees
of freedoms a1, a2 to a3, while the coupling between the degrees of freedoms a4 and a5 contribute
to the mean value of CL. Hence, the mean lift coefficient can be simplified with fewer terms, as
CL = ly;4 a4 + qy;45 a4a5 + qy;34 a3a4, which meets well with the Krylov-Bogoliubov assumption
(Jordan & Smith, 1999).

4.5.2 Assessing the predictive power of the force model

The time-evolution of the drag and lift coefficients in the fluidic pinball are shown in figure 4.12
as solid black lines. The evolutions of the drag and lift coefficients in the model (4.42) are shown
with dashed red lines. The model reproduces correctly the time scales of the force dynamics as
well as the transient and asymptotic amplitudes of the forces. However, it is observed that the fine
details of the transient dynamics, at the early stage of the linear instability, are not satisfactorily
reproduced in the identification process (figure 4.12(a,b) at t ≈ 590 and 475 respectively). The
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Figure 4.12: Performance of the force model with the five elementary modes. Time evolution of
the drag CD (left) and the lift CL (right) coefficients in the full flow dynamics (solid black line)
and for the force model (red dashed line), at Re = 80. Initial condition: (a) symmetric steady
solution, (b) asymmetric steady solution.

ranges of time concerned, in both cases, are also associated with oscillations in a4, as observed
during the initial stage at t ≈ 590 in figure 4.6(left) and t ≈ 475 in figure 4.6(right). This strongly
suggests that the oscillations of a4 be triggered by the degrees of freedom associated with the Hopf
bifurcation. This means that the degrees of freedom of the pitchfork bifurcation are affected by
the degrees of freedom of the Hopf bifurcation, at least when the distance from the bifurcation
point is large enough, which is the case at Re = 80.

In addition, as recalled in § 4.3.3, at Re ≈ 68, both the steady symmetric solution and the
symmetric-based limit cycle undergo a supercritical pitchfork bifurcation. We emphasize that this
coincidence of two local pitchfork bifurcations might not occur by chance, as mentioned in Deng
et al. (2020). As a result of these two simultaneous bifurcations, the degrees of freedom involved in
the pitchfork bifurcation of the fixed point might not coincide with those involved in the pitchfork
bifurcation of the limit cycle. For this reason, it is reasonable to introduce two distinct sets of
degrees of freedom for each of them, namely a4, a5 at the fixed point and a6, a7 at the limit cycle.
These two additional degrees of freedom will complete the mean-field model with more details
and will take into account the mean-field distortion during the transition from the fixed point to
the limit cycle. The new resulting mean-field Galerkin system, with seven degrees of freedom, is
derived in appendix 4.E, while the new resulting force model is discussed in the next subsection.

4.5.3 The need for additional modes

All our attempts to smooth out the kicks observed at the beginning of the exponential growth, in
both CD and CL in the frame of the force model (4.42), failed, even when over-fitting the model
without any sparsity. This strongly indicates that five degrees of freedom might not be sufficient
to account for the force evolution on the full-time range.

Digging into this idea, it becomes manifest that the way u3(x) is built, namely as the difference
between the statistically symmetric mean flow field, associated with the unstable limit cycle, and
the symmetric steady solution us(x),

u3(x) = ūT (x, 775)− us(x), (4.43)

see figure 4.12(a), does not allow to satisfactorily account for the complete dynamics of the lift and
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(a) (b)

Figure 4.13: Vortical structure (color) of the modes u6(x) (a), u7(x) (b), at Re = 80.
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Figure 4.14: Mode amplitudes a6,7(t) in the full-flow dynamics starting (a) from the symmetric
steady solution us, (b) from the asymmetric steady solution u+

s , at Re = 80.

drag forces. This also indicates that u3(x) gets distorted when the system is evolving along the
manifold, which connects the unstable limit cycle to one of the two conjugated stable limit cycles.
In other words, the mean-field distortion on the attractors associated with the two asymmetric
mean flow fields ū±, namely

u±3 (x) = ū±(x)− u±s (x) (4.44)

do not coincide exactly with u3(x). The asymmetric mean flow fields ū± only focus on the post-
transient dynamics, as shown in figure 4.12(c), which can be expressed with ū±T (x, 700). The
difference between u±3 (x) and u3(x) is asymmetric and can be decomposed into a symmetric and
an anti-symmetric part, respectively u6(x) and u7(x):

u±3 (x)− u3(x) = ±u6(x) + u7(x). (4.45)

As a result, the modes u6(x) and u7(x) can be defined as,

u6(x) ∝ ū+(x)− ū−(x), (4.46a)
u7(x) ∝ (ū+(x) + ū−(x))− 2ūT (x, 775). (4.46b)

After orthogonal normalization by a Gram-Schmidt procedure, the resulting modes are shown
in figure 4.13, with their mode amplitudes in figure 4.14. When comparing the definitions of u6 and
u7 in Eq. (4.46) and of u4 and u5 in Eq. (4.31)–(4.32), it is not surprising that the spatial structure
of u6, resp. u7 (see figure 4.13), be so similar to the spatial structure of u4, resp. u5 (see figure
4.5). To be mentioned, u6, u7 as defined in (4.46), would be equivalent to the pitchfork modes u4,
u5 built on the periodic solutions instead of being built on the steady solutions. However, after the
Gram-Schmidt procedure, the u6, u7 modes of figure 4.13 have been transformed into corrective
modes of u4, u5 when departing from the steady solutions and approaching the asymptotic limit
cycles. The corrective modes u6, u7 should be slaved to u4, u5 along the mean field distortion of
u3. The corresponding slaving relation will not be discussed in this paper. Hence, the combination
of ui, i = 4, . . . , 7, works as a flexible pitchfork mode expansion, which adapts the whole phase
space where all the invariant sets (steady/periodic) locate.

In figure 4.14, the transient dynamics of a6, a7 shows to be also similar to a4, a5 in figure
4.6. Not surprisingly, the opposite initial bump of a6, a7 helps to better fit the dynamics on the
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manifold. Besides, a6, a7 show no contribution close to the steady solutions, as their role is to
adapt the modes u4, u5 when approaching the stable limit cycle.

The force model identification is more challenging with these two additional modes. High ro-
bustness is required for our force model without losing the identified terms in § 4.5.1. Compared
to the force formula (4.41) with five modes, 8 new terms are introduced in the drag formula,
namely a7, a1a6, a2a6, a4a6, a

2
6, a3a7, a5a7, a

2
7, and 7 additional terms are considered in the lift for-

mula, namely a6, a3a6, a5a6, a1a7, a2a7, a4a7, a6a7. Due to the similar transient dynamics of a4, a5

and a6, a7, the corrective degrees of freedom a6, a7 can easily replace a4, a5 in the identified model.
Hence, the original structure of the force model with five modes could be lost. To avoid possible
over-fitting, we need to free the active terms gradually and constraint the parameters of a4, a5

during the sparse regression to ensure the robustness of the result. In addition, the newly intro-
duced terms should work as a corrective function to the original force model with five degrees of
freedom. In other words, the new force model with seven degrees of freedom should inherit the
original structure of Eq. (4.42).

Based on the structure of the drag model (4.42a), the terms a7, a7a7, a3a7, a4a6 and a5a7 are
introduced in the extended model. The terms a1a6, a2a6, a

2
6 are firstly set to zero because their

corresponding terms a1a4, a2a4, a
2
4 in Eq. (4.42a) are vanishing. In order to improve the robustness

of the regression results, the terms a5 and a2
5 are constrained with the values from Eq. (4.42a).

Increasing the L1-penalty of the LASSO regression, lx;7, qx;46 and qx;77 vanish successively, and an
obvious under-fitting starts when losing qx;35. The introduced terms qx;37, qx;57 are robust with few
possibility of over-fitting. Eventually, the drag model reads

CD = 3.77331204 + 0.05888312a5 − 0.00169970a2
1 − 0.00156775a2

2

+0.00513885a2
3 + 0.00786294a3a5 + 0.00950204a3a7

−0.25910470a2
5 − 0.06264888a5a7. (4.47)

Eq. (4.47) preserves the original form of Eq. (4.42a), with tiny changes of the coefficients. This
extended model fits well the dynamics of the drag coefficient, with the r2 score increasing to 0.9981,
also can be seen with the red dashed curve of figure 4.15(left).

As already mentioned, the drag monotonously increases with the development of the vortex
shedding. This is obvious, for instance, from figure 4.15, when the lift starts to oscillate and the
drag to increase. The positive signs of qy;33, qy;35 and qy;37, in the drag model of Eq. (4.47), are
responsible for this monotonous increase of the drag. Compared to the drag model with only a5

in § 4.5.1, the contribution to the drag of a5 and a7 is more subtle. They contribute to an increase
of the drag through a5, a5a3 and a7a3, while they promote a decrease of the drag through a2

5 and
a5a7. As a non-trivial result, the statistically asymmetric (stable) limit cycles have a larger drag
than the statistically symmetric (unstable) limit cycle, while the asymmetric steady solutions have
a lower drag than the symmetric steady solution. This is obvious in figure 4.11 when considering
the relative positions of the three steady solutions and three limit cycles along the CD axis. Note
that the parameters qx;11, qx;22 and qx;57 all own negative signs but are relatively small. The two
parameters qx;11, qx;22 solely contribute to the oscillating dynamics, as discussed in §4.4.1, while
qx;57 optimizes the fitting result when evolving toward the attracting limit cycles.

Analogously, for the lift model, the values of ly;4 and qy;45 are taken from the identified lift model
in Eq. (4.42b), while qy;17, qy;27 are set to zero for consistency with the structure of Eq. (4.42b),
in which qy;15, qy;25 are absent. Based on the structure of model (4.42b), the terms a6, a6a7, a3a6,
a5a6 and a4a7 are introduced in the extended model. The final sparse form is identified by the
LASSO regression with gradually increasing the L1-penalty. A sparse lift model, compatible with
the structure of Eq. (4.42b), is derived as

CL = 0.00762433 a1 + 0.01102097 a2 − 0.10179203 a4 − 0.03129798 a6

−0.00141416 a1a3 − 0.00289952 a2a3 + 0.00656293 a3a4 − 0.01082375 a3a6

+0.05914386 a4a5 + 0.02365784 a4a7 − 0.03348935 a5a6. (4.48)
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Figure 4.15: Performance of the force model with two additional slaved corrective modes. Time
evolution of the drag CD (left) and lift CL (right) coefficients in the full flow dynamics (solid black
line) and for the force model (red dashed line), at Re = 80. Initial condition: (a) symmetric steady
solution us, (b) asymmetric steady solution u+

s .

In addition to the lift model of Eq. (4.42b), the lift model of Eq. (4.48) contains the terms a6, a3a6

and a5a6, as well as the coupling between a4 to a7. The r2 score has increased to 0.9952. Both the
oscillating dynamics in the early stage and the symmetry-breaking stage are better reproduced for
the lift coefficient, as the red dashed curve of figure 4.15(right) proves.

With the two additional degrees of freedom a6, a7, the time evolution of the drag and lift
coefficients are well reproduced, as shown in figure 4.15(a,b). Without notable changes of the
original lift structure, the phase of the lift dynamics is now correctly caught along with the complete
transient dynamics.

4.5.4 Force model at Re = 100

In § 4.4.2, we derived a basic force formula for the primary stage of the transient evolution at
Re = 100, when only the degrees of freedom of the pitchfork bifurcation were involved. We now
consider the complete force evolution at Re = 100. Figure 4.16 shows trajectories issued from the
three different steady solutions in the three-dimensional time-delayed embedding space of CL and
CD. The black trajectory, issued from the symmetric steady solution us (black cross × in figure
4.16) first approaches the asymmetric steady solution u+

s (red point) before escaping out of it and
eventually reaching the stable (statistically asymmetric) limit cycles around ū+.

The same mode decomposition strategy is proposed, resulting in a reduced-order model with 7
modes. The mode amplitudes from two DNS, starting from either the symmetric steady solution
us (a) or the asymmetric steady solution u+

s (b), are shown in figure 4.17.
As already observed in figure 4.10, the drag coefficient (solid black line) in figure 4.18(a) exhibits

a minimal value for a transient state around t ≈ 700. This transient state is the asymmetric steady
solution u+

s (red circle of figure 4.16). In the frame of our modal decomposition (4.30), u+
s is

approximated as
u+
s ≈ us + a4(700)u4 + a5(700)u5, (4.49)

with only a4 and a5 being active in the dynamics of the fluidic pinball, as can be seen in figure
4.17(a). From Eq. (4.40a), the drag coefficient only depends on a5 and a2

5, which actually contribute
to the transitory increase and an overall decrease on the drag. This is fully consistent with the
transition of the drag coefficient observed in figures 4.10(a) and 4.18(a) from t = 300 to 700; a5
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Figure 4.16: Trajectories in the time-delayed embedding space of the lift CL and drag CD coeffi-
cients, with τ = 2, at Re = 100. Black trajectories starting close to the symmetric steady solution
us (×); red trajectory starting close to the asymmetric steady solution u+

s (•), blue trajectory
starting close to the asymmetric steady solution u−s (�).
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Figure 4.17: Mode amplitudes a1,...,7(t) in the full-flow dynamics starting (a) from the symmetric
steady solution us, (b) from the asymmetric steady solution u+

s , at Re = 100.
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is found to contribute to the initial rising of CD, around t ≈ 650, while a2
5 contributes to the

subsequent decrease of the drag coefficient, around t = 700. The degrees of freedom associated
with the Hopf bifurcation become active later during the transient dynamics, when the state space
orbit leaves the unstable asymmetric steady solution u+

s toward the stable attracting limit cycle
around ū+

s .
The training data is the real force coefficients and the mode amplitudes taken from the DNS

starting with the three different steady solutions to the final asymptotic regimes. Following the
same calibration procedure as for Re = 80, we first apply the LASSO regression for the force
model with the five leading degrees of freedom, and then introduce the two additional degrees of
freedom a6, a7 into the regression for optimization. Performing the sparse regression in this way
can prevent the elimination of a4, a5 and ensure the corrective effect of a6, a7, thereby improving
the robustness of the identification. The force model at Re = 100 reads

CD = 3.58248992 + 0.04367604 a5 − 0.00302817 a2
1 − 0.00354079 a2

2

+0.00158873 a2
3 + 0.02169661 a3a5 + 0.02223079 a3a7

−0.08525184 a2
5 − 0.04763643 a5a7, (4.50a)

CL = 0.00346208 a1 + 0.00269236 a2 − 0.13611053 a4 + 0.05962648 a6

+0.00029274 a1a3 − 0.00045784 a2a3 + 0.00389912 a3a4 − 0.02102284 a3a6

+0.09194312 a4a5 + 0.02056288 a4a7 − 0.10980990 a5a6. (4.50b)

with r2 = 0.9984 for the drag model of Eq. (4.50a), and r2 = 0.9901 for the lift model of Eq. (4.50b).
As shown in figure 4.18, the force model fits well the time evolution of the drag and lift coefficients.
Moreover, Eqs. (4.47), (4.48) and (4.50) own the same active terms. Henceforth, the drag force
model preserves the same structure with the same signs of the active terms as the Reynolds number
is increased. In addition, although the transient dynamics at Re = 80 and 100 are qualitatively
very different, with the seven degrees of freedom differently activated during the transient, the force
model of Eq. (4.47)–(4.48) is still consistent at Re = 100, with the correctly identified mean-field
model. For the lift model (4.50b), we notice the same structure with the sign changes for the terms
a1a3 and a6, compared to Eq. (4.48), which is acceptable for the oscillating dynamics. Compatible
with the basic lift force model, the lift force model with seven degrees of freedom also correctly
identifies the force transitions, as shown in figure 4.18(right).

4.6 Conclusions and outlook
We proposed aerodynamic force formulae complementing mean-field POD Galerkin models for the
unforced fluidic pinball. The starting point is a general Galerkin method for unsteady incom-
pressible viscous flow around a stationary body. First, the instantaneous force is derived as a
constant-linear-quadratic function of the mode amplitudes from first principles. The viscous and
pressure contributions to the force are directly obtained from the Galerkin expansion and lead to
a constant-linear-quadratic force in terms of the mode amplitudes.

These terms lead to corresponding changes in the flow from which the force can also be derived.
One contribution from the convective term describes the momentum flux contribution. The ad-
ditional contribution from the local acceleration requires the Galerkin system to replace the time
derivatives of the mode amplitudes by a state function. In contrast to the pioneering work by Noca
et al. (1999), the derivation is valid for arbitrary multiply connected domains.

The drag and lift formula is simplified for the fluidic pinball model exploiting the symmetry
of the modes. About half of the terms can be discarded on the grounds of symmetry. A second
simplification is performed with a sparse calibration of the remaining coefficients. The sparsity
parameter λ penalizes any non-vanishing term and yields sparse human-interpretable expressions.
The challenges of the purely projection-based approach is discussed in Appendix 4.C, and the
challenges of using standard POD modes is elaborated in Appendix 4.D.
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Figure 4.18: Performance of the force model with two additional slaved corrective modes. Time
evolution of the drag CD (left) and the lift CL (right) coefficients in the full flow dynamics (solid
black line) and for the force model (red dashed line), at Re = 100. Initial condition: (a) symmetric
steady solution us, (b) asymmetric steady solution u+

s .

The sparse force model methodology is applied to three transient dynamics: (1) the periodic
regime of statistically symmetric vortex shedding at Re = 30, (2) the periodic regime of statistically
asymmetric vortex shedding at Re = 100, and (3) the same regime at Re = 80 but with metastable
statistically symmetric periodicity.

The transient dynamics at Re = 30 from the steady solution to the limit cycle is resolved by
standard third-order mean-field Galerkin model with two oscillatory modes for vortex shedding
and one shift mode for the mean-field distortion (Noack et al., 2003). The drag formula includes
the squares of all mode amplitudes consistent with the second harmonic fluctuations. The drag
monotonically increases during the transient. The lift formula includes the amplitudes of the von
Kármán modes and their products with the shift mode, consistent with expectations. Its oscillation
increases until the limit cycle is reached.

The dynamics at Re = 100 after the Hopf and pitchfork bifurcation has three unstable fixed
points, one symmetric steady solution and a mirror-symmetric pair of asymmetric ones. The
transients from these fixed points terminate in one of the asymmetric limit cycles corresponding to
the asymmetric shedding states. This dynamics is described by a fifth-order Galerkin model (Deng
et al., 2020), where the first three modes resolve the Hopf bifurcation and the next two modes the
pitchfork bifurcation. The associated drag formula contains the terms of Re = 30. In addition,
the drag is modified by linear and quadratic terms with the shift modes associated with the Hopf
and pitchfork instabilities. These additional terms vanish without pitchfork bifurcation and do not
introduce harmonics of vortex shedding. Similarly, the lift formula generalizes the expression at
Re = 30.

The intermediate Reynolds number 80 leads to a more complex force model, as the transients
may pass through a meta-stable symmetric limit cycle. The accuracy of the force model could
significantly be increased by two additional Galerkin modes which resolve variations between sym-
metric and asymmetric limit cycles. The drag and lift formulae were correspondingly longer and
good agreement with computational data is achieved.

Summarizing, the sparse force model describes multi-attractor behaviour of the unforced flu-
idic pinball even for complex dynamics with three steady and three periodic solutions. For this
configuration, we have the advantage of a thorough understanding of the dynamics via a low-
dimensional mean-field Galerkin model. We envision successful applications of sparse regression
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for aerodynamic forces for turbulent flows, e.g., for the bi-stable behaviour of the Ahmed body
wake (Grandemange et al., 2013; Östh et al., 2014; Barros et al., 2017).

The force formula may be particularly instructive for drag reduction with active control (Choi
et al., 2008). Given a Galerkin model, the force formula indicates beneficial regions of the state
space. Thus, an upfront kinematical insight is gained in which direction control needs to ‘push’ the
attractor. For instance, the third-order mean-field model and the force formula implies that stabi-
lization is required for drag reduction consistent with earlier studies of Protas (2004); Bergmann
& Cordier (2008). Future generalizations may also profit from stochasticity (Sapsis & Lermusiaux,
2009).
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4.A Forces from the momentum balance
The forces can be alternatively derived from the residual of the Navier-Stokes equations

R(u, p) := ∂tu +∇ · u⊗ u− ν4u +∇p (4.51)

in the domain Ω. This domain is assumed to enclose the obstacle and extend sufficiently far away
from the obstacle such that the free-stream condition u = ex can be applied on the left, top and
bottom boundaries of the fluid domain Ω. The domain boundary ∂Ω contains the surface of the
immersed body Γ and the outer surface S∞. It should be noted that the surface element dS on
the body points inside the body, i.e., opposite to the direction in § 4.2.2.

The force in direction eα is derived from the integrated momentum balance in that direction.

(eα,R(u, p))Ω = 0. (4.52)

Four terms are obtained. The first contribution is the viscous term. This term can be converted
into a skin friction integral over Γ and S∞. The contribution over the outer integral vanishes under
free-stream conditions. The remaining contribution is the viscous force applied to the immersed
body:

(eα, ν4u)Ω = νeα ·
˛

Γ+S∞

(
∇u + (∇u)T

)
· n dS = F ν

α , (4.53)

where eα ·
(
∇u + (∇u)T

)
· n = 2

∑
α,β=x,y,z Sα,β nβ .

The second contribution is the pressure term which can analogously reduce to the pressure
force on the immersed body:

(eα,−∇p)Ω = −
˛

Γ+S∞

p nα dS = F p
α. (4.54)
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Not surprisingly, we arrive at the formula of § 4.2.2. The force exerted on the body is equal but
opposite to the force exerted on the fluid.

The third term is the local acceleration:(
eα, ∂t

[
N∑
j=0

aj(t)uj(x)

])
Ω

=
N∑
j=1

mt
α;j

daj
dt

(t), (4.55)

where mt
α;j = (eα,uj)Ω.

The fourth term arises from the convective acceleration:(
eα,∇ ·

([
N∑
j=0

ajuj

]
⊗

[
N∑
k=0

akuk

]))
Ω

=
N∑

j,k=0

qcα;jkajak (4.56)

where qcα;jk = (eα,∇ · [uj ⊗ uk])Ω . The volume integral over Ω can be converted into a momentum
flux surface integral over the boundary.

Making use of the momentum balance (4.52), the third and fourth contributions from the
acceleration terms equal the total force:

Fα =
N∑
j=1

mt
α;j

daj
dt

+
N∑

j,k=0

qcα;jkajak. (4.57)

This force formula contains constant, linear and quadratic terms of the mode amplitudes as well
as their time derivatives. The state-dependent formula (4.18) may be obtained from (4.57) by
replacing the time derivatives with (4.6). The total forces on the immersed body are here again
represented by a constant-linear-quadratic expression.

The above mentioned formulae dresses Newton’s second law F = ma in a Galerkin framework
for fluid flow. Eq. (4.57) corresponds to ‘ma’ and is purely based on the fluid motion. Eq. (4.18)
corresponds to ‘F ’ and allows distinguishing between the contribution of viscous and pressure
stresses.

4.B Influence of the sparsity parameter and regression meth-
ods

In the SINDy algorithms, the sparsity parameter is either the L1-penalty for the LASSO regression
or the threshold for the sequential thresholded least squares (STLS) regression. We denote the
L1-penalty and the threshold as the sparsity parameter λ in both cases. These two methods can
however lead to different results. We can choose the one with a better performance according to
the actual needs.

In § 4.4.1, we derived the sparse drag model with three degrees of freedom at Re = 30. Benefit
from the low cost of computation for the regression test, we can iteratively run the algorithm with
changing the sparsity parameter λ and investigate the performance changes of the identified model.
The performance of the identified drag model by these two regression methods when varying λ
is illustrated in figure 4.19(a) and figure 4.20(a), together with a comparison with the real force
dynamics for three typical values of λ.

The sparsity parameter starts with 0 (pure least square regression) and increases up to nearly 1.
The structures of the resulting models at λ = 0.95 for the LASSO regression, see figure 4.19(d), and
λ = 0.45 for the STLS regression, see figure 4.20(c), are identical, where only a2

3 remains. However,
the STLS regression is more sensitive to the sparsity parameter, as shown in figure 4.20(a). The
terms a3, a2

1 and a2
2 are eliminated at the same time. The remaining a2

3 is replaced by a3 with
λ > 0.48, and the identified models are obviously under-fitted, as shown in figure 4.20(d). In
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Figure 4.19: Illustration of the influence of the sparsity parameter λ on both the complexity and
accuracy of the identified drag model by the LASSO regression with three degrees of freedom at
Re = 30. (a) Evolution of the number of non-zero coefficients (red) and of the r2 score (blue) as a
function of the sparsity parameter λ. Performance of the identified drag model at λ = 0.8 (b), 0.9
(c), and 0.95 (d). Time evolution of the drag CD coefficients in the full flow dynamics (solid black
line) and for the force model (red dashed line). Initial condition: symmetric steady solution.
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Figure 4.20: Illustration of the influence of the sparsity parameter λ on both the complexity and
accuracy of the identified drag model by the sequential thresholded least square regression with
three degrees of freedom at Re = 30. (a) Evolution of the number of non-zero coefficients (red)
and of the r2 score (blue) as a function of the sparsity parameter λ. Performance of the identified
drag model at λ = 0.3 (b), 0.45 (c), and 0.9 (d). Time evolution of the drag CD coefficients in the
full flow dynamics (solid black line) and for the force model (red dashed line). Initial condition:
symmetric steady solution.
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Figure 4.21: Evolution of the coefficients of the terms a1a2 (green), a3 (red), a2
3 (light blue), a2

1 a
2
2

(purple), in the identified drag model as a function of the sparsity parameter λ for (a) the LASSO
regression and (b) the sequential thresholded least square regression.
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Figure 4.22: Illustration of the influence of the sparsity parameter λ on both the complexity and
accuracy of the identified drag model by (a) the LASSO regression, (b) the sequential thresholded
least square regression,with three degrees of freedom at Re = 80. Evolution of the number of
non-zero coefficients (red) and of the r2 score (blue) as a function of the sparsity parameter λ.

contrast, the LASSO regression eliminates the terms gradually, first a1a2, then a3, and eventually
a2

1 together with a2
2. In figure 4.19(a), the elimination of a2

1 and a2
2 only reduces the r2 score by

0.003. But the loss of the fluctuating drag dynamics indicates an under-fitting. Hence, the optimal
λ is found for 0.85.

To figure out the reason for the failure of the identification with the STLS regression when
λ > 0.48, we compare the evolution of the coefficients with increasing λ in figure 4.21. a1a2 is
the first eliminated term in both cases. The coefficients in the initial stage before the elimination
of a3 are almost the same. After the elimination of a3 with the LASSO regression, as shown in
figure 4.21(a), the coefficients of a2

1 and a2
2 become of order O(10−3). Since the STLS regression

algorithm thresholds the terms with smaller coefficients, the tiny coefficients of a2
1 and a2

2 will be set
to zero simultaneously. When the STLS regression is used with a too large sparsity parameter λ,
the term with larger coefficient can survive. As illustrated in figure 4.21(b), the remaining term a2

3

is replaced by a3 with a larger coefficient. This explains the reason why the STLS regression final
converges to a3, which is obviously the wrong term for the real drag force dynamics in figure 4.20(d).

We apply the same analysis for the sparse drag model with five degrees of freedom at Re = 80,
as described in § 4.5.1. The evolution of the performances under the two regression methods are
shown in figure 4.22. The STLS regression goes in the wrong direction as λ > 0.17. After checking
the list of coefficients, the key term a2

3 is deleted irretrievably, resulting in the inability of the
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Section 4.C. LIMITATIONS OF THE PURELY PROJECTION-BASED APPROACH

model to fit correctly. However, the regression result right before the critical value provides the
most simplified and relevant drag model of Eq. (4.42a) with r2 = 0.9816.

The LASSO regression is much safer on the elimination of terms. a2
3 can survive during the

regression in all the range of λ from 0 to almost 1. This further indicates that the key terms can
own better robustness in the LASSO regression. From figure 4.22(a), the optimal λ is chosen at
0.85, involving six terms and r2 = 0.9791. Although there are only five terms remaining when
λ = 0.9, the resulting model is not stable. It returns to six terms and r2 = 0.9755 at λ = 0.95,
with different active terms compared to the model at λ = 0.85. At the optimal value, the identified
drag model consists in terms a5, a2

1, a1a2, a2
2, a2

3, a3a5, where a2
5 is missing. Since a1a2 is of order

O(10−4), we can directly apply the least square regression on the updated library with deleting
a1a2 and adding a2

5. The regression result is the same as for the STLS regression.

4.C Limitations of the purely projection-based approach

From the expression of pressure and viscous force on the body in § 4.2.2, the force contribution of
each velocity mode in the Galerkin expansion can be numerically determined, as in Liang & Dong
(2014).

The viscous force associated with mode uj can be explicitly calculated through qνα;j in Eq. (4.13).
However, solving qpα;jk in Eq. (4.16) needs a homogeneous Neumann boundary condition for the
pressure, i.e. the normal derivative of p in the outward direction n must vanish on the whole
domain boundary ∂Ω,

∂np = n · ∇p = 0. (4.58)

In this study, we apply a no-slip condition on velocity without the above-mentioned Neumann
boundary condition on pressure. Hence, the partial pressure fields pjk can not be determined to
a constant pressure field. Analogously, qpα;jk can not be solved with an exact value. Even if we
assume Neumann boundary conditions for the pressure field p, it is still a numerically challenging
work since the pressure field are expanded to numerous partial pressure fields pjk, see Eq. (4.15).

Without considering the pressure force contribution, we can reconstruct the viscous force from
the viscous force contribution of the bifurcation modes. The resulting viscous force model only
contains linear terms and reads

Cν
D = 1.01814664 + 0.00159948 a3 − 0.0023798 a5 + 0.00601715 a7,

Cν
L = 0.000267167 a1 + 0.00004522 a2 − 0.01409768 a4 − 0.0055717 a6.

The viscous force contributions of each bifurcation mode is explicitly computed without any sym-
metry assumption, no sparsity can be expected in this model. Yet, after eliminating terms with a
coefficient less than O(10−5), the resulting force models (4.59) only involve the terms associated
with the bifurcations modes with the appropriate symmetry, indicated as the symmertic modes
u3, u5, u7 in Cν

D and the symmertic modes u1, u2, u4, u6 in Cν
L. The performance of the force

model using the real viscous force contribution of the seven bifurcation modes is illustrated in
figure 4.23. The r2 score for the viscous drag model is 0.9786 and 0.9183 for the viscous lift model.
The accuracy and the predictive ability of the force model are acceptable for the drag model with
only three items and the lift model with only four terms.

4.D Limitation of the POD-based force model

We apply POD on the fluctuating flow field u(x, t) − us(x), where us is the symmetric steady
Navier-Stokes solution described in § 4.2.1. The snapshots used for the POD come from the two
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Figure 4.23: Performance of the force model with the real forces contribution of seven bifurcation
modes. Time evolution of the viscous drag Cν

D (left) and the viscous lift Cν
L (right) coefficients in

the full flow dynamics (solid black line) and for the force model (red dashed line) for DNS starting
from the symmetric steady solution us at Re = 80.
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Figure 4.24: Contribution of the POD modes uj to the viscous (a) drag and (b) lift forces for DNS
starting from the symmetric steady solution us at Re = 80.

mirror-conjugated DNS trajectories started close by the symmetric steady solution. The POD
mode expansion of the flow field reads:

u(x, t) = us +
N∑
j=1

aj(t)uj(x), (4.60)

Due to the lack of boundary conditions for the pressure field contribution, we only focus on the
reconstruction of the viscous force with the purely projection-based approach. The contribution to
the viscous drag and lift forces, given by max |qνα;jaj|, with α = x, y, are shown in figure 4.24. The
main force contribution comes from the leading 50 POD modes. The viscous force reconstructed
with the N leading POD mode amplitudes reads

F ν
α = cνα +

N∑
j=1

qνα;jaj. (4.61)

The viscous drag Cν
D and lift Cν

D coefficients reconstructed with different numbers of POD modes
are compared to the real force dynamics in figure 4.25.

For a sequential N , the error of the reconstructed force coefficients with N leading POD modes
can be also evaluated with the r2 score. A higher r2 score indicates less error in the reconstructed
force. As expected, the error tends to decrease when the number of POD modes is increased. To
achieve r2 > 0.999, N = 36 leading POD modes are required for the drag force, and N = 51 modes
for r2 > 0.9999. For the lift force, these two critical numbers are respectively N = 30 and N = 86.
In actual situations, the model with r2 > 0.999 has enough accuracy. Note that no sparsity is
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Figure 4.25: Viscous drag (left) and lift (right) force reconstruction with the (a) N = 10, (b)
N = 20, (c) N = 50 leading POD modes starting from the symmetric steady solution us at
Re = 80. Real force dynamics computed from the DNS (black curve), reconstructed forces from
the N leading POD modes (dashed red line).
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Figure 4.26: Error on the viscous (a) drag and (b) lift force reconstruction with the N leading
POD modes starting the DNS starting from the symmetric steady solution us at Re = 80.
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Figure 4.27: Illustration of the influence of the sparsity parameter λ on both the complexity and
accuracy of the identified drag model by the LASSO regression with the (a) N = 10, (b) N = 20,
(c) N = 50 leading POD modes at Re = 80. Evolution of the number of non-zero coefficients (red)
and of the r2 score (blue) as a function of the sparsity parameter λ.

involved in the model because the force contribution of each POD mode is computed explicitly.

We now focus on the regression-based approach, we set a truncation of the model with N =
10, 20, 50 leading POD modes, and try to use the sparse regression to find a drag model with a
balance between accuracy and complexity. To be noted, the drag force considered here involves
both the pressure and viscous contributions to the force. To reach the same r2 score, it requires
more POD modes due to the additional quadratic complexity of the pressure force contribution.

The library of mode amplitudes contains 66, 231 and 1326 candidate terms for theN = 10, 20, 50
leading POD modes. However, as shown in figure 4.27, the least square regression result for
N = 10, 20 cannot reach a r2 score higher than 0.7. Only the situation with N = 50 can start with
r2 = 1, but hundreds of terms are still required for an acceptable accuracy. The interpretability of
the identified model is hopeless.

In summary, POD modes are decomposed and sorted according to energy criteria. The
constant-linear-quadratic expression for the drag and lift forces can still be derived, but it re-
quires a large number of POD modes. From a purely numerical approach, no sparsity is imposed
in the model. For the regression-based approach, the library of sparse regression is polluted with
harmonic modes and noise. Too many degrees of freedom and the harmonic relationships between
them make it hard to derive a simple model from sparse regression. The most feasible solution is
to find the dynamically related degrees of freedom between these modes — as we actually did in
our approach. Another possible direction is to optimize the sparse regression process, in order to
select the key degrees of freedom out of a polluted library of too many degrees of freedom.
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4.E Reduced-order model with seven degrees of freedom
In Deng et al. (2020), the reduced-order model of the fluidic pinball dynamics was derived for five
degrees of freedom at Re = 80, namely a1 to a5. Here we generalize the reduced-order model for
seven modes, by adding a6 and a7 to the model. The new system reads

da1/dt = a1(σ1 − β a3 − β15 a5)− a2(ω1 + γ a3 + γ15 a5) + l14 a4 + q134 a3a4, (4.62a)
da2/dt = a2(σ1 − β a3 − β15 a5) + a1(ω1 + γ a3 + γ15 a5) + l24 a4 + q234 a3a4, (4.62b)
da3/dt = σ3 a3 + β3 r + l35 a5 + q314 a1a4 + q335 a3a5 + q355 a

2
5, (4.62c)

da4/dt = σ4 a4 − β4 a4a5 + a1(l41 + q413 a3 + q415 a5) + a2(l42 + q423 a3 + q425 a5), (4.62d)
da5/dt = σ5 a5 + β5 a

2
4 + l53 a3 + q514 a1a4 + q533 a

2
3 + q535 a3a5, (4.62e)

da6/dt = σ6 a6 − β6 a6a7 + a1(l61 + q613 a3 + q617 a7) + a2(l62 + q623 a3 + q627 a7), (4.62f)
da7/dt = σ7 a7 + β7 a

2
6 + l73 a3 + q716 a1a6 + q726 a2a6 + q733 a

2
3 + q737 a3a7. (4.62g)

The identified system coefficients are recorded in table 4.1, and the model performance is
exemplified in figure 4.28.

σ1 5.22× 10−2 β 1.31× 10−2 l14 2.93× 10−1 l24 −4.87× 10−1

ω1 5.24× 10−1 γ 2.95× 10−2 q134 −5.87× 10−2 q234 1.18× 10−1

σ3 −5.22× 10−1 β3 1.53× 10−1 l41 3.14× 10−2 l42 −5.14× 10−2

σ4 2.72× 10−2 β4 5.78× 10−2 q413 −7.56× 10−3 q423 1.28× 10−2

σ5 −2.72× 10−1 β5 1.91× 10−1 q415 2.99× 10−2 q425 1.71× 10−1

β15 −2.42× 10−2 l35 4.28 l53 2.89× 10−2

γ15 1.70× 10−2 q335 −1.11 q533 −7.22× 10−3

q355 −5.13× 10−1 q535 1.48× 10−2

q314 1.57× 10−2 q514 −9.44× 10−3

σ6 −7.6× 10−2 β6 2.8× 10−2 q613 −3.18× 10−2 q623 3.23× 10−2

σ7 −7.6× 10−1 β7 6.27× 10−1 q617 3.82× 10−2 q627 −5.62× 10−2

l61 1.23× 10−2 q716 −9.18× 10−2 q726 −1.01× 10−1

l62 −1.33× 10−2 q733 8.21× 10−2 q737 1.37× 10−1

l73 −3.27× 10−1

Table 4.1: Coefficients of the reduced-order model at Re = 80. See text for details.
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Figure 4.28: Performance of the reduced-order model with cross-terms. Time evolution of coef-
ficients a1 to a7 in the full flow dynamics (solid blue line) and for the reduced-order model (red
dashed line). The initial condition is the same for the reduced-order model and the full flow
dynamics.
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We propose a self-supervised cluster-based hierarchical reduced-order modelling methodology
to model and analyse the complex dynamics arising from a sequence of bifurcations for a two-
dimensional incompressible flow of the unforced fluidic pinball. The hierarchy is guided by a triple
decomposition separating a slowly varying base flow, dominant shedding and secondary flow struc-
tures. All these flow components are kinematically resolved by a hierarchy of clusters, starting
with the base flow in the first layer, resolving the vortex shedding in the second layer and distilling
the secondary flow structures in the third layer. The transition dynamics between these clusters
is described by a directed network, called cluster-based hierarchical network model (HiCNM) in
the sequel. Three consecutive Reynolds number regimes for different dynamics are considered: (i)
periodic shedding at Re = 80, (ii) quasi-periodic shedding at Re = 105, and (iii) chaotic shedding
at Re = 130, involving three unstable fixed points, three limit cycles, two quasi-periodic attrac-
tors and a chaotic attractor. The HiCNM enables identifying the transient and post-transient
dynamics between multiple invariant sets in a self-supervised manner. Both the global trends and
the local structures during the transition are well resolved by a moderate number of hierarchical
clusters. The proposed reduced-order modelling provides a visual representation of transient and
post-transient, multi-frequency, multi-attractor behaviour and may automate the identification
and analysis of complex dynamics with multiple scales and multiple invariant sets.
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5.1 Introduction
Fluid flows generally involve complex, high-dimensional and nonlinear dynamics, which makes
them hard to understand. However, even at high Reynolds numbers, the flow dynamics keeps
trace of the instabilities undergone at increasing Reynolds number (Huerre & Monkewitz, 1990).
Stationary laminar flows are generally stable with respect to infinitesimal perturbations at suf-
ficiently low Reynolds number. This steady state becomes unstable when the Reynolds number
increases beyond a critical value Rec, where a bifurcation occurs. On the way towards a fully tur-
bulent regime, the flow may undergo a succession of bifurcations with increasing Reynolds number.
Ruelle & Takens (1971) shows that the flow can reach a chaotic regime after a small number of
bifurcations. The complex flow dynamics can be seen as the result of the interactions between the
fundamental structures of different instabilities (Chomaz, 2005; Bagheri et al., 2009a). A reduced-
order model incorporating the underlying mechanisms is always the promising solution for flow
analysis (Amsallem & Farhat, 2008; LeGresley & Alonso, 2000) and control (Choi et al., 2008;
Bagheri et al., 2009b; Barbagallo et al., 2009).

Numerous reduced-order models (ROMs) have been developed and applied (Taira et al., 2017).
The classical method starts with projecting the full system into a low-dimensional subspace, where
the high-dimensional dynamics can be approximated with the optimal basis. This process is so-
called Galerkin projection, which leads to a Galerkin system describing the dynamics in reduced-
order ordinary differential equations (ODEs). According to the dimensionality reduction techniques
and the model selection strategies, there exist many different projection-based ROMs. Proper or-
thogonal decomposition (POD) (Berkooz et al., 1993; Holmes et al., 2012b) is the most popular
one, which has many empirical variations, for example, balanced POD (Rowley, 2005) with bal-
anced truncation. The POD-Galerkin method can be optimized and extended with incorporating
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the pressure term (Bergmann et al., 2009), with numerical stabilizationis (Iollo et al., 2000), with
variational multiscale method (Iliescu & Wang, 2014) and with closure modelling strategies (Wang
et al., 2012). Based on first principles, the mean-field theory of Landau (1944) and Stuart (1958)
is the lowest dimensional mean-field model to account for a supercritical Hopf bifurcation. Weakly
nonlinear mean-field analysis has also been applied to more complex situations in which the flow
has undergone two successive bifurcations, such as in the wake of axisymmetric bodies (Fabre
et al., 2008), the wake of a disk (Meliga et al., 2009) or the wake of the fluidic pinball (Deng
et al., 2020). Gomez et al. (2016); Rigas et al. (2017b) included mean-field considerations in their
resolvent analysis, decomposing the flow in time-resolved linear dynamics and a feedback term
with the quadratic nonlinearity.

Alternatively, data-driven strategies show their advantage in pattern and system recognition
without prior knowledge about flow dynamics (Brunton et al., 2020), like Koopman analysis
(Schmid, 2010; Mezić, 2013) using dynamic mode decomposition (DMD) (Tu et al., 2014; Kutz
et al., 2016), data-driven Galerkin modelling (Noack et al., 2016) using recursive DMD, and multi-
scale Proper Orthogonal Decomposition (mPOD) (Mendez et al., 2019) using a matrix factorization
framework to enhance feature detection capabilities. Above mentioned methods still start with
a modal decomposition of the original flow fields. The advances in machine-learning algorithms
provide huge potential for data-driven ROMs, for example, using artificial neural network (ANN)
to stabilize projection-based ROMs (San & Maulik, 2018) or to build the ANN ROMs (San et al.,
2019), turbulence modelling with deep neural networks (Kutz, 2017), feature-based manifold mod-
elling (Loiseau et al., 2018b) with sparse identification (Brunton et al., 2016b).

Inspired with centroidal Voronoi tessellation ROMs in Burkardt et al. (2006), Kaiser et al.
(2014) proposed the cluster-based reduced-order modelling (CROM) method to partition the flow
data into clusters and analyze the flow dynamics with a cluster-based Markov model (CMM).
CROM provides us with a novel modelling strategy, liberating us from the issue of choosing a
low-dimensional space of the traditional projection method. Nair et al. (2019) applied CROM
to the nonlinear feedback flow control and introduced the directed network (Newman, 2018) for
the dynamical modelling. With the clusters being the nodes and the transitions between clusters
being the edges, an extended Markov model with a directed network was built, emphasizing the
non-trivial transitions between clusters. Fernex et al. (2021) and Li et al. (2021) further proposed
the cluster-based network model (CNM) for time-resolved data by introducing local interpolations
between clusters with the pre-specified transition times. The CNM can be seen as an extension of
the traditional CMM, using the network model instead of the standard Markov model to describe
the transient dynamics. Networks of complex dynamical systems have attracted a great deal of
interest, forming an increasingly important interdisciplinary field known as network science (Watts
& Strogatz, 1998; Albert & Barabási, 2002; Barabási, 2013). The network-based approaches have
been used in fluid mechanics to describe the interactions among vortical elements (Nair & Taira,
2015), detect the Lagrangian vortex motion (Hadjighasem et al., 2016), and model and analyze
turbulent flows (Taira et al., 2016; Yeh et al., 2021). Together with the clustering approaches,
networks have been also used to extract key features of complex flows (Bollt, 2001; Schlueter-Kuck
& Dabiri, 2017; Murayama et al., 2018; Krueger et al., 2019). The critical structures modifying
the flow can be identified by the intra- and inter-cluster interactions using community detection
(Gopalakrishnan Meena et al., 2018; Gopalakrishnan Meena & Taira, 2021). Theories and tech-
niques in the field of network science may play a crucial role in the modelling, analysis and control
of fluid systems.

The accuracy of the cluster-based model depends on the number of clusters. However, too
many clusters will increase the complexity of the Markov/network model. A high level of human
experience is required to achieve a good compromise between resolution and a simple model. The
focus of this paper is to optimise the data-driven cluster analysis by introducing a hierarchical
structure and a systematic self-supervised way to model the transient and post-transient flows in
the case of multiple unstable solutions and multiple attractors. The hierarchical modelling strategy

123



Section 5.2. FLOW CONFIGURATION AND FLOW FEATURES

shows good consistency with the Reynolds decomposition from the mathematical foundation. The
systematic data treatment process shows its great potential for multiscale and multi-frequency
modelling.

Inspired by the hierarchical Markov model (Fine et al., 1998), we apply a scale-dependent
hierarchical clustering to the classic network modelling under the mean-field consideration. The
time-scales of the different flow components provide a good indicator for figuring out the typical
structures in multiscale flows, and enable the hierarchical model to address the complex dynamics
of multiscale problems. The resulting cluster-based hierarchical network model (HiCNM) can
systematically identify complex dynamics involved in the case of multiple attractors. Both the
global trends and the local structure during the transition can be well preserved by a fewer number
of clusters in the hierarchical structure, which leads to a better understanding of the physical
mechanisms involved in the flow dynamics.

We consider the two-dimensional incompressible flow configuration of Bansal & Yarusevych
(2017), defined as the (unforced) “fluidic pinball” in Deng et al. (2020). With increasing Reynolds
number, the wake undergoes a first instability leading to a periodic vortex shedding, then a static
symmetry breaking, and finally a transition to a quasi-periodic regime before transiting to a chaotic
regime. HiCNMs are built for these flow regimes, which have multiple invariant sets and exhibit
different transient dynamics. We provide a principle sketch of our HiCNM framework in figure 5.1.

The manuscript is organised as follows: § 5.2 describes the numerical plant of the fluidic pinball
and the flow features at different Reynolds number. § 5.3 discusses the different perspectives on the
cluster-based hierarchical network modelling strategy. In § 5.4, we discuss the HiCNMs applied to
the transient and post-transient dynamics of a flow configuration involving six invariant sets, for
three different Reynolds numbers, respectively associated with a periodic, a quasi-periodic and a
chaotic dynamics. § 5.5 summarises the main findings and gives some suggestions for improvement
and future directions.

5.2 Flow configuration and flow features

We consider two-dimensional incompressible flows in the fluidic pinball (Noack & Morzyński, 2017)
as the benchmark configuration for our hierarchical modelling strategy. The flow configuration and
the direct Navier-Stokes solver are described in § 5.2.1. The transient and post-transient dynamics
at different Reynolds numbers are illustrated in § 5.2.2.

5.2.1 Flow configuration and direct Navier-Stokes solver

Figure 5.2 shows the geometric configuration of the fluidic pinball, consisting of three fixed cylinders
of unit diameter D. Their axes are placed on the vertices of an equilateral triangle of side 3D/2
in the (x, y) plane. The upstream flow is in the x-axis direction with a uniform velocity U∞ at
the inlet of the domain. The computational domain Ω is bounded by a rectangular box of size
[−6D,+20D]× [−6D,+6D]. A Cartesian coordinate system is used for description, and its origin
is placed in the middle of the back two cylinders considering the symmetry of this configuration.
Since no external force is applied to these three cylinders, a no-slip condition is applied on the
cylinders, and the velocity in the far wake is assumed to be U∞. The Reynolds number is defined
as Re = U∞D/ν, where ν is the kinematic viscosity of the fluid. A no-stress condition is applied
at the outlet of the domain.

The fluid flow is governed by the non-dimensionalized incompressible Navier-Stokes equations
in scales with the cylinder diameter D and the velocity U∞, which read

∂tu +∇ · u⊗ u = ν4u−∇p, ∇ · u = 0, (5.1)
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Figure 5.1: Overview of the cluster-based hierarchical network modelling framework exemplified
at Re = 80. (A) The flow dynamics involves six invariant sets associated with three unstable
fixed points, three limit cycles, as shown in the 3D phase portrait of the drag and lift forces. (B)
Under the mean-field consideration, the flow can be decomposed into a slowly-varying mean flow,
the coherent and incoherent components, separated by the dominant frequency of the coherent
part. The non-coherent fluctuating component is weak in this case, and the third term of the
triple decomposition can be ignored. (C) Therefore, a HiCNM with two layers is enough to
extract the global trend and the local dynamics of the varying mean-flow field. The transient
and post-transient dynamics, characterized by multiple frequencies and multiple invariant sets,
are introduced in § 5.2.2. The hierarchical network modelling strategy is discussed in 5.3.2 under
the mean-filed consideration in § 5.3.1. The dynamics reconstruction of the resulting hierarchical
network model is given in § 5.3.2.
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Figure 5.2: Configuration of the fluidic pinball and computational grid for the simulated domain.
The upstream velocity is denoted U∞. An example vorticity field at Re = 130 is colour-coded in
the range [−1.5, 1.5] from blue to red.

where p and u are respectively the pressure and velocity flow fields and ν = 1/Re. The advection
time scale is D/U∞ and the pressure scale is ρU2

∞, where ρ is the unit fluid density for the incom-
pressible flow. It is assumed that there exists a solution (us, ps) satisfying the steady Navier-Stokes
equations

∇ · us ⊗ us = ν4us −∇ps, ∇ · us = 0. (5.2)

The inner product of two square-integrable velocity fields u(x) and v(x) in the computational
domain Ω reads

(u,v)Ω :=

ˆ

Ω

dx u(x) · v(x). (5.3)

The associated norm of the velocity field u(x) is defined as

||u||Ω =
√

(u,u)Ω. (5.4)

The direct numerical simulation (DNS) of the Navier-Stokes equations (5.1) is based on a second-
order finite-element discretization method of the Taylor-Hood type (Taylor & Hood, 1973), on an
unstructured grid of 4 225 triangles and 8 633 vertices, and an implicit integration of the third-
order in time. The unsteady flow field is calculated by an unsteady solver with Newton-Raphson
iteration until the residual is less than a prescribed tolerance. This approach is also employed
to calculate the steady solution by a steady solver for the steady Navier-Stokes equations (5.2).
The direct Navier-Stokes solver used herein has been validated in Noack et al. (2003); Deng et al.
(2020), and the grid used for the simulations provides a consistent flow dynamics comparing to a
refined grid. A relevant numerical investigation for this kind of equilateral-triangle configuration
can also be found in Chen et al. (2020). The data-driven HiCNM method is exemplified on this
benchmark configuration with a blockage ratio B = 0.21, defined as the ratio of the cross-section
length of the cluster of three cylinders 5D/2 to the width of the computational domain 12D, which
mimics the experimental setups in Raibaudo et al. (2020). The numerical results with the current
computational domain remain similar compared with a larger domain with B = 0.025, as detailed
in appendix 5.A.

5.2.2 Flow features

As shown in figure 5.3, the flow undergoes a supercritical Hopf bifurcation at Re1 ≈ 18, a super-
critical pitchfork bifurcation at Re2 ≈ 68 and a Neimark-Säcker bifurcation at Re3 ≈ 105, before
entering the chaotic regime beyond Re4 ≈ 115 with increasing the Reynolds number (Deng et al.,
2020). Depending on the Reynolds number, the wake flow may present rich transient dynamics
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Figure 5.3: Post-transient flow state for different flow regimes at the Reynolds numbers marked
in red. The critical values of the supercritical Hopf bifurcation Re1, the supercritical pitchfork
bifurcation Re2, and the Neimark-Säcker bifurcation Re3 before the system entering into chaos at
Re4 are marked in black on the Re-axis.

due to multiple exact solutions of the Navier-Stokes equations, assciated with the co-existing in-
variant sets in the state space. For instance, at Re1 < Re < Re2, the symmetric steady solution
us is the only fixed point of the system. This exact solution of the Navier-Stokes equations is
unstable. The only attractor in the state space is a symmetric limit cycle, associated with the
cyclic release of vortices in the wake of the cylinders, forming a von Kármán street of regular
vortices. At Re > Re2, three fixed points are solutions of the steady Navier-Stokes equations,
one symmetric us and two asymmetric steady solutions u±s , and all three points are unstable.
Meanwhile, the unsteady Navier-Stokes equations have three periodic solutions. The symmetric
limit cycle, associated with symmetric vortex shedding, is unstable. The two mirror-conjugated
asymmetric limit cycles, associated with asymmetric vortex sheddings, co-exist as attractors of
the flow dynamics in the state space. For Re3 < Re < Re4, the two attracting asymmetric limit
cycles thicken into torii by introducing an additional low frequency, which modulates the vortex
shedding quasi-periodically. Beyond Re4, the vortex shedding dynamics is chaotic. The interested
reader can find more details on the route to chaos in the fluidic pinball in Deng et al. (2020).

The flow features can be illustrated by the forces exerted on the body. The drag FD and lift
FL forces are the projection on ex and ey of the resultant force F = FD ex + FL ey, obtained
by integrating the viscous and pressure forces over the cylinder surfaces. The flow dynamics is
analyzed with the lift coefficient CL,

CL(t) =
2FL(t)

ρU2
∞
. (5.5)

We apply the DNSs at Re = 30, 80, 105 and 130 respectively, starting close to the symmetric
steady solution (for Re > Re1) until t = 1 500 and the asymmetric steady solutions (for Re > Re2)
until t = 1 000. The time evolutions of the lift coefficient CL are shown in figure 5.4, where different
transient dynamics are observed, from the steady solutions to the asymptotic regimes.

At Re = 30, as shown in figure 5.4(a), the lift coefficient CL starts to oscillate visibly at t ≈ 800,
indicating that the flow leaves the neighborhood of the symmetric steady solution. Then, CL
oscillates around a vanishing value with increasing amplitude until converging to a fixed amplitude.
This state refers to a symmetric vortex shedding, as the instantaneous flow is oscillating around a
geometrical symmetric mean-flow field.

At Re = 80, as shown in figure 5.4(b), the primary transition is the same as at Re = 30.
Next, the slowly-varying mean lift coefficient 〈CL〉T , averaged over the oscillation period T , leaves
from 0 to 0.04. This indicates that the oscillatory dynamics in the permanent regime has lost the
statistical symmetry, and the flow state refers to an asymmetric vortex shedding. Starting nearby
either one of the two asymmetric steady solutions, CL directly evolves to the asymmetric vortex
shedding regime thats shares the same asymmetry.

At Re = 105, CL visibly increases at t ≈ 580 starting with the vanishing value of the symmetric
steady solution, as illustrated with the black curve in figure 5.4(c). However, the initial transition
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reaches a non-oscillating value equal to the initial value of the red curve, which refers to one of the
two asymmetric steady solutions. It eventually enters a quasi-periodic state, the vortex shedding
oscillations being modulated at a low frequency. Starting from the other two asymmetric steady
solutions will directly evolve into the permanent quasi-periodic state with the same asymmetry.

At Re = 130, the initial transition of the black curve in figure 5.4(d) is similar to the initial
transition at Re = 80, but the dynamics enters a chaotic regime shortly after the symmetric vortex
shedding has started. Simulations converge to the same chaotic attracting set, starting with all
the three different steady solutions.

(a)

(b)

(c)

(d)

Figure 5.4: Transient and post-transient dynamics starting with different steady solutions, illus-
trated with the time evolution of the lift coefficient CL at Re = 30 (a), 80 (b), 105 (c), 130
(d).

5.3 Cluster-based hierarchical reduced-order modelling

In this section, the general approach of the cluster-based hierarchical reduced-order modelling is
described and discussed. In § 5.3.1, we present the relevant background on the flow decomposition
and the standard cluster-based reduced-order model (CROM). The cluster-based reduced-order
modelling with hierarchical structure is described in § 5.3.2, as well as the relevant analysis of the
cluster-based hierarchical network model (HiCNM).

5.3.1 Background

The standard CROM is obtained in two steps: the snapshots are first clustered into coarse-grained
representative states before building either a Markov or a network model for the analysis of the
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dynamics. Clustering all transients and post-transients at once can suffer from the inability to
accurately capture the dynamics at different scales. Under the mean-field consideration, we intro-
duce a hierarchical structure of clusters for the flow dynamics of different time scales, resulting in
a cluster-based hierarchical reduced-order model (HiCROM).

Flow decomposition with mean-field consideration

The starting point of the HiCROM is the triple decomposition of the flow field similar to Reynolds
& Hussain (1972)

u(x, t) = 〈u(x, t)〉T︸ ︷︷ ︸
ω�ωc

+ ũ(x, t)︸ ︷︷ ︸
ω∼ωc

+u′(x, t)︸ ︷︷ ︸
ω�ωc

, (5.6)

where the dominant angular frequency ωc is defined as the dominant peak in the Fourier spectrum
of the velocity field. Here, the velocity field is decomposed into a slowly-varying mean-flow field
〈u〉T , a coherent component on time-scales of order 2π/ωc, involving coherent structures ũ, and
the remaining non-coherent small scale fluctuations u′. This kind of decomposition can also be
found in the low-order Galerkin models of Tadmor et al. (2011) and the weakly nonlinear modelling
of Rigas et al. (2017a).

The slowly-varying mean-flow field 〈u〉T can be defined as the average of the velocity field u
over one local period T ≈ 2π/ωc of the coherent structures,

〈u(x, t)〉T :=
1

T

t+T/2ˆ

t−T/2

dτ u(x, τ), (5.7)

which eliminates both the coherent contribution from ũ and the non-coherent contribution from
u′. Unlike the mean-flow field defined by the post-transient limit,

ū(x) = lim
T→∞

1

T

T̂

0

u(x, τ)dτ, (5.8)

the finite-time averaged-flow field considered in this study owns a slowly varying dynamics. From
the mean-field theory of Stuart (1958), the slowly-varying mean-flow field evolves out of the steady
solution under the action of the Reynolds stress associated with the most unstable eigenmode(s).
The mean-flow field deformation u∆ is used to describe the difference between the slowly-varying
mean-flow field and the invariant steady solution us(x), which reads

〈u(x, t)〉T = us(x) + u∆(x, t). (5.9)

Clustering algorithm

We consider the state vectors, for instance, the velocity fields u(x, t) in the computational domain
Ω, which is sampled at times tm = m∆t with a time step ∆t, where the superscript m = 1, . . . ,M
is the snapshot index. The clustering process aims at partitioning the M time-discrete states
(snapshots) um = u(x, tm) into K clusters Ck, k = 1, . . . , K. Snapshots of a given cluster share
similar attributes featured by its cluster centroid ck. The distance between the snapshot um and
the centroid ck is defined as

Dm
k := ||um − ck||Ω. (5.10)

Each snapshot is partitioned to the cluster of the closest centroid by argmin
k

Dm
k , and the charac-

teristic function is defined as

χmk :=

{
1, if um ∈ Ck,
0, otherwise.

(5.11)
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A cluster index km, m = 1, . . . ,M , indicates the cluster assignment of the corresponding snapshot
with um ∈ Ck, and records the visited clusters consecutively. The number of snapshots nk in cluster
k is given by

nk :=
M∑
m=1

χmk . (5.12)

The cluster centroids ck are defined as the average of the snapshots belonging to the cluster Ck:

ck =
1

nk

M∑
m=1

χmk u
m. (5.13)

The performance of clustering is judged by the within-cluster variances:

J (c1, . . . , cK) =
K∑
k=1

M∑
m=1

χmk ‖um − ck‖2
Ω . (5.14)

The clustering algorithm minimizes J and determines the optimal centroid positions,

copt
1 , . . . , copt

K = argmin
c1,...,cK

J (c1, . . . , cK) , (5.15)

by iteratively updating the characteristic function and the centroid positions.
To solve the optimization problem (5.15), we use the k-means++ algorithm (Arthur & Vassil-

vitskii, 2006). Comparing to the traditional k-means algorithm, the k-means++ algorithm selects
the initial centroids as far away as possible to avoid any bias from the initial conditions. The
remaining steps of the two algorithms are the same. At each iteration, the snapshots are divided
into clusters of the nearest newly determined centroids. The optimal centroids are obtained by
iterating until either convergence or when the maximum number of iterations is reached.

Cluster-based network model

Based on the clustering result, Kaiser et al. (2014) derived a cluster-based Markov model (CMM),
which provides a probabilistic representation of the system using a Markov process, with the
assumption that the fluid system is memoryless. Nair et al. (2019) removed the transitions residing
in the same cluster and emphasized the non-trivial transitions between two different clusters. In
these two works, the transitions are only characterised by probabilities. The cluster-based network
model (CNM) proposed in Fernex et al. (2021) and Li et al. (2021), inherited the idea of focusing
on the non-trivial transitions, and further introduced time-scale characteristics by recording the
transition times. We here briefly review some concepts of the CNM, as they will be used in our
benchmark of HiCNM.

The M consecutive snapshots define M − 1 transitions, containing trivial transitions staying
in the same cluster and non-trivial transitions between two different clusters. The number of
transitions from Cj to Ci reads

nij :=
M−1∑
m=1

χmj χ
m+1
i . (5.16)

Considering the non-trivial transitions, nj is the total number of departing snapshots from Cj, with

nj =
K∑
i=1

(1− δij)nij. The direct transition probability Pij reads

Pij =
(1− δij)nij

nj
, i, j = 1, · · · , K (5.17)

where the non-migrating transition njj is eliminated. All the non-trivial transitions are identified
with the direct transition matrix P.
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The residence time matrix T relies on the time information of the snapshots. After clustering,
each snapshot um = u(tm) is associated with the closest centroid with a cluster index km. Assuming
that N (N < M) non-trivial transitions occur along the trajectory, the moments of transition tn,
n = 1, . . . , N — including the initial time t0 = t1 — are defined as the time entering into a new
cluster,

tn = tm if um−1 ∈ Ck & um /∈ Ck, (5.18)

with ascending order t0 < t1 < . . . < tN . The cluster index km remains unchanged in a time
range [tn, tn+1). The sequence of visited clusters over time can be simplified with the first entering
snapshot for each non-trivial transition with km taken from the moments of transition tn.

Figure 5.5: An illustration of the residence time in the cluster-based network model. • remarks
the entering time into new clusters.

For a simple transition from Cj to Ci as illustrated in figure 5.5, where the trajectory first enters
in Cj at time tn, and leaves Cj for Ci at time tn+1, the residence time in Cj is defined as

Tij = tn+1 − tn. (5.19)

In the case of multiple trajectories of transition from Cj to Ci, the residence time will be averaged
according to the number of trajectories.

At this point, the time-resolved snapshots um can be represented by cluster centroids ckm with
the time evolution of the cluster index km. The transient dynamics is described by both the direct
transition matrix of non-migrating transitions P and the residence time matrix T.

5.3.2 Hierarchical modelling with mean-field consideration

As introduced in figure 5.1, the framework of cluster-based hierarchical network modelling contains
the following three steps. The hierarchical clustering with mean-field consideration is introduced
in § 5.3.2. Based on the identified clusters, the network modelling with hierarchical structure is
derived in § 5.3.2 for the mean-field model of Eq. (5.6) under a small number of general assumptions.
§ 5.3.2 introduces the autocorrelation function and its root mean square error of the rebuilt flow for
the validation of the HiCNM. An introductory example is introduced in Appendix 5.B to clarify
the primary form of the HiCNM.

Hierarchical clustering inspired by the triple decomposition

To better understand the global and local properties of the data, we present a novel hierarchical
clustering algorithm inspired by the triple decomposition introduced in § 5.3.1. The principle of
hierarchical clustering is to divide the snapshots into layers of clusters. Snapshots belonging to
clusters of the parent layer are further partitioned into clusters of the child layer. Hierarchical
clustering algorithms are generally divided into two categories:

(a) The agglomerating (“bottom-up”) hierarchical clustering begins with the smallest clusters at
the bottom, each snapshot being an elementary cluster. The two closest clusters are merged
to generate a new cluster according to certain criteria, introducing an additional layer from
the bottom. This merging is repeated until all snapshots belong to one cluster at the top of
the hierarchy.
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(b) The divisive (“top-down”) hierarchical clustering starts with only one cluster, which owns all
the snapshots. In our case, the centroid of the top cluster would be the mean-flow field from
by ensemble averaging. From the top to the bottom, the snapshots in each cluster of the
parent layer are divided into multiple clusters in the child layer, according to certain criteria.
The bottom layers will be associated with the small scale fluctuations of the flow field. The
division can be continued until each snapshot is a cluster.

We employ a divisive hierarchical clustering to distil the different features in a hierarchy, which
is consistent with the triple decomposition of Eq. (5.6). For instance, fluid flows characterised by
multiple frequencies require only a finite number of layers to describe the different components
bounded by frequency.

Transient and post-transient dynamics are statistically non-homogeneous due to the existence
of multiple invariant sets. If so, a scale subdivision of the flow-field decomposition like in Eq. (5.6)
is used during the clustering process. Accounting for the Reynolds stress contribution, the slowly-
varying mean-flow field 〈u〉T is enough to describe the global trend. Next, the local dynamics
around 〈u〉T can be zoomed in, considering the coherent structures involved in ũ. This scale sub-
division can still be extended to a hierarchical structure with more layers, which involve secondary
frequencies in the case of quasi-periodic dynamics or turbulence from u′, as illustrated in figure 5.6.

Figure 5.6: An illustration of the hierarchical structure with different scales in the triple flow
decomposition in § 5.3.1. Layer 0: The top layer is characterized by the invariant mean flow ū.
Layer 1: The global trend is described by the slowly-varying mean-flow field 〈u〉T . Layer 2: The
coherent part ũ is added for the local dynamics around the varying mean-flow field. Layer 3: The
non-coherent part u′ is considered in the case of turbulent flow.

In order to clearly describe the clusters in the hierarchy, we systematically name the clusters
from top to bottom. The sole cluster on the top L0 contains the ensemble of input data, and we
define it symbolically as C0. The sub-division of this cluster leads to K1 subclusters in the first
layer L1, named as C0, k1 , k1 = 1, · · · , K1. The first subscript k0 = 0 can be ignored because there
is only one cluster in L0, and the second subscript k1 indicates the index of the subcluster in L1.
The second subdivision works on each cluster Ck1 separately, and generates refined K2 subclusters
for each of them. The cluster index in the current layer L2 is presented by an additional subscript
k2 = 1, · · · , K2, which is written as Ck1, k2 . For a higher layer number LL∈N, L > 3, more subscripts
kL, l = 1, · · · , L, are needed to record the cluster index in each layer Ll from the top to the bottom,
written as Ck1, ..., kL . This naming method can clearly trace out all clusters in the hierarchy, and also
works for other properties of clusters, e.g., the centorids ck1, ..., kL and the characteristic function
χmk1, ..., kL

. In this work, two or three layers (L 6 3) will be enough to extract the transient dynamics
out of multiple invariant sets.
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Hierarchical network modelling

The starting point is the hierarchical Markov model of Fine et al. (1998), which introduces the
hierarchical structure to describe the stochastic processes, comparing to the standard Markov
model. Each state of a Markov model in the parent layer is considered separately, and a new
Markov model of the sub-states of a state is built in the child layer. As the layer increases, the
state is continuously subdivided. Therefore, the hierarchical Markov model records a sequence
of states in different layers. In our case, each cluster is seen as a state. When a cluster in the
parent layer is activated, its subclusters in the child layer turns activated recursively. Meanwhile,
the refined dynamics between the subclusters can be described by a Markov model. Hence, the
hierarchical Markov model can more effectively solve the problem of subsets.

In this work, we derive the HiCNM by replacing the Markov model by the network model.
The hierarchical structure is identical, and the only change is the way to describe the transient
dynamics between clusters.

A typical structure between the parent and child layers is shown in figure 5.7. We start with

Figure 5.7: An illustration of the transitions between the parent and child layers in the hierarchical
network model. The trajectories pass through the cluster in the parent layer: the entering and
exiting snapshots are marked with red dot and the blue dot. After clustering, a classic network
model is built between N subclusters, with transition probability P . The vertical transitions
indicates the ports of entry and exit of the subclusters with probability Qo,j and Qe,j.

cluster Ck1, ..., kl−1
in the parent layer Ll−1, where the leading subscripts k1, . . . , kl−2 refers to the

cluster number in each upper layer. For convenience, when the context will be unambiguous, the
cluster will be only referenced by its number in the current layer, e.g. Ckl−1

. As indicated with
the sequence of cluster numbers in its complete name, this cluster comes from the sub-division of
the cluster Ck1, ..., kl−2

in the parent layer Ll−2. We suppose that M snapshots um, m = 1, . . . ,M ,
exist in this cluster and are divided into Kl−1 subclusters by a sub-division clustering algorithm.
The sub-cluster Ckl−1

contains nkl−1
snapshots, calculated from Eq. (5.12) with the characteristic

function χmkl−1
. A standard network model for the cluster Ck1, ..., kl−2

can be derived with the direct
transition matrix Pk1, ..., kl−2

and the residence time matrix Tk1, ..., kl−2
, as recorded in § 5.3.1, which

describe the dynamics between the subclusters Ckl−1
.

In the following, we focus on the trajectories passing through cluster Ckl−1
. The snapshots

entering and leaving from Ckl−1
are marked out for each trajectory, with the following characteristic

function

χmo,kl−1
:=

{
1, if um−1 /∈ Ckl−1

& um ∈ Ckl−1
,

0, otherwise.

χme,kl−1
:=

{
1, if um ∈ Ckl−1

& um+1 /∈ Ckl−1
,

0, otherwise.

(5.20)

The entering snapshots are denoted by the subscript “o”, and the exiting snapshots by the subscript
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“e”. The number of entering snapshots no and of exiting snapshots ne read

no =
M∑
m=1

χmo,kl−1
, ne =

M∑
m=1

χme,kl−1
. (5.21)

In the child layer Ll, the nk snapshots in the cluster Ckl−1
have been divided into the subclusters

Ck1, ..., kl , kl = 1, . . . , kL. Without loss of generality, a standard network model for the cluster Ckl−1

can be built with its subclusters with the direct transition matrix Pk1, ..., kl−1
and the residence time

matrix Tk1, ..., kl−1
.

The snapshots um are approximated by the time evolution of the cluster centroids ckm1 , ..., kml in
Ll,

ûmLl = ckm1 , ..., kml . (5.22)

The residence time elements of Tk1, ..., kl can be assembled in order to determine the moments of
transition based on the sequence of visited clusters in Ll.

The entering and exiting snapshots defined in Eq. (5.20) can be used to describe the vertical
transitions. Although they are not necessary to describe the dynamics of the fluidic pinball,
the probability of the vertical transitions Qo,j and Qe,j, described in appendix 5.B, completes all
possible transitions in our hierachical structure and make it consistent with the classic hierarchical
Markov model of Fine et al. (1998).

Dynamics reconstruction of the hierarchical network model

The reconstructed flow in Eq. (5.22) is a statistical representation of the original snapshot se-
quence by a few representative centroids, which is a highly discretized description compared to
the full dynamics. The approximations in the different layers provide different metrics for the flow
dynamics.

The cluster-based hierarchical model uses the centroids ckm1 , ..., kml in the original data space
together with the time evolution of the cluster index kml to simplify the description of the original
flow, which is more intuitive and closer to the original flow than the POD reconstruction. For input
data with I-dimensional state vectors of the velocity field andM snapshots, a POD reconstruction
truncated to R modes will lead to a I × R matrix of POD modes and a R ×M matrix of mode
amplitudes. A HiCNM with K centroids leads to a I ×K matrix of centroids and a sequence of
the N visited clusters of length N �M . In this sense, the compressive ability of HiCNM is more
powerful for the large amount of continuously sampled data, as I×K < (I+M)×R. In addition,
the hierarchical clustering works as a sparse sampling technique, extracting the representive states
according to the clustering subspace.

We use the unbiased auto-correlation function (Protas et al., 2015),

R(τ) =
1

T − τ

T̂

τ

(u(x, t− τ)− us(x),u(x, t)− us(x))Ω dt, τ ∈ [0, T ) , (5.23)

after normalization with respect to R(0) to check the accuracy of the dynamics reconstruction of
the HiCNM in Eq. (5.22). The autocorrelation function without delay R(0) is twice the time-
averaging kinetic energy. The modeled autocorrelation function R̂Ll(τ) in layer Ll is based on the
rebuilt flow ûLl in Eq. (5.22) instead of u in Eq. (5.23).

For the discrete snapshots, the root mean-square error (RMSE) of the autocorrelation function
R(τ) of the reference data and that of the model R̂Ll(τ) is defined as

Rl
rms =

√√√√ 1

M

M∑
m=1

(
R(τ)− R̂Ll(τ)

)2

, (5.24)

where M is the number of snapshots um and ûmLl at τ = m∆t.

134



Chapter. 5 Cluster-based hierarchical network model

5.4 Hierarchical network modelling of the fluidic pinball

In this section, we apply the hierarchical modelling strategy to the fluidic pinball at different
Reynolds numbers. With increasing Reynolds number, the flow dynamics is undergoing successive
instabilities and bifurcations, introducing multiple exact solutions of the Navier-Stokes equations
and multiple invariant sets for the dynamics. In § 5.4.1, the modelling strategy dealing with
multiple invariant sets is introduced. We derive the HiCNMs for the transient dynamics involving
six invariant sets at Re = 80 in § 5.4.2, for the quasi-periodic regime at Re = 105 in § 5.4.4, and
for the chaotic regime at Re = 130 in § 5.4.5.

5.4.1 Hierarchical modelling with multiple invariant sets

The flow field is computed with the direct numerical simulation (DNS) described in § 5.2.1. The
resulting flow field is an ensemble of time-resolved snapshots starting with some given initial con-
dition. The transient and post-transient dynamics of the flow constitute a time-resolved trajectory
sampled with a fixed time step. Different invariant sets and multiple attractors can co-exist in
the state space, only part of them being explored by each individual trajectory from the initial
condition to the asymptotic regime. All the cases of interest in this paper are such that Re > Re2,
i.e. beyond the supercritical pitchfork bifurcation. The data set consists of the snapshots com-
puted from four different trajectories: two mirror-conjugated trajectories starting in the vicinity
of the symmetric steady solution, the two others starting from the two mirror-conjugated asym-
metric steady solutions. The simulations are respectively run until t = 1 500 and t = 1 000 for the
symmetric steady solution and the asymmetric steady solutions.

Sampled with time step ∆t = 0.1, the input data basis is an ensemble of M = 50 000 snapshots
um(x) from four transient trajectories, where the superscript m is the snapshot index for the
successive instants tm = m∆t. In order to distinguish the different trajectories, the snapshot index
m is sorted as:

(a) m = 1, . . . , 15000 and m = 15001, . . . , 30000 for the two mirror-conjugated trajectories start-
ing in the vicinity of the symmetric steady solution,

(b) m = 30001, . . . , 40000 and m = 40001, . . . , 50000 for the two others starting from the two
mirror-conjugated asymmetric steady solutions.

The time continuity is critically important during the dynamical analysis. Snapshots in each
trajectory are time-resolved but have no time relationship in different trajectories. For a trajectory
of M snapshots, it exists M − 1 transitions as described in § 5.3.1. Hence, M − 4 transitions occur
in the four individual trajectories mentioned above.

In our case, a standard network model with 200 clusters are still not enough to distinguish
the transitions starting from three different steady solutions, as shown in § 5.4.3. An optimal
way to achieve correct classification is to hierarchically cluster the ensemble of snapshots. The
hierarchical clustering is performed with the slaving assumption under the mean-field consideration
in § 5.3.1, by applying an unsupervised clustering algorithm (k-means++) for different time scales.
The clusters in the parent layer are split into subclusters in the child layer, where the clustering
result in the parent layer works as a pre-classified indicator in the child layer. The number of
clusters is preset to 10 for each clustering algorithm, but can be adjusted to the minimal number
for an accurate dynamics reconstruction, typically for the network model in the first layer. The
clustering algorithm in the first layer is meant to distinguish different invariant sets together with
the transitions between them with a limited number of clusters. These clusters will be used to
build a network model for the mean-field distortion, which will further supervise the clustering
process in the second layer. A sketch for this process is shown in figure 5.8.

From the mean-field consideration, the slowly-varying mean-flow field is the ideal candidate
for the detection of several invariant sets. A fifth order Butterworth low-pass filter with cutoff
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Figure 5.8: Sketch for HiCNM applied to the fluidic pinball at Re = 80. See text for the details.

frequency 0.2fc is applied to eliminate the coherent ũ and incoherent u′ components of u in the
triple decomposition of Eq.(5.6). The clustering algorithm applied to the first layer is described
in algorithm 1. The critical idea of the algorithm is to map the original data to the bounded low-

Algorithm 1 Clustering algorithm with slowly varying mean flow
Input: um: snapshots; fc: frequency of coherent part;

K1: number of clusters
Output: χmk1

: characteristic function; km1 : cluster indexes of snapshots um;
ck1 : optimal centroids

1: compute the low-pass filtered um with cutoff frequency 0.2fc, named umLP;
2: apply k-means++ algorithm with K1 clusters to umLP, and save the characteristic function χmk1

and the cluster indexes km1 ;
3: compute and save the centroids in original data space:

ck1 =
M∑
m=1

χmk1
um/

M∑
m=1

χmk1
.

frequency space, and then calculate the characteristic function in the low-frequency space. The
resulting characteristic function χmk1

is applied to the original data to achieve the clustering of the
slowly-varying mean-flow field.

The divisive clustering algorithm of the clusters in the parent layer is described in algorithm 2,
under the supervision of the characteristic function χmk1

obtained from the parent layer. The sub-
division of the clusters in the parent layer leads to a more detailed network model of the local
structures. According to the spectral content of the dynamics, multiple layers are introduced
to extract the coherent dynamics. The naming method introduced in § 5.3.2 can clearly locate
all clusters in the hierarchy. When dealing with chaotic flow regime, there is no clear frequency
boundary. We stop modelling the incoherent components u′ with a simple network model which
contains all the chaotic dynamics. Snapshots of velocity field can be highly compressed by a lossless
POD to accelerate the clustering algorithm, as detailed in appendix 5.C.
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Algorithm 2 Divisive clustering algorithm in the child layer under supervision
Input: um: snapshots;

χmk1
: characteristic function from the parent layer

Output: for each cluster Ck1 in parent layer
χmk1,k2

: the characteristic function; km2 : cluster indexes of snapshots um;
ck1,k2 : optimal centroids;

1: for k1 ← 1 to K1 do
2: locate the snapshots um in the cluster Ck1 by the characteristic function χmk1

, and record
the snapshot index m1 of the resulting nk1 snapshots;

3: extract the snapshots um1 and renumber them sequentially with m2 = 1, . . . ,M2;
4: apply k-means++ algorithm with K2 = 10 clusters (as default) to the renumbered snap-

shots um2 and save the characteristic function χm2
k1,k2

and the centroids ck1,k2 :

ck1,k2 =
M2∑
m2=1

χm2
k1,k2

um2/
M2∑
m2=1

χm2
k1,k2

.

5: end for

5.4.2 Hierarchical network model at Re = 80

At Re = 80 > Re2, the system has already undergone a supercritical Hopf bifurcation and two
coincidental supercritical pitchfork bifurcations on the steady solution and the symmetric limit
cycle. As a result, three unstable steady solutions, one unstable (symmetric) limit cycle and
two stable (asymmetric) mirror-conjugated limit cycles exist in the state space and organize the
dynamics. Thus, there are six invariant sets, the two stable limit cycles being the attractors of the
flow state.

The HiCNM in the first layer is based on the clustering results of the low-pass filtered data set
(§ 5.4.2). The local dynamics for some typical regimes is further presented with the subclusters in
the second layer (§ 5.4.2).

Hierarchical network model in Layer 1

K1 = 20 clusters are used to cluster the snapshots from the low-pass filtered data set which
removes the coherent structures with frequency fc = 0.1074. To visualize the cluster topology,
we apply the classical multidimensional scaling (MDS) to represent the high-dimensional centroids
in a two-dimensional subspace [γ1, γ2]T, while the distances between the centroids are preserved
(Kaiser et al., 2014). As shown in figure 5.9, the six exact solutions of the Navier-Stokes equations
that organize the state space are well identified. The vorticity field of the resulting centroids
can be understood as the slowly varying mean-flow field < u >T along the transient dynamics,
with T � 2π/ωc. The three steady solutions belong respectively to clusters C1 (symmetric steady
solution us), C12 (asymmetric steady solution u−s ) and C17 (asymmetric steady solution u+

s ). The
three limit cycles are caught by the time-averaged flow in clusters C7 (symmetric mean-flow field,
centroid ū0), C9 (asymmetric upward mean-flow field, centroid ū+) and C11 (asymmetric downward
mean-flow field, centroid ū−). A network of four transient trajectories connects these clusters as
follows:

Trajectory 1 : C1 (us)→ . . .→ C7 (ū0) → C8 → C9 (ū+);
Trajectory 2 : C1 (us)→ . . .→ C7 (ū0) → C10 → C11 (ū−);
Trajectory 3 : C12 (u−s )→ . . .→ C16 → C10 → C11 (ū−);
Trajectory 4 : C17 (u+

s )→ . . .→ C20 → C8 → C9 (ū+).

We notice that most of the transitions between clusters are with 100% probability, except for the
bifurcating cluster C7 with half probability to transition to clusters C8 or C10. The transition matrix
in figure 5.10(b) illustrates the probability of all the transitions. The probability is 1 for the surely
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Figure 5.9: Graph of transitions between clusters in layer 1 at Re = 80. Cluster centroids are
marked with the colored squares, with their vorticity fields in color with [−1.5, 1.5]. The snapshots
belonging to them are marked as small dots with the same colors. The transitions between clusters
are shown with arrows, where the line width presents the probability of transition.

directed transitions. By contrast, P7 8 = 0.5 and P7 10 = 0.5 for the bifurcating cluster. After
entering into C8 and C10, the flow will surely enters the two clusters C9 and C11 respectively. The
two clusters C9 and C11 catch the permanent regimes, from which the dynamics cannot escape,
imposing all the terms in the ninth and eleventh columns Pj 9 = Pj 11 = 0, ∀j.

The time ordering of the cluster transitions is illustrated in figure 5.10(a). The red vertical
line separates the four trajectories. All the trajectories are irreversible transition from one steady
solution to one of the two stable periodic solutions. In figure 5.10(c), the filled black circles
emphasize the transitions starting from C1, C12 , C17 and C7. The two attracting clusters C9 and C11

have no transition to any other clusters. Hence, all the terms in the ninth and eleventh columns
Tj 9, Tj 11 are 0, ∀j. The residence time associated with clusters C9 and C11 is infinite.

According to the above discussion, the network model in this layer has successfully identified
the six invariant sets of the dynamics, four being unstable, the two others being the attractors of
the system.

Hierarchical network model in layer 2

We apply algorithm 2 based on the clustering result for the layer L1 in § 5.4.2. In the second layer
L2, we will isolate and analyze the clusters Ck1 , k1 = 9, 7, 1 associated with three invariant sets of
the dynamics.

The permanent regime in cluster C9

Cluster C9 is associated with one of the two asymmetric limit cycles. The k-means++ algorithm is
directly applied to the intra-cluster snapshots um ∈ C9. The limit cycle in figure 5.11(a) has been
divided into K2 = 10 subclusters according to algorithm 2. The centroids are distributed on the
limit cycle at equal distances. The arrows between the centroids form a closed loop, which results
from the periodic nature of the oscillating dynamics. The resulting centroids are phase-averaged
flow fields along the complete period of the vortex shedding. The inner jet-flow of the centroids in
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(a)

(b) (c)

Figure 5.10: Cluster-based analysis at Re = 80 in layer 1: (a) transition illustrated with cluster
label, (b) transition matrix, (c) residence time matrix. Since subclusters are not considered, the
snapshot index in layer 1 m1 is identical to the original index m. The colorbar indicates the values
of the terms. Residence time larger than 100 is marked with a solid black circle and excluded
from the colorbar. An extremely long residence time in a cluster indicates data density, and such
a cluster is generally associated with an invariant set.

(a)

(b)

(c) (d)

Figure 5.11: Cluster-based analysis in layer 2 at Re = 80 for C9: (a) graph of non-trivial transitions
between clusters, as in figure 5.9, (b) transition illustrated with cluster label, (c) transition matrix,
(d) residence time matrix, as in figure 5.10. Two trajectories pass through C9 in the parent layer,
one with m2 = 1, . . . , 5430 and another with m2 = 5431, . . . , 9917.

139



Section 5.4. HIERARCHICAL NETWORK MODELLING OF THE FLUIDIC PINBALL

figure 5.11(a) are all deflected upwards, as expected for the attractor that belongs to cluster C9.
Figure 5.11(b) associates the cluster labels to the dynamics. Two different transient trajectories

reach C9 with entering snapshots m = 9571 and 45514, one issued from C8, the other from C16,
according to the network model in layer L1. According to the entering time, the original snapshot
index m = m2 +9571−1 = 9571, . . . , 15000 and m = m2 +45514−5431 = 45514, . . . , 50000. The
flow periodically travels along the subclusters C9, k2 , k2 = 1, . . . , 10 as C9, 1 → . . . → C9, 10 → C9, 1.
The limit cycle has a clear and stable transition matrix, as each cluster only has one possible
destination, see figure 5.11(c). The residence times in each clusters are uniform as shown in
figure 5.11(d). The sum of all residence times is 9.51, which is close to the real time period 9.50 of
the vortex shedding in the permanent regime computed from the DNS.

The bifurcating state in cluster C7

Cluster C7 is associated with the symmetric limit cycle. K2 = 10 clusters are used to classify the
snapshots in this cluster.

(a)

(b)

(c) (d)

Figure 5.12: Cluster-based analysis in layer 2 at Re = 80 for C7: (a) graph of non-trivial transitions
between clusters, as in figure 5.9, (b) transition illustrated with cluster label, (c) transition matrix,
(d) residence time matrix, as in figure 5.10. Two trajectories pass through C7 in the parent layer,
one with m2 = 1, . . . , 2330 and another with m2 = 2331, . . . , 4665.

The resulting limit cycle of figure 5.12(a) differs from the limit cycle of figure 5.11 by its
centroids. As expected with the symmetric limit cycle, the inner-jet is not deflected in cluster
C7, while it is deflected in cluster C9. In figure 5.12(b), two different transient trajectories pass
through C7 with entering snapshots m = 6541 and 21552, the original snapshot index is m =
6541, . . . , 8870 and m = 21552, . . . , 23886. The limit cycle has a stable transition matrix, as
shown in figure 5.12(c). The sum of the residence times of figure 5.12(d) is 9.79, again very
close to the period 9.80 of the symmetric transient vortex shedding computed from the DNS. The
bifurcating dynamics can not be detected with these subclusters but can be captured in the parent
layer.

The destabilizing regime in cluster C1

Cluster C1 is associated with two mirror-conjugated trajectories spiraling out of the symmetric
steady solution. K2 = 10 subclusters are used in the child layer L2. In the [γ1, γ2]T representation
of figure 5.13(a), the centroids are distributed along two diverging trajectories spiraling out of the
fixed point [0, 0]T.
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(a)

(b)

(c) (d)

Figure 5.13: Cluster-based analysis in layer 2 at Re = 80 for C1: (a) graph of non-trivial transitions
between clusters, as in figure 5.9, (b) transition illustrated with cluster label, (c) transition matrix,
(d) residence time matrix, as in figure 5.10. Two trajectories pass through C1 in the parent layer,
one with m2 = 1, . . . , 5319 and another with m2 = 5320, . . . , 10640.

The first three subclusters C1, 1, C1, 2 and C1, 3 belong to the inner zone of the spirals, where the
distribution of snapshots is dense in the [γ1, γ2]T proximity map of figure 5.13. As a result, three
nonphysical closed-loop cycles are formed between these three clusters, namely C1, 1 → C1, 2 → C1, 1,
C1, 1 → C1, 3 → C1, 1, and C1, 3 → C1, 1 → C1, 2 → C1, 1 → C1, 3. The remaining clusters belong to the
outer arms of the spirals, with a relatively sparse distribution of the snapshots. The transitions
between them form a closed-loop trajectory C1, 4 → . . .→ C1, 10 → C1, 4. The transitions C1, 2 → C1, 4

and C1, 3 → C1, 8 correspond to the departing dynamics out of the inner zone, due to the growth
of the instability. The varying density of distribution comes from the exponential growth of the
instability. The flow perturbations are small in the beginning of the instability while the flow
distortions evolve faster in the later stages, leading to a multiscale problem in the transient and
post-transient flow dynamics. In this case, the later stages with larger distortions are obviously
easier to divide into different clusters.

From figure 5.13(b), two transient trajectories pass through C1 with entering snapshots m = 1
and 15001. The original snapshot index is m = 1, . . . , 5319 and m = 15001, . . . , 20321, corre-
sponding to the initial stage of destabilization from the symmetric steady solution. In the transition
matrix of figure 5.13(c), the inner and outer portions of the spiral are also apparent. The inner
zone is the oscillating dynamics between C1, 1 and C1, 2, or C1, 1 and C1, 3. The outer zone has a more
obvious periodic dynamics through the remaining clusters from C1, 4 to C1, 10. In figure 5.13(d),
the residence time in each cluster is very short compared to the residence time in C1, 1, which the
vicinity of the steady solution belong to.

Dynamics reconstruction of the hierarchical network model at Re = 80

Figure 5.14 shows the autocorrelation function of the DNS and the HiCNM in different layers. As
the autocorrelation function has been normalized by R(0), the unit one presents the level of kinetic
energy of the whole transition. For the transient and post-transient dynamics, the autocorrelation
function vanishes with increasingtime shift, as shown in figure 5.14(b). The autocorrelation func-
tion of the DNS identifies the dominant frequency. In layer L1, no oscillation can be identified,
due to the centroids by averaging the snapshots within clusters in the state space. The RMSE
of the autocorrelation function is R1

rms = 17.46. In layer L2, the autocorrelation function of the
model matches perfectly over the entire range, with R2

rms = 1.18, which quantifies the accuracy of
the cluster-beasd model.
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(a) (b)

Figure 5.14: Autocorrelation function for τ ∈ [0, 1500) from DNS (black solid line) and the hier-
archical network model (red dashed line) in the two layers: (a) L1 and (b) L2, at Re = 80

5.4.3 Advantages of HiCNM as compared to CNM

In this sub-section, we compare the results of the HiCNM in its second layer to the standard CNM
with the same number of clusters. The hierarchical structure can systematically present the global
trend and local dynamics, which improve the graphic interpretation of transient and post-transient,
multi-frequency, multi-attractor behaviours.

Standard CNM at Re = 80

We show a standard network model treating the transient dynamics at Re = 80 with K = 200
clusters. The directed graph is not shown here as too many clusters overlapped in the two-
dimensional subspace [γ1, γ2]T, losing the interpretation of the dynamics. In figure 5.15(a), the six
exact solutions are well classified. The three steady solutions are divided into C1, C192 and C196

separately. The three limit cycles are identified with three blocks of oscillating labels, from C69

to C99, from C100 to C142, and from C148 to C191. However, the transient trajectories starting with
the asymmetric steady solutions are misidentified, as both travelling through the same clusters
from C2 to C68 and even the block of the symmetric limit cycle. It indicates that the clustering
algorithm failed to distinguish the symmetry-breaking in the transient dynamics starting with the
different steady solutions. Too many clusters also make the transition matrix hard to read as
illustrated in figure 5.15(c), and also for the residence time matrix not shown here. Ignoring the
transitions with low probability in the transition matrix, the transitions in the above-mentioned
three blocks are almost definite, indicating the correct identification of the cycles. However, the
transient dynamics from C2 to C68 is random. We can hardly find any relevant feature for the
building of vortex shedding or symmetric breaking. The cluster distribution directly affects the
analysis of the dynamics.

In summary, a large number of clusters tends to increase the resolution of the identified network
model, but will misidentify the dynamics with the random transitions between clusters during the
transient state. The standard network model fails to describe the transient dynamics between
different invariant sets. This kind of problem comes from the poor distribution of clusters and can
be solved by the hierarchical clustering strategy, as shown in the following sub-section.

HiCNM at Re = 80 in Layer 2

Based on the hierarchical network model at Re = 80 recorded in § 5.4.2, we build a network
model ensembling all the clusters in the layer L2, which also contains K = 200 clusters. For ease
of illustration, the cluster indexes of two layers Ck1,k2 are denoted with a single index Ck, with
k = 1, . . . , 200.

From figure 5.15(b), we found that the cluster distribution is very uniform during the transient
states and the post-transient states. The six exact solutions are well classified, and much fewer
clusters are used for the limit cycles. The three steady solutions being divided into C1, C111 and
C161 separately. The three limit cycles are identified with three blocks of oscillating labels, from C61

to C70, from C81 to C90, and from C101 to C110. Even the transient states between the limit cycles can
also be identified, with two blocks from C71 to C80, and from C91 to C100. The transient trajectories
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starting with three different steady solutions are also well separated. The transition matrix in
figure 5.15(d) are almost full of definite transitions, which shows clearer transient dynamics than
the figure 5.15(c). The global matrix keeps the local dynamics for each cluster Ck1 in the first layer
L1 , as shown in each small block of 10 clusters, and ensembles them together. The transitions
from block to block have a much lower probability, comparing with the cycling transitions within
the block, which makes them hard to see in the figure. However, this kind of transition between
the blocks should be also definite, as shown in § 5.4.2 for the hierarchical model in the first
layer. Analogously, the multiscale problem of the dynamics in different layers also exists in the
global residence time matrix, which makes the small scale terms unseeable. Therefore, we suggest
analyzing the slow-varying mean flow and the local dynamics separately in different layers, as in
§ 5.4.2, to avoid the influence of different scales.

(a)

(b)

(c) (d)

Figure 5.15: Cluster-based analysis at Re = 80 for the fluctuating flow: transition illustrated
with cluster label and transition matrix of the standard network model (a, c) and the hierarchical
network model in the second layer (b, d), as in figure 5.10.

5.4.4 Hierarchical network model for the quasi-periodic dynamics at
Re=105

At Re = 105, the flow dynamics is quasi-periodic (Deng et al., 2020). The inner jet oscillations are
modulated at a non-commensurate low frequency. The flow dynamics considered in the first cluster
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layer is low-pass filtered (§ 5.4.4). The basic limit cycle associated with the dominant frequency ωc
of the vortex shedding is clustered and analysed in layer 2 (§ 5.4.4). The low-frequency modulations
of the vortex shedding are further described in layer 3 (§ 5.4.4).

Hierarchical network model in Layer 1

The frequency of the coherent component ũ is fc = 0.1172. The K1 = 11 clusters are used on
the low-pass filtered data set, following algorithm 1. The non-trivial transitions are shown in the
two-dimensional subspace [γ1, γ2]T of figure 5.16.

Figure 5.16: Graph of transitions between clusters in layer 1 at Re = 105, displayed as in figure 5.9.

The two attractors belong to clusters C6 and C11. The symmetric and asymmetric steady
solutions belong respectively to clusters C1, C2 and C7. The transient dynamics observed at Re =
105 are different from those identified in figure 5.9 for Re = 80. Figure 5.16 shows four trajectories,
initiated from mirror-conjugated initial conditions close to the symmetric and asymmetric steady
solutions:

Trajectory 1 : C1 (us)→ C2(u+
s )→ . . .→ C6(ū+);

Trajectory 2 : C1 (us)→ C7(u−s )→ . . .→ C11(ū−);
Trajectory 3 : C2(u+

s )→ . . .→ C6(ū+);
Trajectory 4 : C7(u−s )→ . . .→ C11(ū−).

The state trajectories start from the symmetric steady solution to one of the two asymmetric
steady solutions, then converge to the corresponding attracting torus. The two trajectories on the
left side have a significant phase delay, while the two on the right side are almost in the same
phase. This phase difference is a random function that depends on the initial condition. The two
tori also look different because the feature vectors associated with [γ1, γ2]T are asymmetrical from
the multidimensional scaling.

In figure 5.17(a), the evolution of the cluster label of the snapshots illustrates four irreversible
transient dynamics. The transition matrix in figure 5.17(b) exhibits two red diagonals associated
with trajectories to the final state, and two yellow elements associated with the initial state starting
close to the symmetric steady solutions in cluster C1. The transition from C1 to clusters C2 and C7

each have 1/2 probability. The two attracting clusters C6 and C11, associated with the attractors
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of the system, have no transition to any other clusters, as all the terms in the sixth and eleventh
columns Pj 6 = Pj 11 = 0, ∀j. In the residence time matrix of figure 5.17(c), the filled black circles
indicates three typical clusters C1, C2 and C7, which correspond to the vicinity of the three steady
solutions. All the terms in the sixth and eleventh columns Tj 6, Tj 11 are 0 ∀j, which means that
the residence time is infinite, as expected for attractors.

(a)

(b) (c)

Figure 5.17: Cluster-based analysis at Re = 105 in layer 1: (a) transition illustrated with cluster
label, (b) transition matrix, (c) residence time matrix, displayed as in figure 5.10.

Hierarchical network model in Layer 2

We focus on the permanent regime in the cluster C6, and apply the sub-division clustering algo-
rithm 2, which results in K2 = 10 subclusters in layer L2.

(a)

(b)

(c) (d)

Figure 5.18: Cluster-based analysis in layer 2 at Re = 105 for C6: (a) graph of non-trivial transitions
between clusters, as in figure 5.9, (b) transition illustrated with cluster label, (c) transition matrix,
(d) residence time matrix, as in figure 5.10. Two trajectories pass through C6 in the parent layer,
one with m2 = 1, . . . , 6877 and another with m2 = 6878, . . . , 12682.

As illustrated in figure 5.18(a), a closed orbit between the 10 clusters is found. Figure 5.18(b)
shows two transient trajectories pass through C6, the original snapshot index ism = 8124, . . . , 15000
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and m = 44196, . . . , 50000, involving the asymptotic regime of an attractor. The clusters in this
closed orbit have a clear transition rule, as is evidenced by the transition matrix of figure 5.18(c).
The sum of the residence times is 8.45 for the cycle of C3 → C4 → . . . → C10 → C3 from the
residence time matrix in figure 5.18(d).

Hierarchical network model in Layer 3

Based on the detected cycle found in layer L2, the entering snapshots of one subcluster can be used
to sample the quasi-periodic regime. The snapshots recurrently enter into each cluster of layer L2.
The entering states, defined by Tmo, k1, k2

in Eq.(5.20), are the entry in the clusters. The entering
snapshots of a given cluster can be considered as hits in a “Poincaré section” Guckenheimer &
Holmes (2013).

The clustering algorithm in the layer L3 is applied to the snapshots of all the Poincaré sections.
We still apply the sub-division clustering algorithm 2, with Tmo, k1, k2

as characteristic function.
We consider the entry in cluster C6, 10 for illustration, and build a network model in the third

layer L3. In the following, the cluster symbol in the first two layers Ck1=6, k2=10,k3 is omitted.

(a)

(b)

(c) (d)

Figure 5.19: Cluster-based analysis in layer 3 at Re = 105 for C6, 10: (a) graph of non-trivial tran-
sitions between clusters, as in figure 5.9, (b) transition illustrated with cluster label, (c) transition
matrix, (d) residence time matrix, as in figure 5.10. Two trajectories are detected in the “Poincaré
section” of C6, 10, one with m3 = 1, . . . , 81 and another with m3 = 82, . . . , 150.

As shown by the graph of non-trivial transitions shown in figure 5.19(a), there exists a cycle
C3 → C4 → . . .→ C10 → C3. The periodically changing cluster label in figure 5.19(b) indicates the
existence of a recurrent dynamics. The original cluster index corresponds to two sets of discrete
snapshots in the Poincaré section, with interval approximate to the periodic detected in the L2.
From the transition matrix of figure 5.19(c), the two clusters C1 and C2 are not part of the cycle,
but they form the transient part of the dynamics, before entering the cycle. This indicates that
the low frequency modulations only start after the high-frequency oscillations have started in the
second layer. In other words, the low frequency does not exist during the building process of the
vortex shedding, but appears after the vortex shedding has developed to a certain degree.

From the residence time matrix of figure 5.19(d), the number of snapshots that belong to the
cycle in the Poincaré section, determined by averaging over multiple trajectories, is 11.41. The
clustering analysis in the second layer L2 indicates that the trajectories periodically hit the Poincaré
section with 8.45, by summing up the elements in the blocks from C3 to C10 in figure 5.19(d). Hence,
the resulting period of the cyclic process, considering both frequencies, is around 96.41, which is
very close to the real period of 97.10 determined from the DNS.
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Dynamics reconstruction of the hierarchical network model at Re = 105

Figure 5.20 shows the autocorrelation function of the DNS and the HiCNM in the three layers.
The autocorrelation function of the DNS identifies the two dominant frequencies of the dynamics.

(a) (b)

(c)

Figure 5.20: Autocorrelation function for τ ∈ [0, 1500) from DNS (black solid line) and the hierar-
chical network model (red dashed line) in the two layers: (a) L1, (b) L2, and (c) L3, at Re = 105

In layer L1, no oscillation can be identified, and the RMSE of the autocorrelation function is
R1

rms = 22.20. In layer L2, the autocorrelation function of the model matches well with the high-
frequency oscillations. The low-frequency oscillations can be also found, but the amplitude does
not fit well. The error is R2

rms = 1.52, which is good enough for the accuracy. In layer L3, the
amplitude of the low-frequency oscillations can be better reproduced. The error is further reduced
to R3

rms = 0.77 with higher accuracy.

5.4.5 Hierarchical network model at Re=130

At Re = 130, the asymptotic dynamics is chaotic. We apply the clustering algorithm 1 first to the
low-pass filtered data set (§ 5.4.5), before considering some typical flow regimes in the subclusters
(§ 5.4.5).

Hierarchical network model in layer 1

Figure 5.21: Graph of transitions between clusters in layer 1 at Re = 130, displayed as in figure 5.9.
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In the first layer, the filtered data set is used to analyze the mean-field dynamics with K1 = 11
clusters. The detected frequency associated with the coherent component ũ is fc = 0.1225. The
clustering algorithm 1 is applied to the data set, and the non-trivial transitions are shown in
the two-dimensional subspace [γ1, γ2]T of figure 5.21. Four trajectories are found, each issued
from one of the three steady solutions. The symmetric steady solution and the two asymmetric
steady solutions respectively belong to clusters C1, C8, and C10. These clusters evolve through
C1 → C2 → C3, C8 → C9 and C10 → C11 before entering into the same chaotic cloud, consisting of
the remaining clusters.

(a)

(b) (c)

Figure 5.22: Cluster-based analysis at Re = 130 in layer 1: (a) transition illustrated with cluster
label, (b) transition matrix, (c) residence time matrix, displayed as in figure 5.10.

There is no obvious periodic block of oscillating dynamics in the transient dynamics, as illus-
trated by the cluster labels of figure 5.22(a). However, the initial destabilizing process is charac-
terized by a very long residence time in the clusters to which the steady solutions belong. From
the transition matrix of figure 5.22(b), three transitions leading to the chaotic region with 100%
probability, as P3 4, P9 6 and P11 4. Each cluster in the chaotic cloud has at least two possible desti-
nations, with nearly equal probability. The hidden transition dynamics for this chaotic regime will
be analized in the next layer. The residence time matrix of figure 5.22(c) shows four black filled
circles associated with clusters C1, C8, C10 and C2. The steady solutions belong to the first three,
while the symmetric limit cycle belongs to C2, as it will become clear in the next sections.

Hierarchical network model in layer 2

In the second layer L2, we focus on the clusters associated with four typical states detected in
layer L1: the destabilizing state from the symmetric steady solution in C1, the destabilizing state
from the (upward) asymmetric steady solution in C10, the transient state with long residence time
before chaos in C2, and the chaotic state in the group of clusters C4, . . . , C7.

The destabilizing state in the cluster C1

Cluster C1 gathers snapshots in the initial stage of the instability starting from the symmetric steady
solution. In the second layer L2, the snapshots of C1 are dispatched into K2 = 10 subclusters C1, k2 ,
with k2 = 1, . . . , K2. Figure 5.23 shows the transient trajectories with the centroids in the [γ1, γ2]T

plane.
Similar to figure 5.13(a), the snapshots of figure 5.23(a) form two diverging trajectories spiraling

out of the center [0, 0]. A loop is formed between the subclusters C1, 1 and C1, 2 in the inner zone.
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(a)

(b)

(c) (d)

Figure 5.23: Cluster-based analysis in layer 2 at Re = 130 for C1: (a) graph of non-trivial transitions
between clusters, as in figure 5.9, (b) transition illustrated with cluster label, (c) transition matrix,
(d) residence time matrix, as in figure 5.10. Two trajectories pass through C1 in the parent layer,
one with m2 = 1, . . . , 4878 and another with m2 = 4879, . . . , 9760.

In the outer zone, a cycle appears with the periodic trajectory C1, 3 → . . . → C1, 10 → C1, 3.
Figure 5.23(b) shows two trajectories leaving C1, 1. The original snapshot index is m = 1, . . . , 4878
and m = 15001, . . . , 19882, corresponding to the initial stage of the instability.

The transition matrix in figure 5.23(c) corroborates this periodic cycle. The black filled circle
in figure 5.23(d) marks out the transition with a long-residence time, due to the unstable center
that belong to cluster C1, 1.

The transitions C1, 1 → C1, 8, C1, 2 → C1, 3 and C1, 2 → C1, 10 correspond to the departing dynamics
out of the inner zone, due to the development of the instability. We also note the returning
transitions C1, 8 → C1, 2 and C1, 9 → C1, 2. However, the latter do not mean that the flow actually
returns back to the destabilizing center, as both trajectories are spiralling out of the center. This
confusing result comes from the clustering process. The edge between the inner and outer zones is
not well defined, due to the varying density distribution of snapshots along the arms of the spirals.
Cluster C1, 2 overlaps the outer zone, to the difference of cluster C1, 1, which fully belong to the
inner zone. If we ignore the loop in the inner zone and merge C1, 1 and C1, 2, it shows a dynamical
evolution from one cluster to the cycle of a group of clusters.

The destabilizing state in cluster C10

Cluster C10 contains the trajectory spiraling out from the upward-deflected asymmetric steady
solution, as shown in figure 5.24(a). The snapshots are dispatched into K2 = 10 of subclusters
C10, k2 , with k2 = 1, . . . , K2. Together with figure 5.24(b), it shows a one-way transition, departing
from the unstable center with a sparse spiral. The original snapshot index ism = 40001, . . . , 42782
for the initial stage of the destabilisation from one asymmetric steady solution.

The graph of figure 5.24(a) is different from the graphs of figure 5.13(a) and figure 5.23(a),
the latter being associated with the symmetric steady solution. The flow destabilisation from the
asymmetric steady solution develops faster than from the symmetric steady solution, as illustrated
by the linear growth rates σsym = 0.032 and σasym = 0.106 of the respective pairs of unstable eigen-
modes. As a result, the distribution of snapshots is sparser in figure 5.24(a) than in figure 5.23(a).
As indicated by figure 5.24(b), 93.2% of the 2782 snapshots of cluster C10 belongs to subcluster
C10, 1. The flow quickly travels through all the remaining clusters in only 188 snapshots.

The centroids of figure 5.23(a) and figure 5.24(a) have two main differences: (i) The inner
jet is symmetric in the centroids of figure 5.23(a) while it is deflected upwards in the controids
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(a)

(b)

(c) (d)

Figure 5.24: Cluster-based analysis in layer 2 at Re = 130 for C10: (a) graph of non-trivial transi-
tions between clusters, as in figure 5.9, (b) transition illustrated with cluster label, (c) transition
matrix, (d) residence time matrix, as in figure 5.10. A sole trajectorie pass through C10 in the
parent layer with m2 = 1, . . . , 2782.

of figure 5.24(a); (ii) the von Kármán street of vorticies of figure 5.23(a) exhibits positive and
negative vortices well apart from each other in the y-axis. In figure 5.24(a), the positive and
negative vortices are of a larger strength and adjacent to the x-axis, together with a longer shear
layer.

Transient regime before chaos in cluster C2

(a)

(b)

(c) (d)

Figure 5.25: Cluster-based analysis in layer 2 at Re = 130 for C2: (a) graph of non-trivial transitions
between clusters, as in figure 5.9, (b) transition illustrated with cluster label, (c) transition matrix,
(d) residence time matrix, as in figure 5.10. Two trajectories pass through C2 in the parent layer,
one with m2 = 1, . . . , 1088 and another with m2 = 1089, . . . , 2175.

Cluster C2 contains two transient trajectories which connect the symmetric steady solution in C1

to the chaotic cloud, with the original snapshot index m = 4879, . . . , 5966 and 19883, . . . , 20969.
Figure 5.25(b) shows that the flow periodically travels through the ten subclusters in the child

layer L2 of cluster C2. As for the centroids of figure 5.25, the alley of vortices do not cross the
x-axis. The closed-transitions C1 → . . . → C10 → C1 is further evidenced in the transition matrix
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of figure 5.25(c). The residence times of figure 5.25(d) are rather uniform and the averaged period
is 6.62.

The chaotic state in the group of clusters C4, . . . , C7

When dealing with the chaotic dynamics, considering each cluster C4, . . . , C7 separately is doable.
However, instead of building a network model for each cluster separately, we can build an overall
model for these four clusters in the chaotic regime. Therefore, for analyzing the chaotic dynamics,
we consider all the clusters that belong to the chaotic cloud in layer L1 as a whole.

Figure 5.26: Graph of transitions between clusters in layer 2 at Re = 130 for the chaotic clusters
of L1, displayed as in figure 5.9.

From figure 5.22(a), all four trajectories will reach the same chaotic attractor described by
the chaotic clusters, with the original snapshot index m = 6281, . . . , 15000, 21301, . . . , 30000,
33365, . . . , 40000 and 43068, . . . , 50000. In figure 5.26, the closed orbit of the clusters C1 → . . .→
C6 → C1 is formed, with a relatively high probability of transition between the successive clusters.
The flow field of the centroids of the first six clusters form a complete cycle of vortex shedding.
This is interesting, as it reminds the periodic and quasi-periodic dynamics respectively observed
at Re = 80 and Re = 105. The periodic block of the transition matrix of figure 5.27(b), from C1 to
C6, corroborates the existence of the periodic dynamics. The centroids of the clusters in the cycle
present a similar structure of coherence, as can be seen in figure 5.26. There are also other possible
transitions from clusters on this orbit to the remaining clusters with much smaller probability. The
residence times shown in figure 5.27(c) for each cluster on the orbit are uniform, and the averaged
period along the complete cycle is 7.78 by summing up the elements in the block from C1 to C6.

The remaining clusters C7, . . . , C10 have multiple destinations with quasi-random possibilities.
Even though the probabilities of these random transitions are small, they contribute to the chaotic
dynamics of the flow field, with recurrent transitions C1 → C10, C9 → C1, and so on. The flow
fields of the associated centroids are shown in figure 5.26. Their structure looks like distortions
of the vortex shedding cycle formed by the first six clusters. The network model indicates that
the fully chaotic state still contains a main cycle of clusters associated with a periodic vortex
shedding, together with the random jumping to the clusters associated with a stochastic disorder
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(a)

(b) (c)

Figure 5.27: Cluster-based analysis in layer 2 at Re = 130 for the chaotic clusters of L1: (a)
transition illustrated with cluster label, (b) transition matrix, (c) residence time matrix, as in
figure 5.10. All four trajectories reach the chaotic clusters,withm2 = 1, . . . , 8720, 8721, . . . , 17420,
17421, . . . , 24056 and 24057, . . . , 30989.

in the wake. In this case, the transition matrix can be used to build a stochastic model, as shown
in appendix 5.D.

Dynamics reconstruction of the hierarchical network model at Re = 130

Figure 5.28 shows the autocorrelation function of the DNS and the HiCNM in the two layers.
We stop the hierarchical modelling in layer L2, as both the transient and chaotic dynamics can
be fairly reproduced with a limited number of clusters. The autocorrelation function of the DNS

(a) (b)

Figure 5.28: Autocorrelation function for τ ∈ [0, 1500) from DNS (black solid line) and the the
hierarchical network model (red dashed line) in the two layers: (a) L1 and (b) L2, at Re = 130.

shows chaotic oscillations with a dominant frequency. In layer L1, no oscillation can be identified,
and the RMSE of the autocorrelation function is R1

rms = 6.94. In layer L2, R2
rms = 3.42. The

autocorrelation function of the model matches well with the dominant frequency of the oscillations,
but the R̂L2(τ) value can hardly match.

5.5 Conclusion
We have proposed a data-driven modelling methodology, which consists of hierarchical clustering
and network modelling on top of the cluster-based reduced-order model (CROM). The hierarchical
structure is physically consistent with the weakly nonlinear model derived from the mean-field
consideration. The flow field is decomposed into a hierarchy of components, namely the slowly
varying mean-flow field, the dominant vortex shedding and the secondary components. The result-
ing hierarchical cluster-based reduced-order model (HiCROM) can automate the modelling process
based on the representative states and systematically trace the flow dynamics on multiple scales,
involving multiple frequencies and multiple attractors. The cluster-based hierarchical network
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model (HiCNM) presented in this work is a HiCROM using the directed network to describe the
non-trivial transitions between clusters. Based on the classical CNM, we derived the HiCNM for
the transient and post-transient dynamics of the two-dimensional incompressible “fluidic pinball”,
characterized by multiple invariant sets and dynamics, for different Reynolds numbers.

The considered data set consists of snapshots of the velocity field computed from the direct
numerical simulation starting with different initial conditions, which refer to four trajectories: two
mirror-conjugated trajectories starting in the vicinity of the symmetric steady solution and the two
others starting from the two asymmetric steady solutions. At the considered Reynolds numbers,
all the steady solutions are unstable. In this sense, the data set contains the transient and post-
transient dynamics involving all the invariant sets of the system. The hierarchical modelling is
based on the hierarchical clustering under the mean-field consideration. In the first layer, the
first k-means++ clustering algorithm is applied to the low-pass filtered data and partitions the
snapshots into different clusters, as in algorithm 1. The flow field fluctuations are responsible for
the nonlinear mean-field distortions through the Reynolds stress. As a result, the snapshots in
different clusters exhibit different states of slowly changing mean-flow field. The network model
in the first layer focuses on the global transitions between different invariant sets. The clustering
result in the first layer will guide the clustering process in the second layer. The second clustering
process in algorithm 2 partitions the snapshots in the same cluster again into sub-clusters, according
to the original data. Based on the sub-clusters, a new network model can be built with a better
interpolation of the local dynamics. The clustering process is similar to the divisive hierarchical
clustering, which can continue until each snapshot is a cluster. However, the number of layers
depends on the number of characteristic scales in the system, such as the number of coherent
frequencies or the fast and slow terms. Hence, two or three layers will be enough to extract the
transient and post-transient dynamics out of multiple invariant sets and multiple frequencies in
our case.

At Re = 80, the six invariant sets were well identified in the first layer of the HiCNM, including
the dynamics around three unstable steady solutions (C1, C12, C17), one unstable symmetric limit
cycle (C7) and two stable asymmetric limit cycles (C9, C11). The transient dynamics between the
multiple invariant sets, and the temporal development of the degrees of freedom associated with the
static symmetry breaking, are identified by the model in the first layer. We further presented the
model in the second layer involving the three exact solutions: the destabilization of the symmetric
steady solution in cluster C1, the dynamics around the symmetric limit cycle in cluster C7, and the
permanent regime on the asymmetric limit cycle in cluster C9. Compared to a CNM with the same
number of clusters, the HiCNM preserves the advantage of automatable modelling, optimizes the
cluster distribution, and makes it human-interpretable.

For the quasi-periodic flow regime at Re = 105, the first two layers are identical to the case at
Re = 80. The HiCNM in the first layer identified the different invariant sets, and the model in the
second layer described the local dynamics on the invariant sets. We further introduced the third
layer to characterize the new coherent structures at low frequency. The sub-division clustering in
algorithm 2 was applied on the entering snapshots of the cluster C6, 10. The low frequency was
successfully identified, while the centroids identified the tiny changes of the oscillating jet in the
near wake.

At Re = 130, three unstable steady solutions and one chaotic attracting set have been caught in
the first layer. The chaotic zone was divided into several clusters. In the second layer, we focused
on the local structures around the invariant sets. We determined the dynamics of the initial
transients from the unstable steady solutions in C1 and C10. Besides, to preserve the continuity of
the data, the second clustering process was applied to the group of clusters in the chaotic regime
Ck1 , k1 = 4, . . . , 7. An unstable cycle was identified for the chaotic regime, characterized by random
transitions from and to the chaotic clusters with low probability.

Compared to other reduced-order modelling strategies, HiCROM inherits the excellent recog-
nition performance of classical CROM, and provides a universal modelling strategy for identifying
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transient and post-transient dynamics in a self-supervised manner. Multiple transient dynamics
can be considered at the same time, which gives a global view of the trajectories between the
different invariant sets. Thus, it provides a better understanding of the complex flow dynamics
for the multiscale, multi-frequencies and multi-attractors problem. To summarize, the HiCNM
applied in this work has the following advantages comparing to classical CNM:

(i) A more robust clustering result with the hierarchical modelling under mean-field considera-
tion, and a better distribution of the clusters.

(ii) Better ability to identify the topology on the multi-attractor and multiscale problem. HiCNM
identifies transient trajectories between different invariant sets, and locally constructs new
CNMs for the different invariant sets if necessary.

(iii) No need to find a good compromise between the resolution (the number of clusters) and
the network complexity. All clustering algorithms use 10-20 clusters, and the number of
clusters depends on the accurate representation needs of the scale involved in the layer. The
number of layers depends on the number of characteristic scales in the system. The clusters
of different scales or characteristics can be systematically distributed in multiple layers with
a clear hierarchy.

(iv) The subdivision is flexible according to the actual needs. We can freely choose one or more
object clusters that need to be divided in the next layer to preserve the time continuity and
the local characteristics of the data.

The price is the need for a physical intuition guiding the hierarchical clustering and modelling by
adjusting the design parameters. As exemplified in this work, the HiCNM at Re = 80 is fully
automated. After reaching the second layer, the HiCNM can well identify the mean flow and the
coherent structure with a single frequency. The deeper layers cannot identify other meaningful
dynamics. At Re = 105, the third layer can identify the secondary frequency with the entering
sanpshots in one cluster in the second layer. At Re = 130, we merge the asymptotic chaotic
clusters in the first layer together, and build a model for them in the second layer to maintain their
dynamic continuity. This sacrifices automation but results in a better dynamic representation. We
foresee other data-driven methods for these decisions in future work to promote the automation of
the hierarchical network model.

In summary, HiCNM provides a flexible and automatable cluster-based modelling framework
for complex flow dynamics, and shows its ability and applicability to identify transient and post-
transient, multi-frequency, multi-attractor dynamics. Since the Reynolds decomposition under the
mean-field consideration is common for fluid flows, the hierarchical strategy should be extendable
to other flows. Especially for cases that require high-resolution analysis with a large number of
clusters, HiCNM greatly simplifies the complexity of the analysis and improves its interpretation.
For high turbulence without frequency boundaries, such as isotropic turbulence, it is reasonable
to use a network model first to check whether there is a grouping relationship between clusters,
before deciding whether a HiCNM needs to be constructed. HiCNM is promising for a variety
of potential applications, such as topology identification of the state space for complex dynamics,
recognition and analysis of the temporal evolution of degrees of freedom associated with different
types of instabilities (Hopf, pitchfork, etc.), and feature extraction of the dynamical structure
when different spatial/temporal scales are involved. An alternative direction of this work is the
HiCNM-based control, with the aim to find an optimized control strategy from various control
laws with multiple scales in different layers.
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5.A Blockage effect in the fluidic pinball

We run the DNS with an enlarged computational domain with the blockage ratio B = 0.025, which
is bounded by a rectangular box of size [−25D,+75D] × [−50D,+50D], as shown in figure 5.29.
The unstructured grid has 14 831 triangles and 29 961 vertices as compared to the grid in § 5.2.1.

Figure 5.29: Configuration of the fluidic pinball and dimensions of the simulated domain of the
blockage ratio B = 0.025. A typical field of vorticity at Re = 150 is represented in color with
[−1.5, 1.5]. The upstream velocity is denoted U∞. An observation zone of size [−4D,+20D] ×
[−4D,+4D] is marked out with a red dashed box.

The vortices in the near wake 0 < x < 20D are concentrated in |y| < 4D. Linear stability
analysis of the symmetric steady solution indicates that the critical value of the primary Hopf
bifurcation does not change Re1 = 18, but the next bifurcations are found for larger Reynolds
numbers. The pitchfork bifurcation of the symmetric steady solution is changed to Re2 = 81, but
the transient and post transient dynamics for different flow regimes remain qualitatively the same,
as shown in figure 5.30.

Enlarging the computational domain reduces the blockage effect, but the blockage is practically
difficult to suppress or even reduce. In this work, we are interested in the richness of the dynamics
to evaluate our method. The blockage is not critical as we have similar numerical results for the
transient and post-transient dynamics. How the location of lateral boundaries, as well as upstream
and downstream boundaries, affect the bounded flow will be discussed in our future work.
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(a) (b)

(c) (d)

Figure 5.30: Transient and post-transient dynamics of the fluidic pinball with the enlarged grid,
illustrated with the time evolution of the lift coefficients CL starting with the symmetric steady
solution at different Reynolds numbers: Re = 30 (a) , 90 (b) , 120 (c), 150 (d).

5.B Vertical transitions in the hierarchical network model
In figure 5.7, the snapshots entering into and leaving from Ckl−1

are marked out for each trajectory
by the characteristic function (5.20), and can be used to describe the vertical transitions.

When a cluster in the parent layer Ckl−1
is activated, it also activates a horizontal transition

through all its subclusters in the child layer. The ports of entry and exit for the subclusters
are indicated by the entering and exiting snapshots. The entering snapshots belong to the first
activated sub-cluster in each trajectory. The horizontal transition through subclusters ends with
the exiting snapshots, and is forced to return to the parent layer. At the next time step after the
exiting snapshots, Ckl−1

and all its subclusters will deactivate.
With an additional condition from the subclusters of the child layer, the characteristic function

(5.20) can be defined as

χmo,kl−1→kl :=

{
1, if um−1 /∈ Ckl−1

& um ∈ Ckl−1,kl ,

0, otherwise.
(5.25a)

χme,kl−1→kl :=

{
1, if um+1 /∈ Ckl−1

& um ∈ Ckl−1,kl ,

0, otherwise.
(5.25b)

The number of entering snapshots no and of exiting snapshots ne in each subclusters Ck1,··· ,kl
read

no, kl =
M∑
m=1

χmo,kl−1→kl , ne, kl =
M∑
m=1

χme,kl−1→kl , (5.26)

where only the final subscript of the subcluster index in the current layer is indicated, and as well
in the following.

For the cluster Ckl−1
, the probability of vertical transition into and out of the child layer Qo,kl

and Qe,kl , are defined as
Qo, kl =

no, kl
no

, Qe, kl =
ne, kl
ne

. (5.27)

Note that
kl∑
kl=1

Qo, kl = 1 and
kl∑
kl=1

Qe, kl = 1.

An example of the hierarchical network model

An example of HiCNM is illustrated in figure 5.31. The model is constructed from the full data
set containing one or several individual trajectories of discrete state snapshots, each starting from
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different initial conditions and converging toward possibly different attracting sets. From the top
to the bottom of this tree structure, only one cluster in each parent layer has been chosen and
divided into subclusters in the child layer. For the clusters in each layer, we only indicate the
sub-cluster number in the current layer.

Figure 5.31: An illustration of an hierarchical network model. The vertical structure describes the
transitions between the parent-child layers with dashed arrows: the red dashed arrows present the
possible inlet from the parent layer to the child layer, and the blue dashed arrows denote the outlet
back to the parent layer. The horizontal structure presents the transition between the subclusters
with arrows. The numbers indicate the possibility of each transition.

The full data set is treated as one cluster C0 on the top, which ensembles all the snapshots.
The clustering algorithm in the first layer has divided the snapshots in this cluster into eight
subclusters. Two entering subclusters C1 and C6 are sketched with the same probability, as could
be found when the full data set contains two pathways with equal probability in the state space
of the system. The trajectories starting from the two entering subclusters have no intersecting
cluster, and return to C0 from their respective existing subclusters, C5 and C8, with the same
probability. The trajectory in layer L1, C6 → C7 → C8 is a simple one-way transition. The
trajectory C1 → · · · → C5 is more complex, due to a possible return dynamics from C2 to C1. The
clustering algorithm works on the snapshots in cluster C3 and has divided them into five subclusters
in the second layer L2. For the vertical transition, only one entering sub-cluster has been found but
with three exiting subclusters, which means that the snapshots leaving cluster C3 belong to one of
these three subclusters. The dynamics between the subclusters is a simple one-way transition, but
with a cycle C3, 3 → C3, 4 → C3, 5 → C3, 3, which indicates a periodic dynamics. Next the clustering
algorithm is applied to the snapshots in cluster C3, 2, resulting in four subclusters in the third layer
L3. Among the subclusters, there exist two entering subclusters and three exiting subclusters. We
notice that C3, 2, 4 can work as either an entering sub-cluster or an exiting sub-cluster. The reason
is that the entering snapshots and the exiting snapshots of C3, 2 belong to the same sub-cluster in
the child layer. A periodic dynamics exists between the subclusters C3, 2, 1 → · · · → C3, 2, 4 → C3, 2, 1.

A full dendrogram, as in figure 5.6, is also available if all the clusters in the parent layer
are divided. However, in actual practice, it is not necessary to divide every cluster in the state
space. The clustering algorithm in the first layer divides different invariant sets and the transient
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states into different clusters. A classic CNM is used to describe the transient dynamics between
the invariant sets. In the second layer, the refined dynamics on the invariant sets exhibits new
interesting features. The snapshots are often concentrated close to the stable/unstable invariant
sets. Within the same invariant set, the snapshots have a relatively homogeneous distribution
according to certain rules. The local dynamics are relatively simple and easy to extract because
the clustering result depends entirely on the distribution in the state space. The transient states
from an unstable set to a stable set mix the dynamical behavior of different invariant sets. Hence,
the clusters close to invariant sets need to be divided again, namely close to steady solution, to
metastable solution, or to the stable solution. Usually, these clusters have some characteristics,
like a large number of snapshots in the cluster or multiple possible transitions to other clusters.

5.C Clustering with POD
The computational cost can be significantly reduced with POD, as a lossless POD can highly
compress the flow field data to accelerate the clustering algorithm. The clustering algorithm can
be applied to the compressed data instead of the high-dimensional velocity fields. In this work, the
snapshots of velocity field are pre-processed by a proper orthogonal decomposition (POD), where
us(x) is the symmetric steady solution at the Reynolds number under consideration. Compared
to the classical POD method, the symmetric steady solution us(x) has been used instead of the
ensemble-averaged mean flow ū(x), because our analysis deals with multiple invariant sets and
the mean flow is not a Navier-Stokes solution, which has no dynamical relevance. The fluctuating
flow field can be decomposed on the basis of the POD modes ui(x),

um(x)− us(x) ≈
N∑
i=1

ami ui(x), (5.28)

where the ami are the mode amplitudes. A complete basis for the modal decomposition is given
when N = M (Berkooz et al., 1993). For our cluster-based analysis, the number of modes could be
reduced to N = 400 without loss of relevant information. The pre-processing algorithm is detailed
in algorithm 3. The computational cost for the cluster analysis can be significantly reduced in the

Algorithm 3 Pre-processing the velocity field by POD
Input: um: snapshots of velocity field; us: symmetric steady solution
Output: ui: leading POD modes; ami : mode amplitudes
1: compute POD modes ui, i = 1, . . . , N , for the data base {um(x)}, m = 1, . . . ,M , with choos-

ing us as the base-flow;
2: compute the mode amplitudes ami = (um − us,ui)Ω;
3: save the leading N POD modes and the corresponding mode amplitudes.

POD subspace (Kaiser et al., 2014; Li et al., 2021), thus enabling an accurate compressed sensing
of the original datasets. The centroids of the velocity field based on the POD mode amplitudes
now read:

ck = us +
1

nk

M∑
m=1

χmk

N∑
i=1

ami ui. (5.29)

We note that this POD process is just an option for data compression to speed up the clustering
process, which can approximate the data distribution in a POD subspace with high accuracy. We
can even apply the cluster-based approach to a feature-based subspace of the flow data, as Nair
et al. (2019) who applied CROM to a 3D phase space of the drag and lift forces.

In contrast to the non-linear reconstruction of flows using a POD basis, the cluster-based
approach neither decomposes the flow field nor extracts the dominant structures with the most
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fluctuating energies. Instead, it gathers similar snapshots and represents them with a linear com-
bination of snapshots within the cluster. This combination is always in the original data space
and there is no projection comparing to a POD model. In addition, the modelling process of the
cluster-based method is automated based on the data topology in the state space, which is even
suitable for multiple invariant sets. The differences between the cluster-based methods and the
POD-based model have been discussed in Kaiser et al. (2014); Li et al. (2021). As an extension,
the HiCNM strategy provides a multiscale solution for describing complex flow with transient
dynamics.

5.D Stochastic model for asymptotic regime
In § 5.4, we have applied HiCNMs for the identification and analysis of complex dynamics with
multiple scales and multiple invariant sets. The centroids and cluster index provide a concise
representation of the original data-set, and we can reconstruct the flow based on the time evolution
of the cluster index. From the cluster analysis, we use a transition matrix to statistically record
the possible motions between clusters, which can be used to predict the evolution of the cluster
index. Hence, the dynamics reconstruction can also come from the stochastic model based on the
transition matrix.

For a single trajectory, the transient dynamics is fully predictable and converges to the asymp-
totic dynamics. A stochastic model for the transient dynamics is not suggested because the clus-
tering result may suffer from the multiscale problem, and some random walks will be mistakenly
introduced into the transition matrix, like the destabilizing stage from the steady solution. In
contrast, if there is no multiscale problem, all the transition probabilities should be 1 due to the
predictable transient dynamics. Hence, there is no need to build the dynamics from a stochastic
model and to discuss the probability distribution.

The asymptotic limit cycle at Re = 80 and torus at Re = 105 are also fully predictable as there
is no random walk. Only for the chaotic dynamics in the asymptotic regime at Re = 130, can
the transition matrix be used to construct a stochastic model. According to the current state in
one of the clusters, it will choose the next destination according to the probability of transitions.
Based on the local dynamics for the chaotic state in the group of clusters Ck1 , k1 = 4, . . . , 7,
the reconstructed dynamics and the probability distribution provided by the stochastic model
are shown in figure 5.32. The main cycle C1 → · · · → C6 → C1 and the random walks to Ck2 ,

(a) (b)

Figure 5.32: Time evolution of the cluster index: the reconstructed dynamics (red curve) with the
same initial cluster of the original dynamics (gray curve with colored markers) form2 = 1, . . . , 8720
(a); and probability distribution of all m2 in figure 5.27 by a stochastic model using the transition
matrix (b), at Re = 130.

k2 = 7, . . . , 10 have been fairly reproduced, with the appropriate probability distribution.
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Chapter 6

Conclusion

This final chapter proposes an overall conclusion and some perspectives for future work.
In this thesis, we presented a challenging benchmark example for automatable reduced-order

modelling using first principles and machine learning. We chose the incompressible two-dimensional
wake flow around the fluidic pinball because it has many typical characteristics of wake flows.
Direct numerical simulations (DNS) at different values of the Reynolds number were performed,
yielding different flow regimes: periodic (symmetric and asymmetric), quasi-periodic and chaotic
flow regimes. For each considered value of the Reynolds number, the simulations were initiated in
the vicinity of an unstable fixed point. The transient and post-transient dynamics of the unsteady
flow showed various transient behaviours, involving the steady solutions, periodic solutions, quasi-
periodic and chaotic attractors. Reduced-order modelling for the complex dynamics that results
from the interaction between the dominant structures associated with different kinds of instabilities
is undoubtedly a challenging task.

In order to obtain a sparse human-interpretable model of the flow dynamics, we started with
the theoretical and numerical analyses of the governing equations. Linear stability analysis of
the steady solutions, Floquet analysis of the periodic solutions, and the nonlinear analysis of the
asymptotic dynamics provided a comprehensive understanding of the underlying mechanisms at
play in the flow. This approach resulted in three different mean-field models: (i) the least-order
mean-field model of Chapter 2, based on the elementary degrees of freedom associated with the
Hopf and pitchfork bifurcations; (ii) the Galerkin force model supported by the mean-field model
of Chapter 4, bridging the Galerkin model in the state space to the unsteady force dynamics; (iii)
the hierarchical cluster-based reduced-order model of Chapter 5, generalizing to more complex
dynamics which involve multi-scale, multi-frequency, and multi-attractor properties, as in the case
of quasi-periodic or chaotic regimes. The mean-field models proposed in this work led to a better
understanding of the coupling between the fluctuating and mean-flow fields. It also improved
the performance and applicability of data-driven models. In the following, we summarize the
contributions of this work and propose some perspectives for future work from the viewpoint of
both flow analysis and mean-field modelling.

6.1 Flow analysis with transient and post-transient dynamics

For multi-structure configurations, like the fluidic pinball with three cylinders, various flow mecha-
nisms may exist. Due to the complex interactions of the structures, the flow behaviour is sensitive
to the spatial arrangement and the Reynolds number, which is far more complex than a single-
structure configuration. This study mainly focuses on the unforced fluidic pinball and study the
flow characterized by a single control parameter, the Reynolds number. The wake flow still presents
various flow patterns at different values of the Reynolds number, including: (i) three steady flows
with different states of the base-bleeding jet; (ii) three periodic von Kármán vortex street with
different states of the base-bleeding jet; (iii) two quasi-periodic von Kármán vortex street with the
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base-bleeding jet deflected up or down oscillating at a low frequency; (iv) a chaotic von Kármán
vortex street with the base-bleeding jet switching up and down randomly. These flow patterns rep-
resent exact Navier-Stokes solutions. They are invariant sets and attractors in the phase space, and
result from the Bénard-Von Kármán instability, the symmetry-breaking instability, and the com-
plex interactions between them. From the standpoint of bifurcation theory, the system undergoes
a supercritical Hopf bifurcation, a supercritical pitchfork bifurcation, a Neimar-Säcker bifurcation
and a transition to chaos, as the Reynolds number is increased. These are common bifurcations in
fluid mechanics. The flow analysis and modelling presented in this thesis can therefore apply to
other flow configurations exhibiting similar instabilities and dynamics. Hence, the fluidic pinball
can be seen as a great benchmark configuration for the analysis of complex flow dynamics and
modelling strategies.

Transient and post-transient dynamics discussed in this work involve unsteady dynamics ini-
tiated close to unstable steady solutions. The coupling, competition and interaction of the main
features associated with the above instabilities lead to very different transient behaviour. The
temporal evolution of flow dynamics highly depends on the initial condition. A trajectory starting
from an unstable steady solution can first be attracted by an unstable solution before being cap-
tured by an attractor. Multi-scale dynamics (in time and space) are concerned, including the linear
dynamics in the neighbourhood of the steady solution, the weakly nonlinear dynamics during the
transition and the nonlinear dynamics in the asymptotic regime on the attractor.

In order to get a comprehensive overview of the underlying mechanisms in this configuration,
we conducted the linear stability analysis of the steady solutions and the nonlinear analysis of the
transient and post-transient dynamics. As discussed in Chapter 2, the linear stability analysis of
the steady solutions at different Reynolds numbers revealed two Hopf bifurcations and a pitchfork
bifurcation. The corresponding unstable eigenmodes are reflection-antisymmetric. The theoretical
analysis of the nonlinear saturation provides deep insights into the coupling between the unstable
eigenmodes and the mean-field deformation, which provides a theoretical foundation for our mean-
field modelling.

A closer view of the two Hopf bifurcations shows that their eigenvalues have different growth
rates but similar frequencies. The related two pairs of complex-conjugated eigenvectors share
similar spatial structures. The first Hopf bifurcation occurs supercritically at Re = 18. The
second Hopf bifurcation occurs at Re = 64 with a smaller growth rate. A competing relation
exists between these two Hopf bifurcations, with the size of their growth rates swapping at a
higher Reynolds number. Interestingly, a stable quasi-periodic regime was observed at Re = 104.
The bifurcation of periodic solution occurs almost coincidentally with the crossover of the growth
rate of the two Hopf bifurcations of the base flow, as shown in figure 1.9. As already known,
the linear stability analysis only involves the dynamics at the onset of the instability, with tiny
perturbations in the neighbourhood of the steady solution. In contrast, the stable quasi-periodic
regime is an attractor in the asymptotic regime. A better understanding of the quasi-periodic
regime could arise from an in-depth study of the coupling between these two Hopf instabilities.

The Bénard-Von Kármán instability discussed above changes the wake globally, resulting in an
oscillatory dynamics. The symmetry-breaking instability at the onset of the pitchfork bifurcation,
occurring at Re = 68, have only a local impact on the flow, since it only affects the base-bleeding
jet. However, the symmetry breaking of the jet changes the wake flow from a global viewpoint. In
Chapter 3, we discussed the coupling and competition between the two instabilities. Generically, a
local bifurcation only affects the stability of one equilibrium and cannot affect the stability of other
equilibria. However, two coinciding pitchfork local bifurcations of the steady and periodic Navier-
Stokes solutions were found in the fluidic pinball. The symmetry breaking of both the steady
flow and the von Kármán vortex street occurs at nearly the same critical Reynolds number. The
linear stability analysis of the steady flow and the Floquet stability analysis of the von Kármán
street provide similar eigenmodes with the dominant structure concentrated in the near-wake.
This indicates that the symmetry-breaking instability of the base-bleeding jet is spatially nearly
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independent to the Bénard-Von Kármán instability in the downstream wake. The uncoupling of
these two different instabilities leads to a coincident bifurcating mechanism, which is observed and
discussed for the first time in fluid mechanics.

In this work, we mainly discussed the first two instabilities and the coupling relation between
them. With an increasing Reynolds number, the effect of the von Kármán vortex street on the
base-bleeding jet becomes stronger. The strong coupling mechanisms in the quasi-periodic and
chaotic regimes remain, however, to be elucidated. The bifurcations reported in this work are
supercritical. How will the model be modified in the sub-critical case? Are there any changes to
the elementary degrees of freedom associated with a subcritical Hopf bifurcation or a subcritical
pitchfork bifurcation? We suspect that additional shift modes will have to be introduced, but their
structure remains to be seen.

Sensitivity analysis could be conducted in order to determine the optimal external excitation
which would give rise to energy amplification in the wake flow. Such a study could provide
new insights into the most sensitive regions associated with different instabilities. An alternative
direction is to analyse the fluidic pinball under different control laws. The combinations of three
rotating cylinders offer many possible control laws. The analytical works presented in this thesis
could benefit the three elementary control laws of boat tailing, base-bleeding and Coanda forcing,
which would provide a parameter-dependent dynamics analysis of this system. More generally, the
gap ratio between the cylinders can also be a control parameter for various flow instabilities.

6.2 Mean-field modelling with first principles and machine
learning

Numerous machine learning techniques enable dimensionality reduction and data-driven modelling.
A mathematical model is precise to explain the first principles and works as the governing equations
of the considered system. However, due to the high-dimensionality, non-linearity, and spatial
and temporal multi-scale behaviour, we still need a human-interpretable model for a complete
understanding of the transient dynamics and instabilities in the considered flow.

The most prominent finding in this thesis is that the mean-field consideration can provide a
theoretical foundation for data-driven modelling, forcing the dynamical model onto the mean-field
manifold. The mean-field models presented in this work can be mainly divided into two kinds of
models: projection-based and cluster-based models. Both were applied to the complex dynamics
of the fluidic pinball with multiple trajectories issued from the vicinity of three steady solutions,
at the different Reynolds numbers.

For the projection-based modelling strategies, we first derived the least-order mean-field Galerkin
model of Chapter 2, for the first two successive bifurcations, introducing the mean-field assump-
tion into the standard Galerkin framework. The mean-field considerations enable us to use as few
modes as possible to model the dynamics, and these modes are the optimal choice for the underly-
ing instabilities. The original system is projected onto a low-dimensional subspace with an optimal
basis, which guarantees the elementary components of the original dynamical system. The result-
ing mean-field Galerkin system inherits the quadratic nonlinearity of the governing Navier-Stokes
equations, and present sparsity through a symmetry-based decomposition. The challenging issues
for the standard Galerkin model, like instability growth, transient behaviour, and robustness of
the identified model, can be cured by data-driven techniques. The SINDy (Sparse Identification of
Nonlinear Dynamics) algorithm (Brunton et al., 2016a) provides an established elegant framework
for a quadratic Galerkin regression. We further proposed the Galerkin force model of Chapter 4,
supported by the least-order mean-field model. Based on a general Galerkin decomposition of the
unsteady incompressible flow, the aerodynamic force on the immersion body could be derived as a
constant-linear-quadratic function of the mode amplitudes by projecting the force formulae onto
a linearly independent low-dimensional subspace. In relation to the least-order mean-field model,
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the force modelling process could be further simplified by considering the symmetry properties of
the modes and using sparse calibration. The above two mean-field modelling strategies combine
data-driven modelling under physical constraints. The resulting models are sparse and provide
insights into the complex dynamics that can result from the interaction between the elementary
degrees of freedom associated with the two bifurcations.

There are several directions for future works. The first direction is the automated physics-based
modelling, like the mean-field Galerkin model and the Galerkin force model presented above.
The physical or mathematical models can be projected onto an optimal subspace, then using
machine learning techniques to identify the model. The dimensionality reduction is essential for
this methodology, and the selected low-dimensional manifold directly decide the performance of
the model. In our case, the modal selection is from dynamical consideration based on the analytical
works. It is promising to automate this process with physical constraints, like mean-field, symmetry
and frequency considerations.

The alternative choice is to automate manifold identification. The traditional way is mode-
based with choosing the elementary modes for different instabilities, as exemplified in our works.
The considered manifold basis are global modes with typical spatial structures. Another strategy
is the feature-based manifold modelling (Loiseau et al., 2018a), liberating from the spatial modes
and using the data from sensors or the forces information as the manifold basis.

For quasi-periodic and chaotic dynamics, the flow may have undergone many different insta-
bilities with increasing Reynolds number. It is extremely difficult to carry out the analysis of
the constitutive elements of the dynamics and their interactions. The data-driven cluster-based
modelling strategy better serves this goal. In Chapter 5, a self-supervised hierarchical cluster-
based reduced-order modelling (HiCROM) methodology is proposed for bifurcations and topology
identification of complex dynamics. The centroids after clustering are still in the original data
space. The clustering process works as a kinematic compression of input data instead of project-
ing the data into an approximate subspace. The classical cluster-based network only considers
the asymptotic dynamics on attractors. The hierarchical modelling strategy enables the network
model for more complex transient and post-transient dynamics. The hierarchical clustering process
is self-supervised with Reynolds decomposition under the mean-field consideration.

This methodology is a universal modelling strategy for complex dynamics of multiple scales and
frequencies. The HiCNMs are successfully applied to the transient and post-transient dynamics of
four trajectories starting with four different initial conditions at three Reynolds numbers: for the
case involving six exact solutions at Re = 80, for the case involving three steady solutions and two
quasi-periodic torus attractor at Re = 105, and for the case involving three steady solutions and
a chaotic attractor at Re = 130, respectively.

HiCROM provides a flexible and general framework of cluster-based modelling for complex
transient and post-transient dynamics for various fluid flows. The test for three cases with different
coupling mechanisms shows its ability and applicability to extract transient and post-transient,
multi-frequency, multi-attractor behaviours. A variety of potential applications is promissing, such
as the topology identification of the state space with complex dynamics, the feature recognition
of different instabilities, and the structure extraction with different spatial/time scales. We can
also build a hierarchical projection-based model with local POD modes (Amsallem et al., 2012)
under the mean-field consideration. The cluster-based control strategy (Nair et al., 2019) is also
a promising direction to achieve an optimization from various control laws with multiple scales
in hierarchical structure. Last but not least, the low-order statistical modelling of intermittence
dynamics based on clusters also shows a good promise with considering stochasticity (Sapsis, 2021).

We have focused on the projection-based mean-field modelling and the cluter-based mean-field
modelling in this thesis. The mean-field model sacrifices certain liberty to enhance a universal and
inherent property from Reynolds stress closure. The data-driven mean-field modelling would be a
fruitful area for further work.
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Dans cette thèse, nous ouvrons la voie à la réduction de modèle automatisée pour la dynamique
des fluides utilisant les premiers principes et des techniques d’apprentissage automatique. L’objectif
est d’établir un problème de référence pour les caractéristiques dynamiques les plus importantes
des écoulements de sillage. La configuration de référence choisie est l’écoulement de sillage incom-
pressible bidimensionnel autour du pinball fluidique, un ensemble de trois cylindres parallèles dont
les axes sont situés aux sommets d’un triangle équilatéral pointant vers l’amont.

Les structures à cylindres multiples se retrouvent généralement dans des applications d’ingénierie.
L’organisation spatiale et la taille des cylindres ont une influence significative sur l’écoulement
de sillage. Pour notre pinball fluidique, malgré la simplicité géométrique de la configuration,
l’écoulement peut présenter une riche dynamique d’écoulement due aux interactions de sillage
derrière les cylindres. Par exemple, à un faible nombre de Reynolds, les trois cylindres fonction-
nent comme un unique corps non profilé et nous pouvons trouver une allée tourbillonnaire de
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von Kármán en aval. À un nombre de Reynolds plus élevé, un écoulement de jet apparaît au
centre des deux cylindres arrières. Avec l’augmentation du nombre de Reynolds, la longueur du
jet augmente, et son instabilité est également affectée. Une rupture de symétrie se produit avec
une déviation du jet vers le haut ou vers le bas. L’allée tourbillonnaire de von Kármán et le jet
sont tous deux des exemples typiques de la dynamique des fluides et ont été bien étudiés pour
leur transition des conditions laminaires aux conditions turbulentes. Dans cette étude, le lacher
tourbillonnaire périodique et la rupture de symétrie résultent d’une bifurcation de Hopf et d’une
bifurcation fourche. Les bifurcations fourches prennent naissance localement dans le sillage proche,
tandis que l’allée tourbillonnaire de von Kármán prend naissance dans le sillage des trois cylindres
pris comme un seul obstacle. Les relations de couplage et l’interaction entre ces deux instabilités
dépendent fortement de leur distribution spatiale.

L’objectif de ce projet de recherche est de comprendre la dynamique transitoire et post-
transitoire et l’interaction de ces deux instabilités fondamentales. L’analyse des dynamiques
linéaires et non linéaires est basée sur l’analyse de stabilité linéaire des équations de Navier-Sokes et
la saturation non linéaire dans les régimes asymptotiques. Sur la base de la compréhension physique
de la transition, nous introduirons trois types de stratégies d’établissement d’un modèle d’ordre
réduit, qui améliorent les performances de la méthode Galerkin, de la modélisation orientée vers
les forces et de la modélisation de réseau basée sur les clusterspour les écoulements complexes. Les
travaux analytiques peuvent garantir aux modèles résultants la capacité à capturer la dynamique
transitoire et l’interprétation humaine, mais ces modèles nécessitent un effort considérable pour
comprendre les mécanismes sous-jacents. Cependant, seule une partie des connaissances a priori
est nécessaire pour qu’un modèle de type boîte grise puisse équilibrer interprétation et coûts des
travaux analytiques. La connaissance des équations de Navier-Stokes, de la géométrie et des con-
sidérations sur le champ moyen amélioreront largement les performances du modèle. En raison
de la simplicité géométrique de la configuration et les bifurcations génériques discutées dans ce
travail, le processus d’analyse et de modélisation peuvent être appliqué à tout autre écoulement
ayant une géométrie similaire.

Le chapitre introductif est structuré comme suit. § A.1 discute de l’objectif de la modélisation
d’ordre réduit et décrit les différentes catégories de modélisation. § A.2 présente la problématique
de cette thèse. Les dynamiques transitoires et post-transitoires avec attracteurs multiples sont
brièvement étudiées. Dans la partie § A.3, les travaux analytiques sont présentés, y compris
l’analyse de stabilité linéaire des solutions de Navier-Stokes, les instabilités et les bifurcations. Dans
la partie § A.4, nous discutons de la saturation non linéaire pour la dynamique post-transitoire, et
de la déformation du champ moyen due à l’effet du tenseur de Reynolds. § A.5 présente les trois
stratégies de modélisation.

A.1 Modélisation d’ordre réduit

La complexité des écoulements fluides provient de sa haute dimensionnalité, des non-linéarités
et de son comportement spatial et temporel multi-échelle. Lorsque l’on traite des problèmes
d’écoulement de fluides, une quantité massive d’informations détaillées sur l’écoulement est générée
à mesure que la résolution augmente. De toute évidence, il est extrêmement difficile de comprendre
tous ces détails à différentes échelles, et l’optimisation de contrôle est impossible à appliquer. Mal-
gré la dimensionnalité presque infinie d’un écoulement naturel, sa dynamique peut généralement
être capturée par projection dans un espace de faible dimension. L’examen et l’analyse de la dy-
namique dans cet espace à faible dimension permettent de construire un modèle approximatif pour
le système d’écoulement complexe. L’objectif de la modélisation d’ordre réduit est d’obtenir des
modèles simplifiés et interprétables de l’écoulement des fluides, qui peuvent permettre de mieux
comprendre les mécanismes sous-jacents. De tels modèles à faible dimension sont essentiels pour
la prédiction de la dynamique de l’écoulement et la conception de contrôles efficaces.

Le processus de d’établissement d’un modèle d’ordre réduit d’un système d’écoulement peut
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être divisé en deux étapes. La première étape consiste généralement par une décomposition modale
pour obtenir une réduction de la dimensionnalité. Plusieurs modèles, présentant un comportement
typique dans l’espace ou le temps, sont souvent suffisants pour capturer les mécanismes essen-
tiels de l’écoulement. De nombreuses techniques ont été développées pour extraire ces modèles
primaires, comme la décomposition orthogonale propre (POD), la décomposition en modes dy-
namiques (DMD). Sur la base des modes extraits, nous avons toujours besoin d’un modèle non
linéaire pour décrire la dynamique dans l’espace à faible dimension. Contrairement au développe-
ment rapide de la décomposition modale ou de la réduction de la dimensionnalité, les modèles non
linéaires dépendent de notre compréhension des systèmes non linéaires, et davantage de théories et
de techniques doivent être développées. Sur la base des méthodes de décomposition, les approches
générales appliquées sont la projection de Galerkin et la théorie de Koopman.

A.1.1 Pourquoi un modèle d’ordre réduit?

En raison des non-linéarités, des dimensions infinies et du problème multi-échelle dans l’espace et
le temps, un modèle d’ordre réduit (ROM) du système d’écoulement sera utile pour comprendre
les mécanismes physiques, améliorer l’efficacité des calculs et concevoir des lois de contrôle. Dans
de nombreux cas, l’écoulement évolue généralement sur un attracteur de faible dimension, qui peut
être caractérisé par un nombre fini de structures élémentaires. Ces structures typiques, présentant
certaines échelles spatiales et temporelles, offrent la possibilité d’utiliser des modèles d’ordre réduit
pour révéler les mécanismes sous-jacents cachés par la haute dimensionnalité.

Les modèles d’ordre réduit (ROM) présentent de nombreux avantages :

1. Simplicité: Une bonne extraction des caractéristiques dominantes de l’écoulement peut
promettre la simplicité de la ROM résultante. De nouvelles techniques de réduction de
dimension se développent rapidement, et il existe encore de nombreuses possibilités de trouver
le meilleur ensemble de modes.

2. Compréhension: La représentation de faible dimension de la dynamique non linéaire orig-
inale nous aide à filtrer le bruit et à révéler le mécanisme sous-jacent. Les dynamiques
linéaires et non linéaires peuvent être interprétées en termes de plusieurs degrés de liberté.
Les techniques d’apprentissage automatique offrent de nouvelles méthodes et possibilités pour
comprendre les dynamiques complexes directement à partir des données.

3. Analyse: L’interaction entre les degrés de liberté élémentaires permet de comprendre en
profondeur la dynamique non linéaire. Les travaux analytiques permettent de découvrir les
mécanismes fondamentaux et nous aident à comprendre les transitions non linéaires.

4. Control: Un modèle d’ordre réduit peut comprendre la dynamique dominante qui permet
la mise en place efficace d’un contrôle linéaire et du contrôle optimal.

5. Prédiction: Une bonne approximation de la dynamique non linéaire dans des sous-espaces
de faible dimension assure une prédiction dynamique rapide des transitions imminentes et
permet une réaction par anticipation.

6. Accélération du calcul: Un modèle de substitution peut explorer la dynamique dans
l’espace à faible dimension. Le modèle de substitution est dynamiquement équivalent au
système original et peut être relié aux données à haute dimension pour accélérer la simulation.

A.1.2 White box modelling vs black-box modelling

Dans cette sous-section, nous classons brièvement les différents types de modélisation. Nous suivons
Wiener (1948) et distinguons les modèles en tant que modèles boîte blanche (white-box models :
WBM), modèles boîte grise (gray-box models : GBM) et modèles boîte noire (black-box models :
BBM), comme indiqué dans A.1
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Figure A.1: Illustration du concept des trois types de stratégies de modélisation. Les modèles boîte
blanche (WBM) sont des modèles purement théoriques, qui possèdent une connaissance complète
du système d’écoulement. Les modèles boîte grise (GBM) combinent une base théorique partielle
avec des données pour compléter le modèle. Les modèles boîte noire (BBM), quant à eux, sont des
modèles statistiques sans aucune connaissance préalable du système.

Modélisation boîte blanche

Les équations de Navier-Stokes fournissent un modèle mathématique en mécanique des fluides, qui
peut être considéré comme un modèle boîte blanche. Ce processus de modélisation est également
connu sous le nom de modélisation en boîte claire, car il permet de connaître parfaitement les
équations qui régissent le système d’écoulement. Des informations complètes sur l’état peuvent
être dérivées de ce modèle, mais elles nécessitent des calculs lourds. Comme nous l’avons mentionné
au début de ce chapitre, de nombreux problèmes ne sont toujours pas résolus avec ce modèle de type
boîte blanche. Une forme faible de ce modèle a été fournie pour résoudre ces problèmes, comme
RANS, LES, et d’autres modèles de turbulence. Il s’agit toujours de modèles à boîte blanche, car
toutes les hypothèses proviennent de la dérivation théorique. Ces modèles sont coûteux à simuler
numériquement et donc difficiles à utiliser pour la conception de contrôle, l’optimisation et les
applications d’ingénierie.

En résumé, le but de la modélisation en boîte blanche est de trouver le “bon” modèle mathéma-
tiquement et physiquement. Par conséquent, le processus de modélisation est analytique, ce qui
met l’accent sur la cause et l’effet, la forme et les principes. Il requiert des connaissances humaines
sur les équations de Navier-Stokes, l’instabilité, les non-linéarités, les transferts d’énergie, etc. Les
exigences élevées en matière d’expérience humaine et le coût élevé de la simulation rendent difficile
son application dans les domaines de l’industrie et de l’ingénierie.

Modélisation boîte noire

Un modèle boîte noire est issu d’un processus de modélisation purement axé sur les données, met-
tant l’accent sur l’identification, la capacité de prédiction et la vitesse de modélisation. L’objectif
est de trouver un modèle “précis” pour les caractéristiques, la dynamique et les comportements
d’entrée-sortie du système. Une bonne précision rend le modèle plus utile dans les applications
industrielles et le diagnostic médical.

La précision est généralement obtenue au prix d’un sacrifice de l’interprétabilité, comme c’est
le cas pour la modélisation des réseaux neuronaux. Les relations fonctionnelles internes dans
les couches multiples possèdent une liberté et une complexité accrues, ce qui les rend difficiles à
expliquer d’un point de vue physique ou mathématique. Cependant, ce réseau neuronal complexe
peut construire un modèle précis des comportements d’entrée-sortie, ce qui le rend plus utile dans
les applications industrielles et le diagnostic médical.

De manière analogue, selon la théorie de Koopman (Schmid, 2010), la dynamique non linéaire
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dans un espace de dimension finie peut être représentée par une dynamique linéaire dans un espace
de dimension infinie. La décomposition en modes dynamiques (DMD) fournit une représentation
linéaire des données d’un système non linéaire par un opérateur de Koopman de dimension infinie.
Les modèles résultants ont une bonne capacité à capturer les caractéristiques cohérentes, mais ne
peuvent pas être utilisés pour expliquer la dynamique transitoire non linéaire.

Différente des approches susmentionnées, la modélisation d’ordre réduit basée sur les clusters
(CROM) offre une nouvelle façon de décrire la dynamique transitoire. Les données sont divisées
en clusters en fonction de leur similarité. La dynamique transitoire est décrite par les transitions
entre les clusters. Kaiser et al. (2014) utilise un modèle de Markov basé sur les clusters (CMM)
pour décrire la dynamique transitoire avec des probabilités. Nair et al. (2019) a appliqué le CMM
au contrôle d’écoulement par rétroaction non linéaire avec une extension de la chaîne de Markov
qui met l’accent sur les transitions non triviales entre les clusters. Le graphe orienté (Newman,
2018) a été introduit avec les clusters, où les clusters sont considérés comme des nœuds et les
transitions entre clusters comme des arêtes . Fernex et al. (2021) et Li et al. (2021) ont ensuite
proposé le modèle de réseau basé sur les clusters (CNM) pour les données résolues dans le temps
en introduisant l’interpolation locale entre les clusters avec les temps de transition déterminés.

Modélisation boîte grise

Par rapport au WBM basé sur des travaux analytiques et au BBM basé sur des données, GBM
peut être considérée comme une approche hybride pour construire un modèle d’ordre réduit basé
sur une structure théorique et des techniques basées sur les données. Par exemple, les modèles
POD-Galerkin approchent l’état complet par projection Galerkin des équations de Navier-Stokes
sur la base orthogonale d’un espace d’état de faible dimension. Le système Galerkin d’équations
différentielles ordinaires quadratiques qui en résulte décrit la non-linéarité des équations de Navier-
Stokes. Les modes de base proviennent d’un processus POD piloté par les données, ou même des
modes propres des équations de Navier-Stokes linéarisées.

Dans cette thèse, nous nous concentrons sur la modélisation de la boîte grise en utilisant les
données de l’écoulement, les premiers principes et les techniques d’apprentissage automatique. Les
trois méthodes de modélisation suivantes ont été appliquées avec succès au pinball fluidique, qui
sera examiné plus en détail dans la section 1.5.

A.2 Difficultés liées aux attracteurs multiples

Dans cette thèse, nous considérons la dynamique transitoire et post-transitoire d’un écoulement
traversant un groupe de trois cylindres circulaires de même rayon. L’analyse de la dynamique de
l’écoulement peut être grossièrement divisée en deux parties. La première se concentre sur la dy-
namique linéaire déstabilisant les solutions stationnaires ou les solutions périodiques, en appliquant
l’analyse de stabilité linéaire de ces solutions exactes de Navier-Stokes. L’autre se concentre sur la
dynamique post-transitoire évoluant sur un attracteur, en étudiant la saturation non linéaire dans
le régime asymptotique, où la dynamique transitoire s’est calmée. En raison des bifurcations suc-
cessives qui se produisent dans le système d’écoulement, le pinball fluidique non forcé présente un
comportement multi-attracteur. Il existe trois solutions stationnaires et trois solutions périodiques,
ainsi que de multiples trajectoires issues du voisinage de trois solutions stationnaires.

En général, la modélisation d’ordre réduit considère la dynamique post-transitoire évoluant sur
un seul attracteur. La modélisation de la transition entre le point fixe et le régime asymptotique
nécessite plus d’efforts pour saisir la distorsion du champ moyen, la dynamique locale et la sat-
uration non linéaire pendant la partie transitoire. La construction d’un modèle universel d’ordre
réduit pour des trajectoires transitoires multiples avec des attracteurs multiples est un défi majeur.
Il est encore plus difficile de construire un modèle universel d’ordre réduit pour des trajectoires
transitoires multiples avec plusieurs ensembles invariants. La dynamique d’écoulement considérée
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dans cette thèse implique plusieurs régimes transitoires et post-transitoires, trois points fixes, trois
cycles limites, deux attracteurs quasi-périodiques et un attracteur chaotique, à trois nombres de
Reynolds différents.

A.2.1 Une configuration de référence - le pinball fluidique

L’écoulement d’un fluide autour d’un cylindre circulaire est l’un des plus célèbres problèmes fonda-
mentaux de la mécanique des fluides et a été bien étudié au fil des années. Par rapport au cylindre
unique, les structures à cylindres multiples sont plus fréquemment utilisées dans l’industrie, par
exemple dans les échangeurs de chaleur et les conduites sous-marines. Les cylindres multiples of-
frent plus de possibilités pour différents types d’instabilités, le sillage interagissant les uns avec les
autres, et une dynamique d’écoulement plus complexe.

Dans ce travail, nous nous intéressons à l’écoulement sur un groupe de trois cylindres parallèles,
qui a été étudié expérimentalement incluant notamment le transfert de chaleur, les interactions
fluide-structure et les interactions de fréquences multiples au cours des dernières décennies (Price
& Paidoussis, 1984; Sayers, 1987; Lam & Cheung, 1988; Tatsuno et al., 1998; Bansal & Yaru-
sevych, 2017). Cinq modèles d’écoulement différents ont été identifiés en faisant varier les rapports
d’espacement et les nombres de Reynolds par la simulation numérique (Bao et al., 2010; Zheng
et al., 2016; Gao et al., 2019; Chen et al., 2020).

Pour le pinball fluidique, on utilise trois cylindres fixes de diamètre D dont les axes sont situés
aux sommets d’un triangle équilatéral de côté 3D/2 dans le plan (x, y) et qui sont orientés per-
pendiculairement à ce plan. Les cylindres sont espacés de R, le rayon des cylindres et le triangle
formé par les trois cylindres pointe en amont. Ils sont placés dans un écoulement uniforme incom-
pressible visqueux à la vitesse U∞, comme le montre la figure 1.3. Les cylindres peuvent tourner
à différentes vitesses, ce qui permet de modifier les trajectoires du fluide entrant, tout comme des
pales manipulent la balle d’un flipper conventionnel. Cette configuration est un excellent bac à
sable pour tester différentes stratégies de contrôle d’écoulement et a été utilisée pour l’évaluation de
contrôleurs à plusieurs entrées et plusieurs sorties (Ishar et al., 2019; Cornejo Maceda et al., 2021).
Dans cette étude, les trois cylindres restent statiques car nous nous intéressons à la dynamique
naturelle de l’écoulement lorsque le nombre de Reynolds augmente. Le pinball fluidique non forcé
a déjà montré une dynamique étonnamment riche.

L’écoulement est étudié dans le système de coordonnées cartésiennes délimité dans un domaine
rectangulaire [−6, 20] × [−6, 6]. L’origine du système de coordonnées cartésiennes est placée au
milieu des deux cylindres arrière. Le domaine de calcul est discrétisé sur une grille non structurée.
La configuration du pinball utilise une grille comportant 4 225 triangles et 8 633 sommets. Les
conditions aux limites comprennent une condition de non-glissement sur les cylindres et une vitesse
unitaire dans le champ lointain (1.4). Les conditions aux limites du champ lointain sont exercées
sur les frontières d’entrée, supérieure et inférieure, tandis que la frontière de sortie est supposée
être une frontière sans contrainte, transparente pour les structures du fluide sortant.

Le champ d’écoulement instantané est calculé par des simulations numériques directes bidi-
mensionnelles (DNS). Pour tester la dépendance de la solution vis-à-vis de la grille, nous avons
comparé le résultat des simulations avec une grille raffinée dans le Chapitre Chapter:JFM1. Les
deux simulations prouvent l’indépendance de la grille et donnent des résultats dynamiquement
cohérents.

A.2.2 Dynamique transitoire et post-transitoire

Dans cette sous-section, les dynamiques transitoires et post-transitoires avec attracteurs multiples
seront décrites avec l’évolution temporelle des forces de traînée et de portance sur les cylindres. Le
champ de vorticité des états d’écoulement explorés pendant la dynamique transitoire sera montré.
Enfin, nous présenterons l’espace de phase 3D avec la dynamique des forces.

170



Chapter. A Cluster-based hierarchical network model

Dans la figure 1.5 sont représentées les dynamiques transitoires des coefficients de portance CL et
de traînée CD depuis la solution symétrique stable instable us jusqu’au régime asymptotique, pour
différentes valeurs du nombre de Reynolds Re. Théoriquement, le système ne devrait jamais quitter
l’état initial car il s’agit d’un point fixe des équations. En pratique, les erreurs de discrétisation
numérique rendent la solution imparfaite. Malgré un transitoire extrêmement long (plusieurs
centaines de temps de convection), la trajectoire du système finit par s’échapper de us et atteint
asymptotiquement l’attracteur. La dynamique transitoire représentée sur la figure 1.5 révèle les
caractéristiques suivantes :

– Pour Re = 30, le système reste au voisinage de la solution stationnaire instable us pendant
un temps extrêmement long. Une transition évidente est observée sur l’intervalle de temps
t ∈ [800, 1000]. CD augmente rapidement, et CL commence à osciller autour d’une moyenne
évanouissante avec une amplitude croissante. Le système d’écoulement entre finalement dans
un régime asymptotique. Au voisinage de l’attracteur, la fréquence d’oscillation de CL est la
même que la fréquence de délestage des tourbillons fVS, tandis que CD oscille à une fréquence
deux fois plus élevée.

– Pour Re = 80, pendant la dynamique transitoire, on peut voir que CL commence à osciller au-
tour d’une valeur moyenne évanouissante avant d’atteindre sa valeur moyenne asymptotique
non nulle. Dès lors, la symétrie de l’écoulement moyen n’est brisée que dans un deuxième
temps, puisque des centaines d’unités de temps convectives se sont écoulées après que le sil-
lage ait commencé à osciller. Cela indique que la déstabilisation due à la bifurcation de Hopf
se produit avant la bifurcation en fourche. L’état transitoire, observé sur la plage de temps
t ∈ [700, 800], a un coefficient de traînée plus faible que celui du régime final. La traînée la
plus faible est associée à l’état initial us.

– Pour des valeurs du nombre de Reynolds de 100 à 120, qui couvrent les régimes périodique
(Re = 100), quasi-périodique (Re = 105) et chaotique (Re ≥ 115), CL brise d’abord la
symétrie avant de commencer à osciller. Cela signifie que la déstabilisation due à la bifur-
cation de Hopf se produit après la bifurcation en fourche. Il est intéressant de noter que la
traînée de l’état d’équilibre asymétrique observée autour de t ≈ 700 pour Re = 100 à 120,
est minimale, tandis que la traînée associée à l’état final est maximale.

– A partir de Re = 80 & 100, l’amplitude d’oscillation de la force de traînée est très faible,
et la fréquence est identique à la fréquence de lâcher du vortex fVS. En revanche, la force
de portance oscille à la fréquence de lâcher des tourbillons avec une amplitude beaucoup
plus grande. Pour Re = 105 & 110, la traînée oscille avec une plus grande amplitude à la
fréquence de la modulation du jet, qui est inférieure d’un ordre de grandeur à la fréquence
de lâcher des tourbillons, fJET ≈ fVS/12.

– Pour Re = 120 & 130, avant d’entrer dans le régime entièrement chaotique, la partie initiale
de la dynamique transitoire montre une dynamique transitoire similaire à celle du cas à faible
nombre de Reynolds. A Re = 120, le coefficient de portance CL atteint d’abord la valeur
d’une solution asymétrique stable, et il commence à osciller autour d’une valeur moyenne
évanouissante à Re = 130. Cela indique qu’une seule instabilité de ces deux bifurcations se
produit pendant la déstabilisation initiale.

Les états d’écoulement explorés pendant la dynamique transitoire mentionnée ci-dessus sont
illustrés par le champ de vorticité dans la figure 1.4.

Les dynamiques transitoires et post-transitoires dépendent des conditions initiales. En suivant
le DNS appliqué dans la figure 1.5, nous choisissons les solutions stationnaires symétriques/asymétriques
comme condition initiale, et le système présente une dynamique riche. Ces trajectoires sont tracées
dans un espace d’intégration du coefficient de traînée CD(t), du coefficient de portance CL(t) et
du coefficient de portance retardé CL(t − τ), comme le montre la figure 1.6. La dynamique tran-
sitoire et post-transitoire est différente : au stade initial, elle présente une dynamique linéaire
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au voisinage de la solution stationnaire correspondante et une dynamique non linéaire dans le
régime asymptotique d’un attracteur. Dans tous les cas, l’écoulement s’éloigne des solutions sta-
tionnaires instables et se rapproche finalement du régime asymptotique. À Re = 30, il n’existe
que l’instabilité de von Kármán et une seule trajectoire d’un point fixe au cycle limite. Après
la rupture symétrique, il existe de multiples trajectoires entre les trois solutions stationnaires et
les deux attracteurs. L’écoulement héritera de la symétrie des solutions stationnaires avant d’être
piégé par un régime chaotique, comme Re ≥ 120. En particulier pour les trajectoires de la solu-
tion stationnaire symétrique, elles s’approcheront d’abord d’un état transitoire, par exemple, un
cycle limite instable, comme Re = 80, ou les solutions stationnaires asymétriques instables, comme
Re = 100, 105, 120, avant d’entrer dans l’état permanent.

En résumé, le pinball fluidique sans forçage fournit une dynamique d’écoulement riche. Nous
nous intéressons à la construction d’un modèle de champ moyen à différents nombres de Reynolds,
en évaluant la dynamique transitoire et post-transitoire pour trois cas : avec six ensembles invari-
ants, avec l’état quasi-périodique, et avec l’état chaotique.

A.3 Analyse de la stabilité linéaire
Dans cette section, nous nous intéressons à la dynamique de l’écoulement de petites perturbations
au voisinage de la solution stationnaire. Sous cette considération, l’évolution temporelle d’une
petite perturbation peut être considérée comme une dynamique linéaire dans un temps transitoire
fini.

A.3.1 Stabilité linéaire d’un écoulement de base.

Dans un écoulement de fluide, une analyse de stabilité linéaire se concentre sur la dynamique de
perturbation linéaire à partir d’un écoulement de base. Cet écoulement de base est une solution ex-
acte des équations gouvernantes, et peut être une solution stationnaire ou une solution périodique.
L’analyse de stabilité peut être globale ou locale, selon que l’on étudie ou non la perturbation sur
l’ensemble du domaine. Dans ce travail, l’analyse de stabilité linéaire globale de l’écoulement de
base révèle l’instabilité sous-jacente du système d’écoulement.

Analyse de stabilité linéaire de la solution stationnaire

Autour de l’équilibre Us(x), on considère une perturbation infinitésimale u′(x, t) :

u(x, t) = Us(x) + u′(x, t). (A.1)

En définissant l’opérateur de Navier-Stokes linéarisé autour de la solution stationnaire Us

comme LUs et le vecteur d’état de perturbation q′ = (u′, p′), le système linéarisé peut être écrit
comme :

∂tq
′ = LUsq

′. (A.2)

L’analyse modale de la stabilité conduit à un problème de valeur propre (σ + iω) q̂ = LUs q̂,
avec une perturbation de la forme q′(x, t) = q̂(x)e(σ+iω)t, ce qui donne

u′(x, t) = û(x)e(σ+iω)t, p′(x, t) = p̂(x)e(σ+iω)t. (A.3)

La partie réelle des valeurs propres σ, correspondant au taux de croissance de la perturbation, elle
décide de la stabilité de l’écoulement de base considéré Us. Si toutes les valeurs propres σ sont
négatives, l’écoulement de base est stable, ce qui indique que toutes les perturbations se réduiront
à zéro, sinon l’écoulement de base est instable. Comme l’écoulement de base dépend du nombre de
Reynolds, les valeurs propres changeront avec le changement du nombre de Reynolds. En général,
un système d’écoulement stable tend à devenir instable lorsque le nombre de Reynolds augmente,
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ce qui se traduit par une valeur propre passant par zéro. La partie imaginaire ω détermine la
fréquence initiale, qui est non nulle pour une bifurcation de Hopf.

Analyse de Floquet pour un écoulement périodique

Pour un écoulement périodique temporel, le problème de stabilité utilisant la théorie de Floquet
fonctionne avec un écoulement de base T-périodique Qp(x, t) = (Up(x, t), Pp(x, t)). Le système
linéarisé est le même que Eq. (A.2) mais l’opérateur linéaire LUp(t) est T-périodique. Les solutions
du problème propre conduisent aux modes de Floquet T-périodiques q̂(x, t) et aux exposants
de Floquet correspondants σ + iω. Les multiplicateurs de Floquet peuvent être écrits comme
λF = e(σ+iω)T .

A.3.2 Instabilités et bifurcations

L’analyse de stabilité linéaire des solutions stationnaires symétriques Us à différents nombres de
Reynolds a été réalisée sur un sous-espace de Krylov de dimension 9 avec 100 itérations. Deux
paires de valeurs propres conjuguées complexes, et une valeur propre de fréquence nulle peuvent
être trouvées avec une partie réelle positive lorsque le nombre de Reynolds augmente. La pre-
mière paire de valeurs propres conjuguées avec partie réelle positive apparaît pour la première
fois lorsque le nombre de Reynolds passe de 18 à 19, voir figure 1.8(gauche). La deuxième paire
de valeurs propres conjuguées croise l’axe σ = 0 lorsque le nombre de Reynolds passe de 64 à
65, voir la figure 1.8(milieu). La valeur propre réelle devient positive entre Re = 68 et 69, voir
figure 1.8(droite). Ceci confirme qu’une bifurcation de Hopf se produit sur la solution stationnaire
symétrique à Re1 ≈ 18, une autre bifurcation de Hopf se produit à Re2 ≈ 64 et une bifurcation en
fourche à Re3 ≈ 68.

La partie réelle des valeurs propres indique le taux de croissance des modes propres correspon-
dants pour la dynamique linéaire au voisinage de la solution stationnaire donnée Us. La partie
imaginaire non nulle correspond quant à elle à la fréquence initiale. Le taux de croissance positif
indique les modes propres instables, déstabilisant le champ d’écoulement de Us. Nous traçons le
taux de croissance des modes propres correspondants dans la figure 1.9 en fonction du nombre de
Reynolds. Nous remarquons que la première paire complexe-conjuguée a le plus grand taux de
croissance à Re ≤ 90, et la valeur propre réelle a le plus grand taux de croissance à Re ≥ 95.
Pour les deux paires complexes-conjuguées, la première paire a un taux de croissance plus impor-
tant à Re ≤ 105. Nous rappelons que ces taux de croissance indiquent seulement la dynamique
linéaire au voisinage de la solution stationnaire Us. Avec le développement de l’instabilité, la dy-
namique linéaire ne s’applique plus. Le taux de croissance sera réduit à zéro après la saturation,
et la fréquence peut également être modifiée par l’interaction non linéaire. Nous discuterons de la
dynamique non linéaire dans les régimes asymptotiques dans la section suivante.

A.4 Analyse faiblement non linéaire

La dynamique linéaire ne concerne qu’un voisinage restreint de la solution stationnaire, car la
perturbation u′ est minime au début de l’instabilité. Avec le développement de la perturbation,
le terme non linéaire u′ ⊗ u′ ne peut être ignoré, et va commencer à modifier l’écoulement moyen
U par l’effet du tenseur de Reynolds (u′ · ∇)u′. Au fur et à mesure que la distorsion du champ
moyen par rapport à la solution stationnaire augmente, la dynamique linéaire originale ne convient
plus, et l’itération non linéaire va charger la dynamique transitoire jusqu’à saturation.

La fIgure 1.17 montre la dynamique transitoire et post-transitoire à partir de la solution sta-
tionnaire d’un écoulement d’un unique cylindre. Cette instabilité oscillatoire correspond à une
simple bifurcation de Hopf supercritique, où une paire de modes oscillatoires conjugués suffit à
décrire les composantes fluctuantes. La dynamique non linéaire de ce système peut être projetée
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dans un plongement spatial tridimensionnel avec les évolutions temporelles de deux modes oscilla-
toires et d’un mode shift (i.e. le mode de déformation du champ moyen) décrivant la déformation
du champ moyen. Pendant l’évolution du point fixe au cycle limite, les modes oscillatoires sont
constamment déformés et se rapprochent du cylindre. La longueur de la bulle de recirculation
diminue continuellement de la solution stationnaire à l’écoulement moyen saturé. Cette déforma-
tion sur l’écoulement moyen peut être vue comme le résultat des contraintes de Reynolds générées
par le champ fluctuant (Barkley, 2006).

A.4.1 Brisure de symétrie de l’écoulement de base

Dans cette sous-section, nous examinons la saturation non linéaire de la bifurcation fourche de
l’écoulement de base (la solution stationnaire de symétrie Us(x), qui conduit à trois solutions
stationnaires.

Pour Re > RePF, il existe trois solutions stationnaires satisfaisant les équations de Navier-
Stokes stables (1.5). En considérant une décomposition pour une bifurcation fourche:

U(x, t) = Us(x) + u4(x, t) + u5(x, t), (A.4)

avec les perturbations u4(x, t) et un mode shift u5(x, t) pour la dynamique à variation lente
l’écoulement moyen. Le mode u4 est antisymétrique, et les autres sont symétriques par réflexion.

Introduisons Eq. (A.4) dans les équations de Navier-Stokes et séparerons la partie antisymétrique
et la partie symétrique. La partie symétrique décrit la distorsion du champ moyen u5. En intro-
duisant 〈U〉 ≡ Us + u5, on a:

(u4 · ∇)u4 = −(Us · ∇)u5 − (u5 · ∇)Us + ν4u5 −∇p5. (A.5)

Le terme non linéaire(u4 ·∇)u4 correspond au tenseur de Reynolds de la partie antisymétrique des
perturbations.

À ∂tu4 = 0, le système atteint l’une des solutions stationnaires asymétriques (u4 6= 0). La
saturation non linéaire peut être présentée avec :

(u5 · ∇)u4 + (u4 · ∇)u5 = −(Us · ∇)u4 − (u4 · ∇)Us + ν4u4 −∇p4. (A.6)

Le côté droit de Eq. (A.6) peut être écrit comme LUsu4, ce qui contribue à l’instabilité linéaire de
la solution stationnaire symétrique. Dans ce cas, la croissance de u4 a été saturée par l’interaction
non linéaire du côté gauche.

A.4.2 Analyse de stabilité de l’écoulement moyen

L’écoulement moyen moyenné dans le temps d’un écoulement périodique n’est pas une solution
exacte des équations de Navier-Stokes, à proprement parler. Il s’agit uniquement d’une solution
statistique qui ne peut pas révéler la stabilité du système physique. Pour l’écoulement périodique
résultant d’une bifurcation de Hopf, comme dans la figure 1.17, l’écoulement moyen diffère de
la solution stationnaire car déformé par le tenseur de Reynolds du fait des perturbations durant
la phase transitoire et post-transitoire. La distorsion du champ moyen est un résultat direct du
processus de saturation non linéaire. L’analyse de stabilité linéaire de la solution stationnaire
ne peut prédire l’instabilité qu’au début de la déstabilisation. Comme la dynamique est déjà
saturée, l’écoulement moyen est marginalement stable, le taux de croissance étant presque nul. La
fréquence après la saturation non linéaire est également différente de l’analyse de stabilité linéaire
de la solution stationnaire. Cependant, cette fréquence non linéaire peut être correctement capturée
par l’analyse de stabilité de l’écoulement moyen. Cela correspond à une propriété dite RZIF : la
partie réelle est nulle, et la partie imaginaire est la fréquence du cycle limite (Turton et al., 2015).
Cette propriété est un résultat direct de l’équilibre harmonique (Dušek et al., 1994). A partir
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de la même idée, Mantič-Lugo et al. (2014) a proposé le modèle auto-consistant pour prédire la
saturation non linéaire de Us à U pour une bifurcation de Hopf supercritique de l’écoulement du
cylindre seul. Au stade final, nous avons σ = 0, et nous pouvons obtenir les valeurs exactes de U ,
u1 et ω du cycle limite.

A.5 Modélisation en champ moyen

En physique et en statistique, la théorie du champ moyen, également connue sous le nom de théorie
du champ autoconsistant, est une simplification de l’étude d’un système stochastique à haute di-
mension par le calcul de moyennes statistiques. L’étude de l’écoulement moyen peut révéler cer-
taines caractéristiques du système original avec un coût de calcul plus faible et a été appliquée à
un large éventail de disciplines scientifiques. En mécanique des fluides, l’écoulement moyen fait
généralement référence à une solution moyenne dans le temps de l’écoulement périodique, les com-
posantes fluctuantes disparaissant. Contrairement à la solution stationnaire, l’écoulement moyen
peut être obtenu à la fois numériquement et expérimentalement. L’analyse de cette solution a un
champ d’application plus large et peut contribuer à une meilleure compréhension de l’interaction
non linéaire pendant la transition.

Comme mentionné dans la section précédente § A.4.2, l’analyse de la stabilité de l’écoulement
moyen peut prédire avec succès la fréquence non linéaire de l’état saturé. Il s’avère que la propriété
RZIF est un résultat direct de la saturation non linéaire de l’instabilité oscillatoire. Les consid-
érations sur le champ moyen conduisent également à la décomposition de Reynolds du champ
d’écoulement (A.7) et aux équations de Navier-Stokes moyennées selon Reynolds (1.27). Le mod-
èle autoconsistant proposé dans Mantič-Lugo et al. (2014) utilise un seul mode oscillatoire pour
prédire la dynamique de saturation non linéaire d’une bifurcation de Hopf supercritique.

A.5.1 Mean-field ansatz

Sous la considération du champ moyen, la triple décomposition du champ d’écoulement est similaire
à Reynolds & Hussain (1972)

u(x, t) = 〈u(x, t)〉T︸ ︷︷ ︸
ω�ωc

+ ũ(x, t)︸ ︷︷ ︸
ω∼ωc

+u′(x, t)︸ ︷︷ ︸
ω�ωc

, (A.7)

où la fréquence angulaire dominante ωc est définie comme le pic dominant dans le spectre de
Fourier du champ de vitesse. Ici, le champ de vitesse est décomposé en un champ d’écoulement
moyen à variation lente 〈u〉T , une composante cohérente sur des échelles de temps d’ordre 2π/ωc,
impliquant des structures cohérentes ũ, et les fluctuations non cohérentes restantes à petite échelle
u′. Ce type de décomposition se retrouve également dans les modèles Galerkin d’ordre inférieur de
Tadmor et al. (2011) et dans la modélisation faiblement non linéaire de Rigas et al. (2017a). La
déformation de l’écoulement moyen provient de l’effet du tenseur de Reynolds de la composante
cohérente (ũ · ∇)ũ et des fluctuations non cohérentes à petite échelle (u′ · ∇)u′.

A.5.2 Structure de la thèse

Cette thèse vise à faciliter la modélisation automatisée d’ordre réduit pour un modèle parcimonieux
interprétable en utilisant les premiers principes et les techniques d’apprentissage automatique. Plus
précisément, nous nous concentrons sur la dynamique de sillage complexe que l’on trouve générale-
ment en mécanique des fluides et nous développons différents types de modèles de champ moyen.
Les considérations relatives au champ moyen constituent un élément clé pour la construction d’un
modèle de champ moyen, en supposant que la déformation du champ moyen variant lentement
sous l’effet du tenseur de Reynolds est générée par les fluctuations, par exemple la décomposition
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de Reynolds. Les modèles de champ moyen proposés dans cette étude constituent un exemple de
référence stimulant pour la modélisation automatisable d’ordre réduit.

Dans ce chapitre d’introduction, nous avons abordé la motivation de la modélisation d’ordre
réduit et avons donné un aperçu des principes et des méthodologies pour les stratégies de modéli-
sation en champ moyen basées sur les clusters et sur les projections :

(a) Modélisation en champ moyen par clusters : Le clustering et la modélisation sont effec-
tués sur la base de la considération du champ moyen, en incorporant une structure hiérarchique
issue d’une hypothèse théorique dans la modélisation pilotée par les données. Le clustering
réalise une compression cinématique des données d’entrée, accompagnée d’une moyenne statis-
tique des données de regroupement (centroïdes) dans l’espace de données original. Les données
sont étiquetées avec l’indice de cluster, qui regroupe automatiquement les états dans l’espace
d’état sans approximation. La dynamique identifiée peut préserver la structure du système
original en fonction de la distribution des clusters. Le modèle hiérarchique peut identifier
systématiquement la dynamique multi-échelle, y compris les transitions entre différentes so-
lutions, la dynamique de bifurcation vers différents attracteurs, et les structures locales pour
l’écoulement moyen déformé dans le temps.

(b) Modélisation en champ moyen par projection : Le système original est projeté sur
un sous-espace de faible dimension linéairement indépendant, et la dynamique non linéaire
sera examinée dans le sous-espace choisi. La base de la représentation à basse dimension est
essentielle pour la dynamique approximative, ce qui se reflète sur la stabilité, le comportement
transitoire et la robustesse du modèle identifié. L’hypothèse du champ moyen pour le système
Galerkin conduit à un système Galerkin contraint, où les degrés de liberté sont optimaux
pour les instabilités sous-jacentes du système. La connaissance de l’analyse de stabilité et des
états saturés peut aider à déterminer certains coefficients du modèle de champ moyen et à
augmenter la robustesse du modèle parcimonieux (en anglais sparse) de Galerkin en identifiant
les coefficients restants par une régression parcimonieuse.

(c) Modélisation des forces par projection : La modélisation de la force est basée sur la
projection de l’expression mathématique de la force sur un sous-espace linéaire indépendant de
faible dimension. Elle peut être généralisée pour tout autre modèle de Galerkin sans hypothèse
de champ moyen. Cependant, la symétrie modale et les relations d’asservissement dans un
modèle à champ moyen peuvent introduire une sparsité supplémentaire dans le modèle de
force et améliorer l’interprétabilité du modèle identifié à partir de la régression parcimonieuse
de Galerkin.

Toutes les stratégies de modélisation mentionnées ci-dessus sont exemplifiées pour la dynamique
transitoire et post-transitoire du pinball fluidique non forcé à différents nombres de Reynolds. La
thèse est organisée comme suit :

Dans le chapitre 2, le code de simulation numérique du pinball fluidique est présentée. Les com-
portements d’écoulement à différents nombres de Reynolds sont étudiés numériquement. L’analyse
de stabilité linéaire des solutions stationnaires et l’analyse de stabilité de Floquet des solutions péri-
odiques sont effectuées pour la vérification des deux premières bifurcations. Un modèle Galerkin à
champ moyen est obtenu pour la bifurcation primaire de Hopf et la bifurcation fourche secondaire.
L’identification du système Galerkin est basée sur la régression quadratique parcimonieuse avec
des contraintes basées sur la physique. Le modèle d’ordre minimal est seulement à cinq dimensions
mais peut reproduire les caractéristiques clés du comportement transitoire et post-transitoire de
la dynamique complète.

Dans le chapitre 3, nous discutons des bifurcations locales coïncidentes des solutions station-
naires et périodiques de Navier-Stokes trouvées dans le pinball fluidique. Cette coïncidence n’aurait
pas dû être observée dans l’écoulement de sillage, et le mécanisme de ce type de coïncidence non-
générique est modélisé et expliqué. L’instabilité de rupture de symétrie du jet est indépendante
de l’instabilité de von Kármán ou du lâcher de tourbillonds.
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Dans le chapitre 4, nous dérivons un modèle de force aérodynamique associé à un modèle
Galerkin pour les deux premières bifurcations du pinball fluidique. L’identification de la formule
de traînée et de portance est simplifiée en exploitant la symétrie modale dans le cadre de la
considération du champ moyen et d’une calibration parcimonieuse. Sur la base du modèle de champ
moyen d’ordre minimal, les modèles de force Galerkin de base sont dérivés pour la bifurcation de
Hopf supercritique et pour la bifurcation de la fourche supercritique. Ensuite, les modèles de force
pour le cas de couplage de deux bifurcations successives sont étudiés avec des modes élémentaires.
Les avantages de cette méthodologie sont discutés en comparaison avec l’approche purement basée
sur la projection et le modèle de régression basé sur POD.

Dans le chapitre 5, nous proposons une méthodologie de modélisation d’ordre réduit basée sur
des clusters hiérarchiques auto-supervisés pour les bifurcations et l’identification de la topologie
des dynamiques complexes. Nous commençons par le processus standard d’un modèle de réseau
basé sur les clusters et introduisons la structure hiérarchique pour permettre au modèle de réseau
de prendre en charge des dynamiques transitoires plus complexes. Cette méthodologie est une
stratégie de modélisation universelle pour identifier les dynamiques transitoires et post-transitoires
de manière auto-supervisée. Les HiCNM sont appliqués avec succès aux dynamiques transitoires
et post-transitoires de trajectoires multiples à trois nombres de Reynolds : pour le cas impliquant
six solutions exactes à Re = 80, pour le cas quasi-périodique à Re = 105, et pour le cas chaotique
à Re = 130, respectivement. De plus, il promet d’automatiser l’identification et l’analyse de
dynamiques complexes avec plusieurs attracteurs et plusieurs échelles.

Le chapitre 6 conclut les contributions de cette thèse et fournit quelques perspectives pour les
travaux futurs.

A.6 Résumé

Dans cette thèse, nous avons présenté un exemple de référence stimulant pour la modélisation au-
tomatisable d’ordre réduit en utilisant les premiers principes et l’apprentissage automatique. Nous
avons choisi l’écoulement de sillage incompressible bidimensionnel autour du pinball fluidique pour
les caractéristiques générales du sillage rapportées dans ce travail. Des simulations numériques
directes (DNS) à différentes valeurs du nombre de Reynolds sont effectuées pour chaque régime
d’écoulement, en commençant par les solutions stationnaires existantes. La dynamique transitoire
et post-transitoire de l’écoulement instable a montré divers comportements transitoires, impliquant
les solutions stationnaires, les solutions périodiques, les attracteurs quasi-périodiques et chaotiques.
La modélisation d’ordre réduit pour la dynamique complexe issue de l’interaction entre les struc-
tures dominantes de différentes instabilités est sans aucun doute une tâche difficile.

Pour obtenir un modèle parcimonieux interprétable, nous avons commencé par les travaux
analytiques de cette configuration d’écoulement. L’analyse numérique et théorique des équations
gouvernantes est utilisée pour obtenir une compréhension globale des mécanismes sous-jacents, par
des outils mathématiques avec l’analyse de stabilité linéaire des solutions stationnaires, l’analyse
de stabilité de Floquet des solutions périodiques, et l’analyse non linéaire de la dynamique asymp-
totique. Ceci a contribué au processus de modélisation et a conduit aux trois différents modèles de
champ moyen, y compris le modèle de champ moyen d’ordre minimal dans le chapitre 2, pour les
degrés de liberté élémentaires des bifurcations successives ; le modèle de force de Galerkin complé-
mentaire au modèle de champ moyen dans le chapitre 4, reliant le modèle de Galerkin dans l’espace
d’état à la dynamique instationnaire des forces; et le modèle d’ordre réduit hiérarchique basé sur
les clusters dans le chapitre 5, s’adaptant à des dynamiques plus complexes avec des comporte-
ments multi-échelles, multi-fréquences, multi-attracteurs pour ou les régimes quasi-periodiques et
chaotiques. Les modèles de champ moyen proposés dans ce travail ont permis de mieux compren-
dre le couplage entre les fluctuations et l’écoulement moyen, et d’améliorer les performances et
l’applicabilité des modèles basés sur les données. Dans ce qui suit, nous résumons les contributions
de chaque chapitre.
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A.6.1 Résumé du Chapitre 2 – Modèle de champ moyen d’ordre minimal

Nous proposons le premier modèle Galerkin d’ordre minimal d’un écoulement incompressible subis-
sant deux bifurcations supercritiques successives de type Hopf et Pitchfork. Un élément clé est
la considération du champ moyen qui exploite la symétrie de l’écoulement moyen et l’asymétrie
de la fluctuation. Ces symétries généralisent la théorie du champ moyen, par exemple, aucune
hypothèse de taux de croissance lent n’est nécessaire. Le modèle de Galerkin à 5 dimensions qui
en résulte décrit avec succès le phénoménogramme du pinball fluidique, un écoulement de sillage
bidimensionnel autour d’un groupe de trois cylindres espacés de façon équidistante. Il est démontré
que le scénario de transition correspondant subit deux bifurcations supercritiques successives, à
savoir une bifurcation de Hopf et une bifurcation fourche sur la voie du chaos. La méthodologie
Galerkin à champ moyen généralisé peut être utilisée pour décrire d’autres scénarios de transition.

A.6.2 Résumé du Chapitre 3 – Bifurcations locales coïncidentes

Généralement, une bifurcation locale n’affecte qu’une seule branche de solution. Cependant, des
branches très différentes peuvent néanmoins partager certains vecteurs propres et valeurs propres,
conduisant à des bifurcations coïncidentes. Pour le pinball fluidique, deux bifurcations fourches
supercritiques, de la solution d’équilibre et de la solution périodique, se produisent presque au
même nombre de Reynolds. Le mécanisme de ce type de coïncidence non-générique est modélisé
et expliqué.

A.6.3 Résumé du Chapitre 4 – Modèle de force de Galerkin

Nous proposons un modèle de force aérodynamique associé à un modèle Galerkin pour le pinball
fluidique non forcé, l’écoulement bidimensionnel autour de trois cylindres égaux à une distance
radiale l’un de l’autre. Le point de départ est un modèle Galerkin d’un écoulement autour des
corps non profilés. Les forces sur ce corps sont dérivées comme des fonctions constantes, linéaires
et quadratiques des amplitudes de mode à partir des premiers principes, suivant le travail pionnier
de Noca (1997); Noca et al. (1999) et Liang & Dong (2014). Le modèle de force est simplifié
pour le modèle de champ moyen du pinball fluidique non forcé (Deng et al., 2020) en utilisant
les propriétés de symétrie et la calibration parcimonieuse. Le modèle est appliqué avec succès
à la dynamique transitoire et post-transitoire dans différents régimes de nombre de Reynolds :
l’éjection périodique de vortex après la bifurcation de Hopf et l’éjection asymétrique de vortex
après la bifurcation fourche comprenant six solutions différentes de Navier-Stokes. Nous prévoyons
de nombreuses applications du modèle de force de Galerkin pour d’autres corps non profilés et des
écoulements forcés.

A.6.4 Résumé du Chapitre 5 – Modèle de réseau hiérarchique de clus-
ters

Nous proposons une méthodologie de modélisation d’ordre réduit basée sur des clusters hiérar-
chiques auto-supervisés pour modéliser et analyser la dynamique complexe résultant d’une séquence
de bifurcations pour un écoulement incompressible bidimensionnel du flipper fluidique non forcé.
La hiérarchie est guidée par une triple décomposition séparant un écoulement de base variant
lentement, un lâcher de tourbillons dominant et des structures d’écoulement secondaires. Toutes
ces composantes de l’écoulement sont cinématiquement résolues par une hiérarchie de clusters, en
commençant par l’écoulement de base dans la première couche, en résolvant le lâcher de tour-
billons dans la deuxième couche et en distillant les structures d’écoulement secondaires dans la
troisième couche. La dynamique de transition entre ces clusters est décrite par un graphe ori-
enté, appelé modèle de réseau hiérarchique basé sur les clusters (HiCNM) dans la suite. Trois
régimes consécutifs de nombre de Reynolds pour des dynamiques différentes sont considérés : (i)
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délestage périodique à Re = 80, (ii) shedding quasi-périodique à Re = 105, et (iii) mue chaotique
à Re = 130, impliquant trois points fixes instables, trois cycles limites, deux attracteurs quasi-
périodiques et un attracteur chaotique. Le HiCNM permet d’identifier les dynamiques transitoires
et post-transitoires entre plusieurs ensembles invariants de manière auto-supervisée. Les tendances
globales et les structures locales pendant la transition sont bien résolues par un nombre modéré de
clusters hiérarchiques. La modélisation d’ordre réduit proposée fournit une représentation visuelle
du comportement transitoire et post-transitoire, multifréquence et multi-attracteur et peut au-
tomatiser l’identification et l’analyse de dynamiques complexes avec plusieurs échelles et plusieurs
attracteurs.
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Titre : Modélisation en champ moyen de bifurcations successives, illustrée sur le pinball fluidique

Mots clés : Champ moyen, stabilité, bifurcation, modèle de Galerkin, modèle de réseau, modèle automatisé.

Résumé : Cette thèse ouvre la voie à une
modélisation réduite automatisable en mécanique
des fluides, à partir de principes premiers et de
techniques d’apprentissage automatique. L’objectif
est d’établir un problème de référence présentant
les caractéristiques dynamiques principales des
écoulements de sillage.
La configuration de référence choisie est l’écoulement
de sillage incompressible bidimensionnel autour du
“pinball fluidique”. À bas nombre de Reynolds,
l’écoulement stationaire, symétrique par réflexion mi-
roir, est stable. Lorsque le nombre de Reynolds aug-
mente, le système subit deux bifurcations supercri-
tiques de type Hopf et fourche, associées respec-
tivement à l’instabilité de Bénard-von Kármán et à
une instabilité de brisure de symétrie. Une bifurca-
tion de Hopf secondaire conduit à un lâcher de tour-
billons asymétrique quasi-périodique, avant de bifur-
quer finalement vers un régime chaotique. Le régime
périodique asymétrique est caractérisé par trois solu-
tions stables et trois cycles limites, ce qui pose un défi
à la modélisation automatique.
En prélude à la modélisation, la compréhension des
mécanismes sous-jacents est menée par analyse

de stabilité linéaire des solutions stationnaires, ana-
lyse de Floquet des solutions périodiques et ana-
lyse non linéaire de la dynamique asymptotique.
Ces analyses, aux côtés de la méthode de Galer-
kin, constituent le point de départ de notre stratégie
de modélisation en champ moyen. Un modèle de
champ moyen à cinq dimensions reproduit les six en-
sembles invariants qui résultent des deux premières
bifurcations. Nous dérivons également un modèle de
forces aérodynamiques à partir du modèle de Galer-
kin en champ moyen. Une calibration parcimonieuse
permet d’obtenir un modèle facilement interprétable,
équilibrant précision et complexité.
Pour les régimes quasi-périodiques et chaotiques,
nous proposons un modèle de réseau hiérarchique de
clusters (HiCNM), capable de s’adapter à des dyna-
miques plus complexes présentant un comportement
multi-échelles, multi-fréquences et multi-attracteurs.
Le HiCNM permet d’identifier les dynamiques tran-
sitoires et post-transitoires entre de multiples en-
sembles invariants d’une manière auto-supervisée, ce
qui constitue une étape vers la réduction de modèle
automatisée des dynamiques complexes.

Title : Deep mean-field modelling for successive bifurcations exemplified for the fluidic pinball

Keywords : Mean-field model, stability, bifurcation, Galerkin model, network model, automated model.

Abstract : This thesis paves the way to automatable
ROM in flow dynamics using first principles and ma-
chine learning techniques. The aim is to establish a
benchmark problem for the most important dynamical
features of wake flows.
The chosen benchmark configuration is the two-
dimensional incompressible wake flow around the flui-
dic pinball. At low Reynolds numbers, this configura-
tion has a stable steady state satisfying the reflec-
tional symmetry. With increasing Reynolds numbers,
it undergoes two supercritical bifurcations of Hopf
and pitchfork types, associated with the Bénard-von
Kármán instability and a symmetry-breaking instabi-
lity, respectively. A secondary Hopf bifurcation leads
to quasi-periodic asymmetric shedding, before finally
bifurcating into a chaotic regime. The asymmetric per-
iodic shedding is characterized by three steady solu-
tions and three limit cycles, which evidently poses a
challenge to automated modelling.
Before modelling, a comprehensive understanding of
the underlying mechanisms is pursued, including li-
near stability analysis of steady solutions, Floquet

analysis of periodic solutions, and nonlinear analy-
sis of asymptotic dynamics. These analyses, together
with the Galerkin method, are the starting point of
our mean-field modelling strategy. A five-dimensional
least-order mean-field model is proposed, resolving
the six invariant sets induced by the first two succes-
sive bifurcations. In addition, we derive an aerodyna-
mic force model associated with the mean-field Galer-
kin model. Sparse calibration is applied to balance the
accuracy and complexity of the model. These efforts
culminate in a sparse human interpretable model for
the flow dynamics and a predictive model for the uns-
teady forces.
For quasi-periodic and chaotic regimes, we pro-
pose a hierarchical cluster-based network model-
ling (HiCNM), adapting to more complex dynamics
with multi-scale, multi-frequency, multi-attractor beha-
viours. The HiCNM enables identifying the transient
and post-transient dynamics between multiple inva-
riant sets in a self-supervised manner and steps to-
wards automated ROM of complex dynamics.
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	Introduction
	Reduced-order modelling
	Why reduced-order modelling?
	White box modelling vs black-box modelling
	Opportunities for grey box modelling

	Challenges with multiple invariant sets
	A benchmark configuration – the fluidic pinball
	Transient and post-transient dynamics

	Linear stability analysis
	Linear stability of the base flow
	Instabilities and bifurcations

	Weakly nonlinear analysis
	Symmetry breaking of the base flow
	Mean flow stability analysis

	Deep mean-field modelling
	Mean-field ansatz
	Hierarchical clutser-based framework
	Galerkin framework
	Galerkin force model

	Structure of the thesis

	Low-order model for successive bifurcations of the fluidic pinball
	Introduction
	Flow configuration
	Direct Navier-Stokes solver
	Pinball configuration
	Flow features

	Low-dimensional modelling
	Galerkin method
	Mean-field modelling
	Supercritical Hopf bifurcation
	Supercritical pitchfork bifurcation
	Pitchfork bifurcation of periodic solution
	Sparse Galerkin model from mean-field considerations

	Primary flow regime
	Eigenspectra of the steady solution
	Reduced-order model (ROM) of the primary flow regime

	Secondary flow regime
	Eigenspectra of the steady solutions
	Reduced-order model in the secondary flow regime

	Conclusions and outlooks
	Concluding remarks and discussion
	Outlook

	Asymmetric steady solutions
	Linear stability analysis
	Floquet stability analysis
	Transient dynamics from different steady solutions
	On the simultaneous instability of the fixed point and the limit cycle

	Coinciding local bifurcations in the Navier-Stokes equations
	Introduction
	Flow configuration
	Stability analysis
	A simple model for the coincidence
	Least-order Galerkin model for the coincidence
	Discussion

	Galerkin force model for transient and post-transient dynamics of the fluidic pinball
	Introduction
	Galerkin force model
	The Galerkin framework
	Drag and lift forces on a body
	The Navier-Stokes equations under the Z2-symmetry

	Galerkin model of the fluidic pinball
	The fluidic pinball
	Flow features and the corresponding force dynamics
	The bifurcation modes of the fluidic pinball

	Galerkin force model associated with the supercritical Hopf and pitchfork bifurcation
	Force model associated with the supercritical Hopf bifurcation
	Force model associated with the supercritical pitchfork bifurcation

	Galerkin force model for multiple invariant sets
	Force model at Re=80
	Assessing the predictive power of the force model
	The need for additional modes
	Force model at Re=100

	Conclusions and outlook
	Forces from the momentum balance
	Influence of the sparsity parameter and regression methods
	Limitations of the purely projection-based approach
	Limitation of the POD-based force model
	Reduced-order model with seven degrees of freedom

	Cluster-based hierarchical network model of the fluidic pinball — Cartographing transient and post-transient, multi-frequency, multi-attractor behaviour
	Introduction
	Flow configuration and flow features
	Flow configuration and direct Navier-Stokes solver
	Flow features

	Cluster-based hierarchical reduced-order modelling
	Background
	Hierarchical modelling with mean-field consideration

	Hierarchical network modelling of the fluidic pinball
	Hierarchical modelling with multiple invariant sets
	Hierarchical network model at Re=80
	Advantages of HiCNM as compared to CNM
	Hierarchical network model for the quasi-periodic dynamics at Re=105
	Hierarchical network model at Re=130

	Conclusion
	Blockage effect in the fluidic pinball
	Vertical transitions in the hierarchical network model
	Clustering with POD
	Stochastic model for asymptotic regime

	Conclusion
	Flow analysis with transient and post-transient dynamics
	Mean-field modelling with first principles and machine learning

	Introduction et résumé en Français
	Modélisation d'ordre réduit 
	Pourquoi un modèle d'ordre réduit?
	White box modelling vs black-box modelling

	Difficultés liées aux attracteurs multiples
	Une configuration de référence - le pinball fluidique
	Dynamique transitoire et post-transitoire

	Analyse de la stabilité linéaire
	Stabilité linéaire d'un écoulement de base.
	Instabilités et bifurcations

	Analyse faiblement non linéaire
	Brisure de symétrie de l'écoulement de base
	Analyse de stabilité de l'écoulement moyen

	Modélisation en champ moyen
	Mean-field ansatz
	Structure de la thèse

	Résumé
	Résumé du Chapitre 2 – Modèle de champ moyen d'ordre minimal
	Résumé du Chapitre 3 – Bifurcations locales coïncidentes 
	Résumé du Chapitre 4 – Modèle de force de Galerkin 
	Résumé du Chapitre 5 – Modèle de réseau hiérarchique de clusters


	Bibliography
	Publications

