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Résumé

Le problème de la rationalité des hypersurfaces cubiques lisses dans P5 est un des

problèmes les plus mystérieux en géométrie algébrique. On s’attend à ce que la cubique

générale soit non rationnelle. Mais pour l’instant uniquement des exemples sporadiques

d’hypersurfaces cubiques rationnelles sont connues. Dans cette thèse, nous nous intéressons

surtout aux hypersurfaces cubiques spéciales c’est-à-dire des hypersurfaces cubiques con-

tenant une surface algébrique non homologue à une intersection complète. Elles forment

une union infinie dénombrable de diviseurs Cd (appelés diviseurs de Hassett) dans l’espace

de modules des hypersurfaces cubiques C.
Dans un premier temps, nous étudions l’intersection des diviseurs de Hassett Cd dans C.
Nos résultats sont obtenus en se basant sur des calculs de réseaux. Plus précisément, nous

considérons des diviseurs qui paramètrent des hypersurfaces cubiques birationnelles à des

fibrations en surfaces sur P2. La rationalité des hypersurfaces cubiques en question est

équivalente à celle des surfaces sur le corps de fonctions de P2 et souvent cela dépend de

l’existence de sections rationnelles des fibrations sur P2 associées. L’exemple le plus facile est

donné par une fibration en surfaces quadriques. En intersectant ces diviseurs avec d’autres

(qui paramètrent des cubiques rationnelles), nous construisons alors de nouvelles classes

d’exemples d’hypersurfaces cubiques qui: sont birationnelles à des fibrations en surfaces

sur P2, sont rationnelles, mais dont la fibration associée n’admet pas de sections. Par la

suite, nous montrons que l’intersection de jusqu’à 20 diviseurs Cdk dans l’espace de modules

C est non vide sous certaines conditions sur les discriminants dk. En s’appuyant sur ce

dernier résultat et en utilisant certaines propriétés de surfaces K3 de rang de Néron-Severi

19, nous produisons dans chaque diviseur de Hassett Cd une infinité de familles de dimension

1 d’hypersurfaces cubiques, telles que leurs motifs de Chow sont de dimension finie et de type

abélien. Nous obtenons un résultat semblable aussi pour certaines variétés de Hyperkähler

associées aux cubiques.

Ensuite, nous considérons les familles universelles des hypersurfaces au-dessus des diviseurs

Cd. Nous proposons deux méthodes différentes pour démontrer l’unirationalité de ces familles

universelles pour 8 ≤ d ≤ 42. Finalement, nous étudions une autre classe de variétés de Fano,

les variétés de Gushel-Mukai de dimension 4, et nous développons une méthode générale pour

démontrer l’unirationalité de certains espaces de modules des variétés de GM de dimension

4 avec m points marqués.
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Abstract

The rationality problem of smooth cubic hypersurfaces of dimension four (cubic fourfolds

for short) is one of the most challenging open problem in algebraic geometry. In this thesis,

we are interested in special cubic fourfolds, that is cubic fourfolds containing a surface which

is not homologous to a complete intersection. These cubic fourfolds are parametrized by a

countable union of divisors Cd in the moduli space of cubic fourfolds C.
First, we work on the theory of intersection of these divisors Cd in C. More precisely, we

consider some classes of cubic fourfolds that are birational to fibrations over P2, where

the fibers are rational surfaces. The rationality of these fibered cubic fourfolds is strongly

related to the rationality of these surfaces over the function field of P2 and to the existence

of rational sections of the associated fibration. By intersecting the divisors parametrizing

these fibered cubic fourfolds with other ones whose elements are known to be rational, via

lattice theory, we provide explicit description of these intersections in terms of irreducible

components and we exhibit new examples of rational fibered cubic fourfolds such that the

associated fibration doesn’t have sections. Furthermore, we extend this intersection by giving

necessary condition for up to 20 divisors to intersect. We apply this construction to build

a countable infinity of one dimensional families of cubic fourfolds with finite dimensional

Chow motives of abelian type inside every divisor Cd. This also implies abelianity and finite

dimensionality of the motive of certain related Hyperkähler varieties.

Then, we consider universal cubic fourfolds over certain divisors Cd in C. We propose two

methods to prove their unirationality, for the divisors Cd, in the range 8 ≤ d ≤ 42. Finally,

we study another family of Fano fourfolds, Gushel-Mukai fourfolds, and develop a general

method to show the unirationality of the moduli spaces of m-pointed (cubic or Gushel-

Mukai) fourfolds.
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Chapter 1

Introduction

Les hypersurfaces cubiques lisses complexes dans P5 sont parmi les objets à la fois les

plus mystérieux et les plus étudiés en géométrie algébrique. Ceci est dû à la compréhen-

sion, seulement partielle, qu’on a de leur géométrie birationnelle. Toutefois, pour des objets

similaires de dimension inférieure, ce problème est résolu. En effet, une courbe cubique

lisse complexe (courbe de genre 1) est non rationnelle. Ainsi, depuis le 19ème siècle, on sait

qu’une surface cubique lisse sur C est rationnelle. De plus, en 1972, Clemens et Griffiths

[23] ont prouvé que les hypersurfaces cubiques lisses complexes de dimension 3 sont non

rationnelles en utilisant la Jacobienne intermédiaire. Par contre, pour des hypersurfaces

cubiques lisses de dimension 4, on n’admet pas encore de réponses claires concernant leur

géométrie birationnelle. On s’attend à ce que la plupart des hypersurfaces cubiques soient

non rationnelles mais pour l’instant aucun exemple irrationnel n’est connu. Pourtant, au fil

du temps, multiples exemples d’hypersurfaces cubiques rationnelles ont été construits (voir

[19, 46, 105, 106]). En particulier, les études de l’espace de modules C des hypersurfaces

cubiques lisses et de l’application de période [65, 68, 109] en parallèle avec certaines études

à travers la théorie de Hodge [46–48] et la théorie de catégories dérivées [59, 60] ont permis

de mieux comprendre ces hypersurfaces cubiques et d’avancer dans l’étude de leur rational-

ité. Selon la célèbre conjecture, soutenue par le travail de Hassett et de Kuznetsov, une

hypersurface cubique est rationnelle si et seulement si elle est associée à une surface K3. En

effet, Hassett s’est demandé si toutes les hypersurfaces cubiques rationnelles sont spéciales

et ont des surfaces K3 Hodge-théoriquement associées. En plus, Kuznetsov a conjecturé

que toute hypersurface cubique X ⊆ P5 est rationnelle si et seulement si sa composante

de Kuznetsov Ku(X) de la categorie derivée bornée Db(X) est derivée équivalente à une
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surface K3, où Ku(X) est l’orthogonale à droite de {OX ,OX(1),OX(2)} (dans ce cas, on

dit que Ku(X) est géométrique). Récemment, en se basant sur les conditions de stabilité

sur Ku(X), Bayer-Lahoz-Macrì-Nuer-Perry-Stellari [17, Corollary 29.7] ont prouvé qu’une

hypersurface cubique spéciale X a une surface K3 Hodge-théoriquement associée si et seule-

ment si sa composante de Kuznetsov Ku(X) est géométrique.

Cette thèse est dédiée à l’étude des hypersurfaces cubiques lisses de dimension 4 en util-

isant la théorie de Hodge, la géométrie projective et la théorie des réseaux. Le texte est

composé de trois parties bien differenciées:

La première partie est consacrée aux définitions introductives et à l’évocation de certaines

notions de réseaux et de théorie de Hodge en relation avec les hypersurfaces cubiques, cru-

ciales pour la suite. Dans la deuxième partie, nous nous intéressons à l’intersection des

diviseurs de Hassett Cd dans l’espace de modules C. Nos résultats sont obtenus en se basant

sur des calculs de réseaux. En effet, dans un premier temps, nous nous intéressons aux

diviseurs contenant des hypersurfaces cubiques fibrées en surfaces rationnelles tels que C8

et C18. La rationalité des hypersurfaces cubiques en question est fortement liée à celle des

fibres sur le corps de fonctions de P2 et à l’existence des sections rationnelles des fibrations

sur P2 associées. En intersectant ces diviseurs avec d’autres tels que tous les hypersurfaces

cubiques contenues dans ces diviseurs sont rationnelles comme C14, C26 et C38, nous pro-

duisons alors de nouveaux exemples d’hypersurfaces cubiques fibrées rationnelles tout en

décrivant l’intersection en terme de composantes irréductibles. En utilisant Macaulay2 [39],

ces exemples sont illustrés explicitement. Cette partie correspond à l’article [9].

Dans un second temps, nous nous intéressons à l’intersection de plus de deux diviseurs.

Toujours en s’appuyant sur des calculs de réseaux mais cette fois-ci d’une nouvelle manière

introduite dans [112], nous montrons que l’intersection jusqu’à 20 diviseurs Cdk dans l’espace

de modules C est non vide sous certaines conditions sur les discriminants dk:
n⋂
k=1

Cdk 6= ∅, pour 1 ≤ n ≤ 20.

Ainsi, nous trouvons des lieux, de dimension 20 − n, paramétrant des hypersurfaces cu-

biques avec des surfaces K3 associées d’un rang arbitraire n ∈ {1, .., 20}. En s’appuyant

sur ce dernier résultat et en utilisant certaines propriétés de surfaces K3 de rang 19, nous

produisons une infinité de familles d’hypersurfaces cubiques de dimension 1, contenues dans

chaque diviseur de Hassett Cd, telles que leurs motifs de Chow sont de dimension finie et de
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type abélien. Cet exemple s’ajoute à d’autres vérifiant la conjecture de Kimura-O’Sullivan

selon laquelle tous les motifs de Chow des variétés projectives lisses sont de dimension finie.

Il s’agit de l’article [11].

Dans la troisième partie, nous nous intéressons toujours à la géométrie birationnelle des

hypersurfaces cubiques de dimension 4 mais d’une manière différente. En effet, nous définis-

sons les familles universelles Cd,m au-dessus des diviseurs Cd. Nous démontrons que ces

familles universelles sont unirationnelles pour 8 ≤ d ≤ 42, pour tout m. Ceci avec deux

méthodes différentes. L’une basée sur les familles universelles des surfaces K3 et la relation

entre certaines hypersurfaces cubiques de dimension 4 et les surfaces K3 associées. L’autre

est basée sur la représentation des diviseurs de Hassett en tant que cubiques contenant une

certaine surface rationnelle. Ces résultats se trouvent dans l’article [10]. Ainsi, nous étu-

dions une autre classe de variétés de Fano: les variétés de Gushel-Mukai de dimension 4.

Bien que ces objets diffèrent des hypersurfaces cubiques, ils présentent quelques similarités

concernant leur géométrie birationnelle. De même, en utilisant la théorie de Hodge, nous

décrivons quelques lieux paramétrant des familles de variétés de GM de dimension 4 dans

leur espace de modulesM4
GM . Nous définissons alors les familles universelles au-dessus de

certains de ces lieux dansM4
GM . Finalement, nous développons une méthode générale pour

démontrer l’unirationalité de certains espaces de modules des variétés de GM (mais aussi

des hypersurfaces cubiques) de dimension 4 m−pointées. Il s’agit de l’article [12].

Vers la fin, se trouvent trois Annexes contenant des résultats concernant des objets util-

isés durant cette thèse. La première est consacrée aux surfaces K3 et à quelques résultats

concernants leur théorie de Hodge et leurs familles universelles. Dans la deuxième Annexe,

nous introduisons les motifs de Chow et nous évoquons quelques résultats connus concer-

nant les motifs de Chow des hypersurfaces cubiques de dimension 4 et ceux des surfaces K3.

Dans l’Annexe C, nous regroupons certaines généralités sur le variétés de GM de dimension

4. Enfin, l’ensemble des notations utilisées tout au long de ce texte sont regroupées dans la

partie Notation.

Nous allons maintenant donner quelques détails de plus sur les différents chapitres.
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1.1 Hypersurfaces cubiques spéciales

1.1.1 Définitions

On dénote par C l’espace de modules des hypersurfaces cubiques complexes lisses de

dimension 4.

Hassett a défini ce qu’on appelle une hypersurface cubique spéciale X dans P5, corre-

spondant à l’hypersurface cubique contenant une surface algébrique S non homologue à une

intersection complète i.e non homologue à un multiple de h2, avec h = c1(OX(1)) la classe

d’une section d’hyperplan. On définit alors pour cette hypersurface cubique le sous-réseau

saturé de H2,2(X,Z), Kd := Zh2 + ZS avec d le determinant (ou discriminant) de la forme

d’intersection surKd. Les hypersurfaces cubiques spéciales forment une infinité dénombrable

de diviseurs irréductibles Cd dans C, correspondant à celles admettant un sous-réseau Kd de

discriminant d, avec d un entier tel que d ≥ 8 et d ≡ 0, 2 (mod 6). Ces diviseurs Cd sont

appelés les diviseurs de Noether-Lefschetz ou même simplement diviseurs de Hassett.

Pour certaines petites valeurs de d, les diviseurs Cd sont definis explicitement en terme de

familles de surfaces, non uniques, contenues dans des éléments généraux de ces diviseurs.

Ainsi, C8 est le lieu des hypersurfaces cubiques contenant un plan [47], C14 est la clôture

du lieu des hypersurfaces cubiques contenant une surface réglée rationnelle lisse de degré 4

ou même, d’une façon équivalente, de ceux qui contiennent une surface del Pezzo de degré

5 (voir [19, 21])... Selon une conjecture due à Harris-Hassett-Kuznetsov, il devrait exister

une infinité dénombrable de diviseurs de Hasssett paramétrant les hypersurfaces cubiques

rationnelles.

1.1.2 Association de surfaces K3

Hassett a prouvé ainsi que pour un nombre infini de diviseurs de Hassett, on peut associer

à des hypersurfaces cubiques, des surfaces K3. Plus précisement, la structure de Hodge sur

la cohomologie non spéciale K⊥d d’une hypersurface cubique X dans Cd est isomorphe à la

structure de Hodge de la cohomologie primitive H2
prim(S,Z) d’une surface K3 polarisée S

de degré d si et seulement si d n’est pas divisible par 4, 9, ou tout nombre premier impair

p ≡ 2 (mod 3). Selon les conjectures, la rationalité des hypersurfaces cubiques spéciales

est liée fortement à l’association de surfaces K3. Pour l’instant, toutes les hypersurfaces
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cubiques dans C14, C26, C38 et C42 sont prouvées rationnelles, ce qui s’adapte parfaitement à

la conjecture [13, 21, 91–93].

En plus, Hassett a montré que la variété de Fano de droites F (X) associée à une hypersurface

cubique générique X dans Cd est isomorphe à S[2], le schéma de Hilbert des sous-schémas

de longueur deux d’une surface K3 S lorsque d = 2(n2 + n + 1) pour n ≥ 2 (voir [46]). Ce

résultat sera ultérieurement plus exploré (voir [1, 36]). Notamment, Addington [1, Theorem

2] a prouvé que F (X) est birationnelle à S[2] si et seulement si X ∈ Cd, avec d de la forme
2n2+2n+2

a2
pour un certain n, a ∈ Z.

1.2 Intersections des diviseurs de Hassett

L’intersection des diviseurs Cd dans l’espace de modules C est considérée dans [8] en

étudiant l’intersection de deux diviseurs C8 et C14. Les auteurs [8] ont alors fourni des

exemples d’hypersurfaces cubiques rationnelles contenant un plan et une surface del Pezzo

de degré 5. En se basant sur des calculs de réseaux (voir [86] ou [51, Chap. 14] pour plus

de details sur la théorie des réseaux) et les travaux de Laza [65], Looijenga [68], Mayanskiy

[71] et Voisin [109], ils ont décrit l’intersection en terme de composantes irréductibles non

vides. En outre, Addington [3, Theorem 4.1] a montré que C8 intersecte tout diviseur de

Hassett Cd. Dernièrement, Yang and Yu [112] ont prouvé que l’intersection de n’importe

quels deux diviseurs Cd1 et Cd2 dans C est non vide. Par conséquent, ils en ont déduit que tous

les diviseurs de Hassett Cd contiennent l’union de trois sous-variétés de codimension deux

dans C paramétrant des hypersurfaces cubiques rationnelles, correspondant aux intersections

avec les diviseurs C14, C26 et C38 [112, Theoreme 3.3]. Très récemment, ils ont démontré que

l’intersection de tous les diviseurs de Hassett est non vide en utilisant les hypersurfaces

cubiques polarisables (voir [113]).

1.2.1 Hypersurfaces cubiques fibrées rationnelles

Récemment, dans [9], on considère certaines classes d’hypersurfaces cubiques birationnelles

à des fibrations en surfaces rationnelles sur P2 en les intersectant avec d’autres classes

d’hypersurfaces cubiques rationnelles.

On considère d’abord les hypersurfaces cubiques dans C8 contenant un plan. La projec-

tion du plan établit une stucture de fibrations de surfaces quadriques sur P2. Hassett [47] a

identifié un lieu dans C8 correspondant à des sous-variétés de codimension 2 dans C paramé-
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trant les hypersurfaces cubiques rationnelles. Il a prouvé que la trivialité de l’invariant de

Clifford des cubiques contenant un plan implique leur rationalité. On appelle "l’invariant

de Clifford" la classe de Brauer α ∈ Br(S) d’une fibration en P1 au dessus d’une surface K3

S lisse de degré 2. Cette fibration en P1 est le schéma de Hilbert H(0, 1) des droites dans

les fibres de la fibration en quadriques. En effet, la trivialité de l’invariant de Clifford est

équivalente à l’existence des sections rationnelles de la fibration. Dans [9], nous considérons

des exemples d’hypersurfaces cubiques rationnelles contenant un plan tels que la fibration

associée n’a pas de section rationnelle et donc avec la classe de Brauer α non triviale en

étudiant l’intersection de C8 avec C26 et C38. Ainsi, nous décrivons explicitement les com-

posantes irréductibles dans les intersections et nous nous assurons de la trivialité ou pas de

la classe de Brauer pour chacune des composantes:

Théorème I-1: L’intersection C8 ∩ C26 dans l’espace de modules C a huit composantes

irréductibles indexées par le discriminant dτ ∈ {29, 36, 48, 53, 61, 64, 68, 69} de la forme

d’intersection des éléments génériques dans chaque composante.

Quatre de ces composantes contiennent des hypersufaces cubiques rationnelles telles que la

fibration associée n’a pas de sections.

Théorème I-2: L’intersection C8 ∩ C38 dans l’espace de modules C a dix composantes

irréductibles indexées par le discriminant dτ ∈ {36, 45, 61, 68, 80, 85, 93, 96, 100, 101} de la

forme d’intersection des éléments génériques dans chaque composante.

Cinq de ces composantes contiennent des hypersufaces cubiques rationnelles telles que la fi-

bration n’a pas de sections.

Dans [9], on étudie ainsi d’autres exemples d’hypersurfaces cubiques fibrées rationnelles.

Ces hypersurfaces cubiques vivent dans C18. En effet, l’hypersurface cubique générique X

dans C18 contient une surface réglée elliptique T de degré 6 (voir [4]). Le système linéaire de

quadriques à travers T définit une application rationnelle X // P2 dont les fibres sont des

surfaces del Pezzo de degré 6. En particulier, X est birationnelle à une fibration en surfaces

del Pezzo de degré 6. Pour une fibration "good1", on peut associer des classes de Brauer

comme suit: on appelle H(0, 3) et H(0, 2) les schémas de Hilbert sur P2 paramétrant les
1La notion de fibration " du Val" en surfaces del Pezzo de degré six est une généralisation de la notion

"good" [58].
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courbes connexes de genre 0 avec un anticanonique de degré respectivement 3 et 2; H(0, 3)

est une fibration en P2 au-dessus d’une surface K3 S de degré 2 et H(0, 2) est une fibration

en P1 au-dessus d’un triple revêtement d’une surface non singulière Z sur P2; On considère

alors les deux classes de Brauer β ∈ Br(S) associée à H(0, 3) au-dessus de S et γ ∈ Br(Z),

celle associée à H(0, 2) au-dessus de Z sur P2. La trivialité des classes de Brauer β et γ

est équivalente à l’existence d’une 2-section ou 3-section de la fibration sur P2 (voir [58]).

Dans [4], les hypersurfaces cubiques dans C18 données sont rationnelles quand la fibration a

une section rationnelle i.e quand les deux classes de Brauer sont triviales. En intersectant

C18 avec C14 (et d’autres diviseurs tels que C26 et C38), nous montrons que cette condition

n’est pas nécessaire pour la rationalité de la cubique dans C18, en fournissant des exemples

d’hypersurfaces cubiques rationnelles telles que la fibration "good" en surfaces del Pezzo de

degré 6 associée n’a pas de sections.

Théorème II: Il existe des hypersurfaces cubiques rationnelles dans C18 fibrées en "good"

surfaces del Pezzo de degré 6 telles que les classes de Brauer associées ne sont pas toutes les

deux triviales.

Ainsi, on donne des descriptions complètes des composantes irréductibles de l’intersection

entre C18 et C14, C26, C38. On s’abstient de les décrire ici mais elles se trouvent dans les

Théorèmes 3.2.10, 3.2.11 et 3.2.12. Pour chaque composante, on étudie aussi la trivialité ou

pas des deux classes de Brauer.

Des exemples explicites d’hypersurfaces cubiques rationnelles fibrées en surfaces quadriques

ou surfaces del Pezzo de degré 6 sont ensuite construites à l’aide de Macaulay2 [39].

1.2.2 Familles d’hypersurfaces cubiques avec des motifs de Chow de di-

mension finie et de type abélien

Suite au résultat de Yang et Yu [112] confirmant l’intersection non vide de n’importe

quels deux diviseurs de Hassett dans l’espace de modules C, il semble naturel de se poser la

question sur l’intersection de plusieurs diviseurs dans C. En faisant des calculs de réseaux,

dans [11], nous généralisons le résultat de [112]. En particulier, en fixant des conditions

arithmétiques sur 20 discriminants d1, .., d20, nous montrons que jusqu’à vingt diviseurs
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s’intersectent dans l’espace de modules C. De plus, nous montrons qu’on peut construire des

familles d’hypersurfaces cubiques, contenues dans ces intersections de diviseurs, associées à

des surfaces K3 S de rang arbitraire 1 ≤ ρ(S) ≤ 20.

Théorème III:

(i) Pour 3 ≤ n ≤ 20,

n⋂
k=1

Cdk 6= ∅,

avec dk ≥ 8, dk ≡ 0, 2 (mod 6) et d3, .., dn = 6 d′ ou 6 d′ + 2, d′ un nombre carré.

(ii) Il existe des familles d’hypersurfaces cubiques F ⊆
n⋂
k=1

Cdk 6= ∅, de dimension 20 −

n, telles que pour une hypersurface cubique générique X ∈ F , rang(H2(X,Ω2
X) ∩

H4(X,Z)) = n+ 1.

(iii) En plus, si au moins un des Cdk de l’intersection contient des hypersurfaces cubiques

avec une surface K3 associée, alors les hypersurfaces cubiques de F ont une surface

K3 associée de rang supérieur ou égal à n.

Ainsi, en utilisant les résultats de Bolognesi et Pedrini [20] et de Bülles [22] sur la dé-

composition de Chow-Künneth du motif de Chow des hypersurfaces cubiques (voir Annexe

B), nous arrivons à mettre en relation la dimension finie et l’abélianité du motif de Chow

de X ∈ F , h(X), aux mêmes propriétés de celui de la surface K3 associée. Finalement, en

combinant ces résultats avec certaines propriétés des surfaces K3 d’un rang ρ ≥ 19 (voir

[89]), nous obtenons le théorème suivant:

Théorème IV: Chaque diviseur de Hassett contient une infinité dénombrable de familles

de dimension 1 d’hypersurfaces cubiques telles que leurs motifs de Chow sont de dimension

finie et de type abélien.

Ce résultat se trouve dans [11]. Ainsi, nous considérons les variétés d’Hyperkähler suiv-

antes, associées à une hypersurface cubique X contenue dans ces familles construites: F (X)
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la variété de Fano de droites sur X et L(X) la variété de dimension 8 construite à partir

de l’espace de modules des courbes cubiques twistées sur X ne contenant pas un plan (i.e

X 6∈ C8) (voir [67]). Nous montrons que ces variétés d’Hyperkähler associées à X ont des

motifs de Chow finiment générés et abéliens aussi.

1.3 Familles universelles d’hypersurfaces cubiques

Les familles universelles sont bien exploitées dans le cadre des espaces de modules des

courbes [45]. De même, dans le contexte des surfaces K3, des résultats multiples sont ap-

parus concernant leurs familles universelles, notamment récemment dans [15, 34, 35, 70].

Nous avons alors étudié ces objets pour l’espace de modules des hypersurfaces cubiques de

dimension 4. En effet, vu que les cubiques génériques dans les diviseurs Cd n’admettent

pas des automorphismes projectifs (voir [37, Thm 3.8]), on peut alors définir des familles

universelles d’hypersurfaces cubiques Cd,1 −→ Cd au moins sur des ouverts de chaque diviseur

de Hassett Cd. Ces familles universelles correspondent aux espaces de modules des hyper-

surfaces cubiques 1-pointées. Nous montrons, dans [10], le suivant:

Théorème V: Les familles universelles d’hypersurfaces cubiques Cd,1 sont unirationnelles,
pour 8 ≤ d ≤ 42.

Ainsi inductivement, nous déduisons que:

Théorème VI: Les familles universelles d’hypersurfaces cubiques Cd,m sont unira-

tionnelles pour 8 ≤ d ≤ 42, pour tout m.

De plus, en utilisant des résultats récents sur la non-négativité de la dimension de Ko-

daira des espaces de modules des surfaces K3 pointées (voir [42, 103]) et leur relation avec

les hypersurfaces cubiques, on s’assure que pour une infinité de valeurs de d, les familles

universelles Cd,1 ne sont pas unirationnelles:

Proposition VII: Les familles universelles des hypersurfaces cubiques Cd,1 ne sont pas

unirationnelles si:
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1. d > 80, d ≡ 2 (mod 6), 4 6 |d et tel que pour tout nombre premier impair p, p|d, on a

p ≡ 1 (mod 3);

2. d = 6n+ 2, n > 13 et n 6= 15;

3. d = 6n pour n > 16 et n 6= 18, 20, 22, 30.

1.4 Variétés de Gushel-Mukai

Ensuite nous nous sommes intéressés à d’autres variétés de Fano, notamment les variétés

lisses de Gushel-Mukai (variétés de GM dans la suite). D’après un résultat de Mukai [80], ces

variétés Y de dimension n sont données par une intersection dimensionnellement transverse

d’un cône sur la Grassmannienne avec un espace linéaire et une hypersurface quadrique:

Y = CG(1, 4) ∩ P(W ) ∩Q,

avec W un sous-espace vectoriel de dimension n+5 et Q une hypersurface quadrique dans

P(W ). Elles sont de dimension au plus 6.

Nous abordons dans cette thèse plus précisément les variétés de GM lisses de dimension

4. Elles sont des variétés de Fano de degré 10 et d’indexe 2. Elles peuvent être réalisées

comme indiqué précédemment par une intersection dimensionnellement transverse d’un cône

CG(1, 4) ⊂ P10 sur la Grassmannienne G(1, 4) ⊂ P9 avec un sous-espace linéaire P8 ⊂ P10 et

une hypersurface quadrique Q ⊂ P10. Ces variétés de GM de dimension 4 existent en deux

types; soit elles sont isomorphes à un revêtement double d’une section linéaire de G(1, 4)

branchée sur une section quadrique (appelées de type Gushel), soit isomorphes à une section

quadrique d’une section linéaire de G(1, 4) (appelées ordinaires2). Ces dernières peuvent

être vues comme des hypersurfaces quadriques lisses dans une variété de del Pezzo lisse de

dimension 5, Y5 := G(1, 4)∩P8 ⊂ P8. Elles sont paramétrées par un ouvert V dans l’espace

projectif P(OY5(2)) de dimension 39. En effet, les variétés de GM ordinaires forment un

ouvert dans M4
GM , l’espace de modules des variétés de GM de dimension 24. Cet ouvert

est complémentaire à un fermé irréductible de codimension 2 dans M4
GM , lieu des GM de

type Gushel.
2Celles pour lesquelles le sous-espace P8 ⊂ P10 ne contient pas le sommet du cône.
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1.4.1 Théorie de Hodge des variétés de GM

Selon le point de vue de la géometrie birationnelle, les variétés de GM de dimension

4 se comportent largement de manière semblable aux hypersurfaces cubiques dans P5 et

ont beaucoup de propriétés en commun. Elles sont encore une fois toutes unirationnelles,

les exemples rationnels sont simples à construire, mais aucun exemple nonrationnel est

connu. Encore, à travers l’étude de la théorie de Hodge, dans [26], les auteurs ont introduit

le lieu de Noether-Lefschetz dans l’espace de modules M4
GM correspondant à l’ensemble

des variétés de GM de dimension 4 spéciales i.e contenant une surface telle que sa classe

de cohomologie ne vient pas de la Grassmannienne G(1, 4). D’une façon équivalente, on

dit qu’une variété de GM de dimension 4, Y ∈ M4
GM est spéciale si et seulement si

rang(H2,2(Y ) ∩ H4(Y,Z)) ≥ 3. Ces variétés sont paramétrées par une réunion infinie

dénombrable d’hypersurfaces
⋃
d(M4

GM )d ⊂ M4
GM , indexées par des entiers d ≥ 10 avec

d ≡ 0, 2, 4 (mod 8). Si d ≡ 0 (mod 4), l’hypersurface (M4
GM )d est irréductible, alors que

si d ≡ 2 (mod 8), c’est la réunion de deux composantes irréductibles (M4
GM )′d ∪ (M4

GM )′′d.

Pour une Y très générale dans (M4
GM )d, le réseau H2,2(Y ) ∩H4(Y,Z) est de rang 3 et de

discriminant d.

Pour certaines valeurs de d, Y ∈ (M4
GM )d a une surface K3 associée de degré d; pour

d’autres, elles ont des hypersurfaces cubiques de dimension 4 associées de discriminant d

(voir [26, Section 6.2, 6.3]). La notion d’association de surfaces K3 mène à une conjec-

ture similaire à celle de Hassett et Kuznetsov pour la rationalité des hypersurfaces cu-

biques; Y est rationelle si et seulement si elle a une surface K3 associée [48, 59, 60, 93,

102]. Les premiers composantes irréductibles du lieu de Noether-Lefschetz dansM4
GM sont:

(M4
GM )′10, (M4

GM )′′10, (M4
GM )20.. Toutes les variétés de GM dans ces composantes sont

rationnelles (voir [26, 49, 90]).

1.4.2 Familles universelles de variétés de GM

Dans le même esprit que pour les hypersurfaces cubiques de dimension 4, nous consid-

érons les variétés de GM de dimension 4 universelles au-dessus de certains diviseurs dans

M4
GM . Notamment pour certaines familles nous prouvons que leur familles universelles sont

unirationnelles. En effet, pour certaines familles de GM de dimension 4, des surfaces K3

apparaissent dans leurs constructions géométriques. C’est le cas par exemple de (M4
GM )20,

lieu des variétés de GM contenant une surface rationnelle de degré 9 et de genre sectionnel
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2. En ce basant sur leur construction géométrique, nous prouvons ainsi, dans [12], que:

Proposition VIII: La famille universelle (M4
GM )20,1 est unirationnelle.

Ainsi, nous nous sommes intéressés à (M4
GM )nod20 , un lieu contenu dans (M4

GM )20 et

defini à partir de certaines surfaces K3 de genre 11. Nous démontrons alors cette fois-ci la

rationalité de (M4
GM )nod20 et de leur famille universelle (M4

GM )nod20,1.

Finallement, nous proposons une méthode générale s’appliquant sur les hypersurfaces

cubiques et les variétés de GM de dimension 4 pour démontrer l’unirationalité de certaines

de ces familles universelles m−pointées au-dessus de leurs espaces de modules.

Théorème IX: Les espaces de modules des familles m−pointées au-dessus des lieux

suivants sont unirationnels:

1. C14: hypersurfaces cubiques contenant une surface del Pezzo de degré 5;

2. C26: hypersurfaces cubiques contenant une surface réglée de degré 7 avec 3 noeuds;

3. C38: hypersurfaces cubiques contenant une surface de Coble généralisée;

4. C42: hypersurfaces cubiques contenant une surface rationnelle de degré 9 et de genre

sectionnel 2;

5. (M4
GM )′10: variétés de GM contenant une surface τ -quadrique;

6. (M4
GM )

′′
10: variétés de GM contenant une surface del Pezzo de degré 5;

7. (M4
GM )20: variétés de GM contenant une surface rationnelle de degré 9 et de genre

sectionnel 2;
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Chapter 2

General facts on cubic fourfolds

2.1 Introduction

Cubic fourfolds are smooth cubic hypersurfaces X ⊆ P5. Despite the simplicity of their

definition, they are among the most mysterious objects in algebraic geometry. This is related

to the difficulty to understand their birational geometry. It is expected that very general

cubic fourfolds are nonrational but, until now, only examples of rational cubic fourfolds are

known.

Over time, many techniques were deployed successfully to understand more the birational

geometry of cubic fourfolds: Hassett [46, 47] studied cubic fourfolds via Hodge theory sense,

Kuznetsov [59] developed the derived category theory of cubic fourfolds. Similar conjectures

under both point of views were made toward the rationality of cubic fourfolds. Hassett

wondered whether all rational cubic fourfolds were special and have Hodge-theoretically

associated K3 surfaces (see [46–48]). In addition, Kuznetsov established a semiorthogonal

decomposition of the bounded derived category of X,

Db(X) = 〈Ku(X),OX ,OX(1),OX(2)〉.

He conjectured that a smooth cubic fourfold X is birational to P4 if and only its Kuznetsov

component Ku(X) is derived equivalent to a K3 surface S i.e. Ku(X) ∼= Db(S) for some K3

surface S. In this case, we say that Ku(X) is geometric (see also [3]). Addington-Thomas

[1, Theorem 1.1] showed that for a cubic fourfold X, if Ku(X) is geometric then X is special

and has a Hodge-theoretically associated K3 surface. Conversely, they proved that these sets



Chapter 2. General facts on cubic fourfolds 17

of cubics described by Hassett contain a Zariski open dense subset of cubics X admitting

the derived equivalence (for which Ku(X) is geometric) (see [52] for the twisted version).

Recently, based on the stability conditions on Ku(X), in [17, Corollary 29.7], Bayer-Lahoz-

Macrì-Nuer-Perry-Stellari proved that a cubic fourfold X has a Hodge-theoretically associ-

ated K3 surface if and only if its Kuznetsov component Ku(X) is geometric.

In the following we collect some generalities on cubic fourfolds and known results related

to their Hodge and lattice theories.

2.1.1 Basic definitions

Throughout, we work over the complex field C.

Definition 2.1.1. Let X be a smooth projective variety of dimension n.

We say that X is rational if there exists a birational map Pn ∼ // X , i.e. there exist

U ⊆ X, V ⊆ Pn open subsets, such that U is isomorphic to V . This is equivalent to say

that the function field C(X) is isomorphic to the extension C(x1, .., xn).

We say that X is unirational if there exists a dominant rational map PN // X , for

an arbitrary N . This is equivalent to have the function field of X, C(X), contained in a

purely transcendental field extension of C.

There are some birational invariants for varieties that are birationally equivalent. We

mention for example the plurigenera P dX = dimH0(X,Kd
X) for d ≥ 0 with KX the canonical

bundle of X, the Kodaira dimension, the fundamental group π1(X), some Hodge numbers

(as hp,0 = H0(X,Ωp) where Ωp is the sheaf of p−forms)...

2.1.2 Moduli space of cubic fourfolds

Cubic hypersurfaces of dimension 4 are defined by an equation

P(x1, x2, x3, x4, x5, x6) = 0

where P ∈ C[x1, x2, x3, x4, x5, x6] is a degree three homogeneous polynomial.

Cubic hypersurfaces of dimension four are parametrized by P(H0(P5,O(3))) ∼= P55. The

smooth ones form a Zariski open dense subset U ⊂ P55.
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The invariant theory of cubic hypersurfaces, with respect to the natural PGL(6)-action,

is known by the work of Laza [65, 66].

Theorem 2.1.2. [66, Thm. 1.1] A cubic hypersurface X ⊂ P5 is not GIT stable if and only

if one of the following conditions holds:

1. X is singular along a curve C spanning a linear subspace of P5 of dimension at most

3;

2. X contains a singularity that deforms to a singularity of class P8, X9 or J10.

In particular, if X is a cubic hypersurface with isolated singularities, then X is stable if and

only if X has at worst simple singularities.

Since we work with smooth cubic hypersurfaces in P5, the GIT quotient that we will

consider is quiet different than the one constructed by Laza [66]. In fact, it is known that

two cubic fourfolds are isomorphic if and only if they are projectively equivalent by the

action of PGL(6,C). As a result, the moduli space of cubic fourfolds C can be described as

the GIT quotient

C := U//PGL(6,C).

Actually, the moduli stack of cubic fourfolds is a Deligne-Mumford stack with a coarse

moduli space C, which is a quasi-projective variety of dimension 55 − 35 = 20 (see [83,

Chapter 4.2]).

2.2 Lattice and Hodge theory for cubic fourfolds

We recall that the Hodge decomposition holds for smooth projective varieties over C

(for Kähler manifolds in general) as follows:

Hk(X,Z)⊗ C ∼=
⊕

iH
i,k−i(X), H i,k−i(X) := Hk−i(X,Ωi

X)

with two structures on this decomposition:

1. a conjugation action with H i,k−i = Hk−i,i;

2. a non degenerate integral quadratic form on Hk(X,Z).
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In our case, the cohomology of a cubic fourfold X, H∗(X,Z), is well understood and

torsion-free (see [19]). The Hodge diamond of X has the following form:

1

0 0

0 1 0

0 0 0 0

0 1 21 1 0

0 0 0 0

0 1 0

0 0

1

We focus on the middle cohomology of X, containing some nontrivial Hodge theoretic

information. The Hodge-Riemann bilinear relations imply that H4(X,Z) is a unimodular

lattice under the intersection form (−,−) of signature (21,2). Let L be the cohomology lattice

corresponding to H4(X,Z), and Lprim = H4
prim(X,Z) := 〈h2〉⊥ := {v ∈ H4(X,Z) | (v, h2) =

0} the primitive cohomology lattice, where h ∈ H2(X,Z) is the hyperplane class defined by

the embedding X ⊂ P5.

Note that Lprim is an even lattice (see [46, §2]).

Furthermore, using the Abel-Jacobi map that shows the correspondence between X and

the Fano variety of lines F (X) on the Hodge structure level (see [19] or §2.3.3 for more

details about F (X)):

θ : L // H2(F (X),Z) (−1)1

and the induced isomorphism:

Lprim // H2(F (X),Z)prim(−1) ,

Hassett [46, Proposition 2.1.2] computed explicitly the cohomology lattice for cubic fourfolds

as follows:

L := H4(X,Z) ∼= E
⊕

2
8

⊕
U

⊕
2
⊕

I3,0

∼= (+1)
⊕

21
⊕

(−1)
⊕

2,

1H2(F (X),Z) is equipped with the Beauville-Bogomolov form.
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and the primitive cohomology lattice

Lprim := H4(X,Z)prim := 〈h2〉⊥ ∼= E
⊕

2
8

⊕
U

⊕
2
⊕

A2,

where:

I3,0 is the rank 3 lattice of signature (3,0) whose intersection matrix is the identity matrix

of rank 3 and h the hyperplane class defined by

h2 = (1, 1, 1) ∈ I3,0,

E8 is the unimodular positive definite even rank 8 lattice associated to the corresponding

Dynkin diagram defined by the following matrix:

E8 :=



2 −1 0 0 0 0 0 0

−1 2 −1 0 0 0 0 0

0 −1 2 −1 −1 0 0 0

0 0 −1 2 0 0 0 0

0 0 −1 0 2 −1 0 0

0 0 0 0 −1 2 −1 0

0 0 0 0 0 −1 2 −1

0 0 0 0 0 0 −1 2


,

U is the hyperbolic plane defined by U :=

0 1

1 0

 and the rank 2 lattice A2 :=

2 1

1 2

.

Moreover, we denote by

A(X) = H2,2(X) ∩H4(X,Z) = H2(X,Ω2
X) ∩H4(X,Z)

the lattice of integral middle Hodge classes of X; it is a positive definite lattice by the

Riemann bilinear relations; and since the (integral) Hodge conjecture 2 holds for cubic

fourfolds (see [111, Theorem 18] or [73, Corollary 0.3] for a recent proof), it coincides with

CH2(X) the Chow group of codimension 2 cycles on X up to rational equivalence (see [24,

§5]). Moreover, thanks to Voisin [109, Proposition 1], A(X) has no roots (i.e., @ v ∈ A(X)

2The algebraic cohomology of a cubic fourfold is generated by the classes of algebraic cycles.
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with (v.v) = 2). We denote by d(A(X)) ∈ Z its discriminant, the determinant of its Gram

matrix.

These lattices will be useful for next Chapters.

Theorem 2.2.1 (Torelli theorem for cubic fourfolds, [68, 109]). Let X, X ′ be cubic fourfolds.

Suppose there is an isomorphism of Hodge structures ψ : H4(X,C)
'−→ H4(X ′,C), Then X

and X ′ are isomorphic.

2.3 Special cubic fourfolds

For a very general cubic fourfold X, any algebraic surface S ⊂ X is homologous to a

multiple of h2, so that rk(A(X)) = 1 as follows

A(X) ∼= Zh2 and [S] ≡ nh2, n =
deg(S)

3
.

However, Hassett [46] defined special cubic fourfolds corresponding to cubic fourfolds con-

taining an algebraic surface S which is not homologous to a complete intersection i.e the

cohomology class of S is linearly independent of h2. Then, as a consequence of the Hodge

conjecture, one can say that a cubic fourfold X is special if and only if A(X) has rank at

least 2.

Definition 2.3.1. A labelling Kd of a special cubic fourfold is a rank 2 saturated (i.e. the

quotient group A(X)/Kd is torsion free) sublattice such that

h2 ∈ Kd ⊆ A(X).

The discriminant d of a labelling Kd := 〈h2,S〉 with S the algebraic surface of degree

dS, is the determinant of the intersection form on Kd:

Kd :=

h2 S

h2 3 dS

S dS (S,S)

,

such that the self-intersection is given by the highest Chern class of the normal bundle to S

in X:

(S,S) = c2(NS/X) = 6h2 + 3hKS +K2
S − χS,
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where h = h|S, KS is the canonical divisor and χS denotes the Euler characteristic of S.

A cubic fourfold X is called special (of discriminant d) if X is associated to a labelling

Kd.

Theorem 2.3.2 ([46]). Let Cd ⊂ C denote the special cubic fourfolds of discriminant d.

Then Cd is an irreducible nonempty divisor if and only if

(∗) d ≥ 8 and d ≡ 0, 2 (mod 6).

Special cubic fourfolds form a countably infinite union of irreducible divisors Cd ⊂ C,
admitting labellings Kd. These divisors Cd are called Noether-Lefschetz divisors (or for short

Hassett divisors).

Only few Cd can be defined explicitly in terms of particular surfaces, not unique, contained

in a cubic fourfold X ∈ Cd. In fact, Hassett provided first explicit descriptions of the generic

members of the divisors Cd for d ≤ 20, d 6= 18 (see [46, 47]). Later, Nuer [87] described

explicitly the generic members of Cd for 12 ≤ d ≤ 38 and d = 42 using the deformation theory

of Hilbert schemes of flags, semicontinuity arguments and explicit Macaulay2 calculations.

Recently, Russo and Staglianò [92, 93] gave an alternative descriptions in terms of surfaces

contained in generic elements of Cd for d = 14, 26, 38 and 42. In the following, we will give

more details on the descriptions of certain divisors Cd that will appear in next Chapters.

2.3.1 Examples of special cubic fourfolds

We describe in the following table some examples of divisors Cd in C.
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Divisor

Cd ⊂ C
Descriptions Labelling Kd

C8

C8 is usually described as the locus of cubic four-

folds containing a plane P . K8 :=

h2 P

h2 3 1

P 1 3

C12

C12 corresponds to cubic fourfolds containing a

rational normal cubic scroll Σ3.
K12 :=

h2 Σ3

h2 3 3

Σ3 3 7

C14

Cubic fourfolds containing quartic scrolls, quin-

tic scrolls or quintic del Pezzo surfaces form the

divisor C14 [19, 46]. Later, we will denote by Σ4

the class of a rational quartic scroll or a degen-

eration of such a surface (see [21] or [91, §2] for

new surfaces defining C14).

K14 :=

h2 Σ4

h2 3 4

Σ4 4 10

C18

A generic cubic fourfold in C18 contains an ellip-

tic ruled surface T of degree 6. K18 :=

h2 T

h2 3 6

T 6 18

C26

Cubic fourfolds in C26 contain S26, a surface ob-

tained as the projection of a smooth del Pezzo

surface of degree 7 in P7 from a line intersect-

ing the secant variety in one general point (see

[91, §3]). C26 corresponds also to cubic fourfolds

containing a 3−nodal septic scrolls (see [34]).

K26 :=

h2 S26

h2 3 7

S26 7 25

C38

Cubic fourfolds in C38 contain a "generalized"

Coble surface S38. It is a general degree 10

smooth surface of sectional genus 6 obtained as

the image of P2 by the linear system of plane

curves of degree 10 having 10 fixed triple points

(see [91, §4]).

K38 :=

h2 S38

h2 3 10

S38 10 46
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C42

Cubic fourfolds in C42 contain the rational sur-

face S42 of degree 9 and sectional genus 2 with

5 nodes (see [93]). C42 corresponds also to cubic

fourfolds containing a 8−nodal degree 9 scroll

(see [35]).

K42 :=

h2 S42

h2 3 9

S42 9 41

As already mentioned, Nuer [87] gave alternative descriptions for generic cubics in Cd
for 12 ≤ d ≤ 44, d 6= 42 by means of certain rational surfaces. For 12 ≤ d ≤ 38 these

surfaces, with certain cohomological invariants (see [87, Table 2]), are obtained as blow-ups

of P2 at p points in general positions, embedded into P5 via certain ample linear system.

In particular, he considered an open subset Ud ⊂ (P2)p parametrizing generic p-tuples of

the distinct point. Let S be the rational surface obtained as the blow-up of P2 along the p

points x1, . . . , xp, and let us embed it into P5 via the linear series |aL − (E1 + · · · + Ei) −
2(Ei+1 + · · · + Ei+j) − 3(Ei+j+1 + · · · + Ep)|, where Em, for m = 1, .., p, are exceptional

divisors and L the pull-back of the hyperplane class on P2; the parameters (a, i, j, p) of the

linear system are those displayed in [87, Table 1]. They are chosen appropriately so that

the surface image of the linear system is contained in P5 and the cubics in PH0(IS/P5(3))

all belong to Cd, for a fixed value of d. Moreover, for d = 44, Nuer showed that a generic

element of C44 contains a Fano model embedded in an Enriques surface.

2.3.2 Associated K3 surfaces

Hassett gives also the connection between special cubic fourfolds and K3 surfaces on

the Hodge structure level. He identified infinite number of divisors Cd with associated K3

surfaces (see Appendix A).

Theorem 2.3.3 ([46]). For a special cubic fourfold X ∈ Cd, there exists a polarized K3

surface S of degree d such that K⊥d ⊂ L is Hodge-isometric to H2
prim(S,Z)(−1) if and only

if

(∗∗) d is not divisible by 4, 9, or any odd prime number p ≡ 2 (mod 3) 3.

In fact, for those d as in Theorem 2.3.3, Hassett proved also that Cd and Fg are related,

where Fg is the 19-dimensional moduli space of polarized K3 surfaces of genus g = d+2
2 . In

particular, he showed that there is a rational map:
3This condition is equivalent to d|2n2 + 2n+ 2, for some n ∈ Z (∗∗).
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F d+2
2

99K Cd (2.1)

which is a birational isomorphism for d ≡ 2 (mod 6) and a degree two cover for d ≡ 0 (mod 6).

It is now conjectured that the rationality of cubic fourfolds depends on existence of

such an associated K3 surface. According to the conjecture, supported by Hassett and

Kuznestov’s works ([46], [47], [59]), a cubic fourfold is rational if and only if it has an asso-

ciated K3 surface in this sense.

First values of discriminants d verifying (∗∗) are d = 14, 26, 38, 42, 62.... Currently,

known examples of rational cubic fourfolds are C14, C26, C38 and C42 but also a countable

infinite union of divisors in C8, C18 and certain divisors in C20 (see [4, 21, 32, 46, 92, 93, 113]).

In fact, rationality has been known classically for the first family C14, by the work of Fano

[13] (see also [21]). Moreover, in two recent papers [91] and [93], a new way of showing the

rationality of cubic fourfolds has been introduced based on the congruences of 5-secant conics

for the first three cases C14, C26 and C38 (see [91]) and congruences of 8-secant twisted cubics

for C42 (see [93]). In particular, in these papers the authors construct specific irreducible

surfaces Sd ⊂ P5 contained in a general element of certain Cd, for d = 14, 26, 38 or 42.

These surfaces Sd admit a four dimensional family of (3e − 1)− secant curves of degree e

parametrized by rational variety such that through any general point of P5 there passes a

unique curve of the family. In this case, we say that these surfaces Sd admit congruences of

(3e − 1)− secant curves of degree e. Then cubics containing Sd are birational to the base

of the rational family (or to the rational parameter space of the congruence), and hence are

rational as well. More details of these constructions are given in §4.4.1 (Chapter 4).

Clearly, for the rest of the divisors C8, C18 and C20, their discriminants d don’t satisfy (∗∗).
Although, the rational examples of cubics that they contain belong (most probably) to the

intersection with certain divisors Cd with d satisfying (∗∗) (see [113], [9], [32]).

2.3.3 Fano variety of lines

For a cubic fourfold X, the Fano variety of lines F (X) = {l ∈ G(1, 5)| l ⊆ X} is a four-

dimensional smooth projective variety. It is an Hyperkähler variety, i.e. F (X) is simply

connected and H0(F (X),Ω2
F (X)) is spanned by an everywhere non-degenerate form (see
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[19], [53, Chapter 4] or [5, Section 1]). Hassett [46, Section 6] showed also that for a generic

special cubic fourfold X ∈ C2(n2+n+1), for n ≥ 2 an integer, there is an isomorphism

F (X) ∼= S[2] (2.2)

between F (X) and the Hilbert scheme of length two subschemes S[2] of the associated K3

surface S.

Moreover, Hassett showed that, if for the generic X ∈ Cd, the Fano variety F (X) is isomor-

phic to S[2] for some K3 surface S then

(∗ ∗ ∗) d is of the form 2n2+2n+2
a2

for some n, a ∈ Z .

Furthermore, Addington [1] proved that X ∈ Cd for some d satisfying (∗ ∗ ∗) if and only

if F (X) is birational to S[2] for some K3 surface S (see also [36]).

2.3.4 Unirationality of Hassett divisors Cd

Questions about the unirationality of Hassett divisors Cd have been investigated in mul-

tiple works. It is natural to ask, on one hand, what is the smallest d for which Cd is not

unirational and, on the other hand, is there a minimal d after which Cd is of general type.

Although the unirationality of Cd for d = 8, 12, 14, 20 was already known, using the

description mentioned above (see §2.3.1), Nuer [87] proved the following:

Proposition 2.3.4. ([87, Corollary 4.1, 4.2]) For 12 ≤ d ≤ 44 and d 6= 42, the moduli

space Cd is unirational.

In fact, the main theorem [87, Thm. 3.1] shows that there exists a vector bundle Vd → Ud

such that the fiber over (x1, . . . , xp) is the space of global sections H0(IS|P5(3)). The associ-

ated projective bundle is clearly unirational. The natural classifying morphism P(Vd)→ Cd,
obtained by the universal property of Cd is dominant and this implies the unirationality of

Cd.
Furthermore, due to Gritsenko-Hulek-Sankaran [42], multiple results were made con-

cerning the non-negativity of the Kodaira dimension of the moduli space of polarized K3

surfaces of certain degree. Following Nuer [87] and using the connection between cubic four-

folds and K3 surfaces (see [46]), we write their “translation” in terms of cubic fourfolds via

the rational map (2.1):
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Proposition 2.3.5. Let d > 80, d ≡ 2 (mod 6), 4 6 |d such that for any odd prime p, p|d
implies p ≡ 1 (mod 3). Then the Kodaira dimension of Cd is non-negative. If moreover

d > 122, then Cd is of general type.

Later on certain gaps were filled due to Tanimoto-Várilly-Alvarado [103] using automor-

phic form techniques:

Proposition 2.3.6. ([103, Theorem 1.1]) The divisor C6n+2 is of general type for n > 18 and

n 6= 20, 21, 25 and has non-negative Kodaira dimension for n > 13 and n 6= 15. Moreover,

C6n is of general type for n > 18, n 6= 20, 22, 23, 25, 30, 32 and has non-negative Kodaira

dimension for n > 16 and n 6= 18, 20, 22, 30.

2.4 Arithmetic conditions on discriminants

Next we collect all arithmetic conditions on the discriminants d of Hassett divisors Cd
that appear all along this manuscript. We define some elements that are not mentioned

yet: for a cubic fourfold X ∈ Cd, we denote by S[4] the Hilbert scheme of four points on a

K3 surface S, L(X) the 8fold associated to X (see Section 3.3.2), t(X) (resp. t2(S)) the

transcendental motive of X (resp. of a K3 surface S) (see Appendix B). For more details,

we refer to [1, 2, 52, 54].
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Label Condition on d Comments for X ∈ Cd

(∗) d ≥ 8 and d ≡ 0 or 2 (mod 6)
Hassett divisors Cd are indexed by d satisfying

(∗)

(∗∗)
d 6 |4, 9, or any odd prime num-

ber p ≡ 2 (mod 3)

⇐⇒ H2(S,Z)prim(−1) ' K⊥d (Hodge isome-

try);

Ku(X) ∼= Db(S)

(∗ ∗ ∗) d = 2n2+2n+2
a2

, for some n, a ∈ Z ⇐⇒ F (X) ∼ S[2]

(∗ ∗ ∗∗)
d = 6d′ or 6d′ + 2 with d′ a

square

This condition is introduced in Section 3.3 to

prove the non-emptiness of the intersection of

multiple divisors with discriminants satisfying

this condition

(5∗)
∃f, g ∈ Z with g|(2n2 + 2n +

2), n ∈ Z and d = f2g
=⇒ t(X) ∼= t2(S)(−1)

(6∗) d = 6n2+6n+2
a2

, n, a ∈ Z ⇐⇒ L(X) ∼ S[4]

One can notice that the condition (∗ ∗ ∗) is strictly stronger than (∗∗), which is in turn

strictly stronger than (5∗). Of course, all values d, that we are interested in, verify the

condition (∗). The conditions (∗ ∗ ∗∗) and (6∗) are not comparable with others. However,

the sets of d satisfying (∗∗∗∗) and (6∗) intersect in a certain way with the sets of d satisfying

other conditions. Next we try to schematize this situation. For the reader’s convenience,

some values of d were positioned inside the ellipses where they belong 4.

4The author is aware that this is not the most formal way to represent this idea but still think that this
visualizes better the concept.
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Chapter 3

Intersection of Hassett divisors Cd in

the moduli space C

3.1 Introduction

From discussions above, it is significant to study the intersection of Hassett divisors.

Then one can understand more the locus of rational cubics inside C, find new examples of

rational cubics and much more... Intersections of Hassett divisors Cd were considered in

multiple papers (see [3, 8, 32, 112, 113]). In particular, the intersection C8 ∩ C14 has been

known nonempty for 20 years (see [47]). In [8], this intersection is also described explicitly.

This allowed the authors to establish new examples of rational cubic fourfolds X containing

a plane and a quintic del Pezzo surface. In fact, based on lattice computations and the works

of Laza [65], Looijenga [68], Mayanskiy [71] and Voisin [109], they provide description of the

intersection in terms of irreducible components and classify exactly which components are

supported by cubic fourfolds and which ones are empty. Furthermore, Addington-Thomas

[3, Theorem 4.1] proved that C8 intersects any Hassett divisor. Moreover in [21], the authors

mentioned that C14 intersects many other Hassett divisors without specifying exactly which

ones. Lately, Yang and Yu [112] proved that C14 intersects all divisors. Actually, they proved

that the intersection of any two Hassett divisors is nonempty. As a consequence, they con-

clude that every Hassett divisor contains a union of three codimension two subvarieties in

C parametrizing rational cubic fourfolds corresponding to the intersection with the divisors

C14, C26 and C38 (see [112, Theorem 3.3]). Actually they are four, since in the meanwhile
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also C42 has been shown to parametrize rational cubic fourfolds (see [93]).

Recently, in [9], we consider some classes of cubic fourfolds birational to fibrations over

P2, where the fibers are rational surfaces. This relates strongly the rationality of the cu-

bics to the rationality of these surfaces over the function field of P2 and to the existence

of rational sections of the fibration. By studying the intersection of these classes of cubics

with others, well known to be rational (such as cubics in C14, C26 and C38 (see [91])), we

understand whether the existence of a rational section is also necessary for the rationality

of the cubics.

We study first the divisor C8, whose general element is a cubic containing a plane. These

cubics are birational to quadric fibrations over P2. Hassett [47] identified countably infi-

nite divisors in C8 consisting of cubics containing a plane and proved that they are rational

whenever the associated quadric surface bundle has a section. However, intersections of

C8 with the divisors C26, C38 give us new classes of smooth rational cubic fourfolds whose

associated quadric surface bundle doesn’t have a rational section, hence not contained in the

divisors of C8 described by Hassett. In addition, based on lattice computations, we describe

explicitly the intersections by evoking their irreducible components and we provide condi-

tions on the intersection pairing of generic elements for the (non)existence of sections of the

associated quadric surface bundle. This is equivalent to the (non)triviality of the Brauer

class α ∈ Br(S) associated to a degree 2 K3 surface S arising from a cubic fourfolds in C8

(see §3.2.1 for more details):

Theorem I-1: The intersection C8∩C26 in the moduli space of cubic fourfolds has eight

irreducible components indexed by the discriminant dτ ∈ {29, 36, 48, 53, 61, 64, 68, 69} of the
intersection pairing of generic elements inside each component.

Four of these components contain rational cubic fourfolds whose quadric fibration has no

section.

Theorem I-2: The intersection C8∩C38 in the moduli space of cubic fourfolds has ten ir-

reducible components indexed by the discriminant dτ ∈ {36, 45, 61, 68, 80, 85, 93, 96, 100, 101}
of the intersection pairing of generic elements inside each component.

Five of these components contain rational cubic fourfolds whose quadric fibration has no
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section.

In [9], we consider also the divisor C18, closure of the locus of cubic fourfolds containing

an elliptic ruled surface. The linear system of quadrics through this surface defines a (pos-

sibly good) sextic del Pezzo fibration over P2 (see Section 3.2.2 for a complete definition of

a "good" fibration). In particular, to a good fibration, we can associate two Brauer classes.

Let us denote by H(0, 3) and H(0, 2) the relative Hilbert schemes over P2 parametrizing

connected genus zero curves of respectively anticanonical degree three and two. In fact,

H(0, 3) is a P2-bundle over a smooth degree two K3 surface S and let β ∈ Br(S) be the

associated Brauer class. In addition, H(0, 2) is a P1-bundle over a triple cover Z of P2 and

we define the associated Brauer class γ ∈ Br(Z). In [4], it is proved that cubics in C18 are

rational whenever the fibration has rational section i.e. both Brauer classes β and γ are

trivial. In [9], we show that this condition is not necessary for the rationality of a cubic

fourfold in C18.

Theorem II: There exist rational cubic fourfolds in C18 fibered in "good" sextic del

Pezzo surfaces such that the associated Brauer classes are not both trivial.

We proceed, once again, by intersecting C18 with the divisors C14, C26 and C38 and

providing explicit description of these intersections. These results are obtained by studying

the intersection lattices of cubic fourfolds in these loci of codimension two in the moduli

space, and by checking their non emptiness. We abstain from describing them here, they

correspond to Theorems 3.2.10, 3.2.11 and 3.2.12. Moreover, for each irreducible component

in each intersection, we also study the (non)triviality of the two Brauer classes and we exhibit

new examples of rational cubic fourfolds whose associated good sextic del Pezzo fibration

has no rational sections (see §3.2.2):

Explicit examples of these rational cubic fourfolds fibered both in quadric surfaces and

sextic del Pezzo surfaces over P2 are provided in §3.2.3. The equations of the cubics them-

selves are constructed with Macaulay2 [39]1.

1The "goodness" condition on the del Pezzo fibration is quite difficult to obtain computationally.
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Furthermore, generalizing the construction of Yang and Yu [112], we study in [11] to

what extent one can intersect Hassett divisors Cd in C. In particular, we exhibit arithmetic

conditions on 20 indexes d1, . . . , d20 that assure that the divisors Cd1 , . . . , Cd20 all intersect one
another. Using lattice theoretical computations and a result of [112], we prove the following:

Theorem III:

(i) For 3 ≤ n ≤ 20,

n⋂
k=1

Cdk 6= ∅,

with dk ≥ 8, dk ≡ 0, 2 (mod 6) and d3, .., dn = 6d′ or 6d′ + 2, d′ a square.2

(ii) There exist families of cubic fourfolds F ⊆
n⋂
k=1

Cdk 6= ∅, of dimension 20−n, such that

a generic cubic fourfold X ∈ F has rk(A(X)) = n+ 1.

(iii) In addition, if at least one of the divisors Cdk in the intersection parametrizes cubic

fourfolds with an associated K3 surface (in other words, dk satisfies the condition

(∗∗)), then cubic fourfolds in the families F have an associated K3 surface with a

Néron-Severi group of rank greater than or equal to n.

Based on these results, we construct new one dimensional families of cubic fourfolds

with finite dimensional, abelian Chow motive (see Appendix B). In fact, few examples of

cubic fourfolds belonging to the category generated by motives of abelian varietiesMAb
rat(C)

are known, mainly due to the beautiful work of Laterveer [62–64]. However, one would be

interested to understand how these cubics are positioned in the geography of the moduli

space, that is whether they belong to any of the divisors Cd. These one dimensional families

of cubic fourfolds with finite dimensional, abelian motive that we construct, are quite ubiq-

uitous in the moduli space, since any Hassett divisor contains some of them:

Theorem IV: Every Hassett divisor Cd contains a countable infinity of one dimensional

families of cubic fourfolds, whose Chow motive is finite dimensional and Abelian.

2See Remark 3.3.10 for a comparison with the recent result of Yang and Yu [113].
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This also implies abelianity and finite dimensionality of the motive of related Hyperkähler

varieties, such as the Fano variety of lines and the LLSvS 8fold (see [67]).

3.2 Intersection of two Hassett divisors: rational fibered cubic

fourfolds with nontrivial Brauer classes

3.2.1 Cubic fourfolds fibered in quadric surfaces over P2

Hassett [47] identifies countably many divisors in C8 consisting of cubic fourfolds con-

taining a plane parametrizing rational cubic fourfolds. Each of these loci is a codimension

two subvariety in the moduli space of cubic fourfolds C.
Now consider a cubic fourfold X in C8 containing a plane P . Let h denote the hyperplane

class ofX, and let Q denote the class of the quadric surface residual to P so that h2 = P+Q.

Let X̃ denote the blow-up of X along P . The projection from P resolves into a morphism

q : X̃ → P2.

The fibers of this morphism are quadric surfaces in the class Q. In particular, cubic fourfolds

containing a plane are birational to quadric surface bundles over P2.

Recall that the discriminant divisor D is defined as the locus over which q fails to be

smooth. We say that the plane P is good if the fibers of q have at most isolated singularities.

This is equivalent to having D ⊂ P2 smooth or also to having X not containing another

plane intersecting P (see [109, §1 Lemma 2], [7, §1.5]). In this case, the cover S → P2

branched over D, a sextic curve, is a smooth K3 surface S of degree 2. If D is smooth, the

relative Hilbert scheme of lines H(0, 1) of the morphism q is an étale projective P1-bundle

over S (see [20, §5]). To such an object we can associate a Brauer class α ∈ Br(S) which is

trivial if and only if q has a rational section.

H(0, 1)
P1

//

""

S

2:1

��
X̃

q // P2 ⊃ D
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Theorem 3.2.1 ([47]). If there is a class C ∈ A(X) such that (C,Q) is odd then X is

rational over C.

In particular, q has a rational section if and only if there exists an algebraic cycle

C ∈ A(X) such that (C,Q) = 1. In other words, the associated Brauer class α is trivial if

and only if there exists an algebraic cycle C ∈ A(X) such that (C,Q) = 1. According to

Hassett, the triviality of the Brauer class implies the rationality of X over C.

In the following, by lattice-theoretic calculations, we describe classes of rational cubic

fourfolds containing a plane whose fibration in quadric surfaces has no section respectively

in C8 ∩ C26 and in C8 ∩ C38, hence not contained in the class of cubics described by Hassett.

3.2.1.1 C8 ∩ C26:

A smooth cubic fourfold X is in C8 or C26 if and only if A(X) has primitive sublattice

K8 := 〈h2, P 〉 or K26 := 〈h2, S26〉, such that P is a plane contained in a general element of

C8 and S26 is a surface contained in a general element of C26 (as defined in §2.3.1).

A cubic fourfold X ∈ C8 ∩ C26 has a sublattice 〈h2, P, S26〉 ⊂ A(X) with the following

Gram matrix


h2 P S26

h2 3 1 7

P 1 3 τ

S26 7 τ 25


For some τ = (P, S26) ∈ Z depending on X. The values of τ may be restricted following

some properties and works of Voisin [109] or Yang and Yu [112].

Denote by Aτ the lattice of rank 3 whose bilinear form has the previous Gram matrix.

Let CAτ ⊂ C be the locus of smooth cubic fourfolds such that there is a primitive embedding

Aτ ⊂ A(X) of lattices preserving h2.

Proposition 3.2.2. The irreducible components of C8∩C26 are the subvarieties of codimen-

sion two CAτ for τ ∈ {−1, 0, 1, 2, 3, 4, 5, 6}.
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Proof. By construction, C8 ∩ C26 = ∪τ∈Z CAτ . First we determine which components of

CAτ are possibly nonempty. Since for X ∈ C8 ∩ C26, A(X) is a positive definite lattice, by

Sylvester’s criterion, the sublattice Aτ must have positive discriminant. As d(Aτ ) = −3τ2 +

14τ+53, the only values of τ making a positive discriminant are τ ∈ I = {−2,−1, 0, 1, 2, 3, 4,

5, 6, 7}. Hence, C8 ∩ C26 = ∪τ∈I CAτ .

Then, we prove that CAτ is empty for τ = −2, 7 by finding primitive short roots (that is,

primitive vectors of norm 2) in Aτ,prim = 〈h2〉⊥. Indeed, the vectors (1,−3, 0) and (−3, 2, 1)

form a basis for Aτ,prim. For all Ra,b ∈ Aτ,prim, Ra,b = (a−3b,−3a+2b, b) for some a, b ∈ Z,

τ ∈ I; for τ = −2, we find primitive short roots ±R0,1; for τ = 7, we find primitive short

roots ±R1,1 = ±(−2,−1, 1). Hence, by [109, §4 Proposition 1], CAτ is empty for τ = −2, 7.

We are left with CAτ possibly nonempty only for τ ∈ {−1, 0, 1, 2, 3, 4, 5, 6}.
To check the (non)emptiness of these CAτ , we proceed as follows; for all τ ∈ {−1, 0, 1, 2, 3,

4, 5, 6}, Aτ is a positive definite saturated sublattice of rank 3:

h2 ∈ Aτ ⊂ A(X) ⊂ L

Furthermore, let v = xh2 + yP + zS26 ∈ Aτ for x, y, z ∈ Z, we get

(v, v) = 3x2 + 3y2 + 25z2 + 2xy + 14xz + 2τyz, τ ∈ {−1, 0, 1, 2, 3, 4, 5, 6}

For these values of τ , there exists no v ∈ Aτ such that (v, v) = 2. Thus, by [112, Lemma

2.4] CAτ is nonempty and has codimension two. The corresponding discriminants d(Aτ ) are

36, 53, 64, 69, 68, 61, 48 and 29.

τ -1 0 1 2 3 4 5 6

d(Aτ ) 36 53 64 69 68 61 48 29

We prove now that the CAτ are irreducible. We first note that the rank of the lattice A(X)

is an upper-semicontinuous function on C; the irreducible components of CAτ correspond

then to rank 3 overlattices B of Aτ (a finite index sublattice for some τ i.e. B/Aτ is a

finite abelian group) which is primitively embedded into H4(X,Z). By standard lattice

theory, we have that for an embedding Aτ ↪→ B with finite index [B : Aτ ] = |B/Aτ |,
|d(B)|.[B : Aτ ]2 = |d(Aτ )| (see [86] or [97]);

We will prove that no proper finite overlattices exist; for τ = 0, 2, 4, 6 the discriminants of

Aτ are squarefree, so there are no proper finite overlattices.
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For the remaining cases, we can take h2 and P as a part of a basis of the overlattice B. Let

U be a vector that completes this to a basis such that U = xh2 +yP +zS26 with x, y, z ∈ Q.

Consider the natural embedding of Aτ in B that can be written as follows:
1 0 x

0 1 y

0 0 z


−1

=


1 0 −x/z
0 1 −y/z
0 0 −1/z

 ∈M3,3(Z).

We can take z = 1
n , for some n ∈ Z and x′ = nx, y′ = yn ∈ Z; then U = 1

n(x′h2 +y′P +S26).

By adding multiples of h2 and P , we may ensure that 0 ≤ x′, y′ < n.

Note that n = [B : Aτ ] = [Bprim : Aτ,prim], with Bprim the finite proper overlattice of

Aτ,prim (this follows from standard lattice theory).

Computing intersections:

(U, h2) =
1

n
(3x′ + y′ + 7) = a1,

(U,P ) =
1

n
(x′ + 3y′ + τ) = b1,

(U,U) =
1

n2
(3x′2 + 3y′2 + 14x′ + 2τy′ + 2x′y′ + 25) = c1.

Hence, the Gram matrix of B is:


h2 P U

h2 3 1 a1

P 1 3 b1

U a1 b1 c1


Now we check each case separately for possible values of τ, n, x′ and y′:

1. τ = −1: We see that n can be 2, 3 or 6.

Remark that for all possible values of n, x′ and y′ other than (n = 3, x′ = 1 and

y′ = 2), the Gram matrix of B is not in M3,3(Z). For (n = 3, x′ = 1 and y′ = 2), B

has the following Gram matrix:

B :=


3 1 4

1 3 2

4 2 6

 ,
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which has the short root (−2, 0, 1). Then no such overlattices exist. Thus CA−1 is

irreducible.

2. τ = 1: We see that n can be 2, 4 or 8.

Observe that for all possible values of n, x′ and y′, the Gram matrix of B is not in

M3,3(Z). Thus CA1 is irreducible.

3. τ = 3: n can be 2.

We notice that for all possible values of x′ and y′, the Gram matrix of B is non-integral.

Then no such overlattices exist. Thus CA3 is irreducible.

4. τ = 5: We observe that n can be 2 or 4.

Remark that for n = 4, |d(B)| = 3 which is impossible by [113, Lemma 7.8].

Otherwise, for all possible values of x′ and y′, the Gram matrix of B is non-integral.

Then no such overlattices exist. Thus CA5 is irreducible.

In the following, we address the question of the (non)triviality of the Brauer class.

Theorem 3.2.3. Let X be a general cubic fourfold in C8 ∩ C26 (so that A(X) has rank 3)

containing a good plane P . The Brauer class α ∈ Br(S) of X is trivial if and only if τ is

even.

Proof. If τ is even, then a cycle S26 + 3P ∈ A(X) exists such that (S26 + 3P,Q) = 1− τ ≡
1 (mod 2) (odd). Hence α is trivial by the application of the criterion of Hassett (see [47]).

If τ is odd, then Aτ has rank 3 and even discriminant, hence α is nontrivial (see [8,

Proposition 2]).

Corollary 3.2.4. The four irreducible components CAτ of C8∩C26 corresponding to τ = −1,

1, 3, 5 contain examples of rational cubic fourfolds whose associated quadric surface bundles

don’t have a rational section.

3.2.1.2 C8 ∩ C38:

Using same method as before, we compute intersection between C8 and C38 this time.

A cubic fourfold X is in C8 or C38 if and only if A(X) has primitive sublattice K8 :=

〈h2, P 〉 or K38 := 〈h2, S38〉, such that P and S38 are as defined in §2.3.1. Hence, X in

C8 ∩ C38 has a sublattice 〈h2, P, S38〉 ⊂ A(X) with Gram matrix:
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
h2 P S38

h2 3 1 10

P 1 3 τ

S38 10 τ 46


For some τ ∈ Z depending on X.

Proposition 3.2.5. The irreducible components of C8∩C38 are the subvarieties of codimen-

sion two CAτ for τ ∈ {−1, 0, 1, 2, 3, 4, 5, 6, 7, 8}.

Proof. As d(Aτ ) = −3τ2 + 20τ + 68, the only values of τ inducing a positive discriminant

are τ ∈ J = {−2,−1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.
Let Aτ,prim = {(x, y, z) ∈ Z3 | 3x+y+10z = 0}; indeed, the vectors (1,−3, 0) and (−3,−1, 1)

form a basis for Aτ,prim; for all Ra,b ∈ Aτ,prim, Ra,b = (a− 3b,−3a− b, b) for some a, b ∈ Z,

τ ∈ J .
For τ = −2, we find primitive short roots ±R−1,1 = ±(−4, 2, 1). Hence, by [109, §4

Proposition 1], CA−2 is empty ; We are left with CAτ possibly nonempty only for τ ∈
{−1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

For all τ ∈ {−1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, Aτ is a positive definite saturated sublattice of

rank 3:

h2 ∈ Aτ ⊂ A(X) ⊂ L

Furthermore, let v = xh2 + yP + zS38 ∈ Aτ , for x, y, z ∈ Z, we get

(v, v) = 3x2 + 3y2 + 46z2 + 2xy + 20xz + 2τyz,

For τ = 9, we have that (−2h2 − 2P + S38,−2h2 − 2P + S38) = 2. CA9 ⊂ C is then empty

(see [112, Lemma 2.4]). For the rest of the values of τ , there exists no v ∈ Aτ such that

(v, v) = 2, CAτ ⊂ C are nonempty and have codimension 2 (see [112, Lemma 2.4]). The

corresponding discriminants d(Aτ ) are 45, 68, 85, 96, 101, 100, 93, 80, 61 and 36.

τ -1 0 1 2 3 4 5 6 7 8

d(Aτ ) 45 68 85 96 101 100 93 80 61 36
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We prove now that CAτ are irreducible. For τ = 1, 3, 5, 7 the discriminants are squarefree,

so there are no proper finite overlattices. For the remaining cases, we can take h2 and P as a

part of a basis of an overlattice B and we complete it with U ′ such that U ′ = xh2+yP+zS38

with x, y, z ∈ Q. As we did in the previous section, let z = 1
n for some n ∈ Z and

x′ = nx, y′ = yn ∈ Z. We can write U ′ = 1
n(x′h2 + y′P + S38). By adding multiples of h2

and P , we may ensure that 0 ≤ x′, y′ < n.

Computing intersections:

(U ′, h2) =
1

n
(3x′ + y′ + 10) = a2,

(U ′, P ) =
1

n
(x′ + 3y′ + τ) = b2,

(U ′, U ′) =
1

n2
(3x′2 + 3y′2 + 20x′ + 2τy′ + 2x′y′ + 46) = c2.

Hence, B has Gram matrix:


h2 P U ′

h2 3 1 a2

P 1 3 b2

U ′ a2 b2 c2


Now we check each case separately for possible values of τ, n, x′ and y′; We notice that

for all cases other than (τ = −1, n = 3, x′ = 1, y′ = 2) and (τ = 8, n = 3, x′ = 1, y′ = 2)

the Gram matrix of B is non-integral.

For (τ = −1, n = 3, x′ = 1, y′ = 2), B has the following Gram matrix
3 1 5

1 3 2

5 2 9


which has primitive short roots ±(1, 0,−1).

For (τ = 8, n = 3, x′ = 1, y′ = 2), B has the following Gram matrix
3 1 5

1 3 5

5 5 13


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which has a primitive short root (−2,−1, 1).

We conclude that no such overlattices exist. Thus all components CAτ are irreducible.

Theorem 3.2.6. Let X be a general cubic fourfold in C8 ∩ C38 (so that A(X) has rank 3)

containing a good plane P . The Brauer class α ∈ Br(S) of X is trivial if and only if τ is

odd.

Proof. If τ is odd, then a cycle S38+5P ∈ A(X) exists such that (S38+5P,Q) = −τ ≡ 1 (mod

2) (odd). Hence α is trivial by the application of the criterion (see [47]).

If τ is even, then Aτ has rank 3 and even discriminant, hence α is nontrivial (see [8,

Proposition 2]).

Corollary 3.2.7. C8 ∩ C38 has five smooth irreducible components, corresponding to τ =

0, 2, 4, 6, 8, containing examples of rational cubic fourfolds whose associated quadric surface

bundles don’t have a rational section.

In §3.2.3, we construct an explicit example of rational smooth cubic fourfold containing a

good plane in the intersection C8∩C38, whose associated Brauer class α ∈ Br(S) is nontrivial.

3.2.2 Cubic fourfolds fibered in sextic del Pezzo surfaces over P2

In [4], other examples of rational fibered cubic fourfolds in C18, parametrized by a count-

ably infinite union of codimension two subvarieties, have been studied. We recall that a

generic cubic fourfold in C18 contains an elliptic ruled surface T of degree 6. Let X ⊂ C18 be

a generic cubic fourfold containing the elliptic ruled surface T . We denote by X̃ the blow-up

of X along T and let

π : X̃ → P2

be the map induced by the linear system of quadrics containing T . For generic X, the

generic fiber of π is del Pezzo surface of degree 6 (see Appendix A.3 for a general definition

of a del Pezzo surface).

Note that a singular sextic del Pezzo surface is a surface P with ADE singularities and

ample anticanonical class such that K2
P = 6. They are classified as follows (see [58, Section

2]):

• Type I: P has one A1 singularity and is obtained by blowing up P2 in three collinear
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points, and blowing down the proper transform of the line containing them;

• Type II: P has one A1 singularity, obtained by blowing up P2 in two infinitely near points

and a third point not on the line associated with the infinitely near points, then blowing

down the proper transform of the first exceptional divisor over the infinitely near points;

• Type III: P has two A1 singularities and is obtained by blowing up two infinitely near

points and a third point all contained in a line, and blowing down the proper transforms of

the first exceptional divisor over the infinitely near point and the line;

• Type IV: P has one A2 singularity and is obtained by blowing up a curvilinear subscheme

of length three not contained in a line and blowing down the first two exceptional divisors;

• Type V: P has an A1 and an A2 singularity and is obtained by blowing up a curvilinear

subscheme contained in a line, and blowing down the proper transforms of the first two

exceptional divisors and the line.

Type I and II occur in codimension one in the moduli stack of (singular) sextic del Pezzo

surfaces. Type III and IV occur in codimension two; type V occurs in codimension three.

Definition 3.2.8. [4, Definition 11] Let P be a smooth complex projective surface. A good

del Pezzo fibration consists of a smooth fourfold G and a flat projective morphism π : G→ P

such that the fibers are either smooth or singular sextic del Pezzo surfaces of Type I, II, III

or IV. Let Bi denote the closure of the locus of Type i fibers in P. Bi has the following

properties

• BI is a non-singular curve;

• BII is a curve, non-singular away from BIV ;

• BIII is finite and coincides with the intersection of BI and BII , which is tranverse;

• BIV is finite and BII has cusps at BIV ;

• BV is empty.

The discriminant curve of π has two irreducible components, a smooth sextic curve BI
and a sextic curve BII with 9 cusps (see [4], [58] or [20] for more details). For a good del

Pezzo fibration π, we consider the following constructions:

We need to consider surfaces inside two different Hilbert schemes of curves in the fibers of

π. Let us denote by H(0, 3) the relative Hilbert scheme of connected genus zero curves with

anticanonical degree 3 contained in the fibers. There are two 2-dimensional families of such

curves on a del Pezzo sextic. One is given by the strict transforms of the lines in P2 that do

not pass through any of the three base points. The second is given by conics passing through
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the three base points. Hence the Stein factorization yields an étale P2-bundle H(0, 3) over

a smooth degree two K3 surface S branched on BI .

H(0, 3)
P2

//

""

S

2:1

��
X̃

π // P2 ⊃ BI

If the del Pezzo fibration has a rational section, then the projective bundle H(0, 3)→ S

has a rational section as well and the Brauer class β ∈ Br(S) is trivial.

Let us consider now H(0, 2) → P2 the relative Hilbert scheme of connected genus zero

curves with anticanonical degree 2 contained in the fibers. The Stein factorization yields

an étale P1-bundle H(0, 2) over a non singular surface Z. In fact, associated to a good del

Pezzo fibration of π, there is a non-singular triple cover Z → P2 branched along a cuspidal

sextic BII . On every geometric fiber, the P1-bundle is given by the strict transform of the

lines through each of the 3 blown-up points P1, P2, P3 ∈ P2 of the corresponding del Pezzo

of degree 6.

H(0, 2)
P1

//

""

Z

3:1

��
X̃

π // P2 ⊃ BII

The Brauer class γ ∈ Br(Z) of the P1-bundle H(0, 2) → Z is trivial whenever the del

Pezzo fibration π has a rational section.

For more details on the Brauer classes of a sextic del Pezzo surface see [6] or [59]. For

the rationality of the good fibration in sextic del Pezzo surfaces it is enough to have the two

Brauer classes β and γ trivial (see [4, Proposition 8] or [58] for more details).

Furthermore, for a good sextic del Pezzo fibration π : X̃ → P2, we have that: (see [58,

Proposition 5.20])

1. The Brauer class β ∈ Br(S) is trivial if and only if π has a rational 2-multisection.
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2. The Brauer class γ ∈ Br(Z) is trivial if and only if π has a rational 3-multisection.

In terms of cycles of dimension 2, this is equivalent to the following:

Proposition 3.2.9. Let F be the class of a fiber of the good sextic del Pezzo fibration

π : X̃ → P2, we have that:

1. The Brauer class β is trivial if and only if ∃W ∈ A(X)| (W,F ) = 2.

2. The Brauer class γ is trivial if and only if ∃W ∈ A(X)| (W,F ) = 3.

In the following, we describe irreducible components of C18∩C14, C18∩C26 and C18∩C38.

3.2.2.1 C18 ∩ C14:

Let X be a cubic fourfold in C18 ∩ C14; A(X) has primitive sublattices K18 := 〈h2, T 〉
and K14 := 〈h2,Σ4〉, such that Σ4 is the class of a rational quartic scroll or a degeneration of

such a surface (see [21]), T is the class of an elliptic ruled surface (see §2.3.1). X ∈ C18 ∩C14

has a sublattice 〈h2,Σ4, T 〉 ⊂ A(X) with the following Gram matrix


h2 Σ4 T

h2 3 4 6

Σ4 4 10 τ

T 6 τ 18


For some τ ∈ Z depending on X.

Denote by Aτ the lattice of rank 3 whose bilinear form has the previous Gram matrix.

We recall that CAτ ⊂ C is the locus of smooth cubic fourfolds such that there is a primitive

embedding Aτ ⊂ A(X) of lattices preserving h2.

Theorem 3.2.10. The intersection C18 ∩ C14 has exactly five irreducible components CAτ
given by the following Gram matrix


h2 Σ4 T

h2 3 4 6

Σ4 4 10 τ

T 6 τ 18

,
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where τ ∈ {4, 5, 6, 7, 8}.

Proof. Note that Aτ , defined as a sublattice of a positive definite lattice, must have positive

discriminant by Sylvester’s criterion. As d(Aτ ) = −3(τ2 − 16τ + 36), the only values of τ

making a positive discriminant are τ ∈ {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}.
For these values of τ , Aτ is a positive definite saturated sublattice of rank 3:

h2 ∈ Aτ ⊂ A(X) ⊂ L

Furthermore, let v = xh2 + yΣ4 + zT ∈ Aτ . For x, y, z ∈ Z, we get

(v, v) = 3x2 + 10y2 + 18z2 + 8xy + 12xz + 2τyz.

For τ = 3, (−4h2 + Σ4 +T,−4h2 + Σ4 +T ) = 2; for τ = 13, (−Σ4 +T,−Σ4 +T ) = 2. Thus

CA3 and CA13 are empty (see [112, Lemma 2.4]).

For all τ ∈ {4, 5, 6, 7, 8, 9, 10, 11, 12}, there exists no v ∈ Aτ such that (v, v) = 2. Hence, for

these values of τ , CAτ ⊂ C is nonempty and has codimension 2 (see [112, Lemma 2.4]). The

corresponding discriminants d(Aτ ) are 36, 57, 72, 81, 84, 81, 72, 57, 36. Note that there are

isometries between the lattices A4, A5, A6, A7 and A9, A10, A11, A12 respectively (see [113,

Remark 7.7]). Thus, next, we may only consider Aτ for τ = 4, 5, 6, 7, 8.

We now prove that CAτ is irreducible. For τ = 5 the discriminant is squarefree, so there

are no proper finite overlattices.

For the remaining cases, we can take h2 and Σ4 as a part of a basis of an overlattice B and

complete it with V such that V = xh2 + yΣ4 + zT with x, y, z ∈ Q. As we did in previous

section, we can take z = 1
n for some n = [B : Aτ ] ∈ Z and x′ = nx, y′ = yn ∈ Z, we can

write V = 1
n(x′h2 + y′Σ4 + T ). By adding multiples of h2 and Σ4, we may ensure that

0 ≤ x′, y′ < n.

Computing intersections:

(V, h2) =
1

n
(3x′ + 4y′ + 6) = a3,

(V,Σ4) =
1

n
(4x′ + 10y′ + τ) = b3,

(V, V ) =
1

n2
(3(x′)2 + 10(y′)2 + 12x′ + 2τy′ + 8x′y′ + 18) = c3.

Then B has the following Gram matrix:
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
h2 Σ4 V

h2 3 4 a3

Σ4 4 3 b3

V a3 b3 c3


Now we check each case separately for possible values of τ, n, x′ and y′.

For (τ = 4, n = 2, x′ = 0, y′ = 1), B has the following Gram matrix
3 4 5

4 10 7

5 7 9

,

which has primitive short roots ±(1, 0,−1).

For (τ = 4, n = 6, x′ = 2, y′ = 3), the Gram matrix of B is:
3 4 4

4 10 7

4 7 6

.

B has primitive short roots such as (−4,−2, 5).

For (τ = 4, n = 3, x′ = 2, y′ = 0), B has the following form
3 4 4

4 10 4

4 4 6

,

which has primitive short roots ±(−2, 0, 1).

For (τ = 6, n = 2, x′ = 0, y′ = 1), the Gram matrix of B is
3 4 5

4 10 8

5 8 10

,

which has primitive short roots ±(−2, 0, 1).

Therefore, by Voisin [109, §4, Proposition 1], no overlattices exist in these cases.

For (τ = 6, n = 6), d(B) = 2 which is impossible by [113, Lemma 7.8].

For all other possible values τ, n, x′ and y′, the Gram matrices of B are non-integer. Thus

all the components CAτ are irreducible.

Let F be the class of a fiber of a good sextic del Pezzo fibration π : X̃ −→ P2, that is
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F = 4h2 − T .

For such a fibration, let us check the triviality (or not) of the associated Brauer classes for

each component of C18 ∩ C14.

Let Wa,b,c ∈ A(X) be a cycle such that

Wa,b,c = ah2 + bΣ4 + cT , for a, b, c ∈ Z

We have that (Wa,b,c, F ) = 6a + (16 − τ)b + 6c. We will check for possible values of τ

the triviality of β or γ for a good sextic del Pezzo fibration.

In the following table, we collect our results of the (non)triviality of the Brauer classes

for the different components of C18 ∩ C14 depending on the existence of a cycle W ∈ A(X)

such that (W,F ) = 2 or 3. This is true if we assume that the sextic del Pezzo fibration

associated to the cubic fourfold is good.
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τ (Wa,b,c, F ) = 2 (Wa,b,c, F ) = 3 β γ

triv. nontriv. triv. nontriv.

4 ∅ ∅ × ×

5 W0,4,−7 W0,3,−5 × ×

6 W0,2,−3 ∅ × ×

7 ∅ W0,1,−1 × ×

8 W0,1,−1 ∅ × ×

In §3.2.3, we give an explicit example of a rational cubic fourfold in C18 associated with

a good sextic del Pezzo fibration and with one nontrivial Brauer class.

3.2.2.2 C18 ∩ C26:

Let X be a cubic fourfold in C18∩C26; A(X) has primitive sublattice K18 := 〈h2, T 〉 and
K26 := 〈h2, S26〉, such that T and S26 as defined in §2.3.1.

Theorem 3.2.11. The intersection C18 ∩ C26 has exactly seven irreducible components CAτ
given by the following Gram matrix


h2 T S26

h2 3 6 7

T 1 18 τ

S26 7 τ 25

,

where τ ∈ {8, 9, 10, 11, 12, 13, 14}.

Proof. The cubic fourfold X ∈ C18 ∩ C26 has a sublattice Aτ := 〈h2, T, S26〉 ⊂ A(X) with

the Gram matrix:


h2 T S26

h2 3 6 7

T 6 18 τ

S26 7 τ 25


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For some τ ∈ Z depending on X.

As d(Aτ ) = −3(τ2 − 28τ + 144), the only values making a positive discriminant are τ ∈
{7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21}.
For these values of τ , Aτ is a positive definite saturated sublattice of rank 3:

h2 ∈ Aτ ⊂ A(X) ⊂ L

Furthermore, let v = xh2 + yT + zS26 ∈ Aτ x, y, z ∈ Z, we get

(v, v) = 3x2 + 18y2 + 25z2 + 12xy + 14xz + 2τyz,

For τ = 7, (−5h2 +T +S26,−5h2 +T +S26) = 2; for τ = 21, (h2 +T −S26, h
2 +T −S26) = 2.

Thus CA7 and CA21 are empty (see [112, Lemma 2.4] ).

For all τ ∈ {8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, there exists no v ∈ Aτ such that

(v, v) = 2. Then for these values of τ , CAτ ⊂ C is nonempty and has codimension 2 (see [112,

Lemma 2.4]). Note that there are isometries between the lattices A8, A9, A10, A11, A12, A13

and A15, A16, A17, A18, A19, A20 respectively (see [113, Remark 7.7]). Thus, next, we may

consider only Aτ for τ = 8, 9, 10, 11, 12, 12, 13, 14 of discriminant d(Aτ ) respectively 48,

81, 108, 129, 144, 153, 156.

We now prove that CAτ is irreducible. For τ = 11 the discriminant is squarefree, so

there are no proper finite overlattices. For the remaining cases, we can take h2 and S18 as a

part of a basis of an overlattice B and complete it with V ′ such that V ′ = xh2 + yT + zS26

with x, y, z ∈ Q. Let z = 1
n for some n ∈ Z and x′ = nx, y′ = yn ∈ Z; we can write

V ′ = 1
n(x′h2+y′T+S26). By adding multiples of h2 and T , we may ensure that 0 ≤ x′, y′ < n.

Recall that n = [B : Aτ ] = [Bprim : Aτ,prim], with Bprim the finite proper overlattice of

Aτ,prim.

Computing intersections:

(V ′, h2) =
1

n
(3x′ + 6y′ + 7) = a4,

(V ′, T ) =
1

n
(6x′ + 18y′ + τ) = b4

(V ′, V ′) =
1

n2
(3x′2 + 18y′2 + 2τy′ + 14x′ + 12x′y′ + 25) = c4.

B has the following Gram matrix:
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
h2 T V ′

h2 3 6 a4

T 6 18 b4

V ′ a3 b3 c4


Now we check each case separately for the possible values of τ, n, x′ and y′. The Gram

matrices of B are non-integer for all possible values of τ, n, x′ and y′ other than:

For (τ = 8, n = 2, x′ = 1, y′ = 1), B has the following Gram matrix
3 6 8

6 18 16

8 16 22


which has primitive short roots±(−2, 0, 1). This is impossible by Voisin [109, §4, Proposition

1].

For n = 4, d(B) = 3 ≡ 3 (mod 4) which is a contradiction by [113]. For (τ = 10, n = 2),

d(B) = 27 ≡ 3 (mod 4) which is again impossible for the same reason.

For (τ = 12, n = 2, x′ = 1, y′ = 1), B has the following Gram matrix
3 6 8

6 18 18

8 18 24

.

The vectors (−2, 1, 0) and (−8, 0, 3) form a basis for Bprim which has the following Gram

matrix: 6 6

6 24

.

Bprim has primitive short roots ±(−2
3 ,

1
6).

Again for (τ = 8 but n = 4, x′ = 1, y′ = 1), B with this Gram matrix
3 6 4

6 18 9

4 9 6


has primitive short roots ±(−2, 0, 1).

Thus by Voisin [109, §4, Proposition 1], no overlattices exist in these cases.

For (τ = 14, n = 2), d(B) = 39 ≡ 3 (mod 4) which is not possible.

Thus all the components CAτ are irreducible.
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For a good del Pezzo fibration π, let us check the triviality of the associated Brauer

classes β and γ for each component of C18 ∩ C26.

For Wa,b,c a cycle in A(X) such that

Wa,b,c = ah2 + bT + cS26, for a, b, c ∈ Z

and F the class of a fiber of π, we have that (Wa,b,c, F ) = 6a+ 6b+ (28− τ)c.

In the following table, we study the existence of some particular 2-cycles with specific

intersections with the fibers and deduce the (non)triviality of the Brauer classes for the

different components of C18 ∩ C26. This is true if we assume that the associated sextic del

Pezzo fibration is good for a general cubic fourfold in the intersection.

τ (Wa,b,c, F ) = 2 (Wa,b,c, F ) = 3 β γ

triv. nontriv. triv. nontriv.

8 W0,7,−2 ∅ × ×

9 W0,13,−4 W0,10,−3 × ×

10 ∅ ∅ × ×

11 W0,6,−2 W0,9,−3 × ×

12 W0,3,−1 ∅ × ×

13 ∅ W0,3,−1 × ×

14 W0,5,−2 ∅ × ×

3.2.2.3 C18 ∩ C38:

Let X be a cubic fourfold in C18∩C38; A(X) has primitive sublattice K18 := 〈h2, T 〉 and
K38 := 〈h2, S38〉, such that T is the class of an elliptic ruled surface and S38 is the general

degree 10 smooth surface of sectional genus 6 contained in a general element of C38 (see

§2.3.1). X ∈ C18 ∩ C38 has a sublattice Aτ := 〈h2, T, S38〉 ⊂ A(X) with Gram matrix:


h2 T S38

h2 3 6 10

T 6 18 τ

S38 10 τ 46


For some τ ∈ Z depending on X.
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Theorem 3.2.12. The irreducible components of C18 ∩ C38 are the subvarieties of codimen-

sion two CAτ given by rank 3 lattices represented by

Aτ :=


3 6 10

6 18 τ

10 τ 46

 and B16 :=


3 6 8

6 18 17

8 17 24


where 12 ≤ τ ≤ 20 and B16 is an overlattice of A16.

Proof. As d(Aτ ) = −3(τ2 − 40τ + 324), the only values of τ making a positive discriminant

are τ ∈ {12, 13, ..., 28}.
For these values of τ , Aτ is a positive definite saturated sublattice of rank 3:

h2 ∈ Aτ ⊂ A(X) ⊂ L

Furthermore, let v = xh2 + yT + zS38 ∈ Aτ , for x, y, z ∈ Z, we get

(v, v) = 3x2 + 18y2 + 46z2 + 12xy + 20xz + 2τyz,

For these values of τ , there exists no v ∈ Aτ such that (v, v) = 2; thus CAτ ⊂ C is nonempty

and has codimension 2 (see [112, Lemma 2.4]). Note that there are isometries between

the lattices A12, A13, A14, A15, A16, A17, A18, A19 and A21, A22, A23, A24, A25, A26,

A27, A28 respectively (see [113, Remark 7.7]). Thus, next, we may consider only Aτ for

τ = 12, 13, 14, 15, 16, 17, 18, 19, 20. The corresponding discriminants d(Aτ ) are 36,

81, 120, 153, 180, 201, 216, 225, 228. We now prove that CAτ is irreducible. For τ = 17

the discriminant is squarefree, so there are no proper finite overlattices. For the remaining

cases, we can take h2 and T as a part of a basis of an overlattice B and complete it with

V ′′ such that V ′′ = xh2 + yT + zS38 with x, y, z ∈ Q. Let z = 1
n for some n = [B : Aτ ] ∈ Z

and x′ = nx, y′ = yn ∈ Z, we can write V ′′ = 1
n(x′h2 + y′T + S38). By adding multiples of

h2 and T , we may ensure that 0 ≤ x′, y′ < n.

Computing intersections:

(V ′′, h2) =
1

n
(3x′ + 6y′ + 10) = a5,

(V ′′, T ) =
1

n
(6x′ + 18y′ + τ) = b5,

(V ′′, V ′′) =
1

n2
(3x′2 + 18y′2 + 2τy′ + 20x′ + 12x′y′ + 46) = c5.
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B has the following Gram matrix:


h2 T V ′′

h2 3 6 a5

T 6 18 b5

V ′′ a5 b5 c5


By checking each case separately for the possible values of τ, n, x′ and y′, one sees that all

the Gram matrices of B are non-integer except for:

For (τ = 12, n = 2, x′ = 0, y′ = 1), B has the following Gram matrix
3 6 8

6 18 15

8 15 22

,

which has primitive short roots±(−2, 0, 1). This is impossible by Voisin [109, §4, Proposition

1].

For (τ = 14, n = 2), d(B) = 30 ≡ 2 (mod 4) which is impossible by [113, Lemma 7.8].

For (τ = 16, n = 2, x′ = 0, y′ = 1), B has the following Gram matrix
3 6 8

6 18 17

8 17 24


of discriminant 45 that we will denoted by B16. Hence CA16 consists of 2 irreducible com-

ponents.

For (τ = 18, n = 2), d(B) = 54 ≡ 2 (mod 4) which is impossible by [113, Lemma 7.8].

For (τ = 19, n = 5, x′ = 3, y′ = 1), B has the following Gram matrix
3 6 5

6 18 11

5 11 9

 ,

which has primitive short roots ±(−1, 0, 1); For (τ = 20, n = 2, x′ = 0, y′ = 1), the Gram

matrix of B is 
3 6 8

6 18 19

8 19 26

,
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which has primitive short roots such as (−2, 0, 5). Therefore, by Voisin [109, §4, Proposition

1], no overlattices exist in these cases as well.

Let us check the triviality of the Brauer classes β and γ associated to the good fibration

π for each component of C18 ∩ C38.

For Wa,b,c a cycle in A(X) such that Wa,b,c = ah2 + bT + cS38, for a, b, c ∈ Z and F the class

of a fiber of π, we have that

(Wa,b,c, F ) = 6a+ 6b+ (40− τ)c.

In the following table, we study the (non)triviality of the Brauer classes for the different

components of C18 ∩ C38 depending on the existence of a multisection of degree 2 or 3. This

is true if we assume that the associated sextic del Pezzo fibration is good.

τ (Wa,b,c, F ) = 2 (Wa,b,c, F ) = 3 β γ

triv. nontriv. triv. nontriv.

12 W0,5,−1 ∅ × ×

13 ∅ W0,5,−1 × ×

14 W0,9,−2 ∅ × ×

15 W0,17,−4 W0,13,−3 × ×

16 ∅ ∅ × ×

16′ ∅ ∅ × ×

17 W0,8,−2 W0,12,−3 × ×

18 W0,4,−1 ∅ × ×

19 ∅ W0,4,−1 × ×

20 W0,7,−2 ∅ × ×

3.2.3 Explicit examples of rational fibered cubic fourfolds

We shall give here explicit examples of rational fibered cubic fourfolds with nontrivial

Brauer classes. All our computations have been done using Macaulay2 [39]. We work over

the finite field F3331 but our equations hold over fields of characteristic zero.
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Let P5 = Proj(F3331[x0, ..., x5]) and P2 = Proj(F3331[t0, ..., t2]).

We provide first an example of rational cubic fourfold in C8 containing a good plane with

nontrivial Brauer class using §3.2.1. Let S38 be the smooth surface of degree 10 contained

in a general element of C38 as defined in §2.3.1.

Let P be the plane whose ideal is generated by P1, P2 and P3 as follows:

P1 = x2 − 1277x3 − 733x4 + 1373x5,

P2 = x1 + 1280x3 + 1650x4 − 1339x5,

P3 = x0 − 954x3 − 133x4 − 1153x5.

Note that P and S38 intersect transversely in 2 points. They are contained in the cubic

fourfold X cut out by

C ′ := x3
0 − 994x2

0x1 − 337x0x
2
1 − 1402x3

1 − 297x2
0x2 + 22x0x1x2

− 295x2
1x2 − 1639x0x

2
2 − 331x1x

2
2 + 830x3

2 − 182x2
0x3 − 717x0x1x3

+ 38x2
1x3 − 655x0x2x3 + 1519x1x2x3 + 1348x2

2x3 − 359x0x
2
3 + 1500x1x

2
3

+ 850x2x
2
3 + 270x3

3 − 1479x2
0x4 + 906x0x1x4 + 862x2

1x4 + 354x0x2x4

− 1561x1x2x4 − 1196x2
2x4 + 530x0x3x4 − 690x1x3x4 − 151x2x3x4

+ 1101x2
3x4 + 989x0x

2
4 + 1045x1x

2
4 + 966x2x

2
4 + 1292x3x

2
4 − 868x3

4

− 1612x2
0x5 − 767x0x1x5 + 1027x2

1x5 − 108x0x2x5 + 533x1x2x5 − 338x2
2x5

+ 45x0x3x5 + 269x1x3x5 − 469x2x3x5 + 946x2
3x5 + 686x0x4x5

+ 1070x1x4x5 + 26x2x4x5 − 741x3x4x5 + 1403x2
4x5 + 663x0x

2
5 + 1067x1x

2
5

+ 1609x2x
2
5 − 1403x3x

2
5.
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X is a smooth cubic hypersurface in P5 contained in the intersection C8 ∩ C38. The discrim-

inant divisor D ∈ P2 of the map q : X̃ → P2 is a smooth sextic curve defined as follows:

D : t60 + 249t50t1 − 66t40t
2
1 − 1000t30t

3
1 − 306t20t

4
1 − 862t0t

5
1 − 408t61

− 588t50t2 + 138t40t1t2 + 72t30t
2
1t2 − 1637t20t

3
1t2 − 1358t0t

4
1t2

+ 1364t51t2 − 528t40t
2
2 + 994t30t1t

2
2 + 1595t20t

2
1t

2
2 − 1525t0t

3
1t

2
2

− 510t41t
2
2 − 857t30t

3
2 + 1334t20t1t

3
2 + 1248t0t

2
1t

3
2 + 1295t31t

3
2

− 668t20t
4
2 + 936t0t1t

4
2 + 236t21t

4
2 + 708t0t

5
2 + 151t1t

5
2 + 160t62 = 0.

Hence, X is a smooth rational cubic fourfold containing a good plane P inside the irre-

ducible component of C8 ∩ C38 indexed by τ = (P, S38) = 2. By Corollary 3.2.7, the quadric

surface bundle associated to cubic fourfolds in this component has no rational section.

We exhibit now an example of rational cubic fourfold X ′ ∈ C18 for which the fibration

in sextic del Pezzo surfaces is good, with a nontrivial Brauer class. This illustrates Theorem

II in §3.1.

Using §3.2.2, we know the possible values of τ = (T,Σ4) corresponding to the intersection

pairing for the elliptic ruled surface T and the quartic rational normal scroll Σ4 contained

in a general element of respectively C18 and C14.

Note that C14 could be described as the closure of the locus of cubic fourfolds containing a

quintic del Pezzo surface (see §2.3.1, [21]).

Let D be a quintic del Pezzo surface in P5 as defined in [21, Section 4]. We have that

Σ4 = 3h2 −D.

To construct T , we define three quadrics Q1, Q2 and Q3 as follows:

Q1 = x2x3 − 967x0x4 + 622x1x4 − 1581x2x4 + 1403x0x5 − 122x2x5,

Q2 = x1x3 + 1069x0x4 + 1170x1x4 + 76x2x4 + 1072x0x5 − 881x1x5 + 237x2x5,

Q3 = x0x3 + 242x1x4 − 565x2x4 − 370x0x5 − 518x1x5 − 901x2x5.

Each of these quadrics contains two disjoint planes:

Π1 = {x0 = x1 = x2} and Π2 = {x3 = x4 = x5}.
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T is obtained by saturating the ideal generated by Q1, Q2 and Q3 with respect to the

defining ideals of the planes Π1 and Π2. In other words, T is the residual intersection of the

Qi.

Since T and D intersect transversely in 12 points, we have that 〈T,Σ4〉 = 〈T, 3h2−D〉 =

3〈T, h2〉 − 〈T,D〉 = 6.

The surfaces T and D are contained in the cubic fourfold X ′ cut out by

C ′′ := x0x1x3 − 242x2
1x3 + 354x0x2x3 − 843x1x2x3 − 552x2

2x3

+ 462x1x
2
3 − 983x2x

2
3 + 606x2

0x4 + 141x0x1x4 − 674x0x2x4 + 1157x1x2x4

+ 275x2
2x4 − 462x0x3x4 − 1645x1x3x4 + 116x2x3x4

+ 1645x0x
2
4 + 641x2x

2
4 − 354x2

0x5 + 10980x1x5 − 1056x2
1x5

+ 552x0x2x5 − 463x1x2x5 + 376x0x3x5 + 1600x1x3x5

− 1533x2x3x5 − 1008x0x4x5 − 742x1x4x5 − 267x2x4x5 + 1345x0x
2
5

+ 455x1x
2
5

X ′ is a smooth irreducible subscheme of P5 of dimension 4 and degree 3.

Let us check that the sextic del Pezzo fibration associated to X ′ is good.

The discriminant locus of the map π : X̃ ′ → P2 is a reducible curve of degree 12 with

two irreducible components:

BI : −60t60 + 223t50t1 + 1421t40t
2
1 + 69t30t

3
1 + 61t20t

4
1 + 311t0t

5
1 + 1537t61

+ 781t50t2 + 117t40t1t2 + 1452t30t
2
1t2 + 625t20t

3
1t2 + 144t0t

4
1t2 + 1560t51t2

− 203t40t
2
2 − 314t30t1t

2
2 − 673t20t

2
1t

2
2 − 239t0t

3
1t

2
2 − 1007t41t

2
2 − 1633t30t

3
2

+ 1643t20t1t
3
2 − 530t0t

2
1t

3
2 + 71t31t

3
2 + 849t20t

4
2 − 1293t0t1t

4
2 + 1356t21t

4
2

− 928t0t
5
2 + 1055t1t

5
2 + t62 = 0



Chapter 3. Intersection of Hassett divisors Cd in the moduli space C 58

BII : 1262t60 − 979t50t1 + 315t40t
2
1 + 1534t30t

3
1 + 1545t20t

4
1 − 551t0t

5
1

− 451t61 − 1475t50t2 − 812t40t1t2 + 182t30t
2
1t2 − 205t20t

3
1t2

+ 1579t0t
4
1t2 − 1528t51t2 − 21t40t

2
2 + 495t30t1t

2
2 + 124t20t

2
1t

2
2

− 1633t0t
3
1t

2
2 − 503t41t

2
2 + 1452t30t

3
2 − 995t20t1t

3
2 + 825t0t

2
1t

3
2

− 1491t31t
3
2 + 278t20t

4
2 + 381t0t1t

4
2 − 1183t21t

4
2 + 1412t0t

5
2 + 1530t1t

5
2 + t62 = 0

BI is a smooth irreducible subscheme of P2 of dimension 1 and degree 6, BII has 9 cusps.

They intersect transversely in 36 points. This proves that π is good (see §3.2.2).

Hence, X ′ is a rational smooth cubic fourfold in the irreducible component corresponding

to τ = 6 of C18∩C14 with a good associated sextic del Pezzo fibration and a nontrivial Brauer

class γ.

3.3 Intersection of more than two Hassett divisors

3.3.1 Rational cubic fourfolds with associated K3 surfaces of arbitrary

rank

In this Section, we need to recall some lattice theory from §2.2.

Let E1
8 and E2

8 be the two copies of E8, the unimodular positive definite even rank 8 lattice

represented by its matrix in the basis 〈tik〉, for k = 1, .., 8, i = 1, 2. In addition, let U1 and

U2 be two copies of the hyperbolic plane U . We have that for k = 1, 2,

Uk ' Z.ek1
⊕

Z.ek2

with the quadratic form given by

(ek1, e
k
1) = 0, (ek1, e

k
2) = 1, (ek2, e

k
2) = 0.

A2 is given by the bilinear form

2 1

1 2

 in the canonical basis 〈a1, a2〉.

Using previous notations, we can denote now L and Lprim as follows:

L ' E1
8

⊕
E2

8

⊕
U1

⊕
U2

⊕
I3,0,
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Lprim ' E1
8

⊕
E2

8

⊕
U1

⊕
U2

⊕
A2.

Proposition 3.3.1. [112, Theorem 3.1] Any two Hassett divisors intersect i.e Cd1 ∩Cd2 6= ∅
for any integers d1 and d2 satisfying the condition (∗):

d1, d2 ≥ 8 and d1, d2 ≡ 0 or 2 (mod 6).

Remark 3.3.2. If X is a cubic fourfold in Cd1 ∩ Cd2, then there exists infinitely many

divisors Cd containing X. In fact, A(X) is a rank 3 lattice generated by h2 and both surfaces

S1 and S2 defining respectively Cd1 and Cd2. For every vector u in the sublattice 〈S1, S2〉,
u⊥ ⊂ A(X) is of rank 2. This defines a labelling (thus a divisor containing X), and moving

u appropriately we obtain as many different labellings as we want.

We denote by (∗ ∗ ∗∗) the following condition on the discriminant d:

(∗ ∗ ∗∗) d = 6d′ or d = 6d′ + 2, where d′ is a square.

(Prime numbers appearing inside the previous formula are not necessary distinct)

Theorem 3.3.3 (Theorem III). (i) For 3 ≤ n ≤ 20,

n⋂
k=1

Cdk 6= ∅,

with dk ≥ 8, dk ≡ 0, 2 (mod 6) and d3, .., dn = 6d′ or 6d′ + 2, d′ a square.

(ii) There exist families of cubic fourfolds F ⊆
n⋂
k=1

Cdk 6= ∅, of dimension 20−n, such that

a generic cubic fourfold X ∈ F has rk(A(X)) = n+ 1.

(iii) In addition, if at least one of the divisors Cdk in the intersection parametrizes cubic

fourfolds with an associated K3 surface (in other words, dk satisfies the condition

(∗∗)), then cubic fourfolds in the families F have an associated K3 surface with a

Néron-Severi group of rank greater than or equal to n.

For the sake of simplicity, the proof of the Theorem will be divided into different steps.

We mainly use the following Proposition:
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Proposition 3.3.4. [48, Proposition 12] LetM be a positive definite lattice of rank rk(M) ≥
2, that admits a saturated embedding

h2 ∈M ⊂ L,

Let CM ⊂ C be the locus of cubic fourfolds X having algebraic classes with lattice structure

h2 ∈M ⊂ A(X) ⊂ L.

If CM is non-empty, then it has codimension rk(M) − 1 and there exists X ∈ CM with

A(X) = M .

To prove the first point (i) of the Theorem, we proceed as following. First, in Lemma

3.3.5, we give a complete proof for the non emptiness of the intersection of any three divisors

Cd1 , Cd2 and Cd3 for d1, d2 and d3 satisfying (∗) and d3 satisfying (∗∗∗∗) as well. The proof is
divided into 4 parts covering all possible cases, depending alternatively on the values of the

discriminants. Then in Proposition 3.3.7, we prove that
⋂

1≤k≤20

Cdk 6= ∅ for particular choices

of the integers dk. Finally in Theorem 3.3.8, we prove the full statement of (i). Moreover,

the part (ii) of the Theorem 3.3.3 can be deduced from the proof of (i) and Proposition

3.3.4. In fact, in the proof of (i), in order to show the non emptiness, we construct families

of cubic fourfolds in the intersection of Hassett divisors with lattice of algebraic cycles of a

given rank. Then, applying Proposition 3.3.4, we deduce (ii). On the other hand, Theorem

3.3.3 (iii) can be concluded from Corollary 3.3.9.

Lemma 3.3.5. We have Cd1 ∩ Cd2 ∩ Cd3 6= ∅ for any integers d1, d2, d3 satisfying (∗) such

that d3 satisfies (∗ ∗ ∗∗).

Proof. The proof is divided in multiple cases depending on the values of the discriminants.

Case 1: if d1, d2, d3 ≡ 0 (mod 6) such that d1 = 6n1, d2 = 6n2 and d3 = 6n3, for

n1, n2 ≥ 2 and n3 a square.

We consider the rank 4 lattice,
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M := 〈h2, α1, α2, α3〉, with α1 = e1
1 + n1e

1
2, α2 = e2

1 + n2e
2
2 and α3 =

√
n3a1.

The Gram matrix of M with respect to this basis is:
3 0 0 0

0 2n1 0 0

0 0 2n2 0

0 0 0 2n3

 .

Therefore, M is a positive definite saturated sublattice of L. Moreover, for any nonzero

v = x1h
2 + x2α1 + x3α2 + x4α3, where x1, .., x4 are integers not all zeros, we have

(v, v) = 3x2
1 + 2n1x

2
2 + 2n2x

2
3 + 2n3x

2
4 ≥ 3,

∀n1, n2 ≥ 2, n3 as required.

We denote by CM ⊂ C the locus of smooth cubic fourfold such that there is a primitive

embedding M ⊂ A(X) preserving h2. The locus CM is nonempty of codimension 3 by [112,

Proposition 2.3]. Let us consider now the sublattices

Kd1 := 〈h2, α1〉 ⊂M
Kd2 := 〈h2, α2〉 ⊂M
Kd3 := 〈h2, α3〉 ⊂M

of discriminant respectively d1, d2 and d3. By [112, Lemma 2.4, Proposition 2.3], we have

that ∅ 6= CM ⊂ Cd1 ∩ Cd2 ∩ Cd3 as required.

Case 2: if d1, d2 ≡ 0 (mod 6), d3 ≡ 2 (mod 6) such that d1 = 6n1, d2 = 6n2 and

d3 = 6n3 + 2 for n1, n2 ≥ 2, and n3 a square.

This time we consider the positive definite saturated rank 4 sublattice of L:

M := 〈h2, α1, α2, α3 + (0, 0, 1)〉.

The Gram matrix of M is: 
3 0 0 1

0 2n1 0 0

0 0 2n2 0

1 0 0 2n3 + 1

 .
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Additionally, for any nonzero v = x1h
2 + x2α1 + x3α2 + x4(α3 + (0, 0, 1)), we have that:

(v, v) = 3x2
1 + 2n1x

2
2 + 2n2x

2
3 + (2n3 + 1)x2

4 + 2x1x4

= 2x2
1 + 2n1x

2
2 + 2n2x

2
3 + 2n3x

2
4 + (x1 + x4)2 ≥ 3,

∀n1, n2 ≥ 2 and n3 a square. Then, applying [112, Proposition 2.3], we have that CM is

nonempty of codimension 3. Now we define the following saturated rank 2 sublattices of M :

Kd1 := 〈h2, α1〉 with Gram matrix

3 0

0 2n1

,

Kd2 := 〈h2, α2〉 with Gram matrix

3 0

0 2n2

,

Kd3 := 〈h2, α3 + (0, 0, 1)〉 with Gram matrix

3 1

1 2n3 + 1

.

Again, by [112, Lemma 2.4] and [112, Proposition 2.3], we have that CM ⊂ CKd1 = Cd1 ,
CM ⊂ CKd2 = Cd2 and CM ⊂ CKd3 = Cd3 . Consequently, Cd1 ∩ Cd2 ∩ Cd3 6= ∅ in this case as

well.

Case 3: if d1 ≡ 0 (mod 6) and d2, d3 ≡ 2 (mod 6) such that d1 = 6n1, d2 = 6n2 + 2 and

d3 = 6n3 + 2 for n1 ≥ 2, n2 ≥ 1 and n3 a square.

We consider the rank 4 lattice,

M := 〈h2, α1, α2 + (0, 1, 0), α3 + (0, 0, 1)〉.

The Gram matrix of M is: 
3 0 1 1

0 2n1 0 0

1 0 2n2 + 1 0

1 0 0 2n3 + 1

 .
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M is a positive definite saturated sublattice of L. Moreover, for any nonzero v = x1h
2 +

x2α1 + x3(α2 + (0, 1, 0)) + x4(α3 + (0, 0, 1)) ∈M ,

(v, v) = 3x2
1 + 2n1x

2
2 + (2n2 + 1)x2

3 + (2n3 + 1)x2
4 + 2x1x3 + 2x1x4

= x2
1 + 2n1x

2
2 + 2n2x

2
3 + 2n3x

2
4 + (x1 + x3)2 + (x1 + x4)2 ≥ 3,

∀n1 ≥ 2, n2 ≥ 1, n3 as required. Then CM is nonempty of codimension 3 by [112, Proposition

2.3]. Now let us consider the saturated rank 2 sublattices of M :

Kd1 := 〈h2, α1〉 of Gram matrix

3 0

0 2n1

,

Kd2 := 〈h2, α2 + (0, 1, 0)〉 of Gram matrix

3 1

1 2n2 + 1

,

Kd3 := 〈h2, α3 + (0, 0, 1)〉 of Gram matrix

3 1

1 2n3 + 1

 .

It is straightforward to see that Cd1 ∩ Cd2 ∩ Cd3 6= ∅ also in this case.

Case 4: if d1, d2, d3 ≡ 2 (mod 6) such that d1 = 6n1 + 2, d2 = 6n2 + 2 and d3 = 6n3 + 2,

for n1, n2 ≥ 1 and n3 a square.

Let us consider the lattice M as follows

M := 〈h2, α1 + (1, 0, 0), α2 + (0, 1, 0), α3 + (0, 0, 1)〉

The Gram matrix of M with respect to this basis is:
3 1 1 1

1 2n1 + 1 0 0

1 0 2n2 + 1 0

1 0 0 2n3 + 1

 ,

and M is a rank 4 positive definite saturated sublattice of L.

Furthermore, for any nonzero v = x1h
2 + x2(α1 + (1, 0, 0)) + x3(α2 + (0, 1, 0)) + x4(α3 +
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(0, 0, 1)) ∈M , we have that:

(v, v) = 3x2
1 + (2n1 + 1)x2

2 + (2n2 + 1)x2
3 + (2n3 + 1)x2

4 + 2x1x2 + 2x1x3 + 2x1x4

= 2n1x
2
2 + 2n2x

2
3 + 2n3x

2
4 + (x1 + x2)2(x1 + x3)2 + (x1 + x4)2 ≥ 3,

∀n1, n2 ≥ 1, n3 as required. As usual, we consider rank 2 saturated sublattices of M :

Kd1 := 〈h2, α1 + (1, 0.0)〉,
Kd2 := 〈h2, α2 + (0, 1, 0)〉,
Kd3 := 〈h2, α3 + (0, 0, 1)〉.

Applying [112, Lemma 2.4] and [112, Proposition 2.3], Cd1 ∩ Cd2 ∩ Cd3 6= ∅ also in this case.

Remark 3.3.6. The condition required on the third discriminant is a sufficient condition

not necessary. Yang and Yu [112, Theorem 3.3] proved, for example, that Cd1 ∩Cd2 ∩C14 6= ∅
for d1 and d2 satisfying (∗).

Remark that by Proposition 3.3.4, the proof of Lemma 3.3.5 implies the existence of

an explicit 17-dimensional family of cubic fourfolds in the intersection of the three divisors,

generically with an algebraic cycles lattice of rank 4.

Proposition 3.3.7.
20⋂
k=1

Cdk 6= ∅, ∀dk ≡ 0 (mod 6) such that d3, .., d20 = 6d′, d′ a square.

Proof. We will prove that ∀n ≥ 4,
n⋂
k=1

Cdk 6= ∅.

Since for n ≤ 3, this formula has already been proved (see Proposition 3.3.1 and Lemma

3.3.5), we proceed to consider the case n = 4.

For n = 4: d1 = 6n1, d2 = 6n2, d3 = 6n3, d4 = 6n4 for n1, n2 ≥ 2 and n3, n4 squares.

Let us consider the rank 5 lattice,

M := 〈h2, α1, α2, α3, α4〉,
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with α1 = e1
1 + n1e

1
2, α2 = e2

1 + n2e
2
2, α3 =

√
n3a1 and α4 =

√
n4a2.

The latticeM is a positive definite saturated sublattice of L with the following Gram matrix:

3 0 0 0 0

0 2n1 0 0 0

0 0 2n2 0 0

0 0 0 2n3
√
n3n4

0 0 0
√
n3n4 2n4


.

Furthermore, for any nonzero v = x1h
2 + x2α1 + x3α3 + x4α3 + x5α4 ∈M , we have that

(v, v) = 3x2
1 + 2n1x

2
2 + 2n2x

2
3 + n3x

2
4 + n4x

2
5 + (

√
n3x4 +

√
n4x5)2 ≥ 3,

∀n1, n2 ≥ 2, n3, n4 squares (thus n3, n4 ≥ 4). The locus CM is then nonempty of codimension

4. Now let us consider rank 2 saturated sublattices of M :

Kdi := 〈h2, αi〉, i : 1, .., 4

of discriminant respectively di. By [112, Lemma 2.4] and [112, Proposition 2.3], we have

that ∅ 6= CM ⊂ Cd1 ∩ Cd2 ∩ Cd3 ∩ Cd4 with the required conditions on di.

Then the same method is applied to check the non emptiness of
n⋂
k=1

Cdk , for 5 ≤ n ≤ 19,

hence we refrain to give details. Nevertheless, let us go through the final, n = 20, step.

For n=20: if di = 6ni, i = 1, .., 20, with n1, n2 ≥ 2 and n3, .., n20 squares.

We need to consider the rank 21 lattice M generated by:

〈h2, α1, α2,
√
n3a1,

√
n4a2,

√
n5t

1
1,
√
n6t

1
3,
√
n7t

1
6,
√
n8t

2
1,
√
n9t

2
3,
√
n10t

2
6,
√
n11t

1
2,

√
n12t

2
2,
√
n13t

1
4,
√
n14t

2
4,
√
n15t

1
7,
√
n16t

2
7,
√
n17t

1
8,
√
n18t

2
8,
√
n19t

1
5,
√
n20t

2
5〉, with the following

Gram matrix: 
A B

BT C


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such that

A =



3 0 0 0 0 0 0 0 0 0 0

0 2n1 0 0 0 0 0 0 0 0 0

0 0 2n2 0 0 0 0 0 0 0 0

0 0 0 2n3
√
n3n4 0 0 0 0 0 0

0 0 0
√
n3n4 2n4 0 0 0 0 0 0

0 0 0 0 0 2n5 0 0 0 0 0

0 0 0 0 0 0 2n6 0 0 0 0

0 0 0 0 0 0 0 2n7 0 0 0

0 0 0 0 0 0 0 0 2n8 0 0

0 0 0 0 0 0 0 0 0 2n9 0

0 0 0 0 0 0 0 0 0 0 2n10



B =



0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

−√n5n11 0 0 0 0 0 0 0 0 0

−√n6n11 0 −√n6n13 0 0 0 0 0 −√n6n19 0

0 0 0 0 −√n7n15 0 0 0 −√n7n19 0

0 −√n8n12 0 0 0 0 0 0 0 0

0 −√n9n12 0 −√n9n14 0 0 0 0 0 −√n9n20

0 0 0 0 0 −√n10n16 0 0 0 −√n10n20


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C =



2n11 0 0 0 0 0 0 0 0 0

0 2n12 0 0 0 0 0 0 0 0

0 0 2n13 0 0 0 0 0 0 0

0 0 0 2n14 0 0 0 0 0 0

0 0 0 0 2n15 0 −√n15n17 0 0 0

0 0 0 0 0 2n16 0 −√n16n18 0 0

0 0 0 0 −√n15n17 0 2n17 0 0 0

0 0 0 0 0 −√n16n18 0 2n18 0 0

0 0 0 0 0 0 0 0 2n19 0

0 0 0 0 0 0 0 0 0 2n20


The lattice M ⊂ L is a positive definite saturated lattice containing h2. Moreover, for all

v ∈M , we have that

(v, v) 6= 2,

for n1, n2 ≥ 2, n3, .., n20 as required. Then, by [112, Propsition 2.3, Lemma 2.4], the locus

CM is nonempty of codimension 20.

Finally, we consider the rank 2 saturated sublattices Kdi ⊂M generated by h2 and another

element from the basis of M : α1, α2,
√
n3a1,

√
n4a2,

√
n5t

1
1,
√
n6t

1
3,
√
n7t

1
6,
√
n8t

2
1,
√
n9t

2
3,

√
n10t

2
6,
√
n11t

1
2,
√
n12t

2
2,
√
n13t

1
4,
√
n14t

2
4,
√
n15t

1
7,
√
n16t

2
7,
√
n17t

1
8,
√
n18t

2
8,
√
n19t

1
5,
√
n20t

2
5.

Kdi are of discriminant di respectively. Applying [112, Propsition 2.3, Lemma 2.4] again,

we obtain ∅ 6= CM ⊂ Cd1 ∩ .. ∩ Cd20 with the required conditions on di.

As before, Proposition 3.3.4 implies that the proof of Proposition 3.3.7 yields families of

dimension 20 − n of cubic fourfolds inside the intersection of the n different divisors. The

generic rank of A(X) for these cubics is n+ 1.

The proof of the next theorem is again divided into multiple cases. In fact, Lemma 3.3.5

and Proposition 3.3.7 are particular cases of the next theorem, which generalises them. Next,

we prove that the intersection of 20 divisors Cdi is nonempty whenever di ≡ 0, 2 (mod 6),

for all i.

Theorem 3.3.8. [Theorem 3.3.3 (i)]We have
20⋂
k=1

Cdk 6= ∅ for dk satisfying (∗) and d3, .., d20 =

6d′ or 6d′ + 2, with d′ a square.

Proof. Let us consider
n⋂
k=1

Cdk .

For n = 2: see [112, Theorem 3.1].
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For n = 3: see Lemma 3.3.5.

For 1 ≤ n ≤ 20: for dk ≡ 0 (mod 6), d3, .., d20 = 6d′, see Proposition 3.3.7.

In the following, we will describe in details the case n = 4. For higher values of n, it will

be clear that one needs to use exactly the same strategy, hence for the sake of shortness, we

will omit most of them. Details are left to the interested readers.

For n = 4:

Case 1: if all discriminants d1, d2, d3, d4 ≡ 0 (mod 6). This case is proved in Propo-

sition 3.3.7.

Case 2: if d1 = 6n1, d2 = 6n2, d3 = 6n3, d4 = 6n4 + 2 such that n1, n2 ≥ 2 and n3, n4

squares.

We consider the rank 5 lattice,

M := 〈h2, α1, α2, α3, α4 + (0, 0, 1)〉, with α1 = e1
1 + n1e

1
2, α2 = e2

1 + n2e
2
2, α3 =

√
n3a1 and

α4 =
√
n4a2.

The Gram matrix of M with respect to this basis is:

3 0 0 0 1

0 2n1 0 0 0

0 0 2n2 0 0

0 0 0 2n3
√
n3n4

1 0 0
√
n3n4 2n4 + 1


,

and M is a positive definite saturated sublattice of L.

For all v ∈M v = x1h
2 + x2α1 + x3α2 + x4α3 + x5(α4 + (0, 0, 1)) ∈M , we have that

(v, v) = 2x2
1 + 2n1x

2
2 + 2n2x

2
3 + n3x

2
4 + n4x

2
5 + (

√
n3x4 +

√
n4x5)2 + (x1 + x5)2 6= 2,

for all n1, n2 ≥ 2, n3, n4 squares (thus n3, n4 ≥ 4). Then CM is nonempty of codimension 4.

Moreover, we consider

Kdi := 〈h2, αi〉, i : 1, .., 4.

Hence, by [112, Lemma 2.4, Proposition 2.3], we have that ∅ 6= CM ⊂ Cd1 ∩ Cd2 ∩ Cd3 ∩ Cd4
with the required conditions on di in this case.
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Case 3: if d1 = 6n1, d2 = 6n2, d3 = 6n3 + 2, d4 = 6n4 + 2 such that n1, n2 ≥ 2 and

n3, n4 squares.

We consider the rank 5 lattice,

M := 〈h2, α1, α2, α3 + (0, 1, 0), α4 + (0, 0, 1)〉,

with α1 = e1
1 + n1e

1
2, α2 = e2

1 + n2e
2
2, α3 =

√
n3a1 and α4 =

√
n4a2.

The Gram matrix of M is 

3 0 0 1 1

0 2n1 0 0 0

0 0 2n2 0 0

1 0 0 2n3 + 1
√
n3n4

1 0 0
√
n3n4 2n4 + 1


,

and M is a positive definite saturated sublattice of L.

In addition, for all v ∈M v = x1h
2 +x2α1 +x3α2 +x4(α3 +(0, 1, 0))+x5(α4 +(0, 0, 1)) ∈M ,

we have that

(v, v) = x2
1 +2n1x

2
2 +2n2x

2
3 +n3x

2
4 +n4x

2
5 +(
√
n3x4 +

√
n4x5)2 +(x1 +x5)2 +(x1 +x4)2 6= 2,

for all n1, n2 ≥ 2, n3, n4 squares. Then CM is nonempty of codimension 4 by [112, Proposi-

tion 2.3]. Moreover, we consider

Kdi := 〈h2, αi〉, i : 1, .., 4.

By [112, Lemma 2.4, Proposition 2.3], we have that ∅ 6= CM ⊂ Cd1 ∩ Cd2 ∩ Cd3 ∩ Cd4 with the

required conditions on di in this case.

Case 4: if d1 = 6n1, d2 = 6n2 + 2, d3 = 6n3 + 2, d4 = 6n4 + 2 such that n1 ≥ 2, n2 ≥ 1

and n3, n4 squares.

We consider the rank 5 lattice,

M := 〈h2, α1, α2 + (1, 0, 0), α3 + (0, 1, 0), α4 + (0, 0, 1)〉.
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The Gram matrix of M is:

3 0 1 1 1

0 2n1 0 0 0

1 0 2n2 + 1 0 0

1 0 0 2n3 + 1
√
n3n4

1 0 0
√
n3n4 2n4 + 1


.

Hence, M is a positive definite saturated sublattice of L.

Furthermore, for all v ∈M , v = x1h
2 +x2α1 +x3(α2 +(1, 0, 0))+x4(α3 +(0, 1, 0))+x5(α4 +

(0, 0, 1)) ∈M , we have that

(v, v) =

2n1x
2
2 + 2n2x

2
3 +n3x

2
4 +n4x

2
5 + (
√
n3x4 +

√
n4x5)2 + (x1 +x5)2 + (x1 +x4)2 + (x1 +x3)2 6= 2,

for all n1 ≥ 2, n2 ≥ 1 and n3, n4 squares (thus n3, n4 ≥ 4). Then CM is nonempty of

codimension 4. Moreover, we consider

Kdi := 〈h2, αi〉, i : 1, .., 4.

We have then that ∅ 6= CM ⊂ Cd1 ∩ Cd2 ∩ Cd3 ∩ Cd4 with the required conditions on di in this

case.

Case 5: if d1 = 6n1 + 2, d2 = 6n2 + 2, d3 = 6n3 + 2, d4 = 6n4 + 2 such that n1, n2 ≥ 1

and n3, n4 squares.

We consider the rank 5 lattice,

M := 〈h2, α1 + (1, 0, 0), α2 + (1, 0, 0), α3 + (0, 1, 0), α4 + (0, 0, 1)〉

with the following Gram matrix:

3 1 1 1 1

1 2n1 + 1 0 0 0

1 0 2n2 + 1 0 0

1 0 0 2n3 + 1
√
n3n4

1 0 0
√
n3n4 2n4 + 1


.
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The lattice M is a positive definite saturated sublattice of L.

For all v ∈M , v = x1h
2 +x2(α1 + (1, 0, 0)) +x3(α2 + (1, 0, 0)) +x4(α3 + (0, 1, 0)) +x5(α4 +

(0, 0, 1)) ∈M , we have that

(v, v) = 2n1x
2
2 + 2n2x

2
3 + n3x

2
4 + n4x

2
5 + (

√
n3x4 +

√
n4x5)2 + (x1 + x5)2 + (x1 + x4)2 +

(x1 + x3)2 + (x1 + x2)2 − x2
1 6= 2,

for all n1, n2 ≥ 1, n3, n4 squares. Then CM is nonempty of codimension 4. We consider the

rank 2 saturated sublattices

Kdi := 〈h2, αi〉, i : 1, .., 4.

Applying [112, Lemma 2.4], we have that ∅ 6= CM ⊂ Cd1 ∩ Cd2 ∩ Cd3 ∩ Cd4 with the required

conditions on di in this case.

For 5 ≤ n ≤ 19: In the same way, one can continue to consider, for each n-intersection

of Hassett divisors, certain positive definite saturated (n+1)-rank lattice E containing h2

and check that for a nonzero v ∈ E, (v.v) ≥ 3 or equivalently for all v ∈ E (v, v) 6= 2. This

allows us to conclude the non emptiness of the intersection (by [112, Lemma 2.4, Propositon

2.3]).

Finally, in order to study the intersection of 20 Hassett divisors Cdk such that all dk ≡
2 (mod 6), We consider, for example, the rank 21 lattice M , generated by

〈h2, α1 + (0, 1, 0), α2 + (1, 0, 0),
√
n3a1 + (1, 0, 0),

√
n4a2 + (0, 1, 0),

√
n5t

1
1 + (0, 0, 1),

√
n6t

1
3 + (0, 0, 1),

√
n7t

1
6 + (1, 0, 0),

√
n8t

2
1 + (0, 1, 0),

√
n9t

2
3 + (0, 0, 1),

√
n10t

2
6 + (0, 0, 1),

√
n11t

1
2 + (0, 0, 1),

√
n12t

2
2 + (0, 0, 1),

√
n13t

1
4 + (0, 0, 1),

√
n14t

2
4 + (1, 0, 0),

√
n15t

1
7 + (0, 1, 0),

√
n16t

2
7 + (0, 1, 0),

√
n17t

1
8 + (0, 1, 0),

√
n18t

2
8 + (0, 1, 0),

√
n19t

1
5 + (0, 1, 0),

√
n20t

2
5 + (0, 1, 0)〉.

The Gram matrix of M is: 
A B

BT C


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with

A =



3 1 1 1 1 1 1 1 1 1 1

1 2n1 + 1 0 0 1 0 0 0 1 0 0

1 0 2n2 + 1 1 0 0 0 1 0 0 0

1 0 1 2n3 + 1
√
n3n4 0 0 1 0 0 0

1 1 0
√
n3n4 2n4 + 1 0 0 0 1 0 0

1 0 0 0 0 2n5 + 1 1 0 0 1 1

1 0 0 0 0 1 2n6 + 1 0 0 1 1

1 0 1 1 0 0 0 2n7 + 1 0 0 0

1 1 0 0 1 0 0 0 2n8 + 1 0 0

1 0 0 0 0 1 1 0 0 2n9 + 1 1

1 0 0 0 0 1 1 0 0 1 2n10 + 1



B =



1 1 1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 1 1

0 0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1

1−√n5n11 1 1 0 0 0 0 0 0 0

1−√n6n11 1 1−√n6n13 0 0 0 0 0 −√n6n19 0

0 0 0 1 −√n7n15 0 0 0 −√n7n19 0

0 −√n8n12 0 0 1 1 1 1 1 1

1 1−√n9n12 1 −√n9n14 0 0 0 0 0 −√n9n20

1 1 1 0 0 −√n10n16 0 0 0 −√n10n20



C =



2n11 + 1 1 1 0 0 0 0 0 0 0

1 2n12 + 1 1 0 0 0 0 0 0 0

1 1 2n13 + 1 0 0 0 0 0 0 0

0 0 0 2n14 + 1 0 0 0 0 0 0

0 0 0 0 2n15 + 1 0 −√n15n17 0 0 0

0 0 0 0 0 2n16 + 1 0 −√n16n18 0 0

0 0 0 0 −√n15n17 0 2n17 + 1 0 0 0

0 0 0 0 0 −√n16n18 0 2n18 + 1 0 0

0 0 0 0 0 0 0 0 2n19 + 1 0

0 0 0 0 0 0 0 0 0 2n20 + 1


M is a positive definite saturated sublattice of L. For all v ∈M, (v, v) 6= 2, ∀n1, n2 ≥ 1,

nk squares for k = 3, .., 20.

We consider rank 2 saturated sublattices h2 ∈ Kdi of discriminant di as before.
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Therefore, by [112, Lemma 2.4, Proposition 2.3],
20⋂
k=1

Cdk 6= ∅ for all dk satisfying (∗) and for

k ≥ 3, dk satisfies also (∗ ∗ ∗∗).

Let us denote by F the families of cubic fourfolds constructed in Theorem 3.3.8. By

definition they are contained in the non empty intersection
n⋂
k=1

Cdk , and all these cubics

verify M ⊂ A(X), for M the fixed rank n+ 1 lattice (see Proposition 3.3.4). The lattice M

coincides with the lattice of algebraic classes A(X), for a generic X ∈ F . A straightforward

result is the following:

Corollary 3.3.9. Let F ⊆
n⋂
k=1

Cdk 6= ∅ be the family of cubic fourfolds as constructed

above and suppose that at least one of the divisors Cdk parametrizes cubic fourfolds with an

associated K3 surface. Then there exist cubic fourfolds in F with an associated K3 surface

S such that rk(NS(S)) = n.

Proof. This is straightforward, since a generic cubic fourfoldX ∈ F ⊆
n⋂
k=1

Cdk have rk(A(X)) =

n+ 1, hence the primitive cohomology of the associated K3 surface has rank n− 1, and the

Néron-Severi group has rank n. Note that the intersection of F with further Hassett divisors

may represent cubic fourfolds whose associated K3 surface S has rk(NS(S)) ≥ n.

Remark 3.3.10. After our paper [11] came out, Yang and Yu [113] proved that the in-

tersection of all Hassett divisors is nonempty by showing that the Fermat cubic fourfold is

contained in every Hassett divisor, hence in the intersection of all divisors. This intersec-

tion is rational, of dimension at least 13. However, our construction allowed us to produce

concrete examples of cubic fourfolds contained in certain families of arbitrary dimension,

from 0 to 18, in C. In addition, for generic cubic fourfolds X in these families, the lattice

A(X) is of any prescribed rank.

3.3.2 Families of cubic fourfolds with finite dimensional Chow motives of

abelian type

LetMrat(C) be the (contravariant) category of Chow motives and letMAb
rat(C) be the

strictly full, thick, rigid, tensor subcategory ofMrat(C) generated by the motives of abelian

varieties (see Appendix B for background material of motives).
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Next, using the intersection theory developed in §3.3, we construct new one dimensional

families of cubic fourfolds with finite dimensional, abelian motive (see [11]).

Theorem 3.3.11. Every Hassett divisor Cd contains a one dimensional family of cubic

fourfolds, whose Chow motive is finite dimensional and abelian.

Proof. Let us consider Cd ⊂ C any divisor of special cubic fourfolds. By Theorem 3.3.3, one

can choose appropriately 17 divisors Cd1 , . . . Cd17 and consider the intersection

Cd ∩ C14 ∩ (
17⋂
k=1

Cdk),

which is nonempty.

In particular, by the proof of Theorem 3.3.3, one sees that a family of cubic fourfolds

F ⊆ Cd ∩ C14 ∩ (

17⋂
k=1

Cdk) is a one dimensional algebraic subvariety of Cd, that is, a family

of cubic fourfolds of discriminant d. On the other hand, by construction, the family F is

also contained in C14, hence all the cubics in F have an associated K3 surface. Moreover,

by the results of Section 3.3 (see Corollary 3.3.9), we observe that cubic fourfolds in F have

associated K3 surfaces with Néron-Severi rank ρ(S) ≥ 19. More precisely: the generic cubic

fourfold in F has an associated K3 surface with ρ(S) = 19; the intersection points of F
with further Hassett divisors may represent cubic fourfolds whose associated K3 surface has

ρ(S) = 20. By Theorem B.4 the Chow motives of these K3 surfaces are finite dimensional

and Abelian. Now we need to evoke the isomorphism of Eq. B.2. The divisor C14 is among

those whose cubic fourfolds have Chow motives that decomposes as follows

h(X) = 1⊕ L⊕ (L2)
⊕ρ2(X) ⊕ t2(S)(−1)⊕ L3 ⊕ L4

where t2(S) is the transcendental part of the motive h(S) of the associated K3 surface.

Now, if the motive of the associated K3 surface is finite dimensional or Abelian, then also

the motive of the cubic fourfold has the same property.

This means in turn that, by Theorem B.4, all the cubics in F have finite dimensional

and abelian Chow motive, since the associated K3 surfaces have Néron-Severi group of rank

bigger or equal to 19.

Remark 3.3.12. It is well-known that K3 surfaces S with Picard number ρ(S) = rk(NS(S)) ≥
19 are very special, since these are the maximal possible ranks of the Néron-Severi group.
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They are called singular K3 surfaces and have some very particular features. On one hand,

as seen before, their Chow motives are abelian and finite dimensional (see Appendix B). On

the other hand, they admit a Shioda-Inose structure [99]. In particular, there is a birational

map from the K3 surface to a Kummer surface (see [75], [94]).

Remark 3.3.13. Let us point out that, since all the family F is contained in C14, then, by

results of [21], all cubic fourfolds in F are rational.

In the proof of Theorem 3.3.11, we chose C14 for simplicity, since it is the first of the

series that has d verifying condition:

(5∗) ∃f, g ∈ Z with g|(2n2 + 2n+ 2) n ∈ N and d = f2g,

and where cubics have associated K3 surfaces (i.e. d verifies also the condition (∗∗)). Any

other divisor Cd obeying (5∗), such that cubics in Cd have associated K3 surfaces, would

have worked. Hence we can say even more.

Corollary 3.3.14 (Theorem IV). Every Hassett divisor Cd contains a countable infinity of

one dimensional families of cubic fourfolds, whose Chow motive is finite dimensional and

Abelian.

Proof. Just consider, in (5∗), f = 1 and g = 2n2 + 2n + 2, for any n ∈ N. This gives an

infinite series of values s, such that cubics in Cs have associated K3 surfaces and verify the

isomorphism (B.2). Hence, this construction

F ⊂ Cs ∩ Cd ∩ (
17⋂
k=1

Cdk)

gives rise to an infinite one dimensional families of cubic fourfolds with Chow motives of

abelian type and finite dimensional as it corresponds, in each case, to different locus of

cubic fourfolds. For the reader’s convenience one can consider the case for example where

d and dk ≡ 0 (mod 6) for k = 1, .., 17, with M the rank 20 lattice associated to F .

By fixing all divisors except for Cs, the discriminant of M varies as well. In fact, in this

particular case, d(M) = s.d(M ′), withM ′ a fixed sublattice of rank 18 (see §3.3.1 for similar

constructions).
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3.3.2.1 Density of cubic fourfolds with abelian motive

Theorem 3.3.15. Let d be not divisible by 4, 9, or any odd prime number p ≡ 2 (mod 3).

Then there exists a countable, dense (in the complex topology) set of points in a non-empty

Zariski open subset inside Cd such that the corresponding fourfolds have finite dimensional

Chow motive.

Proof. Let X ∈ Cd, for d in the range of the claim here above. That is: X has one (or two,

see [46]) associated polarized K3 surface SX in F d+2
2
. Then the map

F d+2
2
→ Cd; (3.1)

SX 7→ X; (3.2)

is rational and dominant. Hence, if d is in the range here above, there exists an open set

Ud of Cd such that for every X ∈ Ud there exists a K3 surface SX of degree d associated to

X. We observe also that singular K3 surfaces form a (countable) subset of the moduli space

F d+2
2

which is dense in the complex topology. The proof of this fact goes along the same

lines as the proof of the density of all K3 surfaces in the period domain (see [44, Corollary

VIII.8.5]). By the dominance of the map in (3.1), this directly implies the claim.

3.3.2.2 Some remarks on Hyperkähler varieties

We mention here some consequences on Abelianity and finite dimensionality of the mo-

tive of some Hyperkähler varieties related to cubic fourfolds from the results of the preceding

section.

Notably, we will consider F (X) the Fano variety of lines and L(X), the 8-fold constructed

in [67] from the space of twisted cubic curves on a cubic fourfold not containing a plane.

The 4-dimensional F (X) is in general deformation equivalent to the Hilbert scheme S[2],

with S a K3 surface, while L(X) is deformation equivalent to S[4].

By [25, Section 6], the Hilbert scheme S[n] of a K3 surface S with finite dimensional (or

abelian) motive has finite dimensional (or abelian) motive. Now, recall that our family F of

cubic fourfolds from Theorem 3.3.11 entirely lies in C14. Moreover, for all cubics X in C14,

we have a birationality F (X) ∼ S[2] (see [1]), where S is the associated K3 surface. Hence,
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since birational Hyperkähler varieties have isomorphic Chow motives, it is straightforward

to check that we have the following.

Proposition 3.3.16. All Hyperkähler fourfolds F (X), X ∈ F , have finitely generated and

abelian Chow motive.

Remark 3.3.17. Once again, we can play the same game as before by taking C 2n2+2n+2

a2

, for

n, a ∈ Z, instead of C14. By [1, Thm. 2], having a d of this shape (i.e. d satisfying the

condition (∗ ∗ ∗) (see §2.4)) is equivalent to having a birational equivalence between F (X)

and the Hilbert square of the associated K3 surface. Hence, we have a countably infinite set

of families of Fano varieties F (X) with finite dimensional and abelian motive, whose cubic

fourfolds all lie in a fixed Cd.

On the other hand, let us now consider the Hyperkähler 8fold L(X). In order to define

properly L(X) we need to assume that X does not contain a plane, i.e. X 6∈ C8. Then, the

analogue of Proposition 3.3.16 is the following.

Proposition 3.3.18. All Hyperkähler 8folds L(X), X ∈ F , have finitely generated and

Abelian Chow motive.

Proof. Let X ∈ Cd be a cubic fourfold not containing a plane, such that S is its associated

K3 surface. In [85, Thm. 3] the authors show that the 8fold L(X) is birational to S[4] if

and only if

(6∗) d =
6n2 + 6n+ 2

a2
, n, a ∈ Z.

The first integer of the list is once again 14, hence for all the cubic fourfolds of our family F
we have L(X) ∼ S[4]. Since birational Hyperkähler varieties have isomorphic Chow motives,

the results from [25] complete the proof, and we have a one-dimensional family of L(X) with

finite dimensional and abelian motive for all Cd.

Remark 3.3.19. By taking C14 in the proof of Proposition 3.3.16 and 3.3.18, we observe

that this verifies both condition (∗ ∗ ∗) and (6∗). Then the intersection

F ⊆ C14 ∩ (

18⋂
k=1

)Cdk 6= ∅. (3.3)

defines a one dimensional family, inside any Cd of cubic fourfolds such that the corresponding

Fano varieties and LLSvS 8folds have finite dimensional and abelian motive, too.
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Chapter 4

Universal families of Fano fourfolds

4.1 Introduction

Universal families are well known and studied objects in the realm of moduli spaces of

curves [33], where forgetful maps are the algebraic geometer’s everyday tools. Also in the

context of K3 surfaces several results about these objects have appeared in the literature,

also very recently in [15, 34, 35, 70]. Probably because the birational geometry of a Fano

fourfold, such as a cubic fourfold, is already so difficult to understand as we have seen in

the previous chapters, the problem of studying the same issues for their universal families

seems to have been overtaken. Thanks to the recent advances in the study of rationality of

a Fano fourfold, such as a cubic fourfold but also a Gushel-Mukai fourfold (see Appendix C

for some generalities on Gushel-Mukai fourfolds), it seems natural to ask what can be said

in families, in particular over certain relevant loci in their moduli spaces. This is what we

will talk about in this chapter.

First, we are interested in universal cubics fourfolds over certain divisors Cd in C. In [10],

we prove the following fact:

Theorem V: The universal cubic fourfolds Cd,1 are unirational in the range 8 ≤ d ≤ 42.

More precisely, we propose two different methods, since each one seems to have its own

interest, concerning different aspects of the geometry of cubic fourfolds. On one hand, we

use some recent results of Farkas-Verra [34, 35] about universal K3 surfaces and the relation
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with cubic fourfolds given by associated K3 surfaces. On the other hand, we use the pre-

sentation of Hassett divisors as cubics containing certain rational surfaces, as done by Nuer

[87] and Russo-Staglianò [91, 93], and Kollár’s theorem [57] on unirationality of cubics. This

second argument, applied inductively, also allows us to prove the following fact:

Theorem VI: The universal families Cd,m are unirational for all values of m ∈ N∗,

8 ≤ d ≤ 42.

Furthermore, by collecting some recent results of Gritsenko-Hulek-Sankaran [41, 42] and

Várilly-Alvarado-Tanimoto [104] about the Kodaira dimension of moduli spaces of K3 sur-

faces and of the Hassett divisors Cd, we were able to specify an infinite range of values of

d where the universal families over these divisors Cd cannot be unirational. In fact, in [42],

it is proven that the moduli space of polarized K3 surfaces of degree 2m has non-negative

Kodaira dimension or is even of general type for an infinity of values (see Proposition 2.3.5

for details). Furthermore Várilly-Alvarado and Tanimoto [104] have started pursuing the

project of filling certain gaps, obtaining another relevant range of values where the Kodaira

dimension of Cd is positive (see Proposition 2.3.6). These results give us negative information

about the divisors Cd where the universal cubic Cd,1 can not be unirational.

Proposition VII: The universal cubic fourfold Cd,1 is not unirational if:

1. d > 80, d ≡ 2 (mod 6), 4 6 |d and such that for any odd prime p, p|d implies p ≡
1 (mod 3);

2. d = 6n+ 2, n > 13 and n 6= 15;

3. d = 6n for n > 16 and n 6= 18, 20, 22, 30.

In this chapter, we are interested also in another class of Fano fourfold called the Gushel-

Mukai fourfold (GM fourfold, for short). The interest in these fourfolds is related to their

rationality problems and similarities with cubic fourfolds. In a fashion very similar to cubic

fourfolds, all GM fourfolds are unirational, moreover some examples of rational GM fourfolds

are not hard to construct. Nevertheless, one expects that a very general GM fourfold should

be irrational, but no example has yet been proven to be irrational (see Appendix C).
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We denote byM4
GM the moduli space of GM fourfolds of dimension 24 (see [26]). Once

again, similarly to the case of cubic fourfolds (see [46], [47]), via Hodge theory and the

period map, Debarre, Iliev and Manivel [26] defined the Hodge-special GM fourfolds, that is,

fourfolds that contain a surface whose cohomology class does not come from the tautological

classes of the Grassmannian G(1, 4). They showed that these families of fourfolds inM4
GM ,

called Noether-Lefschetz loci, correspond to a countable union of hypersurfaces (M4
GM )d in

M4
GM . In this chapter, we consider exclusively ordinary GM fourfolds. They can be viewed

as smooth quadric hypersurfaces in a smooth del Pezzo fivefold Y5 := G(1, 4) ∩ P8 ⊂ P8,

thus parametrized by an open subset V in the 39-dimensional projective space P(OY5(2));

they correspond to the points of an open subset in M4
GM viewed as the GIT quotient

V//PGL(9,C).

One can, in the same spirit of cubic fourfolds, consider universal fourfolds over some

specific families of GM fourfolds. First, we notice that, when GM fourfolds are rational, a

geometric construction is very often provided by means of K3 surfaces (for example seen

as base loci of linear systems). The birational geometry of the universal GM families once

again depends very much on the birational geometry of certain moduli spaces Fg,n of n-

pointed K3 surfaces of genus g (see [70], [15]). Of course this also gives information about

the birational geometry of the base of the family insideM4
GM . Notably we will consider the

divisor (M4
GM )20 and using its geometric description given in [49, 101], we prove that:

Proposition VIII: The universal family (M4
GM )20,1 is unirational.

We restrict then our attention to a dimension one locus (M4
GM )nod20 inside (M4

GM )20,

defined via certain genus 11 K3 surfaces contained in a Noether-Lefschetz divisor. By de-

scribing the birational geometry of the Noether-Lefschetz divisor in the moduli of K3 sur-

faces, and exploiting the relation between these surfaces and the GM fourfolds, we prove

that (M4
GM )nod20 and the universal family (M4

GM )nod20,1 above it are rational.

On the way to our Theorem, we also show the following result:

Proposition A.2.2: F11,7, the moduli space of 7−pointed K3 surfaces of genus 11, is

unirational .
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Last, we propose a unified, general, abstract method to show the unirationality of the

m-pointed universal (cubic and GM) fourfolds over their moduli spaces. This can be applied

to any family XS of (cubic and GM) fourfolds that contains surfaces from a given family S,
under some hypotheses (see Remark 4.4.12) on XS and S.

Theorem IX: The universalm-pointed fourfold over the following irreducible codimension-

one loci:

C14, C26, C38, C42, (M4
GM )′10, (M4

GM )
′′
10, (M4

GM )20,

are unirational.

4.2 Unirationality of universal families of cubic fourfolds

4.2.1 Existence of universal cubic fourfolds

Similarly to the case of curves [33] and K3 surfaces [15, 34, 35, 70], we give the following

definition of universal families of cubic fourfolds:

Definition 4.2.1. By universal cubic fourfold over a divisor Cd we mean the moduli space

Cd,1 of 1-pointed cubic fourfolds equipped with the forgetful map Cd,1 −→ Cd.

Despite the immediate existence of these universal families in the sense of stacks, it needs

however a little bit of justification when working on coarse moduli spaces.

Proposition 4.2.2. The generic cubic fourfold in any divisor Cd does not have projective

automorphisms, hence a universal family of cubic fourfolds exists over an open subset of

each divisor in the moduli space C.

Proof. By Theorem 2.1.2, since we are working with smooth cubic hypersurfaces, all points

are stable in theGIT sense considered in §2.1.2. In addition, in [37, Thm 3.8] it is proven that

the families of cubic fourfolds with a non-trivial projective automorphism have dimension

at most 14. This means that these families cannot contain any divisor of the moduli space.

Hence the generic element of any divisor has no non trivial automorphism and universal

families then exists at least over an open subset of our divisors in the moduli space.
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4.2.2 Method 1: unirationality via universal K3 surfaces

4.2.2.1 Some properties of scrolls and associated K3 surfaces

By Section 4.2.1, there exists, at least over a dense subset of C26 and C42, a universal

family of cubic fourfolds. For simplicity, and since we are however working in the birational

category, we will still denote the two universal families by C26,1 → C26 and C42,1 → C42,

without stressing the fact that they may not be defined everywhere.

Definition 4.2.3. (see §2.3.1) We recall that:

• C26 := {Cubic fourfolds containing a 3− nodal septic scroll}

• C42 := {Cubic fourfolds containing a 8− nodal degree 9 scroll}.

Let us recall here the construction of the scrolls defining these divisors (see Appendix

A.3). We refer to [34, 35], for more details.

Let F1 = Blw(P2) be a Hirzebruch surface, for w ∈ P2; we denote by l the class of a line

and E the exceptional divisor.

A smooth septic scroll Σ7 := R3,4 ⊆ P8 is the image of the linear system ψ4l−3E : F1 ↪→ P8.

We denote by Γ := 〈p1, p2, p3〉 ∈ G(2, 8) the linear span of three general points in the secant

variety Sec(Σ7) ⊆ P8. The image Σ3
7 of the projection with center Γ:

πΓ : Σ7 −→ P5

is a 3−nodal septic scroll.

Again to construct an 8−nodal nonic scroll, we start with a smooth degree 9 scroll

Σ9 := R4,5 ⊆ P10, image of the linear system ψ5l−4E : F1 ↪→ P10. We choose a general

4−plane Ω ∈ G(4, 10) which is 8−secant to the secant variety Sec(Σ9) ⊆ P10. Assuming

Ω ∩ Σ9 = ∅, an 8−nodal nonic scroll Σ8
9 ⊆ P5 is the image of the restriction to Σ9 of the

projection with center Ω:

πΩ|Σ9
: Σ9 −→ P5.

Furthermore, cubic fourfolds inside these two divisors have an associated K3 surface

(actually cubics in C42 have two associated K3 surfaces (see [35, Section 2])). The associated

K3 surfaces for cubics from C26 have genus 14 and degree 26, whereas for cubics from C42

they have genus 22 and degree 42.
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By §2.3.2, for C26 and C42, we have the following rational maps

F14
∼
99K C26;

F22
2:1
99K C42.

Moreover, for a general X ∈ C2(n2+n+1), n ≥ 2 (remark that 26 and 42 all verify this

equality), the isomorphism (2.2)

S[2] ∼= F (X) ↪→ G(1, 5)

holds and the family of scrolls contained inside X is precisely parametrized by the associated

K3 surface S. The construction, roughly speaking, goes as follows. For each p ∈ S, one

defines a rational curve

∆p := {y ∈ S[2] : {p} = Supp(y)}.

The image of ∆p inside F (X) then defines a (possibly singular) scroll Rp ⊂ X.

Proposition 4.2.4. [34, 35]

1. The family of septimic 3-nodal scrolls inside a generic cubic fourfold X in C26 is the

genus 14 K3 surface associated to X.

2. The family of 8-nodal degree 9 scrolls inside a generic cubic fourfold X in C42 is the

genus 22 K3 surface associated to X.

Recall from Proposition A.2.1 that F14,1 and F22,1 are unirational.

Remark 4.2.5. Given the result of [37], Proposition 4.2.2 is straightforward and very gen-

eral. For d = 26, and 42, since the isomorphism (2.2) holds, one could also argue in a more

“geometric” way as follows. Any automorphism φ ∈ Aut(X) of a smooth cubic fourfold X

induces an automorphism of the Fano variety of lines F (X). Then, via the isomorphism

F (X) ∼= S[2] with the symmetric square of the associated K3 surface, one can use the fact

that the generic K3 surface has no non-trivial automorphism to conclude that φ is the iden-

tity. Remark also that, by Proposition 4.2.4, the fact that the associated K3 surface has no

non-trivial automorphism implies that any φ ∈ Aut(X) should send each scroll onto itself.
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4.2.2.2 Unirationality of C26,1 and C42,1

We will show next that:

Theorem 4.2.6. The universal cubic fourfolds C26,1 and C42,1 are unirational.

The strategy will be the same for the two cases, hence we will summarize here below the

properties, that hold for both divisors, that we will need. In order to keep the notation not

too tedious, when we will say that a certain property holds for Cn we will assume n = 26, 42.

Let X be a generic smooth cubic fourfold in Cn. We will denote by K(X) the associated

K3 surface and by S(X) the family of scrolls (as defined in Definition 4.2.3) contained in

X ⊂ P5. For n = 26 septic 3−nodal scrolls, for n = 42 8−nodal degree 9 scrolls. One can

rephrase Proposition 4.2.4 by saying that K(X) is isomorphic to S(X). More generally, we

will denote by Sn the Hilbert scheme of scrolls contained in cubics in Cn (those appearing

in Definition 4.2.3), and by Sn the PGL(6,C)-quotient of Sn. These moduli quotients have

been also considered in [34, 35, 61]. Taking example from these papers let us give the

following definition.

Definition 4.2.7. Let us denote by

Hn = {(X,R) : R ⊂ X, [X] ∈ Cn, R ∈ S(X)}

the "nested" Hilbert scheme given by the couples (X cubic fourfold whose class lives in Cn)
+ (R rational normal scroll in S(X)); and by Hn := Hn//PGL(6,C) the corresponding

moduli quotient.

From [34, 35] we have the following result.

Proposition 4.2.8. The universal K3 surfaces Fn+2
2
,1 are birational to Hn.

In particular, in [34, 35] the authors show that Sn is unirational and Hn is birational to

a projective bundle over Sn, and hence unirational as well. We add just one more character

to the plot, that is:

Definition 4.2.9. We denote by Hn,1 the Hilbert scheme of the triples (X,R, p) as follows:

Hn,1 = {(X,R, p)) : R ⊂ X, [X] ∈ Cn, R ∈ S(X), p ∈ X}.
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We will denote by Hn,1 the corresponding moduli quotient by PGL(6,C).

Of course, as a consequence of Proposition 4.2.2, this is generically a fibration in cubic

hypersurfaces over Hn. Finally we will denote by Un the open subset complementary to the

discriminant inside |OP5(3)| (actually inside U), and by Un,1 the universal family over Un.

Theorem 4.2.10. The Hilbert scheme Hn,1 is unirational.

Proof. Let us try to give a global picture of the situation.

H.S. level (R,X, p) ∈ Hn,1

&&vv

��

forget scroll // Un,1 3 (X, p)

��

��

//PGL(6)

��

P5 × Sn

��

((

Hn

xx

��

univ. K3 // Un 3 X

��

Sn

��

Hn,1
forget scroll //

vv %%

Cn,1

��
(P5 × Sn)//PGL(6,C)

((

Hn ∼ Fn+2
2
,1

univ. K3 //

yy

Cn

M.S. level Sn
(4.1)

Here above all vertical arrows shall be intended as quotients by the PGL(6)-action. On

the upper level of the diagram all spaces are Hilbert schemes, whereas on the lower they

are moduli quotients (H.S and M.S. for short). By the unirationality of Sn we have the

unirationality of P5 × Sn. Then we observe that there is a natural forgetful map

φn : Hn,1 → P5 × Sn; (4.2)

(X,R, p) 7→ (p,R). (4.3)

Namely, the fiber over a given couple (p,R) is exactly the linear system PH0(P5, IR∪p(3))

of cubics in P5 containing R and p. Over an open subset of P5 × Sn (i.e. the locus where
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p 6∈ R) the rank does not change and it is 11, and 5 respectively for d = 26 and 42. This in

turn implies that Hn,1 is unirational.

Proposition 4.2.11. The universal cubic fourfold Cn,1 → Cn is unirational.

Proof. Recall from Proposition 4.2.2 that the generic cubic fourfold in the divisors Cn has no

projective automorphism. Call V ⊂ Cn the dense locus where cubics have no automorphism.

It is straightforward to see - and we have already implicitly used this in Diagram 4.1 - that,

over V , the universal cubic has a natural quotient structure

Cn,1 = Un,1//PGL(6,C). (4.4)

Hence Cn,1 is the natural moduli space for couples (X, p), up to the action of PGL(6).

The upshot is that there exist a natural rational surjective forgetful map (up to PGL(6)-

action)

ϕR : Hn,1 → Cn,1; (4.5)

(X,R, p) 7→ (X, p); (4.6)

that forgets the scrolls contained in X. By Theorem 4.2.10, the variety Hn,1 is unirational,

and it dominates Cn,1, thus also Cn,1 is unirational.

Remark 4.2.12. Using the same method and a result of Di Tullio [107], one could prove

the unirationality of the universal family C14,1 over C14, the closure of the locus of cubic

fourfolds containing a smooth quartic scroll. In fact, shortly after our paper [10] came out,

Di Tullio [107] showed that the universal family F8,1 is rational. Recall that the isomorphism

2.1 holds for cubics in C14 and we have as well a birational map F8 99K C14. Nevertheless,

in the next Section we obtain the same result by different methods.

4.2.3 Method 2: unirationality through rational special surfaces

4.2.3.1 Special cubics in Cd in the range 8 ≤ d ≤ 38

The goal of this Section is to prove the unirationality of the non-empty families of

universal cubics Cd,1 for 8 ≤ d ≤ 38 by generalizing some results of Nuer, and using a
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celebrated result of Kollár [57]. Then, by applying inductively the same argument, we will

show that Cd,m - the universal cubic with m marked points - is also unirational in the same

range. Let us recall shortly the results we need.

Extending a result of Segre that holds only over Q, Kollár shows the following

Theorem 4.2.13. [57] Let k be a field and X ⊂ Pn+1 a smooth cubic hypersurface of

dimension n ≥ 2 over k. Then the following are equivalent:

1. X is unirational (over k);

2. X has a k-point.

We are going to use this in a relative setting. In order to do this we recall some notations

due to Nuer [87] (see §2.3.1). In [87], the author studies the birational geometry of the

divisors Cd, for 12 ≤ d ≤ 38, via rational surfaces contained in cubic fourfolds. Let Ud ⊂
(P2)p be the open subset parametrizing generic p-tuples of distinct points such that the

surface S obtained as the blow-up of P2 along the p points x1, . . . , xp and embed into P5 via

a linear system has certain invariants (see [87, Table 2]). We denote by Vd → Ud the vector

bundle such that the fiber over (x1, . . . , xp) is the space of global sections H0(IS|P5(3)).

Let us now denote by Xd,1 the universal cubic over P(Vd), and by πp+1 : (P2)p+1 → (P2)p

the forgetful map that forgets the last point. Now we can claim :

Theorem 4.2.14. The universal cubic fourfolds Cd,1 are unirational if 12 ≤ d ≤ 38.

Proof. By pulling back through π, we have the following commutative diagram.

π∗Xd,1 //

��

Xd,1

��

// Cd,1

��
P(π∗Vd)

��

// P(Vd)

��

// Cd

(P2)p+1

s

FF

π // Ud

(4.7)
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Actually the LHS column is only defined on π−1(Ud) but for simplicity we will not write

this. Working in the birational category, this does not affect our results.

We observe that the pulled-back family π∗Xd,1, seen as universal family over P(π∗Vd) has

a tautological rational section s, that is the image in S of the (p+ 1)th point from (P2)p+1.

This means that π∗Xd,1 has a rational point over the function field of (P2)p+1. By Kollár’s

Theorem π∗Xd,1 is then unirational over this field. π∗Xd,1 dominates Xd,1 and this in turn

dominates Cd,1, which is then unirational.

Remark 4.2.15. An easy adaptation of this argument allows us to show the unirationality

of C8,1 as well. Of course, all the planes in P5 are projectively equivalent, and the linear

system of cubics through a given 2-plane P is |IP/P5(3)| ∼= P45. The plane P has rational

points over C and the universal cubic X8,1 ⊂ P45×P5 contains the "constant" plane P45×P .
The variety X8,1 also dominates C8,1, by definition. Hence X8,1 has rational points over the

function field of P45 and hence is unirational over this field. By the same argument as in

Theorem 4.2.14, this implies the unirationality of C8,1.

4.2.3.2 Special cubics in C42

The unirationality of universal cubics C42,1 goes along the same lines as in the previous

section, but we need to extract a couple of quite subtle result from [93] about rational

surfaces contained in cubics belonging to this divisor.

In [93], the authors construct a 48-dimensional unirational family S̃9,2 of 5-nodal surfaces

of degree 9 and sectional genus 2, such that the divisor C42 can be described as the locus of

cubics containing surfaces from this family. Next, we reconstruct briefly their argument. A

detailed construction of such families is mentioned later on in § 4.4.1.5.

More precisely (see [93, Rmk. 4.3]) they construct a familyW of del Pezzo quintics with

some special intersection theoretical properties. The construction of such surfaces depend

on certain choices (points on P2, a line secant to a particular rational surface, etc.) which

all depend on free, rational parameters. This implies that the family W is unirational. By

construction, each del Pezzo quintic D ∈ W is contained in one smooth del Pezzo fivefold

Y5 ⊂ P8, that is an hyperplane section of the Grassmannian G(1, 4). The fivefold Y5 contains

a rational, 3-dimensional, family of planes, whose members all have class (2, 2) inside the

Chow ring CH•(G(1, 4)) of the Grassmannian. The projection with center any one of these
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planes defines a birational morphism between any del Pezzo quintic from W and some 5-

nodal S̃ ∈ S̃9,2. As observed in [93], this in turn implies that S̃9,2 is unirational. Let us

denote by S the rational parameter space that dominates S̃9,2. Other relevant work about

C42 has been done in [61] and [49].

Remark 4.2.16. We observe that the construction above implies that any S̃ ∈ S̃9,2 is

birational to a del Pezzo quintic over C(S), the function field of S. This means that on the

same field there exists a birational map P2 99K S̃, as we explain in the following Lemma.

Lemma 4.2.17. Let S̃ be any surface in S̃9,2, then S̃ is rational over the function field of

S.

Proof. As we have observed in Remark 4.2.16, S̃ is birational to a del Pezzo quintic, over

C(S). By a well-known result of Enriques [31], a del Pezzo quintic is rational over any

field.

Proposition 4.2.18. The universal cubic C42,1 is unirational.

Proof. Let us denote by P(V42) the relative linear system over S̃9,2 of cubics through S̃ ∈ S̃9,2,

and by X42,1 the universal family over P(V42), that dominates C42,1. Then the situation is

the following.

ρ∗π∗X42,1
//

��

π∗X42,1
//

��

X42,1

��

// C42,1

��
P(ρ∗π∗V42) //

��

P(π∗V42)

��

// P(V42)

��

ϕ // C42

P2 × S

s

AA

ρ // S π // S̃9,2

(4.8)

Here π : S → S̃9,2 is the unirational parametrization described above, ρ the second

projection and ϕ is the natural classifying map. Now, all cubics that are the fibers of the

fibration X42,1 → P(V42) contain by construction a surface S̃ ∈ S̃9,2, and since these surfaces
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are rational over C(S) (they are birational to del Pezzo quintics), they have rational points

over the same field. Summing up, there exists a section s : P2 × S → ρ∗π∗X42,1, that -

thanks to Kollár’s Theorem - makes ρ∗π∗X42,1 unirational over P2×S and hence implies the

unirationality of C42,1.

Remark 4.2.19. As the reader may observe, the universal cubic C44,1 is missing from our

description. Cubics in this divisor contain a Fano model of an Enriques surface [87, Thm.

3.2]. The divisor C44 is unirational, so in order to apply Kollár’s Theorem and show that

C44,1 is unirational, one should show that the generic Enriques surface has a rational point.

4.2.3.3 Unirationality of Cd,m

In this section we are going to use the inductivity of the construction of Cd,m - the moduli

space of cubic fourfolds in Cd with m marked points - and Kollár’s theorem in order to show

the unirationality of Cd,m for all m.

Recall in fact that Cd,m is just the universal cubic fourfold over Cd,m−1. This allows us

to use our machinery to prove inductively the following.

Theorem 4.2.20 (Theorem VI). The moduli spaces Cd,m are unirational for all m, if 8 ≤
d ≤ 42.

Proof. We will work inductively on m. For m = 0 (or respectively 1) the claim is true

thanks to [87] and [93] (or resp. Sections 4.2.3.1 and 4.2.3.2). We will denote by Sd the

unirational family of rational surfaces contained in cubics in Cd, P(Vd) → Sd the relative

ideal of cubic hypersurfaces through each surface and Xd,1 → P(Vd) the universal cubic over

the relative linear system. As seen in Theorem. 4.2.14 and Proposition 4.2.18, the variety

Xd,1 is unirational and dominates Cd,1 through the natural classifying map of the coarse

moduli space Cd,1. The situation is described by the following diagram:
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π∗Xd,1 // //

��

σ

''
Xd,1

��

// // Cd,1

��
P(π∗Vd)

��

// // P(Vd)

��

// // Cd

P2 × Ŝd
π //

s

FF

Sd

, (4.9)

where P2 × Ŝd is the appropriate rational space that assures the existence of the section s.

As seen in Theorems 4.2.14 and 4.2.18, this boils down to taking P2 × (P2)p for 8 ≤ d < 38,

and the rational parameter space P2 × S for d = 42.

We remark that s is the section that makes π∗Xd,1 unirational following Kollár’s The-

orem. Call σ the classifying map to Cd,1. Then, we can add one point and consider the

universal cubic Cd,2 → Cd,1, that fits in the following diagram

γ∗σ∗Cd,2 // //

��

τ

((
σ∗Cd,2

��

// // Cd,2

��
P2 × π∗Xd,1

s

KK

��

γ // // π∗Xd,1

����

σ // // Cd,1

P2 × Ŝd // Ŝd

, (4.10)

where γ is the second projection and σ the dominant map from Diagram 4.9. Recall

that π∗Xd,1 is unirational, and dominates Ŝd.
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We observe that, exactly as we have done in Diag 4.9 for Cd,1, since π∗Xd,1 dominates

Ŝd, we are able to define a natural rational section s : P2 × π∗Xd → γ∗σ∗Cd,2. Hence the

universal cubic has rational points over P2×π∗Xd,1 and this space is unirational. By Kollár’s

theorem and since γ∗σ∗Cd,2 dominates Cd,2, we get that Cd,2 is unirational.

Now it is straightforward to see how to continue the argument by induction; we just

draw the diagram for the following step for clarity. Recall that γ∗σ∗Cd,2 = τ∗Cd,2.

λ∗τ∗Cd,3 // //

��

ω

((
τ∗Cd,3

��

// // Cd,3

��
P2 × τ∗Cd,2

s

KK

��

λ // // τ∗Cd,2

����

τ // // Cd,2

P2 × Ŝd // Ŝd

(4.11)

4.2.4 Some results of non-unirationality.

In this section using some recent results about the Kodaira dimension of moduli spaces

of K3 surfaces and of Hassett divisors Cd, we show that for an infinite range of values of d,

the universal cubic fourfold over Cd can not be unirational. Let us first claim the following

straightforward Lemma, in which we need to assume that d is even.

Lemma 4.2.21. Suppose that the Kodaira dimension of F d+2
2

or of Cd is non-negative, then
the universal cubic fourfold Cd,1 is not unirational.

Proof. The universal cubic Cd,1 dominates Cd via the forgetful map, hence if Cd,1 was unira-

tional, then Cd would also be unirational and has negative Kodaira dimension. If F d+2
2

has

non-negative Kodaira dimension, then via the birational map of (2.1) also Cd has, and Cd
can not be unirational, as seen before.
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We will apply Lemma 4.2.21 to the propositions 2.3.5 and 2.3.6, due to Gritsenko-Hulek-

Sankaran [42] and Tanimoto-Várilly-Alvarado [103]. We obtain the following Proposition:

Proposition 4.2.22 (Proposition VII). The universal cubic fourfold Cd,1 is not unirational

if:

1. d > 80, d ≡ 2 (mod 6), 4 6 |d and such that for any odd prime p, p|d implies p ≡
1 (mod 3);

2. d = 6n+ 2, n > 13 and n 6= 15;

3. d = 6n for n > 16 and n 6= 18, 20, 22, 30.

4.3 Universal Gushel-Mukai fourfolds

4.3.1 Existence of universal families of GM fourfolds

Definition 4.3.1. By the universal Gushel-Mukai fourfold over (M4
GM )d we mean the mod-

uli space (M4
GM )d,1 of 1−pointed GM fourfolds.

The construction of these universal GM fourfolds over the coarse moduli space M4
GM

needs more justification. The following Proposition is a direct consequence of [28, Proposi-

tion 3.21].

Proposition 4.3.2. For a very general ordinary smooth Gushel-Mukai fourfold Y , the group

of automorphisms Aut(Y ) is trivial.

The upshot is the following:

Corollary 4.3.3. The universal family of ordinary Gushel-Mukai fourfolds exists over an

open subset of their coarse moduli space.

We recall, in this section, the explicit description of the divisor (M4
GM )20, corresponding

to GM fourfolds containing a rational surface of degree 9 and genus 2 (see Appendix C).

Then, using the unirationality of some moduli spaces of pointed K3 surfaces that appeared

in its geometric construction, we prove the unirationality of universal families of these GM

fourfolds.
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4.3.2 Unirationality of a family of universal GM fourfolds

In this section we will consider a codimension 1 locus inM4
GM , (M4

GM )20. Let us recall

shortly the geometric construction of a general fourfold belonging to this family (see [49, 93]).

There exists a birational map P4 // Y , defined by the linear system of hypersurfaces of

degree 9 having double points along U ⊂ P4, a degree 10 surface which is a projection of a

genus 11 K3 surface.

More precisely, we start from a K3 surface Z ⊂ P11 of degree 20 and sectional genus 11. We

take two points p, q ∈ Z, and perform first a triple projection from p to P5, then a simple

projection off q to P4. The image is the required surface U . With this in mind, one can

prove the following result:

Proposition 4.3.4 (Proposition VIII). The universal family (M4
GM )20,1 of 1-pointed GM-

fourfolds is unirational.

Proof. The philosophy is to do the above rationality construction in families. We need then

to consider the moduli space F11,2 of polarized K3 surface of genus 11 with two marked

points. The moduli space F11,3 comes equipped with an embedding inside a P11-bundle over

F11,2 and with two sections δ1, δ2 : F11,2 → F11,3. Performing a relative triple projection

from the image of δ1 and a simple one from the image of δ2 we obtain a P4-bundle P(E)

over F11,2 containing the family U of degree 10 surfaces.

F11,3 ⊂ P11 //

��

U ⊂ P(E)

��
F11,2

δ1

II

δ2

UU

F11,2

Since F11,2 is unirational [15, Theorem 0.1], the projective bundle P(E) is unirational. The

relative linear system of degree 9 hypersurfaces, with multiplicity two alongU gives a rational

dominant map between the P4-bundle P(E) and (M4
GM )20,1.

Remark 4.3.5. This implies obviously the unirationality of the actual divisor (M4
GM )20.
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4.3.2.1 A rational Noether-Lefschetz divisor of genus 11 K3 surfaces

In [49], Hoff and Staglianò also consider a codimension one subfamily of genus 11 K3

surfaces, that forms a Noether-Lefschetz divisor inside F11. This divisor seems particularly

interesting under our point of view, since the wealth of geometry going on here allows us

to strengthen our rationality results concerning the corresponding universal families of GM

fourfolds related to these K3 surfaces. But let us give a couple more details about these

surfaces.

We start from a smooth Fano threefold F of type X22 ⊂ P13. It is well known that

the generic tangent hyperplane sections of F are one-nodal (a double point) K3 surfaces

(see [80], [95]). The projection off the node of such a K3 surface gives a K3 surface in

P11, of degree 20 and sectional genus 11, containing a further conic (the exceptional divisor

over the node). In fact, such a construction gives a Noether-Lefschetz divisor inside the

19-dimensional moduli space of K3 surfaces of genus 11, and the intersection lattice of these

surfaces contains a sublattice of type 20 2

2 −2

 .

Before studying the universal family of GM fourfolds obtained from these special K3

surfaces, we need to show some results on the birational geometry of their Noether-Lefschetz

locus. We will denote by Vnodn the moduli space of n−pointed one nodal K3 surfaces of

sectional genus 12, obtained by cutting a X22-type 3fold with tangent hyperplanes as above.

The generic element of Vnodn is represented by a vector (F, p,H, q1, . . . , qn), where F is a

Fano threefold of type X22, p is a point of F , H is a hyperplane tangent to F in p, and

q1, . . . , qn are n points on the surface SH := F ∩H. We will also denote by X22 the (rational,

see [81]) moduli space of Fano threefolds of type X22. All these Fano threefolds are rational

and birational to each other, we will need to fix one X̃22 ∈ X22.

Theorem 4.3.6. The moduli space Vnodn is rational if n ≤ 9.

Proof. Let us consider the rational map
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ϕ : Vnodn → X22 × X̃n+1
22 (4.12)

(F, p,H, q1, . . . , qn) 7→ (F, p, q1, . . . , qn). (4.13)

Remark that X22 × X̃n+1
22 is rational (and of dimension 3n + 9) since it is the product

of rational varieties. Then, the fiber of ϕ over (F, p, q1, . . . , qn) is exactly the linear system

of hyperplanes in P13 that are tangent to F in p, and pass through q1, . . . , qn. This shows

that Vnodn is birational to a P9−n−projective bundle over X22 × X̃n+1
22 , and hence is rational

if n ≤ 9.

We recall that the projection off the node sends birationally Vnodn onto a (18 + 2n)-

dimensional Noether-Lefschetz locus inside F11,n. Let us denote by (M4
GM )nod20 , the moduli

space of GM fourfolds obtained from the Noether-Lefschetz K3 surfaces described above,

and by (M4
GM )nod20,1 the universal family above, obtained by restricting the construction of

Proposition 4.3.4. The moduli space (M4
GM )nod20 is of dimension 22, and is contained in

(M4
GM )20.

Corollary 4.3.7. The universal family (M4
GM )nod20,1 is rational. The moduli space (M4

GM )nod20

is rational.

Proof. The moduli space Vnod3 of nodal, 3-pointed K3 surfaces can be embedded in a P12-

bundle, and endowed with two sections δ1, δ2 : Vnod2 → Vnod3 , over Vnod2 . Since we are working

in the birational category, we can even consider (at least an open subset of) Vnod2 as contained

in F11,2. Now, we project fiberwise off the node, obtaining a family of Noether-Lefschetz

K3 surfaces in a P11-bundle, with two sections, over Vnod2 . Then, as we did in Proposition

4.3.4, we perform the two projections off the sections and we obtain a P4-bundle over Vnod2 ,

containing a family T of degree 10 surfaces. The moduli space Vnod2 is rational, hence

the P4-bundle is rational as well. Then, by applying the relative linear system of degree 9

hypersurfaces through T as in Proposition 4.3.4, we obtain a rational family of GM fourfolds

over Vnod2 , hence (M4
GM )nod20,1 is rational. By construction (M4

GM )nod20 is birational to Vnod2

and hence rational.
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4.4 Unified method for the unirationality of universal Fano

fourfolds

4.4.1 Explicit geometric descriptions of some Hassett divisors in the mod-

uli space C of cubic fourfolds and in the moduli space M4
GM of GM

fourfolds

In this section, we shall recall some explicit descriptions of unirational irreducible families

S in the Hilbert scheme of P5 (respectively in the Hilbert scheme of a fixed smooth del Pezzo

fivevold Y5 = G(1, 4) ∩ P8 ⊂ P8) such that the closure of the locus of cubic fourfolds (resp.,

GM fourfolds) containing a surface of the family S describes a Noether-Lefschetz divisor in

the corresponding moduli space. We shall focus on the fact that starting from a pair (S, X),

where S is a general member of the family S and X is a general fourfold containing S, we

can build an explicit birational map X
∼
99K P4, defined over the same field of definition as S

and X.

4.4.1.1 Cubic fourfolds containing a quintic del Pezzo surface

A quintic del Pezzo surface is the image of P2 via the linear system of cubic curves with

4 base points in general position. The cubic fourfolds containing a quintic del Pezzo surface

describe the divisor C14 ⊂ C (see §2.3.1).

Theorem 4.4.1 ([13, 21, 74]). A quintic del Pezzo surface S ⊂ P5 admits a congruence

of secant lines: through the general point of P5 there passes a unique secant line to S. The

general line of this congruence can be realized as the general fiber of the dominant map

µ : P5 99K P4

defined by the linear system |H0(IS(2))| of quadric hypersurfaces through S.

If X is a general cubic fourfold containing S, then the restriction of µ induces a birational

map µ|X : X
∼
99K P4.

4.4.1.2 Cubic fourfolds containing a 3-nodal septic scroll

Let S ⊂ P5 be the projection of a rational normal septic scroll Σ7 ⊂ P8 from a plane

spanned by three general points on the secant variety of Σ7. Thus S is a rational septic
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scroll having 3 non-normal nodes.

The family of rational 3-nodal septic scrolls, constructed as above, is irreducible, unirational

and of dimension 44. Cubic fourfolds containing such a surface describe the divisor C26 ⊂ C
(see [33]).

Theorem 4.4.2 ([92, 93]). S admits a congruence of 5-secant conics: through the general

point of P5 there passes a unique conic curve which is 5-secant to S. The general conic curve

of this congruence can be realized as the general fiber of the dominant map

µ : P5 99K P4

defined by the linear system |H0(I2
S(5))| of quintic hypersurfaces with double points along S.

If X is a general cubic fourfold containing S, then the restriction of µ induces a birational

map µ|X : X
∼
99K P4.

4.4.1.3 Cubic fourfolds containing a "generalized" Coble surface

Cubic fourfolds containing the "generalized" Coble surface S describe the divisor C38 ⊂
C (see §2.3.1). These surfaces form an irreducible unirational family S10,6 ⊂ HilbP5 of

dimension 47 (see [87]).

Theorem 4.4.3 ([91–93]). A general surface [S] ∈ S10,6 admits a congruence of 5-secant

conics: through the general point of P5 there passes a unique conic curves which is 5-secant

to S. The general conic curve of this congruence can be realized as the general fiber of the

dominant map

µ : P5 99K P4

defined by the linear system |H0(I2
S(5))| of quintic hypersurfaces with double points along S.

If X is a general cubic fourfold containing S, then the restriction of µ induces a birational

map µ|X : X
∼
99K P4

4.4.1.4 GM fourfolds of discriminant 10

4.4.1.4.1 τ-quadric surfaces A τ -quadric surface is a two-dimensional linear section of

a Schubert variety Σ1,1 ' G(1, 3) ⊂ G(1, 4) (see Appendix C). A standard parameter count

(see [26, Proposition 7.4]) shows that the closure insideM4
GM of the family of fourfolds con-

taining a τ -quadric surface forms the divisor (M4
GM )′10 ⊂M4

GM , one of the two irreducible



Chapter 4. Universal families of Fano fourfolds 99

components of the Noether-Lefschetz locus inM4
GM parametrizing fourfolds of discriminant

10. In particular, since the family of τ -quadric surfaces in G(1, 4) is unirational, we deduce

that the divisor (M4
GM )′10 is also unirational.

Theorem 4.4.4 ([26]; see also [49]). The projection of a general fourfold [X] ∈ (M4
GM )′10

containing a τ -quadric surface S, from the linear span 〈S〉 ' P3 of S, gives a birational map

X 99K P4.

4.4.1.4.2 Quintic del Pezzo surfaces A quintic del Pezzo surface can be realized as

a two-dimensional linear section of G(1, 4) (see Appendix C). A standard parameter count

(see [26, Proposition 7.7], and also [101]) shows that the closure insideM4
GM of the family

of fourfolds containing a quintic del Pezzo surface forms the divisor (M4
GM )

′′
10 ⊂ M4

GM ;

one of the two irreducible components of the Noether-Lefschetz locus in M of fourfolds of

discriminant 10. In particular, since the family of quintic del Pezzo surfaces in G(1, 4) is

unirational, we deduce that the divisor (M4
GM )

′′
10 is also unirational.

Theorem 4.4.5 ([90]; see also [26, 31, 98]). The projection of a general fourfold [X] ∈
(M4

GM )
′′
10 containing a quintic del Pezzo surface S, from the linear span 〈S〉 ' P5 of S,

induces a dominant map X 99K P2 whose generic fiber is a quintic del Pezzo surface. (In

particular, X is rational. Indeed as mentioned before, from a classic result of Enriques, a

quintic del Pezzo surface defined over an infinite field K is rational over K.)

4.4.1.5 GM fourfolds of discriminant 20

Throughout this subsection, we continue to let Y5 ⊂ P8 denote a fixed del Pezzo fivefold.

Recall first two well-known ways to parametrize Y5 over its field of definition.

1. If P ⊂ Y5 is a plane in Y5 with class σ2,2 in G(1, 4), then the projection of Y5 from

P gives a birational map Y5 99K P5, whose inverse is defined by the linear system of

quadrics through a rational normal cubic scroll Σ3 ⊂ P4 ⊂ P5.

2. If C ⊂ Y5 is a conic such that its linear span P is not contained in Y5, then the

projection of Y5 from P gives a birational map Y5 99K P5, whose inverse is defined by

the linear system of cubics through a rational quartic scroll Θ4 ⊂ P5, obtained as a

general projection of a rational normal threefold scroll in P6.
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Let S9,2 ⊂ HilbY5 be the 25-dimensional unirational family of smooth rational surfaces

of degree 9 and genus 2. having class 6σ3,1 + 3σ2,2 in the Chow ring of G(1, 4). Let T ⊂ P6

be the image of the plane via the linear system of quartic curves having 8 general base points

p1, . . . , p8. Thus T is a smooth rational surface of degree 8 and sectional genus 3 cut out by

7 quadrics. These 7 quadrics define a special Cremona transformation

ϕ : P6 99K P6

of type (2, 4), which has been classically studied in [96] (see also [50]).

Let us recall a bit of geometry from the papers [50, 96]. The pencil of plane cubics

through the 8 base points p1, . . . , p8 yields a pencil of elliptic normal quartic curves on T

passing through a special point q ∈ T , and the union of the linear spans of these curves

gives a cone of vertex q over a Segre threefold P1 × P2 ⊂ P5. Let H ' P5 ⊂ P6 be a general

hyperplane in P6. The restriction of ϕ to H gives a birational map

ϕ|H : P5 99K Z ⊂ P6

onto a quartic hypersurface Z ⊂ P6, whose base locus, that is the intersection of T with

the hyperplane H, is an octic curve C ⊂ P5 of arithmetic genus 3 contained in a Segre

threefold Σ ' P1 × P2 ⊂ P5. The image ϕ(Σ) is a smooth quadric surface Q ⊂ Z ⊂ P6

(which is double as a component of the base locus of the inverse of ϕ|H). The pullback via

the restriction ϕ|H of a line in one of the two pencils of lines on Q is a P2 of the ruling of Σ,

while the pullback of a general line in the other pencil of lines on Q is a smooth quintic del

Pezzo surface containing C. In particular, the curve C is the base locus of a pencil {Dλ}λ
of quintic del Pezzo surfaces contained in Σ and whose general member is smooth.

Everything we have said about C continues to hold true even if we take the hyperplane

H ⊂ P6 to be general among the hyperplanes containing a general tangent plane to T . But

in this case (and only in this case), the curve C has a node and it can be embedded in a

rational quartic scroll Θ4 ⊂ P5 as the one considered above. Indeed, such a nodal curve C

can be realized as a nodal projection of a smooth curve of degree 8 and genus 2 contained in

a smooth rational normal quartic scroll threefold in P6; see [93, Section 4] for more details

on this last step. Then the birational map P5 99K Y5 ⊂ P8 defined by the linear system

of cubics through Θ4 induces an isomorphism between a general quintic del Pezzo surface
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of the pencil {Dλ}λ with a smooth rational surface S ⊂ Y5 ⊂ P8 of degree 9 and sectional

genus 2, cut out by 19 quadrics, and having class 6σ3,1 + 3σ2,2 in G(1, 4).

Theorem 4.4.6 ([93]). The surfaces S ⊂ Y5 of degree 9 and sectional genus 2 form an

irreducible unirational family S9,2 ⊂ HilbY5 .

The closure of the family of quadric hypersurfaces in Y5 containing a surface of the family

S9,2, after passing to the quotient modulo PGL(9,C), describes the divisor (M4
GM )20 ⊂

M4
GM , the irreducible component of the Noether-Lefschetz locus in M4

GM of fourfolds of

discriminant 20.

These GM fourfolds were actually already mentioned in the previous section.

Theorem 4.4.7 ([49]). Let S ⊂ Y5 be a surface corresponding to a general member of the

family S9,2. Then S admits inside Y5 a congruence of 3-secant conic curves, that is, through

the general point of Y5 there passes a unique conic which is 3-secant to S and is contained

in Y5. The general conic curve of this congruence can be realized as the general fiber of the

dominant map

µ : Y5 99K P4

defined by the linear system |H0(I2
S,Y5(5))| of quintic hypersurfaces in Y5 with double points

along S.

If X is a general quadric hypersurface in Y5 containing S, then the restriction of µ

induces a birational map µ|X : X
'
99K P4.

4.4.1.6 Cubic fourfolds of discriminant 42

The 25-dimensional family S9,2 ⊂ HilbY5 considered in the previous subsection and the

3-dimensional family of planes in Y5 with class σ2,2 can be combined together to get a family

of surfaces in P5 of dimension 48 = 25 + 3−dim Aut(Y5) + dim Aut(P5). Indeed, let S ⊂ Y5

be a surface corresponding to a general member of the family S9,2, and let P ⊂ Y5 be a

general plane with class σ2,2 in G(1, 4). Then the projection of S from P gives a rational

surface S̃ ⊂ P5 of degree 9 and sectional genus 2, cut out by 9 cubics and having 5 non-

normal nodes. Let us denote by S̃9,2 ⊂ HilbP5 the (closure of the) family of surfaces S̃

obtained as above.
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Theorem 4.4.8 ([93]). The family S̃9,2 ⊂ HilbP5 is irreducible and unirational of dimen-

sion 48. The cubic fourfolds containing a surface of the family S̃9,2 describe the divisor

C42 ⊂ C.

Theorem 4.4.9 ([93]). Let S̃ ⊂ P5 be a surface corresponding to a general member of the

family S̃9,2. Then S̃ admits a congruence of 8-secant twisted cubic curves, that is, through

the general point of P5 there passes a unique twisted cubic which is 8-secant to S̃.

The general cubic curve of this congruence can be realized as the general fiber of the

dominant map

µ : P5 99KW ⊂ P7

onto a smooth del Pezzo fourfoldW = G(1, 4)∩P7, defined by the linear system |H0(I3
S̃,P5

(8))|
of octic hypersurfaces with triple points along S̃.

If X is a general cubic fourfold containing S̃, then the restriction of µ induces a birational

map µ|X : X
'
99KW .

Remark 4.4.10. It follows from well-known classic results that a del Pezzo fourfold W =

G(1, 4) ∩ P7 defined over an infinite field K is rational over K.

4.4.2 Unirationality of moduli spaces of m−pointed fourfolds

The goal of this Section is to prove the following result.

Theorem 4.4.11 (Theorem IX). The moduli spaces of m−pointed fourfolds over the fol-

lowing moduli loci are unirational:

1. C14: cubic fourfolds containing a quintic del Pezzo surface (§ 4.4.1.1);

2. C26: cubic fourfolds containing a 3-nodal septic scroll (§ 4.4.1.2);

3. C38: cubic fourfolds containing a generalized Coble surface (§ 4.4.1.3);

4. C42: cubic fourfolds containing a 5-nodal rational surface of degree 9 and sectional

genus 2 (§ 4.4.1.6);

5. (M4
GM )′10: GM fourfolds containing a τ -quadric surface (§ 4.4.1.4.1);

6. (M4
GM )

′′
10: GM fourfolds containing a quintic del Pezzo surface (§ 4.4.1.4.2);
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7. (M4
GM )20: GM fourfolds containing a smooth rational surface of degree 9 and sectional

genus 2 (§ 4.4.1.5);

Remark 4.4.12. Recall that we denoted by U ⊂ H0(OP5(3)) (respectively, V ⊂ H0(OY5(2)))

the open set parametrizing smooth cubic hypersurface in P5 (respectively, smooth quadric

hypersurfaces in Y5). If S is a family of surfaces in the the Hilbert scheme HilbP5 of P5

(respectively, in the Hilbert scheme HilbY5 of Y5), then we denote by XS the closure inside

U (respectively, inside V) of the family of fourfolds that contain some surface [S] ∈ S, and
we let X̃S = XS//Aut(P5) ⊆ C (respectively, X̃S = XS//Aut(Y5) ⊆M4

GM ). We observe that

the families of fourfolds described in § 4.4.1 (and object of Theorem 4.4.11) all share the

following properties:

1. S is irreducible and unirational; so that the same holds true for the corresponding

family XS , and hence for X̃S .

2. If (S, X) is a couple where S is a general member of the family S and X is a general

fourfold containing S, then we are able to build, starting from the pair (S, X), an

explicit birational map ψ(S,X) : P4 ∼
99K X, defined over the same field of definition as

S and X.

Remark 4.4.13. The family XS carries the universal 1-pointed fourfold XS,1 → XS . And

inductively one can define a tower of maps

· · · → XS,m → XS,m−1 → · · · → XS,1 → XS .

By quotienting out by the automorphisms of P5 or Y5, we can give straight away the

following definition.

Definition 4.4.14. We will denote by X̃S,m the moduli space of m−pointed (cubic or GM)

fourfolds. It is the quotient by the respective group of automorphisms of the family XS,m.

Of course there are forgetful maps

X̃S,m
πm→ X̃S,m−1

πm−1→ X̃S,m−2 → · · · ,

with evident meaning.



Chapter 4. Universal families of Fano fourfolds 104

Proof of Theorem 4.4.11. Let us consider the unirational family S of surfaces inside P5

(resp., Y5). Over the function field of S, we can write the equations of the surface S ∈ S, and
notably describe their ideal. Call n the dimension of H0(P5, IS(3)) (resp., H0(Y5, IS(2))).

This is generically constant over S. This means that the Hilbert scheme of couples (S, X),

where X is a fourfold containing the surface S ∈ S, is birational to a Pn−1−bundle over S,
and hence unirational. Let us denote it by P(S,X). This sits naturally inside the product

S × X , where X is the moduli space of cubic (resp., GM) fourfolds, and has two natural

projections to the two components.

Now we observe that, by definition, over P(S,X) there is a natural double universal family.

That is: since P(S,X) parametrizes the couples (S, X), then on one side we have the universal

family S1 of 1-pointed surfaces - that is the universal family of surfaces over S, pulled-back
to P(S,X), on the other we have the universal family XS,1 of 1-pointed cubic (resp., GM)

fourfolds with the forgetful map XS,1
π−→ P(S,X). By definition there is a fiberwise inclusion:

S1
� � //

""

XS,1

{{
P(S,X)

Now, by assumption (2) of our working hypotheses at the beginning of this section, we

have that - over P(S,X) - we can define a relative linear system on XS,1 (with base locus

supported on S1) that defines a birational map from XS,1 to a P4-bundle over P(S,X), that

we denote P4
P(S,X)

. Now P4
P(S,X)

is rational over P(S,X) and P(S,X) is unirational, hence the

universal family XS,1 is unirational, since it is birational to P4
P(S,X)

.

Exactly as one does for XS,1, we can construct a universal cubic (resp., GM) fourfold

over XS,1, just by taking the pull-back π∗XS,1 over XS,1. We denote by XS,2 this family,

and we observe that it tautologically contains π∗S1, as the following diagram follows.

π∗S1
� � //

��

XS,2 = π∗XS,1

��
S1
� � // XS,1

Thus XS,2 has the same property (2) as XS,1 and one can define a relative linear system

defining the birationality between XS,2 and a P4-bundle over XS,1 - that we denote by P4
XS,1 .
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By the same argument as above, since XS,1 is unirational, XS,2 is unirational as well. Then,

inductively, the same argument shows the unirationality of the universal families XS,m, for
all m.

Now the natural classifying maps, given by the quotient by the automorphisms groups,

make the following diagram commute.

π∗S1
� � //

��

XS,2 = π∗XS,1

∼

  

//Aut //

��

X̃S,2

��

P4
XS,1

xx

==

S1
� � //

����

XS,1

π

��

∼

  

//Aut // X̃S,1

��

P4
P(S,X)

xx

==

S P(S,X)
oo //Aut // X̃S

It is then clear that also the corresponding moduli space X̃S,m, corresponding to the

families XS,m are unirational.

To conclude the proof we observe that, thanks to the properties (1) and (2), we can

plug any one of the seven loci mentioned in the claim inside this construction, and get the

result.

Remark 4.4.15. Several other special families of cubic (resp., GM) fourfolds verify the hy-

potheses required in this section. We nevertheless decided to concentrate on certain particular

descriptions of codimension one loci.

In fact we did not only choose some codimension 1 loci, but we also chose a particular

description of them. For example, for cubic fourfolds in C14 we could have chosen quartic

scrolls as surfaces defining the divisor. We remark however that in that case our argument
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would not have worked since the quartic scroll defines a birational map to a 4-dimensional

quadric, and a quadric bundle is not automatically rational over its base.
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Appendix A

K3 Surfaces

We mention here some facts about K3 surfaces. For more details see [16, 51].

A.1 Basic facts on K3 surfaces

Definition A.1.1. A K3 surface is a smooth compact complex surface S such that

Ω2
S
∼= OS and H1(S,OS) = 0.

Every complex K3 surface is Kähler [100] and the existence of Kähler metric implies

that the Hodge decomposition holds on its cohomology group:

Hn(X,C) := Hn(X,Z)
⊗
Z

C ∼=
⊕
p+q=n

Hp,q(X),

such that

Hp,q(X) = Hq,p(X).

The Hodge diamond of a K3 surface S is the following

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h2,1 h1,2

h2,2

1
0 0

1 20 1
0 0

1

with hp,q(S) := dimHq(S,Ωp
S).
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As one can see the most interesting behaviour happens in the middle cohomology cor-

responding to H2(X,Z). This group with the cup-product pairing:

H2(X,Z)×H2(X,Z) −→ Z

forms a lattice of rank 22.

Proposition A.1.2. For a complex K3 surface S,

H2(S,Z) ∼= U
⊕

3
⊕
E

⊕
2

8 (−1)

with E8 the rank 8 lattice associated to the corresponding Dynkin diagram and U the hyper-

bolic plane.

Theorem A.1.3. (Torelli Theorem [69]) Let S and S′ be two complex K3 surfaces, then

S and S′ are biholomorphic if and only if H2(S,Z) and H2(S′,Z) are Hodge isometric i.e

there is a lattice isometry H2(S,Z)
∼−→ H2(S′,Z) such that its complexification H2(S,C) −→

H2(S′,C) preserves the Hodge decomposition.

There is two important sublattices of H2(S,Z). The first one is associated to the Néron-

Severi group NS(S). In fact, the Lefschetz theorem on (1,1)-classes yields an isomorphism

Pic(S) ∼= NS(S) := H1,1(S) ∩H2(S,Z)

Hence the rank of the Néron-Severi groupNS(S) called the Picard number ρ(S) = rk(NS(S))

is in between 1 and 20. The second sublattice that occurs also frequently is the transcenden-

tal lattice T (S) corresponding to the smallest sublattice of H2(S,Z) whose complexification

contains a generator σ of H2,0(S).

A.1.1 Polarized K3 surfaces

Definition A.1.4. A polarized K3 surface of degree d is a pair [S,H] where S is a K3

surface and H −→ S an ample primitive line bundle with H.H = d.

The geometry of these classes of K3 surfaces was studied in [18, 72]. Let Fg be the 19-

dimensional quasi-projective (coarse) moduli space of polarized K3 surfaces of genus g (or

degree d = 2g − 2) parametrizing pairs [S,H], where S is a K3 surface and H ∈ Pic(S) is

the polarization with H2 = d (see [14, 16, 44]). In the celebrated series of papers [76–79, 82],
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Mukai described the construction of general polarized K3 surfaces of genus g ≤ 11 as well

as g = 13, 16, 18, 20. In particular for those values, Fg is unirational. In addition, using

the rational map 2.1, Nuer [87] proved that F8, F14 and F20 are unirational based on the

unirationality of C14, C26 and C38. Moreover, Farkas and Verra [34, 35] proved that F14 and

F22 are unirational based on the unirationality of the universal K3 surfaces F14,1 and F22,1

(see next section). Fg in turn are known to be of general type for g > 122 by groundbreaking

work of Gritsenko, Hulek and Sankaran [42] (see also [41, 110]).

A.2 Universal families of K3 surfaces

Universal families over K3 surfaces are well studied and several results about these

objects have appeared recently in [34], [35], [15] and [70]. In the following, we mention some

facts about the birational geometry of certain universal families of K3 surfaces.

Recall that for a generic K3 surface of Fg that has no automorphism, universal families

exist:

fg : Fg,1 → Fg,

at least over an open subset of each moduli space. This is enough while working in birational

category. This has allowed the study of F14,1 and F22,1 by Farkas-Verra as mentioned before.

They considered universal K3 surface as moduli spaces for couples (X,R), whereX is a cubic

fourfold, and R is a scroll - belonging to a given class of surfaces - contained in X.

Proposition A.2.1. [34, 35, 107] The universal K3 surfaces F14,1
1 and F22,1 are unira-

tional.

Recently, Ma [70] studied certain Fg,n, the moduli space of n−pointed K3 surfaces of

genus g and their Kodaira dimension. Many results were made on the (uni)rationality of

these moduli spaces. Though probably already known to the specialists, the following result

does not seem to have appeared elsewhere, and is original.

Proposition A.2.2. The moduli space F11,7 is unirational.

Proof. By [15, Theorem 0.4], we have that F11,7 is birational to a Z
⊕

2
2 −quotient ofM9,9,

the moduli space of curves of genus 9 with 9−marked points. SinceM9,9 is unirational (see
1The universal K3 surface F14,1 is actually rational.
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[33, Proposition 5.7]), the quotient M9,9/Z
⊕

2
2 is unirational as well. Therefore, F11,7 is

unirational.

A.3 Some other surfaces

We define in this Section certain other surfaces that appeared frequently in the previous

chapters.

A.3.1 Scrolls

Definition A.3.1. A scroll is a ruled surface embedded in a projective space such that the

fibers of the ruling are straight lines.

To describe rational normal scrolls, an important family of scrolls, let us define the

rational normal curve of certain degree d in Pd, which is the image of the Veronese map of

degree d given by:

vd : P1 −→ Pd

[x : y] 7−→ [xd : xd−1y : ... : xyd−1 : yd].

To build a rational normal scroll Ra,b in Pa+b+1, we choose two complementary linear

spaces of dimension a and b, and in each we put a rational normal curve, the image of the

line under va and vb respectively. The surface Ra,b is constructed by taking the union of all

of the lines joining va(p) to vb(p) as p varies in P1.

Remark A.3.2. For 1 ≤ a ≤ b, Ra,b is actually isomorphic to the Hirzebruch surface Fn,

for n = b− a, and of degree a+ b.

A.3.2 Del Pezzo surfaces

Definition A.3.3. A del Pezzo surface is a complete (non-singular) surface with ample

anticanonical bundle. Its degree d is the self intersection number (K,K) of its canonical

class K.

The possible degrees run between d = 1 and d = 9. Topologically, del Pezzo surfaces

are determined by their degree except for d = 8. If d is different from 8, then a del Pezzo

surface of degree d, is a generic blow up of the complex projective plane P2 in 9− d points
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in general positions i.e no 3 points lie on a line, no 6 points lie on a conic, and no 8 points

lie on a singular cubic, with one of the points at the singularity. But if d = 8, there are 2

isomorphism types; one is a Hirzebruch surface given by the blow up of the projective plane

at one point; and the other is the product of two projective lines P1 × P1, which is the only

del Pezzo surface that cannot be obtained by starting with the projective plane and blowing

up points.
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Appendix B

Chow motives of cubic fourfolds and

K3 surfaces

Here we collect some facts and known results on the Chow groups and motives of K3

surfaces and cubic fourfolds. We also include some remarks on the notion of finite dimen-

sionality of motives in the sense of Kimura and O’Sullivan (see [20, 84, 89]).

B.1 Introduction to the theory of motives

The theory of motives was created by Grothendieck in the 1960’s. This comes from

the intent to create a “universal cohomology theory” for several already known cohomol-

ogy theories such as Betti cohomology, de Rham cohomology, étale cohomology, cristalline

cohomology... Indeed, these cohomology theories are examples of what is called Weil coho-

mology theory with cohomology functor from the category SmProjC of smooth projective

varieties over C to the category GrV ectK of graded K−vector spaces, for some field K of

characteristic zero:

SmProj/C −→ GrV ectK .

The idea behind the theory of motives is that all Weil cohomology theories should factor

through a “category of motives”, i.e. any Weil cohomology theory can be expressed as the
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following composition of functors:

SmProj/C GrV ectK

M∼(C)

cohomology

H∗

whereM∼(C) is the category of motives over C and H∗ is called a realization functor. One

can get then the different Weil cohomology theories via different realization functors from

M∼(C) to GrV ectK .

B.2 Basic notions of Chow motives

Let Zi(X) be the group of algebraic cycles of codimension i on a variety X which is

the free abelian group generated by irreducible closed subvarieties of codimension i in X.

Two cycles z1 and z2 in Zi(X) are rationally equivalent if there exists an algebraic cycle

z ∈ Zi(X×P1) and a, b ∈ P1 such that z1 is the fiber of z over a and z2 is the fiber of z over

b. The Chow group of cycles of codimension i on X, CH i(X), is Zi(X) modulo rational

equivalence.

When working with rational coefficients instead of integral coefficients, we add the subscript

Q to our objects.

Definition B.1. A correspondence from X of dim d to another variety Y is a cycle in

the product X × Y . We will denote:

Corri(X,Y ) := CHd+i(X × Y )Q

Definition B.2. The category of Chow motives Mrat(C) consists of triples (X, p,m)

with X is smooth projective variety over C, p ∈ Corr0
rat(X,X) is a projector and m an

integer. The morphisms are as follows:

HomMrat((X, p,m), (Y, q, n)) = q ◦ Corrn−mrat (X,Y ) ◦ p

The composition is the composition of correspondences and Mrat(C) is an additive,

pseudo-abelian and rigid category.
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We have a contravariant functor that sends a smooth projective variety X to its motive

h(X) as follows:

h : SmProj/C →Mrat(C)

X 7→ h(X) = (X,∆X , 0)

f : X → Y 7→ h(f) = ΓTf : h(Y )→ h(X),

with ∆X the diagonal embedding X ↪→ X ×X and ΓTf is the transpose of the graph of f .

We define the standard motives: the unit motive which is the motive of a point 1 =

h(point) := (Spec(C), id, 0) and the Lefschetz motive L := (P1,P1×point, 0) ' (Spec(C), id,−1).

B.3 Chow-Künneth decomposition of motives

We say that the motive of a smooth projective varietyX of dimension d, h(X) ∈Mrat(C)

has a Chow-Künneth decomposition if there exist orthogonal projectors πi = πi(X) ∈
Corr0

rat(X,X) for 0 ≤ i ≤ 2d such that π0 + ... + π2d = ∆X and there is a direct

sum decomposition

h(X) =
⊕

0≤i≤2d hi(X)

where hi(X) = (X,πi, 0), such that for any 0 ≤ i ≤ 2d, we have H∗(hi(X)) = H i(X).

We recall here a result of [20] on the existence of a Chow-Künneth decomposition for

the motive of a cubic fourfold X ⊂ P5. Namely we have

Proposition B.2. For a cubic fourfold X,

h(X) = 1⊕ L⊕ (L2)
⊕ρ2(X) ⊕ t(X)⊕ L3 ⊕ L4, (B.1)

where ρ2(X) = rkCH2(X) ≡ rankH2,2(X,Q), with CH2(X) ⊂ H4(X,Z), and t(X) is

the transcendental motive of X, i.e. H∗(t(X)) = H4(t(X)) = T (X)Q, with T (X) the

transcendental lattice of X.

Moreover, for X ∈ Cd, Bülles [22] shows that for certain values of d, there exists a K3

surface S such that

t(X) ' t2(S)(−1). (B.2)
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Here t2(S) is the transcendental motive of S , i.e.

h(S) = 1⊕ L⊕ρ(S) ⊕ t2(S)⊕ L2,

where ρ(S) is the Picard rank of the Néron-Severi groupNS(S) andH∗(t2(S)) = H2(t2(S)) =

T (S)Q.

More precisely, the isomorphism (B.2) holds whenever d satisfies the following numerical

condition

(5∗) ∃f, g ∈ Z with g|(2n2 + 2n+ 2) n ∈ N and d = f2g.

Note that an isomorphism t(X) ' t2(S)(−1) can never hold if X is not special, i.e. if

ρ2(X) = 1, see [20, Prop.3.4].

Remark B.3.1. The condition (5∗) (hence the isomorphism B.2) is likely to be necessary

but not sufficient for the rationality of cubics in the divisors Cd (see § 2.4).

B.4 Finite dimensional motives

Kimura [56] and O’Sullivan [88] introduced the notion of finite dimentionality in the

context of motives.

Let Σn be the symmetric group of order n. For an object M = h(X) in the category of

Chow motives, we denote by
∧nM the nth−exterior power of M which is the image of the

following projector:

1
n!Σσ∈Σnsign(σ)[Γσ] : M

⊗
n −→M

⊗
n,

where Γσ is the natural endomorphism induced by σ on M
⊗
n.

Similarly, SnM the nth−symmetric power is defined as the image of the projector

1
n!Σσ∈Σn [Γσ].

A motive M is evenly (respectively oddly) finite-dimensional if there exists an n ∈ N∗ such

that
∧nM = 0 (respectively SnM = 0), its dimension is then defined as the maximal

number n for which
∧nM 6= 0 (respectively SnM 6= 0).

M is finite-dimensional if it can be decomposed into direct sumM+
⊕
M−, withM+ evenly

finite dimensional and M− oddly finite dimensional. In this case, dim(M) = dim(M+) +

dim(M−).
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Remark B.4.1. The unit motive 1 is evenly finite dimensional with dim 1 = 1, since∧2
1 = (Spec(C)×Spec(C), id− id, 0) = 0. This is the case also for the Lefschetz motive L

as well, for the same reason.

Conjecture (Kimura and O’Sullivan): All motives should be finite dimensional.

All known examples of finite-dimensional motives belong toMAb
rat(C), the category gen-

erated by the motives of abelian varieties ([108]). The following classes of smooth projective

varieties are known to have motives belonging toMAb
rat(C):

1. projective spaces, Grassmannian varieties, projective homogeneous varieties, toric va-

rieties ;

2. smooth projective curves ;

3. Kummer K3 surfaces ;

4. Hilbert schemes of points on abelian surfaces;

5. Fermat hypersurfaces ;

6. Cubic 3-folds and their Fano surfaces of lines, see [38] and [30].

In addition, finite dimensionality of the motives of certain K3 surfaces has been addressed

in [89] as follows

Theorem A.3. Let S be a smooth complex projective K3 surface with ρ(S) = 19, 20.

Then the motive h(S) ∈Mrat(C) is finite dimensional and lies in the subcategoryMAb
rat(C).
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Appendix C

Gushel-Mukai fourfolds

C.1 Generalities on GM fourfolds

A Gushel-Mukai fourfold (or GM fourfold for short) Y is a prime Fano fourfold of

degree 10 and index 2 with Pic(Y ) = ZH for an ample divisor H such that H4 = 10 and

KY
∼= −2H. By a result of Mukai [80] (extending to all dimensions a result of Gushel proved

in [43] only for dimension 3), a GM fourfold Y can be embedded in P8 as a complex smooth

dimensionally tranverse intersection of a cone in P10 over the Grassmannian G(1, 4) ⊂ P9

with a linear space W isomorphic to P8 and a quadric hypersurface Q. GM fourfolds are

isomorphic:

1. either to a quadric section of a linear section of G(1, 4) ⊂ P9 (this is the case when W

does not contain the vertex of the cone over the Grassmannian G(1, 4)). These GM

fourfolds are called ordinary GM foufolds.

2. or otherwise to a double cover of a linear section of G(1, 4) branched along a quadric

section (called Gushel-type fourfolds).

The moduli space of GM fourfolds, obtained as a GIT quotient, has dimension 24 and

is denoted by M4
GM . The locus of Gushel-type fourfolds is an irreducible closed subset of

codimension 2 inM4
GM (see [26], [29, Theorem 5.15] or [27]).
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C.2 Hodge-special GM fourfolds

Let ρ :M4
GM −→ D be the period map from the moduli space onto the 20− dimensional

quasi-projective period domain D. Each GM fourfold Y determines a period point ρ(Y ) ∈ D.
The map ρ is dominant with smooth fibers of dimension 4 (see [26] or [27]).

The Hodge diamond of Y is as follows (see [55, Lemma 4.1]):

1

0 0

0 1 0

0 0 0 0

0 1 22 1 0

0 0 0 0

0 1 0

0 0

1

In order to focus on the middle cohomology of Y , containing the most nontrivial Hodge

theoretic information, we define a positive definite lattice A(Y ) = H2,2(Y ) ∩ H4(Y,Z) ⊇
A(G(1, 4)) containing the rank 2 lattice Γ2 := H4(G(1, 4),Z)|Y defined as follows

σ1,1|Y σ2|Y − σ1,1|Y

σ1,1|Y 2 0

σ2|Y − σ1,1|Y 0 2

Note that the Schubert cycles σ1,1 and σ2 form a basis for Γ2 (see [40]).

Recall that Y is said to be Hodge-special if it contains a surface whose cohomology class

does not come from the tautological classes of the Grassmannian G(1, 4). Equivalently, Y

is Hodge-special if the rank of A(Y ) is at least 3.

Definition C.2.1. One can associate to a very general Hodge-special Gushel-Mukai fourfold

a labelling of discriminant d which is a primitive positive-definite rank 3 sublattice Kd ⊂
H4(Y,Z) containing the rank 2 lattice Γ2 and the smooth surface S such that [S] /∈ A(G(1, 4))

with the following intersection matrix of determinant d:
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
2 0 b

0 2 a− b
b a− b S2

Y


in the basis (σ1,1|Y , σ2|Y − σ1,1|Y , [S]) where [S] = aσ3,1 + bσ2,2 in terms of Schubert cycles

in G(1, 4) for some integers a and b (see [49], [101] for more details).

These special fourfolds are parametrized by a countable union of hypersurfaces (M4
GM )d ∈

M4
GM labelled by the integers d ≡ 0, 2 or 4 (mod 8) (see [26, Lemma 6.1]). The hypersurface

(M4
GM )d is irreducible if d ≡ 0 (mod 4) and has two irreducible components (M4

GM )′d and

(M4
GM )′′d if d ≡ 2 (mod 8) (see [26, Corollary 6.3]). The same holds true for the hypersurfaces

ρ((M4
GM )d) = Dd ⊂ D.

C.2.1 Examples of families of GM fourfolds

In [26, Sect. 7] and [49] several families of fourfolds inM4
GM were studied and explicit

descriptions of the general member of these families were given. More recently, Staglianò

[101], inspired by the work of Nuer [87], gives an explicit description of the first irreducible

components of the Noether-Lefschetz locus in terms of classes of rational smooth surfaces

that the fourfolds have to contain. They are described as the closure in M4
GM of fami-

lies of fourfolds containing certain rational surfaces that can be embedded in a smooth del

Pezzo fivefold. We regroup next certain families of GM fourfolds that are considered in this

manuscript.
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Surface S ⊂ Y5 class in G(1, 4)

Codim

in

M4
GM

(M4
GM )d in

M4
GM

Intersection matrix of Kd in the

basis < σ1,1, σ2 − σ1,1, [S] >

τ−quadric
surface σ3,1 + σ2,2 1 (M4

GM )′10


2 0 1

0 2 0

1 0 3



Quintic del Pezzo

surface 3σ3,1 + 2σ2,2 1 (M4
GM )′′10


2 0 2

0 2 1

2 1 5



Rational surface of

degree 9 and genus

2

6σ3,1 + 3σ2,2 1 (M4
GM )20


2 0 3

0 2 3

3 3 14


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Notation

X a cubic fourfold in P5

U ⊂ P55 the Zariski open parametrizing smooth cubic hypersurfaces in P5

C the moduli space of cubic fourfolds

Ωp
X the sheaf of p−forms on X

Hq(X,Ωp
X) the cohomology group of Ωp

X

hp,q = dim Hq(X,Ωp
X) the Hodge number

h ∈ H2(X,Z) the hyperplane class

L the cohomology lattice of X corresponding to H4(X,Z)

Lprim the primitive cohomology lattice of X

F (X) the Fano variety of lines of X

θ : L // H2(F (X),Z) (−1) the Abel-Jacobi map

I3,0 the rank 3 lattice of signature (3,0) whose intersection matrix is the identity matrix of

rank 3

E8 the unimodular positive definite even rank 8 lattice associated to the corresponding

Dynkin diagram defined by the following matrix:

E8 :=



2 −1 0 0 0 0 0 0

−1 2 −1 0 0 0 0 0

0 −1 2 −1 −1 0 0 0

0 0 −1 2 0 0 0 0

0 0 −1 0 2 −1 0 0

0 0 0 0 −1 2 −1 0

0 0 0 0 0 −1 2 −1

0 0 0 0 0 0 −1 2


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U the hyperbolic plane defined by U :=

0 1

1 0


A2 the lattice A2 :=

2 1

1 2


A(X) = H2,2(X) ∩H4(X,Z) the lattice of algebraic 2-cycles on X

d(A(X)) the discriminant of A(X)

Cd the divisors in C parametrizing special cubic fourfolds

Kd a labelling associated to Cd
K⊥d the non special cohomology lattice i.e the orthogonal complement of Kd in L

S an algebraic surface

dS the degree of S

KS the canonical divisor of S

χS the Euler characteristic of S

NS/X the normal bundle of S

L(X) the 8fold associated to X

Db(X) the bounded derived category of X

Ku(X) the Kuznetsov component of X, the right orthogonal to O(X),OX(1),OX(2)

S a K3 surface

NS(S) the Néron-Severi group of S

ρ(S) the rank of NS(S)

T (S) the transcendental lattice of S

S[2] the Hilbert scheme of length two subschemes of S

S[n] the Hilbert scheme of n points on S

Br(S) the Brauer group of S

α, β and γ the Brauer classes

Fg the moduli space of genus g K3 surfaces

Fg,n the moduli space n−pointed K3 surfaces of genus g

Cd,1 −→ Cd a universal cubic fourfold

Cd,n the moduli space of n−marked cubic fourfolds

CH i(X) the Chow group of codimension i cycles of X

Mrat(C) the category of Chow motives

MAb
rat(C) the category generated by motives of abelian varieties
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h(X) the Chow motive of X

t(X) the transcendental motive of X

1 = h(point) the motive of a point

L the Lefschetz motive

GrV ectK the category of graded K−vector spaces
SmProjC the category of smooth projective varieties over C

G(1, 4) the Grassmannian of lines in P4

Y a Gushel-Mukai fourfold

M4
GM the moduli space of Gushel-Mukai fourfolds

D the period domain associated to Gushel-Mukai fourfolds

A(Y ) = H2,2(Y ) ∩H4(Y,Z) ⊇ A(G(1, 4)) the positive definite lattice associated to Y

Γ2 := H4(G(1, 4),Z)|Y the rank 2 lattice coming from G(1, 4)

(M4
GM )d ⊂M4

GM the hypersurfaces parametrizing special Gushel-Mukai fourfolds

(M4
GM )d,1 the moduli space of 1−marked Gushel-Mukai fourfolds

(M4
GM )d,n the moduli space of n−marked Gushel-Mukai fourfolds

Vnodn the moduli space of n−pointed one nodal K3 surfaces of sectional genus 12

M4nod
W9,2
⊂M4

W9,2
⊂M4

GM the moduli space of GM fourfolds obtained from the K3 surfaces

in Vnodn

Y5 a del Pezzo fivefold

S a family of surfaces

XS a family of fourfolds that contains surfaces from S
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