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Title in English

Modeling the compaction of soft granular packings: effect of mixed soft/rigid grains and
particle shape.

Titre en France

Modélisation de la compaction d’assemblages granulaires mous : effet du mélange de
grains mous/rigides et de la forme des particules.

Abstract: The compaction behavior of deformable grain assemblies beyond jamming
remains misunderstood, and existing models that seek to find the relationship between
the confining pressure P and solid fraction ¢ end up settling for empirical strategies
or fitting parameters. Numerically and experimentally, we analyze the compaction of
highly deformable frictional grains of different shapes and soft/rigid particle mixtures
in two and three dimensions: numerically, using a coupled discrete - finite element
method, the Non-Smooth Contact Dynamics Method (NSCD), and experimentally using
high-resolution imaging coupled with a dedicated DIC algorithm. We characterize the
evolution of the packing fraction, the elastic modulus, and the microstructure (particle
rearrangement, connectivity, contact force, and particle stress distributions) as a function
of the applied stresses. We show that the solid fraction evolves non-linearly from the
jamming point and asymptotically tends to a maximal packing fraction, depending on the
soft /rigid mixture ratio, the friction coefficient, and the particle shape. At the microscopic
scale, different power-law relations are evidenced between the local grain structure and
contacts, and the packing fraction and pressure, regardless of the shape, the mixture ratio,
or the dimensionality (2D/3D). A significant outcome of this work is the development of
a theoretical and micromechanical-based approach for the compaction of soft granular
assemblies far beyond the jamming point. This latter is derived from the granular stress
tensor, its limit to small deformations, and the evolution of the connectivity. Furthermore,
from the expression of these well-defined quantities, we establish different compaction
equations, free of ad hoc parameters, well-fitting our numerical and experimental data.
These equations mainly depend on the dimensionality, where the characteristics of shape,
elastic bi-dispersity, and compression geometry (uniaxial vs isotropic) are considered as
input parameters. Our theoretical framework allows us to unify the compaction behavior
of assemblies of soft, soft/rigid, and noncircular soft particles coherently, both in 2D and
3D, for isotropic and uniaxial compression.

Resumé: La compaction d’assemblages de grains mous au-dela de leur point de blocage
(i.e., le “jamming point”), bien que trés étudiée reste encore mal comprise. Par exem-
ple, un trés grand nombre d’équations reliant ’évolution de la pression de confinement
P a la compacité ¢ ont été proposés mais la plupart des équations existantes s’appuient
sur des stratégies empiriques impliquant souvent plusieurs paramétres d’ajustement dont
le sens physique n’est pas toujours clair. Dans ce travail de thése, au moyen de sim-
ulations numériques et d’expériences modéles, nous analysons la compaction de grains
frottant hautement déformables, de différentes formes, ou encore des mélanges de grains
déformable/rigide en deux et trois dimensions. Numériquement, nous utilisons la méth-
ode de dynamique des contacts non réguliere (“Non-Smooth Contact Dynamics NSCD”)
couplant la méthode de Dynamique des Contacts (pour gérer le contact entre grains) a la
méthode des Eléments Finis (pour la déformation des grains), et expérimentalement nous
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utilisons des techniques d’imagerie & haute résolution couplées a des algorithmes de DIC
sur un systéme quasi-2D de compression unixial. Dans tous nos essais, nous caractérisons
I’évolution de la compacité, du module élastique et de la microstructure (réarrangement
des particules, connectivité, forces de contact et distributions des contraintes dans les par-
ticules) en fonction des contraintes appliquées. Nous montrons que la compacité évolue
de maniére non linéaire a partir du point de blocage et tend asymptotiquement vers une
compacité maximale qui dépend du rapport de mélange de grains déformable/rigide, du
coefficient de frottement ou encore de la forme des particules. A 1’échelle microscopique,
différentes relations en lois de puissances sont mises en évidence entre, d’un coté, les struc-
tures locales & I’échelle des grains et des contacts et, de 'autre coté, la compacité et la
pression, indépendamment de la forme, du rapport de mélange ou de la dimension du
probléme (2D/3D). Finalement, un résultat majeur de ce travail est la mise en place d’'un
cadre théorique et micromécanique pour ’étude de la compaction d’assemblages granulaires
mous au-dela du point de blocage. Ce cadre micromecanique s’appuie sur le tenseur des
contraintes granulaires, sa limite aux petites déformations, et de I’évolution de la connec-
tivité des particules. A partir de I’expression de ces quantités, nous établissons différentes
équations de compaction, libres de tout paramétres ad hoc, et reproduisant parfaitement
nos données numériques et expérimentales. Ces équations dépendent principalement de
la dimension considérée (2D/3D), et prennent en compte les caractéristiques de forme, de
bi-dispersité élastique, ou de géométrie de compression (uniaxiale vs isotrope). Le cadre
micromécanique proposé permet d’unifier le comportement de compactage des assemblages
de particules molles, molles/rigides et non circulaires de maniére cohérente, a la fois en 2D
et en 3D, pour une compression isotrope et uniaxiale.
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General introduction

Granular materials and especially deformable granular media are a valuable and indis-
pensable part of countless natural phenomena and human activities. These materials are
present from constitutive biological cells, foams, and suspensions to powder compaction,
pharmaceutical industries, and food activities. On the other hand, mixtures of particles
with different elastic properties have also received significant attention in recent years be-
cause of their innovative properties. In an engineering context, recycled materials such as
rubber chip mixtures from wasted tires are usually employed to improve stress relaxation
and foundation damping in building structures. The range of applications for soft /rigid
mixtures is potentially broad and opens the door to an extensive field of fundamental topics

that are still poorly studied.

Among the applications, the compaction of soft granular matter, especially beyond
the jamming point, is a broad issue increasingly studied in the literature. Innovative
experiments and advanced numerical methods have made it possible to take a step forward
in the understanding of the microstructural evolution beyond the jamming point. However,
despite their presence in so many scientific and industrial fields, the behavior of deformable
particle packets is far from being fully understood. Understanding the physics behind these
phenomena, especially the compaction, as a function of their different elastic properties,
shape, size, and response to possible external loads would optimize many of the processes in
which highly deformable particles are involved. Although in this direction, many equations
that try to link the confining pressure to the packing fraction (i.e., the ratio between the
volume of the particles over the box’s volume) have been proposed, most of them are based

on empirical strategies with no apparent physical bases.
1
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We focus this work on the compaction behavior of deformable grain assemblies beyond
jamming. Precisely, we study the physical effect of the proportion of soft/rigid particles
in the packing, the effect of different particle shapes, the friction coefficient, and the di-
mensionality (2D/3D). Starting from the micro-mechanical definition of the granular stress
tensor, we introduce an analytical model for the compaction behavior accounting for the
evolution of particle connectivity, the applied pressure, and the packing fraction. Our
model accurately predicts the sample density ranging from the granular jamming point to
high packing fractions, considering the properties mentioned above. As a natural conse-

quence, the bulk modulus evolution is also deduced.

The thesis is structured as follows. Chapter [I] presents a brief overview of rigid
and solid granular media behavior under compression, especially at the jammed state
and above. The main advances in the field and the main numerical and experimental
methods to study them are also presented. Chapter [2] analyzes the isotropic compaction
of soft/rigid mixtures and characterizes the evolution of the packing fraction, the elastic
modulus, the strain energy, and some microstructural parameters such as the connectivity.
A micromechanical model to describe the compaction, based on the characterization of
one single particle under the same compaction conditions, is also proposed. The isotropic
compaction of assemblies composed of soft pentagons interacting through classical Coulomb
friction and its comparison with circular assemblies are presented in Chapter [3| The
compaction model presented in Chapter [2| is also revised and extends to noncircular
regular particles. In Chapter 4] by mean of a recently designed experimental set-up, we
analyzes the oedometric compaction of soft/rigid mixtures and extends and validates the
findings in Chapter [2l In Chapter [5| we perform three-dimensional simulations for the
isotropic compaction of an assembly of elastic spheres and test our theoretical framework.
Finally, the main results of this thesis and comments on the perspectives of this work are

presented.
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2 Liquid

Solid

F1GURE 1.1. Solid, liquid, and gas regimes of beads flowing out from a pile .

This chapter presents a brief review of the behavior of granular media, with a particular
focus on the solid behavior of granular assemblies. First, we evoke some general features
of the dense state of hard granular assemblies, i.e., particles that do not deform (or deform
only at the contact). Second, we focus the discussion on the soft granular assemblies, which
is the main subject of this thesis. The principal advances in this field will be presented, in
particular on their compaction. Subsequently, the current numerical frameworks and the
most used experimental methods in this specific field are shown. We conclude with some

open questions that emerge for the compaction of the soft granular assemblies.

1.1 Granular media

Granular media is present in everyday life. Such systems composed of an extensive collec-
tion of grains can be found in different scales, sizes, shapes, and elastic properties, making
this type of material being studied in many scientific fields. For instance, they can be
found at the microscale, like powders or biological cells , at the mesoscale, in sands,
cereal, soils, and roks [4], and finally at astronomical scales , like asteroids and rocky
aggregates in, for example, the rings of some planets. Transversely, we also find them
in numerous applications such as metal sintering , pharmaceutical processes [28], civil
structures, and natural phenomena such as landslides or erosion to name a few. The
challenges in these applications are mainly in achieving the optimization of many of their
manufacturing, handling, and maintenance processes to reduce energetic, economic, and
temporal costs. For these reasons, an interdisciplinary study of granular media is needed,

involving several branches of physics and mathematics.
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Although these materials have been studied for many years, their theoretical modeling
has not been a straightforward task, to the point that we still have not a unified description
of their general behavior. Their complexity and difficulty to be modeled are due to the large
set of particles that composed them, with a high local disorder, a large number of degrees of
freedom, and their complex local interactions, both cohesive and non-cohesive, that often
depends on the system scale. Also, the granular materials are not usually composed of
particles of the same characteristics but rather of mixtures of grains with various sizes and
shapes or elastic properties. Moreover, some of these particles can deform or, in extreme
cases, break. In addition, granular matter presents high and complex energy dissipation
processes far from the classical systems, preventing the use of the traditional tools of
statistical mechanics to model their behavior. These characteristics result in different
macroscopic behaviors, where granular matter exhibits properties typical of solid, liquid,
or gaseous systems, or even all three states in a single phenomenon [1]. Such complexity
is illustrated in Fig. [I.I] where it is shown the three different regimes present in the fall
of beads from a pile. Here, assuming that the state is governed by (i) the inertial forces
induced by the shear, and (i7) the static forces due to the confining pressure, it is possible
to define a dimensionless number, the inertial number [30], from the ratio of these two
forces. Small values correspond to the quasi-static state while high values correspond to

the dynamic state.

In this direction, the jamming transition [31] that separates the fluid-like state from
the solid-like state, when the inertia number goes to zero, has been one of the main topics
studied in hard granular matter. In contrast, the study of systems made of particles with
different elastic properties, that can exceed this jamming limit, as is the case for assemblies
of particles that deform rather than break, has not made sufficient progress, whereas it is

of greater importance in many real-life scenarios.

Indeed, the presence of assemblies of deformable particles in many natural and indus-
trial processes makes the understanding of the physics of these materials and especially
their response to different loading conditions, a topic of vital importance. We find them
in emulsions [32-34], foams [17,135|, biological cells [2}[36}[37], clayey materials [38,39],
and metal powders [3,/40]. In particular, in the civil engineering context, is the case of
composites of particles with different elastic properties, especially soft-hard mixtures, that

exhibit new and fascinating mechanical properties such as better stress relaxation [41-43],
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ceramic sintering [3| and rubber-sand mixtures [4].

seismic isolation [44146], and foundation damping [42}[43]/47] while reducing the weight of
the structures or increasing the packing fraction. Figure shows some micrographs of

different soft granular assemblies under different loading conditions.

In the following, we briefly review the significant results in hard granular packings,
especially at the jammed state. This is followed by the most relevant result on the com-
paction of soft granular assemblies beyond the jamming point, including the most used
and recent compaction equations found in the literature and the principal experimental

and numerical methods used to study these materials.

1.2 Solid behavior of hard granular packings

1.2.1 The jammed state

The jammed state is defined as the mechanical state where all particles in the assembly
are in equilibrium, such that the resultant force and torque on each of them are precisely
equal to zero. These conditions are often presented in terms of the coordination number,
Z, defined as the average number of contacts per particle, and in terms of the packing
fraction ¢, defined as the ratio between solid matter and the total volume of the packings
(also named relative density or solid fraction). The mechanical equilibrium in the jammed
state involves a balance between the number of degrees of freedom of the system and the
number of constraints. For example, a granular packing of N d-dimensional frictionless
particles has NZ/2 independent contact forces and dN force constraints. In the isostatic
limit, where the condition of mechanical equilibrium is minimally satisfied, the coordination
number Z is equal to Z;s, = 2d for frictionless disks or spheres and Z;5, = d(d + 1) for
frictionless non-circular or non-spherical particles, and coincides with the known Random

Close Packing (RCP) ,. For frictional particles Z;s, = d+1, but in reality, the critical
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FIGURE 1.3. Coordination number Z* (open squares) and packing fraction ¢# (filled circles) found
at the jammed state as a function of the friction coefficient in (a) monodisperse
packings of disks and (b) monodisperse packings of spheres |5].

coordination number varies in a range such that d 4+ 1 < Z;4, < 2d for a random frictional
packing of disks or spheres, and d + 1 < Z;5, < d(d + 1) for a random frictional packing
of non-circular or non-spherical packings, that depends on the friction coefficient. This is

shown in Fig. for packings of disks and spheres [5,[18}|50].

While the jammed state is well defined in terms of the coordination number through the
number of degrees of freedom of the system, the same is not valid for the packing fraction.
The disordered character of the packings makes the mechanical equilibrium condition to be
fulfilled in a wide range of packing fraction values, which depends on the size and shape of
the grains [51,/52], the friction coefficient (see Fig. [5453], and even the initial conditions
[54]. For example, the increase of the particle polydispersity is directly correlated to the
increment of the packing fraction at the jammed stated, which also depends on the used
grain size distribution as shown by Oquendo et al. in [55]. About the shape, some works
have been done with elongated particles [6], non-convex particles [56], angular particles
[57], and with hyper-spheres |58|, showing the nonlinear relation between the parameters
that define the shape of the particle and the jammed values of the packing fraction. For
instance, Donev et al. in [6] showed the non-monotonic character of the jammed packing
fraction of ellipsoidal particles in 3D as a function of their aspect ratio (the ratio of the
major axis to the minor axis) (see Fig[L.4). Furthermore, they showed that it is possible to
reach high jamming states of disordered packings and achieve values close to the ordered
hexagonal configuration. This latter is the configuration with maximal packing fraction

for a monodisperse packing of spheres.
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FIGURE 1.4. Packing fraction (Volume fraction in the figure) at the jammed state as a function of
the aspect ratio of spherical particles with elongated shapes (circles) and flattened
shapes (diamonds) [6].

1.2.2 Contact forces

Another aspect widely studied in the general context of granular media is the transmission
of forces. In rigid or quasi-rigid granular packings (where deformations are far below the
radius of the particles in contact), it is classically found that the contact force between
particles is well described by the Hertz’s elastic contact law [59]. In this law, the contact
force between particles is repulsive and depends on the virtual deformation or interpene-
tration between the particles and their elastic properties. For instance, the contact force

between two spherical particles and two cylindrical particles is given by:

2 12532
fn=3 i VQ)R d (1.1)
and
T F
S R 5 | 1.2
/ 8 (1—v2) (12)

respectively, with £ the material Young modulus, v, its Poisson ratio, R'=R/ l—i—RQ_ Lthe
effective radius of the two particles of radius Ry and Rs, and J the particles’ displacement

and L the cylinder height.

Experimentally, although it is not possible to directly measure the contact forces on
each grain, it is possible to indirectly get it by mean of inverse analysis. For example,
in two dimensions, the most common method consists of loading birefringent particles.
Observation between crossed polarisers shows fringes whose density is related to the local

stress induced by the contact forces |7,60,/60]. In three dimensions, historically, forces on
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the edges have been guessed by measuring the diameters of discs on carbon paper marked
at the contacts [61]. Figure [L.5[a) shows the stress chains in experimental assemblies
of birefringent particles that have reached the jammed state. These chains and their
heterogeneous distribution in the assembly result from the distribution of contact forces
between particles. Figure (b) shows the interacting force chains in a simulation of

spheres in the jammed state [8].

About the Probability Distribution Function (PDF) of those contact forces in the inside
of the assembly, a well-known form is observed (see Fig. [L.F|c)). In these distributions,
often called bimodal distributions [62}/63|, at the jamming transition, the probability of
having contacts with forces below the mean value, weak forces, increases following a power
law. The weak forces are the ones that keep the internal equilibrium of the system. On the
contrary, having contacts with forces above the mean value, strong forces, decreases with
an exponential law [62]. The strong forces are the forces that mainly keep balancing the
external deviatoric stresses of the system. About the shapes of the distribution, Radjai in
[9] proposed a theoretical model that predicts the bimodal character of the distributions

by analyzing the effects of steric constraints concerning the force balance condition (cf. red

line in Fig. [1.5|c)):

PDF(f) :5(1+’7)m7

(1.3)

with S and vy constants.

Generally speaking, the bimodal shape of the distributions is not significantly altered by
the size polydispersity, the particle shapes, nor by changing friction in the system. For the
case of polydispersity in size, the same potential-law behaviors are observed for weak forces
but with longer exponential tails, making the distributions broader in close proportionality
to the polydispersity [52|. Moreover, more tortuous force chains are observed for different
particle shapes, with exponential decays very similar to spheres and disks, but with a lower
density for weak forces and a more prominent peak above the mean value [8]. On the other
hand, friction in the system increases the building of arches that supports a large part of

the force chains and increases the presence of weak forces in the system [64,65].

Moreover, based on the contact forces and the geometrical disposition of the contact

network, it is possible to build the stress tensor of the packing [66]. To do so, we first
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FIGURE 1.5. (a) Stress chains of an experimental oedometric compression of photoelastic particles
in the small deformation regime. The color intensity (from white to black) is related
to the stress in the particles [7]. (b) Snapshot of the normal contact forces in a
packing of simulated spheres at the jamming point. (¢) The probability density
function of the normal contact forces normalized by the mean value for granular
experiments and simulations EII

defined the internal moment, M?, on each particle 4, as:

Le = fors, (1.4)

cEl
where f¢ is the o™ component of the contact force acting on the particle 4 at the contact
c, rg is the 5™ component of the position vector of the same contact ¢, and the sum runs
over all the contacts of the particle i (¢ € 7). The stress tensor o in the volume V of the

packing is given by the density of the internal momentum over this volume:

1 i
o= Z 1Y (1.5)
eV

With Eq. (5.2)), one defines the mean stress, P, in a granular packing from the principal

values 044 of o, as (in 3D):

1
P= §(o’m + oy +022). (1.6)
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FIGURE 1.6. Molecular dynamic simulation on frictional disks [10]. (a) Shear modulus G and bulk

modulus K (continuous lines) as a function of the applied pressure. (b) G and K as
a function of the excess coordination number.

1.2.3 Elastic properties

One of the principal characteristics of soft particles is their elasticity. This is the material’s
ability to resist a deformation induced by an external loading and return to its original
shape. The bulk modulus K and the shear modulus G are the two quantities that give

some insight into that material’s elasticity [59,67]. The first one is defined as:

dP
K=—— 1.7
2 (1.7
with P the mean pressure in the packing (Eq. (1.6])), and & the volumetric deformation of

the material. K tells us about the material’s resistance to the compression. The second

one, is defined as:
d(0zz — Oyy)

G=-—
d(ezz — Eyy)

9 (1.8)

with e, and ey, the principal deformations in the x and y direction, respectively. G tells
us about the resistance to shear stress. For example, by knowing the evolution of these
two quantities as a function of the applied stress or the compaction density, is it possible

to study the wave propagation in a granular media and to compute its velocity [68,69].

Under the framework of the Effective Medium Theory (EMT) [70,/71], where the par-
ticles are replaced by a network of bonds in contact, it has been shown that both the bulk

modulus K and the shear modulus G vary as a power-law of the applied pressure (~ pY/ 3)
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[10,[72]. However, experimentally, this law Has not been validated, mainly because of the
increase of the number of particles in contact and the contact area that is not taken into
account in EMT [71,73/|74]. It is found that G and K evolve faster than the mentioned
power-law, with a high discrepancy in the predicted values for K/G [10,74,75]. Neverthe-
less, it is possible to tell that EMT has a good qualitative description of K, and a much
better description than G. Figure shows the behavior of K and G as a function of
pressure and the excess coordination number for frictional disks obtained by Somfai et al.

[10].

1.3 Soft granular assemblies

In the previous section, we presented the description of granular assemblies in or near
the jammed state. Their main characteristic is that the particles do not deform, or their
deformation is minimal compared to the size of the particles. Although, as discussed at the
beginning of this Chapter, the real world is also made of different types of particles that
can achieve large deformations under different types of compaction. This characteristic
of large deformability gives rise to new physics, and different mechanical properties often

dismissed or simplified.

In those assemblies, in addition to the interaction properties (friction, cohesion, or
repulsion) and rearrangements (sliding or rolling), the individual body deformation (related
to the Young’s modulus and the Poisson’s ratio of the particle) is crucial to understand
their bulk and mechanical behavior, especially in the compaction process. For instance,
the high deformability of soft particles under confining pressure allows the packing fraction

of the assemblies to easily pass the critical jamming point.

1.3.1 Compaction

The compaction of soft particle assemblies beyond the jamming point is in the center of
several natural and industrial processes, such as cellular tissue growth [36,37], ceramic
sintering |76,77], metal power compaction |3}15], and pharmaceutical tableting |26}28, 78|
to name a few. Fig. [1.7(a) shows experimental results of Secondi on the oedometric
compaction of different types of iron powders, where high values of packing fraction are

achieved |11].
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FIGURE 1.7. (a) Experimental results of compaction of different metal powders |11]. (b) Numerical
results of the granular density and strain energy density of a metal mixture Al and
SiC as a function of the loading pressure [12].

The compaction curves are often presented as the evolution of the packing fraction as a
function of the loading conditions, showing, most of the time, a very similar qualitative and
general evolution with the confining pressure. The quantitative differences are mainly given
by the initial conditions of the compaction and the intrinsic properties of the materials. It
follows a rapid increase of the packing fraction for low pressure, followed by an asymptotic
increment towards a maximum value of the packing fraction. This behavior is described
in four main stages by Huang et al. in |12]| looking at the strain energy (Fig. [1.7(b)). In
the initial state, region A, there is a sharp rise in the packing fraction, which is explained
by the rearrangement of particles, with almost zero increment in the strain energy and
not high deformations in the particles. In B, as the pressure continues rising, the packing
fraction or relative density increases almost linearly with the pressure, and the strain energy
starts to increase, where the elastic deformation is dominant. In C, at high pressures, large
deformations are observed, evidenced by a rapid increase of the total strain energy. Finally,
in D, the plastic deformation of the particles is dominant, where the deformation and the
strain energy reach maximum values. This makes the packing fraction stabilizes to an

asymptotic value.

Recently, Vu et al. |20,{79,80] presented experimental and numerical studies on two-
dimensional rubber-like particles. They find that first, the hyperelastic behavior driven
by the neo-Hookean model [81], adopted in the simulations, reproduces the experimental
tendency of the compaction performed on silicon disks. Second, they found that the
different compaction evolutions, varying the Young modulus £ and Poisson ratio v of
the particles, follow the same general behavior proposed by Huang et al., and qualitatively

present very close concordance when scaled with the effective young modulus E* = E/(1—



CHAPTER 1. INTRODUCTION 15

+ v=0.495
011 4+ v=034
+ v=0.05

0.80 0.84 0.88 0.92 0.96 1.00 '8.80 0.84 0.88 0.92 0.96 1.00
o [}

FIGURE 1.8. Stress in the y-direction scaled by the effective Young modulus of an oedometric
compaction as a function of the packing fraction of particles with different Poisson
ratios and friction coefficients equal to (a) p = 0.2 and (b) u = 0.8 .
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FIGURE 1.9. Stress in the y-direction as a function of the deformation in the same direction for
experimental oedometric compaction of mixtures of sand and rubber particles. The
percentage of rubber particles is denoted by RC. .

v?). Figure presents the stress in the y-direction of oedometric compaction of particles
with different Poisson ratios and friction coefficients, obtained by Vu et al. .

In addition, the compaction evolution of composites made of particles with different
elastic properties, such as mixtures of soil particles with soft particles, show similar com-
paction evolution. They show a maximal packing fraction and maximal strain depending
on the proportion of rigid particles concerning soft ones (besides the friction, shape, or size
of particles) , (see Fig. . This behavior implies that this kind of mixtures exhibit
new properties such as better stress relaxation , seismic isolation ,, and
foundation damping while reducing the weight and keeping the strength of the

structures.
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1.3.2 Compaction models

The understanding and theoretical description of the compaction of soft granular matter
as a function of different load conditions is still an open topic in many areas of science.
One of the first constitutive equations to explain and predict the compaction curve in
soft granular matter was proposed by Walker in 1923 [85|. This equation states that the
packing fraction, ¢, is proportional to the logarithm of the pressure (In P). The model
involves two fitting constants, which have been later correlated to an equivalent Young’s
modulus or yield strength by Balshin et al. [86]. Shapiro and Kolthoff [87], followed by
Konopicky [88] and Heckel [89], had a different approach and assumed the proportionality
between the porosity or void ratio and the packing fraction ¢ increment over the stress

increment:
d¢

(1-9) =k, (1.9)

with k, a constant of proportionality. They proposed that P o In(1 — ¢) with two fitting
constants related to the powder properties. Later, Carroll and Kim [90] justified this
equation by correlating the loss of void space in the packing and the collapse of a spherical
cavity within an elastic medium and extended it by adding a parameter that states the

maximal packing fraction ¢, reachable:
P =bln(dmaz — @) + P, (1.10)

where b is a fitting constant called the yield stress, which depends on the material, and Py
a fitting parameter defined by the initial conditions of the compaction. Equation (|1.10)
is the currently most used model to predict the evolution of the compaction of any soft

material.

Over the years, many other compaction equations have been proposed in the literature
[91-95]. However, like the previous ones, they linearly relate the logarithm of the packing
fraction and a polynomial function of P, with two or three fitting constants. Some models
also introduce a maximum packing fraction ¢4, which depends on the grains’ properties
(shape, size, friction coefficient...) in the form of P o In(¢maz — ¢) [11]. Recently, double
logarithmic functions have also been proposed by Ge et al. [96], Zhang et al. |24] and
Wiinsch et al. |78]. They linearly relate In P to logln¢. Less usual, some authors have

shown non-linear equations [76,97-99|, linking a functional form of P to a functional
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FIGURE 1.10. (a) Experimental compaction of a metallic powder together with the prediction
given by some well-known compaction equations [15] (Tab. [L.1). (b) Pressure as a
function of the void ratio (1 minus the packing fraction) of an isotropic compaction
of experimental tests of sand-rubber mixtures done by Platzer et al. [16]. The solid
line is the prediction given by the Platzer et al.’s model.

form of ¢. An extensive list of equations, mainly for metal and pharmaceutical powders
compaction, is reviewed in |1540,|100] and Tab. displays the most relevant models
among them. Figure M(a) shows the compaction of a metallic powder, together with

some of the compaction equations in Tab.

For assemblies of distinct solid granular phases, the adopted strategies consist in using
existing compaction equations for a single granular phase, and to fit free-parameter [77,101].
The first attempt to predict the compaction behavior of mixtures of rigid-soft particles can
be attributed to Platzer et al. [16], who studied mixtures of sand with rubber particles
(see Fig. [1.10[b)). They introduced an equation involving parameters related to the initial
geometrical and mechanical conditions of the compaction, not considered in other