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Abstract

This thesis reports on the recent results of the FerMix experiment, which is dedicated to the
study of fermionic quantum many-body systems at ultralow temperatures using ensemble of
40K . The main achievements are twofold.

First, we describe the experimental apparatus and the successive stages leading to the prepara-
tion of a deeply degenerate Fermi gas of 1.5 x 10* atoms of “°K at a temperature of T /Tr = 0.14,
just below the critical temperature of superfluidity. The key steps to achieve this essential mile-
stone, such as the loading of the main optical dipole trap and the ensuing phases of evaporative
cooling, are presented. We also report on the main upgrades implemented on the machine over
the course of this thesis.

Second, we summarize our progress towards the exploration of the dimensional crossover
between the Tomonaga-Luttinger liquid in 1D and the Landau-Fermi liquid in 3D. To that
end, we confine our ultracold Fermi gas in a large spacing optical lattice. The experimental
considerations regarding the tunability of the dimensionality of our system as well as the
apparatus used to generate the 2D lattice are described in detail. Following the characterization
of the optical periodic potential, the strategy employed to adiabatically transfer atoms into a
single 1D lattice before loading them into the 2D standing wave is discussed. The loading
of the 1D lattice represents the final milestone presented in this work: the realization of a

degenerate Fermi gas in two dimensions composed of 250 atoms per spin state at a temperature
T/Tr =0.34.






Résumé

Cette these décrit les récents résultats de 1I’expérience FerMix, expérience dédiée a I’étude
des systemes fermioniques quantiques a N corps a ultra basse température. Pour cela, des
ensembles d’atomes de *°K sont utilisés. Nous présentons ici deux principaux résultats.

En premier lieu, nous décrivons le dispositif expérimental ainsi que les étapes menant a la
préparation d’un gaz fermionique fortement dégénéré composé de 1.5 x 10*atomes de *°K a
une température de 7 /Tr = 0.14, soit juste en-dessous de la température critique de superflu-
idité. Les étapes clés permettant la réalisation de ce jalon essentiel, telles le chargement des
picges optiques dipolaires ou encore les différentes phases de refroidissement évaporatif, sont
présentées. Les principales améliorations apportées a 1’expérience tout au long de cette these
sont également résumées.

En second lieu, nous rapportons nos progres pour explorer le croisement dimensonnel entre
les liquides de Tomonaga-Luttinger a 1D et ceux de Landau-Fermi a 3D. Pour ce faire, nous
confinons notre gaz de Fermi ultrafroid au sein d’un réseau optique a grand pas. Les con-
sidérations expérimentales concernant I’ajustabilité de la dimensionalité de notre systeme de
méme que le dispositif utilisé pour générer le réseau optique 2D sont décrits en détail. Apres la
caractérisation du potentiel optique périodique, nous discutons de la stratégie mise en oeuvre
pour d’abord transférer adiabatiquement les atomes dans le réseau 1D puis au sein de 1’onde
stationnaire 2D. Le chargement du réseau 1D représente I’accomplissement final présenté dans
ce manuscrit : la réalisation d’un gaz de Fermi dégénéré a deux dimensions, composé de 250

atomes par état de spin et & une témperature de 7 /Tr = 0.34.
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Chapter 1

Introduction

Universality is a remarkable concept of physics. It refers to the similar behaviour of vastly
different systems and has strong fundamental and technological implications. In 1675, while
designing bridges, Robert Hooke faced the complication of calculating the perfect arch, when
he realised: “As hangs the flexible line, so but inverted will stand the rigid arch”. This
constitutes an early example of a simulation, where an experiment of a simpler system can
provide information about a complex problem that is otherwise inaccessible via analytical or
numerical approaches. As pointed out by Yuri Manin in 1980 [1], in many cases of quantum
physics, simulators can provide a more accurate representation of the original system than
numerical computation [2]. Nowadays, such quantum simulators are realized with systems of
neutral atoms [3], ions [4] or even photons [5]. They can be used to investigate phenomena
ranging from electronic transport [6] to black-holes [7]. Within this context, ultracold atoms
epitomize the concept of quantum simulation envisioned by Richard Feynman in 1982 [8].

The quantum degenerate regime

A non-interacting gas is characterized by its temperature 7" and density n. Quantum effects
become increasingly relevant at lower temperatures and higher densities, when the thermal
de-Broglie wavelength Aqg = h/+/27wmkgT and the inter-particle spacing n~'/3 reach the same
order of magnitude. Here, m denotes the mass of the atoms, h the Planck constant and kg the
Boltzmann constant. Formally, this condition can be expressed through the phase space density,
which is defined as PSD = n?LjB. For a PSD < 1, the gas is classical and its statistics are
described by the Boltzmann distribution. However, for a PSD > 1, it is in the degenerate regime
and the statistics depend on the spin of its particles [9]. The spin-statistic theorem states that
particles in 3D can either have an integer or a half-integer spin. Constituent, such as photons,
with an integer spin obey Bose-statistics, while half integer spin particles such as electrons

follow Fermi-statistics. In high-energy physics, elementary bosons mediate the interaction’

IFor instance, photons mediates the electromagnetic interaction.
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Fig. 1.1 Statistics of an ideal gas of bosons and fermions in a harmonic trap. (Left) At high
temperatures, the interparticle distance is very large compared to the de Broglie wavelength. The
cloud follows a classical Boltzmann distribution, regardless of the statistics of its constituents.
(Right) At low temperatures, the particle wavelength becomes comparable to the interparticle
distance and the behavior of the ensemble depends on the statistics of the atoms. While bosons
will accumulate in the groundstate of the system, identical fermions will form a Fermi sea and
populate all the energy levels up to the Fermi energy. Tp denotes the degeneracy temperature.

while matter is exclusively made up of elementary fermions such as electrons and quarks [10].
Composite particles such as atoms, are thus an ensemble of elementary fermions. If the sum
of all its elementary constituents is an even or odd number, an atom will, respectively, be a
boson or a fermion. For instance, of the three isotopes of Potassium with the highest natural
abundance, two are bosonic (*?’K and *'K) and one is fermionic: the “°K.

A Bose gas undergoes a second order phase transition in the low-temperature limit. The
resulting Bose-Einstein condensate features a macroscopic occupation of the single-particle
ground state [11, 12]. This transition does not rely on interactions and is purely a statistical
effect. A Fermi gas, by contrast, displays no phase transition. At zero temperature, Pauli
blocking leads to unity population of all energy levels up to the Fermi energy Er. Figure 1.1
illustrates the classical and quantum regimes for both bosons and fermions.

The absolute temperature scale at which the quantum regime is reached strongly depends on

the respective system. On one hand, for electrons in a typical metal, the characteristic Fermi



temperature 7p = Er /kg is around 10* K, while for the crust of a neutron star it is on the order
of 10!°K [13]. On the other hand, for liquid Helium-3 it is on the order of 1K and for bosonic
Helium-4, the critical temperature for condensation in the same temperature range [14].

Strongly correlated quantum systems

In addition to the statistics of the particles, the presence of interactions can strongly alter the
properties of a many-body system. In metals, they can lead to superconductivity and pairing
between electrons. Pairing in metals is not a two-body effect and arises from the restricted
phase-space due to Pauli blocking, as was first discovered by Cooper [15]. The length scale of
these Cooper pairs is large compared to the inter-particle spacing, highlighting the many-body
character of the pairing. Superconductivity in weakly-interacting fermionic states of matter, for
example through phonon-mediated interactions, is well understood in the context of Bardeen-
Cooper-Schrieffer (BCS) theory [16].

Despite important theoretical breakthroughs, such as the BCS theory or the Landau-Fermi liquid
theory [17—-19]?, the understanding of strongly correlated matter remains an open challenge
of many-body physics. Due to the large amount of memory required to store the states of the
system, numerical simulations using classical computers are very challenging. For a simple
gas of N particles with spin-1/2, even if the external degrees of freedom were ignored, the
exact diagonalization of the system requires a 2"V x 2V matrix to be solved to calculate its time
evolution and 2V states must be stored in memory. This causes an unavoidable exponential
explosion with the size of the system and quickly renders computational capacities insufficient.
As a result, approximation methods such as Monte-Carlo, were developed [21]. However,
sensible approximations are not always possible and present limitations for the simulation
of fermionic systems (the sign problem [22] for instance). These problems, combined with
the difficulty to interpret direct observations of many strongly correlated systems due to their
inherent complexity, such as high-T superconductors [23], frustrated magnets [24] or quantum

chromodynamics [25], motivated analog quantum simulation using ultracold atoms.

Early experiments with ultracold atoms

Atomic gases are dilute, which, in turn, sets an extremely low temperature scale for degeneracy.
For typical experimental settings, temperatures on the order of 10~7 K or even below need to
be reached. Taking advantage of the progress of laser technology, pioneering results regarding
cooling [26] and trapping [27-29] of atoms were achieved during the 1980s. In 1995, the first

Landau liquid theory maps strongly interacting many-body systems and their properties onto weakly inter-
acting fermionic quasi-particles. Liquid Helium-3 and most metals in their normal state are two of the most
prominent examples where the theory can be applied [20].
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Bose-Einstein condensates of 3’Rb and 2*Na were realized, confirming theoretical predictions
of Bose [11] and Einstein [12] made 70 years earlier. The confirmation of this quantum
phase transition was soon followed by other remarkable results [30], such as matter-wave
interference [31], solitons [32, 33] and superfluidity [34, 35]. In 1999, the first degenerate
Fermi gas was obtained at Jila using “°K [36], opening the door for the simulation of fermionic
quantum many-body systems [37, 38].

A striking feature of ultracold atoms is the ability to freely tune their interactions via scattering
resonances to either create a non interacting gas, a strongly interacting one, or anything in
between. Owing to the absence of net electric charge and low densities, the many-body
interactions are usually short-ranged and typically dominated by few-body collisions. At low
energy, two body elastic collisions can be described by a single scalar parameter a, called
the scattering length. In absence of additional collision processes, the many-body interacting
system can be completely described by this two-body parameter [37]. The strength of the
interaction can be changed using the so-called Feshbach resonances, which directly modify the

scattering length by coupling to external magnetic fields. [39, 40].

Tuning the scattering strength

This tunability of the scattering length has enabled a hallmark result of Fermi gas experiments:
the experimental realization of the BEC-BCS crossover [43], which has been the subject of

numerous theoretical and experimental works of research [42, 44—46]. The mean-field diagram



of this smooth crossover is represented in figure 1.2 for a spin-balanced Fermi mixture. For
the understanding of the phase diagram it is helpful to recall that the scattering length is an
effective parameter and that the Van-der-Waals interaction potential between two atoms is
always attractive. The crossover from BCS to BEC can therefore be viewed as an increase
in attraction between atoms, which leads to a bound state at unitarity and on the BEC side.
On the BCS side, superfluity arises from loosely bound cooper pairs, while on the BEC side,
deeply bound two-body bosonic molecules make up the gas. Between those two situations,
when 1/kr|a|< 1, one enters the strongly interacting regime.
Building on this highly tunable experimental platform, many groundbreaking results were ob-
tained, such as superfluidity of fermions below a critical temperature [47-49], phase separation
between paired and unpaired fermions in imbalanced Fermi mixtures [50]. For imbalanced
Fermi mixtures, Fermi liquid behavior was also reported above the Chandrasekhar-Clogston
limit of polarization [51]. The unitary regime of the phase diagram, where the scattering length
diverges, is of particular interest. Here, the scattering cross section becomes independent of the
scattering length and the only remaining length scales are identical to those of non-interacting
fermi gases: Aqg and the inter-particle spacing n~1/3. This leads to scale invariance and univer-
sal thermodynamcis [52, 53]. While bosons have a short lifetime in the vicinity of a Feshbach
resonance, two-component Fermi gases are protected from three-body recombination losses
due to Pauil blocking. In the unitary limit, all thermodynamic quantities solely depend on
density and temperature. A set of universal functions of T'/EF is thus sufficient to characterize
the unitary Fermi gas. For instance, its pressure P at zero temperature is given by [42]:

P= §E F (1.1)

5

with & = E/Ey = 0.37 [49]. Ey denotes the energy of the non-interacting system, E the total
energy of the unitary gas and £ the universal Bertsch parameter [54]. After having been the
main subject of numerous theoretical studies [55, 56], it was recently measured using ultracold
atom experiments [49]. The unitary regime is also expected to play a role in exotic matter such
as the quark-gluon plasma and the crust of neutro stars [55]. Anolog simulators are crucial
to mimic the dynamics of strongly interacting systems that are difficult to tackle theoretically
due to the absence of small interaction parameters [57] but also difficult to directly observe
experimentally. In this spirit, recent studies of non-equilibrium dynamics of unitary Fermi
gases have enabled a better understanding of the transport properties of this extreme state of
matter [58-61].
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Tailoring dimensionality

In contrast to most experimental realisations of many body ensembles, such as condensed
matter systems, atom trapping offers a lot of flexibility to design custom external potentials.
This can be used to tune the dimensionality of the system at hand. It is well known that
reducing the dimensionality of a system can strongly alter its properties and lead to unique
behaviors. For instance, true long-range order and spontaneous symmetry breaking cease to
exist in reduced dimensions due to the increased impact of thermal fluctuations [62]. This
phenomenon, embodied by the Mermin-Wagner theorem [63], notably prevents the formation
of a BEC in both one and two dimensions in the thermodynamic limit. Additionally, in one
dimension the low energy excitations are collective and as a result, the Landau liquid theory
breaks down. As a consequence, analog quantum simulation of strongly correlated systems in
low dimensions, such as carbon nanotubes or electrons in semi-conductors in respectively one-
and two-dimensions, also requires one to confine ultracold atoms in reduced dimensions [64].
By shining in a strongly anisotropic potential, such as an optical lattice [65], one can freeze out
the atomic motion in one or several dimensions, effectively confining the atoms in either 2,1 or
even 0 dimensions. Numerous breakthroughs followed the first use of an optical lattice, such as
the phase transition between the superfluid and the Mott insulator phase [66], the observation
of the BKT transition in 2D [67] and the realization of a Tonks-Girardeau gas [68] as well as a
Luttinger liquid [69] in 1D.

Outline of this thesis

This manuscript presents the recent progress of the FerMix experiment. The main achievements
are twofold: first, we produced a deeply degenerate quantum gas of *°K around T /Tr ~ 0.15.
Second, in order to study the dimensional crossover of this Fermi gas in the strongly interacting
regime, we implemented a 2D lattice with large spacing to directly control the (effective)
dimensionality. The optical lattice spacing and transverse frequencies were measured and a
deeply degenerate Fermi gas in two dimensions was produced, which constitutes an important
milestone towards reaching the 1D regime. The main text of this work is structured in the
following way:

1. The chapters 2 and 3 present the experimental setup and the different steps leading to

the realization of a quantum degenerate Fermi gas of “°K.

2. In schapter 4, the theory of degenerate Fermi gases in 3D and 1D in the normal state will
be presented. The realization of the dimensional crossover from 3D to 1D will also be
discussed as well as a potential characterization of the crossover through the exploration

of the system’s transport properties.



3. Finally, chapters 5 and 6 summarize the progress towards the realization of the dimen-
sional crossover. The experimental apparatus will be described in detail as well as the
calibration of the 2D lattice and the preparation of a degenerate Fermi gas confined in

two dimensions.
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The FerMix experiment was first started in 2008 under the drive of Frédéric Chevy and
Christophe Salomon. Given the fact that earlier stages of the experiment have already been
described in great details (see for example [70-73]), this chapter will be mainly focused on
the current status of our experimental apparatus and the recent changes implemented during
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this thesis and to a large extend also reported in [74]. FerMix initial goal was to explore
the properties of the fermionic isotope of the Potassium and Lithium alkali (*°K and °Li) in
the quantum degenerate regime. To this end, several milestones were reached, such as the
implementation of a gray D1 molasses [75, 76]. Over the course of this thesis, we realized a
deeply degenerate gas of “°K as well as implemented a large-spacing two dimensional optical
lattices required to study the properties of a strongly correlated Fermi gas confined in one

dimension.

2.1 General description of the FerMix experiment

An overview of our experiment is provided in fig. 2.1. A typical sequence takes about 60s. A
magneto optical trap (3D-MOT) is first loaded during 205, capturing typically 1.5 x 10° atoms
coming from an atomic beam of “°K. This atomic flux is created by a two dimensional magneto
optical trap which is combined with a longitudinal molasses and a push beam (2D-MOT). After
fully loading the 3D-MOT, the 2D-MOT is switched off, the optical power of the 3D-MOT
decreased and the magnetic confinement risen in order to increase the spatial density of the
atomic cloud (CMOT phase). The magnetic field is then switched off and a brief phase of 8 ms
of gray molasses significantly increases the phase-space density by using the Alkali D1 Lines
(D1 molasses). This stage of cooling is crucial to ensure a high efficiency for the magnetic
transport of the “°K from the MOT chamber to the science cell (see figure 2.1) and as a result
for the rest of the sequence. Prior to the transport, the atoms are optically pumped to low-field
seeking states and transferred into a magnetic trap. An ensemble of partially overlapping coils
allows the transport of the atoms to the science cell which is located 65cm away from the
MOT chamber. Once in the science cell, a microwave evaporation is performed before loading
1 x 107 atoms in an optical dipole trap. After 800ms of loading, the trap depth is lowered to
force the evaporative cooling of the confined atoms of “°K, which eventually reach quantum
degeneracy. During the optical evaporation, the atoms are transferred into the lowest Zeeman
states and a second optical dipole trap is added in order to increase the spatial density by
forming a crossed dipole trap. Upon reaching the quantum degeneracy, the atoms are either
kept into the dipole traps or transferred into a periodic potential created by an optical lattice.
Finally, standard absorption imaging is employed to record the integrated profile of the atoms
using highly sensitive CCD cameras.

In the following, we will first briefly present our vacuum ensemble before addressing the laser
system necessary for trapping, cooling and the imaging of our atomic sample as well as the
software used to operate the experiment. After this short introduction, we will describe in
more detail the FerMix experiment as well as the key steps of the machine up to the magnetic

transport of the “°K into the science cell and the ensued microwave evaporation. Since the
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Fig. 2.1 Overview of the vacuum assembly.A 2D-MOT and a Zeeman slower are used as
sources for a dual spieces MOT. After a transfer into a quadrupole trap, an array of partially
overlapping pair of coils are used to route the atoms from the MOT chamber to the science cell,
making use of the better optical access. Once in the science cell, multiple stages of evaporation
take place to reach quantum degeneracy and then load the optical lattice.

loading of the optical dipole traps as well as the evaporation up to quantum degeneracy required
major changes and upgrades of the setup around the science cell, they will be the main topic of
the following chapter of this thesis.

2.2  Vacuum chambers

The density window for observing fermions in the deep quantum regime is typically between
10" ecm™3 and 10" cm ™ to ensure sufficiently high collision rate and thermalization while
avoiding three body losses [30, 37]. As a consequence, the corresponding temperature to
achieve the quantum degeneracy is comprised between 100nK and 50K [37]. Upon reaching
those temperatures, a trap depth of few hundreds of uK is perfectly adequate to efficiently
confine the atomic cloud. Therefore, collisions between the atomic cloud and the background
gases, in thermal equilibrium with the exterior of the vacuum chamber at room temperature,

will lead to heavy losses from the trap, which will reduce the collision rate and ultimately limit
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Fig. 2.2 Lifetime in the two main vacuum regions. While the lifetime in the MOT chamber
is of only 155 (a), the better vacuum quality of the science cell offers lifetime of more than
180s (b). Additional details regarding the vacuum quality of the experiment can also be found
in [70, 77].

our ability to reach low temperatures. Pressures below 10~!! mbar are thus required to obtain
lifetimes of up to several minutes '. Even though such lifetimes seem rather long, one has to
remember that an experimental sequence such as described in section 2.1 takes around 60s
with more than 10s of optical evaporation in the science cell taking place in a dipole trap with
a trap depth below 100 uK.

However, one problem arises when trying to maintain such pressures inside the vacuum en-
closure. In order to obtain a reasonably high atomic flux around 2 x 108 atoms.s~! that will
then be captured by the 3D-MOT, the potassium’s vapor pressure needs to be much higher
than 10~!" mbar (between 10~8 mbar and few 10~ mbar). As a result, differential pumping is
necessary to keep large pressure differences between the different regions of the experiment. In
FerMix, the differential pumping stages are tubes of reduced apertures that connect adjacent
vacuum regions. Their small diameter limits the communication between regions with different
pressures. Unequal pressure levels are maintained thanks to medium ion pumps from Varian
(with pumping capacities between 20L.s~! and 40L.s~1) [78, 70].

A CAD drawing depicting the vacuum assembly of FerMix is given in figure 2.1. The first
region consists of the two zones of elevated vapor pressure used to generate the atomic jets of
®Li and “°K by means of a Zeeman slower and a 2D-MOT respectively. In the central octagon,
located at the intersection of the two atomic beams, the potassium MOT is loaded. The vacuum
quality in those regions is ensured thanks to several ion pumps as well as non-evaporable
getter material (St707). In the MOT chamber, the lifetime of the 40K is around 155 in the

Ifor a non-interacting gas optically trapped
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Fig. 2.3 Master laser setup for “°K. After a first optical isolator, a small portion of the main
laser light is used as a reference to lock our main laser on the >°K D2 crossover while another
small fraction of the optical power serves for the imaging in the science cell at both high and
low magnetic field. Finally, most of the power is used as an input source for a tapered amplifier.
The output of the amplifier is then additionally split. The first part, after a double pass AOM
and a single-mode polarization maintaining fiber, is used as a push beam for our 2D-MOT
while the other part is directly injected into a single mode fiber, which will eventually be further
split to generate all necessary frequencies for our D2 laser system (see fig. 2.4). Figure style
adapted from [74].

magnetic-optical trap as presented in figure 2.2a. After being confined in a magnetic trap,
the atoms are magnetically transported inside a 65cm L-shape tube, with a turning point at
30cm from the MOT chamber, to the rectangular science cell, that offers a much better optical
access [71, 72]. The glass cell is made of uncoated Vycor, a fused silica dioxide. Manufactured
by Hellma GmbH, it has internal dimensions of 23 mm X 23 mm x 10mm with a wall thickness
of 4mm. The L-shape of the transport reduces parasitic effect from the atoms remaining inside
the MOT chamber and from the optical beams used for the earlier stage of the experiment (such
as the push beam and the D1 molasses for example). It also provides a better optical access
along the transport direction. In contrast to the relatively low lifetime in the MOT chamber, the
lifetime of the “°K in the science cell while captured by an ODT exceeds 180s (figure 2.2b).

2.3 Master laser system

Coherent laser light can be an extremely versatile tool to drive electric dipole transitions and

thus can be used to perform laser cooling, imaging and modifying the internal degree of
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Fig. 2.4 “OK optical table. Light from the master laser (see fig. 2.3) is split and rerouted
towards several double pass AOMs. Light from the principal and the repumper AOMs of the 2D
MOT and 3D MOT are overlapped and directed towards the 2D and 3D MOT tapered amplifier
respectively. After the amplifiers, the MOTs lights are send to the main table through single
mode optical fibers where they will be used for the 2D-MOT, the 3D-MOT and the optical
pumping in the MOT chamber. Optical isolators are placed to avoid damaging the TA chips
due to back reflections. After the high field optical pumping AOM, the light is directed towards
two fibers: one for the optical pumping at high field in the science cell and one for the MOT
imaging. Finally, light from the main D2 laser is also used for the imaging in the science cell.
Figure style adapted from [74].

freedom of an atomic cloud. In order to do so, the intensity, the frequency and the polarization
of the light must be generated in a tunable and controlled way. The figures 2.3 and 2.4, as well
as [70, 78], depict our D2 laser system for the manipulation of “°K. For the optical pumping
and the three stages of cooling (2D-MOT, the 3D-MOT and the D1 molasses), this table is
used to produce the appropriate powers and frequencies of the repumping and cooling beams.
Moreover, for greater efficiency and easier alignment, before being sent to the main table, the

repumper and the cooling beams of each steps are overlapped. This optical table is also used to
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produce the fitting intensity and the frequency of the imaging beams, the push beam and the
optical pumping at high field to transfer the atoms into a dark state with respect to the resonant
imaging light (see sec. 3.6).

Following a MOPA-principle (for Master Oscillator Power Amplifier), a diode laser is frequency
stabilized via modulation transfer spectroscopy on a Doppler-free absorption signal of the D2
or D1 groundstate crossover line and is used to inject a homebuilt tapered amplifier [79]. The
light is then being mode cleaned owing to a polarization maintaining single mode optical fiber
from Thorlabs. The use of optical fibers to propagate light coming from the tapered amplifier
also facilitate the realignment of the optical table after the exchange of a TA chip. Due to
the extremely low natural abundance of *°K (around 0.01%), the detection of the absorption
signal is technically very challenging. Consequently, the absorption lines of the *°K are used
as references for the two diode lasers. A fixed offset, created by an AOM (Acousto-Optic
Modulator), is added to address the “°K D2 and D1 transitions. Before going through several
additional tapered amplifiers (see fig. 2.4), light from the main laser is split into several beams.
Each of those beams are then directed towards separate AOMs from Gooch&Housego in double
pass with cat’s eye configuration [80] to be frequency shifted towards their respective transitions
(see table. 2.1). Finally, each of those beams are sent into their dedicated tapered amplifiers.
At that stage, the required optical powers for the MOT, the 2D-MOT and the optical pumping
in the MOT chamber are available. The three bichromatic 2 laser beams corresponding to the
MOT, the 2D-MOT and the optical pumping are therefore finally being sent to the main table
via single mode optical fiber from Oz Optics. In order to prevent unwanted light from being
transmitted to the main table, several commercial (from Uniblitz) and homemade shutters are
installed in front of each fibers. While those shutters are relatively slow, the Uniblitz shutters
can be closed in 0.6ms * and the closing time of our homebuilt shutters can reach 100.0ms 4,
they can completely block any parasitic light. When faster speed is required, additional single
pass AOMs serve as fast switches with a fall time of typically 30ns. For the D1 path, light from
the tapered amplifier is directed into a single pass AOM and a single mode fiber that transmits
the D1 light to the main table. The "repumping" frequency of D1 is generated by an Electro-
Optic Modulator (EOM) located between the diode laser and the tapered amplifier [71, 77].
Over the course of this thesis, several modifications of the laser table were carried out in order
to improve the overall performance of the machine as well as its stability. The first major
change was the replacement of the D2 main diode laser. Originally a homemade diode laser,
technical specification can be found in [70], it was replaced by a commercial one (MogLabs
CELO002) to increase its output power and its stability. Thanks to the increase in power, a

ZFor the cooling and the repumping frequencies.
3But they have a delay of roughly 5.0ms.
“This long closing time is caused by the vibrations generated by the shutters when they are switched off.
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portion of the outgoing light is used to generate the imaging light at low and high magnetic
bias field in the science cell (see fig. 2.3). A new stage of double pass AOMs was also added
in order to facilitate the imaging of multiple spin state at high field. This new setup, after the
cleaning fiber, also provides an independent push beam for the 2D-MOT (see sec. 2.6 and [74]).
Cleaning cubes were also added in front of each fibers as the last optical element in order to
prevent any potential polarization drift as well as shutters, thus allowing us to maintain the
different TAs seeded during the entire sequence instead of unseeding them to prevent parasitic
light from being sent to the main table. This increased the TAs lifetime and the experiment
overall stability.

Furthermore, the RF sources of the AOMs were vastly exchanged. Primarily made up of an
ensemble of VCO (Voltage Control Oscillator) and VVA (Variable Voltage Attenuator) (specific
details can be found in [73]), they were exchanged for DDS (Direct Digital Synthesizer)
modules (MixNV and SynthNV from WindFreak as well as SG4400L from DS Instruments)
which reduced the fluctuation of frequency due to the lab’s air conditioning unit as well as the
cross talk between two RF sources close to one another.

Finally, to stabilize the temperature of the potassium table and the lab as much as possible, all
RF amplifiers’ power supplies, used to amplify the intensity of the RF signal for the AOMs,
were kept on at all time. The heat generated by the amplifiers is dissipated by a cooling plate
that is water cooled by a chiller (Termotek P1020). A mechanical relay, connected to the
interlock pin of the chiller, was also installed in order to switch off the amplifiers in case of a
chiller breakdown, thus preventing them from overheating.

2.4 Computer control of the experiment

Our entire experimental apparatus is controlled and operated thanks to Cicero Word Generator,
an open source software developed by Aviv Keshet at MIT specifically designed for cold atoms
experiments. It is composed of two applications with a server-client architecture. The client
Cicero is used to design the experimental sequences owing to its intuitive graphic interface.
The sequences are a succession of steps of variable duration. In each of those steps, one
can set the value of all the digital and analog channels. Being compatible with GPIB and
RS232 communication, one can also separately assign the control parameters of the different
frequency generator signals and DDS thanks to the dedicated panel and simply trigger them
when necessary with a TTL signal. We replaced all LAN based communication between
frequency generator and Cicero with GPIB connection which allowed us more programming
flexibility. Additionally, all DDS were incorporated into Atticus and communication via RS232
implemented. The value of the different parameters used can be stored into dedicated variables

and can be then retrieved and stored in a text file via a snippet server. Once the sequence
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Fig. 2.5 Schematics of the experiment control hardware.

designed, the Atticus server translates it into output buffers and send them to a PXI system
made by Nationals Instruments.

This system is composed of several digital (model NI PXI-6533 and NI PXI-6536) and analog
(model NI PXI-6713 ) cards which provide all the digital (OV or +5/4-3.3V), analog (from
—10V to +10V with a 12—bit resolution) and GPIB signals necessary to operate all the devices
of the experiment (such as shutter, drivers for AOMs, power supplies or signal generator for
example). The current drained by each of those cards independently shouldn’t exceed 10 mA.
To protect the system from current drops, voltage spikes or even ground loops, several analog
and digital optocoupling devices were installed between the NI cards and the controlled
devices [73]. They allow fast switching of up to 0.5us and 20.0ps in the case of the digital and
analog optocouplers respectively and should consequently be used every time faster switching
is not necessary.

The duration of a sequence is fixed by the maximum number of buffers than can be generated.
To optimize this number, one can adapt the resolution of the different steps. To this end, an
external FPGA with a variable clock speed (model XEM 3001 from OpalKelly) is used as
a reference clock, which allows us to set each step of a sequence with a specific resolution.
Thanks to an arduino-based program, the sequence is also synchronized with the mains, such
that each sequence starts at a fixed point of the oscillation waveform of the mains-supply [73].

A second computer is used to control the various camera of the experiment. A new Python
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Fig. 2.6 Optical transitions and hyperfine structure for the D2 (a) and D1 (b)-lines of WK
at zero magnetic field. The detuning of the various cooling and repumping transitions with
respect to their respective main transition is available in table 2.1.

based graphic interface as well as a new imaging program were developed by Clément De
Daniloff to communicate with the different cameras, visualize the picture taken and perform
quick analysis (such as the estimation of the atom number or the ratio 7 /Tr for example). A

schematic description of the control system of the experiment is presented in figure 2.5

2.5 Atomic properties of “°K

An overview of the optical transitions of °K used in the experiment is presented in figure 2.6
and in table 2.1. The main and strongest transitions from the ground state are the D2: 4°S, /2=
4%P3 ), and D1 :4?S; /, — 4%Py ), lines, which are separated by 3nm. The D2 and D1 spectral
line have a respective wavelength of 767nm and 770nm. The associated linewidth of the two
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Transition Reference Transition detuning (I'/27)
2D MOT cooling 19/2) — |11/2) -2.5
2D MOT repumping |7/2) — |9/2) -5.1
3D MOT cooling 19/2) —[11/2) -2.0
3D MOT repumping |7/2) —19/2) -8.4
D1 "cooling" 19/2) = |7/2) 4.0
D1 "repumper" 17/2) —17/2) 4.0
Imaging 19/2) — |11/2) 0.0

Table 2.1 Optical transition for our “°K experiment. The linewitdh of the D2 (resp. D1)-line
is 27 < 6.03MHz (resp. 27 x 5.96MHz)

transitions is I' = 27 x 6.03 MHz for the D2 transtion and I' = 27 x 5.96 MHz for D1 [81].
Moreover, as all alkali metal, *°K has a single valence electron with an electronic spin S = 1/2.
Since the ground state value of the electron orbital angular momentum L = 0, the total electronic
angular momentum J=1/2, where J is the quantum number associated with the total electronic
spin J = L.+ S. Due to the hyperfine interaction between the electron’s magnetic field and the
nuclear spin I= 4, the total electron angular momentum J and the nuclear spin I are coupled and
form the total atomic angular momentum F = J+1. As a result, the ground state splits into the
two hyperfine manifolds with total atomic angular momenta F = 9/2 and F = 7/2, separated
by an energy splitting of 4 x 1285.80MHz (h being Planck’s constant). Contrary to most metal
alkali, due to the negative value of the magnetic dipole constant aps = —h x 285.7MHz [82, 83],
the hyperfine structure of the potassium 40 groundstate is inverted with the hyperfine level
F = 9/2 being energetically lower than the level F = 7/2. For the first excited state, the total
electronic (resp.atomic) angular momentum can take all the half integer values that fulfill the
relation |[L—S |<T<|L+S | (resp. | J—T|<F <|J+1])). Since L = 1 for the excited state,
the 4°P level gives rise to the two excited levels 4°P5 /2 and 4%p, /2- Thus, for the 4°P, /2 level,
the total atomic angular momentum can take the values F =5/2,7/2,9/2 and 11/2. Due to
the absolute value of the magnetic dipole constant being much smaller for the two excited
states (apr = —h x 34.5MHz and —h x 7.6 MHz for the level 4P, /2 and 4%p, /2 respectively)
than the groundstate’s one [81], the energy splitting between the lowest and highest hyperfine
level is only 4 x 101.6 MHz. For the 4°P, /2 level, the total atomic angular momentum can take
the values F = 7/2 and 9/2 and the energy splitting between the two levels is & x 155.3 MHz.
Laser cooling and imaging are performed on the F=9/2 — F = 11/2 transitions while the
transition F =7/2 — F =9/2 is used for the repumpers.

Thanks to its large total angular momentum, the two hyperfine groundstates split into numerous

(respectively 10 and 8 for the F = 9/2 and the F = 7/2 levels) Zeeman sublevels in the presence
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of an external magnetic field (see figure 2.11). In particular, atoms in a sublevel with a positive
slope, called low-field seeker, will preferably explore region with a minimum of magnetic field
and can be magnetically trapped. Due to Pauli’s principle, two fermions in the same state cannot
collide at low temperature (for “°K, p-wave collisions start to be heavily suppressed around
20uK [84, 85]). As a consequence, fermions in at least two spin states must be trapped for an
efficient evaporation and thermalization. Moreover, in order to avoid producing untrappable
high-field seeking atoms after a collision between two atoms, atoms must be prepared in
a stable mixture of magnetically trappable states. While most metal alkali do not possess
such combination of state,*’K can be trapped in a mixture of maximum internal momentum
|[F=9/2,mp =9/2) and |F =9/2,mp = 7/2), which is stable against spin relaxation.

2.6 A 2D-magneto-optical trap for “°K

Contrary to the 6L for example, 40K has a very low natural abundance (0.01%) [86] and
obtaining a strong enrichment is necessary to efficiently load a 3D-MOT. In 1999, B. DeMarco,
H. Rohner and D.S Jin developed a novel strategy to produce a highly enriched source of
40K [87]. Using an slightly “°K enriched 5:1 molar mixture of calcium and potassium chloride,
they were able to produce a 9% enriched source of *°K and load a “°K MOT of 2 x 108 atoms.
Another solution, used in FerMix, is to buy directly an ampule of enriched 4°K. We bought from
Technical Glass Inc, Aurora, USA a 100mg sample of potassium containing 4 mg of “°K . The
low abundance of “°K with respect to its bosonic counterparts renders the use of a potassium
oven combined to a Zeeman slower challenging. By raising the oven’s temperature to load a
sufficiently large 3D-MOT, one would increase the vapor pressure of the two unwanted bosonic
isotopes of potassium on top of the fermionic one’s. This would lead to an increase of unwanted
particles in the MOT chamber, which would greatly degrade the quality of the vacuum in the
MOT chamber. Furthermore, since loading a 3D-MOT from a Zeeman slower only works on
atoms within a certain velocity class, one would have to frequently replenish the pricey atomic
source. As a consequence, a 2D-MOT was implemented to serve as an atomic source for our
3D-MOT of “K.

2.6.1 Generation of a vaporous phase of 'K

Our potassium sample is stored in two reservoirs. The main reservoir, which contains in a solid
state most of the potassium sample. The second one consists in a cold point and is located next

to the 2D-MOT glass cell [77]. The cold point acts as an intermediate source that gets heated

>The precise composition was 4mg of “°K, 89.5mg of *°K and 6.5mg of *'K, for 4000$. Unfortunately, the
price for enriched potassium increased and can reach up to 10000$. Moreover, nowadays very few companies sell
enriched potassium ampule.
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Fig. 2.7 CAD drawing of the 2D-MOT region of the FerMix apparatus

during the day to create the vaporous phase of “°K used to load the 3D-MOT from the 2D-MOT
and cooled down during the night to store the atoms in a solid phase. This auxiliary source,
once depleted, can be easily replenished by heating the main reservoir to migrate atoms from
the main source to the cold point (more details about the procedure can be found in [74]). It is

"

made up of three windings of a small PVC hose encircling the 2D-MOT’s "throat" in which
circulate a temperature regulated anti-freeze coolant (see fig. 2.7). The coolant temperature
is controlled by the Coherent ThermoTek T257P-30 210W chiller whose regulation range
extends from 0°C to 45°C. Since the 2D-MOT glass cell as well as the surrounding vacuum
assembly are kept at more than 60 °C, the cold point, once the chiller is set to low temperatures,
acts as an efficient pump that can collect all the potassium vapor residing in the 2D-MOT
enclosure. Moreover, by increasing this additional reservoir temperature, one can evaporate the
solid sample stored on the cold point, creating a vaporous phase of potassium that will fill the
2D-MOT chamber. The 4°K vapor pressure can then be easily changed by tuning the chiller’s
setpoint. A set of three UV-LEDs (LED395-66-60-110 of Roithner LaserTechnik), shining up
to 1.4 W of incoherent light at 395 nm can increase further the vapor pressure. Located around
the 2D-MOT glass cell, they can be used to induce atomic desorption from the inside walls

of the 2D-MOT vacuum chamber [88, 89], increasing the atomic flux by up to 50%. Since
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the UV-LEDs can disturb the MOT loading if permanently switch on, we only activate them
during the first two seconds of the MOT loading. Additional characterization of the UV-LEDs
performance can be found in [73]. In case of a chiller’s failure (due to an electrical shutdown
for example), due to the elevated temperature of the vacuum chamber, the cold point might
heat up, vaporizing the accumulated potassium and destroying this intermediate source. As a
consequence, in order to preserve it, the chiller is hooked up to an UPS (Uninterruptible Power
Supply) from Riello Ups (model Sentinel Dual 10000VA) which can supply the chiller for
more than 10hours which is much longer than the necessary time for the entire vacuum system

to cool down to room temperature [74].

2.6.2 Performance and characterization of the “°K 2D-MOT

As mentioned ealier (see sec. 2.6.1), we load a *°K 2D-MOT from the ambient potassium
vapor. Unfortunately, due to collisions with the two much more abundant isotopes of potassium,
the 2D-MOT atomic flux decreases when the vapor pressure becomes too high. While this
phenomenon would still occure with a pure sample of “°K, the maximum attainable flux would
be much higher. Our optimal conditions are reached for a total potassium vapor pressure of
2.3 x 10~ mbar [70], which corresponds to a temperature of roughly 50°C [90]. The 2D-MOT
is composed of two pairs of retro-reflecting beams (called "Trans. Pair 1" and "Trans. Pair 2"),
propagating in the two transverse directions (with respect to the direction of propagation of
the atoms) and cooling the “°K in those directions. In the longitudinal one, a pair of beams
increases the effect of the molasses. One of those beams ("longitudinal molasses -") hit a
one inch 45° elliptical mirror with a hole in the center. As a consequence, the central part
of this beam is not reflected and atoms in the shadow region will only be addressed by the
other longitudinal beam ("longitudinal molasses +"), experiencing a resulting force pushing
them towards the central hole and inside the MOT chamber, located 55cm away from the
2D-MOT (see fig. 2.1). The frequency of both the cooling and repumping components of
the longitudinal molasses as well as the transverse cooling beams are red-detuned (by 2.5T°
and 5.0T respectively) with respect to their respective transition (| F=9/2) —|F =11/2)
for the cooling component and | F = 7/2) —| F' = 9/2) for the repumping one). The typical
total power required for all three pairs of beams is 350mW and the optimal power ratio
cooling/rempumping 3.3. The magnetic field necessary for the gradient of the 2D-MOT is
created by a set of four coils, whose arrangement generates a gradient of 11 G.cm™! in the
transverse direction [78].

In addition to the longitudinal molasses, a small push beam is used to accelerate the atoms
from the 2D-MOT towards the 3D-MOT chamber and further increase the atomic flux [72].
Depending on the condition of the cold point the push beam can increase the atomic flux by up
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Fig. 2.8 Optimization of the push beam parameters. Both frequency (a) and amplitude (b)
of the push beam can be optimized offering a better tunability and control of the 2D-MOT
performance.

to an order of magnitude. Originally, a small amount of light from the 2D-MOT was deviated
far from the vacuum chamber to generate the push beam. The first drawback arising from this
design is the lack of tunability of the push beam: since both its intensity and its frequency were
set by the 2D-MOT optimal parameters, it couldn’t be tuned with our computer control system.
Furthermore, due to the small beam size of the push beam (in combination with the long path
that it traveled), we observed large fluctuations of the atomic flux (due to the fluctuations of
the beam pointing) which leads to large fluctuations of the number of atoms loaded into the
3D-MOT. As a consequence, a new setup was built to replace the push beam [74]. Part of
the light generated by the main TA is deviated towards a double-pass AOM and sent to the
2D-MOT thanks to a single mode fiber, offering both frequency and power tunability (see
fig. 2.3). Optimization of both parameters (see fig. 2.8) leads to an atomic flux of typically
2.0 x 103 atoms.s~! and a loading of 1.5 x 10° atoms in the 3D-MOT.

2.7 3D-magneto-optical trap and compressed MOT

Once pushed by the push beam and the longitudinal molasses, the atoms are transferred from
the 2D-MOT to the MOT chamber where they are captured by a MOT (Magneto-Optical Trap),
standard trapping and cooling technique implemented in most cold atoms experiment [91, 27].
At sufficiently low laser intensity (compared to the saturation intensity of the cooling transition),
the temperature of the atoms trapped in MOT is ultimately limited by the linewidth of the
addressed optical transition® [92]. For “°K, this Doppler temperature corresponds to kg Tp =

A simple model consist in considering the atoms’ behaviour as a random walk as they absorb and re-emit
photons. The cooling limit is then related and set by the spontaneous emission rate I"
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hI'/2 = kg x 145pK. This limit, despite ignoring sub Doppler cooling mechanism such as
Sisyphus cooling, gives us an initial estimation of the reachable temperature at the end of the
MOT loading. Built in a similar fashion as the 2D-MOT, our MOT is composed of three pairs
of counter-propagating bichromic beams and a magnetic quadrupole field. The frequency of
the cooling (resp. repumping) part of the MOT beams is red-detuned by 2I" (resp. 8.41")
with respect to the transition | F =9/2) —|F = 11/2) (resp. | F=7/2) —|F =9/2)). The
decoupled control of the RF source of their respective AOMs (see fig. 2.4) allows one to
tune their power and intensity independently. In the optimal configuration, the power ratio
cooling/repumping is equal to 33.8. The typical total power at the output of the MOT fiber
(before being equally split between all three bicromatic beams) is 200mW, which, given the
beam size of 22 mm for our MOT beams, gives us an intensity / = 2.50 X s, per pair of beam
(where Iy = 1.75mW.cm™! represents the saturation intensity of the D2 transition). The
magnetic confinement is created by a pair of coils separated by 13.0cm in anti-Helmholtz
configuration [72]. During the loading of the 3D-MOT, they create a gradient of 8.0G.cm™!
along their axis of symmetry (and 4.0G.cm~! in the transverse direction), trapping up to
2.0 x 10%atoms in 18s at a temperature of 140uK. At that stage of the sequence both the
temperature and the density of the cloud do not allow for an efficient magnetic transport from
the MOT chamber to the science cell. To this end, a D1 molasses was implemented (see
sec. 2.8). In order to increase the transfer efficiency to the D1 molasses, prior to the molasse
stage and after the loading of the 3D-MOT, the magnetic gradient is rapidly increased from
8.0G.cm™! to 45.0G.cm™! in 8.0ms 7 and the optical power decreased and tuned closer to

resonance, increasing the spatial density by a factor 5 [79, 73].

2.8 Enhanced gray molasses on the D1 transition

As mentioned earlier, after the 3D-MOT, the temperature and density of the atomic cloud do
not allow efficient transport to the science cell. While one could directly load the magnetic trap
and perform evaporative cooling, our experiments proved that the initial elastic collision rate
was too small for the evaporation to be efficient in the MOT chamber [77]. Another solution
to reach reach sub-doppler cooling is to use Sisyphus cooling. In this section we will first
introduce the principle of sub-Doppler cooling before discussing of the implementation of the
D1 gray molasses, its performance and the transfer of the cloud from the D1 gray molasses to

the magnetic trap.

"The recompression of the 3D-MOT is kept as short as possible in order to limit the losses due to the increased
density.
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Fig. 2.9 Principle of Sisyphus effect. (a) Atomic level for a transition between the |/ = 1/2)
and |J = 3/2) levels. The Clebsh-Gordon coefficients for the o™ transition, which are different,
are indicated. (b) Principle of Sisyphus cooling for a simple J=1/2 ground state. Due to the
position dependency of the light polarization, the light shift intensity also varies with the
position (because of the difference of the Clebsh-Gordon coefficients). Consequently, the
energy of the two sublevels of the groundstate will have a modulation period of A; /2. Atoms
with a velocity such that v - ¥, I ~ AL /4 originally in the valley will climb the hill, reach the
top, absorb and re-emit a photon, before being transferred to the valley of the other sublevel to
climb another hill. Thus on average, atoms travel more uphill than downhill, which lead to the
Sisyphus cooling.

2.8.1 Principle of sub-Doppler cooling

Sisyphus cooling relies on the fact that a pair of counter propagating waves, with a wavelength
Az can give rise to a spatial modulation of the polarization, with a period of modulation
Ar/2 8 [95]. For a multilevel atom, this polarization modulation can lead to a spatial modulation
of the light shift of the groundstate (only for a Lin_L Lin configuration : configuration in which
the originally propagating beam and the retro-reflected one have orthogonal linear polarization),
thanks to the different values of the Clebsch-Gordon coefficients for the various transitions
between the ground- and the excited state (see fig. 2.9a). For a bright molasses, the pair of
counter-propagated laser beams is red-detuned with respect to the addressed transition. In
particular, if the optical pumping rate %, between the sublevels of the groundstate and the

atoms’ velocity v is close to the condition v - ¥, '~ A1 /4, atoms reaching a loacal maximum

8Therefore, the two counter-propagating beams must initially have orthogonal linear polarization (Lin_LLin
configuration) or opposite circular polarization (0~ -0 configuration) [93, 94]
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energy shift are most likely to be transfered to the other Zeeman sublevel, which present a local
minimum of energy (see fig. 2.9b). Thus, on average, atoms will climb hills, created by the
standing wave and once on top will be optically pumped to the potential’s valley after absorbing
and spontaneously re-emitting a photon, thus reducing their speed and their temperature until
their kinetic energy cannot overcome the potential [95]. The figure 2.9b illustrates the principle
of Sisyphus cooling for a 2 level groundstate and for v - ¥ = 2L/4.
For the 0~ -0 laser configuration, the polarization remains always linear and rotates around the
propagation axis of the counter-propagating beam. As a consequence, the light shift of each of
the groundstate sublevels is translational invariant along the propagation axis and no Sisyphus
cooling can occur [95]. Nevertheless sub-Doppler cooling mechanism still arrises from such
initial polarization configuration, thanks to the radiation pressures of each couter-propagating
beams being unbalanced for an atom moving along the pair of beams’ propagation axis ° [95].
It can be shown [93] that for vanishing intensities, the limit temperature is then given by the
recoil temperature,
2

kpTrec = ML—zm
which is equal to 0.4 uK for 4°K.
Unfortunately due to the narrow splitting of the hyperfine level of the excited state of the D2 line
with respect to the natural linewidth of 6 MHz, the ensuing sub-Doppler cooling is less efficient.
Even in presence of an additional laser beam to return stray atoms into the cooling transition,
non resonant coupling between the different sublevels can occur and lead to heavy losses
despite reaching temperature as low as 15uK [96, 97]. As a consequence, taking avantage of
the well resolved (155.3 MHz) structure of the D1 transition’s excited state, a gray molasses
was implemented. While standard bright molasses relies on a F — F' = F+ 1 transition, the D1
line corresponds to the F — F' = Fand F — F' = F — 1 transitions '°.
It can be shown that, by using either of those two transitions as a cooling transition instead
of the standard F — F' = F+ 1 one, multiple dark states, linear combination of the Zeeman
sublevels of the groundstate will emerge as eigenstates of the Hamiltonian [98, 99]. Those
states of vanishing eigenenergies do not couple to the light field. The other eigenstates, on the
other hand do couple to the light field and offer similar behaviour as the Zeeman state for the

bright molasses. In particular, for a Lin_L Lin configuration, those bright states’ light shift are

°It should be emphasized that this imbalance of the two radiation pressures is not due to the Doppler effect as
in standard Doppler cooling but arises from a non-adiabatic coupling between the different Zeeman sublevels
(which experienced different light shifts) when the atom is not at rest.

10As a consequence, the D1 line does not have a cycling transition. In opposition to standard molasses, where
the repumping transition is used, in a gray molasses the main beam (that we will call the cooling beam) and the
less powerful one (called the repumping beam) form a so-called A-system
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Fig. 2.10 Properties of the D1 gray molasses for the “°K. (a) Evolution of the eigeneneries
as a function of the position (in unit of A) for a Lin_| Lin configuration as presented in [76]. (b)
Evolution of the temperature as a function of the raman detuning. Data adapted from [71].

spatially modulated. The presence of dark states leads to two major differences with the bright
molasses. First, the laser now needs to be blue detuned for the bright states, coupled to the
light, to have higher energies than the uncoupled dark ones (as illustrated in fig.2.10 for “°K).
The second difference is that an atom pumped into a dark state will remain in this eigenstate
until the motional coupling brings it back to a bright state. The probability of this passage
increases for small energy differences between the bright state and the dark state and for atoms
with high velocities. This implied cooling mechanism is called gray molasses cooling: atoms
with elevated kinetic energy and initially in a dark states are transferred into a bright one. In
order to minimize the difference of potential energy ensuing this non adiabatic passage, the
transfer will most likely occur at the position of an energy minimum of the bright state (in the
valley). Atoms will then proceed to climb the hill, losing kinetic energy in the process and be
pumped into one of the dark state after reaching the climax of the hill. On the contrary, cold
and slow atoms will accumulate in the dark states. This accumulation of atoms into the dark
state decreases the amount of fluorescence light emitted, which can reduce the amount of light
induced collisions and losses and increase the PSD (Phase-Space Density) compared to bright

molasses [94] .

2.8.2 Experimental implementation of the gray D1 optical molasses

The principle of gray molasses was originally presented [100, 101] and realized experimentally
for the first time [102, 103] on the D2 Line of Cesium. A—enhanced gray molasses on the D1
line was implemented for the first time on the Fermix experiment [76, 75]. Due to its great

capacities in terms of capture efficiency and cooling power, it has, since then, been widely used
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in numerous research groups [104—111]. Since the technical and experimental details have
already been presented in great detail in previous PhD thesis [71, 77], we will only provide a
brief summary of the key parameters of the D1 molasses, its cooling and trapping performance
as well as its general role in the context of our experiment.

40K offers two possible transitions for the gray molasses: the principal (or cooling) |F=9/2)
—| F'=7/2) and the repumping | F = 7/2) —| F' = 7/2) (see Fig. 2.6b), both of which exhibit
dark states. The optimal ratio cooling/repumping was found to be 12.5. The frequencies of
both beams are overlapped and sent to the main table using a single-mode fiber. Once on the
main table, the beam is first superimposed with the MOT beam thanks to a D-shape mirror,
then enlarged and split on the way to the MOT chamber, facilitating its alignment on the
atoms. As a consequence, our D1 gray molasses was implemented in a 6~ -0 configuration.
Experimentally, three parameters, related to the capture velocity v, and the reachable final
equilibrium temperature Tp1, can be tuned to increase its performance: the detuning & between
the cooling beam wavelength and the cooling transition, the Raman detuning A between the
two beams and the total intensity . While v, is proportional to I/82, indicating that the capture
range increases with the optical power available (contrary to Doppler cooling for example), Tp;
scales as I/0 resulting in poor cooling efficiency for high intensity. An optimum was found by
tuning the optical intensity during the D1 cooling. The total intensity is kept as its maximum
(the total power at the fiber output being close to 200mW) during 3 ms, to capture most of the
atoms from the hot CMOT then linearly ramped down in 5ms to low intensity values to reach
cold temperatures. 3 compensations coils were also installed 80cm from the MOT chamber
to cancel any stray magnetic field, since the potential energy splitting of the various Zeeman
states is solely due to the light shift as illustrated in fig. 2.9.

The lowest cooling temperature are reached for the Raman-condition, when the Raman detuning
A =0 (see fig. 2.10). The influence of the detuning & has been extensively studied in previous
work and provided an optimum for § = 2.3 x I'=2x x 13.7MHz. Under those conditions,
one can trap more than 1.4 x 10%atoms of “°K and cool them down to 9uK, offering much
better results than with a bright molasses in terms of capture efficiency [96, 97] despite the final
temperature being still far away from the recoil limit. At this time, it remains unclear why such
a disrepancy between the D1 gray molasses final temperature and the recoil temperature exists.
Due to the large fine splitting between the D2 and the D1 lines, a separate setup was built for the
D1 molasses. A main diode laser, is frequency stabilized on the D1 line crossover of 3°K then
shifted thanks to an AOM to serve as a cooling beam. The repumping frequencies is generated
by an EOM, set to the ground state hyperfine splitting of 1285.8 MHz. After amplification via a
TA, the light is delivered to the polarization maintening single mode fiber and sent to the atoms

as mentionned earlier. Additional description and details regarding the implementation of the
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D1 setup can be found in [71, 72, 77]. Since the D1 molasses greatly reduces the temperature
while conserving the spatial density acquired after the recompression step, the phase-space
density increases from around 10~ after the MOT loading to 10~* after the D1 molasses.

2.8.3 Optical pumping into magnetically trappable states

Subsequent to the optical gray molasses, once the optical light is switched off, the atoms are
distributed among all the Zeeman sublevels of both hyperfine ground states. Only few Zeeman
sublevels of the groundstate manifold are low-field seekers (see sec. 2.9) and as such can
be magnetically trapped. Moreover, the atomic cloud must be stable against spin-exchange
collisions to prevent atoms from being transferred into a non-trappable Zeeman sublevel.
Therefore, we optically pumped the atoms into low field seeker states before applying the
magnetic confinement. Moreover, by transferring atoms solely into the two lowest Zeeman
level one can create a mixture stable against spin relaxation.

A small magnetic vertical bias field of 1G is applied during 400 us to provide the symmetry
axis. Once the symmetry axis set, a beam with a 0" -polarization is sent along the quantization
axis direction. The beam is applied during 70 us to pump the atoms into the stretched state
|F=9/2,mg =9/2). The optical pumping light is provided by modifying the frequency
composition of the 3D-MOT light and rerouting it to pass into a dedicated fiber connected to
the main table (see fig. 2.4). The former ’cooling’ frequency component is tuned to address the
hyperfine manifold F' = 11/2 of the excited state and its optical power is greatly reduced to
minimize the heating of the atomic cloud. Finally, the repumping frequency of the 3D-MOT
is recycled to drive the | F=7/2) — | F' = 9/2) transition. The optical pumping efficiency is
close to 100% and the temperature of the cloud increases to 17 uK.

2.9 Magnetic trapping and transport to the science cell

Thanks to the optical gray molasses on the alkali D1 line, the PSD of 4°K after the D1 cooling
is increased by 2 order of magnitude [77]. Nonetheless, it is still several order of magnitude
away from degeneracy, mainly because of our atomic cloud being very dilute. In order to
proceed to the later stages of evaporation, a magnetic transport transfers the atoms from the

MOT chamber to the science cell.

2.9.1 Principle of magnetic confinement

Magnetic confinement was one of the first confining technique implemented to trap neutral
atoms [29] and was realized thanks to a pair of coils in anti-Helmholtz configuration: the

magnetic field is created by having the same current flowing into the two coils, coaxially
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arranged, but in opposite directions. Moreover, Anti-Helmholtz configuration (also referred as
a quadrupole trap) can be achieved when the distance between the two coils is equal to their
radii. It can be shown that near the coils’ center of symmetry, the magnetic field evolves as:
B(r) ~ b-(x,y,—2z), where z represents the axis of the coil pair. The parameter b characterizes
the steepness of the trap and depends of the coils’ parameters and the current circulating through
them '!. Atoms with a non-vanishing magnetic moment p will interact via the magnetic dipole
interaction with the magnetic field, resulting in a potential energy shift AE = —u - B. For small
value of the magnetic field (B < ans/Up, Up ~ 1.4MHz.G™! being the Bohr magneton and ap¢
the hyperfine constant), the total atomic angular momentum basis {| F,mg) } constitutes a set
of good quantum numbers and an atom in a Zeeman sublevel mg, confined in a quadrupole
potential, will experience an energy shift AE as long as the atomic spin can adiabatically

follows the local direction of the magnetic field, with

AE = uggrmpby/x2 +y2 +472. 2.1

Here, gp represents the Landé factor of the hyperfine Zeeman state | F, mg). Atom experiencing
a positive energy shift will favor region of low magnetic field intensity to minimize their
potential energy. Those states, called low-field seekers, can be confined in the center of the
quadrupole trap and occupy a volume of typical dimension ro = kg7 /ugb. On the other
hand, high-field seekers cannot be trapped since static magnetic fields cannot have a local
maximum according to Maxwell’s equations. In the vicinity of the trap center, the magnetic field
orientation is abruptly changed. Atoms accumulated in this region cannot adiabatically follow
the local direction of the magnetic field. Consequently, in the frame of the local magnetic field,

atoms appeared to have flip their spin. This can lead to atoms flipping from a low-field seeking

' this convention, the gradient is defined by its value along the weak directions x and y. Another convention
is to simply defined it by its value along the strong axis z.
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Fig. 2.12 Magnetic transport currents. The different colours correspond to the different
power supplies.

Zeeman state to a high-field seeker one and be expelled from the trap. This phenomenon, called
Majorana losses [112, 113], acts as an anti-evaporation process that ultimately leads to the
heating of the cloud [114-116].

2.9.2 Magnetically trappable Zeeman levels of “°K groundstate

The evolution of the Zeeman energy shift as a function of the magnetic field B is presented in
fig. 2.11 for the 4K 4°S, /2 groundstate, which has several trappable low-field seeking states. In
particular, | 9/2,9/2) and | 9/2,7/2) of the lowest manifold, which are the two states targeted
by the optical pumping described in 2.8.3. While a mixture of | 9/2,9/2) and | 9/2,7/2) is
stable against spin relaxation, the addition of the magnetically trappable | 9/2,5/2) states can

induce spin-exchange collisions and result in losses of the form [85]:
| 9/277/2>+ | 9/275/2> _>‘ 9/279/2>+ | 9/273/2> + Erel-

A detailed study of the spin composition of the atomic cloud in the magnetic trap can be found
in [73]. After the optical pumping the loading into the quadrupole trap, the spin composition of
the cloud is roughly 60 % of the total atom number in mg = 9/2 and 35% in mp = 7/2.

2.9.3 Magnetic transport to the science cell

In order to increase the lifetime of our atomic sample (see fig. 2.2a) as well as the optical
access to the atoms, the *°K is transferred from the MOT chamber to the science cell. A
possible solution to move the atoms over a long distance (the MOT chamber and the science
cell are separated by 65cm) is to slowly move a deep confining potential with respect to the
characteristic timescale of the atomic motion within the trap. In addition, the speed of the trap
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displacement also need to be fast enough (compare to the typical losses timescale) to minimize
the losses. The cloud will then adiabatically follow the center of the trap, thereby reducing the
induced heating. One standard technique is to optically confine the atomic cloud and to displace
the waist of the dipole trap using highly precise movable [117] or deformable lenses [118].
Another possible solution is to magnetically trap the atomic cloud and move the center of the
magnetic gradient, thanks to a motorized translation stage for example [119, 120]. Magnetic
transport tends to be more robust with respect to slight misalignment and daily maintenance
than their optical counterpart. Moreover, it facilitates the transport along angled paths. The
magnetic transport implemented in FerMix consists in a series of 12 partially overlapping pairs
of coils in anti-Helmholtz configuration, as represented in the figure 2.1.

After the optical molasses, a gradient of 150G.cm ™! is ramped up within 500ms and captures
around 1.4 x 10°atoms with a final temperature of 135uK. Following the loading of the
magnetic trap, the atoms are transported in 5.3 s by varying the current circulating through
the different anti-Helmholtz pairs over time (see fig 2.12). At any given time, three coils
are activated in order to ensure a smooth displacement of the magnetic center and preserve
the aspect ratio of the quadrupole potential. Details regarding the implementation and the
optimization of the transport can be found in [77]. Two large water-cooled brass-made plates
are connected to the top and bottom layer of the transport assembly to act as a heat sink and
dissipate the accumulated heat generated by the high currents circulating through the coils
during extensive period of time. Because of their proximity with the science cell, they can
be the cause of long lived (up to 9ms) Foucault’s currents when strong magnetic fields are
switched on in the science cell. Our magnetic transport has an overall efficiency of roughly
77% and heats up the atomic cloud by up to 60 uK. Once in the science cell, successive stages
of evaporative cooling both in a magnetic trap and in an optical dipole trap, efficiently cool the

atomic cloud to degeneracy.

2.10 Microwave evaporation in a quadrupole trap

Upon arrival in the science cell, the atoms are kept in a deep quadrupole trap. The steepness
generated by the pair of coils % is b ~ 250G.cm™!. The total atom number arriving in the
science cell is typically 10? and their temperature is around 200 uK. In order to make use of the
numerous Feshbach of the “°K '3, transfer into an optical dipole trap is necessary. To increase
the mode matching between the quadrupole trap and the optical confinement and facilitate the
transfer from one trap to the other, we first perform a MW (microwave) evaporation in the
magnetic trap, reducing the cloud temperature well below 100 uK.

12called inner coils and creating a gradient of 2.50G.cm™!.A~!.
13To enhance the collision rate or study the properties of a degenerate Fermi gas close to unitarity for example.
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Fig. 2.13 Evolution of the energy Zeeman states in the quadrupole trap as a function of
the distance to the trap center. (a) Evolution of the [9/2,+9/2) (blue line) Zeeman sublevel
as well as the target state of our MW transition |9/2,+7/2) (red line) with respect to the
position to the magnetic center in our quadrupole trap (with a gradient of 250G.cm™!). (b)
same as (a) for the |9/2,+7/2) (blue line) and the two Zeeman sublevels targeted by the MW
transition |7/2,+47/2) (red line) and |7/2,+5/2) (red dashed line). By sweeping the frequency
of the MW signal towards the higher frequencies, one can flip the Zeeman state of the atoms
closer to the central region, thus expelling colder particle from the quadrupole trap

The principle of evaporative cooling consists of removing the most energetic particles from
a trapping potential. In a confinement of finite depth, collisions between trapped particles
redistribute the energy, which can lead to losses if one of the particles can gather enough
kinetic energy to overcome the trap depth. Thereby, the most energetic atoms will tend to leave
the trap. By removing the high energy tail of the thermal distribution, the distribution of the
remaining ensemble will have less energy and therefore relaxes towards colder temperatures
after rethermalization. As a consequence, contrary to Doppler cooling for example, evaporative
cooling relies on the atom losses to reach colder temperature and attain the quantum degeneracy.
The quantum degeneracy regime is reached when the central PSD (Phase-Space Density) '#
exceeds unity. While a complete quantitative treatment of this out-of-equilibrium process
is very challenging, several quantitative models highlighting the key parameters have been
successfully developed [121-123]. In order to characterize the evaporation efficiency, one can

4Defined as PSD = nolgB, where Agg = f1\/27/mkgT is the De Broglie wavelength and represents the spatial
extension of the particle wavepacket, while ng denotes the peak spatial density. For a classical gas, the spatial
extension of the particles is much smaller than the typical interparticles distance while in the degenerate regime,
the extension of the particle wavefunction becomes comparable to the interparticle distance.
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o estimates and represents how many atoms need to be sacrificed to increase the PSD by one
order of magnitude thanks to evaporative cooling. The higher the «, the less atoms need to be
expelled to reach the quantum degeneracy. Atoms with a kinetic energy close to the trap depth
can escape from the trap. This process, called spilling occurs without any collisions and thus
limit the evaporation efficiency. For a sufficiently low trap depth, close to the temperature of
the atomic cloud, losses can be dominated by spilling, thus making the evaporation inefficient.
On the other hand, for a trap too deep, the probability of atoms gathering enough kinetic
energy to leave the trap will be too low, thus making background collisions losses prevalent.
Consequently, trap depth must be careful tuned during any evaporative process to accompany
the evaporation. In the case of a quadrupole trap, one can selectively flip the spin of the most
energetic atoms to a high-field seeking state instead of lowering the magnetic trap depth, which,
due to the reduced steepness, would decrease the spatial density. By doing so, the affected
atoms will experience an anti-trapping potential and leave the trap. In case of *°K, a MW
signal drives the F =9/2 — F = 7/2 transitions (see fig. 2.13). The energy splitting of the
transitions [9/2,9/2) — |7/2,7/2) and |9/2,7/2) — |7/2,7/2) increases as a function of the
magnetic field up to 300G (for the transition [9/2,7/2) — |7/2,5/2), it increases for magnetic
fields up to 250G). As a consequence, for small values of the MW knife, one will probe the
wings of the atomic cloud and remove the most energetic atoms. Then, by increasing the
frequency of the MW signal, one will expel atoms that are closer (and thus colder) to the
trap center. In the Fermix experiment, the MW signal is generated by the SMB100A from
Rohde&Schwarz and emitted by an antenna located close to the science cell (see fig. 3.1). The
MW evaporation lasts 4s, during which the MW frequency is decreased from 1.150GHz to
1.270 GHz. Using the Breit-Rabi formula, one can convert the initial and final MW frequencies
to determine the corresponding resonant magnetic field B, and by extension the equivalent
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trap depth kg Tcut = U Beut:
hvew = E(|7/2,7/2),Bcut) —E(|9/2,9/2), Beyt)-

Here, E denotes the energy of the corresponding Zeeman sublevel at the magnetic field B, and
can be computed using the Breit-Rabi Formula. At the trap center, the magnetic field (and the
temperature Tgy) is null and the energy splitting between |7/2,7/2) and |9/2,9/2) corresponds
to the hyperfine splitting of 1,2858 GHz. The initial (resp. final) MW frequency corresponds
to an 1nitial trap depth of kg x 3.7mK (resp. kg X 430uK), reducing the atom number from
around 8.0 x 108 to 4.5 x 107 and the temperature from around 200uK to 70K (increasing
the PSD to about 2.0 x 10~%4). For the early stage of the evaporation (up to 1260 MHz), the
efficiency is @ = —1.49 +0.05 (see fig. 2.14). The evaporation’s low efficiency is due to a low
collision rate that cannot be enhanced by the use of Feshbach resonances [124] combined to
the very high trap depth compared to the cloud temperature. Nonetheless, at the end of the MW
evaporation, the conditions are met for an efficient transfer and the atomic cloud is moved into
an optical dipole trap, offering the possibility to tune the interaction strength and the density of
the cloud to reach the quantum degeneracy. Over the course of this thesis several upgraded and
modifications had to be implemented around the science cell, such as the complete rebuild of
the optical dipole traps, had to be performed in order to produce a deeply degenerate Fermi gas.
As a consequence, those changes as well as the new procedure for the production of a deeply
degenerate Fermi gas of “°K will be the focus of the following chapter.
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Following the MW evaporation, we transfer our atomic cloud from the quadrupole trap to
an optical dipole trap in which successive evaporative cooling stages will take place in order
to reach quantum degeneracy. In this chapter, after highlighting the numerous modifications
implemented to take advantage of the large optical access provided by our science cell, we will
describe the different steps necessary to control, manipulate and produce a quantum degenerate

Fermi gas of K.

3.1 Experimental apparatus surrounding the science cell

Despite the large access provided by our science cell, numerous modifications needed to be
carried out in order to implement the optics necessary for the realization of a strongly interacting
1D Fermi gas. To begin with, both optical dipole traps were upgraded, freeing up the optical
access available while at the same time increasing their stability. Moreover, all imaging systems
were rebuilt, improving their limit of resolution and making the visualization of the lattice tubes

possible. Finally, additional hardware was added to generate the lattice tubes and to project
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Fig. 3.1 Schematics of the hardware surrounding the science cell. The ODT1&2 are sent
on the atoms under an angle of 69° with respect to the y—axis. The two antennae called
MWA and RFA emit the microwave and radiofrequency pulses used to excite magnetic dipole
transitions. Magnetic field are generated by the Inner (IC) and Outer (OC) pair of coils.
Finally, an optical mask and light coming from the OP-HP outcoupler are used for the optical
pumping at high field. Principal optical elements: ODT1/2: optical Fibers LMA-PM-10 from
NKTPhotonics. SK1/2: fiber outcouplers model 60FC-SMA-0-M30-37 and 60FC-0-A11-03
from Schifter-Kirchhoff.

custom potential onto the atoms. The figure 3.1 depicts our current optical and MW/RF signal
apparatus surrounding the science cell:

Optical dipole traps. The optical confinement is ensured by two Optical Dipole Traps (ODTs):
the main ODT (called ODT1) that is directly loaded from the quadrupole trap while the second
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ODT (called ODT2) is used to provide an additional confinement to increase the density and
the collision rate during the latter stage of the optical evaporative cooling. Both dipole traps are
generated by the same source: a 16 W ! laser with a wavelength of 1064 nm from the company
Innolight (model Mephisto MOPA 25W). After the laser head, the optical beam is separated to
generate the light for the ODTs 1&2. Once split, both beams are sent through separate AOMs
(allowing the independent power regulation of each dipole trap), before being guided to the
main table by means of a high-power-single-mode crystal fiber (detailed description of the
apparatus is provided in sec. 3.2 and represented in fig. 3.4). In order to maximize the overlap
between the trap volume of the quadrupole and the optical traps, a waist of less than 60 um is
necessary for the latter due to its limited available power (maximum 7 W). Moreover, because
of the geometry of the coils installed around the science cell, propagating an optical beam
on the atoms with a focusing lens whose focal length is below 150mm is very challenging
since the optics necessary for the propagation would greatly reduce the available optical access.
Consequently, for the ODT1, the fiber output is attached to a Schifter-Kirchhoff fiber collimator
with an effective focal length of 30 mm (model 60FC-SMA-0-M30-37) which generate a colli-
mated beam with a diameter of 4.6 mm. The optical beam is polarization cleaned before being
shined on the atoms with a 200 mm focusing lens, creating a dipole trap with a 39 um waist and
a maximum trap depth of roughly kg x 350 uK when used at full power (7 W). Intensity control
of the dipole trap is ensured by two fast photodiodes (one used when high power is required for
the ODT1 while the second one is employed for the low power regime), picking up the laser
light transmitted through a mirror and acting as a feedback signal to a PID controller (model
SIM960 from Stanford Research Systems) connected to the corresponding AOM. In order to
maximize the available optical access along the x-axis (orthogonal to the transport direction as
represented in 3.1), the ODT1 is sent into the science cell under an angle of 69° with respect to
the transport direction (that we will call y-axis). The pointing of the optical beam is stabilized
and controlled by a piezoelectric actuated mirror mount from Newport. The ODTs 1&2 being
built symmetrically with respect to the transport, the ODT?2 is also shined on the atoms with an
angle of 69° with the y—axis. A 300mm lens focuses the beam on the atoms. The maximum
power available is 3.0 W which, combined with the 110 um of the waist, offers a maximum trap
depth of 19uK. As for the ODT1, a fast photodiode provides the feedback signal to regulate
the power intensity of the dipole trap thanks to a SIM960 PID controller connected to the
dedicated AOM and the pointing stability is ensured by a piezoelectric actuated mirror mount.

Furthermore, to avoid interference between the two dipole traps, their respective polarization

'Due to aging of the laser over the years, the current maximum power output of the Mephisto is reduced to
65 % of its original capacity
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Fig. 3.2 Overview of the MW/RF hardware. All signal generators are controlled via GPIB
during early stage of the sequence and triggered during the desired sequence step with TTL
signals. Signal Generators: MW1: Rohde&Schwarz model SMB100A, MW2: Keysight
Technologies model 33600A, RF1/2: Stanford Research Systems model DS345, RF3: Agilent
Technologies model MXG ATE N5161A. Switch: model ZASW-2-50DR+ from Minicircuits

are kept orthogonal and opposite orders of diffraction were chosen for their AOMs.

Microwave and radio-frequency system. Two new antennae, whose dimensions match the
dimension of the science cell, were installed in its vicinity (see fig. 3.1). They are used to
manipulate the internal structure of the atoms thanks to magnetic dipole interactions when
electric dipole transitions are forbidden due to the associated selection rules (AL = 4-1). The
first antenna, located on the same side as the optics used to propagate the ODT1 (see figure 3.1)
and called MWA, is optimized for MW signals and is used to directly transfer atoms from one
of the hyperfine sublevel of the groundstate to the other (during the MW evaporation described
in sec. 2.10 for example). As such, the MWA antenna is mostly used with MW signals with
a frequency close to the “°K groundstate hyperfine splitting of 1.2858 GHz. Contrary to the
MWA antenna that has a single winding, the second antenna (called RFA antenna), is a multiple
loop antenna used for modifying the internal state of an atom from one Zeeman sublevel to a
targeted sublevel within the same hyperfine manifold. It is optimized for frequencies comprised
between 5SMHz and S0MHz (for manipulation of the relative spin population of [9/2,—-9/2)
and |9/2,—7/2) at any magnetic field up to 230G for example). Several MW and RF sources
are used to generate those AC signals. They are computer controlled via GPIB connection and
are directed to high attenuation switches before being sent to power amplifiers and to their

dedicated antenna. Finally, to protect the amplifiers from potential back reflections from the
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Fig. 3.3 Schematics of the main coil arrangement. The inner coils (in orange) can be used
to create either a magnetic bias field of 8.0G.A~! or a gradient of 2.5G.A~!.cm™! thanks to
two power supplies: High Finesse USC 30/15 and Delta Electronica SM45-140. The outer
coils (in purple) can be used to create either a magnetic bias field of 2.05G.A~! or a gradient
of 0.24G.A~".cm™! thanks to two Delta Elektronika (model SM 30-200) power supplies in
parallel. Each square represents the cross-section of the hollow copper wire of 4 x 4mm?.
Figure style adapted from [77] and [74].

antennae, additional circulators are installed (see fig.3.2).

Magnetic Fields generators. A schematic view of the coil’s arrangement near the science cell
is provided in fig.3.3. It is composed of two principal pairs of coils (called inner and outer
coils) aligned along the vertical direction (called z-axis) and used to create either a gradient
or a bias field on the atoms [71, 72]. The inner pair of coils has a inner (resp. outer) diameter
of 40mm (resp.71.6mm). The two coils are separated by 35 mm along the vertical direction.
They generate either a gradient of 2.50G.cm™'.A~! or a bias field of 8.05G.A~! (with a
curvature of 0.31 G.cm~2.A~!). The current circulating through the pair in either Helmholtz or
anti-Helmbholtz configuration is provided by a high power DC supply from Delta Electronica
(model SM45-140) which can provide up to 140 A. By switching the configuration of the
dedicated IGBTs, the inner coils can be connected to another power supply, the model UCS
30/15 from High Finesse, which despite being less powerful than the Delta Electronica power
supply (the High Finesse can only deliver up to 30 A), is much more stable (the current stability
is around 10~ while the current stability of the Delta Electronica is around few 107%). As
a consequence, by using the High Finesse, one can create a bias field of up to 240G, which
is enough to reach the s-wave Feshbach resonance between |9/2,—9/2) and |9/2,—7/2) at
201.2G [125, 126]. Because of the positive curvature of 0.31 G.cm™2.A~!, a weak repulsive

harmonic confinement is located at the center of the coil arrangement in addition to the bias
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field.

The outer coils are aligned along the z-axis and encircle the inner coils due to their inner and
outer diameter of 72.5mm and 89.7mm. In Helmholtz configuration the outer coils generate
a bias field of 2.05G.A~!. In this situation, the pair of coils additionally create a negative
curvature of —0.026G.cm~2.A~!. Consequently, if necessary one can use the two pairs of
coils at the same time in Helmholtz configuration. In this case, both bias field will add up.
Moreover, due to the opposite sign of the two curvatures, one can completely cancel the
resulting curvature by choosing the appropriate value for the current circulating through the
two pairs (Ioyter = 11.9 linner). Finally, in anti-Helmholtz configuration the gradient created has
a steepness of 0.24G.cm~'.A~!. Both pairs of coils are water cooled in order to dissipate the
heat generated by the current circulated through them during extended period of time (up to
several tens of seconds). In addition to those two principal pairs of coils, five additional coils
are located next to the science cell to compensate all stray DC magnetic fields occurring in its
vicinity. Originally, those compensation coils were large square coils located away from the
cell. They were eventually replaced to allow the installation of both our new imaging systems
and the breadboard dedicated to the lattice tube. Information regarding the design of those new
compensation coils can be found in [74].

New imaging systems. In order to obtain the atomic cloud properties, we perform absorption
imaging. To this end, three pictures are necessary: first, an absorption shot during which the
atoms will absorb and scatter photons. Secondly, an exposure shot of only the resonant imaging
light, which provides the imaging beam in the absence of any atoms. Finally, a dark shot is
recorded in absence of any imaging light in order to isolate the ambient noise as well as the
noise of the camera. The duration of the imaging pulse was reduced to 20ps, instead of the
original 80us and the intensity to 7 = 0.1 x Is5>. A more detailed description of the working
principle of absorption imaging can be found in appendix A.

Around the science cell, three different new imaging systems with different purposes and
magnifications were installed. Apart from the system installed along the y-axis, all pictures are
recorded thanks to a scientific CCD camera operating in double shutter mode from PCO (model
Pixelfly QE 270XD). Its quantum efficiency for °K, whose imaging wavelength is at 767 nm,
is 25 %. This sensitivity is sufficient for imaging systems with low enough magnification and
with high enough signal to noise ratio. For our experiment, this is true until the latest stage

of evaporation in the cross dipole trap when the atom number drops below few 10° per spin

2The original duration as well as the optical intensity of the imaging light were found to be too high. Due to
the excessive intensity, all resonance imaging characterization were Doppler-broadened. Moreover, due to the
ensued undue optical pumping, the recorded atom number for atoms in a atom in a Zeeman sublevel that offered
no closed transition was severely inaccurate.
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state. Since for the lattice, we expected to load around few 10° 4°K per tube and would need a
magnification of 15 with the pixelfly to decently resolve the tubes, we decided to install a more
sensitive camera along the transport direction (more details are provided in 5.3.2 ).
X-imaging. Our primary imaging system is aligned with the ODT1 and is called x-imaging. Two
lenses with a focal length of 150 mm are installed in the so-called 4-f configuration providing
a magnification of M = 1. This low magnification is particularly useful to image the cloud
at the earlier stage of the experiment when it is still relatively hot (for example after the MW
evaporation) and expands quickly during a time of flight experiment. As such, it is used as an
important diagnostic tool to optimize the transport, the MW evaporation and the loading of the
ODT1. When the atomic cloud is confined in the single ODT1, it also benefits from a very high
signal to noise ratio, the atomic signal being integrated along the entire length of the single
dipole trap. Due to the direction of propagation of the imaging beam being perpendicular to
the vertical quantization axis of the atomic cloud, the light polarization cannot be purely o™
or 0~ . More precisely, considering the horizontal polarization of the light field, the resulting
polarization along x-imaging is an equal superposition of both o+ and o~. As a consequence,
using closed transition to image atoms in a stretched Zeeman states is only possible in presence
of a high bias field and the value of the theoretical cross section o = % =2.81x10"8Bm?
must be multiplied by a correcting factor. At high field, due to the superposition of polarization
this correcting factor is simply equal to 0.5 while at low field it is equal to 0.4 (more details
about absorption imaging can be found in Appendix A).

Y-imaging. The transport axis, called y-imaging, is the favored direction to image the density
distribution of the atomic sample once loaded into the our new optical lattice. Given the large
lattice spacing of 2.3 um, optics with a moderately high Numerical Aperture (NA) needed
to be implemented in order to image the individual tubes with a sufficient contrast. To this
end, a commercial objective (model LMPLNI10XIR from Olympus) with a NA of 0.3 (and
an associated optical resolution of 1.6um 3) was installed. This imaging system has a total
magnification of M = 33 and a highly sensitive CMOS camera from Andor (model iKon-M
934 with a quantum efficiency of roughly 95 % at 767nm ) is used to record the weak atomic
signal. Due to the direction of propagation of the imaging beam, using closed transitions for
atoms in a stretched state are also only possible in presence of a strong bias field. Details about
this new imaging are provided in 5.3.2.

Z-imaging. Aligned with the quantization axis of the atoms, the vertical imaging is the only
direction that can produce pure 0" or o~ light along the magnetic field direction. Therefore, it
is the only imaging system allowing the optical pumping or imaging of atoms in a stretched

state on a cycling transition even for low magnetic field. As such, this direction is mostly

3This theoretical resolution of 1.6um was also measured using a resolution target as explained in sec 5.3.2.
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used for optical pumping at low and high magnetic field. Nonetheless, z-imaging can also be
used to observe the lattice structure thanks to the high signal to noise ratio (the signal of the
atoms inside the tubes will be integrated along the entire length of the tube, thus providing a
better signal to noise ratio compared to the transport direction for example). Consequently, a
homemade objective with a NA=0.23, which corresponds to a resolution of 2.0, was installed
as well as a high magnification M = 15 optical system. A demagnification stage was also
installed to be able to image the cloud after the MW evaporation, facilitating the alignment
of both dipole traps in the xy-plane. In order to image and manipulate both negative and
positive Zeeman sublevels, the polarization of the optical beam can be tuned by rotating a

quarter-waveplate to produce pure o or o~ light (further details are provided in sec 5.3.1).

2D optical lattice. In order to study the behaviour of fermions in one dimension, a two di-
mensional lattice was set. The lattice is created by two pairs of far off-resonant optical beams.
Those Gaussian beams have a wavelength of 1064 nm and intersect on the atoms with a full
angle of 27°. Each individual beam has a waist of roughly 210 um and a maximum trap depth of
kg x 14K when used at full power (8§ W). A single laser source is used to generate those four
arms: a S0 W MOPA system from AzurLight. This main laser first produces two independent
beams that will be propagated on the lattice breadboard via two high power fibers (x-and
y-lattice). Once on the breadboard, each beams is split to generate the two pairs of lattice beams
before being send downwards in pair of two towards the atoms, generating the 2D lattice. The
2D lattice is the main focus of the section 5.2.

High-field repumping. In order to observe the physics of the individual tubes along the y-
direction, one has to isolate a single tube along the integrated direction of imaging. Thus, a
repumping beam is shone onto the atoms perpendicularly to the y-imaging, transferring atoms
into the upper groundstate hyperfine manifold, making them invisible when illuminated with
resonant light during the high field imaging around 210G. To isolate one layer of tubes, the
repumping beam first illuminates a small rectangular mask, which is then imaged onto the
atoms with a width smaller than the distance between two tubes. Moreover, an additional
mask with rectangular mask of variable width can also be inserted. With a projected width on
the atoms comprised between 2.4 um and 12 um, it can be used to image few layers of tube.
Realized in a clean room, it is made of chromium and gold. The gold deposit (with a thickness
of roughly 150nm) is used to reflect the incoming light in order to not deteriorate the chromium
deposit. Due to the small depth of field of the objective along the transport direction, one can

only correctly imaged pattern with a 2.5 um witdh on a distance of roughly 16 um along the
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y-imaging direction. After that blurriness of the periodic pattern starts to occur. Further details

are available in sec. 6.4.

3.2 Transfer to the optical dipole trap

3.2.1 Optical trapping of neutral atoms

Ever since the first use of a laser light to confine atoms [28], optical trapping and cooling
became one of the most standard techniques to cool down atoms and reach quantum degeneracy.
One of its main advantages compared to magnetic trap, is the possibility to trap atoms in any
Zeeman sublevel of the ground state. Moreover, one can take advantage of Feshbach resonances
to tune freely the collision rate between particles.

In presence of an inhomogeneous light field, atoms will experience an induced dipole moment
d oscillating at the driving frequency wy, of the incoming light [127]. It results in an electric
dipole interaction between the induced atomic dipole moment and the electric field of the laser
source E. The intensity of the interaction depends of the complex polarizability o(wr ) (defined

such as d = o (w )E) of the atom and the light source intensity [91]:

1
Udip(r) = FOCRG[OC(WL)] x I (r), 3.1

where I (r) denotes the light intensity at the position r. Using the semiclassical approach [127],

one can determine the complex polarizability and obtain the following expression of Ug;p:

3nc* (T r 3nc* T
Udi = X I ~ — X I 3.2
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with A = wy —w being the detuning between the far-off resonance laser and the atomic transition
wo. Similarly, the scattering rate can also be determined, using the imaginary part of the complex
polarizability and yields: )
2

Faip(r) = ;f—;g <£> (). (3.3)
Due to the intensity of the light shift varying with the light intensity (see eq. 3.2), depending on
the sign of the detuning A, one can create an attractive potential for neutral atoms by creating a
position dependent light field intensity. More precisely, for red-detuned light, the atoms are
attracted by an intensity maximum. Moreover, since the scattering rate scales as /A while the
dipole potential only scales as I/A (see eq. 3.2 and 3.3), one can create deep optical potential
while keeping the scattering rate to a minimum by simply using a high intensity laser beam with

a large detuning. This model, valid for an atom represented as a 2-level system can be modified
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to take into account the multi-level structure of atoms, such as alkali metals [127]. Still, for an
alkali and a far-off resonant lasers with respect to the D-line doublet 25, /2 —2 P /2,2P3 /2, the
expressions 3.2 and 3.3 give an accurate approximation of the light shift Ug;, and the scattering
rate experienced by an atom in any Zeeman sublevel |F, mg) of the hyperfine groundstate. In
order to create a position dependent light gradient, one can use a focused Gaussian laser beam

of waist @y on the atoms. In this case, after the focusing lens, the intensity Iy (r = (x,y,z)) is

)
L) = 22 exp( 2r ) (3.4)

T 102(z)  \02(2)

given by:

Here, P represents the total power of the Gaussian beam while ©(z) = @/ (1 + (z/z:)?)
denotes the value of the beam radius at the position z along the propagation axis z of the laser
(with z; = 7ra)02 /AL being the Rayleigh range of the beam). In the vicinity of the waist @y
(r= \/)ﬁy2 < @, and 7 K< z;), one can realize a Taylor expansion of eq. 3.4 to the second
leading order to obtain the following harmonic approximation for the trapping potential Ug;p (r):

1
Udip(r) = Udip(0) + 5 m (02 + o)y* + 022%) . (3.5)
Udip(0) is the trap depth of the optical potential. The transverse and axial trapping frequencies

Z.
ODT1 and ODT?2 of FerMix (represented in fig. 3.1), the trap depths at full power (7W
and 3W) are kg x 350uK and kg x 19uK respectively and the corresponding transverse and

are respectively defined as ®; = @, = /40Uy /ma)g and O =0, = 2Uy/mz2. For the

axial trapping frequencies are @, = 27w x 2.2kHz (resp. 27w x 180Hz for the ODT?2) and
o =27 x 13Hz (resp. 27 x 0.40Hz). Details concerning the experimental measurement of

the trapping frequencies can be found in Appendix A.

3.2.2 Laser setup of the two ODTs

The laser setup used to generate both optical dipole traps was briefly described in sec. 3.1.
Originally, both dipole traps were generated using a common AOM: the diffracted order was
directed into a high power fiber before being send onto the main table and the atoms while the
non-diffracted, zero order beam was recycled and guided towards a second AOM before directly
heading towards the science cell [72]. Consequently, due to the interconnection between both
optical traps, one had to wait for the main ODT1 to be weak enough before ramping up the
ODT?2 to obtain enough additional confinement. Another technical limitation occurred from
the use of a large aperture high-power AOM (model MCQ80-A2.5-L.1064, from AA Opto-
Electronic with a aperture of 2.5mm X 2.5mm). Because of its large aperture, the AOM needed
15W of RF power to reach the maximum diffraction efficiency, which, due to the dissipated
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Fig. 3.4 Schematics of the main dipole traps setup. The Mephisto laser (16 W of maximum
power) is splitted thanks a polarized beam splitter cube, after being directed to a convex lens f1
to recollimate the output beam, generating the ODT1 and the ODT2 laser beams. Each beam
is then rerouted to an AOM before being sent to a dedicated high power fiber. To prevent any
damage of the main laser due to back reflexion, an optical isolator is located right after the
Mephisto output. Optical elements: OI (optical isolator) from EO Tech, ODT1 and ODT2
AOMs 80MHz AOM from Gooch&Housego, model 3080-197, f1: 400 mm convex lens from
Lambda Research Optics (LRO), model VAR2-R1064-PCX-25.4U-400, f2: —300 mm concave
lens from LRO, model VAR2-PCC-25.4U-(FL-300)-1064, f3: —1000mm concave lens from
LRO, model VAR2-R1064-PCC-25.4U-500, SK1 and SK2: fiber collimator f = 11 mm from
Schifter-Kirchoff, model 60FC-SMA-T-4-A11-03, ODT1 and ODT?2 fibers: large mode area
high power fibers from NKT Photonics, model LMA-PM-10.

heat, caused permanent pointing drifts issues with the ODT1 but more importantly with the
non-fibered ODT?2. To avoid those issues, a new optical system was designed (see fig. 3.4).

As briefly described earlier, the 16 W main laser source, coming from the Innolight Mephisto
MOPA 25W is (after a collimation lens) split thanks to a polarization beam splitter into
the ODT1&2 path. A simple half waveplate allows the tuning of the ratio between the two
intensities. The two splitted beams go through high powers AOMs (model 3080-197 from
Gooch&Housego) that act as fast switches while regulating the optical power of the ODTs
thanks to the control of their respective RF power. Finally, after some final beam shaping,
the two diffracted beams are sent through high power fibers (model LMA-PM-10 from NKT-
photonics). Both fibers are terminated with a 5° angle SMA connector (to avoid degradation
of the laser induced by potential back reflection) and a copper heat sink to dissipate the non
coupled light. In addition, the fiber is protected with a stainless steel tube in order to reduce
power fluctuation caused by thermal drift as well as limiting potential damage due to mechanical

stress. Finally, the laser system is contained in an aluminum enclosure, thus protecting it from
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Fig. 3.5 Principle of our regulation system. (a) A photodiode picks up a reduced fraction
of the power of the optical beam. The photodiode signal is used as an input signal for a PID
regulator, while the instruction signal is provided by Cicero. The output signal of the PID
finally acts as a regulator for the RF driver of the AOM, thus regulating the diffraction efficiency
of the AOM. (b) typical regulated signal (blue) of our dipole traps for a 100kHz instruction

signal (red).

turbulence and temperature fluctuation.
After the output of the two fibers both beam are sent towards the atoms and intersect under an
angle of 138° as described in sec. 3.1. The intensity regulation of both beams is ensured by the
PID controller SIM960 from Stanford Research Systems: an analog setpoint is first given by
the analog channel of the NI card (as illustrated in fig. 3.5). A small fraction of the beam that is
transmitted through a mirror serves as a picked up signal for a photodiode. The photodiode
provides the necessary feedback for the active control of the optical power and is connected to
the input of the PID. Finally the output, regulated by the PID, acts as the analog input of the RF
driver (model MODAO8O from AA Opto-Electronic) used as a RF source for the AOM. The
bandwidth of the system is 100kHz (see fig. 3.5). Due to the range of the ODT1 optical power
explored during the evaporation stage (3 orders of magnitude), a simple linear photodiode
was used for the feedback signal of the PID controller. Unfortunately, for the latest stage of
evaporation, because of the finite resolution of the analog card *, the evaporation ramp was
becoming noticeably discrete for optical power below 100mW, which caused massive atom
losses (of up to 50%) and prevented any efficient evaporation. To circumvent this problem,
one could use a logarithm photodiode or install a voltage scaling converter to make use of the
full range of the NI analog card (the analog setpoint required is comprised between 0V and
10V only). However, by implementing those approaches, we noticed that they increased the

4Our analog card (model NI PXI 6713) can produce a DC signal between —10V and +10V with a 12-bit
(=4.9mV) resolution, which was equivalent to 2.5mW of optical power for our ODT1.
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electronic noise and didn’t increase the evaporation efficiency for low optical power. We thus
set a second PID and an additional photodiode in parallel. This parallel regulation system also
has its own dedicated analog channel. The first PID and first photodiode, would be used for
regulating and ramping the ODT1 for high power (down to roughly 500 mW, which is well
above the resolution limit of the first photodiode) while the second photodiode (with a higher
gain) and the additional PID would regulate the ODT1 for optical power below 500mW. An
analog IC switch handles the alternation between both PID controller.

3.2.3 Loading of the optical dipole trap

As described in sec. 2.10, after the MW evaporation, the atoms are transferred into an optical
dipole trap. During this first step of evaporation in the quadrupole trap, the ODT1 is already
switched on to full power > and the total potential is equal t0 Usoq(r) = Umag (r) + Udip (r) + mgz,
where Upag(r) and Ugip(r) represent the quadrupole potential and the optical trap as defined in
equation 2.1 and 3.5 while mgz denotes the gravitational potential. The center of the ODT1
is located approximately two waists @y (80um) below the center of the quadrupole trap to
avoid enhancing Majoranana losses during the MW evaporation by accumulating atoms in
the central region (which would occur if the center of the two traps coincided). To this end,
after reaching the end of the MW evaporation the steepness of the quadrupole confinement
is adiabatically reduced from 250G.cm™! to 5.1G.cm~! in 800ms. Two pairs (along x and
z) and one single coil (along y) are used to prevent the center of the magnetic field to move
during the quadrupole trap opening by compensating any ambient parasitic field. The levitation
threshold of 4°K to compensate gravity being equal to 7.1G.cm™! (respectively 9.1 G.cm™!
and 12.8G.cm™) for atoms in the |9/2,9/2) Zeeman sublevel (respectively |9/2,7/2) and
19/2,5/2)), the atoms will progressively leave the magnetic quadrupole and accumulate into
the ODT1. The efficiency of the loading into the dipole trap is an intricated problem that
depends on a correct mode matching between the two traps volume and the collisions between
particles. A detailed analysis of the loading is provided in both [128] and [77]. Experimentally,
we managed to load around 25 % — 30 % of the atoms which corresponds to typically 107 atoms.
After loading the ODT1, we wait 50ms for the atoms to thermalize and to settle completely
into the ODT1 before performing any optical evaporation. The equilibrium temperature of

30uK gives us a high initial ratio trap depth over temperature 1 = Ugip(0) /kgT = 11.5.

SWhile the atoms are too hot to notice the presence of the optical potential during the early stage of the MW
evaporation, switching on the dipole as soon as possible during the sequence and not right after the end of the MW
evaporation increases its power stability.
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Fig. 3.6 Efficiency of the optical evapora-
tion. After the loading of the main dipole
trap, the trap depth is progressively lowered
from kg x 350uK to kg x 45uK in 4s to en-
hance the evaporation of the atomic mixture
of mg =9/2,7/2,5/2. The efficiency of the
first optical evaporation o = 3.67 is much
greater than the previous MW evaporation but
is reduced at the end of evaporation due to
the low collision rate (the atomic density be-
ing reduced during evaporation, the collision
rate keeps decreasing as well). Data adapted
from [79].

3.3 Optical evaporation in a single ODT

The first stage of optical evaporation is performed in the single ODT with a mixture of “°K
in the positive states (|9/2,9/2),19/2,7/2) and |9/2,5/2)) with a large majority (> 80 %) of

the atoms in the two most energetic Zeeman sublevel. Prior to evaporation, the role of the

inner and outer pairs of coils are flipped: the outer coils are used to create a magnetic gradient
of 5.1G.cm™! while the inner coils, previously employed to generate the strong quadrupole
field during the MW evaporation, now generate a bias field of 3.0G. This allow us to make use
of the high stability of High Finesse for the generation of our bias field. While such stability
isn’t necessary for low magnetic field, it is crucial at high magnetic field when one wants to
explore properties of a Fermi gas at unitarity. This small bias field is sufficient to maintain the
quantization axis and is small enough to avoid both the d-wave Feshbach resonance between
19/2,9/2) and |9/2,7/2) located around 8.0G and the strong inelastic losses occurring from
15G ©. At this bias field, due to the absence of resonances between the various states, the
interaction strength is set by the s-wave singlet and triplet scattering length: a; = 104.41ag and
a;y = 169.67ag [129] (more precisely, for a mixture of [mp = 9/2) and |mp = 7/2), collisions
are completely dominated by the triplet channel [84]), where ap ~ 0.53nm is the Bohr radius.
To enhance the evaporation, the trap depth is exponentially lowered in 4 s from kg x 350uK to
kg x 45uK (which corresponds to an optical power of 0.8 W on the atoms). Prior to evaporation,
the magnetic gradient is also marginally increased to 6.2G.cm™!, thus providing an additional
confinement in the axial direction with an angular frequency Wma.e = ub/4mzo (where p de-
notes the magnetic moment of an atom in a given Zeeman sublevel and zp = 80 um represents

the distance between the atom and the magnetic center). At the end of evaporation, one is

SExperimentally, we noticed losses of 25 % of our atomic sample after 4s of waitime of 15G while the lifetime
in the dipole trap exceeds 180s at 3G.
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left with typically 2.0 x 10° atoms at a temperature of 4.0uK, increasing the PSD by nearly
two order of magnitude over the course of the evaporation (in an harmonical trap, the PSD
scales as NT ). At this stage of evaporation, the spin composition, obtained thanks to a
Stern-Gerlach imaging, is 55%1(9/2,9/2),33%19/2,7/2) and 12%19/2,5/2) and our atoms
in the [9/2,9/2) sublevel are degenerate with a temperature 7 = 0.7 T = 4.0 uK. T denotes the
Fermi temperature. For a sample of Ny, atoms in a given spin state |@), confined in an harmonic
trap of mean trapping frequency @ = (a)xwywz)l/ 3. it is given by kpTg = (6Na)l/ 3h®’. The
figure 3.6 and [79] depict the efficiency of the optical evaporation in the ODT1, which is
much greater than the efficiency in the quadrupole trap (Qopt = 3.67 > amw = 1.49). At this
stage, the trap depth of ODT2 is enough to provide a meaningful additional confinement. As a
consequence, we load a cross optical dipole trap, thus increasing the spatial density. Collision
rate is further increased by transferring the atoms to the lowest Zeeman states to make use of

the s-wave Feshbach resonance between the two lowest Zeeman states.

3.4 Landau-Zener transfer to the negative states

In order to enhance our optical evaporation efficiency, we would like to transfer the atoms into
the negative Zeeman states of the F = 9/2 manifold. Due to the selection rules, one cannot
easily use electric dipole transitions to transfer the atoms in a given manifold F' to a targeted
states inside the same manifold thanks to a laser light 8. Nonetheless, one can use magnetic
dipole transitions. The strength of magnetic dipole transitions are typically several orders of
magnitude smaller than their electric counterparts (by a ratio (2/ a)z ~ 10°, with « being the
fine structure constant) [130] and yield different selection rules. While electric dipole transition
can only couple states of different parity (AL = +£1), magnetic dipole transitions only have a
non-vanishing matrix element between two states of the same parity (AL = 0) and with the
same principal quantum number n. Moreover, when considering the total electronic angular
momentum, the selection rules follow: AJ = 0,41 (except for a transition fromJ =0toJ=0)
and Amy = 0,4+1.

Transfer from a Zeeman state |g) to a neighboring state |e) using magnetic dipole transition
can be achieved by applying a 7t-pulse: a resonant MW pulse(for targeted states in different

"However, evaporative cooling in the single ODT can still be carried on by further lowering the trap depth.
Unfortunately, contrary to the MW evaporation, the collision rate is not constant during an optical evaporation
due to the confinement being reduced alongside the trap depth (@, o< V/IL). The low density in the single ODT
(resulting from the weak axial confinement) combined to the rather small scattering length prevent an efficient
evaporation for temperature below 1.0uK. Depending on the initial condition, one can at best reach in our single
ODT 10° atoms at a temperature of 0.8 uK= 0.57.

8While this is true for one-photon transitions, one could think of implementing two lasers and drive raman
transitions to circumvent this issue.
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hyperfine manifolds, but with the same principal quantum number) or RF pulse (for targeted
states inside the same manifold) radiated onto the atoms for a duration 7 = 7/Q, with Q being
the Rabi frequency. 7t-pulses require a very stable magnetic field for the splitting between the
two states to be constant both during the entire duration of the pulse and from an experimental
sequence to the next. A possible way to circumvent potential issues arising from magnetic
field fluctuations is to perform a so called Landau-Zener adiabatic passage between the two
states [131-133].

Following the approach developed in [134], we represent an atom as a two level system
{|g),le)}. In presence of a external field, the new eigenstates |+) and |—) of the coupled

atom-field Hamiltonian are given by:
|+) =sin6|g) + cos O|e)

and

|—) =cosB|g) —sinB|e)

where 0 represents the Stiickelberg angle which, for a detuning A from the addressed transition,
is defined as tan26 = —Q /A. The adiabatic passage is made possible by the coupling to the field
which causes an avoided crossing between the eigenergies of the coupled Hamiltonian [134]. If
the chirp is started far below the resonance (A < —Q), the phase angle 6 ~ 0 and |—) ~ |g).
As the detuning is slowly increased from A < — to A > Q, the atom adiabatically follow and
remains in |—). Once the sweep ends far above resonance, A > Q, the phase angle increases
to 0 ~ /2 and thus, |—) ~ |e). As a consequence, the coupling between the atoms and the
electromagnetic radiation allows one to adiabatically exchange the entire population from
the state |g) and |e). On the other hand, when the chirp is infinitely fast, the atoms will not
tunnel through the avoided crossing and thus remain in their initial state. The Landau-Zener
formula expresses the probability for an atom to follow the dressed state and successfully being

transferred from a given state to another:

nQ?
Ptranszl_exp(_2|aA|)' (36)
3

The advantage of Landau-Zener adiabatic passage lies in the possibility to start and end the
sweep far away from resonance, thus making the chirp range much larger than any magnetic
field fluctuation. Moreover, due to the very long lifetime of magnetic dipole transitions, one
can safely neglect the spontaneous decay of the state |¢) even for very long sweep. For the “°K,
due to the richer structure of the F=9/2 hyperfine manifold, 10 Zeeman sublevels need to

be considered and the derivation of the transition probability is more complex than for the
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Fig. 3.7 Rabi oscillations at 60.2 G. Measurement of the Rabi frequency for the bare atom
numbers (a) and the corresponding normalized population (b). The Rabi frequency can then
be used to characterize the efficiency of the Landau-Zener adiabatic passage. The best fit
is obtained for Qgr.p = 27 x 79.7 =0.5kHz. The low contrast is due to the difference of
detectivity of the two spin states.

two-level system. Still, in order to estimate the transfer efficiency, one can numerically solve
the Hamiltonian Hy; describing the system ° and compute its eigenstates to ensure that the
targeted crossing are indeed avoided. Finally, one can also estimate the Rabi frequency of a
transition thanks to the Landau-Zener formula [79].

Experimentally, we perform the Landau-Zener passage after 4s of evaporative cooling in
the ODTI1. At the end of the evaporation, due to their reduced kinetic energy the atoms are
naturally loaded into the cross dipole trap formed by the ODT1 and ODT2. Thanks to the
additional confinement provided by the ODT?2, the spatial density is sufficiently high to allow
high evaporation rate. As a consequence, we switch off the gradient created by the outer coils
as well as all magnetic fields apart from the bias field of 3G generated by the inner coils. The
current circulating through the inner coils is provided by the highly stable High Finesse. After
increasing the magnetic bias field to 60.2G we perform the Landau-Zener sweep using the
antenna RFA (see sec. 3.1). The optimized response of the antenna for RF signal leads to
a maximum Rabi frequency of 80kHz (see fig. 3.7). In order to transfer the |9/2,9/2) and
19/2,7/2) to their negative counterpart [9/2,—9/2) and |9/2,—7/2), we need to cover all
resonances transition from the [9/2,9/2) to [9/2,7/2) transition (with a transition resonance
frequency of 21.2MHz) all the way to the transfer of |9/2,—7/2) into |9/2,—9/2) (with a
resonance frequency of 16.8 MHz). To that end, we generate a RF sweep from 22 MHz to

The total Hamiltonian is composed of the Zeeman Hamiltonian, as represented in figure 2.11, the RF field
energy shift which is equal to —i@rpmg for an atom in a given mp Zeeman sublevels of the F = 9/2 manifold
and the atom field coupling characterized by the Rabi frequency Q.
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Fig. 3.8 Landau Zener adiabatic passage to the negative states at 60.2G. (a) Eigenergies of
the 10 RF-dressed states of the F= 9 /2 manifold. (b), (c), (d) Evolution of the splitting between
the eigenergies of the RF-dressed states adiabatically connected to [9/2,9/2) (and |9/2,—-9/2))
and [9/2,7/2) (b), |9/2,7/2) and |9/2,5/2) (c) and [9/2,5/2) and |9/2,3/2) (d). While the
efficiency of one adiabatic passage is Pyans > 99 % for both mg = 9/2 and mp = 7/2, it drops
to typically 53 % for mp = 5/2 because of the reduced splitting Qs , ~ 5kHz. Thus, only an
insignificant fraction of mg = 5/2 is transferred to its negative counterpart.
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16 MHz in 20 ms.

Thanks to the magnetic field being sufficiently large, the difference between two successive
resonant frequencies is larger than the Rabi frequency. The complete adiabatic passage from
19/2,9/2) t0]9/2,—9/2) can thus be reduced to 9 independent passages |9/2) — |7/2) — ... —
| —9/2). Each transition can then be estimated using eq. 3.6. However, the typical splitting
between two eigenenergies of the dressed states doesn’t correspond to the Rabi frequency
anymore and needs to be numerically computed. To this end, we diagonalized the Hamiltonian
of the system Hi,; and computed both its eigenenergies and eigenstates for our Rabi frequency
of 2 x 80kHz (see fig. 3.8a). By looking at the splitting between the two states adiabatically
connected to mp = 9/2 and mp = 7/2 for an infinitely large positive detuning, one can see
that the typical energy splitting g, ~ 27 x 120kHz (as illustrated in fig. 3.8b). Using the
eq. 3.6, this splitting leads to a transfer efficiency of more than 99 % after one passage. For
mp = 7/2, the typical splitting Q /2~ 271 x 40kHz (see fig. 3.8¢) also allows a transfer of more
than 99 % after one passage. On the other hand, for mp = 5/2, due to the reduced splitting
of Qs/, ~ 27 x 4kHz, the transfer efficiency after one of our sweep drops to roughly 53 %
(see fig. 3.8d). As a consequence, while the entire population of mg = 9/2 and mg = 7/2 gets
transferred to their negative counterpart, atoms initially mg = 5/2 gets diluted into most of the
F =9/2 manifold.

After the Landau-Zener transfer we perform an additional incomplete Landau-Zener (by shining
a RF sweep from 16.3MHz to 14.9MHz in 1 ms) passage at the same bias field B = 60.2G to
create a 50:50 mixture of both spin state enhancing the evaporation (for temperature below
20uK, p-wave interactions are deeply suppressed and only s-wave collisions between different

spin states subsist [84]).

3.5 ¢ODT and evaporation to degeneracy

Following the incomplete Landau-Zener passage we obtain a balanced gas of “°K in the
19/2,—-9/2) and |9/2,—7/2) Zeeman sublevels in a crossed dipole trap. As previously men-
tioned, the cross dipole trap is naturally populated during the evaporation in the ODT1 by
keeping the ODT?2 at full power during the optical evaporation (the atoms being initially too hot
to significantly populate the cross region). By doing so, at the end of the first evaporation, we
manage to transfer 50 % of the remaining atoms into the cODT, which corresponds to roughly
10° atoms at a temperature of 4 uK. The additional confinement is provided by the ODT2, a
110 um waist dipole trap with a maximum trap depth of 19 uK (3.0 W) crossing the ODT1 under
an angle of 138°. As previously mentioned, the polarization of the ODT?2 is orthogonal to the
ODT1’s and their respective wavelength detuned by 160 MHz to avoid interferences between

the two dipole traps. Consequently, the resulting potential is simply the sum of the two separate
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confinements Ugoss(r) = Uopri (r) + Uopr2(r) while the corresponding measured trapping
frequencies (@ ;) along the three directions x,y,z of the experiment (see sec. 3.1) are thus
given by:

o} =sin* o (07 | + o7 ,) +cos’a (wﬁl + a)||272> :

2_ 2 2 2 ) 2 2
o; = cos” o (07 | + O] ») +sin” (a’H,lewll.,Z)’

C”z2 = wi,l + wiza

with & = (7 — 138°)/2 = 21° being the angle between the x-axis and the ODT1 ',

Prior to evaporating in the cODT, the magnetic field is raised in 100ms from 60.2G to 238G in
order to jump to the attractive side of the s-wave Feshbach resonance between the mg = —9/2
and mp = —7/2 located at 202.1 G while avoiding the p-wave Feshbach resonance between
atoms in the mp = —7/2 state located at 198.8G [129]. This magnetic field corresponds to
a scattering length of +136ag. To increase the interaction, once on the positive side of the
Feshbach resonance, the magnetic field is decreased to 205 G, generating attractive interactions
between the two spin states with an interaction strength of —294.0ag. The atomic cloud is then
evaporated for 10s by ramping down both ODTs to a trap depth of 3.6 uK (resp. 15 pK) for the
ODT1 (resp. ODT2). At the end of evaporation, we obtain typically a cold sample of 1.5 x 10°
atoms per spin state at a temperature of 7 = 0.357F harm = 300nK. Finally, to reach the deeply
degenerate regime, the scattering length is further enhanced to —4834 ag by decreasing the bias
field to 202.4 G. After 1s of evaporation of this bias field we manage to get around 1.5 x 10%
(from 1.0 x 10* up to 2.5 x 10%) atoms per spin state at 0.14 T /Tg harm. Imaging of the atomic
cloud is then performed by ramping the magnetic field to the zero crossing (at 209.9 G) of the
Feshbach-resonance to switch off any interaction between atoms and perform spin selective
imaging. The successive steps to reach degeneracy are summarized and presented in figure 3.9
as well as [74].

3.6 Spin selective imaging at high magnetic field

In order to only detect the atoms in a given spin states several methods exist. At low field
magnetic field, one can perform a Stern-Gerlach imaging or transfer the atoms in the targeted
Zeeman sublevel into the other ground state manifold, thanks to a MW-pulse, and estimate the
missing population. Both techniques present severe drawbacks '!. Consequently, since the last

10Details concerning the measurement of the cODT trapping frequencies can be found in Appendix A and
in [74].

"Tn a Stern-Gerlach imaging, one relies on the thermal expansion of the clouds to be smaller than the
acceleration gained from the magnetic field gradient to spatially separate atoms in different Zeeman state. As a
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Fig. 3.9 Summary of the key step of our sequence to generate a deeply degenerate atomic
cloud.

stage of evaporation 3.5 as well as the lattice loading 6.1 are performed at high magnetic field,
we simply image the atomic cloud close to the Feshbach resonance, more precisely at the zero
crossing (at 209.9 G) to cancel the interactions between the atoms.

At high magnetic field, the splitting between the different Zeeman sublevels is sufficiently
large with respect to the natural linewidth of the D2- and D1-line to only resonantly image
one spin state. In the limit case, called the Paschen-Back regime (when B >> ay¢/ug), the
base {|F,mp)} doesn’t constitute the natural basis of the Hamiltonian and the good quantum
numbers form the basis {|my, my) }. The three lowest energy level of the ground states are then
|mp = —4,my=—1/2) =|1), |m; = —3,my = —1/2) = |2) and |m; = —2,my = —1/2) = |3).
Those three states are adiabatically connected to the lowest three Zeeman sublevels (respectively
19/2,-9/2),19/2,—7/2) and |9/2,—5/2)) of the natural basis for low magnetic fields (when

consequence, Stern-Gerlach can only be applied when the atoms are cold enough. Moreover, applying strong
currents induces eddy currents that can last up to 10ms. While MW-pulse imaging can work for any temperature,
it requires precise calibration of the different transitions as well as an estimation of the duration of the transfer to
not alter the spin composition of the cloud due to spin exchange collisions.
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B < apf / UB).

As mentioned earlier 3.1, imaging light polarization is purely ¢* along the z-axis and an
equal superposition of o™ and o~ along the y—axis. Using the D2-Line, as for low-field
imaging, and the selection rules for electronic dipole transition !? there is only one purely
cycling transition at our disposal: |1) — |1’), with |1’} = |m; = —4,my = —3/2) which is
adiabatically connected at low field to the Zeeman state |[F = 11/2,mg = —11/2) of the *P; /2
excited state. This transition being possible using 0~ polarized light, the additional transitions
for the levels |2) and |3) are |2) — |2') and |3) — |3'), with |2) = |m; = —3,my = —3/2) and
13") = |my = —2,my = —3/2).

In order to know if atoms will also be transferred into other states due to the 0" component
of the polarization light, one has to numerically diagonalize the hyperfine Hamiltonian (see
appendix A for additional details) to look at both the eigenenergies between the level and its
eigenvalues. Figure 3.10 and [74] depict our imaging process. In addition, the eigenvalues
quantify how far in the Paschen-Bach regime the groundstate and the excited state are. At
209.9G, despite the superposition of polarization along the transport direction, one will still
only reach the desired targeted states (]1’), [2) and |3’)) thanks to the large energy splitting
between the reachable state by using o or o~ light '3. Moreover, by diagonalizing the
hyperfine Hamiltonian at the zero crossing, one can decompose its eigenstates in the {|my, my) }
basis. Looking at the lowest energy levels of both the ground state and the excited state one can
find:

1) =|my = —4,my=—1/2), 3.7
12) = v/0.946|m; = —3,my = —1/2) +V0.054|m; = —4,my = +1/2),  (3.8)
13) = v/0.886|my = —2,my = —1/2) +0.114m; = —3,my = +1/2) (3.9)

for the ground state and:

1) = jmy = —4,my = —3/2), (3.10)
12} =/0.998|m; = —3,my = —3/2) +v/0.002|m; = —4,my = —1/2), (3.11)
13"} = /0.996|m; = —2,my = —3/2) +/0.004|m; = —3,my = —1/2) (3.12)

for the excited one. Few remarks emerged from this spin decomposition. The first one is that the

2A7=0,4+1,AL==41,AI =0, Amy =0, +1 and Am; = 0

B3For example, for the state |1), one can reach |1’) (resp. [19')=|m; = —4,my = +1/2)) thanks to o™ (resp.
0~) polarization. At the zero crossing, the energy difference between the two states is AE = 813.606 MHz>> T".
Consequently, while resonant with the |1) — |1’) transition, the transition |1) — [19") will be energetically
suppressed
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Fig. 3.10 Principle of our high field imaging. (a) Imaging transitions for imaging at the zero
crossing (209.9G) . (b) Repumping transitions at the same magnetic bias field to keep atoms
into the imaging transition cycle.

excited states are much more in the Paschen-Back regime than the groundstate. Consequently,
transitions forbidden in the Paschen-Back regime, such as |1) — |2’} and |2) — |3’} for instance,
are still possible despite the small coupling between those states. Nonetheless, this could lead
to incorrect estimation of the population in state |2) and |3) and thus should be avoided. This
is made possible thanks to the imaging light polarization that is an equal superposition of o+
or 0~ along the y—imaging and purely 0~ when imaging along z. 7t-transitions |1) — |2/)
and |2) — |3') are consequently both forbidden despite being energetically close to their
ocounterpart.

Nonetheless, because the transitions |2) — |2’) and |3) — |3') are not closed, one has to look
at the spontaneous decay of atoms, once transferred in the excited level. While atoms can
obviously decay back to the |2) and |3) sublevel, looking at eq. 3.10 they can also decay to the
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Fig. 3.11 integrated density profile of an atomic cloud deeply degenerate. Typical inte-
grated 2D (a) density profile obtained at the end of the successive evaporation. The cloud
shape can be fitted using polylogarithmic function to extract the fugacity Z, directly related
to T /Tr [135, 73]. (b) corresponding 1D integrated profile (red point) with the best fit of the
2D-profile (blue line). The best fit yields 7' /Tx = 0.14 +0.005.

states |18) and |17), where:

|18) = v0.946|m; = —4,my = 1/2) +v/0.054|m; = —3,my = —1/2), (3.13)
|17) = v0.886|m; = —3,my = +1/2) + V0.114|/m; = —2,my = —1/2) (3.14)

After 5 absorption-emission cycles, only 75 % (resp. 55 %) of the atoms initially in |2) (resp.
|3)) remains in the imaging transition cycle. Consequently, a repumper, transferring the atoms
back to the main imaging transitions has to be implemented. The repumping beam, with pure
0~ polarization, is shone onto the atoms along the vertical direction. The concerned transitions
are represented in 3.10b.

Using the o~ transition |1) — |1’), we image, at the zero crossing the atomic cloud in the
|1) =|9/2,—9/2) states after the second evaporation in the cODT (see sec. 3.5). By sitting at
the zero crossing during the ToF and the imaging step, one can suppress the interaction between
particles and the atomic cloud can be considered as a ideal Fermi gas. In the degenaracy regime,
the density profile can no longer be described using a classical Boltzmann distribution and is
replaced by a Fermi-Dirac distribution. As a result, the value of the ratio 7' /T can be extracted
from the shape of the atomic cloud. For a non interacting degenerate Fermi gas in 2D, its
density profile nyp(x,y) is proportional to Liy [—Zexp (—Bm/2(@}x* + ©}y*))], where Li,
is the polylogarithmic function of order n. T /T is then simply obtained from the fugacity Z
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through the relation:
T /Ty = [-6Li3(—2)] /3. (3.15)

The resulting atomic cloud as well as the fitted profile are presented in figure 3.11. As
stated before, we typically reach 1.5 x 10*atoms per spin states at a temperature of T /Tg =
0.14 £0.005 (the error being induced by the fitting procedure) which is below the typical
critical temperature for superfluidity in 3D [41]. As indicated in the following chapter, we
are mostly interested in transport phenomena in both three and reduced dimensions in the
normal phase. As such, being able to realize a deeply degenerate gas at temperature below the
superfluidity critical temperature constitute an ideal starting point for the physics we desire
to explore. The following chapters describe transport properties of fermionic mixture in both
three and reduced dimensions as well as the implementation of the 2D lattice that we will use

to create a deeply degenerate 1D Fermi gas.
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As described in chapter 1, strongly correlated Fermi gases are of wide interests and are
at heart of many open problems of quantum many body systems. In this context, the Landau-
liquid theory [17], model successfully describing the properties at low temperatures of many-
body fermions in the normal state even in presence of strong interaction constituted a major
breakthrough. However, by reducing the dimensionality of a many-body system, one can
drastically modified its properties. For instance, contrary to three dimensional systems, long
range order cannot exist in one and two dimensions [63]. In this regard, one dimensional systems
represent a very exotic platform and exhibit unique properties compared to interacting particles
in higher dimensions. Indeed in one dimension, owing to the predominant role of interactions,
paradigms that were applicable for both the description of two and three dimensions systems
cease to be valid. A striking example is the breakdown of the Landau liquid theory, which is not
applicable in 1D due to a collectivization of the excitations [136] (as illustrated in figure 4.1).
Those excitations can be understood and described using the so-called Tomonaga-Luttinger
liquid model [136, 137]. While Luttinger liquid theory behaviour has been reported in several

physical system such as organic conductors, quantitative comparisons with the theory remains
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Fig. 4.1 Difference between one-dimensional system and particles in higher dimensions.
In higher dimensions (a), particle can freely move without interacting with surrounding particles
contrary to one dimension (b). Consequently, only collective excitations are possible in one
dimension.

challenging due to the screening of the long-ranged Coulomb interactions [138]. Moreover,
due to their very 3D nature, beyond Luttinger liquid behaviour, such as phase transition at high
temperature are also present in those systems [138].

Cold atoms experiments thus represent an extremely powerful and versatile tool for quantum
simulation. By tailoring the trapping potential confining the atoms, one can either study strongly
interacting fermions in three dimensions, mimic lower dimension systems or even probe the
intriguing dimensional crossover between 1D and 3D. In this chapter, after discussing the mean
field phase diagram of an imbalanced Fermi gas as well as the range of application of the Fermi
liquid theory in ultracold atoms, properties of Fermi- and Luttinger-Liquids will be summarized.

Finally, the influence of dimensionality in spin transport phenomena will be discussed.

4.1 Phase diagram of an imbalanced Fermi gas

The mean-field diagram of a spin balanced Fermi mixture in three dimensions was presented in
chapter 1. For temperatures above the critical temperature, the Fermi gas exists in the normal
phase and can be described using the Landau liquid theory. For a two-component Fermi gas,
by changing the relative population between the two spin states |1) and |/.), the phase diagram
becomes much richer and the normal phase occupies a larger portion of it (as detailed in [139-
141]). The phase diagrams of an imbalanced Fermi mixture are represented in the figure 4.2,
which is adapted from [139, 51]. For resonant interactions, represented in fig. 4.2b, depending
on the temperature, the nature of the normal to superfluid phase transition is modified. For
low temperatures and below the tricritical point, in addition to the superfluid and the normal
phase, a phase separation region exists and the superfluid to normal phase transition occurs

abruptly, which is a signature of a first order phase transition. In this phase separation, the
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Fig. 4.2 3D phase diagrams of an imbalanced Fermi gas. (a) Phase diagram of the ground
state of a Fermi mixture as a function of the interaction strength and the population imbalance.
Four regime, including the elusive FFLO phase can be identified. Figure adapted from [139].
(b) Phase diagram of a Fermi mixture as a function of the population imbalance and the
temperature for resonant interactions. It depicts three different phases including the normal
state which can be described using the Landau liquid theory. Figure adapted from [51].

system is unstable which leads to the phase separation between the superfluid pairs and the

normal unpaired fermions [51]. At high temperatures, the superfluid to normal phase transition
Ni—N,
Ny+Ny
and the critical limit is called the Chandrasekhar-Clogston limit [142, 143]. In the BCS limit, it

is reached when the pairing gap A ~ v/2h, with 2h = U+ — Uy being the imbalance between

is smooth and of second order. This transition always depends on the polarization p =

the chemical potentials of the two spin components. Above the CC-limit, the system is in the
normal phase and the minority of spins |} is immersed in a non interacting gas of spins |1). The
extreme case of a single impurity in the spin state ||) immersed in the Fermi sea of the spin state
|1 is referred to as the Fermi polaron [45]. Experimentally, even though preparing fermionic
mixtures with unequal spin populations is comparatively challenging in condensed matter !,
realization of an imbalanced mixture of fermions is rather straightforward for ultracold atoms.
Superfluidity was witnessed below the critical imbalance while above the CC-limit, imbalanced

Fermi gas have been reported to behave as a normal Fermi liquid. [144, 51, 145-148].

For example, in superconductors, spin imbalanced can only be induced by applying a external magnetic
field. However, due to the Meissner effect, external magnetic fields are expelled from any superconductor in a
superconducting state.
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Fig. 4.3 Fermi liquid description of inter- Particles Quasi-particles
acting particles. After switching on the in- e
teractions, an impurity becomes dressed by its ¢ ¢ ‘ ‘

interaction with the rpajority compopent.The é ‘ ‘
ensemble can be considered as a quasi-particle é ‘ ‘ ‘ ‘

with a lifetime 7 and an effective mass m*.

4.2 Landau-Fermi liquid theory

Landau’s Fermi liquid theory [17-19] describes the properties of a large class of unordered
fermionic system at low temperatures (compared to their Fermi temperature) and in the normal
state. As such, it can be applied to a large variety of situations such as most normal metals,
liquid helium 3 above the superfluid transition or quantum gases. The basic idea of the Fermi
liquid theory is that the low-lying states of a non-interacting system can be adiabatically linked
to the interacting ones. These interactions conserve the statistics, the spin and the momentum
of the non interacting particles as well as their total number. In the non-interacting case, the
groundstate of the atomic ensemble is a Fermi sea. This ideal gas is defined by its momentum
distribution and all energy states are occupied up to the Fermi energy Ep = P12: /2m, with
pr = hkp being the Fermi momentum and m the mass of the fermions. Since all states with a
momentum | p |< pr are occupied, a particle with a momentum p and a spin ¢ can only be
added into one of the excited states of the Fermi sea with a momentum p > pr. However, a
particle with a momentum p < pg can be removed from the groundstate, thus creating a hole in
the distribution.

After adiabatically increasing the interaction strength, the low-lying excitations with energies
close to the Fermi energy 2, can be mapped to the excited states of the non-interacting system.
The excited states thus correspond to either quasi-particles with a momentum p > pg and a
spin ¢ or quasi-holes with a momentum —p and a spin —o if p < pgp. These quasi-excitations
do not correspond to a true eigenstate of the interacting Hamiltonian and thus have a finite
lifetime 7. Loosely speaking, the quasi-particles can be seen as a ensemble composed of a
particle that is "dressed" by the interaction with the surrounding particles (see figure 4.3).
Their lifetime can be estimated using Fermi Golden Rule and is proportional to 1/(p — pg)?.
Consequently, the quasi-excitations rapidly decay into a superposition of the eigenstates of the
interacting Hamiltonian as soon as they are located away from the Fermi surface but can have a

very long lifetime when their energy approaches the Fermi level owing to the Pauli blocking.

>The Fermi momentum and the volume of the Fermi surface are not affected by interaction
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Furthermore, one can show that for low temperatures, when kg7 < Ef, To< 1/ T2 [149].
Quasi-excitations can also be characterized by a change of the occupation number 87y, , Which
is equal to +1 for quasi-particles and -1 for quasi-holes. The presence of the quasi-excitations
modifies the initial groundstate momentum distribution 79 (k) 3 such that the new distribution
is given by n(k) = no(k) + on(K) in case of a single quasi-excitation. In the limit of few
excitations, the change of energy due to the quasi-excitations can be expressed as a power
expansion of on(k) [149]:

SE = gelg&z(k) + % Y f(k,K)Sn(k)Sn(K') + O(8n° (k)) (4.1)
kK’

Here the first term represents the energy of a single quasi-excitation and the second term
denotes the interaction between two of them. Assuming that their energy are in the vicinity of
the Fermi level, one can take the lowest order of the expansion of 81(2 in terms of (k — kg) and
obtain [149]:

k
gl m—i(k —kp) + O ((k— kg)?) 4.2)

where the effect of interactions leads to a renormalized effective mass m*. The function
f(k,k") = f(ko,k'c’), which represents the interaction between the quasi-excitations is char-
acterized through a set of the so-called Landau parameters F; 4. All macroscopic properties
of a normal Fermi liquid can be expressed in terms of the Landau parameters. Therefore, both
the thermodynamics quantities, such as the compressibility and the spin susceptibility as well
as the non-equilibrium properties (the quasi-excitations lifetime and the diffusion constant
for instance) of a Landau liquid can be obtained from the Landau parameters. For instance,
the spin susceptibility y is proportional to kgm* /Fy'. The effective mass is also related to the
Landau parameters through the relation m* /m = 1+ F{ /3. Fermi liquid behaviour has been
reported in cold atoms experiments and the understanding of its properties still constitutes an
on-going topic of research. To that end several techniques, such as measuring the spectral
function via momentum-resolved RF spectroscopy [150], can be employed to witness the Fermi
liquid behavior of an ultracold Fermi gas. The spectral function A(k, ) is related to the single
particle Green’s function G(k, ®). For an interacting system, it is defined as:

1
io—eX—X(k,0)

Gk,w) =

3Which for a degenerate Fermi gas corresponds to the Fermi dirac distribution.
4F} is related to spin symmetric part of the function f(ko,k’c’) and F{ to the anti-symmetric one.
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Here, 8,80 = hk? /2m — u represents the bare particle energy while X(k, ®) is the self-energy
correction. For a non-interacting system X(k, @) is equal to zero. The single-particle excitation
energy of the system is given by the poles of the Green function [151]. The imaginary part
of the Green function is connected to the spectral function through the relation A(k, ®) =
—1/7Im[G(k, ®)]. For a non-interacting system, it reduces to A(k, @) = §(® — €°) and the
excited state appears as a Dirac peak. For the interacting case, the spectral function takes on
the form [149]:

Ao — ) Im[Z(k, )]

T (@ — €2 — Re[E(k, ©)])” + Im[E(k, ®)]?

The delta function expected for non-interacting particles is thus replaced by a Lorentzian
centered around ® = €0 4+ Re[Z(k, ®)]. The imaginary part of £(k,®) can then be associated
to the quasi-particle lifetime 7 through the relation Im[X(k,®)] = —1/27. It confers a finite
width and height to A(k, @). While well above the Fermi sea, particles can freely scatter, close
to it, the available phase space is greatly reduced due to Pauli blocking. Thus close to the Fermi
surface, one can have long-lived quasi-excitations.

Re[X(k, )] alters the dispersion relation of the single particle excitations as per E (k) = £ +
Re[X(k, w)]. Moreover, it also defines the spectral weight z; of the quasi-particle [149]. The
spectral function of a Fermi liquid can thus be ultimately written as [149]:

Alk,0) =2 L/2e 4 Aine(k, ). 4.3)

T (0—€® — Re[E(k, 0)])” + (1/27)?

Ainc(k, ®) denotes the incoherent part of the spectral function. It corresponds to a broad
featureless spectrum that contains excitations that do not resemble free particle excitations
and has a weight (1 — z;) [149]. The spectral weight z; therefore indicates the portion of the
Fermi liquid that can be considered as free particles despite the presence of interactions. A

representation of the spectral function of an ideal Fermi gas and a Fermi liquid is available in
figure 4.4.

4.3 Fermi gases in one dimension

By reducing the dimensionality of a system, one can drastically alter its properties due to
the increased impact of fluctuations (both quantum and thermal) and correlation between
particles [152]. As mentionned earlier, in one dimension only collective excitations exist. The

elementary excitations of a Fermi liquid being single particles excitations, quantum gases in one
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dimension cannot be described using the Landau liquid theory. Thus, one dimensional systems
exhibit very unique properties. Extensive theoretical research on 1D systems exist [137, 153—
156]. A stricking feature of several one dimensional models, such as the Hubbard or the
Lieb-Liniger Hamiltonians is their integrability as oppose to many three-dimensions quantum-
field theories that require the use of pertubative methods based on expansions of the coupling
constant >. As a result,such 1D systems can be solved exactly to obtain quantities such as the
groundstate or the energy spectrum. Despite the fact that the experimental realization of a true
1D system is impossible in our 3D world, by confining particles in a highly anisotropic potential
one can freeze out motional excitations along two directions and realize an effective quasi-1D
confinement. Quasi 1D systems have for example been realized in organic conductors [157],
quantum wires [158] as well as spin ladder [159]. In cold atoms, one can produce a 1D gas by
confining the atomic cloud in a very elongated trap, in which the transverse trapping frequencies
() ) vastly exceed the longitudinal one (@) [160, 161]. More precisely, for a degenerate
Fermi gas at a temperature 7 < TF, this condition can be translated into the following relation:
kpT, 4 < h, . In the limit 7 = 0, one then obtains kg Tr = Njpyhoy < ho, , with N4y denoting

the atom number of the majority component of the Fermi gas [162].

4.3.1 Groundstate of a Fermi gas in one dimension

Despite the 1D-like behavior of the system, the physical parameters characterizing the physics
can be derived from their 3D-counterparts. Among these, the interparticle interaction strength is
of the upmost importance. Assuming a 3D contact interaction, one can describe the low-energy
two body scattering in 1D by using an effective interaction potential Vip(z) = g1p0(z). The
renormalized coupling constant g1p can be expressed as a function of the 3D scattering length

asp.
2h%asp 1

810 = mazl 1 —Aasp/a,

4.4)

3 Quantum electrodynamics and quantum chromodynamics being two prominent exampls
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Here a; = \/h/m®, denotes the transverse oscillator length of the highly anisotropic trap
and A = 1.0326 is a constant. Alternatively, g;p can also be represented as a function of an
effective 1D scattering length a|p (g1p = —2h? /mayp), with

alp = —a, (a—L —A) . (4.5)

These results were derived by Olshanii [163] by considering particles in a highly elongated
trap and it successfully describes the interaction of two particles in 1D irregardless of their
statistics (bosonic of fermionic). For bosons, by tuning the 3D scattering length by means of a
Feshbach resonance for instance, one can realize either a quasi-BEC © or a Tonks-Girardeau gas
when g1p diverges and interactions tower over the kinetic energy [154, 164]. In this strongly
interacting regime, bosons act as spinless fermions [165, 166] and mimic the Pauli exclusion
principle, causing them to exhibit fermionic properties [167, 168].

For fermions, one can freely tune across the BEC-BCS crossover in 1D for a two component
Fermi gas [169—-171]. Contrary to the 3D BEC-BCS crossover, in quasi 1D, the underlying 3D
physics of the system in addition to the tight transverse confinement allow for the existence
of a bound state even when the scattering length is tuned to the negative side of the Feshbach
resonance. This peculiar behaviour, known as confinement induced resonances, was observed
and characterized near the standard Feshbach resonance of “°K located at 202.1 G [172]. Finally,
a natural question arising from the fermionization of bosons concerns the existence of a similar
feature for fermions. In one dimension, spin-% fermions are described by the Gaudin-Yang

model [174, 175], an extension of the Lieb-Liniger Hamiltonian:

h2
Hgy = Z ‘PTc,(x) (—%3)52—1—#0) Yo (x) —|—g1D/‘Pi(x)‘PI(x)‘P\L(x)‘PT(x), (4.6)
o=t x

where WJ; (x) and W5 (x) represent the creation and the annihilation operator of a fermion at the

position x and with a spin ¢. The chemical potential of each spin state is referred to as s while

SWhen the kinetic energy dominates the interaction between particles.
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g1p characterizes the interaction, which can be either attractive (g1p < 0) or repulsive (g;p > 0).
The model is integrable and solvable for arbitrary population imbalance and interaction strength
using the so-called Bethe Ansatz [176, 177].

At zero temperature, the groundstate can be computed and its phase diagram derived [178—180].
A striking feature shown in the figure 4.5 (adapted from [173]), is the existence in 1D of two
distinct crossovers instead of the single crossover presents in the three-dimensional case. On
the right hand side of the phase diagram, for small repulsive interactions (1/a3zp < 1), the two
component Fermi gas forms small size molecules made of atoms with opposite spins, the Fermi
mixture thus behaves as a weakly interacting Bose gas and can be described using the Lieb-
Liniger Hamiltonian. As the repulsive interaction strength increases, the bosonic molecules
undergo a crossover and form a Tonks-Girardeau Gas. While changing the interaction from
strongly interacting to strongly attractive, the mixture experiences a crossover similar to the
BEC-BCS crossover in 3D, with the Fermi gas forming strongly overlapping pairs on the entire
left side of the phase diagram. Moreover, the universal regime, achieved at unitarity for a 3D
Fermi mixture, extends on a much broader region of the 1D phase diagram (represented as a
shaded region in fig. 4.5).

Similarly to the 3D case, the phase diagram can be enriched by considering a spin imbalanced
mixture. Using the Gaudin-Yang Hamiltonian for both zero and finite temperature, the phase

diagram can still be exactly computed [181].

4.3.2 Tomonaga Luttinger Liquids

Despite being exact and powerful, the Bethe ansatz approach still cannot be used to describe
several physical quantities such as the dynamical correlation functions. One can then resort to
the Tomonaga-Luttinger approach that describes the low-energy properties of a gapless one
dimensional quantum gas. In the following, we will briefly summarized this approach, which is
sometimes called bosonization of fermions and described in much more detail in [156, 182].
Another way to represent eq. 4.6 is to use the momentum representation W4 (x) = 1/v/N
Y« crexp[ikx] instead of the field operator one. In this representation, considering a box of size
L, the Gaudin-Yang Hamiltonian becomes:

t 81D
Hgy =) &} oCho + T Y.l iCh g 1Ch Chatg.l 4.7)

k,o ky k2,9

where, & = h?k*/2m — p and 1 = (W4 + w; ) /2. Contrary to systems in higher dimensions, in
1D the Fermi surface is discrete and solely composed of two points at +7ikr. Near the Fermi
points, one can separate the fermions into left movers with a momentum 7k ~ —hkp and right
movers with a momentum #/k ~ +hkr. The quadratic dependence of the energy can then be
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e :

Fig. 4.6 Single particle energy spectrum. For fermions confined in an optical potential, the
energy spectrum can be derived using the harmonic oscillator approximation and fermions
populate energy states up to the Fermi energy. In a region close to the Fermi energy, the
quadratic dispersion relation of the particles with an energy between Er — A and Er + A (A
being an energy cut-off) can be approximated by a linear one, leading to the energy spectrum of
the Tomonaga-Luttinger model(right). In this model, the cut-off is extended to infinity, leading
to the addition of an infinite number of negative energy states (grey area) on top of the occupied
ones (purple area). To circumvent this issue, all estimated quantities (such as the number of
particles) describing the excited states must be normally ordered.

linearized by performing a Taylor expansion up to the first order around k = -k as represented
in fig. 4.6. As a result, the dispersion relation becomes &g, = vghik for right movers and
€ = —vrhk for left movers, with vp = hikp /m. At zero temperature, all states between those
two wavevectors are occupied and one has two branches of particles. By introducing left and
right creation and annihilation operators cgg (k) as well as their respective density operators ’
pro(k) =Y, cio(q +k)cro(q) 8, one can express the Hamiltonian as a function of the density
operators. In that representation, the interaction part of the Gaudin-Yang Hamiltonian can be
separated into three different sectors. The first sector concerns collisions between fermions on
the same side of the Fermi surface and with momentum k ~ +kg. The collision can be described
as (k,0;k,—0) — (k,0;k,—0) and its renormalized coupling constant is conventionnaly
called g4. The second one, with a coupling constant g», concerns fermions on opposite sides of
the Fermi surface (k,0; —k,—0) — (k,0;—k,—0). Finally, the backward scattering process
corresponds to an exchange of a momentum Ak ~ 2kr (k,0;—k,—0) — (—k,0;k,—0) and
its renormalized coupling constant is called g [182].

In the long-wavelength limit, one can introduce the four bosonic fields ¢, and IT, (v =s,0)

such that: |
Pealt) = = [0ude — Tl + 0(9:0, ~ a L) @

Here, ag(1) = +1(—1) and s and c are used for the spin and the charge (i.e the density of

fermions) respectively. The four bosonic fields are related to the charge and the spin densities

"The density operators additionally follow the bosonic commutation relations [151].

8With r = R, L indicating the direction of motion of the fermions.

The fields ¢y and II, are conjugate and satisfy the bosonic commutation relations [¢y (x;), dy(x2)] =
[Ty (x1), I,/ (x2)] = 0 and [y (x1),ITy/ (x2)] = 18y 11O (x1 — x2).
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Pe = 0x¢./\/T and ps; = dx¢/+/T as well as the charge and the spin currents j. = —I1./\/7
and j; = —II;//m. Using the expression of the density 4.8 with the Hamiltonian 4.7, one
obtains the bosonized Hamiltonian [182]:

Hir = ¥ % [ (KBt (0:002) 26 [ cos( VB0, “9)

v=c,s

where g is related to the coupling constant g [182]. The coefficients K, and uy, are called the
Luttinger parameters and characterize completely the low energy properties such as the specific
heat, the compressibility or the momentum state distribution of a 1D gas. In that regard, they
are the equivalent of the Landau parameters of Fermi liquid theory. They are a function of the
fermi velocity and the renormalized coupling constants characterizing the various scattering

processes [182]:

2 2 2n 2
y = \/(VF (BT and k= [ v T8 40
T 21 2nvE +284y — 8v

Here g. = g1 —2g2, g5 = &1, 84, = g4 and g4 s = 0. The uy represent the effective propagation
speed of the spin or charge wave and the parameters K, are connected to the long distance decay
of the correlation functions. In the absence of backscattering (g; = 0) the Hamiltonian 4.9
shows that there is a complete separation between the spin and charge degrees of freedom.
Consequently, the eigenmodes are reduced to the pure charge and spin excitations. It prevents
any kind of single particle excitation carrying both spin and charge and implies that, contrary
to higher dimensions, the only low energy excitations of a 1D quantum gas are collectives. The
Luttinger liquid model is therefore a non-interacting field theory and contrary to the Landau
liquid model does not describe elementary single particles excitations.

Furthermore, in case of a non-interacting system, both spin and charge velocities are equal
(uy =vr) and K = 1. As interactions increase, the two velocities differ and the spin-charge
separation appears [183—185]. The Tomonaga-Luttinger Hamiltonian can be modified to take
into account partial polarization. Imbalance spin population acts as an effective magnetic
field, which can be translated into an additional term for the Hamiltonian of the form Hy,qg =
h/2 [, V¢, that breaks spin-charge separation [182]. Luttinger liquids are sometimes considered
as the 1D equivalent of Landau Fermi liquids since it succesfully describes a broad range of
one-dimensional systems such as spins, bosons and fermions [186, 187, 69, 188, 189]. In
particular, for the BEC-BCS crossover in 1D represented in fig 4.5, Luttinger liquid theory
successfully describes the behaviour of both the Gaudin’s Gas and the Lieb-Liniger gas. For a
Tonks-Girardeau gas, due to the strong interaction, the charge excitation dominates over the spin

one. In this regime, one can excite several states of the spin degree of freedom while remaining
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Fig. 4.7 Collective excitations of a 1D system. (Left) For a spin density wave (SDW), one
has two waves for the spin up and the spin down component. The two waves are shifted with
respect to one another and while the spin modulation is maximum the density is uniform. For a
charge wave density (CDW), the two waves are synchronized leading to zero modulation of the
spin but a modulation of the density.

in the ground state of the charge degree of freedom. Consequently, the Tonks-Girardeau gas
is an example of a spin-incoherent Luttinger liquid, whose properties are rather distinct from
Luttinger liquids. Nonetheless, properties of a spin-incoherent Luttinger liquid are also a
function of the Luttinger parameters [190, 191].

4.4 Transport and spin diffusion in ultracold Fermi gases

The very nature of the normal phase of a Fermi gas in one and three dimensions is very different.
In three dimensions, one has single particle excitations and the interaction between particles
leads to the formation of polarons, quasi-particles with a finite lifetime and an effective mass.
By contrast, in one dimension only collective excitations exist in the form of density and spin-
wave. While extensive theoretical study of both limits exist, few experimental results regarding
1D Fermi gas were obtained and the dimensional crossover between these two quantum liquids
remains vastly unexplored. So far, investigation of the dimensional crossover was realized
by studying the phase separation for a trapped spin-imbalanced Fermi gas in both one and
three dimensions [192]. Similarly to the study of the 1D to 3D crossover for bosons [193], the
dimensionality was tuned by varying the tunneling between adjacent sites of a 2D optical lattice.
Alternatively, one could also invastigate the dimensional crossover by probing the spectral
function of the Fermi gas. In 3D, the spectral function of the Fermi liquid presents a well define
sharp peak as represented in fig. 4.4. In 1D, a Tomonaga-Luttinger liquid is expected to have a
continuum with singularities [151]. In the following, we will describe another method to study
the 1D-3D dimensional crossover which is the study of the transport properties of the quantum

liquid and more specifically the spin transport.
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4.4.1 Towards the perfect fluid

Quantum dynamics of strongly interacting fermions [194—-197] is at heart of many field of
physics such as the electronic transport in most of modern technology, spintronics and the
quark-gluon plasma. The quantitative theoretical description of such systems can be very
challenging due to the absence of small parameters. For instance, in 3D at unitarity, it remains
uncertain if a deeply degenerate Fermi gas above the critical temperature can be described using
Landau-liquid theory. As such, the study of transport properties of ultracold Fermi gases can
be used to shed a new light on the non-equilibrium properties of strongly correlated fermions.
Kinetic arguments predict an interesting behaviour of several transport properties such as the
shear viscosity '°, the diffusivity and the conductivity as these quantities are expected to present
a minimum.

More precisely, while bulk viscosity can take any positive value and even reach zero for an
ideal monoatomic gas or for a Fermi gas at unitarity [198, 199], shear viscosity seems to be
bounded. The constant /i/47kg is assumed to constitute a lower limit for the ratio of shear
viscosity and entropy 1 /s [200]. Discovery of this limit triggered numerous research of a
perfect fluid that would reach this theoretical value. The quark-gluon plasma is currently the
closest to a perfect fluid, with an estimated ratio 711/s around 0.4/ /kg [201]. For ultracold
Fermi gases near Feshbach resonances, a ratio 1 /s equals to 0.67i/kg, close to the quark-gluon

plasma was reported [201].

4.4.2 Spin diffusion in a fermionic mixture in 3D

A quantity closely related to the shear viscosity is the diffusion constant Dy,. They are linked
by the Einstein relation 1 = pDy,, where p represents the mass density of the fluid. Diffusion
processes (shear, charge diffusion and spin diffusion) in an ultracold atoms were therefore the
subject of many experimental research. Similarly to the shear viscosity, the diffusion coefficients
are expected to exhibit a quantum limit, bounding their lowest possible value. At unitarity, and
in the degenerate regime, the scattering cross section ¢ is proportional to the Fermi wavevector
0 ~ 1/k%. This implies that the mean free path [s evolves like Is ~ 1/no ~ 1/kr with n
being the atomic density. Consequently, the diffusion constant D ~ vls, where v represents the
average atomic speed, is bounded by a universal quantum limit of the order of D ~ ii/m. A less
handwaving argument, based on the minimum value 1) = 0.5%n of the shear viscosity in the
normal state just above the superfluid transition, provides a quantum limit of the shear diffusion
constant of Dy = 0.5%/m [42].

10Viscosity is usually separated into two types: the shear viscosity 1 (related to the Newton’s law of viscosity
T="1 ‘3—2‘, where T represents the stress tensor, u the velocity and ‘3—;‘ the shear) and the bulk viscosity k, that is
related to the relaxation dynamics of a fluid after being subjected to a small shearless compression or dilation
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Spin transport features several unique properties setting it aside from charge transport. For
example, accumulation of spins, contrary to the accumulation of charge does not lead to the
induction of a counteracting force [61]. Moreover, while considering fermions, due to collisions
between particles with opposite spin, spin current, as opposed to charge current, are supposed to
be damped due to the possible non-conservation of the relative momentum. This phenomenon
known as spin drag [202] is expected to be enhanced for low dimensions systems [203]. An
additional effect arising from collisions between particles of opposite spins is spin diffusion,
which can lead to the minimization of the magnetization M = Me !! and the relaxation of
the system towards a steady state after being brought out-of-equilibrium. The spin diffusion
constant Dy is consequently related to the spin conductivity o, through the relation Dy = o,/
with ), being the equilibrium spin-susceptibility. More precisely, the gradient of the non
ec&:ilibrium magnetization V M drives tv&l)> distinct spin currents. The gradient of magnitude
eV M drives the longitudinal spin current J| while the gradient along the direction M V e drives
the transverse current J_I . The longitudinal and transverse spin diffusion coefficients are then

related to their respective spin currents by the diffusion equations:
— = — —
Ji=-DleVM and J=-D MVe. 4.11)

The loss of magnetization is then given by the spin currents via the relation:

%—T:—Vﬁ:—?(ﬂﬁ?g. 4.12)
Several remarks arise from these relations. First, the longitudinal and the transverse spin
diffusion coefficients can differ from one another. In practice, that difference is noticeable
for a strongly interacting Fermi system below an specific temperature, called the anisotropy
temperature, when Pauli blocking prevents efficient longitudinal diffusion [205]. For a three
dimensional Fermi gas at unitarity, the anisotropy temperature T,,; is predicted to be T,,; ~
0.14 TF [206]. Second, an additional mode of spin transport caused by the precession of the spin
current around the local magnetization was neglected so far. This effect, called the Leggett-Rice
effect [207, 208] is of the form — uLRT x M, where u R is the Leggett-Rice parameter, adds
to the total spin current which is then equal to:

— = =
Jot=J]+J —ur ¥ xM.

"Here and in the following, following convention used in [204], arrows are used to denote spatial vectors while
bold fonts represent vectors in spin space.
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Consequently, using eq. 4.12, one can determine the value of the diffusion constants from the
evolution of the magnetization with respect to time. Experimentally, several groups investigated
the evolution of the diffusion coefficient in both two and three dimensions. In three dimensions,
the lowest observed longitudinal spin diffusion constant was equal to D‘s| =6.3/1/m 2 [60] and
an even lower transverse spin diffusion constant D = 1.1//m [209] was reported, confirming
the difference between the two constants in the low temperature regime. A striking similarity
between those two components was that not only the minimum of both constants was observed
for a similar temperature range (7' /T ~ 0.3 — 0.4) but also that their evolution with respect to
T /Tr was similar. Several theoretical models were developped to explain the evolution of the
spin diffusion constants with respect to temperature such as presented in [206, 210, 211]. In
the high temperature regime (7' /TF > 1) one can consider fermions as standard particles and

use the Boltzmann kinetic theory to predict the behavior of both the longitudinal and transverse
spin diffusion constant [210, 212]:
< T )d/2
Dy o< | —
T

where d is equal to the dimensions of the system. For low temperatures (7 /Tr < 1), fermions
cannot be considered as well defined particles and the Boltzmann kinetic theory of the classical
gas ceases to be applicable. Consequently, more advanced models such as the Luttinger-Ward
theory [211] or the use of Fermi liquid theory to solve the Landau-Boltzmann equation [210].
The diffusion constants can then be expressed as a function of the Landau parameters defined
in sec. 4.2. Due to Pauli blocking, the longitudinal spin diffusion diverges as one approaches
T = 0K. The behavior of the transverse counterpart depends on the polarization of the gas.
For a non polarized gas the longitudinal and transverse spin diffusion constant behaviors are
identical. However, for a polarized gas, the transverse constant saturates at a finite value, that
decreases with increasing polarization [206]. Nevertheless, for a balanced Fermi gas and for
T /Tr < 1, the spin diffusion constants evolve as:

(7

Dy o< | —

TIr

in three dimensions. Experimentally, DL‘ and D;- were measured at unitarity for an effective
temperature 7 /T respectively between 0.15 < T /Tr < 10 and 0.15 < T /Tr < 1 and are in

remarkable agreement with predictions from the Luttinger-Ward model [211]. In a similar

fashion, the spin drag coefficient [60] as well as the shear viscosity [213] were also measured.

12This value was not corrected to take into account the influence of the trapping potential
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4.4.3 Spin diffusion of a Fermi gas in reduced dimensions

In two dimensions the evolution of both spin diffusion constants with respect to temperature is
to some extend analogous to the results observed in three dimensions. At high temperature, the
two constants are similar and evolve like in the 3D case:

(%)
Dyoc [ — ).
Tr

In the low temperature limit and for a balanced Fermi gas, the two spin diffusion coefficients

are still functions of the Landau parameters and their scaling is identical to the 3D case [206]:

(%)
Dyoc [ — ) .
TF

In two dimensions the effect of polarization is more pronounced, and one can thus achieve
lower transverse diffusion coefficients than in 3D by increasing the polarization [206]. Experi-
mentally, two different groups have measured the transverse diffusion constant so far [61, 214].
Surprisingly, a strong violation of the quantum limit was observed in [61] with a transverse
diffusion coefficient D;- = 6.3 x 1073 //m being reported. This striking result still remains
unexplained by theoretical means [206, 215]. Looking at other results, no quantum violation
was witnessed in the second experiment where a transverse diffusion coefficient Dy = 1.7//m
was observed [214]. Other transport properties such as the bulk viscosity do not display such
behavior either as reported in [59] for example. Consequently, it is not sure whether one is
actually constraint by the quantum limit in two dimensions remains a open topic. Nevertheless,
both experiments witnessed a minimum of the diffusion constant for In(kra,p) = 0, with ayp
being the 2D scattering length.

In 1D, transport properties are even more intriguing. To begin with, the notion of shear diffusion
does not apply anymore and consequently shear viscosity is absent in one dimension. Moreover,
while the bulk viscosity vanishes in three dimensions in the low temperature regime since
Kk o< (T /Tr)?, the situation differs in one dimension. The theoretical expression of k in 1D,
which is valid for both bosons and fermions has been derived using Luttinger liquid theory
and depends on the Luttinger parameters u, and Ky [216]. In the low temperature regime, the
bulk viscosity evolves as kK o (T'/ TF)I/ 2 before reaching a minimum non vanishing value at
T = 0. Contrary to 2D and 3D systems, longitudinal and transverse spin diffusion constants
still remain to be measured. For the high temperature regime (7 /T > 1), one expects the
diffusion coefficients to scale as Dy o< (T /Tr)'/2. In the deeply degenerate regime, when
the behavior strongly deviates from a Landau Fermi liquid, the evolution of the diffusion

constants remains unknown. Typically, the temperature dependency of transport quantities
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Fig. 4.8 Experimental measurement technique of the longitudinal magnetization. Owing
to selective spin imaging the longitudinal magnetization can be easily measured.

such as the conductivity are functions of the Luttinger parameters. However, diffusion process
are not described by the Luttinger liquid theory. Usually, relaxation processes are mediated
by interaction. The Luttinger liquid Hamiltonian being a non interacting field theory do not
predict any relaxation and equilibrium mechanics [217]. As a consequence, contrary to the 2D
and 3D cases, building a kinetic theory of 1D liquids still remains an open question [217].
Experimentally, using a 2D lattice, we would like to investigate the evolution of the diffusion
coefficients in one dimension across the BEC-BCS crossover for a deeply degenerate gas. Once
probed, the temperature dependency of the longitudinal and transverse diffusion constant will
be looked into. The study of spin diffusion will then be extend to the dimensional crossover
between 1D and 3D. Contrary to previous experiments, the crossover will not be achieved
by increasing the tunneling energy. Instead, the crossover will be realized by tuning the di-
mensionality of each lattice site by increasing the potential depth. The tunneling energy will
always be suppressed such that the 2D lattice will form an array of independent microtraps. To
this end, a 2D optical lattice with a large spacing will be realized. It allows us to freely tune
the dimensionality of the system from an array of independent 3D elongated micro traps to
1D tubes when one increases the optical power and thus the confinement. Measurements of
the longitudinal diffusion coefficient will be simply achieved by means of spin state selective
imaging at the zero crossing of the Feshbach resonance and is represented in figure 4.8, while
the transverse diffusion constant will be measured using the spin-echo technique [209]. In the
following chapters, the implementation of the optical lattice will be presented in details as well
as the description of our new high resolution imaging systems. The loading of the lattice, the
measurement of the spacing and the trapping frequencies will also be discussed as well as the
progress towards the realization of a deeply degenerate Fermi gas in one dimension.
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5.1 Neutral atoms in periodic potential

5.1.1 Optical lattices with tunable spacing

As previously discussed, dipole force created by a spatially inhomogeneous light source can
be used to confine atoms in the vicinity of its intensity maximum !. A first application was
introduced in sec 3.2 with the use of Gaussian beams to trap and evaporate to degeneracy
our atomic sample of *°K. Additionally, one can also create a periodic optical potential by

interfering two beams. A standard way to create such optical lattices, is to retro-reflect a

!Or minimum depending on the sign of the detuning.
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Fig. 5.1 (a) Evolution of the lattice spacing in unit of dp = 0.532 um of as a function of the total
crossing angle of the two lattice beams. Our lattice spacing dy, = 4.32 X d, for a total angle
o = 26.8° is represented in red. (b) Evolution of the normalized lattice potential as a function
of the position (in unit of dj) for a retro-reflected lattice (red dashed line) and for a total angle
of o0 = 26.8° (blue line).

Gaussian beam. The corresponding periodic potential Vi, 1p(x,,z) can then be written as:

VLatt,lD(x7y7 z) = Voexp (_2’"2/(02) sin® (kpx)
=Vo(1— 2r2/a)2) sin®(k;.x)

with x being the direction of propagation of both the initial beam and the retro-reflected one, @
denotes their waist, k; = 27/A the wavenumber associated with the laser wavelength A and
Vo = V(0) the maximum trap depth of the optical lattice. In case of a retro-reflected beam with
an initial trap depth Ug;p(0), Vo = 4 Ugip(0), owing to the constructive interference [65]. In this
configuration, the lattice spacing is equal to dy = A /2. Consequently, the spacing cannot be
adjusted and will be solely set by the wavelength of the laser. To bypass this issue, let’s consider
a lattice formed by two beams, defined by their respective wavevector ky and kj, interfering
under a total angle o < 7:

o o
ki =k (ex sinE + ey cos E)

(04 (04
ky, =k (—ex sinz + ey cos 5) .
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(b)

Fig. 5.2 Creation of an optical lattice. Two counter-propagation beams interfere two create a
1D optical lattice (left). When two pair of beams are used a cubic 2D optical lattice can emerge
to create an array of elongated micro traps (right). The lattice spacing in both cases is dy = A /2,
where A corresponds to the wavelength of the beams.

(a)

In the basis {x,y,z}, interference will only occur along the x-axis, unique direction where the
two projected wavevectors are counter-propagating. The intensity of the two interfering beams

along x is thus given by:

I (x) = 2Ip| exp [—iKy - ¥] +exp [—iky - x] |

=21y (1 +cos[Ak - 1])

with Ak -r = (k; —kj) - r = 2k, sin §.x. The lattice spacing d can then easily be obtained from
the condition: Vx, I (x4 dy) = I (x) as well as the potential Vi (x) that can be derived from
I (x) as described in sec. 3.2. Using the aforementioned condition, one can find the lattice

spacing:
T

prmy — a
kj sin 3

(04

dy — dysin”! (5) (5.1)

where dj represents the lattice spacing for the retro-reflected lattice (o« = 7). For a 1064nm
laser, dyp = 0.532um. The evolution of the lattice spacing for different values of « is presented
in fig 5.1. By reducing the total angle between the two lattices beams, one can increase
significantly the lattice spacing. Experimentally, we chose an angle o = 26.8°, yielding a
spacing dy = 4.32 X dy = 2.30um (see sec. 6.2 for additional details).

5.1.2 Adjusting the dimensionality

Depending on the detuning of the laser with respect to the atomic transition, one can trap

the atoms in the minima or maxima of intensity. For a red-detuned laser beam, atoms can be
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Fig. 5.3 Bandstructure of an atom in a 1D optical lattice. (a) Eigenenergies of the first 5
bands as a function of the reduced quasi-momentum g/k for a lattice depth V(0) = 4.0 Eg (blue
line) and V(0) = 8.0 Eg (red dashed line). (b) Zoom on the first two bands of the plot presented
in (a). For low lattice depth, the band gap between the first two bands (n=1 and n=2) is close to
V(0)/2.

confined at the anti-nodes of the standing wave and their radial profile will have a pancake-
like structure (see fig. 5.2a). The trapping frequencies characterizing the confinement can be
calculated by computing the Taylor expansion up to the second order of Vi a«,1p(x,y,2) around

one of the nodes of the potential. One thus obtains:

Waip(0) 1 h* [Ugip(0) 1
R, = hy) 2400 L el L )
Da, m dog mdy Er dg (5:2)

for the transverse trapping frequency and

A
thatt,z - 2% \/EER (5-3)

along the longitudinal direction. Here, we introduced the recoil energy Er = hzk/zl /2m and
expressed the lattice trap depth in terms of Er: Vo = sEr. For 4°K and a 1064nm laser,
Er =k x0.2uK.

Moreover, in presence of the lattice, forbidden energy regions emerge. Those regions give
rise to the so called band structure of the energy spectrum. In one dimension, this structure
can be derived by using the Bloch’s theorem to solve the Matthieu’s equation and obtain the
eigenstates and the eigenergies of the system [218]. The dispersion relation and the evolution

of the energy gap for different lattice depths are given in fig. 5.3. One fundamental energy scale
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Fig. 5.4 Representation of the Wannier function for the lowest band and a quasi-
momentum 7g = 0. (a) Representation of the Wannier function @y o(x) as a function of
x/do (blue) as well as @y +1(x) (dashed blue) for V) = Er. The overlap between the Wannier
functions is important. (b) Same as (a) for Vj = 20 ER. The overlap is greatly reduced. When
Vo > 4.0 ER, the wannier function can be approximated by the wavefunction of an harmonic
oscillator with a precision greater than 97 % [220].

emerges from the band structure, the tunneling energy J. It represents the kinetic energy gained
by an atom from tunneling between adjacent sites. For a given band n, the amplitude J,,(j — j)
to hop from the node located at the position d x j to the node d x j' of the lattice is defined
as [219]:

I =) = [ @ (i o (x)x

with H = % + \7(x) being the Hamiltonian of the system. The functions @, ; are the so-called
Wannier function, a set of orthonormal functions localized around the local minima of the
lattice. In the absence of any periodic potential, the Wannier function is proportional to a Sinc
function while for deep lattice, Vy > Er Zand each lattice site can be seen as an individual
harmonic trap. In this configuration, the Wannier functions can be thus approximated by the
Hermite polynoms [220] and the function @y (x) e exp(—x?/262). As an illustration, the
Wannier functions @y o(x) for few lattice depths are represented in figure 5.4. Each amplitude
Ju(j' — j) can as well be calculated in terms of the eigenergies of the Hamiltonian E,(q) [220]:

W7 =)= 2 [ gl g, )
n o n/d n .

’In practice, when considering the lowest band, the deep lattice approximation is better than 10% as of
Vo > 15ER.
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This relation can be inverted to express the eigenergies E,(¢) in a band n and for a given

quasi-momentum #q as a sum of the various amplitude J,,(j — j):

y il
Eg)= Y Ju(j—je V=2 Y J,(j~j)cos(|f—jldg) (5.4
|/ —JIEZ |j/—j]=0

In the tight binding limit (when only the tunneling between nearest neighbor is allowed), we can
truncate the equation 5.4 to |/ — j| < 1. For the first band n = 1, the amplitude (or tunneling
energy) |J1(1)| = J is consequently directly related to the width of the lowest band by:

J= [Er(g = +n/d) ~Erlg=0)]. (55)

In addition, still in the tight binding regime, J can also be analytically calculated [221] and one
can find:
J o< exp (—2s1/2> . (5.6)

For large values of J, the overlap between the various Wannier function is important. As a
consequence, the atoms are delocalized and can tunnel through several lattice sites. On the
other hand, when J is small, tunneling is marginal and the dynamics of the atomic cloud is
ruled by the on-site interaction and its total kinetic energy.

Higher lattice geometry can be obtained by superimposing at least two lattices. When the
frequencies of each 1D lattices are different, the lattice potentials will simply add up indepen-
dently to form a 2D or a 3D lattice. In particular, when both lattices cross each other under a
right angle, atoms will be confined in an array of elongated traps (see fig. 5.2b). For identical
trap depth and waist in both directions the radial and axial trapping frequencies are once again
given by: @y, = 2+/sER and RO ; = \/inl—w \/sER. Similarly, the tunneling energy is still
proportional to J o< exp (—2s1/ 2) in the very deep lattice limit.

As such, optical lattices constitute an unique platform to tune the dimensionality of a cold
atomic gas. For a 2D lattice, by increasing the trap depth, one can reduce the tunneling energy
J (see eq. 5.6), creating an array of independent elongated microtraps. Furthermore, the dimen-
sionality inside each individual tube is set by the transverse energy Z@pa - for an ideal Fermi
gas inside a tube, the Nj4y atoms in the spin state | ) will populate all the vibrational level
up to the Fermi energy Ef 4. If the first energy level in the transverse direction exceeds the
Fermi energy (Er,|) < h®Lat ), the Njpy atoms will then fill the first N |3y energy level of the
harmonic oscillator in the axial direction while only populating the lowest level in the transverse
directions. In that configuration the atoms are effectively confined in a one dimensional trap

and will have a Fermi energy Epp = N‘T>ha)Lan,Z < h@pLay - By reducing the power, one
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can tune the dimensionality inside each single tube from 1D to 3D (by reducing the trapping
frequency until reaching a condition where Er ~ h®pa,  for example). However, owing to
the exponential dependency of the tunneling rate with respect to the optical power, by doing
so, one will also exponentially increase the tunneling energy. This will eventually lead to
interconnection between tubes. In order to be able to treat the microtraps independently, one
has to make sure that the tunneling energy is small even when the lattice depth is reduced.
This can be achieved by increasing the lattice spacing. In the following, we will calculate the
tunneling energy as a function of the total crossing angle o. To this end, we thus consider the

1-D Hamiltonian of the system to determine the band structure:

~ 1/52 ~
H=—+YV,
2m+ a(x)

and the associated Schrodinger equation: H@,(x) = Eq.,0,(x). As discussed earlier, due to the
periodicity of the system (V (x) = V(x+dy)), the eigenfunctions ¢, (x) must satisfy the Bloch’s
theorem and can be written as [218]:

0n(x) = uf (x)e'®*

where, fiq is the so-called quasi-momentum (within the first Brillouin zone comprised between
—hk and +7ik with k = 7t/dg) and the functions u}(x) are dy-periodic. For a given quasi-
momentum fg, several solutions, characterized by their band index n exist. One energy band n
is thus composed of all the eigenenergies E ,(¢) with the same band index n. The modified

Schrodinger equation is obtained by taking into account the form of the eigenfunctions ¢,/ (x):

. 1 ?
Hyul(x) = Eqn(q)ul(x) with H,= - (—la +q) + Vi (x) (5.7
Given the dy-periodicity of both u}}(x) and Vg (x), we can perform a Fourier expansion of both

terms:

ul(x) =Y ahn(q)ez’”gx/d‘x and Vg(x) =Y, V2 do (5.8)
LeZ Lez

Furthermore, since Vi (x) = 2U4ip(0) [1 4 cos(27x/dg)], the only contributing terms of the
Fourier expansion of Vy (x) are Vo = 2Uq;p(0) and Vi = V_; = Ugip(0). The final expression
for the system can be ultimately be obtained by injecting the relation 5.8 into the modified
Schrodinger equation 5.7:

Y ain(q)Hy,ij = Ean(@)ajn(q) (5.9)
i€Z
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with:
n* (un 2 L
2Uq(0) + 5, (% +q> for i=j
Hyij = Uq(0) for |i—j|=1
0 for |i—j|>1.
For a given quasi-momentum #gq, the value of the various Eq ,(g) represents the eigenenergies
for the band of index n. They (as well as the eigenvectors a;,(q)) can be computed by

diagonalizing the Hamiltonian H, ; j3. The tunneling energy Jy is then obtained from the energy
of the lowest band Eq 1(¢) through the relation:

Jo=1/4(Eq,(q=+k) —Eq,1(9=0)) (5.10)

In order to consider each micro traps as independent, the tunneling energy, which set the
dynamics between the microtraps has to be small compared to the kinetic energy of the atoms
(J < kgT). In the deep lattice limit (Vy/ER > 1), the analytical expression of the tunneling is
equal to [222] 4:

J= %(VO/EL)3/4EL exp <_2(VO/EL)1/2> - (5.11)

)
dg

B 4 dO 1/2 VO 3/4 da VO 1/2

Characterizing the tunneling of atoms confined in a periodic potential with the tunneling energy

. _ RAE _ Wm
with E}, = T omdl Er

. Consequently one can finally obtain the expression of the

tunneling,

must be done carefully since it has to be compared to the cloud temperature. Another quantity,
can also be used to evaluate the tunneling: the effective mass m*. The effective mass is related
to the curvature of the different bands n through the relation:

I 1 dE(q)

m* - ? qu

(5.13)

and can either be positive or negative. When the standing wave is switched off the atoms are in
free space and, using the dispersion relation E = fig? /2m, one finds that m* = m. In presence of
the lattice potential, the lattice energies are defined by eq. 5.4. For the lowest band n = 1, in the
tight-binding regime, E|(g) = 2Jcos(dyq), up to a constant independent of ¢g. By increasing

3In practice, to numerically compute the diagonalization, one has to truncate the sum in eq 5.9 for large values
of |i|. For lattice up to Vo = 50ER, a precision of the order of 10~° for the lowest band can be obtained by summing
on all |i| <20 [220].

4For large trap depth V;/Er > 15,the accuracy of equation 5.11 [222] is better than 10 %
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Fig. 5.5 Evolution of the transverse trapping frequencies and the tunneling energy with
respect to the total angle o for various lattice depth. While frequencies vary slowly with
the angle (a), changing the angle from the retro-reflected lattice to 65 ° reduces the tunneling
energy by 5 orders of magnitude. The tunneling energy was calculated using eq. 5.6.

the lattice depth, the dispersion relation will evolve from a free space parabola into a cosine
function as can be seen in fig. 5.3. The curvature of the energy band (resp. the effective mass)
will consequently becomes flatter (increases) for increasing lattice depth up to O (resp. o) for
infinite depth. In the tight-binding limit, due to the cosine dispersion relation,

1 1d°Ei(g) 1 d*2Jcos(dag)

mt ﬁ dqz T2 dqz :
Thus, the ratio | m* | /m can be analytically calculated and for a quasi-momentum ¢/% = 0 or
+k is equal to:

m* | 1 K

=— . 5.14
m m2JdZ (5.14)

Consequently, one can simply use the tunneling energy or the effective mass to characterize the
independence of the different lattice sites.

The evolution of the tunneling rate and the trapping frequencies for various lattice spacing are
presented in figure 5.5 and 5.6 as well as in [74]. While for a given value of s = Vj/ER, the
dimensionnality inside a tube (governed by the trapping frequencies) scaled as o< 1/d, (see
eq. 5.2), the tunneling between tubes scaled as o< \/1/dy exp|—2dy] (see eq. 5.12). Due to
the two different scalings, one can find an optimal value of ¢ for which in the 1D regime, the
trapping frequencies are very high while in the 3D, the tunneling energy will be sufficiently low

to have independent tubes. More precisely, for very wide angle (o« > 150°), reaching a regime
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Fig. 5.6 Evolution of the trapping frequencies and the tunneling energy as a function of
the lattice depth in unit of the recoil energy for various crossing angle «.(a) The tranverse
trapping frequencies is reduced by only a factor 4.32 by reducing the angle from o = 7 (retro-
reflected lattice in gray line) to o = 26.8 ° (our experimental total crossing angle in red line). (b)
for identical parameter the tunneling energy is decreased by more than 20 orders of magnitude
for a lattice depth Vi = 50 Er. The tunneling energy was calculated using eq. 5.12.

where the micro-traps are always independent can be very challenging since the tunneling
energy is of the order of 1072 Eg when V drops to few Eg). On the other hand, for small angle
a < 20°, even for very deep lattices V) ~ 150 ER, the transverse trapping frequency is only of
the order of 15kHz, which is too marginal to confine atoms in 1D (see sec. 6.6). As a result,
we determined that the best condition would be to cross the two lattices beams under a total
angle 20° < o < 30°.

Experimentally, our final choice for the total crossing angle was 26.8°. In order to be able to
study fermions in one dimension, one has to generate a 2D lattice instead of the 1D lattice
explored so far. Fortunately, if the polarization of each pairs are orthogonal, this development
of a 1D lattice can be easily generalized for a 2D lattice and the resulting potential is the
sum of two superimposed 1D lattices. Moreover, even for non orthogonal polarization, as
long as the frequency difference of each pair of beam are higher than the laser bandwidth, the
cross interference between different pair of lattice beams averages out due to the time phase
rotating rapidly [65]. Thanks to our low value of o, we effectively reduced the tunneling rate by
typically more than 8 order of magnitude with respect to the retro-reflected case (where @ = )
while only reducing the trapping frequencies by a factor 4.32 (see fig. 5.6). The experimental

considerations used to generate the lattice beams are described in the next section.
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Fig. 5.7 schematics of the main 2D lattice setup. The main ALS laser (45W) is equally
splitted using a polarized beam splitter cube after being directed through a telescope used to
beam shape the laser beam diameter to maximize the two AOMs diffraction efficiency. After the
two AOMs, opposite diffraction orders are used to inject the X- and the Y-lattice optical fibers
while their respective zero orders are sent into beam dumps. To prevent any damage due to back
reflection, an optical isolator is located right after the laser head. Optical elements: Laser:
ALS 1064nm fiber laser 45 W output power, O I (Optical isolator): EOT Tech, X-Lat and Y-Lat
AOM: 110MHz, model 3110-197 from Gooch & Housego , SK1/2 (fiber collimator): effective
focal length f = 11 mm, model 60FC-SMA-T-23-A11-03 from Schifter-Kirchoff, X-Lat and
Y-Lat fibers: large mode area high power fibers, model LMA-PM-15 NKT Photonics.

5.2 Experimental realization of a large spacing optical lattice

In the previous section, we expressed the important physical quantities to characterize the
dimensionality of our systems. In the following, we describe the experimental system used to

create the tube lattice as well as the imaging apparatus used to observe the 2D lattice.

5.2.1 Laser setup of the 2D optical lattice

The description of the behavior of neutral atoms in an optical lattice developed in sec. 5.1 relies
under the assumption that the spatial curvature of the lattice due to the Gaussian’s envelope of
its two beams can be neglected. The additional potential provided by the curvature is neglected
and each micro-trap are identical. Experimentally, this approximation is valid as long as the
atomic cloud size is small with respect to the lattice beams waist. Given that the standing wave
is loaded from a cross dipole traps created by two beams with a respective waist of 40 um and
110um, we opted for a lattice with a large waist of roughly 210um. As a result, high optical
power is required to obtain a trap depth around kg x 10pK. The figure 5.7 and [74] depict the
optical setup used to generate the lattice beams.

The main laser source is a 45 W ultra low noise fiber laser from the company ALS (AzurLight
Systems) emitting at a wavelength of 1064nm. After the laser head output, as simple 1:2
telescope is used to both re-collimate and de-magnify the laser beam in order to increase the
mode matching with the two following AOMs. Each of the two AOMs (model 3110-197 from
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Fig. 5.8 Schematic of the lattice beam propagation in the vertical Z-Img/OP
direction.. After the focusing lens, the lattice beams are sent towards

the atoms under an angle /2 with respect to the vertical direction Y22y
thanks to the piezoelectric actuator mirror mount PM. The lattice "
breadboard is also used to direct the imaging beam as well as the _ iy v
optical pumping at both high and low magnetic field along the vertical : ot
direction. Thanks to the last quarter waveplate the polarization of
the beam is purely 0. Optical elements: f: focusing lens with a
focal length f = 400 mm model: VAR2-R1064-PCX-25.4U-400 from
Lambda Research Optics, z-img/OP fiber collimator: effective focal w2 f
length f = 4.5mm from Thorlabs. '

PM

40K

Gooch&Housego) are used to generate a different pair of lattice beams (called x-lattice and
y-lattice). In order to suppress cross interference between the two standing waves, different
orders of diffraction were selected for the two AOMs, providing a 220 MHz detuning. Finally,
both diffracted beams are guided towards two large mode area high power fibers (model LMA-
PM-15 from NKT-photonics) while the zero orders are directed into two beam dumps. The
maximum power at each fiber output is equal to ~ 16 W. As explained in section 3.2.2, both
fibers are terminated with an 5° angle SMA connector, a copper heat sink and are protected by
a stainless steel tube. Finally, the output power regulation of both fibers is identical to the one
described in fig. 3.5a.

5.2.2 Realization of a 2D optical lattice

Four beams have to be generated to realize a 2D lattice. To this end, the two lasers coming out
of the x- and y-lattice fibers are split to create the x- and the y-lattice pair of beams which will
be ultimately sent on the atoms. The schematics of the optical setup is presented in figure 5.9
and 5.8 as well as in [74]. Each of the two laser beams are first split in two owing to a high
power 50 : 50 beam splitter, thus creating the x- and y-lattice pairs. The two arms of the same
lattice have the same power, therefore offering a maximum contrast and trap depth for the
lattice potential °. Each of these four beams are directed towards a f = 400mm focusing lens,
focusing each beams to a waist of roughly 210um on the atoms. To route the two pairs of

beam on the atoms, the optical setup is mounted on a custom breadboard with an cross-shaped

51n a retro-reflected configuration, due to reflections from the glass windows, the retro-reflected beam is weaker
than the main beam. In our setup, the 4 % reflection per surface of the science cell would lead to a loss of 15 % of
optical power



5.2 Experimental realization of a large spacing optical lattice 93

/ \50/50 BS

/ “;q

50/50 BS

OD?ZE: /4|?./: -- [v]

e — oy =
Y-Lat FC . E(ﬂ
,E.-.\.E ;\}AZS

X-lat FC | §

N

Fig. 5.9 Top view of the lattice breadboard used to project the 2D lattice onto the atoms.
After the two fibers (X- and Y-Lattice), each beams is split into two thanks to a beam splitter,
generating the two pairs of beams necessary to create the 2D optical lattice. Each beams get
directed to the focusing lens before being sent downwards on the atoms through a cross-like
shape opening. The angle of propagation (¢t/2 with respect to the vertical axis) is tuned thanks
to four piezoelectric mirror mounts. Optical elements : FC: fiber collimators effective focal
length f = 7.5mm, model 60FC-SMA-T-23-A7.5-03 from Schifter-Kirchoff, f: focusing lens
with a focal length f =400 mm model VAR2-R1064-PCX-25.4U-400 from Lambda Research
Optics, PM1-4: motorized mounts, model: 8816-6 from Newport.
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opening at its center and located above the science cell. This opening is used to allow the
passage of the four beams from four piezoelectric actuated mirror mounts ¢, located after each
focusing lens, to the atoms. Each beam having a waist of roughly 210um and a maximum
power of 8 W has a maximum individual trap depth of kg x 14 uK. As a result, the maximum
depth of each lattice will be equal to Vy = kg x 56 uK, which is equal to 267 Eg. The angle
between two lattice arms is set firstly by the vertical distance between the atoms and the custom
breadboard as well as the size of cross-shaped opening ’ and is then tuned by the piezoelectric
actuators.

The optimization of the lattice beams position in the x — y plane was made possible using the
z-imaging. While a dichroic mirror is used to separate the imaging and the lattice beams, one
can still use the remaining transmitted 1064 nm light to monitor on the pixelfly CCD camera
the position of all beams. Ideally, one could rely on the fact that the lattice and the imaging

beams should intersect in the imaging focal plane. However, due to the achromatic shift of our

To tune the direction and the angle of each beam.
7Which set the minimum horizontal distance between the atoms and the last mirror
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homemade objective, the imaging plane for 767 nm and 1064 nm light are shifted and in the
imaging plane, the lattice arms do not intersect. Nonetheless the z-imaging camera can still be
used to monitor the position of the lattice rays since they are symmetrically distributed with
respect both the atoms and the imaging beam once in the imaging plane. The optimization of

the lattice position is more precisely described in the following sec. 5.3.

5.3 Visualization of the lattice structure using single site imaging

Owing to the weak tunneling energy of the lattice (see sec. 5.1.2) each microtraps constitute
an independent system. As a consequence, in order to observe and measure the evolution of
thermodynamics quantities inside each tubes and not probe averaged quantities, site resolved
imaging is necessary. In the following section, we will describe the two site resolved imaging
systems implemented along the vertical direction (z-axis) and the transport direction (x-axis).

5.3.1 High resolution imaging along the vertical direction

To ensure a weak tunneling energy even for reduced lattice depth, we implemented a 2D lattice
with a large spacing dy ~ 2.5 um characterized by the total angle o between the two beams
creating the confining potential. To resolve each tube separately, one has to design an optical
system with a sufficient optical resolution. The resolution R of the system is ultimately limited
by aberration and diffraction. It can be estimated using the Rayleigh criterion® [223] and is
related to its angular aperture as well as its numerical aperture NA = nsin 6 /2, with n being the
refracted index of the medium between the lens and the object imaged and 6 = 1.220x f/D
the angular resolution of the imaging lens. D denotes its diameter and f its focal length. More
precisely, R = %, A representing the wavelength of the imaging beam. As such, a NA > 0.19
is required to resolve each tube separately with our imaging light of A = 767 nm.

Along the vertical direction, the atoms are located 9.0mm above the external face of the
glass cell. Moreover, due to the 6.5 mm distance between the atoms and the inner side of the
glass along the y—direction ?, the best achievable resolution along the vertical direction is
R = 0.68 um and the corresponding NA = 0.68. Therefore, the large spacing also constitutes
an important technical advantage. While standard optics with a numerical aperture as high
as 0.20 can be easily found, given our technical limitation, we will not be able to resolve
a retro-reflected lattice, that requires a NA > 0.88. Originally, we used a standard aspheric

8The Rayleigh criterion considers the resolution of an optical system as the minimal distance R between two
point sources of equal intensity / to be able to obtain an intensity dip of at least 26.5 % between them. This
criterion is related to the first zero of the Airy pattern, pattern obtain when a point-like source gets transmitted
through an optical lens.

which is the shortest distance between the atoms and the inner side of the science cell in the x — y plane
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Fig. 5.10 Homemade one inch long working distance objective. (a) Representation of the
homemade objective. Spacer rings: 1) 11.00mm 2) 2.75mm 3) 2.75mm. All spacers have a
22.00mm diameter from Thorlabs and Edmund Optics. Optical elements (from left to right):
LC4513-B from thorlabs, 100mm with a VIS-NIR coating from Edmund Optics, LA4725-
B and LE4173 from Thorlabs. (b) Using a USAF 1951 resolution target and the Rayleigh
criterion we could determine our resolution to be better than the smallest element of the target
R < 2.19um.

lens, a lens of high precision designed to correct the spherical aberrations. With a NA = 0.39
and a working distance WD = 25.67 mm, its theoretical resolution was enough to image the
tubes while being sufficiently far away from the atoms to not get in contact with the glass cell.
Moreover its one inch diameter was small enough to fit inside the bottom coil of the inner
coil pair, located 17.5 mm below the atoms (see fig. 3.3). Unfortunately, the alignment of the
asphere with respect to the glass cell turned out to be very challenging. A small angle between
the asphere and the science cell was enough to deteriorate the resolution signal and we could
not achieve satisfactory results.

As a consequence, we decided to build a homemade long working distance objective. While
several long working distance homemade objective are available [224-226], most of them
are based on an original design from 2002 [227]. Following the design from Wolfgang Alt,
we developed a one inch objective (see fig. 5.10) using the software OSLO. It is composed
of three standard lenses and a meniscus lens. Using multiple lenses allows us to correct the
aberration from one lens with the aberration of the others. The objective is corrected to take
into account the astigmatism induced by the 4mm Vycor glass cell, has a working distance
of WD = 42.1mm, a NA = 0.24 and an effective focal length EFL = 39.6 mm. Its diffraction
limited spot size is 1.95um and its effective depth of field'® 16 um. The objective field of view
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Surface Curvature (mm) Thickness (mm) Material

1 0 3.50 FS
2 34.50 12.13 Air
3 91.09 3.78 FS
4 -91.09 0.28 Air
5 34.50 4.40 FS
6 0.00 1.73 Air
7 31.00 4.00 FS
8 91.20 33.12 Air
9 0.00 4.00 Vycor
10 0.00 0.00 Air
11 0.00 5.00

Table 5.1 One inch long working distance objective prescription. Lenses from left to right:
1) plano-concave lens f = —75.0mm in fused silica, model LC4513-B from Thorlabs; 2)
double convex lens: f = 100.0mm in fused silica, model Fl: 100mm with a VIS-NIR coating
from Edmund Optics; 3) plano-convex lens: f = 75.0mm in fused silica, model LA4725-B
from Thorlabs; meniscus lens: f = 100.0mm in fused silica, model LE4173 from Thorlabs.
All optical elements are available off-the-shelf.

is FOV = +200um'!. All elements are available off-the-shelf from standard constructors and
are detailed in table. 5.1. Each optical element is made of fused silica to limit thermal effects
induced by the high power beams of the lattice. Furthermore, except for the meniscus lens, they
are also AR coated for both the imaging beam wavelength of 767 nm and the lattice wavelength
of 1064nm. As a result, the uncoated meniscus lens induces a reflection of 4 % of all the beams
directed towards the objective. While those reflections can be safely overlooked for the imaging
beam, we took a special care to make sure the reflections of the lattice beams, with a power of
up to 300mW were properly dumped.

Once assembled, the objective was tested using a standard 1951 USAF resolution test target
(see fig 5.10b). Using the Rayleigh criterion, we determine the resolution to be better than
2.19 um, which is the width of the last element of the resolution target (group 7 element 6). To
be more precise, we also calculated the Modulation Transfer Function (MTF), which is the
evolution of the contrast with respect to the spacing between two lines of the resolution target.
The figure fig 5.11b presents the MTF of the objective which is in good agreement with the

10We define the effective depth of field as the distance along the imaging propagation over which we can resolve
two objects separated by our lattice spacing d.

"We define the field of view as the distance from the optical axis to which the Root Mean Square (RMS) error,
which quantifies the smoothness of the average wavefront, is below 0.06285. This corresponds to a Strehl ratio
greater than 0.85 while the standard commercial convention for the FoV is a Strehl ratio greater than 0.8.
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Fig. 5.11 Resolution test of our long working distance homemade objective.(a) 1D profile
of the group 7 element 2 of the USAF 1951. The three lines were fitted assuming three infinitely
long lines of equal width imaged by an optical object of limited resolution R. The fitted
resolution was found to be: R = 1.89 £ 0.04 um and the estimated spacing L = 3.45£0.03 um
which shall be compared to the theoretical resolution of R = 1.95 ym and spacing of L = 3.48 um.
(b) A more accurate evaluation of the resolution is to compute the MFT of the z—obj: evolution
of the measured (blue dot) contrast as a function of the line spacing of the resolution target
element. The red dots indicate the theoretical contrast of the objective assuming a resolution
of R = 1.95um imaging three infinitely long lines with a thickness equal to the spacing of the
resolution target element. Both are in very good agreement.

theoretical one. This objective, called z—obj, is used as the first element of our lens system
along the vertical direction, which is represented in fig. 5.12. The object lens is mounted on
a standard one inch tube. The lens tube outer diameter is also milled to offer wider angle to
properly align the object lens with respect to the glass once inside the inner coil. The precise
alignment of both the vertical position of the object lens and its angle of inclination with respect
to the science cell are controlled by a vertical position translation stage '? and a 5-axis tilt
stage '3. The z—obj is used in combination with a f = 600 mm two inch diameter diffraction
limited achromatic lens, which focuses the atomic signal on a standard scientific CCD camera
from Pixelfly. The high optical system magnification of M ~ 15.0 results in a effective lattice
spacing of 34.5um ~ 5px on the Pixefly sensor. Thanks to the propagation axis of the imaging
beam coinciding with the lattice orientation, the atomic signal is integrated along the entire
length of the tubes conferring a decent signal to noise ratio despite the high magnification and

the low quantum efficiency of the camera. Finally, a dichroic mirror located between the two

12Model M-MVN50 from Newport with a travel range of 8 mm.
13Model 9081-M from Newport with a travel range of 3mm and angular range of +4°.
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Fig. 5.12 Imaging system along the vertical direction. (a) The atomic signal being integrated
along the entire tube length offers a high SNR for the imaging. A dichroic is placed between
the object lens and the focusing lens to reroute the four lattice beams into a beam dump.
Optical elements: homemade long working distance objective, two inches plano convexe lens,
model: 600 mm achromatic lens from Edmund Optics (EO), dichroic lens and a pixelfly camera
from PCO placed on a magnetic stage. (b) By moving the camera position, one can use the
demagnification stage to image the hot cloud after the MW evaporation and check the ODTs
alignement in the xy—plane. The demagnification stage is made of two lenses: a 160mm
achromatic lens from EO and a 50 mm aspheric lens from Asphericon (model ALL25-50).

lenses, reroutes the high power beams, to a beam dump while transmitting the imaging light.
While this imaging axis cannot be used to quantitatively measure the atom number, it is
particularly useful to align the lattice beams in the xy—plane. In the focal plane, the four lattice
beams are symmetrically distributed around the imaging beam. Further tuning of each lattice
beam position was done by using the main dipole trap ODT1 (described in sec. 3.3): after
loading the atoms into the single ODT1, we ramp one of the lattice arms to full power, thus
creating a cross dipole trap. The final position of each lattice arm is then tuned such that the
central position of the cloud in the cODT coincide with its position in ODT1. Once the lattice
beam position fixed, we used the y—imaging to confirm the lattice does not move the atoms
along the vertical direction.

5.3.2 High resolution imaging along the transport direction

The transport direction is our primary imaging axis to observe the lattice. The atoms are
located 10.5mm from the outer part of the glass cell along the transport axis called y—axis.
As discussed in the previous section 5.3.1, the vertical distance between the atoms and the
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inner side of the glass cell is 5mm, leading to a maximum resolution of R = 0.92um and
a maximum achievable NA = 0.51. Due to the technical limitations of the asphere exposed
in sec. 5.3.1, we installed a commercial objective from Olympus '4, which combines a long
working distance of 18 mm with a high enough numerical aperture NA = 0.30 ' to resolve
the tubes. Its depth of field is DOF = £4.3 um and its field of view FOV = 2.2mm. Prior to
mounting the objective, its resolution was also confirmed using 1951 USAF resolution test
target. The complete imaging system along the y—axis is depicted in fig. 5.13. It is made up of
a telescope, in 4-f configuration. It has a theoretical magnification of M, = 28 and consists of
the Olympus objective, with an EFL = 18 mm and a 2 inch (to be able to collect all the light
from the diverging imaging beam) achromatic lens of 500 mm focal length '°. Similarly to the
z-imaging, the objective is mounted close to the science cell in a one inch tube milled on the
sides and mounted on a tilt stage for precise alignment. The lens tube aperture is also large
enough to not clip the imaging beam. The transport direction being orthogonal to the lattice
tubes direction, the signal to noise ratio is extremely low once the atoms are loaded into the
standing wave confinement. Because of the low atom number and the high magnification, which
leads to a small photon count per pixel, we use an iKon-M 934 from Andor, a camera with a
quantum efficiency at 767 nm exceeding 95 %. Additionally, an optical filter was installed to
reduce parasitic light from reaching the CCD sensor of the camera.

Moreover, due to the low intensity of the imaging beam, our sensitivity to intensity and
position fluctuations increased. Because of the low atom number, we observed that the intensity
fluctuations between the absorption and the reference pictures sometimes exceeded the atomic
signal. While this issue can easily be solved by implementing a corrective factor equal to
the intensity fluctuation in a region without atoms, another issue arises from the use of the
long working distance objective. Due to its transmission efficiency (around 90 %), interference
between the different lenses of the object lens creates circular fringes that get embedded into
the imaging beam after the objective. The fast position fluctuations of the imaging shift the
position of the fringes between the absorption and the reference picture destroying the atomic
signal. To reconstruct it, an algorithm was implemented in our imaging program to remove the
fringes by creating a database made of several fringed pictures !”. Finally, the frame transfer
mode of the Andor was used in order to shorter the delay between two consecutive pictures,

thus preventing extreme intensity fluctuation.

14Model LMPLN10XIR.

SEquivalent to a resolution of R = 1.56 um

16Model 50x500 VIS-MIR from Edmund Optics, reference EO49388

"Technical details regarding the algorithm and its implementation will be described in future thesis
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Fig. 5.13 Imaging system along the transport direction. A telescope in 4-f configuration
offer a high magnification of M5 = 33. Due to the reduced atomic signal, a high quantum
efficiency camera was used to image the lattice tubes. An optical mask can also be placed in
front of the camera to use the frame transfer mode of the Andor. Optical elements: objective:
EFL: 18 mm model LMPLN10XIR from Olympus, achromatic doublets of 500 mm focal length
model 50x500 VIS-MIR from Edmund Optics. Camera: model iKon-M 934 from Andor.
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In this section, we will discuss the loading procedure of the optical lattice, its full character-
ization as well as the final steady state properties of the atomic cloud. In this context, we will
also present the high magnetic field depumping implemented to isolate a single row of tubes
along the y imaging, facilitating the study of the thermodynamic properties of each independent
tube.

6.1 Adiabatic loading of the optical lattice

In order to be able to reach the one-dimensional (1D) regime in the optical lattice, the cloud
temperature kg7 and its Fermi energy Er must be small compared to the transverse oscillation
frequency fiw | . A first approach to load the lattice and reach the 1D regime, would be to ramp
up the lattice arms early during the sequence in order to transfer as many atoms as possible into
the micro-traps. Enhanced evaporative cooling could then be simply performed in each micro-
tubes by reducing the optical power of the various beams. Unfortunately, this initial approach
presents several issues. By reducing the lattice trap depth, one also reduces w, potentially
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making it more difficult to realize a 1D Fermi gas. Furthermore, evaporating in the tubes is
highly inefficient. Due to the large waist of the lattice beams, the horizontal confinement is
rather weak, thus potentially limiting the spatial density and the collision rate in comparison to
the tight confinement provided by the cODT. Furthermore, the evaporation efficiency is related
to the fraction of atoms with a kinetic energy comparable to the trap depth (I'eyap o< €=, where
N = Uaip(0)/kgT). While typically 1 < 10 for a standard dipole trap, in an optical lattice,
population of the band 7 is given by e En/%sT For a gas mostly occupying the lowest band,
the population of the bands n» > 1 is minimal and thus only a very small fraction of the atomic
cloud has a kinetic energy comparable to the lattice depth. Thus, the evaporation is highly
suppressed as soon as the lattice depth exceeds few ER (see fig.5.3b). More importantly, upon
reaching the 1D regime, it is possible that evaporative cooling ceases completely to be efficient
due to the cloud potentially not being able to thermalize anymore (more discussion about the
thermodynamics in 1D can be found in sec. 6.6 and sec. 7). Consequently, we decided to first
prepare a deeply degenerate Fermi gas in the cODT before loading the lattice by gradually
ramping up the lattice depth.

Experimentally, following evaporative cooling of the atomic cloud to 0.157 /g with 1.5 x
10* atoms per spin state, the scattering length is reduced to —294.0ag by ramping the magnetic
field from 202.4 G to 205 G, thus reducing the interaction strength and limiting the collision rate.
The reduced collision rate is still enough for the atoms to thermalize while allowing us to slowly
ramping up the lattice while avoiding losses '. Moreover, the optical confinement being close
to the spilling limit, we also adiabatically ramp back the trap depth of the ODT1 and ODT2
in 1s from respectively 3.6 uK and 15.0puK to 5.4 uK and 17.0uK. Once in this recompressed
crossed dipole trap, we gradually increase either one or the two 1D lattices power depending

on the physical situation we want to realize. A picture obtained by averaging nine in situ shots

'We also tried to load the lattice with a positive scattering length of 136aq (which corresponds to a magnetic
field of 238 G). Since both methods lead to similar loading efficiency we decided to load at the closer magnetic
field at 205 G, which allows us to ramp it faster.
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of the atoms after being loaded into the optical lattice is presented in figure 6.1. In order to
minimize the perturbation of the system due to the additional potential, one wants to allow the
atomic cloud to adiabatically evolve as it is transferred into the optical lattice. Considering
shallow lattices (with V) ~ ER), the adiabaticity criterion can be derived by estimating the
typical timescale for inter-band transitions and yields [220] :

framp > ;%E}% (6.1)
Research on adiabtic following have been performed for lattice depth Vi up to 14 Er [228]. For
a Fermi gas close to degeneracy, the underlying assumption of eq. 6.1 is that both the cloud
temperature and its Fermi energy are smaller than the bandwidth of the lowest band of the
lattice. Moreover, the Fermi energy being small with respect to the bandwidth, the momentum
distribution will be narrow enough to not explore the band edge .
However, this approximation breaks down for Vy > ER, since the lattice potential can no longer
be treated as a perturbation of the initial Hamiltonian. In this case, a standard and more restric-
tive approach consist in ramping the lattice slower than any timescale of the experiment, which
can still lead to heating despite the adiabatic following of the atomic cloud during the entire load-
ing [229]. The three relevant timescales are related to the atomic movement t,iom, o< 1 /@ (with
@ ~ 27 x 100Hz being the smallest trapping frequency of the cODT), tagia = hVy/ 32\/§E§
and the average tunneling time fynne; = 7i/J. The tunneling time represents the timescale over
which hopping between lattice sites can occur, thus allowing thermalization of the entire cloud
after its loading into the different tubes. Since the tunneling time increases exponentially with
the lattice depth (see eq. 5.12), it ultimately dominates any adiabaticity condition. For a lattice
depth of Vi = 40 ER and our lattice spacing of 2.3 um, tynne] = 5 X 10%s. As such, tunneling
will be completely suppressed no matter the duration of the lattice ramp. Consequently, the
micro-traps will always remain independent and cross thermalization (as well as hopping)
between adjacent sites will not occur. As a consequence, we decided to exponentially ramp the
lattice up to Vo = 40 ER in tramp = 25, with the exponential time constant being equal to 7 = Is.
The loading duration vastly exceeds both #,4i, = 30us and fy0m ~ 10ms.
With our 2s exponential ramp to Vi = 40 ER, the total heating was found to be around 0.1 T 3,
which is consistent with other experiments working with “°K at T /T ~ 0.2 that measured a to-
tal heating induced by the lattice around 0.15 Tr for a depth up to 12 ER despite the adiabaticity

2This statement is not valid during the initial loading of the lattice, during which the trapping potential is small
enough for the energy gap between the first two bands to vanish, thus preventing any adiabatic loading

3The heating was obtained by measuring the ratio T /Tr prior to the lattice loading and after switching on and
then off the lattice with our 2s exponential ramp.
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Fig. 6.2 Determination of the lattice spacing. (a) typical in situ picture of the atomic cloud
after the loading of the x-lattice. (b) 1D profile of the central region of the cloud. 3 lattice
pancakes can be seen. Using the magnification and the pixelsize of the andor camera, the lattice
spacing can be estimated to dg = 2.26 + 0.06um.

of the loading (see [230-232]).

6.2 Determination of the lattice spacing

Since each 1D optical lattice is generated by two running waves intersecting under a total angle
a < 1, we need to measure the lattice spacing dy > do. In this section, we will present a direct
method based on in-situ imaging and used in our experiment. As more precisely detailed in the
following section, one can use matter-wave diffraction to calibrate the lattice spacing. However,
this indirect method requires an overly precise control of the interaction time and the lattice
power. A straightforward way to measure the lattice spacing is to take advantage of the high
resolution imaging along the y—direction in order to directly detect the in situ density profile of
the various traps after the loading into the lattice. A careful calibration of the magnification is
then sufficient to determine the lattice spacing from the distance between several maxima (or
minima).

A standard picture of the periodic potential created by the x-Lattice, imaged along the y—axis
as well as a the density profile centered around few maximums are presented in figure 6.2.
Using the magnification M) = 33.0 along the y—img, we estimate a lattice spacing of dy =
2.26 £0.06 um. The two main limitations to determine more accurately the spacing are the
optical resolution of our imaging system, which reduces the contrast between the node and the
anti-node of the standing wave and the magnification which limits the number of pixels per tube

to ~ 5. Another possible method to determine the lattice spacing more precisely is to perform
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the Fourier transform of the atomic signal in the lattice. The Fourier transform of the figure 6.2
is presented in figure 6.3. A Lorentz fit provides a wavenumber of 2.74 40.01rad.um~! and a
corresponding lattice spacing of 2.29 +0.01 um. To characterize the spacing of the y—Ilattice,
we rely on both the Kapitza-Dirac pulse and the lattice depth calibration (see sec. 6.3). For
identical trap depth and pulse duration, the same number of diffracted orders will be populated.
The distance between the two most extreme diffraction orders of figure 6.6 being identical for
both 1D-lattices, the lattice spacing must also be similar for the x— and y—lattice, assuming
that the lattice depth of the two 1D lattice are identical.

6.3 Lattice depth calibration

As explained in section 5.1, precise calibration of the transverse trapping frequency is crucial
to estimate the dimensionality of the system for any experiment performed in presence of the
standing wave. In this section, we will first estimate the maximum lattice depth achievable
using matter-wave diffraction before precisely calibrating the lattice depth by measuring the

transverse trapping frequencies.

6.3.1 Matter wave diffraction

One of the most common methods to measure the lattice depth consists in using matter-wave
diffraction. If the atoms are subjected to the lattice for a duration f,; < f,4ia, atoms cannot
follow adiabatically the raising periodical potential. Consequently, the lattice will then simply
diffract the atoms [234]. For a standing wave with a wave number &z, two adjacents diffraction
orders will be separated by 2/k; in momentum space. Assuming a momentum distribution
centered around 7k = 0, for a given lattice spacing, the diffracted pattern will solely depend
on two parameters: the duration of the lattice pulse (sometimes called the interaction time) £,
and its strength, characterized by the lattice depth Vp. The number of diffraction orders that
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Fig. 6.4 Matter-wave diffraction spectrum. 100 ¢
Depending on the interaction time and the opti- 7
cal power, three distinct regimes will describe
the diffraction pattern: Raman Nath, Bragg
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lation of the different diffracted orders cannot
be easily determined anymore. Figure adapted
from [233].
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will be populated using matter-wave diffraction depends on the value of those two parameters
and three different regimes can be identified: the first one corresponds to short interaction time
and is called the Raman-Nath (also called Kapitza-Dirac) regime. For long interaction time,
depending on the strentgh of the pulse, two regimes can be identified: the Bragg regime, which
requires weak lattice depth and the channeling regime which necessitates strong interactions.
The figure 6.4, adapted from [233], represents the parameter range for those three regimes.
For shallow lattices (V) < 4ER) and long pulse time, atoms can be subjected to Bragg diffrac-
tion [235, 236] and acquire a momentum 2nhik;, where n is an integer. Consequently, only one
diffracted order, namely the n-th one will be predominantly populated. Determination of the
value of n can be done analytically as detailed in [233].

For strong interaction and short pulses, Kapitza-Dirac diffraction can be observed [237]. In
order to stay in the Kapitza-Dirac regime and not crossover to the channeling regime, precise
control of the pulse duration is critical. The maximum allowed duration of the lattice pulse to
stay in the Raman-Nath regime is directly related to the lattice depth. One can safely stay in the
Kapitza-Dirac regime for an interaction time #;,, < i/Eg+/2s, with s = Vj/ER. In this regime,
one can analytically solve the Schrodinger equation describing the diffraction process and thus
estimate the population of each diffracted order. The population of each diffracted order p is
equal to | J,(n) |* with n =V /2% X tiy; * and J,, the p—th order Bessel function [233]. Thus,
as represented in figure 6.5, the most populated diffracted orders are around =+n, the population

4Since n has to be an integer for all the following calculations, the value of n is approximated to the nearest
integer.
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of higher orders vanishing exponentially. To predominantly populate the first orders (£1), the
interaction time f;,; must be equal to:
2n [8ER

lint = w VW X Nim (6.2)
and Vo > 8 Eg. Here, tj,, = h/Er V/2s. Finally, with strong interaction and long pulses, one will
reach the channeling regime in which the population of the different diffraction orders cannot
be easily determined since atoms have enough time to channel between the potential valleys.

Consequently, matter-wave diffraction could be used to indirectly determine the lattice spacing,
since it only requires precise measurement and control over the two pulse parameters (its
duration and the lattice depth) °. However, since we were able to precisely measure the lattice
spacing of the x-lattice, matter-wave diffraction can be employed to indirectly estimate the
lattice depth. As an illustration, a picture of the diffraction pattern obtained with a lattice pulse
in the Kapitza-Dirac regime after is presented in figure 6.6. We can see the two most populated
orders +n as well as several orders being populated in between. After a given time of flight 7,
the distance L between the two orders is equal to L = 2nfik;, T/m. n and Vj can thus be estimated.
Here, given the interaction time of #,; = 6 us, we found n = 13 and V{y = 135 ER which is much
lower than the expected lattice depth of Vo = 267 ER, with Er = kg x 0.21 uK being the recoil
energy for a retro-reflected lattice. This discrepancy is an initial potential indication that due
to the polarization of the lattice beams, the highest achievable lattice depth is lower than the

>The necessary control over the lattice depth would be experimentally challenging since the actual lattice
depth can greatly differ from the theoretically expected 4 Ug;p(0) due to polarization misalignment. Moreover,
the momentum distribution of the atomic cloud prior to the lattice pulse must be small with respect to the lattice
wavenumber in order to resolve each diffraction order, which in our case is only achievable with deeply degenerate
cloud, which leads to small signal to noise ratio and.
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Fig. 6.6 Raman-Nath (Kapitza-Dirac) diffraction of the atomic cloud. By shining the
lattice at Vy ~ 140 ER during t;,; = 6 us, one can populate all the order between +n where
n = Votine/2h. (a) Kapitza-Dirac realized with the x-lattice. (b) Kapitza-Dirac realized with
both 1D lattice. For similar interaction time and lattice power, the last populated orders +n are
identical.

Fig. 6.7 Band structure of a 1D optical lat-
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theoretical one. In the following section, a more precise calibration of the lattice depth based

on the measurement of the transverse trapping frequencies will be presented.

6.3.2 Calibration of the lattice depth by measuring the transverse trapping frequencies

For a 1D lattice, the trapping frequencies illustrate the maximum splitting between two consec-
utive bands. Considering the lowest band, the transverse trapping frequency @, is defined as
ho, = Eq2(q=0)—Eq1(q=0)°. Figure 6.7 represents the evolution of the band structure
as a function of the lattice depth for the first three bands as well as the evolution of the ap-

proximated one dimensional harmonic oscillator (of frequency @, ). For low lattice depth, the

®Here, for a given quasi-momentum g and an angle o, Eq.n(q) represents the eigenenergy of the band of
index n
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Fig. 6.8 Measurement of the transverse trapping frequencies. Using parametric heating,
one can excite the atomic cloud at twice the trapping frequencies. (a) For strong induced
heating, atoms can gather enough kinetic energy to leave the lattice confinement. (b) For
moderate heating, atoms remains in the trap and the transverse frequency can be measured by
looking at the cloud size directly.

harmonic approximation ceases to be valid due to the large width of the band and the resulting
reduced gap. For a lattice depth of 12 ER for example, the discrepancy between the numerical
calculations and the harmonic approximation is equal to 25 %.

Measurements of the 2D lattice transverse trapping frequencies were performed using what
is sometimes colloquially referred to as shaking spectroscopy, which is the modulation of the
lattice light intensity to induce parametric heating [238]. Since parametric heating couples
motional states of the harmonic oscillator with identical parity, the measured frequency is equal
to twice the frequency of the harmonic oscillator (more details concerning regarding parametric
heating can be found in annexe A.3). Experimentally, the calibration was performed by first
loading one of the two 1D lattices by ramping it in two seconds to an arbitrary depth V.,
instead of the standard Vjy = 40 Er. Following the loading of the periodic trapping potential,
we modulate its intensity and the lattice depth 200 times by roughly +5 % of V., at a given
frequency @y04. The duration of the step is set to 20ms such that after 200 cycles, the lattice
intensity will stay constant during the remaining duration of the step. After the modulation, the
lattice power is ramped down to 0 in 200ms. The magnetic field is then ramped to the zero
crossing in 100ms and the atomic cloud imaged after a few ms ToF to record the remaining
atom number and the cloud size. For low-level of induced heating, the atom number remains
constant and the cloud temperature increases as one approaches the resonance frequency. For
stronger heating, the energy of the atoms increases sufficiently and atoms can leave the trap.

The figures 6.8a and 6.8b represent the typical evolution of the atom number and the cloud size
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as a function of the modulated frequency.

This calibration of the transverse frequencies via parametric heating can be used to extract the
lattice depth. As explained in sec. 5.1.2, the transverse trapping frequencies are solely function
of the lattice depth and its spacing. The figure 6.9 represents the evolution of the transverse
frequency of both 1D lattices as a function of their respective depth. Using the measurement
of the x-lattice spacing, one can estimate the maximum trap depth in terms of Er. For our
maximum analog setpoint of 2V, we expect a corresponding transverse trapping frequency
271 x 24.1kHz. Given the spacing of the x-lattice, this corresponds into a maximum depth of
147 Er which is much lower than originally expected. This contradiction, which was already
hinted by matter-wave diffraction experiment is most likely due to the polarization of the two
arms of the x-lattice.

Calibration of both transverse frequencies can also be used to determine the lattice spacing
of the y—lattice. Trap depth is a function of the optical power and the waist. Measure-
ment of the waist using a beam profiler estimated the waist of the x—lattice @ ayx = 222um
(resp.@p i,y = 190um). Consequently, for identical power and spacing, the y—lattice will be
36 % deeper than the x—lattice, which would alter the trapping frequencies by 16 %. Experi-
mentally, for identical lattice power, the measured discrepancy between the trapping frequency
1S Wpay = 1.05 WLay x (instead of the expected ratio of 1.16. Two reasons can explain this
difference: the respective polarization between the two y-lattice arms or the spacing of the
y—lattice. Assuming, that this difference is solely due to the lattice spacing, we found a spacing
dgy =1.1dgx = 2.5um, which is still close to x—lattice spacing and in good agreement with
our predictions. Finally, when loading the lattice, the confinement is provided by both the 1D
lattice and the cODT. While the trapping potential in the transverse direction of the lattice is
dominated by the standing wave since @ >> Wcross ~ 100Hz, the longitudinal confinement
is provided by the cODT due to @ < @cross- Thus, the longitudinal trapping frequency is
extracted from the calibration of the cODT (see sec 3.5) and is equal to o) =271 x 305Hz.

6.4 Isolation of a single row of tubes

Owing to the very high tunneling time, each micro-trap of the 2D-lattice is independent from
its neighbors. Moreover, the evolution of the various thermodynamics quantities of interest
might evolve differently in each tube. For example, the Fermi energy in the central region of
the lattice will be higher than in the wings 7. As a result, assuming an atomic cloud in thermal
equilibrium, the system might be confined in 1D in the wings, but the central region might

"This phenomenon arises from the fact that the central region of the cODT is denser than the wings
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Fig. 6.9 x- and y-lattice calibration. (a) Measured trapping frequencies as a function of
the analog setpoint of the optical lattice for both 1D lattice. (b) Evolution of the trapping
frequencies as a function of the lattice depth using the harmonic approximation of the band
structure.

very well be in 3D due to the greater number of atoms per tube. While single site resolution
allows us to see each tube independently along y—imaging, an additional issue arises along
this direction. Even though, one can easily see independently each lattice pancake created
by the x-lattice, we still have to integrate the atomic signal from all the particles confined in
each micro-trap created by the y—lattice. Furthermore, a technical drawback must be added to
this fundamental issue. Due to the single site resolution, the depth of field along both y— and
z—axis is rather small. Along the y—imaging, the depth of field of the Olympus objective is
+4.3um. As aresult, 4.3 um away from the focus, which corresponds to only 3 lattice sites,
the sharpness of the reconstructed atomic signal will drastically decrease.

To circumvent these issues, one can isolate a single lattice row perpendicularly to the y—imaging.
A possible way to do so would be to create a magnetic gradient B’ in order to make all
lattice rows except the one of interest transparent to the imaging light. For light to be solely
resonant with a single row, the energy shift between two adjacent sites must be greater than
the imaging transition linewidth I' ~ 27 x 6 MHz, which given the lattice spacing of 2.30 um,
leads to a gradient B’ > 1.9 x 10*G.cm™! (resp. B’ >2.2x 10* G.cm_l) for atoms in the
19/2,—9/2) Zeeman sublevel (resp. [9/2,—7/2)) 8. Generating such a large magnetic gradient
not being technically feasible, we decided to hide the different lattice rows by means of a
optical depumper.

Prior to imaging the atomic cloud, one could shine in resonant light to optically pump the

80ne could also use microwave transition to transfer atoms into the F = 7/2 manifold but as detailed in the
appendix A.4, the efficiency of the transfer is limited to less than 75%
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Fig. 6.10 Transition scheme for optical pumping at the zero crossing at 209.9G .

atoms into a dark state with respect to the imaging light. Several transitions can be used for
this optical pumping scheme depending on the light polarization. In order to make use of the
already existing hardware, we used 7t-transitions to transfer the atoms in the states  |1) and
2) to the m; = —1/2 manifold of the *P; /2 excited state (see figure 6.10). Once in the excited
state, atoms can decay back to the states |1) and |2) or to the dark states |16) and |17). Once in
|16) and |17), atoms will not be resonant with respect to the de-pumping light nor the imaging
light. A description of the optical pumping at high field can also be found in [74]. In order
to image one lattice row, one has to spatially modulate the de-pumping light by means of an
optical mask before directing it to the atoms, thus shining it to all but one lattice rows.

The optical setup of the high field depumping is presented in fig. 6.11. It consists of an optical
mask and a relay telescope. The optical mask is a 20pum wire. It is mounted on a 3-axis
translation stage with micrometer screws to be able to align it precisely on the atoms and to
place it at the exact focal plane of the relay telescope. This first lens is a 500 mm achromatic
lens ' while the second one is a two inch homemade objective. Developped by Pritchard et
al. [225], this TRAP objective has a theoretical NA = 0.172 and a corresponding resolution

9Using the notations introduced in sec. 3.6
10A 2 inch diameter from Edmund Optics with a VIS-NIR coating to prevent reflection.
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Fig. 6.11 Optical setup for the high field optical pumping. An optical mask, located at the
focal plane of a telescope is imaged on to the atoms. The size of the mask on the atoms is
comprised between one and few lattice spacing. A picture of the optical mask is depicted in the
top left corner. Thanks to the mask, by shining the optical pumping light only one row is still
resonant with the imaging light, allowing the image of a single lattice row along the y—axis.
Optical parts: f1: 2inch diameter 500 mm focal length achromatic lens from Edmund Optics,
f2: 2inch homemade objective built according to [225]. Lenses used for the objective from left
to right: Newport KPC067, Thorlabs LB1199, LA1256 and LE1985.

R = 2.85um. Its resolution was tested using a resolution target after being assembled and was
estimated to be 2.79 +0.15 um even in presence of a 4 mm thick glass window. Thanks to its
long working distance of 119.5 mm, the objective can be mounted outside of the coils mount,
thus not obstructing the path of ODT1&2 while provinding a sufficiently high resolution to
preserve a single row of tubes from the optical depumping. Given its EFL ~ 120mm, the relay
demagnification is Mgop = 0.24. Consequently, the theoretical effective size of the mask on
the atoms is equal to 4.8 um, which can theoretically allow us to cast the shadow on a single
layer of tubes. The precise alignment of the TRAP objective’s position along the propagation
direction as well as its angle of inclination are controlled by a translation stage from Newport
and a mirror mount. To confirm the beam alignment, the optical system was first used to
shine imaging light and image the cODT, which allowed us to center the mask position. The
optical depumping was then tested at high field by first transferring part of the main ODT into
a dark state (fig. 6.12a) and then the cODT. The final duration of the pumping pulse was set to
2 us, which was enough to transfer atoms illuminated by the light into a dark state while not
transferring atoms shadowed by the mask as well (see fig. 6.12b and 6.12c). In presence of
the optical pumping, the diameter of the cloud along the transverse direction was reduced to
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Fig. 6.12 High field optical pumping implementation. (a) By shining depumping light at
high magnetic field, one can transfer part of the atomic cloud into a dark states. By additionally
imprinting an optical mask on the atoms, one can preserve part of the cloud from being
transferred. Image of the atomic cloud when confined in the cODT with (c) and without (b)
2 us of optical pumping. The estimated size of the sliced cloud is 4.1 um.

4.1um. The peak OD was also reduced by 25 %. The results of the optical pumping on the
lattice are provided in fig. 6.13, which presents pictures of the lattice with and without optical
pumping. In presence of the optical pumping, the central OD dropped by roughly 15 % and the
contrast also slightly deteriorated from around 40 % to 32 %. The reason why the contrast gets

altered still remains to be explained.

6.5 Experimental realization of a deeply degenerate 2D Fermi gas of “°K

Following the lattice characterization, we tried to load the 2D lattice and estimate to which
degree the cloud purely evolves in one dimension. However, loading both 1D lattices at the
same was proven to be quite inefficient and induced severe losses. Consequently, we chose
to ramp the two 1D lattice one after another, thus first loading a degenerate 2D Fermi gas
before ramping the second standing wave to confine the atomic cloud in 1D. By exponentially
raising the x-lattice trap depth up to Vp = 40 ER in two seconds, we manage to macroscopically
populate around 20 pancakes. In the central region of the standing wave, we typically transfer
250 atoms per pancake. Assuming that the gas is indeed confined in two dimensions, one
can fit the 1D density profile to obtain the fugacity Z. For a Fermi gas confined in two
dimensions, its 1D density profile n(z) o< Liz > (—Zexp(—fm/ 2w?7?). The ratio T /T is then
obtained from the fugacity using the relation T /Ty = [~2Lis(—Z)]~'/2. Using this relation
we estimate that in the central region of the x-lattice the temperature of the confined atoms
was aroundT ~ 0.34 Tr. In order to estimate the 2Dness of the atomic cloud, we first assume
that Er < io| . As a consequence, each pancakes can be considered as a 2D harmonical
oscillator characterized by the longitudinal frequency @. The N atoms will thus occupy the
first nlevels of the harmonic oscillator. The n—Ievel of a 2D harmonic oscillator having a n+ 1
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Fig. 6.13 x-lattice in absence or presence of optical pumping. In presence of optical pump-
ing, the peak OD dropped to roughly 0.7 indicating that a small part of the depumping light
passes through the optical mask.

degeneracy, we can conclude that the 250 atoms will occupy the first 21 levels of the oscillator.
Using the calibration of our cODT (see Appendix A), we estimated that our axial frequency of
27 x 300Hz. This imply that upon adiabatically loading the atomic cloud into the pancakes the
Fermi energy in the central region will be equal to Er = 0.6671@, . Finally, using a Fermi-Dirac
distribution with 7 = 0.34 Tr, we can estimate that statistically, only 6 % of the total atom
number aren’t occupying the fundamental level in the transverse direction. The creation of this
deeply degenerate 2D Fermi gas, in addition to the long lifetime (above 4 s) in the pancakes,
both constitute an important milestone towards the realization of a strongly interacting 1D

Fermi gas and an good initial condition to ramp the y-lattice.

6.6 Towards one dimensional Fermi gases of 'K

After the loading of the one-dimensional x-Lattice, we exponentially ramp in two seconds the
y-lattice to Vo = 40 ER. In order to estimate the 1Dness of the system, similarly to sec. 6.5,
one needs to estimate the following three standard parameters: the atom number per tube,
their temperature and the Fermi energy. However, the capacity of a system to redistribute
energy and thermalize while being confined in one dimension is not a trivial problem. Classical
thermalization is related to the notion of integrability and phase space trajectories [239].
Chaotic systems, once brought out of equilibrium will explore the entire phase space and
relax towards equilibrium while integrable systems only execute closed orbits and fail to
thermalize [239].Even for near-integrable systems, the timescale to reach thermal equilibrium

might greatly exceed the typical experimental cycle. Research on near-integrable systems and
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thermalization in general is still an on-going topic of research in both 3 as well as in reduced
dimensions [240, 241].

Thus, a problem naturally arises from the realization of 1D Fermi gas. As explained in
chapter 4, one of the main interest of 1D systems is the integrability of several models such as
the Lieb-Liniger Hamiltonian. Consequently, one of the first goals before trying to estimate
the temperature and the Fermi energy of the system is to verify the breakdown of integrability
of our quasi-one-dimensional Fermi gas, which was already verified and investigated for
bosons [240, 242]. Chapter 7 will present experimental methods to explore the thermalization
properties of fermions confined in one dimension. For the moment, we will assume that our
atomic cloud is indeed in thermal equilibrium. Under this assumption, using a polylogarithmic
fit (see sec 6.5) one can estimate the fugacity and the ratio 7' /Tr from the shape of the integrated
atomic profile. Pictures of the 2D lattice in presence of the optical pumping still remains to
be taken at the time of writing this thesis so we will extrapolate results from the unsliced
cloud and the 1D lattice to estimate the atomic cloud parameters inside a single tube. By
ramping the x-lattice, we managed to load around 250 atoms per spin states into the central
region of the lattice at a temperature T /T = 0.34 from an initial cloud of 1.5 x 10* per spin
state at a temperature 7 /Tr = 0.15. By loading the second 1D lattice (y-lattice), and in the
absence of slicer, one can load in the tubes around 70 % of the atom number confined in the
pancakes. It is not clear at the moment if the reduced loading efficiency is due to the 2D lattice
loading procedure or some more fundamental issue. Nonetheless, under those circumstances,
we manage to transfer around 180atoms inside the tubes. Given the size of the pancakes in
the horizontal directions (12 um diameter), one can expect to load in the central region up to
Nty = 50 atoms per tube since the central region of the cloud contains more atoms that the
wings. Estimating the ratio 7 /T in those conditions being quite challenging we will safely
assumes that it also increased significantly upon loading the 2D Ilattice.

By raising the lattice depth to its maximum value after the loading one would have @, ~ 25kHz
while the longitudinal frequency @) = 300Hz is given by the cODT. This lead to a 1D gas
with kg7 = Njpyhoy = 0.6, . Using a Fermi-Dirac distribution with a reasonably safe
T = 0.7 TF, such conditions would result in 80 % of the atomic population in the lowest energy
state along the transverse direction, providing an interesting starding point to explore 1D

physics phenomena.



Chapter 7

Summary and outlook

In this manuscript, we reported on our progress towards the experimental study of the di-
mensional crossover between strongly interacting fermions in 1D and 3D. In 3D, a deeply
degenerate Fermi gas in the normal phase can be understood using the so-called Landau-Fermi
liquid theory. However, in 1D, only collective excitations remain and a degenerate Fermi gas
in the normal phase is described by the Tomonaga-Luttinger liquid theory. While extensive
research on these regimes has been carried-out, the interpolating transition in-between remains
mostly unexplored. Our aim is thus to study this dimensional crossover using a strongly
interacting Fermi gas of “°K.

To this end, we first realized a deeply degenerate Fermi gas of “°K at a temperature 7' /T = 0.14,
just below the critical temperature for superfluidity. The chapter 3 of this work detailed the key
steps that were necessary to achieve this initial milestone, from the loading of the optical dipole
trap to the ensuing phases of evaporative cooling to finally reach degeneracy. After a brief
description of both the Landau-Fermi liquid theory and the Tomonaga-Luttinger liquid model
in chapter 4, the chapters 5 and 6 summarized the experimental progresses regarding the imple-
mentation of the 2D optical lattice that will be used to confine the “°K in 1D. We laid out in
chapter 5 the experimental considerations regarding the tunability of the dimensionality of our
system as well as the apparatus used to generate the 2D lattice with large spacing. Such spacing
is a necessary means to guarantee a very long tunneling time and thus obtain independent tubes,
even in the regime where the confinement is too weak to create a quasi-1D gas. Finally, the
two-single site imaging systems were presented. Owing to their high resolution, they make it
possible to resolve each tube. Chapter 6 is dedicated to the realization of a degenerate Fermi gas
in reduced dimensions. The strategy employed to adiabatically transfer atoms into a single 1D
lattice before loading them in the 2D standing wave was discussed. Using the high resolution
imaging along the y-direction, the lattice spacing of 2.29 um was obtained from the in-situ
density profile of the microtraps. Additionally, the depth of both 1D lattices was calibrated

using matter-wave diffraction and measurement of their transverse frequencies presented. The
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2D lattice was also loaded and an optical repumper installed. By transferring all but a single
row of tubes into dark states, single tube imaging along the y—direction was achieved. Finally,
the realization of degenerate Fermi gases in two dimmensions composed of 250 atoms per spin
state at a temperature of 7 /Tr = 0.34 was reported.

Outlook

The next milestone will be the realization of a deeply degenerate 1D Fermi gas. A possible
strategy would be to recompress the x-lattice before ramping up the y-lattice. Once in the
2D-lattice, the optical power of the ODTs will be reduced in order to decrease the trapping
frequency along the longitudinal direction of the standing wave. Owing to the optical pumping
into the dark states, the estimation of T /Tr and Tr /i@, in the 1D and 3D regimes will be
possible via in situ imaging of the density profiles. Following the realization of a 1D Fermi
gas, our experimental platform would allow us to address numerous physical phenomena in
addition to the dimensional crossover. A first possible experiment will be the exploration of
thermalization in 1D. As developed in sec. 6.6, thermalization of fermions confined in one
dimension still remains to be proven given the integrability of the Hamiltonians describing
quantum gases in 1D. The breakdown of integrability can be investigated by probing the
evolution of the spin diffusion coefficient with respect to the magnetic field. After subjecting
the two component Fermi gas to a magnetic gradient, the centers of mass of each component
will be spatially separated due to the 10 % difference in magnetic moment. Once brought
out-of-equilibrium, the gradient can be switched off and we will probe the relaxation dynamics
of the Fermi gas for various interaction strengths, the main signature of relaxation being the
relaxation time, which should depart from the value obtained for a non interacting gas.
Results on integrability would also be an initial step to study the validity of the Luttinger theory.
Being a free field theory, the Tomonaga-Luttinger liquid model does not contain any mechanism
of relaxation or equilibration [217]. Moreover, deviations from this theory are expected when
the interaction between particles increases and becomes comparable to the kinetic energy [217].
More importantly, strongly interacting system can also be used to observe deviations to purely
one-dimensional models due to the possibility of virtual transitions to the transverse excited
states of the confining potential.

Finally, based on a proposition from [243], a two-component Fermi gas of “°K confined in
1D might be a very promising system for the observation of itinerant ferromagnetism. In the
ferromagnetic phase, all atoms are in the same superposition of the two spins and one thus has
a system of identical fermions. The paramagnetic phase is defined as a statistical mixture of
the two spin components and thus requires less energy than the ferromagnetic configuration.
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In three dimensions, according to the Stoner criterion [244], the ground state of the system is
the paramagnetic state unless the repulsive interactions between the components are strong
enough to compensate the energy difference between the two phases. Using ultracold atoms,
one could increase the repulsive interaction above the Stoner criterion by ramping the magnetic
field close to an s-wave Feshbach resonance. However, due to the increased inelastic losses
due to the formation of dimers, the ferromagnetic state could not be stabilized [245-247].
In reduced dimensions, the energy difference between the two phases is larger than in 3D.
However, this can be overcome by sitting between the s-wave Feshbach resonance between
the mp = —9/2 and the mp = —7/2 states located at 202G (even wave in 1D) and the p-wave
resonance for the mp = —7/2 state at 198.8G (odd wave in 1D). One can thus have both
strong repulsive interactions above the Stoner criterion as well as a momentum-dependent
odd wave interaction among one of the spin components, with the latter resulting in the
groundstate to be ferromagnetic [243] . While already observed in 2D semiconducting Van
der Walls crystals [248], “°K appears as a promising system for the observation of itinerant
ferromagnetism in 1D using ultracold atoms.
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Appendix A

Supplementary theoretical and experimental material

A.1 Absorption imaging and thermometry of “°K

In the FerMix experiment, all atomic properties of 4°K are obtained using absorption imaging,
standard technique to measure the density and momentum distribution of an atomic ensemble.
Resonant light is sent towards the atoms and then observed using a CCD camera. The light
being absorbed by the atoms, the atomic cloud casts a shadow on the recorded beam profile. In
the limit of weak light intensities I, with respect to the saturation intensity Iy, the transmitted
intensity of the beam profile I;,4,5(x,y) after its propagation through the cloud can be obtained

using the Beer-Lambert Law:
Lirans (x,y) = Io(x7y)€—0D(x,y)' (A.1)

Iy represents the initial beam intensity while OD(x,y) denotes the optical density. The latter
can be approximated as:
OD(x,y) = on(x,y), (A2)

with n(x,y) = [.n(x,y,z) being the integrated column density along the propagation axis z of
the imaging beam and o the scattering cross-section. Close to the atomic resonance frequency,
the scattering cross-section can be written as [249]:

C2

o =0y (A.3)
Here A = @y igne — @y is the detuning between the frequency of the imaging laser and the
resonance frequency of the atoms and I refers to the linewidth of the addressed atomic
transition. In this formula, the coefficient C denotes the Clebsch-Gordon coefficient of the
atomic transition. For a closed transition, such as the transition between the levels |1) and |1")
at high magnetic field described in sec. 3.6, C> = 1 while in the absence of magnetic field and

quantization axis, for the D2-line of “°K, C? = 0.4 due to the averaging over all the possible
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transitions [70]. Finally, 6y = 32—%2 —=2.81 x 1013 m? is the theoretical resonant cross-section.
The expression of the transmitted intensity along with the one for the theoretical cross-section
are only valid in the regime Iy < s, and for dilute gases. For very dense atomic cloud, the
imaging beam cannot illuminate the entire cloud, causing part of the atoms to not be detected.
As a consequence, the optical density is always kept below 1 during absorption imaging.

Theoretically, by using equation A.1, two pictures of the imaging beam (with and without the
atoms) would be sufficient to reconstruct the optical depth and the integrated column density
n(x,y). However, experimentally, a CCD camera detects any neighboring source of light on top
of the imaging beam. This parasitic light source has to be subtracted from the imaging beam in
order to reconstruct the optical density from the pictures of the CCD camera. This yields the

following formula for the optical density:

(A4)

Itrans(x»y) _Ibg(xuy)>

OD(x,y) = ~In ( To(x,3) — Tog ()

Ie(x,y) is obtained by taking a picture in absence of any imaging light while /yans(x,y) and
Ip(x,y) respectively denote the absorption picture and a picture of the imaging light in absence
of atoms. The total atom number N is then simply obtained from the column density:

1
N= /Lyn(x,y) = E/xy OD(x,y). (A.5)

In order to obtain Iians(x,y), one can either take an in-situ picture of the atoms while they are
still confined by the trapping potential ! or after switching off the confinement prior to imaging,
leaving the atomic cloud to freely expend during few ms. This time-of-flight (TOF) technique
also provide the momentum distribution of the cloud as well as its temperature, assuming
that the particles are weakly interacting and thus conserve their initial momentum during the
ballistic expansion.

Free ballistic expansion from an harmonic potential

For a non-interacting gas, released at # = 0 from an harmonic potential, the momentum p;(¢)
and the position x;(¢) of each particle after a time ¢ (where i = (x,y,z)) of ballistic expansion
can be obtained from its momentum and position at a previous time. More precisely, in absence

of any potential, the momentum of each particle is conserved during the expansion and the

I'The advantage of in-situ imaging relies on the fact that it provides the density of the cloud as they are trapped
in the confinement. However, it also does not give any reliable information regarding the temperature of the cloud.
Moreover, most of the times, the spatial density is usually too high to accurately count the total atom number.
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position x;(z) of each particles evolves as:

(0
xi(1) = x:(0) + %z. (A.6)
In this situation, the cloud size and the spatial density distribution can provide a direct indication
of the temperature of the atomic ensemble. Considering a phase-space distribution f(r,p), the
density distribution can be obtained by integrating the phase-space distribution function over

the entire momentum space. For a 3D gas, one obtains:

(D) = s 10 (A7)

For a classical gas, the distribution f(r,p) is given by the Boltzmann distribution while for a

degenerate Fermi gas it corresponds to the Fermi-Dirac distribution:

f(r,p) = f(r,p) = Ze PHTP) (A.8)

for T > Tr and
1

T BH(D) 1 | (A.9)

f(r,p) = frp(r,p) =

for T < Tr. Here, B = 1/kpT, Z = eP*, with u being the chemical potential and H(r,p)
denotes the Hamiltonian of the system. Atz =0, H(r,p,t = 0) is simply equal to:

p*  m
H(r,p,t =0) = %JFEZm,?x% (A.10)
1

with @; representing the trapping frequencies of the harmonic oscillator along the i direction.
After a time 7, using the equation A.6 and the expression of the Hamiltonian, one can calculate
the density distribution from equation A.7 in both classical and the degenerate regime [73]. In
the classical case, one can find:

1 w1 B\ > exp(—Bmw?x? 2(1 + w?t?))
0= 5z () 1 '

i \/ 1+ 0
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The 2D and 1D density profile can then simply be obtained by integrated along 1 or 2 direction

n(r,t). For example the 1D-density evolves as:

(x,1) / (r, (1) L1 m'? 1 ( 5 1 mwfo)
mp\X,t)= [ ML) = = exp | — .
v vz V21h® Z B3 oy, /1 + 022 P I+oX? 2

(A.11)

The evolution of the density with respect to time being Gaussian one can extract the evolution

of the width of the atomic cloud:

o/ (t) = o7 (0)(1+ oft?), (A.12)

with 67(0) = 1/Bm?. Consequently, one can obtain the temperature of the atomic cloud
T by taking successive absorption images for various time-of-flight duration # and fitting the
measured cloud radii using the eq. A.12. Additionally, by knowing the trapping frequencies,
one could also extract the cloud temperature from a single picture taking after a given time-of-
flight. While being exact for a classical gas, this method is only a good approximation for a
degenerate gas for temperature 7' /Tr > 0.3 (see [73] for a complete analysis).

Using the Fermi-Dirac distribution in equation A.7, one can find for the expression of the 2D

and the 1D density profiles:

m § m 2x2
o) = [uten =2 DE Ly, [-zexp<-ﬁ52—“’~ )]

2 1+ 0?2 Sy 1o
(A.13)

m (kgT)>/? 1 . m 0x?
£) = — ) Lis, |—Zexp (B2 -5 V. (A4
nip(x,t) 2% Payw, \/1+ 02> /2 P BZ 1+ ofr? ( :

The width and the amplitude of the cloud being related, the density profiles only depend on two

parameters, presuming that the trapping frequencies are known. This allows to simultaneously
determine the atom number and the cloud temperature. Moreover, as discussed in sec 3.6, one
can also use the expression of the density profile to extract the ratio 7'/ Ty from the shape of the

cloud.

A.2 Calibration of an imaging system magnification

Propagation of the imaging beam and the shadow casted by the atoms is rendered possible by
the use of an optical system. A first lens (or objective) with a focal length f; is placed such
that its focal plane coincides with the position of the atoms and a second lens of focal length
f> is placed at a distance f] + f> from the first one. Finally, the CCD camera is placed in the
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1 11 1 1 1 1] Fig. A.1 Example of the calibration of an
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Free fall duration [ms]

focal plane of the second lens 2. While the theoretical magnification is given by the ratio of the
two focal lengths M = f>/ f1, it still needs to be verified experimentally. This can be achieved
by letting the atoms fall freely and recording their center-of-mass position. In the absence of
any external force (such as a magnetic gradient or a trapping potential), the atoms will only be
subjected to gravity. Thus, the center of mass position along the gravity axis will simply evolve
as z(t) = zo + 1 /2gt?, with g being the gravitational acceleration. Due to the magnification of
the optical system, on the camera, the projected distance travelled during a free fall will be
modified such that:

Z(t) = ]\%(ZO +1/2gt%), (A.15)

with « is the pixel size of the camera and 7 the position in unit of ¢. The pixel size being
known, the magnification is the only free parameter of this equation. To illustrate this method,
the figure A.1 represents the calibration of the imaging system along the y—axis using a free

fall experiment.

A.3 Measurement of trapping frequencies

Extracting quantities such as the density or the temperature of an atomic ensemble requires the
knowledge of the trapping frequencies of the harmonic confinement (see eq. A.12). For optical
dipole traps created by Gaussian beams, one can measure them by exciting center-of-mass
oscillations or breathing modes. The underlying assumption is that the Gaussian beam can be
approximated by an harmonic oscillator. This is true under the condition that the temperature
of the cloud is low enough with respect to the trap depth for the atoms to not explore the
anharmonicity of the confinement °.

Excitations of those collective oscillations can be achieved by rapidly modifying the optical

ZEventually, in order to achieve high magnification, one can also use a relay telescope between the two lenses
such as described in sec. 5.3.1 for example.
3In practice, this condition can be met when 1) = ug/KgT > 8
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Fig. A.2 measurement of harmonic trapping frequencies. (a) Axial center of mass oscil-
lations for different power. The oscillation frequency decreases with the optical power. (b)
Evolution of the radial trapping frequencies with respect to the optical power. The waist
@ = 39.8 can be obtained as a fit parameter.

confinement, thus abruptly transferring them energy while keeping them trapped. This can
be achieved by either switching off completely the optical confinement for a very short time
(typically during less than 100us) and then switching it up back to its initial value or by using
a magnetic gradient to accelerate the atoms. The atoms are then held in the original optical
confinement for a given amount of time #,4q before proceeding to standard absorption imaging.
By varying #,014, one can reveal the oscillatory behaviour of the atomic cloud. Figure A.2a
shows the center-of-mass oscillations along the horizontal direction for various power of the
ODT1. Trapping frequencies being a function of only two parameters of the optical dipole trap
(its waist and the optical power shined on the atoms), one can use the trapping frequencies
to measure the waist of an optical dipole trap. More precisely, the radial and axial trapping

frequencies evolve as:

1[40, 1 [2u
= —/—=  and = (A.16)
21\l may

Ve =27\ g

with Uy o< P being the depth of the optical potential. Estimation of the waist of the ODT1,
using the radial trapping frequencies is available in fig. A.2b. Additionnally, another method
consists in inducing parametric heating. To this end, one needs to modulate the laser intensity
at twice the trapping frequency in order to cause transition between states of even parity (for a
1D harmonic oscillator it corresponds to transition between the states |n) and |n +2)) of the
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harmonic oscillator [238]. Experimentally, the induced heating can be measured by recording
both the atom number and the size of the atomic cloud. For small heating, the atoms remained
trapped and one can see their temperature increasing when the modulation gets closer to twice
the trapping frequency. For stronger heating, atoms have enough kinetic energy and can leave
the trap. Parametric heating was used to measure the radial trapping frequencies of both
x— and y—Ilattice. An illustration of this method is presented in figure 6.8. It represents the
typical evolution of both the atoms number and the cloud size with respect to the modulation
frequencies.

A.4 Spin-selective imaging at low magnetic field

At low magnetic field, the Zeeman shift between the different Zeeman states is too small to
allow spin-selective imaging. In order to still probe the spin composition of an atomic ensemble
kept in an optical dipole trap 4, two methods can be used: a Stern-Gerlach experiment or the
use of microwave transitions.

Stern-Gerlach imaging

Stern-Gerlach experiment is one of the most well-known methods to probe the composition
of an atomic cloud. It can be achieved by keeping a magnetic gradient on during a time of
flight experiment. As a consequence, atoms in different spin states will propagate at a different
speed due to the difference between the magnetic moment. Thus after few ms of ToF, one can
separate the CoM of atoms in different spin states. Mpre precisely, the acceleration experienced

by atoms in a given zeeman states |o) = |F,mp) is given by:
1
ag = —g+n—1V(ua-B). (A.17)

The magnetic moment Uy = aa% is obtained by taking the derivative of the energy E

B=B(nt)
of the Zeeman state o with respect to the value of the magnetic field (see appendix A.5 for

details). The distance covered by each atoms along gravity can then be obtained by numerically

integrated twice the equation giving the evolution of the position. When the distance between

two different spin states is larger than the spread of the cloud 26 (t) = 2\/ o5 +kgT /mx 12 g,
the population of each spin states can be resolve. Consequently, for high temperature, the
atoms will expand quickly and thus both strong magnetic gradients and high difference between

the various magnetic moments are necessary to resolve the different spin states. Theoretical

“In a magnetic trap, one can probe the spin composition of an atomic assemble by reducing the magnetic
gradient until the confinement becomes weaker than the gravitational field as explained in sec 3.2.



134 Supplementary theoretical and experimental material

simulations of our Stern-Gerlach procedure are available in [74]. Experimentally, we perform
our Stern-Gerlach by first precharging the capacitors of the Blue power supply connected to
one of the inner coils (see fig. 3.3) while keeping its corresponding IGBTs open. During this
step, atoms are kept in the optical dipole trap and a small bias field (of up to 20G) generated
by the outer coils is providing the quantization axis. Precharging the capacitors allow us to
generate strong currents of up to 100 A in typically 2ms °. Just after switching off the optical
confinement, the IGBTs connecting to Blue get closed, creating a strong current pulse. The
peak current is equal to 60 A, which corresponds to a magnetic gradient of 150G.cm™! and
is reached after 2ms. After this short pulse, the IGBTs are opened and the atoms accelerated
by the magnetic gradient fly against gravity. After up to 10ms of ToF (depending on the
temperature of the atomic cloud), standard absorption imaging is performed.

Two drawbacks arise from our Stern-Gerlach experiment. First, because of the strong currents
necessary to spatially separate the different spin states, strong parasitic Foucault currents are
induced and persist for up to 12ms. This causes a strong spatial inhomogeneity of the magnetic
field during the imaging process and thus the different spin states do not share either the same
resonance frequency nor the same detectivity. To circumvent this issue, optical repumping
during ToF was introduce in order to transfer the atoms into the Zeeman states mp = +9/2
after the SG pulse and just prior to imaging. Nonetheless, SG technique can only be employed
for cold sample due to the thermal expansion of the cloud. On our experiment, Stern-Gerlach
experiment can only be used for temperature up to 10 uK. For hotter temperatures, the thermal
expansion is too big to reliably separate the different spin components with a magnetic gradient
and thus MW spectroscopy has to be used.

Optical repumping after Stern-Gerlach

In order to reliably determine the spin composition of the atomic cloud after a Stern-Gerlach,
the detectivity of atoms in different spin states must be identical. This can be made possible
by imaging each spin states using closed transitions. To this end, after separating atoms in
different spin states using the Stern-Gerlach technique, we transfer them into the stretched
states mp = +9/2 prior to imaging. Consequently, after Stern-Gerlach and prior to imaging,
pure o= polarized light is shined along the quantization axis . Experimentally, we optimized
the polarization of the pulse (via tuning the angle of the A /4 waveplate of the optical pumping
represented in figure 5.8), its duration and its frequency by looking at the relative detectivity of
the different spin states after a SG experiment as presented in fig. A.3. The optimal duration
was found to be 10pus. For longer pulse, the atoms heat up a lot due to the many absorption

cycle while for shorter one, the detectivity of the mp = 7/2 and mg = 5/2 was not optimal.

SWithout any precharging, our standard power supplies typically take 5ms to reach such current.
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Fig. A.3 Optical pumping and imaging transition at low magnetic fields. (a) Imaging
principle along the x—axis with horizontal polarization with respect to the quantization axis
and optical repumping transitions into the mp = 9 /2 stretched state prior to absorption imaging.
(b) Scan of the repumping frequency prior absorption imaging.

The fig. A.3 shows the evolution of the relative detectivity of each spin states with respect to the
frequency of the optical pumping beam. By tuning the frequency to resonance, owing to their
transfer into the mr = 9/2 zeeman state, the detectivity of atoms in mp =7/2 and mp = 5/2
increased. Consequently, the relative population of those spins states in comparison to atoms in
mp = 9/2 increased. In absence of any optical repumping the imaging resonance scan of atoms
inmp =9/2, mp =7/2 and mg = 5/2 greatly differ from one another because of the strong
spatially dependent parasitic gradient induced by the SG procedure detailed in appendix A.4.
In presence of the optical pumping, the imaging resonance scan of all the spin states coincide
with the one of atoms in mr = 9/2 (as depicted in fig. A.4). Finally, a picture of atoms using
Stern-Gerlach with and without any optical pumping is depicted in figure. A.S.

Spin selective imaging using MW spectroscopy

Magnetic dipoles transitions can be used to connect the lower hyperfine groundstate manifold
F =9/2 and the upper one F = 7/2as explained in sec. 3.4. By using them, atoms in given
spin state |FF =9/2,mp) of the F = 9/2 groundstate manifold can be transferred to the upper
manifold. Due to the large energy splitting of ~ 1.2858 GHz, atoms in the upper manifold will
be transparent to the imaging light during absorption imaging. Consequently, by recording the

atoms number with and without the transfer to the F = 7/2 manifold, one can infer the initial
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Fig. A.4 Scan of the resonance imaging frequency after a SG. (a) Without optical pumping,
due to the remaining parasitic current, the resonance profile of atoms in mp = 9/2,7/2 and
mp = 5/2 are completely different. (b) By pumping the atoms prior to imaging, we transfer
them into the mp = 9/2 zeeman state. The resonance profile of atoms originally in the mp =5/2
and mp = 7/2 zeeman states coincide with the mp = 9/2 profile and the Lorentian fit for all
three states are similar.

atom number in a given spin state from the apparent atomic loss ©. The transfer of atoms to
the F = 7/2 manifold is done via Landau-Zener sweep (see sec. 3.4 for a description of the
Landau-Zener adiabatic transfer). For the positive Zeeman states of interests mg = 9/2,7/2
and 5/2 7, the possible hyperfine transitions are:

\F=9/2,mp=9/2) = |F=7/2,mp=17/2), (c7) (A.18)
IF=9/2,mp=7/2) = |F =7/2,mp =7/2), (7) (A.19)
\F=9/2,mp=17/2) = |F =7/2,mp=5/2), (07) (A.20)
|F=9/2,mp=5/2) = |F =7/2,mp=17/2), (o) (A21)
\F=9/2,mp=5/2) = |F=17/2,mp=5/2), (n) (A.22)

) ) (

IF=9/2,mp=5/2) = |F=7/2,mp =3/2), (c7), (A.23)

and are represented in figure A.6. Experimentally, the MW transfer is done at 3 G. At this mag-
netic field, the Zeeman splitting between the various Zeeman states, which can be calculated
using the Breit-Rabi formula (see appendix A.5), is sufficiently large to be able to perform

%Under the assumption that the transfer efficiency is well known
"When atoms are transfer to the negative states, one can ramp the magnetic field to the zero crossing to perform

selective imaging at high field.
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Fig. A.5 SG picture taken along the
x-imaging. (Top) In absence of re-
pumping the population in mp = 5/2
is barely visible. (Bottom) Owing to
the optical pumping, the spin states
(mp =5/2 and mp = 7/2) detectivity
increased and one can see the signal of
mp =5/2 (Left) and mp = 7/2 (mid-
dle) greatly improved while not deteri-
orating the signal of mp = 9/2 (right).

Landau-Zener sweeps with a bandwidth large enough to cover magnetic field fluctuations. The
sweep duration is equal to 10ms and its span equals to +0.25 MHz around the central frequency
Orrans ~ 1.2858 GHz.

To characterize the microwave transfer efficiency, we record the evolution of the atoms num-
ber in all three Zeeman states mg = 9/2,7/2 and 5/2 with respect to the microwave center
frequency @rans. The atoms number is obtained using our Stern-Gerlach to spatially separate
the different spin components and the optical pumping to reliably detect each spin population.
The evolution of those three spin population with respect to the frequency of the microwave
sweep is presented in figure A.7. Unfortunately the two transitions |9/2,7/2) — |7/2,5/2)
and |9/2,5/2) —|7/2,7/2) coincide and thus, in absence of Stern-Gerlach cannot be used to
determine the spin population in either 7/2 or 5/2 8. Once the efficiency of each transitions
characterizes, one can probe the spin composition of the atomic cloud in absence of Stern-
Gerlach, and thus perform spin-selective imaging even for atomic cloud hotter than 10 uK. The
total atom number in mp = 9/2 will be equal to J%p (N; — Ny), where N; represents the total
atom number recorded in absence of any resonant microwave sweep, Ny denotes the total atom
number remaining after the 6~ microwave sweep addressing the [9/2,9/2) — |7/2,7/2) transi-
tion and fy/ the efficiency of the transfer, comprised between 0 and 1. Similarly, the population
in mp =7/2 and mg = 5/2 can be determined using the transitions [9/2,7/2) — [7/2,7/2)
and [9/2,5/2) — |7/2,3/2). Finally, after the MW sweeps, a substantial amount of atoms can
be the transferred into the upper hyperfine manifold. Collisions between atoms in different
hyperfine manifold of the ground state can create inelastic collisions, thus both altering the spin
composition of the atomic cloud and potentially leading to inelastic losses. Experimentally, we
observed strong inelastic losses after S0ms. As a consequence, absorption imaging must be

perform as fast as possible after the microwave sweep.

8For optical transition, due to the difference of polarization between those two transitions, one could polarize
the light to address only one of them. For microwave transition, our antennae emit all three types of polarizations.



138 Supplementary theoretical and experimental material

Fig. A.6 Microwave transitions for the pos- MW Spectroscopy
itive states of “°K. MW transitions between B=3G

the three spin states mp = 9/2,7/2 and mg =
5/2 of the F = 9/2 groundstate manifold and
the F = 7/2 upper manifold of the ground-
state.

A.5 Alkali atoms in magnetic fields

When subjected to a static magnetic field, non interacting alkali can be described by the

following Hamiltonian [130]:

=2
H= §—m—|—H0 + Hgo + Hyr + H;. (A.24)

Here, the first term describes the kinetic energy of the center of mass. ﬁo describes a single
spinless valence electron evolving in a electrostatic field created by the nucleus and the closed
electron shell. Similarly to the Hydrogen atom, for Alkali, the energy level of the valence
electron depends on the principal quantum number n. However, in case of Alkali, it also
depends on the angular momentum L. The modified eigenergies take the form: Ey(n,L) =
—Ry/(n— 8,.)*. Here Ry denotes the Rydberg constant while §, ; is the quantum defect. It
gives rise to the ground and the first excited state. Using the spectroscopic notation, they are
respectively represented by nS and nP and the transition between them goes by the appellation
Alkali D-line.

The term H. so corresponds to the coupling between the electronic spin S and the orbital angular
momentum L and takes the form ﬁso = ay,S - L. This interaction lifts the degeneracy of the
J =L+ S levels. For the groundstate, since L = 0, the total electronic spin J = S = 1/2. For
the excited states, the fine structure interaction separates the first excited states nP into nP; ),

and nP; ;. The energy splitting between the two excited states is equal to:

Hso = ap(J(J+1) —L(L+1) = S(S+1)). (A.25)
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Fig. A.7 Microwave transitions for the positive Zeeman states. After a 10ms sweep the
atoms are subjected to the 2us SG pulse and then imaged via absorption imaging. Prior to
imaging atoms were transferred in the mp = 9/2 Zeeman states with 10us of optical pumping.
By transferring atoms in a zeeman states to the upper manifold its relative population decreases
while the other two spins states relative population increases. Solid lines are super-Gaussian
fits and act as a guide to the eye.

The term I-AIH r incorporates the interaction between the total electronic spin J and the nuclear
spin L. This hyperfine interaction lift the degeneracy of the of the F = J 41 levels and takes the

form:
ahfl I+ by 3(1-3)*+3/2(1-3) — 1)
w2 2AQI-1)J(27-1)

Hyr = (A.26)
Here a;¢ and b,y are respectively the magnetic dipole and the electric quadrupole constants.
Finally, Hy represents the interaction between the external magnetic field B and the various
magnetic moments °

I:I\Z = —([/.L\[—l—ﬁL—{—‘L/IS) -B. (A.27)
Asymptotic behaviours

Low magnetic field

For low magnetic field, when the Zeeman energy shift is much smaller than the hyperfine
splitting, one can treat the Zeeman effect as a perturbation. As a consequence, in this limit,
the eigenstates of the Hamiltonian in absence of magnetic field still constitutes a good set

of quantum number. As such, the basis {|F,mp)} can still be used and up to first order in

9The magnetic moment [i; is related to the orbital angular momentum through the relation ti; = —ugg; L with
gr = 1 and up being the Bohr magneton. Similar relations connect the spin magnetic moment and the nuclear
spin magnetic moments, with gg ~ 2. The value g; is not universal. For “°K g; ~ 1.4 x 1074,
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perturbation, the energy shift from the Zeeman effect is equal to:
AE(B) —Epr = <F,mF|ﬁZ|F,mF> = ‘LLBgFmF|B|. (A28)

gr 1s the Landé factor of the hyperfine manifold and is equal to:

FIF+1)+JJ+1)—I1(I+1) F(F+1)+1(I+1)—J(J+1)_

§r =8 2F(F+1) T8 2F(F+1)

Finally, Eyr = app(F(F 4+ 1) —I(I1+1) —J(J 4+ 1) represents the hyperfine splitting in absence
of magnetic field (and in case of by = 0). For “°K, this low asymptotic regime is only valid

for magnetic field up to few Gausses.

High magnetic field

For high magnetic field, when the Zeeman energy shift far exceeds the hyperfine splitting, the
basis {|F,mp)} does not constitute a good basis anymore. In this regime, called the Paschen-
Back regime, the correct set of eigenstates is given by the basis {|/,my;J,m;) }, eigenstates of
the Hamiltonian Hy + H so+ Hy. The hyperfine splitting can then be treated as a perturbation
and the energy shift is given by:

AE(B) — Ez = (I, my;J,my|Hyp|I,my:J,my)
Omim3 —3I(1+ 1)m2 —3J(J+ 1)m? + IJ(I+1)(J + 1)
HI20+ )T+ 1)

= apgmymy + by

Finally, Ez = ug(gym; + gymy)B represents the energy shift for the Hamiltonian ﬁo +ﬁ50 —}—FIZ
compared to B=0G.

The case L=0

For S orbitals, such as the groundstate nS of Alkali, L = 0. In this particular case, one can
calculate analytically the Zeeman energy shift AE(B) for any magnetic field. This analytic
solution is called the Breit-Rabi formula [250] and for the stretched states (mp = +(1+1/2))
it is equal to:

Sl (/2 gil)B.

And for the excited states (|mp| < (I+1/2)):

apg apf(I+1/2) 2up(gr—gnme) ,  Mz(gr—81)*)
B+ ——~,/1 B B?
T +.UBg1m 5 ans(I+1/2)? a%f(1+ 1/2)2
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The figure 2.11 represents the evolution of the energy shift of the ground state manifolds as a

function of the magnetic field.






Appendix B

Characterization of a new “°K Feshbach resonance

In this appendix we will report on the characterization of a novel Feshbach resonance in “°K
via the measurement of the inelastic loss rate constants. Characterization of this new Feshbach
resonance was also reported in a previous thesis from the group [74]. In the following a brief
description of Feshbach resonances in ultracold atoms will be provided before describing this

novel resonance and its characterization.

B.1 Interaction in ultracold atoms

In Appendix A.5, we described the behavior of non-interacting particles. In low-energy physics,
such as cold atoms, collisions between two particles is often described using the partial waves
method. We Consider two particles interacting via the potential V(R) and with a relative
momentum 7ik. R represents the distance between the two particles. At large distance R,
V(ﬁ) — 0 1. The two particles can then be described as two incident plane waves. These plane
waves can be decomposed in the basis of the spherical harmonic functions ¥,,, (R). [ is the
relative angular momentum between the two particles and m; its projection along a given axis.
This decomposition is called the partial wave expansion [46]. For a symmetrical potential, the
angular momentum is conserved and thus only the radial component ¢;(R) of the wavefunction
will be modified by the interaction. The Schrodinger equation associated to y(R) = ¢;(R)/R is

equal to [46]:
2

h
—ﬂa,éwl(R)vLVz(R)wl(R) =Eyi(R). (B.1)

Here u denotes the reduced mass of the two particles and the modified potential V;(R) =V (R) +
h21(1+1)/2uR? incorporates the centrifugal barrier, which vanishes for s-wave scattering
(I =0). For E > 0, the Schrodinger equation has a continuous spectrum of solutions while for
E < 0 the eigenenergies E,; are discrete and there is a finite number of bound state solutions.

As R — +oo, the solutions of the scattering problem are the sum of the incident plane wave

IR=R/R.
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with a momentum 7k and a scattered wave decomposed in partial waves. The effect of the
interacting potential V(R) on the collision events is entirely contained in a single parameter
1n;(E) called the scattering phase shift [46]. In the particular case of s-wave scattering, one can
define the scattering length a and the associated scattering cross section:
tan 1o (k) 4ra®

m——— and 0=—>5-. B.2
k—0 k 1 +k%a? (B.2)
The scattering length a can take any value from —oo to +oo. Interaction between particles will
be attractive for a < 0 and repulsive when a > 0. The most common technique to tune the value

of a is by using Feshbach resonances.

B.2 Feshbach resonances in ultracold atoms

Initially discovered in nuclear physics [251], Feshbach resonances are a convenient way to tune
the interactions strength between atoms to be strongly repulsive, strongly attractive, vanishing
and anything in between. The existence of Feshbach resonances is related to the presence of
bound states. Even though two atoms cannot form a bound states while colliding elastically, the
presence of such states still alter the scattering properties of interacting cold atoms. Feshbach
resonances occur when the energy of the two colliding atoms equals the energy of one of
the bound states of the molecule composed of the two atoms. If the magnetic moment of the
molecule differs from the magnetic moment of the two free atoms the energy difference can be
tuned by changing the value of the magnetic field. In the vicinity of the resonance, the s wave
scattering length takes the form [252]:

a(B) = ay (1 __A ) , (B.3)

B—B,

where B denotes the applied magnetic field and By the magnetic field for which the energy of
both states coincide. A represents the width of the resonance and fixes the zero crossing of
the scattering length at the magnetic field B = By + A. On the repulsive side of the Feshbach
resonance, the energy of the bound states (referred to as the closed channel) are lower than the
energy of the free atoms (referred to as the entrance channel). Owing to inelastic collisions 2,
atoms can be adiabatically transferred to this bound state to form a Feshbach molecule by

sweeping the magnetic field across the resonance starting from a small negative scattering

2Inelastic collisions are collisions that don’t preserve the momentum nor the kinetic energy of the system.
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Fig. B.1 Initial detection of two unreported Feshbach resonances.(a) The evolution of the
total atom number after 5 s of hold time with respect to the magnetic field reveals the presence of
two resonances around 10G and 150G. Figure adapted from [73]. (b) Numerical simulation by
E.Tiesinga of the two-body inelastic scattering rate between atoms in mg = 9/2 and mp = 7/2.
Their collision energy was set to 60nK.

length [125]. The energy of the Feshbach molecule is given by:

h2

Ep
Kinetic energy not being conserved during an inelastic collision process, they can lead to
inelastic losses and hinder the evaporative cooling. However, they can be an important tool to

detect new Feshbach resonances or form bosonic molecules composed of fermions.

B.3 Initial detection of a new Feshbach resonance

A previous experimental study regarding the evaporation efficiency of “°K in a single dipole trap
revealed two unreported loss resonances at B = 9G and B = 150G. After the MW evaporation
described in sec. 2.10, atoms were transferred into a single ODT and held for 5s. At this
stage of the sequence, the atomic cloud was composed of mostly atoms in the mp = 9/2 and
mp = 7/2 Zeeman sublevel with a minority in the mr = 5/2 state. The evolution of the total
atom number with respect to the magnetic field was recorded after the 5s of hold times. The
figure B.1, adapted from [73] shows the corresponding losses diagram.

A more detailed analysis of the first loss feature located around 9 G revealed three losses feature
as shown in the figure B.2. In this measurement, the atomic cloud was first evaporated during
4s at a bias field of 18 G. The magnetic field was then quickly ramped to its target value before
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Fig. B.2 Detailed analysis of the first loss 4
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holding the cloud in the ODT for 4s. The remaining fraction of atoms was then detected using
standard absorption imaging. Among the three losses feature the one located at 8.1G is the
more pronounced. As the presence of these two additional features still remains to be explained,
this appendix will be devoted to the understanding and the characterization of the initial feature
located around B = 8.1 G. Due to the relatively low trap depth, one cannot easily extract the
inelastic loss rate from the remaining atom number as evaporative cooling might still contribute
to the losses. Consequently, the focus of the following section will concern the extraction of
the loss rate.

In order to characterize this novel Feshbach resonance, several questions must be answered and
will be addressed in the following section:

1. Which spin states are involved in the open channel?

2. In which partial wave do the atoms collide in the entrance and exit channel?
3. What is the value of the resonant magnetic field By?

4. What is the width A of the resonance?

5. What is the loss mechanism?

B.4 Characterization of the resonance via inelastic losses

As explained earlier, inelastic collisions do not conserve the angular momentum of the system
nor the total kinetic energy. When the kinetic energy released after the collision exceeds the
trap depth, atoms can be expelled from the confining potential. Two principal inelastic losses

mechanisms can be identified: two and three body losses. For two body inelastic losses, the two
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? Fig. B.3 Schematic description of two and
<@ _> 4‘ @ three body inelastic collisions. For two body

inelastic collisions, the two atoms in the en-
trance channel will collide and flip their spin in
the process. During three body collisions, two
partners form a molecule and a third partner
gather the excess of energy.

atoms in the entrance channel can flip their spin and after the collision will end up in a lower
internal states. For three body inelastic losses, three partners collide, two of them will end up
in a bound state and form a molecule while the third one will gather the excess of energy. As a
consequence, for two body process, in the outgoing channel, the excess of kinetic energy will
be on the order of the Zeeman shift while it will be of the order of the bound state energy for
three body process. Figure B.3 depicts those two processes.

Characterization of a Feshbach resonance can be achieved from the study of the two- and
three-body inelastic loss rates. These rates can be extracted from the measurement of the
lifetime of the atomic cloud. In the following, we will described the theoretical framework

associated to these loss mechanisms.

Loss rate equations for the shallow trap limit

For a single component gas, the evolution of the atom number with respect to time is given [46]:

dN(¢
df ) _ —LYN(r) - / (LPn?(r,t) + L33 (r,1)). (B.5)
r
Here, L(V) = 1 /7 is the inverse of the lifetime of the cloud. It is set by the rate of background

collisions. L(?) and LB denote the loss coefficients due to two-and three-body collisions.
Finally n(r,7) represents the spatial density of the trapped gas. Here, we neglected higher
order terms (such as four body losses), since the probability of such events is extremely low,

especially for fermions 2.

One-body losses

The background gases being in thermal equilibrium with the exterior of the vacuum chamber,
each collision between a trapped atom and a background particle will lead to the atom escaping
from the trap no matter the trap depth. Those collisions involving only one atoms from the
confined sample, they are referred to as one body processes. The contribution of such collisions

3Due to Pauli blocking, two fermions in the same internal state cannot be at the same position
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to the evolution of the total atom number is given by the relation:
‘ N
N(t) = -LON(r) = - Y LON (1) (B.6)

Where N;(t) denotes the atom number in a given Zeeman states i and the sum is done over all
the different spin components present in the atomic mixture. Experimentally, the lifetime was
measured by first recompressing the trap to suppress any evaporative cooling. The magnetic
field was then set to 18 G which is sufficiently far away from the resonances for all the losses
mechanisms to be strongly dominated by the background collisions. The evolution of the total
trapped atom number with respect to time was finally recorded via absorption imaging and the
lifetime 7 = 47 s obtained *.

Two-body losses

Evaporative cooling
Two body losses can be due to elastic or inelastic collisions. Elastic collision is the main
mechanism at hand during evaporative cooling. In an harmonic trap, the evolution of the atom

number due to elastic collisions is given by the relation [122]:
N(t) = —TeyN(t). (B.7)

Here I, represents the evaporation rate and encapsulate the evaporation dynamics. It is pro-
portional to no exp(—n) with n being the atomic density, ¢ the elastic s-wave cross section
and N = Uy/kgT the ratio between the trap depth and the temperature of the cloud. As such,
one can suppress the evaporation rate by increasing the value of 1. Experimentally, in order to
correctly extract the inelastic loss rate from the lifetime measurement of the atomic cloud, we
recompressed our ODT up to 1) > 8, which was enough for the two body losses to be completely
dominated by inelastic collisions >. Consequently, in the following, elastic collisions will be

neglected.

Two body inelastic collisions
In order to model the two body inelastic losses, one need to be able to know the composition
of the entrance channel. Since all three spin states mg = 9/2,7/2 and 5/2 are present in the

ODT, each of them could potentially contribute. Howerver, given the magnitude of the losses in

“The lifetime is shorter than the lifetime obtained just after transferring the atoms into the ODT in presence of
a small bias field B =4G.

3In practice, in the vicinity of the resonance, for ) = 8 the two body elastic collisions rate was more than an
order of magnitude lower than the lowest inelastic collision rate that we measured.
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picture B.2, one could think that 5/2 is absent from the loss process since it only represents 12 %
of the total atom number. A preliminary numerical simulation, kindly provided by E.Tiesinga
in a private communication was able to confirm the existence of both the resonance around 8 G
and 160G. In this private communication, he also identified those two resonances as d-wave
in nature and that in the open channel the two states mp = 9/2 and mp = 7/2 were present.
Following this indication, two body inelastic losses can be modeled. Assuming that the trap
depth is sufficiently shallow for both atoms to leave the trap after an inelastic collision ©, the
evolution of the population in the mpg = 9/2 and in the mp = 7/2 spin states will be given
by [253]:

Ny (1) = ~L? (n7/2) (t)No 2 (1) (B.8)
Nyjp(t) = —L® (ng o) (t)N7/2(t). (B.9)
Here, (n;) denotes the number density of the spin states i and is equal to (n;) = 1/N; [.n?(r).
Assuming that the cloud is in constant thermal equilibrium, 7;(r) can be written as n;(r) =

n,~7oe_ﬁ Ur) with nio = N;/V. being the peak density. Using the harmonic approximation for

the trap U (r), one can obtain the expression of the number density [254]:

3
N; ksl
(i) = —2—  with V=B (B.10)
2v/2V, mo

with @ being the mean trapping frequency. Therefore, the two body losses can be written as:

: N7 (t
: Nog o (1
N7/2(t) = _L(Z) 2325(‘/)]\77/2(” (B.12)

Three body losses

Three boy collisions can be understood as a two steps process. At first two atoms collide and
couple to a virtual bound state. While in the virtual state, collision could occur with a third
atom causing the molecule to decay into one of the lower lying vibrational level. The excess
energy resulting from that decay will be carried out by the third partner. While three body
collisions could occur and dominate loss rate measurement, it was found that the effective
two-body loss rate LO3N was an order of magnitude lower than the two body counterpart [74].

Three-body losses will therefore be ignored in the following.

This condition can be met if Uy < E., with E, the released Zeeman energy after an inelastic collision.
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B.5 Evolution of the total atom number

Using the relations presented in the previous section, we can derive the rate equation for the
total atom number N(t) = No 5 (t) + Ny 2 (t) + N5 5 (t):

(2)N7/2(t)No 2 (1)
vV2v.

We Introduce the population imbalance ANy7(t) = Ny 5 (t) — N7 »(t) between the states mp =
9/2 and mp = 7/2. The rate equation of ANg7(z) being given by ANg7(r) = —LI) ANy, (1),

the evolution of the population imbalance with respect to time is given by: ANg;(t) =

N(t)=—-LYN(@) - L (B.13)

AN97(O)e’L(])t . Similarly, the population in mp = 5/2 does not undergo any two body process
and the evolution of N5, is thus given by Ns»(t) = Ns /Z(O)e_Lm’ .

At this point, it is useful to introduce the notations f52, f7,2, fo/2 and fo7 = fo/5 — f7/2 t0
represent the initial population in a given Zeeman state. Thus, f; = N;(0)/Ny(0) denotes
the initial fraction of atoms in the Zeeman state i. Finally, using the fact that Ny, (1) =
N(t) — [Ns5(t) + ANo7(t)] and N7 5(t) = N(t) — [N5/»(t) — ANo7(t)], one can derive the rate
equation for Ny () and N7 /5 (t):

Nojy(t) = N—[fs)o+ for]N(0)e 2" (B.14)
N2ja(t) = N = [fs /2 — forIN(0)e " (B.15)

The final rate equation for the total atom number can then be obtained by inserting the above

equations into eq. B.13:

L2
22V,

N(e) =—LN(r) - N2 (0)+ (1 = SN2 (0)e " = g5 pN ()N (e

(B.16)
Thus, the evolution of the atom number also depends on the temperature as V, o T-3/2,
Moreover, the two body inelastic collisions act an anti-evaporation mechanism that leads to

heating of the cloud. The heating rate is equal to [255]:

_— N(t) —NS/z(f)
T‘4(N@—Mp@>' B4

The population in mp = 5/2 not experiencing any two body collisions, it has to be removed from
the rate equation since background collisions do not contribute to heating of the atomic cloud.

The rate equation of the temperature and the total atom number can then be fitted to extract
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Fig. B.4 Inelastic losses for different mag-
netic field. Evolution of the total atom num-
ber as a function of the wait time for a mag-
netic field B="7.1G and B = 7.3 G. The initial
atom number and temperature were 1.2 x 10°
and 2.8 uK respectively. In order to prevent
evaporative cooling the dipole trap was recom-
pressed to a final trap depth Up/kg = 8.4T.
Lines are obtained by simultaneously fitting
00 05 1.0 1.5 20 25 3.0 thedifferential equations B.16 and B.17.
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the two body inelastic loss rate given that no additional loss process occurs. The underlying
assumption is that evaporative cooling is suppressed while any two body inelastic collision
results in a loss of the two partners. Those conditions can be met as long as kg7 < N < E7.

B.6 Evolution of the loss rate

In order to characterize the loss rate, the value of the two body inelastic loss rate L2 asa
function of the magnetic field has to be known. Furthermore, additional information regarding
the nature of the resonance can be extracted from the temperature dependence of L@, While
for s-wave open channel, the inelastic loss rate is supposed to be temperature independent, for
d-wave open channel, due to presence of the centrifugal barrier, both the witdh and the height
of the resonance peak are supposed to increase with temperature [256].

As indicated by equation B.16, the loss rate can be extracted from the lifetime of the trapped
atoms. Experimentally, we first evaporate in the single ODT the atomic cloud by reducing
the trap depth up to an intermediate depth around kg x 10uK. Following the evaporation, we
recompress the trap to its final value Uy = kg x 24 uK. The final value is set such that the ratio
n > 8 and that as a consequence the losses are completely dominated by the inelastic collisions.
The magnetic field is then ramped to a desired value By and the atoms kept in the ODT for
a duration to)q. The atoms number and the cloud temperature are recorded after various #1q-
As example of such experiment is shown in figure B.4 for two different value of Bge. One can
see that close to resonance the inelastic losses are strongly enhanced. The heating causes the
ratio 7 to decrease as the hold time #,)q increases, which could ultimately lead to evaporative
cooling despite the initial suppression of this process owing to the starting value of n > 8.
However, this is not an issue as the loss rate can still be extracted from the initial atom number
decay. The loss rate is obtained by numerically and parametrically fitting both the total atom

number and the temperature evolution at the same time using the two rate equations B.16
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Fig. B.5 Evolution of the two-body inelastic loss rate as a function of the magnetic field.(a)
Experimental measurement of the two-body inelastic scattering rate as a function of the
magnetic field. The three sets correspond to three different average kinetic energies as given by
their initial temperatures 7y. For 7o = SuK and 7y = 10K, the corresponding trap depths of
kg x 48uK and kg x 108 uK exceeded the Zeeman energy splitting causing the partial recapture
of atoms after the collisions. This led to a reduction of the detected loss rate and an increase of
the heating. (b) Numerical simulation by E.Tiesinga of the two-body inelastic scattering rate
between atoms in mg = 9/2 and mp = 7/2. Their collision energy was set to 60nK.

and B.17. Three fit parameters emerge from the rate equations: the initial imbalance fo7, the
initial fraction of atoms in the mp = 5/2 sublevel f; /2 and the loss rate L@, Both fy7 and
L@ are obtained from the fitting routine under the constraint that the initial fitting total atom
number is equal to its experimental value while the initial fraction f5,, = 0.12 is fixed from the
spin composition analysis of the cloud after its transfer into the science cell (see sec. 3.3 for
additional information). On top of the resonance, we find Lg) =3.25x10""2cm’.s7! and an
initial imbalance f97 5 = 0.26 which is in excellent agreement with the expected initial spin
population (see sec. 3.3).

B.7 Nature of the resonance

Once extracted, the evolution of the loss rate as a function of the magnetic field was recorded
for various temperature by adjusting the intermediate trap depth as well as the final one in
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Fig. B.6 Inelastic collisions channels due to the Feshbach resonance. (Left) First possible
collision channel. After the initial collision between atoms in the mg = 9/2 and mg = 7/2
states, only the atoms in the mp = 7/2 state undergoes a spin flip to the lower lying mr = 5/2
state. | Amp, |= 1 and the energy released thus corresponds to the Zeeman splitting between the
two states. (Right) Second possible channel: the two spin states changes their spin, | Amy, |= 2
and the energy released correspond to twice the Zeeman splitting.

order to always stay in the regime 17 > 8 and is represented in fig. B.5a. For increasing trap
depth, the magnitude of the loss peak decreases as well as its width. Moreover, its position
seems to slightly shift towards higher magnetic field. The decrease of the peak magnitude
can be explained by the recapture of atoms after undergoing a spin-exchange collision. For
magnetic field around the resonance, the Zeeman splitting is roughly equal to kg x 110uK .
The mean released kinetic energy per atoms is therefore around kg x 55 uK. When the trap
depth becomes comparable to the average released kinetic energy, atoms can remain trapped
after an inelastic collision, thus reducing the measured loss rate. This recapturing process also
leads to stronger heating of the cloud. Experimentally, the loss rate was measured for several
trap depth: Up/kg = 23,48 uK and , 108 uK. Thus, for the last two set of measurements, the
detected loss rate decreased because of the enhanced likelihood of recapture.

Additionally, the temperature dependency of the Loss rate provides information regarding
the nature of the open channel. For p-wave collisions, the resonance position and the width
of L® increases with T, but the height of the peak remains unchanged [257]. On the other
hand, for d-wave collisions, the height also increases with temperature [256, 258]. Given
that our resonance does not follow these patters, our entrance channel is in s-wave. This was
confirmed by numerical simulations of E.Tiesinga, which predicted that the contribution of
d-wave in the entrance channel was more than 5 orders of magnitude smaller than the s-wave
contribution [74]. The numerical simulation provided by E.Tiesinga is provided in fig. B.5b
and is in excellent agreement with the experimental data. In particular, the predicted peak of
the loss rate was 4.05 x 10~ '2cm—3.s~! which agrees within 20 % with the measured value
of 3.25 x 107 2ecm™3.s~!. The resonance position offset of 0.4 G is within the uncertainty of
the numerical predictions of +0.5. To conclude this appendix, the two-body inelastic collision

mechanism is presented in figure. B.6.

"This splitting corresponds to the Zeeman splitting at a magnetic field of B = 7.4G.






Appendix C

Quasi-thermalization of collisionless fermions

Quasi-thermalization of collisionless particles in quadrupole potentials. J. Lau, O.
Goulko,T. Reimann, D. Suchet,, C. Enesa, F. Chevy and C. Lobo. Submitted to Phys. Rev. A
We analyze several puzzling features of a recent experiment with a noninteracting gas of atoms
in a quadrupole trap. After an initial momentum kick, the system reaches a stationary, quasi-
thermal state even without collisions, due to the dephasing of individual particle trajectories.
Surprisingly, the momentum distribution remains anisotropic at long times, characterized by
different “temperatures” along the different directions. In particular, there is no transfer of the
kick energy between the axial and radial trap directions. To understand these effects we discuss
and solve two closely related models: a spherically symmetric trap V (r) ~ r* and a strongly
confined gas along one direction (a “pancake” trap). We find that in the isotropic trap, the gas
unexpectedly also preserves the anisotropy of the kick at long times, which we are able to
explain using the conservation of angular momentum and the virial theorem. Depending on the
value of a we find that the kick can cool or heat the orthogonal directions. The pancake trap case
is quantitatively similar to the quadrupole one. We show that for the former, the temperature
anisotropy and memory of the kick direction are due to the change in the 2D effective potential
resulting from the kick, thereby also explaining the quadrupole experimental results.
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We analyze several puzzling features of a recent experiment with a noninteracting gas of atoms in a
quadrupole trap. After an initial momentum kick, the system reaches a stationary, quasi-thermal state even
without collisions, due to the dephasing of individual particle trajectories. Surprisingly, the momentum distribu-
tion remains anisotropic at long times, characterized by different “temperatures” along the different directions.
In particular, there is no transfer of the kick energy between the axial and radial trap directions. To understand
these effects we discuss and solve two closely related models: a spherically symmetric trap V(r) ~ r* and a
strongly confined gas along one direction (a “pancake” trap). We find that in the isotropic trap, the gas unexpect-
edly also preserves the anisotropy of the kick at long times, which we are able to explain using the conservation
of angular momentum and the virial theorem. Depending on the value of o we find that the kick can cool or
heat the orthogonal directions. The pancake trap case is quantitatively similar to the quadrupole one. We show
that for the former, the temperature anisotropy and memory of the kick direction are due to the change in the 2D
effective potential resulting from the kick, thereby also explaining the quadrupole experimental results.
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I. INTRODUCTION

A major part of the theoretical study of classical Hamil-
tonian dynamics [1] concerns the ability of purely conserva-
tive systems to reach thermal equilibrium. This line of in-
quiry took its origin from Boltzmann’s demonstration of the
celebrated H-theorem, which provided for the first time a mi-
croscopic explanation of the second law of thermodynamics.
This pioneering work quickly gave rise to many paradoxes due
to the fact that the entropy of a Hamiltonian system . is con-
served. Even 150 years after Boltzmann’s work, problems like
Loschmidt’s paradox [2], Poincaré’s recurrence theorem [3] or
the Fermi-Pasta-Ulam-Tsingou [4, 5] problem remain largely
unresolved [6]. A possible approach towards their resolution
lies in the notion that any small sub-ensemble . can be de-
scribed as an open system interacting with the rest of .. The
latter therefore plays the role of a bath allowing the thermal-
ization of .]. In the quantum world, this picture is known as
the Eigenstate Thermalization Hypothesis [7—9], which also
applies to classical systems [10]. In this context, an intriguing
question concerns the minimal system size required for ther-
malization. Despite the fact that the thermodynamic limit is
usually associated with large-size systems, small objects such
as nanoparticles [11], nuclei [12] or atoms trapped in optical
lattices [13] are nevertheless known to relax towards thermal
equilibrium.

With decreasing system size, a natural question to consider
is to which degree a single particle is able to reach thermal
equilibrium. This extreme limit can be studied experimentally

! {Deceased 21 May 2016

using cold fermions by taking advantage of the Pauli exclu-
sion principle. The associated suppression of interactions at
low temperature gives rise to a unique experimental platform
facilitating the study of purely Hamiltonian systems.

In this work, we consider an ensemble of non-interacting
particles confined in non-separable power law potentials.
The question of thermalization in this class of potentials
was already raised in the context of collisionless atoms in
quadrupole traps [14, 15]. This problem was recently revived
in the context of quantum simulation of high-energy physics,
where the behavior of (harmonically confined) massless Weyl
fermions was studied experimentally using cold atoms in a
quadrupole trap [16]. In this latter work, it was shown that af-
ter a rapid quench of the trap position, the center of mass mo-
tion is damped after a few oscillations and the system reaches
a steady state characterized by partial thermalization of its mo-
mentum degrees of freedom. The corresponding distribution
of the atomic ensemble closely resembles a thermal distribu-
tion, npi—y.y,; o« exp(— plz /2mkgT;), but with anisotropic tem-
peratures.

In this paper, we present a detailed theoretical analysis of
these relaxation dynamics. Furthermore, we provide analyt-
ical calculations of the steady state properties in an isotropic
as well as in a pancake geometry. These results are compared
to numerical solutions of the corresponding dynamical equa-
tions. Our work clarifies the memory effect leading to the
anisotropy of the momentum distribution and predicts a sin-
gular behavior for spherical potentials.



II. RELAXATION DYNAMICS IN QUADRUPOLE TRAPS

Motivated by recent experiments with non-degenerate spin-
polarized fermions [ 6], we consider an ensemble of classical
noninteracting particles confined by a quadrupole trapping po-
tential

V(r) = upb\/x2 +y2 +4z22. (D)

where up is the Bohr magneton and b is the magnetic field
gradient, a positive quantity.

This potential is non-integrable since it has three degrees of
freedom but only two constants of the motion (total energy E
and angular momentum L;). As a consequence its dynamics
exhibits chaotic behaviour in some regimes. In contrast, the
more usual potential of standard atomic traps is a sum of har-
monic terms of the form V; (x) + Va2 (y) + V3(z) allowing us to
define three conserved energies, leading to an integrable prob-
lem. Note that, since the quadrupole potential cannot be writ-
ten as the sum of potentials as in the harmonic case, the motion
along one direction depends on the other two so that momen-
tum and energy are constantly being exchanged between the
three directions as the atom moves along the orbit.

We will study the relaxation dynamics in this potential i.e.,
what happens to the gas after it is slightly perturbed from
equilibrium. At ¢ = 0 with the gas in thermal equilibrium,
the atoms receive a “momentum kick” ¢ that shifts every
atom’s momentum p — P + ¢ and increases its energy by
p-q/m+q*/2m. Since the original (thermal) distribution be-
fore the kick is an even function of each component of p, the
first term drops out when averaged over that distribution, so
that the average energy change AE per atom is:

AE = ¢*/2m. 2

We are interested in the subsequent evolution: how the gas
relaxes to steady state and how the energy AE of the kick is
redistributed along the different directions of motion. Nor-
mally, as is usually assumed, collisions would be responsible
for this redistribution leading to a return to thermal equilib-
rium. However, in our case, there are no collisions nor mean-
field interactions, so any relaxation process is due purely to
the nonintegrability of the potential.

The state of the gas can be described by the Boltzmann dis-
tribution f(r,p,?) which we normalize to unity:

/d3r/d3p f(r,p,t)=1. 3)

All extensive quantities are to be taken as ensemble averages
over this distribution. For example, the final measured mo-
mentum distribution np;, is given by

np. = / &r / dpy dpy f(r,p.1 — ). @)

To simulate this distribution we perform molecular dynam-
ics simulations of the gas [17, 18] where the trajectory of each
atom is calculated following the classical equations of motion,
without suffering any collision. This method gives us full ac-
cess to all observables, including the Boltzmann distribution

0 20 40 60 80 100

Figure 1. Numerical simulation of the relaxation dynamics in a
quadrupole trap. a) Kinetic energy per atom along different direc-
tions as a function of time after a kick ¢ = 1 along x at r = 0. The
energies seem to reach a stationary state for ¢ > 80. Along z the aver-
age kinetic energy is almost unchanged from its initial value ~ 1, but
along x and y the corresponding values increase by the same amount
to a final value of ~ 1.2. b) Momentum distribution np, of the steady
state. The solid line %q is a Gaussian distribution with the same
variance.

itself. For example, we can measure the phase-space average
< p%) for i = x,y,z over the entire system as a function of time
by averaging over the trajectories of individual atoms:

" ' 1
(P}, = /d3r/d3p PP~ pi(t),
all N atoms
@)

We start with a gas of N = 10° atoms sampled from the
initial Boltzmann distribution at temperature kgTy = 1 with a
momentum kick of g along x:

(px - QX)Z +P§ + P?
fecexp( -

7 —V(xy, Z)) (©6)
(analogously for a kick ¢, along z etc.) and let each individual
atom evolve according to the classical trajectory. From now
on we set m = kgTy = upb = 1, which is equivalent to choos-
ing m as the mass unit, lp = kTo/ b as the unit of length and



to = v/mkgTy/Ugh as the unit of time. The time evolution is
calculated using the velocity Verlet algorithm [19, 20]. We use
a time step Ar = 0.001#p, which provides sufficient accuracy,
as the error of the algorithm is of the order &'(At?).

This very simple setup gives rise to some surprises which
have also been confirmed experimentally [16]:

1. Stationary “thermal” distribution: In Fig. 1 a) we plot
< p12> .- We see that, at long times, it has reached an ap-
parently stationary distribution. In Fig. 1 b) we plot the
long time doubly integrated momentum distribution np,
(4) and we see that it fits closely to a Gaussian (thermal)
distribution np, o< exp(—p?/2mkgT,) where we define
an effective temperature analogously to the experiment

[16]:
Ti=(p}), ,..i=xy1 ©)
so that

AT = <pi2>t—>oo - <pi2>r:0 : ®)

2. Anisotropic temperatures: From Fig. 1 a) we see that,
even though the doubly integrated distributions np;
along the different directions i are Gaussian, their
widths are different: generally we find T ~ T, # T;.
We also see that T, ~ Ty < Ty, which we find to be
true whenever the kick is in the xy plane, the oppo-
site being true if the kick is along the z direction. This
is unexpected because the quadrupole potential is non-
separable, continuously transfering energy and momen-
tum between all directions for each atom, so we might
expect naively that on average T, ~ T, ~ T, i.e. there
would be a certain degree of ergodicity.

3. Apparent separability of the z and x —y distributions:
for a kick along z, the width of the momentum distribu-
tion along x and y seems to be unchanged (i.e. Ty, ~ 1)
whereas T, increases. The energy increase AE due to
the kick is mainly concentrated into the z direction so
that AE ~ 3/2 AT,. Likewise, if the kick is along x,
the increase in kinetic energy along the z is negligible
(T, ~ 1) but both T, and T, increase by the same amount
(T = T)) so that AE ~ 3AT,. In fact we will see below
that this separation is not exact; there is a slight increase
of energy in directions transverse to the kick. Neverthe-
less this behaviour is consistent with a strong separation
of the dynamics into z and xy plane components even
though the potential is non-separable.

The naive, straightforward conclusion from these observa-
tions is that the gas seems to have thermalized in the absence
of collisions (since the doubly-integrated momentum distribu-
tions (4) become Gaussian-like, a hallmark of thermalization)
but with some effective “decoupling” of the motion along z
and xy directions leading to different temperatures T, and T,

A. Apparent Thermalization

In point 1. above we noted that the gas becomes stationary
after some time. This stationary state of the gas is not due to
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Figure 2. The long time Boltzmann distribution f after a kick along
z plotted as a function of p; keeping all other variables x,y,z, px, py
fixed and for different values of x. To obtain a nonzero number of
atoms in the six dimensional volume we considered a narrow region
in phase space given by the coordinates in the figure and divided it
into bins. We plot the number of atoms in each bin averaged over
time. It can be seen that f does not resemble a Gaussian thermal
function and that the three peaks feature becomes more prominent
for x closer to the center. Similar results are found plotting along all
other coordinates.

collisions but to the fact that, in the quadrupole trap, the orbits
of different atoms will have different, incommensurate peri-
ods leading to the relative dephasing of individual trajectories.
This dephasing, when averaged over the whole gas, leads to a
stationary distribution. Note that the appearance of a station-
ary distribution would not happen in the standard harmonic
trap since a momentum kick would lead to undamped oscilla-
tions of the center of mass. Note also that that irreversibility
has not set in by this stage since there are no collisions.

We also mentioned above that the gas seemed to have
thermalized in the absence of interactions since the doubly-
integrated momentum distributions (4) become Gaussian after
the kick.

Of course, since the effective temperatures deduced from
the width of the Gaussians are different (7; # T, ) the state
cannot be a true thermal state. Indeed, collisions are necessary
to redistribute the kick energy AE among all accessible phase
space regions of energy E + AE so that the entropy increases
S(E) — S(E 4+ AE) whereas in this experiment, E — E + AE
but entropy is unchanged. Nevertheless, as can be seen from
the simulations, several “thermal” properties can be achieved,
e.g. stationarity and equilibration of temperatures along the x
and y directions.

We can ask to what extent the final state of the gas is close
to a thermal state. For example, could it be e.g. a product of
three different Gaussians (with different temperatures) of the



type

2 > 2
f e Px/2Tx g= Py /2Ty =12 /2Te o = VT 9 )

It is easy to see that this is not possible since it does not sat-
isfy the time independent collisionless Boltzmann equation.
In fact we can plot a “slice” of f as a function of one of its six
coordinates keeping all others fixed as in Fig. 2 which shows
a markedly non bell-shaped curve.

In fact, the Gaussian character is only restored upon inte-
gration of the other five coordinates of the Boltzmann distri-
bution e.g.:

npy = / a’r / dpydp.f(r,p,t — 00) o< e P/l (10)

which raises the question of why averages over complex dis-
tributions such as those of Fig. 2 lead to a Gaussian profile.
We will not consider this question further here, leaving it for
further study.

B. Symmetries and sum rule of the distribution

We can be more quantitative regarding the AT;. We first no-
tice that the quadrupole potential (1) is homogeneous of order
one, (a potential homogeneous of order ¢ has the property that
V(Ar) =A%V (r)). So we can apply the virial theorem which
leads to the following relation [21]:

3
AE = 2 (AT, + AT, +AT,). (11)

Furthermore, for small kicks we can derive some symmetry
considerations and a sum rule. Defining the matrix ©;; as

AT, =) 0,5 (12)

where i, j = x,y,z, and ¢; is the momentum kick along the ith
direction, it is possible to show that this matrix is symmetric
so that, for small kick momentum, we have ©;; = 0 ;.

More generally it is straightforward to show using (2) and
(11) that, if the potential is homogeneous of order «, the ©;;
satisfy the constraint

20
YO, = . 13
- YT o4 (13)

For potentials with axial symmetry around the z axis, which
is the case of the quadrupole trap, the fact that the matrix is
symmetric and that in any kick AT, = AT, imply that the ma-
trix can be written using only three distinct elements 0; 23 as

6, 6, 6
=16, 6, 6, . (14)
6 6, 6

Using the sum rule we find 6, +26; = 63+ 26, = 2/3 which
leaves us with a single unknown parameter. The experimen-
tally measured value AT,/q?/2 = 2/3 (see point 3. above)
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Figure 3. Poincaré map of the quadrupole potential. We study tra-
jectories with the same energy but different initial phase-space co-
ordinates. The values of x and p, are recorded whenever z = 0 and
p; > 0. We see the appearance of small islands denoting invariant
torii close to which quasi-integrable trajectories evolve, separated by
contiguous regions of chaotic dynamics.

implies 6; = 2/3, 6, = 0 and 6; = 1/3, the latter also being
in agreement with the measured value.

The quadrupole simulations confirm the experimental ob-
servations (1-3) (see Fig. 1) even though there is a small cor-
rection to the experimental values: a slight cooling of the di-
rections transverse to the kick so that ®,, = 0.36 (instead of
1/3) and ®,, = —0.05. So the observation of point 3., the ap-
parent separability of the z and x — y distributions, seems not
to be perfect but rather an excellent approximation.

We can study the gas dynamics by analyzing individual
atomic trajectories and then averaging over initial conditions.
However the trajectories can be quite difficult to find due to
the nonintegrability of the potential. To show this we con-
structed a Poincaré map: in Fig. 3, we see that there are both
chaotic and quasi-integrable regions. A study of the gas start-
ing from its individual trajectories would be quite complex
analytically. For this reason, it is easier to study not the po-
tential (1) but cases which might contain the same physics but
in which all or nearly all trajectories are integrable or quasi-
integrable. For example let us consider the family of poten-
tials

Vg(x,y,z)z\/x2+y2+(1+8)zz. (15)

When € = 3 we get the quadrupole potential (1). But if we
take € = 0 the potential becomes spherically symmetric and
therefore integrable. Alternatively, if € > 1 then we are left
with a highly confined potential along the z direction (a “pan-
cake’) so that the motion simplifies again and an effective mo-
tion in the x — y plane can be studied.

We will begin with the study of the spherical potential in
Sec. I1I which, surprisingly, exhibits many of the phenomena

2 We also investigated anisotropic potentials, finding very similar behavior.



of the quadrupole potential, including the anisotropy of the
momentum distribution. After this we will analyze the pan-
cake case in Sec. [V, comparing both of these limits with the
quadrupole potential.

III. SPHERICAL LIMIT

The simulations in the quadrupole potential suggest that af-
ter perturbing an equilibrium gas along a particular direction,
the ensemble average of the momentum widths ( p12> ; con-
verges to a stationary distribution in the long time limit # — co.
In particular, we observed that (p2).. = (p%)oo and in general

(P2)ee # (P2)es.

Calculating the final momentum widths (p?).. for a gas of
atoms in the quadrupole potential from first principles is diffi-
cult without understanding the individual trajectories. There-
fore, as mentioned above, it is a natural simplification to con-
sider instead the case where we remove the anisotropy in the
quadrupole potential:

Ve—o(x,y,2) = VX2 +y>+22 =1, (16)

where r is the radial coordinate (for the rest of this section
we will drop the subscript € = 0). Naively, one would expect
that perturbing a gas along any direction in such an spherical
potential will lead to an isotropic distribution at long times:
(p2)eo = (P})eo = (p?)e. However, as we shall see, the final
momentum width along the direction of the perturbation will
be different to that along perpendicular directions. To antici-
pate some of the conclusions of this section: this is intuitively
plausible: in a spherical potential all three components of an-
gular momentum are conserved, so the motion of each atom
is confined to a plane passing through » = 0 and perpendicu-
lar to its angular momentum. The population of each plane is
therefore constant during the motion. In thermal equilibrium,
this population is the same for all planes but a momentum kick
will cause a transfer of atoms between planes, so that the pop-
ulation of each plane will depend on its angle relative to the
kick direction. This anisotropy in populations in the distribu-
tion is preserved at long times again due to conservation of
angular momentum and translates into different final temper-
atures along the different directions.

A. Averages over the motion in planes

With a particle in a central field [21, 22], the trajectory stays
on the plane perpendicular to its angular momentum L which
includes the origin » = 0. Using polar coordinates (r,8) for
the plane, the energy E is given by the usual expression:

2

E= % (P +r70%) +V(r) = % (r'2+ %) +V(r) (17

where L = |L| = r*6 = constant. In a potential such as (16),
the motion is confined between two values of the radial coor-
dinate ryin < r < rmax Which are solutions of 77 = 0. During

Figure 4. Orbit of atom in a plane with a central potential V(r) = r
after increasingly long times from left to right. Since the trajectory
never closes, according to Bertrand’s theorem, it fills the annular re-
gion between rmax and ry, in an isotropic, dense fashion as t — oo.

the time in which r varies from rp,x to rmin and back, the ra-
dius vector turns through an angle A6. The condition for the
path to be closed is that this angle should be a rational fraction
of 27, i.e. that A@ = 27wm/n, where m and n are integers. But
according to Bertrand’s theorem [22] the only central poten-
tials for which all paths are closed are Kepler’s (o< f%) and
the harmonic potential (o< ). For all other potentials (and
excluding the particular case of trajectories with zero angu-
lar momentum), the trajectory will behave as in Fig. 4: it will
become dense everywhere, filling the allowed annulus region
isotropically so that the orbital density is only a function of
the radius r as the propagation time tends to infinity.

Using Bertrand’s theorem, we would like to analyze the
long time behavior of trajectories, in particular the time av-
erages of different quantities. For a quantity A(z), the time
average of a quantity A is defined as, cf. (5):

it

A= liml/ A(dr'. (18)
t—=eo t Jo

We can convert the time average to one over the orbital den-

sity discussed above by a change of variables. We immedi-

ately conclude that, since Bertrand’s theorem implies that the

orbital density is isotropic, so will the time average also be:

2=y (19)
pI=p}- (20)

We will use this fact to calculate (p?).. for a gas of atoms.

B. Calculation of momentum averages in terms of integrals of
planes

Although our purpose is to study the potential V(r) = r as
a limiting case of the family (15), it is straightforward to con-
sider in this section a more general potential than (16), namely

V(r)=r“ [©3))

with 0 < a # 2. This will allow us to examine qualitatively
different behavior as a function of ¢. The case o = 2 corre-
sponds to the isotropic harmonic potential for which in general
(19) and (20) are not true. For o« = 1 we recover (16).

For a gas in an spherical potential, the atoms belonging to
the same plane in coordinate space are also confined to the



same plane in momentum space making each plane an inde-
pendent system. So our strategy will be to treat the motion
in each plane separately and then add over all of them at the
end. For this we choose a coordinate system (see Appendix A)
where two of the coordinates (the angles 6 and ¢) define the
plane, and the remaining four correspond to the in-plane co-
ordinates (# and v) and momenta (p, and p,). Then we can
write the total energy as

<E> = /(;ﬂdqb /(;nd9<E>plane~ (22)

where (E)plane is the average energy of all the planes lying
between 6 and 6 +d0, ¢ and ¢ +d¢@. Even though the proba-
bility density f(r, p,¢) is a function of time, the energy of each
atom is constant in time as the potential is time-independent
and there is no exchange of energy between the atoms, so the
average energy is also a constant. Therefore if we know the
probability density f(r,p,?) at any one time, we will know the
average energy for all time. This allows us to calculate the fi-
nal momentum widths ( piz)oo from the distribution of energies
at t = 0 after the initial momentum kick.

Since the class of potentials (21) is homogeneous of order
o we use the virial theorem,

O
K= 5 v, (23)

where K is the kinetic energy and the averages are over time
as in (18). Note that the virial theorem is valid both for each
atom individually as well as for the entire gas. If we assume
that at long times, when the gas has reached a steady state, the
ergodic hypothesis applies for such systems, we can replace
the time average with the ensemble average

(K)=2(v). 4)

As each plane is a closed individual system, (24) also ap-
plies to

o

=y <V>plane; (25)

<K>plane = )

and using (25), (E)plane can be written as

<E>plane = <K>p]ane + <V>p1ane

2+o
= <K>plane

o
= 2S04 R). (26)

20

According to Bertrand’s Theorem, Kepler’s potential V (r) =
—% and radial harmonic oscillator V (r) = $kr? are the only
two types of central force potentials where all bound orbits are
also closed orbits. Therefore, if we restrict ourselves to cases
where 0 < a # 2 where almost all orbits are open (except for
the circular orbit), we see that (p2) = (p2) as t — oo so that,
following the argument of Sec. IIT A,

(P2) = (p2) = —

- m <E>plane- 27

We can now express the the averages of p2, p§ and pg through
(E)plane as shown in Appendix B (assuming that the final dis-
tribution does not depend on ¢)

(0% T .
Tey=(p3,) = m/o dO(E) prane (1 +5in* 8) (28)

Tz=<pz>=2+a

T
/ d6(E) piane 05> 6. (29)
0

It remains now to calculate (E >plane as a function of 6 and ¢
after the momentum kick.

C. Momentum Kick

We perturb the Maxwell-Boltzmann distribution in a poten-
tial given by (21) at ¢t = 0 by applying a momentum kick g,
along the z-direction. The resulting initial distribution at tem-
perature kgTp = 1 is:

f(r,p,t=0)=
2, 2 2
24+ pi+(p.—
Aexp (_p Dy 2(]72 qz) —ra> 30)
where
3

A= ———Fo—. 1
VAT (5 @31

If we transform (30) using (A3), we get:

2
f=Aexp <_‘12z>

22 0si
exp(_ra)exp <_pr pqu;OS s ap) . (32)

Using (32), we can calculate (V)piane = (r%), (K)plane =
(p?)/2m, and finally (E)ptane = (V) plane + (K) plane as follows:

3‘ Ccos 6| 11% q? cos? 0
\% t=0)=—e 2¢ 4
< >p1ane( ) o

" [11 <q§ cos? 0 > 4% cos® 0

4 4

2 02 2 2
q;cos” 0 1 gfcos“ 0
1 == — ==
+0< 1 ><2+ 1 , (33)

cos 6 ¢ g*cos? 6
<K>plane(t = 0) = ‘ | exp (—5) exp (‘4

8

2

2
q-cos” 6
% [qfh <z

2 > cos’ 8(4+q*cos’0)

2cos?0
+o <%?> (64647 cos” 6 + 47 cos” 9)} . G4

where Iy and I; are modified Bessel functions of the first kind.
Since (E)piane does not change with time we can use this to



Figure 5. Comparison of the simulation results for 7; = (p%)tﬁm (i=
x,y,z) with the analytical predictions (35) and (36) for an isotropic
potential (21) with @ = 1 for different kick strengths ¢, along the
z-direction. Note that the predicted (p?)e. and (pf}oo are identical.

obtain the (p?) at t — oo via Egs. (28,29). For a = 1 the re-
sulting expressions read

2
@ 51 V204
I tetag gt \vr)
2
2 qg; 4 1 V2 <QZ>
L A 36

where F is the Dawson function. In Fig. 5 we show the ex-
cellent agreement of the simulations with these analytical pre-
dictions.

For a small momentum kick, we can find some illuminating
expressions. Expanding (E)plane about g, = 0 up to &'(g2) we
obtain from (28) and (29)

sa—-2 ,
Toyv~1+— 37
It e ra)® 37)
2450 ,
T,~1+——q-. 38
A 0era %)
For the case o = 1 we find
T, ~1+1 2 AT, = LA (39)
Xy~ ZOqZ Xy = 10 ’
7 5 7
T.~ 1+ 3547 = ATy, = oA (40)

which satisfies the virial theorem (11). Comparing with the
quadrupole experiment (point 3. above) where AT, = 0 and
AT, = 2/3AE, we see that the spherical case leads to some
increased heating in the xy plane although small.

In terms of the matrix ®;; from (12), for a spherically sym-
metric case we can show that

6, 6, 6,
6 6, 6 (4D
6, 6, 6,

@,’jz

so thate.g. AT, = 61¢2/2 and AT, = 625]?,/2. As before, using
the sum rule, we find that 6; + 26, = 2/3 so that the matrix
depends only on a single unknown parameter. Then (37) and
(38) imply that

2+50 So0—2

il 9, - <
T 5010 ™2 T 0021 a)

which satisfy the sum rule (13). For the case oo =1 (16) we
get 6 =7/15 and 6, = 1/10.

(42)

D. Heating and cooling of transverse directions

These results allow us to answer an interesting question: if
we kick the gas along a direction, do the transverse directions
heat or cool?

For an interacting gas, we know collisions will distribute
the energy along all directions, hence the transverse directions
will be heated by the same amount as the kicked direction.
For an ideal gas in e.g. a harmonic potential, the transverse
directions will not be affected.

Using (37) and (38) we see that, for a noninteracting gas in
a spherical potential of the form (21), we can have different
types of behaviour (up to & (qg)) for the transverse directions:

o for a < %: cooling;
o fora = %: no change;
e for @ > %: heating.

This surprising result tells us that it is possible in some
cases to cool the gas along some directions while heating it
up along others. In fact, as we will see later the quadrupole
potential is of this type: it cools along the x and y directions
if kicked along z. Nevertheless, the spherical potential, which
most closely resembles it, with & = 1, behaves more conven-
tionally since it heats up.

E. Population redistribution due to kick

We would like to gain some insight into why the final mo-
mentum widths are different (p2) = ( p§> # (p?) for q, # 0.

We can rewrite (28) using the fact that the total energy of the
gas Eyoa1(g = 0) + AE with AE given by (2), can be expressed
as the sum of the plane energies:

612 b3 b1 b4
Etotal(q = O) + 72 :/O d(P/O d9<E>plane = 75/0 d9<E>plane
(43)

The term Eioa1(g = 0) can be easily found from the g, = 0

limit of (33) and (34). It follows that:

(Pi) —/.nd9<E> (1+sin’0)
Y 22+ a) Jo plane
a 2 .
q 6+3x /n '2
—+a /2 E)..
2(2 ) (2 200 o d6( >p1dnesln 0

a1 (¢ 9\ = [ .
o= 6(%+5>+€./0 d6'sin” 0.(E)pjane- (44)



We can study how each of the terms in { pi) varies with g;.
In Fig. 6, we can see that the contribution of the integral term
of (44) is small compared to the q? term and becomes less
important as g, increases.

To understand why the integral term becomes small, we can
investigate how (E)pjane changes as a function of 6 for differ-
ent values of ¢,. From Fig. 7, we can see that the value of
(E)plane near 6 =0 and 6 = & increases with increasing ¢ and
the opposite happens near 8 = 1/2. As the integrand multi-
plies this factor by sin? @ which is 0 at & = 0, 7 and peaks at
0 = 7 /2 the integral will decrease as ¢, increases.

To make it even clearer, it is useful to plot not (E)pjane
but (E)plane/| cos @ which removes the effect of the Jacobian
(A2) which simply accounts for the variation of the density of
planes as a function of 0, leaving us with the change in plane
energy as a result of the kick.

From Fig. 8, we can see that when there is no momentum
kick, the energy of all the planes are the same. When we apply
a momentum kick along the z-axis, planes lying along that
direction (6 = 0 or 7) gain energy whereas directions close
0 = 7 /2 lose it. This means that, when we project the energy
of each plane to obtain the momentum widths, (p?) > (p?2).

We can also see that as g; — oo, (E)pjane/|cos 0] is only
non-zero at @ = 0 and 7 which explains the momentum widths
ratio constraint derived in (B10) (note that Fig. 9 agrees with
the ratio constraint).

F. Memory loss in isotropic potentials

A natural question arising from the study of this section is
whether a gas can remember in which direction it was kicked
after a long time has passed. For example, we could start with
a gas in thermal equilibrium in an isotropic potential, i.e. a
spherically (3D) or circularly (2D) symmetric potential, apply
a momentum kick along an arbitrary direction and wait for a
very long time. Is the final gas distribution anisotropic? l.e.
does it preserve a memory of the direction of the kick?

In a collisional gas, the extra energy from the momentum
kick is redistributed along all directions equally, leading to
isotropic heating and therefore a loss of memory.

A non-interacting gas in a harmonic oscillator preserves
this memory because its center of mass oscillates along the
kick direction indefinitely.

However, quite surprisingly, a non-interacting gas in a non-
separable potential can also preserve it due to the existence of
integrals of motion which encode the direction. For example
in a 3D spherical potential the memory is associated with the
three components of angular momentum L, , . being integrals
of the motion, as we have seen.

An interesting question is: can there be memory loss with
no interactions and a non-separable potential? Unexpectedly
the answer is yes: for example a gas in a 2D circular symmet-
ric potential has (p?) = (p;) due to Bertrand’s theorem, so
memory is lost (excluding harmonic and Kepler’s potential).
There is only a single component of angular momentum so the
direction cannot be encoded in the integrals of the motion. Af-
ter the kick the extra energy is redistributed to all directions,

1 _ 2
= (p3)
....... Integr. term of (p?)
q:2/12+3kaT/4

Figure 6. Comparing the different terms of (p2) in (44) with (p?)
(36) for different values of momentum kick g, with m = kg7 = 1.

Figure 7. Using Eqs. (33) and (34) to plot (E)pjane(6) for different
values of momentum kick ¢;.
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Figure 8. Using Eqgs. (33) and (34) to plot (E)pjane(60)/|cos 8] for
different values of momentum kick ¢;.
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Figure 9. Using Eqgs. (33) and (34) to plot the ratio between (p2) and
(p?) for different values of momentum kick g.

the “orbit density” becomes isotropic as ¢ — oo which leads to
loss of memory. This macroscopic loss of information is due
to ergodicity of the individual trajectories rather than to col-
lisions. Of course, microscopically the memory is preserved
since, if we reversed the momenta of all atoms at the same
time, we could recover the initial kicked distribution.

G. First order transition due to breaking of the potential’s
spherical symmetry

As we have seen, if we start with an isotropic equilibrium
thermal distribution in a spherical trap (¢ = 0) and we kick the
gas along the z direction then, when ¢ — oo, we find that 7, =
T, # T.. Likewise, by spherical symmetry, kicking along the x
direction will lead to the temperatures along the perpendicular
directions being equal (T, = T; # T,, see Fig. 10).

However, this is in seeming contradiction with the exper-
imental results for the quadrupole case (€ = 3), see point 2.
above and Fig. 1, where a kick along the x direction leads to
T, = T,. It seems that breaking the spherical symmetry by
setting € > 0 and making the z direction unequal, enforces a
cylindrical symmetry of the steady state gas distribution along
the perpendicular directions after the kick. This discrepancy
in behaviour indicates a discontinuous (first order) transition
in gas behavior as a function of € when going from spherical
to non-spherical potentials.

To study this better we plot the three final temperatures after
a kick along x as a function of € near € = 0 (Fig. 10). We see
thatat € =0, T, = T, < T, as expected. However, for values
of &€ immediately above that, we find that 7, = 7, > T, the
behavior of the quadrupole trap. In other words:

lim 1im (py — py): # lim lim (py = py)r, (45)
the lhs being zero and the rhs not. We will see that the reason
for this is due to (pZ — p?), relaxing to zero with a relaxation
or dephasing time scale T which diverges as € — 0.
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Figure 10. Behavior of the final temperatures AT;/AE as a function
of the anisotropy € near the spherical limit after a kick along x. At
€ =0, T, = T, after which there is a discontinuous change in the tem-
peratures due to the breaking of spherical symmetry along z. Data are
obtained by numerical simulation over 100 000 atoms. Dashed, dot-
ted and plain lines correspond to the theoretical expectations of the
fully isotropic (39, 40), almost isotropic (38 and 50) and quadrupole
geometries, respectively.

There is a characteristic relaxation time T before the mo-
mentum widths reach their final steady state value during
which there is a gradual dephasing of the orbits of atoms with
different angular momenta and energy in each plane. This
timescale is related to the width of the thermal distribution
and does not depend on € as € — 0. From dimensional analy-
sis we see that T ~ /Ty ~ 1.

However, there is a second much longer characteristic re-
laxation time 7 during which 7 and T;, converge to each other
and which was not present in the perfectly spherical case. This
timescale appears because of the rotation (precession) of the
orbital planes of each atom around the z axis and is due to
the potential’s anisotropy. This phenomenon is known in as-
tronomy when studying the orbit of satellites around slightly
non-spherical planets, where it is called nodal precession [22].

For sufficiently small € and at long times ¢ > 7, we expect
that (p7 — p3), will decay at long times as some function of
t/7, where the decay time scale is given by

T~e. (46)

The value of v is independent of the kick strength if it is weak
enough, and the dependence on /Tj sets the dimensions of 7.
We show in Appendix C that v = —1 so that T ~ 1/¢; this is
confirmed in Fig. 11.

While Bertrand’s equilibrium leads to a higher temperature
along the kicked direction, the orbital precession redistributes
the energy equally between the x- and y-axes, leading eventu-
ally to the equilibration of T, and 7. The first process takes
place in about 40 time units, while the latter process is much
slower as the anisotropy is smaller, as shown in Fig. 11.

This analysis leads to quantitative predictions for the final
temperatures at small anisotropy, particular for the tempera-
ture discontinuities. For € 2 0, the imparted energy gets first
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Figure 11. Equilibration time as a function of the trap anisotropy €.
The equilibration time is defined as the time required for 7 to reach
99% of the steady T value. The solid line is a fit A x £~ following
the expression (46). The best fit leads to an R-squared value of 0.99.

redistributed in the plane, before the orbital precession slowly
equilibrates temperatures so that we can express the final tem-
peratures in terms of the spherical temperatures (39), (40):

1
0 0 =0 =0
AT = AT 0 = 5 (AT + AT ) 47)
17
ATZe—>0 _ ATZe:O (49)
1
= —AE. 50
0 (50

From here we can extract the matrix elements of (14) since
in the above equations AE = ¢2/2: 6; = 17/60, 6, = 1/10,
which means that 6; = 7/15.

This prediction is in very good agreement with the results
presented in Fig. 10 and is valid near € = 0 as long as T >> 7.

IV. PANCAKE LIMIT

In the previous section we analyzed the spherically sym-
metric case, which could be solved analytically. There is
another case where the motion can be solved analytically,
namely the limit when the confinement along the z-direction
is strong (€ > 1). As we will see later, this case exhibits be-
havior which is much closer to the quadrupole.

We consider the case of strong confinement of the gas along
the z direction of the potential (15) with € > 1 so that

V)= 242+ (1 e =\ Jp2 e, (1)

where we have used cylindrical coordinate p = /x% +y2.
Since the potential is tightly confined, motion along the z di-
rection is fast compared to that in the plane. To check this we
compare ,, the period of oscillation along z, with the period
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of oscillation along p, f,, the characteristic timescales of the
two motions.

An atom whose motion is along the x-axis experiences a
potential V = x, whereas if the atom moves along the z-axis, it
sees a potential V = \/gz. Assuming that both of these atoms
have the same overall thermal energy T, then, in the first case,
its period of oscillation is o< v/E whereas in the second case it
is o< \/E /¢, so that the ratio of the two periods is € > 1 and
therefore the approximation of considering the motion along
z to be fast compared with that in the plane is justified.

We start by analyzing the motion of a single atom. We split
up the energy as

2 2
Pp Py

E=—/—+_—"F5+E 52
2+2p2+ pal ( )

where pp and py are the canonically conjugate momenta and
¢ = arctan(y/x) is the angle with the x-axis in the xy plane. E
and py are constants of the motion (the latter being the angular
momentum L, which is always conserved due to the potential
being independent of ¢). Also,

p?
Ez:72+\/p2+8z2. (53)

We now replace p,,z with the action-angle variables 7, 1 in
the usual way. In particular

_ % /Zmax dz
Pz5— o A Pz5—
2 \/
V2 / \/E; p2 +e72dz

= —Io (54)
T\ E

with the definition

\/EZZ_PZ\/
= _ 2 2.1
10_/0 . —\/p? +22dz (55)

where we made the substitution 7 = \/€z to show that I o
1/+/€, since Iy does not depend on €. Note that, for the same
reason, in (55) E, depends implicitly only on Iy and p but not
on €.

The trajectory p,(z) is determined by (53) and therefore de-
pends on E; and p. Also, since p is slowly varying, by the
standard arguments, I (or Ip) can be considered an adiabatic
invariant (i.e. another constant) for the motion in the plane.

A simple approximate solution to (55) which allows us to
express E, explicitly in terms of Iy and p is

3 2/3
E.(Io,p) = (5104—/33/2) , (56)

which allows us to rewrite (52) as

2 2/3
Po P (3, i
E="] +2p2+<210+p (57)



and we see that the effective potential for the radial motion is
a sum of the centrifugal term plus a confining term increasing
linearly at large distances.

Since we had originally three degrees of freedom, a partic-
ular trajectory is completely determined by the three integrals
of the motion E, py and Iy. Therefore, the time averaged in-
plane kinetic energy

2 2
Pp Py
—+ = 58
> +—2p2 (58)

is also determined by these constants.

It is now clear that the averaged kinetic energy is only a
function of the constants of the motion E, py, and Iy for that
orbit.

The adiabatic principle tells us that the atom executes a mo-
tion in the plane under the effective potential £, given by (56).
Since I is not the same for all atoms, each atom moves in
slightly different potentials, labelled by their value of 1.

When we apply a kick to an atom along z at a time #,
its in-plane momenta py, pp and its position p, z are un-
changed. What changes instead is its momentum p, and there-
fore its corresponding kinetic energy p?/2 — (p. +q)*/2 =
P?/2+ p.q+q*/2. After averaging over the whole gas, the
term p.q drops out so that only the third term remains, an av-
erage increase of kinetic energy of ¢®/2 per atom (and so of
E.(po) as we see from (53)). This has two effects: it changes
the effective potential (56) and it increases the total energy
E. Since [ is an increasing function of E, an increase of the
kinetic energy along z at #y implies an instantaneous change
Io — In+ Aly, Al > 0. In the subsequent motion, the effective
potential is changed E. (Iy,p) — E;(Ip + Aly, p), transforming
it into a shallower effective 2D potential as we can see from
(56). On the other hand, the increased kinetic energy also
means an increased total energy £ — E + AE:

AE = E (Ip+ Aly, po) — E; (1o, po)- (59

The first effect leads naturally to a reduction in speed in the
plane, i.e. a reduction in the average in-plane kinetic energy
(58). However, the increase AE has the opposite effect, that
of increasing the average kinetic energy. This latter effect is
dominant for atoms which were near the bottom of the poten-
tial at the moment of the kick, whereas the reduction in AE is
most felt by those which were away from the center.

To determine what happens to the gas as a whole, we use
numerical simulations. We compare the results of the pancake
case after a kick along z with a very large € with the case of
a 2D gas in the effective potential (56), with the same number
of atoms, temperature, and kick momentum gq.

For the simulation of the 2D gas, we use the same initializa-
tion of the system as for the regular pancake case, namely the
kicked Boltzmann distribution with potential (51). Then for
each individual atom we evaluate Iy via Eq. (56), where E, and
p are determined by the initial position and momentum coor-
dinates of the atom. The subsequent time-evolution of each
atom is governed by Eq. (57), where the last term corresponds
to the new effective potential (56) which replaces the regular
pancake potential (51) (Ip is assumed constant for each atom
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Figure 12. Comparison of the 2D potential given by (56) and the
pancake potential. Here € = 100, but larger € values produced con-
sistent results. The plots are for (p)%) as a function of qg (top panel),
and as a function of q)% (bottom panel). Solid and dashed lines rep-
resent guides to the eye. Note that the two potentials give almost
identical results for the heating along the kick direction and a small
discrepancy for the orthogonal cooling.

during the time-evolution). Note that we only evaluate the
movement of the gas in the xy plane in this approximation—
the position and momentum coordinates in z-direction do not
appear in the equations.

We are also able to use the same method to study the change
in average kinetic energy along z due to a kick in the plane
along x.

Our findings are in Fig. 12. We see that there is excellent
agreement between the 3D pancake gas and the 2D case, espe-
cially for the heating along the direction of the kick. Although
both show cooling of the transverse directions, the agreement
is less good there, a fact which we attribute to the inexact
ansatz (56).

So the physical interpretation of the pancake case is clear:
there is a slight overall cooling of the transverse directions
when the gas is kicked along the z direction due to the effec-
tive potential becoming shallower for the atoms closer to the
center of the trap. This effect dominates over the heating of



the atoms near the edges of the gas, although not by much so
that the overall cooling is very small.

V.  COMPARISON OF THE POTENTIALS

In Fig. 13 we compare the quadrupole potential with the
two others we have discussed, the spherical and the pancake.
It is clear that the quadrupole behavior is much closer to that
of the pancake so that, in this respect, it seems that the € =3 is
already very close to the limit of € = co. There is a remarkably
good quantitative agreement between the two cases. For ex-
ample we obtain approximately the same heating and cooling
in both the kicked and transverse directions. We find for the
pancake O, = 0.38 and @, = —0.09 which can be compared
with the very similar values for the quadrupole ®,, = 0.36 and
0, = —0.05 mentioned in Sec. II.

In Sec. II we mentioned two puzzles: one was the
anisotropy of the temperatures along the kicked and orthog-
onal directions in the quadrupole potential. Both the spheri-
cal and pancake potentials exhibit this. For the spherical case
this is due to a geometric reason, the fact that the kick redis-
tributes the atoms into planes which are more aligned with
the direction of the kick. They will subsequently remain there
due to the conservation of angular momentum. In the pancake
case this is due to strong potential anisotropy coming from the
large value of €. This latter reason is responsible also for the
anisotropy in the quadrupole potential.

Also, in the spherical case we saw that the temperatures of
the kicked direction and of the plane orthogonal to it were
different. In the quadrupole case we find generally in all sim-
ulations that T, = Ty, # T;. This was interpreted in terms of the
2D effective description where Bertrand’s theorem applies;
it leads naturally to the isotropy of the distribution in the xy
plane. Clearly the quadrupole gas has this behavior for the
same reason.

The second puzzle was the apparent (near) separability of
the kicked and orthogonal directions, i.e. that the kick energy
is not redistributed into the momentum distributions of all di-
rections but rather it is concentrated only in the kick direc-
tion. As we see from Fig. 13, the spherical and pancake poten-
tials behave very differently: the pancake reproduces closely
the quadrupole’s separability (in fact a slight cooling of the
orthogonal directions) while the spherical potential shows a
clear heating of those directions. The reason for the separa-
bility in the quadrupole case can be traced to the 2D model
where it is due to a near cancellation of the contributions of
the atoms which, at the moment of the kick, are close to the
center of the trap and are cooled and that of the atoms at the
periphery which are heated.

VI. CONCLUSION

We began this analysis with some puzzling experimental
results for a non-interacting classical gas in a quadrupole trap
whereby momentum kicks along one spatial direction were
found to mostly affect only that direction, despite the fact that
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Figure 13. Comparison of the three types of potentials: spherical

(¢ =0), quadrupole (¢ = 3) and pancake (¢ = 100) showing the much
better agreement between the quadrupole and the pancake compared
with the spherical case. The top panel shows ( pg) and the bottom
panel (p2) as a function of the momentum kick qg in z-direction. The
blue solid lines are the analytical predictions (35) and (36) for the
spherical potential. Dashed and dotted lines for the other potentials
are guides to the eye.

the potential is non-separable. By analyzing the extreme case
of the spherical potential (¢ = 0) we understood that, in 3D,
the constants of the motion (e.g. the angular momentum com-
ponents) can allow the system to retain a memory of the di-
rection of the kick. Consequently, the long time momentum
distribution can remain anisotropic in this isotropic system.
However, this effect strongly depends on the dimensionality
of the problem, and the situation is completely different in
2D, where Bertrand’s theorem leads to an isotropic distribu-
tion. Furthermore, as soon as the potential becomes slightly
anisotropic (0 < € < 1), the competition between the in-plane
isotropic behavior and the symmetry-induced precession of
orbital planes results in a qualitatively different steady-state,
which we were able to characterize analytically. Finally, we
investigated the pancake limit (large €), which was shown nu-
merically to be much closer to the experimental situation (i.e.
the quadrupole potential). We were able to explain analyti-
cally, based on an effective potential, most of its characteristic



features, including the peculiar cooling effect experienced by
the transverse degrees of freedom with respect to the kick di-
rection.

For future analysis we would like to investigate the apparent
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“thermalization” of the gas after the kick as discussed in sec-
tion II A as well as studying more in detail the region between
the spherical to pancake limits.
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Appendix A: Coordinate transformation for the spherical case

In a spherical potential the motion of each atom is confined
to a plane through the origin and perpendicular to its angular
momentum. To treat the gas in each plane as a separate sys-
tem it is convenient to choose coordinates where the motion
in each plane is described by in-plane 2D coordinates along
orthogonal axes labelled (u,v) with corresponding momenta
(pu, pv). To relate these to the rectangular coordinates we de-

fine two angles 6 and ¢. 0 is the angle between the z axis and
the v axis. ¢ is the angle between the x-axis and the projection
of the v-axis onto the x-y plane. Both angles are in the interval
[0,7]. The coordinate transformation is thus:
X =usin¢ +vsin6cos ¢
y=—ucos¢ +vsin0sing@
z=vcos6
DPx = puSing + p,,sin 0 cos ¢
Py = —Pucos @ + p,sin O sin ¢
Pz = pycos 6. (A1)
Note that it is not a canonical transformation since the Jaco-
bian is:

J1 = |(puv— pyu)cos6|. (A2)

The cos 0 term has a simple interpretation: the angular den-
sity of planes having an angle 6 with the z-axis is largest for
small 6 and drops to zero when 6 = 7/2 since then there is
only one plane perpendicular to the z-axis. In most cases, the
calculation becomes simpler if we use polar coordinates in the
plane:
U =rcosQ,
Vv =rsinq,
DPu = PrCOS 0y
Py = pysin op,
where o, and o, are in the interval (0,27]. The transformation
(A1) becomes:
X =rcoso,sing + rsin @, sin 6 cos ¢
Y = —rcos o, cos ¢ + rsin @, sin 0 sin ¢
z=rsino,cos O
Dx = PrCOS O, SIn @ + p,sin @, sin O cos ¢
Py = —PrCOS 0, COS ¢ + p,sin ¢, sin O sin @

Pz = prsingy, cos 6. (A3)
The Jacobian for the transformation (A3) is
Jo = r*p?|sin(a, — o) cos 0. (A4)

As the Boltzmann function f(x,y,z, px, py, p;,t) is normalized
to unity, if we apply the transformations (A1) or (A3), the
following quantities will also normalize to unity either in the
(u,v, pu, pv,0,9) or in the (r, &, py, &y, 0, ¢) coordinates:

T T 00 o oo oo
1:/ d¢/ d9/ dpu/ dpv/ du/ avli f
0 0 —oo —oco —oo J—oo
T T 2T roo 21 oo
:/ d¢/ dG/ da,,/ dp,/ da,/ drof.
0 0 0 0 0 0



The average energy (E) is given by

E) = [@r [ &pf(rp.0EEp).

It is useful to define an energy (E)piane(0, ¢) which is the av-
erage energy of all the planes lying between 6 and 0 +d0, ¢
and ¢ +d¢

(E)(r) =( (A5)

(E)plane(e,d))E'/Omda,/omdap/Owdp,/:ersz (A6)

so that the total energy is, cf. (22),

(E) = [ a6 [ d0(E e

(A7)
|
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Note that, after the kick, (E)piane is independent of time as the
number of atoms on each plane is constant.

Appendix B: Averages over momenta

Using the transformation (A1), we can write the averages
of p)zc, pf and p% as:

(p?) = (p%sin® @) + (p2sin O cos” @) + 2(p, p, sin O'sin ¢ cos ¢), (B1)
(p )= (pu cos ¢> <p% sin 0 sin’ @) —2(pup,sinOsin@ cos @), (B2)
(p?) = (P cos®6). (B3)
The first term of (B1) can be written in terms of (E >plane using (27),
T " TT nOO nOO (o] 00
(wisin®o) = [ “dosin’g [“d0 [ av [ au[ dp. [ dpuif(urpup.0.9.00
T V mo.
= [ d¢sin’ / d0 ——(E) plane- B4
/0 ¢ sin ¢.0 2—‘,—Ot< >p1ane (B4)
Using similar technique, (B1), (B2) and (B3) can be written as:
<px> 2+ p / d¢ sin ¢/ dO(E)piane + 5—— 2+ / d¢cos ¢/ do sin 9( )plane +2(pupysin@singcos @)  (B5)
(py 2+ o / d¢ cos (P/ dO(E)plane + 7—— 2+ / d¢ sin ¢/ d0 sin? 0(E)plane — 2{pupysinBsingcos¢d) (B6)
mao,
<pz> d(]) dO cos’ 0(E) plane- B7)
2+a
The third term in (B5) and (B6) when written explicitly is:
T b o = oo oo
(puposinBsingeosg) = [~ dgsingcosg [“a0sing [ av [ au [ dp, [ dpunfuvpipn0.0.0pp (B8

If f(u,v, pu, pv,0,0,1t) is independent of ¢ then (B8) equals to
zero. If (E)plane is also independent of ¢, (B5), (B6) and (B7)
will be reduced to:

mosw

(P)%):m/ do(E p]ame(l—l—sm 0)
momn

(Pi)zm/ dO(E)prane (1 +sin® 6)
mosw

(p2) = 2+oc/ dO(E) plane c0s 6.

We can see that (p;) and (p}) are equal. If we look at the ratio
between (p2) and (p?):

Jo (E) plane cos 6
JoAE) ptane (1 +5in* )

(p2)
2

v

(B9)

as (E)planc(0) > 0, the ratio of the integrals will be between 0
and 1, therefore we can derive an inequality:

(P2) <2(p). (B10)
Appendix C: Calculation of dephasing rate
1. [Initial distribution
We wish to study
(P2 —po)i = /dr3dp3(p§ —p))f(r,pt).  (CD



However, since the gas is noninteracting, we can find time-
dependent averages by following the position of individual
atoms starting from an initial distribution of the gas and then
averaging over that distribution. For example, to find (p? —
p}z,>t, instead of finding the time dependence of the Boltzmann
distribution f, we calculate the quantity p2(t) — p%(t) for each
atom starting at the initial position (rp,po) and then average
over rp, po weighted by the initial distribution:
(=13 = [ drodpo [p2(0) = P3(0)], , % S (R0.B0:1 = 0)
(€2
We take the initial distribution from (6) and expand in pow-
ers of ¢:

ro,Po

f(z=0) o< exp (— 5T 7

2
_ Pxq g~ 1 /pxq\? 3
<1+ L2 (B +o ))fq_o(c3)

(px—a)+p; +p§> exp <_ V(x,y,z)>

The first and third terms in the brackets do not contribute to
(C2) since they are spherically symmetric and remain so dur-
ing time evolution. The second term o p,q is odd under the
parity transformation x, p, — —x, —p,. Since this parity is
preserved under time evolution, the integral of this term is
zero for all times. The only term that contributes to (C2) is
the one proportional to (p,g)?. Therefore keeping the lowest
nonzero term we obtain:

1/ pegn?
f(t:O):§(¥) oo (C4)

2. Precession of the orbital planes

To find this contribution we will make the crucial assump-
tion that its orbital plane precesses slowly around the z-axis
compared with the fast motion in each plane so that we are
allowed to use the virial theorem to calculate averages in the
plane as in subsection IIT A.

An orbital plane which is precessing will be characterised
by a constant angle 6 and a rate of precession ¢. To find this
rate we consider a perturbation of the planar orbit in the limit
of a small correction to the spherical potential. Since |€| < 1,
we expand the potential in (15) to order O(¢):

V=\/x24+y*+(1+¢€)2? ~r+AH (C5)
with
2
Z
= C6
2r8 (€6)

being the perturbation of the Hamiltonian.
The rate of rotation of the orbital plane ¢ is given by [22]:
.1 0AH
o=+

| dcosi

(o))

where i is the inclination of the orbital plane and is related to
6 viai= 7 — 6, [ is the magnitude of angular momentum. AH
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is the time-averaged value of AH calculated using the orbits of
the unperturbed Hamiltonian.

If the orbit in the plane were closed, the averaging would
be over the period of the unperturbed orbit. In our potential,
almost all orbits are open so the period is not well defined.
However, if we average over a time on the order 7, then we
can assume that the plane of the orbit (i.e. ) remains fixed
during that time but that the time average over the motion in
the plane has achieved a stationary value:

1 /7
AHE:/ AHdt (C8)
TJo

and applying the co-ordinate transformation in (A1):

2 _ v2cos2 0 (©9)
\/x2+y2+Z2 \/M2+V2
V2 2
= ——-co0s°6. (C10)

The last step uses the fact that the angle of the plane 6 has not
changed appreciably after a time ¢.

Assuming that the averages over the time T are well repro-
duced using the virial theorem (since the unperturbed poten-
tial is simply Ve—g = r), we know that:

3
E = EVg:O
3
— 5 A /u2 + V2
3 u? V2
_3 + . (C11)
2 <\/u2—|—v2 \/u2—|—v2>
If we assume
u? v2
= (C12)
Viz+v2 Vu240?
we get
v2 E
—_— = (C13)
Vul+v2 3
Therefore the perturbed Hamiltonian averaged over 7 is:
— &f
AH = ——cos> 6
6
- % sin?i (C14)
and the rotation rate of the orbital plane is:
. €E 9 . ,.
0= aacosi(sm 2
E
:—%cosi:—%sine (C15)

so that the plane precesses at a constant rate. For a single atom
on a plane 8, ¢ (similarly to the calculations in B)

(p3) = (pp)sin” ¢ + (p}) sin® O cos® ¢

+2{pyupy)sin B sin @ cos 6 (C16)
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and similarly for (pf) The last term is zero {p,py) — 0 be- We see that (p? — p)z,), is a function of & so T ~ 1/¢€ since
cause of the isotropy due to Bertrand’s theorem. Using (28)  the only time dependence is through ¢. So we conclude that
with a = 1 we get in (46), v =—1.
2 2 E 202 2
(Px —Py) = 7 ¢os 0(sin” ¢ —cos” @) (C17)

Here, 0 is a constant whereas ¢ (t) = ¢ + ¢t
To find the total value, we use (C2):

(9~ )= [ drodno(p30)~ p20) x (Z20)" fymoro,mo)

= /drodpow cos? By (sin” (1) — cos? (1))
2
< (B0 fio(xo.po) (€18)
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RESUME

Cette theése décrit les récents résultats de I'expérience FerMix, expérience dédiée a I'étude des systémes fermioniques
quantiques & N corps a ultra basse température. Pour cela, des ensembles d’atomes de “°K sont utilisés. Nous présen-
tons ici deux principaux résultats.

En premier lieu, nous décrivons le dispositif expérimental ainsi que les étapes menant a la préparation d’un gaz fermion-
ique fortement dégénéré composé de 1.5 x 10*atomes de “°K & une température de T/Tr = 0.14, soit juste en-dessous
de la température critique de superfluidité.

En second lieu, nous rapportons nos progres pour explorer le croisement dimensonnel entre les liquides de Tomonaga-
Luttinger a 1D et ceux de Landau-Fermi a 3D. Pour ce faire, nous confinons notre gaz de Fermi ultrafroid au sein d’un
réseau optique 2D a grand pas. Apres la description du dispositif utilisé et la caractérisation du potentiel périodique, nous
discutons de la stratégie mise en oeuvre pour transférer les atomes dans le réseau 1D puis au sein de I'onde stationnaire
2D. Le chargement du réseau 1D représente I'accomplissement final présenté dans ce manuscrit : la réalisation d’un gaz
de Fermi dégénéré a deux dimensions, composé de 250 atomes par état de spin et a une témperature de T /TF = 0.34.

MOTS CLES

Gaz de Fermi ultrafroids, gaz quantiques, physique atomique, systéemes quantiques a N corps forte-
ment corrélés, physique en dimensions réduites

ABSTRACT

This thesis reports on the recent results of the FerMix experiment, which is dedicated to the study of fermionic quantum
many-body systems at ultralow temperatures using ensemble of “°K. The main achievements are twofold.

First, we describe the experimental apparatus and the successive stages leading to the preparation of a deeply degener-
ate Fermi gas of 1.5 x 10* atoms of 4K at a temperature of T /Tr = 0.14, just below the critical temperature of superfluidity.
Second, we summarize our progress towards the exploration of the dimensional crossover between the Tomonaga-
Luttinger liquid in 1D and the Landau-Fermi liquid in 3D. To that end, we confine our ultracold Fermi gas in a large
spacing optical lattice. The experimental considerations regarding the tunability of the dimensionality of our system as
well as the apparatus used to generate the 2D lattice are described in detail. Following the characterization of the optical
periodic potential, the strategy employed to transfer atoms into a single 1D lattice before loading them into the 2D standing
wave is discussed. The loading of the 1D lattice represents the final milestone presented in this work: the realization of a
degenerate Fermi gas in two dimensions composed of 250 atoms per spin state at a temperature T /Tr = 0.34.

KEYWORDS

Ultracold Fermi gases, quantum gases, atomic physics, strongly correlated quantum manybody sys-
tems, physics in reduced dimensions
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