
HAL Id: tel-03456621
https://theses.hal.science/tel-03456621

Submitted on 30 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extending SDN control to large-scale networks :
Taxonomy, challenges and solutions

Fetia Bannour

To cite this version:
Fetia Bannour. Extending SDN control to large-scale networks : Taxonomy, challenges and solu-
tions. Networking and Internet Architecture [cs.NI]. Université Paris-Est, 2019. English. �NNT :
2019PESC0053�. �tel-03456621�

https://theses.hal.science/tel-03456621
https://hal.archives-ouvertes.fr

T
H
E
S
E

École doctorale Mathématiques et STIC
Mathématiques et Sciences et

Technologies de l’Information et de la Communication

Université Paris-Est Créteil

THÈSE
Pour l’obtention du grade de

Docteur de l’Université Paris-Est
Spécialité: “Informatique, Génie Informatique, Réseaux”

Présentée par

Fetia BANNOUR

Contributions pour le contrôle distribué
dans les réseaux SDN

Directeur de thèse : Abdelhamid MELLOUK,
Professeur des Universités, LISSI, Université Paris-Est Créteil (UPEC), France

Co-encadrant de thèse : Sami SOUIHI

Maître de conférences des Universités, LISSI, Université Paris-Est Créteil (UPEC), France

Soutenue publiquement

le 19 Novembre 2019

Devant le jury d’examen composé de:

Gérardo Rubino, Rapporteur Directeur de Recherche, IRISA, INRIA, France
Olivier Festor, Rapporteur Professeur des Universités, LORIA, Telecom Nancy, France

Djamal Zeghlache, Examinateur Professeur, Télécom SudParis, Université Paris-Saclay, France
Samia Bouzefrane, Examinatrice Professeure des Universités, CEDRIC, CNAM, France
Thierry Divoux, Examinateur Professeur des Universités, CRAN, Université de Lorraine, France
Fabrice Guillemin, Examinateur Directeur de recherche, Orange Labs, France

Laboratoire Images, Signaux et Systèmes Intelligents

Équipe de contrôle intelligent dans les réseaux

T
H
E
S
I
S

MSTIC doctoral school
Mathématiques et Sciences et

Technologies de l’Information et de la Communication

University of Paris-Est Créteil

DISSERTATION
Submitted in partial fulfillment of the requirements for the Degree of

Doctor of Philosophy of Paris-Est University
in “Computer Science, Computer Networking” Specialization

Presented by

Fetia BANNOUR

Software-Defined Networking:
Extending SDN control to large-scale networks

PHD Thesis Advisor: Abdelhamid MELLOUK,
Full University Professor, LISSI, University of Paris-Est Créteil (UPEC), France

PHD Thesis co-Supervisor: Sami SOUIHI

Associate University Professor, LISSI, University of Paris-Est Créteil (UPEC), France

Defended publicly

on November 19, 2019

In front of a jury composed of:

Gérardo Rubino, Reviewer Research Director, IRISA, INRIA, France
Olivier Festor, Reviewer Full University Professor, LORIA, Telecom Nancy, France

Djamal Zeghlache, Examiner Full Professor, Telecom SudParis, University of Paris-Saclay, France
Samia Bouzefrane, Examiner Full University Professor, CEDRIC, CNAM, France
Thierry Divoux, Examiner Full University Professor, CRAN, University of Lorraine, France
Fabrice Guillemin, Examiner Research Director, Orange Labs, France

Laboratory of Images, Signals and Intelligent Systems

Team of Intelligent Control for Networks

Résumé

Le « Réseau défini par le logiciel », ou communément appelé le SDN, est un nouveau

paradigme d’architecture réseau où le plan de contrôle est découplé du plan de données,

et déplacé dans une entité centrale appelée le contrôleur SDN. Les architectures SDN cen-

tralisées soulèvent de nombreux défis d’évolutivité et de fiabilité. Pour y répondre, il est

nécessaire de faire évoluer l’architecture SDN vers une approche de systèmes physique-

ment distribués, mais logiquement centralisés. Néanmoins, il faut lever les verrous in-

hérents à certains cas d’application. Cette thèse traite du problème de la décentralisation

du plan de contrôle SDN dans le contexte des réseaux à large échelle. Après une étude

de l’état de l’art et une classification des approches existantes, nous proposons trois nou-

velles approches pour répondre à des défis majeurs associés à la décentralisation du plan

de contrôle SDN dans les réseaux à large échelle. La première contribution aborde le

problème de placement de contrôleurs SDN. Les stratégies mises en œuvre prennent en

compte plusieurs critères d’évolutivité et de fiabilité pour le placement de contrôleurs

SDN. Les deuxième et troisième contributions étudient le problème de cohérence des

données dans un cluster SDN distribué en proposant des modèles de cohérence adaptat-

ifs et continus. L’apport principal de ces deux contributions est de mettre au point une

stratégie d’adaptation de cohérence qui permet, au moment de l’exécution, de trouver

un compromis entre les exigences continues de l’application en termes de performance

et de cohérence. Ces compromis devraient permettre de minimiser en temps réel la sur-

charge engendrée sur le réseau tout en satisfaisant les seuils définis par l’application qui

peuvent être spécifiés dans les contrats de niveau de service. Ces modèles s’intéressent,

dans un premier temps, au mécanisme de réconciliation Anti-Entropie qui s’adapte aux

besoins réels en termes de cohérence, des applications SDN. Dans un second temps, ils

s’intéressent aux stratégies de réplication en proposant un modèle intelligent basé sur

le vote majoritaire (Quorum). Ces approches ont été validées en utilisant le contrôleur

ONOS dans le cadre de deux applications SDN: une application de routage à la source et

une application de délivrance de contenus.

i

Abstract

Software-Defined Networking (SDN) is an emerging network architecture paradigm that

separates the network control and data planes, and moves the control logic to a central-

ized entity called the SDN controller. Centralized SDN designs raise many challenges in-

cluding the issues of control plane scalability and reliability. To meet these challenges,

it is necessary for the SDN control architecture to evolve towards a physically decentral-

ized system. However, such physically-distributed, but logically-centralized, SDN designs

bring an additional set of challenges. This thesis deals with the problem of decentralizing

the SDN control plane in the context of large-scale networks. After a thorough state-of-

the-art study on distributed SDN control followed by original classifications of existing

SDN controller platforms, three novel approaches are proposed to tackle some of the

most prominent challenges related to the decentralization of the SDN control plane in

large-scale networks. The first approach addresses the SDN controller placement prob-

lem by proposing scalability and reliability aware strategies for the placement of the SDN

controllers at scale using different types of multi-criteria optimization algorithms. The

second and third approaches investigate the knowledge sharing problem in a distributed

SDN cluster by proposing adaptive and continuous consistency models. The main aim of

these two approaches is to achieve a consistency adaptation strategy that provides at run-

time balanced trade-offs between the application’s continuous performance and consis-

tency requirements. These real-time trade-offs should provide minimal application inter-

controller overhead while satisfying the application-defined thresholds specified in the

application SLAs. These models focus, in the first place, on the Anti-Entropy reconcilia-

tion mechanisms that can adapt to the applications’ real-time requirements in terms of

performance and consistency. Then, they address the replication mechanisms by putting

forward an intelligent Quorum-based replication strategy. These approaches were vali-

dated using two SDN applications with eventual consistency needs that are developed on

top of the ONOS controllers: a source routing application and a CDN-like application.

ii

Contents

Résumé i

Abstract ii

List of Figures viii

List of Tables x

List of Acronyms xi

List of publications xiii

Introduction 1

1 General context . 1

2 Problem statement and motivations . 3

3 Main contributions . 4

4 Dissertation organization . 5

1 Towards a decentralized SDN control architecture: Overview and taxonomy 7

1.1 Introduction . 9

1.2 Software-defined networking: A centralized control architecture 9

1.2.1 Conventional networking and the SDN paradigm 9

1.2.2 The SDN architecture . 12

1.2.2.1 SDN data plane . 12

1.2.2.2 SDN control plane . 14

1.2.2.3 SDN application plane . 14

1.3 Physical classification of existing SDN control plane architectures 16

1.3.1 Physically-centralized SDN control . 17

1.3.2 Physically-distributed SDN control . 19

1.3.2.1 Flat SDN control . 19

iii

CONTENTS

1.3.2.2 Hierarchical SDN control . 22

1.4 Logical classification of existing SDN control plane architectures 25

1.4.1 Logically-centralized SDN control . 25

1.4.1.1 Onix and SMaRtLight . 25

1.4.1.2 HyperFlow and Ravana . 27

1.4.1.3 ONOS and OpenDayLight . 29

1.4.1.4 B4 and SWAN . 31

1.4.2 Logically-distributed SDN control . 32

1.4.2.1 DISCO and D-SDN . 32

1.4.2.2 SDX-based controllers . 34

1.5 Conclusion . 36

2 Decentralized SDN control: Major open challenges 37

2.1 Introduction . 38

2.2 Scalability . 40

2.2.1 Data plane extensions . 41

2.2.2 Control plane distribution . 42

2.3 Reliability . 43

2.3.1 Control state redundancy . 44

2.3.2 Controller failover . 45

2.4 Controller state consistency . 46

2.4.1 Static consistency . 46

2.4.2 Adaptive multi-level consistency . 48

2.5 Interoperability . 49

2.5.1 Interoperability between the SDN controllers 49

2.5.2 SDN Interoperability with legacy networks 49

2.6 Other challenges . 50

2.7 Conclusion . 51

3 Scalability and reliability aware SDN controller placement strategies 53

3.1 Introduction . 54

3.2 Related work . 54

3.3 The SDN controller placement optimization problem 57

3.3.1 Problem statement . 57

iv

CONTENTS

3.3.2 Problem formulation . 57

3.3.3 Placement metrics . 58

3.3.3.1 Performance criteria . 58

3.3.3.2 Reliability criteria . 61

3.4 The proposed SDN controller placement scheme 62

3.4.1 The adopted approach . 62

3.4.2 Multi-criteria placement algorithms . 63

3.4.3 Gradual strategies . 64

3.5 Performance evaluation . 66

3.5.1 Simulation settings . 66

3.5.2 Simulation results . 67

3.6 Discussion . 73

3.7 Conclusion . 75

4 Adaptive and continuous consistency for distributed SDN controllers:

Anti-Entropy reconciliation mechanism 77

4.1 Introduction . 78

4.2 Related work . 79

4.3 The consistency problem in SDN . 81

4.3.1 Consistency trade-offs in SDN . 81

4.3.2 Consistency models in SDN . 82

4.3.2.1 The strong consistency model 82

4.3.2.2 The eventual consistency model 82

4.3.2.3 Adaptive consistency models 82

4.4 Consistency models in ONOS . 83

4.4.1 Strong consistency in ONOS . 83

4.4.2 Eventual consistency in ONOS . 84

4.4.2.1 Optimistic replication . 84

4.4.2.2 Gossip-based Anti-Entropy . 84

4.5 The proposed adaptive consistency for ONOS 85

4.5.1 A continuous consistency model for ONOS 85

4.5.2 Our consistency adaptation strategy for ONOS 87

4.5.3 Our implementation approach . 87

v

CONTENTS

4.6 Performance evaluation . 89

4.6.1 Experimental setup . 89

4.6.2 Results . 90

4.7 Conclusion . 92

5 Adaptive and continuous consistency for distributed SDN controllers:

Quorum-based replication 94

5.1 Introduction . 96

5.2 Background on eventual consistency in distributed data-stores 97

5.2.1 Consistency and performance Metrics: 97

5.2.2 Adaptive consistency control . 99

5.2.3 Existing modern tunable consistency systems 99

5.3 The proposed adaptive Quorum-inspired consistency for ONOS 100

5.3.1 A continuous consistency model for ONOS 101

5.3.2 Our Quorum-inspired consistency adaptation strategy for ONOS . . 102

5.3.2.1 Quorum consistency . 102

5.3.2.2 Adaptive architecture . 103

5.4 Implementation approach on ONOS . 108

5.4.1 Design of a CDN-like application . 108

5.4.2 State synchronization and content distribution 110

5.4.3 Content delivery to customers . 111

5.5 Performance evaluation . 113

5.5.1 Experimental setup . 113

5.5.1.1 TCL-Expect scripts . 114

5.5.1.2 OpenAI Gym simulator . 118

5.5.1.3 Various learning agent policies 118

5.5.2 Results . 119

5.5.2.1 Impact of the Read and Write Quorum sizes 119

5.5.2.2 Quorum configuration optimization 121

5.6 Conclusion . 127

Conclusions and perspectives 129

1 Summary of contributions . 129

2 Perspectives and future work . 132

vi

CONTENTS

Version abrégée en Français 135

1 Contexte général . 135

2 Motivations . 137

3 Contributions . 138

4 Conclusion et travail réalisé . 141

5 Liste des publications . 144

Bibliography 146

vii

List of Figures

1.1 Conventional networking Versus software-defined networking 11

1.2 A three-layer distributed SDN architecture . 12

1.3 Physical classification of SDN control plane architectures 16

1.4 Logical classification of distributed SDN control plane architectures 25

2.1 The main challenges of distributed SDN control 40

3.1 The controller placement problem . 58

3.2 Controller placement metrics . 59

3.3 Strategy 1, 2 and 3: Latency-based performance metrics 68

3.4 Strategy 3: Load imbalance . 70

3.5 Strategy 4: Reliability metrics: (Maximum latencies in failure free & failure

case scenarios) . 71

3.6 Strategy 4: Performance metrics . 72

3.7 Computation time comparison between PAM-B and NSGA-II over the con-

sidered strategies . 75

4.1 The proposed adaptive consistency strategy 86

4.2 Scenario no1: Captured Inter-controller traffic (in packets per second) dur-

ing the test scenario period (using Wireshark) 90

4.3 Scenario no1: Inter-controller overhead in ONOS and ONOS-WAC accord-

ing to the application threshold . 91

4.4 Gain in Anti-Entropy overhead of ONOS-WAC with respect to ONOS accord-

ing to the number of controllers in the cluster 92

5.1 Architectural overview of our adaptive Quorum-based consistency strategy 103

5.2 Reinforcement Learning (RL) architecture . 105

5.3 The proposed adaptive consistency system . 108

viii

LIST OF FIGURES

5.4 Quorum-inspired Write operations in our CDN-like application 110

5.5 Quorum-inspired Read operations in our CDN-like application 112

5.6 Overview of the main tasks executed by our TCL-Expect scripts 117

5.7 Workload 1: A Read-intensive application scenario 120

5.8 Workload 3: A Write-intensive application scenario 120

5.9 Scenario 1: A Latency-sensitive application . 123

5.10 Scenario 2: A Consistency/Latency-balancing application 124

5.11 Scenario 3: A Consistency-favoring application 125

5.12 Dynamic changes in the Workload (Workload 2-Workload 1-Workload 3) in

a Consistency/Latency-balancing application scenario (Scenario2) 127

ix

List of Tables

2.1 Main characteristics of the discussed SDN controllers 39

3.1 NSGA-II parameters . 64

3.2 The maximum number of objective function evaluations (MaxEvaluations) 67

4.1 Test scenarios . 89

5.1 Application SLA scenarios . 121

x

List of Acronyms

API Application Programming Interface.

AS Autonomous System.

CAP Consistency Availability Performance.

CDN Content Delivery Network.

CLARA CLustering LARge Applications.

CPP Controller Placement Problem.

DDBS Distributed DataBase System.

DHT Distributed Hash Table.

DoS Denial-of-service.

ForCES Forwarding and Control Element Separation.

FSM Finite-State Machine.

IETF Internet Engineering Task Force.

IoT Internet of Things.

IXP Internet eXchange Point.

MD-SAL Model-Driven Service Abstraction Layer.

ML Machine Learning.

MOCO Multi-Objective Combinatorial Optimization.

NIB Network Information Base.

xi

LIST OF ACRONYMS

NSGA-II Non-dominated Sorting Genetic Algorithm II.

ODL OpenDayLight.

OF OpenFlow.

ONF Open Networking Foundation.

ONOS Open Network Operating System.

PACELC Consistency Availability Performance Else Latency Consistency.

PAM Partitioning Around Medoids.

POCO Pareto-Optimal COntroller.

QL Q-Learning.

QoE Quality of Experience.

QoS Quality of Service.

RL Reinforcement Learning.

RSM Replicated State Machine.

SDN Software-Defined Networking.

SDX Software-Defined eXchange.

SLA Service-Level Agreement.

SPOF Single Point of Failure.

TE Traffic Engineering.

WAN Wide Area Network.

XFSM eXtended Finite-State Machine.

xii

List of publications

International journals

• F. Bannour, S. Souihi, A. Mellouk. "Distributed SDN Control: Survey, Taxonomy,

and Challenges". IEEE Communications Surveys and Tutorials (CST), 20(1):333–354,

2018.

International conferences

• F. Bannour, S. Souihi, A. Mellouk. "Adaptive Quorum-inspired SLA-Aware Consis-

tency for Distributed SDN Controllers", 15th International Conference on Network

and Service Management (CNSM), Halifax, Canada, 21-25 October, 2019.

• F. Bannour, S. Souihi, A. Mellouk. "Adaptive State Consistency for Distributed ONOS

Controllers", IEEE Global Communications Conference (GLOBECOM), Abu Dhabi,

9–13 December, 2018.

• F. Bannour, S. Souihi, A. Mellouk. "Scalability and Reliability Aware SDN Controller

Placement Strategies", 13th International Conference on Network and Service Man-

agement (CNSM), Tokyo, Japan, 26-30 November, 2017.

National conferences and symposiums

• F. Bannour, S. Souihi, A. Mellouk. "Adaptive state consistency for distributed ONOS

controllers", 2018 SDN DAY « IDNs (Intelligence-Defined Networks) », invited talk,

November 22, 2018, Paris, France.

• F. Bannour, S. Souihi, A. Mellouk. "Software-Defined Networking: A self-adaptive

consistency model for distributed SDN controllers", 2017 RESCOM summer school «

Virtualisation & Dehardwarization », CNRS GDR RSD, 19-23 June, 2017, Le Croisic,

France.

xiii

LIST OF ACRONYMS

• F. Bannour, S. Souihi, A. Mellouk. "Software-Defined Networking: Distributed SDN

control", 2017 ARC of the CNRS GDRMACS « Automation and Communication Net-

works », selected presentation after call for submission, May 16, 2017, Paris, France.

• F. Bannour, S. Souihi, A. Mellouk. "The SDN controller placement problem", 2016

RESCOM summer school « 5G and Internet of Things », CNRS GDR RSD, selected

poster, 13-17 June, 2016, Guidel-plages, France.

xiv

Introduction

« We are all now connected by the
Internet, like neurons in a giant
brain »

Stephen Hawking

1 General context

The unprecedented growth in demands and data traffic, the emergence of network virtu-

alization along with the ever-expanding use of mobile equipment in the modern network

environment have highlighted major problems that are basically inherent to the Internet’s

conventional architecture. That made the task of managing and controlling the informa-

tion coming from a growing number of connected devices increasingly complex and spe-

cialized.

Indeed, the traditional networking infrastructure is considered as highly rigid and

static as it was initially conceived for a particular type of traffic, namely monotonous text-

based contents, which makes it poorly suited to today’s interactive and dynamic multime-

dia streams generated by increasingly-demanding users. Along with multimedia trends,

the recent emergence of the Internet of Things (IoT) has allowed for the creation of new

advanced services with more stringent communication requirements in order to support

its innovative use cases. In particular, e-health is a typical IoT use case where the health-

care services delivered to remote patients (e.g. diagnosis, surgery, medical records) are

highly intolerant of delay, quality and privacy. Such sensitive data and life-critical traffic

are hardly supported by traditional networks.

Furthermore, in the traditional architecture where the control logic is purely distributed

and localized, solving a specific networking problem or adjusting a particular network

policy requires acting separately on the affected devices and manually changing their

configuration. In this context, the current growth in devices and data has exacerbated

1

1. GENERAL CONTEXT

scalability concerns by making such human interventions and network operations harder

and more error-prone.

Altogether, it has become particularly challenging for today’s networks to deliver the

required level of Quality of Service (QoS), let alone the Quality of Experience (QoE) that in-

troduces additional user-centric requirements. To be more specific, relying solely on the

traditional QoS that is based on technical performance parameters (e.g. bandwidth and

latency) turns out to be insufficient for today’s advanced and expanding networks. Addi-

tionally, meeting this growing number of performance metrics is a complex optimization

task that can be treated as an NP-complete problem. Alternatively, network operators

are increasingly realizing that the end-user’s overall experience and subjective perception

of the delivered services are as important as QoS-based mechanisms. As a result, current

trends in network management are heading towards this new concept commonly referred

to as the QoE to represent the overall quality of a network service from an end-user per-

spective.

That said, this huge gap between, on the one hand, the advances achieved in both

computer and software technologies and on the other, the traditional non-evolving and

hard to manage [1; 2] underlying network infrastructure supporting these changes has

stressed the need for an automated networking platform [3] that facilitates network op-

erations and matches today’s network requirements such as the IoT needs [4]. In this

context, several research strategies have been proposed to integrate automatic and adap-

tive approaches into the current infrastructure for the purpose of meeting the challenges

of scalability, reliability and availability for real-time traffic, and therefore guaranteeing

the user’s QoE.

While radical alternatives argue that a brand-new network architecture should be built

from scratch by breaking with the conventional network architecture and bringing fun-

damental changes to keep up with current and future requirements, other realistic alter-

natives are appreciated for introducing slight changes tailored to specific needs and for

making a gradual network architecture transition without causing costly disruptions to

existing network operations.

In particular, the early Overlay Network alternative introduces an application layer

overlay on the top of the conventional routing substrate to facilitate the implementation

of new network control approaches. However, the obvious disadvantage of Overlay Net-

works is that they depend on several aspects (e.g. selected overlay nodes) to achieve the

2

2. PROBLEM STATEMENT AND MOTIVATIONS

required performance. Besides, such networks can be criticized for compounding the

complexity of existing networks due to the additional virtual layers.

On the other hand, the recent Software-Defined Networking (SDN) paradigm [5] offers

the possibility to program the network and thus facilitates the introduction of automatic

and adaptive control approaches by separating hardware (data plane) and software (con-

trol plane) enabling their independent evolution. SDN aims for the centralization of the

network control, offering an improved visibility and a better flexibility to manage the net-

work and optimize its performance. When compared to the Overlay Network alternative,

SDN has the ability to control the entire network not only a selected set of nodes and to

use a public network for transporting data. Besides, SDN spares network operators the te-

dious task of temporarily creating the appropriate overlay network for a specific use case.

Instead, it provides an inherent programmatic framework for hosting control and security

applications that are developed in a centralized way while taking into consideration the

IoT requirements [4; 6] to guarantee the user’s QoE.

2 Problem statement and motivations

Despite the great interest in SDN, its deployment in the industrial context is still in its

relative early stages. There might be indeed a long road ahead before technology matures

and standardization efforts pay off so that the full potential of SDN can be achieved.

Indeed, along with the hype and excitement, there have been several concerns and

questions regarding the widespread adoption of SDN networks. For instance, research

studies on the feasibility of the SDN deployment have revealed that the physical central-

ization of the control plane in a single programmable software component, called the

controller, is constrained by several limitations such as the issues of scalability, availabil-

ity and reliability. Gradually, it became inevitable to think about the control plane as a

distributed system [7], where several SDN controllers are in charge of handling the whole

network, while maintaining a logically centralized network view.

In that respect, networking communities argued about the best way to implement dis-

tributed SDN architectures while taking into account the new challenges brought by such

distributed systems. Consequently, several SDN solutions have been explored and many

SDN projects have emerged. Each proposed SDN controller platform adopted a specific

architectural design approach based on various factors such as the aspects of interest, the

performance goals, the deployed SDN use case, and also the trade-offs involved in the

3

3. MAIN CONTRIBUTIONS

presence of multiple conflicting and competing challenges.

At this point, we underline the importance of conducting a serious analysis of the pro-

posed SDN solutions in envisioning the potential trends that may drive future research in

the area. In particular, we place a special focus on distributed SDN control designs with

the aim of solving some of the major challenges encountered in the decentralization of

the SDN control planes in the context of large-scale deployments.

The main motivations of this work are the following:

• Ensuring a thorough understanding of existing state-of-the-art distributed SDN con-

troller platforms, and developing a critical awareness of the ongoing and future key

research and operational challenges facing the design and deployment of such plat-

forms.

• Proposing novel approaches for decentralizing the SDN control plane in large-scale

networks. Such a decentralized SDN control plane should be efficient (i.e. scalable,

high-performance and robust) as it should meet the SDN controller application re-

quirements (e.g scalability, reliability and consistency).

• Paving the way for the emergence of a new common standard for the distributed

SDN control plane. That standard should also ensure the inter-controller commu-

nication between different vendor-specific controller technologies (i.e. the interop-

erability challenge).

3 Main contributions

In this section, we outline the main contributions of this work. More specifically, we pro-

pose novel approaches for decentralizing the Software-Defined Networking (SDN) control

plane in large-scale networks while tackling some of the major associated challenges:

(1) Scalability and reliability aware strategies for the placement of distributed SDN con-

trollers at scale using different types of multi-criteria optimization algorithms (see

Chapter 3).

(2) An adaptive and continuous consistency model for the distributed SDN controllers: A

novel Anti-Entropy reconciliation mechanism for applications (with eventual consis-

tency needs) on top of the ONOS controllers (see Chapter 4).

4

4. DISSERTATION ORGANIZATION

(3) An adaptive and continuous consistency model for the distributed SDN controllers: A

novel Quorum-based replication strategy for applications (with eventual consistency

needs) on top of the ONOS controllers (see Chapter 5).

Additionally, given the lack of available literature on the subject of decentralized SDN

control and given its relevance nowadays, our work also provides:

• A survey on distributed control in SDN: An overview and taxonomy of current SDN

controller platforms (i.e. a physical classification and a logical classification) (see

Chapter 1).

• A thorough analysis of the challenges encountered by the discussed state-of-the-

art distributed SDN controller platforms, and the different approaches adopted for

solving these challenges (see Chapter 2).

4 Dissertation organization

The remainder of this dissertation is organized as follows:

Chapter 1 This chapter presents a survey on SDN with a special focus on distributed

SDN control solutions. In addition to explaining the fundamental elements of the SDN ar-

chitecture, this chapter proposes a taxonomy of the most prominent state-of-the art SDN

controllers platforms by classifying them in two different ways: a physical classification

and a logical classification.

Chapter 2 This chapter provides a thorough analysis of the major open challenges

faced by the existing distributed SDN controller platforms discussed in the previous chap-

ter. These challenges include the issues of scalability, reliability, consistency and interop-

erability of the SDN control plane. Besides, this chapter explores the potential approaches

to tackle these challenges for an optimal SDN deployment, and it provides some useful

insights into the emerging and future trends in the design of efficient distributed SDN

control planes.

Chapter 3 This chapter addresses the distributed SDN control problem by tackling

the SDN controller placement problem in large-scale IoT-like networks. It puts forwards

novel scalability an reliability aware controller placement strategies that tackle several as-

pects of the controller placement optimization problem with respect to multiple reliabil-

ity and performance criteria and according to different uses and contexts. These strate-

gies use two different types of heuristic-based algorithms: a clustering algorithm based

5

4. DISSERTATION ORGANIZATION

on PAM and a modified genetic algorithm called NSGA-II. These multi-criteria algorithms

are compared in terms of computation time, as well as the quality of final controller place-

ment configurations.

Chapter 4 This chapter addresses the distributed SDN control problem by tackling

the knowledge sharing problem between the distributed SDN controllers. It proposes an

adaptive multi-level consistency model following the concept of continuous consistency

for the distributed SDN controllers. That approach is implemented for a source routing

application on top of the open-source ONOS controllers. It consists in turning ONOS’s

eventual consistency model into an adaptive consistency model using the Anti-Entropy

reconciliation period as a control knob for an adaptive fine-grained tuning of consistency

levels. Our proposed consistency strategy is aimed at ensuring the application’s contin-

uous consistency requirements (i.e. Numerical Error bounds) as specified in the given

application SLA. Its purpose is also to minimize the Anti-Entropy reconciliation overhead

as compared to ONOS’s static consistency scheme at scale.

Chapter 5 This chapter further addresses the knowledge sharing problem in the dis-

tributed SDN control by proposing an adaptive and continuous consistency model for the

distributed ONOS controllers. The approach is implemented for a CDN-like application

on top of ONOS. It consists in changing ONOS’s eventual consistency model to an adap-

tive consistency model by turning ONOS’s optimistic replication technique into a more

scalable replication strategy following Quorum-replicated consistency. The main focus is

placed at improving ONOS’s replication mechanism: It uses the read and write Quorum

parameters as adjustable control knobs for a fine-grained consistency tuning, rather than

relying on Anti-Entropy reconciliation mechanisms (see previous Chapter). The main ob-

jective is to find at runtime optimal partial Quorum configurations that achieve, under

changing network and workload conditions, balanced trade-offs between the applica-

tion’s continuous performance (latency) and consistency (staleness) requirements. These

real-time trade-offs should provide minimal application inter-controller overhead while

satisfying the application-defined thresholds specified in the given application SLA.

Conclusions and perspectives The last chapter concludes this dissertation and gives

an insight into our ongoing and future work and perspectives in the area of distributed

SDN control.

6

Chapter 1

Towards a decentralized SDN control
architecture: Overview and taxonomy

«The Future of Networking, and
the Past of Protocols»

Scott Shenker,
Open Network Summit, 2011

Contents
1.1 Introduction . 9

1.2 Software-defined networking: A centralized control architecture 9

1.2.1 Conventional networking and the SDN paradigm 9

1.2.2 The SDN architecture . 12

1.2.2.1 SDN data plane . 12

1.2.2.2 SDN control plane . 14

1.2.2.3 SDN application plane . 14

1.3 Physical classification of existing SDN control plane architectures 16

1.3.1 Physically-centralized SDN control 17

1.3.2 Physically-distributed SDN control 19

1.3.2.1 Flat SDN control . 19

1.3.2.2 Hierarchical SDN control . 22

1.4 Logical classification of existing SDN control plane architectures 25

1.4.1 Logically-centralized SDN control . 25

1.4.1.1 Onix and SMaRtLight . 25

1.4.1.2 HyperFlow and Ravana . 27

1.4.1.3 ONOS and OpenDayLight . 29

1.4.1.4 B4 and SWAN . 31

1.4.2 Logically-distributed SDN control . 32

1.4.2.1 DISCO and D-SDN . 32

1.4.2.2 SDX-based controllers . 34

7

1.5 Conclusion . 36

8

1.1. INTRODUCTION

1.1 Introduction

As opposed to the decentralized control logic underpinning the devising of the Inter-

net as a complex bundle of box-centric protocols and vertically-integrated solutions, the

Software-Defined Networking (SDN) paradigm advocates the separation of the control

logic from hardware and its centralization in software-based controllers. These key tenets

offer new opportunities to introduce innovative applications and incorporate automatic

and adaptive control aspects, thereby easing network management and guaranteeing the

user’s QoE.

However, despite the excitement, SDN adoption raises many challenges including the

scalability and reliability issues of centralized designs that can be addressed with the

physical decentralization of the control plane. However, such physically-distributed, but

logically centralized systems, bring an additional set of challenges.

This chapter presents a survey on SDN with a special focus on the distributed SDN

control. In Section 1.2 , we start by exposing the promises and solutions offered by SDN as

compared to conventional networking. We also elaborate on the fundamental elements

of the SDN architecture.

Then, we expand our knowledge of the different approaches to SDN by exploring the

wide variety of existing SDN controller platforms. In doing so, we intend to place a special

emphasis on distributed SDN solutions and classify them in two different ways: In Section

1.3, we propose a physical classification of state-of-the-art SDN control plane architec-

tures into centralized and distributed (Flat or Hierarchical) in order to highlight the SDN

performance, scalability and reliability challenges. In Section 1.4, we put forward a logi-

cal classification of distributed SDN control plane architectures into logically-centralized

and logically-distributed while tackling the associated state consistency and knowledge

dissemination issues.

1.2 Software-defined networking: A centralized control ar-
chitecture

1.2.1 Conventional networking and the SDN paradigm

Over the last few years, the need for a new approach to networking has been expressed

to overcome the many issues associated with current networks. In particular, the main

vision of the SDN approach is to simplify networking operations, optimize network man-

9

1.2. SOFTWARE-DEFINED NETWORKING: A CENTRALIZED CONTROL
ARCHITECTURE

agement and introduce innovation and flexibility as compared to legacy networking ar-

chitectures.

In this context and in line with the vision of Kim et al. [8], four key reasons for the prob-

lems encountered in the management of existing networks can be identified:

(i) Complex and low-level Network configuration

Network configuration is a complex distributed task where each device is typically

configured in a low-level vendor-specific manner. Additionally, the rapid growth of

the network together with the changing networking conditions have resulted in net-

work operators constantly performing manual changes to network configurations,

thereby compounding the complexity of the configuration process and introducing

additional configuration errors.

(ii) Dynamic Network State

Networks are growing dramatically in size, complexity and consequently in dynam-

icity. Furthermore, with the rise of mobile computing trends as well as the advent

of network virtualization [9] and cloud computing [10; 11], the networking environ-

ment becomes even more dynamic as hosts are continually moving, arriving and

departing due to the flexibility offered by VM migration, and thus making traffic pat-

terns and network conditions change in a more rapid and significant way.

(iii) Exposed Complexity

In today’s large-scale networks, network management tasks are challenged by the

high complexity exposed by distributed low-level network configuration interfaces.

That complexity is mainly generated by the tight coupling between the manage-

ment, control, and data planes, where many control and management features are

implemented in hardware.

(iv) Heterogeneous Network Devices

Current networks are comprised of a large number of heterogeneous network de-

vices including routers, switches and a wide variety of specialized middle-boxes.

Each of these appliances has its own proprietary configuration tools and operates

according to specific protocols, therefore increasing both complexity and inefficiency

in network management.

All that said, network management is becoming more difficult and challenging given

10

1.2. SOFTWARE-DEFINED NETWORKING: A CENTRALIZED CONTROL
ARCHITECTURE

that the static and inflexible architecture of legacy networks is ill-suited to cope with to-

day’s increasingly dynamic networking trends, and to meet the QoE requirements of mod-

ern users. This fact has fueled the need for the enforcement of complex and high-level

policies to adapt to current networking environments, and for the automation of network

operations to reduce the tedious workload of low-level device configuration tasks.

In this sense, and to deliver the goals of easing network management in real networks,

operators have considered running dynamic scripts as a way to automate network con-

figuration settings before realizing the limitations of such approaches which led to mis-

configuration issues. It is, however, worth noting, that recent approaches to scripting

configurations and network automation are becoming relevant [12].

The SDN initiative led by the Open Networking Foundation (ONF) [13], on the other

hand, proposes a new open architecture to address current networking challenges with

the potential to facilitate the automation of network configurations , and better yet, fully

program the network. Unlike the conventional distributed network architecture (Figure

1.1(a)) where network devices are closed and vertically-integrated bundling software with

hardware, the SDN architecture (Figure 1.1(b)) raises the level of abstraction by separating

the network data and control planes. That way, network devices become simple forward-

ing switches whereas all the control logic is centralized in software controllers providing a

flexible programming framework for the development of specialized applications and for

the deployment of new services.

(a) Traditional architecture (b) SDN architecture

Figure 1.1: Conventional networking Versus software-defined networking

Such aspects of SDN are believed to simplify and improve network management by of-

fering the possibility to innovate, customize behaviors and control the network according

to high-level policies expressed as centralized programs, therefore bypassing the com-

plexity of low-level network details and overcoming the fundamental architectural prob-

lems raised in (i) and (iii). Added to these features is the ability of SDN to easily cope with

11

1.2. SOFTWARE-DEFINED NETWORKING: A CENTRALIZED CONTROL
ARCHITECTURE

the heterogeneity of the underlying infrastructure (outlined in (iv)) thanks to the SDN

Southbound interface abstraction.

More detailed information on the SDN-based architecture which is split vertically into

three layers (see Figure 1.2) is provided in the next section.

1.2.2 The SDN architecture

The SDN-based architecture is split vertically into three layers (see Figure 1.2). Detailed

information about the SDN architecture is provided in the following subsections:

Figure 1.2: A three-layer distributed SDN architecture

1.2.2.1 SDN data plane

The data plane, also known as the forwarding plane, consists of a distributed set of for-

warding network elements (mainly switches) in charge of forwarding packets. In the con-

text of SDN, the control-to-data plane separation feature requires the data plane to be

remotely accessible for software-based control via an open vendor-agnostic Southbound

interface.

12

1.2. SOFTWARE-DEFINED NETWORKING: A CENTRALIZED CONTROL
ARCHITECTURE

Both OpenFlow [14] and ForCES [15] are well-known candidate protocols for the South-

bound interface. They both follow the basic principle of splitting the control plane and

the forwarding plane in network elements and they both standardize the communication

between the two planes. However, these solutions are different in many aspects, espe-

cially in terms of network architecture design.

Standardized by IETF, ForCES (Forwarding and Control Element Separation) [15] in-

troduced the separation between the control plane and the forwarding plane. In doing

so, ForCES defines two logic entities that are logically kept in the same physical device:

the Control Element (CE) and the Forwarding Element (FE). However, despite being a

mature standard solution, the ForCES alternative did not gain widespread adoption by

major router vendors.

On the other hand, OpenFlow [14] received major attention in both the research com-

munity and the industry. Standardized by the ONF [13], it is considered as the first widely

accepted communication protocol for the SDN Southbound interface. OpenFlow enables

the control plane to specify in a centralized way the desired forwarding behavior of the

data plane. Such traffic forwarding decisions reflect the specified network control poli-

cies and are translated by controllers into actual packet forwarding rules populated in the

flow tables of OpenFlow switches.

In more specific terms, and according to the original version 1.0.0 of the standard

defined in [16], an OpenFlow-enabled Switch consists of a flow table and an OpenFlow

secure channel to an external OpenFlow controller. Typically, the forwarding table main-

tains a list of flow entries; Each flow entry comprises match fields containing header val-

ues to match packets against, counters to update when packets match for flow statistics

collection purposes, and a set of actions to apply to matching packets.

Accordingly, all incoming packets processed by the switch are compared against the

flow table where flow entries match packets based on a priority order specified by the con-

troller. In case a matching entry is found, the flow counter is incremented and the actions

associated with the specific flow entry are performed on the incoming packet belonging

to that flow. According to the OpenFlow specification [16], these actions may include for-

warding a packet out on a specific port, dropping the packet, removing or updating packet

headers, etc. If no match is found in the flow table, then the unmatched packet is encap-

sulated and sent over the secure channel to the controller which decides on the way it

should be processed. Among other possible actions, the controller may define a new flow

13

1.2. SOFTWARE-DEFINED NETWORKING: A CENTRALIZED CONTROL
ARCHITECTURE

for that packet by inserting new flow table entries.

1.2.2.2 SDN control plane

Regarded as the most fundamental building entity in SDN architecture, the control plane

consists of a centralized software controller that is responsible for handling communica-

tions between network applications and devices through open interfaces. More specif-

ically, SDN controllers translate the requirements of the application layer down to the

underlying data plane elements and give relevant information up to SDN applications.

The SDN control layer is commonly referred to as the Network Operating System (NOS) as

it supports the network control logic and provides the application layer with an abstracted

view of the global network, which contains enough information to specify policies while

hiding all implementation details.

Typically, the control plane is logically centralized and yet implemented as a physically

distributed system for scalability and reliability reasons as discussed in Sections 1.3 and

1.4. In a distributed SDN control configuration, East-Westbound APIs [17] are required to

enable multiple SDN controllers to communicate with each other and exchange network

information.

Despite the many attempts to standardize SDN protocols, there has been to date no stan-

dard for the East-West API which remains proprietary for each controller vendor. Al-

though a number of East-Westbound communications happen only at the data-store level

and do not require additional protocol specifics, it is becoming increasingly advisable to

standardize that communication interface in order to provide wider interoperability be-

tween different controller technologies in different autonomous SDN networks.

On the other hand, an East-Westbound API standard requires advanced data distribu-

tion mechanisms and involves other special considerations. This brings about additional

SDN challenges, some of which have been raised by the state-of-the art distributed con-

troller platforms discussed in Sections 1.3 and 1.4, but have yet to be fully addressed.

1.2.2.3 SDN application plane

The SDN application plane comprises SDN applications which are control programs de-

signed to implement the network control logic and strategies. This higher-level plane

interacts with the control plane via an open Northbound API. In doing so, SDN applica-

tions communicate their network requirements to the SDN controller which translates

14

1.2. SOFTWARE-DEFINED NETWORKING: A CENTRALIZED CONTROL
ARCHITECTURE

them into Southbound-specific commands and forwarding rules dictating the behavior

of the individual data plane devices. Routing, Traffic Engineering (TE), firewalls and load

balancing are typical examples of common SDN applications running on top of existing

controller platforms.

In the context of SDN, applications leverage the decoupling of the application logic

from the network hardware along with the logical centralization of the network control,

to directly express the desired goals and policies in a centralized high-level manner with-

out being tied to the implementation and state-distribution details of the underlying net-

working infrastructure. Concurrently, SDN applications make use of the abstracted net-

work view exposed through the Northbound interface to consume the network services

and functions provided by the control plane according to their specific purposes.

That being said, the Northbound API implemented by SDN controllers can be re-

garded as a network abstraction interface to applications, easing network programma-

bility, simplifying control and management tasks and allowing for innovation. In contrast

to the Southbound API, the Northbound API is not supported by an accepted standard.

Despite the broad variety of Northbound APIs adopted by the SDN community (see Figure

1.2), we can classify them into two main categories:

• The first set involves simple and primitive APIs that are directly linked to the internal

services of the controller platform. These implementations include:

– Low-level ad-hoc APIs that are proprietary and tightly dependent on the con-

troller platform. Such APIs are not considered as high-level abstractions as

they allow developers to directly implement applications within the controller

in a low-level manner. Deployed internally, these applications are tightly cou-

pled with the controller and written in its native general-purpose language.

NOX in C++ and POX in Python are typical examples of controllers that use

their own basic sets of APIs.

– APIs based on Web services such as the widely-used REST API. This group of

programming interfaces enables independent external applications (Clients)

to access the functions and services of the SDN controller (Server). These ap-

plications can be written in any programming language and are not run inside

the bundle hosting the controller software. Floodlight is an example of an SDN

15

1.3. PHYSICAL CLASSIFICATION OF EXISTING SDN CONTROL PLANE
ARCHITECTURES

controller that adopts an embedded Northbound API based on REST.

• The second category contains higher level APIs that rely on domain-specific pro-

gramming languages such as Frenetic [18], Procera [19] and Pyretic [20] as an indi-

rect way for applications to interact with the controller. These APIs are designed to

raise the level of abstraction in order to allow for the flexible development of appli-

cations and for the specification of high-level network policies.

1.3 Physical classification of existing SDN control plane ar-
chitectures

Figure 1.3: Physical classification of SDN control plane architectures

Despite the undeniable strengths of SDN, there have always been serious concerns

about the ability to extend SDN to large-scale networks.

Some argue that these scalability limits are basically linked to the protocol standards

being used for the implementation of SDN. OpenFlow [14] in particular, although rec-

ognized as a leading and widely-deployed SDN Southbound technology, is currently be-

ing rethought for potentially causing excessive overheads on switches (switch bottleneck).

Scalable alternatives to the OpenFlow standard which propose to revisit the delegation of

16

1.3. PHYSICAL CLASSIFICATION OF EXISTING SDN CONTROL PLANE
ARCHITECTURES

control between the controller and the switches with the aim of reducing the reliance on

SDN the control plane, have been discussed in 1.2.2.1.

Another entirely different approach to addressing the SDN scalability and reliability

challenges, which is advocated by the present work, is to physically distribute the SDN

control plane. This has led to a first categorization of existing controller platforms into

centralized and distributed architectures (see Figure 1.3). Please note that, in Figure 1.3

and Figure 1.4, controllers that present similar characteristics for the discussed compari-

son criteria are depicted in the same color.

1.3.1 Physically-centralized SDN control

A physically-centralized control plane consisting of a single controller for the entire

network is a theoretically perfect design choice in terms of simplicity. However, a single

controller system may not keep up with the growth of the network. It is likely to become

overwhelmed (controller bottleneck) while dealing with an increasing number of requests

and concurrently struggling to achieve the same performance guarantees.

Obviously, a centralized SDN controller does not meet the different requirements of

large-scale real-world network deployments. Data Centers and Service Provider Networks

are typical examples of such large-scale networks presenting different requirements in

terms of scalability and reliability.

More specifically, a Data Center Network involves tens of thousands of switching el-

ements. Such a great number of forwarding elements which can grow at a fast pace is

expected to generate a huge number of control events that are enough to overload a sin-

gle centralized SDN controller [21; 22]. Studies conducted in [23] show important scala-

bility implications (in terms of throughput) for centralized controller approaches. They

demonstrate that multiple controllers should be used to scale the throughput of a cen-

tralized controller and meet the traffic characteristics within realistic data centers.

Unlike data centers, Service Provider Networks are characterized by a modest number

of network nodes. However, these nodes are usually geographically distributed making

the diameter of these networks very large [21]. This entails a different type of controller

scalability issues for centralized controller approaches, more specifically, high latencies.

In addition to latency requirements, service provider networks have large numbers of

flows that may generate overhead and bandwidth issues.

In general, Wide Area Network (WAN) deployments typically impose strict resiliency

17

1.3. PHYSICAL CLASSIFICATION OF EXISTING SDN CONTROL PLANE
ARCHITECTURES

requirements. In addition, they present higher propagation delays as compared to data

center networks. Obviously, a centralized controller design in a SD-WAN cannot achieve

the desired failure resiliency and scale-out behaviors [24]. Several studies have empha-

sized the need for a distributed control plane in a SD-WAN architecture: They indeed

focused on placing multiple controllers on real WAN topologies to benefit both control

plane latency and fault-tolerance [25; 26].

That said, the potential scalability, reliability and vulnerability concerns associated

with centralized controller approaches have been further confirmed through studies [27;

28] on the behavior of state-of-the-art centralized SDN controllers such as NOX [29], Bea-

con [30] and Floodlight [31] in different networking environments.

In particular, NOX classic [29], the world’s first-generation OpenFlow controller with

an event-based programming model, is believed to be limited in terms of throughput.

Indeed, it cannot handle a large number of flows, namely a rate of 30k flow initiation

events per second [28; 32]. Such a flow setup throughput may sound sufficient for an

enterprise network, but, it could be arguable for data-center deployments with high flow

initiation rates [23]. Improved versions of NOX have been consequently developed by

the same community (Nicira Networks) such as NOX-MT [33] for better performance and

POX [34] for a more developer-friendly environment.

However, while none of these centralized designs is believed to meet the above scala-

bility and reliability requirements of large-scale networks, they have gained greater promi-

nence as they were widely used for research and educational purposes.

Additionally, Floodlight [31] which is a very popular Java-based OpenFlow controller

from Big Switch Networks, suffers from serious security and resiliency issues. For in-

stance, Dhawan et al. [35] have reported that the centralized SDN controller is inherently

susceptible to Denial-of-Service (DoS) attacks. Another subsequent version of Floodlight,

called SE-Floodlight, has therefore been released to overcome these problems by integrat-

ing security applications. However, despite the introduced security enhancements aimed

at shielding the centralized controller, the latter remains a potential weakness compro-

mising the whole network. In fact, the controller still maintains a single point of failure

and bottlenecks even if its latest version is less vulnerable to malicious attacks.

On the other hand, given its obvious performance and functionality advantages, the

open-source Floodlight has been extensively used to build other SDN controller platforms

supporting distributed architectures such as ONOS [36] and DISCO [37].

18

1.3. PHYSICAL CLASSIFICATION OF EXISTING SDN CONTROL PLANE
ARCHITECTURES

1.3.2 Physically-distributed SDN control

Alternatively, physically-distributed control plane architectures have received increased

research attention in recent years since they appeared as a potential solution to mitigate

the issues brought about by centralized SDN architectures (poor scalability, Single Point

of Failure (SPOF), performance bottlenecks, etc). As a result, various SDN control plane

designs have been proposed in recent literature. Yet, we discern two main categories of

distributed SDN control architectures based on the physical organization of SDN con-

trollers: A flat SDN control architecture and a hierarchical SDN control architecture (see

Figure 1.3).

1.3.2.1 Flat SDN control

The flat structure implies the horizontal partitioning of the network into multiple ar-

eas, each of which is handled by a single controller in charge of managing a subset of SDN

switches. There are several advantages to organizing controllers in such a flat style, in-

cluding reduced control latency and improved resiliency.

Onix [38], Hyperflow [39] and ONOS [36] are typical examples of flat physically-distributed

controller platforms which are initially designed to improve control plane scalability through

the use of multiple interconnected controllers sharing a global network-wide view and

allowing for the development of centralized control applications. However, each of these

contributions takes a different approach to distribute controller states and providing con-

trol plane scalability.

For example, Onix provides a good scalability through additional partitioning and

aggregation mechanisms. To be more specific, Onix partitions the NIB (Network Infor-

mation Base) giving each controller instance responsibility for a subset of the NIB and

it aggregates by making applications reduce the fidelity of information before sharing it

between other Onix instances within the cluster. Similar to Onix, each ONOS instance

(composing the cluster) that is responsible for a subset of network devices holds a por-

tion of the network view that is also represented in a graph. Different from Onix and

ONOS, every controller in HyperFlow has the global network view, thus getting the illu-

sion of control over the whole network. Yet, HyperFlow can be considered as a scalable

option for specific policies in which a small number of network events affect the global

network state. In that case, scalability is ensured by propagating these (less frequent) se-

19

1.3. PHYSICAL CLASSIFICATION OF EXISTING SDN CONTROL PLANE
ARCHITECTURES

lected events through the event propagation system.

Furthermore, different mechanisms are put in place by these distributed controller

platforms to meet fault-tolerance and reliability requirements in the event of failures or

attacks.

Onix [38] uses different recovery mechanisms depending on the detected failures.

Onix instance failure is most of the time handled by distributed coordination mechanisms

among replicas whereas network element/link failures are under the full responsibility of

applications developed atop Onix. Besides, Onix is assumed reliable when it comes to

connectivity infrastructure failures as it can dedicate the failure recovery task to a sepa-

rate management backbone that uses a multi-pathing protocol.

Likewise, Hyperflow [39] focuses on ensuring resiliency and fault tolerance as a means

for achieving availability. When a controller failure is discovered by the failure detection

mechanisms deployed by its publish/subscribe WheelFS [40] system, HyperFlow recon-

figures the affected switches and redirects them to another nearby controller instance

(from a neighbor’s site). Alongside this ability to tackle component failures, HyperFlow

is resilient to network partitioning thanks to the partition tolerance property of WheelFS.

In fact, in the presence of a network partitioning, WheelFS partitions continue to operate

independently, thus favoring availability.

Similarly, ONOS [36] considers fault-tolerance as a prerequisite for adopting SDN in

Service Provider networks. ONOS’s distributed control plane guards against controller

instance failures by connecting, from the onset, each SDN switch to more than one SDN

controller; its master controller and other backup controllers (from other domains) that

may take over in the wake of master controller failures. Load balancing mechanisms are

also provided to balance the mastership of switches among the controllers of the cluster

for scalability purposes. Besides, ONOS incorporates additional recovery protocols, such

as the Anti-Entropy protocol [41], for healing from lost updates due to such controller

crashes.

Recent SDN controller platform solutions [42–47] focused specifically on improving

fault-tolerance in the distributed SDN control plane. Some of these works assumed a

simplified flat design where the SDN control was centralized. However, since the main

focus was placed at the fault-tolerance aspect, we believe that their ideas and their fault-

tolerance approaches can be leveraged in the context of medium to large scale SDNs

20

1.3. PHYSICAL CLASSIFICATION OF EXISTING SDN CONTROL PLANE
ARCHITECTURES

where the network control is physically distributed among multiple controllers.

In particular, Botelho et. al [48] developed a hybrid SDN controller architecture that

combines both passive and active replication approaches for achieving control plane fault-

tolerance. SMaRtLight adopts a simple Floodlight [31]-based multi-controller design fol-

lowing OpenFlow 1.3, where one main controller (the primary) manages all network switches,

and other controller replicas monitor the primary controller and serve as backups in case

it fails.

This variant of a traditional passive replication system relies on an external data store

that is implemented using a modern active Replicated State Machine (RSM) built with

a Paxos-like protocol (BFT-SMaRt [49]) to ensure fault-tolerance and strong consistency.

This shared data store is used for storing the network and application state (the common

global NIB) and also for coordinating fault detection and leader election operations be-

tween controller replicas that run a lease management algorithm.

In case of a failure of the primary controller, the elected backup controller starts read-

ing the current state from the shared consistent data store in order to mitigate the cold-

start (empty state) issue associated with traditional passive replication approaches, and

thereby ensure a smoother transition to the new primary controller role.

The limited feasibility of the deployed controller fault-tolerance strategy is warranted

by the limited scope of the SMaRtLight solution which is only intended for small to medium-

sized SDN networks. On the other hand, in large-scale deployments, adopting a simplified

Master-Slave approach, and more importantly, assuming a single main controller scheme

where one controller replica must retrieve all the network state from the shared data store

in failure scenarios, have major disadvantages in terms of increased latency and failover

time.

Similarly, the Ravana controller platform proposal [44] addresses the issue of recov-

ering from complete fail-stop controller crashes. It offers the abstraction of a fault-free

centralized SDN controller to unmodified control applications which are relieved of the

burden of handling controller failures. Accordingly, network programmers write appli-

cation programs for a single main controller and the transparent master-slave Ravana

protocol takes care of replicating, seamlessly and consistently, the control logic to other

backup controllers for fault-tolerance.

The Ravana approach deploys enhanced Replicated State Machine (RSM) techniques

that are extended with switch-side mechanisms to ensure that control messages are pro-

21

1.3. PHYSICAL CLASSIFICATION OF EXISTING SDN CONTROL PLANE
ARCHITECTURES

cessed transactionally with ordered and exactly-once semantics even in the presence of

failures. The three Ravana prototype components, namely the Ryu [50]-based controller

runtime, the switch runtime, and the control channel interface, work cooperatively to

guarantee the desired correctness and robustness properties of a fault-tolerant logically

centralized SDN controller.

More specifically, when the master controller crashes, the Ravana protocol detects the

failure within a short failover time and elects the standby slave controller to take over

using Zookeeper [51]-like failure detection and leader election mechanisms. The new

leader finishes processing any logged events in order to catch up with the failed master

controller state. Then, it registers with the affected switches in the role of the new master

before proceeding with normal controller operations.

1.3.2.2 Hierarchical SDN control

The hierarchical SDN control architecture assumes that the network control plane is

vertically partitioned into multiple levels (layers) depending on the required services. Ac-

cording to [52], a hierarchical organization of the control plane can improve SDN scala-

bility and performance.

To improve scalability, Kandoo [53] assumes a hierarchical two-layer control struc-

ture that partitions control applications into local and global. Contrary to DevoFlow [54]

and DIFANE [55], Kandoo proposes to reduce the overall stress on the control plane with-

out the need to modify OpenFlow switches. Instead, it establishes a two-level hierarchical

control plane, where frequent events occurring near the data path are handled by the bot-

tom layer (local controllers with no interconnection running local applications) and non-

local events requiring a network-wide view are handled by the top layer (a logically cen-

tralized root controller running non-local applications and managing local controllers).

Despite the obvious scalability advantages of such a control plane configuration where

local controllers can scale linearly as they do not share information, Kandoo did not en-

vision fault-tolerance and resiliency strategies to protect itself from potential failures and

attacks in the data and control planes. Besides, from a developer perspective, Kandoo im-

poses some kandoo-specific conditions on the control applications developed on top of

it, in such a way that makes them aware of its existence.

On the other hand, Google’s B4 [56; 57], a private intra-domain software-defined WAN

22

1.3. PHYSICAL CLASSIFICATION OF EXISTING SDN CONTROL PLANE
ARCHITECTURES

connecting their data centers across the planet, proposes a two-level hierarchical control

framework for improving scalability. At the lower layer, each data-center site is handled

by an Onix-based [38] SDN controller hosting local site-level control applications. These

site controllers are managed by a global SDN Gateway that collects network information

from multiple sites through site-level TE services and sends them to a logically central-

ized TE server which also operates at the upper layer of the control hierarchy. Based on an

abstract topology, the latter enforces high-level TE policies that are mainly aimed at opti-

mizing bandwidth allocation between competing applications across the different data-

center sites. That being said, the TE server programs these forwarding rules at the dif-

ferent sites through the same gateway API. These TE entries will be installed into higher-

priority switch forwarding tables alongside the standard shortest-path forwarding tables.

In this context, it is worth mentioning that the topology abstraction which consists in ab-

stracting each site into a super-node with an aggregated super-trunk to a remote site is

key to improving the scalability of the B4 network. Indeed, this abstraction hides the de-

tails and complexity from the logically centralized TE controller, thereby allowing it to run

protocols at a coarse granularity based on a global controller view and, more importantly

preventing it from becoming a serious performance bottleneck.

Unlike Kandoo [53], B4 [56] deploys robust reliability and fault-tolerance mechanisms

at both levels of the control hierarchy in order to enhance the B4 system availability. These

mechanisms have been especially enhanced after experiencing a large-scale B4 outage.

In particular, Paxos [58] is used for detecting and handling the primary controller failure

within each data-center site by electing a new leader controller among a set of reachable

standby instances. On the other hand, network failures at the upper layer are addressed

by the logically centralized TE controller which adapts to failed or unresponsive site con-

trollers in the bandwidth allocation process. Additionally, B4 is resilient against other fail-

ure scenarios where the upper-level TE controller encounters major problems in reaching

the lower-level site controllers (e.g. TE operation/session failures). Moreover, B4 guards

against the failure of the logically centralized TE controller by geographically replicating

TE servers across multiple WAN sites (one master TE server and four secondary hot stand-

bys). Finally, another fault recovery mechanism is used in case the TE controller service

itself faces serious problems. That mechanism stops the TE service and enables the stan-

dard shortest-path routing mechanism as an independent service.

23

1.3. PHYSICAL CLASSIFICATION OF EXISTING SDN CONTROL PLANE
ARCHITECTURES

In the same spirit, Espresso [59] is another interesting SDN contribution that repre-

sents the latest and more challenging pillar of Google’s SDN strategy. Building on the

previous three layers of that strategy (the B4 WAN [56], the Andromeda NFV stack and

the Jupiter data center interconnect), Espresso extends the SDN approach to the peering

edge of Google’s network where it connects to other networks worldwide. Considered as a

large-scale SDN deployment for the public Internet, Espresso, which has been in produc-

tion for more than two years, routes over 22% of Google’s total traffic to the Internet. More

specifically, the Espresso technology allows Google to dynamically choose from where to

serve content for individual users based on real-time measurements of end-to-end net-

work connections.

To deliver unprecedented scale-out and efficiency, Espresso assumes a hierarchical

control plane design split between Global controllers and Local controllers that perform

different functions. Besides, Espresso’s software programmability design principle exter-

nalizes features into software thereby exploiting commodity servers for scale.

Moreover, Espresso achieves higher availability (reliability) when compared to exist-

ing router-centric Internet protocols. Indeed, it supports a fail static system, where the

local data plane keeps the last known good state to allow for control plane unavailability

without impacting data plane and BGP peering operations. Finally, another important

feature of Espresso is that it provides full interoperability with the rest of the Internet and

the traditional heterogeneous peers.

24

1.4. LOGICAL CLASSIFICATION OF EXISTING SDN CONTROL PLANE
ARCHITECTURES

Figure 1.4: Logical classification of distributed SDN control plane architectures

1.4 Logical classification of existing SDN control plane ar-
chitectures

Apart from the physical classification, we can categorize distributed SDN control archi-

tectures according to the way knowledge is disseminated among controller instances (the

consistency challenge) into logically centralized and logically distributed architectures (see

Figure 1.4). This classification has been recently adopted by [60].

1.4.1 Logically-centralized SDN control

1.4.1.1 Onix and SMaRtLight

Both Onix [38] and SMaRtLight [48] are logically centralized controller platforms that

achieve controller state redundancy through state replication. But the main difference

is that Onix uses a distributed data store while SMartLight uses a centralized data store

25

1.4. LOGICAL CLASSIFICATION OF EXISTING SDN CONTROL PLANE
ARCHITECTURES

for replicating the shared network state. They also deploy different techniques for sharing

knowledge and maintaining a consistent network state.

Onix is a distributed control platform for large-scale production networks that stands

out from previous proposals by providing a simple general-purpose API, a central NIB

abstraction and standard state distribution primitives for easing the implementation of

network applications.

In more specific terms, Onix uses the NIB data structure to store the global network

state (in the form of a network graph) that is distributed across running Onix instances

and synchronized through Onix’s built-in state distribution tools according to different

levels of consistency as dictated by application requirements. In fact, besides interact-

ing with the NIB at run-time, network applications on top of Onix initially configure their

own data storage and dissemination mechanisms by choosing among two data-store op-

tions already implemented by Onix in the NIB: A replicated transactional database that

guarantees strong consistency at the cost of good performance for persistent but slowly-

changing data (state), and a high-performance memory-only distributed hash table (DHT)

for volatile data that does not require strict consistency.

While the main advantage of Onix is its programmatic framework created for the flex-

ible development of control applications with desired trade-offs between performance

and state consistency (strong/eventual), it carries the limitations of eventually consistent

systems which rely on application-specific logic to detect network state inconsistencies

for the eventually-consistent data and provide conflict resolution methods for handling

them.

As mentioned in Section 1.3.2.1, SMaRtLight is a fault-tolerant logically centralized

Master-Slave SDN controller platform, where a single controller is in charge of all network

decisions. This main controller is supported by backup controller replicas that should

have a synchronized network view in order to take over the network control in case of the

primary failure. All controller replicas are coordinated through a shared data store that is

kept fault-tolerant and strongly consistent using an implementation of Replicated State

Machine (RSM).

Consistency between the master and backup controllers is guaranteed by replicating

each change in the network image (NIB) of the master into the shared data store before

modifying the state of the network. However, such synchronization updates generate ad-

ditional time overheads and have a drastic impact on the controller’s performance. To ad-

26

1.4. LOGICAL CLASSIFICATION OF EXISTING SDN CONTROL PLANE
ARCHITECTURES

dress this issue, the controllers keep a local cache (maintained by one active primary con-

troller at any time) to avoid accessing the shared data store for read operations. By keep-

ing the local cache and the data store consistent even in the presence of controller fail-

ures, the authors claim that their simple Master-Slave structure achieves, in the context

of small to medium-sized networks, a balance between consistency and fault-tolerance

while keeping performance at an acceptable level.

1.4.1.2 HyperFlow and Ravana

Both HyperFlow [39] and Ravana [44] are logically centralized controller platforms that

achieve state redundancy through event replication. Despite their similarities in building

the application state, one difference is that the Ravana protocol is completely transparent

to control applications while HyperFlow requires minor modifications to applications.

Besides, while HyperFlow is eventually consistent favoring availability, Ravana ensures

strong consistency guarantees.

More specifically, Hyperflow [39] is an extension of NOX into a distributed event-based

control plane where each NOX-based controller manages a subset of OpenFlow network

switches. It uses an event-propagation publish/subscribe mechanism based on the dis-

tributed WheelFS [40] file system for propagating selected network events and maintain-

ing the global network-wide view across controllers. Accordingly, the Hyperflow con-

troller application instance running on top of an individual NOX controller selectively

publishes relevant events that affect the network state and receives events on subscribed

channels to other controllers. Then, other controllers locally replay all the published

events in order to reconstruct the state and achieve the synchronization of the global view.

By this means, all controller instances make decisions locally and individually (with-

out contacting remote controller instances): They indeed operate based on their synchro-

nized eventually-consistent network-wide view as if they are in control of the entire net-

work. Through this synchronization scheme, Hyperflow achieves the goal of minimiz-

ing flow setup times and also congestion, in other words, cross-site traffic required to

synchronize the state among controllers. However, the potential downside of Hyperflow

is related to the performance of the publish/subscribe system which can only deal with

non-frequent events. Besides, HyperFlow does not guarantee a strict ordering of events

and does not handle consistency problems. This makes the scope of HyperFlow restricted

to applications that does not require a strict event ordering with strict consistency guar-

27

1.4. LOGICAL CLASSIFICATION OF EXISTING SDN CONTROL PLANE
ARCHITECTURES

antees.

To correctly ensure the abstraction of a "logically centralized SDN controller", an elab-

orate fault-tolerant controller platform called Ravana [44] extended beyond the require-

ments for controller state consistency to include that for switch state consistency under

controller failures.

Maintaining such strong levels of consistency in both controllers and switches in the

presence of failures, requires handling the entire event-processing cycle as a transaction

in accordance with the following properties: (i) events are processed in the same total or-

der at all controller replicas so that controller application instances would reach the same

internal state, (ii) events are processed exactly-once across all the controller replicas, (iii)

commands are executed exactly-once on the switches.

To achieve such design goals, Ravana follows a Replicated State Machine (RSM) ap-

proach, but extends its scope to deal with switch state consistency under failures. Indeed,

while Ravana permits unmodified applications to run in a transparent fault-tolerant en-

vironment, it requires modifications to the OpenFlow protocol, and it makes changes to

current switches instead of involving them in a complex consensus protocol.

To be more specific, Ravana uses a two-stage replication protocol that separates the

reliable logging of the master’s event delivery information (stage 1) from the logging of

the master’s event-processing transaction completion information (stage 2) in the shared

in-memory log (using Viewstamped Replication [61]) in order to guarantee consistency

under joint switch and controller failures. Besides, it adds explicit acknowledgement mes-

sages to the OpenFlow 1.3 protocol and implements buffers on existing switches for event

retransmission and command filtering. The main objective of the addition of these exten-

sions and mechanisms is to guarantee the exactly-once execution of any event transaction

on the switches during controller failures.

Such strong correctness guarantees for a logically centralized controller under Ravana

come at the cost of generating additional throughput and latency overheads that can be

reduced to a quite reasonable extent with specific performance optimizations. Since the

Ravana runtime is completely transparent and oblivious to control applications, achiev-

ing relaxed consistency requirements for the sake of improved availability as required by

some specific applications, entails considering new mechanisms that consider relaxing

some of the correctness constraints on Ravana’s design goals.

A similar approach to Ravana [44] was adopted by Mantas et. al [62] to achieve a con-

28

1.4. LOGICAL CLASSIFICATION OF EXISTING SDN CONTROL PLANE
ARCHITECTURES

sistent and fault-tolerant SDN controller platform. In their ongoing work, the authors

claim to retain the same requirements expressed by Ravana, namely the transparency, re-

liability, consistency and performance guarantees, but without requiring changes to the

OpenFlow protocol or to existing switches.

Likewise, Kandoo [53] falls in this category of logically centralized controllers that dis-

tribute the control state by propagating network events. Indeed, Kandoo assumes, at

the top layer of its hierarchical design, a logically centralized root controller for handling

global and rare network events. Since the main aim was to preserve scalability without

changing the OpenFlow devices, Kandoo did not focus on knowledge distribution mech-

anisms for achieving network state consistency.

1.4.1.3 ONOS and OpenDayLight

ONOS and OpenDayLight [63] represent another category of logically centralized SDN

solutions that set themselves apart from state-of-the-art distributed SDN controller plat-

forms by offering community-driven open-source frameworks as well as providing the

full functionalities of Network Operating Systems. Despite their obvious similarities, these

prominent Java-based projects present major differences in terms of structure, target cus-

tomers, focus areas and inspirations.

Dissimilar to OpenDayLight [64] which is applicable to different domains, ONOS [36]

from ON.LAB is specifically targeted towards service providers and is thus architected to

meet their carrier-grade requirements in terms of scalability, high-availability and perfor-

mance. In addition to the high-level Northbound abstraction (a global network view and

an application intent framework) and the pluggable Southbound abstraction (supporting

multiple protocols), ONOS, in the same way as Onix and Hyperflow, offers state dissemi-

nation mechanisms [65] to achieve a consistent network state across the distributed clus-

ter of ONOS controllers, a required or highly desirable condition for network applications

to run correctly.

More specifically, ONOS’s distributed core eases the state management and cluster

coordination tasks for application developers by providing them with an available set of

core building blocks for dealing with different types of distributed control plane state,

including a ConsistentMap primitive for state requiring strong consistency and an Even-

tuallyConsistentMap for state tolerating weak consistency.

In particular, applications that favor performance over consistency store their state in

29

1.4. LOGICAL CLASSIFICATION OF EXISTING SDN CONTROL PLANE
ARCHITECTURES

the shared eventually-consistent data structure that uses optimistic replication assisted

by the gossip-based Anti-Entropy protocol [41]. For example, the global network topology

state which should be accessible to applications with minimal delays is managed by the

Network Topology store according to this eventual consistency model. Recent releases

of ONOS treat the network topology view as an in-memory state machine graph. The

latter is built and updated in each SDN controller by applying local topology events and

replicating them to other controller instances in the cluster in an order-aware fashion

based on the events’ logical timestamps. Potential conflicts and loss of updates due to

failure scenarios are resolved by the anti-entropy approach [41] where each controller

periodically compares its topology view with that of another randomly-selected controller

in order to reconcile possible differences and recover from stale information.

On the other hand, state imposing strong consistency guarantees is managed by the

second data structure primitive built using RAFT [66], a protocol that achieves consensus

via an elected leader controller in charge of replicating the received log updates to fol-

lower controllers and then committing these updates upon receipt of confirmation from

the majority. The mapping between controllers and switches which is handled by ONOS’s

Mastership store is an example of a network state that is maintained in a strongly consis-

tent manner.

Administered by the Linux Foundation and backed by the industry, OpenDayLight

(ODL) [64] is a generic and general-purpose controller framework which, unlike ONOS,

was conceived to accommodate a wide variety of applications and use cases concern-

ing different domains (e.g. Data Center, Service Provider and Enterprise). One impor-

tant architectural feature of ODL is its YANG-based Model-Driven Service Abstraction

Layer (MD-SAL) that allows for the easy and flexible incorporation of network services

requested by the higher layers via the Northbound Interface (OSGi framework and the

bidirectional RESTful Interfaces) irrespective of the multiple Southbound protocols used

between the controller and the heterogeneous network devices.

The main focus of ODL was to accelerate the integration of SDN in legacy network

environments by automating the configuration of traditional network devices and en-

abling their communication with OpenFlow devices. As a result, the project was perceived

as adopting vendor-driven solutions that mainly aim at preserving the brands of legacy

hardware. This represents a broad divergence from ONOS which envisions a carrier-

grade SDN platform with enhanced performance capabilities to explore the full potential

30

1.4. LOGICAL CLASSIFICATION OF EXISTING SDN CONTROL PLANE
ARCHITECTURES

of SDN and demonstrate its real value.

The latest releases of ODL provided a distributed SDN controller architecture referred

to as ODL clustering. Differently from ONOS, ODL did not offer various consistency mod-

els for different types of network data. All the data shared across the distributed clus-

ter of ODL controllers for maintaining the logically centralized network view is handled

in a strongly-consistent manner using the RAFT consensus algorithm [66] and the Akka

framework [67].

1.4.1.4 B4 and SWAN

Google’s B4 [56] network leverages the logical centralization enabled by the SDN paradigm

to deploy centralized TE in coexistence with the standard shortest-path routing for the

purpose of increasing the utilization of the inter-data-center links (near 100%) as com-

pared to conventional networks and thereby enhancing network efficiency and perfor-

mance. As previously explained in Section 1.3.2.2, the logically centralized TE server uses

the network information collected by the centralized SDN Gateway to control and coordi-

nate the behavior of site-level SDN controllers based on an abstracted topology view. The

main task of the TE server is indeed to optimize the allocation of bandwidth among com-

peting applications (based on their priority) across the geographically-distributed data-

center sites.

That being said, we implicitly assume the presence of a specific consistency model

used by the centralized SDN Gateway for handling the distributed network state across

the data-center site controllers and ensuring that the centralized TE application runs cor-

rectly based on a consistent network-wide view. However, there has been very little in-

formation provided on the level of consistency adopted by the B4 system. As a matter of

fact, one potential downside of the SDN approach followed by Google could be the fact

that it is too customized and tailored to their specific network requirements as no general

control model has been proposed for future use by other SDN projects.

Similarly, Microsoft has presented SWAN [68] as an intra-domain software-driven WAN

deployment that takes advantage of the logically-centralized SDN control using a global

TE solution to significantly improve the efficiency, reliability and fairness of their inter-

DC WAN. In the same way as Google, Microsoft did not provide much information about

the control plane state consistency updates.

31

1.4. LOGICAL CLASSIFICATION OF EXISTING SDN CONTROL PLANE
ARCHITECTURES

1.4.2 Logically-distributed SDN control

The potential of the SDN paradigm has been properly explored within single adminis-

trative domains like data centers, enterprise networks, campus networks and even WANs

as discussed in Section 1.4.1. Indeed, the main pillars of SDN – the decoupling between

the control and data planes together with the consequent ability to program the network

in a logically centralized manner – have unleashed productive innovation and novel ca-

pabilities in the management of such intra-domain networks. These benefits include the

effective deployment of new domain-specific services as well as the improvement of stan-

dard control functions following the SDN principles like intra-domain routing and TE.

RCP [69] and RouteFlow [70] are practical examples of successful intra-AS platforms that

use OpenFlow to provide conventional IP routing services in a centralized manner.

However, that main feature of logically-centralized control which has been leveraged

by most SDN solutions to improve network management at the intra-domain level, can-

not be fully exploited for controlling heterogeneous networks involving multiple Autonomous

Systems (ASes) under different administrative authorities (e.g. the Internet). In this con-

text, recent works have considered extending the SDN scheme to such inter-domain net-

works while remaining compatible with their distributed architecture. In this section, we

shed light on these SDN solutions which adopted a logically distributed architecture in

accordance with legacy networks. For that reason, we place them in the category of logi-

cally distributed SDN platforms as opposed to the logically centralized ones mainly used

for intra-domain scenarios.

1.4.2.1 DISCO and D-SDN

For instance, the DISCO project [37] suggests a logically distributed control plane archi-

tecture that operates in such multi-domain heterogeneous environments, more precisely

WANs and overlay networks. Built on top of Floodlight [31], each DISCO controller admin-

isters its own SDN network domain and interacts with other controllers to provide end-

to-end network services. This inter-AS communication is ensured by a unique lightweight

control channel to share summary network-wide information.

The most obvious contribution of DISCO lies in the separation between intra-domain

and inter-domain features of the control plane, while each type of features is performed

by a separate part of the DISCO architecture. The intra-domain modules are responsible

for ensuring the main functions of the controller such as monitoring the network and re-

32

1.4. LOGICAL CLASSIFICATION OF EXISTING SDN CONTROL PLANE
ARCHITECTURES

acting to network issues, and the inter-domain modules (Messenger, Agents) are designed

to enable a message-oriented communication between neighbor domain controllers. In-

deed, the AMQP-based Messenger [71] offers a distributed publish/subscribe commu-

nication channel used by agents which operate at the inter-domain level by exchanging

aggregated information with intra-domain modules. DISCO was assessed on an emulated

environment according to three use cases: inter-domain topology disruption, end-to end

service priority request and Virtual Machine Migration.

The main advantage of the DISCO solution is the possibility to adapt it to large-scale

networks with different ASes such as the Internet [60]. However, we believe that there are

also several drawbacks associated with such a solution including the static non-evolving

decomposition of the network into several independent entities, which is in contrast to

emerging theories such as David D. Clark’s theory [72] about the network being manage-

able by an additional high-level entity known as the Knowledge Plane. Besides, following

the DISCO architecture, network performance optimization becomes a local task dedi-

cated to local entities with different policies, each of which acts in its own best interest

at the expense of the general interest. This leads to local optima rather than the global

optimum that achieves the global network performance. Additionally, from the DISCO

perspective, one SDN controller is responsible for one independent domain. However,

an AS is usually too large to be handled by a single controller. Finally, DISCO did not

provide appropriate reliability strategies suited to its geographically-distributed architec-

ture. In fact, in the event of a controller failure, one might infer that a remote controller

instance will be in charge of the subset of affected switches, thereby resulting in a sig-

nificant increase in the control plane latency. In our opinion, a better reliability strategy

would involve local per-domain redundancy; Local controller replicas should indeed take

over and serve as backups in case the local primary controller fails.

In the same spirit, INRIA’s D-SDN [73] enables a logical distribution of the SDN control

plane based on a hierarchy of Main Controllers and Secondary Controllers, matching the

organizational and administrative structure of current and future Internet. In addition

to dealing with levels of control hierarchy, another advantage of D-SDN over DISCO is

related to its enhanced security and fault tolerance features.

33

1.4. LOGICAL CLASSIFICATION OF EXISTING SDN CONTROL PLANE
ARCHITECTURES

1.4.2.2 SDX-based controllers

Different from DISCO which proposes per-domain SDN controllers with inter-domain

functions for allowing autonomous end-to-end flow management across SDN domains,

recent trends have considered deploying SDN at Internet eXchange Points (IXPs) thus,

giving rise to the concept of Software-Defined eXchanges (SDXes). These SDXes are used

to interconnect participants of different domains via a shared software-based platform.

That platform is usually aimed at bringing innovation to traditional peering, easing the

implementation of customized peering policies and enhancing the control over inter-

domain traffic management.

Prominent projects adopting that vision of software-defined IXPs and implementing

it in real production networks include Google’s Cardigan in New Zealand [74], SDX at

Princeton [75], CNRS’s French TouIX [76] (European ENDEAVOUR [77]) and the AtlanticWave-

SDX [78]. Here we chose to focus on the SDX project at Princeton since we believe in its

potential for demonstrating the capabilities of SDN to innovate IXPs and for bringing an-

swers to deploying SDX in practice.

The SDX project [75] takes advantage of SDN-enabled IXPs to fundamentally improve

wide-area traffic delivery and enhance conventional inter-domain routing protocols that

lack the required flexibility for achieving various TE tasks. Today’s BGP is indeed lim-

ited to destination-based routing, it has a local forwarding influence restricted to imme-

diate neighbors, and it deploys indirect mechanisms for controlling path selection. To

overcome these limitations, SDX relies on SDN features to ensure fine-grained, flexible

and direct expression of inter-domain control policies, thereby enabling a wider range

of valuable end-to-end services such as Inbound TE, application-specific peering, server

load balancing, and traffic redirection through middle-boxes.

The SDX architecture consists of a smart SDX controller handling both SDX policies

(Policy compiler) and BGP routes (Route Server), conventional Edge routers, and an OpenFlow-

enabled switching fabric. The main idea behind this implementation is to allow partici-

pant ASes to compose their own policies in a high-level (using Pyretic) and independent

manner (through the virtual switch abstraction), and then send them to the SDX con-

troller. The latter is in charge of compiling these policies to SDN forwarding rules while

taking into account BGP information.

Besides offering this high-level softwarized framework that is easily integrated into the

existing infrastructure while maintaining good interoperability with its routing protocol,

34

1.4. LOGICAL CLASSIFICATION OF EXISTING SDN CONTROL PLANE
ARCHITECTURES

SDX also stands out from similar solutions like Cardigan [74] by the efficient mechanisms

used for optimizing control and data plane operations. In particular, the scalability chal-

lenges faced by SDX under realistic scenarios have been further investigated by iSDX [79],

an enhanced Ryu [50]-based version of SDX intended to operate at the scale of large in-

dustrial IXPs.

However, one major drawback of the SDX contribution is that it is limited to the par-

ticipant ASes being connected via the software-based IXP, implying that non-peering ASes

would not benefit from the routing opportunities offered by SDX. Besides, while solutions

built on SDX use central TE policies for augmenting BGP and promote a logical central-

ization of the routing control plane at the IXP level, SDX controllers are still logically de-

centralized at the inter-domain level since no information is shared between them about

their respective interconnected ASes. This brings us back to the same problem we pointed

out for DISCO [37] about end-to-end traffic optimization being a local task for each part

of the network.

To remedy this issue, some recent works [80] have considered centralizing the whole

inter-domain routing control plane to improve BGP convergence by outsourcing the con-

trol logic to a multi-AS routing controller that has a "Bird’s-eye view" over multiple ASes.

It is also worth mentioning that SDX-based controllers face several limitations in terms

of both security and reliability.

Because the SDX controller is the central element in the SDX architecture, security

strategies must focus on securing the SDX infrastructure by protecting the SDX controller

against cyber attacks and by authenticating any access to it. In particular, Chung et al. [81]

argue that SDX-based controllers are subjected to the potential vulnerabilities introduced

by SDN in addition to the common vulnerabilities associated with classical protocols. In

that respect, they distinguish three types of current SDX architectures and discuss the

involved security concerns. In their opinion, Layer-3 SDX [74; 75] will inherit all BGP vul-

nerabilities, Layer-2 SDX [82] will get the vulnerabilities of a shared Ethernet network, and

SDN SDX [17] will also bring controller vulnerabilities like DDoS attacks, comprised con-

trollers and malicious controller applications. Moreover, the same authors of [81] point

out that SDX-based controllers require security considerations with respect to Policy iso-

lation between different SDX participants.

Finally, since the SDX controller becomes a potential single point of failure, fault-

tolerance and resiliency measures should be taken into account when building an SDX ar-

35

1.5. CONCLUSION

chitecture. While the distributed peer-to-peer SDN SDX architecture [83] is inherently re-

silient, centralized SDX approaches should incorporate fault-tolerance mechanisms like

that discussed in Section 2.3 and should also leverage the existing fault-tolerant distributed

SDN controller platforms [36].

1.5 Conclusion

In this chapter, we provide a detailed analysis of state-of-the-art distributed SDN con-

troller platforms: Thereby, we assess their architecture components and design patterns,

and we classify them in novel ways (physical and logical classifications) in order to pro-

vide useful guidelines for SDN research and deployment initiatives.

Additionally, our thorough analysis of these SDN platform proposals allowed us to

achieve an extensive understanding of their advantages and drawbacks and, most impor-

tantly, to develop a critical awareness of the challenges facing the distributed control in

SDNs. These open challenges are further discussed in the next chapter (Chapter 2).

36

Chapter 2

Decentralized SDN control: Major open
challenges

« The road to SDN »

Nick Feamster

Contents
2.1 Introduction . 38

2.2 Scalability . 40

2.2.1 Data plane extensions . 41

2.2.2 Control plane distribution . 42

2.3 Reliability . 43

2.3.1 Control state redundancy . 44

2.3.2 Controller failover . 45

2.4 Controller state consistency . 46

2.4.1 Static consistency . 46

2.4.2 Adaptive multi-level consistency . 48

2.5 Interoperability . 49

2.5.1 Interoperability between the SDN controllers 49

2.5.2 SDN Interoperability with legacy networks 49

2.6 Other challenges . 50

2.7 Conclusion . 51

37

2.1. INTRODUCTION

2.1 Introduction

While offering a promising potential to transform and improve current networks, the SDN

initiative is still in the early stages of addressing the wide variety of challenges involving

different disciplines. In particular, the distributed control of SDNs faces a series of press-

ing challenges that require our special consideration.

This chapter provides a thorough discussion of the major challenges of distributed

SDN control along with some insights into emerging and future trends in that area. These

challenges include the issues of Scalability (Section 2.2), Reliability (Section 2.3), State

Consistency (Section 2.4), Interoperability (Section 2.5), Monitoring and Security (Section

2.6).

In the previous chapters, we surveyed the most prominent state-of-the art distributed

SDN controller platforms and more importantly we discussed the different approaches

adopted in tackling the above challenges and proposing potential solutions. Table 2.1

gives a brief summary of the main features and KPIs of the discussed SDN controllers.

Physically-centralized controllers such as NOX [29], POX [34] and FloodLight [31] suffer

from scalability and reliability issues. Solutions like DevoFlow [54] and DIFANE [55] at-

tempted to solve these scalability issues by rethinking the OpenFlow protocol whereas

most SDN groups geared their focus towards distributing the control plane. While some

of the distributed SDN proposals such as Kandoo [53] promoted a hierarchical organi-

zation of the control plane to further improve scalability, other alternatives opted for a

flat organization for increased reliability and performance (latency). On the other hand,

distributed platforms like Onix [38], HyperFlow [38], ONOS [36] and OpenDaylight [64],

focused on building consistency models for their logically centralized control plane de-

signs. In particular, Onix [38] chose DHT and transactional databases for network state

distribution over the Publish/Subscribe system used by HyperFlow [39]. Another differ-

ent class of solutions has been recently introduced by DISCO which promoted a logically

distributed control plane based on existing ASs within the Internet.

In previous chapters, we classified these existing controllers according to the physical

organization of the control plane (Physical classification) and, alternatively, according to

the way knowledge is shared in distributed control plane designs (Logical classification).

Furthermore, within each of these classifications, we performed another internal classifi-

cation based on the similarities between competing SDN controllers (The color classifica-

38

2.1. INTRODUCTION

Control Plane
Architecture

Control Plane
Design

Programming
language

Scalability Reliability Consistency

NOX [29] Physically Centralized – C++
Very
Limited

Limited Strong

POX [34] Physically Centralized – Python Very
Limited

Limited Strong

Floodlight [31] Physically Centralized – Java
Very
Limited

Limited Strong

SMaRtLight [48] Physically Centralized – Java
Very
Limited

Very
Good

Strong

Ravana [44] Physically Centralized – Python Limited
Very
Good

Strong

ONIX [38]
Physically Distributed
Logically Centralized Flat

Python
C

Very
Good

Good
Weak
Strong

HyperFlow [39]
Physically Distributed
Logically Centralized Flat C++ Good Good Eventual

ONOS [36]
Physically Distributed
Logically Centralized Flat Java

Very
Good

Good
Weak
Strong

OpenDayLight [64]
Physically Distributed
Logically Centralized Flat Java

Very
Good

Good Strong

B4 [56]
Physically Distributed
Logically Centralized Hierarchical

Python
C

Good Good N/A

Kandoo [53]
Physically Distributed
Logically Centralized Hierarchical

C
C++
Python

Very
Good

Limited N/A

DISCO [37]
Physically Distributed
Logically Distributed Flat Java Good Limited

Strong
(inter-domain)

SDX [75]
Physically Distributed
Logically Distributed Flat Python Limited N/A Strong

DevoFlow [54]
Physically Distributed
Logically Centralized N/A Java Good N/A N/A

DIFANE [55]
Physically Distributed
Logically Centralized N/A – Good N/A N/A

Table 2.1: Main characteristics of the discussed SDN controllers

tion shown in Figure 1.3 and Figure 1.4).

In light of the above, it is obvious that there are various approaches to building a dis-

tributed SDN architecture; Some of these approaches met some performance criteria bet-

ter than others but failed in some other aspects. Clearly, none of the proposed SDN con-

troller platforms met all the discussed challenges and fulfilled all the KPIs required for

an optimal deployment of SDN. At this stage, and building on these previous efforts, we

communicate our vision of a distributed SDN control model by going through some of

the major open challenges (see Figure 2.1), identifying the best ways of solving them, and

envisioning future opportunities.

39

2.2. SCALABILITY

Figure 2.1: The main challenges of distributed SDN control

2.2 Scalability

Scalability concerns in SDN may stem from the decoupling between the control and data

planes [84] and the centralization of the control logic in a software-based controller. In

fact, as the network grows in size (e.g. switches, hosts, etc.), the centralized SDN controller

becomes highly solicited (in terms of events/requests) and thus overloaded (in terms of

bandwidth, processing power and memory). Furthermore, when the network scales up

in terms of both size and diameter, communication delays between the SDN controller

and the network switches may become high, thus affecting flow-setup latencies. This

may also cause congestion in both the control and data planes and may generate longer

failover times [28].

That said, since control plane scalability in SDN is commonly assessed in terms of

both throughput (the number of flow requests handled per second) and flow setup la-

tency (the delay to respond flow requests) metrics [28], a single physically-centralized

SDN controller may not particularly fulfill the performance requirements (with respect

to these metrics) of large-scale networks as compared to small or medium scale networks

(see Section 1.3.1).

40

2.2. SCALABILITY

2.2.1 Data plane extensions

One way to alleviate some of these scalability concerns is to extend the responsibilities of

the data plane in order to relieve the load on the SDN controller [85]. The main drawback

of that method is that it imposes some modifications to the design of OpenFlow switches.

Indeed, despite the advantages linked to the flexibility and innovation brought to net-

work management, OpenFlow [14] suffers from scalability and performance issues that

stem mainly from pushing all network intelligence and control logic to the centralized

OpenFlow controller, thus restricting the task of OpenFlow switches to a dumb execution

of forwarding actions.

To circumvent these limitations, several approaches [54; 55; 86; 87] suggest revisiting

the delegation of control between the controller and switches and introducing new SDN

switch Southbound interfaces.

Notably, DevoFlow [54] claims to minimize switch-to-controller interactions by intro-

ducing new control mechanisms inside switches. That way, switches can make local con-

trol decisions when handling frequent events, without involving controllers whose pri-

mary tasks will be limited to keeping centralized control over far fewer significant events

that require network-wide visibility. Despite introducing innovative ideas, the DevoFlow

alternative has been mainly criticized for imposing major modifications to switch designs

[53].

On the other hand, stateful approaches [86; 88–90], as opposed to the original state-

less OpenFlow abstraction, motivate the need to delegate some stateful control functions

back to switches in order to offload the SDN controller. These approaches face the chal-

lenging dilemma of programming stateful devices (evolving the data plane) while retain-

ing the simplicity, generality and vendor-agnostic features offered by the OpenFlow ab-

straction. In particular, the OpenState proposal [86] is a stateful platform-independent

data plane extension of the current OpenFlow match/action abstraction supporting a

finite-state machine (FSM) programming model called Mealy Machine in addition to the

flow programming model adopted by OpenFlow. That model is implemented inside the

OpenFlow switches using additional state tables in order to reduce the reliance on remote

controllers for applications involving local states like MAC learning operations and port-

knocking on a firewall.

Despite having the advantage of building on the adaptation activity of the OpenFlow

standard and leveraging its evolution using the (stateful) extensions provided by recent

41

2.2. SCALABILITY

versions (version 1.3 and 1.4), OpenState faces important challenges regarding the im-

plementation of a stateful extension for programming the forwarding behaviour inside

switches while following an OpenFlow-like implementation approach. The feasibility of

the hardware implementation of OpenState has been addressed in [91]. Finally, the same

authors extended their work into a more general and expressive abstraction of Open-

State called OPP [92] which supports a full extended finite-state machine (XFSM) model,

thereby enabling a broader range of applications and complex stateful flow processing

operations.

In the same spirit, the approach presented in [93] explored delegating some parts of

the controller functions involving packet generation tasks to OpenFlow switches in order

to address both switch and controller scalability issues. The InSP API was introduced as a

generic API that extends OpenFlow to allow for the programming of autonomous packet

generation operations inside the switches such as ARP and ICMP handling. The proposed

OpenFlow-like abstractions include an InSP Instruction for specifying the actions that the

switch should apply to a packet being generated after a triggering event and a Packet Tem-

plate Table (PTE) for storing the content of any packet generated by the switch.

According to [93], the InSP function, like any particular offloading function, faces the

challenging issue of finding the relevant positioning with respect to the broad design

space for delegation of control to SDN switches. In their opinion, a good approach to

conceiving (eventually standardizing) a particular offloading function should involve a

programming abstraction that achieves a fair compromise between viability and flexibil-

ity, far from extreme solutions that simply turn on well-known legacy protocol functions

(e.g. MAC learning) or push a piece of code inside the switches [94; 95].

The authors of FOCUS [96] express the same challenges but, unlike the above propos-

als, they reject a performance-based design choice that requires adding new hardware

primitives to OpenFlow switches in the development of the delegated control function.

Instead, they promote a deployable software-based solution to be implemented in the

switch’s software stack to achieve a balanced trade-off between the flexibility and cost of

the control function delegation process.

2.2.2 Control plane distribution

The second alternative, which we believe to be more effective, is to model the control

plane in a way that mitigates scalability limitations [85]. In a physically-centralized con-

42

2.3. RELIABILITY

trol model, a single SDN controller is in charge of handling all requests coming from SDN

switches. As the network grows, the latter is likely to become a serious bottleneck in terms

of scalability and performance [97]. On the other hand, a physically-distributed control

model uses multiple controllers that maintain a logically centralized network view. This

solution is appreciated for handling the controller bottleneck, hence ensuring a better

scale of the network control plane while decreasing control-plane latencies.

Even though the distributed control model is considered as a scalable option when

compared to the centralized control model, achieving network scalability while preserv-

ing good performance requires a relevant control distribution scheme that takes into ac-

count both the organization of the SDN control plane and the physical placement of the

SDN controllers. In this context, we recommend a hierarchical organization of the con-

trol plane over a flat organization for increased scalability and improved performance. We

also believe that the placement of controllers should be further investigated and treated

as an optimization problem that depends on specific performance metrics [25].

Finally, by physically distributing the SDN control plane for scalability (and reliability

2.3) purposes, it is worth mentioning that new kinds of challenges may arise. In particu-

lar, to maintain the logically centralized view, a strongly-consistent model can be used to

meet certain application requirements. However, as discussed in Section 2.4, a strongly

consistent model may introduce new scalability issues. In fact, retaining strong consis-

tency when propagating frequent state updates might block the state progress and cause

the network to become unavailable, thus increasing switch-to-controller latencies.

2.3 Reliability

Concerns about reliability have been considered as serious in SDN [98]. The data-to-

control plane decoupling has indeed a significant impact on the reliability of the SDN

control plane. In a centralized SDN-based network, the failure of the central controller

may collapse the overall network. In contrast, the use of multiple controllers in a physi-

cally distributed (but logically centralized) controller architecture alleviates the issue of a

single point of failure.

Despite not providing information on how a distributed SDN controller architecture

should be implemented, the OpenFlow standard gives (since version 1.2) the ability for a

switch to simultaneously connect to multiple controllers. That OpenFlow option allows

each controller to operate in one of three roles (master, slave, equal) with respect to an

43

2.3. RELIABILITY

active connection to the switch. Leveraging on these OpenFlow roles which refer to the

importance of controller replication in achieving a highly available SDN control plane,

various resiliency strategies have been adopted by different fault-tolerant controller ar-

chitectures. Among the main challenges faced by these architectures are control state

redundancy and controller failover.

2.3.1 Control state redundancy

Controller redundancy can be achieved by adopting different approaches for processing

network updates. In the Active replication approach [47], also known as State Machine

Replication, multiple controllers process the commands issued by the connected clients

in a coordinated and deterministic way in order to concurrently update the replicated net-

work state. The main challenge of that method lies in enforcing a strict ordering of events

to guarantee strong consistency among controller replicas. That approach for replication

has the advantage of offering high resilience with an insignificant downtime, making it a

suitable option for delay-intolerant scenarios. On the other hand, in passive replication,

referred to as primary/backup replication, one controller (the primary) processes the re-

quests, updates the replicated state, and periodically informs the other controller replicas

(the backups) about state changes. Despite offering simplicity and lower overhead, the

passive replication scheme may create (controller and switch) state inconsistencies and

generate additional delay in case the primary controller fails.

Additional concerns that should be explored are related to the kind of information to

be replicated across controllers. Existing controller platform solutions follow three ap-

proaches for achieving controller state redundancy [99]: state replication [38; 48], event

replication [39; 44] and traffic replication [100].

Moreover, control distribution is a central challenge when designing a fault tolerant

controller platform. The centralized control approach that follows the simple Master/Slave

concept [44; 48] relies on a single controller (the master) that keeps the entire network

state and takes all decisions based on a global network view. Backup controllers (the

slaves) are used for fault-tolerance purposes. The centralized alternative is usually con-

sidered in small to medium-sized networks. On the other hand, in the distributed control

approach [36; 38], the network state is partitioned across many controllers that simulta-

neously take control of the network while exchanging information to maintain the logi-

cally centralized network view. In that model, controller coordination strategies should be

44

2.3. RELIABILITY

applied to reach agreements and solve the issues of concurrent updates and state consis-

tency. Mostly effective in large-scale networks, the distributed alternative provides fault

tolerance by redistributing the network load among the remaining active controllers.

Finally, the implementation aspect is another important challenge in designing a repli-

cation strategy [47]. While some approaches opted for replicating controllers that store

their network state locally and communicate through a specific group coordination frame-

work [101], other approaches went for replicating the network state by delegating state

storage, replication and management to external data stores [36; 38; 39] like distributed

data structures and distributed file systems.

2.3.2 Controller failover

Apart from controller redundancy, other works focused on failure detection and controller

recovery mechanisms. Some of these works considered reliability criteria from the out-

set in the placement of distributed SDN controllers. Both the number and locations of

controllers were determined in a reliability-aware manner while preserving good perfor-

mance. Reliability was indeed introduced in the form of controller placement metrics

(switch-to-controller delay, controller load) to prevent worst-case switch-to-controller re-

assignment scenarios in the event of failures. Other works elaborated on efficient con-

troller failover strategies that consider the same reliability criteria. Strategies for recover-

ing from controller failures can be split into redundant controller strategies (with back-

ups) and non-redundant controller strategies (without backups) [102].

The redundant controller strategy assumes more than one controller per controller

domain; One primary controller actively controls the network domain and the remaining

controllers (backups) automatically take over the domain in case it fails. Despite provid-

ing a fast failover technique, this strategy depends on the associated standby methods

(cold, warm or hot) which have different advantages and drawbacks [103]. For instance,

the cold standby method imposes a full initialization process on the standby controller

given the complete loss of the state upon the primary controller failure. This makes it

an adequate alternative for stateless applications. In contrast, the hot standby method

is effective in ensuring a minimum recovery time with no controller state loss, but it im-

poses a high communication overhead due to the full state synchronization requirements

between primary and standby controllers. The warm standby method reduces that com-

munication overhead at the cost of a partial state loss.

45

2.4. CONTROLLER STATE CONSISTENCY

On the other hand, the non-redundant controller strategy requires only one controller

per controller domain. In case it fails, controllers from other domains extend their do-

mains to adopt orphan switches, thereby reducing the network overhead. Two well-known

strategies for non-redundant controllers are the greedy failover and the pre-partitioning

failover [104]. While the former strategy relies on neighbor controllers to adopt orphan

switches at the edge of their domains and from which they can receive messages, the lat-

ter relies on controllers to proactively exchange information about the list of switches to

take over in controller failure scenarios.

All things considered, a number of challenges and key design choices based on a set

of requirements are involved when adopting a specific controller replication and failover

strategy. In addition to reliability and fault-tolerance considerations, scalability, consis-

tency and performance requirements should be properly taken into account when de-

signing a fault-tolerant SDN controller architecture.

2.4 Controller state consistency

Contrary to physically centralized SDN designs, distributed SDN controller platforms face

major consistency challenges [105–107]. Clearly, physically distributed SDN controllers

must exchange network information and handle the consistency of the network state be-

ing distributed across them and stored in their shared data structures in order to maintain

a logically centralized network-wide view that eases the development of control appli-

cations. However, achieving a convenient level of consistency while keeping good per-

formance in software-defined networks facing network partitions is a complex task. As

claimed by the CAP theorem applied to networks [108], it is generally impossible for SDN

networks to simultaneously achieve all three of Consistency (C), high Availability (A) and

Partition tolerance (P). In the presence of network partitions, a weak level of consistency

in exchange for high availability (AP) results in state staleness causing an incorrect behav-

ior of applications whereas a strong level of consistency serving the correct enforcement

of network policies (CP) comes at the cost of network availability.

2.4.1 Static consistency

The Strong Consistency model used in distributed file systems implies that only one con-

sistent state is observed by ensuring that any read operation on a data item returns the

value of the latest write operation that occurred on that data item. However, such con-

46

2.4. CONTROLLER STATE CONSISTENCY

sistency guarantees are achieved at the penalty of increased data store access latencies.

In SDNs, the strong consistency model guarantees that all controller replicas in the clus-

ter have the most updated network information, albeit at the cost of increased synchro-

nization and communication overhead. In fact, if certain data occurring in different con-

trollers are not updated to all of them, then these data are not allowed to be read, thereby

impacting network availability and scalability.

Strong consistency is crucial for implementing a wide range of SDN applications that re-

quire the latest network information and that are intolerant of network state inconsisten-

cies. Among the distributed data store designs that provide strong consistency properties

are the traditional SQL-based relational databases like Oracle [109] and MySQL [110].

On the other hand, as opposed to the strong consistency model, the Eventual Consis-

tency model (sometimes referred to as a Weak Consistency model) implies that concurrent

reads of a data item may return values that are different from the actual updated value for

a transient time period. This model takes a more relaxed approach to consistency by as-

suming that the system will eventually (after some period) become consistent in order

to gain in network availability. Accordingly, in a distributed SDN scenario, reads of some

data occurring in different SDN controller replicas may return different values for some

time before eventually converging to the same global state. As a result, SDN controllers

may temporarily have an inconsistent network view and thus cause an incorrect applica-

tion behavior.

Eventually-consistent models have also been extensively used by SDN designers for de-

veloping inconsistency-tolerant applications that require high scalability and availability.

These control models provide simplicity and efficiency of implementation but they push

the complexity of resolving state inconsistencies and conflicts to the application logic

and the consensus algorithms being put in place by the controller platform. Cassandra

[111], Riak [112] and Dynamo [113] are popular examples of NoSQL databases that have

adopted the eventual consistency model.

All things considered, maintaining state consistency across logically centralized SDN

controllers is a significant SDN design challenge that involves trade-offs between policy

enforcement and network performance [114]. The issue is that achieving strong consis-

tency in an SDN environment that is prone to network failures is almost impossible with-

out compromising availability and without adding complexity to network state manage-

ment. Panda et. al [108] proposed new ways to circumvent these impossibility results but

47

2.4. CONTROLLER STATE CONSISTENCY

their approaches can be regarded as specific to particular cases.

2.4.2 Adaptive multi-level consistency

In a more general context, SDN designers need to leverage the flexibility offered by SDN

to select the appropriate consistency models for developing applications with various de-

grees of state consistency requirements and with different policies. In particular, adopt-

ing a single consistency model for handling different types of shared states may not be

the best approach to coping with such a heterogeneous SDN environment. As a matter

of fact, recent works on SDN have stressed the need for achieving consistency at different

levels. So far, two levels of consistency models have been applied to SDNs and adopted by

most distributed SDN controller platforms: strong consistency and eventual consistency.

In our opinion, a hybrid approach that merges various consistency levels should be

considered to find the optimal trade-off between consistency and performance. Unlike

the previously-mentioned approaches which are based on static consistency requirements

where SDN designers decide which consistency level should be applied for each knowl-

edge upon application development, we argue that an SDN application should be able

to assign a priority for each knowledge and, depending on the network context (.i.e. in-

stantaneous constraints, network load, etc), select the appropriate consistency level that

should be enforced.

In that sense, recent approaches [107; 115] introduced the concept of adaptive con-

sistency in the context of distributed SDN controllers, where adaptively-consistent con-

trollers can tune their consistency level to reach the desired level of performance based

on specific metrics. That alternative has the advantage of sparing application developers

the tedious task of selecting the appropriate consistency level and implementing multiple

application-specific consistency models. Furthermore, that approach can be efficient in

handling the issues associated with eventual consistency models [116].

Finally, in the same way as scalability and reliability, we believe that consistency should

be considered when investigating the optimal placement of controllers. In fact, minimiz-

ing inter-controller latencies (distances) which are critical for system performance facili-

tates controller communications and enhances network state consistency.

48

2.5. INTEROPERABILITY

2.5 Interoperability

2.5.1 Interoperability between the SDN controllers

To foster the development and full adoption of SDN, we must overcome the common

challenge of ensuring service interoperability between disparate distributed SDN con-

trollers belonging to different SDN domains and using different controller technologies.

In today’s multi-vendor environments, the limited interoperability between SDN con-

troller platforms is mainly due to a lack of open standards for inter-controller communi-

cations. Apart from the standardization of the Southbound interface— OpenFlow being

the most popular Southbound standard, there is to date no open standard for the North-

bound and East-Westbound interfaces to provide compatibility between OpenFlow im-

plementations.

Despite the emerging standardization efforts underway by SDN organizations, we ar-

gue that there are many barriers to effective and rapid standardization of the SDN East-

Westbound interfaces, including the heterogeneity of the data models being used by SDN

controller vendors. Accordingly, we emphasize the need for common data models to

achieve interoperability and facilitate the tasks of standardization in SDNs. In this con-

text, YANG [117] has emerged as a solid data modeling language used to model config-

uration and state data for standard representation. This NETCONF-based contribution

from IETF is intended to be extended in the future and it is, more importantly, expected

to pave the way for the emergence of standard data models driving interoperability in

SDN networks.

Among the recent initiatives taken in that direction, we can mention OpenConfig’s

[118] effort on building a vendor-neutral data model written in YANG for configuration

and management operations. Also worth mentioning is ONF’s OF-Config protocol [119]

which implements a YANG-based data model referred to as the Core Data Model. That

protocol was introduced to enable remote configuration of OpenFlow-capable equip-

ments.

2.5.2 SDN Interoperability with legacy networks

Alongside the concerns about the interoperability between the diverse SDN controller im-

plementations, we highlight another important SDN challenge that is often overlooked,

namely the challenge of reaching interoperability with legacy non-SDN technologies. While

49

2.6. OTHER CHALLENGES

the deployment of SDN is fairly straightforward for new networks incorporating new SDN-

ready devices, the transition from a legacy networking environment to SDN requires a

period of co-existence between SDN and legacy technologies.

In such heterogeneous network architectures operating a mix of SDN and traditional

devices, it is extremely important to implement specific protocol mechanisms that sup-

port SDN control plane communications while providing efficient compatibility with ex-

isting IP control plane technologies. One potential solution is to adopt an incremental

deployment strategy [120; 121] according to which a few SDN-enabled devices are de-

ployed in a traditional network among the legacy devices, incrementally replacing them,

and forming the so-called hybrid SDN network. In such a network, both SDN and legacy

nodes should operate in parallel and may communicate together in order to ensure an

effective gradual transition to SDN while reducing the associated operational costs and

minimizing the disruption of network services.

2.6 Other challenges

An efficient network monitoring is required for the development of control and manage-

ment applications in distributed SDN-based networks. However, collecting the appropri-

ate data and statistics without impacting the network performance is a challenging task.

In fact, the continuous monitoring of network data and statistics may generate exces-

sive overheads and thus affect the network performance whereas the lack of monitoring

may cause an incorrect behavior of management applications. Current network moni-

toring proposals have developed different techniques to find the appropriate trade-offs

between data accuracy and monitoring overhead. In particular, IETF’s NETCONF South-

bound protocol provides some effective monitoring mechanisms for collecting statistics

and configuring network devices. In the near future, we expect the OpenFlow specifica-

tion to be extended to incorporate new monitoring tools and functions.

Like network monitoring, network security is another crucial challenge that should

be studied. The decentralization of the SDN control reduces the risk associated with a

single point of failure and attacks (e.g. the risk of a DDoS attack). However, the integrity

of data flows between the SDN controllers and switches is still not safe. For instance, we

can imagine that an attacker can corrupt the network by acting as an SDN controller. In

this context, new solutions and strategies (e.g. based on TLS/SSL) have been introduced

with the aim of guaranteeing security in SDN environments.

50

2.7. CONCLUSION

Another aspect related to SDN security is the isolation of flows and networks through

network virtualization. In the case of an underlying physical SDN network, this could be

implemented using an SDN network hypervisor that creates multiple logically-isolated

virtual network slices (called vSDNs), each is managed by its own vSDN controller [122].

At this point, care should be taken to design and secure the SDN hypervisor as an essential

part of the SDN network.

2.7 Conclusion

While the need for a distributed SDN architecture has been ultimately recognized by the

SDN community [7; 123], the best approach to designing and implementing an efficient

(e.g scalable and reliable) distributed SDN control plane is highly debatable given the

many challenges brought by such distributed systems as discussed above.

The scalability, reliability, consistency, and interoperability of the SDN control plane

are among the key challenges faced in designing an efficient and robust high-performance

distributed SDN controller platform. Although regarded as the main limitations of fully

centralized SDN control designs, scalability and reliability are also major concerns when

designing a distributed SDN architecture. They are indeed highly impacted by the struc-

ture of the distributed SDN control plane (e.g. flat, hierarchical or hybrid organization)

as well as the number and placement of the multiple controllers within the SDN net-

work. Achieving such performance and availability requirements usually comes at the

cost of guaranteeing a consistent centralized network view that is required for the design

and correct behavior of SDN applications. Consistency considerations should therefore

be explored among the trade-offs involved in the design process of an SDN controller

platform. Last but not least, the interoperability between different SDN controller plat-

forms of multiple vendors is another crucial operational challenge surrounding the de-

velopment, maturity and commercial adoption of SDN. Overcoming that challenge calls

for major standardization efforts at various levels of inter-controller communications (e.g

Data models, Northbound and East-Westbound interfaces). Furthermore, such interop-

erability guarantees with respect to different SDN technology solutions represent an im-

portant step towards easing the widespread interoperability of these SDN platforms with

legacy networks and, effectively ensuring the gradual transition towards softwarized net-

work environments.

In the next chapters, we propose to tackle the distributed SDN control problem by

51

2.7. CONCLUSION

focusing on two major manageable challenges which, albeit correlated, could be treated

as separate research problems: the controller placement problem (1) and the knowledge

dissemination problem (2):

The first problem investigates the required number of SDN controllers along with their

appropriate locations with respect to the desired objectives (see chapter 3). The second

problem addresses the type and amount of network information to be shared across the

SDN controller instances given a desired level of application state consistency and per-

formance (see chapters 4 and 5).

52

Chapter 3

Scalability and reliability aware SDN
controller placement strategies

« The network is in my way »

James Hamilton, Amazon

Contents
3.1 Introduction . 54

3.2 Related work . 54

3.3 The SDN controller placement optimization problem 57

3.3.1 Problem statement . 57

3.3.2 Problem formulation . 57

3.3.3 Placement metrics . 58

3.3.3.1 Performance criteria . 58

3.3.3.2 Reliability criteria . 61

3.4 The proposed SDN controller placement scheme 62

3.4.1 The adopted approach . 62

3.4.2 Multi-criteria placement algorithms 63

3.4.3 Gradual strategies . 64

3.5 Performance evaluation . 66

3.5.1 Simulation settings . 66

3.5.2 Simulation results . 67

3.6 Discussion . 73

3.7 Conclusion . 75

53

3.1. INTRODUCTION

3.1 Introduction

In this chapter, we put forward novel strategies that tackle several aspects of the controller

placement problem with respect to multiple reliability and performance criteria based on

different uses and contexts [124].

Our contribution to solving the controller placement problem is indeed intended for

expanding IoT-like networks that face important scalability challenges in addition to re-

liability issues. The proposed SDN controller placement scheme uses heuristics with

low computation time in order to deal with such large-scale and dynamic network en-

vironments where fast reevaluations of controller placement configurations are required

to adapt in real-time to frequently-changing network conditions. The potential of such

heuristics in the context of the SDN controller placement is explored by comparing two

different types of heuristic-based algorithms according to various context-based strate-

gies.

The rest of this chapter is organized as follows: In Section 3.2, we give an overview of

state-of-the-art contributions that addressed the controller placement problem. Then, in

Section 3.3, we review the controller placement optimization problem and investigate the

involved reliability and performance metrics. In Section 3.4, we put forward our versatile

approach to tackling this problem. In Section 3.5, we display the obtained results. Finally,

Section 3.6 critically analyzes and discusses these results before elaborating on the future

perspectives.

3.2 Related work

There has been lately a growing interest in designing the distributed SDN control plane.

Heller et al. [125] have first motivated the SDN Controller Placement Problem (CPP)

and discussed the challenges of control plane reliability, scalability and performance.

The authors provided useful guidance about how many and where SDN controllers

should be placed in order to achieve high performance in an SDN network. They argued

that the optimal number of required SDN controllers must be planned carefully for each

network topology based on the concept of diminishing returns. They also claimed that

in most topologies one single controller is enough for fulfilling latency requirements but

obviously insufficient for achieving control plane resilience.

In their study, the location and placement of a determined number of SDN controllers

54

3.2. RELATED WORK

was treated as a variant of the facility location problem. Their placement strategy was

only focused on minimizing the controller-to-switch propagation latency in the context

of wide-area SDN deployments (e.g Internet2) and analyzing the trade-offs between op-

timizing the average latency (the k-median problem) and the maximum latency (the k-

center problem).

Their work has been extended by [126] to incorporate other important performance

aspects apart from the controller-to-switch latency in the multi-objective controller place-

ment process such as the resilience metrics with respect to controller failure, network

disruption, load imbalance and inter-controller latency. In this context, Hock et al. in-

troduced the resilient Pareto-based Optimal COntroller placement (POCO) optimization

framework for providing all possible Pareto-optimal CPP solutions and finding the ade-

quate trade-offs between quality in terms of latency and resilience. Through the assess-

ment of the framework using a range of different real network topologies, the authors

argued that the required number of SDN controllers should be around 20 % of all network

nodes in order to meet resilience requirements.

While the first version of POCO was intended for small and medium sized networks

where an exhaustive exploration of the entire solution space for selecting the optimal con-

troller placement with respect to the considered objectives is computationally feasible, a

subsequent version proposed by [127] comprised a heuristic-based Multi-Objective Com-

binatorial Optimization (MOCO) approach, namely Pareto Simulated Annealing (PSA),

for dealing with the resilient controller placement problem in large-scale or dynamic net-

work environments. However, when evaluating that approach on a set of real-world net-

work toplogies from the Internet Topology Zoo [128] where the network size ranges be-

tween 5 and 50 nodes, the authors only emphasize the geographic extent aspect of large-

scale networks and do not assess their scalability in terms of an increased number of net-

work nodes.

Unlike the above strategies which mitigate the impact of specific cases of network fail-

ures by minimizing resilience metrics like the worst-case controller-to-switch latency, Hu

et al. [129] quantify reliability in terms of connectivity between the forwarding devices

and their controllers (and between controllers as well) using a novel metric referred to

as the expected percentage of control path loss. However, in doing so, the authors omit-

ted important details about the failure probability of a network component which, in our

opinion, should be estimated based on a specific network failure model. Finally, different

55

3.2. RELATED WORK

heuristic algorithms were presented and compared in their study for analyzing the trade-

offs between latency and reliability in the reliability-aware controller placement decision.

Yao et al. [130] addressed another variant of the CPP that takes into account the load

on controllers in addition to latency considerations in the placement strategy (the capac-

itated k-center problem). They used an effective algorithm for minimizing the maximum

propagation delay under a controller capacity constraint. In their experiments, the load

on controllers was measured based on the arriving rate of events and the controller capac-

ity was determined according to their access bandwidth. Their approach proved efficient

in minimizing the required number of controllers for avoiding controller overload.

The same authors of [127] explored in [131] the potential of specialized heuristics to

solve the capacitated variant of the multi-objective controller placement problem in large-

scale SDN networks by developing the Pareto-Capacitated k-Medoids (PCKM) method

based on the k-Medoids clustering algorithm. Such a specialized heuristic that optimizes

case-specific criteria, namely the average controller-to-switch latency and the controller

load imbalance, was compared to generic heuristics usually destined for arbitrary multi-

objective optimization purposes such as the MOCO PSA technique proposed in their pre-

vious work [127]. The performance comparison between these optimization heuristics

applied to the CPP was also assessed on the Internet Topology Zoo [128] in terms of both

the accuracy (with respect to the original Pareto frontier) and the run-time of the obtained

solutions.

In the same spirit, Ahmadi et al. [132; 133] formulated the SDN CPP in highly-dynamic

or large-scale network environments as a MOCO problem and adapted an efficient multi-

objective heuristic algorithm called the Non-dominated Sorting Genetic Algorithm (NSGA-

II) to find a good and diverse approximation set of the Pareto Optimal front solutions with

respect to multiple competing criteria. Their work provided an extensive analysis of the

trade-offs between different combinations of the crucial SDN control plane resilience and

performance metrics.

Another interesting work that approaches the resilient SDN controller placement prob-

lem from a slightly different perspective is presented in [134]. Muller et al. propose a

twofold controller placement scheme for improving the SDN control plane survivability.

As opposed to previous works which generally take the shortest-path for granted when

modeling connections between devices and controllers, the authors leverage the diversity

of paths to place controllers at locations where the chance of controller-to-switch connec-

56

3.3. THE SDN CONTROLLER PLACEMENT OPTIMIZATION PROBLEM

tivity loss in the event of failures is minimized. More specifically, they formulate the place-

ment of controller instances as a MILP problem to maximize the number of node disjoint

paths between the controllers and the assigned switches under a controller capacity con-

straint. The second part of their contribution involved smart recovery mechanisms that

use heuristics for selecting the optimal list of backup controllers for each forwarding de-

vice based on both proximity and residual capacity considerations. A potential limitation

of the resilience-oriented approach adopted by [134] is that performance aspects were

overlooked. Enhancing control plane connectivity may indeed come at the cost of gener-

ating high controller-to-switch delays.

Finally, in contrast with previous placement strategies that usually optimize the con-

troller locations within the network given a fixed number of SDN controllers, works found

in [135–137] place an additional focus on minimizing the number of SDN controllers us-

ing different optimization strategies (e.g. heuristic-based approaches [133], clustering

techniques [136; 138] and CPLEX solvers [139]) based on various placement constraints.

3.3 The SDN controller placement optimization problem

3.3.1 Problem statement

Ensuring a scalable and reliable distributed (but logically centralized) SDN control plane

depends crucially on the placement of these physically distributed SDN controllers. More

specifically, the so-called Controller Placement Problem[140] consists in finding the re-

quired number and the appropriate locations of the SDN controllers (among the net-

work nodes) that efficiently partition the network into several SDN controller domains

to achieve the best trade-off between performance and reliability metrics (see Figure 3.1).

3.3.2 Problem formulation

The network is viewed as a graph G = (V,E); where the set of nodes V represent the net-

work nodes comprising controllers and switches while the set of edges E represent the

links connecting these network nodes. Edge weights represent the shortest-path laten-

cies between each pair of nodes. This information is stored in the available Global Logical

Network Topology Map (see Section 3.4.1) where d(s,c) denotes the latency from a switch

node s ∈ V to a controller node c ∈ V. We formulate the controller placement problem as

a multi-objective optimization problem according to a set of performance and reliability

57

3.3. THE SDN CONTROLLER PLACEMENT OPTIMIZATION PROBLEM

metrics (see Figure 3.2) that will be discussed below.

Figure 3.1: The controller placement problem

3.3.3 Placement metrics

3.3.3.1 Performance criteria

Optimizing for control plane performance is of paramount importance in large-scale

IoT-like networks with stringent response-time requirements and where high propagation

delays may lead to inconsistent and incorrect behaviors of network services.

In particular, the average latency and the maximum latency between the switches and

their associated controllers for a given placement C of k controllers among n = |V| net-

work nodes are two different latency-related performance metrics that were first intro-

duced by [125]. Unlike the average latency placement metric (3.1) that evaluates the over-

all quality of the network performance from a switch-to-controller latency point of view

while hiding single cases of unacceptably high latencies, the maximum latency placement

metric (3.2) is indeed useful in preventing the occurrence of such high-latency cases in

placement scenarios.

- Average switch-to-controller Latency :

πAv g−s2c−Latenc y (C) = 1

n

∑
(s∈S)

min
(c∈C)

d(s,c) (3.1)

58

3.3. THE SDN CONTROLLER PLACEMENT OPTIMIZATION PROBLEM

Figure 3.2: Controller placement metrics

- Maximum switch-to-controller Latency:

πMax−s2c−Latenc y (C) = max
(s∈S)

min
(c∈C)

d(s,c) (3.2)

Other important considerations that have a direct impact on the SDN control-plane

performance include the inter-controller latencies [127; 141]. Physically-distributed SDN

controllers should indeed be placed as closely as possible to each other in order to re-

duce the cost of maintaining a consistent logically-centralized network view, i.e. the inter-

controller communication and the global state synchronization. Accordingly, SDN con-

troller locations can be selected in a way that minimizes the average and the maximum

inter-controller latencies defined in (3.3) and (3.4) alongside the previously-mentioned

control-to-data plane performance metrics.

- Inter-Controller Latencies:

πAv g−c2c−Latenc y (C) = 1

|C|
∑

(c1,c2∈C)
d(c1,c2) (3.3)

πMax−c2c−Latenc y (C) = max
(c1,c2∈C)

d(c1,c2) (3.4)

Besides the above placement metrics which affect the network performance from a

59

3.3. THE SDN CONTROLLER PLACEMENT OPTIMIZATION PROBLEM

switch-to-controller or controller-to-controller latency perspective, the controller capacity-

awareness is another important performance factor that should be considered in the con-

troller placement process for the purpose of avoiding the chance of controller overload

and thereby preventing the related performance issues (additional delays at the controller

level, etc).

One way of tackling the controller overload aspect is by assuming that all controllers

C have equal capacities Qc (in terms of the number of controlled nodes in our case) and

by guaranteeing an equal distribution of the control plane load (the sum of each load l (s)

to control switch s [130]) among these controller instances (3.5). Each controller should

be loaded at 80% of its full capacity Qc , leaving a controller capacity margin of 20% to

prevent occasional controller overload. This fair load distribution is achieved by imple-

menting an intelligent well-balanced switch-to-controller assignment method that, given

a fixed number of controller instances, assigns each network node to the closest controller

provided that the load on that controller did not exceed the imposed load constraint.

Besides, the implemented controller assignment heuristic guarantees that any net-

work node that could not be assigned to its closest controller due to the controller capac-

ity constraint is intended for assignment to the second closest controller that has not yet

reached its full load capacity.

- The Controller load constraint:

∑
(s∈S)

l (s) = 80%Qc ,∀c ∈ C (3.5)

An alternative controller load balancing scheme is to keep the usual shortest-path-

based switch-to-controller assignment method, relax the fair load balancing constraint

and introduce instead an additional load imbalance metric to be minimized through the

controller placement optimization (3.6). This metric is defined by [126] as the difference

between the maximum and the minimum number of network nodes assigned to a con-

troller for a given controller placement C.

- Load imbalance:

πLoad−Imbal ance (C) = max
(c∈C)

nc −min
(c∈C)

nc (3.6)

60

3.3. THE SDN CONTROLLER PLACEMENT OPTIMIZATION PROBLEM

3.3.3.2 Reliability criteria

Although providing several benefits in terms of increased flexibility and better perfor-

mance, the physical SDN control-to-data plane separation feature introduces additional

concerns regarding network reliability as a crucial requirement for operational SDNs. As

a matter of fact, one key consideration in the design of distributed SDN networks is to

improve the reliability of the SDN control plane. That aspect of SDN reliability can be en-

sured by placing SDN controllers in a reliability-aware manner that mitigates the impact

of controller failures. The most common reliability mechanism used for guarding against

the failure of primary controllers is the assignment of the associated network switches to

the closest working controllers. In doing so, response-time requirements should be satis-

fied in order to guarantee controller fault-tolerance. In other words, the propagation la-

tencies of these previously controlled switches with respect to the new backup controllers

should remain acceptable.

As an indicator of reliability against controller instance failures, we use the maximum

latency metric (to be minimized) which is computed based on the propagation latencies

between the network switches and all the subsets of working controllers C1 for a place-

ment C according to the considered controller failure scenarios F as defined in the general

formula below:

π
Max−s2c−Latenc y
F (C) = max

(s∈S)

max
(C1⊆C)

min
(c∈C1)

d(s,c) (3.7)

Among these controller failure scenarios, the worst-case scenario for a network switch

would be the simultaneous failure of the (k −1) closest SDN controllers. Mitigating that

control plane failure scenario implies minimizing the maximum of the latencies between

network switches s and their respective furthest functional controllers CFu(s) as follows:

π
Max−s2c−Latenc y
F(k−1) (C) = max

(s∈S,c∈CFu (s))

d(s,c) (3.8)

In practice, it is more common for primary controller failures to occur one at a time.

Therefore, reducing the impact of that controller failure scenario implies minimizing the

maximum of the latencies between network switches s and their respective second closest

controllers CCl (s) as expressed in the following :

61

3.4. THE PROPOSED SDN CONTROLLER PLACEMENT SCHEME

π
Max−s2c−Latenc y
F(1) (C) = max

(s∈S,c∈CCl (s))

d(s,c) (3.9)

3.4 The proposed SDN controller placement scheme

3.4.1 The adopted approach

In this section, we present our two-phase approach to modeling and tackling the con-

troller placement problem using a decentralized simulation framework. At the first stage,

we deploy monitoring (data-gathering) mechanisms in order to gather and transmit in-

formation about the network topology. This collected information is then used by the

controller placement optimization algorithms that we implemented in the second phase

of the work.

For a given network, we start by running a distributed leader election scheme. The

network nodes communicate with their neighboring nodes by sending leader request

messages and then waiting for leader responses. In the meantime, nodes that did not

receive a leader reply message may declare themselves as leaders depending on a given

leader election probability. This task ensures that each network node is managed by one

leader node and that each elected leader node will assume responsibility for some part of

the network.

Once the leader election process is completed, the network nodes start sending mes-

sages in order to record the desired information about their connected neighbors in a

Neighbor Map (latency information in our case). At this point, all follower nodes send

their neighbor maps to their respective leaders. In this way, leader nodes get the cluster

information required to construct their Local Leader Maps.

Finally, leaders synchronize their local cluster information and build the Global Physi-

cal Network Topology Map. Among the set of network leader nodes, only one is nominated

as the Hyper Leader Node that will be responsible for running the Dijikstra shortest path

algorithm and building the Global Logical Network Topology Map.

At the Hyper node level, controller placement optimization algorithms are implemented

and run based on this available global network view and based on a determined number

of network controllers k. Controller placement solutions are then investigated and ana-

lyzed in order to find the optimal trade-off between the considered reliability and perfor-

mance metrics.

62

3.4. THE PROPOSED SDN CONTROLLER PLACEMENT SCHEME

3.4.2 Multi-criteria placement algorithms

In order to optimize the placement of k SDN controllers according to the discussed per-

formance and reliability metrics, we use two different algorithms, a clustering algorithm

based on PAM (Partitioning Around Medoids) and a modified genetic algorithm called

NSGA-II (Non-dominated Sorting Genetic Algorithm II).

PAM [142] is a k-Medoid clustering technique that partitions the data set of N ob-

jects (N network nodes) into k clusters represented by k medoids (the SDN controller

nodes). The main idea of PAM is to find the optimal set of medoids that improves the over-

all quality of clustering which is measured based on the average dissimilarity of all data

objects to their nearest medoid. In our case, all the considered metrics M are of equal

importance, thereby making the dissimilarity function D (to be minimized) for a given

placement C ∈ CP (the considered placement configurations) computed as the normal-

ized sum of all weighted objectives O with the associated weights equal to 1
M as follows:

DPAM−B(C) = ∑
i∈M

(
1

M
)×N(Oi) (3.10)

where:

N(Oi) =
Oi (C)−min

(C∈CP)
Oi (C)

max
(C∈CP)

Oi (C)−min
(C∈CP)

Oi (C)

Algorithm 1, called PAM-B, corresponds to the multi-criteria controller placement algo-

rithm that we developed based on PAM.

63

3.4. THE PROPOSED SDN CONTROLLER PLACEMENT SCHEME

Algorithm 1 PAM-B:

1: n nodes, an integer k.
2: Init : Select k nodes at random and define them as medoids.
3: Associate each object to the appropriate medoid according to a well-defined assign-

ment method.
4: for each medoid m do
5: Compute and store the objective function values of the current configuration.
6: for each non-medoid r do
7: Swap m and r
8: Associate each object to the appropriate medoid according to the considered as-

signment method.
9: Compute and store the objective function values of the new configuration.

10: end for
11: Compute the maximum and the minimum values of each objective function over

the considered configurations.
12: Compute the normalized total dissimilarity of each considered configuration based

on the above optima.
13: Select the configuration with the lowest normalized total dissimilarity
14: end for

On the other hand, NSGA-II [132] is a popular fast and elitist genetic algorithm for

multi-objective optimization. In addition to the classical genetic operators (crossover

and mutation), NSGA-II uses other multi-objective ranking mechanisms (non-dominated

sorting and the crowding distance) for creating the next generation population of candi-

date solutions. The main idea of NSGA-II is to make that population evolve towards a set

of optimal non-dominated solutions (the Pareto front) representing the best trade-offs

between the considered objectives.

In this work, we set a list of NSGA-II parameters as follows:

Parameters Values

Population k * 2
Selection Operator sbx

MaxEvaluations Depends on the Strategy
(see Table 3.2)

Table 3.1: NSGA-II parameters

3.4.3 Gradual strategies

We propose multiple strategies for tackling the SDN controller placement problem ac-

cording to our performance and reliability criteria. In doing so, we follow a step-by-step

64

3.4. THE PROPOSED SDN CONTROLLER PLACEMENT SCHEME

approach based on the gradual incorporation of these placement metrics for assessment

by our muti-criteria algorithms (PAM-B and NSGA-II). That way, it becomes possible to

investigate the direct impact of these placement metrics on the quality of the controller

placement solutions and also to make the controller placement approach adaptable to

various use cases. More importantly, such a versatile approach can be leveraged by SDN

operators to assist them in finding their optimal controller placement solution tailored to

their specific context.

Strategy 1 : A Latency-based Strategy

This strategy solves the SDN controller placement problem based on the two latency-

related performance metrics shown in (3.1) and (3.2) while keeping the simple usual shortest-

path switch-to-controller assignment method. Accordingly, the multi-objective NSGA-II

is launched with these two objectives to be minimized while PAM-B minimizes the fol-

lowing dissimilarity function as a normalized sum of the two considered objectives in

accordance with (3.10):

DPAM−B
1 (C) = (

1

2
) × N(πAv g−Latenc y (C)) + (

1

2
) × N(πMax−Latenc y (C)) (3.11)

Strategy 2 : Strategy 1 under a load capacity constraint

Strategy 2 incorporates, in addition to the previously-mentioned latency-related perfor-

mance metrics, a fair load balancing scheme by turning the simple switch-to-controller

assignment method of Strategy 1 into an intelligent assignment method that guarantees

an equal distribution of the control plane load among controller instances (80% of their

equal capacities) and, at the same time, a fair affectation of network switches to their clos-

est lightly loaded controllers (see Section 3.3.3.1). Thus, in Strategy 2, PAM-B minimizes

the same dissimilarity function (3.11) used in Strategy 1.

Strategy 3 : Strategy 1 with a load imbalance metric

In Strategy 3, along with the performance metrics of Strategy 1, we adopt an alternative

load balancing scheme using the load imbalance metric (3.6) proposed by [126] and we

investigate the controller overload risk.

The following formula defines the dissimilarity function of PAM-B based on the three con-

65

3.5. PERFORMANCE EVALUATION

sidered objectives:

DPAM−B
3 (C) = (

1

3
)×N(πAv g−Latenc y (C))+ (

1

3
)×N(πMax−Latenc y (C))

+ (
1

3
)×N(πLoad−Imbal ance (C)) (3.12)

Strategy 4 : Strategy 3 with reliability metrics

Strategy 4 provides a rich SDN controller placement optimization framework that in-

cludes reliability metrics (explained in Section 3.3.3.2) along with performance metrics.

As for reliability placement metrics (3.7), users of the framework have the option of in-

cluding a reliability metric variant that tackles the worst-case controller failure scenario

(3.8) or a variant that addresses a more common controller failure scenario (3.9), in addi-

tion to the previous performance metrics (3.1), (3.2) and (3.6).

The dissimilarity functions of PAM-B for both variants are calculated in accordance with

the following formulas:

DPAM−B(k−1)
4 (C) = (

1

4
)×N(πAv g−Latenc y (C))+ (

1

4
)×N(πMax−Latenc y (C))

+ (
1

4
)×N(πLoad−Imbal ance (C))+ (

1

4
)×N(πMax−Latenc y

F(k−1) (C)) (3.13)

DPAM−B(1)
4 (C) = (

1

4
)×N(πAv g−Latenc y (C)+ (

1

4
)×N(πMax−Latenc y (C))

+ (
1

4
)×N(πLoad−Imbal ance (C))+ (

1

4
)×N(πMax−Latenc y

F(1) (C)) (3.14)

3.5 Performance evaluation

3.5.1 Simulation settings

In this work, we use the JAVA-based distributed simulation framework Sinalgo (Simulator

for Network Algorithms) [143] for implementing our two-phase approach (explained in

Section 3.4.1) and evaluating our multi-criteria SDN controller placement algorithms (see

Section 3.4.2) according to gradual strategies and various scenarios (see Section 3.4.3).

Table 3.2 summarizes the values corresponding to the maximum number of objective

function evaluations simulation parameter used as a stopping criterion in NSGA-II al-

gorithm as a function of the number of objectives involved in each strategy and the size

of the network in each simulation scenario.

66

3.5. PERFORMANCE EVALUATION

Number of Objectives Number of Nodes MaxEvaluations

2 20, 60, 100, 200, 400 10 000
(Strategy 1 and 2) 500, 600 20 000

700 40 000
800 60 000
900 80 000

1000 100 000

3 20, 60, 100, 200, 400 20 000
(Strategy 3) 500, 600 40 000

700 60 000
800 80 000
900 100 000

1000 120 000

4 20, 60, 100, 200, 400 40 000
(Strategy 4) 500, 600 60 000

700 80 000
800 100 000
900 120 000

1000 140 000

Table 3.2: The maximum number of objective function evaluations (MaxEvaluations)

3.5.2 Simulation results

In this Section, we show the simulation results of the proposed approach based on the fol-

lowed gradual strategies and according to different simulation scenarios. For each strat-

egy, and for a given network topology, we evaluate the controller placement solutions pro-

posed by PAM-B and NSGA-II. PAM-B generates the optimal controller placement cluster-

ing solution with respect to the equally-weighted dissimilarity measure defined in (3.10)

in which we give equal importance to the considered objectives.

Likewise, for the multi-objective NSGA-II, we consider the fairest controller place-

ment solution (in relation to the desired criteria) among all the generated non-dominated

Pareto Optimal solutions representing the possible trade-offs between the considered ob-

jectives. This is achieved by selecting the Pareto placement solution S that best reduces

the total gap between all the associated objectives M and their respective optimal values

across the set of all Pareto optimal solutions P. In our case, this implies considering the

67

3.5. PERFORMANCE EVALUATION

Pareto solution with the minimum value of the following measure (3.15) :

a(S) = ∑
i∈M

(
1

M
)×

Oi (S)−min
(S∈P)

Oi (S)

max
(S∈P)

Oi (S)−min
(S∈P)

Oi (S)
(3.15)

Accordingly, several simulation scenarios are performed following the considered strate-

gies and using various types of network topologies of different size; from 20 up to 1000

network nodes. That allowed us to compare our controller placement strategies, ana-

lyze the performance of both algorithms for solving the controller placement optimiza-

tion problem, and also study the scalability of our approach which is mainly intended for

large-scale IoT-like deployments.

(a)

(b)

Figure 3.3: Strategy 1, 2 and 3: Latency-based performance metrics

68

3.5. PERFORMANCE EVALUATION

When comparing the optimal controller placement solutions across Strategy 1, 2 and

3 with respect to the considered latency-based performance metrics (see Figure 3.3), we

notice that, unlike Strategy 1 and 3 which show similar performance trends, Strategy 2

yields poorer results in minimizing both the Average Latency (3.3(a)) and the Maximum

Latency (3.3(b)) performance metrics due to the imposed load balancing constraint. For

example, in scenario no12 (3.3(b)) where the network size is equal to 1000 nodes, both

PAM-B and NSGA-II provided, according to Strategy 2, controller placement configura-

tions where the Maximum Latency value is above 400ms compared to less than 100ms for

both Strategy 1 and 3. On the other hand, we note that, in all the 12 simulation scenarios

considered by these three Strategies, PAM-B is obviously better than NSGA-II at simulta-

neously minimizing both the Average Latency and the Maximum Latency performance

metrics of the obtained controller placement configurations. For instance, when it comes

to the Average Latency metric, PAM-B according to Strategy 1 is better (from 6% to 40%)

than NSGA-II over all scenarios, (from 10% to 50%) according to Strategy 2 and (up to

20%) according to Strategy 3.

That said, the obvious advantage of Strategy 3 that adds a Load Imbalance metric to

strategy 1 (3.4(a)) over Strategy 2 that incorporates a load balancing constraint in strat-

egy 1 is the fact that it did not deteriorate the level of latency-based performance targeted

by Strategy 1. However, the potential drawback of Strategy 3 is related to the risk of con-

troller overload as illustrated by Figure 3.4(b) which depicts the percentage of overloaded

controllers in the considered scenarios. For instance, in scenario no10 (3.4(b)) where the

network size is equal to 800 nodes and the number of controllers is equal to 80, both PAM-

B and NSGA-II produced controller placement configurations where 21 (26,25%) of these

controllers are overloaded.

69

3.5. PERFORMANCE EVALUATION

(a)

(b)

Figure 3.4: Strategy 3: Load imbalance

As explained in 3.4.3, Strategy 4 involves reliability metrics in addition to the set of per-

formance metrics considered by Strategy 3. In particular, Figure 3.5 compares, for each

variant of Strategy 4 according to all the optimal controller placement solutions, the val-

ues of the Maximum Latency metric in the failure free case with that of the Maximum

Latency metric in the considered failure case scenario. It also shows that PAM-B and

NSGA-II perform in a quite similar fashion when optimizing these metrics.

Figure 3.6 investigates the performance cost of taking into account reliability crite-

ria in the controller placement optimization process. Surprisingly, optimizing for relia-

bility metrics, did not severely impact performance metrics like the Maximum Latency

(in the failure free case) (3.6(a)) whose values remained acceptable and comparable to

that in Strategy 3 except for a few placement scenarios that were in most cases produced

by NSGA-II. Likewise, similar trends are observed across Strategy 3 and 4 for each of the

Load Imbalance (3.6(b)) and the Average Latency (3.6(c)) performance metrics of the ob-

tained placement configurations. For example, in scenario no12 (3.6(c)), PAM-B(k-1) (re-

70

3.5. PERFORMANCE EVALUATION

spectively PAM-B(1)) according to Strategy 4 produced an optimal controller placement

configuration where the value of the Average Latency metric is equal to 25,3ms (respec-

tively 23,5ms) compared to 24ms for PAM-B according to Strategy 3. In the same sce-

nario, NSGA-II(k-1) (respectively NSGA-II(1)) according to Strategy 4 generated a con-

troller placement configuration with an Average Latency value equal to 27,6ms (respec-

tively 26,8ms) against 27,3ms for NSGA-II according to Strategy 3.

(a)

(b)

Figure 3.5: Strategy 4: Reliability metrics:
(Maximum latencies in failure free & failure case scenarios)

71

3.5. PERFORMANCE EVALUATION

(a)

(b)

(c)

Figure 3.6: Strategy 4: Performance metrics 72

3.6. DISCUSSION

3.6 Discussion

The four strategies are put forward to account for some important aspects of the SDN con-

troller placement problem. The first strategy investigates an optimal placement of SDN

controllers based on both the average and the maximum latency criteria. Optimizing for

such latency-related performance metrics has guaranteed proper shortest-path switch-

to-controller assignments. On the other hand, a proper placement of controllers where

inter-controller communication costs are optimized requires taking into account addi-

tional latency-related metrics such as the latencies between the individual controllers.

However, such considerations are beyond the scope of this chapter; Inter-controller com-

munication effects [144] are indeed issues that need further exploration in our following

work about the knowledge dissemination part of distributed SDN control.

The second and the third strategies were motivated by the observation that optimiz-

ing the locations of controllers based solely on latency-related metrics as in Strategy 1

may generate placement configurations where some controllers are in charge of a big

number of network switches, and thus highly exposed to potential overload risks. Im-

posing a load balancing constraint complemented by an intelligent switch-to-controller

assignment method (Strategy 2) guarantees a fair distribution of the control plane load,

where SDN controllers are equally loaded at 80% of their total capacity. However, it is in-

tuitively likely that, despite that intelligent assignment technique, some switches will be

constrained for assignment to controllers that are relatively far (from a latency point of

view) because all their closest controllers have somehow reached the imposed load con-

straint. On the other hand, relaxing that load constraint and substituting it with a load

imbalance metric (Strategy 3), has proved effective in providing switches with better free-

dom to join their preferred controller cluster, but less immune to the risk of controller

overload (see Figure 3.4(b)). A potential solution to addressing this problem could be the

implementation of a heuristic method to be launched at the end of Strategy 3 in order

to cope with such controller overload cases. One way of doing this, is to turn, in each

overloaded controller cluster, a certain number of switches (the closest to the cluster con-

troller) into additional controllers that will handle the extra controller cluster overload.

For each overloaded cluster, the number of switches to become controllers might depend

on the surplus number of cluster switches above the cluster controller capacity. In all

the scenarios considered by Strategy 3, the maximum controller load has never exceeded

73

3.6. DISCUSSION

200% of its total capacity, thereby confirming the need for no more than one additional

controller in each overloaded cluster.

Considering controllers with different capacities as in real network settings is another im-

portant factor to take into account. Another controller placement strategy can be pro-

posed and implemented using a load balancing scheme based on different node capaci-

ties.

The fourth strategy incorporates reliability metrics in addition to the considered per-

formance metrics. For example, the reliability-aware controller placement that takes into

account worst-case failure scenarios, seems to impact the locations of controllers in a way

that places them closer to the network center to minimize worst-case latencies with re-

spect to all network switches and thus to ensure an optimized switch-to-controller backup

reassignment that preserves performance in case of primary controller outages. However,

besides controller failures, other failure scenarios like the failure of network switches and

links might occur and can therefore be involved in the controller placement decision-

making process in order to enhance the reliability of the SDN control plane.

Evaluating PAM-B and NSGA-II over the proposed strategies revealed that, in most

scenarios, PAM-B outperforms NSGA-II in terms of the quality of final solutions with re-

spect to the considered metrics (see Section 4.6.2). More specifically, PAM-B gives a more

balanced trade-off between performance and reliability metrics, and more importantly,

it produces more stable results over all strategies whereas the performance of NSGA-II

with respect to these metrics is sometimes unpredictable and highly dependent on the

followed strategy.

Finally, implementing different kinds of heuristic-based algorithms (PAM-B and NSGA-

II) that are directed at solving the controller placement problem within a reasonable time

frame and testing them over large network instances demonstrated the scalability of the

proposed approach and its adequacy with the IoT context. In particular, Figure 3.7 il-

lustrates the run-time comparison between PAM-B and NSGA-II which reflects similar

trends over the considered scenarios. In fact, the computational complexities of PAM-B

and NSGA-II are close and respectively equal to, O(k(n −k)2) (k is the number of medoid

clusters; the number of SDN controllers in our case, and n is the number of objects; the

network size in our case), and O(MN2) (M is the number of objective functions and N is

the population size).

However, it is worth mentioning that the computation time of clustering approaches

74

3.7. CONCLUSION

like PAM can be significantly improved. For instance, CLARA (CLustering LARge Appli-

cations) [145], a sampling-based variant of PAM, is highly recommended for dealing effi-

ciently with large data sets. It has indeed a computational complexity of O(ks2+k(n−k)),

where k is in our case the number of SDN controllers, n is in our case the network size

and s is the sample size. As a matter of fact, a CLARA-based approach can be used instead

of PAM-B in large-scale network scenarios in order to further reduce the overall compu-

tation time.

Figure 3.7: Computation time comparison between PAM-B and NSGA-II over the considered
strategies

3.7 Conclusion

In this work, we investigated the SDN controller placement issue in the context of large-

scale IoT-like networks and underlined the need for an efficient approach to this multi-

objective optimization problem. In that respect, several SDN control plane performance

and reliability metrics were considered according to different needs and contexts. Through-

out these strategies, two heuristic approaches were proposed to find high-quality approx-

imate solutions to the controller placement problem in a reasonable computation time:

A clustering approach (PAM-B) based on a dissimilarity score and a modified genetic ap-

proach (NSGA-II). Our results demonstrated the potential of clustering techniques in de-

livering appropriate controller placement configurations that achieve balanced trade-offs

75

3.7. CONCLUSION

among the competing performance and reliability criteria.

The challenge of determining the required number and locations of SDN controllers

represents one particular aspect of the overall process of addressing the distributed SDN

control problem. This leads us to the second key aspect that calls for further investigation,

namely the knowledge sharing challenge associated with such logically-centralized dis-

tributed SDN platforms. However, given the potential correlation between placing mul-

tiple SDN controllers and modeling the type of communication among them, it becomes

essential to reevaluate certain factors involved in the controller placement problem-solving

after studying the variety of data consistency models for inter-controller communication

in the context of physically distributed SDN architectures. It is also planned to implement

and validate the approaches evaluated in simulation on an experimental SDN testbed

based on OpenvSwitch [146] nodes.

76

Chapter 4

Adaptive and continuous consistency for
distributed SDN controllers:
Anti-Entropy reconciliation mechanism

« Power is gained by sharing
knowledge, not hoarding it »

Maria Khan

Contents
4.1 Introduction . 78

4.2 Related work . 79

4.3 The consistency problem in SDN . 81

4.3.1 Consistency trade-offs in SDN . 81

4.3.2 Consistency models in SDN . 82

4.3.2.1 The strong consistency model 82

4.3.2.2 The eventual consistency model 82

4.3.2.3 Adaptive consistency models 82

4.4 Consistency models in ONOS . 83

4.4.1 Strong consistency in ONOS . 83

4.4.2 Eventual consistency in ONOS . 84

4.4.2.1 Optimistic replication . 84

4.4.2.2 Gossip-based Anti-Entropy 84

4.5 The proposed adaptive consistency for ONOS 85

4.5.1 A continuous consistency model for ONOS 85

4.5.2 Our consistency adaptation strategy for ONOS 87

4.5.3 Our implementation approach . 87

4.6 Performance evaluation . 89

4.6.1 Experimental setup . 89

4.6.2 Results . 90

4.7 Conclusion . 92

77

4.1. INTRODUCTION

4.1 Introduction

Logically-centralized but physically-distributed SDN controllers are mainly used in large-

scale SDN networks for scalability, performance and reliability reasons. These controllers

host various applications that have different requirements in terms of performance, avail-

ability and consistency. Current SDN controller platform designs employ conventional

strong consistency models so that the SDN applications running on top of the distributed

controllers can benefit from strong consistency guarantees for network state updates.

However, in large-scale deployments, ensuring strong consistency is usually achieved

at the cost of generating performance overheads and limiting system availability. That

makes weaker optimistic consistency models such as the eventual consistency model

more attractive for SDN controller platform applications with high-availability and scal-

ability requirements. In this chapter, we argue that the use of the standard eventual con-

sistency models, though a necessity for efficient scalability in modern SDN systems, pro-

vides no bounds on the state inconsistencies tolerated by the SDN applications.

To remedy that, we propose an adaptive multi-level consistency model for the dis-

tributed ONOS controllers following the notion of continuous and compulsory [147] even-

tual consistency, where network application states adapt their eventual consistency level

dynamically at run-time based on the observed state inconsistencies under changing net-

work conditions. That model presents many advantages when compared to the strong

consistency and eventual consistency extremes, especially in large-scale deployments.

Our scalable consistency adaptation strategy was implemented for a source-routing

application on top of the distributed open-source ONOS controllers: It mainly consists in

turning ONOS’s eventual consistency model into an adaptive consistency model using the

Anti-Entropy reconciliation period as a control knob for an adaptive fine-grained tuning of

consistency levels. As compared to ONOS’s static state consistency management scheme

at scale, our consistency strategy is aimed at minimizing state synchronization overheads

while taking into account the application’s continuous consistency Service-Level Agree-

ments (SLAs) (e.g. Numerical error bounds) and without compromising the application

requirements of high-availability.

The remainder of this chapter is organized as follows: In Section 4.2, we provide an

overview of the consistency models used by state-of-the-art SDN controller platforms.

In Section 4.3, we review the consistency problem in SDN and investigate the involved

78

4.2. RELATED WORK

consistency trade-offs. In Section 4.4, we discuss the consistency models implemented

in the ONOS controller platform. In Section 4.5, we present our consistency adaptation

approach for the distributed ONOS controllers. Finally, Section 4.6 shows and discusses

the experimentation results.

4.2 Related work

The challenges related to consistency in distributed SDN control have been recently ad-

dressed in the SDN literature. Some works focused on the impact of switch-to-controller

state consistency between switches and controllers on network application performance.

Reitblatt et al. [148] studied the consistency of controller-driven flow updates in terms

of network policy conservation. They proposed a new type of consistency abstractions

to enforce a consistent forwarding state at different levels (per-flow consistency and per-

packet consistency). Recent approaches [149] focused on efficiently updating the network

data plane state while preventing forwarding anomalies at the switches and maintaining

desired consistency properties (e.g. loop and black-hole freedom).

Another category of works, falling within the scope of this chapter, focused on achiev-

ing controller-to-controller state consistency between the distributed controllers without

compromising application performance.

Current implementations of distributed SDN controller platforms offer different state

consistency abstractions. They use static mono-level [64] or multi-level [150] consistency

models such as the strong, eventual and weak state consistency levels.

Onix [38] offers two separate dissemination mechanisms for synchronizing network

state updates between the NIBs stored at the controller instances. These mechanisms

are based on two implemented data-store options: A replicated transactional database

designed for ensuring strong consistency at the cost of good performance for persistent

but slowly-changing states, and a high-performance memory-only distributed hash table

(DHT) for volatile states that are tolerant to inconsistency.

Similarly, ONOS [150] provides different state sharing mechanisms to achieve a con-

sistent network state across the cluster of ONOS controllers. More specifically, ONOS’s

distributed core eases the state management and coordination tasks for application de-

velopers by providing them with an available set of core building blocks for dealing with

different types of distributed control plane states, including a consistent primitive for

state requiring strong consistency and an eventually consistent primitive for state toler-

79

4.2. RELATED WORK

ating relaxed consistency.

On the other hand, ODL [64] supports a strong consistency model in its distributed

datastore architecture. In fact, all the data shared across the cluster of controllers for

maintaining the logically centralized network view is handled in a strongly-consistent

manner using the RAFT consensus algorithm [66].

Recent approaches to handling the issues of controller state consistency [151–153]

recommended the use of adaptive consistency for the distributed SDN controller plat-

forms. Aslan et al. [151] attempted to mitigate the impact of controller state distribution

on SDN application performance by proposing an adaptive tunable consistency model

following the delta consistency model. In their model, the automatic control plane adap-

tation module tunes the consistency level (the synchronization period parameter) based

on an application-specific performance indicator that is measured given the current state

of the network. To assess their approach, the authors compared the performance of the

distributed load-balancing application running on top of adaptive and non-adaptive con-

trollers.

The same authors studied in [154] the feasibility of employing adaptive controllers

that are built on top of tunable consistency models similar to that of Apache Cassandra.

They presented an adaptation strategy for the SDN controllers that uses clustering tech-

niques to map a given application performance indicator into an appropriate consistency

level that can be used to configure the parameters associated with the underlying tunable

consistency model. However, the authors did not test the validity of their proposal using

a specific SDN application running on top of an SDN controller platform.

In the same spirit, the work described in [152] put forward an adaptive consistency

model for distributed SDN controllers following the Eventual Consistency level. The main

aim of changing the controller consistency level on-the-fly was to maintain a scalable

system that sacrifices application optimality for less synchronization overhead. Accord-

ingly, the authors propose a cost-based approach that bounds the correctness to a tunable

threshold, where the consistency level is adapted based on the effort of state convergence

after the expiration of a non-synchronization period, and the application inefficiencies

due to operations with stale state. The performance of the proposed model was evalu-

ated based on a specific routing application.

80

4.3. THE CONSISTENCY PROBLEM IN SDN

4.3 The consistency problem in SDN

4.3.1 Consistency trade-offs in SDN

In distributed SDN architectures, the SDN control plane supports the interaction between

multiple controllers through their "east-west" interfaces. Inter-controller communica-

tions are indeed needed to synchronize the controllers’ shared data structures to main-

tain a consistent global network view, and therefore ensure the correct behavior of the

network applications running on top of the distributed controllers. Such control traffic

can be in-band or out-band.

However, distributing the network control state across the SDN control plane affects

the performance objectives of the control applications. In fact, many state distribution

trade-offs arise as discussed by Levin et al. such as the trade-off between application state

consistency/staleness (state synchronization overhead) and application performance (ob-

jective optimality), and the trade-off between application logic complexity and robust-

ness to inconsistency.

More generally, Brewer’s CAP theorem applied to networks [108] investigates the in-

volved trade-offs between Consistency (C), Availability (A), and Partition-tolerance (P). It

states that, in SDN networks, it is generally only possible to achieve two out of the three

desirable properties: CA, CP or AP.

However, in the context of modern and scalable distributed database systems (DDBS),

Abadi’s PACELC theorem [155] is believed to be more relevant, as it combines in a single

complete formulation, the CAP theorem trade-offs, and in the absence of partitions (E),

the Latency (L)/Consistency (C) trade-off. Many popular modern DDBSs do not by de-

fault guarantee strong consistency, as stated by CAP. Conversely, they come with trade-

offs that are better warranted/represented by the PACELC alternative. For example, Ama-

zon’s Dynamo [113], Facebook’s Cassandra [111], and Riak are PA/EL systems, MongoDB

is PA/EC, yahoo’s PNUTS is PC/EL, and finally BigTable and HBase are PC/EC systems.

In this context, we argue that SDN is bringing the network design much closer to the

design of distributed database systems. In the same spirit, we argue that PACELC can

apply to large-scale SDN controller platforms, in the same way it applies to modern and

scalable NoSQL DDBSs.

81

4.3. THE CONSISTENCY PROBLEM IN SDN

4.3.2 Consistency models in SDN

Many architectures have been proposed to support distributed SDN controllers, with the

goal of improving the scalability, reliability and performance of SDNs. Two main consis-

tency models are used by current controller platforms:

4.3.2.1 The strong consistency model

In SDN, the strong consistency model guarantees that all controller replicas in the clus-

ter have access to the most updated network information at all times. That comes at the

cost of increased state synchronization delay and communication overhead, especially

in large-scale deployments. In fact, strong consistency relies on a blocking synchroniza-

tion process that keeps the switches from reading the data, unless the controllers are fully

updated, thereby affecting network availability and scalability.

Strong consistency is a requirement for certain applications that favor consistency and

correctness properties over availability. In current controller platforms, strong consis-

tency is usually achieved using Paxos, RAFT [66] and similar protocols.

4.3.2.2 The eventual consistency model

In SDN, the eventual consistency model takes a relaxed approach to consistency by as-

suming that all controller replicas will "eventually" converge and become consistent through-

out the network. That means that controllers may temporarily present an inconsistent

network view, allowing for some stale data to be read, and potentially causing a transient

incorrect application behavior.

Many applications opt for eventual consistency to guarantee high-availability and per-

formance at scale. Modern DDBSs, including Dynamo [113] and Cassandra [111], support

eventual consistency settings by default in exchange for extremely high availability (fast

data access) and scalability.

4.3.2.3 Adaptive consistency models

Recent research in SDN [151–153] has introduced the concept of adaptive consistency in

the context of distributed SDN control. Unlike static consistency approaches, adaptively-

consistent controllers adjust their consistency level at run-time to reach the desired ap-

plication performance and consistency requirements. That alternative offers many ben-

efits: It spares application designers the task of developing complex applications that re-

82

4.4. CONSISTENCY MODELS IN ONOS

quire implementing multiple consistency models, it provides applications with robust-

ness against sudden network conditions, and it reduces the overhead of state distribution

across controllers without compromising application performance [151].

In the community of modern database systems, the need for adaptable consistency

where the consistency level is decided dynamically over-time based on various factors

has been recognized. Many adaptive consistency models have been proposed, such as

the QUOROM-based consistency [156], RedBlue Consistency [157], Chameleon and Har-

mony [158], the delta consistency [151], and the continuous consistency [147]. In addi-

tion, most of modern database systems such as Cassandra [111] and Dynamo [113] are

currently equipped with an adaptive consistency feature, offering multiple consistency

options with tunable parameters for application developers.

In our opinion, all the above consistency models could be leveraged by the SDN com-

munity to build adaptively-consistent SDN controllers.

4.4 Consistency models in ONOS

In this work, we are particularly interested in the open-source Java-based ONOS con-

troller [150]. In this section, we describe in detail the ONOS approach to state consistency

in a distributed controller setting.

To achieve high-availability, scale-out and performance, the ONOS controller plat-

form supports a physically-distributed cluster-based control plane architecture, where

each controller is responsible for handling the state of a subsection of the network. To

maintain the logically-centralized network view, local controller state information is dis-

seminated across the cluster in the form of events that are shared via ONOS’s distributed

core. The latter consists of core subsystems tracking different types of network states be-

ing stored in distributed data structures and requiring different coordination strategies.

Two main state consistency schemes are implemented in ONOS’s subsystem stores to

provide two different levels of state consistency: strong consistency and eventual con-

sistency.

4.4.1 Strong consistency in ONOS

To ensure strong consistency among replicated network states, ONOS uses (since version

1.4) the Atomix framework that is based on the RAFT consensus protocol [66]. For in-

stance, the store for switch-to-controller mastership (mapping) management is handled

83

4.4. CONSISTENCY MODELS IN ONOS

in a strongly consistent manner using that framework. Besides, ONOS exposes a set of

core distributed state management primitives that can be leveraged by application devel-

opers to implement their application-specific stores. In this respect, applications whose

state is maintained in a strongly consistent fashion can leverage the ConsistentMap dis-

tributed primitive, which guarantees strong consistency for a distributed key-value store.

4.4.2 Eventual consistency in ONOS

For eventually-consistent behaviors, ONOS employs an optimistic replication technique

complemented by a background gossip/anti-entropy protocol. For instance, the stores

for devices, links, and hosts are managed in an eventually-consistent manner. The dis-

tributed topology store is also eventually consistent since it relies on the distributed ver-

sions of the device, link and host stores. For the eventual consistency option, ONOS of-

fers the EventuallyConsistentMap distributed primitive for control programs and appli-

cations. The latter can create different instances of these primitives for managing their

eventually-consistent application-specific states.

4.4.2.1 Optimistic replication

Optimistic replication is a key technology that is used in large-scale distributed data shar-

ing systems, meeting the goal of achieving higher availability and scalability as compared

to strongly-consistent systems. That strategy for replication propagates changes in the

background, and discovers conflicts after they occur. It is based on the "optimistic" as-

sumption that inconsistencies rarely occur and that replicas will converge after some

time, thus providing eventual consistency guarantees.

In ONOS, optimistic replication is used in the distributed maps. Whenever an update

occurs in the store managed by one controller, the associated EventuallyConsistentMap

replicates events immediately to the rest of the controllers. That means that maps on

each controller will get closely in sync (apart from a small propagation delay) in case the

controllers are functioning properly. On each controller, updates are added to an Even-

tAccumulator as they are written.

4.4.2.2 Gossip-based Anti-Entropy

Controllers that purely rely on optimistic replication might progressively get out of sync,

especially in the event of node failures and partitions or in the case updates get missed or

84

4.5. THE PROPOSED ADAPTIVE CONSISTENCY FOR ONOS

dropped. The anti-entropy protocol takes care of ensuring that replicas are back in sync

by resolving discrepancies, and that the entire cluster converges fairly quickly to the same

state.

In ONOS, the gossip-based anti-entropy mechanism is a lightweight peer-to-peer back-

ground process that runs periodically: At fixed intervals (3-5 seconds), each controller

randomly chooses another controller, they both exchange information in order to com-

pare the actual content (entries) of their distributed stores (based on timestamps). After

synchronizing their respective topology views, the controllers become mutually consis-

tent. This reconciliation approach proves useful in fixing controllers when their state

drifts slightly, and also in quickly synchronizing a newly-joining controller with the rest

of the controllers in the cluster.

4.5 The proposed adaptive consistency for ONOS

In this section, we explain our approach which is mainly aimed at optimizing the consis-

tency management in ONOS.

4.5.1 A continuous consistency model for ONOS

As explained in 4.3.2.3, an adaptive consistency model offers many benefits for the dis-

tributed SDN controllers. In particular, the ONOS controllers can benefit from the con-

tinuous consistency model proposed in [147]. The latter is based on a middle-ware frame-

work (called TACT) for adaptively tuning the consistency and availability requirements for

replicated online services, following the continuous consistency concept. In contrast to

the strong consistency model (which imposes performance overheads and limits avail-

ability), and to optimistic consistency models (which provide no bounds on system in-

consistencies), the continuous consistency model explores the semantic space between

these two types of traditional models: It offers a continuum of intermediate consistency

models (multi-level consistency) with tunable parameters. These quantifiable degrees of

consistency can be exploited by applications to explore, at runtime, their own trade-offs

between consistency and availability, while taking into account the changing network and

service conditions. More specifically, TACT bounds the amount of inconsistency and di-

vergence among the replicas in an application-specific manner. Basically, applications

specify their consistency semantics through conits; a set of metrics that capture the con-

sistency spectrum: Numerical Error, Order Error, Staleness.

85

4.5. THE PROPOSED ADAPTIVE CONSISTENCY FOR ONOS

Hence, for each conit, consistency is quantified continuously along a three-dimensional
vector:

Consi stenc y = (Numer i cal Er r or,Or der Er r or,St aleness) (4.1)

Numerical Order bounds the discrepancy between the value delivered to the application

client and the most consistent "final" value. Order Error bounds inconsistency by the

number of tentative/unseen writes at any replica. Staleness places a real-time bound on

the delay for propagating the writes among the replicas.

In our opinion, many features from the discussed continuous consistency spectrum

can indeed be incorporated when rethinking the ONOS strategy to state consistency, es-

pecially in the context of large-scale deployments.

Figure 4.1: The proposed adaptive consistency strategy

86

4.5. THE PROPOSED ADAPTIVE CONSISTENCY FOR ONOS

4.5.2 Our consistency adaptation strategy for ONOS

We propose to maintain the strong consistency model implemented in ONOS for appli-

cations requiring strict consistency guarantees, but we suggest turning the eventual con-

sistency model into an adaptive tunable model following the concept of continuous con-

sistency in order to explore the availability, consistency and scalability benefits of such a

model.

With this in mind, we adopt the following strategy when reviewing the eventual con-

sistency model:

- We keep the current implementation of the optimistic replication technique used for

replicating events and updates among controllers in the cluster.

- We bring significant changes to the anti-entropy protocol used for eventual consis-

tency in ONOS: Instead of running the anti-entropy process for each controller replica

periodically at fixed intervals (each 3-5 seconds) (voluntary anti-entropy) causing too

much overhead and affecting system scalability and performance, we argue that the anti-

entropy process should only be scheduled when the system consistency is at risk (com-

pulsory anti-entropy). In other words, the choice of the anti-entropy reconciliation pe-

riod for each controller replica (per-replica consistency) should be based on the correct-

ness of the system with respect to the consistency requirements expressed by the applica-

tions. That way, at each controller replica and for each application state, the consistency

level is dynamically adapted based on the computed values of the consistency metrics

(see Equation (4.1)) capturing the application’s consistency semantics with respect to the

given thresholds set in advance by the application.

4.5.3 Our implementation approach

To implement our state consistency adaptation approach, we consider a replicated source

routing SDN application running on top of a cluster of multiple ONOS controllers. The

cost-based source routing application operates on a distributed topology graph for com-

puting the shortest-path costs between source and destination hosts. Since the topology

graph state is handled in an eventually-consistent manner, the application’s state is also

considered as eventually-consistent.

In our routing application f , the path between the source host A and the destination

host B (see Figure 5.1) may be defined as a conit. Besides, we argue that an important con-

sistency requirement for our control application is the result optimality of the instant path

87

4.5. THE PROPOSED ADAPTIVE CONSISTENCY FOR ONOS

computation cost (in terms of hop-count in our case) which is captured by the Numeri-

cal Error metric. The numerical error of our conit C can be defined as relative difference

between the value of the "shortest-path" cost xlocal as perceived by a local replica, and its

"final "optimal" value xopti mal at a replica that has reached some "final" consistent state.

That error is continuously bounded at run-time using an application-defined threshold

T(f) (in percentage) as follows:

Numer i cal Er r or (C f) = (
|xlocal −xopti mal |

xopti mal
) < T(f) (4.2)

Finally, it is worth noting that other consistency semantics for the source routing appli-

cation might be expressed using Staleness and Order Error.

To implement our approach, we introduce some modifications to the ONOS Java source

code. We start by developing our adaptive source routing application (similar to the In-

tent Forwarding Application) for computing the shortest-path cost between host A and

host B. Running on each ONOS instance, our application gets information from the in-

memory topology cache maintained by each ONOS instance (DistributedTopologyStore).

Whenever an update occurs in the topology graph (e.g. links/devices failing or joining),

our application detects that topology change and updates the "local" shortest-path cost

between host A and B accordingly. We also modify the implementation of the Eventu-

allyConsistentMap distributed primitive, especially for the eventually-consistent stores

that feed the topology store (e.g. link and device stores). We indeed focus on the Back-

groundExecutor service of the eventually-consistent maps, which runs the background

anti-entropy tasks, and we propose a new implementation of the Runnable interface used

for executing the scheduled anti-entropy thread.

In fact, instead of sending the anti-entropy advertisement messages periodically each

3-5 seconds between the controllers, as it is the case in ONOS, we propose to run, at each

replica, a periodic check on the consistency of other replicas with respect to the appli-

cation’s shortest-path cost state, by computing at run-time the relative Numerical Error

defined in Equation (4.2). In fact, in the event of a controller failure, the rest of the con-

trollers in the cluster that detect that failure, keep a screen-shot of their own topology

graph at the moment of the failure. During the periodic consistency check, they use that

stored topology graph to estimate the inconsistency of the failed controller; which is equal

to the relative difference between the "local" shortest-path cost (computed based on the

current topology graph state) and the shortest-path cost as perceived by the controller

88

4.6. PERFORMANCE EVALUATION

after recovery (computed based on the stale topology graph state being stored).

When the failed controller recovers, the rest of the controllers make an anti-entropy

decision based on the checked numerical error. If the error exceeds an "alarming" con-

sistency threshold set in-advance by the application, then, an anti-entropy process is

launched to fix the failed controller state. That is achieved by synchronizing the con-

trollers’ eventually-consistent stores that feed the topology view. In the opposite case, the

inconsistency is considered as tolerated by the application, and an anti-entropy session

might be scheduled afterwards in case the controller state significantly drifts away.

4.6 Performance evaluation

4.6.1 Experimental setup

Our experiments are performed on an Ubuntu 16.04 LTS server using ONOS 1.13. We use

the network emulator Mininet 2.2.1. which can create virtual switches,hosts and connect

to the ONOS controllers. We also use an ONOS-provided script (onos.py) to start an emu-

lated ONOS network on a single machine; including a logically-centralized ONOS cluster,

a modeled control network and a data network. Wireshark is used as a sniffer to capture

the inter-controller traffic which uses TCP port 9876.

To validate our proposed approach on ONOS, which we will refer to as ONOS-WAC

(ONOS-With Adaptive Consistency), we have considered many test scenarios. In each

scenario, we run a cluster of N ONOS controller instances, controlling a Mininet network

topology of S switches (see Table 4.1).

Test N S F Controller
scenarios Controllers Switches Failure scenarios
no1 3 16 2
no2 5 36 3
no3 7 64 4
no4 9 100 4
no5 10 121 5

Table 4.1: Test scenarios

In order to create state inconsistencies among the controller instances in the cluster

with respect to the shortest-path cost state of our source routing application, we create

different controller failure scenarios F. Shortly after a controller failure (in F) in a specific

scenario Si , we consider changing the network topology by taking down network switches

and links along the shortest-path (computed by the application) between source host A

89

4.6. PERFORMANCE EVALUATION

and destination host B. That way, after recovery, the controller will have an inconsistent

network topology view as compared to the rest of the controllers in the cluster. According

to our proposed approach, that inconsistency in the network topology view affects the

optimality of the shortest-path cost computation performed by the source routing appli-

cation instance running on top of the recovered controller. The induced Numerical Error

is likely to trigger a synchronization process achieved by anti-entropy tasks (see Section

4.5.3).

4.6.2 Results

In Scenario no1 (Scenario with three controllers as shown in Table 4.1), we adopt the

methodology described in 4.6.1. In Figure 4.2, we show the inter-controller traffic cap-

tured during the test scenario period in an ONOS cluster (Figure 4.2(a)) and in an ONOS-

WAC cluster (Figure 4.2(b)). After running the Mininet topology according to Scenario

no1, the same event sequence is performed for both ONOS and ONOS-WAC clusters. For

instance, the first traffic peak in both figures (at t = 90s) corresponds to a "pingall" Mininet

CLI command executed for topology discovery. At t = 150s, we simulate a failure scenario

by taking down one controller instance. That action is followed by other topology changes

(e.g. links down) corresponding to the subsequent peaks in both figures. At t = 180s, we

bring back the failed controller, resulting in a traffic peak that appears to be more signifi-

cant in the case of ONOS-WAC. That increase in traffic is due to the anti-entropy process

which has been triggered by an inconsistency (Numerical Error) value that exceeded the

application threshold. Conversely, in the ONOS network, the anti-entropy traffic is gener-

ated periodically over the test period regardless of the observed inconsistencies. Likewise,

at t = 280s, we repeat the same scenario following the same event sequence, but consider-

ing the failure of a different controller.

(a) ONOS (b) ONOS-WAC

Figure 4.2: Scenario no1: Captured Inter-controller traffic (in packets per second) during the test
scenario period (using Wireshark)

90

4.6. PERFORMANCE EVALUATION

In the test scenario described above, the application inconsistency threshold was set

to 0%, triggering the start of anti-entropy sessions for any observed inconsistencies in the

considered application state. In the following test experiments, we repeat the same sce-

nario (Scenario no1), but we consider varying the source routing application’s inconsis-

tency threshold. As shown in Figure 4.3, ONOS shows an average inter-controller over-

head equal to 315kbps regardless of the application inconsistency threshold. On the

other hand, ONOS-WAC shows relatively less inter-controller overhead (due to low anti-

entropy overhead). The latter is impacted by the application’s consistency requirements.

For example, in the case of strict consistency requirements (application threshold be-

tween 0% and 30%), inconsistencies occurring in the application state are more likely to

trigger the anti-entropy reconciliation sessions causing much more overhead, when com-

pared to the case of less strict consistency requirements (application threshold between

40% and 50%).

Figure 4.3: Scenario no1: Inter-controller overhead in ONOS and ONOS-WAC according to the
application threshold

In order to assess the gain in Anti-Entropy overhead of our adaptive consistency model

implemented on ONOS, as compared to the eventual consistency model of ONOS, we

consider estimating the rate (R(Si)) of increase in anti-entropy overhead of ONOS with

respect to ONOS-WAC (see Equation (4.3)) as a function of the number of controllers in

the cluster (following Scenarios no1, no2, no3, no4, no5) (see Figure 4.4).

Ri (Si) = 1− [
A(Si)−B(Si)

C(Si)−B(Si)
] (4.3)

-A(Si): the inter-controller overhead generated by ONOS-WAC after the event sequence

(4.6.2) following Scenario Si .

91

4.7. CONCLUSION

-B(Si): the inter-controller overhead generated by ONOS-WAC before the event sequence

(the overall inter-controller traffic without the anti-entropy traffic).

-C(Si): the inter-controller overhead generated by ONOS after the event sequence (4.6.2)

following Scenario Si .

As shown in Figure 4.4, the gain in anti-entropy overhead, when adopting ONOS-WAC,

grows almost linearly with the number of controllers in the cluster. For example, in Sce-

nario no5 (corresponding to 10 controllers in the network cluster), the gain in anti-entropy

overhead has reached 25%.

Figure 4.4: Gain in Anti-Entropy overhead of ONOS-WAC with respect to ONOS according to the
number of controllers in the cluster

4.7 Conclusion

In this work, we investigated the use of adaptive consistency for the distributed ONOS

controllers. Our approach was aimed at turning the eventual consistency model of ONOS

into an adaptable multi-level consistency model following the concept of continuous

consistency. The latter delivers the performance and availability benefits of an eventual

consistency model, but has the additional advantage of controlling the state inconsisten-

cies in an application-specific manner. Our consistency adaptation strategy was imple-

mented for a source routing application on top of ONOS. Besides ensuring the applica-

tion’s state consistency requirements (specified in the given SLA), our results showed a

substantial reduction in the Anti-Entropy reconciliation overhead, especially in the con-

text of large-scale networks. As a future work, we consider extending our adaptive con-

sistency approach to the optimistic replication technique used in ONOS’s eventual con-

sistency model by leveraging multiple replication degrees as well as the geo-placement of

92

4.7. CONCLUSION

the controller replicas.

Although the main focus of this work was placed at dynamically adjusting the con-

sistency level of application states (which use controller states), we plan to extend our

approach to the controller states (internal controller applications). Indeed, the long-term

goal of this work is to design adaptively-consistent controllers that adjust both control

and application plane consistency levels under changing network conditions.

93

Chapter 5

Adaptive and continuous consistency for
distributed SDN controllers:
Quorum-based replication

« Power is gained by sharing
knowledge, not hoarding it »

Maria Khan

Contents
5.1 Introduction . 96

5.2 Background on eventual consistency in distributed data-stores 97

5.2.1 Consistency and performance Metrics: 97

5.2.2 Adaptive consistency control . 99

5.2.3 Existing modern tunable consistency systems 99

5.3 The proposed adaptive Quorum-inspired consistency for ONOS 100

5.3.1 A continuous consistency model for ONOS 101

5.3.2 Our Quorum-inspired consistency adaptation strategy for ONOS . 102

5.3.2.1 Quorum consistency . 102

5.3.2.2 Adaptive architecture . 103

5.4 Implementation approach on ONOS . 108

5.4.1 Design of a CDN-like application . 108

5.4.2 State synchronization and content distribution 110

5.4.3 Content delivery to customers . 111

5.5 Performance evaluation . 113

5.5.1 Experimental setup . 113

5.5.1.1 TCL-Expect scripts . 114

5.5.1.2 OpenAI Gym simulator . 118

5.5.1.3 Various learning agent policies 118

5.5.2 Results . 119

5.5.2.1 Impact of the Read and Write Quorum sizes 119

94

5.5.2.2 Quorum configuration optimization 121

5.5.2.2.1 Dynamic application SLA requirements 121

5.5.2.2.2 Dynamic application workloads 125

5.6 Conclusion . 127

95

5.1. INTRODUCTION

5.1 Introduction

Existing SDN controller platforms have been architected according to different SDN con-

trol plane designs with the aim of meeting specific requirements in terms of scalability,

high-availability and performance. Consistency has also been regarded as an essential

design principle for the distributed SDN controller platforms. The latter use conventional

consistency models to manage the distributed state among the controllers in the clus-

ter. As explained in Section 4.3.2 of the previous Chapter, the consistency models used in

SDN can be categorized into strong, eventual and weak [38; 150; 159]. These static and

standard consistency models [150; 159] have both advantages and drawbacks.

In large-scale SDNs, the Strong Consistency control model might be extremely expen-

sive and costly to maintain for certain applications. Indeed, it requires important syn-

chronization efforts among the controller replicas at the cost of causing serious network

scalability and performance issues. By contrast, the Eventual Consistency control model

implies less inter-controller communication overhead as it sacrifices the strict consis-

tency guarantees for higher availability and improved performance. In practice, many

scalable control applications running in modern distributed storage systems like Apache’s

Cassandra [111] and Amazon’s Dynamo [113] opt for eventual consistency to provide such

requirements on a large scale. However, these applications might suffer from the asso-

ciated relaxed (weak) consistency guarantees that may temporarily allow for too much

inconsistency.

Recent research works in the area of distributed SDN control have explored the con-

cepts of Adaptive Consistency control for various applications [115; 116; 160–162]. Such

categories of consistency models follow different adaptation strategies that mainly fo-

cus on dynamically adjusting the levels of consistency at run-time under various network

conditions in order to meet the application-defined consistency and performance needs.

Unlike strong and eventual consistency options, adaptive consistency control mod-

els leverage the broad space of intermediate consistency degrees between these two ex-

tremes. They, indeed, use time-varying consistency levels to support balanced real-time

trade-offs between the desired consistency and performance requirements which can be

specified in the application-defined Service-Level Agreements (SLAs) [163].

In this chapter, we propose an adaptive consistency model (based on eventual con-

sistency) for the ONOS controller applications that are deployed in large-scale networks.

96

5.2. BACKGROUND ON EVENTUAL CONSISTENCY IN DISTRIBUTED DATA-STORES

Most notably, we target the class of applications that tolerate relaxed forms and degrees of

eventual multi-consistency for the sake of scalability and performance, but yet can bene-

fit from improved consistency features.

More specifically, our state consistency adaptation approach was implemented for a

CDN-like application we developed on top of the distributed open-source ONOS con-

trollers. It mainly consists in changing ONOS’s eventual consistency model to an adaptive

consistency model by turning ONOS’s optimistic replication technique into a more scal-

able replication strategy following Quorum-replicated consistency models. Indeed, the

adaptive consistency strategy we propose in this chapter focuses on improving ONOS’s

replication mechanism: It uses the read and write Quorum parameters as adjustable con-

trol knobs for a fine-grained consistency tuning, rather than relying on Anti-Entropy rec-

onciliation mechanisms (see previous Chapter 3) [162]. The main objective is to find at

runtime optimal Quorum replication configurations that achieve, under changing net-

work conditions and varying application workloads, balanced trade-offs between the ap-

plication’s continuous performance (latency) and consistency (staleness) requirements.

These real-time trade-offs should provide minimal application inter-controller overhead

while satisfying the application-defined thresholds specified in the given application SLA.

The rest of this chapter is organized as follows: In Section 5.2, we conduct a back-

ground review of eventual consistency models in modern distributed data-store systems.

Inspired by the modern consistency techniques used in these scalable data-stores, we

present, in Section 5.3, our adaptive and continuous Quorum-based consistency model

for the distributed ONOS controllers in large-scale deployments. In Section 5.4, we de-

scribe our methodology for implementing the proposed consistency strategy on a CDN-

like application that we designed on top of the ONOS controllers. Finally, Section 5.5

elaborates on the test scenarios we developed to evaluate our proposal and discusses the

experimental results.

5.2 Background on eventual consistency in distributed data-
stores

5.2.1 Consistency and performance Metrics:

Guaranteeing the consistency of replicated data in distributed database systems has al-

ways been a challenging task. Today’s fundamental consistency models (e.g. strong con-

97

5.2. BACKGROUND ON EVENTUAL CONSISTENCY IN DISTRIBUTED DATA-STORES

sistency, sequential consistency, causal consistency, eventual consistency) ensure differ-

ent discrete levels and degrees of consistency guarantees. For instance, the strong con-

sistency model offers up-to-date data, but at the cost of high latency and low throughput.

As a result, weaker forms of consistency (in the consistency spectrum)-most notably the

popular notion of eventual consistency- have been widely adopted in modern distributed

data-stores which need to be highly-available, fast and scalable [111; 113]. However, de-

spite being regularly acceptable and desirable in practice for the latency and throughput

benefits they offer, eventual consistency models provide no bounds on the inconsistency

of data they return. Another major limitation of these models is that the trade-offs they

make among consistency and performance (latency) are difficult to evaluate. In fact, mea-

suring the concrete consistency guarantees of eventually-consistent distributed stores re-

mains challenging.

Yu and Vahdat proposed the TACT framework [147] which fills in (captures) the con-

sistency spectrum/space by providing a continuous conit-based and multi-dimensional

consistency model. The latter can be leveraged by replicated Internet services to dynami-

cally choose their own tunable and fine-grained consistency-performance and consistency-

availability trade-offs based on client, service and network characteristics. In TACT, the

authors quantify consistency by bounding the amount of inconsistency/divergence of the

replicated data items in an application-specific-manner using three application-independent

metrics: Numerical error, Order error and Staleness. Besides, Bailis et al. [164; 165] pre-

sented an approach based on a set of probabilistic models to predict the expected con-

sistency guarantees as measured by the staleness of reads observed by client applications

in eventually-consistent Dynamo-style partial quorum systems. The authors introduced

the WARS Probabilistically Bounded Staleness (PBS) model which provides bounds on

the expected staleness in terms of both versions (using the k-staleness metric) and wall

clock time (using the t-visibility metric). Another interesting work found in [166] pro-

poses an automated self-adaptive consistency approach called Harmony which embraces

an intelligent estimation of the stale read rate metric in Cloud storage systems, allowing

to automatically adjust the consistency level at run-time according to application needs.

That was achieved by elastically scaling up or down the number of replicas involved in

read operations to preserve a low tolerable fraction of stale reads. When compared to the

static eventual consistency approach in Cassandra, Harmony significantly enhances the

consistency guarantees by reducing the rate of stale reads while adding only minimal la-

98

5.2. BACKGROUND ON EVENTUAL CONSISTENCY IN DISTRIBUTED DATA-STORES

tency. Besides, when compared to the strong consistency model in Cassandra, Harmony

improves the performance of the system by increasing the overall throughput while main-

taining the desired consistency requirements of the applications.

5.2.2 Adaptive consistency control

Modern distributed database systems supporting standard eventual consistency models

suffer from the inevitable trade-offs between consistency, availability and request latency.

To overcome this major limitation, these storage systems have introduced the concept of

adaptive consistency in order to find appropriate consistency options depending on ap-

plication requirements and system conditions. In literature, adaptive consistency tech-

niques have been broadly classified into two categories: user-defined and system-defined

[156].

In contrast to user-defined adaptive consistency methods where data and operations

need to be mapped in advance to the desired consistency levels (using some parameters),

system-defined adaptive consistency methods take into account the fact that user and

system behaviors might change dynamically over time making the consistency decision-

making process challenging and tricky for application developers. That is why, system-

defined techniques usually rely on system intelligence and adaptability to automatically

provide fine-grained control over the consistency guarantees at run-time. Accordingly,

many factors can be considered to dynamically estimate and predict the appropriate sys-

tem consistency, including data access patterns, system load, but also the application’s

consistency SLAs as discussed in Section 5.2.1. One famous form of system-defined adap-

tive consistency is the continuous consistency model used in TACT [147].

Additionally, it is worth mentioning that designing system-defined adaptive consis-

tency (falling within the scope of this work) requires careful considerations of the appro-

priate consistency adaptation strategy. In particular, existing adaptive mechanisms use

different control knobs to be configured for consistency tuning such as the consistency

level, the artificial read delay, the replication factor and the read repair chance [167].

5.2.3 Existing modern tunable consistency systems

Popular distributed (Cloud) storage systems, most notably Apache’s Cassandra [111], Ama-

zon’s Dynamo [113], Riak [112], and Voldemort [168] opt "by default" for eventual con-

sistency guarantees in exchange for extremely high availability. However, these systems

99

5.3. THE PROPOSED ADAPTIVE QUORUM-INSPIRED CONSISTENCY FOR ONOS

attempt to provide the applications with some control over the consistency and perfor-

mance trade-offs via built-in settings and features. They indeed extend the concept of

eventual consistency by offering tunable consistency levels for application developers

and users based on Dynamo-style quorum replication policies.

In Cassandra, the consistency level specifies the size of a quorum for reads and writes,

which is the appropriate number of replicas in the cluster that must acknowledge a read or

write operation before considering the operation successful. The native and well-known

consistency levels/options in Cassandra are three: ONE replica, a QUORUM of replicas,

and ALL of the replicas. Accordingly, different choices of read and write consistency levels

(quorums) ensure different consistency guarantees. For instance, to achieve the high-

est strong consistency, different quorum configurations may be selected, but they must

satisfy the overlapping quorum property between read and write replica sets (strict quo-

rums). On the other hand, to provide acceptable consistency with improved availability

(minimum latency), it is desirable to use weaker forms of consistency such as the de-

fault eventual consistency option. Such weak consistency levels can be achieved through

different quorum configurations that do not satisfy the overlapping quorum intersection

property (partial (non-strict) quorums).

As a result, modern storage systems like Cassandra can be classified in the category of

user-defined adaptive consistency as discussed in Section 5.2.2, given that they offer mul-

tiple consistency options. However, although these systems offer adaptive consistency on

top of tunable consistency models that are aimed at creating balanced trade-offs between

consistency and performance, it is usually difficult for application developers to decide in

advance about the required consistency options for a particular request [156].

5.3 The proposed adaptive Quorum-inspired consistency
for ONOS

In this chapter, we propose a novel quorum-based and system-defined adaptive consis-

tency model for the distributed ONOS controllers. Our approach was partly inspired by

the quorum-replicated consistency techniques used by the modern data-store systems

discussed in Section 5.2.3.

The ONOS approach to state consistency in the latest releases was described in detail

in Section 4.4. It mainly relies on two consistency schemes that provide two levels of

consistency: strong consistency and eventual consistency. While the strong consistency

100

5.3. THE PROPOSED ADAPTIVE QUORUM-INSPIRED CONSISTENCY FOR ONOS

model is leveraged by ONOS controller applications that require strong consistency and

correctness guarantees, the eventual consistency model is intended for ONOS controller

applications that favor scalability and performance over strict consistency.

In this chapter, we target the second class of scalable control applications that have

optimistic relaxed consistency needs, but that can benefit from improved performance

and automated SLA-aware consistency tuning at scale, as offered by our adaptive contin-

uous consistency strategy.

5.3.1 A continuous consistency model for ONOS

As explained in Section 4.5.1, the applications on top of the ONOS controllers can ben-

efit from the continuous consistency model introduced with TACT [147], by continu-

ously and dynamically specifying their consistency requirements using three application-

independent metrics to capture the consistency spectrum and bound consistency: Nu-

merical Error, Order Error, and Staleness.

In this work, we focus on the type of applications whose application-specific con-

sistency semantics can be expressed using the staleness of data as a metric to quantify

the level of consistency. With such SLA-style consistency metrics, these applications can

avoid the challenges related to potentially unbounded staleness as in eventual consistency.

Generally speaking, the staleness metric measures data freshness in distributed data-

stores ; it describes how far a given replica lags behind in data operations in comparison

to up-to-date replicas, either expressed in terms of time or versions. In the literature, the

notion of data staleness falls indeed into two common categories: staleness in time (time-

based staleness) [147; 164], and staleness in data version (version-based staleness) [164].

In TACT [147], the staleness metric places a real-time bound on the amount of time

before a replica is guaranteed to see a write accepted by a remote replica. In [165], the

authors propose a probabilistic consistency framework that provides expected bounds on

data staleness with respect to both versions and wall clock time in eventually-consistent

data-stores. In their model, time-based staleness (t_visibility) describes the probability

that a read operation, starting t seconds after a write commits, will observe the latest value

of a data item [164]. On the other hand, version-based staleness (k_staleness) describes

by how many versions the value returned by a read lags behind the most recent write. It is

measured as the probability of returning a value within a bounded number k of versions.

In this work, we adopt the data staleness metric from a strictly time-based perspective.

101

5.3. THE PROPOSED ADAPTIVE QUORUM-INSPIRED CONSISTENCY FOR ONOS

In our SDN controller application, we characterize staleness by an "Age of Information

(AoI)" timeliness metric [169] that describes the difference between the query time of a

data item and the last update time on that item. If the last successfully received update

was generated at time u(t) then its age at time t is ∆(t) = t −u(t).

Applications on top of the distributed ONOS controllers could also benefit from SLA-

style performance requirements, to continuously specify their own fine-grained trade-

offs between performance and consistency. In our work, we consider the read request

latency/delay as our performance metric. In addition, we evaluate the inter-controller

communication overhead for our ONOS application.

More detailed information about the way we measure our continuous consistency and

performance metrics when implementing our state consistency approach for the new

controller application we developed on top of ONOS is provided in Section 5.4.

5.3.2 Our Quorum-inspired consistency adaptation strategy for ONOS

5.3.2.1 Quorum consistency

As explained in Section 5.2.3, quorum-replicated systems ensure different consistency

guarantees:

• Strong consistency can be guaranteed with strict quorums that satisfy the condition

that sets of replicas written to and read from need to overlap:

R+W > N, given N replicas and read and write quorum sizes R and W.

• Eventual consistency occurs with partial quorums that fulfill the condition that sets

of replicas written to and read from need not overlap:

R+W ≤ N, given N replicas and read and write quorum sizes R and W.

Traditionally, partial quorum-replicated systems ensure eventually-consistent guar-

antees, with no limit to the inconsistency of the data returned, which may not be accept-

able for certain applications. However, with the PBS model [164], it has been possible for

applications to analyze the staleness of the data returned, quantify the consistency level,

and therefore measure the latency-consistency trade-offs for partial quorum systems.

Building on these concepts, we propose an adaptive consistency model for the ONOS

applications using partial quorums, given the latency and scalability benefits they offer.

To measure the consistency semantics (e.g the staleness metric) of these applications and

102

5.3. THE PROPOSED ADAPTIVE QUORUM-INSPIRED CONSISTENCY FOR ONOS

thus meet their consistency requirements (e.g bounded staleness), we leverage the con-

tinuous consistency model discussed in Section 5.3.1.

Furthermore, using eventually-consistent partial quorums, it is possible to configure

the size of read and write quorums, denoted respectively as R and W such that R+W ≤ N,

to ensure various consistency levels (e.g degrees of staleness). These multiple quorum

configurations allow the applications to achieve different consistency-latency trade-offs.

5.3.2.2 Adaptive architecture

In this work, we propose to turn the eventual consistency model into an adaptive and

continuous tunable consistency model using partial quorums. The proposed model uses

the quorum replication parameters as the control knob, allowing for an adaptive fine-

grained tuning and control over the consistency-performance trade-offs. In the following,

we describe the main architecture components of our adaptive consistency model.

 (...)

Network system Our adaptive consistency strategy

Monitoring Module

Reconfiguration
Module

Application SLA
Module

Automatic Module

Machine
Learning
Module

Application
Workload Identifier

Quorum-based
Replication Module

Controller 1

Controller N

 Application

Figure 5.1: Architectural overview of our adaptive Quorum-based consistency strategy

• Application SLA Module

This module offers the possibility for applications on top of ONOS to express their

high-level SLA-style consistency and performance requirements such as the stale-

ness and latency guarantees. Accordingly, for a given ONOS application that we de-

velop on top of ONOS, our consistency model continuously measures the real-time

metrics involved in quantifying the consistency-latency trade-off. The Automatic

Module translates these requirements into appropriate time-varying partial quo-

rum replication configurations (R,W,N) that achieve balanced trade-offs between

the specified guarantees.

103

5.3. THE PROPOSED ADAPTIVE QUORUM-INSPIRED CONSISTENCY FOR ONOS

• Workload Identifier Module

This module identifies the application’s workload characteristics. It considers three

different workloads that are representative of three different application scenarios

[170]. The first workload describes a read-intensive scenario where 70% of opera-

tions are read accesses. The second workload has a balanced ratio between read and

write operations. Finally, the third workload represents a write-dominated scenario

in which 70% of the generated operations are write accesses.

• Monitoring Module

This module is responsible for periodically gathering the application traffic infor-

mation in a non-intrusive manner. More specifically, the module measures the sys-

tem KPIs, for different read/write Quorum configurations and according to different

application workload scenarios. These KPIs include the performance (e.g. response

time) and consistency (e.g staleness) metrics related to client requests for specific

application contents, as well as the generated (read and write) application over-

head.

• Automatic Module

The choice of the size of read and write Quorums used when executing read and

write operations is a fundamental factor that affects the application’s consistency

guarantees but also the performance provided by the network system. However,

selecting the right Quorum configuration is a non-trivial task. Our Automatic Mod-

ule attempts to find the optimal configuration of the read and write Quorum sizes

while taking into account the current application workload conditions. The main

objective is to minimize the overhead generated by the application (scalability chal-

lenge), and potentially other network and application metrics, while satisfying the

consistency and performance SLAs specified by the application.

This module is fed with a set of application workload characteristics which are gath-

ered by the Workload Identifier Module. In our case, it relies on a Machine Learning

Module to predict the expected optimal configuration of the Quorum parameters

for the determined workload, and then feed them to the Reconfiguration Module.

• Machine Learning Module

104

5.3. THE PROPOSED ADAPTIVE QUORUM-INSPIRED CONSISTENCY FOR ONOS

This module uses Reinforcement Learning (RL); an area of Machine Learning (ML)

inspired by behaviorist psychology, and concerned with how software agents take

actions in an environment so as to maximize some notion of cumulative reward.

More specifically, we use a Q-Learning (QL) model-free RL technique [171]. The

main idea is to train an agent which interacts with its environment by performing

actions that change the environment, going from one state to another. These ac-

tions result in a reward received by the agent as an evaluation of its actions (rein-

forcement) (see Figure 5.2). In this way, the agent learns some rules and develops a

strategy, referred to as a policy, for choosing actions that maximize its reward.

Figure 5.2: Reinforcement Learning (RL) architecture

The Q-Learning update rule makes use of the so-called Action-Value function, com-

monly known as the Q-function, representing the “quality” of a certain action in

given state. It takes as inputs the "state" and the "action", and returns the expected

future reward of that action at that state. In other words, the Q-function maps state-

action pairs to the highest combination of immediate reward with all (discounted)

future rewards that might be collected by later actions. The expression of the Q-

function is given by the following equation (from Wikipedia):

105

5.3. THE PROPOSED ADAPTIVE QUORUM-INSPIRED CONSISTENCY FOR ONOS

(5.1)

The above function is used for updating the Q-table with Q-values at each episode.

A Q-value is assigned to a possible pair of a state s and an action a. It is also worth

noting that the learning agent should achieve a good strategy for balancing the ex-

ploration/exploitation trade-off inherent to reinforcement learning. That dilemma

consists in choosing the appropriate action at a given episode: either to exploit the

environment by selecting the best action at that specific time step given the cur-

rent knowledge provided by the Q-table, or to explore the environment by choosing

random actions. After each action, the agent is expected to update the Q-table.

In our case, the Q-learning agent attempts to learn online the best combination of

the read and write Quorum size parameters, respectively R and W, in an environ-

ment built using our Monitoring Module. An action is defined as an update of R

and W to certain possible values, thereby transforming the environment to a state

defined by a new estimation of the network (inter-controller overhead) and appli-

cation (latency and staleness) metrics. In our case, one of four possible actions is

allowed at each episode (i.e. incrementing R by one, or decrementing R by one, or

incrementing W by one, or decrementing W by one).

The reward received by the agent for updating the Quorum parameter values is a

function of the read and write overheads to be minimized. The agent should also

learn how to respect some constraints in order to satisfy the application require-

ments specified in the given SLA.

• Reconfiguration Module

This module is able to dynamically adjust the values of the read and write Quorum

sizes, denoted respectively as R and W. It basically relies on the Automatic Module

to optimize the configuration of the quorum system. The reconfiguration process

launched by this module is a non-blocking process that is able re-configure at run-

time the Quorum settings selected by the Automatic Module.

106

5.3. THE PROPOSED ADAPTIVE QUORUM-INSPIRED CONSISTENCY FOR ONOS

A more detailed description of the way the re-configuration module sets the values

of R and W at run-time is provided in Section 5.5.1.1.

• Quorum-based Replication Module

Given the quorum replication settings, we adopt the following consistency strat-

egy when reviewing the two main techniques employed by ONOS’s eventual con-

sistency model:

– Replication Strategy: As explained in Section 4.4.2.1, ONOS’s eventually-consistent

stores employ an optimistic replication technique that consists in replicating

local updates across all the controllers in the cluster, hence causing control

plane overhead. Instead, we put forward a partial quorum replication strat-

egy, where an eventually-consistent data store writes a data item on the local

replica first and then sends it potentially to another set of replicas, obeying the

given write quorum parameter (W). On the other hand, to serve read requests,

we propose that the eventually-consistent data store fetches the data from the

local replica first and then potentially from another set of replicas, depending

on the given read quorum (R). This is in contrast to ONOS’s strategy where the

read requests are always processed by the local replica.

– Anti-Entropy reconciliation mechanism: As explained in Section 4.4.2.2, ONOS’s

optimistic replication strategy is complemented by a background Anti-Entropy

mechanism. That periodic reconciliation approach ensures that the system

state across all replicas eventually converges to the consistent state. This is

particularly useful in repairing out-of-date replicas and fixing state inconsis-

tencies potentially resulting from controller failures. In this work, we assume

that the system is reliable as we experiment with well-functioning emulated

network topologies in the absence of controller failure scenarios. Therefore,

we propose to deactivate the Anti-Entropy protocol, and focus on ONOS’s repli-

cation strategy. However, it is worth noting that using additional Anti-Entropy

(expanding partial quorums [164]) might be useful in particular cases where

state inconsistencies become high and can no longer tolerated by the con-

cerned applications.

107

5.4. IMPLEMENTATION APPROACH ON ONOS

Figure 5.3: The proposed adaptive consistency system

5.4 Implementation approach on ONOS

In this section, we describe the implementation details for realizing the proposed consis-

tency strategy explained in the previous section (see Figure 5.3) on the Java-based open

source ONOS controller platform.

5.4.1 Design of a CDN-like application

To validate our adaptive consistency approach, we developed a new distributed Con-

tent Delivery Network (CDN) application running on top of a cluster of multiple ONOS

controllers in an emulated SDN network. Our application replicates contents from con-

tent providers to hosting cache servers that are located in multiple geographical locations

(ONOS domains) close to users. These cache servers are Mininet hosts that run simple

HTTP web servers. We propose to consider a single origin server located in each ONOS

domain. The main idea is to serve client hosts with the most up-to-date copies of the

requested content and within a reasonable time (low latency).

More specifically, our application consists of two main components: An Applica-

tionManager and a DistributedApplicationStore. The Application Manager compo-

nent which is an implementation of the Application Service is responsible for creating a

virtual network of cache servers and providing mesh connectivity between these server

hosts. On the other hand, the Distributed Application Store which is an implementation

108

5.4. IMPLEMENTATION APPROACH ON ONOS

of the Application Store performs the task of persisting and synchronizing the informa-

tion received by the application manager. It is backed by an eventually consistent map

with eventual consistency guarantees for storing the service’s application state, namely

the list of origin servers in the network and their respective set of generated contents:

EventuallyConsistentMap < OriginServerID, Set<Content> >

Each content that is created on the origin server, and then eventually propagated to cache

servers has four properties; a ContentName, an identifier ID, a real time-based Creation-

Time, a LogicalTimestamp, and a Version.

Each controller replica that is responsible for a given ONOS domain operates on a

local view of the eventually consistent map. That view consists of the local origin server

from the same ONOS domain with its generated set of contents, and other potential origin

server hosts located in different ONOS domains in the network with their respective set of

contents, as seen by the local replica after application state synchronization.

Besides, we design a cached map that is local to each controller application instance

and that represents the contents cached in the local CDN server within the same ONOS

domain. The local cached map is closely linked to the local view of the eventually consis-

tent map, and it reflects the contents stored in the local CDN server. The latter performs

the functions of an origin server and at the same time a cache server. It contains indeed

the contents created locally (origin server), and potentially other contents that are repli-

cated from other origin servers (cache server).

More specifically, on a local controller replica, updates to the eventually consistent

state map (e.g PUT) might trigger specific actions to feed the local CDN server and conse-

quently update the local cached map. If the update to the content is associated in the map

with the local origin server, that means that the updated content has already been gener-

ated on that origin server. On the other hand, if the update to the content is associated in

the map with another origin server from another ONOS domain, our application checks

the relevance of that content. In case the content is important to our application, then the

update to the content gets automatically pulled from the origin server to the local CDN

server (cache server) and gets cached in the local cached map.

CachedMap < ContentName, Set<Content> >

109

5.4. IMPLEMENTATION APPROACH ON ONOS

5.4.2 State synchronization and content distribution

The custom eventually consistent map we use for the synchronization of our CDN appli-

cation state is based on our own implementation of the EventuallyConsistentMap<K,V>

distributed primitive. Indeed, the new implementation we propose for the eventual con-

sistency map abstraction models the quorum-inspired consistency discussed in 5.3.2.1.

Figure 5.4: Quorum-inspired Write operations in our CDN-like application

In particular, it takes into account the size of the write quorum parameter (W) when

replicating the updates related to our application’s eventually consistent map among the

controllers (see Figure 5.4). On each local replica, updates to the local map are queued in

time to different EventAccumulators allocated for different controller peers. The latter

are selected randomly, and their number depends on the write quorum size W. When-

ever an event accumulator is triggered to process the previously accumulated events and

propagate them to the associated peer, that peer is removed from the list of quorum peers.

New updates will immediately trigger the creation of a new accumulator associated with

a new randomly selected peer that is is added to the list of quorum peers. That accumu-

lator will collect the updates together with the other event accumulators associated with

the rest of the quorum peers. That way, we guarantee that updates to the eventually con-

sistent map on a local replica are replicated at run-time to exactly W replicas, including

the local replica.

As explained in Section 5.4.1, such updates to the eventually consistent map on a lo-

110

5.4. IMPLEMENTATION APPROACH ON ONOS

cal controller replica trigger specific actions that might feed the local CDN server with

new contents (content distribution) and thus update the local cached map for our CDN

application.

5.4.3 Content delivery to customers

During a read operation performed by a client, our controller application instance run-

ning on the local controller replica within the same ONOS domain as that client, receives

the read request to be fulfilled following Quorum-inspired read consistency protocols (see

Figure 5.5).

More specifically, if the read consistency level is higher than ONE (read quorum size

R greater than 1), then the local controller node which serves in our case as the coordina-

tor node, sends the read request to the remaining randomly-selected controller replicas

forming the read Quorum. The size R of the read Quorum including the local controller

replica is set in advance by the read consistency level.

We use ONOS’s ClusterCommunicationService to assist communications between

the local controller node and the rest of the controller cluster nodes in the read Quorum.

More specifically, the local controller node sends the read request message with a particu-

lar subject to each of the concerned controller nodes using the sendAndReceive method

of the cluster communication service. It expects a future reply message from each of the

involved controllers that have already subscribed to the same message subject.

That said, to serve the client’s read request for a specific content (ContentName), each

controller node that has subscribed to the specified message subject receives the read re-

quest and uses the application’s handler function for processing the incoming message.

Accordingly, the application instance on each controller replica of the read Quorum (in-

cluding the local replica) consults the local cached map. As explained in Section 5.4.1,

the cached map represents the list of contents (created by different origin servers) be-

ing observed in the local view of the eventually consistent map, and then pulled to be

cached in the local CDN server. Using that map, each application instance compares the

cached versions of the requested content (ContentName) based on their LogicalTimes-

tamp properties in order to determine the freshest version of the content. Then, it pro-

duces a reply containing the selected Content with its four properties discussed in 5.4.1,

and more importantly the IP address of the local cache server that has just delivered the

requested content.

111

5.4. IMPLEMENTATION APPROACH ON ONOS

Figure 5.5: Quorum-inspired Read operations in our CDN-like application

The local controller replica playing the role of the coordinator, waits for the read Quo-

rum of replicas to respond. Then, it merges the R responses (including the response

produced on the local replica) to figure out the location of the freshest version of the re-

quested content among the concerned CDN servers (equal to R in our scenario). Finally,

it sends back the final response to the client and makes sure a host-to-host connectivity

intent is added between the client host and the determined cache server host, using the

ONOS Intent Framework. Based on that response, the client which has issued a HTTP

request specifying the URL of the requested content, is redirected, using our CDN-like

strategy (described above) and a DNS resolution service, to the selected cache server in

order to retrieve the specified version of the content.

After each client request, our application collects the continuous consistency and per-

formance metrics related to that request:

• Performance metrics:

– Network-related metrics:

We consider the application inter-controller overhead as a network perfor-

mance metric. We first capture all inter-controller traffic using TCP port 9876.

Then, we filter the captured traffic based on different conditions in order to

evaluate the application’s inter-controller overhead.

Our goal is to minimize the application overhead due to write and read oper-

112

5.5. PERFORMANCE EVALUATION

ations, depending on the given application SLA, the application workload and

the network context.

Appl i cati onOver head = Wr i teOver head +ReadOver head (5.2)

– Client-centric metrics:

We also consider the response time to a client request as a performance met-

ric. As defined by our application, the response time consists of the delay to

fetch the appropriate version of the requested content from the local cached

maps of the application instances running on the R controller replicas of the

read Quorum (Latency1), and the delay to retrieve the specified version of the

content from the selected cache server host (Latency2).

ResponseTi me = Latenc y1+Latenc y2 (5.3)

• Consistency metrics:

As explained in Section 5.3.1, we consider the application-specific staleness metric

from a strictly time-based perspective: It describes the age of the information in

terms of wall-clock time. Accordingly, the staleness of the application content being

returned by a read operation at time t is measured as follows:

St aleness(Content) = Quer yTi me −Cr eati onTi me(Content) (5.4)

Besides, we set the staleness ranges used in the consistency SLA based on the appli-

cation content refresh rate.

5.5 Performance evaluation

5.5.1 Experimental setup

Our experiments are performed on an Ubuntu 18.04 LTS server using ONOS 1.13. We also

use Mininet 2.2.1 and an ONOS-provided script (onos.py) to start an emulated ONOS net-

work on a single development machine; including a logically-centralized ONOS cluster, a

modeled control network and a data network. Wireshark is used as a sniffer to capture the

inter-controller traffic which uses TCP port 9876.

113

5.5. PERFORMANCE EVALUATION

5.5.1.1 TCL-Expect scripts

In this section, we test our proposed adaptive consistency approach explained in Sections

5.3 and 5.4 which we will subsequently refer to as ONOS-WAQIC (ONOS-With Adaptive

Quorum-Inspired Consistency) for brevity.

To that end, we write two Expect Tcl-based scripts (main.exp and onos.exp). In each

script, we specify a set of required steps to follow to automate the tasks for our test sce-

narios on ONOS-WAQIC as summarized below:

1. First, we run our startup Expect script (main.exp). With Mininet and onos.py, we

start up an ONOS cluster and a modeled data network for the specified topology.

The selected number N of the ONOS controllers that will be forming the ONOS clus-

ter is passed as an argument to the executed script.

2. Then, we run the Mininet CLI built-in pingall command to discover the network

topology. We also launch a spawned process to install and activate the CDN-like

application we developed on ONOS-WAQIC. To force device/switch mastership re-

balancing, we connect to one of the running ONOS controller instances, and launch

the ONOS CLI balance-masters command.

3. First, we parse the output of the dump Mininet command using regular expressions

in Tcl in order to build a key-value array mapping the IP addresses of hosts to their

Mininet names (array1). Then, in the main Expect script, we launch N spawned

processes that connect to the N running ONOS controller instances using the same

Expect script (onos.exp) we developed, but run with different arguments (con-

troller IP address, content name, maximum number of content versions). In the

onos.exp script, we analyze the output of the masters ONOS CLI command to

construct an array mapping each controller IP with the set of associated switches

(MAC IDs) (array2). In addition, using the output of the Mininet CLI hosts com-

mand, we construct two additional arrays: the first array associates each host MAC

ID with its IP address (array3), and the second array associates each host MAC ID

with the switch ID to which it is connected (array4).

4. It is worth noting that our onos.exp script starts by running two ONOS CLI com-

mands (set-read and set-write). We created these commands to set the read

114

5.5. PERFORMANCE EVALUATION

and write Quorum sizes R and W to the values specified by the consistency level for

a given ONOS controller instance. These values are passed as command arguments.

5. Using array2, array3 and array4, each of the N currently spawned processes running

the onos.exp script for a specific ONOS instance builds another Tcl array (array5)

that identifies the list of hosts (MAC addresses) associated with each ONOS con-

troller instance (controller IP address) in the network. Based on that array, our script

randomly selects, for the specified ONOS controller instance, a list of hosts that will

serve as origin cache servers and a list of hosts that will serve as clients in the con-

cerned ONOS controller domain. The number of selected cache and client hosts

depends on the application scenario/workload (see Section 5.3.2.2). Each ONOS

process communicates the MAC and IP addresses of the origin server to the local

application instance using our ONOS CLI set-cache command. Our script also

runs the ONOS CLI add-host command which we created to add the cache server

hosts to our application’s EventuallyConsistentMap (discussed in Section 5.4.1).

Besides, information about these cache server hosts is sent (using "puts") to the

running main.exp script process. The latter identifies the Mininet names of these

hosts using array1 and connects to the Mininet CLI command in order to install a

SimpleHTTPServer on each of the cache server hosts.

6. At this stage, we make sure that our main process (running main.exp) and the N

spawned processes (running onos.expwith different arguments) are synchronized.

Afterwards, each of the N spawned processes connecting to an ONOS controller in-

stance starts adding (then updating with a certain refresh rate) the contents to the

origin server host in the involved ONOS domain. We use the add-content ONOS

CLI command that we created to add a given content version (second command

argument) to the specified origin server host (first command argument) in the ap-

plication’s EventuallyConsistentMap. Further details about content distribution

and state synchronization using Quorum-inspired write consistency are provided

in Section 5.4.2 .

On the other hand, in parallel with the updating of contents, our main process that

is handled by the main.exp script starts issuing and serving client requests for spe-

cific contents. That was achieved using our get-IP-content CLI command which

takes one argument, namely the requested ContentName, and returns the IP ad-

115

5.5. PERFORMANCE EVALUATION

dress of the cache server containing the freshest/selected version of the requested

content, Then, our script retrieves the content from the determined server using

"wget". In addition, after each client request, continuous application-specific con-

sistency and performance metrics related to that request are collected with our

script using regular expressions in Tcl. More details about the content delivery strat-

egy we follow using Quorum-inspired read consistency are given in Section 5.4.3.

116

5.5. PERFORMANCE EVALUATION

Figure 5.6: Overview of the main tasks executed by our TCL-Expect scripts

117

5.5. PERFORMANCE EVALUATION

5.5.1.2 OpenAI Gym simulator

To implement the Machine Learning Module (see Section 5.3.2.2) for our CDN-like ap-

plication on ONOS-WAQIC, we build a simulator based on OpenAI Gym [172], an open-

source Python toolkit for developing and comparing reinforcement learning algorithms.

More specifically, we build a new environment to simulate knowledge exchange in an

ONOS SDN cluster: We start by building an off-line dataset using our TCL-Expect scripts

explained in Section 5.5.1.1. Our dataset stores the information collected by the Mon-

itoring Module about client requests for specific CDN contents. As detailed in Section

5.4.3, for a given client request, the returned information contains the current values of

the Quorum parameters R and W, the expected returned version of the content (con-

tent update step), the actual returned version of the content, the staleness of the returned

content, the delay incurred in searching for the freshest version of the content from R

controller replicas (latency1), the read overhead, the write overhead, and the application

scenario determined by the Workload Identifier Module.

The dataset is fed to the Automatic Module which hands it over to the Machine Learn-

ing Module to learn online the read and write Quorum size parameters. Implemented

with Gym, the latter module uses the dataset to learn the Kernel Density Estimation (KDE

with scipy) for each metric using the data of some clients. That client data is selected

with respect to the current configuration of R and W parameters. That configuration was

set following an action performed by the agent (see the explanation of the Q-learning

algorithm in Section 5.3.2.2 for more details). That way, using KDE, our ML Module es-

timates the expected metrics for each selected Quorum configuration, and then updates

the Q-table with the Q-value of that action at that state, at each step (or episode) of the

Q-learning algorithm.

5.5.1.3 Various learning agent policies

We implemented three learning agents that adopt different policies. The latter are com-

pared and validated through five scenarios. Each scenario reflects a specific use case (e.g.

a latency-sensitive application, a consistency-favoring application). To minimize the ap-

plication’s overall inter-controller overhead, our agents use the estimated overhead as a

negative "reward" when performing actions (setting R and W) that change the environ-

ment state. The controlled and constrained agents are proposed with the aim to improve

the simple greedy agent. Below is a brief description of these agents:

118

5.5. PERFORMANCE EVALUATION

• A simple ε-greedy agent [173]: This agent follows a simple ε-greedy policy with a

fixed ε value, where ε is the exploration rate and (1-ε) is the exploitation rate. We

test three ε-agents: ε-greedy5 (ε=0.5), ε-greedy10 (ε=0.10) and ε-greedy15 (ε=0.15).

• A controlled dynamic ε-greedy agent: This agent follows a dynamic ε-greedy strategy

where the exploration rate ε decays as the algorithm’s episode count increases. The

purpose is to account for the fact that the agent learns more about the environment

in time, and becomes progressively more confident and "greedy" for exploitation.

We use the following decay function for reducing ε as a function of episode count. x

is the episode number.

f (x) = ε∗ (0.5+ log10(2−ar ct an(
x

10
−2))) (5.5)

To attempt to satisfy the application’s latency and staleness thresholds, the simple

and controlled agents reject, at each exploitation episode, any action violating these

constraints and remove its Q-value from the Q-table.

• A constrained ε-greedy agent: To make the agent learn how to satisfy the applica-

tion’s SLA, we create a Q-constraint list that we update over the episodes. Its size

corresponds to the number of potential actions: the number of R and W combina-

tions such that R+W ≤ N. The list represents the number of constraint violations

by each Quorum configuration. The considered constraints are both the latency

and staleness thresholds specified in the SLA. During each exploitation phase, we

update the Q-constraint list, and use it to generate a new Q-list containing the Quo-

rum configurations that give less constraint violations. These configurations are

then exploited: They are compared using their Q-values in the Q-table (based on

the estimated overhead reward) to select the best Quorum configuration (action) at

that episode.

5.5.2 Results

5.5.2.1 Impact of the Read and Write Quorum sizes

In this section, we present an experimental study that is aimed at assessing the impact

of using different read and write Quorum sizes (R and W respectively) on the read and

write inter-controller overheads of our CDN-like application running on a 5-node ONOS

119

5.5. PERFORMANCE EVALUATION

cluster in the network topology.

In the conducted experiments, we consider three application workloads that are rep-

resentative of three application scenarios (see the Workload Identifier Module in Sec-

tion 5.3.2.2 for more details). For the studied workloads, we show the captured read and

write packets within a specified time interval (i.e. 400 ms in our tests) of read and write

client operation accesses, for all possible eventually-consistent partial quorum configu-

rations (R,W) (e.g. (R,W) combinations such that R+W ≤ N where N = 5).

Our results clearly show that, when increasing the read Quorum size R, read packets

increase, mainly in a read-dominated workload (see Figure 5.7(a)). In addition, increasing

the write Quorum size W results in a drastic increase of the write packets, especially in a

write-intensive workload. Their number reaches indeed 400 during the specified time

interval for a partial Quorum configuration where W is equal to 5 (see Figure 5.8(b).

(a) Read packets when varying (R,W) (b) Write packets when varying (R,W)

Figure 5.7: Workload 1: A Read-intensive application scenario

(a) Read packets when varying (R,W) (b) Write packets when varying (R,W)

Figure 5.8: Workload 3: A Write-intensive application scenario

120

5.5. PERFORMANCE EVALUATION

Given the high inter-controller overheads observed in our experimental data for cer-

tain Quorum configurations, we propose to tune the R and W parameters and therefore

optimize the configuration of the Quorum system to better match the varying application

SLA requirements and the dynamic application workloads, as we further discuss in the

following sections.

5.5.2.2 Quorum configuration optimization

5.5.2.2.1 Dynamic application SLA requirements

To evaluate our ONOS-WAQIC proposal for the CDN-like application we developed,

we run our TCL-Expect scripts (see Section 5.5.1.1) with a 5-node ONOS cluster accord-

ing to different scenarios. In these scenarios, we use different partial Quorum configura-

tions (R, W), and we follow various application workloads with respect to different ratios

between read and write operations. Then, we use the data collected as an input to our

Q-Learning simulator (see Section 5.5.1.2). In the simulator environment, we set α =γ=0.5

and the number of episodes to 1000. We also consider different test scenarios that reflect

different application requirements in terms of performance and consistency as summa-

rized in table 5.1.

In particular, using our dataset and knowing the refresh rate of our CDN-like applica-

tion, we learn the t_staleness ranges. In other words, we learn the relationship between

the t_staleness value of a certain content being returned and by how many versions that

returned content is old. As a result, estimating the t_staleness ranges allowed us to set

the time-based staleness thresholds in the SLA while having an idea about the associated

version-based staleness thresholds.

Test Latency t_Staleness k_Staleness
scenarios threshold (ms) threshold (ms) Version old
no1 5 300000 3
no2 25 220000 2
no3 50 120000 1

Table 5.1: Application SLA scenarios

In each test scenario that we run on the simulator, our application expresses the perfor-

mance and consistency SLAs using the latency threshold (in ms) and the staleness thresh-

old (in ms). For example, in scenario no3, our application which is consistency-favoring

enforces the following SLA: It expects that a read operation gets a reply in under 100ms,

121

5.5. PERFORMANCE EVALUATION

and returns a content value no older than 120seconds (i.e. no older than 1 version stale).

Accordingly, our consistency approach attempts to find the best Quorum combination of

R and W that minimizes the application’s read and/or the write inter-controller overheads

while ensuring the desired performance-consistency trade-offs.

For a given Quorum configuration, we compute the read overhead ratio by normal-

izing the generated read overhead (bytes/s) with respect to the Quorum configuration

generating the maximum read overhead and zero write overhead (the configuration (R =
5,W = 1)) in our case) for each application scenario. We follow the same steps for comput-

ing the write overhead ratio based on the the generated write overhead with respect to the

Quorum configuration (R = 1,W = 5) which corresponds to the standard implementation

of ONOS’s eventual consistency model. On the other hand, whenever we aim to minimize

both the read and write overheads (e.g. in a balanced workload scenario), we consider

the mean of the read and write overhead ratios which we will subsequently refer to as the

global overhead ratio.

In Figures 5.9, 5.10 and 5.11, we show the results of our experimental tests for the three

considered application scenarios. To study the impact of changing the application SLA

requirements, we set the application workload to Workload 2 (a balanced workload sce-

nario that has a balanced ratio between the read and write operation accesses) in which

our consistency approach attempts to minimize the global overhead ratio, and satisfy the

staleness and latency SLA thresholds set by the application. Moving from one applica-

tion workload scenario to another (e.g. a read-intensive scenario) will be dealt with in the

following section.

Figure 5.9 shows that, in a latency-sensitive application scenario, the constrained and

the controlled agent policies are the most appropriate. The number of constraint vio-

lations decreases with episode stages (see Figures 5.9(a) and 5.9(b)), and the generated

global (read and write) inter-controller overhead (see Figure 5.9(c)) is minimal as com-

pared to the simple greedy agent policy, and to the standard ONOS implementation. We

also notice that the three agents converge towards Quorum configurations where R = 1

(i.e. (R = 1,W = 2), (R = 1,W = 3) and (R = 1,W = 4)). This is due to the given strong

constraint on latency.

122

5.5. PERFORMANCE EVALUATION

0-
99

10
0-
19
9

20
0-
29
9

30
0-
39
9

40
0-
49
9

50
0-
59
9

60
0-
69
9

70
0-
79
9

80
0-
89
9

90
0-
99
9

0
20
40
60
80

100
120
140
160
180
200

ε-greedy5 ε-greedy10 ε-greedy15

controlled_ε-greedy constrained_agent

Episode stages

N
um

be
r

of
 la

te
nc

y
vi

ol
at

io
ns

(a) Latency violations

0-
99

10
0-
19
9

20
0-
29
9

30
0-
39
9

40
0-
49
9

50
0-
59
9

60
0-
69
9

70
0-
79
9

80
0-
89
9

90
0-
99
9

0

10

20

30

40

50

60

 ε-greedy5 ε-greedy10 ε-greedy15

 controlled_ε-greedy constrained_agent

Episode stagesN
um

be
r

of
 s

ta
le

ne
ss

 v
io

la
tio

ns

(b) Staleness violations

0-
99

10
0-
19
9

20
0-
29
9

30
0-
39
9

40
0-
49
9

50
0-
59
9

60
0-
69
9

70
0-
79
9

80
0-
89
9

90
0-
99
9

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ε-greedy5 ε-greedy10 ε-greedy15

controlled_ε-greedy constrained_agent

Episode stages

O
ve

rh
ea

d
ra

tio

(c) Overhead ratio

Figure 5.9: Scenario 1: A Latency-sensitive application

Figure 5.10 shows that, in a balanced application scenario, the constrained and the

controlled agent policies offer the best real-time trade-offs between the application’s la-

tency and staleness needs (see Figures 5.10(a) and 5.10(b)) while ensuring minimal global

overhead ratio (approximately 25%) (see Figure 5.10(c)). In particular, the constrained

agent converges towards balanced Quorum configurations (i.e. (R = 2,W = 2) and (R =
2,W = 3)). On the other hand, the simple ε-greedy agents provide a small number of la-

tency violations, but at the cost of generating more overhead.

As can be seen from Figure 5.11, in a consistency-favoring application scenario, all

agents perform well at reducing the staleness violations (see Figure 5.11(b)), especially the

simple greedy agents. Besides, all agents respect the relaxed latency constraint (see Figure

5.11(a). They all converge towards a common Quorum configuration (R = 3,W = 2). We

also note that the constrained and controlled agents ensure a significant gain in overhead,

almost 80%.

Other scenarios were tested like an application scenario where latency is favored and

consistency is completely relaxed ("any"). Our results showed that, in such scenarios, the

123

5.5. PERFORMANCE EVALUATION

agents converge to a common Quorum configuration (R = 1,W = 1).

0-
99

10
0-
19
9

20
0-
29
9

30
0-
39
9

40
0-
49
9

50
0-
59
9

60
0-
69
9

70
0-
79
9

80
0-
89
9

90
0-
99
9

0

5

10

15

20

25

30

35

40

ε-greedy5 ε-greedy10 ε-greedy15
controlled_ε-greedy constrained_agent

Episode stages

N
um

be
r

of
 la

te
nc

y
vi

ol
at

io
ns

(a) Latency violations

0-
99

10
0-
19
9

20
0-
29
9

30
0-
39
9

40
0-
49
9

50
0-
59
9

60
0-
69
9

70
0-
79
9

80
0-
89
9

90
0-
99
9

0
10
20
30
40
50
60
70
80
90

 ε-greedy5 ε-greedy10 ε-greedy15

 controlled_ε-greedy constrained_agent

Episode stages

N
um

be
r

of
 s

ta
le

ne
ss

 v
io

la
tio

ns

(b) Staleness violations

0-
99

10
0-
19
9

20
0-
29
9

30
0-
39
9

40
0-
49
9

50
0-
59
9

60
0-
69
9

70
0-
79
9

80
0-
89
9

90
0-
99
9

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ε-greedy5 ε-greedy10 ε-greedy15

controlled_ε-greedy constrained_agent

Episode stages

O
ve

rh
ea

d
ra

tio

(c) Overhead ratio

Figure 5.10: Scenario 2: A Consistency/Latency-balancing application

124

5.5. PERFORMANCE EVALUATION

0-
99

10
0-
19
9

20
0-
29
9

30
0-
39
9

40
0-
49
9

50
0-
59
9

60
0-
69
9

70
0-
79
9

80
0-
89
9

90
0-
99
9

0

0.2

0.4

0.6

0.8

1

1.2

ε-greedy5 ε-greedy10 ε-greedy15
controlled_ε-greedy constrained_agent

Episode stages

N
um

be
r

of
 la

te
nc

y
vi

ol
a

tio
ns

(a) Latency violations

0-
99

10
0-
19
9

20
0-
29
9

30
0-
39
9

40
0-
49
9

50
0-
59
9

60
0-
69
9

70
0-
79
9

80
0-
89
9

90
0-
99
9

0

20

40

60

80

100

120

 ε-greedy5 ε-greedy10 ε-greedy15

 controlled_ε-greedy constrained_agent

Episode stages

N
um

be
r

of
 s

ta
le

ne
ss

 v
io

la
tio

ns

(b) Staleness violations

0-
99

10
0-
19
9

20
0-
29
9

30
0-
39
9

40
0-
49
9

50
0-
59
9

60
0-
69
9

70
0-
79
9

80
0-
89
9

90
0-
99
9

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ε-greedy5 ε-greedy10 ε-greedy15

controlled_ε-greedy constrained_agent

Episode stages

O
ve

rh
ea

d
 r

at
io

(c) Overhead ratio

Figure 5.11: Scenario 3: A Consistency-favoring application

5.5.2.2.2 Dynamic application workloads

In this section, we aim to assess the ability of our adaptive Quorum-inspired consis-

tency strategy (ONOS-WAQIC) for the CDN-like application we developed, to adapt to

time-varying application workloads. The dynamic changes in such application workload

patterns may indeed affect the observed network and application metrics (e.g. inter-

controller overhead, staleness and access latency).

Taking that into consideration, our adaptive consistency model attempts to adjust the

consistency level at runtime by continuously tuning the Quorum configuration parame-

ters in order to better match the varying workloads.

In this context, we consider three workloads as discussed in Section 5.3.2.2 (see the

Workload Identifier Module). In the three studied workloads, our model aims to sat-

isfy the latency and staleness SLA requirements. Additionally, in the read-dominated

workload (Workload 1), our model attempts to minimize the read overhead. Conversely,

in a write-intensive workload (Workload 3), it focuses on reducing the write overhead. Fi-

125

5.5. PERFORMANCE EVALUATION

nally, in a balanced workload, our approach aims to minimize both the read and write

overheads (the global overhead).

To experiment with these workloads, we fix the application scenario to 2 (see Sec-

tion 5.5.2.2.1) which represents an application scenario with balanced consistency (stal-

eness)/latency SLA requirements. Then, we conduct some tests on our Q-learning simu-

lator. During these tests, we apply different variations in the application workload. More

specifically, the first time period (the first 400 episodes) is characterized by a balanced

workload (Workload 2). At episode 400, we run a read-dominated workload (Workload 1).

Finally, starting from episode 700, we consider a write-intensive workload (Workload 3).

As we can see from Figure 5.12, our results clearly show that, unlike the simple ε-

greedy agents, the constrained and controlled agents react quickly to the dynamic work-

load variations. The latter not only offer balanced real-time trade-offs between the per-

formance (latency) and consistency (staleness) application SLA requirements, but also

provide minimal overhead at runtime.

Besides, when analyzing the generated Quorum configurations during the conducted

tests, we observe that, in Workload 1, the constrained agent converges to Quorum con-

figurations where R is minimal in order to reduce the application’s read inter-controller

overhead. On the other hand, in Workload 3, the Quorum configurations where W is

small are eventually selected. Finally, in Workload 2, the constrained agent converges

to balanced Quorum configurations where R=W=2 to reduce the application’s read and

write inter-controller overheads.

126

5.6. CONCLUSION

0-
99

10
0-
19
9

20
0-
29
9

30
0-
39
9

40
0-
49
9

50
0-
59
9

60
0-
69
9

70
0-
79
9

80
0-
89
9

90
0-
99
9

0

10

20

30

40

50

60

ε-greedy5 ε-greedy10 ε-greedy15
controlled_ε-greedy constrained_agent

Episode stages

N
um

be
r

of
 la

te
nc

y
vi

ol
at

io
ns

(a) Latency violations

0-
99

10
0-
19
9

20
0-
29
9

30
0-
39
9

40
0-
49
9

50
0-
59
9

60
0-
69
9

70
0-
79
9

80
0-
89
9

90
0-
99
9

0
10
20
30
40
50
60
70
80

 ε-greedy5 ε-greedy10 ε-greedy15

 controlled_ε-greedy constrained_agent

Episode stagesN
um

be
r

of
 s

ta
le

ne
ss

 v
io

la
tio

ns

(b) Staleness violations

0-
99

10
0-
19
9

20
0-
29
9

30
0-
39
9

40
0-
49
9

50
0-
59
9

60
0-
69
9

70
0-
79
9

80
0-
89
9

90
0-
99
9

0

0.1

0.2

0.3

0.4

0.5

0.6

ε-greedy5 ε-greedy10 ε-greedy15

controlled_ε-greedy constrained_agent

Episode stages

O
ve

rh
e

a
d

 r
a

tio

(c) Overhead ratio

Figure 5.12: Dynamic changes in the Workload (Workload 2-Workload 1-Workload 3)
in a Consistency/Latency-balancing application scenario (Scenario2)

5.6 Conclusion

In this chapter, we further studied the use of an adaptive and continuous consistency

model for the distributed ONOS controllers following the notion of partial Quorum con-

sistency. Our consistency adaptation strategy was implemented for a CDN-like appli-

cation we developed on top of ONOS. It mainly consists in turning ONOS’s optimistic

replication technique into a more scalable and intelligent Quorum-inspired replication

strategy using various Q-learning RL approaches. Our experiments showed that the con-

strained ε-greedy approach we tested in a 5-node ONOS cluster proved efficient in help-

ing our CDN-like application find the appropriate (or optimal) read an write Quorum

replication parameters at-runtime. In fact, the adjustable and time-varying partial Quo-

rum configurations determined by our strategy at runtime have achieved, under chang-

ing network and application workload conditions, balanced trade-offs between the ap-

plication’s continuous performance (latency) and consistency (staleness) requirements.

127

5.6. CONCLUSION

In addition, these real-time trade-offs ensured a substantial reduction in the application’s

inter-controller read and write overhead (especially in a large-scale ONOS network) while

satisfying the application-defined thresholds specified in the given application SLA.

Finally, it is worth noting that our proposed adaptive and Quorum-inspired consis-

tency model could be further enhanced by leveraging the compulsory Anti-Entropy rec-

onciliation mechanisms proposed in the previous chapter (expanding partial Quorums).

Such mechanisms are indeed useful in particular cases (e.g. failure scenarios, controller

crashes) where the system consistency observed by the applications is at high risk, and

cannot be fixed only by adjusting the Quorum parameters.

128

Conclusions and perspectives

«Software Defined Networks
and the maturing of the Internet»

Nick Mckeown,
IET Appleton, 2014

1 Summary of contributions

Software-Defined Networking (SDN) has increasingly gained traction over the last few

years in both academia and research. The SDN paradigm builds its promises on the sepa-

ration of concerns between the network control logic and the forwarding devices, as well

as the logical centralization of the network intelligence in software components. Thanks

to these key attributes, SDN is believed to work with network virtualization to fundamen-

tally change the networking landscape towards more flexible, agile, adaptable and highly

automated Next Generation Networks.

Despite all the hype, SDN entails many concerns and questions regarding its imple-

mentation and deployment. For instance, current SDN deployments based on physically-

centralized control architectures raised several issues of scalability and reliability. As a re-

sult, distributed SDN control architectures were proposed as a suitable solution for over-

coming these problems. However, there are still ongoing community debates about the

best and most optimal approach to decentralizing the network control plane in order to

harness the full potential of SDN.

In the early stages of this work, we conducted a comprehensive literature survey of the

wide variety of existing SDN controller platforms. Besides reviewing the SDN concept and

studying the SDN architecture as compared to the traditional network architecture, we

proposed a taxonomy of state-of-the-art SDN controller platforms by categorizing them

in two ways: based on a physical classification or a logical classification. Our thorough

study of these SDN platform proposals allowed us to shed more light on their advantages

129

1. SUMMARY OF CONTRIBUTIONS

and drawbacks and to develop a critical awareness of the challenges facing the distributed

control in SDNs.

In particular, the scalability, reliability, consistency, and interoperability of the SDN

control plane are among the key competing challenges encountered in designing an effi-

cient and robust high-performance distributed SDN controller platform. Although con-

sidered as the main limitations of fully centralized SDN control designs, scalability and

reliability are also major concerns that are expressed in the context of distributed SDN

architectures. They are indeed highly impacted by the structure of the distributed control

plane (e.g. flat, hierarchical or hybrid organization) as well as the number and placement

of the multiple controllers within the SDN network. Achieving such performance and

availability requirements usually comes at the cost of guaranteeing a consistent central-

ized network view that is required for the correct behavior of SDN applications. Consis-

tency considerations should therefore be explored among the trade-offs involved in the

design process of a decentralized SDN controller platform.

Giving that rich variety of promising SDN controller platforms with their broad range

of major challenges, we argue that developing a brand-new one may not be the best so-

lution. However, it is essential to leverage the existing platforms by aggregating, merging

and improving their proposed ideas in order to get as close as possible to a common stan-

dard that could emerge in the upcoming years. That distributed SDN controller platform

should meet the emerging challenges associated with large-scale deployments and, most

importantly, with next generation networks (e.g. IoT [174] and Fog Computing [175]).

With these considerations in mind, we intended to tackle, in the further stages of this

work, some of the previously discussed challenges that are associated with the complex

problem of designing a distributed SDN control plane. To that end, we propose to split

that problem into two manageable challenges which are correlated: The controller place-

ment problem (1) and the knowledge sharing problem (2). The first problem investigates

the required number of controllers along with their appropriate locations with respect

to the desired performance and reliability objectives and depending on the existing con-

straints. The second one is related to the type and amount of information to be shared

among the controller instances given a desired level of consistency.

Firstly, we address the SDN controller placement optimization problem in the con-

text of large-scale IoT-like networks. To that end, we put forward four scalable strate-

gies that cover different aspects of the multi-objective controller placement optimization

130

1. SUMMARY OF CONTRIBUTIONS

problem with respect to multiple reliability and performance metrics that are considered

according to different uses and contexts. To assess these strategies, two heuristic-based

approaches were proposed with the objective of finding high-quality approximate solu-

tions to the controller placement problem in a reasonable computation time: A cluster-

ing approach (PAM-B) based on a dissimilarity score and a modified genetic approach

(NSGA-II). Our results demonstrated the potential of clustering techniques in delivering

appropriate controller placement configurations that achieve balanced trade-offs among

the competing performance and reliability criteria at scale.

Then, we investigate the knowledge dissemination problem between the distributed

SDN controllers by proposing an adaptive multi-level consistency model following the

notion of continuous consistency for the distributed SDN controllers. That model presents

many advantages for the SDN applications when compared to the strong consistency and

eventual consistency extremes, especially in large-scale deployments: It delivers the scal-

ability, performance and availability benefits of an eventual consistency model, but has

the additional advantage of controlling the observed state inconsistencies in an application-

specific manner. More specifically, we propose two different scalable consistency ap-

proaches for the open-source ONOS controllers and compare them with ONOS’s static

strategies to eventual state consistency.

The first consistency approach was implemented for a source routing application on

top of ONOS. It consists in turning ONOS’s eventual consistency model into an adaptive

consistency model using the Anti-Entropy reconciliation period as a control knob for an

adaptive fine-grained tuning of consistency levels. Besides ensuring the application’s con-

tinuous consistency requirements (i.e. Numerical Error bounds) as specified in the given

application SLA, our results showed a substantial reduction in the Anti-Entropy reconcil-

iation overhead as compared to ONOS’s static consistency scheme at scale.

The second approach extends the adaptive consistency strategy to the optimistic repli-

cation technique used in ONOS’s eventual consistency model. It was implemented for a

CDN-like application we developed on top of the ONOS controllers. It mainly consists

in turning ONOS’s optimistic replication technique into a more scalable and intelligent

Quorum-inspired replication strategy using various Q-learning RL approaches: In partic-

ular, it uses the read and write partial Quorum parameters as adjustable control knobs

for a fine-grained consistency tuning, rather than relying on Anti-Entropy reconciliation

mechanisms. Our experiments showed that the proposed constrained ε-greedy approach

131

2. PERSPECTIVES AND FUTURE WORK

proved efficient in finding at runtime the appropriate read an write Quorum replication

parameters that achieve, under changing network and workload conditions, balanced

trade-offs between the application’s continuous performance (latency) and consistency

(staleness) requirements. These real-time trade-offs ensured a great reduction in the ap-

plication overhead while satisfying the application requirements specified in the SLA.

2 Perspectives and future work

Based on the promising results of this work, the study can be further extended with a

variety of research perspectives.

• First, the controller placement strategies proposed in the third chapter could be

further enhanced by including a dynamic controller placement policy. The latter

should take into account the dynamic nature of the network such as the network

load or a dynamic network topology.

• Our adaptive consistency model proposed for the distributed ONOS controllers re-

duces the application inter-controller overhead and tunes the consistency level at

runtime, in order to achieve, under changing application workload conditions, bal-

anced real-time trade-offs between the application’s continuous performance and

consistency requirements (as specified in the given SLA). Other important factors to

be considered as part of our future work include the changing network conditions

in the case of in-bound SDN control.

• The adaptive consistency strategies proposed in this work dynamically adjust at

runtime the same consistency level for all the SDN controller instances in the clus-

ter in order to meet certain network and application requirements. Another po-

tential approach is to assign different consistency levels to the different controllers

(granular per-controller consistency) depending on application requirements. Ac-

cordingly, in the case of our Quorum-inspired consistency approach, adjusting the

consistency level at run-time would imply assigning different Quorum parameter

configurations (R, W) to the considered SDN controller replicas in the cluster.

• The Quorum-inspired consistency strategy presented in this dissertation uses a con-

stant replication factor that is equal to the total number of controller nodes in the

132

2. PERSPECTIVES AND FUTURE WORK

cluster. It would also be interesting to use the replication degree as a tunable con-

figuration parameter (or a control knob) to disseminate the knowledge in specific

geographical areas according to various application scopes and needs.

• Although the main focus of this work was placed at dynamically adjusting the con-

sistency level of SDN application states (which use controller states), the work can

be further extended to the controller states (internal controller applications). In-

deed, the long-term goal of this work is to design adaptively-consistent controllers

that adjust the consistency levels for both control and application planes under

changing network conditions.

• The adaptive and continuous Quorum-inspired consistency approach proposed in

this work was implemented for a certain type of applications (e.g. a CDN-like ap-

plication), and using a 5-node ONOS controller cluster in a emulated network en-

vironment. That helped us to assess the feasibility of our solution in distributed

SDN control, and to develop a critical awareness about the faced challenges. The

next step of this work is to develop a more effective Proof-of-Concept (PoC) for dis-

tributed SDN controllers in a production environment. This can be achieved by

setting up an SDN test bed using more than five controller instances in the SDN

cluster, and by experimenting with a variety of industrial use cases, in order to test

the performance and the degree of functionality of our approach in large-scale real-

world SDN deployments.

• In this work, the controller placement problem and the knowledge sharing problem

between the distributed SDN controllers are considered as correlated problems, but

have been addressed separately. It would be interesting to consider the knowledge

dissemination challenge (state consistency metrics) when investigating the optimal

placement of controllers. For example, minimizing the inter-controller latencies in

the controller placement process reduces the cost of inter-controller communica-

tions and enhances network consistency and performance.

• Finally, in this work, we placed a special focus on tackling the control consistency

issues in SDN, and we proposed practical solutions that we applied to current SDN

controller platforms. In fact, we believe that it is highly important for a distributed

SDN architecture to support fault tolerance and consistency checks in order to en-

133

2. PERSPECTIVES AND FUTURE WORK

sure an efficient and secure SDN control plane [176]. As part of our future work,

we propose to further address the data/state consistency challenges from a security

perspective. In particular, we highlight the necessity to secure the communications

between the SDN controllers against the potential threats facing the SDN control

plane. A straightforward example of these threats is a malicious SDN controller

replica that sends erroneous data to compromise the system by harming a particu-

lar service or network, or by favoring its actions to the detriment of the rest of the

controller replicas. A potential solution is to use a blockchain to provide a guaran-

tee of non-repudiation and non-alteration (integrity) of data. This blockchain can

also be used to store smart contracts. These contracts are programs that control the

permission of data exchanges between the parties under certain conditions. In par-

ticular, smart contracts can enable a fine-grained access control of the knowledge to

be shared between the SDN controller replicas by establishing elaborate rules (e.g.

by allowing access to a particular knowledge only for specific controller replicas).

134

Version abrégée en Français

1 Contexte général

La croissance continue du trafic de données, l’émergence de la virtualisation des réseaux

ainsi que l’utilisation sans cesse croissante d’équipements mobiles dans l’environnement

réseau moderne ont mis en lumière les nombreux problèmes inhérents à l’architecture

conventionnelle de l’Internet. Ainsi, la tâche de gestion et de contrôle des informations

provenant d’un nombre croissant d’appareils connectés devenait de plus en plus com-

plexe et spécialisée.

En effet, l’infrastructure réseau traditionnelle est considérée comme très rigide et sta-

tique, étant conçue à l’origine pour un type de trafic particulier, à savoir des contenus

monotones en texte, ce qui la rend peu adaptée aux flux multimédia interactifs et dy-

namiques d’aujourd’hui générés par des utilisateurs de plus en plus exigeants et mobiles.

Parallèlement aux besoins liés au multimédia, l’émergence récente de l’Internet des Ob-

jets (IoT) a permis la création de nouveaux services avancés avec des exigences de com-

munication plus strictes afin de prendre en charge des cas d’utilisation innovants. En

particulier, la santé connectée est un cas typique d’utilisation de l’IoT où les services de

soins de santé fournis à des patients distants (e.g. diagnostic, chirurgie, dossiers médi-

caux) sont extrêmement intolérants au regard du délai, de la qualité et de la confidential-

ité. Ces données sensibles et ce trafic critique ne sont guère pris en charge par les réseaux

traditionnels.

De plus, dans l’architecture traditionnelle où la logique de contrôle est purement dis-

tribuée et localisée, la résolution d’un problème de réseau spécifique ou le réglage d’une

stratégie de réseau particulière nécessite d’agir séparément sur les périphériques con-

cernés et de modifier manuellement leur configuration. Dans ce contexte, la croissance

actuelle du nombre d’appareils et de données a accru les problèmes d’évolutivité en ren-

dant ces interventions humaines et ces opérations de réseau plus dures et plus sujettes

aux erreurs.

135

1. CONTEXTE GÉNÉRAL

Globalement, il est devenu particulièrement difficile pour les réseaux actuels de fournir

le niveau requis de qualité de service (QoS), et encore moins la qualité d’expérience (QoE)

qui introduit de nouvelles exigences centrées sur l’utilisateur. Pour être plus précis, se

fier uniquement à la QoS traditionnelle basée sur des paramètres de performances tech-

niques (e.g. bande passante et latence) s’avère insuffisant pour les réseaux avancés et en

expansion d’aujourd’hui. De plus, répondre à ce nombre croissant d’indicateurs de per-

formance est une tâche d’optimisation complexe qui peut être traitée comme un prob-

lème NP-complet. Par ailleurs, les opérateurs de réseaux réalisent de plus en plus l’importance

de l’expérience globale de l’utilisateur final et de sa perception subjective des services

fournis qui permettent de résoudre des problèmes que les mécanismes fondés sur la qual-

ité de service ont du mal à résoudre. En conséquence, les tendances actuelles en matière

de gestion de réseau se dirigent vers ce nouveau concept, couramment appelé QoE, qui

représente la qualité globale d’un service de réseau du point de vue de l’utilisateur final.

Cela dit, cet énorme fossé entre, d’une part, les progrès réalisés dans les technologies

informatiques et logicielles et, d’autre part, l’infrastructure de réseau sous-jacente tradi-

tionnelle, non évolutive et difficile à gérer [1; 2], a souligné le besoin d’une plate-forme

de réseau automatisée et adaptable en continu [3] qui facilite les opérations du réseau et

réponde aux besoins de l’IoT. Dans ce contexte, plusieurs stratégies de recherche ont été

proposées pour intégrer des approches automatiques et adaptatives dans l’infrastructure

actuelle afin de relever les défis de l’évolutivité, de la fiabilité et de la disponibilité du trafic

en temps réel, garantissant ainsi la QoE de l’utilisateur.

Alors que des alternatives radicales soutiennent qu’une nouvelle architecture de réseau

doit être construite à partir de zéro en rompant avec l’architecture de réseau conven-

tionnelle et en apportant des modifications fondamentales pour répondre aux exigences

actuelles et futures, d’autres alternatives plus réalistes sont appréciées pour introduire

de légères modifications adaptées aux besoins permettant d’effectuer une transition pro-

gressive de l’architecture du réseau sans pour autant causer de perturbations coûteuses

aux opérations réseau existantes.

En particulier, la première alternative de réseau superposé (Overlay Network) intro-

duit une superposition de couche d’application au-dessus du substrat de routage conven-

tionnel afin de faciliter la mise en œuvre de nouvelles approches de contrôle de réseau.

Cependant, l’inconvénient évident des réseaux superposés est qu’ils dépendent de plusieurs

aspects (par exemple, des nœuds de superposition sélectionnés) pour obtenir les perfor-

136

2. MOTIVATIONS

mances requises. En outre, on peut reprocher à ces réseaux d’aggraver la complexité des

réseaux existants en raison des couches virtuelles supplémentaires.

Par ailleurs, le paradigme récent du réseau piloté par logiciel (SDN) [5] offre la pos-

sibilité de programmer le réseau et facilite ainsi l’introduction d’approches de contrôle

automatique et adaptatif en séparant le matériel (plan de données) et le logiciel (plan de

contrôle), permettant leur évolution indépendante. SDN vise la centralisation du con-

trôle du réseau, offrant une visibilité améliorée et une plus grande flexibilité pour gérer

le réseau et optimiser ses performances. Par rapport à l’alternative Overlay Network, le

réseau SDN a la capacité de contrôler l’ensemble du réseau, non seulement un ensem-

ble sélectionné de nœuds, et d’utiliser un réseau public pour le transport de données. En

outre, le SDN évite aux opérateurs de réseaux la tâche fastidieuse de créer temporaire-

ment le réseau de recouvrement approprié pour un cas d’utilisation spécifique. Au lieu

de cela, il fournit un cadre de programmation inhérent aux applications de contrôle et de

sécurité d’hébergement développées de manière centralisée, tout en tenant compte les

exigences de l’IoT [6] afin de garantir la QoE de l’utilisateur.

2 Motivations

Malgré le vif intérêt que suscite le SDN, son déploiement dans le contexte industriel en est

encore à ses débuts. Il faudra peut-être encore beaucoup de temps avant que la technolo-

gie ne mûrisse et que les efforts de normalisation portent leurs fruits pour que le potentiel

du SDN soit pleinement exploité.

En effet, parallèlement au battage publicitaire et à l’excitation, plusieurs préoccu-

pations et questions ont été exprimées concernant l’adoption généralisée des réseaux

SDN. Par exemple, des études sur la faisabilité du déploiement du réseau SDN ont révélé

que la centralisation physique du plan de contrôle dans un seul composant logiciel pro-

grammable, appelé contrôleur SDN, est limitée par plusieurs facteurs tels que les prob-

lèmes d’évolutivité, de disponibilité et de fiabilité. Peu à peu, il est devenu inévitable

de considérer le plan de contrôle comme un système distribué [7], dans lequel plusieurs

contrôleurs SDN sont chargés de gérer l’ensemble du réseau, tout en maintenant une vue

réseau logiquement centralisée.

À cet égard, les communautés réseau ont débattu du meilleur moyen de mettre en

œuvre des architectures SDN distribuées tout en tenant compte des nouveaux défis posés

par ces systèmes distribués. En conséquence, plusieurs solutions SDN ont été explorées

137

3. CONTRIBUTIONS

et de nombreux projets SDN ont vu le jour. Chaque plate-forme de contrôleurs SDN pro-

posée a adopté une approche de conception architecturale spécifique basée sur divers

facteurs tels que les aspects d’intérêt, les objectifs de performance, le cas d’utilisation

SDN déployé, ainsi que les compromis liés à la présence de multiples défis conflictuels et

concurrents.

À ce stade, nous soulignons l’importance de procéder à une analyse sérieuse des so-

lutions SDN proposées afin d’envisager les tendances potentielles susceptibles d’orienter

les recherches futures dans ce domaine. Nous mettons tout particulièrement l’accent sur

les conceptions de contrôle SDN distribuées dans le but de résoudre certains des prob-

lèmes majeurs rencontrés dans la décentralisation des plans de contrôle SDN dans le con-

texte de déploiement à grande échelle.

Les principales motivations de ce travail sont les suivantes:

• Garantir une compréhension approfondie des plates-formes de contrôleurs SDN

distribuées, les plus récentes et à la pointe de la technologie, et développer une

prise de conscience critique des recherches et des défis opérationnels clés en cours

et à venir pour la conception et le déploiement de telles plates-formes.

• Proposer de nouvelles approches pour décentraliser le plan de contrôle SDN dans

les réseaux à grande échelle. Un tel plan de contrôle SDN décentralisé doit être effi-

cace (c’est-à-dire évolutif, performant et robuste) car il doit répondre aux exigences

des application de contrôleurs SDN (par exemple, l’évolutivité, la fiabilité et la co-

hérence).

• Ouvrir la voie à l’émergence d’un nouveau standard commun pour le plan de con-

trôle SDN distribué. Cette norme devrait également assurer la communication inter-

contrôleurs entre différentes technologies de contrôleurs spécifiques au fournisseur

pour une meilleure interopérabilité.

3 Contributions

Dans cette section, nous décrivons les principales contributions de ce travail. Plus pré-

cisément, nous proposons de nouvelles approches pour décentraliser le plan de contrôle

SDN dans les réseaux à large échelle tout en abordant certains des principaux problèmes

associés:

138

3. CONTRIBUTIONS

(1) Des stratégies prenant en compte plusieurs critères d’évolutivité et de fiabilité pour

le placement de contrôleurs SDN distribués à large échelle à l’aide de différents types

d’algorithmes d’optimisation multi-critères (voir Chapitre 3):

Nous avons abordé le problème de contrôle SDN distribué en étudiant le problème

de placement de contrôleurs SDN dans les réseaux à large échelle de type IoT. Nous

avons proposé des stratégies de placement de contrôleurs sensibles à la fiabilité et

l’évolutivité, qui traitent plusieurs aspects du problème d’optimisation de placement

de contrôleurs au regard de multiples critères de fiabilité et de performance et selon

différents usages et contextes. Ces stratégies utilisent deux types différents d’heuristiques:

un algorithme de classification basé sur PAM (Partitioning Around Medoids) et un

algorithme génétique modifié appelé NSGA-II (Non-dominated Sorting Genetic Al-

gorithm II). Ces algorithmes multi-critères ont été comparés en termes de temps de

calcul, et de la qualité des configurations finales de placement de contrôleurs SDN

dans un environnement applicatif.

(2) Un modèle cohérence continue et adaptative pour les contrôleurs SDN distribués: un

nouveau mécanisme de réconciliation Anti-Entropie pour les applications (avec des

besoins de cohérence éventuelle) au-dessus des contrôleurs ONOS (voir Chapitre 4):

Nous avons abordé le problème du contrôle SDN distribué en étudiant le problème

du partage des connaissances entre les contrôleurs SDN distribués. Nous avons pro-

posé un modèle de cohérence adaptative à plusieurs niveaux, basé sur le concept de

cohérence continue pour les contrôleurs SDN distribués. Cette approche a été implé-

mentée pour une application de routage à la source au-dessus des contrôleurs ONOS

d’accès libre (open-source). Elle consiste à transformer le modèle de cohérence éventuelle

d’ONOS en un modèle de cohérence adaptative utilisant la période de réconciliation

Anti-Entropy comme bouton de contrôle pour un réglage fin et adaptatif des niveaux

de cohérence. Notre stratégie de cohérence proposée vise à garantir les exigences de

cohérence continue de l’application (c’est-à-dire les seuils d’erreur numérique) telles

que spécifiées dans le contrat SLA de l’application. L’objectif est également de min-

imiser la surcharge réseau de réconciliation Anti-Entropie par rapport à la stratégie

de cohérence statique à grande échelle d’ONOS.

(3) Un modèle cohérence continue et adaptative pour les contrôleurs SDN distribués:

une nouvelle stratégie de réplication basée sur le vote majoritaire (Quorum) pour les

139

3. CONTRIBUTIONS

applications (avec des besoins de cohérence éventuelle) au-dessus des contrôleurs

ONOS (voir Chapitre 5):

Nous avons étudié plus en détail le problème de partage des connaissances dans le

contrôle SDN distribué en proposant un modèle de cohérence adaptative et continue

pour les contrôleurs ONOS distribués. L’approche a été mise en œuvre pour une ap-

plication de type CDN au-dessus d’ONOS. Elle consiste à transformer le modèle de

cohérence éventuelle d’ONOS en un modèle de cohérence adaptative en convertis-

sant la technique de réplication optimiste d’ONOS en une stratégie de réplication plus

évolutive suivant la cohérence basée sur le Quorum. Son but est d’améliorer le mé-

canisme de réplication d’ONOS: en utilisant les paramètres de Quorum en lecture et

en écriture comme boutons de contrôle ajustables pour un réglage fin des niveaux de

cohérence en lecture et en écriture, au lieu de s’appuyer sur des mécanismes de réc-

onciliation Anti-Entropie (comme dans la contribution 2). L’objectif principal est de

trouver, au moment de l’exécution, des configurations optimales de Quorum partiel

qui permettent, en fonction de l’évolution des conditions du réseau et de la charge

de travail de l’application, de trouver un compromis entre les exigences continues

de l’application en termes de performance (latence) et de cohérence (staleness). Ces

compromis en temps réel devraient permettre de minimiser la surcharge totale entre

les contrôleurs tout en respectant les seuils définis par l’application spécifiés dans le

contrat de niveau de service donné.

De plus, au regard du manque dans la littérature d’état de l’art autour de la problématique

du contrôle distribué dans les réseaux SDN et vu son actualité, nous avons aussi contribué

par:

• Une étude sur le SDN, en particulier sur les solutions de contrôle SDN distribuées

(voir Chapitre 1):

En plus d’expliquer les éléments fondamentaux de l’architecture SDN, nous avons

proposé une taxonomie des plates-formes de contrôleurs SDN, les plus actuelles, en

les classant de deux manières différentes: une classification physique et une classi-

fication logique.

• Une analyse approfondie des problèmes rencontrés par les plates-formes récentes

de contrôleurs SDN distribués, et des différentes approches adoptées pour les ré-

soudre (voir Chapitre 2):

140

4. CONCLUSION ET TRAVAIL RÉALISÉ

Nous avons mené une analyse des principaux défis encore ouverts auxquels sont

confrontées les plates-formes de contrôleurs SDN distribuées déjà abordées. Ces

défis incluent les problèmes d’évolutivité, de fiabilité, de cohérence et d’interopérabilité

du plan de contrôle SDN. En outre, nous avons exploré les approches potentielles

pour relever ces défis en vue d’un déploiement optimal du SDN, et nous avons

fourni des informations utiles sur les tendances émergentes et futures dans la con-

ception de plans de contrôle SDN distribués plus efficaces.

4 Conclusion et travail réalisé

Le réseau défini par logiciel (SDN) a de plus en plus de succès dans le milieu académique

ainsi que dans la recherche. Le paradigme SDN fonde ses promesses sur la séparation

des préoccupations entre la logique de contrôle du réseau et les équipements de trans-

mission réseau, ainsi que sur la centralisation logique de l’intelligence réseau dans des

composants logiciels. Grâce à ces attributs clés, on estime que l’approche SDN, avec no-

tamment les nouvelles technologies de virtualisation réseau (NFV), permettra de changer

fondamentalement le paysage réseau et facilitera ainsi le passage aux réseaux de nouvelle

génération plus flexibles, agiles, programmables, adaptables et hautement automatisés.

L’approche fondée sur le SDN soulève, néanmoins, de nombreuses préoccupations

et questions concernant sa mise en œuvre et son déploiement. Par exemple, les dé-

ploiements SDN actuels basés sur des architectures de contrôle physiquement central-

isées soulèvent encore plusieurs problèmes d’évolutivité et de fiabilité. Par conséquent,

les architectures de contrôle SDN distribuées ont été proposées comme solution appro-

priée pour tenter de résoudre ces problèmes. Il n’empêche qu’il existe encore des débats

communautaires sur la meilleure approche à adopter pour décentraliser le plan de con-

trôle du réseau afin d’exploiter pleinement le potentiel du réseau SDN. Ces discussions

portent principalement sur les différents compromis et challenges impliqués dans la dé-

centralisation du plan de contrôle SDN.

Au démarrage de cette thèse, nous avons mené une étude bibliographique sur la vaste

gamme de plates-formes de contrôleurs SDN existantes. Outre la révision du concept

SDN et l’étude de l’architecture SDN par rapport à l’architecture réseau traditionnelle,

nous avons proposé une taxonomie des plates-formes de contrôleurs SDN les plus ré-

centes, en les catégorisant de deux manières: sur la base d’une classification physique ou

d’une classification logique. Notre étude approfondie de ces propositions de plate-formes

141

4. CONCLUSION ET TRAVAIL RÉALISÉ

SDN nous a permis de mieux comprendre leurs avantages et inconvénients et de dévelop-

per une prise de conscience critique des défis du contrôle distribué dans les SDNs.

En particulier, l’évolutivité, la fiabilité, la cohérence et l’interopérabilité du plan de

contrôle SDN figurent parmi les principaux défis à relever pour la conception d’une plate-

forme de contrôleurs SDN distribués robuste et performante. Bien que considérées comme

les principales limites des conceptions de contrôle SDN totalement centralisées, l’évolutivité

et la fiabilité sont également des préoccupations majeures qui sont exprimées dans le

contexte des architectures SDN distribuées. Ils sont, en effet, fortement impactés par

la structure du plan de contrôle distribué (par exemple, une organisation plate, hiérar-

chique ou hybride) ainsi que par le nombre et le placement des multiples contrôleurs au

sein du réseau SDN. La réalisation de telles exigences en matière de performance et de

disponibilité se fait généralement au détriment de la garantie d’une vue de réseau cen-

tralisée cohérente, nécessaire au bon comportement des applications SDN. Il convient

donc d’examiner les considérations liées à la cohérence parmi les compromis impliqués

dans le processus de conception d’une plate-forme décentralisée de contrôleurs SDN .

Compte tenu de la diversité des plate-formes prometteuses de contrôleurs SDN et de

leur vaste éventail de défis majeurs, nous affirmons que le développement d’une plate-

forme toute nouvelle n’est peut-être pas la meilleure solution. Cependant, il est essen-

tiel de tirer parti des plates-formes existantes en agrégeant, fusionnant et améliorant les

idées proposées afin de se rapprocher le plus possible d’une norme commune qui pour-

rait émerger dans les années à venir. Cette plate-forme de contrôleurs SDN distribués

devrait répondre aux défis émergents associés aux déploiements à grande échelle et, plus

important encore, aux réseaux de prochaine génération (par exemple, IoT [174] et Fog

Computing [175]).

C’est dans cette optique que nous avons abordé, au cours des étapes ultérieures de

ce travail, certains des problèmes évoqués précédemment et associés au problème com-

plexe de la conception d’un plan de contrôle SDN distribué. Pour ce faire, nous avons

proposé de scinder ce problème en deux parties gérables et corrélées: le placement de

contrôleurs (1) et le partage des connaissances (2). La première partie s’occupe d’étudier

le nombre requis de contrôleurs ainsi que leurs emplacements appropriés par rapport

aux objectifs de performance et de fiabilité souhaités et en fonction des contraintes exis-

tantes. La seconde partie est liée au type et à la quantité d’informations à partager entre

les instances de contrôleurs en fonction du niveau de cohérence souhaité.

142

4. CONCLUSION ET TRAVAIL RÉALISÉ

Tout d’abord, nous abordons le problème d’optimisation de placement de contrôleurs

SDN dans le contexte de réseaux à large échelle de type IoT. Pour ce faire, nous proposons

quatre stratégies évolutives qui couvrent différents aspects du problème d’optimisation

multi-objectifs de l’emplacement des contrôleurs SDN au regard de multiples métriques

de fiabilité et de performance prises en compte en fonction de différents usages et con-

textes. Pour évaluer ces stratégies, deux approches heuristiques ont été proposées dans le

but de trouver des solutions approximatives de haute qualité au problème de placement

des contrôleurs dans un temps de calcul raisonnable: une approche de partitionnement

(PAM-B) basée sur un score de dissimilarité et une approche génétique modifiée (NSGA-

II). Nos résultats ont démontré le potentiel des techniques de partitionnement dans la

perspective de fournir des configurations de placement de contrôleurs appropriées qui

permettent un compromis équilibré entre les critères concurrents de performance et de

fiabilité à grande échelle.

Ensuite, nous étudions le problème de partage des connaissances entre les contrôleurs

SDN distribués en proposant un modèle de cohérence adaptatif à plusieurs niveaux, basé

sur la notion de cohérence continue pour les contrôleurs SDN distribués. Ce modèle

présente de nombreux avantages pour les applications SDN par rapport aux extrêmes

de cohérence forte et de cohérence éventuelle (c’est-à-dire à terme), en particulier dans

les déploiements à large échelle: Il offre les avantages d’évolutivité, de performance et de

disponibilité d’un modèle de cohérence éventuel, mais présente l’avantage supplémen-

taire de contrôler les incohérences d’état observées d’une manière spécifique à l’application.

Plus spécifiquement, nous proposons deux différentes approches de cohérence évolu-

tives pour les contrôleurs open-source ONOS et nous les comparons avec les stratégies

statiques d’ONOS pour la cohérence d’état éventuelle.

La première approche de cohérence a été mise en œuvre pour une application de

routage à la source au-dessus d’ONOS. Elle consiste à transformer le modèle de cohérence

éventuelle d’ONOS en un modèle de cohérence adaptative en utilisant la période de ré-

conciliation Anti-Entropie comme un bouton de contrôle pour un réglage fin et adap-

tatif des niveaux de cohérence. En plus de garantir les exigences de cohérence contin-

ues de l’application (c’est-à-dire les limites d’erreur numérique) spécifiées dans le con-

trat de niveaux de service d’application donné (SLA), nos résultats ont montré une ré-

duction substantielle de la surcharge due à la réconciliation Anti-Entropie par rapport à

l’approche de cohérence statique à l’échelle d’ONOS.

143

5. LISTE DES PUBLICATIONS

La deuxième approche étend la stratégie de cohérence adaptative à la technique de

réplication optimiste utilisée dans le modèle de cohérence éventuelle d’ONOS. Elle a été

implémentée pour une application de type CDN que nous avons développée sur les con-

trôleurs ONOS. Elle consiste principalement à transformer la technique de réplication

optimiste d’ONOS en une stratégie de réplication inspirée du Quorum, plus évolutive

et plus intelligente, portant sur diverses approches d’apprentissage par renforcement,

plus précisément de Q-learning: elle utilise notamment les paramètres de Quorum par-

tiel en lecture/écriture comme paramètres de contrôle ajustables pour un réglage fin de la

cohérence, plutôt que de reposer sur des mécanismes de réconciliation Anti-Entropie.

Nos expériences ont montré que l’approche ε-greedy sous contraintes proposée s’avérait

efficace pour trouver, au moment de l’exécution, les paramètres de réplication Quorum

en lecture/écriture appropriés permettant d’obtenir, dans des conditions changeantes de

réseau et de charge de travail de l’application, des compromis équilibrés entre les exi-

gences continues de l’application en matière de performance (latence) et de cohérence

(staleness). Ces compromis en temps réel ont permis de réduire considérablement la sur-

charge totale (entre contrôleurs) liée à l’application, tout en satisfaisant les exigences spé-

cifiées dans les SLAs.

5 Liste des publications

Revues internationales avec comité de lecture

• F. Bannour, S. Souihi, A. Mellouk. "Distributed SDN Control: Survey, Taxonomy,

and Challenges". IEEE Communications Surveys and Tutorials (CST), 20(1):333–354,

2018.

Conférences internationales avec comité de lecture et actes

• F. Bannour, S. Souihi, A. Mellouk. "Adaptive Quorum-inspired SLA-Aware Consis-

tency for Distributed SDN Controllers", 15th International Conference on Network

and Service Management (CNSM), Halifax, Canada, 21-25 Octobre, 2019.

• F. Bannour, S. Souihi, A. Mellouk. "Adaptive State Consistency for Distributed ONOS

Controllers", IEEE Global Communications Conference (GLOBECOM), Abu Dhabi,

9–13 Décembre, 2018.

144

5. LISTE DES PUBLICATIONS

• F. Bannour, S. Souihi, A. Mellouk. "Scalability and Reliability Aware SDN Controller

Placement Strategies", 13th International Conference on Network and Service Man-

agement (CNSM), Tokyo, Japan, 26-30 Novembre, 2017.

Conférences nationales avec comité de lecture et actes

• F. Bannour, S. Souihi, A. Mellouk. "Adaptive state consistency for distributed ONOS

controllers", Journée SDN 2018 « IDNs (Intelligence-Defined Networks) », présenta-

tion, 22 Novembre 2018, Paris, France.

• F. Bannour, S. Souihi, A. Mellouk. "Software-Defined Networking: A self-adaptive

consistency model for distributed SDN controllers", École d’été RESCOM 2017 du

CNRS GDR RSD « Virtualisation dans les réseaux informatiques et dans le Cloud »,

19-23 Juin 2017, Le Croisic, France.

• F. Bannour, S. Souihi, A. Mellouk. "Software-Defined Networking: Distributed SDN

Control". Colloque ARC 2017 du CNRS GDR MACS « Automatique et Réseaux de

Communication », présentation, 16 Mai 2017, Paris, France.

• F. Bannour, S. Souihi, A. Mellouk. "The SDN controller placement problem, École

d’été RESCOM 2016 du CNRS GDR RSD « La 5G et l’Internet des Objets », poster, 13-17

Juin 2016, Guidel-plages, France.

145

Bibliography

[1] Diego Kreutz, Fernando M. V. Ramos, Paulo Veríssimo, Christian Esteve Rothen-

berg, Siamak Azodolmolky, and Steve Uhlig. Software-Defined Networking: A Com-

prehensive Survey. Proceedings of the IEEE, 103(1):63, 2015. 2, 136

[2] F. Bannour, S. Souihi, and A. Mellouk. Distributed SDN control: Survey, taxonomy,

and challenges. IEEE Communications Surveys Tutorials, 20(1):333–354, Firstquar-

ter 2018. 2, 136

[3] Nancy Samaan and Ahmed Karmouch. Towards autonomic network management:

an analysis of current and future research directions. IEEE Communications Surveys

and Tutorials, 11(3):22–36, 2009. 2, 136

[4] W. Ren, Y. Sun, H. Luo, and M. Guizani. A Novel Control Plane Optimization Strat-

egy for Important Nodes in SDN-IoT Networks. IEEE Internet of Things Journal,

6(2):3558–3571, April 2019. 2, 3

[5] Nick Feamster, Jennifer Rexford, and Ellen Zegura. The road to SDN: An intellectual

history of programmable networks. SIGCOMM Comput. Commun. Rev., 44(2):87–

98, April 2014. 3, 137

[6] Y. Li, X. Su, J. Riekki, T. Kanter, and R. Rahmani. A SDN-based architecture for hor-

izontal internet of things services. In 2016 IEEE International Conference on Com-

munications (ICC), pages 1–7, May 2016. 3, 137

[7] Marco Canini, Daniele De Cicco, Petr Kuznetsov, Dan Levin, Stefan Schmid, and

Stefano Vissicchio. STN: A robust and distributed SDN control plane. Open Net-

working Summit (ONS) Research track, March 2014. 3, 51, 137

[8] Hyojoon Kim and Nick Feamster. Improving network management with software

defined networking. IEEE Communications Magazine, 51(2):114–119, 2013. 10

146

BIBLIOGRAPHY

[9] Md. Faizul Bari, Raouf Boutaba, Rafael Pereira Esteves, Lisandro Zambenedetti

Granville, Maxim Podlesny, Md. Golam Rabbani, Qi Zhang, and Mohamed Faten

Zhani. Data center network virtualization: A survey. IEEE Communications Surveys

and Tutorials, 15(2):909–928, 2013. 10

[10] Qi Zhang, Lu Cheng, and Raouf Boutaba. Cloud computing: state-of-the-art and

research challenges. J. Internet Services and Applications, 1(1):7–18, 2010. 10

[11] M. Abu Sharkh, M. Jammal, A. Shami, and A. Ouda. Resource allocation in a

network-based cloud computing environment: design challenges. IEEE Commu-

nications Magazine, 51(11):46–52, November 2013. 10

[12] Ansible. https://www.ansible.com/. Accessed: 2017-04-11. 11

[13] ONF. Open Networking Foundation. https://www.opennetworking.org/. Ac-

cessed: 2016-05-19. 11, 13

[14] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson,

Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow: Enabling innova-

tion in campus networks. SIGCOMM Comput. Commun. Rev., 38(2):69–74, March

2008. 13, 16, 41

[15] A. Doria, J. Hadi Salim, R. Haas, H. Khosravi, W. Wang, L. Dong, R. Gopal, and

J. Halpern. Forwarding and Control Element Separation (ForCES) Protocol Spec-

ification, March 2010. 13

[16] ONF. OpenFlow switch specification. Technical report, Open Networking Founda-

tion, December 2009. Accessed: 2016-01-27. 13

[17] Pingping Lin, Jun Bi, Stephen Wolff, Yangyang Wang, Anmin Xu, Ze Chen, Hongyu

Hu, and Yikai Lin. A west-east bridge based SDN inter-domain testbed. IEEE Com-

munications Magazine, 53(2):190–197, 2015. 14, 35

[18] Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Monsanto, Jennifer

Rexford, Alec Story, and David Walker. Frenetic: A network programming language.

In Proceedings of the 16th ACM SIGPLAN International Conference on Functional

Programming, ICFP ’11, pages 279–291, New York, NY, USA, 2011. ACM. 16

147

https://www.ansible.com/
https://www.opennetworking.org/

BIBLIOGRAPHY

[19] Andreas Voellmy, Hyojoon Kim, and Nick Feamster. Procera: A language for high-

level reactive network control. In Proceedings of the First Workshop on Hot Topics

in Software Defined Networks, HotSDN ’12, pages 43–48, New York, NY, USA, 2012.

ACM. 16

[20] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, and David

Walker. Composing software-defined networks. In Proceedings of the 10th USENIX

Conference on Networked Systems Design and Implementation, nsdi’13, pages 1–14,

Berkeley, CA, USA, 2013. USENIX Association. 16

[21] S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali. On scalability of software-defined

networking. IEEE Communications Magazine, 51(2):136–141, February 2013. 17

[22] S. Azodolmolky, P. Wieder, and R. Yahyapour. Performance evaluation of a scalable

software-defined networking deployment. In 2013 Second European Workshop on

Software Defined Networks, pages 68–74, Oct 2013. 17

[23] Theophilus Benson, Aditya Akella, and David A. Maltz. Network traffic characteris-

tics of data centers in the wild. In Proceedings of the 10th ACM SIGCOMM Confer-

ence on Internet Measurement, IMC ’10, pages 267–280, New York, NY, USA, 2010.

ACM. 17, 18

[24] O. Michel and E. Keller. Sdn in wide-area networks: A survey. In 2017 Fourth In-

ternational Conference on Software Defined Systems (SDS), pages 37–42, May 2017.

18

[25] Brandon Heller, Rob Sherwood, and Nick McKeown. The controller placement

problem. In Proceedings of the First Workshop on Hot Topics in Software Defined

Networks, HotSDN ’12, pages 7–12, New York, NY, USA, 2012. ACM. 18, 43

[26] M. T. I. ul Huque, W. Si, G. Jourjon, and V. Gramoli. Large-scale dynamic controller

placement. IEEE Transactions on Network and Service Management, 14(1):63–76,

March 2017. 18

[27] Alexander Shalimov, Dmitry Zuikov, Daria Zimarina, Vasily Pashkov, and Ruslan

Smeliansky. Advanced study of sdn/openflow controllers. In Proceedings of the 9th

Central & Eastern European Software Engineering Conference in Russia, CEE-

SECR ’13, pages 1:1–1:6, New York, NY, USA, 2013. ACM. 18

148

BIBLIOGRAPHY

[28] Murat Karakus and Arjan Durresi. A survey: Control plane scalability issues and

approaches in software-defined networking (sdn). Computer Networks, 112:279 –

293, 2017. 18, 40

[29] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martín Casado, Nick McK-

eown, and Scott Shenker. Nox: Towards an operating system for networks. SIG-

COMM Comput. Commun. Rev., 38(3):105–110, July 2008. 18, 38, 39

[30] David Erickson. The beacon openflow controller. In Proceedings of the Second ACM

SIGCOMM Workshop on Hot Topics in Software Defined Networking, HotSDN ’13,

pages 13–18, New York, NY, USA, 2013. ACM. 18

[31] Floodlight Project. Accessed: 2015-12-07. 18, 21, 32, 38, 39

[32] Arsalan Tavakoli, Martin Casado, Teemu Koponen, and Scott Shenker. Applying nox

to the datacenter. In Proc. of workshop on Hot Topics in Networks (HotNets-VIII),

2009. 18

[33] Amin Tootoonchian, Sergey Gorbunov, Yashar Ganjali, Martin Casado, and Rob

Sherwood. On controller performance in software-defined networks. In Proceed-

ings of the 2Nd USENIX Conference on Hot Topics in Management of Internet, Cloud,

and Enterprise Networks and Services, Hot-ICE’12, pages 10–10, Berkeley, CA, USA,

2012. 18

[34] Pox. http://www.noxrepo.org/pox/about-pox/. Accessed: 2015-111-22. 18, 38,

39

[35] Mohan Dhawan, Rishabh Poddar, Kshiteej Mahajan, and Vijay Mann. Sphinx: De-

tecting security attacks in software-defined networks. In NDSS. The Internet Soci-

ety, 2015. 18

[36] Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta Higuchi, Masayoshi Kobayashi,

Toshio Koide, Bob Lantz, Brian O’Connor, Pavlin Radoslavov, William Snow, and

Guru Parulkar. Onos: Towards an open, distributed SDN OS. In Proceedings of the

Third Workshop on Hot Topics in Software Defined Networking, HotSDN ’14, pages

1–6, New York, NY, USA, 2014. ACM. 18, 19, 20, 29, 36, 38, 39, 44, 45

[37] Kevin Phemius, Mathieu Bouet, and Jeremie Leguay. DISCO: distributed multi-

domain SDN controllers. CoRR, abs/1308.6138, 2013. 18, 32, 35, 39

149

http://www.noxrepo.org/pox/about-pox/

BIBLIOGRAPHY

[38] Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stribling, Leon Poutievski,

Min Zhu Google, Rajiv Ramanathan, Yuichiro Iwata NEC, Hiroaki Inoue NEC,

Takayuki Hama NEC, and Scott Shenker. Onix: a distributed control platform for

large-scale production networks. In 9th Conference on Operating Systems Design

and Implementation, pages 351–364, 2010. 19, 20, 23, 25, 38, 39, 44, 45, 79, 96

[39] Amin Tootoonchian and Yashar Ganjali. Hyperflow: A distributed control plane for

openflow. In Proceedings of the 2010 Internet Network Management Conference on

Research on Enterprise Networking, INM/WREN’10, pages 3–3, Berkeley, CA, USA,

2010. 19, 20, 27, 38, 39, 44, 45

[40] Jeremy Stribling, Yair Sovran, Irene Zhang, Xavid Pretzer, Jinyang Li, M. Frans

Kaashoek, and Robert Morris. Flexible, wide-area storage for distributed systems

with wheelfs. In Proceedings of the 6th USENIX Symposium on Networked Systems

Design and Implementation, NSDI 2009, April 22-24, 2009, Boston, MA, USA, pages

43–58, 2009. 20, 27

[41] Andrea Bianco, Paolo Giaccone, Samuele De Domenico, and Tianzhu Zhang. The

role of inter-controller traffic for placement of distributed SDN controllers. CoRR,

abs/1605.09268, 2016. 20, 30

[42] Balakrishnan Chandrasekaran and Theophilus Benson. Tolerating sdn application

failures with legosdn. In Proceedings of the 13th ACM Workshop on Hot Topics in

Networks, HotNets-XIII, pages 22:1–22:7, 2014. 20

[43] Seungwon Shin, Yongjoo Song, Taekyung Lee, Sangho Lee, Jaewoong Chung, Phillip

Porras, Vinod Yegneswaran, Jiseong Noh, and Brent Byunghoon Kang. Rosemary: A

robust, secure, and high-performance network operating system. In Proceedings of

the 2014 ACM SIGSAC Conference on Computer and Communications Security, CCS

’14, pages 78–89, 2014.

[44] Naga Katta, Haoyu Zhang, Michael Freedman, and Jennifer Rexford. Ravana: Con-

troller fault-tolerance in software-defined networking. In Proceedings of the 1st

ACM SIGCOMM Symposium on Software Defined Networking Research, SOSR ’15,

pages 4:1–4:12, 2015. 21, 27, 28, 39, 44

150

BIBLIOGRAPHY

[45] Soheil Hassas Yeganeh and Yashar Ganjali. Beehive: Simple distributed program-

ming in software-defined networks. In Proceedings of the Symposium on SDN Re-

search, SOSR ’16, pages 4:1–4:12, 2016.

[46] Balakrishnan Chandrasekaran, Brendan Tschaen, and Theophilus Benson. Isolat-

ing and tolerating sdn application failures with legosdn. In Proceedings of the Sym-

posium on SDN Research, SOSR ’16, pages 7:1–7:12, 2016.

[47] E. S. Spalla, D. R. Mafioletti, A. B. Liberato, G. Ewald, C. E. Rothenberg, L. Camar-

gos, R. S. Villaca, and M. Martinello. Ar2c2: Actively replicated controllers for sdn

resilient control plane. In NOMS 2016 - 2016 IEEE/IFIP Network Operations and

Management Symposium, pages 189–196, April 2016. 20, 44, 45

[48] F. Botelho, A. Bessani, F. M. V. Ramos, and P. Ferreira. On the design of practical fault-

tolerant sdn controllers. In 2014 Third European Workshop on Software Defined

Networks, pages 73–78, Sept 2014. 21, 25, 39, 44

[49] Alysson Bessani, João Sousa, and Eduardo E. P. Alchieri. State machine replication

for the masses with bft-smart. In Proceedings of the 2014 44th Annual IEEE/IFIP In-

ternational Conference on Dependable Systems and Networks, DSN ’14, pages 355–

362, 2014. 21

[50] Ryu SDN framework. https://osrg.github.io/ryu/. Accessed: 2016-07-10. 22,

35

[51] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. Zookeeper:

Wait-free coordination for internet-scale systems. In Proceedings of the 2010

USENIX Conference on USENIX Annual Technical Conference, USENIXATC’10,

pages 11–11, 2010. 22

[52] Y. Liu, A. Hecker, R. Guerzoni, Z. Despotovic, and S. Beker. On optimal hierarchical

sdn. In 2015 IEEE International Conference on Communications (ICC), pages 5374–

5379, June 2015. 22

[53] Soheil Hassas Yeganeh and Yashar Ganjali. Kandoo: A framework for efficient and

scalable offloading of control applications. In Proceedings of the First Workshop on

Hot Topics in Software Defined Networks, HotSDN ’12, pages 19–24, New York, NY,

USA, 2012. ACM. 22, 23, 29, 38, 39, 41

151

https://osrg.github.io/ryu/

BIBLIOGRAPHY

[54] Andrew R. Curtis, Jeffrey C. Mogul, Jean Tourrilhes, Praveen Yalagandula, Puneet

Sharma, and Sujata Banerjee. Devoflow: Scaling flow management for high-

performance networks. In Proceedings of the ACM SIGCOMM 2011 Conference, SIG-

COMM ’11, pages 254–265, New York, NY, USA, 2011. ACM. 22, 38, 39, 41

[55] Minlan Yu, Jennifer Rexford, Michael J. Freedman, and Jia Wang. Scalable flow-

based networking with difane. In Proceedings of the ACM SIGCOMM 2010 Confer-

ence, SIGCOMM ’10, pages 351–362, New York, NY, USA, 2010. ACM. 22, 38, 39,

41

[56] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun

Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, Jon Zolla, Urs Höl-

zle, Stephen Stuart, and Amin Vahdat. B4: Experience with a globally-deployed

software defined wan. In Proceedings of the ACM SIGCOMM 2013 Conference on

SIGCOMM, SIGCOMM ’13, pages 3–14, New York, NY, USA, 2013. ACM. 22, 23, 24,

31, 39

[57] Alok Kumar, Sushant Jain, Uday Naik, Anand Raghuraman, Nikhil Kasinadhuni, En-

rique Cauich Zermeno, C. Stephen Gunn, Jing Ai, Björn Carlin, Mihai Amarandei-

Stavila, Mathieu Robin, Aspi Siganporia, Stephen Stuart, and Amin Vahdat. Bwe:

Flexible, hierarchical bandwidth allocation for WAN distributed computing. In Pro-

ceedings of the 2015 ACM Conference on Special Interest Group on Data Communi-

cation, SIGCOMM 2015, London, United Kingdom, August 17-21, 2015, pages 1–14,

2015. 22

[58] Tushar D. Chandra, Robert Griesemer, and Joshua Redstone. Paxos made live: An

engineering perspective. In Proceedings of the Twenty-sixth Annual ACM Sympo-

sium on Principles of Distributed Computing, PODC ’07, pages 398–407, New York,

NY, USA, 2007. ACM. 23

[59] Kok-Kiong Yap, Murtaza Motiwala, Jeremy Rahe, Steve Padgett, Matthew Holli-

man, Gary Baldus, Marcus Hines, Taeeun Kim, Ashok Narayanan, Ankur Jain, Vic-

tor Lin, Colin Rice, Brian Rogan, Arjun Singh, Bert Tanaka, Manish Verma, Puneet

Sood, Mukarram Tariq, Matt Tierney, Dzevad Trumic, Vytautas Valancius, Calvin

Ying, Mahesh Kallahalla, Bikash Koley, and Amin Vahdat. Taking the edge off with

152

BIBLIOGRAPHY

espresso: Scale, reliability and programmability for global internet peering. In Pro-

ceedings of the Conference of the ACM Special Interest Group on Data Communica-

tion, SIGCOMM ’17, pages 432–445, New York, NY, USA, 2017. ACM. 24

[60] Redouane Benaini Fouad Benamrane, Mouad Ben mamoun. Performances of

openflow-based softwaredefined networks: An overview. Journal of Networks,

10(6):329–337, 2015. 25, 33

[61] Brian Oki and Barbara Liskov. Viewstamped replication: A new primary copy

method to support highly-available distributed systems. In Proceedings of the

Seventh Annual ACM Symposium on Principles of Distributed Computing (PODC).

ACM, August 1988. 28

[62] André Mantas and Fernando M. V. Ramos. Consistent and fault-tolerant SDN with

unmodified switches. CoRR, abs/1602.04211, 2016. 28

[63] A. Bondkovskii, J. Keeney, S. van der Meer, and S. Weber. Qualitative comparison of

open-source SDN controllers. In NOMS 2016 - 2016 IEEE/IFIP Network Operations

and Management Symposium, pages 889–894, April 2016. 29

[64] Opendaylight project. Accessed: 2016.-01-05. 29, 30, 38, 39, 79, 80

[65] A. S. Muqaddas, A. Bianco, P. Giaccone, and G. Maier. Inter-controller traffic in

ONOS clusters for SDN networks. In 2016 IEEE International Conference on Com-

munications (ICC), pages 1–6, May 2016. 29

[66] Diego Ongaro and John Ousterhout. In search of an understandable consensus

algorithm. In Proceedings of the 2014 USENIX Conference on USENIX Annual Tech-

nical Conference, USENIX ATC’14, pages 305–320, Berkeley, CA, USA, 2014. USENIX

Association. 30, 31, 80, 82, 83

[67] Akka framework. http://akka.io/. Accessed: 2017-02-15. 31

[68] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mohan

Nanduri, and Roger Wattenhofer. Achieving high utilization with software-driven

wan. In Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM, SIG-

COMM ’13, pages 15–26, New York, NY, USA, 2013. ACM. 31

153

http://akka.io/

BIBLIOGRAPHY

[69] Matthew Caesar, Donald Caldwell, Nick Feamster, Jennifer Rexford, Aman Shaikh,

and Jacobus van der Merwe. Design and implementation of a routing control plat-

form. In Proceedings of the 2Nd Conference on Symposium on Networked Systems

Design & Implementation - Volume 2, NSDI’05, pages 15–28, Berkeley, CA, USA,

2005. USENIX Association. 32

[70] Christian Esteve Rothenberg, Marcelo Ribeiro Nascimento, Marcos Rogerio Sal-

vador, Carlos Nilton Araujo Corrêa, Sidney Cunha de Lucena, and Robert Raszuk.

Revisiting routing control platforms with the eyes and muscles of software-defined

networking. In Proceedings of the First Workshop on Hot Topics in Software Defined

Networks, HotSDN ’12, pages 13–18, New York, NY, USA, 2012. ACM. 32

[71] AMQP. http://www.amqp.org/. Accessed: 2016-01-05. 33

[72] David D. Clark, Craig Partridge, J. Christopher Ramming, and John T. Wroclawski. A

knowledge plane for the internet. In Proceedings of the 2003 Conference on Appli-

cations, Technologies, Architectures, and Protocols for Computer Communications,

SIGCOMM ’03, pages 3–10, New York, NY, USA, 2003. ACM. 33

[73] Mateus A. S. Santos, Bruno Astuto A. Nunes, Katia Obraczka, Thierry Turletti,

Bruno Trevizan de Oliveira, and Cintia B. Margi. Decentralizing sdn’s control plane.

In IEEE 39th Conference on Local Computer Networks, LCN 2014, Edmonton, AB,

Canada, 8-11 September, 2014, pages 402–405, 2014. 33

[74] Jonathan Philip Stringer, Dean Pemberton, Qiang Fu, Christopher Lorier, Richard

Nelson, Josh Bailey, Carlos N. A. Corrêa, and Christian Esteve Rothenberg. Cardi-

gan: SDN distributed routing fabric going live at an internet exchange. In IEEE Sym-

posium on Computers and Communications, ISCC 2014, Funchal, Madeira, Portu-

gal, June 23-26, 2014, pages 1–7, 2014. 34, 35

[75] Arpit Gupta, Muhammad Shahbaz, Laurent Vanbever, Hyojoon Kim, Russ Clark,

Nick Feamster, Jennifer Rexford, and Scott Shenker. Sdx: A software defined inter-

net exchange. ACM SIGCOMM, 2014. 34, 35, 39

[76] Remy Lapeyrade, Marc Bruyere, and Philippe Owezarski. Openflow-based migra-

tion and management of the TouIX IXP. In 2016 IEEE/IFIP Network Operations and

154

http://www.amqp.org/

BIBLIOGRAPHY

Management Symposium, NOMS 2016, Istanbul, Turkey, April 25-29, 2016, pages

1131–1136, 2016. 34

[77] Endeavour project. https://www.h2020-endeavour.eu/. Accessed: 2017-01-02.

34

[78] Heidi Morgan. AtlanticWave-SDX: A Distributed Intercontinental Experimental

Software Defined Exchange for Research and Education Networking. Press Release,

April 2015. 34

[79] Arpit Gupta, Robert MacDavid, Rudiger Birkner, Marco Canini, Nick Feamster, Jen-

nifer Rexford, and Laurent Vanbever. An industrial-scale software defined internet

exchange point. In 13th USENIX Symposium on Networked Systems Design and Im-

plementation (NSDI 16), pages 1–14, Santa Clara, CA, March 2016. USENIX Associ-

ation. 35

[80] Vasileios Kotronis, Adrian Gämperli, and Xenofontas Dimitropoulos. Routing Cen-

tralization Across Domains via SDN. Comput. Netw., 92(P2):227–239, December

2015. 35

[81] J. Chung, J. Cox, J. Ibarra, J. Bezerra, H. Morgan, R. Clark, and H. Owen.

AtlanticWave-SDX: An International SDX to Support Science Data Applications.

In Software Defined Networking (SDN) for Scientific Networking Workshop, Austin,

Texas, 11 2015. 35

[82] Internet2. Advanced layer 2 system. https://www.internet2.edu/

products-services/advanced-networking/layer-2-services/. Accessed:

2017-10-09. 35

[83] J. Chung, H. Owen, and R. Clark. Sdx architectures: A qualitative analysis. In South-

eastCon 2016, pages 1–8, March 2016. 36

[84] Manar Jammal, Taranpreet Singh, Abdallah Shami, Rasool Asal, and Yiming Li. Soft-

ware defined networking: State of the art and research challenges. Computer Net-

works, 72:74 – 98, 2014. 40

[85] O. Hohlfeld, J. Kempf, M. Reisslein, S. Schmid, and N. Shah. Guest editorial scala-

bility issues and solutions for software defined networks. IEEE Journal on Selected

Areas in Communications, 36(12):2595–2602, Dec 2018. 41, 42

155

https://www.h2020-endeavour.eu/
https://www.internet2.edu/products-services/advanced-networking/layer-2-services/
https://www.internet2.edu/products-services/advanced-networking/layer-2-services/

BIBLIOGRAPHY

[86] Giuseppe Bianchi, Marco Bonola, Antonio Capone, and Carmelo Cascone. Open-

State: Programming Platform-independent Stateful Openflow Applications Inside

the Switch. SIGCOMM Comput. Commun. Rev., 44(2):44–51, April 2014. 41

[87] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rexford,

Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and David Walker.

P4: Programming Protocol-independent Packet Processors. SIGCOMM Comput.

Commun. Rev., 44(3):87–95, July 2014. 41

[88] Masoud Moshref, Apoorv Bhargava, Adhip Gupta, Minlan Yu, and Ramesh Govin-

dan. Flow-level state transition as a new switch primitive for sdn. In Proceedings of

the 2014 ACM Conference on SIGCOMM, SIGCOMM ’14, pages 377–378, 2014. 41

[89] Mina Tahmasbi Arashloo, Yaron Koral, Michael Greenberg, Jennifer Rexford, and

David Walker. Snap: Stateful network-wide abstractions for packet processing. In

Proceedings of the 2016 ACM SIGCOMM Conference, SIGCOMM ’16, pages 29–43,

2016.

[90] Roberto Bifulco and Gábor Rétvári. A Survey on the Programmable Data Plane: Ab-

stractions, Architectures, and Open Problems. 2018 IEEE 19th International Con-

ference on High Performance Switching and Routing (HPSR), pages 1–7, 2018. 41

[91] S. Pontarelli, M. Bonola, G. Bianchi, A. Capone, and C. Cascone. Stateful OpenFlow:

Hardware proof of concept. In 2015 IEEE 16th International Conference on High

Performance Switching and Routing (HPSR), pages 1–8, July 2015. 42

[92] Giuseppe Bianchi, Marco Bonola, Salvatore Pontarelli, Davide Sanvito, Antonio

Capone, and Carmelo Cascone. Open Packet Processor: a programmable architec-

ture for wire speed platform-independent stateful in-network processing. CoRR,

abs/1605.01977, 2016. 42

[93] Roberto Bifulco, Julien Boite, Mathieu Bouet, and Fabian Schneider. Improving

SDN with InSPired Switches. In Proceedings of the Symposium on SDN Research,

SOSR ’16, pages 11:1–11:12, 2016. 42

[94] David L. Tennenhouse and David J. Wetherall. Towards an active network architec-

ture. SIGCOMM Comput. Commun. Rev., 37(5):81–94, October 2007. 42

156

BIBLIOGRAPHY

[95] Vimalkumar Jeyakumar, Mohammad Alizadeh, Changhoon Kim, and David Maz-

ières. Tiny packet programs for low-latency network control and monitoring. In

Proceedings of the Twelfth ACM Workshop on Hot Topics in Networks, HotNets-XII,

pages 8:1–8:7, 2013. 42

[96] J. Yang, X. Yang, Z. Zhou, X. Wu, T. Benson, and C. Hu. Focus: Function offloading

from a controller to utilize switch power. In 2016 IEEE Conference on Network Func-

tion Virtualization and Software Defined Networks (NFV-SDN), pages 199–205, Nov

2016. 42

[97] K. Qiu, S. Huang, Q. Xu, J. Zhao, X. Wang, and S. Secci. Paracon: A parallel control

plane for scaling up path computation in sdn. IEEE Transactions on Network and

Service Management, PP(99):1–1, Oct 2017. 43

[98] Shadi Moazzeni, Mohammad Reza Khayyambashi, Naser Movahhedinia, and

Franco Callegati. On reliability improvement of software-defined networks. Com-

puter Networks, 133:195 – 211, 2018. 43

[99] P. Fonseca and E. Mota. A survey on fault management in software-defined net-

works. IEEE Communications Surveys Tutorials, PP(99):1–1, 2017. 44

[100] P. Fonseca, R. Bennesby, E. Mota, and A. Passito. Resilience of sdns based on active

and passive replication mechanisms. In 2013 IEEE Global Communications Confer-

ence (GLOBECOM), pages 2188–2193, Dec 2013. 44

[101] Volkan Yazici, M. Oguz Sunay, and Ali Ozer Ercan. Controlling a software-defined

network via distributed controllers. CoRR, abs/1401.7651, 2014. 45

[102] Nathan Kong. Design concept for a failover mechanism in distributed sdn con-

trollers. In Master’s Project, 2017. 45

[103] V. Pashkov, A. Shalimov, and R. Smeliansky. Controller failover for sdn enterprise

networks. In 2014 International Science and Technology Conference (Modern Net-

working Technologies) (MoNeTeC), pages 1–6, Oct 2014. 45

[104] M. Obadia, M. Bouet, J. Leguay, K. Phemius, and L. Iannone. Failover mechanisms

for distributed sdn controllers. In 2014 International Conference and Workshop on

the Network of the Future (NOF), volume Workshop, pages 1–6, Dec 2014. 46

157

BIBLIOGRAPHY

[105] Liron Schiff, Stefan Schmid, and Petr Kuznetsov. In-band synchronization for dis-

tributed sdn control planes. SIGCOMM Comput. Commun. Rev., 46(1):37–43, Jan-

uary 2016. 46

[106] Fabio Botelho, Tulio A. Ribeiro, Paulo Ferreira, Fernando M. V. Ramos, Alysson

Bessani, undefined, undefined, undefined, and undefined. Design and implemen-

tation of a consistent data store for a distributed sdn control plane. 2016 12th Eu-

ropean Dependable Computing Conference (EDCC), 00:169–180, 2016.

[107] B. Zhang, X. Wang, and M. Huang. Adaptive consistency strategy of multiple con-

trollers in SDN. IEEE Access, 6:78640–78649, 2018. 46, 48

[108] Aurojit Panda, Colin Scott, Ali Ghodsi, Teemu Koponen, and Scott Shenker. CAP for

networks. In Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics in

Software Defined Networking, HotSDN ’13, pages 91–96, New York, NY, USA, 2013.

ACM. 46, 47, 81

[109] Oracle. https://www.oracle.com. Accessed: 2016-10-24. 47

[110] MySQL. http://www.mysql.fr/. Accessed: 2016-03-02. 47

[111] Avinash Lakshman and Prashant Malik. Cassandra: A decentralized structured stor-

age system. SIGOPS Oper. Syst. Rev., 44(2):35–40, April 2010. 47, 81, 82, 83, 96, 98,

99

[112] Rusty Klophaus. Riak Core: Building Distributed Applications Without Shared State.

In ACM SIGPLAN Commercial Users of Functional Programming, CUFP ’10, pages

14:1–14:1, New York, NY, USA, 2010. ACM. 47, 99

[113] Swaminathan Sivasubramanian. Amazon dynamodb: A seamlessly scalable non-

relational database service. In Proceedings of the 2012 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’12, pages 729–730, New York, NY,

USA, 2012. ACM. 47, 81, 82, 83, 96, 98, 99

[114] Dan Levin, Andreas Wundsam, Brandon Heller, Nikhil Handigol, and Anja Feld-

mann. Logically centralized?: state distribution trade-offs in software defined net-

works. In Proceedings of the first workshop on Hot topics in software defined net-

works, HotSDN ’12, pages 1–6, 2012. 47

158

https://www.oracle.com
http://www.mysql.fr/

BIBLIOGRAPHY

[115] M. Aslan and A. Matrawy. Adaptive consistency for distributed sdn controllers. In

2016 17th International Telecommunications Network Strategy and Planning Sym-

posium (Networks), pages 150–157, Sept 2016. 48, 96

[116] E. Sakic, F. Sardis, J. W. Guck, and W. Kellerer. Towards adaptive state consistency in

distributed SDN control plane. In 2017 IEEE International Conference on Commu-

nications (ICC), pages 1–7, May 2017. 48, 96

[117] Stefan Wallin and Claes Wikström. Automating network and service configuration

using netconf and yang. In Proceedings of the 25th International Conference on

Large Installation System Administration, LISA’11, pages 22–22, Berkeley, CA, USA,

2011. 49

[118] OpenConfig. http://www.openconfig.net/. Accessed: 2016-11-27. 49

[119] OF-CONFIG 1.2: Openflow Management and Configuration Protocol. Technical

report, Open Networking Foundation, 2014. Accessed: 2017-01-05. 49

[120] R. Amin, M. Reisslein, and N. Shah. Hybrid SDN Networks: A Survey of Existing Ap-

proaches. IEEE Communications Surveys Tutorials, 20(4):3259–3306, Fourthquarter

2018. 50

[121] Sandhya, Yash Sinha, and K. Haribabu. A survey: Hybrid SDN. Journal of Network

and Computer Applications, 100:35 – 55, 2017. 50

[122] A. Blenk, A. Basta, M. Reisslein, and W. Kellerer. Survey on network virtualization

hypervisors for software defined networking. IEEE Communications Surveys Tuto-

rials, 18(1):655–685, Firstquarter 2016. 51

[123] M. Canini, P. Kuznetsov, D. Levin, and S. Schmid. A distributed and robust SDN con-

trol plane for transactional network updates. In 2015 IEEE Conference on Computer

Communications (INFOCOM), pages 190–198, April 2015. 51

[124] F. Bannour, S. Souihi, and A. Mellouk. Scalability and reliability aware SDN con-

troller placement strategies. In 2017 13th International Conference on Network and

Service Management (CNSM), pages 1–4, Nov 2017. 54

159

http://www.openconfig.net/

BIBLIOGRAPHY

[125] Brandon Heller, Rob Sherwood, and Nick McKeown. The controller placement

problem. In Proceedings of the First Workshop on Hot Topics in Software Defined

Networks, HotSDN ’12, pages 7–12, New York, NY, USA, 2012. ACM. 54, 58

[126] David Hock, Matthias Hartmann, Steffen Gebert, Michael Jarschel, Thomas Zinner,

and Phuoc Tran-Gia. Pareto-optimal resilient controller placement in sdn-based

core networks. In 25th International Teletraffic Congress (ITC), Shanghai, China, 9

2013. 55, 60, 65

[127] Stanislav Lange, Steffen Gebert, Thomas Zinner, Phuoc Tran-Gia, David Hock,

Michael Jarschel, and Marco Hoffmann. Heuristic approaches to the controller

placement problem in large scale sdn networks. IEEE Transactions on Network and

Service Management, 12(1):4–17, 2015. 55, 56, 59

[128] S. Knight, H.X. Nguyen, N. Falkner, R. Bowden, and M. Roughan. The internet topol-

ogy zoo. Selected Areas in Communications, IEEE Journal on, 29(9):1765 –1775, oc-

tober 2011. 55, 56

[129] Yannan Hu, Wendong Wang, Xiangyang Gong, Xirong Que, and Shiduan Cheng.

Reliability-aware controller placement for software-defined networks. In Filip De

Turck, Yixin Diao, Choong Seon Hong, Deep Medhi, and Ramin Sadre, editors, IM,

pages 672–675. IEEE, 2013. 55

[130] Member IEEE Yuliang Li Guang Yao, Jun Bi and Luyi Guo. On the capacitated con-

troller placement problem in software defined networks. In IEEE Communications

Letters, 2014. 56, 60

[131] S. Lange, S. Gebert, J. Spoerhase, P. Rygielski, T. Zinner, S. Kounev, and P. Tran-Gia.

Specialized heuristics for the controller placement problem in large scale sdn net-

works. In 2015 27th International Teletraffic Congress, pages 210–218, Sept 2015.

56

[132] V. Ahmadi, A. Jalili, S. M. Khorramizadeh, and M. Keshtgari. A hybrid nsga-ii for

solving multiobjective controller placement in sdn. In The 2nd International Con-

ference on Knowledge-Based Engineering and Innovation (KBEI), pages 663–669,

Nov 2015. 56, 64

160

BIBLIOGRAPHY

[133] Ahmad Jalili, Manijeh Keshtgari, and Reza Akbari. Optimal Controller Placement

in Large Scale Software Defined Networks Based on Modified NSGA-II. Applied

Intelligence, 48(9), September 2018. 56, 57

[134] L. F. Müller, R. R. Oliveira, M. C. Luizelli, L. P. Gaspary, and M. P. Barcellos. Sur-

vivor: An enhanced controller placement strategy for improving SDN survivability.

In 2014 IEEE Global Communications Conference, pages 1909–1915, Dec 2014. 56,

57

[135] Francisco J. Ros and Pedro M. Ruiz. On reliable controller placements in software-

defined networks. Comput. Commun., 77(C):41–51, March 2016. 57

[136] J. M. Sanner, Y. Hadjadj-Aoufi, M. Ouzzif, and G. Rubino. Hierarchical clustering

for an efficient controllers’ placement in software defined networks. In 2016 Global

Information Infrastructure and Networking Symposium (GIIS), pages 1–7, Oct 2016.

57

[137] N. Perrot and T. Reynaud. Optimal placement of controllers in a resilient sdn archi-

tecture. In The 12th International Conference on the Design of Reliable Communi-

cation Networks (DRCN), pages 145–151, March 2016. 57

[138] G. Wang, Y. Zhao, J. Huang, and Y. Wu. An Effective Approach to Controller Place-

ment in Software Defined Wide Area Networks. IEEE Transactions on Network and

Service Management, 15(1):344–355, March 2018. 57

[139] IBM ILOG CPLEX Optimizer. http://www-03.ibm.com/software/products/en/

ibmilogcpleoptistud. Accessed: 2017-06-05. 57

[140] T. Das, V. Sridharan, and M. Gurusamy. A survey on controller placement in SDN.

IEEE Communications Surveys Tutorials, pages 1–1, 2019. 57

[141] Bala Prakasa Rao Killi and Seela Veerabhadreswara Rao. Controller placement

in software defined networks: A comprehensive survey. Computer Networks,

163:106883, 2019. 59

[142] Neha Soni; Amit Ganatra. Comparative study of several clustering algorithms. In-

ternational Journal of Advanced Computer Research, pages 37–42, 2012. 63

161

http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud
http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud

BIBLIOGRAPHY

[143] Sinalgo - simulator for network algorithms. http://www.disco.ethz.ch/

projects/sinalgo/. Accessed: 2017-02-01. 66

[144] Tianzhu Zhang, Andrea Bianco, and Paolo Giaccone. The role of inter-controller

traffic in SDN controllers placement. In IEEE Conference on Network Function Vir-

tualization and Software Defined Networks (IEEE NFV-SDN), 2016. 73

[145] K.Popat Shraddha and M. Emmanuel. Review and comparative study of clustering

techniques. International Journal of Computer Science and Information Technology

(IJCSIT), 5:805–812, 2014. 75

[146] OVS - Open vSwitch. http://www.openvswitch.org/. Accessed: 2017-01-05. 76

[147] Haifeng Yu and Amin Vahdat. Design and evaluation of a continuous consistency

model for replicated services. In Proceedings of the 4th Conference on Symposium

on Operating System Design & Implementation - Volume 4, OSDI’00, Berkeley, CA,

USA, 2000. 78, 83, 85, 98, 99, 101

[148] Mark Reitblatt, Nate Foster, Jennifer Rexford, and David Walker. Consistent updates

for software-defined networks: Change you can believe in! In Proceedings of the

10th ACM Workshop on Hot Topics in Networks, pages 7:1–7:6, 2011. 79

[149] Thanh Dang Nguyen, Marco Chiesa, and Marco Canini. Decentralized consistent

updates in SDN. In Proceedings of the Symposium on SDN Research, pages 21–33,

2017. 79

[150] ONOS. https://onosproject.org/. Accessed: 2016-01-02. 79, 83, 96

[151] M. Aslan and A. Matrawy. Adaptive consistency for distributed SDN controllers. In

2016 17th International Telecommunications Network Strategy and Planning Sym-

posium (Networks), pages 150–157, Sept 2016. 80, 82, 83

[152] E. Sakic, F. Sardis, J. W. Guck, and W. Kellerer. Towards adaptive state consistency in

distributed SDN control plane. In 2017 IEEE International Conference on Commu-

nications (ICC), pages 1–7, May 2017. 80

[153] Ermin Sakic, Nemanja Ðerić, and Wolfgang Kellerer. Morph: An adaptive frame-

work for efficient and byzantine fault-tolerant sdn control plane. IEEE Journal on

Selected Areas in Communications, 36:2158–2174, 2018. 80, 82

162

http://www.disco.ethz.ch/projects/sinalgo/
http://www.disco.ethz.ch/projects/sinalgo/
http://www.openvswitch.org/
https://onosproject.org/

BIBLIOGRAPHY

[154] M. Aslan and A. Matrawy. A clustering-based consistency adaptation strategy for

distributed SDN controllers. In 2018 4th IEEE Conference on Network Softwariza-

tion and Workshops (NetSoft), pages 441–448, June 2018. 80

[155] D. Abadi. Consistency tradeoffs in modern distributed database system design: CAP

is only part of the story. Computer, 45(2):37–42, Feb 2012. 81

[156] Sathiya Prabhu Kumar. Adaptive Consistency Protocols for Replicated Data in Mod-

ern Storage Systems with a High Degree of Elasticity. Theses, CNAM, March 2016.

83, 99, 100

[157] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguiça, and Ro-

drigo Rodrigues. Making geo-replicated systems fast as possible, consistent when

necessary. In Conference on Operating Systems Design and Implementation, 2012.

83

[158] Houssem-Eddine Chihoub, María Pérez, Gabriel Antoniu, and Luc Bougé.

Chameleon:customized application-specific consistency by means of behavior

modeling. Research report, 2013. 83

[159] ODL. http://opendaylight.org/. Accessed: 2010-09-30. 96

[160] Mohamed Aslan and Ashraf Matrawy. A clustering-based consistency adaptation

strategy for distributed SDN controllers. In 2018 4th IEEE Conference on Network

Softwarization and Workshops (NetSoft), 2018. 96

[161] Ermin Sakic and Wolfgang Kellerer. Impact of adaptive consistency on distributed

SDN applications: An empirical study. IEEE Journal on Selected Areas in Communi-

cations, page 13, 2018.

[162] F. Bannour, S. Souihi, and A. Mellouk. Adaptive state consistency for distributed

ONOS controllers. In 2018 IEEE Global Communications Conference(Globecom),

pages 1–7, 2018. 96, 97

[163] Douglas B. Terry, Vijayan Prabhakaran, Ramakrishna Kotla, Mahesh Balakrishnan,

Marcos K. Aguilera, and Hussam Abu-Libdeh. Consistency-based Service Level

Agreements for Cloud Storage. In Proceedings of the Twenty-Fourth ACM Sympo-

sium on Operating Systems Principles, SOSP ’13, pages 309–324, 2013. 96

163

http://opendaylight.org/

BIBLIOGRAPHY

[164] Peter Bailis, Shivaram Venkataraman, Michael J. Franklin, Joseph M. Hellerstein,

and Ion Stoica. Probabilistically Bounded Staleness for Practical Partial Quorums.

Proc. VLDB Endow., 5(8):776–787, April 2012. 98, 101, 102, 107

[165] Peter Bailis, Shivaram Venkataraman, Michael J. Franklin, Joseph M. Hellerstein,

and Ion Stoica. Quantifying Eventual Consistency with PBS. Commun. ACM,

57(8):93–102, August 2014. 98, 101

[166] H. Chihoub, S. Ibrahim, G. Antoniu, and M. S. Pérez. Harmony: Towards Automated

Self-Adaptive Consistency in Cloud Storage. In 2012 IEEE International Conference

on Cluster Computing, pages 293–301, Sept 2012. 98

[167] Canh Son Nguyen Ba. Adaptive control for availability and consistency in dis-

tributed key-values stores. PhD thesis, University of Illinois, 2015. 99

[168] Voldemort project. http://www.project-voldemort.com/voldemort/design.

html. Accessed: 2016-04-11. 99

[169] Jing Zhong, Roy D. Yates, and Emina Soljanin. Minimizing content staleness in

dynamo-style replicated storage systems. IEEE INFOCOM 2018 - IEEE Conference

on Computer Communications Workshops (INFOCOM WKSHPS), pages 361–366,

2018. 102

[170] Maria Couceiro, Gayana Chandrasekara, Manuel Bravo, Matti Hiltunen, Paolo Ro-

mano, and Luís Rodrigues. Q-OPT: Self-tuning quorum system for strongly consis-

tent software defined storage. In Proceedings of the 16th Annual Middleware Con-

ference, Middleware ’15, pages 88–99, 2015. 104

[171] Abdelhamid Mellouk, Said Hoceini, and Hai Anh Tran. Quality of Experience, chap-

ter 2, pages 11–31. John Wiley Sons, Ltd, 2013. 105

[172] OpenAI Gym Project. https://gym.openai.com/. Accessed: 2019-04-05. 118

[173] Hai-Anh Tran, Sami Souihi, Duc A. Tran, and Abdelhamid Mellouk. Mabrese: A new

server selection method for smart SDN-based CDN architecture. IEEE Communi-

cations Letters, 23:1012–1015, 2019. 119

164

http://www.project-voldemort.com/voldemort/design.html
http://www.project-voldemort.com/voldemort/design.html
https://gym.openai.com/

BIBLIOGRAPHY

[174] M. Ojo, D. Adami, and S. Giordano. A SDN-IoT architecture with NFV implemen-

tation. In 2016 IEEE Globecom Workshops (GC Wkshps), pages 1–6, Dec 2016. 130,

142

[175] K. Liang, L. Zhao, X. Chu, and H. H. Chen. An integrated architecture for software

defined and virtualized radio access networks with fog computing. IEEE Network,

31(1):80–87, January 2017. 130, 142

[176] A. Abdou, P. C. van Oorschot, and T. Wan. Comparative analysis of control plane se-

curity of sdn and conventional networks. IEEE Communications Surveys Tutorials,

20(4):3542–3559, Fourthquarter 2018. 134

165

	Résumé
	Abstract
	List of Figures
	List of Tables
	List of Acronyms
	List of publications
	Introduction
	General context
	Problem statement and motivations
	Main contributions
	Dissertation organization

	Towards a decentralized SDN control architecture: Overview and taxonomy
	Introduction
	Software-defined networking: A centralized control architecture
	Conventional networking and the SDN paradigm
	The SDN architecture
	SDN data plane
	SDN control plane
	SDN application plane

	Physical classification of existing SDN control plane architectures
	Physically-centralized SDN control
	Physically-distributed SDN control
	Flat SDN control
	Hierarchical SDN control

	Logical classification of existing SDN control plane architectures
	Logically-centralized SDN control
	Onix and SMaRtLight
	HyperFlow and Ravana
	ONOS and OpenDayLight
	B4 and SWAN

	Logically-distributed SDN control
	DISCO and D-SDN
	SDX-based controllers

	Conclusion

	Decentralized SDN control: Major open challenges
	Introduction
	Scalability
	Data plane extensions
	Control plane distribution

	Reliability
	Control state redundancy
	Controller failover

	Controller state consistency
	Static consistency
	Adaptive multi-level consistency

	Interoperability
	Interoperability between the SDN controllers
	SDN Interoperability with legacy networks

	Other challenges
	Conclusion

	Scalability and reliability aware SDN controller placement strategies
	Introduction
	Related work
	The SDN controller placement optimization problem
	Problem statement
	Problem formulation
	Placement metrics
	Performance criteria
	Reliability criteria

	The proposed SDN controller placement scheme
	The adopted approach
	Multi-criteria placement algorithms
	Gradual strategies

	Performance evaluation
	Simulation settings
	Simulation results

	Discussion
	Conclusion

	Adaptive and continuous consistency for distributed SDN controllers: Anti-Entropy reconciliation mechanism
	Introduction
	Related work
	The consistency problem in SDN
	Consistency trade-offs in SDN
	Consistency models in SDN
	The strong consistency model
	The eventual consistency model
	Adaptive consistency models

	Consistency models in ONOS
	Strong consistency in ONOS
	Eventual consistency in ONOS
	Optimistic replication
	Gossip-based Anti-Entropy

	The proposed adaptive consistency for ONOS
	A continuous consistency model for ONOS
	Our consistency adaptation strategy for ONOS
	Our implementation approach

	Performance evaluation
	Experimental setup
	Results

	Conclusion

	Adaptive and continuous consistency for distributed SDN controllers: Quorum-based replication
	Introduction
	Background on eventual consistency in distributed data-stores
	Consistency and performance Metrics:
	Adaptive consistency control
	Existing modern tunable consistency systems

	The proposed adaptive Quorum-inspired consistency for ONOS
	A continuous consistency model for ONOS
	Our Quorum-inspired consistency adaptation strategy for ONOS
	Quorum consistency
	Adaptive architecture

	Implementation approach on ONOS
	Design of a CDN-like application
	State synchronization and content distribution
	Content delivery to customers

	Performance evaluation
	Experimental setup
	TCL-Expect scripts
	OpenAI Gym simulator
	Various learning agent policies

	Results
	Impact of the Read and Write Quorum sizes
	Quorum configuration optimization

	Conclusion

	Conclusions and perspectives
	Summary of contributions
	Perspectives and future work

	Version abrégée en Français
	Contexte général
	Motivations
	Contributions
	Conclusion et travail réalisé
	Liste des publications

	Bibliography

